Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

October 4, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 1363 Boston Post Road, Old Saybrook, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a tower and associated equipment on the ground near the base of the tower. The tower was approved by the Siting Council ("Council") in April of 2011 (Docket No. 411). Cellco's use of the tower was approved by the Siting Council ("Council") in July of 2017 (PE1133-VER-20150611). Copies of the Council's Docket No. 411 Decision and Order and PE1133-VER-20150611 approval letter are included in Attachment 1.

Cellco now intends to modify its facility by replacing its nine (9) existing antennas with three (3) new MT6407-77A antennas and six (6) JAHH-65B-R3B antennas on the existing antenna platform. Cellco also intends to remove six (6) remote radio heads ("RRHs") and install six (6) new RRHs behind its antennas. A set of project plans showing Cellco's proposed facility modifications and its new antenna and RRH specifications are included in Attachment 2.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Old Saybrook's Chief Elected Official and Land Use Officer.

Melanie A. Bachman, Esq. October 4, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower. The replacement antennas will be installed on Cellco's existing antenna platform.
- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative General Power Density table for Cellco's modified facility is included in Attachment 3. The modified facility will be capable of providing Cellco's 5G wireless service.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna platform with certain modifications can support Cellco's proposed modifications. Copies of the SA and MA are included in Attachment 4.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. October 4, 2022 Page 3

Sincerely,

Kenneth C. Baldwin

Kunig mu

Enclosures Copy to:

Carl Fortuna, Old Saybrook First Selectman Christina Costa, Town Planner Wilcox Family LLC, Property Owner Alex Tyurin, Verizon Wireless

ATTACHMENT 1

DOCKET NO. 411 - New Cingular Wireless PCS, LLC	}	Connecticut
application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance and operation of a	}	Siting
telecommunications facility located at 1363 Boston Post Road, Old Saybrook, Connecticut.	}	Council
		April 28, 2011

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, maintenance, and operation of a telecommunications facility, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to New Cingular Wireless PCS, LLC, hereinafter referred to as the Certificate Holder, for a telecommunications facility at 1363 Boston Post Road, Old Saybrook, Connecticut.

Unless otherwise approved by the Council, the facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of New Cingular Wireless PCS, LLC and other entities, both public and private, but such tower shall not exceed a height of 100 feet above ground level.
- 2. The location of the telecommunications facility's compound shall be moved from the location shown on the site plans included in the Certificate application to the south and west by a distance sufficient to eliminate the need to clear trees for the development of the approved facility.
- 3. Antennas shall be installed on the tower using T-arm or flush mounts.

Docket 411: Old Saybrook Decision and Order

Page 2

- 4. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Old Saybrook for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a) a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line, and landscaping; and
 - b) construction plans for site clearing, grading, landscaping, water drainage, and erosion and sedimentation controls consistent with the <u>2002 Connecticut Guidelines for Soil</u> Erosion and Sediment Control, as amended.
- 5. Prior to the commencement of operation, the Certificate Holder shall provide the Council worst-case modeling of the electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of the electromagnetic radio frequency power density be submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- 6. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 7. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 8. The Certificate Holder shall provide reasonable space on the tower for no compensation for any Town of Old Saybrook public safety services (police, fire and medical services), provided such use can be accommodated and is compatible with the structural integrity of the tower.
- 9. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed with at least one fully operational wireless telecommunications carrier providing wireless service within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's Final Decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The Certificate Holder shall provide written notice to the Executive Director of any schedule changes as soon as is practicable.

Docket 411: Old Saybrook Decision and Order

Page 3

- 10. Any request for extension of the time period referred to in Condition 9 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of Old Saybrook. Any proposed modifications to this Decision and Order shall likewise be so served.
- 11. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 12. Any nonfunctioning antenna, and associated antenna mounting equipment, on this facility shall be removed within 60 days of the date the antenna ceased to function.
- 13. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction, and the commencement of site operation.
- 14. The Certificate Holder shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v.
- 15. This Certificate may be transferred in accordance with Conn. Gen. Stat. §16-50k(b), provided both the Certificate Holder/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. §16-50v. In addition, both the Certificate Holder/transferor and the transferee shall provide the Council a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. §16-50v(b)(2) that may be associated with this facility.
- 16. The Certificate Holder shall maintain the facility and associated equipment, including but not limited to, the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line and landscaping in a reasonable physical and operational condition that is consistent with this Decision and Order and a Development and Management Plan to be approved by the Council.
- 17. If the Certificate Holder is a wholly-owned subsidiary of a corporation or other entity and is sold/transferred to another corporation or other entity, the Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the Certificate Holder within 30 days of the sale and/or transfer.

Pursuant to General Statutes § 16-50p, the Council hereby directs that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the Hartford Courant.

Docket 411: Old Saybrook Decision and Order Page 4

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant

New Cingular Wireless PCS, LLC

Its Representative

Christopher B Fisher, Esq. Daniel M. Laub, Esq. Cuddy & Feder LLP 445 Hamilton Avenue, 14th Floor White Plains, NY 10601

Michele Briggs AT&T 500 Enterprise Drive Rocky Hill, CT 06067-3900

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

July 21, 2015

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: **PE1133-VER-20150611** – Cellco Partnership d/b/a Verizon Wireless sub-petition for a declaratory ruling for approval of an eligible facility request for modifications to an existing telecommunications facility located at 1363 Boston Post Road, Old Saybrook, Connecticut.

Dear Attorney Baldwin:

The Connecticut Siting Council (Council) hereby approves your Eligible Facilities Request (EFR) to install antennas and associated equipment at the above-referenced facility pursuant to the Federal Communications Commission Wireless Infrastructure Report and Order, with the following conditions:

- The proposed feed lines and remote radio heads shall be installed in accordance with the structural analysis
 report performed by FDH Engineering, Inc. dated November 17, 2014 and stamped by Bradley Newman;
- Within 45 days following completion of the equipment installation, Cellco shall provide documentation that its installation complied with the recommendations of the structural analysis.
- Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by the Petitioner shall be removed within 60 days of the date the antenna ceased to function;
- The validity of this action shall expire one year from the date of this letter; and
- The petitioner may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration.

This decision is under the exclusive jurisdiction of the Council and is not applicable to any other modification or construction. All work is to be implemented as specified in the EFR received on June 11, 2015.

Thank you for your attention and cooperation.

Very truly yours,

Melanie Bachman

Acting Executive Director

MB/MP

c: Honorable Carl P. Fortuna, Jr., First Selectman, Town of Old Saybrook Christine Nelson, Town Planner, Town of Old Saybrook

\$\PETITIONS\1101-\1133\3_Subpetitions_ByTown\CldSaybrook\PE1133-VER-20150511-OldSaybrook-1363 Boston Post Road-decision.docx

CONNECTICUT SITING COUNCIL
Affirmative Action / Equal Opportunity Employer

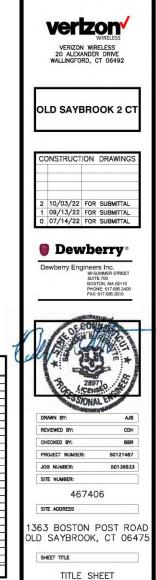
ATTACHMENT 2

OLD SAYBROOK 2 CT

1363 BOSTON POST ROAD OLD SAYBROOK, CT 06475

FUZE PROJECT ID: 16272126

PSLC: 467406


PMI ACCESSED AT:	HTTPS://PMI.VZWSMART.COM	
SMART TOOL VENDOR PROJECT NUMBER:	10144894	
VZW LOCATION CODE (PSLC):	467406	
FUZE NUMBER:	16272126	
PMI AND REQUIREMENTS ALSO IN ANALYSIS REPORT	ABEDDED IN MOUNT	
MOUNT MODIFICATION REQUIRED?	YES	
VZW APPROVED SMA	RT KIT VENDORS	
REFER TO MOUNT MODIFICATION DRAWINGS BY MASER CONSULTING DATED 07/29/22.		
CONTRACTOR PMI	REQUIREMENTS	
THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN. REUSE OF THIS DOCUMENT IS AT THE SOLE RISK OF THE USER.		

FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION

A.D.A. COMPLIANCE:

П	 INSTALL MOUNT MODIFICATIONS IN ACCORDANCE WITH MODIFICATION DRAWINGS & POST—MOD ANALYSIS BY MASER CONSULTING DATED 07/29/22.
H	REMOVE (9) EXISTING ANTENNAS.
П	 REMOVE (2) EXISTING 6x12 HYBRID CABLES ROUTED FROM SHELTER TO OVPS ON TOWER.
ı	 REMOVE (2) EXISTING 6-OVP FROM EXISTING MOUNT.
ll	INSTALL (2) NEW 6-OVP ON MODIFIED MOUNT.
П	 INSTALL (2) NEW 6X12 LI HYBRID CABLES ROUTED FROM SHELTER TO OVPS ON TOWER.
l	 INSTALL (6) DUAL MOUNTED PANEL ANTENNAS & (3) MT6407-77A ANTENNA WITH INTEGRATED REMOTE.
ı	REMOVE (6) EXISTING RADIO UNITS.
П	INSTALL (6) DUAL-BAND AWS/PCS RRHS.
П	INSTALL (3) QUAD DIPLEXERS FOR AWS + PCS.
П	 INSTALL JUMPER CABLING AS REQUIRED BY RFDS.
П	CAP & WEATHERPROOF UNUSED PORTS.
!	NOTE:
	SCOPE OF WORK BASED ON ANTENNA REC FOR OLD SAYBROOK CT 2 DATED 07/20/2022. VERIFY SCOPE OF WORK WITH FINAL RFDS PRIOR TO CONSTRUCTION.
ı	SCOPE OF WORK
•	-

SHT. NO.	DESCRIPTION
T-1	TITLE SHEET
GN-1	GENERAL NOTES
C-1	PROPOSED SITE PLAN & ELEVATION
C-2	EXISTING & PROPOSED ANTENNA PLANS
C-3	CONSTRUCTION DETAILS
C-4	SMART TOOL SECTOR PLANS & ELEVATION DETAILS
C-5	FINAL EQUIPMENT CONFIGURATION
	SHEET INDEX

SHEET NUMBER

1 - 1

GENERAL CONSTRUCTION NOTES:

- ALL WORK SHALL CONFORM TO ALL CURRENT APPLICABLE FEDERAL, STATE, AND LOCAL CODES, AND COMPLY WITH VERIZON WIRELESS SPECIFICATIONS.
- CONTRACTOR SHALL CONTACT "DIG SAFE" (888-344-7233) FOR IDENTIFICATION OF UNDERGROUND UTILITIES PRIOR TO START OF CONSTRUCTION
- 3. CONTRACTOR IS RESPONSIBLE FOR COORDINATING ALL REQUIRED INSPECTIONS.
- ALL DIMENSIONS TO, OF, AND ON EXISTING BUILDINGS, DRAIMAGE STRUCTURES, AND SITE IMPROVEMENTS SHALL BE VERIFIED IN FIELD BY CONTRACTOR WITH ALL DISCREPANCIES REPORTED TO THE ENGINEER.
- 6. DETAILS SHOWN ARE TYPICAL: SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS OTHERWISE NOTED.
- THESE DRAWINGS DO NOT INCLUDE NECESSARY COMPONENTS FOR CONSTRUCTION SAFETY WHICH IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- CONTRACTOR SHALL BRACE STRUCTURES UNTIL ALL STRUCTURAL ELEMENTS NEEDED FOR STABILITY ARE INSTALLED. THESE
 ELEMENTS ARE AS FOLLOWS: LATERAL BRACING, ANCHOR BOLTS, ETC.
- 9. CONTRACTOR SHALL DETERMINE EXACT LOCATION OF EXISTING UTILITIES, DRAIN PIPES, VENTS, ETC. BEFORE COMMENCING WORK.
- INCORRECTLY FABRICATED, DAMAGED, OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE OWNER PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH REMEDIAL ACTION SHALL REQUIRE WRITTEN APPROVAL BY THE OWNER'S REPRESENTATIVE PRIOR TO PROCEEDING.
- 11. EACH CONTRACTOR SHALL COOPERATE WITH THE OWNER'S REPRESENTATIVE, AND COORDINATE HIS WORK WITH THE WORK OF OTHERS.
- CONTRACTOR SHALL REPAIR ANY DAMAGE CAUSED BY CONSTRUCTION OF THIS PROJECT TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION OF THE VERIZON WIRELESS CONSTRUCTION MANAGER.
- 13. ALL CABLE/CONDUIT ENTRY/EXIT PORTS SHALL BE WEATHERPROOFED DURING INSTALLATION USING A SILICONE SEALANT.
- WHERE EXISTING CONDITIONS DO NOT MATCH THOSE SHOWN IN THIS PLAN SET, CONTRACTOR WILL NOTIFY ENGINEER, VERIZON WIRELESS PROJECT CONSTRUCTION MANAGER, AND LANDLORD IMMEDIATELY.
- CONTRACTOR SHALL ENSURE ALL SUBCONTRACTORS ARE PROVIDED WITH A CURRENT SET OF DRAWINGS AND SPECIFICATIONS FOR THIS PROJECT.
- ALL ROOF WORK SHALL BE DONE BY A QUALIFIED AND EXPERIENCED ROOFING CONTRACTOR IN COORDINATION WITH ANY CONTRACTOR WARRANTING THE ROOF TO ENSURE THAT THE WARRANTY IS MAINTAINED.
- 17. CONTRACTOR SHALL REMOVE ALL RUBBISH AND DEBRIS FROM THE SITE AT THE END OF EACH DAY.
- CONTRACTOR SHALL COORDINATE WORK SCHEDULE WITH LANDLORD AND TAKE PRECAUTIONS TO MINIMIZE IMPACT AND DISRUPTION OF OTHER OCCUPANTS OF THE FACILITY.
- 19. CONTRACTOR SHALL FURNISH VERIZON WIRELESS WITH THREE AS-BUILT SETS OF DRAWINGS UPON COMPLETION OF WORK,
- 20. ARTERNAS AND CARLES ARE "TYPOLLLY PROVIDED BY VERIZON WRIBLESS. PRIOR TO SUBMISSION OF BIJ. CONTRACTOR SHALL COORDINATE WITH PROSTOR HAMAGER TO DETERMINE WHAT, F ANY, TREAS WILL BE PROVIDED BY VERIZON WRELESS. ALL TREAS NOT PROVIDED BY VERIZON WITH SESS SHALL BE PROVIDED AND INSTALLED BY THE CONTRACTOR CONTRACTOR WILL INSTALL ALL TIMES PROVIDED BY VERIZON WISELESS SHALL BE PROVIDED AND INSTALLED BY THE CONTRACTOR.
- 22. GEREAL CONTRACTOR SHALL HAVE A LICENSED MAY CONTRACTOR START THE MAY LINTS, SPICHRONZE THE THERMOSTINS, AUDIT ALL STITMS ON EACH LINT ACCORDING TO VERZION WELLESS CONSTRUCTION AMAGEN'S SPICHRATIONS, AND THOROUGHLY TEST AND BALANCE EACH UNIT TO BISURE PROPER OPERATION PRIOR TO TURNING THE STEL OVER TO OWNER.
- 23. CONTRACTOR SHALL INSTALL ALL SITE SIGNAGE IN ACCORDANCE WITH VERIZON WIRELESS SPECIFICATIONS AND REQUIREMENTS.
- 24. CONTRACTOR SHALL SUBMIT ALL SHOP DRAWINGS TO ENGINEER FOR REVIEW AND APPROVAL PRIOR TO FABRICATION.
- 25. UNLESS OTHERWISE NOTED VERIZON WIRELESS SHALL PROVIDE ALL REQUIRED RF MATERIAL FOR CONTRACTOR TO INSTALL, INCLUDING ANTENNAS, TMA'S, BMS-T'S, COMBINERS, PDU, DC BLOCKS, SURGE ARRESTORS, GPS ANTENNA, GPS SURGE ARRESTOR, COMMAL ORDER.
- PRIOR TO SUBMISSION OF BID, CONTRACTOR SHALL VERIFY ALL EQUIPMENT TO BE PROVIDED BY VERIZON WIRELESS FOR INSTALLATION BY CONTRACTOR.
- ALL EQUIPMENT SHALL BE INSTALLED ACCORDING TO MANUFACTURER'S SPECIFICATIONS AND LOCATED ACCORDING TO VERIZON WIRELESS SPECIFICATIONS, AND AS SHOWN IN THESE PLANS.
- 28. DETAILS SHOWN ARE TYPICAL; SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS OTHERWISE NOTED.
- 29. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK VANCE THE CONTRACT.
- 30. CONTRACTOS SHALL NOTEY THE BOUNEER A NINALIA OF 48 HOURS IN ADMINEE PRIOR TO CONSTRUCTION START, MORE SPECIFICALLY SERVEY, SERVEY AND AN EXPERIMENT AND AND AN EXPERIMENT AND AND AN EXPERIMENT AND AND AN EXPECTION. AND ANSPECTION.
- 31. SEAL PENETRATIONS THROUGH FIRE RATED AREAS WITH UL LISTED D FIRE CODE APPROVED MATERIALS.
- REPAIR ANY DAMAGE DURING CONSTRUCTION TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION OF THE CONSTRUCTION MANAGER AND LANDLORD.
- 33. ALL DISRUPTIVE WORK AND WORK WITHIN TENANT SPACES TO BE COORDINATED WITH BUILDING REPRESENTATIVE

CODE SPECIFICATIONS:

- 1. ALL WORK SHALL COMPLY WITH THE FOLLOWING APPLICABLE CODES:
 - 2018 CONNECTICUT STATE BUILDING CODE WITH THE FOLLOWING APPLICABLE CODES:

- 2018 CONNECTION TATE BUILDING CODE WITH THE FOLLOW 2015 INTERNATIONAL RESIDENTIAL CODE (REC) 2015 INTERNATIONAL RESIDENTIAL CODE (REC) 2015 INTERNATIONAL BUILDING CODE (BEC) 2015 INTERNATIONAL BUILDING CODE (BC) 2015 INTERNATIONAL BUILDING CODE (RC) (NFPA 70) 2015 INTERNATIONAL PLECTRICAL CODE (RC) (NFPA 70) 2015 INTERNATIONAL BUILDING CODE (ECC) (NFPA 70) 2015 INTERNATIONAL EMERGY CONSERVATION CODE (ECC)
- IN THE EVENT OF CONFLICT, THE MOST RESTRICTIVE CODE SHALL PREVAIL.
- ALL STRUCTURAL WORK TO BE DONE IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION MANUAL, 13TH EDITION (AISC 13TH ED.)
- ALL CONCRETE WORK TO BE DONE IN ACCORDANCE WITH THE AMERICAN CONCRETE INSTITUTE (ACI 301) SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS (ACI 318) AND BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE.
- ALL REINFORCING STEEL WORK TO BE DONE IN ACCORDANCE WITH THE (ACI 315) MANUAL OF STANDARD PRACTICE FOR DETAILING REINFORCED CONCRETE STRUCTURES.

GROUNDING NOTES:

- 1. GROUNDING SHALL COMPLY WITH NEC ART, 250.
- 2. GROUNDING CONDUCTORS SHALL BE #6 COPPER STRANDED WIRE WITH GREEN COLOR INSULATION FOR INDOOR USE.
- ALL GROUND CONNECTIONS TO BE BURNDY HYGROUND COMPRESSION TYPE CONNECTORS OR CADWELD EXOTHERMIC WELD DO NOT ALLOW BARE COPPER WIRE TO BE IN CONTACT WITH CALVANIZED STEEL.
- 4. ROUTE GROUNDING CONNECTORS ALONG THE SHORTEST AND STRAIGHTEST PATH POSSIBLE, EXCEPT AS OTHERWISE INDICATED, GROUNDING LEADS SHOULD NOT BE BENT AT 6" RIGHT ANGLE. ALWAYS MAKE 12" RADIUS BENDS, §6 WIRE CAN BE BENT AT 6" RADIUS WHEN NECESSARY.
- CONNECTIONS TO GROUNDING BAR SHALL BE MADE WITH TWO HOLE COMPRESSION TYPE COPPER LUGS. APPLY OXIDE INHIBITING COMPOUND TO ALL LOCATIONS.
- TEST COMPLETED GROUNDING SYSTEM AND RECORD RESISTANCE VALUES FOR PROJECT CLOSE—OUT DOCUMENTATION. GROUND RESISTANCE SHALL NOT EXCEED 5 CHMS.
- GROUNDING CONDUCTORS BETWEEN MOB AND WATERMAIN SHALL BE #2/0. BONDING JUMPERS FROM METALLIC SURFACES SHALL BE #2 MINIMAIN, ALL GROUND CONDUCTORS AND BONDING JUMPERS SHALL BE SOFT ROWNH NAMEAUT, TINNED, BAME STRANDED COPPER WERE CONSTAL CARELS SHALL BE CROUNDED AT A MINIMUM OF TWO LOCKTIONS USING VERZION PROVIDED GROUNDING KITS. EXACT LOCKTIONS THE BE PRIVALED IN THE FIELD BY THE CONSTRUCTION MANAGER.

STRUCTURAL STEEL NOTES:

- STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF THE AISC "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS".
- 2. STRUCTURAL STEEL ROLLED SHAPES, PLATES, AND BARS SHALL CONFORM TO THE FOLLOWING ASTM

DESIGNATIONS:

AUM A-392, GRADET 50

AUM A-592, GRADET 50

AUM SHOPES, MULESS WOTTED OF ARE2 OTHERWISE.

AUM A-320, GRADET 50

AUM A-320, GRADET 50

AUM A-320, GRADET 50

AUM A-320, GRADET 50

AUM A-320, GRADET 60

AUM A

- ALL WELDING SHALL DE DONE USING ETONG ELECTRODES AND WILDING SHALL CONFORM TO ARC AND ANY DIT HAMBER FLALL FINED SEZES ARK NOT SHOWN PROVIDE THE MEMBERS AND THE SECTION OF THE PROVIDE THE MEMBERS AND THE LECTRO THE SECTION OF THE LOCATION OF STELL CONSTRUCTION," 14TH EDITION, WHERE WED LEXITH IS NOT INDICATED, USE FULL IDARTH VEID. AT THE COMPLETION OF ALL WILDING, ALL DAMAGE TO CANAVAGE DOCTROS ANALI BE REPARRED.
- 5. DO NOT DRILL HOLES THROUGH STRUCTURAL STEEL MEMBERS EXCEPT AS SHOWN AND DETAILED ON
- NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE 5/8" DIA. GALVANIZED ASTM A 307 BOLTS UNLESS NOTED OTHERWISE.
- 7. USE PRECAUTIONS & PROCEDURES PER AWS D1.1 WHEN WELDING GALVANIZED METALS.
- ALL EXISTING BEAM AND COLUMN DIMENSIONS SHALL BE FIELD VERIFY BY CONTRACTOR PRIOR TO FABRICATION. ANY DISCREPANCIES BETWEEN EXISTING CONDITIONS AND THOSE SHOWN SHALL BE REPORTED TO DEWBERRY ENGINEER IMMEDIATELY.
- 9. CONNECTION DESIGN BY FABRICATOR WILL BE SUBJECT TO REVIEW AND APPROVAL BY ENGINEER
- ALL WELDED COMPONENTS TO BE SHOP WELDED PRIOR TO INSTALLATION. NO WELDING ACTIVITIES IS PERMITTED DURING INSTALLATION OF PROPOSED EQUIPMENTS AND/OR HARDWARE ON SITE.

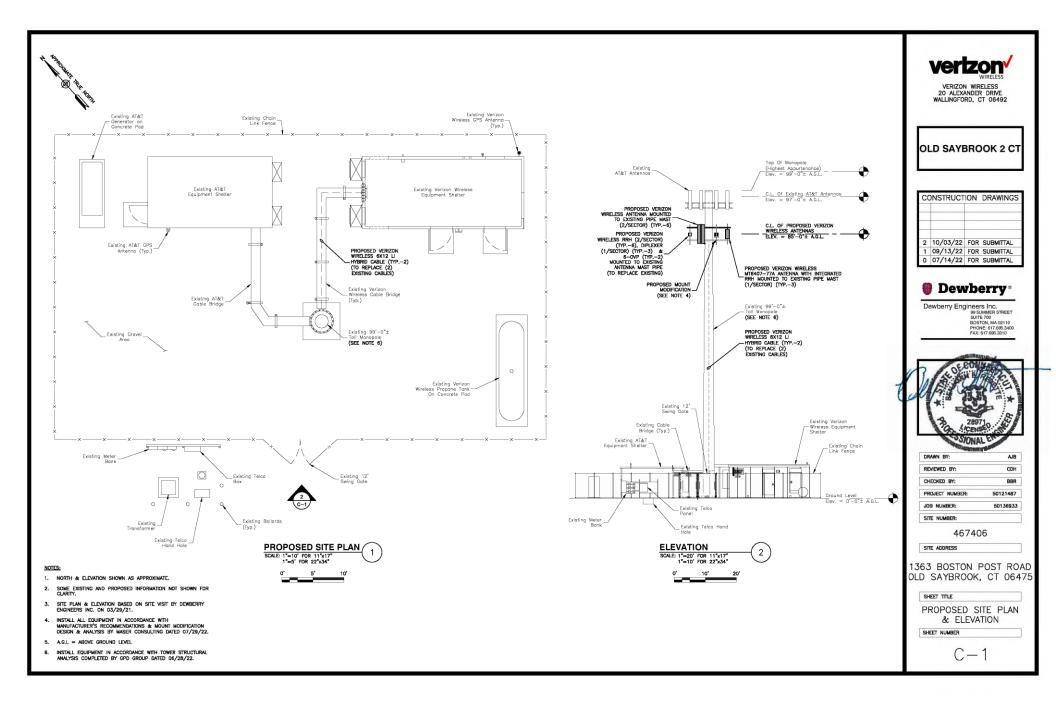
OLD SAYBROOK 2 CT

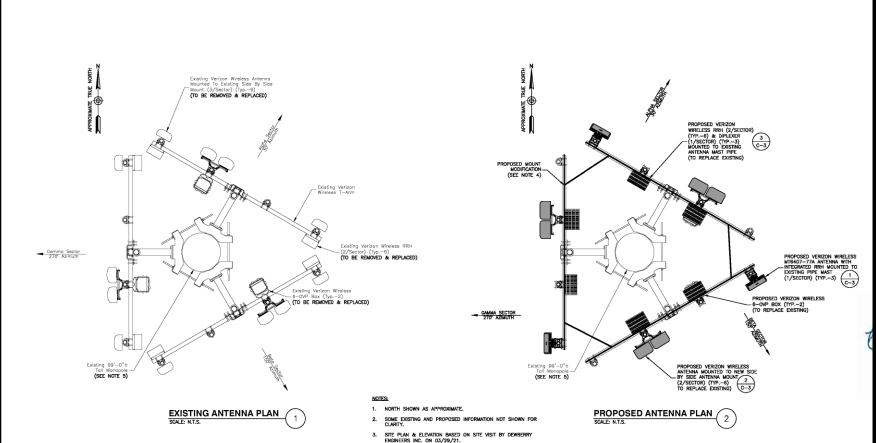
CC	ONSTRUCT	ION	DRAWINGS
2		FOR	SUBMITTAL
1	09/13/22	FOR	SUBMITTAL
0	07/14/22	FOR	SUBMITTAL

99 SUMMER STREET SUITE 700 BOSTON, MA 02110 PHONE: 617.695.3400 FAX: 617.696.3310

DRAWN BY:	AJB
REVIEWED BY:	CDH
CHECKED BY:	BBR
PROJECT NUMBER:	50121487
JOB NUMBER:	50136933
SITE NUMBER:	

467406 SITE ADDRESS


1363 BOSTON POST ROAD OLD SAYBROOK, CT 06475


SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-1

 INSTALL ALL EQUIPMENT IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS & MOUNT MODIFICATION DESIGN & ANALYSIS OF MASER CONSULTING DATE 07/29/22.
 INSTALL EQUIPMENT IN ACCORDANCE WITH TOWER STRUCTURAL ANALYSIS COMPLETED BY 6PD GROUP DATE 06/28/22. VERIZON WIRELESS

VERIZON WIRELESS

20 ALEXANDER DRIVE
WALLINGFORD, CT 06492

OLD SAYBROOK 2 CT

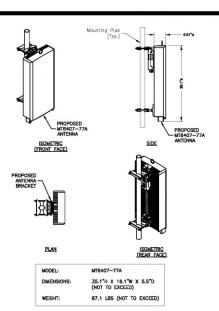
C	ONSTRUCT	ION	DRAWINGS
2	10/03/22		
1	09/13/22	FOR	SUBMITTAL
0	07/14/22	FOR	SUBMITTAL

Dewberry

Dewberry Engineers Inc. 98 SUMMER STREET SUITE 700 BOSTON, NA 02110 PHONE: 617.685.3400 FAX: 617.685.3310

DRAWN BY:	AJB
REVIEWED BY:	CDH
CHECKED BY:	BBR
PROJECT NUMBER:	50121487
JOB NUMBER:	50136933
SITE NUMBER:	

467406 SITE ADDRESS


1363 BOSTON POST ROAD OLD SAYBROOK, CT 06475

SHEET TITLE

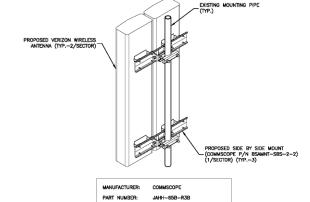
EXISTING & PROPOSED ANTENNA PLANS

SHEET NUMBER

C-2

INSTALL ALL EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS, USE APPROPRIATE MOUNTING HARDWARE FOR CONSTRUCTION TYPE.

MT6407-77A PIPE MOUNTED ANTENNA DETAIL



MODEL: CBC78T-DS-43-2X DIMENSIONS: 6.38"H X 6.93"W X 9.65"D WEIGHT: 20.72 LBS

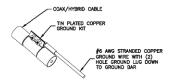
NOTE:

CONTRACTOR TO VERIFY WITH CONSTRUCTION MANAGER FOR FINAL MANUFACTURER SPECIFICATIONS PRIOR TO CONSTRUCTION.

SIDE BY SIDE ANTENNA DETAIL

DIMENSIONS:

WEIGHT:



72.0°H X 13.8°W X 8.2°D

64.4 LBS (WITHOUT MOUNT KIT)

JUMPER MOUNT

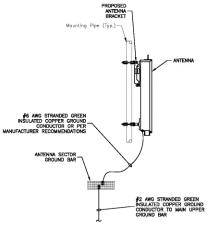
- 3. WEATHER SEAL GROUND KIT PER CARRIER REQUIREMENTS.
- COAX CABLE GROUND KIT LOCATION & QUANTITY SHALL BE PER CARRIER SPECIFICATIONS & STANDARDS.

COAX/HYBRID GROUNDING DETAIL

70.3 LBS PROPOSED LTE AWS/PCS AWS/PCS MACRO RADIO RFV01U-D1A 74.7 LBS

PROPOSED LTE 700/850

14.9"H X 14.9"W X 9.0"D


MODEL: DIMENSIONS: WEIGHT:

OVP BOX

OVP BOX 29.5"H X 16.5"W X 12.6"D 32.0 LBS

CONTRACTOR TO VERIFY WITH CONSTRUCTION MANAGER FOR FINAL MANUFACTURER SPECIFICATIONS PRIOR TO CONSTRUCTION.

REMOTE UNIT DETAILS SCALE: N.T.S.

- VERIFY EXISTING GROUNDING SYSTEM IS INSTALLED PER VERIZON WIRELESS STANDARDS.
- BOND NEW EQUIPMENT INTO EXISTING GROUND SYSTEM IN ACCORDANCE WITH VERIZON WIRELESS STANDARDS AND MANUFACTURER'S RECOMMENDATIONS.

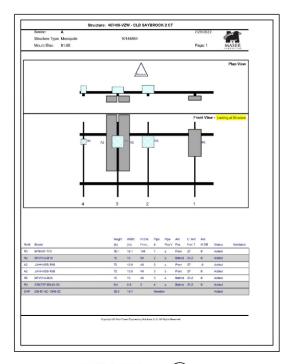
TYPICAL ANTENNA GROUNDING DETAIL

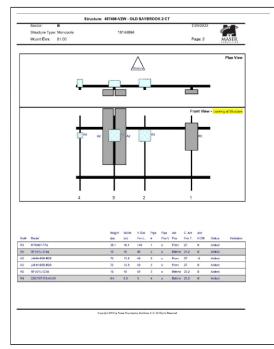
OLD SAYBROOK 2 CT

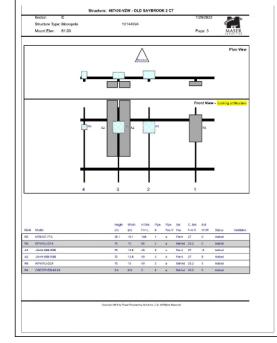
C	NSTRUCT	ION	DRAWINGS
Н			
2	10/03/22	FOR	SUBMITTAL
1	09/13/22		
0	07/14/22	FOR	SUBMITTAL

Dewberry Engineers Inc. 98 SUMMER STREET SUITE 700 BOSTON, MA 02110 PHONE - 617-685, 3400 FAX: 017-686, 3400

DRAWN BY:	AJB
REVIEWED BY:	CDH
CHECKED BY:	BBR
PROJECT NUMBER:	50121487
JOB NUMBER:	50136933
SITE NUMBER:	


1363 BOSTON POST ROAD OLD SAYBROOK, CT 06475


SHEET TITLE CONSTRUCTION DETAILS


SHEET NUMBER

SITE ADDRESS

C-3

ALPHA SECTOR

SCALE: N.T.S.

BETA SECTOR
SCALE: N.T.S. 2

GAMMA SECTOR
SCALE: N.T.S.

VERIZON WIRELESS

VERIZON WIRELESS

20 ALEXANDER DRIVE
WALLINGFORD, CT 06492

OLD SAYBROOK 2 CT

C	NSTRUCT	ION	DRAWINGS
E			
2	10/03/22	EUD	CLIDMITTAL
1	09/13/22		
0	07/14/22	FOR	SUBMITTAL

Dewberry Engineers Inc.
98 SUMMER STREET
SUITE 700
BOSTON, MA 02110
PHONE: 617.885.4300
FAX: 017.865.3310

ALC: NO. OF THE PERSON NAMED IN	
DRAWN BY:	AJB
REVIEWED BY:	CDH
CHECKED BY:	BBR
PROJECT NUMBER:	50121487
JOB NUMBER:	50136933
SITE NUMBER:	
46740	06
SITE ADDRESS	

SITE ADDRESS

1363 BOSTON POST ROAD

OLD SAYBROOK, CT 06475

SMART TOOL SECTOR PLANS & ELEVATION DETAILS

C-4

SHEET NUMBER

NOTE:

 SECTOR PLANS AND ELEVATIONS TAKEN FROM MOUNT ANALYSIS: SMART TOOL# 10144894, MASER PROJECT # 21777624A, FUZE # 16272126 BY MASER CONSULTING P.A. DATED 07/29/2022.

			F	INAL EQUIPM	MENT CONFIG	GURATI	ON			
SECTOR	POSITION	TECHNOLOGY	ANTENNA MODEL	VENDOR	RRH (QTY./MODEL)	CENTERLINE	AZIMUTH	OVP	HYBRID CABLE TYPE	FEED LINE LENGTH
	A1	5G	(P) MT6407-77A	SAMSUNG	-	85'-0"±	30"			
ALPHA	A2	LTE 700/850/1900/AWS	(P) JAHH-65B-R3B	ANDREW	(P) B2/B66A RRH RFV01U-D1A	85'-0"±	30"			
	A3	LTE 700/850/1900/AWS	(P) JAHH-65B-R3B	ANDREW	(P) B5/B13 RRH RFV01U-D2A	85'-0"±	30"			
	B1	5G	(P) MT6407-77A	SAMSUNG	-	85'-0"±	150°			
BETA	B2	LTE 700/850/1900/AWS	(P) JAHH-65B-R3B	ANDREW	(P) B2/B66A RRH RFV01U-D1A	85'-0"±	150*	(2) (P) OVP-6 BOX (TO REPLACE EXISTING)	(2) (P) 6X12 HYBRIFLEX CABLE (TO REPLACE EXISTING)	160°±
	B3	LTE 700/850/1900/AWS	(P) JAHH-65B-R3B	ANDREW	(P) B5/B13 RRH RFV01U-D2A	85'-0"±	150*			
	G1	5G	(P) MT6407-77A	SAMSUNG	-	85'-0"±	270			
GAMMA	G2	LTE 700/850/1900/AWS	(P) JAHH-65B-R3B	ANDREW	(P) B2/B66A RRH RFV01U-D1A	85'-0"±	270*			
	G3	LTE 700/850/1900/AWS	(P) JAHH-65B-R3B	ANDREW	(P) B5/B13 RRH RFV01U-D2A	85'-0"±	270			

CONTRACTOR TO FIELD VERIFY HYBRID CABLE LENGTHS PRIOR TO CONSTRUCTION. LENGTH IS ESTIMATED FROM THE BASE EQUIPMENT OVP TO SECTOR OVP.

(E) = Existing

FINAL EQUIPMENT CONFIGURATION 1

OLD SAYBROOK 2 CT

C	NSTRUCT	ION	DRAWINGS
2	10/03/22		
1	09/13/22		
0	07/14/22	FOR	SUBMITTAL

Dewberry Engineers Inc. 96 SUMMER STREET SUITE 700 BOSTOM, MA 02110 PHONE: 617.868.3400 FAX: 617.666.3310

AJB
CDH
BBR
50121487
50136933

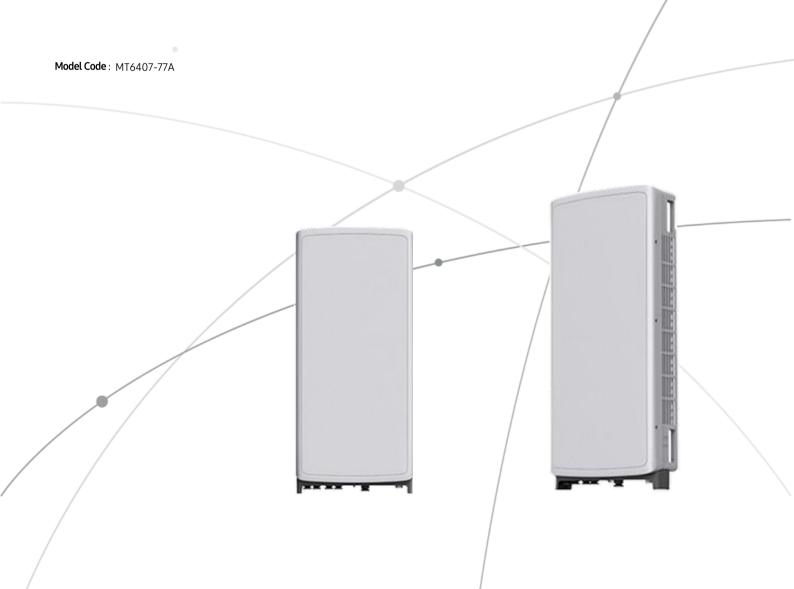
SITE ADDRESS

1363 BOSTON POST ROAD OLD SAYBROOK, CT 06475

SHEET TITLE

FINAL EQUIPMENT CONFIGURATION

SHEET NUMBER

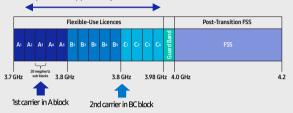

C - 5

SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..


Points of Differentiation

Wide Bandwidth

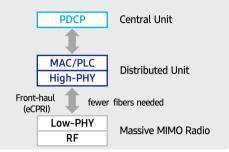
With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

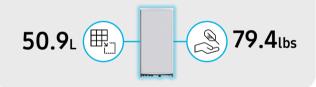
Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.


This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Future Proof Product


Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment..

Technical Specifications

Item	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

SAMSUNG

Dual-Band Radio Unit AWS/PCS (B66/B2)

RFV01U-D1A

Samsung's RFV01U-D1A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D1A RU targets dual-band support across Band 66 (AWS) and Band 2 (PCS), making it an ideal product for broad coverage footprints across multiple common mid-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation
- Built-in Broadcast Auxiliary Services (BAS) filter ensures compliant AWS operation without impacting footprint

Key Technical Specifications

Duplex Type: FDD Operating Frequencies:

B66: DL(2,110-2,180MHz)/UL(1,710-1,780MHz) B2: DL(1,930-1,990MHz)/UL(1,850-1,910MHz)

Instantaneous Bandwidth:

70MHz(B66) + 60MHz(B2) RF Chain: 4T4R/2T4R/2T2R

Output Power: Total 320W DU-RU Interface: CPRI (10Gbps)

Dimensions: 380 x 380 x 255mm (36.8L)

Weight: 38.3kg

Input Power: -48V DC

Operating Temp.: -40 - 55°(w/o solar load)

Cooling: Natural convection

SAMSUNG

Dual-Band Radio Unit 700/850MHz (B13/B5)

RFV01U-D2A

Samsung's RFV01U-D2A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D2A RU targets dual-band support across Band 13 (700MHz) and Band 5 (850MHz), making it an ideal product for broad coverage footprints across multiple common low-end, long-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation

Key Technical Specifications

Duplex Type: FDD Operating Frequencies:

B13: DL(746-756MHz)/UL(777-787MHz) B5: DL(869-894MHz)/UL(824-849MHz) Instantaneous Bandwidth: 10MHz(B13) + 25MHz(B5)

RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 207mm (29.9L)

Weight: 31.9kg Input Power: -48V DC

Operating Temp.: -40 - 55°(w/o solar load)

Cooling: Natural convection

8-port sector antenna, 2x 698–787, 2x 824-894 and 4x 1695–2360 MHz, 65° HPBW, 3x RET and low bands have diplexers. Internal SBT's on first LB(Port 1) and first HB(Port 5).

- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- One RET for 700MHz, one RET for 850MHz, and one RET for both high bands to ensure same tilt level for 4x Rx or 4x MIMO
- Internal filter on low band and interleaved dipole technology providing for attractive, low wind load mechanical package
- Separate RS-485 RET input/output for low and high band

General Specifications

Antenna TypeSectorBandMultibandColorLight gray

Effective Projective Area (EPA), frontal $0.28 \text{ m}^2 \mid 3.014 \text{ ft}^2$ Effective Projective Area (EPA), lateral $0.24 \text{ m}^2 \mid 2.583 \text{ ft}^2$

Grounding Type RF connector body grounded to reflector and mounting bracket

Performance Note Outdoor usage | Wind loading figures are validated by wind tunnel

measurements described in white paper WP-112534-EN

Radome Material Fiberglass, UV resistant

Radiator Material Aluminum | Low loss circuit board

Reflector MaterialAluminumRF Connector Interface4.3-10 Female

RF Connector Location

RF Connector Quantity, high band

RF Connector Quantity, low band

4

RF Connector Quantity, total

8

Remote Electrical Tilt (RET) Information, General

RET Interface 8-pin DIN Female | 8-pin DIN Male

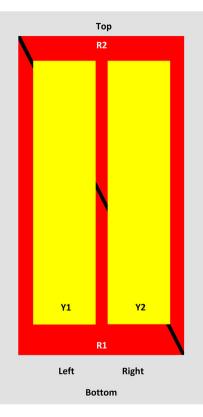
RET Interface, quantity 2 female | 2 male

Dimensions

Width 350 mm | 13.78 in

Page 1 of 4

Length


1828 mm | 71.969 in

Depth

208 mm | 8.189 in

Array Layout

JAHH-65A-R3B JAHH-65B-R3B JAHH-65C-R3B

Array	Freq (MHz)	Conns	RET (SRET)	AISG RET UID
RI	698-798	1-2	1	ANxxxxxxxxxxxxxxxx1
R2	824-894	3-4	2	ANxxxxxxxxxxxxxxxxxxxxx
YI	1695-2360	5-6	3	ANxxxxxxxxxxxxxxx
V2	1605 2260	7.0	1	

View from the front of the antenna

(Sizes of colored boxes are not true depictions of array sizes)

Electrical Specifications

Impedance 50 ohm

Operating Frequency Band 1695 – 2360 MHz | 698 – 787 MHz | 824 – 894 MHz

Polarization ±45°

Remote Electrical Tilt (RET) Information, Electrical

Protocol 3GPP/AISG 2.0 (Single RET)

Power Consumption, idle state, maximum 2 W

Page 2 of 4

Power Consumption, normal conditions, maximum

13 W

Input Voltage

10-30 Vdc

Internal Bias Tee

Port 1 | Port 5

Internal RET

High band (1) | Low band (2)

Electrical Specifications

Frequency Band, MHz	698–787	824–894	1695–1880	1850–1990	1920–2200	2300–2360
Gain, dBi	14.5	15.8	18	18.4	18.5	18.8
Beamwidth, Horizontal, degrees	67	65	63	63	65	68
Beamwidth, Vertical, degrees	12.4	10.5	5.7	5.2	4.9	4.4
Beam Tilt, degrees	2–14	2–14	0–10	0–10	0–10	0–10
USLS (First Lobe), dB	18	18	20	20	21	23
Front-to-Back Ratio at 180°, dB	32	34	31	35	36	38
Isolation, Cross Polarization, dB	25	25	25	25	25	25
Isolation, Inter-band, dB	30	30	30	30	30	30
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port at 50° C, maximum, watts	200	200	300	300	300	250

Electrical Specifications, BASTA

	,					
Frequency Band, MHz	698–787	824–894	1695–1880	1850–1990	1920–2200	2300–2360
Gain by all Beam Tilts, average, dBi	14.3	14.9	17.6	18.1	18.2	18.5
Gain by all Beam Tilts Tolerance, dB	±0.3	±0.5	±0.6	±0.4	±0.5	±0.6
Gain by Beam Tilt, average, dBi	2 ° 14.3 8 ° 14.3 14 ° 14.3	2 ° 15.0 8 ° 14.9 14 ° 15.4	0 ° 17.2 5 ° 17.6 10 ° 17.6	0 ° 17.6 5 ° 18.2 10 ° 18.2	0 ° 17.7 5 ° 18.3 10 ° 18.3	0 ° 17.9 5 ° 18.7 10 ° 18.7
Beamwidth, Horizontal Tolerance, degrees	±1.2	±1.4	±4	±2.4	±2.9	±2.7
Beamwidth, Vertical Tolerance, degrees	±0.9	±0.5	±0.3	±0.2	±0.3	±0.1
USLS, beampeak to 20° above beampeak, dB	18	17	17	18	19	18
Front-to-Back Total Power at 180° ± 30°, dB	25	24	26	29	27	29
CPR at Boresight, dB	22	23	20	21	21	24

Page 3 of 4

CPR at Sector, dB 11 12 11 11 11 8

Mechanical Specifications

 Wind Loading at Velocity, frontal
 301.0 N @ 150 km/h
 67.7 lbf @ 150 km/h

 Wind Loading at Velocity, lateral
 254.0 N @ 150 km/h
 57.1 lbf @ 150 km/h

 Wind Loading at Velocity, maximum
 143.4 lbf @ 150 km/h
 638.0 N @ 150 km/h

Wind Speed, maximum 241 km/h | 149.75 mph

Packaging and Weights

 Width, packed
 456 mm | 17.953 in

 Depth, packed
 357 mm | 14.055 in

 Length, packed
 1975 mm | 77.756 in

 Net Weight, without mounting kit
 29.2 kg | 64.375 lb

 Weight, gross
 42.5 kg | 93.696 lb

Regulatory Compliance/Certifications

Agency Classification

CHINA-ROHS Above maximum concentration value

ISO 9001:2015 Designed, manufactured and/or distributed under this quality management system

ROHS Compliant/Exempted

Included Products

BSAMNT- _ Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

ATTACHMENT 3

	General	Power	Density					
Site Name: Old Saybrook 2								
Fower Height: Verizon @ 85ft								
				CALC. POWER		MAX. PERMISS.	FRACTION	
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	DENS	FREQ.	EXP.	MPE	Total
DISH	4	859	75	600	0.2595	0.4000	6.49%	
DISH	4	1648	75	1900	0.4979	1.0000	4.98%	
DISH	4	1850	75	2100	0.5590	1.0000	5.59%	
AT&T	1	500	97	700	0.0217	0.4667	0.47%	
AT&T	1	500	97	1900	0.0217	1.0000	0.22%	
AT&T	1	500	97	2300	0.0217	1.0000	0.22%	
AT&T	2	500	97	880	0.0434	0.5867	0.74%	
AT&T	1	500	97	1900	0.0217	1.0000	0.22%	
VZW 700	4	648	85	0.0129	751	0.5007	2.58%	
VZW Cellular	4	742	85	0.0148	874	0.5827	2.54%	
VZW PCS	4	1630	85	0.0325	1975	1.0000	3.25%	
VZW AWS	4	1671	85	0.0333	2120	1.0000	3.33%	
VZW CBAND	2	13335	85	0.1328	3730.08	1.0000	13.28%	
								43.89%
* Source: Siting Council								

ATTACHMENT 4

BST Management, LLC 325 Park Street, Suite 106 North Reading, MA 01864

GPD Engineering and Architecture Professional Corporation
Dan Palkovic
520 South Main Street, Suite 2531
Akron, OH 44311
(216) 927-8663
dpalkovic@gpdgroup.com

GPD# 2022703.54 June 28, 2022

COMPREHENSIVE STRUCTURAL ANALYSIS REPORT

SITE BST Site #: CT-1263

DESIGNATION: BST Site Name: Old Saybrook, Boston Post Road

Verizon Site #: 467406

Verizon Site Name: Old Saybrook 2 CT

ANALYSIS Codes: TIA-222-H & 2018 Connecticut State Building Code

CRITERIA: 125 mph (3-second gust) w/ 0" ice 50 mph (3-second gust) w/ 1" ice

SITE DATA: 1363 Boston Post Road, Old Saybrook, CT 06475, Middlesex County

Latitude 41° 17' 23.27" N, Longitude 72° 24' 21.398" W

99' Sabre Monopole

To whom it may concern,

GPD is pleased to submit this Comprehensive Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

Tower Stress Level with Proposed Equipment: 52.7% Pass Foundation Ratio with Proposed Equipment: 73.6% Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and BST Management, LLC. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

Respectfully submitted,

Christopher J. Scheks, P.E. Connecticut #: 0030026

6/28/2022

SUMMARY & RESULTS

The purpose of this analysis was to verify whether the existing structure is capable of carrying the proposed loading configuration as specified by Verizon Wireless and commissioned by BST Management, LLC.

This analysis has been performed in accordance with the TIA-222-H Standard based upon a 3-second gust wind speed of 125 mph. Applicable Standard references and design criteria are listed in Appendices A & B.

The proposed feedlines shall be installed as shown in Appendices A & B for the analysis results to be valid.

TOWER SUMMARY AND RESULTS

Member	Capacity	Results
Monopole	52.7%	Pass
Anchor Rods	41.1%	Pass
Base Plate	47.0%	Pass
Foundation	73.6%	Pass

RECOMMENDATIONS

The tower and its foundation(s) have sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

ANALYSIS METHOD

tnxTower (Version 8.1.1.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various load cases. Selected output from the analysis is included the report appendices. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information.

DOCUMENTS PROVIDED

Document	Remarks	Source
Colocation Application	CT-1263 VZW Colocation Application, dated 5/25/2022	BST Management
Tower Design	Sabre Job #: 49722, dated 9/22/2011	GPD
Foundation Design	Sabre Job #: 49722, dated 9/22/2011	GPD
Geotechnical Report	Dr. Clarence Welti, P.E., P.C., dated 6/1/2011	GPD
Previous Tower Analysis	GPD Job #: 2022701.78, dated 2/1/2022	GPD

6/28/2022 Page 2 of 4

ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

- 1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
- 2. The appurtenance configuration is as supplied, determined from available photos, and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
- 3. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
- 4. The soil parameters are as per data supplied or as assumed and stated in the calculations.
- 5. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
- 6. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
- 7. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
- 8. All prior structural modifications, if applicable, are assumed to be as per data supplied/available and to have been properly installed.
- 9. Loading interpreted from photos is accurate to ±5' AGL, antenna size accurate to ±3.3 sf, and coax equal to the number of existing antennas without reserve.
- 10. All existing and proposed loading has been taken from the available site photos as well as documents supplied to GPD at the time of generating this report. All such documents are listed in the Documents Provided Table and are assumed to be accurate. GPD is not responsible for loading scenarios outside those conveyed in the supplied documentation.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD should be allowed to review any new information to determine its effect on the structural integrity of the tower.

6/28/2022 Page 3 of 4

DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Comprehensive Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

6/28/2022 Page 4 of 4

APPENDIX A

Tower Analysis Summary Form

Tower Analysis Summary Form

General Info

Site Name	Old Saybrook, Boston Post Road (CT-1263)
Site Number	105130
FA Number	10133875
Date of Analysis	6/28/2022

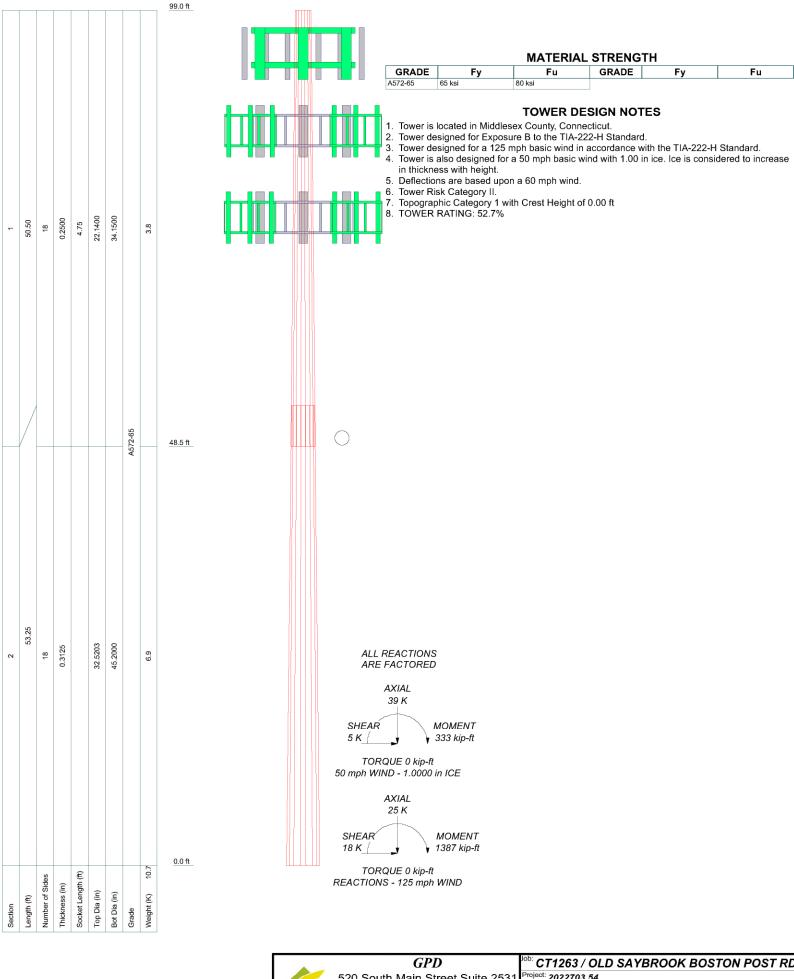
Tower Info	Description	Date
Tower Type (G, SST, MP)	. WP	
Tower Height (top of steel AGL) 99'	,66	
Tower Manufacturer	n/a	
Tower Model	n/a	
Tower Design	Sabre Job #: 49722	9/22/2011
Foundation Design	Sabre Job #: 49722	9/22/2011
Geotechnical Report	Dr. Clarence Welti, P.E., P.C.	6/1/2011
Previous Tower Analysis	GPD Job #: 2022701.78	2/1/2022

Design Parameters	
Design Code Used	ТІА-222-Н
Location of Tower (County, State)	Middlesex, CT
Wind Speed (mph)	125 (3-second gust)
Ice Thickness (in)	-
Risk Category (I, II, III)	=
Exposure Category (B, C, D)	œ
Topographic Catagony (1 to 5)	

Existing/Reserved + Futu	Existing/Reserved + Future + Proposed Condition
Tower (%)	52.7%
Tower Base (%)	47.0%
Foundation (%)	73.6%
Foundation Adequate?	Yes

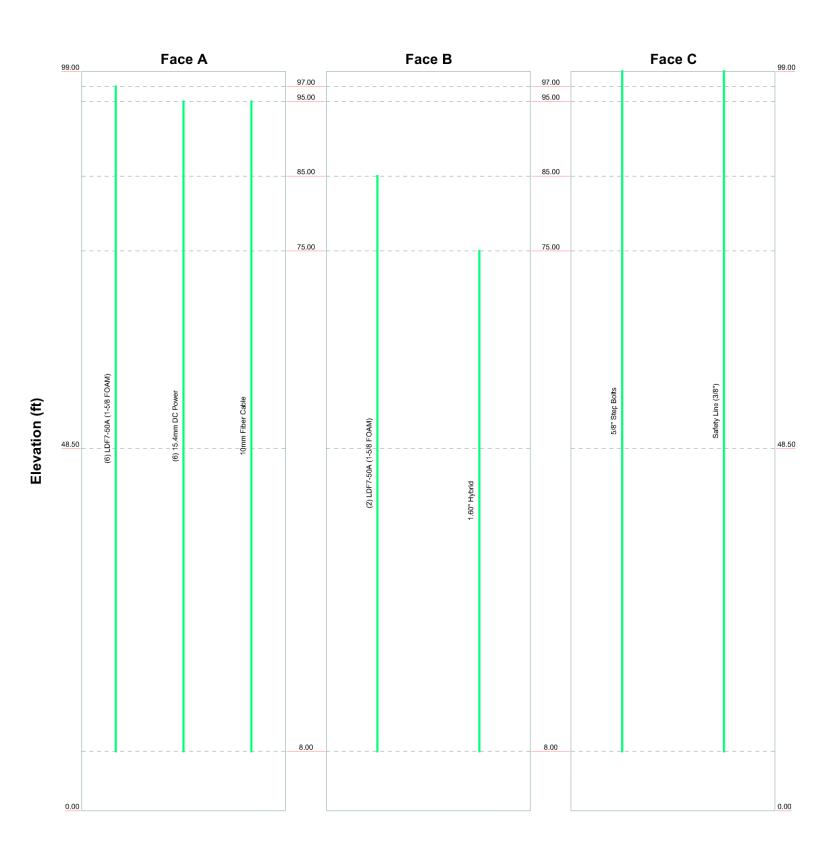
The information contained in this summary report is not to be used independently from the PE stamped tower analysis.

- 2	=
1	200
į	ž
9	2
200	9
0	ĥ
ietin	100
ú	ì

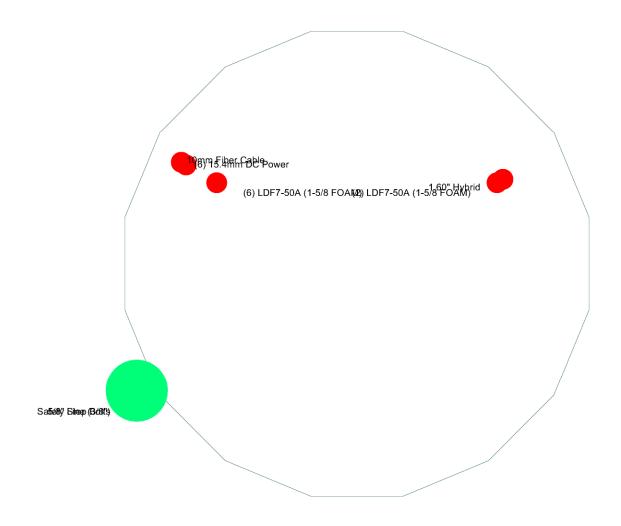

				Antenna					2	Mount		Transmi	Transmission Line	
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Quantity Manufacturer	Туре	Quantity	Model	Size	Attachment Int/Ext
AT&T Mobility	26	26	3	Panel	KMW	AM-X-CD-16-65-00T-RET	40/150/270	9	Site Pro	12.5' T-Arms	9	Unknown	1-5/8"	Internal
AT&T Mobility	26	97	6	Panel	CCI Antennas	HPA-65R-BUU-H6	40/150/270			on the same mount	9	DC Cable	15.4 mm	Internal
AT&T Mobility	26	97	3	TMA	CCI	DTMABP7819VG12A				on the same mount	-	Fiber Cable	10 mm	Internal
AT&T Mobility	26	97	9	RRH	Ericsson	RRUS 11				on the same mount				
AT&T Mobility	26	97	9	RRH	Ericsson	RRUS 12				on the same mount				
AT&T Mobility	26	97	3	RRH	Ericsson	RRUS E2				on the same mount				
AT&T Mobility	26	97	3	RRH	Ericsson	RRUS 32				on the same mount				
AT&T Mobility	26	26	9	RRH	Ericsson	KRC 161 286-1 (A2 Module)				on the same mount				
AT&T Mobility	26	26	3	Surge	Raycap	DC6-48-60-18-8F				on the same mount				
Verizon	85	85	3*	Panel	Commscope	LNX-6513DS-VTM	30/150/270	1	Unknown	14.33' Platform	2	Unknown	1-5/8"	Internal
Verizon	85	85	.9	Panel	Commscope	SBNHH-1D65B	30/150/270	3*	Commscope	Commscope BSAMNT-SBS-1-2				
Verizon	85	85	3*	RRH	Nokia	UHBA B13 RRH 4x30				on the same mount				
Verizon	85	85	3*	RRH	Nokia	UHIE B66A RRH 4x45				on the same mount				
Verizon	85	85	2	Surge	RFS	DB-B1-6C-12AB-0Z				on the same mount				
Dish Wireless	75	75	3	Panel	JMA	MX08FR0665-20_V0F	0/120/240	3	Commscope	MC-K6M-9-96	1	Hybrid	1.60"	Internal
Dish Wireless	75	75	9	RRH	Fujitsu	TA08025-B605				on the same mounts				
Dish Wireless	75	75	_	Surge	Raycap	RDIDC-9181-PF-48				on the same mounts				
All the state of t														

*Indicates equipment/feedline quantity to be removed.

				Antenna					2	Mount		Transmi	Transmission Line	
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Туре	Manufacturer	Моде	Azimuth	Quantity	Azimuth Quantity Manufacturer	Туре	Quantity	Model	Size	Attachment Int/Ext
Verizon	85	85	9	Panel	Andrew	JAHH-65B-R3B	30/150/270	3	Commscope	Commscope BSAMNT-SBS-2-2				
Verizon	85	85	3	Panel	Samsung	MT6407-77A	30/150/270	_	VZWSMART	/ZWSMART PLK5 Kicker Kit				
Verizon	85	85	3	Diplexer	Commscope	CBC78T-DS-43-2X		_	VZWSMART	VZWSMART PLK7 Collar Mount				
Verizon	85	85	3	RRH	Samsung	B2/B66A RRH-BR049 (RFV01U-D2A)		3	Unknown	Support Rail				
Verizon	85	85	3	RRH	Samsung	B5/B13 RRH-BR04C (RFV01U-D2A)		3	Unknown	Support Rail Bracing				


APPENDIX B

Tower Analysis Output File


Round ______ Flat _____ App In Face _____ App Out Face _____ Truss Leg

	GPD	^{Job:} CT1263 / OLD SAYBROO	K BOSTON PO	ST RD
	520 South Main Street Suite 2531	Project: 2022703.54		
	Akron, Ohio 44311	Client: BST Management, LLC	Drawn by: clifke	App'd:
	Phone: (330) 572-2100	Code: TIA-222-H	Date: 06/28/22	Scale: NTS
		Path: T:\ATandT\105130\06 2022703 54 BST SA\5 Structural\00 S	ructure\00 Rev 0\03 Modeling\105130.er	Dwg No. E-7

Feed Line Plan

 Round
 Flat
 App In Face
 App Out Face

GPD	Job
520 South Main Street Suite 2531	Pro
Akron, Ohio 44311	Cli
Phone: (330) 572-2100	Со
EAV: (220) E72 2404	Pa

ECT1263 / OLD SAYBR	OOK BOSTON PO	OST RD
roject: 2022703.54		
lient: BST Management, LLC	Drawn by: clifke	App'd:
ode: TIA-222-H	Date: 06/28/22	Scale: NTS
ath:		Dwg No. F.

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT1263 / OLD SAYBROOK BOSTON POST RD	1 of 10
Proje	ect	Date
	2022703.54	10:06:50 06/28/22
Clier		Designed by
	BST Management, LLC	clifke

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in Middlesex County, Connecticut.

Tower base elevation above sea level: 8.00 ft.

Basic wind speed of 125 mph.

Risk Category II.

Exposure Category B.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- Use Code Stress Ratios
 - Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- Assume Rigid Index Plate
- Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles
- Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets
- Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	99.00-48.50	50.50	4.75	18	22.1400	34.1500	0.2500	1.0000	A572-65

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT1263 / OLD SAYBROOK BOSTON POST RD	2 of 10
Projec	t	Date
	2022703.54	10:06:50 06/28/22
Client	BST Management, LLC	Designed by clifke

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L2	48.50-0.00	53.25		18	32.5203	45.2000	0.3125	1.2500	(65 ksi) A572-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	Ι	r	C	I/C	J	It/Q	w	w/t
	in	in^2	in^4	in	in	in^3	in⁴	in^2	in	
L1	22.4430	17.3697	1051.5300	7.7710	11.2471	93.4933	2104.4436	8.6865	3.4566	13.827
	34.6383	26.8996	3905.5615	12.0345	17.3482	225.1278	7816.2619	13.4524	5.5704	22.282
L2	34.1223	31.9462	4186.7736	11.4338	16.5203	253.4315	8379.0563	15.9761	5.1736	16.555
	45.8491	44.5228	11333.6722	15.9351	22.9616	493.5924	22682.2576	22.2656	7.4052	23.697

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft ²	in					in	in	in
L1 99.00-48.50				1	1	1			
L2 48.50-0.00				1	1	1			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Exclude	Component	Placement	Total		C_AA_A	Weight
	or	Shield	From	Туре		Number			
	Leg		Torque		ft			ft²/ft	plf
	_		Calculation						
5/8" Step Bolts	С	No	No	CaAa (Out	99.00 - 8.00	1	No Ice	0.04	1.00
•				Of Face)			1/2" Ice	0.14	1.56
							1" Ice	0.24	2.73
Safety Line (3/8")	C	No	No	CaAa (Out	99.00 - 8.00	1	No Ice	0.04	0.22
				Of Face)			1/2" Ice	0.14	0.75
				,			1" Ice	0.24	1.28

LDF7-50A (1-5/8	A	No	No	Inside Pole	97.00 - 8.00	6	No Ice	0.00	0.82
FOAM)							1/2" Ice	0.00	0.82
ŕ							1" Ice	0.00	0.82
15.4mm DC Power	A	No	No	Inside Pole	95.00 - 8.00	6	No Ice	0.00	0.50
							1/2" Ice	0.00	0.50
							1" Ice	0.00	0.50
10mm Fiber Cable	A	No	No	Inside Pole	95.00 - 8.00	1	No Ice	0.00	0.10
							1/2" Ice	0.00	0.10
							1" Ice	0.00	0.10

LDF7-50A (1-5/8	В	No	No	Inside Pole	85.00 - 8.00	2	No Ice	0.00	0.82
FOAM)							1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82

1.60" Hybrid	В	No	No	Inside Pole	75.00 - 8.00	1	No Ice	0.00	0.85
•							1/2" Ice	0.00	0.85
							1" Ice	0.00	0.85

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT1263 / OLD SAYBROOK BOSTON POST RD	3 of 10
Projec	t	Date
	2022703.54	10:06:50 06/28/22
Client	BST Management, LLC	Designed by clifke

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	C_AA_A	Weight
Section	Elevation ft		ft^2	ft ²	In Face ft²	Out Face ft²	K
L1	99.00-48.50	A	0.000	0.000	0.000	0.000	0.38
		В	0.000	0.000	0.000	0.000	0.08
		C	0.000	0.000	0.000	3.998	0.06
L2	48.50-0.00	A	0.000	0.000	0.000	0.000	0.32
		В	0.000	0.000	0.000	0.000	0.10
		C	0.000	0.000	0.000	3.206	0.05

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft ²	ft²	ft²	ft²	K
L1	99.00-48.50	A	1.082	0.000	0.000	0.000	0.000	0.38
		В		0.000	0.000	0.000	0.000	0.08
		C		0.000	0.000	0.000	25.854	0.22
L2	48.50-0.00	A	0.966	0.000	0.000	0.000	0.000	0.32
		В		0.000	0.000	0.000	0.000	0.10
		С		0.000	0.000	0.000	20.735	0.18

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	99.00-48.50	-0.6116	0.3531	-1.8756	1.0829
L2	48.50-0.00	-0.5086	0.2936	-1.6680	0.9630

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Discrete Tower Loads									
Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
			Vert ft ft	٥	ft		ft²	ft²	K
T-Arm Mount [TA 602-3]	A	None	<u>j.</u>	0.0000	97.00	No Ice 1/2" Ice	13.40 16.44	13.40 16.44	0.77 1.00

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT1263 / OLD SAYBROOK BOSTON POST RD	4 of 10
Project		Date
	2022703.54	10:06:50 06/28/22
Client	DCT Management 11 C	Designed by
	BST Management, LLC	clifke

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	Leg		Lateral Vert ft ft ft	٥	ft		ft²	fît²	K
						1" Ice	19.70	19.70	1.29
T-Arm Mount [TA 602-3]	Α	None		0.0000	93.00	No Ice 1/2" Ice	13.40 16.44	13.40 16.44	0.77 1.00
AM-X-CD-16-65-00T-RET	A	From Face	4.00	0.0000	97.00	1" Ice No Ice	19.70 8.31	19.70 6.65	1.29 0.09
w/ Mount Pipe			0.00		2,,,,	1/2" Ice	8.85	7.68	0.16
AM V CD 16 65 00T DET	D	Enam Enam	-3.00	0.0000	07.00	1" Ice	9.37	8.56	0.23
AM-X-CD-16-65-00T-RET w/ Mount Pipe	В	From Face	4.00 0.00	0.0000	97.00	No Ice 1/2" Ice	8.31 8.85	6.65 7.68	0.09 0.16
W. Would Tipe			-3.00			1" Ice	9.37	8.56	0.23
AM-X-CD-16-65-00T-RET	C	From Face	4.00	0.0000	97.00	No Ice	8.31	6.65	0.09
w/ Mount Pipe			0.00			1/2" Ice	8.85	7.68	0.16
(3) HPA-65R-BUU-H6 w/	A	From Face	-3.00 4.00	0.0000	07.00	1" Ice No Ice	9.37 9.90	8.56 8.11	0.23 0.08
Mount Pipe	A	FIGHT Face	0.00	0.0000	97.00	1/2" Ice	10.47	9.30	0.16
Would I ipc			-3.00			1" Ice	11.01	10.21	0.25
(3) HPA-65R-BUU-H6 w/	В	From Face	4.00	0.0000	97.00	No Ice	9.90	8.11	0.08
Mount Pipe			0.00			1/2" Ice	10.47	9.30	0.16
(2) IIDA (5D DIHI II(/	C	P P	-3.00	0.0000	07.00	1" Ice	11.01	10.21	0.25
(3) HPA-65R-BUU-H6 w/ Mount Pipe	С	From Face	4.00 0.00	0.0000	97.00	No Ice 1/2" Ice	9.90 10.47	8.11 9.30	0.08 0.16
Would I lpc			-3.00			1" Ice	11.01	10.21	0.10
DTMABP7819VG12A	A	From Face	4.00	0.0000	97.00	No Ice	1.00	0.41	0.02
			0.00			1/2" Ice	1.13	0.51	0.03
	_		-3.00			1" Ice	1.27	0.61	0.04
DTMABP7819VG12A	В	From Face	4.00 0.00	0.0000	97.00	No Ice 1/2" Ice	1.00	0.41	0.02 0.03
			-3.00			1" Ice	1.13 1.27	0.51 0.61	0.03
DTMABP7819VG12A	C	From Face	4.00	0.0000	97.00	No Ice	1.00	0.41	0.04
			0.00			1/2" Ice	1.13	0.51	0.03
			-3.00			1" Ice	1.27	0.61	0.04
(2) RRUS 11	A	From Face	4.00	0.0000	97.00	No Ice	2.78	1.19	0.05
			0.00 -3.00			1/2" Ice 1" Ice	2.99 3.21	1.33 1.49	0.07 0.10
(2) RRUS 11	В	From Face	4.00	0.0000	97.00	No Ice	2.78	1.19	0.10
(2) 14(05 11	D	11011111100	0.00	0.0000	37.00	1/2" Ice	2.99	1.33	0.07
			-3.00			1" Ice	3.21	1.49	0.10
(2) RRUS 11	C	From Face	4.00	0.0000	97.00	No Ice	2.78	1.19	0.05
			0.00			1/2" Ice	2.99	1.33	0.07
(2) RRUS 12	A	From Face	-3.00 4.00	0.0000	97.00	1" Ice No Ice	3.21 3.15	1.49 1.29	$0.10 \\ 0.06$
(2) 14(05 12	21	11011111111	0.00	0.0000	27.00	1/2" Ice	3.36	1.44	0.08
			-3.00			1" Ice	3.59	1.60	0.11
(2) RRUS 12	В	From Face	4.00	0.0000	97.00	No Ice	3.15	1.29	0.06
			0.00			1/2" Ice	3.36	1.44	0.08
(2) RRUS 12	С	Enom Eooo	-3.00 4.00	0.0000	97.00	1" Ice No Ice	3.59 3.15	1.60	0.11 0.06
(2) KKUS 12	C	From Face	0.00	0.0000	97.00	1/2" Ice	3.36	1.29 1.44	0.08
			-3.00			1" Ice	3.59	1.60	0.11
RRUS E2	A	From Face	4.00	0.0000	97.00	No Ice	3.15	1.29	0.06
			0.00			1/2" Ice	3.36	1.44	0.08
DDIIG DO	D	Enom E	-3.00	0.0000	07.00	1" Ice	3.59	1.60	0.11
RRUS E2	В	From Face	4.00 0.00	0.0000	97.00	No Ice 1/2" Ice	3.15 3.36	1.29 1.44	$0.06 \\ 0.08$
			-3.00			1" Ice	3.59	1.60	0.08
RRUS E2	C	From Face	4.00	0.0000	97.00	No Ice	3.15	1.29	0.06
			0.00			1/2" Ice	3.36	1.44	0.08

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT1263 / OLD SAYBROOK BOSTON POST RD	5 of 10
Project		Date
	2022703.54	10:06:50 06/28/22
Client	DOT-14	Designed by
	BST Management, LLC	clifke

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weigi
	Leg		Lateral Vert						
			ft	0	ft		ft²	ft²	K
			ft ft						
			-3.00			1" Ice	3.59	1.60	0.11
RRUS 32	A	From Face	4.00	0.0000	97.00	No Ice	3.31	2.42	0.08
			0.00			1/2" Ice	3.56	2.64	0.10
			-3.00			1" Ice	3.81	2.86	0.14
RRUS 32	В	From Face	4.00	0.0000	97.00	No Ice	3.31	2.42	0.08
			0.00			1/2" Ice	3.56	2.64	0.10
DDIIC 22	C	Enom Food	-3.00	0.0000	07.00	1" Ice	3.81	2.86	0.14
RRUS 32	C	From Face	4.00 0.00	0.0000	97.00	No Ice 1/2" Ice	3.31 3.56	2.42 2.64	0.08
			-3.00			1" Ice	3.81	2.86	0.14
(2) KRC 161 286-1 (A2	Α	From Face	4.00	0.0000	97.00	No Ice	1.87	0.43	0.02
Module)	А	110m race	0.00	0.0000	57.00	1/2" Ice	2.05	0.54	0.02
Wodale)			-3.00			1" Ice	2.24	0.66	0.04
(2) KRC 161 286-1 (A2	В	From Face	4.00	0.0000	97.00	No Ice	1.87	0.43	0.02
Module)			0.00		- ,	1/2" Ice	2.05	0.54	0.03
,			-3.00			1" Ice	2.24	0.66	0.04
(2) KRC 161 286-1 (A2	C	From Face	4.00	0.0000	97.00	No Ice	1.87	0.43	0.02
Module)			0.00			1/2" Ice	2.05	0.54	0.03
			-3.00			1" Ice	2.24	0.66	0.04
DC6-48-60-18-8F Surge	Α	From Face	1.00	0.0000	95.00	No Ice	0.92	0.92	0.02
Suppression Unit			0.00			1/2" Ice	1.46	1.46	0.04
	_		0.00			1" Ice	1.64	1.64	0.06
DC6-48-60-18-8F Surge	В	From Face	1.00	0.0000	95.00	No Ice	0.92	0.92	0.02
Suppression Unit			0.00			1/2" Ice	1.46	1.46	0.04
DC6 49 60 19 9E Curao	C	Enom Food	0.00	0.0000	05.00	1" Ice	1.64	1.64	0.06
DC6-48-60-18-8F Surge Suppression Unit	С	From Face	$\frac{1.00}{0.00}$	0.0000	95.00	No Ice 1/2" Ice	0.92 1.46	0.92 1.46	0.02 0.04
Suppression Out			0.00			1" Ice	1.64	1.64	0.0
****			0.00			1 100	1.01	1.01	0.00
14.33' Platform [LP	A	None		0.0000	85.00	No Ice	37.79	37.79	1.98
302-1_KCKR]						1/2" Ice	47.89	47.89	2.68
						1" Ice	57.78	57.78	3.55
(2) JAHH-65B-R3B	Α	From	4.00	0.0000	85.00	No Ice	9.11	5.98	0.06
		Centroid-Fa	0.00			1/2" Ice	9.58	6.44	0.12
		ce	0.00			1" Ice	10.05	6.91	0.18
(2) JAHH-65B-R3B	В	From	4.00	0.0000	85.00	No Ice	9.11	5.98	0.06
		Centroid-Fa	0.00			1/2" Ice	9.58	6.44	0.12
(2) IAIHI (5D D2D	C	ce	0.00	0.0000	95.00	l" Ice	10.05	6.91	0.18
(2) JAHH-65B-R3B	С	From Centroid-Fa	4.00 0.00	0.0000	85.00	No Ice 1/2" Ice	9.11 9.58	5.98	0.06
			0.00			1" Ice	10.05	6.44 6.91	0.12
MT6407-77A	A	ce From	4.00	0.0000	85.00	No Ice	4.69	1.84	0.18
W110407-7771	21	Centroid-Fa	0.00	0.0000	05.00	1/2" Ice	4.98	2.06	0.11
		ce	0.00			1" Ice	5.28	2.29	0.14
MT6407-77A	В	From	4.00	0.0000	85.00	No Ice	4.69	1.84	0.08
		Centroid-Fa	0.00			1/2" Ice	4.98	2.06	0.11
		ce	0.00			1" Ice	5.28	2.29	0.14
MT6407-77A	C	From	4.00	0.0000	85.00	No Ice	4.69	1.84	0.08
		Centroid-Fa	0.00			1/2" Ice	4.98	2.06	0.11
		ce	0.00			1" Ice	5.28	2.29	0.14
	A	From	4.00	0.0000	85.00	No Ice	1.88	1.25	0.08
B2/B66A RRH-BR049		Centroid-Fa	0.00			1/2" Ice	2.05 2.22	1.39	0.10
B2/B66A RRH-BR049						1" Ice	1 17	1.5.4	0.12
	Б	ce	0.00	0.0000	05.00			1.54	
B2/B66A RRH-BR049 B2/B66A RRH-BR049	В	From	4.00	0.0000	85.00	No Ice	1.88	1.25	0.08
	В			0.0000	85.00				0.08 0.10 0.12

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT1263 / OLD SAYBROOK BOSTON POST RD	6 of 10
Project		Date
	2022703.54	10:06:50 06/28/22
Client	207.11	Designed by
	BST Management, LLC	clifke

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weigh
	Leg		Lateral Vert	-					
			ft	0	ft		ft²	ft²	K
			ft ft		J		,	3	
		Centroid-Fa	0.00			1/2" Ice	2.05	1.39	0.10
		ce	0.00			1" Ice	2.22	1.54	0.12
B5/B13 RRH-BR04C	Α	From	4.00	0.0000	85.00	No Ice	1.88	1.01	0.07
		Centroid-Fa	$0.00 \\ 0.00$			1/2" Ice 1" Ice	2.05 2.22	1.14 1.28	0.09 0.11
B5/B13 RRH-BR04C	В	ce From	4.00	0.0000	85.00	No Ice	1.88	1.28	0.11
D3/D13 KKII-DK04C	ь	Centroid-Fa	0.00	0.0000	65.00	1/2" Ice	2.05	1.14	0.07
		ce	0.00			1" Ice	2.22	1.28	0.11
B5/B13 RRH-BR04C	С	From	4.00	0.0000	85.00	No Ice	1.88	1.01	0.07
		Centroid-Fa	0.00			1/2" Ice	2.05	1.14	0.09
		ce	0.00			1" Ice	2.22	1.28	0.11
CBC78T-DS-43-2X	Α	From	4.00	0.0000	85.00	No Ice	0.37	0.51	0.02
		Centroid-Fa	0.00			1/2" Ice	0.45	0.60	0.03
CD CECE DC 40 AT		ce	0.00		0.7.00	1" Ice	0.53	0.70	0.04
CBC78T-DS-43-2X	В	From	4.00	0.0000	85.00	No Ice	0.37	0.51	0.02
		Centroid-Fa	0.00 0.00			1/2" Ice 1" Ice	0.45 0.53	0.60 0.70	0.03 0.04
CBC78T-DS-43-2X	С	ce From	4.00	0.0000	85.00	No Ice	0.33	0.70	0.04
CBC/01-D5-45-2A		Centroid-Fa	0.00	0.0000	65.00	1/2" Ice	0.45	0.60	0.02
		ce	0.00			1" Ice	0.53	0.70	0.04
DB-T1-6Z-8AB-0Z	Α	From	4.00	0.0000	85.00	No Ice	4.80	2.00	0.04
		Centroid-Fa	0.00			1/2" Ice	5.07	2.19	0.08
		ce	0.00			1" Ice	5.35	2.39	0.12
DB-T1-6Z-8AB-0Z	В	From	4.00	0.0000	85.00	No Ice	4.80	2.00	0.04
		Centroid-Fa	0.00			1/2" Ice	5.07	2.19	0.08
		ce	0.00			1" Ice	5.35	2.39	0.12
****		3.7		0.0000	75.00	NT T	10.56	10.76	0.72
MC-K6M-9-96	Α	None		0.0000	75.00	No Ice	12.56	12.56	0.73
						1/2" Ice 1" Ice	15.36 18.04	15.36 18.04	0.94 1.21
2) 8' x 2.375" Mount Pipe	A	From	3.00	0.0000	75.00	No Ice	1.90	1.90	0.04
2) 6 x 2.575 Would Tipe	71	Centroid-Fa	0.00	0.0000	75.00	1/2" Ice	2.73	2.73	0.05
		ce	0.00			1" Ice	3.40	3.40	0.07
2) 8' x 2.375" Mount Pipe	В	From	3.00	0.0000	75.00	No Ice	1.90	1.90	0.04
-,		Centroid-Fa	0.00			1/2" Ice	2.73	2.73	0.05
		ce	0.00			1" Ice	3.40	3.40	0.07
2) 8' x 2.375" Mount Pipe	C	From	3.00	0.0000	75.00	No Ice	1.90	1.90	0.04
		Centroid-Fa	0.00			1/2" Ice	2.73	2.73	0.05
		ce	0.00			1" Ice	3.40	3.40	0.07
MX08FRO665-20_V0F w/	Α	From	3.00	0.0000	75.00	No Ice	12.96	7.77	0.08
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	13.67	9.05	0.18
	_	ce	0.00			1" Ice	14.34	10.19	0.28
MX08FRO665-20_V0F w/	В	From	3.00	0.0000	75.00	No Ice	12.96	7.77	0.08
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	13.67	9.05	0.18
MX08FRO665-20 V0F w/	C	ce	0.00	0.0000	75.00	1" Ice	14.34	10.19	0.28
Mount Pipe	С	From Centroid-Fa	3.00 0.00	0.0000	75.00	No Ice 1/2" Ice	12.96 13.67	7.77 9.05	0.08 0.18
Mount Pipe		ce ce	0.00			1" Ice	14.34	10.19	0.18
(2) TA08025-B605	Α	From	3.00	0.0000	75.00	No Ice	1.96	1.13	0.28
(2) 11100025-1005	А	Centroid-Fa	0.00	0.0000	75.00	1/2" Ice	2.14	1.13	0.08
		ce centroid-ra	0.00			1" Ice	2.32	1.41	0.03
(2) TA08025-B605	В	From	3.00	0.0000	75.00	No Ice	1.96	1.13	0.08
()	_	Centroid-Fa	0.00			1/2" Ice	2.14	1.27	0.09
		ce	0.00			1" Ice	2.32	1.41	0.11
(2) TA08025-B605	C	From	3.00	0.0000	75.00	No Ice	1.96	1.13	0.08
		Centroid-Fa	0.00			1/2" Ice	2.14	1.27	0.09
		ce	0.00			1" Ice	2.32	1.41	0.11

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Jo	b	Page
	CT1263 / OLD SAYBROOK BOSTON POST RD	7 of 10
Р	roject	Date
	2022703.54	10:06:50 06/28/22
C	lient	Designed by
	BST Management, LLC	clifke

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
			Vert ft ft ft	0	ft		ft²	ft²	K
RDIDC-9181-PF-48	A	From	3.00	0.0000	75.00	No Ice	2.56	1.34	0.02
		Centroid-Fa	0.00			1/2" Ice	2.76	1.49	0.04
		ce	0.00			1" Ice	2.97	1.66	0.07

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT1263 / OLD SAYBROOK BOSTON POST RD	8 of 10
Projec	t	Date
	2022703.54	10:06:50 06/28/22
Client	BST Management, LLC	Designed by clifke

Comb.	Description
No.	
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	99 - 48.5	7.102	48	0.5761	0.0005
L2	53.25 - 0	2.184	48	0.3768	0.0002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
97.00	T-Arm Mount [TA 602-3]	48	6.856	0.5687	0.0005	54502
95.00	DC6-48-60-18-8F Surge	48	6.611	0.5612	0.0004	54502
	Suppression Unit					
93.00	T-Arm Mount [TA 602-3]	48	6.366	0.5537	0.0004	45418
85.00	14.33' Platform [LP 302-1_KCKR]	48	5.402	0.5231	0.0004	19465
75.00	MC-K6M-9-96	48	4.255	0.4825	0.0003	11354

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	99 - 48.5	34.548	20	2.8038	0.0023
L2	53.25 - 0	10.623	20	1.8335	0.0010

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
97.00	T-Arm Mount [TA 602-3]	20	33.353	2.7675	0.0022	11243
95.00	DC6-48-60-18-8F Surge	20	32.160	2.7311	0.0022	11243
	Suppression Unit					
93.00	T-Arm Mount [TA 602-3]	20	30.970	2.6945	0.0021	9369
85.00	14.33' Platform [LP 302-1_KCKR]	20	26.278	2.5456	0.0018	4014

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT1263 / OLD SAYBROOK BOSTON POST RD	9 of 10
Projec	t	Date
	2022703.54	10:06:50 06/28/22
Client	DOT 11 0	Designed by
	BST Management, LLC	clifke

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
75.00	MC-K6M-9-96	20	20.697	2.3479	0.0016	2341

Compression Checks

			Po	le Des	sign l	Data			
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P.
1101	ft		ft	ft		in^2	K	K	$\frac{P_u}{\phi P_n}$
L1 L2	99 - 48.5 (1) 48.5 - 0 (2)	TP34.15x22.14x0.25 TP45.2x32.5203x0.3125	50.50 53.25	0.00	0.0	26.0033 44.5228	-14.63 -24.56	1521.19 2604.58	0.010 0.009

	Pole Bending Design Data							
Section	Elevation	Size	M _{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.	ft		kip-ft	kip-ft	$\frac{M_{ux}}{\phi M_{nx}}$	kip-ft	kip-ft	$\frac{M_{uy}}{\phi M_{ny}}$
L1	99 - 48.5 (1)	TP34.15x22.14x0.25	496.26	1184.53	0.419	0.00	1184.53	0.000
L2	48.5 - 0 (2)	TP45.2x32.5203x0.3125	1387.50	2683.70	0.517	0.00	2683.70	0.000

	Pole Shear Design Data								
Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio	
No.	ft		$V_u = K$	K	$\frac{V_u}{\phi V_n}$	T _u kip-ft	kip-ft	T_u	
L1	99 - 48.5 (1)	TP34.15x22.14x0.25	15.24	456.36	0.033	0.24	1309.68	0.000	
L2	48.5 - 0 (2)	TP45.2x32.5203x0.3125	18.23	781.38	0.023	0.15	3071.60	0.000	

Pole Interaction Design Data									
Section No.	Elevation	Ratio P _u	Ratio M_{ux}	$Ratio\ M_{uy}$	$Ratio$ V_u	Ratio T_u	Comb. Stress	Allow. Stress	Criteria
	ft	$\overline{\phi P_n}$	ϕM_{nx}	$\overline{\phi M_{ny}}$	$\overline{\qquad}$ ϕV_n	ϕT_n	Ratio	Ratio	
L1	99 - 48.5 (1)	0.010	0.419	0.000	0.033	0.000	0.430	1.000	4.8.2
L2	48.5 - 0 (2)	0.009	0.517	0.000	0.023	0.000	0.527	1.000	4.8.2

tnx7	<i>ower</i>

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

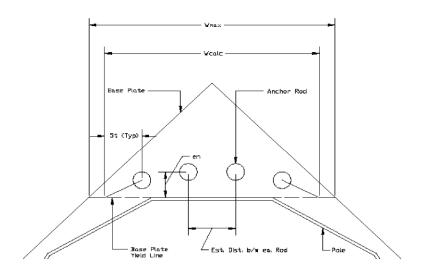
Job		Page
	CT1263 / OLD SAYBROOK BOSTON POST RD	10 of 10
Project		Date
	2022703.54	10:06:50 06/28/22
Client	DOT-14	Designed by
BST Management, LLC		clifke

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	ø $P_{allow} \ K$	% Capacity	Pass Fail
L1 L2	99 - 48.5 48.5 - 0	Pole Pole	TP34.15x22.14x0.25 TP45.2x32.5203x0.3125	1 2	-14.63 -24.56	1521.19 2604.58	43.0 52.7	Pass Pass
						Summary	ELC:	Existing + Proposed
						Pole (L2) Rating =	52.7 52.7	Pass Pass

APPENDIX C

Additional Calculations


Anchor Rod and Base Plate Stresses, TIA-222-H-1 CT1263 / OLD SAYBROOK BOSTON POST RD 2022703.54

Overturning Moment =	1387.00	k*ft
Axial Force =	25.00	k
Shear Force =	18.00	k

Maximum Capacity	105%
Apply TIA-222-H Section 15.5?	No

Anchor Ro	ods	
Pole Diameter =	45.2	in
Number of Rods =	12	
Rod Yield Strength, F _y =	75	ksi
Rod Ultimate Strength, F _u =	100	ksi
Rod Circle =	51.25	in
Rod Diameter =	2.25	in
Rod Projection, I _{ar} =	2.25	in
Is grout present?	No	
Max Tension on Rod, P _{ut} =	106.07	k
Max Compression on Rod, P _{uc} =	110.23	k
Shear on Rod, V _u =	1.50	k
Moment on Rod, M_u =	0.00	k-in
Tension Interaction =	18.9%	OK
Compression Interaction =	41.1%	OK

Base Plate			
Plate Yield Strength, F _y =	50	ksi	
φ =	0.9		
Plate Thickness =	2.5	in	
Plate Width =	49.75	in	
Est. Dist. b/w ea. Rod =	6	in	
w _{calc} =	36.92	in	
w _{max} =	25.16	in	
w =	25.16		
Z =	39.31	in³	
M _u =	831.73	k-in	
$\phi M_n =$	1768.86	k-in	
Base Plate Capacity =	47.0%	OK	

Pier and Pad Foundation

Site # : CT1284
Site Name: OLD SAYBROOK E

TIA-222 Revision: Tower Type:

Н	
Monopole	

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis Reactions			
Compression, P _{comp} :	25	kips	
Base Shear, Vu_comp:	18	kips	
Moment, M _u :	1387	ft-kips	
Tower Height, H:	99	ft	
_			
BP Dist. Above Fdn, bp _{dist} :	3	in	

Pier Properties		
Pier Shape:	Square	
Pier Diameter, dpier :	6	ft
Ext. Above Grade, E:	0.5	ft
Pier Rebar Size, Sc:	8	
Pier Rebar Quantity, mc :	26	
Pier Tie/Spiral Size, St :	4	
Pier Tie/Spiral Quantity, mt:		
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc _{pier} :	3	in

Pad Properties		
Depth, D:	6	ft
Pad Width, W ₁:	20.5	ft
Pad Thickness, T :	1.5	ft
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	8	
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	26	
Pad Clear Cover, cc _{pad} :	3	in

Material Properties				
Rebar Grade, Fy: 60 ksi				
Concrete Compressive Strength, F'c:	4.5	ksi		
Dry Concrete Density, δ c :	150	pcf		

Soil Properties					
Total Soil Unit Weight, γ: 125 pcf					
Ultimate Gross Bearing, Qult:	8.000	ksf			
Cohesion, Cu:		ksf			
Friction Angle, $oldsymbol{arphi}$:	34	degrees			
SPT Blow Count, N _{blows} :					
Base Friction, μ :					
Neglected Depth, N:	3.50	ft			
Foundation Bearing on Rock?					
Groundwater Depth, gw:	5	ft			

Foundation Analysis Checks					
	Capacity	Demand	Rating	Check	
Lateral (Sliding) (kips)	153.47	18.00	11.7%	Pass	
Bearing Pressure (ksf)	6.00	2.15	35.8%	Pass	
Overturning (kip*ft)	2919.69	1508.50	51.7%	Pass	
Pier Flexure (Comp.) (kip*ft)	2915.71	1477.00	50.7%	Pass	
Pier Compression (kip)	25777.44	57.40	0.2%	Pass	
Pad Flexure (kip*ft)	1187.28	499.18	42.0%	Pass	
Pad Shear - 1-way (kips)	334.17	106.64	31.9%	Pass	
Pad Shear - 2-way (Comp) (ksi)	0.201	0.063	31.3%	Pass	
Flexural 2-way (Comp) (kip*ft)	1204.34	886.20	73.6%	Pass	

Structural Rating:	73.6%
Soil Rating:	51.7%

<--Toggle between Gross and Net

Maser Consulting Connecticut
1055 Washington Boulevard
Stamford, CT 06901
203.324.0800
peter.albano@colliersengineering.com

Post-Modification Antenna Mount Analysis Report and PMI Requirements

Mount Fix

SMART Tool Project #: 10144894 Maser Consulting Connecticut Project #: 21777624A (Rev. 1)

July 29, 2022

Site Information Site ID: 467406-VZW / OLD SAYBROOK 2 CT

Site Name: OLD SAYBROOK 2 CT

Carrier Name: Verizon Wireless Address: 1363 Boston Post Rd

Old Saybrook, Connecticut 06475

Middlesex County

Latitude: 41.289778° Longitude: -72.405944°

<u>Structure Information</u>

Tower Type: 99-Ft Monopole

Mount Type: 14.23 Ft Plotform

Mount Type: 14.33-Ft Platform

FUZE ID # 16272126

Analysis Results

Platform: 84.8% Pass w/ Modifications*

*Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

***Contractor PMI Requirements:

Included at the end of this MA report

Available & Submitted via portal at https://pmi.vzwsmart.com

For additional questions and support, please reach out to:

pmisupport@colliersengineering.com

Report Prepared By: Sarah A

Executive Summary:

The objective of this report is to summarize the analysis results of the antenna support mount including the proposed modifications at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 2561122, dated June 15, 2021
Desktop Mount Mapping Form	Colliers Engineering & Design, Project #: 21777624, dated April 11, 2022
Previous Mount Analysis	Maser Consulting Connecticut, Project #: 21777624A, dated April 14, 2022
Mount Modification Drawings	Maser Consulting Connecticut, Project #: 21777624A (Rev. 1), dated July 29, 2022

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H	

Wind Parameters:	Basic Wind Speed	(Ultimate 3-sec.	Gust), V _{∪LT} :	125 mph
------------------	------------------	------------------	---------------------------	---------

Ice Wind Speed (3-sec. Gust): 50 mph Design Ice Thickness: 1.00 in Risk Category: Ш Exposure Category: С Topographic Category: 1 Topographic Feature Considered: N/A Topographic Method: N/A Ground Elevation Factor, Ke: 1.000

Seismic Parameters: S_S: 0.202 g

 S_1 : 0.053 g

Maintenance Parameters: Wind Speed (3-sec. Gust): 30 mph

Maintenance Live Load, Lv: 250 lbs. Maintenance Live Load, Lm: 500 lbs.

