Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

April 7, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 160 Deer Run Road, Wilton, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains a wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a tower and associated equipment on the ground near the base of the tower. The tower and Cellco's use of the tower were approved by the Siting Council ("Council") in August of 2006 (Docket No. 308). A copy of the Council's Docket No. 308 Decision and Order is included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by removing six (6) existing antennas and installing three (3) new Samsung MT6407-77A antennas and six (6) new MX06FRO660-03 antennas on its existing antenna mounting structure. Cellco also intends to remove six (6) remote radio heads ("RRHs") and install six (6) new RRHs behind its antennas. A set of project plans showing Cellco's proposed facility modifications and the specifications for Cellco's new antennas and RRHs are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Wilton's Chief Elected Official and Land Use Officer.

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Melanie A. Bachman, Esq. April 7, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's new antennas will be installed on its existing antenna mounting structure.

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative General Power Density table for Cellco's modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna mounts, with certain modifications, can support Cellco's proposed modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. April 7, 2022 Page 3

Sincerely,

Kunig MM

Kenneth C. Baldwin

Enclosures

Copy to:

Lynne Vanderslice, Wilton First Selectwoman Michael Wrinn, Director of Planning & Land Use Management/Town Planner Westport Broadcasting Co. LLC, Property Owner Alex Tyurin, Verizon Wireless

ATTACHMENT 1

DOCKET NO. 308 – Westport Broadcasting Co., LLC, Optasite,	}	Connecticut
Inc., and New Cingular Wireless PCS, LLC application for a Certificate of Environmental Compatibility and Public Need for	}	Siting
the construction, maintenance, and operation of a wireless telecommunications facility located at 160 Deer Run Road,	}	Council
Wilton, Connecticut.	,	August 31, 2006

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Westport Broadcasting Co., LLC (WBC), Optasite, Inc. (Optasite) and New Cingular Wireless PCS, LLC (New Cingular), hereinafter referred to as the Certificate Holder, for a telecommunications facility at 160 Deer Run Road, Wilton, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a self-supporting lattice tower, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of New Cingular and other entities, both public and private, but such tower shall not exceed a height of 118 feet above ground level. The height at the top of the antennas shall not exceed 122 feet above ground level.
- 2. Whip antennas that are to be relocated onto the replacement structure shall be combined into shared antennas, where possible.
- 3. The Certificate Holder shall remove the existing guyed lattice tower upon commencement of operation of the 120-foot self-supporting lattice tower.
- 4. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Wilton for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a. a final site plan(s) of site development to include specifications for the tower including a yield point, tower foundation, antennas, expanded equipment compound, radio equipment, placement of cables within the tower, utility line, and landscaping; and
 - b. construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and Sediment Control</u>, as amended.
- 5. The Certificate Holder shall notify the Council, parties and intervenors in this proceeding within ten business days of receiving notice from the Connecticut Department of Environmental Protection that use of the existing access road will be terminated. At which time the Certificate Holder shall submit a D&M Plan for the new access road extending from Deer Run Road.

- 6. The Certificate Holder shall, prior to commencement of construction of the new access road, provide the Council, parties and intervenors with a D&M Plan for the new access road, including construction plans for clearing, water drainage, and erosion and sedimentation control consistent with the <u>2002</u> <u>Connecticut Guidelines for Soil Erosion and Sediment Control</u>, as amended.
- 7. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- 8. Upon the establishment of any new state or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 9. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 10. The Certificate Holder shall provide reasonable space on the tower for no compensation for any Town of Wilton public safety services (police, fire and medical services), provided such use can be accommodated and is compatible with the structural integrity of the tower.
- 11. If the facility authorized herein is not fully constructed and providing wireless services within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council's Final Decision shall not be counted in calculating this deadline.
- 12. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 13. The Certificate Holder shall remove any nonfunctioning antenna, and associated antenna mounting equipment, within 60 days of the date the antenna ceased to function.
- 14. Any request for extension of the time periods referred to in Conditions 7 & 8 shall be filed with the Council not later than sixty days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list. Any proposed modifications to this Decision and Order shall likewise be so served.

Docket No. 308 Decision and Order Page 3

15. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction and the commencement of site operation.

Pursuant to General Statutes § 16-50p, the Council hereby directs that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the <u>Wilton Bulletin</u>, <u>The Norwalk Hour</u>, and <u>The Wilton Villager</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant

Westport Broadcasting Co., LLC Optasite, Inc. New Cingular Wireless PCS, LLC

Representatives

Christopher B. Fisher, Esq. Cuddy & Feder LLP 90 Maple Avenue White Plains, NY 10601

Dennis Morrissey, P.E., Esq. 3380 Main Street – Suite 201 Stratford, CT 06614

Representative

Keith R. Ainsworth, Esq. Evans Feldman & Boyer, LLC # 101240 261 Bradley Street P.O. Box 1694 New Haven, CT 06507-1694

Representatives

Carrie L. Larson, Esq. Cohen and Wolf, P.C. 1115 Broad Street Bridgeport, CT 06604

Monte E. Frank, Esq. Cohen and Wolf, P.C. 158 Deer Hill Avenue Danbury, CT 06810

Party

Wilton Environmental Trust

Party

Town of Wilton

Docket No. 308 Decision and Order Page 4

Intervenor

Omnipoint Communications, Inc. (T-Mobile USA, Inc.)

Representative

Kenneth Ira Spigle 687 Highland Avenue, Suite 1 Needham, MA 02494

Intervenor

Cellco Partnership d/b/a Verizon Wireless (Cellco)

Representative

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

ATTACHMENT 2

	Verizon		
	SITE NAME: WILTON_WEST_CT 160 DEER RUN ROAD WILTON, CT 06897 TOWN OF WILTON	Know what's below.	APPLOAD APPLOAD 118 FLANDERS ROAD 118 FLOOR 3 WESTBOROUGH, MA 01581
SITE INFORMATION	VICINITY MAP	DRAWING INDEX	
SITE ADDRESS. 100 DEER RUN RGAD WILTON, CT 06837 WILTON, CT 06837 LATTUDE (NAD 83): 41'-452 892Ar (4' 41 24132") LONGITUDE (NAD 83): 41'-35 892Ar (4' 41 24132") JUNISDICTION: 71'-38'-11 8004" (7'3 48898) JUNISDICTION: TOWN OF WILTON JUNISDICTION: TOWN OF WILTON	Albertick Rd Compared and Albertick Rd Compare	T-1 TTLE SHEET C-1 COMPOUND PLAN C-2 ELEVATION A-1 EXISTING ANTERNA PLAN & SCHEDULE A-2 EDCORSED ANTERNA PLAN & SCHEDULE	WILTON_WEST_CT 160 DEER RUN ROAD WILTON. CT 06897 WILTON. OF WILTON FAIRFIELD COUNTY
PARCEL NUMBER: 1928604 PROPERTY OWNER: WESTOOPT BROADCASTING CO DB071041 D0071041 201404 VIRGINU BEACH, VA 23451 TOWER OWNER: B2A COMMUNICATIONS CORPORATION WESTOON TO REACTOR 1: 33467-1307 VZW SITE ID: 325159 STRUCTURE TYPE: SELF SUPPORT TOWER CONSTRUCTION TYPE: IB U SE GROUP: U	HINN TONI	A-2 PROPOSED ATTENAN FIXAN SCHEDULE A-3 ANTENAN DETAILS & PLUMBING DIAGRAM A-4 EQUIPMENT SPECIFICATIONS & DETAILS A-5 SCOPE OF WORK G-1 GROUNDING DETAILS & NOTES GM-1 PMI REQUIREMENTS MODIFICATION DRAWINGS ATTACHED	
	PROJECT CONSISTS OF INSTALLING: (3) PROJECT CONSISTS OF REMOVING. (4) EXISTING ANTERNA AND (4) EXISTING PROJECT CONSISTS OF REMOVING. (5) EXISTING ANTERNA AND (6) EXISTING	DO NOT SCALE DRAWINGS THEE PRAWINGS ARE FORMATTED TO BEFULJAEZE AT 22744° CONTRACTOR THEEE PRAWINGS ARE FORMATTED TO BEFULJAEZE AT 22744° CONTRACTOR STALL TERPAR ALO PARSA MURIERTED OMERISMENT REPORTED INVERTING PARSA PARSA PARSE PROFINE TO BEFORE AND CONTRACTOR AND TENDARISM OF A DATE OF A DATE OF A DATE AND A DATE AND A DATE AND A DATE PROVIDE SEFORE FER AT TERME CONTRACTOR SHALL USE BEST CONSTRUCTION. APPROVAL BLOCK	
CONTRACTOR PMI REQUIREMENTS PMI ACCESSED AT: HTTPS//PMI/UZWSMART.COM SMART TOOL VENDOR PROJECT PROJECT NUMBER: 100765 VERIZON LOCATION CODE (PSLC): 467320		CONSTRUCTION MANAGE AS NOTED AS NOTED AS NOTED AS NOTED CONSTRUCTION ANAMAGE CONSTRUCTION ANAMAGE AS NOTED AS NOTED	CT PROFESSIONAL ENGINEER LC. #34055
THE ALL OF THE ALSO EMBEDDED IN MOUNT ANALYSIS REPORT MOUNT MODIFICATION REQUIRED YES VERIZON APPROVED VENDORS	CONSTRUED TO FERMIT WORK NOT CONFORMING TO THE LATEST EDITIONS OF THE FOLLOWING CODES. 2018 GT STATE BUILDING CODE / MANUAL OF STEEL CONSTRUCTION 13TH EDITION 2018 GT STATE BUILDING CODE / MANUAL OF STEEL CONSTRUCTION 13TH EDITION 2018 GT STATE BUILDING CODE / MANUAL OF STEEL CONSTRUCTION 13TH EDITION 2016 GT STATE BUILDING CODE / TA 607 2016 GT STATE BUILDING CODE / NISTITUTE FOR ELECTRICAL & ELECTRICA SHOTER S1 2016 GT STATE BUILDING CODE / NISTITUTE FOR ELECTRICAL & ELECTRICA SHOTER S1 2016 GT STATE BUILDING CODE / NISTITUTE FOR ELECTRICAL & ELECTRICASHEER S1 2016 GT STATE BUILDING CODE / NISTITUTE FOR ELECTRICASHEETY CODE LATEST EDITION	SITE ACOUISITION DATE DATE	TITLE SHEET
* REFER TO MOUNT MODIFICATION DRAWINGS.	WHPA T-2015 EDITION AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION AMERICAN INSTITUTE OF STEEL CONSTRUCTION	LESSORLESSOR REP DATE	

TO BE REMOVI

MANUFACTURER

MANUFACTURER

SAMSUNG

	TOTALLY COMMITTED. Net ENDINE ENVICES, LD. NET COMMENTER COMMENTER			WESTBOROUGH, MA 01581		NULTON, CT 06897 TOWN OF WILTON FAIRFIELD COUNTY		KEVISIONS		0 003W02 FINALOD	REV DATE DESCRIPTION BY	The SCONNENT	Darlie and	A CENSED AND		DANIEL J. CORVINO, P.E. CT PROFESSIONAL ENGINEER LIC. #34055		SCOPE OF	WORK	A-5
K MOP FOR RET INSTALLS	ANTENNA, CREW 1. REVIEW ANTENNA SCHEDULE WITH CELL TECH 2. FOR EACH SECTOR, LAY ANTENNAS OUT ON THE GROUND AS THEY WILL BE INSTALLED ACCORDING TO THE ANTENNA SCHEDULE	3. LABELED EACH ANTENNA WITH FACE AND POSITION WITH A SHARPIE (EX:"ALPHA-4") 4. LABELED EACH ANTENNA WITH SHARPIE WITH BAND AND TECHNOLOGY (EX:"700LTE", "AWSLTE", "PCSLTE", "850VOICE",	5. CONTECT ALL AISG CABLES (INCLUDING JUMPERS THAT WILL BE USED IN FINAL ASSEMBLY) PER THE ANTENNA SCHEDULE A. WHEN DASY CHAINING IS INEVITABLE, AS A GENERAL RULE	I. Keep LOW and Figh Bands on Separate Also chains as much as possible. II. Minimize Amount of Motors per Chain as much as possible (Max 15.6) B. When completed <u>All Ret Motor Ports Need to be connected</u> , including the Motors Not Being USED YET. The ONLY UNUSED Port WILL be the Last in the Daisy chain, which needs to be Capped AND WFATHERPROFED.	6. ON LAPTOP, FILL OUT THE SOFTCOPY OF THE RET DEPLOYMENT FORM AND SAVE IT, REPLACING THE "#####"	7. GIVE A SOFTCOPY ON THE REL DEPLOYMENT FORM TO VALUE ULTECH AND CONCLOSE LEVELADA / DOR USB STORDY OF THE REL DEPLOYMENT FORM TO VALUE CELL TECH AND CONCLOSE LEVEL BY EMAIL OR USB STORY OF THE REL DEPLOYMENT FORM TO VALUE AND CONCLOSE LEVELADA / THE REL BY EMAIL DOR USB STORY OF THE REL DEPLOYMENT FORM TO VALUE AND CONCLOSE LEVELADA / THE RELATION OF THE RELATIO	8. USING THE SAME LATION WITCH THEST THE REL DEFLOTMENT FORM UTENED, CUNNECT THE CONTROL MODULE A AND PROVISION EACH MOTOR RESPECTIVENT IS SPECIFIC TO THE MOTOR TYPE BEING PROVISIONED (IE- JMA NOTE: CREWS MUST USE SOFTWARE THAT IS SPECIFIC TO THE MOTOR TYPE BEING PROVISIONED (IE- JMA	SOFTWARE SHOULD ONLY BE SUED FOR JMA MOTORS) A. <u>COPY AND PASTE</u> "RET FRIENDLY NAME" FROM SPREADSHEET (COLUMN A) TO THE "SECTOR ID" FIELD OF EACH MOTOR	 B. POPULATE "SET RET TILT" B. POPULATE "MECHANICAL TILT" C. POPULATE "MECHANICAL TILT" 9. CALIBRATE ALM MOTORS AND ANTENNAS SAFETY TO ASSEMPTIVE TO TRANSPORT ANTENNAS SAFETY TO ASSEMPTIVE 	11. INSTALL ANTENNAS ACCORDING TO THE ANTENNAS ON A CHERTENNAS OF EL LO RECONDUCT TO THE SHARPIE LABELS AS REFERENCE 12. RECONNECT ALL ASIS JUMPERS 13. BEFORE PLUGGING INTO EACH RRH, CONNECT MAIN AISG CABLE INTO CONTROLLER TO ENSURE ALL MOTORS ARE	STILL SEEN IN THE DAISY CHAIN 14. PLUG AISG INTO RRH AND NOTIFY VZW TECH OF COMPLETION	VZW_TECH (USER HELP GUIDE: \\WN-VZWNET\NORTHEAST\PAPM_IMPLEMENTATION\SYSTEM PEFERORMANCE\USERS\MOSERCA\RET\)	15. POWER ON RADIO EQUIPMENT AND RUN ANY NECESSARY WOS 16. "DISCOVER" THE RETS A. LOG INTO SAM 1. URTIC SAM	ENBEQUIPMENT>ENB>ACTIVATIONSERVICE>ISAISGALLOWED=CHECKED LOG INTO NEM LOCAL I. GO TO TREE VIEW AND HIGHLIGHT RET SUBUNIT	II. ENABLE BUS SCAN • CONFIGURATION> ENABLE AISG BUS SCAN	III. ALLOCATE CONFIG RIGHTS CONFIGURATIONALLOCATION CONFIGURATION RIGHTS N. VERIFY CORRECT NUMBLER OF RETS ARE DISCOVERED	17. "COMMISSION" THE RETS A. LOG INTO NEM LOCAL I. CTULI IN TAPEE VIEW PIOLIT OLICY ON "LIW MANNIES"	I. SHILL IN THEE VIEW, NIGHT CLCK ON THE MODULES II. SELECT "CREAFE RET MO" II. RELEASE CORFIG RIGHTS	CONFIGURATION>RELEASE CONFIGURATION RIGHTS N. VEREY RETSUBUNIT:SECTORNAME, ELECTRICAL TILT, AND MECHANICAL TILT ARE POPULATED "PROVISION" THE PETS	I. UTHE SEARCH TEXTRES AND CUMPLER A TOLL RESTRUCT. I. UTHE REARCH TEXTRUCT. II. UTHE SEARCH TEXTRUCT FOR "RETSUBUNIT". VERIFY ALL RETS ARE ACCOUNTED FOR AND "RETSUBUNIT:SECTORNAME", "ANTENNAELECTICALTILT", AND "RETSUBUNIT:MECHANICALTILT" ARE ACCURATE
VERIZON WIRELESS CONTRACTOR SCOPE OF WOF	 VERIZON WIRELESS CONTRACTOR IS TO SUPPLY AND INSTALL THE PROPOSED CABLE JUMPER (WITH LC TO LC CONNECTORS) FROM THE PROPOSED FIBER TRAYS TO THE PROPOSED MAIN DISTRIBUTION BOX (BOTTOM). 	 VERIZON WIRELESS CONTRACTOR IS TO SUPPLY AND INSTALL ALL MOUNTING HARDWARE AND 1/2" ANTENNA JUMPER CABLES AS REQUIRED DURING CONSTRUCTION. 	 VERIZON WIRELESS CONTRACTOR IS TO INSTALL (12) RUNS OF HELJAX 1/1 HYBRID CABLE FROM THE EXISTING MAIN DISTRIBUTION BOXES TO THE REMOTE RADIO HEAD UNITS. 	 VERIZON WIRELESS CONTRACTOR IS TO SUPPLY AND INSTALL 1/2" ANTENNA JUMPERS FROM EACH PROPOSED REMOTE RADIO HEAD UNIT (RRH) TO THE PROPOSED ANTENNAS IN ALL SECTORS (36 TOTAL 1/2" ANTENNA JUMPERS). 	 VERIZON WIRELESS CONTRACTOR IS TO INSTALL THE PROPOSED REMOTE RADIO HEAD UNITS IN ALL SECTORS ON THE ANTENNA PIPE. 	 VERIZON WIRELESS CONTRACTOR IS TO GROUND ALL REMOTE RADIO HEAD UNITS (RRH) TO THE EXISTING GROUND BARS AS REQUIRED DURING CONSTRUCTION. 	 VERIZON WIRELESS CONTRACTOR IS TO GROUND ALL PROPOSED ANTENNAS TO THE EXISTING GROUND BARS AS REQUIRED DURING CONSTRUCTION. 	 VERIZON WIRELESS CONTRACTOR IS TO COMPLETE THE INSTALLATION OF THE PROPOSED ANTENNAS. 	 VERIZON WIRELESS CONTRACTOR IS TO PERFORM THE FOLLOWING OPTICAL SWEEP TESTS: OTDR AND OPTICAL LOSS. RECOMMENDED UNITS – ANRITSU MT9090, JDSU, EXF0 FTB-1/FTB-720 OTDR. 	\bullet VERIZON WIRELESS CONTRACTOR IS TO PERFORM THE FOLLOWING ANTENNA SYSTEM VZWR / db RL.	 VERIZON WIRELESS CONTRACTOR IS TO PROVIDE ALL CLOSE OUT DOCUMENTS AS REQUIRED BY VERIZON WIRELESS. 	SAMSUNG RRH	DUAL RRH B2/B66A RF44394-25A HELIAX 1/1 HYBRID GABLE CABLE MUST BE CONNECTED TO THE LO PRIMARY PORT AND (1) EXTRA PAIR OF FIBER CONNECTED TO L1 SECONDARY PORT.	 DUAL RRH B5/B13 RF4440d-13A HELIAX 1/1 HYBRID CABLE MUST BE CONNECTED TO THE LO PRIMARY PORT. 	INTEGRATED ANTENNA	• MT8407-774 1/1 HYBRID CABLE MUST BE CONNECTED TO OPT1 PORT AND (3) EXTRA FIBER CABLE TO THE SECONDARY OPT2 PORT.				

POST-MODIFICATION INSPECTION (PMI) REQUIREMENT	POST-MODIFICATION INSPECTION (PMI) REQUIREMENT CONT.	[
PMI REQUIRED FOR ALL SITES, REFER TO VERIZON NSTD-446 SECTIONS 1.5 AND 2.3 FOR MORE INFORMATION.	6H. VERIFICATION THAT THE INSTALL HAS NOT CAUSED DAMAGE TO OR UNPLANNED OBSTRUCTION OF THE FOLLOWING:	TOTALLY COMMITTED
REFER TO THE MOUNT ANALYSIS BY GPD ENGINEERING AND ARCHITECTURE PROFESSIONAL CORPORATION DATED 10/19/2021 FOR ADDITIONAL DETAILS.	 Climbing Facilities Safety climb if present, including photos above and below the mount. Lighting system 	NB+C ENGINEERING REXIVES, LLC. IN MALLO CANE ORIGINATION CONTRACTION CONTRACTION (1992) MALON
GENERAL CONTRACTOR SHALL PROVIDE THE BELOW DOCUMENTATION TO THE ENGINEER OF RECORD VIA EMAIL TO <u>VZWMOUNISGNBCLLC.COM</u> , DROPBOX, OR OTHER FILESHARE METHOD. PROVIDE HIGH RESOLUTION PHOTOS (DO NOT COMPRESS).	OTHER INSTALLED SYSTEMS ON THE STRUCTURE. CONTRACTOR SHALL ENSURE THE SAFETY CLIMB IS SUPPORTED AND NOT ADVERSELY AFFECTED BT THE INSTALLATION OF NEW COMPONENTS. THIS MAY INVOLVE THE INSTALLATION OF WIRE ROPE CLIMES OF OTHER IT DEPORTET THE WORE PADE	verizon
ENGINEER OF RECORD WILL CONDUCT A REVIEW OF THE PROVIDED DOCUMENTS TO PREPARE A PMI REPORT. ENGINEER OF RECORD WILL NOTIFY GENERAL CONTRACTOR IF ANY ADDITIONAL DOCUMENTATION IS REQUIRED TO COMPLETE THE PMI.	61. OTHER ITEMS DETERMINED BY THE STRUCTURAL ENGINEER TO ENSURE THE MOUNT WILL PERFORM AS DESIGNED. PHOTOS OF RELEVANT MEASUREMENTS, WITH SUFFICIENT DETAILS TO CONFIRM CONNECTION	A TANDERS ROAD 118 FLANDERS ROAD FLOOR 3 WESTBOROUGH, MA 01581
PMI DOCUMENTATION SHALL BE SUFFICIENT TO CONFIRM THE UPGRADE WAS BUILT AS DESIGNED, INCLUDING EQUIPMENT CHANGES AND STRUCTURAL MODIFICATIONS, AND IS IN ADDITION TO ANY OTHER REQUIRED CLOSEOUT PACKAGE DOCUMENTATION.	DETAILS, PLACEMENT OF EQUIPMENT, WALL ANCHOR DETAILS, BALLAST QUANTITIES, STRUCTURAL MODIFICATIONS ETC. DIAMETERS AND THICKNESSES OF BOLTS/THREADED RODS/ANGLES/TUBES ETC SHALL HAVE PHOTOS CONFINIMUG CALIFER MEASUREMANTS.	
REQUIRED DOCUMENTATION FOR PMI INCLUDES THE FOLLOWING AT A MINIMUM. REFER TO THE MOUNT ANALYSIS FOR POSSIBLE ADDITIONAL INFORMATION. IF STRUCTURAL MODIFICATIONS ARE REQUIRED, REFER TO THE MODIFICATION DRAWINGS FOR POSSIBLE ADDITIONAL REQUIREMENTS.	INSPECTED FOR ANY ISSUES. FOR BALLAST SLEDS, DOCUMENTATION OF THE WEIGHT OF BALLAST IN EACH SECTOR. FOR WALL ANCHORS, PHOTOS AND MEASUREMENTS OF OUTSIDE AND INSIDE OF CONNECTIONS. DOCUMENTATION OF ADHESIVE USED, SIZE AND LENGTH OF ANCHORS, EFFECTIVE EMBEMMINT DEPTH OF	MLTON_WEST_CT MILTON_WEST_CT 160 DEER TRUN ROAD WILTON, CT 06897 TOWN OF WILTON FAIRFIELD COUNTY
6A. PROVIDE PRE-AND-POST CONSTRUCTION PHOTOS OF EACH SECTOR FROM THE MOUNT ELEVATION AND THE GROUND. CONTRACTOR IS RESPONSIBLE FOR ENSURING THE PHOTOS PROVIDED PROVIDE POSITIVE CONFIRMATION THAT THE MODIFICATION/UPGRADE WAS	THE ANCHORS, BROWING OF DULUW WALLS, SPACING AND EUGE UISTANCE MEASUREMENTS, AND ANT THROUGH-BOLTS OR BACKING PLATES, SPACING AND EUGE UISTANCE MEASUREMENTS, AND ANT FOR STUD WELD CONNECTIONS, DOCUMENTATION TO CONFIRM SURFACE PREPARATION, STUD WELD SIZE, GRADE, LENGTH, AND SPACING.	REVISIONS
COMPETEUR IN ACCONDANCE WITH THESE CONSTRUCTION DIANNINGS AND ANTI STRUCTURAL/MOUNT MODIFICATION DRAWINGS. CONTRACTOR SHALL RELAY ANY DATA THAT CAN IMPACT THE PERFORMANCE OF THE MOUNT OR MOUNT MODIFICATION, INCLUDING SAFETY ISSUES. PHOTOS SHALL HAVE A DATE/TIME STAMP IN THE PHOTO. REFER TO THE MOUNT ANA YSIS FOR FILE STRUCTIRE SCHEDULE OF PHOTOS. PROVIDE PHOTOS OF THE RAUT	FOR FABRICATED PARTS, SHOP DRAWIGS TO BE APPROVED BY THE ENGINEER OF RECORD PRIOR TO CONSTRUCTION. FOR WELDED PARTS, CERTIFIED WELD INSPECTION. FOR BOLTED PARTS, BOLT INSTALLATION AND TORQUE.	SIGN HECOHD
SIGNS AND CARRIER SHELTER TO IDENTIFY THE TOWER OWNER, SITE NAME, SITE NUMBER, ETC.	 CONTRACTOR SHALL PROVIDE, IN ADDITION TO THE ABOVE, AS-BUILT CDS WITH REDLINES IDENTIFYING ANY CHANGES. THE AS-BUILTS SHALL THE CONTRACTOR'S NAME, PREPARER'S SIGNATURE, AND DATE. 	EINH COP
6B. VERIFICATION OF THE MEMBER CONNECTIONS, BRACING, AND RELEVANT DIMENSIONS.	8. IF THE MODIFICATION INSTALLATION WOULD FAIL THE PMI (FAILED PMI), THE CONTRACTOR SHALL	REV DATE DESCRIPTION E
6C. VERIFICATION OF THE ANTENNA AND OTHER EQUIPMENT CONFIGURATION (PHOTOS OF MODEL NUMBERS/TAGS FOR ALL EQUIPMENT, AS WELL AS THE FEEDLINE CONFIGURATION). TAKE PHOTOS OF THE BACK SIDE OF EACH SECTOR AS WELL AS CLOSE OF ALL	WORN WITH THE ENVINCEN OF RECORD TO CONDUNATE A REMEMBINION FLAN IN ONE OF 100 MATS. BA. CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL CONTRACT DOCUMENTS AND COORDINATE A SUPPLEMENTAL PMI.	CONCOMPCION CONCON
EQUITMENT. PHOTOS SHOULD CONFIRM THE HORIZONTAL AND VERTICAL POSITIONNG OF THE ANTENNAS AND EQUIPMENT AND SHALL HAVE TAPE MEASURES IN THE PHOTOS TO CONFIRM.	BB. OR, WITH THE EOR'S APPROVAL, THE GC MAY WORK WITH THE EOR TO RE-ANALYZE THE MODIFICATION RENEORCEMENT/UPORADE USING THE AS-BUILT CONDITION.	Contraction of the contraction o
6D. FOR TIE-BACKS, STRUTS, MOUNT PIPES, PHOTOS TO CONFIRM THE ANGLES AND LOCATION OF ATTACHMENT POINT AT BOTH ENDS OF MEMBER, AS WELL AS DIMENSIONS, THICKNESS, AND LENGTHS OF THE MEMBERS. REFER TO THE CHECKLIST IN THE MOUNT ANALYSIS FOR ADDITIONAL INFORMATION.	9. NOTE: IF LOADING IS DIFFERENT THAN THAT SHOWN IN THESE CONSTRUCTION DRAWINGS OR STRUCTURAL/MOUNT MODIFICATION DRAWINGS, CONTRACTOR SHALL NOTIFY THE ENGINEER OF RECORD IMMEDIATELY FOR RESOLUTION.	E 11-2-2/CENSES-CON
6E. MOUNT ATTACHMENT TO THE SUPPORTING STRUCTURE, INCLUDING ANY KICKERS OR SUPPORTS, OR TIEBACKS.	10. THE ENGINEERING FIRM PERFORMING AN ANALYSIS SHALL PROVIDE A CONTRACTOR'S PHOTO LOG AND CHECKLIST TO BE COMPLETED BY THE INSTALLING CONTRACTOR. THE CONTRACTOR SHALL THEN PROVIDE POST-INSTALL ATION INFORMATION TO THE STRUCTURAL FURDINES. THE STRUCTURAL	DANIEL J CORNING, P.E. CT PROFESSIONAL ENGINEER LIC. #3405
6F. MATERIALS USED (TYPE, STRENGTH, DIMENSIONS, ETC). PROVIDE BILL OF MATERIALS AND MATERIAL SPEC TO CONFIRM MATERIAL GRADES AND SIZES. PROVIDE DOCUMENTATION FOR GALVANIZATION OF MEMBERS WHETHER HOT-DIPPED OR COLD-GALVANIZED. IF MATERIALS DIFFER FROM THOSE SPECIFIED ON THESE DRAWINGS, PROVIDE DOCUMENTATION THAT THE "EQUIVALENT" MATERIAL HAS THE SAME SPECIFICATIONS.	ENGINEER SHALL REVIEW THE DOCUMENTS FOR ANY DEFICIENCIES THAT CAN BE DETERMINED FROM THE DESKTOP REVIEW OF THE DATA. THE ENGINEERING FIRM SHALL THEN PROVIDE DOCUMENTATION TO VZW THAT THE SITE IS COMPLETED, AND THE PMI REPORT IS APPROVED.	PMI
66. MOUNT ORIENTATION/AZIMUTH AND ELEVATION. PROVIDE TAPE DROP PHOTOS OF ANTENNA CENTERLINE(S) AND MOUNT ATTACHMENT POINTS TO THE SUPPORTING STRUCTURE.		
IF INTERE ARE MULTIFLE NAU VENTERS, FRUNDE FRUIDS OF ALL ELEVATIONS.		

MOUNT INFORMATION: MOUNT TYPE: 10-6" T-FRAME SITE LOCATION: LAT: 41.241372" LONG: -73.459889" STREET ADDRESS: 160 DEER RUN ROAD CITY, STATE ZIP: WILTON, CT 06697 COUNTY: FAIRFIELD TOWER OWNER: SBA TOWER STE NUMBER: CT98078	CODE COMPLIANCE: GOVERNING CODES: TIA-222-H WIND SPEEDS: TIA-222-H WIND SPEEDS: TIA-222-H WIND SPEEDS: TIA-222-H WIND SPEEDS: TIA-222-H 50 MPH 3-SECOND GUST (W/ ICE) 50 MPH 3-SECOND GUST (W/ ICE) TIA-222-H 50 MPH 3-SECOND GUST (W/ ICE) TIA-222-H FICKNESS: TIA-222-H RISK CATEGORY: 1 EXPOSURE CATEGORY: 1 EXPOSURE CATEGORY: 1 EXPOSURE CATEGORY: 1 SEISMIC CRITERIA: SHORT PERIOD SPECTRAL RESPONSE ACCELERATION (S ₃): 0.243 SHORT PERIOD SPECTRAL RESPONSE ACCELERATION (S ₃): 0.243	
WILTON WEST CT SITE #: 467920 SMART TOOL PROJECT #: 10108062		SECONSULTING CONTACT: SEER CONSULTING CONTACT: FEIR ALANNO Gei SI 1:447 Geo NOUT ACT Geo NOUT ACT AL Geo NOUT ACT AL <t< td=""></t<>

	N-01
 T. W. NENTONAS STEEL NOTE: T. W. NENTONAS STEEL NOT NUCLEAR ST	
 HIG CREATA NOTE: HIG CREATA NOTE:	
Image: control Image: control Image: control Image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: control image: contro image: control <td></td>	

BIL OF MATERIALS ILL OF MATERIALS ILL OF MATERIALS IZZNSMART KITS	BIL OF MATERIALS BILL OF MATERIALS Image: Comparison of the co	BIL OF MATERIALS DIL OF MATERIALS Image: Construction of the structure of the s				GPD Engineering and Archined Professional Carporation	330.672.3100 Fex: 330.672	<u>^</u>								T CT 0AD 7087 897 21ALS	NES 8 RUN R 4, СТ 06 4, СТ 06		8ורר ^M ופס Mור]	PERMIT 10/19/2	BIU CONSTRUCTION	RECORD .	
BIL OF MATERIALS ILL OF MATERIALS INTERPORTED HIT ILL OF MATERIAL MOTE INTERPORTED HIT ILL OF REQUIRED HIT ILL OF REAL OF REQUIRED HIT ILL OF REAL OF REQUIRED HIT ILL OF REQUIRED HIT ILL OF REAL OF REQUIRED HIT ILL OF REAL OF	BLL OF MATERIALS Dill OF MATERIALS Image: Constraint of the constraint of th	BLI CF MATERIALS ISIL OF MATERIALS AZMSMATERIAS ADHEREAURES ADHEREAURES ADHEREAURES ADHEREAURES ADHEREAURES ADHEREAURES ADMEREAURES ADMERE		BIL OF MATERIALS Antonio III Antonio III Antonio IIII Antonio IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				WEIGHT	168		2	138	81	389							}				
BIL OF MATERIALS UZWSMART KITS Nots Nots Nots Nots Nots Nots Nots Nots	BIL OF MATERIALS DIM DE MATERIALS DIM A DIM A DIM A <tr td=""></tr>	BIL OF MATERIAL ALL OF MATERIAL VZVSIMART KITS VICAMART KITS OPORT REGIMENTING OPORT REGIMENTING VICAMART KITS - APPROVED VENDER KITS CONSECUENCIA VICAMART KITS - APPROVED VENDER KITS VICAMART KITS - APPROVED VENDER KITS VICAMART KITS - APPROVED VENDER KITS COMMSCOPE	BIL OF MATERIALS Internation Internation Internation Internation	BIL OF MATERIALS BIL OF MATERIALS MART CITATION MARTACINERA VORMANT IN TACHING IN CONTRACTORING IN CONTRACTORIS IN CONTRACTORING IN CONTRACTORING IN CONTRACTORING IN CONTRACTORING IN CONTRACTORING IN CONTRACTORING IN CONTRACTORIS IN CONTRACTORIS IN CONTRACTORIS IN CONTRACTORING IN CONTRACTORIS IN CONTRACTORIS IN CONTRACTORIS IN CON				UNIT WEIGHT	14		~	46	27	TOTAL			"Hillinger	OF CONNECTION	UNIT SCH	N NOTES THE		SPORAL EN IN			
	PTION PT	DESCRIPTION DESCRIPTION CROSSOVER PLATE CROSSOVER PLATE CROSSOVER PLATE CROSSOVER PLATE SAFETY CLIMB UNIVERSAL SERVED OFF ASSEMBLY STANDOFF ASSEMBLY C MOUNT FIPE SEE PAGE N STANDOFF ASSEMBLY C ASSEMPTION C MOUNT FIPE SEE PAGE N MEBSTE W MAUL MEBSTE MOUNT FIPE MEBSTE MAUL MEBSTE MAUL MEBSTE MAUL MEBSTE	PART NUMBER DESCRIPTION PART NUMBER DESCRIPTION VZWSMART-MSK1 DESCRIPTION VZWSMART-MSK1 CRODSSOURTEPLATE VZWSMART-MSK1 CRODSSOURTEPLATE VZWSMART-MSK1 SVETY CLIMB UNVERSAL 120-200317 SVETY CLIMB UNVERSAL 120-200317 SVETY CLIMB UNVERSAL 27-3* F2 S1D PIPE MOUNT PIPE 27-3* F2 S1D PIPE MOUNT PIPE 7-3* F2 S1D PIPE STABULZER PIPE FELD VERSI CONTACT MEIBERTE W MEIBERTE W MEIBERTE MEIBERTE	Montracturer Powri Numers Descraption Vzwesundri Vzwesundri Haskri Descraption Stritte Pool 1:90 zotal 1 Stratuo Faller Filter 6:07 zotal 10 mortration Stratuo Faller Filter 5:00 mortratien Faller Mountratien Faller Filter 1:73*12 S1D FPE Stratuizten Faller Filter 5:00 mortratien Faller Mountratien Faller Filter 5:00 mortratien Faller Mountratien Faller Filter 5:00 mortratien Faller Miniter Filter 5:00 mo	BILL OF MATERIALS		VZWSMART KITS	NOTES		THER REQUIRED KITS		101 FOR STEEL GRADE REQUIREMENTS.	Y REQUIRED LENGTH. SEE PAGE N-01 FOR STEEL GRADE REQUIREMENTS.		T KITS - APPROVED VENDORS	LVADOR ANGULANO 7) 364.7482 LVADOR ANGULANOQCOMMISCOPE COM MI COMMISCOPE COM	TI TRANE	IN GENELINGS INCLUSION ETROSTEFABRICATORS COM	RELESSALES RELESSALES	4) BOL 4/123 RELESSENTERGOFFRECT-VISION COM WO PERFECT-VISION COM	SABRE INDUSTRIES, INC.	08 428-6937	WELCH@SABREINDUSTRIES.COM MM_CARRESTRESDI UTIONS.COM		

PHONE (37) 236-943 EMAIL PAULA BOSWELL@VALMONT COM WERSITE PAULA BOSWELL@VALMONT COM WERSITE PAULA BOSWELL@VALMONT COM NOTES FACH MANUFACTURER WILL BE AMARE OF WHICH RITS HAVE NOTES FACH MANUFACTURER WILL BE AMARE OF WHICH RITS HAVE BEEN TRROUGH THE ZYA APPROVED POPERS AND THEY APPROVED POPERSENDE THE REVEWER SAL PATO FTHE BESKODP MIN COMPLETED BY THE REVEWER SAL PATO FTHE BESKODP MIN COMPLETED BY THE REVEWER SAL PATO FTHE REQUIRED THAT THE COMPLETED BY THE REVIEWER SAL PATO FTHE REQUIRED THAT THE COMPLETED BY THE REVIEWER SAL PATO FTHE REQUIRED THAT THE COMPLETED BY THE REVEWER SAL PATO FTHE REGUIRED THAT THE COMPLETED BY THE REVIEWER SAL PATO FTHE REGUIRED THAT THE REVENTION OF RELEATED ATO FTHE DESIGNED MODIFICATIONS BUT NOT USING RECOURDED FOR THE DESIGNED MODIFICIATIONS BUT NOT USING RECOURDED FOR THE DESIGNED MODIFICATIONS BUT NOT USING RECOURDED FOR THE DESIGNED MODIFICATIONS BUT NOT USING RECOURDED FOR THE DESIGNED MODIFICIATIONS BUT NOT USING RECOURDED FOR THE DESIGNED MODIFICIATIONS BUT NOT USING RECOURDED FOR THE DESIGNED MODIFICIATIONS

ов ио. 2021740.467920.02

S-01

ECT MANAGER APPROVED BY

EAN 3

EAN e.

SAMSUNG

AWS/PCS MACRO RADIO DUAL-BAND AND HIGH POWER

FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4439d-25A

Youtube www.youtube.com/samsung5g

Points of Differentiation

Continuous Migration

Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.

O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.

The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.

Supports up to 7 carriers

Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L.

Same as an incumbent radio volume

 2 FH connectivity
 O-RAN capability
 More carriers and spectrum

Technical Specifications

ltem	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930 – 1995MHz, UL: 1850 – 1915MHz DL: 2110 – 2200MHz, UL: 1710 – 1780MHz
RF Power	(B25) 4 × 40W or 2 × 60W (B66) 4 × 60W or 2 × 80W
IBW/OBW	(B25) 65MHz / 30MHz (B66) DL 90MHz, UL 70MHz / 60MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb

SAMSUNG

700/850MHZ MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4440d-13A

Homepage samsungnetworks.com

Youtube www.youtube.com/samsung5g

Points of Differentiation

Continuous Migration

Samsung's 700/850MHz macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.

The new 700/850MHz dual-band radio can support up to 2 carriers in the B13 (700MHz) band and 3 carriers in the B5 (850MHz) band, respectively.

Supports up to 5 carriers

Technical Specifications

ltem	Specification
Tech	LTE / NR
Brand	B13(700MHz), B5(850MHz)
Frequency Band	DL: 746 – 756MHz, UL: 777 – 787MHz DL: 869 – 894MHz, UL: 824 – 849MHz
RF Power	(B13) 4 × 40W or 2 × 60W (B5) 4 × 40W or 2 × 60W
IBW/OBW	(B13) 10MHz / 10MHz (B5) 25MHz / 25MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 9.05inch (33.2L) / 70.33 lb

O-RAN Compliant

A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Secured Integrity

Access to sensitive data is allowed only to authorized software.

The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).

SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code : MT6407-77A

Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Technical Specifications

ltem	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

SAMSUNG

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

X-Pol Hex-Port 6 ft 60° Fast Roll Off antenna with independent tilt on 700 & 850 MHz:

2 ports 698-798, 824-894 MHz and 4 ports 1695-2180 MHz

- Fast Roll Off (FRO™) azimuth beam pattern improves Intra- and Inter-cell SINR
- Compatible with dual band 700/850 MHz radios with independent low band EDT without external diplexers
- Fully integrated (iRETs) with independent RET control for low and high bands for ease of network optimization
- SON-Ready array spacing supports beamforming capabilities
- Suitable for LTE/CDMA/PCS/UMTS/GSM air interface technologies
- Integrated Smart Bias-Ts reduce leasing costs

Fast Roll-Off antennas increase data throughput without compromising coverage

The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference & Noise Ratio (SINR) by eliminating overlap between sectors .

Non-FRO antenna

Large traditional antenna pattern overlap creates harmful interference.

NWAV

The LTE radio automatically selects the best throughput based on measured SINR.

Electrical specification (minimum/maximum)	Port	s 1, 2		Ports 3, 4, 5, 6	
Frequency bands, MHz	698-798	824-894	1695-1880	1850-1990	1920-2180
Polarization	± 4	45°		± 45°	
Average gain over all tilts, dBi	14.4	14.0	17.6	18.0	18.2
Horizontal beamwidth (HBW), degrees	60.5	53.0	55.0	55.0	55.5
Front-to-back ratio, co-polar power @180°± 30°, dB	>24	>24.0	>25.0	>25.0	>25.0
X-Pol discrimination (CPR) at boresight, dB	>15.0	>14.2	>18	>18	>15
Sector power ratio, percent	<3.5	<3.0	<3.7	<3.8	<3.6
Vertical beamwidth (VBW), degrees ¹	13.1	11.8	6.0	5.5	5.5
Electrical downtilt (EDT) range, degrees	2-14	2-14		0-9	
First upper side lobe (USLS) suppression, dB ¹	≤-15.0	≤-16.5	≤-16.0	≤-16.0	≤-16.0
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25	25
Max VSWR / return loss, dB	1.5:1	/ -14.0		1.5:1 / -14.0	
Max passive intermodulation (PIM), 2x20W carrier, dBc	-1				
Max input power per any port, watts	30	00		250	
Total composite power all ports, watts			1500		

¹ Typical value over frequency and tilt

©2019 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks™ or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com

MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Mechanical specifications	
Dimensions height/width/depth, inches (mm)	71.3/ 15.4/ 10.7 (1811/ 392/ 273)
Shipping dimensions length/width/height, inches (mm)	82/ 20/ 15 (2083/ 508/ 381)
No. of RF input ports, connector type, and location	6 x 4.3-10 female, bottom
RF connector torque	96 lbf·in (10.85 N·m or 8 lbf·ft)
Net antenna weight, lb (kg)	60 (27.0)
Shipping weight, lb (kg)	90 (41.0)
Antenna mounting and downtilt kit included with antenna	91900318
Net weight of the mounting and downtilt kit, lb (kg)	18 (8.18)
Range of mechanical up/down tilt	-2° to 14°
Rated wind survival speed, mph (km/h)	150 (241)
Frontal, lateral, and rear wind loading @ 150 km/h, lbf (N)	154 (685), 73 (325), 158 (703)
Equivalent flat plate @ 100 mph and Cd=2, sq ft	2.6

Ordering information

er der nig internation	
Antenna model	Description
MX06FRO660-03	6F X-Pol HEX FRO 60° independent tilt 700/850 RET, 4.3-10 & SBT
Optional accessories	
AISG cables	M/F cables for AISG connections
PCU-1000 RET controller	Stand-alone controller for RET control and configurations

MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Remote electrical tilt (RET 1000) information	
RET location	Integrated into antenna
RET interface connector type	8-pin AISG connector per IEC 60130-9
RET connector torque	Min 0.5 N \cdot m to max 1.0 N \cdot m (hand pressure & finger tight)
RET interface connector quantity	2 pairs of AISG male/female connectors
RET interface connector location	Bottom of the antenna
Total no. of internal RETs (low bands)	2
Total no. of internal RETs (high bands)	1
RET input operating voltage, vdc	10-30
RET max power consumption, idle state, W	≤ 2.0
RET max power consumption, normal operating conditions, W	≤ 13.0
RET communication protocol	AISG 2.0 / 3GPP

RET and RF connector topology

Each RET device can be controlled either via the designated external AISG connector or RF port as shown below:

Array topology

3 sets of radiating arrays	Band	RF port
R1/R2: 698-894 MHz B1: 1695-2180 MHz B2: 1695-2180 MHz	1695-2180	3-4
	698-894	1-2
	1695-2180	5-6

©2019 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks[™] or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com
ATTACHMENT 3

	General	Power	Density					
Site Name: Wilton W								
Tower Height: Verizon @ 98ft								
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	FREQ.	CALC. POWER DENS	MAX. PERMISS.EXP.	FRACTION MPE	Total
*AT&T - UMTS	1	546	110	850	0.018153902	0.566666667	0.00320363	
*AT&T - UMTS	2	1992	110	700	0.132463637	0.466666667	0.028385065	
*AT&T - UMTS LTE	4	2450	110	700	0.325839268	0.466666667	0.0698227	
*AT&T - UMTS LTE	4	3541	110	850	0.470937489	0.566666667	0.083106616	
*AT&T - UMTS 5G	4	3541	110	850	0.470937489	0.566666667	0.083106616	
*AT&T - UMTS LTE	4	6013	110	1900	0.79970266	1	0.079970266	
*T-Mobile	1	6444	118	2500	0.184741094	1	0.018474109	
*T-Mobile	1	6444	118	2500	0.184741094	1	0.018474109	
*T-Mobile	2	592	118	600	0.033943739	0.4	0.008485935	
*T-Mobile	1	1578	118	600	0.045239206	0.4	0.011309802	
*T-Mobile	2	695	118	700	0.039849491	0.466666667	0.008539177	
*T-Mobile	2	2105	118	1900	0.120695221	1	0.012069522	
*T-Mobile	2	1325	118	2100	0.075972051	1	0.007597205	
*T-Mobile	4	1029	118	1900	0.118000363	1	1.18%	
*T-Mobile	2	2057	118	1900	0.117943026	1	1.18%	
*T-Mobile	2	2308	118	2100	0.132334713	1	1.32%	
*Sprint	12	100	88	851	0.064179683	0.567333333	1.13%	
*Existing various antennas	ield readings meas	ured on March 16, 2	2006)				3.30%	
VZW 700	4	582	98	751	0.0087	0.5007	1.74%	
VZW CDMA	2	499	98	876.03	0.0037	0.5840	0.64%	
VZW Cellular	4	582	98	874	0.0087	0.5827	1.50%	
VZW PCS	4	1399	98	1980	0.0210	1.0000	2.10%	
VZW AWS	4	1570	98	2120	0.0235	1.0000	2.35%	
VZW CBRS	4	0	98	3625	0.0000	1.0000	0.00%	
VZW CBAND	2	19770	98	3730.08	0.1481	1.0000	14.81%	
								74.50%
* Source: Siting Council								

ATTACHMENT 4

Structural Analysis for SBA Network Services, Inc.

120.0' Self-Support Tower (120.0' AGL)

SBA Site Name: Wilton, CT / Optasite SBA Site ID: CT98078-L-03 Verizon Wireless Site Name: WILTON_WEST_CT Verizon Wireless Site ID: 467920 Site Address: 160 Deer Run Rd, Wilton, CT 06897

FDH Infrastructure Services, LLC Project Number PR-007866

Analysis Results

Tower Components	82.1%	Sufficient
Foundation	36.1%	Sufficient

Prepared By:

Deepak Reddy Devulapally, EIT Project Engineer II

Reviewed By:

Krystyn M. Perez, PE Vice President, Structural Engineering CT License No. 32975

FDH Infrastructure Services, LLC

6521 Meridien Drive Raleigh, NC, 27616 (919) 755-1012 Structural@fdh-is.com

March 14, 2022

Prepared pursuant to the ANSI/TIA-222-G Structural Standard for Antenna Supporting Structures and Antennas and the 2018 Connecticut State Building Code

TABLE OF CONTENTS

EXECUTIVE SUMMARY	3
Conclusions	3
Recommendations	3
APPURTENANCE LISTING	4
RESULTS	5
GENERAL COMMENTS	6
LIMITATIONS	6
APPENDIX	7

EXECUTIVE SUMMARY

At the request of SBA Network Services, Inc., FDH Infrastructure Services, LLC performed a structural analysis of the existing Self-Support Tower located in Wilton, CT to determine whether the tower is structurally adequate to support the antenna configuration in place per **Table 1** pursuant to the *ANSI/TIA-222-G Structural Standard for Antenna Supporting Structures and Antennas and the 2018 Connecticut State Building Code*. Information pertaining to the antenna loading, current tower geometry, member sizes, and below grade parameters was obtained from:

Source	Document Type	Reference	Date		
World Tower	Tower & Foundation Drawings	Drawing No. Q06515	October 16, 2006		
JGI Eastern,Inc.	Geotechnical Report	Project No. 06517G	August 31, 2006		
FDH Infrastructure Services, LLC	Tower Mapping Report	Project No. 18TBQN1500	December 12, 2018		
FDH Infrastructure Services, LLC	Previous Structural Analysis	Project No. PR-005254	February 11, 2021		
Verizon Wireless	Collocation Application	App ID: 188280 [Version 2]	February 21, 2022		
SBA Network Services, Inc.					

This analysis has been performed in accordance with the 2018 Connecticut State Building Code based upon an ultimate 3second gust wind speed of 120 mph without ice converted to a nominal 3-second gust wind speed of 93 mph without ice per Section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception #5 of Section 1609.1.1. A basic design wind speed of 50 mph with 3/4" radial ice was used in this analysis. Ice is considered to increase with height. Exposure Category B with a maximum topographic factor, K_{zt}, of 1, Risk Category II, and Spectral Response Accelerations of S_s=0.231 and S₁=0.068 were used in this analysis.

Note: Per Section 2.7.3 of the ANSI/TIA-222-G Standard, the seismic/earthquake loading effects can be ignored if the spectral response acceleration at short periods (S_S) is less than or equal to 1.00. The tower's location mandates a design S_S of less than 1.00, thus seismic loading was not considered as part of the analysis of this structure.

Conclusions

With the antenna configuration in place per **Table 1** we have determined the tower stress level to be sufficient and the foundation(s) to be sufficient pursuant to the requirements stipulated by *ANSI/TIA-222-G Structural Standard for Antenna Supporting Structures and Antennas and the 2018 Connecticut State Building Code* provided the **Recommendations** listed below are satisfied. For a more detailed description of the analysis of the tower, see the **Results** section of this report.

Our structural analysis has been performed assuming all information provided to FDH Infrastructure Services, LLC is accurate (i.e., the structure member information, tower layout, existing antenna loading, and proposed antenna loading) and that the tower has been properly erected and maintained per the original design drawings.

Recommendations

To ensure the requirements of the current analysis standards are met with the antenna configuration in place per **Table 1**, we have the following recommendations:

- 1. Feed lines to be installed as shown in Figure 1 in the Appendix.
- 2. RRU/RRH Stipulation: The equipment may be installed in any arrangement as determined by the client.

APPURTENANCE LISTING

The antennas and equipment, with their corresponding feed lines, considered for this analysis are shown in **Table 1**. *If the actual layout determined in the field deviates from the layout, FDH Infrastructure Services, LLC should be contacted to perform a revised analysis.*

Table 1 - Appurtenance Loading

Existing Loading:

Antenna Elevation (ft)	Description	Feed Lines	Carrier	Mount Elevation (ft)	Mount Type
126.5	(2) 3" Ø x 12'Omni	(2) 7/8"		122.0	(3) 2.4" Ø x 7' Pipe Mounts
118.0	 (3) Ericsson AIR6449 B41 (3) Ericsson AIR32 KRD901146-1_B66A_B2A (Octo) (3) RFS APXVAALL24-43-U-NA20 (3) Commscope SDX1926Q-43 (E14F05P86) (3) Ericsson KRY 112 71 (3) Ericsson Radio 4449 B71+B85 (3) Ericsson Radio 4415 B25 	(7) 1-5/8" (6) Fiber	T-Mobile	118.0	(3) Sector Mounts [Sitepro1 P/N: VFA12-HD]
110.0	 (3) Powerwave 7770 (3) Kathrein 800-10965 (3) Powerwave P65-16-XLH-RR (3) CCI OPA65R-BU6DA (6) Powerwave LGP 21401 (3) Powerwave TT19-08BP111-001 (3) Ericsson RRUS-11 (3) Ericsson RRUS 4478 B5 (3) Ericsson RRUS 4475 B25 (3) Ericsson RRUS 4478 B14 (2) Raycap DC6-48-60-18-8F 	(12) 1-5/8" (4) 3/4" DC (2) 3/8" Fiber (2) 3/8" Alarm Cables (1) 3" Flex	AT&T	110.0	(3) 12' Sector Mounts [Sabre P/N: C10857001C]
98.0	(2) Raycap RC2DC-3315-PF48 (3) Alcatel Lucent B66A RRH4x45 (6) Andrew SBNHH-1D85B (6) RFS FDR6004 (3) RFS BXA-80090/8 (3) Alcatel Lucent B13 RRH4x30-4R	(12) 1-5/8" (2) 1-5/8" Hybrid	Verizon	96.5	(3) 10'x2' T-Frames
86.0	(3) 60"x12"x4.5" Panels	(9) 1-5/8" (2) 1-1/2"		86.0	(3) 2.7' Stand-Offs
57.0	(1) Scala PR-850	(1) 7/8"	Sprint	57.0	Direct
51.0	(1) Scala PR-850 (1) Scala PR-850	(2) 7/8"		55.0	(1) 1.9"x9.8' Pipe Mount

Proposed Carrier Final Loading:

Antenna Elevation (ft)	Description	Feed Lines	Carrier	Mount Elevation (ft)	Mount Type
98.0	 (3) RFS BXA-80090/8 (6) JMA MX06FRO660-03 (3) Samsung MT6407-77A (3) Samsung RF4440d-13A (3) Samsung RF4439d-25A (2) Raycap RRFDC-3315-PF-48 	(6) 1-5/8" (2) Hybrid	Verizon	96.5	(3) 10'x2' T-Frames

RESULTS

The following material grades for individual members were used for analysis:

Table 2 - Material Grade

Member Type	Material Grade
Legs	A572-50
Bracing	A36
Anchor Rods	A449

Table 3 and **Table 4** display the summary of capacities for the analyzed structure and its additional components. Values greater than 100% indicate locations where the maximum force in the member exceeds its capacity. **Table 5** displays the maximum dish rotations at service winds speeds.

If the assumptions outlined in this report differ from actual field conditions, FDH Infrastructure Services, LLC should be contacted to perform a revised analysis. Furthermore, as no information pertaining to the allowable twist and sway requirements for the appurtenances was provided, deflection and rotation were not taken into consideration when performing this analysis.

See the Appendix for detailed modeling information.

Table 3 - Structure Member Capacities

Section No.	Elevation (ft.)	Component Type	Size	% Capacity	Pass / Fail
T1	120 - 100	Leg	1 3/4	71.2	Pass
T2	100 - 80	Leg	2 1/2	61.8	Pass
T3	80 - 60	Leg	2 3/4	68.5	Pass
T4	60 - 40	Leg	3	70.2	Pass
T5	40 - 20	Leg	3 1/4	68.1	Pass
T6	20 - 0	Leg	3 1/2	64.2	Pass
T1	120 - 100	Diagonal	L2x2x3/16	28.2 43.9 (b)	Pass
T2	100 - 80	Diagonal	L2x2x3/16	52.9 82.1 (b)	Pass
Т3	80 - 60	Diagonal	L2x2x3/16	39.9 52.8 (b)	Pass
T4	60 - 40	Diagonal	L2x2x3/16	59.3	Pass
T5	40 - 20	Diagonal	L3x3x1/4	37.6 51.9 (b)	Pass
Т6	20 - 0	Diagonal	L3x3x1/4	42.7 49.8 (b)	Pass
T5	40 - 20	Secondary Horizontal	L2x2x1/8	57.5	Pass
T6	20 - 0	Secondary Horizontal	L2x2x1/8	80.1	Pass
T1	120 - 100	Top Girt	L2x2x1/8	10.4 10.9 (b)	Pass
Т3	80 - 60	Top Girt	L2x2x1/8	39.1 41.8 (b)	Pass

Table 4 – Additional Structure Component Capacities

Elevation (ft.)	Component	% Capacity	Pass / Fail	Notes
0	Anchor Rods	65.6	Pass	-
0	Base Foundation (Soil Interaction)	36.1	Pass	-
0	Base Foundation (Structural)	32.5	Pass	-

Table 5 - Maximum Dish Rotations at Service Wind Speeds

Centerline Elevation (ft.)	Dish	Tilt (deg)*	Twist (deg)*
57.0	(2) Scala PR-850	0.0970	0.0195
51.0	(1) Scala PR-850	0.0852	0.0158

*Allowable tilt and twist to be reviewed by the carrier

GENERAL COMMENTS

This engineering analysis is based upon the theoretical capacity of the structure. It is not a condition assessment of the tower and its foundation. It is the responsibility of SBA Network Services, Inc. to verify that the tower modeled and analyzed is the correct structure (with accurate antenna loading information) modeled. If there are substantial modifications to be made or the assumptions made in this analysis are not accurate, FDH Infrastructure Services, LLC should be notified immediately to perform a revised analysis.

LIMITATIONS

All opinions and conclusions are considered accurate to a reasonable degree of engineering certainty based upon the evidence available at the time of this report. All opinions and conclusions are subject to revision based upon receipt of new or additional/updated information. All services are provided exercising a level of care and diligence equivalent to the standard and care of our profession. No other warranty or guarantee, expressed or implied, is offered. Our services are confidential in nature and we will not release this report to any other party without the client's consent. The use of this engineering work is limited to the express purpose for which it was commissioned and it may not be reused, copied, or distributed for any other purpose without the written consent of FDH Infrastructure Services, LLC.

Structural Analysis Report SBA Network Services, Inc. SBA Site ID: CT98078-L-03 March 14, 2022

APPENDIX

Figure 1- Feed Line Layout

MATERIAL STRENGTH							
Fy	Fu	GRADE	Fy	Fu			
50 ksi	65 ksi	A36	36 ksi	58 ksi			

TOWER DESIGN NOTES

- 1. Tower is located in Fairfield County, Connecticut.
- Tower designed for Exposure B to the TIA-222-G Standard.

Tower designed for a 93 mph basic wind in accordance with the TIA-222-G Standard. 4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase

- in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- 6. Tower Structure Class II. Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 82.1%

MAX. CORNER REACTIONS AT BASE:

UPLIFT: -172 K

MOMENT 🖌 623 kip-ft

50 mph WIND - 0.7500 in ICE

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

⁰⁰ CT98078-L, Wilton, CT/Optasite						
Project	² PR-007866					
Client:	SBA Network Services, Inc.	^{Drawn by:} Deepak Devulapally	App'd:			
Code:	TIA-222-G	Date: 03/14/22	Scale:	NTS		
Path:			Dwg No	• E-1		

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
3"x12' Omni	122	P65-16-XLH-RR w/ Mount Pipe	110
3"x12' Omni	122	P65-16-XLH-RR w/ Mount Pipe	110
2.4" x 7' Pipe Mount	122	P65-16-XLH-RR w/ Mount Pipe	110
2.4" x 7' Pipe Mount	122	(2) LGP21401 TMA	110
2.4" x 7' Pipe Mount	122	(2) LGP21401 TMA	110
Lightning Rod	120	(2) LGP21401 TMA	110
Air 6449 B41 w/ Pipe Mount	118	TT19-08BP111-001	110
Air 6449 B41 w/ Pipe Mount	118	TT19-08BP111-001	110
Air 6449 B41 w/ Pipe Mount	118	TT19-08BP111-001	110
AIR32 KRD901146-1-B66A-B2A w/	118	RRUS-11	110
Mount Pipe		RRUS-11	110
AIR32 KRD901146-1-B66A-B2A w/	118	RRUS-11	110
Mount Pipe	440	RRUS 4478 B5	110
AIR32 KRD901146-1-B66A-B2A W/ Mount Pipe	118	RRUS 4478 B5	110
APXVAALL24_43-U-NA20 w/ Mount	118	RRUS 4478 B5	110
Pipe		RRUS 4415 B25	110
APXVAALL24_43-U-NA20 w/ Mount	118	RRUS 4415 B25	110
Pipe		RRUS 4415 B25	110
APXVAALL24_43-U-NA20 w/ Mount	118	DC6-48-60-18-8F	110
Pipe		DC6-48-60-18-8F	110
4449 B71 + B85	118	(3) 12' Sector Mounts [Sabre	110
4449 B71 + B85	118	C10857001C]	
4449 B71 + B85	118	MT6407-77A w/Mount Pipe	96.5
4415 B25	118	MT6407-77A w/Mount Pipe	96.5
4415 B25	118	MT6407-77A w/Mount Pipe	96.5
4415 B25	118	(2) MX06FRO660-03_TIA w/ Mount	96.5
SDX1926Q-43	118	(2) MX06EPO660.02 TIA w/ Mount	06.5
SDX1926Q-43	118	Pipe	90.0
SDX1926Q-43	118	(2) MX06FRO660-03 TIA w/ Mount	96.5
KRY 112 /1	118	Pipe	
KRY 112 71	118	BXA-80090/8 w/ Mount Pipe	96.5
KRY 112 /1	118	BXA-80090/8 w/ Mount Pipe	96.5
VEA12-HD)	118	BXA-80090/8 w/ Mount Pipe	96.5
Sector Frame (SitePro 1 P/N:	118	RF4439d-25A	96.5
VFA12-HD)		RF4439d-25A	96.5
Sector Frame (SitePro 1 P/N:	118	RF4439d-25A	96.5
VFA12-HD)		RF4440d-13A	96.5
OPA65R-BU6DA w/ Mount Pipe	110	RF4440d-13A	96.5
OPA65R-BU6DA w/ Mount Pipe	110	RF4440d-13A	96.5
OPA65R-BU6DA w/ Mount Pipe	110	RRFDC-3315-PF-48	96.5
RRUS 4478 B14	110	RRFDC-3315-PF-48	96.5
RRUS 4478 B14	110	(3) 10' x 2' T-Arms	96.5
RRUS 4478 B14	110	60" x 12" x 5" w/ Mount Pipe	86
7770 w/Mount Pipe	110	60" x 12" x 5" w/ Mount Pipe	86
7770 w/Mount Pipe	110	60" x 12" x 5" w/ Mount Pipe	86
7770 w/Mount Pipe	110	(3) 2.7' StandOffs	86
800 10965 w/ Mount Pipe	110	PR-850	57
800 10965 w/ Mount Pipe	110	1.9"Ø x 9.8' Pipe Mount	55
800 10965 w/ Mount Pipe	110	PR-850	55
		PR-850	55

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

1. Tower is located in Fairfield County, Connecticut.

Tower designed for Exposure B to the TIA-222-G Standard.
 Tower designed for a 93 mph basic wind in accordance with the TIA-222-G Standard.

4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.

5. Deflections are based upon a 60 mph wind.

Denotions are based upon a comprimine.
 Tower Structure Class II.
 Topographic Category 1 with Crest Height of 0.00 ft

FDH Infrastructure Services	^{lob:} CT98078-L, Wilton, CT/Optasite	
6521 Meridien Drive	Project: PR-007866	
Raleigh, North Carolina 27616	Client: SBA Network Services, Inc. Drawn by: Deepak Devulapally	App'd:
Phone: (919) 755-1012	Code: TIA-222-G Date: 03/14/22	Scale: NTS
FAX: (919) 755-1031		Dwg No. E-1

CT98078-L, Wilton, CT/Optasite	

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

SBA	Network	Services.	Inc.

PR-007866

Designed by Deepak Devulapally

14:05:16 03/14/22

1 of 41

Page

Date

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 120.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

Job

Project

Client

The face width of the tower is 5.50 ft at the top and 11.50 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Fairfield County, Connecticut. ASCE 7-10 Wind Data is used (wind speeds converted to nominal values). Basic wind speed of 93 mph. Structure Class II. Exposure Category B. Topographic Category 1. Crest Height 0.00 ft. Nominal ice thickness of 0.7500 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in tower member design is 1. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

- Consider Moments Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification
- Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz
- Use Special Wind Profile √ Include Bolts In Member Capacity
- Leg Bolts Are At Top Of Section $\sqrt{}$ Secondary Horizontal Braces Leg
- ✓ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform

- Assume Legs Pinned
- $\sqrt{}$ Assume Rigid Index Plate $\sqrt{}$ Use Clear Spans For Wind Area
- $\sqrt{\text{Use Clear Spans For Wind Are}}$ $\sqrt{\text{Use Clear Spans For KL/r}}$
- Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
 √ Project Wind Area of Appurt.
 Autocalc Torque Arm Areas
- Add IBC .6D+W Combination √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

- Use ASCE 10 X-Brace Ly Rules
- ✓ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
- $\sqrt{}$ Consider Feed Line Torque
- ✓ Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Array Tormon	Job	Page
<i>inx1ower</i>	CT98078-L, Wilton, CT/Optasite	2 of 41
FDH Infrastructure Services	Project	Date
6521 Meridien Drive	PR-007866	14:05:16 03/14/22
Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031	Client SBA Network Services, Inc.	Designed by Deepak
		Devulapally

<u>Triangular Tower</u>

Tower Section Geometry

Tower Section	Tower Flevation	Assembly Database	Description	Section Width	Number	Section Length
Section	Lievation	Duiubuse		muun	Sections	Lengin
	ft			ft		ft
T1	120.00-100.00			5.50	1	20.00
T2	100.00-80.00			5.50	1	20.00
Т3	80.00-60.00			5.50	1	20.00
T4	60.00-40.00			7.00	1	20.00
T5	40.00-20.00			8.50	1	20.00
T6	20.00-0.00			10.00	1	20.00

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	120.00-100.00	4.88	X Brace	No	No	6.0000	0.0000
T2	100.00-80.00	5.00	X Brace	No	No	0.0000	0.0000
T3	80.00-60.00	4.88	X Brace	No	No	6.0000	0.0000
T4	60.00-40.00	5.00	X Brace	No	No	0.0000	0.0000
T5	40.00-20.00	10.00	X Brace	No	Yes	0.0000	0.0000
T6	20.00-0.00	10.00	X Brace	No	Yes	0.0000	0.0000

tnxTower

Project

Client

CT98078-L, Wilton, CT/Optasite

PR-007866

SBA Network Services, Inc.

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

Page
3 of 41
Date
14:05:16 03/14/22
Designed by
Deepak
Devulapally

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Type	Size	Grade	Type	Size	Grade
ft						
T1 120.00-100.00	Solid Round	1 3/4	A572-50	Equal Angle	L2x2x3/16	A36
			(50 ksi)			(36 ksi)
T2 100.00-80.00	Solid Round	2 1/2	A572-50	Equal Angle	L2x2x3/16	A36
			(50 ksi)			(36 ksi)
T3 80.00-60.00	Solid Round	2 3/4	A572-50	Equal Angle	L2x2x3/16	A36
			(50 ksi)			(36 ksi)
T4 60.00-40.00	Solid Round	3	A572-50	Equal Angle	L2x2x3/16	A36
			(50 ksi)			(36 ksi)
T5 40.00-20.00	Solid Round	3 1/4	A572-50	Equal Angle	L3x3x1/4	A36
			(50 ksi)			(36 ksi)
T6 20.00-0.00	Solid Round	3 1/2	A572-50	Equal Angle	L3x3x1/4	A36
			(50 ksi)			(36 ksi)

Tower Section Geometry (cont'd)						
Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 120.00-100.00	Equal Angle	L2x2x1/8	A36 (36 ksi)	Solid Round		A36 (36 ksi)
T3 80.00-60.00	Equal Angle	L2x2x1/8	A36 (36 ksi)	Solid Round		A36 (36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
T5 40.00-20.00	Equal Angle	L2x2x1/8	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T6 20.00-0.00	Equal Angle	L2x2x1/8	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)

			Tower	Section	Geom	etry (con	t'd)		
Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor	8	Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)			2	A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
T1	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T2	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000

tnxTower

FDH Infrastructure Services

6521 Meridien Drive Raleigh, North Carolina 27616

Phone: (919) 755-1012

FAX: (919) 755-1031

Job

Page 4 of 41 CT98078-L, Wilton, CT/Optasite Project Date PR-007866 14:05:16 03/14/22 Client Designed by SBA Network Services, Inc. Deepak Devulapally

Gusset Gusset Grade Adjust. Factor Weight Mult. Double Angle Double Angle Double Angle Tower Gusset Adjust. Elevation Thickness Factor Stitch Bolt Stitch Bolt Stitch Bolt Area A_{f} Spacing (per face) Spacing Spacing A_r Diagonals Horizontals Redundants ft² ft in in in in (36 ksi) 100.00-80.00 T3 80.00-60.00 0.00 0.0000 1 36.0000 36.0000 36.0000 A36 1 1 (36 ksi) T4 60.00-40.00 0.000.0000 36.0000 36.0000 36.0000 A36 1 1 1 (36 ksi) 0.0000 T5 40.00-20.00 0.00 36.0000 36.0000 36.0000 A36 1 1 1 (36 ksi) T6 20.00-0.00 0.000.0000 1 1 36.0000 36.0000 36.0000 A36 1 (36 ksi)

Tower Section Geometry (cont'd)

						K Fac	ctors ¹			
Tower	Calc	Calc	Legs	Х	K	Single	Girts	Horiz.	Sec.	Inner
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace
	Single	Solid		Diags	Diags					
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T1	Yes	Yes	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T2	Yes	Yes	1	1	1	1	1	1	1	1
100.00-80.00				1	1	1	1	1	1	1
T3	Yes	Yes	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
T4	Yes	Yes	1	1	1	1	1	1	1	1
60.00-40.00				1	1	1	1	1	1	1
T5	Yes	Yes	1	1	1	1	1	1	1	1
40.00-20.00				1	1	1	1	1	0.5	1
T6 20.00-0.00	Yes	Yes	1	1	1	1	1	1	1	1
				1	1	1	1	1	0.5	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower	Leg		Diagor	ıal	Top G	irt	Botton	ı Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
Elevation														
ft														
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00														
T2	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-80.00														
T3 80.00-60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 60.00-40.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 40.00-20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 20.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

tnxTower

Page Job 5 of 41 CT98078-L, Wilton, CT/Optasite Project Date FDH Infrastructure Services PR-007866 14:05:16 03/14/22 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 Client Designed by SBA Network Services, Inc. Deepak FAX: (919) 755-1031 Devulapally

Tower	Redund	lant	Redund	ant	Redund	ant	Redur	ıdant	Redundan	t Vertical	Redundo	nt Hip	Redunda	int Hip
Elevation	Horizon	ıtal	Diagor	ıal	Sub-Diag	onal	Sub-Hor	rizontal					Diago	onal
ft														
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00														
T2	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-80.00														
T3 80.00-60.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 60.00-40.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 40.00-20.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 20.00-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower	Leg	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	zontal
Elevation	Connection														
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1	Flange	0.7500	4	0.6250	1	0.3750	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00-100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2	Flange	0.7500	4	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00-80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3 80.00-60.00	Flange	1.0000	4	0.6250	1	0.3750	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4 60.00-40.00	Flange	1.0000	4	0.6250	1	0.6250	0	0.0000	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5 40.00-20.00	Flange	1.0000	6	0.6250	1	0.6250	0	0.0000	0	0.6250	0	0.6250	1	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 20.00-0.00	Flange	1.0000	0	0.6250	1	0.6250	0	0.0000	0	0.6250	0	0.6250	1	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face	Allow Shield	Exclude	Component Tyme	Placement	Face	Lateral Officiat	#	# Por	Clear Spacing	Width or	Perimeter	Weight
	01	Snieiu	1.10m	Type	0	Offsei	Ojjsei		rer	spacing	Diameter		10
	Leg		Torque		ft	in	(Frac FW)		Row	in	in	in	plf
			Calculation										

