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Introduction 
 

The researchers at the Optical/Image Processing Laboratory at the University of 
Connecticut (UConn), in cooperation with the Office of Research and Materials 
Testing and the Pavement Management Division at the Connecticut Department of 
Transportation (ConnDOT), have investigated image processing and recognition 
techniques for improving the accuracy and repeatability of the Wisecrax computer 
system (CCHRP Project JHR 02-11). Wisecrax automates much of the analysis of 
pavement distress data collected by the Automatic Road Analyzer (ARAN) vehicle. 
Attributes of interest include crack density, crack type (longitudinal, transverse, 
alligator), crack length, block cracking and crack width. 
It is through this work that it has been realized that, due to the geometry of the ARAN 
camera set-up, the spatial resolution of the sensors are inadequate for resolving cracks 
at 3mm accuracy. More advanced sensors can go below this resolution. This level of 
accuracy is the required minimum in the American Association of State Highway & 
Transportation Officials’ policy document Standard Practice for Quantifying Cracks 
in Asphalt Pavement Surface (AASHTO PP44-00). Also, the Wisecrax system itself 
yields a high number of false positives in identifying cracks (it identifies many cracks 
where there are none) and the measured widths of the cracks that it does identify 
correctly are unreliable and inaccurate. These problems have led ConnDOT 
Pavement Management to discount this width information and simply rely on crack 
counts and crack lengths in maintenance decisions. However, the evaluation of many 
pavement serviceability indices (PSI’s) requires estimates of crack width to be 
provided. Although it is clear that the crack depth carry very valuable information 
regarding the pavement condition, there is no much research discussing this point. 
The reason behind that is that 2D intensity cameras, that are available on the markets, 
can not keep the depth information. Instead of estimating the crack width, we use a 
laser based 3D holographic imaging system to estimate the depth of the crack. The 
cracks depth (combined with the crack length and count) gives the information 
necessary to judge the pavement quality. 
The main objectives of this project are the laboratory construction of a 3D laser-based 
range sensor and the development of algorithms for processing the data acquired from 
the sensor. The most common approach for acquiring such information is 3D 
profilometry (also known as structured light reconstruction). Here a known pattern of 
laser light (e.g. a grid) is projected onto the unknown surface and imaged by a Charge 
Coupled Device (CCD) sensor. By analyzing the deformations of this light pattern, 
and modeling the geometry of the projection system, 3D information can be 
recovered. Many other systems for 3D reconstruction that are based around similar 
principals such as laser-based interferometry, 3D digital holography, multiple 
perspective imaging, etc. Some three-dimensional image reconstruction systems are 
currently commercially available or can be put together using off-the-shelf products. 
This project would take advantage of existing pavement distress research at UConn 
and collaborations with the Pavement Management Division at ConnDOT. It would 
complement the substantial investment by ConnDOT in Roadware technology. In 
addition, no changes in the current data procedures (photolog capture or WiseCrax 
processing) are required and no retraining of the personnel involved in these 
procedures is required.  
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1. Phase shifting holography 

Digital holography [1-3] can be considered as a technique to sense and visualize 
3D objects. A digital hologram contains information about different views of a 3D 
object so a hologram can replace a set of 2D images taken from different 
perspectives. In general, a digital hologram stores the complex Fresnel diffraction 
pattern generated by a 3D object. On-axis digital holography is easy to implement 
and more precise than off-axis generated digital holography. The holograms 
presented in this project are generated optically using phase shift interferometry [4-6] 
and stored in a digital computer. The 3D object reconstruction from a digital 
hologram is performed using digital computer by approximating the Fresnel integral 
digitally. 

A digital hologram can be generated either using on-axis holography or off-axis 
holography. We use on-axis phase shifting interferometry because of its suitability for 
use with charged coupled device (CCD) cameras. In phase shifting digital 
interferometry the interference pattern between the diffraction pattern of the 3D 
object of interest and a reference beam is generated using CCD camera. The method 
relies on storing four interference patterns between the diffraction pattern of the 
object and the reference beam. The phase of the reference beam is different at each 
stored interference pattern.  
To acquire the digital holograms, an optical system utilizing Mach-Zehnder 
interferometer is used as depicted in Fig. 1. We record the complex amplitude 
generated by a 3D object at a plane located at the Fresnel diffraction region.   
 