Analysis Software: RISA-3D (V17)

Final Loading Configuration:

The following equipment has been considered for the analysis of the mount:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status
		6	Commscope	JAHH-65B-R3B	
		3	Samsung	MT6407-77A	
81.00	85.00	3	Commscope	CBC78T-DS-43-2X	Added
81.00	85.00	3	Samsung	B2/B66A RRH-BR049	Added
		3	Samsung	B5/B13 RRH-BR04C	
		2	Raycap	DB-B1-6C-12AB-0Z	

It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting Connecticut to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.

- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

Channel, Solid Round, Angle, Plate
 HSS (Rectangular)
 Pipe
 Threaded Rod
 Bolts
 ASTM A36 (Gr. 36)
 ASTM 500 (Gr. B-46)
 ASTM A53 (Gr. B-35)
 F1554 (Gr. 36)
 ASTM A325

8. Any mount modifications listed under Sources of Information are assumed to have been installed per the design specifications.

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

Analysis Results:

Component	Utilization %	Pass/Fail
Standoff Horizontal	44.1 %	Pass
Plate	29.6 %	Pass
Mount Pipe	84.8 %	Pass
Grating Support	22.1 %	Pass
Face Horizontal	33.1 %	Pass
End Plate	36.8 %	Pass
Cross Bracing	32.7 %	Pass
Corner Plate	34.2 %	Pass
Mod Support Rail Brace	72.0 %	Pass
Mod Support Rail	42.0 %	Pass
Mod Kicker Kit	8.6 %	Pass
Connection Check	40.2 %	Pass

Structure Rating – (Controlling Utilization of all Components)	84.8%
--	-------

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

Ice	Mount Pipes Excluded		Mount Pipes Included	
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)
0	36.5	36.5	51.5	51.5
0.5	47.0	47.0	68.2	68.2
1	56.6	56.6	84.2	84.2

Notes:

- (EPA)a values listed above may be used in the absence of more precise information
- (EPA)a values in the table above include 3 sector(s).
- Ka factors included in (EPA)a calculations

Requirements:

The existing mount will be **SUFFICIENT** for the final loading configuration (attachment 2) after the modifications detailed in attachment 3 are successfully completed.

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

Attachments:

- 1. Contractor Required PMI Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Modification Drawings
- 4. Mount Photos
- 5. Desktop Mount Mapping Form (for reference only)
- 6. Analysis Calculations

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Mount Modification

Electronic pdf version of this can be downloaded at https://pmi.vzwsmart.com
For additional questions and support, please reach out to pmisupport@colliersengineering.com

PSLC #: 467406

SMART Project #: 10144894

Fuze Project ID: 16272126

<u>Purpose</u> – to upload the proper documentation to the SMART Tool in order to allow the SMART Tool engineering vendor to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the modification was completed in accordance with the modification drawings.
- Contractor shall relay any data that can impact the performance of the mount or the mount modification, this includes safety issues.

Base Requirements:

- If installation of the modification will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built drawings" showing contractor's name, preparer's signature, and date. Any
 deviations from the drawings (proposed modification) shall be shown. NOTE: If loading is
 different than what is conveyed in the post-modification passing mount analysis (MA) contact
 the SMART Tool vendor immediately.
- Each photo shall be time and date stamped.
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is not adversely impacted by the install
 of the modification components. This may involve the install of wire rope guides, or other items
 to protect the wire rope. If there is conflict, contact the SMART Tool engineer for
 recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

- Photos taken at ground level
 - o Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation of the modifications.
 - Photos of the mount after installation of the modifications; if the mounts are at different rad elevations, pictures must be provided for all elevations that the modifications were installed

Photos taken at Mount Elevation

- Photos showing the safety climb wire rope above and below the mount prior to modification.
- Photos showing the climbing facility and safety climb if present.

- Photos showing each individual sector after installation of modifications. Each entire sector must be in one photo to show the interconnection of members.
 - These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.
- Photos of each installed modification per the modification drawings; pictures shall also include connection hardware (U-bolts, bolts, nuts, all-threaded rods, etc.)
- Photos showing the distances (relative distance between collars) of the installed modifications from the appropriate reference locations shown in the modification drawings.
- Photos showing the installed modifications onto the tower (i.e. ring/collar mounts, tiebacks, V-bracing kits, etc.); if the existing mount elevation needs to be changed according to the modification drawings, an elevation measurement shall be provided before the elevation change.

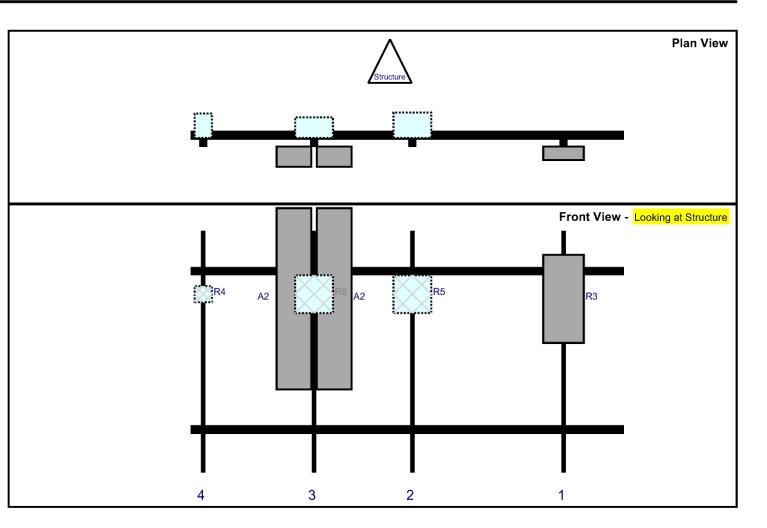
Material Certification:

- Materials utilized must be as per specification on the drawings or the equivalent as validated by the SMART Tool vendor.
 - If the materials are as specified on the drawings
 - The contractor shall provide the packing list, or the materials certifications for the materials utilized to perform the mount modification
 - Commscope, Metrosite, Perfect Vision, Sabre, and Site Pro have all agreed to support Verizon vendors with the necessary material certifications
 - If seeking permission to use an equivalent
 - It is required that the SMART Tool engineering vendor approval of such is included in the contractor submission package. There may be an additional

charge for approval if the equivalent submission doesn't meet specifications as prescribed in the drawings.
\square All hardware has been properly installed, and the existing hardware was inspected.
☐ The material utilized was as specified on the SMART Tool engineering vendor Mount Modification Drawings and included in the material certification folder is a packing list or invoice for these materials.
OR
\Box The material utilized was approved by a SMART Tool engineering vendor as an "equivalent" and this approval is included as part of the contractor submission.
Antenna & Equipment Placement and Geometry Confirmation:
\Box The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.

\Box The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.
Comments:
Was the mount modification completed in conjunction with the equipment change / installation?
□ Yes □ No
Special Instructions / Validation as required from the MA or Mod Drawings:
Issue:
Prior to installation of equipment, contractor shall verify all dimensions and member sizes shown in the Mount Geometry Verification Requirements section of the Mount Modification Drawings. Escalate any discrepancies to EOR immediately as it may render the results of this analysis invalid and require additional modifications. Contact EOR if these documents are not available to the general contractor.
Contractor shall inspect climbing facilities and safety climb, if present, and ensure they are in good condition. Contractor shall install safety climb wire rope guides in locations where wire rope is rubbing against the mount or mount-to-tower connection steel. Wire brush clean any observed corrosion and protect with two (2) coats of cold galvanization (Zinga or Zinc Kote). Contractor shall provide photos of wire rope guide installation as part of PMI documents. Contact EOR if additional guidance is required.
Response:
Special Instruction Confirmation:
\square The contractor has read and acknowledges the above special instructions.
Comments:
Contractor certifies that the climbing facility / safety climb was not damaged prior to starting work:
□ Yes □ No

Contractor certifies no ne	<u>ew damage created du</u>	ring the current installation:
□Yes□	No	
Contractor to certify the	condition of the safety	climb and verify no damage when leaving the site:
☐ Safety Climb in	Good Condition	☐ Safety Climb Damaged
Comments:		
Certifying Individual:		
Company:		
Employee Name:		
Contact Phone:		
Email:		
Date:		

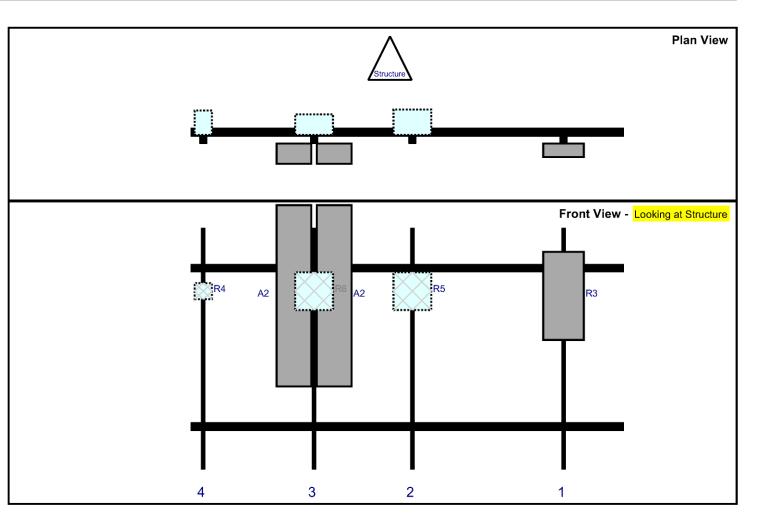

Structure: 467406-VZW - OLD SAYBROOK 2 CT

Sector: **A** 7/29/2022

Structure Type: Monopole 10144894

Mount Elev: 81.00 Page: 1

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R3	MT6407-77A	35.1	16.1	148	1	а	Front	27	0	Added	
R5	RFV01U-D1A	15	15	88	2	а	Behind	25.2	0	Added	
A2	JAHH-65B-R3B	72	13.8	49	3	а	Front	27	-8	Added	
A2	JAHH-65B-R3B	72	13.8	49	3	b	Front	27	8	Added	
R6	RFV01U-D2A	15	15	49	3	а	Behind	25.2	0	Added	
R4	CBC78T-DS-43-2X	6.4	6.9	5	4	а	Behind	25.2	0	Added	
OVP	DB-B1-6C-12AB-0Z	28.9	15.7		Memb	er				Added	

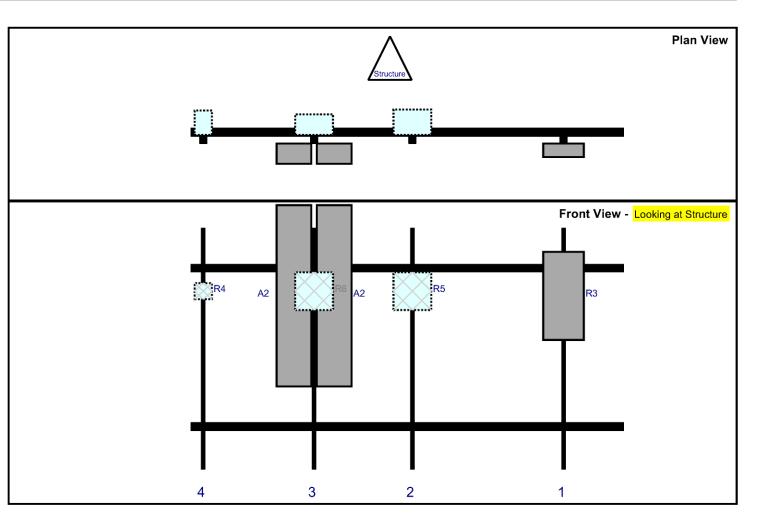

Structure: 467406-VZW - OLD SAYBROOK 2 CT

Sector: **B** 7/29/2022

Structure Type: Monopole 10144894

Mount Elev: 81.00 Page: 2

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R3	MT6407-77A	35.1	16.1	148	1	а	Front	27	0	Added	
R5	RFV01U-D1A	15	15	88	2	а	Behind	25.2	0	Added	
A2	JAHH-65B-R3B	72	13.8	49	3	а	Front	27	-8	Added	
A2	JAHH-65B-R3B	72	13.8	49	3	b	Front	27	8	Added	
R6	RFV01U-D2A	15	15	49	3	а	Behind	25.2	0	Added	
R4	CBC78T-DS-43-2X	6.4	6.9	5	4	а	Behind	25.2	0	Added	


Structure: 467406-VZW - OLD SAYBROOK 2 CT

Sector: **C** 7/29/2022

Structure Type: Monopole 10144894

Mount Elev: 81.00 Page: 3

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R3	MT6407-77A	35.1	16.1	148	1	а	Front	27	0	Added	
R5	RFV01U-D1A	15	15	88	2	а	Behind	25.2	0	Added	
A2	JAHH-65B-R3B	72	13.8	49	3	а	Front	27	-8	Added	
A2	JAHH-65B-R3B	72	13.8	49	3	b	Front	27	8	Added	
R6	RFV01U-D2A	15	15	49	3	а	Behind	25.2	0	Added	
R4	CBC78T-DS-43-2X	6.4	6.9	5	4	а	Behind	25.2	0	Added	

MOUNT MODIFICATION DRAWINGS EXISTING 14.33' PLATFORM

Verizon

hyppic 20. On the piper in the dispert most in the consequent in the piper in the consequent in the piper in

Colliers Engineering & Design

www.colliersengineering.com

TOWER OWNER: OCTAGON TOWERS TOWER OWNER SITE NUMBER: CT-1263

CARRIER SITE NAME: OLD SAYBROOK 2 CT CARRIER SITE NUMBER: 467406 FUZE ID: 16272126

1363 BOSTON POST RD OLD SAYBROOK, CT 06475 MIDDLESEX COUNTY

LATITUDE: 41.289778° N LONGITUDE: 72.405944° W

SHEET INDEX SS-1 MODIFICATION DETAILS SS-2 GEOMETRY VERIFICATION SKETCHES SS-3 MOUNT PHOTOS SBOM-I BILL OF MATERIALS SGN-I GENERAL NOTES SCF-I CLIMBING FACILITY DETAIL SPECIFICATION SHEETS COLLIERS ENGINEERING & DESIGN PETER ALBANO 885,379,012 PETER ALBANO@COLLIERSENGINEERING.COM PETER ALBANO@COLLIERSENGINEERING.COM PROJECT INFORMATION HTTPS://PMI.VZWSMART.COM 10144894 467406 7/29/2022 VERIZON WIRELESS CLIENT REPRESENTATIVE PMI LOCATION: SMART TOOL PROJECT #: VZW LOCATION CODE (PSLC): ANALYSIS DATE: PROJECT MANAGER APPLICANT/LESSEE **DESIGN CRITERIA** BASIC WIND SPEED (3 SECOND GUST), V = 125 MPH EXPOSURE CATEGORY C TOPOGRAPHIC CATEGORY 1 MEAN BASE ELEVATION (AMSI) = 8.16' SEISMIC DESIGN CATEGORY B SHORT TERM MCER GROUND MOTION, $S_{\rm S}$ = .202 LONG TERM MCER GROUND MOTION, $S_{\rm S}$ = .053 ICE WIND SPEED (3 SECOND GUST), V = 50 MPH ICE THICKNESS = 1.00 IN SEISMIC LOADS WIND LOADS ICE LOADS

COLLIERS ENGINEERING & DESIGN ALL RIGHTS RESERVED

OLD SAYBROOK 2 CT 467406 1363 BOSTON POST RD OLD SAYBROOK, CT 06475 MIDDLESEX COUNTY

SITE NAME:

TITLE SHEET

Colliers Engineering & Design ST-I

			WEIGHT (LBS.)	291	150	06	168					WEIGHT (LBS.)	249	65					
			UNIT WEIGHT (LBS.)	291	150	30	4					UNIT WEIGHT (LBS.)	83	20					1
BILL OF MATERIALS	TION I VENNENDANT LITE	SECTION 1 - VZWSMAKI KITS	NOTES	CONTRACTOR TO VERIFY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE 'STRUCTURAL. STEEL' NOTES ON SHEET SGN-1.							SECTION 2 - OTHER REQUIRED PARTS	NOTES	GALVANIZED	GALVANIZED, CONTRACTOR TO VERIFY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE STRUCTURAL STEEL NOTES ON SHEET SGN-1.					
BII		SEC	DESCRIPTION	KICKER KIT	MONOPOLE COLLAR MOUNT ASSEMBLY	SUPPORT RAIL CORNER BRACKET	CROSSOVER PLATE				SECTION	DESCRIPTION	172" LONG, P2 1/2 STD	48" LONG, L3x3x1/4					
			PART NUMBER	VZWSMART-PLKS	VZWSMART-PLK7	VZWSMART-PLK3	VZWSMART-MSKI					PART NUMBER							
			MANUFACTURER					VZWSMART				MANUFACTURER							
			QUANTITY	_	_	м	12					QUANTITY	ю	8					

Capaga Callac Regioning Lougo at Region of The Change and the manners measured the protect at the Capaga and the manners or whom it is comed. The Capaga with the the public mean, distinct destricted on the Upper Region and the Capaga and the control of destricted on the Upper regions with other pages without person and destricted on the Upper regional Lougo.

www.colliersengneering.com

Doing Business as

Colliers & Design

verizon

Egyptis below.

VZWSMA	VZWSMART KITS - APPROVED VENDORS
	COMMSCOPE
CONTACT	SALVADOR ANGUIANO
PHONE	(817) 304-7492
EMAIL	SALVADOR.ANGUIANO@COMMSCOPE.COM
WEBSITE	WWW.COMMSCOPE.COM
	METROSITE FABRICATORS, LLC
CONTACT	KENT RAMEY
PHONE	(706) 335-7045 (O), (706) 982-9788 (M)
EMAIL	KENT@METROSITELLC.COM
WEBSITE	METROSITEFABRICATORS.COM
	PERFECTVISION
CONTACT	WIRELESS SALES
PHONE	(844) 887-6723
EMAIL	WWW.PERFECT-VISION.COM
WEBSITE	WIRELESSSALES@PERFECT-VISION.COM
	SABRE INDUSTRIES, INC.
CONTACT	ANGIE WELCH
PHONE	(866) 428-6937
EMAIL	AKWELCH@SABREINDUSTRIES.COM
WEBSITE	WWW.SABRESITESOLUTIONS.COM
	SITE PRO 1
CONTACT	PAULA BOSWELL
PHONE	(972) 236-9843
EMAIL	Paula boswell@valmont.com
WEBSITE	WWW.SITEPROL.COM

VZWSMART KITS - APPROVED VENDORS

MAIL DLS@BETTERMETAL.COM	NEWAYE NEWNE SALET TEM (71) 238-192 SALES QUENTIFECOM WWWALENDER METAL, LLC BETTER METAL, LLC DANO STANSERY (61) 535-099 (01) (61) 611-320 (11) DANO STANSERY
	(615) 535-0990 (O), (615) 631-2520 (M)
	DAVID STANSBERRY
	BETTER METAL, LLC
16	WWW.NEWAVETC.COM
IBI	SALES@NEWAVETC.COM
SALESBARWAYETCOM WWW.NEWAYETCOM WWW.NEWAYETCOM BETTER METAL, LLC ONTACT	(971) 239-4762
TE BI	NEWAVE SALES TEAM
ACT III BI ACT	NEWAVE

NOTES

- I. THE MANUFACTURERS LISTED ARE THE APPROVED VENDORS FOR THE VZW MOUNT KITS. REACH MANUFACTURER WILL BE AWARE GO WHICH KITS HAVE BEEN THROUGH THE YZW APROVAL, PROCESS AND THEY ARE IN TURN APPROVED TO SELL. PLEASE NOTE THAT THE MATERIAL UTILIZED ON THE MOUNT MODIFICATIONS WILL BR REVIEWED AS A PART OF THE DESKTOP PHI COMPLETED BY THE SMART TOOL VENDOR. IT WILL BE REQUIRED THAT THE VZW KITS SPECIFIED ARE UTILIZED IN THE MODIFICATIONS.
- ALL MATERIALS REQUIRED FOR THE DESIGNED MODIFICATIONS BUT NOT LISTED IN THIS SHEET ARE ASSUMED TO BE PROVIDED BY THE CONTRACTOR. 5

Colliers Engineering & Design

1363 BOSTON POST RD OLD SAYBROOK, CT 06475 MIDDLESEX COUNTY

OLD SAYBROOK 2 CT 467406

SITE NAME:

BILL OF MATERIALS

SBOM-I

- SEE MODIFICATION NOTES
- THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE CODES, ORDINANCES, LAWS AND REGULATIONS OF ALL MUNICIPALITIES, UTILITY COMPANIES OR OTHER PUBLIC/GOVERNING AUTHORITIES.
- THE CONTRACTOR SHALL BE REPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS THAT PLAY BE REQUIRED BY ANY FEDERAL, STATE, COUNTY OR MUNICIPAL AUTHORITIES.
- THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER, IN WRITING, OF ANY CONFLICTS, ERRORS OR OMISSIONS PRIOR TO THE SUBMISSION OF BIDS OR PERFORMANCE OF WORK,
- THE CONTRACTOR SHALL BE RESOURIBLE FOR PROTECTING ALL EXISTING SITEMPORPHERS THOUGHOUS CONSTRUCTION. THE CONTRACTOR SHALL BEPAIR AND PARAGE AS A RESULT OF CONTRACTOR SHALL BEPAIR AND PARAGE AS A RESULT OF A SATISTICATION OF THE SACULTY AT THE CONTRACTOR'S EXPENSE TO THE SATISTICATION OF THE OWNER.
- THE SCOPE OF WORK FOR THIS PROJECT SHALL INCLUDE PROVIDING ALL MATTERIALS, EQUIPMENT FOR DEADS REQUIRED TO COMPLIFE THIS PROJECT ALL EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH MAUL/ACTURENS RECOMMENDATIONS.
- THE CONTRACTOR SHALL VISIT THE PROJECT SITE PRIOR TO SUBMITTING THE BID TO VERIF THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS AND CONSTRUCTION DRAWNIGS.
- THE CONTRACTOR SHALL VERIFY LIL ENTING DIPERSIONS AND CONDITIONS RIGHT OF CONDITIONS RIGHT TO COMPRECIONS AND WEST SHALL SHALL WOTHOUT HESE DRAWNESS HATE REVERIED. THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGES OF ANY DISCREMANIES RIGHT TO REDEBING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- TAKEN THE CELL STEM TO SECURITY AS EACH TO SECURITY OF AUST OF TAKEN WHEN WORKNESS ADOUBT HIGH LENGT OF ELETTROPHOGNERICS AND WORK THAT COLLID EXPORTANT OF THE CHARGES TO THE CONFIDENCE AND WORK THAT COLLID EXPOSET THE WORKERS TO DANGER PRESONAL PROPOSILS ARE RESPONSED TO SE WORN TO ALERT OF ANY POTATIONS ARE RESPONDED TO SE WORN TO ALERT OF ANY POTATIONAL PROPOSILE LIVER.
- NO NOISE, SMOKE, DUST OR ODOR WILL RESULT FROM THIS FACILITY AS TO CAUSE A NUISANCE.
- THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION (NO HANDICAP ACCESS IS REQUIRED).

GENERAL NOTES

- THEE MODIFICATIONS HAVE BEEN DEIGNUD IN ACCORDANCE WITH THE GOVERNUM ROVISIONS OF THE TELECOMPHUNICATIONS INDUSTRY STANDARD THAT MATERIALS AND SERVICES ROVIDED BY THE CONTRACTOR SHALL CONFORM TO THE ABOVE MENTIONED CODES.
 - CONTRACTOR SHALL TAKE ALI PRECALITIONS INCESSARY TO REVENT DAWAGETO DESINANG STRUCTURES. ANY DAWAGETO DESTINA STRUCTURES AS, ARBUIT OF THE CONTRACTORS WORK OR REOM MARKED UP TO THE CAUSES SHALL BERDANDED AT THE CONTRACTORS EVERNES TO THE SATISFACTION OF THE OWNER.
- CONTRACTOR SHALL VERIFY ALL DETRINGNESSONS AND EXISTING CONDITIONS
 BEFORE ESCENINISM, OWEN, CADERNOR OF VETRALLA, MORE PREPARING OS SHO DAWNINGS, ANY DISCERBANCIES BETWEEN FELLO CONDITIONS AND THE CONTRACTOR DOLWHEN SHALL BE BEDOLGHT TO THE PREPARTE CONTRACTOR DOLWHEN SHALL BE BEDOLGHT TO THE PREPARTE PRISTING CONDITIONS THAT ARE NOT REPRESENTED ON THESE DAAWINGS, OR AFT CONDITIONS THAT WOULD INTERFER WITH THE INSTALLATION OF THE PRODING THAT WOULD INTERFER WITH THE INSTALLATION OF THE PRODING THAT WOULD INTERFER WITH THE INSTALLATION
- 4 IT IS ASSUMED THAT ANY STRUCTURAL MODIFICATION WORK SPECIFED ON THEE PARK WILL EACCOMPLISHED BY KNOWLEDGEABLE WORKHEN WITH TOWER CONSTRUCTION DEPRIENCE.
- THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLET YES RONSIBLE FOR ALL CONTRUCTON METHODS, MEANS. TECHNIQUES, SEQUENCES, AND PROCEDURE.
 - ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, RECTOR PLANS, AGGING FAUNS, CLIBING DEVENA, AND RESCUE PLANS, SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE RECTORNO OF THE WORD NOT NUMBED HEARD AND SHALL MET ANGENERAL STATE TEDITON, OSHA, AND GENERAL INDUSTRY. STANDARDS, ALL RIGGING PLÁNS SHALL ADHERE TO ANSITTA-312 (LATEST EDITION) INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED EDITION THE ARQUIRED TO A CASS IV CONSTRUCTION.
 - THE CONTRACTOR IS SOLELY RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PROGRAMS IN ACCORDANCE WITH APPLICABLE SAFETY CODES.
 - WORK SHALL ONLY BE PERFORMED DURING CALM DRY DAYS (WINDS LESS THAN 30-MPH). THE STRUCTURE SHOWN ON THE DRAWINGS IS STRUCTURALLY SOUND ONLY IN THE COMPLETED FORM. THE

TOTAL TOTAL STRUCTURE CONTRACTOR HALL STRUCTURE LIPES THE STRUCTURE LIPES AND STRUCTURE CONTRACTOR HALL IRRODOR TOTAL STRUCTURE LIPES AND STRUCTUR

ALL PROPOSED ANDIOR REPLACED BOLTS SHALL BE OF SUFFICIENT LENGTH SUCH THAT THE RIND OF THE BOLT IS ATTLEAST FLUSH WITH THE FACE OF THE NUT. IT IS NOT PERMITTED FOR THE BOLT END TO BE BELOW THE FACE OF THE NUT AFTER TIGHTBINING IS COPPLETED.

ALL INSTALLATIONS PERFORMED ON THIS STRUCTURE SHALL BE COMPLETED IN ACCORDANCE WITH THE GOVERNION BROWISIONS OF THE STANDARD POR INSTALLATION ALTERATION AND MAINTENANCE OF ANTENINA SUPPORTING STRUCTURES AND ANTENNAS. ANSWITH-332.

ALL HOLES IN STEEL MEMBERS SHALL BE SIZED 1/16" LARGER THAN THE BOLT DIAMETER. STANDARD HOLES SHALL BE USED UNLESS NOTED OTHERWISE

WELDING NOTES

14. ALL EXISTING PAINTEDIGALVANIZED SURRACES DAMAGED DURING REHAB INCLUDINA ARGA UNDIGS STIFFIRE RUTS SHALL IE WHE BRUSHED CLEAN, REPAIRED BY COLD GALVANIZING (ZNAGA OR ZINC COTE), AND REPAINTED TO MATCH THE EXISTING RINA (IF APPLICABLE).

GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.

ALL WELDING SHALL BE DONE IN ACCORDANCE WITH AWS DI 0 (LATEST BEDTING), THIS SHALL INCLUDE A CERTIFIED WELD INSPECTION (CW) FOR ACCEPTANCE OR REJECTION OF ALL WELDING OFBRATIONS, REE DURING AND POST INSTALLATION, SING THE ACCEPTANCE CRITERA OF AWS DILIA

CONTRACTOR IS REPONSIBLE FOR COMMISSIONING A THIRD PARTY CERTHER UND INSPECTOR (CW) THROUGHOUT THE BYTIRETY OF THE PROJECT A PASSING CWI REPORT SHALL BE RROYIDED TO THE ENGINERN UPON COMPLETION OF THE RROJECT.

- 10. CONTRACTOR SHALL SECURE SITE BACK TO BKISTING CONDITION UNDER SUFFERWAY ON TOWNINK ALL HEYEL, STOKE GEOSPAGE, GROUNDING, AND SURROUNDING GRADE SHALL BE REPLACED AND SIRPARED AS REQUIRED TO ACHOEFE OWING MENOCAL, POSTITVE DRAINAGE, ANY MENON TOWER SITE SHALL BE MANTANED.
 - OWNERCINES REPRETATING SUPPORTED BY HER PRECIDES AND THE STRUCTURE NOT SECRETION. TO BE ALSO STRUCTURE NOT SECRETION. SECRETIONS SHALL BE DESIGNED, COORDINATED BY THE RESPONSITION SHALL BE DESIGNED. COORDINATED AND INSECTED BY THE ROBERS SUMMER CHARLE LIGHT BY THE FIRST PROPERSIONAL SIGNED. AND THE FIRST FOR THE ROBERS SUBMIT SIGNED AND SELECT BY THE ROBERS SUBMIT SIGNED AND SELECT SUBMIT SHALL BY THE PROPERS SH
 - 12. DO NOT SCALE DRAWINGS.

 - 13. DO NOT USE THESE DRAWINGS FOR ANY OTHER SITE.

THE CERTIFIED WAS DURSECTORS ALTER, IDPOCATE, AN WARITER CONTINUED OF STRANDINGS REE, DURING, AND POST IN THE PROTOGRAPHS AND POST IN THE PROTOGRAPHS AND DOCUMENTATIONS SIZE DURING, AND POST IN WITH PROTOGRAPHS AND DOCUMENTATION SUPPORTING THE ACCEPTANCE OR BECTON OF ALL MEDION ALLE OWNED INSECTION CASE TO DURING THE ACCEPTANCE OR DOCUMENTATION AND PROTOGRAPHS THE ACCEPTANCE OR DOCUMENTATION AND PROTOGRAPHS THE PROTOGRAPHS AND PROTOGRAPHS THE PROTOGRAPHS AND PROTOGRAPHS THE PROTOGRAPHS AND PROTOGRAPHS THE PROTOGRAPHS AND PROTOGRAPHS AND

- ALL MATERAL UTILIZED FOR THIS PROJECT MUST BE NEW AND REE OF ANY DEFECTS, ANY MATERIAL SUSSTITUTIONS, INCLUDING BUT NOT LIMITED TO ALTIERED SIZE AND/OR STRENGTHS, MUST BE APROVED BY THE OWNER. AND ENGINEER IN WRITING.
 - THE MOUNT UNDER NO CIRCUMSTANCES SHOULD BE USED AS A TIE OFF POINT.

STRUCTURAL STEEL

DESIGN, DETAILING, FABRICATION AND ERECTION OF STRUCTURAL STEEL.
SHALL CONFORM TO THE FOLLOWING PUBLICATIONS EXCEPT AS
SPECIFICALLY INDICATED IN THE CONTRACT DOCUMENTS.

OXY FUE GAS WELDING OR BRAZING IS STRICTLY PROHIBITED SPECIFICALLY, NO TORCH CUTTING IS PERMITTED ON SITE ALL HOLES SHALL BECUT WITH A GRINDER.

IN CASES WHERE A WELD IS SPECIFED BETWEEN TWO MEMBERS IN WHICH THERE IS A GAP IN BETWEEN, THE WELD IS TO BE BUILT-UP SUCH THAT THE SIZE OF WELD ON THE MEMBER IS EQUAL TO THAT SHOWN IN THE DRAWINGS.

CONTRACTOR SHALL EXERCISE CAUTION WHEN WELDING A GALVANIZED SURFACE.

CONTRACTOR SHALL HAVE A FIRE PROTECTION PLAN IN PLACE THAT CONFORMS WITH ALL OSHA, ANSI/ASSP A 10,48, ANSI/2491, AND LOCAL JURISDICTIONAL REQUIREMENTS.

- a. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC), MANUAL OF STEEL CONSTRUCTION (15TH EDITION).
- b. SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A325 OR A490
 - c. AISC CODE OF STANDARD PRACTICE BOLTS
- STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING UNLESS OTHERWISE SHOWN:

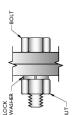
ASTM A36 (GR 36)	ASTM A53 (GR 35)	ASTM A325	ACTIVITIES ACTOR
CHANNELS, ANGLES, PLATES, ETC.	STEEL PIPE	SOLTS	

NUTS LOCK WASHERS

- ALL SUSTITUTIONS ROPOSCED BY THE CONTRACTOR SHALL BE APPROVED NO WARTHWED BY THE BROINERS CONTRACTOR SHALL REQUIRE BY CONTRACTOR SHALL RROWNER BY CONTRACTOR SHALL RROWNER BY CONTRACTOR SHALL RROWNER BY SURFAIR OF THE SUSSITULE BY SHALL OF DISTRICT SHALL OF DISTRICT SHALL OF DISTRICT SHALL OF DISTRICT SHALL OF SHALL SHALL SHALL DISTRICT SHALL SHAL ASTM A563 LOCKING STRUCTURAL GRADE
 - SUB-CONTRACTORS, SHALL BE PROVIDED TO THE ENGINEER. CONTRACTOR SHALL PROVIDE ADDITIONAL DOCUMENTATION AND/OR SPECIFICATIONS TO THE ENGINEER AS REQUESTED. PROVIDE STRUCTURAL STEEL SHOP DRAWINGS TO ENGINEER FOR APPROVAL PRIOR TO FABRICATION.

a. SUBMIT SHOP DRAWINGS TO

PETER.ALBANO@COLLIERSENGINEERING.COM

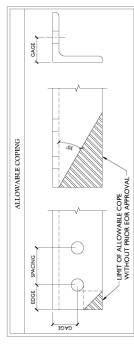

- b. PROVIDE MASER CONSULTING PROJECT # AND MASER CONSULTING PROJECT ENGINEER CONTACT IN THE BODY OF THE EMAIL
- DRILL NO HOLES IN ANY NEW OR EXETING STRUCTURAL STEE MEMBERS OTHER THAN THORS SHOWN ON STRUCTURAL DRAWINGS WITHOUT THE APPROVAL OF THE ENGINEER OF RECORD.
- GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.
- ALL NEW STEEL SHALL BE HOT BE DIPPED GALVANIZED FOR FULL WEATHER PROTECTION IN ADDITIONAL NEW STEEL SHALL BEPAINTED TO MATCH EXISTING STEEL CONTRACTOR SHALL OBTAIN WRITTEN PERMISSION TO PROTECT STEEL BY ANY OTHER MEANS.
- CONTRACTOR SHALL PROTECT CUT ENDS OF ALL FIELD-CUT STEEL WITH TWO (2) COATS OF COLD GALVANIZATION (ZINGA OR ZING COTE).
- ALL BOLT ASSEMBLES FOR STRUCTURAL NEMBERS REPRESENTED IN THIS DRAWNING REQUIRE LOCKING DEVICES TO BE INSTALLED IN ACCORDANCE WITH THA.222-H SECTION 49.3 REQUIRENENTS.
- WHERE CONNECTIONS ARE NOT FULLY DETAILED ON THESE DRAWINGS, FABRICATOR SHALL DESIGN CONNECTIONS TO RESIST LOADS AND FORCES WHERE SHOWN ON DRAWINGS AND AS OUTLINED IN SPECIFICATIONS.
- FOR MEMBERS BEING REPLACED, PROVIDE NEW BOLTS AND MATCH EXISTING SIZE AND GABLE MAINTAIN ABIG REQUIREMENTS FOR MINIMUM BOLT STANCE AND SPACING.

2 1/4 2 5/8 ٣ MIN. EDGE DISTANCE 8/ - /4 1/2 3/4 2/8 BOLT SCHEDULE (IN.) 1 | | | 6 × | 5 / | 6 91/11×91/6 15/16 x 1 1/8 11/16 × 7/8 STANDARD SHORT HOLE SLOT 13/16 x 1 91/11 13/16 91/1 15/16 91/6 BOLT DIAMETER 1/5 2/8 3/4 2/8

Colliers Engineering & Design

www.colliersengineering.com Tapische Zitz, Giline Espinning & Keign störgter branned. Texts between dem bei berkensten oder hijf für gegen der der der dem bei dem bei

WORKABLE GAGES (IN.)	GAGE	2 1/2	2	1 3/4	1 3/8	8/1 1
WORKABLE	LEG	4	3 1/2	3	2 1/2	2



ALL DIMENSIONS REPRESENTED IN THE AGOVET PARLES AGE AGE CONTINUM PREQUIREMENTS. CONTRACTOR SHALL VERIF PRISTING CONDITIONS IN HELD AND NOTIFY ENGINEER IF DISTANCES ARE LESS THAN THOSE PROVIDED. NOTES:

THE DIMENSIONS PROVIDED ARE MINIMUM REQUIREMENTS ACTUAL DIMENSIONS OF ROPOSED MENBERS WITHIN THEE DRAWINGS MAY VARY ROW THE ARC MINIMUM REQUIREMENTS.

TYP. BOLT ASSEMBLY

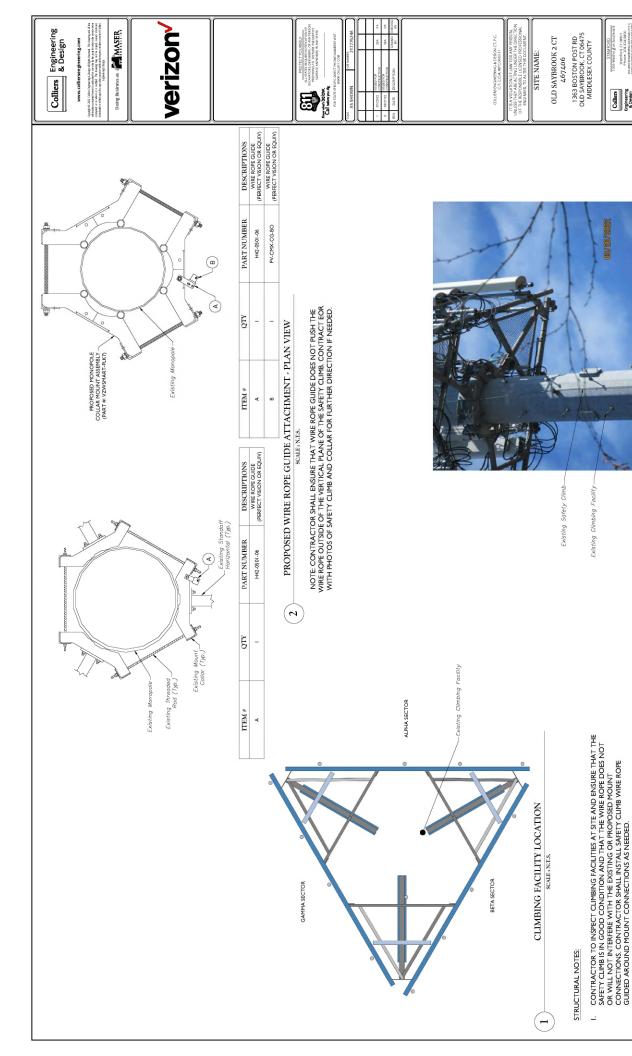
- SHORT SLOT HOLES SHALL ONLY BE USED WHEN DEPICTED IN THE DRAWINGS
- MATCH EXISTING GAGES WHEN APPLICABLE, UNLESS MINIMUM ED DISTANCES ARE COMPROMISED.

Doing Business as

Verizon

Exercise Exercises Exercises below. Call later year 4c. Call later year 4c. When CALLY A STATES PECINE CHECK	
	•

SITE NAME:


1363 BOSTON POST RD OLD SAYBROOK, CT 06475 MIDDLESEX COUNTY OLD SAYBROOK 2 CT 907/97

Colliers Engineering & Design

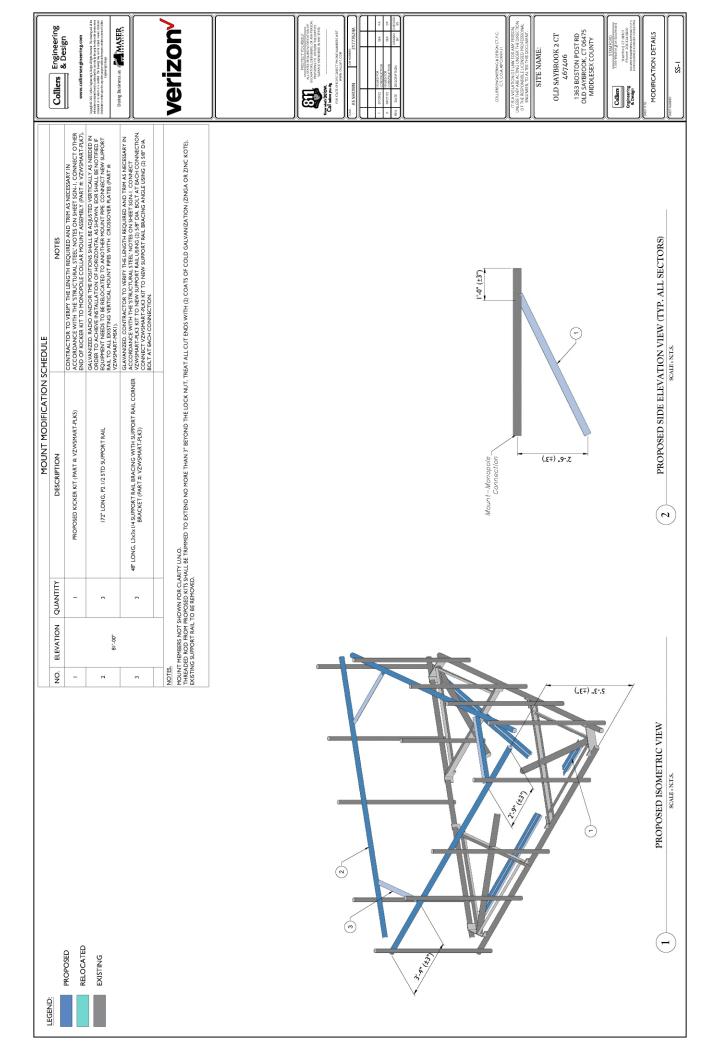
GENERAL NOTES

SGN-I

NOT SCALE DRAWINGS FOR CONSTRUCT

CLIMBING FACILITY DETAIL

CLIMBING FACILITY PHOTO

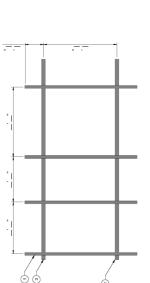

INSTALL SHALL NOT CAUSE HARM TO THE STRUCTURE, CLIMBING FACILITY, SAFETY CLIMB. OR ANY SYSTEM INSTALLED ON THE STRUCTURE. TIMELY NOTICE AND DOCUMENTATION SHALL BE PROVIDED BY CONTRACTORS TO THE EOR (OF STRUCTURAL DESIGN) IF AN OBSTRUCTION WAS REQUIRED TO MEET THE RE SYSTEM DESIGN REQUIREMENTS AND PERFORMANCES.

7

Colliers Engineering & Design

08/26/2022

SCF-I


NOTE:	CONTRACTOR SHALL RECORD ALL DIMENSIONS	AND MEMBER SIZES SHOWN IN THIS SKETCH.	DOCUMENT VIA PHOTOS AND SKETCHES AND	TROVIDE TO THE EON FOR EVALUA					Existing Commertien Plate
		TOR	OR	OR	OR	OR	OR	OR	
	NOTES	TYP. OF 12, 4 PER SECTOR	TYP. OF 3, I PER SECTOR	TYP. OF 3, I PER SECTOR	TYP, OF 3, I PER SECTOR	TYP. OF 6, 2 PER SECTOR	TYP. OF 6, 2 PER SECTOR	TYP. OF 3, I PER SECTOR	
MBERS	SHAPE NOTES	TYP. OF 12, 4 PER SECTOR	TYP. OF 3. I PER SECTOR	TYP. OF 3. I PER SECTOR	TYP. OF 3, I PER SECTOR	TYP. OF 6, 2 PER SECTOR	TYP. OF 6, 2 PER SECTOR	TYP. OF 3, I PER SECTOR	
EXISTING MEMBERS		TYP. OF 12, 4 PER SECTOR	TYP. OF 3, I PER SECTOR	TYP. OF 3. I PER SECTOR	TYP, OF 3, I PER SECTOR	TYP. OF 6, 2 PER SECTOR	TYP, OF 6, 2 PER SECTOR	TYP, OF 3, 1 PER SECTOR	CH6'X1-7/8"
EXISTING MEMBERS	SHAPE	MOUNT PIPE TYP. OF 12, 4 PER SECTOR	FACE HORIZONTAL TYP. OF 3. I PER SECTOR	SUPPORT RAIL TYP. OF 3. I PER SECTOR	STANDOFF HORIZONTAL TYP. OF 3, I PER SECTOR	CROSS BRACING TYP. OF 6, 2 PER SECTOR	GRATING SUPPORT TYP. OF 6, 2 PER SECTOR	CORNER PLATE TYP. OF 3, I PER SECTOR	IST ALL SHAPES. ANGEL (EIGENECATH): EX. LDZb.l.4 CARNEL (CEPTHECANDTH): EX. CHS'11.78" PPE. (ODATH): EX. PIPE 2.4%01.7"

verizon

Doing Business as

Colliers Engineering & Design

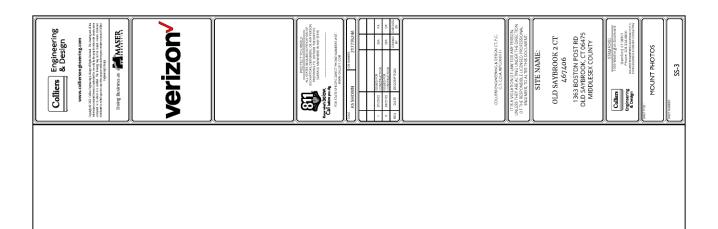
AND MEMBER SIZES SHOWN IN THIS SKETCH. DOCUMENT VIA PHOTOS AND SKETCHES AND PROVIDE TO THE EOR FOR EVALUATION.

(2) EXISTING MOUNT GEOMETRY VERIFICATION FRONT ELEVATION VIEW

(1) EXISTING MOUNT GEOMETRY VERIFICATION PLAN VIEW

Existing Standoff Harizantal (Typ.) CONTRACTOR SHALL MEASURE WELD SIZE 'D'
AS SHOWN IN THIS DETAIL.
WELD MEASUREMENT DETAIL \oplus \oplus WELD MEASUREMENT NOTE \oplus Ф Existing Mount Stand-Off 4

REFER TO WELD MEASUREMENT DETAIL FOR DIRECTIONS ON OBTAINING WELD MEASUREMENTS. NOTE

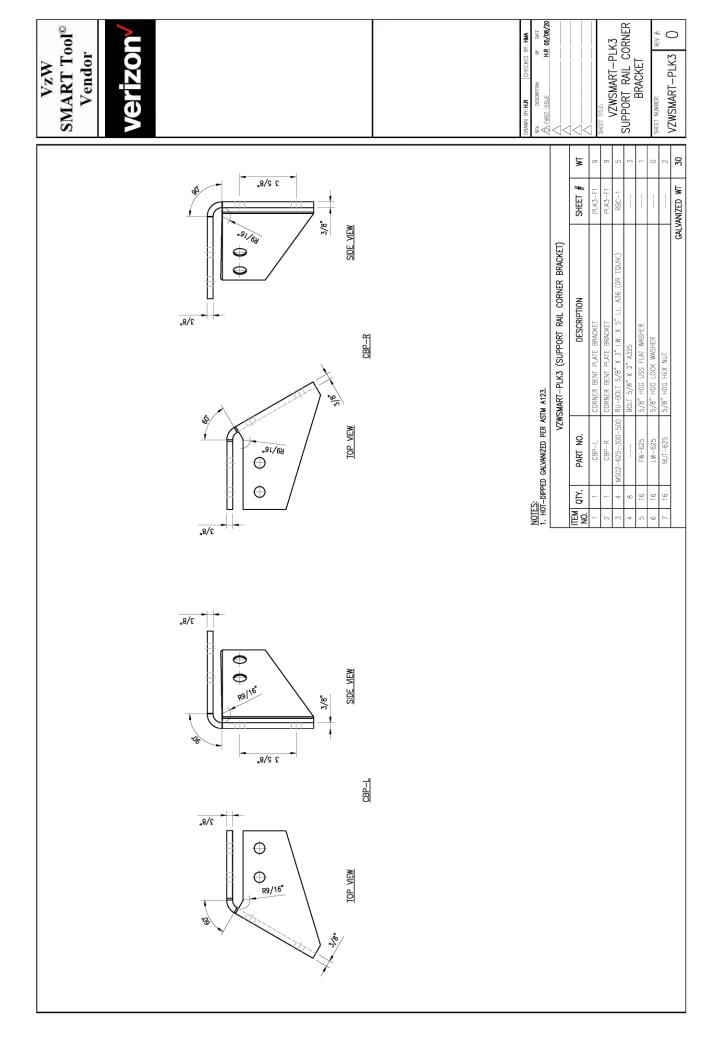

(3) MOUNT CONNECTION DETAIL

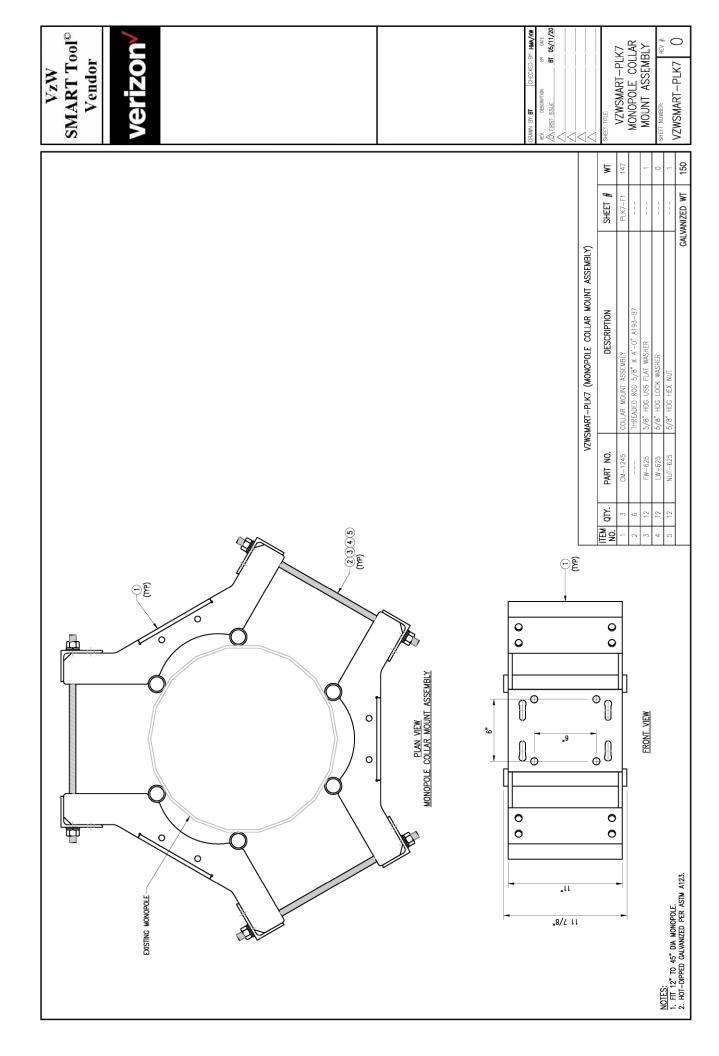
Colliers Engineering & Design

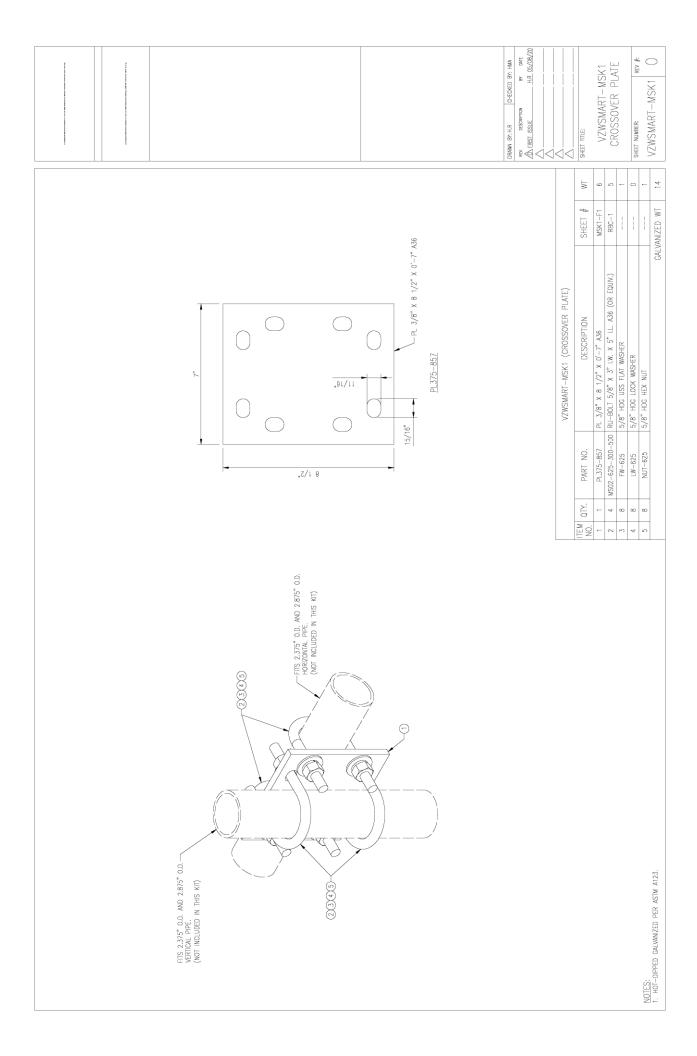
1363 BOSTON POST RD OLD SAYBROOK, CT 06475 MIDDLESEX COUNTY OLD SAYBROOK 2 CT 467406 SITE NAME

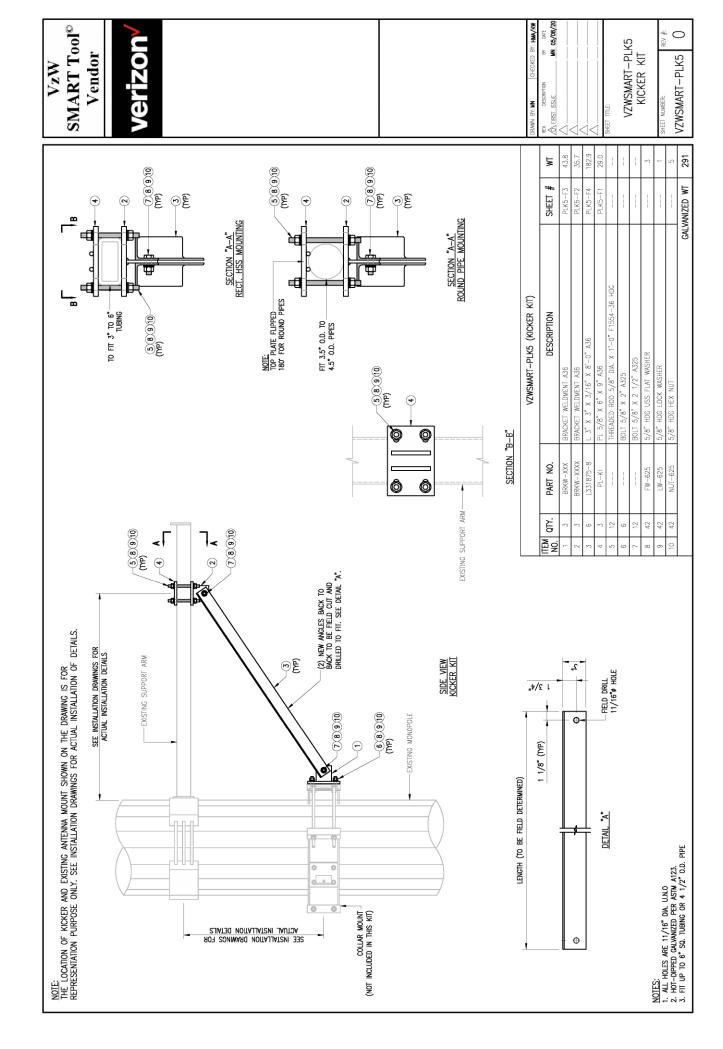
METER GEOMETRY
VERIFICATION SKETCHES

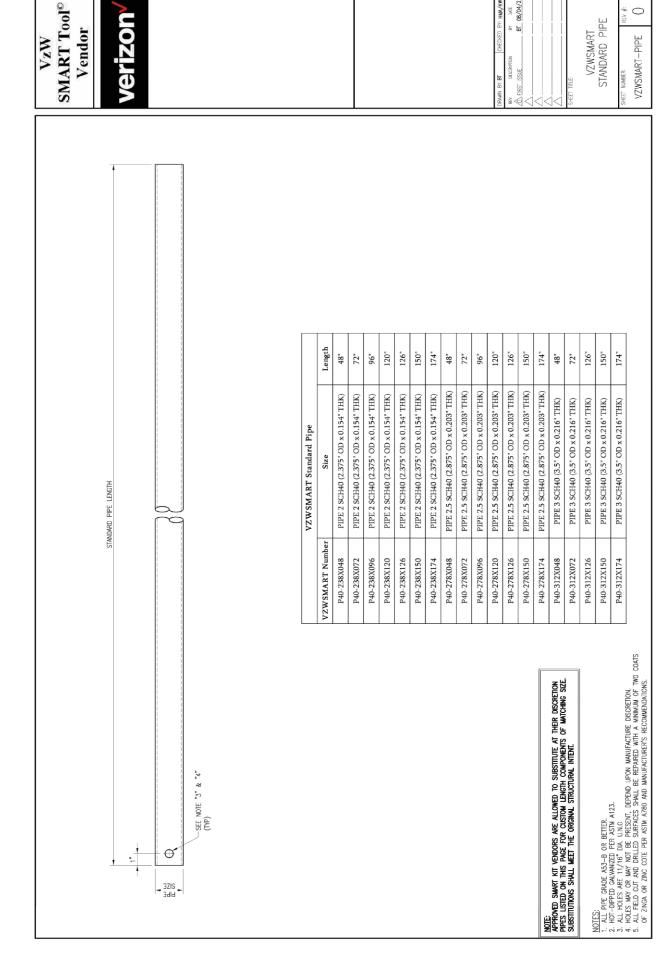
SS-2

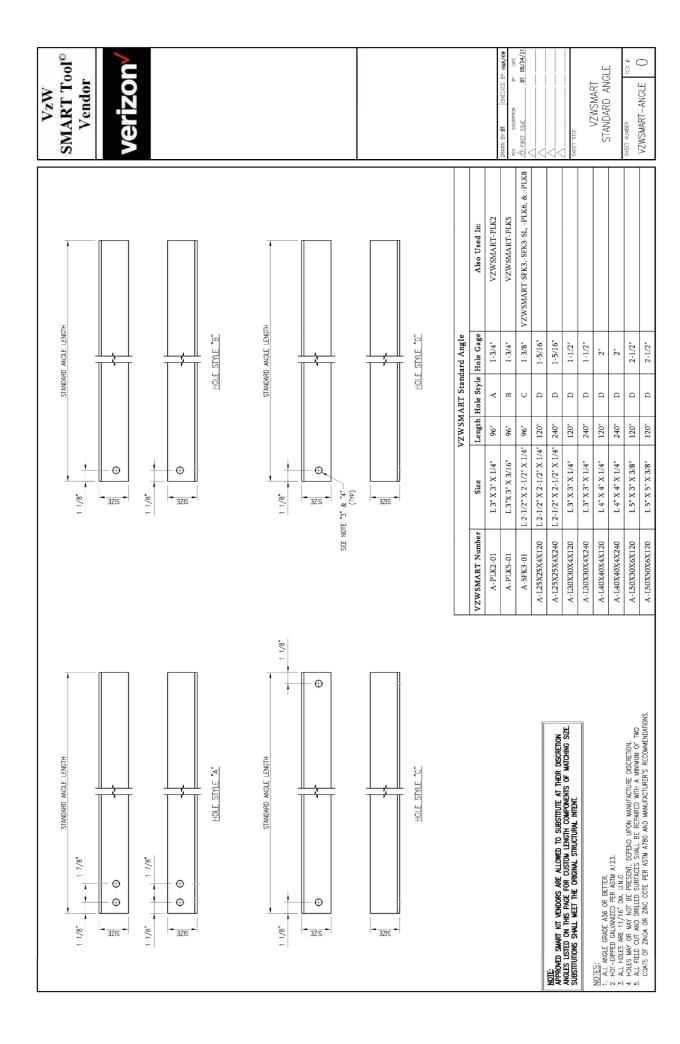









MOUNT PHOTO 3



BT 08/04/21

0

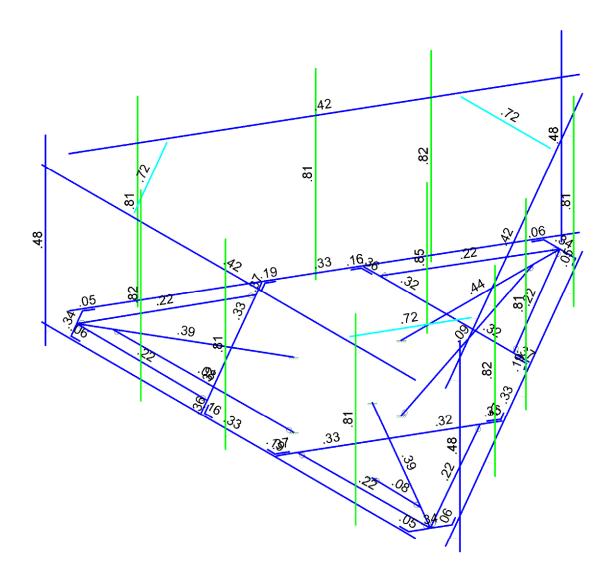
	Desktop Mount	Mapping Form	
Site Name:	OLD SAYBROOK 2 CT	Tower Type:	Monopole
Site ID:	467406	Tower Owner:	
FUZE Project ID:	16272126	Tower Height (Ft.):	99
Customer:	Verizon Wireless	Mount Elevation (Ft.):	81
Colliers Project No.	22946624	Date:	4/11/2022

The information contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of Colliers Engineering & Design.

Document Type	Provided? (Yes/No)	Source Name	Project No.	Dated	Comments/Remarks
Previous Mount Mapping	Yes	14 - 01-25-18 Old Saybrook 2 CT		1/25/2018	Previous mount mapping - use as first source of information.
Previous Mapping Photos	No				
Previous Mount Analysis	No				
Previous Mount Modifications	No				
Previous Structural Analysis	Yes	Old Saybrook 2 CT_Passing SA_04-25- 2017		4/25/2017	Previous structural analysis.
Construction Drawings		Old Saybrooke 2 CT_CD Rev A_08.03.17		8/3/2017	Previous construction drawings
Closeout Package	No				
Closeout Photos	No				
Handover Package	No				
New Build 445 Documentation	No				
Other	Yes	Ground Mapping Photos		4/2/2022	Ground mapping photos - use as seconardy source of information
Previous PMI	No				

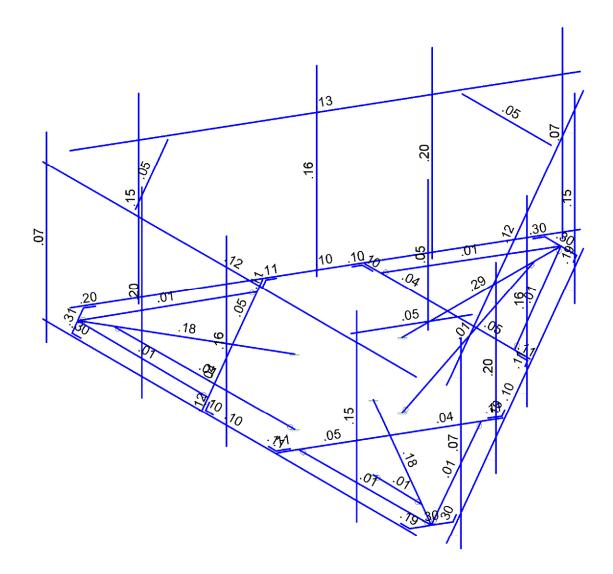

The desktop mount mapping is based on the engineering review of the available site documents in FUZE, as listed above, in place of a full mount mapping. It is assumed that the information provided in the documents listed above, provide an accurate representation of the existing mount. EOR reserves the right and will typically require additional clarification and verification as will be included in the PMI requirements. During the Post Modification inspection (PMI) process, the GC on site will be required to confirm all questions, confirmations, and validations as posed by the EOR. The engineering review for this desktop mount mapping was performed in accordance to the ANSI/TIA-222-H requirements and Verizon's NSTD446 standard.

Photo taken from: Closeout Package



Envelope Only Solution

Maser Consulting		SK - 1
SEA	Mount Analysis	Apr 25, 2022 at 1:51 PM
		467406-VZW_MT_LO_H_MOD.r3d



Member Code Checks Displayed (Enveloped) Envelope Only Solution

Maser Consulting		SK - 2
SEA	Mount Analysis	Apr 25, 2022 at 1:51 PM
		467406-VZW_MT_LO_H_MOD.r3d

Member Shear Checks Displayed (Enveloped) Envelope Only Solution

Maser Consulting		SK - 3
SEA	Mount Analysis	Apr 25, 2022 at 1:51 PM
		467406-VZW_MT_LO_H_MOD.r3d

Company : Maser Consulting
Designer : SEA
Job Number :
Model Name : Mount Analysis

: Maser Consulting : SEA

Apr 25, 2022 1:52 PM Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravi.	.Y Gravi.	.Z Gravity	Joint	Point	Distrib	Area(M.	Surfac
1	Antenna D	None					87			
2	Antenna Di	None					87			
3	Antenna Wo (0 Deg)	None					87			
4	Antenna Wo (30 Deg)	None					87			
5	Antenna Wo (60 Deg)	None					87			
6	Antenna Wo (90 Deg)	None					87			
7	Antenna Wo (120 Deg)	None					87			
8	Antenna Wo (150 Deg)	None					87			
9	Antenna Wo (180 Deg)	None					87			
10	Antenna Wo (210 Deg)	None					87			
11	Antenna Wo (240 Deg)	None					87			
12	Antenna Wo (270 Deg)	None					87			
13	Antenna Wo (300 Deg)	None					87			
14	Antenna Wo (330 Deg)	None					87			
15	Antenna Wi (0 Deg)	None					87			
16	Antenna Wi (30 Deg)	None					87			
17	Antenna Wi (60 Deg)	None					87			
18	Antenna Wi (90 Deg)	None					87			
19	Antenna Wi (120 Deg)	None					87			
20	Antenna Wi (150 Deg)	None					87			
21	Antenna Wi (180 Deg)	None					87			
22	Antenna Wi (210 Deg)	None					87			
23	Antenna Wi (240 Deg)	None					87			
24	Antenna Wi (270 Deg)	None					87			
25	Antenna Wi (300 Deg)	None					87			
26	Antenna Wi (330 Deg)	None					87			
27	Antenna Wm (0 Deg)	None					87			
28	Antenna Wm (30 Deg)	None					87			
29	Antenna Wm (60 Deg)	None					87			
30	Antenna Wm (90 Deg)	None					87			
31	Antenna Wm (120 Deg)	None					87			
32	Antenna Wm (150 Deg)	None					87			
33	Antenna Wm (180 Deg)	None					87			
34	Antenna Wm (210 Deg)	None					87			
35	Antenna Wm (240 Deg)	None					87			
36	Antenna Wm (270 Deg)	None					87			
37	Antenna Wm (300 Deg)	None					87			
38	Antenna Wm (330 Deg)	None					87			
39	Structure D	None		-1			01		3	
40	Structure Di	None						61	3	
41	Structure Wo (0 Deg)	None						122	- 3	
42	Structure Wo (30 Deg)	None						122		
43	Structure Wo (60 Deg)	None						122		
44	Structure Wo (90 Deg)	None						122		
45	Structure Wo (90 Deg)	None						122		
46	Structure Wo (150 Deg)	None						122		
47	Structure Wo (180 Deg)	None						122		
48	Structure Wo (210 Deg)	None						122		
40	Structure WO (210 Deg)	NOHE						122		

: Maser Consulting

SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Basic Load Cases (Continued)

	BLC Description	Category	X Gravi.	Y Gravi.	.Z Gravity	Joint	Point	Distrib	Area(M.	.Surfac
49	Structure Wo (240 Deg)	None						122		
50	Structure Wo (270 Deg)	None						122		
51	Structure Wo (300 Deg)	None						122		
52	Structure Wo (330 Deg)	None						122		
53	Structure Wi (0 Deg)	None						122		
54	Structure Wi (30 Deg)	None						122		
55	Structure Wi (60 Deg)	None						122		
56	Structure Wi (90 Deg)	None						122		
57	Structure Wi (120 Deg)	None						122		
58	Structure Wi (150 Deg)	None						122		
59	Structure Wi (180 Deg)	None						122		
60	Structure Wi (210 Deg)	None						122		
61	Structure Wi (240 Deg)	None						122		
62	Structure Wi (270 Deg)	None						122		
63	Structure Wi (300 Deg)	None						122		
64	Structure Wi (330 Deg)	None						122		
65	Structure Wm (0 Deg)	None						122		
66	Structure Wm (30 Deg)	None						122		
67	Structure Wm (60 Deg)	None						122		
68	Structure Wm (90 Deg)	None						122		
69	Structure Wm (120 Deg)	None						122		
70	Structure Wm (150 Deg)	None						122		
71	Structure Wm (180 Deg)	None						122		
72	Structure Wm (210 Deg)	None						122		
73	Structure Wm (240 Deg)	None						122		
74	Structure Wm (270 Deg)	None						122		
75	Structure Wm (300 Deg)	None						122		
76	Structure Wm (330 Deg)	None						122		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	Antenna Ev	None					87			
82	Antenna Eh (0 Deg)	None					58			
83	Antenna Eh (90 Deg)	None					58			
84	Structure Ev	ELY		043					3	
85	Structure Eh (0 Deg)	ELZ			108				3	
86	Structure Eh (90 Deg)	ELX	.108						3	
87	BLC 39 Transient Area Loads	None						24		
88	BLC 40 Transient Area Loads	None						24		
89	BLC 84 Transient Area Loads	None						24		
90	BLC 85 Transient Area Loads	None						24		
91	BLC 86 Transient Area Loads	None						24		

Load Combinations

	Des cription	So	.P\$	S E	BLC	Fac	.BLC	Fac	BLC	Fac	.BLC	Fac	.BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	.BLC	Fac	BLC	Fac
1	1.2D+1.0Wo (0 Deg)	Yes	Υ		1	1.2	39	1.2	3	1	41	1												
2	1.2D+1.0Wo (30 Deg)	Yes	Υ		1	1.2	39	1.2	4	1	42	1												
3	1.2D+1.0Wo (60 Deg)	Yes	Υ		1	1.2	39	1.2	5	1	43	1												
4	1.2D+1.0Wo (90 Deg)	Yes	Υ		1	1.2	39	1.2	6	1	44	1												

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Load Combinations (Continued)

	Des cription	So	Р	S BLC	Eac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
5	1.2D+1.0Wo (120 D			1			1.2	7	1	45	1				1 40		1 40		1 40		1 40		1 40
6	1.2D+1.0Wo (150 D		_	1	1.2		1.2	8	1	46	1												
7	1.2D+1.0Wo (180 D			1	1.2		1.2	9	1	47	1												
8	1.2D+1.0Wo (210 D		_	1	1.2		1.2	10	1	48	1												
9	1.2D+1.0Wo (240 D		-	1	1.2		1.2	11	1	49	1												
10	1.2D+1.0Wo (270 D		_	1	1.2		1.2	12	1	50	1												
11	1.2D+1.0Wo (300 D		_	1	1.2		1.2	13	1	51	1												
12	1.2D+1.0Wo (330 D		_	1		39	1.2	14	1	52	1												
13	1.2D + 1.0Di + 1.0		_	1	1.2		1.2	2	1	40	1	15	1	53	1								
14	1.2D + 1.0Di + 1.0		_	1	1.2		1.2	2	1	40	1	16	1	54	1								
15	1.2D + 1.0Di + 1.0		-	1	1.2		1.2	2	1	40	1	17	1	55	1								
16	1.2D + 1.0Di + 1.0			1	1.2		1.2	2	1	40	1	18	1	56	1								
17	1.2D + 1.0Di + 1.0		-	1	1.2		1.2		1	40	1		1	57	1								
18	1.2D + 1.0Di + 1.0			1	1.2		1.2	2	1	40	1	19 20	1	58	1								
19	1.2D + 1.0Di + 1.0			1	1.2				1	40	1	21	1	59	1								
20	1.2D + 1.0Di + 1.0		_	1			1.2	2	1	40	1	22	1	60	1								
21	1.2D + 1.0Di + 1.0		-	1	1.2		1.2		1	40	1	23	1		1								
22	1.2D + 1.0Di + 1.0		_	1	1.2		1.2	2	1		1	24	1	61 62	1								
	1.2D + 1.0Di + 1.0		_							40	_												
23	1.2D + 1.0Di + 1.0			1	1.2		1.2	2	1	40 40	1	25 26	1	63	1								
25	1.2D + 1.5Lm1 + 1.0		-	1	1.2				1.5	27	1	65	1	64									
26	1.2D + 1.5Lm1 + 1.0			1	1.2						1												
	1.2D + 1.5Lm1 + 1.0		-						1.5	28		66	1										
27	1.2D + 1.5Lm1 + 1.0		-	1	1.2				1.5	29	1	67	1										
28	1.2D + 1.5Lm1 + 1.0		_	1					1.5	30	1_	68	1										
29	1.2D + 1.5Lm1 + 1.0			1	1.2	39			1.5	31	1_	69	1										
30	1.2D + 1.5Lm1 + 1.0		-	1			1.2		1.5	32	1_	70	1										
31	1.2D + 1.5Lm1 + 1.0		-	1	1.2	39	1.2		1.5	33	1_	71	1										
32	1.2D + 1.5Lm1 + 1.0			1			1.2		1.5	34	1_1	72	1										
33	1.2D + 1.5Lm1 + 1.0		_	1	1.2				1.5	35	1	73	1										
34	1.2D + 1.5Lm1 + 1.0		_	1	1.2				1.5	36	1_1	74	1										
35	1.2D + 1.5Lm1 + 1.0		_	1	1.2				1.5		1	75	1										
36	1.2D + 1.5Lm2 + 1.0			1	1.2	39	1.2		1.5	38	1	76	1										
37	1.2D + 1.5Lm2 + 1.0		-	1	1.2	39			1.5	27	1	65	1										
38	1.2D + 1.5Lm2 + 1.0	_	_	1			1.2	78	1.5	28	1_1	66	1										
39	1.2D + 1.5Lm2 + 1.0			1		39			1.5	29	1	67	1										
40	1.2D + 1.5Lm2 + 1.0		_	1				78 79	1.5	30	1	68	1										
41	1.2D + 1.5Lm2 + 1.0		_	1			1.2		1.5		1	69	1										
	1.2D + 1.5Lm2 + 1.0		-	1			1.2				1	70	1										
43			-	1			1.2				1	71	1										
	1.2D + 1.5Lm2 + 1.0		-	1			1.2				1	72	1										
45			_	1			1.2				1	73	1										
-				1			1.2				1	74	1										
47	1.2D + 1.5Lm2 + 1.0		-	1			1.2				1_	75	1										
48	1.2D + 1.5Lm2 + 1.0		-	1			1.2			38	_1_	76	1										
49	1.2D + 1.5Lv1			1			1.2																
50	1.2D + 1.5Lv2		_			_	1.2	δU	1.5														
51	1.4D	Yes		1			1.4	0.4		ELV		0.0	4	0.0		CI Z	4	ELV					
			-	1			1.2			ELY	1_	82		83			1						
53	1.2D + 1.0Ev + 1.0E		_	1			1.2			ELY	1_		.866										
			-	1			1.2			ELY	1_	82	.5						.866				
55	1.2D + 1.0Ev + 1.0E			1			1.2			ELY		82		83	-	ELZ		ELX	-				
56	1.2D + 1.0Ev + 1.0E	Yes	Υ	1	1.2	39	1.2	81	1	ELY	1	82	5	83	.866		5	ELX	.866				

: Maser Consulting

SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Load Combinations (Continued)

	Des cription	So	P	S E	BLC	Fac	BLC	Fac	BLC	Fac	.BLC	Fac	.BLC	Fac	BLC	Fac	BLC	Fac	.BLC	Fac	BLC	Fac	.BLC	Fac
57	1.2D + 1.0Ev + 1.0E	.Yes	Υ		1	1.2	39	1.2	81	1	ELY	1	82	866	83	.5	ELZ	866	ELX	.5				
58	1.2D + 1.0Ev + 1.0E	.Yes	Υ		1	1.2	39	1.2	81	1	ELY	1	82	-1	83		ELZ	-1	ELX					
59	1.2D + 1.0Ev + 1.0E	.Yes	Υ		1	1.2	39	1.2	81	1	ELY	1	82	866	83	5	ELZ	866	ELX	5				
60	1.2D + 1.0Ev + 1.0E	.Yes	Υ		1	1.2	39	1.2	81	1	ELY	1	82	5	83	866	ELZ	5	ELX	866				
61	1.2D + 1.0Ev + 1.0E	.Yes	Υ		1	1.2	39	1.2	81	1	ELY	1	82		83	-1	ELZ		ELX	-1				
62	1.2D + 1.0Ev + 1.0E	.Yes	Υ		1	1.2	39	1.2	81	1	ELY	1	82	.5	83	866	ELZ	.5	ELX	866				
63	1.2D + 1.0Ev + 1.0E	.Yes	Υ		1	1.2	39	1.2	81	1	ELY	1	82	.866	83	5	ELZ	.866	ELX	5				
64	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	1	83		ELZ	1	ELX					
65	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	.866	83	.5	ELZ	.866	ELX	.5				
66	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	.5	83	.866	ELZ	.5	ELX	.866				
67	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82		83	1	ELZ		ELX	1				
68	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	5	83	.866	ELZ	5	ELX	.866				
69	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	866	83	.5	ELZ	866	ELX	.5				
70	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	-1	83		ELZ	-1	ELX					
71	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	866	83	5	ELZ	866	ELX	5				
72	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	5	83	866	ELZ	5	ELX	866				
73	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82		83	-1	ELZ		ELX	-1				
74	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	.5	83	866	ELZ	.5	ELX	866				
75	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	.866	83	5	ELZ	.866	ELX	5				

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp[F]	Detach From Diap
1	N1A	0	0	0	0	
2	N11	-7.5	0	4.541553	0	
3	N12	6.833333	0	4.541553	0	
4	N23	0.775531	0	-7.739847	0	
5	N24	0.692778	0	-7.692069	0	
6	N25	0.776389	0	-7.547251	0	
7	N26	0.609167	0	-7.836888	0	
8	N27	-0.609167	0	-7.836888	0	
9	N28	-0.776389	0	-7.547251	0	
10	N29	-0.692778	0	-7.692069	0	
11	N30	-0.775531	0	-7.739847	0	
12	N51	-0.	0	-1.747352	0	
13	N52	-3.165278	0	-3.48911	0	
14	N53	3.165278	0	-3.48911	0	
15	N54	-2.568056	0	-3.48911	0	
16	N55	2.568056	0	-3.48911	0	
17	N56	-0.	0	-7.836888	0	
18	N57	3.318019	0	-3.147268	0	
19	N58	3.173258	0	-3.394698	0	
20	N59	2.776709	0	-3.392414	0	
21	N60	2.974983	0	-3.393556	0	
22	N61	2.974433	0	-3.48911	0	
23	N62	3.245638	0	-3.270983	0	
24	N63	3.328133	0	-3.318611	0	
25	N64	-3.318019	0	-3.147268	0	
26	N65	-3.173258	0	-3.394698	0	
27	N66	-2.776709	0	-3.392414	0	
28	N67	-2.974983	0	-3.393556	0	

: Maser Consulting

SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp[F]	Detach From Diap
29	N68	-2.974433	0	-3.48911	0	Botaon i rom Biap
30	N69	-3.245638	0	-3.270983	0	
31	N70	-3.328133	0	-3.318611	0	
32	N101	-7.5	5.25	4.541553	0	
33	N102	6.833333	5.25	4.541553	0	
34	N195A	0.191111	0	-7.836888	0	
35	N196	-0.191111	0	-7.836888	0	
36	N200	-0.	0	-3.48911	0	
37	N107	4.137778	5.25	4.541553	0	
38	N108	-4.137778	5.25	4.541553	0	
39	N113	4.137778	5.25	4.350442	0	
40	N114	-4.137778	5.25	4.350442	0	
41	N137A	-7.08334	0	4.541553	0	
42	N138A	-7.08334	5.25	4.541553	0	
43	N139A	-3.416669	0	4.541553	0	
44	N140A	-3.416669	5.25	4.541553	0	
45	N141	-0.166668	0	4.541553	0	
46	N142	-0.166668	5.25	4.541553	0	
47	N143	4.833332	0	4.541553	0	
48	N144	4.833332	5.25	4.541553	0	
49	N145	-7.08334	0	4.82822	0	
50	N146	-7.08334	5.25	4.82822	0	
51	N147	-3.416669	0	4.82822	0	
52	N147 N148		5.25		0	
		-3.416669		4.82822		
53	N149	-0.166668	0	4.82822	0	
54	N150	-0.166668	5.25	4.82822	0	
55	N151	4.833332	0	4.82822	0	
56	N152	4.833332	5.25	4.82822	0	
57	N153	-7.08334	6.583333	4.82822	0	
58	N154	-7.08334	-0.416667	4.82822	0	
59	N155	-3.416669	6.583333	4.82822	0	
60	N156	-3.416669	-0.416667	4.82822	0	
61	N157	-0.166668	6.583333	4.82822	0	
62	N158	-0.166668	-0.416667	4.82822	0	
63	N159	4.833332	6.583333	4.82822	0	
64	N160	4.833332	-0.416667	4.82822	0	
65	ACL	4.833332	4.333333	4.82822	0	
66	N192	4.833332	6.333333	4.82822	0	
67	N193	4.833332	5.333333	4.82822	0	
68	N194	4.833332	2.333333	4.82822	0	
69	N195	-0.166668	4.5	4.82822	0	
70	N135	-7.09067	0	3.198294	0	
71	N136	-7.007916	0	3.246071	0	
72	N137	-6.924305	0	3.101253	0	
73	N138	-7.091527	0	3.39089	0	
74	N139	-6.482361	0	4.445998	0	
75	N140	-6.147916	0	4.445998	0	
76	N141A	-6.315139	0	4.445998	0	
77	N142A	-6.315139	0	4.541553	0	
78	N144B	-1.439019	0	4.485766	0	
79	N145B	-4.604297	0	-0.996656	0	
80	N146B	-1.73763	0	3.968556	0	

: Maser Consulting

SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp[F]	Detach From Diap
81	N147B	-4.305686	0	-0.479446	0	Botaon From Biap
82	N148B	-6.786944	0	3.918444	0	
83	N149B	-4.384623	0	-1.299855	0	
84	N150B	-4.526524	0	-1.050772	0	
85	N151B	-4.326271	0	-0.708493	0	
86	N152B	-4.426397	0	-0.879633	0	
87	N153B	-4.508874	0	-0.831379	0	
88	N154B	-4.455574	0	-1.175314	0	
89	N155B	-4.538068	0	-1.222942	0	
90	N156B	-1.066604	0	4.447122	0	
91	N157B	-1.353266	0	4.445471	0	
92	N158B	-1.549562	0	4.100907	0	
93	N159B	-1.451414	0	4.273189	0	
94	N160B	-1.534442	0	4.320489	0	
95	N161A	-1.209935	0	4.446297	0	
96	N162A	-1.209935	0	4.541553	0	
			0			
97	N163A	-6.8825		3.752937	0	
98	N164A	-6.691389	0	4.083951	0	
99	N165A	-3.021658	0	1.744555	0	
100	N167A	6.315139	0	4.541553	0	
101	N168A	6.315139	0	4.445998	0	
102	N169A	6.147916	0	4.445998	0	
103	N170A	6.482361	0	4.445998	0	
104	N171A	7.091527	0	3.39089	0	
105	N172A	6.924305	0	3.101253	0	
106	N173A	7.007916	0	3.246071	0	
107	N174A	7.09067	0	3.198294	0	
108	N176A	4.604297	0	-0.996656	0	
109	N177A	1.439019	0	4.485766	0	
110	N178A	4.305686	0	-0.479446	0	
111	N179A	1.73763	0	3.968556	0	
112	N180A	6.786944	0	3.918444	0	
113	N181A	1.066604	0	4.447122	0	
114	N182A	1.353266	0	4.445471	0	
115	N183A	1.549562	0	4.100907	0	
116	N184A	1.451414	0	4.273189	0	
117	N185A	1.534442	0	4.320489	0	
118	N186A	1.209935	0	4.446297	0	
119	N187A	1.209935	0	4.541553	0	
120	N188A	4.384623	0	-1.299855	0	
121	N189A	4.526524	0	-1.050772	0	
122	N190A	4.326271	0	-0.708493	0	
123	N191	4.426397	0	-0.879633	0	
124	N192A	4.508874	0	-0.831379	0	
125	N193A	4.455574	0	-1.175314	0	
126	N194A	4.538068	0	-1.222942	0	
127	N195B	6.691389	0	4.083951	0	
128	N196A	6.8825	0	3.752937	0	
129	N197	3.021658	0	1.744555	0	
130	N132	7.683101	0	4.224414	0	
131	N133	0.516434	0	-8.188617	0	
132	N134	7.683101	5.25	4.224414	0	
				,		

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp[F]	Detach From Diap
133	N135A	0.516434	5.25	-8.188617	0	Detach From Diap
134	N140B	7.47477	0	3.863575	0	
135	N141B	7.47477	5.25	3.863575	0	
136	N141B	5.641435	0	0.688145	0	
137	N143A	5.641435	5.25	0.688145	0	
138	N144A	4.016435	0	-2.126438	0	
139	N145A	4.016435	5.25	-2.126438	0	
140	N146A	1.516435	0		0	
141	N147A	1.516435	5.25	-6.456565	0	
141	N147A N148A			-6.456565	0	
	N 146A N 149A	7.723031	0	3.720242		
143		7.723031	5.25	3.720242	0	
144	N150A	5.889696	0	0.544812	0	
145	N151A	5.889696	5.25	0.544812	0	
146	N152A	4.264695	0	-2.269771	0	
147	N153A	4.264695	5.25	-2.269771	0	
148	N154A	1.764695	0	-6.599898	0	
149	N155A	1.764695	5.25	-6.599898	0	
150	N156A	7.723031	6.583333	3.720242	0	
151	N157A	7.723031	-0.416667	3.720242	0	
152	N158A	5.889696	6.583333	0.544812	0	
153	N159A	5.889696	-0.416667	0.544812	0	
154	N160A	4.264695	6.583333	-2.269771	0	
155	N161	4.264695	-0.416667	-2.269771	0	
156	N162	1.764695	6.583333	-6.599898	0	
157	N163	1.764695	-0.416667	-6.599898	0	
158	N164	1.764695	4.333333	-6.599898	0	
159	N165	1.764695	6.333333	-6.599898	0	
160	N166	1.764695	5.333333	-6.599898	0	
161	N167	1.764695	2.333333	-6.599898	0	
162	N168	4.264695	4.5	-2.269771	0	
163	N169	-0.183101	0	-8.765967	0	
164	N170	-7.349767	0	3.647064	0	
165	N171	-0.183101	5.25	-8.765967	0	
166	N172	-7.349767	5.25	3.647064	0	
167	N177	-0.391431	0	-8.405129	0	
168	N178	-0.391431	5.25	-8.405129	0	
169	N179	-2.224766	0	-5.229699	0	
170	N180	-2.224766	5.25	-5.229699	0	
171	N181	-3.849767	0	-2.415115	0	
172	N182	-3.849767	5.25	-2.415115	0	
173	N183	-6.349766	0	1.915011	0	
174	N184	-6.349766	5.25	1.915011	0	
175	N185	-0.639691	0	-8.548462	0	
176	N186	-0.639691	5.25	-8.548462	0	
177	N187	-2.473027	0	-5.373032	0	
178	N188	-2.473027	5.25	-5.373032	0	
179	N189	-4.098028	0	-2.558449	0	
180	N190	-4.098028	5.25	-2.558449	0	
181	N191A	-6.598027	0	1.771678	0	
182	N192B	-6.598027	5.25	1.771678	0	
183	N193B	-0.639691	6.583333	-8.548462	0	
184	N194B	-0.639691	-0.416667	-8.548462	0	

