Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

September 13, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification I-84 and South Street, Middlebury, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains a wireless telecommunications facility at the above-referenced property address (the "Property"). The Cellco facility consists of antennas and remote radio heads attached to a Connecticut State Police ("CSP") tower and associated equipment on the ground near the base of the tower. The Siting Council ("Council") approved a request of the CSP in April of 1991 to replace/rebuild the then existing tower adjacent to I-84. Cellco's use of the tower was approved by the Council in November of 2015 (PE1133-VER-20151006). Copies of the Council's 1991 tower replacement approval and PE1133-VER-20151006 approval are included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by removing four (4) existing antennas and installing four (4) MX06FRO660-03 antennas and two (2) MT6407-77A antennas on the existing antenna mounts. Cellco also intends to replace four (4) remote radio heads ("RRHs") with four (4) new RRHs behind its antennas. A set of project plans showing Cellco's proposed facility modifications and new antennas and RRHs specifications are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Middlebury's Chief Elected Official and Land Use Officer.

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | **rc.com**

Melanie A. Bachman, Esq. September 13, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. The replacement antennas and RRHs will be installed on Cellco's existing antenna mounts.

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative General Power Density table for Cellco's modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna mounts , with certain modifications, can support Cellco's proposed modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. September 13, 2022 Page 3

Sincerely,

Kunie mm

Kenneth C. Baldwin

Enclosures

Copy to:

Edward St. John, Middlebury First Selectman Curtis Bosco, Zoning Enforcement Officer State of Connecticut, Department of Emergency Services & Public Protection, Property Owner Alex Tyurin, Verizon Wireless

ATTACHMENT 1

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

136 Main Street, Suite 401 New Britain, Connecticut 06051 Phone: 827-7682

April 2, 1991

RE:

Captain Ronald P. Mikulka Commanding Officer Telecommunications Section 294 Colony Street Meriden, CT 06450

> Department of Public Safety Division of State Police notice of intent to replace an existing telecommunications tower and associated equipment along I-84, Middlebury, Connecticut, as an exempt modification.

Dear Captain Mikulka:

At a meeting held on April 1, 1991, the Connecticut Siting Council acknowledged your notice of intent to replace an existing telecommunications tower and associated equipment located along I-84 in Middlebury, Connecticut, as an exempt modification pursuant to Section 16-50j-73 of the Regulations of State Agencies (RSA).

The proposed modifications are to be implemented as specified in your notice dated March 13, 1991, and addendums of March 18, 1991 and March 27, 1991. As proposed, the modifications are in compliance with the exception criteria specified in RSA 16-50j-72 as a replacement of an existing telecommunications tower with changes to the facility site that do not increase the tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary 6 decibels, and add radio frequency sending or receiving capability which increases the total radio frequency electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to Section 22a-162 of the Connecticut General Statutes.

The Council is pleased to note that the shared use of an existing tower serves the Council's long-term goal of protecting the public interest by avoiding proliferation of additional tower structures.

Please notify the Council upon completion of construction.

Very truly yours,

lavia Diebble Paul 12

Gloria Dibble Pond Chairperson

GDP/cp 5227E

Gloria Dibble Pond Chairperson

COMMISSIONERS

Energy/Telecommunications

Peter G. Boucher Timothy R.E. Keeney Hazardous Waste/Low-level Radioactive Waste

Susan Addis

Judge Nicholas Cioffi COUNCIL MEMBERS

Harry E. Covey Mortimer A. Gelston Daniel P. Lynch, Jr. Paulann H. Sheets William H. Smith Colin C. Tait

Joel M. Rinebold Executive Director

Stanley J. Modzelesky Executive Assistant

STATE OF CONNECTICUT *CONNECTICUT SITING COUNCIL* Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

November 13, 2015

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: **PE1133-VER-20151006** – Cellco Partnership d/b/a Verizon Wireless sub-petition for a declaratory ruling for approval of an eligible facility request for modifications to an existing telecommunications facility located along Interstate 84, Middlebury, Connecticut.

Dear Attorney Baldwin:

The Connecticut Siting Council (Council) hereby approves your Eligible Facilities Request (EFR) to install antennas and associated equipment at the above-referenced facility pursuant to the Federal Communications Commission Wireless Infrastructure Report and Order, with the following conditions:

- Modifications shall be made in accordance with the structural analysis report prepared by AECOM dated July 10, 2015 and stamped by Richard Sambor;
- Within 45 days following completion of the equipment installation, Cellco shall provide documentation certified by a Professional Engineer that its installation complied with the recommendations of the structural analysis;
- Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by the Petitioner shall be removed within 60 days of the date the antenna ceased to function;
- The validity of this action shall expire one year from the date of this letter; and
- The Petitioner may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration.

This decision is under the exclusive jurisdiction of the Council and is not applicable to any other modification or construction. All work is to be implemented as specified in the EFR dated October 5, 2015.

Thank you for your attention and cooperation.

Very truly yours,

Melanie Bachman Acting Executive Director

MB/RM

c: The Honorable Edward St. John, First Selectman, Town of Middlebury Ollie LeDuc, Building Official, Town of Middlebury

S\PETITIONS\1101-\1133\3_Subpetitions_ByTown\Middlebury\Interstate 84-decision.docx

ATTACHMENT 2

verizon ⁄ WIRELESS COMMUNICATIONS FACILITY

MIDDLEBURY I-84 CT I-84 AND SOUTH STREET MIDDLEBURY, CT 06762

SITE DIRECTIONS

START: 20 ALEXANDER DRIVE

WALLINGFORD, CONNECTICUT 06492

END: I-84 AND SOUTH STREET MIDDLEBURY, CT 06762

- HEAD SOUTH TOWARDS ALEXANDER DRIVE
- SLIGHT RIGHT TOWARDS ALEXANDER DRIVE TURN RIGHT TOWARDS ALEXANDER DRIVE
- TURN RIGHT ONTO ALEXANDER DRIV

10.

TURN RIGHT ONTO BARNES INDUSTRIAL RE	08.
TURN LEFT AT THE FIRST CROSS STREET O	NTO CT-68 W

- TURN RIGHT ONTO N. COLONY RD TURN RIGHT TO MERGE ONTO CT-15 N TOWARD HARTFORD CONTINUE ONTO CT-15 N TAKE EXIT 68 W TO 1-691 W TOWARD MERIDEN/WATERBURY 0.5 MI 3.1 MI 7.9 MI
- USE THE LEFT 2 LANES TO TAKE EXIT. 1 FOR I-B4 W TOWARD WATERBURY/ DANBURY
- 11 12. MERGE ONTO I-84 (DESTINATION WILL BE ON THE RIGHT)

LOCATION MAP

SITE INFORMATION

VZ SITE NAME: MIDDLEBURY I-84 CT VZ STIE NAME: MIDDEBORT VZ PROJEUZE I.D.: 16244626 VZ LOCATION CODE: 468946 VZ PROJECT CODE: 2020/198934 LOCATION: I-84 AND SOUTH STREET MIDDLEBURY, CT 06762

PROJECT SCOPE: REFER TO NOTES ON C-1 FOR SCOPE OF WORK

MAP/BLOCK/LOT: N/A

279 FT

289 FT 167 FT

0.3 MI 0.1 MI 0.4 MI

0.3 M

1.0 MI 12.8 MI

ZONING DISTRICT: N/A

LATITUDE: 41° 30' 49.0' N (41.5136111' N) SITE COORDINATES AND GROUND ELEVAT OBTAINED FROM RFDS PROVIDED BY VER LONGITUDE: 73° 07' 28.0' W (73.1244444° W) WIRELESS MARKED REV5 DATED 05/24/22

GROUND ELEVATION: 769 ± AMSL

PROPERTY OWNER: STATE OF CONNECTICUT DOT 2800 BEBLIN TURNPIKE P.O. BOX 317546, NEWINGTON, CT

> APPLICANT: CELLCO PARTNERSHIP d/b/a VERIZON WIRELESS 20 ALEXANDER DRIVE WALLINGFORD, CT 06492

LEGAL/REGULATORY COUNSEL: ROBINSON & COLE, LLP KENNETH C BAI DWIN ESO 280 TRUMBULL STREET HARTFORD, CT 06103

ENGINEER CONTACT; ALL-POINTS TECHNOLOGY CORPORATION. P.C.

567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 06385 (860) 663-1693

VERIZON SMART TOOL PROJECT # 10163461

Cellco Partnership d/b/a verizor

T-1

DRAWING INDEX

- T-1 TITLE SHEET
- C-1 COMPOUND PLAN, NORTH TOWER ELEVATION, EQUIPMENT CONFIG. PLANS, ELEVATIONS & NOTES.
- B-1 RF BILL OF MATERIALS, EQUIPMENT SPECIFICATIONS & DETAILS.
- N-1 NOTES & SPECIFICATIONS