Safety Line 3/8 ***	В	No	No	Ar (CaAa)	118.00 - 0.00	0.0000	0.5	1	1	0.0000	0.3750		0.22
1-5/8"	А	No	No	Ar (CaAa)	118.00 - 0.00	-85.000 0	0	7	2	0.5000	1.9800		0.82
1-5/8"	В	No	No	Ar (CaAa)	118.00 - 0.00	0.0000	0.4	6	3	0.5000	1.9800		0.82
T-Brackets	А	No	No	Af (CaAa)	110.00 - 8.50	-100.00 00	0	1	1	1.0000	1.0000		4.20
~~~													

*tnxTower* 

Project

Client

CT98078-L, Wilton, CT/Optasite

Page 6 of 41

Date

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

SBA	Network	Services.	Inc.

PR-007866

Designed by Deepak Devulapally

14:05:16 03/14/22

Description	Face	Allow	Exclude	Component	Placement	Face	Lateral	#	#	Clear	Width or	Perimeter	Weight
	or	Shield	From	Type		Offset	Offset		Per	Spacing	Diameter		
	Leg		Torque		ft	in	(Frac FW)		Row	in	in	in	plf
	_		Calculation		-								
1-5/8"	А	No	No	Ar (CaAa)	110.00 -	-75.000	0	12	6	0.5000	1.9800		0.82
					0.00	0							
3"	С	No	No	Ar (CaAa)	110.00 -	-0.5000	-0.43	1	1	0.5000	3.0100		1.78
					0.00								
3/8"	Α	No	No	Ar (CaAa)	110.00 -	-72.000	0	2	2	0.0000	0.3750		0.18
					0.00	0							
3/8"	С	No	No	Ar (CaAa)	110.00 -	0.0000	-0.45	2	2	0.0000	0.3750		0.18
					0.00								
***													
(6) 1-5/8"; (2)	С	No	No	Ar (CaAa)	96.50 - 9.50	-85.000	0	8	4	0.5000	1.9800		0.82
1-5/8" Hybrid						0							
T-Brackets	С	No	No	Af (CaAa)	95.00 - 9.50	-95.000	0	1	1	1.0000	1.0000		4.20
						0							
***													
1-5/8"	в	No	No	Ar (CaAa)	86.00 - 9.00	-80.000	0	9	4	0.5000	1.9800		0.82
						0							
7/8"	в	No	No	Ar (CaAa)	57.00 - 9.00	-85.000	0	1	1	0.5000	1.1100		0.54
						0							
7/8"	в	No	No	Ar (CaAa)	120.00 -	-90.000	0	2	2	0.5000	1.1100		0.54
					9.00	0							
7/8"	С	No	No	Ar (CaAa)	55.00 - 9.50	-90.000	0.02	2	1	0.5000	1.1100		0.54
						0							
7/8"	С	No	No	Ar (CaAa)	86.00 - 9.50	-78.000	0	2	2	0.5000	1.1100		0.54
						0							
T-Brackets	В	No	No	Af (CaAa)	95.00 - 8.50	-95.000	0	1	1	1.0000	1.0000		4.20
						0							
***													

# Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#		$C_A A_A$	Weight
	Leg		Torque Calculation		ft	in	(Frac FW)			ft²/ft	plf
***											
3/4"	С	No	No	CaAa (In Face)	110.00 - 0.00	-0.5000	-0.43	4	No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00	1.78 0.00 0.00
***									- 100		

# Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	$A_R$	$A_F$	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		$ft^2$	$ft^2$	$ft^2$	$ft^2$	K
T1	120.00-100.00	А	0.000	0.000	51.125	0.000	0.25
		В	0.000	0.000	26.499	0.000	0.11
		С	0.000	0.000	3.760	0.000	0.09
T2	100.00-80.00	Α	0.000	0.000	80.073	0.000	0.40
		В	0.000	0.000	42.142	0.000	0.23
		С	0.000	0.000	37.488	0.000	0.36

*tnxTower* 

# CT98078-L, Wilton, CT/Optasite

Page 7 of 41

Date 14:05:16 03/14/22

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

#### SBA Network Services, Inc.

PR-007866

#### Designed by Deepak Devulapally

Tower	Tower	Face	$A_R$	$A_F$	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	0
	ft		ft ²	ft²	ft²	$ft^2$	K
T3	80.00-60.00	А	0.000	0.000	80.073	0.000	0.40
		в	0.000	0.000	67.923	0.000	0.36
		С	0.000	0.000	46.973	0.000	0.42
T4	60.00-40.00	Α	0.000	0.000	80.073	0.000	0.40
		В	0.000	0.000	69.810	0.000	0.37
		С	0.000	0.000	50.303	0.000	0.44
T5	40.00-20.00	Α	0.000	0.000	80.073	0.000	0.40
		В	0.000	0.000	70.143	0.000	0.37
		С	0.000	0.000	51.413	0.000	0.44
T6	20.00-0.00	А	0.000	0.000	78.657	0.000	0.37
		в	0.000	0.000	49.692	0.000	0.25
		С	0.000	0.000	30.564	0.000	0.32

Job

Project

Client

# Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	$A_R$	$A_F$	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	$ft^2$	$ft^2$	ft ²	ft ²	K
TI	120.00-100.00	А	1.692	0.000	0.000	70.093	0.000	1.19
		В		0.000	0.000	54.888	0.000	0.75
		С		0.000	0.000	13.378	0.000	0.17
T2	100.00-80.00	А	1.658	0.000	0.000	109.330	0.000	1.86
		В		0.000	0.000	78.016	0.000	1.18
		С		0.000	0.000	70.252	0.000	1.09
T3	80.00-60.00	А	1.617	0.000	0.000	108.320	0.000	1.82
		В		0.000	0.000	107.930	0.000	1.72
		С		0.000	0.000	91.182	0.000	1.35
T4	60.00-40.00	А	1.564	0.000	0.000	107.009	0.000	1.78
		В		0.000	0.000	113.581	0.000	1.77
		С		0.000	0.000	103.175	0.000	1.48
T5	40.00-20.00	Α	1.486	0.000	0.000	105.102	0.000	1.71
		В		0.000	0.000	112.282	0.000	1.71
		С		0.000	0.000	104.893	0.000	1.46
T6	20.00-0.00	А	1.331	0.000	0.000	97.640	0.000	1.51
		В		0.000	0.000	75.350	0.000	1.09
		С		0.000	0.000	62.973	0.000	0.81

# Feed Line Center of Pressure

Section	Elevation	$CP_X$	$CP_Z$	$CP_X$	$CP_Z$
				Ice	Ice
	ft	in	in	in	in
T1	120.00-100.00	15.9841	11.8696	14.3197	12.4152
T2	100.00-80.00	13.4678	8.8827	12.7538	8.4197
T3	80.00-60.00	7.7980	8.4793	8.0402	6.9453
T4	60.00-40.00	7.3246	7.0828	7.2211	5.3839
T5	40.00-20.00	6.9650	6.1356	7.3989	4.9503
T6	20.00-0.00	10.0323	7.2883	11.3908	7.2777

tnxTower

Project

Client

	Wilton	CT/Ontasita
U190070-L,	vviitori,	CT/Oplasile

Page 8 of

Date

8 of 41

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

PR-007866

SBA Network Services, Inc.

Designed by Deepak Devulapally

14:05:16 03/14/22

# **Shielding Factor Ka**

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
Tl	2	Safety Line 3/8	100.00 -	0.6000	0.6000
			118.00		
T1	5	1-5/8"	100.00 -	0.6000	0.6000
			118.00		
T1	6	1-5/8"	100.00 -	0.6000	0.6000
			118.00		
T1	9	T-Brackets	100.00 -	0.6000	0.6000
			110.00		
T1	11	1-5/8"	100.00 -	0.6000	0.6000
			110.00		
T1	12	3"	100.00 -	0.6000	0.6000
<b>T</b> 1	12	2 (4"	110.00	0 (000	0.000
11	13	3/4"	110.00 -	0.6000	0.6000
T1	14	2/8"	100.00	0.6000	0.6000
11	14	5/8	110.00 -	0.0000	0.6000
т1	15	3/8"	100.00	0.6000	0.6000
11	15	5/8	110.00	0.0000	0.0000
т1	22	7/8"	100.00 -	0.6000	0.6000
	22	778	120.00	0.0000	0.0000
Т2	2	Safety Line 3/8	80.00 - 100.00	0.6000	0.6000
T2	5	1-5/8"	80.00 - 100.00	0.6000	0.6000
T2	6	1-5/8"	80.00 - 100.00	0.6000	0.6000
T2	9	T-Brackets	80.00 - 100.00	0.6000	0.6000
T2	11	1-5/8"	80.00 - 100.00	0.6000	0.6000
T2	12	3"	80.00 - 100.00	0.6000	0.6000
T2	13	3/4"	80.00 - 100.00	0.6000	0.6000
T2	14	3/8"	80.00 - 100.00	0.6000	0.6000
T2	15	3/8"	80.00 - 100.00	0.6000	0.6000
Т2	17	(6) 1-5/8"; (2) 1-5/8" Hybrid	80.00 - 96.50	0.6000	0.6000
T2	18	T-Brackets	80.00 - 95.00	0.6000	0.6000
T2	20	1-5/8"	80.00 - 86.00	0.6000	0.6000
T2	22	7/8"	80.00 - 100.00	0.6000	0.6000
12	24	7/8"	80.00 - 86.00	0.6000	0.6000
T2	25	T-Brackets	80.00 - 95.00	0.6000	0.6000
13	2	Safety Line 3/8	60.00 - 80.00	0.6000	0.6000
13	5	1-5/8"	60.00 - 80.00	0.6000	0.6000
15 T2	0	T Preskate	60.00 - 80.00	0.6000	0.6000
13 T3	9 11	1-blackets	60.00 - 80.00	0.0000	0.0000
T3	12	3"	60.00 - 80.00	0.0000	0.6000
T3	13	3/4"	60.00 - 80.00	0.6000	0.6000
T3	14	3/8"	60.00 - 80.00	0.6000	0.6000
T3	15	3/8"	60.00 - 80.00	0.6000	0.6000
T3	17	(6) 1-5/8"; (2) 1-5/8" Hybrid	60.00 - 80.00	0.6000	0.6000
Т3	18	T-Brackets	60.00 - 80.00	0.6000	0.6000
Т3	20	1-5/8"	60.00 - 80.00	0.6000	0.6000
T3	22	7/8"	60.00 - 80.00	0.6000	0.6000
T3	24	7/8"	60.00 - 80.00	0.6000	0.6000
T3	25	T-Brackets	60.00 - 80.00	0.6000	0.6000
T4	2	Safety Line 3/8	40.00 - 60.00	0.6000	0.6000
T4	5	1-5/8"	40.00 - 60.00	0.6000	0.6000
T4	6	1-5/8"	40.00 - 60.00	0.6000	0.6000
T4	9	T-Brackets	40.00 - 60.00	0.6000	0.6000
T4	11	1-5/8"	40.00 - 60.00	0.6000	0.6000
T4	12	3"	40.00 - 60.00	0.6000	0.6000
14 T4	13	3/4"	40.00 - 60.00	0.6000	0.6000
14 T4	14	5/8" 2/9"	40.00 - 60.00	0.0000	0.6000
14	13	5/8	+0.00 - 00.00	0.0000	0.0000

tnxTower

C198078-L, Wilton, C1/Optasite	CT98078-L,	Wilton,	CT/Optasite
--------------------------------	------------	---------	-------------

PR-007866

Page 9 of 41

Date

14:05:16 03/14/22

SBA Network Services, Inc.

Designed by Deepak Devulapally

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

Tower	Feed Line	Description	Feed Line	Ka	$K_a$
Section	Record No.		Segment Elev.	No Ice	Ice
T4	17	(6) 1-5/8"; (2) 1-5/8" Hybrid	40.00 - 60.00	0.6000	0.6000
T4	18	T-Brackets	40.00 - 60.00	0.6000	0.6000
T4	20	1-5/8"	40.00 - 60.00	0.6000	0.6000
T4	21	7/8"	40.00 - 57.00	0.6000	0.6000
T4	22	7/8"	40.00 - 60.00	0.6000	0.6000
T4	23	7/8"	40.00 - 55.00	0.6000	0.6000
T4	24	7/8"	40.00 - 60.00	0.6000	0.6000
T4	25	T-Brackets	40.00 - 60.00	0.6000	0.6000
T5	2	Safety Line 3/8	20.00 - 40.00	0.6000	0.6000
T5	5	1-5/8"	20.00 - 40.00	0.6000	0.6000
T5	6	1-5/8"	20.00 - 40.00	0.6000	0.6000
T5	9	T-Brackets	20.00 - 40.00	0.6000	0.6000
T5	11	1-5/8"	20.00 - 40.00	0.6000	0.6000
T5	12	3"	20.00 - 40.00	0.6000	0.6000
T5	13	3/4"	20.00 - 40.00	0.6000	0.6000
T5	14	3/8"	20.00 - 40.00	0.6000	0.6000
T5	15	3/8"	20.00 - 40.00	0.6000	0.6000
T5	17	(6) 1-5/8"; (2) 1-5/8" Hybrid	20.00 - 40.00	0.6000	0.6000
T5	18	T-Brackets	20.00 - 40.00	0.6000	0.6000
T5	20	1-5/8"	20.00 - 40.00	0.6000	0.6000
T5	21	7/8"	20.00 - 40.00	0.6000	0.6000
T5	22	7/8"	20.00 - 40.00	0.6000	0.6000
T5	23	7/8"	20.00 - 40.00	0.6000	0.6000
T5	24	7/8"	20.00 - 40.00	0.6000	0.6000
T5	25	T-Brackets	20.00 - 40.00	0.6000	0.6000
T6	2	Safety Line 3/8	0.00 - 20.00	0.6000	0.6000
T6	5	1-5/8"	0.00 - 20.00	0.6000	0.6000
T6	6	1-5/8"	0.00 - 20.00	0.6000	0.6000
T6	9	T-Brackets	8.50 - 20.00	0.6000	0.6000
T6	11	1-5/8"	0.00 - 20.00	0.6000	0.6000
T6	12	3"	0.00 - 20.00	0.6000	0.6000
T6	13	3/4"	0.00 - 20.00	0.6000	0.6000
T6	14	3/8"	0.00 - 20.00	0.6000	0.6000
T6	15	3/8"	0.00 - 20.00	0.6000	0.6000
T6	17	(6) 1-5/8"; (2) 1-5/8" Hybrid	9.50 - 20.00	0.6000	0.6000
T6	18	T-Brackets	9.50 - 20.00	0.6000	0.6000
T6	20	1-5/8"	9.00 - 20.00	0.6000	0.6000
Т6	21	7/8"	9.00 - 20.00	0.6000	0.6000
T6	22	7/8"	9.00 - 20.00	0.6000	0.6000
Т6	23	7/8"	9.50 - 20.00	0.6000	0.6000
T6	24	7/8"	9.50 - 20.00	0.6000	0.6000
Т6	25	T-Brackets	8.50 - 20.00	0.6000	0.6000

Job

Project

Client

Discrete Tower Loads											
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight		
			ft ft ft	٥	ft		ft²	ft²	K		
Lightning Rod	С	None	~~~~~	0.0000	120.00	No Ice 1/2" Ice 1" Ice	0.25 0.66 0.97	0.25 0.66 0.97	0.03 0.03 0.04		

tnxTower

Project

Client

CT98078-L, Wilton, CT/Optasite

Page 10 of 41

Date

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

# SBA Network Services, Inc.

PR-007866

#### Designed by Deepak Devulapally

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	0		Vert ft ft ft	O	ft		ft²	ft²	Κ
***									
3"x12' Omni	А	From Leg	0.00	0.0000	122.00	No Ice 1/2" Ice	3.60 4.83	3.60 4.83	0.03
3"x12' Omni	С	From Leg	4.50 0.00 0.00	0.0000	122.00	No Ice 1/2" Ice	6.08 3.60 4.83	6.08 3.60 4.83	0.08 0.03 0.05
2.4" x 7' Pipe Mount	А	From Leg	4.50 0.00 0.00	0.0000	122.00	1" Ice No Ice 1/2" Ice	6.08 1.68 2.41	6.08 1.68 2.41	0.08 0.05 0.06
2.4" x 7' Pipe Mount	в	From Leg	$0.00 \\ 0.00 \\ 0.00$	0.0000	122.00	1" Ice No Ice 1/2" Ice	2.83 1.68 2.41	2.83 1.68 2.41	0.08 0.05 0.06
2.4" x 7' Pipe Mount	С	From Leg	$0.00 \\ 0.00 \\ 0.00$	0.0000	122.00	1" Ice No Ice 1/2" Ice	2.83 1.68 2.41	2.83 1.68 2.41	0.08 0.05 0.06
			0.00			1" Ice	2.83	2.83	0.08
***									
Air 6449 B41 w/ Pipe Mount	А	From Leg	4.00 0.00 0.00	0.0000	118.00	No Ice 1/2" Ice 1" Ice	5.65 5.96 6.26	2.42 2.64 2.87	0.10 0.14 0.18
Air 6449 B41 w/ Pipe Mount	В	From Leg	4.00 0.00	0.0000	118.00	No Ice 1/2" Ice	5.65 5.96	2.42 2.64	0.10 0.14
Air 6449 B41 w/ Pipe Mount	С	From Leg	$0.00 \\ 4.00 \\ 0.00$	0.0000	118.00	l" Ice No Ice 1/2" Ice	6.26 5.65 5.96	2.87 2.42 2.64	0.18 0.10 0.14
AIR32 KRD901146-1-B66A-B2A w/	А	From Leg	$0.00 \\ 4.00 \\ 0.00$	0.0000	118.00	1" Ice No Ice 1/2" Ice	6.26 6.75 7.20	2.87 6.07 6.87	0.18 0.15 0.21
Mount Pipe AIR32	в	From Leg	0.00 4.00	0.0000	118.00	1" Ice No Ice	7.65 6.75	7.58 6.07	0.28 0.15
KRD901146-1-B66A-B2A w/ Mount Pipe AIR32	С	From Leg	$0.00 \\ 0.00 \\ 4.00$	0.0000	118.00	1/2" Ice 1" Ice No Ice	7.20 7.65 6.75	6.87 7.58 6.07	0.21 0.28 0.15
KRD901146-1-B66A-B2A w/ Mount Pipe		Enour Lag	0.00	0.0000	118.00	1/2" Ice 1" Ice	7.20 7.65	6.87 7.58	0.21 0.28
w/ Mount Pipe	A	From Leg	0.00 0.00	0.0000	118.00	1/2" Ice 1" Ice	14.69 15.46 16.23	7.55 8.25	0.19 0.31 0.46
APXVAALL24_43-U-NA20 w/ Mount Pipe	В	From Leg	$4.00 \\ 0.00 \\ 0.00$	0.0000	118.00	No Ice 1/2" Ice 1" Ice	14.69 15.46 16.23	6.87 7.55 8.25	0.19 0.31 0.46
APXVAALL24_43-U-NA20 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	118.00	No Ice 1/2" Ice	14.69 15.46 16.23	6.87 7.55 8.25	0.19 0.31 0.46
4449 B71 + B85	А	From Leg	4.00 0.00	0.0000	118.00	No Ice 1/2" Ice	2.09 2.27	1.59 1.75	0.07 0.09
4449 B71 + B85	В	From Leg	4.00 0.00	0.0000	118.00	No Ice 1/2" Ice	2.46 2.09 2.27	1.92 1.59 1.75	0.12 0.07 0.09
4449 B71 + B85	С	From Leg	4.00	0.0000	118.00	No Ice 1/2" Ice	2.46 2.09 2.27	1.92 1.59 1.75	0.07 0.09
4415 B25	А	From Leg	$0.00 \\ 4.00 \\ 0.00$	0.0000	118.00	1" Ice No Ice 1/2" Ice	2.46 2.02 2.20	1.92 1.25 1.40	0.12 0.06 0.08
4415 B25	в	From Leg	$0.00 \\ 4.00$	0.0000	118.00	1" Ice No Ice	2.39 2.02	1.56 1.25	0.10 0.06

tnxTower

Project

Client

CT98078-L, Wilton, CT/Optasite

Page 11 of 41

Date

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

# SBA Network Services, Inc.

PR-007866

#### Designed by Deepak Devulapally

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	0		Vert ft ft	0	ft		ft²	ft²	K
			<u></u>			1/2" Ice	2 20	1.40	0.08
			0.00			1" Ice	2.39	1.56	0.10
4415 B25	С	From Leg	4.00	0.0000	118.00	No Ice	2.02	1.25	0.06
		0	0.00			1/2" Ice	2.20	1.40	0.08
			0.00			1" Ice	2.39	1.56	0.10
SDX1926Q-43	Α	From Leg	4.00	0.0000	118.00	No Ice	0.24	0.10	0.01
			0.00			1/2" Ice	0.30	0.14	0.01
			0.00			1" Ice	0.37	0.19	0.01
SDX1926Q-43	в	From Leg	4.00	0.0000	118.00	No Ice	0.24	0.10	0.01
			0.00			1/2" Ice	0.30	0.14	0.01
			0.00			1" Ice	0.37	0.19	0.01
SDX1926Q-43	С	From Leg	4.00	0.0000	118.00	No Ice	0.24	0.10	0.01
			0.00			1/2" Ice	0.30	0.14	0.01
WDW 110 71		р. I	0.00	0.0000	110.00	I" Ice	0.37	0.19	0.01
KRY 112 71	А	From Leg	4.00	0.0000	118.00	No Ice	1.50	0.50	0.02
			0.00			1/2" Ice	1.65	0.60	0.03
KBN 112 71	р	Enom Las	0.00	0.0000	112.00	I" Ice	1.81	0.72	0.04
KRY 112 /1	в	From Leg	4.00	0.0000	118.00	1/2" Lee	1.50	0.50	0.02
			0.00			1/2 ICe	1.05	0.00	0.03
<b>VPV</b> 112 71	C	From Log	4.00	0.0000	118.00	I Ice	1.81	0.72	0.04
KK1 112 /1	C	FIOII Leg	4.00	0.0000	118.00	1/2" Ice	1.50	0.50	0.02
			0.00			172 ICC	1.05	0.00	0.03
Sector Frame (SitePro 1 P/N)	٨	From Leg	2.00	0.0000	118.00	No Ice	13 20	0.72	0.04
VEA12-HD)	л	FIOII Leg	2.00	0.0000	110.00	1/2" Ice	19.20	14 60	0.00
vi Al2-liD)			0.00			1" Ice	25.80	19.50	1.01
Sector Frame (SitePro 1 P/N)	в	From Leg	2.00	0.0000	118.00	No Ice	13 20	9 20	0.66
VFA12-HD)	Б	r tom Log	0.00	0.0000	110.00	1/2" Ice	19.50	14.60	0.80
			0.00			1" Ice	25.80	19.50	1.01
Sector Frame (SitePro 1 P/N:	С	From Leg	2.00	0.0000	118.00	No Ice	13.20	9.20	0.66
VFA12-HD)		e	0.00			1/2" Ice	19.50	14.60	0.80
,			0.00			1" Ice	25.80	19.50	1.01
***									
OPA65R-BU6DA w/ Mount	А	From Leg	4.00	0.0000	110.00	No Ice	12.25	6.05	0.09
Pipe			0.00			1/2" Ice	13.00	6.71	0.18
			0.00			1" Ice	13.76	7.39	0.27
OPA65R-BU6DA w/ Mount	В	From Leg	4.00	0.0000	110.00	No Ice	12.25	6.05	0.09
Pipe			0.00			1/2" Ice	13.00	6.71	0.18
			0.00			1" Ice	13.76	7.39	0.27
OPA65R-BU6DA w/ Mount	С	From Leg	4.00	0.0000	110.00	No Ice	12.25	6.05	0.09
Pipe			0.00			1/2" Ice	13.00	6.71	0.18
DDUG 4450 D14		Б I	0.00	0.0000	110.00	1" Ice	13.76	7.39	0.27
RRUS 4478 B14	А	From Leg	4.00	0.0000	110.00	No Ice	1.84	1.06	0.06
			0.00			1/2" Ice	2.01	1.20	0.08
DDUC 4470 D14	р	Eners Lee	0.00	0.0000	110.00	I'' Ice	2.19	1.34	0.09
KKUS 4478 BI4	Б	From Leg	4.00	0.0000	110.00	1/2// Log	1.64	1.00	0.06
			0.00			1/2 ICe	2.01	1.20	0.08
RRUS 4478 R14	C	From Leg	4 00	0.0000	110.00	No Ice	1.17	1.54	0.09
KKC5 47/0 DIT	C	riom Leg	0.00	0.0000	110.00	1/2" Ice	2.01	1 20	0.00
			0.00			1" Ice	2.19	1.34	0.09
7770 w/Mount Pipe	А	From Face	4.00	0.0000	110.00	No Ice	6.20	4.94	0.07
			0.00			1/2" Ice	6.76	5.86	0.12
			0.00			1" Ice	7.27	6.64	0.19
7770 w/Mount Pipe	в	From Face	4.00	0.0000	110.00	No Ice	6.20	4.94	0.07
-			0.00			1/2" Ice	6.76	5.86	0.12
			0.00			1" Ice	7.27	6.64	0.19

tnxTower

Project

Client

CT98078-L, Wilton, CT/Optasite

Page 12 of 41

Date

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

# SBA Network Services, Inc.

PR-007866

#### Designed by Deepak Devulapally

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Vert ft	0	ft		ft²	ft²	K
			ות ft						
7770 w/Mount Pipe	С	From Face	4.00	0.0000	110.00	No Ice	6.20	4.94	0.07
· · · · · · · · · · · · · · · · · · ·	-		0.00			1/2" Ice	6.76	5.86	0.12
			0.00			1" Ice	7.27	6.64	0.19
800 10965 w/ Mount Pipe	Α	From Face	4.00	0.0000	110.00	No Ice	14.05	7.63	0.14
			0.00			1/2" Ice	14.69	8.90	0.23
800 10065 m/ Maunt Dina	р	Ener Easa	0.00	0.0000	110.00	I" Ice	15.30	9.96	0.34
800 10965 w/ Mount Pipe	в	From Face	4.00	0.0000	110.00	No Ice 1/2" Ice	14.05	8 90	0.14
			0.00			1" Ice	15 30	9.96	0.25
800 10965 w/ Mount Pipe	С	From Face	4.00	0.0000	110.00	No Ice	14.05	7.63	0.14
	-		0.00			1/2" Ice	14.69	8.90	0.23
			0.00			1" Ice	15.30	9.96	0.34
P65-16-XLH-RR w/ Mount	Α	From Face	4.00	0.0000	110.00	No Ice	8.37	6.36	0.08
Pipe			0.00			1/2" Ice	8.93	7.54	0.14
/ / / / / / / / / / / / / / / / / / / / / / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / / / / / / / / / / / / / / / / / / /	_		0.00			1" Ice	9.46	8.43	0.22
P65-16-XLH-RR w/ Mount	в	From Face	4.00	0.0000	110.00	No Ice	8.37	6.36	0.08
Pipe			0.00			1/2" Ice	8.93	7.54	0.14
P65 16 VI H PP w/ Mount	C	From Face	0.00	0.0000	110.00	No Ice	9.40	8.43 6.36	0.22
Pine	C	FIOIRFace	4.00	0.0000	110.00	1/2" Ice	8.93	7 54	0.08
Пре			0.00			1" Ice	9.46	8 43	0.22
(2) LGP21401 TMA	А	From Face	4.00	0.0000	110.00	No Ice	0.82	0.35	0.02
(2) 20121 101 1011			0.00	0.0000		1/2" Ice	0.94	0.44	0.02
			0.00			1" Ice	1.06	0.54	0.03
(2) LGP21401 TMA	в	From Face	4.00	0.0000	110.00	No Ice	0.82	0.35	0.02
			0.00			1/2" Ice	0.94	0.44	0.02
			0.00			1" Ice	1.06	0.54	0.03
(2) LGP21401 TMA	С	From Face	4.00	0.0000	110.00	No Ice	0.82	0.35	0.02
			0.00			1/2" Ice	0.94	0.44	0.02
TT10.08PD111.001	٨	From Food	0.00	0.0000	110.00	I" Ice	1.06	0.54	0.03
1119-08BF111-001	A	FIOIII Face	4.00	0.0000	110.00	1/2" Ice	0.55	0.43	0.02
			0.00			1" Ice	0.75	0.63	0.02
TT19-08BP111-001	в	From Face	4.00	0.0000	110.00	No Ice	0.55	0.45	0.02
			0.00			1/2" Ice	0.65	0.53	0.02
			0.00			1" Ice	0.75	0.63	0.03
TT19-08BP111-001	С	From Face	4.00	0.0000	110.00	No Ice	0.55	0.45	0.02
			0.00			1/2" Ice	0.65	0.53	0.02
			0.00			1" Ice	0.75	0.63	0.03
RRUS-11	А	From Face	4.00	0.0000	110.00	No Ice	2.52	1.07	0.06
			0.00			1/2" Ice	2.72	1.21	0.07
RRUS-11	в	From Face	4.00	0.0000	110.00	No Ice	2.92	1.50	0.10
KK05-11	Б	110m race	0.00	0.0000	110.00	1/2" Ice	2.72	1.07	0.00
			0.00			1" Ice	2.92	1.36	0.10
RRUS-11	С	From Face	4.00	0.0000	110.00	No Ice	2.52	1.07	0.06
			0.00			1/2" Ice	2.72	1.21	0.07
			0.00			1" Ice	2.92	1.36	0.10
RRUS 4478 B5	Α	From Face	4.00	0.0000	110.00	No Ice	1.84	1.06	0.06
			0.00			1/2" Ice	2.01	1.20	0.08
DDUG 4470 DC	P	P. P.	0.00	0.0000	110.00	I" Ice	2.19	1.34	0.09
KKUS 44/8 BS	в	From Face	4.00	0.0000	110.00	NO ICE	1.84	1.06	0.06
			0.00			172 ICe	2.01	1.20	0.08
RRUS 4478 B5	С	From Face	4.00	0.0000	110.00	No Ice	1.84	1.06	0.06
	0	1101111400	0.00	0.0000	110.00	1/2" Ice	2.01	1.20	0.08
			0.00			1" Ice	2.19	1.34	0.09

tnxTower

Project

Client

CT98078-L, Wilton, CT/Optasite

Page 13 of 41

Date

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

# SBA Network Services, Inc.

PR-007866

#### Designed by Deepak Devulapally

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft	0	ft		ft²	ft²	K
			ft	0.0000	110.00	N. 7	1.64	0.60	0.04
RRUS 4415 B25	А	From Face	4.00	0.0000	110.00	No Ice	1.64	0.68	0.04
			0.00			172 ICe	1.80	0.79	0.00
RRUS 4415 B25	в	From Face	4 00	0.0000	110.00	No Ice	1.57	0.68	0.07
1000 100 220	-		0.00	0.0000	110100	1/2" Ice	1.80	0.79	0.06
			0.00			1" Ice	1.97	0.91	0.07
RRUS 4415 B25	С	From Face	4.00	0.0000	110.00	No Ice	1.64	0.68	0.04
			0.00			1/2" Ice	1.80	0.79	0.06
			0.00			1" Ice	1.97	0.91	0.07
DC6-48-60-18-8F	Α	From Face	0.50	0.0000	110.00	No Ice	1.21	1.21	0.03
			0.00			1/2" Ice	1.89	1.89	0.05
DC6 49 60 19 9E	р	From Face	0.00	0.0000	110.00	I" Ice	2.11	2.11	0.08
DC0-48-00-18-8F	Б	FIOIII Face	0.50	0.0000	110.00	1/2" Ice	1.21	1.21	0.05
			0.00			1" Ice	2.11	2.11	0.05
(3) 12' Sector Mounts [Sabre	С	None	0.00	0.0000	110.00	No Ice	15.85	15.85	1.50
C10857001C]						1/2" Ice	20.80	20.80	1.95
-						1" Ice	25.75	25.75	2.40
***									
MT6407-77A w/Mount Pipe	Α	From Leg	4.00	0.0000	96.50	No Ice	5.90	3.74	0.11
			0.00			1/2" Ice	6.71	4.79	0.16
MTC407 774/Marriet Diag	D	From Lon	1.50	0.0000	06.50	I" Ice	7.43	5.69	0.22
M1640/-//A w/Mount Pipe	в	From Leg	4.00	0.0000	96.50	1/2" Ice	5.90	5./4 4.70	0.11
			1.50			172 ICC	7.43	5.69	0.10
MT6407-77A w/Mount Pipe	С	From Leg	4.00	0.0000	96.50	No Ice	5.90	3.74	0.11
niio to, , , ii minoano i pe	0	Them Deg	0.00	010000	50100	1/2" Ice	6.71	4.79	0.16
			1.50			1" Ice	7.43	5.69	0.22
(2) MX06FRO660-03_TIA	Α	From Leg	4.00	0.0000	96.50	No Ice	10.11	8.99	0.10
w/ Mount Pipe			0.00			1/2" Ice	10.68	10.15	0.19
			1.50			1" Ice	11.22	11.03	0.29
(2) MX06FRO660-03_TIA	В	From Leg	4.00	0.0000	96.50	No Ice	10.11	8.99	0.10
w/ Mount Pipe			0.00			1/2" Ice	10.68	10.15	0.19
(2) MY06FP0660-03 TIA	C	From Leg	1.50	0.0000	96.50	No Ice	11.22	8 00	0.29
w/ Mount Pine	C	110III Leg	0.00	0.0000	90.50	1/2" Ice	10.11	10.15	0.10
the file and the			1.50			1" Ice	11.22	11.03	0.29
BXA-80090/8 w/ Mount	А	From Leg	4.00	0.0000	96.50	No Ice	8.18	8.51	0.05
Pipe		-	0.00			1/2" Ice	8.78	9.92	0.12
			1.50			1" Ice	9.38	11.17	0.20
BXA-80090/8 w/ Mount	в	From Leg	4.00	0.0000	96.50	No Ice	8.18	8.51	0.05
Pipe			0.00			1/2" Ice	8.78	9.92	0.12
DXA 80000/8/ Marriet	C	Frank Las	1.50	0.0000	06.50	I" Ice	9.38	11.17	0.20
BAA-80090/8 W/ Mount	C	From Leg	4.00	0.0000	96.50	1/2" Lee	8.18 9.79	8.51	0.05
ripe			1.50			1" Ice	9.38	9.92 11.17	0.12
RF4439d-25A	А	From Leg	4.00	0.0000	96.50	No Ice	1.87	1.25	0.07
		Trom Deg	0.00	010000	50120	1/2" Ice	2.03	1.39	0.09
			1.50			1" Ice	2.21	1.54	0.11
RF4439d-25A	в	From Leg	4.00	0.0000	96.50	No Ice	1.87	1.25	0.07
			0.00			1/2" Ice	2.03	1.39	0.09
BB44261 251	c		1.50	0.0000	04 -0	1" Ice	2.21	1.54	0.11
RF4439d-25A	С	From Leg	4.00	0.0000	96.50	No Ice	1.87	1.25	0.07
			0.00			1/2" Ice	2.03	1.39	0.09
RF44404-12 A	Δ	From Leg	4.00	0.0000	06 50	i ice	2.21 1.87	1.54	0.11
NI TTTUE IJA	А	110m Leg	0.00	0.0000	20.20	1/2" Ice	2.03	1.27	0.09
			0.00				2.55		0.07

tnxTower

Project

Client

CT98078-L, Wilton, CT/Optasite

Page 14 of 41

Date

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

# SBA Network Services, Inc.

PR-007866

#### Designed by Deepak Devulapally

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	0		Vert ft ft ft	o	ft		ft²	ft²	K
			1.50			1" Ice	2.21	1.41	0.11
RF4440d-13A	в	From Leg	4.00	0.0000	96.50	No Ice	1.87	1.13	0.07
	Ъ	riom Deg	0.00	0.0000	90.20	1/2" Ice	2.03	1.27	0.09
			1.50			1" Ice	2.21	1.41	0.11
RF4440d-13A	С	From Leg	4.00	0.0000	96.50	No Ice	1.87	1.13	0.07
			0.00			1/2" Ice	2.03	1.27	0.09
			1.50			1" Ice	2.21	1.41	0.11
RRFDC-3315-PF-48	А	From Leg	4.00	0.0000	96.50	No Ice	3.02	1.96	0.03
			0.00			1/2" Ice	3.24	2.15	0.06
			1.50			1" Ice	3.47	2.35	0.09
RRFDC-3315-PF-48	В	From Leg	4.00	0.0000	96.50	No Ice	3.02	1.96	0.03
			0.00			1/2" Ice	3.24	2.15	0.06
			1.50			1" Ice	3.47	2.35	0.09
(3) 10' x 2' T-Arms	С	None		0.0000	96.50	No Ice	17.87	17.87	1.74
						1/2" Ice	25.31	25.31	1.16
						1" Ice	32.75	32.75	1.52
***									
60" x 12" x 5" w/ Mount Pipe	Α	From Leg	4.00	0.0000	86.00	No Ice	6.74	5.07	0.07
			0.00			1/2" Ice	7.37	6.01	0.13
			0.00			1" Ice	7.96	6.80	0.19
60" x 12" x 5" w/ Mount Pipe	в	From Leg	4.00	0.0000	86.00	No Ice	6.74	5.07	0.07
			0.00			1/2" Ice	7.37	6.01	0.13
			0.00			1" Ice	7.96	6.80	0.19
60" x 12" x 5" w/ Mount Pipe	С	From Leg	4.00	0.0000	86.00	No Ice	6.74	5.07	0.07
			0.00			1/2" Ice	7.37	6.01	0.13
			0.00			1" Ice	7.96	6.80	0.19
(3) 2.7' StandOffs	С	None		0.0000	86.00	No Ice	6.18	6.18	0.33
						1/2" Ice	8.56	8.56	0.40
						1" Ice	10.94	10.94	0.47
***									
1.9"Ø x 9.8' Pipe Mount	в	From Leg	0.00	0.0000	55.00	No Ice	1.65	1.65	0.02
			0.00			1/2" Ice	2.67	2.67	0.04
			0.00			1" Ice	3.71	3.71	0.06
***									
***									

					Dis	shes					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		$ft^2$	K
PR-850	А	Grid	From	0.50	0.0000		57.00	5.67	No Ice	25.22	0.04
			Leg	0.00					1/2" Ice	25.97	0.17
**			-	0.00					1" Ice	26.71	0.30
PR-850	В	Grid	From	0.50	10.0000		55.00	5.67	No Ice	25.22	0.04
			Leg	$0.00 \\ 2.00$					1/2" Ice 1" Ice	25.97 26.71	0.17 0.30
PR-850	в	Grid	From	0.50	25.0000		55.00	5.67	No Ice	25.22	0.04

	Job	Page
<i>tnx1ower</i>	CT98078-L, Wilton, CT/Optasite	15 of 41
EDU Infrastructura Samicas	Project	Date
6521 Meridien Drive	PR-007866	14:05:16 03/14/22
Raleigh, North Carolina 27616	Client	Designed by
Phone: (919) 755-1012 FAX: (919) 755-1031	SBA Network Services, Inc.	Deepak
THA. (919) 700 1001		Devulapally

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vart	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft²	K
			Leg	0.00					1/2" Ice	25.97	0.17
				-4.00					1" Ice	26.71	0.30
**											

# **Tower Pressures - No Ice**

### $G_H = 0.850$

Section	Ζ	$K_Z$	$q_z$	$A_G$	F	$A_F$	$A_R$	$A_{leg}$	Leg	$C_A A_A$	$C_A A_A$
Elevation					а			-	%	In	Out
					с					Face	Face
ft	ft		psf	$ft^2$	е	$ft^2$	$ft^2$	$ft^2$		$ft^2$	$ft^2$
T1	110.00	1.016	19	112.917	Α	10.432	5.833	5.833	35.86	51.125	0.000
120.00-100.00					В	10.432	5.833		35.86	26.499	0.000
					С	10.432	5.833		35.86	3.760	0.000
T2	90.00	0.959	18	114.167	Α	9.535	8.333	8.333	46.64	80.073	0.000
100.00-80.00					в	9.535	8.333		46.64	42.142	0.000
					С	9.535	8.333		46.64	37.488	0.000
T3 80.00-60.00	70.00	0.892	17	129.587	Α	11.091	9.175	9.175	45.27	80.073	0.000
					в	11.091	9.175		45.27	67.923	0.000
					С	11.091	9.175		45.27	46.973	0.000
T4 60.00-40.00	50.00	0.811	15	160.004	Α	11.905	10.009	10.009	45.68	80.073	0.000
					В	11.905	10.009		45.68	69.810	0.000
					С	11.905	10.009		45.68	50.303	0.000
T5 40.00-20.00	30.00	0.701	13	190.420	Α	16.215	10.843	10.843	40.07	80.073	0.000
					в	16.215	10.843		40.07	70.143	0.000
					С	16.215	10.843		40.07	51.413	0.000
T6 20.00-0.00	10.00	0.7	13	220.837	Α	17.769	11.678	11.678	39.66	78.657	0.000
					В	17.769	11.678		39.66	49.692	0.000
					С	17.769	11.678		39.66	30.564	0.000

# Tower Pressure - With Ice

 $G_H = 0.850$ 

Section	Ζ	Kz	$q_z$	$t_Z$	$A_G$	F	$A_F$	$A_R$	$A_{leg}$	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						с					Face	Face
ft	ft		psf	in	$ft^2$	е	$ft^2$	$ft^2$	$ft^2$		$ft^2$	$ft^2$
T1	110.00	1.016	6	1.6919	118.556	Α	10.432	34.763	17.113	37.86	70.093	0.000
120.00-100.00	1					В	10.432	34.763		37.86	54.888	0.000
	1					C	10.432	34.763		37.86	13.378	0.000
T2 100.00-80.00	90.00	0.959	5	1.6583	119.694	Α	9.535	35.201	19.389	43.34	109.330	0.000
	1					В	9.535	35.201		43.34	78.016	0.000
	1					C	9.535	35.201		43.34	70.252	0.000
T3 80.00-60.00	70.00	0.892	5	1.6171	134.981	Α	11.091	37.903	19.966	40.75	108.320	0.000
	1					В	11.091	37.903		40.75	107.930	0.000
	1					C	11.091	37.903		40.75	91.182	0.000
T4 60.00-40.00	50.00	0.811	4	1.5636	165.219	Α	11.905	39.058	20.443	40.11	107.009	0.000
	1					В	11.905	39.058		40.11	113.581	0.000
	1					C	11.905	39.058		40.11	103.175	0.000
T5 40.00-20.00	30.00	0.701	4	1.4858	195.377	Α	16.215	38.299	20.758	38.08	105.102	0.000

*tnxTower* 

Page Job 16 of 41 CT98078-L, Wilton, CT/Optasite Date Project PR-007866 14:05:16 03/14/22 Client Designed by SBA Network Services, Inc. Deepak

11.678

39.66

39.66

39.66

78.657

49.692

30.564

0.000

0.000

0.000

Devulapally

**FDH Infrastructure Services** 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

T6 20.00-0.00

10.00

0.7

5

220.837

А

В

C

Section Elevation	Ζ	Kz	qz	$t_Z$	$A_G$	F a	$A_F$	$A_R$	$A_{leg}$	Leg %	$C_A A_A$ In	$C_A A_A$ Out
ft	ft		psf	in	ft²	с е	ft²	ft²	$ft^2$		Face ft ²	Face ft ²
T6 20.00-0.00	10.00	0.7	4	1.3312	225.278	B C A B C	16.215 16.215 17.769 17.769 17.769	38.299 38.299 37.875 37.875 37.875 37.875	20.561	38.08 38.08 36.95 36.95 36.95	112.282 104.893 97.640 75.350 62.973	0.000 0.000 0.000 0.000 0.000

### **Tower Pressure - Service**

#### Section $K_Z$ $C_A A_A$ $C_A A_A$ $A_G$ F $A_F$ $A_R$ $A_{leg}$ Leg $\boldsymbol{Z}$ $q_z$ Elevation а % In Out Face Face С psf ft² ft² $ft^2$ $ft^2$ $ft^2$ $ft^2$ ft е T1 110.00 1.016 112.917 10.432 5.833 51.125 0.000 8 А 5.833 35.86 120.00-100.00 В 10.432 5.833 35.86 26.499 0.000 10.432 5.833 35.86 3.760 0.000 С T2 90.00 0.959 8 114.167 9.535 8.333 8.333 46.64 80.073 0.000 А 100.00-80.00 9.535 42.142 0.000В 8.333 46.64 9.535 8.333 46.64 37.488 0.000 С T3 80.00-60.00 70.00 0.892 7 129.587 11.091 9.175 9.175 45.27 80.073 0.000 А В 11.091 9.175 45.27 67.923 0.00046.973 С 11.091 9.175 45.27 0.000 T4 60.00-40.00 50.00 0.811 6 160.004 А 11.905 10.009 10.009 45.68 80.073 0.000 11.905 69.810 В 10.009 45.68 0.000 11.905 10.009 45.68 50.303 0.000 С T5 40.00-20.00 0.701 190.420 30.00 5 16.215 10.843 10.843 40.07 80.073 0.000 Α В 16.215 10.843 40.07 70.143 0.000 16.215 10.843 40.07 51.413 0.000 С

		То	we	r Forc	es -	No l	ce - I	Winc	l Norm	al To Fa	ce	
Section Elevation	Add Weight	Self Weight	F a	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl. Face
ft	K	K	с е			psf			ft ²	K	plf	
T1	0.45	0.95	Α	0.144	2.794	19	1	1	13.739	1.14	57.12	В
120.00-100.00			В	0.144	2.794		1	1	13.739			
			С	0.144	2.794		1	1	13.739			
T2	1.00	1.44	Α	0.157	2.748	18	1	1	14.271	1.50	75.10	Α
100.00-80.00			В	0.157	2.748		1	1	14.271			
			С	0.157	2.748		1	1	14.271			
Т3	1.18	1.71	Α	0.156	2.748	17	1	1	16.305	1.65	82.58	С
80.00-60.00			В	0.156	2.748		1	1	16.305			
			С	0.156	2.748		1	1	16.305			
T4	1.21	1.98	Α	0.137	2.82	15	1	1	17.573	1.60	79.99	В
60.00-40.00			В	0.137	2.82		1	1	17.573			
			С	0.137	2.82		1	1	17.573			
T5	1.21	2.59	Α	0.142	2.801	13	1	1	22.361	1.54	76.94	В

17.769

17.769

17.769

11.678

11.678

11.678

 $G_H = 0.850$ 

tnxTower

Project

Client

CT98078-L, Wilton, CT/Optasite Date PR-007866 14:

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

SBA	Network	Services.	Inc.
ODA	NELWOIK		me.

#### 14:05:16 03/14/22 Designed by Deepak Devulapally

17 of 41

Page

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	K	K	е						$ft^2$	K	plf	
40.00-20.00			В	0.142	2.801		1	1	22.361			
			С	0.142	2.801		1	1	22.361			
T6 20.00-0.00	0.94	2.94	Α	0.133	2.834	13	1	1	24.379	1.44	71.91	Α
			В	0.133	2.834		1	1	24.379			
			С	0.133	2.834		1	1	24.379			
Sum Weight:	5.99	11.60						OTM	516.99	8.87		
_									kip-ft			

			Γοι	ver Fo	orces	5 - N	o Ice	e - W	ind 60 ⁻	To Face		
Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	а		-	x-	-		_			Face
	_	_	с			psf						
ft	K	K	е						$ft^2$	K	plf	
T1	0.45	0.95	Α	0.144	2.794	19	0.8	1	11.653	1.05	52.39	С
120.00-100.00			В	0.144	2.794		0.8	1	11.653			
			С	0.144	2.794		0.8	1	11.653			
T2	1.00	1.44	Α	0.157	2.748	18	0.8	1	12.364	1.42	71.08	В
100.00-80.00			В	0.157	2.748		0.8	1	12.364			
			С	0.157	2.748		0.8	1	12.364			
T3	1.18	1.71	Α	0.156	2.748	17	0.8	1	14.087	1.56	78.22	Α
80.00-60.00			В	0.156	2.748		0.8	1	14.087			
			С	0.156	2.748		0.8	1	14.087			
T4	1.21	1.98	Α	0.137	2.82	15	0.8	1	15.192	1.51	75.64	С
60.00-40.00			В	0.137	2.82		0.8	1	15.192			
			С	0.137	2.82		0.8	1	15.192			
T5	1.21	2.59	Α	0.142	2.801	13	0.8	1	19.118	1.44	71.85	С
40.00-20.00			В	0.142	2.801		0.8	1	19.118			
			С	0.142	2.801		0.8	1	19.118			
T6 20.00-0.00	0.94	2.94	Α	0.133	2.834	13	0.8	1	20.825	1.33	66.27	В
			В	0.133	2.834		0.8	1	20.825			
			С	0.133	2.834		0.8	1	20.825			
Sum Weight:	5.99	11.60						OTM	484.71	8.31		
									kip-ft			

	Tower Forces - No Ice - Wind 90 To Face														
Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.			
Elevation	Weight	Weight	а									Face			
			c			psf									
ft	K	K	е						$ft^2$	K	plf				
T1	0.45	0.95	Α	0.144	2.794	19	0.85	1	12.174	1.06	53.22	С			
120.00-100.00			В	0.144	2.794		0.85	1	12.174						
			С	0.144	2.794		0.85	1	12.174						
T2	1.00	1.44	Α	0.157	2.748	18	0.85	1	12.840	1.44	71.86	В			
100.00-80.00			В	0.157	2.748		0.85	1	12.840						
			С	0.157	2.748		0.85	1	12.840						
T3	1.18	1.71	Α	0.156	2.748	17	0.85	1	14.641	1.59	79.49	Α			
80.00-60.00			В	0.156	2.748		0.85	1	14.641						

tnxTower

Project

Client

CT98078-L, Wilton, CT/Optasite

Page 18 of 41 Date 14:05:16 03/14/22 Designed by

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

SBA Network Services, Inc.

PR-007866

### Deepak Devulapally

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	е						$ft^2$	K	plf	
			С	0.156	2.748		0.85	1	14.641			
T4	1.21	1.98	Α	0.137	2.82	15	0.85	1	15.788	1.54	76.83	Α
60.00-40.00			В	0.137	2.82		0.85	1	15.788			
			С	0.137	2.82		0.85	1	15.788			
T5	1.21	2.59	Α	0.142	2.801	13	0.85	1	19.929	1.46	73.15	Α
40.00-20.00			В	0.142	2.801		0.85	1	19.929			
			С	0.142	2.801		0.85	1	19.929			
T6 20.00-0.00	0.94	2.94	Α	0.133	2.834	13	0.85	1	21.714	1.35	67.58	С
			В	0.133	2.834		0.85	1	21.714			
			С	0.133	2.834		0.85	1	21.714			
Sum Weight:	5.99	11.60						OTM	491.96	8.44		
									kip-ft			

		Том	/er	Force	es - N	Nith	lce -	Win	d Norn	nal To F	ace	
		<b>6</b> 10			ã							~ · ]
Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	е						ft²	K	plf	
T1	2.11	3.18	Α	0.381	2.102	6	1	1	32.274	0.62	30.76	В
120.00-100.00			В	0.381	2.102		1	1	32.274			
			С	0.381	2.102		1	1	32.274			
T2	4.13	3.56	Α	0.374	2.118	5	1	1	31.546	0.81	40.32	Α
100.00-80.00			В	0.374	2.118		1	1	31.546			
			С	0.374	2.118		1	1	31.546			
T3	4.90	4.04	Α	0.363	2.142	5	1	1	34.629	0.87	43.59	С
80.00-60.00			В	0.363	2.142		1	1	34.629			
			С	0.363	2.142		1	1	34.629			
T4	5.03	4.36	Α	0.308	2.274	4	1	1	35.402	0.85	42.27	В
60.00-40.00			В	0.308	2.274		1	1	35.402			
			С	0.308	2.274		1	1	35.402			
T5	4.89	5.24	Α	0.279	2.353	4	1	1	38.915	0.76	38.22	В
40.00-20.00			В	0.279	2.353		1	1	38.915			
			С	0.279	2.353		1	1	38.915			
T6 20.00-0.00	3.42	5.44	Α	0.247	2.447	4	1	1	39.898	0.66	32.79	Α
			В	0.247	2.447		1	1	39.898			
			С	0.247	2.447		1	1	39.898			
Sum Weight:	24.48	25.83						OTM	273.02	4.56		
Ŭ									kip-ft			

	Tower Forces - With Ice - Wind 60 To Face												
Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.	
Elevation	Weight	Weight	а									Face	
	_	_	с			psf							
ft	K	K	е						ft²	K	plf		
T1	2.11	3.18	Α	0.381	2.102	6	0.8	1	30.187	0.59	29.73	С	
120.00-100.00			В	0.381	2.102		0.8	1	30.187				
			С	0.381	2.102		0.8	1	30.187				

*tnxTower* 

Project

Client

CT98078-L, Wilton, CT/Optasite

Page 19 of 41 Date

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

SBA Network Services, Inc.

PR-007866

Designed by Deepak Devulapally

14:05:16 03/14/22

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а			_						Face
			с			psf						
ft	K	K	е						$ft^2$	K	plf	
T2	4.13	3.56	Α	0.374	2.118	5	0.8	1	29.639	0.79	39.42	В
100.00-80.00			В	0.374	2.118		0.8	1	29.639			
			С	0.374	2.118		0.8	1	29.639			
T3	4.90	4.04	Α	0.363	2.142	5	0.8	1	32.411	0.85	42.61	Α
80.00-60.00			В	0.363	2.142		0.8	1	32.411			
			С	0.363	2.142		0.8	1	32.411			
T4	5.03	4.36	Α	0.308	2.274	4	0.8	1	33.021	0.83	41.25	С
60.00-40.00			В	0.308	2.274		0.8	1	33.021			
			С	0.308	2.274		0.8	1	33.021			
T5	4.89	5.24	Α	0.279	2.353	4	0.8	1	35.671	0.74	36.98	С
40.00-20.00			В	0.279	2.353		0.8	1	35.671			
			С	0.279	2.353		0.8	1	35.671			
T6 20.00-0.00	3.42	5.44	Α	0.247	2.447	4	0.8	1	36.344	0.63	31.38	В
			В	0.247	2.447		0.8	1	36.344			
			С	0.247	2.447		0.8	1	36.344			
Sum Weight:	24.48	25.83						OTM	265.73	4.43		
									kip-ft			

# Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	е	$C_{F}$	a.	$D_{\rm F}$	$D_{P}$	A v	F	w	Ctrl
Elevation	Weight	Weight	a		0 _T	72	~1	~ K	~~ <u>E</u>	-		Face
	0	0	с			psf						
ft	K	K	е						ft²	Κ	plf	
T1	2.11	3.18	Α	0.381	2.102	6	0.85	1	30.709	0.60	29.75	С
120.00-100.00			В	0.381	2.102		0.85	1	30.709			
			С	0.381	2.102		0.85	1	30.709			
T2	4.13	3.56	Α	0.374	2.118	5	0.85	1	30.116	0.79	39.62	В
100.00-80.00			В	0.374	2.118		0.85	1	30.116			
			С	0.374	2.118		0.85	1	30.116			
T3	4.90	4.04	Α	0.363	2.142	5	0.85	1	32.966	0.86	42.92	Α
80.00-60.00			В	0.363	2.142		0.85	1	32.966			
			С	0.363	2.142		0.85	1	32.966			
T4	5.03	4.36	Α	0.308	2.274	4	0.85	1	33.616	0.83	41.48	Α
60.00-40.00			В	0.308	2.274		0.85	1	33.616			
			С	0.308	2.274		0.85	1	33.616			
T5	4.89	5.24	Α	0.279	2.353	4	0.85	1	36.482	0.74	37.21	С
40.00-20.00			В	0.279	2.353		0.85	1	36.482			
			С	0.279	2.353		0.85	1	36.482			
T6 20.00-0.00	3.42	5.44	Α	0.247	2.447	4	0.85	1	37.233	0.64	31.80	С
			В	0.247	2.447		0.85	1	37.233			
			С	0.247	2.447		0.85	1	37.233			
Sum Weight:	24.48	25.83						OTM	267.03	4.46		
									kip-ft			

# **Tower Forces - Service - Wind Normal To Face**

*tnxTower* 

Project

Client

CT98078-L, Wilton, CT/Optasite

Page 20 of 41

Date

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

## SBA Network Services, Inc.

PR-007866

Designed by Deepak Devulapally

14:05:16 03/14/22

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	е						ft²	K	plf	
T1	0.45	0.95	Α	0.144	2.794	8	1	1	13.739	0.48	23.78	В
120.00-100.00			В	0.144	2.794		1	1	13.739			
			С	0.144	2.794		1	1	13.739			
T2	1.00	1.44	Α	0.157	2.748	8	1	1	14.271	0.63	31.26	Α
100.00-80.00			В	0.157	2.748		1	1	14.271			
			С	0.157	2.748		1	1	14.271			
T3	1.18	1.71	Α	0.156	2.748	7	1	1	16.305	0.69	34.37	С
80.00-60.00			В	0.156	2.748		1	1	16.305			
			С	0.156	2.748		1	1	16.305			
T4	1.21	1.98	Α	0.137	2.82	6	1	1	17.573	0.67	33.29	В
60.00-40.00			В	0.137	2.82		1	1	17.573			
			С	0.137	2.82		1	1	17.573			
T5	1.21	2.59	Α	0.142	2.801	5	1	1	22.361	0.64	32.02	В
40.00-20.00			В	0.142	2.801		1	1	22.361			
			С	0.142	2.801		1	1	22.361			
T6 20.00-0.00	0.94	2.94	Α	0.133	2.834	5	1	1	24.379	0.60	29.93	Α
			В	0.133	2.834		1	1	24.379			
			С	0.133	2.834		1	1	24.379			
Sum Weight:	5.99	11.60						OTM	215.19	3.69		
									kip-ft			

### Tower Forces - Service - Wind 60 To Face

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а			_						Face
			С			psf						
ft	K	K	е						$ft^2$	K	plf	
T1	0.45	0.95	Α	0.144	2.794	8	0.8	1	11.653	0.44	21.81	С
120.00-100.00			В	0.144	2.794		0.8	1	11.653			
			С	0.144	2.794		0.8	1	11.653			
T2	1.00	1.44	Α	0.157	2.748	8	0.8	1	12.364	0.59	29.59	В
100.00-80.00			В	0.157	2.748		0.8	1	12.364			
			С	0.157	2.748		0.8	1	12.364			
T3	1.18	1.71	Α	0.156	2.748	7	0.8	1	14.087	0.65	32.56	Α
80.00-60.00			В	0.156	2.748		0.8	1	14.087			
			С	0.156	2.748		0.8	1	14.087			
T4	1.21	1.98	Α	0.137	2.82	6	0.8	1	15.192	0.63	31.48	С
60.00-40.00			В	0.137	2.82		0.8	1	15.192			
			С	0.137	2.82		0.8	1	15.192			
T5	1.21	2.59	Α	0.142	2.801	5	0.8	1	19.118	0.60	29.91	С
40.00-20.00			В	0.142	2.801		0.8	1	19.118			
			С	0.142	2.801		0.8	1	19.118			
T6 20.00-0.00	0.94	2.94	Α	0.133	2.834	5	0.8	1	20.825	0.55	27.59	В
			В	0.133	2.834		0.8	1	20.825			
			С	0.133	2.834		0.8	1	20.825			
Sum Weight:	5.99	11.60						OTM	201.75	3.46		
									kip-ft			

# **Tower Forces - Service - Wind 90 To Face**

tnxTower

Project

Client

CT98078-L, Wilton, CT/Optasite

Page 21 of 41 Date 14:05:16 03/14/22 Designed by

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

SBA Network Services, Inc.

PR-007866

#### Deepak Devulapally

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	K	K	е						ft ²	K	plf	
T1	0.45	0.95	Α	0.144	2.794	8	0.85	1	12.174	0.44	22.15	С
120.00-100.00			В	0.144	2.794		0.85	1	12.174			
			С	0.144	2.794		0.85	1	12.174			
T2	1.00	1.44	Α	0.157	2.748	8	0.85	1	12.840	0.60	29.91	В
100.00-80.00			В	0.157	2.748		0.85	1	12.840			
			С	0.157	2.748		0.85	1	12.840			
T3	1.18	1.71	Α	0.156	2.748	7	0.85	1	14.641	0.66	33.09	Α
80.00-60.00			В	0.156	2.748		0.85	1	14.641			
			С	0.156	2.748		0.85	1	14.641			
T4	1.21	1.98	Α	0.137	2.82	6	0.85	1	15.788	0.64	31.98	Α
60.00-40.00			В	0.137	2.82		0.85	1	15.788			
			С	0.137	2.82		0.85	1	15.788			
T5	1.21	2.59	Α	0.142	2.801	5	0.85	1	19.929	0.61	30.45	Α
40.00-20.00			В	0.142	2.801		0.85	1	19.929			
			С	0.142	2.801		0.85	1	19.929			
T6 20.00-0.00	0.94	2.94	Α	0.133	2.834	5	0.85	1	21.714	0.56	28.13	С
			В	0.133	2.834		0.85	1	21.714			
			С	0.133	2.834		0.85	1	21.714			
Sum Weight:	5.99	11.60						OTM	204.77	3.51		
									kip-ft			

<b>Discrete Appurtenance Pressures - No Ice</b> $G_H = 0.850$												
	4	HZ + 1 -				V		<u> </u>	<u>C (</u>			
Description	Aiming	weight	$O_{JJSet_x}$	OJJsetz	Z	$K_z$	$q_z$	$C_A A_C$	$C_A A_C$			
	Azimuth o	V	A	A	G		f	Front 62	Side			
Lister's Ded	0.0000	A 0.02	<i>JI</i>	<i>JI</i>	<i>JI</i>	1.0.41	psj	<u>ji</u>	<i>JI</i> ²			
Lightning Rod	0.0000	0.03	0.00	0.00	120.00	1.041	20	0.25	0.25			
3"x12' Omni	0.0000	0.03	0.00	-3.18	126.50	1.057	20	3.60	3.60			
3"x12' Omni	240.0000	0.03	-2.75	1.59	126.50	1.057	20	3.60	3.60			
2.4" x 7' Pipe Mount	0.0000	0.05	0.00	-3.18	122.00	1.046	20	1.68	1.68			
2.4" x 7' Pipe Mount	120.0000	0.05	2.75	1.59	122.00	1.046	20	1.68	1.68			
2.4" x 7' Pipe Mount	240.0000	0.05	-2.75	1.59	122.00	1.046	20	1.68	1.68			
Air 6449 B41 w/ Pipe	0.0000	0.10	0.00	-7.18	118.00	1.036	19	5.65	2.42			
Mount												
Air 6449 B41 w/ Pipe	120.0000	0.10	6.21	3.59	118.00	1.036	19	5.65	2.42			
Mount												
Air 6449 B41 w/ Pipe	240.0000	0.10	-6.21	3.59	118.00	1.036	19	5.65	2.42			
Mount												
AIR32	0.0000	0.15	0.00	-7.18	118.00	1.036	19	6.75	6.07			
KRD901146-1-B66A-B2												
A w/ Mount Pine												
AIR32	120.0000	0.15	6.21	3 59	118.00	1.036	19	6.75	6.07			
KRD901146-1-B664-B2	120.0000	0.15	0.21	5.57	110.00	1.050	17	0.75	0.07			
$\Lambda w/Mount Pine$												
AIP 32	240.0000	0.15	-6.21	3 50	118.00	1.036	10	6 75	6.07			
VPD001146 1 D66A D2	240.0000	0.15	-0.21	5.59	118.00	1.050	19	0.75	0.07			
A w/ Mount Ding												
A W/ Would ripe $A = 1 \times 1$	0.0000	0.10	0.00	7 1 0	118.00	1.024	10	14 60	6.97			
APAVAALL24_45-U-N	0.0000	0.19	0.00	-/.18	118.00	1.030	19	14.09	0.8/			
A 20 W/ Mount Pipe	120.0000	0.10	( )1	2.50	110.00	1.026	10	14.60	6.07			
APXVAALL24_43-U-N	120.0000	0.19	6.21	3.59	118.00	1.036	19	14.69	6.87			
A20 w/ Mount Pipe												
APXVAALL24_43-U-N	240.0000	0.19	-6.21	3.59	118.00	1.036	19	14.69	6.87			
A20 w/ Mount Pipe												

tnxTower

Project

Client

CT98078-L, Wilton, CT/Optasite

Page 22 of 41

Date 14:05:16 03/14/22

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

#### SBA Network Services, Inc.

PR-007866

Designed by Deepak Devulapally

Description	Aiming	Weight	$Offset_x$	$Offset_z$	Ζ	$K_z$	$q_z$	$C_A A_C$	$C_A A_C$
	Azimuth		0	0	0		c	Front	Side
4440 051 + 005	0 0000	K	ft	<i>ft</i>	<i>ft</i>	1.026	<i>psf</i>	$ft^2$	<i>ft</i> ²
$4449 \text{ B}/1 \pm \text{B85}$ $4449 \text{ B}/1 \pm \text{B85}$	120,0000	0.07	6.21	-/.18	118.00	1.030	19	2.09	1.59
4449  B71 + B85 4449  B71 + B85	240.0000	0.07	-6.21	3.59	118.00	1.030	19	2.09	1.59
4415 B25	0.0000	0.07	-0.21	-7.18	118.00	1.036	19	2.02	1.35
4415 B25	120.0000	0.06	6.21	3.59	118.00	1.036	19	2.02	1.25
4415 B25	240.0000	0.06	-6.21	3.59	118.00	1.036	19	2.02	1.25
SDX1926Q-43	0.0000	0.01	0.00	-7.18	118.00	1.036	19	0.24	0.10
SDX1926Q-43	120.0000	0.01	6.21	3.59	118.00	1.036	19	0.24	0.10
SDX1926Q-43	240.0000	0.01	-6.21	3.59	118.00	1.036	19	0.24	0.10
KRY 112 71	0.0000	0.02	0.00	-7.18	118.00	1.036	19	1.50	0.50
KRY 112 71	120.0000	0.02	6.21	3.59	118.00	1.036	19	1.50	0.50
KRY 112 71	240.0000	0.02	-6.21	3.59	118.00	1.036	19	1.50	0.50
Sector Frame (SitePro 1	0.0000	0.66	0.00	-5.18	118.00	1.036	19	13.20	9.20
P/N: VFA12-HD)									
Sector Frame (SitePro 1	120.0000	0.66	4.48	2.59	118.00	1.036	19	13.20	9.20
P/N: VFA12-HD)	240.0000	0.77	4.40	2.50	110.00	1.026	10	12.20	0.00
Sector Frame (SitePro I	240.0000	0.66	-4.48	2.59	118.00	1.036	19	13.20	9.20
P/N: VFA12-HD)	0.0000	0.00	0.00	7 1 0	110.00	1.016	10	12.25	6.05
Mount Pine	0.0000	0.09	0.00	-7.18	110.00	1.010	19	12.23	0.05
OPA65R-BU6DA w/	120.0000	0.00	6.21	3 50	110.00	1.016	10	12.25	6.05
Mount Pipe	120.0000	0.05	0.21	5.57	110.00	1.010	17	12.25	0.05
OPA65R-BU6DA w/	240 0000	0.09	-6.21	3 59	110.00	1 016	19	12.25	6.05
Mount Pipe	210.0000	0.07	0.21	5.57	110.00	1.010	. ,	12.25	0.02
RRUS 4478 B14	0.0000	0.06	0.00	-7.18	110.00	1.016	19	1.84	1.06
RRUS 4478 B14	120.0000	0.06	6.21	3.59	110.00	1.016	19	1.84	1.06
RRUS 4478 B14	240.0000	0.06	-6.21	3.59	110.00	1.016	19	1.84	1.06
7770 w/Mount Pipe	300.0000	0.07	-4.84	-2.79	110.00	1.016	19	6.20	4.94
7770 w/Mount Pipe	60.0000	0.07	4.84	-2.79	110.00	1.016	19	6.20	4.94
7770 w/Mount Pipe	180.0000	0.07	0.00	5.59	110.00	1.016	19	6.20	4.94
800 10965 w/ Mount	300.0000	0.14	-4.84	-2.79	110.00	1.016	19	14.05	7.63
Pipe									
800 10965 w/ Mount	60.0000	0.14	4.84	-2.79	110.00	1.016	19	14.05	7.63
Pipe	100.0000	0.1.1	0.00		110.00	1.016	10	1405	7.62
800 10965 W/ Mount	180.0000	0.14	0.00	5.59	110.00	1.016	19	14.05	7.63
Pipe	300,0000	0.08	1 9 1	2.70	110.00	1.016	10	8 27	6.26
Mount Pipe	500.0000	0.08	-4.04	-2.79	110.00	1.010	19	0.57	0.50
P65-16-XI H-RR w/	60,0000	0.08	4 84	-2 79	110.00	1.016	19	8 37	6 36
Mount Pipe	00.0000	0.00	-1.04	-2.19	110.00	1.010	17	0.57	0.50
P65-16-XLH-RR w/	180.0000	0.08	0.00	5.59	110.00	1.016	19	8.37	6.36
Mount Pipe									
LGP21401 TMA	300.0000	0.04	-4.84	-2.79	110.00	1.016	19	1.63	0.69
LGP21401 TMA	60.0000	0.04	4.84	-2.79	110.00	1.016	19	1.63	0.69
LGP21401 TMA	180.0000	0.04	0.00	5.59	110.00	1.016	19	1.63	0.69
TT19-08BP111-001	300.0000	0.02	-4.84	-2.79	110.00	1.016	19	0.55	0.45
TT19-08BP111-001	60.0000	0.02	4.84	-2.79	110.00	1.016	19	0.55	0.45
TT19-08BP111-001	180.0000	0.02	0.00	5.59	110.00	1.016	19	0.55	0.45
RRUS-11	300.0000	0.06	-4.84	-2.79	110.00	1.016	19	2.52	1.07
RRUS-II	60.0000	0.06	4.84	-2.79	110.00	1.016	19	2.52	1.07
RRUS-II	180.0000	0.06	0.00	5.59	110.00	1.016	19	2.52	1.07
RRUS 4478 B5	60,0000	0.06	-4.84	-2.79	110.00	1.016	19	1.84	1.06
RRUS 4478 R5	180.0000	0.00	4.04 0.00	-2.79	110.00	1.010	19	1.04	1.06
RRUS 4415 B25	300.0000	0.04	-4.84	-2.79	110.00	1.016	19	1.64	0.68
RRUS 4415 B25	60.0000	0.04	4.84	-2.79	110.00	1.016	19	1.64	0.68
RRUS 4415 B25	180.0000	0.04	0.00	5.59	110.00	1.016	19	1.64	0.68
DC6-48-60-18-8F	300.0000	0.03	-1.81	-1.04	110.00	1.016	19	1.21	1.21
DC6-48-60-18-8F	60.0000	0.03	1.81	-1.04	110.00	1.016	19	1.21	1.21
(3) 12' Sector Mounts	0.0000	1.50	0.00	0.00	110.00	1.016	19	15.85	15.85
[Sabre C10857001C]									

*tnxTower* 

Project

Client

CT98078-L, Wilton, CT/Optasite

Page 23 of 41

Date

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

### SBA Network Services, Inc.

PR-007866

Designed by Deepak Devulapally

14:05:16 03/14/22

Description	Aimina	Weight	Offset	Offset	7	K	a	$C_{1}A_{2}$	$C_{14}$
Description	Azimuth	" eigni	$O_{ff}set_x$	Offseiz	2	$\Lambda_Z$	Yz	Eront	Side
	0	K	ft	ft	ft		psf	$ft^2$	$ft^2$
MT6407-77A w/Mount	0.0000	0.11	0.00	-7.18	98.00	0.983	18	5.90	3.74
Pipe									
MT6407-77A w/Mount	120.0000	0.11	6.21	3.59	98.00	0.983	18	5.90	3.74
Pipe									
MT6407-77A w/Mount	240.0000	0.11	-6.21	3.59	98.00	0.983	18	5.90	3.74
Pipe									
MX06FRO660-03 TIA	0.0000	0.20	0.00	-7.18	98.00	0.983	18	20.22	17.97
w/ Mount Pipe									
MX06FRO660-03 TIA	120.0000	0.20	6.21	3.59	98.00	0.983	18	20.22	17.97
w/ Mount Pipe									
MX06FRO660-03 TIA	240.0000	0.20	-6.21	3.59	98.00	0.983	18	20.22	17.97
w/ Mount Pipe									
BXA-80090/8 w/	0.0000	0.05	0.00	-7.18	98.00	0.983	18	8.18	8.51
Mount Pipe									
BXA-80090/8 w/	120.0000	0.05	6.21	3.59	98.00	0.983	18	8.18	8.51
Mount Pipe									
BXA-80090/8 w/	240.0000	0.05	-6.21	3.59	98.00	0.983	18	8.18	8.51
Mount Pipe									
RF4439d-25A	0.0000	0.07	0.00	-7.18	98.00	0.983	18	1.87	1.25
RF4439d-25A	120.0000	0.07	6.21	3.59	98.00	0.983	18	1.87	1.25
RF4439d-25A	240.0000	0.07	-6.21	3.59	98.00	0.983	18	1.87	1.25
RF4440d-13A	0.0000	0.07	0.00	-7.18	98.00	0.983	18	1.87	1.13
RF4440d-13A	120.0000	0.07	6.21	3.59	98.00	0.983	18	1.87	1.13
RF4440d-13A	240.0000	0.07	-6.21	3.59	98.00	0.983	18	1.87	1.13
RRFDC-3315-PF-48	0.0000	0.03	0.00	-7.18	98.00	0.983	18	3.02	1.96
RRFDC-3315-PF-48	120.0000	0.03	6.21	3.59	98.00	0.983	18	3.02	1.96
(3) 10' x 2' T-Arms	0.0000	1.74	0.00	0.00	96.50	0.978	18	17.87	17.87
60" x 12" x 5" w/ Mount	0.0000	0.07	0.00	-7.18	86.00	0.947	18	6.74	5.07
Pipe									
60" x 12" x 5" w/ Mount	120.0000	0.07	6.21	3.59	86.00	0.947	18	6.74	5.07
Pipe									
60" x 12" x 5" w/ Mount	240.0000	0.07	-6.21	3.59	86.00	0.947	18	6.74	5.07
Pipe									
(3) 2.7' StandOffs	0.0000	0.33	0.00	0.00	86.00	0.947	18	6.18	6.18
1.9"Ø x 9.8' Pipe Mount	120.0000	0.02	3.69	2.13	55.00	0.833	16	1.65	1.65
	Sum	11.39							
	Weight:								

# **Discrete Appurtenance Pressures - With Ice** $G_H = 0.850$

Description	Aiming	Weight	$Offset_x$	$Offset_z$	Ζ	Kz	$q_z$	$C_A A_C$	$C_A A_C$	$t_z$
	Azimuth							Front	Side	
	0	K	ft	ft	ft		psf	$ft^2$	ft²	in
Lightning Rod	0.0000	0.05	0.00	0.00	120.00	1.041	6	1.34	1.34	1.7067
3"x12' Omni	0.0000	0.15	0.00	-3.18	126.50	1.057	6	7.47	7.47	1.7157
3"x12' Omni	240.0000	0.15	-2.75	1.59	126.50	1.057	6	7.47	7.47	1.7157
2.4" x 7' Pipe Mount	0.0000	0.12	0.00	-3.18	122.00	1.046	6	3.46	3.46	1.7095
2.4" x 7' Pipe Mount	120.0000	0.12	2.75	1.59	122.00	1.046	6	3.46	3.46	1.7095
2.4" x 7' Pipe Mount	240.0000	0.12	-2.75	1.59	122.00	1.046	6	3.46	3.46	1.7095
Air 6449 B41 w/ Pipe	0.0000	0.25	0.00	-7.18	118.00	1.036	6	6.72	3.22	1.7038
Mount										
Air 6449 B41 w/ Pipe	120.0000	0.25	6.21	3.59	118.00	1.036	6	6.72	3.22	1.7038
Mount										
Air 6449 B41 w/ Pipe	240.0000	0.25	-6.21	3.59	118.00	1.036	6	6.72	3.22	1.7038
Mount										
AIR32	0.0000	0.39	0.00	-7.18	118.00	1.036	6	8.29	8.62	1.7038
KRD901146-1-B66A-B2										
A w/ Mount Pipe										
tnxTower

CT98078-L, Wilton, CT/Optasite

Page 24 of 41

Date

**FDH Infrastructure Services** 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

#### SBA Network Services, Inc.

PR-007866

Designed by Deepak Devulapally

14:05:16 03/14/22

Description	Aiming	Weight	$Offset_x$	$Offset_z$	Ζ	$K_z$	$q_z$	$C_A A_C$	$C_A A_C$	$t_z$
	Azimuth °	K	Ĥ	Ĥ	Ĥ		nef	Front 62	Side 62	in
ATR 32	120.0000	A 0.30	ji 6.21	<i>Jl</i> 3 50	<i>JI</i> 118.00	1.036	psj 6	<i>JI</i> - 8 20	JI- 8.62	1 7038
KRD901146-1-B66A-B2	120.0000	0.57	0.21	5.57	110.00	1.050	0	0.27	0.02	1.7050
A w/ Mount Pipe										
AIR32	240.0000	0.39	-6.21	3.59	118.00	1.036	6	8.29	8.62	1.7038
KRD901146-1-B66A-B2										
A w/ Mount Pipe										
APXVAALL24_43-U-N	0.0000	0.69	0.00	-7.18	118.00	1.036	6	17.35	9.25	1.7038
A20 w/ Mount Pipe	100.0000	0.50			110.00			17.05		1 2000
APXVAALL24_43-U-N	120.0000	0.69	6.21	3.59	118.00	1.036	6	17.35	9.25	1.7038
A20 W/ Mount Pipe	240.0000	0.60	6.21	3 50	118.00	1.036	6	17 35	0.25	1 7038
A20 w/ Mount Pipe	240.0000	0.09	-0.21	5.59	118.00	1.050	0	17.55	9.25	1.7058
4449 B71 + B85	0.0000	0.16	0.00	-7.18	118.00	1.036	6	2.74	2.17	1.7038
4449 B71 + B85	120.0000	0.16	6.21	3.59	118.00	1.036	6	2.74	2.17	1.7038
4449 B71 + B85	240.0000	0.16	-6.21	3.59	118.00	1.036	6	2.74	2.17	1.7038
4415 B25	0.0000	0.13	0.00	-7.18	118.00	1.036	6	2.66	1.80	1.7038
4415 B25	120.0000	0.13	6.21	3.59	118.00	1.036	6	2.66	1.80	1.7038
4415 B25	240.0000	0.13	-6.21	3.59	118.00	1.036	6	2.66	1.80	1.7038
SDX1926Q-43	0.0000	0.02	0.00	-7.18	118.00	1.036	6	0.49	0.28	1.7038
SDX1926Q-43	120.0000	0.02	6.21	3.39	118.00	1.036	6	0.49	0.28	1.7038
SDA1920Q-45 KRV 112 71	240.0000	0.02	-0.21	-7.18	118.00	1.036	6	2.06	0.28	1.7038
KRY 112 71	120 0000	0.00	6.21	3 59	118.00	1.036	6	2.00	0.89	1 7038
KRY 112 71	240.0000	0.06	-6.21	3.59	118.00	1.036	6	2.06	0.89	1.7038
Sector Frame (SitePro 1	0.0000	1.31	0.00	-5.18	118.00	1.036	6	34.67	26.40	1.7038
P/N: VFA12-HD)										
Sector Frame (SitePro 1 P/N: VFA12-HD)	120.0000	1.31	4.48	2.59	118.00	1.036	6	34.67	26.40	1.7038
Sector Frame (SitePro 1 P/N: VFA12-HD)	240.0000	1.31	-4.48	2.59	118.00	1.036	6	34.67	26.40	1.7038
OPA65R-BU6DA w/ Mount Pipe	0.0000	0.44	0.00	-7.18	110.00	1.016	6	14.85	8.36	1.6919
OPA65R-BU6DA w/ Mount Pipe	120.0000	0.44	6.21	3.59	110.00	1.016	6	14.85	8.36	1.6919
OPA65R-BU6DA w/ Mount Pipe	240.0000	0.44	-6.21	3.59	110.00	1.016	6	14.85	8.36	1.6919
RRUS 4478 B14	0.0000	0.13	0.00	-7.18	110.00	1.016	6	2.45	1.56	1.6919
RRUS 4478 B14	120.0000	0.13	6.21	3.59	110.00	1.016	6	2.45	1.56	1.6919
RRUS 4478 B14	240.0000	0.13	-6.21	3.59	110.00	1.016	6	2.45	1.56	1.6919
7770 w/Mount Pipe	300.0000	0.29	-4.84	-2.79	110.00	1.016	6	8.01	7.76	1.6919
7770 w/Mount Pipe	60.0000	0.29	4.84	-2.79	110.00	1.016	6	8.01	7.76	1.6919
7770 w/Mount Pipe	180.0000	0.29	0.00	5.59	110.00	1.016	6	8.01	7.76	1.6919
800 10965 w/ Mount	300.0000	0.51	-4.84	-2.79	110.00	1.016	6	16.15	11.32	1.6919
Pipe 800 10065 w/ Mount	60,0000	0.51	1.94	2 70	110.00	1.016	6	16.15	11.22	1 6010
Pine	00.0000	0.51	4.04	-2.79	110.00	1.010	0	10.15	11.52	1.0919
800 10965 w/ Mount	180.0000	0.51	0.00	5.59	110.00	1.016	6	16.15	11.32	1.6919
Pipe										
P65-16-XLH-RR w/	300.0000	0.34	-4.84	-2.79	110.00	1.016	6	10.20	9.68	1.6919
Mount Pipe	60,0000	0.34	4 84	-2.70	110.00	1.016	6	10.20	9.68	1 6010
Mount Pipe	00.0000	0.54	+.0+	-2.79	110.00	1.010	0	10.20	2.00	1.0919
P65-16-XLH-RR w/	180.0000	0.34	0.00	5.59	110.00	1.016	6	10.20	9.68	1.6919
LGP21401 TMA	300.0000	0.00	-4 84	-2 70	110.00	1.016	6	2 51	1 30	1 6910
LGP21401 TMA	60.0000	0.09	4.84	-2.79	110.00	1.016	6	2.51	1.39	1.6919
LGP21401 TMA	180.0000	0.09	0.00	5.59	110.00	1.016	6	2.51	1.39	1.6919
TT19-08BP111-001	300.0000	0.04	-4.84	-2.79	110.00	1.016	6	0.91	0.78	1.6919
TT19-08BP111-001	60.0000	0.04	4.84	-2.79	110.00	1.016	6	0.91	0.78	1.6919
TT19-08BP111-001	180.0000	0.04	0.00	5.59	110.00	1.016	6	0.91	0.78	1.6919
RRUS-11	300.0000	0.13	-4.84	-2.79	110.00	1.016	6	3.22	1.58	1.6919

Client

Project

Job

*tnxTower* 

Project

Client

CT98078-L, Wilton, CT/Optasite

Page 25 c

Date

25 of 41

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

#### SBA Network Services, Inc.

PR-007866

Designed by Deepak Devulapally

14:05:16 03/14/22

Description	Aiming	Weight	$Offset_x$	$Offset_z$	Ζ	$K_z$	$q_z$	$C_A A_C$	$C_A A_C$	$t_z$
	Azimuth o	K	Ĥ	Ĥ	Ĥ		nef	Front	Side 62	in.
DDUS 11	60,0000	A 0.12	ji 1.84	2 70	<u>ji</u> 110.00	1.016	psj 6	<i>Ji</i> 2.22	<i>ji</i> 1.59	1 6010
DDUS 11	180,0000	0.13	4.04	-2.79	110.00	1.010	6	3.22	1.50	1.6919
DDUS 4478 B5	300.0000	0.13	-4.84	-2 70	110.00	1.010	6	2.45	1.56	1.0919
RRUS 4478 B5	60,0000	0.13	-4.04	-2.79	110.00	1.010	6	2.43	1.50	1.0919
RRUS 4478 D5	180,0000	0.13	4.84	-2.79	110.00	1.010	0	2.43	1.50	1.6919
RRUS 4478 B5	180.0000	0.15	0.00	3.39	110.00	1.016	0	2.45	1.30	1.6919
RRUS 4415 B25	300.0000	0.10	-4.84	-2.79	110.00	1.010	0	2.22	1.10	1.6919
RRUS 4415 B25	60.0000	0.10	4.84	-2.79	110.00	1.016	6	2.22	1.10	1.6919
RRUS 4415 B25	180.0000	0.10	0.00	5.59	110.00	1.016	0	2.22	1.10	1.6919
DC6-48-60-18-8F	300.0000	0.12	-1.81	-1.04	110.00	1.016	0	2.43	2.43	1.6919
DC6-48-60-18-8F	60.0000	0.12	1.81	-1.04	110.00	1.016	6	2.43	2.43	1.6919
[3) 12' Sector Mounts [Sabre C10857001C]	0.0000	3.02	0.00	0.00	110.00	1.016	6	32.60	32.60	1.6919
MT6407-77A w/Mount	0.0000	0.31	0.00	-7.18	98.00	0.983	5	8.27	6.68	1.6725
Pipe										
MT6407-77A w/Mount Pipe	120.0000	0.31	6.21	3.59	98.00	0.983	5	8.27	6.68	1.6725
MT6407-77A w/Mount	240.0000	0.31	-6.21	3.59	98.00	0.983	5	8.27	6.68	1.6725
MX06FRO660-03_TIA	0.0000	0.87	0.00	-7.18	98.00	0.983	5	23.92	24.48	1.6725
MX06FRO660-03_TIA	120.0000	0.87	6.21	3.59	98.00	0.983	5	23.92	24.48	1.6725
W/ Mount Pipe MX06FRO660-03_TIA	240.0000	0.87	-6.21	3.59	98.00	0.983	5	23.92	24.48	1.6725
w/ Mount Pipe BXA-80090/8 w/	0.0000	0.33	0.00	-7.18	98.00	0.983	5	10.21	12.63	1.6725
Mount Pipe										
BXA-80090/8 w/ Mount Pipe	120.0000	0.33	6.21	3.59	98.00	0.983	5	10.21	12.63	1.6725
BXA-80090/8 w/	240.0000	0.33	-6.21	3.59	98.00	0.983	5	10.21	12.63	1.6725
DE44204 25 A	0.0000	0.15	0.00	7 1 9	08.00	0.092	5	2.47	1.76	1 6705
RF44390-23A DE44204 25A	120,0000	0.15	6.00	-/.18	98.00	0.983	5	2.47	1.70	1.0725
RF44390-23A	240,0000	0.15	6.21	2.59	98.00	0.965	5	2.47	1.70	1.6725
NF44390-23A DE44404 12A	240.0000	0.13	-0.21	5.39	98.00	0.965	5	2.47	1.70	1.6725
RF44400-13A DE44404 12A	120,0000	0.14	6.00	-/.10	98.00	0.965	5	2.47	1.02	1.0723
RF4440d-13A DE4440d-12A	240,0000	0.14	6.21	2.59	98.00	0.985	5	2.47	1.02	1.0725
RF44400-13A DDEDC 2215 DE 49	240.0000	0.14	-0.21	5.39	98.00	0.983	3	2.47	1.02	1.6725
RRFDC-3315-PF-48	120,0000	0.14	0.00	-7.18	98.00	0.983	5	3.79	2.03	1.0725
(2) 10 = 2 T A mag	120.0000	0.14	0.21	3.39	98.00	0.983	2	3.79	2.03	1.6725
$(3) 10^{\circ} \times 2^{\circ} 1$ -Arms	0.0000	2.01	0.00	0.00	96.50	0.978	5	42.72	42.72	1.6699
60" x 12" x 5" w/ Mount	0.0000	0.29	0.00	-/.18	86.00	0.947	З	8.76	/.86	1.6508
60" x 12" x 5" w/ Mount	120.0000	0.29	6.21	3.59	86.00	0.947	5	8.76	7.86	1.6508
Pipe 60" x 12" x 5" w/ Mount	240.0000	0.29	-6.21	3.59	86.00	0.947	5	8.76	7.86	1.6508
Pipe										
(3) 2.7' StandOffs	0.0000	0.56	0.00	0.00	86.00	0.947	5	14.04	14.04	1.6508
1.9"Ø x 9.8' Pipe Mount	120.0000	0.09	3.69	2.13	55.00	0.833	5	4.75	4.75	1.5786
-	Sum Weight:	28.74								

# **Discrete Appurtenance Pressures - Service** $G_H = 0.850$

Description	Aiming	Weight	$Offset_x$	$Offset_z$	Ζ	$K_z$	$q_z$	$C_A A_C$	$C_A A_C$
	Azimuth							Front	Side
	0	K	ft	ft	ft		psf	$ft^2$	$ft^2$
Lightning Rod	0.0000	0.03	0.00	0.00	120.00	1.041	8	0.25	0.25
3"x12' Omni	0.0000	0.03	0.00	-3.18	126.50	1.057	8	3.60	3.60
3"x12' Omni	240.0000	0.03	-2.75	1.59	126.50	1.057	8	3.60	3.60

tnxTower

CT98078-L, Wilton, CT/Optasite

Page 26 of 41

Date

SBA Network Services, Inc.

PR-007866

Designed by Deepak Devulapally

14:05:16 03/14/22

Description	1 imina	Wojaht	Officiat	Officiat	~	V	a	$C_{-1}$	<i>C</i> 1
Description	Azimuth	weigni	Offselx	Ojjseiz	2	$\Lambda_Z$	$q_z$	<i>C</i> _A A _C Front	Side
	0	Κ	ft	ft	ft		psf	$ft^2$	$ft^2$
2.4" x 7' Pipe Mount	0.0000	0.05	0.00	-3.18	122.00	1.046	8	1.68	1.68
2.4" x 7' Pipe Mount	120.0000	0.05	2.75	1.59	122.00	1.046	8	1.68	1.68
2.4" x 7' Pipe Mount	240.0000	0.05	-2.75	1.59	122.00	1.046	8	1.68	1.68
Air 6449 B41 w/ Pipe	0.0000	0.10	0.00	-7.18	118.00	1.036	8	5.65	2.42
Mount									
Air 6449 B41 w/ Pipe	120.0000	0.10	6.21	3.59	118.00	1.036	8	5.65	2.42
Mount	240.0000	0.10	( ) )	0.50	110.00	1.000			2.42
Air 6449 B41 w/ Pipe	240.0000	0.10	-6.21	3.59	118.00	1.036	8	5.65	2.42
Mount	0,0000	0.15	0.00	7 1 0	118.00	1.026	0	675	6.07
AIK32 VDD001146 1 D66A D2	0.0000	0.15	0.00	-/.18	118.00	1.030	8	0.75	6.07
A w/ Mount Pine									
AIR32	120.0000	0.15	6.21	3 50	118.00	1.036	8	6 75	6.07
KRD901146-1-B66A-B2	120.0000	0.15	0.21	5.59	118.00	1.050	0	0.75	0.07
A w/ Mount Pine									
AIR32	240 0000	0.15	-6.21	3 59	118.00	1 036	8	6 75	6.07
KRD901146-1-B66A-B2	210.0000	0.112	0.21	5.57	110.00	1.020	Ŭ	0.75	0.07
A w/ Mount Pipe									
APXVAALL24 43-U-N	0.0000	0.19	0.00	-7.18	118.00	1.036	8	14.69	6.87
A20 w/ Mount Pipe							_		
APXVAALL24 43-U-N	120.0000	0.19	6.21	3.59	118.00	1.036	8	14.69	6.87
A20 w/ Mount Pipe									
APXVAALL24 43-U-N	240.0000	0.19	-6.21	3.59	118.00	1.036	8	14.69	6.87
A20 w/ Mount Pipe									
4449 B71 + B85	0.0000	0.07	0.00	-7.18	118.00	1.036	8	2.09	1.59
4449 B71 + B85	120.0000	0.07	6.21	3.59	118.00	1.036	8	2.09	1.59
4449 B71 + B85	240.0000	0.07	-6.21	3.59	118.00	1.036	8	2.09	1.59
4415 B25	0.0000	0.06	0.00	-7.18	118.00	1.036	8	2.02	1.25
4415 B25	120.0000	0.06	6.21	3.59	118.00	1.036	8	2.02	1.25
4415 B25	240.0000	0.06	-6.21	3.59	118.00	1.036	8	2.02	1.25
SDX1926Q-43	0.0000	0.01	0.00	-7.18	118.00	1.036	8	0.24	0.10
SDX1926Q-43	120.0000	0.01	6.21	3.59	118.00	1.036	8	0.24	0.10
SDX1926Q-43	240.0000	0.01	-6.21	3.59	118.00	1.036	8	0.24	0.10
KRY 112 /1 KRY 112 71	0.0000	0.02	0.00	-/.18	118.00	1.036	8	1.50	0.50
KRY 112 71 KRY 112 71	120.0000	0.02	6.21	3.59	118.00	1.036	8	1.50	0.50
KKY 112 /1 Sector Frame (SiteDro 1	240.0000	0.02	-0.21	5.59	118.00	1.030	8	12.20	0.50
P/N: VEA12 HD)	0.0000	0.00	0.00	-5.16	118.00	1.050	0	15.20	9.20
Sector Frame (SitePro 1	120,0000	0.66	1 18	2 50	118.00	1.036	8	13 20	0.20
$P/N \cdot VFA12-HD$	120.0000	0.00	4.40	2.39	118.00	1.050	0	15.20	9.20
Sector Frame (SitePro 1	240 0000	0.66	-4 48	2 59	118.00	1.036	8	13 20	9.20
P/N: VFA12-HD)	210.0000	0.00	1.10	2.09	110.00	1.050	Ŭ	15.20	9.20
OPA65R-BU6DA w/	0.0000	0.09	0.00	-7.18	110.00	1.016	8	12.25	6.05
Mount Pipe				,			_		
OPA65R-BU6DA w/	120.0000	0.09	6.21	3.59	110.00	1.016	8	12.25	6.05
Mount Pipe									
OPA65R-BU6DA w/	240.0000	0.09	-6.21	3.59	110.00	1.016	8	12.25	6.05
Mount Pipe									
RRUS 4478 B14	0.0000	0.06	0.00	-7.18	110.00	1.016	8	1.84	1.06
RRUS 4478 B14	120.0000	0.06	6.21	3.59	110.00	1.016	8	1.84	1.06
RRUS 4478 B14	240.0000	0.06	-6.21	3.59	110.00	1.016	8	1.84	1.06
7770 w/Mount Pipe	300.0000	0.07	-4.84	-2.79	110.00	1.016	8	6.20	4.94
7770 w/Mount Pipe	60.0000	0.07	4.84	-2.79	110.00	1.016	8	6.20	4.94
7770 w/Mount Pipe	180.0000	0.07	0.00	5.59	110.00	1.016	8	6.20	4.94
800 10965 w/ Mount	300.0000	0.14	-4.84	-2.79	110.00	1.016	8	14.05	7.63
Pipe									
800 10965 w/ Mount	60.0000	0.14	4.84	-2.79	110.00	1.016	8	14.05	7.63
Pipe									
800 10965 w/ Mount	180.0000	0.14	0.00	5.59	110.00	1.016	8	14.05	7.63
Pipe	200.0000	0.00			110.00	1.01.1		0.4-	
P65-16-XLH-RR w/	300.0000	0.08	-4.84	-2.79	110.00	1.016	8	8.37	6.36

# FDH Infrastructure Services<br/>6521 Meridien DriveProjectRaleigh, North Carolina 27616<br/>Phone: (919) 755-1012<br/>FAX: (919) 755-1031Client

Job

tnxTower

Project

Client

CT98078-L, Wilton, CT/Optasite

Page 27 of 41

Date 14:05:16 03/14/22

Designed by Deepak Devulapally

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

#### SBA Network Services, Inc.

PR-007866

Description	Aiming Azimuth	Weight	$Offset_x$	Offset _z	Z	$K_z$	$q_z$	$C_A A_C$ Front	$C_A A_C$ Side
	0	K	ft	ft	ft		psf	$ft^2$	$ft^2$
Mount Pipe				J					
P65-16-XLH-RR w/	60.0000	0.08	4.84	-2.79	110.00	1.016	8	8.37	6.36
Mount Pipe									
P65-16-XLH-RR w/	180.0000	0.08	0.00	5.59	110.00	1.016	8	8.37	6.36
Mount Pipe									
LGP21401 TMA	300.0000	0.04	-4.84	-2.79	110.00	1.016	8	1.63	0.69
LGP21401 TMA	60.0000	0.04	4.84	-2.79	110.00	1.016	8	1.63	0.69
LGP21401 TMA	180.0000	0.04	0.00	5.59	110.00	1.016	8	1.63	0.69
TT19-08BP111-001	300.0000	0.02	-4.84	-2.79	110.00	1.016	8	0.55	0.45
TT19-08BP111-001	60.0000	0.02	4.84	-2.79	110.00	1.016	8	0.55	0.45
TT19-08BP111-001	180.0000	0.02	0.00	5.59	110.00	1.016	8	0.55	0.45
RKUS-II	300.0000	0.06	-4.84	-2.79	110.00	1.016	8	2.52	1.07
RKUS-II	60.0000	0.06	4.84	-2.79	110.00	1.010	8	2.52	1.07
RRUS-II	200.0000	0.06	0.00	2.39	110.00	1.010	0	2.52	1.07
RRUS 4478 D5	60,0000	0.06	-4.04	-2.79	110.00	1.010	0	1.04	1.00
DDIIS 4478 B5	180,0000	0.00	4.04	5 50	110.00	1.010	0 9	1.04	1.00
RRUS 4415 B25	300.0000	0.00	-4.84	_2 70	110.00	1.010	8	1.64	0.68
RRUS 4415 B25	60,0000	0.04	4 84	-2.79	110.00	1.016	8	1.04	0.08
RRUS 4415 B25	180.0000	0.04	0.00	5 59	110.00	1.016	8	1.64	0.68
DC6-48-60-18-8F	300.0000	0.03	-1.81	-1.04	110.00	1.016	8	1.30	1.30
DC6-48-60-18-8F	60.0000	0.03	1.81	-1.04	110.00	1.016	8	1.30	1.30
(3) 12' Sector Mounts	0.0000	1.50	0.00	0.00	110.00	1.016	8	15.85	15.85
[Sabre C10857001C]									
MT6407-77A w/Mount	0.0000	0.11	0.00	-7.18	98.00	0.983	8	5.90	3.74
Pipe									
MT6407-77A w/Mount	120.0000	0.11	6.21	3.59	98.00	0.983	8	5.90	3.74
Pipe									
MT6407-77A w/Mount	240.0000	0.11	-6.21	3.59	98.00	0.983	8	5.90	3.74
Pipe									
MX06FRO660-03_TIA	0.0000	0.20	0.00	-7.18	98.00	0.983	8	20.22	17.97
w/ Mount Pipe									
MX06FRO660-03_TIA	120.0000	0.20	6.21	3.59	98.00	0.983	8	20.22	17.97
w/ Mount Pipe									
MX06FRO660-03_TIA	240.0000	0.20	-6.21	3.59	98.00	0.983	8	20.22	17.97
w/ Mount Pipe									
BXA-80090/8 w/	0.0000	0.05	0.00	-7.18	98.00	0.983	8	8.18	8.51
Mount Pipe									
BXA-80090/8 w/	120.0000	0.05	6.21	3.59	98.00	0.983	8	8.18	8.51
Mount Pipe	240.0000	0.05	( ) )	2.50	00.00	0.000	0	0.10	0.51
BXA-80090/8 W/	240.0000	0.05	-6.21	3.59	98.00	0.983	8	8.18	8.51
DE44204 25 A	0.0000	0.07	0.00	7 1 9	08.00	0.092	0	1.07	1.25
RF44390-25A DE44304 25A	120,0000	0.07	6.00	-/.18	98.00	0.985	0	1.8/	1.25
RF44390-23A RF44390-25A	240.0000	0.07	6.21	3.59	98.00	0.965	0	1.07	1.23
RF44390-23A	240.0000	0.07	-0.21	7 19	98.00	0.965	0	1.07	1.23
RF4440d-13A	120,0000	0.07	6.00	-7.10	98.00	0.983	0 8	1.07	1.13
RF4440d-13A	240.0000	0.07	-6.21	3.59	98.00	0.983	8	1.87	1.13
RRFDC-3315-PF-48	0.0000	0.07	-0.21	-7.18	98.00	0.983	8	3.02	1.15
RRFDC-3315-PF-48	120 0000	0.03	6.00	3 59	98.00	0.983	8	3.02	1.96
(3) 10' x 2' T-Arms	0.0000	1.74	0.00	0.00	96.50	0.978	8	17.87	17.87
60" x 12" x 5" w/ Mount	0.0000	0.07	0.00	-7.18	86.00	0.947	7	6.74	5.07
Pipe									
60" x 12" x 5" w/ Mount	120.0000	0.07	6.21	3.59	86.00	0.947	7	6.74	5.07
Pipe									
60" x 12" x 5" w/ Mount	240.0000	0.07	-6.21	3.59	86.00	0.947	7	6.74	5.07
Pipe									
(3) 2.7' StandOffs	0.0000	0.33	0.00	0.00	86.00	0.947	7	6.18	6.18
1.9"Ø x 9.8' Pipe Mount	120.0000	0.02	3.69	2.13	55.00	0.833	7	1.65	1.65
	Sum	11.39							
	Weight:								

*tnxTower* 

Project

Client

CT98078-L, Wilton, CT/Optasite	
PR-007866	

SBA Network Services, Inc.

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

14:05:16 03/14/22
Designed by
Deepak
Devulapally

28 of 41

Page

Date

# **Dish Pressures - No Ice**

Elevation ft	Dish Description	Aiming Azimuth °	Weight K	Offset _x ft	Offset _z ft	$K_z$	$A_A ft^2$	$q_z$ psf
57.00 57.00 51.00	PR-850 PR-850 PR-850	0.0000 130.0000 145.0000 Sum Weight:	0.04 0.04 0.04 0.12	0.00 4.05 4.27	-4.67 2.34 2.47	0.842 0.842 0.815	25.22 25.22 25.22	16 16 15

# **Dish Pressures - With Ice**

Elevation ft	Dish Description	Aiming Azimuth °	Weight K	Offset _x ft	Offset _z ft	Kz	$A_A ft^2$	$q_z$ psf	tz in
57.00	PR-850	0.0000	0.46	0.00	-4.67	0.842	27.59	5	1.5843
57.00	PR-850	130.0000	0.46	4.05	2.34	0.842	27.59	5	1.5843
51.00	PR-850	145.0000	0.45	4.27	2.47	0.815	27.56	4	1.5667
		Sum	1.37						
		Weight:							

# **Dish Pressures - Service**

Elevation ft	Dish Description	Aiming Azimuth °	Weight K	Offset _x ft	Offset _z ft	Kz	$A_A ft^2$	qz psf
57.00	PR-850	0.0000	0.04	0.00	-4.67	0.842	25.22	7
57.00	PR-850	130.0000	0.04	4.05	2.34	0.842	25.22	7
51.00	PR-850	145.0000	0.04	4.27	2.47	0.815	25.22	6
		Sum	0.12					
		Weight:						

## **Force Totals**

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Ζ	Moments, $M_x$	Moments, $M_z$	
	K	K	Κ	kip-ft	kip-ft	kip-ft
Leg Weight	7.81					
Bracing Weight	3.78					
Total Member Self-Weight	11.60			5.28	-10.41	
Total Weight	29.09			5.28	-10.41	
Wind 0 deg - No Ice		-0.05	-14.94	-1142.31	-7.36	8.66
Wind 30 deg - No Ice		7.17	-12.50	-964.37	-567.39	8.34
Wind 60 deg - No Ice		12.35	-7.11	-548.38	-970.94	8.07
Wind 90 deg - No Ice		14.43	0.05	7.98	-1129.05	5.68
Wind 120 deg - No Ice		12.96	7.54	582.63	-1004.40	-0.76
Wind 150 deg - No Ice		7.29	12.62	979.68	-573.36	-6.94
Wind 180 deg - No Ice		0.06	14.35	1119.04	-13.94	-8.60
Wind 210 deg - No Ice		-7.16	12.53	976.61	545.85	-8.38
Wind 240 deg - No Ice		-12.80	7.41	576.15	976.11	-8.12

tnxTower

Project

Client

#### CT98078-L, Wilton, CT/Optasite

Page 29 of 41

Date

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

## SBA Network Services, Inc.

PR-007866

Designed by Deepak Devulapally

14:05:16 03/14/22

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	· .
		X	Ζ	Moments, $M_x$	Moments, $M_z$	
	K	K	K	kip-ft	kip-ft	kip-ft
Wind 270 deg - No Ice		-14.43	-0.07	1.26	1108.56	-5.74
Wind 300 deg - No Ice		-12.46	-7.24	-554.90	954.90	0.64
Wind 330 deg - No Ice		-7.26	-12.61	-968.53	550.45	6.90
Member Ice	14.23					
Total Weight Ice	80.42			18.08	-40.48	
Wind 0 deg - Ice		-0.23	-7.47	-550.85	-28.02	4.22
Wind 30 deg - Ice		3.45	-6.40	-470.77	-309.87	4.59
Wind 60 deg - Ice		6.22	-3.56	-256.77	-519.90	4.07
Wind 90 deg - Ice		7.21	0.02	18.96	-594.99	2.85
Wind 120 deg - Ice		6.35	3.83	308.20	-525.99	0.01
Wind 150 deg - Ice		3.60	6.40	506.78	-317.19	-3.03
Wind 180 deg - Ice		0.01	7.29	577.22	-41.25	-4.54
Wind 210 deg - Ice		-3.51	6.37	506.01	231.59	-4.81
Wind 240 deg - Ice		-6.40	3.68	299.76	448.85	-4.13
Wind 270 deg - Ice		-7.31	-0.24	4.91	519.42	-1.91
Wind 300 deg - Ice		-6.30	-3.78	-268.68	442.62	0.85
Wind 330 deg - Ice		-3.77	-6.38	-468.98	245.42	3.20
Total Weight	29.09			5.28	-10.41	
Wind 0 deg - Service		-0.02	-6.22	-477.94	0.76	3.60
Wind 30 deg - Service		2.99	-5.20	-403.86	-232.39	3.47
Wind 60 deg - Service		5.14	-2.96	-230.67	-400.40	3.36
Wind 90 deg - Service		6.01	0.02	0.95	-466.23	2.36
Wind 120 deg - Service		5.39	3.14	240.19	-414.33	-0.32
Wind 150 deg - Service		3.04	5.25	405.50	-234.88	-2.89
Wind 180 deg - Service		0.03	5.97	463.52	-1.98	-3.58
Wind 210 deg - Service		-2.98	5.22	404.22	231.07	-3.49
Wind 240 deg - Service		-5.33	3.09	237.50	410.20	-3.38
Wind 270 deg - Service		-6.01	-0.03	-1.85	465.35	-2.39
Wind 300 deg - Service		-5.19	-3.01	-233.39	401.37	0.27
Wind 330 deg - Service		-3.02	-5.25	-405.59	232.99	2.87

# Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice

*tnxTower* 

Project

Client

CT98078-L. V	Nilton.	CT/Optasite

14:05:16 03/14/22

FDH Infrastructure Services 6521 Meridien Drive Raleigh North Carolina 27616

Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

SBA Network Services, Inc.

PR-007866

Designed by Deepak Devulapally

Comb.	Description
No.	
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

## **Maximum Member Forces**

G	<b>E1</b> (1	0	C l'a	C	4 • 1	14 1 4 1	10: 4 :
Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
NO.	л	Type		Load	T.	Moment	Moment
				Comb.	K	kip-ft	kip-ft
T1	120 - 100	Leg	Max Tension	7	15.11	-0.11	0.03
			Max. Compression	10	-21.65	-0.11	-0.06
			Max. Mx	8	-3.09	0.78	0.03
			Max. My	2	-1.07	-0.02	-0.79
			Max. Vy	8	0.92	-0.06	-0.00
			Max. Vx	2	-0.94	-0.00	0.06
		Diagonal	Max Tension	8	3.46	0.00	0.00
			Max. Compression	20	-3.51	0.00	0.00
			Max. Mx	31	0.85	0.03	-0.00
			Max. My	8	-3.25	-0.00	-0.01
			Max. Vy	31	-0.02	0.03	-0.00
			Max. Vx	8	0.00	-0.00	-0.01
		Top Girt	Max Tension	11	0.45	0.00	0.00
			Max. Compression	6	-0.49	0.00	0.00
			Max. Mx	26	-0.05	-0.04	0.00
			Max. My	16	-0.01	0.00	0.00
			Max. Vy	26	0.03	0.00	0.00
			Max. Vx	16	-0.00	0.00	0.00
T2	100 - 80	Leg	Max Tension	7	57.68	-0.32	0.13
		.0	Max. Compression	10	-69.59	0.60	0.36
			Max. Mx	20	46.95	-0.67	-0.14
			Max. My	3	-66.50	-0.08	-0.72
			Max. Vv	8	0.72	-0.43	0.00
			Max. Vx	2	-0.77	0.01	0.46

tnxTower

Project

Client

CT98078-L, Wilton, CT/Optasite

Page 31 of 41

Date 14:05:16 03/14/22

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

#### SBA Network Services, Inc.

PR-007866

Designed by Deepak Devulapally

<i>a</i>		<i>a</i>	<i>a b c</i>	<i>a</i>			
Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Туре		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
		Diagonal	Max Tension	24	6.47	0.00	0.00
			Max. Compression	24	-6.60	0.00	0.00
			Max. Mx	31	1.36	0.03	-0.00
			Max. My	4	-5.32	-0.01	-0.01
			Max. Vy	31	-0.02	0.03	-0.00
			Max. Vx	4	0.00	-0.01	-0.01
T3	80 - 60	Leg	Max Tension	7	92.60	-0.05	-0.02
			Max. Compression	10	-107.76	0.17	0.02
			Max. Mx	18	-80.41	1.32	0.20
			Max. My	16	-7.23	-0.03	0.76
			Max. Vy	19	-4.07	1.31	0.20
			Max. Vx	16	-2.43	-0.03	0.76
		Diagonal	Max Tension	24	4.56	0.00	0.00
			Max. Compression	24	-4.77	0.00	0.00
			Max Mx	31	1.08	0.03	0.00
			Max My	14	-4.13	-0.00	0.01
			Max Vy	31	-0.03	0.03	0.01
			Max Vy	14	-0.05	0.05	0.00
		Ton Cint	Max. VX	14	-0.00	0.00	0.00
		Top Gift	Max Tension	19	0.15	0.00	0.00
			Max. Compression	6	-0.27	0.00	0.00
			Max. Mx	26	-0.10	-0.04	0.00
			Max. My	34	-0.10	0.00	0.00
			Max. Vy	26	-0.03	0.00	0.00
			Max. Vx	34	0.00	0.00	0.00
T4	60 - 40	Leg	Max Tension	7	120.73	-0.16	-0.00
			Max. Compression	10	-139.73	-0.05	0.00
			Max. Mx	31	-63.00	0.22	-0.00
			Max. My	5	-7.19	-0.00	-0.27
			Max. Vy	14	0.13	-0.21	0.06
			Max. Vx	2	0.19	-0.13	-0.23
		Diagonal	Max Tension	24	4.73	0.00	0.00
		0	Max. Compression	24	-4.84	0.00	0.00
			Max. Mx	31	0.81	0.04	0.00
			Max. My	2	-4.48	-0.01	-0.01
			Max. Vv	29	0.03	0.03	-0.00
			Max. Vx	34	-0.00	0.00	0.00
Т5	40 - 20	Leg	Max Tension	15	142.75	0.41	0.03
		218	Max Compression	10	-165 19	-0.43	0.00
			Max Mx	10	-164.95	0.79	-0.00
			Max My	16	-11.25	-0.10	0.69
			Max Vy	10	-0.30	0.79	-0.00
			Max Vy	16	-0.50	-0.10	-0.00
		Diagonal	Max. VA	25	6.20	-0.10	0.09
		Diagonai	Max Tension	23	6.14	0.07	-0.02
			Max. Compression	24	-0.45	0.00	0.00
			Max. Mx	12	1.41	0.12	0.02
			Max. My	12	-0.38	-0.04	0.04
			Max. Vy	31	-0.05	0.09	-0.02
			Max. Vx	12	0.01	0.00	0.00
		Secondary	Max Tension	6	0.33	0.01	-0.00
		Horizontal					
			Max. Compression	5	-0.41	0.00	0.01
			Max. Mx	34	-0.04	0.03	0.00
			Max. My	14	-0.30	0.01	0.01
			Max. Vy	28	0.03	0.03	0.00
			Max. Vx	14	-0.00	0.00	0.00
T6	20 - 0	Leg	Max Tension	15	165.91	0.48	0.03
		-	Max. Compression	10	-192.23	-0.00	0.00
			Max. Mx	10	-179.02	0.91	-0.00
			Max. Mv	16	-13.07	-0.12	0.84
			Max Vv	10	0.33	0.91	-0.00
			Max Vy	16	-0.23	-0.12	0.84
			171UA. YA	10	0.20	0.12	0.04

*tnxTower* 

Project

Client

# CT98078-L, Wilton, CT/Optasite

Page 32 of 41 Date 14:05:16 03/14/22

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

#### SBA Network Services, Inc.

PR-007866

**Designed by** Deepak Devulapally

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
		Diagonal	Max Tension	25	5.98	0.07	-0.01
			Max. Compression	24	-6.19	0.00	0.00
			Max. Mx	32	1.32	0.11	-0.00
			Max. My	12	-6.04	-0.03	0.03
			Max. Vy	29	0.05	0.11	-0.01
			Max. Vx	12	0.00	0.00	0.00
		Secondary	Max Tension	6	0.38	0.00	0.00
		Horizontal					
			Max. Compression	5	-0.45	0.01	0.01
			Max. Mx	34	-0.08	0.04	0.00
			Max. My	14	-0.39	0.01	0.01
			Max. Vy	28	0.03	0.03	0.00
			Max. Vx	14	-0.00	0.00	0.00

# **Maximum Reactions**

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Leg C	Max. Vert	18	195.27	13.08	-6.80
	Max. H _x	18	195.27	13.08	-6.80
	Max. H _z	7	-170.90	-11.76	6.03
	Min. Vert	7	-170.90	-11.76	6.03
	Min. H _x	7	-170.90	-11.76	6.03
	Min. Hz	18	195.27	13.08	-6.80
Leg B	Max. Vert	10	199.03	-12.90	-7.53
0	Max. H _x	23	-170.45	11.51	6.71
	Max. H _z	25	-147.28	9.41	6.95
	Min. Vert	23	-170.45	11.51	6.71
	Min. H _x	10	199.03	-12.90	-7.53
	Min. Hz	12	170.76	-10.25	-7.55
Leg A	Max. Vert	2	196.67	0.71	14.87
-	Max. H _x	22	101.63	1.49	7.41
	Max. H _z	2	196.67	0.71	14.87
	Min. Vert	15	-171.62	-0.70	-13.29
	Min. H _x	11	-84.98	-1.43	-6.86
	Min. H _z	15	-171.62	-0.70	-13.29

# **Tower Mast Reaction Summary**

Load	Vertical	$Shear_x$	$Shear_z$	Overturning	Overturning	Torque
Combination				Moment, $M_x$	Moment, $M_z$	
	Κ	Κ	K	kip-ft	kip-ft	kip-ft
Dead Only	29.09	0.00	0.00	5.29	-10.43	0.00
1.2 Dead+1.6 Wind 0 deg - No	34.91	-0.08	-23.90	-1842.77	-7.74	13.94
Ice						
0.9 Dead+1.6 Wind 0 deg - No	26.18	-0.08	-23.90	-1840.87	-4.57	13.92
Ice						
1.2 Dead+1.6 Wind 30 deg - No	34.91	11.47	-20.00	-1556.11	-910.17	13.44
Ice						
0.9 Dead+1.6 Wind 30 deg - No	26.18	11.47	-20.00	-1554.72	-905.27	13.42
Ice						
1.2 Dead+1.6 Wind 60 deg - No	34.91	19.75	-11.37	-885.79	-1560.46	12.99

tnxTower

Project

Client

CT98078-L, Wilton, CT/Optasite

Page 33 of 41 Date

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

SBA Network Services, Inc.

PR-007866

Designed by Deepak Devulapally

14:05:16 03/14/22

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
-	K	K	K	kip-ft	kip-ft	kip-ft
Ice 0.9 Dead+1.6 Wind 60 deg - No	26.18	19.75	-11.37	-885.68	-1554.32	12.97
1.2 Dead+1.6 Wind 90 deg - No	34.91	23.09	0.07	10.75	-1815.20	9.12
0.9 Dead+1.6 Wind 90 deg - No	26.18	23.09	0.07	9.14	-1808.58	9.11
1.2 Dead+1.6 Wind 120 deg - No Ice	34.91	20.73	12.06	936.67	-1614.25	-1.22
0.9 Dead+1.6 Wind 120 deg - No Ice	26.18	20.73	12.06	933.30	-1608.03	-1.22
1.2 Dead+1.6 Wind 150 deg - No Ice	34.91	11.67	20.19	1576.52	-919.74	-11.16
0.9 Dead+1.6 Wind 150 deg - No Ice	26.18	11.67	20.19	1571.92	-914.84	-11.14
1.2 Dead+1.6 Wind 180 deg - No Ice	34.91	0.10	22.96	1801.13	-18.31	-13.84
0.9 Dead+1.6 Wind 180 deg - No Ice	26.18	0.10	22.96	1796.09	-15.14	-13.82
1.2 Dead+1.6 Wind 210 deg - No Ice	34.91	-11.45	20.05	1571.62	883.74	-13.50
0.9 Dead+1.6 Wind 210 deg - No Ice	26.18	-11.45	20.05	1567.01	885.19	-13.48
1.2 Dead+1.6 Wind 240 deg - No Ice	34.91	-20.48	11.86	926.31	1577.02	-13.06
0.9 Dead+1.6 Wind 240 deg - No Ice	26.18	-20.48	11.86	922.95	1577.16	-13.04
1.2 Dead+1.6 Wind 270 deg - No Ice	34.91	-23.10	-0.11	-0.05	1790.53	-9.22
0.9 Dead+1.6 Wind 270 deg - No Ice	26.18	-23.10	-0.11	-1.65	1790.25	-9.21
1.2 Dead+1.6 Wind 300 deg - No Ice	34.91	-19.93	-11.58	-896.29	1542.91	1.04
No Ice	26.18	-19.93	-11.58	-896.17	1543.11	1.04
No Ice	34.91	-11.01	-20.18	-1562.81	891.13	11.09
No Ice	26.18	-11.61	-20.18	-1561.43	892.58	11.07
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0 deg+1.0	86.24 86.24	-0.23	-7.47	-559.63	-43.52 -30.98	4.31
1.2 Dead+1.0 Wind 30 deg+1.0	86.24	3.45	-6.40	-478.11	-317.94	4.69
1.2 Dead+1.0 Wind 60 deg+1.0	86.24	6.22	-3.56	-260.29	-531.72	4.15
1.2 Dead+1.0 Wind 90 deg+1.0	86.24	7.21	0.02	20.46	-608.18	2.89
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	86.24	6.35	3.83	314.91	-537.89	-0.00
1.2 Dead+1.0 Wind 150	86.24	3.60	6.40	517.13	-325.31	-3.08
1.2 Dead+1.0 Wind 180	86.24	0.01	7.29	588.87	-44.34	-4.62
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	86.24	-3.51	6.37	516.38	233.50	-4.91
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	86.24	-6.40	3.68	306.40	454.64	-4.21
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	86.24	-7.31	-0.24	6.29	526.50	-1.95
1.2 Dead+1.0 Wind 300	86.24	-6.30	-3.78	-272.33	448.30	0.86

tnxTower

#### FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

Job	Page
CT98078-L, Wilton, CT/Optasite	34 of 41
Project	Date
PR-007866	14:05:16 03/14/22
Client SBA Network Services, Inc.	<b>Designed by</b> Deepak Devulapally

Load	Vertical	Shear _x	$Shear_z$	Overturning	Overturning	Torque
Combination				Moment, $M_x$	Moment, $M_z$	
	K	K	K	kip-ft	kip-ft	kip-ft
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	86.24	-3.77	-6.38	-476.30	247.47	3.25
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	29.09	-0.02	-6.22	-475.23	-9.23	3.62
Dead+Wind 30 deg - Service	29.09	2.99	-5.20	-400.73	-243.74	3.49
Dead+Wind 60 deg - Service	29.09	5.14	-2.96	-226.53	-412.73	3.38
Dead+Wind 90 deg - Service	29.09	6.01	0.02	6.45	-478.93	2.37
Dead+Wind 120 deg - Service	29.09	5.39	3.14	247.07	-426.71	-0.32
Dead+Wind 150 deg - Service	29.09	3.04	5.25	413.35	-246.23	-2.90
