Search The Connecticut Agricultural Experiment Station Filtered Topic Search

Jason C. White

Jason White

Department of Analytical Chemistry, Vice Director
The Connecticut Agricultural Experiment Station
123 Huntington Street
P.O. Box 1106
New Haven, CT 06504-1106
Voice: (203) 974-8523 Fax: (203) 974-8502

Dr. White has expertise in the accumulation and toxicity of nanomaterials to agricultural crop species, as well as the fate and disposition of engineered nanomaterials in the environment.  He also has expertise in the precision agriculture; specifically the use of nanoscale micronutrients to suppress crop disease and enhance food production. Dr. White has additional experience in the detection of pesticides, toxins, poisons and heavy metals in food. He also has expertise in the phytoremediation of persistent organic pollutants in soil, as well as more generally on the fate of organic contaminants in soils, sediments, and waters.

Ph.D. in Environmental Toxicology, Cornell University 1997
M.S. in Environmental Toxicology, Cornell University 1995
B.S. in Environmental Science, Juniata College 1992

Station career:
Assistant Agricultural Scientist, 1998-2001
Associate Agricultural Scientist, 2001-2007
Agricultural Scientist, 2007-2009

Head, Chief Scientist, Department of Analytical Chemistry, 2009-present

Vice Director, 2013-current

Past research:
The focus was on enhancing the biological and physical availability of organic pollutants that have become sequestered in soil.

Current research:
The current research falls into 2 categories.

First, investigations are addressing the fate and effects of nanomaterials (NM) in agriculture and on food crops. One line of investigation is focusing on NM toxicity, accumulation and food chain contamination. Nanomaterials are currently used in over 1300 commercial products and their release to the environment is inevitable.  The current regulatory framework assumes that the size of the particle does not impact exposure and risk.  However, data from our laboratory and others has shown that the toxicity and accumulation of nanomaterials is greater than that observed with the corresponding bulk particles and ions.  The fate and effects of these particles in agricultural systems, including potential trophic transfer and food chain contamination, is currently being evaluated. Another line of investigation is focused on the use of nanoscale micronutrients to suppress crop disease and enhance overall yield. Active research collaborations are underway with colleagues at the University of Massachusetts-Amherst, the State University of New York College of Environmental Science and Forestry, Southern Illinois University Carbondale, the University of Texas-El Paso, Texas A & M University, USDA Agricultural Research Service (ARS), the National Institute of Standards and Technology (NIST), the International Fertilizer Development Center (IFDC) the University of Parma (Italy), Hasselt University (Belgium), Ocean University of China, Nanjing Agricultural University (China), Zhejiang University (China), Peking University (China), Nankai University (China), Institute of Experimental Botany (Czech Republic), and The Water Research and Technology Center (Tunisia).

Second, investigations are addressing the potential plant-facilitated remediation or phytoremediation of persistent organic pollutants in soil. A number of studies from our group have shown that a narrow range of plant species (certain cucurbits) can effectively accumulate significant amounts of highly weathered pesticide residues such as PCBs, DDT/DDE and chlordane from soil. These contaminant residues show little bioavailability to other plants and are very difficult to remove from the soil. Experiments are focusing on the precise mechanism by which plants such as zucchini and pumpkin accumulate these weathered contaminants and also on the potential for developing a novel plant-based remediation technology.

Professional activities:
Immediate Past President, International Phytotechnology Society (IPS)

Managing Editor, International Journal of Phytoremediation

Editorial Advisory Board, Environmental Science and Technology

Editorial Advisory Board, Environmental Science and Technology Letters

Editorial Board, Environmental Pollution
Member, Sustainable Nanotechnology Organization (SNO)

Member, Society of Environmental Toxicology and Chemistry (SETAC)
Member, American Chemical Society (ACS)

Selected publications:

Selected Papers (for reprints, please contact

  1. Medina-Velo, I.A.; Dominguez, O.E.; Ochoa, L.; Barrios, A.C.; Hernández-Viezcas, J.A.; White, J.C.; Peralta-Videa, J.R; Gardea-Torresdey, J.L. Nutritional quality of bean seeds harvested from plants grown in different soils amended with coated and uncoated zinc oxide nanomaterials. ES: Nano DOI: 10.1039/c7en00495h.
  2. Han, J.; Qiu, W.; Campbell, E.C.; White, J.C.; Xing, B. Toothbrush components retain significant levels of triclosan and other chemicals from toothpastes: Assessment of contaminant accumulation and release. Environ. Sci. Technol. DOI: 10.1021/acs.est.7b02839.
  3. Lohse, S.E.; Abadeer,N.S.; Zoloty, M.; White, J.C.; Newman, L.A.; Murphy, C.J. Nanomaterial probes in the environment: Gold nanoparticle (AuNP) stability and soil retention as a function of surface chemistry. ACS Sustain. Chem. Eng. In press.
  4. Ruotolo, R.; Maestri, E.; Marmiroli, M.; Pagano, L.; White, J.C.; Marmiroli, N. Plant response to metal-containing engineered nanoparticles: an omics-based systems biology perspective. Environ. Sci. Technol. Submitted for publication.
  5. Dimkpa, C; White, J.C.; Elmer, W.; Gardea-Torresdey, J. Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. J. Agric. Food Chem. 65:8552–8559.
  6. Bhattacharyya, S.; Bennett, J.; Short, L.; Theisen, T.; Wichman, M.D.; White, J.C.; Wright, S. Nanotechnology in the Water Industry- Part I. Occurrence and Risks. J AWWA In press. 
  7. DeLoid, G.M.; Wang, Y.; Kapronezai, K.; Rubio Lorente, L.; Zhang, R.; Pyrgiotakis, G.; Konduru, N.V.; Ericsson, M.; White, J.C.; De La Torre-Roche, R.; McClements, D.J.; Demokritou, P. An integrated methodology for assessing interactions with food, transformations across the gastrointestinal tract, biokinetics and toxicology of ingested engineered nanomaterials. Part. Fibre Toxicol. In press.
  8. Ma, C.; White, J.C.; Zhao, J.; Zhao, Q.; Xing, B. 2018. Uptake of engineered nanoparticles by food crops: Characterization, mechanisms, and implications. An. Rev. Food Sci. Technol. 9:1.
  9. Uchimiya, M.; Pignatello, J.; White, J.C.; Hu, S.-L.; Ferreira, P. 2017. Structural transformation of biochar black carbon by C60 superstructure: Environmental implications. Sci. Reports In press.
  10. Eevers N.; Hawthorne J.R.; White J.C.; Vangronsveld J.; Weyens N. 2017. Endophyte-enhanced phytoremediation of DDE-contaminated field soils using Cucurbita pepo. Int. J. Phytorem. In press.
  11. Zhang, H.; Chen, W.; Shen, X.; Yang, Y.; White, J.C.; Lead, J.; Tao, S.; Wang, X. 2017. Influence of multiwall carbon nanotubes and fullerene on the bioaccumulation and elimination kinetics of phenanthrene by geophagous earthworms (Metaphire guillelmi). Environ. Sci.: Nano DOI: 10.1039/C7EN00118E.
  12. Pagano, L.; Pasquali, F.; Majumdar, S.; De La Torre-Roche, R.; Zuverza-Mena, N.; Villani, M.; Zappettini, A.; Marra, R.; Isch, S.M.; Marmiroli, M.; Maestri, E.; Parkash Dhanker, O.; White, J.C.; Marmiroli, N. 2017. Exposure of Cucurbita pepo to binary combinations of engineered nanomaterials: Physiological and molecular response. ES: Nano 4:1579-1590.
  13. Ma, C.; Liu, H.; Chen, G.; Zhao, Q.; Eitzer, B.; Wang, Z.; Cai, W.; Newman, L.A.; White, J.C.; Dhankher, O.; Xing, B. 2017. Effects of titanium oxide nanoparticles on tetracycline accumulation and toxicity in Oryza sativa (L.). Environ. Sci.: Nano. 10.1039/C7EN00280G.
  14. Deng, R.; Lin, D.; Zhu, L.; Majumdar, S.; White, J.C.; Gardea-Torresdey, J.L.; Xing, B. 2017. Nanoparticle interactions with co-existing contaminants: Joint toxicity, bioaccumulation and risk. Nanotox. 11:591-612.
  15. Uchimiya, M.; Pignatello, J.J.; White, J.C.; Hu, S.; Ferreira, P.J. 2017. Surface interactions between gold nanoparticles and biochar. Sci. Reports 7: 5027.
  16. Zhao, B.; Yang, T.; Cao, X.; De La Torre-Roche, R.; White, J.C.; Xiao, H.; Xing, B.; He, L. 2017. A Green, facile, and rapid method for microextraction and Raman detection of titanium dioxide nanoparticles from milk powder. RSC Advances 7:21380-21388.
  17. Eevers, N.; White, J.C.; Weyens, N.; Vangronsveld, J. 2017. Bio- and phytoremediation of pesticide contaminated environments: A review. Adv.  Botan. Sci.
  18. Li, J.; Sang, H.; Guo, H.; Jung, G.; Mukherjee, A.; White, J.C.; Xing, B. 2017. Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homeocarpa. Nanotechnol. 28:155101.
  19. Lui, H.; Ma, C.; Chen, G.; White, J.C.; Parkash Dhankher, O.; Xing, B. 2017. Titanium dioxide nanoparticles alleviate tetracycline toxicity to Arabidopsis thaliana. ACS Sustain. Chem. Eng. 5(4):3204–3213.
  20. Krol, W.J.; Eitzer, B.D.; Arsenault, T. White, J.C.; Fontana, J.; Sloan, E.; Lin, L.A.; Robinson, S. 2017. A targeted study of pesticide residues in fresh and dried herbs sold in Connecticut in 2011. CAES Technical Bulletin 15.
  21. Rodrigues, S; Dokoozlian, N; Hendren, C.O.; Karn, B.; Mauter, M.; Sadik, O.; Safarpour, M.; Unrine, J.; Viers, J.; White, J.C.; Wiesner, M.R.; Lowry, G.V. 2017. Nanotechnology for sustainable food production: High value opportunities and scientific challenges. ES: Nano DOI: 10.1039/C6EN00573J. 
  22. Yue, L.; Ma, C.; Zhan, X.; White, J.C.; Xing, B. 2017. Molecular mechanisms of maize seedling response to La2O3 NPs exposure: Water uptake, aquaporin gene expression and signal transduction. ES: Nano 4:843-855.