	DERGN BASS	MANAGER AND CEASE ALL ACTIVITES IN AFFECTED AREAS UNTL NOTIFIED BY THE CONSTRUCTION TO RESUME OPERATIONS.	REGULATIONS. ALL GROUNDING ILLIGTFICIDES PRESENT AT EACH GERVIDE LOCATION	ALL CASLES AND ANTENNAS TO THE MANUFACTURERS AND OWNERS SPECIFICATIONS	Cellco Partnership d/b/a
	DOVERNING CODER/DEGION STANDARDR	EXIST. ELECTRICAL AND MECHANICAL FIXTURES, PIPING, WIRING AND EQUIPMENT COSTIFUCTING THE WORK SHALL BE REMOVED	BHALL BE BONDED TOGETHER TO FORM THE GROUNDING ELECTRODE SYSTEM	ANTENNIA CABLEB BHALL BE FOAM DELECTRIC ODAXAL CABLEB AS POLICIWE	- /
	2018 CONNECTICUT STATE BULDING CODE ASCII 7-10	MANAGER TEMPORARY SERVICE INTERFUETIONS MUST BE COOLDNATED WITH OWNER.	ALL IGU PARINT INCLOSURE, DIMORS, AND CONDUTE SHALL BE GROUNDED BY THE INSTALLATION OF A SERVICATE GROUNDING CONDUCTOR FOR ALL FEEDER AND SEANO 1 DROUTE THAT IS SEED	 7/P DAMETER FOR CALLE LINGTHS LP TO 100 FT. APP DAMETER FOR CALLE LINGTHS OBJECTIO THAN 100 FT. 	Vorizon ^V
	TA-222-H (TOWUR)	OS OTEEL :	PER CODE OR IS OF THE SIZE INDICATED ON THE DRAWINGS, GHALL BE CONTINUOUS IN LENGTH, AND BHALL BE BONDED TO BACH ENGLOSUPE	GING ANTERNAD: TAP DAMETER FOR CASE & LINKETHS UP TO 200 FT.	
	01 GENERAL:	THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS HEREN.	BONDING WHE OR OROUT. BONDING WHE OR OROUT.	 1-50° DAMETERFOR CABLE LENGTHS GREATER THAN 200 FT. MINIMUM SENDING RADIUS FOR COAXIAL CABLES SHALL BE: 	PLALEY MUSIC POINT
	ACI AMERICAN CONCRETE INSTITUTE	WATERALS: WIDE PLANGE ASTM Age2, GR 50	NON-METALLIC ENCLOSURES, IN-DROLED BORGE, AND TO AN ENCLOSURE WHERE A GROUND BUS IS BREDTED OR SUPPLED. ACCOMPT BH THIS BOAD WITH SPOLINDING COMPLICATORS MAINLESS	+15 FT FOR 7/# CONSAL CALLER +25 FT FOR 1-5# CONSAL CALLER -010 FT FOR 1-5# CONSAL CALLER	WALLINGFORD, CT 08482
	AND AMERICAN NATIONAL BTANDARDS INSTITUTE AWS AMERICAN WELDING SOCIETY	PIPE ASTM ASS, GRB	8 ZED TO THE LARGERT GROUNDING CONDUCTOR PRESENT IN THE ENCLOSURE CONNECTED TO A GROUNDING TYPE BUIGHING EQUALLY	WHERE POSSIBLE CABLE SHALL NOT BE LIFT UNTERMINATED AND SHALL BE BEALED MINEDATELY AFTER BEING NETALLED.	
	ASC AMERICAN INSTITUTE OF STELL CONSIDERTION ASCE AMERICAN SOCIETY OF CIVIL INCINEIPS AND AMERICAN STANDARDS AND TRETING METHODS	GRATING THE GW-2 (1-1/ms)/tor BARE) EXISTING METALIS ABTM ASE	STANDARD MANUFACTURE FOR THE CONDUCTINE, WHICHEVER IS LESS. EQUIPMENT SECUNDING AND LOAD REF DONDING CONSULTIONS.	ALL EXTERIOR GABLE CONNECTIONS GHALL BE CONTRED WITH A WATERPROOF SPLICING KT.	ALL BODYTS
	ORE CONCRETE REINFORCING STEEL NETTUTE ICC-ES INTERNATIONAL CODE COUNCIL EVALUATION SERVICE	PROVIDE CERTIFICATION THAT WELDERS TO BE USED IN WORK ARE LICENSED AND HAVE BATISFACTOR LY PASSED AWS QUAL FICATION	SHALL BE GZED FER THE ORGUTS OVER CURRENT PROTECTIVE DEVICE (DO'D) SZE, WHERE THE UNGROUNDED CONDUCTORS ARE INDERAGED IN DIZE ADDRESS TO THE DEVICE DOD USE OF DIVERSE THE	IN FELD PROFILD GONBITRICTION CARLE SHALL BE FURNISHED AND INSTALLED WITHOUT SPLICES AND	TECHNOLOGY CORPORATION
	TA TELECOMMUNICATIONS NOJETRY ASSOCIATION UL UNDERWITENS LABORATORIES	TEST UNDER THE PROVISIONS OF APPENDIX D, PARTS II AND III OF THE AWB OCDE FOR WELDING IN BUILDING CONSTRUCTION.	GROUNDING CONDUCTOR NEWORTCONATELY TO THE CHOSE-SECTIONAL AREA OF THE UNDROUNDED CONDUCTORS.	WITH CONNECTORS AT EACH END. 27 CABLE TRAY:	
	NIPA NATIONAL FIRE PROTECTION ASSOCIATION OBYA OCCUPATIONAL BARETY AND HEALTH ADMINISTRATION	STRUCTURAL BEARING POINTS AND THE LOCATIONS ARE TO BE VEH FED IN RELD PRIOR TO THE FASH GATION OF SITIEL	GENVIDE MAIN BONDING JUMPERS AND GROUNDING BLICTRODE CONDUCTORS SHALL BE SIZED AND INSTALLED PER THE MINIMUM OF ALL APPLICABLE CODES AND REGULATORS.	THESE SPECIFICATIONS BHALL INCLUDE THE GENERAL SPECIFICATIONS HEREIN	WATERFORD, CT 06385 PHONE: (860)-663-1697 WAWW ALL POINTSTECH COM FAX: (860)-663-1697
	EVERY INDIVIDUAL TRADE, DISCPLINE, AND CONTRACTOR BHAU, INCLUDE THERE GENERAL SPECIFICATIONS.	DESGN AND CONSTRUCTION OF STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF ASC SPECIFICATION FOR THE DESIGN, PARAGENTION AND PARCTION OF ATTRACTMENT, INTER, FOR SKILDINGS,	26 LIGHTNING PROTECTION: THE PROPOSITION BALL NOLLOF THE SEVERAL RECOGRATIONS	CABLE TRAY BHALL BE MADE OF ETHER CORROSION PESISTANT METAL OR WITH A CONSIGN RESISTANT FINISH.	
	THE ENGINEER IS NOT REPROVED FOR NOR A GUARANTOR OF THE INSTALLING CONTRACTORS WORK, ADEQUADY OF ANY SITE COMPONENT, SUPERVISION OF ANY WORK AND BAFETY IN ON, OR	NON-STRUCTURAL CONNECTIONS FOR STEEL CRATING MAY USE 58" DIAMETER GALVANIZED ASTM A 307 BOLTS UNLESS OT-ERWISE NOTED	AND THE GROUNDING SPECIFICATIONS HEREIN THE LIGHTNING PROTECTION GROUNDING SYSTEM (LPGS) SHALL	CLAMMED TO BOLLIANLE. CARLIE LACOIN SMALL IN BZID TO FIT ALL DAILLIE IN ACCORDANCE	
	ABOUT THE WORK BITE ANY REPERENCE HIREIN TO AN OR EQUAL ITEM, THAT EQUAL ITEM	ALL STEEL MATERIAL BHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 'ENO (HOT-D IPRED GALVANIZED) CONTRACTOR ON IGNAL AND STREE RECOVERY MEDIA CONTRACT OF	ORNISET OF BONDING ALL BOUPMENT AND CONFLICTIVE STRUCTURES TO LOGALIZED SINGLE POINT SHOLINDING CONNECTIONS (TYPICALLY GROUND BARS WHICH ARE BONDED TOGETHER AND TO AN 1-GROUND	WITH NEO AND NEMA 11-15-64. CABLE LADORE TRAYS SHALL BE NEMA CLASS 12A BY PW NOUSTRIDS,	0 01/27/21 FOR REVIEW: JRM
	INSTALLATION AND BY THE CONSTRUCTION MANAGEMETICAE INSTALLATION ALL TRADES BHALL COORDINATE THER WORK WITH ALL OTHER TRADES.	2 OZ/9F ALL BOLTS, ANDHORS AND MISCELLANEOUS HARDWARE EDFORED TO	SYSTEM. IF THE LPGS IS ON A BUILDING, IT SHALL BE EFFECTIVELY BONDED TO THE ELECTRICAL SERVICE MAIN BONDING JUMPER AND TO ADDITIONAL IN GROUND B ECTRICIDE AN ANY BE EFFCUIRED OF	CABLE LADDER TRAY BHALL BE SUPPORTED IN ACCORDANCE WITH MAAUHACTURERS BRICHCATIONS	1 01/29/21 FOR REVIEW: JRM 2 02/17/21 PER CLIENT COMMENTS: JRM
	AND OTHER WORK AND CONDITIONS AS APPEWRATE OR REQUIRED TO AVOID CONFLICTS, RESOLVE AND COORDINATE ALL CONFLICTS WITH ALL APPECTED WORK AND STUD OF BRATCHING, DOCEDINATION WITH THE	VEX INCOME AN A REAL OF A REAL AND A REAL AN	INDIGATED, IF THE LEGIS IS ON A DEDIGATED COMMUNICATION STE, ALL EQUIPMENT AREAS AND TOWERS SHALL EACH HAVE THER OWN IN-GROUND BIND WITH INVERTING INCREMENT TORETHER AND ALL	ALL WORKAANSHIP GHALL CONFORM TO THESE REQUIREMENTS AND ALL LOOAL CODES AND STANDARDS TO ENSURE SAFE AND ADEQUATE CITY INTERNAL CODES AND STANDARDS TO ENSURE SAFE AND ADEQUATE	3 02/19/21 PER CLIENT COMMENTS: JRM
	STE GHALL BE WITH THE OWNER, OR OWNERS SPECFIED REPRESENTATIVE, FOR EMERYTHING RELATED TO THE INSTALLATION OF THE REPORT.	UP ALL DAMAGED GALVANZED STEEL WITH COLD ZNO, GALVANGK, DRY GALV, OR ZINC IT, IN ACCORDANCE WITH MANUFACTURERS ULINE INGE TRUENDE DAMAGED NON GALVANIZED CITED WITH GAME	CONDUCTIVE STRUCTURES IN CLOSE PROXIMITY FEINCES. CE BRUDELS, ISOLATED ROUPMENT, IFC) ALSO BONDED TO PROVIDE A COMMON ELECTRONIC DEVENTION OF AN ADDRESS OF A COMMON		4 08/24/22 FOR FILING: JRM 5 09/07/22 FOR FILING: JRM
	ALL WORK BHALL BE IN BINGT ADDIREANDI WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCEPTABLE TO	PAINT APPLIED IN BHOP OR FIELD. THE ENGINEER BHALL BE NOTFED OF ANY INCORRECTLY FABRICATED,	AND ETRUCTURES		6
	ALL AUTHORITIE HAVING JURIED CTON (AH), WHITE A CONFLICT EXEMP BETWEEN CODES, FLANS, BPEOFICIATIONS, AND/OR AHA, THE MORE STRINGENT AUTHORITY SHALL APR.Y. WHERE CONFLICT EXEMP	DAMAGED OR OTHERWISE MISETTING OR NONCONFORMING MATERIALS OR DONOTIONS TO REMEDIAL OR CORRECTIVE ACTION ANY BUCH ACTION SIGNLE REQUEST REINER REVIEW. FELD CUTTING OF	NIN #2 AND BOLD BARE TIMED COPPER (BETC) FOR ALL IN GROUND CONDUCTORS NIN 42 AND CONDUCTORS NIN 42 AND CONDUCTORS		
	BETWEEN PLANS AND SPECIFICATIONS, PLAN SHALL APPLY, WHERE CONPLICE EXISTS BETWEEN PLAN SHEETS, CONSTRUCTION MANAGER BYALL BE CONSULTED PRICE TO COMMENCIAS ANY WORK.	STRUCTURAL STIEL S NOT PERMITTED EXCEPT WITH THE PRICE APPROVAL OF THE ENGINEER. CONTRACTOR TO REMOVE AND RE-INSTALL ALL THE PROCEND AS	STRUCTURES, AND FOR INTER-BYSTEM BONDING OF NDV/DUAL ELUNEINTE BUCH AS GROUND BAR TO GROUND BAR		annu linne.
	CONTRACTOR BHALL PROVIDE ALL LABOR, MATERIALS, INSURANCE, EGUIPMENT, INSTALLATION, CONSTRUCTION TOOLS, TRANSPORTATION, TOD, DOD & CONST TOTAL AND INVESTIGATION TO UNLABLE CONTRACTOR	REQUIRED DURING CONSTRUCTION THE STEEL STRUCTURE INVALUES DESIGNED TO BE SELF-SUPPORTING	BONDING INSTALL ALL IN-GROUND CONDUCTORS IN THE BAME HORIZONTAL		OF CONNE
	THROUGHOUT AND AS INCIDENTED ON THE DRAWINGS AND AS STEEPED HEREIN AND/OR OTHERWISE REQUIRED	AND BEABLE AFTER COMPLETION, IT IS THE CONTRACTORS BOLE REPONSIBILITY TO DETERMINE ERROTON PROCEDURE AND REQUINCE AND TO INSURE THE SAVELY OF THE BULDING AND ITS COMPONENT	PLANE OR IN A DOMINIARD DRECTION AWAY FROM THE TOWER AND EQUIPMENT AREAS - AND LONG RUNS. MAKE DRECT RUNS AS MUCH AS POSSIBLE		IN THE TROUBLE
	CONTRACTOR BHALL VERILY ALL BESTING CONDITIONS, INSTALLATIONS, AND EQUIPMENT IN THE FELD PROFITO BD, FABRICATION, AND INSTALLATION OF ANY WORK.	PARTIE DURING ERECTION ALL STEEL ELEVENTS GHALL BE INSTALLED PLUME AND LEVEL	+PLACE THROUGH NON-METALLIC BLEEVES WHEN PAGENG THROUGH PLOOPS, WALLS, GELINDS, AND SMILLA'S STRUCTURES		S SHOW O'L
	CONTRACTORS SHALL VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD PROP, TO FASHIGATION AND ERECTION OF ANY MATIENAL. THE	CONVERTIGATION BUILD BE DEBORED BY THE FAREAT OF HOWIE CONVERTIGATE IN ACCORDANCE WITH THE LATERT EDITION OF THE AISC CONVERTIGATED IN ACCORDANCE WITH THE LATERT EDITION OF THE AISC	EXCITED AN AN AN AN ALL OTHER CONTRACTOR WITH EXCITED AN		
	PENETRATIONS AND OF ANY CONDITIONS WHICH PRECLUCE COMPLETION OF THE WORK IN ADDOPEDINGE WITH THE CONTRACT	MANUAL OF 675EL CONSTRUCTION" CONNECTIONS & ALL BE PROVIDED TO CONFORM TO THE REQUIREMENTS OF TYPE 2 CONSTRUCTION	 NSTALL ALL CONDUCTORS WITH A MINIMUM 18 INCH BEND RADIUS AND NO BEND LONGER THAN A BIO CRAFE ARC. ALL BENDS BHALL 		* last *
	DOUTRACTOR BHALL VIBIT THE BITE TO MANAGE AND GAIN APPROVAL FOR ALL TENANT DISPUPTIONS, POWER OUTAGES, WORK SCHEDULES.	STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325 ALL BOLTS SHALL BE MINIMUM SHI'D AMETER AND EACH CONNECTION	BE HORIZONTAL, OR DOWNWARD TOWARDS EARTH ALL CONDUCTORS PASSING FROM ABOVE GROUND TO IN-GROUND CONNECTIONS WHERE PROVIDE MALL BE COVERED AND		A CONTRACTOR
	DEPINITION OF WORK AREA AND WORK BTORAGE, NEWER BUILD NAME TE ACCESS, NOBE AND CLEANLINESS REQUIREMENTS WITH THE BUILD WORK MANDIMINE PROPERTS ALL WORK, MY DEPUNTIONS	PREMITTED FOR ASS STEEL ASSEMBLES, IF TENSOR OWNERS, BOLTS ARE USED, CONNECTIONS SHALL BE DISTORED FOR SLP ONTICAL BOLT	PROTECTED WITH A NON-METALLIC CONDUCT SEALED AT BOTH ENDS.		33313
	BRALL BE KEPT TO A MINIMUM AND GHALL BE IMPLEMENTED ONLY UPON WRITTEN APPROVAL OF THE OWNER.	ALLOWALE LOOD VALUES DESIGN CONNECTIONS AT BEAM ENDS FOR 10 KPS (MIN)	BADIAL OF BALLAPING, BONDING FOLLOWING ANOTHER RING OF BADIAL, OR BALLAPING, COMBINE WITH A BRAFED BINGLE		SCIENSENG
	APPLICTING TENANT EXPERIENCE COMPREMISING STELENCURTY MEASURES	NUTE OR A LOOK WARKER CONTRACTOR BHALL COMPLY WITH AWE CODE FOR PROCEDURES,	EQUIPMENT AND TOWER GROUND RINGS SHULL BE +BONDED TO ANY DONOLCEVE OBJECT OR STRUCTURE WITHIN 5		MUNICIONAL LINNIN
	PROR TO ALL IBLLOW-GRACIL WORK AND ANY GURFACE WORK IN A NEW AREA FOR STRUCTURES OR VEHCLES, CONTRACTOR SHALL ENGLASE A MARKOUT GENICE TO DENTIFY ANY UNDERGINOUND	APPENRANCE AND QUALTY OF WELDS, AND WELDING PROCESSES SHALL BE QUALIFIED IN ADDOREDANCE WITH AWS 'STANDARD CUALIFICATION PROCEDURED'. ALL WELDING SHALL BE PEPPONNED	FEET OF EQUIPMENT GROUND FINGS AND WITHIN 20 FEET OF TOWER GROUND FINGS		
	STRUCTURES, CONDUITS, AND PIPELINES IN THE AREA. ALL DOSTING SERVER, WATER, GAS, ELECTRIC, FISH OFFIC, AND OTHER UNDERSTRUCTURE CONTINUES OF DESCRIPTION OF THE RESIDENCE OF THE	USING EFROM ELECTRODES AND SHALL CONFORM TO A SC AND D1.1. WHERE FILLET WELD SZES ARE NOT SHOWN PROVIDE THE LARGER OF 19 FELLET ON MINKING RZE PRICE TABLE AS IN THE ARC SMALLER. OF	AND SMILAR. INSTALLAL IN GROUND RINGS, BADALS, BONDS CONNECTING THEM,		
	PROTECTED AT ALL TIMES. EXTREME CAUTON SHOULD BE USED BY THE CONTRACTOR WHEN DISSING OR EXCAVATING IN ANY MANNER CONTRACTOR WHEN DISSING OR EXCAVATING IN ANY MANNER	STRAL CONSTRUCTION. AT THE COMPLETION OF WELDING, ALL DAMAGE TO DALVANZED COATING BHALL BE REPARED. SEE NOTE DEPARTMENT DALVANZED COATING BHALL BE REPARED.	AND ALL BIMLAR GROUND NO: INN 30 NOMES BELOW GRADE, OR 6 NOMES BELOW THE PROFE INNE MANDEMENTS OF STREET		DESIGN PROFESSIONALS OF RECORD
	REPARE, REPLACEMENT, AND ALL DAMAGES DUE TO DAMAGE OF UTLITIES BY HS OPERATIONS	ALL ARC AND GAS WELDING SHALL BE DONE BY A LOBINGED AND CERTIFIED WELDER IN ACCORDANCE WITH AWE.	MIN 2 FEET FROM FOUNDATIONS, FOOTNOS, OTHER GROUNDING SYSTEMS, AND SMILLAR STRUCTURES, DODIFT WHEN MAKING A		COMP: ALL-POINTS TECHNOLOGY
	ALL EXEMPTION AND NEW EQUIPMENT AND MATERIAL LOCATIONS, ROUTING, ORIENTATION, MOUNTING, SPECFICATIONS AND GENERAL INITIALITIC CHARACTERISTICS SHALL BE CONSIDERED DIAGRAMMATIC	SEAL ALL PENETRATIONS AND BEAMS BETWEEN MASONINY AND STIEL WITH DOW CORNING 760 BLICOME BUILDING BEALANT OR EQUAL	FOLNOATION INTERNAL REINFORCEMENT: ALL BULPMENT GROUPED N & COMMON AVEA, COMPOUND,		CORPORATION, P.C. ADD: 567 VAUXHALL STREET EXT.
	ON THE PLANS. EXACT CONDITIONS BHALL BE DIFFERENCE IN THE FIELD PROR TO ANY INSTALLATION. ANY DIFFERENCE THAT MAY DAUGE SCHEDULE. COST. OF COLLARY PARALL BE INSCREDENT TO THE	26 ELECTRICAL: THESE RECORDATIONS SHALL NOT USE THE OWNERAL RECORDATIONS	STRUCTURE, OR SMILLAR GRALL BE BONDED TO A SINGLE-POINT GROUND, PREFERANCY AN ISOLATED GROUND BAR. BOND THE GROUND BAR TO THE EVENTMANTH MINUM BINGLE BONDING CORDUCTOR. IF		SUITE 311 WATERFORD, CT 06385
	ATTENTION OF THE OWNER OF ENGINEER PROP TO ANY WORK ALL REPERENCES HERE IN TO VERIFICATION OF ANY CONDITION OF STE,	ALL ELECTRICAL CONDUCTORS	BONDING TO AN IN-GROUND RING, INSTALL 2 BONDING CONDUCTORS MINIUM WITH BACH CONDUCTOR INSTALLID DRIFCTORALLY AWAY BROWGED COURT AND RANK LID. YO THE IN CONDUCTORS		OWNER: STATE OF CONNECTICUT DOT,
	Full responses of devices to be provided on two automatic terms, nuclear construction on the contraction and automatic of NODFIGATIONS, CHANGES, REPAIR, OR DEMOLITION AS A RESULT OF	INSULATION BRALL BE MINIMUM BODY TYPE THEIN, THMN 2, GB X019W, BRANCH CREDIT CONDUCTORS IF ALL IN SOFT DRAWN 99%	WITH NO TEE CONNECTIONS TOWER GROUNDING		C/O ANDREW E. BECKER ADDRESS: 2800 BERLIN TURNPIKE
	PALLINE TO INVIGE ANY ISSETING CONDITION NIMIPLY TO THE ATTENTION OF THE OWNER OR ENGINEER SHALL BE THE FULL REINFORMELTY OF THE CONTRACTOR WITHOUT CITLE AV, CORT, OR	MINIMUM CONSULTIVITY NEWERLY REPINED COPPER. • PERCENT CROUT CONSULTOINE ENALL BE INTHER COPPER OR AUXILIAR OF ANY	 EACH TOWIR LIG SHALL BE BONDID TO ITS RING. SNGLI-LIGGED TOWIRB, CR MONOPOLIE, SHALL HAVE 2 BONDS ON OPPOBITE SDBS 		P.O. BOX 317546, NEWINGTON, CT
<text></text>	CHARGES IN QUALITY. ALL NOTES THIS SHELT SHALL AFFLY UNLESS SPECIFICALLY NOTED OTHERWISE ON THE INCLUDED DRAWINGS OF IN SERVICE PROJECT.	SPECIFICALLY NOTED • PERMANENTLY LABEL OF TAG ALL CONDUCTORS WITH THEIR	 BOND TO TOWER BASE, NOT TO VERTICAL TOWER STRUCTURE, AWAY FROM TOWER MOUNTING HARDWARE ENCL IN POWER AND AND AND AND AND AND AND AND AND AND		
<text></text>	BPICFICATIONS AS APPLICABLE. ALL SPICFICATIONS SHALL NE CONSIDERED REDURED UNLESS APPROVED EQUAL 3Y THE OWNER, CONSIDERED REDURED UNLESS APPROVED EQUAL 3Y THE OWNER,	VIGILE AD PAGE THROUGH IN ALL INFORMATION ENDS, BELORI, AND VIGILE AD PAGE THROUGH IN ALL ENCLOSURED ALL CONDUIT, INCERNAY, WHEWAYS, DUCTS, ETC. INFALL INFLUETED	FIND + EACH BOND SHALL CONBIST OF 2 CONDUCTORS FROM THE TOWER		
<text><text><text><text><text></text></text></text></text></text>	THE WORDS "PROVIDE" OR "NOTALL" SHALL MEAN FURNISH AND INSTALL	AND BUTABLE PORTHE APPLICATION ONLY THE POLLOWING CONDUITS AS APPRICIPED AND LISTED FOR THE APPLICATION SHALL BE ACCEPTED FOR	DIRECTIONS WITH A RANAULLE. CONNECTION ON THE RING ON OPPOSITE SIDES OF THE GROUND ROD.		
	CONTINUED FOR THE INSTALLATION OF HIS WORK. ANY PATCHING BHALL RECURRENTIAN THE INSTALLATION OF HIS WORK. ANY PATCHING BHALL MATCH PROFINE OF DEDICINION AND ANY INSTALL DEPENDENT. ALL DEPARTMENT.	HURDTRICAL MITALLICI TURINO (IMT). COMPRESSION COUPLINGS AND CONNECTORS ONLY MADE UP	EQUIPMENT AREA GROUNDING: + COMVENIGATION AREAS ON EARTH SHALL HAVE A GROUND RING.		
<form> Marken Same Same Same Same Same Same Same Same</form>	MATERIAL BHALL BE REMOVED FROM THE PREMISED DALY IN AN APPROVED DATE MANNER.	 FUERBLEI METAL CONDUCT (FMC) AND LIQUIDTIGHT FUERBLEI METAL CONDUCT (FMG) 	BOND THE EQUIMENT ENGLE-POINT GROUND TO THE BOURMENT GROUND RING WITH MINIMUM 2 CONSLICTORS DRIEGTED IN		
<text><text><text><text></text></text></text></text>	WHEN DESIRED AS TO BE SUPPLIES TO BE AN ADDRESS TO BE AND ADDRESS TO BE	FINAL CONNECTIONS TO VERATING OR ADJUSTAGE II EQUIPMENT NOLIDING, BUT NOT LIMITED TO LIGHT FORUME HAVOUNTE, TRANSFORMER, MOTORE, ITTO, OR WHERE FORUME, FINAL OLIVITE, TRANSFORMER, MOTORE, ITTO, OR WHERE	 P EQUIPMENT IS ENCLOSED IN A SHELTER: P EQUIPMENT IS ENCLOSED IN A SHELTER: P THE SHELTER IS CONSIDERED TO BE REFORED TO A DIRECT 		
<text><text><text><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></text></text></text></text>	HIS WORK AND NEWLY INSTALLED OR IDDITING WORK, INCLUDING IPROTECTION OF THE BITE, ALL STRUCTURES, AND ALL COCUPANTIS PURINEL, NETALL, MAINTAN, AND REMOVE AS APREVIATE, ALL	EQUIPMENT IS PLACED UPON GLAS ON GIVIDE • RIGID GALINANZED STEEL (108).	LIGHTING BITRIE, NETALL A BULDING LIGHTING PHOTECTION SYSTEM PER APPLICABLE VERSION OF NETA 750 ADVID ALL EXERT COMPLYTICE BULDING COMPONENTS TO DETAIL		
<text><text><text><text></text></text></text></text>	APNEWRIATE BARRERS, SAPETY GUARDE, SIGNAGE, AND SECURITY AS RECURED.	*RED POLYVNY, CHLORDE (PVC) BOHEDULE 40 OR BOHEDULE 80.	AND TO THE BUILDING RING GROUND AT THE CONVERSE THE IS TYPICALLY CALLED THE HILD GROUND DO NOT BOND EQUIPMENT		
<text><text><text></text></text></text>	PEB, PERATE, NEPECTON, TERTING, OFFICE FOR THE AND ALL MANAGEMENT OF BANE REQUIRED FOR COMPLETION OF AND LEGAL OPPORTUNITY OF THE DISECTORY OF DISCOUNT OF THE DISCOUNT OF THE	HANT DE UEED FOR BEFMOES, EXTENDR, BELOW GRADE, AND WET LODATIONS BRALL NOT BE USED IN CONCRETE SLASS NOR EXPOSED WITHIN A	BOND ALL ROUPMENT TOGETHER TO A BINGLE-POINT OR INTERIOR EQUIPMENT RIVE GROUPD LEGIS BOND THE BINGLE-POINT OR IDOR		
	ALL CONTRACTORS BHALL PROVIDE ALL RECEBBARY TOOLS, PXTURES, BERVICES, MATERIALS, JOS ADS, AND PERSONNEL RECURED FOR THE	BULDING OR STRUCTURE • METAL OLAD CABLE (NG) • ORDERLIED ARTICLE COLD V	+PLACE GROUND RODE AT THE EQUIPMENT HINK GROUND RING COPIERS. #PLACE GROUND RODE AT THE EQUIPMENT GROUND RING COPIERS. GROUND RODE:		MIDDLEBURY I-84 CT
	EXECUTION OF THER WORK. BACH CONTRACTOR SHALL GLARWITE ALL MATERIALS AND WORKSMITH BY THEM TO BE REED OF TREATING AND LARSE'S SHARE	WITHIN A DUCT WITH SMOOTH OR CORRUDATED METAL JACKET AND NO GUTER COMERING OVER THE METAL JACKET.	SEPARATION SPACE BETWEEN ANY 2 GROUND RODS SHALL BE NO CLORER THAN THE'R DEPTH. THIS APPL DE TO ALL RODS IN THE COMMUNITY RYNETRY.		SITE I-84 AND SOUTH STREET
	A PERIOD OF ONE YEAR AFTER ACCEPTANCE OF THE INSTALLATION BY THE OWNER AND ENGINEER	IN FINISHED SPACES, ALL CONDUITS SHALL BE CONDEALED EXCEPT TO MAKE A FINAL CONNECTION TO EQUIPMENT NOT MOUNTED IN OR AGAINST FINEH MATERIAL.	DRIVE VERTICALLY IN UND STUPPED SOL WITH THE TOP AT GAME DEPTH AS THE IN-SPOUND CONDUCTOR. IF NOT POSSIBLE TO		APT FILING NUMBER: CT141 11870
	ALL WURK SHALL BE PERFORMED BY LICENSED CONTRACTORS IN THE TRADE HAVING JURISDICTION. ANY DEVATION, MCD FEATION, ADDITION, OR CHANGE IN DEB(0)	ALL FIEDER AND BRANCH GROUTS BHALL HAVE A BEPARATE NEWERLY SZED AND MARKED BROUNDING CONDUCTOR, HER APPLICABLE CODER, THAT ENVIRONMENT OF DEPARTMENT OF DEPARTMENT OF DEPARTMENT.	INVESTIGATION AND A DESCRIPTION AND A DESCRIPTION AND A DESCRIPTION AND A DESCRIPTION AND A PROMITIES REAL PROVIDED AND A DESCRIPTION AND		DRAWN BY: DRA
Abe descent and an approximate and approximate	BHALL NOT BE MADE WITHOUT WRITTEN APPROVAL OF THE OWNER OR INVINUER.	HED AS A GROUNDING CREDING DOWN CONDUCTOR F EXETING BLEOTING BERVICE IS TO REMAIN, CONTRACTOR SHALL BE	RADIALS (TYP. NEW DEDIGATED COMMUNICATION SITES: WHEFE TRABILE WITH ENCODE OF AVELABLE, INSTALL A MENUTY IN OUR A MATCH IN 10 DIVE SOUND S		DATE: 01/28/21 CHECKED BY: JRM
	AND MATERIALS TO THE ENGINEER FOR APPROVAL PROBATION AND INSTALLATION AND INSTALLATION, AND INVALID TYPODED UNTL	VERPY THAT IT MEETS PROJECT REQUIREMENTS WITHOUT MODIFICATION. IF IT IS TO BE ADDED OR REP.ADED AS A PART OF THIS WORK CONTRACTOR BIALL ORDER FROM COORDINATE WITH AND	EACH BADALS LENGTH GRALL BE NIN 30 FT, MAX 80 FT, EDTEND RADIALS PERFENDICULAR FROM RINGS IN AS STRUCHT		VZ PROJECT CODE: 20202198934
Al A de la fair fair fair fair fair fair fair fai	ENGINEER APPROVAL IN WRITING IS RETURNED. EACH CONTRACTOR BHALL MAINTAN ON JOB BITE A COMPLETE BET OF SHOP DRAWINGS WITH ANY DEVIATIONS FROM THE ORIGINAL DESIGN BHALL BE NOTED.	GAIN APPROVAL FROM THE ELECTRICAL UTLITY ALL ELECTRICAL EQUIPMENT BHALLS IS AS BRECFIED AND AS APPROVED BY THE LOCAL UTLITY WHERE ARE LOADS IN	LINE AS POSSIBLE, AWAY FROM OTHER RING GROUNDS, RADIALS, BONDS, AND GIMLAR + A COMMON PRACTOR IS TO PLACE 4 BADIALS FROM THE TOWER		VZ LOCATION CODE: 468948
	ALL MATTRALS AND EQUIPMENT BHALL BEINEW, WITHOUT BLEMBH OR DEFECT, AND SUTABLE AND LISTED FOR THE INSTALLATION AND SHALL DEI NOTALLED IN ACCORDINATE WITH MANILEART LEGED	ALL EQUIPMENT, ENCLORUPER, ETC. & ALL BE BUTABLE FOR THE INSTALLED ENVIRONMENT, MINIMUM NEWA 3R FOR ALL DETERIOR	RING TO THE 4 CORNERS OF THE AVAILABLE AREA AT A MINIMUM, BOND ALL COMPOUND CONDUCTIVE FENCE CORNER		VZ FUZE ID: 16244626
	RECOMMENDATIONS OF BEED TOATIONS ALL TENS OF BOURMENT OR MATERIAL THAT ARE OF ONE GENERIC TYPE SHALL BE ONE MANUFACTURED THEOLOGICUT	WRING DEVICES HALL BE GRECFICATION GRADE AND WRING DEVICE COVER RATES BHALL BE PLASTIC WITH ENGRAVING AS SPECIFIED.	BROUND RING THAT FOLLOWS THE PENCE LINE, BONDING ALL POSTS TO THE PING.		SHEET TITLE:
And Case	ALL MATTRIALS, EQUIPMENT, TOOLS, AND TEMS UNCER THE CONTRACTORS RESPONSELLTY ON THE JOBSITE SHALL BE	ODLOR SHALL BE NORY. ALL DIVICES AND COVER PLATES SHALL BE OF THE SAME MANUFACTURER. ALL DISE ANTER SENTERATIONS SHALL BE SEALED LIDING & SHALL BE	27 ANTENNAS & CABLES		
Bit Control work of wor	INSIGNATE ANALY SECURED, MAINTANED, AND PROTECTED, SO AS NOT TO BECOME DAMAGED ON DREATE ANY HAZARD TO PERSONNEL OR NEWERTY.	AND LISTED FIRE GEALING DEVICE OR GROUT HAT WILL MAINTAIN THE FIRE PATING OF THE STRUCTURE PENETRATED.	THE DONTHACTOR BHALL NOLIDE THE GENERAL BRECHGATIONS HEREN. THE DONTHACTOR BHALL FURNISH AND INSTALL ALL TRANSMISSION		NOTES &
	THE CONTRACTORS HOURS OF WORK SHALL BE IN ACCORDANCE WITH LODAL CODES AND CREMANCES AND BE APPROVED BY THE OWNER.	FROVIDE PERMANENTLY APPXIDE INSPANYIDE NAMEPLATIS FOR ALL CODE REQUIRED LASELING AND ON ALL PANELS, METERING, DISCONSCIE, AND ELECTRICAL EQUIPMENT THAT IDENTIFIED	CABLES, JUMPER, DONNECTORS, GROUNDING STRAFS, ANTENNAS, MOUNT AND HARDWARE ALL WATERALS SHALL BE INSPECTED BY THE CONTRACTOR FOR DAMAGE UPON DIVISION JUNCTION OF THE CONTRACTOR FOR DAMAGE UPON DIVISION OF THE CONTRACTOR FOR DAMAGE UPON DIVI		SPECIFICATIONS
The destination of the second and th	AND INSURE THAT SHIPLY OF WHAT IN THE AND AND WORK PRACTICES. BAFETY TRANSCO GHALL NOLLDE, BUTNOT BE LMITED TO, IN ADDITION OF A DISTRICT OF A	EQUIPMENT EXPIRED, ELECTRICAL BOURCE WITH CROUT IDENTFICATION, AND VOLTAGES WITHIN ELECTRICAL CONTENTS IS DESCRICED FOR ALL EXPIRE	SUPPLIED AT ANTENNAS AND EQUIPMENT NICE INFLITER COOPDINATE LENGTH OF JUMPER CAMPS WITH OWNER. COORDNATE AND VERY ALL OF THE MATTER CAMPS TO BE DURING WITH COMPLEX.		
	TRENDENDER CONTINUE BRACE END & ALECTRICAL BARETY, AND TRENDENDERGARATION BATETY WHERE BUCH WORK IS DECUTED OF ENCOUNTERED.	TERMINATIONS TO ALL BOURNAUM PLANT AND A DESCRIPTION AND A DESCRIP	PHON TO GUENITING BO AND CODENING ANTIBIALS		SHEET NUMBER:
AD DATE CONFERENCE VIENCES UNIT REVICE SUMMER CONFERENCE CONFERENC	ALL TEMPORARY WORK PEQUINED OR BASE/FED AS A PART OF THE WORK, BAALL MET ALL OF THE BANE THE MAIN FRAMEWORK MINIMUM AND AND ALL OF THE BANE FOR THE AND AND AND MINIMUM AND	COMPLETELY REMOVED WITH EXCENSE STRUCTURES TO REMAIN, REPARED, FINSHED, FILLED, PAINTED, ETC. ALL PANEL SCHEDULES, ECUIPMENT LARELING, AND CODE-REGURED LASELING, BAULT BE	SWEEP TESTED FOR NEWER INSTALLATION AND DAMAGE WITH ANTENNAS CONNECTED, CONTRACTOR SHALL CETAIN AND USE LATEST TESTING PROCEDUATES FROM CONNER OR MANUFACT MERIPHOR TO		
	AND SHALL BE COMPLETELY REMOVED AFTER ITS PURPOSES HAVE BEEN BEINED	VERFED AND NEWERLY COMPLETED TO MATCH THE INSTALLATION. 28 GROUNDING.	BCONG. ANTENNA GABLES BHALL IN UNGUELY COLOR-CODED AT THE ANTENNA BOTH SDES OF BOLEMANT BHELTER WALL ANT HEADER		N_1
	DESTRUCTING THE VORK BHALL BE REMOVED AND/OR RELOCATED AS DRECTED BY THE CONSTRUCTION MANAGER.	THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS HEREN. GROUND ALL SYSTEMS AND EQUIPMENT IN ADDORIDANCE WITH SCIEF	CABLES AT THE EQUIPMENT. THE CONTRACTOR SHALL FLENISH AND INSTALL ALL CONNECTORS,		
	IF ABBRIDG IS ENCOUNTERED DURING WORK EXECUTION, CONTRACTOR SHALL MMEDIATELY NOTIFY THE CONSTRUCTION	NOUSTRY PRACTICE, THE NEOLIFEMENTS OF THE NIPA TO NATIONAL ELECTRICAL CODE (NEOL AND ALL OTHER APPLICABLE CODES AND	MOUNTS, BTANDOFFS, AND ALL ASSOCIATED HARDWARE TO INSTALL		

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code : MT6407-77A

Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Technical Specifications

ltem	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

Dual-Band Radio Unit AWS/PCS (B66/B2) RFV01U-D1A

Samsung's RFV01U-D1A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D1A RU targets dual-band support across Band 66 (AWS) and Band 2 (PCS), making it an ideal product for broad coverage footprints across multiple common mid-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation
- Built-in Broadcast Auxiliary Services (BAS) filter ensures compliant AWS operation without impacting footprint

Key Technical Specifications

Duplex Type: FDD Operating Frequencies: B66: DL(2,110-2,180MHz)/UL(1,710-1,780MHz) B2: DL(1,930-1,990MHz)/UL(1,850-1,910MHz) Instantaneous Bandwidth: 70MHz(B66) + 60MHz(B2) RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 255mm (36.8L) Weight: 38.3kg Input Power: -48V DC Operating Temp.: -40 - 55°(w/o solar load) Cooling: Natural convection

Dual-Band Radio Unit 700/850MHz (B13/B5) RFV01U-D2A

Samsung's RFV01U-D2A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D2A RU targets dual-band support across Band 13 (700MHz) and Band 5 (850MHz), making it an ideal product for broad coverage footprints across multiple common low-end, long-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation

Key Technical Specifications

Duplex Type: FDD Operating Frequencies: B13: DL(746-756MHz)/UL(777-787MHz) B5: DL(869-894MHz)/UL(824-849MHz) Instantaneous Bandwidth: 10MHz(B13) + 25MHz(B5) RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 207mm (29.9L) Weight: 31.9kg Input Power: -48V DC Operating Temp.: -40 - 55°(w/o solar load) Cooling: Natural convection

MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

X-Pol Hex-Port 6 ft 60° Fast Roll Off antenna with independent tilt on 700 & 850 MHz:

2 ports 698-798, 824-894 MHz and 4 ports 1695-2180 MHz

- Fast Roll Off (FRO™) azimuth beam pattern improves Intra- and Inter-cell SINR
- Compatible with dual band 700/850 MHz radios with independent low band EDT without external diplexers
- Fully integrated (iRETs) with independent RET control for low and high bands for ease of network optimization
- SON-Ready array spacing supports beamforming capabilities
- Suitable for LTE/CDMA/PCS/UMTS/GSM air interface technologies
- Integrated Smart Bias-Ts reduce leasing costs

Fast Roll-Off antennas increase data throughput without compromising coverage

The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference & Noise Ratio (SINR) by eliminating overlap between sectors .