 
Figure 1. phase shifting interferometer 

 

A polarized Argon laser beam of a wavelength ( )nm 514.5=λ  is divided into an 
object arm and a reference arm. The object beam illuminates the 3D object that 
diffracts light detected by a 10-bit 2048 ×  2048 pixels Kodak Megaplus CCD 
camera, and the reference beam passes through a half-wave retardation plate RP1 and 
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a quarter-wave retardation plate RP2. The beam is polarized and can be phase 
modulated by rotation of the two phase retardation plates. Four phase shifts of 

⎭
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⎩
⎨
⎧=

2
3 , ,

2
 0, πππα n  are achieved by aligning the slow and fast axes of the two plates. 

Let the diffraction pattern of the 3D object, D(x,y), at the CCD be given by: 

                               ( ) ( ) ( )( )yxjyxAyxH ,exp,, φ=                                              (1) 

where A(x,y) is the amplitude of the diffraction of the 3D object and φ(x,y) is the 
phase of the diffraction of a 3D object. Thus, we can record four phase-shifted 
interferograms given as 

( ) ( ) ( ) 2;,,;, nn yxRyxHyxI αα +=      (2) 

Where ( )yxH ,  is the complex amplitude distribution at the transverse coordinates 
( )yx,  due to the object beam at the CCD plane, it is given as 
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where ( )zyxU o ,, ′′  is the complex amplitude distribution of the object at the 
coordinates ( )zyx ,, ′′ , and z is the paraxial distance measured from the output plane. 

( )nyxR α;,  is the complex field generated by the reference beam at the output plane, 
given as 

( ) ( )[ ]nRn iAyxR αφα += exp;, ,   where φ  is the constant phase when both fast axes 
of the retardation plates are aligned with the direction of the polarization. 
The digital hologram amplitude is calculated from the four interferometric intensity 
patterns as 
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where the hologram phase ( )yxH ,φ  is given by 
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The discrete complex field at any plane can be computed by numerical propagation of 
( )yxH ,  using the discrete Fresnel formula 
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where ( )vu,  are the reconstruction plane coordinates, ( )vu ′′,  are the discrete spatial 
coordinates in the CCD plane, ( )yx ′∆′∆ ,  define the CCD pixel size, ( )yx ∆∆ ,  define 
the resolution of the reconstructed image, yx NN  and are the number of columns and 
rows of pixels in the CCD plane. 
 
2. Speckle noise 

When using coherent light to form images, a major effect appears in the 
reconstructed 3D object that is called speckle noise. Due to the roughness of the 
surface of the object compared to the coherent light wavelength, the reconstructed 3D 
object will have granular appearance that looks like noise. Due to the shortage of 
information about the microscopic object texture, the speckle will be studied in a 
statistical manner. This means that even if the macroscopic details of the object are 
deterministic, the recorded Fresnel diffraction of the object can’t be estimated 
precisely because of the speckle noise. 
It is well known that speckle is not an additive but a multiplicative type of noise, and 
it occurs because of the interference patterns of randomly scattered monochromatic 
radiation from a surface whose roughness is of the order of the wavelength of the 
incident radiation. Speckle appears in images as a superimposed granular texture 
pattern having object-dependent properties. It significantly degrades image quality 
and resolution, and it becomes impossible to fully extract image details comparable in 
size to speckle noise. Speckle effect can be reduced by smoothing or averaging the 
intensity over several speckle sizes. However, if such smoothing is performed, the 
resolution of the image is reduced accordingly, and edge details will be wiped out. 
Another method for filtering out speckle noise is "Homomorphic Filtering" [7-8] 
which relies on performing a logarithmic transformation on the image pixels intensity 
values, so speckle will have an additive noise effect which can be filtered out by 
wiener filtering techniques.  
  
2.1 Statistics of Speckle Noise 
 

A granular speckle pattern—a random and chaotic signal—appears when coherent 
light is scattered randomly from rough surfaces. Thus, the statistics of the speckle 
pattern depend on the interference of the incident light and the random properties of 
the surfaces illuminated. It is considered as an infinite sum of independent phasors 
with random amplitude and phase. Fig. 2(b) clearly shows the speckle pattern in a 

200200×  pixels block highlighted in Fig. 2(a). Although the block belongs to a 
uniform region of the car surface, speckle noise effect appears as fast spatial variation 
of image intensity values, causing the grainy texture shown in Fig. 2(b). Notice that 
speckle noise effect does not clearly appear in Fig. 2(a); this is because of the implicit 
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subsampling filtering performed while resizing (shrinking) this large image (2048 ×  
2048 pixels) to fit its allocated size in the piece of paper printed size.  
As described in Appendix A, the mean and variance of the intensity value of a 
speckle pattern ( )yxv ,  are respectively expressed as, 

( ){ } ( ){ } ( ){ }yxsEyxuEyxvE ,.,, =      (7) 
( ){ } ( ){ } ( ){ } 2222 ,,.,var us yxsEyxuEyxv σσ +=     (8) 

where ( ) ( ) ( )yxsyxuyxv ,.,, = , ( )yxu ,  is the original signal  and ( )yxs ,  is the noise 
random process. E[.] stands for mean and σ2 stands for the variance. 

