Douglas (Doug) E. Brackney
Department of Entomology
The Connecticut Agricultural Experiment Station
123 Huntington Street
New Haven, CT 06511
Voice: (203) 974-8475 Fax: (203) 974-8502
E-mail: Doug.Brackney@ct.gov
https://brackneylab.wordpress.com/
Expertise:
Dr. Brackney has expertise in the
areas of virus-vector interactions, mosquito and tick innate immunity, RNA
interference, autophagy and novel surveillance techniques specifically
xenosurveillance.
Education:
B.S. University of Wisconsin,
Madison (2001) Medical Microbiology and Immunology
Ph.D. Colorado State University,
Fort Collins (2007) Microbiology, Immunology and Pathology
Post Graduate Career:
Post-Doctoral Fellow University of
New Mexico, 2007-2011
Research Scientist Colorado State
University, 2011-2014
Assistant Agricultural Scientist II,
2014-2019
Associate Agricultural Scientist, 2019-2024
Agricultural Scientist, 2024-present
Past Research:
Past research includes projects that
have examined the interactions between arthropod-borne viruses and the vector mosquitoes
which transmit them, specifically, in the context of mosquito factors
involved in conditioning virus susceptibility. These projects have focused on innate
immunity, midgut serine proteases, RNA interference, and autophagy. Previous
projects have also evaluated the transmission forces shaping West Nile virus
and Powassan virus populations. In
addition, Dr. Brackney has worked with collaborators at Colorado State
University developing and testing a novel surveillance technique, termed
xenosurveillance, which utilizes the innate feeding behavior of mosquitoes to
collect human blood samples in a simple and non-invasive manner.
Current Research:
Dr. Brackney’s current research
projects are focused on understanding the cellular and molecular mechanisms
mediating virus-vector interactions using state-of-the-art techniques such as
next-generation sequencing, and high-throughput
RNAi screens. The three principal areas of interest are:
- Elucidating key mosquito and viral factors responsible for mediating virus attachment and penetration of the mosquito midgut.
- Elucidating the role of autophagy during flavivirus and alphavirus infection of arthropod vectors.
- Determine if and which host and vector factors influence the population structure of arboviruses.
Publications:
LaReau, J. C., Hyde, J., Brackney, D. E., and Steven, B. (2023). Introducing an environmental microbiome to axenic Aedes aegypti mosquitoes documents bacterial responses to a blood meal. Appl. Environ. Microbiol. DOI: 10.1128/aem.00959-23
Johnson, R. M., Cozens, D. W., Ferdous, Z., Armstrong, P. M., and Brackney, D. E. (2023). Increased blood meal size and feeding frequency compromise Aedes aegypti midgut integrity and enhance dengue virus dissemination. PLoS NTD, 17(11). DOI: 10.1371/journal.pntd.0011703
Brackney, D. E. and Vogels, C. B. F. (2023). The known unknown of Powassan virus ecology. J. Med Ent. 60(6), 1142-1148. DOI: 10.1093/jme/tjad095
Holcomb, K. M., Khalil, N., Cozens, D. W., Cantoni, J. L., Brackney, D. E., Linske, M. A., Williams, S. C., Molaei, G., and Eisen, R. J. (2023). Comparison of acarological risk metrics derived from active and passive surveillance and their concordance with tick-borne disease incidence. Ticks & Tick-borne Dis. 14(6). DOI: 10.1016/j.ttbdis.2023.102243
Hyde, J., Brackney, D. E., and Steven, B. (2023). Three species of axenic mosquito larvae recruit a shared core of bacteria in a common garden experiment. Appl. Environ. Microbiol. DOI: 10.1128/aem.00778-23
Vogels, C. B. F., Brackney, D. E., Dupuis, A. P. II, Robich, R. M., Fauver, J. R., Brito, A. F., Williams, S. C., Anderson, J. F., Lubelczyk, C. B., Lange R. E., Prusinski, M. A., Kramer, L. D., Gangloff-Kaufmann, J. L., Goodman, L. B., Baele, G., Smith, R. P., Armstrong, P. M., Ciota A. T., Dellicour, S., and Grubaugh, N. D. (2023). Phylogeographic reconstruction of the emergence and spread of Powassan virus in the northeastern United States. Proc. Nat. Acad. Sci. 120(16), e2218012120. DOI: 10.1073/pnas.2218012120
Wang, Y., Griffiths, A., Brackney, D. E., and Verardi, P. H. (2022). Generation of multiple arbovirus-like particles using a rapid recombinant vaccinia virus expression vector. Pathogens, 11(12), 1505. 10.3390/pathogens11121505.