Non-FRO antenna

Large traditional antenna pattern overlap creates harmful interference.

JMA FRO antenna

NWAV

The LTE radio automatically selects the best throughput based on measured SINR.

Frequency bands, MHz698-798824-8941695-18801850-19901920-2180Polarization± 45°± 45°1440114.0117.618.018.2Average gain over all tilts, dBi14.414.017.618.018.2Horizontal beamwidth (HBW), degrees60.553.055.055.055.055.0Front-to-back ratio, co-polar power @180°± 30°, dB>24>24.0>25.0>25.0>25.0>25.0X-Pol discrimination (CPR) at boresight, dB>15.0>14.2>18>18>15\$16\$17.0\$18.0\$25.0	Electrical specification (minimum/maximum)	Port	s 1, 2	Ports 3, 4, 5, 6		;
Polarization± + 5°Average gain over all tilts, dBi14.414.017.618.018.2Horizontal beamwidth (HBW), degrees60.553.055.055.055.5Front-to-back ratio, co-polar power @180°± 30°, dB>24>24.0>25.0>25.0>25.0X-Pol discrimination (CPR) at boresight, dB>15.0>14.2>18>18>15Sector power ratio, percent<3.5<3.0<3.7<3.8<3.6Vertical beamwidth (VBW), degrees ¹ 13.111.860.05.55.5Electrical downtilt (EDT) range, degrees2-142-14<First upper side lobe (USLS) suppression, dB ¹ 25252525Max vSWR / return loss, dB1.5:1 / -14.01.5:1 / -14.0<5:1 / -14.0Max passive intermodulation (PIM), 2x20W carrier, dBc-1.5:1<	Frequency bands, MHz	698-798	824-894	1695-1880	1850-1990	1920-2180
Average gain over all tilts, dBi14.414.017.618.018.2Horizontal beamwidth (HBW), degrees60.553.055.055.055.5Front-to-back ratio, co-polar power @180°± 30°, dB>24>24.0>25.0>25.0>25.0X-Pol discrimination (CPR) at boresight, dB>15.0>14.2>18>18>15Sector power ratio, percent<3.5<3.0<3.7<3.8<3.6Vertical beamwidth (VBW), degrees ¹ 13.111.86.05.55.5Electrical downtil (EDT) range, degrees2-142-14First upper side lobe (USLS) suppression, dB ¹ ≤-15.0≤-16.0≤-16.0≤-16.0Cross-polar isolation, port-to-port, dB ¹ 2525252525Max vSWR / return loss, dB1.5.1/-14.01.5.1/-14.0	Polarization	± 4	45°		± 45°	
Horizontal beamwidth (HBW), degrees60.553.055.055.055.5Front-to-back ratio, co-polar power @180°± 30°, dB>24>24.0>25.0>25.0>25.0X-Pol discrimination (CPR) at boresight, dB>15.0>14.2>18>18>15Sector power ratio, percent<3.5<3.0<3.7<3.8<3.6Vertical beamwidth (VBW), degrees ¹ 113.1111.86.05.55.5Electrical downtil (EDT) range, degrees2-142-14-0-9-16.0≤-16.0First upper side lobe (USLS) suppression, dB ¹ ≤-15.0≤-16.5≤-16.0≤-16.0≤-16.0Cross-polar isolation, port-to-port, dB ¹ 2525252525Max VSWR / return loss, dB1.5:1/-14.01.5:1/-14.0-15:3Max input power per any port, watts3.33.3250250Total composite power all ports, watts5.33.01.5:0	Average gain over all tilts, dBi	14.4	14.0	17.6	18.0	18.2
Front-to-back ratio, co-polar power @180°± 30°, dB>24>24.0>25.0>25.0>25.0X-Pol discrimination (CPR) at boresight, dB>15.0>14.2>18>18>15Sector power ratio, percent<3.5<3.0<3.7<3.8<3.6Vertical beamwidth (VBW), degrees ¹ 11.311.86.05.55.5Electrical downtil (EDT) range, degrees2-142-140-9First upper side lobe (USLS) suppression, dB ¹ ≤-15.0≤-16.5≤-16.0≤-16.0≤-16.0Cross-polar isolation, port-to-port, dB ¹ 252525252525Max VSWR / return loss, dB1.5:1 / -14.0-15:1 / -14.0-15:1 / -14.0Max input power per any port, watts3030250250250Total composite power all ports, watts3015:0-15:0	Horizontal beamwidth (HBW), degrees	60.5	53.0	55.0	55.0	55.5
X-Pol discrimination (CPR) at boresight, dB>15.0>14.2>18>18>15Sector power ratio, percent<3.5<3.0<3.7<3.8<3.6Vertical beamwidth (VBW), degrees ¹ 113.111.86.05.55.5Electrical downtilt (EDT) range, degrees2-142-140-9First upper side lobe (USLS) suppression, dB ¹ <<15.0<-16.0<-16.0<-16.0Cross-polar isolation, port-to-port, dB ¹ 2525252525Max VSWR / return loss, dB1.5:1 / -14.01.5:1 / -14.0<-153<-16.3Max input power per any port, watts3.03.0<-1500<-150Total composite power all ports, watts<-1500<-1500<-1500	Front-to-back ratio, co-polar power @180°± 30°, dB	>24	>24.0	>25.0	>25.0	>25.0
Sector power ratio, percent<3.5	X-Pol discrimination (CPR) at boresight, dB	>15.0	>14.2	>18	>18	>15
Vertical beamwidth (VBW), degrees113.111.86.05.55.5Electrical downtilt (EDT) range, degrees2-142-140-9First upper side lobe (USLS) suppression, dB1≤-15.0≤-16.5≤-16.0≤-16.0Cross-polar isolation, port-to-port, dB12525252525Max VSWR / return loss, dB1.5:1 / -14.01.5:1 / -14.01.5:1 / -14.01.5:1 / -14.0Max passive intermodulation (PIM), 2x20W carrier, dBc-153-153-153-153Max input power per any port, watts3050250250Total composite power all ports, watts-153-1500-1500	Sector power ratio, percent	<3.5	<3.0	<3.7	<3.8	<3.6
Electrical downtilt (EDT) range, degrees2-142-142-140-9First upper side lobe (USLS) suppression, dB1≤-15.0≤-16.5≤-16.0≤-16.0≤-16.0Cross-polar isolation, port-to-port, dB12525252525Max VSWR / return loss, dB1.5:1 / -14.01.5:1 / -14.01.5:1 / -14.0Max passive intermodulation (PIM), 2x20W carrier, dBc-153-153-153Max input power per any port, watts301.5:1 / 1500-1500	Vertical beamwidth (VBW), degrees ¹	13.1	11.8	6.0	5.5	5.5
First upper side lobe (USLS) suppression, dB ¹ \leq -15.0 \leq -16.5 \leq -16.0 \leq -16.	Electrical downtilt (EDT) range, degrees	2-14	2-14		0-9	
Cross-polar isolation, port-to-port, dB125252525Max VSWR / return loss, dB1.5:1 / -14.01.5:1 / -14.0Max passive intermodulation (PIM), 2x20W carrier, dBc-153-153Max input power per any port, watts3010250Total composite power all ports, watts-1501500	First upper side lobe (USLS) suppression, dB ¹	≤-15.0	≤-16.5	≤-16.0	≤-16.0	≤-16.0
Max VSWR / return loss, dB1.5:1 / -14.01.5:1 / -14.0Max passive intermodulation (PIM), 2x20W carrier, dBc-153-153Max input power per any port, watts300250Total composite power all ports, watts-1500	Cross-polar isolation, port-to-port, dB ¹	25	25	25	25	25
Max passive intermodulation (PIM), 2x20W carrier, dBc-153-153Max input power per any port, watts300250Total composite power all ports, watts1500	Max VSWR / return loss, dB	1.5:1 / -14.0 1.5:1		1.5:1 / -14.0	.5:1 / -14.0	
Max input power per any port, watts300250Total composite power all ports, watts1500	Max passive intermodulation (PIM), 2x20W carrier, dBc	-153 -153		-153		
Total composite power all ports, watts 1500	Max input power per any port, watts	30	00		250	
	Total composite power all ports, watts			1500		

¹ Typical value over frequency and tilt

©2019 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks™ or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com

MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Mechanical specifications				
Dimensions height/width/depth, inches (mm)	71.3/ 15.4/ 10.7 (1811/ 392/ 273)			
Shipping dimensions length/width/height, inches (mm)	82/ 20/ 15 (2083/ 508/ 381)			
No. of RF input ports, connector type, and location	6 x 4.3-10 female, bottom			
RF connector torque	96 lbf·in (10.85 N·m or 8 lbf·ft)			
Net antenna weight, lb (kg)	60 (27.0)			
Shipping weight, lb (kg)	90 (41.0)			
Antenna mounting and downtilt kit included with antenna	91900318			
Net weight of the mounting and downtilt kit, lb (kg)	18 (8.18)			
Range of mechanical up/down tilt	-2° to 14°			
Rated wind survival speed, mph (km/h)	150 (241)			
Frontal, lateral, and rear wind loading @ 150 km/h, lbf (N)	154 (685), 73 (325), 158 (703)			
Equivalent flat plate @ 100 mph and Cd=2, sq ft	2.6			

Ordering information

Antenna model	Description
MX06FRO660-03	6F X-Pol HEX FRO 60° independent tilt 700/850 RET, 4.3-10 & SBT
Optional accessories	
AISG cables	M/F cables for AISG connections
PCU-1000 RET controller	Stand-alone controller for RET control and configurations

MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Remote electrical tilt (RET 1000) information				
RET location	Integrated into antenna			
RET interface connector type	8-pin AISG connector per IEC 60130-9			
RET connector torque	Min 0.5 N \cdot m to max 1.0 N \cdot m (hand pressure & finger tight)			
RET interface connector quantity	2 pairs of AISG male/female connectors			
RET interface connector location	Bottom of the antenna			
Total no. of internal RETs (low bands)	2			
Total no. of internal RETs (high bands)	1			
RET input operating voltage, vdc	10-30			
RET max power consumption, idle state, W	≤ 2.0			
RET max power consumption, normal operating conditions, W	≤ 13.0			
RET communication protocol	AISG 2.0 / 3GPP			

RET and RF connector topology

Each RET device can be controlled either via the designated external AISG connector or RF port as shown below:

Array topology

3 sets of radiating arrays	Band	RF port
R1/R2: 698-894 MHz	1695-2180	3-4
B1: 1695-2180 MHz B2: 1695-2180 MHz	698-894	1-2
	1695-2180	5-6

©2019 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks[™] or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com

ATTACHMENT 3

	General	Power	Density					
Site Name: Middlebury I-84								
Tower Height: Verizon @77.5ft								
				FREQ	CALC.	MAX. PERMISS.	FRACTION	Total
	# ОГ СПАМ. 2		138	850	0.017089388	EAF.		Total
*AT&T	2	656	138	1900	0.027078836	1	0.002707884	
*AT&T	2	927	138	700	0.038265368	0.4666667	0.008199722	
*AT&T	2	667	138	850	0.027532902	0.5666667	0.004858747	
*AT&T	4	949	138	1900	0.078346999	1	0.0078347	
*AT&T	4	836	138	2300	0.06901801	1	0.006901801	
*Pocket (now MetroPCS)	3	631	90	2130	0.096479727	1	0.009647973	
*Sprint	1	438	97	850	0.019021088	0.5666667	0.003356663	
*Sprint	2	1094	97	850	0.095018585	0.5666667	0.016767986	
*Sprint	5	623	97	1900	0.135275544	1	0.013527554	
*Sprint	2	1556	97	1900	0.135145263	1	0.013514526	
*Sprint	8	640	97	2500	0.222346962	1	0.022234696	
* i louistic l (fom DPS)	1	330	168	42	0.004521973	0.2	0.002260986	
*unidentified (from DPS)	1	995	153	166	0.0166	0.2000	0.83%	
*unidentified (from DPS)	1	1795	150	2192	0.0311	1.0000	0.31%	
*DOT	1	100	122	47	0.0027	0.2000	0.13%	
*unidentified (from DPS)	1	71	85	460.3	0.0041	0.3069	0.13%	
*unidentified (from DPS)	1	9939	110	6700	0.3305	1.0000	3.30%	
*unidentified (from DPS)	1	5591	110	6700	0.1859	1.0000	1.86%	
*unidentified (from DPS)	1	1000	160	867.5	0.0152	0.5783	0.26%	
*T-Mobile	2	592	125	600	0.0301	0.4000	0.75%	
*T-Mobile	2	649	125	700	0.0330	0.4667	0.71%	
*T-Mobile	2	2204	125	1900	0.1119	1.0000	1.12%	
*T-Mobile	4	1102	125	1900	0.1119	1.0000	1.12%	
*T-Mobile	2	2589	125	2100	0.1315	1.0000	1.31%	
VZW 700	4	638	77.5	751	0.0153	0.5007	3.05%	
VZW Cellular	4	638	77.5	874	0.0153	0.5827	2.62%	
VZW PCS	4	1462	77.5	1975	0.0350	1.0000	3.50%	
VZW AWS	4	1566	77.5	2120	0.0375	1.0000	3.75%	
VZW CBAND	4	6531	77.5	3730.08	0.1564	1.0000	15.64%	
								51.89%
* Source: Siting Council								

ATTACHMENT 4

Submitted to Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

AT&T / Smartlink 85 Rangeway Rd. Building #3, Suite 102 N. Billerica, MA 01862 Submitted by AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 July 2, 2021

DETAILED STRUCTURAL ANALYSIS AND MODIFICATION OF AN EXISTING 160' SELF SUPPORTING LATTICE TOWER AND FOUNDATION FOR PROPOSED ANTENNA ARRANGEMENT

AT&T Site ID : AT&T Site Name : VZW Site ID : Site Address:

CTL01078 Middlebury-2 Larkin Drive 2954976 Intersection of I-84 and South Street Middlebury, Connecticut

60656990 / 60657751 SMK-007 (Rev 3) / VZ5-228 (Rev 2)

TABLE OF CONTENTS

- **1. EXECUTIVE SUMMARY**
- 2. INTRODUCTION
- 3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS
- 4. FINDINGS AND EVALUATION
- 5. CONCLUSIONS
- 6. DRAWINGS AND DATA
 - MODIFICATION DRAWINGS SK-1 TO SK-3
 - TNX TOWER INPUT / OUTPUT SUMMARY
 - TNX TOWER FEEDLINE DISTRIBUTION CHART
 - TNX TOWER FEEDLINE PLAN
 - TNX TOWER DEFLECTION, TILT, AND TWIST
 - TNX TOWER DETAILED OUTPUT
 - ANCHOR BOLT EVALUATION
 - FOUNDATION EVALUATION
 - ANALYSIS UNDERTIA-222-F DESIGN CRITERIA (DESPP / CSP)

1. EXECUTIVE SUMMARY

This report summarizes the structural analysis and modification of the existing 160' self-supporting lattice tower located west of the intersection of I-84 and South Street in Middlebury, Connecticut.

The structural analysis was conducted in accordance with the 2018 Connecticut State Building Code which includes the TIA-222-H¹ Standard, 2018 International Building Code, the 2018 Connecticut State Building Code Amendments to the 2015 International Building Code, the AISC² Load Resistance Factor Design (LRFD), the ASCE 7³ design Code, and the Connecticut State Police Requirements which include the TIA/EIA-222-F⁴ Standard.

The antenna loading considered in the analysis consists of all the existing and proposed antennas, transmission lines and ancillary items as outlined in the Introduction Section of this Report.

The proposed Verizon, AT&T and CSP antenna installations are listed below (see note):

Proposed Appurtenances	Carrier	Antenna Center Elevation
Remove:		
 (2) Commscope SBNH-1D6565 Panel Antenna (1) AM-X-CD-16-65-00T-RET Panel Antenna (3) Ericsson RRUS-11 B12 RRH Units (3) Existing Antenna Mount Frames 	AT&T (existing)	@ 140'
Install:		
 (2) CCI DMP65R-BU8DA Panel Antennas (Alpha and Beta Sectors) (1) CCI DMP65R-BU6DA Panel Antennas (Gamma Sector) (2) CCI OPA65R-BU8DA Panel Antennas (Alpha and Beta Sectors) (1) CCI OPA65R-BU6DA Panel Antennas (Gamma Sector (3) Ericsson 4449 B5/B12 RRH Units (3) Ericsson 4478 B14 RRH Units (1) 3" Flex Conduit with (1) Fiber Optic Cable and (2) DC Cables (1) Raycap DC6-48-60 Distribution Units (3) Commscope SFG22HDX Antenna Mount Assemblies 	AT&T (Proposed)	@ 140'
<u>Remove</u> (6) Sinclair SC479-HF1LDF (1) OGT9-806NU (1) OGT9840N (3) 6' Side Arm Mounts	CSP (Existing)	@ 153' to 159'
Install (4) DBSpectra DS7C09P36D-D (2 Face A & 2 Face C) (2) Comscope SFG23HD-12-4-96 Mount Assemblies	CSP (Proposed)	@ 160' (Top of Tower)
(1 Leg A & 1 Leg C)		

Remove (4) Andrew SBNHH-1D65B Panels (Alpha and Beta Sectors) (4) Remote Radio Units (Alpha and Beta Sectors)	Verizon (Existing)	77.5'
Install (2) JMA 91900314 Dual Mount Antenna Brackets (1 Alpha & 1 Beta) (4) JMA MX06FR0660 Panel Antennas (2 Alpha & 2 Beta) (2) Samsung MT6407-77A Panel Antennas (1 Alpha & 1 Beta) (2) Samsung B2/B66A RRH-BR049 RRUs (1 Alpha & 1 Beta) (2) Samsung B5/B13 RRH-BR04C RRUs (1 Alpha & 1 Beta)	Verizon (Proposed)	77.5'

Note: Due to the increased size of proposed AT&T panel antennas there would be insufficient clearance to existing CSP antennas. The proposed modifications to CSP antennas will provide the required clearances.

1. TIA = Telecommunications Industry Association Structural Standard for Antenna Supporting Structures and Antennas (Version H)

2. AISC = American Institute of Steel Construction (15th Edition)

3. ASCE 7 = American Society of Civil Engineers Standard 7 (2016 Edition)

4. TIA/EIA = Telecommunications Industry Association Structural Standard for Antenna Supporting Structures and Antennas (Version F)

This analysis is based on:

- 1) The tower structure's theoretical capacity not including any assessment of the condition of the tower.
- 2) Tower geometry, member sizes and foundation taken from Tower and Foundation reports prepared by Stainless, Inc. project number 358807 dated December 14, 1993.
- 3) Soil information taken from geotechnical report prepared by Dr. Clarence Welti, P.E., P.C., dated December 17, 2012.
- 4) Previous structural analysis and modification performed by AECOM on behalf of Verizon Wireless, project number 60404004, signed and sealed on July 10, 2015.
- Previous structural analysis performed by AECOM on behalf of Northwest CT Public Safety Communication Center, project number 60492507, signed and sealed on April 26, 2016.
- 6) Tower Mapping and Inventory of tower performed by D & K Nationwide Communications, Inc., dated March 27, 2016.
- Previous structural analysis and evaluation performed by AECOM on behalf of Pyramid Network Services, LLC, project number 60509756.21, signed and sealed on February 19, 2017.
- Previous structural analysis and modification performed by AECOM on behalf of AT&T and Sprint project number (60567641 / EMP-006; 60567639 / ASM-006), signed and sealed on April 9, 2018.
- 9) Previous structural analysis and evaluation performed by AECOM on behalf of Sprint, project number 60558618 / ASM-001, signed and sealed on February 9, 2018.

- 10) Tower inventory of existing antenna equipment provided by Eastern Communications Inc., via tower climb performed on June 17, 2020.
- 11) Proposed AT&T antenna inventory from Radio Frequency Data Sheet (RFDS), dated March 9, 2020, obtained via e-mail dated April 13, 2021.
- 12) Previous structural analysis and evaluation performed by AECOM on behalf of AT&T, project number 60656990 / SMK-007, signed and sealed on April 15, 2021.
- 13) Previous structural analysis and evaluation performed by AECOM on behalf of Verizon, project number 60657751 / VZ5-228, signed and sealed on April 21, 2021.
- 14) Proposed Verizon antenna inventory from Radio Frequency Data Sheet (RFDS), dated April 21, 2021, obtained via e-mail dated April 21, 2021.
- 15) Coax cable orientation as specified in section 6 of this report.
- 16) Antenna inventory as specified in Sections 2 and 6 of this report

The results of this analysis indicate that:

- 1. The existing steel tower structure IS considered structurally adequate for the proposed antenna loading with the wind classification specified herein.
- 2. The modified tower anchor bolts ARE considered structurally adequate for the proposed antenna loading with the wind classification specified herein.
- 3. The modified foundation IS considered structurally adequate for the proposed antenna loading with the wind classification specified herein.
- 4. The existing tower's sway (deflection) is 0.5028 degrees, and the existing tower's twist (rotation) is 0.2374 degrees. These figures combined ARE within the Connecticut State Police requirement of 0.75 degrees for combined twist (rotation) and sway (deflection) with the load classification specified herein.
- 5. The controlling structural capacity for all tower and foundation components for the proposed antenna loading is <u>94.8 %</u>

This report is only valid as per the assumptions and data utilized in this report for antenna inventory, mounts and associated cables. The user of this report shall field verify the antenna, cabling and mount configuration used, as well as the physical condition of the tower members, connections and foundations. Notify the engineer in writing immediately if any of the information in this report is found to be other than specified.