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
185	N195C	-2.473027	6.583333	-5.373032	0	Botaon i rom Biap
186	N196B	-2.473027	-0.416667	-5.373032	0	
187	N197A	-4.098027	6.583333	-2.558449	0	
188	N198	-4.098027	-0.416667	-2.558449	0	
189	N199	-6.598027	6.583333	1.771678	0	
190	N200A	-6.598027	-0.416667	1.771678	0	
191	N201	-6.598027	4.333333	1.771678	0	
192	N202	-6.598027	6.333333	1.771678	0	
193	N203	-6.598027	5.333333	1.771678	0	
194	N204	-6.598027	2.333333	1.771678	0	
195	N205	-4.098027	4.5	-2.558449	0	
196	N204A	-1.513251	0	0.873676	0	
197	N206	1.513251	0	0.873676	0	
198	N206A	-0.	0	-2.997352	0	
199	N207	-0.25	0	-2.997352	0	
200	N208	-0.25	5	-2.997352	0	
201	N209	-0.25	4.5	-2.997352	0	
202	N210	-0.	-2.5	-1.747352	0	
203	N211	-1.513251	-2.5	0.873676	0	
204	N212	1.513251	-2.5	0.873676	0	
205	N213	-0.	0	-6.836888	0	
206	N216	-5.920919	0	3.418444	0	
207	N219	5.920919	0	3.418444	0	
208	N216A	1.864212	5.25	-5.854197	0	
209	N217	6.001989	5.25	1.312644	0	
210	N218	1.698705	5.25	-5.758642	0	
211	N219A	5.836482	5.25	1.4082	0	
212	N220	-6.001989	5.25	1.312644	0	
213	N221	-1.864212	5.25	-5.854197	0	
214	N222	-5.836482	5.25	1.4082	0	
215	N223	-1.698705	5.25	-5.758642	0	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design	A [in2]	Iyy [in4]	Izz [in4]	J [in4]
1	Face Horizontal	PIPE_2.5	Beam	None	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
2	Support Rail	PIPE_2.5	Beam	None	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
3	Mount Pipe	PIPE_2.0	Beam	None	A53 Gr.B	Typical	1.02	.627	.627	1.25
4	Grating Support	L2x2x3	Beam	None	A36 Gr.36	Typical	.722	.271	.271	.009
5	Standoff Horizontal	PIPE_3.0	Beam	None	A53 Gr.B	Typical	2.07	2.85	2.85	5.69
6	Cross Bracing	C4X7.25	Beam	None	A36 Gr.36	Typical	2.13	.425	4.58	.082
7	Corner Plate	PL3/8x6	Beam	None	A36 Gr.36	Typical	2.25	.026	6.75	.101
8	End Plate	PL3/8x6	Beam	None	A36 Gr.36	Typical	2.25	.026	6.75	.101
9	Support Rail Corner Pl	L1.5x1.5x4	Beam	None	A36 Gr.36	Typical	.688	.139	.139	.013
10	MOD KICKER KIT	LL3x3x4x0	Beam	None	A36 Gr.36	Typical	2.88	4.5	2.46	.063
11	MOD SUPPORT RAIL	PIPE_2.5	Beam	None	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
12	MOD SUPPORT RAIL	L3X3X4	Beam	None	A36 Gr.36	Typical	1.44	1.23	1.23	.031

: Maser Consulting

: SE

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Hot Rolled Steel Design Parameters

-1100	tonea o	teer Design	i i uiuii	70013							
	Label		Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft] L-torqu	. Kyy	Kzz	Cb	Function
1	M31	Standoff Ho	6.09			Lbyy					Lateral
2	M104B	Standoff Ho	6.09			Lbyy					Lateral
3	M105B	Standoff Ho	6.09			Lbyy					Lateral
4	M15	PL3/8x6	.334			Lbyy					Lateral
5	M17	PL3/8x6	.334			Lbyy					Lateral
6	M79	PL3/8x6	.334			Lbyy					Lateral
7	M80	PL3/8x6	.334			Lbyy					Lateral
8	M97B	PL3/8x6	.334			Lbyy					Lateral
9	M98B	PL3/8x6	.334			Lbyy					Lateral
10	MP4A	Mount Pipe	7			Lbyy					Lateral
11	MP3A	Mount Pipe	7			Lbyy					Lateral
12	MP2A	Mount Pipe	7			Lbyy					Lateral
13	MP1A	Mount Pipe	7			Lbyy					Lateral
14	MP4C	Mount Pipe	7			Lbyy					Lateral
15	MP3C	Mount Pipe	7			Lbyy					Lateral
16	MP2C	Mount Pipe	7			Lbyy					Lateral
17	MP1C	Mount Pipe	7			Lbyy					Lateral
18	MP4B	Mount Pipe	7			Lbyy					Lateral
19	MP3B	Mount Pipe	7			Lbyy					Lateral
20	MP2B	Mount Pipe	7			Lbyy					Lateral
21	MP1B	Mount Pipe	7			Lbyy					Lateral
22	OVP	Mount Pipe	5			Lbyy					Lateral
23	M103A	MOD SUPP	3.397			Lbyy					Lateral
24	M104A	MOD SUPP	3.397			Lbyy					Lateral
25	M105A	MOD SUPP	3.397			Lbyy					Lateral
26	M61	MOD SUPP	14.333			Lbyy					Lateral
27	M71A	MOD SUPP	14.333			Lbyy					Lateral
28	M87	MOD SUPP				Lbyy					Lateral
29	M108	MOD KICK	5.67			Lbyy					Lateral
30	M109	MOD KICK	5.67			Lbyy					Lateral
31	M110A	MOD KICK	5.67			Lbyy					Lateral
32	M33	Grating Sup	5.05			Lbyy					Lateral
33	M34	Grating Sup	5.05			Lbyy					Lateral
34	M81	Grating Sup	5.05			Lbyy					Lateral
35	M82A	Grating Sup	5.05			Lbyy					Lateral
36	M99A	Grating Sup	5.05			Lbyy					Lateral
37	M100A	Grating Sup	5.05			Lbyy					Lateral
38	M7	Face Horizo				Lbyy					Lateral
39	M86	Face Horizo				Lbyy					Lateral
40	M102A	Face Horizo				Lbyy					Lateral
41	M36	End Plate	.397			Lbyy					Lateral
42	M40	End Plate	.397			Lbyy					Lateral
43	M35	End Plate	.287			Lbyy					Lateral
44	M39	End Plate	.287			Lbyy					Lateral
45	M83A	End Plate	.397			Lbyy					Lateral
46	M84A	End Plate	.397			Lbyy					Lateral
47	M85A	End Plate	.287			Lbyy					Lateral
48	M86A	End Plate	.287			Lbyy					Lateral
49	M101A	End Plate	.397			Lbyy					Lateral
50	M102	End Plate	.397			Lbyy					Lateral
51	M103	End Plate	.287			Lbyy					Lateral

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torqu	Kyy	Kzz	Cb	Function
52	M104	End Plate	.287			Lbyy						Lateral
53	M32	Cross Braci	3.165			Lbyy						Lateral
54	M110	Cross Braci	3.165			Lbyy						Lateral
55	M71	Cross Braci	3.165			Lbyy						Lateral
56	M72	Cross Braci	3.165			Lbyy						Lateral
57	M89A	Cross Braci	3.165			Lbyy						Lateral
58	M90	Cross Braci	3.165			Lbyy						Lateral
59	M16	Corner Plate	1.218			Lbyy						Lateral
60	M87A	Corner Plate	1.218			Lbyy						Lateral
61	M105	Corner Plate	1.218			Lbyy						Lateral

Member Primary Data

	Label	I J oint	J Joint	K Joint	Rotate(Section/Shape	Type	Design List	Material	Design R
1	M31	N56	N51		1	Standoff Horizontal	Beam	None	A53 Gr.B	Typical
2	M104B	N148B	N204A			Standoff Horizontal	Beam	None	A53 Gr.B	Typical
3	M105B	N180A	N206			Standoff Horizontal	Beam	None	A53 Gr.B	Typical
4	M14	N23	N24			RIGID	None	None	RIGID	Typical
5	M18	N29	N30			RIGID	None	None	RIGID	Typical
6	M37	N60	N61			RIGID	None	None	RIGID	Typical
7	M38	N62	N63			RIGID	None	None	RIGID	Typical
8	M41	N67	N68			RIGID	None	None	RIGID	Typical
9	M42	N69	N70			RIGID	None	None	RIGID	Typical
10	M61A	N108	N114			RIGID	None	None	RIGID	Typical
11	M62	N107	N113			RIGID	None	None	RIGID	Typical
12	M91	N138A	N146			RIGID	None	None	RIGID	Typical
13	M92	N140A	N148			RIGID	None	None	RIGID	Typical
14	M93	N142	N150			RIGID	None	None	RIGID	Typical
15	M94	N144	N152			RIGID	None	None	RIGID	Typical
16	M95	N143	N151			RIGID	None	None	RIGID	Typical
17	M96	N141	N149			RIGID	None	None	RIGID	Typical
18	M97	N139A	N147			RIGID	None	None	RIGID	Typical
19	M98	N137A	N145			RIGID	None	None	RIGID	Typical
20	M73	N135	N136			RIGID	None	None	RIGID	Typical
21	M74	N141A				RIGID	None	None	RIGID	Typical
22	M75A	N152B				RIGID	None	None	RIGID	Typical
23	M76A	N154B				RIGID	None	None	RIGID	Typical
24	M77A	N159B				RIGID	None	None	RIGID	Typical
25	M78	N161A				RIGID	None	None	RIGID	Typical
26	M91A	N167A				RIGID	None	None	RIGID	Typical
27	M92A	N173A				RIGID	None	None	RIGID	Typical
28	M93A	N184A				RIGID	None	None	RIGID	Typical
29	M94B	N186A				RIGID	None	None	RIGID	Typical
30	M95B	N191	N192A			RIGID	None	None	RIGID	Typical
31	M96B	N193A				RIGID	None	None	RIGID	Typical
32	M74A	N141B				RIGID	None	None	RIGID	Typical
33	M75		N151A			RIGID	None	None	RIGID	Typical
34	M76	N145A				RIGID	None	None	RIGID	Typical
35	M77		N155A			RIGID	None	None	RIGID	Typical
36	M78A	N146A				RIGID	None	None	RIGID	Typical
37	M79A	N144A	N152A			RIGID	None	None	RIGID	Typical

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Primary Data (Continued)

	Dei i i iii									
	Label	I J oint	J Joint	K Joint	Rotate(Section/Shape	Туре	Design List		Design R
38	M80A	N142B	N150A			RIGID	None	None	RIGID	Typical
39	M81A	N140B				RIGID	None	None	RIGID	Typical
40	M90A	N178	N186			RIGID	None	None	RIGID	Typical
41	M91B	N180	N188			RIGID	None	None	RIGID	Typical
42	M92B	N182	N190			RIGID	None	None	RIGID	Typical
43	M93B	N184	N192B			RIGID	None	None	RIGID	Typical
44	M94A	N183	N191A			RIGID	None	None	RIGID	Typical
45	M95A	N181	N189			RIGID	None	None	RIGID	Typical
46	M96A	N179	N187			RIGID	None	None	RIGID	Typical
47	M97A	N177	N185			RIGID	None	None	RIGID	Typical
48	M106	N206A	N207			RIGID	None	None	RIGID	Typical
49	M111	N217	N219A			RIGID	None	None	RIGID	Typical
50	M112	N216A	N218			RIGID	None	None	RIGID	Typical
51	M113	N221	N223			RIGID	None	None	RIGID	Typical
52	M114	N220	N222			RIGID	None	None	RIGID	Typical
53	M15	N25	N26			PL3/8x6	None	None	A36 Gr	Typical
54	M17	N27	N28			PL3/8x6	None		A36 Gr	
						PL3/8x6			A36 Gr	Typical
55	M79	N137	N138				None	None	A36 Gr	. ,
56	M80	N139	N140			PL3/8x6	None	None		J 1: -:-
57	M97B	N169A	N170A			PL3/8x6	None	None	A36 Gr	
58	M98B	N171A				PL3/8x6	None	None	A36 Gr	
59	MP4A	N153	N154			Mount Pipe	Beam	None	A53 Gr.B	7 1
60	MP3A	N155	N156			Mount Pipe	Beam	None	A53 Gr.B	
61	MP2A	N157	N158			Mount Pipe	Beam	None	A53 Gr.B	
62	MP1A	N159	N160			Mount Pipe	Beam	None	A53 Gr.B	Typical
63	MP4C	N156A	N157A			Mount Pipe	Beam	None	A53 Gr.B	Typical
64	MP3C	N158A	N159A			Mount Pipe	Beam	None	A53 Gr.B	Typical
65	MP2C	N160A	N161			Mount Pipe	Beam	None	A53 Gr.B	Typical
66	MP1C	N162	N163			Mount Pipe	Beam	None	A53 Gr.B	Typical
67	MP4B	N193B	N194B			Mount Pipe	Beam	None	A53 Gr.B	Typical
68	MP3B	N195C	N196B			Mount Pipe	Beam	None	A53 Gr.B	Typical
69	MP2B	N197A	N198			Mount Pipe	Beam	None	A53 Gr.B	Typical
70	MP1B	N199	N200A			Mount Pipe	Beam		A53 Gr.B	
71	OVP	N209	N208			Mount Pipe	Beam	None	A53 Gr.B	
72	M103A	N223	N218		90	MOD SUPPORT RAIL BRACE	Beam	None	A36 Gr	
73	M104A	N114	N222		90	MOD SUPPORT RAIL BRACE		None		Typical
74	M105A	N219A			90	MOD SUPPORT RAIL BRACE		None		Typical
75	M61	N101	N102		- 00	MOD SUPPORT RAIL	Beam	None	A53 Gr.B	
76	M71A	N134	N135A			MOD SUPPORT RAIL	Beam	None	A53 Gr.B	Typical
77	M87	N171				MOD SUPPORT RAIL			A53 Gr.B	
			N172				Beam	None	A36 Gr	
78	M108	N213	N210			MOD KICKER KIT	Beam	None		Typical
79	M109	N216	N211			MOD KICKER KIT	Beam	None	A36 Gr	Typical
80	M110A	N219	N212			MOD KICKER KIT	Beam	None	A36 Gr	Typical
81	M33	N54	N56		6-5	Grating Support	Beam	None	A36 Gr	Typical
82	M34	N55	N56		270	Grating Support	Beam	None	A36 Gr	Typical
83	M81	N146B	N148B			Grating Support	Beam	None	A36 Gr	Typical
84	M82A	N147B			270	Grating Support	Beam	None	A36 Gr	Typical
85	M99A	N178A				Grating Support	Beam	None	A36 Gr	7 1
86	M100A	N179A			270	Grating Support	Beam	None	A36 Gr	7
87	M7	N11	N12			Face Horizontal	Beam	None	A53 Gr.B	Typical
88	M86	N132	N133			Face Horizontal	Beam	None	A53 Gr.B	
89	M102A	N169	N170			Face Horizontal	Beam	None	A53 Gr.B	Typical

: Maser Consulting

SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Primary Data (Continued)

	Label	I J oint	J Joint	K Joint	Rotate(Section/Shape	Туре	Design List		Design R
90	M36	N58	N59			End Plate	Beam	None	A36 Gr	Typical
91	M40	N65	N66			End Plate	Beam	None	A36 Gr	Typical
92	M35	N57	N58			End Plate	Beam	None	A36 Gr	Typical
93	M39	N64	N65			End Plate	Beam	None	A36 Gr	Typical
94	M83A	N150B	N151B			End Plate	Beam	None	A36 Gr	Typical
95	M84A	N157B	N158B			End Plate	Beam	None	A36 Gr	Typical
96	M85A	N149B	N150B			End Plate	Beam	None	A36 Gr	Typical
97	M86A	N156B	N157B			End Plate	Beam	None	A36 Gr	Typical
98	M101A	N182A	N183A			End Plate	Beam	None	A36 Gr	Typical
99	M102	N189A	N190A			End Plate	Beam	None	A36 Gr	Typical
100	M103	N181A	N182A			End Plate	Beam	None	A36 Gr	Typical
101	M104	N188A	N189A			End Plate	Beam	None	A36 Gr	Typical
102	M32	N52	N200		180	Cross Bracing	Beam	None	A36 Gr	Typical
103	M110	N200	N53		180	Cross Bracing	Beam	None	A36 Gr	Typical
104	M71	N144B	N165A		180	Cross Bracing	Beam	None	A36 Gr	Typical
105	M72	N165A	N145B		180	Cross Bracing	Beam	None	A36 Gr	Typical
106	M89A	N176A	N197		180	Cross Bracing	Beam	None	A36 Gr	Typical
107	M90	N197	N177A		180	Cross Bracing	Beam	None	A36 Gr	
108	M16	N26	N27			Corner Plate	Beam	None	A36 Gr	
109	M87A	N138	N139			Corner Plate	Beam	None	A36 Gr	
110	M105	N170A	N171A			Corner Plate	Beam	None	A36 Gr	

Member Advanced Data

1 M31 2 M104B 3 M105B 4 M14 BenPIN 5 M18 BenF 6 M37 7 M38 BenF 8 M41 9 M42 BenF 10 M61A OOOOOX 11 M62 OOOOOX 11 M92 14 M93 15 M94 16 M95 17 M96 18 M97 19 M98 20 M73 BenPIN 21 M74 22 M75A	e I Offset[in]	Label I Release	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
3 M105B 4 M14 BenPIN 5 M18 BenF 6 M37 7 M38 BenF 8 M41 9 M42 BenF 10 M61A OOOOOX 11 M62 OOOOOX 12 M91 13 M92 14 M93 15 M94 16 M95 17 M96 18 M97 19 M98 20 M73 BenPIN 21 M74 BenF		M31			Yes				None
4 M14 BenPIN 5 M18 BenF 6 M37 7 M38 BenF 8 M41 9 M42 BenF 10 M61A OOOOOX 11 M62 OOOOOX 11 M91 13 M92 14 M93 15 M94 16 M95 17 M96 18 M97 19 M98 20 M73 BenPIN 21 M74 BenF		M104B			Yes				None
5 M18 Benf 6 M37 Benf 7 M38 Benf 8 M41 Benf 9 M42 Benf 10 M61A OOOOOX 11 M62 OOOOOX 12 M91 M91 13 M92 M92 14 M93 M93 15 M94 M94 16 M95 M95 17 M96 M98 20 M73 BenPIN 21 M74 BenFIN		M105B			Yes				None
6 M37 7 M38 8 M41 9 M42 10 M61A OOOOOX 11 M62 OOOOOX 12 M91 13 M92 14 M93 15 M94 16 M95 17 M96 18 M97 19 M98 20 M73 BenPIN 21 M74 BenF		M14 BenPIN			Yes	** NA **			None
7 M38 Benf 8 M41 9 M42 Benf 10 M61A OOOOOX 11 M62 OOOOOX 12 M91 13 M92 14 M93 15 M94 16 M95 17 M96 18 M97 19 M98 20 M73 BenPIN 21 M74 Benf	l	M18			Yes	** NA **			None
8 M41 9 M42 Benf 10 M61A OOOOOX 11 M62 OOOOOX 12 M91 13 M92 14 M93 15 M94 16 M95 17 M96 18 M97 19 M98 20 M73 BenPIN 21 M74		M37			Yes	** NA **			None
9 M42 Benf 10 M61A OOOOOX 11 M62 OOOOOX 12 M91 13 M92 14 M93 15 M94 16 M95 17 M96 18 M97 19 M98 20 M73 BenFIN 21 M74	I	M38			Yes	** NA **			None
10 M61A OOOOOX 11 M62 OOOOOX 12 M91 13 M92 14 M93 15 M94 16 M95 17 M96 18 M97 19 M98 20 M73 BenPIN 21 M74		M41			Yes	** NA **			None
11 M62 OOOOOX 12 M91 13 M92 14 M93 15 M94 16 M95 17 M96 18 M97 19 M98 20 M73 BenPIN 21 M74 BenF	I	M42			Yes	** NA **			None
12 M91 13 M92 14 M93 15 M94 16 M95 17 M96 18 M97 19 M98 20 M73 BenPIN 21 M74 BenF		M61A 00000X			Yes	** NA **			None
13 M92 14 M93 15 M94 16 M95 17 M96 18 M97 19 M98 20 M73 BenPIN 21 M74 BenF		M62 00000X			Yes	** NA **			None
14 M93 15 M94 16 M95 17 M96 18 M97 19 M98 20 M73 BenPIN 21 M74 BenF		M91			Yes	** NA **			None
15 M94 16 M95 17 M96 18 M97 19 M98 20 M73 BenPIN 21 M74 BenF		M92			Yes	** NA **			None
16 M95 17 M96 18 M97 19 M98 20 M73 BenPIN 21 M74 BenF		M93			Yes	** NA **			None
17 M96 18 M97 19 M98 20 M73 BenPIN 21 M74 BenF		M94			Yes	** NA **			None
18 M97 19 M98 20 M73 BenPIN 21 M74 BenF		M95			Yes	** NA **			None
19 M98 20 M73 BenPIN 21 M74 BenF		M96			Yes	** NA **			None
20 M73 BenPIN 21 M74 BenF		M97			Yes	** NA **			None
21 M74 Benf		M98			Yes	** NA **			None
		M73 BenPIN			Yes	** NA **			None
22 M75A	I	M74			Yes	** NA **			None
		M75A			Yes	** NA **			None
23 M76A Benf	I	M76A			Yes	** NA **			None
24 M77A					Yes	** NA **			None
25 M78 Benf	I	M78			Yes	** NA **			None
26 M91A BenPIN					Yes	** NA **			None

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	I Defl RatAnalysis	Inactive	Seismic
27	M92A		BenPIN				Yes	** NA **		None
28	M93A						Yes	** NA **		None
29	M94B		BenPIN				Yes	** NA **		None
30	M95B						Yes	** NA **		None
31	M96B		BenPIN				Yes	** NA **		None
32	M74A						Yes	** NA **		None
33	M75						Yes	** NA **		None
34	M76						Yes	** NA **		None
35	M77						Yes	** NA **		None
36	M78A						Yes	** NA **		None
37	M79A						Yes	** NA **		None
38	M80A						Yes	** NA **		None
39	M81A						Yes	** NA **		None
40	M90A						Yes	** NA **		None
41	M91B						Yes	** NA **		None
42	M92B						Yes	** NA **		None
43	M93B						Yes	** NA **		None
44	M94A						Yes	** NA **		None
45	M95A						Yes	** NA **		None
46	M96A						Yes	** NA **		None
47	M97A						Yes	** NA **		None
48	M106						Yes	** NA **		None
49	M111	00000X					Yes	** NA **		None
50	M112	00000X					Yes	** NA **		None
51	M113	00000X					Yes	** NA **		None
52	M114	00000X					Yes	** NA **		None
53	M15						Yes	** NA **		None
54	M17						Yes	** NA **		None
55	M79						Yes	** NA **		None
56	M80						Yes	** NA **		None
57	M97B						Yes	** NA **		None
58	M98B						Yes	** NA **		None
59	MP4A						Yes			None
60	MP3A						Yes			None
61	MP2A						Yes			None
62	MP1A						Yes			None
63	MP4C						Yes			None
64	MP3C						Yes			None
65	MP2C						Yes			None
66	MP1C						Yes			None
67	MP4B						Yes			None
68	MP3B						Yes			None
69	MP2B						Yes			None
70	MP1B						Yes			None
71	OVP						Yes			None
72	M103A						Yes			None
73	M104A						Yes			None
74	M105A						Yes			None
75	M61						Yes			None
76	M71A						Yes			None
77	M87	_					Yes			None
78	M108	BenPIN	BenPIN				Yes			None

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
79	M109	BenPIN	BenPIN			-	Yes				None
80	M110A	BenPIN	BenPIN				Yes				None
81	M33	BenPIN	BenPIN				Yes				None
82	M34	BenPIN	BenPIN				Yes				None
83	M81	BenPIN	BenPIN				Yes				None
84	M82A	BenPIN	BenPIN				Yes				None
85	M99A	BenPIN	BenPIN				Yes				None
86	M100A	BenPIN	BenPIN				Yes				None
87	M7						Yes				None
88	M86						Yes				None
89	M102A						Yes				None
90	M36						Yes				None
91	M40						Yes				None
92	M35						Yes				None
93	M39						Yes				None
94	M83A						Yes				None
95	M84A						Yes				None
96	M85A						Yes				None
97	M86A						Yes				None
98	M101A						Yes				None
99	M102						Yes				None
100	M103						Yes				None
101	M104						Yes				None
102	M32						Yes				None
103	M110						Yes				None
104	M71						Yes				None
105	M72						Yes				None
106	M89A						Yes				None
107	M90						Yes				None
108	M16						Yes				None
109	M87A						Yes				None
110	M105						Yes				None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	Υ	-18.9	.75
2	OVP	My	011	.75
3	OVP	Mz	.006	.75
4	MP3A	Υ	-31.65	.25
5	MP3A	My	021	.25
6	MP3A	Mz	021	.25
7	MP3A	Υ	-31.65	4.25
8	MP3A	My	021	4.25
9	MP3A	Mz	021	4.25
10	MP3B	Υ	-31.65	.25
11	MP3B	My	.029	.25
12	MP3B	Mz	008	.25
13	MP3B	Υ	-31.65	4.25
14	MP3B	My	.029	4.25
15	MP3B	Mz	008	4.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP3C	Υ	-31.65	.25
17	MP3C	My	008	.25
18	MP3C	Mz	.029	.25
19	MP3C	Υ	-31.65	4.25
20	MP3C	My	008	4.25
21	MP3C	Mz	.029	4.25
22	MP3A	Υ	-31.65	.25
23	MP3A	My	021	.25
24	MP3A	Mz	.021	.25
25	MP3A	Υ	-31.65	4.25
26	MP3A	My	021	4.25
27	MP3A	Mz	.021	4.25
28	MP3B	Υ	-31.65	.25
29	MP3B	My	008	.25
30	MP3B	Mz	029	.25
31	MP3B	Υ	-31.65	4.25
32	MP3B	My	008	4.25
33	MP3B	Mz	029	4.25
34	MP3C	Υ	-31.65	.25
35	MP3C	My	.029	.25
36	MP3C	Mz	.008	.25
37	MP3C	Υ	-31.65	4.25
38	MP3C	My	.029	4.25
39	MP3C	Mz	.008	4.25
40	MP1A	Y	-43.55	1.25
41	MP1A	My	029	1.25
42	MP1A	Mz	0	1.25
43	MP1A	Y	-43.55	3.25
44	MP1A	My	029	3.25
45	MP1A	Mz	0	3.25
46	MP1B	Υ	-43.55	1.25
47	MP1B	My	.015	1.25
48	MP1B	Mz	025	1.25
49	MP1B	Y	-43.55	3.25
50	MP1B	My	.015	3.25
51	MP1B	Mz	025	3.25
52	MP1C	Υ	-43.55	1.25
53	MP1C	My	.015	1.25
54	MP1C	Mz	.025	1.25
55	MP1C	Υ	-43.55	3.25
56	MP1C	My	.015	3.25
57	MP1C	Mz	.025	3.25
58	MP4A	Υ	-20.8	2.1
59	MP4A	My	.01	2.1
60	MP4A	Mz	0	2.1
61	MP4B	Y	-20.8	2.1
62	MP4B	My	005	2.1
63	MP4B	Mz	.009	2.1
64	MP4C	Y	-20.8	2.1
65	MP4C	My	005	2.1
66	MP4C	Mz	009	2.1
67	MP2A	Υ	-84.4	2.1

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 1: Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP2A	My	.056	2.1
69	MP2A	Mz	0	2.1
70	MP2B	Υ	-84.4	2.1
71	MP2B	My	028	2.1
72	MP2B	Mz	.049	2.1
73	MP2C	Υ	-84.4	2.1
74	MP2C	My	028	2.1
75	MP2C	Mz	049	2.1
76	MP3A	Υ	-70.3	2.1
77	MP3A	My	.047	2.1
78	MP3A	Mz	0	2.1
79	MP3B	Υ	-70.3	2.1
80	MP3B	My	023	2.1
81	MP3B	Mz	.041	2.1
82	MP3C	Υ	-70.3	2.1
83	MP3C	My	023	2.1
84	MP3C	Mz	041	2.1
85	OVP	Υ	-18.9	.75
86	OVP	My	.011	.75
87	OVP	Mz	006	.75

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	Υ	-82.119	.75
2	OVP	My	047	.75
3	OVP	Mz	.027	.75
4	MP3A	Υ	-65.983	.25
5	MP3A	My	044	.25
6	MP3A	Mz	044	.25
7	MP3A	Υ	-65.983	4.25
8	MP3A	My	044	4.25
9	MP3A	Mz	044	4.25
10	MP3B	Υ	-65.983	.25
11	MP3B	My	.06	.25
12	MP3B	Mz	016	.25
13	MP3B	Υ	-65.983	4.25
14	MP3B	My	.06	4.25
15	MP3B	Mz	016	4.25
16	MP3C	Υ	-65.983	.25
17	MP3C	My	016	.25
18	MP3C	Mz	.06	.25
19	MP3C	Υ	-65.983	4.25
20	MP3C	My	016	4.25
21	MP3C	Mz	.06	4.25
22	MP3A	Υ	-65.983	.25
23	MP3A	My	044	.25
24	MP3A	Mz	.044	.25
25	MP3A	Υ	-65.983	4.25
26	MP3A	My	044	4.25
27	MP3A	Mz	.044	4.25
28	MP3B	Υ	-65.983	.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP3B	My	016	.25
30	MP3B	Mz	06	.25
31	MP3B	Υ	-65.983	4.25
32	MP3B	My	016	4.25
33	MP3B	Mz	06	4.25
34	MP3C	Υ	-65.983	.25
35	MP3C	My	.06	.25
36	MP3C	Mz	.016	.25
37	MP3C	Y	-65.983	4.25
38	MP3C	My	.06	4.25
39	MP3C	Mz	.016	4.25
40	MP1A	Y	-33.561	1.25
41	MP1A	My	022	1.25
42	MP1A	Mz	0	1.25
43	MP1A	Y	-33.561	3.25
44	MP1A	My	022	3.25
45	MP1A	Mz	0	3.25
46	MP1B	Y	-33.561	1.25
47	MP1B	My	.011	1.25
48	MP1B	Mz	019	1.25
49	MP1B	Y	-33.561	3.25
50	MP1B	My	.011	3.25
51	MP1B	Mz	019	3.25
52	MP1C	Y	-33.561	1.25
53	MP1C	My	.011	1.25
54	MP1C	Mz	.019	1.25
55	MP1C	Y	-33.561	3.25
56	MP1C	My	.011	3.25
57	MP1C	Mz	.019	3.25
58	MP4A	Y	-15.152	2.1
59	MP4A	My	.008	2.1
60	MP4A	Mz	0	2.1
61	MP4B	Y	-15.152	2.1
62	MP4B	My	004	2.1
63	MP4B	Mz	.007	2.1
64	MP4C	Y	-15.152	2.1
65	MP4C	My	004	2.1
66	MP4C	Mz	007	2.1
67	MP2A	Y	-42.276	2.1
68	MP2A	My	.028	2.1
69	MP2A	Mz	0	2.1
70	MP2B	Y	-42.276	2.1
71	MP2B	My	014	2.1
72	MP2B	Mz	.024	2.1
73	MP2C	Y	-42.276	2.1
74	MP2C	My	014	2.1
75	MP2C	Mz	024	2.1
76	MP3A	Y	-38.003	2.1
77	MP3A	My	.025	2.1
78	MP3A	Mz	.025	2.1
79	MP3B	Y	-38.003	2.1
				2.1
80	MP3B	My	013	۷.۱

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 2: Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
81	MP3B	Mz	.022	2.1
82	MP3C	Υ	-38.003	2.1
83	MP3C	My	013	2.1
84	MP3C	Mz	022	2.1
85	OVP	Υ	-82.119	.75
86	OVP	My	.047	.75
87	OVP	Mz	027	.75

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	•	LO O . Fanconna VI		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	0	.75
2	OVP	Z	-169.714	.75
3	OVP	Mx	057	.75
4	MP3A	X	0	.25
5	MP3A	Z	-188.548	.25
6	MP3A	Mx	.126	.25
7	MP3A	X	0	4.25
8	MP3A	Z	-188.548	4.25
9	MP3A	Mx	.126	4.25
10	MP3B	X	0	.25
11	MP3B	Z	-140.014	.25
12	MP3B	Mx	.034	.25
13	MP3B	X	0	4.25
14	MP3B	Z	-140.014	4.25
15	MP3B	Mx	.034	4.25
16	MP3C	X	0	.25
17	MP3C	Z	-140.014	.25
18	MP3C	Mx	128	.25
19	MP3C	X	0	4.25
20	MP3C	Z	-140.014	4.25
21	MP3C	Mx	128	4.25
22	MP3A	X	0	.25
23	MP3A	Z	-188.548	.25
24	MP3A	Mx	126	.25
25	MP3A	X	0	4.25
26	MP3A	Z	-188.548	4.25
27	MP3A	Mx	126	4.25
28	MP3B	X	0	.25
29	MP3B	Z	-140.014	.25
30	MP3B	Mx	.128	.25
31	MP3B	X	0	4.25
32	MP3B	Z	-140.014	4.25
33	MP3B	Mx	.128	4.25
34	MP3C	X	0	.25
35	MP3C	Z	-140.014	.25
36	MP3C	Mx	034	.25
37	MP3C	X	0	4.25
38	MP3C	Z	-140.014	4.25
39	MP3C	Mx	034	4.25
40	MP1A	X	0	1.25
41	MP1A	Z	-81.132	1.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
42	MP1A	Mx	0	1.25
43	MP1A	X	0	3.25
44	MP1A	Z	-81.132	3.25
45	MP1A	Mx	0	3.25
46	MP1B	X	0	1.25
47	MP1B	Z	-41.238	1.25
48	MP1B	Mx	.024	1.25
49	MP1B	X	0	3.25
50	MP1B	Z	-41.238	3.25
51	MP1B	Mx	.024	3.25
52	MP1C	X	0	1.25
53	MP1C	Z	-41.238	1.25
54	MP1C	Mx	024	1.25
55	MP1C	X	0	3.25
56	MP1C	Z	-41.238	3.25
57	MP1C	Mx	024	3.25
58	MP4A	X	0	2.1
59	MP4A	Z	-15.316	2.1
60	MP4A	Mx	0	2.1
61	MP4B	X	0	2.1
62	MP4B	Z	-19.724	2.1
63	MP4B	Mx	009	2.1
64	MP4C	X	0	2.1
65	MP4C	Z	-19.724	2.1
66	MP4C	Mx	.009	2.1
67	MP2A	X	0	2.1
68	MP2A	Z	-64.16	2.1
69	MP2A	Mx	0	2.1
70	MP2B	X	0	2.1
71	MP2B	Z	-48.327	2.1
72	MP2B	Mx	028	2.1
73	MP2C	X	0	2.1
74	MP2C	Z	-48.327	2.1
75	MP2C	Mx	.028	2.1
76	MP3A	X	0	2.1
77	MP3A	Z	-64.16	2.1
78	MP3A	Mx	0	2.1
79	MP3B	X	0	2.1
80	MP3B	Z	-42.429	2.1
81	MP3B	Mx	024	2.1
82	MP3C	X	0	2.1
83	MP3C	Z	-42.429	2.1
84	MP3C	Mx	.024	2.1
85	OVP	X	0	.75
86	OVP	Z	-169.714	.75
87	OVP	Mx	.057	.75

Member Point Loads (BLC 4: Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	55.882	.75
2	OVP	Z	-96.79	.75

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 4: Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	OVP	Mx	065	.75
4	MP3A	X	86.185	.25
5	MP3A	Z	-149.277	.25
6	MP3A	Mx	.042	.25
7	MP3A	X	86.185	4.25
8	MP3A	Z	-149.277	4.25
9	MP3A	Mx	.042	4.25
10	MP3B	X	61.918	.25
11	MP3B	Z	-107.245	.25
12	MP3B	Mx	.083	.25
13	MP3B	X	61.918	4.25
14	MP3B	Z	-107.245	4.25
15	MP3B	Mx	.083	4.25
16	MP3C	X	86.185	.25
17	MP3C	Z	-149.277	.25
18	MP3C	Mx	157	.25
19	MP3C	X	86.185	4.25
20	MP3C	Z	-149.277	4.25
21	MP3C	Mx	157	4.25
22	MP3A	X	86.185	.25
23	MP3A	Z	-149.277	.25
24	MP3A	Mx	157	.25
25	MP3A	X	86.185	4.25
26	MP3A	Z	-149.277	4.25
27	MP3A	Mx	157	4.25
28	MP3B	X	61.918	.25
29	MP3B	Z	-107.245	.25
30	MP3B	Mx	.083	.25
31	MP3B	X	61.918	4.25
32	MP3B	Z	-107.245	4.25
33	MP3B	Mx	.083	4.25
34	MP3C	X	86.185	.25
35	MP3C	Z	-149.277	.25
36	MP3C	Mx	.042	.25
37	MP3C	X	86.185	4.25
38	MP3C	Z	-149.277	4.25
39	MP3C	Mx	.042	4.25
40	MP1A	X	33.917	1.25
41	MP1A	Z	-58.746	1.25
42	MP1A MP1A	Mx	-56.746	1.25
43	MP1A	X	33.917	3.25
43	MP1A	Z	-58.746	3.25
45	MP1A	Mx		3.25
			023 13.97	
46 47	MP1B MP1B	X Z	-24.197	1.25 1.25
48		Mx	.019	1.25
	MP1B			
49	MP1B	X Z	13.97	3.25
50	MP1B		-24.197	3.25
51	MP1B	Mx	.019	3.25
52	MP1C	X Z	33.917	1.25
53	MP1C		-58.746	1.25
54	MP1C	Mx	023	1.25

Model Name

: Maser Consulting

SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 4: Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Lo cation [ft,%]
55	MP1C	X	33.917	3.25
56	MP1C	Z	-58.746	3.25
57	MP1C	Mx	023	3.25
58	MP4A	X	8.393	2.1
59	MP4A	Z	-14.536	2.1
60	MP4A	Mx	.004	2.1
61	MP4B	X	10.597	2.1
62	MP4B	Z	-18.354	2.1
63	MP4B	Mx	011	2.1
64	MP4C	X	8.393	2.1
65	MP4C	Z	-14.536	2.1
66	MP4C	Mx	.004	2.1
67	MP2A	X	29.441	2.1
68	MP2A	Z	-50.994	2.1
69	MP2A	Mx	.02	2.1
70	MP2B	X	21.525	2.1
71	MP2B	Z	-37.282	2.1
72	MP2B	Mx	029	2.1
73	MP2C	X	29.441	2.1
74	MP2C	Z	-50.994	2.1
75	MP2C	Mx	.02	2.1
76	MP3A	X	28.458	2.1
77	MP3A	Z	-49.291	2.1
78	MP3A	Mx	.019	2.1
79	MP3B	X	17.592	2.1
80	MP3B	Z	-30.471	2.1
81	MP3B	Mx	023	2.1
82	MP3C	X	28.458	2.1
83	MP3C	Z	-49.291	2.1
84	MP3C	Mx	.019	2.1
85	OVP	X	55.882	.75
86	OVP	Z	-96.79	.75
87	OVP	Mx	.065	.75

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	71.696	.75
2	OVP	Z	-41.394	.75
3	OVP	Mx	055	.75
4	MP3A	X	121.256	.25
5	MP3A	Z	-70.007	.25
6	MP3A	Mx	034	.25
7	MP3A	X	121.256	4.25
8	MP3A	Z	-70.007	4.25
9	MP3A	Mx	034	4.25
10	MP3B	X	121.256	.25
11	MP3B	Z	-70.007	.25
12	MP3B	Mx	.128	.25
13	MP3B	X	121.256	4.25
14	MP3B	Z	-70.007	4.25
15	MP3B	Mx	.128	4.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP3C	X	163.288	.25
17	MP3C	Z	-94.274	.25
18	MP3C	Mx	126	.25
19	MP3C	X	163.288	4.25
20	MP3C	Z	-94.274	4.25
21	MP3C	Mx	126	4.25
22	MP3A	X	121.256	.25
23	MP3A	Z	-70.007	.25
24	MP3A	Mx	128	.25
25	MP3A	X	121.256	4.25
26	MP3A	Z	-70.007	4.25
27	MP3A	Mx	128	4.25
28	MP3B	X	121.256	.25
29	MP3B	Z	-70.007	.25
30	MP3B	Mx	.034	.25
31	MP3B	X	121.256	4.25
32	MP3B	Z	-70.007	4.25
33	MP3B	Mx	.034	4.25
34	MP3C	X	163.288	.25
35	MP3C	Z	-94.274	.25
36	MP3C	Mx	.126	.25
37	MP3C	X	163.288	4.25
38	MP3C	Z	-94.274	4.25
39	MP3C	Mx	.126	4.25
40	MP1A	X	35.714	1.25
41	MP1A	Z	-20.619	1.25
42	MP1A	Mx	024	1.25
43	MP1A	X	35.714	3.25
44	MP1A	Z	-20.619	3.25
45	MP1A	Mx	024	3.25
46	MP1B	X	35.714	1.25
47	MP1B	Z	-20.619	1.25
48	MP1B	Mx	.024	1.25
49	MP1B	X	35.714	3.25
50	MP1B	Z	-20.619	3.25
51	MP1B	Mx	.024	3.25
52	MP1C	X	70.262	1.25
53	MP1C	Z	-40.566	1.25
54	MP1C	Mx	0	1.25
55	MP1C	X	70.262	3.25
56	MP1C	Z	-40.566	3.25
57	MP1C	Mx	0	3.25
58	MP4A	X	17.082	2.1
59	MP4A	Z	-9.862	2.1
60	MP4A	Mx	.009	2.1
61	MP4B	X	17.082	2.1
62	MP4B	Z	-9.862	2.1
63	MP4B	Mx	009	2.1
64	MP4C	X	13.264	2.1
65	MP4C	Z	-7.658	2.1
66	MP4C	Mx	0	2.1
67	MP2A	X	41.853	2.1

Model Name

pany : Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 5: Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP2A	Z	-24.164	2.1
69	MP2A	Mx	.028	2.1
70	MP2B	X	41.853	2.1
71	MP2B	Z	-24.164	2.1
72	MP2B	Mx	028	2.1
73	MP2C	X	55.564	2.1
74	MP2C	Z	-32.08	2.1
75	MP2C	Mx	0	2.1
76	MP3A	X	36.744	2.1
77	MP3A	Z	-21.214	2.1
78	MP3A	Mx	.024	2.1
79	MP3B	X	36.744	2.1
80	MP3B	Z	-21.214	2.1
81	MP3B	Mx	024	2.1
82	MP3C	X	55.564	2.1
83	MP3C	Z	-32.08	2.1
84	MP3C	Mx	0	2.1
85	OVP	X	71.696	.75
86	OVP	Z	-41.394	.75
87	OVP	Mx	.055	.75

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	111.763	.75
2	OVP	Z	0	.75
3	OVP	Mx	065	.75
4	MP3A	X	123.836	.25
5	MP3A	Z	0	.25
6	MP3A	Mx	083	.25
7	MP3A	X	123.836	4.25
8	MP3A	Z	0	4.25
9	MP3A	Mx	083	4.25
10	MP3B	X	172.37	.25
11	MP3B	Z	0	.25
12	MP3B	Mx	.157	.25
13	MP3B	X	172.37	4.25
14	MP3B	Z	0	4.25
15	MP3B	Mx	.157	4.25
16	MP3C	X	172.37	.25
17	MP3C	Z	0	.25
18	MP3C	Mx	042	.25
19	MP3C	X	172.37	4.25
20	MP3C	Z	0	4.25
21	MP3C	Mx	042	4.25
22	MP3A	X	123.836	.25
23	MP3A	Z	0	.25
24	MP3A	Mx	083	.25
25	MP3A	X	123.836	4.25
26	MP3A	Z	0	4.25
27	MP3A	Mx	083	4.25
28	MP3B	X	172.37	.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Lo cation [ft,%]
29	MP3B	Z	0	.25
30	MP3B	Mx	042	.25
31	MP3B	X	172.37	4.25
32	MP3B	Z	0	4.25
33	MP3B	Mx	042	4.25
34	MP3C	X	172.37	.25
35	MP3C	Z	0	.25
36	MP3C	Mx	.157	.25
37	MP3C	X	172.37	4.25
38	MP3C	Z	0	4.25
39	MP3C	Mx	.157	4.25
40	MP1A	X	27.941	1.25
41	MP1A	Z	0	1.25
42	MP1A	Mx	019	1.25
43	MP1A	X	27.941	3.25
44	MP1A	Z	0	3.25
45	MP1A	Mx	019	3.25
46	MP1B	X	67.834	1.25
47	MP1B	Z	0	1.25
48	MP1B	Mx	.023	1.25
49	MP1B	X	67.834	3.25
50	MP1B	Z	0	3.25
51	MP1B	Mx	.023	3.25
52	MP1C	X	67.834	1.25
53	MP1C	Z	0	1.25
54	MP1C	Mx	.023	1.25
55	MP1C	X	67.834	3.25
56	MP1C	Z	0	3.25
57	MP1C	Mx	.023	3.25
58	MP4A	X	21.194	2.1
59	MP4A	Z	0	2.1
60	MP4A	Mx	.011	2.1
61	MP4B	X	16.785	2.1
62	MP4B	Z	0	2.1
63	MP4B	Mx	004	2.1
64	MP4C	X	16.785	2.1
65	MP4C	Z	0	2.1
66	MP4C	Mx	004	2.1
67	MP2A	X	43.049	2.1
68	MP2A	Z	0	2.1
69	MP2A	Mx	.029	2.1
70	MP2B	X	58.883	2.1
71	MP2B	Z	0	2.1
72	MP2B	Mx	02	2.1
73	MP2C	X	58.883	2.1
74	MP2C	Z	0	2.1
75	MP2C	Mx	02	2.1
76	MP3A	X	35.185	2.1
77	MP3A	Z	0	2.1
78	MP3A	Mx	.023	2.1
79	MP3B	X	56.916	2.1
80	MP3B	Z	0	2.1

Company Designer Job Number Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 6: Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
81	MP3B	Mx	019	2.1
82	MP3C	X	56.916	2.1
83	MP3C	Z	0	2.1
84	MP3C	Mx	019	2.1
85	OVP	X	111.763	.75
86	OVP	Z	0	.75
87	OVP	Mx	.065	.75

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	146.977	.75
2	OVP	Z	84.857	.75
3	OVP	Mx	057	.75
4	MP3A	X	121.256	.25
5	MP3A	Z	70.007	.25
6	MP3A	Mx	128	.25
7	MP3A	X	121.256	4.25
8	MP3A	Z	70.007	4.25
9	MP3A	Mx	128	4.25
10	MP3B	Χ	163.288	.25
11	MP3B	Z	94.274	.25
12	MP3B	Mx	.126	.25
13	MP3B	X	163.288	4.25
14	MP3B	Z	94.274	4.25
15	MP3B	Mx	.126	4.25
16	MP3C	X	121.256	.25
17	MP3C	Z	70.007	.25
18	MP3C	Mx	.034	.25
19	MP3C	X	121.256	4.25
20	MP3C	Z	70.007	4.25
21	MP3C	Mx	.034	4.25
22	MP3A	X	121.256	.25
23	MP3A	Z	70.007	.25
24	MP3A	Mx	034	.25
25	MP3A	X	121.256	4.25
26	MP3A	Z	70.007	4.25
27	MP3A	Mx	034	4.25
28	MP3B	X	163.288	.25
29	MP3B	Z	94.274	.25
30	MP3B	Mx	126	.25
31	MP3B	X	163.288	4.25
32	MP3B	Z	94.274	4.25
33	MP3B	Mx	126	4.25
34	MP3C	X	121.256	.25
35	MP3C	Z	70.007	.25
36	MP3C	Mx	.128	.25
37	MP3C	X	121.256	4.25
38	MP3C	Z	70.007	4.25
39	MP3C	Mx	.128	4.25
40	MP1A	X	35.714	1.25
41	MP1A	Z	20.619	1.25

Model Name

y : Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 7: Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
42	MP1A	Mx	024	1.25
43	MP1A	X	35.714	3.25
44	MP1A	Z	20.619	3.25
45	MP1A	Mx	024	3.25
46	MP1B	Χ	70.262	1.25
47	MP1B	Z	40.566	1.25
48	MP1B	Mx	0	1.25
49	MP1B	Χ	70.262	3.25
50	MP1B	Z	40.566	3.25
51	MP1B	Mx	0	3.25
52	MP1C	X	35.714	1.25
53	MP1C	Z	20.619	1.25
54	MP1C	Mx	.024	1.25
55	MP1C	X	35.714	3.25
56	MP1C	Z	20.619	3.25
57	MP1C	Mx	.024	3.25
58	MP4A	X	17.082	2.1
59	MP4A	Z	9.862	2.1
60	MP4A	Mx	.009	2.1
61	MP4B	X	13.264	2.1
62	MP4B	Z	7.658	2.1
63	MP4B	Mx	0	2.1
64	MP4C	X	17.082	2.1
65	MP4C	Z	9.862	2.1
66	MP4C	Mx	009	2.1
67	MP2A	X	41.853	2.1
68	MP2A	Z	24.164	2.1
69	MP2A	Mx	.028	2.1
70	MP2B	X Z	55.564	2.1
71	MP2B		32.08	2.1
72	MP2B	Mx	0	2.1
73	MP2C	X 	41.853	2.1 2.1
74	MP2C		24.164	2.1
75 76	MP2C MP3A	Mx X	028 36.744	2.1
	MP3A	Z Z		2.1
77 78	MP3A	Mx	21.214	2.1
79	MP3B	X	55.564	2.1
80	MP3B	Z	32.08	2.1
81	MP3B	Mx	0	2.1
82	MP3C	X	36.744	2.1
83	MP3C	Z	21.214	2.1
84	MP3C	Mx	024	2.1
85	OVP	X	146.977	.75
86	OVP	Z	84.857	.75
87	OVP	Mx	.057	.75
07	OVE	IVIA	.007	.1 0

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	99.345	.75
2	OVP	Z	172.07	.75

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Lo cation[ft,%]
3	OVP	Mx	0	.75
4	MP3A	X	86.185	.25
5	MP3A	Z	149.277	.25
6	MP3A	Mx	157	.25
7	MP3A	X	86.185	4.25
8	MP3A	Z	149.277	4.25
9	MP3A	Mx	157	4.25
10	MP3B	X	86.185	.25
11	MP3B	Z	149.277	.25
12	MP3B	Mx	.042	.25
13	MP3B	X	86.185	4.25
14	MP3B	Z	149.277	4.25
15	MP3B	Mx	.042	4.25
16	MP3C	X	61.918	.25
17	MP3C	Z	107.245	.25
18	MP3C	Mx	.083	.25
19	MP3C	X	61.918	4.25
20	MP3C	Z	107.245	4.25
21	MP3C	Mx	.083	4.25
22	MP3A	X	86.185	.25
23	MP3A	Z	149.277	.25
24	MP3A	Mx	.042	.25
25	MP3A	X	86.185	4.25
26	MP3A	Z	149.277	4.25
27	MP3A	Mx	.042	4.25
28	MP3B	X	86.185	.25
29	MP3B	Z	149.277	.25
30	MP3B	Mx	157	.25
31	MP3B	X	86.185	4.25
32	MP3B	Z	149.277	4.25
33	MP3B	Mx	157	4.25
34	MP3C	X	61.918	.25
35	MP3C	Z	107.245	.25
36	MP3C	Mx	.083	.25
37	MP3C	X	61.918	4.25
38	MP3C	Z	107.245	4.25
39	MP3C	Mx	.083	4.25
40	MP1A	X	33.917	1.25
41	MP1A	Z	58.746	1.25
42	MP1A	Mx	023	1.25
43	MP1A	X	33.917	3.25
44	MP1A	Z	58.746	3.25
45	MP1A	Mx	023	3.25
46	MP1B	X	33.917	1.25
47	MP1B	Z	58.746	1.25
48	MP1B	Mx	023	1.25
49	MP1B	X	33.917	3.25
50	MP1B	Z	58.746	3.25
51	MP1B	Mx	023	3.25
52	MP1C	X	13.97	1.25
53	MP1C	Z	24.197	1.25
54	MP1C	Mx	.019	1.25

: Maser Consulting

SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
55	MP1C	X	13.97	3.25
56	MP1C	Z	24.197	3.25
57	MP1C	Mx	.019	3.25
58	MP4A	X	8.393	2.1
59	MP4A	Z	14.536	2.1
60	MP4A	Mx	.004	2.1
61	MP4B	X	8.393	2.1
62	MP4B	Z	14.536	2.1
63	MP4B	Mx	.004	2.1
64	MP4C	X	10.597	2.1
65	MP4C	Z	18.354	2.1
66	MP4C	Mx	011	2.1
67	MP2A	X	29.441	2.1
68	MP2A	Z	50.994	2.1
69	MP2A	Mx	.02	2.1
70	MP2B	X	29.441	2.1
71	MP2B	Z	50.994	2.1
72	MP2B	Mx	.02	2.1
73	MP2C	X	21.525	2.1
74	MP2C	Z	37.282	2.1
75	MP2C	Mx	029	2.1
76	MP3A	X	28.458	2.1
77	MP3A	Z	49.291	2.1
78	MP3A	Mx	.019	2.1
79	MP3B	X	28.458	2.1
80	MP3B	Z	49.291	2.1
81	MP3B	Mx	.019	2.1
82	MP3C	X	17.592	2.1
83	MP3C	Z	30.471	2.1
84	MP3C	Mx	023	2.1
85	OVP	X	99.345	.75
86	OVP	Z	172.07	.75
87	OVP	Mx	0	.75

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	0	.75
2	OVP	Z	169.714	.75
3	OVP	Mx	.057	.75
4	MP3A	X	0	.25
5	MP3A	Z	188.548	.25
6	MP3A	Mx	126	.25
7	MP3A	X	0	4.25
8	MP3A	Z	188.548	4.25
9	MP3A	Mx	126	4.25
10	MP3B	X	0	.25
11	MP3B	Z	140.014	.25
12	MP3B	Mx	034	.25
13	MP3B	X	0	4.25
14	MP3B	Z	140.014	4.25
15	MP3B	Mx	034	4.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP3C	X	0	.25
17	MP3C	Z	140.014	.25
18	MP3C	Mx	.128	.25
19	MP3C	X	0	4.25
20	MP3C	Z	140.014	4.25
21	MP3C	Mx	.128	4.25
22	MP3A	X	0	.25
23	MP3A	Z	188.548	.25
24	MP3A	Mx	.126	.25
25	MP3A	X	0	4.25
26	MP3A	Z	188.548	4.25
27	MP3A	Mx	.126	4.25
28	MP3B	X	0	.25
29	MP3B	Z	140.014	.25
30	MP3B	Mx	128	.25
31	MP3B	X	0	4.25
32	MP3B	Z	140.014	4.25
33	MP3B	Mx	128	4.25
34	MP3C	X	0	.25
35	MP3C	Z	140.014	.25
36	MP3C	Mx	.034	.25
37	MP3C	X	0	4.25
38	MP3C	Z	140.014	4.25
39	MP3C	Mx	.034	4.25
40	MP1A	X	0	1.25
41	MP1A	Z	81.132	1.25
42	MP1A	Mx	0	1.25
43	MP1A	X	0	3.25
44	MP1A	Z	81.132	3.25
45	MP1A	Mx	0	3.25
46	MP1B	X	0	1.25
47	MP1B	Z	41.238	1.25
48	MP1B	Mx	024	1.25
49	MP1B	X	0	3.25
50	MP1B	Z	41.238	3.25
51	MP1B	Mx	024	3.25
52	MP1C	X	0	1.25
53	MP1C	Z	41.238	1.25
54	MP1C	Mx	.024	1.25
55	MP1C	X	0	3.25
56	MP1C	Z	41.238	3.25
57	MP1C	Mx	.024	3.25
58	MP4A	X	0	2.1
59	MP4A	Z	15.316	2.1
60	MP4A	Mx	0	2.1
61	MP4B	X	0	2.1
62	MP4B	Z	19.724	2.1
63	MP4B	Mx	.009	2.1
64	MP4C	X	0	2.1
65	MP4C	Z	19.724	2.1
66	MP4C	Mx	009	2.1
67	MP2A	X	0	2.1
U/	IVIFZA	^	U	Z. I

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 9: Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP2A	Z	64.16	2.1
69	MP2A	Mx	0	2.1
70	MP2B	X	0	2.1
71	MP2B	Z	48.327	2.1
72	MP2B	Mx	.028	2.1
73	MP2C	X	0	2.1
74	MP2C	Z	48.327	2.1
75	MP2C	Mx	028	2.1
76	MP3A	X	0	2.1
77	MP3A	Z	64.16	2.1
78	MP3A	Mx	0	2.1
79	MP3B	X	0	2.1
80	MP3B	Z	42.429	2.1
81	MP3B	Mx	.024	2.1
82	MP3C	X	0	2.1
83	MP3C	Z	42.429	2.1
84	MP3C	Mx	024	2.1
85	OVP	X	0	.75
86	OVP	Z	169.714	.75
87	OVP	Mx	057	.75

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	-55.882	.75
2	OVP	Z	96.79	.75
3	OVP	Mx	.065	.75
4	MP3A	X	-86.185	.25
5	MP3A	Z	149.277	.25
6	MP3A	Mx	042	.25
7	MP3A	X	-86.185	4.25
8	MP3A	Z	149.277	4.25
9	MP3A	Mx	042	4.25
10	MP3B	X	-61.918	.25
11	MP3B	Z	107.245	.25
12	MP3B	Mx	083	.25
13	MP3B	X	-61.918	4.25
14	MP3B	Z	107.245	4.25
15	MP3B	Mx	083	4.25
16	MP3C	X	-86.185	.25
17	MP3C	Z	149.277	.25
18	MP3C	Mx	.157	.25
19	MP3C	X	-86.185	4.25
20	MP3C	Z	149.277	4.25
21	MP3C	Mx	.157	4.25
22	MP3A	X	-86.185	.25
23	MP3A	Z	149.277	.25
24	MP3A	Mx	.157	.25
25	MP3A	X	-86.185	4.25
26	MP3A	Z	149.277	4.25
27	MP3A	Mx	.157	4.25
28	MP3B	X	-61.918	.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP3B	Z	107.245	.25
30	MP3B	Mx	083	.25
31	MP3B	X	-61.918	4.25
32	MP3B	Z	107.245	4.25
33	MP3B	Mx	083	4.25
34	MP3C	X	-86.185	.25
35	MP3C	Z	149.277	.25
36	MP3C	Mx	042	.25
37	MP3C	X	-86.185	4.25
38	MP3C	Z	149.277	4.25
39	MP3C	Mx	042	4.25
40	MP1A	X	-33.917	1.25
41	MP1A	Z	58.746	1.25
42	MP1A	Mx	.023	1.25
43	MP1A	X	-33.917	3.25
44	MP1A	Z	58.746	3.25
45	MP1A	Mx	.023	3.25
46	MP1B	X	-13.97	1.25
47	MP1B	Z	24.197	1.25
48	MP1B	Mx	019	1.25
49	MP1B	X	-13.97	3.25
50	MP1B	Z	24.197	3.25
51	MP1B	Mx	019	3.25
52	MP1C	X	-33.917	1.25
53	MP1C	Z	58.746	1.25
54	MP1C	Mx	.023	1.25
55	MP1C	X	-33.917	3.25
56	MP1C	Z	58.746	3.25
57	MP1C	Mx	.023	3.25
58	MP4A	X	-8.393	2.1
59	MP4A	Z	14.536	2.1
60	MP4A	Mx	004	2.1
61	MP4B	X	-10.597	2.1
62	MP4B	Z	18.354	2.1
63	MP4B	Mx	.011	2.1
64	MP4C	X	-8.393	2.1
65	MP4C	Z	14.536	2.1
66	MP4C	Mx	004	2.1
67	MP2A	X	-29.441	2.1
68	MP2A	Z	50.994	2.1
69	MP2A	Mx	02	2.1
70	MP2B	X	-21.525	2.1
71	MP2B	Z	37.282	2.1
72	MP2B	Mx	.029	2.1
73	MP2C	X	-29.441	2.1
74	MP2C	Z	50.994	2.1
75	MP2C	Mx	02	2.1
76	MP3A	X	-28.458	2.1
77	MP3A	Z	49.291	2.1
78	MP3A	Mx	019	2.1
79	MP3B	X	-17.592	2.1
80	MP3B	Z	30.471	2.1

Company Designer Job Number Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 10: Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
81	MP3B	Mx	.023	2.1
82	MP3C	X	-28.458	2.1
83	MP3C	Z	49.291	2.1
84	MP3C	Mx	019	2.1
85	OVP	X	-55.882	.75
86	OVP	Z	96.79	.75
87	OVP	Mx	065	.75

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

1 OVP X -71,696 .75 2 OVP Z 41,394 .75 3 OVP Mx .055 .75 4 MP3A X -121,256 .25 5 MP3A Z 70.007 .25 6 MP3A MX .034 .25 7 MP3A X -121,256 .425 8 MP3A Z 70.007 .425 9 MP3A Mx .034 .425 9 MP3A Mx .034 .425 9 MP3A Mx .034 .425 10 MP3B X .121,256 .25 11 MP3B X .121,256 .25 11 MP3B X .121,256 .25 12 MP3B Mx .128 .25 13 MP3B X .121,256 .25 14 MP3B<	
3 OVP Mx .055 .75 4 MP3A X -121.256 .25 5 MP3A Z 70.007 .25 6 MP3A Mx .034 .25 7 MP3A X -121.256 4.25 8 MP3A X -121.256 4.25 9 MP3A MX .034 4.25 10 MP3B X -121.256 .25 11 MP3B X -121.256 .25 11 MP3B X -122.8 .25 12 MP3B MX -128 .25 13 MP3B X -121.256 4.25 14 MP3B X -121.256 4.25 15 MP3B X -121.256 4.25 15 MP3B X -121.256 4.25 16 MP3C X -163.288 .25 17	
4 MP3A X -121.256 .25 5 MP3A Z 70.007 .25 6 MP3A Mx .034 .25 7 MP3A X -121.256 4.25 8 MP3A Z 70.007 4.25 9 MP3A Mx .034 4.25 10 MP3B X -121.256 .25 11 MP3B Z 70.007 .25 12 MP3B Mx -128 .25 13 MP3B X -121.256 4.25 14 MP3B X -121.256 4.25 14 MP3B X -121.256 4.25 15 MP3B Mx 128 .25 15 MP3B Mx 128 .25 16 MP3C X -163.288 .25 17 MP3C X -163.288 .25 19	
5 MP3A Z 70.007 .25 6 MP3A Mx .034 .25 7 MP3A X -121.256 .4.25 8 MP3A Z 70.007 4.25 9 MP3A Mx .034 4.25 10 MP3B X -121.256 .25 11 MP3B X -121.256 .25 11 MP3B Mx -128 .25 13 MP3B Mx -121.256 4.25 14 MP3B X -121.256 4.25 14 MP3B X -121.256 4.25 14 MP3B X -128 4.25 15 MP3B Mx -183.288 25 17 MP3C X -163.288 25 17 MP3C X -163.288 4.25 19 MP3C X -163.288 4.25 20<	
6 MP3A Mx .034 .25 7 MP3A X -121.256 4.25 8 MP3A Z 70.007 4.25 9 MP3A Mx .034 4.25 10 MP3B X .121.256 .25 11 MP3B Z 70.007 .25 12 MP3B Mx 128 .25 13 MP3B X -121.256 4.25 14 MP3B X -121.256 4.25 14 MP3B X -121.256 4.25 15 MP3B Mx 128 4.25 16 MP3C X -163.288 .25 17 MP3C X -163.288 .25 19 MP3C X -163.288 4.25 20 MP3C X -163.288 4.25 21 MP3C X -163.288 4.25 <td< td=""><td></td></td<>	
7 MP3A X -121.256 4.25 8 MP3A Z 70.007 4.25 9 MP3A Mx .034 4.25 10 MP3B X -121.256 .25 11 MP3B X -121.256 .25 12 MP3B Mx 128 .25 13 MP3B X -121.256 4.25 14 MP3B X -121.256 4.25 14 MP3B X -121.256 4.25 15 MP3B Mx 128 4.25 16 MP3C X -163.288 .25 17 MP3C Z 94.274 .25 18 MP3C X -163.288 4.25 19 MP3C X -163.288 4.25 20 MP3C X -163.288 4.25 21 MP3C X -163.288 4.25	
8 MP3A Z 70.007 4.25 9 MP3A Mx .034 4.25 10 MP3B X -121.256 .25 11 MP3B Z 70.007 .25 12 MP3B Mx 128 .25 13 MP3B X -121.256 4.25 14 MP3B Z 70.007 4.25 15 MP3B Mx 128 4.25 16 MP3B Mx 128 4.25 16 MP3C X -163.288 .25 17 MP3C Z 94.274 .25 18 MP3C X -163.288 4.25 19 MP3C X -163.288 4.25 20 MP3C X -163.288 4.25 21 MP3C X -163.288 4.25 22 MP3A X -121.256 .25	
9 MP3A Mx .034 4.25 10 MP3B X -121.256 .25 11 MP3B Z 70.007 .25 12 MP3B MX 128 .25 13 MP3B X -121.256 4.25 14 MP3B Z 70.007 4.25 15 MP3B MX 128 4.25 15 MP3B MX 128 4.25 16 MP3C X 163.288 .25 17 MP3C Z 94.274 .25 18 MP3C X 163.288 4.25 19 MP3C X 163.288 4.25 20 MP3C X 163.288 4.25 20 MP3C X 163.288 4.25 21 MP3C X 163.288 4.25 22 MP3A X 121.256 .25	
10 MP3B X -121.256 .25 11 MP3B Z 70.007 .25 12 MP3B Mx 128 .25 13 MP3B X -121.256 4.25 14 MP3B Z 70.007 4.25 14 MP3B MX 128 4.25 15 MP3B MX 128 4.25 16 MP3C X 163.288 .25 17 MP3C Z 94.274 .25 18 MP3C MX .126 .25 19 MP3C X 163.288 4.25 20 MP3C X 163.288 4.25 20 MP3C X 163.288 4.25 20 MP3C X 163.288 4.25 21 MP3C X 126 2.5 22 MP3A X 121.256 .25	
11 MP3B Z 70.007 .25 12 MP3B Mx 128 .25 13 MP3B X 121.256 4.25 14 MP3B Z 70.007 4.25 15 MP3B Mx 128 4.25 16 MP3C X 163.288 .25 17 MP3C Z 94.274 .25 18 MP3C Mx .126 .25 19 MP3C X 163.288 4.25 20 MP3C X 163.288 4.25 20 MP3C X 163.288 4.25 21 MP3C Mx .126 2.5 21 MP3C Mx .126 4.25 22 MP3A X 121.256 .25 23 MP3A X 121.256 .25 24 MP3A X 121.256 4.25 25 MP3A X 121.256 4.25 26 MP3A	
11 MP3B Z 70.007 .25 12 MP3B Mx 128 .25 13 MP3B X 121.256 4.25 14 MP3B Z 70.007 4.25 15 MP3B Mx 128 4.25 16 MP3C X 163.288 .25 17 MP3C Z 94.274 .25 18 MP3C Mx .126 .25 19 MP3C X 163.288 4.25 20 MP3C X 163.288 4.25 20 MP3C X 163.288 4.25 21 MP3C Mx .126 .25 21 MP3C Mx .126 4.25 22 MP3A X 121.256 .25 23 MP3A X 121.256 .25 24 MP3A X 121.256 4.25 25 MP3A X 121.256 4.25 26 MP3A	
13 MP3B X -121.256 4.25 14 MP3B Z 70.007 4.25 15 MP3B Mx 128 4.25 16 MP3C X -163.288 .25 17 MP3C Z 94.274 .25 18 MP3C Mx .126 .25 19 MP3C X -163.288 4.25 20 MP3C Z 94.274 4.25 21 MP3C Mx .126 4.25 21 MP3C Mx .126 4.25 22 MP3A X -121.256 .25 23 MP3A X -121.256 .25 24 MP3A X -121.256 4.25 25 MP3A X -121.256 4.25 26 MP3A X -121.256 .25 28 MP3B X -121.256 .25 29 MP3B X -121.256 .25 30 MP3B	
13 MP3B X -121.256 4.25 14 MP3B Z 70.007 4.25 15 MP3B Mx 128 4.25 16 MP3C X -163.288 .25 17 MP3C Z 94.274 .25 18 MP3C Mx .126 .25 19 MP3C X -163.288 4.25 20 MP3C Z 94.274 4.25 21 MP3C Mx .126 4.25 21 MP3C Mx .126 4.25 22 MP3A X -121.256 .25 23 MP3A X -121.256 .25 24 MP3A X -121.256 4.25 25 MP3A X -121.256 4.25 26 MP3A X -121.256 .25 28 MP3B X -121.256 .25 29 MP3B X -121.256 .25 30 MP3B	
14 MP3B Z 70.007 4.25 15 MP3B Mx 128 4.25 16 MP3C X -163.288 .25 17 MP3C Z 94.274 .25 18 MP3C Mx .126 .25 19 MP3C X -163.288 4.25 20 MP3C Z 94.274 4.25 21 MP3C Mx .126 4.25 21 MP3A X -121.256 .25 23 MP3A X -121.256 .25 23 MP3A X -128 .25 24 MP3A X -121.256 4.25 25 MP3A X -121.256 4.25 26 MP3A X -121.256 .25 27 MP3A Mx .128 4.25 28 MP3B X -121.256 .25 29 MP3B X -121.256 .25 30 MP3B M	
15 MP3B Mx 128 4.25 16 MP3C X -163.288 .25 17 MP3C Z 94.274 .25 18 MP3C Mx .126 .25 19 MP3C X -163.288 4.25 20 MP3C Z 94.274 4.25 21 MP3C Mx .126 4.25 21 MP3C Mx .126 4.25 22 MP3A X -121.256 .25 23 MP3A X -121.256 .25 24 MP3A Mx .128 .25 25 MP3A X -121.256 4.25 26 MP3A X -121.256 .25 27 MP3A Mx .128 4.25 28 MP3B X -121.256 .25 29 MP3B X -121.256 .25 30 <td></td>	
16 MP3C X -163.288 .25 17 MP3C Z 94.274 .25 18 MP3C Mx .126 .25 19 MP3C X -163.288 4.25 20 MP3C Z 94.274 4.25 21 MP3C Mx .126 4.25 21 MP3C Mx .126 4.25 22 MP3A X -121.256 .25 23 MP3A Z 70.007 .25 24 MP3A Mx .128 .25 25 MP3A X -121.256 4.25 26 MP3A Z 70.007 4.25 27 MP3A Mx .128 4.25 28 MP3B X -121.256 .25 29 MP3B X -121.256 .25 30 MP3B Mx 034 .25 31 MP3B X -121.256 4.25	
17 MP3C Z 94.274 .25 18 MP3C Mx .126 .25 19 MP3C X -163.288 4.25 20 MP3C Z 94.274 4.25 21 MP3C Mx .126 4.25 21 MP3C Mx .126 4.25 22 MP3A X -121.256 .25 23 MP3A X .128 .25 24 MP3A Mx .128 .25 25 MP3A X -121.256 4.25 26 MP3A X .128 4.25 27 MP3A Mx .128 4.25 28 MP3B X -121.256 .25 29 MP3B X -121.256 .25 30 MP3B Mx 034 .25 31 MP3B X -121.256 4.25	
18 MP3C Mx .126 .25 19 MP3C X -163.288 4.25 20 MP3C Z 94.274 4.25 21 MP3C Mx .126 4.25 22 MP3A X -121.256 .25 23 MP3A Z 70.007 .25 24 MP3A Mx .128 .25 25 MP3A X -121.256 4.25 26 MP3A Z 70.007 4.25 27 MP3A Mx .128 4.25 28 MP3B X -121.256 .25 29 MP3B X 70.007 .25 30 MP3B Mx 034 .25 31 MP3B X -121.256 4.25	
19 MP3C X -163.288 4.25 20 MP3C Z 94.274 4.25 21 MP3C Mx .126 4.25 22 MP3A X -121.256 .25 23 MP3A Z 70.007 .25 24 MP3A Mx .128 .25 25 MP3A X -121.256 4.25 26 MP3A Z 70.007 4.25 27 MP3A Mx .128 4.25 28 MP3B X -121.256 .25 29 MP3B Z 70.007 .25 30 MP3B Mx 034 .25 31 MP3B X -121.256 4.25	
20 MP3C Z 94.274 4.25 21 MP3C Mx .126 4.25 22 MP3A X -121.256 .25 23 MP3A Z 70.007 .25 24 MP3A Mx .128 .25 25 MP3A X -121.256 4.25 26 MP3A Z 70.007 4.25 27 MP3A Mx .128 4.25 28 MP3B X -121.256 .25 29 MP3B Z 70.007 .25 30 MP3B Mx 034 .25 31 MP3B X -121.256 4.25	
22 MP3A X -121.256 .25 23 MP3A Z 70.007 .25 24 MP3A Mx .128 .25 25 MP3A X -121.256 4.25 26 MP3A Z 70.007 4.25 27 MP3A Mx .128 4.25 28 MP3B X -121.256 .25 29 MP3B Z 70.007 .25 30 MP3B Mx 034 .25 31 MP3B X -121.256 4.25	
22 MP3A X -121.256 .25 23 MP3A Z 70.007 .25 24 MP3A Mx .128 .25 25 MP3A X -121.256 4.25 26 MP3A Z 70.007 4.25 27 MP3A Mx .128 4.25 28 MP3B X -121.256 .25 29 MP3B Z 70.007 .25 30 MP3B Mx 034 .25 31 MP3B X -121.256 4.25	
23 MP3A Z 70.007 .25 24 MP3A Mx .128 .25 25 MP3A X -121.256 4.25 26 MP3A Z 70.007 4.25 27 MP3A Mx .128 4.25 28 MP3B X -121.256 .25 29 MP3B Z 70.007 .25 30 MP3B Mx 034 .25 31 MP3B X -121.256 4.25	
24 MP3A Mx .128 .25 25 MP3A X -121.256 4.25 26 MP3A Z 70.007 4.25 27 MP3A Mx .128 4.25 28 MP3B X -121.256 .25 29 MP3B Z 70.007 .25 30 MP3B Mx 034 .25 31 MP3B X -121.256 4.25	
25 MP3A X -121.256 4.25 26 MP3A Z 70.007 4.25 27 MP3A Mx .128 4.25 28 MP3B X -121.256 .25 29 MP3B Z 70.007 .25 30 MP3B Mx 034 .25 31 MP3B X -121.256 4.25	
26 MP3A Z 70.007 4.25 27 MP3A Mx .128 4.25 28 MP3B X -121.256 .25 29 MP3B Z 70.007 .25 30 MP3B Mx 034 .25 31 MP3B X -121.256 4.25	
27 MP3A Mx .128 4.25 28 MP3B X -121.256 .25 29 MP3B Z 70.007 .25 30 MP3B Mx 034 .25 31 MP3B X -121.256 4.25	
28 MP3B X -121.256 .25 29 MP3B Z 70.007 .25 30 MP3B Mx 034 .25 31 MP3B X -121.256 4.25	
29 MP3B Z 70.007 .25 30 MP3B Mx 034 .25 31 MP3B X -121.256 4.25	
30 MP3B Mx034 .25 31 MP3B X -121.256 4.25	
31 MP3B X -121.256 4.25	
32 MP3B Z 70.007 4.25	
33 MP3B Mx034 4.25	
34 MP3C X -163.288 .25	
35 MP3C Z 94.274 .25	
36 MP3C Mx126 .25	
37 MP3C X -163.288 4.25	
38 MP3C Z 94.274 4.25	
39 MP3C Mx126 4.25	
40 MP1A X -35.714 1.25	
41 MP1A Z 20.619 1.25	

Company Designer Job Number Model Name : Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 11: Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
42	MP1A	Mx	.024	1.25
43	MP1A	Χ	-35.714	3.25
44	MP1A	Z	20.619	3.25
45	MP1A	Mx	.024	3.25
46	MP1B	X	-35.714	1.25
47	MP1B	Z	20.619	1.25
48	MP1B	Mx	024	1.25
49	MP1B	Χ	-35.714	3.25
50	MP1B	Z	20.619	3.25
51	MP1B	Mx	024	3.25
52	MP1C	X	-70.262	1.25
53	MP1C	Z	40.566	1.25
54	MP1C	Mx	0	1.25
55	MP1C	X	-70.262	3.25
56	MP1C	Z	40.566	3.25
57	MP1C	Mx	0	3.25
58	MP4A	X	-17.082	2.1
59	MP4A	Z	9.862	2.1
60	MP4A	Mx	009	2.1
61	MP4B	X	-17.082	2.1
62	MP4B	Z	9.862	2.1
63	MP4B	Mx	.009	2.1
64	MP4C	X	-13.264	2.1
65	MP4C	Z	7.658	2.1
66	MP4C	Mx	0	2.1
67	MP2A	X Z	-41.853	2.1
68 69	MP2A		24.164	2.1 2.1
70	MP2A MP2B	Mx X	028 -41.853	2.1
71	MP2B	Z	24.164	2.1
72	MP2B	Mx	.028	2.1
73	MP2C	X	-55.564	2.1
74	MP2C	Z	32.08	2.1
75	MP2C	Mx	0	2.1
76	MP3A	X	-36.744	2.1
77	MP3A	Z	21.214	2.1
78	MP3A	Mx	024	2.1
79	MP3B	X	-36.744	2.1
80	MP3B	Z	21.214	2.1
81	MP3B	Mx	.024	2.1
82	MP3C	X	-55.564	2.1
83	MP3C	Z	32.08	2.1
84	MP3C	Mx	0	2.1
85	OVP	X	-71.696	.75
86	OVP	Z	41.394	.75
87	OVP	Mx	055	.75

Member Point Loads (BLC 12: Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	-111.763	.75
2	2 OVP	Z	0	.75

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 12: Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Lo cation[ft,%]
3	OVP	Mx	.065	.75
4	MP3A	X	-123.836	.25
5	MP3A	Z	0	.25
6	MP3A	Mx	.083	.25
7	MP3A	X	-123.836	4.25
8	MP3A	Z	0	4.25
9	MP3A	Mx	.083	4.25
10	MP3B	X	-172.37	.25
11	MP3B	Z	0	.25
12	MP3B	Mx	157	.25
13	MP3B	X	-172.37	4.25
14	MP3B	Z	0	4.25
15	MP3B	Mx	157	4.25
16	MP3C	X	-172.37	.25
17	MP3C	Z	0	.25
18	MP3C	Mx	.042	.25
19	MP3C	X	-172.37	4.25
20	MP3C	Z	0	4.25
21	MP3C	Mx	.042	4.25
22	MP3A	X	-123.836	.25
23	MP3A	Z	0	.25
24	MP3A	Mx	.083	.25
25	MP3A	X	-123.836	4.25
26	MP3A	Z	0	4.25
27	MP3A	Mx	.083	4.25
28	MP3B	X	-172.37	.25
29	MP3B	Z	0	.25
30	MP3B	Mx	.042	.25
31	MP3B	X	-172.37	4.25
32	MP3B	Z	0	4.25
33	MP3B	Mx	.042	4.25
34	MP3C	X	-172.37	.25
35	MP3C	Z	0	.25
36	MP3C	Mx	157	.25
37	MP3C	X	-172.37	4.25
38	MP3C	Z	0	4.25
39	MP3C	Mx	157	4.25
40	MP1A	X	-27.941	1.25
41	MP1A	Z	0	1.25
42	MP1A	Mx	.019	1.25
43	MP1A	X	-27.941	3.25
44	MP1A	Z	0	3.25
45	MP1A	Mx	.019	3.25
46	MP1B	X	-67.834	1.25
47	MP1B	Z	0	1.25
48	MP1B	Mx	023	1.25
49	MP1B	X	-67.834	3.25
50	MP1B	Z	0	3.25
51	MP1B	Mx	023	3.25
52	MP1C	X	-67.834	1.25
53	MP1C	Z	0	1.25
54	MP1C	Mx	023	1.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 12: Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
55	MP1C	X	-67.834	3.25
56	MP1C	Z	0	3.25
57	MP1C	Mx	023	3.25
58	MP4A	X	-21.194	2.1
59	MP4A	Z	0	2.1
60	MP4A	Mx	011	2.1
61	MP4B	X	-16.785	2.1
62	MP4B	Z	0	2.1
63	MP4B	Mx	.004	2.1
64	MP4C	X	-16.785	2.1
65	MP4C	Z	0	2.1
66	MP4C	Mx	.004	2.1
67	MP2A	X	-43.049	2.1
68	MP2A	Z	0	2.1
69	MP2A	Mx	029	2.1
70	MP2B	X	-58.883	2.1
71	MP2B	Z	0	2.1
72	MP2B	Mx	.02	2.1
73	MP2C	X	-58.883	2.1
74	MP2C	Z	0	2.1
75	MP2C	Mx	.02	2.1
76	MP3A	X	-35.185	2.1
77	MP3A	Z	0	2.1
78	MP3A	Mx	023	2.1
79	MP3B	X	-56.916	2.1
80	MP3B	Z	0	2.1
81	MP3B	Mx	.019	2.1
82	MP3C	X	-56.916	2.1
83	MP3C	Z	0	2.1
84	MP3C	Mx	.019	2.1
85	OVP	X	-111.763	.75
86	OVP	Z	0	.75
87	OVP	Mx	065	.75

Member Point Loads (BLC 13: Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	-146.977	.75
2	OVP	Z	-84.857	.75
3	OVP	Mx	.057	.75
4	MP3A	X	-121.256	.25
5	MP3A	Z	-70.007	.25
6	MP3A	Mx	.128	.25
7	MP3A	X	-121.256	4.25
8	MP3A	Z	-70.007	4.25
9	MP3A	Mx	.128	4.25
10	MP3B	X	-163.288	.25
11	MP3B	Z	-94.274	.25
12	MP3B	Mx	126	.25
13	MP3B	X	-163.288	4.25
14	MP3B	Z	-94.274	4.25
15	MP3B	Mx	126	4.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 13: Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP3C	X	-121.256	.25
17	MP3C	Z	-70.007	.25
18	MP3C	Mx	034	.25
19	MP3C	X	-121.256	4.25
20	MP3C	Z	-70.007	4.25
21	MP3C	Mx	034	4.25
22	MP3A	X	-121.256	.25
23	MP3A	Z	-70.007	.25
24	MP3A	Mx	.034	.25
25	MP3A	X	-121.256	4.25
26	MP3A	Z	-70.007	4.25
27	MP3A	Mx	.034	4.25
28	MP3B	X	-163.288	.25
29	MP3B	Z	-94.274	.25
30	MP3B	Mx	.126	.25
31	MP3B	X	-163.288	4.25
32	MP3B	Z	-94.274	4.25
33	MP3B	Mx	.126	4.25
34	MP3C	X	-121.256	.25
35	MP3C	Z	-70.007	.25
36	MP3C	Mx	128	.25
37	MP3C	X	-121.256	4.25
38	MP3C	Z	-70.007	4.25
39	MP3C	Mx	128	4.25
40	MP1A	X	-35.714	1.25
41	MP1A	Z	-20.619	1.25
42	MP1A	Mx	.024	1.25
43	MP1A	X	-35.714	3.25
44	MP1A	Z	-20.619	3.25
45	MP1A	Mx	.024	3.25
46	MP1B	X	-70.262	1.25
47	MP1B	Z	-40.566	1.25
48	MP1B	Mx	0	1.25
49	MP1B	X	-70.262	3.25
50	MP1B	Z	-40.566	3.25
51	MP1B	Mx	0	3.25
52	MP1C	X	-35.714	1.25
53	MP1C	Z	-20.619	1.25
54	MP1C	Mx	024	1.25
55	MP1C	X	-35.714	3.25
56	MP1C	Z	-20.619	3.25
57	MP1C	Mx	024	3.25
58	MP4A	X	-17.082	2.1
59	MP4A	Z	-9.862	2.1
60	MP4A	Mx	009	2.1
61	MP4B	X	-13.264	2.1
62	MP4B	Z	-7.658	2.1
63	MP4B	Mx	0	2.1
64	MP4C	X	-17.082	2.1
65	MP4C	Z	-9.862	2.1
66	MP4C	Mx	.009	2.1
67	MP2A	X	-41.853	2.1

Company Designer Job Number Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 13: Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP2A	Z	-24.164	2.1
69	MP2A	Mx	028	2.1
70	MP2B	X	-55.564	2.1
71	MP2B	Z	-32.08	2.1
72	MP2B	Mx	0	2.1
73	MP2C	X	-41.853	2.1
74	MP2C	Z	-24.164	2.1
75	MP2C	Mx	.028	2.1
76	MP3A	X	-36.744	2.1
77	MP3A	Z	-21.214	2.1
78	MP3A	Mx	024	2.1
79	MP3B	X	-55.564	2.1
80	MP3B	Z	-32.08	2.1
81	MP3B	Mx	0	2.1
82	MP3C	X	-36.744	2.1
83	MP3C	Z	-21.214	2.1
84	MP3C	Mx	.024	2.1
85	OVP	X	-146.977	.75
86	OVP	Z	-84.857	.75
87	OVP	Mx	057	.75

Member Point Loads (BLC 14: Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	-99.345	.75
2	OVP	Z	-172.07	.75
3	OVP	Mx	0	.75
4	MP3A	X	-86.185	.25
5	MP3A	Z	-149.277	.25
6	MP3A	Mx	.157	.25
7	MP3A	X	-86.185	4.25
8	MP3A	Z	-149.277	4.25
9	MP3A	Mx	.157	4.25
10	MP3B	X	-86.185	.25
11	MP3B	Z	-149.277	.25
12	MP3B	Mx	042	.25
13	MP3B	X	-86.185	4.25
14	MP3B	Z	-149.277	4.25
15	MP3B	Mx	042	4.25
16	MP3C	X	-61.918	.25
17	MP3C	Z	-107.245	.25
18	MP3C	Mx	083	.25
19	MP3C	X	-61.918	4.25
20	MP3C	Z	-107.245	4.25
21	MP3C	Mx	083	4.25
22	MP3A	X	-86.185	.25
23	MP3A	Z	-149.277	.25
24	MP3A	Mx	042	.25
25	MP3A	X	-86.185	4.25
26	MP3A	Z	-149.277	4.25
27	MP3A	Mx	042	4.25
28	MP3B	X	-86.185	.25

Company :
Designer :
Job Number :

: Maser Consulting: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 14: Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Lo cation[ft,%]
29	MP3B	Z	-149.277	.25
30	MP3B	Mx	.157	.25
31	MP3B	X	-86.185	4.25
32	MP3B	Z	-149.277	4.25
33	MP3B	Mx	.157	4.25
34	MP3C	X	-61.918	.25
35	MP3C	Z	-107.245	.25
36	MP3C	Mx	083	.25
37	MP3C	X	-61.918	4.25
38	MP3C	Z	-107.245	4.25
39	MP3C	Mx	083	4.25
40	MP1A	X	-33.917	1.25
41	MP1A	Z	-58.746	1.25
42	MP1A	Mx	.023	1.25
43	MP1A	X	-33.917	3.25
44	MP1A	Z	-58.746	3.25
45	MP1A	Mx	.023	3.25
46	MP1B	X	-33.917	1.25
47	MP1B	Z	-58.746	1.25
48	MP1B	Mx	.023	1.25
49	MP1B	X	-33.917	3.25
50	MP1B	Z	-58.746	3.25
51	MP1B	Mx	.023	3.25
52	MP1C	X	-13.97	1.25
53	MP1C	Z	-24.197	1.25
54	MP1C	Mx	019	1.25
55	MP1C	X	-13.97	3.25
56	MP1C	Z	-24.197	3.25
57	MP1C	Mx	019	3.25
58	MP4A	X	-8.393	2.1
59	MP4A	Z	-14.536	2.1
60	MP4A	Mx	004	2.1
61	MP4B	X	-8.393	2.1
62	MP4B	Z	-14.536	2.1
63	MP4B	Mx	004	2.1
64	MP4C	X	-10.597	2.1
65	MP4C	Z	-18.354	2.1
66	MP4C	Mx	.011	2.1
67	MP2A	X	-29.441	2.1
68	MP2A	Z	-50.994	2.1
69	MP2A	Mx	02	2.1
70	MP2B	X	-29.441	2.1
71	MP2B	Z	-50.994	2.1
72	MP2B	Mx	02	2.1
73	MP2C	X	-21.525	2.1
74	MP2C	Z	-37.282	2.1
75	MP2C	Mx	.029	2.1
76	MP3A	X	-28.458	2.1
77	MP3A	Z	-49.291	2.1
78	MP3A	Mx	019	2.1
79	MP3B	X	-28.458	2.1
80	MP3B	Z	-49.291	2.1

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 14: Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
81	MP3B	Mx	019	2.1
82	MP3C	X	-17.592	2.1
83	MP3C	Z	-30.471	2.1
84	MP3C	Mx	.023	2.1
85	OVP	X	-99.345	.75
86	OVP	Z	-172.07	.75
87	OVP	Mx	0	.75

Member Point Loads (BLC 15: Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	0	.75
2	OVP	Z	-30.443	.75
3	OVP	Mx	01	.75
4	MP3A	Χ	0	.25
5	MP3A	Z	-32.902	.25
6	MP3A	Mx	.022	.25
7	MP3A	X	0	4.25
8	MP3A	Z	-32.902	4.25
9	MP3A	Mx	.022	4.25
10	MP3B	Χ	0	.25
11	MP3B	Z	-25.027	.25
12	MP3B	Mx	.006	.25
13	MP3B	X	0	4.25
14	MP3B	Z	-25.027	4.25
15	MP3B	Mx	.006	4.25
16	MP3C	X	0	.25
17	MP3C	Z	-25.027	.25
18	MP3C	Mx	023	.25
19	MP3C	Χ	0	4.25
20	MP3C	Z	-25.027	4.25
21	MP3C	Mx	023	4.25
22	MP3A	Χ	0	.25
23	MP3A	Z	-32.902	.25
24	MP3A	Mx	022	.25
25	MP3A	Χ	0	4.25
26	MP3A	Z	-32.902	4.25
27	MP3A	Mx	022	4.25
28	MP3B	X	0	.25
29	MP3B	Z	-25.027	.25
30	MP3B	Mx	.023	.25
31	MP3B	Χ	0	4.25
32	MP3B	Z	-25.027	4.25
33	MP3B	Mx	.023	4.25
34	MP3C	X	0	.25
35	MP3C	Z	-25.027	.25
36	MP3C	Mx	006	.25
37	MP3C	Χ	0	4.25
38	MP3C	Z	-25.027	4.25
39	MP3C	Mx	006	4.25
40	MP1A	X	0	1.25
41	MP1A	Z	-17.475	1.25

Company Designer Job Number Model Name : Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 15: Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
42	MP1A	Mx	0	1.25
43	MP1A	X	0	3.25
44	MP1A	Z	-17.475	3.25
45	MP1A	Mx	0	3.25
46	MP1B	X	0	1.25
47	MP1B	Z	-9.927	1.25
48	MP1B	Mx	.006	1.25
49	MP1B	X	0	3.25
50	MP1B	Z	-9.927	3.25
51	MP1B	Mx	.006	3.25
52	MP1C	X	0	1.25
53	MP1C	Z	-9.927	1.25
54	MP1C	Mx	006	1.25
55	MP1C	X	0	3.25
56	MP1C	Z	-9.927	3.25
57	MP1C	Mx	006	3.25
58	MP4A	X	0	2.1
59	MP4A	Z	-3.528	2.1
60	MP4A	Mx	0	2.1
61	MP4B	X	0	2.1
62	MP4B	Z	-4.386	2.1
63	MP4B	Mx	002	2.1
64	MP4C	X	0	2.1
65	MP4C	Z	-4.386	2.1
66	MP4C	Mx	.002	2.1
67	MP2A	X	0	2.1
68	MP2A	Z	-14.685	2.1
69	MP2A	Mx	0	2.1
70	MP2B	X	0	2.1
71	MP2B	Z	-11.317	2.1
72	MP2B	Mx	007	2.1
73	MP2C	X	0	2.1
74	MP2C	Z	-11.317	2.1
75	MP2C	Mx	.007	2.1
76	MP3A	X	0	2.1
77	MP3A	Z	-14.685	2.1
78	MP3A	Mx	0	2.1
79	MP3B	X	0	2.1
80	MP3B	Z	-10.037	2.1
81	MP3B	Mx	006	2.1
82	MP3C	X	0	2.1
83	MP3C	Z	-10.037	2.1
84	MP3C	Mx	.006	2.1
85	OVP	X	0	.75
86	OVP	Z	-30.443	.75
87	OVP	Mx	.01	.75