  23. Servin, A.D.; Pagano, L.; Castillo-Michel, H.; De La Torre-Roche, R.; Hawthorne, J.; Hernandez-Viezcas, J.A.; Loredo, R.; Majumdar, S.; Gardea-Torresdey, J.; Parkash-Dhankher, O.; White, J.C. 2017. Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Nanotoxicol. 11:98-111.
  24. Zhao, Q.; Ma, C.; White, J.C.; Parkash Dhankher, O.; Zhang, X.; Zhang, S.; Xing, B. 2017. Quantitative evaluation of multi-wall carbon nanotube uptake by terrestrial plants. Carbon 114:661-670.
  25. Pasquali, F.; Agrimonti, C.; Pagano, L.; Zappettini, A.; Villani, M.; Marmiroli, M.; White, J.C.; Marmiroli, N. 2017. Nucleo-mitochondrial interaction in yeast in response to cadmium sulfide quantum dots. J. Hazard. Mat. 324:744-752.
  26. Servin, A.D.; De La Torre-Roche, R.; Castillo, H.; Pagano, L.; Hawthorne, J.; Musante, C.; Pignatello, J.; Uchimiya, M.; White, J.C. 2017. Exposure of agricultural crops to nanoparticle CeO2 in biochar amended soil. Plant Phys. Biochem. 110:147-157.
  27. Mukherjee, A.; Hawthorne, J.; White, J.C.; Kelsey, J.W. 2017. Nanoparticle Ag co-exposure reduces the accumulation of weathered persistent pesticides by earthworms. Environ. Tox. Chem. doi:10.1002/etc.3698.
  28. Cai, F.; Shen, X.; Zhang, M.; Chen, W.; Gao, Q.; White, J.C.; Tao, S.; Wang, X. 2017. Impact of TiO2 nanoparticles on lead uptake and bioaccumulation in rice (Orza sativa L.) NanoImpact. 5:101-108.
  29. Bradfield, S.; Kumar, P.; White, J.C.; Ebbs, S. 2017. Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: Yield effects and projected dietary intake from consumption. Plant Phys. Biochem. 110-128-137.
  30. Zhang, W.; Musante, C.; White, J.C.; Schwab, P.; Wang, Ebbs, S.D.; Ma, X. 2017. Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils. Plant Phys. Biochem. 110:185-193.
  31. Zhang, Z.; Guo, H.; Carlisle, T.; Mukherjee, A.; Kinchla, A.; White, J.C.; Xing, B.; He, L. 2016. Evaluation of postharvest washing on Ag NPs removal from spinach leaves. J. Agric. Food Chem. 64:6916-6922.
  32. Guo, H.; Xing, B.; White, J.C.; Mukherjee, A.; He, L. 2016. Ultra-sensitive determination of silver nanoparticles by Surface-enhanced Raman Spectroscopy after hydrophobization-mediated extraction. Analyst 141:5261-5264.
  33. Deng, Y.; Eitzer, B.; White, J.C.; Xing, B. 2016. Impact of multiwall carbon nanotubes on the accumulation and distribution of carbamazepine in collard greens (Brassica oleracea). ES: Nano 4:149 - 159.
  34. Noori, A.; White, J.C.; Newman, L.A. 2016. Mycorrhizal fungi influence silver uptake and membrane protein gene expression following Ag-NPs exposure. J. Nano. Res. 19:66.
  35. Marmiroli, N.; White, J.C. 2016. Editorial: Nanotoxicology and environmental risk assessment of engineered nanomaterials (ENMs) in plants. Front. Plant Sci. 7:1370
  36. Elmer, W.; White, J.C. 2016. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. ES: Nano. 3:1072-1079.
  37. Ma, C.; Liu, H.; Guo, H.; Musante, C.; Coskun, S.H.; Nelson, B.C.; White, J.C.; Dhanker, O.P.; Xing, B. 2016. Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. ES: Nano. 3:1369-1379.
  38. Zhao, J.; Cao, X.; Wang, Z.; Zhang, C.; White, J.C.; Xing, B. 2016. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: Adhesion, uptake, and toxicity. Nanotox. 10(9): 1297–1305.
  39. Pagano, L.; Servin, A.D.; De La Torre-Roche, R.; Mukherjee, A.; Majumdar, S.; Hawthorne, J.; Marmiroli, M.; Maestri, E.; Marra, R.; Parkash Dhankher, O.; Isch, S.M.; White, J.C.; Marmiroli, N. 2016. Molecular response of crop plants to engineered nanomaterial exposure. Environ. Sci. Technol. 50:7198–7207.
  40. Wang, Z.; Xu, L.; Wang, X.; White, J.C.; Xing, B. 2016. CuO nanoparticle interaction with Arabidopsis thaliana: Toxicity, parent-progeny transfer, and gene expression. Environ. Sci. Technol. 50:6008-6016.
  41. Ma, X.; Wang, Q.; Rossil, L.; Ebbs, S.D.; White, J.C. 2016. Multi-generational exposure to cerium oxide nanoparticles: Physiological and biochemical analysis reveals transmissible changes in rapid cycling Brassica rapa. NanoImpact 1:45-64.   
  42. Holden, T.; White, J.C.; et al. 2016. Considerations of environmentally-relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials. Environ. Sci. Technol. 50: 6124–6145.
  43. Ebbs, S.; Bradfield, S.; Kumar, P.; White, J.C.; Ma, X. 2016. Modeling dietary intake of zinc and copper from consumption of carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Front. Plant. Sci. 3:114-126.
  44. Chen, G.; Ma, C.; Mukherjee, A.; Musante, C.; Zhang, J.; White, J.C.; Parkash Dhankher, O.;  Xing, B. 2016. Tannic acid alleviates neodymium oxide nanoparticle toxicity to pumpkin: Physiological and molecular mechanisms. Nanotox. 10:1243-1253.
  45. Servin, A.D.; White, J.C. 2016. Nanotechnology and agriculture: Next steps for understanding the balance between applications and implications. NanoImpact 1:9-12.
  46. Mukherjee, A.; Majumdar, S.; Servin, A.; Pagano, L.; Parkash-Dhanker, O.; White, J.C. 2016. Carbon nanomaterials in agriculture: A critical review. Front. Plant Sci. 7:172.
  47. Mosa, K.; Kumar, K.; Chhikara, S.; Musante, C.; White, J.C.; Parkash Dhankher, O. 2016. Enhanced boron tolerance in plants mediated by bidirectional transport through plasma membrane intrinsic proteins. Sci. Reports 6:21640.
  48. Ma, C.; White, J.C.; Tripathi, R.D.; Xing, B.; Parkash, O. 2015. Phytotoxicity and ecological safety of engineered nanomaterials. Int. J. Plant. Environ.