If you should have any questions, please call.

Sincerely,

AECOM,

John Hapkiewicz, P.E. Vice President, Design Manager

2. INTRODUCTION

The subject tower is located west of the intersection of I-84 and South Street in Middlebury, Connecticut. The structure is a self-supporting three-legged 160' steel tapered lattice tower manufactured by Stainless Incorporated.

The structural analysis was conducted in accordance with the following:

- 2018 International Building Code (compliant with the TIA-222-H design loads).
- 2015 International Building Code with 2018 Connecticut State Building Code Amendments for a wind speed of 101 mph (3-second gust).
- 2016 AISC Load Resistance Factor Design (LRFD)
- 2016 ASCE 7 Minimum Design Loads for Buildings and Other Structures for the ice thickness referenced in the TIA-222-H Standard.
- Connecticut State Police Requirements for a wind velocity of 90 mph (fastest mile) and 90 mph (fastest mile) concurrent with 0.5" ice. Twist (rotation) and sway (deflection) were determined in accordance with Connecticut State Police Requirements for a wind velocity of 90 mph (fastest mile) concurrent with 0.5" ice, analyzed under the TIA/EIA-222-F design Standard.

The inventory together with the proposed Verizon, AT&T and CSP antenna arrangement is summarized in the table below:

Antenna Type	Carrier	Mount	Centerline Elevation	Cable
4' Lightning Rod	D&K – 33 (existing)	Pipe mount above	177'	
16' Lightning Rod Mounting Pipe	(existing)	None	168'	
Tower Light	(existing)	None (1.158 ECI)	160'-6"	
 (2) DBSpectra DS7C09P36D-D (Face A) (2) DBSpectra DS7C09P36D-D (Face C) 	CSP (Proposed)	(2) Comscope SFG23HD-12-4- 96 Mount Assemblies (1 Leg A & 1 Leg C)	160'	(6) 1-5/8" (Existing) Jumpers to TTA (Below) (Proposed)
(1) Bird 432E-83I-01 TTA Junction Box	CSP (Existing)	Relocated to Proposed Mount	160'	(1) 1-5/8" AVA Cable (1) 1/2" Coax Cable
(1) 8-Bay 20' Dipole Antenna	D&K – 28 FBI – 3 (existing)	Mount Shared with D&K – 30 (above) (2.158 ECI)	158'	(1) 7/8" coax cable
(1) Bird TTA Unit	CSP (existing)	Leg Mounted (3.155 ECI)	155'	(2) 1-5/8" coax cable (1) ½" coax cable
(1) 4-Bay 20' Dipole Antenna	D&K – 27 ATF – 2 (existing)	Mount Shared with 2.155.1 ECI (2.155 ECI)	155'	(1) 7/8" coax cable
(1) Radiowaves HPD2- 4.7NS (2 foot dish)	Northwest CT Public Safety (relocated)	Mounted to Pipe attached to Tower Face (3.149 ECI)	150'	(2) 7/8" AVA5-50FX Heliax Andrew Virtual Air Coaxial Cables
(2) Raycap DC6-48-60- 18-8F Distribution Unit	AT&T (existing)	Frame Mounted to Tower Leg	146'	Shared with Fiber Cables (AT&T) (below)

Antenna Type	Carrier	Mount	Centerline Elevation	Cable
 (2) CCI DMP65R-BU8D Panel Antennas (A&B) (1) CCI DMP65R-BU6D Panel Antennas (C) (2) CCI OPA65R-BU8D Panel Antennas (A&B) (3) CCI OPA65R-BU6D Panel Antennas (C) (3) Ericsson 4449 B5/B12 Radio RRH Units (3) Ericsson 4478 B14 Radio Units (1) Raycap DC6 Distribution Units 	AT&T (Proposed)	(3) Commscope SFG23HD-12-4- 96 Antenna Mount Frames	140'	(2) DC cables in Existing Flex Conduit
 (3) Powerwave 7770 (2) CCI TPA-65R- LCUUUU-H8 Panels (Alpha and Beta Sectors) (1) Quintel QS66512-3 Panel (Gamma Sector) (3) RRUS-32 RRH Units (3) RRUS-12 RRH Units (3) TT19-08BP111-001 Twin TMA Units (6) Diplexers 	AT&T (existing)	See Above Proposed Mount Assembly (1.140 ECI) (2.140 ECI) (3.140 ECI)	140'	(12) 1 1/4" coax cable (1) 3" Flex Conduit with (2) Fiber Optic Cable &(4) DC cables
(1) Celwave PD1142	D&K – 11 DOT – 4 (existing)	(2) 8' Stiff-Arm Mounts (2.124 ECI)	124'	(1) 7/8" coax cable
 (3) EMS RR90-17-XXDP Panel Antennas (3) Andrew LNX- 6515DS-A1M Panel Antennas (3) Smart Bias-T Units (3) Generic TMA Units 	T-Mobile (existing)	(3) Dual Standoff Arm for 2 antenna pipes (SitePro1 # DSM2) w/ (3) Horizontal Sector Stabilizer units (SitePro1 # SFS- H) (1.125 ECI) (2.125 ECI) (3.125 ECI)	118'	(12) 1-5/8" Coaxial Cables
(2) 6' Dishes w/ Ice Shields (@ 115' CL)	D&K – 5 & 6 CSP – 6 & 7 (existing)	(2) Dish Mounts (2.110 ECI) (3.110 ECI)	110'	(2) WEP65 coax cable
 (3) RFS APXVSPP-C-20 Antennas (3) DT465B-2XR Panel Antennas (3) 2x50W 800 MHz RRH Units (3) TD-RRH8x20-25 RRH Units (3) Andrew RRH 800 MHz 2x40W (3) Panasonic RRH 1900 MHz 2x40W 	Sprint (existing)	 (3) Pipe Mounts attached to Tower Existing Pipe Mounts w/ (3) Commscope PM-SU35-48 Mounts (1.96 ECI) (2.96 ECI) (3.96 ECI) 	96'	(4) Hybriflex cable (1-1/4" OD)

Antenna Type	Carrier	Mount	Centerline Elevation	Cable
(1) Celwave 10054-3 2'x2' Square Dish Antenna	D&K-1 CSP – 5 (existing)	1' Standoff Mounted to Vertical pipe attached to Leg (1.85 ECI)	85'	(1) 7/8" coax cable
(2) L-810 Side-Mounted Light Beacons (From Leg A & C)	Tower (existing)	Pipe Mounted (horizontal) (1.83 ECI) (3.83 ECI)	83'	(2) 1/2" Coaxial Cables
(1) RRFDC-3315-PF-48 Distribution Box	Verizon (existing)	(2) Antenna Mount Frames (Alpha & Beta Sectors) (1.76 ECI) (2.76 ECI) (3.76 ECI)	76'	(1) 1-5/8" Fiber Optic Cable (HB158-1-08U8- S8J18)
 (4) JMA MX06FR0660 Panel Antennas (2 A & 2 B) (2) Samsung MT6407-77A Panel Antennas (1 A & 1 B) (2) Samsung B2/B66A RRH-BR049 RRUs (1 A & 1 B) (2) Samsung B5/B13 RRH-BR04C RRUs (1 A & 1 B) 	Verizon (Proposed)	(2) JMA 91900314 Dual Mount Antenna Brackets (1 A & 1 B)	77.5'	Shared with Above
(1) Sinclair DSSY450SF1SNM Yagi Antenna	CSP (existing)	Pipe Mounted to Tower Face (3-1.21 ECI)	21'	(1) 1/2" Coaxial Cable

NOTES: Antenna ID Numbering and elevations obtained from Tower Mapping and Existing inventory via tower climb performed by D&K Nationwide Communications, Inc. on March 27, 2016, and from Eastern Communications Inc, performed on May 12, 2020 (indicated above as #.## ECI).

This structural analysis of the communications tower was performed by AECOM for AT&T and Verizon. The purpose of this analysis was to investigate the structural integrity of the existing tower and foundation for existing and proposed antenna loads in compliance with the 2018 Connecticut State Building Code. This analysis was conducted to evaluate stress on the tower and the effect forces to the foundation of the tower resulting from existing and proposed antenna arrangements.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS

The structural analysis was done in accordance with, the TIA-222-H–Structural Standard for Antenna Towers and Antenna Supporting Structures and Antennas, the 2015 International Building Code with 2018 Connecticut State Building Code Amendments, the 2018 International Building Code (in compliance with the TIA-222-H Standard) and the American Institute of Steel Construction (AISC) Manual of Steel Construction – Load Resistance Factor Design (LRFD)

The structural analysis was conducted using TNX Tower version 8.0.5.0 and used the following conditions for this tower review (following the TIA-222-H Standard):

- Structure Class 3 (Essential Communications)
 - NOTE: ASCE 7 and CT State Building Code Applied Risk Category 4 for design wind loads (see below)
- Topographic Category 3 (Tower location on top of hill rolling wind conditions considered)
 - Crest Height used for analysis: (approximate elevations listed below)
 - Tower Base Elevation = 770 feet
 - High point (2 mile Radius) = 800 feet (Ref. Bedlam Hill)
 - Low Point (2 mile Radius) = 389 feet (Ref. Johnson School Building)
 - "H" = (Avg. of High/Low) Base Elevation = <u>176 feet</u>
- Exposure Class C (Open Terrain with scattered obstructions)
- Load Conditions:
 - Two load conditions were evaluated as shown which were compared to design stresses according to AISC and TIA-222-H Standard.

Basic Wind Speed:

- IBC 2018 w/ 2018 CT State Building Code Amendment:
 - (2018) IBC Section 1609.1.1 Determination of Wind Loads Exemption 5 "Designs using TIA-222" applies for determination of Design Wind Load obtained as "V.ult" are to be converted to "V.asd" when applying the TIA-222-G design Standard (under Section 1609.3) for Basic Wind Speed. This is internally applied within the Tower design program (tnxTower).
 - (2018) CT State Building Code Amendment to the IBC Section 1609.3 wind loads are obtained from Appendix N of the State Building Code.
 - V.ult = 130 mph (3-Second Gust) Wind Design Parameter for the Town of Middlebury, Connecticut for Risk Category four (IV) for essential communications (Connecticut State Police).

LOAD CONDITION 1 = 130 MPH (3-SECOND GUST) WIND LOAD (WITHOUT ICE) + TOWER DEAD LOAD Load Condition 2 = 50 mph (3-second gust) Wind Load (with ice) + Ice Load + Tower Dead Load

Ice thickness used for this analysis is **1.00 inch** (assumed to start at the base of the tower) and is considered to increase in thickness with height. The initial ice thickness for design is referenced in the Annex of TIA-222-H and follows the same design criteria as the ASCE 7 Standard.

The below load condition implements the design requirements of the Connecticut State Police for the tower structures deflection limits with the allowable deflection limit of the combination of the tower's sway (deflection) and twist (rotation) under the TIA-222-F design Standard. This design limit required the design combined value of sway (deflection) and twist (rotation) to be under 0.75 degrees following the TIA-222-F design Standard.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS (cont.)

Load Condition 3 = 90 mph (fastest mile) Wind Load (with ice) + Ice Load + Tower Dead Load

Seismic event consideration factors/values for design:

- S.s = 0.191 (2018 CT State Building Code Location Specific Value)
- S.1 = 0.064 (2018 CT State Building Code Location Specific Value)
- Site Classification = "D" from Geotechnical Report
- Seismic Design Category = "C" (2015 International Building Code)
- F.a = 1.6 (Obtained from TIA-222-G Table 2-12 Considering above conditions)
- F.v = 2.4 (Obtained from TIA-222-G Table 2-13 Considering above conditions)

NOTE: TIA-222-H Section 9.8 require S.s values to be greater than 1.0 to be applied for analysis. Due to the S.s value below this threshold, the seismic base shear calculation is omitted from this structural analysis report.

Strength Limit State Load Combinations (TIA-222-H Section 2.3.2):

The structural analysis herein has considered the following load combinations within the analysis:

- 1. 1.2 Dead Load Tower structure + 1.0 Dead Load Guy Assemblies + 1.6 Wind load without ice
- 1.2 Dead Load Tower structure + 1.0 Dead Load Guy Assemblies + 1.0 Dead weight of ice due to factored ice thickness + 1.0 Concurrent wind load with factored ice thickness + 1.0 Load effects due to temperature
- 3. 1.2 Dead Load Tower structure + 1.0 Dead Load Guy Assemblies + 1.0 Earthquake Load
- NOTE 1: The above **bolded** load combination is considered to create the governing design loads per the results of the analysis.
- NOTE 2: The above "Dead Load Guy Assemblies" are not considered as part of the analysis and are considered as a value of zero.
- NOTE 3: The "Load effects due to temperature" do not apply for structures that are selfsustaining (from the TIA-222-H Standard)

4. FINDINGS AND EVALUATION

The combined axial and bending stresses on the existing tower structure were evaluated to compare with strength design in accordance with AISC (LRFD). The results of the analysis indicated that the modified tower foundation has enough capacity to support the proposed loading conditions indicated herein. The tower foundation is considered structurally adequate with the proposed antenna loading with the wind load classifications specified in Section 3 of this report. The results of the analysis indicated that the existing tower structure HAS enough capacity to support the proposed conditions indicated herein. The existing tower structure and anchor bolts are considered structurally adequate with the proposed antenna loading with the wind load classifications specified in Section 3 of this report. Detailed analysis calculations for the proposed load condition are provided in Section 6 of this report.

The tower sway (deflection) is 0.5028 degrees and the tower twist (rotation) is 0.2374 degrees. These figures ARE within the Connecticut State Police specification of combined 0.75 degrees for sway and twist.

Description	Factored Loads (TIA-222-H)	
Axial Load (kips)	62	
Pier Compression (kips)	466	
Pier Uplift (kips)	409	
Overall Overturning (kip-ft)	8865	
Overall Shear (kips)	111	
Shear per Leg (kips)	61	

Tower Base Reactions:

Tower Component Stress vs. Capacity Summary:

Component / (Section No.)	Critical Component Size	Controlling Elevation	Stress (% capacity)	Pass/Fail
Tower Leg (T8)	HSS 6.8750x0.40"	37.5' – 50'	90.8	Pass
Diagonal (T4)	(2)L3x2 1/2x1/4 Back to Back Angles	75' – 100'	92.0	Pass
Horizontal (T10)	L4x4x1/2	0' – 25'	81.1	Pass
Top Girt (T9)	L4x4x5/16	25' - 37.5'	73.9	Pass
Redundant Horizontal Bracing (T9)	L2x2x5/16	25' – 37.5'	35.2	Pass
Redundant Diagonal Bracing (T9)	L2x2x5/16	25' – 37.5'	67.8	Pass
Inner Bracing (T7)	L2-1/2x2x3/16	50' – 58.333'	10.6	Pass
Tower connection Bolts	(2) A325X 5/8" Bolts (Horizontal)	25'	92.0	Pass

4. FINDINGS AND EVALUATION (cont.)

Foundation Summary:

Component	Required	Computed	% Capacity	Pass/Fail
Anchor Rod Capacity (TIA-222-G – 4.9.9)	Ratio < 1.0	1.081	83.1 %	Pass
Global Stability (Lateral Resistance)	Ratio < 1.0	0.948	94.8 %	Pass
Bearing Pressure (TIA-222-G Conditions)	6.750 ksf max	3.055 ksf	45.3 %	Pass

Structure Rating (Maximum from all components) =	94.8 %	Pass
--	--------	------

Maximum Deformations – Proposed Condition

ANSI/TIA-222-G Section 2.8.2 - Limit State Deformations

- 1. A rotation of 4 degrees about the vertical axis (twist) or any horizontal axis (sway) of the structure
- 2. A horizontal displacement (in feet) of 3% of the height of the structure.

	Current		Allowable	
Load Case Description	Sway	Displacement	Sway	Displacement
	(degree)	(Feet)	(degree)	(Feet)
Service Wind Load	0.1263	0.2285	4.0	4.8

Tower Twist & Sway at Top (Connecticut State Police Requirements - TIA-222-F):

Description	Current	Total	Allowable
Tower Twist (degrees)	0.2374	0 7402	0.750
Tower Sway (degrees)	0.5028	0.7402	0.750

NOTE: Values of combined twist and sway are required to be below 0.75 degrees combined under the DESPP / CSP required loading and shall not be considered "passing" until below this limit.

5. CONCLUSIONS

The results of this analysis indicates that:

- 1. The existing steel tower structure IS considered structurally adequate for the proposed antenna loading with the wind classification specified herein.
- 2. The modified tower anchor bolts ARE considered structurally adequate for the proposed antenna loading with the wind classification specified herein.
- 3. The modified foundation IS considered structurally adequate for the proposed antenna loading with the wind classification specified herein.
- 4. The existing tower's sway (deflection) is 0.5028 degrees, and the existing tower's twist (rotation) is 0.2374 degrees. These figures combined ARE within the Connecticut State Police requirement of 0.75 degrees for combined twist (rotation) and sway (deflection) with the load classification specified herein.
- 5. The controlling structural capacity for all tower and foundation components for the proposed antenna loading is <u>94.8 %</u>

Limitations/Assumptions:

This report is based on the following:

- 1) Tower inventory as listed in this report.
- 2) Tower is properly installed and maintained.
- 3) All members are as specified in the original design documents and are in good condition.
- 4) All required members are in place.
- 5) All bolts are in place and are properly tightened.
- 6) Tower is in plumb condition.
- 7) All member protective coatings are in good condition.
- 8) All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- 9) Foundations are in good condition without defects and were properly constructed to support original design loads as specified in the original design documents.

AECOM is not responsible for any modifications completed prior to or hereafter in which AECOM is not or was not directly involved. Modifications include but are not limited to:

- A. Adding antennas
- B. Removing/replacing antennas
- C. Adding coaxial cables

AECOM hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact AECOM. AECOM disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Ongoing and Periodic Inspection and Maintenance:

After the Contractor has successfully completed the installation and the work has been accepted, the owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The tower owner shall refer to TIA-222-H Section 14 for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. It is also recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions.
6. DRAWINGS AND DATA

MODIFICATION DRAWINGS SK-1 TO SK-3

GENERAL CONSTRUCTION NOTES

- ALL WORK SHALL COMPLY WITH THE CURRENT CONNECTICUT STATE BUILDING AND LIFE SAFETY CODES, SUPPLEMENTS AND AMENDMENTS. 1.
- CONTRACTOR IS TO REVIEW ALL DRAWINGS AND NOTES IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUB-CONTRACTORS AND ALL RELATED PARTIES. THE SUB-CONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON DRAWINGS OR WRITTEN IN SPECIFICATIONS. 3.
- CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION AND ELECTRICAL SUB-CONTRACTORS SHALL PAY FOR THEIR
- CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS ON SITE AT ALL TIMES AND ENSURE THE DISTRIBUTION OF NEW DRAWINGS TO SUB-CONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OL DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. CONTRACTOR SHALL FURNISH 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF DROLECT. OLD COMPLETION OF PROJECT.
- INSTALLATION OF THIS WIRELESS COMMUNICATIONS EQUIPMENT SITE REQUIRES WORK IN THE IMMEDIATE VICINITY OF EXISTING OPERATING TELECOMMUNICATION SYSTEMS. THE CONTRACTOR SHALL PROVIDE AND COORDINATE THE METHODS OF PROTECTION WITH THE VARIOUS TELECOMMUNICATION CARRIERS AND THE TOWER OWNER. THERE SHALL BE NO INTERRUPTION OF OPERATION WITHOUT TIMELY COORDINATION WITH AND APPROVAL BY THE VARIOUS COMMUNICATIONS OPERATORS INCLUDING THE CONNECTICUT STATE POLICE. 7.
- 8. NO MOVEMENT, ALTERATION, OR DISCONNECTION OF CONNECTICUT STATE POLICE ANTENNAS MAY OCCUR WITHOUT THE NOTIFICATION AND APPROVAL OF THE CONNECTICUT STATE POLICE. CONTACT THE NETWORK CONTROL CENTER AT -8008.
- TOWER REINFORCING WORK AFFECTING CRITICAL CONNECTICUT STATE POLICE ANTENNAS MAY BE REQUIRED TO BE CONDUCTED AT TIMES AS DETERMINED BY THE REQUIREMENTS OF THE CONNECTICUT STATE POLICE.
- ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER MANUFACTURERS RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR ARCHITECT.

STRUCTURAL NOTES

STRUCTURAL STEEL MATERIAL

STRUCTURAL STEEL:

LEG PIPES	0 (50) KSI)
BEAMS, CHANNELS, PLATES A	6 (36	3 KSÍ)
ANGLES A	56 (3)	5 KSI)
PLATE WELDED "T" BEAM A99	2 (50) KSI)

STRUCTURAL STEEL SHALL CONFORM TO ALL THE REQUIREMENTS OF THE ASTM SPECIFICATION, AS REFERENCED IN THE CODE.

UNLESS OTHERWISE NOTED, ALL STEEL SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM 123 AFTER FABRICATION. TOUCH UP ALL DAMAGED GALVANIZED STEEL WITH APPROVED COLD ZINC, "GALVANOX", "DRY GALV", "ZINC-IT", OR APPROVED EQUIVALENT, IN ACCORDANCE WITH MANUFACTURERS GUIDELINES. TOUCH-UP DAMAGED NON GALVANIZED STEEL WITH SAME PAINT APPLIED IN SHOP OR FIELD.

SHOP AND ERECTION DRAWINGS SHALL BE SUBMITTED FOR ALL STRUCTURAL STEEL WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. SUBMIT 2 SETS OF PRINTS FOR THE ENGINEER REVIEW.

MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.

THE OMISSION OF ANY MATERIAL THAT WAS SHOWN ON THE CONTRACT DRAWINGS SHALL NOT RELIEVE THE CONTRACTOR OF PROVIDING THE SAME.

CONCRETE:

ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318 AND THE SPECIFICATION CAST-IN-PLACE CONCRETE.

CONCRETE SHALL DEVELOP A MINIMUM COMPRESSIVE STRENGTH OF 3000 PSI IN 28 DAYS AND SHALL CONTAIN 5%-7% AIR ENTRAINMENT.

REINFORCING STEEL SHALL CONFORM TO ASTM A 615, GRADE 60, DEFORMED UNLESS NOTED OTHERWISE. WELDED WIRE FABRIC SHALL CONFORM TO ASTM A 185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE. SPLICES SHALL BE CLASS "B" AND ALL HOOKS SHALL BE STANDARD, UNO.

THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:	SPECIAL INSPECTIONS.
CONCRETE CAST AGAINST EARTH	VERIZON WILL SUPPLY THE SERVICES OF THE REQUIRED SPECIAL INSPECTOR AGENTS AS REQUIRED. CONTRACTOR SHALL COORDINATE INSPECTIONS OF FAI AND ERECTOR'S WORK AND MATERIALS TO MEET THE REQUIREMENTS OF THE OF SPECIAL INSPECTIONS FOR THIS PROJECT.
GROUND: SLAB AND WALL	COPIES OF TESTING AND INSPECTION REPORTS WILL BE PROVIDED TO THE TI WESTON BUILDING INSPECSTOR, STATE BUILDING OFFICIAL, ENGINEER OF REC CONTRACTOR.
DJECT NO. 157751/60856990	

11. IT SHALL BE MANDATORY TO USE STEEL MATERIALS PLANNED FOR CONSTRUCTION THAT ARE MANUFACTURED IN THE UNITED STATES OF AMERICA. MATERIAL SPECIFICATION DOCUMENTS SHALL BE MADE AVAILABLE TO THE ENGINEER TO VERIFY STEEL FABRICATION PRIOR TO PURCHASE AND IMPLEMENTATION. DEVIATIONS FROM THIS SHALL REQUIRE EXPRESSED WRITTEN PERMISSION FROM THE ENGINEER AND CONNECTICUT STATE POLICE.

- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 13. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ARCHITECT FOR REVIEW. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTAL TO THE ARCHITECT FOR REVIEW.
- 14. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA. SUBMIT ANY DISCREPANCIES FROM THE DRAWINGS TO THE ARCHITECT.
- 15. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURE AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- 16. CONTRACTOR SHALL COMPLY WITH OWNER ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL/ROCK DISPOSAL, ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 17. CONTRACTOR TO CONTACT "CALL BEFORE YOU DIG" AT 1-800-922-4455 TO VERIFY AND IDENTIFY THE EXACT LOCATIONS OF ALL UNDERGROUND UTILITIES AND OBSTRUCTIONS IDENTIFIED PRIOR TO COMMENCING WORK IN THE CONTRACT AREA.
- 18. DIMENSIONS OF EXISTING TOWER ARE BASED ON MANUFACTURER'S DRAWINGS PREPARED BY STAINLESS, INC., DATED DECEMBER 14, 1993, AND ARE NOT GUARANTEED. CONTRACTOR SHALL TAKE FIELD DIMENSIONS AS NECESSARY TO ASSURE PROPER FIT OF ALL FINISHED WORK AND SHALL ASSUME FULL RESPONSIBILITY FOR THEIR ACCURACY. WHEN SHOP DRAWINGS BASED ON FIELD MEASUREMENT ARE SUBMITTED FOR REVIEW, DIMENSIONS ARE PROVIDED FOR THE EXCURED'S DEFENSE ONCE ENGINEER'S REFERENCE ONLY.
- 19. TOWER INVENTORY IS BASED ON INFORMATION OBTAINED FROM TOWER INVENTORY PERFORMED BY EASTERN COMMUNICATIONS ON JUNE 17, 2020.
- 20. CONTRACTOR TO VERIFY REQUIRED CLEARANCES INCLUDING BUT NOT LIMITED TO EXISTING BUILDINGS, EQUIPMENT PADS AND SHELTERS PRIOR TO COMMENCING WORK.
- 21. THE CONTRACTOR IS RESPONSIBLE FOR THE STABILITY OF THE STRUCTURE DURING CONSTRUCTION. NO MEMBER OF THE TOWER SHALL BE LEFT DISCONNECTED FOR THE NEXT WORKING DAY. THE CONTRACTOR SHALL BE AWARE OF WEATHER AND WIND CONDITIONS AND NOT PERFORM MEMBER REPLACEMENT IN A WIND.

CONCRETE (CONTINUED)

A CHAMFER 3/4" SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNO, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

INSTALLATION OF CHEMICAL ANCHORAGES, SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED PROCEDURE. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWINGS. NO REBAR SHALL BE CUT WITHOUT PRIOR ENGINEERING APPROVAL WHEN DRILLING

COLD WEATHER PLACING SHALL BE IN ACCORDANCE WITH ACI-305.

NO CONCRETE SHALL BE PLACE ON FROZEN GROUND. UNCURED CONCRETE SHALL BE PROTECTED AGAINST FROST.

CONNECTIONS / FIELD ASSEMBLY:

BOLTED CONNECTIONS: UNLESS OTHERWISE NOTED, ALL JOINTS ARE SLIP CRITICAL TYPE, REQUIRING 3/4" DIA. A325-X BOLTS, A563 NUTS AND F436 WASHERS, ALL GALVANIZED. BEVELED WASHERS SHALL BE USED ON BEAM FLANGES HAVING A SLOPE GREATER THAN

STRUCTURE IS DESIGNED TO BE LEVEL AND PLUMB, SELF-SUPPORTING AND STABLE AFTER WORK IS COMPLETED.

COMMENCEMENT OF WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.

ALL WELDING SHALL BE DONE BY A CERTIFIED WELDER IN ACCORDANCE WITH AWS STANDARDS, USING E70XX ELECTRODES UNLESS OTHERWISE NOTED. WHERE WELD ARE NOT SHOWN PROVIDE THE MINIMUM SIZES PER "PREQUALIFIED WELDED JOINTS" TABLES IN AISC "MANUAL OF STEEL CONTRUCTION", 14TH EDITION. SIZES

INSPECTIONS:

SPECIAL INSPECTIONS ARE REQUIRED PER THE CODE FOR STRUCTURAL STEEL WORK.

PLEASE CONTACT AECOM @ 860-263-5819 FOR CONSTRUCTION PHASE SERVICES AND/OR

AND TESTING RICATOR'S STATEMENT

OWN OF ORD AND

PROJECT NO. 60657751/60656990 Designed by: KAB	AECOM	verizon wireless	Dwg. No. SK-1
Checked by: DJR Approved by: JTH	500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT 860-529-8882	CSP #20 site address: INTERSECTION OF I-84 & SOUTH ST MIDDLEBURY, CONNECTICUT REV. DATE: DESCRIPTION Scale: AS NOTED Job No. <u>V25-228</u> (File No.	02/21 Dwg. 1 of 3

TNX TOWER INPUT / OUTPUT SUMMARY

DESIGNED APPURTENANCE LOADING				
TYPE	ELEVATION	TYPE	ELEVATION	
Flash Beacon Lighting (1.158)	160	DSM2 w/ additional SFS-H Stabilizer (T-Mobile)	125	
Lightning Rod 1/2*x4' on 15' Pole (Tower - LR)	160	DSM2 w/ additional SFS-H Stabilizer (T-Mobile)	125	
DS7C09P36D-D (CSP)	160	DSM2 w/ additional SFS-H Stabilizer (T-Mobile)	125	
DS7C09P36D-D (CSP)	160	EMS RR90-17-xx (T-Mobile)	125	
DS7C09P36D-D (CSP)	160	EMS RR90-17-xx (T-Mobile)	125	
DS7C09P36D-D (CSP)	160	EMS RR90-17-xx (T-Mobile)	125	
Commscope SFG23HD-12-4-96 Mount Assembly	160	LNX-6515DS-A1M Andrew P anel (T-Mobile)	125	
(GSP)		LNX-6515DS-A1M Andrew P anel (T-Mobile)	125	
Commscope SFG23HD-12-4-96 MountAssembly (CSP)	160	LNX-6515DS-A1M Andrew P anel (T-Mobile)	125	
432E-83I-01T TTA Unit (2-3.159 - TTA)	159	Ericsson Radio 4415 B25 RRH Unit (T-Mobile)	125	
HPD2-4.7 (NWCT (C-A Face))	159	Encision Radio 4415 B25 RRH Unit (1-Mobile)	120	
DB304-A (2.158)	158	Encision Radio 4415 BZ5 RRH Unit (1-Mobile)	125	
432E-83I-01T TTA Unit (3.155 - TTA Unit)	155	Z Dial to Ontil (2.124) Direct & Side Marcel Strendoff (1) Alt for 2.124)	124	
DB228-A (2.155)	155	Pilot 6 Side Would Standon (1) (White 2, 124)	124	
10' PCS Frame (1) (Mt for 2.155.1, 2.155.2	155	4 x86 x72 los Canopy (DNK-5)	110	
2.1557)		4 x96 x72 ice carlopy (DNK-6)	115	
DC6-48-60-18-8F (Squid) Suppressor (ATT)	146	6 w Radome (2.110)	110	
Commscope SFG22 (14' Sector Frame) (ATT	140	To ppup 20 (Sector)	07	
Proposed)		DDLL000MUL-2-60M(Review	97	
Commscope SFG22 (14' Sector Frame) (ATT Proposed)	140	DDH 4000 MHz 2:40W (Sprint)	97	
(indexed)		RRH 1900 MHz 2X40W (Splint)	97	
Commscope SFG22 (14' Sector Frame) (ATL Proposed)	140	RRH 600MHz 2X50W (Sprint)	97	
7770.00 (ATT)	140	DDH 000MHz 2:50W (Sprint)	97	
CCLDMP65D BLI8D Panel (ATT Proposed)	140	DDLL 000MU to 2x50W (Sprint)	97	
CCI OPA65P. PLIPD Panel (ATT Proposed)	140	PT 4550 PMD 1/2 Down (Sprint)	97	
TDA 65D L CHUILLI HR Danalue (DET (ATT)	140	D1405B-ZAR-VZPanels (Commiscope) (Sprint)	97	
DDUS 22/ATT)	140	PM-SU35-46 - Pipe Mount 46 (Sprint)	97	
RPUS.12 (ATT)	140	TD DDUB-20 (English)	07	
Radio 4449 B5/B12 RRH (ATT Proposed)	140	DDH 1000 MHz 2x40W (Seriet)	97	
Ratio 4478 B14 RBH (ATT Proposed)	140	DDH 1900 MHz 2x40W (Splint)	97	
TT19.088P111.001 TMA% (ATT)	140	ADV/EDD 19 C A20 (Enrich)	07	
(2) LGP 21401 Diplexer (ATT)	140	APX/SPP18.C.A20 (Sprint)	07	
7770.00 (ATT)	140	ADXVSPT10-C-A20 (Sprint)	07	
CCLDMP65R-BU8D Panel (ATT Proposed)	140	DT4658 2XP V2 Parale (Commercine) (Sprint)	07	
CCI OPA65R-BU8D Panel (ATT Proposed)	140	DT465B 2VD V2 Panels (Commecone) (Sprint)	07	
TPA-65R-LCUUUU-H8 Panel w/ RET (ATT)	140	DDL 900MUx 2x60M (Sprint)	97	
BRUS-32 (ATT)	140	DM S1135-48 Dine Mount 48* (Sprint)	07	
RRUS-12 (ATT)	140	TD.PRH8/20 (Soriet)	97	
Radio 4449 B5/B12 RRH (ATT Proposed)	140	10%"x4" Pine Mount (Mt for 1.85)	85	
Radio 4478 B14 RRH (ATT Proposed)	140	PD10054 (2)/2 Square - 185)	85	
DC6-48-60-18-8F (Squid) Suppressor (ATT)	140	L-810 Tower Side-Light Beacon (1.83)	83	
TT19-08BP111-001 TMA's (ATT)	140	L-810 Tower Side-Light Beacon (3.83)	83	
(2) LGP 21401 Diplexer (ATT)	140	5 T-am (VZW)	77.5	
7770.00 (ATT)	140	.MA MX06ER0660-03 (V/ZW)	77.5	
DMP65R-BU6D (ATT Proposed)	140	-MA MX06ER0660-03 (V/ZW)	77.5	
OPA65R-BU6D (ATT Proposed)	140	-MA 2" Edge to Edge (VZW)	77.5	
QS66512(ATT)	140	.MA MX06ER0660-03 (V/ZW)	77.5	
RRUS-32 (ATT)	140	JMA MX06FR0660-03 (VZW)	77.5	
RRUS-12(ATT)	140	JMA 2" Edge to Edge (VZW)	77.5	
Radio 4449 B5/B12 RRH (ATT Proposed)	140	Samsung MT6407-77A (VZW)	77.5	
Radio 4478 B14 RRH (ATI Proposed)	140	Samsung MT6407-77A (VZW)	77.5	
DC6-48-60-18-8F (Squid) Suppressor (ATI	140	(3) RRH (VZW)	77.5	
Proposed)		(3) RRH (VZW)	77.5	
TT19-08BP111-001 TMA's (ATT)	140	5' T-arm (VZW)	77.5	
(2) LGP 21401 Diplexer (ATT)	140	DC6-48-60-18-8F (VZW)	77.5	
		Sindair SY450-SF1SNM Yagi (3-1.21)	21	
			1	

	MATERIAL STRENGTH					
7	GRADE	Fy	Fu	GRADE	Fy	Fu
	A500-50	50 ksi	62 ksi	A529-50	50 ksi	65 ksi
	A36	36 ksi	58 ksi	A514-60	60 ksi	80 ksi
	A572-50	50 ksi	65 ksi			

TOWER DESIGN NOTES

Tower designed for Exposure C to the TIA-222-H Standard.
Tower designed for a 130 mph basic wind in accordance with the TIA-222-H Standard.
Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
Tower Risk Category III.
Tower Risk Category III.
Tower Risk Category 3 with Crest Height of 176.00 ft
TOWER RATING: 92%

ALL REACTIONS ARE FACTORED MAX. CORNER REACTIONS AT BASE: DOWN: 466 K SHEAR: 61 K UPLIFT: -409 K SHEAR: 55 K AXIAL 152 K SHEAR 29 K MOMENT 2384 kip-ft TORQUE 52 kip-ft 50 mph WIND - 1.0000 in ICE

AXIAL 62 K

SHEAR MOMENT 8865 kip-ft

TORQUE 122 kip-ft REACTIONS - 130 mph WIND

AECOM	^{Job:} 160' Self Support Lattice - CSP #20		
500 Enterprise Drive	Project: Middlebury, CT		
Rocky Hill CT	Client: SMK-007 / VZ5-228	Drawn by: KAB	App'd:
Phone: (860) 529-8882	Code: TIA-222-H	Date: 07/02/21	Scale: NTS
FAX:	Path:		Dwg No. E-1

TNX TOWER FEEDLINE DISTRIBUTION CHART

Feed Line Distribution Chart

0' - 160'

App Out Face

App In Face

Round

Flat

Truss Leg

AECOM	^{Job:} 160' Self Support Lattice - CSP #20		
500 Enterprise Drive	Project: Middlebury, CT		
Rocky Hill CT	Client: SMK-007 / VZ5-228	Drawn by: KAB	App'd:
Phone: (860) 529-8882	^{Code:} TIA-222-H	Date: 07/02/21	Scale: NTS
FAX:	Path: Disaster Land US W Product 71 Takson - Department of Land of Consert and EFF 21 - Ped	Marwin Arr Avan Bedt Miller Halle Briv 2021 Medicine Cr. (2012)Ha	Dwg No. E-7

TNX TOWER FEEDLINE PLAN

Feed Line Plan

AECOM	^{Job:} 160' Self Support Lattice - CSP #20		
500 Enterprise Drive	Project: Middlebury, CT		
Rocky Hill CT	Client: SMK-007 / VZ5-228	Drawn by: KAB	App'd:
Phone: (860) 529-8882	Code: TIA-222-H	Date: 07/02/21	Scale: NTS
FAX:	Path: Diseased as behaviored by Descent Taken and Descent Diseased and Connect	Marwari Art Avan Best Nore, Hans Anvalan Massey of Drain a	Dwg No. E-7

TNX TOWER DEFLECTION, TILT, AND TWIST

TIA-222-H - Service - 60 mph

AECOM	^{Job:} 160' Self Support Lattice - CSP #20		
500 Enterprise Drive	Project: Middlebury, CT		
Rocky Hill CT	Client: SMK-007 / VZ5-228	Drawn by: KAB	App'd:
Phone: (860) 529-8882	Code: TIA-222-H	Date: 07/02/21	Scale: NTS
FAX:	Path: Diseased as behaviored by Descent Taken and Descent Diseased and Connect	Marwin Arr Avan Beat Miller Halle Briv 2021 Medicine Cr. (2012) Ha	Dwg No. E-

TNX TOWER DETAILED OUTPUT

tnxTower	Job	160' Self Support Lattice - CSP #20	Page 1 of 65
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Tower	Input	Data
-------	-------	------

The main tower is a 3x free standing tower with an overall height of 160.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 10.20 ft at the top and 23.00 ft at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower base elevation above sea level: 0.00 ft.

Basic wind speed of 130 mph.

Risk Category III.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 3.

Crest Height: 176.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Deflections calculated using a wind speed of 60 mph.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

- Consider Moments Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification
- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz
- Use Special Wind Profile √ Include Bolts In Member Capacity Less Bolts Are Att Top Of Section
- Leg Bolts Are At Top Of Section $\sqrt{}$ Secondary Horizontal Braces Leg
- Use Diamond Inner Bracing (4 Sided) √ SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform

- Assume Legs Pinned √ Assume Rigid Index Plate
- $\sqrt{}$ Assume Rigid fidex Flate $\sqrt{}$ Use Clear Spans For Wind Area
- $\sqrt{}$ Use Clear Spans For KL/r
- Retension Guys To Initial Tension
- Bypass Mast Stability Checks Use Azimuth Dish Coefficients
- ✓ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
- ✓ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

- Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces
- Ignore Redundant Members in FEA
- $\sqrt{SR \text{ Leg Bolts Resist Compression}}$
- √ All Leg Panels Have Same Allowable Offset Girt At Foundation
- V Consider Feed Line Torque
- √ Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles
- ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

tnxTower	Job	Page 2 of 65
	Too Sell Support Lattice - CSP #20	2 01 00
AECOM 500 Enterprise Drive	Project Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client SMK-007 / VZ5-228	Designed by KAB

<u>Triangular Tower</u>

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	160.00-150.00			10.20	1	10.00
T2	150.00-125.00			11.00	1	25.00
T3	125.00-100.00			13.00	1	25.00
T4	100.00-75.00			15.00	1	25.00
T5	75.00-66.67			17.00	1	8.33
T6	66.67-58.33			17.67	1	8.33
T 7	58.33-50.00			18.33	1	8.33
T8	50.00-37.50			19.00	1	12.50
T9	37.50-25.00			20.00	1	12.50
T10	25.00-0.00			21.00	1	25.00

		Т	ower Secti	on Geo	metry (co	nťd)		
<i>T</i>	Trues	Diagonal	Duration	II	II	Tan Cint	Dettem Cint	
Section	Flevation	Spacing	Type	пиs K Brace	Horizontals	Offset	Dollom Girl Offset	
Section	Lievation	Spucing	Туре	End	110/120/110/13	Ojjsei	0)]381	
	ft	ft		Panels		in	in	
T1	160.00-150.00	5.00	K Brace Down	No	Yes	0.0000	0.0000	
T2	150.00-125.00	8.33	K Brace Down	No	Yes	0.0000	0.0000	
T3	125.00-100.00	8.33	K Brace Down	No	Yes	0.0000	0.0000	
T4	100.00-75.00	8.33	K Brace Down	No	Yes	0.0000	0.0000	
T5	75.00-66.67	8.33	K Brace Down	No	Yes	0.0000	0.0000	

tnxTower	Job 160' Self Support Lattice - CSP #20	Page 3 of 65
AECOM 500 Enterprise Drive	Project Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client SMK-007 / VZ5-228	Designed by KAB

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T6	66.67-58.33	8.33	K Brace Down	No	Yes	0.0000	0.0000
T 7	58.33-50.00	8.33	K1 Down	No	Yes	0.0000	0.0000
T8	50.00-37.50	12.50	K Brace Down	No	Yes	0.0000	0.0000
Т9	37.50-25.00	12.50	K1 Down	No	Yes	0.0000	0.0000
T10	25.00-0.00	12.50	K Brace Down	No	Yes	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Type	Size	Grade	Туре	Size	Grade
ft						
T1 160.00-150.00	Pipe	P.5x.250	A500-50	Double Angle	2L2 1/2x2x3/16	A36
	^		(50 ksi)	Ū.		(36 ksi)
T2 150.00-125.00	Pipe	P.5x.250	A500-50	Double Angle	2L2 1/2x2x3/16	A36
			(50 ksi)	Ū.		(36 ksi)
T3 125.00-100.00	Pipe	P.5x.250	A500-50	Double Angle	2L2 1/2x2 1/2x5/16	A36
	•		(50 ksi)	Ū.		(36 ksi)
T4 100.00-75.00	Arbitrary Shape	P5x0.3 w/ (3) 1.5x5/8 Plates	À500-50	Double Angle	2L3x2 1/2x1/4	A36
			(50 ksi)	c		(36 ksi)
T5 75.00-66.67	Arbitrary Shape	P5x0.4 w/ (3) 1.5x5/8 Plates	A572-50	Double Angle	2L3x2 1/2x5/16	A529-50
			(50 ksi)	c		(50 ksi)
T6 66.67-58.33	Arbitrary Shape	P5x0.4 w/ (3) 1.5x5/8 Plates	A572-50	Double Angle	2L3x2 1/2x5/16	A529-50
			(50 ksi)	C		(50 ksi)
T7 58.33-50.00	Pipe	HSS5x.4	À514-60	Double Angle	2L3x3x5/16	A36
	1		(60 ksi)	U		(36 ksi)
T8 50.00-37.50	Pipe	HSS6.875x.4	A514-60	Double Angle	2L3 1/2x3x3/8	A36
	1		(60 ksi)	e e		(36 ksi)
T9 37.50-25.00	Pipe	HSS6.875x.4	À514-60	Double Angle	2L3 1/2x3 1/2x5/16	A529-50
	1		(60 ksi)	U		(50 ksi)
T10 25.00-0.00	Arbitrary Shape	HSS6.875x0.5 w/ (3) 2x5/8	À500-50	Double Angle	2L4x3x3/8	A529-50
	, Janupa	Bars	(50 ksi)			(50 ksi)

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
Elevation	Туре	Size	Grade	Туре	Size	Grade
ft						
T1 160.00-150.00	Single Angle	L3x3x1/4	A36	Solid Round		A36M-50
			(36 ksi)			(50 ksi)
T4 100.00-75.00	Single Angle	L3x3x1/4	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
T6 66.67-58.33	Single Angle	L3x3x1/2	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
T7 58.33-50.00	Single Angle	L3x3x1/2	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
T8 50.00-37.50	Single Angle	L4x4x1/4	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
T9 37.50-25.00	Single Angle	L4x4x5/16	A529-50	Single Angle		A36
			(50 ksi)			(36 ksi)

Date

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX: Job

Project

Client

Middlebury, CT

SMK-007 / VZ5-228

06:59:10 07/02/21 Designed by KAB

Tower Section Geometry (cont'd)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Type	Size	Grade	Type	Size	Grade
	Mid						
ft	Girts						
T1 160.00-150.00	None	Flat Bar		A36	Single Angle	L3x3x1/4	A36
				(36 ksi)			(36 ksi)
T2 150.00-125.00	None	Flat Bar		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
				(36 ksi)			(36 ksi)
T3 125.00-100.00	None	Flat Bar		A36	Single Angle	L3x3x5/16	A36
				(36 ksi)			(36 ksi)
T4 100.00-75.00	None	Flat Bar		A36	Single Angle	L3x3x1/2	A36
				(36 ksi)			(36 ksi)
T5 75.00-66.67	None	Flat Bar		A36	Single Angle	L3x3x1/2	A36
				(36 ksi)			(36 ksi)
T6 66.67-58.33	None	Flat Bar		A36	Single Angle	L3x3x1/2	A36
				(36 ksi)			(36 ksi)
T7 58.33-50.00	None	Flat Bar		A36	Single Angle	L3x3x1/2	A36
				(36 ksi)			(36 ksi)
T8 50.00-37.50	None	Flat Bar		A36	Single Angle	L4x4x1/4	A36
				(36 ksi)			(36 ksi)
T9 37.50-25.00	None	Flat Bar		A36	Single Angle	L4x4x1/4	A36
				(36 ksi)			(36 ksi)
T10 25.00-0.00	None	Flat Bar		A36	Single Angle	L4x4x1/2	A36
				(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft						
T3 125.00-100.00	Solid Round		A36	Single Angle	L2 1/2x2x3/16	A36
			(36 ksi)			(36 ksi)
T4 100.00-75.00	Solid Round		A36	Single Angle	L2 1/2x2x3/16	A36
			(36 ksi)			(36 ksi)
T5 75.00-66.67	Solid Round		A36	Single Angle	L2 1/2x2x3/16	A36
			(36 ksi)			(36 ksi)
T6 66.67-58.33	Solid Round		A36	Single Angle	L2 1/2x2x3/16	A36
			(36 ksi)	0 0		(36 ksi)
T7 58.33-50.00	Equal Angle		A36	Single Angle	L2 1/2x2x3/16	A36
	1 0		(36 ksi)	0 0		(36 ksi)
T8 50.00-37.50	Equal Angle		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
	1 0		(36 ksi)	0 0		(36 ksi)
T9 37.50-25.00	Equal Angle		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
	-1		(36 ksi)			(36 ksi)
T10 25.00-0.00	Solid Round		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)	28		(36 ksi)

tnxTower	Jоb 160' Self Support Lattice - CSP #20	Page 5 of 65
AECOM 500 Enterprise Drive	Project Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client SMK-007 / VZ5-228	Designed by KAB

Tower Elevation	Redundant Bracing Grade		Redundant Type	Redundant Size	K Factor
ft					
T7	A36	Horizontal (1)	Equal Angle	L2x2x5/16	1
58.33-50.00	(36 ksi)	Diagonal (1)	Equal Angle	L2x2x5/16	1
Т9	A36	Horizontal (1)	Equal Angle	L2x2x5/16	1
37.50-25.00	(36 ksi)	Diagonal (1)	Single Angle	L2x2x5/16	1

Tower Section Geometry (cont'd)