As can be asserted by the first term of the summation in Eq. 8, influence of 
speckle noise is greater in brighter regions of the image. Hence, it becomes harder to 
process speckle noise for our holographic images; since they are large in size (2048 ×  
2048 pixels), and illumination considerably varies throughout the whole image.  
 

 
(a) 
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(b) 

Figure 2.   (a) A (2048 ×  2048) pixels digital holographic image reconstructed from a 
digital hologram;   (b) a (200 ×  200) pixels block (highlighted in Fig. 2.a), showing 
the adverse effect of speckle noise causing the grainy texture in the image uniform 
regions. 
3. The Wisecrax® integrated software 

Wisecrax® provides a comprehensive suite of tools for the automated detection 
and classification of pavement distress in photolog images. These images are 
collected by the ARAN vehicle using two downward facing, rear-mounted cameras. 
To ensure that each frame records a different section of road, the frame rates of the 
cameras are varied dynamically based on the vehicles speed. High-powered strobe 
lights are used to eliminate shadows due to overhead power-lines, trees, etc. The 
video streams from both cameras are interleaved and recorded for offline processing. 
The images were interweaved during the acquire step of the processing in the office. 
The Wisecrax® workstation demultiplexes these two streams and combines them to 
provide a single continuous image of the lane. Each camera creates a 1.5 by 2 meters 
image, which can be combined to construct the whole image of the curb. Each 
continuous image can be 10 meters, 20 meters, or 1/100th of a mile each with a width 
of approximately 4 meters. When detecting cracks, Wisecrax® can operate in a 
number of modes. The most important of these is batch mode where Wisecrax® 
processes a large (up to 40km) portion of road without human intervention. Human 
intervention is needed in the initial setting and quality control checking. The output of 
Wisecrax® is a crack map for each section of road and statistics summarizing the 
pavement condition.  
The S-VHS Tape has been replaced with digital cameras to enhance the quality of the 
images and eliminate old VHS recorder/players equipment and associated multi 
connections, which reduced the image quality with each connection since the initial 
research was conducted. 
 
4. Conventional Edge Detectors for Speckled Images 

In this section, we will review two conventional edge detectors for speckled 
images, and their drawbacks will be described. 
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Fig. 3(b) shows the result of an attempt to detect edges of the image in Fig. 3(a) using 
the Canny edge detection method [9]. Speckle manifests itself as false edges picked 
up all over the image, especially in the brighter regions.  
4.1 CoV Edge Detector 

In the coefficient of variation (CoV) edge detector, the edge criterion CoV is 
defined as 

µ
σ

=CoV        (9) 

where 2,σµ  are respectively the mean and variance of pixels intensity values over a 
window of a predetermined size. 

 
(a) 

 
(b) 

Figure 3.   (a) The holographic image of a pavement. (b) Edges detected in the image 
shown in Fig. 3(a) using the Canny edge detection method.   
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The CoV  is independent of the local average power in the homogeneous regions. 

From Eq. (9), the CoV  is distributed around 
L

1 , where L  is the number of looks, 

but the theoretical distribution of  the CoV  for a homogeneous area is not known. 
We can postulate that the larger the CoV , the stronger likelihood that the 
neighborhood belongs to an edge. However, a fixed threshold for optimum edge 
detection can not be determined theoretically. For our holographic single-look 
images, the center pixel of a local window is determined to belong to the 
homogeneous area if the CoV is less than a threshold value; otherwise, to the edge 
region. Although this method does not depend on the average intensity of the noisy 
image, our experiments have shown that it misses many significant edges in coherent 
holographic images. Figures 4.a, 4.b, and 4.c show the edges detected using 
CoV threshold values of 1.0, 1.05, and 1.1, respectively. It is evident that most of the 
detected edges are due to the inherent presence of speckle noise, and most of the 
significant true edges are left undetected. 

