

January 3rd, 2020

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for Verizon Crown Castle Site ID#: 803175 167 Coccomo CIR, New Britain, CT 06051 Lat: 41° -41' 11.80"/ Long: -72° -45' 27.80"

Dear Ms. Bachman:

Verizon currently maintains twelve (12) total antennas at the 145-foot mount on the existing 188foot monopole tower, located at 167 Coccomo Circle in New Britain. Crown Castle owns both the tower and the property. Verizon now intends to replace three (3) existing antennas with three (3) new antennas.

Tower modifications:

- Remove three (3) 700 LTE antennas
- Add three (3) CBRS antennas
- Add three (3) CBRS RRHs

Ground modifications:

- None

This facility was approved by the City of New Britain on May 30th, 2002. This approval was given without conditions.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to Honorable Erin E. Stewart, Mayor, City of New Britain, as well as Mr. Steven P. Schiller, City Planner for the City of New Britain.

Additionally:

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Verizon respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. 16-50j-72(b)(2). Please send approval/rejection letter to my attention at the address listed below.

Sincerely,

Richard Zajac Network Real Estate Specialist 4545 East River Road, Suite 320 Rochester, NY 14586 585-445-5896 richard.zajac@crowncastle.com

Melanie A. Bachman

cc:

The Honorable Erin E. Stewart, Mayor City of New Britain 27 West Main Street New Britain, CT 06051 860.826.3300

Steven P. Schiller, City Planner Planning and Zoning Dept. City of New Britain 27 West Main Street New Britain, CT 06051 860.826.3432

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Exhibit A

Original Facility Approval

2	Date	
	At (Location) 167 LESTER STREET	Zoning District 12
	Subdivision Lot Building is to be Ft. wide by Ft. long by	8 G
	To Type Use Group Bas	
3	Remarks: 190' telecommunication tower per plan an Area or Install 12'x30' panelized land site stee Volume and 12 panel antennas approved by Siting (Cubic/Square Feet)	ad 1999 State Building Code, B1779.
	Owner John & Helen Balavender	(Building Inspector)
	Address To be posted on premises — See reverse s	ide for conditions of certificate.

55

 \mathbb{R}^{2}

Exhibit B

Property Card

167 COCCOMO CIR

Location	167 COCCOMO CIR	Mblu	A5D/ 22/ / /
Acct#	15950167	Owner	CROWN ATLANTIC COMPANY LLC
Assessment	\$58,380	Appraisal	\$83,400
PID	10590	Building Count	1

Current Value

Appraisal							
Valuation Year Improvements Land Television							
2017	\$47,400	\$36,000	\$83,400				
	Assessment						
Valuation Year	Improvements	Land	Total				
2017	\$33,180	\$25,200	\$58,380				

Owner of Record

Owner	CROWN ATLANTIC COMPANY LLC	Sale Price	\$90,000
Co-Owner		Certificate	
Address	4017 WASHINGTON RD PMB 353	Book & Page	1359/0428
	MCMURRAY, PA 15317	Sale Date	02/13/2001

Ownership History

Ownership History				
Owner	Sale Price	Certificate	Book & Page	Sale Date
CROWN ATLANTIC COMPANY LLC	\$90,000		1359/0428	02/13/2001
BALAVENDER JOHN S +	\$44,000		1284/0180	08/26/1998
	\$0		1281/0173	07/15/1998
	\$0		0770/0808	10/29/1981
CLARA MARY DOUCETTE	\$0		0725/0121	03/02/1977

Building Information

Building 1 : Section 1

Year Built:	1918
Living Area:	624
Replacement Cost:	\$105,398

Building Percent

Good:

Replacement Cost

cement cost	
Depreciation:	\$47

45

Build	ding Attributes
Field	Description
Style	Conventional
Model	Residential
Grade	С
Stories	1 1/4 Stories
Occupancy	1
Exterior Wall 1	Aluminum Sidin
Exterior Wall 2	
Roof Structure	Gable
Roof Cover	Asphalt Shingl
Interior Wall 1	Plaster
Interior Wall 2	
Interior Flr 1	Carpet
Interior Flr 2	
Central Heat Sys	Yes
Heat Type	99
АС Туре	None
Total Bedrooms	2 Bedrooms
Total Full Baths	1
Total Half Baths	0
Total Xtra Fixtrs	0
Total Rooms	4
Bath Style	Average
Kitchen Style	Average
Num Kitchens	
Whirlpool Tub	
Fireplaces	
Usrfld 104	
Rec Room Finish	
Rec Room Qual	
Usrfld 107	
Bsmt Garages	
Fireplaces	
Usrfld 108	
Usrfld 101	
Usrfld 102	
Bldg Nbhd	104A

Building Photo

(http://images.vgsi.com/photos/NewBritainCTPhotos//\00\02\86'

Building Layout

(http://images.vgsi.com/photos/NewBritainCTPhotos//Sketches/1

	Building Sub-Areas (sq ft)	<u>Legend</u>	
Code	Code Description		Living Area
BAS	First Floor	624	624
EAU	Attic, Expansion, Unfinished	624	0
FEP	Enclosed Porch	66	0
FOP	Open Porch	50	0
URB	Unfin Raised Basement	624	0
		1,988	624

Extra Features

Extra Features	<u>Legend</u>
No Data for Extra Features	

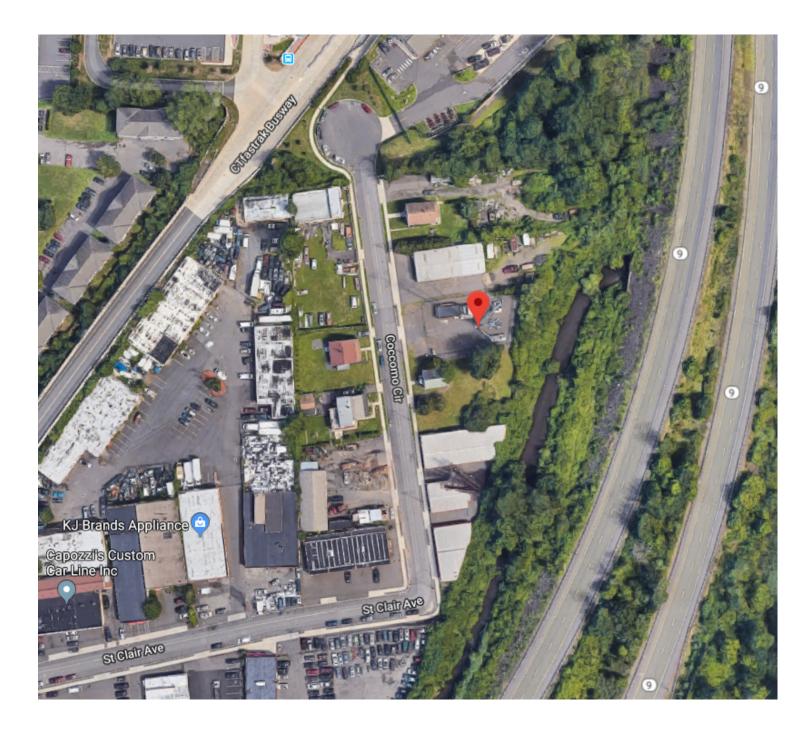
Land

.

Land Use		Land Line Valuation	
Use Code	1010	Size (Acres)	0.32
Description	Single Family	Depth	
Zone	I2	Assessed Value	\$25,200
Neighborhood	104	Appraised Value	\$36,000
Alt Land Appr	No		
Category			

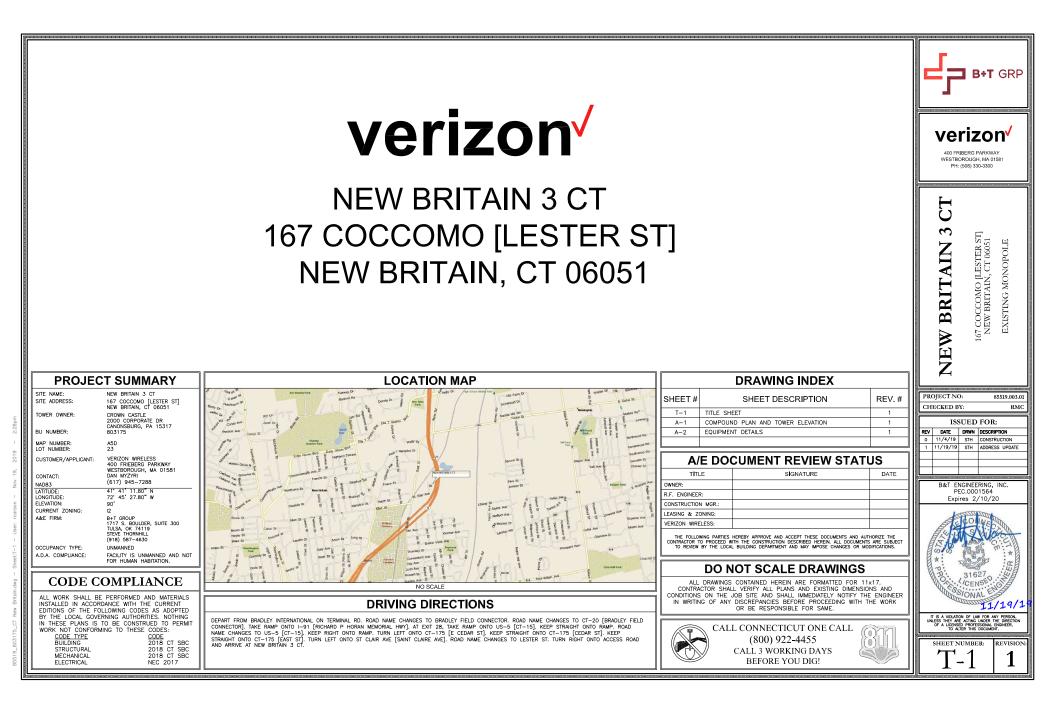
Outbuildings

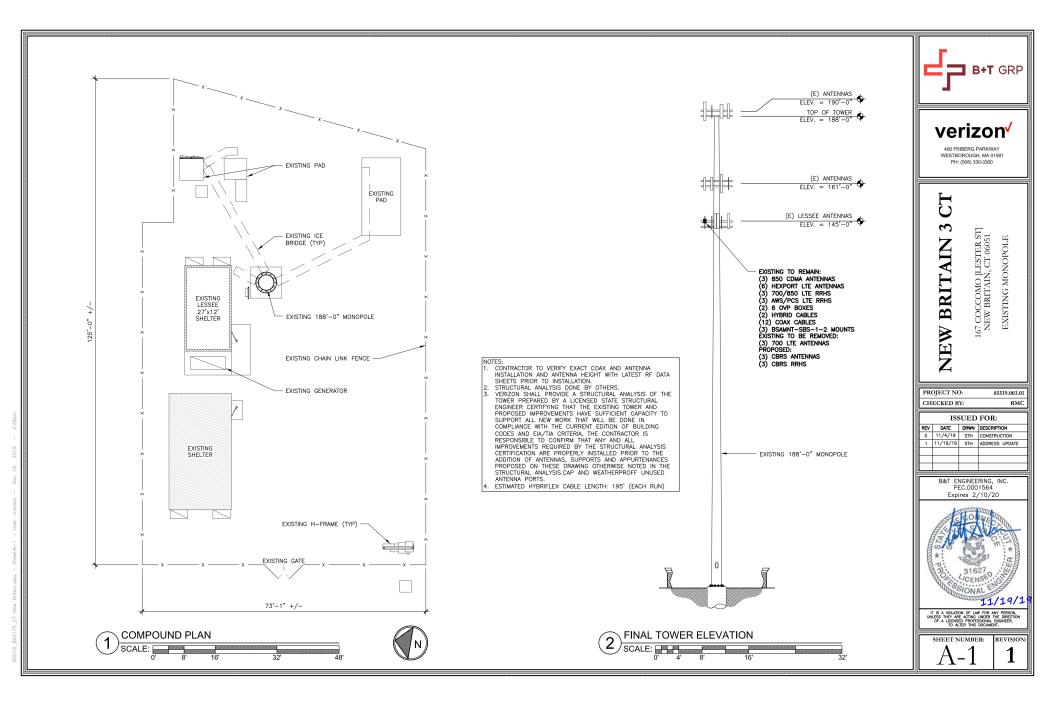
	Outbuildings	<u>Legend</u>
r	No Data for Outbuildings	

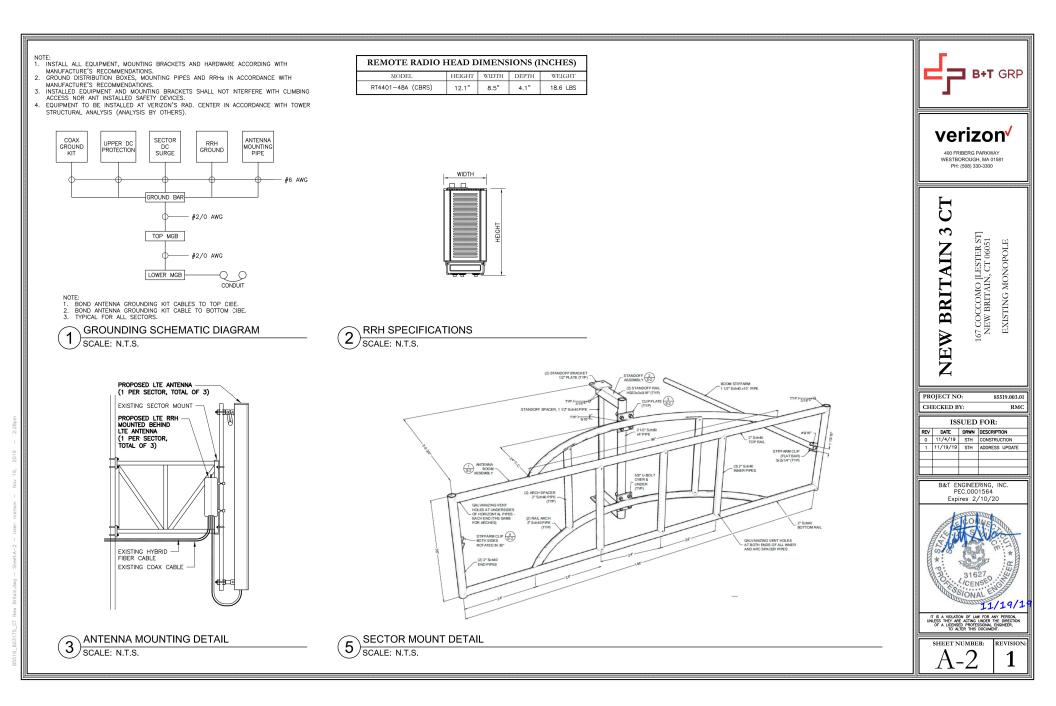

Valuation History

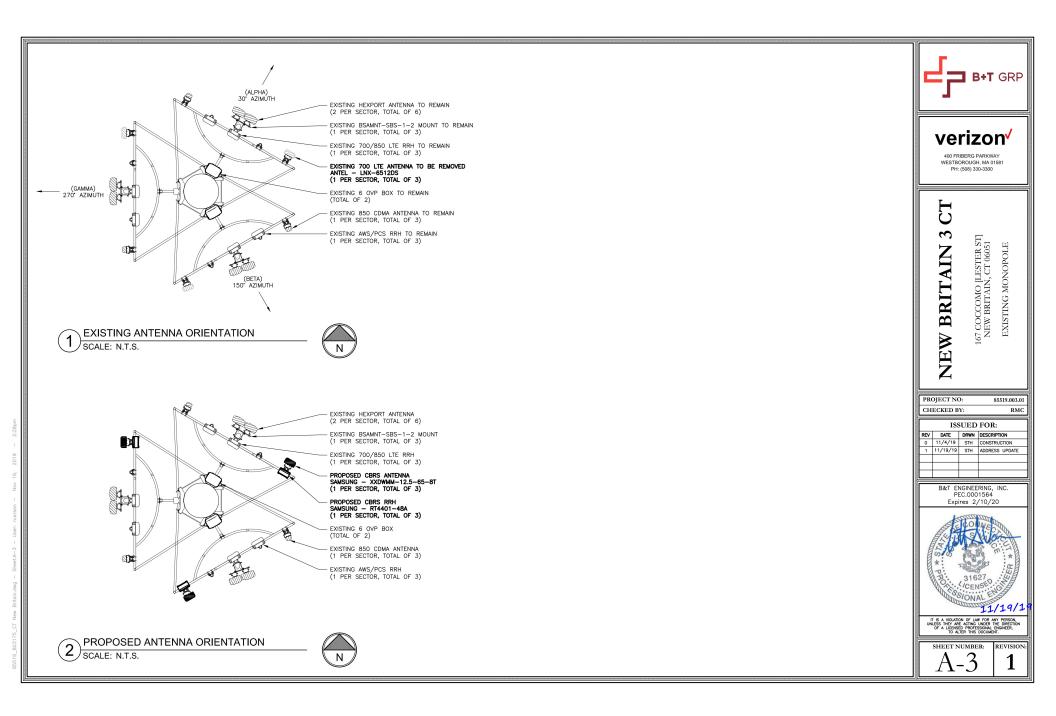
Appraisal					
Valuation Year	Improvements	Land	Total		
2018	\$47,400	\$36,000	\$83,400		
2017	\$47,400	\$36,000	\$83,400		
2016	\$39,900	\$32,800	\$72,700		

Assessment					
Valuation Year	Improvements	Land	Total		
2018	\$33,180	\$25,200	\$58,380		
2017	\$33,180	\$25,200	\$58,380		
2016	\$27,930	\$22,960	\$50,890		


(c) 2019 Vision Government Solutions, Inc. All rights reserved.


,




Exhibit C

Construction Drawings

Exhibit D

Structural Analysis Report

Date: October 31, 2019

Amanda D. Brown Crown Castle 3530 Toringdon Way Charlotte, NC 28277 Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603

(919) 661-6351

Subject: Structural Analysis Report

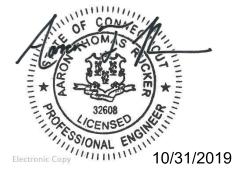
Carrier Designation:	<i>Verizon Wireless</i> Co-Locate Carrier Site Number: Carrier Site Name:	NG34002 New Britain 3 CT
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Work Order Number: Crown Castle Order Number:	803175 CT New Britain 3 CAC 803175 592793 1803366 506855 Rev. 0
Engineering Firm Designation:	TEP Project Number:	25666.318391
Site Data:	167 Coccomo, New Britain, Hartford County, CT 06051 Latitude <i>41° 41' 11.80''</i> , Longitude <i>-72° 45' 27.80''</i> 188 Foot - Monopole Tower	

Dear Amanda D. Brown,

Tower Engineering Professionals is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration


Structure CapacityFoundation Capacity79.7%83.5%

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Evan Bosshart, EIT / JLW

Respectfully submitted by:

Aaron T. Rucker, P.E.

Sufficient Capacity

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 - Tower Component Stresses vs. Capacity 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 188-ft monopole tower designed by Paul J. Ford and Company. All information provided to TEP was assumed to be accurate and complete.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	125 mph
Exposure Category:	С
Topographic Factor:	1.0
Ice Thickness:	2.0 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Flevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	Amphenol	BXA-80063-6BF-EDIN-4 w/ Mount Pipe		
		6	Andrew	SBNHH-1D65B w/ Mount Pipe		
	3	Samsung Telecommunications	CBRS w/ Mount Pipe			
146.0	149.0	3	Samsung Telecommunications	20W CBRS	14	1-5/8
146.0	3	Samsung Telecommunications	RFV01U-D1A		1-5/6	
	3	Samsung Telecommunications	RFV01U-D2A			
		3	Amor Tower Engineering	12-ft Arch Frame Mount		
	145.0	2	Raycap	RHSDC-3315-PF-48		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)									
		3	Kathrein	800 10121 w/ Mount Pipe											
		1	CCI Antennas	OPA-65R-LCUU-H4 w/ Mount Pipe	-										
		2	CCI Antennas	OPA-65R-LCUU-H6 w/ Mount Pipe											
	1	Quintel Technology	QS46512-2 w/ Mount Pipe												
	2	Quintel Technology	QS66512-2 w/ Mount Pipe												
	3	Ericsson	RRUS 12												
	190.0	3	Ericsson	RRUS 32 B2	6	1-5/8									
188.0		3	Ericsson	RRUS 32 B30	6	3/4									
					3	Ericsson	RRUS 32 B66	2	3/8						
		3	Ericsson	RRUS-11											
		6	Kathrein	860 10025											
											6	Powerwave Technologies	LGP21401		
	1	Raycap	DC6-48-60-0-8F]											
	2	Raycap	DC6-48-60-18-8F												
	188.0	188.0 1 To	Tower Mounts	Platform Mount [LP 1201-1_KCKR-HR-1]											
	3	3	Ericsson	AIR -32 B2A/B66AA w/ Mount Pipe											
161.0 161.0		3	Ericsson	AIR 3246 B66 w/ 8-ft Mount Pipe											
		3	Ericsson	AIR 6454 B41 w/ Mount Pipe]										
	161.0	3	RFS Celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe	10	1-5/8									
]		3	Ericsson	RADIO 4449 B12/B71											
]		3	Ericsson	RRUS 4415 B25)										
		1	Tower Mounts	Platform Mount [LP 601-1]											
133.0	133.0	1	Tower Mounts	Side Arm Mount [SO 701-3]	-	-									

 Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document Remarks		Reference	Source
Geotechnical Report	Clough, Harbour & Associates LLP	679661	CCISites
Tower Foundation Drawings	Paul J. Ford and Company	679660	CCISites
Foundation Mapping Report	Tower Engineering Professionals	679660	CCISites
Tower Manufacturer Drawings	Paul J. Ford and Company	679659	CCISites

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) The tower and foundation were built and maintained in accordance with the manufacturer's specification.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2, and the referenced drawings.
- 3) All tower components are in sufficient condition to carry their full design capacity.
- 4) Serviceability with respect to antenna twist, tilt, roll, or lateral translation, is not checked and is left to the carrier or tower owner to ensure conformance.
- 5) All antenna mounts and mounting hardware are structurally sufficient to carry the full design capacity requirements of appurtenance wind area and weight as provided by the original manufacturer specifications. It is the carrier's responsibility to ensure compliance to the structural limitations of the existing and/or proposed antenna mounts. TEP did not perform a site visit to verify the size, condition or capacity of the antenna mounts and did not analyze antennas supporting mounts as part of this structural analysis report.
- 6) When applicable, the effective projected area (EPA) of appurtenances was determined by computation fluid dynamics (CFD) testing performed by Crown Castle. TEP assumes the means and methods used to determine the EPA's yields results that follow the intent of TIA-222-H and are accurate and complete.

This analysis may be affected if any assumptions are not valid or have been made in error. Tower Engineering Professionals should be notified to determine the effect on the structural integrity of the tower.

						1	1	
Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	ΦP _{allow} (K)	% Capacity	Pass / Fail
L1	188 - 137	Pole	TP32.711x22x0.25	1	-14.72	1538.67	57.6	Pass
L2	137 - 90.25	Pole	TP42.03x31.3184x0.3125	2	-24.72	2474.49	79.7	Pass
L3	90.25 - 44.5	Pole	TP51.014x40.3023x0.375	3	-38.27	3602.47	79.6	Pass
L4	44.5 - 0	Pole	TP59.61x48.8988x0.5	4	-61.10	5762.13	63.3	Pass
							Summary	
						Pole (L2)	79.7	Pass
						RATING =	79.7	Pass

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

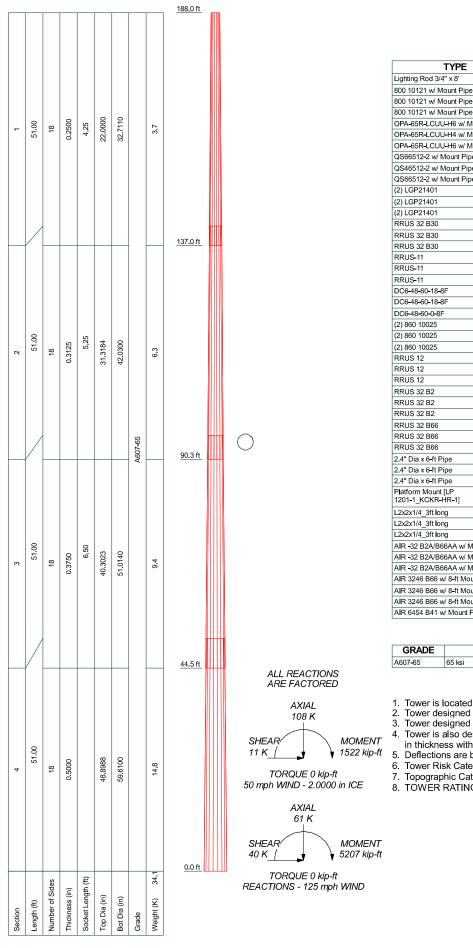
Table 5 - Tower Com	ponent Stresses	vs. Capacity	v – LC7
		toi oupuon	,

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1,2	Anchor Rods	-	74.1	Pass
1,2	Base Plate	-	67.9	Pass
1,2	Base Foundation Soil Interaction	-	83.5	Pass
1,2	Base Foundation Structural	-	51.9	Pass

Structure Rating (max from all components) =	83.5%
--	-------

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the % capacity listed.


2) Rating per TIA-222-H Section 15.5

4.1) Recommendations

- 1) If the load differs from that described in Tables 1 and 2 of this report, the referenced drawings, or the provisions of this analysis are found to be invalid, another structural analysis should be performed.
- 2) The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

ELEVATION ELEVATION TYPF 188 AIR 6454 B41 w/ Mount Pipe 161 800 10121 w/ Mount Pipe 188 AIR 6454 B41 w/ Mount Pipe 161 APXVAARR24 43-U-NA20 w/ Mount 188 161 Pipe 188 APXVAARR24_43-U-NA20 w/ Mount 161 OPA-65R-LCUU-H6 w/ Mount Pipe 188 Pipe OPA-65R-LCUU-H4 w/ Mount Pipe 188 APXVAARR24_43-U-NA20 w/ Mount 161 OPA-65R-LCUU-H6 w/ Mount Pipe 188 Pipe QS66512-2 w/ Mount Pipe 188 RADIO 4449 B12/B71 161 QS46512-2 w/ Mount Pipe 188 RADIO 4449 B12/B71 161 QS66512-2 w/ Mount Pipe 188 RADIO 4449 B12/B71 161 188 RRUS 4415 B25 161 188 RRUS 4415 B25 161 188 RRUS 4415 B25 161 188 Platform Mount [LP 601-1] 161 188 (2) SBNHH-1D65B w/ Mount Pipe 146 188 (2) SBNHH-1D65B w/ Mount Pipe 146 188 (2) SBNHH-1D65B w/ Mount Pipe 146 188 BXA-80063-6BF-EDIN-4 w/ Mount Pipe 146 188 BXA-80063-6BF-EDIN-4 w/ Mount Pipe 146 188 BXA-80063-6BF-EDIN-4 w/ Mount Pipe 146 188 CBRS w/ Mount Pipe 146 188 CBRS w/ Mount Pipe 146 188 CBRS w/ Mount Pipe 146 188 (2) RFV01U-D2A 146 188 RFV01U-D2A 146 188 RFV01U-D1A 146 188 (2) RFV01U-D1A 146 188 RHSDC-3315-PF-48 146 188 RHSDC-3315-PF-48 146 188 146 20W CBRS 188 20W CBRS 146 188 20W CBRS 146 188 (2) Side Arm Mount [SO 102-3] 146 188 Sector Mount [SM 801-3] 146 188 133 Side Arm Mount [SO 701-3] 188 1" Dia x 3.5-ft 100 188 1" Dia x 3.5-ft 100 188 1" Dia x 3.5-ft 100 1" Dia x 3.5-ft 70 188 1" Dia x 3.5-fi 70 188 1" Dia x 3.5-ft 70 188 1" Dia x 3.5-ft 40 AIR -32 B2A/B66AA w/ Mount Pipe 161 1" Dia x 3.5-ft 40 AIR -32 B2A/B66AA w/ Mount Pipe 161 1" Dia x 3.5-ft 40 AIR -32 B2A/B66AA w/ Mount Pipe 161 1" Dia x 3.5-ft 10 AIR 3246 B66 w/ 8-ft Mount Pipe 161 1" Dia x 3.5-ft 10 AIR 3246 B66 w/ 8-ft Mount Pipe 161 1" Dia x 3.5-ft 10 AIR 3246 B66 w/ 8-ft Mount Pipe 161 AIR 6454 B41 w/ Mount Pipe 161

DESIGNED APPURTENANCE LOADING

MATERIAL STRENGTH

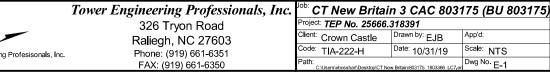
RADE	Fy	Fu	GRADE	Fy	Fu	
'- 65	65 ksi	80 ksi				

TOWER DESIGN NOTES

1. Tower is located in Hartford County, Connecticut.

Tower designed for Exposure C to the TIA-222-H Standard.

Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.


Tower is also designed for a 50 mph basic wind with 2.00 in ice. Ice is considered to increase in thickness with height.

Deflections are based upon a 60 mph wind.

Tower Risk Category II.

7. Topographic Category 1 with Crest Height of 0.00 ft

8. TOWER RATING: 79.7%

Fower Engineering Profesisonals, Inc.

13:15:00 10/31/19

EJB

Designed by

Tower Engineering Professionals, Inc. 326 Tryon Road Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

Job

Client

Tower Input Data

TEP No. 25666.318391

Crown Castle

The tower is a monopole.

This tower is designed using the TIA-222-H standard. The following design criteria apply: Tower is located in Hartford County, Connecticut. Tower base elevation above sea level: 88.00 ft. Basic wind speed of 125 mph. Risk Category II. Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.00 ft.

Nominal ice thickness of 2.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.05.

Tower analysis based on target reliabilities in accordance with Annex S.

Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

 $\sqrt{}$

Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform

- Assume Legs Pinned
- Assume Rigid Index Plate Use Clear Spans For Wind Area Use Clear Spans For KL/r
- Retension Guys To Initial Tension
- Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients Project Wind Area of Appurt.
- Autocalc Torque Arm Areas Add IBC .6D+W Combination
- Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption
- Poles Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

tnxTower	Job C	T New Britain 3 CAC 803175 (BU 803175)	Page 2 of 19
Tower Engineering Professionals, Inc. 326 Tryon Road Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350	Project	TEP No. 25666.318391	Date 13:15:00 10/31/19
	Client	Crown Castle	Designed by EJB

Sec	tion	Elevation	Section Length	Splice Length	Number	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
		ft	Length ft	ft	of Sides	in	in	in	in	
L	1	188.00-137.00	51.00	4.25	18	22.0000	32.7110	0.2500	1.0000	A607-65
L	2	137.00-90.25	51.00	5.25	18	31.3184	42.0300	0.3125	1.2500	(65 ksi) A607-65
_	-									(65 ksi)
L	3	90.25-44.50	51.00	6.50	18	40.3023	51.0140	0.3750	1.5000	A607-65
L	4	44.50-0.00	51.00		18	48.8988	59.6100	0.5000	2.0000	(65 ksi) A607-65
										(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	Ι	r	С	I/C	J	It/Q	w	w/t	
	in	in^2	in^4	in	in	in ³	in⁴	in^2	in		
L1	22.3008	17.2586	1031.483	32 7.7212	11.1760	92.2945	2064.3237	8.6310	3.43	20 13.728	3
	33.1771	25.7578	3429.020	11.5237	16.6172	206.3538	6862.5527	12.8813	5.31	71 21.269)
L2	32.6597	30.7540	3735.322	11.0071	15.9098	234.7819	7475.5606	15.3799	4.96	20 15.879)
	42.6302	41.3785	9098.068	88 14.8097	21.3512	426.1143	18208.1091	20.6932	6.84	73 21.91	
L3	41.9859	47.5235	9571.647	14.1742	20.4736	467.5120	19155.8887	23.7663	6.43	32 17.155	5
	51.7431	60.2731	19526.79	66 17.9768	25.9151	753.4907	39079.2871	30.1423	8.31	85 22.183	3
L4	50.9622	76.8089	22730.96	30 17.1816	24.8406	915.0736	45491.8360	38.4117	7.72	62 15.452	2
	60.4524	93.8076	41409.23	95 20.9841	30.2819	1367.4593	82872.9664	46.9127	9.61	14 19.223	3
Tower	Gusse	et	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mi	ult. Double	e Angle	Double Angle	Double Angl
Elevation	ı Area	T	hickness		A_f	Factor		Stitcl	h Bolt	Stitch Bolt	Stitch Bolt
	(per fac	ce)				A_r		Spa	cing	Spacing	Spacing
								Diag	onals	Horizontals	Redundants
ft	ft ²		in					i	n	in	in
L1					1	1	1				

Feed Line/Linear Appurtenances - Entered As Round Or Flat

1

1

1

1

1

1

Description	Sector	Exclude From	Component Type	Placement	Total Number	Number Per Row	Start/End Position	Width or Diameter	Perimeter	Weigh
		Torque Calculation		ft				in	in	plf

Safety Line 3/8	С	No	Surface Ar (CaAa)	188.00 - 0.00	1	1	$0.500 \\ 0.500$	0.3750		0.22
3/8-in Detuner Wire	А	No	Surface Ar (CaAa)	133.00 - 0.00	1	1	$0.500 \\ 0.500$	0.3750		0.10
3/8-in Detuner Wire	В	No	Surface Ar (CaAa)	133.00 - 0.00	1	1	0.250 0.250	0.3750		0.10
3/8-in Detuner Wire	С	No	Surface Ar (CaAa)	133.00 - 0.00	1	1	0.000 0.000	0.3750		0.10

1

1

L2

137.00-90.25 L3 90.25-44.50 L4 44.50-0.00

Tower Engineering Professionals, Inc.

326 Tryon Road Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	CT New Britain 3 CAC 803175 (BU 803175)	3 of 19
Project	TEP No. 25666.318391	Date 13:15:00 10/31/19
Client	Crown Castle	Designed by

EJB

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation		ft			ft²/ft	plf
*188	р	м.	N.	L	188.00 0.00	C	NT: T	0.00	0.92
LDF7-50A(1-5/8")	В	No	No	Inside Pole	188.00 - 0.00	6	No Ice 1/2" Ice	0.00	0.82 0.82
							1/2" Ice	$\begin{array}{c} 0.00\\ 0.00\end{array}$	0.82
FB-L98B-002-75000	в	No	No	Inside Pole	188.00 - 0.00	1	2" Ice No Ice	0.00	0.82 0.06
	в	NO	INO	Inside Pole	188.00 - 0.00	1	1/2" Ice	$\begin{array}{c} 0.00\\ 0.00\end{array}$	0.06
(3/8")							1/2" Ice		
								0.00	0.06
CD LOOD 002 75000	D	NT.	NL.	Leside Dela	100.00 0.00	1	2" Ice	0.00	0.06
FB-L98B-002-75000	В	No	No	Inside Pole	188.00 - 0.00	1	No Ice	0.00	0.06
(3/8")							1/2" Ice	0.00	0.06
							1" Ice	0.00	0.06
	р		N 7	T '1 D '	100.00 0.00	•	2" Ice	0.00	0.06
WR-VG86ST-BRD(В	No	No	Inside Pole	188.00 - 0.00	2	No Ice	0.00	0.58
3/4")							1/2" Ice	0.00	0.58
							1" Ice	0.00	0.58
							2" Ice	0.00	0.58
2" Flex Conduit	В	No	No	Inside Pole	188.00 - 0.00	1	No Ice	0.00	0.36
							1/2" Ice	0.00	0.36
							1" Ice	0.00	0.36
							2" Ice	0.00	0.36
2" Flex Conduit	в	No	No	Inside Pole	188.00 - 0.00	1	No Ice	0.00	0.36
							1/2" Ice	0.00	0.36
							1" Ice	0.00	0.36
							2" Ice	0.00	0.36
WR-VG86ST-BRD(в	No	No	Inside Pole	188.00 - 0.00	4	No Ice	0.00	0.58
3/4")							1/2" Ice	0.00	0.58
							1" Ice	0.00	0.58
							2" Ice	0.00	0.58
161									
LCF158-50J(1-5/8")	С	No	No	Inside Pole	161.00 - 0.00	6	No Ice	0.00	0.92
							1/2" Ice	0.00	0.92
							1" Ice	0.00	0.92
							2" Ice	0.00	0.92
HCS 6X12	С	No	No	Inside Pole	161.00 - 0.00	4	No Ice	0.00	2.40
4AWG(1-5/8")							1/2" Ice	0.00	2.40
							1" Ice	0.00	2.40
							2" Ice	0.00	2.40
146									
HB158-1-08U8-S8J	С	No	No	Inside Pole	146.00 - 0.00	2	No Ice	0.00	1.30
18(1-5/8")							1/2" Ice	0.00	1.30
							1" Ice	0.00	1.30
							2" Ice	0.00	1.30
LCF158-50J(1-5/8")	С	No	No	Inside Pole	146.00 - 0.00	12	No Ice	0.00	0.92
	-						1/2" Ice	0.00	0.92
							1" Ice	0.00	0.92
							2" Ice	0.00	0.92

CT New Britain 3 CAC 803175 (BU 803175)

Tower Engineering Professionals, Inc. 326 Tryon Road Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25666.318391

Page 4 of 19 Date 13:15:00 10/31/19

Crown Castle

Designed by EJB

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	K
L1	188.00-137.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.47
		С	0.000	0.000	1.912	0.000	0.50
L2	137.00-90.25	А	0.000	0.000	1.603	0.000	0.00
		В	0.000	0.000	1.603	0.000	0.44
		С	0.000	0.000	3.356	0.000	1.36
L3	90.25-44.50	А	0.000	0.000	1.716	0.000	0.00
		В	0.000	0.000	1.716	0.000	0.43
		С	0.000	0.000	3.431	0.000	1.33
L4	44.50-0.00	А	0.000	0.000	1.669	0.000	0.00
		В	0.000	0.000	1.669	0.000	0.42
		С	0.000	0.000	3.337	0.000	1.29

Job

Project

Client

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft²	ft ²	Κ
L1	188.00-137.00	А	1.992	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.47
		С		0.000	0.000	22.231	0.000	0.79
L2	137.00-90.25	А	1.922	0.000	0.000	18.635	0.000	0.25
		В		0.000	0.000	18.635	0.000	0.68
		С		0.000	0.000	39.013	0.000	1.87
L3	90.25-44.50	А	1.825	0.000	0.000	19.306	0.000	0.25
		В		0.000	0.000	19.306	0.000	0.67
		С		0.000	0.000	38.611	0.000	1.82
L4	44.50-0.00	А	1.636	0.000	0.000	17.909	0.000	0.22
		В		0.000	0.000	17.909	0.000	0.63
		С		0.000	0.000	35.818	0.000	1.73

	Feed Line Center of Pressure									
Section	Elevation	CP_X	CP ₇	CP_X	CP _Z					
Section	Elevation		ΟΓZ	Ice	Ice					
	ft	in	in	in	in					
L1	188.00-137.00	-0.2610	0.1507	-1.4506	0.8375					
L2	137.00-90.25	0.0170	0.1446	0.0827	0.7052					
L3	90.25-44.50	0.0390	0.1455	0.1948	0.7271					
L4	44.50-0.00	0.0393	0.1465	0.1976	0.7375					

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

CT New Britain 3 CAC 803175 (BU 803175)

Tower Engineering Professionals, Inc. 326 Tryon Road Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25666.318391

Page 5 of 19 Date 13:15:00 10/31/19

Crown Castle

Designed by EJB

Tower	Feed Line	Description	Feed Line	K_{a}	K_a
Section	Record No.	*	Segment Elev.	No Ice	Ice
L1	25	Safety Line 3/8	137.00 -	1.0000	1.0000
			188.00		
L1	27	3/8-in Detuner Wire	137.00 -	1.0000	1.0000
			133.00		
L1	28	3/8-in Detuner Wire	137.00 -	1.0000	1.0000
			133.00		
L1	29	3/8-in Detuner Wire	137.00 -	1.0000	1.0000
			133.00		
L2	25	Safety Line 3/8		1.0000	1.0000
L2	27	3/8-in Detuner Wire	90.25 - 133.00	1.0000	1.0000
L2	28	3/8-in Detuner Wire	90.25 - 133.00	1.0000	1.0000
L2	29	3/8-in Detuner Wire	90.25 - 133.00	1.0000	1.0000
L3	25	Safety Line 3/8	44.50 - 90.25	1.0000	1.0000
L3	27	3/8-in Detuner Wire	44.50 - 90.25	1.0000	1.0000
L3	28	3/8-in Detuner Wire		1.0000	1.0000
L3	29	3/8-in Detuner Wire	44.50 - 90.25	1.0000	1.0000

Job

Project

Client

Discrete Tower Loads									
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	Κ
Lighting Rod 3/4" x 8'	С	From Leg	0.00 0.00 4.00	0.0000	188.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.60 1.41 2.25 3.67	0.60 1.41 2.25 3.67	0.03 0.04 0.05
188						2 th Ice	3.07	3.07	0.09
800 10121 w/ Mount Pipe	А	From Centroid-Fa ce	4.00 0.00 2.00	0.0000	188.00	No Ice 1/2" Ice 1" Ice 2" Ice	3.60 4.00 4.42 5.29	2.95 3.34 3.74 4.59	0.07 0.11 0.17 0.30
800 10121 w/ Mount Pipe	В	From Centroid-Fa ce	4.00 0.00 2.00	0.0000	188.00	No Ice 1/2" Ice 1" Ice	3.60 4.00 4.42	2.95 3.34 3.74	0.07 0.11 0.17
800 10121 w/ Mount Pipe	С	From Centroid-Fa ce	4.00 0.00 2.00	0.0000	188.00	2" Ice No Ice 1/2" Ice 1" Ice	5.29 3.60 4.00 4.42	4.59 2.95 3.34 3.74	0.30 0.07 0.11 0.17
OPA-65R-LCUU-H6 w/ Mount Pipe	А	From Centroid-Fa ce	4.00 0.00 2.00	0.0000	188.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	5.29 9.19 9.94 10.71 12.30	4.59 6.21 6.93 7.66 9.17	0.30 0.11 0.18 0.26 0.45
OPA-65R-LCUU-H4 w/ Mount Pipe	В	From Centroid-Fa ce	4.00 0.00 2.00	0.0000	188.00	2 Ice No Ice 1/2" Ice 1" Ice 2" Ice	6.18 6.57 6.98 7.82	4.55 5.16 5.78 7.07	0.43 0.08 0.13 0.19 0.33
OPA-65R-LCUU-H6 w/ Mount Pipe	С	From Centroid-Fa ce	4.00 0.00 2.00	0.0000	188.00	No Ice 1/2" Ice 1" Ice 2" Ice	9.19 9.94 10.71 12.30	6.21 6.93 7.66 9.17	0.33 0.11 0.18 0.26 0.45

Job

Project

Client

CT New Britain 3 CAC 803175 (BU 803175)

Page 6 of 19

Date

Tower Engineering Professionals, Inc. 326 Tryon Road Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25666.318391

Crown Castle

Designed by EJB

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg	~ 1	Lateral	0					
			Vert	0	0		c2	c2	V
			ft ft	0	ft		ft ²	ft^2	K
			ft						
QS66512-2 w/ Mount Pipe	А	From	4.00	0.0000	188.00	No Ice	4.04	4.18	0.14
		Centroid-Fa	0.00			1/2" Ice	4.42	4.57	0.21
		ce	2.00			1" Ice	4.82	4.97	0.29
	р	Б	1.00	0.0000	100.00	2" Ice	5.63	5.79	0.48
QS46512-2 w/ Mount Pipe	В	From Centroid-Fa	$4.00 \\ 0.00$	0.0000	188.00	No Ice 1/2" Ice	5.79 6.21	5.88 6.58	0.12 0.18
		ce	2.00			172 Ice 1" Ice	6.62	7.25	0.18
		66	2.00			2" Ice	7.48	8.65	0.39
QS66512-2 w/ Mount Pipe	С	From	4.00	0.0000	188.00	No Ice	4.04	4.18	0.14
` '		Centroid-Fa	0.00			1/2" Ice	4.42	4.57	0.21
		ce	2.00			1" Ice	4.82	4.97	0.29
						2" Ice	5.63	5.79	0.48
(2) LGP21401	А	From	4.00	0.0000	188.00	No Ice	1.10	0.21	0.01
		Centroid-Fa	0.00			1/2" Ice	1.24	0.27	0.02
		ce	2.00			1" Ice 2" Ice	1.38 1.69	0.35 0.52	0.03 0.05
(2) LGP21401	В	From	4.00	0.0000	188.00	No Ice	1.09	0.32	0.03
(2) LOI 21401	Б	Centroid-Fa	0.00	0.0000	100.00	1/2" Ice	1.10	0.21	0.01
		ce	2.00			1" Ice	1.38	0.35	0.03
						2" Ice	1.69	0.52	0.05
(2) LGP21401	С	From	4.00	0.0000	188.00	No Ice	1.10	0.21	0.01
		Centroid-Fa	0.00			1/2" Ice	1.24	0.27	0.02
		ce	2.00			1" Ice	1.38	0.35	0.03
		-				2" Ice	1.69	0.52	0.05
RRUS 32 B30	А	From Control I Fo	4.00	0.0000	188.00	No Ice	2.74	1.67	0.05
		Centroid-Fa ce	$0.00 \\ 2.00$			1/2" Ice 1" Ice	2.96 3.19	1.86 2.05	$\begin{array}{c} 0.07\\ 0.10\end{array}$
		Ce	2.00			2" Ice	3.68	2.05	0.16
RRUS 32 B30	В	From	4.00	0.0000	188.00	No Ice	2.74	1.67	0.05
		Centroid-Fa	0.00			1/2" Ice	2.96	1.86	0.07
		ce	2.00			1" Ice	3.19	2.05	0.10
						2" Ice	3.68	2.46	0.16
RRUS 32 B30	С	From	4.00	0.0000	188.00	No Ice	2.74	1.67	0.05
		Centroid-Fa	0.00			1/2" Ice	2.96	1.86	0.07
		ce	2.00			1" Ice	3.19	2.05	0.10
DDUC 11		Enom	4.00	0.0000	188.00	2" Ice No Ice	3.68 2.79	2.46 1.19	0.16
RRUS-11	А	From Centroid-Fa	4.00 0.00	0.0000	188.00	1/2" Ice	3.00	1.19	0.05 0.07
		ce	2.00			172 Ice	3.21	1.50	0.10
			2.00			2" Ice	3.67	1.84	0.15
RRUS-11	В	From	4.00	0.0000	188.00	No Ice	2.79	1.19	0.05
		Centroid-Fa	0.00			1/2" Ice	3.00	1.34	0.07
		ce	2.00			1" Ice	3.21	1.50	0.10
	-	_				2" Ice	3.67	1.84	0.15
RRUS-11	С	From	4.00	0.0000	188.00	No Ice	2.79	1.19	0.05
		Centroid-Fa	0.00			1/2" Ice	3.00	1.34	0.07
		ce	2.00			1" Ice 2" Ice	3.21 3.67	1.50 1.84	0.10 0.15
DC6-48-60-18-8F	В	From	4.00	0.0000	188.00	No Ice	1.21	1.84	0.13
DC0 +0 00-10-01	Ъ	Centroid-Fa	0.00	0.0000	100.00	1/2" Ice	1.89	1.89	0.05
		ce	2.00			1" Ice	2.11	2.11	0.08
		-				2" Ice	2.57	2.57	0.14
DC6-48-60-18-8F	в	From	4.00	0.0000	188.00	No Ice	1.21	1.21	0.03
		Centroid-Fa	0.00			1/2" Ice	1.89	1.89	0.05
		ce	2.00			1" Ice	2.11	2.11	0.08
	~	г	4.00	0.0000	100.00	2" Ice	2.57	2.57	0.14
DC6-48-60-0-8F	С	From	4.00	0.0000	188.00	No Ice	2.20	2.20	0.03

Job

Project

Client

CT New Britain 3 CAC 803175 (BU 803175)

Page

Date

Tower Engineering *Professionals, Inc.* 326 Tryon Road Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25666.318391

Crown Castle

Designed by EJB

13:15:00 10/31/19

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral						
			Vert G	0	ft		ft ²	ft ²	K
			ft ft		л		л	Ji	Л
			ft						
		Centroid-Fa	0.00			1/2" Ice	2.40	2.40	0.06
		ce	2.00			1" Ice	2.60	2.60	0.08
(2) 9(0 10025		Г	1.00	0.0000	100.00	2" Ice	3.04	3.04	0.14
(2) 860 10025	А	From Centroid-Fa	4.00 0.00	0.0000	188.00	No Ice 1/2" Ice	0.14 0.19	0.12 0.17	$\begin{array}{c} 0.00\\ 0.00\end{array}$
		centroid-ra	2.00			172 Ice	0.19	0.17	0.00
			2.00			2" Ice	0.20	0.25	0.01
(2) 860 10025	В	From	4.00	0.0000	188.00	No Ice	0.14	0.12	0.00
		Centroid-Fa	0.00			1/2" Ice	0.19	0.17	0.00
		ce	2.00			1" Ice	0.25	0.23	0.01
						2" Ice	0.40	0.37	0.01
(2) 860 10025	С	From	4.00	0.0000	188.00	No Ice	0.14	0.12	0.00
		Centroid-Fa	0.00			1/2" Ice	0.19	0.17	0.00
		ce	2.00			1" Ice	0.25	0.23	0.01
RRUS 12	٨	From	4.00	0.0000	188.00	2" Ice No Ice	0.40 3.15	0.37 1.29	0.01 0.06
KKU5 12	А	Centroid-Fa	4.00 0.00	0.0000	188.00	1/2" Ice	3.36	1.29	0.08
		ce	2.00			1" Ice	3.59	1.60	0.11
			2.00			2" Ice	4.07	1.95	0.17
RRUS 12	В	From	4.00	0.0000	188.00	No Ice	3.15	1.29	0.06
		Centroid-Fa	0.00			1/2" Ice	3.36	1.44	0.08
		ce	2.00			1" Ice	3.59	1.60	0.11
						2" Ice	4.07	1.95	0.17
RRUS 12	С	From	4.00	0.0000	188.00	No Ice	3.15	1.29	0.06
		Centroid-Fa	0.00			1/2" Ice	3.36	1.44	0.08
		ce	2.00			1" Ice 2" Ice	3.59	1.60 1.95	0.11 0.17
RRUS 32 B2	А	From	4.00	0.0000	188.00	No Ice	4.07 2.73	1.93	0.17
KKU3 52 B2	A	Centroid-Fa	0.00	0.0000	188.00	1/2" Ice	2.95	1.86	0.05
		ce	2.00			1" Ice	3.18	2.05	0.10
						2" Ice	3.66	2.46	0.16
RRUS 32 B2	В	From	4.00	0.0000	188.00	No Ice	2.73	1.67	0.05
		Centroid-Fa	0.00			1/2" Ice	2.95	1.86	0.07
		ce	2.00			1" Ice	3.18	2.05	0.10
						2" Ice	3.66	2.46	0.16
RRUS 32 B2	С	From	4.00	0.0000	188.00	No Ice	2.73	1.67	0.05
		Centroid-Fa	0.00			1/2" Ice	2.95	1.86	0.07
		ce	2.00			1" Ice 2" Ice	3.18 3.66	2.05 2.46	0.10 0.16
RRUS 32 B66	А	From	4.00	0.0000	188.00	No Ice	2.74	1.67	0.05
KK05 52 D00	11	Centroid-Fa	0.00	0.0000	188.00	1/2" Ice	2.96	1.86	0.07
		ce	2.00			1" Ice	3.19	2.05	0.10
						2" Ice	3.68	2.46	0.16
RRUS 32 B66	В	From	4.00	0.0000	188.00	No Ice	2.74	1.67	0.05
		Centroid-Fa	0.00			1/2" Ice	2.96	1.86	0.07
		ce	2.00			1" Ice	3.19	2.05	0.10
	~	_				2" Ice	3.68	2.46	0.16
RRUS 32 B66	С	From	4.00	0.0000	188.00	No Ice	2.74	1.67	0.05
		Centroid-Fa	0.00			1/2" Ice 1" Ice	2.96	1.86	0.07
		ce	2.00			1" Ice 2" Ice	3.19 3.68	2.05 2.46	0.10 0.16
2.4" Dia x 6-ft Pipe	А	From	4.00	0.0000	188.00	No Ice	1.43	1.43	0.10
2.1 Smronipe	11	Centroid-Fa	0.00	0.0000	100.00	1/2" Ice	1.93	1.43	0.02
		ce	2.00			1" Ice	2.30	2.30	0.05
						2" Ice	3.06	3.06	0.09
2.4" Dia x 6-ft Pipe	В	From	4.00	0.0000	188.00	No Ice	1.43	1.43	0.02
		Centroid-Fa	0.00			1/2" Ice	1.93	1.93	0.03

7 of 19

Job

Project

Client

CT New Britain 3 CAC 803175 (BU 803175)

Page 8 of 19

Date

Tower Engineering Professionals, Inc. 326 Tryon Road Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25666.318391