Dead+Wind 180 deg - Service	29.09	0.03	5.97	471.72	-11.97	-3.60
Dead+Wind 210 deg - Service	29.09	-2.98	5.22	412.08	222.44	-3.51
Dead+Wind 240 deg - Service	29.09	-5.33	3.09	244.38	402.61	-3.39
Dead+Wind 270 deg - Service	29.09	-6.01	-0.03	3.65	458.09	-2.40
Dead+Wind 300 deg - Service	29.09	-5.19	-3.01	-229.26	393.75	0.27
Dead+Wind 330 deg - Service	29.09	-3.02	-5.25	-402.47	224.37	2.88

# **Solution Summary**

	Sum of Applied Forces						
Load	PX	PY	PZ	PX	PY	PZ	% Erroi
Comb.	K	Κ	Κ	Κ	K	K	
1	0.00	-29.09	0.00	0.00	29.09	0.00	0.000%
2	-0.08	-34.91	-23.90	0.08	34.91	23.90	0.000%
3	-0.08	-26.18	-23.90	0.08	26.18	23.90	0.000%
4	11.47	-34.91	-20.00	-11.47	34.91	20.00	0.000%
5	11.47	-26.18	-20.00	-11.47	26.18	20.00	0.000%
6	19.75	-34.91	-11.37	-19.75	34.91	11.37	0.000%
7	19.75	-26.18	-11.37	-19.75	26.18	11.37	0.000%
8	23.09	-34.91	0.07	-23.09	34.91	-0.07	0.000%
9	23.09	-26.18	0.07	-23.09	26.18	-0.07	0.000%
10	20.73	-34.91	12.06	-20.73	34.91	-12.06	0.000%
11	20.73	-26.18	12.06	-20.73	26.18	-12.06	0.000%
12	11.67	-34.91	20.19	-11.67	34.91	-20.19	0.000%
13	11.67	-26.18	20.19	-11.67	26.18	-20.19	0.000%
14	0.10	-34.91	22.96	-0.10	34.91	-22.96	0.000%
15	0.10	-26.18	22.96	-0.10	26.18	-22.96	0.000%
16	-11.45	-34.91	20.05	11.45	34.91	-20.05	0.000%
17	-11.45	-26.18	20.05	11.45	26.18	-20.05	0.000%
18	-20.48	-34.91	11.86	20.48	34.91	-11.86	0.000%
19	-20.48	-26.18	11.86	20.48	26.18	-11.86	0.000%
20	-23.10	-34.91	-0.11	23.10	34.91	0.11	0.000%
21	-23.10	-26.18	-0.11	23.10	26.18	0.11	0.000%
22	-19.93	-34.91	-11.58	19.93	34.91	11.58	0.000%
23	-19.93	-26.18	-11.58	19.93	26.18	11.58	0.000%
24	-11.61	-34.91	-20.18	11.61	34.91	20.18	0.000%
25	-11.61	-26.18	-20.18	11.61	26.18	20.18	0.000%
26	0.00	-86.24	0.00	-0.00	86.24	0.00	0.000%
27	-0.23	-86.24	-7.47	0.23	86.24	7.47	0.000%
28	3.45	-86.24	-6.40	-3.45	86.24	6.40	0.000%
29	6.22	-86.24	-3.56	-6.22	86.24	3.56	0.000%
30	7.21	-86.24	0.02	-7.21	86.24	-0.02	0.000%
31	6.35	-86.24	3.83	-6.35	86.24	-3.83	0.000%
32	3.60	-86.24	6.40	-3.60	86.24	-6.40	0.000%
33	0.01	-86.24	7.29	-0.01	86.24	-7.29	0.000%
34	-3.51	-86.24	6.37	3.51	86.24	-6.37	0.000%
35	-6.40	-86.24	3.68	6.40	86.24	-3.68	0.000%
36	-7.31	-86.24	-0.24	7.31	86.24	0.24	0.000%
37	-6.30	-86.24	-3.78	6.30	86.24	3.78	0.000%

tnxTower

Client

#### Page 35 of 41 CT98078-L, Wilton, CT/Optasite Project Date PR-007866 14:05:16 03/14/22

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

## SBA Network Services, Inc.

#### Designed by Deepak Devulapally

	Sui	m of Applied Forces	3		Sum of Reaction	s	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
38	-3.77	-86.24	-6.38	3.77	86.24	6.38	0.000%
39	-0.02	-29.09	-6.22	0.02	29.09	6.22	0.000%
40	2.99	-29.09	-5.20	-2.99	29.09	5.20	0.000%
41	5.14	-29.09	-2.96	-5.14	29.09	2.96	0.000%
42	6.01	-29.09	0.02	-6.01	29.09	-0.02	0.000%
43	5.39	-29.09	3.14	-5.39	29.09	-3.14	0.000%
44	3.04	-29.09	5.25	-3.04	29.09	-5.25	0.000%
45	0.03	-29.09	5.97	-0.03	29.09	-5.97	0.000%
46	-2.98	-29.09	5.22	2.98	29.09	-5.22	0.000%
47	-5.33	-29.09	3.09	5.33	29.09	-3.09	0.000%
48	-6.01	-29.09	-0.03	6.01	29.09	0.03	0.000%
49	-5.19	-29.09	-3.01	5.19	29.09	3.01	0.000%
50	-3.02	-29.09	-5.25	3.02	29.09	5.25	0.000%

# **Non-Linear Convergence Results**

Load	Converged?	Number	Displacement	Force
Combination	Convergeu?	of Cycles	Tolaranca	Tolaranca
Combination	Vac		0.0000001	0.0000001
1	i es Ves	4	0.0000001	0.00000001
2	Yes	4	0.0000001	0.00000452
3	Yes	4	0.0000001	0.00000466
4	Yes	4	0.0000001	0.00000868
5	Yes	4	0.0000001	0.00000787
6	Yes	4	0.0000001	0.00001048
7	Yes	4	0.0000001	0.00000915
8	Yes	4	0.0000001	0.00000827
9	Yes	4	0.0000001	0.00000750
10	Yes	4	0.0000001	0.00000440
11	Yes	4	0.0000001	0.00000477
12	Yes	4	0.00000001	0.00000830
13	Yes	4	0.00000001	0.00000752
14	Yes	4	0.00000001	0.00001061
15	Yes	4	0.0000001	0.00000928
16	Yes	4	0.0000001	0.00000873
17	Yes	4	0.00000001	0.00000792
18	Yes	4	0.00000001	0.00000421
19	Yes	4	0.00000001	0.00000454
20	Yes	4	0.00000001	0.00000806
21	Yes	4	0.0000001	0.00000734
22	Yes	4	0.0000001	0.00001037
23	Yes	4	0.0000001	0.00000912
24	Yes	4	0.0000001	0.00000798
25	Yes	4	0.0000001	0.00000727
26	Yes	4	0.0000001	0.00000001
27	Yes	4	0.00000001	0.00001738
28	Yes	4	0.00000001	0.00001809
29	Yes	4	0.00000001	0.00001850
30	Yes	4	0.00000001	0.00001847
31	Yes	4	0.00000001	0.00001831
32	Yes	4	0.00000001	0.00001841
33	Yes	4	0.00000001	0.00001840
34	Yes	4	0.00000001	0.00001797
35	Yes	4	0.00000001	0.00001725
36	Yes	4	0.0000001	0.00001689
37	Yes	4	0.00000001	0.00001694
38	Yes	4	0.00000001	0.00001700

tnx	:Tower	Job	CT98078-I V	Vilton CT/Ontasite	Page 36 of 41
FDH Infra 6521	s <b>tructure Services</b> Meridien Drive	Project	PR	2-007866	<b>Date</b> 14:05:16 03/14/22
Raleigh, No Phone: FAX: (	orth Carolina 27616 (919) 755-1012 (919) 755-1031	Client	SBA Netwo	ork Services, Inc.	Designed by Deepak Devulapally
39	Yes	4	0.00000001	0.00000001	
40	Yes	4	0.00000001	0.0000001	
41	Yes	4	0.0000001	0.0000001	
42	Yes	4	0.00000001	0.00000001	
43	Yes	4	0.0000001	0.0000001	
44	Yes	4	0.00000001	0.0000001	
45	Yes	4	0.00000001	0.0000001	
46	Yes	4	0.00000001	0.0000001	
47	Yes	4	0.00000001	0.00000001	
48	Yes	4	0.0000001	0.0000001	
49	Yes	4	0.0000001	0.0000001	
50	Yes	4	0.0000001	0.00000001	

# **Maximum Tower Deflections - Service Wind**

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	120 - 100	2.698	43	0.1870	0.0453
T2	100 - 80	1.930	43	0.1752	0.0440
Т3	80 - 60	1.217	43	0.1448	0.0342
T4	60 - 40	0.668	43	0.1032	0.0214
T5	40 - 20	0.290	43	0.0646	0.0100
T6	20 - 0	0.077	43	0.0301	0.0044

# **Critical Deflections and Radius of Curvature - Service Wind**

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	٥	ft
122.00	3"x12' Omni	43	2.698	0.1870	0.0453	532610
120.00	Lightning Rod	43	2.698	0.1870	0.0453	532610
118.00	Air 6449 B41 w/ Pipe Mount	43	2.621	0.1862	0.0454	532610
110.00	OPA65R-BU6DA w/ Mount Pipe	43	2.312	0.1826	0.0455	266308
96.50	MT6407-77A w/Mount Pipe	43	1.798	0.1713	0.0429	75307
86.00	60" x 12" x 5" w/ Mount Pipe	43	1.418	0.1558	0.0377	32817
57.00	PR-850	43	0.601	0.0970	0.0195	28762
55.00	1.9"Ø x 9.8' Pipe Mount	43	0.558	0.0930	0.0182	28800
51.00	PR-850	43	0.477	0.0852	0.0158	28851

# **Maximum Tower Deflections - Design Wind**

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	120 - 100	10.173	10	0.7016	0.1745
T2	100 - 80	7.287	10	0.6583	0.1698
Т3	80 - 60	4.605	10	0.5451	0.1316
T4	60 - 40	2.530	10	0.3892	0.0825
T5	40 - 20	1.098	10	0.2441	0.0387
T6	20 - 0	0.292	10	0.1138	0.0170

tnxTower	Job	CT98078-L, Wilton, CT/Optasite
FDH Infrastructure Services 6521 Meridien Drive	Project	PR-007866
Raleigh, North Carolina 27616 Phone: (919) 755-1012	Client	SBA Network Services, Inc.

Date 14:05:16 03/14/22 Designed by Deepak Devulapally

37 of 41

Page

SectionElevationHorz.Gov.TiltTwistNo.DeflectionLoadftinComb.°°

FAX: (919) 755-1031

# **Critical Deflections and Radius of Curvature - Design Wind**

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
122.00	3"x12' Omni	10	10.173	0.7016	0.1745	154613
120.00	Lightning Rod	10	10.173	0.7016	0.1745	154613
118.00	Air 6449 B41 w/ Pipe Mount	10	9.882	0.6988	0.1748	154613
110.00	OPA65R-BU6DA w/ Mount Pipe	10	8.722	0.6858	0.1753	77306
96.50	MT6407-77A w/Mount Pipe	10	6.792	0.6439	0.1651	20919
86.00	60" x 12" x 5" w/ Mount Pipe	10	5.361	0.5861	0.1452	8837
57.00	PR-850	10	2.275	0.3662	0.0750	7643
55.00	1.9"Ø x 9.8' Pipe Mount	10	2.113	0.3511	0.0701	7649
51.00	PR-850	10	1.808	0.3217	0.0607	7654

## **Bolt Design Data**

Section	Elevation	Component	Bolt	Bolt Size	Number	Maximum	Allowable	Ratio	Allowable	Criteria
No.		Туре	Grade		Of	Load	Load	Load	Ratio	
	ft			in	Bolts	per Bolt K	per Bolt K	Allowable		
T1	120	Leg	A325N	0.7500	4	3.78	29.82	0.127	1	Bolt Tension
		Diagonal	A325N	0.6250	1	3.46	7.88	0.439	1	Member Block Shear
		Top Girt	A325N	0.3750	1	0.49	4.47	0.109	1	Bolt Shear
T2	100	Leg	A325N	0.7500	4	14.42	29.82	0.484	1	Bolt Tension
		Diagonal	A325N	0.6250	1	6.47	7.88	0.821	1	Member Block Shear
T3	80	Leg	A325N	1.0000	4	23.15	53.01	0.437	1	Bolt Tension
		Diagonal	A325N	0.6250	1	4.56	8.63	0.528	1	Member Block Shear
		Top Girt	A325N	0.3750	1	1.87	4.47	0.418	1	Bolt Shear
T4	60	Leg	A325N	1.0000	4	30.18	53.01	0.569	1	Bolt Tension
		Diagonal	A325N	0.6250	1	4.73	8.63	0.548	1	Member Block Shear
T5	40	Leg	A325N	1.0000	6	23.77	53.01	0.448	1	Bolt Tension
		Diagonal	A325N	0.6250	1	6.45	12.43	0.519	1	Bolt Shear
T6	20	Diagonal	A325N	0.6250	1	6.19	12.43	0.498	1	Bolt Shear

# **Compression Checks**

# Leg Design Data (Compression)

tnxTower

FDH Infrastructure Services 6521 Meridien Drive Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

Page
38 of 41
Date
14:05:16 03/14/22
Designed by
Deepak
Devulapally

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	K	K	$\phi P_n$
T1	120 - 100	1 3/4	20.00	4.88	133.7 K=1.00	2.4053	-21.65	30.39	0.712 1
T2	100 - 80	2 1/2	20.00	5.00	96.0 K=1.00	4.9087	-69.59	112.60	0.618 1
Т3	80 - 60	2 3/4	20.02	4.88	85.2 K=1.00	5.9396	-107.76	157.26	0.685 1
T4	60 - 40	3	20.02	5.00	80.1 K=1.00	7.0686	-139.73	199.04	0.702 1
T5	40 - 20	3 1/4	20.02	5.20	76.8 K=1.00	8.2958	-165.19	242.55	0.681 1
T6	20 - 0	3 1/2	20.02	5.17	70.9 K=1.00	9.6211	-192.23	299.63	0.642 1

¹  $P_u \neq \phi P_n$  controls

	Diagonal Design Data (Compression)								
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	$\phi P_n$	Ratio $P_{u}$
	ft		ft	ft		$in^2$	Κ	K	$\phi P_n$
T1	120 - 100	L2x2x3/16	7.35	3.43	108.4 K=1.04	0.7150	-3.51	12.48	0.282 1
T2	100 - 80	L2x2x3/16	7.43	3.43	108.3 K=1.04	0.7150	-6.60	12.49	0.529 1
Т3	80 - 60	L2x2x3/16	8.38	4.00	121.7 K=1.00	0.7150	-4.24	10.62	0.399 1
T4	60 - 40	L2x2x3/16	9.70	4.65	141.5 K=1.00	0.7150	-4.78	8.06	0.593 1
T5	40 - 20	L3x3x1/4	13.88	6.87	139.3 K=1.00	1.4400	-6.30	16.78	0.376 1
T6	20 - 0	L3x3x1/4	14.96	7.39	149.8 K=1.00	1.4400	-6.19	14.50	0.427 1

¹  $P_u$  /  $\phi P_n$  controls

Secondary Horizontal Design Data (Co	ompression)
--------------------------------------	-------------

Section No.	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	Κ	K	$\phi P_n$
T5	40 - 20	L2x2x1/8	9.61	4.67	136.0 K=0.96	0.4844	-3.41	5.92	0.575 1
Т6	20 - 0	L2x2x1/8	11.11	5.41	153.0 K=0.94	0.4844	-3.74	4.67	0.801 1

¹  $P_u$  /  $\phi P_n$  controls

tn

FDH In 65 Raleigh PhoFA

nxTower	Job	CT98078-L, Wilton, CT/Optasite	Page 39 of 41
<b>frastructure Services</b> 21 Meridien Drive	Project	PR-007866	Date 14:05:16 03/14/22
, North Carolina 27616 me: (919) 755-1012 X: (919) 755-1031	Client	SBA Network Services, Inc.	Designed by Deepak Devulapally

# **Top Girt Design Data (Compression)**

Section No.	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	Κ	K	$\phi P_n$
T1	120 - 100	L2x2x1/8	5.50	5.06	152.8	0.4844	-0.49	4.69	0.104 1
T3	80 - 60	L2x2x1/8	5.54	5.02	K=1.00 151.4 K=1.00	0.4844	-1.87	4.77	0.391 1

¹  $P_u \neq \phi P_n$  controls

# **Tension Checks**

Leg Design Data (Tension)									
Section No.	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	Κ	Κ	$\phi P_n$
T1	120 - 100	1 3/4	20.00	4.88	133.7	2.4053	15.11	108.24	0.140 ⁻¹
T2	100 - 80	2 1/2	20.00	5.00	96.0	4.9087	57.68	220.89	0.261
T3	80 - 60	2 3/4	20.02	4.88	85.2	5.9396	92.60	267.28	0.346 ⁻¹
T4	60 - 40	3	20.02	5.00	80.1	7.0686	120.73	318.09	0.380 1
T5	40 - 20	3 1/4	20.02	4.81	71.0	8.2958	142.76	373.31	0.382 1
T6	20 - 0	3 1/2	20.02	4.84	66.3	9.6211	165.91	432.95	0.383 1

¹  $P_u \neq \phi P_n$  controls

# **Diagonal Design Data (Tension)**

Section	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio
No.									$P_{\mu}$
	ft		ft	ft		$in^2$	K	K	$\phi P_n$
T1	120 - 100	L2x2x3/16	7.35	3.43	69.6	0.4308	3.46	18.74	0.185 1
T2	100 - 80	L2x2x3/16	7.43	3.43	69.5	0.4308	6.47	18.74	0.345 1
T3	80 - 60	L2x2x3/16	7.52	3.57	72.7	0.4308	4.56	18.74	$0.243^{-1}$
T4	60 - 40	L2x2x3/16	9.70	4.65	93.6	0.4308	4.73	18.74	0.253
T5	40 - 20	L3x3x1/4	13.37	6.63	87.4	0.9394	6.14	40.86	0.150 ⁻¹
T6	20 - 0	L3x3x1/4	14.41	7.12	93.8	0.9394	5.98	40.86	0.146 ⁻¹

¹  $P_u \neq \phi P_n$  controls

Secondary Horizontal Design Data (Tension)

tuxToway	Job		Page
inx 1 ower	CT	40 of 41	
FDH Infrastructure Services	Project		Date
6521 Meridien Drive		PR-007866	14:05:16 03/14/22
Raleigh, North Carolina 27616	Client		Designed by
FAX: (919) 755-1012 FAX: (919) 755-1031	SBA Network Services, Inc.		Deepak
			Devulapally

Section	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio
<i>NO</i> .	ft		ft	ft		$in^2$	Κ	K	$\frac{P_u}{\Phi P_v}$
T5	40 - 20	L2x2x1/8	9.61	4.67	179.0	0.4844	3.41	15.69	0.217 1
T6	20 - 0	L2x2x1/8	11.11	5.41	207.3	0.4844	3.74	15.69	0.239 1

¹  $P_u$  /  $\phi P_n$  controls

Top Girt Design Data (Tension)									
Section	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio
No.	ft		ft	ft		in ²	Κ	K	$\frac{P_u}{\phi P_n}$
T1 T3	120 - 100 80 - 60	L2x2x1/8 L2x2x1/8	5.50 5.54	5.06 5.02	102.6 101.7	0.3164 0.3164	0.45 1.87	13.76 13.76	0.033 ¹ 0.136 ¹

¹  $P_u / \phi P_n$  controls

# Section Capacity Table

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	Κ	Κ	Capacity	Fail
T1	120 - 100	Leg	1 3/4	2	-21.65	30.39	71.2	Pass
T2	100 - 80	Leg	2 1/2	32	-69.59	112.60	61.8	Pass
T3	80 - 60	Leg	2 3/4	59	-107.76	157.26	68.5	Pass
T4	60 - 40	Leg	3	89	-139.73	199.04	70.2	Pass
T5	40 - 20	Leg	3 1/4	116	-165.19	242.55	68.1	Pass
T6	20 - 0	Leg	3 1/2	137	-192.23	299.63	64.2	Pass
T1	120 - 100	Diagonal	L2x2x3/16	7	-3.51	12.48	28.2	Pass
							43.9 (b)	
T2	100 - 80	Diagonal	L2x2x3/16	37	-6.60	12.49	52.9	Pass
		-					82.1 (b)	
T3	80 - 60	Diagonal	L2x2x3/16	67	-4.24	10.62	39.9	Pass
							52.8 (b)	
T4	60 - 40	Diagonal	L2x2x3/16	94	-4.78	8.06	59.3	Pass
T5	40 - 20	Diagonal	L3x3x1/4	121	-6.30	16.78	37.6	Pass
		e					51.9 (b)	
T6	20 - 0	Diagonal	L3x3x1/4	142	-6.19	14.50	42.7	Pass
		e					49.8 (b)	
T5	40 - 20	Secondary Horizontal	L2x2x1/8	124	-3.41	5.92	57.5	Pass
T6	20 - 0	Secondary Horizontal	L2x2x1/8	145	-3.74	4.67	80.1	Pass
T1	120 - 100	Top Girt	L2x2x1/8	5	-0.49	4.69	10.4	Pass
		-					10.9 (b)	
T3	80 - 60	Top Girt	L2x2x1/8	61	-1.87	4.77	39.1	Pass
		*					41.8 (b)	
							Summary	
						Leg (T1)	71.2	Pass

	Summary	
Leg (T1)	71.2	Pass
Diagonal	82.1	Pass
(T2)		
Secondary	80.1	Pass
Horizontal		
(T6)		
Top Girt	41.8	Pass
(T3)		

tnx Tower	Job	Page
and tower	CT98078-L, Wilton, CT/Optasite	41 01 41
FDH Infrastructure Services	Project	Date
6521 Meridien Drive	PR-007866	14:05:16 03/14/22
Raleigh, North Carolina 27616 Phone: (919) 755-1012 FAX: (919) 755-1031	Client SBA Network Services, Inc.	Designed by Deepak Devulapally

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	${}^{  heta P_{allow}}_{K}$	% Capacity	Pass Fail
						Bolt Checks RATING =	82.1 <b>82.1</b>	Pass Pass

Program Version 8.1.1.0 - 6/3/2021 File:C:/Users/deepak.devulapally/Desktop/Assigned Projects/CT98078-L - Wilton, CT_Optasite/PR-007866_SA_Verizon/R.0/Analysis/ReportedTower/CT98078-L, Wilton, CT_Optasite.eri

## Self Support Anchor Rod Capacity

Site Info	
Site #	CT98078-L-03
Site Name	Wilton Tower
Project #	PR-007866

Analysis Considerations	
TIA-222 Revision	G
Grout Considered:	No
l _{ar} (in)	1
Eta Factor, η	0.5

Applied Loads					
	Comp.	Uplift			
Axial Force (kips)	199.03	171.62			
Shear Force (kips)	14.94	13.31			

Considered Eccentricity	
Leg Mod Eccentricity (in)	0.000
Anchor Rod N.A Shift (in)	0.000
Total Eccentricity (in)	0.000
** * * ** *** * *	

Leg Mod Eccentricity (in)	0.000		
Anchor Rod N.A Shift (in)	0.000		
Total Eccentricity (in)	0.000		
*Anchor Rod Eccentricity Appli	ied		
Conr	nection Properties		Analysis Results
Conr Anchor Rod Data	nection Properties	Anchor Rod Summary	Analysis Results (units of kips, kip-in
Conr Anchor Rod Data (6) 1" ø bolts (A449 N; Fy=92	nection Properties 2 ksi, Fu=120 ksi)	Anchor Rod Summary Pu_c = 33.17	Analysis Results (units of kips, kip-in φPn_t = 58.18 Stress Rating

Mu = n/a



φMn = n/a

Pass

# Pier and Pad Foundation

Site # :	CT98078-L-03
Site Name:	Wilton Tower
Project Number:	PR-007866

TIA-222 Revision: G Tower Type: Self Support

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis Reactions				
Compression, <b>P</b> _{comp} :	199.03	kips		
Compression Shear, Vu_comp:	14.94	kips		
Uplift, <b>P_{uplift}:</b>	171.62	kips		
Uplift Shear, <b>V</b> _{u_uplift} :	13.31	kips		
Tower Height, <b>H</b> :	120	ft		
Base Face Width, <b>BW</b> :	11.5	ft		
BP Dist. Above Fdn, <b>bp_{dist}:</b>	2	in		

Foundation Analysis Checks					
	Capacity	Demand	Rating	Check	
Uplift (kips)	475.86	171.62	36.1%	Pass	
Lateral (Sliding) (kips)	157.44	13.31	8.5%	Pass	
Bearing Pressure (ksf)	9.77	1.85	19.0%	Pass	
Pier Flexure (Comp.) (kip*ft)	851.87	104.58	12.3%	Pass	
Pier Flexure (Tension) (kip*ft)	584.40	93.17	15.9%	Pass	
Pier Compression (kip)	3374.26	207.94	6.2%	Pass	
Pad Flexure (kip*ft)	2102.07	339.07	16.1%	Pass	
Pad Shear - 1-way (kips)	361.68	67.72	18.7%	Pass	
Pad Shear - 2-way (Comp) (ksi)	0.164	0.053	32.5%	Pass	

Structural Rating:	32.5%
Soil Rating:	36.1%

Pier Properties		
Pier Shape:	Circular	
Pier Diameter, <b>dpier</b> :	3	ft
Ext. Above Grade, E:	0.5	ft
Pier Rebar Size, <b>Sc</b> :	8	
Pier Rebar Quantity, <b>mc</b> :	16	
Pier Tie/Spiral Size, St:	4	
Pier Tie/Spiral Quantity, mt:	10	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, <b>cc</b> _{pier} :	3	in

Pad Properties		
Depth, D:	8.5	ft
Pad Width, W ₁ :	19	ft
Pad Thickness, <b>T</b> :	2	ft
Pad Rebar Size (Bottom dir. 2), <b>Sp</b> ₂ :	9	
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	26	
Pad Clear Cover, cc _{pad} :	3	in

Material Properties	i i	
Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, δ <b>c</b> :	150	pcf

Soil Properties		
Total Soil Unit Weight, $\gamma$ :	120	pcf
Ultimate Net Bearing, Qnet:	12.000	ksf
Cohesion, <b>Cu</b> :		ksf
Friction Angle, φ:	30	degrees
SPT Blow Count, N _{blows} :	8	
Base Friction, $\mu$ :	0.5	
Neglected Depth, N:	3.33	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	N/A	ft

<--Toggle between Gross and Net





GPD Engineering And Architecture Professional Corporation 520 South Main Street, Suite 2531 Akron, OH 44311 (317) 295-3174

> Maser Consulting Contact: Peter.albano@colliersengineering.com (856) 371-9457

## **Post-Modification Antenna Mount Analysis Report and PMI Requirements**

Mount Fix

SMART Tool Project #: 10108062 GPD Project #: 2021740.467920.02 Maser Project #: 21777786

October 19, 2021

Site Information

Site ID: Site Name: Carrier Name: Address:

467920-VZW / WILTON WEST CT WILTON WEST CT Verizon Wireless 160 Deer Run Road Wilton, Connecticut 06897, Fairfield County 41.241372° -73.469889°

Structure Information

Tower Type: Mount Type:

Latitude:

Longitude:

118-Ft Self Support 10.50-Ft T-Frames

FUZE ID # 16092793

#### Analysis Results

T-Frames: 85.6% Pass

***Contractor PMI Requirements: Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com Contractor - Please Review Specific Site PMI Requirements Upon Award **Requirements also Noted on Mount Modification Drawings** Requirements may also be Noted on A & E drawings For additional questions and support, please reach out to: pmisupport@colliersengineering.com

Report Prepared by: Eric Nieto

Respectfully Submitted by:

Christopher J. Scheks, P.E. Connecticut #: 0030026



#### Executive Summary:

The objective of this report is to summarize the analysis results of the antenna support mount including the proposed modifications at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

## **Sources of Information:**

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS Site ID: 325159, dated 9/24/2021
Mount Mapping Report	Structural Components Site #: 16092793, dated 4/20/2021
Previous Mount Analysis Report	GPD Project #: 2021740.467920.01, dated 10/7/2021
Proposed Mount Modification Design	GPD Project #: 2021740.467920.02, dated 10/19/2021

#### Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H	
Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), V _{ULT} : Ice Wind Speed (3-sec. Gust): Design Ice Thickness: Risk Category: Exposure Category: Topographic Category: Topographic Feature Considered: Topographic Method: Ground Elevation Factor, K _e :	116 mph 50 mph 1.00 in II B 1 N/A N/A 0.978
Seismic Parameters:	Ss: S1:	0.243 g 0.057 g
Maintenance Parameters:	Wind Speed (3-sec. Gust): Maintenance Live Load, Lv: Maintenance Live Load, Lm:	30 mph 250 lbs. 500 lbs.
Analysis Software:	RISA-3D (V17.0.4)	

#### Final Loading Configuration:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status	
		6	JMA Wireless	MX06FRO660-03		
	98.00	98.00	3	Samsung	MT6407-77A	Addad
06.00			3	Samsung	RF4439d-25A	Audeu
96.00			58.00	98.00	3	Samsung
		3	Amphenol Antel	BXA-80090/8	Dotainad	
		2	Raycap	RRFDC-3315-PF-48*	Recalled	

The following equipment has been considered for the analysis of the mounts:

* Equipment to be flush mounted directly to the Self Support. They are not mounted on t-frame mounts and are not included in this mount analysis.

The recent mount mapping did not report existing OVP units. However, it is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

#### BASELINE mount weight per SBA agreement: 1740 lbs

#### Increase in mount weight due to Verizon loading change per SBA agreement: 389 lbs

The weights listed above includes 3 sectors.

#### **Standard Conditions:**

- 1. All engineering services are performed on the basis that the information provided to GPD and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to GPD to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. GPD is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

0	Channel, Solid Round, Angle, Plate	ASTM A36 (Gr. 36)
0	HSS (Rectangular)	ASTM 500 (Gr. B-46)
0	Pipe	ASTM A53 (Gr. B-35)
0	Threaded Rod	F1554 (Gr. 36)
0	Bolts	ASTM À325, ÁSTM A307
		,

8. Any mount modifications listed under Sources of Information are assumed to have been installed per the design specifications.

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by GPD.

Component	Utilization %	Pass/Fail							
Standoff Horizontal	24.4 %	Pass							
Standoff Vertical End	27.1 %	Pass							
Standoff Vertical Start	18.4 %	Pass							
Face Horizontal	85.6 %	Pass							
Mount Pipe (P2 STD)	39.3 %	Pass							
Tieback	33.5 %	Pass							
Mod Mount Pipe (P2.5 STD)	22.7 %	Pass							
Mod Stabilizer Pipe	13.3 %	Pass							
Mount Connection	81.6 %	Pass							
Structure Rating – (Controllin	85.6%								

## Analysis Results:

#### **Recommendation:**

The existing mounts will be **SUFFICIENT** for the final loading after the proposed modifications are successfully completed.

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

#### Attachments:

- 1. Mount Photos
- 2. Mount Mapping Report (for reference only)
- 3. Analysis Calculations
- 4. Contractor Required PMI Report Deliverables
- 5. Antenna Placement Diagrams
- 6. TIA Adoption Wind Speed Letter



		Ante	nna Mount Ma	pping	Form (	PATEN	T PEN	DING)		V4.0	Updated on 3-3	FCC #
MASED	Tower Owner:	SBA					Mapping	Date:			4/20/2021	
	Site Name:	Wilton We	st CT				Tower Type:				Self S	upport
	Site Number or ID:	16092793					Tower He	ight (Ft.):	1	00		
	Mapping Contractor:	Structural	Components				Mount Ele	evation (Ft	.):		ę	2
This antenna mapping form is the property o modification or disclosure by any method is requirements that may apply. TES is not war	of TES and under PATENT PENDING. The formation prohibited except by express written permission rantying the usability of the safety climb as it must	in contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, p of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and oth the assessed rotor to each use in compliance with OSHA compliance with OSHA compliant with aNSI/ASSE A 10.48, OSHA, FCC, FAA and oth										publication, ner safety
<b></b>					Mount Pip	e Configura	tion and G	eometries	[Unit = Inches]			
			Mount Pipe Size & L	ength.	Vertical Offset Dimension	Horizontal Offset "C1, C2, C3, etc."	Sector / Position	•	/ount Pipe Size & Len	gth	Vertical Offset Dimension	Horizontal Offset "C1, C2, C3, etc."
		A1	2-3/8x .15x 72		66.00	3.25	C1	2-3/8x .15	ix 72		64.75	3.50
	A2	2-3/8x .15x 72		61.75	49.75	C2	2-3/8x .15	ix 72		61.50	50.00	
		A3	2-3/8x .15x 72		66.88	71.75	C3	2-3/8x .15	x 72		66.00	71.00
		A4	2-3/8x .15x 72		61.50	98.75	C4	2-3/8x .15	x 72		61.75	97.00
		A5	2-3/8x .15x 72		66.00	126.25	C5	2-3/8x .15	x 72		62.50	124.50
Please insert the sketches	of the antenna mount from the	A6	0.0/0.15.70				C6					
"Sketches" tab with din	on the antenna mount from the	B1 B2	2-3/8X .15X /2		65.25	4.25	D1					
sketches tab with un	and the street of the test	B2 B3	2-3/8x .15x 72		65.00	71.50	D2					
		B4	2-3/8x .15x 72		62.00	97.75	D4					
		B5	2-3/8x .15x 72		65.50	124.75	D5					
		B6					D6					
			Distance between bo	ottom rai	l and mour	t CL elevat	on (dim d	). Unit is ir	nches. See 'Mount El	ev Ref' tab	for details. :	23.00
			Distanc	e from to	op of botto	m support i	ail to lowe	est tip of a	nt./eqpt. of Carrier a	above. (N/A	A if > 10 ft.) :	48
			Distance	e from to	p of bottor	n support ra	ail to highe	est tip of a	nt./eqpt. of Carrier b	pelow. (N/A	\ if > 10 ft.) :	
					Please ent	er addition:	al infomati	ion or con	nments below.			
				(5.)		-		al 6 al				
		Tower Fac	e Width at Mount Elev.	(ft.):		Tower Leg	Size or Pole	Shaft Diar	neter at Mount Elev. (	in.):		2.625
		For I-Arm	s/Platforms on monopol	es, repor	the weld si	ze from the	main stand	off to the	plate bolting into the d	collar moun		
SECTOR B	SECTOR C		Enter antenn	a model.	If not labe	led, enter "	Unknown'	".	Mountir [Units are inc	ng Location hes and de	s grees]	Photos of antennas
LEG B	LEG C	Ants. Items	Antenna Models if Known	Width (in.)	Depth (în.)	Height (în.)	Coax Size and Qty	Antenna Center- line (Ft.)	Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	Horiz. Offset "h" (Use "-" if Ant. is behind)	Antenna Azimuth (Degrees)	Photo Numbers
×							Sector A	1				
		Ant _{1a}										
SECTOR A-/		Ant _{1b}	bxa-80090-8cf-edin	8.25	6.00	96.00	2) 1-5/8" 7	92.4375	37.75	10.83	335.00	152, 154
		Ant					, ,					
	+ Horizontal	Ant										
	Offset "h"	Ant	bCCo ash AvAF	12.00	7.00	25.50	hummore	04 5417	0.05	6.50	225.00	100 170
		Antzb	000d 1111 4x45	12.00	7.00	25.50	Jumpers	94.5417	8.25	-0.50	335.00	108-170
		Ant _{2c}										
		Ant _{3a}		1.1								
Antio Antio Antio	Antsa Antsa	Ant _{3b}	sbnhh-1d85b	12.00	7.50	73.00	jumpers	93.9896	20.00	9.25	335.00	184,186
		Ant _{3c}										
් Antib සි Antab කි	Antse 🖆 Antse Antse	Ant _{4a}										
	→ → → → → → → → → → → → → → → → → → →	Ant _{4b}	b13 rrh 4x30	12.00	7.50	20.50	jumpers	93.125	25.00	-7.00	335.00	194,202
	ă – ă –	Ant.					1					
		Ant.										
	<b>·····································</b>	Ant _{5a}										
			sbnhh-1d85b	12.00	7.50	73.00	jumpers	94.0417	18.50	8.75	335.00	216,186
		Ant _{5c}										
Antic Antze Antic Antic Antic												
C1 C2												
		Ant on										
C4		Standoff										
	C5	Ant on										
1-		Tower										
Antenna Lavout (Lo	oking Out From Tower)	Ant on										
	outroll lower	Tower										

Mount Azimuth (Degree)		Tower Leg Azimuth (Degree)		Sector B												
	for Each Sec	tor		for Each Sector		Ant _{1a}										
Sector A:	335.00	Deg	Leg A:	115.00	Deg	Ant _{1b}	bxa-80090-8cf-edin	8.25	6.00	96.00	2) 1-5/8" T	92.4375	37.00	10.75	95.00	224,154
Sector B:	95.00	Deg	Leg B:	235.00	Deg	Ant _{1c}										
Sector C:	220.00	Deg	Leg C:	355.00	Deg	Ant _{2a}										
Sector D:		Deg	Leg D:		Deg	Ant _{2b}	b66a rrh 4x45	12.00	7.00	25.50	jumpers	94.5417	8.75	-6.00	95.00	237,170
		Clim	ng Fac	ility Information	0	Antar										
Location:	130.00	Deg		Sector B		Anta										
Location.	Correci	on Tyr		Mederate correction observed		Ant	shahh 1d95h	12.00	7 50	72.00	iumpore	04 0417	17.50	0.75	05.00	240 196
Climbing	COTTOS	on typ	le.	Climbing path was obstructed.		Ant _{3b}	201111-10920	12.00	7.50	73.00	Jumpers	94.0417	17.50	6.75	95.00	240,186
Facility	Acc	.ess:		climbing path was obstructed.		Ant _{3c}										
	Conc	dition:		Good condition.		Ant _{4a}										
						Ant _{4b}	b13 rrh 4x30	12.00	7.50	20.50	jumpers	93.1875	24.75	-6.50	95.00	255,202
						Ant _{4c}										
						Ant _{5a}										
						Ant _{5b}	sbnhh-1d85b	12.00	7.50	73.00	jumpers	94.0833	17.50	8.75	95.00	258,186
						Ant _{5c}										
						Ant on										
						Standoff										
						Standoff										
						Ant on										
Plea	ise insert a pł	noto of	f the mo	ount centerline measurement he	re.	Tower										
						Ant on										
						Tower										
											Sector C					
						Ant _{1a}										
						Ant _{1b}	bxa-80090-8cf-edin	8.28	6.00	96.00	2) 1-5/8" T	92.375	37.25	11.50	220.00	267,154
						Ant _{1c}										
						Ant _{za}										
						Ant _{2b}	b66a rrh 4x45	12.00	7.00	25.50	jumpers	94.5208	8.25	-6.50	220.00	267,170
						Ant _{2c}										
		M	Th			Ant _{3a}										
Г	4 A		ШA	L L		Ant _{3b}	sbnhh-1d85b	12.00	7.50	73.00	jumpers	93.9792	19.25	9.25	220.00	268,186
						Ant _{3c}										
						Ant _{4a}										
1	╻┍╼╼╴╻		T	TTP OF COUPMENT		Anta	b13 rrh 4x30	12.00	7.50	20.50	jumpers	93.0833	25.75	0.75	220.00	268.202
						Ant					Jan 6 2 2					
Г				DISTANCE FROM TO	OF MAN	Ant-										
_			111	OF ANT_/EQPT. OF (N/A IF > 10 FT.)	CARRIER ABOVE.	Ant.	chabb_1d95b	12.00	7 50	72.00	iumporc	04	15.50	0.75	220.00	260 106
						Ant	2011111-10920	12.00	7.30	73.00	Jumpers	54	15.50	0.75	220.00	200,100
티	╞╤═Ҷ╞	TEE	TTT,		OF MAIN	Ant _{5c}										
EXISTING PLATFORM-				PLATFORM MEMBER OF ANT_/EQFT. OF (N/A IF > 10 FT.)	TO HIGHEST TIP CARRIER DELOW.	Standoff										
	а		i II n	TIP OF EQUIPMENT		Ant on										
ſ	7 1					Standoff										
						Ant on										
c		구려	2	p		Tower										
L	ᆔᆔ	Щ	111-	J L.		Ant on										
			50840			Tower					Sector D					
	<b>,</b> , , , , , , , , , , , , , , , , , ,	100 100	<u> </u>			Ant										
		ľ		1		Ant.										
1				₽ I I		Ant										
d				<b>H</b>		Ant										
סי			- F	TIP OF EQUIPMENT		Antza										
						Ant _{2b}										
Г		i K		DISTANCE FROM T SUPPORT RAL TO	OP OF BOTTOM LOWEST TIP OF	Ant _{2c}										
_				ANT,/EDPT. OF C (N/A IF > 10 FT	ARRIER ABOVE. .)	Ant _{3a}										
			1			Ant _{3b}										
c						Ant _{3c}										
EXISTING SECTOR FRA		.		DISTANCE FROM 1 SUPPORT RAL TO	OP OF BOTTOM HIGHEST TIP OF	Ant _{4a}										
MOL	UNT	K	<u> </u>	(N/A IF > 10 FT	]	Ant _{4b}										
					Ant _{4c}											
						Ant _{5a}										
1						Ant _{5b}										
						Ant _{5c}										
						Ant on										
						Standoff										
For T-Arms	/Platforms on	monop	oles, re	cord the weld size from the main s	tandoff	Ant on										
member to	the plate bolt	ing into	o the col	llar. See below for reference.		Standoff										
		-	~			Ant on										
Ŋ				- \/		Ant on										
П	_			M		Tower										



Observed Safety and Structural Issues During the Mount Mapping								
Issue #	Description of Issue	Photo #						
1								
2								
3								
4								
5								
6								
7								
8								

Observed Obstructions to Tower Lighting System										
If the tower lighting system is being obstructed by the carrier's equipment (for example: a light nested by the antennas), please provide photos and fill in the information below. Photo #										
Description of Obstruction:										
Type of Light: Photo # Additional Comments:										
Lighting Technology:										
Elevation (AGL) at base of light (Ft.): Photo #										
Is a service loop available? Photo # Photo #										
Is beacon installed on an extension? Photo #										

#### Mapping Notes

1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)

2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.

3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.

4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.

5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.

6. Please measure and report the size and length of all existing antenna mounting pipes.

7. Please measure and report the antenna information for all sectors.

8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.

Standard Conditions

V4.0 Updated on 3-31 Antenna Mount Mapping Form (PATENT PENDING) MASER Mapping Date: Tower Type: Tower Owner: SBA 4/20/2021 Site Name: Wilton West CT Self Support Site Number or ID: 16092793 Tower Height (Ft.): Mapping Contractor Structural Components Mount Elevation (Ft.): This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety equirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements Please Insert Sketches of the Antenna Mount Duke 41201







FCC #

100

92

								V4.0	Updated on 3-31-2021	
				Ant	onna I	Mount Manning Form (PATEN			FCC #	
				Am	enna i		II FENDI	•0)		
MA	SER	Tower Owner:	SBA			Mapping Date: 4/2				
CONSU	LTINGRA	Site Name:		Wilton W	est CT		Tower Type:		Self Support	
		Site Number or ID:		1609279	3		Tower Height	(Ft.):	100	
Mapping Contractor:					I Compon	ents	Mount Elevation	on (Ft.):	92	
This antenna mapping form modification or disclosure b requirements that may app	n is the property by any method is	of TES and under PATENT PENDING. T s prohibited except by express written	he formatio permission	n containe of TES. All r	d herein is o neans and i od prior to	considered confidential in nature and is to be used on methods are the responsibility of the contractor and the pack use in compliance with OSHA requirements.	y for the specific on he work shall be c	customer it was intended for. Reproduction, ompliant with ANSI/ASSE A 10.48, OSHA, FCC	ransmission, publication, , FAA and other safety	
requirements that may app	ny. realishot wa	mantying the usability of the safety chi	no as it mu:	st be assess	eu prior to	each use in compnance with Osna requirements.				
Terrerieire	-	Discretes (Cise (in )	1	Pleas	se enter i	nformation about transmission lines.				
Line Type	Quantity	Please add a description if	Locat	ted on	Photo		Additional	Comments		
(Pick from List)	Quantity	using type "Other".	Towe	r Face	#		Additional	comments		
(*************						All Sectors				
Соах	12	1.5/8tx	alph	na leg	8-11.20					
Hybrid	2	15	alph	na leg	8-11 22					
nyona	-	1.5	uipi	iu ieg	0 11,22					
				DI						
Fauinment Tune	-	1	Midele	Please e	nter Info	rmation about additional RF equipment.	1	1		
(Pick from List)	Quantity	Model Numbers if Known	(in)	(in )	(in)	Location	Photo #	Additional Comme	ents	
(FICK HOIT LISC)			(11.)	(11.)	<u>    (iii.)</u>	Sector A	I			
Other	1	rrfdc-3315-pf-48	14.50	9.00	10.25	mounted on alpha leg	126 125	hybrid line ran to raycan		
Other	1	1110C-3313-p1-48	14.50	5.00	15.25		120,125			
						Sector B				
Other	1	rrfdc-3315-pf-48	14.50	9.00	19.25	mounted on gamma leg	125,126	hybrid line ran to raycan		
								in bine num to rayedp		
				+						
				+						
			-							
				-						
					_	Sector C				
				-						
	_									

Equipment Type (Pick from List)	Quantity	Model Numbers if Known	Width (in.)	Depth (in.)	Height (in.)	Location	Photo #	Additional Comments		
Sector D										
						Ground Equipment				









#### **Basic Load Cases**

	BLC Description	Category	X Gra	. Y Gra	Z Grav	. Joint	Point	DistribA	rea(Member)	Surface(Plate/W
1	Antenna D	None					108			
2	Antenna Di	None					108			
3	Antenna Wo (0 Deg)	None					108			
4	Antenna Wo (30 Deg)	None					108			
5	Antenna Wo (60 Deg)	None					108			
6	Antenna Wo (90 Deg)	None					108			
7	Antenna Wo (120 Deg)	None					108			
8	Antenna Wo (150 Deg)	None					108			
9	Antenna Wo (180 Deg)	None					108			
10	Antenna Wo (210 Deg)	None					108			
11	Antenna Wo (240 Deg)	None					108			
12	Antenna Wo (270 Deg)	None					108			
13	Antenna Wo (300 Deg)	None					108			
14	Antenna Wo (330 Deg)	None					108			
15	Antenna Wi (0 Deg)	None					108			
16	Antenna Wi (30 Deg)	None					108			
17	Antenna Wi (60 Deg)	None					108			
18	Antenna Wi (90 Deg)	None					108			
19	Antenna Wi (120 Deg)	None					108			
20	Antenna Wi (150 Deg)	None					108			
21	Antenna Wi (180 Deg)	None					108			
22	Antenna Wi (210 Deg)	None					108			
23	Antenna Wi (240 Deg)	None					108			
24	Antenna Wi (270 Deg)	None					108			
25	Antenna Wi (300 Deg)	None					108			
26	Antenna Wi (330 Deg)	None					108			
27	Antenna Wm (0 Deg)	None		-			108			
28	Antenna W/m (30 Deg)	None					108			
29	Antenna W/m (60 Deg)	None					108			
30	Antenna W/m (00 Deg)	None					108			
31	Antenna W/m (120 Deg)	None					108			
32	Antenna W/m (120 Deg)	None					108			
33	Antenna W/m (180 Deg)	None					108			
34	Antenna W/m (210 Deg)	None					108			
35	Antenna Wm (210 Deg)	None		-			108			
36	Antenna W/m (270 Deg)	None					100			
37	Antenna Wm (270 Deg)	None					100			
20	Antenna Wm (300 Deg)	None					100			
20	Structure D	None		1			100			
40	Structure D	None		- 1				12		
40	Structure Ma. (0 Deg)	None						9/		
41	Structure Wo (0 Deg)	None						Q/		
42	Structure Wo (30 Deg)	None						04		
43		None						04		
44	Structure Wo (90 Deg)	None						04		
45	Structure vvo (120 Ded)	None						04		
46	Structure vvo (150 Deg)	None						84		
4/	Structure Wo (180 Deg)	None						84		
48	Structure vvo (210 Deg)	None						84		
49	Structure vvo (240 Deg)	None						84		
50	Structure vvo (270 Deg)	None						84		
51	Structure Wo (300 Deg)	None						84		
52	Structure Wo (330 Deg)	None						84		
53	Structure Wi (0 Deg)	None						84		
54	Structure Wi (30 Deg)	None						84		
55	Structure Wi (60 Deg)	None						84		
56	Structure Wi (90 Deg)	None						84		


### Basic Load Cases (Continued)

	BLC Description	Category	X Gra	Y Gra	Z Grav	. Joint	Point	Distrib	Area(Member)	Surface(Plate/W
57	Structure Wi (120 Deg)	None						84		-
58	Structure Wi (150 Deg)	None						84		
59	Structure Wi (180 Deg)	None						84		
60	Structure Wi (210 Deg)	None						84		
61	Structure Wi (240 Deg)	None						84		
62	Structure Wi (270 Deg)	None						84		
63	Structure Wi (300 Deg)	None						84		
64	Structure Wi (330 Deg)	None						84		
65	Structure Wm (0 Deg)	None						84		
66	Structure Wm (30 Deg)	None						84		
67	Structure Wm (60 Deg)	None						84		
68	Structure Wm (90 Deg)	None						84		
69	Structure Wm (120 Deg)	None						84		
70	Structure Wm (150 Deg)	None						84		
71	Structure Wm (180 Deg)	None						84		
72	Structure Wm (210 Deg)	None						84		
73	Structure Wm (240 Deg)	None						84		
74	Structure Wm (270 Deg)	None						84		
75	Structure Wm (300 Deg)	None						84		
76	Structure Wm (330 Deg)	None						84		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	Antenna Ev	None					108			
82	Antenna Eh (0 Deg)	None					72			
83	Antenna Eh (90 Deg)	None					72			
84	Structure Ev	ELY		052						
85	Structure Eh (0 Deg)	ELZ	13							
86	Structure Eh (90 Deg)	ELX			.13					

#### Load Combinations

	Description	SF	Del.	SRSSB.	.Fa.	B	Fa	BLC	Fa.	B	Fa	.B	Fa	в	Fa	в	Fa	.B	.Fa	.в	Fa	.В	Fa
1	1.2D+1.0Wo (0 Deg)	Y	Υ	1	1.2	39	1.2	3	1	41	1												
2	1.2D+1.0Wo (30 Deg)	Y	Y	1	1.2	39	1.2	4	1	42	1												
3	1.2D+1.0Wo (60 Deg)	Y	Υ	1	1.2	39	1.2	5	1	43	1												
4	1.2D+1.0Wo (90 Deg)	Y	Υ	1	1.2	39	1.2	6	1	44	1												
5	1.2D+1.0Wo (120 Deg)	Y	Υ	1	1.2	39	1.2	7	1	45	1												
6	1.2D+1.0Wo (150 Deg)	Y	Y	1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0Wo (180 Deg)	Y	Υ	1	1.2	39	1.2	9	1	47	1												
8	1.2D+1.0Wo (210 Deg)	Y	Υ	1	1.2	39	1.2	10	1	48	1												
9	1.2D+1.0Wo (240 Deg)	Y	Υ	1	1.2	39	1.2	11	1	49	1												
10	1.2D+1.0Wo (270 Deg)	Y	Υ	1	1.2	39	1.2	12	1	50	1												
11	1.2D+1.0Wo (300 Deg)	Y	Υ	1	1.2	39	1.2	13	1	51	1												
12	1.2D+1.0Wo (330 Deg)	Y	Υ	1	1.2	39	1.2	14	1	52	1												
13	1.2D + 1.0Di + 1.0Wi (0 Deg)	Y	Υ	1	1.2	39	1.2	2	1	40	1	15	1	53	1								
14	1.2D + 1.0Di + 1.0Wi (30 Deg)	Y	Υ	1	1.2	39	1.2	2	1	40	1	16	1	54	1								
15	1.2D + 1.0Di + 1.0Wi (60 Deg)	)Y	Υ	1	1.2	39	1.2	2	1	40	1	17	1	55	1								
16	1.2D + 1.0Di + 1.0Wi (90 Deg)	)Y	Υ	1	1.2	39	1.2	2	1	40	1	18	1	56	1								
17	1.2D + 1.0Di + 1.0Wi (120 Deg)	Y	Υ	1	1.2	39	1.2	2	1	40	1	19	1	57	1								
18	1.2D + 1.0Di + 1.0Wi (150 Deg)	Y	Y	1	1.2	39	1.2	2	1	40	1	20	1	58	1								
19	1.2D + 1.0Di + 1.0Wi (180 Deg)	Y	Υ	1	1.2	39	1.2	2	1	40	1	21	1	59	1								
20	1.2D + 1.0Di + 1.0Wi (210 Deg)	Y	Υ	1	1.2	39	1.2	2	1	40	1	22	1	60	1								
21	1.2D + 1.0Di + 1.0Wi (240 Deg)	Y	Y	1	1.2	39	1.2	2	1	40	1	23	1	61	1								
22	1.2D + 1.0Di + 1.0Wi (270 Deg)	Y	Υ	1	1.2	39	1.2	2	1	40	1	24	1	62	1								



### Load Combinations (Continued)

	Description	SF	Del	SRSS	в	.Fa.	в	Fa	BLC	Fa.	B	Fa	.B	Fa	в	Fa	.в	Fa	.в	Fa	в	Fa	B	Fa
23	1.2D + 1.0Di + 1.0Wi (300 Deg)	Y	Υ		1	1.2	39	1.2	2	1	40	1	25	1	63	1								
24	1.2D + 1.0Di + 1.0Wi (330 Deg)	Y	Y		1	1.2	39	1.2	2	1	40	1	26	1	64	1								
25	1.2D + 1.5Lm1 + 1.0Wm (0 Deg)	Y	Y		1	1.2	39	1.2	77	1.5	5 27	1	65	1										
26	1.2D + 1.5Lm1 + 1.0Wm (30 Deg)	Y	Y		1	1.2	39	1.2	77	1.5	5 28	1	66	1										
27	1.2D + 1.5Lm1 + 1.0Wm (60 Deg)	Y	Y		1	1.2	39	1.2	77	1.5	5 29	1	67	1										
28	1.2D + 1.5Lm1 + 1.0Wm (90 Deg)	Y	Ý		1	1.2	39	1.2	77	1.5	5 30	1	68	1										
29	1.2D + 1.5Lm1 + 1.0Wm (120 Deg)	Y	Ý		1	1.2	39	1.2	77	1.5	5 31	1	69	1							_			
30	1.2D + 1.5Lm1 + 1.0Wm (150 Deg)	Y	Ý		1	1.2	39	1.2	77	1.5	5 32	1	70	1										
31	1.2D + 1.5Lm1 + 1.0Wm (180 Deg)	Y	Ý		1	1.2	39	1.2	77	1.5	5 33	1	71	1										
32	1.2D + 1.5Lm1 + 1.0Wm (210 Deg)	Y	Ý		1	1 2	39	12	77	1.5	5 34	1	72	1										
33	1.2D + 1.5Lm1 + 1.0Wm (240 Deg)	Y	Ý		1	1 2	39	12	77	1.5	5 35	1	73	1							-			
34	1.2D + 1.5Lm1 + 1.0Wm (270 Deg)	Y	Ý		1	1 2	39	1.2	77	1.5	5 36	1	74	1										
35	1.2D + 1.5Lm1 + 1.0Wm (300 Deg)	Y	Ý	-	1	1.2	39	1.2	77	1.5	5 37	1	75	1	_	_					_			
36	1.2D + 1.5Lm1 + 1.0Wm (330 Deg)	Y	Ý		1	1.2	39	1.2	77	1 6	5 38	1	76	1										
37	1.2D + 1.5Lm2 + 1.0Wm (0 Deg)	Y	Ý		1	1.2	30	1.2	78	1 6	5 27	1	65	1							-	_		_
38	$1.2D + 1.5I m^2 + 1.0Wm (30 Deg)$	Υ	Ý		1	1.2	30	1.2	78	1 6	5 28	1	66	1										
30	$1.2D + 1.5I m^2 + 1.0Wm (60 Deg)$	Υ	Ý		1	1.2	30	1.2	78	1 6	5 20	1	67	1							-	_		_
40	$1.2D + 1.5I m^2 + 1.0Wm (90 Deg)$	Y	Ý		1	1.2	30	1.2	78	1 5	5 30	1	68	1										
40	$1.2D + 1.5I m^2 + 1.0Wm (120 Deg)$	Υ	v -		1	1.2	30	1.2	78	1.0	5 31	1	60	1							-	_		_
41	$1.2D + 1.5I m^2 + 1.0Wm (120 Deg)$	Y	v.		1	1.2	30	1.2	78	1 5	5 32	1	70	1										
42	1.2D + 1.5Lm2 + 1.0Wm (180 Deg)	Y	v		1	1.2	30	1.2	78	1.0	5 22	1	70	1								_		_
43	$1.2D + 1.5Lm^2 + 1.0Wm$ (100 Deg)	V			1	1.2	20	1.2	70	1.0	5 24	1	72	1										
44	$1.2D + 1.5Lm^2 + 1.0Wm (210 Deg)$	V	T V		1	1.2	20	1.2	70	1.0	) 04 : 25	1	72	1							_	_		_
40	1.2D + 1.5Lm2 + 1.0Wm (240 Deg)	V	Y V		1	1.2	20	1.2	70	1.0	200	1	73	1							_			
40	$1.2D + 1.5Lm^2 + 1.0Wm (270 Deg)$	V			1	1.2	20	1.2	70	1.0	200	1	74	1					_		_		-	
47	$1.2D + 1.5Lm^2 + 1.0Wm (300 Deg)$	V.	Y V		1	1.2	39	1.2	70	1.0	5 37	1	75	1								_		_
40	1.2D + 1.5Em2 + 1.6Win (556 Deg)	· ∨	Y V		1	1.2	39	1.2	70	1.0	0 30		10											_
49	1.2D + 1.5LV1	T	Y V		1	1.2	39	1.2	79	1.0	-										_		_	
50	1.2D + 1.5LV2	T	Y V		1	1.2	39	1.2	80	1.0	)										_	_		_
51		T	Y		1	1.4	39	1.4	04	4	E		00	4	00		E	4	E		_			
52	1.2D + 1.0EV + 1.0Eh (0 Deg)		Y			1.2	39	1.2	81		E		82	1	83	_	E	1	E	_			_	
53	1.2D + 1.0EV + 1.0EH (30 Deg)		Y		1	1.2	39	1.2	81	1	E	1	82	.000	83	.5	E	.000	E	.5	_		_	
54	1.2D + 1.0EV + 1.0Eh (60 Deg)		Y		1	1.2	39	1.2	81	1	E	1	82	.5	83	.000	E	.5	E	.000				
55	1.2D + 1.0EV + 1.0EH (90 Deg)		Y		1	1.2	39	1.2	81	1	E	1	82	-	83	1	E		E	1	_		_	
56	1.2D + 1.0EV + 1.0Eh (120 Deg)		Y		1	1.2	39	1.2	81	1	E	1	82	5	83	.800	E	5	E	.866				
57	1.2D + 1.0EV + 1.0EH (150 Deg)		<u>Y</u>		1	1.2	39	1.2	81	1	E	1	82	8	83	.5	E	8	E	.5	_		_	
58	1.2D + 1.0EV + 1.0Eh (180 Deg)		Y		1	1.2	39	1.2	81	1	E	1	82	-1	83		E	-1	E	_				
59	1.2D + 1.0EV + 1.0Eh (210 Deg)		Y		1	1.2	39	1.2	81	1	E	1	82	8	83	5	E	8	E	5	_			
60	1.2D + 1.0Ev + 1.0Eh (240 Deg)		Y		1	1.2	39	1.2	81	1	E	1	82	5	83	8	.E	5	E	8				
61	1.2D + 1.0Ev + 1.0Eh (270 Deg)		Y		1	1.2	39	1.2	81	1	E	1	82		83	-1	E	_	E	-1			_	
62	1.2D + 1.0Ev + 1.0Eh (300 Deg)		Y		1	1.2	39	1.2	81	1	E	1	82	.5	83	8	.E	.5	E	8				
63	1.2D + 1.0Ev + 1.0Eh (330 Deg)		Y		1	1.2	39	1.2	81	1	E	1	82	.866	83	5	E	.866	E	5			_	
64	0.9D - 1.0Ev + 1.0Eh (0 Deg)		Y		1	.9	39	.9	81	-1	E	-1	82	1	83		E	1	E					
65	0.9D - 1.0Ev + 1.0Eh (30 Deg		Y		1	.9	39	.9	81	-1	E	-1	82	.866	83	.5	E	.866	E	.5				
66	0.9D - 1.0Ev + 1.0Eh (60 Deg)		Y		1	.9	39	.9	81	-1	E	-1	82	.5	83	.866	E	.5	E	.866				
67	0.9D - 1.0Ev + 1.0Eh (90 Deg		Y		1	.9	39	.9	81	-1	E	-1	82		83	1	E		E	1				
68	0.9D - 1.0Ev + 1.0Eh (120 Deg)		Y		1	.9	39	.9	81	-1	E	-1	82	5	83	.866	E	5	E	.866				
69	0.9D - 1.0Ev + 1.0Eh (150 Deg)		Y		1	.9	39	.9	81	-1	E	-1	82	8	83	.5	E	8	.E	.5				
70	0.9D - 1.0Ev + 1.0Eh (180 Deg)		Y		1	.9	39	.9	81	-1	E	-1	82	-1	83		E	-1	E					
71	0.9D - 1.0Ev + 1.0Eh (210 Deg)		Υ		1	.9	39	.9	81	-1	E	-1	82	8	83	5	E	8	.E	5				
72	0.9D - 1.0Ev + 1.0Eh (240 Deg)		Y		1	.9	39	.9	81	-1	E	-1	82	5	83	8	.E	5	E	8				
73	0.9D - 1.0Ev + 1.0Eh (270 Deg)		Υ		1	.9	39	.9	81	-1	E	-1	82		83	-1	E		E	-1				
74	0.9D - 1.0Ev + 1.0Eh (300 Deg)		Y		1	.9	39	.9	81	-1	E	-1	82	.5	83	8	.E	.5	E	8				
75	0.9D - 1.0Ev + 1.0Eh (330 Deg)		Υ		1	.9	39	.9	81	-1	E	-1	82	.866	83	5	E	.866	E	5				



# Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	A4	1.587713	0	0	0	
2	<u>A5</u>	0.24572	1.5	2.877914	0	
3	<u>A6</u>	0.24572	-1.5	2.877914	0	
4	A/	0.24572	1.5	3.29458	0	
5	A8	0.24572	-1.5	3.29458	0	
6	A9	0.24572	1.5	3.54458	0	
7	A10	0.24572	-1.5	3.54458	0	
8	A11	0.24572	1.5	5.04458	0	
9	A12	0.24572	-1.5	5.04458	0	
10	A13	0.24572	2.333333	5.04458	0	
11	A14	0.24572	-2.333333	5.04458	0	
12	A15	0.24572	-1.916667	5.04458	0	
13	A16	0.24572	1.916667	5.04458	0	
14	A17	-5.00428	-1.916667	5.315414	0	
15	A18	-5.00428	1.916667	5.315414	0	
16	A19	5.49572	-1.916667	5.315414	0	
17	A20	5.49572	1.916667	5.315414	0	
18	A21	0.24572	-1.916667	5.315414	0	
19	A22	0.24572	1.916667	5.315414	0	
20	A23	5.224887	-1.916667	5.315414	0	
21	A24	5.224887	1.916667	5.315414	0	
22	A25	1.349887	-1.916667	5.315414	0	
23	A26	1.349887	1.916667	5.315414	0	
24	A27	-0.483447	-1.916667	5.315414	0	
25	A28	-0.483447	1,916667	5.315414	0	
26	A29	-2.733447	-1.916667	5.315414	0	
27	A30	-2 733447	1 916667	5 315414	Ő	
28	A31	-4 733447	-1 916667	5 315414	0	
29	Δ32	-4 733447	1 916667	5 315414	0	
30	Δ33	5 224887	-1 916667	5 565414	0	
31	A34	5 224887	1 916667	5 565414	0	
32	A35	-0 483447	-1 916667	5 565414	0	
33	A36	-0.403447	1 916667	5 565414	0	
34	A30	-4 733447	-1 916667	5 565414	0	
35	A38	_1 733117	1 016667	5 565/1/	0	
36	A30	1 3/0887	1.916667	5.065414	0	
37	A33	1 3/0887	1.016667	5.065414	0	
20	A40	0.700/	1.910007	5.005414	0	
30	A41	-2.733447	-1.910007	5.003414	0	
39	A42	-2.733447	1.910007	5.003414	0	
40	A43	0.402447	3.000000	5.505414	0	
41	A44	-0.403447	5.000000	5.303414	0	
42	A40	-4.733447	0.410003	5.505414	0	
43	A40	5.224887	-2.410007	5.505414	0	
44	A47	-0.483447	-2.416667	5.565414	0	
45	A48	-4.733447	-2.583667	5.565414	0	
46	A49	1.349887	3.208333	5.065414	0	
47	A50	-2.733447	3.208333	5.065414	0	
48	A51	1.349887	-2.791667	5.065414	0	
49	A52	-2.733447	-2.791667	5.065414	0	
50	854	-0.233637	1.5	-2.601157	0	
51	<u>B55</u>	-0.233637	-1.5	-2.601157	0	
52	B56	-0.59448	1.5	-2.80949	0	
53	B57	-0.59448	-1.5	-2.80949	0	
54	B58	-0.810987	1.5	-2.93449	0	
55	B59	-0.810987	-1.5	-2.93449	0	
56	B60	-2.110025	1.5	-3.68449	0	



# Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
57	B61	-2.110025	-1.5	-3.68449	0	
58	B62	-2.110025	2.333333	-3.68449	0	
59	B63	-2.110025	-2.333333	-3.68449	0	
60	B64	-2.110025	-1.916667	-3.68449	0	
61	B65	-2.110025	1.916667	-3.68449	0	
62	B66	0.280427	-1.916667	-8.36654	0	
63	B67	0.280427	1.916667	-8.36654	0	
64	B68	-4.969573	-1.916667	0.726726	0	
65	B69	-4.969573	1.916667	0.726726	0	
66	B70	-2.344573	-1.916667	-3.819907	0	
67	B71	-2.344573	1.916667	-3.819907	0	
68	B72	-4.834157	-1.916667	0.492178	0	
69	B73	-4.834157	1.916667	0.492178	0	
70	B74	-2.896657	-1.916667	-2.863671	0	
71	B75	-2.896657	1.916667	-2.863671	0	
72	B76	-1.97999	-1.916667	-4.451384	0	
73	B77	-1.97999	1.916667	-4.451384	0	
74	B78	-0.85499	-1.916667	-6.399941	0	
75	B79	-0.85499	1,916667	-6.399941	0	
76	B80	0.14501	-1.916667	-8,131992	0	
77	B81	0.14501	1,916667	-8.131992	0	
78	B82	-5.050663	-1 916667	0.367178	Ő	
79	B83	-5.050663	1,916667	0.367178	0	
80	B84	-2 196497	-1 916667	-4 576384	0	
81	B85	-2 196497	1 916667	-4 576384	0	
82	B86	-0.071497	-1 916667	-8 256992	0	
83	B87	-0.071497	1 916667	-8 256992	0	
84		-2 68015	-1 916667	-2 738671	0	
85	B80	-2.68015	1 016667	-2.738671	0	
86	B09	-2.00013	1.910007	6.274041	0	
97	B90	0.639494	1.016667	6 274941	0	
88	B02	-5.050663	3 583333	0.274941	0	
80	B02	2 106407	3.503333	4.576384	0	
09	D93	-2.190497	5.000000	-4.070304	0	
90	D94	-0.071497	2.416667	-0.200992	0	
91	D90	-5.050005	-2.410007	0.307170	0	
92	D90	-2.190497	-2.410007	-4.370304	0	
93	D97	-0.07 1497	-2.000007	-0.200992	0	
94	B90	-2.08015	3.208333	-2.730071	0	
95	B99	-0.638484	3.208333	-0.274941	0	
96	B100	-2.68015	-2.791667	-2.7380/1	0	
97	0100	-0.030404	-2.791007	-0.274941	0	
98	0102	4.751056	1.5	-0.276757	0	
99	0103	4.751056	-1.5	-0.276757	0	
100	C104	5.142595	1.5	-0.419265	0	
101	C105	5.142595	-1.5	-0.419265	0	
102	C106	5.377518	1.5	-0.50477	0	
103	C107	5.377518	-1.5	-0.50477	0	
104	C108	6.787057	1.5	-1.0178	0	
105	C109	6.787057	-1.5	-1.0178	0	
106	C110	6.787057	2.333333	-1.0178	0	
107	C111	6.787057	-2.333333	-1.0178	0	
108	C112	6.787057	-1.916667	-1.0178	0	
109	C113	6.787057	1.916667	-1.0178	0	
110	C114	8.837163	-1.916667	3.822956	0	
111	C115	8.837163	1.916667	3.822956	0	
112	C116	5.245951	-1.916667	-6.043817	0	
113	<u>C117</u>	5.245951	1.916667	-6.043817	0	



### Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
114	C118	7.041557	-1.916667	-1.110431	0	
115	C119	7.041557	1.916667	-1.110431	0	
116	C120	5.338582	-1.916667	-5.789317	0	
117	C121	5.338582	1.916667	-5.789317	0	
118	C122	6.66391	-1.916667	-2.148008	0	
119	C123	6.66391	1.916667	-2.148008	0	
120	C124	7.290947	-1.916667	-0.425238	0	
121	C125	7.290947	1.916667	-0.425238	0	
122	C126	8.060492	-1.916667	1.68907	0	
123	C127	8.060492	1.916667	1.68907	0	
124	C128	8.744532	-1.916667	3.568455	0	
125	C129	8.744532	1.916667	3.568455	0	
126	C130	5.573505	-1.916667	-5.874822	0	
127	C131	5.573505	1.916667	-5.874822	0	
128	C132	7.52587	-1.916667	-0.510743	0	
129	C133	7.52587	1.916667	-0.510743	0	
130	C134	8.979455	-1.916667	3.48295	0	
131	C135	8.979455	1.916667	3,48295	0	
132	C136	6.428987	-1.916667	-2.062503	0	
133	C137	6.428987	1.916667	-2.062503	0	
134	C138	7.825569	-1.916667	1.774575	0	
135	C139	7.825569	1,916667	1,774575	0	
136	C140	5.573505	3.583333	-5.874822	0 0	
137	C141	7.52587	3.583333	-0.510743	0	
138	C142	8 979455	5 416663	3 48295	Ő	
139	C143	5.573505	-2.416667	-5.874822	0 0	
140	C144	7.52587	-2.416667	-0.510743	0	
141	C145	8 979455	-2.583667	3 48295	Ő	
142	C146	6 428987	3 208333	-2.062503	Ő	
143	C147	7 825569	3 208333	1 774575	0	
144	C148	6 428987	-2 791667	-2.062503	Ő	
145	C149	7 825569	-2 791667	1 774575	0	
146	N149	-3 983447	-1 916667	5 315414	Ő	
147	N150	0.24572	-1	2 877914	0 0	
148	N151	5 224887	-1 166667	5 565414	0	
140	N152	-0.233637	-1	-2 601157	0	
150	N153	4 751056	-1	-0.276757	0	
151	N155	-0 233637	-2	-2 601157	0	
152	N156	4 751056	-2	-0.276757	0	
153	C157	8/88017	_1 016667	2,863686	0	
154	C159	5 573505	-1 166667	-5 874822	0	
155	B159	_0 22999	-1.100007	-7 482473	0	
156	B161	-5.050663	-1 166667	0 367178	0	
157	B162	0.24572	-1.100007	2 877014	0	
158	N158	5 22/1887	2 83333	5 565414	0	
150	N150	1 7224007	2.000000	5 565414	0	
160	N160	-5.050662	2.000000	0.367179	0	
161	N161	-0.030003	2.000000	8 256002	0	
162	N162	-0.07 1497	2.000000	-0.200992	0	
162	N162	8 979455	2.000000	3 48205	0	
164	N164	-0.071407	_1 /16667	-8 256002	0	
165	N165	8 070455	1 /16667	-0.200992	0	
166		6.001047	1.410007	3.40293	0	
100	1N 100	0.001247	-1.910007	-3.908059	0	



### Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design Lis	t Material	Design Rules	A [in	.lyy [i	Jzz [i	J [in4]
1	Standoff Horizontal	HSS3X3X3	None	None	A500 Gr.B RE	Typical	1.89	2.46	2.46	4.03
2	Standoff Vertical End	PIPE 3.0	None	None	A53 Gr.B	Typical	2.07	2.85	2.85	5.69
3	Standoff Vertical Start	PIPE 2.0	None	None	A53 Gr.B	Typical	1.02	.627	.627	1.25
4	Face Horizontal	PIPE 2.0	None	None	A53 Gr.B	Typical	1.02	.627	.627	1.25
5	Mount Pipe (P2 STD)	PIPE 2.0	None	None	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	Tieback	PIPE_2.0	None	None	A53 Gr.B	Typical	1.02	.627	.627	1.25
7	Mod Mount Pipe (P2.5 STD)	PIPE 2.5	None	None	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
8	Mod Stabilizer Pipe	PIPE_2.0	None	None	A53 Gr.B	Typical	1.02	.627	.627	1.25

### Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B RECT	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A500 Gr.C RND	29000	11154	.3	.65	.527	46	1.4	62	1.3
7	A500 Gr.C RECT	29000	11154	.3	.65	.527	50	1.4	62	1.3
8	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
9	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3
10	A913 Gr.65	29000	11154	.3	.65	.49	65	1.1	80	1.1

### Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(d	Section/Shape	Туре	Design List	Material	Design Rul
1	A1	A7	A11			Standoff Horizontal	None	None	A500 Gr	Typical
2	A2	A8	A12			Standoff Horizontal	None	None	A500 Gr	Typical
3	A3	A8	A6			RIGID	None	None	RIGID	Typical
4	A4	A7	A5			RIGID	None	None	RIGID	Typical
5	A5	A9	A10			Standoff Vertical Start	None	None	A53 Gr.B	Typical
6	A6	A13	A14			Standoff Vertical End	None	None	A53 Gr.B	Typical
7	A7	A18	A20			Face Horizontal	None	None	A53 Gr.B	Typical
8	A8	A17	A19			Face Horizontal	None	None	A53 Gr.B	Typical
9	A9	A15	A21			RIGID	None	None	RIGID	Typical
10	A10	A16	A22			RIGID	None	None	RIGID	Typical
11	A11	A31	A37			RIGID	None	None	RIGID	Typical
12	A12	A32	A38			RIGID	None	None	RIGID	Typical
13	A13	A29	A41			RIGID	None	None	RIGID	Typical
14	A14	A30	A42			RIGID	None	None	RIGID	Typical
15	A15	A27	A35			RIGID	None	None	RIGID	Typical
16	A16	A25	A39			RIGID	None	None	RIGID	Typical
17	A17	A28	A36			RIGID	None	None	RIGID	Typical
18	A18	A26	A40			RIGID	None	None	RIGID	Typical
19	A19	A23	A33			RIGID	None	None	RIGID	Typical
20	A20	A24	A34			RIGID	None	None	RIGID	Typical
21	B26	B56	B60			Standoff Horizontal	None	None	A500 Gr	Typical
22	B27	B57	B61			Standoff Horizontal	None	None	A500 Gr	Typical
23	B28	B57	B55			RIGID	None	None	RIGID	Typical
24	B29	B56	B54			RIGID	None	None	RIGID	Typical
25	B30	B58	B59			Standoff Vertical Start	None	None	A53 Gr.B	Typical
26	B31	B62	B63			Standoff Vertical End	None	None	A53 Gr.B	Typical
27	B32	B67	B69			Face Horizontal	None	None	A53 Gr.B	Typical
28	B33	B66	B68			Face Horizontal	None	None	A53 Gr.B	Typical
29	B34	B64	B70			RIGID	None	None	RIGID	Typical



### Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(d	Section/Shape	Туре	Design List	Material	Design Rul
30	B35	B65	B71			RIGID	None	None	RIGID	Typical
31	B36	B80	B86			RIGID	None	None	RIGID	Typical
32	B37	B81	B87			RIGID	None	None	RIGID	Typical
33	B38	B78	B90			RIGID	None	None	RIGID	Typical
34	B39	B79	B91			RIGID	None	None	RIGID	Typical
35	B40	B76	B84			RIGID	None	None	RIGID	Typical
36	B41	B74	B88			RIGID	None	None	RIGID	Typical
37	B42	B77	B85			RIGID	None	None	RIGID	Typical
38	B43	B75	B89			RIGID	None	None	RIGID	Typical
39	B44	B72	B82			RIGID	None	None	RIGID	Typical
40	B45	B73	B83			RIGID	None	None	RIGID	Typical
41	B80	N164	N152			Tieback	None	None	A53 Gr.B	Typical
42	B81	B161	B162			Tieback	None	None	A53 Gr.B	Typical
43	C51	C104	C108			Standoff Horizontal	None	None	A500 Gr	Typical
44	C52	C105	C109			Standoff Horizontal	None	None	A500 Gr	Typical
45	C53	C105	C103			RIGID	None	None	RIGID	Typical
46	C54	C104	C102			RIGID	None	None	RIGID	Typical
47	C55	C106	C107			Standoff Vertical Start	None	None	A53 Gr.B	Typical
48	C56	C110	C111			Standoff Vertical End	None	None	A53 Gr.B	Typical
49	C57	C115	C117			Face Horizontal	None	None	A53 Gr.B	Typical
50	C58	C114	C116			Face Horizontal	None	None	A53 Gr.B	Typical
51	C59	C112	C118			RIGID	None	None	RIGID	Typical
52	C60	C113	C119			RIGID	None	None	RIGID	Typical
53	C61	C128	C134			RIGID	None	None	RIGID	Typical
54	C62	C129	C135			RIGID	None	None	RIGID	Typical
55	C63	C126	C138			RIGID	None	None	RIGID	Typical
56	C64	C127	C139			RIGID	None	None	RIGID	Typical
57	C65	C124	C132			RIGID	None	None	RIGID	Typical
58	C66	C122	C136			RIGID	None	None	RIGID	Typical
59	C67	C125	C133			RIGID	None	None	RIGID	Typical
60	C68	C123	C137			RIGID	None	None	RIGID	Typical
61	C69	C120	C130			RIGID	None	None	RIGID	Typical
62	C70	C121	C131			RIGID	None	None	RIGID	Typical
63	C78	N165	N153			Tieback	None	None	A53 Gr.B	Typical
64	C79	N166	N155			Tieback	None	None	A53 Gr.B	Typical
65	M76	N149	N150			Tieback	None	None	A53 Gr.B	Typical
66	M77	N151	N156			Tieback	None	None	A53 Gr.B	Typical
67	MP1A	A43	A46			Mount Pipe (P2 STD)	None	None	A53 Gr.B	Typical
68	MP1B	B92	B95			Mount Pipe (P2 STD)	None	None	A53 Gr.B	Typical
69	MP1C	C140	C143			Mount Pipe (P2 STD)	None	None	A53 Gr.B	Typical
70	MP2A	A49	A51			Mount Pipe (P2 STD)	None	None	A53 Gr.B	Typical
71	MP2B	B98	B100			Mount Pipe (P2 STD)	None	None	A53 Gr.B	Typical
72	MP2C	C146	C148			Mount Pipe (P2 STD)	None	None	A53 Gr.B	Typical
73	MP3A	A44	A47			Mount Pipe (P2 STD)	None	None	A53 Gr.B	Typical
74	MP3B	B93	B96			Mount Pipe (P2 STD)	None	None	A53 Gr.B	Typical
75	MP3C	C141	C144			Mount Pipe (P2 STD)	None	None	A53 Gr.B	Typical
76	MP4A	A50	A52			Mount Pine (P2 STD)	None	None	A53 Gr.B	Typical
77	MP4R	Baa	B101			Mount Pipe (P2 STD)	None	None	A53 Gr.B	Typical
78	MP4C	C147	C149			Mount Pine (P2 STD)	None	None	A53 Gr.B	Typical
79	MP5A	Δ45	Δ <u>/</u> 8			Mod Mount Pipe (P2.5 STD)	None	None	A53 Gr.B	Typical
80	MP5R	R9/	R97			Mod Mount Pipe (P2.5 STD)	None	None	A53 Gr.B	Typical
81	MP5C	C142	C145			Mod Mount Pipe (P2.5 STD)	None	None	A53 Gr.B	Typical
82	M82	N150	N160			Mod Stabilizer Pine	None	None	A53 Gr B	Typical
83	M83	N161	N162			Mod Stabilizer Pipe	None	None	A53 Gr B	Typical
84	MQ4	N158	N163			Mod Stabilizer Pipe	None	None	A53 Gr B	Typical
04	1004	11100	11103			mou stabilizer ripe	NULLE	NULLE	. 100 OI.D	Typical



### Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ratio Opti	Analysis Offs	Inactive	Seismi
1	A1						Yes	** NA **			None
2	A2						Yes	** NA **			None
3	A3						Yes	** NA **			None
4	A4						Yes	** NA **			None
5	A5						Yes	** NA **			None
6	A6						Yes	** NA **			None
7	A7						Yes	** NA **			None
8	A8						Yes	** NA **			None
9	A9						Yes	** NA **			None
10	A10						Yes	** NA **			None
11	A11						Yes	** NA **			None
12	A12						Yes	** NA **			None
13	A13						Yes	** NA **			None
14	A14						Yes	** NA **			None
15	A15						Yes	** NA **			None
16	A16						Yes	** NA **			None
17	Δ17						Yes	** NA **			None
18	Δ18						Yes	** NA **			None
10	Δ10						Ves	** NA **			None
20	A20						Voc	** NA **			None
20	R26						Voc	** NA **			None
21	B20						Voc	** NA **			None
22	B28						Voc	** NA **			None
23	B20						Voc	** NA **			None
24	D29 D20						Vee	** NIA **			None
20	D30						Vee	** NA **			None
20	D31						Yes	NA ** NA **			None
21	D32						Yes	NA ** NA **			None
28	B33						Yes	** NA **			None
29	B34						Yes	** NA **			None
30	B35						Yes	** NA **			None
31	B30						Yes	** NIA **			None
32	B37						Yes	** NA **			None
33	B38						Yes				None
34	B39						Yes	** NA **			None
35	B40						Yes	^^ NA ^^			None
36	B41						Yes	^^ NA ^^			None
37	B42						Yes	** NA **			None
38	B43						Yes	** NA **			None
39	B44						Yes	** NA **			None
40	B45						Yes	** NA **			None
41	B80	BenPIN					Yes	** NA **			None
42	B81	BenPIN					Yes	^^ NA **			None
43	C51						Yes	** NA **			None
44	C52						Yes	** NA **			None
45	C53						Yes	** NA **			None
46	C54						Yes	** NA **			None
47	C55						Yes	** NA **			None
48	C56						Yes	** NA **			None
49	C57						Yes	** NA **			None
50	C58						Yes	** NA **			None
51	C59						Yes	** NA **			None
52	C60						Yes	** NA **			None
53	C61						Yes	** NA **			None
54	C62						Yes	** NA **			None
55	C63						Yes	** NA **			None
56	C64						Yes	** NA **			None



#### Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ratio Opti.	Analysis Offs	Inactive	Seismi
57	C65					-	Yes	** NA **			None
58	C66						Yes	** NA **			None
59	C67						Yes	** NA **			None
60	C68						Yes	** NA **			None
61	C69						Yes	** NA **			None
62	C70						Yes	** NA **			None
63	C78	BenPIN					Yes	** NA **			None
64	C79	BenPIN					Yes	** NA **			None
65	M76	BenPIN					Yes	** NA **			None
66	M77	BenPIN					Yes	** NA **			None
67	MP1A						Yes	** NA **			None
68	MP1B						Yes	** NA **			None
69	MP1C						Yes	** NA **			None
70	MP2A						Yes	** NA **			None
71	MP2B						Yes	** NA **			None
72	MP2C						Yes	** NA **			None
73	MP3A						Yes	** NA **			None
74	MP3B						Yes	** NA **			None
75	MP3C						Yes	** NA **			None
76	MP4A						Yes	** NA **			None
77	MP4B						Yes	** NA **			None
78	MP4C						Yes	** NA **			None
79	MP5A						Yes	** NA **			None
80	MP5B						Yes	** NA **			None
81	MP5C						Yes	** NA **			None
82	M82	BenPIN	BenPIN				Yes	** NA **			None
83	M83	BenPIN	BenPIN				Yes	** NA **			None
84	M84	BenPIN	BenPIN				Yes	** NA **			None

# Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Y	-23	.68
2	MP5A	My	023	.68
3	MP5A	Mz	.019	.68
4	MP5A	Y	-23	6.16
5	MP5A	My	023	6.16
6	MP5A	Mz	.019	6.16
7	MP5B	Y	-23	.68
8	MP5B	My	005	.68
9	MP5B	Mz	03	.68
10	MP5B	Y	-23	6.16
11	MP5B	My	005	6.16
12	MP5B	Mz	03	6.16
13	MP5C	Y	-23	.68
14	MP5C	My	.026	.68
15	MP5C	Mz	.015	.68
16	MP5C	Y	-23	6.16
17	MP5C	My	.026	6.16
18	MP5C	Mz	.015	6.16
19	MP5A	Y	-23	.68
20	MP5A	My	023	.68
21	MP5A	Mz	019	.68
22	MP5A	Y	-23	6.16
23	MP5A	My	023	6.16
24	MP5A	Mz	019	6.16



# Member Point Loads (BLC 1 : Antenna D) (Continued)

05	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MD5D	Y NAV	-23	.08
20			.028	.00
27	MP5B	IVIZ	01	.08
28	MP5B	Y NASZ	-23	0.10
29	MP5B		.028	0.10
30	MP5B	IVIZ	01	6.16
31	MP5C	Y NA:	-23	80.
32	MPSC		01	80.
33	MP5C	IVIZ	.028	.08
34	MP5C	Y	-23	0.10
35	MP5C		01	0.10
30	MP5C	IVIZ	.028	6.16
37	MP3A	Y	-43.55	.62
38	MP3A	IVIY	044	.62
39	MP3A	IVIZ	12.55	.62
40	MP3A	Y NA	-43.55	2.55
41	MP3A		044	2.55
42	MP3A	IVIZ	12.55	2.55
43	IVIP3B	Υ	-43.55	.62
44	MP3B	IVIY	.022	.62
45	MP3B	IVIZ	038	.62
40	MP3B	Y NA	-43.55	2.55
47	MP3B		.022	2.55
48	MP3B	IVIZ	038	2.55
49	MP3C	Y NA:	-43.55	.02
50	MP3C	IVIY	.015	.02
51	MP3C	IVIZ	.041	.62
52	MP3C	Y NA	-43.55	2.55
53	MP3C		.015	2.55
54	MP3C	IVIZ	.041	2.55
55	MP4A	Y B.A.	-37.35	3.25
50	MP4A		.025	3.20
57		IVIZ	0	3.20
50		Y NASZ	-37.30	3.25
59			.025	3.20
60			0	3.20
01	MP4B	Y NA.	-37.30	3.20
62	MP4B	IVIY	012	3.25
63		IVIZ	.022	3.25
65		Y NAV	-37.35	3.20
60	IVIE 4D		012	3.20
67	MD4C		.022	3.20
69	MD4C	Υ ΝΔν	-07.00	3.20
60			009	3.20
70	MD4C		023	3.20
70	MP4C	Y NAV	-37.30	3.23
70	MD4C		009	3.20
72	MP4C	IVIZ	023	3.20
73	MD2A	ľ NAv	-00.10	3.20
74	MD2A		.023	3.20
75	MD2A		25.15	3.20
70	MD2A	Y NAV	-30.10	3.20
70	MD2A		.023	3.20
70	MD2D		25.45	3.20
19	MD2D	T NASZ	-30.10	<u>3.∠</u> 3
00			012	0.20
0	IVIP3B	IVIZ	.02	3.20



## Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
82	MP3B	Y	-35.15	3.25
83	MP3B	My	012	3.25
84	MP3B	Mz	.02	3.25
85	MP3C	Y	-35.15	3.25
86	MP3C	My	008	3.25
87	MP3C	Mz	022	3.25
88	MP3C	Y	-35.15	3.25
89	MP3C	My	008	3.25
90	MP3C	Mz	022	3.25
91	MP1A	Y	-11.5	.17
92	MP1A	My	011	.17
93	MP1A	Mz	0	.17
94	MP1A	Y	-11.5	5.83
95	MP1A	My	011	5.83
96	MP1A	Mz	0	5.83
97	MP1B	Y	-11.5	.17
98	MP1B	My	.006	.17
99	MP1B	Mz	01	.17
100	MP1B	Y	-11.5	5.83
101	MP1B	My	.006	5.83
102	MP1B	Mz	01	5.83
103	MP1C	Y	-11.5	.17
104	MP1C	My	.006	.17
105	MP1C	Mz	.01	.17
106	MP1C	Y	-11.5	5.83
107	MP1C	My	.006	5.83
108	MP1C	Mz	01	5.83

# Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Y	-79.455	.68
2	MP5A	My	079	.68
3	MP5A	Mz	.066	.68
4	MP5A	Y	-79.455	6.16
5	MP5A	My	079	6.16
6	MP5A	Mz	.066	6.16
7	MP5B	Y	-79.455	.68
8	MP5B	My	018	.68
9	MP5B	Mz	102	.68
10	MP5B	Y	-79.455	6.16
11	MP5B	My	018	6.16
12	MP5B	Mz	102	6.16
13	MP5C	Y	-79.455	.68
14	MP5C	My	.089	.68
15	MP5C	Mz	.052	.68
16	MP5C	Y	-79.455	6.16
17	MP5C	My	.089	6.16
18	MP5C	Mz	.052	6.16
19	MP5A	Y	-79.455	.68
20	MP5A	My	079	.68
21	MP5A	Mz	066	.68
22	MP5A	Y	-79.455	6.16
23	MP5A	My	079	6.16
24	MP5A	Mz	066	6.16
25	MP5B	Y	-79.455	.68
26	MP5B	My	.097	.68



# Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
27	MP5B	Mz	036	.68
28	MP5B	Y	-79.455	6.16
29	MP5B	My	.097	6.16
30	MP5B	Mz	036	6.16
31	MP5C	Y	-79.455	.68
32	MP5C	My	035	.68
33	MP5C	Mz	.097	.68
34	MP5C	Y	-79.455	6.16
35	MP5C	Mv	035	6.16
36	MP5C	Mz	.097	6.16
37	MP3A	Y	-34.277	.62
38	MP3A	Mv	034	.62
39	MP3A	Mz	0	.62
40	MP3A	Y	-34.277	2.55
41	MP3A	Mv	034	2.55
42	MP3A	Mz	0	2.55
43	MP3B	Y	-34.277	.62
44	MP3B	Mv	.017	.62
45	MP3B	Mz	03	.62
46	MP3B	Y	-34.277	2.55
47	MP3B	Mv	.017	2.55
48	MP3B	Mz	03	2.55
49	MP3C	Y	-34.277	.62
50	MP3C	Mv	.012	.62
51	MP3C	Mz	.032	.62
52	MP3C	Y	-34.277	2.55
53	MP3C	Mv	.012	2.55
54	MP3C	Mz	032	2.55
55	MP4A	Y	-21 546	3.25
56	MP4A	Mv	014	3.25
57	MP4A	Mz	.014	3.25
58	MP4A	Y	-21 546	3 25
59	MP4A	Mv	014	3.25
60	MP4A	Mz	.014	3 25
61	MP4B	Y	-21 546	3.25
62	MP4B	Mv	- 007	3.25
63	MP4B	Mz	012	3.25
64	MP4B	V	-21 546	3.25
65	MP4B	Mv	- 007	3.25
66	MP4B	Mz	012	3.25
67	MP4C	Y	-21 546	3 25
68	MP4C	Mv	- 005	3 25
69	MP4C	Mz	- 013	3.25
70	MP4C	Y	-21.546	3.25
71	MP4C	Mv	- 005	3.25
72	MP4C	Mz	- 013	3.25
73	MP3A	V	-20 515	3.25
74	MP3A	My	014	3.25
75	MP34	MZ	0	3.25
76	MP3A	V	-20 515	3.25
77	MP3A	My	014	3 25
78	MP3A	Mz	0	3.25
79	MP3R	V	-20 515	3.25
80	MP3R	My	- 007	3.25
81	MP3R	Mz	012	3.25
82	MP3R	V	-20 515	3.25
83	MP3B	My	_ 007	3.25
		iviy	007	5.20



# Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
84	MP3B	Mz	.012	3.25
85	MP3C	Y	-20.515	3.25
86	MP3C	Mv	005	3.25
87	MP3C	Mz	013	3.25
88	MP3C	Y	-20.515	3.25
89	MP3C	Mv	005	3.25
90	MP3C	Mz	013	3.25
91	MP1A	Y	-56.18	.17
92	MP1A	My	056	.17
93	MP1A	Mź	0	.17
94	MP1A	Y	-56.18	5.83
95	MP1A	Mv	056	5.83
96	MP1A	Mz	0	5.83
97	MP1B	Y	-56.18	.17
98	MP1B	My	.028	.17
99	MP1B	Mz	049	.17
100	MP1B	Y	-56.18	5.83
101	MP1B	My	.028	5.83
102	MP1B	Mz	049	5.83
103	MP1C	Y	-56.18	.17
104	MP1C	My	.028	.17
105	MP1C	Mz	.049	.17
106	MP1C	Y	-56.18	5.83
107	MP1C	My	.028	5.83
108	MP1C	Mz	049	5.83

# Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	0	.68
2	MP5A	Z	-139.602	.68
3	MP5A	Mx	116	.68
4	MP5A	X	0	6.16
5	MP5A	Z	-139.602	6.16
6	MP5A	Mx	116	6.16
7	MP5B	Х	0	.68
8	MP5B	Z	-112.742	.68
9	MP5B	Mx	.145	.68
10	MP5B	Х	0	6.16
11	MP5B	Z	-112.742	6.16
12	MP5B	Mx	.145	6.16
13	MP5C	Х	0	.68
14	MP5C	Z	-107.978	.68
15	MP5C	Mx	071	.68
16	MP5C	X	0	6.16
17	MP5C	Z	-107.978	6.16
18	MP5C	Mx	071	6.16
19	MP5A	Х	0	.68
20	MP5A	Z	-139.602	.68
21	MP5A	Mx	.116	.68
22	MP5A	X	0	6.16
23	MP5A	Z	-139.602	6.16
24	MP5A	Mx	.116	6.16
25	MP5B	X	0	.68
26	MP5B	Z	-112.742	.68
27	MP5B	Mx	.051	.68
28	MP5B	X	0	6.16



### Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP5B	Z	-112.742	6.16
30	MP5B	Mx	.051	6.16
31	MP5C	X	0	.68
32	MP5C	Z	-107.978	.68
33	MP5C	Mx	132	.68
34	MP5C	Х	0	6.16
35	MP5C	Z	-107.978	6.16
36	MP5C	Mx	132	6.16
37	MP3A	X	0	62
38	MP3A	7	-66 477	62
39	MP3A	Mx	0	62
40	MP3A	X	0	2.55
40	MP3A	7	-66 477	2.55
12	MP3A	My	-00.477	2.55
42	MD3R		0	62
43	MD2D	7	26.120	.02
44			-30.139	.02
40	MP3D	IVIX	.031	.02
40	IVIP3B		0	2.00
47	MP3B	2	-36.139	2.55
48	MP3B	IVIX	.031	2.55
49	MP3C	X	0	.62
50	MP3C		-30.758	.62
51	MP3C	Mx	029	.62
52	MP3C	X	0	2.55
53	MP3C	Z	-30.758	2.55
54	MP3C	Mx	029	2.55
55	MP4A	X	0	3.25
56	MP4A	Z	-26.294	3.25
57	MP4A	Mx	0	3.25
58	MP4A	X	0	3.25
59	MP4A	Z	-26.294	3.25
60	MP4A	Mx	0	3.25
61	MP4B	X	0	3.25
62	MP4B	Z	-19.756	3.25
63	MP4B	Mx	011	3.25
64	MP4B	Х	0	3.25
65	MP4B	Z	-19.756	3.25
66	MP4B	Mx	011	3.25
67	MP4C	X	0	3.25
68	MP4C	7	-18,596	3.25
69	MP4C	Mx	.012	3.25
70	MP4C	X	0	3.25
71	MP4C	Z	-18,596	3.25
72	MP4C	Mx	.012	3.25
73	MP3A	X	0	3.25
74	MP3A	7	-26 294	3.25
75	MP3A	My	-20:20+	3.25
76	MP3A	Y	0	3.25
77	MP3A	7	_26 204	3.25
78	MD3A		-20.23 <del>4</del>	2.25
70	MD2D		0	3.25
80	MD2D	~ 7	18 560	3.20
00			-10.009	0.20
01	IVIE JD		011	0.20
02	IVIE3B	∧ 7	19 500	0.20
03	IVIP3B	Δ	-10.009	3.20
84	MP3B	IVIX	011	3.25
85	MP3C	X	U	3.25



### Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
86	MP3C	Z	-17.199	3.25
87	MP3C	Mx	.011	3.25
88	MP3C	X	0	3.25
89	MP3C	Z	-17.199	3.25
90	MP3C	Mx	.011	3.25
91	MP1A	Х	0	.17
92	MP1A	Z	-115.981	.17
93	MP1A	Mx	0	.17
94	MP1A	X	0	5.83
95	MP1A	Z	-115.981	5.83
96	MP1A	Mx	0	5.83
97	MP1B	X	0	.17
98	MP1B	Z	-98.94	.17
99	MP1B	Mx	.086	.17
100	MP1B	X	0	5.83
101	MP1B	Z	-98.94	5.83
102	MP1B	Mx	.086	5.83
103	MP1C	X	0	.17
104	MP1C	Z	-98.94	.17
105	MP1C	Mx	086	.17
106	MP1C	X	0	5.83
107	MP1C	Z	-98.94	5.83
108	MP1C	Mx	086	5.83

# Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	65.324	.68
2	MP5A	Z	-113.145	.68
3	MP5A	Mx	16	.68
4	MP5A	Х	65.324	6.16
5	MP5A	Z	-113.145	6.16
6	MP5A	Mx	16	6.16
7	MP5B	Х	51.894	.68
8	MP5B	Z	-89.884	.68
9	MP5B	Mx	.104	.68
10	MP5B	Х	51.894	6.16
11	MP5B	Z	-89.884	6.16
12	MP5B	Mx	.104	6.16
13	MP5C	Х	62.402	.68
14	MP5C	Z	-108.084	.68
15	MP5C	Mx	000552	.68
16	MP5C	X	62.402	6.16
17	MP5C	Z	-108.084	6.16
18	MP5C	Mx	000552	6.16
19	MP5A	X	65.324	.68
20	MP5A	Z	-113.145	.68
21	MP5A	Mx	.029	.68
22	MP5A	X	65.324	6.16
23	MP5A	Z	-113.145	6.16
24	MP5A	Mx	.029	6.16
25	MP5B	X	51.894	.68
26	MP5B	Z	-89.884	.68
27	MP5B	Mx	.104	.68
28	MP5B	Х	51.894	6.16
29	MP5B	Z	-89.884	6.16
30	MP5B	Mx	.104	6.16



#### Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
31	MP5C	X	62.402	.68
32	MP5C	Z	-108.084	.68
33	MP5C	Mx	16	.68
34	MP5C	X	62.402	6.16
35	MP5C	Z	-108.084	6.16
36	MP5C	Mx	16	6.16
37	MP3A	X	28.182	.62
38	MP3A	Z	-48.813	.62
39	MP3A	Mx	028	.62
40	MP3A	X	28.182	2.55
41	MP3A	Z	-48.813	2.55
42	MP3A	Mx	028	2.55
43	MP3B	Х	13.013	.62
44	MP3B	Z	-22.539	.62
45	MP3B	Mx	.026	.62
46	MP3B	Х	13.013	2.55
47	MP3B	Z	-22.539	2.55
48	MP3B	Mx	.026	2.55
49	MP3C	X	24.882	.62
50	MP3C	Z	-43.097	.62
51	MP3C	Mx	032	.62
52	MP3C	X	24.882	2.55
53	MP3C	Z	-43.097	2.55
54	MP3C	Mx	- 032	2.55
55	MP4A	X	12.057	3.25
56	MP4A	7	-20 884	3.25
57	MP4A	Mx	008	3.25
58	MP4A	X	12 057	3.25
59	MP4A	7	-20.884	3.25
60	MP4A	My	008	3.25
61	MP4B	X	8 788	3.25
62	MP4B	7	-15 221	3.25
63	MP4B	<u> </u>	- 012	3.25
64	MP4B	Y	8 788	3.25
65	MP4B	7	_15 221	3.25
66	MP4D MD4R		012	3.25
67	MP4C		012	3.25
69	MP4C	7	10.652	2.25
60	MP4C		-19.052	2.25
70	MP4C		11 246	3.25
70	MP4C	∧ 7	10.652	3.20
72	MP4C		-13.052	3.20
72	MD2A		.01	3.25
73		~ 7	20.544	3.20
74	MD2A		-20.041	3.20
75	MP3A		.000	3.25
76	MP3A	λ 7	11.80	3.25
70	MP3A		-20.041	3.25
78	MP3A	IVIX	.008	3.25
19	IVIE3B	∧ 7	1397	J.∠D
04	MP3B		-13.852	3.25
01	IVIP3B	IVIX	011	3.20
82	MP3B	Χ 7	1.997	3.25
04	MP3B		-13.852	3.25
84	MP3B	IVIX	011	3.25
85	MP3C	X	11.019	3.25
86	MP3C		-19.086	3.25
8/	MP3C	IVIX	.009	3.25



#### Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
88	MP3C	X	11.019	3.25
89	MP3C	Z	-19.086	3.25
90	MP3C	Mx	.009	3.25
91	MP1A	Х	55.15	.17
92	MP1A	Z	-95.523	.17
93	MP1A	Mx	055	.17
94	MP1A	Х	55.15	5.83
95	MP1A	Z	-95.523	5.83
96	MP1A	Mx	055	5.83
97	MP1B	X	46.63	.17
98	MP1B	Z	-80.765	.17
99	MP1B	Mx	.093	.17
100	MP1B	Х	46.63	5.83
101	MP1B	Z	-80.765	5.83
102	MP1B	Mx	.093	5.83
103	MP1C	Х	55.15	.17
104	MP1C	Z	-95.523	.17
105	MP1C	Mx	055	.17
106	MP1C	X	55.15	5.83
107	MP1C	Z	-95.523	5.83
108	MP1C	Mx	055	5.83

# Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	97.637	.68
2	MP5A	Z	-56.371	.68
3	MP5A	Mx	145	.68
4	MP5A	Х	97.637	6.16
5	MP5A	Z	-56.371	6.16
6	MP5A	Mx	145	6.16
7	MP5B	Х	97.637	.68
8	MP5B	Z	-56.371	.68
9	MP5B	Mx	.051	.68
10	MP5B	Х	97.637	6.16
11	MP5B	Z	-56.371	6.16
12	MP5B	Mx	.051	6.16
13	MP5C	Х	119.964	.68
14	MP5C	Z	-69.261	.68
15	MP5C	Mx	.09	.68
16	MP5C	Х	119.964	6.16
17	MP5C	Z	-69.261	6.16
18	MP5C	Mx	.09	6.16
19	MP5A	Х	97.637	.68
20	MP5A	Z	-56.371	.68
21	MP5A	Mx	051	.68
22	MP5A	Х	97.637	6.16
23	MP5A	Z	-56.371	6.16
24	MP5A	Mx	051	6.16
25	MP5B	Х	97.637	.68
26	MP5B	Z	-56.371	.68
27	MP5B	Mx	.145	.68
28	MP5B	Х	97.637	6.16
29	MP5B	Z	-56.371	6.16
30	MP5B	Mx	.145	6.16
31	MP5C	X	119.964	.68
32	MP5C	Z	-69.261	.68



### Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
33	MP5C	Mx	138	.68
34	MP5C	X	119.964	6.16
35	MP5C	Z	-69.261	6.16
36	MP5C	Mx	138	6.16
37	MP3A	X	31.297	.62
38	MP3A	Z	-18.069	.62
39	MP3A	Mx	031	.62
40	MP3A	X	31.297	2.55
41	MP3A	Z	-18.069	2.55
42	MP3A	Mx	031	2.55
43	MP3B	Х	31.297	.62
44	MP3B	Z	-18.069	.62
45	MP3B	Mx	.031	.62
46	MP3B	Х	31.297	2.55
47	MP3B	Z	-18.069	2.55
48	MP3B	Mx	.031	2.55
49	MP3C	Х	56.515	.62
50	MP3C	Z	-32.629	.62
51	MP3C	Mx	011	.62
52	MP3C	X	56.515	2.55
53	MP3C	Z	-32.629	2.55
54	MP3C	Mx	011	2.55
55	MP4A	X	17.109	3.25
56	MP4A	Z	-9.878	3.25
57	MP4A	Mx	.011	3.25
58	MP4A	X	17.109	3.25
59	MP4A	Z	-9.878	3.25
60	MP4A	Mx	.011	3.25
61	MP4B	X	17 109	3 25
62	MP4B	7	-9.878	3 25
63	MP4B	Mx	- 011	3 25
64	MP4B	X	17 109	3 25
65	MP4B	7	-9.878	3 25
66	MP4B	Mx	- 011	3 25
67	MP4C	X	22 544	3 25
68	MP4C	7	-13.016	3 25
69	MP4C	My	003	3.25
70	MP4C	X	22 544	3.25
70	MP4C	7	-13 016	3.25
72	MP4C	My	003	3.25
73	MP3A	X	16.081	3.25
74	MP3A	7	-9.285	3.25
75	MP3A	My	011	3.25
76	MP3A	X	16.081	3.25
77	MP3A	7	_9 285	3.25
78	MD3A		-9.203	3.25
70	MD2D		16.091	3.25
20	MD2D	~ 7	0.205	2.25
0U Q1	MD2P		-9.200	3.20
01 02	MD2D		16 091	3.20
02	MD2P	∧ 7	0.295	3.20
03	MD2D		-9.200	3.20
04	MD2C		011	3.20
00	IVIP30	λ 7	12,002	3.20
07	MD2C		-12.992	3.20
87	MP3C	IVIX	.003	3.25
88	MP3C	Χ 7	22.502	3.25
89	MP3C		-12.992	3.25



#### Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
90	MP3C	Mx	.003	3.25
91	MP1A	Х	85.684	.17
92	MP1A	Z	-49.47	.17
93	MP1A	Mx	086	.17
94	MP1A	Х	85.684	5.83
95	MP1A	Z	-49.47	5.83
96	MP1A	Mx	086	5.83
97	MP1B	Х	85.684	.17
98	MP1B	Z	-49.47	.17
99	MP1B	Mx	.086	.17
100	MP1B	Х	85.684	5.83
101	MP1B	Z	-49.47	5.83
102	MP1B	Mx	.086	5.83
103	MP1C	Х	100.443	.17
104	MP1C	Z	-57.991	.17
105	MP1C	Mx	0	.17
106	MP1C	X	100.443	5.83
107	MP1C	Z	-57.991	5.83
108	MP1C	Mx	0	5.83

# Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	103.789	.68
2	MP5A	Z	0	.68
3	MP5A	Mx	104	.68
4	MP5A	Х	103.789	6.16
5	MP5A	Z	0	6.16
6	MP5A	Mx	104	6.16
7	MP5B	Х	130.649	.68
8	MP5B	Z	0	.68
9	MP5B	Mx	029	.68
10	MP5B	Х	130.649	6.16
11	MP5B	Z	0	6.16
12	MP5B	Mx	029	6.16
13	MP5C	Х	135.413	.68
14	MP5C	Z	0	.68
15	MP5C	Mx	.152	.68
16	MP5C	Х	135.413	6.16
17	MP5C	Z	0	6.16
18	MP5C	Mx	.152	6.16
19	MP5A	X	103.789	.68
20	MP5A	Z	0	.68
21	MP5A	Mx	104	.68
22	MP5A	Х	103.789	6.16
23	MP5A	Z	0	6.16
24	MP5A	Mx	104	6.16
25	MP5B	Х	130.649	.68
26	MP5B	Z	0	.68
27	MP5B	Mx	.16	.68
28	MP5B	Х	130.649	6.16
29	MP5B	Z	0	6.16
30	MP5B	Mx	.16	6.16
31	MP5C	X	135.413	.68
32	MP5C	Z	0	.68
33	MP5C	Mx	06	.68
34	MP5C	X	135.413	6.16



### Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP5C	Z	0	6.16
36	MP5C	Mx	06	6.16
37	MP3A	X	26.026	.62
38	MP3A	Z	0	.62
39	MP3A	Mx	026	.62
40	MP3A	X	26.026	2.55
41	MP3A	Z	0	2.55
42	MP3A	Mx	026	2.55
43	MP3B	X	56.364	.62
44	MP3B	Z	0	.62
45	MP3B	Mx	.028	.62
46	MP3B	X	56.364	2.55
47	MP3B	Z	0	2.55
48	MP3B	Mx	.028	2.55
49	MP3C	X	61.745	.62
50	MP3C	Z	0	.62
51	MP3C	Mx	.021	.62
52	MP3C	Х	61.745	2.55
53	MP3C	Z	0	2.55
54	MP3C	Mx	.021	2.55
55	MP4A	Х	17.576	3.25
56	MP4A	Z	0	3.25
57	MP4A	Mx	.012	3.25
58	MP4A	X	17.576	3.25
59	MP4A	Z	0	3.25
60	MP4A	Mx	.012	3.25
61	MP4B	X	24,115	3.25
62	MP4B	7	0	3.25
63	MP4B	Mx	- 008	3.25
64	MP4B	X	24 115	3.25
65	MP4B	7	0	3.25
66	MP4B	Mx	- 008	3.25
67	MP4C	X	25 274	3.25
68	MP4C	7	0	3.25
69	MP4C	My	- 006	3 25
70	MP4C	X	25 274	3 25
71	MP4C	7	0	3 25
72	MP4C	My	- 006	3.25
73	MP3A	Y	15 99/	3.25
74	MP3A	7	0	3.25
75	MP3A	My	011	3.25
76	MP3A	X	15 994	3 25
77	MP3A	7	0	3.25
78	MP3A	My	011	3 25
79	MP3R	X	23 719	3.25
80	MP3R	7	0	3.25
81	MP3B	M _Y	- 008	3.25
82	MD3B		000	3.25
83	MP3B	7	23.719	3.25
84	MD3B		- 008	3.25
85	MP3C	Y	25 089	3.25
86	MP3C	7	23.009	3.25
<u>87</u>	MP3C		006	3.20
80	MP3C		000	3.20
00	MD2C	7	23.009	3.20
00	MD2C		006	3.20
90			000	17
91		Λ	<u> </u>	.1/



#### Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
92	MP1A	Z	0	.17
93	MP1A	Mx	093	.17
94	MP1A	Х	93.259	5.83
95	MP1A	Z	0	5.83
96	MP1A	Mx	093	5.83
97	MP1B	Х	110.301	.17
98	MP1B	Z	0	.17
99	MP1B	Mx	.055	.17
100	MP1B	Х	110.301	5.83
101	MP1B	Z	0	5.83
102	MP1B	Mx	.055	5.83
103	MP1C	Х	110.301	.17
104	MP1C	Z	0	.17
105	MP1C	Mx	.055	.17
106	MP1C	Х	110.301	5.83
107	MP1C	Z	0	5.83
108	MP1C	Mx	.055	5.83

# Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	97.637	.68
2	MP5A	Z	56.371	.68
3	MP5A	Mx	051	.68
4	MP5A	X	97.637	6.16
5	MP5A	Z	56.371	6.16
6	MP5A	Mx	051	6.16
7	MP5B	X	120.899	.68
8	MP5B	Z	69.801	.68
9	MP5B	Mx	116	.68
10	MP5B	Х	120.899	6.16
11	MP5B	Z	69.801	6.16
12	MP5B	Mx	116	6.16
13	MP5C	Х	102.698	.68
14	MP5C	Z	59.293	.68
15	MP5C	Mx	.154	.68
16	MP5C	Х	102.698	6.16
17	MP5C	Z	59.293	6.16
18	MP5C	Mx	.154	6.16
19	MP5A	Х	97.637	.68
20	MP5A	Z	56.371	.68
21	MP5A	Mx	145	.68
22	MP5A	X	97.637	6.16
23	MP5A	Z	56.371	6.16
24	MP5A	Mx	145	6.16
25	MP5B	X	120.899	.68
26	MP5B	Z	69.801	.68
27	MP5B	Mx	.116	.68
28	MP5B	X	120.899	6.16
29	MP5B	Z	69.801	6.16
30	MP5B	Mx	.116	6.16
31	MP5C	X	102.698	.68
32	MP5C	Z	59.293	.68
33	MP5C	Mx	.027	.68
34	MP5C	X	102.698	6.16
35	MP5C	Z	59.293	6.16
36	MP5C	Mx	.027	6.16



#### Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
37	MP3A	X	31.297	.62
38	MP3A	Z	18.069	.62
39	MP3A	Mx	031	.62
40	MP3A	X	31.297	2.55
41	MP3A	Z	18.069	2.55
42	MP3A	Mx	031	2.55
43	MP3B	X	57.571	.62
44	MP3B	Z	33.239	.62
45	MP3B	Mx	0	.62
46	MP3B	Х	57.571	2.55
47	MP3B	Z	33.239	2.55
48	MP3B	Mx	0	2.55
49	MP3C	Х	37.013	.62
50	MP3C	Z	21.37	.62
51	MP3C	Mx	.033	.62
52	MP3C	Х	37.013	2.55
53	MP3C	Z	21.37	2.55
54	MP3C	Mx	.033	2.55
55	MP4A	X	17.109	3.25
56	MP4A	7	9.878	3.25
57	MP4A	Mx	011	3.25
58	MP4A	X	17 109	3.25
59	MP4A	7	9.878	3.25
60	MP4A	Mx	011	3.25
61	MP4B	X	22 771	3.25
62	MP4B	7	13 147	3.25
63	MP4B	My	0	3.25
64	MP4B	X	22 771	3.25
65	MP4B	7	13 147	3.25
66	MP4B	My	0	3.25
67	MP4C	X	18 3/1	3.25
68	MP4C	7	10.541	3.25
69	MP4C	M ₂	- 011	3.25
70	MP4C	IVIA V	18 3/1	3.25
70	MP4C	7	10.541	3.25
72	MP4C	<u> </u>	011	3.25
72	MD2A		16.091	3.25
73	MD2A	7	0.001	3.25
74			9.200	3.20
75			16 091	3.25
70	MD2A	7	0.001	3.20
78	MD2A		011	3.20
70	MD2D		.011	3.20
80	MD2D	~ 7		3.20
00	MD2D		13.147	3.20
01	IVIE3B	IVIX	00.774	3.20
82	MP3B	~ ~	22.771	3.20
83	MP3B		13.147	3.25
84	MP3B	IVIX	U 47.507	3.25
85	MP3C	X 7	17.537	3.25
80	MP3C		10.125	3.25
