Douglas (Doug) E. Brackney

Image of Doug Brackney

Department of Entomology
The Connecticut Agricultural Experiment Station
123 Huntington Street
New Haven, CT 06511
Voice: (203) 974-8475 Fax: (203) 974-8502

Dr. Brackney has expertise in the areas of virus-vector interactions, mosquito and tick innate immunity, RNA interference, autophagy and novel surveillance techniques specifically xenosurveillance.

B.S. University of Wisconsin, Madison (2001) Medical Microbiology and Immunology
Ph.D. Colorado State University, Fort Collins (2007) Microbiology, Immunology and Pathology

Post Graduate Career:
Post-Doctoral Fellow University of New Mexico, 2007-2011
Research Scientist Colorado State University, 2011-2014
Assistant Agricultural Scientist II, 2014-2019
Associate Agricultural Scientist, 2019-present 

Past Research:
Past research includes projects that have examined the interactions between arthropod-borne viruses and the vector mosquitoes which transmit them, specifically, in the context of mosquito factors involved in conditioning virus susceptibility.  These projects have focused on innate immunity, midgut serine proteases, RNA interference, and autophagy. Previous projects have also evaluated the transmission forces shaping West Nile virus and Powassan virus populations.  In addition, Dr. Brackney has worked with collaborators at Colorado State University developing and testing a novel surveillance technique, termed xenosurveillance, which utilizes the innate feeding behavior of mosquitoes to collect human blood samples in a simple and non-invasive manner.

Current Research:
Dr. Brackney’s current research projects are focused on understanding the cellular and molecular mechanisms mediating virus-vector interactions using state-of-the-art techniques such as next-generation sequencing, and high-throughput RNAi screens. The three principal areas of interest are:

  • Elucidating key mosquito and viral factors responsible for mediating virus attachment and penetration of the mosquito midgut.
  • Elucidating the role of autophagy during flavivirus and alphavirus infection of arthropod vectors.
  • Determine if and which host and vector factors influence the population structure of arboviruses.



Zulli, A., Pan, A., Bart, S. M., Crawford, F. W., Kaplan, E. H., Carter, M., Ko, A. I., Sanchez, M., Brown, C., Cozens, D. W., Brackney, D. E., and J. Peccia. (2022). Predicting daily COVID-19 case rates from SARS-CoV-2 RNA concentrations across a diversity of wastewater catchments. FEMS Microbe, 2. DOI: 10.1093/femsmc/xtab022


Sharma, R., Cozens, D. W., Armstrong, P. M., and D. E. Brackney. (2021). Vector Competence of human-biting ticks Ixodes scapularisAmblyomma americanum, and Dermacentor variabilis for Powassan virus. Parasites and Vectors, 14(1). DOI: 10.1186/s13071-021-04974-1


Steven, B., Hyde, J., LaReau, J. C., and D. E. Brackney. (2021). The axenic and gnotobiotic mosquito: emerging models for microbiome host interactions. Front. Microbiol., 12. DOI: 10.3389/fmicb.2021.714222


Ma, Q., Srivastav, S. P., Gamez, S., Dayama, G., Feitosa-Suntheimer, F., Patterson, E. I., Johnson, R. M., Matson, E. M., Gold, A. S., Brackney, D. E., Connor, J. H., Colpitts, T. M., Hughes, G. L., Rasgon, J. L., Nolan, T., Akbari, O. S., and N. C. Lau. (2021). A mosquito small RNA genome resource reveals dynamic evolution and host responses to viruses and transposons. Genome Res., 31(3). DOI: 10.1101/gr.265157.120


Brackney, D. E., Lareau, J. C., and R. C. Smith. (2021). Frequency Matters: How successive feeding episodes by blood-feeding insect vectors influences disease transmission. PLoS Path., 17(6). DOI: 10.1371/journal.ppat.1009590


Williams, S. C., Stafford III, K. C., Linske, M. A., Brackney, D. E., LaBonte, A. M., Stuber, H. R., and D. W. Cozens. Effective control of the motile stages of Amblyomma americanum and reduced Ehrlichia spp. prevalence in adults via permethrin treatment of white-tailed deer in coastal Connecticut, USA. (2021). Ticks and Tick-borne Diseases, 12(3).