  49. Majumdar, S.; Trujillo-Reyes, J.; Hernandez-Vieczas, J.; White, J.C.; Peralta-Videa, J.; Gardea-Torresdey, J. 2016. Cerium biomagnification in a terrestrial food chain: Influence of particle size and growth stage. Environ. Sci. Technol. 50:6782-6792.
  50. Eevers, N.; Beckers, B.; White, J.C.; Vangronsveld, J.; Weyens, N. 2016. Comparison between cultivable and total bacterial populations associate with Cucurbita pepo using cultivation-dependent techniques and 454 pyrosequencing. Sys. Appl. Micro. 39:58-66
  51. Eevers, N.; Hawthorne, J.; White, J.C.; Vangronsveld, J.; Weyens, N. 2016. Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: A cultivation dependent vs a cultivation independent approach. Environ. Poll. 209:147-154.
  52. Majumdar, S.; Arigi, E.A.; Choi, H.; Trujillo-Reyes, J.; Margez, J.P.F.; Almeida, I.; White, J.C.; Peralta-Videa, J.R.; Gardea-Torresey, J.L. 2015. Environmental effects of nanoceria on seed production of common bean (Phaseolus vulgaris): A proteomic analysis. Environ. Sci. Technol. 49:13283-13293.
  53. Mukherjee, A.; Sun, Y.; Morelius, E.; Tamezac, C.; Bandyopadhyay, S.; Niu, G.; White, J.C.; Peralta-Videa, J.R.; Gardea-Torresdey, J. 2015. Differential toxicity of bare and hybrid ZnO nanoparticles in green peas (Pisum sativum L.): A life cycle study.   Front. Plant Sci. DOI: 10.3389/fpls.2015.01242.
  54. Yi, P.; Pigatello, J.J.; Uchimiya, M.; White, J.C. 2015. Heteroaggregation of cerium oxide nanoparticles and nanoparticles of pyrolyzed biomass. Environ. Sci. Technol. 49:13294–13303.
  55. Ebbs, S.; Bradfield, S.; Kumar, P.; White, J.C.; Musante, C.; Ma, X. 2015. Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles. Environ. Sci.: Nano. 3:114-126.
  56. De la Torre-Roche, R.; Servin, A.; Hawthorne, J.; Xing, B.; Newman, L.A.; Ma, X.; Chen, G.; White, J.C. 2015. Terrestrial trophic transfer of bulk and nanoparticle La2O3 does not depend on particle size. Environ. Sci. Technol. 49:11866–11874.
  57. Ma, C.; Chhikara, S.; Minocha, R.; Long, S.; Musante, C.; White, J.C.; Xing, B.; Parkash-Dhanker, O. 2015. Reduced silver nanoparticle phytotoxicity in Crambe abyssinica with enhanced glutathione production by overexpressing bacterial ?-glutamylcysteine synthase. Environ. Sci. Technol. 49:10117-10126.
  58. Sillen, W.; Thijs, S.; Abbamondi; G.R.; Janssen, J.; Weyens, N.; White, J.C.; Vangronsveld, J. 2015. Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol. Biochem. 91:14-22.
  59. Quah, B.; Musante, C.; White, J.C.; Ma, X. 2015. Phytotoxicity, uptake and accumulation of silver with different particle sizes and chemical forms. J. Nano. Res. 17:277.
  60. Ma, C.; White, J.C.; Parkash Dhanker, O.; Xing, B. 2015. Metal-based nanotoxicity and detoxification pathways in higher plants. Environ. Sci. Technol. 49, 7109-7122.
  61. Eevers N.; Gielen M.; Sánchez-López A.; Jaspers S.; White J.C.; Vangronsveld J.; Weyens, N. 2015. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to growth media. Environ. Micro. Reports 8:707-715.
  62. Bennett, J.; Bhattacharyya, S.; Chauhan, A.; Grecse, H.; Heintz, M.E.; Latshaw, M.W.; Martins, C.; Peterson-Wright, L.; Rice, D.; Smith, C.; Theisen, T.S.; Wangsness, K.; White, J.C.; Wichman, M.D. 2015. Nanotechnology and Environmental Health Laboratories: White Paper. Paper_42015.pdf.
  63. Guo, H.;  Zhang, Z.; Xing, B.; Mukherjee, A.; Musante, C.; White, J.C.; He, L. 2015. Analysis of silver nanoparticles in antimicrobial products using Surface Enhanced Raman Spectroscopy (SERS). Environ. Sci. Technol. 49:4317-4324.
  64. Collin, B.; Auffan, M.; Johnson, A.; Kaur, I.; Keller, A.; Lazareva, A.; Lead, J.; Ma, X.; Merrifield, R.; Svendsen, C.; White, J.C.; Unrine, J.M. 2015. Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environ. Sci.: Nano. 1:533-548.
  65. Servin, A.; Elmer, W.; Mukherjee, A.;  De la Torre-Roche, R.; Hamdi, H.; White, J.C.; Bindraban, P.; Dimkpa, C. 2015. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nano. Res. DOI:10.1007/s11051-015-2907-7.
  66. Servin, A.; Elmer, W.; Mukherjee, A.;  De la Torre-Roche, R.; Hamdi, H.; White, J.C.; Dimkpa, C. 2015. Nanoscale Micronutrients Suppress Disease. VFRC Report 2015/x. Virtual Fertilizer Research Center, Washington, D.C.
  67. Garvin, A.; Doucette, W. J.; White, J.C. 2015. Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method. Chemosphere 130:98-102.
  68. Zhang, W.; Ebbs, S.D.; Musante, C.; White, J.C.; Gao, C.; Ma, X. 2015. Uptake and Accumulation of bulk and nano-sized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.). J. Agric. Food Chem. 63(2):382-90
  69. Hamdi, H.; De La Torre-Roche, R.; Hawthorne, J.; White, J.C. 2015. Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.). Nanotox. 9(2): 172–180.
  70. Hawthorne, J.; De la Torre Roche, R.; Xing, B.; Newman, L.A.;  Ma, X.; Majumdar, S.; Gardea-Torresdey, J.; White, J.C. 2014. Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain. Environ. Sci. Technol. 48:13102-13109.
  71. Zhao, J.; Wang, Z.; White, J.C.; Xing, B. 2014. Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol. 48:9995-10009.
  72. Deng, Y.; White, J.C.; Xing, B. 2014. Interactions between engineered nanomaterials and agricultural crops: Implications for food safety. J. Zhejiang Univ.- SCIENCE A. 15:552-572.