 
(a) 
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(b) 

 
(c) 

Figure 4(a)-(c) Edges detected in the image shown in Fig. 2(a) using the CoV  
method with thresholds of 1.00, 1.05, 1.10, respectively. 
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4.2 LoG-RoA Edge Detector 
 

In the "Laplacian of Gaussian – Ratio of Averages" (LoG-RoA) edge detector, zero 
crossing (ZC) points are detected first by applying the LoG operator to the 
holographic image. Responding to multiplicative noise, the LoG operator detects 
many unnecessary ZC points in the homogeneous regions; so it can not be used 
independently as an edge detector for speckled holographic images. Therefore, in the 
LoG-RoA edge detector the operator based on the RoA is also used. That is, the edge 
magnitude j) RoA(i,  at j) (i,  is given by the root mean square of the horizontal edge 
component j) H(i, , and the vertical edge component j) V(i, , i.e.,  

( ) ( ) ( )[ ]2
1

22 ,,, jiVjiHjiRoA +=    (10) 

where ( )jiH ,  is defined as ⎥
⎦

⎤
⎢
⎣

⎡
j)R(i,
j)L(i,,

j)L(i,
j)R(i,max , ( )jiR ,  and ( )jiL ,  are average 

values over neighborhoods on the right and left through the center of a window, 
respectively. The vertical edge component ( )jiV ,  is defined similarly for the 
neighborhoods above and below the center of a window. 
 
To obtain the final edge map, the ZC points obtained by the LoG operator are 
compared with the selected edge candidates obtained by the RoA operator. Generally, 
ZC contours show many false edges in the homogeneous region, but they entail a 
dead zone near real edges where no ZC points are detected. On the other hand, the 
RoA operator eliminates many false edges in the homogeneous region, but the 
detected edges are usually more than one pixel wide. Thus, with the logical AND 
operation on the candidate points detected by the LoG and RoA operators, the final 
one-pixel wide edge map is obtained. As experimental results show in Fig. 5, this 
procedure performs poorly when applied to coherent holographic images. 



 

11

 
 

Figure 5. Edges detected in the image shown in Fig. 2(a) using the  
Laplacian of Gaussian – Ratio of Averages method. 

 
 

5. The dyadic wavelet transform 
Mallat [10] proved that the modulus of the local maxima of the wavelet transform 

of a signal correspond to the signal's sharp variations at the same locations. He 
provided numerical procedures to characterize those sharp variations based on the 
evolution across the scales of the wavelet transform at these modulus maxima 
locations. Thus speckle noise can be discriminated from important true edges through 
an analysis of the wavelet transform modulus maxima behavior along different scales. 
 
5.1 The wavelet transform modulus maxima 
 

As a multiscale version of the Canny edge detector, two mother wavelet functions 
are defined as  

( ) ( ) ,,1

x
yxyx

∂
∂

−=
θψ     and ( ) ( )

y
yxyx

∂
∂

−=
,,  2 θψ           (11) 

which are the partial derivatives of a two-dimensional smoothing function ( )yx,θ  
along x and y, respectively. 
The dilation by a scaling factor s of the above wavelets is given by: 
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For any 2-D square-integrable function ( ) ( )22, RLyxf ∈ , where R  is the set of all 
real numbers, the wavelet transform at scale s  has two components defined as: 

( )
( )

( )( )

( )( )
( )( )yxfs

yxf
y

yxf
xs

yxsfW
yxsfW

s

s

s

,
,

,

,,
,,

2

1

θ
θ

θ
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⎟
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⎟
⎟
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⎞

⎜
⎜
⎜
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⎝

⎛

∗
∂
∂

∗
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
   (12) 

where "∗ " denotes convolution, and ∇  is the gradient operator. 
For less computational time, the dilation parameter s  is allowed to change only along 
the dyadic sequence ( ) zj

j
∈2 , where z  is the set of all integer numbers. Digital images 

are sampled at a finite resolution, below which we can not compute the wavelet 
transform. Therefore, the finest scale is normalized to 1, and a scaling function 
( )yx,φ  is introduced whose Fourier transform is an aggregation of the wavelet 

components dilated by scales j2  larger than 1: 
 

( ) ( ) ( ) ( ) ( )∑ +=
∞

=1

22112
2,2ˆ2,2ˆ2,2ˆ2,2ˆ,ˆ

j
y

j
x

j
y

j
x

j
y

j
x

j
y

j
x

j
yx ωωχωωψωωχωωψωωφ  

(13) 
where ( ) ( )yxyx ,,, 21 χχ are the reconstructing wavelets satisfying 

( ) ( ) ( ) ( ) ( )( )∑ ∗+∗=
∞

−∞=j

jjjj yxyxfWyxyxfWyxf ,,2,,2,,2,,2, 2211 χχ  (14) 