Crown Castle

Designed by EJB

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Vert ft ft	٥	ft		ft²	ft ²	K
		ce				1" Ice	2.30	2.30	0.05
		tt	2.00			2" Ice	3.06	3.06	0.09
2.4" Dia x 6-ft Pipe	С	From	4.00	0.0000	188.00	No Ice	1.43	1.43	0.02
I I I		Centroid-Fa	0.00			1/2" Ice	1.93	1.93	0.03
		ce	2.00			1" Ice	2.30	2.30	0.05
						2" Ice	3.06	3.06	0.09
Platform Mount [LP	С	None		0.0000	188.00	No Ice	37.61	37.61	2.63
1201-1_KCKR-HR-1]						1/2" Ice	45.62	45.62	3.48
						1" Ice	53.59	53.59	4.46
						2" Ice	69.65	69.65	6.85
L2x2x1/4_3ft long	А	From	4.00	0.0000	188.00	No Ice	0.88	0.88	0.01
		Centroid-Fa	0.00			1/2" Ice	1.10	1.10	0.02
		ce	2.00			1" Ice	1.33	1.33	0.02
						2" Ice	1.81	1.81	0.05
L2x2x1/4_3ft long	в	From	4.00	0.0000	188.00	No Ice	0.88	0.88	0.01
		Centroid-Fa	0.00			1/2" Ice	1.10	1.10	0.02
		ce	2.00			1" Ice	1.33	1.33	0.02
	~	-			100.00	2" Ice	1.81	1.81	0.05
L2x2x1/4_3ft long	С	From	4.00	0.0000	188.00	No Ice	0.88	0.88	0.01
		Centroid-Fa	0.00			1/2" Ice	1.10	1.10	0.02
		ce	2.00			1" Ice	1.33	1.33	0.02
161						2" Ice	1.81	1.81	0.05
		From	4.00	0.0000	161.00	N. I.	675	6.07	0.15
AIR -32 B2A/B66AA w/ Mount Pipe	А	Centroid-Fa	4.00 0.00	0.0000	101.00	No Ice 1/2" Ice	6.75 7.20	6.07 6.87	0.15 0.21
		сепиона-га	0.00			172 Ice	7.65	7.58	0.21
		ce	0.00			2" Ice	8.57	9.06	0.28
AIR -32 B2A/B66AA w/	в	From	4.00	0.0000	161.00	No Ice	6.75	9.00 6.07	0.44
Mount Pipe	Б	Centroid-Fa	0.00	0.0000	101.00	1/2" Ice	7.20	6.87	0.13
would Tipe		centrold-1 a	0.00			172 Ice	7.65	7.58	0.21
		66	0.00			2" Ice	8.57	9.06	0.44
AIR -32 B2A/B66AA w/	С	From	4.00	0.0000	161.00	No Ice	6.75	6.07	0.15
Mount Pipe	e	Centroid-Fa	0.00	0.0000	101.00	1/2" Ice	7.20	6.87	0.21
income repe		ce	0.00			1" Ice	7.65	7.58	0.28
						2" Ice	8.57	9.06	0.44
AIR 3246 B66 w/ 8-ft Mount	Α	From	4.00	0.0000	161.00	No Ice	8.69	7.07	0.21
Pipe		Centroid-Fa	0.00			1/2" Ice	9.42	8.27	0.29
1		ce	0.00			1" Ice	10.09	9.31	0.37
						2" Ice	11.31	11.08	0.56
AIR 3246 B66 w/ 8-ft Mount	в	From	4.00	0.0000	161.00	No Ice	8.69	7.07	0.21
Pipe		Centroid-Fa	0.00			1/2" Ice	9.42	8.27	0.29
		ce	0.00			1" Ice	10.09	9.31	0.37
						2" Ice	11.31	11.08	0.56
AIR 3246 B66 w/ 8-ft Mount	С	From	4.00	0.0000	161.00	No Ice	8.69	7.07	0.21
Pipe		Centroid-Fa	0.00			1/2" Ice	9.42	8.27	0.29
		ce	0.00			1" Ice	10.09	9.31	0.37
						2" Ice	11.31	11.08	0.56
AIR 6454 B41 w/ Mount Pipe	А	From	4.00	0.0000	161.00	No Ice	6.79	3.26	0.14
		Centroid-Fa	0.00			1/2" Ice	7.18	3.76	0.19
		ce	0.00			1" Ice	7.58	4.27	0.25
	-	-		0.000-		2" Ice	8.41	5.35	0.38
AIR 6454 B41 w/ Mount Pipe	В	From	4.00	0.0000	161.00	No Ice	6.79	3.26	0.14
		Centroid-Fa	0.00			1/2" Ice	7.18	3.76	0.19
		ce	0.00			1" Ice	7.58	4.27	0.25
AID (454 D41 - 1)4 - 4 D'	C	E.	4.00	0.0000	161.00	2" Ice	8.41	5.35	0.38
AIR 6454 B41 w/ Mount Pipe	С	From Control Fo	4.00	0.0000	161.00	No Ice	6.79 7.18	3.26	0.14
		Centroid-Fa	0.00			1/2" Ice	7.18	3.76	0.19

Job

Project

Client

CT New Britain 3 CAC 803175 (BU 803175)

Page 9 of 19

Date

Tower Engineering Professionals, Inc. 326 Tryon Road Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25666.318391

Crown Castle

Designed by EJB

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	Leg		Vert						
			ft ft	o	ft		ft²	ft ²	K
						1" Ice	7.59	4.27	0.25
		ce	0.00			2" Ice	7.58 8.41	4.27 5.35	0.25 0.38
APXVAARR24_43-U-NA20	А	From	4.00	0.0000	161.00	No Ice	14.69	6.87	0.18
w/ Mount Pipe	11	Centroid-Fa	0.00	0.0000	101.00	1/2" Ice	15.46	7.55	0.31
w/ would ripe		ce	0.00			172 Ice	16.23	8.25	0.46
			0.000			2" Ice	17.82	9.67	0.79
APXVAARR24_43-U-NA20	в	From	4.00	0.0000	161.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe		Centroid-Fa	0.00			1/2" Ice	15.46	7.55	0.31
1		ce	0.00			1" Ice	16.23	8.25	0.46
						2" Ice	17.82	9.67	0.79
APXVAARR24_43-U-NA20	С	From	4.00	0.0000	161.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe		Centroid-Fa	0.00			1/2" Ice	15.46	7.55	0.31
		ce	0.00			1" Ice	16.23	8.25	0.46
						2" Ice	17.82	9.67	0.79
RADIO 4449 B12/B71	А	From	4.00	0.0000	161.00	No Ice	1.64	1.15	0.07
		Centroid-Fa	0.00			1/2" Ice	1.80	1.29	0.09
		ce	0.00			1" Ice	1.97	1.44	0.11
						2" Ice	2.33	1.75	0.15
RADIO 4449 B12/B71	В	From	4.00	0.0000	161.00	No Ice	1.64	1.15	0.07
		Centroid-Fa	0.00			1/2" Ice	1.80	1.29	0.09
		ce	0.00			1" Ice	1.97	1.44	0.11
	~	-			1 51 00	2" Ice	2.33	1.75	0.15
RADIO 4449 B12/B71	С	From	4.00	0.0000	161.00	No Ice	1.64	1.15	0.07
		Centroid-Fa	0.00			1/2" Ice	1.80	1.29	0.09
		ce	0.00			1" Ice	1.97	1.44	0.11
DDUS 4415 D25	٨	Enom	4.00	0.0000	161.00	2" Ice	2.33	1.75	0.15
RRUS 4415 B25	Α	From Control I Fo	4.00 0.00	0.0000	161.00	No Ice 1/2" Ice	1.64	0.68 0.79	0.04
		Centroid-Fa ce	0.00			172 Ice	1.80 1.97	0.79	0.06 0.07
		LE	0.00			2" Ice	2.33	1.18	0.07
RRUS 4415 B25	в	From	4.00	0.0000	161.00	No Ice	1.64	0.68	0.04
RR05 1113 B23	Б	Centroid-Fa	0.00	0.0000	101.00	1/2" Ice	1.80	0.79	0.06
		ce	0.00			1" Ice	1.97	0.91	0.00
			0.00			2" Ice	2.33	1.18	0.11
RRUS 4415 B25	С	From	4.00	0.0000	161.00	No Ice	1.64	0.68	0.04
		Centroid-Fa	0.00			1/2" Ice	1.80	0.79	0.06
		ce	0.00			1" Ice	1.97	0.91	0.07
						2" Ice	2.33	1.18	0.11
Platform Mount [LP 601-1]	С	None		0.0000	161.00	No Ice	28.50	28.50	1.12
						1/2" Ice	31.69	31.69	1.68
						1" Ice	34.87	34.87	2.28
						2" Ice	41.23	41.23	3.65
146									
(2) SBNHH-1D65B w/	А	From Leg	4.00	0.0000	146.00	No Ice	4.09	3.30	0.07
Mount Pipe			0.00			1/2" Ice	4.49	3.68	0.13
			3.00			1" Ice	4.89	4.07	0.20
	F	- ·	4.00	0.0000	146.00	2" Ice	5.72	4.87	0.39
(2) SBNHH-1D65B w/	В	From Leg	4.00	0.0000	146.00	No Ice	4.09	3.30	0.07
Mount Pipe			0.00			1/2" Ice	4.49	3.68	0.13
			3.00			1" Ice	4.89	4.07	0.20
(1) CDNUUL 1D(CD /	C	E	4.00	0.0000	146.00	2" Ice	5.72	4.87	0.39
(2) SBNHH-1D65B w/	С	From Leg	4.00	0.0000	146.00	No Ice	4.09	3.30	0.07
Mount Pipe			0.00			1/2" Ice 1" Ice	4.49	3.68	0.13
			3.00			1" Ice 2" Ice	4.89	4.07	0.20
							5.72	4.87	0.39
3XA-80063-6BF-EDIN-4 w/	А	From Leg	4.00	0.0000	146.00	No Ice	7.50	5.63	0.04

Job

Project

Client

CT New Britain 3 CAC 803175 (BU 803175)

Page 10 of 19

Date

Tower Engineering Professionals, Inc. 326 Tryon Road Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25666.318391

Crown Castle

Designed by EJB

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weigh
	0		Vert ft ft	0	ft		ft²	ft²	K
			ft						
			3.00			1" Ice	8.53	7.56	0.17
						2" Ice	9.56	9.29	0.33
3XA-80063-6BF-EDIN-4 w/	В	From Leg	4.00	0.0000	146.00	No Ice	7.50	5.63	0.04
Mount Pipe			0.00			1/2" Ice	8.03	6.72	0.10
			3.00			1" Ice	8.53	7.56	0.17
BXA-80063-6BF-EDIN-4 w/	С	E I	4.00	0.0000	146.00	2" Ice No Ice	9.56 7.50	9.29	0.33
Mount Pipe	C	From Leg	4.00	0.0000	146.00	1/2" Ice	8.03	5.63 6.72	0.04 0.10
Mount Pipe			3.00			172 Ice	8.03	0.72 7.56	0.10
			3.00			2" Ice	9.56	9.29	0.17
CBRS w/ Mount Pipe	А	From Leg	4.00	0.0000	146.00	No Ice	1.71	1.17	0.03
CBRS w/ Would Tipe	л	From Leg	0.00	0.0000	140.00	1/2" Ice	1.93	1.17	0.05
			3.00			172 Ice	2.17	1.72	0.05
			5.00			2" Ice	2.66	2.35	0.13
CBRS w/ Mount Pipe	В	From Leg	4.00	0.0000	146.00	No Ice	1.71	1.17	0.03
ebite in filean ripe	2	110111 208	0.00	0.0000	110100	1/2" Ice	1.93	1.44	0.05
			3.00			1" Ice	2.17	1.72	0.07
						2" Ice	2.66	2.35	0.13
CBRS w/ Mount Pipe	С	From Leg	4.00	0.0000	146.00	No Ice	1.71	1.17	0.03
1		e	0.00			1/2" Ice	1.93	1.44	0.05
			3.00			1" Ice	2.17	1.72	0.07
						2" Ice	2.66	2.35	0.13
(2) RFV01U-D2A	Α	From Leg	4.00	0.0000	146.00	No Ice	1.88	1.01	0.07
			0.00			1/2" Ice	2.05	1.14	0.09
			3.00			1" Ice	2.22	1.28	0.11
						2" Ice	2.60	1.59	0.15
RFV01U-D2A	В	From Leg	4.00	0.0000	146.00	No Ice	1.88	1.01	0.07
			0.00			1/2" Ice	2.05	1.14	0.09
			3.00			1" Ice	2.22	1.28	0.11
	_					2" Ice	2.60	1.59	0.15
RFV01U-D1A	в	From Leg	4.00	0.0000	146.00	No Ice	1.88	1.25	0.08
			0.00			1/2" Ice	2.05	1.39	0.10
			3.00			1" Ice	2.22	1.54	0.12
	C	Ensue Las	4.00	0.0000	146.00	2" Ice	2.60	1.86	0.18
(2) RFV01U-D1A	С	From Leg	4.00	0.0000	146.00	No Ice 1/2" Ice	1.88	1.25	0.08
			0.00			1/2 Ice 1" Ice	2.05 2.22	1.39 1.54	0.10 0.12
			3.00			2" Ice	2.22	1.34	0.12
RHSDC-3315-PF-48	А	From Leg	4.00	0.0000	146.00	No Ice	3.36	2.19	0.18
KIISDC-5515-11-48	71	Tion Leg	0.00	0.0000	140.00	1/2" Ice	3.60	2.39	0.05
			-1.00			172 Ice	3.84	2.61	0.00
			1.00			2" Ice	4.34	3.05	0.17
RHSDC-3315-PF-48	С	From Leg	4.00	0.0000	146.00	No Ice	3.36	2.19	0.03
	-	8	0.00			1/2" Ice	3.60	2.39	0.06
			-1.00			1" Ice	3.84	2.61	0.09
						2" Ice	4.34	3.05	0.17
20W CBRS	А	From Leg	4.00	0.0000	146.00	No Ice	0.86	0.42	0.02
		U U	0.00			1/2" Ice	0.98	0.51	0.03
			3.00			1" Ice	1.10	0.61	0.03
						2" Ice	1.37	0.83	0.06
20W CBRS	В	From Leg	4.00	0.0000	146.00	No Ice	0.86	0.42	0.02
			0.00			1/2" Ice	0.98	0.51	0.03
			3.00			1" Ice	1.10	0.61	0.03
						2" Ice	1.37	0.83	0.06
20W CBRS	С	From Leg	4.00	0.0000	146.00	No Ice	0.86	0.42	0.02
			0.00			1/2" Ice	0.98	0.51	0.03
			3.00			1" Ice	1.10	0.61	0.03

Job

Project

Client

CT New Britain 3 CAC 803175 (BU 803175)

Page 11 of 19 Date

Tower Engineering Professionals, Inc. 326 Tryon Road Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25666.318391

Crown Castle

Designed by EJB

13:15:00 10/31/19

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft ²	ft ²	K
						2" Ice	1.37	0.83	0.06
(2) Side Arm Mount [SO	С	None		0.0000	146.00	No Ice	3.60	3.60	0.07
102-3]						1/2" Ice	4.18	4.18	0.11
						1" Ice	4.75	4.75	0.14
Sastan Maunt [SM 801-2]	C	Nama		0.0000	146.00	2" Ice	5.90	5.90	0.20
Sector Mount [SM 801-3]	С	None		0.0000	146.00	No Ice 1/2" Ice	20.61	20.61 29.42	0.88
						1/2" Ice	29.42 38.23	38.23	1.28 1.82
						2" Ice	56.22	56.22	3.29
Detuner						2 100	50.22	50.22	5.27
Side Arm Mount [SO 701-3]	С	None		0.0000	133.00	No Ice	3.02	3.02	0.20
	C	rtone		0.0000	155.00	1/2" Ice	4.18	4.18	0.24
						1" Ice	5.33	5.33	0.28
						2" Ice	7.63	7.63	0.36
****									0.00
1" Dia x 3.5-ft	А	From Leg	1.50	0.0000	100.00	No Ice	0.00	0.37	0.00
		5	0.00			1/2" Ice	0.00	0.68	0.01
			0.00			1" Ice	0.00	0.90	0.01
						2" Ice	0.00	1.37	0.03
1" Dia x 3.5-ft	В	From Leg	1.50	0.0000	100.00	No Ice	0.00	0.37	0.00
		e	0.00			1/2" Ice	0.00	0.68	0.01
			0.00			1" Ice	0.00	0.90	0.01
						2" Ice	0.00	1.37	0.03
1" Dia x 3.5-ft	С	From Leg	1.50	0.0000	100.00	No Ice	0.00	0.37	0.00
		0	0.00			1/2" Ice	0.00	0.68	0.01
			0.00			1" Ice	0.00	0.90	0.01
						2" Ice	0.00	1.37	0.03

1" Dia x 3.5-ft	А	From Leg	1.50	0.0000	70.00	No Ice	0.00	0.37	0.00
			0.00			1/2" Ice	0.00	0.68	0.01
			0.00			1" Ice	0.00	0.90	0.01
						2" Ice	0.00	1.37	0.03
1" Dia x 3.5-ft	В	From Leg	1.50	0.0000	70.00	No Ice	0.00	0.37	0.00
			0.00			1/2" Ice	0.00	0.68	0.01
			0.00			1" Ice	0.00	0.90	0.01
	G	F I	1 50	0.0000	T O OO	2" Ice	0.00	1.37	0.03
1" Dia x 3.5-ft	С	From Leg	1.50	0.0000	70.00	No Ice	0.00	0.37	0.00
			0.00			1/2" Ice	0.00	0.68	0.01
			0.00			1" Ice	0.00	0.90	0.01
****						2" Ice	0.00	1.37	0.03
1" Dia x 3.5-ft	۸	From Log	1.50	0.0000	40.00	No Ice	0.00	0.37	0.00
1 Dia A 3.3-It	А	From Leg	1.50 0.00	0.0000	40.00	1/2" Ice	0.00	0.57	0.00
			0.00			1/2" Ice	0.00	0.68	0.01
			0.00			2" Ice	0.00	1.37	0.01
1" Dia x 3.5-ft	В	From Leg	1.50	0.0000	40.00	No Ice	0.00	0.37	0.03
1 Dia A 3.3-ft	Б	i iom Leg	0.00	0.0000	10.00	1/2" Ice	0.00	0.68	0.00
			0.00			172 Icc 1" Ice	0.00	0.08	0.01
			0.00			2" Ice	0.00	1.37	0.01
1" Dia x 3.5-ft	С	From Leg	1.50	0.0000	40.00	No Ice	0.00	0.37	0.00
	~		0.00			1/2" Ice	0.00	0.68	0.00
			0.00			1" Ice	0.00	0.90	0.01
			0.00			2" Ice	0.00	1.37	0.01

1" Dia x 3.5-ft	А	From Leg	1.50	0.0000	10.00	No Ice	0.00	0.37	0.00
		0	0.00	-	-	1/2" Ice	0.00	0.68	0.01
			0.00			1" Ice	0.00	0.90	0.01

tran Tormon	Job	Page
tnxTower	CT New Britain 3 CAC 803175 (BU 803175)	12 of 19
Tower Engineering Professionals, Inc. 326 Tryon Road	Project TEP No. 25666.318391	Date 13:15:00 10/31/19
Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350	Client Crown Castle	Designed by EJB

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
			ft ft ft	0	ft		ft²	ft ²	K
						2" Ice	0.00	1.37	0.03
1" Dia x 3.5-ft	В	From Leg	1.50	0.0000	10.00	No Ice	0.00	0.37	0.00
		0	0.00			1/2" Ice	0.00	0.68	0.01
			0.00			1" Ice	0.00	0.90	0.01
						2" Ice	0.00	1.37	0.03
1" Dia x 3.5-ft	С	From Leg	1.50	0.0000	10.00	No Ice	0.00	0.37	0.00
		0	0.00			1/2" Ice	0.00	0.68	0.01
			0.00			1" Ice	0.00	0.90	0.01
***						2" Ice	0.00	1.37	0.03

		Load Combinations	
Comb.		Description	
No.			
1	Dead Only		
2	1.2 Dead+1.0 Wind 0 deg - No Ice		
3	0.9 Dead+1.0 Wind 0 deg - No Ice		
4	1.2 Dead+1.0 Wind 30 deg - No Ice		
5	0.9 Dead+1.0 Wind 30 deg - No Ice		
6	1.2 Dead+1.0 Wind 60 deg - No Ice		
7	0.9 Dead+1.0 Wind 60 deg - No Ice		
8	1.2 Dead+1.0 Wind 90 deg - No Ice		
9	0.9 Dead+1.0 Wind 90 deg - No Ice		
10	1.2 Dead+1.0 Wind 120 deg - No Ice		
11	0.9 Dead+1.0 Wind 120 deg - No Ice		
12	1.2 Dead+1.0 Wind 150 deg - No Ice		
13	0.9 Dead+1.0 Wind 150 deg - No Ice		
14	1.2 Dead+1.0 Wind 180 deg - No Ice		
15	0.9 Dead+1.0 Wind 180 deg - No Ice		
16	1.2 Dead+1.0 Wind 210 deg - No Ice		
17	0.9 Dead+1.0 Wind 210 deg - No Ice		
18	1.2 Dead+1.0 Wind 240 deg - No Ice		
19	0.9 Dead+1.0 Wind 240 deg - No Ice		
20	1.2 Dead+1.0 Wind 270 deg - No Ice		
21	0.9 Dead+1.0 Wind 270 deg - No Ice		
22	1.2 Dead+1.0 Wind 300 deg - No Ice		
23	0.9 Dead+1.0 Wind 300 deg - No Ice		
24	1.2 Dead+1.0 Wind 330 deg - No Ice		
25	0.9 Dead+1.0 Wind 330 deg - No Ice		
26	1.2 Dead+1.0 Ice+1.0 Temp		
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp		
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp		
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp		
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp		
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp		
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp		
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp		
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp		
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp		
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp		

Job

Project

Client

CT New Britain 3 CAC 803175 (BU 803175)

Tower Engineering Professionals, Inc. 326 Tryon Road Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25666.318391

Crown Castle

Designed by EJB

13 of 19

13:15:00 10/31/19

Page

Date

Comb.	Description	
No.		
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	
39	Dead+Wind 0 deg - Service	
40	Dead+Wind 30 deg - Service	
41	Dead+Wind 60 deg - Service	
42	Dead+Wind 90 deg - Service	
43	Dead+Wind 120 deg - Service	
44	Dead+Wind 150 deg - Service	
45	Dead+Wind 180 deg - Service	
46	Dead+Wind 210 deg - Service	
47	Dead+Wind 240 deg - Service	
48	Dead+Wind 270 deg - Service	
49	Dead+Wind 300 deg - Service	
50	Dead+Wind 330 deg - Service	

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi. Moment
				Comb.	K	kip-ft	kip-ft
L1	188 - 137	Pole	Max Tension	48	0.00	-0.00	0.00
			Max. Compression	26	-44.73	0.78	-0.66
			Max. Mx	20	-14.74	656.45	1.47
			Max. My	14	-14.72	-1.42	-658.58
			Max. Vy	20	-23.84	656.45	1.47
			Max. Vx	14	23.93	-1.42	-658.58
			Max. Torque	16			0.53
L2	137 - 90.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-59.78	0.78	-1.08
			Max. Mx	20	-24.73	1873.73	2.21
			Max. My	14	-24.72	-2.19	-1879.70
			Max. Vy	20	-29.28	1873.73	2.21
			Max. Vx	14	29.36	-2.19	-1879.70
			Max. Torque	10			-0.10
L3	90.25 - 44.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-78.71	0.78	-1.56
			Max. Mx	20	-38.28	3294.13	2.91
			Max. My	14	-38.27	-2.91	-3303.80
			Max. Vy	20	-34.46	3294.13	2.91
			Max. Vx	14	34.55	-2.91	-3303.80
			Max. Torque	10			-0.10
L4	44.5 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-108.11	0.78	-2.16
			Max. Mx	20	-61.10	5193.00	3.66
			Max. My	14	-61.10	-3.69	-5206.79
			Max. Vy	20	-39.65	5193.00	3.66
			Max. Vx	14	39.73	-3.69	-5206.79
			Max. Torque	10			-0.10

	Maximum Reactions							
Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K			
Pole	Max. Vert	33	108.11	-0.01	-10.87			

CT New Britain 3 CAC 803175 (BU 803175)

Tower Engineering Professionals, Inc. 326 Tryon Road Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25666.318391

14 of 19 Date 13:15:00 10/31/19 Designed by

Crown Castle

EJB

Page

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	K
		Comb.			
	Max. H _x	21	45.85	39.60	0.01
	Max. H _z	3	45.85	0.01	39.68
	Max. M _x	2	5206.35	0.01	39.68
	Max. M _z	8	5192.62	-39.60	-0.01
	Max. Torsion	22	0.08	34.31	19.85
	Min. Vert	23	45.85	34.31	19.85
	Min. H _x	9	45.85	-39.60	-0.01
	Min. Hz	15	45.85	-0.01	-39.68
	Min. M _x	14	-5206.79	-0.01	-39.68
	Min. Mz	20	-5193.00	39.60	0.01
	Min. Torsion	10	-0.10	-34.31	-19.85

Job

Project

Client

Tower Mast Reaction Summary										
Load Combination	Vertical K	Shear _x K	Shear _z K	Overturning Moment, M _x kip-ft	Overturning Moment, M _z kip-ft	Torque kip-ft				
Dead Only	50.94	0.00	0.00	0.17	0.15	0.0				
.2 Dead+1.0 Wind 0 deg - No ce	61.13	-0.01	-39.68	-5206.35	4.08	-0.04				
.9 Dead+1.0 Wind 0 deg - No ce	45.85	-0.01	-39.68	-5134.28	3.95	-0.0				
.2 Dead+1.0 Wind 30 deg - No ce	61.13	19.79	-34.36	-4506.91	-2592.84	0.0				
0.9 Dead+1.0 Wind 30 deg - No ce	45.85	19.79	-34.36	-4444.56	-2557.00	0.0				
.2 Dead+1.0 Wind 60 deg - No ce	61.13	34.29	-19.83	-2599.76	-4494.99	0.0				
0.9 Dead+1.0 Wind 60 deg - No ce	45.85	34.29	-19.83	-2563.82	-4432.81	0.0				
.2 Dead+1.0 Wind 90 deg - No ce	61.13	39.60	0.01	4.10	-5192.62	0.0				
.9 Dead+1.0 Wind 90 deg - No ce	45.85	39.60	0.01	3.97	-5120.76	0.0				
.2 Dead+1.0 Wind 120 deg - No Ice	61.13	34.31	19.85	2606.89	-4498.82	0.1				
.9 Dead+1.0 Wind 120 deg - No Ice	45.85	34.31	19.85	2570.71	-4436.56	0.0				
.2 Dead+1.0 Wind 150 deg - No Ice	61.13	19.82	34.37	4511.19	-2599.53	0.0				
0.9 Dead+1.0 Wind 150 deg - No Ice	45.85	19.82	34.37	4448.64	-2563.57	0.0				
.2 Dead+1.0 Wind 180 deg - No Ice	61.13	0.01	39.68	5206.79	-3.69	0.0				
0.9 Dead+1.0 Wind 180 deg - No Ice	45.85	0.01	39.68	5134.61	-3.66	0.0				
.2 Dead+1.0 Wind 210 deg - No Ice	61.13	-19.79	34.36	4507.35	2593.22	-0.0				
9.9 Dead+1.0 Wind 210 deg - No Ice	45.85	-19.79	34.36	4444.88	2557.29	-0.0				
.2 Dead+1.0 Wind 240 deg - No Ice	61.13	-34.29	19.83	2600.19	4495.37	-0.0				
.9 Dead+1.0 Wind 240 deg - lo Ice	45.85	-34.29	19.83	2564.14	4433.09	-0.0				
.2 Dead+1.0 Wind 270 deg - No Ice 9.9 Dead+1.0 Wind 270 deg -	61.13 45.85	-39.60 -39.60	-0.01 -0.01	-3.66 -3.64	5193.00 5121.03	-0.0 -0.0				

tnxTower

Job

Project

Client

CT New Britain 3 CAC 803175 (BU 803175)