87	MP3C	IVIX	01	3.25
88	MP3C	X	17.537	3.25
89	MP3C	<u>∠</u>	10.125	3.25
90	MP3C	Mx	01	3.25
91	MP1A	X	85.684	.17
92	MP1A	Z	49.47	.17
93	MP1A	Mx	086	.17



#### Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
94	MP1A	Х	85.684	5.83
95	MP1A	Z	49.47	5.83
96	MP1A	Mx	086	5.83
97	MP1B	Х	100.443	.17
98	MP1B	Z	57.991	.17
99	MP1B	Mx	0	.17
100	MP1B	Х	100.443	5.83
101	MP1B	Z	57.991	5.83
102	MP1B	Mx	0	5.83
103	MP1C	Х	85.684	.17
104	MP1C	Z	49.47	.17
105	MP1C	Mx	.086	.17
106	MP1C	Х	85.684	5.83
107	MP1C	Z	49.47	5.83
108	MP1C	Mx	.086	5.83

# Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	65.324	.68
2	MP5A	Z	113.145	.68
3	MP5A	Mx	.029	.68
4	MP5A	Х	65.324	6.16
5	MP5A	Z	113.145	6.16
6	MP5A	Mx	.029	6.16
7	MP5B	Х	65.324	.68
8	MP5B	Z	113.145	.68
9	MP5B	Mx	16	.68
10	MP5B	Х	65.324	6.16
11	MP5B	Z	113.145	6.16
12	MP5B	Mx	16	6.16
13	MP5C	Х	52.434	.68
14	MP5C	Z	90.819	.68
15	MP5C	Mx	.118	.68
16	MP5C	Х	52.434	6.16
17	MP5C	Z	90.819	6.16
18	MP5C	Mx	.118	6.16
19	MP5A	Х	65.324	.68
20	MP5A	Z	113.145	.68
21	MP5A	Mx	16	.68
22	MP5A	Х	65.324	6.16
23	MP5A	Z	113.145	6.16
24	MP5A	Mx	16	6.16
25	MP5B	Х	65.324	.68
26	MP5B	Z	113.145	.68
27	MP5B	Mx	.029	.68
28	MP5B	Х	65.324	6.16
29	MP5B	Z	113.145	6.16
30	MP5B	Mx	.029	6.16
31	MP5C	Х	52.434	.68
32	MP5C	Z	90.819	.68
33	MP5C	Mx	.088	.68
34	MP5C	Х	52.434	6.16
35	MP5C	Z	90.819	6.16
36	MP5C	Mx	.088	6.16
37	MP3A	X	28.182	.62
38	MP3A	Z	48.813	.62



#### Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
39	MP3A	Mx	028	.62
40	MP3A	X	28.182	2.55
41	MP3A	Z	48.813	2.55
42	MP3A	Mx	028	2.55
43	MP3B	Х	28.182	.62
44	MP3B	Z	48.813	.62
45	MP3B	Mx	028	.62
46	MP3B	Х	28.182	2.55
47	MP3B	Z	48.813	2.55
48	MP3B	Mx	028	2.55
49	MP3C	Х	13.623	.62
50	MP3C	Z	23.595	.62
51	MP3C	Mx	.027	.62
52	MP3C	X	13.623	2.55
53	MP3C	Z	23.595	2.55
54	MP3C	Mx	.027	2.55
55	MP4A	X	12.057	3.25
56	MP4A	Z	20.884	3.25
57	MP4A	Mx	.008	3.25
58	MP4A	X	12.057	3.25
59	MP4A	Z	20.884	3.25
60	MP4A	Mx	.008	3.25
61	MP4B	X	12.057	3.25
62	MP4B	Z	20.884	3.25
63	MP4B	Mx	.008	3.25
64	MP4B	X	12.057	3.25
65	MP4B	Z	20.884	3.25
66	MP4B	Mx	.008	3.25
67	MP4C	X	8.92	3.25
68	MP4C	Z	15.449	3.25
69	MP4C	Mx	012	3.25
70	MP4C	X	8.92	3.25
71	MP4C	Z	15.449	3.25
72	MP4C	Mx	012	3.25
73	MP3A	X	11.86	3.25
74	MP3A	Z	20.541	3.25
75	MP3A	Mx	.008	3.25
76	MP3A	X	11.86	3.25
77	MP3A	Z	20.541	3.25
78	MP3A	Mx	.008	3.25
79	MP3B	X	11.86	3.25
80	MP3B		20.541	3.25
81	MP3B	Mx	.008	3.25
82	MP3B	X	11.86	3.25
83	MP3B	<u> </u>	20.541	3.25
84	MP3B	MIX	.008	3.25
85	MP3C	X	8.152	3.25
86	MP3C		14.12	3.25
8/	MP3C	IVIX	011	3.25
00	MP3C	λ 7	0.102	3.20
00	MD2C		011	3.20
90			011	3.20
91		7	05.10	.1/
92			90.020	. 1 /
93			000	.1/
94		7	05.15	5.82
90	IVIP IA	L	30.020	0.00



### Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
96	MP1A	Mx	055	5.83
97	MP1B	Х	55.15	.17
98	MP1B	Z	95.523	.17
99	MP1B	Mx	055	.17
100	MP1B	Х	55.15	5.83
101	MP1B	Z	95.523	5.83
102	MP1B	Mx	055	5.83
103	MP1C	Х	46.63	.17
104	MP1C	Z	80.765	.17
105	MP1C	Mx	.093	.17
106	MP1C	Х	46.63	5.83
107	MP1C	Z	80.765	5.83
108	MP1C	Mx	.093	5.83

# Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	0	.68
2	MP5A	Z	139.602	.68
3	MP5A	Mx	.116	.68
4	MP5A	X	0	6.16
5	MP5A	Z	139.602	6.16
6	MP5A	Mx	.116	6.16
7	MP5B	Х	0	.68
8	MP5B	Z	112.742	.68
9	MP5B	Mx	145	.68
10	MP5B	Х	0	6.16
11	MP5B	Z	112.742	6.16
12	MP5B	Mx	145	6.16
13	MP5C	Х	0	.68
14	MP5C	Z	107.978	.68
15	MP5C	Mx	.071	.68
16	MP5C	X	0	6.16
17	MP5C	Z	107.978	6.16
18	MP5C	Mx	.071	6.16
19	MP5A	Х	0	.68
20	MP5A	Z	139.602	.68
21	MP5A	Mx	116	.68
22	MP5A	X	0	6.16
23	MP5A	Z	139.602	6.16
24	MP5A	Mx	116	6.16
25	MP5B	X	0	.68
26	MP5B	Z	112.742	.68
27	MP5B	Mx	051	.68
28	MP5B	X	0	6.16
29	MP5B	Z	112.742	6.16
30	MP5B	Mx	051	6.16
31	MP5C	X	0	.68
32	MP5C	Z	107.978	.68
33	MP5C	Mx	.132	.68
34	MP5C	X	0	6.16
35	MP5C	Z	107.978	6.16
36	MP5C	Mx	.132	6.16
37	MP3A	X	0	.62
38	MP3A	Z	66.477	.62
39	MP3A	Mx	0	.62
40	MP3A	X	0	2.55



#### Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
41	MP3A	Z	66.477	2.55
42	MP3A	Mx	0	2.55
43	MP3B	X	0	.62
44	MP3B	Z	36.139	.62
45	MP3B	Mx	031	.62
46	MP3B	X	0	2.55
47	MP3B	Z	36.139	2.55
48	MP3B	Mx	031	2.55
49	MP3C	X	0	.62
50	MP3C	7	30,758	62
51	MP3C	Mx	029	62
52	MP3C	X	0	2.55
53	MP3C	7	30 758	2.55
54	MP3C	My	029	2.55
55	MP4A	X	0	3.25
56	MP4A	7	26 294	3.25
57	MP4A	My	0	3.25
58	MP4A	Y	0	3.25
50		7	26.204	2.25
60	MD4A		0	3.20
61			0	3.20
62		7	10.756	3.25
62			011	3.25
64			.011	3.20
65		7	10.750	3.25
60			19.750	3.23
66			.011	3.23
67	MP4C		10 500	3.20
68	MP4C	<u> </u>	18.596	3.20
69	MP4C	IVIX	012	3.25
70	MP4C	X 7	10 500	3.25
71	MP4C	<u> </u>	18.596	3.25
72	MP4C		012	3.20
73	MP3A	7	0	3.20
74	MP3A		20.294	3.20
75	MP3A	IVIX	0	3.25
76	MP3A	X 7	0	3.25
77	MP3A	<u> </u>	26.294	3.25
78	MP3A	IVIX	0	3.25
79	MP3B	X	0	3.25
80	MP3B		18.569	3.25
81	MP3B	IVIX	.011	3.25
82	MP3B	λ 7	0	3.25
83	MP3B	2	18.569	3.25
84	MP3B	MIX	.011	3.25
85	MP3C	X	0	3.25
86	MP3C	Z	17.199	3.25
87	MP3C	MX	011	3.25
88	MP3C	X	0	3.25
89	MP3C		17.199	3.25
90	MP3C	MIX V	011	3.25
91		X	0	.1/
92	MP1A	2	115.981	.1/
93	MP1A	IVIX	U	.1/
94	MP1A	X	0	5.83
95	MP1A		115.981	5.83
96	MP1A	IVIX	0	5.83
9/	MH.I.R	X	U	.17



#### Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
98	MP1B	Z	98.94	.17
99	MP1B	Mx	086	.17
100	MP1B	Х	0	5.83
101	MP1B	Z	98.94	5.83
102	MP1B	Mx	086	5.83
103	MP1C	Х	0	.17
104	MP1C	Z	98.94	.17
105	MP1C	Mx	.086	.17
106	MP1C	Х	0	5.83
107	MP1C	Z	98.94	5.83
108	MP1C	Mx	.086	5.83

# Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	-65.324	.68
2	MP5A	Z	113.145	.68
3	MP5A	Mx	.16	.68
4	MP5A	X	-65.324	6.16
5	MP5A	Z	113.145	6.16
6	MP5A	Mx	.16	6.16
7	MP5B	X	-51.894	.68
8	MP5B	Z	89.884	.68
9	MP5B	Mx	104	.68
10	MP5B	X	-51.894	6.16
11	MP5B	Z	89.884	6.16
12	MP5B	Mx	104	6.16
13	MP5C	Х	-62.402	.68
14	MP5C	Z	108.084	.68
15	MP5C	Mx	.000552	.68
16	MP5C	Х	-62.402	6.16
17	MP5C	Z	108.084	6.16
18	MP5C	Mx	.000552	6.16
19	MP5A	Х	-65.324	.68
20	MP5A	Z	113.145	.68
21	MP5A	Mx	029	.68
22	MP5A	X	-65.324	6.16
23	MP5A	Z	113.145	6.16
24	MP5A	Mx	029	6.16
25	MP5B	X	-51.894	.68
26	MP5B	Z	89.884	.68
27	MP5B	Mx	104	.68
28	MP5B	Х	-51.894	6.16
29	MP5B	Z	89.884	6.16
30	MP5B	Mx	104	6.16
31	MP5C	Х	-62.402	.68
32	MP5C	Z	108.084	.68
33	MP5C	Mx	.16	.68
34	MP5C	Х	-62.402	6.16
35	MP5C	Z	108.084	6.16
36	MP5C	Mx	.16	6.16
37	MP3A	X	-28.182	.62
38	MP3A	Z	48.813	.62
39	MP3A	Mx	.028	.62
40	MP3A	X	-28.182	2.55
41	MP3A	Z	48.813	2.55
42	MP3A	Mx	.028	2.55



# Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
43	MP3B	X	-13.013	.62
44	MP3B	Z	22.539	.62
45	MP3B	Mx	026	.62
46	MP3B	X	-13.013	2.55
47	MP3B	Z	22.539	2.55
48	MP3B	Mx	026	2.55
49	MP3C	X	-24.882	.62
50	MP3C	Z	43.097	.62
51	MP3C	Mx	.032	.62
52	MP3C	X	-24.882	2.55
53	MP3C	Z	43.097	2.55
54	MP3C	Mx	.032	2.55
55	MP4A	X	-12.057	3.25
56	MP4A	Z	20.884	3.25
57	MP4A	Mx	008	3.25
58	MP4A	X	-12.057	3.25
59	MP4A	Z	20.884	3.25
60	MP4A	Mx	008	3.25
61	MP4B	X	-8.788	3.25
62	MP4B	Z	15.221	3.25
63	MP4B	Mx	.012	3.25
64	MP4B	X	-8.788	3.25
65	MP4B	Z	15.221	3.25
66	MP4B	Mx	.012	3.25
67	MP4C	X	-11.346	3.25
68	MP4C	7	19.652	3.25
69	MP4C	Mx	- 01	3.25
70	MP4C	X	-11.346	3.25
71	MP4C	7	19 652	3.25
72	MP4C	My	- 01	3.25
73	MP3A	X	-11.86	3.25
74	MP3A	7	20 541	3.25
75	MP3A	My	- 008	3.25
76	MP3A	X	-11.86	3.25
77	MP3A	7	20 541	3.25
78	MP3A	My	_ 008	3.25
70	MD3R		7.000	3.25
80	MD3R	7	13 852	3.25
91	MD2D		011	3.25
92	MD2D		7.007	3.25
82	MD3D	7	-7.397	3.20
84	MD3D		011	3.20
85	MD3C		.11 010	2.25
86	MD2C	7	10,096	3.20
00	MP2C		19.000	3.20
0/	MD2C		009	3.20
88	MP3C		-11.019	3.20
89	MP30		19.080	3.25
90	MP3C	IVIX	009	3.25
91		Χ 7	-00.10	. 1 /
92	MP1A		95.523	.1/
93	MP1A	IVIX	.055	.17
94	MP1A	X	-55.15	5.83
95	MP1A	<u> </u>	95.523	5.83
96	MP1A	Mx	.055	5.83
97	MP1B	X	-46.63	.17
98	MP1B	Z	80.765	.17
99	MP1B	Mx	093	.17



### Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
100	MP1B	X	-46.63	5.83
101	MP1B	Z	80.765	5.83
102	MP1B	Mx	093	5.83
103	MP1C	X	-55.15	.17
104	MP1C	Z	95.523	.17
105	MP1C	Mx	.055	.17
106	MP1C	X	-55.15	5.83
107	MP1C	Z	95.523	5.83
108	MP1C	Mx	055	5.83

# <u>Member Point Loads (BLC 11 : Antenna Wo (240 Deg))</u>

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	-97.637	.68
2	MP5A	Z	56.371	.68
3	MP5A	Mx	.145	.68
4	MP5A	Х	-97.637	6.16
5	MP5A	Z	56.371	6.16
6	MP5A	Mx	.145	6.16
7	MP5B	Х	-97.637	.68
8	MP5B	Z	56.371	.68
9	MP5B	Mx	051	.68
10	MP5B	X	-97.637	6.16
11	MP5B	Z	56.371	6.16
12	MP5B	Mx	051	6.16
13	MP5C	X	-119,964	.68
14	MP5C	Z	69.261	.68
15	MP5C	Mx	09	.68
16	MP5C	Х	-119.964	6.16
17	MP5C	Z	69.261	6.16
18	MP5C	Mx	09	6.16
19	MP5A	Х	-97.637	.68
20	MP5A	Z	56.371	.68
21	MP5A	Mx	.051	.68
22	MP5A	X	-97.637	6.16
23	MP5A	Z	56.371	6.16
24	MP5A	Mx	.051	6.16
25	MP5B	X	-97.637	.68
26	MP5B	Z	56.371	.68
27	MP5B	Mx	145	.68
28	MP5B	X	-97.637	6.16
29	MP5B	Z	56.371	6.16
30	MP5B	Mx	145	6.16
31	MP5C	X	-119.964	.68
32	MP5C	Z	69.261	.68
33	MP5C	Mx	.138	.68
34	MP5C	Х	-119.964	6.16
35	MP5C	Z	69.261	6.16
36	MP5C	Mx	.138	6.16
37	MP3A	X	-31.297	.62
38	MP3A	Z	18.069	.62
39	MP3A	Mx	.031	.62
40	MP3A	X	-31.297	2.55
41	MP3A	Z	18.069	2.55
42	MP3A	Mx	.031	2.55
43	MP3B	X	-31.297	.62
44	MP3B	Z	18.069	.62



# Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
45	MP3B	Mx	031	.62
46	MP3B	X	-31.297	2.55
47	MP3B	Z	18.069	2.55
48	MP3B	Mx	031	2.55
49	MP3C	X	-56.515	.62
50	MP3C	Z	32.629	.62
51	MP3C	Mx	.011	.62
52	MP3C	X	-56.515	2.55
53	MP3C	7	32 629	2.55
54	MP3C	Mx	011	2.55
55	MP4A	X	-17 109	3.25
56	MD4A	7	0.878	3.25
57		My	011	3.25
50			17 100	3.25
50		7	-17.109	3.25
59			9.070	3.25
00			011	3.20
61	MP4B	× 7	-17.109	3.25
62	MP4B	2	9.878	3.25
63	MP4B	MX	.011	3.25
64	MP4B	X	-17.109	3.25
65	MP4B	Z	9.878	3.25
66	MP4B	Mx	.011	3.25
67	MP4C	X	-22.544	3.25
68	MP4C	Z	13.016	3.25
69	MP4C	Mx	003	3.25
70	MP4C	X	-22.544	3.25
71	MP4C	Z	13.016	3.25
72	MP4C	Mx	003	3.25
73	MP3A	X	-16.081	3.25
74	MP3A	Z	9.285	3.25
75	MP3A	Mx	011	3.25
76	MP3A	X	-16.081	3.25
77	MP3A	Z	9.285	3.25
78	MP3A	Mx	011	3.25
79	MP3B	Х	-16.081	3.25
80	MP3B	Z	9.285	3.25
81	MP3B	Mx	.011	3.25
82	MP3B	X	-16.081	3.25
83	MP3B	7	9 285	3.25
84	MP3B	Mx	011	3.25
85	MP3C	X	-22,502	3.25
86	MP3C	7	12,992	3.25
87	MP3C	Mx	- 003	3.25
88	MP3C	X	-22 502	3 25
80	MP3C	7	12 992	3.25
90	MP3C	My	_ 003	3.25
01	MD1 A	Y	005	17
02	MD1A	7	-00.004 /0 /7	17
92			43.47	.17
93			.000	5.92
94		∧ 7		5.00
90			49.47	0.00
90		IVIX	.000	0.00
97	IVIP I B	× 7	-80.084	.1/
98	MP1B	<u> </u>	49.47	.1/
99	MP1B	IVIX	086	.1/
100	MP1B	X	-85.684	5.83
101	MP1B		49.47	5.83

# Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
102	MP1B	Mx	086	5.83
103	MP1C	Х	-100.443	.17
104	MP1C	Z	57.991	.17
105	MP1C	Mx	0	.17
106	MP1C	Х	-100.443	5.83
107	MP1C	Z	57.991	5.83
108	MP1C	Mx	0	5.83

# Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	-103.789	.68
2	MP5A	Z	0	.68
3	MP5A	Mx	.104	.68
4	MP5A	X	-103.789	6.16
5	MP5A	Z	0	6.16
6	MP5A	Mx	.104	6.16
7	MP5B	Х	-130.649	.68
8	MP5B	Z	0	.68
9	MP5B	Mx	.029	.68
10	MP5B	X	-130.649	6.16
11	MP5B	Z	0	6.16
12	MP5B	Mx	.029	6.16
13	MP5C	Х	-135.413	.68
14	MP5C	Z	0	.68
15	MP5C	Mx	152	.68
16	MP5C	X	-135.413	6.16
17	MP5C	Z	0	6.16
18	MP5C	Mx	152	6.16
19	MP5A	Х	-103.789	.68
20	MP5A	Z	0	.68
21	MP5A	Mx	.104	.68
22	MP5A	X	-103.789	6.16
23	MP5A	Z	0	6.16
24	MP5A	Mx	.104	6.16
25	MP5B	Х	-130.649	.68
26	MP5B	Z	0	.68
27	MP5B	Mx	16	.68
28	MP5B	Х	-130.649	6.16
29	MP5B	Z	0	6.16
30	MP5B	Mx	16	6.16
31	MP5C	X	-135.413	.68
32	MP5C	Z	0	.68
33	MP5C	Mx	.06	.68
34	MP5C	X	-135.413	6.16
35	MP5C	Z	0	6.16
36	MP5C	Mx	.06	6.16
37	MP3A	Х	-26.026	.62
38	MP3A	Z	0	.62
39	MP3A	Mx	.026	.62
40	MP3A	X	-26.026	2.55
41	MP3A	Z	0	2.55
42	MP3A	Mx	.026	2.55
43	MP3B	X	-56.364	.62
44	MP3B	Z	0	.62
45	MP3B	Mx	028	.62
46	MP3B	X	-56.364	2.55



## Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
47	MP3B	Z	0	2.55
48	MP3B	Mx	028	2.55
49	MP3C	X	-61.745	.62
50	MP3C	Z	0	.62
51	MP3C	Mx	021	.62
52	MP3C	X	-61.745	2.55
53	MP3C	Z	0	2.55
54	MP3C	Mx	021	2.55
55	MP4A	X	-17.576	3.25
56	MP4A	Z	0	3.25
57	MP4A	Mx	012	3.25
58	MP4A	X	-17.576	3.25
59	MP4A	Z	0	3.25
60	MP4A	Mx	012	3.25
61	MP4B	Х	-24.115	3.25
62	MP4B	Z	0	3.25
63	MP4B	Mx	.008	3.25
64	MP4B	Х	-24.115	3.25
65	MP4B	Z	0	3.25
66	MP4B	Mx	.008	3.25
67	MP4C	X	-25.274	3.25
68	MP4C	7	0	3.25
69	MP4C	Mx	.006	3.25
70	MP4C	X	-25.274	3.25
71	MP4C	7	0	3.25
72	MP4C	Mx	006	3.25
73	MP34	X	-15 994	3.25
74	MP3A	7	0	3.25
75	MP3A	My	011	3.25
76	MD2A	IVIA V	15 00/	3.25
70	MD2A	7	-15.994	2.25
70			011	3.20
70	MD2D		011	2.25
79		~ 7	-23.719	3.20
00			008	3.25
01			.000	3.23
82		7	-23.719	3.25
83	MP3B		0	3.25
84	MP3B	IVIX	.008	3.25
85	MP3C	X	-25.089	3.25
86	MP3C		0	3.25
8/	MP3C	IVIX	.006	3.25
88	MP3C	X	-25.089	3.25
89	MP3C	2	0	3.25
90	MP3C	MX	.006	3.25
91	MP1A	X	-93.259	.17
92	MP1A	Z	0	.17
93	MP1A	Mx	.093	.17
94	MP1A	X	-93.259	5.83
95	MP1A	Z	0	5.83
96	MP1A	Mx	.093	5.83
97	MP1B	X	-110.301	.17
98	MP1B	Z	0	.17
99	MP1B	Mx	055	.17
100	MP1B	X	-110.301	5.83
101	MP1B	Z	0	5.83
102	MP1B	Mx	055	5.83
103	MP1C	X	-110.301	.17

# Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
104	MP1C	Z	0	.17
105	MP1C	Mx	055	.17
106	MP1C	X	-110.301	5.83
107	MP1C	Z	0	5.83
108	MP1C	Mx	055	5.83

# Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 MP5A	Х	-97.637	.68
2 MP5A	Z	-56.371	.68
3 MP5A	Mx	.051	.68
4 MP5A	Х	-97.637	6.16
5 MP5A	Z	-56.371	6.16
6 MP5A	Mx	.051	6.16
7 MP5B	Х	-120.899	.68
8 MP5B	Z	-69.801	.68
9 MP5B	Mx	.116	.68
10 MP5B	Х	-120.899	6.16
11 MP5B	Z	-69.801	6.16
12 MP5B	Mx	.116	6.16
13 MP5C	Х	-102.698	.68
14 MP5C	Z	-59.293	.68
15 MP5C	Mx	154	.68
16 MP5C	Х	-102.698	6.16
17 MP5C	Z	-59.293	6.16
18 MP5C	Mx	154	6.16
19 MP5A	Х	-97.637	.68
20 MP5A	Z	-56.371	.68
21 MP5A	Mx	.145	.68
22 MP5A	Х	-97.637	6.16
23 MP5A	Z	-56.371	6.16
24 MP5A	Mx	.145	6.16
25 MP5B	Х	-120.899	.68
26 MP5B	Z	-69.801	.68
27 MP5B	Mx	116	.68
28 MP5B	Х	-120.899	6.16
29 MP5B	Z	-69.801	6.16
30 MP5B	Mx	116	6.16
31 MP5C	Х	-102.698	.68
32 MP5C	Z	-59.293	.68
33 MP5C	Mx	027	.68
34 MP5C	Х	-102.698	6.16
35 MP5C	Z	-59.293	6.16
36 MP5C	Mx	027	6.16
37 MP3A	Х	-31.297	.62
38 MP3A	Z	-18.069	.62
39 MP3A	Mx	.031	.62
40 MP3A	Х	-31.297	2.55
41 MP3A	Z	-18.069	2.55
42 MP3A	Mx	.031	2.55
43 MP3B	Х	-57.571	.62
44 MP3B	Z	-33.239	.62
45 MP3B	Mx	0	.62
46 MP3B	Х	-57.571	2.55
47 MP3B	Z	-33.239	2.55
48 MP3B	Mx	0	2.55



# Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
49	MP3C	X	-37.013	.62
50	MP3C	Z	-21.37	.62
51	MP3C	Mx	033	.62
52	MP3C	X	-37.013	2.55
53	MP3C	Z	-21.37	2.55
54	MP3C	Mx	033	2.55
55	MP4A	X	-17.109	3.25
56	MP4A	Z	-9.878	3.25
57	MP4A	Mx	011	3.25
58	MP4A	X	-17.109	3.25
59	MP4A	Z	-9.878	3.25
60	MP4A	Mx	011	3.25
61	MP4B	Х	-22.771	3.25
62	MP4B	Z	-13.147	3.25
63	MP4B	Mx	0	3.25
64	MP4B	Х	-22.771	3.25
65	MP4B	Z	-13.147	3.25
66	MP4B	Mx	0	3.25
67	MP4C	Х	-18.341	3.25
68	MP4C	Z	-10.589	3.25
69	MP4C	Mx	.011	3.25
70	MP4C	Х	-18.341	3.25
71	MP4C	Z	-10.589	3.25
72	MP4C	Mx	.011	3.25
73	MP3A	Х	-16.081	3.25
74	MP3A	Z	-9.285	3.25
75	MP3A	Mx	011	3.25
76	MP3A	X	-16.081	3.25
77	MP3A	7	-9.285	3.25
78	MP3A	Mx	- 011	3.25
79	MP3B	X	-22 771	3.25
80	MP3B	7	-13.147	3.25
81	MP3B	Mx	0	3.25
82	MP3B	X	-22,771	3.25
83	MP3B	7	-13 147	3 25
84	MP3B	Mx	0	3.25
85	MP3C	X	-17 537	3.25
86	MP3C	7	-10 125	3.25
87	MP3C	Mx	01	3.25
88	MP3C	X	-17 537	3 25
89	MP3C	7	-10 125	3 25
90	MP3C	Mx	01	3.25
91	MP1A	X	-85 684	17
92	MP1A	7	-49.47	17
93	MP1A	Mx	086	17
94	MP1A	X	-85 684	5.83
95	MP1A	7	-49.47	5.83
96	MP1A	My	086	5.83
97	MP1R	X	-100 443	17
QR	MP1R	7	_57 001	17
qa	MP1R	My	0	17
100	MP1R	X	-100 443	5.83
101	MP1R	7	_57 001	5.83
102	MP1R	∠ M⊻	-57.551	5.83
102	MP10	VIA V	_85.684	17
104	MP1C	7	_/10 //7	17
104	MP1C		-43.47	17
00		IVIX	000	.17

#### Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
106	MP1C	Х	-85.684	5.83
107	MP1C	Z	-49.47	5.83
108	MP1C	Mx	086	5.83

#### Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	-65.324	.68
2	MP5A	Z	-113.145	.68
3	MP5A	Mx	029	.68
4	MP5A	X	-65.324	6.16
5	MP5A	Z	-113.145	6.16
6	MP5A	Mx	029	6.16
7	MP5B	X	-65.324	.68
8	MP5B	Z	-113.145	.68
9	MP5B	Mx	.16	.68
10	MP5B	X	-65.324	6.16
11	MP5B	Z	-113.145	6.16
12	MP5B	Mx	.16	6.16
13	MP5C	X	-52.434	.68
14	MP5C	Z	-90.819	.68
15	MP5C	Mx	118	.68
16	MP5C	X	-52.434	6.16
17	MP5C	Z	-90.819	6.16
18	MP5C	Mx	118	6.16
19	MP5A	X	-65.324	.68
20	MP5A	Z	-113.145	.68
21	MP5A	Mx	.16	.68
22	MP5A	X	-65.324	6.16
23	MP5A	Z	-113.145	6.16
24	MP5A	Mx	.16	6.16
25	MP5B	X	-65.324	.68
26	MP5B	Z	-113.145	.68
27	MP5B	Mx	029	.68
28	MP5B	X	-65.324	6.16
29	MP5B	Z	-113.145	6.16
30	MP5B	Mx	029	6.16
31	MP5C	X	-52.434	.68
32	MP5C	Z	-90.819	.68
33	MP5C	Mx	088	.68
34	MP5C	X	-52.434	6.16
35	MP5C	Z	-90.819	6.16
36	MP5C	Mx	088	6.16
37	MP3A	X	-28.182	.62
38	MP3A		-48.813	.62
39	MP3A	Mx	.028	.62
40	MP3A	<u>X</u>	-28.182	2.55
41	MP3A		-48.813	2.55
42	MP3A	Mx	.028	2.55
43	MP3B	X	-28.182	.62
44	MP3B	<u> </u>	-48.813	.62
45	MP3B	MX	.028	.62
46	MP3B	X	-28.182	2.55
4/	MP3B	Ζ	-48.813	2.55
48	MP3B	MX	.028	2.55
49	MP3C	X	-13.623	.62
50	MP3C		-23.595	.62



# Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
51	MP3C	Mx	027	.62
52	MP3C	X	-13.623	2.55
53	MP3C	Z	-23.595	2.55
54	MP3C	Mx	027	2.55
55	MP4A	X	-12.057	3.25
56	MP4A	Z	-20.884	3.25
57	MP4A	Mx	008	3.25
58	MP4A	X	-12 057	3.25
59	MP4A	7	-20.884	3.25
60	MP4A	My	- 008	3.25
61	MD4R	Y	-12.057	3.25
62		7	20.994	2.25
62		<u> </u>	-20.004	3.25
64			000	0.25
64	MP4B	7	-12.057	3.20
60	MP4B	<u> </u>	-20.884	3.20
66	MP4B	IVIX	008	3.25
67	MP4C	X	-8.92	3.25
68	MP4C	Z	-15.449	3.25
69	MP4C	Mx	.012	3.25
70	MP4C	X	-8.92	3.25
71	MP4C	Z	-15.449	3.25
72	MP4C	Mx	.012	3.25
73	MP3A	X	-11.86	3.25
74	MP3A	Z	-20.541	3.25
75	MP3A	Mx	008	3.25
76	MP3A	X	-11.86	3.25
77	MP3A	Z	-20.541	3.25
78	MP3A	Mx	008	3.25
79	MP3B	Х	-11.86	3.25
80	MP3B	Z	-20.541	3.25
81	MP3B	Mx	008	3.25
82	MP3B	X	-11.86	3.25
83	MP3B	Z	-20.541	3.25
84	MP3B	Mx	- 008	3.25
85	MP3C	X	-8,152	3.25
86	MP3C	7	-14 12	3.25
87	MP3C	Mx	011	3.25
88	MP3C	X	-8 152	3.25
89	MP3C	7	-14 12	3.25
90	MP3C	My	011	3.25
Q1	MP1A	X	-55 15	17
92	MP1A	7	_95.523	17
02	MP1A		055	17
04	MD1A		55.15	5.82
94		∧ 7	-00.10	5.00
90			-90.020	0.00
90			.000	0.00
97		λ 7	-00.10	.1/
98		L NAS	-90.023	.1/
99	INIP'I B	IVIX	.000	.1/
100	MP1B	X	-55.15	5.83
101	MP1B	Ζ	-95.523	5.83
102	MP1B	MX	.055	5.83
103	MP1C	X	-46.63	.17
104	MP1C	Z	-80.765	.17
105	MP1C	Mx	093	.17
106	MP1C	X	-46.63	5.83
107	MP1C	Z	-80.765	5.83


#### Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
108	MP1C	Mx	093	5.83

# Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	0	.68
2	MP5A	Z	-28.201	.68
3	MP5A	Mx	024	.68
4	MP5A	Х	0	6.16
5	MP5A	Z	-28.201	6.16
6	MP5A	Mx	024	6.16
7	MP5B	X	0	.68
8	MP5B	Z	-23.041	.68
9	MP5B	Mx	.03	.68
10	MP5B	X	0	6.16
11	MP5B	Z	-23.041	6.16
12	MP5B	Mx	03	6 16
13	MP5C	X	0	68
14	MP5C	7	-22 126	68
15	MP5C	My	- 014	68
16	MP5C	X	0	6.16
17	MP5C	7	-22 126	6.16
18	MP5C	My	- 014	6.16
10	MP5A		014	68
20	MP5A	7	-28.201	68
20	MP5A	<u> </u>	-20.201	00.
21			.024	.00
22		∧ 7	28.201	0.10
23	MP5A		-20.201	0.10
24	MP5A	IVIX	.024	0.10
25	MP5B	X 7	0	.68
26	MP5B	Ζ.	-23.041	.68
27	MP5B	MIX X	.01	.68
28	MP5B	X 7	0	6.16
29	MP5B	<u> </u>	-23.041	6.16
30	MP5B	MX	.01	6.16
31	MP5C	X	0	.68
32	MP5C	Z	-22.126	.68
33	MP5C	Mx	027	.68
34	MP5C	X	0	6.16
35	MP5C	Z	-22.126	6.16
36	MP5C	Mx	027	6.16
37	MP3A	X	0	.62
38	MP3A	Z	-13.897	.62
39	MP3A	Mx	0	.62
40	MP3A	X	0	2.55
41	MP3A	Z	-13.897	2.55
42	MP3A	Mx	0	2.55
43	MP3B	X	0	.62
44	MP3B	Z	-7.901	.62
45	MP3B	Mx	.007	.62
46	MP3B	X	0	2.55
47	MP3B	Z	-7.901	2.55
48	MP3B	Mx	.007	2.55
49	MP3C	X	0	.62
50	MP3C	Z	-6.838	.62
51	MP3C	Mx	006	.62
52	MP3C	X	0	2.55



## Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

53         MP3C         Z         -6.838         2.55           54         MP3C         Mx         -006         2.55           56         MP4A         X         0         3.25           57         MP4A         Z         -5.809         3.25           58         MP4A         X         0         3.25           59         MP4A         Z         -5.809         3.25           60         MP4B         X         0         3.25           61         MP4B         X         0         3.25           62         MP4B         X         0         3.25           63         MP4B         X         0         3.25           64         MP4B         X         0         3.25           65         MP4B         X         0         3.25           66         MP4C         X         0         3.25           70         MP4C         X         0         3.25           71         MP4C         X         0         3.25           73         MP3A         X         0         3.25           74         MP3A         Z         -5.809		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
54         MP3C         Mx         -006         2.55           55         MP4A         X         0         3.25           56         MP4A         Z         -5.809         3.25           58         MP4A         X         0         3.25           59         MP4A         Z         -5.809         3.25           60         MP4A         X         0         3.25           61         MP4B         X         0         3.25           62         MP4B         Z         4.478         3.25           63         MP4B         X         0         3.25           64         MP4B         X         0         3.25           65         MP4B         X         0         3.25           66         MP4B         X         0         3.25           70         MP4C         X         0         3.25           71         MP4C         X         0         3.25           72         MP4C         X         0         3.25           74         MP3A         Z         -5.809         3.25           74         MP3A         X         0<	53	MP3C	Z	-6.838	2.55
55         MP4A         X         0         3.25           56         MP4A         Z         -5.809         3.25           58         MP4A         X         0         3.25           59         MP4A         Z         -5.809         3.25           60         MP4A         Mx         0         3.25           61         MP4B         X         0         3.25           62         MP4B         X         0         3.25           63         MP4B         X         0         3.25           64         MP4B         X         0         3.25           65         MP4B         Z         -4.478         3.25           66         MP4C         X         0         3.25           67         MP4C         X         0         3.25           68         MP4C         Z         -4.478         3.25           70         MP4C         X         0         3.25           71         MP4C         Z         -4.242         3.25           73         MP3A         X         0         3.25           74         MP3A         Z <td< td=""><td>54</td><td>MP3C</td><td>Mx</td><td>006</td><td>2.55</td></td<>	54	MP3C	Mx	006	2.55
56         MP4A         Z         -5.809         3.25           57         MP4A         X         0         3.25           58         MP4A         Z         -5.809         3.25           60         MP4A         Z         -5.809         3.25           61         MP4B         X         0         3.25           62         MP4B         Z         -4.478         3.25           63         MP4B         X         0         3.25           64         MP4B         X         0         3.25           66         MP4B         X         0         3.25           66         MP4B         X         0         3.25           67         MP4C         X         0         3.25           70         MP4C         Z         -4.242         3.25           70         MP4C         X         0         3.25           71         MP4C         X         0         3.25           73         MP3A         X         0         3.25           74         MP3A         X         0         3.25           75         MP3A         X	55	MP4A	X	0	3.25
57         MP4A         Mx         0         3.25           59         MP4A         Z         -5.809         3.25           60         MP4A         Mx         0         3.25           61         MP4B         X         0         3.25           62         MP4B         X         0         3.25           63         MP4B         X         0         3.25           64         MP4B         X         0         3.25           65         MP4B         X         0         3.25           66         MP4B         X         0         3.25           66         MP4B         X         0         3.25           67         MP4C         X         0         3.25           70         MP4C         X         0         3.25           71         MP4C         Z         -4.242         3.25           73         MP3A         X         0         3.25           74         MP3A         Z         -5.809         3.25           75         MP3A         X         0         3.25           76         MP3A         X         0	56	MP4A	Z	-5.809	3.25
58         MP4A         X         0         3.25           69         MP4A         X         0         3.25           61         MP4B         X         0         3.25           62         MP4B         X         0         3.25           63         MP4B         X         0         3.25           64         MP4B         X         0         3.25           65         MP4B         X         0         3.25           66         MP4B         X         0         3.25           66         MP4B         X         0.0         3.25           66         MP4B         X         0.0         3.25           67         MP4C         X         0.1         3.25           68         MP4C         X         0         3.25           71         MP4C         Mx         0.03         3.25           73         MP3A         Z         -5.809         3.25           74         MP3A         Z         -5.809         3.25           75         MP3A         Mx         0         3.25           76         MP3A         X         0 <td>57</td> <td>MP4A</td> <td>Mx</td> <td>0</td> <td>3.25</td>	57	MP4A	Mx	0	3.25
59         MP4A         Z         -5.09         3.25           60         MP4B         X         0         3.25           61         MP4B         X         0         3.25           62         MP4B         X         0         3.25           63         MP4B         X         0         3.25           64         MP4B         X         0         3.25           65         MP4B         X         0         3.25           66         MP4B         X         0         3.25           66         MP4C         X         0         3.25           67         MP4C         Z         4.472         3.25           68         MP4C         Z         4.242         3.25           70         MP4C         Z         4.242         3.25           71         MP4C         X         0         3.25           74         MP3A         Z         -5.809         3.25           75         MP3A         Mx         0         3.25           76         MP3A         Z         -5.809         3.25           77         MP3A         Z <t< td=""><td>58</td><td>MP4A</td><td>X</td><td>0</td><td>3.25</td></t<>	58	MP4A	X	0	3.25
60         MP4A         Mx         0         3.25           61         MP4B         X         0         3.25           62         MP4B         X         0         3.25           63         MP4B         Mx         0.03         3.25           64         MP4B         X         0         3.25           66         MP4B         Z         -4.478         3.25           66         MP4B         X         0.03         3.25           67         MP4C         X         0.325         3.25           68         MP4C         X         0.03         3.25           70         MP4C         X         0         3.25           71         MP4C         X         0         3.25           73         MP3A         Z         -5.809         3.25           76         MP3A         X         0         3.25           76         MP3A         Z         -4.239         3.25           76         MP3A         Z         -4.239         3.25           76         MP3A         X         0         3.25           76         MP3A         Z	59	MP4A	Z	-5.809	3.25
61         MP4B         X         0         3.25           62         MP4B         X         -003         3.25           63         MP4B         X         0         3.25           64         MP4B         Z         -4.478         3.25           66         MP4B         Z         -4.478         3.25           66         MP4B         Z         -4.478         3.25           66         MP4C         X         0         3.25           67         MP4C         X         0         3.25           68         MP4C         Z         -4.422         3.25           70         MP4C         X         0         3.25           71         MP4C         Z         -4.242         3.25           73         MP3A         X         0         3.25           74         MP3A         X         0         3.25           76         MP3A         X         0         3.25           76         MP3A         X         0         3.25           77         MP3A         Z         -5.809         3.25           76         MP3A         MX	60	MP4A	Mx	0	3.25
62         MP4B         Z         4.478         3.25           63         MP4B         X         0         3.25           64         MP4B         Z         -4.478         3.25           65         MP4B         Z         -4.478         3.25           66         MP4C         X         0         3.25           67         MP4C         X         0         3.25           68         MP4C         Z         4.424         3.25           70         MP4C         X         0         3.25           70         MP4C         X         0         3.25           71         MP4C         Z         -4.242         3.25           73         MP3A         X         0         3.25           74         MP3A         Z         -5.809         3.25           76         MP3A         MX         0         3.25           76         MP3A         Z         -5.809         3.25           78         MP3A         Z         -5.809         3.25           78         MP3A         X         0         3.25           80         MP3B         Z <td>61</td> <td>MP4B</td> <td>Х</td> <td>0</td> <td>3.25</td>	61	MP4B	Х	0	3.25
63         MP4B         Mx        003         3.25           64         MP4B         Z         -4.478         3.25           66         MP4B         Z         -4.478         3.25           66         MP4C         X         0         3.25           67         MP4C         X         0         3.25           68         MP4C         Z         -4.242         3.25           70         MP4C         X         0         3.25           70         MP4C         X         0         3.25           71         MP4C         X         0         3.25           73         MP3A         Z         -5.809         3.25           74         MP3A         Z         -5.809         3.25           76         MP3A         X         0         3.25           77         MP3A         Z         -5.809         3.25           78         MP3A         MX         0         3.25           79         MP3B         X         0         3.25           81         MP3B         MX         -002         3.25           82         MP3B         X <td>62</td> <td>MP4B</td> <td>Z</td> <td>-4.478</td> <td>3.25</td>	62	MP4B	Z	-4.478	3.25
64         MP4B         X         0         3.25           65         MP4B         Z         -4.478         3.25           66         MP4C         X         0         3.25           67         MP4C         X         0         3.25           68         MP4C         Z         -4.242         3.25           69         MP4C         X         0         3.25           70         MP4C         X         0         3.25           71         MP4C         Z         -4.242         3.25           73         MP3A         X         0         3.25           74         MP3A         Z         -5.809         3.25           75         MP3A         Z         -5.809         3.25           76         MP3A         Z         -5.809         3.25           78         MP3A         Z         -5.809         3.25           79         MP3B         Z         -4.239         3.25           80         MP3B         Z         -4.239         3.25           81         MP3B         MNx         -002         3.25           84         MP3B	63	MP4B	Mx	003	3.25
65         MP4B         Z $4.478$ $3.25$ 66         MP4C         X $0$ $3.25$ 67         MP4C         Z $4.242$ $3.25$ 68         MP4C         Z $4.242$ $3.25$ 70         MP4C         X         0 $3.25$ 71         MP4C         Z $4.242$ $3.25$ 73         MP3A         X         0 $3.25$ 73         MP3A         Z $-5.809$ $3.25$ 75         MP3A         X         0 $3.25$ 76         MP3A         X         0 $3.25$ 76         MP3A         X         0 $3.25$ 78         MP3A         MX         0 $3.25$ 79         MP3B         X         0 $3.25$ 80         MP3B         Z $4.239$ $3.25$ 81         MP3B         X         0 $3.25$ 82         MP3B         X         0 $3.25$ 83	64	MP4B	Х	0	3.25
66         MP4B         Mx $003$ $3.25$ 67         MP4C         X         0 $3.25$ 68         MP4C         Z $-4.242$ $3.25$ 70         MP4C         X         0 $3.25$ 71         MP4C         X         0 $3.25$ 71         MP4C         X         0 $3.25$ 73         MP3A         X         0 $3.25$ 74         MP3A         Z $-5.809$ $3.25$ 75         MP3A         X         0 $3.25$ 76         MP3A         X         0 $3.25$ 76         MP3A         Z $-5.809$ $3.25$ 76         MP3A         Z $-3.29$ $3.25$ 78         MP3A         X         0 $3.25$ 78         MP3A         Z $-4.239$ $3.25$ 79         MP3B         X         0 $3.25$ 80         MP3B         Z $-4.239$ $3.25$ 81 <td>65</td> <td>MP4B</td> <td>Z</td> <td>-4.478</td> <td>3.25</td>	65	MP4B	Z	-4.478	3.25
67         MP4C         X         0         325           68         MP4C         Z         -4.242         3.25           69         MP4C         Mx         .003         3.25           70         MP4C         X         0         3.25           71         MP4C         Z         -4.242         3.25           72         MP4C         Mx         .003         3.25           73         MP3A         X         0         3.25           74         MP3A         Z         -5.809         3.25           75         MP3A         X         0         3.25           76         MP3A         X         0         3.25           78         MP3A         X         0         3.25           78         MP3B         X         0         3.25           80         MP3B         Z         -4.239         3.25           81         MP3B         X         0         3.25           82         MP3B         X         0         3.25           83         MP3B         Z         -4.239         3.25           84         MP3B         X	66	MP4B	Mx	003	3.25
68         MP4C         Z $4.242$ $3.25$ 69         MP4C         Mx         .003 $3.25$ 70         MP4C         X         0 $3.25$ 71         MP4C         X         0 $3.25$ 72         MP4C         Mx         .003 $3.25$ 73         MP3A         X         0 $3.25$ 74         MP3A         Z         -5.809 $3.25$ 76         MP3A         Z         -5.809 $3.25$ 76         MP3A         Z         -5.809 $3.25$ 78         MP3A         Z         -5.809 $3.25$ 79         MP3B         X         0 $3.25$ 80         MP3B         X         0 $3.25$ 81         MP3B         Mx        002 $3.25$ 82         MP3B         X         0 $3.25$ 84         MP3B         Mx        002 $3.25$ 85         MP3C         Z         -3.96         3.25           86	67	MP4C	X	0	3.25
69         MP4C         Mx         .003         3.25           70         MP4C         X         0         3.25           71         MP4C         Z         -4.242         3.25           72         MP4C         Mx         .003         3.25           73         MP3A         X         0         3.25           74         MP3A         Z         -5.809         3.25           75         MP3A         X         0         3.25           76         MP3A         X         0         3.25           76         MP3A         X         0         3.25           78         MP3A         X         0         3.25           79         MP3B         X         0         3.25           80         MP3B         Z         -4.239         3.25           81         MP3B         X         0         3.25           83         MP3B         Z         -4.239         3.25           84         MP3B         Mx         -002         3.25           85         MP3C         X         0         3.25           86         MP3C         X	68	MP4C	7	-4.242	3.25
TO         MP4C         X         O         3.25           71         MP4C         Z         4.242         3.25           73         MP3A         X         0         3.25           73         MP3A         X         0         3.25           74         MP3A         Z         -5.809         3.25           75         MP3A         MX         0         3.25           76         MP3A         Z         -5.809         3.25           76         MP3A         Z         -5.809         3.25           78         MP3A         X         0         3.25           79         MP3B         X         0         3.25           80         MP3B         Z         -4.239         3.25           81         MP3B         X         0         3.25           83         MP3B         X         0         3.25           84         MP3B         X         0         3.25           85         MP3C         X         0         3.25           86         MP3C         X         0         3.25           88         MP3C         X         0	69	MP4C	Mx	.003	3.25
71         MPAC         Z $4.242$ $3.25$ $72$ MP4C         Mx         003 $3.25$ $73$ MP3A         X         0 $3.25$ $74$ MP3A         Z $-5.809$ $3.25$ $76$ MP3A         X         0 $3.25$ $76$ MP3A         X         0 $3.25$ $77$ MP3A         X         0 $3.25$ $77$ MP3A         X         0 $3.25$ $78$ MP3A         X         0 $3.25$ $80$ MP3B         Z $4.239$ $3.25$ $81$ MP3B         MX $-002$ $3.25$ $84$ MP3B         X         0 $3.25$ $84$ MP3B         X         0 $3.25$ $86$ MP3C         X         0 $3.25$ $86$ MP3C         Z $-3.96$ $3.25$ $87$ MP3C         X         0 $.17$	70	MP4C	X	0	3.25
72         MP4C         Mx         003         3.25           73         MP3A         X         0         3.25           74         MP3A         Z         -5.809         3.25           76         MP3A         X         0         3.25           76         MP3A         X         0         3.25           76         MP3A         Z         -5.809         3.25           78         MP3A         Z         -5.809         3.25           78         MP3A         Z         -0.02         3.25           80         MP3B         X         0         3.25           81         MP3B         X         0         3.25           82         MP3B         X         0         3.25           83         MP3B         X         0         3.25           84         MP3C         X         0         3.25           86         MP3C         X         0         3.25           87         MP3C         Mx         .002         3.25           88         MP3C         Z         -3.96         3.25           90         MP3C         Mx	71	MP4C	7	-4 242	3.25
T3         MP3A         X         0.00         3.25           74         MP3A         Z         -5.809         3.25           76         MP3A         X         0         3.25           76         MP3A         X         0         3.25           77         MP3A         X         0         3.25           78         MP3A         X         0         3.25           79         MP3B         Z         -4.239         3.25           80         MP3B         Z         -4.239         3.25           81         MP3B         Mx         -002         3.25           82         MP3B         Z         -4.239         3.25           84         MP3B         Mx         -002         3.25           84         MP3B         Z         -3.96         3.25           86         MP3C         Z         -3.96         3.25           87         MP3C         X         0         .17           92         MP1A         X         0         .17           92         MP1A         Z         -24.116         .17           93         MP1A         X<	72	MP4C	Mx	003	3.25
74         MP3A         Z         -5.809         3.25           75         MP3A         Mx         0         3.25           76         MP3A         X         0         3.25           77         MP3A         X         0         3.25           78         MP3A         X         0         3.25           78         MP3B         Z         -5.809         3.25           79         MP3B         X         0         3.25           80         MP3B         Z         -4.239         3.25           81         MP3B         MX         .002         3.25           82         MP3B         X         0         3.25           84         MP3B         MX         .002         3.25           86         MP3C         Z         -3.96         3.25           86         MP3C         X         0         3.25           88         MP3C         X         0         3.25           90         MP3C         MX         .002         3.25           91         MP1A         X         0         .17           92         MP1A         Z	73	MP3A	X	0	3.25
Triangle         Max         Description         Description <thdescription< th="">         Description         <thdescr< td=""><td>74</td><td>MP3A</td><td>7</td><td>-5 809</td><td>3.25</td></thdescr<></thdescription<>	74	MP3A	7	-5 809	3.25
To         MAX         O         3.25           77         MP3A         Z         -5.809         3.25           78         MP3A         MX         0         3.25           79         MP3B         X         0         3.25           80         MP3B         Z         -4.239         3.25           81         MP3B         MX         -002         3.25           82         MP3B         MX         -002         3.25           83         MP3B         Z         -4.239         3.25           84         MP3B         MX         -002         3.25           85         MP3C         X         0         3.25           86         MP3C         X         0         3.25           86         MP3C         X         0         3.25           88         MP3C         X         0         3.25           89         MP3C         X         0         3.25           91         MP1A         X         0         17           92         MP1A         X         0         17           93         MP1A         X         0         5.	75	MP3A	My	0	3.25
To         MI or         A         0         3.25           77         MP3A         Z         -5.809         3.25           79         MP3B         X         0         3.25           80         MP3B         Z         -4.239         3.25           81         MP3B         X         0         3.25           82         MP3B         X         0         3.25           83         MP3B         Z         -4.239         3.25           84         MP3B         X         0         3.25           84         MP3B         Z         -4.239         3.25           86         MP3C         X         0         3.25           86         MP3C         Z         -3.96         3.25           87         MP3C         Mx         002         3.25           88         MP3C         Z         -3.96         3.25           90         MP3C         Mx         002         3.25           90         MP3C         Mx         0         1.7           93         MP1A         Z         -24.116         1.7           93         MP1A         Mx </td <td>76</td> <td>MP3A</td> <td>X</td> <td>0</td> <td>3.25</td>	76	MP3A	X	0	3.25
1         MI SA $L$ 0.005         3.25           78         MP3A         Mx         0         3.25           80         MP3B         Z         -4.239         3.25           81         MP3B         Mx        002         3.25           82         MP3B         Mx        002         3.25           83         MP3B         Z         -4.239         3.25           84         MP3B         Mx        002         3.25           84         MP3B         Mx        002         3.25           86         MP3C         Z         -3.96         3.25           86         MP3C         X         0         3.25           88         MP3C         X         0         3.25           89         MP3C         Z         -3.96         3.25           90         MP3C         Mx         0.02         3.25           91         MP4A         X         0         .17           92         MP1A         Z         -24.116         .17           93         MP1A         Z         -24.116         5.83           96         MP1A <td>77</td> <td>MP3A</td> <td>7</td> <td>-5 809</td> <td>3.25</td>	77	MP3A	7	-5 809	3.25
No         O         3.25           79         MP3B         X         0         3.25           80         MP3B         Z         4.239         3.25           81         MP3B         Mx        002         3.25           82         MP3B         X         0         3.25           83         MP3B         Z         -4.239         3.25           84         MP3B         X         0         3.25           85         MP3C         X         0         3.25           86         MP3C         Z         -3.96         3.25           86         MP3C         X         0         3.25           88         MP3C         X         0         3.25           89         MP3C         Z         -3.96         3.25           90         MP3C         X         0         17           92         MP1A         X         0         17           93         MP1A         X         0         5.83           95         MP1A         X         0         5.83           96         MP1A         X         0         17	78	MP3A		-5.005	3.25
19         MP3B         Z         4.239         3.25           80         MP3B         Z         4.239         3.25           81         MP3B         X         0         3.25           82         MP3B         Z         4.239         3.25           84         MP3B         Z         4.239         3.25           84         MP3B         X         0         3.25           84         MP3B         X         0         3.25           86         MP3C         X         0         3.25           86         MP3C         Z         -3.96         3.25           87         MP3C         Mx         .002         3.25           88         MP3C         X         0         3.25           89         MP3C         X         0         3.25           90         MP3C         Mx         .002         3.25           91         MP1A         X         0         .17           92         MP1A         Z         -24.116         .17           93         MP1A         X         0         .17           98         MP1A         X	70	MD3R		0	3.25
Bit         MP3B         Z $42.39$ $3.23$ 81         MP3B         Mx $-002$ $3.25$ 82         MP3B         Z $4.239$ $3.25$ 83         MP3B         Z $4.239$ $3.25$ 84         MP3B         Mx $-002$ $3.25$ 85         MP3C         X         0 $3.25$ 86         MP3C         Z $-3.96$ $3.25$ 87         MP3C         Mx $.002$ $3.25$ 88         MP3C         Z $-3.96$ $3.25$ 89         MP3C         X         0 $3.25$ 90         MP3C         Mx $.002$ $3.25$ 91         MP1A         X         0 $.17$ 92         MP1A         Z $-24.116$ $.17$ 93         MP1A         X         0 $.583$ 95         MP1A         X         0 $.17$ 98         MP1B         X         0 $.17$	20	MD2D	7	4 220	2.25
original         Mix        002         3.23           82         MP3B         X         0         3.25           83         MP3B         Z         -4.239         3.25           84         MP3B         Mx        002         3.25           85         MP3C         X         0         3.25           86         MP3C         Z         -3.96         3.25           87         MP3C         X         0         3.25           88         MP3C         X         0         3.25           89         MP3C         Z         -3.96         3.25           90         MP3C         Z         -3.96         3.25           90         MP3C         Z         -3.96         3.25           91         MP1A         X         0         17           92         MP1A         Z         -24.116         17           93         MP1A         Mx         0         5.83           95         MP1A         X         0         17           94         MP1A         X         0         5.83           95         MP1A         X         0	00			-4.239	2.25
02         MP3B         Z         -0         3.23           83         MP3B         Z         -4.239         3.25           84         MP3B         Mx        002         3.25           86         MP3C         Z         -3.96         3.25           86         MP3C         Z         -3.96         3.25           87         MP3C         Mx         .002         3.25           88         MP3C         Z         -3.96         3.25           89         MP3C         Z         -3.96         3.25           90         MP3C         X         0         3.25           91         MP1A         X         0         .17           92         MP1A         X         0         .17           93         MP1A         Mx         0         .17           94         MP1A         X         0         .17           94         MP1A         X         0         .17           98         MP1B         X         0         .17           98         MP1B         X         0         .17           99         MP1B         X <t< td=""><td>01</td><td></td><td></td><td>002</td><td>2.25</td></t<>	01			002	2.25
os         MP3B         Z $-4239$ $3.23$ 84         MP3B         Mx $-002$ $3.25$ 85         MP3C         X         0 $3.25$ 86         MP3C         Z $-3.96$ $3.25$ 87         MP3C         Mx $.002$ $3.25$ 88         MP3C         Z $-3.96$ $3.25$ 89         MP3C         Z $-3.96$ $3.25$ 90         MP3C         X         0 $3.25$ 91         MP1A         X         0 $1.7$ 92         MP1A         Z $-24.116$ $1.7$ 93         MP1A         Z $-24.116$ $5.83$ 95         MP1A         Z $-24.116$ $5.83$ 96         MP1A         Z $-24.116$ $5.83$ 97         MP1B         X         0 $5.83$ 97         MP1B         X         0 $.17$ 98         MP1B         X         0 $5.83$	02		7	4.220	3.25
ord         MP3D         Mix        002         3.23           85         MP3C         X         0         3.25           86         MP3C         Z         -3.96         3.25           87         MP3C         X         0         3.25           88         MP3C         X         0         3.25           89         MP3C         Z         -3.96         3.25           90         MP3C         X         0         3.25           91         MP1A         X         0         3.25           91         MP1A         X         0         17           92         MP1A         Z         -24.116         17           93         MP1A         Mx         0         5.83           95         MP1A         X         0         5.83           96         MP1A         X         0         17           98         MP1B         Z         -20.825         17           99         MP1B         Mx         .018         17           100         MP1B         X         0         5.83           101         MP1B         X         0	03			-4.239	3.20
B6         MP3C         X         0         3.25           86         MP3C         Z         -3.96         3.25           87         MP3C         X         0         3.25           88         MP3C         X         0         3.25           89         MP3C         Z         -3.96         3.25           90         MP3C         Z         -3.96         3.25           90         MP3C         X         0         3.25           91         MP1A         X         0         .17           92         MP1A         X         0         .17           93         MP1A         X         0         .17           94         MP1A         X         0         .583           95         MP1A         Z         -24.116         5.83           96         MP1A         X         0         .17           98         MP1B         X         0         .17           99         MP1B         X         0         .17           100         MP1B         X         0         .17           100         MP1B         X         0	04			002	3.25
300MP3C $2$ $-3.90$ $3.25$ 87MP3CMx $.002$ $3.25$ 88MP3CZ $-3.96$ $3.25$ 90MP3CZ $-3.96$ $3.25$ 90MP3CMx $.002$ $3.25$ 91MP1AX $0$ $.17$ 92MP1AZ $-24.116$ $.17$ 93MP1AX $0$ $.17$ 94MP1AX $0$ $5.83$ 95MP1AZ $-24.116$ $5.83$ 96MP1AX $0$ $5.83$ 97MP1BX $0$ $.17$ 98MP1BZ $-20.825$ $.17$ 99MP1BX $0$ $5.83$ 101MP1BZ $-20.825$ $5.83$ 102MP1BMx $.018$ $5.83$ 103MP1CX $0$ $.17$ 106MP1CX $0$ $5.83$ 107MP1CX $0$ $5.83$ 108MP1CMx $.018$ $.17$	80	MP3C	7	2.00	3.20
87         MP3C         Mx        002         3.25           88         MP3C         X         0         3.25           90         MP3C         Z         -3.96         3.25           91         MP1A         X         0        17           92         MP1A         Z         -24.116        17           93         MP1A         X         0        17           94         MP1A         X         0        17           94         MP1A         X         0        17           94         MP1A         X         0	07	MP3C	<u> </u>	-3.90	3.25
88         MP3C         X         0 $3.25$ 89         MP3C         Z $-3.96$ $3.25$ 90         MP3C         Mx $002$ $3.25$ 91         MP1A         X         0 $17$ 92         MP1A         Z $-24.116$ $17$ 93         MP1A         X         0 $17$ 94         MP1A         X         0 $5.83$ 95         MP1A         Z $-24.116$ $5.83$ 96         MP1A         X         0 $5.83$ 96         MP1A         X         0 $17$ 98         MP1B         X         0 $17$ 98         MP1B         X         0 $5.83$ 101         MP1B         X         0 $5.83$ 102         MP1B         X         0 $5.83$ 103         MP1C         X         0 $17$ 104         MP1C         Z $-20.825$ $17$ 105         MP1C <td>8/</td> <td>MP3C</td> <td>IVIX</td> <td>.002</td> <td>3.25</td>	8/	MP3C	IVIX	.002	3.25
89MP3CZ-3.96 $3.25$ 90MP3CMx.002 $3.25$ 91MP1AX0.1792MP1AZ-24.116.1793MP1AMx0.1794MP1AX05.8395MP1AZ-24.1165.8396MP1AMx05.8397MP1BX0.1798MP1BZ-20.825.1799MP1BMx.018.17100MP1BX05.83101MP1BX017102MP1BMx.018.17103MP1CX0.17104MP1CZ-20.825.17105MP1CX0.17106MP1CX05.83107MP1CX05.83108MP1CMx0185.83	88	MP3C	<u>λ</u>	0	3.25
90MP3CMx.0023.2591MP1AX0.1792MP1AZ-24.116.1793MP1AMx0.1794MP1AX05.8395MP1AZ-24.1165.8396MP1AX05.8397MP1BX01798MP1BZ-20.825.1799MP1BMx.018.17100MP1BZ-20.8255.83101MP1BZ-20.8255.83102MP1BMx.0185.83103MP1CX0.17104MP1CZ-20.825.17105MP1CX0.17106MP1CX05.83107MP1CX05.83108MP1CMx0185.83	89	MP3C	2	-3.96	3.25
91MP1AX0.1792MP1AZ-24.116.1793MP1AMx0.1794MP1AX05.8395MP1AZ-24.1165.8396MP1AMx05.8397MP1BX01798MP1BZ-20.825.1799MP1BMx.018.17100MP1BZ-20.8255.83101MP1BX05.83102MP1BMx.0185.83103MP1CX0.17106MP1CZ-20.825.17106MP1CX05.83107MP1CZ-20.8255.83108MP1CMx018.17	90	MP3C	IVIX	.002	3.25
92         MP1A         Z         -24.116         .17           93         MP1A         Mx         0         .17           94         MP1A         X         0         5.83           95         MP1A         Z         -24.116         5.83           96         MP1A         Z         -24.116         5.83           96         MP1A         Mx         0         5.83           97         MP1B         X         0         17           98         MP1B         Z         -20.825         .17           99         MP1B         Mx         .018         .17           100         MP1B         X         0         5.83           101         MP1B         X         0         5.83           102         MP1B         Mx         .018         5.83           103         MP1C         X         0         .17           104         MP1C         Z         -20.825         .17           105         MP1C         Mx         .018         .17           105         MP1C         X         0         5.83           107         MP1C         Z<	91	MP1A	X	0	.17
93         MPTA         MX         0         .17           94         MPTA         X         0         5.83           95         MPTA         Z         -24.116         5.83           96         MPTA         Mx         0         5.83           97         MPTB         X         0         .17           98         MPTB         Z         -20.825         .17           99         MPTB         Mx         .018         .17           100         MPTB         X         0         5.83           101         MPTB         X         0         .17           100         MPTB         X         0         .17           100         MPTB         X         0         .17           100         MPTB         X         0         .17           101         MPTB         Z         -20.825         .5.83           102         MPTB         Mx         .018         .5.83           103         MPTC         X         0         .17           104         MPTC         Z         -20.825         .17           105         MPTC         X	92	MP1A		-24.116	.1/
94         MPTA         X         0         5.83           95         MPTA         Z         -24.116         5.83           96         MPTA         Mx         0         5.83           97         MPTB         X         0         17           98         MPTB         Z         -20.825         .17           99         MPTB         Mx         .018         .17           100         MPTB         X         0         5.83           101         MPTB         X         0         5.83           102         MPTB         Mx         .018         5.83           103         MPTC         X         0         .17           104         MPTC         Z         -20.825         .17           105         MPTC         X         0         .17           104         MPTC         Z         -20.825         .17           105         MPTC         X         0         .17           106         MPTC         X         0         5.83           107         MPTC         Z         -20.825         5.83           108         MPTC         Mx </td <td>93</td> <td>MP1A</td> <td>IVIX</td> <td>U</td> <td>.1/</td>	93	MP1A	IVIX	U	.1/
95         MP1A         Z         -24.116         5.83           96         MP1A         Mx         0         5.83           97         MP1B         X         0         .17           98         MP1B         Z         -20.825         .17           99         MP1B         Mx         .018         .17           100         MP1B         X         0         5.83           101         MP1B         Z         -20.825         5.83           101         MP1B         X         0         5.83           102         MP1B         Mx         .018         5.83           103         MP1C         X         0         .17           104         MP1C         Z         -20.825         .17           105         MP1C         X         0         .17           105         MP1C         X         0         .17           106         MP1C         X         0         5.83           107         MP1C         Z         -20.825         5.83           108         MP1C         Mx        018         5.83	94	MP1A	X 7	0	5.83
96         MP1A         MX         0         5.83           97         MP1B         X         0         .17           98         MP1B         Z         -20.825         .17           99         MP1B         Mx         .018         .17           100         MP1B         X         0         5.83           101         MP1B         X         0         5.83           101         MP1B         Z         -20.825         5.83           102         MP1B         Mx         .018         5.83           103         MP1C         X         0         .17           104         MP1C         Z         -20.825         .17           105         MP1C         Mx        018         .17           106         MP1C         X         0         .17           106         MP1C         X         0         5.83           107         MP1C         Z         -20.825         5.83           108         MP1C         Mx        018         5.83	95	MP1A		-24.116	5.83
97         MP1B         X         0         .17           98         MP1B         Z         -20.825         .17           99         MP1B         Mx         .018         .17           100         MP1B         X         0         5.83           101         MP1B         Z         -20.825         5.83           101         MP1B         Z         -20.825         5.83           102         MP1B         Mx         .018         5.83           103         MP1C         X         0         .17           104         MP1C         Z         -20.825         .17           105         MP1C         X         0         .17           105         MP1C         X         0         .17           106         MP1C         X         0         5.83           107         MP1C         Z         -20.825         5.83           108         MP1C         Mx        018         5.83	96	MP1A	Mx	0	5.83
98         MP1B         Z         -20.825         .17           99         MP1B         Mx         .018         .17           100         MP1B         X         0         5.83           101         MP1B         Z         -20.825         5.83           102         MP1B         Mx         .018         5.83           102         MP1B         Mx         .018         5.83           103         MP1C         X         0         .17           104         MP1C         Z         -20.825         .17           105         MP1C         X         0         .17           105         MP1C         X         0         .17           106         MP1C         X         0         5.83           107         MP1C         Z         -20.825         5.83           108         MP1C         Mx        018         5.83	97	MP1B	<u> </u>	0	.17
99         MP1B         Mx         .018         .17           100         MP1B         X         0         5.83           101         MP1B         Z         -20.825         5.83           102         MP1B         Mx         .018         5.83           102         MP1B         Mx         .018         5.83           103         MP1C         X         0         .17           104         MP1C         Z         -20.825         .17           105         MP1C         Mx        018         .17           106         MP1C         X         0         5.83           107         MP1C         Z         -20.825         5.83           108         MP1C         Mx        018         5.83	98	MP1B	Z	-20.825	.17
100         MP1B         X         0         5.83           101         MP1B         Z         -20.825         5.83           102         MP1B         Mx         .018         5.83           103         MP1C         X         0         .17           104         MP1C         Z         -20.825         .17           105         MP1C         Mx        018         .17           106         MP1C         X         0         5.83           107         MP1C         Z         -20.825         5.83           108         MP1C         Mx        018         5.83	99	MP1B	Mx	.018	.17
101         MP1B         Z         -20.825         5.83           102         MP1B         Mx         .018         5.83           103         MP1C         X         0         .17           104         MP1C         Z         -20.825         .17           105         MP1C         Mx        018         .17           106         MP1C         X         0         5.83           107         MP1C         Z         -20.825         5.83           108         MP1C         Mx        018         5.83	100	MP1B	X	0	5.83
102         MP1B         Mx         .018         5.83           103         MP1C         X         0         .17           104         MP1C         Z         -20.825         .17           105         MP1C         Mx        018         .17           106         MP1C         X         0         5.83           107         MP1C         Z         -20.825         5.83           108         MP1C         Mx        018         5.83	101	MP1B	Z	-20.825	5.83
103         MP1C         X         0         .17           104         MP1C         Z         -20.825         .17           105         MP1C         Mx        018         .17           106         MP1C         X         0         5.83           107         MP1C         Z         -20.825         5.83           108         MP1C         Mx        018         5.83	102	MP1B	Mx	.018	5.83
104         MP1C         Z         -20.825         .17           105         MP1C         Mx        018         .17           106         MP1C         X         0         5.83           107         MP1C         Z         -20.825         5.83           108         MP1C         Mx        018         5.83	103	MP1C	X	0	.17
105         MP1C         Mx        018         .17           106         MP1C         X         0         5.83           107         MP1C         Z         -20.825         5.83           108         MP1C         Mx        018         5.83	104	MP1C	Z	-20.825	.17
106         MP1C         X         0         5.83           107         MP1C         Z         -20.825         5.83           108         MP1C         Mx        018         5.83	105	MP1C	Mx	018	.17
107         MP1C         Z         -20.825         5.83           108         MP1C         Mx        018         5.83	106	MP1C	X	0	5.83
108 MP1C Mx018 5.83	107	MP1C	Z	-20.825	5.83
	108	MP1C	Mx	018	5.83



# Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]	
1	MP5A	X	13.24	.68	
2	MP5A	Z	-22.933	.68	
3	MP5A	Mx	032	.68	
4	MP5A	X	13.24	6.16	
5	MP5A	Z	-22.933	6.16	
6	MP5A	Mx	032	6.16	
7	MP5B	X	10.66	.68	
8	MP5B	Z	-18.464	.68	
9	MP5B	Mx	.021	.68	
10	MP5B	Х	10.66	6.16	
11	MP5B	Z	-18.464	6.16	
12	MP5B	Mx	.021	6.16	
13	MP5C	X	12.679	.68	
14	MP5C	7	-21.961	.68	
15	MP5C	Mx	- 000112	68	
16	MP5C	X	12 679	6 16	
17	MP5C	7	-21 961	6.16	
18	MP5C	My	- 000112	6.16	
10	MP5A	Y	13.24	68	
20	MP5A	7		68	
20	MD5A		-22.933	.00	
21			12.24	.00	
22		∧ 7	13.24	6.16	
23	MP5A		-22.933	0.10	
24	MP5A		.006	0.10	
25	MP5B	X	10.66	.08	
26	MP5B	<u> </u>	-18.464	.68	
27	MP5B	MX	.021	.68	
28	MP5B	X	10.66	6.16	
29	MP5B	Z	-18.464	6.16	
30	MP5B	Mx	.021	6.16	
31	MP5C	X	12.679	.68	
32	MP5C	Z	-21.961	.68	
33	MP5C	Mx	032	.68	
34	MP5C	Х	12.679	6.16	
35	MP5C	Z	-21.961	6.16	
36	MP5C	Mx	032	6.16	
37	MP3A	X	5.949	.62	
38	MP3A	Z	-10.304	.62	
39	MP3A	Mx	006	.62	
40	MP3A	Х	5.949	2.55	
41	MP3A	Z	-10.304	2.55	
42	MP3A	Mx	006	2.55	
43	MP3B	X	2.951	.62	
44	MP3B	Z	-5.112	.62	
45	MP3B	Mx	.006	.62	
46	MP3B	X	2 951	2.55	
47	MP3B	7	-5 112	2.55	
48	MP3B	My	006	2.55	
49	MP3C	X	5 297	62	
50	MP3C	7	_9 175	62	
51	MP3C		_ 007	62	
52	MP3C		5 207	2.55	
52	MD2C	7	0.175	2.00	
53			-9.175	2.00	
54			007	2.00	
55		× 7	2.003	3.20	
50			-4.047	3.20	
10		IVIX	.002	3.25	
RISA	RISA-3D Version 17.0.4 [C:\\\\\\\\\Model Files\467920-VZW MT LO H.r3d] Page 40				



## Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP4A	X	2.683	3.25
59	MP4A	Z	-4.647	3.25
60	MP4A	Mx	.002	3.25
61	MP4B	Х	2.017	3.25
62	MP4B	Z	-3.494	3.25
63	MP4B	Mx	003	3.25
64	MP4B	X	2.017	3.25
65	MP4B	Z	-3.494	3.25
66	MP4B	Mx	003	3.25
67	MP4C	X	2.538	3.25
68	MP4C	Z	-4.396	3.25
69	MP4C	Mx	.002	3.25
70	MP4C	X	2.538	3.25
71	MP4C	Z	-4.396	3.25
72	MP4C	Mx	.002	3.25
73	MP3A	X	2.643	3.25
74	MP3A	Z	-4.577	3.25
75	MP3A	Mx	.002	3.25
76	MP3A	X	2.643	3.25
77	MP3A	Z	-4.577	3.25
78	MP3A	Mx	.002	3.25
79	MP3B	X	1.858	3.25
80	MP3B	Z	-3.218	3.25
81	MP3B	Mx	002	3.25
82	MP3B	Х	1.858	3.25
83	MP3B	Z	-3.218	3.25
84	MP3B	Mx	002	3.25
85	MP3C	Х	2.472	3.25
86	MP3C	Z	-4.282	3.25
87	MP3C	Mx	.002	3.25
88	MP3C	Х	2.472	3.25
89	MP3C	Z	-4.282	3.25
90	MP3C	Mx	.002	3.25
91	MP1A	Х	11.51	.17
92	MP1A	Z	-19.935	.17
93	MP1A	Mx	012	.17
94	MP1A	X	11.51	5.83
95	MP1A	Z	-19.935	5.83
96	MP1A	Mx	012	5.83
97	MP1B	Х	9.864	.17
98	MP1B	Z	-17.084	.17
99	MP1B	Mx	.02	.17
100	MP1B	X	9.864	5.83
101	MP1B	Z	-17.084	5.83
102	MP1B	Mx	.02	5.83
103	MP1C	X	11.51	.17
104	MP1C	Z	-19.935	.17
105	MP1C	Mx	012	.17
106	MP1C	X	11.51	5.83
107	MP1C	Z	-19.935	5.83
108	MP1C	Mx	012	5.83

## Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	19.954	.68
2	MP5A	Z	-11.52	.68



# Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	MP5A	Mx	03	.68
4	MP5A	X	19.954	6.16
5	MP5A	Z	-11.52	6.16
6	MP5A	Mx	03	6.16
7	MP5B	X	19.954	.68
8	MP5B	Z	-11.52	.68
9	MP5B	Mx	.01	.68
10	MP5B	X	19.954	6.16
11	MP5B	Z	-11.52	6.16
12	MP5B	Mx	.01	6.16
13	MP5C	X	24.243	.68
14	MP5C	Z	-13.997	.68
15	MP5C	Mx	018	68
16	MP5C	X	24 243	6 16
17	MP5C	7	-13 997	6.16
18	MP5C	Mx	018	6.16
10	MP5A	Y	19.954	68
20	MP5A	7	11.52	68
20	MP5A	<u> </u>	-11.52	69
21	MDEA		01	.00
22		∧ 7	19.904	0.10
23	MP5A	2	-11.52	0.10
24	MP5A	IVIX	01	6.16
25	MP5B	X	19.954	.68
26	MP5B	<u> </u>	-11.52	.68
27	MP5B	Mx	.03	.68
28	MP5B	X	19.954	6.16
29	MP5B	Z	-11.52	6.16
30	MP5B	Mx	.03	6.16
31	MP5C	X	24.243	.68
32	MP5C	Z	-13.997	.68
33	MP5C	Mx	028	.68
34	MP5C	X	24.243	6.16
35	MP5C	Z	-13.997	6.16
36	MP5C	Mx	028	6.16
37	MP3A	Х	6.843	.62
38	MP3A	Z	-3.951	.62
39	MP3A	Mx	007	.62
40	MP3A	X	6.843	2.55
41	MP3A	7	-3 951	2.55
42	MP3A	Mx	- 007	2.55
43	MP3B	X	6.843	62
44	MP3B	7	-3 951	62
45	MP3R	Mv	007	62
46	MP3R	Y	6.843	2 55
17	MD3R	7	_2 051	2.00
19	MD2R		-0.301	2.55
40	MD2C		.007	62
49	MP3C	~ 7	0.000	.02
50	IVIF3C		-0.628	.02
51	IVIF3C	IVIX	002	.02
52	NIP3C	λ 7	0.000	2.55
53	MP3C	<u>∠</u>	-6.828	2.55
54	MP3C	MX	002	2.55
55	MP4A	X	3.878	3.25
56	MP4A	Z	-2.239	3.25
57	MP4A	Mx	.003	3.25
58	MP4A	X	3.878	3.25
59	MP4A	<u>Z</u>	-2.239	3.25
RISA	-3D Version 17.0.4	C:\\\\	\\\\Model Files\4679	920-VZW MT LO H.r3dl Page 42



# Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP4A	Mx	.003	3.25
61	MP4B	X	3.878	3.25
62	MP4B	Z	-2.239	3.25
63	MP4B	Mx	003	3.25
64	MP4B	Х	3.878	3.25
65	MP4B	Z	-2.239	3.25
66	MP4B	Mx	003	3.25
67	MP4C	Х	4,984	3.25
68	MP4C	Z	-2.878	3.25
69	MP4C	Mx	.000667	3.25
70	MP4C	X	4.984	3.25
71	MP4C	7	-2.878	3.25
72	MP4C	Mx	000667	3 25
73	MP3A	X	3 671	3.25
74	MP3A	7	-2 119	3.25
75	MP3A	Mx	002	3.25
76	MP3A	X	3 671	3.25
77	MP3A	7	-2 119	3.25
78	MP3A	My	002	3.25
79	MP3B	X	3 671	3.25
80	MP3B	7	-2 119	3.25
81	MP3B	My	- 002	3.25
82	MP3B	Y	3.671	3.25
83	MP3B	7	-2 119	3.25
84	MP3B	Mx	- 002	3.25
85	MP3C	X	4 976	3.25
86	MP3C	7	-2.873	3.25
87	MP3C	Mx	000665	3.25
88	MP3C	X	4 976	3.25
89	MP3C	7	-2.873	3.25
90	MP3C	Mx	000665	3.25
91	MP1A	X	18 035	17
92	MP1A	7	-10 412	17
93	MP1A	Mx	- 018	17
94	MP1A	X	18 035	5.83
95	MP1A	7	-10 412	5.83
96	MP1A	Mx	- 018	5.83
97	MP1B	X	18 035	17
98	MP1B	7	-10 412	17
qq	MP1B	Mx	018	17
100	MP1B	X	18.035	5.83
101	MP1B	7	-10.412	5.83
102	MP1B	Mx	018	5.83
103	MP1C	X	20.885	17
104	MP1C	7	-12 058	17
105	MP1C	Mx	0	17
106	MP1C	X	20.885	5.83
107	MP1C	7	-12 058	5.83
108	MP1C	Mx	0	5.83

# Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	21.321	.68
2	MP5A	Z	0	.68
3	MP5A	Mx	021	.68
4	MP5A	Х	21.321	6.16



# Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP5A	Z	0	6.16
6	MP5A	Mx	021	6.16
7	MP5B	X	26.481	.68
8	MP5B	Z	0	.68
9	MP5B	Mx	006	.68
10	MP5B	X	26.481	6.16
11	MP5B	Z	0	6.16
12	MP5B	Mx	006	6.16
13	MP5C	X	27.396	.68
14	MP5C	Z	0	.68
15	MP5C	Mx	.031	.68
16	MP5C	X	27.396	6.16
17	MP5C	Z	0	6.16
18	MP5C	Mx	.031	6.16
19	MP5A	Х	21.321	.68
20	MP5A	Z	0	.68
21	MP5A	Mx	021	.68
22	MP5A	X	21.321	6.16
23	MP5A	Z	0	6.16
24	MP5A	Mx	- 021	6.16
25	MP5B	X	26 481	68
26	MP5B	7	0	68
27	MP5B	Mx	032	68
28	MP5B	X	26.481	616
29	MP5B	7	0	6.16
30	MP5B	My	032	6.16
31	MP5C	Y X	27 396	68
22	MP5C	7	27.550	.00
22	MPSC	Z My	012	.00
24	MPSC		012	.00
34	MDSC	∧ 7	27.390	6.16
30	MPSC		012	0.10
27			012 E.002	62
37	IVIP3A	<u>^</u>	5.903	.02
38	MP3A		000	.02
39	MP3A	IVIX	006	.62
40	MP3A	X 7	5.903	2.55
41	MP3A	2	0	2.55
42	MP3A	MIX	006	2.55
43	MP3B	X	11.898	.62
44	MP3B	<u> </u>	0	.62
45	MP3B	MX	.006	.62
46	MP3B	X	11.898	2.55
47	MP3B	<u> </u>	0	2.55
48	MP3B	Mx	.006	2.55
49	MP3C	X	12.962	.62
50	MP3C	Z	0	.62
51	MP3C	Mx	.004	.62
52	MP3C	X	12.962	2.55
53	MP3C	Z	0	2.55
54	MP3C	Mx	.004	2.55
55	MP4A	X	4.035	3.25
56	MP4A	Z	0	3.25
57	MP4A	Mx	.003	3.25
58	MP4A	X	4.035	3.25
59	MP4A	Z	0	3.25
60	MP4A	Mx	.003	3.25
61	MP4B	X	5.365	3.25



# Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
62	MP4B	Z	0	3.25
63	MP4B	Mx	002	3.25
64	MP4B	X	5.365	3.25
65	MP4B	Z	0	3.25
66	MP4B	Mx	002	3.25
67	MP4C	Х	5.601	3.25
68	MP4C	Z	0	3.25
69	MP4C	Mx	001	3.25
70	MP4C	X	5.601	3.25
71	MP4C	Z	0	3.25
72	MP4C	Mx	001	3.25
73	MP3A	X	3.716	3.25
74	MP3A	Z	0	3.25
75	MP3A	Mx	.002	3.25
76	MP3A	X	3.716	3.25
77	MP3A	7	0	3.25
78	MP3A	Mx	.002	3.25
79	MP3B	X	5,286	3.25
80	MP3B	7	0	3.25
81	MP3B	Mx	- 002	3.25
82	MP3B	X	5 286	3 25
83	MP3B	7	0	3.25
84	MP3B	Mx	- 002	3 25
85	MP3C	X	5 564	3.25
86	MP3C	7	0	3.25
87	MP3C	My	- 001	3.25
88	MP3C	X	5 564	3.25
89	MP3C	7	0	3.25
<u>an</u>	MP3C	My	- 001	3.25
Q1	MP1A	X	19 727	17
97	MP1A	7	0	17
02	MP1A	My	- 02	17
Q/	MP1A	X	19 727	5.83
95	MP1A	7	0	5.83
96	MP1A	My	_ 02	5.83
90	MP1R	Y	23.019	17
08	MP1B	7	0	17
00	MP18	My	012	.17
100	MD1R	IVIX V	23.010	5.83
100	MD1R	7	23.019	5.83
102	MP1R	∠ M⊻	012	5.83
102	MP1C	Y	23.019	17
103	MP1C	7	0	17
104	MP1C		012	17
105	MP1C	IVIX	23.010	5.83
100	MP1C	7	23.019	5.00
107	MP1C		012	5.00
100	ME IC	IVIX	.012	0.00

#### Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	19.954	.68
2	MP5A	Z	11.52	.68
3	MP5A	Mx	01	.68
4	MP5A	Х	19.954	6.16
5	MP5A	Z	11.52	6.16
6	MP5A	Mx	01	6.16



# Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
7	MP5B	X	24.423	.68
8	MP5B	Z	14.1	.68
9	MP5B	Mx	024	.68
10	MP5B	X	24.423	6.16
11	MP5B	Z	14.1	6.16
12	MP5B	Mx	024	6.16
13	MP5C	X	20.926	.68
14	MP5C	Z	12.082	.68
15	MP5C	Mx	.031	.68
16	MP5C	X	20.926	6.16
17	MP5C	Z	12.082	6.16
18	MP5C	Mx	.031	6.16
19	MP5A	Х	19.954	.68
20	MP5A	Z	11.52	.68
21	MP5A	Mx	03	.68
22	MP5A	X	19.954	6.16
23	MP5A	Z	11.52	6.16
24	MP5A	Mx	03	6.16
25	MP5B	Х	24.423	.68
26	MP5B	Z	14.1	.68
27	MP5B	Mx	.024	.68
28	MP5B	Х	24.423	6.16
29	MP5B	Z	14.1	6.16
30	MP5B	Mx	.024	6.16
31	MP5C	X	20.926	.68
32	MP5C	Z	12.082	.68
33	MP5C	Mx	.006	.68
34	MP5C	X	20.926	6.16
35	MP5C	7	12.082	6.16
36	MP5C	Mx	006	6 16
37	MP3A	X	6 843	62
38	MP3A	7	3 951	62
39	MP3A	Mx	- 007	62
40	MP3A	X	6.843	2 55
40	MP3A	7	3 951	2.55
42	MP3A	Mx	- 007	2.55
43	MP3B	X	12 035	62
	MP3B	7	6 949	62
45	MP3B	My	-19-6	62
46	MP3B	X	12 035	2 55
47	MP3R	7	6 949	2.55
48	MP3R	My	-10-6	2.55
40	MP3C	X	7 972	62
50	MP3C	7	4 603	62
51	MP3C	My	007	62
52	MP3C	X	7 972	2 55
52	MP3C	7	1.572	2.55
54	MP3C	∠ M⊻	005	2.55
55	MD4A	IVIX Y	3 878	3.25
56	MD4A	7	2 230	3.25
57	MD4A	∠ M⊻	003	3.25
58	MD4A	IVIX Y	3 879	3.25
50	MD4A	7	2 220	3.25
60			2.239	2.25
61	MD4D		.003	3.20
60	IVIP4B	7	2.004	3.20
62	IVIP4B		2.904	3.20
03	IVIP4B	IVIX	U	3.25



## Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
64	MP4B	X	5.031	3.25
65	MP4B	Z	2.904	3.25
66	MP4B	Mx	0	3.25
67	MP4C	Х	4.129	3.25
68	MP4C	Z	2.384	3.25
69	MP4C	Mx	002	3.25
70	MP4C	Х	4.129	3.25
71	MP4C	Z	2.384	3.25
72	MP4C	Mx	002	3.25
73	MP3A	X	3.671	3.25
74	MP3A	Z	2.119	3.25
75	MP3A	Mx	.002	3.25
76	MP3A	X	3.671	3.25
77	MP3A	Z	2.119	3.25
78	MP3A	Mx	.002	3.25
79	MP3B	X	5.031	3.25
80	MP3B	Z	2.904	3.25
81	MP3B	Mx	0	3.25
82	MP3B	X	5.031	3.25
83	MP3B	Z	2.904	3.25
84	MP3B	Mx	0	3.25
85	MP3C	X	3.967	3.25
86	MP3C	Z	2.29	3.25
87	MP3C	Mx	002	3.25
88	MP3C	X	3.967	3.25
89	MP3C	Z	2.29	3.25
90	MP3C	Mx	002	3.25
91	MP1A	X	18.035	.17
92	MP1A	Z	10.412	.17
93	MP1A	Mx	018	.17
94	MP1A	X	18.035	5.83
95	MP1A	Z	10.412	5.83
96	MP1A	Mx	018	5.83
97	MP1B	X	20.885	.17
98	MP1B	Z	12.058	.17
99	MP1B	Mx	0	.17
100	MP1B	X	20.885	5.83
101	MP1B	Z	12.058	5.83
102	MP1B	Mx	0	5.83
103	MP1C	X	18.035	.17
104	MP1C	<u> </u>	10.412	.1/
105	MP1C	MX	.018	.1/
106	MP1C	X	18.035	5.83
107	MP1C		10.412	5.83
108	MP1C	IVIX	.018	5.83

# Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	13.24	.68
2	MP5A	Z	22.933	.68
3	MP5A	Mx	.006	.68
4	MP5A	Х	13.24	6.16
5	MP5A	Z	22.933	6.16
6	MP5A	Mx	.006	6.16
7	MP5B	Х	13.24	.68
8	MP5B	Z	22.933	.68



# Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP5B	Mx	032	.68
10	MP5B	X	13.24	6.16
11	MP5B	Z	22.933	6.16
12	MP5B	Mx	032	6.16
13	MP5C	Х	10.764	.68
14	MP5C	Z	18.644	.68
15	MP5C	Mx	.024	.68
16	MP5C	X	10.764	6.16
17	MP5C	Z	18.644	6.16
18	MP5C	Mx	.024	6.16
19	MP5A	X	13.24	.68
20	MP5A	Z	22.933	.68
21	MP5A	Mx	032	.68
22	MP5A	X	13.24	6.16
23	MP5A	Z	22.933	6.16
24	MP5A	Mx	032	6.16
25	MP5B	X	13.24	.68
26	MP5B	Z	22.933	.68
27	MP5B	Mx	.006	.68
28	MP5B	X	13.24	6.16
29	MP5B	Z	22.933	6.16
30	MP5B	Mx	.006	6.16
31	MP5C	X	10.764	.68
32	MP5C	Z	18.644	.68
33	MP5C	Mx	.018	.68
34	MP5C	X	10.764	6.16
35	MP5C	Z	18.644	6.16
36	MP5C	Mx	.018	6.16
37	MP3A	X	5,949	.62
38	MP3A	7	10.304	62
39	MP3A	Mx	- 006	.62
40	MP3A	X	5.949	2.55
41	MP3A	Z	10.304	2.55
42	MP3A	Mx	006	2.55
43	MP3B	X	5.949	.62
44	MP3B	7	10.304	.62
45	MP3B	Mx	006	.62
46	MP3B	X	5,949	2.55
47	MP3B	7	10.304	2.55
48	MP3B	Mx	006	2.55
49	MP3C	X	3.072	.62
50	MP3C	Z	5.321	.62
51	MP3C	Mx	.006	.62
52	MP3C	X	3.072	2.55
53	MP3C	Z	5.321	2.55
54	MP3C	Mx	.006	2.55
55	MP4A	X	2.683	3.25
56	MP4A	7	4.647	3.25
57	MP4A	Mx	.002	3.25
58	MP4A	X	2.683	3.25
59	MP4A	7	4.647	3.25
60	MP4A	Mx	.002	3.25
61	MP4B	X	2.683	3.25
62	MP4B	7	4.647	3.25
63	MP4B	Mx	.002	3.25
64	MP4B	X	2,683	3.25
65	MP4B	7	4 647	3.25
		<u> </u>	ודט.ד	0.20



# Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
66	MP4B	Mx	.002	3.25
67	MP4C	Х	2.044	3.25
68	MP4C	Z	3.541	3.25
69	MP4C	Mx	003	3.25
70	MP4C	Х	2.044	3.25
71	MP4C	Z	3.541	3.25
72	MP4C	Mx	003	3.25
73	MP3A	Х	2.643	3.25
74	MP3A	Z	4.577	3.25
75	MP3A	Mx	.002	3.25
76	MP3A	X	2.643	3.25
77	MP3A	Z	4.577	3.25
78	MP3A	Mx	.002	3.25
79	MP3B	X	2.643	3.25
80	MP3B	Z	4.577	3.25
81	MP3B	Mx	.002	3.25
82	MP3B	X	2.643	3.25
83	MP3B	Z	4.577	3.25
84	MP3B	Mx	.002	3.25
85	MP3C	X	1.889	3.25
86	MP3C	Z	3.272	3.25
87	MP3C	Mx	002	3.25
88	MP3C	X	1.889	3.25
89	MP3C	Z	3.272	3.25
90	MP3C	Mx	002	3.25
91	MP1A	X	11.51	.17
92	MP1A	Z	19.935	.17
93	MP1A	Mx	012	.17
94	MP1A	X	11.51	5.83
95	MP1A	Z	19.935	5.83