 
By defining the modulus of the gradient vector at scale j2  as 

( ) ( ) ( ) 2221 ,,2,,2,,2 yxfWyxfWyxMf jjj += , and the direction of the gradient 

vector, which is also the angle of the gradient vector ( )( )yxf s ,θ∗∇ , as 

( ) ( )
( ) ⎟⎟⎠

⎞
⎜⎜
⎝

⎛
= −

yxfW
yxfWyxAf j

j
j

,,2
,,2tan,,2 1

2
1 , we can extend the Canny edge detector 

algorithm to a multiscale implementation. The sharp variation points of ( )yxf j ,
2

θ∗  

are the points ( )oo yx ,  where the modulus of the gradient vector ( )( )yxMf j ,,2  is 
maximum in the direction of the gradient vector ( )( )yxAf j ,,2 , which indicates where 
the image has the sharpest variation. 
 
5.2. Lipschitz exponents and irregularities discrimination 
 

Each irregular pixel, a discontinuity in the image pixels intensity, produces 
modulus maxima values at different scales ( )j2 . Those values can be used to estimate 
the local regularity at that pixel. In mathematics, Lipschitz exponents are used to 
measure the local regularity of functions, and it can be measured from the evolution 
across scales of the absolute value of the wavelet transform. Speckle noise and 
important edges, though both are considered to be irregularities in the image 
intensity, but they have different evolution behaviors across the scales of the wavelet 



 

13

transform local maxima, and thus they will have different Lipschitz exponents. So, if 
we can measure the Lipschitz exponents at the wavelet transform local maxima 
locations, we will be able to distinguish important edges from speckle noise. 
 
5.3 Characterization of local regularity (Lipschitz exponents determination) 
 

Meyer [11] had proven that a two dimensional function ( ) ( )22, RLyxf ∈  is 
Lipschitz ,α  10 << α  over ] [ ] [εεεε −+×−+ dcba , , , if and only if for any  0>ε  
there exists a constant εA such that for ( )∈yx, ] [ ] [εεεε −+×−+ dcba , , , and at any 
scale j2 , the following condition holds  

( ) ( )αε
jj AyxMf 2,,2 ≤      (15) 

where ( )yxMf j ,,2  is the modulus of the wavelet transform at scale j2  at location 
( )yx, . 
Taking the log of (15), we have  

( )( ) ( )εα AjyxMf j
22 log,,2log +≤     (16) 

So, the Lipschitz exponents can be estimated by measuring the decay slope of 
( )( )yxMf j ,,2log2  as a function of j . In the homogeneous regions which contain 

speckle noise, the modulus local maxima decay abruptly with increasing the scale, 
they are characterized by negative Lipschitz exponents, which means that they are 
more likely to be singularities, not discontinuities in the image intensity. On the 
contrary, those modulus local maxima which represent important edges, persist across 
the scales of the wavelet transform, implying positive Lipschitz exponents, and that 
they represent true edges. 
 
6. Cracks depth estimations 

One important parameter in characterizing the crack severity is the crack depth. 
Regular imaging systems are not able to detect the crack depth. Using 3D digital 
holography imaging we make an estimate of the crack depth. In digital holography, 
the areas reconstructed at their actual distance from the CCD will be focused and 
other areas will be out of focus. Figure 7 shows a pavement images reconstructed at 
different distances using inverse Fresnel diffraction. Even thought the difference is 
not very obvious, visually, in figure 6, the edge detection algorithm we use extracted 
the changes in the focused areas between the different reconstruction distances. Using 
this technique, we can make a rough estimate for the crack depth that can be used to 
judge the severity of the crack. 
To find the depth of the crack we reconstruct the three dimensional pavement using 
the stored hologram, then we find the reconstruction distanced that gives the best 
focus at the cracks areas. We use texture detection techniques to find the texture 
strength and use this to measure how the area is focused [12]. Figure 7 shows a block 
diagram for the proposed crack depth estimation algorithm. As shown in figure 7 we 
can use either the output of the Wisecrax system or use this system as a stand-alone 
system. We apply the texture detection technique to the areas identified by the 
Wisecrax system to find the distance of the crack from the recording camera, and use 
this to estimate the crack depth. 
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(a)      (b) 

                
(c)      (d) 

 
(e) 

Figure 6. The holographic image of a pavement reconstructed at a distance of   (a) 
830 mm (b) 832.5mm (c) 835 mm (d) 837.5 mm (e) 840 mm 
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Figure 7. Block diagram for the proposed system 

 
We use the multi-scale edge detection technique and apply it to the identified cracked 
areas. We use a moving averaging kernel to reduce the effect of noise. An image 
pixel reconstructed at a certain distance that gives the highest output will be 
considered at the corresponding distance. This will be applied to each pixel in the 
cracked areas. 
 