Tower Engineering Professionals, Inc. 326 Tryon Road Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

Crown Castle

15 of 19 Date 13:15:00 10/31/19 Designed by

EJB

Page

Load Combination	Vertical	<i>Shear</i> _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M_z	Torque
Comonanton	Κ	Κ	Κ	kip-ft	kip-ft	kip-ft
No Ice				1.5	1.7	
1.2 Dead+1.0 Wind 300 deg -	61.13	-34.31	-19.85	-2606.45	4499.20	-0.08
No Ice						
0.9 Dead+1.0 Wind 300 deg -	45.85	-34.31	-19.85	-2570.38	4436.84	-0.08
No Ice						
1.2 Dead+1.0 Wind 330 deg -	61.13	-19.82	-34.37	-4510.74	2599.92	-0.07
No Ice						
0.9 Dead+1.0 Wind 330 deg -	45.85	-19.82	-34.37	-4448.31	2563.85	-0.07
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	108.11	-0.00	0.00	2.16	0.78	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	108.11	-0.01	-10.87	-1517.16	3.50	0.04
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	108.11	5.42	-9.41	-1312.30	-754.28	0.03
Ice+1.0 Temp			<i></i>			
1.2 Dead+1.0 Wind 60 deg+1.0	108.11	9.39	-5.43	-755.14	-1309.71	0.02
Ice+1.0 Temp	100.11	10.05	0.01		1 5 1 2 2 2	0.00
1.2 Dead+1.0 Wind 90 deg+1.0	108.11	10.85	0.01	5.02	-1513.93	-0.00
Ice+1.0 Temp	100.11	0.40	<i>c</i> 45	764.40	1212.05	0.02
1.2 Dead+1.0 Wind 120	108.11	9.40	5.45	764.49	-1312.25	-0.03
deg+1.0 Ice+1.0 Temp	100.11	5 42	0.42	1210 70	759 (0	0.04
1.2 Dead+1.0 Wind 150	108.11	5.43	9.42	1319.78	-758.69	-0.04
deg+1.0 Ice+1.0 Temp	108.11	0.01	10.87	1522.10	-1.59	0.04
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	108.11	0.01	10.87	1522.10	-1.59	-0.04
1.2 Dead+1.0 Wind 210	108.11	-5.42	9.41	1317.24	756.19	-0.04
deg+1.0 Ice+1.0 Temp	108.11	-5.42	9.41	1317.24	750.19	-0.04
1.2 Dead+1.0 Wind 240	108.11	-9.39	5.43	760.08	1311.61	-0.02
deg+1.0 Ice+1.0 Temp	100.11	-7.57	5.45	700.08	1511.01	-0.02
1.2 Dead+1.0 Wind 270	108.11	-10.85	-0.01	-0.07	1515.84	0.01
deg+1.0 Ice+1.0 Temp	100.11	10.05	0.01	0.07	1010.01	0.01
1.2 Dead+1.0 Wind 300	108.11	-9.40	-5.45	-759.55	1314.15	0.03
deg+1.0 Ice+1.0 Temp				,		0.00
1.2 Dead+1.0 Wind 330	108.11	-5.43	-9.42	-1314.84	760.60	0.04
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	50.94	-0.00	-8.61	-1121.96	0.99	-0.01
Dead+Wind 30 deg - Service	50.94	4.29	-7.46	-971.20	-558.70	0.00
Dead+Wind 60 deg - Service	50.94	7.44	-4.30	-560.17	-968.65	0.01
Dead+Wind 90 deg - Service	50.94	8.59	0.00	1.02	-1119.00	0.02
Dead+Wind 120 deg - Service	50.94	7.44	4.31	561.98	-969.48	0.02
Dead+Wind 150 deg - Service	50.94	4.30	7.46	972.41	-560.15	0.01
Dead+Wind 180 deg - Service	50.94	0.00	8.61	1122.33	-0.68	0.01
Dead+Wind 210 deg - Service	50.94	-4.29	7.46	971.57	559.02	-0.00
Dead+Wind 240 deg - Service	50.94	-7.44	4.30	560.53	968.96	-0.01
Dead+Wind 270 deg - Service	50.94	-8.59	-0.00	-0.65	1119.32	-0.02
Dead+Wind 300 deg - Service	50.94	-7.44	-4.31	-561.61	969.80	-0.02
Dead+Wind 330 deg - Service	50.94	-4.30	-7.46	-972.04	560.46	-0.01

Solution Summary

	Sui	m of Applied Force:	5		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-50.94	0.00	0.00	50.94	0.00	0.000%
2	-0.01	-61.13	-39.68	0.01	61.13	39.68	0.000%
3	-0.01	-45.85	-39.68	0.01	45.85	39.68	0.000%
4	19.79	-61.13	-34.36	-19.79	61.13	34.36	0.000%
5	19.79	-45.85	-34.36	-19.79	45.85	34.36	0.000%
6	34.29	-61.13	-19.83	-34.29	61.13	19.83	0.000%

tnxTower

Job

Project

Client

CT New Britain 3 CAC 803175 (BU 803175)

Page 16 of 19 Date

Tower Engineering Professionals, Inc. 326 Tryon Road Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25666.318391

Crown Castle

Designed by

13:15:00 10/31/19

EJB

		m of Applied Force:			Sum of Reaction		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	Κ	Κ	K	K	K	
7	34.29	-45.85	-19.83	-34.29	45.85	19.83	0.000%
8	39.60	-61.13	0.01	-39.60	61.13	-0.01	0.000%
9	39.60	-45.85	0.01	-39.60	45.85	-0.01	0.000%
10	34.31	-61.13	19.85	-34.31	61.13	-19.85	0.000%
11	34.31	-45.85	19.85	-34.31	45.85	-19.85	0.000%
12	19.82	-61.13	34.37	-19.82	61.13	-34.37	0.000%
13	19.82	-45.85	34.37	-19.82	45.85	-34.37	0.000%
14	0.01	-61.13	39.68	-0.01	61.13	-39.68	0.000%
15	0.01	-45.85	39.68	-0.01	45.85	-39.68	0.000%
16	-19.79	-61.13	34.36	19.79	61.13	-34.36	0.000%
17	-19.79	-45.85	34.36	19.79	45.85	-34.36	0.000%
18	-34.29	-61.13	19.83	34.29	61.13	-19.83	0.000%
19	-34.29	-45.85	19.83	34.29	45.85	-19.83	0.000%
20	-39.60	-61.13	-0.01	39.60	61.13	0.01	0.000%
21	-39.60	-45.85	-0.01	39.60	45.85	0.01	0.000%
22	-34.31	-61.13	-19.85	34.31	61.13	19.85	0.000%
23	-34.31	-45.85	-19.85	34.31	45.85	19.85	0.000%
24	-19.82	-61.13	-34.37	19.82	61.13	34.37	0.000%
25	-19.82	-45.85	-34.37	19.82	45.85	34.37	0.000%
26	0.00	-108.11	0.00	0.00	108.11	-0.00	0.000%
27	-0.01	-108.11	-10.87	0.01	108.11	10.87	0.000%
28	5.42	-108.11	-9.41	-5.42	108.11	9.41	0.000%
29	9.39	-108.11	-5.43	-9.39	108.11	5.43	0.000%
30	10.85	-108.11	0.01	-10.85	108.11	-0.01	0.000%
31	9.40	-108.11	5.45	-9.40	108.11	-5.45	0.000%
32	5.43	-108.11	9.42	-5.43	108.11	-9.42	0.000%
33	0.01	-108.11	10.87	-0.01	108.11	-10.87	0.000%
34	-5.42	-108.11	9.41	5.42	108.11	-9.41	0.000%
35	-9.39	-108.11	5.43	9.39	108.11	-5.43	0.000%
36	-10.85	-108.11	-0.01	10.85	108.11	0.01	0.000%
37	-9.40	-108.11	-5.45	9.40	108.11	5.45	0.000%
38	-5.43	-108.11	-9.42	5.43	108.11	9.42	0.000%
39	-0.00	-50.94	-8.61	0.00	50.94	8.61	0.000%
40	4.29	-50.94	-7.46	-4.29	50.94	7.46	0.000%
41	7.44	-50.94	-4.30	-7.44	50.94	4.30	0.000%
42	8.59	-50.94	0.00	-8.59	50.94	-0.00	0.000%
43	7.44	-50.94	4.31	-7.44	50.94	-4.31	0.000%
44	4.30	-50.94	7.46	-4.30	50.94	-7.46	0.000%
45	0.00	-50.94	8.61	-0.00	50.94	-8.61	0.000%
46	-4.29	-50.94	7.46	4.29	50.94	-7.46	0.000%
47	-7.44	-50.94	4.30	7.44	50.94	-4.30	0.000%
48	-8.59	-50.94	-0.00	8.59	50.94	0.00	0.000%
49	-7.44	-50.94	-4.31	7.44	50.94	4.31	0.000%
50	-4.30	-50.94	-7.46	4.30	50.94	7.46	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00002309
3	Yes	4	0.00000001	0.00058388
4	Yes	6	0.00000001	0.00023798
5	Yes	6	0.00000001	0.00007027
6	Yes	6	0.00000001	0.00023729
7	Yes	6	0.00000001	0.00007005

		Job			Page
thx	:Tower	C	T New Britain 3 C	AC 803175 (BU 803175)	17 of 19
Tower	Tower Engineering Professionals, Inc. 326 Tryon Road			05000 040004	Date
			TEP NO.	25666.318391	13:15:00 10/31/19
Ralie	egh, NC 27603	Client	Cree	Designed by	
	Phone: (919) 661-6351 FAX: (919) 661-6350		Cro	EJB	
8	Yes	5	0.00000001	0.00002766	
9	Yes	4	0.00000001	0.00059971	
10	Yes	6	0.00000001	0.00023856	
11	Yes	6 6	0.00000001	0.00007033	
12 13	Yes Yes	6	0.00000001 0.00000001	0.00023847	
13	Yes	5	0.00000001	0.00007029 0.00002549	
14	Yes	4	0.00000001	0.00059385	
16	Yes	6	0.00000001	0.00023758	
10	Yes	6	0.00000001	0.00007011	
18	Yes	6	0.00000001	0.00023802	
19	Yes	6	0.00000001	0.00007029	
20	Yes	5	0.00000001	0.00002058	
20	Yes	4	0.00000001	0.00057533	
22	Yes	6	0.00000001	0.00023818	
23	Yes	6	0.00000001	0.00007021	
23	Yes	6	0.00000001	0.00023852	
25	Yes	6	0.00000001	0.00007030	
26	Yes	4	0.00000001	0.00000689	
27	Yes	6	0.00000001	0.00023413	
28	Yes	6	0.00000001	0.00038918	
29	Yes	6	0.00000001	0.00038789	
30	Yes	6	0.00000001	0.00023351	
31	Yes	6	0.00000001	0.00039423	
32	Yes	6	0.00000001	0.00039504	
33	Yes	6	0.00000001	0.00023519	
34	Yes	6	0.00000001	0.00039202	
35	Yes	6	0.00000001	0.00039241	
36	Yes	6	0.00000001	0.00023406	
37	Yes	6	0.00000001	0.00039325	
38	Yes	6	0.00000001	0.00039337	
39	Yes	4	0.00000001	0.00010713	
40	Yes	4	0.0000001	0.00085137	
41	Yes	4	0.00000001	0.00084425	
42	Yes	4	0.00000001	0.00010682	
43	Yes	4	0.00000001	0.00085675	
44	Yes	4	0.00000001	0.00085564	
45	Yes	4	0.0000001	0.00010735	
46	Yes	4	0.0000001	0.00084840	
47	Yes	4	0.00000001	0.00085304	
48	Yes	4	0.00000001	0.00010665	
49	Yes	4	0.00000001	0.00085268	
50	Yes	4	0.00000001	0.00085630	

Compression Checks

Pole Design Data									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
NO.	ft		ft	ft		in^2	K	Κ	$\frac{P_u}{\phi P_n}$
L1	188 - 137 (1)	TP32.711x22x0.25	51.00	0.00	0.0	25.0495	-14.72	1465.40	0.010
L2	137 - 90.25 (2)	TP42.03x31.3184x0.3125	51.00	0.00	0.0	40.2848	-24.72	2356.66	0.010
L3	90.25 - 44.5 (3)	TP51.014x40.3023x0.375	51.00	0.00	0.0	58.6481	-38.27	3430.92	0.011
L4	44.5 - 0 (4)	TP59.61x48.8988x0.5	51.00	0.00	0.0	93.8076	-61.10	5487.74	0.011

tnxTower

Job

Client

CT New Britain 3 CAC 803175 (BU 803175)
Project

TEP No. 25666.318391

Tower Engineering Professionals, Inc. 326 Tryon Road Raliegh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

Crown Castle

Date 13:15:00 10/31/19 Designed by EJB

18 of 19

Page

Pole Bending Design Data

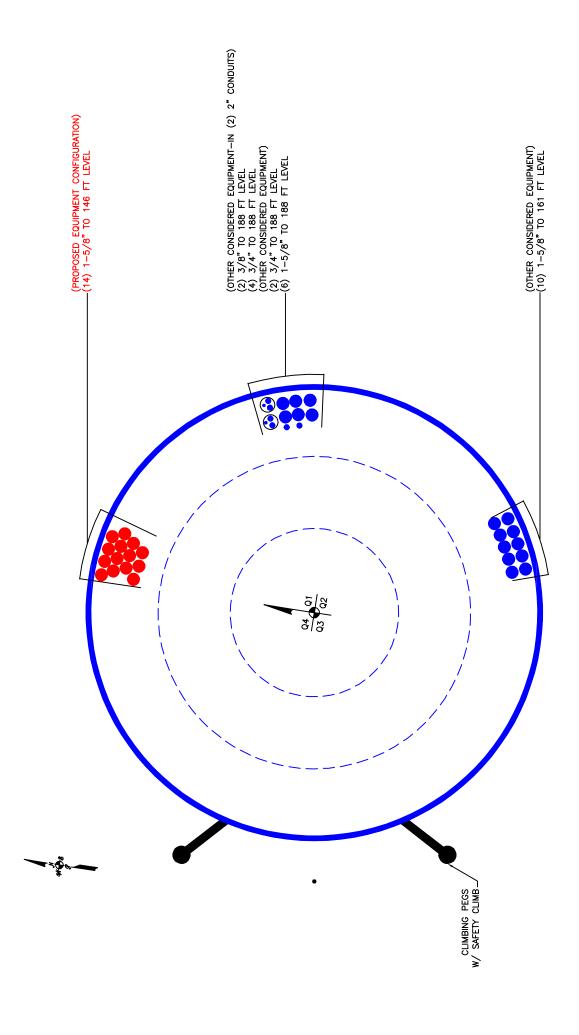
Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	188 - 137 (1)	TP32.711x22x0.25	659.30	1113.48	0.592	0.00	1113.48	0.000
L2	137 - 90.25 (2)	TP42.03x31.3184x0.3125	1880.12	2281.22	0.824	0.00	2281.22	0.000
L3	90.25 - 44.5 (3)	TP51.014x40.3023x0.375	3303.93	4013.65	0.823	0.00	4013.65	0.000
L4	44.5 - 0 (4)	TP59.61x48.8988x0.5	5206.80	7974.63	0.653	0.00	7974.63	0.000

Pole Shear Design Data

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	188 - 137 (1)	TP32.711x22x0.25	23.92	439.62	0.054	0.07	1215.38	0.000
L2	137 - 90.25 (2)	TP42.03x31.3184x0.3125	29.35	707.00	0.042	0.07	2514.68	0.000
L3	90.25 - 44.5 (3)	TP51.014x40.3023x0.375	34.54	1029.27	0.034	0.07	4441.48	0.000
L4	44.5 - 0 (4)	TP59.61x48.8988x0.5	39.73	1646.32	0.024	0.02	8522.25	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P_u	$Ratio M_{ux}$	$Ratio M_{uy}$	$Ratio V_u$	$Ratio T_u$	Comb. Stress	Allow. Stress	Criteria
	ft	ft	ϕP_n ϕM_{nx} ϕM_{ny}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	188 - 137 (1)	0.010	0.592	0.000	0.054	0.000	0.605	1.050	4.8.2
L2	137 - 90.25 (2)	0.010	0.824	0.000	0.042	0.000	0.836	1.050	4.8.2
L3	90.25 - 44.5 (3)	0.011	0.823	0.000	0.034	0.000	0.835	1.050	4.8.2
L4	44.5 - 0 (4)	0.011	0.653	0.000	0.024	0.000	0.665	1.050	4.8.2


Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	${{{\mathscr O}P_{allow}} \over K}$	% Capacity	Pass Fail
L1	188 - 137	Pole	TP32.711x22x0.25	1	-14.72	1538.67	57.6	Pass
L2	137 - 90.25	Pole	TP42.03x31.3184x0.3125	2	-24.72	2474.49	79.7	Pass
L3	90.25 - 44.5	Pole	TP51.014x40.3023x0.375	3	-38.27	3602.47	79.6	Pass
L4	44.5 - 0	Pole	TP59.61x48.8988x0.5	4	-61.10	5762.13	63.3	Pass
							Summary	
						Pole (L2)	79.7	Pass
						RATING =	79.7	Pass

Program Version 8.0.5.0 - 11/28/2018 File:C:/Users/ebosshart/Desktop/CT New Britain/803175_1803366_LC7.eri

APPENDIX B

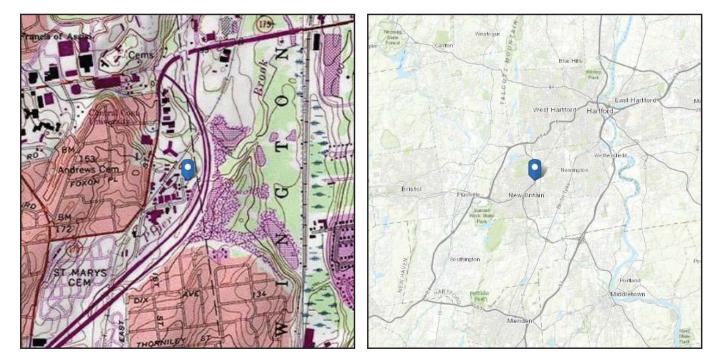
BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

No Address at This

Location


ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 88.33 ft (NAVD 88)

 Latitude:
 41.686611

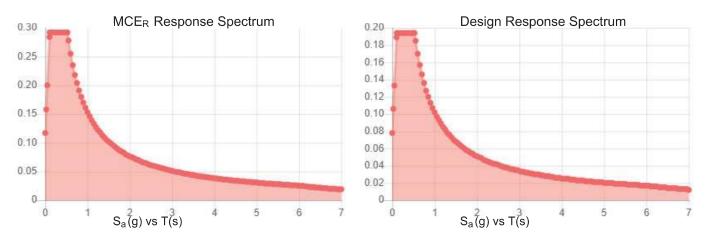
 Longitude:
 -72.757722

Wind

Results:

Wind Speed:	122 Vmph <	125mph Ultimate wind speed
10-year MRI	76 Vmph	used per local jurisdictional
25-year MRI	86 Vmph	requirements
50-year MRI	93 Vmph	
100-year MRI	100 Vmph	
Data Source:	ASCE/SEI 7-10, Fig. March 12, 2014	26.5-1A and Figs. CC-1–CC-4, incorporating errata of
Date Accessed:	Thu Oct 31 2019	

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class:	D - Stiff Soil			
Results:				
S _s :	0.182	S _{DS} :	0.194	
S ₁ :	0.064	S _{D1} :	0.102	
F _a :	1.6	Τ _L :	6	
F_v :	2.4	PGA :	0.092	
S _{MS} :	0.292	PGA M :	0.148	
S _{M1} :	0.153	F _{PGA} :	1.6	
			1	

Seismic Design Category B

Data Accessed: Date Source:

Thu Oct 31 2019

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	1.00 in.
Concurrent Temperature:	5 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Thu Oct 31 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

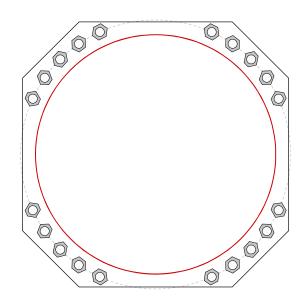
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Monopole Base Plate Connection



Site Info	
BU #	803175
Site Name	New Britain 3 CAC 803
Order #	506855 Rev. 0

Analysis Considerations		
TIA-222 Revision	Н	
Grout Considered:	No	
l _{ar} (in)	1.25	

Applied Loads	
Moment (kip-ft)	5206.80
Axial Force (kips)	61.10
Shear Force (kips)	39.73
*TIA 222 H Castion 1E E Ann	liad

*TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data

(20) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 67" BC Anchor Spacing: 6 in

Base Plate Data

66" OD x 3" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Stiffener Data

N/A

Pole Data

59.61" x 0.5" 18-sided pole (A607-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

	(units of kips, kip-in)
φPn_c = 243.75	Stress Rating
φVn = 73.13	74.1%
φMn = n/a	Pass
32.06	(Flexural)
45	
15	
	φVn = 73.13 φMn = n/a 32.06

Pier and Pad Foundation

	803175
	CT New Britain 3 C
App. Number:	506855 Rev. 0

TIA-222 Revision: H Tower Type: Monopole Top & Bot, Pad Rein, Different?:

Superstructure Analysis Reactions		
61	kips	
40	kips	
5207	ft-kips	
188	ft	
3.75	in	
	61 40 5207 188	

Pier Properties		
Pier Shape:	Square	
Pier Diameter, dpier :	8	ft
Ext. Above Grade, E:	1.0833	ft
Pier Rebar Size, Sc :	11	
Pier Rebar Quantity, mc :	36	
Pier Tie/Spiral Size, St :	5	
Pier Tie/Spiral Quantity, mt :	12	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc_{pier}:	4	in

Pad Properties		
Depth, D :	5.9167	ft
Pad Width, W :	26	ft
Pad Thickness, T :	3	ft
Pad Rebar Size (Bottom), Sp :	11	
Pad Rebar Quantity (Bottom), mp:	33	
Pad Clear Cover, cc_{pad}:	4	in

Material Properties		
Rebar Grade, Fy :	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, δ c :	150	pcf

Soil Properties		
Total Soil Unit Weight, $m{\gamma}$:	110	pcf
Ultimate Gross Bearing, Qult:	12.000	ksf
Cohesion, Cu :	0.000	ksf
Friction Angle, $oldsymbol{arphi}$:	30	degrees
SPT Blow Count, N _{blows} :		
Base Friction, μ :		
Neglected Depth, N:	3.33	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	17.75	ft

Foundation Analysis Checks					
	Capacity	Demand	Rating*	Check	
Lateral (Sliding) (kips)	221.86	40.00	17.2%	Pass	
Bearing Pressure (ksf)	9.00	3.75	41.7%	Pass	
Overturning (kip*ft)	6586.28	5499.50	83.5%	Pass	
Pier Flexure (Comp.) (kip*ft)	9856.86	5367 <u>.</u> 00	51.9%	Pass	
Pier Compression (kip)	30551.04	107.08	0.3%	Pass	
Pad Flexure (kip*ft)	6473.47	2645 <u>.</u> 75	38.9%	Pass	
Pad Shear - 1-way (kips)	766.05	396.59	49.3%	Pass	
Pad Shear - 2-way (Comp) (ksi)	0.164	0.000	0.0%	Pass	
Flexural 2-way (Comp) (kip*ft)	8464.14	3220.20	36.2%	Pass	

*Rating per TIA-222-H Sect	ion
15.5	

Soil Rating*:	83.5%
Structural Rating*:	51.9%

<--Toggle between Gross and Net

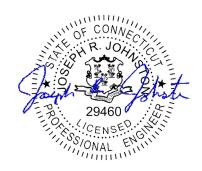
Exhibit E

Mount Analysis

	F	ROM ZERO TO INFINIGY
Darcy Tarr		the solutions are endless
Crown Castle		Infinigy Engineering, PLLC
3530 Toringdon Way, Suite 300	·	033 Watervliet Shaker Road
Charlotte, NC 28277		Albany, NY 12205
(704) 405-6589		518-690-0790
(704) 403-0389		structural@infinigy.com
Subject:	Mount Analysis Report	
Carrier Designation:	Verizon Wireless Equipment Chang	e-Out
5	Carrier Site Number:	NG34002
	Carrier Site Name:	NEW BRITAIN 3 CT
Crown Castle Designation:	Crown Castle BU Number:	803175
	Crown Castle Site Name:	CT NEW BRITAIN 3 CAC 803175
	Crown Castle JDE Job Number:	592793
	Crown Castle Order Number:	506855 Rev. 0
Engineering Firm Designation:	Infinigy Engineering, PLLC Report	Designation: 1039-D0002-B
Site Data:	167 Coccomo, New Britain, Hartford	d County. CT. 06051
	Latitude 41°41'11.80" Longitude -72	•
Structure Information:	Tower Height & Type:	188.0 ft Monopole
	Mount Elevation:	146.0 ft
	Mount Type:	12.0 ft Sector Frames
Dear Darcy Tarr		

Dear Darcy Tarr,

Infinigy Engineering, PLLC is pleased to submit this "**Mount Analysis Report**" to determine the structural integrity of Verizon Wireless's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.


The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Sector Frames

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Mukunda Pokharel, E.I.T.

Respectfully Submitted by: Joe Johnston, P.E. 518-690-0790 jjohnston@infinigy.com CT PE License No. PEN.0029460

10-29-2019

Sufficient

INFINIGY₂

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity 4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

1) INTRODUCTION

These are 12.0 ft Sector Frames, designed by Armor Tower.

2) ANALYSIS CRITERIA

Building Code: TIA-222 Revision:	2015 IBC / 2018 Connecticut State Building Code TIA-222-H
Risk Category:	
Ultimate Wind Speed:	125 mph
Exposure Category:	C
Topographic Factor at Base:	1.0
Topographic Factor at Mount:	1.0
Ice Thickness:	2.0 in
Wind Speed with Ice:	50 mph
Seismic S _s :	0.181
Seismic S₁:	0.064
Live Loading Wind Speed:	30 mph
Man Live Load at End-Points:	250 lb
Man Live Load at Mount Pipes:	500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
		3	AMPHENOL	BXA-80063-6BF- EDIN-4	
		6	ANDREW	SBNHH-1D65B	
		3	SAMSUNG TELECOMMUNICATIONS	CBRS	
146.0	146.0 149.0		SAMSUNG TELECOMMUNICATIONS	20W CBRS	12.0 ft Sector Frames
		3	SAMSUNG TELECOMMUNICATIONS	RFV01U-D1A	
		3	SAMSUNG TELECOMMUNICATIONS	RFV01U-D2A	
	145.0	2	Raycap	RHSDC-3315-PF-48	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Verizon Wireless Application	506855 Rev. 0	CCI Sites
Mount Manufacturer Drawings	Armor Tower	CSOTF	Infinigy

96.7%

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a threedimensional model of the antenna mounting system and calculate member stresses for various loading cases.

Infinigy Wind Load Calculator V2.0.0 a tool internally developed by Infinigy Engineering, was used to calculate wind loading on all appurtenances, dishes and mount members for various loading cases. Selected output from the analysis is included in Appendix B "Software Input Calculations".