96	MP1A	Mx	012	5.83
97	MP1B	X	11.51	.17
98	MP1B	Z	19.935	.17
99	MP1B	Mx	012	.17
100	MP1B	X	11.51	5.83
101	MP1B	Z	19.935	5.83
102	MP1B	Mx	012	5.83
103	MP1C	X	9.864	.17
104	MP1C	Z	17.084	.17
105	MP1C	Mx	.02	.17
106	MP1C	X	9.864	5.83
107	MP1C	7	17.084	5.83
108	MP1C	Mx	.02	5.83
108	MP1C	Mx	.02	5.83

# Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	0	.68
2	MP5A	Z	28.201	.68
3	MP5A	Mx	.024	.68
4	MP5A	Х	0	6.16
5	MP5A	Z	28.201	6.16
6	MP5A	Mx	.024	6.16
7	MP5B	Х	0	.68
8	MP5B	Z	23.041	.68
9	MP5B	Mx	03	.68
10	MP5B	X	0	6.16



# Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
11	MP5B	Z	23.041	6.16
12	MP5B	Mx	03	6.16
13	MP5C	X	0	.68
14	MP5C	Z	22.126	.68
15	MP5C	Mx	.014	.68
16	MP5C	X	0	6.16
17	MP5C	Z	22.126	6.16
18	MP5C	Mx	.014	6.16
19	MP5A	X	0	.68
20	MP5A	Z	28.201	.68
21	MP5A	Mx	024	.68
22	MP5A	X	0	6.16
23	MP5A	Z	28.201	6.16
24	MP5A	Mx	024	6.16
25	MP5B	Х	0	.68
26	MP5B	Z	23.041	.68
27	MP5B	Mx	01	.68
28	MP5B	X	0	6.16
29	MP5B	Z	23.041	6.16
30	MP5B	Mx	01	6.16
31	MP5C	X	0	.68
32	MP5C	Z	22.126	.68
33	MP5C	Mx	.027	.68
34	MP5C	X	0	6.16
35	MP5C	Z	22.126	6.16
36	MP5C	Mx	.027	6.16
37	MP3A	X	0	.62
38	MP3A	Z	13.897	.62
39	MP3A	Mx	0	.62
40	MP3A	X	0	2.55
41	MP3A	Z	13.897	2.55
42	MP3A	Mx	0	2.55
43	MP3B	Х	0	.62
44	MP3B	Z	7.901	.62
45	MP3B	Mx	007	.62
46	MP3B	X	0	2.55
47	MP3B	Z	7.901	2.55
48	MP3B	Mx	007	2.55
49	MP3C	Х	0	.62
50	MP3C	Z	6.838	.62
51	MP3C	Mx	.006	.62
52	MP3C	X	0	2.55
53	MP3C	Z	6.838	2.55
54	MP3C	Mx	.006	2.55
55	MP4A	X	0	3.25
56	MP4A	Z	5.809	3.25
57	MP4A	Mx	0	3.25
58	MP4A	X	0	3.25
59	MP4A	Z	5.809	3.25
60	MP4A	Mx	0	3.25
61	MP4B	X	0	3.25
62	MP4B	Z	4.478	3.25
63	MP4B	Mx	.003	3.25
64	MP4B	X	0	3.25
65	MP4B	Z	4.478	3.25
66	MP4B	Mx	.003	3.25
67	MP4C	X	0	3.25



# Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP4C	Z	4.242	3.25
69	MP4C	Mx	003	3.25
70	MP4C	X	0	3.25
71	MP4C	Z	4.242	3.25
72	MP4C	Mx	003	3.25
73	MP3A	X	0	3.25
74	MP3A	Z	5.809	3.25
75	MP3A	Mx	0	3.25
76	MP3A	X	0	3.25
77	MP3A	Z	5.809	3.25
78	MP3A	Mx	0	3.25
79	MP3B	X	0	3.25
80	MP3B	Z	4.239	3.25
81	MP3B	Mx	.002	3.25
82	MP3B	X	0	3.25
83	MP3B	Z	4.239	3.25
84	MP3B	Mx	.002	3.25
85	MP3C	X	0	3.25
86	MP3C	Z	3.96	3.25
87	MP3C	Mx	002	3.25
88	MP3C	X	0	3.25
89	MP3C	Z	3.96	3.25
90	MP3C	Mx	002	3.25
91	MP1A	X	0	.17
92	MP1A	Z	24.116	.17
93	MP1A	Mx	0	.17
94	MP1A	X	0	5.83
95	MP1A	Z	24.116	5.83
96	MP1A	Mx	0	5.83
97	MP1B	X	0	.17
98	MP1B	Z	20.825	.17
99	MP1B	Mx	018	.17
100	MP1B	X	0	5.83
101	MP1B	Z	20.825	5.83
102	MP1B	Mx	018	5.83
103	MP1C	X	0	.17
104	MP1C	Z	20.825	.17
105	MP1C	Mx	.018	.17
106	MP1C	X	0	5.83
107	MP1C	Z	20.825	5.83
108	MP1C	Mx	.018	5.83

# Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	-13.24	.68
2	MP5A	Z	22.933	.68
3	MP5A	Mx	.032	.68
4	MP5A	Х	-13.24	6.16
5	MP5A	Z	22.933	6.16
6	MP5A	Mx	.032	6.16
7	MP5B	Х	-10.66	.68
8	MP5B	Z	18.464	.68
9	MP5B	Mx	021	.68
10	MP5B	Х	-10.66	6.16
11	MP5B	Z	18.464	6.16
12	MP5B	Mx	021	6.16



# Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
13	MP5C	X	-12.679	.68
14	MP5C	Z	21.961	.68
15	MP5C	Mx	.000112	.68
16	MP5C	X	-12.679	6.16
17	MP5C	Z	21.961	6.16
18	MP5C	Mx	.000112	6.16
19	MP5A	X	-13.24	.68
20	MP5A	Z	22.933	.68
21	MP5A	Mx	006	.68
22	MP5A	X	-13.24	6.16
23	MP5A	Z	22.933	6.16
24	MP5A	Mx	006	6.16
25	MP5B	X	-10.66	.68
26	MP5B	Z	18.464	.68
27	MP5B	Mx	021	.68
28	MP5B	X	-10.66	6.16
29	MP5B	Z	18.464	6.16
30	MP5B	Mx	021	6.16
31	MP5C	X	-12.679	.68
32	MP5C	Z	21.961	.68
33	MP5C	Mx	.032	.68
34	MP5C	X	-12.679	6.16
35	MP5C	Z	21.961	6.16
36	MP5C	Mx	.032	6.16
37	MP3A	X	-5.949	.62
38	MP3A	7	10.304	.62
39	MP3A	Mx	006	62
40	MP3A	X	-5 949	2.55
41	MP3A	7	10.304	2.55
42	MP3A	My	006	2.55
43	MP3B	X	-2.951	62
40	MP3B	7	5 112	62
45	MP3B	My	- 006	62
46	MP3B	X	-2.951	2.55
40	MP3B	7	5 112	2.55
48	MP3B	My	- 006	2.55
40	MP3C		5 207	62
50	MP3C	7	0 175	62
50	MP3C	<u> </u>	9.175	.02
52	MP3C		5 207	2.55
52	MP3C	7	-3.2 <i>31</i> Q 175	2.33
54	MP3C		007	2.55
55	MD4 A		.007	2.00
56		7	-2.003	3.25
57			4.047	2.25
59			002	3.20
50		7	-2.003	0.20 0.05
59			4.047	3.20
61	IVIP4A		002	3.20
60		∧ 7	-2.017	3.20
62			3.494	3.20
03		IVIX	.003	3.20
65	IVIP4B	λ 7	-2.017	3.20
60			3.494	3.20
00		IVIX	.003	3.20
6/	MP4C	X	-2.538	3.25
68	MP4C		4.396	3.25
69	MP4C	IVIX	002	3.25



# Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
70	MP4C	X	-2.538	3.25
71	MP4C	Z	4.396	3.25
72	MP4C	Mx	002	3.25
73	MP3A	Х	-2.643	3.25
74	MP3A	Z	4.577	3.25
75	MP3A	Mx	002	3.25
76	MP3A	Х	-2.643	3.25
77	MP3A	Z	4.577	3.25
78	MP3A	Mx	002	3.25
79	MP3B	Х	-1.858	3.25
80	MP3B	Z	3.218	3.25
81	MP3B	Mx	.002	3.25
82	MP3B	Х	-1.858	3.25
83	MP3B	Z	3.218	3.25
84	MP3B	Mx	.002	3.25
85	MP3C	Х	-2.472	3.25
86	MP3C	Z	4.282	3.25
87	MP3C	Mx	002	3.25
88	MP3C	Х	-2.472	3.25
89	MP3C	Z	4.282	3.25
90	MP3C	Mx	002	3.25
91	MP1A	Х	-11.51	.17
92	MP1A	Z	19.935	.17
93	MP1A	Mx	.012	.17
94	MP1A	X	-11.51	5.83
95	MP1A	Z	19.935	5.83
96	MP1A	Mx	.012	5.83
97	MP1B	X	-9.864	.17
98	MP1B	Z	17.084	.17
99	MP1B	Mx	02	.17
100	MP1B	Х	-9.864	5.83
101	MP1B	Z	17.084	5.83
102	MP1B	Mx	02	5.83
103	MP1C	Х	-11.51	.17
104	MP1C	Z	19.935	.17
105	MP1C	Mx	.012	.17
106	MP1C	X	-11.51	5.83
107	MP1C	Z	19.935	5.83
108	MP1C	Mx	012	5.83

# Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	-19.954	.68
2	MP5A	Z	11.52	.68
3	MP5A	Mx	.03	.68
4	MP5A	Х	-19.954	6.16
5	MP5A	Z	11.52	6.16
6	MP5A	Mx	.03	6.16
7	MP5B	Х	-19.954	.68
8	MP5B	Z	11.52	.68
9	MP5B	Mx	01	.68
10	MP5B	Х	-19.954	6.16
11	MP5B	Z	11.52	6.16
12	MP5B	Mx	01	6.16
13	MP5C	Х	-24.243	.68
14	MP5C	Z	13.997	.68



# Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]	
15	MP5C	Mx	018	.68	
16	MP5C	Х	-24.243	6.16	
17	MP5C	Z	13.997	6.16	
18	MP5C	Mx	018	6.16	
19	MP5A	X	-19.954	.68	
20	MP5A	Z	11.52	.68	
21	MP5A	Mx	.01	.68	
22	MP5A	X	-19.954	6.16	
23	MP5A	Z	11.52	6.16	
24	MP5A	Mx	.01	6.16	
25	MP5B	X	-19,954	68	
26	MP5B	7	11 52	68	
27	MP5B	Mx	- 03	68	
28	MP5B	Y	-19.954	6.16	
20	MP5B	7	11 52	6.16	
20	MD5D		02	6.16	
21	MD5C		03	0.10	
20	MPSC	<u>^</u>	-24.243	.00	
32	MPSC		13.997	.00	
33	MP5C	IVIX	.028	.68	
34	MP5C	X	-24.243	6.16	
35	MP5C	Z	13.997	6.16	
36	MP5C	Mx	.028	6.16	
37	MP3A	X	-6.843	.62	
38	MP3A	Z	3.951	.62	
39	MP3A	Mx	.007	.62	
40	MP3A	Х	-6.843	2.55	
41	MP3A	Z	3.951	2.55	
42	MP3A	Mx	.007	2.55	
43	MP3B	Х	-6.843	.62	
44	MP3B	Z	3.951	.62	
45	MP3B	Mx	007	.62	
46	MP3B	Х	-6.843	2.55	
47	MP3B	Z	3.951	2.55	
48	MP3B	Mx	007	2.55	
49	MP3C	X	-11.827	.62	
50	MP3C	7	6.828	62	
51	MP3C	Mx	002	62	
52	MP3C	X	_11 827	2.55	
53	MP3C	7	6.828	2.55	
54	MP3C		0.020	2.55	
55	MP4A		3 878	2.00	
56		7	2 230	3.25	
57			2.209	3.25	
57			003	0.20	
50		∧ 7	-3.070	3.20	
59			2.239	3.20	
60	MP4A	IVIX	003	3.25	
61	MP4B	X	-3.878	3.25	
62	MP4B	Z	2.239	3.25	
63	MP4B	Mx	.003	3.25	
64	MP4B	X	-3.878	3.25	
65	MP4B	Z	2.239	3.25	
66	MP4B	Mx	.003	3.25	
67	MP4C	X	-4.984	3.25	
68	MP4C	Z	2.878	3.25	
69	MP4C	Mx	000667	3.25	
70	MP4C	Х	-4.984	3.25	
71	MP4C	Z	2.878	3.25	
RISA	RISA-3D Version 17.0.4 [C:\\\\\\\\Model Files\467920-VZW MT LO H.r3d] Page 54				



## Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
72	MP4C	Mx	000667	3.25
73	MP3A	Х	-3.671	3.25
74	MP3A	Z	2.119	3.25
75	MP3A	Mx	002	3.25
76	MP3A	Х	-3.671	3.25
77	MP3A	Z	2.119	3.25
78	MP3A	Mx	002	3.25
79	MP3B	Х	-3.671	3.25
80	MP3B	Z	2.119	3.25
81	MP3B	Mx	.002	3.25
82	MP3B	Х	-3.671	3.25
83	MP3B	Z	2.119	3.25
84	MP3B	Mx	.002	3.25
85	MP3C	Х	-4.976	3.25
86	MP3C	Z	2.873	3.25
87	MP3C	Mx	000665	3.25
88	MP3C	Х	-4.976	3.25
89	MP3C	Z	2.873	3.25
90	MP3C	Mx	000665	3.25
91	MP1A	Х	-18.035	.17
92	MP1A	Z	10.412	.17
93	MP1A	Mx	.018	.17
94	MP1A	X	-18.035	5.83
95	MP1A	Z	10.412	5.83
96	MP1A	Mx	.018	5.83
97	MP1B	Х	-18.035	.17
98	MP1B	Z	10.412	.17
99	MP1B	Mx	018	.17
100	MP1B	Х	-18.035	5.83
101	MP1B	Z	10.412	5.83
102	MP1B	Mx	018	5.83
103	MP1C	Х	-20.885	.17
104	MP1C	Z	12.058	.17
105	MP1C	Mx	0	.17
106	MP1C	Х	-20.885	5.83
107	MP1C	Z	12.058	5.83
108	MP1C	Mx	0	5.83

# Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	-21.321	.68
2	MP5A	Z	0	.68
3	MP5A	Mx	.021	.68
4	MP5A	Х	-21.321	6.16
5	MP5A	Z	0	6.16
6	MP5A	Mx	.021	6.16
7	MP5B	Х	-26.481	.68
8	MP5B	Z	0	.68
9	MP5B	Mx	.006	.68
10	MP5B	Х	-26.481	6.16
11	MP5B	Z	0	6.16
12	MP5B	Mx	.006	6.16
13	MP5C	Х	-27.396	.68
14	MP5C	Z	0	.68
15	MP5C	Mx	031	.68
16	MP5C	X	-27.396	6.16



# Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP5C	Z	0	6.16
18	MP5C	Mx	031	6.16
19	MP5A	X	-21.321	.68
20	MP5A	Z	0	.68
21	MP5A	Mx	.021	.68
22	MP5A	Х	-21.321	6.16
23	MP5A	Z	0	6.16
24	MP5A	Mx	.021	6.16
25	MP5B	Х	-26.481	.68
26	MP5B	Z	0	.68
27	MP5B	Mx	032	.68
28	MP5B	X	-26.481	6.16
29	MP5B	Z	0	6.16
30	MP5B	Mx	- 032	6.16
31	MP5C	X	-27.396	68
32	MP5C	7	0	68
33	MP5C	Mx	012	68
34	MP5C	X	-27 396	6.16
35	MP5C	7	0	6 16
36	MP5C	My	012	6 16
37	MP3A	Y	-5 903	62
38	MP3A	7	-0.900	62
30	MP3A		006	62
40	MP3A	VIA V	5 003	2.55
40	MD3A	7	-0.905	2.55
41	MD2A	<u> </u>	006	2.55
42	MD2D		11 808	62
43	MD2D	7	-11.090	.02
44	MD2D	Z My	006	.02
45			000	.02
40		7	-11.090	2.55
47			006	2.00
40	MP2C		000	60
<b>4</b> 9	MP2C	7	-12.902	.02
51	MP2C		004	.02
57	MD2C		004	.02
52		7	-12.902	2.55
55	MD2C		001	2.55
54			004	2.55
55		7	-4.035	3.25
50	MD4A		003	3.20
59			005	3.20
50		7	-4.035	3.20
59			002	3.25
61			003	3.25
62		~ 7	-0.305	3.25
62			002	3.20
63	MP4B	IVIX	.002	3.20
64	MP4B	7	-0.300	3.20
66			002	3.20
67	IVIE4B		.002	3.20
0/	IVIP4C	λ 7	100.6-	3.20
00			001	3.20
70	IVIP4C	IVIX	.001	3.20
70		Χ 7	100.6-	3.25
71	MP4C		001	3.25
72		IVIX	.001	3.25
13	MP3A	X	-3./16	3.25



# Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
74	MP3A	Z	0	3.25
75	MP3A	Mx	002	3.25
76	MP3A	Х	-3.716	3.25
77	MP3A	Z	0	3.25
78	MP3A	Mx	002	3.25
79	MP3B	X	-5.286	3.25
80	MP3B	Z	0	3.25
81	MP3B	Mx	.002	3.25
82	MP3B	Х	-5.286	3.25
83	MP3B	Z	0	3.25
84	MP3B	Mx	.002	3.25
85	MP3C	Х	-5.564	3.25
86	MP3C	Z	0	3.25
87	MP3C	Mx	.001	3.25
88	MP3C	X	-5.564	3.25
89	MP3C	Z	0	3.25
90	MP3C	Mx	.001	3.25
91	MP1A	Х	-19.727	.17
92	MP1A	Z	0	.17
93	MP1A	Mx	.02	.17
94	MP1A	Х	-19.727	5.83
95	MP1A	Z	0	5.83
96	MP1A	Mx	.02	5.83
97	MP1B	Х	-23.019	.17
98	MP1B	Z	0	.17
99	MP1B	Mx	012	.17
100	MP1B	Х	-23.019	5.83
101	MP1B	Z	0	5.83
102	MP1B	Mx	012	5.83
103	MP1C	Х	-23.019	.17
104	MP1C	Z	0	.17
105	MP1C	Mx	012	.17
106	MP1C	Х	-23.019	5.83
107	MP1C	Z	0	5.83
108	MP1C	Mx	012	5.83

#### Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	-19.954	.68
2	MP5A	Z	-11.52	.68
3	MP5A	Mx	.01	.68
4	MP5A	Х	-19.954	6.16
5	MP5A	Z	-11.52	6.16
6	MP5A	Mx	.01	6.16
7	MP5B	Х	-24.423	.68
8	MP5B	Z	-14.1	.68
9	MP5B	Mx	.024	.68
10	MP5B	Х	-24.423	6.16
11	MP5B	Z	-14.1	6.16
12	MP5B	Mx	.024	6.16
13	MP5C	Х	-20.926	.68
14	MP5C	Z	-12.082	.68
15	MP5C	Mx	031	.68
16	MP5C	Х	-20.926	6.16
17	MP5C	Z	-12.082	6.16
18	MP5C	Mx	031	6.16



## Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
19	MP5A	<u>X</u>	-19.954	.68
20	MP5A	Z	-11.52	.68
21	MP5A	Mx	.03	.68
22	MP5A	X	-19.954	6.16
23	MP5A	Z	-11.52	6.16
24	MP5A	Mx	.03	6.16
25	MP5B	X	-24.423	.68
26	MP5B	Z	-14.1	.68
27	MP5B	Mx	024	.68
28	MP5B	X	-24.423	6.16
29	MP5B	Z	-14.1	6.16
30	MP5B	Mx	024	6.16
31	MP5C	Х	-20.926	.68
32	MP5C	Z	-12.082	.68
33	MP5C	Mx	006	.68
34	MP5C	X	-20.926	6.16
35	MP5C	Z	-12.082	6.16
36	MP5C	Mx	006	6.16
37	MP3A	Х	-6.843	.62
38	MP3A	Z	-3.951	.62
39	MP3A	Mx	.007	.62
40	MP3A	X	-6.843	2.55
41	MP3A	Z	-3.951	2.55
42	MP3A	Mx	.007	2.55
43	MP3B	X	-12.035	.62
44	MP3B	7	-6.949	.62
45	MP3B	Mx	1e-6	62
46	MP3B	X	-12 035	2 55
47	MP3B	7	-6 949	2.55
48	MP3B	Mx	10-6	2.55
40	MP3C	X	-7 972	62
50	MP3C	7	-4 603	62
51	MP3C	My	- 007	.02
52	MP3C	X	-7 972	2 55
53	MP3C	7	-4.603	2.55
54	MP3C	My	- 007	2.55
55	MP4A	Y	-3.878	3.25
56	MP4A	7	2 220	3.25
57		<u> </u>	-2.239	3.25
59			2 979	2.25
50	MD/A	7	-3.070	3.20
60	MD/A	Mv	- 003	3.25
61			-5.005	3.20
62		7	2 004	3.20
62			-2.304	3.20
64			5 021	3.20
65		7	-5.051	3.20
60			-2.904	3.20
67	IVIP4B		4 120	3.20
60	IVIP40	7	-4.123	3.20
60	MD4C		-2.384	3.20
70		IVIX	.002	3.20
70	MP4C	λ 7	-4.129	3.20
71			-2.384	3.20
72		IVIX	.002	3.25
13	MP3A	× 7	-3.0/1	3.25
74	MP3A		-2.119	3.25
15	MP3A	IVIX	002	3.25



### Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
76	MP3A	X	-3.671	3.25
77	MP3A	Z	-2.119	3.25
78	MP3A	Mx	002	3.25
79	MP3B	X	-5.031	3.25
80	MP3B	Z	-2.904	3.25
81	MP3B	Mx	0	3.25
82	MP3B	Х	-5.031	3.25
83	MP3B	Z	-2.904	3.25
84	MP3B	Mx	0	3.25
85	MP3C	X	-3.967	3.25
86	MP3C	Z	-2.29	3.25
87	MP3C	Mx	.002	3.25
88	MP3C	X	-3.967	3.25
89	MP3C	Z	-2.29	3.25
90	MP3C	Mx	.002	3.25
91	MP1A	X	-18.035	.17
92	MP1A	Z	-10.412	.17
93	MP1A	Mx	.018	.17
94	MP1A	X	-18.035	5.83
95	MP1A	Z	-10.412	5.83
96	MP1A	Mx	.018	5.83
97	MP1B	X	-20.885	.17
98	MP1B	Z	-12.058	.17
99	MP1B	Mx	0	.17
100	MP1B	X	-20.885	5.83
101	MP1B	Z	-12.058	5.83
102	MP1B	Mx	0	5.83
103	MP1C	X	-18.035	.17
104	MP1C	Z	-10.412	.17
105	MP1C	Mx	018	.17
106	MP1C	X	-18.035	5.83
107	MP1C	Z	-10.412	5.83
108	MP1C	Mx	018	5.83

# Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	-13.24	.68
2	MP5A	Z	-22.933	.68
3	MP5A	Mx	006	.68
4	MP5A	X	-13.24	6.16
5	MP5A	Z	-22.933	6.16
6	MP5A	Mx	006	6.16
7	MP5B	Х	-13.24	.68
8	MP5B	Z	-22.933	.68
9	MP5B	Mx	.032	.68
10	MP5B	Х	-13.24	6.16
11	MP5B	Z	-22.933	6.16
12	MP5B	Mx	.032	6.16
13	MP5C	X	-10.764	.68
14	MP5C	Z	-18.644	.68
15	MP5C	Mx	024	.68
16	MP5C	X	-10.764	6.16
17	MP5C	Z	-18.644	6.16
18	MP5C	Mx	024	6.16
19	MP5A	Х	-13.24	.68
20	MP5A	Z	-22.933	.68



# Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

21         MP5A         Mx         032         .68           22         MP5A         Z         -13.24         6.16           23         MP5A         Z         -22.933         6.16           24         MP5A         Mx         .032         6.16           25         MP5B         X         -13.24         .68           26         MP5B         Z         -22.933         .68           27         MP5B         Mx         .006         .68           28         MP5B         X         -13.24         6.16           29         MP5B         Z         -22.933         .616           30         MP5B         X         -10.764         .68           31         MP5C         X         -10.764         .68           32         MP5C         Z         -18.644         .68           33         MP5C         X         -10.764         .616           35         MP5C         Z         -18.644         .616           35         MP5C         Z         -18.644         .62           38         MP3A         Z         -10.304         .62           39	
22MP5AX $-13.24$ 6.1623MP5AZ $-22.933$ 6.1624MP5AMx $032$ 6.1625MP5BX $-13.24$ .6826MP5BZ $-22.933$ .6827MP5BMx $-006$ .6828MP5BX $-13.24$ 6.1629MP5BZ $-22.933$ 6.1630MP5BX $-13.24$ 6.1631MP5CX $-10.764$ .6833MP5CMx $-006$ 6.1634MP5CZ $-18.644$ .6835MP5CZ $-18.644$ .61636MP5CX $-10.764$ 6.1637MP3AX $-5.949$ .6238MP3AZ $-10.304$ .6239MP3AX $-5.949$ .6240MP3AX $-5.949$ .6241MP3AZ $-10.304$ .6244MP3BZ $-10.304$ .6245MP3BX $-5.949$ .6246MP3BX $-5.949$ .6246MP3BX $-5.949$ .6247MP3BZ $-10.304$ .62	
23         MP5A         Z         -22.933         6.16           24         MP5A         Mx         .032         6.16           25         MP5B         X         .13.24         .68           26         MP5B         Z         .22.933         .68           27         MP5B         Mx         .006         .68           28         MP5B         X         .13.24         6.16           29         MP5B         Z         .22.933         .616           30         MP5B         X         .13.24         .6.16           30         MP5B         X         .13.24         .6.16           30         MP5B         X         .13.24         .6.16           31         MP5C         X         .10.764         .68           32         MP5C         X         .10.764         .68           33         MP5C         Mx         .018         .616           35         MP5C         Z         .18.644         .616           36         MP5C         Mx         .018         .616           37         MP3A         Z         .10.304         .62           38	
24         MP5A         Mx         .032         6.16           25         MP5B         X         -13.24         .68           26         MP5B         Z         -22.933         .68           27         MP5B         Mx        006         .68           28         MP5B         X         -13.24         6.16           29         MP5B         Z         -22.933         6.16           30         MP5B         X         -13.24         6.16           30         MP5B         X         -13.24         6.16           30         MP5C         X         -10.764         .68           32         MP5C         X         -10.764         .68           33         MP5C         X         -10.764         .616           35         MP5C         Z         -18.644         .616           36         MP5C         X         -10.764         .62           38         MP5C         X         -10.304         .62           39         MP3A         Z         -10.304         .62           39         MP3A         Z         -10.304         .255           41 <td></td>	
25         MP5B         X         -13.24         .68           26         MP5B         Z         -22.933         .68           27         MP5B         Mx        006         .68           28         MP5B         X         .13.24         .6.16           29         MP5B         Z         .22.933         .6.16           30         MP5B         X         .10.764         .68           31         MP5C         X         .10.764         .68           32         MP5C         Z         .18.644         .68           33         MP5C         X         .10.764         .6.16           34         MP5C         X         .10.764         .6.16           35         MP5C         Z         .18.644         .6.16           36         MP5C         Mx         .018         .6.2           38         MP3A         Z         .10.304         .62           39         MP3A         X         .5.949         .2.55           41         MP3A         Z         .10.304         .2.55           42         MP3A         X         .5.949         .62 <td< td=""><td></td></td<>	
26         MP5B         Z         -22.933         .68           27         MP5B         Mx        006         .68           28         MP5B         X         -13.24         6.16           29         MP5B         Z         -22.933         6.16           30         MP5B         Mx        006         6.16           31         MP5C         X         -10.764         .68           32         MP5C         Z         -18.644         .68           33         MP5C         X         -10.764         .616           34         MP5C         X         -10.764         .616           35         MP5C         Z         -18.644         .616           36         MP5C         X         -10.764         .616           35         MP5C         Z         -18.644         .616           36         MP5C         Mx        018         .62           38         MP3A         Z         -10.304         .62           39         MP3A         X         -5.949         .255           41         MP3A         Z         -10.304         .255           42	
27         MP5B         Mx        006         .68           28         MP5B         X         -13.24         6.16           29         MP5B         Z         -22.933         6.16           30         MP5B         X         -10.764         .68           31         MP5C         X         -10.764         .68           32         MP5C         Z         -18.644         .68           33         MP5C         X         -10.764         6.16           35         MP5C         Z         -18.644         6.16           35         MP5C         Z         -18.644         6.16           36         MP5C         X         -10.764         6.16           37         MP3A         X         -5.949         .62           38         MP3A         Z         -10.304         .62           39         MP3A         X         -5.949         .62           40         MP3A         Z         -10.304         .2.55           41         MP3A         Z         -10.304         .2.55           42         MP3A         MX         .006         .2.55           4	
28         MP5B         X         -13.24         6.16           29         MP5B         Z         -22.933         6.16           30         MP5B         Mx        006         6.16           31         MP5C         X         -10.764         .68           32         MP5C         Z         -18.644         .68           33         MP5C         Mx        018         .66           34         MP5C         X         -10.764         6.16           35         MP5C         X         -10.764         6.16           36         MP5C         X         -10.764         6.16           35         MP5C         Z         -18.644         6.16           36         MP5C         X         -10.764         6.16           37         MP3A         X         -5.949         .62           38         MP3A         Z         -10.304         .62           39         MP3A         X         -5.949         2.55           41         MP3A         Z         -10.304         2.55           42         MP3A         Mx         .006         .255           43<	
29         MP5B         Z         -22.933         6.16           30         MP5B         Mx        006         6.16           31         MP5C         X         -10.764         .68           32         MP5C         Z         -18.644         .68           33         MP5C         Mx        018         .68           34         MP5C         X         -10.764         6.16           35         MP5C         Z         -18.644         6.61           36         MP5C         Z         -11.644         6.16           36         MP5C         Z         -11.644         6.16           37         MP3A         X         -5.949         .62           38         MP3A         Z         -10.304         .62           39         MP3A         X         -5.949         2.55           41         MP3A         Z         -10.304         2.55           42         MP3A         Mx         .006         2.55           43         MP3B         Z         -10.304         .62           44         MP3B         Z         -10.304         .62           45 </td <td></td>	
30         MP5B         Mx        006         6.16           31         MP5C         X         -10.764         .68           32         MP5C         Z         -18.644         .68           33         MP5C         Mx        018         .68           34         MP5C         X         -10.764         6.16           35         MP5C         Z         -18.644         6.16           36         MP5C         Z         -18.644         6.16           36         MP5C         Mx        018         6.16           36         MP5C         Mx        018         6.2           38         MP3A         X         -5.949         .62           39         MP3A         Mx         .006         .62           40         MP3A         X         -5.949         2.55           41         MP3A         Z         -10.304         2.55           42         MP3A         Mx         .006         2.55           43         MP3B         Z         -10.304         .62           44         MP3B         Z         -10.304         .62           45	
31MP5CX-10.764.6832MP5CZ-18.644.6833MP5CMx018.6834MP5CX-10.7646.1635MP5CZ-18.6446.1636MP5CMx0186.1637MP3AX-5.949.6238MP3AZ-10.304.6239MP3AX-5.949.6240MP3AZ-10.304.6241MP3AZ-10.304.5542MP3AMx.006.2.5543MP3BX-5.949.6244MP3BZ-10.304.6245MP3BX.5.949.6246MP3BZ-10.304.6247MP3BX.5.949.5548MP3BX.5.949.2.55	
32MP5CZ-18.644.6833MP5CMx018.6834MP5CX-10.7646.1635MP5CZ-18.6446.1636MP5CMx0186.1637MP3AX-5.949.6238MP3AZ-10.304.6239MP3AX-5.949.6240MP3AX-5.949.6241MP3AZ-10.304.6242MP3AX-5.949.5543MP3BX-5.949.6244MP3BX.6245MP3BX.5.94946MP3BZ-10.304.6247MP3BX.5.949.6248MP3BMx.006.6248MP3BMx.006.2.55	
33         MP5C         Mx        018         .68           34         MP5C         X         -10.764         6.16           35         MP5C         Z         -18.644         6.16           36         MP5C         Mx        018         6.16           37         MP3A         X         -5.949         .62           38         MP3A         Z         -10.304         .62           39         MP3A         Mx         .006         .62           40         MP3A         Z         -10.304         .62           41         MP3A         Z         -10.304         .62           42         MP3A         X         -5.949         .55           42         MP3A         Z         -10.304         .62           43         MP3B         X         -5.949         .62           44         MP3B         Z         -10.304         .62           45         MP3B         X         -5.949         .62           45         MP3B         X         .5.949         .62           45         MP3B         X         .5.949         .2.55           46	
34         MP5C         X         -10.764         6.16           35         MP5C         Z         -18.644         6.16           36         MP5C         Mx        018         6.16           37         MP3A         X         -5.949         .62           38         MP3A         Z         -10.304         .62           39         MP3A         Mx         .006         .62           40         MP3A         X         -5.949         .55           41         MP3A         Z         -10.304         .62           42         MP3A         X         -5.949         .55           41         MP3A         Z         -10.304         .2.55           42         MP3A         Mx         .006         .2.55           43         MP3B         Z         -10.304         .62           44         MP3B         Z         -10.304         .62           45         MP3B         Mx         .006         .62           46         MP3B         X         -5.949         .55           47         MP3B         Z         -10.304         .55           48	
35         MP5C         Z         -18.644         6.16           36         MP5C         Mx        018         6.16           37         MP3A         X         -5.949         .62           38         MP3A         Z         -10.304         .62           39         MP3A         Mx         .006         .62           40         MP3A         X         -5.949         .55           41         MP3A         Z         -10.304         .62           42         MP3A         X         -5.949         .555           43         MP3B         Z         -10.304         .62           44         MP3B         Z         -10.304         .62           45         MP3B         X         -5.949         .62           44         MP3B         Z         -10.304         .62           45         MP3B         X         -5.949         .62           46         MP3B         X         -5.949         2.55           47         MP3B         Z         -10.304         2.55           48         MP3B         Mx         .006         .2.55	
36         MP5C         Mx        018         6.16           37         MP3A         X         -5.949         .62           38         MP3A         Z         -10.304         .62           39         MP3A         Mx         .006         .62           40         MP3A         X         -5.949         .55           41         MP3A         Z         -10.304         .62           42         MP3A         Z         -10.304         .55           43         MP3B         X         -5.949         .62           44         MP3B         Z         -10.304         .62           44         MP3B         X         -5.949         .62           45         MP3B         X         -5.949         .62           44         MP3B         Z         -10.304         .62           45         MP3B         X         .5.949         .55           46         MP3B         X         -5.949         2.55           47         MP3B         Z         -10.304         2.55           48         MP3B         My         006         2.55	
37         MP3A         X         -5.949         .62           38         MP3A         Z         -10.304         .62           39         MP3A         Mx         .006         .62           40         MP3A         X         -5.949         .55           41         MP3A         Z         -10.304         .62           42         MP3A         Z         -10.304         2.55           43         MP3B         X         -5.949         .62           44         MP3B         Z         -10.304         .62           45         MP3B         X         -5.949         .62           45         MP3B         X         -5.949         .62           45         MP3B         Z         -10.304         .62           45         MP3B         X         .006         .62           46         MP3B         X         -5.949         2.55           47         MP3B         Z         -10.304         2.55           48         MP3B         Mx         .006         2.55	
38         MP3A         Z         -10.304         .62           39         MP3A         Mx         .006         .62           40         MP3A         X         -5.949         2.55           41         MP3A         Z         -10.304         2.55           42         MP3A         Mx         .006         2.55           43         MP3B         X         -5.949         .62           44         MP3B         Z         -10.304         .62           45         MP3B         X         -5.949         .62           45         MP3B         X         .006         .62           45         MP3B         Z         .10.304         .62           46         MP3B         X         .5.949         2.55           47         MP3B         Z         .10.304         2.55           48         MP3B         Mx         .006         .2.55	
39         MP3A         Mx         .006         .62           40         MP3A         X         -5.949         2.55           41         MP3A         Z         -10.304         2.55           42         MP3A         Mx         .006         2.55           43         MP3B         X         -5.949         .62           44         MP3B         Z         -10.304         .62           45         MP3B         Mx         .006         .62           46         MP3B         X         -5.949         .62           47         MP3B         Z         -10.304         .62           48         MP3B         X         -5.949         2.55	
40         MP3A         X         -5.949         2.55           41         MP3A         Z         -10.304         2.55           42         MP3A         Mx         .006         2.55           43         MP3B         X         -5.949         .62           44         MP3B         Z         -10.304         .62           45         MP3B         Mx         .006         .62           46         MP3B         X         -5.949         .62           47         MP3B         Z         -10.304         .62           48         MP3B         Mx         .006         .62	
41         MP3A         Z         -10.304         2.55           42         MP3A         Mx         .006         2.55           43         MP3B         X         -5.949         .62           44         MP3B         Z         -10.304         .62           45         MP3B         Mx         .006         .62           46         MP3B         X         -5.949         .62           47         MP3B         Z         -10.304         .62           48         MP3B         Mx         .006         2.55	
42         MP3A         Mx         .006         2.55           43         MP3B         X         -5.949         .62           44         MP3B         Z         -10.304         .62           45         MP3B         Mx         .006         .62           46         MP3B         X         -5.949         .62           47         MP3B         Z         -10.304         .62           48         MP3B         Z         -10.304         .2.55	
43         MP3B         X         -5.949         .62           44         MP3B         Z         -10.304         .62           45         MP3B         Mx         .006         .62           46         MP3B         X         -5.949         2.55           47         MP3B         Z         -10.304         2.55           48         MP3B         Mx         006         2.55	
44         MP3B         Z         -10.304         .62           45         MP3B         Mx         .006         .62           46         MP3B         X         -5.949         2.55           47         MP3B         Z         -10.304         2.55           48         MP3B         Mx         006         2.55	
45         MP3B         Mx         .006         .62           46         MP3B         X         -5.949         2.55           47         MP3B         Z         -10.304         2.55           48         MP3B         Mx         006         2.55	
46         MP3B         X         -5.949         2.55           47         MP3B         Z         -10.304         2.55           48         MP3B         Mx         006         2.55	
47         MP3B         Z         -10.304         2.55           48         MP3B         Mx         006         2.55	
48 MP3B My 006 2.55	
49 MP3C X -3.072 .62	
50 MP3C Z -5.321 .62	
51 MP3C Mx006 .62	
52 MP3C X -3.072 2.55	
53 MP3C Z -5.321 2.55	
54 MP3C Mx006 2.55	
55 MP4A X -2.683 3.25	
56 MP4A Z -4.647 3.25	
57 MP4A Mx002 3.25	
58 MP4A X -2.683 3.25	
59 MP4A Z -4.647 3.25	
60 MP4A Mx002 3.25	
61 MP4B X -2.683 3.25	
62 MP4B Z -4.647 3.25	
63 MP4B Mx002 3.25	
64 MP4B X -2.683 3.25	
65 MP4B Z -4.647 3.25	
66 MP4B Mx002 3.25	
67 MP4C X -2.044 3.25	
68 MP4C Z -3.541 3.25	
69 MP4C Mx .003 3.25	
70 MP4C X -2.044 3.25	
71 MP4C Z -3.541 3.25	
72 MP4C Mx .003 3.25	
73 MP3A X -2.643 3.25	
74 MP3A Z -4.577 3.25	
75 MP3A Mx002 3.25	
76 MP3A X -2.643 3.25	
77 MP3A Z -4.577 3.25	



## Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
78	MP3A	Mx	002	3.25
79	MP3B	X	-2.643	3.25
80	MP3B	Z	-4.577	3.25
81	MP3B	Mx	002	3.25
82	MP3B	Х	-2.643	3.25
83	MP3B	Z	-4.577	3.25
84	MP3B	Mx	002	3.25
85	MP3C	Х	-1.889	3.25
86	MP3C	Z	-3.272	3.25
87	MP3C	Mx	.002	3.25
88	MP3C	Х	-1.889	3.25
89	MP3C	Z	-3.272	3.25
90	MP3C	Mx	.002	3.25
91	MP1A	Х	-11.51	.17
92	MP1A	Z	-19.935	.17
93	MP1A	Mx	.012	.17
94	MP1A	X	-11.51	5.83
95	MP1A	Z	-19.935	5.83
96	MP1A	Mx	.012	5.83
97	MP1B	Х	-11.51	.17
98	MP1B	Z	-19.935	.17
99	MP1B	Mx	.012	.17
100	MP1B	X	-11.51	5.83
101	MP1B	Z	-19.935	5.83
102	MP1B	Mx	.012	5.83
103	MP1C	X	-9.864	.17
104	MP1C	Z	-17.084	.17
105	MP1C	Mx	02	.17
106	MP1C	X	-9.864	5.83
107	MP1C	Z	-17.084	5.83
108	MP1C	Mx	02	5.83

# Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	0	.68
2	MP5A	Z	-9.337	.68
3	MP5A	Mx	008	.68
4	MP5A	Х	0	6.16
5	MP5A	Z	-9.337	6.16
6	MP5A	Mx	008	6.16
7	MP5B	Х	0	.68
8	MP5B	Z	-7.541	.68
9	MP5B	Mx	.01	.68
10	MP5B	Х	0	6.16
11	MP5B	Z	-7.541	6.16
12	MP5B	Mx	.01	6.16
13	MP5C	Х	0	.68
14	MP5C	Z	-7.222	.68
15	MP5C	Mx	005	.68
16	MP5C	Х	0	6.16
17	MP5C	Z	-7.222	6.16
18	MP5C	Mx	005	6.16
19	MP5A	Х	0	.68
20	MP5A	Z	-9.337	.68
21	MP5A	Mx	.008	.68
22	MP5A	X	0	6.16



# Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]	
23	MP5A	Z	-9.337	6.16	
24	MP5A	Mx	.008	6.16	
25	MP5B	X	0	.68	
26	MP5B	Z	-7.541	.68	
27	MP5B	Mx	.003	.68	
28	MP5B	X	0	6.16	
29	MP5B	Z	-7.541	6.16	
30	MP5B	Mx	.003	6.16	
31	MP5C	X	0	.68	
32	MP5C	Z	-7.222	.68	
33	MP5C	Mx	009	.68	
34	MP5C	Х	0	6.16	
35	MP5C	Z	-7.222	6.16	
36	MP5C	Mx	009	6.16	
37	MP3A	X	0	.62	
38	MP3A	Z	-4.446	.62	
39	MP3A	Mx	0	.62	
40	MP3A	Х	0	2.55	
41	MP3A	Z	-4.446	2.55	
42	MP3A	Mx	0	2.55	
43	MP3B	X	0	.62	
44	MP3B	Z	-2.417	.62	
45	MP3B	Mx	.002	.62	
46	MP3B	X	0	2.55	
47	MP3B	Z	-2.417	2.55	
48	MP3B	Mx	.002	2.55	
49	MP3C	Х	0	.62	
50	MP3C	Z	-2.057	.62	
51	MP3C	Mx	002	.62	
52	MP3C	Х	0	2.55	
53	MP3C	Z	-2.057	2.55	
54	MP3C	Mx	002	2.55	
55	MP4A	Х	0	3.25	
56	MP4A	Z	-1.759	3.25	
57	MP4A	Mx	0	3.25	
58	MP4A	Х	0	3.25	
59	MP4A	Z	-1.759	3.25	
60	MP4A	Mx	0	3.25	
61	MP4B	X	0	3.25	
62	MP4B	Z	-1.321	3.25	
63	MP4B	Mx	000763	3.25	
64	MP4B	X	0	3.25	
65	MP4B	Z	-1.321	3.25	
66	MP4B	Mx	000763	3.25	
67	MP4C	X	0	3.25	
68	MP4C	Z	-1.244	3.25	
69	MP4C	Mx	.000779	3.25	
70	MP4C	X	0	3.25	
71	MP4C	Z	-1.244	3.25	
72	MP4C	Mx	.000779	3.25	
73	MP3A	X	0	3.25	
74	MP3A	7	-1,759	3.25	
75	MP3A	Mx	0	3.25	
76	MP3A	X	Ő	3.25	
77	MP3A	7	_1 759	3.25	
78	MP3A	Mx	0	3.25	
79	MP3B	X	0	3.25	
				0.20	
RISA-3D Version 17.0.4 [C:\\\\\\\\\Model Files\467920-VZW_MT_LO_H.r3d] Page 62					



# Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
80	MP3B	Z	-1.242	3.25
81	MP3B	Mx	000717	3.25
82	MP3B	Х	0	3.25
83	MP3B	Z	-1.242	3.25
84	MP3B	Mx	000717	3.25
85	MP3C	X	0	3.25
86	MP3C	Z	-1.15	3.25
87	MP3C	Mx	.00072	3.25
88	MP3C	Х	0	3.25
89	MP3C	Z	-1.15	3.25
90	MP3C	Mx	.00072	3.25
91	MP1A	X	0	.17
92	MP1A	Z	-7.757	.17
93	MP1A	Mx	0	.17
94	MP1A	Х	0	5.83
95	MP1A	Z	-7.757	5.83
96	MP1A	Mx	0	5.83
97	MP1B	X	0	.17
98	MP1B	Z	-6.618	.17
99	MP1B	Mx	.006	.17
100	MP1B	X	0	5.83
101	MP1B	Z	-6.618	5.83
102	MP1B	Mx	.006	5.83
103	MP1C	X	0	.17
104	MP1C	Z	-6.618	.17
105	MP1C	Mx	006	.17
106	MP1C	X	0	5.83
107	MP1C	Z	-6.618	5.83
108	MP1C	Mx	006	5.83

# Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	4.369	.68
2	MP5A	Z	-7.568	.68
3	MP5A	Mx	011	.68
4	MP5A	Х	4.369	6.16
5	MP5A	Z	-7.568	6.16
6	MP5A	Mx	011	6.16
7	MP5B	Х	3.471	.68
8	MP5B	Z	-6.012	.68
9	MP5B	Mx	.007	.68
10	MP5B	Х	3.471	6.16
11	MP5B	Z	-6.012	6.16
12	MP5B	Mx	.007	6.16
13	MP5C	Х	4.174	.68
14	MP5C	Z	-7.229	.68
15	MP5C	Mx	-3.6e-5	.68
16	MP5C	Х	4.174	6.16
17	MP5C	Z	-7.229	6.16
18	MP5C	Mx	-3.6e-5	6.16
19	MP5A	X	4.369	.68
20	MP5A	Z	-7.568	.68
21	MP5A	Mx	.002	.68
22	MP5A	Х	4.369	6.16
23	MP5A	Z	-7.568	6.16
24	MP5A	Mx	.002	6.16



# Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
25	MP5B	X	3.471	.68
26	MP5B	Z	-6.012	.68
27	MP5B	Mx	.007	.68
28	MP5B	X	3.471	6.16
29	MP5B	Z	-6.012	6.16
30	MP5B	Mx	.007	6.16
31	MP5C	Х	4.174	.68
32	MP5C	Z	-7.229	.68
33	MP5C	Mx	011	.68
34	MP5C	Х	4,174	6.16
35	MP5C	Z	-7.229	6.16
36	MP5C	Mx	011	6.16
37	MP3A	X	1.885	.62
38	MP3A	7	-3 265	62
39	MP3A	Mx	- 002	62
40	MP3A	X	1.885	2.55
41	MP3A	7	-3 265	2.55
42	MP3A	My	- 002	2.55
43	MP3R	X	87	62
44	MP3R	7	-1 508	62
44	MP3B		002	62
45	MP3B	Y	.002	2 55
40	MP3B	7	1 508	2.55
47	MP3B	My	-1.000	2.55
40	MP3C		1.664	62
49 50	MP3C	7	2,992	.02
50	MP3C	Z My	-2.002	.02
52	MP2C		002	.02
52		∧ 7	1.004	2.00
55	MP3C		-2.002	2.00
54			002	2.00
50		∧ 7	.000	3.20
57			-1.397	3.25
57			.000537	3.25
50		∧ 	.000	3.25
59			-1.397	3.25
60			.000537	3.25
61	MP4B	× 7	.000	3.25
62	MP4B		-1.018	3.25
63	MP4B	IVIX	000784	3.25
65		Χ 7	.568	3.25
60	IVIE4B		-1.018	3.20
00	MP4B	IVIX	000784	3.25
0/	MP4C	X 7	./ 59	3.25
68	MP4C	2	-1.314	3.25
69	MP4C	IVIX	.00065	3.25
70	MP4C	X	./59	3.25
/1	MP4C	<u> </u>	-1.314	3.25
72	MP4C	Mx	.00065	3.25
73	MP3A	X	./93	3.25
74	MP3A		-1.374	3.25
75	MP3A	MX	.000529	3.25
76	MP3A	X	./93	3.25
11	MP3A	<u> </u>	-1.374	3.25
78	MP3A	MIX	.000529	3.25
79	MP3B	X	.535	3.25
80	MP3B		926	3.25
δΊ	INIP3B	IVIX	000713	3.25



# Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
82	MP3B	Х	.535	3.25
83	MP3B	Z	926	3.25
84	MP3B	Mx	000713	3.25
85	MP3C	Х	.737	3.25
86	MP3C	Z	-1.277	3.25
87	MP3C	Mx	.000632	3.25
88	MP3C	Х	.737	3.25
89	MP3C	Z	-1.277	3.25
90	MP3C	Mx	.000632	3.25
91	MP1A	Х	3.689	.17
92	MP1A	Z	-6.389	.17
93	MP1A	Mx	004	.17
94	MP1A	Х	3.689	5.83
95	MP1A	Z	-6.389	5.83
96	MP1A	Mx	004	5.83
97	MP1B	Х	3.119	.17
98	MP1B	Z	-5.402	.17
99	MP1B	Mx	.006	.17
100	MP1B	X	3.119	5.83
101	MP1B	Z	-5.402	5.83
102	MP1B	Mx	.006	5.83
103	MP1C	Х	3.689	.17
104	MP1C	Z	-6.389	.17
105	MP1C	Mx	004	.17
106	MP1C	Х	3.689	5.83
107	MP1C	Z	-6.389	5.83
108	MP1C	Mx	004	5.83

### Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	6.53	.68
2	MP5A	Z	-3.77	.68
3	MP5A	Mx	01	.68
4	MP5A	Х	6.53	6.16
5	MP5A	Z	-3.77	6.16
6	MP5A	Mx	01	6.16
7	MP5B	Х	6.53	.68
8	MP5B	Z	-3.77	.68
9	MP5B	Mx	.003	.68
10	MP5B	Х	6.53	6.16
11	MP5B	Z	-3.77	6.16
12	MP5B	Mx	.003	6.16
13	MP5C	Х	8.024	.68
14	MP5C	Z	-4.632	.68
15	MP5C	Mx	.006	.68
16	MP5C	Х	8.024	6.16
17	MP5C	Z	-4.632	6.16
18	MP5C	Mx	.006	6.16
19	MP5A	X	6.53	.68
20	MP5A	Z	-3.77	.68
21	MP5A	Mx	003	.68
22	MP5A	X	6.53	6.16
23	MP5A	Z	-3.77	6.16
24	MP5A	Mx	003	6.16
25	MP5B	X	6.53	.68
26	MP5B	Z	-3.77	.68



# Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
27	MP5B	Mx	.01	.68
28	MP5B	X	6.53	6.16
29	MP5B	Z	-3.77	6.16
30	MP5B	Mx	.01	6.16
31	MP5C	Х	8.024	.68
32	MP5C	Z	-4.632	.68
33	MP5C	Mx	009	.68
34	MP5C	X	8.024	6.16
35	MP5C	Z	-4.632	6.16
36	MP5C	Mx	009	6.16
37	MP3A	X	2.093	.62
38	MP3A	Z	-1.209	.62
39	MP3A	Mx	002	.62
40	MP3A	X	2.093	2.55
41	MP3A	Z	-1.209	2.55
42	MP3A	Mx	002	2.55
43	MP3B	X	2.093	.62
44	MP3B	Z	-1.209	.62
45	MP3B	Mx	.002	.62
46	MP3B	X	2.093	2.55
47	MP3B	Z	-1.209	2.55
48	MP3B	Mx	.002	2.55
49	MP3C	X	3.78	.62
50	MP3C	Z	-2.182	.62
51	MP3C	Mx	000758	.62
52	MP3C	X	3.78	2.55
53	MP3C	Z	-2.182	2.55
54	MP3C	Mx	000758	2.55
55	MP4A	X	1.144	3.25
56	MP4A	Z	661	3.25
57	MP4A	Mx	.000763	3.25
58	MP4A	X	1.144	3.25
59	MP4A	Z	661	3.25
60	MP4A	Mx	.000763	3.25
61	MP4B	Х	1.144	3.25
62	MP4B	Z	661	3.25
63	MP4B	Mx	000763	3.25
64	MP4B	Х	1.144	3.25
65	MP4B	Z	661	3.25
66	MP4B	Mx	000763	3.25
67	MP4C	Х	1.508	3.25
68	MP4C	Z	871	3.25
69	MP4C	Mx	.000202	3.25
70	MP4C	X	1.508	3.25
71	MP4C	Z	871	3.25
72	MP4C	Mx	.000202	3.25
73	MP3A	Х	1.076	3.25
74	MP3A	Z	621	3.25
75	MP3A	Mx	.000717	3.25
76	MP3A	X	1.076	3.25
77	MP3A	Z	621	3.25
78	MP3A	Mx	.000717	3.25
79	MP3B	X	1.076	3.25
80	MP3B	Z	621	3.25
81	MP3B	Mx	000717	3.25
82	MP3B	X	1.076	3.25
83	MP3B	Z	621	3.25



# Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
84	MP3B	Mx	000717	3.25
85	MP3C	X	1.505	3.25
86	MP3C	Z	869	3.25
87	MP3C	Mx	.000201	3.25
88	MP3C	Х	1.505	3.25
89	MP3C	Z	869	3.25
90	MP3C	Mx	.000201	3.25
91	MP1A	X	5.731	.17
92	MP1A	Z	-3.309	.17
93	MP1A	Mx	006	.17
94	MP1A	Х	5.731	5.83
95	MP1A	Z	-3.309	5.83
96	MP1A	Mx	006	5.83
97	MP1B	Х	5.731	.17
98	MP1B	Z	-3.309	.17
99	MP1B	Mx	.006	.17
100	MP1B	Х	5.731	5.83
101	MP1B	Z	-3.309	5.83
102	MP1B	Mx	.006	5.83
103	MP1C	Х	6.718	.17
104	MP1C	Z	-3.879	.17
105	MP1C	Mx	0	.17
106	MP1C	Х	6.718	5.83
107	MP1C	Z	-3.879	5.83
108	MP1C	Mx	0	5.83

# Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	6.942	.68
2	MP5A	Z	0	.68
3	MP5A	Mx	007	.68
4	MP5A	X	6.942	6.16
5	MP5A	Z	0	6.16
6	MP5A	Mx	007	6.16
7	MP5B	Х	8.738	.68
8	MP5B	Z	0	.68
9	MP5B	Mx	002	.68
10	MP5B	Х	8.738	6.16
11	MP5B	Z	0	6.16
12	MP5B	Mx	002	6.16
13	MP5C	X	9.057	.68
14	MP5C	Z	0	.68
15	MP5C	Mx	.01	.68
16	MP5C	X	9.057	6.16
17	MP5C	Z	0	6.16
18	MP5C	Mx	.01	6.16
19	MP5A	X	6.942	.68
20	MP5A	Z	0	.68
21	MP5A	Mx	007	.68
22	MP5A	X	6.942	6.16
23	MP5A	Z	0	6.16
24	MP5A	Mx	007	6.16
25	MP5B	X	8.738	.68
26	MP5B	Z	0	.68
27	MP5B	Mx	.011	.68
28	MP5B	X	8.738	6.16



# Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP5B	Z	0	6.16
30	MP5B	Mx	.011	6.16
31	MP5C	X	9.057	.68
32	MP5C	Z	0	.68
33	MP5C	Mx	004	.68
34	MP5C	X	9.057	6.16
35	MP5C	Z	0	6.16
36	MP5C	Mx	004	6.16
37	MP3A	X	1.741	.62
38	MP3A	Z	0	.62
39	MP3A	Mx	002	.62
40	MP3A	X	1.741	2.55
41	MP3A	Z	0	2.55
42	MP3A	Mx	002	2.55
43	MP3B	X	3.77	.62
44	MP3B	Z	0	.62
45	MP3B	Mx	.002	.62
46	MP3B	Х	3.77	2.55
47	MP3B	Z	0	2.55
48	MP3B	Mx	.002	2.55
49	MP3C	Х	4.13	.62
50	MP3C	Z	0	.62
51	MP3C	Mx	.001	.62
52	MP3C	X	4.13	2.55
53	MP3C	Z	0	2.55
54	MP3C	Mx	.001	2.55
55	MP4A	X	1,176	3.25
56	MP4A	7	0	3.25
57	MP4A	Mx	.000784	3.25
58	MP4A	X	1 176	3.25
59	MP4A	7	0	3.25
60	MP4A	Mx	000784	3 25
61	MP4B	X	1 613	3.25
62	MP4B	7	0	3.25
63	MP4B	Mx	- 000538	3 25
64	MP4B	X	1 613	3.25
65	MP4B	7	0	3.25
66	MP4B	My	- 000538	3 25
67	MP4C	X	1 69	3.25
68	MP4C	7	0	3.25
69	MP4C	My	- 000385	3.25
70	MP4C	X	1 69	3.25
71	MP4C	7	0	3.25
72	MP4C	My	- 000385	3.25
73	MP30	X	1 07	3.25
74	MP3A	7	0	3.25
75	MP3A	My	000713	3.25
76	MD3A		1.07	3.25
70	MD3A	7	0	3.25
78	MD3A		000713	3.25
70	MP3R	Y	1 586	3.25
80	MD3D	7	0	3.25
Q1	MD2D		000520	3.20
01	MD2D		1 596	3.20
02		7	1.500	0.20
03	IVIE3B		000520	0.20
04	IVIP3B	IVIX	000529	3.25
85	IVIP3C	X	1.078	3.25



# Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
86	MP3C	Z	0	3.25
87	MP3C	Mx	000383	3.25
88	MP3C	X	1.678	3.25
89	MP3C	Z	0	3.25
90	MP3C	Mx	000383	3.25
91	MP1A	X	6.238	.17
92	MP1A	Z	0	.17
93	MP1A	Mx	006	.17
94	MP1A	X	6.238	5.83
95	MP1A	Z	0	5.83
96	MP1A	Mx	006	5.83
97	MP1B	X	7.377	.17
98	MP1B	Z	0	.17
99	MP1B	Mx	.004	.17
100	MP1B	Х	7.377	5.83
101	MP1B	Z	0	5.83
102	MP1B	Mx	.004	5.83
103	MP1C	X	7.377	.17
104	MP1C	Z	0	.17
105	MP1C	Mx	.004	.17
106	MP1C	X	7.377	5.83
107	MP1C	Z	0	5.83
108	MP1C	Mx	.004	5.83

# Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	6.53	.68
2	MP5A	Z	3.77	.68
3	MP5A	Mx	003	.68
4	MP5A	Х	6.53	6.16
5	MP5A	Z	3.77	6.16
6	MP5A	Mx	003	6.16
7	MP5B	Х	8.086	.68
8	MP5B	Z	4.669	.68
9	MP5B	Mx	008	.68
10	MP5B	Х	8.086	6.16
11	MP5B	Z	4.669	6.16
12	MP5B	Mx	008	6.16
13	MP5C	Х	6.869	.68
14	MP5C	Z	3.966	.68
15	MP5C	Mx	.01	.68
16	MP5C	X	6.869	6.16
17	MP5C	Z	3.966	6.16
18	MP5C	Mx	.01	6.16
19	MP5A	Х	6.53	.68
20	MP5A	Z	3.77	.68
21	MP5A	Mx	01	.68
22	MP5A	X	6.53	6.16
23	MP5A	Z	3.77	6.16
24	MP5A	Mx	01	6.16
25	MP5B	X	8.086	.68
26	MP5B	Z	4.669	.68
27	MP5B	Mx	.008	.68
28	MP5B	Х	8.086	6.16
29	MP5B	Z	4.669	6.16
30	MP5B	Mx	.008	6.16



# Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
31	MP5C	X	6.869	.68
32	MP5C	Z	3.966	.68
33	MP5C	Mx	.002	.68
34	MP5C	X	6.869	6.16
35	MP5C	Z	3.966	6.16
36	MP5C	Mx	.002	6.16
37	MP3A	X	2.093	.62
38	MP3A	Z	1.209	.62
39	MP3A	Mx	002	.62
40	MP3A	X	2.093	2.55
41	MP3A	Z	1.209	2.55
42	MP3A	Mx	002	2.55
43	MP3B	X	3.851	.62
44	MP3B	Z	2.223	.62
45	MP3B	Mx	0	.62
46	MP3B	X	3.851	2.55
47	MP3B	Z	2.223	2.55
48	MP3B	Mx	0	2.55
49	MP3C	Х	2.476	.62
50	MP3C	Z	1.429	.62
51	MP3C	Mx	.002	.62
52	MP3C	Х	2.476	2.55
53	MP3C	Z	1.429	2.55
54	MP3C	Mx	.002	2.55
55	MP4A	Х	1.144	3.25
56	MP4A	Z	.661	3.25
57	MP4A	Mx	.000763	3.25
58	MP4A	Х	1.144	3.25
59	MP4A	Z	.661	3.25
60	MP4A	Mx	.000763	3.25
61	MP4B	Х	1.523	3.25
62	MP4B	Z	.879	3.25
63	MP4B	Mx	0	3.25
64	MP4B	Х	1.523	3.25
65	MP4B	Z	.879	3.25
66	MP4B	Mx	0	3.25
67	MP4C	Х	1.227	3.25
68	MP4C	Z	.708	3.25
69	MP4C	Mx	000723	3.25
70	MP4C	X	1.227	3.25
71	MP4C	Z	.708	3.25
72	MP4C	Mx	000723	3.25
73	MP3A	X	1.076	3.25
74	MP3A	Z	.621	3.25
75	MP3A	Mx	.000717	3.25
76	MP3A	X	1.076	3.25
77	MP3A	Z	.621	3.25
78	MP3A	Mx	.000717	3.25
79	MP3B	X	1.523	3.25
80	MP3B	Z	.879	3.25
81	MP3B	Mx	0	3.25
82	MP3B	X	1.523	3.25
83	MP3B	Z	.879	3.25
84	MP3B	Mx	0	3.25
85	MP3C	X	1.173	3.25
86	MP3C	Z	.677	3.25
87	MP3C	Mx	000692	3.25



## Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
88	MP3C	Х	1.173	3.25
89	MP3C	Z	.677	3.25
90	MP3C	Mx	000692	3.25
91	MP1A	Х	5.731	.17
92	MP1A	Z	3.309	.17
93	MP1A	Mx	006	.17
94	MP1A	X	5.731	5.83
95	MP1A	Z	3.309	5.83
96	MP1A	Mx	006	5.83
97	MP1B	Х	6.718	.17
98	MP1B	Z	3.879	.17
99	MP1B	Mx	0	.17
100	MP1B	Х	6.718	5.83
101	MP1B	Z	3.879	5.83
102	MP1B	Mx	0	5.83
103	MP1C	X	5.731	.17
104	MP1C	Z	3.309	.17
105	MP1C	Mx	.006	.17
106	MP1C	Х	5.731	5.83
107	MP1C	Z	3.309	5.83
108	MP1C	Mx	.006	5.83

# Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	4.369	.68
2	MP5A	Z	7.568	.68
3	MP5A	Mx	.002	.68
4	MP5A	X	4.369	6.16
5	MP5A	Z	7.568	6.16
6	MP5A	Mx	.002	6.16
7	MP5B	Х	4.369	.68
8	MP5B	Z	7.568	.68
9	MP5B	Mx	011	.68
10	MP5B	Х	4.369	6.16
11	MP5B	Z	7.568	6.16
12	MP5B	Mx	011	6.16
13	MP5C	Х	3.507	.68
14	MP5C	Z	6.074	.68
15	MP5C	Mx	.008	.68
16	MP5C	X	3.507	6.16
17	MP5C	Z	6.074	6.16
18	MP5C	Mx	.008	6.16
19	MP5A	Х	4.369	.68
20	MP5A	Z	7.568	.68
21	MP5A	Mx	011	.68
22	MP5A	Х	4.369	6.16
23	MP5A	Z	7.568	6.16
24	MP5A	Mx	011	6.16
25	MP5B	Х	4.369	.68
26	MP5B	Z	7.568	.68
27	MP5B	Mx	.002	.68
28	MP5B	X	4.369	6.16
29	MP5B	Z	7.568	6.16
30	MP5B	Mx	.002	6.16
31	MP5C	X	3.507	.68
32	MP5C	Z	6.074	.68



# Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
33	MP5C	Mx	.006	.68
34	MP5C	X	3.507	6.16
35	MP5C	Z	6.074	6.16
36	MP5C	Mx	.006	6.16
37	MP3A	X	1.885	.62
38	MP3A	Z	3.265	.62
39	MP3A	Mx	002	.62
40	MP3A	X	1.885	2.55
41	MP3A	Z	3.265	2.55
42	MP3A	Mx	002	2.55
43	MP3B	Х	1.885	.62
44	MP3B	Z	3.265	.62
45	MP3B	Mx	002	.62
46	MP3B	Х	1.885	2.55
47	MP3B	Z	3.265	2.55
48	MP3B	Mx	002	2.55
49	MP3C	X	.911	.62
50	MP3C	Z	1.578	.62
51	MP3C	Mx	.002	.62
52	MP3C	X	.911	2.55
53	MP3C	7	1.578	2.55
54	MP3C	Mx	002	2.55
55	MP4A	X	806	3.25
56	MP4A	7	1,397	3.25
57	MP4A	Mx	000537	3.25
58	MP4A	X	806	3 25
59	MP4A	7	1 397	3.25
60	MP4A	My	000537	3.25
61	MP4R	X	806	3.25
62	MD4B	7	1 307	3.25
63	MD4B	My	000538	3.25
64	MD4R	Y	806	3.25
65	MD4B	7	1 307	3.25
66	MD4P	My	000538	3.25
67	MP40		507	3.25
68	MP4C	7	1 033	3.25
60	MP4C		000782	3.25
70	MD4C		000765	3.25
70	MD4C	∧ 7	1.022	3.25
71	MD4C		1.035	3.25
72			000763	3.20
73	MD2A	∧ 7	.190	0.20
74	MD2A		1.374	0.20
10	MD2A		.000529	0.20
70	IVIP 3A		./93	3.20
70	IVIP3A		1.374	3.25
18	MP3A	IVIX	.000529	3.25
79	MP3B	X	./93	3.25
80	MP3B	2	1.3/4	3.25
81	MP3B	MX	.000529	3.25
82	MP3B	X	./93	3.25
83	MP3B		1.3/4	3.25
84	MP3B	Mx	.000529	3.25
85	MP3C	X	.545	3.25
86	MP3C	Z	.944	3.25
87	MP3C	Mx	000716	3.25
88	MP3C	X	.545	3.25
89	MP3C		.944	3.25



## Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
90	MP3C	Mx	000716	3.25
91	MP1A	Х	3.689	.17
92	MP1A	Z	6.389	.17
93	MP1A	Mx	004	.17
94	MP1A	Х	3.689	5.83
95	MP1A	Z	6.389	5.83
96	MP1A	Mx	004	5.83
97	MP1B	Х	3.689	.17
98	MP1B	Z	6.389	.17
99	MP1B	Mx	004	.17
100	MP1B	Х	3.689	5.83
101	MP1B	Z	6.389	5.83
102	MP1B	Mx	004	5.83
103	MP1C	Х	3.119	.17
104	MP1C	Z	5.402	.17
105	MP1C	Mx	.006	.17
106	MP1C	Х	3.119	5.83
107	MP1C	Z	5.402	5.83
108	MP1C	Mx	.006	5.83

# Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	0	.68
2	MP5A	Z	9.337	.68
3	MP5A	Mx	.008	.68
4	MP5A	Х	0	6.16
5	MP5A	Z	9.337	6.16
6	MP5A	Mx	.008	6.16
7	MP5B	Х	0	.68
8	MP5B	Z	7.541	.68
9	MP5B	Mx	01	.68
10	MP5B	X	0	6.16
11	MP5B	Z	7.541	6.16
12	MP5B	Mx	01	6.16
13	MP5C	X	0	.68
14	MP5C	Z	7.222	.68
15	MP5C	Mx	.005	.68
16	MP5C	X	0	6.16
17	MP5C	Z	7.222	6.16
18	MP5C	Mx	.005	6.16
19	MP5A	X	0	.68
20	MP5A	Z	9.337	.68
21	MP5A	Mx	008	.68
22	MP5A	X	0	6.16
23	MP5A	Z	9.337	6.16
24	MP5A	Mx	008	6.16
25	MP5B	X	0	.68
26	MP5B	Z	7.541	.68
27	MP5B	Mx	003	.68
28	MP5B	X	0	6.16
29	MP5B	Z	7.541	6.16
30	MP5B	Mx	003	6.16
31	MP5C	X	0	.68
32	MP5C	Z	7.222	.68
33	MP5C	Mx	.009	.68
34	MP5C	X	0	6.16


## Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP5C	Z	7.222	6.16
36	MP5C	Mx	.009	6.16
37	MP3A	X	0	.62
38	MP3A	Z	4.446	.62
39	MP3A	Mx	0	.62
40	MP3A	X	0	2.55
41	MP3A	Z	4.446	2.55
42	MP3A	Mx	0	2.55
43	MP3B	X	0	.62
44	MP3B	Z	2.417	.62
45	MP3B	Mx	002	.62
46	MP3B	X	0	2.55
47	MP3B	Z	2.417	2.55
48	MP3B	Mx	002	2.55
49	MP3C	X	0	.62
50	MP3C	Z	2.057	.62
51	MP3C	Mx	.002	.62
52	MP3C	Х	0	2.55
53	MP3C	Z	2.057	2.55
54	MP3C	Mx	.002	2.55
55	MP4A	Х	0	3.25
56	MP4A	Z	1.759	3.25
57	MP4A	Mx	0	3.25
58	MP4A	Х	0	3.25
59	MP4A	Z	1.759	3.25
60	MP4A	Mx	0	3.25
61	MP4B	X	0	3.25
62	MP4B	7	1.321	3.25
63	MP4B	Mx	.000763	3.25
64	MP4B	X	0	3.25
65	MP4B	7	1.321	3.25
66	MP4B	Mx	000763	3 25
67	MP4C	X	0	3.25
68	MP4C	7	1 244	3.25
69	MP4C	Mx	- 000779	3 25
70	MP4C	X	0	3 25
71	MP4C	7	1 244	3 25
72	MP4C	Mx	- 000779	3.25
73	MP3A	X	0	3.25
74	MP3A	7	1 759	3 25
75	MP3A	Mx	0	3.25
76	MP3A	X	0	3.25
77	MP3A	7	1 759	3.25
78	MP3A	Mx	0	3.25
79	MP3B	X	0	3.25
80	MP3R	7	1 242	3.25
81	MP3R	My	000717	3.25
82	MP3D	VIA V	.000717	3.25
83	MP3B	7	1 242	3.25
84	MP3R	My	000717	3.25
85	MP3D	Y	0	3.25
86	MP3C	7	1 15	3.25
27	MP3C		00072	3.20
07	MP30		00072	3.20
00	MD2C	7	1 15	3.20
09	MD2C		00072	3.20
90			00072	17
91		Λ	U	.1/



### Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
92	MP1A	Z	7.757	.17
93	MP1A	Mx	0	.17
94	MP1A	X	0	5.83
95	MP1A	Z	7.757	5.83
96	MP1A	Mx	0	5.83
97	MP1B	X	0	.17
98	MP1B	Z	6.618	.17
99	MP1B	Mx	006	.17
100	MP1B	Х	0	5.83
101	MP1B	Z	6.618	5.83
102	MP1B	Mx	006	5.83
103	MP1C	X	0	.17
104	MP1C	Z	6.618	.17
105	MP1C	Mx	.006	.17
106	MP1C	Х	0	5.83
107	MP1C	Z	6.618	5.83
108	MP1C	Mx	.006	5.83

# Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	-4.369	.68
2	MP5A	Z	7.568	.68
3	MP5A	Mx	.011	.68
4	MP5A	Х	-4.369	6.16
5	MP5A	Z	7.568	6.16
6	MP5A	Mx	.011	6.16
7	MP5B	Х	-3.471	.68
8	MP5B	Z	6.012	.68
9	MP5B	Mx	007	.68
10	MP5B	Х	-3.471	6.16
11	MP5B	Z	6.012	6.16
12	MP5B	Mx	007	6.16
13	MP5C	Х	-4.174	.68
14	MP5C	Z	7.229	.68
15	MP5C	Mx	3.6e-5	.68
16	MP5C	Х	-4.174	6.16
17	MP5C	Z	7.229	6.16
18	MP5C	Mx	3.6e-5	6.16
19	MP5A	Х	-4.369	.68
20	MP5A	Z	7.568	.68
21	MP5A	Mx	002	.68
22	MP5A	Х	-4.369	6.16
23	MP5A	Z	7.568	6.16
24	MP5A	Mx	002	6.16
25	MP5B	Х	-3.471	.68
26	MP5B	Z	6.012	.68
27	MP5B	Mx	007	.68
28	MP5B	Х	-3.471	6.16
29	MP5B	Z	6.012	6.16
30	MP5B	Mx	007	6.16
31	MP5C	Х	-4.174	.68
32	MP5C	Z	7.229	.68
33	MP5C	Mx	.011	.68
34	MP5C	Х	-4.174	6.16
35	MP5C	Z	7.229	6.16
36	MP5C	Mx	.011	6.16



## Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
37	MP3A	X	-1.885	.62
38	MP3A	Z	3.265	.62
39	MP3A	Mx	.002	.62
40	MP3A	X	-1.885	2.55
41	MP3A	Z	3.265	2.55
42	MP3A	Mx	.002	2.55
43	MP3B	X	87	.62
44	MP3B	Z	1.508	.62
45	MP3B	Mx	002	.62
46	MP3B	X	87	2.55
47	MP3B	Z	1.508	2.55
48	MP3B	Mx	002	2.55
49	MP3C	X	-1.664	.62
50	MP3C	Z	2.882	.62
51	MP3C	Mx	.002	.62
52	MP3C	X	-1.664	2.55
53	MP3C	Z	2.882	2.55
54	MP3C	Mx	.002	2.55
55	MP4A	X	806	3.25
56	MP4A	Z	1.397	3.25
57	MP4A	Mx	000537	3.25
58	MP4A	X	806	3.25
59	MP4A	Z	1.397	3.25
60	MP4A	Mx	000537	3.25
61	MP4B	X	588	3.25
62	MP4B	Z	1.018	3.25
63	MP4B	Mx	.000784	3.25
64	MP4B	X	588	3.25
65	MP4B	Z	1.018	3.25
66	MP4B	Mx	.000784	3.25
67	MP4C	X	759	3.25
68	MP4C	Z	1.314	3.25
69	MP4C	Mx	00065	3.25
70	MP4C	X	759	3.25
71	MP4C	Z	1.314	3.25
72	MP4C	Mx	00065	3.25
73	MP3A	X	793	3.25
74	MP3A	Z	1.374	3.25
75	MP3A	Mx	000529	3.25
76	MP3A	X	793	3.25
77	MP3A	Z	1.374	3.25
78	MP3A	Mx	000529	3.25
79	MP3B	X	535	3.25
80	MP3B	Z	.926	3.25
81	MP3B	Mx	.000713	3.25
82	MP3B	X	535	3.25
83	MP3B	Z	.926	3.25
84	MP3B	Mx	.000713	3.25
85	MP3C	X	737	3.25
86	MP3C	Z	1.277	3.25
87	MP3C	Mx	000632	3.25
88	MP3C	X	737	3.25
89	MP3C	Z	1.277	3.25
90	MP3C	Mx	000632	3.25
91	MP1A	X	-3.689	.17
92	MP1A	Z	6.389	.17
93	<u>MP1A</u>	Mx	.004	.17



### Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
94	MP1A	X	-3.689	5.83
95	MP1A	Z	6.389	5.83
96	MP1A	Mx	.004	5.83
97	MP1B	Х	-3.119	.17
98	MP1B	Z	5.402	.17
99	MP1B	Mx	006	.17
100	MP1B	Х	-3.119	5.83
101	MP1B	Z	5.402	5.83
102	MP1B	Mx	006	5.83
103	MP1C	Х	-3.689	.17
104	MP1C	Z	6.389	.17
105	MP1C	Mx	.004	.17
106	MP1C	Х	-3.689	5.83
107	MP1C	Z	6.389	5.83
108	MP1C	Mx	.004	5.83

# Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	-6.53	.68
2	MP5A	Z	3.77	.68
3	MP5A	Mx	.01	.68
4	MP5A	X	-6.53	6.16
5	MP5A	Z	3.77	6.16
6	MP5A	Mx	.01	6.16
7	MP5B	X	-6.53	.68
8	MP5B	Z	3.77	.68
9	MP5B	Mx	003	.68
10	MP5B	Х	-6.53	6.16
11	MP5B	Z	3.77	6.16
12	MP5B	Mx	003	6.16
13	MP5C	Х	-8.024	.68
14	MP5C	Z	4.632	.68
15	MP5C	Mx	006	.68
16	MP5C	X	-8.024	6.16
17	MP5C	Z	4.632	6.16
18	MP5C	Mx	006	6.16
19	MP5A	X	-6.53	.68
20	MP5A	Z	3.77	.68
21	MP5A	Mx	.003	.68
22	MP5A	X	-6.53	6.16
23	MP5A	Z	3.77	6.16
24	MP5A	Mx	.003	6.16
25	MP5B	Х	-6.53	.68
26	MP5B	Z	3.77	.68
27	MP5B	Mx	01	.68
28	MP5B	X	-6.53	6.16
29	MP5B	Z	3.77	6.16
30	MP5B	Mx	01	6.16
31	MP5C	Х	-8.024	.68
32	MP5C	Z	4.632	.68
33	MP5C	Mx	.009	.68
34	MP5C	X	-8.024	6.16
35	MP5C	Z	4.632	6.16
36	MP5C	Mx	.009	6.16
37	MP3A	X	-2.093	.62
38	MP3A	Z	1.209	.62



## Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
39	MP3A	Mx	.002	.62
40	MP3A	X	-2.093	2.55
41	MP3A	Z	1.209	2.55
42	MP3A	Mx	.002	2.55
43	MP3B	X	-2.093	.62
44	MP3B	Z	1.209	.62
45	MP3B	Mx	002	.62
46	MP3B	X	-2.093	2.55
47	MP3B	Z	1.209	2.55
48	MP3B	Mx	002	2.55
49	MP3C	X	-3.78	.62
50	MP3C	Z	2.182	.62
51	MP3C	Mx	.000758	.62
52	MP3C	X	-3.78	2.55
53	MP3C	Z	2.182	2.55
54	MP3C	Mx	.000758	2.55
55	MP4A	Х	-1.144	3.25
56	MP4A	Z	.661	3.25
57	MP4A	Mx	000763	3.25
58	MP4A	X	-1.144	3.25
59	MP4A	Z	.661	3.25
60	MP4A	Mx	000763	3.25
61	MP4B	X	-1.144	3.25
62	MP4B	Z	.661	3.25
63	MP4B	Mx	.000763	3.25
64	MP4B	X	-1.144	3.25
65	MP4B	Z	.661	3.25
66	MP4B	Mx	.000763	3.25
67	MP4C	X	-1.508	3.25
68	MP4C	Z	.871	3.25
69	MP4C	Mx	- 000202	3.25
70	MP4C	X	-1.508	3.25
71	MP4C	Z	.871	3.25
72	MP4C	Mx	- 000202	3.25
73	MP3A	X	-1.076	3.25
74	MP3A	7	.621	3.25
75	MP3A	Mx	000717	3.25
76	MP3A	X	-1.076	3.25
77	MP3A	7	621	3.25
78	MP3A	Mx	- 000717	3.25
79	MP3B	X	-1.076	3.25
80	MP3B	Z	.621	3.25
81	MP3B	Mx	.000717	3.25
82	MP3B	X	-1.076	3.25
83	MP3B	Z	.621	3.25
84	MP3B	Mx	000717	3.25
85	MP3C	X	-1.505	3.25
86	MP3C	7	869	3.25
87	MP3C	Mx	- 000201	3.25
88	MP3C	X	-1.505	3.25
89	MP3C	7	869	3.25
90	MP3C	Mx	- 000201	3 25
91	MP1A	X	-5 731	17
92	MP1A	7	3 309	17
93	MP1A	My	006	17
94	MP1A	X	-5 731	5.83
95	MP1A	7	3 309	5.83
30		<b>∠</b>	0.003	0.00



#### Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
96	MP1A	Mx	.006	5.83
97	MP1B	Х	-5.731	.17
98	MP1B	Z	3.309	.17
99	MP1B	Mx	006	.17
100	MP1B	Х	-5.731	5.83
101	MP1B	Z	3.309	5.83
102	MP1B	Mx	006	5.83
103	MP1C	Х	-6.718	.17
104	MP1C	Z	3.879	.17
105	MP1C	Mx	0	.17
106	MP1C	Х	-6.718	5.83
107	MP1C	Z	3.879	5.83
108	MP1C	Mx	0	5.83

# Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	-6.942	.68
2	MP5A	Z	0	.68
3	MP5A	Mx	.007	.68
4	MP5A	X	-6.942	6.16
5	MP5A	Z	0	6.16
6	MP5A	Mx	.007	6.16
7	MP5B	Х	-8.738	.68
8	MP5B	Z	0	.68
9	MP5B	Mx	.002	.68
10	MP5B	Х	-8.738	6.16
11	MP5B	Z	0	6.16
12	MP5B	Mx	.002	6.16
13	MP5C	Х	-9.057	.68
14	MP5C	Z	0	.68
15	MP5C	Mx	01	.68
16	MP5C	X	-9.057	6.16
17	MP5C	Z	0	6.16
18	MP5C	Mx	01	6.16
19	MP5A	Х	-6.942	.68
20	MP5A	Z	0	.68
21	MP5A	Mx	.007	.68
22	MP5A	X	-6.942	6.16
23	MP5A	Z	0	6.16
24	MP5A	Mx	.007	6.16
25	MP5B	X	-8.738	.68
26	MP5B	Z	0	.68
27	MP5B	Mx	011	.68
28	MP5B	X	-8.738	6.16
29	MP5B	Z	0	6.16
30	MP5B	Mx	011	6.16
31	MP5C	X	-9.057	.68
32	MP5C	Z	0	.68
33	MP5C	Mx	.004	.68
34	MP5C	X	-9.057	6.16
35	MP5C	Z	0	6.16
36	MP5C	Mx	.004	6.16
37	MP3A	X	-1.741	.62
38	MP3A	Z	0	.62
39	MP3A	Mx	.002	.62
40	MP3A	X	-1.741	2.55



## Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

41       MP3A       Z       0       2.55         43       MP3B       X       -3.77       .62         44       MP3B       Z       0       .62         45       MP3B       MX       -0.02       .62         46       MP3B       X       -3.77       2.55         47       MP3B       Z       0       .255         48       MP3B       X       -3.77       2.55         49       MP3C       X       -4.13       .62         50       MP3C       Z       0       .62         51       MP3C       X       -4.13       .255         53       MP3C       Z       0       .225         54       MP3C       X       .4.176       .325         55       MP4A       Z       0       .325         56       MP4A       Z       0       .325         57       MP4A       Mx      0.00784       .325         58       MP4A       Z       0       .325         59       MP4A       Mx       .0.00784       .325         61       MP4B       X       .1.613       .325 <th></th> <th>Member Label</th> <th>Direction</th> <th>Magnitude[lb,k-ft]</th> <th>Location[ft,%]</th>		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
42         MP3A         Mx         002         2.55           43         MP3B         X         -3.77         62           44         MP3B         Z         0         62           45         MP3B         MX         -3.77         2.55           46         MP3B         X         -3.77         2.55           47         MP3B         Z         0         2.55           48         MP3B         MX         -0.02         2.55           49         MP3C         X         4.13         62           50         MP3C         Z         0         2.55           51         MP3C         X         4.13         2.55           53         MP3C         Z         0         2.55           54         MP3C         MX         -001         2.55           55         MP4A         X         -1.176         3.25           56         MP4A         Z         0         3.25           57         MP4A         Mx         -0.00764         3.25           58         MP4A         X         -1.613         3.25           61         MP4B         X	41	MP3A	Z	0	2.55
43       MP38       X       -3.77       .62         44       MP38       Z       0       .62         45       MP38       Mx      002       .62         46       MP38       X       -3.77       2.55         47       MP38       Z       0       2.55         48       MP38       Mx      002       2.55         49       MP3C       X       4.13       .62         50       MP3C       Z       0       .62         51       MP3C       X       4.13       .255         53       MP3C       Z       0       .255         54       MP3C       X       -1.176       .325         55       MP4A       X       -1.176       .325         56       MP4A       Z       0       .325         57       MP4A       X       -1.176       .325         58       MP4A       Z       0       .325         59       MP4A       Z       0       .325         61       MP4B       X       -1.613       .325         62       MP4B       X       -1.613       .325	42	MP3A	Mx	.002	2.55
44         MP3B         Z         0         .62           45         MP3B         Mx        002         .62           46         MP3B         X         -3.77         .2.55           47         MP3B         Z         0         .2.55           48         MP3B         Mx        002         .2.55           49         MP3C         X         .4.13         .62           50         MP3C         Z         0         .62           51         MP3C         X         .4.13         .2.55           53         MP3C         X         .4.13         .2.55           54         MP3C         X         .1.176         .3.25           55         MP4A         X         .1.176         .3.25           56         MP4A         Z         0         .3.25           57         MP4A         Mx         .000784         .3.25           58         MP4A         X         .1.613         .3.25           61         MP4B         X         .4.613         .3.25           62         MP4B         Mx         .000538         .3.25           63 <t< td=""><td>43</td><td>MP3B</td><td>X</td><td>-3.77</td><td>.62</td></t<>	43	MP3B	X	-3.77	.62
45         MP3B         Mx        002         .62           46         MP3B         Z         0         2.55           47         MP3B         Mx        002         2.55           49         MP3C         X         -4.13         .62           50         MP3C         X         -4.13         2.55           51         MP3C         X         -4.13         2.55           53         MP3C         Z         0         3.25           54         MP3C         X         -1.176         3.25           55         MP4A         X         -1.176         3.25           56         MP4A         Z         0         3.25           57         MP4A         X         -1.176         3.25           58         MP4A         Z         0         3.26           60         MP4B         Z         0.0538         3.25           61         MP4B         X         -1.613         3.25           62         MP4B         Z         0         3.25           63         MP4B         Z         0         3.25           64         MP4B <td< td=""><td>44</td><td>MP3B</td><td>Z</td><td>0</td><td>.62</td></td<>	44	MP3B	Z	0	.62
46         MP3B         X         -3.77         2.55           48         MP3B         X         -002         2.55           48         MP3C         X         4.13         .62           50         MP3C         Z         0         .62           51         MP3C         X         4.13         .255           53         MP3C         X         4.13         .255           54         MP3C         X         4.13         .255           55         MP4A         X         .1176         .325           56         MP4A         Z         0         .325           58         MP4A         X         .1.176         .325           58         MP4A         X         .1.176         .325           59         MP4A         Z         0         .325           61         MP4B         X         .1.613         .325           62         MP4B         Z         0         .325           63         MP4B         X         .1.613         .325           64         MP4B         X         .1.613         .325           65         MP4B <t< td=""><td>45</td><td>MP3B</td><td>Mx</td><td>002</td><td>.62</td></t<>	45	MP3B	Mx	002	.62
47         MP3B         Z         0         2.55           48         MP3C         X         4.13         .62           50         MP3C         X         4.13         .62           51         MP3C         X         4.13         .255           53         MP3C         Z         0         .62           53         MP3C         Z         0         .255           54         MP3C         X         .4.13         .255           55         MP4A         X         .1.176         .3.25           56         MP4A         Z         0         .3.25           57         MP4A         X         .1.176         .3.25           58         MP4A         Z         0         .3.25           59         MP4A         Z         0         .3.25           60         MP4B         X         .1.613         .3.25           61         MP4B         X         .1.613         .3.25           62         MP4B         Mx         .000538         .3.25           63         MP4B         X         .1.613         .3.25           64         MP4B	46	MP3B	X	-3.77	2.55
48         MP3B         Mx $-0.02$ 2.55           49         MP3C         Z         0         62           50         MP3C         Z         0         62           51         MP3C         X         4.13         2.55           52         MP3C         X         4.13         2.55           53         MP3C         X         4.13         2.55           54         MP3C         X         -1.176         3.26           56         MP4A         X         -1.176         3.25           58         MP4A         X         -1.176         3.25           59         MP4A         Z         0         3.25           60         MP4A         Z         0         3.25           61         MP4B         Z         0         3.25           62         MP4B         Z         0         3.25           63         MP4B         X         -1.613         3.25           64         MP4B         X         -1.613         3.25           65         MP4B         X         0.003385         3.25           71         MP4C	47	MP3B	Z	0	2.55
49       MP3C       X       -4,13       .62         50       MP3C       Z       0       .62         51       MP3C       X       -4,13       .255         53       MP3C       Z       0       .255         54       MP3C       X       -001       .255         55       MP4A       X       -1.176       .325         56       MP4A       Z       0       .325         57       MP4A       Mx      000784       .325         58       MP4A       Z       0       .325         59       MP4A       Z       0       .325         60       MP4A       Mx      000784       .325         61       MP4B       X       -1.613       .325         62       MP4B       Z       0       .325         63       MP4B       X       -1.613       .325         64       MP4B       X       -1.613       .325         65       MP4B       Z       0       .325         66       MP4B       X       -1.69       .325         70       MP4C       X       -1.69       .3	48	MP3B	Mx	002	2.55
50         MP3C         Z         0	49	MP3C	X	-4.13	.62
51         MP3C         Mx        001         .62           52         MP3C         X         4.13         2.55           53         MP3C         Z         0         2.55           54         MP3C         Mx        001         2.55           55         MP4A         X         -1.176         3.25           56         MP4A         X         -1.176         3.25           57         MP4A         X         -1.176         3.25           58         MP4A         X         -1.176         3.25           59         MP4A         X         -1.176         3.25           60         MP4A         X         -1.176         3.25           61         MP4B         X         -1.613         3.25           62         MP4B         X         -1.613         3.25           63         MP4B         X         -1.613         3.25           64         MP4B         X         -1.613         3.25           65         MP4C         X         -1.69         3.25           70         MP4C         X         -1.69         3.25           71         <	50	MP3C	Z	0	.62
52         MP3C         X         -4.13         2.55           53         MP3C         Z         0         2.55           54         MP3C         Mx        001         2.55           55         MP4A         X         -1.176         3.25           56         MP4A         X         -1.176         3.25           57         MP4A         X         -1.176         3.25           58         MP4A         X         -1.176         3.25           59         MP4A         X         -1.613         3.25           60         MP4B         X         -1.613         3.25           61         MP4B         X         -1.613         3.25           62         MP4B         X         -1.613         3.25           64         MP4B         X         -1.69         3.25           65         MP4B         Mx         0.00538         3.25           66         MP4B         Mx         0.00385         3.25           67         MP4C         X         -1.69         3.25           70         MP4C         Mx         0.00385         3.25           71	51	MP3C	Mx	001	.62
53         MP3C         Z         0         2.55           54         MP3C         Mx         -001         2.55           56         MP4A         X         -1.176         3.25           56         MP4A         Z         0         3.25           57         MP4A         X         -1.176         3.25           58         MP4A         Z         0         3.25           60         MP4A         Z         0         3.25           61         MP4B         X         -1.613         3.25           62         MP4B         X         -1.613         3.25           63         MP4B         X         -1.613         3.25           64         MP4B         X         -1.613         3.25           65         MP4B         Mx         .000538         3.25           66         MP4B         Mx         .000538         3.25           67         MP4C         Z         0         3.25           68         MP4C         Z         0         3.25           70         MP4C         X         -1.69         3.25           71         MP4C	52	MP3C	X	-4.13	2.55
54         MP3C         Mx        001         2.55           55         MP4A         X         -1.176         3.25           56         MP4A         Z         0         3.25           57         MP4A         Mx        1.176         3.25           58         MP4A         X        1.176         3.25           59         MP4A         X        1.176         3.25           60         MP4A         Mx        000784         3.25           61         MP4B         X        1.613         3.25           62         MP4B         Z         0         3.25           64         MP4B         X        1.613         3.25           65         MP4B         Z         0         3.25           66         MP4B         Z         0         3.25           67         MP4C         X         -1.69         3.25           68         MP4C         Z         0         3.25           71         MP4C         X         -1.69         3.25           72         MP4C         Mx         .000385         3.25           71         MP3	53	MP3C	Z	0	2.55
55         MP4A         X         -1.176         3.25           56         MP4A         Z         0         3.25           57         MP4A         Mx        000784         3.25           58         MP4A         X         -1.176         3.25           59         MP4A         Z         0         3.25           60         MP4A         X         -1.613         3.25           61         MP4B         X         -1.613         3.25           62         MP4B         X         -1.613         3.25           63         MP4B         X         -1.613         3.25           64         MP4B         X         -1.613         3.25           66         MP4B         Z         0         3.25           66         MP4B         Z         0         3.25           67         MP4C         X         -1.69         3.25           70         MP4C         X         -1.69         3.25           71         MP4C         X         -1.07         3.25           72         MP4C         Mx         -0.00713         3.25           74         MP3A	54	MP3C	Mx	001	2.55
56         MP4A         Z         0         3.25           57         MP4A         Mx         -000784         3.25           58         MP4A         X         -1.176         3.25           59         MP4A         Z         0         3.25           60         MP4A         Mx         -000784         3.25           61         MP4B         X         -1.613         3.25           62         MP4B         Z         0         3.25           63         MP4B         Z         0         3.25           64         MP4B         X         -1.613         3.25           65         MP4B         Z         0         3.25           66         MP4B         X         -1.69         3.25           67         MP4C         X         -1.69         3.25           70         MP4C         Mx         .000385         3.25           71         MP4C         X         -1.69         3.25           74         MP3A         Z         0         3.25           75         MP3A         X         -1.07         3.25           76         MP3A	55	MP4A	X	-1.176	3.25
57         MP4A         Mx         -000784         3.25           58         MP4A         X         -1.176         3.25           59         MP4A         Z         0         3.25           60         MP4A         Mx        000784         3.25           61         MP4B         X         -1.613         3.25           62         MP4B         X         -1.613         3.25           64         MP4B         X         -000538         3.25           64         MP4B         X         -0.613         3.25           66         MP4B         X         -0.613         3.25           66         MP4B         X         -0.000538         3.25           67         MP4C         X         -1.69         3.25           68         MP4C         Z         0         3.25           70         MP4C         X         -1.69         3.25           71         MP4C         Z         0         3.25           72         MP4C         X         -1.07         3.25           74         MP3A         X         -1.07         3.25           74         <	56	MP4A	Z	0	3.25
58         MP4A         X         -1.176         3.25           59         MP4A         Z         0         3.25           60         MP4A         Mx         -000784         3.25           61         MP4B         X         -1.613         3.25           62         MP4B         Z         0         3.25           63         MP4B         X         -1.613         3.25           64         MP4B         Z         0         3.25           65         MP4B         Z         0         3.25           66         MP4B         Z         0         3.25           68         MP4C         X         -1.69         3.25           68         MP4C         X         -1.69         3.25           70         MP4C         X         -1.69         3.25           71         MP4C         X         -1.69         3.25           73         MP4A         X         -1.07         3.25           74         MP3A         X         -1.07         3.25           75         MP3A         Mx         -000713         3.25           76         MP3A	57	MP4A	Mx	000784	3.25
99         MP4A         Z         0         3.25           60         MP4A         Mx        00784         3.25           61         MP4B         X         -1.613         3.25           62         MP4B         X         -0         3.25           63         MP4B         Mx         .000538         3.25           64         MP4B         X         -1.613         3.25           66         MP4B         X         -1.613         3.25           66         MP4B         X         -1.69         3.25           66         MP4C         X         -1.69         3.25           68         MP4C         Z         0         3.25           70         MP4C         X         -1.69         3.25           71         MP4C         Z         0         3.25           71         MP4C         Z         0         3.25           73         MP3A         X         -1.07         3.25           74         MP3A         X         -1.07         3.25           76         MP3A         X         -1.66         3.25           78         MP3A	58	MP4A	Х	-1.176	3.25
60         MP4A         Mx        00784         3.25           61         MP4B         X         -1.613         3.25           62         MP4B         Z         0         3.25           63         MP4B         X         -1.613         3.25           64         MP4B         X         -1.613         3.25           65         MP4B         Z         0         3.25           66         MP4B         X         -1.69         3.25           66         MP4C         X         -1.69         3.25           68         MP4C         X         -0         3.25           69         MP4C         X         -0.69         3.25           70         MP4C         X         -0.69         3.25           71         MP4C         X         -0.169         3.25           73         MP3A         Z         0         3.25           74         MP3A         Z         0         3.25           76         MP3A         X         -1.07         3.25           76         MP3A         X         -1.586         3.25           79         MP3B	59	MP4A	Z	0	3.25
61         MP4B         X         -1.613         3.25           62         MP4B         Z         0         3.25           63         MP4B         Mx         .000538         3.25           64         MP4B         X         -1.613         3.25           65         MP4B         Z         0         3.25           66         MP4B         X         -1.69         3.25           67         MP4C         X         -1.69         3.25           68         MP4C         X         -1.69         3.25           69         MP4C         X         -1.69         3.25           70         MP4C         X         -1.69         3.25           71         MP4C         X         -1.69         3.25           71         MP4C         X         -1.69         3.25           73         MP3A         X         -1.07         3.25           74         MP3A         Z         0         3.25           75         MP3A         X         -1.07         3.25           76         MP3A         Z         0         3.25           78         MP3B	60	MP4A	Mx	000784	3.25