Tower Elevation	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust. Factor	Weight Mult.	Double Angle Stitch Bolt	Double Angle Stitch Bolt	Double Angle Stitch Bolt
Lievation	(per face)	1 mexness		A_{f}	A.		Snacing	Snich Bon Spacing	Spacing
	(per jace)				~~/		Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
T1	0.00	0.0000	A36	1	1	1	0.0000	0.0000	36.0000
160.00-150.00			(36 ksi)						
T2	0.00	0.0000	A36	1	1	1	0.0000	36.0000	36.0000
150.00-125.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1	0.0000	36.0000	36.0000
125.00-100.00			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1	0.0000	36.0000	36.0000
100.00-75.00			(36 ksi)						
T5 75.00-66.67	0.00	0.0000	A36	1	1	1	0.0000	36.0000	36.0000
			(36 ksi)						
T6 66.67-58.33	0.00	0.0000	A36	1	1	1	0.0000	36.0000	36.0000
			(36 ksi)						
T7 58.33-50.00	0.00	0.0000	A36	1	1	1.03	0.0000	36.0000	36.0000
			(36 ksi)						
T8 50.00-37.50	0.00	0.0000	A36	1	1	1	0.0000	36.0000	36.0000
			(36 ksi)						
T9 37.50-25.00	0.00	0.0000	A36	1	1	1.03	0.0000	36.0000	36.0000
			(36 ksi)						
T10 25.00-0.00	0.00	0.0000	A36	1	1	1	0.0000	36.0000	36.0000
			(36 ksi)						

						K Fa	ctors ¹			
Tower Elevation	Calc K	Calc K	Legs	X Brace	K Brace Diana	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
ft	Single Angles	Solid Rounds		Diags X Y	Diags X Y	X Y	X Y	X Y	X Y	X
<u></u>	Yes	Yes	1	1	1	1	1	0.65	0.65	1
160.00-150.00			-	Î	ĩ	ĩ	ĩ	0.65	0.65	î
T2	Yes	Yes	1	1	1	1	1	0.65	0.65	1
150.00-125.00				1	1	1	1	0.65	0.65	1
T3	Yes	Yes	1	1	1	1	1	0.65	0.65	1
125.00-100.00				1	1	1	1	0.65	0.65	1
T4	Yes	Yes	1	1	1	1	1	0.65	0.65	1
100.00-75.00				1	1	1	1	0.65	0.65	1
T5	Yes	Yes	1	1	1	1	1	0.65	0.65	1
75.00-66.67				1	1	1	1	0.65	0.65	1
T6	Yes	Yes	1	1	1	1	1	0.65	0.65	1
66.67-58.33				1	1	1	1	0.65	0.65	1

4 T	Job		Page
thxlower		160' Self Support Lattice - CSP #20	6 of 65
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

						K Fae	ctors ¹			
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace
	Single	Solid		Diags	Diags					
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T7	Yes	Yes	1	1	1	1	1	0.65	0.65	1
58.33-50.00				1	1	1	1	0.65	0.65	1
T8	Yes	Yes	1	1	1	1	1	0.65	0.65	1
50.00-37.50				1	1	1	1	0.65	0.65	1
T9	Yes	Yes	1	1	1	1	1	0.65	0.65	1
37.50-25.00				1	1	1	1	0.65	0.65	1
T10	Yes	Yes	1	1	1	1	1	0.65	0.65	1
25.00-0.00				1	1	1	1	0.65	0.65	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

77	T		D	1	T C	• .	Du	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	10.1	a	1 11	· · · 1	<u> </u>	1
Tower	Leg		Diago	nal	I Top G	irt	Bottom	i Girt	Mid (sirt	Long Ho	rizontal	Short Ho	rizontal
Elevation														
ft														
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00-150.00														
T2	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
150.00-125.00														
T3	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
125.00-100.00														
T4	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-75.00														
T5 75.00-66.67	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 66.67-58.33	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 58.33-50.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 50.00-37.50	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 37.50-25.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 25.00-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower				Connecti	on Offsets			
Elevation		Diag	gonal			K-Br	acing	
	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.
	Тор	Тор	Bot.	Bot.	Top	Top	Bot.	Bot.
ft	in	in	in	in	in	in	in	in
T1	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
160.00-150.00								
T2	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
150.00-125.00								
T3	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
125.00-100.00								

tnxTower

160' Self Support Lattice - CSP #20

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

Tower				Connecti	on Offsets			
Elevation		Diag	gonal			K-Br	acing	
	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.
	Top	Тор	Bot.	Bot.	Тор	Тор	Bot.	Bot.
A	•	•		•		•		
Ji	1n	in	in	in	in	in	in	in
T4	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
100.00-75.00								
T5 75.00-66.67	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
T6 66.67-58.33	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
T7 58.33-50.00	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
T8 50.00-37.50	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
T9 37.50-25.00	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
T10 25.00-0.00	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	izontal	Short Hori	izontal
Elevation	Connection														
Jt	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		ın		1n		1n		111		1n		1n		111	
T1	Flange	0.7500	6	0.7500	1	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
160.00-150.00		A325X		A325N		A325N		A325N		A325N		A325X		A325N	
T2	Flange	0.7500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
150.00-125.00		A325X		A325N		A325N		A325N		A325N		A325X		A325N	
T3	Flange	0.7500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
125.00-100.00	-	A325X		A325N		A325N		A325N		A325N		A325X		A325N	
T4	Flange	0.7500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
100.00-75.00	_	A325X		A325N		A325N		A325N		A325N		A325X		A325N	
T5 75.00-66.67	Flange	0.8750	6	0.7500	1	0.6250	0	0.0000	0	0.6250	0	0.6250	2	0.6250	0
	0	A325X		A325N		A325N		A325N		A325N		A325X		A325N	
T6 66.67-58.33	Flange	0.8750	6	0.7500	1	0.6250	2	0.0000	0	0.6250	0	0.6250	2	0.6250	0
	e	A325X		A325N		A325X		A325N		A325N		A325X		A325N	
T7 58.33-50.00	Flange	0.8750	6	0.7500	1	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
	e	A325X		A325N		A325X		A325N		A325N		A325X		A325N	
T8 50.00-37.50	Flange	1.0000	8	1.0000	1	0.6250	0	0.0000	0	0.6250	0	0.6250	2	0.6250	0
	0.	A325X		A325N		A325N		A325N		A325N		A325X		A325N	
T9 37.50-25.00	Flange	1.0000	8	1.0000	1	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
		A325X	5	A325N	•	A325X	-	A325N	~	A325N		A325X	-	A325N	
T10 25.00-0.00	Flange	1.0000	8	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
	0	A325X		A325N		A325N		A325N		A325N		A325X	_	A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face	Allow	Exclude	Component	Placement	Face	Lateral	#	#	Clear	Width or	Perimeter	Weight
	or	Shield	From	Type		Offset	Offset		Per	Spacing	Diameter		
	Leg		Torque		ft	in	(Frac FW)		Row	in	in	in	plf
			Calculation										
AVA50-FX	В	No	No	Ar (CaAa)	159.00 -	-0.5000	-0.12	1	1	1.1020	1.1020		0.29
(NWCT)					0.00								
1 5/8"	в	No	No	Ar (CaAa)	77.50 - 0.00	-1.0000	0	1	1	1.6250	1.6250		1.48
Hybriflex													
(VZW)													

Project Client

Job

tnx Tower	Job		Page
		160° Self Support Lattice - CSP #20	0 01 05
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Description	Face	Allow	Exclude	Component	Placement	Face	Lateral	#	#	Clear	Width or	Perimeter	Weight
	or	Shield	From	Type		Offset	Offset		Per	Spacing	Diameter		
	Leg		Torque Calculation		ft	in	(Frac FW)		Row	in	in	in	plf
1.5/8	С	No	No	Ar (CaAa)	125.00 -	-3.0000	0	12	6	1.9800	1.9800		1.04
(T-Mobile)	C	140	110	AI (CaAa)	0.00	-5.0000	0	12	0	1.9000	1.9000		1.04
1 1/4	в	No	No	Ar (CaAa)	140.00 -	-4.0000	0.38	6	6	1.5500	1.5500		0.66
(ATT)	2	110	1.0	· · · (· · · ·)	0.00		0.00	U	0	110000	110000		0100
3" Flex	В	No	No	Ar (CaAa)	140.00 -	-1.0000	0.43	1	1	3.0000	3.0000		3.00
Conduit w 2				. ,	0.00								
Fiber & 4 DC													
(ATT)													
HB158-1-08U	В	No	No	Ar (CaAa)	140.00 -	-1.0000	0.4	1	1	1.9800	1.9800		1.30
8-S8J18					0.00								
(ATT)													
1 1/4"	С	No	No	Ar (CaAa)	97.30 - 0.00	-0.5000	-0.09	4	4	1.2500	1.2500		1.13
Hybriflex													
Cables													
(Sprint)													
* CSD Cables													
T DE7 50A	D	No	No	$A_{\pi}(C_{\alpha}A_{\alpha})$	150.00	1 0000	0.40	1	1	1 0200	1 0200		0.82
(1-5/8 FOAM)	Б	INO	INO	AI (CaAa)	139.00 -	-1.0000	-0.49	1	1	1.9800	1.9800		0.82
(1-5/8 FOAW) (2-3 159-2)					0.00								
LDF7-50A	в	No	No	Ar (CaAa)	159.00 -	-1 0000	-0.47	1	1	1 9800	1 9800		0.82
(1-5/8 FOAM)	2	110	110	11 (eu 11)	0.00	1.0000	0.17	•	•	10000	1.9000		0.02
(2.3.159-1)					0.00								
LDF7-50A	В	No	No	Ar (CaAa)	159.00 -	-1.0000	-0.455	1	1	1.9800	1.9800		0.82
(1-5/8 FOAM)				()	0.00								
(2.3.159-1)													
LDF4-50A	В	No	No	Ar (CaAa)	159.00 -	-1.0000	-0.44	1	1	0.6300	0.6300		0.15
(1/2 FOAM)					0.00								
(2.3.159-1)													
1/2	В	No	No	Ar (CaAa)	158.00 -	-1.0000	-0.425	1	1	0.5800	0.5800		0.25
(1.158)					0.00		<u> </u>						
LDF5-50A	В	No	No	Ar (CaAa)	158.00 -	-1.0000	-0.41	1	1	1.0900	1.0900		0.33
(7/8 FOAM)					0.00								
(2.158) L DE7 50A	р	No	No	A = (C = A =)	157.00	1 0000	0.205	1	1	1 0800	1 0200		0.92
(1.5/8 EOAM)	D	INO	INO	Ar (CaAa)	137.00 -	-1.0000	-0.393	1	1	1.9800	1.9800		0.82
(1-5/8 FOAW)					0.00								
LDF7-50A	в	No	No	Ar (CaAa)	155.00 -	-1 0000	-0.38	1	1	1 9800	1 9800		0.82
(1-5/8 FOAM)	D	110	110	n (cum)	0.00	1.0000	0.20	-	1	1.5000	1.5000		0.02
(2.155.2)													
LDF7-50A	В	No	No	Ar (CaAa)	155.00 -	-1.0000	-0.365	1	1	1.9800	1.9800		0.82
(1-5/8 FOAM)					0.00								
(2.155.1)													
LDF7-50A	В	No	No	Ar (CaAa)	155.00 -	-1.0000	-0.35	1	1	1.9800	1.9800		0.82
(1-5/8 FOAM)					0.00								
(2-3.155)													
LDF5-50A	В	No	No	Ar (CaAa)	155.00 -	-1.0000	-0.335	1	1	1.0900	1.0900		0.33
(7/8 FOAM)					0.00								
(2.155) L DE7 50A	р	No	No	$\Lambda = (C_0 \Lambda_0)$	155.00	1 0000	0.22	2	1	1 0200	1 0200		0.82
(1-5/8 FOAM)	Б	INO	INO	Ar (CaAa)	133.00 -	-1.0000	-0.32	Z	1	1.9800	1.9800		0.82
(1-5/8 FOAM) (3 155)					0.00								
LDF4-50A	в	No	No	Ar (CaAa)	155.00 -	-1.0000	-0.305	1	1	0.6300	0.6300		0.15
(1/2 FOAM)	2	- 10		(Jul 11)	0.00	2.0000	0.000		•	0.0000	0.0000		
(3.155)													
LDF7-50A	в	No	No	Ar (CaAa)	155.00 -	-1.0000	-0.29	1	1	1.9800	1.9800		0.82
(1-5/8 FOAM)				. ,	0.00								
(3-1.155)													
LDF7-50A	В	No	No	Ar (CaAa)	154.00 -	-1.0000	-0.275	1	1	1.9800	1.9800		0.82
(1-5/8 FOAM)					0.00								

Anna Tana an	Job		Page
<i>tnx1ower</i>		160' Self Support Lattice - CSP #20	9 of 65
AECOM	Project		Date
500 Enterprise Drive		Middlebury, CT	06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Description	Face	Allow	Exclude	Component	Placement	Face	Lateral	#	#	Clear	Width or	Perimeter	Weight
	or	Shield	From	Type		Offset	Offset		Per	Spacing	Diameter		
	Leg		Torque		ft	in	(Frac FW)		Row	in	in	in	plf
			Calculation										
(3-1.154)													
LDF7-50A	в	No	No	Ar (CaAa)	153.00 -	-1.0000	-0.26	1	1	1.9800	1.9800		0.82
(1-5/8 FOAM)					0.00								
(2-3.153)													
LDF5-50A	в	No	No	Ar (CaAa)	149.00 -	-1.0000	-0.245	2	1	1.0900	1.0900		0.33
(7/8 FOAM)					0.00								
(3-1.149)													
LDF5-50A	в	No	No	Ar (CaAa)	124.00 -	-1.0000	-0.23	1	1	1.0900	1.0900		0.33
(7/8 FOAM)					0.00								
(2.124)													
EW63	в	No	No	Af (CaAa)	110.00 -	-1.0000	-0.215	1	1	1.5742	1.5742		0.51
(3.110)					0.00								
EW63	в	No	No	Af (CaAa)	110.00 -	-1.0000	-0.2	1	1	1.5742	1.5742		0.51
(2.110)	_				0.00								
LDF5-50A	в	No	No	Ar (CaAa)	85.00 - 0.00	-1.0000	-0.185	1	1	1.0900	1.0900		0.33
(7/8 FOAM)													
(1.85)	Б					1 0000	0.17			0.5000	0.5000		0.05
1/2	в	No	No	Ar (CaAa)	83.00 - 0.00	-1.0000	-0.17	I	1	0.5800	0.5800		0.25
(3.83)	р	N	N	$\mathbf{A} = (\mathbf{C} - \mathbf{A} - \mathbf{C})$	82.00 0.00	1 0000	0.155			0.5000	0.5000		0.05
1/2	в	NO	NO	Ar (CaAa)	83.00 - 0.00	-1.0000	-0.155	1	1	0.5800	0.5800		0.25
(1.05)	р	No	No	$A_{\pi}(C_{\alpha}A_{\alpha})$	21.00 0.00	1 0000	0.14	1	1	0 6200	0 6200		0.15
(1/2 FOAM)	Б	INO	INO	AI (CaAa)	21.00 - 0.00	-1.0000	-0.14	1	1	0.0500	0.0500		0.15
(1/2 FOAM)													
(3-1.21)	D	No	No	Ar(CoAo)	140.00	1 0000	0.45	1	1	3 0000	3 0000		3.00
2 DC III Existing	Б	INU	NO	AI (CaAa)	0.00	-1.0000	0.45	I	1	5.0000	5.0000		5.00
Conduit					0.00								
(ATT)													

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	4.5	4	C.4.	C.A.	Weight
Section	Flevation	1 466	Z I R	2 1 F	Un Face	Out Face	n eigni
beenon	ft		t^2	ft^2	ft ²	fl ²	K
T1	160.00-150.00	Δ	0.000	0.000	0.000	0.000	0.00
	100.00-150.00	B	0.000	0.000	17 813	0.000	0.00
		č	0.000	0.000	0.000	0.000	0.00
Т2	150.00-125.00	Ă	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	102.696	0.000	0.47
		ĉ	0.000	0.000	0.000	0.000	0.00
T3	125.00-100.00	Ă	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	127.489	0.000	0.60
		С	0.000	0.000	59.400	0.000	0.31
T4	100.00-75.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	137.689	0.000	0.63
		С	0.000	0.000	70.550	0.000	0.41
T5	75.00-66.67	А	0.000	0.000	0.000	0.000	0.00
		в	0.000	0.000	48.266	0.000	0.22
		С	0.000	0.000	23.967	0.000	0.14
T6	66.67-58.33	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	48.241	0.000	0.22
		С	0.000	0.000	23.967	0.000	0.14
T 7	58.33-50.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	48.218	0.000	0.22
		С	0.000	0.000	23.967	0.000	0.14
T8	50.00-37.50	Α	0.000	0.000	0.000	0.000	0.00

<i>tnxTower</i>	Job 160' Self Support Lattice - CSP #20	Page 10 of 65
AECOM 500 Enterprise Drive	Project Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client SMK-007 / VZ5-228	Designed by KAB

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft²	ft^2	Κ
		В	0.000	0.000	72.293	0.000	0.34
		С	0.000	0.000	35.950	0.000	0.21
T9	37.50-25.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	72.285	0.000	0.34
		С	0.000	0.000	35.950	0.000	0.21
T10	25.00-0.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	146.083	0.000	0.68
		С	0.000	0.000	71.900	0.000	0.42

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	-
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	Κ
T1	160.00-150.00	A	1.427	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	52.068	0.000	0.67
		С		0.000	0.000	0.000	0.000	0.00
T2	150.00-125.00	А	1.428	0.000	0.000	0.000	0.000	0.00
		в		0.000	0.000	292.813	0.000	3.80
		С		0.000	0.000	0.000	0.000	0.00
Т3	125.00-100.00	Α	1.432	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	356.655	0.000	4.67
		С		0.000	0.000	81.776	0.000	2.01
T4	100.00-75.00	Α	1.437	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	384.868	0.000	5.02
		С		0.000	0.000	116.201	0.000	2.46
T5	75.00-66.67	Α	1.441	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	137.738	0.000	1.80
		С		0.000	0.000	40.140	0.000	0.84
T6	66.67-58.33	Α	1.442	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	137.789	0.000	1.80
		С		0.000	0.000	40.145	0.000	0.84
T 7	58.33-50.00	А	1.441	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	137.782	0.000	1.80
		С		0.000	0.000	40.144	0.000	0.84
T8	50.00-37.50	Α	1.438	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	206.446	0.000	2.69
		С		0.000	0.000	60.193	0.000	1.26
Т9	37.50-25.00	А	1.427	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	205.552	0.000	2.66
		С		0.000	0.000	60.101	0.000	1.25
T10	25.00-0.00	Α	1.360	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	407.806	0.000	5.10
		C		0.000	0.000	119.135	0.000	2.44

	Feed Line Center of Pressure								
S	Elmation	CD	ĊD	CD	CP				
Section	Elevation	CP_X	CP_Z	Ice	Ice				
	ft	in	in	in	in				
T1	160.00-150.00	1.4407	-13.8300	2.4873	-21.4911				
T2	150.00-125.00	11.1526	-16.9480	12.4452	-25.2632				
Т3	125.00-100.00	13.7157	-4.6647	15.9641	-16.0186				
T4	100.00-75.00	14.7112	-4.6401	17.6366	-15.5018				

tux Towar	Job		Page
inx 1 ower		11 of 65	
AFCOM	Project		Date
500 Enterprise Drive		Middlebury, CT	06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T5	75.00-66.67	16.0277	-5.4645	19.5050	-17.2616
T6	66.67-58.33	16.4624	-5.6398	20.1180	-17.8011
T 7	58.33-50.00	15.7147	-5.4776	19.6855	-17.4997
T8	50.00-37.50	17.9229	-6.1833	22.1157	-19.5241
Т9	37.50-25.00	17.2261	-5.9957	21.7493	-19.1802
T10	25.00-0.00	18.5724	-6.4950	23.6653	-20.5585

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	1	Segment Elev.	No Ice	Ice
T1	1	AVA50-FX	150.00 -	0.6000	0.6000
			159.00		
T1	13	LDF7-50A (1-5/8 FOAM)	150.00 -	0.6000	0.6000
			159.00		
T1	14	LDF7-50A (1-5/8 FOAM)	150.00 -	0.6000	0.6000
			159.00		
TI	15	LDF7-50A (1-5/8 FOAM)	150.00 -	0.6000	0.6000
T 1	16		159.00	0 6000	0.6000
11	10	LDF4-50A (1/2 FOAM)	150.00 -	0.6000	0.6000
т1	17	1/2	159.00	0.6000	0.6000
11	17	1/2	158.00	0.0000	0.0000
т1	18	I DE5-50A (7/8 EOAM)	150.00 -	0.6000	0.6000
	10	EDI 5-50M (#6 TOMM)	158.00	0.0000	0.0000
Т1	19	LDF7-50A (1-5/8 FOAM)	150.00 -	0.6000	0.6000
			157.00		
T1	20	LDF7-50A (1-5/8 FOAM)	150.00 -	0.6000	0.6000
		,	155.00		
T1	21	LDF7-50A (1-5/8 FOAM)	150.00 -	0.6000	0.6000
			155.00		
T1	22	LDF7-50A (1-5/8 FOAM)	150.00 -	0.6000	0.6000
			155.00		
T1	23	LDF5-50A (7/8 FOAM)	150.00 -	0.6000	0.6000
			155.00		
T1	24	LDF7-50A (1-5/8 FOAM)	150.00 -	0.6000	0.6000
T 1	0.5		155.00	0 (000	0.0000
11	25	LDF4-50A (1/2 FOAM)	150.00 -	0.6000	0.6000
T 1	26		155.00	0 6000	0.6000
11	20	LDF /-30A (1-5/8 FOAM)	155.00	0.0000	0.0000
т1	27	LDE7-50A (1-5/8 FOAM)	150.00	0.6000	0.6000
11	27	EDI /-50A (1-5/8 POAM)	154.00	0.0000	0.0000
Т1	28	LDF7-50A (1-5/8 FOAM)	150.00 -	0.6000	0.6000
	20		153.00	010000	0.0000
T2	1	AVA50-FX	125.00 -	0.6000	0.6000
			150.00		
T2	4	1 1/4	125.00 -	0.6000	0.6000
			140.00		
T2	5	3" Flex Conduit w 2 Fiber &	125.00 -	1.0000	0.6000
		4 DC	140.00		
T2	6	HB158-1-08U8-S8J18	125.00 -	0.6000	0.6000
			140.00		
T2	13	LDF7-50A (1-5/8 FOAM)	125.00 -	0.6000	0.6000
			150.00		

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

Page 12 of 65

Date

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

Middlebury, CT

SMK-007 / VZ5-228

Tower	Feed Line	Description	Feed Line	Ka	K_a
Section	Record No.	LDE7 504 (1.5/9 EO AM)	Segment Elev.	No Ice	1ce
12	14	LDF /-50A (1-5/8 FOAM)	125.00 -	0.0000	0.0000
T2	15	LDF7-50A (1-5/8 FOAM)	125.00 -	0.6000	0.6000
T2	16	LDF4-50A (1/2 FOAM)	125.00 -	0.6000	0.6000
T2	17	1/2	125.00 -	0.6000	0.6000
T2	18	LDF5-50A (7/8 FOAM)	125.00 -	0.6000	0.6000
T2	19	LDF7-50A (1-5/8 FOAM)	125.00 -	0.6000	0.6000
T2	20	LDF7-50A (1-5/8 FOAM)	125.00 -	0.6000	0.6000
T2	21	LDF7-50A (1-5/8 FOAM)	125.00 -	0.6000	0.6000
T2	22	LDF7-50A (1-5/8 FOAM)	125.00 -	0.6000	0.6000
T2	23	LDF5-50A (7/8 FOAM)	125.00 -	0.6000	0.6000
T2	24	LDF7-50A (1-5/8 FOAM)	125.00 -	0.6000	0.6000
T2	25	LDF4-50A (1/2 FOAM)	125.00 -	0.6000	0.6000
T2	26	LDF7-50A (1-5/8 FOAM)	125.00 -	0.6000	0.6000
T2	27	LDF7-50A (1-5/8 FOAM)	125.00 -	0.6000	0.6000
T2	28	LDF7-50A (1-5/8 FOAM)	125.00 -	0.6000	0.6000
T2	29	LDF5-50A (7/8 FOAM)	125.00 - 149.00	0.6000	0.6000
T2	37	2 DC in Existing Conduit	125.00 - 140.00	1.0000	0.6000
T3	1	AVA50-FX	100.00 - 125.00	0.6000	0.6000
T3	3	1 5/8	100.00 - 125.00	0.6000	0.6000
T3	4	1 1/4	100.00 - 125.00	0.6000	0.6000
T3	5	3" Flex Conduit w 2 Fiber &	100.00 -	1.0000	0.6000
Т3	6	HB158-1-08U8-S8J18	125.00	0.6000	0.6000
Т3	13	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.6000
Т3	14	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.6000
Т3	15	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.6000
Т3	16	LDF4-50A (1/2 FOAM)	100.00 - 125.00	0.6000	0.6000
Т3	17	1/2	100.00 - 125.00	0.6000	0.6000
Т3	18	LDF5-50A (7/8 FOAM)	100.00 - 125.00	0.6000	0.6000
Т3	19	LDF7-50A (1-5/8 FOAM)	100.00 - 125.00	0.6000	0.6000
Т3	20	LDF7-50A (1-5/8 FOAM)	100.00 - 125.00	0.6000	0.6000
Т3	21	LDF7-50A (1-5/8 FOAM)	100.00 - 125.00	0.6000	0.6000