Member Point Loads (BLC 16: Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	10.339	.75
2	OVP	Z	-17.907	.75

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 16: Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	OVP	Mx	012	.75
4	MP3A	X	15.138	.25
5	MP3A	Z	-26.221	.25
6	MP3A	Mx	.007	.25
7	MP3A	X	15.138	4.25
8	MP3A	Z	-26.221	4.25
9	MP3A	Mx	.007	4.25
10	MP3B	X	11.201	.25
11	MP3B	Z	-19.4	.25
12	MP3B	Mx	.015	.25
13	MP3B	X	11.201	4.25
14	MP3B	Z	-19.4	4.25
15	MP3B	Mx	.015	4.25
16	MP3C	X	15.138	.25
17	MP3C	Z	-26.221	.25
18	MP3C	Mx	028	.25
19	MP3C	X	15.138	4.25
20	MP3C	Z	-26.221	4.25
21	MP3C	Mx	028	4.25
22	MP3A	X	15.138	.25
23	MP3A	Z	-26.221	.25
24	MP3A	Mx	028	.25
25	MP3A	X	15.138	4.25
26	MP3A	Z	-26.221	4.25
27	MP3A	Mx	028	4.25
28	MP3B	X	11.201	.25
29	MP3B	Z	-19.4	.25
30	MP3B	Mx	.015	.25
31	MP3B	X	11.201	4.25
32	MP3B	Z	-19.4	4.25
33	MP3B	Mx	.015	4.25
34	MP3C	X	15.138	.25
35	MP3C	Z	-26.221	.25
36	MP3C	Mx	.007	.25
37	MP3C	X	15.138	4.25
38	MP3C	Z	-26.221	4.25
39	MP3C	Mx	.007	4.25
40	MP1A	X	7.479	1.25
41	MP1A	Z	-12.955	1.25
42	MP1A	Mx	005	1.25
43	MP1A	X	7.479	3.25
44	MP1A	Z	-12.955	3.25
45	MP1A	Mx	005	3.25
46	MP1B	X	3.705	1.25
47	MP1B	Z	-6.418	1.25
48	MP1B	Mx	.005	1.25
49	MP1B	X	3.705	3.25
50	MP1B	Z	-6.418	3.25
51	MP1B	Mx	.005	3.25
52	MP1C	X	7.479	1.25
53	MP1C	Z	-12.955	1.25
54	MP1C	Mx	005	1.25

: Maser Consulting

SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 16: Antenna Wi (30 Deg)) (Continued)

	Manahanlahal	Discotion	Manage Strade File In 43	Looption FR 0/1
55	Member Label MP1C	Direction	Magnitude[lb,k-ft] 7.479	Location[ft,%]
		X Z		3.25
56	MP1C		-12.955	3.25
57	MP1C	Mx	005	3.25
58	MP4A	X	1.907	2.1
59	MP4A	Z	-3.303	2.1
60	MP4A	Mx	.000954	2.1
61	MP4B	X	2.336	2.1
62	MP4B	Z	-4.046	2.1
63	MP4B	Mx	002	2.1
64	MP4C	X	1.907	2.1
65	MP4C	Z	-3.303	2.1
66	MP4C	Mx	.000953	2.1
67	MP2A	X	6.781	2.1
68	MP2A	Z	-11.745	2.1
69	MP2A	Mx	.005	2.1
70	MP2B	X	5.097	2.1
71	MP2B	Z	-8.828	2.1
72	MP2B	Mx	007	2.1
73	MP2C	X	6.781	2.1
74	MP2C	Z	-11.745	2.1
75	MP2C	Mx	.005	2.1
76	MP3A	X	6.568	2.1
77	MP3A	Z	-11.376	2.1
78	MP3A	Mx	.004	2.1
79	MP3B	X	4.244	2.1
80	MP3B	Z	-7.35	2.1
81	MP3B	Mx	006	2.1
82	MP3C	X	6.568	2.1
83	MP3C	Z	-11.376	2.1
84	MP3C	Mx	.004	2.1
85	OVP	X	10.339	.75
86	OVP	Z	-17.907	.75
87	OVP			
07	UVP	Mx	.012	.75

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	13.679	.75
2	OVP	Z	-7.898	.75
3	OVP	Mx	011	.75
4	MP3A	X	21.674	.25
5	MP3A	Z	-12.513	.25
6	MP3A	Mx	006	.25
7	MP3A	X	21.674	4.25
8	MP3A	Z	-12.513	4.25
9	MP3A	Mx	006	4.25
10	MP3B	X	21.674	.25
11	MP3B	Z	-12.513	.25
12	MP3B	Mx	.023	.25
13	MP3B	X	21.674	4.25
14	MP3B	Z	-12.513	4.25
15	MP3B	Mx	.023	4.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 17: Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP3C	X	28.494	.25
17	MP3C	Z	-16.451	.25
18	MP3C	Mx	022	.25
19	MP3C	X	28.494	4.25
20	MP3C	Z	-16.451	4.25
21	MP3C	Mx	022	4.25
22	MP3A	X	21.674	.25
23	MP3A	Z	-12.513	.25
24	MP3A	Mx	023	.25
25	MP3A	X	21.674	4.25
26	MP3A	Z	-12.513	4.25
27	MP3A	Mx	023	4.25
28	MP3B	X	21.674	.25
29	MP3B	Z	-12.513	.25
30	MP3B	Mx	.006	.25
31	MP3B	X	21.674	4.25
32	MP3B	Z	-12.513	4.25
33	MP3B	Mx	.006	4.25
34	MP3C	X	28.494	.25
35	MP3C	Z	-16.451	.25
36	MP3C	Mx	.022	.25
37	MP3C	X	28.494	4.25
38	MP3C	Z	-16.451	4.25
39	MP3C	Mx	.022	4.25
40	MP1A	X	8.597	1.25
41	MP1A	Z	-4.963	1.25
42	MP1A	Mx	006	1.25
43	MP1A	X	8.597	3.25
44	MP1A	Z	-4.963	3.25
45	MP1A	Mx	006	3.25
46	MP1B	X	8.597	1.25
47	MP1B	Z	-4.963	1.25
48	MP1B	Mx	.006	1.25
49	MP1B	X	8.597	3.25
50	MP1B	Z	-4.963	3.25
51	MP1B	Mx	.006	3.25
52	MP1C	X	15.134	1.25
53	MP1C	Z	-8.737	1.25
54	MP1C	Mx	0	1.25
55	MP1C	X	15.134	3.25
56	MP1C	Z	-8.737	3.25
57	MP1C	Mx	0	3.25
58	MP4A	X	3.799	2.1
59	MP4A	Z	-2.193	2.1
60	MP4A MP4A	Mx	.002	2.1
61	MP4B	X	3.799	2.1
62	MP4B	Z	-2.193	2.1
63	MP4B	Mx	002	2.1
64	MP4C	X	3.056	2.1
65	MP4C	Z	-1.764	2.1
66	MP4C	Mx	0	2.1
67	MP2A	X	9.801	2.1
UI	IVIT ZA	^	9.001	۷.۱

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 17: Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP2A	Z	-5.658	2.1
69	MP2A	Mx	.007	2.1
70	MP2B	X	9.801	2.1
71	MP2B	Z	-5.658	2.1
72	MP2B	Mx	007	2.1
73	MP2C	X	12.718	2.1
74	MP2C	Z	-7.343	2.1
75	MP2C	Mx	0	2.1
76	MP3A	X	8.692	2.1
77	MP3A	Z	-5.018	2.1
78	MP3A	Mx	.006	2.1
79	MP3B	X	8.692	2.1
80	MP3B	Z	-5.018	2.1
81	MP3B	Mx	006	2.1
82	MP3C	X	12.718	2.1
83	MP3C	Z	-7.343	2.1
84	MP3C	Mx	0	2.1
85	OVP	X	13.679	.75
86	OVP	Z	-7.898	.75
87	OVP	Mx	.011	.75

Member Point Loads (BLC 18: Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	20.678	.75
2	OVP	Z	0	.75
3	OVP	Mx	012	.75
4	MP3A	X	22.401	.25
5	MP3A	Z	0	.25
6	MP3A	Mx	015	.25
7	MP3A	X	22.401	4.25
8	MP3A	Z	0	4.25
9	MP3A	Mx	015	4.25
10	MP3B	Χ	30.277	.25
11	MP3B	Z	0	.25
12	MP3B	Mx	.028	.25
13	MP3B	X	30.277	4.25
14	MP3B	Z	0	4.25
15	MP3B	Mx	.028	4.25
16	MP3C	X	30.277	.25
17	MP3C	Z	0	.25
18	MP3C	Mx	007	.25
19	MP3C	X	30.277	4.25
20	MP3C	Z	0	4.25
21	MP3C	Mx	007	4.25
22	MP3A	X	22.401	.25
23	MP3A	Z	0	.25
24	MP3A	Mx	015	.25
25	MP3A	X	22.401	4.25
26	MP3A	Z	0	4.25
27	MP3A	Mx	015	4.25
28	MP3B	X	30.277	.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 18: Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Lo cation [ft, %]
29	MP3B	Z	0	.25
30	MP3B	Mx	007	.25
31	MP3B	X	30.277	4.25
32	MP3B	Z	0	4.25
33	MP3B	Mx	007	4.25
34	MP3C	X	30.277	.25
35	MP3C	Z	0	.25
36	MP3C	Mx	.028	.25
37	MP3C	X	30.277	4.25
38	MP3C	Z	0	4.25
39	MP3C	Mx	.028	4.25
40	MP1A	X	7.411	1.25
41	MP1A	Z	0	1.25
42	MP1A	Mx	005	1.25
43	MP1A	X	7.411	3.25
44	MP1A	Z	0	3.25
45	MP1A	Mx	005	3.25
46	MP1B	X	14.959	1.25
47	MP1B	Z	0	1.25
48	MP1B	Mx	.005	1.25
49	MP1B	X	14.959	3.25
50	MP1B	Z	0	3.25
51	MP1B	Mx	.005	3.25
52	MP1C	X	14.959	1.25
53	MP1C	Z	0	1.25
54	MP1C	Mx	.005	1.25
55	MP1C	X	14.959	3.25
56	MP1C	Z	0	3.25
57	MP1C	Mx	.005	3.25
58	MP4A	X	4.672	2.1
59	MP4A	Z	0	2.1
60	MP4A	Mx	.002	2.1
61	MP4B	X	3.814	2.1
62	MP4B	Z	0	2.1
63	MP4B	Mx	000954	2.1
64	MP4C	X	3.814	2.1
65	MP4C	Z	0	2.1
66	MP4C	Mx	000954	2.1
67	MP2A	X	10.194	2.1
68	MP2A	Z	0	2.1
69	MP2A	Mx	.007	2.1
70	MP2B	X	13.563	2.1
71	MP2B	Z	0	2.1
72	MP2B	Mx	005	2.1
73	MP2C	X	13.563	2.1
74	MP2C	Z	0	2.1
75	MP2C	Mx	005	2.1
76	MP3A	X	8.487	2.1
77	MP3A	Z	0	2.1
78	MP3A	Mx	.006	2.1
79	MP3B	X	13.136	2.1
80	MP3B	Z	0	2.1

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 18: Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
81	MP3B	Mx	004	2.1
82	MP3C	X	13.136	2.1
83	MP3C	Z	0	2.1
84	MP3C	Mx	004	2.1
85	OVP	X	20.678	.75
86	OVP	Z	0	.75
87	OVP	Mx	.012	.75

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	26.364	.75
2	OVP	Z	15.221	.75
3	OVP	Mx	01	.75
4	MP3A	X	21.674	.25
5	MP3A	Z	12.513	.25
6	MP3A	Mx	023	.25
7	MP3A	X	21.674	4.25
8	MP3A	Z	12.513	4.25
9	MP3A	Mx	023	4.25
10	MP3B	X	28.494	.25
11	MP3B	Z	16.451	.25
12	MP3B	Mx	.022	.25
13	MP3B	X	28.494	4.25
14	MP3B	Z	16.451	4.25
15	MP3B	Mx	.022	4.25
16	MP3C	X	21.674	.25
17	MP3C	Z	12.513	.25
18	MP3C	Mx	.006	.25
19	MP3C	X	21.674	4.25
20	MP3C	Z	12.513	4.25
21	MP3C	Mx	.006	4.25
22	MP3A	X	21.674	.25
23	MP3A	Z	12.513	.25
24	MP3A	Mx	006	.25
25	MP3A	X	21.674	4.25
26	MP3A	Z	12.513	4.25
27	MP3A	Mx	006	4.25
28	MP3B	X	28.494	.25
29	MP3B	Z	16.451	.25
30	MP3B	Mx	022	.25
31	MP3B	X	28.494	4.25
32	MP3B	Z	16.451	4.25
33	MP3B	Mx	022	4.25
34	MP3C	X	21.674	.25
35	MP3C	Z	12.513	.25
36	MP3C	Mx	.023	.25
37	MP3C	X	21.674	4.25
38	MP3C	Z	12.513	4.25
39	MP3C	Mx	.023	4.25
40	MP1A	X	8.597	1.25
41	MP1A	Z	4.963	1.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 19: Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
42	MP1A	Mx	006	1.25
43	MP1A	X	8.597	3.25
44	MP1A	Z	4.963	3.25
45	MP1A	Mx	006	3.25
46	MP1B	X	15.134	1.25
47	MP1B	Z	8.737	1.25
48	MP1B	Mx	0	1.25
49	MP1B	X	15.134	3.25
50	MP1B	Z	8.737	3.25
51	MP1B	Mx	0	3.25
52	MP1C	X	8.597	1.25
53	MP1C	Z	4.963	1.25
54	MP1C	Mx	.006	1.25
55	MP1C	X	8.597	3.25
56	MP1C	Z	4.963	3.25
57	MP1C	Mx	.006	3.25
58	MP4A	X	3.799	2.1
59	MP4A	Z	2.193	2.1
60	MP4A	Mx	.002	2.1
61	MP4B	X	3.056	2.1
62	MP4B	Z	1.764	2.1
63	MP4B	Mx	0	2.1
64	MP4C	X	3.799	2.1
65	MP4C	Z	2.193	2.1
66	MP4C	Mx	002	2.1
67 68	MP2A MP2A	X Z	9.801 5.658	2.1 2.1
69	MP2A MP2A	Mx	.007	2.1
70	MP2B	X	12.718	2.1
71	MP2B	Z	7.343	2.1
72	MP2B	Mx	0	2.1
73	MP2C	X	9.801	2.1
74	MP2C	Z	5.658	2.1
75	MP2C	Mx	007	2.1
76	MP3A	X	8.692	2.1
77	MP3A	Z	5.018	2.1
78	MP3A	Mx	.006	2.1
79	MP3B	X	12.718	2.1
80	MP3B	Z	7.343	2.1
81	MP3B	Mx	0	2.1
82	MP3C	X	8.692	2.1
83	MP3C	Z	5.018	2.1
84	MP3C	Mx	006	2.1
85	OVP	X	26.364	.75
86	OVP	Z	15.221	.75
87	OVP	Mx	.01	.75

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	17.663	.75
2	OVP	Z	30.593	.75

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 20: Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	OVP	Mx	0	.75
4	MP3A	X	15.138	.25
5	MP3A	Z	26.221	.25
6	MP3A	Mx	028	.25
7	MP3A	X	15.138	4.25
8	MP3A	Z	26.221	4.25
9	MP3A	Mx	028	4.25
10	MP3B	X	15.138	.25
11	MP3B	Z	26.221	.25
12	MP3B	Mx	.007	.25
13	MP3B	X	15.138	4.25
14	MP3B	Z	26.221	4.25
15	MP3B	Mx	.007	4.25
16	MP3C	X	11.201	.25
17	MP3C	Z	19.4	.25
18	MP3C	Mx	.015	.25
19	MP3C	X	11.201	4.25
20	MP3C	Z	19.4	4.25
21	MP3C	Mx	.015	4.25
22	MP3A	X	15.138	.25
23	MP3A	Z	26.221	.25
24	MP3A	Mx	.007	.25
25	MP3A	X	15.138	4.25
26	MP3A	Z	26.221	4.25
27	MP3A	Mx	.007	4.25
28	MP3B	X	15.138	.25
29	MP3B	Z	26.221	.25
30	MP3B	Mx	028	.25
31	MP3B	X	15.138	4.25
32	MP3B	Z	26.221	4.25
33	MP3B	Mx	028	4.25
34	MP3C	X	11.201	.25
35	MP3C	Z	19.4	.25
36	MP3C	Mx	.015	.25
37	MP3C		11.201	4.25
38	MP3C	X Z	19.4	4.25
39	MP3C	Mx	.015	4.25
40	MP1A	X	7.479	1.25
41	MP1A	Z	12.955	1.25
42	MP1A	Mx	005	1.25
43	MP1A	X	7.479	3.25
44	MP1A	Z	12.955	3.25
45	MP1A	Mx	005	3.25
46	MP1B	X	7.479	1.25
47	MP1B	Z	12.955	1.25
48	MP1B	Mx	005	1.25
49	MP1B	X	7.479	3.25
50	MP1B	Z	12.955	3.25
51	MP1B	Mx	005	3.25
52	MP1C	X	3.705	1.25
53	MP1C	Z	6.418	1.25
54				1.25
54	MP1C	Mx	.005	1.20

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
55	MP1C	X	3.705	3.25
56	MP1C	Z	6.418	3.25
57	MP1C	Mx	.005	3.25
58	MP4A	X	1.907	2.1
59	MP4A	Z	3.303	2.1
60	MP4A	Mx	.000954	2.1
61	MP4B	X	1.907	2.1
62	MP4B	Z	3.303	2.1
63	MP4B	Mx	.000953	2.1
64	MP4C	X	2.336	2.1
65	MP4C	Z	4.046	2.1
66	MP4C	Mx	002	2.1
67	MP2A	X	6.781	2.1
68	MP2A	Z	11.745	2.1
69	MP2A	Mx	.005	2.1
70	MP2B	X	6.781	2.1
71	MP2B	Z	11.745	2.1
72	MP2B	Mx	.005	2.1
73	MP2C	X	5.097	2.1
74	MP2C	Z	8.828	2.1
75	MP2C	Mx	007	2.1
76	MP3A	X	6.568	2.1
77	MP3A	Z	11.376	2.1
78	MP3A	Mx	.004	2.1
79	MP3B	X	6.568	2.1
80	MP3B	Z	11.376	2.1
81	MP3B	Mx	.004	2.1
82	MP3C	X	4.244	2.1
83	MP3C	Z	7.35	2.1
84	MP3C	Mx	006	2.1
85	OVP	X	17.663	.75
86	OVP	Z	30.593	.75
87	OVP	Mx	0	.75

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

			<u> </u>	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	0	.75
2	OVP	Z	30.443	.75
3	OVP	Mx	.01	.75
4	MP3A	X	0	.25
5	MP3A	Z	32.902	.25
6	MP3A	Mx	022	.25
7	MP3A	X	0	4.25
8	MP3A	Z	32.902	4.25
9	MP3A	Mx	022	4.25
10	MP3B	X	0	.25
11	MP3B	Z	25.027	.25
12	MP3B	Mx	006	.25
13	MP3B	X	0	4.25
14	MP3B	Z	25.027	4.25
15	MP3B	Mx	006	4.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP3C	X	0	.25
17	MP3C	Z	25.027	.25
18	MP3C	Mx	.023	.25
19	MP3C	X	0	4.25
20	MP3C	Z	25.027	4.25
21	MP3C	Mx	.023	4.25
22	MP3A	X	0	.25
23	MP3A	Z	32.902	.25
24	MP3A	Mx	.022	.25
25	MP3A	X	0	4.25
26	MP3A	Z	32.902	4.25
27	MP3A	Mx	.022	4.25
28	MP3B	X	0	.25
29	MP3B	Z	25.027	.25
30	MP3B	Mx	023	.25
31	MP3B	X	0	4.25
32	MP3B	Z	25.027	4.25
33	MP3B	Mx	023	4.25
34	MP3C	X	0	.25
35	MP3C	Z	25.027	.25
36	MP3C	Mx	.006	.25
37	MP3C	X	0	4.25
38	MP3C	Z	25.027	4.25
39	MP3C	Mx	.006	4.25
40	MP1A	X	0	1.25
41	MP1A	Z	17.475	1.25
42	MP1A	Mx	0	1.25
43	MP1A	X	0	3.25
44	MP1A	Z	17.475	3.25
45	MP1A	Mx	0	3.25
46	MP1B	X	0	1.25
47	MP1B	Z	9.927	1.25
48	MP1B	Mx	006	1.25
49	MP1B	X	0	3.25
50	MP1B	Z	9.927	3.25
51	MP1B	Mx	006	3.25
52	MP1C	X	0	1.25
53	MP1C	Z	9.927	1.25
54	MP1C	Mx	.006	1.25
55	MP1C	X	0	3.25
56	MP1C	Z	9.927	3.25
57	MP1C	Mx	.006	3.25
58	MP4A	X	0	2.1
59	MP4A	Z	3.528	2.1
60	MP4A	Mx	0	2.1
61	MP4B	X	0	2.1
62	MP4B	Z	4.386	2.1
63	MP4B	Mx	.002	2.1
64	MP4C	X	0	2.1
65	MP4C	Z	4.386	2.1
66	MP4C	Mx	002	2.1
67	MP2A	X	0	2.1
UI	IVII Z/\		<u> </u>	4.1

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 21: Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP2A	Z	14.685	2.1
69	MP2A	Mx	0	2.1
70	MP2B	X	0	2.1
71	MP2B	Z	11.317	2.1
72	MP2B	Mx	.007	2.1
73	MP2C	X	0	2.1
74	MP2C	Z	11.317	2.1
75	MP2C	Mx	007	2.1
76	MP3A	X	0	2.1
77	MP3A	Z	14.685	2.1
78	MP3A	Mx	0	2.1
79	MP3B	X	0	2.1
80	MP3B	Z	10.037	2.1
81	MP3B	Mx	.006	2.1
82	MP3C	X	0	2.1
83	MP3C	Z	10.037	2.1
84	MP3C	Mx	006	2.1
85	OVP	X	0	.75
86	OVP	Z	30.443	.75
87	OVP	Mx	01	.75

Member Point Loads (BLC 22: Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	-10.339	.75
2	OVP	Z	17.907	.75
3	OVP	Mx	.012	.75
4	MP3A	X	-15.138	.25
5	MP3A	Z	26.221	.25
6	MP3A	Mx	007	.25
7	MP3A	X	-15.138	4.25
8	MP3A	Z	26.221	4.25
9	MP3A	Mx	007	4.25
10	MP3B	X	-11.201	.25
11	MP3B	Z	19.4	.25
12	MP3B	Mx	015	.25
13	MP3B	X	-11.201	4.25
14	MP3B	Z	19.4	4.25
15	MP3B	Mx	015	4.25
16	MP3C	X	-15.138	.25
17	MP3C	Z	26.221	.25
18	MP3C	Mx	.028	.25
19	MP3C	X	-15.138	4.25
20	MP3C	Z	26.221	4.25
21	MP3C	Mx	.028	4.25
22	MP3A	X	-15.138	.25
23	MP3A	Z	26.221	.25
24	MP3A	Mx	.028	.25
25	MP3A	X	-15.138	4.25
26	MP3A	Z	26.221	4.25
27	MP3A	Mx	.028	4.25
28	MP3B	X	-11.201	.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP3B	Z	19.4	.25
30	MP3B	Mx	015	.25
31	MP3B	X	-11.201	4.25
32	MP3B	Z	19.4	4.25
33	MP3B	Mx	015	4.25
34	MP3C	X	-15.138	.25
35	MP3C	Z	26.221	.25
36	MP3C	Mx	007	.25
37	MP3C	X	-15.138	4.25
38	MP3C	Z	26.221	4.25
39	MP3C	Mx	007	4.25
40	MP1A	X	-7.479	1.25
41	MP1A	Z	12.955	1.25
42	MP1A	Mx	.005	1.25
43	MP1A	X	-7.479	3.25
44	MP1A	Z	12.955	3.25
45	MP1A	Mx	.005	3.25
46	MP1B	X	-3.705	1.25
47	MP1B	Z	6.418	1.25
48	MP1B	Mx	005	1.25
49	MP1B	X	-3.705	3.25
50	MP1B	Z	6.418	3.25
51	MP1B	Mx	005	3.25
52	MP1C	X	-7.479	1.25
53	MP1C	Z	12.955	1.25
54	MP1C	Mx	.005	1.25
55	MP1C	X	-7.479	3.25
56	MP1C	Z	12.955	3.25
57	MP1C	Mx	.005	3.25
58	MP4A	X	-1.907	2.1
59	MP4A	Z	3.303	2.1
60	MP4A	Mx	000954	2.1
61	MP4B	X	-2.336	2.1
62	MP4B	Z	4.046	2.1
63	MP4B	Mx	.002	2.1
64	MP4C	X	-1.907	2.1
65	MP4C	Z	3.303	2.1
66	MP4C	Mx	000953	2.1
67	MP2A	X	-6.781	2.1
68	MP2A	Z	11.745	2.1
69	MP2A	Mx	005	2.1
70	MP2B	X	-5.097	2.1
71	MP2B	Z	8.828	2.1
72	MP2B	Mx	.007	2.1
73	MP2C	X	-6.781	2.1
74	MP2C	Z	11.745	2.1
75	MP2C	Mx	005	2.1
76	MP3A	X Z	-6.568	2.1
77	MP3A		11.376	2.1
78	MP3A	Mx	004	2.1
79	MP3B	X	-4.244	2.1
80	MP3B	Z	7.35	2.1

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 22: Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
81	MP3B	Mx	.006	2.1
82	MP3C	X	-6.568	2.1
83	MP3C	Z	11.376	2.1
84	MP3C	Mx	004	2.1
85	OVP	X	-10.339	.75
86	OVP	Z	17.907	.75
87	OVP	Mx	012	.75

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

1 OVP X -13.679 2 OVP Z 7.898 3 OVP Mx .011 4 MP3A X -21.674 5 MP3A Z 12.513 6 MP3A Mx .006 7 MP3A X -21.674 8 MP3A Z 12.513 9 MP3B X -21.674 11 MP3B Z 12.513 12 MP3B Mx 023 13 MP3B X -21.674 14 MP3B Z 12.513	.75 .75 .75 .25 .25 .25 .25 4.25 4.25 4.25 .25 .25 .25 .25
3 OVP Mx .011 4 MP3A X -21.674 5 MP3A Z 12.513 6 MP3A Mx .006 7 MP3A X -21.674 8 MP3A Z 12.513 9 MP3A Mx .006 10 MP3B X -21.674 11 MP3B Z 12.513 12 MP3B Mx 023 13 MP3B X -21.674	.75 .25 .25 .25 4.25 4.25 4.25 4.25 .25 .25 .25 .25
4 MP3A X -21.674 5 MP3A Z 12.513 6 MP3A Mx .006 7 MP3A X -21.674 8 MP3A Z 12.513 9 MP3A Mx .006 10 MP3B X -21.674 11 MP3B Z 12.513 12 MP3B Mx 023 13 MP3B X -21.674	.25 .25 .25 4.25 4.25 4.25 .25 .25 .25 .25
5 MP3A Z 12.513 6 MP3A Mx .006 7 MP3A X -21.674 8 MP3A Z 12.513 9 MP3A Mx .006 10 MP3B X -21.674 11 MP3B Z 12.513 12 MP3B Mx 023 13 MP3B X -21.674	.25 .25 4.25 4.25 4.25 .25 .25 .25 4.25
6 MP3A Mx .006 7 MP3A X -21.674 8 MP3A Z 12.513 9 MP3A Mx .006 10 MP3B X -21.674 11 MP3B Z 12.513 12 MP3B Mx 023 13 MP3B X -21.674	.25 4.25 4.25 4.25 .25 .25 .25 .25 4.25
7 MP3A X -21.674 8 MP3A Z 12.513 9 MP3A Mx .006 10 MP3B X -21.674 11 MP3B Z 12.513 12 MP3B Mx 023 13 MP3B X -21.674	4.25 4.25 4.25 .25 .25 .25 4.25
8 MP3A Z 12.513 9 MP3A Mx .006 10 MP3B X -21.674 11 MP3B Z 12.513 12 MP3B Mx 023 13 MP3B X -21.674	4.25 4.25 .25 .25 .25 .25 4.25
8 MP3A Z 12.513 9 MP3A Mx .006 10 MP3B X -21.674 11 MP3B Z 12.513 12 MP3B Mx 023 13 MP3B X -21.674	4.25 .25 .25 .25 .25 4.25
10 MP3B X -21.674 11 MP3B Z 12.513 12 MP3B Mx 023 13 MP3B X -21.674	.25 .25 .25 4.25
11 MP3B Z 12.513 12 MP3B Mx 023 13 MP3B X -21.674	.25 .25 4.25
11 MP3B Z 12.513 12 MP3B Mx 023 13 MP3B X -21.674	.25 .25 4.25
13 MP3B X -21.674	4.25
13 MP3B X -21.674	
	4.25
15 MP3B Mx023	4.25
16 MP3C X -28.494	.25
17 MP3C Z 16.451	.25
18 MP3C Mx .022	.25
19 MP3C X -28.494	4.25
20 MP3C Z 16.451	4.25
21 MP3C Mx .022	4.25
22 MP3A X -21.674	.25
23 MP3A Z 12.513	.25
24 MP3A Mx .023	.25
25 MP3A X -21.674	4.25
26 MP3A Z 12.513	4.25
27 MP3A Mx .023	4.25
28 MP3B X -21.674	.25
29 MP3B Z 12.513	.25
30 MP3B Mx006	.25
31 MP3B X -21.674	4.25
32 MP3B Z 12.513	4.25
33 MP3B Mx006	4.25
34 MP3C X -28.494	.25
35 MP3C Z 16.451	.25
36 MP3C Mx022	.25
37 MP3C X -28.494	4.25
38 MP3C Z 16.451	4.25
39 MP3C Mx022	4.25
40 MP1A X -8.597	1.25
41 MP1A Z 4.963	1.25

Company Designer Job Number Model Name : Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 23: Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
42	MP1A	Mx	.006	1.25
43	MP1A	X	-8.597	3.25
44	MP1A	Z	4.963	3.25
45	MP1A	Mx	.006	3.25
46	MP1B	X	-8.597	1.25
47	MP1B	Z	4.963	1.25
48	MP1B	Mx	006	1.25
49	MP1B	X	-8.597	3.25
50	MP1B	Z	4.963	3.25
51	MP1B	Mx	006	3.25
52	MP1C	X	-15.134	1.25
53	MP1C	Z	8.737	1.25
54	MP1C	Mx	0	1.25
55	MP1C	X	-15.134	3.25
56	MP1C	Z	8.737	3.25
57	MP1C	Mx	0	3.25
58	MP4A	X	-3.799	2.1
59	MP4A	Z	2.193	2.1
60	MP4A	Mx	002	2.1
61	MP4B	X	-3.799	2.1
62	MP4B	Z	2.193	2.1
63	MP4B	Mx	.002	2.1
64	MP4C	X	-3.056	2.1
65	MP4C	Z	1.764	2.1
66	MP4C	Mx	0	2.1
67	MP2A	X	-9.801	2.1
68	MP2A	Z	5.658	2.1
69	MP2A	Mx	007	2.1
70	MP2B	X	-9.801	2.1
71	MP2B	Z	5.658	2.1
72	MP2B	Mx	.007	2.1
73	MP2C	X	-12.718	2.1
74	MP2C	Z	7.343	2.1
75	MP2C	Mx	0	2.1
76	MP3A	X	-8.692	2.1
77	MP3A	Z	5.018	2.1
78	MP3A	Mx	006	2.1
79	MP3B	X	-8.692	2.1
80	MP3B	Z	5.018	2.1
81	MP3B	Mx	.006	2.1
82	MP3C	X	-12.718	2.1
83	MP3C	Z	7.343	2.1
84	MP3C	Mx	0	2.1
85	OVP	X	-13.679	.75
86	OVP	Z	7.898	.75
87	OVP	Mx	011	.75

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	-20.678	.75
2	OVP	Z	0	.75

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 24: Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Lo cation[ft,%]
3	OVP	Mx	.012	.75
4	MP3A	X	-22.401	.25
5	MP3A	Z	0	.25
6	MP3A	Mx	.015	.25
7	MP3A	X	-22.401	4.25
8	MP3A	Z	0	4.25
9	MP3A	Mx	.015	4.25
10	MP3B	X	-30.277	.25
11	MP3B	Z	0	.25
12	MP3B	Mx	028	.25
13	MP3B	X	-30.277	4.25
14	MP3B	Z	0	4.25
15	MP3B	Mx	028	4.25
16	MP3C	X	-30.277	.25
17	MP3C	Z	0	.25
18	MP3C	Mx	.007	.25
19	MP3C	X	-30.277	4.25
20	MP3C	Z	0	4.25
21	MP3C	Mx	.007	4.25
22	MP3A	X	-22.401	.25
23	MP3A	Z	0	.25
24	MP3A	Mx	.015	.25
25	MP3A	X	-22.401	4.25
26	MP3A	Z	0	4.25
27	MP3A	Mx	.015	4.25
28	MP3B	X	-30.277	.25
29	MP3B	Z	0	.25
30	MP3B	Mx	.007	.25
31	MP3B	X	-30.277	4.25
32	MP3B	Z	0	4.25
33	MP3B	Mx	.007	4.25
34	MP3C	X	-30.277	.25
35	MP3C	Z	0	.25
36	MP3C	Mx	028	.25
37	MP3C	X	-30.277	4.25
38	MP3C	Z	0	4.25
39	MP3C	Mx	028	4.25
40	MP1A	X	-7.411	1.25
41	MP1A	Z	0	1.25
42	MP1A	Mx	.005	1.25
43	MP1A	X	-7.411	3.25
44	MP1A	Z	0	3.25
45	MP1A	Mx	.005	3.25
46	MP1B	X	-14.959	1.25
47	MP1B	Z	0	1.25
48	MP1B	Mx	005	1.25
49	MP1B	X	-14.959	3.25
50	MP1B	Z	0	3.25
51	MP1B	Mx	005	3.25
52	MP1C	X	-14.959	1.25
53	MP1C	Z	0	1.25
54	MP1C	Mx	005	1.25

: Maser Consulting

SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 24: Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
55	MP1C	X	-14.959	3.25
56	MP1C	Z	0	3.25
57	MP1C	Mx	005	3.25
58	MP4A	X	-4.672	2.1
59	MP4A	Z	0	2.1
60	MP4A	Mx	002	2.1
61	MP4B	X	-3.814	2.1
62	MP4B	Z	0	2.1
63	MP4B	Mx	.000954	2.1
64	MP4C	X	-3.814	2.1
65	MP4C	Z	0	2.1
66	MP4C	Mx	.000954	2.1
67	MP2A	X	-10.194	2.1
68	MP2A	Z	0	2.1
69	MP2A	Mx	007	2.1
70	MP2B	X	-13.563	2.1
71	MP2B	Z	0	2.1
72	MP2B	Mx	.005	2.1
73	MP2C	X	-13.563	2.1
74	MP2C	Z	0	2.1
75	MP2C	Mx	.005	2.1
76	MP3A	X	-8.487	2.1
77	MP3A	Z	0	2.1
78	MP3A	Mx	006	2.1
79	MP3B	X	-13.136	2.1
80	MP3B	Z	0	2.1
81	MP3B	Mx	.004	2.1
82	MP3C	X	-13.136	2.1
83	MP3C	Z	0	2.1
84	MP3C	Mx	.004	2.1
85	OVP	X	-20.678	.75
86	OVP	Z	0	.75
87	OVP	Mx	012	.75

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	-26.364	.75
2	OVP	Z	-15.221	.75
3	OVP	Mx	.01	.75
4	MP3A	X	-21.674	.25
5	MP3A	Z	-12.513	.25
6	MP3A	Mx	.023	.25
7	MP3A	X	-21.674	4.25
8	MP3A	Z	-12.513	4.25
9	MP3A	Mx	.023	4.25
10	MP3B	X	-28.494	.25
11	MP3B	Z	-16.451	.25
12	MP3B	Mx	022	.25
13	MP3B	X	-28.494	4.25
14	MP3B	Z	-16.451	4.25
15	MP3B	Mx	022	4.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 25: Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP3C	X	-21.674	.25
17	MP3C	Z	-12.513	.25
18	MP3C	Mx	006	.25
19	MP3C	X	-21.674	4.25
20	MP3C	Z	-12.513	4.25
21	MP3C	Mx	006	4.25
22	MP3A	X	-21.674	.25
23	MP3A	Z	-12.513	.25
24	MP3A	Mx	.006	.25
25	MP3A	X	-21.674	4.25
26	MP3A	Z	-12.513	4.25
27	MP3A	Mx	.006	4.25
28	MP3B	X	-28.494	.25
29	MP3B	Z	-16.451	.25
30	MP3B	Mx	.022	.25
31	MP3B	X	-28.494	4.25
32	MP3B	Z	-16.451	4.25
33	MP3B	Mx	.022	4.25
34	MP3C	X	-21.674	.25
35	MP3C	Z	-12.513	.25
36	MP3C	Mx	023	.25
37	MP3C	X	-21.674	4.25
38	MP3C	Z	-12.513	4.25
39	MP3C	Mx	023	4.25
40	MP1A	X	-8.597	1.25
41	MP1A	Z	-4.963	1.25
42	MP1A	Mx	.006	1.25
43	MP1A	X	-8.597	3.25
44	MP1A	Z	-4.963	3.25
45	MP1A	Mx	.006	3.25
46	MP1B	X	-15.134	1.25
47	MP1B	Z	-8.737	1.25
48	MP1B	Mx	0	1.25
49	MP1B	X	-15.134	3.25
50	MP1B	Z	-8.737	3.25
51	MP1B	Mx	0	3.25
52	MP1C	X	-8.597	1.25
53	MP1C	Z	-4.963	1.25
54	MP1C	Mx	006	1.25
55	MP1C	X	-8.597	3.25
56	MP1C	Z	-4.963	3.25
57	MP1C	Mx	006	3.25
58	MP4A	X	-3.799	2.1
59	MP4A	Z	-2.193	2.1
60	MP4A	Mx	002	2.1
61	MP4B	X	-3.056	2.1
62	MP4B	Z	-1.764	2.1
63	MP4B	Mx	0	2.1
64	MP4C	X	-3.799	2.1
65	MP4C	Z	-2.193	2.1
66	MP4C	Mx	.002	2.1
67	MP2A	X	-9.801	2.1
				-

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 25: Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP2A	Z	-5.658	2.1
69	MP2A	Mx	007	2.1
70	MP2B	X	-12.718	2.1
71	MP2B	Z	-7.343	2.1
72	MP2B	Mx	0	2.1
73	MP2C	X	-9.801	2.1
74	MP2C	Z	-5.658	2.1
75	MP2C	Mx	.007	2.1
76	MP3A	X	-8.692	2.1
77	MP3A	Z	-5.018	2.1
78	MP3A	Mx	006	2.1
79	MP3B	X	-12.718	2.1
80	MP3B	Z	-7.343	2.1
81	MP3B	Mx	0	2.1
82	MP3C	X	-8.692	2.1
83	MP3C	Z	-5.018	2.1
84	MP3C	Mx	.006	2.1
85	OVP	X	-26.364	.75
86	OVP	Z	-15.221	.75
87	OVP	Mx	01	.75

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	-17.663	.75
2	OVP	Z	-30.593	.75
3	OVP	Mx	0	.75
4	MP3A	X	-15.138	.25
5	MP3A	Z	-26.221	.25
6	MP3A	Mx	.028	.25
7	MP3A	X	-15.138	4.25
8	MP3A	Z	-26.221	4.25
9	MP3A	Mx	.028	4.25
10	MP3B	X	-15.138	.25
11	MP3B	Z	-26.221	.25
12	MP3B	Mx	007	.25
13	MP3B	X	-15.138	4.25
14	MP3B	Z	-26.221	4.25
15	MP3B	Mx	007	4.25
16	MP3C	X	-11.201	.25
17	MP3C	Z	-19.4	.25
18	MP3C	Mx	015	.25
19	MP3C	X	-11.201	4.25
20	MP3C	Z	-19.4	4.25
21	MP3C	Mx	015	4.25
22	MP3A	X	-15.138	.25
23	MP3A	Z	-26.221	.25
24	MP3A	Mx	007	.25
25	MP3A	X	-15.138	4.25
26	MP3A	Z	-26.221	4.25
27	MP3A	Mx	007	4.25
28	MP3B	X	-15.138	.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 26: Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP3B	Z	-26.221	.25
30	MP3B	Mx	.028	.25
31	MP3B	X	-15.138	4.25
32	MP3B	Z	-26.221	4.25
33	MP3B	Mx	.028	4.25
34	MP3C	X	-11.201	.25
35	MP3C	Z	-19.4	.25
36	MP3C	Mx	015	.25
37	MP3C	X	-11.201	4.25
38	MP3C	Z	-19.4	4.25
39	MP3C	Mx	015	4.25
40	MP1A	X	-7.479	1.25
41	MP1A	Z	-12.955	1.25
42	MP1A	Mx	.005	1.25
43	MP1A	X	-7.479	3.25
44	MP1A	Z	-12.955	3.25
45	MP1A	Mx	.005	3.25
46	MP1B	X	-7.479	1.25
47	MP1B	Z	-12.955	1.25
48	MP1B	Mx	.005	1.25
49	MP1B	X	-7.479	3.25
50	MP1B	Z	-12.955	3.25
51	MP1B	Mx	.005	3.25
52	MP1C	X	-3.705	1.25
53	MP1C	Z	-6.418	1.25
54	MP1C	Mx	005	1.25
55	MP1C	X	-3.705	3.25
56	MP1C	Z	-6.418	3.25
57	MP1C	Mx	005	3.25
58	MP4A	X	-1.907	2.1
59	MP4A	Z	-3.303	2.1
60	MP4A	Mx	000954	2.1
61	MP4B	X	-1.907	2.1
62	MP4B	Z	-3.303	2.1
63	MP4B	Mx	000953	2.1
64	MP4C	X	-2.336	2.1
65	MP4C	Z	-4.046	2.1
66	MP4C	Mx	.002	2.1
67	MP2A	X	-6.781	2.1
68	MP2A	Z	-11.745	2.1
69	MP2A	Mx	005	2.1
70	MP2B	X	-6.781	2.1
71	MP2B	Z	-11.745	2.1
72	MP2B	Mx	005	2.1
73	MP2C	X	-5.097	2.1
74	MP2C	Z	-8.828	2.1
75	MP2C	Mx	.007	2.1
76	MP3A	X Z	-6.568	2.1
77	MP3A		-11.376	2.1
78	MP3A	Mx	004	2.1
79	MP3B	X	-6.568	2.1
80	MP3B	Z	-11.376	2.1

Company Designer Job Number Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 26: Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
81	MP3B	Mx	004	2.1
82	MP3C	X	-4.244	2.1
83	MP3C	Z	-7.35	2.1
84	MP3C	Mx	.006	2.1
85	OVP	X	-17.663	.75
86	OVP	Z	-30.593	.75
87	OVP	Mx	0	.75

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	0	.75
2	OVP	Z	-9.776	.75
3	OVP	Mx	003	.75
4	MP3A	X	0	.25
5	MP3A	Z	-10.86	.25
6	MP3A	Mx	.007	.25
7	MP3A	X	0	4.25
8	MP3A	Z	-10.86	4.25
9	MP3A	Mx	.007	4.25
10	MP3B	X	0	.25
11	MP3B	Z	-8.065	.25
12	MP3B	Mx	.002	.25
13	MP3B	X	0	4.25
14	MP3B	Z	-8.065	4.25
15	MP3B	Mx	.002	4.25
16	MP3C	X	0	.25
17	MP3C	Z	-8.065	.25
18	MP3C	Mx	007	.25
19	MP3C	X	0	4.25
20	MP3C	Z	-8.065	4.25
21	MP3C	Mx	007	4.25
22	MP3A	X	0	.25
23	MP3A	Z	-10.86	.25
24	MP3A	Mx	007	.25
25	MP3A	X	0	4.25
26	MP3A	Z	-10.86	4.25
27	MP3A	Mx	007	4.25
28	MP3B	X	0	.25
29	MP3B	Z	-8.065	.25
30	MP3B	Mx	.007	.25
31	MP3B	X	0	4.25
32	MP3B	Z	-8.065	4.25
33	MP3B	Mx	.007	4.25
34	MP3C	X	0	.25
35	MP3C	Z	-8.065	.25
36	MP3C	Mx	002	.25
37	MP3C	X	0	4.25
38	MP3C	Z	-8.065	4.25
39	MP3C	Mx	002	4.25
40	MP1A	X	0	1.25
41	MP1A	Z	-4.673	1.25

Company Designer Job Number Model Name : Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
42	MP1A	Mx	0	1.25
43	MP1A	X	0	3.25
44	MP1A	Z	-4.673	3.25
45	MP1A	Mx	0	3.25
46	MP1B	X	0	1.25
47	MP1B	Z	-2.375	1.25
48	MP1B	Mx	.001	1.25
49	MP1B	X	0	3.25
50	MP1B	Z	-2.375	3.25
51	MP1B	Mx	.001	3.25
52	MP1C	X	0	1.25
53	MP1C	Z	-2.375	1.25
54	MP1C	Mx	001	1.25
55	MP1C	X	0	3.25
56	MP1C	Z	-2.375	3.25
57	MP1C	Mx	001	3.25
58	MP4A	X	0	2.1
59	MP4A	Z	882	2.1
60	MP4A	Mx	0	2.1
61	MP4B	X	0	2.1
62	MP4B	Z	-1.136	2.1
63	MP4B	Mx	000492	2.1
64	MP4C	X	0	2.1
65	MP4C	Z	-1.136	2.1
66	MP4C	Mx	.000492	2.1
67	MP2A	X	0	2.1
68	MP2A	Z	-3.696	2.1
69	MP2A	Mx	0	2.1
70	MP2B	X	0	2.1
71	MP2B	Z	-2.784	2.1
72	MP2B	Mx	002	2.1
73	MP2C	X	0	2.1
74	MP2C	Z	-2.784	2.1
75	MP2C	Mx	.002	2.1
76	MP3A	X	0	2.1
77	MP3A	Z	-3.696	2.1
78	MP3A	Mx	0	2.1
79	MP3B	X Z	0	2.1
80	MP3B		-2.444	2.1
81	MP3B	Mx	001	2.1
82	MP3C	X	0	2.1
83	MP3C	Z	-2.444	2.1
84	MP3C	Mx	.001	2.1
85	OVP	X Z	0	.75
86	OVP		-9.776	.75
87	OVP	Mx	.003	.75

Member Point Loads (BLC 28: Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	3.219	.75
2	OVP	Z	-5.575	.75

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 28: Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	OVP	Mx	004	.75
4	MP3A	X	4.964	.25
5	MP3A	Z	-8.598	.25
6	MP3A	Mx	.002	.25
7	MP3A	X	4.964	4.25
8	MP3A	Z	-8.598	4.25
9	MP3A	Mx	.002	4.25
10	MP3B	X	3.566	.25
11	MP3B	Z	-6.177	.25
12	MP3B	Mx	.005	.25
13	MP3B	X	3.566	4.25
14	MP3B	Z	-6.177	4.25
15	MP3B	Mx	.005	4.25
16	MP3C	X	4.964	.25
17	MP3C	Z	-8.598	.25
18	MP3C	Mx	009	.25
19	MP3C	X	4.964	4.25
20	MP3C	Z	-8.598	4.25
21	MP3C	Mx	009	4.25
22	MP3A	X	4.964	.25
23	MP3A	Z	-8.598	.25
24	MP3A	Mx	009	.25
25	MP3A	X	4.964	4.25
26	MP3A	Z	-8.598	4.25
27	MP3A	Mx	009	4.25
28	MP3B	X	3.566	.25
29	MP3B	Z	-6.177	.25
30	MP3B	Mx	.005	.25
31	MP3B	X	3.566	4.25
32	MP3B	Z	-6.177	4.25
33	MP3B	Mx	.005	4.25
34	MP3C	X	4.964	.25
35	MP3C	Z	-8.598	.25
36	MP3C	Mx	.002	.25
37	MP3C		4.964	4.25
38	MP3C	X Z	-8.598	4.25
39	MP3C	Mx	.002	4.25
40	MP1A	X	1.954	1.25
41	MP1A	Z	-3.384	1.25
42	MP1A	Mx	001	1.25
43	MP1A	X	1.954	3.25
44	MP1A	Z	-3.384	3.25
45	MP1A	Mx	001	3.25
46	MP1B	X	.805	1.25
47	MP1B	Z	-1.394	1.25
48	MP1B	Mx	.001	1.25
49	MP1B	X	.805	3.25
50	MP1B	Z	-1.394	3.25
51	MP1B	Mx	.001	3.25
52	MP1C	X	1.954	1.25
53	MP1C	Z	-3.384	1.25
54				1.25
54	MP1C	Mx	001	1.20

: Maser Consulting

SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
55	MP1C	X	1.954	3.25
56	MP1C	Z	-3.384	3.25
57	MP1C	Mx	001	3.25
58	MP4A	X	.483	2.1
59	MP4A	Z	837	2.1
60	MP4A	Mx	.000241	2.1
61	MP4B	X	.61	2.1
62	MP4B	Z	-1.057	2.1
63	MP4B	Mx	00061	2.1
64	MP4C	X	.483	2.1
65	MP4C	Z	837	2.1
66	MP4C	Mx	.000242	2.1
67	MP2A	X	1.696	2.1
68	MP2A	Z	-2.937	2.1
69	MP2A	Mx	.001	2.1
70	MP2B	X	1.24	2.1
71	MP2B	Z	-2.147	2.1
72	MP2B	Mx	002	2.1
73	MP2C	X	1.696	2.1
74	MP2C	Z	-2.937	2.1
75	MP2C	Mx	.001	2.1
76	MP3A	X	1.639	2.1
77	MP3A	Z	-2.839	2.1
78	MP3A	Mx	.001	2.1
79	MP3B	X	1.013	2.1
80	MP3B	Z	-1.755	2.1
81	MP3B	Mx	001	2.1
82	MP3C	X	1.639	2.1
83	MP3C	Z	-2.839	2.1
84	MP3C	Mx	.001	2.1
85	OVP	X	3.219	.75
86	OVP	Z	-5.575	.75
87	OVP	Mx	.004	.75

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

		6: ::	M	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	4.13	.75
2	OVP	Z	-2.384	.75
3	OVP	Mx	003	.75
4	MP3A	X	6.984	.25
5	MP3A	Z	-4.032	.25
6	MP3A	Mx	002	.25
7	MP3A	X	6.984	4.25
8	MP3A	Z	-4.032	4.25
9	MP3A	Mx	002	4.25
10	MP3B	X	6.984	.25
11	MP3B	Z	-4.032	.25
12	MP3B	Mx	.007	.25
13	MP3B	X	6.984	4.25
14	MP3B	Z	-4.032	4.25
15	MP3B	Mx	.007	4.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

			Magnitude (lib is 41	L = ==+i=== FR 0/1
16	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP3C	X	9.405	.25
17	MP3C	Z	-5.43	.25
18	MP3C	Mx	007	.25
19	MP3C	X	9.405	4.25
20	MP3C	Z	-5.43	4.25
21	MP3C	Mx	007	4.25
22	MP3A	X	6.984	.25
23	MP3A	Z	-4.032	.25
24	MP3A	Mx	007	.25
25	MP3A	X	6.984	4.25
26	MP3A	Z	-4.032	4.25
27	MP3A	Mx	007	4.25
28	MP3B	X	6.984	.25
29	MP3B	Z	-4.032	.25
30	MP3B	Mx	.002	.25
31	MP3B	X	6.984	4.25
32	MP3B	Z	-4.032	4.25
33	MP3B	Mx	.002	4.25
34	MP3C	X	9.405	.25
35	MP3C	Z	-5.43	.25
36	MP3C	Mx	.007	.25
37	MP3C	X	9.405	4.25
38	MP3C	Z	-5.43	4.25
39	MP3C	Mx	.007	4.25
40	MP1A	X	2.057	1.25
41	MP1A	Z	-1.188	1.25
42	MP1A	Mx	001	1.25
43	MP1A	X	2.057	3.25
44	MP1A	Z	-1.188	3.25
45	MP1A	Mx	001	3.25
46	MP1B	X	2.057	1.25
47	MP1B	Z	-1.188	1.25
48	MP1B	Mx	.001	1.25
49	MP1B	X	2.057	3.25
50	MP1B	Z	-1.188	3.25
51	MP1B	Mx	.001	3.25
52	MP1C	X	4.047	1.25
53	MP1C	Z	-2.337	1.25
54	MP1C	Mx	0	1.25
55	MP1C	X	4.047	3.25
56	MP1C	Z	-2.337	3.25
57	MP1C	Mx	0	3.25
58	MP4A	X	.984	2.1
59	MP4A	Z	568	2.1
60	MP4A	Mx	.000492	2.1
61	MP4B	X	.984	2.1
62	MP4B	Z	568	2.1
63	MP4B	Mx	000492	2.1
64	MP4C	X	.764	2.1
65	MP4C	Z	441	2.1
66	MP4C	Mx	0	2.1
67	MP2A	X	2.411	2.1
07	IVIFZA	^	2.411	۷.1

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 29: Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP2A	Z	-1.392	2.1
69	MP2A	Mx	.002	2.1
70	MP2B	X	2.411	2.1
71	MP2B	Z	-1.392	2.1
72	MP2B	Mx	002	2.1
73	MP2C	X	3.201	2.1
74	MP2C	Z	-1.848	2.1
75	MP2C	Mx	0	2.1
76	MP3A	X	2.116	2.1
77	MP3A	Z	-1.222	2.1
78	MP3A	Mx	.001	2.1
79	MP3B	X	2.116	2.1
80	MP3B	Z	-1.222	2.1
81	MP3B	Mx	001	2.1
82	MP3C	X	3.201	2.1
83	MP3C	Z	-1.848	2.1
84	MP3C	Mx	0	2.1
85	OVP	X	4.13	.75
86	OVP	Z	-2.384	.75
87	OVP	Mx	.003	.75

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	6.438	.75
2	OVP	Z	0	.75
3	OVP	Mx	004	.75
4	MP3A	X	7.133	.25
5	MP3A	Z	0	.25
6	MP3A	Mx	005	.25
7	MP3A	X	7.133	4.25
8	MP3A	Z	0	4.25
9	MP3A	Mx	005	4.25
10	MP3B	X	9.929	.25
11	MP3B	Z	0	.25
12	MP3B	Mx	.009	.25
13	MP3B	X	9.929	4.25
14	MP3B	Z	0	4.25
15	MP3B	Mx	.009	4.25
16	MP3C	X	9.929	.25
17	MP3C	Z	0	.25
18	MP3C	Mx	002	.25
19	MP3C	X	9.929	4.25
20	MP3C	Z	0	4.25
21	MP3C	Mx	002	4.25
22	MP3A	X	7.133	.25
23	MP3A	Z	0	.25
24	MP3A	Mx	005	.25
25	MP3A	X	7.133	4.25
26	MP3A	Z	0	4.25
27	MP3A	Mx	005	4.25
28	MP3B	X	9.929	.25

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

29		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
MP3B	29	MP3B	Z	0	.25
32	30	MP3B	Mx	002	.25
33 MP3B Mx 002 4.25 34 MP3C X 9.929 25 35 MP3C X 9.929 4.25 37 MP3C X 9.929 4.25 38 MP3C Z 0 4.25 39 MP3C Mx .009 4.25 40 MP1A X 1.609 1.25 40 MP1A X 1.609 1.25 41 MP1A X 1.609 3.25 41 MP1A X 1.609 3.25 43 MP1A X 1.609 3.25 44 MP1A X 1.609 3.25 45 MP1A X 1.609 3.25 44 MP1A X 1.609 3.25 44 MP1A X 3.907 1.25 45 MP1A X 3.907 1.25 47 MP1B <td>31</td> <td>MP3B</td> <td>X</td> <td>9.929</td> <td>4.25</td>	31	MP3B	X	9.929	4.25
34 MP3C X 9,929 25 36 MP3C Mx 009 25 37 MP3C X 9,929 4,25 38 MP3C Z 0 4,25 39 MP3C Mx 009 4,25 40 MP1A X 1,609 1,25 40 MP1A X 1,609 1,25 41 MP1A X 1,609 3,25 42 MP1A X 1,609 3,25 43 MP1A X 1,609 3,25 44 MP1A X 1,609 3,25 45 MP1B X 3,907 1,25 47 MP1B X 3,907 1,25 48 MP1B	32	MP3B	Z	0	4.25
35 MP3C Z 0 25 36 MP3C X 9.929 4.25 38 MP3C Z 0 4.25 39 MP3G Mx 0.09 4.25 40 MP1A X 1.609 1.25 41 MP1A X 1.609 1.25 42 MP1A Mx 001 1.25 43 MP1A X 1.609 3.25 44 MP1A X 1.609 3.25 44 MP1A X 1.609 3.25 45 MP1A X 3.907 1.25 47 MP1B X 3.907 1.25 48 MP1B X 3.907 3.25 51 MP1B	33	MP3B	Mx	002	4.25
35 MP3C Z 0 25 36 MP3C X 9.929 4.25 38 MP3C Z 0 4.25 39 MP3G Mx 0.09 4.25 40 MP1A X 1.609 1.25 41 MP1A X 1.609 1.25 42 MP1A Mx 001 1.25 43 MP1A X 1.609 3.25 44 MP1A X 1.609 3.25 44 MP1A X 1.609 3.25 45 MP1A X 3.907 1.25 47 MP1B X 3.907 1.25 48 MP1B X 3.907 3.25 51 MP1B	34	MP3C	X	9.929	.25
37 MP3C X 9.929 4.25 38 MP3C Z 0 4.25 39 MP3C Mx .009 4.25 40 MP1A X 1.609 1.25 41 MP1A Z 0 1.25 42 MP1A Mx 001 1.25 43 MP1A X 1.609 3.25 44 MP1A X 1.609 3.25 45 MP1A X 1.609 3.25 45 MP1A X 1.609 3.25 46 MP1B X 3.907 1.25 47 MP1B X 3.907 1.25 48 MP1B X 3.907 3.25 50 MP1B X 3.907 3.25 51 MP1B X 3.907 1.25 53 MP1C X 3.907 1.25 54 MP1B	35	MP3C	Z	0	.25
37 MP3C X 9.929 4.25 38 MP3C Z 0 4.25 39 MP3C Mx .009 4.25 40 MP1A X 1.609 1.25 41 MP1A Z 0 1.25 42 MP1A Mx 001 1.25 43 MP1A X 1.609 3.25 44 MP1A X 1.609 3.25 45 MP1A X 1.609 3.25 45 MP1A X 1.609 3.25 46 MP1B X 3.907 1.25 47 MP1B X 3.907 1.25 48 MP1B X 3.907 3.25 50 MP1B X 3.907 3.25 51 MP1B X 3.907 1.25 53 MP1C X 3.907 1.25 54 MP1B		MP3C	Mx	.009	
38 MP3C Z 0 4.25 39 MP3C Mx .009 4.25 40 MP1A X 1.609 1.25 41 MP1A Z 0 1.25 42 MP1A Mx .001 1.25 43 MP1A X 1.609 3.25 44 MP1A X 1.609 3.25 44 MP1A X 1.609 3.25 44 MP1A Mx .001 3.25 46 MP1B X 3.907 1.25 48 MP1B X 3.907 3.25 49 MP1B X 3.907 3.25 50 MP1B X 3.907 3.25 51 MP1B X 3.907 3.25 51 MP1B Mx .001 3.25 52 MP1C X 3.907 1.25 53 MP1B				9.929	
39	38	MP3C			
40 MP1A X 1.609 1.25 41 MP1A Z 0 1.25 42 MP1A Mx 001 1.25 43 MP1A X 1.609 3.25 44 MP1A Z 0 3.25 44 MP1A MX 001 3.25 46 MP1B X 3.907 1.25 47 MP1B Z 0 1.25 48 MP1B Mx .001 1.25 49 MP1B X 3.907 3.25 50 MP1B X 3.907 3.25 51 MP1B X 3.907 3.25 52 MP1C X 3.907 1.25 53 MP1C X 3.907 1.25 54 MP1C Mx 3.907 3.25 55 MP1C X 3.907 3.25 56 MP1C			Mx	.009	
41 MP1A Z 0 1.25 42 MP1A Mx 001 1.25 43 MP1A X 1.609 3.25 44 MP1A Z 0 3.25 45 MP1A MX 001 3.25 46 MP1B X 3.907 1.25 47 MP1B Z 0 1.25 47 MP1B X 3.907 3.25 49 MP1B X 3.907 3.25 50 MP1B X 3.907 3.25 51 MP1B X 3.907 3.25 52 MP1C X 3.907 1.25 53 MP1C X 3.907 1.25 54 MP1C Mx 3.907 3.25 55 MP1C X 3.907 3.25 56 MP1C X 3.907 3.25 57 MP1C	40			1.609	
42 MP1A XX 1.609 3.25 43 MP1A X 1.609 3.25 44 MP1A Z 0 3.25 45 MP1A MX 001 3.25 46 MP1B X 3.907 1.25 47 MP1B X 3.907 1.25 48 MP1B MX .001 1.25 49 MP1B X 3.907 3.25 50 MP1B X 3.907 3.25 51 MP1B MX .001 3.25 51 MP1B MX .001 3.25 52 MP1C X 3.907 1.25 53 MP1C X 3.907 3.25 54 MP1C MX .001 1.25 55 MP1C X 3.907 3.25 56 MP1C X 3.907 3.25 57 MP1C<					
43 MP1A X 1.609 3.25 44 MP1A Z 0 3.25 45 MP1A Mx 001 3.25 46 MP1B X 3.907 1.25 47 MP1B X 0 1.25 48 MP1B X 3.907 3.25 49 MP1B X 3.907 3.25 50 MP1B X 0.01 3.25 51 MP1B Mx 0.001 3.25 52 MP1C X 3.907 1.25 53 MP1C X 3.907 1.25 54 MP1C Mx 0.01 1.25 55 MP1C X 3.907 3.25 56 MP1C X 3.907 3.25 57 MP1C Mx 0.01 3.25 58 MP4A X 1.221 2.1 59 MP4A			Mx	001	
44 MP1A Z 0 3.25 45 MP1B X 3.907 1.25 47 MP1B Z 0 1.25 48 MP1B MX .001 1.25 48 MP1B X 3.907 3.25 50 MP1B X 3.907 3.25 50 MP1B MX .001 3.25 51 MP1B MX .001 3.25 52 MP1C X 3.907 1.25 53 MP1C X 3.907 1.25 54 MP1C MX .001 1.25 54 MP1C X 3.907 3.25 56 MP1C X 3.907 3.25 56 MP1C X 3.907 3.25 56 MP1C X 3.907 3.25 58 MP4A X 1.221 2.1 59 MP4A					
45 MP1A Mx 001 3.25 46 MP1B X 3.907 1.25 47 MP1B Z 0 1.25 48 MP1B MX .001 1.25 49 MP1B X 3.907 3.25 50 MP1B X 3.907 3.25 51 MP1B MX .001 3.25 52 MP1C X 3.907 1.25 53 MP1C X 3.907 1.25 54 MP1C X 3.907 3.25 54 MP1C X 3.907 3.25 56 MP1C X 3.907 3.25 56 MP1C X 3.907 3.25 57 MP1C MX 3.907 3.25 58 MP4A X 1.221 2.1 59 MP4A X 1.221 2.1 60 MP4A <td></td> <td></td> <td>Z</td> <td></td> <td></td>			Z		
46 MP1B X 3.907 1.25 47 MP1B Z 0 1.25 48 MP1B Mx .001 1.25 49 MP1B X 3.907 3.25 50 MP1B X 0 3.25 50 MP1B Mx .001 3.25 51 MP1B Mx .001 3.25 52 MP1C X 3.907 1.25 53 MP1C Z 0 1.25 54 MP1C Mx .001 1.25 55 MP1C X 3.907 3.25 56 MP1C X 3.907 3.25 56 MP1C X 3.907 3.25 57 MP1C Mx .001 3.25 58 MP4A X 1.221 2.1 59 MP4A X 1.221 2.1 60 MP4A		MP1A	Mx		
47 MP1B X 001 1.25 48 MP1B Mx .001 1.25 49 MP1B X 3.907 3.25 50 MP1B Z 0 3.25 51 MP1B Mx .001 3.25 52 MP1C X 3.907 1.25 53 MP1C Z 0 1.25 54 MP1C Mx .001 1.25 55 MP1C X 3.907 3.25 56 MP1C X 3.907 3.25 56 MP1C X 3.907 3.25 57 MP1C X 3.907 3.25 58 MP4A X 1.221 2.1 59 MP4A X 1.221 2.1 60 MP4A X 1.221 2.1 61 MP4B X 9.67 2.1 62 MP4B					
48 MP1B Mx .001 1.25 49 MP1B X 3.907 3.25 50 MP1B Z 0 3.25 51 MP1B Mx .001 3.25 52 MP1C X 3.907 1.25 53 MP1C Z 0 1.25 54 MP1C Mx .001 1.25 54 MP1C X 3.907 3.25 55 MP1C X 3.907 3.25 56 MP1C X 3.907 3.25 57 MP1C Mx .001 3.25 58 MP4A X 1.221 2.1 59 MP4A X 1.221 2.1 60 MP4A					
49 MP1B X 3.907 3.25 50 MP1B Z 0 3.25 51 MP1B Mx .001 3.25 52 MP1C X 3.907 1.25 53 MP1C Z 0 1.25 54 MP1C MX .001 1.25 55 MP1C X 3.907 3.25 56 MP1C X 3.907 3.25 56 MP1C X 3.907 3.25 57 MP1C MX 3.907 3.25 58 MP4C X 0.01 3.25 58 MP4A X 1.221 2.1 59 MP4A X 1.221 2.1 60 MP4A Mx .00061 2.1 61 MP4B X .967 2.1 62 MP4B X .967 2.1 63 MP4B					
50 MP1B Z 0 3.25 51 MP1B Mx .001 3.25 52 MP1C X 3.907 1.25 53 MP1C Z 0 1.25 54 MP1C Mx .001 1.25 55 MP1C X 3.907 3.25 56 MP1C Z 0 3.25 57 MP1C Mx .001 3.25 58 MP4A X 1.221 2.1 59 MP4A X 1.221 2.1 60 MP4A X 0 2.1 61 MP4B X .967 2.1 62 MP4B X .967 2.1 63 MP4B Mx .000242 2.1 64 MP4C X .967 2.1 65 MP4C X .967 2.1 66 MP4C Mx <td></td> <td></td> <td></td> <td></td> <td></td>					
51 MP1B Mx .001 3.25 52 MP1C X 3.907 1.25 53 MP1C Z 0 1.25 54 MP1C Mx .001 1.25 55 MP1C X 3.907 3.25 56 MP1C Z 0 3.25 57 MP1C Mx .001 3.25 58 MP4A X 1.21 2.1 59 MP4A X 1.221 2.1 59 MP4A X 1.221 2.1 60 MP4A X 1.221 2.1 61 MP4B X 967 2.1 62 MP4B X 967 2.1 63 MP4B Mx 000242 2.1 64 MP4C X .967 2.1 65 MP4C X .967 2.1 66 MP4C M			Z		
52 MP1C X 3.907 1.25 53 MP1C Z 0 1.25 54 MP1C Mx .001 1.25 55 MP1C X 3.907 3.25 56 MP1C Z 0 3.25 57 MP1C Mx .001 3.25 58 MP4A X 1.221 2.1 59 MP4A X 1.221 2.1 60 MP4A X 0.0061 2.1 61 MP4A Mx .00061 2.1 62 MP4B X .967 2.1 63 MP4B X .967 2.1 64 MP4B X .967 2.1 64 MP4C X .967 2.1 66 MP4C X .967 2.1 66 MP4C Mx .000242 2.1 67 MP2A <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
53 MP1C Z 0 1.25 54 MP1C Mx .001 1.25 55 MP1C X 3.907 3.25 56 MP1C Z 0 3.25 57 MP1C Mx .001 3.25 58 MP4A X 1.221 2.1 59 MP4A X 1.221 2.1 60 MP4A Mx .00061 2.1 60 MP4A Mx .0967 2.1 61 MP4B X .967 2.1 62 MP4B X .967 2.1 63 MP4B Mx 000242 2.1 64 MP4C X .967 2.1 65 MP4C X .967 2.1 66 MP4C Mx 000242 2.1 67 MP2A X 2.48 2.1 68 MP2A					
54 MP1C Mx .001 1.25 55 MP1C X 3.907 3.25 56 MP1C Z 0 3.25 57 MP1C Mx .001 3.25 58 MP4A X 1.221 2.1 59 MP4A X 1.221 2.1 60 MP4A X 0 2.1 60 MP4A Mx .00061 2.1 61 MP4B X .967 2.1 62 MP4B X .967 2.1 63 MP4B Mx .000242 2.1 64 MP4C X .967 2.1 65 MP4C X .967 2.1 66 MP4C X 2.48 2.1 67 MP2A X 2.48 2.1 69 MP2A X 2.48 2.1 70 MP2B X </td <td></td> <td></td> <td></td> <td></td> <td></td>					
55 MP1C X 3.907 3.25 56 MP1C Z 0 3.25 57 MP1C Mx .001 3.25 58 MP4A X 1.221 2.1 59 MP4A X 0 2.1 60 MP4A Mx .00061 2.1 61 MP4B X .967 2.1 62 MP4B X .967 2.1 63 MP4B X .000242 2.1 64 MP4C X .967 2.1 65 MP4C X .967 2.1 65 MP4C X .967 2.1 66 MP4C X .967 2.1 67 MP2A X 2.48 2.1 68 MP2A Z 0 2.1 69 MP2A Mx .002 2.1 71 MP2B X					
56 MP1C Z 0 3.25 57 MP1C Mx .001 3.25 58 MP4A X 1.221 2.1 59 MP4A Z 0 2.1 60 MP4A Mx .00061 2.1 61 MP4B X .967 2.1 62 MP4B X .967 2.1 63 MP4B Mx 000242 2.1 64 MP4C X .967 2.1 65 MP4C X .967 2.1 66 MP4C X .967 2.1 67 MP4C X .967 2.1 66 MP4C X .967 2.1 67 MP2A X 2.48 2.1 68 MP2A X 2.48 2.1 69 MP2A X 3.392 2.1 70 MP2B X					
57 MP1C Mx .001 3.25 58 MP4A X 1.221 2.1 59 MP4A Z 0 2.1 60 MP4A Mx .00061 2.1 61 MP4B X .967 2.1 62 MP4B Z 0 2.1 63 MP4B Mx 000242 2.1 64 MP4C X .967 2.1 65 MP4C X .967 2.1 66 MP4C X .967 2.1 66 MP4C Mx 000242 2.1 67 MP2A X 2.48 2.1 68 MP2A X 2.48 2.1 69 MP2A X 3.392 2.1 70 MP2B X 3.392 2.1 71 MP2B X 3.392 2.1 72 MP2B			Z		
58 MP4A X 1.221 2.1 59 MP4A Z 0 2.1 60 MP4A Mx .00061 2.1 61 MP4B X .967 2.1 62 MP4B Z 0 2.1 63 MP4B Mx 000242 2.1 64 MP4C X .967 2.1 64 MP4C X .967 2.1 65 MP4C X .967 2.1 66 MP4C X .967 2.1 66 MP4C Mx 000242 2.1 67 MP2A X 2.48 2.1 68 MP2A X 2.48 2.1 69 MP2A X 3.392 2.1 71 MP2B X 3.392 2.1 72 MP2B X 3.392 2.1 74 MP2C X<					
59 MP4A Z 0 2.1 60 MP4A Mx .00061 2.1 61 MP4B X .967 2.1 62 MP4B Z 0 2.1 63 MP4B Mx 000242 2.1 64 MP4C X .967 2.1 65 MP4C Z 0 2.1 66 MP4C Mx 000242 2.1 67 MP2A X 2.48 2.1 68 MP2A Z 0 2.1 69 MP2A X 3.392 2.1 70 MP2B X 3.392 2.1 71 MP2B Z 0 2.1 73 MP2C X 3.392 2.1 74 MP2C X 3.392 2.1 75 MP2C Mx 001 2.1 76 MP3A X					
60 MP4A Mx .00061 2.1 61 MP4B X .967 2.1 62 MP4B Z 0 2.1 63 MP4B Mx 000242 2.1 64 MP4C X .967 2.1 65 MP4C Z 0 2.1 66 MP4C Mx 000242 2.1 67 MP2A X 2.48 2.1 68 MP2A Z 0 2.1 69 MP2A Mx .002 2.1 70 MP2B X 3.392 2.1 71 MP2B Z 0 2.1 72 MP2B Mx 001 2.1 73 MP2C X 3.392 2.1 74 MP2C Z 0 2.1 75 MP2C Mx 001 2.1 76 MP3A X 2.027 2.1					
61 MP4B X .967 2.1 62 MP4B Z 0 2.1 63 MP4B Mx 000242 2.1 64 MP4C X .967 2.1 65 MP4C Z 0 2.1 66 MP4C Mx 000242 2.1 67 MP2A X 2.48 2.1 68 MP2A Z 0 2.1 69 MP2A Mx .002 2.1 70 MP2B X 3.392 2.1 71 MP2B Z 0 2.1 72 MP2B Mx 001 2.1 73 MP2C X 3.392 2.1 74 MP2C Z 0 2.1 75 MP2C Mx 001 2.1 76 MP3A X 2.027 2.1					
62 MP4B Z 0 2.1 63 MP4B Mx 000242 2.1 64 MP4C X .967 2.1 65 MP4C Z 0 2.1 66 MP4C Mx 000242 2.1 67 MP2A X 2.48 2.1 68 MP2A Z 0 2.1 69 MP2A Mx .002 2.1 70 MP2B X 3.392 2.1 71 MP2B Z 0 2.1 72 MP2B Mx 001 2.1 73 MP2C X 3.392 2.1 74 MP2C Z 0 2.1 75 MP2C Mx 001 2.1 76 MP3A X 2.027 2.1					
63 MP4B Mx 000242 2.1 64 MP4C X .967 2.1 65 MP4C Z 0 2.1 66 MP4C Mx 000242 2.1 67 MP2A X 2.48 2.1 68 MP2A Z 0 2.1 69 MP2A Mx .002 2.1 70 MP2B X 3.392 2.1 71 MP2B Z 0 2.1 72 MP2B Mx 001 2.1 73 MP2C X 3.392 2.1 74 MP2C Z 0 2.1 75 MP2C Mx 001 2.1 76 MP3A X 2.027 2.1			Z		
64 MP4C X .967 2.1 65 MP4C Z 0 2.1 66 MP4C Mx 000242 2.1 67 MP2A X 2.48 2.1 68 MP2A Z 0 2.1 69 MP2A Mx .002 2.1 70 MP2B X 3.392 2.1 71 MP2B Z 0 2.1 72 MP2B Mx 001 2.1 73 MP2C X 3.392 2.1 74 MP2C Z 0 2.1 75 MP2C Mx 001 2.1 76 MP3A X 2.027 2.1			Mx		
65 MP4C Z 0 2.1 66 MP4C Mx 000242 2.1 67 MP2A X 2.48 2.1 68 MP2A Z 0 2.1 69 MP2A Mx .002 2.1 70 MP2B X 3.392 2.1 71 MP2B Z 0 2.1 72 MP2B Mx 001 2.1 73 MP2C X 3.392 2.1 74 MP2C Z 0 2.1 75 MP2C Mx 001 2.1 76 MP3A X 2.027 2.1					
66 MP4C Mx 000242 2.1 67 MP2A X 2.48 2.1 68 MP2A Z 0 2.1 69 MP2A Mx .002 2.1 70 MP2B X 3.392 2.1 71 MP2B Z 0 2.1 72 MP2B Mx 001 2.1 73 MP2C X 3.392 2.1 74 MP2C Z 0 2.1 75 MP2C Mx 001 2.1 76 MP3A X 2.027 2.1					
67 MP2A X 2.48 2.1 68 MP2A Z 0 2.1 69 MP2A Mx .002 2.1 70 MP2B X 3.392 2.1 71 MP2B Z 0 2.1 72 MP2B Mx 001 2.1 73 MP2C X 3.392 2.1 74 MP2C Z 0 2.1 75 MP2C Mx 001 2.1 76 MP3A X 2.027 2.1		MP4C	Mx	000242	2.1
68 MP2A Z 0 2.1 69 MP2A Mx .002 2.1 70 MP2B X 3.392 2.1 71 MP2B Z 0 2.1 72 MP2B Mx 001 2.1 73 MP2C X 3.392 2.1 74 MP2C Z 0 2.1 75 MP2C Mx 001 2.1 76 MP3A X 2.027 2.1					
69 MP2A Mx .002 2.1 70 MP2B X 3.392 2.1 71 MP2B Z 0 2.1 72 MP2B Mx 001 2.1 73 MP2C X 3.392 2.1 74 MP2C Z 0 2.1 75 MP2C Mx 001 2.1 76 MP3A X 2.027 2.1			Z		
70 MP2B X 3.392 2.1 71 MP2B Z 0 2.1 72 MP2B Mx 001 2.1 73 MP2C X 3.392 2.1 74 MP2C Z 0 2.1 75 MP2C Mx 001 2.1 76 MP3A X 2.027 2.1					
71 MP2B Z 0 2.1 72 MP2B Mx 001 2.1 73 MP2C X 3.392 2.1 74 MP2C Z 0 2.1 75 MP2C Mx 001 2.1 76 MP3A X 2.027 2.1					
72 MP2B Mx 001 2.1 73 MP2C X 3.392 2.1 74 MP2C Z 0 2.1 75 MP2C Mx 001 2.1 76 MP3A X 2.027 2.1					
73 MP2C X 3.392 2.1 74 MP2C Z 0 2.1 75 MP2C Mx 001 2.1 76 MP3A X 2.027 2.1					
74 MP2C Z 0 2.1 75 MP2C Mx 001 2.1 76 MP3A X 2.027 2.1					
75 MP2C Mx 001 2.1 76 MP3A X 2.027 2.1				0	
76 MP3A X 2.027 2.1			Mx	001	
			X		
	77	MP3A	Z	0	2.1
78 MP3A Mx .001 2.1			Mx		
79 MP3B X 3.278 2.1		MP3B		3.278	
80 MP3B Z 0 2.1	80	MP3B	Z	0	2.1

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
81	MP3B	Mx	001	2.1
82	MP3C	X	3.278	2.1
83	MP3C	Z	0	2.1
84	MP3C	Mx	001	2.1
85	OVP	X	6.438	.75
86	OVP	Z	0	.75
87	OVP	Mx	.004	.75

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	8.466	.75
2	OVP	Z	4.888	.75
3	OVP	Mx	003	.75
4	MP3A	X	6.984	.25
5	MP3A	Z	4.032	.25
6	MP3A	Mx	007	.25
7	MP3A	X	6.984	4.25
8	MP3A	Z	4.032	4.25
9	MP3A	Mx	007	4.25
10	MP3B	X	9.405	.25
11	MP3B	Z	5.43	.25
12	MP3B	Mx	.007	.25
13	MP3B	X	9.405	4.25
14	MP3B	Z	5.43	4.25
15	MP3B	Mx	.007	4.25
16	MP3C	X	6.984	.25
17	MP3C	Z	4.032	.25
18	MP3C	Mx	.002	.25
19	MP3C	X	6.984	4.25
20	MP3C	Z	4.032	4.25
21	MP3C	Mx	.002	4.25
22	MP3A	X	6.984	.25
23	MP3A	Z	4.032	.25
24	MP3A	Mx	002	.25
25	MP3A	X	6.984	4.25
26	MP3A	Z	4.032	4.25
27	MP3A	Mx	002	4.25
28	MP3B	X	9.405	.25
29	MP3B	Z	5.43	.25
30	MP3B	Mx	007	.25
31	MP3B	X	9.405	4.25
32	MP3B	Z	5.43	4.25
33	MP3B	Mx	007	4.25
34	MP3C	X	6.984	.25
35	MP3C	Z	4.032	.25
36	MP3C	Mx	.007	.25
37	MP3C	X	6.984	4.25
38	MP3C	Z	4.032	4.25
39	MP3C	Mx	.007	4.25
40	MP1A	X	2.057	1.25
41	MP1A	Z	1.188	1.25
71	IVII IA	_	1.100	1.20

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
42	MP1A	Mx	001	1.25
43	MP1A	Χ	2.057	3.25
44	MP1A	Z	1.188	3.25
45	MP1A	Mx	001	3.25
46	MP1B	X	4.047	1.25
47	MP1B	Z	2.337	1.25
48	MP1B	Mx	0	1.25
49	MP1B	X	4.047	3.25
50	MP1B	Z	2.337	3.25
51	MP1B	Mx	0	3.25
52	MP1C	X	2.057	1.25
53	MP1C	Z	1.188	1.25
54	MP1C	Mx	.001	1.25
55	MP1C	X	2.057	3.25
56	MP1C	Z	1.188	3.25
57	MP1C	Mx	.001	3.25
58	MP4A	Χ	.984	2.1
59	MP4A	Z	.568	2.1
60	MP4A	Mx	.000492	2.1
61	MP4B	X	.764	2.1
62	MP4B	Z	.441	2.1
63	MP4B	Mx	0	2.1
64	MP4C	X	.984	2.1
65	MP4C	Z	.568	2.1
66	MP4C	Mx	000492	2.1
67	MP2A	X	2.411	2.1
68	MP2A	Z	1.392	2.1
69	MP2A	Mx	.002	2.1
70	MP2B	X	3.201	2.1
71	MP2B	Z	1.848	2.1
72	MP2B	Mx	0	2.1
73	MP2C	X	2.411	2.1
74	MP2C	Z	1.392	2.1
75	MP2C	Mx	002	2.1
76	MP3A	X	2.116	2.1
77	MP3A	Z	1.222	2.1
78	MP3A	Mx	.001	2.1
79	MP3B	X	3.201	2.1
80	MP3B	Z	1.848	2.1
81	MP3B	Mx	0	2.1
82	MP3C	X	2.116	2.1
83	MP3C	Z	1.222	2.1
84	MP3C	Mx	001	2.1
85	OVP	X	8.466	.75
86	OVP	Z	4.888	.75
87	OVP	Mx	.003	.75

Member Point Loads (BLC 32: Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	5.722	.75
2	OVP	Z	9.911	.75

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Lo cation[ft,%]
3	OVP	Mx	0	.75
4	MP3A	X	4.964	.25
5	MP3A	Z	8.598	.25
6	MP3A	Mx	009	.25
7	MP3A	X	4.964	4.25
8	MP3A	Z	8.598	4.25
9	MP3A	Mx	009	4.25
10	MP3B	X	4.964	.25
11	MP3B	Z	8.598	.25
12	MP3B	Mx	.002	.25
13	MP3B	X	4.964	4.25
14	MP3B	Z	8.598	4.25
15	MP3B	Mx	.002	4.25
16	MP3C	X	3.566	.25
17	MP3C	Z	6.177	.25
18	MP3C	Mx	.005	.25
19	MP3C	X	3.566	4.25
20	MP3C	Z	6.177	4.25
21	MP3C	Mx	.005	4.25
22	MP3A	X	4.964	.25
23	MP3A	Z	8.598	.25
24	MP3A	Mx	.002	.25
25	MP3A	X	4.964	4.25
26	MP3A	Z	8.598	4.25
27	MP3A	Mx	.002	4.25
28	MP3B	X	4.964	.25
29	MP3B	Z	8.598	.25
30	MP3B	Mx	009	.25
31	MP3B	X	4.964	4.25
32	MP3B	Z	8.598	4.25
33	MP3B	Mx	009	4.25
34	MP3C	X	3.566	.25
35	MP3C	Z	6.177	.25
36	MP3C	Mx	.005	.25
37	MP3C	X	3.566	4.25
38	MP3C	Z	6.177	4.25
39	MP3C	Mx	.005	4.25
40	MP1A	X	1.954	1.25
41	MP1A	Z	3.384	1.25
42	MP1A	Mx	001	1.25
43	MP1A	X	1.954	3.25
44	MP1A	Z	3.384	3.25
45	MP1A	Mx	001	3.25
46	MP1B	X	1.954	1.25
47	MP1B	Z	3.384	1.25
48	MP1B	Mx	001	1.25
49	MP1B	X	1.954	3.25
50	MP1B	Z	3.384	3.25
51	MP1B	Mx	001	3.25
52	MP1C	X	.805	1.25
53	MP1C	Z	1.394	1.25
54	MP1C	Mx	.001	1.25

: Maser Consulting

SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 32: Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
55	MP1C	X	.805	3.25
56	MP1C	Z	1.394	3.25
57	MP1C	Mx	.001	3.25
58	MP4A	X	.483	2.1
59	MP4A	Z	.837	2.1
60	MP4A	Mx	.000241	2.1
61	MP4B	X	.483	2.1
62	MP4B	Z	.837	2.1
63	MP4B	Mx	.000242	2.1
64	MP4C	X	.61	2.1
65	MP4C	Z	1.057	2.1
66	MP4C	Mx	00061	2.1
67	MP2A	X	1.696	2.1
68	MP2A	Z	2.937	2.1
69	MP2A	Mx	.001	2.1
70	MP2B	X	1.696	2.1
71	MP2B	Z	2.937	2.1
72	MP2B	Mx	.001	2.1
73	MP2C	X	1.24	2.1
74	MP2C	Z	2.147	2.1
75	MP2C	Mx	002	2.1
76	MP3A	X	1.639	2.1
77	MP3A	Z	2.839	2.1
78	MP3A	Mx	.001	2.1
79	MP3B	X	1.639	2.1
80	MP3B	Z	2.839	2.1
81	MP3B	Mx	.001	2.1
82	MP3C	X	1.013	2.1
83	MP3C	Z	1.755	2.1
84	MP3C	Mx	001	2.1
85	OVP	X	5.722	.75
86	OVP	Z	9.911	.75
87	OVP	Mx	0	.75

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	0	.75
2	OVP	Z	9.776	.75
3	OVP	Mx	.003	.75
4	MP3A	X	0	.25
5	MP3A	Z	10.86	.25
6	MP3A	Mx	007	.25
7	MP3A	X	0	4.25
8	MP3A	Z	10.86	4.25
9	MP3A	Mx	007	4.25
10	MP3B	X	0	.25
11	MP3B	Z	8.065	.25
12	MP3B	Mx	002	.25
13	MP3B	X	0	4.25
14	MP3B	Z	8.065	4.25
15	MP3B	Mx	002	4.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP3C	X	0	.25
17	MP3C	Z	8.065	.25
18	MP3C	Mx	.007	.25
19	MP3C	X	0	4.25
20	MP3C	Z	8.065	4.25
21	MP3C	Mx	.007	4.25
22	MP3A	X	0	.25
23	MP3A	Z	10.86	.25
24	MP3A	Mx	.007	.25
25	MP3A	X	0	4.25
26	MP3A	Z	10.86	4.25
27	MP3A	Mx	.007	4.25
28	MP3B	X	0	.25
29	MP3B	Z	8.065	.25
30	MP3B	Mx	007	.25
31	MP3B	X	0	4.25
32	MP3B	Z	8.065	4.25
33	MP3B	Mx	007	4.25
34	MP3C	X	0	.25
35	MP3C	Z	8.065	.25
36	MP3C	Mx	.002	.25
37	MP3C	X	0	4.25
38	MP3C	Z	8.065	4.25
39	MP3C	Mx	.002	4.25
40	MP1A	X	0	1.25
41	MP1A	Z	4.673	1.25
42	MP1A	Mx	0	1.25
43	MP1A	X	0	3.25
44	MP1A	Z	4.673	3.25
45	MP1A	Mx	0	3.25
46	MP1B	X	0	1.25
47	MP1B	Z	2.375	1.25
48	MP1B	Mx	001	1.25
49	MP1B	X	0	3.25
50	MP1B	Z	2.375	3.25
51	MP1B	Mx	001	3.25
52	MP1C	X	0	1.25
53	MP1C	Z	2.375	1.25
54	MP1C	Mx	.001	1.25
55	MP1C	X	0	3.25
56	MP1C	Z	2.375	3.25
57	MP1C	Mx	.001	3.25
58	MP4A	X	0	2.1
59	MP4A	Z	.882	2.1
60	MP4A	Mx	0	2.1
61	MP4B	X	0	2.1
62	MP4B	Z	1.136	2.1
63	MP4B	Mx	.000492	2.1
64	MP4C	X	0	2.1
65	MP4C	Z	1.136	2.1
66	MP4C	Mx	000492	2.1
67	MP2A	X	0	2.1
UI	IVII Z/N		J	4. 1

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP2A	Z	3.696	2.1
69	MP2A	Mx	0	2.1
70	MP2B	X	0	2.1
71	MP2B	Z	2.784	2.1
72	MP2B	Mx	.002	2.1
73	MP2C	X	0	2.1
74	MP2C	Z	2.784	2.1
75	MP2C	Mx	002	2.1
76	MP3A	X	0	2.1
77	MP3A	Z	3.696	2.1
78	MP3A	Mx	0	2.1
79	MP3B	X	0	2.1
80	MP3B	Z	2.444	2.1
81	MP3B	Mx	.001	2.1
82	MP3C	X	0	2.1
83	MP3C	Z	2.444	2.1
84	MP3C	Mx	001	2.1
85	OVP	X	0	.75
86	OVP	Z	9.776	.75
87	OVP	Mx	003	.75

Member Point Loads (BLC 34: Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	-3.219	.75
2	OVP	Z	5.575	.75
3	OVP	Mx	.004	.75
4	MP3A	X	-4.964	.25
5	MP3A	Z	8.598	.25
6	MP3A	Mx	002	.25
7	MP3A	X	-4.964	4.25
8	MP3A	Z	8.598	4.25
9	MP3A	Mx	002	4.25
10	MP3B	X	-3.566	.25
11	MP3B	Z	6.177	.25
12	MP3B	Mx	005	.25
13	MP3B	X	-3.566	4.25
14	MP3B	Z	6.177	4.25
15	MP3B	Mx	005	4.25
16	MP3C	X	-4.964	.25
17	MP3C	Z	8.598	.25
18	MP3C	Mx	.009	.25
19	MP3C	X	-4.964	4.25
20	MP3C	Z	8.598	4.25
21	MP3C	Mx	.009	4.25
22	MP3A	X	-4.964	.25
23	MP3A	Z	8.598	.25
24	MP3A	Mx	.009	.25
25	MP3A	X	-4.964	4.25
26	MP3A	Z	8.598	4.25
27	MP3A	Mx	.009	4.25
28	MP3B	X	-3.566	.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 34: Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Lo cation[ft,%]
29	MP3B	Z	6.177	.25
30	MP3B	Mx	005	.25
31	MP3B	X	-3.566	4.25
32	MP3B	Z	6.177	4.25
33	MP3B	Mx	005	4.25
34	MP3C	X	-4.964	.25
35	MP3C	Z	8.598	.25
36	MP3C	Mx	002	.25
37	MP3C	X	-4.964	4.25
38	MP3C	Z	8.598	4.25
39	MP3C	Mx	002	4.25
40	MP1A	X	-1.954	1.25
41	MP1A	Z	3.384	1.25
42	MP1A	Mx	.001	1.25
43	MP1A	X	-1.954	3.25
44	MP1A	Z	3.384	3.25
45	MP1A	Mx	.001	3.25
46	MP1B	X	805	1.25
47	MP1B	Z	1.394	1.25
48	MP1B	Mx	001	1.25
49	MP1B	X	805	3.25
50	MP1B	Z	1.394	3.25
51	MP1B	Mx	001	3.25
52	MP1C	X	-1.954	1.25
53	MP1C	Z	3.384	1.25
54	MP1C	Mx	.001	1.25
55	MP1C	X	-1.954	3.25
56	MP1C	Z	3.384	3.25
57	MP1C	Mx	.001	3.25
58	MP4A	X	483	2.1
59	MP4A	Z	.837	2.1
60	MP4A	Mx	000241	2.1
61	MP4B	X	61	2.1
62	MP4B	Z	1.057	2.1
63	MP4B	Mx	.00061	2.1
64	MP4C	X	483	2.1
65	MP4C	Z	.837	2.1
66	MP4C	Mx	000242	2.1
67	MP2A	X	-1.696	2.1
68	MP2A	Z	2.937	2.1
69	MP2A	Mx	001	2.1
70	MP2B	X	-1.24	2.1
71	MP2B	Z	2.147	2.1
72	MP2B	Mx	.002	2.1
73	MP2C	X	-1.696	2.1
74	MP2C	Z	2.937	2.1
75	MP2C	Mx	001	2.1
76	MP3A	X Z	-1.639	2.1
77	MP3A		2.839	2.1
78	MP3A	Mx	001	2.1
79	MP3B	X	-1.013	2.1
80	MP3B	Z	1.755	2.1