62         MP4B         Z         0         3.25           63         MP4B         Mx         .00538         3.25           64         MP4B         X         -1.613         3.25           65         MP4B         X         -1.613         3.25           66         MP4B         X         -0         3.25           66         MP4C         X         -1.69         3.25           68         MP4C         Z         0         3.25           69         MP4C         X         -1.69         3.25           70         MP4C         X         -1.69         3.25           71         MP4C         X         -1.69         3.25           71         MP4C         X         -1.69         3.25           73         MP3A         X         -1.07         3.25           74         MP3A         Z         0         3.25           75         MP3A         X         -1.07         3.25           76         MP3A         Z         0         3.25           77         MP3A         Z         0         3.25           78         MP3A	61	MP4B	X	-1.613	3.25
63         MP4B         Mx         .000538         3.25           64         MP4B         X         -1.613         3.25           66         MP4B         Z         0         3.25           66         MP4B         Mx         .000538         3.25           66         MP4C         X         -1.69         3.25           67         MP4C         X         -1.69         3.25           68         MP4C         Z         0         3.25           70         MP4C         X         -1.69         3.25           71         MP4C         Z         0         3.25           71         MP4C         Z         0         3.25           73         MP3A         X         -1.07         3.25           74         MP3A         Z         0         3.25           75         MP3A         X         -1.07         3.25           76         MP3A         X         -1.07         3.25           77         MP3A         Z         0         3.25           78         MP3A         X         -1.586         3.25           80         MP3B         <	62	MP4B	7	0	3.25
64         MP4B         X         -1.613         3.25           65         MP4B         Z         0         3.25           66         MP4B         Mx         000538         3.25           67         MP4C         X         -1.69         3.25           68         MP4C         Z         0         3.25           69         MP4C         X         -1.69         3.25           70         MP4C         X         -1.69         3.25           70         MP4C         X         -1.69         3.25           71         MP4C         X         -1.69         3.25           72         MP4C         X         -1.69         3.25           73         MP3A         X         -1.07         3.25           74         MP3A         Z         0         3.25           76         MP3A         X         -1.07         3.25           76         MP3A         Z         0         3.25           78         MP3A         X         -1.586         3.25           80         MP3B         Z         0         3.25           81         MP3B         <	63	MP4B	Mx	.000538	3.25
66         MP4B         Z         0         3.25           66         MP4B         Mx         .000538         3.25           67         MP4C         X         .1.69         3.25           68         MP4C         Z         0         3.25           69         MP4C         X         .1.69         3.25           70         MP4C         X         .1.69         3.25           71         MP4C         X         .1.69         3.25           72         MP4C         X         .1.69         3.25           73         MP3A         X         .1.07         3.25           74         MP3A         Z         0         3.25           75         MP3A         X         .1.07         3.25           76         MP3A         X         .1.07         3.25           76         MP3A         X         .1.07         3.25           76         MP3A         X         .1.686         3.25           79         MP3B         X         .1.586         3.25           80         MP3B         X         .1.586         3.25           81         MP3B	64	MP4B	X	-1.613	3.25
66         MP4B         Mx         .000538         3.25           67         MP4C         X         -1.69         3.25           68         MP4C         Z         0         3.25           69         MP4C         X         -1.69         3.25           70         MP4C         X         -1.69         3.25           71         MP4C         Z         0         3.25           72         MP4C         Mx         .000385         3.25           73         MP3A         X         -1.07         3.25           74         MP3A         Z         0         3.25           75         MP3A         X         -1.07         3.25           76         MP3A         X         -1.07         3.25           78         MP3A         X         -1.27         3.25           78         MP3A         X         -1.56         3.25           80         MP3B         X         -1.56         3.25           81         MP3B         X         -1.56         3.25           82         MP3B         X         -1.56         3.25           84         MP3B	65	MP4B	7	0	3.25
67         MF4C         X         -1.69         3.25           68         MP4C         Z         0         3.25           69         MP4C         Mx         .00385         3.25           70         MP4C         X         -1.69         3.25           71         MP4C         X         -1.69         3.25           71         MP4C         X         -1.69         3.25           73         MP3A         X         -1.07         3.25           73         MP3A         X         -1.07         3.25           74         MP3A         X         -1.07         3.25           76         MP3A         X         -1.07         3.25           76         MP3A         X         -1.07         3.25           78         MP3A         X         -1.586         3.25           80         MP3B         X         -1.586         3.25           81         MP3B         X         -1.586         3.25           82         MP3B         X         -1.586         3.25           83         MP3B         Z         0         3.25           84         MP3B<	66	MP4B	Mx	000538	3.25
bit         MP4C         Z         0         3.25           69         MP4C         Mx         .000385         3.25           70         MP4C         X         -1.69         3.25           71         MP4C         Z         0         3.25           72         MP4C         Mx         .000385         3.25           73         MP3A         X         -1.07         3.25           74         MP3A         Z         0         3.25           75         MP3A         X         -1.07         3.25           76         MP3A         X         -1.07         3.25           76         MP3A         X         -1.07         3.25           76         MP3A         X         -1.07         3.25           78         MP3A         X         -1.586         3.25           80         MP3B         Z         0         3.25           81         MP3B         X         -1.586         3.25           82         MP3B         X         -1.586         3.25           84         MP3B         Mx         .000529         3.25           85         MP3C<	67	MP4C	X	-1 69	3.25
bot         Minto         L         000385         3.25           70         MP4C         X         -1.69         3.25           71         MP4C         Z         0         3.25           73         MP3A         X         -1.07         3.25           73         MP3A         X         -1.07         3.25           74         MP3A         Z         0         3.25           75         MP3A         X         -1.07         3.25           76         MP3A         X         -1.07         3.25           76         MP3A         X         -1.07         3.25           78         MP3A         X         -1.07         3.25           79         MP3B         X         -1.586         3.25           80         MP3B         X         -1.586         3.25           81         MP3B         MX         .000529         3.25           82         MP3B         X         -1.678         3.25           84         MP3B         MX         .000529         3.25           85         MP3C         X         -1.678         3.25           86         <	68	MP4C	7	-1:05	3.25
box         Mix	69	MP4C	My	000385	3.25
no         MF4C         X         -1.09         3.25           71         MP4C         Mx         .000385         3.25           73         MP3A         X         -1.07         3.25           74         MP3A         Z         0         3.25           75         MP3A         X         -1.07         3.25           76         MP3A         X         -1.07         3.25           76         MP3A         X         -1.07         3.25           76         MP3A         X         -1.07         3.25           77         MP3A         Z         0         3.25           78         MP3A         X         -1.586         3.25           80         MP3B         Z         0         3.25           81         MP3B         X         -1.586         3.25           83         MP3B         X         -1.586         3.25           84         MP3B         Mx         .000529         3.25           85         MP3C         X         -1.678         3.25           86         MP3C         Z         0         3.25           87         MP3C	70	MP4C	Y NIX	_1.69	3.25
1         MP4C         2         0         3.25           72         MP4C         Mx         .000385         3.25           73         MP3A         X         -1.07         3.25           74         MP3A         Z         0         3.25           75         MP3A         Mx        000713         3.25           76         MP3A         X         -1.07         3.25           77         MP3A         Z         0         3.25           78         MP3A         X         -1.07         3.25           79         MP3B         X         -1.586         3.25           80         MP3B         X         -1.586         3.25           81         MP3B         X         -1.586         3.25           82         MP3B         X         -1.586         3.25           83         MP3B         X         -1.586         3.25           84         MP3B         Mx         .000529         3.25           86         MP3C         Z         0         3.25           86         MP3C         Z         0         3.25           88         MP3C	70	MP4C	7	-1.09	3.25
72         MP40         MX        00030         3.25           73         MP3A         X         -1.07         3.25           74         MP3A         Z         0         3.25           75         MP3A         Mx        000713         3.25           76         MP3A         X         -1.07         3.25           76         MP3A         X         -1.07         3.25           76         MP3A         Z         0         3.25           77         MP3A         Z         0         3.25           78         MP3A         Mx        000713         3.25           79         MP3B         X         -1.586         3.25           80         MP3B         Z         0         3.25           81         MP3B         X         -1.586         3.25           82         MP3B         X         -1.678         3.25           84         MP3C         X         -1.678         3.25           85         MP3C         X         -1.678         3.25           87         MP3C         X         -1.678         3.25           88         MP	72			000385	3.20
73       MP3A       X       1-107       3.23         74       MP3A       Z       0       3.25         75       MP3A       Mx      000713       3.25         76       MP3A       Z       0       3.25         77       MP3A       Z       0       3.25         78       MP3A       Mx      000713       3.25         79       MP3B       X       -1.586       3.25         80       MP3B       Z       0       3.25         81       MP3B       Mx       .000529       3.25         81       MP3B       Z       0       3.25         83       MP3B       Z       0       3.25         84       MP3B       Mx       .000529       3.25         85       MP3C       X       -1.678       3.25         86       MP3C       Z       0       3.25         87       MP3C       X       -1.678       3.25         88       MP3C       Z       0       3.25         89       MP3C       Z       0       3.25         90       MP3C       Mx       .000383	72	MD2A		1.07	3.25
P4         MP3A         Z         00         3.23           75         MP3A         Mx        000713         3.25           76         MP3A         X         -1.07         3.25           77         MP3A         Z         0         3.25           78         MP3A         Mx        000713         3.25           79         MP3B         X         -1.586         3.25           80         MP3B         Z         0         3.25           81         MP3B         Mx         .000529         3.25           82         MP3B         X         -1.586         3.25           83         MP3B         Z         0         3.25           84         MP3B         Mx         .000529         3.25           85         MP3C         X         -1.678         3.25           86         MP3C         Z         0         3.25           87         MP3C         Mx         .000383         3.25           88         MP3C         X         -1.678         3.25           89         MP3C         Z         0         3.25           90         MP3C<	73	MD2A	7	-1.07	3.25
75         MP3A         MX        000713         3.23           76         MP3A         X         -1.07         3.25           77         MP3A         Z         0         3.25           78         MP3A         Mx        000713         3.25           79         MP3B         X         -1.586         3.25           80         MP3B         Z         0         3.25           81         MP3B         X         -1.586         3.25           82         MP3B         X         -1.586         3.25           83         MP3B         X         -1.586         3.25           84         MP3B         Mx         .000529         3.25           85         MP3C         Z         0         3.25           86         MP3C         Z         0         3.25           86         MP3C         X         -1.678         3.25           89         MP3C         Z         0         3.25           89         MP3C         Z         0         3.25           90         MP3C         X         -6.238         1.17           92         MP1A	74			000712	2.25
70         MP3A         A         -1.07         3.23           77         MP3A         Z         0         3.25           78         MP3A         Mx        000713         3.25           79         MP3B         X         -1.586         3.25           80         MP3B         Z         0         3.25           81         MP3B         Mx         .000529         3.25           82         MP3B         X         -1.586         3.25           83         MP3B         Z         0         3.25           84         MP3B         Mx         .000529         3.25           85         MP3C         X         -1.678         3.25           86         MP3C         Z         0         3.25           87         MP3C         Mx         .000383         3.25           88         MP3C         X         -1.678         3.25           89         MP3C         Z         0         3.25           90         MP3C         X         -1.678         3.25           90         MP3C         Mx         .000383         3.25           91         MP	75			000713	3.25
77         MP3A         Z         0         3.23           78         MP3A         Mx        000713         3.25           79         MP3B         X         -1.586         3.25           80         MP3B         Z         0         3.25           81         MP3B         X         -1.586         3.25           82         MP3B         X         -1.586         3.25           83         MP3B         Z         0         3.25           84         MP3B         X         -1.586         3.25           85         MP3C         X         -1.678         3.25           86         MP3C         Z         0         3.25           86         MP3C         Z         0         3.25           87         MP3C         X         -1.678         3.25           88         MP3C         Z         0         3.25           89         MP3C         Z         0         3.25           90         MP3C         Mx         .000383         3.25           91         MP1A         X         -6.238         .17           92         MP1A	70		7	-1.07	3.25
78         MP3A         Mix        000713         3.25           79         MP3B         X         -1.586         3.25           80         MP3B         Z         0         3.25           81         MP3B         Mx         .000529         3.25           82         MP3B         X         -1.586         3.25           83         MP3B         X         -1.586         3.25           84         MP3B         X         -1.586         3.25           84         MP3B         X         -1.678         3.25           85         MP3C         X         -1.678         3.25           86         MP3C         X         -1.678         3.25           87         MP3C         Mx         .000383         3.25           88         MP3C         X         -1.678         3.25           90         MP3C         X         -1.678         3.25           90         MP3C         X         -1.678         3.25           90         MP3C         Z         0         3.25           91         MP1A         X         -6.238         1.17           92	70	MP3A		000712	3.20
79         MP3B         X         -1.386         3.25           80         MP3B         Z         0         3.25           81         MP3B         Mx         .000529         3.25           82         MP3B         X         -1.586         3.25           83         MP3B         Z         0         3.25           83         MP3B         Z         0         3.25           84         MP3B         Mx         .000529         3.25           85         MP3C         X         -1.678         3.25           86         MP3C         Z         0         3.25           87         MP3C         Mx         .000383         3.25           88         MP3C         Z         0         3.25           90         MP3C         Z         0         3.25           90         MP3C         Mx         .000383         3.25           91         MP1A         X         -6.238         .17           92         MP1A         Z         0         .17           93         MP1A         X         -6.238         5.83           95         MP1A	78	MP3A	IVIX	000713	3.25
80         MP3B         Z         0         3.25           81         MP3B         Mx         .000529         3.25           82         MP3B         X         -1.586         3.25           83         MP3B         Z         0         3.25           84         MP3B         Mx         .000529         3.25           85         MP3C         X         -1.678         3.25           86         MP3C         Z         0         3.25           86         MP3C         Z         0         3.25           87         MP3C         Mx         .000383         3.25           88         MP3C         Z         0         3.25           90         MP3C         X         -1.678         3.25           90         MP3C         Z         0         3.25           91         MP4A         X         -6.238         .17           92         MP1A         Z         0         .17           93         MP1A         X         -6.238         5.83           95         MP1A         Z         0         5.83           96         MP1A         X	79	MP3B	X	-1.586	3.25
o1         MP3B         Mix         .000529         3.25           82         MP3B         X         -1.586         3.25           83         MP3B         Z         0         3.25           84         MP3B         Mx         .000529         3.25           85         MP3C         X         -1.678         3.25           86         MP3C         Z         0         3.25           87         MP3C         X         -1.678         3.25           88         MP3C         Z         0         3.25           89         MP3C         X         -1.678         3.25           90         MP3C         X         -1.678         3.25           90         MP3C         Z         0         3.25           90         MP3C         X         -1.678         3.25           91         MP1A         X         -6.238         1.7           92         MP1A         Z         0         1.7           93         MP1A         X         -6.238         5.83           95         MP1A         Z         0         5.83           96         MP1A	80	MP3B		000500	3.25
62         MP3B         X         -1.586         3.25           83         MP3B         Z         0         3.25           84         MP3B         Mx         .000529         3.25           85         MP3C         X         -1.678         3.25           86         MP3C         Z         0         3.25           87         MP3C         Z         0         3.25           88         MP3C         X         -1.678         3.25           89         MP3C         X         -1.678         3.25           90         MP3C         X         -1.678         3.25           90         MP3C         X         -1.678         3.25           90         MP3C         Z         0         3.25           90         MP3C         X         -1.678         3.25           91         MP1A         X         -6.238         1.7           92         MP1A         Z         0         .17           93         MP1A         X         -6.238         5.83           95         MP1A         Z         0         5.83           96         MP1A	81	MP3B	IVIX	.000529	3.25
63         MP3B         Z         0         3.25           84         MP3B         Mx         .000529         3.25           85         MP3C         X         -1.678         3.25           86         MP3C         Z         0         3.25           87         MP3C         Mx         .000383         3.25           88         MP3C         X         -1.678         3.25           89         MP3C         X         -1.678         3.25           90         MP3C         X         -1.678         3.25           91         MP4A         X         .000383         3.25           91         MP1A         X         -6.238         .17           92         MP1A         Z         0         .17           93         MP1A         X         -6.238         5.83           95         MP1A         Z         0         5.83           96         MP1A	82	MP3B	X	-1.586	3.25
84         MP3B         MX         .000529         3.25           85         MP3C         X         -1.678         3.25           86         MP3C         Z         0         3.25           87         MP3C         Mx         .000383         3.25           88         MP3C         X         -1.678         3.25           89         MP3C         X         -1.678         3.25           90         MP3C         Z         0         3.25           90         MP3C         Z         0         3.25           91         MP4A         X         -6.238         .17           92         MP1A         Z         0         .17           93         MP1A         X         -6.238         5.83           95         MP1A         Z         0         5.83           95         MP1A         Z         0         5.83           96         MP1A         Mx         .006         5.83           96         MP1A         Mx         .006         5.83	83	MP3B	<u> </u>	000500	3.25
85         MP3C         X         -1.678         3.25           86         MP3C         Z         0         3.25           87         MP3C         Mx         .000383         3.25           88         MP3C         X         -1.678         3.25           89         MP3C         X         -1.678         3.25           90         MP3C         Z         0         3.25           90         MP3C         Z         0         3.25           91         MP1A         X         -6.238         .17           92         MP1A         Z         0         .17           93         MP1A         Z         0         .17           94         MP1A         X         -6.238         5.83           95         MP1A         Z         0         5.83           96         MP1A         X         .6.238         5.83           96         MP1A         Mx         .006         5.83           96         MP1A         Mx         .006         5.83	84	MP3B	MX	.000529	3.25
86         MP3C         Z         0         3.25           87         MP3C         Mx         .000383         3.25           88         MP3C         X         -1.678         3.25           89         MP3C         Z         0         3.25           90         MP3C         Z         0         3.25           91         MP1A         X         -6.238         .17           92         MP1A         Z         0         .17           93         MP1A         Z         0         .17           94         MP1A         X         -6.238         5.83           95         MP1A         Z         0         5.83           96         MP1A         X         .6.238         5.83           96         MP1A         X         .6.238         5.83	85	MP3C	X	-1.678	3.25
8/         MP3C         Mx         .000383         3.25           88         MP3C         X         -1.678         3.25           89         MP3C         Z         0         3.25           90         MP3C         Mx         .000383         3.25           91         MP1A         X         -6.238         .17           92         MP1A         Z         0         .17           93         MP1A         X         -6.238         .17           94         MP1A         X         -6.238         5.83           95         MP1A         X         -6.238         5.83           95         MP1A         X         -6.238         5.83           96         MP1A         X         -6.238         5.83           96         MP1A         X         -6.238         5.83           96         MP1A         X         .006         5.83	86	MP3C	Z	0	3.25
88         MP3C         X         -1.678         3.25           89         MP3C         Z         0         3.25           90         MP3C         Mx         .000383         3.25           91         MP1A         X         -6.238         .17           92         MP1A         Z         0         .17           93         MP1A         X         -6.238         .17           94         MP1A         X         -6.238         5.83           95         MP1A         Z         0         .17           94         MP1A         X         -6.238         5.83           95         MP1A         Z         0         5.83           96         MP1A         X         .006         5.83           97         MP1B         X         .7.277         .47	87	MP3C	Mx	.000383	3.25
89         MP3C         Z         0         3.25           90         MP3C         Mx         .000383         3.25           91         MP1A         X         -6.238         .17           92         MP1A         Z         0         .17           93         MP1A         X         -6.238         .17           94         MP1A         X         -6.238         5.83           95         MP1A         Z         0         5.83           96         MP1A         X         .006         5.83           97         MP1A         X         .006         5.83	88	MP3C	X	-1.678	3.25
90         MP3C         Mx         .000383         3.25           91         MP1A         X         -6.238         .17           92         MP1A         Z         0         .17           93         MP1A         Mx         .006         .17           94         MP1A         X         -6.238         5.83           95         MP1A         Z         0         5.83           96         MP1A         Mx         .006         5.83           96         MP1A         Y         7.377         47	89	MP3C	Z	0	3.25
91         MP1A         X         -6.238         .17           92         MP1A         Z         0         .17           93         MP1A         Mx         .006         .17           94         MP1A         X         -6.238         5.83           95         MP1A         Z         0         5.83           96         MP1A         Mx         .006         5.83           97         MP1B         Y         7.277         47	90	MP3C	Mx	.000383	3.25
92         MP1A         Z         0         .17           93         MP1A         Mx         .006         .17           94         MP1A         X         -6.238         5.83           95         MP1A         Z         0         5.83           96         MP1A         Mx         .006         5.83           97         MP1B         Y         7.377         47	91	MP1A	X	-6.238	.17
93         MP1A         Mx         .006         .17           94         MP1A         X         -6.238         5.83           95         MP1A         Z         0         5.83           96         MP1A         Mx         .006         5.83           97         MP1A         Mx         .006         5.83	92	MP1A	Z	0	.17
94         MP1A         X         -6.238         5.83           95         MP1A         Z         0         5.83           96         MP1A         Mx         .006         5.83           97         MP1B         Y         7.377         47	93	MP1A	Mx	.006	.17
95         MP1A         Z         0         5.83           96         MP1A         Mx         .006         5.83           97         MP1B         X         7.377         47	94	MP1A	X	-6.238	5.83
96 MP1A Mx .006 5.83	95	MP1A	Z	0	5.83
07 MD1D V 7.277 47	96	MP1A	Mx	.006	5.83
	97	MP1B	X	-7.377	.17



## Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
98	MP1B	Z	0	.17
99	MP1B	Mx	004	.17
100	MP1B	Х	-7.377	5.83
101	MP1B	Z	0	5.83
102	MP1B	Mx	004	5.83
103	MP1C	Х	-7.377	.17
104	MP1C	Z	0	.17
105	MP1C	Mx	004	.17
106	MP1C	Х	-7.377	5.83
107	MP1C	Z	0	5.83
108	MP1C	Mx	004	5.83

# Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	-6.53	.68
2	MP5A	Z	-3.77	.68
3	MP5A	Mx	.003	.68
4	MP5A	X	-6.53	6.16
5	MP5A	Z	-3.77	6.16
6	MP5A	Mx	.003	6.16
7	MP5B	X	-8.086	.68
8	MP5B	Z	-4.669	.68
9	MP5B	Mx	.008	.68
10	MP5B	X	-8.086	6.16
11	MP5B	Z	-4.669	6.16
12	MP5B	Mx	.008	6.16
13	MP5C	Х	-6.869	.68
14	MP5C	Z	-3.966	.68
15	MP5C	Mx	01	.68
16	MP5C	Х	-6.869	6.16
17	MP5C	Z	-3.966	6.16
18	MP5C	Mx	01	6.16
19	MP5A	Х	-6.53	.68
20	MP5A	Z	-3.77	.68
21	MP5A	Mx	.01	.68
22	MP5A	X	-6.53	6.16
23	MP5A	Z	-3.77	6.16
24	MP5A	Mx	.01	6.16
25	MP5B	Х	-8.086	.68
26	MP5B	Z	-4.669	.68
27	MP5B	Mx	008	.68
28	MP5B	X	-8.086	6.16
29	MP5B	Z	-4.669	6.16
30	MP5B	Mx	008	6.16
31	MP5C	Х	-6.869	.68
32	MP5C	Z	-3.966	.68
33	MP5C	Mx	002	.68
34	MP5C	X	-6.869	6.16
35	MP5C	Z	-3.966	6.16
36	MP5C	Mx	002	6.16
37	MP3A	X	-2.093	.62
38	MP3A	Z	-1.209	.62
39	MP3A	Mx	.002	.62
40	MP3A	X	-2.093	2.55
41	MP3A	Z	-1.209	2.55
42	MP3A	Mx	.002	2.55



## Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
43	MP3B	X	-3.851	.62
44	MP3B	Z	-2.223	.62
45	MP3B	Mx	0	.62
46	MP3B	Х	-3.851	2.55
47	MP3B	Z	-2.223	2.55
48	MP3B	Mx	0	2.55
49	MP3C	X	-2.476	.62
50	MP3C	Z	-1.429	.62
51	MP3C	Mx	002	.62
52	MP3C	X	-2.476	2.55
53	MP3C	Z	-1.429	2.55
54	MP3C	Mx	002	2.55
55	MP4A	Х	-1.144	3.25
56	MP4A	Z	661	3.25
57	MP4A	Mx	000763	3.25
58	MP4A	Х	-1.144	3.25
59	MP4A	Z	661	3.25
60	MP4A	Mx	000763	3.25
61	MP4B	Х	-1.523	3.25
62	MP4B	Z	879	3.25
63	MP4B	Mx	0	3.25
64	MP4B	X	-1.523	3.25
65	MP4B	Z	879	3.25
66	MP4B	Mx	0	3.25
67	MP4C	X	-1.227	3.25
68	MP4C	7	- 708	3.25
69	MP4C	Mx	.000723	3.25
70	MP4C	X	-1 227	3.25
71	MP4C	7	- 708	3.25
72	MP4C	Mx	000723	3.25
73	MP3A	X	-1 076	3.25
74	MP3A	7	- 621	3.25
75	MP3A	My	- 000717	3.25
76	MP3A	X	-1.076	3 25
77	MP3A	7	- 621	3.25
78	MP3A	My	- 000717	3.25
70	MP3B	Y		3.25
80	MP3B	7	- 879	3.25
81	MD3R	<u> </u>	075	3.25
92	MD2D	IVIX V	1 522	3.25
83	MD2R	7		3.20
84	MD3R		079	3.25
85	MD3C		1 172	2.25
86	MD2C	~ 7	677	3.20
00	MD2C		077	3.20
0/	MD2C			3.20
00	MP3C	~ ~ ~	-1.173	3.23
89	IVIP30		0//	<u>3.∠</u> 3
90			5 724	3.20
91		∧ 	-0./31	.1/
92			-3.309	.1/
93	MP1A	IVIX	.006	.1/
94	MP1A	X	-5./31	5.83
95	MP1A	<u> </u>	-3.309	5.83
96	MP1A	MX	.006	5.83
97	MP1B	X	-6./18	.1/
98	MP1B		-3.879	.1/
99	MP1B	Mx	0	.17



### Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
100	MP1B	X	-6.718	5.83
101	MP1B	Z	-3.879	5.83
102	MP1B	Mx	0	5.83
103	MP1C	Х	-5.731	.17
104	MP1C	Z	-3.309	.17
105	MP1C	Mx	006	.17
106	MP1C	Х	-5.731	5.83
107	MP1C	Z	-3.309	5.83
108	MP1C	Mx	006	5.83

# Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	X	-4.369	.68
2	MP5A	Z	-7.568	.68
3	MP5A	Mx	002	.68
4	MP5A	Х	-4.369	6.16
5	MP5A	Z	-7.568	6.16
6	MP5A	Mx	002	6.16
7	MP5B	Х	-4.369	.68
8	MP5B	Z	-7.568	.68
9	MP5B	Mx	.011	.68
10	MP5B	X	-4.369	6.16
11	MP5B	Z	-7.568	6.16
12	MP5B	Mx	.011	6.16
13	MP5C	X	-3.507	.68
14	MP5C	Z	-6.074	.68
15	MP5C	Mx	008	.68
16	MP5C	Х	-3.507	6.16
17	MP5C	Z	-6.074	6.16
18	MP5C	Mx	008	6.16
19	MP5A	X	-4.369	.68
20	MP5A	Z	-7.568	.68
21	MP5A	Mx	.011	.68
22	MP5A	X	-4.369	6.16
23	MP5A	Z	-7.568	6.16
24	MP5A	Mx	.011	6.16
25	MP5B	X	-4.369	.68
26	MP5B	Z	-7.568	.68
27	MP5B	Mx	002	.68
28	MP5B	X	-4.369	6.16
29	MP5B	Z	-7.568	6.16
30	MP5B	Mx	002	6.16
31	MP5C	X	-3.507	.68
32	MP5C	Z	-6.074	.68
33	MP5C	Mx	006	.68
34	MP5C	X	-3.507	6.16
35	MP5C	Z	-6.074	6.16
36	MP5C	Mx	006	6.16
37	MP3A	X	-1.885	.62
38	MP3A	Z	-3.265	.62
39	MP3A	Mx	.002	.62
40	MP3A	X	-1.885	2.55
41	MP3A	Z	-3.265	2.55
42	MP3A	Mx	.002	2.55
43	MP3B	X	-1.885	.62
44	MP3B	Z	-3.265	.62



## Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
45	MP3B	Mx	.002	.62
46	MP3B	Х	-1.885	2.55
47	MP3B	Z	-3.265	2.55
48	MP3B	Mx	.002	2.55
49	MP3C	X	911	.62
50	MP3C	Z	-1.578	.62
51	MP3C	Mx	002	.62
52	MP3C	Х	911	2.55
53	MP3C	Z	-1.578	2.55
54	MP3C	Mx	002	2.55
55	MP4A	Х	806	3.25
56	MP4A	Z	-1.397	3.25
57	MP4A	Mx	000537	3.25
58	MP4A	Х	806	3.25
59	MP4A	Z	-1.397	3.25
60	MP4A	Mx	000537	3.25
61	MP4B	Х	806	3.25
62	MP4B	Z	-1.397	3.25
63	MP4B	Mx	000538	3.25
64	MP4B	Х	806	3.25
65	MP4B	Z	-1.397	3.25
66	MP4B	Mx	000538	3.25
67	MP4C	Х	597	3.25
68	MP4C	Z	-1.033	3.25
69	MP4C	Mx	.000783	3.25
70	MP4C	Х	597	3.25
71	MP4C	Z	-1.033	3.25
72	MP4C	Mx	.000783	3.25
73	MP3A	Х	793	3.25
74	MP3A	Z	-1.374	3.25
75	MP3A	Mx	000529	3.25
76	MP3A	Х	793	3.25
77	MP3A	Z	-1.374	3.25
78	MP3A	Mx	000529	3.25
79	MP3B	Х	793	3.25
80	MP3B	Z	-1.374	3.25
81	MP3B	Mx	000529	3.25
82	MP3B	Х	793	3.25
83	MP3B	Z	-1.374	3.25
84	MP3B	Mx	000529	3.25
85	MP3C	X	545	3.25
86	MP3C	Z	944	3.25
87	MP3C	Mx	.000716	3.25
88	MP3C	X	545	3.25
89	MP3C	Z	944	3.25
90	MP3C	Mx	.000716	3.25
91	MP1A	Х	-3.689	.17
92	MP1A	Z	-6.389	.17
93	MP1A	Mx	.004	.17
94	MP1A	Х	-3.689	5.83
95	MP1A	Z	-6.389	5.83
96	MP1A	Mx	.004	5.83
97	MP1B	X	-3.689	.17
98	MP1B	Z	-6.389	.17
99	MP1B	Mx	.004	.17
100	MP1B	X	-3.689	5.83
101	MP1B	Z	-6.389	5.83

RISA-3D Version 17.0.4 [C:\...\...\...\...\...\...\...\Model Files\467920-VZW_MT_LO_H.r3d] Page 84

22

23

24

25

26

27 28 MP5A

MP5A

MP5A

MP5B MP5B

MP5B MP5B Υ

My

Mz

Υ

My

Mz

Y

6.16

6.16

6.16

.68

.68

.68

6.16

# Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
102	MP1B	Mx	.004	5.83
103	MP1C	X	-3.119	.17
104	MP1C	Z	-5.402	.17
105	MP1C	Mx	006	.17
106	MP1C	X	-3.119	5.83
107	MP1C	Z	-5.402	5.83
108	MP1C	Mx	006	5.83
Membe	er Point Loads (Bi	LC 77 : Lm1)		
	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft.%]
1	A8	Y	-500	%3
Membe	er Point Loads (B	LC 78 : Lm2)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	A8	Y	-500	%97
Membe	er Point Loads (B	LC 79 : Lv1)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	A8	Y	-250	0
Membo	er Point Loads (B	LC 80 : Lv2)		
1	Member Label	Direction	Magnitude[lb,k-ft]	
	Ao	Y	-250	%100
Membe	er Point Loads (B	LC 81 : Antenna	a Ev)	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Y	-1.192	.68
2	MP5A	My	001	.68
3	MP5A	Mz	.000994	.68
4	MP5A	Y	-1.192	6.16
5	MP5A	My	001	6.16
6	MP5A	Mz	.000994	6.16
7	MP5B	Y	-1.192	.68
8	MP5B	My	000264	.68
9	MP5B	Mz	002	.68
10	MP5B	Y	-1.192	6.16
11	MP5B	My	000264	6.16
12	MP5B	Mz	002	6.16
13	MP5C	Y	-1.192	.68
14	MP5C	My	.001	.68
15	MP5C	Mz	.000781	.68
16	MP5C	Y	-1.192	6.16
17	MP5C	My	.001	6.16
18	MP5C	Mz	.000781	6.16
19	MP5A	Y	-1.192	.68
20	MP5A	My	001	.68
21	MP5A	Mz	000994	.68

-1.192

-.001

-.000994

-1.192

.001

-.000536

-1.192



# Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP5B	My	.001	6.16
30	MP5B	Mz	000536	6.16
31	MP5C	Y	-1.192	.68
32	MP5C	Mv	000526	.68
33	MP5C	Mz	.001	.68
34	MP5C	Y	-1.192	6.16
35	MP5C	Mv	000526	6.16
36	MP5C	Mz	.001	6.16
37	MP3A	Y	-2.258	.62
38	MP3A	Mv	002	.62
39	MP3A	Mz	0	.62
40	MP3A	Y	-2.258	2.55
41	MP3A	Mv	002	2.55
42	MP3A	Mz	0	2.55
43	MP3B	Y	-2.258	.62
44	MP3B	Mv	.001	.62
45	MP3B	Mz	002	.62
46	MP3B	Y	-2.258	2.55
47	MP3B	Mv	.001	2.55
48	MP3B	Mz	002	2.55
49	MP3C	Y	-2.258	.62
50	MP3C	Mv	.000772	.62
51	MP3C	Mz	.002	.62
52	MP3C	Y	-2.258	2.55
53	MP3C	Mv	.000772	2.55
54	MP3C	Mz	.002	2.55
55	MP4A	Y	-1.936	3.25
56	MP4A	Mv	001	3.25
57	MP4A	Mz	0	3.25
58	MP4A	Y	-1 936	3.25
59	MP4A	My	001	3.25
60	MP4A	Mz	0	3.25
61	MP4B	Y	-1.936	3.25
62	MP4B	Mv	000645	3.25
63	MP4B	Mz	.001	3.25
64	MP4B	Y	-1.936	3.25
65	MP4B	Mv.	- 000645	3.25
66	MP4B	Mz	001	3 25
67	MP4C	Y	-1.936	3.25
68	MP4C	Mv	- 000441	3.25
69	MP4C	Mz	001	3.25
70	MP4C	Y	-1.936	3.25
71	MP4C	Mv	000441	3.25
72	MP4C	Mz	001	3.25
73	MP3A	Y	-1.822	3.25
74	MP3A	Mv	.001	3.25
75	MP3A	Mz	0	3.25
76	MP3A	Y	-1.822	3.25
77	MP3A	Mv	.001	3.25
78	MP3A	Mz	0	3.25
79	MP3B	Y	-1.822	3.25
80	MP3B	Mv	000607	3.25
81	MP3B	Mz	.001	3.25
82	MP3B	Y	-1.822	3.25
83	MP3B	Mv	000607	3.25
84	MP3B	Mz	.001	3.25
85	MP3C	Y	-1.822	3.25
				0120



# Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
86	MP3C	My	000415	3.25
87	MP3C	Mz	001	3.25
88	MP3C	Y	-1.822	3.25
89	MP3C	My	000415	3.25
90	MP3C	Mz	001	3.25
91	MP1A	Y	596	.17
92	MP1A	My	000596	.17
93	MP1A	Mz	0	.17
94	MP1A	Y	596	5.83
95	MP1A	My	000596	5.83
96	MP1A	Mz	0	5.83
97	MP1B	Y	596	.17
98	MP1B	My	.000298	.17
99	MP1B	Mz	000516	.17
100	MP1B	Y	596	5.83
101	MP1B	My	.000298	5.83
102	MP1B	Mz	000516	5.83
103	MP1C	Y	596	.17
104	MP1C	My	.000298	.17
105	MP1C	Mz	.000516	.17
106	MP1C	Y	596	5.83
107	MP1C	My	.000298	5.83
108	MP1C	Mz	.000516	5.83

# Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Z	-2.981	.68
2	MP5A	Mx	002	.68
3	MP5A	Z	-2.981	6.16
4	MP5A	Mx	002	6.16
5	MP5B	Z	-2.981	.68
6	MP5B	Mx	.004	.68
7	MP5B	Z	-2.981	6.16
8	MP5B	Mx	.004	6.16
9	MP5C	Z	-2.981	.68
10	MP5C	Mx	002	.68
11	MP5C	Z	-2.981	6.16
12	MP5C	Mx	002	6.16
13	MP5A	Z	-2.981	.68
14	MP5A	Mx	.002	.68
15	MP5A	Z	-2.981	6.16
16	MP5A	Mx	.002	6.16
17	MP5B	Z	-2.981	.68
18	MP5B	Mx	.001	.68
19	MP5B	Z	-2.981	6.16
20	MP5B	Mx	.001	6.16
21	MP5C	Z	-2.981	.68
22	MP5C	Mx	004	.68
23	MP5C	Z	-2.981	6.16
24	MP5C	Mx	004	6.16
25	MP3A	Z	-5.644	.62
26	MP3A	Mx	0	.62
27	MP3A	Z	-5.644	2.55
28	MP3A	Mx	0	2.55
29	MP3B	Z	-5.644	.62
30	MP3B	Mx	.005	.62



# Member Point Loads (BLC 82 : Antenna Eh (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
31	MP3B	Z	-5.644	2.55
32	MP3B	Mx	.005	2.55
33	MP3C	Z	-5.644	.62
34	MP3C	Mx	005	.62
35	MP3C	Z	-5.644	2.55
36	MP3C	Mx	005	2.55
37	MP4A	Z	-4.841	3.25
38	MP4A	Mx	0	3.25
39	MP4A	Z	-4.841	3.25
40	MP4A	Mx	0	3.25
41	MP4B	Z	-4.841	3.25
42	MP4B	Mx	003	3.25
43	MP4B	Z	-4.841	3.25
44	MP4B	Mx	003	3.25
45	MP4C	Z	-4.841	3.25
46	MP4C	Mx	.003	3.25
47	MP4C	Z	-4.841	3.25
48	MP4C	Mx	.003	3.25
49	MP3A	Z	-4.555	3.25
50	MP3A	Mx	0	3.25
51	MP3A	Z	-4.555	3.25
52	MP3A	Mx	0	3.25
53	MP3B	Z	-4.555	3.25
54	MP3B	Mx	003	3.25
55	MP3B	Z	-4.555	3.25
56	MP3B	Mx	003	3.25
57	MP3C	Z	-4.555	3.25
58	MP3C	Mx	.003	3.25
59	MP3C	Z	-4.555	3.25
60	MP3C	Mx	.003	3.25
61	MP1A	Z	-1.49	.17
62	MP1A	Mx	0	.17
63	MP1A	Z	-1.49	5.83
64	MP1A	Mx	0	5.83
65	MP1B	Z	-1.49	.17
66	MP1B	Mx	.001	.17
67	MP1B	Z	-1.49	5.83
68	MP1B	Mx	.001	5.83
69	MP1C	Z	-1.49	.17
70	MP1C	Mx	001	.17
71	MP1C	Z	-1.49	5.83
72	MP1C	Mx	001	5.83

# Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP5A	Х	2.981	.68
2	MP5A	Mx	003	.68
3	MP5A	Х	2.981	6.16
4	MP5A	Mx	003	6.16
5	MP5B	Х	2.981	.68
6	MP5B	Mx	000661	.68
7	MP5B	Х	2.981	6.16
8	MP5B	Mx	000661	6.16
9	MP5C	Х	2.981	.68
10	MP5C	Mx	.003	.68
11	MP5C	Х	2.981	6.16



# Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]	
12	MP5C	Mx	.003	6.16	
13	MP5A	X	2.981	.68	
14	MP5A	Mx	003	.68	
15	MP5A	X	2.981	6.16	
16	MP5A	Mx	003	6.16	
17	MP5B	X	2.981	.68	
18	MP5B	Mx	.004	.68	
19	MP5B	X	2.981	6.16	
20	MP5B	Mx	.004	6.16	
21	MP5C	X	2.981	.68	
22	MP5C	Mx	001	.68	
23	MP5C	Х	2.981	6.16	
24	MP5C	Mx	001	6.16	
25	MP3A	Х	5.644	.62	
26	MP3A	Mx	006	.62	
27	MP3A	Х	5.644	2.55	
28	MP3A	Mx	006	2.55	
29	MP3B	X	5.644	.62	
30	MP3B	Mx	.003	.62	
31	MP3B	X	5.644	2.55	
32	MP3B	Mx	003	2.55	
33	MP3C	X	5 644	62	
34	MP3C	Mx	002	62	
35	MP3C	X	5 644	2.55	
36	MP3C	Mx	002	2.55	
37	MP44	X	4 841	3.25	
38	MP4A	My	003	3.25	
30	MP4A	VIA V	4 841	3.25	
40	MP4A	My	4.041	3.25	
40	MP4A MD4B		.005	3.25	
41		My	4.041	2.25	
42			002	2.25	
43		My	4.041	2.25	
44			002	2.25	
40		A Max	4.041	3.25	
40			001	3.25	
47	MP4C	A Max	4.041	3.25	
40			001	3.25	
49	MD2A	A NAV	4.355	3.20	
50	MP3A	IVIX	.003	3.20	
51	MD2A	A Max	4.555	3.20	
52	MD2D		.003	3.25	
53	MD3D	Ă My	4.000	3.20	
54	MD3D	IVIX	002	3.25	
50	IVIP3B	A NAV	4.000	3.25	
50	MP3B	IVIX	002	3.25	
5/	MP3C	X NA:	4.000	3.25	
58	MP3C	IVIX	001	3.25	
59	MP3C	X	4.555	3.25	
60	MP3C	IVIX	001	3.25	
61	MP1A	X	1.49	.1/	
62	MP1A	IVIX	001	.1/	
63	MP1A	X	1.49	5.83	
64	MP1A	Mx	001	5.83	
65	MP1B	X	1.49	.17	
66	MP1B	Mx	.000745	.17	
67	MP1B	X	1.49	5.83	
68	MP1B	Mx	.000745	5.83	
RISA-3D Version 17.0.4 [C:\\\\\\\\\Model Files\467920-VZW_MT_LO_H.r3d] Page 89					

## Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
69	MP1C	Х	1.49	.17
70	MP1C	Mx	.000745	.17
71	MP1C	Х	1.49	5.83
72	MP1C	Mx	.000745	5.83

#### Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Y	-7.28	-7.28	0	%100
2	A2	Y	-7.28	-7.28	0	%100
3	A5	Y	-4.741	-4.741	0	%100
4	A6	Y	-6.271	-6.271	0	%100
5	A7	Y	-4.741	-4.741	0	%100
6	A8	Y	-4.741	-4.741	0	%100
7	B26	Y	-7.28	-7.28	0	%100
8	B27	Y	-7.28	-7.28	0	%100
9	B30	Y	-4.741	-4.741	0	%100
10	B31	Y	-6.271	-6.271	0	%100
11	B32	Y	-4.741	-4.741	0	%100
12	B33	Y	-4.741	-4.741	0	%100
13	B80	Y	-4.741	-4.741	0	%100
14	B81	Y	-4.741	-4.741	0	%100
15	C51	Y	-7.28	-7.28	0	%100
16	C52	Y	-7.28	-7.28	0	%100
17	C55	Y	-4.741	-4.741	0	%100
18	C56	Y	-6.271	-6.271	0	%100
19	C57	Y	-4.741	-4.741	0	%100
20	C58	Y	-4.741	-4.741	0	%100
21	C78	Y	-4.741	-4.741	0	%100
22	C79	Y	-4.741	-4.741	0	%100
23	M76	Y	-4.741	-4.741	0	%100
24	M77	Y	-4.741	-4.741	0	%100
25	MP1A	Y	-4.741	-4.741	0	%100
26	MP1B	Y	-4.741	-4.741	0	%100
27	MP1C	Y	-4.741	-4.741	0	%100
28	MP2A	Y	-4.741	-4.741	0	%100
29	MP2B	Y	-4.741	-4.741	0	%100
30	MP2C	Y	-4.741	-4.741	0	%100
31	MP3A	Y	-4.741	-4.741	0	%100
32	MP3B	Y	-4.741	-4.741	0	%100
33	MP3C	Y	-4.741	-4.741	0	%100
34	MP4A	Y	-4.741	-4.741	0	%100
35	MP4B	Y	-4.741	-4.741	0	%100
36	MP4C	Y	-4.741	-4.741	0	%100
37	MP5A	Y	-5.421	-5.421	0	%100
38	MP5B	Y	-5.421	-5.421	0	%100
39	MP5C	Y	-5.421	-5.421	0	%100
40	M82	Y	-4.741	-4.741	0	%100
41	M83	Y	-4.741	-4.741	0	%100
42	M84	Y	-4 741	-4 741	0	%100

# Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	0	0	0	%100
2	A1	Z	0	0	0	%100
3	A2	Х	0	0	0	%100



### Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
4	A2	Z	0	0	0	%100
5	A5	Х	0	0	0	%100
6	A5	Z	-5.462	-5.462	0	%100
7	A6	Х	0	0	0	%100
8	A6	Z	-8.202	-8.202	0	%100
9	A7	x	0	0	0	%100
10	Δ7	7	-6 679	-6 679	0	%100
11	48	X	0	0	0	%100
12	<u></u>	7	-6 679	-6.679	0	%100
12	 	× ×	-0.073	-0.075	0	%100
14	D20	7	4 746	4 746	0	%100
14	D20		-4.740	-4.740	0	%100
10	D27	~ 7	4 740	1 740	0	%100
10	B2/		-4.740	-4.746	0	%100
1/	B30	X	0	0	0	%100
18	B30	Z	-5.462	-5.462	0	%100
19	B31	X	0	0	0	%100
20	B31	Z	-8.202	-8.202	0	%100
21	B32	Х	0	0	0	%100
22	B32	Z	-1.67	-1.67	0	%100
23	B33	Х	0	0	0	%100
24	B33	Z	-1.67	-1.67	0	%100
25	B80	Х	0	0	0	%100
26	B80	Z	041	041	0	%100
27	B81	X	0	0	0	%100
28	B81	Z	-5.478	-5.478	0	%100
29	C51	x	0	0	0	%100
30	C51	7	-5 587	-5 587	0	%100
31	C52	X	-0.007	-0.507	0	%100
22	C52	7	5 5 8 7	5 5 9 7	0	%100
22	052		-5.567	-5.567	0	%100
33	055	~ 7	E 400		0	%100
34	000		-5.462	-5.462	0	%100
30	050	× 7	0	0	0	%100
30	050		-8.202	-8.202	0	%100
37	<u>C57</u>	X	0	0	0	%100
38	C57		781	781	0	%100
39	C58	X	0	0	0	%100
40	C58	Z	781	781	0	%100
41	C78	X	0	0	0	%100
42	C78	Z	-3.746	-3.746	0	%100
43	C79	X	0	0	0	%100
44	C79	Z	-6.372	-6.372	0	%100
45	M76	Х	0	0	0	%100
46	M76	Z	-5.07	-5.07	0	%100
47	M77	Х	0	0	0	%100
48	M77	Z	175	175	0	%100
49	MP1A	X	0	0	0	%100
50	MP1A	7	-6.679	-6.679	0	%100
51	MP1R	×	0	0	0 0	%100
52	MP1R	7	-6 679	-6 679	0	%100
53	MP1C	x	0	0.070	0	%100
54	MP1C	7	-6 670	-6.679	0	%100
54	MD2A	2 V	-0.079	-0.075	0	0/100
55	MD2A	~ 7	6.670	6.670	0	70 TUU 9/ 100
00	MP2A	<u> </u>	-0.0/9	-0.0/9	0	%100
5/	MP2B	X	0 070	0	0	%100
58	MP2B	<u> </u>	-6.6/9	-6.679	0	%100
59	MP2C	X	0	0	0	%100
60	MP2C	2	-6.679	-6.679	0	%100

RISA-3D Version 17.0.4 [C:\...\...\...\...\...\...\...\...\Model Files\467920-VZW_MT_LO_H.r3d] Page 91



## Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
61	MP3A	Х	0	0	0	%100
62	MP3A	Z	-6.679	-6.679	0	%100
63	MP3B	Х	0	0	0	%100
64	MP3B	Z	-6.679	-6.679	0	%100
65	MP3C	Х	0	0	0	%100
66	MP3C	Z	-6.679	-6.679	0	%100
67	MP4A	Х	0	0	0	%100
68	MP4A	Z	-6.679	-6.679	0	%100
69	MP4B	Х	0	0	0	%100
70	MP4B	Z	-6.679	-6.679	0	%100
71	MP4C	Х	0	0	0	%100
72	MP4C	Z	-6.679	-6.679	0	%100
73	MP5A	Х	0	0	0	%100
74	MP5A	Z	-8.085	-8.085	0	%100
75	MP5B	Х	0	0	0	%100
76	MP5B	Z	-8.085	-8.085	0	%100
77	MP5C	Х	0	0	0	%100
78	MP5C	Z	-8.085	-8.085	0	%100
79	M82	Х	0	0	0	%100
80	M82	Z	025	025	0	%100
81	M83	Х	0	0	0	%100
82	M83	Z	-5.669	-5.669	0	%100
83	M84	X	0	0	0	%100
84	M84	Z	-4.795	-4.795	0	%100

# Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	.791	.791	0	%100
2	A1	Z	-1.37	-1.37	0	%100
3	A2	Х	.791	.791	0	%100
4	A2	Z	-1.37	-1.37	0	%100
5	A5	Х	2.731	2.731	0	%100
6	A5	Z	-4.73	-4.73	0	%100
7	A6	Х	4.101	4.101	0	%100
8	A6	Z	-7.103	-7.103	0	%100
9	A7	Х	2.505	2.505	0	%100
10	A7	Z	-4.338	-4.338	0	%100
11	A8	Х	2.505	2.505	0	%100
12	A8	Z	-4.338	-4.338	0	%100
13	B26	Х	3.164	3.164	0	%100
14	B26	Z	-5.48	-5.48	0	%100
15	B27	Х	3.164	3.164	0	%100
16	B27	Z	-5.48	-5.48	0	%100
17	B30	Х	2.731	2.731	0	%100
18	B30	Z	-4.73	-4.73	0	%100
19	B31	Х	4.101	4.101	0	%100
20	B31	Z	-7.103	-7.103	0	%100
21	B32	Х	0	0	0	%100
22	B32	Z	0	0	0	%100
23	B33	Х	0	0	0	%100
24	B33	Z	0	0	0	%100
25	B80	Х	.767	.767	0	%100
26	B80	Z	-1.329	-1.329	0	%100
27	B81	Х	3.318	3.318	0	%100
28	B81	Z	-5.747	-5.747	0	%100
29	C51	X	1.307	1.307	0	%100



# Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
30	C51	Z	-2.264	-2.264	0	%100
31	C52	Х	1.307	1.307	0	%100
32	C52	Z	-2.264	-2.264	0	%100
33	C55	Х	2.731	2.731	0	%100
34	C55	Z	-4.73	-4.73	0	%100
35	C56	x	4.101	4,101	0	%100
36	C56	7	-7 103	-7 103	Ő	%100
37	C57	X	1 96	1 96	0	%100
38	C57	7	-3 394	-3 394	0	%100
30	C58	X	1.96	1 96	0	%100
40	C58	7	3 304	2 204	0	%100
40	0.00	×	2 204	2 204	0	%100
41	C70	7	5.204	5.204	0	%100
42	070		-5.55	-0.00	0	%100
43	C79	× 7	1.823	2.159	0	%100
44	079		-3.158	-3.158	0	%100
45	IVI76	X	.922	.922	0	%100
46	M76	Z	-1.597	-1.597	0	%100
47	M77	X	1.124	1.124	0	%100
48	M77	Z	-1.946	-1.946	0	<u>%100</u>
49	MP1A	X	3.339	3.339	0	%100
50	MP1A	Z	-5.784	-5.784	0	%100
51	MP1B	Х	3.339	3.339	0	%100
52	MP1B	Z	-5.784	-5.784	0	%100
53	MP1C	X	3.339	3.339	0	%100
54	MP1C	Z	-5.784	-5.784	0	%100
55	MP2A	Х	3.339	3.339	0	%100
56	MP2A	Z	-5.784	-5.784	0	%100
57	MP2B	Х	3.339	3.339	0	%100
58	MP2B	Z	-5.784	-5.784	0	%100
59	MP2C	Х	3.339	3.339	0	%100
60	MP2C	Z	-5.784	-5.784	0	%100
61	MP3A	X	3.339	3.339	0	%100
62	MP3A	Z	-5.784	-5.784	0	%100
63	MP3B	x	3.339	3,339	0	%100
64	MP3B	7	-5 784	-5 784	0	%100
65	MP3C	X	3 339	3 339	0	%100
66	MP3C	7	-5 784	-5 784	0	%100
67	MP4A	X	3 330	3 339	0	%100
68	MP4A	7	-5 784	-5 784	0	%100
69	MP/R	X	3 330	3 330	0	%100
70	MP/R	7	-5 78/	-5 784	0	%100
70	MD4C	Z V	2 220	3 330	0	0/100
72	MD4C	~ 7	5.333	5.339	0	0/ 100
72	MD5A		-5.764	-5.764	0	%100
73	MD5A	~ 7	4.043	4.043	0	%100
74			-7.002	-7.002	0	%100
75	MP5B	X	4.043	4.043	0	%100
76	MP5B	<u> </u>	-7.002	-7.002	0	%100
11	MP5C	X	4.043	4.043	0	%100
/8	MP5C	Z	-7.002	-7.002	0	%100
/9	M82	X	1.017	1.017	0	%100
80	M82	Z	-1.761	-1.761	0	%100
81	M83	X	3.288	3.288	0	%100
82	M83	Z	-5.695	-5.695	0	%100
83	M84	Х	.831	.831	0	%100
84	M84	Z	-1.439	-1.439	0	%100



## Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

1	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1		4.11	4.11	0	%100
2	A1		-2.373	-2.575	0	9/ 100
3	A2		4.11	4.11	0	%100
4	AZ		-2.373	-2.373	0	%100
0	AD		4.73	4.73	0	%100
7	A5		7 102	7 102	0	<u> </u>
1	AO		7.103	7.103	0	%100
0	A0		-4.101	-4.101	0	%100
10	A7		025	025	0	%100
11	A7		035	033	0	%100
12	AO		025	025	0	%100
12	Ao		035	033	0	%100
14	B20		4.11	4.11	0	%100
14	D20		-2.373	-2.373	0	%100
10	B27	7	4.11	4.11	0	%100
17	B20		-2.373	-2.373	0	%100
10	B30		4.75	4.75	0	%100
10	B30	Z V	7 103	7 103	0	%100
20	B31	7	-/ 101	-1 101	0	%100
20	D01		-4.101	-4.101	0	0/100
21	 	7	025	925	0	%100
22	D02		035	030	0	%100
23	 		925	925	0	%100
24	<u>D</u> 00		035	055	0	%100
20	D00		4.201	4.201	0	%100
20	D0U		-2.425	-2.420	0	%100
21			3.803	3.905	0	%100
20	DOT		-2.202	-2.202	0	%100
29	C51		.105	.105	0	%100
21	051		095	095	0	%100
22	C52		.105	.105	0	%100
32	C55		095	095	0	%100
34	C55	7	2 731	2 721	0	%100
35	<u> </u>		7 103	7 103	0	%100
36	C56	7	1.105	1.103	0	%100
37	<u> </u>		5.61	-4.101	0	%100
30	C57	7	3 230	3 220	0	%100
30	058	Z Y	5.200	5.209	0	%100
40	C58	7	_3.01	-2.220	0	%100
40	C78	X	5 213	5 213	0	%100
42	C78	7	_3.01	-3.01	0	%100
43	C79	×	521	531	0	%100
44	C79	7	- 307	- 307	0	%100
45	M76	x	197	197	0	%100
46	M76	7	- 114	- 114	0	%100
47	M77	x	4 744	4 744	0	%100
48	M77	7	-2 739	-2 739	0	%100
49	MP1A	x	5.784	5.784	0	%100
50	MP1A	7	-3,339	-3,339	Õ	%100
51	MP1B	x	5,784	5.784	0	%100
52	MP1B	7	-3 339	-3 339	0	%100
53	MP1C	x	5 784	5 784	0	%100
54	MP1C	7	-3,339	-3,339	Ő	%100
55	MP2A	x	5.784	5.784	0	%100
56	MP2A	7	-3,339	-3,339	Õ	%100
57	MP2B	x	5 784	5 784	0	%100
- 51			0.704	0.704	V	70100

RISA-3D Version 17.0.4 [C:\...\...\...\...\...\...\...\...\Model Files\467920-VZW_MT_LO_H.r3d] Page 94



# Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
58	MP2B	Z	-3.339	-3.339	0	%100
59	MP2C	X	5.784	5.784	0	%100
60	MP2C	Z	-3.339	-3.339	0	%100
61	MP3A	X	5.784	5.784	0	%100
62	MP3A	Z	-3.339	-3.339	0	%100
63	MP3B	X	5.784	5.784	0	%100
64	MP3B	Z	-3.339	-3.339	0	%100
65	MP3C	Х	5.784	5.784	0	%100
66	MP3C	Z	-3.339	-3.339	0	%100
67	MP4A	Х	5.784	5.784	0	%100
68	MP4A	Z	-3.339	-3.339	0	%100
69	MP4B	Х	5.784	5.784	0	%100
70	MP4B	Z	-3.339	-3.339	0	%100
71	MP4C	Х	5.784	5.784	0	%100
72	MP4C	Z	-3.339	-3.339	0	%100
73	MP5A	X	7.002	7.002	0	%100
74	MP5A	Z	-4.043	-4.043	0	%100
75	MP5B	X	7.002	7.002	0	%100
76	MP5B	Z	-4.043	-4.043	0	%100
77	MP5C	Х	7.002	7.002	0	%100
78	MP5C	Z	-4.043	-4.043	0	%100
79	M82	X	4.632	4.632	0	%100
80	M82	Z	-2.674	-2.674	0	%100
81	M83	X	3.678	3.678	0	%100
82	M83	Z	-2.123	-2.123	0	%100
83	M84	X	.002	.002	0	%100
84	M84	Z	000927	000927	0	%100

# Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	6.327	6.327	0	%100
2	A1	Z	0	0	0	%100
3	A2	Х	6.327	6.327	0	%100
4	A2	Z	0	0	0	%100
5	A5	Х	5.462	5.462	0	%100
6	A5	Z	0	0	0	%100
7	A6	Х	8.202	8.202	0	%100
8	A6	Z	0	0	0	%100
9	A7	Х	0	0	0	%100
10	A7	Z	0	0	0	%100
11	A8	Х	0	0	0	%100
12	A8	Z	0	0	0	%100
13	B26	Х	1.582	1.582	0	%100
14	B26	Z	0	0	0	%100
15	B27	Х	1.582	1.582	0	%100
16	B27	Z	0	0	0	%100
17	B30	Х	5.462	5.462	0	%100
18	B30	Z	0	0	0	%100
19	B31	Х	8.202	8.202	0	%100
20	B31	Z	0	0	0	%100
21	B32	Х	5.009	5.009	0	%100
22	B32	Z	0	0	0	%100
23	B33	Х	5.009	5.009	0	%100
24	B33	Z	0	0	0	%100
25	B80	X	6.674	6.674	0	%100
26	B80	Z	0	0	0	%100



## Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
27	B81	Х	1.334	1.334	0	%100
28	B81	Z	0	0	0	%100
29	C51	X	.74	.74	0	%100
30	C51	Z	0	0	0	%100
31	C52	Х	.74	.74	0	%100
32	C52	Z	0	0	0	%100
33	C55	Х	5.462	5.462	0	%100
34	C55	Z	0	0	0	%100
35	C56	X	8,202	8,202	0	%100
36	C56	7	0	0	0	%100
37	C57	X	5 898	5 898	0	%100
38	C57	7	0	0	0	%100
39	C58	X	5 898	5 898	0	%100
40	C58	7	0	0	0	%100
40	C78	X	2 969	2 969	0	%100
12	C78	7	2.505	2.505	0	%100
42	C70	× ×	308	308	0	%100
43	C79	~ 7	.500	.500	0	%100
44	M76		1 926	1 926	0	%100
40	MZC		1.030	1.030	0	70 TUU 0/ 100
40	10170		0	0	0	%100
47		× 7	6.636	6.636	0	%100
48	M//	<u> </u>	0	0	0	%100
49	MP1A	X	6.679	6.679	0	%100
50	MP1A		0	0	0	%100
51	MP1B	X	6.679	6.679	0	%100
52	MP1B	Z	0	0	0	%100
53	MP1C	X	6.679	6.679	0	%100
54	MP1C	Z	0	0	0	%100
55	MP2A	X	6.679	6.679	0	%100
56	MP2A	Z	0	0	0	%100
57	MP2B	Х	6.679	6.679	0	%100
58	MP2B	Z	0	0	0	%100
59	MP2C	Х	6.679	6.679	0	%100
60	MP2C	Z	0	0	0	%100
61	MP3A	Х	6.679	6.679	0	%100
62	MP3A	Z	0	0	0	%100
63	MP3B	Х	6.679	6.679	0	%100
64	MP3B	Z	0	0	0	%100
65	MP3C	Х	6.679	6.679	0	%100
66	MP3C	Z	0	0	0	%100
67	MP4A	Х	6.679	6.679	0	%100
68	MP4A	Z	0	0	0	%100
69	MP4B	Х	6.679	6.679	0	%100
70	MP4B	Z	0	0	0	%100
71	MP4C	X	6.679	6.679	0	%100
72	MP4C	Z	0	0	0	%100
73	MP5A	x	8.085	8.085	0	%100
74	MP5A	7	0	0	Ő	%100
75	MP5B	×	8.085	8.085	0	%100
76	MP5B	7	0	0	Ő	%100
77	MP5C	×	8 085	8 085	0	%100
78	MP5C	7	0.000	0.000	0	%100
70	M82	X	6 654	6 654	0	%100
80	M82	7	0.004	0.004	0	%100
0	M83	×	1.01	1 01	0	%100
01	MQ2	~ 7	1.01	0	0	0/100
02	NIO3	Z V	1 175	1 475	0	0/ 100
03	10104	<b>∧</b>	1.470	1.470	U	70100

 RISA-3D Version 17.0.4
 [C:\...\...\...\...\...\...\...\...\Model Files\467920-VZW_MT_LO_H.r3d]
 Page 96



#### Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
84	M84	Z	0	0	0	%100

# Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	4.11	4.11	0	%100
2	A1	Z	2.373	2.373	0	%100
3	A2	Х	4.11	4.11	0	%100
4	A2	Z	2.373	2.373	0	%100
5	A5	Х	4.73	4.73	0	%100
6	A5	Z	2.731	2.731	0	%100
7	A6	X	7.103	7.103	0	%100
8	A6	Z	4,101	4,101	0	%100
9	A7	X	1 446	1 446	0	%100
10	A7	Z	835	.835	0	%100
11	A8	x	1 446	1 446	0	%100
12	A8	7	835	835	0	%100
13	B26	X	0	0	0	%100
14	B26	7	0	0	0	%100
15	B27	X	0	0	0	%100
16	B27	7	0	0	0	%100
17	B30	× ×	4 73	4.73	0	%100
18	B30	7	2 731	2 731	0	%100
10	B31	X	7 103	7 103	0	%100
20	B31	7	1.103	1.103	0	%100
20	 	×	5 794	5 794	0	%100
21	 	7	2 220	3.704	0	%100
22	<u> </u>		5.339	5.339	0	%100
23	<u>D00</u>	~ 7	3.764	3.704	0	%100
24	<u> </u>		3.339	3.339	0	%100
25	B80	× 7	4.480	4.480	0	%100
26	B80	<u> </u>	2.59	2.59	0	%100
27	B81	× 7	.152	.152	0	%100
28	B01		.088	.088	0	%100
29	051	X	3.216	3.216	0	%100
30	051		1.857	1.857	0	%100
31	052	X	3.216	3.216	0	%100
32	052	<u> </u>	1.857	1.857	0	%100
33	055	X	4.73	4.73	0	%100
34	<u>C55</u>	<u> </u>	2.731	2.731	0	%100
35	C56	X	7.103	7.103	0	%100
36	0.56	<u> </u>	4.101	4.101	0	%100
37	057	X	2.39	2.39	0	%100
38	<u>C57</u>	<u> </u>	1.38	1.38	0	%100
39	<u>C58</u>	X	2.39	2.39	0	%100
40	<u>C58</u>	<u> </u>	1.38	1.38	0	%100
41	<u>C78</u>	X	.265	.265	0	%100
42	C78	Z	.153	.153	0	<u>%100</u>
43	C79	X	2.628	2.628	0	%100
44	C79	Z	1.517	1.517	0	<u>%100</u>
45	M76	X	4.384	4.384	0	%100
46	M76	Z	2.531	2.531	0	%100
47	M77	X	3.953	3.953	0	%100
48	M77	Z	2.282	2.282	0	%100
49	MP1A	X	5.784	5.784	0	%100
50	MP1A	Z	3.339	3.339	0	%100
51	MP1B	Х	5.784	5.784	0	%100
52	MP1B	Z	3.339	3.339	0	%100



# Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
53	MP1C	Х	5.784	5.784	0	%100
54	MP1C	Z	3.339	3.339	0	%100
55	MP2A	Х	5.784	5.784	0	%100
56	MP2A	Z	3.339	3.339	0	%100
57	MP2B	Х	5.784	5.784	0	%100
58	MP2B	Z	3.339	3.339	0	%100
59	MP2C	Х	5.784	5.784	0	%100
60	MP2C	Z	3.339	3.339	0	%100
61	MP3A	Х	5.784	5.784	0	%100
62	MP3A	Z	3.339	3.339	0	%100
63	MP3B	Х	5.784	5.784	0	%100
64	MP3B	Z	3.339	3.339	0	%100
65	MP3C	Х	5.784	5.784	0	%100
66	MP3C	Z	3.339	3.339	0	%100
67	MP4A	Х	5.784	5.784	0	%100
68	MP4A	Z	3.339	3.339	0	%100
69	MP4B	Х	5.784	5.784	0	%100
70	MP4B	Z	3.339	3.339	0	%100
71	MP4C	Х	5.784	5.784	0	%100
72	MP4C	Z	3.339	3.339	0	%100
73	MP5A	Х	7.002	7.002	0	%100
74	MP5A	Z	4.043	4.043	0	%100
75	MP5B	Х	7.002	7.002	0	%100
76	MP5B	Z	4.043	4.043	0	%100
77	MP5C	Х	7.002	7.002	0	%100
78	MP5C	Z	4.043	4.043	0	%100
79	M82	Х	4.023	4.023	0	%100
80	M82	Z	2.323	2.323	0	%100
81	M83	X	.089	.089	0	%100
82	M83	Z	.051	.051	0	%100
83	M84	Х	3.991	3.991	0	%100
84	M84	Z	2.304	2.304	0	%100

# Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	.791	.791	0	%100
2	A1	Z	1.37	1.37	0	%100
3	A2	Х	.791	.791	0	%100
4	A2	Z	1.37	1.37	0	%100
5	A5	Х	2.731	2.731	0	%100
6	A5	Z	4.73	4.73	0	%100
7	A6	Х	4.101	4.101	0	%100
8	A6	Z	7.103	7.103	0	%100
9	A7	Х	2.505	2.505	0	%100
10	A7	Z	4.338	4.338	0	%100
11	A8	Х	2.505	2.505	0	%100
12	A8	Z	4.338	4.338	0	%100
13	B26	Х	.791	.791	0	%100
14	B26	Z	1.37	1.37	0	%100
15	B27	Х	.791	.791	0	%100
16	B27	Z	1.37	1.37	0	%100
17	B30	Х	2.731	2.731	0	%100
18	B30	Z	4.73	4.73	0	%100
19	B31	Х	4.101	4.101	0	%100
20	B31	Z	7.103	7.103	0	%100
21	B32	X	2.505	2.505	0	%100



## Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
22	B32	Z	4.338	4.338	0	%100
23	B33	X	2.505	2.505	0	%100
_24	B33	Z	4.338	4.338	0	<u>%100</u>
25	<u>B80</u>	X	.932	.932	0	%100
26	B80	Z	1.615	1.615	0	%100
27	B81	X	1.124	1.124	0	%100
28	<u>B81</u>	Z	1.946	1.946	0	<u>%100</u>
29	<u>C51</u>	X	3.068	3.068	0	%100
30	C51	Z	5.314	5.314	0	%100
31	C52	X	3.068	3.068	0	%100
32	C52	Z	5.314	5.314	0	%100
33	<u>C55</u>	X	2.731	2.731	0	%100
34	<u>C55</u>	Z	4.73	4.73	0	%100
35	C56	X	4.101	4.101	0	%100
36	C56	Z	7.103	7.103	0	%100
37	<u>C57</u>	X	.101	.101	0	%100
38	C57	Z	.174	.174	0	%100
39	C58	X	.101	.101	0	%100
40	C58	Z	.174	.174	0	%100
41	C78	X	.347	.347	0	%100
42	C78	Z	.602	.602	0	%100
43	C79	X	3.033	3.033	0	%100
44	C79	Z	5.254	5.254	0	%100
45	M76	X	3.339	3.339	0	%100
46	M76	Z	5.784	5.784	0	%100
47	M77	X	.667	.667	0	%100
48	M77	Z	1.155	1.155	0	%100
49	MP1A	X	3.339	3.339	0	%100
50	MP1A	Z	5.784	5.784	0	%100
51	MP1B	X	3.339	3.339	0	%100
52	MP1B	Z	5.784	5.784	0	%100
53	MP1C	X	3.339	3.339	0	%100
54	MP1C	Z	5.784	5.784	0	%100
55	MP2A	X	3.339	3.339	0	%100
56	MP2A	Z	5.784	5.784	0	%100
57	MP2B	X	3.339	3.339	0	%100
58	MP2B	Z	5.784	5.784	0	%100
59	MP2C	X	3.339	3.339	0	%100
60	MP2C	Z	5.784	5.784	0	%100
61	MP3A	X	3.339	3.339	0	%100
62	MP3A	Z	5.784	5.784	0	%100
63	MP3B	X	3.339	3.339	0	%100
64	MP3B	Z	5.784	5.784	0	%100
65	MP3C	X	3.339	3.339	0	%100
66	MP3C	Z	5.784	5.784	0	%100
67	MP4A	X	3.339	3.339	0	%100
68	MP4A	Z	5.784	5.784	0	%100
69	MP4B	Х	3.339	3.339	0	%100
70	MP4B	Z	5.784	5.784	0	%100
71	MP4C	Х	3.339	3.339	0	%100
72	MP4C	Z	5.784	5.784	0	%100
73	MP5A	X	4.043	4.043	0	%100
74	MP5A	Z	7.002	7.002	0	%100
75	MP5B	Х	4.043	4.043	0	%100
76	MP5B	Z	7.002	7.002	0	%100
77	MP5C	Х	4.043	4.043	0	%100
78	MP5C	Z	7.002	7.002	0	%100

 RISA-3D Version 17.0.4
 [C:\...\...\...\...\...\...\...\...\Model Files\467920-VZW_MT_LO_H.r3d]
 Page 99



## Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
79	M82	X	.665	.665	0	%100
80	M82	Z	1.152	1.152	0	%100
81	M83	Х	1.216	1.216	0	%100
82	M83	Z	2.107	2.107	0	%100
83	M84	Х	3.134	3.134	0	%100
84	M84	Z	5.428	5.428	0	%100

# Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	0	0	0	%100
2	A1	Z	0	0	0	%100
3	A2	Х	0	0	0	%100
4	A2	Z	0	0	0	%100
5	A5	Х	0	0	0	%100
6	A5	Z	5.462	5.462	0	%100
7	A6	Х	0	0	0	%100
8	A6	Z	8.202	8.202	0	%100
9	A7	Х	0	0	0	%100
10	A7	Z	6.679	6.679	0	%100
11	A8	Х	0	0	0	%100
12	A8	Z	6.679	6.679	0	%100
13	B26	X	0	0	0	%100
14	B26	Z	4.746	4.746	0	%100
15	B27	X	0	0	0	%100
16	B27	Z	4.746	4,746	0	%100
17	B30	x	0	0	0	%100
18	B30	7	5 462	5 462	Õ	%100
19	B31	X	0	0	0	%100
20	B31	7	8 202	8 202	0	%100
21	B32	X	0	0	0	%100
22	B32	7	1.67	1 67	0	%100
22	<u>B33</u>	X	0	0	0	%100
24	B33	7	1.67	1.67	0	%100
25	B80		0	1.07	0	%100
20	BOO	~ 7	041	011	0	%100
20			.041	.041	0	%100
21		~ 7	<u> </u>	E 479	0	%100
20			0,470	0.470	0	%100
29	051	~ 7	U	U	0	%100
30	051		5.587	5.587	0	%100
31	052	~ 7	5 507	5.507	0	%100
32	052		5.587	5.587	0	%100
33	000	~ ~	5 400	5 400	0	% 100 % 100
34	050		5.462	5.462	0	%100
35	056	X	0	0	U	%100
30	057		8.202	8.202	0	%100
37	057	X	0	0	0	%100
38	057	Z	.781	./81	0	<u>%100</u>
39	C58	X	0	0	0	%100
40	<u>C58</u>	<u> </u>	.781	./81	0	%100
41	078	X	0	0	0	%100
42	078		3.746	3.746	0	%100
43	C79	X	0	0	0	%100
44	C/9	<u> </u>	6.372	6.3/2	0	%100
45	M76	X	0	0	0	%100
46	M76	Z	5.07	5.07	0	%100
47	M77	X	0	0	0	%100

RISA-3D Version 17.0.4 [C:\...\...\...\...\...\...\...\...\Model Files\467920-VZW_MT_LO_H.r3d] Page 100



## Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
48	M77	Z	.175	.175	0	%100
49	MP1A	Х	0	0	0	%100
50	MP1A	Z	6.679	6.679	0	%100
51	MP1B	Х	0	0	0	%100
52	MP1B	Z	6.679	6.679	0	%100
53	MP1C	Х	0	0	0	%100
54	MP1C	Z	6.679	6.679	0	%100
55	MP2A	Х	0	0	0	%100
56	MP2A	Z	6.679	6.679	0	%100
57	MP2B	Х	0	0	0	%100
58	MP2B	Z	6.679	6.679	0	%100
59	MP2C	Х	0	0	0	%100
60	MP2C	Z	6.679	6.679	0	%100
61	MP3A	Х	0	0	0	%100
62	MP3A	Z	6.679	6.679	0	%100
63	MP3B	Х	0	0	0	%100
64	MP3B	Z	6.679	6.679	0	%100
65	MP3C	Х	0	0	0	%100
66	MP3C	Z	6.679	6.679	0	%100
67	MP4A	Х	0	0	0	%100
68	MP4A	Z	6.679	6.679	0	%100
69	MP4B	Х	0	0	0	%100
70	MP4B	Z	6.679	6.679	0	%100
71	MP4C	Х	0	0	0	%100
72	MP4C	Z	6.679	6.679	0	%100
73	MP5A	Х	0	0	0	%100
74	MP5A	Z	8.085	8.085	0	%100
75	MP5B	Х	0	0	0	%100
76	MP5B	Z	8.085	8.085	0	%100
77	MP5C	Х	0	0	0	%100
78	MP5C	Z	8.085	8.085	0	%100
79	M82	Х	0	0	0	%100
80	M82	Z	.025	.025	0	%100
81	M83	Х	0	0	0	%100
82	M83	Z	5.669	5.669	0	%100
83	M84	Х	0	0	0	%100
84	M84	Z	4.795	4.795	0	%100

# Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	791	791	0	%100
2	A1	Z	1.37	1.37	0	%100
3	A2	Х	791	791	0	%100
4	A2	Z	1.37	1.37	0	%100
5	A5	Х	-2.731	-2.731	0	%100
6	A5	Z	4.73	4.73	0	%100
7	A6	Х	-4.101	-4.101	0	%100
8	A6	Z	7.103	7.103	0	%100
9	A7	Х	-2.505	-2.505	0	%100
10	A7	Z	4.338	4.338	0	%100
11	A8	Х	-2.505	-2.505	0	%100
12	A8	Z	4.338	4.338	0	%100
13	B26	Х	-3.164	-3.164	0	%100
14	B26	Z	5.48	5.48	0	%100
15	B27	Х	-3.164	-3.164	0	%100
16	B27	Z	5.48	5.48	0	%100



## Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
17	B30	X	-2.731	-2.731	0	%100
18	B30	Z	4.73	4.73	0	%100
19	B31	X	-4.101	-4.101	0	%100
20	B31	Z	7.103	7.103	0	%100
21	B32	X	0	0	0	%100
22	B32	Z	0	0	0	%100
23	B33	X	0	0	0	%100
_24	B33	Z	0	0	0	%100
25	B80	X	767	767	0	%100
26	B80	Z	1.329	1.329	0	%100
27	B81	Х	-3.318	-3.318	0	%100
28	B81	Z	5.747	5.747	0	%100
29	C51	Х	-1.307	-1.307	0	%100
30	C51	Z	2.264	2.264	0	%100
31	C52	X	-1.307	-1.307	0	%100
32	C52	Z	2.264	2.264	0	%100
33	C55	Х	-2.731	-2.731	0	%100
34	C55	Z	4.73	4.73	0	%100
35	C56	Х	-4.101	-4.101	0	%100
36	C56	Z	7.103	7.103	0	%100
37	C57	Х	-1.96	-1.96	0	%100
38	C57	Z	3.394	3.394	0	%100
39	C58	Х	-1.96	-1.96	0	%100
40	C58	Z	3.394	3.394	0	%100
41	C78	X	-3.204	-3.204	0	%100
42	C78	7	5.55	5.55	0	%100
43	C79	x	-1.823	-1.823	0	%100
44	C79	7	3 158	3 158	0	%100
45	M76	x	- 922	- 922	0	%100
46	M76	7	1 597	1 597	0	%100
40	M77	X	-1 124	-1 124	0	%100
48	M77	7	1 946	1 946	0	%100
40	MP1A	X	-3 339	-3 339	0	%100
50	MD1A	7	5 784	5 784	0	%100
51	MD1R	× ×	3 330	3 3 3 0	0	%100
52	MD1R	7	5 794	5 794	0	%100
52			3.764	2 2 2 0	0	<u> </u>
53	MD1C	~ 7	-3.339	-3.339	0	9/ 100
54	MPIC		2,220	0.764	0	%100
50		∧ 	-3.339	-3.339	0	%100
57	MD2D		0.784	0.784	0	%100
5/	MD2D	~ 7	-3.339	-3.339	0	% 100
50	MD2C		0.784	0.784	0	%100
09	MD2C	∧ 	-3.339	-3.339	0	% IUU 9/ 100
00	MP2C	Z V	0.784	0.784	0	%100
61	MP3A	× 7	-3.339	-3.339	0	%100
62	MP3A		5.784	5.784	0	%100
63	MP3B	X	-3.339	-3.339	0	%100
64	MP3B	2	5.784	5.784	0	%100
65	MP3C	X	-3.339	-3.339	0	%100
66	MP3C	<u> </u>	5.784	5.784	0	%100
67	MP4A	X	-3.339	-3.339	0	%100
68	MP4A	2	5.784	5.784	0	%100
69	MP4B	X	-3.339	-3.339	0	%100
70	MP4B	Z	5.784	5.784	0	%100
71	MP4C	X	-3.339	-3.339	0	%100
72	MP4C	Z	5.784	5.784	0	%100
73	MP5A	X	-4.043	-4.043	0	%100
RIS	A-3D Version	17.0.4	[C:\\\\	.\\\Model Files\467	7920-VZW_MT_LO_I	H.r3d] Page 102



# Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
74	MP5A	Z	7.002	7.002	0	%100
75	MP5B	Х	-4.043	-4.043	0	%100
76	MP5B	Z	7.002	7.002	0	%100
77	MP5C	Х	-4.043	-4.043	0	%100
78	MP5C	Z	7.002	7.002	0	%100
79	M82	Х	-1.017	-1.017	0	%100
80	M82	Z	1.761	1.761	0	%100
81	M83	Х	-3.288	-3.288	0	%100
82	M83	Z	5.695	5.695	0	%100
83	M84	Х	831	831	0	%100
84	M84	Z	1.439	1.439	0	%100

# Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	-4.11	-4.11	0	%100
2	A1	Z	2.373	2.373	0	%100
3	A2	Х	-4.11	-4.11	0	%100
4	A2	Z	2.373	2.373	0	%100
5	A5	Х	-4.73	-4.73	0	%100
6	A5	Z	2.731	2.731	0	%100
7	A6	Х	-7.103	-7.103	0	%100
8	A6	Z	4.101	4.101	0	%100
9	A7	Х	-1.446	-1.446	0	%100
10	A7	Z	.835	.835	0	%100
11	A8	Х	-1.446	-1.446	0	%100
12	A8	Z	.835	.835	0	%100
13	B26	Х	-4.11	-4.11	0	%100
14	B26	Z	2.373	2.373	0	%100
15	B27	Х	-4.11	-4.11	0	%100
16	B27	Z	2.373	2.373	0	%100
17	B30	Х	-4.73	-4.73	0	%100
18	B30	Z	2.731	2.731	0	%100
19	B31	Х	-7.103	-7.103	0	%100
20	B31	Z	4.101	4.101	0	%100
21	B32	Х	-1.446	-1.446	0	%100
22	B32	Z	.835	.835	0	%100
23	B33	Х	-1.446	-1.446	0	%100
24	B33	Z	.835	.835	0	%100
25	B80	Х	-4.201	-4.201	0	%100
26	B80	Z	2.425	2.425	0	%100
27	B81	Х	-3.953	-3.953	0	%100
28	B81	Z	2.282	2.282	0	%100
29	C51	Х	165	165	0	%100
30	C51	Z	.095	.095	0	%100
31	C52	Х	165	165	0	%100
32	C52	Z	.095	.095	0	%100
33	C55	Х	-4.73	-4.73	0	%100
34	C55	Z	2.731	2.731	0	%100
35	C56	Х	-7.103	-7.103	0	%100
36	C56	Z	4.101	4.101	0	%100
37	C57	Х	-5.61	-5.61	0	%100
38	C57	Z	3.239	3.239	0	%100
39	C58	Х	-5.61	-5.61	0	%100
40	C58	Z	3.239	3.239	0	%100
41	C78	Х	-5.213	-5.213	0	%100
42	C78	Z	3.01	3.01	0	%100



## Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
43	C79	Х	531	531	0	%100
44	C79	Z	.307	.307	0	%100
45	M76	Х	197	197	0	%100
46	M76	Z	.114	.114	0	%100
47	M77	Х	-4.744	-4.744	0	%100
48	M77	Z	2.739	2.739	0	%100
49	MP1A	Х	-5.784	-5.784	0	%100
50	MP1A	Z	3.339	3.339	0	%100
51	MP1B	Х	-5.784	-5.784	0	%100
52	MP1B	Z	3.339	3.339	0	%100
53	MP1C	Х	-5.784	-5.784	0	%100
54	MP1C	Z	3.339	3.339	0	%100
55	MP2A	Х	-5.784	-5.784	0	%100
56	MP2A	Z	3.339	3.339	0	%100
57	MP2B	Х	-5.784	-5.784	0	%100
58	MP2B	Z	3.339	3.339	0	%100
59	MP2C	Х	-5.784	-5.784	0	%100
60	MP2C	Z	3.339	3.339	0	%100
61	MP3A	Х	-5.784	-5.784	0	%100
62	MP3A	Z	3.339	3.339	0	%100
63	MP3B	Х	-5.784	-5.784	0	%100
64	MP3B	Z	3.339	3.339	0	%100
65	MP3C	Х	-5.784	-5.784	0	%100
66	MP3C	Z	3.339	3.339	0	%100
67	MP4A	Х	-5.784	-5.784	0	%100
68	MP4A	Z	3.339	3.339	0	%100
69	MP4B	Х	-5.784	-5.784	0	%100
70	MP4B	Z	3.339	3.339	0	%100
71	MP4C	Х	-5.784	-5.784	0	%100
72	MP4C	Z	3.339	3.339	0	%100
73	MP5A	Х	-7.002	-7.002	0	%100
74	MP5A	Z	4.043	4.043	0	%100
75	MP5B	Х	-7.002	-7.002	0	%100
76	MP5B	Z	4.043	4.043	0	%100
77	MP5C	Х	-7.002	-7.002	0	%100
78	MP5C	Z	4.043	4.043	0	%100
79	M82	Х	-4.632	-4.632	0	%100
80	M82	Z	2.674	2.674	0	%100
81	M83	Х	-3.678	-3.678	0	%100
82	M83	Z	2.123	2.123	0	%100
83	M84	Х	002	002	0	%100
84	M84	Z	.000927	.000927	0	%100

# Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	-6.327	-6.327	0	%100
2	A1	Z	0	0	0	%100
3	A2	Х	-6.327	-6.327	0	%100
4	A2	Z	0	0	0	%100
5	A5	Х	-5.462	-5.462	0	%100
6	A5	Z	0	0	0	%100
7	A6	Х	-8.202	-8.202	0	%100
8	A6	Z	0	0	0	%100
9	A7	Х	0	0	0	%100
10	A7	Z	0	0	0	%100
11	A8	Х	0	0	0	%100



### Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

10	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
12	A8	<u> </u>	0	0	0	%100
13	B26	X	-1.582	-1.582	0	%100
14	<u>B26</u>	<u> </u>	0	0	0	%100
15	B27	X	-1.582	-1.582	0	%100
16	B27	Z	0	0	0	%100
17	B30	X	-5.462	-5.462	0	%100
18	<u>B30</u>	<u> </u>	0	0	0	%100
19	B31	X	-8.202	-8.202	0	%100
20	B31	Z	0	0	0	%100
21	B32	X	-5.009	-5.009	0	%100
22	B32	Z	0	0	0	%100
23	B33	X	-5.009	-5.009	0	%100
24	B33	Z	0	0	0	%100
25	B80	Х	-6.674	-6.674	0	%100
26	B80	Z	0	0	0	%100
27	B81	Х	-1.334	-1.334	0	%100
28	B81	Z	0	0	0	%100
29	C51	Х	74	74	0	%100
30	C51	Z	0	0	0	%100
31	C52	Х	74	74	0	%100
32	C52	Z	0	0	0	%100
33	C55	Х	-5.462	-5.462	0	%100
34	C55	Z	0	0	0	%100
35	C56	Х	-8.202	-8.202	0	%100
36	C56	Z	0	0	0	%100
37	C57	Х	-5.898	-5.898	0	%100
38	C57	Z	0	0	0	%100
39	C58	Х	-5.898	-5.898	0	%100
40	C58	Z	0	0	0	%100
41	C78	X	-2,969	-2,969	0	%100
42	C78	Z	0	0	0	%100
43	C79	X	308	308	0	%100
44	C79	Z	0	0	0	%100
45	M76	x	-1.836	-1.836	0	%100
46	M76	7	0	0	0	%100
47	M77	x	-6 636	-6 636	0	%100
48	M77	7	0	0	0	%100
49	MP1A	X	-6 679	-6 679	0	%100
50	MP1A	7	0	0	0	%100
51	MP1B	X	-6 679	-6 679	0	%100
52	MP1B	7	0	0	0	%100
53	MP1C	x	-6 679	-6 679	0	%100
54	MP1C	7	0	0	0	%100
55	MP2A	x	-6 679	-6 679	0	%100
56	MP2A	7	0.070	0	0	%100
57	MP2R	×	-6 679	-6 679	0	%100
58	MP2B	7	-0.075	-0.075	0	%100
59	MP2C	X	-6 679	-6.679	0	%100
60	MP2C	7	-0.075	-0.079	0	%100
61	MP3A	X	-6 670	-6 679	0	%100
62	MD3A	7	-0.073	0.078	0	%100
63	MD3B	X	-6 679	-6 679	0	%100
64	MD2D		-0.079	-0.079	0	0/ 100
65	MD2C		6 670	6.670	0	0/100
00	MD2C	~ 7	-0.0/9	-0.0/9	0	% IUU 9/ 100
67	MD4A		6 670	6.670	0	% 100 9/ 100
0/		~ 7	-0.0/9	-0.0/9	0	%100
80	MP4A	2	U	U	U	%100

 RISA-3D Version 17.0.4
 [C:\...\...\...\...\...\...\...\...\Model Files\467920-VZW_MT_LO_H.r3d]
 Page 105



## Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
69	MP4B	Х	-6.679	-6.679	0	%100
70	MP4B	Z	0	0	0	%100
71	MP4C	Х	-6.679	-6.679	0	%100
72	MP4C	Z	0	0	0	%100
73	MP5A	Х	-8.085	-8.085	0	%100
74	MP5A	Z	0	0	0	%100
75	MP5B	Х	-8.085	-8.085	0	%100
76	MP5B	Z	0	0	0	%100
77	MP5C	Х	-8.085	-8.085	0	%100
78	MP5C	Z	0	0	0	%100
79	M82	Х	-6.654	-6.654	0	%100
80	M82	Z	0	0	0	%100
81	M83	Х	-1.01	-1.01	0	%100
82	M83	Z	0	0	0	%100
83	M84	Х	-1.475	-1.475	0	%100
84	M84	Z	0	0	0	%100

#### Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	-4.11	-4.11	0	%100
2	A1	Z	-2.373	-2.373	0	%100
3	A2	Х	-4.11	-4.11	0	%100
4	A2	Z	-2.373	-2.373	0	%100
5	A5	Х	-4.73	-4.73	0	%100
6	A5	Z	-2.731	-2.731	0	%100
7	A6	Х	-7.103	-7.103	0	%100
8	A6	Z	-4.101	-4.101	0	%100
9	A7	Х	-1.446	-1.446	0	%100
10	A7	Z	835	835	0	%100
11	A8	Х	-1.446	-1.446	0	%100
12	A8	Z	835	835	0	%100
13	B26	Х	0	0	0	%100
14	B26	Z	0	0	0	%100
15	B27	Х	0	0	0	%100
16	B27	Z	0	0	0	%100
17	B30	Х	-4.73	-4.73	0	%100
18	B30	Z	-2.731	-2.731	0	%100
19	B31	Х	-7.103	-7.103	0	%100
20	B31	Z	-4.101	-4.101	0	%100
21	B32	Х	-5.784	-5.784	0	%100
22	B32	Z	-3.339	-3.339	0	%100
23	B33	Х	-5.784	-5.784	0	%100
24	B33	Z	-3.339	-3.339	0	%100
25	B80	Х	-4.486	-4.486	0	%100
26	B80	Z	-2.59	-2.59	0	%100
27	B81	Х	152	152	0	%100
28	B81	Z	088	088	0	%100
29	C51	Х	-3.216	-3.216	0	%100
30	C51	Z	-1.857	-1.857	0	%100
31	C52	Х	-3.216	-3.216	0	%100
32	C52	Z	-1.857	-1.857	0	%100
33	C55	Х	-4.73	-4.73	0	%100
34	C55	Z	-2.731	-2.731	0	%100
35	C56	Х	-7.103	-7.103	0	%100
36	C56	Z	-4.101	-4.101	0	%100
37	C57	Х	-2.39	-2.39	0	%100



### Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

38         C57         Z         -1.38         -1.38         0         %100           40         C58         X         -2.39         -2.39         0         %100           41         C78         X         -265         -265         0         %100           42         C78         Z         -153         -153         0         %100           43         C79         X         -2.628         -2.628         0         %100           44         C79         Z         -1.517         -1.517         0         %100           45         M76         X         -4.384         -4.384         0         %100           46         M76         Z         -2.531         -2.5231         0         %100           47         M77         X         -3.953         -3.953         0         %100           50         MP1A         Z         -3.339         -3.339         0         %100           51         MP1B         Z         -5.784         -5.784         0         %100           53         MP1C         X         -5.784         -5.784         0         %100           53		Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
39         C58         X         -2.39         -2.39         0         %100           40         C58         Z         -1.38         -1.38         0         %1100           41         C78         X         -265         0         %1100           42         C78         Z         -153         -155         0         %1100           44         C79         X         -2628         -2628         0         %1100           44         C79         Z         -2.531         -2.521         0         %1100           45         M76         X         -4.384         -4.384         0         %1100           46         M77         X         -3.953         -3.353         0         %1100           47         M77         X         -5.784         -5.784         0         %1100           50         MP1A         X         -5.784         -5.784         0         %1100           53         MP1C         Z         -3.339         -3.339         0         %100           54         MP1C         Z         -3.339         -3.339         0         %100           56         MP2A	38	C57	Z	-1.38	-1.38	0	%100
40       C58       Z       -1.38       -1.38       0       %100         41       C78       X      285       .265       0       %100         43       C79       X      2628      2628       0       %100         43       C79       Z      1517       0       %100         44       C79       Z      1517       0       %100         45       M76       X      4.384      4.384       0       %100         46       M76       Z      2.531       0       %100         47       M77       X      3.953      3.3953       0       %100         48       M77       Z      2.282      2.282      2.282       0       %100         50       MP1A       X      5.784      5.784       0       %100         51       MP1B       Z      3.339      3.339       0       %100         53       MP1C       X      5.784      5.784       0       %100         55       MP2A       X      5.784      5.784       0       %100         56       MP2A       Z<	39	C58	X	-2.39	-2.39	0	%100
41         C78         X        265         0         %100           42         C78         Z        153         .153         0         %100           44         C79         X        2628         2.2628         0         %100           44         C79         Z         -1.517         -1.517         0         %100           45         M76         X         -4.384         -4.384         0         %100           46         M76         Z         -2.531         -2.531         0         %100           47         M77         X         -3.953         -3.953         0         %100           48         M77         Z         -2.282         -2.282         0         %100           50         MP1A         Z         -5.784         -5.784         0         %100           51         MP1B         Z         -3.339         -3.339         0         %100           52         MP1B         Z         -5.784         -5.784         0         %100           53         MP2A         Z         -3.339         -3.339         0         %100           56         MP2A	40	C58	Z	-1.38	-1.38	0	%100
42       C78       Z      153      153       0       %100         43       C79       Z      1517       .1517       0       %100         44       C79       Z      1.517       .1.517       0       %100         45       M76       X      4.384      4.384       0       %100         46       M76       Z      2.531       0       %100         47       M77       X      3.953      3.953       0       %100         48       M77       Z      2.282      2.282       0       %100         50       MP1A       Z      5.784      5.784       0       %100         51       MP1B       Z      5.784      5.784       0       %100         53       MP1C       Z      5.784      5.784       0       %100         54       MP1C       Z      5.784      5.784       0       %100         56       MP2A       Z      5.784      5.784       0       %100         56       MP2A       Z      5.784      5.784       0       %100         60	41	C78	X	265	265	0	%100
43       C79       X       -2.628       0       %100         44       C79       Z       -1.517       -1.517       0       %100         45       M76       X       -4.384       -4.384       0       %100         46       M76       Z       -2.631       -2.521       0       %100         47       M77       X       -3.953       -3.953       0       %100         48       M77       Z       -2.282       -2.282       0       %100         49       M71A       X       -5.784       -5.784       0       %100         50       MP1A       Z       -3.339       -3.339       0       %100         51       MP1B       Z       -5.784       -5.784       0       %100         52       MP1B       Z       -3.339       -3.339       0       %100         53       MP1C       Z       -5.784       -5.784       0       %100         56       MP2A       Z       -3.339       -3.339       0       %100         58       MP2B       Z       -5.784       -5.784       0       %100         59       MP2C <td>42</td> <td>C78</td> <td>Z</td> <td>153</td> <td>153</td> <td>0</td> <td>%100</td>	42	C78	Z	153	153	0	%100
44         C79         Z         -1.517         -1.517         0         %100           45         M76         X         -4.384         -4.384         0         %100           46         M76         Z         -2.831         -2.531         0         %100           47         M77         X         -3.953         -3.953         0         %100           48         M77         Z         -2.282         -2.282         0         %100           50         MP1A         X         -5.784         -5.784         0         %100           51         MP1B         X         -5.784         -5.784         0         %100           53         MP1C         X         -5.784         -5.784         0         %100           54         MP1C         Z         -3.339         -3.339         0         %100           56         MP2A         X         -5.784         -5.784         0         %100           56         MP2A         Z         -3.339         -3.339         0         %100           57         MP2B         X         -5.784         -5.784         0         %100 <td< td=""><td>43</td><td>C79</td><td>Х</td><td>-2.628</td><td>-2.628</td><td>0</td><td>%100</td></td<>	43	C79	Х	-2.628	-2.628	0	%100