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A572 GR 50
HSS (Rectangular)	ASTM 500 GR C
Pipe	ASTM A500 GR 50
Connection Bolts	ASTM A307

This analysis may be affected if any assumptions are not valid or have been made in error. Infinigy Engineering, PLLC should be notified to determine the effect on the structural integrity of the antenna mounting system.

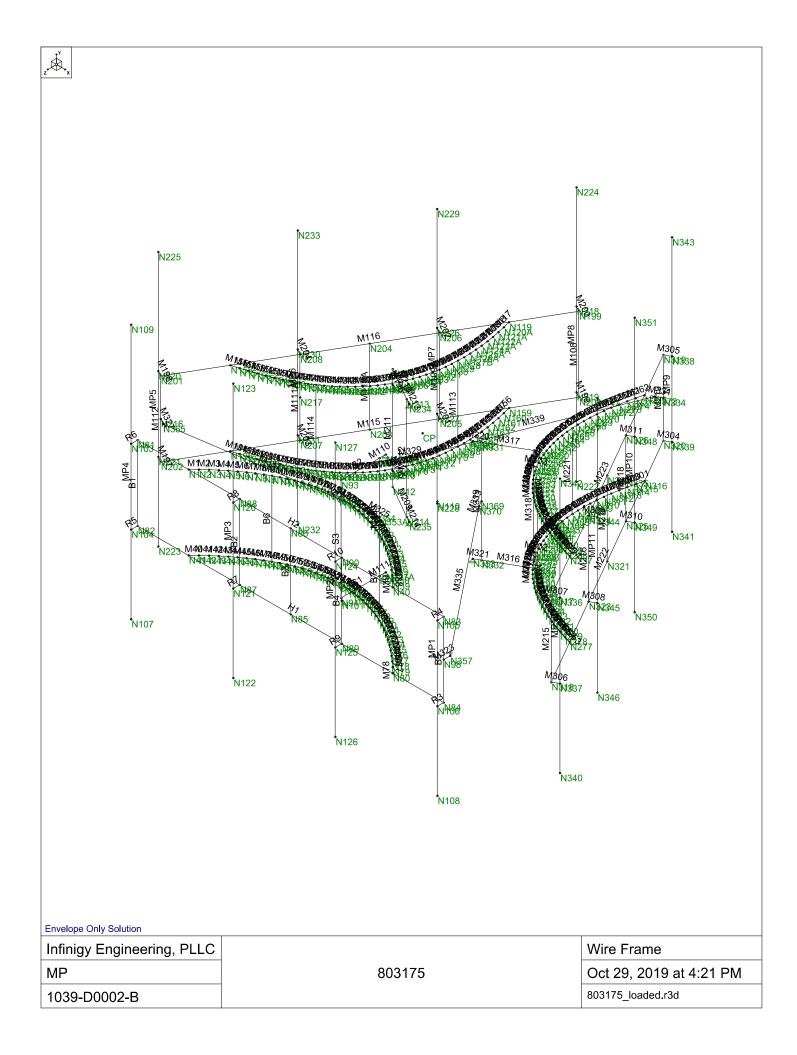
4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Sector Frames, All Sectors)

Structure Rating (max from all components) =

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP9		35.3	Pass
	Main Horizontal(s)	M223		95.6	Pass
1	Arch Frame(s)	M243	146.0	96.0	Pass
	Standoff(s)	M317		70.8	Pass
	Standoff Spacer Pipe(s)	M212		96.7	Pass
	Tieback(s)	M335		29.4	Pass
	Mount Connection(s)			23.8	Pass

Notes:


1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

Envelope Only Solution Infinigy Engineering, PLLC Rendered
MP 803175 Oct 29, 2019 at 4:21 PM
1039-D0002-B 803175_loaded.r3d

APPENDIX B

SOFTWARE INPUT CALCULATIONS

Program Inputs

ORMATION	Crown Castle	Verizon	Mukunda Pokharel
PROJECT INFORMATION	Client:	Carrier:	Engineer:

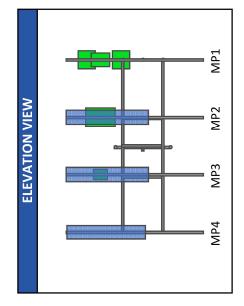
	0	1	iff Soil	88.33 ft *Rev H
Risk Category:	Exposure Category: (Topo Category:	Site Class: D - St	Ground Elevation: 88
	Risk Category: II	Risk Category: II Exposure Category: C	Risk Category: II Exposure Category: C Topo Category: 1	Risk Category:IIExposure Category:CTopo Category:1Site Class:D - Stiff Soil

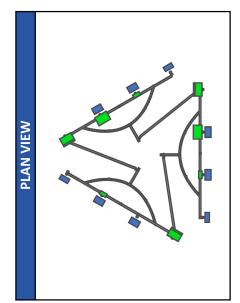
1	Sector Frames		ft	ft
ORMATION	Sector	3	146.0	188.0
MOUNT INFORMATION	Mount Type:	Num Sectors:	Centerline AGL:	Tower Height AGL:

HIC DATA	N/A	N/A ft	N/A ft	N/A ft	
TOPOGRAPHIC DATA	Topo Feature:	Crest Height:	Slope Distance:	Crest Distance:	

FACTORS	ORS	
Directionality Fact. (K _d):	0.95	
Ground Ele. Factor (K _e):	1.00	*Rev H Only
Rooftop Speed-Up (K _s):	1.00	*Rev H Only
Topographic Factor (K _{zt}):	1.00	
Gust Effect Factor (G _h):	1.0	

NDARDS	2015 IBC	TIA-222-H	ASCE 7-10	
CODE STANDARDS	Building Code:	TIA Standard:	ASCE Standard:	


	mph	mph	mph	in	psf	psf	psf	
ICE DATA	125	N/A	50	2	103.83	62.30	9.97	
WIND AND ICE DATA	Ultimate Wind (V _{ult}):	Design Wind (V):	Ice Wind (V _{ice}):	Base Ice Thickness (t _i):	Flat Pressure:	Round Pressure:	Ice Wind Pressure:	


	в	ы							
DATA	0.18	0.06	0.19	0.10	1.60	2.40	1.00	2.50	1.00
SEISMIC DATA	Short-Period Accel. (S _s):	1-Second Accel. (S ₁):	Short-Period Design (S _{Ds}):	1-Second Design (S _{D1}):	Short-Period Coeff. (F _a):	1-Second Coeff. (F _v):	Amplification Factor (a _p):	Response Mod. (R _p):	Overstrength (Ω_o):

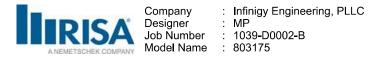
I

Program Inputs



			APPURT	ENANCE IN	APPURTENANCE INFORMATION	-					
Appurtenance Name	Elevation	Qty.	Ka	q _z (psf)	EPA _N (ft ²)	EPA _T (ft ²)	Wind F _z	Wind F _z Wind F _x	-	Se	Member
ANADHENICI BVA 80063 6BF EDINI 4	7 7 0	,	000	L 0.1	7 7	101	(105)	(IDS) 100 L 7			(α sector)
AIVIPTEIVUL BAA-80003-005-EUIIV-4	140.U	'n	0.30	77.7Z	07.1	4.04	339.32	5C.001	13.2U	C8.1	MP4
ANDREW SBNHH-1D65B	146.0	m	0.90	51.92	4.09	3.30	191.32	153.99	40.60	3.92	MP2
ANDREW SBNHH-1D65B	146.0	m	06.0	51.92	4.09	3.30	191.32	153.99	40.60	3.92	MP3
SAMSUNG TELECOMMUNICATIONS CBRS	146.0	Ω	06.0	51.92	1.53	0.75	71.67	34.88	23.14	2.23	MP1
RAYCAP RHSDC-3315- PF-48	146.0	2	06.0	51.92	3.36	2.19	157.16	102.42	32.00	3.09	MP2
SAMSUNG TELECOMMUNICATIONS 20W CBRS	146.0	ŝ	06.0	51.92	0.86	0.42	40.05	19.64	18.64	1.80	MP3
SAMSUNG TELECOMMUNICATIONS RFV01U-D1A	146.0	Ω	06.0	51.92	1.88	1.25	87.61	58.41	84.40	8.15	MP1
SAMSUNG TELECOMMUNICATIONS RFV01U-D2A	146.0	ſſ	06.0	51.92	1.88	1.01	87.61	47.31	70.30	6.79	MP1

APPENDIX C


SOFTWARE ANALYSIS OUTPUT

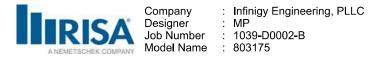
Member Primary Data

	Label	I Joint	J Joint	K Joint	Ro	Section/Shape	Туре	Design List	Material	Design Rules
1	B1	N82	N81			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
2	B2	N87	N88			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
3	B3	N85	N86			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
4	B4	N89	N90			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
5	B5	N84	N83			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
6	B6	N50	N10			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
7	B7	N70	N30			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
8	H1	N84	N82			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
9	H2	N83	N81			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
10	M1	N1	N2			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
11	M2	N2	N3			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
12	M3	N3	N4			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
13	M4	N4	N5			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
14	M5	N5	N6			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
15	M6	N6	N7			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
16	M7	N7	N8			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
17	M8	N8	N9			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
18	M9	N9	N10			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
19	M10	N10	N11			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
20	M11	N11	N12			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
21	M12	N12	N13			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
22	M13	N13	N14			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
23	M14	N14	N15			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
24	M15	N15	N16			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
25	M16	N16	N17			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
26	M17	N17	N18			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
27	M18	N18	N19			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
28	M19	N19	N100			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
29	M20	N100	N21			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
30	M21	N21	N22			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
31	M22	N22	N23			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
32	M23	N23	N24			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
33	M24	N24	N25			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
34	M25	N25	N26			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
35	M26	N26	N27			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
36	M27	N27	N28			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
37	M28	N28	N29			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
38	M29	N29	N30			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
39	<u>M30</u>	N30	N31			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
40	M31	N31	N32			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
41	<u>M32</u>	N32	N33			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
42	<u>M33</u>	N33	N34			Main Frame	Beam	<u>Pipe</u>	ASTM A500 Gr. 50	Typical
43	<u>M34</u>	N34	N35			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
44	<u>M35</u>	N35	N36			Main Frame	Beam	<u>Pipe</u>	ASTM A500 Gr. 50	Typical
45	<u>M36</u>	N36	N37			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
46	<u>M37</u>	N37	N38			Main Frame	Beam	<u>Pipe</u>	ASTM A500 Gr. 50	Typical
47	<u>M38</u>	N38	N39			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
48	<u>M39</u>	N39	N40			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
49	<u>M40</u>	N41	N42			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
50	M41	N42	N43			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
51	M42	N43	N44			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
52	M43	N44	N45			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
53	M44	N45	N46			Main Frame	Beam	Pipe Dine	ASTM A500 Gr. 50	Typical
54	M45	N46	N47			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
55	M46	N47	N48			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
56	M47	N48	N49			Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
		4 - 0	4			\ \Initial MA 10_2		DIA MAAA		

RISA-3D Version 17.0.4 [L:\...\...\...\...\...\...\Initial MA 10-25-2019\TNX or RISA\803175_loaded.r3d] Page 1

	Label	I Joint	J Joint	K Joint Ro	Section/Shape	Туре	Design List	Material	Design Rules
57	M48	N49	N50		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
58	M49	N50	N51		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
59	M50	N51	N52		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
60	M51	N52	N53		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
61	M52	N53	N54		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
62	M53	N54	N55		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
63	M54	N55	N56		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
64	M55	N56	N57		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
65	M56	N57	N58		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
66	M57	N58	N59		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
67	M58	N59	CP2		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
68	M59	CP2	N61		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
69	M60	N61	N62		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
70	M61	N62	N63		Main Frame	Beam	Pipe	ASTM A500 Gr. 50 ASTM A500 Gr. 50	Typical
71	M62	N63	N64		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
72	M63	N64	N65		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
73 74	M64	N65	N66		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
74	M65 M66	N66 N67	N67 N68		Main Frame Main Frame	Beam Beam	Pipe Pipe	ASTM A500 GL 50	Typical Typical
76	M67	N68	N69		Main Frame	Beam Beam	Pipe	ASTM A500 Gr. 50	Typical
70	M68	N69	N70		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
78	M69	N70	N71		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
79	M70	N71	N72		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
80	M70	N72	N73		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
81	M72	N73	N74		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
82	M72	N74	N75		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
83	M74	N75	N76		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
84	M75	N76	N77		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
85	M76	N77	N78		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
86	M77	N78	N79		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
87	M78	N79	N80		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
88	R1	N92	CP2		RIGID	None	None	RIGID	Typical
89	R2	N91	N100		RIGID	None	None	RIGID	Typical
90	R3	N84	N106		RIGID	None	None	RIGID	Typical
91	R4	N83	N105		RIGID	None	None	RIGID	Typical
92	R5	N82	N104		RIGID	None	None	RIGID	Typical
93	R6	N81	N103		RIGID	None	None	RIGID	Typical
94	R7	N87	N121		RIGID	None	None	RIGID	Typical
95	R8	N88	N120		RIGID	None	None	RIGID	Typical
96	R9	N89	N125		RIGID	None	None	RIGID	Typical
97	R10	N90	N124		RIGID	None	None	RIGID	Typical
98	MP4	N109	N107		Mount Pipe	Column	Pipe	ASTM A500 Gr. 50	Typical
99	MP3	N123	N122		Mount Pipe	Column	Pipe	ASTM A500 Gr. 50	
100	MP2	N127	N126		Mount Pipe	Column	Pipe	ASTM A500 Gr. 50 ASTM A500 Gr. 50	
101	MP1	N110	N108		Mount Pipe	Column	Pipe	ASTM A500 Gr. 50 ASTM A500 Gr. C	
102	<u>S1</u> S2	N96	N94		<u>Standoff</u> Standoff	Beam	Tube	ASTM A500 Gr. C	Typical Typical
103	S2 S3	N95 N94	N93 N93		Standoff Mount Pipe	Beam Column	Tube Pipe	ASTM A500 Gr. 50	Typical Typical
104	M109	N94 N95	N93		Standoff Spacer	Column	Pipe	ASTM A500 GL 50	
105	M109	N95	N126B		RIGID	None	None	RIGID	Typical
107	M111	N95 N96	N127A		RIGID	None	None	RIGID	Typical
107	M108	N200	N127A		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
109	M109A	N205	N206		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
110	M110A	N203	N204		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
111	M111A	N207	N204		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
112	M112	N202	N201		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
113	M113	N168	N128		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
					\ \ \Initial MA 10-25-				

RISA-3D Version 17.0.4 [L:\...\...\...\...\...\...\Initial MA 10-25-2019\TNX or RISA\803175_loaded.r3d] Page 2


	Label	I Joint	J Joint	K Joint Ro	Section/Shape	Type	Design List	Material	Design Rules
114	M114	N188	N148		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
115	M115	N202	N200		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
116	M116	N201	N199		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
	<u>M117</u>	N119	N120A		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
118	M118	N120A	N121A		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
119	M119	N121A	N122A		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
120	M120	N122A	N123A		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
121	<u>M121</u>	N123A	N124A		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
122	M122	N124A	N125A		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
123	M123	N125A	N126A		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
124	<u>M124</u>	N126A	N127B		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
125	<u>M125</u>	N127B	N128		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
126	<u>M126</u>	N128	N129		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
127	<u>M127</u>	N129	N130		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
128	<u>M128</u>	N130	N131		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
129	<u>M129</u>	N131	N132		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
130	M130	N132	N133		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
131	M131	N133	N134		Main Frame	Beam	Pipe	ASTM A500 Gr. 50 ASTM A500 Gr. 50	Typical
132	M132	N134	N135		Main Frame	Beam	Pipe	ASTM A500 Gr. 50 ASTM A500 Gr. 50	Typical
133	M133	N135	N136		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
134	M134	N136	N137		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
135 136	M135	N137 N138	N138 N139		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
130	M136 M137	N130	N140		Main Frame Main Frame	Beam	Pipe Dipo	ASTM A500 Gr. 50	Typical Typical
137	M137	N139	N140		Main Frame	Beam	Pipe Pipe	ASTM A500 Gr. 50	Typical Typical
139	M139	N140	N141		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
140	M140	N141	N142			Beam Beam	Pipe	ASTM A500 Gr. 50	Typical
140	M140 M141	N142	N143		Main Frame Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
141	M141 M142	N143	N145		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
143	M143	N145	N146		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
144	M144	N146	N147		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
145	M145	N147	N148		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
146	M146	N148	N149		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
147	M147	N149	N150		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
148	M148	N150	N151		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
149	M149	N151	N152		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
150	M150	N152	N153		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
151	M151	N153	N154		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
152	M152	N154	N155		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
153	M153	N155	N156		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
	M154	N156	N157		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
155	M155	N157	N158		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
156	M156	N159	N160		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
157	M157	N160	N161		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
	M158	N161	N162		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
159	M159	N162	N163		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
160	M160	N163	N164		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
161	M161	N164	N165		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
162	M162	N165	N166		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
163	M163	N166	N167		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
164	M164	N167	N168		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
165	M165	N168	N169		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	. ,
166	M166	N169	N170		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
167	<u>M167</u>	N170	N171		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
168	M168	N171	N172		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
169	<u>M169</u>	N172	N173		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
170	M170	N173	N174		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
		aian 17.0	<u>ار ار ا</u>		\ Initial MA 10-25	2010\TNV		2175 loodod r2d]	Dage 2

RISA-3D Version 17.0.4 [L:\...\...\...\...\...\Initial MA 10-25-2019\TNX or RISA\803175_loaded.r3d] Page 3

	Label	I Joint	J Joint	K Joint Ro	Section/Shape	Туре	Design List	Material	Design Rules
171	M171	N174	N175		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
172	M172	N175	N176		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
173	M173	N176	N177		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
174	M174	N177	N178		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
175	M175	N178	N179		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
176	M176	N179	N180		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
177	M177	N180	N181		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
178	M178	N181	N182		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
179	M179	N182	N183		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
180	M180	N183	N184		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
181	M181	N184	N185		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
182	M182	N185	N186		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
<u>183</u> 184	M183	N186	N187		Main Frame	Beam	Pipe	ASTM A500 Gr. 50 ASTM A500 Gr. 50	Typical
184	M184 M185	N187 N188	N188 N189		Main Frame	Beam	Pipe Dipo	ASTM A500 Gr. 50	Typical Typical
186	M186	N189	N190		Main Frame Main Frame	Beam Beam	Pipe Pipe	ASTM A500 Gr. 50	Typical Typical
187	M187	N190	N191		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
188	M188	N191	N192		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
189	M189	N192	N192		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
190	M100	N193	N194		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
191	M191	N194	N195		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
192	M192	N195	N196		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
193	M193	N196	N197		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
194	M194	N197	N198		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
195	M195	N210	N178		RIGID	None	None	RIGID	Typical
196	M196	N209	N138		RIGID	None	None	RIGID	Typical
197	M197	N202	N221		RIGID	None	None	RIGID	Typical
198	M198	N201	N220		RIGID	None	None	RIGID	Typical
199	M199	N200	N219		RIGID	None	None	RIGID	Typical
200	M200	N199	N218		RIGID	None	None	RIGID	Typical
201	M201	N205	N227		RIGID	None	None	RIGID	Typical
202	M202	N206	N226		RIGID	None	None	RIGID	Typical
203	M203 M204	N207 N208	N231 N230		RIGID RIGID	None None	None None	RIGID RIGID	Typical Typical
204	M204	N214	N212		Standoff	Beam	Tube	ASTM A500 Gr. C	Typical
205	M209	N214	N212		Standoff	Beam	Tube	ASTM A500 Gr. C	Typical
200	M210	N212	N211		Standoff Mount Pipe	Column	Pipe	ASTM A500 Gr. 50	Typical
208	M212	N213	N214		Standoff Spacer	Column	Pipe	ASTM A500 Gr. 50	Typical
209	M213	N213	N234		RIGID	None	None	RIGID	Typical
210	M214	N214	N235		RIGID	None	None	RIGID	Typical
211	M215	N318	N317		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
212	M216	N323	N324		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
213	M217	N321	N322		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
214	M218	N325	N326		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
215	M219	N320	N319		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
216	M220	N286	N246		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	1 11 - 11
217	M221	N306	N266		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
218	M222	N320	N318		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
219	M223	N319	N317		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
220	M224	N237	N238		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
221	M225	N238	N239 N240		Main Frame	Beam	Pipe Pipe	ASTM A500 Gr. 50 ASTM A500 Gr. 50	
222	M226 M227	N239 N240	N240 N241		Main Frame	Beam Beam	Pipe Pipe	ASTM A500 Gr. 50	
223	M228	N240	N241		Main Frame Main Frame	Beam Beam	Pipe Pipe	ASTM A500 Gr. 50	
224	M229	N241	N242		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
225	M230	N242	N243		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
227	M231	N244	N245		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
					\ \ \Initial MA 10-25-				

RISA-3D Version 17.0.4 [L:\...\...\...\...\...\Initial MA 10-25-2019\TNX or RISA\803175_loaded.r3d] Page 4

	Label	I Joint	J Joint	K Joint Ro	Section/Shape	Type	Design List	Material	Design Rules
228	M232	N245	N246		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
229	M233	N246	N247		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
230	M234	N247	N248		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
231	M235	N248	N249		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
232	M236	N249	N250		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
233	M237	N250	N251		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
234	M238	N251	N252		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
235	M239	N252	N253		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
236	M240	N253	N254		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
237	M241	N254	N255		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
238	M242	N255	N256		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
239	M243	N256	N257		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
240	M244	N257	N258		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
241	M245	N258	N259		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
242	M246	N259	N260		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
243	M247	N260	N261		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
244	M248	N261	N262		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
245	M249	N262	N263		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
246	M250	N263	N264		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
247	M251	N264	N265		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
248	M252	N265	N266		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
249	M253	N266	N267		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
250	M254	N267	N268		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
251	M255	N268	N269		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
252	M256	N269	N270		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
253	M257	N270	N271		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
254	M258	N271	N272		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
255	M259	N272	N273		Main Frame	Beam	Pipe	ASTM A500 Gr. 50 ASTM A500 Gr. 50	Typical
256	M260	N273	N274		Main Frame	Beam	Pipe		Typical
257	M261	N274	N275		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
258	M262	N275	N276		Main Frame	Beam	Pipe	ASTM A500 Gr. 50 ASTM A500 Gr. 50	Typical
259	M263	N277	N278		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
<u>260</u> 261	M264 M265	N278 N279	N279 N280		Main Frame	Beam	Pipe Dipo	ASTM A500 Gr. 50	Typical Typical
261	M265	N280	N281		Main Frame	Beam	Pipe Dipo	ASTM A500 Gr. 50	Typical
263	M267	N281	N282		Main Frame Main Frame	Beam	Pipe Bipo	ASTM A500 Gr. 50	Typical Typical
263	M268	N282	N283		Main Frame	Beam Beam	Pipe Pipe	ASTM A500 Gr. 50	Typical Typical
265	M269	N283	N284		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
266	M209	N284	N285		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
267	M270	N285	N286		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
268		N286	N287		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
269	M273	N287	N288		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
270	M273	N288	N289		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
271	M275	N289	N290		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
272	M276	N290	N291		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
273	M277	N291	N292		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
274	M278	N292	N293		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
275	M279	N293	N294		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
276	M280	N294	N295		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
277	M281	N295	N296		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
278		N296	N297		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
279	M283	N297	N298		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
280	M284	N298	N299		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
281	M285	N299	N300		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
282	M286	N300	N301		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
283	M287	N301	N302		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
284	M288	N302	N303		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	
					__\Initial MA 10_25				

RISA-3D Version 17.0.4 [L:\...\...\...\...\...\...\Initial MA 10-25-2019\TNX or RISA\803175_loaded.r3d] Page 5

	Label	I Joint	J Joint	K Joint Ro	. Section/Shape	Type	Design List	Material	Design Rules
285	M289	N303	N304		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
286	M290	N304	N305		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
287	M291	N305	N306		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
288	M292	N306	N307		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
289	M293	N307	N308		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
290	M294	N308	N309		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
291	M295	N309	N310		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
292	M296	N310	N311		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
293	M297	N311	N312		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
294	M298	N312	N313		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
295	M299	N313	N314		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
296	M300	N314	N315		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
297	M301	N315	N316		Main Frame	Beam	Pipe	ASTM A500 Gr. 50	Typical
298	M302	N328	N296		RIGID	None	None	RIGID	Typical
299	M303	N327	N256		RIGID	None	None	RIGID	Typical
300	M304	N320	N339		RIGID	None	None	RIGID	Typical
301	M305	N319	N338		RIGID	None	None	RIGID	Typical
302	M306	N318	N337		RIGID	None	None	RIGID	Typical
303	M307	N317	N336		RIGID	None	None	RIGID	Typical
304	M308	N323	N345		RIGID	None	None	RIGID	Typical
305	M309	N324	N344		RIGID	None	None	RIGID	Typical
306	M310	N325	N349		RIGID	None	None	RIGID	Typical
307	M311	N326	N348		RIGID	None	None	RIGID	Typical
308	M316	N332	N330		Standoff	Beam	Tube	ASTM A500 Gr. C	Typical
309	M317	N331	N329		Standoff	Beam	Tube	ASTM A500 Gr. C	Typical
310	M318	N330	N329		Standoff Mount Pipe	Column	Pipe	ASTM A500 Gr. 50	Typical
311	M319	N331	N332		Standoff Spacer	Column	Pipe	ASTM A500 Gr. 50	Typical
312	M320	N331	N352		RIGID	None	None	RIGID	Typical
313	M321	N332	N353		RIGID	None	None	RIGID	Typical
314	M323	N98	N357		RIGID	None	None	RIGID	Typical
315	M325	N353A	N354		RIGID	None	None	RIGID	Typical
316	<u>M327</u>	N216	N365		RIGID	None	None	RIGID	Typical
317	M329	N361	N362		RIGID	None	None	RIGID	Typical
318	<u>M331</u>	N334	N373		RIGID	None	None	RIGID	Typical
319	<u>M333</u>	N369	N370		RIGID	None	None	RIGID	Typical
320	M335	N357	N370		Tieback	Beam	Pipe	ASTM A500 Gr. 50	Typical
321	<u>M337</u>	N365	N354		Tieback	Beam	Pipe	ASTM A500 Gr. 50 ASTM A500 Gr. 50	Typical
322	<u>M339</u>	N373	N362		Tieback	Beam	Pipe		Typical
323	MP8	N224	N222		Mount Pipe	Column	Pipe	ASTM A500 Gr. 50 ASTM A500 Gr. 50	Typical
324	MP7	N229	N228		Mount Pipe	Column	Pipe	ASTM A500 Gr. 50 ASTM A500 Gr. 50	Typical
325	MP6	N233	N232		Mount Pipe	Column	Pipe		Typical
326	MP5	N225	N223		Mount Pipe	Column	Pipe	ASTM A500 Gr. 50	Typical
327	MP12	N342	N340		Mount Pipe	Column	Pipe	ASTM A500 Gr. 50 ASTM A500 Gr. 50	Typical
328	MP11	N347	N346		Mount Pipe	Column	Pipe	ASTM A500 Gr. 50	Typical
329	MP10	N351	N350		Mount Pipe	Column	Pipe	ASTM A500 Gr. 50	Typical
330	MP9	N343	N341		Mount Pipe	Column	Pipe	A3 1W A300 GL 30	Typical