7. Implementation and Results 

Two-dimensional quadratic spline wavelets, which are the first derivative of the 
cubic spline, were used to implement the fast discrete wavelet transform. The 
quadratic spline wavelet is anti-symmetric, regular and of compact support. Discrete 
FIR filter banks are implemented for each of the two dimensions, as will be shown, to 
calculate the fast dyadic wavelet transform. Interested readers should refer to 
Appendix B for a derivation of the filters' design procedure for constructing the 
scaling and wavelet functions. 
For discrete implementation, at any scale j2 , each pixel [ ]nms j ,  of the 
approximation image ( )yxfS j ,

2
 is an averaging of ( )yxf ,  with the scaling function 

( ) ( )yx jj 22
φφ  translated at [ ]nm, , i.e. 

[ ] ( ) ( ) ( )nymxyxfnms jjj −−=
22

,,, φφ    (17) 
For simplicity, this can be expressed for one dimension in the convolution form as 

[ ] ( )nfns jj 121 +∗=+ φ       (18) 



 

16

where ( ) ( )nn jj −=
22

φφ  

The [ ]nw j 1+  pixel of the details image at scale 12 +j ,  in either the horizontal or 
vertical direction is computed with a similar convolution as 

[ ] ( )nfnw jj 121 +∗=+ ψ       (19) 
where ( ) ( )nn jj −=

22
ψψ  

The Fourier transforms of the sampled signals [ ] [ ]nwns jj 11 , ++  are 

( ) ( ) ( )πωφπωω kkfs j
k

j 2ˆ 2ˆˆ *
21 1 +∑ += +

∞

−∞=
+    (20) 

( ) ( ) ( )πωψπωω kkfw j
k

j 2ˆ 2ˆˆ *
21 1 +∑ += +

∞

−∞=
+    (21) 

Substituting in (20) and (21) from (b-4) and (b-6) we get 
( ) ( ) ( )ωωω j

j
j sHs ˆ 2ˆ 1 =+      (22) 

( ) ( ) ( )ωωω j
j

j sGw ˆ 2ˆ 1 =+      (23) 
Taking the inverse Fourier transform of  (22), (23) 

[ ] [ ]nshns jjj ∗=+1       (24) 
[ ] [ ]nsgnw jjj ∗=+1       (25) 

 
where [ ]nh j  and [ ]ng j  , the inverse Fourier transforms of ( )ωjH 2ˆ  and ( )ωjG 2ˆ , are 
the discrete filters obtained by expansion of the impulse responses of  [ ]nh  and [ ]ng  
by a factor of  j2  . Two dimensional filtering is obtained by convolving the rows and 
columns of the image ( )yxf ,  with the one dimensional filters [ ]nh j , [ ]ng j  derived 
in Appendix B. 
 
The discrete wavelet decomposition of the image approximation at scale j2 , 

( )yxfS j ,
2

, is decomposed to the approximation image at the coarser scale 

( ) ( ) ( ) ( )yhxhyxfSyxfS jjjj **,,
22 1 =+ , and the two image details 

( ) ( ) ( )xgyxfSyxfW jjj *,,
2

1
2 1 =+   and  ( ) ( ) ( )ygyxfSyxfW jjj *,,

2
2

2 1 =+ . 
Starting with the original image, the procedure is repeated recursively to get all the 
approximation images ( )yxfS j ,

2
 up to the coarsest scale J2 . The details images 

( )yxfW j ,1
2 1+ , and ( )yxfW j ,2

2 1+  are obtained by convolving the approximation images 

( )yxfS j ,
2

 with the respective high pass filters ( )xg j  and ( )yg j . Fig. 8 shows a 
block diagram of the filter banks realization involved in computing the 
approximations and details images. 
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( )xfjS 12 +
( )xjh

( )xjg

( )xjh 1+

( )xjg 1+

( )xfjS
2

( )xfjW 12 + ( )xfjW 22 +

( )xfjS 22 +

 
Figure 8. 1-D discrete filter banks realization for computing the fast dyadic wavelet 

transform. 
 
Like in the canny edge detector, for each scale j2 , we compute ( )yxMf j ,,2 , and 

( )yxAf j ,,2 , the local maxima of the wavelet transform are the points ( )yx,  where 
the modulus image ( )yxMf j ,,2  is locally maximum along the gradient direction 
given by ( )yxAf j ,,2 . We record the position of each of those local maxima. 
 