Bransfield, A. B., Miscencik, M. J., Brackney, D. E., and Armstrong, P. M. (2022). Limited capacity of Aedes aegypti to mechanically transmit chikungunya virus and dengue virus. Am. J. Trop. Med. Hyg. 107(6), 1239-124. DOI: 10.4269/ajtmh.22-0323
Gloria-Soria, A., Brackney, D. E., Armstrong, P. M. (2022). Saliva collection via capillary method may underestimate arboviral transmission by mosquitoes. Parasites and Vectors. 15,103. DOI: 10.1186/s13071-022-05198-7
Brackney, D. E., and Peccia, J. (2022). Predicting daily COVID-19 case rates from SARS-CoV-2 RNA concentrations across a diversity of wastewater catchments. FEMS Microbe, 2. DOI: 10.1093/femsmc/xtab022
Brackney, D. E. (2021). Vector Competence of human-biting ticks Ixodes scapularis, Amblyomma americanum, and Dermacentor variabilis for Powassan virus. Parasites and Vectors, 14(1). DOI: 10.1186/s13071-021-04974-1
Brackney, D. E. (2021). The axenic and gnotobiotic mosquito: emerging models for microbiome host interactions. Front. Microbiol., 12. DOI: 10.3389/fmicb.2021.714222
Brackney, D. E., Connor, J. H., Colpitts, T. M., Hughes, G. L., Rasgon, J. L., Nolan, T., Akbari, O. S., and Lau, N. C. (2021). A mosquito small RNA genome resource reveals dynamic evolution and host responses to viruses and transposons. Genome Res., 31(3). DOI: 10.1101/gr.265157.120
Brackney, D. E., Lareau, J. C., and Smith, R. C. (2021). Frequency Matters: How successive feeding episodes by blood-feeding insect vectors influences disease transmission. PLoS Path., 17(6). DOI: 10.1371/journal.ppat.1009590
Brackney, D. E., LaBonte, A. M., Stuber, H. R., and Cozens, D. W. (2021). Effective control of the motile stages of Amblyomma americanum and reduced Ehrlichia spp. prevalence in adults via permethrin treatment of white-tailed deer in coastal Connecticut, USA. Ticks and Tick-borne Diseases, 12(3). DOI: 10.1016/j.ttbdis.2021.101675
Brackney, D. E., Cassanovas-Massana, A., Campbell, M., Fournier, J., Bermejo, S., Datta, R., Delacruz, C. S., Farhadian, S. F., Iwasaki, A., Ko, A. I., Grubaugh, N. D., Wyllie, A. L., and Yale IMPACT Research Team. (2020). Increased SARS-CoV-2 testing capacity with pooled saliva samples. Emerg. Infect. Dis., 27(4). DOI: 10.3201/eid2704.204200
Vogels, C. B. F., Watkins, A. E., Harden, C. A., Brackney, D. E., Shafer, J., Wang, J., Carabello, C., Kalinich, C. C., Ott, I. M., Fauver, J. R., Kudo, E., Lu, P., Venkataraman, V., Tokuyama, M., Moore, A. J., Muenker, M. C., Casanovas-Massana, A., Fournier, J., Bermejo, S., Campbell, M., Datta, R., Nelson, A., Yale IMPACT Research Team, Dela Cruz, C. S., Ko, A. I., Iwasaki, A., Krumholz, H. M., Matheus, J. D., Hui, P., Liu, C., Farhadian, S. F., Sikka, R., Wyllie, A. L., N. D. Grubaugh. (2020). SalivaDirect: A simplified and flexible platform to enhance SARS-CoV-2 testing capacity. Med, 2(3). DOI: 10.1016/j.medj.2020.12.010
Kudo, E., Israelow, B., Vogels, C. B. F., Lu, P., Wyllie, A. L., Tokuyama, M., Venkataraman, A., Brackney, D. E., Ott, I. M., Petrone, M. E., Earnest, R., Lapidus, S., Muenker, M. C., Moore, A. J., Cassanovas-Massana, A., Yale IMPACT Research Team, Omer, S. B., Delacruz, C. S., Farhadian, S. F., Ko, A. I., Grubaugh, N. D., and A. Iwasaki. (2020). Detection of SARS-CoV-2 RNA by multiplex RT-qPCR. PLoS Biol., 18(10), e3000867. 10.1371/journal.pbio.3000867
Peccia, J.*, Zulli, A.*, Brackney, D. E.*, Grubaugh, N. D., Kaplan, E. H., Casanovas-Massana, A., Ko, A. I., Malik, A. A., Wang, D., Wang, M., Warren, J. L., Weinberger, D. M., Arnold, W., and S. B. Omer. (2020). Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nat. Biotech., 38(10), 1164-1167. (* denotes co-first author)
Hyde, J., Correa, M. A., Hughes, G. L., Steven, B., and Brackney, D. E. (2020). Limited influence of the microbiome on the transcriptional profile of female Aedes aegypti mosquitoes. Scientific Reports, 10(1), 1-12.