Watkins, A. E., Fenichel, E. P., Weinberger, D. M., Vogels, C. B. F., Brackney, D. E., Cassanovas-Massana, A., Campbell, M., Fournier, J., Bermejo, S., Datta, R., Delacruz, C. S., Farhadian, S. F., Iwasaki, A., Ko, A. I., Grubaugh, N. D., Wyllie, A. L., and Yale IMPACT Research Team. (2020). Increased SARS-CoV-2 testing capacity with pooled saliva samples. Emerg. Infect. Dis., 27(4). DOI: 10.3201/eid2704.204200


Vogels, C. B. F., Watkins, A. E., Harden, C. A., Brackney, D. E., Shafer, J., Wang, J., Carabello, C., Kalinich, C. C., Ott, I. M., Fauver, J. R., Kudo, E., Lu, P., Venkataraman, V., Tokuyama, M., Moore, A. J., Muenker, M. C., Casanovas-Massana, A., Fournier, J., Bermejo, S., Campbell, M., Datta, R., Nelson, A., Yale IMPACT Research Team, Dela Cruz, C. S., Ko, A. I., Iwasaki, A., Krumholz, H. M., Matheus, J. D., Hui, P., Liu, C., Farhadian, S. F., Sikka, R., Wyllie, A. L., N. D. Grubaugh. (2020). SalivaDirect: A simplified and flexible platform to enhance SARS-CoV-2 testing capacity. Med, 2(3). DOI:


Kudo, E., Israelow, B., Vogels, C. B. F., Lu, P., Wyllie, A. L., Tokuyama, M., Venkataraman, A., Brackney, D. E., Ott, I. M., Petrone, M. E., Earnest, R., Lapidus, S., Muenker, M. C., Moore, A. J., Cassanovas-Massana, A., Yale IMPACT Research Team, Omer, S. B., Delacruz, C. S., Farhadian, S. F., Ko, A. I., Grubaugh, N. D., and A. Iwasaki. (2020). Detection of SARS-CoV-2 RNA by multiplex RT-qPCR. PLoS Biol., 18(10), e3000867.


Peccia, J.*, Zulli, A.*, Brackney, D. E.*, Grubaugh, N. D., Kaplan, E. H., Casanovas-Massana, A., Ko, A. I., Malik, A. A., Wang, D., Wang, M., Warren, J. L., Weinberger, D. M., Arnold, W., and S. B. Omer. (2020). Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nat. Biotech., 38(10), 1164-1167. (* denotes co-first author)


Hyde, J., Correa, M. A., Hughes, G. L., Steven, B., and D. E. Brackney. (2020). Limited influence of the microbiome on the transcriptional profile of female Aedes aegypti mosquitoes. Scientific Reports, 10(1), 1-12.


Brackney, D. E., Correa, M. A., D. W. Cozens. (2020). The impacts of autophagy on arbovirus infection of mosquito cells. PLoS Neglected Tropical Diseases, 14(5), e0007754.


Armstrong, P. M., Ehrlich, H. Y., Magalhaes, T., Miller, M. R., Conway, P. J., Bransfield, A., Misencik, M. J., Gloria-Soria, A., Warren, J. L., Andreadis, T. G., Shepard, J. J., Foy, B. D., Pitzer, V. E., and D. E. Brackney. (2020). Successive blood meals enhance virus dissemination within mosquitoes and increase transmission potential. Nat. Micro., 5(2), 239-247.


Uraki, R., Hastings, A. K., Brackney, D. E., Armstrong, P. A., and E. Fikrig. (2019). AgBR1 antibodies delay lethal mosquito-borne West Nile virus infection in mice. NPJ Vaccines, 4, 23. DOI: 10.1038/s41541-019-0120-x


Hyde, J., Gorman, C., Brackney, D. E., and B. Steven. (2019). Antibiotic resistant bacteria and commensal fungi are common and conserved in the mosquito microbiome. PLoS One, 14(8), e0218907.


Grubaugh, N. D., Gangavarapu, K., Quick, J., Matteson, N. L., De Jesus, J. G., Main, B. J., Tan, A. L., Paul, L. M., Brackney, D. E., Grewal, S., Gurfield, N., Van Rompay, K. K. A., Isern, S., Michael, S. F., Coffey, L. L., Loman, N. J., and K. G. Andersen. (2019). An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biology, 20(1).