Most of the important edges of the original image have positive Lipschitz exponents, 
which means that we can separate speckle noise from the important edges by 
measuring the evolution across scales of the wavelet transform maxima, i.e. the 
Lipschitz exponents. Also, knowledge of the geometrical properties of the important 
edges can also be used to connect modulus maxima points which belong to smooth 
maxima edge curves, i.e. two adjacent local maxima points are connected together if 
their respective position is perpendicular to the direction indicated by ( )yxAf j ,,2 , 
and the modulus ( )yxMf j ,,2  of the two maxima have close values. On the contrary, 
the sharp variation points of speckle noise have negative Lipschitz exponents, and the 
modulus maxima values ( )yxMf j ,,2  of two adjacent local maxima points do not 
have close values, hence they do not create such smooth curves of ( )yxMf j ,,2 , and 
they can be easily discriminated.  
Figure 9(b) to 9(e) shows the edge detected at different scales for the holographic 
image shown in figure 9(a). The amplitude of the maxima are severely affected by 
speckle noise at the finer scales, but when looking at coarser scales, the effect of 
important edges more clearly appears.  
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(a) 

 
(b) 
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(c) 

 
(d) 
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(e) 

Figure 9. (a) Three dimensional holographic image for a pavement sector. (b-e)  The 
detect cracks using different scales using a relatively low threshold.  

 
To remove speckle noise components, we suppress all the maxima points which 
propagate with a Lipschitz exponent less than –a certain threshold; since they imply 
that their amplitude increases when the scale decreases, which is a characteristic of 
speckle noise. The Lipschitz exponents are computed from the evolution of the 
wavelet transform local maxima across the scales 321 2 ,2 ,2  as was mathematically 
described in Eq. (16). At the coarsest scale, we suppress modulus maxima which are 
less in value than a certain threshold, and all modulus maxima in the finer scales 
which propagate to them.  
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We use the either the previous crack locations estimations or the Wisecrax results and 
estimate the depth of the cracked areas. We use a pavement that stored using 
holographic imaging at a distance of 830mm from the CCD. We reconstruct the 3D 
image at distances of 830, 832.5, 835, 837.5, and 840 mm. We relate each pixel to the 
level that provides the best focusing.  In reality a crack doesn’t have a fixed depth but 
a fluctuating depth and width. So, to evaluate the severity of the crack we use the 
mean depth, the maximum depth, and the standard deviation of the calculated depth. 
Figure 10 shows the calculated cracks for the pavement shown in Figure 9 (a), notice 
that we use a clustering technique that connects the point that may be related to the 
same crack. 
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Figure 10. Color mapping for the depth of the cracks for the pavements shown on 

Figure 9(a) 
 
 
We use a k mean clustering algorithm to separate each crack then measure its 
parameters which include maximum depth, average depth and the mean depth and 
use this information in combination with the results of the Wisecrax system to judge 
the quality of the pavement. Table 1 shows the computed mean crack depth, standard 
deviation and maximum crack depth for the cracks on figure 10. 
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Table 1. Details for the cracks in figure 10 
 

Crack  
location(x,y) 

789.5229  
865.180 

416.9393  
455.6941

694.1301  
341.5548 

787.4711  
610.9246

544.4982  
763.8613 

295.5051  
800.5007

158.7225  
691.7868 

Mean depth 
(mm) 

3.2964     4.7967    4.4524     5.7523    5.3498     4.1341    4.5478 

Standard 
deviation-
mm 

2.5004     2.3945    2.2519     2.4725    2.6398     2.3528    2.4987 

Maximum 
depth-mm 

11.0717    11.2479   11.2479   10.1325   10.9318    8.3524    9.8262 

 
 
Conclusion 

In this project we proposed a 3D laser based imaging system that can be used for 
pavement distress. The proposed system can be used in conjunction with the Wiscrax 
system.  A multi-scale wavelet technique is used to estimate the depth of the crack 
from the stored holographic images. The fusion between the holographic image and 
the Wisecrax image gives more accurate information about the crack and helps to 
evaluate the pavement condition. The present system is too large and sensitive to be 
installed on a moving van because of the high power laser source and the 
interferometer. We need to find more robust 3D imaging systems to be able to place 
them on a moving platform 
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Appendix A 
Speckle noise statistics 

 
Speckle noise is considered as an infinite sum of independent phasors with random 
amplitude and phase. This yields a representation of its complex amplitude as: 
( ) ( ) ( )yxIjayxRayxa ,,, +=      (A-1) 

where  , IaRa are zero mean, independent Gaussian random variables with variance 
2 aσ  

The intensity is: 

( ) ( ) 222,, IR aayxayxs +==       (A-2) 

and it has an exponential probability density function, 

( )  
2

exp
2

1
22 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

aa

ssf
σσ

,       (A-3) 