Brackney, D. E., Correa, M. A., D. W. Cozens. (2020). The impacts of autophagy on arbovirus infection of mosquito cells. PLoS Neglected Tropical Diseases, 14(5), e0007754.
Armstrong, P. M., Ehrlich, H. Y., Magalhaes, T., Miller, M. R., Conway, P. J., Bransfield, A., Misencik, M. J., Gloria-Soria, A., Warren, J. L., Andreadis, T. G., Shepard, J. J., Foy, B. D., Pitzer, V. E., and Brackney, D. E. (2020). Successive blood meals enhance virus dissemination within mosquitoes and increase transmission potential. Nat. Micro., 5(2), 239-247.
Uraki, R., Hastings, A. K., Brackney, D. E., Armstrong, P. M., and Fikrig, E. (2019). AgBR1 antibodies delay lethal mosquito-borne West Nile virus infection in mice. NPJ Vaccines, 4, 23. DOI: 10.1038/s41541-019-0120-x
Hyde, J., Gorman, C., Brackney, D. E., and Steven, B. (2019). Antibiotic resistant bacteria and commensal fungi are common and conserved in the mosquito microbiome. PLoS One, 14(8), e0218907.
Grubaugh, N. D., Gangavarapu, K., Quick, J., Matteson, N. L., De Jesus, J. G., Main, B. J., Tan, A. L., Paul, L. M., Brackney, D. E., Grewal, S., Gurfield, N., Van Rompay, K. K. A., Isern, S., Michael, S. F., Coffey, L. L., Loman, N. J., and K. G. Andersen. (2019). An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biology, 20(1).
Correa, M. A., Matusovsky, B., Brackney, D. E.*, and Steven, B.* (2018). Axenic Aedes aegypti develop without live bacteria, but exhibit delayed development and reduced oviposition. Nat Comm., 9(1), 4464. (* co-corresponding)
Weger-Lucarelli, J., Rückert, C., Grubaugh, N. D., Misencik, M. J., Armstrong, P. M., Stenglein, M. D., Ebel, G. D., and Brackney, D. E. (2018). Adventitious viruses persistently infect three commonly used mosquito cell lines. Virology, 521, 175-180.
Grubaugh, N. D., Fauver, J. R., Rückert, C., Weger-Lucarelli, J., Garcia-Luna, S., Murrieta, R. A., Gendernalik, A., Smith, D. R., Brackney, D. E., and Ebel, G. D. (2017). Mosquitoes transmit unique West Nile virus populations during each feeding episode. Cell Rep, 19(4), 709-718. DOI: 10.1016/j.celrep.2017.03.076
Fauver, J. R., Gendernalik, A., Weger-Lucarelli, J., Grubaugh, N. D., Brackney, D. E., Foy, B. D., and Ebel, G. D. (2017). The use of xenosurveillance to detect human bacteria, parasites and viruses in mosquito bloodmeals. Am. J. Trop. Med. Hyg. doi.org/10.4269/ajtmh.17-0063
Brackney, D. E. Implications of autophagy on arbovirus infection of mosquitoes. (2017). Cur. Opin. Insect Sci., 22, 1-6. doi.org/10.1016/j.cois.2017.05.001
Brackney, D. E. and Armstrong, P. M. (2016). Transmission and evolution of tick-borne viruses. Current Opinion in Virology, 21, 67-74. DOI: 10.1016/j.coviro.2016.08.005
Grubaugh, N. D., Rückert, C., Armstrong, P. M., Bransfield, A., Anderson, J. F., Ebel, G. D., and Brackney, D. E. (2016). Transmission bottlenecks and RNAi collectively influence Powassan virus evolution. Virus Evolution, 2(2). DOI: 10.1093/ve/vew033.
Fauver, J. R, Grubaugh, N. D., Krajacich, B. J., Weger-Lucarelli, J., Lakin, S. M., Fakoli, L. S., Bolay, F. K., Diclaro, J. W., Dabiré, K. R., Foy, B. D., Brackney, D. E., Ebel, G. D., and Stenglein, M. D. (2016). West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses. Virology, 498, 288-299.
Brackney, D. E., Schirtzinger E. E., Harrison T. D., Ebel G. D., and Hanley, K. A. (2015). Modulation of flavivirus population diversity by RNA interference. J Virol., 89(7). DOI: https://dx.doi.org/10.1128%2FJVI.02612-14
Grubaugh, N. D., Sharma, S., Krajacich, B. J., Fakoli II, L. S., Bolay, F. K., DiClaro, II, J. W., Johnson, W. E., Ebel, G. D., Foy, B. D., Brackney, D. E. (2015). Xenosurveillance: a novel mosquito-based approach for examining the human-pathogen landscape. PLoS Negl. Trop. Dis., 9(3), 10.1371/journal.pntd.0003628