Material Takeoff

	Material	Size	Pieces	Length[in]	Weight[LB]
1	General				
2	RIGID		42	114	0
3	Total General		42	114	0
4					
5	Hot Rolled Steel				
6	ASTM A500 Gr. 50	PIPE_1.5	6	395.4	90.319

RISA-3D Version 17.0.4 [L:\...\...\...\...\...\...\Initial MA 10-25-2019\TNX or RISA\803175_loaded.r3d] Page 6

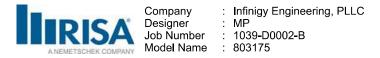
Material Takeoff (Continued)

	Material	Size	Pieces	Length[in]	Weight[LB]
7	ASTM A500 Gr. 50	PIPE 2.0	273	3613.5	1124.085
8	ASTM A500 Gr. 50	PIPE 2.5X	3	135	86.461
9	ASTM A500 Gr. C	HSS3X3X3	6	108	62.252
10	Total HR Steel		288	4251.9	1363.117

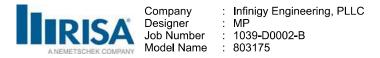
Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed Area(Me	Surface(P
1	Self Weight	DL		-1			32		
2	Wind Load AZI 0	WLZ					64		
3	Wind Load AZI 30	None					64		
4	Wind Load AZI 60	None					64		
5	Wind Load AZI 90	WLX					64		
6	Wind Load AZI 120	None					64		
7	Wind Load AZI 150	None					64		
8	Wind Load AZI 180	None					64		
9	Wind Load AZI 210	None					64		
10	Wind Load AZI 240	None					64		
11	Wind Load AZI 270	None					64		
12	Wind Load AZI 300	None					64		
13	Wind Load AZI 330	None					64		
14	Distr. Wind Load Z	WLZ						330	
15	Distr. Wind Load X	WLX						330	
16	Ice Weight	OL1					32	330	
17	Ice Wind Load AZI 0	OL2					64		
18	Ice Wind Load AZI 30	None					64		
19	Ice Wind Load AZI 60	None					64		
20	Ice Wind Load AZI 90	OL3					64		
21	Ice Wind Load AZI 120	None					64		
22	Ice Wind Load AZI 150	None					64		
23	Ice Wind Load AZI 180	None					64		
24	Ice Wind Load AZI 210	None					64		
25	Ice Wind Load AZI 240	None					64		
26	Ice Wind Load AZI 270	None					64		
27	Ice Wind Load AZI 300	None					64		
28	Ice Wind Load AZI 330	None					64		
29	Distr. Ice Wind Load Z	OL2						330	
30	Distr. Ice Wind Load X	OL3						330	
31	Seismic Load Z	ELZ			097		32		
32	Seismic Load X	ELX	097				32		
33	Service Live Loads	LL					6		
34	Maintenance Load 1	LL				1			
35	Maintenance Load 2	LL				1			
36	Maintenance Load 3	LL				1			
37	Maintenance Load 4	LL				1			
38	Maintenance Load 5	LL				1			
39	Maintenance Load 6	LL				1			
40	Maintenance Load 7	LL				1			
41	Maintenance Load 8	LL				1			
42	Maintenance Load 9	LL				1			
43	Maintenance Load 10	LL				1			
44	Maintenance Load 11	LL				1			
45	Maintenance Load 12	LL				1			

Load Combinations


	Description		. BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor	F.		F	F	F	F	F.
1	1.4DL	Y	1	1.4													
2	1.2DL + 1WL AZI 0	Y	1	1.2	2	1	14	1	15								
3	1.2DL + 1WL AZI 30	Y	1	1.2	3	1	14	.866		.5							
4	1.2DL + 1WL AZI 60	Y	1	1.2	4	1	14	.5	15	.866							
5	1.2DL + 1WL AZI 90	Y	1	1.2	5	1	14		15	1		H	_				
6	1.2DL + 1WL AZI 120	Y	1	1.2	6	1	14	5	15	.866							-
7	1.2DL + 1WL AZI 120	Y	1	1.2	7	1		866		.5			-	+++			
8		Y	1	1.2	8	1				.5			-	-			-
	1.2DL + 1WL AZI 180		-				14	-1	15	F				+++	+++		+-
9	1.2DL + 1WL AZI 210	Y	1	1.2	9	1	14	866		5			_	+			_
10	1.2DL + 1WL AZI 240	Y	1	1.2	10	1	14	5		866			_	++			
11	1.2DL + 1WL AZI 270	Y	1	1.2	11	1	14		15	-1			_	+-+			_
12	1.2DL + 1WL AZI 300	Y	1	1.2	12	1	14	.5		866				\rightarrow			
13	1.2DL + 1WL AZI 330	Y	1	1.2	13	1	14	.866		5				\rightarrow			
14	0.9DL + 1WL AZI 0	Y	1	.9	2	1	14	1	15								
15	0.9DL + 1WL AZI 30	Y	1	.9	3	1	14	.866	15	.5							
16	0.9DL + 1WL AZI 60	Y	1	.9	4	1	14	.5	15	.866							
17	0.9DL + 1WL AZI 90	Y	1	.9	5	1	14		15	1							
18	0.9DL + 1WL AZI 120	Y	1	.9	6	1	14	5	15	.866							
19	0.9DL + 1WL AZI 150	Y	1	.9	7	1	14	866		.5							
20	0.9DL + 1WL AZI 180	Y	1	.9	8	1	14	-1	15								
21	0.9DL + 1WL AZI 210	Y	1	.9	9	1		866		5			-				
22	0.9DL + 1WL AZI 240	Y	1	.9	10	1	14	5		866			-				-
23		Y	1	.9	11		14	5	15								_
	0.9DL + 1WL AZI 270		1			1		_		-1			-	++		++	+
24	0.9DL + 1WL AZI 300	Y	-	.9	12	1	14	.5		866			_	++		_	_
25	0.9DL + 1WL AZI 330	Y	1	.9	13	1	14	.866	15	5			_				_
26	1.2D + 1.0Di	Y	1	1.2	16	1								++			
27	1.2D + 1.0Di +1.0Wi AZI 0	Y	1	1.2	16	1	17	1	29		30		_	\rightarrow			
28	1.2D + 1.0Di +1.0Wi AZI 30	Y	1	1.2	16	1	18	1	29	.866			_	+			
29	<u> 1.2D + 1.0Di +1.0Wi AZI 60</u>	Y	1	1.2	16	1	19	1	29		30						
30	1.2D + 1.0Di +1.0Wi AZI 90	Y	1	1.2	16	1	20	1	29		30 1						
31	<u> 1.2D + 1.0Di +1.0Wi AZI 120</u>	Y	1	1.2	16	1	21	1	29	5							
32	1.2D + 1.0Di +1.0Wi AZI 150	Y	1	1.2	16	1	22	1	29	866	30.5						
33	1.2D + 1.0Di +1.0Wi AZI 180	Y	1	1.2	16	1	23	1	29	-1	30						
34	1.2D + 1.0Di +1.0Wi AZI 210	Y	1	1.2	16	1	24	1	29	866	305	5					
35	1.2D + 1.0Di +1.0Wi AZI 240	Y	1	1.2	16	1	25	1	29		30						
36	1.2D + 1.0Di +1.0Wi AZI 270	Y	1	1.2	16	1	26	1	29		30-1						
37	1.2D + 1.0Di +1.0Wi AZI 300	Y	1	1.2	16	1	27	1	29		30		T	+++			
38	1.2D + 1.0Di +1.0Wi AZI 330	Y	1	1.2	16	1	28	1	29	.866							
39	(1.2 + 0.2Sds)DL + 1.0E AZI 0	Y	1	1.239		1	32	-	23	.000	00.0		-	+++			
		Y	1	1.239			32	.5					-	+			+
40	(1.2 + 0.2Sds)DL + 1.0E AZI 30					.866						+	+	++	+	++	+
41	(1.2 + 0.2Sds)DL + 1.0E AZI 60		1	1.239		.5	32	.866						+			+
42	(1.2 + 0.2Sds)DL + 1.0E AZI 90		1	1.239		_	32	1				+	-	++	+	++	
43	(1.2 + 0.2Sds)DL + 1.0E AZI 120		1	1.239			32	.866				++		++		+	_
44	(1.2 + 0.2Sds)DL + 1.0E AZI 150		1			866		.5					4	++	44	\rightarrow	4
45	(1.2 + 0.2Sds)DL + 1.0E AZI 180		1	1.239		-1	32							+			
46	(1.2 + 0.2Sds)DL + 1.0E AZI 210		1			866		5						+			
47	(1.2 + 0.2Sds)DL + 1.0E AZI 240		1	1.239		5		866									
48	(1.2 + 0.2Sds)DL + 1.0E AZI 270	Y	1	1.239			32	-1									
49	(1.2 + 0.2Sds)DL + 1.0E AZI 300	Y	1	1.239	31	.5	32	866									
50	(1.2 + 0.2Sds)DL + 1.0E AZI 330		1	1.239		.866	32	5									
51	(0.9 - 0.2Sds)DL + 1.0E AZI 0	Y	1	.861		1	32										
52	(0.9 - 0.2Sds)DL + 1.0E AZI 30	Y	1	.861		.866		.5									
53	(0.9 - 0.2Sds)DL + 1.0E AZI 60		1	.861		.5	32	.866					-				
54	(0.9 - 0.2Sds)DL + 1.0E AZI 90		1	.861		.5	32	.000						+			+
	10.9 - 0.2008/DL - 1.0E AZI 90											+		+		++	+
			1	001	24			0000				1 1					
55 56	(0.9 - 0.2Sds)DL + 1.0E AZI 120 (0.9 - 0.2Sds)DL + 1.0E AZI 150		1	.861		5 866	32	.866 .5									

RISA-3D Version 17.0.4 [L:\...\...\...\...\...\Initial MA 10-25-2019\TNX or RISA\803175_loaded.r3d] Page 8


Load Combinations (Continued)

		-		E t		F		F	_			_		
				Factor		Factor	BLC	Factor	F	<u> </u> F	<u>,F</u>	<u>F.</u> .	<u>, F</u>	<u>F</u> .
57 (0.9 - 0.2Sds)DL + 1.0E AZI 180 Y		.861			32	_				_				
<u>58</u> (0.9 - 0.2Sds)DL + 1.0E AZI 210 Y	1			866		5				_	+		+	
<u>59</u> (0.9 - 0.2Sds)DL + 1.0E AZI 240 Y	1	.861				866				_				
60 (0.9 - 0.2Sds)DL + 1.0E AZI 270 Y	1	.861			32	-1					++-			
61 (0.9 - 0.2Sds)DL + 1.0E AZI 300 Y	1	.861		.5	32	866					\square		\square	
62 (0.9 - 0.2Sds)DL + 1.0E AZI 330 Y	1	.861				5					\square			
63 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 0 Y	1	1	2	.23	14	.23	15		331.5					
64 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 30 Y	1	1	3	.23	14		15							
65 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 60 Y	1	1	4	.23	14	.115	15		331.5					
66 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 90 Y	1	1	5	.23	14		15		331.5					
67 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 1 Y	1	1	6	.23	14	115	15		331.5					
68 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 1 Y	1	1	7	.23	14	2	15	.115	331.5					
69 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 1	1	1	8	.23	14	23	15		331.5					
70 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 2 Y	1	1	9	.23	14		15	115	331.5					
71 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 2 Y	1	1	10	.23		115		2	331.5					
72 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 2 Y	1	1	11	.23	14			23						
73 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 3 Y	1	1	12	.23		.115								
74 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 3 Y	1	1	13	.23	14	.2		115						
75 1.2DL + 1.5LL Y	1	1.2	33		17	.2	10							
76 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) A Y	1	1.2	34		2	.058	14	.058	15					
77 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) A Y	1	1.2	34		3	.058		.05	15		+			
78 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) A Y	1	1.2	34		4			.029						
79 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) A Y	1	1.2	34		5	.058			15					
80 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) A Y	1	1.2	34		6	.058		029						
	1	1.2	34		7	.058								_
81 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) A Y 82 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) A Y	1	1.2				.058		058						
			34		8						++			
	1	1.2	34		9			05		_	++-			
84 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AY	1	1.2	34		10	.058		029			+			
85 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AY	1	1.2	34		11	.058			15	_				
86 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) A Y	1	1.2	34		12	.058		.029			+		+ + +	
87 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) A Y	1	1.2	34		13	.058		.05						
88 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) A Y	1	1.2	35		2	.058					_			
89 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) A Y	1	1.2	35		3	.058		.05			\square		++++	
90 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) A Y	1	1.2	35		4	.058								
91 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) A Y	1	1.2	35		5	.058	14		15	_	\square			
92 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) A Y	1	1.2	35		6	.058		029						
93 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) A Y	1	1.2	35		7			05						
94 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) A Y	1	1.2	35	1.5	8	.058		058						
95 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) A Y	1	1.2	35	1.5	9	.058		05						
96 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) A Y	1	1.2	35	1.5	10	.058	14	029	15					
97 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) A Y	1	1.2	35	1.5	11	.058	14		15					
98 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) A Y	1	1.2	35	1.5	12	.058	14	.029	15					
99 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) A Y	1	1.2	35	1.5	13	.058	14	.05	15					
100 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) A Y	1	1.2	36		2	.058		.058	15					
101 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) A Y	1	1.2	36		3	.058		.05						
102 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) A Y	1	1.2	36		4	.058		.029						
103 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) A Y	1	1.2	36		5	.058			15					
104 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) A Y	1	1.2	36		6	.058		029						
105 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) A Y	1	1.2	36		7	.058		05						
106 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) A Y	1	1.2	36		8	.058		058						
107 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) A Y	1	1.2	36		9	.058		05						
108 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) A Y	1	1.2	36		10	.058		029						
109 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) A Y	1	1.2	36		11	.058			15		+		+++	
110 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) A Y	-							.029						
	1	1.2	36		12	.058					++-		+++	+-
111 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AY	1	1.2	36		13	.058			15		++-			
112 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AY	1	1.2	37	1.5	2	.058		.058			+-			
113 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) A	1	1.2	37	1.5	3	.058	14	.05	10					
$PISA_3D$ Version 17.0.4 [I:\ \ \ \	1 1	امنئنما	N 4 A	10.05	2010		a # D		0475			~2 d1	Dee	

Load Combinations (Continued)

				Fastar		Fastar		Fastar	F	-	г	-	F	
Description	. BLC	CFactor	37		<u>BLC</u>	.058				F	F.	F	F	<u>F</u>
115 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) A Y	1	1.2	37	1.5	5	.058			15					
116 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) A Y	1	1.2	37					029						
117 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) A Y	1							029						
118 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) A Y	-	1.2	37		7	.058								
	1	1.2	37	1.5	8	.058	1	058		_				
119 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AY	1	1.2	37	1.5	9	.058								
120 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) A Y	1	1.2	37	1.5	10	.058		029						
121 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) A Y	1	1.2	37	1.5	11	.058			15	_				
122 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) A Y	1	1.2	37	1.5	12	.058		.029						
123 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) A Y	1	1.2	37	1.5	13	.058			15					
124 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) A Y	1	1.2	38	1.5	2	.058		.058						
125 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) A Y	1	1.2	38	1.5	3	.058		.05						
126 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) A Y	1	1.2	38		4	.058			15.05					
127 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AY	1	1.2	38	1.5	5	.058			15					
128 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) A Y	1	1.2	38	1.5	6	.058	14	029						
129 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) A Y	1	1.2	38	1.5	7	.058	14	05	15					
130 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) A Y	1	1.2	38	1.5	8	.058	14	058	15					
131 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) A Y	1	1.2	38	1.5	9	.058	14	05	15					
132 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) A Y	1	1.2	38	1.5	10	.058	14	029	15					
133 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) A Y	1	1.2	38	1.5	11	.058			15					
134 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) A Y	1	1.2	38	1.5	12	.058		.029	15					
135 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) A Y	1	1.2	38	1.5	13	.058		.05						
136 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) A Y	1	1.2	39	1.5	2	.058		.058						
137 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) A Y	1	1.2	39	1.5	3	.058		.05						
138 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) A Y	1	1.2	39	1.5	4	.058			15.05					
139 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) A Y	1	1.2	39	1.5	5	.058			15					
140 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) A Y	1	1.2	39	1.5	6			029						
141 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) A Y	1	1.2	39	1.5	7	.058		05						
142 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) A Y	1	1.2	39	1.5	8	.058		058						
143 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) A Y	1	1.2	39	1.5	9	.058		05						
144 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) A Y	1	1.2	39	1.5	10	.058		029						
145 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) A Y	1	1.2	39	1.5	11	.058			15					
146 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) A Y	1	1.2	39	1.5	12	.058								
147 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) A Y	1					.058		.029						
148 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) A Y	-	1.2	39	1.5	13			.058						
149 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) A Y	1	1.2	40	1.5	2	.058				_				
	1	1.2	40	1.5	3	.058		.05		_				
150 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AY	1	1.2	40	1.5	4	.058		.029						
151 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AY	1	1.2	40	1.5	5	.058			15					
152 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AY	1	1.2	40	1.5	6	.058		029						
153 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AY	1	1.2	40	1.5	7	.058	1	05						
154 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) A Y	1	1.2	40	1.5	8			058						
155 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) A Y	1	1.2	40	1.5	9	.058		05						
156 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) A Y	1	1.2	40	1.5	10	.058		029						
157 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) A Y	1	1.2	40	1.5	11	.058			15					
158 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) A Y	1	1.2	40	1.5	12	.058		.029						
159 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AY	1	1.2	40	1.5	13	.058		.05						
160 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) A Y	1	1.2	41	1.5	2	.058		.058						
161 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) A Y	1	1.2	41	1.5	3	.058	14	.05						
162 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) A Y	1	1.2	41	1.5	4	.058			15.05					
163 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) A Y	1	1.2	41	1.5	5	.058			15					
164 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) A Y	1	1.2	41	1.5	6	.058	14	029	15.05					
165 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) A Y	1	1.2	41	1.5	7	.058	14	05	15					
166 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) A Y	1	1.2	41	1.5	8	.058		058						
167 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) A Y	1	1.2	41	1.5	9	.058		05						
168 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) A Y	1	1.2	41	1.5	10	.058		029						
169 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) A Y	1	1.2	41	1.5	11	.058			15					
170 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) A Y	1	1.2	41	1.5	12	.058		.029	15					
	_												Page	

Load Combinations (Continued)

Description	. BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor	F	F	F.	F	F	F
171 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) A Y	1	1.2	41	1.5	13	.058			15			T		
172 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) A Y	1	1.2	42	1.5	2	.058			15					
173 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) A Y	1	1.2	42	1.5	3	.058								
174 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) A Y	1	1.2	42	1.5	4			.029						
175 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) A Y	1	1.2	42	1.5	5	.058			15					
176 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) A Y	1	1.2	42	1.5	6			029						
177 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) A Y	1	1.2	42	1.5	7	.058	14							
178 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) A Y	1	1.2	42	1.5	8	.058		058						
179 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) A Y	1	1.2	42	1.5	9	.058	14		15					
180 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) A Y	1	1.2	42	1.5	10	.058		029						
181 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) A Y	1	1.2	42	1.5	11	.058			15	-				
182 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) A Y	1	1.2	42	1.5	12	.058								
183 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) A Y	1	1.2	42	1.5	13	.058	14		15					
184 1.2DL + 1.5LM-MP10 + 1SWL (30 mph) Y	1	1.2	43	1.5	2	.058	14							
185 1.2DL + 1.5LM-MP10 + 1SWL (30 mph)	1	1.2	43	1.5	3	.058	14	.05		-				
186 1.2DL + 1.5LM-MP10 + 1SWL (30 mph) Y	1	1.2	43		4			.029						
187 1.2DL + 1.5LM-MP10 + 1SWL (30 mph) Y	1	1.2	43	<u>1.5</u> 1.5	<u>4</u> 5	<u>.058</u> .058	14		15	-				
188 1.2DL + 1.5LM-MP10 + 1SWL (30 mph)	1							029		-				
	1	1.2	43	1.5	6	.058	14	029	15.05	-				
		1.2	43	1.5	7	.058	14							
190 1.2DL + 1.5LM-MP10 + 1SWL (30 mph)Y	1	1.2	43	1.5	8	.058		058		_				
191 1.2DL + 1.5LM-MP10 + 1SWL (30 mph)	1	1.2	43	1.5	9	.058				_				
<u>192</u> 1.2DL + 1.5LM-MP10 + 1SWL (30 mph) Y	1	1.2	43	1.5	10			029		_				
193 1.2DL + 1.5LM-MP10 + 1SWL (30 mph) Y	1	1.2	43	1.5	11	.058	14		15	-				
<u>194</u> 1.2DL + 1.5LM-MP10 + 1SWL (30 mph) Y	1	1.2	43	1.5	12	.058	14							
195 1.2DL + 1.5LM-MP10 + 1SWL (30 mph) Y	1	1.2	43	1.5	13	.058	14	.05		_				
<u>196</u> 1.2DL + 1.5LM-MP11 + 1SWL (30 mph) Y	1	1.2	44	1.5	2	.058		.058		_				
197 1.2DL + 1.5LM-MP11 + 1SWL (30 mph) Y	1	1.2	44	1.5	3	.058	14	.05		_				
198 1.2DL + 1.5LM-MP11 + 1SWL (30 mph) Y	1	1.2	44	1.5	4	.058	14		15.05	_				
199 1.2DL + 1.5LM-MP11 + 1SWL (30 mph) Y	1	1.2	44	1.5	5	.058	14		15	_				
200 1.2DL + 1.5LM-MP11 + 1SWL (30 mph) Y	1	1.2	44	1.5	6			029						
201 1.2DL + 1.5LM-MP11 + 1SWL (30 mph) Y	1	1.2	44	1.5	7					_				
202 1.2DL + 1.5LM-MP11 + 1SWL (30 mph) Y	1	1.2	44	1.5	8			058						
203 1.2DL + 1.5LM-MP11 + 1SWL (30 mph) Y	1	1.2	44	1.5	9	.058				_				
204 1.2DL + 1.5LM-MP11 + 1SWL (30 mph) Y	1	1.2	44	1.5	10	.058	14	029		_				
205 1.2DL + 1.5LM-MP11 + 1SWL (30 mph) Y	1	1.2	44	1.5	11	.058	14		15	_				
206 1.2DL + 1.5LM-MP11 + 1SWL (30 mph) Y	1	1.2	44	1.5	12	.058		.029		_				
207 1.2DL + 1.5LM-MP11 + 1SWL (30 mph) Y	1	1.2	44	1.5	13	.058	14		15					
208 1.2DL + 1.5LM-MP12 + 1SWL (30 mph) Y	1	1.2	45	1.5	2	.058		.058						
209 1.2DL + 1.5LM-MP12 + 1SWL (30 mph) Y	1	1.2	45	1.5	3	.058	14		15					
210 1.2DL + 1.5LM-MP12 + 1SWL (30 mph) Y	1	1.2	45	1.5	4			.029						
211 1.2DL + 1.5LM-MP12 + 1SWL (30 mph) Y	1	1.2		1.5	5	.058			15					
212 1.2DL + 1.5LM-MP12 + 1SWL (30 mph) Y	1	1.2	45		6			029						
213 1.2DL + 1.5LM-MP12 + 1SWL (30 mph) Y	1	1.2	45	1.5	7	.058								
214 1.2DL + 1.5LM-MP12 + 1SWL (30 mph) Y	1	1.2	45	1.5	8	.058		058						
215 1.2DL + 1.5LM-MP12 + 1SWL (30 mph) Y	1	1.2	45	1.5	9	.058		05						
216 1.2DL + 1.5LM-MP12 + 1SWL (30 mph) Y	1	1.2	45	1.5	10	.058	14	029						
217 1.2DL + 1.5LM-MP12 + 1SWL (30 mph) Y	1	1.2	45	1.5	11	.058	14		15					
218 1.2DL + 1.5LM-MP12 + 1SWL (30 mph) Y	1	1.2	45	1.5	12	.058	14	.029	15					

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-in]	LC	MY [lb-in]	LC	MZ [Ib-in]	LC
1	N126B	max	1777.885	15	2070.709	38	1741.598	15	0	218	0	218	0	218
2		min	-2363.034	9	-96.885	19	-4096.565	34	0	1	0	1	0	1
3	N127A	max	1541.745	113	2019.01	32	3946.002	29	0	218	0	218	0	218
4		min	-930.276	21	59.93	14	-442.197	22	0	1	0	1	0	1

Envelope Joint Reactions (Continued)

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-in]	LC	MY [lb-in]	LC	MZ [lb-in]	LC
5	N234	max	3964.505	30	1970.833	34	1571.965	37	Ō	218	0	218	0	218
6		min	-2510.567	23	-174.508	16	-904.782	18	0	1	0	1	0	1
7	N235	max	934.27	18	1927.806	29	940.554	22	0	218	0	218	0	218
8		min	-3790.298	37	15.986	22	-1528.62	126	0	1	0	1	0	1
9	N352	max	818.183	18	2050.219	30	3698.213	13	0	218	0	218	0	218
10		min	-2986.866	37	-74.485	24	-2488.59	19	0	1	0	1	0	1
11	N353	max	2940.032	34	1992.554	37	972.503	25	0	218	0	218	0	218
12		min	-358.845	16	63.632	18	-2872.904	33	0	1	0	1	0	1
13	Totals:	max	6425.198	17	11351.541	28	6501.001	14						
14		min	-6425.223	11	1996.464	55	-6500.976	20						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Chec	k Lo	LC	Shear	. Lo	phi*P	phi*P	phi* p	ohi* (Cb Eqn
1	M212	PIPE 1.5	.967	22.5	21	.263	22.5					.6 H1
2	M243	PIPE 2.0	.960	0	2	.286	0	4589	45900	32085 3	32085 1	.0 H1
3	M223	PIPE 2.0	.956	22	2	.217	22	4314	45900	32085 3	32085 1	.4 H1
4	M116	PIPE 2.0	.954	22	6	.201	22					.5 H1
5	M136	PIPE 2.0	.937	0	6	.272	0	4589	45900	32085 3	32085 1	.0 H1
6	M244	PIPE 2.0	.917	0	2	.248	0	4588	45900	32085 3	32085 1	.0 H1
7	M109	PIPE 1.5	.913	22.5	13	.280	22.5					.7 H1
8	M20	PIPE 2.0	.907	0	10	.285	0					.0 H1
9	M222	PIPE 2.0	.895	22	9	.209	22					.4 H1
10	M137	PIPE_2.0	.895	0	6	.236	0					.0 H1
11	H2	PIPE 2.0	.885	22	10	.213	22					.5 H1
12	M115	<u>PIPE_2.0</u>	.873	22	12	.195	22					.4 H1
13	M21	PIPE 2.0	.866	0	10	.247	0			32085 3		
14	M319	<u>PIPE_1.5</u>	.834	22.5	17	.261	22.5					.7 H1
15	H1	PIPE 2.0	.783	22	5	.204	22					.4 H1
16	M318	<u>PIPE_2.5X</u>	.781	40	2	.835	45	~		79650 7		
17	M282	PIPE 2.0	.765	0	33	.266	0					.0 H1
18	M245	<u>PIPE_2.0</u>	.762	0	2	.214	0			32085 3		
19	M211	PIPE 2.5X	.748	40	6	.782	45			79650 7		
20	M138	<u>PIPE_2.0</u>	.744	0	6	.204	0					.0 H1
21	M59	PIPE 2.0	.744	0	29	.262	0					.0 H1
22	M175	PIPE_2.0	.735	0	37	.253	0					.0 H1
23	M283	PIPE 2.0	.733	0	33	.230	0					.0 H1
24	M22	<u>PIPE_2.0</u>	.718	0	10	.214	0					.0 H1
25	M60	PIPE 2.0	.712	0	29	.228	0					.0 H1
26	M317	HSS3X3X3	.708	18	3	.240	0 z			88650 8		
27	M176	PIPE 2.0	.704	0	37	.219	0					.0 H1
28	M242	PIPE_2.0	.700	.652	10	.236	.652					.0 H1
29	S 3	PIPE 2.5X	.685	40	10	.762	45			79650 7		
30	M210	HSS3X3X3	.684	18	6	.250	0 z					.7 H1
31	M241	PIPE 2.0	.680	2.4	10	.211	2.4					.0 H1
32	S2	HSS3X3X3	.666	18	10	.251	0 z					.7 H1
33	M221	PIPE 2.0	.657	32.6	27	.130	32.6					.1 H1
34	B7	PIPE_2.0	.657	32.6	35	.130	32.6					.2 H1
35	M316	HSS3X3X3	.631	18	34	.248	0 z					.7 H1
36	M19	PIPE_2.0	.628	.652	6	.233	.652					.0 H1
37	M246	PIPE 2.0	.622	0	2	.185	0					.09 H1
38	M114	PIPE_2.0	.612	32.6	31	.120	32.6					.2 H1
39	M18	PIPE 2.0	.609	2.4	6	.208	2.4					.08 H1
40	M139	PIPE_2.0	.609	0	6	.177	0					.09 H1
41	M135	PIPE 2.0	.609	.652	2	.220	.652					.02 H1
42	M240	PIPE_2.0	.608	2.49	10	.189	2.49	4588	45900	32085 3	32085 1	.0 H1