Correa, M. A., Matusovsky, B., Brackney, D. E.*, and B. Steven*. (2018). Axenic Aedes aegypti develop without live bacteria, but exhibit delayed development and reduced oviposition. Nat Comm., 9(1), 4464. (* co-corresponding)


Weger-Lucarelli, J., Rückert, C., Grubaugh, N. D., Misencik, M. J., Armstrong, P. A., Stenglein, M. D., Ebel, G. D., and D. E. Brackney. (2018). Adventitious viruses persistently infect three commonly used mosquito cell lines. Virology, 521, 175-180.

Grubaugh, N. D., Fauver, J. R., Rückert, C., Weger-Lucarelli, J., Garcia-Luna, S., Murrieta, R. A., Gendernalik, A., Smith, D. R., Brackney, D. E., and G. D. Ebel. (2017). Mosquitoes transmit unique West Nile virus populations during each feeding episode. Cell Rep19(4), 709-718. DOI: 10.1016/j.celrep.2017.03.076

Fauver, J. R., Gendernalik, A., Weger-Lucarelli, J., Grubaugh, N. D., Brackney, D. E., Foy, B. D., and G. D. Ebel. (2017). The use of xenosurveillance to detect human bacteria, parasites and viruses in mosquito bloodmeals. Am. J. Trop. Med. Hyg.

Doug E. Brackney. Implications of autophagy on arbovirus infection of mosquitoes. (2017). Cur. Opin. Insect Sci.22, 1-6.

Doug E. Brackney and Philip Armstrong. (2016). Transmission and evolution of tick-borne viruses. Current Opinion in Virology, 21, 67-74. DOI: 10.1016/j.coviro.2016.08.005

Grubaugh, N. D., Rückert, C., Armstrong, P. M., Bransfield, A., Anderson, J. F., Ebel, G. D., and D. E. Brackney. (2016). Transmission bottlenecks and RNAi collectively influence Powassan virus evolution. Virus Evolution, 2(2). DOI: 10.1093/ve/vew033.

Fauver, J. R, Grubaugh, N. D., Krajacich, B. J., Weger-Lucarelli, J., Lakin, S. M., Fakoli, L. S., Bolay, F. K., Diclaro, J. W., Dabiré, K. R., Foy, B. D., Brackney, D. E., Ebel, G. D., and M. D. Stenglein. (2016). West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses. Virology, 498, 288-299.

Brackney D. E., Schirtzinger E. E., Harrison T. D., Ebel G. D., and K. A. Hanley. (2015). Modulation of flavivirus population diversity by RNA interference. J Virol., 89(7). DOI: 

Grubaugh N. D., Sharma S., Krajacich B. J., Fakoli II L. S., Bolay F. K., DiClaro II, J. W., Johnson W. E., Ebel G. D., Foy B. D., D. E. Brackney. (2015). Xenosurveillance: a novel mosquito-based approach for examining the human-pathogen landscape. PLoS Negl. Trop. Dis., 9(3), 