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 34: Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
81	MP3B	Mx	.001	2.1
82	MP3C	X	-1.639	2.1
83	MP3C	Z	2.839	2.1
84	MP3C	Mx	001	2.1
85	OVP	X	-3.219	.75
86	OVP	Z	5.575	.75
87	OVP	Mx	004	.75

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	-4.13	.75
2	OVP	Z	2.384	.75
3	OVP	Mx	.003	.75
4	MP3A	X	-6.984	.25
5	MP3A	Z	4.032	.25
6	MP3A	Mx	.002	.25
7	MP3A	X	-6.984	4.25
8	MP3A	Z	4.032	4.25
9	MP3A	Mx	.002	4.25
10	MP3B	Χ	-6.984	.25
11	MP3B	Z	4.032	.25
12	MP3B	Mx	007	.25
13	MP3B	X	-6.984	4.25
14	MP3B	Z	4.032	4.25
15	MP3B	Mx	007	4.25
16	MP3C	Χ	-9.405	.25
17	MP3C	Z	5.43	.25
18	MP3C	Mx	.007	.25
19	MP3C	X	-9.405	4.25
20	MP3C	Z	5.43	4.25
21	MP3C	Mx	.007	4.25
22	MP3A	X	-6.984	.25
23	MP3A	Z	4.032	.25
24	MP3A	Mx	.007	.25
25	MP3A	X	-6.984	4.25
26	MP3A	Z	4.032	4.25
27	MP3A	Mx	.007	4.25
28	MP3B	X	-6.984	.25
29	MP3B	Z	4.032	.25
30	MP3B	Mx	002	.25
31	MP3B	X	-6.984	4.25
32	MP3B	Z	4.032	4.25
33	MP3B	Mx	002	4.25
34	MP3C	X	-9.405	.25
35	MP3C	Z	5.43	.25
36	MP3C	Mx	007	.25
37	MP3C	X	-9.405	4.25
38	MP3C	Z	5.43	4.25
39	MP3C	Mx	007	4.25
40	MP1A	X	-2.057	1.25
41	MP1A	Z	1.188	1.25

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
42	MP1A	Mx	.001	1.25
43	MP1A	X	-2.057	3.25
44	MP1A	Z	1.188	3.25
45	MP1A	Mx	.001	3.25
46	MP1B	X	-2.057	1.25
47	MP1B	Z	1.188	1.25
48	MP1B	Mx	001	1.25
49	MP1B	X	-2.057	3.25
50	MP1B	Z	1.188	3.25
51	MP1B	Mx	001	3.25
52	MP1C	X	-4.047	1.25
53	MP1C	Z	2.337	1.25
54	MP1C	Mx	0	1.25
55	MP1C	X	-4.047	3.25
56	MP1C	Z	2.337	3.25
57	MP1C	Mx	0	3.25
58	MP4A	X	984	2.1
59	MP4A	Z	.568	2.1
60	MP4A	Mx	000492	2.1
61	MP4B	X	984	2.1
62	MP4B	Z	.568	2.1
63	MP4B	Mx	.000492	2.1
64	MP4C	X	764	2.1
65	MP4C	Z	.441	2.1
66	MP4C	Mx	0	2.1
67	MP2A	X	-2.411	2.1
68	MP2A	Z	1.392	2.1
69	MP2A	Mx	002	2.1
70	MP2B	X Z	-2.411	2.1
71	MP2B		1.392	2.1
72	MP2B	Mx	.002	2.1
73	MP2C	X Z	-3.201	2.1 2.1
74	MP2C		1.848 0	2.1
75 76	MP2C MP3A	Mx X	-2.116	2.1
	MP3A	Z		
77 78	MP3A	Mx	1.222 001	2.1 2.1
79	MP3B		-2.116	2.1
80	MP3B	X Z	1.222	2.1
81	MP3B	Mx	.001	2.1
82	MP3C	X	-3.201	2.1
83	MP3C	Z	1.848	2.1
84	MP3C	Mx	0	2.1
85	OVP	X	-4.13	.75
86	OVP	Z	2.384	.75
87	OVP	Mx	003	.75
07	OVE	IVIA	000	.10

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	-6.438	.75
2	OVP	Z	0	.75

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 36: Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	OVP	Mx	.004	.75
4	MP3A	X	-7.133	.25
5	MP3A	Z	0	.25
6	MP3A	Mx	.005	.25
7	MP3A	X	-7.133	4.25
8	MP3A	Z	0	4.25
9	MP3A	Mx	.005	4.25
10	MP3B	X	-9.929	.25
11	MP3B	Z	0	.25
12	MP3B	Mx	009	.25
13	MP3B	X	-9.929	4.25
14	MP3B	Z	0	4.25
15	MP3B	Mx	009	4.25
16	MP3C	X	-9.929	.25
17	MP3C	Z	0	.25
18	MP3C	Mx	.002	.25
19	MP3C	X	-9.929	4.25
20	MP3C	Z	0	4.25
21	MP3C	Mx	.002	4.25
22	MP3A	X	-7.133	.25
23	MP3A	Z	0	.25
24	MP3A	Mx	.005	.25
25	MP3A	X	-7.133	4.25
26	MP3A	Z	0	4.25
27	MP3A	Mx	.005	4.25
28	MP3B	X	-9.929	.25
29	MP3B	Z	0	.25
30	MP3B	Mx	.002	.25
31	MP3B	X	-9.929	4.25
32	MP3B	Z	0	4.25
33	MP3B	Mx	.002	4.25
34	MP3C	X	-9.929	.25
35	MP3C	Z	0	.25
36	MP3C	Mx	009	.25
37	MP3C	X	-9.929	4.25
38	MP3C	Z	0	4.25
39	MP3C	Mx	009	4.25
40	MP1A	X	-1.609	1.25
41	MP1A	Z	0	1.25
42	MP1A	Mx	.001	1.25
43	MP1A	X	-1.609	3.25
44	MP1A	Z	-1.009	3.25
45	MP1A	Mx	.001	3.25
46	MP1B	X	-3.907	1.25
46	MP1B	Z	-3.907	1.25
48	MP1B	Mx	001	1.25
49	MP1B		-3.907	3.25
50	MP1B	X Z	-5.907	3.25
51	MP1B	Mx	001	3.25
52	MP1C	X	-3.907	1.25
53	MP1C MP1C	Z	-5.907	1.25
54	MP1C MP1C	Mx	001	1.25
54	IVIPTO	IVIX	001	1.25

: Maser Consulting

SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 36: Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
55	MP1C	X	-3.907	3.25
56	MP1C	Z	0	3.25
57	MP1C	Mx	001	3.25
58	MP4A	X	-1.221	2.1
59	MP4A	Z	0	2.1
60	MP4A	Mx	00061	2.1
61	MP4B	X	967	2.1
62	MP4B	Z	0	2.1
63	MP4B	Mx	.000242	2.1
64	MP4C	X	967	2.1
65	MP4C	Z	0	2.1
66	MP4C	Mx	.000242	2.1
67	MP2A	X	-2.48	2.1
68	MP2A	Z	0	2.1
69	MP2A	Mx	002	2.1
70	MP2B	X	-3.392	2.1
71	MP2B	Z	0	2.1
72	MP2B	Mx	.001	2.1
73	MP2C	X	-3.392	2.1
74	MP2C	Z	0	2.1
75	MP2C	Mx	.001	2.1
76	MP3A	X	-2.027	2.1
77	MP3A	Z	0	2.1
78	MP3A	Mx	001	2.1
79	MP3B	X	-3.278	2.1
80	MP3B	Z	0	2.1
81	MP3B	Mx	.001	2.1
82	MP3C	X	-3.278	2.1
83	MP3C	Z	0	2.1
84	MP3C	Mx	.001	2.1
85	OVP	X	-6.438	.75
86	OVP	Z	0	.75
87	OVP	Mx	004	.75

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	-8.466	.75
2	OVP	Z	-4.888	.75
3	OVP	Mx	.003	.75
4	MP3A	X	-6.984	.25
5	MP3A	Z	-4.032	.25
6	MP3A	Mx	.007	.25
7	MP3A	X	-6.984	4.25
8	MP3A	Z	-4.032	4.25
9	MP3A	Mx	.007	4.25
10	MP3B	X	-9.405	.25
11	MP3B	Z	-5.43	.25
12	MP3B	Mx	007	.25
13	MP3B	X	-9.405	4.25
14	MP3B	Z	-5.43	4.25
15	MP3B	Mx	007	4.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP3C	X	-6.984	.25
17	MP3C	Z	-4.032	.25
18	MP3C	Mx	002	.25
19	MP3C	X	-6.984	4.25
20	MP3C	Z	-4.032	4.25
21	MP3C	Mx	002	4.25
22	MP3A	Χ	-6.984	.25
23	MP3A	Z	-4.032	.25
24	MP3A	Mx	.002	.25
25	MP3A	X	-6.984	4.25
26	MP3A	Z	-4.032	4.25
27	MP3A	Mx	.002	4.25
28	MP3B	X	-9.405	.25
29	MP3B	Z	-5.43	.25
30	MP3B	Mx	.007	.25
31	MP3B	X	-9.405	4.25
32	MP3B	Z	-5.43	4.25
33	MP3B	Mx	.007	4.25
34	MP3C	X	-6.984	.25
35	MP3C	Z	-4.032	.25
36	MP3C	Mx	007	.25
37	MP3C	X	-6.984	4.25
38	MP3C	Z	-4.032	4.25
39	MP3C	Mx	007	4.25
40	MP1A	X	-2.057	1.25
41	MP1A	Z	-1.188	1.25
42	MP1A	Mx	.001	1.25
43	MP1A	X	-2.057	3.25
44	MP1A	Z	-1.188	3.25
45	MP1A	Mx	.001	3.25
46	MP1B	X	-4.047	1.25
47	MP1B	Z	-2.337	1.25
48	MP1B	Mx	0	1.25
49	MP1B	X	-4.047	3.25
50	MP1B	Z	-2.337	3.25
51	MP1B	Mx	0	3.25
52	MP1C	Χ	-2.057	1.25
53	MP1C	Z	-1.188	1.25
54	MP1C	Mx	001	1.25
55	MP1C	X	-2.057	3.25
56	MP1C	Z	-1.188	3.25
57	MP1C	Mx	001	3.25
58	MP4A	X	984	2.1
59	MP4A	Z	568	2.1
60	MP4A	Mx	000492	2.1
61	MP4B	X	764	2.1
62	MP4B	Z	441	2.1
63	MP4B	Mx	0	2.1
64	MP4C	X	984	2.1
65	MP4C	Z	568	2.1
66	MP4C	Mx	.000492	2.1
67	MP2A	X	-2.411	2.1

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP2A	Z	-1.392	2.1
69	MP2A	Mx	002	2.1
70	MP2B	X	-3.201	2.1
71	MP2B	Z	-1.848	2.1
72	MP2B	Mx	0	2.1
73	MP2C	X	-2.411	2.1
74	MP2C	Z	-1.392	2.1
75	MP2C	Mx	.002	2.1
76	MP3A	X	-2.116	2.1
77	MP3A	Z	-1.222	2.1
78	MP3A	Mx	001	2.1
79	MP3B	X	-3.201	2.1
80	MP3B	Z	-1.848	2.1
81	MP3B	Mx	0	2.1
82	MP3C	X	-2.116	2.1
83	MP3C	Z	-1.222	2.1
84	MP3C	Mx	.001	2.1
85	OVP	X	-8.466	.75
86	OVP	Z	-4.888	.75
87	OVP	Mx	003	.75

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	-5.722	.75
2	OVP	Z	-9.911	.75
3	OVP	Mx	0	.75
4	MP3A	X	-4.964	.25
5	MP3A	Z	-8.598	.25
6	MP3A	Mx	.009	.25
7	MP3A	X	-4.964	4.25
8	MP3A	Z	-8.598	4.25
9	MP3A	Mx	.009	4.25
10	MP3B	X	-4.964	.25
11	MP3B	Z	-8.598	.25
12	MP3B	Mx	002	.25
13	MP3B	X	-4.964	4.25
14	MP3B	Z	-8.598	4.25
15	MP3B	Mx	002	4.25
16	MP3C	X	-3.566	.25
17	MP3C	Z	-6.177	.25
18	MP3C	Mx	005	.25
19	MP3C	X	-3.566	4.25
20	MP3C	Z	-6.177	4.25
21	MP3C	Mx	005	4.25
22	MP3A	X	-4.964	.25
23	MP3A	Z	-8.598	.25
24	MP3A	Mx	002	.25
25	MP3A	X	-4.964	4.25
26	MP3A	Z	-8.598	4.25
27	MP3A	Mx	002	4.25
28	MP3B	X	-4.964	.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 38: Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Lo cation [ft, %]
29	MP3B	Z	-8.598	.25
30	MP3B	Mx	.009	.25
31	MP3B	X	-4.964	4.25
32	MP3B	Z	-8.598	4.25
33	MP3B	Mx	.009	4.25
34	MP3C	X	-3.566	.25
35	MP3C	Z	-6.177	.25
36	MP3C	Mx	005	.25
37	MP3C	X	-3.566	4.25
38	MP3C	Z	-6.177	4.25
39	MP3C	Mx	005	4.25
40	MP1A	X	-1.954	1.25
41	MP1A	Z	-3.384	1.25
42	MP1A	Mx	.001	1.25
43	MP1A	X	-1.954	3.25
44	MP1A	Z	-3.384	3.25
45	MP1A	Mx	.001	3.25
46	MP1B	X	-1.954	1.25
47	MP1B	Z	-3.384	1.25
48	MP1B	Mx	.001	1.25
49	MP1B	X	-1.954	3.25
50	MP1B	Z	-3.384	3.25
51	MP1B	Mx	.001	3.25
52	MP1C	X	805	1.25
53	MP1C	Z	-1.394	1.25
54	MP1C	Mx	001	1.25
55	MP1C	X	805	3.25
56	MP1C	Z	-1.394	3.25
57	MP1C	Mx	001	3.25
58	MP4A	X	483	2.1
59	MP4A	Z	837	2.1
60	MP4A	Mx	000241	2.1
61	MP4B	X	483	2.1
62	MP4B	Z	837	2.1
63	MP4B	Mx	000242	2.1
64	MP4C	X	61	2.1
65	MP4C	Z	-1.057	2.1
66	MP4C	Mx	.00061	2.1
67	MP2A	X	-1.696	2.1
68	MP2A	Z	-2.937	2.1
69	MP2A	Mx	001	2.1
70	MP2B	X	-1.696	2.1
71	MP2B	Z	-2.937	2.1
72	MP2B	Mx	001	2.1
73	MP2C	X	-1.24	2.1
74	MP2C	Z	-2.147	2.1
75	MP2C	Mx	.002	2.1
76	MP3A	X	-1.639	2.1
77	MP3A	Z	-2.839	2.1
78	MP3A	Mx	001	2.1
79	MP3B	X	-1.639	2.1
80	MP3B	Z	-2.839	2.1

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
81	MP3B	Mx	001	2.1
82	MP3C	X	-1.013	2.1
83	MP3C	Z	-1.755	2.1
84	MP3C	Mx	.001	2.1
85	OVP	X	-5.722	.75
86	OVP	Z	-9.911	.75
87	OVP	Mx	0	.75

Member Point Loads (BLC 77 : Lm1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M7	Υ	-500	4.083

Member Point Loads (BLC 78 : Lm2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M7	Υ	-500	%86

Member Point Loads (BLC 79 : Lv1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M7	Υ	-250	%50

Member Point Loads (BLC 80 : Lv2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M7	Υ	-250	%100

Member Point Loads (BLC 81 : Antenna Ev)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	Υ	814	.75
2	OVP	My	00047	.75
3	OVP	Mz	.000271	.75
4	MP3A	Υ	-1.364	.25
5	MP3A	My	000909	.25
6	MP3A	Mz	000909	.25
7	MP3A	Υ	-1.364	4.25
8	MP3A	My	000909	4.25
9	MP3A	Mz	000909	4.25
10	MP3B	Υ	-1.364	.25
11	MP3B	My	.001	.25
12	MP3B	Mz	000333	.25
13	MP3B	Υ	-1.364	4.25
14	MP3B	My	.001	4.25
15	MP3B	Mz	000333	4.25
16	MP3C	Υ	-1.364	.25
17	MP3C	My	000333	.25
18	MP3C	Mz	.001	.25
19	MP3C	Υ	-1.364	4.25
20	MP3C	My	000333	4.25
21	MP3C	Mz	.001	4.25
22	MP3A	Υ	-1.364	.25
23	MP3A	My	000909	.25

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
24	MP3A	Mz	.000909	.25
25	MP3A	Υ	-1.364	4.25
26	MP3A	My	000909	4.25
27	MP3A	Mz	.000909	4.25
28	MP3B	Υ	-1.364	.25
29	MP3B	My	000333	.25
30	MP3B	Mz	001	.25
31	MP3B	Υ	-1.364	4.25
32	MP3B	My	000333	4.25
33	MP3B	Mz	001	4.25
34	MP3C	Υ	-1.364	.25
35	MP3C	My	.001	.25
36	MP3C	Mz	.000333	.25
37	MP3C	Υ	-1.364	4.25
38	MP3C	My	.001	4.25
39	MP3C	Mz	.000333	4.25
40	MP1A	Y	-1.877	1.25
41	MP1A	My	001	1.25
42	MP1A	Mz	0	1.25
43	MP1A	Y	-1.877	3.25
44	MP1A	My	001	3.25
45	MP1A	Mz	0	3.25
46	MP1B	Y	-1.877	1.25
47	MP1B	My	.000626	1.25
48	MP1B	Mz	001	1.25
49	MP1B	Y	-1.877	3.25
50	MP1B	My	.000626	3.25
51	MP1B	Mz	001	3.25
52	MP1C	Y	-1.877	1.25
53	MP1C	My	.000626	1.25
54	MP1C	Mz	.001	1.25
55	MP1C	Y	-1.877	3.25
56	MP1C	My	.000626	3.25
57	MP1C	Mz	.001	3.25
58	MP4A	Y	896	2.1
59	MP4A	My	.000448	2.1
60	MP4A	Mz	0	2.1
61	MP4B	Y	896	2.1
62	MP4B	My	000224	2.1
63	MP4B	Mz	.000388	2.1
64	MP4C	Y	896	2.1
65	MP4C	My	000224	2.1
66	MP4C	Mz	000388	2.1
67	MP2A	Y	-3.637	2.1
68	MP2A	My	.002	2.1
69	MP2A	Mz	0	2.1
70	MP2B	Y	-3.637	2.1
71	MP2B	My	001	2.1
72	MP2B	Mz	.002	2.1
73	MP2C	Y	-3.637	2.1
74	MP2C	My	001	2.1
75	MP2C	Mz	002	2.1
75	IVIF2U	IVIZ	002	۷.۱

: Maser Consulting

SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
76	MP3A	Υ	-3.029	2.1
77	MP3A	My	.002	2.1
78	MP3A	Mz	0	2.1
79	MP3B	Υ	-3.029	2.1
80	MP3B	My	001	2.1
81	MP3B	Mz	.002	2.1
82	MP3C	Υ	-3.029	2.1
83	MP3C	My	001	2.1
84	MP3C	Mz	002	2.1
85	OVP	Υ	814	.75
86	OVP	My	.00047	.75
87	OVP	Mz	000271	.75

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	Z	-2.036	.75
2	OVP	Mx	000679	.75
3	MP3A	Z	-3.41	.25
4	MP3A	Mx	.002	.25
5	MP3A	Z	-3.41	4.25
6	MP3A	Mx	.002	4.25
7	MP3B	Z	-3.41	.25
8	MP3B	Mx	.000832	.25
9	MP3B	Z	-3.41	4.25
10	MP3B	Mx	.000832	4.25
11	MP3C	Z	-3.41	.25
12	MP3C	Mx	003	.25
13	MP3C	Z	-3.41	4.25
14	MP3C	Mx	003	4.25
15	MP3A	Z	-3.41	.25
16	MP3A	Mx	002	.25
17	MP3A	Z	-3.41	4.25
18	MP3A	Mx	002	4.25
19	MP3B	Z	-3.41	.25
20	MP3B	Mx	.003	.25
21	MP3B	Z	-3.41	4.25
22	MP3B	Mx	.003	4.25
23	MP3C	Z	-3.41	.25
24	MP3C	Mx	000832	.25
25	MP3C	Z	-3.41	4.25
26	MP3C	Mx	000832	4.25
27	MP1A	Z	-4.692	1.25
28	MP1A	Mx	0	1.25
29	MP1A	Z	-4.692	3.25
30	MP1A	Mx	0	3.25
31	MP1B	Z	-4.692	1.25
32	MP1B	Mx	.003	1.25
33	MP1B	Z	-4.692	3.25
34	MP1B	Mx	.003	3.25
35	MP1C	Z	-4.692	1.25
36	MP1C	Mx	003	1.25

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 82: Antenna Eh (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
37	MP1C	Z	-4.692	3.25
38	MP1C	Mx	003	3.25
39	MP4A	Z	-2.241	2.1
40	MP4A	Mx	0	2.1
41	MP4B	Z	-2.241	2.1
42	MP4B	Mx	00097	2.1
43	MP4C	Z	-2.241	2.1
44	MP4C	Mx	.00097	2.1
45	MP2A	Z	-9.093	2.1
46	MP2A	Mx	0	2.1
47	MP2B	Z	-9.093	2.1
48	MP2B	Mx	005	2.1
49	MP2C	Z	-9.093	2.1
50	MP2C	Mx	.005	2.1
51	MP3A	Z	-7.574	2.1
52	MP3A	Mx	0	2.1
53	MP3B	Z	-7.574	2.1
54	MP3B	Mx	004	2.1
55	MP3C	Z	-7.574	2.1
56	MP3C	Mx	.004	2.1
57	OVP	Z	-2.036	.75
58	OVP	Mx	.000679	.75

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	OVP	X	2.036	.75
2	OVP	Mx	001	.75
3	MP3A	X	3.41	.25
4	MP3A	Mx	002	.25
5	MP3A	X	3.41	4.25
6	MP3A	Mx	002	4.25
7	MP3B	X	3.41	.25
8	MP3B	Mx	.003	.25
9	MP3B	X	3.41	4.25
10	MP3B	Mx	.003	4.25
11	MP3C	X	3.41	.25
12	MP3C	Mx	000832	.25
13	MP3C	X	3.41	4.25
14	MP3C	Mx	000832	4.25
15	MP3A	X	3.41	.25
16	MP3A	Mx	002	.25
17	MP3A	X	3.41	4.25
18	MP3A	Mx	002	4.25
19	MP3B	X	3.41	.25
20	MP3B	Mx	000832	.25
21	MP3B	X	3.41	4.25
22	MP3B	Mx	000832	4.25
23	MP3C	X	3.41	.25
24	MP3C	Mx	.003	.25
25	MP3C	X	3.41	4.25
26	MP3C	Mx	.003	4.25

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
27	MP1A	X	4.692	1.25
28	MP1A	Mx	003	1.25
29	MP1A	X	4.692	3.25
30	MP1A	Mx	003	3.25
31	MP1B	X	4.692	1.25
32	MP1B	Mx	.002	1.25
33	MP1B	X	4.692	3.25
34	MP1B	Mx	.002	3.25
35	MP1C	X	4.692	1.25
36	MP1C	Mx	.002	1.25
37	MP1C	X	4.692	3.25
38	MP1C	Mx	.002	3.25
39	MP4A	X	2.241	2.1
40	MP4A	Mx	.001	2.1
41	MP4B	X	2.241	2.1
42	MP4B	Mx	00056	2.1
43	MP4C	X	2.241	2.1
44	MP4C	Mx	00056	2.1
45	MP2A	X	9.093	2.1
46	MP2A	Mx	.006	2.1
47	MP2B	X	9.093	2.1
48	MP2B	Mx	003	2.1
49	MP2C	X	9.093	2.1
50	MP2C	Mx	003	2.1
51	MP3A	X	7.574	2.1
52	MP3A	Mx	.005	2.1
53	MP3B	X	7.574	2.1
54	MP3B	Mx	003	2.1
55	MP3C	X	7.574	2.1
56	MP3C	Mx	003	2.1
57	OVP	X	2.036	.75
58	OVP	Mx	.001	.75

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	Υ	-6.14	-6.14	0	%100
2	M104B	Υ	-6.14	-6.14	0	%100
3	M105B	Υ	-6.14	-6.14	0	%100
4	M15	Υ	-9.497	-9.497	0	%100
5	M17	Υ	-9.497	-9.497	0	%100
6	M79	Υ	-9.497	-9.497	0	%100
7	M80	Υ	-9.497	-9.497	0	%100
8	M97B	Υ	-9.497	-9.497	0	%100
9	M98B	Υ	-9.497	-9.497	0	%100
10	MP4A	Υ	-4.636	-4.636	0	%100
11	MP3A	Υ	-4.636	-4.636	0	%100
12	MP2A	Υ	-4.636	-4.636	0	%100
13	MP1A	Υ	-4.636	-4.636	0	%100
14	MP4C	Υ	-4.636	-4.636	0	%100
15	MP3C	Υ	-4.636	-4.636	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 40 : Structure Di) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
16	MP2C	Υ	-4.636	-4.636	0	%100
17	MP1C	Υ	-4.636	-4.636	0	%100
18	MP4B	Υ	-4.636	-4.636	0	%100
19	MP3B	Υ	-4.636	-4.636	0	%100
20	MP2B	Y	-4.636	-4.636	0	%100
21	MP1B	Υ	-4.636	-4.636	0	%100
22	OVP	Υ	-4.636	-4.636	0	%100
23	M103A	Υ	-7.132	-7.132	0	%100
24	M104A	Υ	-7.132	-7.132	0	%100
25	M105A	Υ	-7.132	-7.132	0	%100
26	M61	Υ	-5.305	-5.305	0	%100
27	M71A	Υ	-5.305	-5.305	0	%100
28	M87	Υ	-5.305	-5.305	0	%100
29	M108	Υ	-9.481	-9.481	0	%100
30	M109	Υ	-9.481	-9.481	0	%100
31	M110A	Υ	-9.481	-9.481	0	%100
32	M33	Υ	-5.242	-5.242	0	%100
33	M34	Υ	-5.242	-5.242	0	%100
34	M81	Υ	-5.242	-5.242	0	%100
35	M82A	Υ	-5.242	-5.242	0	%100
36	M99A	Υ	-5.242	-5.242	0	%100
37	M100A	Υ	-5.242	-5.242	0	%100
38	M7	Υ	-5.305	-5.305	0	%100
39	M86	Υ	-5.305	-5.305	0	%100
40	M102A	Υ	-5.305	-5.305	0	%100
41	M36	Υ	-9.497	-9.497	0	%100
42	M40	Υ	-9.497	-9.497	0	%100
43	M35	Υ	-9.497	-9.497	0	%100
44	M39	Υ	-9.497	-9.497	0	%100
45	M83A	Υ	-9.497	-9.497	0	%100
46	M84A	Υ	-9.497	-9.497	0	%100
47	M85A	Υ	-9.497	-9.497	0	%100
48	M86A	Υ	-9.497	-9.497	0	%100
49	M101A	Υ	-9.497	-9.497	0	%100
50	M102	Υ	-9.497	-9.497	0	%100
51	M103	Υ	-9.497	-9.497	0	%100
52	M104	Υ	-9.497	-9.497	0	%100
53	M32	Υ	-7.282	-7.282	0	%100
54	M110	Υ	-7.282	-7.282	0	%100
55	M71	Υ	-7.282	-7.282	0	%100
56	M72	Y	-7.282	-7.282	0	%100
57	M89A	Υ	-7.282	-7.282	0	%100
58	M90	Υ	-7.282	-7.282	0	%100
59	M16	Υ	-9.497	-9.497	0	%100
60	M87A	Υ	-9.497	-9.497	0	%100
61	M105	Υ	-9.497	-9.497	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	0	0	0	%100
2	M31	Z	0	0	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
3	M104B	X	0	0	0	%100
4	M104B	Z	-9.786	-9.786	0	%100
5	M105B	X	0	0	0	%100
6	M105B	Z	-9.786	-9.786	0	%100
7	M15	X	0	0	0	%100
8	M15	Z	-6.209	-6.209	0	%100
9	M17	X	0	0	0	%100
10	M17	Z	-6.209	-6.209	0	%100
11	M79	X	0	0	0	%100
12	M79	Z	-6.209	-6.209	0	%100
13	M80	X	0	0	0	%100
14	M80	Z	-24.836	-24.836	0	%100
15	M97B	X	0	0	0	%100
16	M97B	Z	-24.836	-24.836	0	%100
17	M98B	X	0	0	0	%100
18	M98B	Z	-6.209	-6.209	0	%100
19	MP4A	X	0	0	0	%100
20	MP4A	Z	-9.831	-9.831	0	%100
21	MP3A	X	0	0	0	%100
22	MP3A	Z	-9.831	-9.831	0	%100
23	MP2A	X	0	0	0	%100
24	MP2A	Z	-9.831	-9.831	0	%100
25	MP1A	X	0	0	0	%100
26	MP1A	Z	-9.831	-9.831	0	%100
27	MP4C	X	0	0	0	%100
28	MP4C	Z	-9.831	-9.831	0	%100
29	MP3C	X	0	0	0	%100
30	MP3C	Z	-9.831	-9.831	0	%100
31	MP2C	X	0	0	0	%100
32	MP2C	Z	-9.831	-9.831	0	%100
33	MP1C	X	0	0	0	%100
34	MP1C	Z	-9.831	-9.831	0	%100
35	MP4B	X	0	0	0	%100
36	MP4B	Z	-9.831	-9.831	0	%100
37	MP3B	X	0	0	0	%100
38	MP3B	Z	-9.831	-9.831	0	%100
39	MP2B	Χ	0	0	0	%100
40	MP2B	Z	-9.831	-9.831	0	%100
41	MP1B	X	0	0	0	%100
42	MP1B	Z	-9.831	-9.831	0	%100
43	OVP	X	0	0	0	%100
44	OVP	Z	-9.831	-9.831	0	%100
45	M103A	X	0	0	0	%100
46	M103A	Z	-16. <u>7</u> 61	-16.761	0	%100
47	M104A	X	0	0	0	%100
48	M104A	Z	-4.19	-4.19	0	%100
49	M105A	X	0	0	0	%100
50	M105A	Z	-4.19	-4.19	0	%100
51	M61	X	0	0	0	%100
52	M61	Z	-11.901	-11.901	0	%100
53	M71A	X	0	0	0	%100
54	M71A	Z	-2.975	-2.975	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
55	M87	X	0	0	0	%100
56	M87	Z	-2.975	-2.975	0	%100
57	M108	X	0	0	0	%100
58	M108	Z	-6.214	-6.214	0	%100
59	M109	X	0	0	0	%100
60	M109	Z	-16.476	-16.476	0	%100
61	M110A	X	0	0	0	%100
62	M110A	Z	-16.476	-16.476	0	%100
63	M33	X	0	0	0	%100
64	M33	Z	-3.569	-3.569	0	%100
65	M34	X	0	0	0	%100
66	M34	Z	-3.569	-3.569	0	%100
67	M81	×	0	0	0	%100
68	M81	Z	-13.797	-13.797	0	%100
69	M82A	X	0	0	0	%100
70	M82A	Z	-3.332	-3.332	0	%100
71	M99A	X	0	0	0	%100
72	M99A	Z	-3.332	-3.332	0	%100
73	M100A	X	0	0	0	%100 %100
74	M100A	Z	-13.797	-13.797	0	%100
75	M7	X	0	0	0	%100
76	M7	Z	-11.901	-11.901	0	%100 %100
77	M86	X	0	0	0	%100 %100
78	M86	Z	-2.975	-2.975	0	%100
79	M102A	X	0	<u>-2.973</u> 0	0	%100
80	M102A	Z	-2.975	-2.975	0	%100 %100
81	M36	X	-2.973	-2.975 0	0	%100
82	M36	Z	-24.835	-24.835	0	%100 %100
83	M40	X	-24.635	<u>-24.635</u> 0	0	%100 %100
84	M40	Z	-24.835	-24.835	0	%100 %100
85	M35	X	-24.633	<u>-24.633</u> 0	0	%100 %100
86	M35	Z	-6.333	-6.333	0	%100 %100
87	M39	X	0	0.333	0	%100 %100
88	M39	Z	-6.333	-6.333	0	%100 %100
	M83A	X	-6.555	0.333	0	%100 %100
89 90		Z	-		0	%100 %100
	M83A	X	-6.333 0	-6.333	0	
91 92	M84A M84A	Z	-6.086	0 -6.086	0	%100 %100
93	M85A		-6.066	-0.000 0	0	%100 %100
93	M85A	X Z	-6.086	-6.086	0	%100 %100
95	M86A			0.000 0	0	
96	M86A	X Z	-24.835	-24.835	0	%100 %100
97	M101A	X	0	0	0	%100 %100
98	M101A	Z	-6.086	-6.086	0	%100 %100
99	M102	X Z	0	0	0	%100
100	M102		-6.333	-6.333		%100 %100
101	M103	X Z	0	0	0	%100 %100
102	M103		-24.835	-24.835	0	%100
103	M104	X Z	0	0	0	%100
104	M104		-6.086	-6.086	0	%100
105	M32	X	0	0	0	%100
106	M32	Z	-20.465	-20.465	0	%100

Company : Maser Consulting
Designer : SEA
Job Number :

Model Name

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
107	M110	X	0	0	0	%100
108	M110	Z	-20.465	-20.465	0	%100
109	M71	X	0	0	0	%100
110	M71	Z	-5.116	-5.116	0	%100
111	M72	X	0	0	0	%100
112	M72	Z	-5.116	-5.116	0	%100
113	M89A	X	0	0	0	%100
114	M89A	Z	-5.116	-5.116	0	%100
115	M90	X	0	0	0	%100
116	M90	Z	-5.116	-5.116	0	%100
117	M16	X	0	0	0	%100
118	M16	Z	-24.836	-24.836	0	%100
119	M87A	X	0	0	0	%100
120	M87A	Z	-6.209	-6.209	0	%100
121	M105	X	0	0	0	%100
122	M105	Z	-6.209	-6.209	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	1.631	1.631	0	%100
2	M31	Z	-2.825	-2.825	0	%100
3	M104B	X	1.631	1.631	0	%100
4	M104B	Z	-2.825	-2.825	0	%100
5	M105B	X	6.524	6.524	0	%100
6	M105B	Z	-11.3	-11.3	0	%100
7	M15	X	9.314	9.314	0	%100
8	M15	Z	-16.132	-16.132	0	%100
9	M17	X	0	0	0	%100
10	M17	Z	0	0	0	%100
11	M79	X	0	0	0	%100
12	M79	Z	0	0	0	%100
13	M80	X	9.314	9.314	0	%100
14	M80	Z	-16.132	-16.132	0	%100
15	M97B	X	9.314	9.314	0	%100
16	M97B	Z	-16.132	-16.132	0	%100
17	M98B	X	9.314	9.314	0	%100
18	M98B	Z	-16.132	-16.132	0	%100
19	MP4A	X	4.916	4.916	0	%100
20	MP4A	Z	-8.514	-8.514	0	%100
21	MP3A	X	4.916	4.916	0	%100
22	MP3A	Z	-8.514	-8.514	0	%100
23	MP2A	X	4.916	4.916	0	%100
24	MP2A	Z	-8.514	-8.514	0	%100
25	MP1A	X	4.916	4.916	0	%100
26	MP1A	Z	-8.514	-8.514	0	%100
27	MP4C	X	4.916	4.916	0	%100
28	MP4C	Z	-8.514	-8.514	0	%100
29	MP3C	X	4.916	4.916	0	%100
30	MP3C	Z	-8.514	-8.514	0	%100
31	MP2C	X	4.916	4.916	0	%100
32	MP2C	Z	-8.514	-8.514	0	%100

Model Name

: Maser Consulting : SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
33	MP1C	X	4.916	4.916	0	%100
34	MP1C	Z	-8.514	-8.514	0	%100
35	MP4B	X	4.916	4.916	0	%100
36	MP4B	Z	-8.514	-8.514	0	%100
37	MP3B	X	4.916	4.916	0	%100
38	MP3B	Z	-8.514	-8.514	0	%100
39	MP2B	X	4.916	4.916	0	%100
40	MP2B	Z	-8.514	-8.514	0	%100
41	MP1B	X	4.916	4.916	0	%100
42	MP1B	Z	-8.514	-8.514	0	%100
43	OVP	X	4.916	4.916	0	%100
44	OVP	Z	-8.514	-8.514	0	%100
45	M103A	X	6.285	6.285	0	%100
46	M103A	Z	-10.887	-10.887	0	%100
47	M104A	X	6.285	6.285	0	%100
48	M104A	Z	-10.887	-10.887	0	%100
49	M105A	X	0	0	0	%100
50	M105A	Z	0	0	0	%100
51	M61	X	4.463	4.463	0	%100
52	M61	Z	-7.73	-7.73	0	%100
53	M71A	×	4.463	4.463	0	%100
54	M71A	Z	-7.73	-7.73	0	%100
55	M87	X	0	0	0	%100
56	M87	Z	0	0	0	%100
57	M108	X	4.818	4.818	0	%100
58	M108	Z	-8.344	-8.344	0	%100
59	M109	X	4.818	4.818	0	%100
60	M109	Z	-8.344	-8.344	0	%100
61	M110A	X	9.949	9.949	0	%100
62	M110A	Z	-17.231	-17.231	0	%100
63	M33	X	.000679	.000679	0	%100
64	M33	Z	001	001	0	%100
65	M34	X	5.233	5.233	0	%100
66	M34	Z	-9.064	-9.064	0	%100
67	M81	X	5.233	5.233	0	%100
68	M81	Z	-9.064	-9.064	0	%100
69	M82A	X	.000679	.000679	0	%100
70	M82A	Z	001	001	0	%100
71	M99A	X	5.115	5.115	0	%100
72	M99A	Z	-8.859	-8.859	0	%100
73	M100A	X	5.115	5.115	0	%100
74	M100A	Z	-8.859	-8.859	0	%100
75	M7	X	4.463	4.463	0	%100
76	M7	Z	-7.73	-7.73	0	%100
77	M86	X	4.463	4.463	0	%100
78	M86	Z	-7.73	-7.73	0	%100
79	M102A	X	0	0	0	%100
80	M102A	Z	0	0	0	%100
81	M36	X	9.251	9.251	0	%100
82	M36	Z	-16.024	-16.024	0	%100
83	M40	X	9.375	9.375	0	%100
84	M40	Z	-16.239	-16.239	0	%100

: Maser Consulting

SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
85	M35	X	9.375	9.375	0	%100
86	M35	Z	-16.239	-16.239	0	%100
87	M39	X	.000412	.000412	0	%100
88	M39	Z	000714	000714	0	%100
89	M83A	X	9.375	9.375	0	%100
90	M83A	Z	-16.239	-16.239	0	%100
91	M84A	X	9.251	9.251	0	%100
92	M84A	Z	-16.024	-16.024	0	%100
93	M85A	X	.000412	.000412	0	%100
94	M85A	Z	000714	000714	0	%100
95	M86A	X	9.375	9.375	0	%100
96	M86A	Z	-16.239	-16.239	0	%100
97	M101A	X	.000412	.000412	0	%100
98	M101A	Z	000714	000714	0	%100
99	M102	X	.000412	.000412	0	%100
100	M102	Z	000714	000714	0	%100
101	M103	X	9.251	9.251	0	%100
102	M103	Z	-16.024	-16.024	0	%100
103	M104	X	9.251	9.251	0	%100
104	M104	Z	-16.024	-16.024	0	%100
105	M32	X	7.674	7.674	0	%100
106	M32	Z	-13.292	-13.292	0	%100
107	M110	X	7.674	7.674	0	%100
108	M110	Z	-13.292	-13.292	0	%100
109	M71	X	7.674	7.674	0	%100
110	M71	Z	-13.292	-13.292	0	%100
111	M72	X	7.674	7.674	0	%100
112	M72	Z	-13.292	-13.292	0	%100
113	M89A	X	0	0	0	%100
114	M89A	Z	0	0	0	%100
115	M90	X	0	0	0	%100
116	M90	Z	0	0	0	%100
117	M16	Х	9.314	9.314	0	%100
118	M16	Z	-16.132	-16.132	0	%100
119	M87A	X	9.314	9.314	0	%100
120	M87A	Z	-16.132	-16.132	0	%100
121	M105	X	0	0	0	%100
122	M105	Z	0	0	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	8.475	8.475	0	%100
2	M31	Z	-4.893	-4.893	0	%100
3	M104B	X	0	0	0	%100
4	M104B	Z	0	0	0	%100
5	M105B	X	8.475	8.475	0	%100
6	M105B	Z	-4.893	-4.893	0	%100
7	M15	X	21.509	21.509	0	%100
8	M15	Z	-12.418	-12.418	0	%100
9	M17	X	5.377	5.377	0	%100
10	M17	Z	-3.105	-3.105	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
11	M79	X	5.377	5.377	0	%100
12	M79	Z	-3.105	-3.105	0	%100
13	M80	X	5.377	5.377	0	%100
14	M80	Z	-3.105	-3.105	0	%100
15	M97B	X	5.377	5.377	0	%100
16	M97B	Z	-3.105	-3.105	0	%100
17	M98B	X	21.509	21.509	0	%100
18	M98B	Z	-12.418	-12.418	0	%100
19	MP4A	X	8.514	8.514	0	%100
20	MP4A	Z	-4.916	-4.916	0	%100
21	MP3A	X	8.514	8.514	0	%100
22	MP3A	Z	-4.916	-4.916	0	%100
23	MP2A	×	8.514	8.514	0	%100
24	MP2A	Z	-4.916	-4.916	0	%100
25	MP1A	X	8.514	8.514	0	%100
26	MP1A	Z	-4.916	-4.916	0	%100
27	MP4C	X	8.514	8.514	0	%100
28	MP4C	Z	-4.916	-4.916	0	%100
29	MP3C	X	8.514	8.514	0	%100 %100
30	MP3C	Z	-4.916	-4.916	0	%100 %100
31	MP2C	X	8.514	8.514	0	%100
32	MP2C	Z	-4.916	-4.916	0	%100 %100
33	MP1C	X	8.514	8.514	0	%100 %100
34	MP1C	Z	-4.916	-4.916	0	%100
35	MP4B	X	8.514	8.514	0	%100 %100
36	MP4B	Z	-4.916	-4.916	0	%100 %100
37	MP3B	X	8.514	8.514	0	%100 %100
38	MP3B	Z	-4.916	-4.916	0	%100
39	MP2B	X	8.514	8.514	0	%100 %100
40	MP2B	Z	-4.916	-4.916	0	%100 %100
41	MP1B	X	8.514	8.514	0	%100 %100
42	MP1B	Z	-4.916	-4.916	0	%100 %100
43	OVP	X	8.514	8.514	0	%100 %100
43	OVP	Z	-4.916	-4.916	0	
	M103A	X		3.629	0	%100 %100
45		Z	3.629		0	%100 %100
46 47	M103A	X	-2.095	-2.095 14.515		
48	M104A M104A	Z	14.515 -8.38	14.515 -8.38	0	%100 %100
49	M104A M105A		3.629	3.629	0	%100 %100
50	M105A M105A	X Z	-2.095	-2.095	0	%100 %100
51			2.577	2.577		
52	M61 M61	X Z	-1.488	<u>2.577</u> -1.488	0	%100 %100
53	M71A	X Z	10.306	10.306	0	%100 %100
54 55	M71A	X	-5.95 2.577	-5.95 2.577	0	%100 %100
56	M87	Z		2.577	0	
	M87		-1.488	-1.488 14.260		%100 %100
57	M108	X Z	14.269	14.269	0	%100 %100
58	M108		-8.238	-8.238		%100 %100
59	M109	X Z	5.382	5.382	0	%100 %100
60	M109		-3.107	-3.107	0	%100
61	M110A	X	14.269	14.269	0	%100
62	M110A	Z	-8.238	-8.238	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
63	M33	X	2.885	2.885	0	%100
64	M33	Z	-1.666	-1.666	0	%100
65	M34	X	11.948	11.948	0	%100
66	M34	Z	-6.898	-6.898	0	%100
67	M81	X	3.091	3.091	0	%100
68	M81	Z	-1.784	-1.784	0	%100
69	M82A	X	3.091	3.091	0	%100
70	M82A	Z	-1.784	-1.784	0	%100
71	M99A	X	11.948	11.948	0	%100
72	M99A	Z	-6.898	-6.898	0	%100
73	M100A	X	2.885	2.885	0	%100
74	M100A	Z	-1.666	-1.666	0	%100
75	M7	X	2.577	2.577	0	%100
76	M7	Z	-1.488	-1.488	0	%100
77	M86	X	10.306	10.306	0	%100
78	M86	Z	-5.95	-5.95	0	%100
79	M102A	X	2.577	2.577	0	%100
80	M102A	Z	-1.488	-1.488	0	%100
81	M36	X	5.27	5.27	0	%100
82	M36	Z	-3.043	-3.043	0	%100
83	M40	X	5.485	5.485	0	%100
84	M40	Z	-3.167	-3.167	0	%100
85	M35	X	21.508	21.508	0	%100
86	M35	Z	-12.418	-12.418	0	%100
87	M39	X	5.27	5.27	0	%100
88	M39	Z	-3.043	-3.043	0	%100
89	M83A	X	21.508	21.508	0	%100
90	M83A	Z	-12.418	-12.418	0	%100
91	M84A	X	21.508	21.508	0	%100
92	M84A	Z	-12.418	-12.418	0	%100
93	M85A	X	5.485	5.485	0	%100
94	M85A	Z	-3.167	-3.167	0	%100
95	M86A	X	5.485	5.485	0	%100
96	M86A	Z	-3.167	-3.167	0	%100
97	M101A	X	5.485	5.485	0	%100
98	M101A	Z	-3.167	-3.167	0	%100
99	M102	X	5.27	5.27	0	%100
100	M102	Z	-3.043	-3.043	0	%100
101	M103	X	5.27	5.27	0	%100
102	M103	Z	-3.043	-3.043	0	%100
103	M104	X	21.508	21.508	0	%100
104	M104	Z	-12.418	-12.418	0	%100
105	M32	X	4.431	4.431	0	%100
106	M32	Z	-2.558	-2.558	0	%100
107	M110	X	4.431	4.431	0	%100
108	M110	Z	-2.558	-2.558	0	%100
109	M71	X	17.723	17.723	0	%100
110	M71	Z	-10.232	-10.232	0	%100 %100
111	M72	X Z	17.723	17.723	0	%100 %100
112	M72		-10.232	-10.232	0	%100 %100
113 114	M89A M89A	X Z	4.431 -2.558	4.431 -2.558	0	%100 %100
114	IVIOSA		-2.338	-2.008	0	% 100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
115	M90	X	4.431	4.431	0	%100
116	M90	Z	-2.558	-2.558	0	%100
117	M16	X	5.377	5.377	0	%100
118	M16	Z	-3.105	-3.105	0	%100
119	M87A	X	21.509	21.509	0	%100
120	M87A	Z	-12.418	-12.418	0	%100
121	M105	X	5.377	5.377	0	%100
122	M105	Z	-3.105	-3.105	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	13.048	13.048	0	%100
2	M31	Z	0	0	0	%100
3	M104B	X	3.262	3.262	0	%100
4	M104B	Z	0	0	0	%100
5	M105B	X	3.262	3.262	0	%100
6	M105B	Z	0	0	0	%100
7	M15	X	18.627	18.627	0	%100
8	M15	Z	0	0	0	%100
9	M17	Χ	18.627	18.627	0	%100
10	M17	Z	0	0	0	%100
11	M79	X	18.627	18.627	0	%100
12	M79	Z	0	0	0	%100
13	M80	X	0	0	0	%100
14	M80	Z	0	0	0	%100
15	M97B	X	0	0	0	%100
16	M97B	Z	0	0	0	%100
17	M98B	X	18.627	18.627	0	%100
18	M98B	Z	0	0	0	%100
19	MP4A	X	9.831	9.831	0	%100
20	MP4A	Z	0	0	0	%100
21	MP3A	X	9.831	9.831	0	%100
22	MP3A	Z	0	0	0	%100
23	MP2A	X	9.831	9.831	0	%100
24	MP2A	Z	0	0	0	%100
25	MP1A	X	9.831	9.831	0	%100
26	MP1A	Z	0	0	0	%100
27	MP4C	X	9.831	9.831	0	%100
28	MP4C	Z	0	0	0	%100
29	MP3C	X	9.831	9.831	0	%100
30	MP3C	Z	0	0	0	%100
31	MP2C	X	9.831	9.831	0	%100
32	MP2C	Z	0	0	0	%100
33	MP1C	X	9.831	9.831	0	%100
34	MP1C	Z	0	0	0	%100
35	MP4B	X	9.831	9.831	0	%100
36	MP4B	Z	0	0	0	%100
37	MP3B	X	9.831	9.831	0	%100
38	MP3B	Z	0	0	0	%100
39	MP2B	X	9.831	9.831	0	%100
40	MP2B	Z	0	0	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	
41	MP1B	X	9.831	9.831	0	%100
42	MP1B	Z	0	0	0	%100
43	OVP	X	9.831	9.831	0	%100
44	OVP	Z	0	0	0	%100
45	M103A	X	0	0	0	%100
46	M103A	Z	0	0	0	%100
47	M104A	X	12.571	12.571	0	%100
48	M104A	Z	0	0	0	%100
49	M105A	X	12.571	12.571	0	%100
50	M105A	Z	0	0	0	%100
51	M61	X	0	0	0	%100
52	M61	Z	0	0	0	%100
53	M71A	X	8.926	8.926	0	%100
54	M71A	Z	0	0	0	%100
55	M87	X	8.926	8.926	0	%100
56	M87	Z	0	0	0	%100
57	M108	X	19.897	19.897	0	%100
58	M108	Z	0	0	0	%100 %100
59	M109	X	9.635	9.635	0	%100 %100
60	M109	Z	0	0	0	%100
61	M110A	X	9.635	9.635	0	%100
62	M110A	Z	0	0	0	%100 %100
63	M33	X	10.229	10.229	0	%100 %100
64	M33	Z	0	0	0	%100
65	M34	X	10.229	10.229	0	%100 %100
66	M34	Z	0	0	0	%100 %100
67	M81	X	.001	.001	0	%100 %100
68	M81	Z	.001	0	0	%100
69	M82A	X	10.466	10.466	0	%100 %100
70	M82A	Z	0	0	0	%100 %100
71	M99A	X	10.466	10.466	0	%100 %100
72	M99A	Z	0	0	0	%100 %100
73	M100A	X	.001	.001	0	%100 %100
74	M100A	Z	.001	0	0	%100
75	M7	X	0	0	0	%100 %100
76	M7	Z	0	0	0	%100 %100
77	M86	X	8.926	8.926	0	%100 %100
78	M86	Z	0.920	0.920	0	%100
79	M102A	X	8.926	8.926	0	%100 %100
80	M102A	Z	0.920	0.920	0	%100
81	M36	X	.000824	.000824	0	%100 %100
82	M36	Z	.000624	000624	0	%100
83	M40	X	.000824	.000824	0	%100 %100
84	M40	Z	.000624	.000624	0	%100 %100
85	M35	X	18.503	18.503	0	%100 %100
86	M35	Z	0	0	0	%100
87	M39	X	18.503	18.503	0	%100
88	M39	Z	0	0	0	%100 %100
89	M83A	X	18.503	18.503	0	%100 %100
90	M83A	Z	0	0	0	%100 %100
						%100 %100
91	M84A	X	18.751	18.751	0	
92	M84A	Z	0	0	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
93	M85A	X	18.751	18.751	0	%100
94	M85A	Z	0	0	0	%100
95	M86A	X	.000824	.000824	0	%100
96	M86A	Z	0	0	0	%100
97	M101A	X	18.751	18.751	0	%100
98	M101A	Z	0	0	0	%100
99	M102	X	18.503	18.503	0	%100
100	M102	Z	0	0	0	%100
101	M103	X	.000824	.000824	0	%100
102	M103	Z	0	0	0	%100
103	M104	X	18.751	18.751	0	%100
104	M104	Z	0	0	0	%100
105	M32	X	0	0	0	%100
106	M32	Z	0	0	0	%100
107	M110	X	0	0	0	%100
108	M110	Z	0	0	0	%100
109	M71	X	15.349	15.349	0	%100
110	M71	Z	0	0	0	%100
111	M72	X	15.349	15.349	0	%100
112	M72	Z	0	0	0	%100
113	M89A	X	15.349	15.349	0	%100
114	M89A	Z	0	0	0	%100
115	M90	X	15.349	15.349	0	%100
116	M90	Z	0	0	0	%100
117	M16	X	0	0	0	%100
118	M16	Z	0	0	0	%100
119	M87A	X	18.627	18.627	0	%100
120	M87A	Z	0	0	0	%100
121	M105	X	18.627	18.627	0	%100
122	M105	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	8.475	8.475	0	%100
2	M31	Z	4.893	4.893	0	%100
3	M104B	X	8.475	8.475	0	%100
4	M104B	Z	4.893	4.893	0	%100
5	M105B	X	0	0	0	%100
6	M105B	Z	0	0	0	%100
7	M15	X	5.377	5.377	0	%100
8	M15	Z	3.105	3.105	0	%100
9	M17	X	21.509	21.509	0	%100
10	M17	Z	12.418	12.418	0	%100
11	M79	X	21.509	21.509	0	%100
12	M79	Z	12.418	12.418	0	%100
13	M80	X	5.377	5.377	0	%100
14	M80	Z	3.105	3.105	0	%100
15	M97B	X	5.377	5.377	0	%100
16	M97B	Z	3.105	3.105	0	%100
17	M98B	X	5.377	5.377	0	%100
18	M98B	Z	3.105	3.105	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 45: Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
19	MP4A	X	8.514	8.514	0	%100
20	MP4A	Z	4.916	4.916	0	%100
21	MP3A	X	8.514	8.514	0	%100
22	MP3A	Z	4.916	4.916	0	%100
23	MP2A	X	8.514	8.514	0	%100
24	MP2A	Z	4.916	4.916	0	%100
25	MP1A	X	8.514	8.514	0	%100
26	MP1A	Z	4.916	4.916	0	%100
27	MP4C	X	8.514	8.514	0	%100
28	MP4C	Z	4.916	4.916	0	%100
29	MP3C	X	8.514	8.514	0	%100
30	MP3C	Z	4.916	4.916	0	%100
31	MP2C	X	8.514	8.514	0	%100
32	MP2C	Z	4.916	4.916	0	%100
33	MP1C	X	8.514	8.514	0	%100
34	MP1C	Z	4.916	4.916	0	%100
35	MP4B	X	8.514	8.514	0	%100
36	MP4B	Z	4.916	4.916	0	%100
37	MP3B	X	8.514	8.514	0	%100
38	MP3B	Z	4.916	4.916	0	%100
39	MP2B	X	8.514	8.514	0	%100
40	MP2B	Z	4.916	4.916	0	%100
41	MP1B	X	8.514	8.514	0	%100
42	MP1B	Z	4.916	4.916	0	%100
43	OVP	X	8.514	8.514	0	%100
44	OVP	Z	4.916	4.916	0	%100
45	M103A	X	3.629	3.629	0	%100
46	M103A	Z	2.095	2.095	0	%100
47	M104A	X	3.629	3.629	0	%100
48	M104A	Z	2.095	2.095	0	%100
49	M105A	X	14.515	14.515	0	%100
50	M105A	Z	8.38	8.38	0	%100
51	M61	X	2.577	2.577	0	%100
52	M61	Z	1.488	1.488	0	%100
53	M71A	X	2.577	2.577	0	%100
54	M71A	Z	1.488	1.488	0	%100
55	M87	X	10.306	10.306	0	%100
56	M87	Z	5.95	5.95	0	%100
57	M108	X	14.269	14.269	0	%100
58	M108	Z	8.238	8.238	0	%100
59	M109	X	14.269	14.269	0	%100
60	M109	Z	8.238	8.238	0	%100
61	M110A	X	5.382	5.382	0	%100
62	M110A	Z	3.107	3.107	0	%100
63	M33	X	11.948	11.948	0	%100
64	M33	Z	6.898	6.898	0	%100
65	M34	X	2.885	2.885	0	%100
66	M34	Z	1.666	1.666	0	%100
67	M81	X	2.885	2.885	0	%100
68	M81	Z	1.666	1.666	0	%100
69	M82A	X	11.948	11.948	0	%100
70	M82A	Z	6.898	6.898	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 45: Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
71	M99A	X	3.091	3.091	0	%100
72	M99A	Z	1.784	1.784	0	%100
73	M100A	X	3.091	3.091	0	%100
74	M100A	Z	1.784	1.784	0	%100
75	M7	X	2.577	2.577	0	%100
76	M7	Z	1.488	1.488	0	%100
77	M86	X	2.577	2.577	0	%100
78	M86	Z	1.488	1.488	0	%100
79	M102A	Х	10.306	10.306	0	%100
80	M102A	Z	5.95	5.95	0	%100
81	M36	X	5.485	5.485	0	%100
82	M36	Z	3.167	3.167	0	%100
83	M40	X	5.27	5.27	0	%100
84	M40	Z	3.043	3.043	0	%100
85	M35	X	5.27	5.27	0	%100
86	M35	Z	3.043	3.043	0	%100
87	M39	X	21.508	21.508	0	%100
88	M39	Z	12.418	12.418	0	%100
89	M83A	X	5.27	5.27	0	%100
90	M83A	Z	3.043	3.043	0	%100
91	M84A	X	5.485	5.485	0	%100
92	M84A	Z	3.167	3.167	0	%100
93	M85A	X	21.508	21.508	0	%100
94	M85A	Z	12.418	12.418	0	%100
95	M86A	X	5.27	5.27	0	%100
96	M86A	Z	3.043	3.043	0	%100
97	M101A	X	21.508	21.508	0	%100
98	M101A	Z	12.418	12.418	0	%100
99	M102	X	21.508	21.508	0	%100
100	M102	Z	12.418	12.418	0	%100
101	M103	X	5.485	5.485	0	%100
102	M103	Z	3.167	3.167	0	%100
103	M104	X	5.485	5.485	0	%100
104	M104	Z	3.167	3.167	0	%100
105	M32	X	4.431	4.431	0	%100
106	M32	Z	2.558	2.558	0	%100
107	M110	X	4.431	4.431	0	%100
108	M110	Z	2.558	2.558	0	%100
109	M71	X	4.431	4.431	0	%100
110	M71	Z	2.558	2.558	0	%100
111	M72	X	4.431	4.431	0	%100
112	M72	Z	2.558	2.558	0	%100
113	M89A	X	17.723	17.723	0	%100
114	M89A	Z	10.232	10.232	0	%100
115	M90	X	17.723	17.723	0	%100
116	M90	Z	10.232	10.232	0	%100
117	M16	X	5.377	5.377	0	%100
118	M16	Z	3.105	3.105	0	%100
119	M87A	X	5.377	5.377	0	%100
120	M87A	Z	3.105	3.105	0	%100
121	M105	X	21.509	21.509	0	%100
122	M105	Z	12.418	12.418	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	1.631	1.631	0	%100
2	M31	Z	2.825	2.825	0	%100
3	M104B	X	6.524	6.524	0	%100
4	M104B	Z	11.3	11.3	0	%100
5	M105B	X	1.631	1.631	0	%100
6	M105B	Z	2.825	2.825	0	%100
7	M15	X	0	0	0	%100
8	M15	Z	0	0	0	%100
9	M17	X	9.314	9.314	0	%100
10	M17	Z	16.132	16.132	0	%100
11	M79	X	9.314	9.314	0	%100
12	M79	Z	16.132	16.132	0	%100
13	M80	X	9.314	9.314	0	%100
14	M80	Z	16.132	16.132	0	%100
15	M97B	X	9.314	9.314	0	%100
16	M97B	Z	16.132	16.132	0	%100
17	M98B	X	0	0	0	%100
18	M98B	Z	0	0	0	%100
19	MP4A	X	4.916	4.916	0	%100
20	MP4A	Z	8.514	8.514	0	%100
21	MP3A	X	4.916	4.916	0	%100
22	MP3A	Z	8.514	8.514	0	%100
23	MP2A	X	4.916	4.916	0	%100
24	MP2A	Z	8.514	8.514	0	%100
25	MP1A	X	4.916	4.916	0	%100
26	MP1A	Z	8.514	8.514	0	%100
27	MP4C	X	4.916	4.916	0	%100
28	MP4C	Z	8.514	8.514	0	%100
29	MP3C	X	4.916	4.916	0	%100
30	MP3C	Z	8.514	8.514	0	%100
31	MP2C	X	4.916	4.916	0	%100
32	MP2C	Z	8.514	8.514	0	%100
33	MP1C	X	4.916	4.916	0	%100
34	MP1C	Z	8.514	8.514	0	%100
35	MP4B	X	4.916	4.916	0	%100
36	MP4B	Z	8.514	8.514	0	%100
37	MP3B	X	4.916	4.916	0	%100
38	MP3B	Z	8.514	8.514	0	%100
39	MP2B	X	4.916	4.916	0	%100
40	MP2B	Z	8.514	8.514	0	%100
41	MP1B	X	4.916	4.916	0	%100
42	MP1B	Z	8.514	8.514	0	%100
43	OVP	X	4.916	4.916	0	%100
44	OVP	Z	8.514	8.514	0	%100
45	M103A	X	6.285	6.285	0	%100
46	M103A	Z	10.887	10.887	0	%100
47	M104A	X	0	0	0	%100
48	M104A	Z	0	0	0	%100
49	M105A	X Z	6.285	6.285	0	%100
50	M105A		10.887	10.887	0	%100 %100
51	M61	X Z	4.463	4.463	0	%100 %100
52	M61	Z	7.73	7.73	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Distributed Loads (BLC 46: Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
53	M71A	X	0	0	0	%100
54	M71A	Z	0	0	0	%100
55	M87	X	4.463	4.463	0	%100
56	M87	Z	7.73	7.73	0	%100
57	M108	X	4.818	4.818	0	%100
58	M108	Z	8.344	8.344	0	%100
59	M109	X	9.949	9.949	0	%100
60	M109	Z	17.231	17.231	0	%100
61	M110A	X	4.818	4.818	0	%100
62	M110A	Z	8.344	8.344	0	%100
63	M33	X	5.233	5.233	0	%100
64	M33	Z	9.064	9.064	0	%100
65	M34	X	.000679	.000679	0	%100
66	M34	Z	.001	.001	0	%100
67	M81	X	5.115	5.115	0	%100
68	M81	Z	8.859	8.859	0	%100
69	M82A	X	5.115	5.115	0	%100
70	M82A	Z	8.859	8.859	0	%100
71	M99A	X	.000679	.000679	0	%100
72	M99A	Z	.001	.001	0	%100
73	M100A	X	5.233	5.233	0	%100
74	M100A	Z	9.064	9.064	0	%100
75	M7	X	4.463	4.463	0	%100
76	M7	Z	7.73	7.73	0	%100
77	M86	X	0	0	0	%100
78	M86	Z	0	0	0	%100
79	M102A	X	4.463	4.463	0	%100
80	M102A	Z	7.73	7.73	0	%100
81	M36	X	9.375	9.375	0	%100
82	M36	Z	16.239	16.239	0	%100
83	M40	X	9.251	9.251	0	%100
84	M40	Z	16.024	16.024	0	%100
85	M35	X	.000412	.000412	0	%100
86	M35	Z	.000714	.000714	0	%100
87	M39	X	9.375	9.375	0	%100
88	M39	Z	16.239	16.239	0	%100
89	M83A	X	.000412	.000412	0	%100
90	M83A	Z	.000714	.000714	0	%100
91	M84A	X	.000412	.000412	0	%100
92	M84A	Z	.000714	.000714	0	%100
93	M85A	X	9.251	9.251	0	%100
94	M85A	Z	16.024	16.024	0	%100
95	M86A	X	9.251	9.251	0	%100
96	M86A	Z	16.024	16.024	0	%100
97	M101A	X	9.251	9.251	0	%100
98	M101A	Z	16.024	16.024	0	%100
99	M102	X	9.375	9.375	0	%100
100	M102	Z	16.239	16.239	0	%100
101	M103	X	9.375	9.375	0	%100
102	M103	Z	16.239	16.239	0	%100
103	M104	X	.000412	.000412	0	%100
104	M104	Z	.000714	.000714	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 46: Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
105	M32	X	7.674	7.674	0	%100
106	M32	Z	13.292	13.292	0	%100
107	M110	X	7.674	7.674	0	%100
108	M110	Z	13.292	13.292	0	%100
109	M71	X	0	0	0	%100
110	M71	Z	0	0	0	%100
111	M72	X	0	0	0	%100
112	M72	Z	0	0	0	%100
113	M89A	X	7.674	7.674	0	%100
114	M89A	Z	13.292	13.292	0	%100
115	M90	X	7.674	7.674	0	%100
116	M90	Z	13.292	13.292	0	%100
117	M16	X	9.314	9.314	0	%100
118	M16	Z	16.132	16.132	0	%100
119	M87A	X	0	0	0	%100
120	M87A	Z	0	0	0	%100
121	M105	X	9.314	9.314	0	%100
122	M105	Z	16.132	16.132	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	0	0	0	%100
2	M31	Z	0	0	0	%100
3	M104B	X	0	0	0	%100
4	M104B	Z	9.786	9.786	0	%100
5	M105B	X	0	0	0	%100
6	M105B	Z	9.786	9.786	0	%100
7	M15	X	0	0	0	%100
8	M15	Z	6.209	6.209	0	%100
9	M17	X	0	0	0	%100
10	M17	Z	6.209	6.209	0	%100
11	M79	X	0	0	0	%100
12	M79	Z	6.209	6.209	0	%100
13	M80	X	0	0	0	%100
14	M80	Z	24.836	24.836	0	%100
15	M97B	X	0	0	0	%100
16	M97B	Z	24.836	24.836	0	%100
17	M98B	X	0	0	0	%100
18	M98B	Z	6.209	6.209	0	%100
19	MP4A	X	0	0	0	%100
20	MP4A	Z	9.831	9.831	0	%100
21	MP3A	X	0	0	0	%100
22	MP3A	Z	9.831	9.831	0	%100
23	MP2A	X	0	0	0	%100
24	MP2A	Z	9.831	9.831	0	%100
25	MP1A	X	0	0	0	%100
26	MP1A	Z	9.831	9.831	0	%100
27	MP4C	X	0	0	0	%100
28	MP4C	Z	9.831	9.831	0	%100
29	MP3C	X	0	0	0	%100
30	MP3C	Z	9.831	9.831	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 47: Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
31	MP2C	X	0	0	0	%100
32	MP2C	Z	9.831	9.831	0	%100
33	MP1C	X	0	0	0	%100
34	MP1C	Z	9.831	9.831	0	%100
35	MP4B	X	0	0	0	%100
36	MP4B	Z	9.831	9.831	0	%100
37	MP3B	X	0	0	0	%100
38	MP3B	Z	9.831	9.831	0	%100
39	MP2B	X	0	0	0	%100
40	MP2B	Z	9.831	9.831	0	%100
41	MP1B	X	0	0	0	%100
42	MP1B	Z	9.831	9.831	0	%100
43	OVP	X	0	0	0	%100
44	OVP	Z	9.831	9.831	0	%100
45	M103A	X	0	0	0	%100
46	M103A	Z	16.761	16.761	0	%100
47	M104A	X	0	0	0	%100
48	M104A	Z	4.19	4.19	0	%100
49	M105A	X	0	0	0	%100
50	M105A	Z	4.19	4.19	0	%100
51	M61	X	0	0	0	%100
52	M61	Z	11.901	11.901	0	%100
53	M71A	X	0	0	0	%100
54	M71A	Z	2.975	2.975	0	%100
55	M87	X	0	0	0	%100
56	M87	Z	2.975	2.975	0	%100
57	M108	X	0	0	0	%100
58	M108	Z	6.214	6.214	0	%100
59	M109	X	0	0	0	%100
60	M109	Z	16.476	16.476	0	%100
61	M110A	X	0	0	0	%100
62	M110A	Z	16.476	16.476	0	%100
63	M33	X	0	0	0	%100
64	M33	Z	3.569	3.569	0	%100
65	M34	X	0	0	0	%100
66	M34	Z	3.569	3.569	0	%100
67	M81	Χ	0	0	0	%100
68	M81	Z	13.797	13.797	0	%100
69	M82A	X	0	0	0	%100
70	M82A	Z	3.332	3.332	0	%100
71	M99A	X	0	0	0	%100
72	M99A	Z	3.332	3.332	0	%100
73	M100A	X	0	0	0	%100
74	M100A	Z	13.797	13.797	0	%100
75	M7	X	0	0	0	%100
76	M7	Z	11.901	11.901	0	%100
77	M86	X	0	0	0	%100
78	M86	Z	2.975	2.975	0	%100
79	M102A	X	0	0	0	%100
80	M102A	Z	2.975	2.975	0	%100
81	M36	X	0	0	0	%100
82	M36	Z	24.835	24.835	0	%100

: Maser Consulting

SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:_

Member Distributed Loads (BLC 47: Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
83	M40	X	0	0	0	%100
84	M40	Z	24.835	24.835	0	%100
85	M35	X	0	0	0	%100
86	M35	Z	6.333	6.333	0	%100
87	M39	X	0	0	0	%100
88	M39	Z	6.333	6.333	0	%100
89	M83A	X	0	0	0	%100
90	M83A	Z	6.333	6.333	0	%100
91	M84A	X	0	0	0	%100
92	M84A	Z	6.086	6.086	0	%100
93	M85A	X	0	0	0	%100
94	M85A	Z	6.086	6.086	0	%100
95	M86A	X	0	0	0	%100
96	M86A	Z	24.835	24.835	0	%100
97	M101A	X	0	0	0	%100
98	M101A	Z	6.086	6.086	0	%100
99	M102	X	0	0	0	%100
100	M102	Z	6.333	6.333	0	%100
101	M103	Х	0	0	0	%100
102	M103	Z	24.835	24.835	0	%100
103	M104	X	0	0	0	%100
104	M104	Z	6.086	6.086	0	%100
105	M32	X	0	0	0	%100
106	M32	Z	20.465	20.465	0	%100
107	M110	Х	0	0	0	%100
108	M110	Z	20.465	20.465	0	%100
109	M71	X	0	0	0	%100
110	M71	Z	5.116	5.116	0	%100
111	M72	X	0	0	0	%100
112	M72	Z	5.116	5.116	0	%100
113	M89A	X	0	0	0	%100
114	M89A	Z	5.116	5.116	0	%100
115	M90	X	0	0	0	%100
116	M90	Z	5.116	5.116	0	%100
117	M16	X	0	0	0	%100
118	M16	Z	24.836	24.836	0	%100
119	M87A	X	0	0	0	%100
120	M87A	Z	6.209	6.209	0	%100
121	M105	X	0	0	0	%100
122	M105	Z	6.209	6.209	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	-1.631	-1.631	0	%100
2	M31	Z	2.825	2.825	0	%100
3	M104B	X	-1.631	-1.631	0	%100
4	M104B	Z	2.825	2.825	0	%100
5	M105B	X	-6.524	-6.524	0	%100
6	M105B	Z	11.3	11.3	0	%100
7	M15	X	-9.314	-9.314	0	%100
8	M15	Z	16.132	16.132	0	%100

Company Designer Job Number : Maser Consulting : SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 48: Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
9	M17	X	0	0	0	%100
10	M17	Z	0	0	0	%100
11	M79	X	0	0	0	%100
12	M79	Z	0	0	0	%100
13	M80	X	-9.314	-9.314	0	%100
14	M80	Z	16.132	16.132	0	%100
15	M97B	X	-9.314	-9.314	0	%100
16	M97B	Z	16.132	16.132	0	%100
17	M98B	X	-9.314	-9.314	0	%100
18	M98B	Z	16.132	16.132	0	%100
19	MP4A	X	-4.916	-4.916	0	%100
20	MP4A	Z	8.514	8.514	0	%100
21	MP3A	X	-4.916	-4.916	0	%100
22	MP3A	Z	8.514	8.514	0	%100
23	MP2A	X	-4.916	-4.916	0	%100
24	MP2A	Z	8.514	8.514	0	%100
25	MP1A	X	-4.916	-4.916	0	%100
26	MP1A	Z	8.514	8.514	0	%100
27	MP4C	X	-4.916	-4.916	0	%100
28	MP4C	Z	8.514	8.514	0	%100
29	MP3C	X	-4.916	-4.916	0	%100
30	MP3C	Z	8.514	8.514	0	%100
31	MP2C	X	-4.916	-4.916	0	%100
32	MP2C	Z	8.514	8.514	0	%100
33	MP1C	X	-4.916	-4.916	0	%100
34	MP1C	Z	8.514	8.514	0	%100 %100
35	MP4B	X	-4.916	-4.916	0	%100 %100
36	MP4B	Z	8.514	8.514	0	%100 %100
37	MP3B	X	-4.916	-4.916	0	%100 %100
38	MP3B	Z	8.514	8.514	0	%100
39	MP2B	X	-4.916	-4.916	0	%100
40	MP2B	Z	8.514	8.514	0	%100 %100
41	MP1B	X	-4.916	-4.916	0	%100
42	MP1B	Z	8.514	8.514	0	%100 %100
43	OVP	X	-4.916	-4.916	0	%100 %100
44	OVP	Z	8.514	8.514	0	%100 %100
45	M103A	X	-6.285	-6.285	0	%100 %100
46	M103A	Z	10.887	10.887	0	%100 %100
47	M104A	X	-6.285	-6.285	0	%100 %100
48	M104A	Z	10.887	10.887	0	%100
49	M105A	X	0	0	0	%100 %100
50	M105A	Z	0	0	0	%100 %100
51	M61	X	-4.463	-4.463	0	%100 %100
52	M61	Z	7.73	7.73	0	%100 %100
53	M71A	X	-4.463	-4.463	0	%100 %100
54	M71A	Z	7.73	7.73	0	%100
55	M87	X	0	0	0	%100 %100
56	M87	Z	0	0	0	%100 %100
57	M108	X	-4.818	-4.818	0	%100 %100
58	M108	Z	8.344	8.344	0	%100 %100
59	M109	X	-4.818	-4.818	0	%100 %100
60	M109	Z	8.344	8.344	0	%100 %100
00	IVITUS		0.344	0.344	U	/0 100

Model Name

: Maser Consulting: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft %]
61	M110A	X	-9.949	-9.949	0	%100
62	M110A	Z	17.231	17.231	0	%100
63	M33	X	000679	000679	0	%100
64	M33	Z	.001	.001	0	%100
65	M34	X	-5.233	-5.233	0	%100
66	M34	Z	9.064	9.064	0	%100
67	M81	X	-5.233	-5.233	0	%100
68	M81	Z	9.064	9.064	0	%100
69	M82A	X	000679	000679	0	%100
70	M82A	Z	.001	.001	0	%100
71	M99A	X	-5.115	-5.115	0	%100
72	M99A	Z	8.859	8.859	0	%100
73	M100A	X	-5.115	-5.115	0	%100
74	M100A	Z	8.859	8.859	0	%100
75	M7	X	-4.463	-4.463	0	%100
76	M7	Z	7.73	7.73	0	%100
77	M86	X	-4.463	-4.463	0	%100
78	M86	Z	7.73	7.73	0	%100
79	M102A	X	0	0	0	%100
80	M102A	Z	0	0	0	%100
81	M36	X	-9.251	-9.251	0	%100
82	M36	Z	16.024	16.024	0	%100
83	M40	X	-9.375	-9.375	0	%100
84	M40	Z	16.239	16.239	0	%100
85	M35	X	-9.375	-9.375	0	%100
86	M35	Z	16.239	16.239	0	%100
87	M39	X	000412	000412	0	%100
88	M39	Z	.000714	.000714	0	%100
89	M83A	X	-9.375	-9.375	0	%100
90	M83A	Z	16.239	16.239	0	%100
91	M84A	X	-9.251	-9.251	0	%100
92	M84A	Z	16.024	16.024	0	%100
93	M85A	X	000412	000412	0	%100
94	M85A	Z	.000714	.000714	0	%100
95	M86A	X	-9.375	-9.375	0	%100
96	M86A	Z	16.239	16.239	0	%100
97	M101A	X	000412	000412	0	%100
98	M101A	Z	.000714	.000714	0	%100
99	M102	X	000412	000412	0	%100
100	M102	Z	.000714	.000714	0	%100
101	M103	X	-9.251	-9.251	0	%100
102	M103	Z	16.024	16.024	0	%100
103	M104	X	-9.251	-9.251	0	%100
104	M104	Z	16.024	16.024	0	%100
105	M32	X	-7.674	-7.674 43.202	0	%100
106	M32	Z	13.292	13.292	0	%100 %100
107	M110	X Z	-7.674	-7.674 13.303	0	%100 %100
108	M110		13.292	13.292	0	%100 %100
109	M71 M71	X Z	-7.674 13.292	-7.674 13.292	0	%100 %100
111	M72	X	-7.674	-7.674	0	%100 %100
112	M72	Z	13.292	13.292	0	%100 %100
112	IVI / Z		13.232	10.202	U	/0 100

ny : Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 48: Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
113	M89A	X	0	0	0	%100
114	M89A	Z	0	0	0	%100
115	M90	X	0	0	0	%100
116	M90	Z	0	0	0	%100
117	M16	X	-9.314	-9.314	0	%100
118	M16	Z	16.132	16.132	0	%100
119	M87A	X	-9.314	-9.314	0	%100
120	M87A	Z	16.132	16.132	0	%100
121	M105	X	0	0	0	%100
122	M105	Z	0	0	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

1 M31 X -8.475 -8.475 0 %100 2 M31 Z 4.893 4.893 0 %100 3 M104B X 0 0 0 %100 4 M104B Z 0 0 0 %100 5 M105B X -8.475 -8.475 0 %100 6 M105B Z 4.893 4.893 0 %100 7 M15 X -21.509 -21.509 0 %100 8 M15 Z 12.418 12.418 0 %100 9 M17 X -5.377 -5.377 0 %100 10 M17 Z 3.105 3.105 0 %100 11 M79 X -5.377 -5.377 0 %100 12 M79 Z 3.105 3.105 0 %100 13 M80		Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
3 M104B X 0 0 0 %100 4 M104B Z 0 0 0 %100 5 M105B X -8475 -8.475 0 %100 6 M105B Z 4.893 4.893 0 %100 7 M15 X -21.509 -21.509 0 %100 8 M15 Z 12.418 12.418 0 %100 9 M17 X -5.377 -5.377 0 %100 10 M17 Z 3.105 3.105 0 %100 11 M79 X -5.377 -5.377 0 %100 12 M79 Z 3.105 3.105 0 %100 13 M80 X -5.377 -5.377 0 %100 14 M80 Z 3.105 3.105 0 %100 15 M97B				-8.475	-8.475		%100
4 M104B Z 0 0 %100 5 M105B X -8.475 -8.475 0 %100 6 M105B Z 4.893 4.893 0 %100 7 M15 X -21.509 -21.509 0 %100 8 M15 Z 12.418 12.418 0 %100 9 M17 X -5.377 -5.377 0 %100 10 M17 Z 3.105 3.105 0 %100 11 M79 X -5.377 -5.377 0 %100 12 M79 Z 3.105 3.105 0 %100 14 M80 X -5.377 -5.377 0 %100 15 M97B X -5.377 -5.377 0 %100 15 M97B X 3.105 3.105 0 %100 17 M98B <t< td=""><td></td><td></td><td></td><td>4.893</td><td>4.893</td><td>0</td><td>%100</td></t<>				4.893	4.893	0	%100
5 M105B X -8.475 -8.475 0 %100 6 M105B Z 4.893 4.893 0 %100 7 M15 X -21.509 -21.509 0 %100 8 M15 Z 12.418 12.418 0 %100 9 M17 X -5.377 -5.377 0 %100 10 M17 Z 3.105 3.105 0 %100 11 M79 X -5.377 -5.377 0 %100 12 M79 Z 3.105 3.105 0 %100 13 M80 X -5.377 -5.377 0 %100 14 M80 Z 3.105 3.105 0 %100 15 M97B X -5.377 -5.377 0 %100 16 M97B Z 3.105 3.105 0 %100 17	3	M104B	X	0	0	0	%100
6 M105B Z 4.893 4.893 0 %100 7 M15 X -21.509 -21.509 0 %100 8 M15 Z 12.418 12.418 0 %100 9 M17 X -5.377 -5.377 0 %100 10 M17 Z 3.105 3.105 0 %100 11 M79 X -5.377 -5.377 0 %100 12 M79 Z 3.105 3.105 0 %100 13 M80 X -5.377 -5.377 0 %100 14 M80 Z 3.105 3.105 0 %100 15 M97B X -5.377 -5.377 0 %100 16 M97B X -5.377 -5.377 0 %100 17 M98B X -21.509 -21.509 0 %100 18	4	M104B		0	0	0	%100
7 M15 X -21.509 -21.509 0 %100 8 M15 Z 12.418 12.418 0 %100 9 M17 X -5.377 -5.377 0 %100 10 M17 Z 3.105 3.105 0 %100 11 M79 X -5.377 -5.377 0 %100 12 M79 Z 3.105 3.105 0 %100 13 M80 X -5.377 -5.377 0 %100 14 M80 Z 3.105 3.105 0 %100 15 M97B X -5.377 -5.377 0 %100 15 M97B X -5.377 -5.377 0 %100 16 M97B Z 3.105 3.105 0 %100 17 M98B X -21.509 -21.509 0 %100 18	5	M105B	X	-8.475	-8.475	0	%100
8 M15 Z 12.418 12.418 0 %100 9 M17 X -5.377 -5.377 0 %100 10 M17 Z 3.105 3.105 0 %100 11 M79 X -5.377 -5.377 0 %100 12 M79 Z 3.105 3.105 0 %100 13 M80 X -5.377 -5.377 0 %100 14 M80 Z 3.105 3.105 0 %100 15 M97B X -5.377 -5.377 0 %100 16 M97B X -5.377 -5.377 0 %100 16 M97B X -5.377 -5.377 0 %100 16 M97B X -5.377 -5.377 0 %100 17 M98B X -21.509 -21.509 0 %100 17	6	M105B	Z	4.893	4.893	0	%100
9 M17 X -5.377 -5.377 0 %100 10 M17 Z 3.105 3.105 0 %100 11 M79 X -5.377 -5.377 0 %100 12 M79 Z 3.105 3.105 0 %100 13 M80 X -5.377 -5.377 0 %100 14 M80 Z 3.105 3.105 0 %100 15 M97B X -5.377 -5.377 0 %100 16 M97B Z 3.105 3.105 0 %100 17 M98B X -21.509 -21.509 0 %100 18 M98B Z 12.418 12.418 0 %100 19 MP4A X -8.514 -8.514 0 %100 20 MP4A Z 4.916 4.916 0 %100 21	7	M15	X	-21.509	-21.509	0	%100
10 M17 Z 3.105 3.105 0 %100 11 M79 X -5.377 -5.377 0 %100 12 M79 Z 3.105 3.105 0 %100 13 M80 X -5.377 -5.377 0 %100 14 M80 Z 3.105 3.105 0 %100 15 M97B X -5.377 -5.377 0 %100 15 M97B X -5.377 -5.377 0 %100 16 M97B X -5.377 -5.377 0 %100 17 M98B X -21.509 -21.509 0 %100 17 M98B X -21.509 -21.509 0 %100 19 MP4A X -8.514 -8.514 0 %100 20 MP4A X -8.514 -8.514 0 %100 21	8	M15	Z	12.418	12.418	0	%100
11 M79 X -5.377 -5.377 0 %100 12 M79 Z 3.105 3.105 0 %100 13 M80 X -5.377 -5.377 0 %100 14 M80 Z 3.105 3.105 0 %100 15 M97B X -5.377 -5.377 0 %100 16 M97B Z 3.105 3.105 0 %100 16 M97B Z 3.105 3.105 0 %100 17 M98B X -21.509 -21.509 0 %100 18 M98B Z 12.418 12.418 0 %100 19 MP4A X -8.514 -8.514 0 %100 20 MP4A Z 4.916 4.916 0 %100 21 MP3A X -8.514 -8.514 0 %100 22	9	M17	X	-5.377	-5.377	0	%100
11 M79 X -5.377 -5.377 0 %100 12 M79 Z 3.105 3.105 0 %100 13 M80 X -5.377 -5.377 0 %100 14 M80 Z 3.105 3.105 0 %100 15 M97B X -5.377 -5.377 0 %100 16 M97B Z 3.105 3.105 0 %100 16 M97B Z 3.105 3.105 0 %100 17 M98B X -21.509 -21.509 0 %100 18 M98B Z 12.418 12.418 0 %100 19 MP4A X -8.514 -8.514 0 %100 20 MP4A Z 4.916 4.916 0 %100 21 MP3A X -8.514 -8.514 0 %100 22	10	M17	Z	3.105	3.105	0	%100
12 M79 Z 3.105 3.105 0 %100 13 M80 X -5.377 -5.377 0 %100 14 M80 Z 3.105 3.105 0 %100 15 M97B X -5.377 0 %100 16 M97B Z 3.105 3.105 0 %100 16 M97B Z 3.105 3.105 0 %100 17 M98B X -21.509 -21.509 0 %100 18 M98B Z 12.418 12.418 0 %100 19 MP4A X -8.514 -8.514 0 %100 20 MP4A X -8.514 -8.514 0 %100 21 MP3A X -8.514 -8.514 0 %100 22 MP3A Z 4.916 4.916 0 %100 23 MP2A	11	M79	X	-5.377	-5.377	0	%100
14 M80 Z 3.105 3.105 0 %100 15 M97B X -5.377 -5.377 0 %100 16 M97B Z 3.105 3.105 0 %100 17 M98B X -21.509 0 %100 18 M98B X -21.509 0 %100 19 MP4A X -8.514 0 %100 20 MP4A X -8.514 -8.514 0 %100 20 MP4A Z 4.916 4.916 0 %100 21 MP3A X -8.514 -8.514 0 %100 21 MP3A X -8.514 -8.514 0 %100 22 MP3A Z 4.916 4.916 0 %100 23 MP2A X -8.514 -8.514 0 %100 24 MP2A X 4.916	12	M79	Z	3.105	3.105	0	%100
14 M80 Z 3.105 3.105 0 %100 15 M97B X -5.377 -5.377 0 %100 16 M97B Z 3.105 3.105 0 %100 17 M98B X -21.509 0 %100 18 M98B X -21.509 0 %100 19 MP4A X -8.514 0 %100 20 MP4A X -8.514 -8.514 0 %100 20 MP4A Z 4.916 4.916 0 %100 21 MP3A X -8.514 -8.514 0 %100 21 MP3A X -8.514 -8.514 0 %100 22 MP3A Z 4.916 4.916 0 %100 23 MP2A X -8.514 -8.514 0 %100 24 MP1A X -8.514	13	M80	X	-5.377	-5.377	0	%100
15 M97B X -5.377 -5.377 0 %100 16 M97B Z 3.105 3.105 0 %100 17 M98B X -21.509 -21.509 0 %100 18 M98B Z 12.418 12.418 0 %100 19 MP4A X -8.514 -8.514 0 %100 20 MP4A X -8.514 -8.514 0 %100 21 MP3A X -8.514 -8.514 0 %100 21 MP3A X -8.514 -8.514 0 %100 22 MP3A X -8.514 -8.514 0 %100 23 MP2A X -8.514 -8.514 0 %100 24 MP2A Z 4.916 4.916 0 %100 25 MP1A X -8.514 -8.514 0 %100 <	14	M80	Z	3.105	3.105	0	%100
16 M97B Z 3.105 3.105 0 %100 17 M98B X -21.509 0 %100 18 M98B Z 12.418 12.418 0 %100 19 MP4A X -8.514 -8.514 0 %100 20 MP4A Z 4.916 4.916 0 %100 21 MP3A X -8.514 -8.514 0 %100 21 MP3A X -8.514 -8.514 0 %100 22 MP3A Z 4.916 4.916 0 %100 23 MP2A X -8.514 -8.514 0 %100 24 MP2A Z 4.916 4.916 0 %100 25 MP1A X -8.514 -8.514 0 %100 26 MP1A Z 4.916 4.916 0 %100 27 MP4C <td>15</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td>	15					0	
17 M98B X -21.509 -21.509 0 %100 18 M98B Z 12.418 12.418 0 %100 19 MP4A X -8.514 -8.514 0 %100 20 MP4A Z 4.916 4.916 0 %100 21 MP3A X -8.514 -8.514 0 %100 22 MP3A Z 4.916 4.916 0 %100 23 MP2A X -8.514 -8.514 0 %100 24 MP2A Z 4.916 4.916 0 %100 25 MP1A X -8.514 -8.514 0 %100 26 MP1A Z 4.916 4.916 0 %100 27 MP4C X -8.514 -8.514 0 %100 28 MP4C Z 4.916 4.916 0 %100 30<	16	M97B	Z	3.105	3.105	0	%100
18 M98B Z 12.418 12.418 0 %100 19 MP4A X -8.514 -8.514 0 %100 20 MP4A Z 4.916 4.916 0 %100 21 MP3A X -8.514 -8.514 0 %100 22 MP3A Z 4.916 4.916 0 %100 23 MP2A X -8.514 -8.514 0 %100 24 MP2A Z 4.916 4.916 0 %100 25 MP1A X -8.514 -8.514 0 %100 26 MP1A Z 4.916 4.916 0 %100 27 MP4C X -8.514 -8.514 0 %100 28 MP4C Z 4.916 4.916 0 %100 29 MP3C X -8.514 -8.514 0 %100 31 MP2C X -8.514 -8.514 0 %100 32		M98B				0	
19 MP4A X -8.514 -8.514 0 %100 20 MP4A Z 4.916 4.916 0 %100 21 MP3A X -8.514 -8.514 0 %100 22 MP3A Z 4.916 4.916 0 %100 23 MP2A X -8.514 -8.514 0 %100 24 MP2A Z 4.916 4.916 0 %100 25 MP1A X -8.514 -8.514 0 %100 26 MP1A Z 4.916 4.916 0 %100 27 MP4C X -8.514 -8.514 0 %100 28 MP4C Z 4.916 4.916 0 %100 29 MP3C X -8.514 -8.514 0 %100 30 MP3C X -8.514 -8.514 0 %100 31 MP2C X -8.514 -8.514 0 %100 32			Z				
20 MP4A Z 4.916 4.916 0 %100 21 MP3A X -8.514 -8.514 0 %100 22 MP3A Z 4.916 4.916 0 %100 23 MP2A X -8.514 -8.514 0 %100 24 MP2A Z 4.916 4.916 0 %100 25 MP1A X -8.514 -8.514 0 %100 26 MP1A Z 4.916 4.916 0 %100 27 MP4C X -8.514 -8.514 0 %100 28 MP4C Z 4.916 4.916 0 %100 29 MP3C X -8.514 -8.514 0 %100 30 MP3C Z 4.916 4.916 0 %100 31 MP2C X -8.514 -8.514 0 %100 32 MP2C Z 4.916 4.916 0 %100 34						0	
21 MP3A X -8.514 -8.514 0 %100 22 MP3A Z 4.916 4.916 0 %100 23 MP2A X -8.514 -8.514 0 %100 24 MP2A Z 4.916 4.916 0 %100 25 MP1A X -8.514 -8.514 0 %100 26 MP1A Z 4.916 4.916 0 %100 27 MP4C X -8.514 -8.514 0 %100 28 MP4C Z 4.916 4.916 0 %100 29 MP3C X -8.514 -8.514 0 %100 30 MP3C Z 4.916 4.916 0 %100 31 MP2C X -8.514 -8.514 0 %100 32 MP2C Z 4.916 4.916 0 %100 33 MP1C X -8.514 -8.514 0 %100 34			Z				
22 MP3A Z 4.916 4.916 0 %100 23 MP2A X -8.514 -8.514 0 %100 24 MP2A Z 4.916 4.916 0 %100 25 MP1A X -8.514 -8.514 0 %100 26 MP1A Z 4.916 4.916 0 %100 27 MP4C X -8.514 -8.514 0 %100 28 MP4C Z 4.916 4.916 0 %100 29 MP3C X -8.514 -8.514 0 %100 30 MP3C X -8.514 -8.514 0 %100 31 MP2C X -8.514 -8.514 0 %100 32 MP2C Z 4.916 4.916 0 %100 33 MP1C X -8.514 -8.514 0 %100 34 MP1C Z 4.916 4.916 0 %100			Х			0	
23 MP2A X -8.514 -8.514 0 %100 24 MP2A Z 4.916 4.916 0 %100 25 MP1A X -8.514 -8.514 0 %100 26 MP1A Z 4.916 4.916 0 %100 27 MP4C X -8.514 -8.514 0 %100 28 MP4C Z 4.916 4.916 0 %100 29 MP3C X -8.514 -8.514 0 %100 30 MP3C Z 4.916 4.916 0 %100 31 MP2C X -8.514 -8.514 0 %100 32 MP2C Z 4.916 4.916 0 %100 33 MP1C X -8.514 -8.514 0 %100 34 MP1C Z 4.916 0 %100			Z				
24 MP2A Z 4.916 4.916 0 %100 25 MP1A X -8.514 -8.514 0 %100 26 MP1A Z 4.916 4.916 0 %100 27 MP4C X -8.514 -8.514 0 %100 28 MP4C Z 4.916 4.916 0 %100 29 MP3C X -8.514 -8.514 0 %100 30 MP3C Z 4.916 4.916 0 %100 31 MP2C X -8.514 -8.514 0 %100 32 MP2C Z 4.916 4.916 0 %100 33 MP1C X -8.514 -8.514 0 %100 34 MP1C Z 4.916 4.916 0 %100							
25 MP1A X -8.514 -8.514 0 %100 26 MP1A Z 4.916 4.916 0 %100 27 MP4C X -8.514 -8.514 0 %100 28 MP4C Z 4.916 4.916 0 %100 29 MP3C X -8.514 -8.514 0 %100 30 MP3C Z 4.916 4.916 0 %100 31 MP2C X -8.514 -8.514 0 %100 32 MP2C Z 4.916 4.916 0 %100 33 MP1C X -8.514 -8.514 0 %100 34 MP1C Z 4.916 4.916 0 %100				4.916	4.916	0	
26 MP1A Z 4.916 0 %100 27 MP4C X -8.514 -8.514 0 %100 28 MP4C Z 4.916 4.916 0 %100 29 MP3C X -8.514 -8.514 0 %100 30 MP3C Z 4.916 0 %100 31 MP2C X -8.514 -8.514 0 %100 32 MP2C Z 4.916 4.916 0 %100 33 MP1C X -8.514 -8.514 0 %100 34 MP1C Z 4.916 0 %100						0	
27 MP4C X -8.514 -8.514 0 %100 28 MP4C Z 4.916 4.916 0 %100 29 MP3C X -8.514 -8.514 0 %100 30 MP3C Z 4.916 4.916 0 %100 31 MP2C X -8.514 -8.514 0 %100 32 MP2C Z 4.916 4.916 0 %100 33 MP1C X -8.514 -8.514 0 %100 34 MP1C Z 4.916 0 %100			Z				
28 MP4C Z 4.916 4.916 0 %100 29 MP3C X -8.514 -8.514 0 %100 30 MP3C Z 4.916 4.916 0 %100 31 MP2C X -8.514 -8.514 0 %100 32 MP2C Z 4.916 4.916 0 %100 33 MP1C X -8.514 -8.514 0 %100 34 MP1C Z 4.916 0 %100			X			0	
29 MP3C X -8.514 0 %100 30 MP3C Z 4.916 4.916 0 %100 31 MP2C X -8.514 -8.514 0 %100 32 MP2C Z 4.916 4.916 0 %100 33 MP1C X -8.514 -8.514 0 %100 34 MP1C Z 4.916 0 %100			Z				
30 MP3C Z 4.916 0 %100 31 MP2C X -8.514 -8.514 0 %100 32 MP2C Z 4.916 4.916 0 %100 33 MP1C X -8.514 -8.514 0 %100 34 MP1C Z 4.916 0 %100			X			0	
31 MP2C X -8.514 0 %100 32 MP2C Z 4.916 4.916 0 %100 33 MP1C X -8.514 -8.514 0 %100 34 MP1C Z 4.916 0 %100			Z				
32 MP2C Z 4.916 0 %100 33 MP1C X -8.514 -8.514 0 %100 34 MP1C Z 4.916 4.916 0 %100						0	
33 MP1C X -8.514 -8.514 0 %100 34 MP1C Z 4.916 4.916 0 %100							
34 MP1C Z 4.916 4.916 0 %100						0	
			Z				
35 MP4B X -8.514 -8.514 0 %100							
36 MP4B Z 4.916 4.916 0 %100			Z				
37 MP3B X -8.514 -8.514 0 %100			X				
38 MP3B Z 4.916 4.916 0 %100			Z				