	Member	Shape	Code Chec	k Lo	LC	Shear	Lo	phi*P	.phi*P		hi*	Cb Egr
43	M284	PIPE 2.0	.607	0	33	.199	0	4588				1.0H1
44	S1	HSS3X3X3	.603	18	29	.260	0	z 8351	85050	88650 8	8650	1.7 H1
45	M262	PIPE 2.0	.600	3.4	3	.121	0	4586	45900	32085 3	82085	1.1 H1
46	M209	HSS3X3X3	.595	18	37	.257	0	z 8 8351	85050	88650 8	8650	1.7H1
47	M134	PIPE 2.0	.591	2.4	2	.196	2.4	4588	45900	32085 3	32085	1.0 H1
48	M61	PIPE 2.0	.588	0	29	.197	0	4588	45900	32085 3	32085	1.0 H1
49	M23	PIPE 2.0	.584	0	10	.186	0	4588	45900	32085 3	32085	1.0 H1
50	M177	PIPE 2.0	.583	0	37	.189	0	4588	45900	32085 3	82085	1.0 H1
51	M155	PIPE 2.0	.576	3.4	6	.107	0	4586	45900	32085 3	82085	1.1 H1
52	M301	PIPE 2.0	.549	3.4	9	.121	0	4586	45900	32085 3	82085	1.1 H1
53	M17	PIPE 2.0	.540	2.49	6	.186	2.49	4588	45900	32085 3	32085	1.0 H1
54	M239	PIPE 2.0	.538	2.5	10	.170	2.5	4588	45900	32085 3	32085	1.1 H1
55	M133	PIPE 2.0	.535	2.49	13	.175	2.49	4588	45900	32085 3	82085	1.0 H1
56	M39	PIPE 2.0	.534	3.4	11	.121	0	4586	45900	32085 3	82085	1.1 H1
57	M220	PIPE 2.0	.524	32.6	33	.121	32.6	4314	45900	32085 3	82085	2.2 H1
58	B6	PIPE 2.0	.524	32.6	29	.121	32.6	4314	45900	32085 3	82085	2.2 H1
59	M194	PIPE 2.0	.519	3.4	13	.106	0	4586				1.13 H1
60	M30	PIPE_2.0	.519	0	36	.152	0	4587				1.0 H1
61	M253	PIPE 2.0	.517	0	28	.152	0	4587				1.07 H1
62	M281	PIPE_2.0	.515	.652	28	.222	.652	4589				1.0H1
63	M292	PIPE 2.0	.509	0	35	.151	0	4587				1.0 H1
64	M69	PIPE_2.0	.508	0	31	.151	0	4587				1.0 H1
65	M113	PIPE 2.0	.506	32.6	37	.115	32.6	4314				1.4 H1
66	M174	PIPE_2.0	.500	.652	31	.213	.652	4589				1.0 H1
67	M247	PIPE 2.0	.497	0	2	.162	0	4588				1.1 H1
68	M280	PIPE_2.0	.497	2.4	28	.197	2.4	4588				1.0 H1
69	M261	PIPE 2.0	.494	3.35	3	.111	0	4586				1.16 H1
70	M132	<u>PIPE_2.0</u>	.493	2.5	13	.158	2.5	4588				1.1 H1
71	M178	PIPE 2.0	.491	0	12	.163	0	4588				1.0 H1
72	M285	PIPE_2.0	.487	0	33	.172	0	4588				1.1 H1
73	M140	PIPE 2.0	.487	0	6	.154	0	4588				1.1 H1
74	M238	PIPE_2.0	.485	2.5	21	.156	2.5					1.1 H1
75	M146	PIPE 2.0	.483	0	32	.136	0	4587				1.0 H1
76	M58	PIPE_2.0	.483	.652	36	.223	.652	4589				1.0 H1
77	M78	PIPE 2.0	.483	3.4	5	.119	0	4586				1.13 H1
78	M173	PIPE_2.0	.482	2.4	31	.188	2.4					1.0 H1
79	M185	PIPE 2.0	.476	0	27	.136	0	4587				1 . 0 H1
80	M16	PIPE_2.0	.473	2.5	6	.168	2.5					1.1 H1
81	M300	PIPE 2.0	.472	3.35	9	.111	0	4586				1.1 H1
82	M62	PIPE_2.0	.471	0	29	.171	0	4588				1.1 H1
83	M57	PIPE 2.0	.465	2.4	36	.198	2.4					1.0 H1
84	M24	<u>PIPE_2.0</u>	.464	0	10	.162	0	4588				1.1 H1
85	M154	PIPE 2.0	.463	3.35	6	.098	0	4586				1.1 H1
86	M279	<u>PIPE_2.0</u>	.456	2.49	9	.176	2.49	4588				1.0 H1
87	M131	PIPE 2.0	.452	2.5	25	.144	2.5					1.1 H1
88	M278	<u>PIPE_2.0</u>	.449	2.5	9	.159	2.5	4588				1.11 H1
89	M219	PIPE 2.0	.447	16.3	3	.212	16.3	-				1.8 H1
90	M193	PIPE_2.0	.445	3.35	13	.098	0	4586				1.1 H1
91	M31	PIPE 2.0	.442	0	36	.133	0	4587				1.0 H1
92	M254	PIPE_2.0	.441	0	28	.134	0	4587				1.0 H1
93	M237	PIPE 2.0	.440	2.5		.145	2.5	4588				1.2 H1
94	M277	<u>PIPE_2.0</u>	.439	2.5	9	.146	2.5	4588				1.1 H1
95	M38	PIPE 2.0	.437	3.35	11	.111	0	4586				1.1 H1
96	M293	<u>PIPE_2.0</u>	.434	0	35	.132	0	4587				1.0 H1
97	M70	PIPE 2.0	.434	0	31	.132	0	4587				1.0 H1
98	M172	<u>PIPE_2.0</u>	.429	2.49	13	.167	2.49					1.0H1
99	M171	PIPE_2.0	.424	2 <u>.</u> 5	13	.150	2.5		45900	32085 3	\$2085	1.1H1
		prsion 17.0.4 $[I \cdot \langle \rangle \rangle$	1 1 1 1	المنتاما	14 10 25 2		/ o = [175 14		ם ווגי	

Member	Shape	Code Cheo		LC	Shear	. Lo	nhi*D	nhi*D	phi* r	nhi*	Cb Eqr
100 M276	PIPE 2.0	.424	2.5	9	.137	2.5					1.2H1
101 M15	PIPE 2.0	.423	2.5	17	.154	2.5	4588				1.1 H1
102 M130	PIPE 2.0	.421	2.5	24	.134	2.5	4588	45900	32085	32085	1.2H1
103 M112	PIPE 2.0	.420	16.3	25	.209	16.3	6 4314				1.7H1
104 M170	PIPE 2.0	.418	2.5	12	.137	2.5	4588	45900	32085	32085	1.2H1
105 M77	PIPE 2.0	.413	3.35	5	.110	0	4586	45900	32085	32085	1.1 H1
106 M147	PIPE 2.0	.412	0	32	.119	0	4587				1.0H1
107 M179	PIPE 2.0	.412	0	12	.142	0	4588	45900	32085	32085	1.1 H1
108 M169	PIPE 2.0	.408	2.5	12	.128	2.5	4588	45900	32085 3	32085	2.0H1
109 M186	PIPE 2.0	.407	0	27	.118	0	4587	45900	32085	32085	1.0H1
110 M260	PIPE 2.0	.407	3.2	21	.104	0	4587	45900	32085	32085	1.21 H1
111 M271	PIPE 2.0	.405	2.8	33	.142	2.8	4587	45900	32085 3	32085	1.0H1
112 M275	PIPE 2.0	.405	2.6	9	.131	2.6	4588	45900	32085	32085	1.5H1
113 M299	PIPE 2.0	.403	3.2	9	.105	0	4587				1.3H1
114 M286	PIPE 2.0	.401	0	8	.151	0	4588	45900	32085	32085	1.1 H1
115 M48	PIPE 2.0	.400	2.8	29	.140	2.8	4587				1.0H1
116 M164	PIPE 2.0	.396	2.8	37	.133	2.8	4587				1.0 H1
117 M129	PIPE 2.0	.395	2.6	24	.128	2.6	4588				1.4H1
118 M236	PIPE 2.0	.395	2.6	21	.138	2.6	4588				1.5H1
119 M168	PIPE 2.0	.393	2.6	12	.123	2.6	4588				1.4H1-
120 M56	PIPE 2.0	.392	2.49	5	.176	2.49	4588				1.0 H1
121 B5	PIPE 2.0	.391	16.3	11	.190	16.3	4314				1.6H1
122 M55	PIPE 2.0	.387	2.5	5	.159	2.5	4588				1.1 H1
123 M248	PIPE 2.0	.386	0	2	.144	0	4588				1.16 H1
124 M232	PIPE 2.0	.382	2.8	27	.145	2.8	4587				1.0H1
125 M14	PIPE 2.0	.382	2.5	17	.143	2.5					1.2H1
126 M9	PIPE 2.0	.382	2.8	34	.146	2.8	4587				1.0H1-
127 M274	PIPE 2.0	.381	2.6	9	.130	2.6	4588				1.7H1-
128 M153	PIPE 2.0	.380	3.2	24	.091	0	4587				2.1H1
129 M141	PIPE 2.0	.380	0	6	.137	0	4588				1.16 H1
130 M192	PIPE 2.0	.379	3.2	13	.092	0					1.3H1
131 M54	PIPE 2.0	.379	2.5	5	.146	2.5	4588				1.1 H1
132 M125	PIPE 2.0	.376	2.8	30	.138	2.8	4587				1.0H1-
133 M167	PIPE 2.0	.373	2.6	12	.121	2.6					1.2H1-
134 M128	PIPE 2.0	.368	2.6	24	.125	2.6					1.9H1-
135 M63	PIPE 2.0	.366	0	4	.149	0	4588				1.1 H1
136 M53	PIPE 2.0	.366	2.5	5	.136	2.5	4588				1.2H1
137 M32	PIPE 2.0	.364	0	35	.119	0	4587				1.1 H1
138 M255	PIPE 2.0	.364	0	37	.120	0			32085		
139 M235	PIPE 2.0	.362	2.6	20	.135	2.6					1.9H1-
140 M294	PIPE 2.0	.362	0	28	.118	0			+ +		1.1 H1
141 M71	PIPE 2.0	.359	0	36	.118	0					1.1 H1
142 M25	PIPE 2.0	.353	0	10	.145	0	4588				1.1H1
143 M37	PIPE 2.0	.354	3.2	17	.143	0	4587				1.2H1-
143 MB9	PIPE 2.0	.353	48	10	.051	48					3.09 H1
145 M273	<u>PIPE_2.0</u>	.353	2.7	9	.132	2.7	4588				1.2H1-
146 M13	PIPE 2.0	.353	2.6	16	.137	2.6					1.5 H1
147 M76	PIPE 2.0	.350	3.2	5	.103	0	4587				1.3 H1
148 M52	PIPE 2.0	.350	2.6	5	.103	2.6	4588				1.4 H1
149 M259	PIPE 2.0	.349	3.1	9	.100	0	4587				1.3 H1
150 M166	PIPE 2.0	.349	2.7	12	.123	2.7					1.1 H1
	PIPE 2.0	.343	3.1	21	.123	0					2.1 H1
151 M298 152 M180	PIPE 2.0 PIPE 2.0		0	12	.125	0					1.1 H1
		.343		31							1.1 H1
153 M148	PIPE 2.0	.339	27		.105	0					1.2H1
154 M127	PIPE 2.0	.339	2.7 2.89	24	.125	2.7 2.89					1.2 H1 1.1 H1
155 M270	PIPE 2.0	.338		33	.129						1.1 H1
156 M187	PIPE_2.0	.337	0	31	.105	0	4307	45900	32005	52000	1.1[111-
	n 1704 [l·\ \			14 10 05 1		V or F		175 1		ם וגי	

