Wade H. Elmer
Department of Plant Pathology and Ecology
The Connecticut Agricultural Experiment Station
123 Huntington Street
New Haven, CT 06511
Voice: (203) 974-8503 | Fax: (203) 974-8502
E-mail: Wade.Elmer@ct.gov
Expertise:
Dr. Elmer is a plant pathologist, he studies the ecology and control of soilborne fungi that infect crops important to the citizens of Connecticut. He has expertise in the fungal genus Fusarium which contains many species that cause diseases of crops.
Education:
B. S. (1978); Virginia Polytechnic Institute and State University, Horticulture
M. S. (1981); Virginia Polytechnic Institute and State University, Plant Pathology
Ph. D. (1985); Michigan State University, Plant Pathology
Assistant Scientist 1987-1992
Associate Scientist 1992-2003
Scientist 2003-2015
Station Career:
Emeritus Scientist, 2022-present
Chief Scientist, Head, Department of
Plant Pathology and Ecology 2015-2022
Vice Director, 2020-2022
Past Research:
Dr. Elmer’s research focused on the ecology of soil borne disease of vegetables
and ornamentals. He has authored over 90 research articles. Recent articles are
listed below
Current Research:
Dr. Elmer is currently developing
strategies to suppress root diseases using combinations of mineral nutrition,
soil amendments (biochar), and earthworms. Understanding the mechanisms of
suppression and their contributions to soil and plant health is a long-term
goal. More recently Dr. Elmer has studied the use of nanoparticles of
metallic oxides and composites to suppress plant diseases through altering host
defense pathways.
Selected publications available from the author, Wade.Elmer@ct.gov
- Elmer, W. H. The Wonderful World of Worms: Earthworms and Soil Health, https://www.plantopiapodcast.org/12
- Borgatta, J. Ma, C., Hudson-Smith, N., Elmer, W., Pérez, C. D. P., De La Torre-Roche, R., Zuverza-Mena, N., Haynes C. L., White J. C. Hamers R. L. (2018). Copper nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): Role of particle morphology, composition, and dissolution behavior. Sustainable Chemistry and Engineering DOI
- Elmer, W. H., Ma, C., and White, J. C. (2018). Nanoparticles for Plant Disease Management. Current Opinion in Environmental Science & Health. 6:66-70.
- Elmer, W., De La Torre-Roche, R. Pagano, L., Majumdar, S., Zuverza-Mena, N., Dimpka, C., Gardea-Torresdey, J., and White, J. C. (2018). Effect of metalloid and metal oxide nanoparticles on Fusarium wilt of watermelon. Plant Disease 102 (7):1394-1401.
- Adisa, I. O., Pullagurala, V. L., Rawat, S., Hernandez-Viezcas, J. A., Dimkpa, C., Elmer, W. H., White, J. C., Peralta-Videa, J. R. and Gardea-Torresdey, J. L. (2018). Role of cerium compounds in Fusarium wilt suppression and growth enhancement in tomato (Solanum lycopersicum). Journal of agricultural and food chemistry. 66:5959-5970.