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

Page 13 of 65

Date

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

Middlebury, CT

SMK-007 / VZ5-228

Tower	Feed Line	Description	Feed Line	Ka	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
T3	22	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.6000
			125.00	0 < 0 0 0	0.0000
13	23	LDF5-50A (7/8 FOAM)	100.00 -	0.6000	0.6000
T2	24	L DE7 504 (1.5/8 EQ AM)	125.00	0 6000	0,6000
15	24	LDF/-30A (1-5/8 FOAM)	125.00	0.0000	0.0000
Т3	25	L DE4-50A (1/2 EOAM)	100.00 -	0.6000	0.6000
15	25	LD1 4-5011 (1/2 1 0/104)	125.00	0.0000	0.0000
Т3	26	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.6000
		,	125.00		
T3	27	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.6000
			125.00		
Т3	28	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.6000
	•		125.00		0.0000
13	29	LDF5-50A (7/8 FOAM)	100.00 -	0.6000	0.6000
T2	20	LDE5 504 (7/8 EOAM)	125.00	0.6000	0.6000
15	50	LDF5-50A (7/8 FOAM)	124.00	0.0000	0.0000
Т3	31	EW63	100.00 -	0 6000	0.6000
15	51		110.00	0.0000	0.0000
Т3	32	EW63	100.00 -	0.6000	0.6000
			110.00		
T3	37	2 DC in Existing Conduit	100.00 -	1.0000	0.6000
			125.00		
T4	1	AVA50-FX	75.00 - 100.00	0.6000	0.6000
T4	2	1 5/8" Hybriflex	75.00 - 77.50	0.6000	0.6000
T4 T4	3	1 5/8	75.00 - 100.00	0.6000	0.6000
14 T4	4	1 1/4 21 Elev Conduit nu 2 Eilem &	75.00 - 100.00	0.6000	0.6000
14	5	5" Flex Conduit w 2 Fiber &	/5.00 - 100.00	1.0000	0.6000
т4	6	4 DC HB158-1-08U8-S8118	75.00 - 100.00	0.6000	0.6000
T4	8	1 1/4" Hybriflex Cables	75 00 - 97 30	0.0000	0.0000
T4	13	LDF7-50A (1-5/8 FOAM)	75.00 - 100.00	0.6000	0.6000
T4	14	LDF7-50A (1-5/8 FOAM)	75.00 - 100.00	0.6000	0.6000
T4	15	LDF7-50A (1-5/8 FOAM)	75.00 - 100.00	0.6000	0.6000
T4	16	LDF4-50A (1/2 FOAM)	75.00 - 100.00	0.6000	0.6000
T4	17	1/2	75.00 - 100.00	0.6000	0.6000
T4	18	LDF5-50A (7/8 FOAM)	75.00 - 100.00	0.6000	0.6000
T4	19	LDF7-50A (1-5/8 FOAM)	75.00 - 100.00	0.6000	0.6000
T4	20	LDF7-50A (1-5/8 FOAM)	75.00 - 100.00	0.6000	0.6000
T4	21	LDF7-50A (1-5/8 FOAM)	75.00 - 100.00	0.6000	0.6000
T4	22	LDF7-50A (1-5/8 FOAM)	75.00 - 100.00	0.6000	0.6000
T4	23	LDF5-50A (7/8 FOAM)	75.00 - 100.00	0.6000	0.6000
14	24	LDF7-50A (1-5/8 FOAM)	75.00 - 100.00	0.6000	0.6000
14 T4	25	LDF4-50A (1/2 FOAM)	75.00 - 100.00	0.6000	0.6000
14 T4	26	LDF /-50A (1-5/8 FOAM)	75.00 - 100.00	0.6000	0.6000
14 T4	27	LDF7-50A (1-5/8 FOAM)	75.00 - 100.00	0.6000	0.6000
14 T4	28	LDF 7-50A (1-5/8 FOAM)	75.00 - 100.00	0.6000	0.6000
14 T4	29	LDF5-50A (7/8 FOAM)	75.00 - 100.00	0.0000	0.0000
14 T4	31	EDF5-50A (7/8 FOAM) EW63	75.00 - 100.00	0.0000	0.0000
14 T4	32	EW03 FW63	75.00 - 100.00	0.0000	0.0000
T4	33	LDF5-50A (7/8 FOAM)	75.00 - 85.00	0.6000	0.6000
T4	34	1/2	75.00 - 83.00	0.6000	0.6000
T4	35	1/2	75.00 - 83.00	0.6000	0.6000
T4	37	2 DC in Existing Conduit	75.00 - 100.00	1.0000	0.6000
T5	1	AVA50-FX	66.67 - 75.00	0.6000	0.6000
Т5	2	1 5/8" Hybriflex	66.67 - 75.00	0.6000	0.6000
T5	3	1 5/8	66.67 - 75.00	0.6000	0.6000
T5	4	1 1/4	66.67 - 75.00	0.6000	0.6000
T5	5	3" Flex Conduit w 2 Fiber &	66.67 - 75.00	1.0000	0.6000
		4 DC			

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

Middlebury, CT

SMK-007 / VZ5-228

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	1	Segment Elev.	No Ice	Ice
Τ5	6	HB158-1-08U8-S8U8	66 67 - 75 00	0.6000	0.6000
15 T5	0	1 1/4" Hybrifley Cables	66 67 75 00	0.0000	0.0000
15	0	I DE7 50A (1.5/9 EQAM)	66.67 75.00	0.0000	0.0000
15	15	LDF7-30A (1-5/8 FOAM)	66.67 - 75.00	0.6000	0.6000
15	14	LDF/-50A (1-5/8 FOAM)	66.67 - 75.00	0.6000	0.6000
15	15	LDF/-50A (1-5/8 FOAM)	66.67 - 75.00	0.6000	0.6000
T5	16	LDF4-50A (1/2 FOAM)	66.67 - 75.00	0.6000	0.6000
T5	17	1/2	66.67 - 75.00	0.6000	0.6000
T5	18	LDF5-50A (7/8 FOAM)	66.67 - 75.00	0.6000	0.6000
T5	19	LDF7-50A (1-5/8 FOAM)	66.67 - 75.00	0.6000	0.6000
T5	20	LDF7-50A (1-5/8 FOAM)	66.67 - 75.00	0.6000	0.6000
Т5	21	LDF7-50A (1-5/8 FOAM)	66 67 - 75 00	0.6000	0.6000
T5	21	LDF7-50A (1-5/8 FOAM)	66 67 - 75 00	0.6000	0.6000
15 T5	22	LDF5-50A (7/8 FOAM)	66 67 - 75 00	0.0000	0.0000
15 T5	25	LDF7 504 (18 FOAM)	66 67 75 00	0.0000	0.0000
15	24	LDF/-30A (1-3/8 FOAM)	66.07 - 75.00	0.0000	0.0000
15	25	LDF4-50A (1/2 FOAM)	66.67 - 75.00	0.6000	0.6000
15	26	LDF/-50A (1-5/8 FOAM)	66.67 - 75.00	0.6000	0.6000
T5	27	LDF7-50A (1-5/8 FOAM)	66.67 - 75.00	0.6000	0.6000
T5	28	LDF7-50A (1-5/8 FOAM)	66.67 - 75.00	0.6000	0.6000
T5	29	LDF5-50A (7/8 FOAM)	66.67 - 75.00	0.6000	0.6000
T5	30	LDF5-50A (7/8 FOAM)	66.67 - 75.00	0.6000	0.6000
T5	31	EW63	66.67 - 75.00	0.6000	0.6000
Т5	32	EW63	66.67 - 75.00	0.6000	0.6000
T5	33	LDF5-50A (7/8 FOAM)	66 67 - 75 00	0,6000	0.6000
T5	34	1/2	66 67 - 75 00	0.6000	0.6000
15 T5	25	1/2	66 67 75 00	0.0000	0.0000
15	22	2 DC in Evisting Conduit	66 67 75.00	1.0000	0.0000
15	57	2 DC in Existing Conduit	50.07 - 75.00	1.0000	0.6000
16	1	AVA50-FX	58.33 - 66.67	0.6000	0.6000
16	2	I 5/8" Hybriflex	58.33 - 66.67	0.6000	0.6000
T6	3	1 5/8	58.33 - 66.67	0.6000	0.6000
T6	4	1 1/4	58.33 - 66.67	0.6000	0.6000
T6	5	3" Flex Conduit w 2 Fiber &	58.33 - 66.67	1.0000	0.6000
		4 DC			
T6	6	HB158-1-08U8-S8J18	58.33 - 66.67	0.6000	0.6000
T6	8	1 1/4" Hybriflex Cables	58.33 - 66.67	0.6000	0.6000
Т6	13	LDF7-50A (1-5/8 FOAM)	58.33 - 66.67	0.6000	0.6000
Т6	14	LDF7-50A (1-5/8 FOAM)	58.33 - 66.67	0.6000	0.6000
Ť6	15	LDF7-50A (1-5/8 FOAM)	58 33 - 66 67	0,6000	0.6000
T6	15	LDF4-50A (1/2 FOAM)	58 33 - 66 67	0.0000	0.0000
10 T6	17	EDI 4-50M (1/2 1 0/1M)	59 22 66 67	0.0000	0.0000
10 T(1/	1/2 LDE5 504 (7/9 E0 AM)	58.55 - 00.07	0.6000	0.6000
10	18	LDF5-50A (7/8 FOAM)	58.55 - 00.07	0.6000	0.6000
16	19	LDF/-50A (1-5/8 FOAM)	58.33 - 66.67	0.6000	0.6000
16	20	LDF7-50A (1-5/8 FOAM)	58.33 - 66.67	0.6000	0.6000
Т6	21	LDF7-50A (1-5/8 FOAM)	58.33 - 66.67	0.6000	0.6000
T6	22	LDF7-50A (1-5/8 FOAM)	58.33 - 66.67	0.6000	0.6000
T6	23	LDF5-50A (7/8 FOAM)	58.33 - 66.67	0.6000	0.6000
T6	24	LDF7-50A (1-5/8 FOAM)	58.33 - 66.67	0.6000	0.6000
T6	25	LDF4-50A (1/2 FOAM)	58.33 - 66.67	0.6000	0.6000
T6	26	LDF7-50A (1-5/8 FOAM)	58.33 - 66.67	0.6000	0.6000
Т6	27	LDF7-50A (1-5/8 FOAM)	58.33 - 66.67	0.6000	0.6000
T6	28	LDF7-50A (1-5/8 FOAM)	58 33 - 66 67	0.6000	0.6000
T6	20	LDF5-50A (7/8 FOAM)	58 33 - 66 67	0.6000	0.6000
10 T6	29	LDF5-50A (7/8 FOAM)	58.33 - 00.07	0.0000	0.0000
10 T6	30	LDF5-50A (7/8 FOAM)	58 22 66 67	0.0000	0.0000
10	21	EW05	50.55 - 00.07	0.0000	0.0000
16	32	EW63	38.33 - 66.67	0.6000	0.6000
16	33	LDF5-50A (7/8 FOAM)	58.33 - 66.67	0.6000	0.6000
Т6	34	1/2	58.33 - 66.67	0.6000	0.6000
Т6	35	1/2	58.33 - 66.67	0.6000	0.6000
Т6	37	2 DC in Existing Conduit	58.33 - 66.67	1.0000	0.6000
T7	1	AVA50-FX	50.00 - 58.33	0.6000	0.6000
T7	2	1 5/8" Hybriflex	50.00 - 58.33	0.6000	0.6000
T7	3	1 5/8	50.00 - 58.33	0.6000	0.6000
T7	4	1 1/4	50.00 - 58.33	0.6000	0.6000
_ /					

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

Page 15 of 65

Date

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

Middlebury, CT

SMK-007 / VZ5-228

Tower	Feed Line	Description	Feed Line	Ka	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
T7	5	3" Flex Conduit w 2 Fiber &	50.00 - 58.33	1.0000	0.6000
		4 DC			
T7	6	HB158-1-08U8-S8J18	50.00 - 58.33	0.6000	0.6000
T7	8	1 1/4" Hybriflex Cables	50.00 - 58.33	0.6000	0.6000
T7	13	LDF7-50A (1-5/8 FOAM)	50.00 - 58.33	0.6000	0.6000
T7	14	LDF7-50A (1-5/8 FOAM)	50.00 - 58.33	0.6000	0.6000
T7	15	LDF7-50A (1-5/8 FOAM)	50.00 - 58.33	0.6000	0.6000
T7	16	LDF4-50A (1/2 FOAM)	50.00 - 58.33	0.6000	0.6000
T7	17	1/2	50.00 - 58.33	0.6000	0.6000
T 7	18	LDF5-50A (7/8 FOAM)	50.00 - 58.33	0.6000	0.6000
T7	19	LDF7-50A (1-5/8 FOAM)	50.00 - 58.33	0.6000	0.6000
T7	20	LDF7-50A (1-5/8 FOAM)	50.00 - 58.33	0.0000	0.0000
17 T7	20	LDF7-50A (1-5/8 FOAM)	50.00 - 58.33	0.0000	0.0000
T7	21	LDF7-50A (1-5/8 FOAM)	50.00 - 58.33	0.0000	0.0000
17 T7	22	LDF -50A (1-5/8 FOAM)	50.00 - 58.33	0.0000	0.0000
17 T7	23	LDF5-50A (7/8 FOAM)	50.00 - 58.33	0.0000	0.0000
17 T7	24	LDF /-50A (1-5/8 FOAM)	50.00 - 58.33	0.0000	0.0000
17	25	LDF7-50A (1/2 FOAM)	50.00 - 58.33	0.0000	0.0000
17 T7	20	LDF7-50A (1-5/8 FOAM)	50.00 - 58.55	0.0000	0.0000
17	27	LDF /-50A (1-5/8 FOAM)	50.00 - 58.55	0.6000	0.6000
17	28	LDF/-50A (1-5/8 FOAM)	50.00 - 58.55	0.6000	0.6000
17	29	LDF5-50A (7/8 FOAM)	50.00 - 58.33	0.6000	0.6000
T7	30	LDF5-50A (7/8 FOAM)	50.00 - 58.33	0.6000	0.6000
17	31	EW63	50.00 - 58.33	0.6000	0.6000
17	32	EW63	50.00 - 58.33	0.6000	0.6000
17	33	LDF5-50A (7/8 FOAM)	50.00 - 58.33	0.6000	0.6000
17	34	1/2	50.00 - 58.33	0.6000	0.6000
T7	35	1/2	50.00 - 58.33	0.6000	0.6000
T7	37	2 DC in Existing Conduit	50.00 - 58.33	1.0000	0.6000
T8	1	AVA50-FX	37.50 - 50.00	0.6000	0.6000
T8	2	1 5/8" Hybriflex	37.50 - 50.00	0.6000	0.6000
T8	3	1 5/8	37.50 - 50.00	0.6000	0.6000
T8	4	1 1/4	37.50 - 50.00	0.6000	0.6000
T8	5	3" Flex Conduit w 2 Fiber &	37.50 - 50.00	1.0000	0.6000
		4 DC			
T8	6	HB158-1-08U8-S8J18	37.50 - 50.00	0.6000	0.6000
T8	8	1 1/4" Hybriflex Cables	37.50 - 50.00	0.6000	0.6000
T8	13	LDF7-50A (1-5/8 FOAM)	37.50 - 50.00	0.6000	0.6000
T8	14	LDF7-50A (1-5/8 FOAM)	37.50 - 50.00	0.6000	0.6000
T8	15	LDF7-50A (1-5/8 FOAM)	37.50 - 50.00	0.6000	0.6000
T8	16	LDF4-50A (1/2 FOAM)	37.50 - 50.00	0.6000	0.6000
T8	17	1/2	37.50 - 50.00	0.6000	0.6000
T8	18	LDF5-50A (7/8 FOAM)	37.50 - 50.00	0.6000	0.6000
Τ8	19	LDF7-50A (1-5/8 FOAM)	37.50 - 50.00	0.6000	0.6000
T8	20	LDF7-50A (1-5/8 FOAM)	37.50 - 50.00	0.6000	0.6000
Т8	21	LDF7-50A (1-5/8 FOAM)	37.50 - 50.00	0.6000	0.6000
Т8	22	LDF7-50A (1-5/8 FOAM)	37.50 - 50.00	0.6000	0.6000
Т8	23	LDF5-50A (7/8 FOAM)	37.50 - 50.00	0.6000	0.6000
Т8	24	LDF7-50A (1-5/8 FOAM)	37.50 - 50.00	0.6000	0.6000
T8	25	LDF4-50A (1/2 FOAM)	37.50 - 50.00	0.6000	0.6000
Т8	26	LDF7-50A (1-5/8 FOAM)	37.50 - 50.00	0.6000	0.6000
Т8	27	LDF7-50A (1-5/8 FOAM)	37.50 - 50.00	0.6000	0.6000
Т8	28	LDF7-50A (1-5/8 FOAM)	37.50 - 50.00	0.6000	0.6000
T8	29	LDF5-50A (7/8 FOAM)	37.50 - 50.00	0.6000	0.6000
T8	30	LDF5-50A (7/8 FOAM)	37.50 - 50.00	0.6000	0.6000
T8	31	EW63	37.50 - 50.00	0.6000	0.6000
T8	32	FW63	37.50 - 50.00	0.6000	0.6000
10 T8	22	LDE5-504 (7/8 FOAM)	37 50 - 50 00	0.6000	0.0000
10 T8	33	1/2	37 50 - 50.00	0.6000	0.0000
	25	1/2	37 50 - 50.00	0.6000	0.0000
10 TQ	27	2 DC in Existing Conduit	37.50 - 50.00	1.0000	0.000
10 T0	5/	2 DC III EXISTING CONDUIT	25.00 - 27.50	0.6000	0.000
19 Tû		AVAJU-FA 1 5/8" Hybrifley	25.00 - 37.50 25.00 - 37.50	0.0000	0.000
19	2	1 5/6 Hydriffex	25.00 - 57.50	0.0000	0.0000

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

Middlebury, CT

SMK-007 / VZ5-228

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	_	Segment Elev.	No Ice	Ice
Т9	3	1 5/8	25.00 - 37.50	0.6000	0.6000
Т9	4	1 1/4	25.00 - 37.50	0.6000	0.6000
Т9	5	3" Flex Conduit w 2 Fiber &	25.00 - 37.50	1.0000	0.6000
15	C C	4 DC	20100 07100	110000	010000
то	6	HB158-1-08118-S8118	25.00 - 37.50	0.6000	0.6000
19 T0	0	1 1/4" Hybriflay Cables	25.00 - 37.50	0.0000	0.0000
19	0	I 1/4 Hydrinex Cables	25.00 - 57.50	0.0000	0.0000
19	15	LDF7-50A (1-5/8 FOAM)	25.00 - 37.50	0.6000	0.6000
19	14	LDF7-50A (1-5/8 FOAM)	25.00 - 37.50	0.6000	0.6000
19	15	LDF7-50A (1-5/8 FOAM)	25.00 - 37.50	0.6000	0.6000
Т9	16	LDF4-50A (1/2 FOAM)	25.00 - 37.50	0.6000	0.6000
Т9	17	1/2	25.00 - 37.50	0.6000	0.6000
Т9	18	LDF5-50A (7/8 FOAM)	25.00 - 37.50	0.6000	0.6000
Т9	19	LDF7-50A (1-5/8 FOAM)	25.00 - 37.50	0.6000	0.6000
Т9	20	LDF7-50A (1-5/8 FOAM)	25.00 - 37.50	0.6000	0.6000
Т9	21	LDF7-50A (1-5/8 FOAM)	25.00 - 37.50	0.6000	0.6000
Т9	22	LDF7-50A (1-5/8 FOAM)	25.00 - 37.50	0.6000	0.6000
Т9	23	LDF5-50A (7/8 FOAM)	25.00 - 37.50	0.6000	0.6000
T9	24	LDF7-50A (1-5/8 FOAM)	25.00 - 37.50	0,6000	0.6000
то	25	LDF4-50A(1/2 FOAM)	25.00 - 37.50	0.0000	0.0000
19	25	LDF4-50A (1/2 FOAM)	25.00 - 37.50	0.0000	0.0000
19	20	LDF7-30A (1-5/8 FOAM)	25.00 - 57.50	0.6000	0.6000
19	27	LDF /-50A (1-5/8 FOAM)	25.00 - 37.50	0.6000	0.6000
19	28	LDF7-50A (1-5/8 FOAM)	25.00 - 37.50	0.6000	0.6000
19	29	LDF5-50A (7/8 FOAM)	25.00 - 37.50	0.6000	0.6000
Т9	30	LDF5-50A (7/8 FOAM)	25.00 - 37.50	0.6000	0.6000
Т9	31	EW63	25.00 - 37.50	0.6000	0.6000
Т9	32	EW63	25.00 - 37.50	0.6000	0.6000
Т9	33	LDF5-50A (7/8 FOAM)	25.00 - 37.50	0.6000	0.6000
Т9	34	1/2	25.00 - 37.50	0.6000	0.6000
Т9	35	1/2	25.00 - 37.50	0.6000	0.6000
Т9	37	2 DC in Existing Conduit	25.00 - 37.50	1.0000	0.6000
T10	1	AVA50-FX	0.00 - 25.00	0.6000	0.6000
T10	2	1.5/8" Hybriflex	0.00 - 25.00	0.6000	0.6000
T10	3	15/8	0.00 - 25.00	0.6000	0.6000
T10	4	1 1/4	0.00 - 25.00	0.6000	0.6000
T10	5	3" Flex Conduit w 2 Fiber &	0.00 - 25.00	1,0000	0.0000
110	5	5 Thex Conduit w 2 Ther &	0.00 - 25.00	1.0000	0.0000
T10	(0.00 25.00	0.0000	0.000
T10	0	HB158-1-0808-58518	0.00 - 25.00	0.6000	0.6000
110	8	1 1/4" Hybriflex Cables	0.00 - 25.00	0.6000	0.6000
T10	13	LDF7-50A (1-5/8 FOAM)	0.00 - 25.00	0.6000	0.6000
T10	14	LDF7-50A (1-5/8 FOAM)	0.00 - 25.00	0.6000	0.6000
T10	15	LDF7-50A (1-5/8 FOAM)	0.00 - 25.00	0.6000	0.6000
T10	16	LDF4-50A (1/2 FOAM)	0.00 - 25.00	0.6000	0.6000
T10	17	1/2	0.00 - 25.00	0.6000	0.6000
T10	18	LDF5-50A (7/8 FOAM)	0.00 - 25.00	0.6000	0.6000
T10	19	LDF7-50A (1-5/8 FOAM)	0.00 - 25.00	0.6000	0.6000
T10	20	LDF7-50A (1-5/8 FOAM)	0.00 - 25.00	0.6000	0.6000
T10	21	LDF7-50A (1-5/8 FOAM)	0.00 - 25.00	0.6000	0.6000
T10	22	LDF7-50A (1-5/8 FOAM)	0.00 - 25.00	0.6000	0.6000
T10	23	LDF5-50A (7/8 FOAM)	0.00 - 25.00	0.6000	0.6000
T10	24	LDF7-50A (1-5/8 FOAM)	0.00 - 25.00	0.6000	0.6000
T10	25	LDF4-50A(1/2 FOAM)	0.00 - 25.00	0.6000	0.6000
T10	25	LDF7-50A (1-5/8 FOAM)	0.00 - 25.00	0.0000	0.0000
T10	20	LDF7-50A (1-5/8 FOAM)	0.00 - 25.00	0.0000	0.0000
T10	27	LDF7-50A (1-5/8 FOAM)	0.00 - 25.00	0.0000	0.0000
T10	28	LDF7-50A (1-5/8 FOAM)	0.00 - 25.00	0.0000	0.0000
T10	29	LDF3-30A (7/8 FOAM)	0.00 - 25.00	0.0000	0.0000
110	30	LDF5-50A (7/8 FOAM)	0.00 - 25.00	0.6000	0.6000
110	31	EW63	0.00 - 25.00	0.6000	0.6000
T10	32	EW63	0.00 - 25.00	0.6000	0.6000
T10	33	LDF5-50A (7/8 FOAM)	0.00 - 25.00	0.6000	0.6000
T10	34	1/2	0.00 - 25.00	0.6000	0.6000
T10	35	1/2	0.00 - 25.00	0.6000	0.6000
T10	36	LDF4P-50A (1/2 FOAM)	0.00 - 21.00	0.6000	0.6000