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 49: Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
39	MP2B	X	-8.514	-8.514	0	%100
40	MP2B	Z	4.916	4.916	0	%100
41	MP1B	X	-8.514	-8.514	0	%100
42	MP1B	Z	4.916	4.916	0	%100
43	OVP	X	-8.514	-8.514	0	%100
44	OVP	Z	4.916	4.916	0	%100
45	M103A	X	-3.629	-3.629	0	%100
46	M103A	Z	2.095	2.095	0	%100
47	M104A	X	-14.515	-14.515	0	%100
48	M104A	Z	8.38	8.38	0	%100
49	M105A	X	-3.629	-3.629	0	%100
50	M105A	Z	2.095	2.095	0	%100
51	M61	X	-2.577	-2.577	0	%100
52	M61	Z	1.488	1.488	0	%100
53	M71A	X	-10.306	-10.306	0	%100
54	M71A	Z	5.95	5.95	0	%100
55	M87	X	-2.577	-2.577	0	%100
56	M87	Z	1.488	1.488	0	%100
57	M108	X	-14.269	-14.269	0	%100
58	M108	Z	8.238	8.238	0	%100
59	M109	X	-5.382	-5.382	0	%100
60	M109	Z	3.107	3.107	0	%100
61	M110A	X	-14.269	-14.269	0	%100
62	M110A	Z	8.238	8.238	0	%100
63	M33	X	-2.885	-2.885	0	%100
64	M33	Z	1.666	1.666	0	%100
65	M34	X	-11.948	-11.948	0	%100
66	M34	Z	6.898	6.898	0	%100
67	M81	X	-3.091	-3.091	0	%100
68	M81	Z	1.784	1.784	0	%100
69	M82A	X	-3.091	-3.091	0	%100
70	M82A	Z	1.784	1.784	0	%100
71	M99A	X	-11.948	-11.948	0	%100
72	M99A	Z	6.898	6.898	0	%100
73	M100A	X	-2.885	-2.885	0	%100
74	M100A	Z	1.666	1.666	0	%100
75	M7	X	-2.577	-2.577	0	%100
76	M7	Z	1.488	1.488	0	%100
77	M86	X	-10.306	-10.306	0	%100
78	M86	Z	5.95	5.95	0	%100
79	M102A	X	-2.577	-2.577	0	%100
80	M102A	Z	1.488	1.488	0	%100
81	M36	X	-5.27	-5.27	0	%100
82	M36	Z	3.043	3.043	0	%100
83	M40	X	-5.485	-5.485	0	%100
84	M40	Z	3.167	3.167	0	%100
85	M35	X	-21.508	-21.508	0	%100
86	M35	Z	12.418	12.418	0	%100
87	M39	X Z	-5.27	-5.27	0	%100
88	M39		3.043	3.043	0	%100 %100
89	M83A	X	-21.508	-21.508	0	%100
90	M83A	Z	12.418	12.418	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
91	M84A	X	-21.508	-21.508	0	%100
92	M84A	Z	12.418	12.418	0	%100
93	M85A	X	-5.485	-5.485	0	%100
94	M85A	Z	3.167	3.167	0	%100
95	M86A	X	-5.485	-5.485	0	%100
96	M86A	Z	3.167	3.167	0	%100
97	M101A	X	-5.485	-5.485	0	%100
98	M101A	Z	3.167	3.167	0	%100
99	M102	X	-5.27	-5.27	0	%100
100	M102	Z	3.043	3.043	0	%100
101	M103	X	-5.27	-5.27	0	%100
102	M103	Z	3.043	3.043	0	%100
103	M104	X	-21.508	-21.508	0	%100
104	M104	Z	12.418	12.418	0	%100
105	M32	X	-4.431	-4.431	0	%100
106	M32	Z	2.558	2.558	0	%100
107	M110	X	-4.431	-4.431	0	%100
108	M110	Z	2.558	2.558	0	%100
109	M71	X	-17.723	-17.723	0	%100
110	M71	Z	10.232	10.232	0	%100
111	M72	X	-17.723	-17.723	0	%100
112	M72	Z	10.232	10.232	0	%100
113	M89A	X	-4.431	-4.431	0	%100
114	M89A	Z	2.558	2.558	0	%100
115	M90	X	-4.431	-4.431	0	%100
116	M90	Z	2.558	2.558	0	%100
117	M16	X	-5.377	-5.377	0	%100
118	M16	Z	3.105	3.105	0	%100
119	M87A	X	-21.509	-21.509	0	%100
120	M87A	Z	12.418	12.418	0	%100
121	M105	X	-5.377	-5.377	0	%100
122	M105	Z	3.105	3.105	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	-13.048	-13.048	0	%100
2	M31	Z	0	0	0	%100
3	M104B	X	-3.262	-3.262	0	%100
4	M104B	Z	0	0	0	%100
5	M105B	X	-3.262	-3.262	0	%100
6	M105B	Z	0	0	0	%100
7	M15	X	-18.627	-18.627	0	%100
8	M15	Z	0	0	0	%100
9	M17	X	-18.627	-18.627	0	%100
10	M17	Z	0	0	0	%100
11	M79	X	-18.627	-18.627	0	%100
12	M79	Z	0	0	0	%100
13	M80	X	0	0	0	%100
14	M80	Z	0	0	0	%100
15	M97B	X	0	0	0	%100
16	M97B	Z	0	0	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
17	M98B	X	-18.627	-18.627	0	%100
18	M98B	Z	0	0	0	%100
19	MP4A	X	-9.831	-9.831	0	%100
20	MP4A	Z	0	0	0	%100
21	MP3A	X	-9.831	-9.831	0	%100
22	MP3A	Z	0	0	0	%100
23	MP2A	X	-9.831	-9.831	0	%100
24	MP2A	Z	0	0	0	%100
25	MP1A	X	-9.831	-9.831	0	%100
26	MP1A	Z	0	0	0	%100
27	MP4C	X	-9.831	-9.831	0	%100
28	MP4C	Z	0	0	0	%100
29	MP3C	X	-9.831	-9.831	0	%100
30	MP3C	Z	0	0	0	%100
31	MP2C	X	-9.831	-9.831	0	%100
32	MP2C	Z	0	0	0	%100
33	MP1C	X	-9.831	-9.831	0	%100
34	MP1C	Z	0	0	0	%100
35	MP4B	X	-9.831	-9.831	0	%100
36	MP4B	Z	0	0	0	%100
37	MP3B	X	-9.831	-9.831	0	%100
38	MP3B	Z	0	0	0	%100
39	MP2B	X	-9.831	-9.831	0	%100
40	MP2B	Z	0	0	0	%100
41	MP1B	X	-9.831	-9.831	0	%100
42	MP1B	Z	0	0	0	%100
43	OVP	X	-9.831	-9.831	0	%100
44	OVP	Z	0	0	0	%100
45	M103A	X	0	0	0	%100
46	M103A	Z	0	0	0	%100
47	M104A	X	-12.571	-12.571	0	%100
48	M104A	Z	0	0	0	%100
49	M105A	X	-12.571	-12.571	0	%100
50	M105A	Z	0	0	0	%100
51	M61	X	0	0	0	%100
52	M61	Z	0	0	0	%100
53	M71A	X	-8.926	-8.926	0	%100
54	M71A	Z	0	0	0	%100
55	M87	X	-8.926	-8.926	0	%100
56	M87	Z	0	0	0	%100
57	M108	X	-19.897	-19.897	0	%100
58	M108	Z	0	0	0	%100
59	M109	X	-9.635	-9.635	0	%100
60	M109	Z	0	0	0	%100
61	M110A	X	-9.635	-9.635	0	%100
62	M110A	Z	0	0	0	%100
63	M33	X	-10.229	-10.229	0	%100
64	M33	Z	0	0	0	%100
65	M34	X	-10.229	-10.229	0	%100
66	M34	Z	0	0	0	%100
67	M81	X	001	001	0	%100
68	M81	Z	0	0	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	
69	M82A	X	-10.466	-10.466	0	%100
70	M82A	Z	0	0	0	%100
71	M99A	X	-10.466	-10.466	0	%100
72	M99A	Z	0	0	0	%100
73	M100A	X	001	001	0	%100
74	M100A	Z	0	0	0	%100
75	M7	X	0	0	0	%100
76	M7	Z	0	0	0	%100
77	M86	X	-8.926	-8.926	0	%100
78	M86	Z	0	0	0	%100
79	M102A	X	-8.926	-8.926	0	%100
80	M102A	Z	0	0	0	%100
81	M36	X	000824	000824	0	%100
82	M36	Z	0	0	0	%100
83	M40	X	000824	000824	0	%100
84	M40	Z	0	0	0	%100
85	M35	X	-18.503	-18.503	0	%100
86	M35	Z	0	0	0	%100
87	M39	X	-18.503	-18.503	0	%100 %100
88	M39	Z	0	0	0	%100
89	M83A	X	-18.503	-18.503	0	%100
90	M83A	Z	0	0	0	%100 %100
91	M84A	X	-18.751	-18.751	0	%100 %100
92	M84A	Z	0	0	0	%100
93	M85A	X	-18.751	-18.751	0	%100
94	M85A	Z	0	0	0	%100 %100
95	M86A	X	000824	000824	0	%100 %100
96	M86A	Z	0	0	0	%100 %100
97	M101A	X	-18.751	-18.751	0	%100
98	M101A	Z	0	0	0	%100
99	M102	X	-18.503	-18.503	0	%100 %100
100	M102	Z	0	0	0	%100 %100
101	M103	X	000824	000824	0	%100
102	M103	Z	0	0	0	%100
103	M104	X	-18.751	-18.751	0	%100 %100
103	M104	Z	0	0	0	%100 %100
105	M32	X	0	0	0	%100 %100
106	M32	Z	0	0	0	%100
107	M110	X	0	0	0	%100 %100
107	M110	Z	0	0	0	%100 %100
109	M71	X	-15.349	-15.349	0	%100 %100
110	M71	Z	-15.549	0	0	%100 %100
111	M72	X	-15.349	-15.349	0	%100
112	M72	Z	-15.549	-10.349	0	%100 %100
113	M89A	X	-15.349	-15.349	0	%100 %100
114	M89A	Z	-15.549	-10.349	0	%100 %100
115	M90	X	-15.349	-15.349	0	%100 %100
116	M90 M90	Z	-15.349	-15.349 0	0	%100 %100
117	M16	X	0	0	0	%100 %100
118	M16	Z	0	0	0	%100 %100
			-	_		
119	M87A	X	-18.627	-18.627	0	%100 %100
120	M87A	Z	0	0	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
121	M105	X	-18.627	-18.627	0	%100
122	M105	Z	0	0	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	-8.475	-8.475	0	%100
2	M31	Z	-4.893	-4.893	0	%100
3	M104B	X	-8.475	-8.475	0	%100
4	M104B	Z	-4.893	-4.893	0	%100
5	M105B	X	0	0	0	%100
6	M105B	Z	0	0	0	%100
7	M15	X	-5.377	-5.377	0	%100
8	M15	Z	-3.105	-3.105	0	%100
9	M17	X	-21.509	-21.509	0	%100
10	M17	Z	-12.418	-12.418	0	%100
11	M79	X	-21.509	-21.509	0	%100
12	M79	Z	-12.418	-12.418	0	%100
13	M80	X	-5.377	-5.377	0	%100
14	M80	Z	-3.105	-3.105	0	%100
15	M97B	X	-5.377	-5.377	0	%100
16	M97B	Z	-3.105	-3.105	0	%100
17	M98B	X	-5.377	-5.377	0	%100
18	M98B	Z	-3.105	-3.105	0	%100
19	MP4A	X	-8.514	-8.514	0	%100
20	MP4A	Z	-4.916	-4.916	0	%100
21	MP3A	X	-8.514	-8.514	0	%100
22	MP3A	Z	-4.916	-4.916	0	%100
23	MP2A	X	-8.514	-8.514	0	%100
24	MP2A	Z	-4.916	-4.916	0	%100
25	MP1A	X	-8.514	-8.514	0	%100
26	MP1A	Z	-4.916	-4.916	0	%100
27	MP4C	X	-8.514	-8.514	0	%100
28	MP4C	Z	-4.916	-4.916	0	%100
29	MP3C	X	-8.514	-8.514	0	%100
30	MP3C	Z	-4.916	-4.916	0	%100
31	MP2C	X	-8.514	-8.514	0	%100
32	MP2C	Z	-4.916	-4.916	0	%100
33	MP1C	X	-8.514	-8.514	0	%100
34	MP1C	Z	-4.916	-4.916	0	%100
35	MP4B	X	-8.514	-8.514	0	%100
36	MP4B	Z	-4.916	-4.916	0	%100
37	MP3B	X	-8.514	-8.514	0	%100
38	MP3B	Z	-4.916	-4.916	0	%100
39	MP2B	X	-8.514	-8.514	0	%100
40	MP2B	Z	-4.916	-4.916	0	%100
41	MP1B	X	-8.514	-8.514	0	%100
42	MP1B	Z	-4.916	-4.916	0	%100
43	OVP	X	-8.514	-8.514	0	%100
44	OVP	Z	-4.916	-4.916	0	%100
45	M103A	X	-3.629	-3.629	0	%100
46	M103A	Z	-2.095	-2.095	0	%100
-10	WITOOM	_	2.000	2.000	U	70100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 51: Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
47	M104A	X	-3.629	-3.629	0	%100
48	M104A	Z	-2.095	-2.095	0	%100
49	M105A	X	-14.515	-14.515	0	%100
50	M105A	Z	-8.38	-8.38	0	%100
51	M61	X	-2.577	-2.577	0	%100
52	M61	Z	-1.488	-1.488	0	%100
53	M71A	X	-2.577	-2.577	0	%100
54	M71A	Z	-1.488	-1.488	0	%100
55	M87	X	-10.306	-10.306	0	%100
56	M87	Z	-5.95	-5.95	0	%100
57	M108	X	-14.269	-14.269	0	%100
58	M108	Z	-8.238	-8.238	0	%100
59	M109	X	-14.269	-14.269	0	%100
60	M109	Z	-8.238	-8.238	0	%100
61	M110A	X	-5.382	-5.382	0	%100
62	M110A	Z	-3.107	-3.107	0	%100
63	M33	X	-11.948	-11.948	0	%100
64	M33	Z	-6.898	-6.898	0	%100
65	M34	X	-2.885	-2.885	0	%100
66	M34	Z	-1.666	-1.666	0	%100
67	M81	X	-2.885	-2.885	0	%100
68	M81	Z	-1.666	-1.666	0	%100
69	M82A	X	-11.948	-11.948	0	%100
70	M82A	Z	-6.898	-6.898	0	%100
71	M99A	X	-3.091	-3.091	0	%100
72	M99A	Z	-1.784	-1.784	0	%100
73	M100A	X	-3.091	-3.091	0	%100
74	M100A	Z	-1.784	-1.784	0	%100
75	M7	X	-2.577	-2.577	0	%100
76	M7	Z	-1.488	-1.488	0	%100
77	M86	X	-2.577	-2.577	0	%100
78	M86	Z	-1.488	-1.488	0	%100
79	M102A	X	-10.306	-10.306	0	%100
80	M102A	Z	-5.95	-5.95	0	%100
81	M36	X	-5.485	-5.485	0	%100
82	M36	Z	-3.167	-3.167	0	%100
83	M40	X	-5.27	-5.27	0	%100 %100
84	M40	Z	-3.043	-3.043	0	%100 %100
85	M35	X	-5.27	-5.27	0	%100 %100
86 87	M35	Z	-3.043	-3.043	0	%100 %100
	M39 M39	X Z	-21.508 -12.418	-21.508 -12.418	0	%100 %100
88 89	M83A	X	-12.418 -5.27	-12.418 -5.27	0	%100 %100
90	N83A	Z	-3.043	-5.2 <i>t</i> -3.043	0	%100 %100
90	M84A	X	-5.485	-5.485	0	%100 %100
92	M84A	Z	-3.167	-3.167	0	%100
93	M85A	X	-21.508	-21.508	0	%100
94	M85A	Z	-12.418	-12.418	0	%100
95	M86A	X	-5.27	-5.27	0	%100 %100
96	M86A	Z	-3.043	-3.043	0	%100
97	M101A	X	-21.508	-21.508	0	%100
98	M101A	Z	-12.418	-12.418	0	%100 %100
00	WITOTA		-12.710	-12.410	U	70 100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 51: Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
99	M102	X	-21.508	-21.508	0	%100
100	M102	Z	-12.418	-12.418	0	%100
101	M103	X	-5.485	-5.485	0	%100
102	M103	Z	-3.167	-3.167	0	%100
103	M104	X	-5.485	-5.485	0	%100
104	M104	Z	-3.167	-3.167	0	%100
105	M32	X	-4.431	-4.431	0	%100
106	M32	Z	-2.558	-2.558	0	%100
107	M110	X	-4.431	-4.431	0	%100
108	M110	Z	-2.558	-2.558	0	%100
109	M71	X	-4.431	-4.431	0	%100
110	M71	Z	-2.558	-2.558	0	%100
111	M72	X	-4.431	-4.431	0	%100
112	M72	Z	-2.558	-2.558	0	%100
113	M89A	X	-17.723	-17.723	0	%100
114	M89A	Z	-10.232	-10.232	0	%100
115	M90	X	-17.723	-17.723	0	%100
116	M90	Z	-10.232	-10.232	0	%100
117	M16	X	-5.377	-5.377	0	%100
118	M16	Z	-3.105	-3.105	0	%100
119	M87A	X	-5.377	-5.377	0	%100
120	M87A	Z	-3.105	-3.105	0	%100
121	M105	X	-21.509	-21.509	0	%100
122	M105	Z	-12.418	-12.418	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	-1.631	-1.631	0	%100
2	M31	Z	-2.825	-2.825	0	%100
3	M104B	X	-6.524	-6.524	0	%100
4	M104B	Z	-11.3	-11.3	0	%100
5	M105B	X	-1.631	-1.631	0	%100
6	M105B	Z	-2.825	-2.825	0	%100
7	M15	X	0	0	0	%100
8	M15	Z	0	0	0	%100
9	M17	X	-9.314	-9.314	0	%100
10	M17	Z	-16.132	-16.132	0	%100
11	M79	X	-9.314	-9.314	0	%100
12	M79	Z	-16.132	-16.132	0	%100
13	M80	X	-9.314	-9.314	0	%100
14	M80	Z	-16.132	-16.132	0	%100
15	M97B	X	-9.314	-9.314	0	%100
16	M97B	Z	-16.132	-16.132	0	%100
17	M98B	X	0	0	0	%100
18	M98B	Z	0	0	0	%100
19	MP4A	X	-4.916	-4.916	0	%100
20	MP4A	Z	-8.514	-8.514	0	%100
21	MP3A	X	-4.916	-4.916	0	%100
22	MP3A	Z	-8.514	-8.514	0	%100
23	MP2A	X	-4.916	-4.916	0	%100
24	MP2A	Z	-8.514	-8.514	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 52: Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
25	MP1A	X	-4.916	-4.916	0	%100
26	MP1A	Z	-8.514	-8.514	0	%100
27	MP4C	X	-4.916	-4.916	0	%100
28	MP4C	Z	-8.514	-8.514	0	%100
29	MP3C	X	-4.916	-4.916	0	%100
30	MP3C	Z	-8.514	-8.514	0	%100
31	MP2C	X	-4.916	-4.916	0	%100
32	MP2C	Z	-8.514	-8.514	0	%100
33	MP1C	X	-4.916	-4.916	0	%100
34	MP1C	Z	-8.514	-8.514	0	%100
35	MP4B	X	-4.916	-4.916	0	%100
36	MP4B	Z	-8.514	-8.514	0	%100
37	MP3B	X	-4.916	-4.916	0	%100
38	MP3B	Z	-8.514	-8.514	0	%100
39	MP2B	X	-4.916	-4.916	0	%100
40	MP2B	Z	-8.514	-8.514	0	%100
41	MP1B	X	-4.916	-4.916	0	%100
42	MP1B	Z	-8.514	-8.514	0	%100
43	OVP	X	-4.916	-4.916	0	%100
44	OVP	Z	-8.514	-8.514	0	%100
45	M103A	X	-6.285	-6.285	0	%100
46	M103A	Z	-10.887	-10.887	0	%100
47	M104A	X	0	0	0	%100
48	M104A	Z	0	0	0	%100
49	M105A	X	-6.285	-6.285	0	%100
50	M105A	Z	-10.887	-10.887	0	%100
51	M61	X	-4.463	-4.463	0	%100
52	M61	Z	-7.73	-7.73	0	%100
53	M71A	X	0	0	0	%100
54	M71A	Z	0	0	0	%100
55	M87	X	-4.463	-4.463	0	%100
56	M87	Z	-7.73	-7.73	0	%100
57	M108	X	-4.818	-4.818	0	%100
58	M108	Z	-8.344	-8.344	0	%100
59	M109	X	-9.949	-9.949	0	%100
60	M109	Z	-17.231	-17.231	0	%100 %100
61	M110A	X	-4.818	-4.818	0	%100
62	M110A	Z	-8.344	-8.344	0	%100
63	M33	X	-5.233	-5.233	0	%100 %100
64	M33	Z	-9.064	-9.064	0	%100
65	M34	X	000679	000679	0	%100
66	M34	Z	001	001	0	%100
67	M81	X	-5.115	-5.115	0	%100
68	M81	Z	-8.859	-8.859	0	%100
69	M82A	X	-5.115	-5.115	0	%100 %100
70	M82A	Z	-8.859	-8.859	0	%100
71	M99A	X	000679	000679	0	%100
72	M99A	Z	001	001	0	%100 %100
73	M100A	X	-5.233	-5.233	0	%100 %100
74	M100A	Z	-9.064	-9.064	0	%100
75	M7	X	-4.463	-4.463	0	%100
76	M7	Z	-7.73	-7.73	0	%100 %100
70	1717		7.70	1.10	•	70100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 52: Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
77	M86	X	0	0	0	%100
78	M86	Z	0	0	0	%100
79	M102A	X	-4.463	-4.463	0	%100
80	M102A	Z	-7.73	-7.73	0	%100
81	M36	X	-9.375	-9.375	0	%100
82	M36	Z	-16.239	-16.239	0	%100
83	M40	X	-9.251	-9.251	0	%100
84	M40	Z	-16.024	-16.024	0	%100
85	M35	X	000412	000412	0	%100
86	M35	Z	000714	000714	0	%100
87	M39	X	-9.375	-9.375	0	%100
88	M39	Z	-16.239	-16.239	0	%100
89	M83A	X	000412	000412	0	%100
90	M83A	Z	000714	000714	0	%100
91	M84A	X	000412	000412	0	%100
92	M84A	Z	000714	000714	0	%100
93	M85A	X	-9.251	-9.251	0	%100
94	M85A	Z	-16.024	-16.024	0	%100
95	M86A	X	-9.251	-9.251	0	%100
96	M86A	Z	-16.024	-16.024	0	%100
97	M101A	X	-9.251	-9.251	0	%100
98	M101A	Z	-16.024	-16.024	0	%100
99	M102	X	-9.375	-9.375	0	%100
100	M102	Z	-16.239	-16.239	0	%100
101	M103	X	-9.375	-9.375	0	%100
102	M103	Z	-16.239	-16.239	0	%100
103	M104	X	000412	000412	0	%100
104	M104	Z	000714	000714	0	%100
105	M32	X	-7.674	-7.674	0	%100
106	M32	Z	-13.292	-13.292	0	%100
107	M110	X	-7.674	-7.674	0	%100
108	M110	Z	-13.292	-13.292	0	%100
109	M71	X	0	0	0	%100
110	M71	Z	0	0	0	%100
111	M72	X	0	0	0	%100
112	M72	Z	0	0	0	%100
113	M89A	X	-7.674	-7.674	0	%100
114	M89A	Z	-13.292	-13.292	0	%100
115	M90	X	-7.674	-7.674	0	%100
116	M90	Z	-13.292	-13.292	0	%100
117	M16	X	-9.314	-9.314	0	%100
118	M16	Z	-16.132	-16.132	0	%100
119	M87A	X	0	0	0	%100
120	M87A	Z	0	0	0	%100
121	M105	X	-9.314	-9.314	0	%100
122	M105	Z	-16.132	-16.132	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	0	0	0	%100
2	M31	Z	0	0	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
3	M104B	X	0	0	0	%100
4	M104B	Z	-2.693	-2.693	0	%100
5	M105B	X	0	0	0	%100
6	M105B	Z	-2.693	-2.693	0	%100
7	M15	X	0	0	0	%100
8	M15	Z	-1.205	-1.205	0	%100
9	M17	X	0	0	0	%100
10	M17	Z	-1.205	-1.205	0	%100
11	M79	X	0	0	0	%100
12	M79	Z	-1.205	-1.205	0	%100
13	M80	X	0	0	0	%100
14	M80	Z	-4.819	-4.819	0	%100
15	M97B	X	0	0	0	%100
16	M97B	Z	-4.819	-4.819	0	%100 %100
17	M98B	X	0	0	0	%100
18	M98B	Z	-1.205	-1.205	0	%100 %100
19	MP4A	X	0	0	0	%100
20	MP4A	Z	-3.022	-3.022	0	%100
21	MP3A	X	-3.022	-3.022 0	0	%100
22	MP3A	Z	-3.022	-3.022	0	%100
23	MP2A	X	-3.022	-3.022 0	0	%100
24	MP2A	Z	-3.022	-3.022	0	%100
25	MP1A	X	-3.022	-3.022 0	0	%100 %100
26	MP1A MP1A	Z	-3.022		0	%100
			-3.022	-3.022		
27	MP4C	X Z		0	0	%100
28	MP4C		-3.022	-3.022	0	%100
29	MP3C	X Z	0	0	0	%100
30	MP3C		-3.022	-3.022	0	%100
31	MP2C	X Z	0	0	0	%100
32	MP2C		-3.022	-3.022	0	%100
33	MP1C	X Z	0	0	0	%100
34	MP1C		-3.022	-3.022	0	%100
35	MP4B	X Z	0	0	0	%100
36	MP4B		-3.022	-3.022	0	%100
37	MP3B	X	0	0	0	%100
38	MP3B	Z	-3.022	-3.022	0	%100
39	MP2B	X	0	0	0	%100
40	MP2B	Z	-3.022	-3.022	0	%100
41	MP1B	X	0	0	0	%100
42	MP1B	Z	-3.022	-3.022	0	%100 %100
43	OVP	X	0	0	0	%100
44	OVP	Z	-3.022	-3.022	0	%100
45	M103A	X	0	0	0	%100
46	M103A	Z	-3.96	-3.96	0	%100
47	M104A	X	0	0	0	%100
48	M104A	Z	99	99	0	%100
49	M105A	X	0	0	0	%100
50	M105A	Z	99	99	0	%100
51	M61	X	0	0	0	%100
52	M61	Z	-3.353	-3.353	0	%100
53	M71A	X	0	0	0	%100
54	M71A	Z	838	838	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
55	M87	X	0	0	0	%100
56	M87	Z	838	838	0	%100
57	M108	X	0	0	0	%100
58	M108	Z	-1.276	-1.276	0	%100
59	M109	X	0	0	0	%100
60	M109	Z	-3.793	-3.793	0	%100
61	M110A	X	0	0	0	%100
62	M110A	Z	-3.793	-3.793	0	%100
63	M33	X	0	0	0	%100
64	M33	Z	946	946	0	%100
65	M34	X	0	0	0	%100
66	M34	Z	946	946	0	%100
67	M81	X	0	0	0	%100
68	M81	Z	-3.656	-3.656	0	%100
69	M82A	X	0	0	0	%100
70	M82A	Z	883	883	0	%100
71	M99A	X	0	0	0	%100
72	M99A	Z	883	883	0	%100
73	M100A	X	0	0	0	%100 %100
74	M100A	Z	-3.656	-3.656	0	%100
75	M7	X	0	0	0	%100
76	M7	Z	-3.353	-3.353	0	%100 %100
77	M86	X	0	0	0	%100 %100
78	M86	Z	838	838	0	%100
79	M102A	X	0	0	0	%100
80	M102A	Z	838	838	0	%100 %100
81	M36	X	656	0	0	%100
82	M36	Z	-4.819	<u>-4.819</u>	0	%100 %100
83	M40	X	-4.619	0	0	%100 %100
84	M40	Z	-4.819	<u>-4.819</u>	0	%100 %100
85	M35	X	-4.619	0	0	%100 %100
86	M35	Z	-1.229	-1.229	0	%100 %100
87	M39	X	-1.229	0	0	%100 %100
88	M39	Z	-1.229	-1.229	0	%100 %100
	M83A	X	-1.229	0	0	%100 %100
89 90		Z	-		0	
	M83A	X	-1.229 0	-1.229	0	%100 %100
91 92	M84A M84A	Z	-1.181	0 -1.181	0	%100 %100
93	M85A		-1.101	<u>-1.161</u> 0	0	%100 %100
93	M85A	X Z	-1.181		0	%100 %100
95				-1.161 0		
96	M86A M86A	X Z	-4.819	0 -4.819	0	%100 %100
96					0	
	M101A	X	0	1 101		%100 %100
98	M101A	Z	-1.181	-1.181	0	%100 %100
99	M102	X Z	0 -1.229	0	0	%100
100	M102			-1.229		%100 %100
101	M103	X Z	0	0	0	%100 %100
102	M103		-4.819	-4.819	0	%100
103	M104	X Z	0	0	0	%100
104	M104		-1.181	-1.181	0	%100
105	M32	X	0	0	0	%100
106	M32	Z	-4.518	-4.518	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
107	M110	X	0	0	0	%100
108	M110	Z	-4.518	-4.518	0	%100
109	M71	X	0	0	0	%100
110	M71	Z	-1.13	-1.13	0	%100
111	M72	X	0	0	0	%100
112	M72	Z	-1.13	-1.13	0	%100
113	M89A	X	0	0	0	%100
114	M89A	Z	-1.13	-1.13	0	%100
115	M90	X	0	0	0	%100
116	M90	Z	-1.13	-1.13	0	%100
117	M16	X	0	0	0	%100
118	M16	Z	-4.931	-4.931	0	%100
119	M87A	X	0	0	0	%100
120	M87A	Z	-1.233	-1.233	0	%100
121	M105	X	0	0	0	%100
122	M105	Z	-1.233	-1.233	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	.449	.449	0	%100
2	M31	Z	777	777	0	%100
3	M104B	X	.449	.449	0	%100
4	M104B	Z	777	777	0	%100
5	M105B	X	1.795	1.795	0	%100
6	M105B	Z	-3.109	-3.109	0	%100
7	M15	X	1.807	1.807	0	%100
8	M15	Z	-3.13	-3.13	0	%100
9	M17	X	0	0	0	%100
10	M17	Z	0	0	0	%100
11	M79	X	0	0	0	%100
12	M79	Z	0	0	0	%100
13	M80	X	1.807	1.807	0	%100
14	M80	Z	-3.13	-3.13	0	%100
15	M97B	X	1.807	1.807	0	%100
16	M97B	Z	-3.13	-3.13	0	%100
17	M98B	X	1.807	1.807	0	%100
18	M98B	Z	-3.13	-3.13	0	%100
19	MP4A	X	1.511	1.511	0	%100
20	MP4A	Z	-2.617	-2.617	0	%100
21	MP3A	X	1.511	1.511	0	%100
22	MP3A	Z	-2.617	-2.617	0	%100
23	MP2A	X	1.511	1.511	0	%100
24	MP2A	Z	-2.617	-2.617	0	%100
25	MP1A	X	1.511	1.511	0	%100
26	MP1A	Z	-2.617	-2.617	0	%100
27	MP4C	X	1.511	1.511	0	%100
28	MP4C	Z	-2.617	-2.617	0	%100
29	MP3C	X	1.511	1.511	0	%100
30	MP3C	Z	-2.617	-2.617	0	%100
31	MP2C	X	1.511	1.511	0	%100
32	MP2C	Z	-2.617	-2.617	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
33	MP1C	X	1.511	1.511	0	%100
34	MP1C	Z	-2.617	-2.617	0	%100
35	MP4B	X	1.511	1.511	0	%100
36	MP4B	Z	-2.617	-2.617	0	%100
37	MP3B	X	1.511	1.511	0	%100
38	MP3B	Z	-2.617	-2.617	0	%100
39	MP2B	X	1.511	1.511	0	%100
40	MP2B	Z	-2.617	-2.617	0	%100
41	MP1B	X	1.511	1.511	0	%100
42	MP1B	Z	-2.617	-2.617	0	%100
43	OVP	X	1.511	1.511	0	%100
44	OVP	Z	-2.617	-2.617	0	%100
45	M103A	X	1.485	1.485	0	%100
46	M103A	Z	-2.572	-2.572	0	%100
47	M104A	X	1.485	1.485	0	%100
48	M104A	Z	-2.572	-2.572	0	%100
49	M105A	X	0	0	0	%100
50	M105A	Z	0	0	0	%100
51	M61	X	1.257	1.257	0	%100
52	M61	Z	-2.178	-2.178	0	%100
53	M71A	X	1.257	1.257	0	%100
54	M71A	Z	-2.178	-2.178	0	%100
55	M87	X	0	0	0	%100
56	M87	Z	0	0	0	%100
57	M108	X	1.058	1.058	0	%100
58	M108	Z	-1.832	-1.832	0	%100
59	M109	X	1.058	1.058	0	%100
60	M109	Z	-1.832	-1.832	0	%100
61	M110A	X	2.316	2.316	0	%100
62	M110A	Z	-4.012	-4.012	0	%100
63	M33	X	.00018	.00018	0	%100
64	M33	Z	000312	000312	0	%100
65	M34	X	1.387	1.387	0	%100
66	M34	Z	-2.402	-2.402	0	%100
67	M81	X	1.387	1.387	0	%100
68	M81	Z	-2.402	-2.402	0	%100
69	M82A	X	.00018	.00018	0	%100
70	M82A	Z	000312	000312	0	%100
71	M99A	X	1.355	1.355	0	%100
72	M99A	Z	-2.348	-2.348	0	%100
73	M100A	X	1.355	1.355	0	%100
74	M100A	Z	-2.348	-2.348	0	%100
75	M7	X	1.257	1.257	0	%100
76	M7	Z	-2.178	-2.178	0	%100
77	M86	X	1.257	1.257	0	%100
78	M86	Z	-2.178	-2.178	0	%100
79	M102A	X	0	0	0	%100
80	M102A	Z	0	0	0	%100
81	M36	X	1.795	1.795	0	%100
82	M36	Z	-3.109	-3.109	0	%100
83	M40	X	1.819	1.819	0	%100
84	M40	Z	-3.151	-3.151	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
85	M35	X	1.819	1.819	0	%100
86	M35	Z	-3.151	-3.151	0	%100
87	M39	X	8e-5	8e-5	0	%100
88	M39	Z	000139	000139	0	%100
89	M83A	X	1.819	1.819	0	%100
90	M83A	Z	-3.151	-3.151	0	%100
91	M84A	X	1.795	1.795	0	%100
92	M84A	Z	-3.109	-3.109	0	%100
93	M85A	Х	8e-5	8e-5	0	%100
94	M85A	Z	000139	000139	0	%100
95	M86A	X	1.819	1.819	0	%100
96	M86A	Z	-3.151	-3.151	0	%100
97	M101A	X	8e-5	8e-5	0	%100
98	M101A	Z	000139	000139	0	%100
99	M102	X	8e-5	8e-5	0	%100
100	M102	Z	000139	000139	0	%100
101	M103	X	1.795	1.795	0	%100
102	M103	Z	-3.109	-3.109	0	%100
103	M104	X	1.795	1.795	0	%100
104	M104	Z	-3.109	-3.109	0	%100
105	M32	X	1.694	1.694	0	%100
106	M32	Z	-2.935	-2.935	0	%100
107	M110	X	1.694	1.694	0	%100
108	M110	Z	-2.935	-2.935	0	%100
109	M71	X	1.694	1.694	0	%100
110	M71	Z	-2.935	-2.935	0	%100
111	M72	X	1.694	1.694	0	%100
112	M72	Z	-2.935	-2.935	0	%100
113	M89A	X	0	0	0	%100
114	M89A	Z	0	0	0	%100
115	M90	X	0	0	0	%100
116	M90	Z	0	0	0	%100
117	M16	X	1.849	1.849	0	%100
118	M16	Z	-3.203	-3.203	0	%100
119	M87A	X	1.849	1.849	0	%100
120	M87A	Z	-3.203	-3.203	0	%100
121	M105	X	0	0	0	%100
122	M105	Z	0	0	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	2.332	2.332	0	%100
2	M31	Z	-1.346	-1.346	0	%100
3	M104B	X	0	0	0	%100
4	M104B	Z	0	0	0	%100
5	M105B	X	2.332	2.332	0	%100
6	M105B	Z	-1.346	-1.346	0	%100
7	M15	X	4.173	4.173	0	%100
8	M15	Z	-2.41	-2.41	0	%100
9	M17	X	1.043	1.043	0	%100
10	M17	Z	602	602	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
11	M79	X	1.043	1.043	0	%100
12	M79	Z	602	602	0	%100
13	M80	X	1.043	1.043	0	%100
14	M80	Z	602	602	0	%100
15	M97B	×	1.043	1.043	0	%100
16	M97B	Z	602	602	0	%100
17	M98B	X	4.173	4.173	0	%100
18	M98B	Z	-2.41	-2.41	0	%100
19	MP4A	X	2.617	2.617	0	%100
20	MP4A	Z	-1.511	-1.511	0	%100
21	MP3A	X	2.617	2.617	0	%100
22	MP3A	Z	-1.511	-1.511	0	%100
23	MP2A	X	2.617	2.617	0	%100
24	MP2A	Z	-1.511	-1.511	0	%100
25	MP1A	X	2.617	2.617	0	%100
26	MP1A	Z	-1.511	-1.511	0	%100
27	MP4C	X	2.617	2.617	0	%100
28	MP4C	Z	-1.511	-1.511	0	%100
29	MP3C	X	2.617	2.617	0	%100
30	MP3C	Z	-1.511	-1.511	0	%100
31	MP2C	X	2.617	2.617	0	%100
32	MP2C	Z	-1.511	-1.511	0	%100
33	MP1C	X	2.617	2.617	0	%100
34	MP1C	Z	-1.511	-1.511	0	%100
35	MP4B	X	2.617	2.617	0	%100
36	MP4B	Z	-1.511	-1.511	0	%100
37	MP3B	X	2.617	2.617	0	%100
38	MP3B	Z	-1.511	-1.511	0	%100
39	MP2B	X	2.617	2.617	0	%100
40	MP2B	Z	-1.511	-1.511	0	%100
41	MP1B	X	2.617	2.617	0	%100
42	MP1B	Z	-1.511	-1.511	0	%100
43	OVP	Х	2.617	2.617	0	%100
44	OVP	Z	-1.511	-1.511	0	%100
45	M103A	X	.857	.857	0	%100
46	M103A	Z	495	495	0	%100
47	M104A	X	3.429	3.429	0	%100
48	M104A	Z	-1.98	-1.98	0	%100
49	M105A	X	.857	.857	0	%100
50	M105A	Z	495	495	0	%100
51	M61	X	.726	.726	0	%100
52	M61	Z	419	419	0	%100
53	M71A	X	2.904	2.904	0	%100
54	M71A	Z	-1.677	-1.677	0	%100
55	M87	Х	.726	.726	0	%100
56	M87	Z	419	419	0	%100
57	M108	X	3.285	3.285	0	%100
58	M108	Z	-1.897	-1.897	0	%100
59	M109	X	1.105	1.105	0	%100
60	M109	Z	638	638	0	%100
61	M110A	X	3.285	3.285	0	%100
62	M110A	Z	-1.897	-1.897	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
63	M33	X	.765	.765	0	%100
64	M33	Z	441	441	0	%100
65	M34	X	3.166	3.166	0	%100
66	M34	Z	-1.828	-1.828	0	%100
67	M81	X	.819	.819	0	%100
68	M81	Z	473	473	0	%100
69	M82A	X	.819	.819	0	%100
70	M82A	Z	473	473	0	%100
71	M99A	X	3.166	3.166	0	%100
72	M99A	Z	-1.828	-1.828	0	%100
73	M100A	X	.765	.765	0	%100
74	M100A	Z	441	441	0	%100
75	M7	X	.726	.726	0	%100
76	M7	Z	419	419	0	%100
77	M86	X	2.904	2.904	0	%100
78	M86	Z	-1.677	-1.677	0	%100
79	M102A	X	.726	.726	0	%100
80	M102A	Z	419	419	0	%100
81	M36	X	1.023	1.023	0	%100
82	M36	Z	59	59	0	%100
83	M40	X	1.064	1.064	0	%100
84	M40	Z	614	614	0	%100
85	M35	X	4.173	4.173	0	%100
86	M35	Z	-2.409	-2.409	0	%100
87	M39	X	1.023	1.023	0	%100
88	M39	Z	59	59	0	%100
89	M83A	X	4.173	4.173	0	%100
90	M83A	Z	-2.409	-2.409	0	%100
91	M84A	X	4.173	4.173	0	%100
92	M84A	Z	-2.409	-2.409	0	%100
93	M85A	X	1.064	1.064	0	%100
94	M85A	Z	614	614	0	%100
95	M86A	X	1.064	1.064	0	%100
96	M86A	Z	614	614	0	%100
97	M101A	X	1.064	1.064	0	%100
98	M101A	Z	614	614	0	%100
99	M102	X	1.023	1.023	0	%100
100	M102	Z	59	59	0	%100
101	M103	X	1.023	1.023	0	%100
102	M103	Z	59	59	0	%100
103	M104	X	4.173	4.173	0	%100
104	M104	Z	-2.409	-2.409	0	%100
105	M32	X	.978	.978	0	%100
106	M32	Z	565	565	0	%100
107	M110	X	.978	.978	0	%100
108	M110	Z	565	565	0	%100
109	M71	X	3.913	3.913	0	%100
110	M71	Z	-2.259	-2.259	0	%100
111	M72	X	3.913	3.913	0	%100
112	M72	Z	-2.259	-2.259	0	%100
113	M89A	X	.978	.978	0	%100
114	M89A	Z	565	565	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
115	M90	X	.978	.978	0	%100
116	M90	Z	565	565	0	%100
117	M16	X	1.068	1.068	0	%100
118	M16	Z	616	616	0	%100
119	M87A	X	4.271	4.271	0	%100
120	M87A	Z	-2.466	-2.466	0	%100
121	M105	X	1.068	1.068	0	%100
122	M105	Z	616	616	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	3.59	3.59	0	%100
2	M31	Z	0	0	0	%100
3	M104B	X	.898	.898	0	%100
4	M104B	Z	0	0	0	%100
5	M105B	X	.898	.898	0	%100
6	M105B	Z	0	0	0	%100
7	M15	X	3.614	3.614	0	%100
8	M15	Z	0	0	0	%100
9	M17	X	3.614	3.614	0	%100
10	M17	Z	0	0	0	%100
11	M79	X	3.614	3.614	0	%100
12	M79	Z	0	0	0	%100
13	M80	X	0	0	0	%100
14	M80	Z	0	0	0	%100
15	M97B	X	0	0	0	%100
16	M97B	Z	0	0	0	%100
17	M98B	X	3.614	3.614	0	%100
18	M98B	Z	0	0	0	%100
19	MP4A	X	3.022	3.022	0	%100
20	MP4A	Z	0	0	0	%100
21	MP3A	X	3.022	3.022	0	%100
22	MP3A	Z	0	0	0	%100
23	MP2A	X	3.022	3.022	0	%100
24	MP2A	Z	0	0	0	%100
25	MP1A	X	3.022	3.022	0	%100
26	MP1A	Z	0	0	0	%100
27	MP4C	X	3.022	3.022	0	%100
28	MP4C	Z	0	0	0	%100
29	MP3C	X	3.022	3.022	0	%100
30	MP3C	Z	0	0	0	%100
31	MP2C	X	3.022	3.022	0	%100
32	MP2C	Z	0	0	0	%100
33	MP1C	X	3.022	3.022	0	%100
34	MP1C	Z	0	0	0	%100
35	MP4B	X	3.022	3.022	0	%100
36	MP4B	Z	0	0	0	%100
37	MP3B	X	3.022	3.022	0	%100
38	MP3B	Z	0	0	0	%100
39	MP2B	X	3.022	3.022	0	%100
40	MP2B	Z	0	0	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
41	MP1B	X	3.022	3.022	0	%100
42	MP1B	Z	0	0	0	%100
43	OVP	X	3.022	3.022	0	%100
44	OVP	Z	0	0	0	%100
45	M103A	X	0	0	0	%100
46	M103A	Z	0	0	0	%100
47	M104A	X	2.97	2.97	0	%100
48	M104A	Z	0	0	0	%100
49	M105A	X	2.97	2.97	0	%100
50	M105A	Z	0	0	0	%100
51	M61	X	0	0	0	%100
52	M61	Z	0	0	0	%100
53	M71A	X	2.515	2.515	0	%100
54	M71A	Z	0	0	0	%100
55	M87	X	2.515	2.515	0	%100
56	M87	Z	0	0	0	%100 %100
57	M108	X	4.633	4.633	0	%100
58	M108	Z	0	0	0	%100
59	M109	X	2.115	2.115	0	%100
60	M109	Z	0	0	0	%100
61	M110A	X	2.115	2.115	0	%100
62	M110A	Z	0	0	0	%100 %100
63	M33	X	2.711	2.711	0	%100 %100
64	M33	Z	0	0	0	%100
	M34	X	2.711	2.711	0	%100
65		Z	0	0	0	
66 67	M34 M81		.00036		0	%100 %100
68	M81	X Z	.00036	.00036	0	%100
69	M82A	X	2.774	2.774	0	%100 %100
70	M82A	Z	0	0	0	%100 %100
71	M99A	X	2.774	2.774	0	%100 %100
72	M99A	Z	0	0	0	%100 %100
73	M100A	X	.00036	.00036	0	%100
74	M100A	Z	.00036	0	0	%100
75	M7	X	0	0	0	%100 %100
76	M7	Z	0	0	0	%100 %100
77	M86	X	2.515	2.515	0	%100 %100
78	M86	Z	0	2.515	0	%100
79	M102A	X	2.515	2.515	0	%100 %100
80	M102A	Z	0	2.515	0	%100
81	M36	X	.00016	.00016	0	%100 %100
82	M36	Z	.00016	0	0	%100 %100
83	M40	X	.00016	.00016	0	%100 %100
84	M40	Z	.00016	0	0	%100 %100
85	M35	X	3.59	3.59	0	%100 %100
86	M35	Z	0	0	0	%100
87	M39	X	3.59	3.59	0	%100 %100
88	M39	Z	0		0	%100 %100
89	M83A	X	3.59	3.59	0	%100 %100
90	M83A	Z	0	 0	0	%100
91	M84A	X	3.638	3.638	0	%100
91	M84A	Z				%100 %100
92	IVIO4A		0	0	0	% 100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
93	M85A	X	3.638	3.638	0	%100
94	M85A	Z	0	0	0	%100
95	M86A	X	.00016	.00016	0	%100
96	M86A	Z	0	0	0	%100
97	M101A	X	3.638	3.638	0	%100
98	M101A	Z	0	0	0	%100
99	M102	X	3.59	3.59	0	%100
100	M102	Z	0	0	0	%100
101	M103	X	.00016	.00016	0	%100
102	M103	Z	0	0	0	%100
103	M104	X	3.638	3.638	0	%100
104	M104	Z	0	0	0	%100
105	M32	X	0	0	0	%100
106	M32	Z	0	0	0	%100
107	M110	X	0	0	0	%100
108	M110	Z	0	0	0	%100
109	M71	X	3.389	3.389	0	%100
110	M71	Z	0	0	0	%100
111	M72	X	3.389	3.389	0	%100
112	M72	Z	0	0	0	%100
113	M89A	X	3.389	3.389	0	%100
114	M89A	Z	0	0	0	%100
115	M90	X	3.389	3.389	0	%100
116	M90	Z	0	0	0	%100
117	M16	X	0	0	0	%100
118	M16	Z	0	0	0	%100
119	M87A	X	3.698	3.698	0	%100
120	M87A	Z	0	0	0	%100
121	M105	X	3.698	3.698	0	%100
122	M105	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	2.332	2.332	0	%100
2	M31	Z	1.346	1.346	0	%100
3	M104B	X	2.332	2.332	0	%100
4	M104B	Z	1.346	1.346	0	%100
5	M105B	X	0	0	0	%100
6	M105B	Z	0	0	0	%100
7	M15	X	1.043	1.043	0	%100
8	M15	Z	.602	.602	0	%100
9	M17	X	4.173	4.173	0	%100
10	M17	Z	2.41	2.41	0	%100
11	M79	X	4.173	4.173	0	%100
12	M79	Z	2.41	2.41	0	%100
13	M80	X	1.043	1.043	0	%100
14	M80	Z	.602	.602	0	%100
15	M97B	X	1.043	1.043	0	%100
16	M97B	Z	.602	.602	0	%100
17	M98B	X	1.043	1.043	0	%100
18	M98B	Z	.602	.602	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
19	MP4A	X	2.617	2.617	0	%100
20	MP4A	Z	1.511	1.511	0	%100
21	MP3A	X	2.617	2.617	0	%100
22	MP3A	Z	1.511	1.511	0	%100
23	MP2A	X	2.617	2.617	0	%100
24	MP2A	Z	1.511	1.511	0	%100
25	MP1A	X	2.617	2.617	0	%100
26	MP1A	Z	1.511	1.511	0	%100
27	MP4C	Х	2.617	2.617	0	%100
28	MP4C	Z	1.511	1.511	0	%100
29	MP3C	X	2.617	2.617	0	%100
30	MP3C	Z	1.511	1.511	0	%100
31	MP2C	X	2.617	2.617	0	%100
32	MP2C	Z	1.511	1.511	0	%100
33	MP1C	X	2.617	2.617	0	%100
34	MP1C	Z	1.511	1.511	0	%100
35	MP4B	X	2.617	2.617	0	%100
36	MP4B	Z	1.511	1.511	0	%100
37	MP3B	X	2.617	2.617	0	%100
38	MP3B	Z	1.511	1.511	0	%100
39	MP2B	X	2.617	2.617	0	%100
40	MP2B	Z	1.511	1.511	0	%100
41	MP1B	X	2.617	2.617	0	%100
42	MP1B	Z	1.511	1.511	0	%100
43	OVP	X	2.617	2.617	0	%100
44	OVP	Z	1.511	1.511	0	%100
45	M103A	X	.857	.857	0	%100
46	M103A	Z	.495	.495	0	%100
47	M104A	X	.857	.857	0	%100
48	M104A	Z	.495	.495	0	%100
49	M105A	X	3.429	3.429	0	%100
50	M105A	Z	1.98	1.98	0	%100
51	M61	X	.726	.726	0	%100
52	M61	Z	.419	.419	0	%100
53	M71A	X	.726	.726	0	%100
54	M71A	Z	.419	.419	0	%100
55	M87	X	2.904	2.904	0	%100
56	M87	Z	1.677	1.677	0	%100
57	M108	Х	3.285	3.285	0	%100
58	M108	Z	1.897	1.897	0	%100
59	M109	X	3.285	3.285	0	%100
60	M109	Z	1.897	1.897	0	%100
61	M110A	X	1.105	1.105	0	%100
62	M110A	Z	.638	.638	0	%100
63	M33	X	3.166	3.166	0	%100
64	M33	Z	1.828	1.828	0	%100
65	M34	X	.765	.765	0	%100
66	M34	Z	.441	.441	0	%100
67	M81	X	.765	.765	0	%100
68	M81	Z	.441	.441	0	%100
69	M82A	X	3.166	3.166	0	%100
70	M82A	Z	1.828	1.828	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Distributed Loads (BLC 57: Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
71	M99A	X	.819	.819	0	%100
72	M99A	Z	.473	.473	0	%100
73	M100A	X	.819	.819	0	%100
74	M100A	Z	.473	.473	0	%100
75	M7	X	.726	.726	0	%100
76	M7	Z	.419	.419	0	%100
77	M86	X	.726	.726	0	%100
78	M86	Z	.419	.419	0	%100
79	M102A	X	2.904	2.904	0	%100
80	M102A	Z	1.677	1.677	0	%100
81	M36	X	1.064	1.064	0	%100
82	M36	Z	.614	.614	0	%100
83	M40	X	1.023	1.023	0	%100
84	M40	Z	.59	.59	0	%100
85	M35	X	1.023	1.023	0	%100
86	M35	Z	.59	.59	0	%100
87	M39	X	4.173	4.173	0	%100
88	M39	Z	2.409	2.409	0	%100
89	M83A	X	1.023	1.023	0	%100
90	M83A	Z	.59	.59	0	%100
91	M84A	X	1.064	1.064	0	%100
92	M84A	Z	.614	.614	0	%100
93	M85A	X	4.173	4.173	0	%100
94	M85A	Z	2.409	2.409	0	%100
95	M86A	X	1.023	1.023	0	%100
96	M86A	Z	.59	.59	0	%100
97	M101A	X	4.173	4.173	0	%100
98	M101A	Z	2.409	2.409	0	%100
99	M102	X	4.173	4.173	0	%100
100	M102	Z	2.409	2.409	0	%100
101	M103	X	1.064	1.064	0	%100
102	M103	Z	.614	.614	0	%100
103	M104	X	1.064	1.064	0	%100
104	M104	Z	.614	.614	0	%100
105	M32	X	.978	.978	0	%100
106	M32	Z	.565	.565	0	%100
107	M110	Χ	.978	.978	0	%100
108	M110	Z	.565	.565	0	%100
109	M71	X	.978	.978	0	%100
110	M71	Z	.565	.565	0	%100
111	M72	X	.978	.978	0	%100
112	M72	Z	.565	.565	0	%100
113	M89A	X	3.913	3.913	0	%100
114	M89A	Z	2.259	2.259	0	%100
115	M90	X	3.913	3.913	0	%100
116	M90	Z	2.259	2.259	0	%100
117	M16	X	1.068	1.068	0	%100
118	M16	Z	.616	.616	0	%100
119	M87A	X	1.068	1.068	0	%100
120	M87A	Z	.616	.616	0	%100
121	M105	X	4.271	4.271	0	%100
122	M105	Z	2.466	2.466	0	%100

: Maser Consulting

: SEA :

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	.449	.449	0	%100
2	M31	Z	.777	.777	0	%100
3	M104B	X	1.795	1.795	0	%100
4	M104B	Z	3.109	3.109	0	%100
5	M105B	X	.449	.449	0	%100
6	M105B	Z	.777	.777	0	%100
7	M15	X	0	0	0	%100
8	M15	Z	0	0	0	%100
9	M17	X	1.807	1.807	0	%100
10	M17	Z	3.13	3.13	0	%100
11	M79	X	1.807	1.807	0	%100
12	M79	Z	3.13	3.13	0	%100
13	M80	X	1.807	1.807	0	%100
14	M80	Z	3.13	3.13	0	%100
15	M97B	X	1.807	1.807	0	%100
16	M97B	Z	3.13	3.13	0	%100
17	M98B	X	0	0	0	%100
18	M98B	Z	0	0	0	%100
19	MP4A	X	1.511	1.511	0	%100
20	MP4A	Z	2.617	2.617	0	%100
21	MP3A	X	1.511	1.511	0	%100
22	MP3A	Z	2.617	2.617	0	%100
23	MP2A	X	1.511	1.511	0	%100
24	MP2A	Z	2.617	2.617	0	%100
25	MP1A	X	1.511	1.511	0	%100
26	MP1A	Z	2.617	2.617	0	%100
27	MP4C	X	1.511	1.511	0	%100
28	MP4C	Z	2.617	2.617	0	%100
29	MP3C	X	1.511	1.511	0	%100
30	MP3C	Z	2.617	2.617	0	%100
31	MP2C	X	1.511	1.511	0	%100
32	MP2C	Z	2.617	2.617	0	%100
33	MP1C	X	1.511	1.511	0	%100
34	MP1C	Z	2.617	2.617	0	%100
35	MP4B	X	1.511	1.511	0	%100
36	MP4B	Z	2.617	2.617	0	%100
37	MP3B	X	1.511	1.511	0	%100
38	MP3B	Z	2.617	2.617	0	%100
39	MP2B	X	1.511	1.511	0	%100
40	MP2B	Z	2.617	2.617	0	%100
41	MP1B	X	1.511	1.511	0	%100
42	MP1B	Z	2.617	2.617	0	%100
43	OVP	X	1.511	1.511	0	%100
44	OVP	Z	2.617	2.617	0	%100
45	M103A	X	1.485	1.485	0	%100
46	M103A	Z	2.572	2.572	0	%100
47	M104A	X	0	0	0	%100
48	M104A	Z	0	0	0	%100
49	M105A	X	1.485	1.485	0	%100
50	M105A	Z	2.572	2.572	0	%100
51	M61	X	1.257	1.257	0	%100
52	M61	Z	2.178	2.178	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
53	M71A	X	0	0	0	%100
54	M71A	Z	0	0	0	%100
55	M87	X	1.257	1.257	0	%100
56	M87	Z	2.178	2.178	0	%100
57	M108	X	1.058	1.058	0	%100
58	M108	Z	1.832	1.832	0	%100
59	M109	X	2.316	2.316	0	%100
60	M109	Z	4.012	4.012	0	%100
61	M110A	X	1.058	1.058	0	%100
62	M110A	Z	1.832	1.832	0	%100
63	M33	X	1.387	1.387	0	%100
64	M33	Z	2.402	2.402	0	%100
65	M34	X	.00018	.00018	0	%100
66	M34	Z	.000312	.000312	0	%100
67	M81	X	1.355	1.355	0	%100
68	M81	Z	2.348	2.348	0	%100
69	M82A	X	1.355	1.355	0	%100
70	M82A	Z	2.348	2.348	0	%100
71	M99A	X	.00018	.00018	0	%100
72	M99A	Z	.000312	.000312	0	%100
73	M100A	X	1.387	1.387	0	%100
74	M100A	Z	2.402	2.402	0	%100
75	M7	X	1.257	1.257	0	%100
76	M7	Z	2.178	2.178	0	%100
77	M86	X	0	0	0	%100
78	M86	Z	0	0	0	%100
79	M102A	X	1.257	1.257	0	%100
80	M102A	Z	2.178	2.178	0	%100
81	M36	X	1.819	1.819	0	%100
82	M36	Z	3.151	3.151	0	%100
83	M40	X	1.795	1.795	0	%100
84	M40	Z	3.109	3.109	0	%100
85	M35	X	8e-5	8e-5	0	%100
86	M35	Z	.000139	.000139	0	%100
87	M39	X	1.819	1.819	0	%100
88	M39	Z	3.151	3.151	0	%100
89	M83A	X	8e-5	8e-5	0	%100
90	M83A	Z	.000139	.000139	0	%100
91	M84A	X	8e-5	8e-5	0	%100
92	M84A	Z	.000139	.000139	0	%100
93	M85A	X	1.795	1.795	0	%100
94	M85A	Z	3.109	3.109	0	%100
95	M86A	X	1.795	1.795	0	%100
96	M86A	Z	3.109	3.109	0	%100
97	M101A	X	1.795	1.795	0	%100
98	M101A	Z	3.109	3.109	0	%100
99	M102	X	1.819	1.819	0	%100
100	M102	Z	3.151	3.151	0	%100
101	M103	X	1.819	1.819	0	%100
102	M103	Z	3.151	3.151	0	%100
103	M104	X	8e-5	8e-5	0	%100
104	M104	Z	.000139	.000139	0	%100

: Maser Consulting

SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
105	M32	X	1.694	1.694	0	%100
106	M32	Z	2.935	2.935	0	%100
107	M110	X	1.694	1.694	0	%100
108	M110	Z	2.935	2.935	0	%100
109	M71	X	0	0	0	%100
110	M71	Z	0	0	0	%100
111	M72	X	0	0	0	%100
112	M72	Z	0	0	0	%100
113	M89A	X	1.694	1.694	0	%100
114	M89A	Z	2.935	2.935	0	%100
115	M90	X	1.694	1.694	0	%100
116	M90	Z	2.935	2.935	0	%100
117	M16	X	1.849	1.849	0	%100
118	M16	Z	3.203	3.203	0	%100
119	M87A	X	0	0	0	%100
120	M87A	Z	0	0	0	%100
121	M105	X	1.849	1.849	0	%100
122	M105	Z	3.203	3.203	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	0	0	0	%100
2	M31	Z	0	0	0	%100
3	M104B	X	0	0	0	%100
4	M104B	Z	2.693	2.693	0	%100
5	M105B	X	0	0	0	%100
6	M105B	Z	2.693	2.693	0	%100
7	M15	X	0	0	0	%100
8	M15	Z	1.205	1.205	0	%100
9	M17	X	0	0	0	%100
10	M17	Z	1.205	1.205	0	%100
11	M79	X	0	0	0	%100
12	M79	Z	1.205	1.205	0	%100
13	M80	X	0	0	0	%100
14	M80	Z	4.819	4.819	0	%100
15	M97B	X	0	0	0	%100
16	M97B	Z	4.819	4.819	0	%100
17	M98B	X	0	0	0	%100
18	M98B	Z	1.205	1.205	0	%100
19	MP4A	X	0	0	0	%100
20	MP4A	Z	3.022	3.022	0	%100
21	MP3A	X	0	0	0	%100
22	MP3A	Z	3.022	3.022	0	%100
23	MP2A	X	0	0	0	%100
24	MP2A	Z	3.022	3.022	0	%100
25	MP1A	X	0	0	0	%100
26	MP1A	Z	3.022	3.022	0	%100
27	MP4C	X	0	0	0	%100
28	MP4C	Z	3.022	3.022	0	%100
29	MP3C	X	0	0	0	%100
30	MP3C	Z	3.022	3.022	0	%100

Company :
Designer :
Job Number :

Model Name

: Maser Consulting : SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
31	MP2C	X	0	0	0	%100
32	MP2C	Z	3.022	3.022	0	%100
33	MP1C	X	0	0	0	%100
34	MP1C	Z	3.022	3.022	0	%100
35	MP4B	X	0	0	0	%100
36	MP4B	Z	3.022	3.022	0	%100
37	MP3B	X	0	0	0	%100
38	MP3B	Z	3.022	3.022	0	%100
39	MP2B	X	0	0	0	%100
40	MP2B	Z	3.022	3.022	0	%100
41	MP1B	X	0	0	0	%100
42	MP1B	Z	3.022	3.022	0	%100
43	OVP	X	0	0	0	%100
44	OVP	Z	3.022	3.022	0	%100
45	M103A	X	0	0	0	%100
46	M103A	Z	3.96	3.96	0	%100
47	M104A	X	0	0	0	%100
48	M104A	Z	.99	.99	0	%100
49	M105A	X	0	0	0	%100
50	M105A	Z	.99	.99	0	%100
51	M61	X	0	0	0	%100
52	M61	Z	3.353	3.353	0	%100
53	M71A	X	0	0	0	%100
54	M71A	Z	.838	.838	0	%100
55	M87	X	0	0	0	%100
56	M87	Z	.838	.838	0	%100
57	M108	X	0	0	0	%100
58	M108	Z	1.276	1.276	0	%100
59	M109	X	0	0	0	%100
60	M109	Z	3.793	3.793	0	%100
61	M110A	X	0	0	0	%100
62	M110A	Z	3.793	3.793	0	%100
63	M33	X	0	0	0	%100
64	M33	Z	.946	.946	0	%100
65	M34	X	0	0	0	%100
66	M34	Z	.946	.946	0	%100
67	M81	X	0	0	0	%100
68	M81	Z	3.656	3.656	0	%100
69	M82A	X	0	0	0	%100
70	M82A	Z	.883	.883	0	%100
71	M99A	X	0	0	0	%100
72	M99A	Z	.883	.883	0	%100
73	M100A	X	0	0	0	%100
74	M100A	Z	3.656	3.656	0	%100
75	M7	X	0	0	0	%100
76	M7	Z	3.353	3.353	0	%100
77	M86	X	0	0	0	%100
78	M86	Z	.838	.838	0	%100
79	M102A	X	0	0	0	%100
80	M102A	Z	.838	.838	0	%100
81	M36	X	0	0	0	%100
82	M36	Z	4.819	4.819	0	%100

: Maser Consulting

SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
83	M40	X	0	0	0	%100
84	M40	Z	4.819	4.819	0	%100
85	M35	Х	0	0	0	%100
86	M35	Z	1.229	1.229	0	%100
87	M39	X	0	0	0	%100
88	M39	Z	1.229	1.229	0	%100
89	M83A	X	0	0	0	%100
90	M83A	Z	1.229	1.229	0	%100
91	M84A	X	0	0	0	%100
92	M84A	Z	1.181	1.181	0	%100
93	M85A	X	0	0	0	%100
94	M85A	Z	1.181	1.181	0	%100
95	M86A	X	0	0	0	%100
96	M86A	Z	4.819	4.819	0	%100
97	M101A	Х	0	0	0	%100
98	M101A	Z	1.181	1.181	0	%100
99	M102	X	0	0	0	%100
100	M102	Z	1.229	1.229	0	%100
101	M103	Х	0	0	0	%100
102	M103	Z	4.819	4.819	0	%100
103	M104	X	0	0	0	%100
104	M104	Z	1.181	1.181	0	%100
105	M32	X	0	0	0	%100
106	M32	Z	4.518	4.518	0	%100
107	M110	Х	0	0	0	%100
108	M110	Z	4.518	4.518	0	%100
109	M71	X	0	0	0	%100
110	M71	Z	1.13	1.13	0	%100
111	M72	X	0	0	0	%100
112	M72	Z	1.13	1.13	0	%100
113	M89A	X	0	0	0	%100
114	M89A	Z	1.13	1.13	0	%100
115	M90	X	0	0	0	%100
116	M90	Z	1.13	1.13	0	%100
117	M16	X	0	0	0	%100
118	M16	Z	4.931	4.931	0	%100
119	M87A	X	0	0	0	%100
120	M87A	Z	1.233	1.233	0	%100
121	M105	X	0	0	0	%100
122	M105	Z	1.233	1.233	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	449	449	0	%100
2	M31	Z	.777	.777	0	%100
3	M104B	X	449	449	0	%100
4	M104B	Z	.777	.777	0	%100
5	M105B	X	-1.795	-1.795	0	%100
6	M105B	Z	3.109	3.109	0	%100
7	M15	X	-1.807	-1.807	0	%100
8	M15	Z	3.13	3.13	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
9	M17	X	0	0	0	%100
10	M17	Z	0	0	0	%100
11	M79	X	0	0	0	%100
12	M79	Z	0	0	0	%100
13	M80	X	-1.807	-1.807	0	%100
14	M80	Z	3.13	3.13	0	%100
15	M97B	X	-1.807	-1.807	0	%100
16	M97B	Z	3.13	3.13	0	%100
17	M98B	Х	-1.807	-1.807	0	%100
18	M98B	Z	3.13	3.13	0	%100
19	MP4A	X	-1.511	-1.511	0	%100
20	MP4A	Z	2.617	2.617	0	%100
21	MP3A	X	-1.511	-1.511	0	%100
22	MP3A	Z	2.617	2.617	0	%100
23	MP2A	X	-1.511	-1.511	0	%100
24	MP2A	Z	2.617	2.617	0	%100
25	MP1A	X	-1.511	-1.511	0	%100
26	MP1A	Z	2.617	2.617	0	%100
27	MP4C	X	-1.511	-1.511	0	%100
28	MP4C	Z	2.617	2.617	0	%100
29	MP3C	X	-1.511	-1.511	0	%100
30	MP3C	Z	2.617	2.617	0	%100
31	MP2C	X	-1.511	-1.511	0	%100
32	MP2C	Z	2.617	2.617	0	%100
33	MP1C	X	-1.511	-1.511	0	%100
34	MP1C	Z	2.617	2.617	0	%100
35	MP4B	X	-1.511	-1.511	0	%100
36	MP4B	Z	2.617	2.617	0	%100
37	MP3B	X	-1.511	-1.511	0	%100
38	MP3B	Z	2.617	2.617	0	%100
39	MP2B	X	-1.511	-1.511	0	%100
40	MP2B	Z	2.617	2.617	0	%100
41	MP1B	X	-1.511	-1.511	0	%100
42	MP1B	Z	2.617	2.617	0	%100
43	OVP	X	-1.511	-1.511	0	%100 %100
44	OVP	Z	2.617	2.617	0	%100 %100
45	M103A	X	-1.485	-1.485	0	%100 %100
46	M103A	Z	2.572	2.572	0	%100 %100
47	M104A	X	-1.485	-1.485	0	%100 %100
48	M104A	Z	2.572	2.572	0	%100
49	M105A	X	0	0	0	%100 %100
50	M105A	Z	0	0	0	%100 %100
51	M61	X	-1.257	-1.257	0	%100 %100
52	M61	Z	2.178	2.178	0	%100 %100
53	M71A	X	-1.257	-1.257	0	%100 %100
54	M71A	Z	2.178	2.178	0	%100 %100
55	M87	X	0		0	%100 %100
56	M87	Z	0	0	0	%100 %100
57			-			%100 %100
58	M108	Z Z	-1.058	-1.058 1.832	0	%100 %100
	M108		1.832			
59	M109 M109	Z Z	-1.058	<u>-1.058</u>	0	%100 %100
60	IVI I US		1.832	1.832	0	%100

Model Name

: Maser Consulting: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
61	M110A	X	-2.316	-2.316	0	%100
62	M110A	Z	4.012	4.012	0	%100
63	M33	X	00018	00018	0	%100
64	M33	Z	.000312	.000312	0	%100
65	M34	X	-1.387	-1.387	0	%100
66	M34	Z	2.402	2.402	0	%100
67	M81	X	-1.387	-1.387	0	%100
68	M81	Z	2.402	2.402	0	%100
69	M82A	X	00018	00018	0	%100
70	M82A	Z	.000312	.000312	0	%100
71	M99A	X	-1.355	-1.355	0	%100
72	M99A	Z	2.348	2.348	0	%100
73	M100A	X	-1.355	-1.355	0	%100
74	M100A	Z	2.348	2.348	0	%100
75	M7	X	-1.257	-1.257	0	%100
76	M7	Z	2.178	2.178	0	%100
77	M86	X	-1.257	-1.257	0	%100
78	M86	Z	2.178	2.178	0	%100
79	M102A	X	0	0	0	%100
80	M102A	Z	0	0	0	%100
81	M36	X	-1.795	-1.795	0	%100
82	M36	Z	3.109	3.109	0	%100
83	M40	X	-1.819	-1.819	0	%100
84	M40	Z	3.151	3.151	0	%100
85	M35	X	-1.819	-1.819	0	%100
86	M35	Z	3.151	3.151	0	%100
87	M39	X	-8e-5	-8e-5	0	%100
88	M39	Z	.000139	.000139	0	%100
89	M83A	X	-1.819	-1.819	0	%100
90	M83A	Z	3.151	3.151	0	%100
91	M84A	X	-1.795	-1.795	0	%100
92	M84A	Z	3.109	3.109	0	%100
93	M85A	X	-8e-5	-8e-5	0	%100
94	M85A	Z	.000139	.000139	0	%100
95	M86A	X	-1.819	-1.819	0	%100
96	M86A	Z	3.151	3.151	0	%100
97	M101A	X	-8e-5	-8e-5	0	%100
98	M101A	Z	.000139	.000139	0	%100
99	M102	X	-8e-5	-8e-5	0	%100
100	M102	Z	.000139	.000139	0	%100
101	M103	X	-1.795	-1.795	0	%100
102	M103	Z	3.109	3.109	0	%100
103	M104	X	-1.795	-1.795	0	%100
104	M104	Z	3.109	3.109	0	%100
105	M32	X	-1.694	-1.694	0	%100
106	M32	Z	2.935	2.935	0	%100
107	M110	X	-1.694	-1.694	0	%100
108	M110	Z	2.935	2.935	0	%100
109	M71	X	-1.694	-1.694	0	%100
110	M71	Z	2.935	2.935	0	%100
111	M72	X	-1.694	-1.694	0	%100
112	M72	Z	2.935	2.935	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
113	M89A	X	0	0	0	%100
114	M89A	Z	0	0	0	%100
115	M90	X	0	0	0	%100
116	M90	Z	0	0	0	%100
117	M16	X	-1.849	-1.849	0	%100
118	M16	Z	3.203	3.203	0	%100
119	M87A	X	-1.849	-1.849	0	%100
120	M87A	Z	3.203	3.203	0	%100
121	M105	X	0	0	0	%100
122	M105	Z	0	0	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

1 M31 X -2.332 -2.332 0 %100 3 M104B X 0 0 0 %100 4 M104B Z 0 0 0 %100 5 M105B X -2.332 -2.332 0 %100 6 M105B Z 1.346 1.346 0 %100 7 M15 X -4.173 -4.173 0 %100 8 M15 Z 2.41 2.41 0 %100 9 M17 X -1.043 -1.043 0 %100 10 M17 Z .602 .602 0 %100 11 M79 X -1.043 -1.043 0 %100 12 M79 Z .602 .602 0 %100 13 M80 X -1.043 -1.043 0 %100 15 M97B <td< th=""><th></th><th>Member Label</th><th>Direction</th><th>Start Magnitude[lb</th><th>End Magnitude[lb/ft,F,ksf]</th><th>Start Location[ft,%]</th><th>End Location[ft,%]</th></td<>		Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
3 M104B X 0 0 0 %100 5 M105B X -2.332 -2.332 0 %100 6 M105B Z 1.346 1.346 0 %100 7 M15 X -4.173 -4.173 0 %100 8 M15 Z 2.41 2.41 0 %100 9 M17 X -1.043 -1.043 0 %100 10 M17 Z .602 .602 0 %100 11 M79 X -1.043 -1.043 0 %100 12 M79 Z .602 .602 0 %100 13 M80 X -1.043 -1.043 0 %100 14 M80 Z .602 .602 0 %100 15 M97B X -1.043 -1.043 0 %100 16 M97B				-2.332	-2.332		%100
4 M104B Z 0 0 %100 5 M105B X -2.332 -2.332 0 %100 6 M105B Z 1.346 1.346 0 %100 7 M15 X -4.173 -4.173 0 %100 8 M15 Z 2.41 2.41 0 %100 9 M17 X -1.043 -1.043 0 %100 10 M17 Z .602 .602 0 %100 11 M79 X -1.043 -1.043 0 %100 12 M79 Z .602 .602 .602 0 %100 13 M80 X -1.043 -1.043 0 %100 14 M80 Z .602 .602 0 %100 15 M97B X -1.043 -1.043 0 %100 16 M97B				1.346	1.346	0	%100
5 M105B X -2.332 -2.332 0 %100 6 M105B Z 1.346 1.346 0 %100 7 M15 X -4.173 -4.173 0 %100 8 M15 Z 2.41 2.41 0 %100 9 M17 X -1.043 -1.043 0 %100 10 M17 Z 602 602 0 %100 11 M79 X -1.043 -1.043 0 %100 12 M79 Z 602 602 0 %100 13 M80 X -1.043 -1.043 0 %100 14 M80 Z .602 .602 0 %100 15 M97B X -1.043 -1.043 0 %100 15 M97B X -1.043 -1.043 0 %100 16 M97B <td>3</td> <td>M104B</td> <td>X</td> <td>0</td> <td>0</td> <td>0</td> <td>%100</td>	3	M104B	X	0	0	0	%100
6 M105B Z 1.346 1.346 0 %100 7 M15 X -4.173 -4.173 0 %100 8 M15 Z 2.41 2.41 0 %100 9 M17 X -1.043 -1.043 0 %100 10 M17 Z .602 .602 0 %100 11 M79 X -1.043 -1.043 0 %100 12 M79 Z .602 .602 0 %100 13 M80 X -1.043 -1.043 0 %100 14 M80 Z .602 .602 0 %100 15 M97B X -1.043 -1.043 0 %100 15 M97B X -1.043 -1.043 0 %100 17 M98B X -4.173 -4.173 0 %100 17 M98B	4	M104B		0	0	0	%100
7 M15 X -4.173 -4.173 0 %100 8 M15 Z 2.41 2.41 0 %100 9 M17 X -1.043 -1.043 0 %100 10 M17 Z 602 .602 0 %100 11 M79 X -1.043 -1.043 0 %100 12 M79 Z .602 .602 0 %100 13 M80 X -1.043 -1.043 0 %100 14 M80 Z .602 .602 0 %100 15 M97B Z .602 .602 0 %100 15 M97B Z .602 .602 0 %100 17 M98B X -4.173 -4.173 0 %100 17 M98B X -4.173 -4.173 0 %100 18 M98B	5	M105B		-2.332	-2.332	0	%100
8 M15 Z 2.41 2.41 0 %100 9 M17 X -1.043 -1.043 0 %100 10 M17 Z .602 .602 0 %100 11 M79 X -1.043 -1.043 0 %100 12 M79 Z .602 .602 0 %100 13 M80 X -1.043 -1.043 0 %100 14 M80 Z .602 .602 0 %100 15 M97B X -1.043 -1.043 0 %100 15 M97B X -1.043 -1.043 0 %100 16 M97B Z .602 .602 .002 0 %100 17 M98B X -4.173 -4.173 0 %100 18 M98B X -2.617 -2.617 0 %100 20	6	M105B	Z	1.346	1.346	0	%100
9 M17 X -1.043 -1.043 0 %100 10 M17 Z .602 .602 0 %100 11 M79 X -1.043 -1.043 0 %100 12 M79 Z .602 .602 0 %100 13 M80 X -1.043 -1.043 0 %100 14 M80 Z .602 .602 0 %100 15 M97B X -1.043 -1.043 0 %100 16 M97B Z .602 .602 0 %100 17 M98B X -1.043 -1.043 0 %100 18 M98B Z .4.173 -4.173 0 %100 18 M98B Z .2.41 2.41 0 %100 19 MP4A X -2.617 -2.617 0 %100 20 MP4A Z .1.511 1.511 0 %100 21 MP3A Z .5.617 -2.617 0 %100 22 MP3A Z .5.51 1.511 0 %100 23 MP2A X -2.617 -2.617 0 %100 24 MP2A Z .5.51 1.511 0 %100 25 MP1A Z .5.617 -2.617 0 %100 26 MP1A Z .5.51 1.511 0 %100 27 MP4C X -2.617 -2.617 0 %100 28 MP2A Z .5.511 1.511 0 %100 29 MP3C X -2.617 -2.617 0 %100 29 MP3C X -2.617 -2.617 0 %100 21 MP3C X -2.617 -2.617 0 %100 22 MP3A Z .5.511 1.511 0 %100 23 MP2A X -2.617 -2.617 0 %100 24 MP2A Z .5.511 1.511 0 %100 25 MP1A Z .5.511 1.511 0 %100 26 MP1A Z .5.511 1.511 0 %100 27 MP4C X -2.617 -2.617 0 %100 28 MP4C X -2.617 -2.617 0 %100 30 MP3C Z .5.511 1.511 0 %100 31 MP2C X -2.617 -2.617 0 %100 31 MP2C X -2.617 -2.617 0 %100 32 MP2C Z .5.511 1.511 0 %100 33 MP1C X -2.617 -2.617 0 %100 34 MP1C Z .5.511 1.511 0 %100 35 MP4B X -2.617 -2.617 0 %100 36 MP4B Z .5.511 1.511 0 %100 37 MP3B X -2.617 -2.617 0 %100	7	M15	X	-4.173	-4.173	0	%100
10 M17 Z .602 .602 0 %100 11 M79 X -1.043 -1.043 0 %100 12 M79 Z .602 .602 0 %100 13 M80 X -1.043 -1.043 0 %100 14 M80 Z .602 .602 0 %100 15 M97B X -1.043 -1.043 0 %100 16 M97B X -1.043 -1.043 0 %100 17 M98B X -4.173 -4.173 0 %100 18 M98B X -2.617 -2.617 0 %100 20	8	M15	Z	2.41	2.41	0	%100
11 M79 X -1.043 -1.043 0 %100 12 M79 Z .602 .602 0 %100 13 M80 X -1.043 -1.043 0 %100 14 M80 Z .602 .602 0 %100 15 M97B X -1.043 -1.043 0 %100 16 M97B Z .602 .602 0 %100 16 M97B Z .602 .602 0 %100 17 M98B X -4.173 -4.173 0 %100 18 M98B X -4.173 -4.173 0 %100 18 M98B X -2.617 -2.617 0 %100 19 MP4A X -2.617 -2.617 0 %100 20 MP4A X -2.617 -2.617 0 %100 21	9	M17		-1.043	-1.043	0	%100
11 M79 X -1.043 -1.043 0 %100 12 M79 Z .602 .602 0 %100 13 M80 X -1.043 -1.043 0 %100 14 M80 Z .602 .602 0 %100 15 M97B X -1.043 -1.043 0 %100 16 M97B Z .602 .602 0 %100 16 M97B Z .602 .602 0 %100 17 M98B X -4.173 -4.173 0 %100 18 M98B X -4.173 -4.173 0 %100 18 M98B X -2.617 -2.617 0 %100 19 MP4A X -2.617 -2.617 0 %100 20 MP4A X -2.617 -2.617 0 %100 21	10	M17	Z	.602	.602	0	%100
12 M79 Z .602 .602 0 %100 13 M80 X -1.043 -1.043 0 %100 14 M80 Z .602 .602 0 %100 15 M97B X -1.043 -1.043 0 %100 16 M97B Z .602 .602 0 %100 16 M97B Z .602 .602 0 %100 17 M98B X -4.173 -4.173 0 %100 18 M98B Z 2.41 2.41 0 %100 19 MP4A X -2.617 -2.617 0 %100 20 MP4A X -2.617 -2.617 0 %100 21 MP3A X -2.617 -2.617 0 %100 22 MP3A Z 1.511 1.511 0 %100 23	11	M79	X	-1.043	-1.043	0	%100
14 M80 Z .602 .602 0 %100 15 M97B X -1.043 -1.043 0 %100 16 M97B Z .602 .602 0 %100 17 M98B X -4.173 -4.173 0 %100 18 M98B Z 2.41 2.41 0 %100 19 MP4A X -2.617 -2.617 0 %100 20 MP4A X -2.617 -2.617 0 %100 21 MP3A X -2.617 -2.617 0 %100 21 MP3A X -2.617 -2.617 0 %100 23 MP2A X -2.617 -2.617 0 %100 24 MP2A Z 1.511 1.511 0 %100 25 MP1A X -2.617 -2.617 0 %100 26	12	M79	Z	.602	.602	0	
14 M80 Z .602 .602 0 %100 15 M97B X -1.043 -1.043 0 %100 16 M97B Z .602 .602 0 %100 17 M98B X -4.173 -4.173 0 %100 18 M98B Z 2.41 2.41 0 %100 19 MP4A X -2.617 -2.617 0 %100 20 MP4A X -2.617 -2.617 0 %100 21 MP3A X -2.617 -2.617 0 %100 21 MP3A X -2.617 -2.617 0 %100 23 MP2A X -2.617 -2.617 0 %100 24 MP2A Z 1.511 1.511 0 %100 25 MP1A X -2.617 -2.617 0 %100 26	13	M80	X	-1.043	-1.043	0	%100
15 M97B X -1.043 -1.043 0 %100 16 M97B Z 602 602 0 %100 17 M98B X -4.173 -4.173 0 %100 18 M98B Z 2.41 2.41 0 %100 19 MP4A X -2.617 -2.617 0 %100 20 MP4A Z 1.511 1.511 0 %100 21 MP3A X -2.617 -2.617 0 %100 21 MP3A X -2.617 -2.617 0 %100 22 MP3A Z 1.511 1.511 0 %100 23 MP2A X -2.617 -2.617 0 %100 24 MP2A Z 1.511 1.511 0 %100 25 MP1A X -2.617 -2.617 0 %100 26	14	M80	Z	.602	.602	0	%100
16 M97B Z .602 .602 0 %100 17 M98B X -4.173 -4.173 0 %100 18 M98B Z 2.41 2.41 0 %100 19 MP4A X -2.617 -2.617 0 %100 20 MP4A Z 1.511 1.511 0 %100 21 MP3A X -2.617 -2.617 0 %100 21 MP3A X -2.617 -2.617 0 %100 22 MP3A Z 1.511 1.511 0 %100 23 MP2A X -2.617 -2.617 0 %100 24 MP2A Z 1.511 0 %100 24 MP2A Z 1.511 1.511 0 %100 26 MP1A X -2.617 -2.617 0 %100 27 MP4C	15			-1.043	-1.043	0	
17 M98B X -4.173 -4.173 0 %100 18 M98B Z 2.41 2.41 0 %100 19 MP4A X -2.617 -2.617 0 %100 20 MP4A Z 1.511 1.511 0 %100 21 MP3A X -2.617 -2.617 0 %100 22 MP3A Z 1.511 1.511 0 %100 23 MP2A X -2.617 -2.617 0 %100 24 MP2A Z 1.511 1.511 0 %100 25 MP1A X -2.617 -2.617 0 %100 26 MP1A Z 1.511 1.511 0 %100 27 MP4C X -2.617 -2.617 0 %100 28 MP4C Z 1.511 1.511 0 %100 30	16	M97B	Z	.602		0	%100
18 M98B Z 2.41 2.41 0 %100 19 MP4A X -2.617 -2.617 0 %100 20 MP4A Z 1.511 1.511 0 %100 21 MP3A X -2.617 -2.617 0 %100 22 MP3A Z 1.511 1.511 0 %100 23 MP2A X -2.617 -2.617 0 %100 24 MP2A Z 1.511 1.511 0 %100 24 MP2A Z 1.511 1.511 0 %100 25 MP1A X -2.617 -2.617 0 %100 26 MP1A Z 1.511 1.511 0 %100 27 MP4C X -2.617 -2.617 0 %100 28 MP4C Z 1.511 1.511 0 %100 30		M98B				0	
19 MP4A X -2.617 -2.617 0 %100 20 MP4A Z 1.511 1.511 0 %100 21 MP3A X -2.617 -2.617 0 %100 22 MP3A Z 1.511 1.511 0 %100 23 MP2A X -2.617 -2.617 0 %100 24 MP2A Z 1.511 1.511 0 %100 25 MP1A X -2.617 -2.617 0 %100 26 MP1A X -2.617 -2.617 0 %100 26 MP1A X -2.617 -2.617 0 %100 27 MP4C X -2.617 -2.617 0 %100 28 MP4C Z 1.511 1.511 0 %100 30 MP3C X -2.617 -2.617 0 %100 31<							
20 MP4A Z 1.511 1.511 0 %100 21 MP3A X -2.617 -2.617 0 %100 22 MP3A Z 1.511 1.511 0 %100 23 MP2A X -2.617 -2.617 0 %100 24 MP2A Z 1.511 1.511 0 %100 25 MP1A X -2.617 -2.617 0 %100 26 MP1A Z 1.511 1.511 0 %100 27 MP4C X -2.617 -2.617 0 %100 28 MP4C Z 1.511 1.511 0 %100 29 MP3C X -2.617 -2.617 0 %100 30 MP3C X -2.617 -2.617 0 %100 31 MP2C X -2.617 -2.617 0 %100 32 MP2C Z 1.511 1.511 0 %100 34						0	
21 MP3A X -2.617 -2.617 0 %100 22 MP3A Z 1.511 1.511 0 %100 23 MP2A X -2.617 -2.617 0 %100 24 MP2A Z 1.511 1.511 0 %100 25 MP1A X -2.617 -2.617 0 %100 26 MP1A Z 1.511 1.511 0 %100 27 MP4C X -2.617 -2.617 0 %100 28 MP4C Z 1.511 1.511 0 %100 29 MP3C X -2.617 -2.617 0 %100 30 MP3C X -2.617 -2.617 0 %100 31 MP2C X -2.617 -2.617 0 %100 32 MP2C X -2.617 -2.617 0 %100 34 MP1C X -2.617 -2.617 0 %100 35			Z				
22 MP3A Z 1.511 1.511 0 %100 23 MP2A X -2.617 -2.617 0 %100 24 MP2A Z 1.511 1.511 0 %100 25 MP1A X -2.617 -2.617 0 %100 26 MP1A Z 1.511 1.511 0 %100 27 MP4C X -2.617 -2.617 0 %100 28 MP4C Z 1.511 1.511 0 %100 29 MP3C X -2.617 -2.617 0 %100 30 MP3C X -2.617 -2.617 0 %100 31 MP2C X -2.617 -2.617 0 %100 32 MP2C X -2.617 -2.617 0 %100 33 MP1C X -2.617 -2.617 0 %100 34<			Х			0	
23 MP2A X -2.617 -2.617 0 %100 24 MP2A Z 1.511 1.511 0 %100 25 MP1A X -2.617 -2.617 0 %100 26 MP1A Z 1.511 1.511 0 %100 27 MP4C X -2.617 -2.617 0 %100 28 MP4C Z 1.511 1.511 0 %100 29 MP3C X -2.617 -2.617 0 %100 30 MP3C Z 1.511 1.511 0 %100 31 MP2C X -2.617 -2.617 0 %100 32 MP2C Z 1.511 1.511 0 %100 33 MP1C X -2.617 -2.617 0 %100 34 MP1C Z 1.511 1.511 0 %100 35							
24 MP2A Z 1.511 1.511 0 %100 25 MP1A X -2.617 -2.617 0 %100 26 MP1A Z 1.511 1.511 0 %100 27 MP4C X -2.617 -2.617 0 %100 28 MP4C Z 1.511 1.511 0 %100 29 MP3C X -2.617 -2.617 0 %100 30 MP3C X -2.617 -2.617 0 %100 31 MP2C X -2.617 -2.617 0 %100 32 MP2C X -2.617 -2.617 0 %100 33 MP1C X -2.617 -2.617 0 %100 34 MP1C X -2.617 -2.617 0 %100 35 MP4B X -2.617 -2.617 0 %100 36 MP4B Z 1.511 1.511 0 %100 37							
25 MP1A X -2.617 -2.617 0 %100 26 MP1A Z 1.511 1.511 0 %100 27 MP4C X -2.617 -2.617 0 %100 28 MP4C Z 1.511 0 %100 29 MP3C X -2.617 -2.617 0 %100 30 MP3C Z 1.511 1.511 0 %100 31 MP2C X -2.617 -2.617 0 %100 32 MP2C Z 1.511 1.511 0 %100 33 MP1C X -2.617 -2.617 0 %100 34 MP1C Z 1.511 1.511 0 %100 35 MP4B X -2.617 -2.617 0 %100 36 MP4B Z 1.511 1.511 0 %100 37 MP3B X -2.617 -2.617 0 %100				1.511		0	
26 MP1A Z 1.511 1.511 0 %100 27 MP4C X -2.617 -2.617 0 %100 28 MP4C Z 1.511 1.511 0 %100 29 MP3C X -2.617 -2.617 0 %100 30 MP3C Z 1.511 1.511 0 %100 31 MP2C X -2.617 -2.617 0 %100 32 MP2C X -2.617 -2.617 0 %100 33 MP1C X -2.617 -2.617 0 %100 34 MP1C Z 1.511 1.511 0 %100 35 MP4B X -2.617 -2.617 0 %100 36 MP4B Z 1.511 1.511 0 %100 37 MP3B X -2.617 -2.617 0 %100	25	MP1A	X	-2.617	-2.617	0	%100
27 MP4C X -2.617 -2.617 0 %100 28 MP4C Z 1.511 1.511 0 %100 29 MP3C X -2.617 -2.617 0 %100 30 MP3C Z 1.511 1.511 0 %100 31 MP2C X -2.617 -2.617 0 %100 32 MP2C Z 1.511 1.511 0 %100 33 MP1C X -2.617 -2.617 0 %100 34 MP1C Z 1.511 1.511 0 %100 35 MP4B X -2.617 -2.617 0 %100 36 MP4B Z 1.511 1.511 0 %100 37 MP3B X -2.617 -2.617 0 %100	26	MP1A	Z	1.511	1.511	0	%100
28 MP4C Z 1.511 1.511 0 %100 29 MP3C X -2.617 -2.617 0 %100 30 MP3C Z 1.511 1.511 0 %100 31 MP2C X -2.617 -2.617 0 %100 32 MP2C Z 1.511 1.511 0 %100 33 MP1C X -2.617 -2.617 0 %100 34 MP1C Z 1.511 1.511 0 %100 35 MP4B X -2.617 -2.617 0 %100 36 MP4B Z 1.511 1.511 0 %100 37 MP3B X -2.617 -2.617 0 %100						0	
29 MP3C X -2.617 -2.617 0 %100 30 MP3C Z 1.511 1.511 0 %100 31 MP2C X -2.617 -2.617 0 %100 32 MP2C Z 1.511 1.511 0 %100 33 MP1C X -2.617 -2.617 0 %100 34 MP1C Z 1.511 1.511 0 %100 35 MP4B X -2.617 -2.617 0 %100 36 MP4B Z 1.511 1.511 0 %100 37 MP3B X -2.617 -2.617 0 %100			Z				
30 MP3C Z 1.511 1.511 0 %100 31 MP2C X -2.617 -2.617 0 %100 32 MP2C Z 1.511 1.511 0 %100 33 MP1C X -2.617 -2.617 0 %100 34 MP1C Z 1.511 1.511 0 %100 35 MP4B X -2.617 -2.617 0 %100 36 MP4B Z 1.511 1.511 0 %100 37 MP3B X -2.617 -2.617 0 %100			X			0	
31 MP2C X -2.617 -2.617 0 %100 32 MP2C Z 1.511 1.511 0 %100 33 MP1C X -2.617 -2.617 0 %100 34 MP1C Z 1.511 1.511 0 %100 35 MP4B X -2.617 -2.617 0 %100 36 MP4B Z 1.511 1.511 0 %100 37 MP3B X -2.617 -2.617 0 %100			Z				
32 MP2C Z 1.511 0 %100 33 MP1C X -2.617 -2.617 0 %100 34 MP1C Z 1.511 1.511 0 %100 35 MP4B X -2.617 -2.617 0 %100 36 MP4B Z 1.511 1.511 0 %100 37 MP3B X -2.617 -2.617 0 %100						0	
33 MP1C X -2.617 -2.617 0 %100 34 MP1C Z 1.511 1.511 0 %100 35 MP4B X -2.617 -2.617 0 %100 36 MP4B Z 1.511 1.511 0 %100 37 MP3B X -2.617 -2.617 0 %100	32			1.511	1.511	0	%100
34 MP1C Z 1.511 0 %100 35 MP4B X -2.617 -2.617 0 %100 36 MP4B Z 1.511 1.511 0 %100 37 MP3B X -2.617 -2.617 0 %100							
35 MP4B X -2.617 -2.617 0 %100 36 MP4B Z 1.511 1.511 0 %100 37 MP3B X -2.617 -2.617 0 %100			Z				
36 MP4B Z 1.511 0 %100 37 MP3B X -2.617 -2.617 0 %100							
37 MP3B X -2.617 -2.617 0 %100			Z				
			X				
38 MP3B Z 1.511 1.511 0 %100			Z				

