Neil P. Schultes

SchultesN

Department of Plant Pathology and Ecology
The Connecticut Agricultural Experiment Station
123 Huntington Street
New Haven, CT 06511


Expertise:
Dr. Schultes is a molecular biologist studying aspects of metabolism in plants and disease causing microorganisms.

 

Education:

A.B., Biology, Harvard University 1983
Ph.D., Department of Genetics, Harvard University Medical School 1990
Post-doctoral Fellowship, Biology, Yale University 1990-1994

 

Station career:

Assistant Scientist, 1994-2001
Associate Agricultural Scientist 2001-present

 

Past research:

Dr. Schultes has worked on the mechanism of gene conversion at the ARG4 locus in yeast, and cloning the gene encoding the large subunit of ribulose bisphosphate carboxylase from the cyanobacterium Fremyella diplosiphon.  Other research includes investigating the role of photorespiration in C4 photosynthesis in maize, using transposable element mutagenesis in maize genetics and studying the role of LHCB7 and PsbS genes in photosynthesis in the experimental plant Arabidopsis thaliana.

 

Current research:

Dr. Schultes current work involves the genetics and molecular biology of nucleobase transporters in plants and disease causing microorganisms. The transport of nucleobases across biological membranes is essential to plant biochemistry. Nucleobases – also known as purines and pyrimidines - constitute the building blocks for DNA and RNA and are important molecules in plant nitrogen and secondary metabolism. Dr. Schultes and colleagues are also investigating nucleobase transporters from disease-causing bacteria Paenibacillus larvae and Erwinia amylovoraP. larvae is the causal agent of American foulbrood in honey bees and E. amylovora causes Fire blight on apples and pears.  In both organisms the transport of nucleobases and nucleobase-derivatives is involved in disease establishment.

 

Memberships:

Fellow of the Linnean Society of London

Sigma Xi – Quinnipiac Chapter

Research Associate Depart of Molecular, Cellular and Developmental Biology, Yale University

 

Selected publications available from the author:

  • Cui Z., Steven B., Huntley R. B., Schultes N. P., Zeng Q. (2020). Inoculation of stigma colonizing microbes to apple stigmas alters microbiome structure and reduces the occurrence of fire blight disease. Phytobiomes. https://doi.org/10.1094/PBIOMES-04-20-0035-R
  • Cui, Z., Huntley, R. B., Schultes, N. P., Zeng, Q. (2020). Expression of the type III secretion system (T3SS) genes in epiphytic Erwinia amylovora cells on apple stigmas benefits endophytic infection at the hypanthium. Mol. Plant Microbe Interact. https://doi.org/10.1101/2020.07.23.218156
  • Gatchell, I. T., Huntley, R. B., Schultes, N. P., Mourad, G. S. (2020). The guanine-hypoxanthine permease GhxP of Erwinia amylovora facilitates the influx of the guanine toxic derivative 6-thioguanine. J Appl Microbiol. http://doi.org/10.1111/jam.14925
  • Alexander C. R., Huntley, R. B., Schultes, N. P., Mourad, G. S. (2020). Functional characterization of the adenine transporter EaAdeP from the fire blight pathogen Erwinia amylovora and its effect on disease establishment in apples and pears. FEMS Microbiol. https://doi.org/10.1093/femsle/fnaa173
  • Li, D.-W., Castañeda-Ruiz, R. F., Schultes, N. P. (2020). Phylogenetic placement of Acrospeira mirabilis. Mycotaxon, 135(2). https://doi.org/10.5248/135.299
  • Stoffer-Bittner, A. J., Huntley, R. B., Mourad, G. S., Schultes, N. P. (2020). An Erwinia amylovora uracil transporter mutant retains fire blight virulence on immature apple and pear fruit. Microbial Pathogenesis. https://doi.org/10.1016/j.micpath.2020.104363
  • Funk, A., Huntley, R. B., Mourad, G. S., Schultes N. P. (2020). A nucleobase cation symporter 2, EaXanP, from Erwinia amylovora transports xanthine.  J Plant Pathology. DOI: 10.1007/s42161-020-00584-5 
  • Iman, A., Huntley, R. B., Mourad, G. S., Schultes, N. P. (2020). Apple Nucleobase cation symporter 1 transports guanine and the Erwinia amylovora produced toxic analog 6-thioguanine. Physiol. & Mol. Plant Path. https://doi.org/10.1016/j.pmpp.2020.101492
  • Allan-Perkins, A., Li, D.-W., Schultes, N. P., Yavuz S., LaMondia, J. (2020). The identification of a new species, Diaporthe humulicola, a pathogen causing Diaporthe Leaf Spot on common hops.  Plant Disease.  https://doi.org/10.1094/PDIS-08-19-1770-RE
  • Nguyen, J. N., Schein, J. R., Hunt, K. A., Tippmann-Feightner, J. A., Rapp, M., Stoffer-Bittner, A. J., Nalam, V. J., Funk, A. M., Schultes N. P., Mourad, G. S. (2020). Functional characterization of the sole nucleobase cation symporter 1 of Nicotiana sylvestris reveals a broad solute specificity profile. Plant Gene 2-20-2020 https://doi.org/10.1016/j.plgene.2020.100226
  • Elmer, W., Li, D.-W., Yavuz S., Madeiras, A., Schultes, N. P. (2019). Huechera Root Rot, a new disease for Plectosphaerella cucumerina. J of Phytopathology. https ://doi.org/10.1111/jph.12867 
  • Li, D.-W., Schultes, N. P., LaMondia, J. A., Cowles, R. S. (2019). Phytophthora abietivora, a new species isolated from diseased Christmas trees in Connecticut, USA. Plant Disease. DOI: 10.1094/PDIS-03-19-0583-RE
  • Zeng, Q., Cooley, D., Schultes, N. (2019). Use of biological controls and sterilants as alternatives to streptomycin against fire blight blossom infections in apples. Fruit Notes, 84, 1-7.
  • Allan-Perkins, A., Li, D.-W., Schultes, N. P., Yavuz S., LaMondia, J. (2019). First report of the resurgence of hop powdery mildew (Podosphaera macularis) in a New England commercial hop yard. Plant Disease. https://doi.org/10.1094/PDIS-12-18-2259-PDN
  • Schultes, N. P., Strzalkowski N., Li D.-W. (2019) Botryotrichum domesticum sp. nov., a new hyphomycete from an indoor environment. Botany, 97, 311-319. https://doi.org/10.1139/cjb-2018-0196
  • Elmer, W., Maderias, A., Yavuz, S., Schultes, N. P. (2019). Fusarium Flower Rot of Threadleaf Coreopsis (Coreopsis verticillata) in Connecticut and Massachusetts caused by Fusarium succisae. Plant Diseasehttps://doi.org/10.1094/PDIS-11-18-1997-PDN
  • Stoffer-Bittner, A., Alexander, C. R., Dingman, D. W., Mourad, G. S., Schultes, N. P. (2018). Functional characterization of the uracil transporter from Honeybee pathogen Paenibacillus larvae. Microbiol. Path., 124, 305-310.
  • Stoffer-Bittner, A. J., Dingman, D. W., Mourad, G. S, Schultes, N. P. (2018). The solute transport and binding profile of a novel nucleobase cation symporter 2 from the Honeybee pathogen Paenibacillus larvae. FEBS openbio https://doi:10.1002/2211-5463.12488
  • Alexander, C. R., Dingman, D. W., Schultes, N. P., Mourad, G. S. (2018). The solute transport profile of two Aza-guanine transporters from the Honeybee pathogen Paenibacillus larvae. FEMS Microbiol. Letts. 365 https://doi.org/10.1093/femsle/fny018
  • Zeng, Q., Cui, Z., Wang, J., Childs, K., Sundin, G. W., Cooley, D. R., Yang, C.-H., Galafano, E., Eaton, A., Huntley, R. B., Yuan, X., Schultes, N. P. (2017). Comparative genomics of Spiraeoideae-infecting Erwinia amylovora strains provides novel insight to genetic diversity and identifies the genetic basis of a low virulence strain. Mol. Plant Path. DOI: 10.1111/mpp.12647.
  • Li, D. W., Schultes, N. P., Chen J.-Y., Wang Y.-X., Castañeda-Ruiz R. F. (2017). Circinotrichum sinense, a new asexual fungus from Hubei, China. Botany, 95, 1099-1108.