157 M287 PIPE 2.0 335 0 8 134 0 4588. 4590 32085 32085 1.1H1 158 M47 PIPE 2.0 4581. 4581. 4590 32085 32085 11H1 160 M339 PIPE 1.5 30.00 0 8785 3370.5 18484 1848.1 1H1 161 M163 PIPE 2.0 5 129 2.8 4580. 45900 32085 32085 1.1H1 163 M263 PIPE 2.0 329 48 13 0 4580. 45900 32085 32085 1.3 11 16 11 4580. 45900 32085 32085 1 164 M452 PIPE 2.0	Member	Shape	Code Cheo	-k I o	LC	Shear		nhi*P	nhi*P	nhi* nh	ni*	Cb Eqn
158 M224 PIPE 2.0 324 2.7. 2 136 2.7. .4488. .4687. .46800 32085 3.1. .17. .41 150 M47 PIPE 1.5 .332 42 3 0.50 0 8788. .46800 .32085 3.1. .12 2.80 4588. .46900 32085 3.1. .11 .12 2.81 4588. .46900 32085 3.2085 3.1. .11 4588. .46900 32085 3.2085 1.8. .11 166 M152 PIPE 2.0 .229 2.46 .16 1.4 2.40. 4588. .46900 32085 2.2085 1.3. .11 166 M152 PIPE 2.0 .322 0 .0 .127 44. 46900 32085 2.2085 1.1. .11 .166 M152 PIPE 2.0 .321 2.7. 9 .138 .27. 4487 .46900 .2085 2.2085 1.1. .11 .120 4337 .4180 .4990 .2080 .1. .11 .120												
159. M47 PIPE 2.0 334 2.48 2.89 .4857. 43900 32085 32085 32085 12085 32085 12085 32085 12085 32085 12							-					
160 M339 PIPE 15 332 42 3 060 0 8788.3705 1894.81846 11H1 161 M163 PIPE 2.0 331 2.6. 5 1.29 2.8. 4587.4500 32065 331 331 32 336 4367 43600 32065 32065 32065 32065 32065 32065 32065 32065 32065 32065 32065 32065 32065 32065 32065 32065 32065 32065 32065 <							2.89					
161 M163 PIPE 2.0 331 2.89 37 122 2.89 .45874590 32080 52085 52085 511 162 M563 PIPE 2.0 .330 0 3.4 .127 3.4. .458845900 32085 32085 1.1 H 164 MP5 PIPE 2.0 .329 2.6. 16 .134 .458745900 32085 32085 1.7 H 166 .458745900 32085 32085 1.7 H 166 .458745900 32085 32085 1.1 H 166 M152 PIPE 2.0 .322 0 .0 .458745900 32085 32085 1.1				42			0	8785				
162 M61 PIPE 2.0 331 2.6. 5 1.29 2.6. 4.58. 45900 32065 32065 31.1.11 163 MP6 PIPE 2.0 329 48 13 0.52 48 4983. 45900 32065 32065 31.1.11 10 11.1<							-					
163 M263 PIPE 2.0 330 0 34 117 34				2.6			2.6	4588	45900	32085 32	2085	2.06 H1
164 MP5 PIPE 2.0 329 44 13 .052 44 488 49800 32066 1 H1 165 M152 PIPE 2.0 326 3.1. 13 087 0				0				4586				
165 M12 PIPE 2.0 329 2.6. 16 11.34 2.6. .4587.4590.32085 32085 32085 13H 166 M137 PIPE 1.5 .324 42 7 .050 0 .4587.4590.32085 32085 32085 32085 32085 31 25 .4 .4587.4590.32085 32085 32085 32085 32085 31 25 .080 0							48	4 9836	.45900	32085 32	2085	1.8 H1
166 M152 PIPE 1.5 326 3 13 0.87 0 687 45000 32085 32086 13 167 M337 PIPE 1.5 3224 0 30 125 3.4 4586 45900 32085				2.6			2.6	4588	45900	32085 32	2085 ⁻	1.7H1
167 M337 PIPE 1.5 .324 42 7 .050 0				3.1			0	4587	45900	32085 32	2085	1.3H1
168 M40 PIPE 2.0 322 0 31 25 038 34 458 45900 32065 322 11 169 M127 PIPE 2.0 321 2.7. 9 138 2.7. 4587 45900 32065 32085 11 11 171 M6 PIPE 2.0 .321 2.89 34 132 2.89 .4587 45900 32065 32065 11 11 173 M165 PIPE 2.0 .317 2.7 142 .4587 45900 32085 32085 11 11 176 M156 PIPE 2.0 .311 2.7 4387 45900 32085 32085 11 11 176 M126 PIPE 2.0 .310 2.7 4 131 2.7 4587 45900 32085 32085 12 11 178 M19 PIPE 2.0 .301 2.7 4488 <td></td> <td></td> <td></td> <td>42</td> <td></td> <td></td> <td></td> <td> 8785</td> <td>.33705</td> <td>18945 1</td> <td>8945 ⁻</td> <td>1.1H1</td>				42				8785	.33705	18945 1	8945 ⁻	1.1H1
169 M191 PIPE 2.0 .321 3.1. 25 .088 0. .4587. .4590. 32085 32085 1.1. H1 170 M32 PIPE 2.0 .321 2.89 .34 .133 2.89 .4587. .4590. 32085 311. H1 173 M165 PIPE 2.0 .321 2.89 .38 .132 2.89 .4587. .4590. 32085 32085 11. H1 174 M124 PIPE 2.0 .316 2.89 30 .122 .2.8 .4587. .45900 32085 32085 11. H1 175 M156 PIPE 2.0 .312 2.7. 6 129 .7. .4587. .45900 32085 32085 12. H1 176 M126 PIPE 2.0 .310 44. 6 .051 44. .4587. .45900 32085 32085 12. H1 178 M233 PIPE 2.0 .307 2.7. 1 103 2.7. .4587. .45800 32085 <td< td=""><td></td><td></td><td></td><td>0</td><td>30</td><td></td><td>3.4</td><td></td><td>45900</td><td>32085 32</td><td>2085</td><td>1.1H1</td></td<>				0	30		3.4		45900	32085 32	2085	1.1H1
170 M272 PIEE 2.0 321 2.89 34 133 2.89 .4687 .4590.3 32085 32085 11H1 172 M231 PIPE 2.0 .321 2.89 38 .132 2.89 .4687 .4590.3 32085 32085 11H1 174 M165 PIPE 2.0 .317 2.7 12 .129 2.7 .4580 .4590.3 32085 32085 11H1 176 M156 PIPE 2.0 .315 0 37 .119 3.4 .4590.3 32085 32085 11H1 176 M166 PIPE 2.0 .310 2.7 4 .131 2.7 .4588 .45903 32085 32085 11H1 178 M233 PIPE 2.0 .300 2.7 2 .140 2.7							0	4587	45900	32085 32	2085	2.2H1
171 M8 PIPE 2.0 .321 2.89 .34 .133 2.89 .4587. .4590. 32085 11 H1 172 M231 PIPE 2.0 .321 2.89 .38 .132 2.87. .4587. .4590. 32085 32085 11 H1 173 M165 PIPE 2.0 .316 2.89 30 .125 2.88 .4587. .4590. 32085 32085 11 H1 176 M126 PIPE 2.0 .312 2.7 6 .129 .7 .4588. .4590. 32085 12 H1 176 M126 PIPE 2.0 .310 42 6 .051 48 .4590. 32085 32085 12 H1 177 M233 PIPE 2.0 .300 2.7 1 .135 .4587. .45900 32085 32085 12 H1 178 MP1 PIPE 2.0 .300 2.7 1 .4587. .45900 32085 32085 12 H1 18				2.7			-		45900	32085 32	2085	1.1H1
172 M231 PIPE 2.0 .321 2.89 .38 .132 2.89 458745900 32085 32085 1.1H1 173 M165 PIPE 2.0 .316 2.89 .0 125 2.89 458745900 32085 32085 1.1H1 176 M126 PIPE 2.0 .312 2.7 458745900 32085 32085 1.2H1 177 M50 PIPE 2.0 .312 2.7 458745900 32085 32085 1.2H1 177 M50 PIPE 2.0 .310 2.7 4 1.31 2.7458745900 32085 32085 1.2H1 178 MP1 PIPE 2.0 .300 2.72 .140				2.89			2.89	4587				
173 M165 PIPE 2.0 .317 2.7. .129 2.7. 458745900 32085 32085 11H1 174 M126 PIPE 2.0 .315 0 37 .119 3.4. 458845900 32085 32085 11H1 176 M126 PIPE 2.0 .312 2.7 6 129 2.7 458745800 32085 32085 11H1 177 M50 PIPE 2.0 .310 48 6 051 48 458845900 32085 32085 11H1 178 M21 PIPE 2.0 .309 2.7 2 .140 2.7 458845900 32085 32085 2.0H1 180 M11 PIPE 2.0 .300 0 4 132 0 458845900 32085 32085 11H1 181 M258 PIPE 2.0 .303 0 28 128 45845800 32085 11H1 182 M64 PIPE 2.0 .301 0 30 127 4				2.89				4587				
174 M124 PIPE 2.0 .316 2.89 .30 .125 2.81 458745900 32085 32085 11 H1 175 M126 PIPE 2.0 .312 2.7 6 1.29 2.7												
175 M156 PIPE 2.0 .315 0 37 119 34 .4586. .4590 32085 32085 1H1 176 M126 PIPE 2.0 .310 2.7 4 1.31 2.7 .4588. .45900 32085 32085 1H1 178 MP1 PIPE 2.0 .310 48 6 .051 448 .4580. 32085 32085 1H1 178 MP1 PIPE 2.0 .307 2.7 10 135 2.7 .4588. .45900 32085 32085 1.2H1 180 M11 PIPE 2.0 .307 0 2.458 .45800 32085 12H1 181 M64 PIPE 2.0 .303 0 28 12.8 .45800 32085 32085 1H1 183 M224 PIPE 2.0 .303 3 5 100 0 .458745900 32085 32085 1H1 184 <td></td>												
176 M126 PIPE 2.0 .312 2.7. 6 .129 2.7. .4887.4590 32085 32085 1.1H1 177 M50 PIPE 2.0 .310 2.7 4 .131 4588.4590 32085 32085 1.1H1 178 MP1 PIPE 2.0 .309 2.7 2 .140 2.7												
177 M50 PIPE 2.0 .310 2.7 4 .131 2.7 .4888. .4590 32085 32085 1.1 H1 178 MP1 PIPE 2.0 .310 48 6 .051 4458 .4590. 32085 32085 1.2 H1 179 M233 PIPE 2.0 .307 2.7 10 .135 2.7 .4587 .4590. 32085 32085 1.1H1 181 M258 PIPE 2.0 .304 0 4 .132 0							_					
178 MP1 PIPE 2.0 310 48 6 .051 48 .9898 .4590 32085 1111 182 M64 PIPE 2.0 .303 0 28 .4888 45900 32085 32085 1111 183 M12 PIPE 2.0 .303 0 24 .125 0 .4588 45900 32085 32085 1111 186 M249 PIPE 2.0 .293 3 17 100 0							_	4588				
179 M233 PIPE 2.0 .309 2.7 2 .140 2.7 .4587 4590 32065 32085 2.0 11 180 M11 PIPE 2.0 .307 2.7 10 .132 2.7 .4587 .4590 32085 32085 32085 32085 11 11 181 M258 PIPE 2.0 .303 0 28 .128 3.4 .4586 45900 32085 32085 11 11 184 M36 PIPE 2.0 .303 3.1 5 .100 0												
180 M11 PIPE 2.0 .307 2.7 10 .135 2.7 .4588. .45900 32085 32085 1.1H1 181 M258 PIPE 2.0 .304 0 4 132												
181 M258 PIPE 2.0 .305 3.1 10 .099 0												
182 M64 PIPE 2.0 .304 0 4 .132 0 4588 4590 32085 32085 1.1. H1 183 M224 PIPE 2.0 .303 0 28 1.28 3.4 4588 45900 32085 32085 1.1 H1 184 M36 PIPE 2.0 .301 0 30 .127 3.4 4588 45900 32085 32085 1.1 H1 185 M1 PIPE 2.0 .299 0 20 1.32 0 4588 45900 32085 32085 1.0 H1 187 M142 PIPE 2.0 .297 3.1 21 0.099 0 458745900 32085 32085 1.1H1 198 M325 PIPE 1.5 .294 41 11 0.51 8645800 32085 1.1H1 190 M256												
183 M224 PIPE 2.0 .303 0 28 .128 3.4. 458 45900 32085 32085 1.1H1 184 M36 PIPE 2.0 .301 0 30 .127 3.4. 45845900 32085 32085 1.1H1 185 M1 PIPE 2.0 .299 0 20 45845900 32085 32085 1.0H1 186 M249 PIPE 2.0 .298 0 24 45845900 32085 32085 1.0H1 188 M75 PIPE 2.0 .297 3.1 17 .009 0 45845900 32085 32085 1.0H1 190 M335 PIPE 2.0 .293 2.7 29 .115 0 45845900 32085 32085 1.1H1 192 M252 PIPE 2.0 .293 2.7 36 .106 458845900 32085 32085 1.1H1 194 <												
184 M36 PIPE 2.0 .303 3.1 5 .100 0 4587 45900 32085 32085 1.3 H1 185 M1 PIPE 2.0							-					
185 M1 PIPE 2.0 .301 0 30 .127 3.4. 4586 45900 32085 32085 1.1. H1 186 M249 PIPE 2.0 .299 0 20 .132 0 4588 45900 32085 32085 1.0. H1 187 M142 PIPE 2.0 .297 3.1 17 100 0 4588 45900 32085 32085 1.0. H1 188 M75 PIPE 2.0 .295 3.1 21 .099 0 4587 45900 32085 32085 1.1. H1 190 M335 PIPE 2.0 .293 2.7 29 115 0 4588 45900 32085 32085 1.1. H1 192 M256 PIPE 2.0 .293 0 36 .109 0 4588 45900 32085 1.1.							-					
186 M249 PIPE 2.0 2.99 0 2.0 .132 0 4588 45900 32085 32085 1.0 H1 187 M142 PIPE 2.0 2.98 0 2.4 .125 0 4588 45900 32085 32085 1.0 H1 188 M75 PIPE 2.0 .297 3.1 21 .099 0 4587 45900 32085 32085 1.4 H1 190 M335 PIPE 1.5 .294 41 11 .051 86							-					
187 M142 PIPE 2.0 .298 0 24 .125 0 4588 45900 32085 1.1												
188 M75 PIPE 2.0 .297 3.1 17 .100 0 4587 45900 32085 32085 1.2 H1 189 M297 PIPE 2.0 .295 3.1 21 .099 0 4587 45900 32085 32085 1.4 H1 190 M335 PIPE 2.0 .293 2.7 29 .115 0 4588 45900 32085 32085 1.1 H1 192 M252 PIPE 2.0 .293 2.7 36 .126 0 4588 45900 32085 32085 1.1 H1 193 M256 PIPE 2.0 .292 0 11 .121 3.4 4586 45900 32085 32085 1.1 H1 196 M68 PIPE 2.0 .291 0 29 .108												
189 M297 PIPE 2.0 .295 3.1 21 .099 0 4587 45900 32085 32085 1.4 H1 190 M335 PIPE 1.5												
190 M335 PIPE 1.5 .294 41 11 .051 86 8785 33705 18945 1.1 H1 191 M291 PIPE 2.0 .293 2.7 29 .115 0 4588 45900 32085 32085 1.1 H1 192 M252 PIPE 2.0 .293 0 36 .109 0 4588 45900 32085 32085 1.1 H1 194 M29 PIPE 2.0 .293 2.7 32 .127 0 4588 45900 32085 32085 1.0 H1 195 M117 PIPE 2.0 .291 0 29 .108 0 4587 45900 32085 32085 1.1 H1 196 M68 PIPE 2.0 .287 0 30												
191 M291 PIPE 2.0 .293 2.7 29 .115 0 458845900 32085 32085 1.1H1 192 M252 PIPE 2.0 .293 0 36 .109 0 458845900 32085 32085 1.1H1 193 M256 PIPE 2.0 .293 0 36 .109 0 458845900 32085 32085 1.1H1 194 M29 PIPE 2.0 .293 2.7 32 .127 0 458845900 32085 32085 1.1H1 195 M117 PIPE 2.0 .292 0 11 .121 3.4 .4458045900 32085 32085 1.0H1 196 M68 PIPE 2.0 .291 0 29 .108 0 458745900 32085 32085 1.1H1 198 M33 PIPE 2.0 .287 0 30 .137 .7 .458745900 32085 32085 1.1H1												
192 M252 PIPE 2.0 2.93 2.7 36 1.126 0 4588 45900 32085 32085 1.1 H1 193 M256 PIPE 2.0 .293 0 36 .109 0 4588 45900 32085 32085 1.1 H1 194 M29 PIPE 2.0 .293 2.7 32 .127 0 4588 45900 32085 32085 1.1 H1 195 M117 PIPE 2.0 .292 0 11 .121 3.4 4588 45900 32085 32085 1.1 H1 196 M68 PIPE 2.0 .291 2.7 37 .115 0 4587 45900 32085 32085 1.1 H1 198 M33 PIPE 2.0 .287 0 30 .137 2.7							-					
193 M256 PIPE 2.0 .293 0 36 .109 0 4587 45900 32085 32085 1.1 H1 194 M29 PIPE 2.0 .293 2.7 32 .127 0 4588 45900 32085 32085 1.1 H1 195 M117 PIPE 2.0 .291 2.7 37 115 0 4588 45900 32085 32085 1.0 H1 196 M68 PIPE 2.0 .291 0 29 .108 0 4587 45900 32085 32085 1.1 H1 197 M295 PIPE 2.0 .287 0 33 .109 0 4587 45900 32085 32085 1.1 H1 200 M49 PIPE 2.0 .287 0 30 .137 2.7 4587 45900 32085 32085 1.1 H1 201 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
194 M29 PIPE 2.0 .293 2.7 32 .127 0 4588 45900 32085 32085 11 H1 195 M117 PIPE 2.0 292 0 11 .121 3.4 4588 45900 32085 32085 1.0 H1 196 M68 PIPE 2.0 291 2.7 37 .115 0 4588 45900 32085 32085 1.0 H1 197 M295 PIPE 2.0 .287 0 36 .108 0 4587 45900 32085 32085 1.1 H1 199 M72 PIPE 2.0 .287 0 36 .108 0 4587 45900 32085 32085 1.1 H1 200 M49 PIPE 2.0 .286 2.7 10												
195 M117 PIPE 2.0 .292 0 11 .121 3.4 4586 45900 32085 32085 1.0 H1 196 M68 PIPE 2.0 .291 2.7 37 .115 0 4588 45900 32085 32085 1.1 H1 197 M295 PIPE 2.0 .289 0 33 .109 0 4587 45900 32085 32085 1.1 H1 198 M33 PIPE 2.0 .287 0 36 .108 0 4587 45900 32085 1.1 H1 200 M49 PIPE 2.0 .287 0 30 .137 2.7 4587 45900 32085 1.1 H1 201 M10 PIPE 2.0 .286 47.5 4 .070 48 4 4983645900 32085 32085 1.1 H1 203 MP4 PIPE												
196 M68 PIPE 2.0 .291 2.7 37 .115 0 4588 45900 32085 32085 1.1 H1 197 M295 PIPE 2.0 291 0 29 .108 0 4587 45900 32085 32085 1.1 H1 198 M33 PIPE 2.0 289 0 33 .109 0 4587 45900 32085 32085 1.1 H1 199 M72 PIPE 2.0 .287 0 30 .137 2.7 4587 45900 32085 32085 1.1 H1 201 M10 PIPE 2.0 .286 2.7 10 .139 2.7 4587 45900 32085 32085 1.1 H1 202 MP8 PIPE 2.0 .285 47.5 4 .070 <td></td>												
197 M295 PIPE 2.0 .291 0 29 .108 0 4587 45900 32085 32085 1.15 H1 198 M33 PIPE 2.0 .289 0 33 .109 0 4587 45900 32085 32085 1.1. H1 199 M72 PIPE 2.0 .287 0 36 .108 0 4587 45900 32085 32085 1.1. H1 200 M49 PIPE 2.0 .286 2.7 10 .139 2.7 4587 45900 32085 32085 1.1. H1 202 MP8 PIPE 2.0 .285 47.5 4 .070 48 4 9836 45900 32085 32085 3.0 H1 203 MP4 PIPE 2.0 .285 47.5 8 .071 48 4 9836 45900 32085 32085 3.0 H1 204 </td <td></td>												
198 M33 PIPE 2.0 .289 0 33 .109 0 4587 45900 32085 32085 1.1 H1 199 M72 PIPE 2.0 .287 0 36 .108 0 4587 45900 32085 32085 1.1 H1 200 M49 PIPE 2.0 .287 0 30 .137 2.7 4587 45900 32085 32085 1.1 H1 201 M10 PIPE 2.0 .286 2.7 10 .139 2.7 4587 45900 32085 32085 1.1 H1 202 MP8 PIPE 2.0 .285 47.5 4 .070 48 4 9836 45900 32085 32085 3.0 H1 203 MP4 PIPE 2.0 .285 47.5 12 .071 48 9836 45900 32085 32085 3.0 H1 204												
199 M72 PIPE 2.0 .287 0 36 .108 0 4587 45900 32085 32085 1.1 H1 200 M49 PIPE 2.0 .287 0 30 .137 2.7 4587 45900 32085 <							-					
200 M49 PIPE 2.0 .287 0 30 .137 2.7. 4587 45900 32085 32085 1.16 H1 201 M10 PIPE 2.0 .286 2.7. 10 .139 2.7. 4587 45900 32085 32085 1.1 H1 202 MP8 PIPE 2.0 .285 47.5 4 .070 48 4 9836 45900 32085 32085 3.0 H1 203 MP4 PIPE 2.0 .285 47.5 8 .071 48 8 9836 45900 32085 32085 3.0 H1 204 MP12 PIPE 2.0 .285 47.5 12 .071 48 8 9836 45900 32085 32085 3.0 H1 205 M181 PIPE 2.0 .284 0 12 .114 0 4587 45900 32085 32085 1.2 H1												
201 M10 PIPE 2.0 .286 2.7 10 .139 2.7 4587 45900 32085 32085 1.1 H1 202 MP8 PIPE 2.0 .285 47.5 4 .070 48 4 9836 45900 32085 32085 3.0 H1 203 MP4 PIPE 2.0 .285 47.5 8 .071 48 4 9836 45900 32085 32085 3.0 H1 204 MP12 PIPE 2.0 .285 47.5 12 .071 48 8 9836 45900 32085 32085 2.6 H1 205 M181 PIPE 2.0 .284 0 12 .114 0 4588 45900 32085 32085 1.2 H1 206 M151 PIPE 2.0 .279 0 9 .122 0 4587 45900 32085 32085 1.2 H1 <												
202 MP8 PIPE 2.0 285 47.5 4 .070 48 4 9836 45900 32085 32085 2.7 H1 203 MP4 PIPE 2.0 .285 47.5 8 .071 48 8 9836 45900 32085 32085 3.0 H1 204 MP12 PIPE 2.0 .285 47.5 12 .071 48 8 9836 45900 32085 32085 2.6 H1 205 M181 PIPE 2.0 .284 0 12 .114 0 4588 45900 32085 32085 1.2 H1 206 M151 PIPE 2.0 .281 3.1 13 .086 0 4588 45900 32085 32085 1.2 H1 206 M151 PIPE 2.0 .276 3.03 10 .102 0 <td></td>												
203 MP4 PIPE 2.0 .285 47.5 8 .071 48 8 9836 45900 32085 32085 3.0 H1 204 MP12 PIPE 2.0 .285 47.5 12 .071 48 8 9836 45900 32085 32085 2.6 H1 205 M181 PIPE 2.0 .284 0 12 .114 0 4588 45900 32085 32085 1.2 H1 206 M151 PIPE 2.0 .281 3.1 13 .086 0 4588 45900 32085 32085 1.2 H1 206 M151 PIPE 2.0 .279 0 9 .122 0 4588 45900 32085 32085 1.2 H1 208 M257 PIPE 2.0 .276 3.03 10 .102 0							-					
204 MP12 PIPE 2.0 .285 47.5 12 .071 48 9836 45900 32085 32085 2.6 H1 205 M181 PIPE 2.0 .284 0 12 .114 0 4588 45900 32085 32085 1.2 H1 206 M151 PIPE 2.0 .281 3.1 13 .086 0 4587 45900 32085 32085 1.2 H1 207 M288 PIPE 2.0 .279 0 9 .122 0 4587 45900 32085 32085 1.2 H1 208 M257 PIPE 2.0 .276 3.03 10 .102 0 4587 45900 32085 32085 1.1 H1 209 M190 PIPE 2.0 .275 3.1 25 .087 0 <td></td>												
205 M181 PIPE 2.0 .284 0 12 .114 0 4588 45900 32085 32085 1.2 H1 206 M151 PIPE 2.0 .281 3.1 13 .086 0 4587 45900 32085 32085 1.2 H1 207 M288 PIPE 2.0 .279 0 9 .122 0 4588 45900 32085 32085 1.2 H1 208 M257 PIPE 2.0 .276 3.03 10 .102 0 4587 45900 32085 32085 1.1 H1 209 M190 PIPE 2.0 .275 3.1 25 .087 0 4587 45900 32085 32085 1.3 H1 210 M26 PIPE 2.0 .272 0 16 .132 0 4588 45900 32085 32085 1.0 H1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
206 M151 PIPE 2.0 .281 3.1 13 .086 0 4587 45900 32085 32085 1.1 H1 207 M288 PIPE 2.0 .279 0 9 .122 0 4588 45900 32085 32085 1.2 H1 208 M257 PIPE 2.0 .276 3.03 10 .102 0 4587 45900 32085 32085 1.1 H1 209 M190 PIPE 2.0 .275 3.1 25 .087 0 4587 45900 32085 32085 1.3 H1 210 M26 PIPE 2.0 .272 0 16 .132 0 4588 45900 32085 32085 1.0 H1 211 M188 PIPE 2.0 .271 2.7 28 .119 0												
207 M288 PIPE 2.0 .279 0 9 .122 0 4588 45900 32085 3.2 H1 208 M257 PIPE 2.0 .276 3.03 10 .102 0 4587 45900 32085 32085 1.1 H1 209 M190 PIPE 2.0 .275 3.1 25 .087 0 4587 45900 32085 32085 1.3 H1 210 M26 PIPE 2.0 .272 0 16 .132 0 4588 45900 32085 32085 1.0 H1 211 M188 PIPE 2.0 .271 0 32 .095 0 4587 45900 32085 32085 1.1 H1 212 M145 PIPE 2.0 .271 2.7 28 .119 0												
208 M257 PIPE_2.0 .276 3.03 10 .102 0 4587 45900 32085 32085 1.1 H1 209 M190 PIPE_2.0 .275 3.1 25 .087 0 4587 45900 32085 32085 1.3 H1 210 M26 PIPE_2.0 .272 0 16 .132 0 4588 45900 32085 32085 1.0 H1 211 M188 PIPE_2.0 .272 0 32 .095 0 4587 45900 32085 32085 1.1 H1 212 M145 PIPE_2.0 .271 2.7 28 .119 0 4588 45900 32085 32085 1.1 H1												
209 M190 PIPE 2.0 .275 3.1 25 .087 0 4587 45900 32085 32085 1.3 H1 210 M26 PIPE 2.0 .272 0 16 .132 0 4588 45900 32085 32085 1.0 H1 211 M188 PIPE 2.0 .272 0 32 .095 0 4588 45900 32085 32085 1.1 H1 212 M145 PIPE 2.0 .271 2.7 28 .119 0 4588 45900 32085 32085 1.1 H1												
210 M26 PIPE_2.0 .272 0 16 .132 0 4588 45900 32085 32085 1.0 H1 211 M188 PIPE_2.0 .272 0 32 .095 0 4588 45900 32085 32085 1.1 H1 212 M145 PIPE_2.0 .271 2.7 28 .119 0 4588 45900 32085 32085 1.1 H1												
211 M188 PIPE 2.0 .272 0 32 .095 0 4587 45900 32085 32085 1.1 H1 212 M145 PIPE 2.0 .271 2.7 28 .119 0 4588 45900 32085 32085 1.1 H1							-					
212 M145 PIPE 2.0 .271 2.7., 28 .119 0 4588 45900 32085 32085 1.1 H1												
							-					
	213 IVI 104		.271	<u> </u>	<u> </u>	1.107	U		+5300	102000 02	2000	n. n

Member	Shape	Code Check Lo	LC	Shear Lo	nhi*P	phi*Pphi* phi* Cb Eqn
214 M149	PIPE 2.0	.270 0	28	.095 0		.45900 32085 32085 1.1H1
215 MP2	PIPE 2.0	.269 47.5	8	.070 48	9 9836	
216 MP10	PIPE 2.0	.269 47.5	12	.069 48	9836	.45900 32085 32085 2.98 H1
217 M269	PIPE 2.0	.268 2.9	33	.121 2.9	4587	. 45900 32085 32085 1.1 H1
218 M46	PIPE 2.0	.265 2.9	29	.120 2.9	4587	.45900 32085 32085 1.1H1
219 M35	PIPE 2.0	.264 3.1	6	.099 0	4587	. 45900 32085 32085 1.1 H1
220 M162	PIPE 2.0	.264 2.9	37	.113 2.9	4587	.45900 32085 32085 1.1H1
221 M250	PIPE 2.0	.258 0	21	.125 0	4588	.45900 32085 32085 1.1 H1
222 M7	PIPE 2.0	.257 2.9	34	.123 2.9	4587	45900 32085 32085 1.14 H1
223 M230	PIPE 2.0	.257 2.9	38	.123 2.9	4587	.45900 32085 32085 1.14 H1
224 M296	PIPE 2.0	.255 3.03	21	.102 0	4587	45900 32085 32085 1.2 H1
225 M123	PIPE 2.0	.255 2.9	30	.117 2.9	4587	. 45900 32085 32085 1.1 H1
226 M74	PIPE 2.0	253 3.1	17	.099 0	4587	. 45900 32085 32085 1.3 H1
227 M65	PIPE 2.0	.250 0	4	.120 0	4588	. 45900 32085 32085 1.2 H1
228 M143	PIPE 2.0	.246 0	24	.118 0	4588	. 45900 32085 32085 1.1 H1
229 M150	PIPE 2.0	.244 3.03	13	.089 0	4587	. 45900 32085 32085 1.1 H1
230 M34	PIPE 2.0	.240 3.03	6	.102 0	4587	. 45900 32085 32085 1.1 H1
231 M264	PIPE 2.0	.239 0	34	.120 3.35	4586	. 45900 32085 32085 1.1 H1
232 M189	PIPE_2.0	.237 3.03	25	.089 0	4587	. 45900 32085 32085 1.1 H1
233 M289	PIPE 2.0	.236 0	9	.114 0	4588	. 45900 32085 32085 1.5 H1
234 M182	PIPE 2.0	.235 0	12	.107 0	4588	. 45900 32085 32085 1.7 H1
235 M41	PIPE 2.0	.235 0	30	.118 3.35	4586	. 45900 32085 32085 1.1 H1
236 M251	PIPE_2.0	.231 0	9	.123 0	4588	. 45900 32085 32085 1.14 H1
237 M157	PIPE 2.0	.227 0	38	.112 3.35	4586	. 45900 32085 32085 1.1 H1
238 M225	PIPE_2.0	.227 0	34	.121 3.35	4586	. 45900 32085 32085 1.1 H1
239 M2	PIPE 2.0	.224 0	30	.121 3.35	4586	. 45900 32085 32085 1.17 H1
240 M290	PIPE_2.0	.224 2.6	29	.112 0	4588	. 45900 32085 32085 1.2 H1
241 M27	PIPE 2.0	.224 0	17	.125 0	4588	. 45900 32085 32085 1.2 H1
242 M73	PIPE_2.0	.218 3.03	17	.101 0	4587	. 45900 32085 32085 1.1 H1
243 M28	PIPE 2.0	.218 2.6	32	.123 0	4588	. 45900 32085 32085 1.3 H1
244 M67	PIPE_2.0	.218 2.6	37	.112 0	4588	. 45900 32085 32085 1.2 H1
245 M144	PIPE 2.0	.217 0	13	.116 0	4588	. 45900 32085 32085 1.1 H1
246 M118	PIPE_2.0	.214 0	38	.114 3.35	4586	. 45900 32085 32085 1.1 H1
247 M183	PIPE 2.0	.207 2.6	32	.105 0	4588	. 45900 32085 32085 1.2 H1
248 M66	PIPE_2.0	.206 0	4	.114 0	4588	. 45900 32085 32085 1.8 H1
249 MP3	PIPE 2.0	.204 47.5	8	.052 48	9836	.45900 32085 32085 3.0 H1
250 MP11	PIPE_2.0	.204 47.5	12	.052 48	9836	45900 32085 32085 2.7 H1
251 MP7	PIPE 2.0	.204 47.5	4	.042 48	9836	.45900 32085 32085 2.7 H1
252 M268	<u>PIPE_2.0</u>	.196 3.03	33	.115 3.03	4587	. 45900 32085 32085 1.2 H1
253 M161	PIPE 2.0	.194 3.03	37	.108 3.03	4587	. 45900 32085 32085 1.2 H1
254 M45	<u>PIPE_2.0</u>	.194 3.03	29	.114 3.03		. 45900 32085 32085 1.2 H1
255 M6	PIPE 2.0	.193 3.03	34	.117 3.03		. 45900 32085 32085 1.2 H1
256 M229	PIPE_2.0	.192 3.03	38	.117 3.03	4587	
257 M122	PIPE 2.0	.191 3.03	30	.111 3.03	4587	. 45900 32085 32085 1.2 H1
258 MP6	PIPE 2.0	.180 47.5	4	.059 48		.45900 32085 32085 2.6 H1
259 M226	PIPE 2.0	.153 0	34	.116 3.2	4587	
260 M265	PIPE_2.0	.152 0	34	.115 3.2	4587	
261 M3	PIPE 2.0	.150 0	30	.116 3.2	4587	
262 M42	PIPE_2.0	.150 0	30	.114 3.2	4587	. 45900 32085 32085 1.2 H1
263 B1	PIPE 2.0	.150 32.6	80	.066 32.6		. 45900 32085 32085 2.27 H1
264 M215	PIPE_2.0	.150 32.6	180	.066 32.6		. 45900 32085 32085 2.2 H1
265 M108	PIPE 2.0	.150 32.6	124	.066 32.6		. 45900 32085 32085 2.2 H1
266 M158	PIPE_2.0	.144 0	38	.107 3.2	4587	
267 M119	PIPE 2.0	.144 0	38	.110 3.2	4587	. 45900 32085 32085 1.2 H1
268 M5	PIPE_2.0	.136 3.1	8		4587	. 45900 32085 32085 1.1 H1
269 M228	PIPE 2.0	.130 3.1	12	.114 3.1	4587	
270 M121	PIPE_2.0	.127 3.1	30	.108 3.1	4587	.45900 32085 32085 1.4 H1
PISA 3D Varai	1704 [L:\ \		10 25			175 loaded r3d] Page 16

	Member	Shape	Code Check	Lo	LC	Shear	Lo	phi*Pp	ni*P	.phi*	phi*	Cb	Eqn
271	M267	PIPE 2.0	.122	3.1	33	.112	3.1	4587 4	5900	32085	32085	1.5	H1
272	M160	PIPE 2.0	.122	3.1	37	.105	3.1	4587 4	5900	32085	32085	1.4	H1
273	M44	PIPE 2.0	.121	3.1	29	.111	3.1	4587 4	5900	32085	32085	1.52	H1
274	M4	PIPE 2.0	.108	3.1	8	.114	3.1	4587 4	5900	32085	32085	1.2	H1
275	M227	PIPE 2.0	.104	3.1	12	.114	3.1	4587 4	5900	32085	32085	1.2	H1
276	M218	PIPE_2.0	.093	32.6	12	.071	32.6	4314 4	5900	32085	32085	2.2	H1
277	B4	PIPE 2.0	.093	32.6	8	.071	32.6	9 4314 4	5900	32085	32085	2 . 2	H1
278	M120	PIPE 2.0	.091	3.1	4	.108	3.1	4587 4	5900	32085	32085	1.1	H1
279	M111A	PIPE 2.0	.089	32.6	163	.065	32.6	4314 4	5900	32085	32085	2 . 2	H1
280	M266	PIPE 2.0	.084	0	29	.112	3.1	4587 4	5900	32085	32085	1.8	H1
281	M43	PIPE 2.0	.081	0	38	.111	3.1	4587 4	5900	32085	32085	1.9	H1
282	M159	PIPE_2.0	.077	0	33	.105	3.1	4587 4	5900	32085	32085	1.9	H1
283	B3	PIPE 2.0	.073	32.6	102	.040	32.6	4314 4	5900	32085	32085	2 . 2	H1
284	M217	PIPE 2.0	.073	32.6	202	.040	32.6	4314 4					
285	B2	PIPE 2.0	.073	32.6	33	.052	32.6	4314 4	5900	32085	32085	2 . 2	H1
286	M216	PIPE 2.0	.073	32.6	37	.052	32.6	4314 4	5900	32085	32085	2.3	H1
287	M109A	PIPE 2.0	.069	32.6	4	.042	32.6	4314 4	5900	32085	32085	2.2	H1
288	M110A	PIPE_2.0	.069	32.6	158	.039	32.6	4314 4	5900	32085	32085	2.2	H1

APPENDIX D

ADDITIONAL CALCUATIONS

Additional Calculations

PRC	DJECT DATA
Site Name:	CT NEW BRITAIN 3 CAC 803175
Site Number:	803175
Job Code:	1039-D0002-B

Steel Bolt Calculator V2.0.0

BOLT INFORMATION					
Code:	LRFD				
Bolt Diameter	3/4	in			
Bolt Grade:	A307				
Threads Excluded?:	N				
Yield Strength (F _{yb})	36.0	ksi			
Ultimate Strength					
(F _{ub})	60.0	ksi			
Threads/in (n)	10				
Gross Area (A _{gb})	0.442 in ²	in ²			
Net Area (A _{nb})	0.334 in ²	in ²			
Applied Axial:	941.32	lbs			
Applied Shear	2125.15	lbs			

BOLT CAPCITIES						
				Factor Joint		
	Ult Load / Bolt	Factored Load (φ=0.75)	# of Bolts	Capacity		
Axial (lb)	20067.6	15050.7	1	15050.7		
Shear(lb)	11928.2	8946.2	1	8946.2		

INTERACTION CHECK				
Т /фТ _п	6.3%			
V /þVn	23.8%			
≤1.0	6.0%			
Result	ОК			

Exhibit F

Power Density/RF Emissions Report

Site Name: New Britain 3, CT Cumulative Power Density

Operator	Operating Frequency	Number of Trans.	ERP Per Trans.	Total ERP	Distance to Target	Power Density	Maximum Permissible Exposure*	Fraction of MPE
	(MHz)		(watts)	(watts)	(feet)	(mW/cm^2)	(mW/cm^2)	(%)
VZW CBRS	3600	1	50	50	145	0.0009	1.0	0.09%
VZW PCS	1970	1	6375	6230	145	0.1066	1.0	10.66%
VZW Cellular LTE	869	1	1630	1660	145	0.0284	0.579333333	4.90%
VZW Cellular	869	3	389	1167	145	0.0200	0.579333333	3.45%
VZW AWS	2145	1	6310	6255	145	0.1070	1.0	10.70%
VZW 700	746	1	2750	2790	145	0.0477	0.497333333	9.60%
Tetal Deveentage of Meximum Developible Everegues							00.000/	

Total Percentage of Maximum Permissible Exposure

39.38%

*Guidelines adopted by the FCC on August 1, 1996, 47 CFR Section 1.13101 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992

MHz = Megahertz

mW/cm² = milliwatts per square centimeter

ERP = Effective Radiated Power

Absolute worst case maximum values used, including the following assumptions:

1. closest accessible point is distance from antenna to base of pole;

2. continuous transmission from all available channels at full power for indefinite time period; and,

3. all RF energy is assumed to be directed solely to the base of the pole.