With mean and variance given by: 
{ } 22sE aσ=         (A-4) 
22 2 as σσ =          (A-5) 

Even though a speckle pattern has no detailed information about the structure of the 
surface of an illuminated object, it is well described by its pdf. In general, a speckle 
pattern ( )yxv ,  is modeled by the multiplication of an original signal ( )yxu ,  and a 
noise random process ( )yxs ,   
( ) ( ) ( )yxsyxuyxv ,.,, =        (A-6) 

Generally, at a certain pixel ( )yx, , the original image and speckle noise intensity 
values are independent of each other, the mean and variance of the intensity value at 
( )yx,  are respectively expressed as, 

( ){ } ( ){ } ( ){ }yxsEyxuEyxvE ,.,, =         

( ){ } ( ) ( ){ }( ){ } ( ){ } ( ){ } 22222 ,,.,,,var us yxsEyxuEyxvEyxvEyxv σσ +=−=    

where {}⋅E  is the expectation, and 2
uσ , 2

sσ  are the variances of ( )yxu , , ( )yxs , , 
respectively. 
The term ( ){ }yxuEs ,. 22σ  clarifies the fact that the influence of speckle noise is 
greater in the brighter regions.  
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Appendix B 
Spline wavelets filters design 

 
The continuous cubic spline is the convolution of four box functions, it has two 
continuous derivatives, abrupt jumps in the third derivative, and a sequence of delta 
functions in the fourth derivative. 
The box function has a Fourier transform which is a sinc function, thus  

( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

=

2

2
sin

ˆ
ω

ω

ωB         (b-1) 

 
We take the scaling function ( )xφ  as a box spline of degree 2. The Fourier transform 
of ( )xφ  is the multiplication of three sinc functions given as: 

( )

3

2

2

2
sin

ˆ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

=
−

ω

ω

ωφ
ωi

e        (b-2) 

The phase shift 2
ωi

e
−

 is a consequence of ( )xφ  being centered at 
2
1

=x . 

From the multi-resolution causality property [10], the dilation by a factor of 2 of the 

scaling function, ⎟
⎠
⎞

⎜
⎝
⎛

2
xφ , must be a combination of the basis functions ( )nx −φ . 

Hence, a discrete filter [ ]nh  that relates both is given as: 

[ ] ( )nxxnh −⎟
⎠
⎞

⎜
⎝
⎛= φφ ,

22
1        (b-3) 

which can be expressed in the frequency domain as: 

( ) ( ) ( )ωφωωφ ˆˆ
2

12ˆ H=                                   (b-4)  

substituting (32) into (34), we get 

( )
3

2

2
cos2ˆ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

− ωω
ωi

eH        (b-5) 

From Eq. (35), We can get ( )nh , the impulse response of the filter ( )ωĤ  as the 
coefficients of 

( ) ( )133
8
2

2
2ˆ 1232

3

22
2 +++=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

= −

−
−

zzzzeeeH
ii

i

ωω
ω

ω , where ωiez =  
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Thus [ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−
8
1,

8
3,

8
3,

8
12nh  

So, [ ]nh  can be implemented as a low-pass FIR filter. 
Imposing that the corresponding wavelet ( )xψ  has a Fourier transform that can be 
obtained as 

( ) ( ) ( )ωφωωψ ˆ
2

12ˆ G=        (b-6) 

Since ( )xψ  is the first order derivative of a smoothing function ( )xθ , so it should 
have one zero at 0=ω . Choosing ( )xθ  as a cubic spline smoothing function, so its 
Fourier transform is 

( )

4

2

4

4
sin

4
1ˆ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

−
=

−

ω

ω

ωθ
ωi

e        (b-7) 

Consequently, the Fourier transform of ( )xψ  is 

( )

4

2

4

4
sin

 
4
1ˆ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

−
=

−

ω

ω

ωωψ
ωi

ei        (b-8) 

Substituting (32), (38) into (36), we get 

( ) ⎟
⎠
⎞

⎜
⎝
⎛−=

−

2
sin2ˆ 2 ωω

ωi

eiG        (b-9) 

Which is a high pass filter that has one zero at 0=ω  
From (39), We can get ( )ng , the impulse response of the filter ( )ωĜ  as the 

coefficients of ( ) ( )1
22

2 1
2
1

2
2ˆ −

−
−

−
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−= z
i
eeieG

ii
i

ωω
ω

ω  

So, [ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−=
−

2
1,

2
1

ng        (b-10) 

Which is a finite difference filter approximating a derivative. 
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