  73. Petersen, E.J.; Henry, T.B.; Zhao, J.; MacCuspie, R.I.; Kirschling, T.L.; Dobrovolskaia, M.A.; Hackley, V.; Xing, B.; White, J.C. 2014. Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environ. Sci. Technol. 48:4226-4246.
  74. Bai, Y.; Wu, F.; Petersen, E.J.; White, J.C.; Xing, B. 2014. 100 nanometers: A potentially inappropriate threshold for ecological effects of nanoparticles. Environ. Sci. Technol. 48:3098-3099.
  75. Gardea-Torresdey, J.L.; Rico, C.M.; White, J.C. 2014. Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ. Sci. Technol. 48:2526–2540.
  76. Krol, W.J.; Eitzer, B.D.; Arsenault, T.; Incorvia-Mattina, M.; White, J.C. 2014. Significant improvements in pesticide residue analysis in food using the QuEChERS method. LC/GC North America 32:116-125.
  77. Kumar, K.; Mosa, K.; Chikkara, S.; Musante, C.; White, J.C.; Parkash, O. 2014. Two rice plasma membrane intrinsic proteins, OsPIP2;4 and OsPIP2;7, are involved in boron transport and tolerance. Planta 239:187-198.
  78. Wang, H.; Wu, F.; White, J.C.; Holder, P.A.; Xing, B. 2013. Engineered nanoparticles may induce genotoxicity. Environ. Sci. Technol. 47:13212-13214.
  79. De La Torre-Roche, R.; Hawthorne, J.; Deng, Y; Xing, B.; Cai, W.; Newman, L.A.; Wang, Q.; Ma, X.; Hamdi, H.; White, J.C. 2013. Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ. Sci. Technol. 47:12539-12547.
  80. Ma, C.; Chhikara, S.; Xing, B.; Musante, C.; White, J.C.; Parkash Dhankher, O. 2013. Physiological and molecular response of Arabidopsis thaliana to nanoparticle cerium and indium oxide exposure. ACS Sustain. Chem. Eng. 1:768-778.
  81. Kelsey, J.W.; White, J.C. 2013. Effect of C60 fullerenes on the accumulation of weathered p,p’-DDE by plant and worm species under single and multi-species conditions. Environ. Toxicol. Chem. 32:1117-1123.
  82. Isleyen, M.; Sevim, P.; Hawthorne, J.; Berger, W.; White J.C. 2013. Uptake and translocation of weathered chlordane and p,p'-DDTs by Cucurbita pepo hybrids. Int. J. Phytorem. 15, 861-876.
  83. De La Torre-Roche, R.; Hawthorne, Musante, C.; Xing, B.; Newman, L.A.; Ma, X.; White, J.C. 2013. Impact of Ag nanoparticle exposure on p,p’-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean). Environ. Sci. Technol. 47:718–725.
  84. Berger, W.; Mattina, M.I.; White, J.C. 2012. Effect of hydrogen peroxide on the uptake of chlordane by Cucurbita pepo. Plant Soil 360:135-144.
  85. Mosa, K.A.; Kumar, K.; Chhikara,S.; Mcdermott, J.; Liu, Z.; Musante, C.; White, J.C.; Parkash Dhankher, O. 2012. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Trans. Res. 21:1265-1277.
  86. Landa, P.; Vankova, R.; Andrlova, J.; Hodek, J.; Marsik, P.; Storchova, H.; White, J.C.; Vanek, T. 2012. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J. Hazard. Mat. 241-242, 55-62.
  87. De La Torre-Roche, R.; Hawthorne, J.; Deng, Y; Xing, B.; Cai, W.; Newman, L.A.; Wang, C.; Ma, X.; White, J.C. 2012. Fullerene-enhanced accumulation of p,p’-DDE in agricultural crop species. Environ. Sci. Technol.. 46, 9315-9323.
  88. Wang, Z.; Li, N.; Zhao, J.; White, J.C.; Qu, P.; Xing, B. 2012. CuO nanoparticle interaction with human epithelial cells:  Cellular uptake, export, and genotoxicity. Chem. Res. Toxicol. 25, 1512-1521.
  89. Isleyen, M.; Sevim, P.; White, J.C. 2012. Accumulation of weathered p,p'-DDTs in hybridized Cucurbita pepo cultivars. Environ. Toxicol. Chem. 3, 1699-1704.
  90. Musante, C.; White, J.C. 2012. Toxicity of silver and copper to Cucurbita pepo: Differential effects of nano and bulk size particles. Environ. Toxicol. 27, 510-517.
  91. Wang, Z.; Xie X.; Zhao, J.; Li, X.; Feng, W.; White, J.C.; Xing, B. 2012. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L). Environ. Sci. Technol. 46, 4434-4441.
  92. Isleyen, M.; Sevim, P.; White, J.C. 2012. Accumulation of weathered p,p'-DDTs in grafted watermelon. J. Agric. Food Chem. 60:1113-1121.
  93. Hawthorne, J.; Musante, C.; Sinha, S.K.; White, J.C. 2012. Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo. Int. J. Phytorem. 14:429-442
  94. Gratz, S.; Ciolina, L.; Mohrhaus, A.; Gamble, B.; Gracie, J.; Jackson, D.; Roetting, J.; McCauley, H.; Heitkemper, D.; Fricke, F.; Krol, W.; Arsenault, T.; White, J.C.; Flottmyer, M.; Johnson, Y. 2011. Screening and determination of polycyclic aromatic hydrocarbons in seafoods using QuEChERS based extraction and high performance liquid chromatography with fluorescence detection. J. AOAC Int. 94(5):1601-1616.
  95. Slizovskiy, I.B.; White, J.C.; Kelsey, J.W. 2010. Technical Note: Evaluation of extraction methodologies for the determination of pesticide residues in vegetation. Int. J. Phytorem. 12:820-832.
  96. Chhikara, S.; Paulose, B.; White, J.C.; Parkash Dhankher, O. 2010. Understanding the Physiological and Molecular Mechanism of Persistent Organic Pollutant (POP) Uptake and Detoxification in Cucurbit Species (Zucchini and Squash). Environ. Sci. Technol. 44:7295-7301.
  97. White, J.C. 2010. Inheritance of p,p’-DDE Phytoextraction Ability in  Hybridized Cucurbita pepo Cultivars. Environ. Sci. Technol. 44, 5164-5169.
  98. Vossbrinck, C.R.; White, J.C.; Bugbee, G.J.; Prapayotin-Riveros, K.; Marko, M.; Thum, R.; LaRue, E.; Havil, N. 2010. Isolation of microsatellite markers for the water milfoil weevil Euhrychiopsis lecontei. Mol. Ecol. Resources 10:1106-1108.