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
39	MP2B	X	-2.617	-2.617	0	%100
40	MP2B	Z	1.511	1.511	0	%100
41	MP1B	X	-2.617	-2.617	0	%100
42	MP1B	Z	1.511	1.511	0	%100
43	OVP	X	-2.617	-2.617	0	%100
44	OVP	Z	1.511	1.511	0	%100
45	M103A	X	857	857	0	%100
46	M103A	Z	.495	.495	0	%100
47	M104A	X	-3.429	-3.429	0	%100
48	M104A	Z	1.98	1.98	0	%100
49	M105A	X	857	857	0	%100
50	M105A	Z	.495	.495	0	%100
51	M61	X	726	726	0	%100
52	M61	Z	.419	.419	0	%100
53	M71A	X	-2.904	-2.904	0	%100
54	M71A	Z	1.677	1.677	0	%100
55	M87	X	726	726	0	%100
56	M87	Z	.419	.419	0	%100
57	M108	X	-3.285	-3.285	0	%100
58	M108	Z	1.897	1.897	0	%100
59	M109	X	-1.105	-1.105	0	%100
60	M109	Z	.638	.638	0	%100
61	M110A	X	-3.285	-3.285	0	%100
62	M110A	Z	1.897	1.897	0	%100
63	M33	X	765	765	0	%100
64	M33	Z	.441	.441	0	%100
65	M34	X	-3.166	-3.166	0	%100
66	M34	Z	1.828	1.828	0	%100
67	M81	X	819	819	0	%100
68	M81	Z	.473	.473	0	%100
69	M82A	X	819	819	0	%100
70	M82A	Z	.473	.473	0	%100
71	M99A	X	-3.166	-3.166	0	%100
72	M99A	Z	1.828	1.828	0	%100
73	M100A	X	765	765	0	%100
74	M100A	Z	.441	.441	0	%100
75 76	M7	X	726	726	0	%100 %100
76	M7	Z	.419	.419	0	%100
77	M86	X Z	-2.904	-2.904 1.677	0	%100 %100
78	M86		1.677		0	%100 %100
79	M102A M102A	X Z	726 .419	726 .419	0	%100 %100
80 81	M36	X	-1.023	-1.023	0	%100 %100
82	M36	Z	-1.023	-1.023 .59	0	%100 %100
83	M40	X	-1.064	59 -1.064	0	%100 %100
84	M40	Z	.614	.614	0	%100
85	M35	X	-4.173	-4.173	0	%100 %100
86	M35	Z	2.409	2.409	0	%100 %100
87	M39	X	-1.023	-1.023	0	%100 %100
88	M39	Z	.59	.59	0	%100
89	M83A	X	-4.173	-4.173	0	%100
90	M83A	Z	2.409	2.409	0	%100 %100
00	IVIOUA	_	2.700	2.400	U	70 100

y : Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
91	M84A	X	-4.173	-4.173	0	%100
92	M84A	Z	2.409	2.409	0	%100
93	M85A	X	-1.064	-1.064	0	%100
94	M85A	Z	.614	.614	0	%100
95	M86A	X	-1.064	-1.064	0	%100
96	M86A	Z	.614	.614	0	%100
97	M101A	X	-1.064	-1.064	0	%100
98	M101A	Z	.614	.614	0	%100
99	M102	X	-1.023	-1.023	0	%100
100	M102	Z	.59	.59	0	%100
101	M103	X	-1.023	-1.023	0	%100
102	M103	Z	.59	.59	0	%100
103	M104	X	-4.173	-4.173	0	%100
104	M104	Z	2.409	2.409	0	%100
105	M32	Х	978	978	0	%100
106	M32	Z	.565	.565	0	%100
107	M110	X	978	978	0	%100
108	M110	Z	.565	.565	0	%100
109	M71	Х	-3.913	-3.913	0	%100
110	M71	Z	2.259	2.259	0	%100
111	M72	X	-3.913	-3.913	0	%100
112	M72	Z	2.259	2.259	0	%100
113	M89A	X	978	978	0	%100
114	M89A	Z	.565	.565	0	%100
115	M90	Х	978	978	0	%100
116	M90	Z	.565	.565	0	%100
117	M16	X	-1.068	-1.068	0	%100
118	M16	Z	.616	.616	0	%100
119	M87A	X	-4.271	-4.271	0	%100
120	M87A	Z	2.466	2.466	0	%100
121	M105	Х	-1.068	-1.068	0	%100
122	M105	Z	.616	.616	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	-3.59	-3.59	0	%100
2	M31	Z	0	0	0	%100
3	M104B	X	898	898	0	%100
4	M104B	Z	0	0	0	%100
5	M105B	X	898	898	0	%100
6	M105B	Z	0	0	0	%100
7	M15	X	-3.614	-3.614	0	%100
8	M15	Z	0	0	0	%100
9	M17	X	-3.614	-3.614	0	%100
10	M17	Z	0	0	0	%100
11	M79	X	-3.614	-3.614	0	%100
12	M79	Z	0	0	0	%100
13	M80	X	0	0	0	%100
14	M80	Z	0	0	0	%100
15	M97B	X	0	0	0	%100
16	M97B	Z	0	0	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
17	M98B	X	-3.614	-3.614	0	%100
18	M98B	Z	0	0	0	%100
19	MP4A	X	-3.022	-3.022	0	%100
20	MP4A	Z	0	0	0	%100
21	MP3A	X	-3.022	-3.022	0	%100
22	MP3A	Z	0	0	0	%100
23	MP2A	X	-3.022	-3.022	0	%100
24	MP2A	Z	0	0	0	%100
25	MP1A	X	-3.022	-3.022	0	%100
26	MP1A	Z	0	0	0	%100
27	MP4C	X	-3.022	-3.022	0	%100
28	MP4C	Z	0.022	0	0	%100
29	MP3C	X	-3.022	-3.022	0	%100
30	MP3C	Z	0	0	0	%100
31	MP2C	X	-3.022	-3.022	0	%100
32	MP2C	Z	0	0	0	%100 %100
33	MP1C	X	-3.022	-3.022	0	%100
34	MP1C	Z	0	-5.022	0	%100
35	MP4B	X	-3.022	-3.022	0	%100 %100
36	MP4B	Z	0	-3.022	0	%100
37	MP3B	X	-3.022	-3.022	0	%100
38	MP3B	Z	-3.022	-3.022	0	%100 %100
39	MP2B	X	-3.022	-3.022	0	%100 %100
40	MP2B	Z	-3.022	-3.022	0	%100
41	MP1B	X			0	%100 %100
42	MP1B MP1B	Z	-3.022	-3.022 0	0	%100 %100
42	OVP		-3.022		0	%100 %100
44	OVP	X Z	-3.022	-3.022	0	%100 %100
45	M103A	X	0	0	0	%100 %100
46	M103A	Z	0	0	0	%100 %100
47	M104A	X	-2.97	-2.97	0	%100 %100
48	M104A	Z	0	-2.97 0	0	%100 %100
49	M105A	X	-2.97	-2.97	0	%100 %100
50	M105A	Z	0	0	0	%100
51	M61	X	0	0	0	%100 %100
52	M61	Z	0	0	0	%100 %100
53	M71A	X	-2.515	-2.515	0	%100 %100
54	M71A	Z	-2.515	-2.515	0	%100
55	M87	X	-2.515	-2.515	0	%100 %100
56	M87	Z	-2.515	-2.515	0	%100
57	M108	X	-4.633	-4.633	0	%100 %100
58	M108	Z	-4.033	-4.033 0	0	%100 %100
59	M109	X	-2.115	-2.115	0	%100 %100
60	M109	Z	-2.115	-2.115 0	0	%100 %100
61	M110A	X	-2.115	-2.115	0	%100 %100
62	M110A	Z	-2.115	0	0	%100
63	M33	X	-2.711	-2.711	0	%100 %100
64	M33	Z	0	0	0	%100 %100
65	M34	X	-2.711	-2.711	0	%100 %100
66	M34	Z	0	0	0	%100
67	M81	X	00036	00036	0	%100
68		Z			0	%100 %100
00	M81		0	0	U	76 100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
69	M82A	X	-2.774	-2.774	0	%100
70	M82A	Z	0	0	0	%100
71	M99A	X	-2.774	-2.774	0	%100
72	M99A	Z	0	0	0	%100
73	M100A	X	00036	00036	0	%100
74	M100A	Z	0	0	0	%100
75	M7	X	0	0	0	%100
76	M7	Z	0	0	0	%100
77	M86	Х	-2.515	-2.515	0	%100
78	M86	Z	0	0	0	%100
79	M102A	X	-2.515	-2.515	0	%100
80	M102A	Z	0	0	0	%100
81	M36	X	00016	00016	0	%100
82	M36	Z	0	0	0	%100
83	M40	X	00016	00016	0	%100
84	M40	Z	0	0	0	%100
85	M35	X	-3.59	-3.59	0	%100
86	M35	Z	0	0	0	%100
87	M39	X	-3.59	-3.59	0	%100
88	M39	Z	0	0	0	%100
89	M83A	X	-3.59	-3.59	0	%100
90	M83A	Z	0	0	0	%100
91	M84A	X	-3.638	-3.638	0	%100
92	M84A	Z	0	0	0	%100
93	M85A	X	-3.638	-3.638	0	%100
94	M85A	Z	0	0	0	%100
95	M86A	X	00016	00016	0	%100
96	M86A	Z	0	0	0	%100
97	M101A	X	-3.638	-3.638	0	%100
98	M101A	Z	0	0	0	%100
99	M102	X	-3.59	-3.59	0	%100
100	M102	Z	0	0	0	%100
101	M103	X	00016	00016	0	%100
102	M103	Z	0	0	0	%100
103	M104	X	-3.638	-3.638	0	%100
104	M104	Z	0	0	0	%100
105	M32	X	0	0	0	%100
106	M32	Z	0	0	0	%100
107	M110	X	0	0	0	%100
108	M110	Z	0	0	0	%100
109	M71	X	-3.389	-3.389	0	%100
110	M71	Z	0	0	0	%100
111	M72	X	-3.389	-3.389	0	%100
112	M72	Z	0	0	0	%100
113	M89A	X	-3.389	-3.389	0	%100
114	M89A	Z	0	0	0	%100
115	M90	X	-3.389	-3.389	0	%100
116	M90	Z	0	0	0	%100
117	M16	X	0	0	0	%100
118	M16	Z	0	0	0	%100
119	M87A	X	-3.698	-3.698	0	%100
120	M87A	Z	0	0	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
121	M105	X	-3.698	-3.698	0	%100
122		Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	-2.332	-2.332	0	%100
2	M31	Z	-1.346	-1.346	0	%100
3	M104B	X	-2.332	-2.332	0	%100
4	M104B	Z	-1.346	-1.346	0	%100
5	M105B	X	0	0	0	%100
6	M105B	Z	0	0	0	%100
7	M15	X	-1.043	-1.043	0	%100
8	M15	Z	602	602	0	%100
9	M17	X	-4.173	-4.173	0	%100
10	M17	Z	-2.41	-2.41	0	%100
11	M79	X	-4.173	-4.173	0	%100
12	M79	Z	-2.41	-2.41	0	%100
13	M80	X	-1.043	-1.043	0	%100
14	M80	Z	602	602	0	%100
15	M97B	X	-1.043	-1.043	0	%100
16	M97B	Z	602	602	0	%100
17	M98B	X	-1.043	-1.043	0	%100
18	M98B	Z	602	602	0	%100
19	MP4A	X	-2.617	-2.617	0	%100
20	MP4A	Z	-1.511	-1.511	0	%100
21	MP3A	X	-2.617	-2.617	0	%100
22	MP3A	Z	-1.511	-1.511	0	%100
23	MP2A	X	-2.617	-2.617	0	%100
24	MP2A	Z	-1.511	-1.511	0	%100
25	MP1A	X	-2.617	-2.617	0	%100
26	MP1A	Z	-1.511	-1.511	0	%100
27	MP4C	X	-2.617	-2.617	0	%100
28	MP4C	Z	-1.511	-1.511	0	%100
29	MP3C	X	-2.617	-2.617	0	%100
30	MP3C	Z	-1.511	-1.511	0	%100
31	MP2C	X	-2.617	-2.617	0	%100
32	MP2C	Z	-1.511	-1.511	0	%100
33	MP1C	X	-2.617	-2.617	0	%100
34	MP1C	Z	-1.511	-1.511	0	%100
35	MP4B	X	-2.617	-2.617	0	%100
36	MP4B	Z	-1.511	-1.511	0	%100
37	MP3B	X	-2.617	-2.617	0	%100
38	MP3B	Z	-1.511	-1.511	0	%100
39	MP2B	X	-2.617	-2.617	0	%100
40	MP2B	Z	-1.511	-1.511	0	%100
41	MP1B	X	-2.617	-2.617	0	%100
42	MP1B	Z	-1.511	-1.511	0	%100
43	OVP	X	-2.617	-2.617	0	%100
44	OVP	Z	-1.511	-1.511	0	%100
45	M103A	X	857	857	0	%100
46	M103A	Z	495	495	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
47	M104A	X	857	857	0	%100
48	M104A	Z	495	495	0	%100
49	M105A	X	-3.429	-3.429	0	%100
50	M105A	Z	-1.98	-1.98	0	%100
51	M61	X	726	726	0	%100
52	M61	Z	419	419	0	%100
53	M71A	X	726	726	0	%100
54	M71A	Z	419	419	0	%100
55	M87	X	-2.904	-2.904	0	%100
56	M87	Z	-1.677	-1.677	0	%100
57	M108	X	-3.285	-3.285	0	%100
58	M108	Z	-1.897	-1.897	0	%100
59	M109	X	-3.285	-3.285	0	%100
60	M109	Z	-1.897	-1.897	0	%100
61	M110A	X	-1.105	-1.105	0	%100
62	M110A	Z	638	638	0	%100
63	M33	X	-3.166	-3.166	0	%100
64	M33	Z	-1.828	-1.828	0	%100
65	M34	X	765	765	0	%100
66	M34	Z	441	441	0	%100
67	M81	X	765	765	0	%100
68	M81	Z	441	441	0	%100
69	M82A	X	-3.166	-3.166	0	%100
70	M82A	Z	-1.828	-1.828	0	%100
71	M99A	X	819	819	0	%100
72	M99A	Z	473	473	0	%100
73	M100A	X	819	819	0	%100
74	M100A	Z	473	473	0	%100
75	M7	X	726	726	0	%100
76	M7	Z	419	419	0	%100
77	M86	X	726	726	0	%100
78	M86	Z	419	419	0	%100
79	M102A	X	-2.904	-2.904	0	%100
80	M102A	Z	-1.677	-1.677	0	%100
81	M36	X	-1.064	-1.064	0	%100
82	M36	Z	614	614	0	%100
83	M40	Χ	-1.023	-1.023	0	%100
84	M40	Z	59	59	0	%100
85	M35	X	-1.023	-1.023	0	%100
86	M35	Z	59	59	0	%100
87	M39	X	-4.173	-4.173	0	%100
88	M39	Z	-2.409	-2.409	0	%100
89	M83A	X	-1.023	-1.023	0	%100
90	M83A	Z	59	59	0	%100
91	M84A	X	-1.064	-1.064	0	%100
92	M84A	Z	614	614	0	%100
93	M85A	X	-4.173	-4.173	0	%100
94	M85A	Z	-2.409	-2.409	0	%100
95	M86A	X	-1.023	-1.023	0	%100
96	M86A	Z	59	59	0	%100
97	M101A	X	-4.173	-4.173	0	%100
98	M101A	Z	-2.409	-2.409	0	%100

: Maser Consulting

SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
99	M102	X	-4.173	-4.173	0	%100
100	M102	Z	-2.409	-2.409	0	%100
101	M103	X	-1.064	-1.064	0	%100
102	M103	Z	614	614	0	%100
103	M104	X	-1.064	-1.064	0	%100
104	M104	Z	614	614	0	%100
105	M32	X	978	978	0	%100
106	M32	Z	565	565	0	%100
107	M110	X	978	978	0	%100
108	M110	Z	565	565	0	%100
109	M71	X	978	978	0	%100
110	M71	Z	565	565	0	%100
111	M72	X	978	978	0	%100
112	M72	Z	565	565	0	%100
113	M89A	X	-3.913	-3.913	0	%100
114	M89A	Z	-2.259	-2.259	0	%100
115	M90	X	-3.913	-3.913	0	%100
116	M90	Z	-2.259	-2.259	0	%100
117	M16	X	-1.068	-1.068	0	%100
118	M16	Z	616	616	0	%100
119	M87A	X	-1.068	-1.068	0	%100
120	M87A	Z	616	616	0	%100
121	M105	X	-4.271	-4.271	0	%100
122	M105	Z	-2.466	-2.466	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	- 449	449	0	%100
2	M31	Z	777	777	0	%100
3	M104B	X	-1.795	-1.795	0	%100
4	M104B	Z	-3.109	-3.109	0	%100
5	M105B	X	449	449	0	%100
6	M105B	Z	777	777	0	%100
7	M15	X	0	0	0	%100
8	M15	Z	0	0	0	%100
9	M17	X	-1.807	-1.807	0	%100
10	M17	Z	-3.13	-3.13	0	%100
11	M79	X	-1.807	-1.807	0	%100
12	M79	Z	-3.13	-3.13	0	%100
13	M80	X	-1.807	-1.807	0	%100
14	M80	Z	-3.13	-3.13	0	%100
15	M97B	X	-1.807	-1.807	0	%100
16	M97B	Z	-3.13	-3.13	0	%100
17	M98B	X	0	0	0	%100
18	M98B	Z	0	0	0	%100
19	MP4A	X	-1.511	-1.511	0	%100
20	MP4A	Z	-2.617	-2.617	0	%100
21	MP3A	X	-1.511	-1.511	0	%100
22	MP3A	Z	-2.617	-2.617	0	%100
23	MP2A	X	-1.511	-1.511	0	%100
24	MP2A	Z	-2.617	-2.617	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
25	MP1A	X	-1.511	-1.511	0	%100
26	MP1A	Z	-2.617	-2.617	0	%100
27	MP4C	X	-1.511	-1.511	0	%100
28	MP4C	Z	-2.617	-2.617	0	%100
29	MP3C	X	-1.511	-1.511	0	%100
30	MP3C	Z	-2.617	-2.617	0	%100
31	MP2C	X	-1.511	-1.511	0	%100
32	MP2C	Z	-2.617	-2.617	0	%100
33	MP1C	X	-1.511	-1.511	0	%100
34	MP1C	Z	-2.617	-2.617	0	%100
35	MP4B	X	-1.511	-1.511	0	%100
36	MP4B	Z	-2.617	-2.617	0	%100
37	MP3B	×	-1.511	-1.511	0	%100
38	MP3B	Z	-2.617	-2.617	0	%100
39	MP2B	X	-1.511	-1.511	0	%100
40	MP2B	Z	-2.617	-2.617	0	%100
41	MP1B	X	-1.511	-1.511	0	%100
42	MP1B	Z	-2.617	-2.617	0	%100
43	OVP	X	-1.511	-1.511	0	%100
44	OVP	Z	-2.617	-2.617	0	%100
45	M103A	X	-1.485	-1.485	0	%100
46	M103A	Z	-2.572	-2.572	0	%100
47	M104A	X	0	0	0	%100
48	M104A	Z	0	0	0	%100
49	M105A	X	-1.485	-1.485	0	%100
50	M105A	Z	-2.572	-2.572	0	%100
51	M61	X	-1.257	-1.257	0	%100
52	M61	Z	-2.178	-2.178	0	%100
53	M71A	X	0	0	0	%100
54	M71A	Z	0	0	0	%100
55	M87	X	-1.257	-1.257	0	%100
56	M87	Z	-2.178	-2.178	0	%100
57	M108	X	-1.058	-1.058	0	%100
58	M108	Z	-1.832	-1.832	0	%100
59	M109	X	-2.316	-2.316	0	%100
60	M109	Z	-4.012	-4.012	0	%100
61	M110A	X	-1.058	-1.058	0	%100
62	M110A	Z	-1.832	-1.832	0	%100
63	M33	X	-1.387	-1.387	0	%100
64	M33	Z	-2.402	-2.402	0	%100
65	M34	X	00018	00018	0	%100
66	M34	Z	000312	000312	0	%100
67	M81	X	-1.355	-1.355	0	%100
68	M81	Z	-2.348	-2.348	0	%100
69	M82A	X	-1.355	-1.355	0	%100
70	M82A	Z	-2.348	-2.348	0	%100
71	M99A	X Z	00018	00018	0	%100
72	M99A		000312	000312	0	%100
73	M100A	X	-1.387	-1.387	0	%100
74	M100A	Z	-2.402	-2.402	0	%100
75	M7	X	-1.257	-1.257	0	%100
76	M7	Z	-2.178	-2.178	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
77	M86	X	0	0	0	%100
78	M86	Z	0	0	0	%100
79	M102A	X	-1.257	-1.257	0	%100
80	M102A	Z	-2.178	-2.178	0	%100
81	M36	X	-1.819	-1.819	0	%100
82	M36	Z	-3.151	-3.151	0	%100
83	M40	X	-1.795	-1.795	0	%100
84	M40	Z	-3.109	-3.109	0	%100
85	M35	X	-8e-5	-8e-5	0	%100
86	M35	Z	000139	000139	0	%100
87	M39	X	-1.819	-1.819	0	%100
88	M39	Z	-3.151	-3.151	0	%100
89	M83A	X	-8e-5	-8e-5	0	%100
90	M83A	Z	000139	000139	0	%100
91	M84A	X	-8e-5	-8e-5	0	%100
92	M84A	Z	000139	000139	0	%100
93	M85A	X	-1.795	-1.795	0	%100
94	M85A	Z	-3.109	-3.109	0	%100
95	M86A	X	-1.795	-1.795	0	%100
96	M86A	Z	-3.109	-3.109	0	%100
97	M101A	X	-1.795	-1.795	0	%100
98	M101A	Z	-3.109	-3.109	0	%100
99	M102	X	-1.819	-1.819	0	%100
100	M102	Z	-3.151	-3.151	0	%100
101	M103	X	-1.819	-1.819	0	%100
102	M103	Z	-3.151	-3.151	0	%100
103	M104	X	-8e-5	-8e-5	0	%100
104	M104	Z	000139	000139	0	%100
105	M32	X	-1.694	-1.694	0	%100
106	M32	Z	-2.935	-2.935	0	%100
107	M110	X	-1.694	-1.694	0	%100
108	M110	Z	-2.935	-2.935	0	%100
109	M71	X	0	0	0	%100
110	M71	Z	0	0	0	%100
111	M72	X	0	0	0	%100
112	M72	Z	0	0	0	%100
113	M89A	X	-1.694	-1.694	0	%100
114	M89A	Z	-2.935	-2.935	0	%100
115	M90	X	-1.694	-1.694	0	%100
116	M90	Z	-2.935	-2.935	0	%100
117	M16	X	-1.849	-1.849	0	%100
118	M16	Z	-3.203	-3.203	0	%100
119	M87A	X	0	0	0	%100
120	M87A	Z	0	0	0	%100
121	M105	X	-1.849	-1.849	0	%100
122	M105	Z	-3.203	-3.203	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	0	0	0	%100
2	M31	Z	0	0	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
3	M104B	X	0	0	0	%100
4	M104B	Z	564	564	0	%100
5	M105B	X	0	0	0	%100
6	M105B	Z	564	564	0	%100
7	M15	X	0	0	0	%100
8	M15	Z	358	358	0	%100
9	M17	X	0	0	0	%100
10	M17	Z	358	358	0	%100
11	M79	X	0	0	0	%100
12	M79	Z	358	358	0	%100
13	M80	X	0	0	0	%100
14	M80	Z	-1.431	-1.431	0	%100
15	M97B	X	0	0	0	%100
16	M97B	Z	-1.431	-1.431	0	%100
17	M98B	X	0	0	0	%100
18	M98B	Z	358	358	0	%100
19	MP4A	X	0	0	0	%100
20	MP4A	Z	566	566	0	%100
21	MP3A	X	0	0	0	%100
22	MP3A	Z	566	566	0	%100
23	MP2A	X	0	0	0	%100
24	MP2A	Z	566	566	0	%100
25	MP1A	X	0	0	0	%100
26	MP1A	Z	566	566	0	%100
27	MP4C	X	0	0	0	%100
28	MP4C	Z	566	566	0	%100
29	MP3C	X	0	0	0	%100
30	MP3C	Z	566	566	0	%100
31	MP2C	X	0	0	0	%100
32	MP2C	Z	566	566	0	%100
33	MP1C	X	0	0	0	%100
34	MP1C	Z	566	566	0	%100
35	MP4B	X	0	0	0	%100
36	MP4B	Z	566	566	0	%100
37	MP3B	X	0	0	0	%100
38	MP3B	Z	566	566	0	%100
39	MP2B	X	0	0	0	%100
40	MP2B	Z	566	566	0	%100
41	MP1B	X	0	0	0	%100
42	MP1B	Z	566	566	0	%100
43	OVP	X	0	0	0	%100
44	OVP	Z	566	566	0	%100
45	M103A	X	0	0	0	%100
46	M103A	Z	965	965	0	%100
47	M104A	X	0	0	0	%100
48	M104A	Z	241	241	0	%100
49	M105A	X	0	0	0	%100
50	M105A	Z	241	241	0	%100
51	M61	X	0	0	0	%100
52	M61	Z	685	685	0	%100
53	M71A	X	0	0	0	%100
54	M71A	Z	171	171	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
55	M87	X	0	0	0	%100
56	M87	Z	171	171	0	%100
57	M108	X	0	0	0	%100
58	M108	Z	358	358	0	%100
59	M109	X	0	0	0	%100
60	M109	Z	949	949	0	%100
61	M110A	X	0	0	0	%100
62	M110A	Z	949	949	0	%100
63	M33	X	0	0	0	%100
64	M33	Z	206	206	0	%100
65	M34	X	0	0	0	%100
66	M34	Z	206	206	0	%100
67	M81	X	0	0	0	%100
68	M81	Z	795	795	0	%100
69	M82A	X	0	0	0	%100
70	M82A	Z	192	192	0	%100
71	M99A	X	0	0	0	%100
72	M99A	Z	192	192	0	%100
73	M100A	X	0	0	0	%100
74	M100A	Z	795	795	0	%100
75	M7	X	0	0	0	%100
76	M7	Z	685	685	0	%100
77	M86	X	0	0	0	%100
78	M86	Z	171	171	0	%100
79	M102A	X	0	0	0	%100
80	M102A	Z	171	171	0	%100
81	M36	X	0	0	0	%100
82	M36	Z	-1.431	-1.431	0	%100
83	M40	X	0	0	0	%100
84	M40	Z	-1.431	-1.431	0	%100
85	M35	X	0	0	0	%100
86	M35	Z	365	365	0	%100
87	M39	X	0	0	0	%100
88	M39	Z	365	365	0	%100
89	M83A	X	0	0	0	%100
90	M83A	Z	365	365	0	%100
91	M84A	X	0	0	0	%100
92	M84A	Z	351	351	0	%100
93	M85A	X	0	0	0	%100
94	M85A	Z	351	351	0	%100
95	M86A	X	0	0	0	%100
96	M86A	Z	-1.431	-1.431	0	%100
97	M101A	X	0	0	0	%100
98	M101A	Z	351	351	0	%100
99	M102	X	0	0	0	%100
100	M102	Z	365	365	0	%100
101	M103	X	0	0	0	%100
102	M103	Z	-1.431	-1.431	0	%100
103	M104	X	0	0	0	%100
104	M104	Z	351	351	0	%100
105	M32	X	0	0	0	%100
106	M32	Z	-1.179	-1.179	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
107	M110	X	0	0	0	%100
108	M110	Z	-1.179	-1.179	0	%100
109	M71	X	0	0	0	%100
110	M71	Z	295	295	0	%100
111	M72	X	0	0	0	%100
112	M72	Z	295	295	0	%100
113	M89A	X	0	0	0	%100
114	M89A	Z	295	295	0	%100
115	M90	X	0	0	0	%100
116	M90	Z	295	295	0	%100
117	M16	X	0	0	0	%100
118	M16	Z	-1.431	-1.431	0	%100
119	M87A	X	0	0	0	%100
120	M87A	Z	358	358	0	%100
121	M105	X	0	0	0	%100
122	M105	Z	358	358	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	.094	.094	0	%100
2	M31	Z	163	163	0	%100
3	M104B	X	.094	.094	0	%100
4	M104B	Z	163	163	0	%100
5	M105B	X	.376	.376	0	%100
6	M105B	Z	651	651	0	%100
7	M15	X	.536	.536	0	%100
8	M15	Z	929	929	0	%100
9	M17	X	0	0	0	%100
10	M17	Z	0	0	0	%100
11	M79	X	0	0	0	%100
12	M79	Z	0	0	0	%100
13	M80	X	.536	.536	0	%100
14	M80	Z	929	929	0	%100
15	M97B	X	.536	.536	0	%100
16	M97B	Z	929	929	0	%100
17	M98B	X	.536	.536	0	%100
18	M98B	Z	929	929	0	%100
19	MP4A	X	.283	.283	0	%100
20	MP4A	Z	49	49	0	%100
21	MP3A	X	.283	.283	0	%100
22	MP3A	Z	49	49	0	%100
23	MP2A	X	.283	.283	0	%100
24	MP2A	Z	49	49	0	%100
25	MP1A	X	.283	.283	0	%100
26	MP1A	Z	49	49	0	%100
27	MP4C	X	.283	.283	0	%100
28	MP4C	Z	49	49	0	%100
29	MP3C	X	.283	.283	0	%100
30	MP3C	Z	49	49	0	%100
31	MP2C	X	.283	.283	0	%100
32	MP2C	Z	49	49	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 66: Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
33	MP1C	X	.283	.283	0	%100
34	MP1C	Z	49	49	0	%100
35	MP4B	X	.283	.283	0	%100
36	MP4B	Z	49	49	0	%100
37	MP3B	X	.283	.283	0	%100
38	MP3B	Z	49	49	0	%100
39	MP2B	X	.283	.283	0	%100
40	MP2B	Z	49	49	0	%100
41	MP1B	X	.283	.283	0	%100
42	MP1B	Z	49	49	0	%100
43	OVP	X	.283	.283	0	%100
44	OVP	Z	49	49	0	%100
45	M103A	X	.362	.362	0	%100
46	M103A	Z	627	627	0	%100
47	M104A	X	.362	.362	0	%100
48	M104A	Z	627	627	0	%100
49	M105A	X	0	0	0	%100
50	M105A	Z	0	0	0	%100
51	M61	X	.257	.257	0	%100
52	M61	Z	445	445	0	%100
53	M71A	X	.257	.257	0	%100
54	M71A	Z	445	445	0	%100
55	M87	X	0	0	0	%100
56	M87	Z	0	0	0	%100
57	M108	X	.277	.277	0	%100
58	M108	Z	481	481	0	%100
59	M109	X	.277	.277	0	%100
60	M109	Z	481	481	0	%100
61	M110A	X	.573	.573	0	%100
62	M110A	Z	993	993	0	%100
63	M33	X	3.9e-5	3.9e-5	0	%100
64	M33	Z	-6.8e-5	-6.8e-5	0	%100
65	M34	X	.301	.301	0	%100
66	M34	Z	522	522	0	%100
67	M81	X	.301	.301	0	%100
68	M81	Z	522	522	0	%100
69	M82A	X	3.9e-5	3.9e-5	0	%100
70	M82A	Z	-6.8e-5	-6.8e-5	0	%100
71	M99A	X	.295	.295	0	%100
72	M99A	Z	51	51	0	%100
73	M100A	X	.295	.295	0	%100
74	M100A	Z	51	51	0	%100
75	M7	X	.257	.257	0	%100
76	M7	Z	445	445	0	%100
77	M86	X	.257	.257	0	%100
78	M86	Z	445	445	0	%100
79	M102A	X	0	0	0	%100
80	M102A	Z	0	0	0	%100
81	M36	X	.533	.533	0	%100
82	M36	Z	923	923	0	%100
83	M40	X	.54	.54	0	%100
84	M40	Z	935	935	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
85	M35	X	.54	.54	0	%100
86	M35	Z	935	935	0	%100
87	M39	X	2.4e-5	2.4e-5	0	%100
88	M39	Z	-4.1e-5	-4.1e-5	0	%100
89	M83A	X	.54	.54	0	%100
90	M83A	Z	935	935	0	%100
91	M84A	X	.533	.533	0	%100
92	M84A	Z	923	923	0	%100
93	M85A	X	2.4e-5	2.4e-5	0	%100
94	M85A	Z	-4.1e-5	-4.1e-5	0	%100
95	M86A	X	.54	.54	0	%100
96	M86A	Z	935	935	0	%100
97	M101A	X	2.4e-5	2.4e-5	0	%100
98	M101A	Z	-4.1e-5	-4.1e-5	0	%100
99	M102	X	2.4e-5	2.4e-5	0	%100
100	M102	Z	-4.1e-5	-4.1e-5	0	%100
101	M103	X	.533	.533	0	%100
102	M103	Z	923	923	0	%100
103	M104	X	.533	.533	0	%100
104	M104	Z	923	923	0	%100
105	M32	X	.442	.442	0	%100
106	M32	Z	766	766	0	%100
107	M110	X	.442	.442	0	%100
108	M110	Z	766	766	0	%100
109	M71	X	.442	.442	0	%100
110	M71	Z	766	766	0	%100
111	M72	X	.442	.442	0	%100
112	M72	Z	766	766	0	%100
113	M89A	X	0	0	0	%100
114	M89A	Z	0	0	0	%100
115	M90	X	0	0	0	%100
116	M90	Z	0	0	0	%100
117	M16	X	.536	.536	0	%100
118	M16	Z	929	929	0	%100
119	M87A	X	.536	.536	0	%100
120	M87A	Z	929	929	0	%100
121	M105	X	0	0	0	%100
122	M105	Z	0	0	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	.488	.488	0	%100
2	M31	Z	282	282	0	%100
3	M104B	X	0	0	0	%100
4	M104B	Z	0	0	0	%100
5	M105B	X	.488	.488	0	%100
6	M105B	Z	282	282	0	%100
7	M15	X	1.239	1.239	0	%100
8	M15	Z	715	715	0	%100
9	M17	X	.31	.31	0	%100
10	M17	Z	179	179	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
11	M79	X	.31	.31	0	%100
12	M79	Z	179	179	0	%100
13	M80	X	.31	.31	0	%100
14	M80	Z	179	179	0	%100
15	M97B	X	.31	.31	0	%100
16	M97B	Z	179	179	0	%100
17	M98B	X	1.239	1.239	0	%100
18	M98B	Z	715	715	0	%100
19	MP4A	X	.49	.49	0	%100
20	MP4A	Z	283	283	0	%100
21	MP3A	X	.49	.49	0	%100
22	MP3A	Z	283	283	0	%100
23	MP2A	X	.49	.49	0	%100
24	MP2A	Z	283	283	0	%100
25	MP1A	X	.49	.49	0	%100
26	MP1A	Z	283	283	0	%100
27	MP4C	X	.49	.49	0	%100
28	MP4C	Z	283	283	0	%100
29	MP3C	X	.49	.49	0	%100
30	MP3C	Z	283	283	0	%100
31	MP2C	X	.49	.49	0	%100
32	MP2C	Z	283	283	0	%100
33	MP1C	X	.49	.49	0	%100
34	MP1C	Z	283	283	0	%100
35	MP4B	X	.49	.49	0	%100
36	MP4B	Z	283	283	0	%100
37	MP3B	X	.49	.49	0	%100
38	MP3B	Z	283	283	0	%100
39	MP2B	X	.49	.49	0	%100
40	MP2B	Z	283	283	0	%100
41	MP1B	X	.49	.49	0	%100
42	MP1B	Z	283	283	0	%100
43	OVP	X	.49	.49	0	%100
44	OVP	Z	283	283	0	%100
45	M103A	X	.209	.209	0	%100
46	M103A	Z	121	121	0	%100
47	M104A	X	.836	.836	0	%100
48	M104A	Z	483	483	0	%100
49	M105A	X	.209	.209	0	%100
50	M105A	Z	121	121	0	%100
51	M61	X	.148	.148	0	%100
52	M61	Z	086	086	0	%100
53	M71A	X	.594	.594	0	%100
54	M71A	Z	343	343	0	%100
55	M87	X	.148	.148	0	%100
56	M87	Z	086	086	0	%100
57	M108	X	.822	.822	0	%100
58	M108	Z	475	475	0	%100
59	M109	X	.31	.31	0	%100
60	M109	Z	179	179	0	%100
61	M110A	X	.822	.822	0	%100
62	M110A	Z	475	475	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
63	M33	X	.166	.166	0	%100
64	M33	Z	096	096	0	%100
65	M34	X	.688	.688	0	%100
66	M34	Z	397	397	0	%100
67	M81	X	.178	.178	0	%100
68	M81	Z	103	103	0	%100
69	M82A	X	.178	.178	0	%100
70	M82A	Z	103	103	0	%100
71	M99A	X	.688	.688	0	%100
72	M99A	Z	397	397	0	%100
73	M100A	X	.166	.166	0	%100
74	M100A	Z	096	096	0	%100
75	M7	X	.148	.148	0	%100
76	M7	Z	086	086	0	%100
77	M86	X	.594	.594	0	%100
78	M86	Z	343	343	0	%100
79	M102A	X	.148	.148	0	%100
80	M102A	Z	086	086	0	%100
81	M36	X	.304	.304	0	%100
82	M36	Z	175	175	0	%100
83	M40	X	.316	.316	0	%100
84	M40	Z	182	182	0	%100
85	M35	X	1.239	1.239	0	%100
86	M35	Z	715	715	0	%100
87	M39	X	.304	.304	0	%100
88	M39	Z	175	175	0	%100
89	M83A	X	1.239	1.239	0	%100
90	M83A	Z	715	715	0	%100
91	M84A	X	1.239	1.239	0	%100
92	M84A	Z	715	715	0	%100
93	M85A	X	.316	.316	0	%100
94	M85A	Z	182	182	0	%100
95	M86A	X	.316	.316	0	%100
96	M86A	Z	182	182	0	%100
97	M101A	X	.316	.316	0	%100
98	M101A	Z	182	182	0	%100
99	M102	X	.304	.304	0	%100
100	M102	Z	175	175	0	%100
101	M103	X	.304	.304	0	%100
102	M103	Z	175	175	0	%100
103	M104	X	1.239	1.239	0	%100
104	M104	Z	715	715	0	%100
105	M32	X	.255	.255	0	%100
106	M32	Z	147	147	0	%100
107	M110	X	.255	.255	0	%100
108	M110	Z	147	147	0	%100
109	M71	X	1.021	1.021	0	%100
110	M71	Z	589	589	0	%100
111	M72	X	1.021	1.021	0	%100
112	M72	Z	589	589	0	%100
113	M89A	X	.255	.255	0	%100
114	M89A	Z	147	147	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
115	M90	X	.255	.255	0	%100
116	M90	Z	147	147	0	%100
117	M16	X	.31	.31	0	%100
118	M16	Z	179	179	0	%100
119	M87A	X	1.239	1.239	0	%100
120	M87A	Z	715	715	0	%100
121	M105	X	.31	.31	0	%100
122	M105	Z	179	179	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	.752	.752	0	%100
2	M31	Z	0	0	0	%100
3	M104B	X	.188	.188	0	%100
4	M104B	Z	0	0	0	%100
5	M105B	X	.188	.188	0	%100
6	M105B	Z	0	0	0	%100
7	M15	X	1.073	1.073	0	%100
8	M15	Z	0	0	0	%100
9	M17	X	1.073	1.073	0	%100
10	M17	Z	0	0	0	%100
11	M79	X	1.073	1.073	0	%100
12	M79	Z	0	0	0	%100
13	M80	X	0	0	0	%100
14	M80	Z	0	0	0	%100
15	M97B	X	0	0	0	%100
16	M97B	Z	0	0	0	%100
17	M98B	X	1.073	1.073	0	%100
18	M98B	Z	0	0	0	%100
19	MP4A	X	.566	.566	0	%100
20	MP4A	Z	0	0	0	%100
21	MP3A	X	.566	.566	0	%100
22	MP3A	Z	0	0	0	%100
23	MP2A	X	.566	.566	0	%100
24	MP2A	Z	0	0	0	%100
25	MP1A	X	.566	.566	0	%100
26	MP1A	Z	0	0	0	%100
27	MP4C	X	.566	.566	0	%100
28	MP4C	Z	0	0	0	%100
29	MP3C	X	.566	.566	0	%100
30	MP3C	Z	0	0	0	%100
31	MP2C	X	.566	.566	0	%100
32	MP2C	Z	0	0	0	%100
33	MP1C	X	.566	.566	0	%100
34	MP1C	Z	0	0	0	%100
35	MP4B	X	.566	.566	0	%100
36	MP4B	Z	0	0	0	%100
37	MP3B	X	.566	.566	0	%100
38	MP3B	Z	0	0	0	%100
39	MP2B	X	.566	.566	0	%100
40	MP2B	Z	0	0	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 68: Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
41	MP1B	X	.566	.566	0	%100
42	MP1B	Z	0	0	0	%100
43	OVP	X	.566	.566	0	%100
44	OVP	Z	0	0	0	%100
45	M103A	X	0	0	0	%100
46	M103A	Z	0	0	0	%100
47	M104A	X	.724	.724	0	%100
48	M104A	Z	0	0	0	%100
49	M105A	X	.724	.724	0	%100
50	M105A	Z	0	0	0	%100
51	M61	X	0	0	0	%100
52	M61	Z	0	0	0	%100
53	M71A	X	.514	.514	0	%100
54	M71A	Z	0	0	0	%100
55	M87	X	.514	.514	0	%100
56	M87	Z	0	0	0	%100
57	M108	X	1.146	1.146	0	%100
58	M108	Z	0	0	0	%100
59	M109	X	.555	.555	0	%100
60	M109	Z	0	0	0	%100
61	M110A	X	.555	.555	0	%100
62	M110A	Z	0	0	0	%100
63	M33	X	.589	.589	0	%100
64	M33	Z	0	0	0	%100
65	M34	X	.589	.589	0	%100
66	M34	Z	0	0	0	%100
67	M81	X	7.8e-5	7.8e-5	0	%100
68	M81	Z	0	0	0	%100
69	M82A	X	.603	.603	0	%100
70	M82A	Z	0	0	0	%100
71	M99A	X	.603	.603	0	%100
72	M99A	Z	0	0	0	%100
73	M100A	X	7.8e-5	7.8e-5	0	%100
74	M100A	Z	0	0	0	%100
75	M7	X	0	0	0	%100
76	M7	Z	0	0	0	%100
77	M86	X	.514	.514	0	%100
78	M86	Z	0	0	0	%100
79	M102A	X	.514	.514	0	%100
80	M102A	Z	0	0	0	%100
81	M36	X	4.7e-5	4.7e-5	0	%100
82	M36	Z	0	0	0	%100 %100
83	M40	X	4.7e-5	4.7e-5	0	%100
84	M40	Z	0	0	0	%100
85	M35	X	1.066	1.066	0	%100
86	M35	Z	0	0	0	%100
87	M39	X	1.066	1.066	0	%100
88	M39	Z	0	0	0	%100 %100
89	M83A	X	1.066	1.066	0	%100 %100
90	M83A	Z	0	0	0	%100
91	M84A	X	1.08	1.08	0	%100
92	M84A	Z	0	0	0	%100 %100
JZ	IVIO	_	U	<u> </u>	U	70 100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
93	M85A	X	1.08	1.08	0	%100
94	M85A	Z	0	0	0	%100
95	M86A	X	4.7e-5	4.7e-5	0	%100
96	M86A	Z	0	0	0	%100
97	M101A	X	1.08	1.08	0	%100
98	M101A	Z	0	0	0	%100
99	M102	X	1.066	1.066	0	%100
100	M102	Z	0	0	0	%100
101	M103	X	4.7e-5	4.7e-5	0	%100
102	M103	Z	0	0	0	%100
103	M104	X	1.08	1.08	0	%100
104	M104	Z	0	0	0	%100
105	M32	X	0	0	0	%100
106	M32	Z	0	0	0	%100
107	M110	X	0	0	0	%100
108	M110	Z	0	0	0	%100
109	M71	X	.884	.884	0	%100
110	M71	Z	0	0	0	%100
111	M72	X	.884	.884	0	%100
112	M72	Z	0	0	0	%100
113	M89A	X	.884	.884	0	%100
114	M89A	Z	0	0	0	%100
115	M90	X	.884	.884	0	%100
116	M90	Z	0	0	0	%100
117	M16	X	0	0	0	%100
118	M16	Z	0	0	0	%100
119	M87A	X	1.073	1.073	0	%100
120	M87A	Z	0	0	0	%100
121	M105	X	1.073	1.073	0	%100
122	M105	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	.488	.488	0	%100
2	M31	Z	.282	.282	0	%100
3	M104B	X	.488	.488	0	%100
4	M104B	Z	.282	.282	0	%100
5	M105B	X	0	0	0	%100
6	M105B	Z	0	0	0	%100
7	M15	X	.31	.31	0	%100
8	M15	Z	.179	.179	0	%100
9	M17	X	1.239	1.239	0	%100
10	M17	Z	.715	.715	0	%100
11	M79	X	1.239	1.239	0	%100
12	M79	Z	.715	.715	0	%100
13	M80	X	.31	.31	0	%100
14	M80	Z	.179	.179	0	%100
15	M97B	X	.31	.31	0	%100
16	M97B	Z	.179	.179	0	%100
17	M98B	X	.31	.31	0	%100
18	M98B	Z	.179	.179	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
19	MP4A		.49	.49	0	%100
20	MP4A	X Z	.283	.283	0	%100
21	MP3A	X	.49	.49	0	%100
22	MP3A	Z	.283	.283	0	%100
23	MP2A	X	.49	.49	0	%100
24	MP2A	Z	.283	.283	0	%100
25	MP1A	X	.49	.49	0	%100
26	MP1A	Z	.283	.283	0	%100
27	MP4C	X	.49	.49	0	%100
28	MP4C	Z	.283	.283	0	%100
29	MP3C	X	.49	.49	0	%100
30	MP3C	Z	.283	.283	0	%100
31	MP2C	X	.49	.49	0	%100
32	MP2C	Z	.283	.283	0	%100
33	MP1C	X	.49	.49	0	%100
34	MP1C	Z	.283	.283	0	%100
35	MP4B	X	.49	.49	0	%100
36	MP4B	Z	.283	.283	0	%100
37	MP3B	X	.49	.49	0	%100
38	MP3B	Z	.283	.283	0	%100
39	MP2B	X	.49	.49	0	%100
40	MP2B	Z	.283	.283	0	%100
41	MP1B	X	.49	.49	0	%100
42	MP1B	Z	.283	.283	0	%100
43	OVP	X	.49	.49	0	%100
44	OVP	Z	.283	.283	0	%100
45	M103A	X	.209	.209	0	%100
46	M103A	Z	.121	.121	0	%100
47	M104A	X	.209	.209	0	%100
48	M104A	Z	.121	.121	0	%100
49	M105A	X	.836	.836	0	%100
50	M105A	Z	.483	.483	0	%100
51	M61	X	.148	.148	0	%100
52	M61	Z	.086	.086	0	%100
53	M71A	X	.148	.148	0	%100
54	M71A	Z	.086	.086	0	%100
55	M87	X	.594	.594	0	%100
56	M87	Z	.343	.343	0	%100
57	M108	X	.822	.822	0	%100
58	M108	Z	.475	.475	0	%100
59	M109	X	.822	.822	0	%100
60	M109	Z	.475	.475	0	%100
61	M110A	X Z	.31	.31	0	%100
62	M110A		.179	.179	0	%100
63 64	M33	X Z	.688	.688 .397	0	%100 %100
	M33					
65 66	M34	X Z	.166	.166 .096	0	%100 %100
	M34		.096			
67 68	M81 M81	X Z	.166 .096	.166 .096	0	%100 %100
69	M82A	X	.688	.688	0	%100 %100
70	M82A	Z	.397	.397	0	%100 %100
70	IVIOZA		.397	.581	U	70 100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
71	M99A	X	.178	.178	0	%100
72	M99A	Z	.103	.103	0	%100
73	M100A	X	.178	.178	0	%100
74	M100A	Z	.103	.103	0	%100
75	M7	X	.148	.148	0	%100
76	M7	Z	.086	.086	0	%100
77	M86	X	.148	.148	0	%100
78	M86	Z	.086	.086	0	%100
79	M102A	X	.594	.594	0	%100
80	M102A	Z	.343	.343	0	%100
81	M36	X	.316	.316	0	%100
82	M36	Z	.182	.182	0	%100
83	M40	X	.304	.304	0	%100
84	M40	Z	.175	.175	0	%100
85	M35	X	.304	.304	0	%100
86	M35	Z	.175	.175	0	%100
87	M39	X	1.239	1.239	0	%100
88	M39	Z	.715	.715	0	%100
89	M83A	X	.304	.304	0	%100
90	M83A	Z	.175	.175	0	%100
91	M84A	X	.316	.316	0	%100
92	M84A	Z	.182	.182	0	%100
93	M85A	X	1.239	1.239	0	%100
94	M85A	Z	.715	.715	0	%100
95	M86A	X	.304	.304	0	%100
96	M86A	Z	.175	.175	0	%100
97	M101A	X	1.239	1.239	0	%100
98	M101A	Z	.715	.715	0	%100
99	M102	X	1.239	1.239	0	%100
100	M102	Z	.715	.715	0	%100
101	M103	X	.316	.316	0	%100
102	M103	Z	.182	.182	0	%100
103	M104	X	.316	.316	0	%100
104	M104	Z	.182	.182	0	%100
105	M32	X	.255	.255	0	%100
106	M32	Z	.147	.147	0	%100
107	M110	X	.255	.255	0	%100
108	M110	Z	.147	.147	0	%100
109	M71	X	.255	.255	0	%100
110	M71	Z	.147	.147	0	%100
111	M72	X	.255	.255	0	%100
112	M72	Z	.147	.147	0	%100
113	M89A	X	1.021	1.021	0	%100
114	M89A	Z	.589	.589	0	%100
115	M90	X	1.021	1.021	0	%100
116	M90	Z	.589	.589	0	%100
117	M16	X	.31	.31	0	%100
118	M16	Z	.179	.179	0	%100
119	M87A	X	.31	.31	0	%100
120	M87A	Z	.179	.179	0	%100
121	M105	X	1.239	1.239	0	%100
122	M105	Z	.715	.715	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	.094	.094	0	%100
2	M31	Z	.163	.163	0	%100
3	M104B	X	.376	.376	0	%100
4	M104B	Z	.651	.651	0	%100
5	M105B	X	.094	.094	0	%100
6	M105B	Z	.163	.163	0	%100
7	M15	X	0	0	0	%100
8	M15	Z	0	0	0	%100
9	M17	X	.536	.536	0	%100
10	M17	Z	.929	.929	0	%100
11	M79	X	.536	.536	0	%100
12	M79	Z	.929	.929	0	%100
13	M80	X	.536	.536	0	%100
14	M80	Z	.929	.929	0	%100
15	M97B	X	.536	.536	0	%100
16	M97B	Z	.929	.929	0	%100
17	M98B	X	0	0	0	%100
18	M98B	Z	0	0	0	%100
19	MP4A	X	.283	.283	0	%100
20	MP4A	Z	.49	.49	0	%100
21	MP3A	X	.283	.283	0	%100
22	MP3A	Z	.49	.49	0	%100
23	MP2A	X	.283	.283	0	%100
24	MP2A	Z	.49	.49	0	%100
25	MP1A	X	.283	.283	0	%100
26	MP1A	Z	.49	.49	0	%100
27	MP4C	X	.283	.283	0	%100
28	MP4C	Z	.49	.49	0	%100
29	MP3C	X	.283	.283	0	%100
30	MP3C	Z	.49	.49	0	%100
31	MP2C	X	.283	.283	0	%100
32	MP2C	Z	.49	.49	0	%100
33	MP1C	X	.283	.283	0	%100
34	MP1C	Z	.49	.49	0	%100
35	MP4B	X	.283	.283	0	%100
36	MP4B	Z	.49	.49	0	%100
37	MP3B	X	.283	.283	0	%100
38	MP3B	Z	.49	.49	0	%100
39	MP2B	X	.283	.283	0	%100
40	MP2B	Z	.49	.49	0	%100
41	MP1B	X	.283	.283	0	%100
42	MP1B	Z	.49	.49	0	%100
43	OVP	X	.283	.283	0	%100
44	OVP	Z	.49	.49	0	%100
45	M103A	X	.362	.362	0	%100
46	M103A	Z	.627	.627	0	%100
47	M104A	X	0	0	0	%100
48	M104A	Z	0	0	0	%100
49	M105A	X	.362	.362	0	%100
50	M105A	Z	.627	.627	0	%100
51	M61	X	.257	.257	0	%100
52	M61	Z	.445	.445	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
53	M71A	X	0	0	0	%100
54	M71A	Z	0	0	0	%100
55	M87	X	.257	.257	0	%100
56	M87	Z	.445	.445	0	%100
57	M108	X	.277	.277	0	%100
58	M108	Z	.481	.481	0	%100
59	M109	X	.573	.573	0	%100
60	M109	Z	.993	.993	0	%100
61	M110A	X	.277	.277	0	%100
62	M110A	Z	.481	.481	0	%100
63	M33	X	.301	.301	0	%100
64	M33	Z	.522	.522	0	%100
65	M34	X	3.9e-5	3.9e-5	0	%100
66	M34	Z	6.8e-5	6.8e-5	0	%100
67	M81	X	.295	.295	0	%100
68	M81	Z	.51	.51	0	%100
69	M82A	X	.295	.295	0	%100
70	M82A	Z	.51	.51	0	%100
71	M99A	X	3.9e-5	3.9e-5	0	%100
72	M99A	Z	6.8e-5	6.8e-5	0	%100
73	M100A	X	.301	.301	0	%100
74	M100A	Z	.522	.522	0	%100
75	M7	X	.257	.257	0	%100
76	M7	Z	.445	.445	0	%100
77	M86	X	0	0	0	%100
78	M86	Z	0	0	0	%100
79	M102A	X	.257	.257	0	%100
80	M102A	Z	.445	.445	0	%100
81	M36	X	.54	.54	0	%100
82	M36	Z	.935	.935	0	%100
83	M40	X	.533	.533	0	%100
84	M40	Z	.923	.923	0	%100
85	M35	X	2.4e-5	2.4e-5	0	%100
86	M35	Z	4.1e-5	4.1e-5	0	%100
87	M39	X	.54	.54	0	%100
88	M39	Z	.935	.935	0	%100
89	M83A	X	2.4e-5	2.4e-5	0	%100
90	M83A	Z	4.1e-5	4.1e-5	0	%100
91	M84A	X	2.4e-5	2.4e-5	0	%100
92	M84A	Z	4.1e-5	4.1e-5	0	%100
93	M85A	X	.533	.533	0	%100
94	M85A	Z	.923	.923	0	%100
95	M86A	X	.533	.533	0	%100
96	M86A	Z	.923	.923	0	%100
97	M101A	X	.533	.533	0	%100
98	M101A	Z	.923	.923	0	%100
99	M102	X	.54	.54	0	%100
100	M102	Z	.935	.935	0	%100
101	M103	X	.54	.54	0	%100
102	M103	Z	.935	.935	0	%100
103	M104	X	2.4e-5	2.4e-5	0	%100
104	M104	Z	4.1e-5	4.1e-5	0	%100

: Maser Consulting

SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
105	M32	X	.442	.442	0	%100
106	M32	Z	.766	.766	0	%100
107	M110	X	.442	.442	0	%100
108	M110	Z	.766	.766	0	%100
109	M71	X	0	0	0	%100
110	M71	Z	0	0	0	%100
111	M72	X	0	0	0	%100
112	M72	Z	0	0	0	%100
113	M89A	X	.442	.442	0	%100
114	M89A	Z	.766	.766	0	%100
115	M90	X	.442	.442	0	%100
116	M90	Z	.766	.766	0	%100
117	M16	X	.536	.536	0	%100
118	M16	Z	.929	.929	0	%100
119	M87A	X	0	0	0	%100
120	M87A	Z	0	0	0	%100
121	M105	X	.536	.536	0	%100
122	M105	Z	.929	.929	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	0	0	0	%100
2	M31	Z	0	0	0	%100
3	M104B	X	0	0	0	%100
4	M104B	Z	.564	.564	0	%100
5	M105B	X	0	0	0	%100
6	M105B	Z	.564	.564	0	%100
7	M15	X	0	0	0	%100
8	M15	Z	.358	.358	0	%100
9	M17	X	0	0	0	%100
10	M17	Z	.358	.358	0	%100
11	M79	X	0	0	0	%100
12	M79	Z	.358	.358	0	%100
13	M80	X	0	0	0	%100
14	M80	Z	1.431	1.431	0	%100
15	M97B	X	0	0	0	%100
16	M97B	Z	1.431	1.431	0	%100
17	M98B	X	0	0	0	%100
18	M98B	Z	.358	.358	0	%100
19	MP4A	X	0	0	0	%100
20	MP4A	Z	.566	.566	0	%100
21	MP3A	X	0	0	0	%100
22	MP3A	Z	.566	.566	0	%100
23	MP2A	X	0	0	0	%100
24	MP2A	Z	.566	.566	0	%100
25	MP1A	X	0	0	0	%100
26	MP1A	Z	.566	.566	0	%100
27	MP4C	X	0	0	0	%100
28	MP4C	Z	.566	.566	0	%100
29	MP3C	X	0	0	0	%100
30	MP3C	Z	.566	.566	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

31		Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
32	31		X			0	
34			Z	.566	.566	0	
34			X				
35			Z	.566	.566		
36							
37				.566	.566		
38 MP3B Z .566 .566 0 %100 40 MP2B X 0 0 0 %100 40 MP2B Z .566 .566 0 %100 41 MP1B X 0 0 0 %100 42 MP1B X 0 0 0 %100 43 OVP X 0 0 0 %100 44 OVP Z .566 .5666 0 %100 44 OVP Z .566 .5666 0 %100 45 M103A X 0 0 0 %100 46 M103A X 9.965 .965 0 %100 47 M104A X 0 0 0 %100 48 M104A Z .241 .241 .0 %100 50 M105A X 0							
MP2B			Z	.566			
40 MP2B Z .566 .566 0 %100 41 MP1B X 0 0 0 %100 42 MP1B Z .566 .566 0 %100 43 OVP X 0 0 0 %100 44 OVP Z .566 .566 0 %100 45 M103A X 0 0 0 %100 46 M103A Z .965 .965 .965 0 %100 47 M104A X 0 0 0 %100 %100 48 M104A Z .241 .241 .0 %100 50 M105A Z .241 .241 .0 %100 51 M61 X 0 0 0 %100 52 M61 X 0 0 0 %100 53 M71A							
41 MP1B X 0 0 %100 42 MP1B Z .566 .566 0 %100 43 OVP X 0 0 0 %100 44 OVP Z .566 .566 0 %100 45 M103A X 0 0 0 %100 46 M103A Z .965 .965 0 %100 47 M104A X 0 0 0 %100 48 M105A X 0 0 0 %100 49 M105A X 0 0 0 %100 50 M105A Z .241 .241 0 %100 51 M61 X 0 0 0 %100 52 M61 Z .685 .685 .085 0 %100 53 M71A X 0			Z	.566			
42 MP1B Z .566 .566 0 %100 43 OVP X 0 0 0 %100 44 OVP Z .566 .566 0 %100 45 M103A X 0 0 0 %100 46 M103A X 0 0 0 %100 47 M104A X 0 0 0 %100 48 M104A Z .241 .241 0 %100 50 M105A X 0 0 0 %100 51 M61 X 0 0 0 %100 51 M61 X 0 0 0 %100 52 M61 Z .685 .685 .085 .0 %100 53 M71A X 0 0 0 %100 %100 %100 %100 %100 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
44 OVP Z .566 .566 0 %100 44 OVP Z .566 .566 0 %100 45 M103A X 0 0 0 %100 47 M104A X 0 0 0 %100 47 M104A X 0 0 0 %100 48 M105A X 0 0 0 %100 49 M105A X 0 0 0 %100 50 M105A X 0 0 0 %100 51 M61 X 0 0 0 %100 51 M61 X 0 0 0 %100 52 M61 Z .685 .685 .685 0 %100 53 M71A X 0 0 0 %100 %100 %100 %100 %100 %100<			Z				
44 OVP Z .566 .566 0 %100 45 M103A X 0 0 0 %100 46 M103A Z .965 .965 0 %100 47 M104A X 0 0 0 %100 48 M104A Z .241 .241 0 %100 49 M105A X 0 0 0 %100 50 M105A X 0 0 0 %100 51 M61 X 0 0 0 %100 52 M61 Z .685 .685 0 %100 52 M61 Z .685 .685 0 %100 53 M71A X 0 0 0 %100 54 M71A Z .171 .171 .171 0 %100 55 M87 X							
45 M103A X 0 0 %100 46 M103A Z .965 .965 0 %100 47 M104A X 0 0 0 %100 48 M104A Z .241 .241 0 %100 49 M105A X 0 0 0 %100 50 M105A X 0 0 0 %100 51 M61 X 0 0 0 %100 52 M61 Z .685 .685 0 %100 53 M71A X 0 0 0 %100 54 M71A X 0 0 0 %100 55 M87 X 0 0 0 %100 56 M87 Z .171 .171 .171 0 %100 56 M87 Z .171 .171			Z				
46 M103A Z .965 .965 0 %100 47 M104A X 0 0 0 %100 48 M105A X 0 0 0 %100 49 M105A X 0 0 0 %100 50 M105A Z .241 .241 0 %100 51 M61 X 0 0 0 %100 52 M61 Z .685 .685 .0 %100 53 M71A X 0 0 0 %100 54 M71A Z .171 .171 0 %100 55 M87 X 0 0 0 %100 55 M87 Z .171 .171 .0 %100 56 M87 Z .171 .171 .0 %100 58 M108 X 0	45						
47 M104A X 0 0 %100 48 M104A Z .241 .241 0 %100 50 M105A X 0 0 0 %100 51 M61 X 0 0 0 %100 51 M61 X 0 0 0 %100 52 M61 Z .685 .685 0 %100 53 M71A X 0 0 0 %100 53 M71A X 0 0 0 %100 54 M71A Z .171 .171 .0 %100 55 M87 X 0 0 0 %100 56 M87 Z .171 .171 .0 %100 56 M87 Z .171 .171 .0 %100 57 M108 X 0 0 0 <td></td> <td></td> <td>Z</td> <td></td> <td></td> <td></td> <td></td>			Z				
48 M105A Z .241 .241 0 %100 49 M105A X 0 0 0 %100 50 M105A Z .241 .241 0 %100 51 M61 X 0 0 0 %100 52 M61 Z .685 .685 0 %100 53 M71A X 0 0 0 %100 54 M71A Z .171 .171 0 %100 54 M87 X 0 0 0 %100 55 M87 X 0 0 0 %100 56 M87 Z .171 .171 0 %100 57 M108 X 0 0 0 %100 59 M108 X 0 0 0 %100 59 M109 X 0 0							
49 M105A X 0 0 0 %100 50 M105A Z .241 .241 0 %100 51 M61 X 0 0 0 %100 52 M61 Z .685 .685 0 %100 53 M71A X 0 0 0 %100 54 M71A Z .171 .171 0 %100 55 M87 X 0 0 0 %100 56 M87 Z .171 .171 0 %100 57 M108 X 0 0 0 %100 58 M108 Z .358 .358 0 %100 59 M109 X 0 0 0 %100 60 M109 Z .949 .949 0 %100 61 M110A X 0			7				
50 M105A Z .241 .241 0 %100 51 M61 X 0 0 0 %100 52 M61 Z .685 .685 0 %100 53 M71A X 0 0 0 %100 54 M71A Z .171 .171 0 %100 55 M87 X 0 0 0 %100 56 M87 Z .171 .171 0 %100 57 M108 X 0 0 0 %100 57 M108 X 0 0 0 %100 59 M109 X 0 0 0 %100 59 M109 X 0 0 0 %100 60 M109 Z .949 .949 0 %100 61 M110A X 0 0							
51 M61 X 0 0 0 %100 52 M61 Z .685 .685 0 %100 53 M71A X 0 0 0 %100 54 M71A Z .171 .171 0 %100 55 M87 X 0 0 0 %100 56 M87 Z .171 .171 0 %100 56 M87 Z .171 .171 0 %100 57 M108 X 0 0 0 %100 58 M108 Z .358 .358 .358 0 %100 59 M109 X 0 0 0 %100 0 %100 60 M109 X 0 0 0 %100 0 %100 61 M110A X 0 0 0 %100 0 <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td>			7				
52 M61 Z .685 .685 0 %100 53 M71A X 0 0 0 %100 54 M71A Z .171 .171 0 %100 55 M87 X 0 0 0 %100 56 M87 Z .171 .171 0 %100 57 M108 X 0 0 0 %100 58 M108 Z .358 .358 .358 0 %100 59 M109 X 0 0 0 %100 60 M109 X 0 0 0 %100 61 M110A X 0 0 0 %100 62 M110A X 0 0 0 %100 63 M33 X 0 0 0 %100 64 M33 Z .206							
53 M71A X 0 0 %100 54 M71A Z .171 .171 0 %100 55 M87 X 0 0 0 %100 56 M87 Z .171 .171 0 %100 57 M108 X 0 0 0 %100 58 M108 Z .358 .358 .0 %100 59 M109 X 0 0 0 %100 60 M109 Z .949 .949 0 %100 61 M110A X 0 0 0 %100 62 M110A X 0 0 0 %100 63 M33 X 0 0 0 %100 64 M33 Z .206 .206 0 %100 65 M34 X 0 0 0							
54 M71A Z .171 .171 0 %100 55 M87 X 0 0 0 %100 56 M87 Z .171 .171 0 %100 57 M108 X 0 0 0 %100 58 M108 Z .358 .358 0 %100 59 M109 X 0 0 0 %100 60 M109 Z .949 .949 0 %100 61 M110A X 0 0 0 %100 62 M110A Z .949 .949 0 %100 63 M33 X 0 0 0 %100 64 M33 Z .206 .206 0 %100 65 M34 X 0 0 0 %100 67 M81 X 0 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
55 M87 X 0 0 %100 56 M87 Z .171 .171 0 %100 57 M108 X 0 0 0 %100 58 M108 Z .358 .358 0 %100 59 M109 X 0 0 0 %100 60 M109 Z .949 .949 0 %100 61 M110A X 0 0 0 %100 62 M110A Z .949 .949 0 %100 63 M33 X 0 0 0 %100 64 M33 Z .206 .206 0 %100 65 M34 X 0 0 0 %100 66 M34 Z .206 .206 0 %100 67 M81 X 0 0 0 <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td>			7				
56 M87 Z .171 .171 0 %100 57 M108 X 0 0 0 %100 58 M108 Z .358 .358 0 %100 59 M109 X 0 0 0 0 %100 60 M109 X 0 0 0 %100 6 %100 %100 6 %100 %100 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
57 M108 X 0 0 %100 58 M108 Z .358 .358 0 %100 59 M109 X 0 0 0 %100 60 M109 Z .949 .949 0 %100 61 M110A X 0 0 0 %100 62 M110A Z .949 .949 0 %100 63 M33 X 0 0 0 %100 64 M33 Z .206 .206 0 %100 65 M34 X 0 0 0 %100 66 M34 Z .206 .206 0 %100 67 M81 X 0 0 0 %100 68 M81 Z .795 .795 .795 0 %100 70 M82A X 0							
58 M108 Z .358 .358 0 %100 59 M109 X 0 0 0 %100 60 M109 Z .949 .949 0 %100 61 M110A X 0 0 0 %100 62 M110A Z .949 .949 0 %100 63 M33 X 0 0 0 %100 64 M33 Z .206 .206 0 %100 65 M34 X 0 0 0 %100 66 M34 Z .206 .206 0 %100 67 M81 X 0 0 0 %100 68 M81 Z .795 .795 0 %100 70 M82A X 0 0 0 %100 71 M99A X 0 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
59 M109 X 0 0 %100 60 M109 Z .949 .949 0 %100 61 M110A X 0 0 0 %100 62 M110A Z .949 .949 0 %100 63 M33 X 0 0 0 %100 64 M33 Z .206 .206 0 %100 65 M34 X 0 0 0 %100 66 M34 Z .206 .206 0 %100 67 M81 X 0 0 0 %100 68 M81 Z .795 .795 0 %100 69 M82A X 0 0 0 %100 71 M99A X 0 0 0 %100 72 M99A Z .192 .192 0 </td <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td>			7				
60 M109 Z .949 .949 0 %100 61 M110A X 0 0 0 %100 62 M110A Z .949 .949 0 %100 63 M33 X 0 0 0 %100 64 M33 Z .206 .206 0 %100 65 M34 X 0 0 0 %100 66 M34 Z .206 .206 0 %100 67 M81 X 0 0 0 %100 68 M81 Z .795 .795 0 %100 69 M82A X 0 0 0 %100 70 M82A Z .192 .192 0 %100 71 M99A X 0 0 0 %100 72 M99A Z .192							
61 M110A X 0 0 %100 62 M110A Z .949 .949 0 %100 63 M33 X 0 0 0 %100 64 M33 Z .206 .206 0 %100 65 M34 X 0 0 0 %100 66 M34 Z .206 .206 0 %100 67 M81 X 0 0 0 %100 68 M81 Z .795 .795 0 %100 69 M82A X 0 0 0 %100 70 M82A Z .192 .192 0 %100 71 M99A X 0 0 0 %100 72 M99A Z .192 .192 0 %100 73 M100A X 0 0 0<							
62 M110A Z .949 .949 0 %100 63 M33 X 0 0 0 %100 64 M33 Z .206 .206 0 %100 65 M34 X 0 0 0 %100 66 M34 Z .206 .206 0 %100 67 M81 X 0 0 0 %100 68 M81 Z .795 .795 0 %100 69 M82A X 0 0 0 %100 70 M82A Z .192 .192 0 %100 71 M99A X 0 0 0 %100 72 M99A Z .192 .192 0 %100 73 M100A X 0 0 0 %100 75 M7 X 0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
63 M33 X 0 0 %100 64 M33 Z .206 .206 0 %100 65 M34 X 0 0 0 %100 66 M34 Z .206 .206 0 %100 67 M81 X 0 0 0 %100 68 M81 Z .795 .795 0 %100 69 M82A X 0 0 0 %100 70 M82A X 0 0 0 %100 71 M99A X 0 0 0 %100 72 M99A X 0 0 0 %100 73 M100A X 0 0 %100 74 M100A X 0 0 %100 75 M7 X 0 0 %100 76			7				
64 M33 Z .206 .206 0 %100 65 M34 X 0 0 0 %100 66 M34 Z .206 .206 0 %100 67 M81 X 0 0 0 %100 68 M81 Z .795 .795 0 %100 69 M82A X 0 0 0 %100 70 M82A Z .192 .192 0 %100 71 M99A X 0 0 0 %100 72 M99A Z .192 .192 0 %100 73 M100A X 0 0 0 %100 74 M100A Z .795 .795 0 %100 75 M7 X 0 0 0 %100 76 M7 Z .685 .68							
65 M34 X 0 0 %100 66 M34 Z .206 .206 0 %100 67 M81 X 0 0 0 %100 68 M81 Z .795 .795 0 %100 69 M82A X 0 0 0 %100 70 M82A Z .192 .192 0 %100 71 M99A X 0 0 0 %100 72 M99A Z .192 .192 0 %100 73 M100A X 0 0 0 %100 74 M100A Z .795 .795 0 %100 75 M7 X 0 0 0 %100 76 M7 Z .685 .685 0 %100 78 M86 Z .171 .171			7				
66 M34 Z .206 .206 0 %100 67 M81 X 0 0 0 %100 68 M81 Z .795 .795 0 %100 69 M82A X 0 0 0 %100 70 M82A Z .192 .192 0 %100 71 M99A X 0 0 0 %100 72 M99A Z .192 .192 0 %100 73 M100A X 0 0 0 %100 74 M100A X 0 0 %100 75 M7 X 0 0 %100 76 M7 Z .685 .685 0 %100 78 M86 Z .171 .171 0 %100 79 M102A X 0 0 0 %100							
67 M81 X 0 0 %100 68 M81 Z .795 .795 0 %100 69 M82A X 0 0 0 %100 70 M82A Z .192 .192 0 %100 71 M99A X 0 0 0 %100 72 M99A Z .192 .192 0 %100 73 M100A X 0 0 0 %100 74 M100A Z .795 .795 0 %100 75 M7 X 0 0 0 %100 76 M7 Z .685 .685 0 %100 77 M86 X 0 0 0 %100 79 M102A X 0 0 %100			7				
68 M81 Z .795 .795 0 %100 69 M82A X 0 0 0 %100 70 M82A Z .192 .192 0 %100 71 M99A X 0 0 0 %100 72 M99A Z .192 .192 0 %100 73 M100A X 0 0 0 %100 74 M100A Z .795 .795 0 %100 75 M7 X 0 0 %100 76 M7 Z .685 .685 0 %100 77 M86 X 0 0 0 %100 78 M86 Z .171 .171 .171 0 %100 79 M102A X 0 0 0 %100							
69 M82A X 0 0 %100 70 M82A Z .192 .192 0 %100 71 M99A X 0 0 0 %100 72 M99A Z .192 .192 0 %100 73 M100A X 0 0 0 %100 74 M100A Z .795 .795 0 %100 75 M7 X 0 0 0 %100 76 M7 Z .685 .685 0 %100 77 M86 X 0 0 0 %100 78 M86 Z .171 .171 .171 0 %100 79 M102A X 0 0 0 %100							
70 M82A Z .192 .192 0 %100 71 M99A X 0 0 0 %100 72 M99A Z .192 .192 0 %100 73 M100A X 0 0 0 %100 74 M100A Z .795 .795 0 %100 75 M7 X 0 0 0 %100 76 M7 Z .685 .685 0 %100 77 M86 X 0 0 0 %100 78 M86 Z .171 .171 0 %100 79 M102A X 0 0 0 %100							
71 M99A X 0 0 %100 72 M99A Z .192 .192 0 %100 73 M100A X 0 0 0 %100 74 M100A Z .795 .795 0 %100 75 M7 X 0 0 0 %100 76 M7 Z .685 .685 0 %100 77 M86 X 0 0 0 %100 78 M86 Z .171 .171 0 %100 79 M102A X 0 0 %100							
72 M99A Z .192 .192 0 %100 73 M100A X 0 0 0 %100 74 M100A Z .795 .795 0 %100 75 M7 X 0 0 0 %100 76 M7 Z .685 .685 0 %100 77 M86 X 0 0 0 %100 78 M86 Z .171 .171 0 %100 79 M102A X 0 0 0 %100							
73 M100A X 0 0 %100 74 M100A Z .795 .795 0 %100 75 M7 X 0 0 0 %100 76 M7 Z .685 .685 0 %100 77 M86 X 0 0 0 %100 78 M86 Z .171 .171 0 %100 79 M102A X 0 0 %100							
74 M100A Z .795 .795 0 %100 75 M7 X 0 0 0 %100 76 M7 Z .685 .685 0 %100 77 M86 X 0 0 0 %100 78 M86 Z .171 .171 0 %100 79 M102A X 0 0 %100							
75 M7 X 0 0 0 %100 76 M7 Z .685 .685 0 %100 77 M86 X 0 0 0 %100 78 M86 Z .171 .171 0 %100 79 M102A X 0 0 0 %100							
76 M7 Z .685 .685 0 %100 77 M86 X 0 0 0 %100 78 M86 Z .171 .171 0 %100 79 M102A X 0 0 0 %100							
77 M86 X 0 0 0 %100 78 M86 Z .171 .171 0 %100 79 M102A X 0 0 %100			Z				
78 M86 Z .171 .171 0 %100 79 M102A X 0 0 0 %100							
79 M102A X 0 0 0 %100			Z				
	80	M102A	Z	.171	.171	0	%100
81 M36 X 0 0 %100							
82 M36 Z 1.431 1.431 0 %100			Z	·			

: Maser Consulting

SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
83	M40	X	0	0	0	%100
84	M40	Z	1.431	1.431	0	%100
85	M35	X	0	0	0	%100
86	M35	Z	.365	.365	0	%100
87	M39	X	0	0	0	%100
88	M39	Z	.365	.365	0	%100
89	M83A	X	0	0	0	%100
90	M83A	Z	.365	.365	0	%100
91	M84A	Х	0	0	0	%100
92	M84A	Z	.351	.351	0	%100
93	M85A	X	0	0	0	%100
94	M85A	Z	.351	.351	0	%100
95	M86A	X	0	0	0	%100
96	M86A	Z	1.431	1.431	0	%100
97	M101A	X	0	0	0	%100
98	M101A	Z	.351	.351	0	%100
99	M102	X	0	0	0	%100
100	M102	Z	.365	.365	0	%100
101	M103	X	0	0	0	%100
102	M103	Z	1.431	1.431	0	%100
103	M104	X	0	0	0	%100
104	M104	Z	.351	.351	0	%100
105	M32	X	0	0	0	%100
106	M32	Z	1.179	1.179	0	%100
107	M110	X	0	0	0	%100
108	M110	Z	1.179	1.179	0	%100
109	M71	X	0	0	0	%100
110	M71	Z	.295	.295	0	%100
111	M72	X	0	0	0	%100
112	M72	Z	.295	.295	0	%100
113	M89A	Х	0	0	0	%100
114	M89A	Z	.295	.295	0	%100
115	M90	X	0	0	0	%100
116	M90	Z	.295	.295	0	%100
117	M16	X	0	0	0	%100
118	M16	Z	1.431	1.431	0	%100
119	M87A	X	0	0	0	%100
120	M87A	Z	.358	.358	0	%100
121	M105	X	0	0	0	%100
122	M105	Z	.358	.358	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	094	094	0	%100
2	M31	Z	.163	.163	0	%100
3	M104B	X	094	094	0	%100
4	M104B	Z	.163	.163	0	%100
5	M105B	X	376	376	0	%100
6	M105B	Z	.651	.651	0	%100
7	M15	X	536	536	0	%100
8	M15	Z	.929	.929	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
9	M17	X	0	0	0	%100
10	M17	Z	0	0	0	%100
11	M79	X	0	0	0	%100
12	M79	Z	0	0	0	%100
13	M80	X	536	536	0	%100
14	M80	Z	.929	.929	0	%100
15	M97B	X	536	536	0	%100
16	M97B	Z	.929	.929	0	%100
17	M98B	X	536	536	0	%100
18	M98B	Z	.929	.929	0	%100
19	MP4A	X	283	283	0	%100
20	MP4A	Z	.49	.49	0	%100
21	MP3A	X	283	283	0	%100
22	MP3A	Z	.49	.49	0	%100
23	MP2A	X	283	283	0	%100
24	MP2A	Z	.49	.49	0	%100
25	MP1A	X	283	283	0	%100
26	MP1A	Z	.49	.49	0	%100
27	MP4C	X	283	283	0	%100
28	MP4C	Z	.49	.49	0	%100
29	MP3C	×	283	283	0	%100
30	MP3C	Z	.49	.49	0	%100
31	MP2C	X	283	283	0	%100
32	MP2C	Z	.49	.49	0	%100
33	MP1C	X	283	283	0	%100
34	MP1C	Z	.49	.49	0	%100
35	MP4B	X	283	283	0	%100
36	MP4B	Z	.49	.49	0	%100
37	MP3B	X	283	283	0	%100
38	MP3B	Z	.49	.49	0	%100
39	MP2B	X	283	283	0	%100
40	MP2B	Z	.49	.49	0	%100
41	MP1B	X	283	283	0	%100
42	MP1B	Z	.49	.49	0	%100
43	OVP	X	283	283	0	%100
44	OVP	Z	.49	.49	0	%100
45	M103A	X	362	362	0	%100
46	M103A	Z	.627	.627	0	%100
47	M104A	X	362	362	0	%100
48	M104A	Z	.627	.627	0	%100
49	M105A	X	0	0	0	%100
50	M105A	Z	0	0	0	%100
51	M61	X	257	257	0	%100
52	M61	Z	.445	.445	0	%100
53	M71A	X	257	257	0	%100
54	M71A	Z	.445	.445	0	%100
55	M87	X	0	0	0	%100
56	M87	Z	0	0	0	%100
57	M108	X	277	277	0	%100
58	M108	Z	.481	.481	0	%100
59	M109	X	277	277	0	%100
60	M109	Z	.481	.481	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
61	M110A	X	573	573	0	%100
62	M110A	Z	.993	.993	0	%100
63	M33	X	-3.9e-5	-3.9e-5	0	%100
64	M33	Z	6.8e-5	6.8e-5	0	%100
65	M34	X	301	301	0	%100
66	M34	Z	.522	.522	0	%100
67	M81	X	301	301	0	%100
68	M81	Z	.522	.522	0	%100
69	M82A	X	-3.9e-5	-3.9e-5	0	%100
70	M82A	Z	6.8e-5	6.8e-5	0	%100
71	M99A	X	295	295	0	%100
72	M99A	Z	.51	.51	0	%100
73	M100A	X	295	295	0	%100
74	M100A	Z	.51	.51	0	%100
75	M7	X	257	257	0	%100
76	M7	Z	.445	.445	0	%100
77	M86	X	257	257	0	%100
78	M86	Z	.445	.445	0	%100
79	M102A	X	0	0	0	%100
80	M102A	Z	0	0	0	%100
81	M36	X	533	533	0	%100
82	M36	Z	.923	.923	0	%100
83	M40	X	54	54	0	%100
84	M40	Z	.935	.935	0	%100
85	M35	X	54	54	0	%100
86	M35	Z	.935	.935	0	%100
87	M39	X	-2.4e-5	-2.4e-5	0	%100
88	M39	Z	4.1e-5	4.1e-5	0	%100
89	M83A	X	54	54	0	%100
90	M83A	Z	.935	.935	0	%100
91	M84A	X	533	533	0	%100
92	M84A	Z	.923	.923	0	%100
93	M85A	X	-2.4e-5	-2.4e-5	0	%100
94	M85A	Z	4.1e-5	4.1e-5	0	%100
95	M86A	X	54	54	0	%100
96	M86A	Z	.935	.935	0	%100
97	M101A	X	-2.4e-5	-2.4e-5	0	%100
98	M101A	Z	4.1e-5	4.1e-5	0	%100
99	M102	X	-2.4e-5	-2.4e-5	0	%100
100	M102	Z	4.1e-5	4.1e-5	0	%100
101	M103	X	533	533	0	%100
102	M103	Z	.923	.923	0	%100
103	M104	X	533	533	0	%100
104	M104	Z	.923	.923	0	%100
105	M32	X	442	442	0	%100
106	M32	Z	.766	.766	0	%100
107	M110	X	442	442	0	%100
108	M110	Z	.766	.766	0	%100
109	M71	X	442	442	0	%100
110	M71	Z	.766	.766	0	%100
111	M72	X	442	442	0	%100
112	M72	Z	.766	.766	0	%100