45M76X-4.384-4.3840%10046M76Z-2.531-2.5310%10047M77X-3.953-3.9530%10048M77Z-2.282-2.2820%10050MP1AX-5.784-5.7840%10051MP1BZ-3.339-3.3390%10052MP1BZ-3.339-3.3390%10053MP1CX-5.784-5.7840%10054MP1CZ-3.339-3.3390%10055MP2AX-5.784-5.7840%10056MP2AZ-3.339-3.3390%10056MP2AZ-3.339-3.3390%10057MP2BX-5.784-5.7840%10058MP2CX-5.784-5.7840%10060MP2CZ-3.339-3.3390%10061MP3AX-5.784-5.7840%10062MP3AZ-3.339-3.3390%10063MP3BX-5.784-5.7840%10064MP3BZ-3.339-3.3390%10065MP3CX-5.784-5.7840%10066MP3CX-5.784-5.7840%10067MP4A </td <td>44</td> <td>C79</td> <td>Z</td> <td>-1.517</td> <td>-1.517</td> <td>0</td> <td>%100</td>	44	C79	Z	-1.517	-1.517	0	%100
46M76Z-2.531-2.5310 $\%100$ 47M77X-3.953-3.9530 $\%100$ 48M77Z-2.282-2.2820 $\%100$ 49MP1AX-5.784-5.7840 $\%100$ 50MP1AZ-3.339-3.3390 $\%100$ 51MP1BX-5.784-5.7840 $\%100$ 52MP1BZ-3.339-3.3390 $\%100$ 53MP1CX-5.784-5.7840 $\%100$ 54MP1CZ-3.339-3.3390 $\%100$ 55MP2AX-5.784-5.7840 $\%100$ 56MP2AZ-3.339-3.3390 $\%100$ 57MP2BX-5.784-5.7840 $\%100$ 58MP2CX-5.784-5.7840 $\%100$ 59MP2CX-5.784-5.7840 $\%100$ 61MP3AX-5.784-5.7840 $\%100$ 63MP3BX-5.784-5.7840 $\%100$ 64MP3BZ-3.339-3.3390 $\%100$ 65MP3CZ-3.339-3.3390 $\%100$ 66MP3CZ-3.339-3.3390 $\%100$ 67MP3BZ-5.784-5.7840 $\%100$ 68MP3AZ-5.784-5.7840 <t< td=""><td>45</td><td>M76</td><td>Х</td><td>-4.384</td><td>-4.384</td><td>0</td><td>%100</td></t<>	45	M76	Х	-4.384	-4.384	0	%100
47         M77         X         -3.953         -3.953         0         %100           48         M77         Z         -2.282         -2.282         0         %100           50         MP1A         X         -5.784         -5.784         0         %100           51         MP1B         X         -5.784         0         %100           52         MP1B         Z         -3.339         0         %100           53         MP1C         X         -5.784         -5.784         0         %100           54         MP1C         Z         -3.339         -3.339         0         %100           56         MP2A         X         -5.784         -5.784         0         %100           56         MP2A         X         -5.784         -5.784         0         %100           57         MP2B         X         -5.784         -5.784         0         %100           58         MP2C         X         -5.784         -5.784         0         %100           60         MP2A         Z         -3.339         -3.339         0         %100           61         MP3A         X </td <td>46</td> <td>M76</td> <td>Z</td> <td>-2.531</td> <td>-2.531</td> <td>0</td> <td>%100</td>	46	M76	Z	-2.531	-2.531	0	%100
48         M77         Z         -2.282         -2.282         0         %100           49         MP1A         X         -5.784         -5.784         0         %100           50         MP1A         Z         -3.339         -3.339         0         %100           51         MP1B         X         -5.784         -5.784         0         %100           52         MP1C         X         -5.784         -5.784         0         %100           53         MP1C         Z         -3.339         -3.339         0         %100           54         MP1C         Z         -5.784         -5.784         0         %100           56         MP2A         X         -5.784         -5.784         0         %100           56         MP2B         X         -5.784         -5.784         0         %100           57         MP2B         X         -5.784         -5.784         0         %100           60         MP2C         Z         -3.339         -3.339         0         %100           61         MP3A         X         -5.784         -5.784         0         %100	47	M77	Х	-3.953	-3.953	0	%100
49         MP1A         X         -5.784         -5.784         0         %100           50         MP1B         Z         -3.339         -3.339         0         %100           51         MP1B         Z         -3.339         -5.784         0         %100           52         MP1B         Z         -3.339         -5.784         0         %100           53         MP1C         X         -5.784         -5.784         0         %100           54         MP1C         Z         -3.339         -3.339         0         %100           56         MP2A         X         -5.784         -5.784         0         %100           56         MP2B         Z         -3.339         -3.339         0         %100           57         MP2B         Z         -3.339         -3.339         0         %100           58         MP2B         Z         -3.339         -3.339         0         %100           60         MP2C         Z         -3.339         -3.339         0         %100           61         MP3A         X         -5.784         -5.784         0         %100	48	M77	Z	-2.282	-2.282	0	%100
50         MP1A         Z         -3.339         -3.339         0         %100           51         MP1B         X         -5.784         -5.784         0         %6100           52         MP1C         X         -5.784         -5.784         0         %6100           53         MP1C         X         -5.784         -5.784         0         %6100           54         MP1C         Z         -3.339         -3.339         0         %6100           56         MP2A         X         -5.784         -5.784         0         %6100           56         MP2A         Z         -3.339         -3.339         0         %100           56         MP2A         Z         -3.339         -3.339         0         %100           57         MP2B         Z         -5.784         -5.784         0         %100           58         MP2C         X         -5.784         -5.784         0         %100           60         MP3C         Z         -3.339         -3.339         0         %100           61         MP3A         X         -5.784         -5.784         0         %100	49	MP1A	Х	-5.784	-5.784	0	%100
51         MP1B         X         -5.784         -5.784         0         %100           52         MP1C         X         -5.784         -5.784         0         %100           53         MP1C         X         -5.784         -5.784         0         %100           54         MP1C         Z         -3.339         -3.339         0         %100           55         MP2A         X         -5.784         -5.784         0         %100           56         MP2A         Z         -3.339         -3.339         0         %100           56         MP2B         Z         -3.339         -3.339         0         %100           57         MP2B         X         -5.784         -5.784         0         %100           58         MP2B         Z         -3.339         -3.339         0         %100           60         MP2C         Z         -3.339         -3.339         0         %100           61         MP3A         X         -5.784         -5.784         0         %100           63         MP3B         X         -5.784         -5.784         0         %100	50	MP1A	Z	-3.339	-3.339	0	%100
52         MP1B         Z         -3.339         -3.339         0         %100           53         MP1C         X         -5.784         -5.784         0         %100           54         MP1C         Z         -3.339         -3.339         0         %100           55         MP2A         X         -5.784         -5.784         0         %100           56         MP2A         Z         -3.339         0         %100         56           57         MP2B         X         -5.784         -5.784         0         %100           58         MP2C         X         -5.784         -5.784         0         %100           59         MP2C         X         -5.784         -5.784         0         %100           61         MP3A         X         -5.784         -5.784         0         %100           62         MP3A         Z         -3.339         0         %100         6           63         MP3B         X         -5.784         -5.784         0         %100           64         MP3C         X         -5.784         -5.784         0         %100           66 </td <td>51</td> <td>MP1B</td> <td>X</td> <td>-5.784</td> <td>-5.784</td> <td>0</td> <td>%100</td>	51	MP1B	X	-5.784	-5.784	0	%100
53         MP1C         X         -5.784         -5.784         0         %100           54         MP1C         Z         -3.339         -3.339         0         %100           55         MP2A         X         -5.784         -5.784         0         %100           56         MP2A         Z         -3.339         -3.339         0         %100           56         MP2B         X         -5.784         -5.784         0         %100           58         MP2B         Z         -3.339         -3.339         0         %100           59         MP2C         X         -5.784         -5.784         0         %100           60         MP2C         Z         -3.339         -3.339         0         %100           61         MP3A         Z         -3.339         -3.339         0         %100           63         MP3B         X         -5.784         -5.784         0         %100           64         MP3C         X         -5.784         -5.784         0         %100           66         MP3C         Z         -3.339         -3.339         0         %100	52	MP1B	Z	-3.339	-3.339	0	%100
54         MP1C         Z         -3.339         -3.339         0         %100           55         MP2A         X         -5.784         -5.784         0         %100           56         MP2A         Z         -3.339         -3.339         0         %100           57         MP2B         X         -5.784         -5.784         0         %100           58         MP2C         X         -5.784         -5.784         0         %100           59         MP2C         X         -5.784         -5.784         0         %100           60         MP2C         Z         -3.339         -3.339         0         %100           61         MP3A         X         -5.784         -5.784         0         %100           62         MP3A         Z         -3.339         -3.339         0         %100           63         MP3B         Z         -3.339         -3.339         0         %100           64         MP3B         Z         -3.339         -3.339         0         %100           65         MP3C         X         -5.784         -5.784         0         %100	53	MP1C	Х	-5.784	-5.784	0	%100
55         MP2A         X         -5.784         -5.784         0         %100           56         MP2A         Z         -3.339         -3.339         0         %100           57         MP2B         X         -5.784         -5.784         0         %100           58         MP2E         Z         -3.339         0         %100           59         MP2C         X         -5.784         -5.784         0         %100           60         MP2C         Z         -3.339         -3.339         0         %100           61         MP3A         X         -5.784         -5.784         0         %100           62         MP3A         Z         -3.339         -3.339         0         %100           63         MP3B         X         -5.784         -5.784         0         %100           64         MP3B         Z         -3.339         -3.339         0         %100           66         MP3C         X         -5.784         -5.784         0         %100           66         MP4A         Z         -3.339         -3.339         0         %100           67 <td< td=""><td>54</td><td>MP1C</td><td>Z</td><td>-3.339</td><td>-3.339</td><td>0</td><td>%100</td></td<>	54	MP1C	Z	-3.339	-3.339	0	%100
56         MP2A         Z         -3.339         0         %100           57         MP2B         X         -5.784         -5.784         0         %100           58         MP2B         Z         -3.339         0         %100           58         MP2C         X         -5.784         -5.784         0         %100           60         MP2C         Z         -3.339         0         %100           61         MP3A         X         -5.784         -5.784         0         %100           62         MP3A         Z         -3.339         0         %100         63           63         MP3B         X         -5.784         -5.784         0         %100           64         MP3B         Z         -3.339         -3.339         0         %100           65         MP3C         X         -5.784         -5.784         0         %100           66         MP3C         Z         -3.339         -3.339         0         %100           68         MP4A         X         -5.784         -5.784         0         %100           70         MP4E         Z         -3.339 <td>55</td> <td>MP2A</td> <td>X</td> <td>-5.784</td> <td>-5.784</td> <td>0</td> <td>%100</td>	55	MP2A	X	-5.784	-5.784	0	%100
57         MP2B         X         -5.784         -5.784         0         %100           58         MP2C         X         -5.784         -5.784         0         %100           60         MP2C         X         -5.784         -5.784         0         %100           61         MP3A         X         -5.784         -5.784         0         %100           62         MP3A         Z         -3.339         0         %100         6           63         MP3B         Z         -3.339         -5.784         0         %100           63         MP3B         Z         -3.339         0         %100         6           64         MP3B         Z         -3.339         0         %100         6           65         MP3C         X         -5.784         -5.784         0         %100           66         MP3C         Z         -3.339         0         %100         6           67         MP4A         X         -5.784         -5.784         0         %100           68         MP4A         Z         -3.339         -3.339         0         %100           70	56	MP2A	Z	-3.339	-3.339	0	%100
58         MP2B         Z         -3.339         -3.339         0         %100           59         MP2C         X         -5.784         -5.784         0         %100           60         MP2C         Z         -3.339         0         %100           61         MP3A         X         -5.784         0         %100           62         MP3A         Z         -3.339         -3.339         0         %100           63         MP3B         X         -5.784         -5.784         0         %100           64         MP3B         Z         -3.339         -3.339         0         %100           65         MP3C         X         -5.784         -5.784         0         %100           66         MP3C         Z         -3.339         -3.339         0         %100           68         MP4A         X         -5.784         -5.784         0         %100           70         MP4B         Z         -3.339         -3.339         0         %100           71         MP4C         X         -5.784         -5.784         0         %100           72         MP4C         Z	57	MP2B	X	-5.784	-5.784	0	%100
59         MP2C         X         -5.784         -5.784         0         %100           60         MP2C         Z         -3.339         -3.339         0         %100           61         MP3A         X         -5.784         -5.784         0         %100           62         MP3A         Z         -3.339         0         %100         %100           63         MP3B         X         -5.784         -5.784         0         %100           64         MP3B         Z         -3.339         -3.339         0         %100           65         MP3C         X         -5.784         -5.784         0         %100           66         MP3C         Z         -3.339         -3.339         0         %100           67         MP4A         X         -5.784         -5.784         0         %100           68         MP4A         Z         -3.339         -3.339         0         %100           70         MP4B         Z         -3.339         -3.339         0         %100           71         MP4C         X         -5.784         -5.784         0         %100           <	58	MP2B	Z	-3.339	-3.339	0	%100
60         MP2C         Z         -3.339         -3.339         0         %100           61         MP3A         X         -5.784         -5.784         0         %100           62         MP3A         Z         -3.339         -3.339         0         %100           63         MP3B         X         -5.784         -5.784         0         %100           64         MP3B         Z         -3.339         -3.339         0         %100           64         MP3B         Z         -3.339         -3.339         0         %100           65         MP3C         X         -5.784         -5.784         0         %100           66         MP3C         Z         -3.339         -3.339         0         %100           66         MP3C         Z         -3.339         -3.339         0         %100           67         MP4A         X         -5.784         -5.784         0         %100           68         MP4A         Z         -3.339         -3.339         0         %100           70         MP4B         Z         -5.784         -5.784         0         %100	59	MP2C	X	-5.784	-5.784	0	%100
61         MP3A         X         -5.784         -5.784         0         %100           62         MP3A         Z         -3.339         -3.339         0         %100           63         MP3B         X         -5.784         -5.784         0         %100           64         MP3B         Z         -3.339         0         %100         %100           65         MP3C         X         -5.784         -5.784         0         %100           66         MP3C         Z         -3.339         -3.339         0         %100           66         MP3C         Z         -3.339         -3.339         0         %100           67         MP4A         X         -5.784         -5.784         0         %100           68         MP4B         Z         -3.339         -3.339         0         %100           69         MP4B         Z         -5.784         -5.784         0         %100           70         MP4C         X         -5.784         -5.784         0         %100           71         MP4C         Z         -3.339         -3.339         0         %100           <	60	MP2C	Z	-3.339	-3.339	0	%100
62         MP3A         Z         -3.339         -3.339         0         %100           63         MP3B         X         -5.784         -5.784         0         %100           64         MP3B         Z         -3.339         -3.339         0         %100           65         MP3C         X         -5.784         -5.784         0         %100           66         MP3C         Z         -3.339         0         %100         6           67         MP4A         X         -5.784         -5.784         0         %100           68         MP4A         Z         -3.339         -3.339         0         %100           69         MP4B         X         -5.784         -5.784         0         %100           70         MP4B         Z         -3.339         -3.339         0         %100           71         MP4C         X         -5.784         -5.784         0         %100           72         MP4C         Z         -3.339         -3.339         0         %100           73         MP5A         X         -7.002         -7.002         0         %100	61	MP3A	X	-5.784	-5.784	0	%100
63         MP3B         X         -5.784         -5.784         0         %100           64         MP3B         Z         -3.339         -3.339         0         %100           65         MP3C         X         -5.784         -5.784         0         %100           66         MP3C         Z         -3.339         -3.339         0         %100           67         MP4A         X         -5.784         -5.784         0         %100           68         MP4A         Z         -3.339         0         %100         %100           69         MP4B         X         -5.784         -5.784         0         %100           70         MP4B         Z         -3.339         0         %100         %100           71         MP4C         X         -5.784         -5.784         0         %100           71         MP4C         Z         -3.339         -3.339         0         %100           73         MP5A         X         -7.002         -7.002         0         %100           74         MP5A         Z         -4.043         -4.043         0         %100 <td< td=""><td>62</td><td>MP3A</td><td>Z</td><td>-3.339</td><td>-3.339</td><td>0</td><td>%100</td></td<>	62	MP3A	Z	-3.339	-3.339	0	%100
64         MP3B         Z         -3.339         -3.339         0         %100           65         MP3C         X         -5.784         -5.784         0         %100           66         MP3C         Z         -3.339         -3.339         0         %100           67         MP4A         X         -5.784         -5.784         0         %100           68         MP4A         Z         -3.339         -3.339         0         %100           69         MP4B         X         -5.784         -5.784         0         %100           70         MP4B         Z         -3.339         -3.339         0         %100           71         MP4C         X         -5.784         -5.784         0         %100           72         MP4C         X         -5.784         -5.784         0         %100           73         MP5A         X         -7.002         0         %100         %100           74         MP5A         Z         -4.043         -4.043         0         %100           75         MP5B         X         -7.002         -7.002         0         %100           <	63	MP3B	X	-5.784	-5.784	0	%100
65         MP3C         X         -5.784         -5.784         -6.784         0         %100           66         MP3C         Z         -3.339         -3.339         0         %100           67         MP4A         X         -5.784         -5.784         0         %100           68         MP4A         Z         -3.339         -3.339         0         %100           69         MP4B         X         -5.784         -5.784         0         %100           70         MP4B         Z         -3.339         -3.339         0         %100           71         MP4C         X         -5.784         -5.784         0         %100           72         MP4C         Z         -3.339         -3.339         0         %100           73         MP5A         X         -7.002         -7.002         0         %100           74         MP5A         Z         -4.043         -4.043         0         %100           76         MP5B         Z         -4.043         -4.043         0         %100           76         MP5C         Z         -4.043         -4.043         0         %100	64	MP3B	Z	-3.339	-3.339	0	%100
66         MP3C         Z         -3.339         -3.339         0         %100           67         MP4A         X         -5.784         -5.784         0         %100           68         MP4A         Z         -3.339         -3.339         0         %100           69         MP4B         X         -5.784         -5.784         0         %100           70         MP4B         Z         -3.339         -3.339         0         %100           71         MP4C         X         -5.784         -5.784         0         %100           72         MP4C         Z         -3.339         -3.339         0         %100           73         MP5A         X         -7.002         -7.002         0         %100           74         MP5A         Z         -4.043         -4.043         0         %100           75         MP5B         X         -7.002         -7.002         0         %100           76         MP5C         Z         -4.043         -4.043         0         %100           78         MP5C         Z         -4.043         -4.023         0         %100	65	MP3C	x	-5.784	-5.784	0	%100
67         MP4A         X         -5.784         -5.784         0         %100           68         MP4A         Z         -3.339         -3.339         0         %100           69         MP4B         X         -5.784         -5.784         0         %100           70         MP4B         Z         -3.339         -3.339         0         %100           71         MP4C         X         -5.784         -5.784         0         %100           72         MP4C         Z         -3.339         -3.339         0         %100           73         MP5A         X         -5.784         -5.784         0         %100           73         MP5A         X         -7.002         0         %100           74         MP5A         Z         -4.043         -4.043         0         %100           75         MP5B         X         -7.002         -7.002         0         %100           76         MP5C         X         -7.002         -7.002         0         %100           78         MP5C         Z         -4.043         -4.043         0         %100           79 <td< td=""><td>66</td><td>MP3C</td><td>Z</td><td>-3.339</td><td>-3.339</td><td>0</td><td>%100</td></td<>	66	MP3C	Z	-3.339	-3.339	0	%100
68         MP4A         Z         -3.339         -3.339         0         %100           69         MP4B         X         -5.784         -5.784         0         %100           70         MP4B         Z         -3.339         -3.339         0         %100           70         MP4B         Z         -3.339         -3.339         0         %100           71         MP4C         X         -5.784         -5.784         0         %100           72         MP4C         Z         -3.339         -3.339         0         %100           73         MP5A         X         -5.784         -5.784         0         %100           73         MP5A         X         -7.002         -7.002         0         %100           74         MP5A         Z         -4.043         -4.043         0         %100           75         MP5B         X         -7.002         -7.002         0         %100           76         MP5C         X         -7.002         -7.002         0         %100           78         MP5C         Z         -4.043         -4.043         0         %100	67	MP4A	x	-5.784	-5.784	0	%100
69         MP4B         X         -5.784         -5.784         0         %100           70         MP4B         Z         -3.339         -3.339         0         %100           71         MP4C         X         -5.784         -5.784         0         %100           72         MP4C         Z         -3.339         -3.339         0         %100           72         MP4C         Z         -3.339         -3.339         0         %100           73         MP5A         X         -7.002         0         %100           74         MP5A         Z         -4.043         -4.043         0         %100           75         MP5B         X         -7.002         0         %100         %100           76         MP5B         Z         -4.043         -4.043         0         %100           77         MP5C         X         -7.002         0         %100         %100           78         MP5C         Z         -4.043         -4.043         0         %100           79         M82         X         -4.023         0         %100           80         M82         Z	68	MP4A	Z	-3.339	-3.339	0	%100
70         MP4B         Z         -3.339         -3.339         0         %100           71         MP4C         X         -5.784         -5.784         0         %100           72         MP4C         Z         -3.339         -3.339         0         %100           73         MP5A         X         -7.002         -7.002         0         %100           74         MP5A         Z         -4.043         -4.043         0         %100           75         MP5B         X         -7.002         -7.002         0         %100           76         MP5B         Z         -4.043         -4.043         0         %100           76         MP5C         X         -7.002         -7.002         0         %100           77         MP5C         X         -7.002         0         %100           78         MP5C         Z         -4.043         -4.043         0         %100           79         M82         X         -4.023         -4.023         0         %100           80         M82         Z         -2.323         -2.323         0         %100           81         M	69	MP4B	X	-5.784	-5.784	0	%100
71         MP4C         X         -5.784         -5.784         0         %100           72         MP4C         Z         -3.339         -3.339         0         %100           73         MP5A         X         -7.002         -7.002         0         %100           74         MP5A         Z         -4.043         -4.043         0         %100           75         MP5B         X         -7.002         -7.002         0         %100           76         MP5B         Z         -4.043         -4.043         0         %100           76         MP5C         X         -7.002         -7.002         0         %100           77         MP5C         X         -7.002         -7.002         0         %100           78         MP5C         Z         -4.043         -4.043         0         %100           79         M82         X         -4.023         -4.023         0         %100           80         M82         Z         -2.323         -2.323         0         %100           81         M83         X        089        089         0         %100	70	MP4B	Z	-3.339	-3.339	0	%100
72         MP4C         Z         -3.339         -3.339         0         %100           73         MP5A         X         -7.002         -7.002         0         %100           74         MP5A         Z         -4.043         -4.043         0         %100           75         MP5B         X         -7.002         -7.002         0         %100           76         MP5B         Z         -4.043         -4.043         0         %100           76         MP5B         Z         -4.043         -4.043         0         %100           77         MP5C         X         -7.002         -7.002         0         %100           78         MP5C         Z         -4.043         -4.043         0         %100           78         MP5C         Z         -4.043         -4.023         0         %100           79         M82         X         -4.023         -4.023         0         %100           80         M82         Z         -2.323         -2.323         0         %100           81         M83         X        051         0         %100           82         M83	71	MP4C	X	-5.784	-5.784	0	%100
73         MP5A         X         -7.002         -7.002         0         %100           74         MP5A         Z         -4.043         -4.043         0         %100           75         MP5B         X         -7.002         -7.002         0         %100           76         MP5B         Z         -4.043         -4.043         0         %100           76         MP5B         Z         -4.043         -4.043         0         %100           77         MP5C         X         -7.002         -7.002         0         %100           78         MP5C         Z         -4.043         -4.043         0         %100           78         MP5C         Z         -4.043         -4.043         0         %100           79         M82         X         -4.023         -4.023         0         %100           80         M82         Z         -2.323         -2.323         0         %100           81         M83         X        089        089         0         %100           82         M83         Z        051         0         %100           83         M84 <td>72</td> <td>MP4C</td> <td>Z</td> <td>-3.339</td> <td>-3.339</td> <td>0</td> <td>%100</td>	72	MP4C	Z	-3.339	-3.339	0	%100
74         MP5A         Z         -4.043         -4.043         0         %100           75         MP5B         X         -7.002         -7.002         0         %100           76         MP5B         Z         -4.043         -4.043         0         %100           76         MP5B         Z         -4.043         -4.043         0         %100           77         MP5C         X         -7.002         -7.002         0         %100           78         MP5C         Z         -4.043         -4.043         0         %100           78         MP5C         Z         -4.043         -4.043         0         %100           79         M82         X         -4.023         -4.023         0         %100           80         M82         Z         -2.323         -2.323         0         %100           81         M83         X        089        089         0         %100           82         M83         Z        051         0         %100           83         M84         X         -3.991         -3.991         0         %100           84         M84 <td>73</td> <td>MP5A</td> <td>x</td> <td>-7.002</td> <td>-7.002</td> <td>0</td> <td>%100</td>	73	MP5A	x	-7.002	-7.002	0	%100
75         MP5B         X         -7.002         -7.002         0         %100           76         MP5B         Z         -4.043         -4.043         0         %100           77         MP5C         X         -7.002         -7.002         0         %100           77         MP5C         X         -7.002         -7.002         0         %100           78         MP5C         Z         -4.043         -4.043         0         %100           79         M82         X         -4.023         -4.023         0         %100           80         M82         Z         -2.323         -2.323         0         %100           81         M83         X        089        089         0         %100           82         M83         Z        051         0         %100           83         M84         X         -3.991         -3.991         0         %100           84         M84         Z         2.304         2.304         0         %100	74	MP5A	Z	-4.043	-4.043	0	%100
76         MP5B         Z         -4.043         -4.043         0         %100           77         MP5C         X         -7.002         -7.002         0         %100           78         MP5C         Z         -4.043         -4.043         0         %100           79         M82         X         -4.023         -4.023         0         %100           80         M82         Z         -2.323         -2.323         0         %100           81         M83         X        089         -089         0         %100           82         M83         Z        051         0         %100           83         M84         X         -3.991         -3.991         0         %100	75	MP5B	X	-7.002	-7.002	0	%100
TO         MAGE         TOOD         Mono         TOOD         Mono         M	76	MP5B	7	-4.043	-4.043	0	%100
78         MP5C         Z         -4.043         -4.043         0         %100           79         M82         X         -4.023         -4.023         0         %100           80         M82         Z         -2.323         -2.323         0         %100           81         M83         X        089        089         0         %100           82         M83         Z        051         0         %100           83         M84         X         -3.991         -3.991         0         %100	77	MP5C	x	-7.002	-7.002	0	%100
79         M82         X         -4.023         -4.023         0         %100           80         M82         Z         -2.323         -2.323         0         %100           81         M83         X        089        089         0         %100           82         M83         Z        051         0         %100           83         M84         X         -3.991         -3.991         0         %100           84         M84         Z         2.304         2.304         0         %100	78	MP5C	Z	-4.043	-4.043	0	%100
No         No<	79	M82	x	-4 023	-4 023	0	%100
81         M83         X        089        089         0         %100           82         M83         Z        051         0         %100           83         M84         X         -3.991         -3.991         0         %100           84         M84         Z         2.304         2.304         0         %100	80	M82	Z	-2.323	-2.323	0	%100
82         M83         Z        051         0         %100           83         M84         X         -3.991         -3.991         0         %100           84         M84         Z         2.304         2.304         0         %100	81	M83	x	089	089	0	%100
83         M84         X         -3.991         -3.991         0         %100           84         M84         Z         2.304         0         %100         %100	82	M83	7	051	051	Ő	%100
	83	M84	x	-3.991	-3.991	Ő	%100
	84	M84	Z	-2.304	-2.304	0	%100

#### Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	791	791	0	%100
2	A1	Z	-1.37	-1.37	0	%100
3	A2	Х	791	791	0	%100
4	A2	Z	-1.37	-1.37	0	%100
5	A5	Х	-2.731	-2.731	0	%100
6	A5	Z	-4.73	-4.73	0	%100



## Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
7	A6	X	-4.101	-4.101	0	%100
8	A6	Z	-7.103	-7.103	0	%100
9	A7	X	-2.505	-2.505	0	%100
10	A7	Z	-4.338	-4.338	0	%100
11	A8	X	-2.505	-2.505	0	%100
12	A8	Z	-4.338	-4.338	0	%100
13	B26	X	791	791	0	%100
14	B26	Z	-1.37	-1.37	0	%100
15	B27	X	791	791	0	%100
16	B27	Z	-1.37	-1.37	0	%100
17	B30	Х	-2.731	-2.731	0	%100
18	B30	Z	-4.73	-4.73	0	%100
19	B31	Х	-4.101	-4.101	0	%100
20	B31	Z	-7.103	-7.103	0	%100
21	B32	Х	-2.505	-2.505	0	%100
22	B32	Z	-4.338	-4.338	0	%100
23	B33	Х	-2.505	-2.505	0	%100
24	B33	Z	-4.338	-4.338	0	%100
25	B80	X	932	932	0	%100
26	B80	Z	-1.615	-1.615	0	%100
27	B81	x	-1.124	-1.124	0	%100
28	B81	7	-1.946	-1.946	Ő	%100
29	C51	x	-3.068	-3.068	0	%100
30	C51	7	-5 314	-5 314	0	%100
31	C52	X	-3.068	-3.068	0	%100
32	C52	7	-5.314	-5 314	0	%100
33	C55	× ×	-2.731	-0.014	0	%100
24	C55	7	4 72	4 72	0	%100
25	055		-4.73	-4.75	0	%100
30	056	~ 7	-4.101	-4.101	0	9/ 100
27	C50		-7.103	-7.103	0	%100
37	C57	7	101	101	0	%100
30	057		174	174	0	%100
39	C58	~ 7	101	101	0	%100
40	070		174	174	0	%100
41	078	X	347	347	0	%100
42	<u> </u>	<u> </u>	602	602	0	<u>%100</u>
43	<u>C79</u>	<u>X</u>	-3.033	-3.033	0	%100
44	<u>C79</u>	<u> </u>	-5.254	-5.254	0	%100
45	M76	X	-3.339	-3.339	0	%100
46	M76	Z	-5.784	-5.784	0	%100
47	M77	X	667	667	0	%100
48	M77	Z	-1.155	-1.155	0	%100
49	MP1A	X	-3.339	-3.339	0	%100
50	MP1A	Z	-5.784	-5.784	0	%100
51	MP1B	X	-3.339	-3.339	0	%100
52	MP1B	Z	-5.784	-5.784	0	%100
53	MP1C	X	-3.339	-3.339	0	%100
54	MP1C	Z	-5.784	-5.784	0	%100
55	MP2A	X	-3.339	-3.339	0	%100
56	MP2A	Z	-5.784	-5.784	0	%100
57	MP2B	X	-3.339	-3.339	0	%100
58	MP2B	Z	-5.784	-5.784	0	%100
59	MP2C	X	-3.339	-3.339	0	%100
60	MP2C	Z	-5.784	-5.784	0	%100
61	MP3A	X	-3.339	-3.339	0	%100
62	MP3A	Z	-5.784	-5.784	0	%100
63	MP3B	X	-3.339	-3.339	0	<u>%100</u>
RIS	A-3D Version	17.0.4	[C:\\\\	.\\\Model Files\467	920-VZW_MT_LO_	H.r3d] Page 108



## Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
64	MP3B	Z	-5.784	-5.784	0	%100
65	MP3C	Х	-3.339	-3.339	0	%100
66	MP3C	Z	-5.784	-5.784	0	%100
67	MP4A	Х	-3.339	-3.339	0	%100
68	MP4A	Z	-5.784	-5.784	0	%100
69	MP4B	Х	-3.339	-3.339	0	%100
70	MP4B	Z	-5.784	-5.784	0	%100
71	MP4C	Х	-3.339	-3.339	0	%100
72	MP4C	Z	-5.784	-5.784	0	%100
73	MP5A	Х	-4.043	-4.043	0	%100
74	MP5A	Z	-7.002	-7.002	0	%100
75	MP5B	Х	-4.043	-4.043	0	%100
76	MP5B	Z	-7.002	-7.002	0	%100
77	MP5C	Х	-4.043	-4.043	0	%100
78	MP5C	Z	-7.002	-7.002	0	%100
79	M82	Х	665	665	0	%100
80	M82	Z	-1.152	-1.152	0	%100
81	M83	Х	-1.216	-1.216	0	%100
82	M83	Z	-2.107	-2.107	0	%100
83	M84	Х	-3.134	-3.134	0	%100
84	M84	Z	-5.428	-5.428	0	%100

# Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	0	0	0	%100
2	A1	Z	0	0	0	%100
3	A2	Х	0	0	0	%100
4	A2	Z	0	0	0	%100
5	A5	Х	0	0	0	%100
6	A5	Z	-1.999	-1.999	0	%100
7	A6	Х	0	0	0	%100
8	A6	Z	-2.702	-2.702	0	%100
9	A7	Х	0	0	0	%100
10	A7	Z	-2.418	-2.418	0	%100
11	A8	Х	0	0	0	%100
12	A8	Z	-2.418	-2.418	0	%100
13	B26	Х	0	0	0	%100
14	B26	Z	-1.511	-1.511	0	%100
15	B27	Х	0	0	0	%100
16	B27	Z	-1.511	-1.511	0	%100
17	B30	Х	0	0	0	%100
18	B30	Z	-1.999	-1.999	0	%100
19	B31	Х	0	0	0	%100
20	B31	Z	-2.702	-2.702	0	%100
21	B32	Х	0	0	0	%100
22	B32	Z	604	604	0	%100
23	B33	Х	0	0	0	%100
24	B33	Z	604	604	0	%100
25	B80	Х	0	0	0	%100
26	B80	Z	015	015	0	%100
27	B81	Х	0	0	0	%100
28	B81	Z	-1.983	-1.983	0	%100
29	C51	X	0	0	0	%100
30	C51	Z	-1.779	-1.779	0	%100
31	C52	X	0	0	0	%100
32	C52	Z	-1.779	-1.779	0	%100


### Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
33	C55	Х	0	0	0	%100
34	C55	Z	-1.999	-1.999	0	%100
35	C56	Х	0	0	0	%100
36	C56	Z	-2.702	-2.702	0	%100
37	C57	Х	0	0	0	%100
38	C57	Z	283	283	0	%100
39	C58	Х	0	0	0	%100
40	C58	Z	283	283	0	%100
41	C78	Х	0	0	0	%100
42	C78	Z	-1.356	-1.356	0	%100
43	C79	X	0	0	0	%100
44	C79	7	-2.307	-2.307	Ő	%100
45	M76	x	0	0	0	%100
46	M76	7	-1.835	-1.835	0	%100
47	M77	X	0	0	0	%100
48	M77	7	- 063	- 063	0	%100
10	MP1A	X	0	0	0	%100
50	MP1A	7	-2 /18	-2 /18	0	%100
51	MD1R	× ×	-2.410	-2.410	0	%100
52	MD1R	7	2 /18	2 / 1 8	0	%100
52	MP1C		-2.410	-2.410	0	%100
53	MP1C	~ 7	2 419	2 4 1 9	0	%100
54	MP2A		-2.410	-2.410	0	%100
55	MP2A	~ 7	2,419	2 4 1 9	0	%100
50	MP2A		-2.410	-2.410	0	%100
57	MP2B	× 7	0	0	0	%100
58	MP2B		-2.418	-2.418	0	%100
59	MP2C	X	0	0	0	%100
60	MP2C		-2.418	-2.418	0	%100
61	MP3A	X	0	0	0	%100
62	MP3A	<u> </u>	-2.418	-2.418	0	%100
63	MP3B	X	0	0	0	%100
64	MP3B	<u> </u>	-2.418	-2.418	0	%100
65	MP3C	X	0	0	0	%100
66	MP3C		-2.418	-2.418	0	<u>%100</u>
67	MP4A	X	0	0	0	%100
68	MP4A	Z	-2.418	-2.418	0	<u>%100</u>
69	MP4B	X	0	0	0	%100
70	MP4B	Z	-2.418	-2.418	0	%100
71	MP4C	X	0	0	0	%100
72	MP4C	Z	-2.418	-2.418	0	%100
73	MP5A	X	0	0	0	%100
74	MP5A	Z	-2.681	-2.681	0	%100
75	MP5B	X	0	0	0	%100
76	MP5B	Z	-2.681	-2.681	0	%100
77	MP5C	X	0	0	0	%100
78	MP5C	Z	-2.681	-2.681	0	%100
79	M82	X	0	0	0	%100
80	M82	Z	009	009	0	%100
81	M83	Х	0	0	0	%100
82	M83	Z	-2.052	-2.052	0	%100
83	M84	Х	0	0	0	%100
84	M84	Z	-1.76	-1.76	0	%100

# Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	.252	.252	0	%100



#### Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
2	A1	Z	436	436	0	%100
3	A2	X	.252	.252	0	%100
4	A2	Z	436	436	0	%100
5	A5	X	1	1	0	%100
6	A5	Z	-1.731	-1.731	0	%100
7	A6	X	1.351	1.351	0	%100
8	A6	Z	-2.34	-2.34	0	%100
9	A7	Х	.907	.907	0	%100
10	A7	Z	-1.57	-1.57	0	%100
11	A8	Х	.907	.907	0	%100
12	A8	Z	-1.57	-1.57	0	%100
13	B26	X	1.008	1.008	0	%100
14	B26	Z	-1.745	-1.745	0	%100
15	B27	X	1.008	1.008	0	%100
16	B27	7	-1.745	-1.745	0	%100
17	B30	x	1	1	0	%100
18	B30	7	-1 731	-1 731	0	%100
19	B31	x	1.351	1.351	0	%100
20	B31	7	-2.34	-2.34	0	%100
21	B32	X	0	0	0	%100
22	B32	7	0	0	0	%100
23	B33	X	0	0	0	%100
24	B33	7	0	0	0	%100
25	B80	x	278	278	0	%100
26	B80	7	- 481	- 481	0	%100
27	B81	x	1 201	1 201	0	%100
28	B81	7	-2.08	-2.08	0	%100
20	C51	X	416	-2.00	0	%100
30	C51	7	- 721	- 721	0	%100
31	C52	× ×	416	416	0	%100
32	C52	7	- 721	. 721	0	%100
32	C55	X	121	121	0	%100
34	C55	7	-1 731	_1 731	0	%100
35	000	X	1 351	1 351	0	%100
36	C56	7	-2.34	-2.34	0	%100
37	C57	X	709	709	0	%100
38	C57	7	-1 229	-1 229	0	%100
30	C58	X	709	709	0	%100
40	C58	7	_1 229	_1 229	0	%100
40	C78	X	1 16	1 16	0	%100
41	C78	7	-2 009	-2 009	0	%100
43	C79	×	66	66	0	%100
40	C79	7	-1 143	-1 143	0	%100
45	M76	x	334	334	0	%100
46	M76	7	- 578	- 578	0	%100
40	M77	X	407	407	0	%100
48	M77	7	- 705	- 705	0	%100
40	MP1A	x	1 209	1 209	0	%100
50	MP1A	7	-2 094	-2 094	0	%100
51	MP1B	x	1 209	1 209	0	%100
52	MP1B	7	-2 094	-2 094	0	%100
53	MP1C	×	1 209	1 209	0	%100
54	MP1C	7	-2 094	-2 094	0	%100
55	MP2A	x	1 209	1 209	0	%100
56	MP2A	7	-2 094	-2 094	0	%100
57	MP2B	x	1 209	1 209	0	%100
58	MP2R	7	-2 094	-2 094	0	%100
00		4	-2.004	-2.004	U	70100

RISA-3D Version 17.0.4 [C:\...\...\...\...\...\...\...\...\Model Files\467920-VZW_MT_LO_H.r3d] Page 111



### Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
59	MP2C	X	1.209	1.209	0	%100
60	MP2C	Z	-2.094	-2.094	0	%100
61	MP3A	X	1.209	1.209	0	%100
62	MP3A	Z	-2.094	-2.094	0	%100
63	MP3B	X	1.209	1.209	0	%100
64	MP3B	Z	-2.094	-2.094	0	%100
65	MP3C	X	1.209	1.209	0	%100
66	MP3C	Z	-2.094	-2.094	0	%100
67	MP4A	Х	1.209	1.209	0	%100
68	MP4A	Z	-2.094	-2.094	0	%100
69	MP4B	Х	1.209	1.209	0	%100
70	MP4B	Z	-2.094	-2.094	0	%100
71	MP4C	Х	1.209	1.209	0	%100
72	MP4C	Z	-2.094	-2.094	0	%100
73	MP5A	Х	1.34	1.34	0	%100
74	MP5A	Z	-2.321	-2.321	0	%100
75	MP5B	X	1.34	1.34	0	%100
76	MP5B	Z	-2.321	-2.321	0	%100
77	MP5C	X	1.34	1.34	0	%100
78	MP5C	Z	-2.321	-2.321	0	%100
79	M82	Х	.368	.368	0	%100
80	M82	Z	638	638	0	%100
81	M83	X	1.19	1.19	0	%100
82	M83	Z	-2.062	-2.062	0	%100
83	M84	X	.305	.305	0	%100
84	M84	7	- 528	- 528	0	%100

# Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	1.309	1.309	0	%100
2	A1	Z	756	756	0	%100
3	A2	Х	1.309	1.309	0	%100
4	A2	Z	756	756	0	%100
5	A5	Х	1.731	1.731	0	%100
6	A5	Z	-1	-1	0	%100
7	A6	Х	2.34	2.34	0	%100
8	A6	Z	-1.351	-1.351	0	%100
9	A7	Х	.523	.523	0	%100
10	A7	Z	302	302	0	%100
11	A8	Х	.523	.523	0	%100
12	A8	Z	302	302	0	%100
13	B26	Х	1.309	1.309	0	%100
14	B26	Z	756	756	0	%100
15	B27	Х	1.309	1.309	0	%100
16	B27	Z	756	756	0	%100
17	B30	Х	1.731	1.731	0	%100
18	B30	Z	-1	-1	0	%100
19	B31	Х	2.34	2.34	0	%100
20	B31	Z	-1.351	-1.351	0	%100
21	B32	Х	.523	.523	0	%100
22	B32	Z	302	302	0	%100
23	B33	Х	.523	.523	0	%100
24	B33	Z	302	302	0	%100
25	B80	Х	1.521	1.521	0	%100
26	B80	Z	878	878	0	%100
27	B81	Х	1.431	1.431	0	%100



### Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

00	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
28	B81		826	826	0	%100
29	<u>C51</u>	X	.053	.053	0	%100
30	051		03	03	0	%100
31	052	X	.053	.053	0	%100
32	C52		03	03	0	%100
33	C55	X	1.731	1.731	0	%100
34	<u>C55</u>	<u> </u>	-1	-1	0	%100
35	<u>C56</u>	X	2.34	2.34	0	%100
36	C56	Z	-1.351	-1.351	0	%100
37	C57	X	2.031	2.031	0	%100
38	C57	Z	-1.172	-1.172	0	%100
39	C58	X	2.031	2.031	0	%100
40	C58	Z	-1.172	-1.172	0	%100
41	C78	X	1.887	1.887	0	%100
42	C78	Z	-1.09	-1.09	0	%100
43	C79	X	.192	.192	0	%100
44	C79	Z	111	111	0	%100
45	M76	X	.071	.071	0	%100
46	M76	Z	041	041	0	%100
47	M77	Х	1.717	1.717	0	%100
48	M77	Z	991	991	0	%100
49	MP1A	Х	2.094	2.094	0	%100
50	MP1A	Z	-1.209	-1.209	0	%100
51	MP1B	Х	2.094	2.094	0	%100
52	MP1B	Z	-1.209	-1.209	0	%100
53	MP1C	Х	2.094	2.094	0	%100
54	MP1C	Z	-1.209	-1.209	0	%100
55	MP2A	X	2.094	2.094	0	%100
56	MP2A	Z	-1.209	-1.209	0	%100
57	MP2B	X	2.094	2.094	0	%100
58	MP2B	Z	-1.209	-1.209	0	%100
59	MP2C	x	2.094	2.094	0	%100
60	MP2C	7	-1.209	-1.209	0	%100
61	MP3A	x	2.094	2.094	0	%100
62	MP3A	7	-1 209	-1 209	0	%100
63	MP3B	x	2 094	2 094	0	%100
64	MP3B	7	-1 209	-1 209	0	%100
65	MP3C	X	2 094	2 094	0	%100
66	MP3C	7	-1 209	-1 209	0	%100
67	MP4A	X	2 094	2 094	0	%100
68	MP4A	7	-1.209	-1.209	0	%100
69	MP4R	x	2 094	2 094	0	%100
70	MP4B	7	-1 209	-1 209	0	%100
71	MP4C	x	2 094	2 094	0	%100
72	MP4C	7	-1 209	-1 209	0	%100
73	MP5A	x	2,321	2 321	0	%100
74	MP5A	7	_1 3/	_1.34	0	%100
75	MP5R	X	2 221	2 3 2 1	0	%100
76	MP5B	7	_1 3/	_1 3/	0	%100
77	MP5C	X	2 221	2 321	0	%100
78	MPSC	7	_1 3/	_1 3/	0	%100
70	M82	X	1 677	1 677	0	%100
80	M82	7	- 968	- 968	0	%100
Q1	MQ2	Z V	300	300	0	0/100
82	Mea	7	- 760	- 760	0	%100
02	NIO3		/09	709	0	%100 %100
03	IVIO4		.000309	.000369	0	0/100
04	10104	2	00034	00034	U	70100



#### Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	X	2.015	2.015	0	%100
2	A1	Z	0	0	0	%100
3	A2	X	2.015	2.015	0	%100
4	A2	Z	0	0	0	%100
5	A5	X	1.999	1.999	0	%100
6	A5	Z	0	0	0	%100
7	A6	Х	2.702	2.702	0	%100
8	A6	Z	0	0	0	%100
9	A7	Х	0	0	0	%100
10	A7	Z	0	0	0	%100
11	A8	Х	0	0	0	%100
12	A8	Z	0	0	0	%100
13	B26	X	.504	.504	0	%100
14	B26	7	0	0	0	%100
15	B27	x	.504	.504	0	%100
16	B27	7	0	0	Ő	%100
17	B30	X	1 999	1 999	0	%100
18	B30	7	0	0	0	%100
19	B31	X	2 702	2 702	0	%100
20	B31	7	0	0	0	%100
21	B32	X	1 813	1 813	0	%100
22	B32	7	1.010	1.010	0	%100
22	B33	× ×	1 813	1 813	0	%100
20	B33	7	1.013	0	0	%100
24	B80	× ×	2 416	2 4 1 6	0	%100
20	80	7	2.410	2.410	0	%100
20	D00		483	492	0	%100
21		~ 7	.403	.403	0	%100
20	001		0	0	0	%100
29	051	~ 7	.230	.230	0	%100
30	050		0	0	0	%100
31	C52	Λ 7	.230	.230	0	%100
<u>32</u>	052		1 000	1 000	0	%100
33	055	~ 7	1.999	1.999	0	%100
34	050		0 700	0 700	0	%100
35	050	X	2.702	2.702	0	%100
36	055		0	0	0	%100
37	057	X	2.135	2.135	0	%100
38	<u>C57</u>	Z	0	0	0	%100
39	C58	X	2.135	2.135	0	%100
40	C58		0	0	0	%100
41	078	X	1.0/5	1.075	0	%100
42	078	Z	0	0	0	%100
43	C79	X	.111	.111	0	%100
44	C79	Z	0	0	0	%100
45	M76	X	.665	.665	0	%100
46	M76	Z	0	0	0	%100
47	M77	X	2.402	2.402	0	%100
48	M77	Z	0	0	0	%100
49	MP1A	X	2.418	2.418	0	%100
50	MP1A	Z	0	0	0	%100
51	MP1B	X	2.418	2.418	0	%100
52	MP1B	Z	0	0	0	%100
53	MP1C	X	2.418	2.418	0	%100
54	MP1C	Z	0	0	0	%100
55	MP2A	X	2.418	2.418	0	%100
56	MP2A	Z	0	0	0	%100
57	MP2B	X	2.418	2.418	0	%100

 RISA-3D Version 17.0.4
 [C:\...\...\...\...\...\...\...\...\Model Files\467920-VZW_MT_LO_H.r3d]
 Page 114



#### Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
58	MP2B	Z	0	0	0	%100
59	MP2C	Х	2.418	2.418	0	%100
60	MP2C	Z	0	0	0	%100
61	MP3A	Х	2.418	2.418	0	%100
62	MP3A	Z	0	0	0	%100
63	MP3B	Х	2.418	2.418	0	%100
64	MP3B	Z	0	0	0	%100
65	MP3C	Х	2.418	2.418	0	%100
66	MP3C	Z	0	0	0	%100
67	MP4A	Х	2.418	2.418	0	%100
68	MP4A	Z	0	0	0	%100
69	MP4B	Х	2.418	2.418	0	%100
70	MP4B	Z	0	0	0	%100
71	MP4C	Х	2.418	2.418	0	%100
72	MP4C	Z	0	0	0	%100
73	MP5A	Х	2.681	2.681	0	%100
74	MP5A	Z	0	0	0	%100
75	MP5B	Х	2.681	2.681	0	%100
76	MP5B	Z	0	0	0	%100
77	MP5C	Х	2.681	2.681	0	%100
78	MP5C	Z	0	0	0	%100
79	M82	Х	2.409	2.409	0	%100
80	M82	Z	0	0	0	%100
81	M83	Х	.365	.365	0	%100
82	M83	Z	0	0	0	%100
83	M84	Х	.541	.541	0	%100
84	M84	Z	0	0	0	%100

# Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	1.309	1.309	0	%100
2	A1	Z	.756	.756	0	%100
3	A2	Х	1.309	1.309	0	%100
4	A2	Z	.756	.756	0	%100
5	A5	Х	1.731	1.731	0	%100
6	A5	Z	1	1	0	%100
7	A6	Х	2.34	2.34	0	%100
8	A6	Z	1.351	1.351	0	%100
9	A7	Х	.523	.523	0	%100
10	A7	Z	.302	.302	0	%100
11	A8	Х	.523	.523	0	%100
12	A8	Z	.302	.302	0	%100
13	B26	Х	0	0	0	%100
14	B26	Z	0	0	0	%100
15	B27	Х	0	0	0	%100
16	B27	Z	0	0	0	%100
17	B30	Х	1.731	1.731	0	%100
18	B30	Z	1	1	0	%100
19	B31	Х	2.34	2.34	0	%100
20	B31	Z	1.351	1.351	0	%100
21	B32	Х	2.094	2.094	0	%100
22	B32	Z	1.209	1.209	0	%100
23	B33	Х	2.094	2.094	0	%100
24	B33	Z	1.209	1.209	0	%100
25	B80	X	1.624	1.624	0	%100
26	B80	Z	.938	.938	0	%100



### Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

27	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
21	B81	7	.033	.033	0	%100
20	D01		1 024	1.024	0	%100
29	C51	~ 7	501	501	0	%100
21	051		1 024	1.024	0	%100
22	052	~ 7	501	F01	0	%100
22	052		1 721	1 721	0	%100
24	C55		1.731	1.731	0	%100
25	055		2.24	2.24	0	%100
36	C56	7	1 251	1 251	0	%100
27	C50		1.331	1.551	0	%100
20	C57		.005	.805	0	%100
20	C59		.499	.499	0	%100
39	C50	~ 7	.005	.005	0	9/ 100
40	0.00		.499	.499	0	%100
41	C70	~ 7	.096	.096	0	%100
42	070		.055	.055	0	%100
43	C79	~ 7	.951	.951	0	%100
44	079 M76				0	%100
40	IVI70	~ 7	010	1.587	0	%100
40	IVI76		.916	.916	0	%100
47	N177	X	1.431	1.431	0	%100
48			.826	.826	0	%100
49	MP1A	X 7	2.094	2.094	0	%100
50	MP1A		1.209	1.209	0	%100
51	MP1B	X	2.094	2.094	0	%100
52	MP1B		1.209	1.209	0	%100
53	MP1C	X	2.094	2.094	0	%100
54	MP1C	Z	1.209	1.209	0	%100
55	MP2A	X	2.094	2.094	0	%100
56	MP2A	Z	1.209	1.209	0	%100
5/	MP2B	X	2.094	2.094	0	%100
58	MP2B	<u> </u>	1.209	1.209	0	%100
59	MP2C	X	2.094	2.094	0	%100
60	MP2C	<u> </u>	1.209	1.209	0	%100
61	MP3A	X	2.094	2.094	0	%100
62	MP3A	<u> </u>	1.209	1.209	0	%100
63	MP3B	X	2.094	2.094	0	%100
64	MP3B	<u> </u>	1.209	1.209	0	%100
65	MP3C	X	2.094	2.094	0	%100
66	MP3C	Z	1.209	1.209	0	%100
6/	MP4A	X	2.094	2.094	0	%100
68	MP4A	Z	1.209	1.209	0	%100
69	MP4B	X	2.094	2.094	0	%100
70	MP4B	Z	1.209	1.209	0	%100
/1	MP4C	X	2.094	2.094	0	%100
72	MP4C		1.209	1.209	0	%100
73	MP5A	X	2.321	2.321	0	%100
74	MP5A	<u> </u>	1.34	1.34	0	%100
<i>/5</i>	MP5B	X	2.321	2.321	0	%100
76	MP5B		1.34	1.34	0	%100
11	MP5C	X	2.321	2.321	0	%100
/8	MP5C	<u> </u>	1.34	1.34	0	%100
79	M82	X	1.456	1.456	0	%100
80	M82		.841	.841	0	%100
81	M83	X	.032	.032	0	%100
82	M83	<u> </u>	.019	.019	0	%100
83	IVI84	X	1.465	1.465	U	%100



#### Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
84	M84	Z	.846	.846	0	%100

### Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	X	.252	.252	0	%100
2	A1	Z	.436	.436	0	%100
3	A2	X	.252	.252	0	%100
4	A2	Z	.436	.436	0	%100
5	A5	Х	1	1	0	%100
6	A5	Z	1.731	1.731	0	%100
7	A6	Х	1.351	1.351	0	%100
8	A6	Z	2.34	2.34	0	%100
9	A7	Х	.907	.907	0	%100
10	A7	Z	1.57	1.57	0	%100
11	A8	Х	.907	.907	0	%100
12	A8	Z	1.57	1.57	0	%100
13	B26	Х	.252	.252	0	%100
14	B26	Z	.436	.436	0	%100
15	B27	Х	.252	.252	0	%100
16	B27	Z	.436	.436	0	%100
17	B30	Х	1	1	0	%100
18	B30	Z	1.731	1.731	0	%100
19	B31	Х	1.351	1.351	0	%100
20	B31	Z	2.34	2.34	0	%100
21	B32	Х	.907	.907	0	%100
22	B32	Z	1.57	1.57	0	%100
23	B33	X	.907	.907	0	%100
24	B33	7	1.57	1.57	Ő	%100
25	B80	x	337	337	<u>0</u>	%100
26	B80	7	584	584	Ő	%100
27	B81	x	407	407	0	%100
28	B81	7	705	705	0	%100
29	C51	x	977	977	<u>0</u>	%100
30	C51	7	1 692	1 692	0	%100
31	C52	X	977	977	0	%100
32	C52	7	1 692	1 692	0	%100
33	C55	X	1	1	0	%100
34	C55	7	1 731	1 731	0	%100
35	C56	X	1 351	1 351	0	%100
36	C56	7	2.34	2.34	0	%100
37	C57	X	036	036	0	%100
38	C57	7	063	063	Ő	%100
39	C58	X	036	036	0	%100
40	C58	7	063	063	0 0	%100
41	C78	×	126	126	0	%100
42	C78	7	218	218	0	%100
43	C79	X	1 098	1.098	0	%100
43	C79	7	1.050	1 902	0	%100
45	M76	X	1 209	1 209	0	%100
46	M76	7	2 00/	2 00/	0	%100
47	M77	X	2.034	2.034	0	%100
19	M77	7	.241	.271	0	%100
40			1 200	1 200	0	%100
<del>4</del> 9 50	MD1A	~ 7	2 004	2 004	0	%100
51		Z V	1 200	2.094	0	%100
51		∧ 7	2.004	2.004	0	% 100 % 100
52	IVIP I B		2.094	2.094	U	70100



### Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
53	MP1C	Х	1.209	1.209	0	%100
54	MP1C	Z	2.094	2.094	0	%100
55	MP2A	Х	1.209	1.209	0	%100
56	MP2A	Z	2.094	2.094	0	%100
57	MP2B	Х	1.209	1.209	0	%100
58	MP2B	Z	2.094	2.094	0	%100
59	MP2C	Х	1.209	1.209	0	%100
60	MP2C	Z	2.094	2.094	0	%100
61	MP3A	Х	1.209	1.209	0	%100
62	MP3A	Z	2.094	2.094	0	%100
63	MP3B	Х	1.209	1.209	0	%100
64	MP3B	Z	2.094	2.094	0	%100
65	MP3C	Х	1.209	1.209	0	%100
66	MP3C	Z	2.094	2.094	0	%100
67	MP4A	Х	1.209	1.209	0	%100
68	MP4A	Z	2.094	2.094	0	%100
69	MP4B	Х	1.209	1.209	0	%100
70	MP4B	Z	2.094	2.094	0	%100
71	MP4C	Х	1.209	1.209	0	%100
72	MP4C	Z	2.094	2.094	0	%100
73	MP5A	Х	1.34	1.34	0	%100
74	MP5A	Z	2.321	2.321	0	%100
75	MP5B	Х	1.34	1.34	0	%100
76	MP5B	Z	2.321	2.321	0	%100
77	MP5C	Х	1.34	1.34	0	%100
78	MP5C	Z	2.321	2.321	0	%100
79	M82	Х	.241	.241	0	%100
80	M82	Z	.417	.417	0	%100
81	M83	Х	.44	.44	0	%100
82	M83	Z	.763	.763	0	%100
83	M84	Х	1.15	1.15	0	%100
84	M84	Z	1,992	1,992	0	%100

# Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	0	0	0	%100
2	A1	Z	0	0	0	%100
3	A2	Х	0	0	0	%100
4	A2	Z	0	0	0	%100
5	A5	Х	0	0	0	%100
6	A5	Z	1.999	1.999	0	%100
7	A6	Х	0	0	0	%100
8	A6	Z	2.702	2.702	0	%100
9	A7	Х	0	0	0	%100
10	A7	Z	2.418	2.418	0	%100
11	A8	Х	0	0	0	%100
12	A8	Z	2.418	2.418	0	%100
13	B26	Х	0	0	0	%100
14	B26	Z	1.511	1.511	0	%100
15	B27	Х	0	0	0	%100
16	B27	Z	1.511	1.511	0	%100
17	B30	Х	0	0	0	%100
18	B30	Z	1.999	1.999	0	%100
19	B31	Х	0	0	0	%100
20	B31	Z	2.702	2.702	0	%100
21	B32	X	0	0	0	%100



#### Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

20	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
22	B32		.604	.604	0	%100
23	D00	∧ 7	604	604	0	%100
24	<u> </u>	Z V	.004	.004	0	%100
20	BOU	~ 7	015	015	0	%100
20			.015	.015	0	%100
21		~ 7	1 092	1 092	0	%100
20	001		1.963	1.903	0	%100
29	051	~ 7	1 770	1 770	0	%100
21	C52	Z V	1.775	1.119	0	%100
22	052	~ 7	1 770	1 770	0	%100
32	C55	Z V	1.775	1.119	0	%100
24	C55	~ 7	1 000	1 000	0	%100
35	<u> </u>	×	1.999	1.555	0	%100
30	C56	~ 7	2 702	2 702	0	%100
37	C57	X	2.702	2.702	0	%100
38	C57	7	283	283	0	%100
30	C58	X	.205	.205	0	%100
40	C58	7	283	283	0	%100
40	C78	×	.285	.205	0	%100
41	C78	7	1 356	1 356	0	%100
42	C70	X	1.350	1.330	0	%100
43	C79	~ 7	2 207	2 307	0	%100
44	M76	× ×	2.307	2.307	0	%100
45	M76	7	1 835	1 835	0	%100
40	M77	X	1.055	1.000	0	%100
47	M77	7	063	063	0	%100
40	MD1A	X	.005	.005	0	%100
50	MD1A	7	2 / 18	2 / 18	0	%100
51		×	2.410	2.410	0	%100
52	MD1B	7	2 / 18	2 / 18	0	%100
53	MP1C	X	2.410	0	0	%100
54	MP1C	7	2 4 1 8	2 4 1 8	0	%100
55	MP2A	X	2.410	2.410	0	%100
56	MP2A	7	2 4 1 8	2 4 1 8	0	%100
57	MP2R	X	2.410	2.410	0	%100
58	MP2B	7	2 4 1 8	2 4 18	0	%100
59	MP2C	X	0	2.410	0	%100
60	MP2C	7	2 4 1 8	2 4 1 8	0	%100
61	MP3A	X	0	0	0	%100
62	MP3A	7	2 418	2 418	0	%100
63	MP3B	×	0	0	0	%100
64	MP3B	Z	2,418	2.418	0	%100
65	MP3C	x	0	0	0	%100
66	MP3C	7	2 4 1 8	2,418	0	%100
67	MP4A	X	0	0	0	%100
68	MP4A	7	2 4 1 8	2,418	0	%100
69	MP4B	X	0	0	0	%100
70	MP4B	Z	2.418	2.418	0	%100
71	MP4C	X	0	0	0	%100
72	MP4C	Z	2,418	2.418	0	%100
73	MP5A	X	0	0	0	%100
74	MP5A	Z	2.681	2.681	0	%100
75	MP5B	X	0	0	0	%100
76	MP5B	Z	2.681	2.681	Ő	%100
77	MP5C	x	0	0	0	%100
78	MP5C	Z	2.681	2.681	0	%100
		_	2.001		~	,,,,,,,

RISA-3D Version 17.0.4 [C:\...\...\...\...\...\...\...\...\Model Files\467920-VZW_MT_LO_H.r3d] Page 119



#### Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
79	M82	Х	0	0	0	%100
80	M82	Z	.009	.009	0	%100
81	M83	Х	0	0	0	%100
82	M83	Z	2.052	2.052	0	%100
83	M84	Х	0	0	0	%100
84	M84	Z	1.76	1.76	0	%100

### Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	A1	Х	252	- 252	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	A1	Z	.436	.436	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	A2	Х	252	252	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	A2	Z	.436	.436	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	A5	Х	-1	-1	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	A5	Z	1.731	1.731	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	A6	Х	-1.351	-1.351	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	A6	Z	2.34	2.34	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	A7	Х	907	907	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	A7	Z	1.57	1.57	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	A8	Х	907	907	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	A8	Z	1.57	1.57	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	B26	Х	-1.008	-1.008	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	B26	Z	1.745	1.745	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	B27	Х	-1.008	-1.008	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	B27	Z	1.745	1.745	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	B30	Х	-1	-1	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	18	B30	Z	1.731	1.731	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	B31	Х	-1.351	-1.351	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	B31	Z	2.34	2.34	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	B32	Х	0	0	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	22	B32	Z	0	0	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23	B33	Х	0	0	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	24	B33	Z	0	0	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	B80	Х	278	278	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	B80	Z	.481	.481	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27	B81	Х	-1.201	-1.201	0	%100
29         C51         X        416        416         0         %100           30         C51         Z         .721         .721         0         %100           31         C52         X        416        416         0         %100           32         C52         Z         .721         .721         0         %100           33         C55         X         -1         -1         0         %100           34         C55         Z         1.731         1.731         0         %100	28	B81	Z	2.08	2.08	0	%100
30         C51         Z         .721         .721         0         %100           31         C52         X        416        416         0         %100           32         C52         Z         .721         .721         0         %100           33         C55         X         -1         -1         0         %100           34         C55         Z         1.731         1.731         0         %100	29	C51	Х	416	416	0	%100
31         C52         X        416        416         0         %100           32         C52         Z         .721         .721         0         %100           33         C55         X         -1         -1         0         %100           34         C55         Z         1.731         1.731         0         %100	30	C51	Z	.721	.721	0	%100
32         C52         Z         .721         0         %100           33         C55         X         -1         -1         0         %100           34         C55         Z         1.731         1.731         0         %100	31	C52	Х	416	416	0	%100
33         C55         X         -1         -1         0         %100           34         C55         Z         1.731         1.731         0         %100	32	C52	Z	.721	.721	0	%100
34 C55 Z 1.731 1.731 0 %100	33	C55	Х	-1	-1	0	%100
	34	C55	Z	1.731	1.731	0	%100
35 C56 X -1.351 -1.351 0 %100	35	C56	Х	-1.351	-1.351	0	%100
36 C56 Z 2.34 2.34 0 %100	36	C56	Z	2.34	2.34	0	%100
37 C57 X709709 0 %100	37	C57	Х	709	709	0	%100
38 C57 Z 1.229 1.229 0 %100	38	C57	Z	1.229	1.229	0	%100
39 C58 X709709 0 %100	39	C58	Х	709	709	0	%100
40 C58 Z 1.229 1.229 0 %100	40	C58	Z	1.229	1.229	0	%100
41 C78 X -1.16 -1.16 0 %100	41	C78	Х	-1.16	-1.16	0	%100
42 C78 Z 2.009 2.009 0 %100	42	C78	Z	2.009	2.009	0	%100
43 C79 X6666 0 %100	43	C79	Х	66	66	0	%100
44 C79 Z 1.143 1.143 0 %100	44	C79	Z	1.143	1.143	0	%100
45 M76 X334334 0 %100	45	M76	Х	334	334	0	%100
46 M76 Z .578 .578 0 %100	46	M76	Z	.578	.578	0	%100
47 M77 X407407 0 %100	47	M77	X	407	407	0	%100



### Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
48	M77	Z	.705	.705	0	%100
49	MP1A	Х	-1.209	-1.209	0	%100
50	MP1A	Z	2.094	2.094	0	%100
51	MP1B	Х	-1.209	-1.209	0	%100
52	MP1B	Z	2.094	2.094	0	%100
53	MP1C	Х	-1.209	-1.209	0	%100
54	MP1C	Z	2.094	2.094	0	%100
55	MP2A	Х	-1.209	-1.209	0	%100
56	MP2A	Z	2.094	2.094	0	%100
57	MP2B	Х	-1.209	-1.209	0	%100
58	MP2B	Z	2.094	2.094	0	%100
59	MP2C	Х	-1.209	-1.209	0	%100
60	MP2C	Z	2.094	2.094	0	%100
61	MP3A	Х	-1.209	-1.209	0	%100
62	MP3A	Z	2.094	2.094	0	%100
63	MP3B	Х	-1.209	-1.209	0	%100
64	MP3B	Z	2.094	2.094	0	%100
65	MP3C	Х	-1.209	-1.209	0	%100
66	MP3C	Z	2.094	2.094	0	%100
67	MP4A	Х	-1.209	-1.209	0	%100
68	MP4A	Z	2.094	2.094	0	%100
69	MP4B	Х	-1.209	-1.209	0	%100
70	MP4B	Z	2.094	2.094	0	%100
71	MP4C	Х	-1.209	-1.209	0	%100
72	MP4C	Z	2.094	2.094	0	%100
73	MP5A	Х	-1.34	-1.34	0	%100
74	MP5A	Z	2.321	2.321	0	%100
75	MP5B	Х	-1.34	-1.34	0	%100
76	MP5B	Z	2.321	2.321	0	%100
77	MP5C	Х	-1.34	-1.34	0	%100
78	MP5C	Z	2.321	2.321	0	%100
79	M82	Х	368	368	0	%100
80	M82	Z	.638	.638	0	%100
81	M83	Х	-1.19	-1.19	0	%100
82	M83	Z	2.062	2.062	0	%100
83	M84	Х	305	305	0	%100
84	M84	Z	.528	.528	0	%100

### Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	-1.309	-1.309	0	%100
2	A1	Z	.756	.756	0	%100
3	A2	Х	-1.309	-1.309	0	%100
4	A2	Z	.756	.756	0	%100
5	A5	Х	-1.731	-1.731	0	%100
6	A5	Z	1	1	0	%100
7	A6	Х	-2.34	-2.34	0	%100
8	A6	Z	1.351	1.351	0	%100
9	A7	Х	523	523	0	%100
10	A7	Z	.302	.302	0	%100
11	A8	Х	523	523	0	%100
12	A8	Z	.302	.302	0	%100
13	B26	Х	-1.309	-1.309	0	%100
14	B26	Z	.756	.756	0	%100
15	B27	Х	-1.309	-1.309	0	%100
16	B27	Z	.756	.756	0	%100



### Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
17	B30	X	-1.731	-1.731	0	%100
18	B30	Z	1	1	0	%100
19	B31	Х	-2.34	-2.34	0	%100
20	B31	Z	1.351	1.351	0	%100
21	B32	Х	523	523	0	%100
22	B32	Z	.302	.302	0	%100
23	B33	X	- 523	- 523	0	%100
24	B33	7	302	302	0	%100
25		X	-1 521	-1 521	0	%100
26	B80	7	878	878	0	%100
20	D00		1 421	1 421	0	%100
21	D01	~ 7	-1.431	-1.431	0	// 100
20			.020	.020	0	%100
29	051	X	053	053	0	%100
30	051	Z	.03	.03	0	%100
31	<u>C52</u>	X	053	053	0	%100
32	C52		.03	.03	0	%100
33	C55	X	-1.731	-1.731	0	%100
34	C55	Z	1	1	0	%100
35	C56	Х	-2.34	-2.34	0	%100
36	C56	Z	1.351	1.351	0	%100
37	C57	Х	-2.031	-2.031	0	%100
38	C57	Z	1.172	1.172	0	%100
39	C58	X	-2.031	-2.031	0	%100
40	C58	Z	1.172	1,172	0	%100
41	C78	X	-1.887	-1.887	0	%100
42	C78	7	1.09	1.09	0	%100
13	C79	X	- 192	- 192	0	%100
40	C79	7	111	111	0	%100
44	M76		.111	.111	0	%100
40		~ 7	071	071	0	%100
40	10170		.041	.041	0	%100
47		X	-1.717	-1.717	0	%100
48			.991	.991	0	%100
49	MP1A	X	-2.094	-2.094	0	%100
50	MP1A		1.209	1.209	0	<u>%100</u>
51	MP1B	X	-2.094	-2.094	0	%100
52	MP1B	Z	1.209	1.209	0	%100
53	MP1C	X	-2.094	-2.094	0	%100
54	MP1C	Z	1.209	1.209	0	%100
55	MP2A	Х	-2.094	-2.094	0	%100
56	MP2A	Z	1.209	1.209	0	%100
57	MP2B	X	-2.094	-2.094	0	%100
58	MP2B	Z	1.209	1.209	0	%100
59	MP2C	Х	-2.094	-2.094	0	%100
60	MP2C	Z	1.209	1.209	0	%100
61	MP3A	X	-2.094	-2.094	0	%100
62	MP3A	7	1,209	1,209	0	%100
63	MP3B	x	-2 094	-2 094	0	%100
64	MP3R	7	1 209	1 209	0	%100
65	MP3C	×	-2 094	-2 094	0	%100
66	MP3C	7	1 200	1 200	0	%100
67	MD4A	2 V	2.004	2 004	0	0/100
07		~ 7	-2.094	-2.094	0	0/100
68	MP4A	<u> </u>	1.209	1.209	0	%100
69	MP4B	X	-2.094	-2.094	0	%100
70	MP4B	<u> </u>	1.209	1.209	0	%100
71	MP4C	X	-2.094	-2.094	0	%100
72	MP4C	Z	1.209	1.209	0	%100
73	MP5A	<u>X</u>	-2.321	-2.321	0	<u>%100</u>



### Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
74	MP5A	Z	1.34	1.34	0	%100
75	MP5B	Х	-2.321	-2.321	0	%100
76	MP5B	Z	1.34	1.34	0	%100
77	MP5C	Х	-2.321	-2.321	0	%100
78	MP5C	Z	1.34	1.34	0	%100
79	M82	Х	-1.677	-1.677	0	%100
80	M82	Z	.968	.968	0	%100
81	M83	Х	-1.331	-1.331	0	%100
82	M83	Z	.769	.769	0	%100
83	M84	Х	000589	000589	0	%100
84	M84	Z	.00034	.00034	0	%100

# Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	X	-2.015	-2.015	0	%100
2	A1	Z	0	0	0	%100
3	A2	Х	-2.015	-2.015	0	%100
4	A2	Z	0	0	0	%100
5	A5	Х	-1.999	-1.999	0	%100
6	A5	Z	0	0	0	%100
7	A6	Х	-2.702	-2.702	0	%100
8	A6	Z	0	0	0	%100
9	A7	Х	0	0	0	%100
10	A7	Z	0	0	0	%100
11	A8	Х	0	0	0	%100
12	A8	Z	0	0	0	%100
13	B26	Х	504	504	0	%100
14	B26	Z	0	0	0	%100
15	B27	Х	504	504	0	%100
16	B27	Z	0	0	0	%100
17	B30	Х	-1.999	-1.999	0	%100
18	B30	Z	0	0	0	%100
19	B31	Х	-2.702	-2.702	0	%100
20	B31	Z	0	0	0	%100
21	B32	Х	-1.813	-1.813	0	%100
22	B32	Z	0	0	0	%100
23	B33	Х	-1.813	-1.813	0	%100
24	B33	Z	0	0	0	%100
25	B80	Х	-2.416	-2.416	0	%100
26	B80	Z	0	0	0	%100
27	B81	Х	483	483	0	%100
28	B81	Z	0	0	0	%100
29	C51	Х	236	236	0	%100
30	C51	Z	0	0	0	%100
31	C52	Х	236	236	0	%100
32	C52	Z	0	0	0	%100
33	C55	Х	-1.999	-1.999	0	%100
34	C55	Z	0	0	0	%100
35	C56	Х	-2.702	-2.702	0	%100
36	C56	Z	0	0	0	%100
37	C57	X	-2.135	-2.135	0	%100
38	C57	Z	0	0	0	%100
39	C58	Х	-2.135	-2.135	0	%100
40	C58	Z	0	0	0	%100
41	C78	Х	-1.075	-1.075	0	%100
42	C78	Z	0	0	0	%100



#### Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
43	C79	Х	111	111	0	%100
44	C79	Z	0	0	0	%100
45	M76	Х	665	665	0	%100
46	M76	Z	0	0	0	%100
47	M77	Х	-2.402	-2.402	0	%100
48	M77	Z	0	0	0	%100
49	MP1A	Х	-2.418	-2.418	0	%100
50	MP1A	Z	0	0	0	%100
51	MP1B	Х	-2.418	-2.418	0	%100
52	MP1B	Z	0	0	0	%100
53	MP1C	Х	-2.418	-2.418	0	%100
54	MP1C	Z	0	0	0	%100
55	MP2A	Х	-2.418	-2.418	0	%100
56	MP2A	Z	0	0	0	%100
57	MP2B	Х	-2.418	-2.418	0	%100
58	MP2B	Z	0	0	0	%100
59	MP2C	Х	-2.418	-2.418	0	%100
60	MP2C	Z	0	0	0	%100
61	MP3A	Х	-2.418	-2.418	0	%100
62	MP3A	Z	0	0	0	%100
63	MP3B	Х	-2.418	-2.418	0	%100
64	MP3B	Z	0	0	0	%100
65	MP3C	Х	-2.418	-2.418	0	%100
66	MP3C	Z	0	0	0	%100
67	MP4A	Х	-2.418	-2.418	0	%100
68	MP4A	Z	0	0	0	%100
69	MP4B	Х	-2.418	-2.418	0	%100
70	MP4B	Z	0	0	0	%100
71	MP4C	Х	-2.418	-2.418	0	%100
72	MP4C	Z	0	0	0	%100
73	MP5A	Х	-2.681	-2.681	0	%100
74	MP5A	Z	0	0	0	%100
75	MP5B	Х	-2.681	-2.681	0	%100
76	MP5B	Z	0	0	0	%100
77	MP5C	Х	-2.681	-2.681	0	%100
78	MP5C	Z	0	0	0	%100
79	M82	X	-2.409	-2.409	0	%100
80	M82	Z	0	0	0	%100
81	M83	Х	365	365	0	%100
82	M83	Z	0	0	0	%100
83	M84	Х	541	541	0	%100
84	M84	Z	0	0	0	%100

# Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	-1.309	-1.309	0	%100
2	A1	Z	756	756	0	%100
3	A2	Х	-1.309	-1.309	0	%100
4	A2	Z	756	756	0	%100
5	A5	Х	-1.731	-1.731	0	%100
6	A5	Z	-1	-1	0	%100
7	A6	Х	-2.34	-2.34	0	%100
8	A6	Z	-1.351	-1.351	0	%100
9	A7	Х	523	523	0	%100
10	A7	Z	302	302	0	%100
11	A8	X	523	523	0	%100



#### Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

12	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
13		X	302	302	0	%100
14	B26	7	0	0	0	%100
15	B27	X	0	0	0	%100
16	B27	7	0	0	0	%100
17	B30	×	-1 731	-1 731	0	%100
18	B30	7	-1	-1	0	%100
19	B31	X	-2 34	-2 34	0	%100
20	B31	7	-1 351	-1.351	0	%100
21	B32	X	-2 094	-2 094	0	%100
22	B32	7	-1 209	-1 209	0	%100
23	B33	X	-2 094	-2 094	0	%100
24	B33	7	-1 209	-1 209	0 0	%100
25	B80	X	-1 624	-1 624	0	%100
26	B80	7	- 938	- 938	0	%100
27	B81	X	- 055	- 055	0	%100
28	B81	7	- 032	- 032	0	%100
29	C51	x	-1.024	-1.024	0	%100
30	C51	7	- 591	- 591	0	%100
31	C52	X	-1.024	-1.024	Ő	%100
32	C52	7	- 591	- 591	0	%100
33	C55	X	-1 731	-1 731	0	%100
34	C55	Z	-1	-1	0	%100
35	C56	x	-2.34	-2.34	0	%100
36	C56	Z	-1.351	-1.351	0	%100
37	C57	x	865	865	0	%100
38	C57	Z	- 499	- 499	0	%100
39	C58	x	865	865	0	%100
40	C58	Z	- 499	499	0	%100
41	C78	X	096	096	0	%100
42	C78	Z	055	055	0	%100
43	C79	X	951	951	0	%100
44	C79	Z	549	549	0	%100
45	M76	Х	-1.587	-1.587	0	%100
46	M76	Z	916	916	0	%100
47	M77	Х	-1.431	-1.431	0	%100
48	M77	Z	826	826	0	%100
49	MP1A	Х	-2.094	-2.094	0	%100
50	MP1A	Z	-1.209	-1.209	0	%100
51	MP1B	X	-2.094	-2.094	0	%100
52	MP1B	Z	-1.209	-1.209	0	%100
53	MP1C	X	-2.094	-2.094	0	%100
54	MP1C	Z	-1.209	-1.209	0	%100
55	MP2A	Х	-2.094	-2.094	0	%100
56	MP2A	Z	-1.209	-1.209	0	%100
57	MP2B	X	-2.094	-2.094	0	%100
58	MP2B	Z	-1.209	-1.209	0	%100
59	MP2C	Х	-2.094	-2.094	0	%100
60	MP2C	Z	-1.209	-1.209	0	%100
61	MP3A	X	-2.094	-2.094	0	%100
62	MP3A	Z	-1.209	-1.209	0	%100
63	MP3B	X	-2.094	-2.094	0	%100
64	MP3B	Z	-1.209	-1.209	0	%100
65	MP3C	Х	-2.094	-2.094	0	%100
66	MP3C	Z	-1.209	-1.209	0	%100
67	MP4A	Х	-2.094	-2.094	0	%100
68	MP4A	Z	-1.209	-1.209	0	%100

RISA-3D Version 17.0.4 [C:\...\...\...\...\...\...\...\Model Files\467920-VZW_MT_LO_H.r3d] Page 125



### Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
69	MP4B	Х	-2.094	-2.094	0	%100
70	MP4B	Z	-1.209	-1.209	0	%100
71	MP4C	Х	-2.094	-2.094	0	%100
72	MP4C	Z	-1.209	-1.209	0	%100
73	MP5A	Х	-2.321	-2.321	0	%100
74	MP5A	Z	-1.34	-1.34	0	%100
75	MP5B	Х	-2.321	-2.321	0	%100
76	MP5B	Z	-1.34	-1.34	0	%100
77	MP5C	Х	-2.321	-2.321	0	%100
78	MP5C	Z	-1.34	-1.34	0	%100
79	M82	Х	-1.456	-1.456	0	%100
80	M82	Z	841	841	0	%100
81	M83	Х	032	032	0	%100
82	M83	Z	019	019	0	%100
83	M84	Х	-1.465	-1.465	0	%100
84	M84	Z	846	846	0	%100

### Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	252	- 252	0	%100
2	A1	Z	436	436	0	%100
3	A2	Х	252	252	0	%100
4	A2	Z	436	436	0	%100
5	A5	Х	-1	-1	0	%100
6	A5	Z	-1.731	-1.731	0	%100
7	A6	Х	-1.351	-1.351	0	%100
8	A6	Z	-2.34	-2.34	0	%100
9	A7	Х	907	907	0	%100
10	A7	Z	-1.57	-1.57	0	%100
11	A8	Х	907	907	0	%100
12	A8	Z	-1.57	-1.57	0	%100
13	B26	Х	252	252	0	%100
14	B26	Z	436	436	0	%100
15	B27	Х	252	252	0	%100
16	B27	Z	436	436	0	%100
17	B30	Х	-1	-1	0	%100
18	B30	Z	-1.731	-1.731	0	%100
19	B31	Х	-1.351	-1.351	0	%100
20	B31	Z	-2.34	-2.34	0	%100
21	B32	Х	907	907	0	%100
22	B32	Z	-1.57	-1.57	0	%100
23	B33	Х	907	907	0	%100
24	B33	Z	-1.57	-1.57	0	%100
25	B80	Х	337	337	0	%100
26	B80	Z	584	584	0	%100
27	B81	Х	407	407	0	%100
28	B81	Z	705	705	0	%100
29	C51	Х	977	977	0	%100
30	C51	Z	-1.692	-1.692	0	%100
31	C52	Х	977	977	0	%100
32	C52	Z	-1.692	-1.692	0	%100
33	C55	Х	-1	-1	0	%100
34	C55	Z	-1.731	-1.731	0	%100
35	C56	Х	-1.351	-1.351	0	%100
36	C56	Z	-2.34	-2.34	0	%100
37	C57	X	036	036	0	%100



### Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
38	C57	Z	063	063	0	%100
39	C58	Х	036	036	0	%100
40	C58	Z	063	063	0	%100
41	C78	Х	126	126	0	%100
42	C78	Z	218	218	0	%100
43	C79	Х	-1.098	-1.098	0	%100
44	C79	Z	-1.902	-1.902	0	%100
45	M76	Х	-1.209	-1.209	0	%100
46	M76	Z	-2.094	-2.094	0	%100
47	M77	Х	241	241	0	%100
48	M77	Z	418	418	0	%100
49	MP1A	X	-1.209	-1.209	0	%100
50	MP1A	7	-2.094	-2.094	0	%100
51	MP1B	x	-1.209	-1.209	0	%100
52	MP1B	7	-2.094	-2.094	Ő	%100
53	MP1C	x	-1 209	-1 209	Õ	%100
54	MP1C	7	-2 094	-2 094	Ő	%100
55	MP2A	X	-1 209	-1 209	0	%100
56	MP2A	7	-2 094	-2 094	0	%100
57	MP2B	X	-1 209	-1 209	0	%100
58	MP2B	7	-2 094	-2 094	0	%100
59	MP2C	x	-1 209	-1 209	0	%100
60	MP2C	7	-2 094	-2 094	0	%100
61	MP3A	X	-1 209	-1 209	0	%100
62	MP3A	7	-2.094	-2.094	0	%100
63	MP3R	X	-1 209	-2.004	0	%100
64	MD3B	7	-1.203	-1.203	0	%100
65	MP3C	× ×	-1 209	-2.094	0	%100
66	MP3C	7	-2.094	-2.094	0	%100
67	MD4A		1 200	1 209	0	%100
68	MD4A	7	-1.209	-1.209	0	%100
60	MD4R		1 200	1 209	0	%100
70	MD4B	7	2 004	2 094	0	%100
70	MP4C	Z V	1 200	1 209	0	%100
72	MP4C	~ 7	-1.203	2.004	0	%100
72	MD5A		-2.094	-2.094	0	%100
73	MD5A	~ 7	-1.04	-1.34	0	%100
74	MD5P		1.24	-2.321	0	%100
75		~ 7	-1.34	-1.34	0	%100
70	MD50		-2.321	-2.321	0	%100
70	MD5C	× 7	-1.34	-1.34	0	%100
70	MP3C		-2.321	-2.321	0	%100
79		× 7	241	241	0	% 100 9/ 100
00	IVI82	<u>∠</u>	417	417	0	%100
81	IVI83	X	44	44	0	%100
82	M83		/63	/63	0	%100
83	M84	X	-1.15	-1.15	0	%100
84	M84	Z	-1.992	-1.992	0	%100

#### Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	0	0	0	%100
2	A1	Z	0	0	0	%100
3	A2	Х	0	0	0	%100
4	A2	Z	0	0	0	%100
5	A5	Х	0	0	0	%100
6	A5	Z	367	367	0	%100



#### Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
7	A6	Х	0	0	0	%100
8	A6	Z	552	552	0	%100
9	A7	Х	0	0	0	%100
10	A7	Z	449	449	0	%100
11	A8	X	0	0	0	%100
12	A8	Z	449	449	0	%100
13	B26	X	0	0	0	%100
14	B26	Z	319	319	0	%100
15	B27	X	0	0	0	%100
16	B27	Z	319	319	0	%100
17	B30	X	0	0	0	%100
18	B30	Z	367	367	0	%100
19	B31	X	0	0	0	%100
20	B31	Z	552	552	0	%100
21	B32	X	0	0	0	%100
22	B32	Z	112	112	0	%100
23	B33	X	0	0	0	%100
24	B33	Z	112	112	0	%100
25	B80	X	0	0	0	%100
26	B80	Z	003	003	0	%100
27	B81	X	0	0	0	%100
28	B81	Z	369	369	0	%100
29	<u>C51</u>	X	0	0	0	%100
30	<u>C51</u>	Z	376	376	0	<u>%100</u>
31	C52	X	0	0	0	%100
32	C52	Z	376	376	0	%100
33	C55	X	0	0	0	%100
34	C55	Z	367	367	0	%100
35	C56	X	0	0	0	%100
36	C56	Z	552	552	0	%100
37	<u>C57</u>	X	0	0	0	%100
38	C57	Ζ	053	053	0	%100
39	<u>C58</u>	X	0	0	0	%100
40	<u>C58</u>	<u> </u>	053	053	0	<u>%100</u>
41	<u>C78</u>	X	0	0	0	%100
42	<u>C78</u>	<u> </u>	252	252	0	<u>%100</u>
43	<u>C79</u>	X	0	0	0	%100
44	<u>C79</u>	<u> </u>	429	429	0	%100
45	M/6	X	0	0	0	%100
46	M76	Z	341	341	0	%100
47	M//	X	0	0	0	%100
48		<u> </u>	012	012	0	%100
49	MP1A	X	0	0	0	%100
50	MP1A MD1D	<u> </u>	449	449	0	%100
51	MP1B	X	0	0	0	%100
52	MP1B	<u> </u>	449	449	0	%100
53	MP1C	X	0	0	0	%100
54	MP10		449	449	0	%100
00 EC	MD2A	~ 7	0	0	0	% IUU 9/ 100
50	MD2P		449	449	0	% 100 9/ 100
57	MD2D	∧ 	0	0	0	% 100 9/ 100
50	MP20		449	449	0	%100
59	MP20	∧ 	0	0	0	% IUU 9/ 100
61	MD2A		449	449	0	% 100 9/ 100
60	MD2A	~ 7	0	0	0	%100
62	MP3A	Z	449	449	0	%100
03	IVIP3B		U	U	U	% IUU

 RISA-3D Version 17.0.4
 [C:\...\...\...\...\...\...\...\...\Model Files\467920-VZW_MT_LO_H.r3d]
 Page 128



#### Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
64	MP3B	Z	449	449	0	%100
65	MP3C	Х	0	0	0	%100
66	MP3C	Z	449	449	0	%100
67	MP4A	Х	0	0	0	%100
68	MP4A	Z	449	449	0	%100
69	MP4B	Х	0	0	0	%100
70	MP4B	Z	449	449	0	%100
71	MP4C	Х	0	0	0	%100
72	MP4C	Z	449	449	0	%100
73	MP5A	Х	0	0	0	%100
74	MP5A	Z	544	544	0	%100
75	MP5B	Х	0	0	0	%100
76	MP5B	Z	544	544	0	%100
77	MP5C	Х	0	0	0	%100
78	MP5C	Z	544	544	0	%100
79	M82	Х	0	0	0	%100
80	M82	Z	002	002	0	%100
81	M83	Х	0	0	0	%100
82	M83	Z	381	381	0	%100
83	M84	Х	0	0	0	%100
84	M84	Z	323	323	0	%100

### Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1_	A1	X	.053	.053	0	%100
2	A1	Z	092	092	0	%100
3	A2	Х	.053	.053	0	%100
4	A2	Z	092	092	0	%100
5	A5	Х	.184	.184	0	%100
6	A5	Z	318	318	0	%100
7	A6	Х	.276	.276	0	%100
8	A6	Z	478	478	0	%100
9	A7	Х	.169	.169	0	%100
10	A7	Z	292	292	0	%100
11	A8	Х	.169	.169	0	%100
12	A8	Z	292	292	0	%100
13	B26	Х	.213	.213	0	%100
14	B26	Z	369	369	0	%100
15	B27	Х	.213	.213	0	%100
16	B27	Z	369	369	0	%100
17	B30	Х	.184	.184	0	%100
18	B30	Z	318	318	0	%100
19	B31	Х	.276	.276	0	%100
20	B31	Z	478	478	0	%100
21	B32	Х	0	0	0	%100
22	B32	Z	0	0	0	%100
23	B33	Х	0	0	0	%100
24	B33	Z	0	0	0	%100
25	B80	Х	.052	.052	0	%100
26	B80	Z	089	089	0	%100
27	B81	Х	.223	.223	0	%100
28	B81	Z	387	387	0	%100
29	C51	Х	.088	.088	0	%100
30	C51	Z	152	152	0	%100
31	C52	Х	.088	.088	0	%100
32	C52	Z	152	152	0	%100



### Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
33	C55	Х	.184	.184	0	%100
34	C55	Z	318	318	0	%100
35	C56	Х	.276	.276	0	%100
36	C56	Z	478	478	0	%100
37	C57	Х	.132	.132	0	%100
38	C57	Z	228	228	0	%100
39	C58	Х	.132	.132	0	%100
40	C58	Z	228	228	0	%100
41	C78	X	.216	.216	0	%100
42	C78	Z	373	373	0	%100
43	C79	X	.123	.123	0	%100
44	C79	7	- 212	- 212	Ő	%100
45	M76	x	062	062	0	%100
46	M76	7	- 107	- 107	0	%100
47	M77	X	076	076	0	%100
48	M77	7	- 131	- 131	0 0	%100
49	MP1A	x	225	225	0	%100
50	MP1A	7	- 389	- 389	0	%100
51	MP1R	X	225	000	0	%100
52	MD1B	7	- 380	_ 380	0	%100
52	MP1C	× ×	009	309	0	%100
54	MP1C	7	.225	380	0	%100
55	MP2A	×	309	309	0	%100
55	MP2A	~ 7	.225	.225	0	%100
57			309	309	0	%100
57		~ 7	.220	.225	0	%100
50			309	309	0	%100
59	MP2C	~ 7	.225	.225	0	%100
60	MP2C		389	389	0	%100
61	MP3A	~ ~	.225	.220	0	%100
62	MP3A	Z V	389	389	0	%100
63	MP3B	X	.225	.225	0	%100
04	MP3B		389	389	0	%100
65	MP3C	× 7	.225	.225	0	%100
00	MP3C		389	389	0	%100
67	MP4A	X	.225	.225	0	%100
68	MP4A	<u> </u>	389	389	0	%100
69	MP4B	X	.225	.225	0	%100
70	MP4B		389	389	0	%100
/1	MP4C	X	.225	.225	U	%100
72	MP4C		389	389	0	%100
73	MP5A	X	.272	.272	0	%100
/4	MP5A	<u> </u>	4/1	4/1	0	%100
75	MP5B	X	.272	.272	0	%100
/6	MP5B	<u> </u>	471	4/1	0	%100
77	MP5C	X	.272	.272	0	%100
78	MP5C	Z	471	471	0	%100
79	M82	X	.068	.068	0	%100
80	M82	Z	119	119	0	%100
81	M83	X	.221	.221	0	%100
82	M83	Z	383	383	0	%100
83	M84	X	.056	.056	0	%100
84	M84	Z	097	097	0	%100

# Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	.277	.277	0	%100



#### Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

2	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
2	A1		10	10	0	%100
3	A2	~ 7	.211	.211	0	%100
4	AZ		10	10	0	%100
6	A5	~ 7	.510	.510	0	%100
7	AS		104	104	0	%100
/ 0	AO		.470	.470	0	%100
0	A0		270	270	0	%100
9	A7	~ 7	.097	.097	0	%100