  99. Stampoulis, D; Sinha, S.K.; White, J.C. 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 43, 9473-9479.
  100. Capers, R.S.; Selsky, R.; Bugbee, G.J.; White, J.C. 2009. Species richness of both native and invasive aquatic plants influenced by environmental conditions and human activity. Botany 87:306-314.

  101. Liste, H-H.; White, J.C. 2009. Plant hydraulic lift of soil water:  Implications for crop production and land restoration. Plant Soil 313:1-17.

  102. White, J.C. 2009. Optimizing planting density for p,p’-DDE phytoextraction by Cucurbita pepo. Environ. Engin. Sci. 26, 369-375.

  103. Capers, R.S.; Selsky, R.; Bugbee, G.J.; White, J.C. 2009. Species richness of both native and invasive aquatic plants influenced by environmental conditions and human activity. Botany 87:306-314.

  104. White, J.C.; Burken, J.G. 2009. Conference Review: 4th International Phytotechnologies Conference, Denver Colorado September 24-26 2007. Int. J. Phytorem. 11:413-415.

  105. Capers, R.S.; Selsky, R.; Bugbee, G.J.; White, J.C. 2007. Aquatic plant community invasibility and scale dependent patterns in native, invasive species richness. Ecology 88:3135-3143.

  106. Peters, R.P.; Kelsey, J.W.; White, J.C. 2007. Differences in p,p’-DDE bioaccumulation from compost and soil by the plants Cucurbita pepo and C. maxima and the earthworms Eisenia fetida and Lumbricus terrestris. Environ. Poll.  148:539-545.

  107. White, J.C.; Peters, R.P.; Kelsey, J.W. 2007. Surfactants impact p,p’-DDE accumulation by plant and earthworm species. Environ. Sci. Technol. 41:2922-2929.

  108. Gent, M.P.N.; White, J.C.;.Parrish, Z.D.; Isleyen, M.; Eitzer, B.D; Mattina, M.I. 2007. Uptake and translocation of p,p’-dichlorodiphenyldichloroethylene supplied in hydroponics solution to cucurbita. Environ. Tox. Chem. 12:2467-2475.

  109. Gent, M.P.N.; White, J.C.; Eitzer, B.D.; Mattina, M.I. 2007. Modeling the difference among cucurbita in uptake and translocation of p,p’-dichlorodiphenyldichloroethylene. Environ. Tox. Chem. 12:2476-2485.