Moon, S. L., Dodd, B. J., Brackney, D. E., Wilusz, C. J., Ebel, G. D., and J. Wilusz. (2015). Flavivirus sfRNA suppress antiviral RNA interference in cultured cells and mosquitoes and directly interacts with the RNAi machinery. Virology, 485, 322-329. DOI: 10.1016/j.virol.2015.08.009.
Grubaugh, N. D., Smith, D. R., Brackney, D. E., Bosco-Lauth, A. M., Fauver, J. R., Campbell, C. L., Felix, T. A., Romo, H., Duggal, N. K., Dietrich, E. A., Eike, T., Beane, J. E., Bowen, R. A., Black, W. C., Brault, A. C., and G. D. Ebel. (2015). Experimental evolution of an RNA virus in wild birds: evidence for host-dependent impacts on population structure and competitive fitness. PLoS Pathog. 11(5), e1004874. DOI: 10.1371/journal.ppat.1004874.
Krajacich, B. J., Slade, J. R., Mulligan, R. F., LaBrecque, B., Alout, H., Grubaugh, N. D., Meyers. J. I., Fakoli, L. S., Bolay, F. K., Brackney, D. E., Burton, T. A., Seaman, J. A., Diclaro, J. W. II, Dabiré, R. K., and B. D. Foy. (2014). Sampling Host-Seeking Anthropophilic Mosquito Vectors in West Africa: Comparisons of An Active Human-Baited Tent-Trap against Gold Standard Methods. Am. J. Trop. Med. Hyg., pii: 14-0303.
Alout, H., Krajacich, B. J., Meyers J. I., Grubaugh, N. D., Brackney, D. E., Kobylinski, K. C., Diclaro, J. W. II, Bolay, F. K., Fakoli, L. S., Diabate’, A., Dabire, R. K., Bougma, R. W., B. D. Foy. (2014). Evaulation of ivermectin mass drug administration for malaria transmission control across different West African environments. Malar J., 13(1), 417.
Prasad, A. N.*, Brackney D. E.*, and G. D. Ebel. (2013). Mosquito Innate Immunity to West Nile Virus. Viruses5(12), 3142-3170; DOI: 10.3390/v5123142 (* these authors contributed equally).
Macalalad, A. R., Zody, M. C., Charlebois, P., Lennon, N. J., Newman, R. M., Malboeuf, C. M., Ryan, E. M., Boutwell, C. L., Power, K. A., Brackney, D. E., Pesko, K. N., Levin, J. Z., Ebel, G. D., Allen, T. M., Birren, B. W., and M. R. Henn. (2012). Highly sensitive and specific detection of rare variants in mixed viral populations from massively parallel sequence data. PLoS Comput. Biol., 8(3), e1002417.
Brackney D. E., K. N. Pesko, I. K. Brown, E. R. Deardorff, J. Kawatachi, and G. D. Ebel. (2011). West Nile virus genetic diversity is maintained during transmission by Culex pipiens quinquefasciatus mosquitoes. PLoS One, 6(9), e24466.
Brackney D. E., J. C. Scott, F. Sagawa, J. E. Woodward, N. A. Miller, F. D. Schilkey, J. Mudge, J. Wilusz, K. E. Olson, C. D. Blair, and G. D. Ebel. (2010). C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl. Trop. Dis. 4(10), e856.
Scott J. C., D. E. Brackney, C. L. Campbell, V. Bondu-Hawkins, B. Hjelle, G. D. Ebel, K. E. Olson, and C. D. Blair. (2010). Comparison of Dengue Virus Type 2-Specific Small RNAs from RNA Interference-Competent and –Incompetent Mosquito Cells. PLoS Negl. Trop. Dis., 4(10), e848.
Fitzpatrick K. A., E. Deardorff, K. Pesko, D. E. Brackney, E. Bedrick, P. Y. Shi, and G. D. Ebel. (2010). Population variation of West Nile virus confers a host-specific fitness benefit in mosquitoes. Virology, 404(1), 89-95.
Brackney D. E., J. Isoe, G. Zamora, W. C. Black IV, B. D. Foy, R. Miesfeld, and K. E. Olson. (2010). Genome annotation and comparative analysis of Aedes aegypti midgut serine proteases. J. Insect Physiol., 56(7), 736-44.
Brackney D. E., I. K. Brown, R. A. Nofchissey, K. A. Fitzpatrick, and G. D. Ebel. (2010). Homogeneity of Powassan virus populations in naturally infected Ixodes scapularis. Virology402(2), 366-71.
Brackney D. E., J. E. Beane, and G. D. Ebel. (2009). RNA interference targeting West Nile virus in mosquito midguts promotes virus diversification. PLoS Pathog.5(7). 
Brackney D. E., R. A. Nofchissey, K. A. Fitzpatrick, I. K. Brown, and G. D. Ebel. (2008). Stable Prevalence of Powassan Virus in Ixodes scapularis in a Northern Wisconsin Focus. Am. J. Trop. Med. Hyg., 79(6), 971-973.
Brackney D. E., B. D. Foy, and K. E. Olson. (2008). The Effects of Midgut Serine Proteases on Dengue Virus Type 2 Infectivity of Aedes aegypti. Am. J. Trop. Med. Hyg., 79(2), 267-274.
Campbell C. L., K. M. Keene, D. E. Brackney, K. E. Olson, C. D. Blair J. Wilusz and B. D. Foy. (2008). Aedes aegypti uses RNA interference in defense against Sindbis virus infection. BMC Microbiology, (8), 47.
Magalhaes, T., D. E. Brackney, J. C. Beier and B. D. Foy. (2008). Silencing an Anopheles gambiae Catalase and Sulfhydryl Oxidase Increases Mosquito Mortality After a Bloodmeal. Arch. Insect Biochem. Physiol., 68(3), 134-143.