10	A7		056	050	0	%100
10	AO	~ 7	.097	.097	0	%100
12	Að Doc		056	050	0	%100
13	B20	× 7	.211	.211	0	%100
14	B20		10	10	0	%100
15	B27	X	.211	.211	0	%100
10	B2/		10	10	0	%100
17	B30	∧ 	.310	.310	0	%100
18	B30		184	184	0	%100
19	B31	× 7	.478	.478	0	%100
20	<u>B31</u>		276	276	0	%100
21	B32	× 7	.097	.097	0	%100
22	B32		056	056	0	%100
23	B33	X	.097	.097	0	%100
24	B33	<u> </u>	056	056	0	%100
25	B80	X	.283	.283	0	%100
26	B80	Z	163	163	0	%100
27	B81	X	.266	.266	0	%100
28	B81	Z	154	154	0	%100
29	C51	X	.011	.011	0	%100
30	<u>C51</u>	<u> </u>	006	006	0	%100
31	C52	X	.011	.011	0	%100
32	<u>C52</u>	<u> </u>	006	006	0	%100
33	C55	X	.318	.318	0	%100
34	<u>C55</u>	Z	184	184	0	%100
35	C56	X	.478	.478	0	%100
36	C56	Z	276	276	0	%100
37	<u>C57</u>	X	.377	.377	0	%100
38	<u>C57</u>	Z	218	218	0	%100
39	<u>C58</u>	X	.377	.377	0	%100
40	C58	<u> </u>	218	218	0	%100
41	C78	X	.351	.351	0	%100
42	C78	Z	203	203	0	%100
43	C79	X	.036	.036	0	%100
44	<u> </u>	Z	021	021	0	%100
45	WI/6	X	.013	.013	0	%100
46	M76	Z	008	008	0	%100
47	M//	X	.319	.319	0	%100
48	M77	Z	184	184	0	%100
49	MP1A	X	.389	.389	0	%100
50	MP1A	Z	225	225	0	%100
51	MP1B	X	.389	.389	0	%100
52	MP1B	Z	225	225	0	%100
53	MP1C	X	.389	.389	0	%100
54	MP1C	Z	225	225	0	%100
55	MP2A	X	.389	.389	0	%100
56	MP2A	Z	225	225	0	%100
57	MP2B	X	.389	.389	0	%100
58	MP2B	2	225	- 225	0	%100



### Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
59	MP2C	Х	.389	.389	0	%100
60	MP2C	Z	225	225	0	%100
61	MP3A	Х	.389	.389	0	%100
62	MP3A	Z	225	225	0	%100
63	MP3B	Х	.389	.389	0	%100
64	MP3B	Z	225	225	0	%100
65	MP3C	Х	.389	.389	0	%100
66	MP3C	Z	225	225	0	%100
67	MP4A	Х	.389	.389	0	%100
68	MP4A	Z	225	225	0	%100
69	MP4B	Х	.389	.389	0	%100
70	MP4B	Z	225	225	0	%100
71	MP4C	Х	.389	.389	0	%100
72	MP4C	Z	225	225	0	%100
73	MP5A	Х	.471	.471	0	%100
74	MP5A	Z	272	272	0	%100
75	MP5B	Х	.471	.471	0	%100
76	MP5B	Z	272	272	0	%100
77	MP5C	Х	.471	.471	0	%100
78	MP5C	Z	272	272	0	%100
79	M82	Х	.312	.312	0	%100
80	M82	Z	18	18	0	%100
81	M83	Х	.247	.247	0	%100
82	M83	Z	143	143	0	%100
83	M84	X	.000108	.000108	0	%100
84	M84	7	-6.2e-5	-6.2e-5	0	%100

# Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	.426	.426	0	%100
2	A1	Z	0	0	0	%100
3	A2	Х	.426	.426	0	%100
4	A2	Z	0	0	0	%100
5	A5	Х	.367	.367	0	%100
6	A5	Z	0	0	0	%100
7	A6	Х	.552	.552	0	%100
8	A6	Z	0	0	0	%100
9	A7	Х	0	0	0	%100
10	A7	Z	0	0	0	%100
11	A8	Х	0	0	0	%100
12	A8	Z	0	0	0	%100
13	B26	Х	.106	.106	0	%100
14	B26	Z	0	0	0	%100
15	B27	Х	.106	.106	0	%100
16	B27	Z	0	0	0	%100
17	B30	Х	.367	.367	0	%100
18	B30	Z	0	0	0	%100
19	B31	Х	.552	.552	0	%100
20	B31	Z	0	0	0	%100
21	B32	Х	.337	.337	0	%100
22	B32	Z	0	0	0	%100
23	B33	Х	.337	.337	0	%100
24	B33	Z	0	0	0	%100
25	B80	Х	.449	.449	0	%100
26	B80	Z	0	0	0	%100
27	B81	X	.09	.09	0	%100



#### Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
28	B81	Z	0	0	0	%100
29	C51	Х	.05	.05	0	%100
30	C51	Z	0	0	0	%100
31	C52	Х	.05	.05	0	%100
32	C52	Z	0	0	0	%100
33	C55	Х	.367	.367	0	%100
34	C55	Z	0	0	0	%100
35	C56	X	.552	.552	0	%100
36	C56	Z	0	0	0	%100
37	C57	x	.397	.397	0	%100
38	C57	7	0	0	0	%100
39	C58	X	397	397	0	%100
40	C58	7	0	0	0	%100
40	C78	X	2	2	0	%100
42	C78	7	.2	.2	0	%100
43	C79	X	021	021	0	%100
40	C79	7	.021	.021	0	%100
44	M76	× ×	124	124	0	%100
40	M76	7	.124	.124	0	%100
40	M77		146		0	0/ 100
47		~ 7	.440	.440	0	%100
48			0	0	0	%100
49	MP1A	× 7	.449	.449	0	%100
50			0	0	0	%100
51	MP1B	X	.449	.449	0	%100
52	MP1B	Z	0	0	0	%100
53	MP1C	X	.449	.449	0	%100
54	MP1C	Z	0	0	0	%100
55	MP2A	X	.449	.449	0	%100
56	MP2A	Z	0	0	0	<u>%100</u>
57	MP2B	X	.449	.449	0	%100
58	MP2B		0	0	0	<u>%100</u>
59	MP2C	X	.449	.449	0	%100
60	MP2C	Ζ	0	0	0	%100
61	MP3A	X	.449	.449	0	%100
62	MP3A		0	0	0	%100
63	MP3B	X	.449	.449	0	%100
64	MP3B	Z	0	0	0	%100
65	MP3C	X	.449	.449	0	%100
66	MP3C	Z	0	0	0	%100
67	MP4A	X	.449	.449	0	%100
68	MP4A	Z	0	0	0	%100
69	MP4B	X	.449	.449	0	%100
70	MP4B	Z	0	0	0	%100
71	MP4C	Х	.449	.449	0	%100
72	MP4C	Z	0	0	0	%100
73	MP5A	Х	.544	.544	0	%100
74	MP5A	Z	0	0	0	%100
75	MP5B	Х	.544	.544	0	%100
76	MP5B	Z	0	0	0	%100
77	MP5C	Х	.544	.544	0	%100
78	MP5C	Z	0	0	0	%100
79	M82	X	.448	.448	0	%100
80	M82	Z	0	0	0	%100
81	M83	X	.068	.068	0	%100
82	M83	Z	0	0	0	%100
83	M84	Х	.099	.099	0	%100
84	M84	Z	0	0	0	%100



### Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	X	.277	.277	0	%100
2	A1	Z	.16	.16	0	%100
3	A2	X	.277	.277	0	%100
4	A2	Z	.16	.16	0	%100
5	A5	Х	.318	.318	0	%100
6	A5	Z	.184	.184	0	%100
7	A6	Х	.478	.478	0	%100
8	A6	Z	.276	.276	0	%100
9	A7	X	.097	.097	0	%100
10	A7	7	056	056	0	%100
11	48	X	097	097	0	%100
12	48	7	056	056	0	%100
13		× ×	.000	.050	0	%100
14	B26	7	0	0	0	%100
14	B20	Z V	0	0	0	%100
16	B27	7	0	0	0	%100
17	D27		219	219	0	%100
10	D30	~	.310	.310	0	%100
18	B30		.184	.184	0	%100
19	B31	X	.478	.478	0	%100
20	B31		.276	.276	0	%100
21	B32	X	.389	.389	0	%100
22	B32		.225	.225	0	%100
23	B33	X	.389	.389	0	%100
_24	B33	Z	.225	.225	0	<u>%100</u>
25	B80	X	.302	.302	0	%100
26	B80	Z	.174	.174	0	%100
27	B81	X	.01	.01	0	%100
28	B81	Z	.006	.006	0	%100
29	C51	X	.216	.216	0	%100
30	C51	Z	.125	.125	0	%100
31	C52	Х	.216	.216	0	%100
32	C52	Z	.125	.125	0	%100
33	C55	Х	.318	.318	0	%100
34	C55	Z	.184	.184	0	%100
35	C56	Х	.478	.478	0	%100
36	C56	Z	.276	.276	0	%100
37	C57	Х	.161	.161	0	%100
38	C57	Z	.093	.093	0	%100
39	C58	X	.161	.161	0	%100
40	C58	7	.093	.093	0	%100
41	C78	X	.018	.018	0	%100
42	C78	7	.01	.01	0	%100
43	C79	X	.177	.177	0	%100
44	C79	7	.102	.102	0	%100
45	M76	x	295	295	0	%100
46	M76	7	17	17	Ő	%100
47	M77	×	266	266	0	%100
18	M77	7	15/	154	0	%100
10	MP1A	X	380	380	0	%100
50	MP1A	7	225	225	0	%100
51		Y	380	380	0	%100
52	MD1R	7	.309	225	0	%100
52	MD1C	×	.220	.220	0	%100
55	MP1C		.308		0	0/ 100
54	MD2A		.220	.220	0	0/ 100
55	MDDA	~ 7	.303	.303	0	% 100 % 100
00 E7	MD2D		.220	222	0	% 100 9/ 100
0/	IVIP2B	<b>^</b>	.309	.369	U	70100

RISA-3D Version 17.0.4 [C:\...\...\...\...\...\...\...\Model Files\467920-VZW_MT_LO_H.r3d] Page 134



### Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
58	MP2B	Z	.225	.225	0	%100
59	MP2C	Х	.389	.389	0	%100
60	MP2C	Z	.225	.225	0	%100
61	MP3A	Х	.389	.389	0	%100
62	MP3A	Z	.225	.225	0	%100
63	MP3B	Х	.389	.389	0	%100
64	MP3B	Z	.225	.225	0	%100
65	MP3C	Х	.389	.389	0	%100
66	MP3C	Z	.225	.225	0	%100
67	MP4A	Х	.389	.389	0	%100
68	MP4A	Z	.225	.225	0	%100
69	MP4B	Х	.389	.389	0	%100
70	MP4B	Z	.225	.225	0	%100
71	MP4C	Х	.389	.389	0	%100
72	MP4C	Z	.225	.225	0	%100
73	MP5A	Х	.471	.471	0	%100
74	MP5A	Z	.272	.272	0	%100
75	MP5B	Х	.471	.471	0	%100
76	MP5B	Z	.272	.272	0	%100
77	MP5C	Х	.471	.471	0	%100
78	MP5C	Z	.272	.272	0	%100
79	M82	Х	.271	.271	0	%100
80	M82	Z	.156	.156	0	%100
81	M83	Х	.006	.006	0	%100
82	M83	Z	.003	.003	0	%100
83	M84	X	.269	.269	0	%100
84	M84	Z	.155	.155	0	%100

# Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	.053	.053	0	%100
2	A1	Z	.092	.092	0	%100
3	A2	Х	.053	.053	0	%100
4	A2	Z	.092	.092	0	%100
5	A5	Х	.184	.184	0	%100
6	A5	Z	.318	.318	0	%100
7	A6	Х	.276	.276	0	%100
8	A6	Z	.478	.478	0	%100
9	A7	Х	.169	.169	0	%100
10	A7	Z	.292	.292	0	%100
11	A8	Х	.169	.169	0	%100
12	A8	Z	.292	.292	0	%100
13	B26	Х	.053	.053	0	%100
14	B26	Z	.092	.092	0	%100
15	B27	Х	.053	.053	0	%100
16	B27	Z	.092	.092	0	%100
17	B30	Х	.184	.184	0	%100
18	B30	Z	.318	.318	0	%100
19	B31	X	.276	.276	0	%100
20	B31	Z	.478	.478	0	%100
21	B32	Х	.169	.169	0	%100
22	B32	Z	.292	.292	0	%100
23	B33	Х	.169	.169	0	%100
24	B33	Z	.292	.292	0	%100
25	B80	X	.063	.063	0	%100
26	B80	Z	.109	.109	0	%100



#### Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

24         B81 $X$	27	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
129         C51         X	27			.076	.070	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20			.131	.131	0	%100
30         C51         Z	29	051	X	.206	.206	0	%100
31         C52         X	30	051		.358	.358	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31	<u>C52</u>	X	.206	.206	0	%100
33         C55         X         .184	32	C52	Z	.358	.358	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33	C55	X	.184	.184	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	C55	Z	.318	.318	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35	C56	X	.276	.276	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36	C56	Z	.478	.478	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	37	C57	X	.007	.007	0	%100
39         C58         X         .007         .007         0         %100           40         C58         Z         .012         .012         0         %100           41         C78         X         .023         .023         0         %100           42         C78         Z         .04         .04         0         %100           43         C79         X         .204         .204         0         %100           44         C79         Z         .353         .353         0         %100           44         M76         X         .225         .225         0         %100           45         M77         X         .0455         .0455         0         %100           48         M77         Z         .078         .0         %100         50           51         MP1A         X         .225         .225         .0         %100           52         MP1B         Z         .389         .389         .0         %100           53         MP1C         X         .225         .225         .0         %100           54         MP1C         X	38	C57	Z	.012	.012	0	%100
	39	C58	X	.007	.007	0	%100
41 $C78$ X.023.0230%10043 $C79$ X.204.040%10044 $C79$ Z.353.3530%10044 $C79$ Z.353.3530%10045M76X.225.2250%10046M76Z.339.3890%10047M77X.045.0450%10048M77Z.0780%10050MP1AZ.389.3890%10051MP1BX.225.2250%10052MP1CX.325.2250%10054MP1CZ.389.3890%10056MP2AZ.389.3890%10056MP2AZ.389.3890%10057MP2BX.225.2250%10058MP2CZ.389.3890%10060MP2AZ.389.3890%10061MP3AX.225.2250%10062MP3AZ.389.3890%10063MP3AX.225.2250%10064MP3AZ.389.3890%10065MP3AZ.389.3890%10066MP3A <td>40</td> <td>C58</td> <td>Z</td> <td>.012</td> <td>.012</td> <td>0</td> <td>%100</td>	40	C58	Z	.012	.012	0	%100
42 $C78$ Z         04         04         0         %100           43 $C79$ X         .204         .204         0         %100           44 $C79$ Z         .353         .353         0         %100           45         M76         X         .225         .225         0         %100           46         M76         Z         .389         .389         0         %100           47         M77         X         .045         .045         0         %100           49         MP1A         X         .225         .225         0         %100           50         MP1B         X         .225         .225         0         %100           51         MP1B         X         .225         .225         0         %100           53         MP1C         X         .225         .225         0         %100           54         MP1C         Z         .389         .389         0         %100           56         MP2A         X         .225         .225         0         %100           56         MP2A         X <td>41</td> <td>C78</td> <td>Х</td> <td>.023</td> <td>.023</td> <td>0</td> <td>%100</td>	41	C78	Х	.023	.023	0	%100
43         C79         X         204         204         0         %100           44         C79         Z         .353         .353         0         %100           45         M76         X         .225         .225         0         %100           46         M76         Z         .389         .389         0         %100           46         M77         X         .0455         .0455         0         %100           47         M77         X         .0455         .0455         0         %100           48         M77         Z         .078         .078         0         %100           50         MP1A         Z         .389         .389         0         %100           51         MP1B         X         .225         .225         0         %100           53         MP1C         X         .225         .225         0         %100           54         MP1C         X         .225         .225         0         %100           56         MP2A         X         .325         .225         0         %100           57         MP2B         X <td>42</td> <td>C78</td> <td>Z</td> <td>.04</td> <td>.04</td> <td>0</td> <td>%100</td>	42	C78	Z	.04	.04	0	%100
44         C79         Z         353         .353         0         %100           45         M76         X         .225         .225         0         %100           46         M76         Z         .389         .389         0         %100           47         M77         X         .045         .045         0         %100           48         M77         Z         .078         .078         0         %100           50         MP1A         X         .225         .225         0         %100           51         MP1B         X         .225         .225         0         %100           53         MP1C         X         .225         .225         0         %100           54         MP1C         Z         .389         .389         0         %100           55         MP2A         X         .225         .225         0         %100           56         MP2A         Z         .389         .389         0         %100           56         MP2A         Z         .325         .225         0         %100           58         MP2B         Z	43	C79	X	.204	.204	0	%100
46M76X2252250 $\%100$ 46M76Z.389.3890. $\%100$ 47M77X.045.0450 $\%100$ 48M77Z.078.0780 $\%100$ 50MP1AX.225.2250 $\%100$ 51MP1BX.225.2250 $\%100$ 52MP1BZ.389.3890 $\%100$ 53MP1CX.225.2250 $\%100$ 54MP1CZ.389.3890 $\%100$ 55MP2AX.225.2250 $\%100$ 56MP2AZ.389.3890 $\%100$ 57MP2BX.225.2250 $\%100$ 58MP2CX.225.2250 $\%100$ 59MP2CX.225.2250 $\%100$ 60MP2CZ.389.3890 $\%100$ 61MP3AX.225.2250 $\%100$ 62MP3BZ.389.3890 $\%100$ 63MP3BX.225.2250 $\%100$ 64MP3BZ.389.3890 $\%100$ 65MP3CX.225.2250 $\%100$ 66MP3CZ.389.3890 $\%100$ 67MP4AX.225.225	44	C79	Z	.353	.353	0	%100
	45	M76	Х	.225	.225	0	%100
47M77X.045.0450 $\%100$ 48M77Z.078.078.0 $\%100$ 49MP1AX.225.225.0 $\%100$ 50MP1AZ.389.389.0 $\%100$ 51MP1BX.225.225.0 $\%100$ 52MP1BZ.389.389.0 $\%100$ 53MP1CX.225.225.0 $\%100$ 54MP1CZ.389.389.0 $\%100$ 55MP2AX.225.225.0 $\%100$ 56MP2AZ.389.389.0 $\%100$ 56MP2AZ.389.389.0 $\%100$ 58MP2BZ.389.389.0 $\%100$ 59MP2CX.225.225.0 $\%100$ 60MP2CZ.389.389.0 $\%100$ 61MP3AX.225.225.0 $\%100$ 63MP3BX.225.225.0 $\%100$ 64MP3BZ.389.389.0 $\%100$ 65MP3CX.225.225.0 $\%100$ 66MP3CZ.389.389.0 $\%100$ 66MP3CZ.389.389.0 $\%100$ 67MP4AX.225.225.0 $\%100$ 71MP4AX.22	46	M76	Z	.389	.389	0	%100
	47	M77	X	.045	.045	0	%100
49MPAX.225.2250 $\%100$ 50MP1AZ.389.3890 $\%100$ 51MP1BX.225.2250 $\%100$ 52MP1CX.225.2250 $\%100$ 53MP1CX.225.2250 $\%100$ 54MP1CZ.389.3890 $\%100$ 55MP2AX.225.2250 $\%100$ 56MP2AZ.389.3890 $\%100$ 57MP2BX.225.2250 $\%100$ 58MP2CX.325.2250 $\%100$ 59MP2CX.225.2250 $\%100$ 60MP2AZ.389.3890 $\%100$ 61MP3AX.225.2250 $\%100$ 63MP3BX.225.2250 $\%100$ 64MP3BX.225.2250 $\%100$ 65MP3CX.225.2250 $\%100$ 66MP3CZ.389.3890 $\%100$ 67MP4AX.225.2250 $\%100$ 68MP4AZ.389.3890 $\%100$ 69MP4AX.225.2250 $\%100$ 70MP4AX.225.2250 $\%100$ 71MP5AX.225.225	48	M77	7	.078	.078	0	%100
50         MP1A         Z         389         389         0         %100           51         MP1B         X         .225         .225         0         %100           52         MP1C         X         .225         .225         0         %100           53         MP1C         X         .225         .225         0         %100           54         MP1C         Z         .389         .389         0         %100           55         MP2A         X         .225         .225         0         %100           56         MP2A         Z         .389         .389         0         %100           57         MP2B         X         .225         .225         0         %100           58         MP2C         X         .225         .225         0         %100           60         MP2C         Z         .389         .389         0         %100           61         MP3A         Z         .389         .389         0         %100           63         MP3B         Z         .389         .389         0         %100           64         MP3B         Z </td <td>49</td> <td>MP1A</td> <td>x</td> <td>.225</td> <td>.225</td> <td>0</td> <td>%100</td>	49	MP1A	x	.225	.225	0	%100
51         MP1B         X	50	MP1A	7	389	389	Ő	%100
52         MP1B         Z         389         389         0 $\%100$ 53         MP1C         X         .225         .225         0 $\%100$ 54         MP1C         Z         .389         .389         0 $\%100$ 55         MP2A         X         .225         .225         0 $\%100$ 56         MP2A         Z         .389         .389         0 $\%100$ 57         MP2B         X         .225         .225         0 $\%100$ 58         MP2B         Z         .389         .389         0 $\%100$ 60         MP2C         X         .225         .225         0 $\%100$ 61         MP3A         X         .225         .225         0 $\%100$ 62         MP3A         Z         .389         .389         0 $\%100$ 63         MP3B         X         .225         .225         0 $\%100$ 64         MP3B         Z         .389         .389         0 $\%100$ 65	51	MP1B	x	225	225	0	%100
bit         bit </td <td>52</td> <td>MP1B</td> <td>7</td> <td>389</td> <td>389</td> <td>0</td> <td>%100</td>	52	MP1B	7	389	389	0	%100
54         MP1C         Z         389         389         0         %100           55         MP2A         X         .225         .225         0         %100           56         MP2A         Z         .389         .389         0         %100           56         MP2A         Z         .389         .389         0         %100           57         MP2B         Z         .389         .389         0         %100           58         MP2C         X         .225         .225         0         %100           60         MP3A         X         .225         .225         0         %100           61         MP3A         X         .225         .225         0         %100           62         MP3B         X         .225         .225         0         %100           63         MP3B         X         .225         .225         0         %100           64         MP3B         Z         .389         .389         0         %100           65         MP3C         X         .225         .225         0         %100           66         MP4A         X </td <td>53</td> <td>MP1C</td> <td>X</td> <td>225</td> <td>225</td> <td>0</td> <td>%100</td>	53	MP1C	X	225	225	0	%100
54         MP 10         2	54	MP1C	7	380	380	0	%100
35         M12A         A	55	MP2A	× ×	225	.303	0	%100
300         MP2A $2$ $309$ $309$ $300$ $400$ $57$ MP2B         Z $389$ $389$ $0$ $%100$ $58$ MP2C         X $225$ $225$ $0$ $%100$ $60$ MP2C         X $225$ $225$ $0$ $%100$ $61$ MP3A         X $225$ $225$ $0$ $%100$ $61$ MP3A         Z $389$ $0$ $%100$ $63$ MP3B         X $.225$ $.225$ $0$ $%100$ $64$ MP3B         Z $.389$ $.389$ $0$ $%100$ $65$ MP3C         X $.225$ $.225$ $0$ $%100$ $66$ MP3C         Z $.389$ $.389$ $0$ $%100$ $67$ MP4A         X $.225$ $.225$ $0$ $%100$ $68$ MP4B         X $.225$ $.225$ $0$	55	MD2A		.225	.225	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	57	MD2R		.309	.309	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	57			.220	.220	0	%100
39MP2CX.223.2250 $\%100$ 60MP2CZ.389.3890 $\%100$ 61MP3AX.225.2250 $\%100$ 62MP3AZ.389.3890 $\%100$ 63MP3BX.225.2250 $\%100$ 64MP3BZ.389.3890 $\%100$ 65MP3CX.225.2250 $\%100$ 66MP3CZ.389.3890 $\%100$ 67MP4AX.225.2250 $\%100$ 68MP4AZ.389.3890 $\%100$ 70MP4BX.225.2250 $\%100$ 71MP4CX.225.2250 $\%100$ 73MP5AX.272.2720 $\%100$ 74MP5AZ.471.4710 $\%100$ 75MP5BX.272.2720 $\%100$ 76MP5BZ.471.4710 $\%100$ 79M82X.045.0450 $\%100$ 80M82Z.078.0780 $\%100$ 81M83X.082.0820 $\%100$ 83M84X.211.2110 $\%100$	50			.309	.309	0	%100
b0         MP2C         Z         .369         .369         0         %100           61         MP3A         X         .225         0         %100           62         MP3A         Z         .389         .389         0         %100           63         MP3B         X         .225         .225         0         %100           64         MP3B         Z         .389         .389         0         %100           65         MP3C         X         .225         .225         0         %100           66         MP3C         Z         .389         .389         0         %100           66         MP4A         X         .225         .225         0         %100           68         MP4A         Z         .389         .389         0         %100           69         MP4B         X         .225         .225         0         %100           70         MP4C         X         .225         .225         0         %100           71         MP4C         X         .225         .225         0         %100           73         MP5A         Z         .471	09	MD2C		.225	.225	0	%100
61         MP3A         X         .225         .225         0         %100           62         MP3A         Z         .389         .389         0         %100           63         MP3B         X         .225         .225         0         %100           64         MP3B         Z         .389         .389         0         %100           65         MP3C         X         .225         .225         0         %100           66         MP3C         Z         .389         .389         0         %100           66         MP3C         Z         .389         .389         0         %100           68         MP4A         X         .225         .225         0         %100           69         MP4B         X         .225         .225         0         %100           70         MP4E         Z         .389         .389         0         %100           71         MP4C         Z         .389         .389         0         %100           73         MP5A         X         .272         .272         0         %100           74         MP5A         Z	60			.389	.389	0	%100
62MP3AZ.389.3890 $%100$ 63MP3BX.225.2250 $%100$ 64MP3BZ.389.3890 $%100$ 65MP3CX.225.2250 $%100$ 66MP3CZ.389.3890 $%100$ 67MP4AX.225.2250 $%100$ 68MP4AZ.389.3890 $%100$ 69MP4BX.225.2250 $%100$ 70MP4BZ.389.3890 $%100$ 71MP4CX.225.2250 $%100$ 72MP4CZ.389.3890 $%100$ 73MP5AX.272.2720 $%100$ 74MP5AZ.471.4710 $%100$ 75MP5BX.272.2720 $%100$ 76MP5BZ.471.4710 $%100$ 78MP5CZ.471.4710 $%100$ 79M82X.045.0450 $%100$ 80M82Z.0780 $%100$ 81M83X.082.0820 $%100$ 83M84X.211.2110 $%100$	61	MP3A		.225	.225	0	%100
63         MP3B         X         .225         .225         0         %100           64         MP3B         Z         .389         .389         0         %100           65         MP3C         X         .225         .225         0         %100           66         MP3C         Z         .389         .389         0         %100           66         MP3C         Z         .389         .389         0         %100           67         MP4A         X         .225         .225         0         %100           68         MP4A         Z         .389         .389         0         %100           69         MP4B         Z         .389         .389         0         %100           70         MP4B         Z         .389         .389         0         %100           71         MP4C         X         .225         .225         0         %100           73         MP5A         X         .272         .272         0         %100           74         MP5A         Z         .471         .471         0         %100           75         MP5B         Z	62	MP3A		.389	.389	0	%100
64         MP3B         Z         .389         .389         0         %100           65         MP3C         X         .225         .225         0         %100           66         MP3C         Z         .389         .389         0         %100           66         MP3C         Z         .389         .389         0         %100           67         MP4A         X         .225         .225         0         %100           68         MP4A         Z         .389         .389         0         %100           69         MP4B         X         .225         .225         0         %100           70         MP4B         Z         .389         .389         0         %100           71         MP4C         X         .225         .225         0         %100           71         MP4C         Z         .389         .389         0         %100           73         MP5A         X         .272         .272         0         %100           75         MP5B         Z         .471         .471         0         %100           76         MP5B         Z	63	MP3B	X	.225	.225	0	%100
65         MP3C         X         .225         .225         0         %100           66         MP3C         Z         .389         .389         0         %100           67         MP4A         X         .225         .225         0         %100           68         MP4A         Z         .389         .389         0         %100           69         MP4B         X         .225         .225         0         %100           70         MP4B         Z         .389         .389         0         %100           71         MP4C         X         .225         .225         0         %100           71         MP4C         X         .225         .225         0         %100           72         MP4C         Z         .389         .389         0         %100           73         MP5A         X         .272         .272         0         %100           74         MP5A         Z         .471         .471         0         %100           76         MP5B         X         .272         .272         0         %100           78         MP5C         X	64	MP3B	<u> </u>	.389	.389	0	%100
66         MP3C         Z         .389         .389         .0         %100           67         MP4A         X         .225         .225         0         %100           68         MP4B         Z         .389         .389         0         %100           69         MP4B         X         .225         .225         0         %100           70         MP4B         Z         .389         .389         0         %100           71         MP4C         X         .225         .225         0         %100           71         MP4C         X         .225         .225         0         %100           72         MP4C         Z         .389         .389         0         %100           73         MP5A         X         .272         .272         0         %100           74         MP5A         Z         .471         .471         0         %100           76         MP5B         Z         .471         .471         0         %100           78         MP5C         Z         .471         .471         0         %100           80         M82         Z	65	MP3C	X	.225	.225	0	%100
67         MP4A         X         .225         .225         0         %100           68         MP4A         Z         .389         .389         0         %100           69         MP4B         X         .225         .225         0         %100           70         MP4B         Z         .389         .389         0         %100           71         MP4C         X         .225         .225         0         %100           72         MP4C         Z         .389         .389         0         %100           73         MP5A         X         .272         .272         0         %100           74         MP5A         Z         .471         .471         0         %100           76         MP5B         X         .272         .272         0         %100           76         MP5B         Z         .471         .471         0         %100           78         MP5C         X         .272         .272         0         %100           78         MP5C         Z         .471         .471         0         %100           80         M82         Z<	66	MP3C		.389	.389	0	%100
68         MP4A         Z         .389         .389         0         %100           69         MP4B         X         .225         .225         0         %100           70         MP4B         Z         .389         .389         0         %100           71         MP4C         X         .225         .225         0         %100           72         MP4C         Z         .389         .389         0         %100           73         MP5A         X         .225         .225         0         %100           73         MP5A         X         .272         .272         0         %100           74         MP5A         Z         .471         .471         0         %100           76         MP5B         X         .272         .272         0         %100           76         MP5C         Z         .471         .471         0         %100           78         MP5C         Z         .471         .471         0         %100           79         M82         X         .045         .045         0         %100           80         M82         Z </td <td>67</td> <td>MP4A</td> <td>X</td> <td>.225</td> <td>.225</td> <td>0</td> <td>%100</td>	67	MP4A	X	.225	.225	0	%100
69         MP4B         X         .225         .225         0         %100           70         MP4B         Z         .389         .389         0         %100           71         MP4C         X         .225         .225         0         %100           72         MP4C         Z         .389         .389         0         %100           73         MP5A         X         .272         .272         0         %100           74         MP5A         Z         .471         .471         0         %100           75         MP5B         X         .272         .272         0         %100           76         MP5B         Z         .471         .471         0         %100           77         MP5C         X         .272         .272         0         %100           77         MP5C         X         .272         .272         0         %100           78         MP5C         Z         .471         .471         0         %100           79         M82         X         .045         .045         0         %100           80         M82         Z </td <td>68</td> <td>MP4A</td> <td><u> </u></td> <td>.389</td> <td>.389</td> <td>0</td> <td>%100</td>	68	MP4A	<u> </u>	.389	.389	0	%100
70         MP4B         Z         .389         .389         0         %100           71         MP4C         X         .225         .225         0         %100           72         MP4C         Z         .389         .389         0         %100           73         MP5A         X         .272         .272         0         %100           74         MP5A         Z         .471         .471         0         %100           75         MP5B         X         .272         .272         0         %100           76         MP5B         Z         .471         .471         0         %100           76         MP5B         Z         .471         .471         0         %100           77         MP5C         X         .272         .272         0         %100           78         MP5C         Z         .471         .471         0         %100           79         M82         X         .045         .045         0         %100           80         M82         Z         .078         .078         0         %100           81         M83         X <td>69</td> <td>MP4B</td> <td>X</td> <td>.225</td> <td>.225</td> <td>0</td> <td>%100</td>	69	MP4B	X	.225	.225	0	%100
71         MP4C         X         .225         .225         0         %100           72         MP4C         Z         .389         .389         0         %100           73         MP5A         X         .272         .272         0         %100           74         MP5A         Z         .471         .471         0         %100           75         MP5B         X         .272         .272         0         %100           76         MP5B         Z         .471         .471         0         %100           77         MP5C         X         .272         .272         0         %100           78         MP5C         Z         .471         .471         0         %100           79         M82         X         .045         .045         0         %100           80         M82         Z         .078         .078         0         %100           81         M83         X         .082         .082         .082         0         %100           82         M83         Z         .142         .142         .0         %100         %100           83	70	MP4B	Z	.389	.389	0	%100
72         MP4C         Z         .389         .389         0         %100           73         MP5A         X         .272         .272         0         %100           74         MP5A         Z         .471         .471         0         %100           75         MP5B         X         .272         .272         0         %100           76         MP5B         Z         .471         .471         0         %100           76         MP5C         X         .272         .272         0         %100           77         MP5C         X         .272         .272         0         %100           78         MP5C         Z         .471         .471         0         %100           79         M82         X         .045         .045         0         %100           80         M82         Z         .078         .078         0         %100           81         M83         X         .082         .082         .082         0         %100           82         M83         Z         .142         .142         .0         %100         %100           83	71	MP4C	X	.225	.225	0	%100
73         MP5A         X         .272         .272         0         %100           74         MP5A         Z         .471         .471         0         %100           75         MP5B         X         .272         .272         0         %100           76         MP5B         Z         .471         .471         0         %100           76         MP5C         X         .272         .272         0         %100           77         MP5C         X         .272         .272         0         %100           78         MP5C         Z         .471         .471         0         %100           79         M82         X         .045         .045         0         %100           80         M82         Z         .078         .078         0         %100           81         M83         X         .082         .082         .082         0         %100           82         M83         Z         .142         .142         .0         %100           83         M84         X         .211         .211         .0         %100	72	MP4C	Z	.389	.389	0	%100
74         MP5A         Z         .471         .471         0         %100           75         MP5B         X         .272         .272         0         %100           76         MP5B         Z         .471         .471         0         %100           76         MP5B         Z         .471         .471         0         %100           77         MP5C         X         .272         .272         0         %100           78         MP5C         Z         .471         .471         0         %100           79         M82         X         .045         .045         0         %100           80         M82         Z         .078         .078         0         %100           81         M83         X         .082         .082         0         %100           82         M83         Z         .142         .142         0         %100           83         M84         X         .211         .211         0         %100	73	MP5A	X	.272	.272	0	%100
75         MP5B         X         .272         .272         0         %100           76         MP5B         Z         .471         .471         0         %100           77         MP5C         X         .272         .272         0         %100           78         MP5C         Z         .471         .471         0         %100           79         M82         X         .045         .045         0         %100           80         M82         Z         .078         .078         0         %100           81         M83         X         .082         .082         0         %100           82         M83         Z         .142         .142         0         %100           83         M84         X         .211         .211         0         %100	74	MP5A	Z	.471	.471	0	%100
76         MP5B         Z         .471         .471         0         %100           77         MP5C         X         .272         .272         0         %100           78         MP5C         Z         .471         .471         0         %100           79         M82         X         .045         .045         0         %100           80         M82         Z         .078         .078         0         %100           81         M83         X         .082         .082         0         %100           82         M83         Z         .142         .142         0         %100           83         M84         X         .211         0         %100	75	MP5B	X	.272	.272	0	%100
77         MP5C         X         .272         .272         0         %100           78         MP5C         Z         .471         .471         0         %100           79         M82         X         .045         .045         0         %100           80         M82         Z         .078         .078         0         %100           81         M83         X         .082         .082         0         %100           82         M83         Z         .142         .142         0         %100           83         M84         X         .211         0         %100	76	MP5B	Z	.471	.471	0	%100
78         MP5C         Z         .471         .471         0         %100           79         M82         X         .045         .045         0         %100           80         M82         Z         .078         .078         0         %100           81         M83         X         .082         .082         0         %100           82         M83         Z         .142         .142         0         %100           83         M84         X         .211         0         %100	77	MP5C	Х	.272	.272	0	%100
79         M82         X         .045         .045         0         %100           80         M82         Z         .078         .078         0         %100           81         M83         X         .082         .082         0         %100           82         M83         Z         .142         .142         0         %100           83         M84         X         .211         .211         0         %100	78	MP5C	Z	.471	.471	0	%100
80         M82         Z         .078         .078         0         %100           81         M83         X         .082         .082         0         %100           82         M83         Z         .142         .142         0         %100           83         M84         X         .211         .211         0         %100	79	M82	Х	.045	.045	0	%100
81         M83         X         .082         .082         0         %100           82         M83         Z         .142         .142         0         %100           83         M84         X         .211         .211         0         %100	80	M82	Z	.078	.078	0	%100
82         M83         Z         .142         .142         0         %100           83         M84         X         .211         .211         0         %100	81	M83	Х	.082	.082	0	%100
83 M84 X .211 .211 0 %100	82	M83	Z	.142	.142	0	%100
	83	M84	Х	.211	.211	0	%100

RISA-3D Version 17.0.4 [C:\...\...\...\...\...\...\...\Model Files\467920-VZW_MT_LO_H.r3d] Page 136



#### Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
84	M84	Z	.365	.365	0	%100

### Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	0	0	0	%100
2	A1	Z	0	0	0	%100
3	A2	Х	0	0	0	%100
4	A2	Z	0	0	0	%100
5	A5	Х	0	0	0	%100
6	A5	Z	.367	.367	0	%100
7	A6	Х	0	0	0	%100
8	A6	Z	.552	.552	0	%100
9	A7	X	0	0	0	%100
10	A7	Z	.449	.449	0	%100
11	A8	X	0	0	0	%100
12	A8	Z	.449	449	0	%100
13	B26	X	0	0	0	%100
14	B26	7	319	319	0	%100
15	B27	X	0	0	0	%100
16	B27	7	319	319	0	%100
17	B30	X	.010	.010	0	%100
18	B30	7	367	367	0	%100
19	B31	X			0	%100
20	B31	7	552	552	0	%100
20	B32	×			0	%100
21	B32	7	112	112	0	%100
22	 		.112	.112	0	%100
23	 	~ 7	112	112	0	%100
24	<b>D</b> 00		.112	.112	0	9/ 100
20	D00	~ 7	0	002	0	%100
20	B80		.003	.003	0	%100
27	B01	× 7	0	0	0	%100
20	D01		.309	.369	0	%100
29	051	∧ 	0	0	0	%100
30	050		.376	.370	0	%100
31	052	X 7	0	0	0	%100
32	052		.376	.376	0	%100
33	055	X	0	0	0	%100
34	055	Z	.367	.367	0	%100
35	C56	X	0	0	0	%100
36	056	Z	.552	.552	0	%100
37	057	X	0	0	0	%100
38	057	<u> </u>	.053	.053	0	%100
39	C58	X	0	0	0	%100
40	C58	Z	.053	.053	0	%100
41	C78	X	0	0	0	%100
42	C78	Z	.252	.252	0	%100
43	C79	X	0	0	0	%100
44	C79	Z	.429	.429	0	%100
45	M76	X	0	0	0	%100
46	M76	Z	.341	.341	0	%100
47	M77	X	0	0	0	%100
48	M77	Z	.012	.012	0	%100
49	MP1A	Х	0	0	0	%100
50	MP1A	Z	.449	.449	0	%100
51	MP1B	Х	0	0	0	%100
52	MP1B	Z	.449	.449	0	%100



#### Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
53	MP1C	Х	0	0	0	%100
54	MP1C	Z	.449	.449	0	%100
55	MP2A	Х	0	0	0	%100
56	MP2A	Z	.449	.449	0	%100
57	MP2B	Х	0	0	0	%100
58	MP2B	Z	.449	.449	0	%100
59	MP2C	Х	0	0	0	%100
60	MP2C	Z	.449	.449	0	%100
61	MP3A	Х	0	0	0	%100
62	MP3A	Z	.449	.449	0	%100
63	MP3B	Х	0	0	0	%100
64	MP3B	Z	.449	.449	0	%100
65	MP3C	Х	0	0	0	%100
66	MP3C	Z	.449	.449	0	%100
67	MP4A	Х	0	0	0	%100
68	MP4A	Z	.449	.449	0	%100
69	MP4B	Х	0	0	0	%100
70	MP4B	Z	.449	.449	0	%100
71	MP4C	Х	0	0	0	%100
72	MP4C	Z	.449	.449	0	%100
73	MP5A	Х	0	0	0	%100
74	MP5A	Z	.544	.544	0	%100
75	MP5B	Х	0	0	0	%100
76	MP5B	Z	.544	.544	0	%100
77	MP5C	Х	0	0	0	%100
78	MP5C	Z	.544	.544	0	%100
79	M82	Х	0	0	0	%100
80	M82	Z	.002	.002	0	%100
81	M83	Х	0	0	0	%100
82	M83	Z	.381	.381	0	%100
83	M84	Х	0	0	0	%100
84	M84	Z	.323	.323	0	%100

# Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	053	053	0	%100
2	A1	Z	.092	.092	0	%100
3	A2	Х	053	053	0	%100
4	A2	Z	.092	.092	0	%100
5	A5	Х	184	184	0	%100
6	A5	Z	.318	.318	0	%100
7	A6	Х	276	276	0	%100
8	A6	Z	.478	.478	0	%100
9	A7	Х	169	169	0	%100
10	A7	Z	.292	.292	0	%100
11	A8	Х	169	169	0	%100
12	A8	Z	.292	.292	0	%100
13	B26	Х	213	213	0	%100
14	B26	Z	.369	.369	0	%100
15	B27	Х	213	213	0	%100
16	B27	Z	.369	.369	0	%100
17	B30	Х	184	184	0	%100
18	B30	Z	.318	.318	0	%100
19	B31	Х	276	276	0	%100
20	B31	Z	.478	.478	0	%100
21	B32	X	0	0	0	%100



#### Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

22	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
22	B33	X	0	0	0	%100
23	 	~ 7	0	0	0	%100
24	<u>B30</u>	X	052	052	0	%100
20	B80	7	032	089	0	%100
20	B81	X	- 223	- 223	0	%100
28	B81	7	387	387	0	%100
20		X			0	%100
30	C51	7	000	000	0	%100
31	C52	X	- 088	- 088	0	%100
32	C52	7	000	000	0	%100
33	C55	X	- 184	- 184	0	%100
34	C55	7	318	318	0	%100
35	<u> </u>	×	.516	.310	0	%100
36	C56	7	270	270	0	%100
37	C57	X	- 132	- 132	0	%100
38	C57	7	228	228	0	%100
30	C58	X	.220	.220	0	%100
40	C58	7	132	132	0	%100
40	C78	×	.220	.220	0	%100
41	C78	7	210	210	0	%100
42	C70	×	.575	102	0	%100
43	C79	~ 7	123	123	0	%100
44	M76	× ×	.212	.212	0	%100
40	M76	7	002	002	0	%100
40	M77		.107	.107	0	%100
47	N77		070	070	0	%100
40			.131	.131	0	%100
49			220	220	0	%100
50			.309		0	%100
51		~ 7	220	220	0	%100
52		Z V			0	%100
53	MP1C	~ 7	220	220	0	%100
55	MD2A		.309		0	%100
55	MD2A	~ 7	220	220	0	%100
57			.309		0	%100
57		~ 7	225	220	0	%100
50			.309		0	%100
59	MP2C	∧ 	220	220	0	%100
60	MP20		.369	.309	0	%100
62	MD2A	~ 7	220	220	0	%100
62	MD2P	2 V	.309	.309	0	0/ 100
64	MD2P	~ 7	220	220	0	% 100 % 100
65	MD2C	Z V	.309	.309	0	0/ 100
60	MD2C	~ 7	225	220	0	%100
67			.309	.309	0	%100
60			220	220	0	%100
60			.309		0	%100
09		∧ 	220	220	0	% 100 % 100
70			.309	.309	0	% 100 % 100
71	MP4C	~ 7	220	220	0	% 100 % 100
72			.309	.309	0	% 100 % 100
13	MD5A	~ 7	212	212	0	%100
74	MD5D		.471	.4/ 1	0	%100
10	IVIP3B	~ 7	212	212	0	% 100 % 100
70	MD50	Z	.4/1	.4/ 1	0	%100
70	MDSC	~ 7	212	212	0	%100
78	IVIP5C	2	.47	.471	U	<i>%</i> 100



### Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
79	M82	X	068	068	0	%100
80	M82	Z	.119	.119	0	%100
81	M83	Х	221	221	0	%100
82	M83	Z	.383	.383	0	%100
83	M84	Х	056	056	0	%100
84	M84	Z	.097	.097	0	%100

#### Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	277	277	0	%100
2	A1	Z	.16	.16	0	%100
3	A2	Х	277	277	0	%100
4	A2	Z	.16	.16	0	%100
5	A5	Х	318	318	0	%100
6	A5	Z	.184	.184	0	%100
7	A6	X	478	478	0	%100
8	A6	Z	.276	.276	0	%100
9	A7	x	- 097	- 097	0	%100
10	A7	7	056	056	Ő	%100
11	A8	x	- 097	- 097	0	%100
12	A8	7	056	056	0	%100
13	B26	X	- 277	- 277	0	%100
14	B26	7	16	16	0	%100
15	B27	X	- 277	- 277	0	%100
16	B27	7	211	16	0	%100
17	B30	× ×	_ 318	_ 318	0	%100
10	B30	7	510	510	0	%100
10	D30	Z V	.104	.104	0	%100
19	D01	~ 7	470	470	0	%100
20	D		.270	.270	0	%100
21	B32	<u> </u>	097	097	0	%100
22	B32	Z V	.056	.056	0	%100
23	B33	× 7	097	097	0	%100
24	B33		.056	.056	0	%100
25	B80	X	283	283	0	%100
26	<u>B80</u>	<u> </u>	.163	.163	0	%100
27	B81	X	266	266	0	%100
28	B81	Z	.154	.154	0	<u>%100</u>
29	C51	X	011	011	0	%100
30	C51	Z	.006	.006	0	%100
31	C52	Х	011	011	0	%100
32	C52	Z	.006	.006	0	%100
33	C55	Х	318	318	0	%100
34	C55	Z	.184	.184	0	%100
35	C56	Х	478	478	0	%100
36	C56	Z	.276	.276	0	%100
37	C57	Х	377	377	0	%100
38	C57	Z	.218	.218	0	%100
39	C58	Х	377	377	0	%100
40	C58	Z	.218	.218	0	%100
41	C78	Х	351	351	0	%100
42	C78	Z	.203	.203	0	%100
43	C79	X	036	036	0	%100
44	C79	Z	.021	.021	0	%100
45	M76	X	013	013	0	%100
46	M76	7	.008	.008	Õ	%100
47	M77	x	319	319	Ő	%100



### Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
48	M77	Z	.184	.184	0	%100
49	MP1A	Х	389	389	0	%100
50	MP1A	Z	.225	.225	0	%100
51	MP1B	Х	389	389	0	%100
52	MP1B	Z	.225	.225	0	%100
53	MP1C	Х	389	389	0	%100
54	MP1C	Z	.225	.225	0	%100
55	MP2A	Х	389	389	0	%100
56	MP2A	Z	.225	.225	0	%100
57	MP2B	Х	389	389	0	%100
58	MP2B	Z	.225	.225	0	%100
59	MP2C	Х	389	389	0	%100
60	MP2C	Z	.225	.225	0	%100
61	MP3A	Х	389	389	0	%100
62	MP3A	Z	.225	.225	0	%100
63	MP3B	Х	389	389	0	%100
64	MP3B	Z	.225	.225	0	%100
65	MP3C	Х	389	389	0	%100
66	MP3C	Z	.225	.225	0	%100
67	MP4A	Х	389	389	0	%100
68	MP4A	Z	.225	.225	0	%100
69	MP4B	Х	389	389	0	%100
70	MP4B	Z	.225	.225	0	%100
71	MP4C	Х	389	389	0	%100
72	MP4C	Z	.225	.225	0	%100
73	MP5A	Х	471	471	0	%100
74	MP5A	Z	.272	.272	0	%100
75	MP5B	Х	471	471	0	%100
76	MP5B	Z	.272	.272	0	%100
77	MP5C	Х	471	471	0	%100
78	MP5C	Z	.272	.272	0	%100
79	M82	Х	312	312	0	%100
80	M82	Z	.18	.18	0	%100
81	M83	Х	247	247	0	%100
82	M83	Z	.143	.143	0	%100
83	M84	Х	000108	000108	0	%100
84	M84	Z	6.2e-5	6.2e-5	0	%100

### Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	426	426	0	%100
2	A1	Z	0	0	0	%100
3	A2	Х	426	426	0	%100
4	A2	Z	0	0	0	%100
5	A5	Х	367	367	0	%100
6	A5	Z	0	0	0	%100
7	A6	Х	552	552	0	%100
8	A6	Z	0	0	0	%100
9	A7	Х	0	0	0	%100
10	A7	Z	0	0	0	%100
11	A8	Х	0	0	0	%100
12	A8	Z	0	0	0	%100
13	B26	Х	106	106	0	%100
14	B26	Z	0	0	0	%100
15	B27	Х	106	106	0	%100
16	B27	Z	0	0	0	%100



#### Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
17	B30	Х	367	367	0	%100
18	B30	Z	0	0	0	%100
19	B31	Х	552	552	0	%100
20	B31	Z	0	0	0	%100
21	B32	X	337	337	0	%100
22	B32	Z	0	0	0	%100
23	B33	X	- 337	- 337	0	%100
24	B33	7	0	0	Ő	%100
25	B80	X	- 449	- 449	0	%100
26	B80	7	0	0	0 0	%100
27	B81	X	- 09	- 09	0	%100
28	B81	7		.00	0	%100
20	 C51	X	- 05	- 05	0	%100
30	C51	7	05	05	0	%100
31	C52	X	- 05	- 05	0	%100
32	C52	7	05	05	0	%100
22	C55	Z V	267	267	0	%100
24	055	~ 7	307	307	0	%100
25	055		552	552	0	%100
30	050	~ 7	552	552	0	%100
27	057	Z V	0	0	0	%100
37	057		397	397	0	%100
38	057	<u> </u>	0	0	0	%100
39	<u> </u>	X	397	397	0	%100
40	078	<u> </u>	0	0	0	%100
41	078	× 7	2	2	0	%100
42	078	<u> </u>	0	0	0	%100
43	079	X	021	021	0	%100
44	079	Z	0	0	0	%100
45	M76	X	124	124	0	%100
40	IVI76	<u> </u>	0	0	0	%100
47		X	446	446	0	%100
48		<u> </u>	0	0	0	%100
49		× 7	449	449	0	%100
50	MP1A MP1P	<u> </u>	0	0	0	%100
51	MP1B	X	449	449	0	%100
52	MP1B	<u> </u>	0	0	0	%100
53	MP1C	X	449	449	0	%100
54	MP1C	<u> </u>	0	0	0	%100
55	MP2A	X	449	449	0	%100
56	MP2A	Z	0	0	0	%100
57	MP2B	× 7	449	449	0	%100
58	MP2C	Z	0	0	0	%100
59	MP2C	× 7	449	449	0	%100
60	MP2C	<u> </u>	0	0	0	%100
61	MP3A	X	449	449	0	%100
62	MP3A	<u> </u>	0	0	0	%100
63	MP3B	X	449	449	0	%100
64	MP3B	<u> </u>	0	0	0	%100
65	MP3C	X 7	449	449	0	%100
00	MP3C	Z	0	0	0	%100
67		λ 7	449	449	0	%100
60	MP4A	<u> </u>	0	0	0	%100
69	MP4B	× 7	449	449	0	%100
70			0	0	0	%100
71		X 7	449	449	0	%100
72	MD54		0	0	0	%100
13	NC-JIVI	۸	044	044	U	<u>%100</u>

RISA-3D Version 17.0.4 [C:\...\...\...\...\...\...\...\...\Model Files\467920-VZW_MT_LO_H.r3d] Page 142



### Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
74	MP5A	Z	0	0	0	%100
75	MP5B	Х	544	544	0	%100
76	MP5B	Z	0	0	0	%100
77	MP5C	Х	544	544	0	%100
78	MP5C	Z	0	0	0	%100
79	M82	Х	448	448	0	%100
80	M82	Z	0	0	0	%100
81	M83	Х	068	068	0	%100
82	M83	Z	0	0	0	%100
83	M84	Х	099	099	0	%100
84	M84	Z	0	0	0	%100

# Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	X	277	277	0	%100
2	A1	Z	16	16	0	%100
3	A2	Х	277	277	0	%100
4	A2	Z	16	16	0	%100
5	A5	Х	318	318	0	%100
6	A5	Z	184	184	0	%100
7	A6	Х	478	478	0	%100
8	A6	Z	276	276	0	%100
9	A7	Х	097	097	0	%100
10	A7	Z	056	056	0	%100
11	A8	Х	097	097	0	%100
12	A8	Z	056	056	0	%100
13	B26	Х	0	0	0	%100
14	B26	Z	0	0	0	%100
15	B27	Х	0	0	0	%100
16	B27	Z	0	0	0	%100
17	B30	Х	318	318	0	%100
18	B30	Z	184	184	0	%100
19	B31	Х	478	478	0	%100
20	B31	Z	276	276	0	%100
21	B32	Х	389	389	0	%100
22	B32	Z	225	225	0	%100
23	B33	Х	389	389	0	%100
24	B33	Z	225	225	0	%100
25	B80	Х	302	302	0	%100
26	B80	Z	174	174	0	%100
27	B81	Х	01	01	0	%100
28	B81	Z	006	006	0	%100
29	C51	Х	216	216	0	%100
30	C51	Z	125	125	0	%100
31	C52	Х	216	216	0	%100
32	C52	Z	125	125	0	%100
33	C55	Х	318	318	0	%100
34	C55	Z	184	184	0	%100
35	C56	X	478	478	0	%100
36	C56	Z	276	276	0	%100
37	C57	X	161	161	0	%100
38	C57	Z	093	093	0	%100
39	C58	X	161	161	0	%100
40	C58	Z	093	093	0	%100
41	C78	X	018	018	0	%100
42	C78	Z	01	01	0	%100



#### Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
43	C79	Х	177	177	0	%100
44	C79	Z	102	102	0	%100
45	M76	Х	295	295	0	%100
46	M76	Z	17	17	0	%100
47	M77	Х	266	266	0	%100
48	M77	Z	154	154	0	%100
49	MP1A	Х	389	389	0	%100
50	MP1A	Z	225	225	0	%100
51	MP1B	Х	389	389	0	%100
52	MP1B	Z	225	225	0	%100
53	MP1C	Х	389	389	0	%100
54	MP1C	Z	225	225	0	%100
55	MP2A	Х	389	389	0	%100
56	MP2A	Z	225	225	0	%100
57	MP2B	Х	389	389	0	%100
58	MP2B	Z	225	225	0	%100
59	MP2C	Х	389	389	0	%100
60	MP2C	Z	225	225	0	%100
61	MP3A	Х	389	389	0	%100
62	MP3A	Z	225	225	0	%100
63	MP3B	Х	389	389	0	%100
64	MP3B	Z	225	225	0	%100
65	MP3C	Х	389	389	0	%100
66	MP3C	Z	225	225	0	%100
67	MP4A	Х	389	389	0	%100
68	MP4A	Z	225	225	0	%100
69	MP4B	Х	389	389	0	%100
70	MP4B	Z	225	225	0	%100
71	MP4C	Х	389	389	0	%100
72	MP4C	Z	225	225	0	%100
73	MP5A	Х	471	471	0	%100
74	MP5A	Z	272	272	0	%100
75	MP5B	Х	471	471	0	%100
76	MP5B	Z	272	272	0	%100
77	MP5C	Х	471	471	0	%100
78	MP5C	Z	272	272	0	%100
79	M82	Х	271	271	0	%100
80	M82	Z	156	156	0	%100
81	M83	Х	006	006	0	%100
82	M83	Z	003	003	0	%100
83	M84	Х	269	269	0	%100
84	M84	Z	155	155	0	%100

# Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	A1	Х	053	053	0	%100
2	A1	Z	092	092	0	%100
3	A2	Х	053	053	0	%100
4	A2	Z	092	092	0	%100
5	A5	X	184	184	0	%100
6	A5	Z	318	318	0	%100
7	A6	Х	276	276	0	%100
8	A6	Z	478	478	0	%100
9	A7	Х	169	169	0	%100
10	A7	Z	292	292	0	%100
11	A8	X	169	169	0	%100



#### Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
12	A8	Z	292	292	0	%100
13	B26	Х	053	053	0	%100
14	B26	Z	092	092	0	%100
15	B27	Х	053	053	0	%100
16	B27	Z	092	092	0	%100
17	B30	Х	184	184	0	%100
18	B30	Z	318	318	0	%100
19	B31	X	276	276	0	%100
20	B31	Z	478	- 478	0	%100
21	B32	x	- 169	- 169	0	%100
22	B32	7	- 292	- 292	0	%100
23	B33	x	- 169	- 169	0	%100
24	B33	7	- 292	- 292	0	%100
24	<u>B80</u>	×	232	292	0	%100
20	BOO	~ 7	005	003	0	%100
20	D00		109	109	0	%100
21		~ 7	070	070	0	%100
20			131	131	0	%100
29	051	X	206	206	0	%100
30	051		358	358	0	%100
31	C52	X	206	206	0	%100
32	C52		358	358	0	<u>%100</u>
33	C55	X	184	184	0	%100
34	C55	Z	318	318	0	%100
35	C56	X	276	276	0	%100
36	C56	Z	478	478	0	%100
37	C57	X	007	007	0	%100
38	C57	Z	012	012	0	%100
39	C58	Х	007	007	0	%100
40	C58	Z	012	012	0	%100
41	C78	Х	023	023	0	%100
42	C78	Z	04	04	0	%100
43	C79	Х	204	204	0	%100
44	C79	Z	353	353	0	%100
45	M76	Х	225	225	0	%100
46	M76	7	- 389	389	0	%100
47	M77	x	- 045	- 045	0	%100
48	M77	7	- 078	- 078	0	%100
49	MP1A	X	- 225	- 225	0	%100
50	MP1A	7	- 389	- 389	0	%100
51	MP1R	×	- 225	- 225	0	%100
52	MP1R	7	- 389	_ 380	0	%100
52	MP1C	X	003	005	0	%100
54	MP1C	7	220	_ 380	0	%100
55	MD2A	Z V	005	009	0	0/100
55	MD2A	7	220	220	0	0/ 100
50			309	309	0	%100
5/	IVIP2B	~ 7	220	220	0	%100
58	MP2B		369	369	0	%100
59	MP2C	X	225	225	0	%100
60	MP2C		389	389	0	%100
61	MP3A	X	225	225	0	%100
62	MP3A	2	389	389	0	%100
63	MP3B	X	225	225	0	%100
64	MP3B	Z	389	389	0	%100
65	MP3C	Х	225	225	0	%100
66	MP3C	Z	389	389	0	%100
67	MP4A	Х	225	225	0	%100
68	MP4A	Z	389	389	0	%100

RISA-3D Version 17.0.4 [C:\...\...\...\...\...\...\...\...\Model Files\467920-VZW_MT_LO_H.r3d] Page 145


### Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
69	MP4B	X	225	225	0	%100
70	MP4B	Z	389	389	0	%100
71	MP4C	Х	225	225	0	%100
72	MP4C	Z	389	389	0	%100
73	MP5A	Х	272	272	0	%100
74	MP5A	Z	471	471	0	%100
75	MP5B	Х	272	272	0	%100
76	MP5B	Z	471	471	0	%100
77	MP5C	Х	272	272	0	%100
78	MP5C	Z	471	471	0	%100
79	M82	Х	045	045	0	%100
80	M82	Z	078	078	0	%100
81	M83	Х	082	082	0	%100
82	M83	Z	142	142	0	%100
83	M84	X	211	211	0	%100
84	M84	Z	365	365	0	%100

### Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]				
No Data to Print										

### Envelope Joint Reactions

	Joint	X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	A5	m741.797	9	859.953	13	899.482	2	463	6	Ō	51	.685	39
2		min-540.971	3	295.951	7	-1412.01	8	-1.196	24	0	1	-1.18	33
3	A6	m243.537	12	850.426	15	1103.674	9	46	2	0	51	.671	39
4		min-435.111	30	344.779	9	-571.36	3	-1.197	20	0	1	-1.18	33
5	B54	m1173.168	11	857.218	16	1195.753	12	1.196	24	0	51	072	12
6		min-834.503	5	327.636	10	-753.555	6	147	6	0	1	821	18
7	B55	m563.404	7	850.311	23	286.944	5	1.204	24	0	51	136	12
8		min -938.61	1	358.8	5	-672.137	11	175	6	0	1	81	18
9	C102	m1026.882	10	861.829	21	623.205	2	.585	11	0	51	1.367	17
10		min-1566.4	4	317.3	3	-656.842	8	673	5	0	1	.289	11
11	C103	m1223.665	5	853.928	23	367.154	2	.57	11	0	51	1.375	16
12		min-678.544	11	345.885	5	-418.404	8	661	4	0	1	.258	10
13	N150	m679.009	8	222.121	8	444.468	2	.138	3	0	51	.078	39
14		min-773.785	2	-151.49	2	-386.728	8	261	9	0	1	598	33
15	N152	m25.718	5	139.143	12	869.465	12	.403	24	0	51	.138	7
16		min -27.861	1	-67.52	6	-1011.649	6	039	6	0	1	105	1
17	N153	m681.666	10	130.928	4	603.825	10	051	10	0	51	.322	5
18		min-579.063	4	-59.783	10	-507.13	4	266	16	0	1	117	11
19	N155	m662.293	11	41.505	22	145.135	4	.065	11	0	51	.085	10
20		min -670.93	5	-5.66	4	-141.346	10	05	5	0	1	049	4
21	N156	m38.174	2	106.025	3	536.7	3	.162	33	0	51	.106	39
22		min -36.741	8	-78.34	9	-544.206	9	504	39	0	1	109	33
23	B162	m 542.637	12	114.652	6	269.947	1	.078	13	0	51	.114	12
24		min-534.585	6	-88.167	12	-262.545	7	004	7	0	1	127	6
25	Totals:	m3917.313	10	5385.056	24	3832.279	1						
26		min-3917.2	4	2421.541	6	-3832.267	7						



### Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Che	Loc[ft]	LC	Shear Che.	. Loc[ft]	Dir	LC	phi* phi* phi* phi* Eqn
1	C57	PIPE 2.0	.856	5.25	9	.294	6.453		4	892232130 1.872 1.872 H1
2	B32	PIPE_2.0	.800	5.25	4	.303	6.453		12	892232130 1.872 1.872 H1
3	A7	PIPE 2.0	.652	5.25	12	.265	2.188		3	892232130 1.872 1.872 H1
4	C58	PIPE_2.0	.535	5.25	8	.244	8.203		4	892232130 1.872 1.872 H1
5	B33	PIPE 2.0	.530	5.25	3	.195	10.172		12	892232130 1.872 1.872 H1
6	A8	PIPE_2.0	.464	5.25	11	.209	.328		3	892232130 1.872 1.872 H1
7	MP4A	PIPE 2.0	.393	5.125	26	.233	5.125		3	208632130 1.872 1.872 H1
8	MP1B	PIPE_2.0	.388	4.75	12	.267	4.75		12	208632130 1.872 1.872 H3-6
9	MP1A	PIPE 2.0	.382	5.5	45	.222	4.75		8	208632130 1.872 1.872 H1
10	M76	PIPE_2.0	.335	4.967	33	.099	4.967		3	239032130 1.872 1.872 H1
11	MP2A	PIPE 2.0	.334	5.125	45	.149	1.313		8	208632130 1.872 1.872 H1
12	MP4B	PIPE_2.0	.306	5.125	18	.188	5.125		6	208632130 1.872 1.872 H1
13	MP4C	PIPE 2.0	.301	5.125	22	.180	5.125		11	208632130 1.872 1.872 H1
14	MP1C	PIPE_2.0	.277	1.625	10	.192	5.5		10	208632130 1.872 1.872 H1
15	M77	PIPE 2.0	.274	5.92	39	.061	0		33	211032130 1.872 1.872 H1
16	A1	HSS3X3X3	.244	1.75	10	.239	0	у	33	764878246 6.796 6.796 H1
17	MP3A	PIPE 2.0	.243	5.5	26	.120	1.688		3	208632130 1.872 1.872 H1
18	C51	HSS3X3X3	.240	1.75	8	.185	0	z	5	764878246 6.796 6.796 H1
19	B26	HSS3X3X3	.232	1.75	2	.180	0	Z	12	764878246 6.796 6.796 H1
20	MP5A	PIPE_2.5	.227	3.417	9	.145	3.5		9	300350715 3.596 3.596 H1
21	C78	PIPE 2.0	.218	5.673	17	.077	0		11	218432130 1.872 1.872 H1
22	MP3B	PIPE_2.0	.218	5.5	17	.097	1.688		6	2086. 32130 1.872 1.872 H1
23	MP3C	PIPE 2.0	.216	5.5	22	.084	1.688		11	208632130 1.872 1.872 H1
24	B80	PIPE_2.0	.216	5.673	24	.085	0		6	218432130 1.872 1.872 H1
25	MP5B	PIPE 2.5	.213	3.417	1	.117	3.5		1	300350715 3.596 3.596 H1
26	A2	HSS3X3X3	.207	0	32	.239	0	у	33	764878246 6.796 6.796 H3-6
27	MP5C	PIPE 2.5	.206	3.417	5	.112	3.5	-	5	300350715 3.596 3.596 H1
28	B27	HSS3X3X3	.193	1.75	10	.175	0	y	12	764878246 6.796 6.796 H1
29	C52	HSS3X3X3	.183	1.75	2	.178	0	ý	4	764878246 6.796 6.796 H1
30	A6	PIPE_3.0	.165	.826	10	.270	.826		10	580265205 5.749 5.749 H3-6
31	C56	PIPE 3.0	.149	.826	4	.271	.826		8	580265205 5.749 5.749 H1
32	B31	PIPE_3.0	.148	.826	12	.252	.826		3	580265205 5.749 5.749 H1
33	MP2B	PIPE 2.0	.131	1.313	24	.181	1.313		12	208632130 1.872 1.872 H1
34	MP2C	PIPE_2.0	.131	5.125	22	.219	1.313		4	208632130 1.872 1.872 H1
35	A5	PIPE 2.0	.119	3	33	.184	3		33	288432130 1.872 1.872 H1
36	C55	PIPE_2.0	.096	3	5	.149	3		5	288432130 1.872 1.872 H1
37	B30	PIPE 2.0	.096	3	12	.146	3		12	288432130 1.872 1.872 H1
38	B81	PIPE_2.0	.077	5.92	6	.057	0		1	211032130 1.872 1.872 H1
39	C79	PIPE 2.0	.068	6.384	11	.030	6.384		11	197132130 1.872 1.872 H1
40	M83	PIPE_2.0	.026	3.064	2	.090	6.127		11	204832130 1.872 1.872 H1
41	M82	PIPE 2.0	.023	2.604	10	.123	0		6	232132130 1.872 1.872 H1
42	M84	PIPE_2.0	.016	0	8	.133	0		3	257532130 1.872 1.872 H1



### TIA-222-H CONNECTION CHECK Mount to Tower Connection - Typ. All Sectors 2021740.467920.02

Bolt Information								
Bolt Diameter (d)	0.5	in						
Net Tensile Area (An)	0.142	in ²						
# of Bolts Total (n)	4							
Bolt Distance Up-Down	1.5	in						
Bolt Distance Left-Right	9.5	in						
Bolt Grade	F1554-36							
Bolt Tensile Strength (F _{ub} )	58	ksi						

RISA 3D Reactions									
Moment (M)	1.20	k-ft							
Axial (T)	0.91	kips							
Shear (V)	0.91	kips							

Bolt Cap	Bolt Capacity								
Nominal Tensile Strength (R _{nt} )	8.230	kips							
Nominal Shear Strength (R _{nv} )	5.69	kips							
Bolt Tensile Force (T _{ub} )	5.03	kips							
Bolt Shear Force (V _{ub} )	0.228	kips							
Τ _{ub} /φR _{nt}	0.81570								
V _{ub} / $\phi$ R _{nv}	0.05346								
$(V_{ub}/\varphi R_{nv})^2 + (T_{ub}/\varphi R_{nt})^2$	0.66823								
Bolt Capacity =	81.6%	ОК							



### TIA-222-H CONNECTION CHECK Tieback to Tower Connection - Typ. All Sectors 2021740.467920.02

Bolt Inform	Bolt Information							
Bolt Diameter (d)	0.5	in						
Net Tensile Area (An)	0.142	in ²						
# of Bolts Total (n)	4							
Bolt Grade	A307							
Bolt Tensile Strength (F _{ub} )	60	ksi						

RISA 3D Reactions									
Moment (M)	0.63	k-ft							
Axial (T)	0.00	kips							
Shear (V)	0.14	kips							

Bolt Capacity									
Nominal Tensile Strength (R _{nt} )	8.514	kips							
Nominal Shear Strength (R _{nv} )	5.89	kips							
Bolt Tensile Force (T _{ub} )	0.83	kips							
Bolt Shear Force (V _{ub} )	0.034	kips							
Τ _{ub} /φR _{nt}	0.13055								
V _{ub} /φR _{nv}	0.00777								
$(V_{ub}/\varphi R_{nv})^2 + (T_{ub}/\varphi R_{nt})^2$	0.01710								
Bolt Capacity =	13.1%	ОК							

## Mount Desktop – Post Modification Inspection (PMI) Report Requirements

## **Documents & Photos Required from Contractor – Mount Modification**

Electronic pdf version of this can be downloaded at <u>https://pmi.vzwsmart.com</u> For additional questions and support, please reach out to pmisupport@colliersengineering.com

<u>Purpose</u> – to upload the proper documentation to the SMART Tool in order to allow the SMART Tool engineering vendor to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the modification was completed in accordance with the modification drawings.
- Contractor shall relay any data that can impact the performance of the mount or the mount modification, this includes safety issues.

### **Base Requirements:**

- If installation of the modification will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built drawings" showing contractor's name, preparer's signature, and date. Any deviations from the drawings (proposed modification) shall be shown. NOTE: If loading is different than what is conveyed in the post-modification passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo shall be time and date stamped.
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool engineer for recommendations.
- The PMI can be accessed at the following portal: <a href="https://pmi.vzwsmart.com">https://pmi.vzwsmart.com</a>

### Photo Requirements:

- Photos taken at ground level
  - Photo of Gate Signs showing the tower owner, site name, and number.
  - Overall tower structure after installation of the modifications.
  - Photos of the mount after installation of the modifications; if the mounts are at different rad elevations, pictures must be provided for all elevations that the modifications were installed
- Photos taken at Mount Elevation
  - Photos showing the safety climb wire rope above and below the mount prior to modification.
  - Photos showing the climbing facility and safety climb if present.
  - Photos showing each individual sector after installation of modifications. Each entire sector must be in one photo to show the interconnection of members.

- These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.
- Photos of each installed modification per the modification drawings; pictures shall also include connection hardware (U-bolts, bolts, nuts, all-threaded rods, etc.)
- Photos showing the distances (relative distance between collars) of the installed modifications from the appropriate reference locations shown in the modification drawings.
- Photos showing the installed modifications onto the tower (i.e. ring/collar mounts, tiebacks, V-bracing kits, etc.); if the existing mount elevation needs to be changed according to the modification drawings, an elevation measurement shall be provided before the elevation change.

### Material Certification:

- Materials utilized must be as per specification on the drawings or the equivalent as validated by the SMART Tool vendor.
  - $\circ$  ~ If the materials are as specified on the drawings
    - The contractor shall provide the packing list, or the materials certifications for the materials utilized to perform the mount modification
    - Commscope, Metrosite, Perfect Vision, Sabre, and Site Pro have all agreed to support Verizon vendors with the necessary material certifications
  - o If seeking permission to use an equivalent
    - It is required that the SMART Tool engineering vendor approval of such is included in the contractor submission package. There may be an additional charge for approval if the equivalent submission doesn't meet specifications as prescribed in the drawings.

□ All hardware has been properly installed, and the existing hardware was inspected.

□ The material utilized was as specified on the SMART Tool engineering vendor Mount Modification Drawings and included in the material certification folder is a packing list or invoice for these materials.

OR

□ The material utilized was approved by a SMART Tool as an "equivalent" and this approval is included as part of the contractor submission.

### Antenna & equipment placement and Geometry Confirmation:

□ The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.

 $\Box$  The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.

Comments:	
Certifying Individual:	
Company:	
Employee Name:	
Contact Phone:	
Email:	
Date.	
Was the mount modification was the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount modification with the mount modification was a set of the mount m	ation completed in conjunction with the equipment change / installation?
□ Yes □	No
Special Instructions / Va	lidation as required from the MA or Mod Drawings:
Issue:	
Response:	
Contractor certifies that	the climbing facility / safety climb was not damaged or obstructed prior to
starting work:	
🗆 Yes 🛛	Νο
Contractor certifies no r	new damage/obstructions created during the current installation:
□ Yes □	No
Contractor to certify the	e condition of the safety climb and verify no obstructions when leaving the
site:	
□ Safety climb in	good condition with no obstructions 🛛 🗆 Safety Climb Damaged

□ Safety Climb Obstructed

Comments:



		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A5	BXA-80090/8	94.6	8	122.75	1	а	Front	36	0	Retained	04/20/2021
R2	MT6407-77A	35.1	16.1	54.25	3	а	Front	19.02	0	Added	
R4	RF4440d-13A	15	15	54.25	3	а	Behind	39	0	Added	
R3	RF4439d-25A	15	15	27.25	4	а	Behind	39	0	Added	
A1	MX06FRO660-03	71.3	15.4	3.25	5	а	Front	41.04	10	Added	
A1	MX06FRO660-03	71.3	15.4	3.25	5	b	Front	41.04	-10	Added	





		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A5	BXA-80090/8	94.6	8	122.75	1	а	Front	36	0	Retained	04/20/2021
R2	MT6407-77A	35.1	16.1	54.25	3	а	Front	19.02	0	Added	
R4	RF4440d-13A	15	15	54.25	3	а	Behind	39	0	Added	
R3	RF4439d-25A	15	15	27.25	4	а	Behind	39	0	Added	
A1	MX06FRO660-03	71.3	15.4	3.25	5	а	Front	41.04	10	Added	
A1	MX06FRO660-03	71.3	15.4	3.25	5	b	Front	41.04	-10	Added	





A1		A1 R3	R	2	A5
	5	4	3	2	1

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A5	BXA-80090/8	94.6	8	122.75	1	а	Front	36	0	Retained	04/20/2021
R2	MT6407-77A	35.1	16.1	54.25	3	а	Front	19.02	0	Added	
R4	RF4440d-13A	15	15	54.25	3	а	Behind	39	0	Added	
R3	RF4439d-25A	15	15	27.25	4	а	Behind	39	0	Added	
A1	MX06FRO660-03	71.3	15.4	3.25	5	а	Front	41.04	10	Added	
A1	MX06FRO660-03	71.3	15.4	3.25	5	b	Front	41.04	-10	Added	





Subject	TIA-222-H Usage
Site Information	Site ID: 467920-VZW / WILTON WEST CT Site Name: WILTON WEST CT Carrier Name: Verizon Wireless
	Address: 160 Deer Run Road Wilton, Connecticut 06897 Fairfield County Latitude: 41.241372° Longitude: -73.469889°
Structure Information	Tower Type: 118-Ft Self Support Mount Type: 10.50-Ft T-Frames

To Whom It May Concern,

We respectfully submit the above referenced Antenna Mount Structural Analysis report in conformance with ANSI/TIA-222-H, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

The 2018 Connecticut State Building Code states that, in Section 3108, telecommunication towers shall be designed and constructed in accordance with the provisions of TIA-222. TIA-222-H is the latest revision of the TIA-222 Standard, effective as of January 01, 2018.

As with all ANSI standards and engineering best practice is to apply the most current revision of the standard. This ensures the engineer is applying all updates. As an example, the TIA-222-H Standard includes updates to bring it in line with the latest AISC and ACI standards and it also incorporates the latest wind speed maps by ASCE 7 based on updated studies of the wind data.

The TIA-222-H standard clarifies these specific requirements for the antenna mount analysis such as modeling methods, seismic analysis, 30-degree increment wind directions and maintenance loading. Therefore, it is our opinion that TIA-222-H is the most appropriate standard for antenna mount structural analysis and is acceptable for use at this site to ensure the engineer is taking into account the most current engineering standard available.

Sincerely,

GPD Group

Christopher J. Scheks, P.E. Connecticut #: 0030026

MOUNT INFORMATION: MOUNT TYPE: 10-6" T-FRAME SITE LOCATION: LAT: 41.241372" LONG: -73.459889" STREET ADDRESS: 160 DEER RUN ROAD CITY, STATE ZIP: WILTON, CT 06697 COUNTY: FAIRFIELD TOWER OWNER: SBA TOWER STE NUMBER: CT98078	CODE COMPLIANCE: GOVERNING CODES: TIA-222-H WIND SPEEDS: TIA-222-H WIND SPEEDS: TIA-222-H WIND SPEEDS: TIA-222-H WIND SPEEDS: TIA-222-H 50 MPH 3-SECOND GUST (W/ ICE) 50 MPH 3-SECOND GUST (W/ ICE) 50 MPH 3-SECOND GUST (W/ ICE) 16 CATEGORY: 1 RISK CATEGORY: 1 RISK CATEGORY: 1 EXPOSURE CATEGORY: 1 SERSMIC CRITERIA: SERSMIC CRITERIA: SHORT PERIOD SPECTRAL RESPONSE ACCELERATION (S ₃ ): 0.243 SHORT PERIOD SPECTRAL RESPONSE ACCELERATION (S ₃ ): 0.243	
WILTON WEST CT SITE #: 467920 SMART TOOL PROJECT #: 10108062		SECONSULTING CONTACT:         SEER CONSULTING CONTACT:         FEIR ALANNO         FEIR ALANNO

	N-01
<ol> <li>T. W. NENTONAS STEEL NOTE:</li> <li>T. W. NENTONAS STEEL NOT NUCLEAR ST</li></ol>	
<ol> <li>HIG CREATA NOTE:</li> <li>HIG CREATA NOTE:</li></ol>	
Image: control       Image: control       Image: control       Image: control         image: control       image: control       image: control       image: control       image: control         image: control       image: control       image: control       image: control       image: control         image: control       image: control       image: control       image: control       image: control         image: control       image: control       image: control       image: control       image: control         image: control       image: control       image: control       image: control       image: control         image: control       image: control       image: control       image: control       image: control         image: control       image: control       image: control       image: control       image: control         image: control       image: control       image: control       image: control       image: control         image: control       image: control       image: control       image: control       image: control         image: control       image: control       image: control       image: control       image: control         image: control       image: control       image: control       image: control       image: contro         image: control <td></td>	

BIL OF MATERIALS ILL OF MATERIALS ILL OF MATERIALS IZZNSMART KITS	BIL OF MATERIALS         BILL OF MATERIALS           Image: Comparison of the co	BIL OF MATERIALS       DIL OF MATERIALS         Image: Construction of the structure of the s				GPD Engineering and Archined Professional Carporation	330.672.3100 Fex: 330.672	<u>^</u>								T CT 0AD 7087 897 208	NES 8 RUN R 4, СТ 06 4, СТ 06		8ורר ^M ופס MIR		]	PERMIT 1019/2	BIU CONSTRUCTION	RECORD .	
BIL OF MATERIALS ILL OF MATERIALS INTERPORTED HIT ILL OF MATERIAL MOTE INTERPORTED HIT ILL OF REQUIRED HIT ILL OF REAL OF REQUIRED HIT ILL OF REAL OF REQUIRED HIT ILL OF REQUIRED HIT ILL OF REAL OF REQUIRED HIT ILL OF REAL OF	BLL OF MATERIALS       Dill OF MATERIALS         Image: Constraint of the constraint of th	BLI CF MATERIALS         ISIL OF MATERIALS         AZMSMATERIAS         ADHEREAURES         ATHEREAURES         ADHEREAURES         ADHEREAURES         ADHEREAURES         ADHEREAURES         ADMEREAURES         ADMERE		BIL OF MATERIALS         Antonio III       Antonio III       Antonio IIII       Antonio IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				WEIGHT	168		2	138	81	389							}				
BIL OF MATERIALS UZWSMART KITS Nots Nots Nots Nots Nots Nots Nots Nots	BIL OF MATERIALS         DIM DE MATERIALS         DIM A         DIM A      DIM A <tr td=""></tr>	BIL OF MATERIAL         ALL OF MATERIAL         VZVSIMART KITS         VICAMART KITS         OPORT REGOURDARIE         OPORT REGOURDARIE         VICAMART KITS - APPROVED VENDER KITS         CONSECUENCIA         VICAMART KITS - APPROVED VENDER	BIL OF MATERIALS         Internation       Internation         Internation       Internation	BIL OF MATERIALS BIL OF MATERIALS MART CITATION MARTACINERA VORMANT IN TACHING IN CONTRACTORING IN CONTRACTORIS IN CONTRACTORING IN CONTRACTORING IN CONTRACTORING IN CONTRACTORING IN CONTRACTORING IN CONTRACTORIS IN CONTRACTORING IN CONTRACTORIS IN CONTRACTORING IN CONTRACTORIS IN CONTRACTORIS IN CONTRACTORIS IN CON				UNIT WEIGHT	14		~	46	27	TOTAL			"Hillinger	OF CONNECTION	UNIT SCH	N NOTES THE		SPORAL EN IN			
	PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PTION PT	DESCRIPTION     DESCRIPTION       CROSSOVER PLATE     CROSSOVER PLATE       CROSSOVER PLATE     CROSSOVER PLATE       SAFETY CLIMB UNIVERSAL     SERVED OFF ASSEMBLY       STANDOFF ASSEMBLY     C       MOUNT PIPE     SEE PAGE N       STANDOFF ASSEMBLY     C       MOUNT PIPE     SEE PAGE N       MEBSTE     W       MOUNT PIPE     MEBSTE       MOUNT PIPE     MEBSTE       MOUNT PIPE     MEBSTE       MOUNT PIPE     MOUNT PIPE       CONTACT     MEBSTE       MOUNT PIPE     MEBSTE       MOUNT PIPE     MOUNT PIPE       CONTACT     MEBSTE       MOUNT PIPE     MEBSTE       MOUNT PIPE     MEBSTE	PART NUMBER     DESCRIPTION       PART NUMBER     DESCRIPTION       VZWSMART-MSK1     DESCRIPTION       VZWSMART-MSK1     CRODSSOURTEPLATE       VZWSMART-MSK1     CRODSSOURTEPLATE       VZWSMART-MSK1     SVETY CLIMB UNVERSAL       120-200317     SVETY CLIMB UNVERSAL       120-200317     SVETY CLIMB UNVERSAL       27-3* F2 S1D PIPE     MOUNT PIPE       27-3* F2 S1D PIPE     MOUNT PIPE       7-3* F2 S1D PIPE     STABULZER PIPE       FELD VERSI     CONTACT       MEIBERTE     W       MEIBERTE     W       MEIBERTE     MEIBERTE	Montracturer     Powri Numers     Descraption       Vzwesundri     Vzwesundri Haskri     Descraption       Stritte Pool     1:90 zotal 1     Stratuo Faller       Stratuo Faller     Mount Teler     Stratuo Faller       Filter     5 stratuc Faller     Mount Teler       Filter     Filter     Stratuo Faller	BILL OF MATERIALS		VZWSMART KITS	NOTES		THER REQUIRED KITS		101 FOR STEEL GRADE REQUIREMENTS.	Y REQUIRED LENGTH. SEE PAGE N-01 FOR STEEL GRADE REQUIREMENTS.		T KITS - APPROVED VENDORS	LVADOR ANGULANO 7) 364.7482 LVADOR ANGULANOQCOMMISCOPE COM MI COMMISCOPE COM	TI TRANE	IN GENELINGS INCLUSION ETROSTEFABRICATORS COM	RELESSALES RELESSALES	4) BOL 4/123 RELESSENTERGOFFRECT-VISION COM WO PERFECT-VISION COM	SABRE INDUSTRIES, INC.	08 428-6937	WELCH@SABREINDUSTRIES.COM MM_CARRESTRESDI UTIONS.COM		

PHONE (37) 236-943 EMAIL PAULA BOSWELL@VALMONT COM WERSITE PAULA BOSWELL@VALMONT COM WERSITE PAULA BOSWELL@VALMONT FOM NOTES FROH MANUFACTURER WILL BE AMARE OF WHICH RITS HAVE NOTES FROH MANUFACTURER WILL BE AMARE OF WHICH RITS HAVE BEEN THROUGH THE ZYA APPROVED POPERAS AND THEY APPROVED POPERASE NOTE THAN THE AMERICAL INTLEED ON THE MOUNT MOUNT RISE REFORMED AS THE APPROVED TO FLASE NOT THEY COMPLETED BY THE SMART TOOL VEHOORS IT WILL BE REQUIRED THAT THE COMPLETED BY THE SMART TOOL VEHOORS IT WILL BE REQUIRED THAT THE ZVA APPROVED TO PLEASE ROTE THAT THE MORFACTIONS ALL MATTERASER REQUIRED AND THE MODIFICATIONS BUT NOT LUSTED IN THIS SHEET ARE ASSUMED TO BE PROVIDED BY THE CONTRACTOR.

ов ио. 2021740.467920.02

S-01

ECT MANAGER APPROVED BY

EAN 3

EAN e.











# **ATTACHMENT 5**





### Property Listing Report

Map Block Lot 81-28

Account

001780

### **Property Information**

Property Location	160 DEER RUN RD
Owner	WESTPORT BROADCASTING CO LLC
Co-Owner	
Mailing Address	PO BOX 1041
Maining Address	VIRGINIA BEACH VA 23451
Land Use	2-1V Commercial
Land Class	с
Zoning Code	R-2
Census Tract	
Sub Lot	
Neighborhood	05
Acreage	2
Utilities	
Lot Setting/Desc	Above Street
Survey Map	
Foundation	1

Photo		
	No Photo Available	
Sketch		

### **Primary Construction Details**

Year Built	
Stories	
Building Style	
Building Use	
Building Condition	
Floors	
Total Rooms	

Bedrooms	
Full Bathrooms	
Half Bathrooms	
Bath Style	
Kitchen Style	
Roof Style	
Roof Cover	

Exterior Walls	
Interior Walls	
Heating Type	
Heating Fuel	
АС Туре	
Gross Bldg Area	
Total Living Area	



Property Listing Report Map Block Lot

Block Lot 81-28

### Valuation Summary (Assessed value = 70% of Appraised Value)

Item	Appraised	Assessed	
Buildings	0	0	
Extras	0	0	
Outbuildings	286800	200760	
Land	733200	513240	
Total	1020000	714000	

### Sub Areas

Subarea Type	Gross Area (sq ft)	Living Area (sq ft)
Total Area		0

### Sales History

Owner of Record	Book/ Page	Sale Date	Sale Price
WESTPORT BROADCASTING CO LLC	1081/0146	2/11/1998	400000
FLAMM, DONALD	0177/0277	6/27/1972	50000

### Outbuilding and Extra Items

Account

Туре	Description
Shed Good	476 S.F.
CELL TOWER	1 UNITS
Patio	892 S.F.
Fence 6'	180 L.F.

# **ATTACHMENT 6**

UNITED STATES			Certi	WILTON WEST	ing — Firn	
A contract of the strategy of	TOTAL NO. of Pieces Listed by Sender Postmaster, per (name of receiving employee)	Affix Stamp Here Postmark with Date of	Certificate of Mailing — Fir Affix Stamp Here Postmark with Date of Receipt. neopost 04/07/2022 US POSTAGE \$002.999 ZIP 06103 041L12203937			
USPS [®] Tracking Number	Address (Name, Street, City, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift	
	Lynne Vanderslice, First Selectwoman Town of Wilton 238 Danbury Road Wilton, CT 06897	SINEHO	NUCE STAN			
2.	Michael Wrinn, Director of Planning & Land Town of Wilton 238 Danbury Road Wilton CT 06897	Use Management/T	own Planner			
3.	Westport Broadcasting Co. LLC P.O. Box 1041 Virginia Beach, VA 23451	4000	/			
4.						
5.			ň			
3.						