- Elmer, W. H., and White, J. C. (2018). Role of Nanotechnology in Plant Pathology. Annu. Rev. of Phytopath. 56:6.1-6.23. (https://doi.org/10.1146/annurev-phyto-080417-050108)
- Elmer, W. H., Thiel P., and Steven, B. (2018). Response of sediment bacterial communities to Sudden Vegetation Dieback in a coastal wetland. Phytobiomes. DOI: PBIOMES-09-16-0006R
- Elmer, W. H., Thiel P., and Steven, B. (2016). Response of sediment bacterial communities to Sudden Vegetation Dieback in a coastal wetland. Phytobiome (PDF Format) (http://apsjournals.apsnet.org/doi/full/10.1094/PBIOMES-09-16-0006-R) (PDF)
- Elmer, W. H. (2016). Influence of biochar, earthworms and leaf mold mulch on root health, mycorrhizal colonization and yield of asparagus. Plant Disease, 100, 2507-2512. http://dx.doi.org/10.1094/PDIS-10-15-1196-RE (PDF)
- Kelly, A., Proctor, R. H., Belzile, F., Chulze, S. N., Clear, R. M., Cowger, C., Elmer, W., Lee, T., Obanor, F., Waalwijk, C., and Ward, T. J. (2016). The geographic distribution and complex evolutionary history of the NX-2 trichothecene chemotype from Fusarium graminearum. Fungal Genetics and Biology 95: 39-48. (PDF Format) (PDF)
- Elmer, W. H. and White, J. (2016). Nanoparticles of CuO improves growth of eggplant and tomato in disease infested soils. Royal Chemical Society, Environmental Science: Nano, 3, 1072-1079. DOI: 10.1039/C6EN00146G. (PDF)
- Elmer, W. H., Marra R. E., Li, H, and Li, B. (2016). Incidence of Fusarium spp. on the invasive Spartina alterniflora on Chongming Island, Shanghai, China. Biological Invasions, 18, 2221-2227. (PDF)
- Servin, A., Elmer, W., Mukherjee, A. De la Torre-Roche, R., Hamdi, H., White, J. C, Bindraban, P., and Dimkpa, C. A. (2015). Review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 17, 92-103. (PDF)
- Gullino, M. L., Daughtrey, M. L., Garbaldi, A., and Elmer, W. H. (2015). Fusarium wilts of ornamental and their management. Crop Protection, 73, 50-59 (PDF)
- Elmer, W. H., Lattao, C., and Pignatello. (2015). Active removal of biochar by Lumbricus terestris L. Pedobiologia, 58, 1-6 (PDF)
- Elmer, W. H. and LaMondia. (2014(. Comparison of saline tolerance of genetically similar species of Fusarium and Meloidogyne recovered from marine and terrestrial habitats. Estuarine, Coastal and Shelf Science, 149, 320-324. (PDF)
- Li, H., Zhang, X., Zheng, R., Li, X., Elmer W. H., Wolfe, L. M. and Li, B. (2014). Li Indirect effects of non-native Spartina alterniflora and its fungal pathogen (Fusarium palustre) on native salt marsh plants in China. Journal of Ecology, 102, 1112-1119. (PDF)
- Elmer, W. H. (2014). A tripartite interaction between Spartina alterniflora, Fusarium palustre and the purple marsh crab (Sesarma reticulatum) contributes to Sudden Vegetation Dieback of salt marshes in New England. Phytopathology, 104, 1070-1077 (PDF)
- Elmer, W. H., Useman, S., Schneider, R. W., Marra, R. E., LaMondia, J. A., del Mar Jimenez-Gasco, M., Mendelssohn, I. A., and Caruso, F. L. (2013). Sudden Vegetation Dieback in Atlantic and Gulf coast salt marshes. Plant Disease, 97, 436-444. (PDF)
- Elmer, W. H., LaMondia J. A., and Caruso, F. (2011). Association between Fusarium spp. on Spartina alterniflora and dieback sites in Connecticut and Massachusetts. Estuaries and Coasts, 35, 436-444. (PDF)
- Elmer, W. H., and Pignatello, J. J. (2011). Effect of biochar amendment on arbuscular mycorrhizae and Fusarium crown and root rot of asparagus in replant soils. Plant Disease, 95, 960-966. (PDF)
- Elmer, W. H. and Marra, R. E. (2011). New species of Fusarium associated with dieback of Spartina alterniflora in Atlantic salt marshes. Mycologia, 103, 806–819. (PDF)
- Elmer, W. H., and Ferrandino, F. J. (2009). Suppression of Verticillium wilt of eggplant with earthworms. Plant Disease, 93, 485-489. (PDF)
- Nalim, F. A., Elmer, W. H., McGovern, R. J., and Geiser, D. M. (2009). Multilocus phylogenetic diversity of Fusarium avenaceum pathogenic on lisianthus. Phytopathology, 99, 462-468. (PDF)
- Elmer, W. H. (2009). Influence of earthworm activity on soil microbes and soilborne disease of vegetables. Plant Disease, 93, 175-179. (PDF)
- Elmer, W. H. (2008). Preventing the spread of Fusarium wilt of Hiemalis begonias in the greenhouse. Crop Protection, 27, 1078–1083. (PDF)
- Elmer, W.
H., Covert, S. F., and O’Donnell, K. (2007). Investigations of an outbreak of Fusarium foot and fruit rot of pumpkins
within the United States. Plant Dis. 91, 1142-1146. (PDF)