: Maser Consulting

SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:___

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
113	M89A	X	0	0	0	%100
114	M89A	Z	0	0	0	%100
115	M90	X	0	0	0	%100
116	M90	Z	0	0	0	%100
117	M16	X	536	536	0	%100
118	M16	Z	.929	.929	0	%100
119	M87A	Χ	536	536	0	%100
120	M87A	Z	.929	.929	0	%100
121	M105	X	0	0	0	%100
122	M105	Z	0	0	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	488	488	0	%100
2	M31	Z	.282	.282	0	%100
3	M104B	X	0	0	0	%100
4	M104B	Z	0	0	0	%100
5	M105B	X	488	488	0	%100
6	M105B	Z	.282	.282	0	%100
7	M15	X	-1.239	-1.239	0	%100
8	M15	Z	.715	.715	0	%100
9	M17	X	31	31	0	%100
10	M17	Z	.179	.179	0	%100
11	M79	X	31	31	0	%100
12	M79	Z	.179	.179	0	%100
13	M80	X	31	31	0	%100
14	M80	Z	.179	.179	0	%100
15	M97B	X	31	31	0	%100
16	M97B	Z	.179	.179	0	%100
17	M98B	X	-1.239	-1.239	0	%100
18	M98B	Z	.715	.715	0	%100
19	MP4A	X	49	49	0	%100
20	MP4A	Z	.283	.283	0	%100
21	MP3A	X	49	49	0	%100
22	MP3A	Z	.283	.283	0	%100
23	MP2A	X	49	49	0	%100
24	MP2A	Z	.283	.283	0	%100
25	MP1A	X	49	49	0	%100
26	MP1A	Z	.283	.283	0	%100
27	MP4C	X	49	49	0	%100
28	MP4C	Z	.283	.283	0	%100
29	MP3C	X	49	49	0	%100
30	MP3C	Z	.283	.283	0	%100
31	MP2C	X	- 49	49	0	%100
32	MP2C	Z	.283	.283	0	%100
33	MP1C	X	49	49	0	%100
34	MP1C	Z	.283	.283	0	%100
35	MP4B	X	- 49	49	0	%100
36	MP4B	Z	.283	.283	0	%100
37	MP3B	X	49	49	0	%100
38	MP3B	Z	.283	.283	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
39	MP2B	X	- 49	49	0	%100
40	MP2B	Z	.283	.283	0	%100
41	MP1B	X	49	49	0	%100
42	MP1B	Z	.283	.283	0	%100
43	OVP	X	49	49	0	%100
44	OVP	Z	.283	.283	0	%100
45	M103A	X	209	209	0	%100
46	M103A	Z	.121	.121	0	%100
47	M104A	X	836	836	0	%100
48	M104A	Z	.483	.483	0	%100
49	M105A	X	209	209	0	%100
50	M105A	Z	.121	.121	0	%100
51	M61	X	148	148	0	%100
52	M61	Z	.086	.086	0	%100
53	M71A	X	594	594	0	%100
54	M71A	Z	.343	.343	0	%100
55	M87	X	148	148	0	%100
56	M87	Z	.086	.086	0	%100
57	M108	X	822	822	0	%100
58	M108	Z	.475	.475	0	%100
59	M109	X	31	31	0	%100
60	M109	Z	.179	.179	0	%100
61	M110A	X	822	822	0	%100
62	M110A	Z	.475	.475	0	%100
63	M33	X	166	166	0	%100
64	M33	Z	.096	.096	0	%100
65	M34	X	688	688	0	%100
66	M34	Z	.397	.397	0	%100
67	M81	X	178	178	0	%100
68	M81	Z	.103	.103	0	%100
69	M82A	X	178	178	0	%100
70	M82A	Z	.103	.103	0	%100
71	M99A	X	688	688	0	%100
72	M99A	Z	.397	.397	0	%100
73	M100A	X	166	166	0	%100
74	M100A	Z	.096	.096	0	%100
75 76	M7	X	148	148	0	%100
76	M7	Z	.086	.086	0	%100
77	M86	X	594	594	0	%100
78	M86 M102A	Z	.343	.343	0	%100 %100
79		X Z	148 .086	148	0	%100 %100
80 81	M102A	X	304	.086 304		%100 %100
82	M36 M36	Z	.175		0	%100 %100
83	M40	X	316	316	0	%100
84	M40	Z	.182	.182	0	%100
85	M35	X	-1.239	-1.239	0	%100
86	M35	Z	.715	.715	0	%100
87	M39	X	304	304	0	%100
88	M39	Z	.175	.175	0	%100
89	M83A	X	-1.239	-1.239	0	%100
90	M83A	Z	.715	.715	0	%100
	11100/1	_	., 10	., 10	•	70100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
91	M84A	X	-1.239	-1.239	0	%100
92	M84A	Z	.715	.715	0	%100
93	M85A	X	316	316	0	%100
94	M85A	Z	.182	.182	0	%100
95	M86A	X	316	316	0	%100
96	M86A	Z	.182	.182	0	%100
97	M101A	X	316	316	0	%100
98	M101A	Z	.182	.182	0	%100
99	M102	X	304	304	0	%100
100	M102	Z	.175	.175	0	%100
101	M103	X	304	304	0	%100
102	M103	Z	.175	.175	0	%100
103	M104	X	-1.239	-1.239	0	%100
104	M104	Z	.715	.715	0	%100
105	M32	X	255	255	0	%100
106	M32	Z	.147	.147	0	%100
107	M110	X	255	255	0	%100
108	M110	Z	.147	.147	0	%100
109	M71	X	-1.021	-1.021	0	%100
110	M71	Z	.589	.589	0	%100
111	M72	X	-1.021	-1.021	0	%100
112	M72	Z	.589	.589	0	%100
113	M89A	X	255	255	0	%100
114	M89A	Z	.147	.147	0	%100
115	M90	X	255	255	0	%100
116	M90	Z	.147	.147	0	%100
117	M16	X	31	31	0	%100
118	M16	Z	.179	.179	0	%100
119	M87A	X	-1.239	-1.239	0	%100
120	M87A	Z	.715	.715	0	%100
121	M105	X	31	31	0	%100
122	M105	Z	.179	.179	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	752	752	0	%100
2	M31	Z	0	0	0	%100
3	M104B	X	188	188	0	%100
4	M104B	Z	0	0	0	%100
5	M105B	X	188	188	0	%100
6	M105B	Z	0	0	0	%100
7	M15	X	-1.073	-1.073	0	%100
8	M15	Z	0	0	0	%100
9	M17	X	-1.073	-1.073	0	%100
10	M17	Z	0	0	0	%100
11	M79	X	-1.073	-1.073	0	%100
12	M79	Z	0	0	0	%100
13	M80	X	0	0	0	%100
14	M80	Z	0	0	0	%100
15	M97B	X	0	0	0	%100
16	M97B	Z	0	0	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft %]
17	M98B	X	-1.073	-1.073	0	%100
18	M98B	Z	0	0	0	%100
19	MP4A	X	566	566	0	%100
20	MP4A	Z	0	0	0	%100
21	MP3A	X	566	566	0	%100
22	MP3A	Z	0	0	0	%100
23	MP2A	X	566	566	0	%100
24	MP2A	Z	0	0	0	%100
25	MP1A	X	566	566	0	%100 %100
26	MP1A	Z	0	0	0	%100
27	MP4C	X	566	566	0	%100 %100
28	MP4C	Z	0	0	0	%100
29	MP3C	X	566	566	0	%100 %100
30	MP3C	Z	0	0	0	%100
31	MP2C	X	566	566	0	%100
32	MP2C	Z	0	0	0	%100 %100
33	MP1C	X	566	566	0	%100
34	MP1C	Z	0	0	0	%100
35	MP4B	X	566	566	0	%100
36	MP4B	Z	0	0	0	%100
37	MP3B	X	566	566	0	%100
38	MP3B	Z	300	300	0	%100 %100
39	MP2B	X	566	566	0	%100
40	MP2B	Z	500	0	0	%100
41	MP1B	X	566	566	0	%100 %100
42	MP1B	Z	500	500	0	%100 %100
43	OVP	X	566	566	0	%100 %100
44	OVP	Z	500	500	0	%100 %100
45	M103A	X	0	0	0	%100
46	M103A	Z	0	0	0	%100
47	M104A	X	724	724	0	%100
48	M104A	Z	724	0	0	%100
49	M105A	X	724	724	0	%100
50	M105A	Z	0	0	0	%100
51	M61	X	0	0	0	%100 %100
52	M61	Z	0	0	0	%100 %100
53	M71A	X	514	514	0	%100
54	M71A	Z	0	0	0	%100
55	M87	X	514	514	0	%100
56	M87	Z	0	0	0	%100
57	M108	X	-1.146	-1.146	0	%100
58	M108	Z	0	0	0	%100 %100
59	M109	X	555	555	0	%100
60	M109	Z	555	0	0	%100 %100
61	M110A	X	555	555	0	%100 %100
62	M110A	Z	0	0	0	%100
63	M33	X	589	589	0	%100
64	M33	Z	369	<u></u> 0	0	%100 %100
65	M34	X	589	589	0	%100 %100
66	M34	Z	569	<u>569</u> 0	0	%100
67	M81	X	-7.8e-5	-7.8e-5	0	%100
68	M81	Z	0	0	0	%100 %100
00	IVIO	_	U	U	U	/0 100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
69	M82A	X	603	603	0	%100
70	M82A	Z	0	0	0	%100
71	M99A	X	603	603	0	%100
72	M99A	Z	0	0	0	%100
73	M100A	X	-7.8e-5	-7.8e-5	0	%100
74	M100A	Z	0	0	0	%100
75	M7	X	0	0	0	%100
76	M7	Z	0	0	0	%100
77	M86	X	514	514	0	%100
78	M86	Z	0	0	0	%100
79	M102A	X	514	514	0	%100
80	M102A	Z	0	0	0	%100
81	M36	×	-4.7e-5	-4.7e-5	0	%100
82	M36	Z	0	0	0	%100
83	M40	X	-4.7e-5	-4.7e-5	0	%100
84	M40	Z	0	0	0	%100
85	M35	X	-1.066	-1.066	0	%100
86	M35	Z	0	0	0	%100
87	M39	X	-1.066	-1.066	0	%100
88	M39	Z	0	0	0	%100
89	M83A	X	-1.066	-1.066	0	%100
90	M83A	Z	0	0	0	%100 %100
91	M84A	X	-1.08	-1.08	0	%100 %100
92	M84A	Z	0	0	0	%100
93	M85A	X	-1.08	-1.08	0	%100
94	M85A	Z	0	0	0	%100 %100
95	M86A	X	-4.7e-5	-4.7e-5	0	%100 %100
96	M86A	Z	0	0	0	%100 %100
97	M101A	X	-1.08	-1.08	0	%100 %100
98	M101A	Z	0	0	0	%100 %100
99	M102	X	-1.066	-1.066	0	%100
100	M102	Z	0	0	0	%100 %100
101	M103	X	-4.7e-5	-4.7e-5	0	%100
102	M103	Z	0	0	0	%100
103	M104	X	-1.08	-1.08	0	%100 %100
104	M104	Z	0	0	0	%100 %100
105	M32	X	0	0	0	%100 %100
106	M32	Z	0	0	0	%100 %100
107	M110	X	0	0	0	%100 %100
108	M110	Z	0	0	0	%100 %100
109	M71	X	884	884	0	%100 %100
110	M71	Z	004	004	0	%100 %100
111	M72	X	884	884	0	%100 %100
112	M72	Z	004	864	0	%100
113	M89A	X	884	884	0	%100 %100
114	M89A	Z	0	0	0	%100
115	M90	X	884	884	0	%100 %100
116	M90	Z	004	004	0	%100 %100
117	M16	X	0	0	0	%100 %100
118	M16	Z	0	0	0	%100 %100
119	M87A	X	-1.073	-1.073	0	%100 %100
120	M87A	Z	0	-1.073	0	%100 %100
120	IVIO/A		U	U	U	76 100

Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:_

Member Distributed Loads (BLC 74: Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
121	M105	X	-1.073	-1.073	0	%100
122	M105	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	488	488	0	%100
2	M31	Z	282	282	0	%100
3	M104B	X	488	488	0	%100
4	M104B	Z	282	282	0	%100
5	M105B	X	0	0	0	%100
6	M105B	Z	0	0	0	%100
7	M15	X	31	31	0	%100
8	M15	Z	179	179	0	%100
9	M17	X	-1.239	-1.239	0	%100
10	M17	Z	715	715	0	%100
11	M79	X	-1.239	-1.239	0	%100
12	M79	Z	715	715	0	%100
13	M80	X	31	31	0	%100
14	M80	Z	179	179	0	%100
15	M97B	X	31	31	0	%100
16	M97B	Z	179	179	0	%100
17	M98B	X	31	31	0	%100
18	M98B	Z	179	179	0	%100
19	MP4A	X	49	49	0	%100
20	MP4A	Z	283	283	0	%100
21	MP3A	X	49	49	0	%100
22	MP3A	Z	283	283	0	%100
23	MP2A	X	49	49	0	%100
24	MP2A	Z	283	283	0	%100
25	MP1A	X	49	49	0	%100
26	MP1A	Z	283	283	0	%100
27	MP4C	X	49	49	0	%100
28	MP4C	Z	283	283	0	%100
29	MP3C	X	49	49	0	%100
30	MP3C	Z	283	283	0	%100
31	MP2C	X	49	49	0	%100
32	MP2C	Z	283	283	0	%100
33	MP1C	X	49	49	0	%100
34	MP1C	Z	283	283	0	%100
35	MP4B	X	49	49	0	%100
36	MP4B	Z	283	283	0	%100
37	MP3B	X	49	49	0	%100
38	MP3B	Z	283	283	0	%100
39	MP2B	X	- 49	49	0	%100
40	MP2B	Z	283	283	0	%100
41	MP1B	X	49	49	0	%100
42	MP1B	Z	283	283	0	%100
43	OVP	X	- 49	49	0	%100
44	OVP	Z	283	283	0	%100
45	M103A	X	209	209	0	%100
46	M103A	Z	121	121	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
47	M104A	X	209	209	0	%100
48	M104A	Z	121	121	0	%100
49	M105A	X	836	836	0	%100
50	M105A	Z	483	483	0	%100
51	M61	X	148	148	0	%100
52	M61	Z	086	086	0	%100
53	M71A	X	148	148	0	%100
54	M71A	Z	086	086	0	%100
55	M87	X	594	594	0	%100
56	M87	Z	343	343	0	%100
57	M108	X	822	822	0	%100
58	M108	Z	475	475	0	%100
59	M109	X	822	822	0	%100
60	M109	Z	475	475	0	%100
61	M110A	X	31	31	0	%100
62	M110A	Z	179	179	0	%100
63	M33	X	688	688	0	%100
64	M33	Z	397	397	0	%100
65	M34	X	166	166	0	%100
66	M34	Z	096	096	0	%100
67	M81	X	166	166	0	%100
68	M81	Z	096	096	0	%100
69	M82A	X	688	688	0	%100
70	M82A	Z	397	397	0	%100
71	M99A	X	178	178	0	%100
72	M99A	Z	103	103	0	%100
73	M100A	X	178	178	0	%100
74	M100A	Z	103	103	0	%100
75	M7	X	148	148	0	%100
76	M7	Z	086	086	0	%100
77	M86	X	148	148	0	%100
78	M86	Z	086	086	0	%100
79	M102A	X	594	594	0	%100
80	M102A	Z	343	343	0	%100
81	M36	X	316	316	0	%100
82	M36	Z	182	182	0	%100
83	M40	X	304	304	0	%100
84	M40	Z	175	175	0	%100
85	M35	X	304	304	0	%100
86	M35	Z	175	175	0	%100
87	M39	X	-1.239	-1.239	0	%100
88	M39	Z	715	715	0	%100
89	M83A	X	304	304	0	%100
90	M83A	Z	175	175	0	%100
91	M84A	X	316	316	0	%100
92	M84A	Z	182	182	0	%100
93	M85A	X	-1.239	-1.239	0	%100
94	M85A	Z	715	715	0	%100
95	M86A	X	304	304	0	%100
96	M86A	Z	175	175	0	%100
97	M101A	X	-1.239	-1.239	0	%100
98	M101A	Z	715	715	0	%100

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 75: Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
99	M102	X	-1.239	-1.239	0	%100
100	M102	Z	715	715	0	%100
101	M103	X	316	316	0	%100
102	M103	Z	182	182	0	%100
103	M104	X	316	316	0	%100
104	M104	Z	182	182	0	%100
105	M32	X	255	255	0	%100
106	M32	Z	147	147	0	%100
107	M110	X	255	255	0	%100
108	M110	Z	147	147	0	%100
109	M71	X	255	255	0	%100
110	M71	Z	147	147	0	%100
111	M72	X	255	255	0	%100
112	M72	Z	147	147	0	%100
113	M89A	X	-1.021	-1.021	0	%100
114	M89A	Z	589	589	0	%100
115	M90	X	-1.021	-1.021	0	%100
116	M90	Z	589	589	0	%100
117	M16	X	- 31	31	0	%100
118	M16	Z	179	179	0	%100
119	M87A	X	31	31	0	%100
120	M87A	Z	179	179	0	%100
121	M105	X	-1.239	-1.239	0	%100
122	M105	Z	715	715	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	094	094	0	%100
2	M31	Z	163	163	0	%100
3	M104B	X	376	376	0	%100
4	M104B	Z	651	651	0	%100
5	M105B	X	094	094	0	%100
6	M105B	Z	163	163	0	%100
7	M15	X	0	0	0	%100
8	M15	Z	0	0	0	%100
9	M17	X	536	536	0	%100
10	M17	Z	929	929	0	%100
11	M79	X	536	536	0	%100
12	M79	Z	929	929	0	%100
13	M80	X	536	536	0	%100
14	M80	Z	929	929	0	%100
15	M97B	X	536	536	0	%100
16	M97B	Z	929	929	0	%100
17	M98B	X	0	0	0	%100
18	M98B	Z	0	0	0	%100
19	MP4A	X	283	283	0	%100
20	MP4A	Z	- 49	49	0	%100
21	MP3A	X	283	283	0	%100
22	MP3A	Z	49	49	0	%100
23	MP2A	X	283	283	0	%100
24	MP2A	Z	49	49	0	%100

Company Designer Job Number Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 76: Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
25	MP1A	X	283	283	0	%100
26	MP1A	Z	49	49	0	%100
27	MP4C	X	283	283	0	%100
28	MP4C	Z	49	49	0	%100
29	MP3C	X	283	283	0	%100
30	MP3C	Z	49	49	0	%100
31	MP2C	X	283	283	0	%100
32	MP2C	Z	49	49	0	%100
33	MP1C	X	283	283	0	%100
34	MP1C	Z	49	49	0	%100
35	MP4B	X	283	283	0	%100
36	MP4B	Z	49	49	0	%100
37	MP3B	X	283	283	0	%100
38	MP3B	Z	49	49	0	%100
39	MP2B	X	283	283	0	%100
40	MP2B	Z	49	49	0	%100
41	MP1B	X	283	283	0	%100
42	MP1B	Z	49	49	0	%100
43	OVP	X	283	283	0	%100
44	OVP	Z	49	49	0	%100
45	M103A	X	362	362	0	%100
46	M103A	Z	627	627	0	%100
47	M104A	X	0	0	0	%100
48	M104A	Z	0	0	0	%100
49	M105A	X	362	362	0	%100
50	M105A	Z	627	627	0	%100
51	M61	X	257	257	0	%100
52	M61	Z	445	445	0	%100
53	M71A	X	0	0	0	%100
54	M71A	Z	0	0	0	%100
55	M87	X	257	257	0	%100
56	M87	Z	445	445	0	%100
57	M108	X	277	277	0	%100
58	M108	Z	481	481	0	%100
59	M109	X	573	573	0	%100
60	M109	Z	993	993	0	%100
61	M110A	X	277	277	0	%100
62	M110A	Z	481	481	0	%100
63	M33	X	301	301	0	%100
64	M33	Z	522	522	0	%100
65	M34	X	-3.9e-5	-3.9e-5	0	%100
66	M34	Z	-6.8e-5	-6.8e-5	0	%100
67	M81	X	295	295	0	%100
68	M81	Z	51	51	0	%100
69	M82A	X	295	295	0	%100
70	M82A	Z	51	51	0	%100
71	M99A	X	-3.9e-5	-3.9e-5	0	%100
72	M99A	Z	-6.8e-5	-6.8e-5	0	%100
73	M100A	X	301	301	0	%100
74	M100A	Z	522	522	0	%100
75	M7	X	257	257	0	%100
76	M7	Z	445	445	0	%100

Company Designer Job Number Model Name

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:_

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
77	M86	X	0	0	0	%100
78	M86	Z	0	0	0	%100
79	M102A	X	257	257	0	%100
80	M102A	Z	445	445	0	%100
81	M36	X	54	54	0	%100
82	M36	Z	935	935	0	%100
83	M40	X	533	533	0	%100
84	M40	Z	923	923	0	%100
85	M35	X	-2.4e-5	-2.4e-5	0	%100
86	M35	Z	-4.1e-5	-4.1e-5	0	%100
87	M39	X	54	54	0	%100
88	M39	Z	935	935	0	%100
89	M83A	X	-2.4e-5	-2.4e-5	0	%100
90	M83A	Z	-4.1e-5	-4.1e-5	0	%100
91	M84A	X	-2.4e-5	-2.4e-5	0	%100
92	M84A	Z	-4.1e-5	-4.1e-5	0	%100
93	M85A	X	533	533	0	%100
94	M85A	Z	923	923	0	%100
95	M86A	X	533	533	0	%100
96	M86A	Z	923	923	0	%100
97	M101A	X	533	533	0	%100
98	M101A	Z	923	923	0	%100
99	M102	X	54	54	0	%100
100	M102	Z	935	935	0	%100
101	M103	X	54	54	0	%100
102	M103	Z	935	935	0	%100
103	M104	X	-2.4e-5	-2.4e-5	0	%100
104	M104	Z	-4.1e-5	-4.1e-5	0	%100
105	M32	X	442	442	0	%100
106	M32	Z	766	766	0	%100
107	M110	X	442	442	0	%100
108	M110	Z	766	766	0	%100
109	M71	X	0	0	0	%100
110	M71	Z	0	0	0	%100
111	M72	X	0	0	0	%100
112	M72	Z	0	0	0	%100
113	M89A	X	442	442	0	%100
114	M89A	Z	766	766	0	%100
115	M90	X	442	442	0	%100
116	M90	Z	766	766	0	%100
117	M16	X	536	536	0	%100
118	M16	Z	929	929	0	%100
119	M87A	X	0	0	0	%100
120	M87A	Z	0	0	0	%100
121	M105	X	536	536	0	%100
122	M105	Z	929	929	0	%100

Member Distributed Loads (BLC 87 : BLC 39 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	Υ	-1.089	-5.08	0	2.131
2	M31	Υ	-5.08	-9.071	2.131	4.263

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 87 : BLC 39 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
3	M33	Υ	-3.554	-2.683	.505	2.525
4	M33	Υ	-2.683	-1.811	2.525	4.545
5	M34	Υ	-3.554	-2.683	.505	2.525
6	M34	Υ	-2.683	-1.811	2.525	4.545
7	M32	Υ	-3.98	-3.98	.839	2.69
8	M110	Υ	-3.98	-3.98	.476	2.326
9	M104B	Υ	-1.089	-5.08	0	2.131
10	M104B	Υ	-5.08	-9.071	2.131	4.263
11	M81	Υ	-3.554	-2.683	.505	2.525
12	M81	Υ	-2.683	-1.811	2.525	4.545
13	M82A	Υ	-3.554	-2.683	.505	2.525
14	M82A	Υ	-2.683	-1.811	2.525	4.545
15	M71	Υ	-3.98	-3.98	.839	2.69
16	M72	Υ	-3.98	-3.98	.476	2.326
17	M105B	Υ	-1.089	-5.08	0	2.131
18	M105B	Υ	-5.08	-9.071	2.131	4.263
19	M99A	Υ	-3.554	-2.683	.505	2.525
20	M99A	Υ	-2.683	-1.811	2.525	4.545
21	M100A	Υ	-3.554	-2.683	.505	2.525
22	M100A	Υ	-2.683	-1.811	2.525	4.545
23	M89A	Υ	-3.98	-3.98	.839	2.69
24	M90	Υ	-3.98	-3.98	.476	2.326

Member Distributed Loads (BLC 88 : BLC 40 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	Υ	-2.046	-9.546	0	2.131
2	M31	Υ	-9.546	-17.046	2.131	4.263
3	M33	Υ	-6.679	-5.041	.505	2.525
4	M33	Υ	-5.041	-3.403	2.525	4.545
5	M34	Υ	-6.679	-5.041	.505	2.525
6	M34	Υ	-5.041	-3.403	2.525	4.545
7	M32	Υ	-7.48	-7.48	.839	2.69
8	M110	Υ	-7.48	-7.48	.476	2.326
9	M104B	Υ	-2.046	-9.546	0	2.131
10	M104B	Υ	-9.546	-17.046	2.131	4.263
11	M81	Υ	-6.679	-5.041	.505	2.525
12	M81	Υ	-5.041	-3.403	2.525	4.545
13	M82A	Υ	-6.679	-5.041	.505	2.525
14	M82A	Υ	-5.041	-3.403	2.525	4.545
15	M71	Υ	-7.48	-7.48	.839	2.69
16	M72	Υ	-7.48	-7.48	.476	2.326
17	M105B	Υ	-2.046	-9.546	0	2.131
18	M105B	Υ	-9.546	-17.046	2.131	4.263
19	M99A	Υ	-6.679	-5.041	.505	2.525
20	M99A	Υ	-5.041	-3.403	2.525	4.545
21	M100A	Υ	-6.679	-5.041	.505	2.525
22	M100A	Υ	-5.041	-3.403	2.525	4.545
23	M89A	Υ	-7.48	-7.48	.839	2.69
24	M90	Υ	-7.48	-7.48	.476	2.326

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 89 : BLC 84 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	Υ	047	219	0	2.131
2	M31	Υ	219	391	2.131	4.263
3	M33	Υ	153	116	.505	2.525
4	M33	Υ	116	078	2.525	4.545
5	M34	Υ	153	116	.505	2.525
6	M34	Υ	116	078	2.525	4.545
7	M32	Υ	171	171	.839	2.69
8	M110	Υ	171	171	.476	2.326
9	M104B	Υ	047	219	0	2.131
10	M104B	Υ	219	391	2.131	4.263
11	M81	Υ	153	116	.505	2.525
12	M81	Υ	116	078	2.525	4.545
13	M82A	Υ	153	116	.505	2.525
14	M82A	Υ	116	078	2.525	4.545
15	M71	Υ	171	171	.839	2.69
16	M72	Υ	171	171	.476	2.326
17	M105B	Υ	047	219	0	2.131
18	M105B	Υ	219	391	2.131	4.263
19	M99A	Υ	153	116	.505	2.525
20	M99A	Υ	116	078	2.525	4.545
21	M100A	Υ	153	116	.505	2.525
22	M100A	Υ	116	078	2.525	4.545
23	M89A	Υ	171	171	.839	2.69
24	M90	Υ	171	171	.476	2.326

Member Distributed Loads (BLC 90 : BLC 85 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	Z	117	547	0	2.131
2	M31	Z	547	977	2.131	4.263
3	M33	Z	383	289	.505	2.525
4	M33	Z	289	195	2.525	4.545
5	M34	Z	383	289	.505	2.525
6	M34	Z	289	195	2.525	4.545
7	M32	Z	429	429	.839	2.69
8	M110	Z	429	429	.476	2.326
9	M104B	Z	117	547	0	2.131
10	M104B	Z	547	977	2.131	4.263
11	M81	Z	383	289	.505	2.525
12	M81	Z	289	195	2.525	4.545
13	M82A	Z	383	289	.505	2.525
14	M82A	Z	289	195	2.525	4.545
15	M71	Z	429	429	.839	2.69
16	M72	Z	429	429	.476	2.326
17	M105B	Z	117	547	0	2.131
18	M105B	Z	547	977	2.131	4.263
19	M99A	Z	383	289	.505	2.525
20	M99A	Z	289	195	2.525	4.545
21	M100A	Z	383	289	.505	2.525
22	M100A	Z	289	195	2.525	4.545
23	M89A	Z	429	429	.839	2.69
24	M90	Z	429	429	.476	2.326

: Maser Consulting

: SEA

: Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Distributed Loads (BLC 91 : BLC 86 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M31	X	.117	.547	0	2.131
2	M31	X	.547	.977	2.131	4.263
3	M33	X	.383	.289	.505	2.525
4	M33	X	.289	.195	2.525	4.545
5	M34	X	.383	.289	.505	2.525
6	M34	X	.289	.195	2.525	4.545
7	M32	X	.429	.429	.839	2.69
8	M110	X	.429	.429	.476	2.326
9	M104B	X	.117	.547	0	2.131
10	M104B	X	.547	.977	2.131	4.263
11	M81	X	.383	.289	.505	2.525
12	M81	X	.289	.195	2.525	4.545
13	M82A	X	.383	.289	.505	2.525
14	M82A	X	.289	.195	2.525	4.545
15	M71	X	.429	.429	.839	2.69
16	M72	X	.429	.429	.476	2.326
17	M105B	X	.117	.547	0	2.131
18	M105B	X	.547	.977	2.131	4.263
19	M99A	X	.383	.289	.505	2.525
20	M99A	X	.289	.195	2.525	4.545
21	M100A	X	.383	.289	.505	2.525
22	M100A	X	.289	.195	2.525	4.545
23	M89A	X	.429	.429	.839	2.69
24	M90	X	.429	.429	.476	2.326

Member Area Loads (BLC 39 : Structure D)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N54	N55	N56		Υ	Two Way	005
2	N146B	N147B	N148B		Υ	Two Way	005
3	N178A	N179A	N180A		Υ	Two Way	005

Member Area Loads (BLC 40 : Structure Di)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N54	N55	N56		Υ	Two Way	01
2	N146B	N147B	N148B		Υ	Two Way	01
3	N178A	N179A	N180A		Υ	Two Way	01

Member Area Loads (BLC 84 : Structure Ev)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N54	N55	N56		Υ	Two Way	000224
2	N146B	N147B	N148B		Υ	Two Way	000224
3	N178A	N179A	N180A		Υ	Two Way	000224

Member Area Loads (BLC 85 : Structure Eh (0 Deg))

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N54	N55	N56		Z	Two Way	00056
2	N146B	N147B	N148B		Z	Two Way	00056
3	N178A	N179A	N180A		Z	Two Way	00056

: Maser Consulting

: SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Member Area Loads (BLC 86 : Structure Eh (90 Deg))

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N54	N55	N56		X	Two Way	.00056
2	N146B	N147B	N148B		X	Two Way	.00056
3	N178A	N179A	N180A		X	Two Way	.00056

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N51	max	1686.105	10	1020.264	20	7806.046	1	.983	21	2.339	4	.383	1
2		min	-1683.529	4	-141.644	1	-4992.758	7	059	3	-2.35	10	488	7
3	N204A	max	5990.349	9	771.891	17	2232.927	3	.401	8	2.071	12	.237	12
4		min	-3582.397	3	-13.426	11	-3628.251	9	83	2	-2.081	6	801	6
5	N206	max	3723.446	11	791.758	1	2012.469	11	.466	8	2.057	8	.877	12
6		min	-6133.916	5	-92.298	7	-3400.73	5	735	2	-2.068	2	211	6
7	N210	max	53.913	10	2700.449	1	2494.091	7	0	75	.002	4	.004	10
8		min	-51.706	4	-1201.343	7	-5419.168	1	0	1	002	10	004	4
9	N211	max	1808.051	3	2486.531	9	2491	9	.004	6	.002	12	.003	12
10		min	-4315.286	9	-1001.569	3	-1044.111	3	004	12	002	6	002	6
11	N212	max	4320.404	5	2489.791	5	2495.44	5	.004	8	.003	8	.003	8
12		min	-1815.505	11	-1005.624	11	-1047.69	11	004	2	002	2	002	2
13	Totals:	max	5127.992	10	6725.908	16	5243.041	1						
14		min	-5127.991	4	2392.284	73	-5243.043	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	SheLo	LC	phi* phi* phi* Eqn
1	M31	PIPE	.441	6.09	10	.290 4	5	534665205 5.749 5.749H1
2	M104B	PIPE	.391	6.09	6	.182 .951	11	534665205 5.749 5.749H1
3	M105B	PIPE	.395	6.09	2	.183 .951	7	534665205 5.749 5.749H1
4	M15	PL3/8x6	.051	.334	1	.194 .334y	12	678172900 .57 9.113H1
5		PL3/8x6	.065	.167	1	.296 0 y	2	678172900 .57 9.113H1
6		PL3/8x6	.052	.334	9	.195 .334y	8	678172900 .57 9.113H1
7		PL3/8x6	.065	.167	9	.295 0 y	10	678172900 .57 9.113H1
8	M97B	PL3/8x6	.051	.334	5	.194 .334y	4	6781 <mark>72900 .57 9.113</mark> H1
9	M98B	PL3/8x6	.065	.167	5	.296 0 y	6	678172900 .57 9.113H1
10	MP4A	PIPE	.479	6.563	10	.070 6	12	178532130 1.872 1.872H1
11	MP3A	PIPE	.815	6.563	10	.203 6	3	178532130 1.872 1.872H1
12	MP2A	PIPE	.814	6.563	4	.164 2	4	178532130 1.872 1.872H1
13	MP1A	PIPE	.808	6.563	4	.154 3	2	178532130 1.872 1.872H1
14	MP4C	PIPE	.480	6.563	6	.069 6	8	178532130 1.872 1.872H1
15	MP3C	PIPE	.816	6.563	6	.203 6	5	178532130 1.872 1.872H1
16	MP2C	PIPE	.813	6.563	12	.165 2	12	178532130 1.872 1.872H1
17	MP1C	PIPE	.809	6.563	12	.154 3	10	178532130 1.872 1.872H1
18	MP4B	PIPE	.481	6.563	2	.069 6	4	178532130 1.872 1.872H1
19	MP3B	PIPE	.817	6.563	2	.203 6	7	178532130 1.872 1.872H1
20	MP2B	PIPE	.813	6.562	8	.165 2	8	178532130 1.872 1.872H1
21	MP1B	PIPE	.811	6.563	8	.153 3	7	178532130 1.872 1.872H1
22	OVP	PIPE	.848	4.479	12	.046 4	12	238032130 1.872 1.872H1
23	M103A	L3X3X4	.720	3.397	5	.047 0 y	4	361246656 1.688 3.756H2-1
24	M104A	L3X3X4	.720	3.397	1	.049 3 y	1	361246656 1.688 3.756H2-1
25	M105A	L3X3X4	.718	3.397	9	.049 3 y	9	361246656 1.688 3.756H2-1
26	M61	PIPE	.420	11.497	10	.125 3	8	110750715 3.596 3.596H1

: Maser Consulting

SEA

Model Name : Mount Analysis

Apr 25, 2022 1:52 PM Checked By:__

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[ft]	LC	SheLo.	LC	phi*	phi* p	hi*	phi*	Eqn
27	M71A	PIPE	.420	11.497	6	.124 3	4	1107.	.50715	3.596	3.596	H1
28	M87	PIPE	.420	11.497	2	.126 3	12	1107.	.50715	3.596	3.596	H1
29	M108	LL3x3x	.086	0	1	.012 5.6	7 _Z 4	7014.	.93312 (6.48	4.897	1 H1
30	M109	LL3x3x	.079	0	9	.013 5.6	⁷ z 12	7014.	.93312 (6.48	4.897	1 H1
31	M110A	LL3x3x	.080	0	5	.014 5.6	7 _Z 8	7014.	.93312 (6.48	4.897	1 H1
32	M33	L2x2x3	.218	2.525	12	.012 0	у 9	6722.	.2339	558	1.021	H2-1
33	M34	L2x2x3	.216	2.525	2	.010 0	z 16	6722.	.2339	558	1.021	H2-1
34	M81	L2x2x3	.220	2.525	8	.013 0	z 6	6722.	.2339	558	1.021	H2-1
35	M82A	L2x2x3	.218	2.525	10	.010 0	z 24	6722.	.2339	558	1.021	H2-1
36	M99A	L2x2x3	.221	2.525	4	.013 5.0	5 _Z 2	6722.	.2339	558	1.021	H2-1
37	M100A	L2x2x3	.217	2.525	6	.010 0	z 20	6722.	.2339	558	1.021	H2-1
38	M7	PIPE	.329	1.045	10	.100 1			.50715			
39		PIPE	.330	1.045	6	.100 1	4	1107.	.50715	3.596	3.596	H1
40	M102A	PIPE	.331	1.045	2	.100 1	12	1107.	.50715	3.596	3.596	H1
41	M36	PL3/8x6	.366	.198	7	.111 .19	8 _V 11	6584.	.72900	.57	9.113	H1
42	M40	PL3/8x6	.361	.198	6	.103 .19	8 _V 21	6584.	.72900	.57	9.113	H1
43		PL3/8x6	.193	.143	7	.114 .28		6912.	.72900	.57	9.113	H1
44		PL3/8x6	.165	.143	7	.096 .28			.72900			
45	M83A		.368	.198	3	.106 .19	8 _V 8	6584.	.72900	.57	9.113	H1
46	M84A		.362	.198	2	.117 .19	8v 30	6584.	.72900	.57	9.113	H1
47	M85A		.194	.143	9	.107 .28	7 _V 20	6912.	.72900	.57	9.113	H1
48	M86A		.164	.143	3	.102 .28	7 _V 18	6912.	.72900	.57	9.113	H1
49	M101A		.367	.198	11	.110 .19	8 _V 40	6584.	.72900	.57	9.113	H1
50	M102	PL3/8x6	.363	.198	10	.110 .19	8v 14	6584.	.72900	.57	9.113	H1
51	M103		.192	.143	5	.107 .28	7 _V 15	6912.	.72900	.57	9.113	H1
52	M104		.166	.143	11	.103 .28	7 _V 14	6912.	.72900	.57	9.113	H1
53		C4X7.25	.323	.593	6	.039 .59	,	4716.	.69012 1	1.456	7.668	H1
54	M110		.319	2.572	7	.048 2		4716.	.69012 1	1.456	7.668	H1
55		C4X7.25		.593	2	.040 .59	3z 9	4716.	.69012 1	1.456	7.668	H1
56		C4X7.25		2.572	9	.051 2	z 3	4716.	.69012 1	1.456	7.668	H1
57	M89A		.316	.593	10	.040 .59		4716.	.69012 1	1.456	7.668	H1
58		C4X7.25		2.572	5	.050 2	z 11	4716.	.69012 1	1.456	7.668	H1
59		PL3/8x6	.341	.609	1	.297 .60			.72900			
60	M87A		.341	.609	9	.305 .60			.72900			
61	M105		.342	.609	5	.305 .60			.72900	-		

Client:	Verizon Wireless	Date:	4/25/2022
Site Name:	Old Saybrook 2 CT		
PSLC #:	467406		
Fuze ID #:	16272126	Page:	1
			1/

I. Mount-to-Tower Connection Check

Custom Orientation Required	No
Tower Connection Bolt Checks	Yes
Bolt Orientation	Parallel

Bolt Quantity per Reaction: d_x (in) (Delta X of typ. bolt config. sketch): $\mathbf{d}_{\mathbf{y}}(\mathsf{in})$ (Delta Y of typ. bolt config. sketch) :

Bolt Type:

Bolt Diameter (in):

Required Tensile Strength / bolt (kips): Required Shear Strength / bolt (kips): Tensile Capacity / bolt (kips):

Shear Capacity / bolt (kips): Bolt Overall Utilization:

Tower Connection Rasenlate Checks	

Connecting Standoff Member Shape: Weld Stiffener Configuration:

Plate Width, D_x (in):

Plate Height, D_y (in):

W1 = Diameter (in):

W2 = N/A:

Member Thickness (in):

Stiffener location a₁ (in):

Stiffener location b₁ (in):

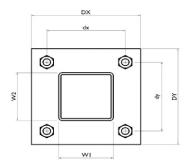
Stiffener location a2 (in):

Stiffener location b₂ (in):

F_γ (ksi, plate): Plate Thickness (in):

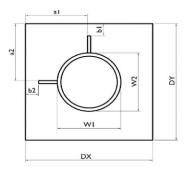
Length of Yield Line, L_y (in):

Bolt Eccentricity, e (in):


M_u (kip-in):

Phi*M_n (kip-in):

Plate Bending Utilization:


.,	0
V.	

Parallel
raidilei
4
7
7
A325N
0.625
3.3
0.4
20.7
12.4
15.7%

Yes	

Pipe
Has Stiffeners
9.5
9.5
3.5
0.201
4.75
0.25
4.75
0.25
36
0.5
7.07
1.77
5.76
14.32
40.2%

Client:	Verizon Wireless	Date:	4/25/2022
Site Name:	Old Saybrook 2 CT		
PSLC#:	467406		
Fuze ID #:	16272126	Page:	2

Version 1.0

Tower Connection Weld Checks

Weld Shape:

Weld Stiffener Configuration:

Siffner Notch Present?

Stiffener length, I (in):

Stiffener Spacing/Width, s (in):

Weld Size (1/16 in):

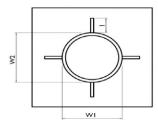
W1 = Diameter (in):

W2 = Diameter (in):

Weld Total Length (in):

 Z_x (in 3 /in):

Z_γ (in³/in): J_p (in⁴/in):


c_x (in) c_y (in)

Required combined strength (kip/in):

Weld Capacity (kip/in):

Weld Utilization:

Circle
(1) Stiffener on 4 faces
No
2.875
4
3.5
3.5
34.00
36.60
36.60
283.20
4.625
4.625
0.75
5.57
13.5%

MOUNT MODIFICATION DRAWINGS EXISTING 14.33' PLATFORM

Verizon

Doing Business as

Diposito 2021 Calea Esperanty Chapp allagus fasasad. Pertaweng an Anthermonaceter Describe Anthermon of the 1995 o

www.colliersengineering.com

Colliers Engineering & Design

TOWER OWNER SITE NUMBER: CT-1263 TOWER OWNER: OCTAGON TOWERS

CARRIER SITE NAME: OLD SAYBROOK 2 CT CARRIER SITE NUMBER: 467406 FUZE ID: 16272126

OLD SAYBROOK, CT 06475 1363 BOSTON POST RD MIDDLESEX COUNTY

LONGITUDE: 72.405944° W LATITUDE: 41.289778° N

PROJECT INFORMATION CLIENT COMPANY: PROJECT COMPANY: CONTACT: PHONE: E-MAIL:

SHEET DESCRIPTION	ST-1 TITLE SHEET	SBOM-I BILL OF MATERIALS	SGN-I GENERAL NOTES	SCF-I CLIMBING FACILITY DETAIL	SS-1 MODIFICATION DETAILS	SS-2 GEOMETRY VERIFICATION SKET	SS-3 MOUNT PHOTOS	SPECIFICATION SHEETS			
Ŗ	s	SB	S	š	S	s	s				
CANT/LESSEE		VERILCON VVIRELESS	I REPRESENTATIVE	South Manual Moderation	VENICOIN WINELESS	CT MANAGER	200000000000000000000000000000000000000	PETER ALBANO	856,797,0412	PETER.ALBANO@COLLIERSENGINEERING.COM	
X	ž		2	ž	-	5	×	E			

MODIFICATION DETAILS GEOMETRY VERIFICATION SKETCHES

1363 BOSTON POST RD OLD SAYBROOK, CT 06475 MIDDLESEX COUNTY

TITLE SHEET ST-I

Collicts Engineering & Design

OLD SAYBROOK 2 CT 467406

SITE NAME:

SHEET INDEX

DESIGN CRITERIA

BASIC WIND SPEED (3 SECOND GUST), V = 125 MPH
BEPOSUBE CATEGORY C
TOPOGRAPHIC CATEGORY I
MEAN BASE ELEVATION (APSE) = 816'

WINDLOADS

ICE WIND SPEED (3 SECOND GUST), V = 50 MPH

ICE LOADS

ICE THICKNESS = 1.00 IN SEISMIC LOADS SEISMIC DESIGN CATEGORY B SHORT TERM MCER GROUND MOTION, $S_{\rm S}$ = .202 LONG TERM MCER GROUND MOTION, $S_{\rm S}$ = .053

COLLIERS ENGINEERING & DESIGN ALL RIGHTS RESERVED

			BII	BILL OF MATERIALS		
			SECI	SECTION I - VZWSMART KITS		
QUANTITY	MANUFACTURER	PART NUMBER	DESCRIPTION	NOTES	UNIT WEIGHT (LBS.)	WEIGHT (LBS.)
_		VZWSMART-PLK5	KICKER KIT	CONTRACTOR TO VERIPY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE 'STRUCTURAL STEEL' NOTES ON SHEET SGN-1.	291	291
_		VZWSMART-PLK7	MONOPOLE COLLAR MOUNT ASSEMBLY		150	150
m		VZWSMART-PLK3	SUPPORT RAIL CORNER BRACKET		30	06
12		VZWSMART-MSKI	CROSSOVER PLATE		4	168
	VZWSMART					
			SECTION	SECTION 2 - OTHER REQUIRED PARTS		
QUANTITY	MANUFACTURER	PART NUMBER	DESCRIPTION	NOTES	UNIT WEIGHT (LBS.)	WEIGHT (LBS.)
m			172" LONG, P2 1/2 STD	GALVANIZED	83	249
m			48" LONG, L3x3x1/4	GALVANIZED. CONTRACTOR TO VERIFY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE STRUCTURAL STEEL' NOTES ON SHEET SGN-I.	20	65
					4 8	NO CO

VZWSMA	VZWSMART KITS - APPROVED VENDORS
	COMMSCOPE
CONTACT	SALVADOR ANGUIANO
PHONE	(817) 304-7492
EMAIL	SALVADOR.ANGUIANO@COMMSCOPE.COM
WEBSITE	WWW,COMMSCOPE.COM
V	METROSITE FABRICATORS, LLC
CONTACT	KENT RAMEY
PHONE	(706) 335-7045 (O), (706) 982-9788 (M)
EMAIL	KENT@METROSITELLC.COM
WEBSITE	METROSITEFABRICA TORS, COM
	PERFECTVISION
CONTACT	WIRELESS SALES

VZWSMA	VZWSMART KITS - APPROVED VENDORS
	NEWAVE
CONTACT	NEWAVE SALES TEAM
PHONE	(971) 239-4762
EMAIL	SALES@NEWAVETC.COM
WEBSITE	WWW.NEWAVETC.COM
	BETTER METAL, LLC
CONTACT	DAVID STANSBERRY
PHONE	(615) 535-0990 (O), (615) 631-2520 (M)
EMAIL	DLS@BETTERMETAL.COM
WEBSITE	WWW.BETTERMETALCOM

VZWSMA	VZWSMART KITS - APPROVED VENDORS
	COMMSCOPE
CONTACT	SALVADOR ANGUIANO
HONE	(817) 304-7492
MAIL	SALVADOR.ANGUIANO@COMMSCOPE.COM
VEBSITE	WWW.COMMSCOPE.COM
	METROSITE FABRICATORS, LLC
CONTACT	KENT RAMEY
HONE	(706) 335-7045 (O), (706) 982-9788 (M)
MAIL	KENT@METROSITELLC.COM
VEBSITE	METROSITEFABRICA TORS, COM
	PERFECTVISION
CONTACT	WIRELESS SALES
HONE	(844) 887-6723
MAIL	WWW.PERFECT-VISION.COM
VEBSITE	WIRELESSSALES@PERFECT-VISION.COM
	SABRE INDUSTRIES, INC.
CONTACT	ANGIE WELCH
HONE	(866) 428-6937
MAIL	AKWELCH@SABREINDUSTRIES.COM
VEBSITE	www.sabresitesolutions.com
	SITE PRO 1
CONTACT	PAULA BOSWELL
HONE	(972) 236-9843
MAII	PALIL A ROSWELL®VALMONT COM

Colliers & Design www.collersorghweing.com www.collersorghweing.com word of the collersorghweing.com stored out of the collersorghweing.com stored out of parts on the collersorghweing.com stored out of parts on the collersorghwein. Stored out of parts on the collersorghwein.	
--	--

ELF CATONOP SAFF PERSON E BATTHS W 3TATE	44	П	. 4	NO.	NECKED BY
WES REQUES BUTTECHNOSO ONE DESIDENCE, OR ANY PER- PROF TO DESIDENCE FOR ANY STATE WALL ANYWHERE BY ANY STATE FET PROME BUMBERS WEST.	1777624A	Ц	SILA	38	DESIVA
SURPACE AND SURPACE AND SURPECT PHONE WHEN CALLEST C.	JOSTANBER		HSUED FOR	ISSUED FOR	DESCRIPTION
Call Months	AS SHOWN		22,6243	0677/22	DATE
10	3006	П	-	0	NSW.

	SEA	SEA	DESWN O	
	MSUED FOR	SECUED FOR	DESCRIPTION	NO.
	20/62/03	0627/22	DATE	
	-	0	Name N	\bigcirc \bigcirc
				2 min

	II	100	BIRE	559	HEAT
Ç,	ı	ž	THE DIRE	PROFESSIO	É
900	ij	K	Œ	0	5
8	۱	LAW	SRE ACTING UND	LICENS	
1	d	MONGE	Ę	SPLEL	THE ALTER
É	H	MIN	34	SNO	H
2	1	gig is	THE STATE OF	E RESPI	Sec.
5	ш	40	10	w	3

THE MANUFACTURERS LISTED ARE THE APPROVED VENDORS FOR THE VZW MOUNT KITS. AECH MANUFACTURER WILL BE AWARE FOR WHICH KITS HAVE BEEN THROUGH THE VZW APPROVAL PROCESS AND THEY ARE IN TURN APPROVED TO SELL. PLEASE NOTE THAT THE MATERIAL UTILIZED ON THE MOUNT MODIFICATIONS WILL BR REVIEWED AS A PART OF THE DESKTOP PMI COMPLETED BY THE SMART TOOL VENDOR. IT WILL BE REQUIRED THAT THE VZW KITS SPECIFIED ARE UTILIZED IN THE MODIFICATIONS.

NOTES:

ALL MATERIALS REQUIRED FOR THE DESIGNED MODIFICATIONS BUT NOT LISTED IN THIS SHEET ARE ASSUMED TO BE PROVIDED BY THE CONTRACTOR. 5

LD SAYBROOK 2 CT 467406 1363 BOSTON POST RD OLD SAYBROOK, CT 06475 MIDDLESEX COUNTY

109

BILL OF MATERIALS

SBOM-I

- SEE MODIFICATION NOTES
- THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE CODES, ORDINANCES, LAWS AND REGULATIONS OF ALL MUNICIPALITIES, UTILITY COMPANIES OR OTHER PUBLIC/GOVERNING AUTHORITIES.
- THE CONTRACTOR SHALL BE REPONSIBLE FOR OBTAINING ALL PERMITS AND INSECTIONS THAT TMY BE REQUIRED BY ANY FEDERAL, STATE, COUNTY OR MUNICIPAL AUTHORITIES.
 - THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER, IN WRITING, OF ANY CONFLICTS, ERRORS OR OMISSIONS PRIOR TO THE SUBMISSION OF BIDS OR PERFORMANCE OF WORK,
- THE CONTRACTOR SHALL BE RESOURIBLE FOR PROTECTING ALL EXISTING SITEMPORPHERS THOUGHOUS CHARGENG CONSTRUCTION. THE CONTRACTOR SHALL BEPAIR AND PARAGE AS A RESULT OF CONTRACTOR SHALL BEPAIR AND PARAGE AS A RESULT OF SATISACTOR SEVENSE TO THE ASSTRUKTION OF THE COUNTRACTORS EXPENSE TO THE ASSTRUKTION OF THE OWNER.
- THE SCOPE OF WORK FOR THIS PROJECT SHALL INCLUDE PROVIDING ALL MATTERIALS, EQUIPMENT FOR DEADS REQUIRED TO COMPLIFE THIS PROJECT ALL EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH MAUL/ACTURENS RECOMMENDATIONS.
- - THE CONTRACTOR SHALL VERIFY LAL ENTING DIPERSIONS AND CONDITIONS RIGHT OF CONDITIONS RIGHT OF CONDITIONS FROM TO COMPRECIONS ANY WORK ALL DIPERSIONS OF EXITED CONTRACTOR SHAVEN IN THESE DAWNINGS WHYS REVERIED. THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTOR MANAGES OF ANY DISCREMANCIES RIGHT THE CONSTRUCTION MANAGES OF ANY DISCREMANCIES RIGHT OF ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION. THE CONTRACTOR SHALL VISIT THE PROJECT SITE PRIOR TO SUBMITTING THE BID TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS AND CONSTRUCTION DRAWNIGS.
- TAKEN THE CELL STEM YE SECTION, CALL SKETT PRECALTIONS NUST EN TAKEN WHEN WORKING AROUND HIGH LENGT OF EETTHOWNGNETT CHANNES OF EETTHOWNGNETT CHANNES OF ESTHOTOWN WORD THAT COLLID DETOGET HE WORKERS TO DANGER BESTONAL PROPOSITE HE WORKERS TO DANGER BESTONAL PROPOSITED TO BE WORN TO ALERT OF ANY POTTATIONS ARE REQUISED TO BE WORN TO ALERT OF ANY POTTATION TO ALERT OF ANY POTTATION TO ALERT OF ANY
- NO NOISE, SMOKE, DUST OR ODOR WILL RESULT FROM THIS FACILITY AS TO CAUSE A NUISANCE.
- THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION (NO HANDICAP ACCESS IS REQUIRED).

GENERAL NOTES

- THEE MODIFICATIONS HAVE BEEN DEIGNUD IN ACCORDANCE WITH THE GOVERNUM ROVISIONS OF THE TELECOMPHUNICATIONS INDUSTRY STANDARD THAT MATERIALS AND SERVICES ROVIDED BY THE CONTRACTOR SHALL CONFORM TO THE ABOVE MENTIONED CODES.
 - CONTRACTOR SHALL TAKE ALI PRECALITIONS INCESSARY TO REVENT DAWAGETO DESINANG STRUCTURES. ANY DAWAGETO DESTINA STRUCTURES AS, ARBUIT OF THE CONTRACTORS WORK OR REOM MARKED UP TO THE CAUSES SHALL BERDANDED AT THE CONTRACTORS EVERNES TO THE SATISFACTION OF THE OWNER.
- CONTRACTOR SHALL VERIFY ALL DETRINGNESSONS AND EXISTING CONDITIONS
 BEFORE ESCENINISM, OWEN, CADERNOR OF VETRALLA, MORE PREPARING OS SHO DAWNINGS, ANY DISCERBANCIES BETWEEN FELLO CONDITIONS AND THE CONTRACTOR DOLWHEN SHALL BE BEDOLGHT TO THE PREPARTE CONTRACTOR DOLWHEN SHALL BE BEDOLGHT TO THE PREPARTE PRISTING CONDITIONS THAT ARE NOT REPRESENTED ON THESE DAAWINGS, OR AFT CONDITIONS THAT WOULD INTERFER WITH THE INSTALLATION OF THE PRODING THAT WOULD INTERFER WITH THE INSTALLATION OF THE PRODING THAT WOULD INTERFER WITH THE INSTALLATION
- 4 IT IS ASSUMED THAT ANY STRUCTURAL MODIFICATION WORK SPECIFED ON THEE PARK WILL EACCOMPLISHED BY KNOWLEDGEABLE WORKHEN WITH TOWER CONSTRUCTION DEPRIENCE.
- THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION METHODS, MEANS, TECHNIQUES, SEQUENCES, AND PROCEDURES.
 - ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, RECTOR PLANS, AGGING FAUNS, CLIBING DEVENA, AND RESCUE PLANS, SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE RECTORNO OF THE WORD NOT NUMBED HEARD AND SHALL MET ANGENERAL STATE TEDITON, OSHA, AND GENERAL INDUSTRY. STANDARDS. ALL RIGGING PLANS SHALL ADHERE TO ANSITTA-322 (LATEST EDITION) INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION.
 - THE CONTRACTOR IS SOLEY RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PROGRAMS IN ACCORDANCE WITH APPLICABLE SAFETY CODES.
- WORK SHALL ONLY BE PERFORMED DURING CALM DRY DAYS (WINDS LESS THAN 30-MPH). THE STRUCTURE SHOWN ON THE DRAWINGS IS STRUCTURALLY SOUND ONLY IN THE COMPLETED FORM. THE

TOTAL TOTAL STRUCTURE CONTRACTOR HALL STRUCTURE LIPES THE STRUCTURE LIPES AND STRUCTURE CONTRACTOR HALL IRRODOR TOTAL STRUCTURE LIPES AND STRUCTURE LIPES AND STRUCTURE LIPES AND STRUCTURE AND STRUCTURE LIPES AND STRUCTURE LIPE

ALL PROPOSED ANDIOR REPLACED BOLTS SHALL BE OF SUFFICIENT LENGTH SUCH THAT THE RIND OF THE BOLT IS ATTLEAST FLUSH WITH THE FACE OF THE NUT. IT IS NOT PERMITTED FOR THE BOLT END TO BE BELOW THE FACE OF THE NUT AFTER TIGHTBINING IS COPPLETED.

ALL INSTALLATIONS PERFORMED ON THIS STRUCTURE SHALL BE COMPLETED IN ACCORDANCE WITH THE GOVERNION BROWISIONS OF THE STANDARD POR INSTALLATION ALTERATION AND MAINTENANCE OF ANTENINA SUPPORTING STRUCTURES AND ANTENNAS. ANSWITH-332.

ALL HOLES IN STEEL MEMBERS SHALL BE SIZED 1/16" LARGER THAN THE BOLT DIAMETER. STANDARD HOLES SHALL BE USED UNLESS NOTED OTHERWISE

WELDING NOTES

14. ALL EXISTING PAINTEDIGALVANIZED SURRACES DAMAGED DURING REHAB INCLUDINA ARGA UNDIGS STIFFIRE RUTS SHALL IE WHE BRUSHED CLEAN, REPAINTED BY COLD GALVANIZING (ZNAGA OR ZINC COTE), AND REPAINTED TO MATCH THE EXISTING RINA (IF APPLICABLE).

GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.

ALL WELDING SHALL BE DONE IN ACCORDANCE WITH AWS DI 0 (LATEST BEDTING), THIS SHALL INCLUDE A CERTIFIED WELD INSPECTION (CW) FOR ACCEPTANCE OR REJECTION OF ALL WELDING OFBRATIONS, REE DURING AND POST INSTALLATION, SING THE ACCEPTANCE CRITERA OF AWS DILIA

CONTRACTOR IS REPONSIBLE FOR COMMISSIONING A THIRD PARTY CERTHERD WAS ON INSPECTOR (CW) THROUGHOUT THE BYTIRETY OF THE PROJECT A PASSING CWI REPORT SHALL BE RROYIDED TO THE ENGINERN UPON COMPLETION OF THE PROJECT.

- CONTRACTOR SHALL SECURE SITE BACK TO EXISTING CONDITION UNDER SUPERVISOR OF OWNERS, CAROLVENING, AND SUBJECT, GROUDING, AND SURSOUNDING, GRADE SHALL BE REFLACED AND REPAIRED AS REQUIRED TO CALLERE, OWNER APPROACH, POSITIVE DARAINGE AWAY FROM TOWER SITE SHALL BE MANTANED.
 - OWNERCHORS ENFERT INTS SUPPORTED BY HER THE CLINE AND THE STRUCTURE NOT SECRETICALLY DEFALLED IN THE CONTRACTO COCHEMINE STRUCTURE TO THE RESPONSITIONS SHALL BE DESIGNED. COCHEMINED MAIN RECEITED BY THE REPORTS SUPPORTS AND SUPPORTS SHALL BE DESIGNED. COCHEMINED AND INSECTED BY THE REPORTS SUBMIT SIGNED AND SELECT OWNERS THE PROPERTY SUBMIT SHALL BE DESIGNED.
 - 12. DO NOT SCALE DRAWINGS.
 - 13. DO NOT USE THESE DRAWINGS FOR ANY OTHER SITE.
- ALL MATERAL UTILIZED FOR THIS PROJECT MUST BE NEW AND REE OF ANY DEFECTS, ANY MATERIAL SUSSTITUTIONS, INCLUDING BUT NOT LIMITED TO ALTIERED SIZE AND/OR STRENGTHS, MUST BE APROVED BY THE OWNER.

THE CERTIFIED WAS DURSECTORS ALTER, IDPOCATE, AN WARITER CONTINUED OF STRANDINGS REE, DURING, AND POST IN THE PROTOGRAPHS AND POST IN THE PROTOGRAPHS AND DOCUMENTATIONS SIZE DURING, AND POST IN THE PROTOGRAPHS AND DOCUMENTATION SUPPORTING THE ACCEPTANCE OR RECEIVED OF ALL WAS DURING THE ACCEPTANCE OR DOCUMENTATION AND PROTOGRAPHS THE ACCEPTANCE OR DOCUMENTATION AND PROTOGRAPHS THE PROTOGRAPHS AND PROTOGRAPHS AN

THE MOUNT UNDER NO CIRCUMSTANCES SHOULD BE USED AS A TIE OFF POINT. AND ENGINEER IN WRITING.

STRUCTURAL STEEL

DESIGN, DETAILING, FABRICATION AND ERECTION OF STRUCTURAL STEEL.
SHALL CONFORM TO THE FOLLOWING PUBLICATIONS EXCEPT AS
SPECIFICALLY INDICATED IN THE CONTRACT DOCUMENTS.

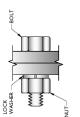
OXY FUE GAS WELDING OR BRAZING IS STRICTLY PROHIBITED SPECIFICALLY, NO TORCH CUTTING IS PERMITTED ON SITE ALL HOLES SHALL BECUT WITH A GRINDER.

IN CASES WHERE A WELD IS SPECIFED BETWEEN TWO MEMBERS IN WHICH THERE IS A GAP IN BETWEEN, THE WELD IS TO BE BUILT-UP SUCH THAT THE SIZE OF WELD ON THE MEMBER IS EQUAL TO THAT SHOWN IN THE DRAWINGS.

CONTRACTOR SHALL EXERCISE CAUTION WHEN WELDING A GALVANIZED SURFACE

CONTRACTOR SHALL HAVE A FIRE PROTECTION PLAN IN PLACE THAT CONFORMS WITH ALL OSHA, ANSI/ASSP A 10,48, ANSI/2491, AND LOCAL JURISDICTIONAL REQUIREMENTS.

- a. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC), MANUAL OF STEEL CONSTRUCTION (15TH EDITION).
- b. SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A325 OR A490 BOLTS
 - STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING UNLESS OTHERWISE SHOWN: c. AISC CODE OF STANDARD PRACTICE
- CHANNELS, ANGLES, PLATES, ETC. ASTM A36 (GR 36) STEEL PIPE ASTM A53 (GR 35) BOLTS ASTM A325
- ALL SUSTITUTIONS ROPOSCED BY THE CONTRACTOR SHALL BE APPROVED NO WARTHWO BY THE BROINERS CONTRACTOR SHALL REQUIRE IN COCCURENT OF THE SUSSITUL BE SURBERTED AND SHALL PROPRIED BY THE SUSSITUL BE SURBERTED AND SEND CONTRACTOR SHALL SHALL DIFFERENCES FROM THE CHARGINAL DESIGN. INCLUDING WANTENANCE, REPARA NUD REPARAMENT SHALL BE NOTED STREAM SOF OF COSTS CHARGINS SANGCATED. WITH THE SUBSTITUTION (INCLUDING REDEBING COSTS AND COSTS TO.) ASTM A563 LOCKING STRUCTURAL GRADE NUTS LOCK WASHERS
 - SUB-CONTRACTORS, SHALL BE PROVIDED TO THE ENGINEER. CONTRACTOR SHALL PROVIDE ADDITIONAL DOCUMENTATION AND/OR SPECIFICATIONS TO THE ENGINEER AS REQUESTED. PROVIDE STRUCTURAL STEEL SHOP DRAWINGS TO ENGINEER FOR APPROVAL PRIOR TO FABRICATION.
- a. SUBMIT SHOP DRAWINGS TO
- PETER.ALBANO@COLLIERSENGINEERING.COM
- PROVIDE MASER CONSULTING PROJECT # AND MASER CONSULTING PROJECT ENGINEER CONTACT IN THE BODY OF THE EMAIL.
- DRILL NO HOLES IN ANY NEW OR EXETING STRUCTURAL STEE MEMBERS OTHER THAN THORS SHOWN ON STRUCTURAL DRAWINGS WITHOUT THE APPROVAL OF THE ENGINEER OF RECORD.
- GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.
- ALL NEW STEEL SHALL BE HOT BE DIPPED GALVANIZED FOR FULL WEATHER PROTECTION IN ADDITIONAL NEW STEEL SHALL BEPAINTED TO MATCH EXISTING STEEL CONTRACTOR SHALL OBTAIN WRITTEN PERMISSION TO PROTECT STEEL BY ANY OTHER MEANS.
 - CONTRACTOR SHALL PROTECT CUT ENDS OF ALL FIELD-CUT STEEL WITH TWO (2) COATS OF COLD GALVANIZATION (ZINGA OR ZING COTE).
- ALL BOLT ASSEMBLES FOR STRUCTURAL NEMBERS REPRESENTED IN THIS DRAWNING REQUIRE LOCKING DEVICES TO BE INSTALLED IN ACCORDANCE WITH THA.222-H SECTION 49.3 REQUIRENENTS.
- WHERE CONNECTIONS ARE NOT FULLY DETAILED ON THESE DRAWINGS, FABRICATOR SHALL DESIGN CONNECTIONS TO RESIST LOADS AND FORCES WHERE SHOWN ON DRAWINGS AND AS OUTLINED IN SPECIFICATIONS.
- FOR MEMBERS BEING REPLACED, PROVIDE NEW BOLTS AND MATCH EXISTING SIZE AND GABLE MAINTAIN ABIG REQUIREMENTS FOR MINIMUM BOLT STANCE AND SPACING.

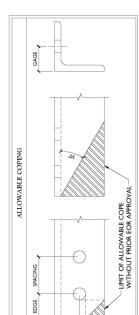

1/8 2 1/4 2 5/8 ٣ MIN. EDGE DISTANCE 8/ - /4 1/2 3/4 2/8 BOLT SCHEDULE (IN.) 1 | | | 6 × 1 5 / 16 91/11×91/6 15/16 x 1 1/8 11/16 × 7/8 STANDARD SHORT HOLE SLOT 13/16 x 1 91/1 91/11 13/16 15/16 9//6 BOLT DIAMETER 1/5 2/8 3/4 2/8

Doing Business as

Colliers Engineering & Design

www.colliersengineering.com Typiglic 20, Office Equivalent Crisp adopts record in com-mute in the control of the control of the control of the control instant of or whim is a confid. The family on mit to opid in district or refer upons in order preceding the control of

WORKABLE GAGES (IN.)	GAGE	2 1/2	2	1 3/4	1 3/8	8/1 1
WORKABLE	LEG	4	3 1/2	3	2 1/2	2


ALL DIMENSIONS REPRESENTED IN THE AGOVET TABLES ARE AGE OF INNINUM REQUIREMENTS. CONTRACTOR SHALL VERIF PRISTING CONDITIONS IN FILED AND NOTIFY ENGINEER IF DISTANCES ARE LESS THAN THOSE PROVIDED. NOTES:

THE DIMENSIONS PROVIDED ARE MINIMAIN REQUIREMENTS ACTUAL DIMENSIONS OF ROPOSED MENBERS WITHIN THESE DRAWNINGS MAY VARY ROW THE AISC MINIMUM REQUIREMENTS.

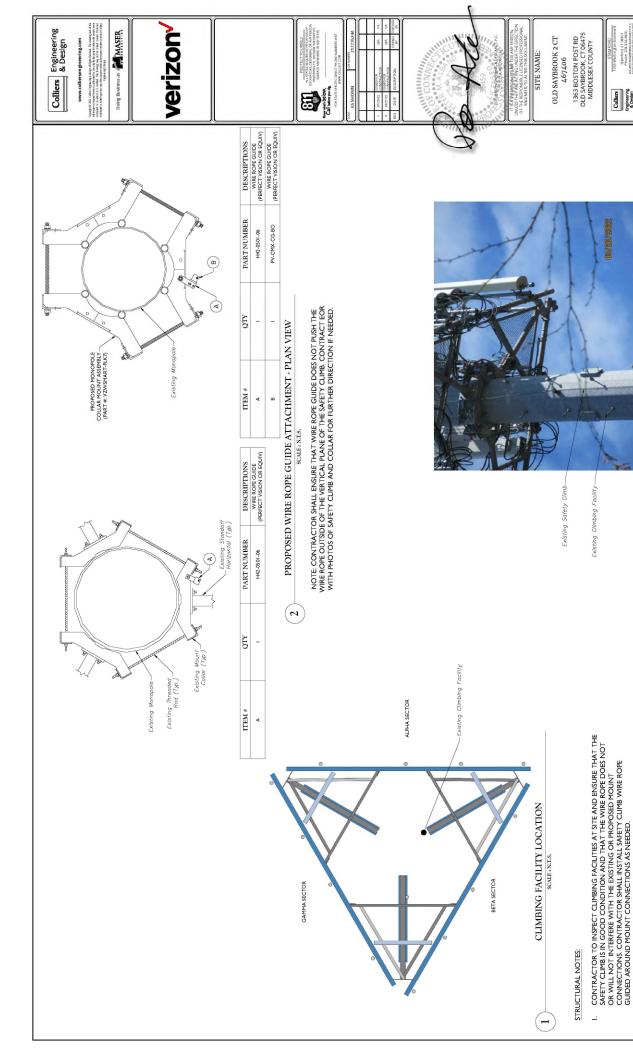
TYP. BOLT ASSEMBLY

SHORT SLOT HOLES SHALL ONLY BE USED WHEN DEPICTED IN THE DRAWINGS

MATCH EXISTING GAGES WHEN APPLICABLE, UNLESS MINIMUM EDGE DISTANCES ARE COMPROMISED.

Verizon

GAGE	2 1/2	2	3/4	1 3/8	1/8	
8	2	.,	- 3	- 3	_	
E	4	3 1/2	m	2 1 /2	2	


SITE NAME:

1363 BOSTON POST RD OLD SAYBROOK, CT 06475 MIDDLESEX COUNTY OLD SAYBROOK 2 CT 467406

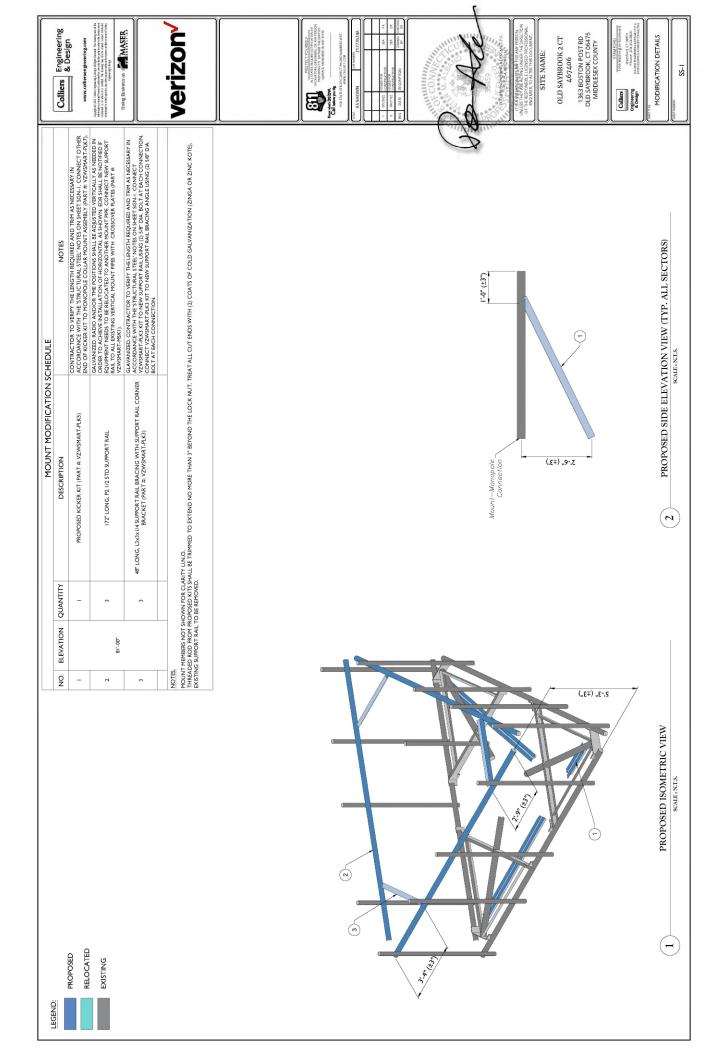
Colliers Engineering & Design

GENERAL NOTES

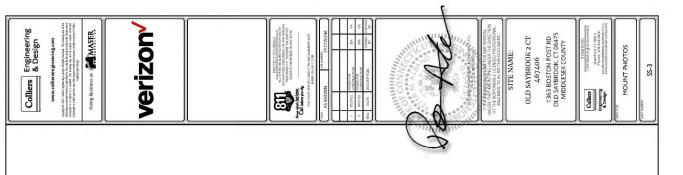
NOT SCALE DRAWINGS FOR CONSTRUCT SGN-I

CLIMBING FACILITY DETAIL

CLIMBING FACILITY PHOTO


INSTALL SHALL NOT CAUSE HARM TO THE STRUCTURE, CLIMBING FACILITY, SAFETY CLIMB, OR ANY SYSTEM INSTALLED ON THE STRUCTURE. TIMELT NOTICE AND DOCUMENTATION SHALL BE PROVIDED BY CONTRACTORS TO THE EOR (OF STRUCTURAL DESIGN) IF AN OBSTRUCTION WAS REQUIRED TO MEET THE RF SYSTEM DESIGN REQUIREMENTS AND PERFORMANCES.

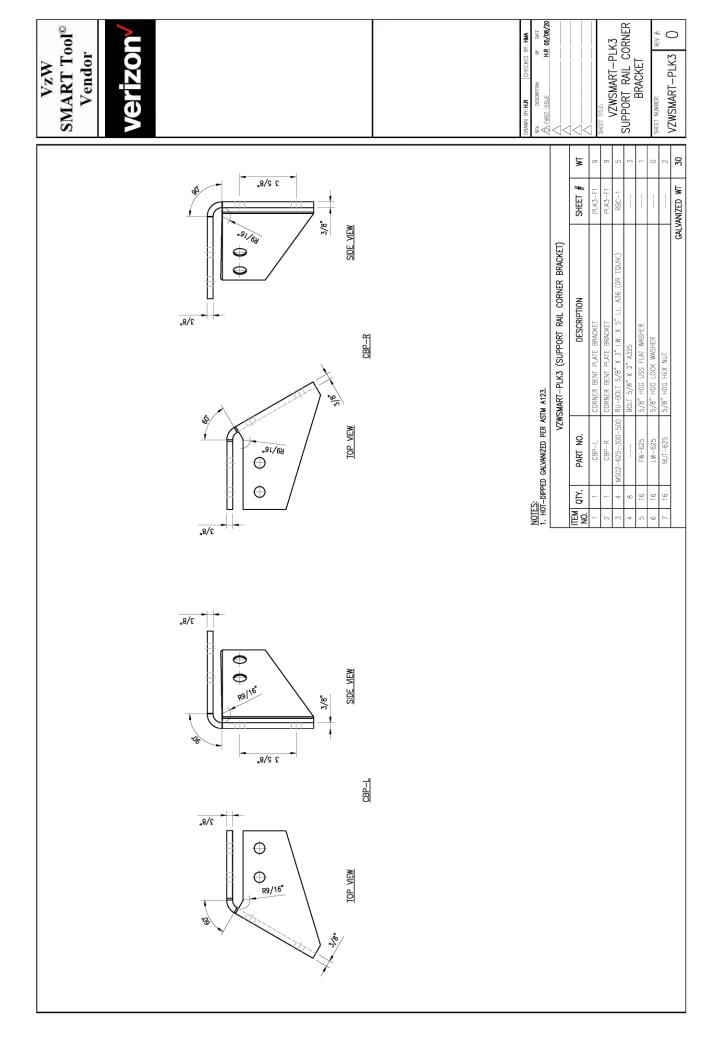
7

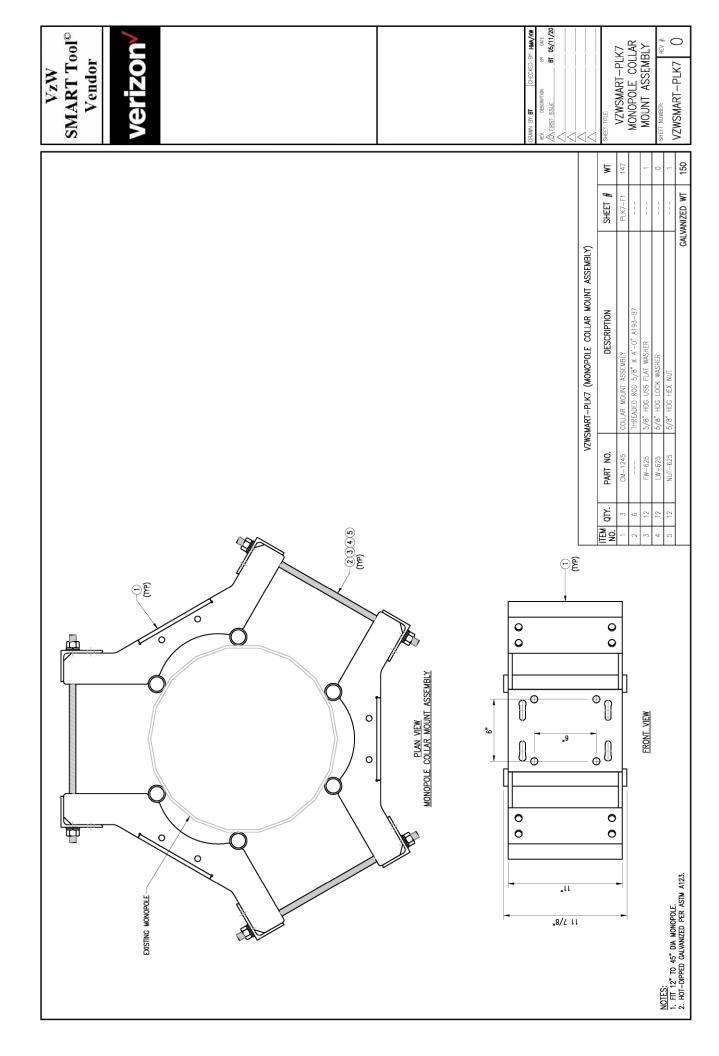

Colliers Engineering & Design

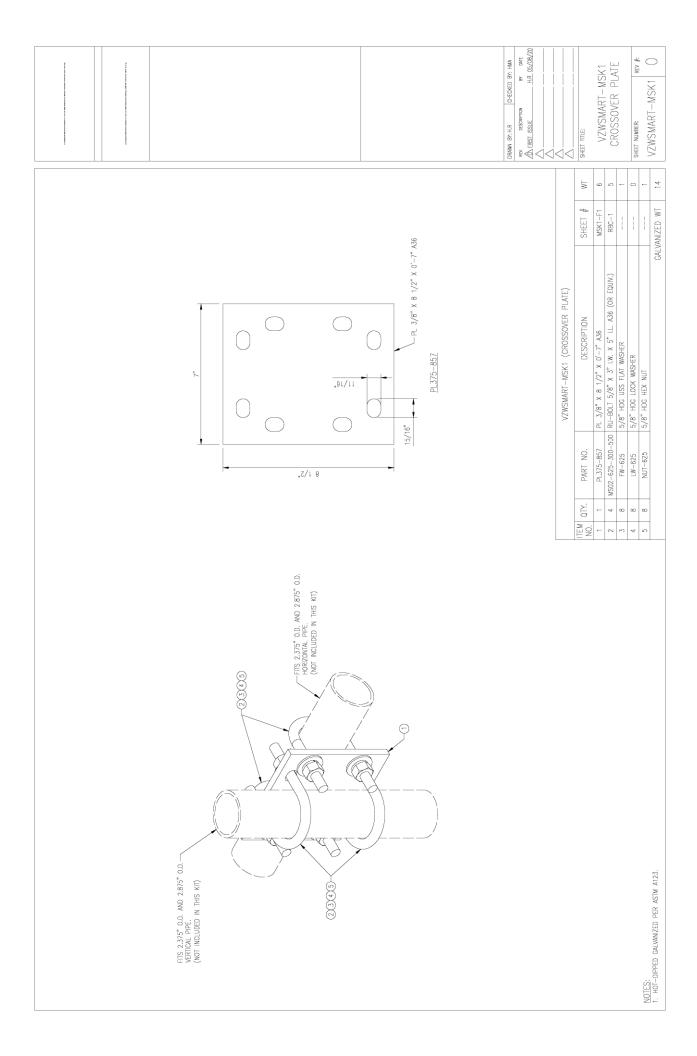
08/26/2022

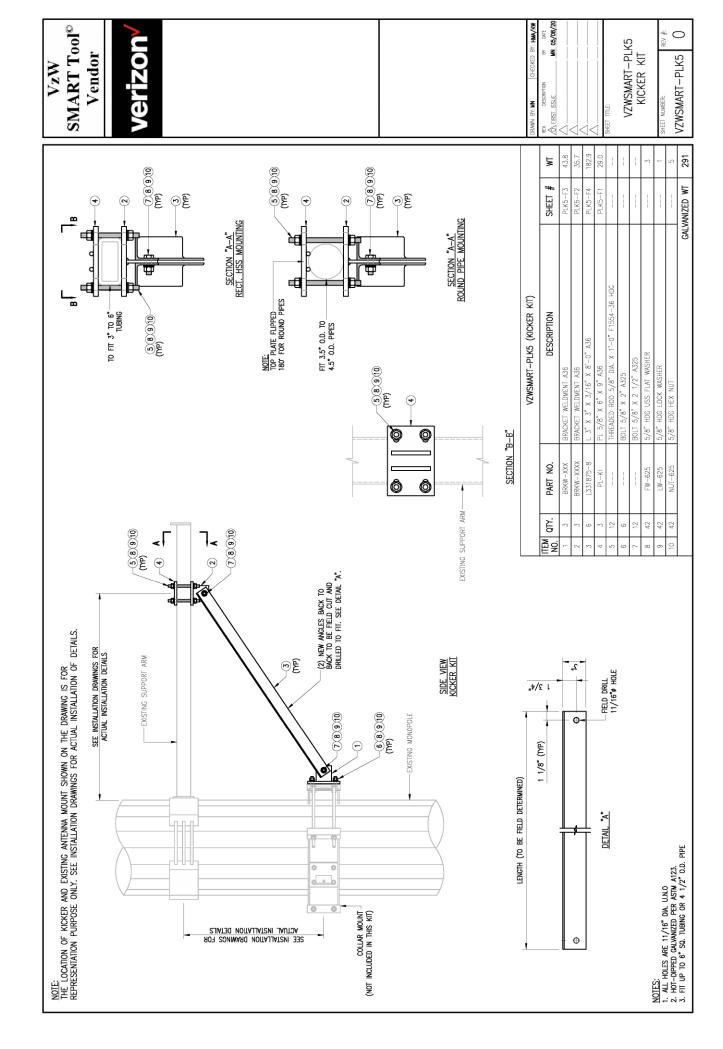
SCF-I

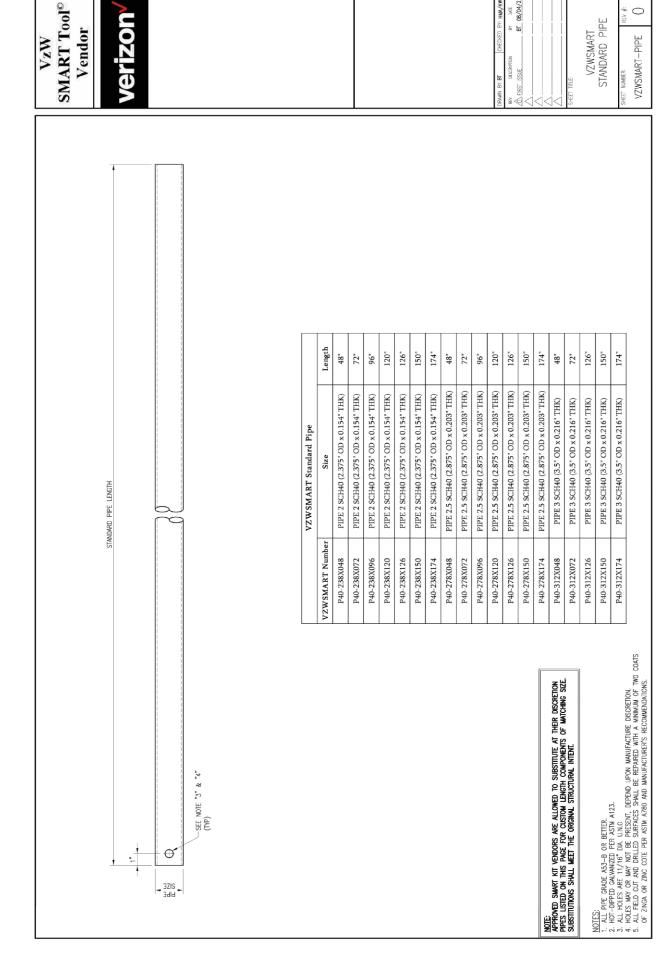
C.11: Engineering			market on orders to comfet the down trap with a spek mad datased datased datased order goods represented despises when proceed follows beginning despises.	Doing Business as Committee MASER		/ C C L . C	Verizon			Collection of the control of the collection of t
	CONTRACTOR SHALL RECORD ALL DIMENSIONS	AND MEMBER SIZES SHOWN IN THIS SKETCH.	DOCUMENT VIA PHOTOS AND SKETCHES AND	IDE IO THE FOR FOR EVALUATION:					Existing Connection Plate	Meant Stone-Off WELD MEASURE WELD SZE'U AS SHOWN IN THIS DETAIL CONTRACTOR SALL HEASIRE WELD SZE'U AS SHOWN IN THIS DETAIL WELD MEASURE MENT DETAIL SCALE.NITS. HOTE REFER TO WELD MEASURE HEAT DETAIL FOR DIRECTIONS ON DETAILING WELD MEASURE HEAT DETAIL FOR DIRECTIONS ON DETAILING WELD MEASURE HEAT DETAIL FOR DIRECTIONS ON DETAILING WELD MEASURE HEAT DETAIL FOR DIRECTIONS DETAIL SCALE.NITS.
NOTE		AND	0000							© SOUR, N.T.S. SOUR, N.T.S. SOUR, N.T.S. SOUR, N.T.S. SOUR SOUR SOUR SERVICE SOUR SOUR SERVICE SOUR SOUR SOUR SOUR SOUR SOUR SOUR SOUR
	NOTES	TYP. OF 12, 4 PER SECTOR	TYP. OF 3, 1 PER SECTOR	TYP. OF 3, 1 PER SECTOR	TYP, OF 3, 1 PER SECTOR	TYP. OF 6, 2 PER SECTOR	TYP. OF 6, 2 PER SECTOR	TYP. OF 3, I PER SECTOR		NN VIEW
IEMBERS	SHAPE									VERIFICATION PLA
EXISTING MEMBERS	NO. DESCRIPTION LENGTH	I. MOUNT PIPE	2. FACE HORIZONTAL	3. SUPPORT RAIL	4. STANDOFF HORIZONTAL	S. CROSS BRACING	6. GRATING SUPPORT	7. CORNER PLATE	UST ALL SHAPES. ANDEL (LEGINECOTHL): EX LIDZAI/A CHANIEL (DEPTRACHAGE WIDTH): EX CHEVIL7/8** PPE (CONTRET, EX PRETEXA): EX PRETEXAILS THATE (THE THATE) PARTE (THATE): EX PRETEXAILS THATE (THE THATE) PARTE (THATE): EX PARTE (THATE) PARTE (© O O O O O O O O O O O O O O O O O O O

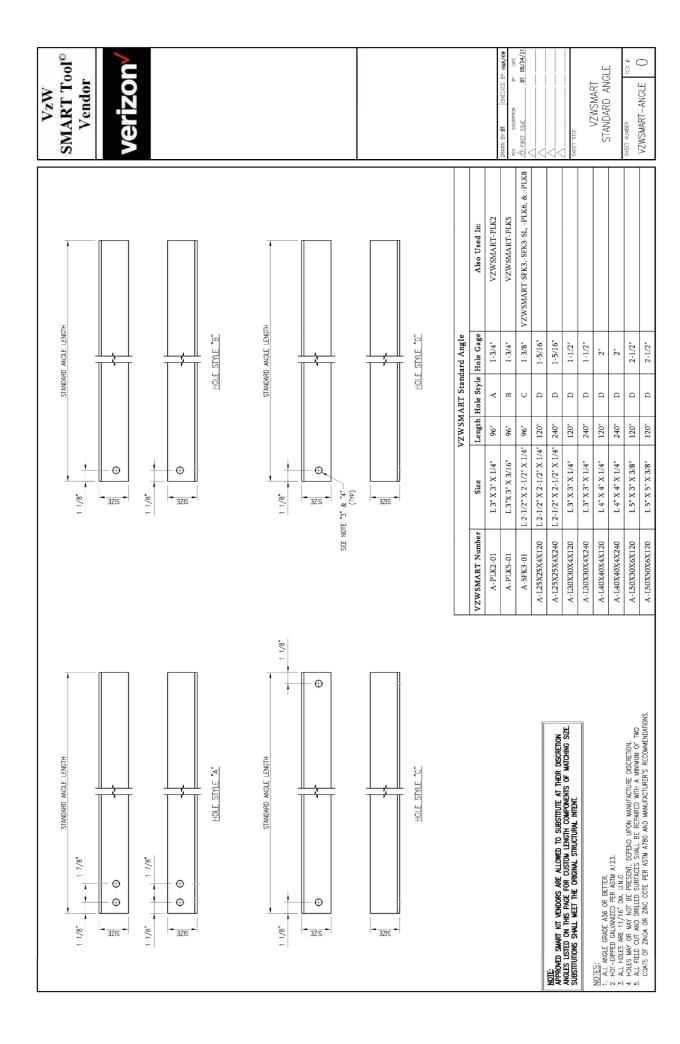


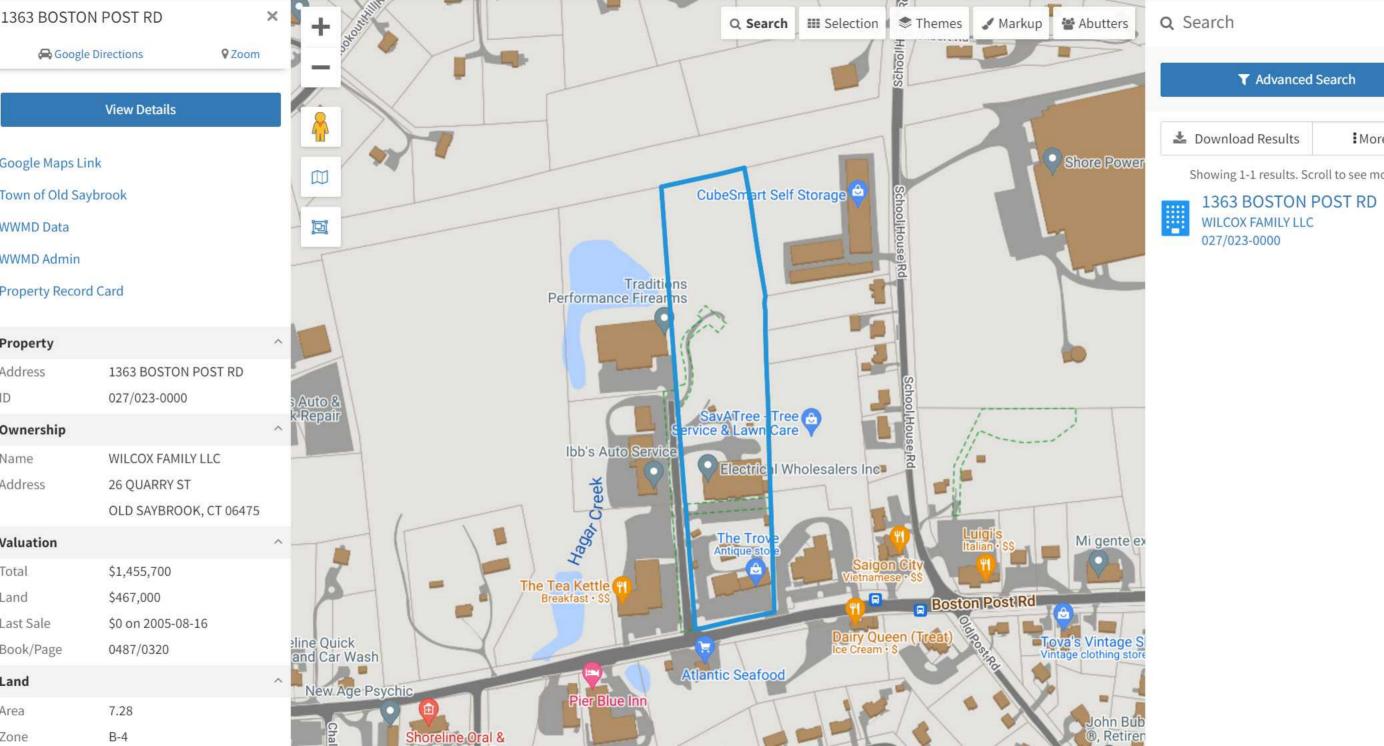



MOUNT PHOTO 1









BT 08/04/21

0

ATTACHMENT 5

More

1363 BOSTON POST RD

Location 1363 BOSTON POST RD **MBLU** 027/ 023/ / /

Acct# 00366000 Owner WILCOX FAMILY LLC

Appraisal \$2,079,600 **Assessment** \$1,455,700

> 809 **Building Count** 4 PID

Current Value

Appraisal											
Valuation Year	Improvements	Land	Total								
2018	\$1,412,300	\$667,300	\$2,079,600								
	Assessment										
Valuation Year	Improvements	Land	Total								
2018	\$988,700	\$467,000	\$1,455,700								

Owner of Record

Owner WILCOX FAMILY LLC Sale Price \$0

Co-Owner

Address 26 QUARRY ST Book & Page 0487/0320

OLD SAYBROOK, CT 06475 Sale Date 08/16/2005

Ownership History

Owner	Sale Price	Certificate	Book & Page	Sale Date	
WILCOX FAMILY LTD PARTNERSHIPS	\$450,000		0340/0791	12/31/1996	

Certificate

ATTACHMENT 6

Name and Address of Sender Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	TOTAL NO. of Pieces Listed by Sender Postmaster, per (name of receiving of		Affix Stamp Here Postmark with Date neopo. 10/04/	of Receipt. St. 2022 STAGE \$0	03.099 ZIP 06103 1L12203937	
USPS® Tracking Number Firm-specific Identifier	Ad (Name, Street, City,	dress State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
1. 2. 3.	Carl Fortuna, First Sel Town of Old Saybrook 302 Main Street Old Saybrook, CT 06- Christina Costa, Town Town of Old Saybrook 302 Main Street Old Saybrook, CT 06- Wilcox Family LLC 26 Quarry Street Old Saybrook, CT 06-	ectman 475 Planner 475		OLD STATE	COLORES	
4.				ESTO TE	ATION OS	
5.				000		
6.						