  110. White, J.C.; Ross, D.R.; Gent, M.P.N.; Eitzer, B.D.; Mattina, M.I. 2006. Effect of mycorrhizal fungi on the phytoextraction of weathered p,p’-DDE by Cucurbita pepo. J. Hazard. Mat. B137:1750-1757.

  111. White, J.C.; Parrish, Z.D.; Iseleyen, M.; Gent, M.P.N.; Iannucci-Berger, W.; Eitzer, B.D.; Mattina, M.I. 2006. Soil amendments, plant age, and intercropping impact DDE bioavailability to C. pepo. J. Environ. Qual. 35:992-1000.

  112. Kelsey, J.W.; Colino, A.; Koberle, M.; White, J.C. 2006. Growth conditions impact DDE accumulation in Cucurbita pepo. Int. J. Phytorem. 8:261-271.

  113. Parrish, Z.D; White, J.C.; Iseleyen, M.; Gent, M.P.N.; Iannucci-Berger, W.; Eitzer, B.D.; J.W. Kelsey, Mattina, M.I. 2006. Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Chemosphere 64:609-618.

  114. Mattina, M.I.; Isleyen, M.; Eitzer, B.D.; Iannucci-Berger, W.; White, J.C. 2006. Uptake by Cucurbitaceae of soil-borne contaminants depends upon plant genotype and pollutant properties. Environ. Sci. Technol. 40:1814-1821.

  115. White, J.C.; Parrish, Z.D.; Iseleyen, M.; Gent, M.P.N.; Iannucci-Berger, W.; Eitzer, B.D.; Kelsey, J.W.; Mattina, M.I. 2006.  Influence of citric acid amendments on the availability of weathered PCBs to plant and earthworm species. Int. J. Phytoremed. 8:63-79.

  116. Gent, M.P.N.; Parrish, Z.D.; White, J.C. 2005. Exudation of citric acid and nutrient uptake among subspecies of cucurbita. J. Am. Soc. Hort. Sci.130(5):782-788.

  117. White, J.C.; Parrish, Z.D.; Iseleyen, M.; Gent, M.P.N.; Iannucci-Berger, W.; Eitzer, B.D.; Mattina, M.I.  2005. Uptake of weathered p,p’-DDE by plant species effective at accumulating soil elements. Microchem. J. 81:148-155.

  118. Kelsey, J.W.; White, J.C. 2005. Multi-species interactions impact the accumulation of weathered 2,2-bis(p-chlorophenyl1)-1,1-dichloroethylene (p,p'-DDE) from soil.  Environ. Poll. 137:222-230.

  119. White, J.C.; Parrish, Z.D; Iseleyen, M.; Gent, M.P.N.; Iannucci-Berger, W.; Eitzer, B.D.; Mattina, M.I.  2005. Influence of nutrient amendments on the phytoextraction of weathered p,p’-DDE by cucurbits. Environ. Toxicol. Chem. 24:987-994.

  120. Kelsey, J.W.; Colina, A.; White, J.C. 2005. Effect of species differences, pollutant concentration, and residence time in soil on the bioaccumulation of p,p’-DDE by three earthworm species. Environ. Toxicol. Chem. 24:703-708.

  121. Wang, X.; White, J.C.; Gent, M.P.N.; Iannucci-Berger, W.; Eitzer, B.D; Mattina, M.I. 2004. Phytoextraction of weathered p,p’-DDE by zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) under different cultivation conditions. Int. J. Phytoremed. 6:363-385.

  122. Gent, M.P.N.; Parrish, Z.D.; White, J.C. 2004. Phytoextraction of field-weathered DDE by subspecies of cucurbita and exudation of citric acid from roots” Proceedings of the 20th Annual International Conference on Soils, Sediments, and Water; Held October 18-21 at the University of Massachussetts, Amherst MA.

  123. Mattina, M.I.; Iannucci-Berger, W.; Eitzer, B.D.; White, J.C. 2004. Rhizotron study of Cucurbitaceae: Transport of soil bound chlordane and heavy metal contaminants differ with genera. Environ. Chem., 2004, 1:86-89.

  124. Braida, W.; White, J.C.; Pignatello, J.J. 2004. Indices for bioavailability and biotransformation potential of contaminants in soils. Environ. Toxicol. Chem.23:1585-1591.

  125. Mattina, M.I; Eitzer, B.D.; Iannucci-Berger, W.; Lee, W-Y.; White, J.C. 2004. Plant uptake and translocation of highly weathered, soil-bound technical chlordane residues: Data from field and rhizotron studies. Environ. Tox. Chem. 23:2756-2762.

  126. White, J.C.; Wang, X., Gent, M.P.N.; Iannucci-Berger, W.; Eitzer, B.D.; Schultes, N.P.; Arienzo, M.; Mattina, M.I. 2003. Subspecies-level variation in the phytoextraction of weathered p,p’-DDE by Cucurbita pepo. Environ. Sci. Technol. 37:4368-4373.

  127. Lee, W.-Y.; Iannucci-Berger, W.; Eitzer, B.D.; White, J.C.; Mattina, M.I. 2003. Plant Uptake and Translocation of Air-Borne Chlordane and Comparison with the Soil-to-Plant Route. Chemosphere  53:111-121.

  128. Mattina, M.I.; Iannucci-Berger, W.; Musante, C.; White, J.C. 2003. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ. Poll. 124:375-378.

  129. White, J.C.; Mattina, M.I.; Lee, W-Y; Eitzer, B.D.; Iannucci-Berger, W. 2003. Role of organic acids in enhancing the uptake of weathered p,p’-DDE by plants. Environ. Poll. 124:71-80.