  • Lehner B. L., Schultes, N. P., Dingman, D. W. (2017). Paenibacillus larvae subspecies with dissimilar virulence patterns also group by vegetative growth characteristics and enolase isozyme biochemical properties AgriGene, 6, 31-36.
  • Schultes, N. P., Murtishi, B., Li, D. W. (2017). Phylogenetic relationships of Chlamydomyces, Harzia, Olpitrichum, and their sexual allies, Melanospora and Sphaerodes. Fungal Biology, 121, 890-904.
  • Minton, J. A., Rapp, M., Stoffer, A. J., Schultes, N. P., Mourad, G. S. (2016). Heterologous complementation studies reveal the solute transport profiles of a two-member Nucleobase Cation Symporter 1 (NCS1) family of Physcomitrella patens. Plant Physiol. & Biochem. 100, 12-17.
  • Peterson, R. B., Schultes, N. P.,  McHale, N. A., Zelitch, I. (2016). Evidence for a role for NAD(P)H dehydrogenase in concentration of CO2 in the bundle sheath cell of Zea mays. Plant Physiol. 171, 125-138. (PDF)
  • Rapp, M., Schein, J., Hunt, K. A., Nalam, V., Mourad, G. S., Schultes, N. P. (2016). The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility. Protoplasma, 253, 611-623.
  • Li, D. W., Schultes, N. P., Vossbrinck, C. (2016). Olpitrichum sphaerospora Matsush., a new record in the USA and its phylogenetic position. Mycotaxon, 131, 123-133.
  • Peterson, R. P. and Schultes, N. P. (2014). Light-harvesting complex B7 shifts the irradiance response of photosynthetic light-harvesting regulation in leaves of Arabidopsis thaliana. J. Plant Physiol. 171, 311-318. (PDF)
  • Peterson, R. P., Eichelmann, H., Oja, V., Laisk, A., Talts, E., Schultes, N. P. (2013). Functional Aspects of Silencing and Transient Expression of PsbS in Nicotiana benthamiana. Am. J. Plant Sci. 4, 1521-1532.(PDF)
  • Schein, J., Hunt, K. A., Minton, J., Schultes, N. P., Mourad, G. S. (2013). The nucleobase cation symporter 1 from Chlamydomonas reinhardtii and the evolutionary distant Arabidopsis thaliana  share function and establish a plant-specific solute transport profile. Plant Physiol. & Biochem., 70, 52-60. (PDF)
  • Mourad, G. S., Tippmann-Crosby, J., Hunt, K. A., Gicheru, Y., Bade, K., Mansfield, T. A., Schultes, N. P. (2012). Genetic and molecular characterization reveals a unique nucleobase cation symporter 1 in Arabidopsis. Fed. Euro. Biol. Soc. Lett. 586: 1370-1378. (PDF)
  • Mansfield, T. A., Schultes, N. P., Mourad, G. S. (2009). AtAzg1 and AtAzg2 comprise a novel family of purine transporters in Arabidopsis. Fed. Euro. Biol. Soc. Lett. 583: 481-486.  (PDF)
  • Zelitch, I., Schultes, N. P., Peterson, R. B., Brown, P., Brutnell, T. P. (2009). High glycolate oxidase activity is required for survival of maize in normal air.  Plant Physiology 149: 195-204.(PDF)
  • Schultes, N. P. and Peterson R. B. (2007). Phylogeny-directed structural analysis of the Arabidopsis PsbS protein. Biochem. Biophy. Res. Comm. 335: 464-470.(PDF)
  • Mourad, G. S., Snook, B. M., Prabhakar, J. T., Mansfield, T. A., Schultes, N. P. (2006). A fluoroorotic acid-resistant mutant of Arabidopsis defective in the uptake of uracil. J. Exp. Botany 57:3563-3573.(PDF)
  • Aylor, D. E., Schultes, N. P., Shields E. J. (2003). An aerobiological framework for assessing cross-pollination in maize. Agric. For. Meteorol., 119, 111-129. (PDF)
  • White, J. C., Wang, X., Gent, M. P. N., Wagner, L. T., Iannucci-Berger, W., Eitzer, B. D., Schultes, N. P., Arienzo, M., Incorvia Mattina, M.-J. (2003). Subspecies-level Variation in Phytoextraction of Weathered p,p’-DDE by Cucurbita pepo. Environmental Science & Technology, 37, 4368-4373. (PDF)
  • Qi, L. and Schultes, N. P. (2002). Arabidopsis thaliana locus At5g62890, a nucleobase-ascorbate transporter family member, is preferentially expressed in carpel transmitting tract and tapetal cells. Plant Science 163: 233-240. (PDF)
  • Argyrou E., Sophianopoulou V., Schultes, N., Diallinas G. (2001). Functional characterization of a maize purine transporter by expression in Aspergillus nidulans. Plant Cell 13: 953-964. (PDF)
  • Schultes N. P., Sawers, R. J. H., Brutnell T. P., Krueger R. W. (2000). Maize high chlorophyll fluorescent 60 mutation is caused by an Ac disruption of the gene encoding the chloroplast ribosomal small subunit protein 17. Plant Journal 21: 317–328. (PDF)
  • Timmermans M., Schultes N. P., Jankovsky J., Nelson T. (1998). Leafbladeless1 is required for dorsoventrality of lateral organs in maize. Development 125: 2813-2823. (PDF)
  • Timmermans M., Schultes N. P., Martienssen R., Nelson T. (1997). Leafbladeless1 is allelic to raggedseedling1 and is required for dorsal cell identity. Maize Genet. Coop. News Lett. 71:66.
  • Schultes N. P. Cloning corn genes today for future crop improvements. Frontiers of Plant Science (Spr. 1996)
  • Schultes N. P., Brutnell T. P., Allen A., Dellaporta S. L., Nelson T., Chen J. (1996). Leaf permease1 gene of maize is required for chloroplast development. Plant Cell 8: 463-475.(PDF)

  • Schultes N. P., Zelitch I., McGonigle B., Nelson T. (1994). The primary leaf catalase gene from Nicotiana tabacum and Nicotiana sylvestris.  Plant Physiology 106: 399-400. (PDF)