  130. Bugbee, G.J.; White, J.C., Krol, W.J. 2003. Control of variable watermilfoil with 2,4-D in Bashan Lake, Connecticut:  2,4-D monitoring in lakes and wells. J. Aquatic Plant Manag. 41:18-25.

  131. Lee, W-Y; Iannucci-Berger, W.; Eitzer, B.D.; White, J.C.; Mattina, M.I. 2003. Persistent organic pollutants in the environment:  Chlordane residues in Compost. J. Environ. Qual. 32:224-231.

  132. Braida, W.J.; White, J.C.; Zhao, D.; Ferrandino, F.J.; Pignatello, J.J. 2002. Concentration-dependent kinetics of pollutant desorption from soils. Environ. Toxicol. Chem. 12:2573-2580.

  133. Zhao, D.; Hunter, M.; Pignatello, J.J.; White, J.C. 2002. Application of the dual-mode model for predicting competitive sorption equilibria and rates of polycyclic aromatic hydrocarbons in estuarine sediment suspensions. Environ. Toxicol. Chem. 21:2267-2282.

  134. White, J.C. 2002. Differential bioavailability of field-weathered p,p’-DDE to plants of the Cucurbita and Cucumis genera. Chemosphere 49:143-152.

  135. White, J.C.; Kottler, B.D. 2002. Citrate-mediated increase in the uptake of weathered p,p’-DDE residues by plants. Environ. Toxicol. Chem. 21:550-556.

  136. Mattina, M.I.; White, J.C.; Eitzer, B.D.; Iannuci-Berger, W. 2002. Cycling of weathered chlordane residues in the environment: compositional and chiral profiles in contiguous soil, vegetation, and air compartments. Environ. Toxicol. Chem. 21:281-288.

  137. White, J.C.; Mattina, M.I.; Eitzer, B.D.; Iannuci-Berger, W. 2002. Tracking chlordane compositional and chiral profiles in soil and vegetation. Chemosphere. 47:639-646.

  138. White, J.C.; Triplett, T. 2002. Polycyclic aromatic hydrocarbons in the sediments and fish of the Mill River, New Haven, CT. Bull. Environ. Contam. Toxicol. 68:104-110.

  139. White, J.C. 2001. Plant-facilitated mobilization and translocation of weathered p,p’-DDE from an agricultural soil. Environ. Toxicol. Chem. 20:2047-2052.

  140. Braida, W.; White, J.C.; Ferrandino, F.J.; Pignatello, J.J. 2001. Effect of solute concentration on sorption of polyaromatic hydrocarbons in soil: Uptake rates. Environ. Sci. Technol.35:2766-2772.

  141. Zhao, D; Pignatello, J.J.; White, J.C.; Braida, W.; Ferrandino, F. 2001. Dual-mode modeling of competitive and concentration-dependent sorption and desorption kinetics of polycyclic aromatic hydrocarbons in soils.  Water Resour. Res. 37:2205-2212.

  142. Kottler, B.D.; White, J.C.; Kelsey, J.W. 2001. Influence of soil moisture on the sequestration of organic compounds in soil. Chemosphere. 42:891-896.

  143. White, J.C.  2000. Phytoremediation of weathered p’p’-DDE residues in soil. Internat. J. Phytoremed.  2:133-144.

  144. White, J.C.; Braida, W.; Ferrandino, F.J.; Pignatello, J.J. 2000. Effect of initial solute concentration on the sorption and desorption kinetics of polycyclic aromatic hydrocarbons in soil. Proceedings of the 32nd Mid-Atlantic Industrial and Hazardous Waste Conference, June 2000.

  145. White, J.C. and J.J. Pignatello. 1999. Influence of bisolute competition on the kinetics of desorption of polycyclic aromatic hydrocarbons (PAHs) in soil.  Environ. Sci. Technol. 33:4292-4298.

  146. White, J.C., M. Hunter, K. Nam, J.J. Pignatello, and M. Alexander. 1999. Correlation between the biological and physical availabilities of phenanthrene in soils and soil humin in aging experiments. Environ. Toxicol. Chem. 18:1720-1727.

  147. White, J.C., M. Hunter, J.J. Pignatello, and M. Alexander. 1999. Increase in the bioavailability of aged phenanthrene in soils by competitive displacement with pyrene. Environ. Toxicol. Chem. 18:1728-1732.

  148. White, J.C., Ravikovitch, P.I., Russo, R., Neimark, A., Pignatello, J.J. 1998. In 1996-1998 Bioremediation Research Program Review; EPA/600/R-89/122; U.S. Environmental Protection Agency; Washington, D.C., pp 19-20.

  149. White, J.C., M. Alexander, and J.J. Pignatello. 1998. Enhancing the availability of organic compounds sequestered in soil and aquifer solids. Environ. Toxicol. Chem. 18:182-187.

  150. White, J.C., A. Quinones-Rivera, and M. Alexander. 1998. Effect of wetting and drying cycles on the bioavailability of organic compounds sequestered in soil. Environ. Toxicol. Chem. 17:2378-2382.

  151. White, J.C., J.W. Kelsey, P.B. Hatzinger, and M. Alexander. 1997. Factors affecting sequestration and bioavailability of phenanthrene in soils. Environ. Toxicol. Chem. 16:2040-2045.

  152. White, J.C. and M. Alexander. 1996. Reduced biodegradability of desorption-resistant fractions of polycyclic aromatic hydrocarbons in soil and aquifer solids. Environ. Toxicol. Chem. 15:1973-1978.