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Designed by KAB

Tower	Feed Line	Description	Feed Line	K _a	K _a
Section	Record No.		Segment Elev.	No Ice	Ice
T10	37	2 DC in Existing Conduit	0.00 - 25.00	1.0000	0.6000

Job

Project

Client

Discrete Tower Loads									
Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft ft	٥	ft		ft²	ft²	Κ
*									
5' T-arm (VZW)	А	None		0.0000	77.50	No Ice 1/2" Ice	4.50 5.50	2.50 3.20 3.90	0.25 0.32 0.38
5' T-arm (VZW)	В	None		0.0000	77.50	No Ice 1/2" Ice	4.50 5.50 6.50	2.50 3.20 3.90	0.25 0.32 0.38
DC6-48-60-18-8F (VZW)	А	None		0.0000	77.50	No Ice 1/2" Ice 1" Ice	1.27 1.46 1.66	1.27 1.46 1.66	0.02 0.04 0.05
*									
APXVSPP18-C-A20 (Sprint)	А	From Face	0.50 0.00 0.00	0.0000	97.00	No Ice 1/2" Ice	8.26 8.81 9.36	6.71 7.66 8.49	0.09 0.15 0.22
APXVSPP18-C-A20 (Sprint)	В	From Face	0.50	0.0000	97.00	No Ice 1/2" Ice	8.26 8.81 9.36	6.71 7.66 8.49	0.09 0.15 0.22
APXVSPP18-C-A20 (Sprint)	С	From Leg	0.50 0.00 0.00	0.0000	97.00	No Ice 1/2" Ice	8.26 8.81 9.36	6.71 7.66 8.49	0.09 0.15 0.22
DT465B-2XR-V2 Panels (Commscope) (Sprint)	Α	From Leg	1.50 0.00 0.00	0.0000	97.00	No Ice 1/2" Ice 1" Ice	9.65 10.21 10.77	5.97 6.43 6.90	0.06 0.12 0.18
DT465B-2XR-V2 Panels (Commscope) (Sprint)	В	From Leg	1.50 0.00 0.00	0.0000	97.00	No Ice 1/2" Ice 1" Ice	9.65 10.21 10.77	5.97 6.43 6.90	0.06 0.12 0.18
DT465B-2XR-V2 Panels (Commscope) (Sprint)	С	From Leg	1.50 0.00 0.00	0.0000	97.00	No Ice 1/2" Ice 1" Ice	9.65 10.21 10.77	5.97 6.43 6.90	0.06 0.12 0.18
RRH 800MHz 2x50W (Sprint)	А	From Face	$1.00 \\ 1.00 \\ 0.00$	0.0000	97.00	No Ice 1/2" Ice 1" Ice	2.49 2.71 2.94	2.34 2.66 3.02	0.07 0.10 0.13
RRH 800MHz 2x50W (Sprint)	В	From Face	$1.00 \\ 1.00 \\ 0.00$	0.0000	97.00	No Ice 1/2" Ice 1" Ice	2.49 2.71 2.94	2.34 2.66 3.02	0.07 0.10 0.13
RRH 800MHz 2x50W (Sprint)	С	From Face	1.00 -5.00 0.00	0.0000	97.00	No Ice 1/2" Ice 1" Ice	2.49 2.71 2.94	2.34 2.66 3.02	0.07 0.10 0.13
RRH 800MHz 2x50W (Sprint)	А	From Face	1.00 1.00 0.00	0.0000	97.00	No Ice 1/2" Ice	2.49 2.71 2.94	2.34 2.66 3.02	0.07 0.10 0.13
RRH 800MHz 2x50W	В	From Face	1.00	0.0000	97.00	No Ice	2.49	2.34	0.07

Project

Client

160' Self Support Lattice - CSP #20

Page 18 of 65

Date 06:59:10 07/02/21

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	Leg	Туре	Lateral	Aajusimeni			rroni	Side	
			Vert ft	0	ft		θ^2	θ^2	K
			ft		Jt		ji	ji	A
(Sprint)						1/2" Ice	2.71	2.66	0.10
()			0.00			1" Ice	2.94	3.02	0.13
RRH 800MHz 2x50W	С	From Face	1.00	0.0000	97.00	No Ice	2.49	2.34	0.07
(Sprint)			-5.00			1/2" Ice	2.71	2.66	0.10
TD DDU9-20		Energy Ease	0.00	0.0000	07.00	I" Ice	2.94	3.02	0.13
(Sprint)	А	FIOIII Face	0.50	0.0000	97.00	1/2" Ice	4.72	1.70	0.07
(Sprint)			0.00			1" Ice	5.32	2.14	0.12
TD-RRH8x20	в	From Face	0.50	0.0000	97.00	No Ice	4.72	1.70	0.07
(Sprint)			0.00			1/2" Ice	5.01	1.92	0.09
	6		0.00		05.00	1" Ice	5.32	2.14	0.12
TD-RRH8x20	С	From Face	0.50	0.0000	97.00	No Ice	4.72	1.70	0.07
(Sprint)			-5.00			1/2" Ice	5.01	1.92	0.09
RRH 1900 MHz 2x40W	А	From Face	0.00	0.0000	97.00	No Ice	2.49	3 34	0.12
(Sprint)	11	1101111400	0.00	0.0000	57100	1/2" Ice	2.71	3.69	0.13
()			0.00			1" Ice	2.94	4.08	0.16
RRH 1900 MHz 2x40W	в	From Face	0.50	0.0000	97.00	No Ice	2.49	3.34	0.10
(Sprint)			0.00			1/2" Ice	2.71	3.69	0.13
DD11 1000 MIL- 2-40W	C	Enorm Econ	0.00	0.0000	07.00	I" Ice	2.94	4.08	0.16
(Sprint)	C	From Face	-5.00	0.0000	97.00	1/2" Ice	2.49	3.54	0.10
(Sprint)			0.00			1" Ice	2.94	4.08	0.15
PM-SU35-48 - Pipe Mount	Α	From Leg	1.50	0.0000	97.00	No Ice	5.60	5.60	0.11
48"		0	0.00			1/2" Ice	5.99	5.99	0.16
(Sprint)			0.00			1" Ice	6.40	6.40	0.21
PM-SU35-48 - Pipe Mount	в	From Leg	1.50	0.0000	97.00	No Ice	5.60	5.60	0.11
48" (Sprint)			0.00			1/2" Ice	5.99	5.99	0.16
(Sprint) PM-SU35-48 - Pine Mount	C	From Leg	1.50	0.0000	97.00	No Ice	6.40 5.60	6.40 5.60	0.21
48"	C	Tiom Leg	0.00	0.0000	57.00	1/2" Ice	5.99	5.99	0.16
(Sprint)			0.00			1" Ice	6.40	6.40	0.21
DSM2 w/ additional SFS-H	А	From Leg	0.50	0.0000	125.00	No Ice	6.65	2.32	0.16
Stabilizer		0	0.00			1/2" Ice	8.00	2.86	0.22
(T-Mobile)			0.00			1" Ice	9.41	3.42	0.30
DSM2 w/ additional SFS-H	в	From Leg	0.50	0.0000	125.00	No Ice	6.65	2.32	0.16
Stabilizer (T. Mobile)			0.00			1/2" Ice	8.00	2.86	0.22
DSM2 w/ additional SFS-H	С	From Leg	0.00	0.0000	125.00	No Ice	6.65	2 32	0.30
Stabilizer	C	Tiom Leg	0.00	0.0000	125.00	1/2" Ice	8.00	2.86	0.22
(T-Mobile)			0.00			1" Ice	9.41	3.42	0.30
EMS RR90-17-xx	А	From Leg	3.00	0.0000	125.00	No Ice	4.36	4.36	0.02
(T-Mobile)			1.50			1/2" Ice	4.99	4.99	0.04
ENG BBOO 17	D	Б I	0.00	0.0000	125.00	l" Ice	5.62	5.62	0.06
EMS RR90-1/-xx (T. Mobile)	в	From Leg	3.00	0.0000	125.00	No Ice 1/2" Ice	4.36	4.36	0.02
(1-Mobile)			0.00			172 ICe	4.99	4.99	0.04
EMS RR90-17-xx	С	From Leg	3.00	0.0000	125.00	No Ice	4.36	4.36	0.02
(T-Mobile)		5	1.50			1/2" Ice	4.99	4.99	0.04
			0.00			1" Ice	5.62	5.62	0.06
LNX-6515DS-A1M Andrew	А	From Leg	3.00	0.0000	125.00	No Ice	11.58	9.74	0.08
Panel (T-Mobile)			-1.50			1/2" Ice	12.25	11.21	0.16
LNX-6515DS-A1M Andrew	в	From Leg	3.00	0.0000	125.00	No Ice	12.92	9 74	0.20
Panel	Б	i ioni Log	-1.50	0.0000	123.00	1/2" Ice	12.25	11.21	0.16
(T-Mobile)			0.00			1" Ice	12.92	12.62	0.26

tran Toon on	Job		Page		
tnx1ower		160' Self Support Lattice - CSP #20			
AECOM	Project		Date		
500 Enterprise Drive		Middlebury, CT	06:59:10 07/02/21		
Rocky Hill, CT Phone: (860) 529-8882 FAX-	Client	SMK-007 / VZ5-228	Designed by KAB		

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		or	Type	Horz	Adjustment			Front	Side	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Leg		Lateral						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Vert				- 7	- 7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				ft	0	ft		ft²	ft^2	K
LNX-6515DS-A1M Andrew Panel C From Leg 3.00 -1.50 0.0000 125.00 No Ice 11.58 9.74 0.08 Cf-Mubile) Crimbolie 1.50 0.0000 125.00 No Ice 11.58 9.74 0.08 Erisson Radio 415 B25 A From Leg 3.00 0.0000 125.00 No Ice 1.26 0.36 0.05 RRH Unit 1.00 0.0000 125.00 No Ice 2.03 0.96 0.06 Cf-Mobile) 0.00 17 Ice 2.03 0.96 0.06 0.08 Erisson Radio 415 B25 B From Leg 3.00 0.0000 127 Ice 2.03 0.96 0.06 Cf-Mobile) 0.00 0.0000 127 Ice 2.03 0.96 0.06 Cf-Mobile) 0.00 1.00 No Ice 1.50 0.07 0.21 0.00 Yagi 0.00 1.27 Ice 1.09 0.03 1.27 Ice 1.09 0.00 Yagi 0.00 1.27 I				jt A						
EXCADIONALINATION C From Leg -3.00 0.0000 12.500 107 ce 1.23 11.21 0.16 CPMobile) -1.50 0.00 12.500 No fee 1.23 11.21 0.16 CPMobile) -1.50 0.000 12.500 No fee 1.23 11.21 0.16 CPMobile) -1.50 0.0000 125.00 No fee 1.86 0.83 0.05 RRHUINI 1.50 0.000 125.00 No fee 1.86 0.83 0.05 RRHUINI 1.50 0.000 125.00 No fee 1.86 0.83 0.05 RRHUINI 1.50 0.000 125.00 No fee 1.86 0.83 0.05 RRHUINI 1.50 0.000 125.00 No fee 1.86 0.03 0.05 RRHUINI 1.50 0.000 125.00 No fee 1.80 0.00 112* fee 2.00 0.06 **ATT Inventory on Bottom (rtwentistike-Light A From Leg 1.50 0.000 12* fee 0.40 0.01 12	INV 6515DS AIM Androwy	C	Erom Log	2.00	0.0000	125.00	No Ioo	11.59	0.74	0.08
Table Erisson Radio 415 B25 A From Leg 1.00 Label Label ("Mobile) Label Label ("Label ("Mobile) Label Label ("Label ("Mobile) Label Label ("Label ("Mobile) Label Label ("Label ("Mobile) Label Label ("Label (Dopel	C	FIOII Leg	1.50	0.0000	125.00	1/2" Ice	12.25	9.74	0.08
EricssR Radio 4415 B25 (FMobile) A From Leg (Solution 1000) 3.00 (Solution 125.00 No. tec (Solution 125.00 No. tec (Solution 125.00 No. tec (Solution 145.00 0.036 (Solution 145.00 <td>(T-Mobile)</td> <td></td> <td></td> <td>-1.50</td> <td></td> <td></td> <td>1" Ice</td> <td>12.25</td> <td>12.62</td> <td>0.10</td>	(T-Mobile)			-1.50			1" Ice	12.25	12.62	0.10
RRH Unit I. Fon Leg 1.50 Convol L2.00 L2.00 L2.03 0.06 0.06 (T-Mobil) 0.00 1/2" fce 2.03 0.06 0.08 Ericsson Radio 4415 B25 B From Leg 3.00 0.0000 125.00 No Ice 1.86 0.83 0.05 Rick Mobilio 0.00 125.00 No Ice 1.86 0.03 0.05 Rick Mobilio 0.00 1.50 No Ice 1.86 0.03 0.05 Rick Mobilio 0.00 1.50 No Ice 1.86 0.03 0.06 (FMobilio) 0.00 1.200 No Ice 1.50 0.21 0.00 (FMobilio) 0.00 0.000 21.00 No Ice 1.57 0.23 0.00 (FMobilio) 0.00 0.000 83.00 No Ice 1.27 0.23 0.02 0.01 (FMobilio) 0.00 0.000 83.00 No Ice 1.27 0.00 0.01 1.27	Friesson Radio 4415 B25	А	From Leg	3.00	0.0000	125.00	No Ice	1.86	0.83	0.05
(T-Mobile) 0.00 1" Tece 2.20 1.09 0.08 Erisson Radio AHS 525 B From Leg 3.00 0.0000 125.00 No Ice 1.86 0.33 0.05 RRH Unit 0.00 125.00 No Ice 1.86 0.33 0.05 RRH Unit 0.00 125.00 No Ice 1.86 0.33 0.05 RRH Unit 0.00 0.000 125.00 No Ice 1.86 0.33 0.05 RRH Unit 0.00 0.000 127 (ce 2.00 1.09 0.00 "*ATT Inventory on Bottom 0.00 0.0000 21.00 No Ice 1.59 0.21 0.00 (3.121) 0.00 0.000 83.00 No Ice 0.22 0.22 0.22 0.01 (133) 0.00 1.27 (ce 1.50 0.000 127 (ce 50 0.50 0.02 (252) 0.00 1.50 0.000 127 (ce 5.50 0.50 0.02 <	RRH Unit	11	I Iom Log	1.50	0.0000	125.00	1/2" Ice	2.03	0.96	0.05
Ericsson Radio 4415 825 RRH Unit (T-Mobile) B From Leg 3.00 0.00 0.000 125.00 12" ce No Tee 1.86 1.0 0.33 0.05 0.05 0.00 Ericsson Radio 4415 825 (T-Mobile) C From Leg 3.00 0.000 0.000 125.00 No Tee 1.86 1.0" tee 0.03 0.006 **ATT Inventory on Bottom (Proposed) . . 0.00 0.000 12" tee 2.03 0.06 0.06 **ATT Inventory on Bottom (Proposed) . <td< td=""><td>(T-Mobile)</td><td></td><td></td><td>0.00</td><td></td><td></td><td>1" Ice</td><td>2.20</td><td>1.09</td><td>0.08</td></td<>	(T-Mobile)			0.00			1" Ice	2.20	1.09	0.08
RRH Unit Line	Ericsson Radio 4415 B25	в	From Leg	3.00	0.0000	125.00	No Ice	1.86	0.83	0.05
(T-Mobile) 0.00 1° Ice 2.20 1.09 0.08 Eriesson Radio 4415 B25 C From Leg 3.00 0.000 125.00 No Ice 1.80 0.005 "** Threenory on Bottom (Proposed) 0.00 12" Ice 2.03 0.96 0.06 ** ** * 1" Ice 2.00 1.09 0.08 ** * 0.00 0.000 21.00 No Ice 1.59 0.21 0.00 Yagi 0.00 0.000 21.00 No Ice 1.59 0.21 0.00 (3.12) 0.00 0.000 83.00 No Ice 1.50 0.35 0.02 L810 Tower Side-Light A From Leg 1.50 0.000 1'Ice 0.50 0.50 0.02 L810 Tower Side-Light C From Leg 1.00 0.000 1'Ice 0.50 0.50 0.02 D1054 A From Leg 0.00 1'Ice 5.62 5.62 0.62<	RRH Unit			1.50			1/2" Ice	2.03	0.96	0.06
Eriesson Radio 4415 B25 C From Leg 3.00 0.0000 125.00 No Lee 1.86 0.83 0.05 RRH Unit 1.50 0.00 122 Lee 2.03 0.96 0.006 **ATT Inventory on Bottom (Proposed) ** **Sinclaris Y450-SF1SNM C From Face 0.00 0.0000 21.00 No Lee 1.59 0.21 0.00 (3-12) 0.00 122 Lee 1.77 0.28 0.01 (3-12) 0.00 122 Lee 1.57 0.22 0.02 0.01 Beacon 1.50 0.0000 83.00 No Lee 0.22 0.22 0.01 Beacon 1.50 0.000 83.00 No Lee 0.52 0.22 0.01 Beacon 1.50 0.000 83.00 No Lee 0.50 0.50 0.02 L-810 Tower Side-Light A From Leg 1.50 0.0000 83.00 No Lee 0.50 0.50 0.02 L-810 Tower Side-Light C From Leg 1.50 0.0000 83.00 No Lee 0.50 0.50 0.02 L-810 Tower Side-Light A From Leg 1.50 0.0000 83.00 No Lee 0.50 0.50 0.02 L-810 Tower Side-Light C From Leg 1.50 0.0000 83.00 No Lee 0.50 0.50 0.02 L-810 Tower Side-Light A From Leg 1.50 0.0000 83.00 No Lee 0.50 0.50 0.02 L-810 Tower Side-Light C From Leg 1.50 0.0000 81.00 No Lee 5.62 0.50 0.002 L-810 Tower Side-Light C From Leg 1.00 0.0000 85.00 No Lee 5.62 0.50 0.002 (2x2' Square - 1.85) 0.00 -12'' Lee 0.50 0.50 0.02 (2x2' Square - 1.85) 0.00 -12'' Lee 0.50 0.50 0.02 L'2'' Lee 5.62 0.50 0.00 L'2'' Lee 5.62 0.50 0.00 L'2'' Lee 5.62 0.50 0.00 L'2'' Lee 3.66 1.11 0.04 (0.00 -12'' Lee 3.66 1.11 0.04 (0.00 -12'' Lee 3.66 1.11 0.04 (1.2'' Lee 3.66 1.11 0.04 (2.155) 0.00 -12'' Lee 3.63 0.11 0.04 (2.155) 0.00 -12'' Lee 3.63 0.11 0.04 (2.155) 0.00 -12'' Lee 3.63 0.11 0.04 (2.155) 0.00 -12'' Lee 3.60 1.11 0.04 (2.158) 0.00 -12'' Lee 3.60 1.11 0.04 (2.159) 0.00 -11'' Lee 3.50 3.50 0.00 (1.12'' Lee 3.50 3.50 0.00 (1.12'' Lee 3.50 3.50 0.00 (1.12'' Lee 3.50 3.50 0.00 (1.12'' Lee 3.50 3.50 0	(T-Mobile)			0.00			1" Ice	2.20	1.09	0.08
RRH Unit (T-Mobile) 1.50 1.2" Ice 2.03 0.96 0.06 **ATT Invertory on Bottom (Proposed) 1" Ice 2.20 1.09 0.08 **ATT Invertory on Bottom (Proposed) ** 5inclair SY 450-SF1SNM C From Face 0.00 0.0000 21.00 No Ice 1.57 0.21 0.00 1/3 (3-1.21) 0.00 0.0000 83.00 No Ice 1.57 0.22 0.01 Beacon 1.50 0.000 1" Ice 1.95 0.35 0.02 L-810 Tower Side-Light A From Leg 1.50 0.000 1" Ice 0.50 0.50 0.02 L-810 Tower Side-Light C From Leg 1.50 0.000 1" Ice 0.50 0.50 0.02 Beacon -1.50 0.00 1" Ice 6.18 6.18 0.02 (2x2 Square - 1.85) 0.00 1" Ice 6.18 6.18 0.02 (2x2 Square - 1.85) 0.00 1" Ice 6.22 6.22 0.19 (2x2 Square - 1.85) 0.00 1" Ice 6.2 6.22	Ericsson Radio 4415 B25	С	From Leg	3.00	0.0000	125.00	No Ice	1.86	0.83	0.05
(T-Mobile) 0.00 I" Ice 2.20 1.09 0.08 **ATT Inventory on Bottom (Proposed) ** Sinclais SV 50-SFISM C From Face 0.00 0.000 21.00 No Ice 1.59 0.21 0.00 Yagi 0.00 0.00 12" Ice 1.77 0.28 0.01 L-810 Tower Side-Light A From Leg 1.50 0.000 83.00 No Ice 0.22 0.22 0.01 Beacon -1.50 0.000 11" Ice 0.40 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 1.2" Ice 0.40 0.40 0.01 0.02 0.01 0.02 0.01 12" Ice 6.18 6.08 0.02 0.00 12" Ice 6.18 6.18 0.02 0.02 0.02 12" Ice 6.18 6.18 0.02 0.02 12" Ice 6.16 6.18 0.02 0.02 1.2" Ice	RRH Unit			1.50			1/2" Ice	2.03	0.96	0.06
*ATT Inventory on Bottom (Proposed) Sinclair SY450-SFISNM C From Face 0.00 0.0000 21.00 No lce 1.59 0.21 0.000 Yagi 0.000 112° lce 1.77 0.28 0.01 1.28(10 Tower Side-Light A From Leg 1.50 0.0000 83.00 No lce 0.22 0.22 0.01 Beacon 1.50 .12° lce 0.40 0.40 0.01 (1.33) 0.00 11° lce 0.50 0.50 0.02 L-810 Tower Side-Light C From Leg 1.50 0.0000 83.00 No lce 0.22 0.22 0.01 Beacon 1.50 .12° lce 0.40 0.40 0.01 (1.33) 0.00 11° lce 0.50 0.50 0.02 L-810 Tower Side-Light A From Leg 1.50 0.0000 83.00 No lce 0.22 0.22 0.01 Beacon 1.50 .12° lce 0.40 0.40 0.01 (2.83) 0.00 .11° lce 0.50 0.50 0.02 PD10054 A From Leg 1.00 0.0000 85.00 No lce 5.62 5.62 0.02 (2'x2' Square - 1.85) 0.00 .12° lce 5.62 5.62 0.02 (2'x2' Square - 1.85) 0.00 .11° lce 6.18 6.18 0.02 10° K4° Pipe Mount A From Leg 0.00 .11° lce 6.18 6.18 0.02 10° K4° Pipe Mount A From Leg 0.00 .11° lce 6.25 0.50 0.02 11° lce 6.18 6.18 0.02 11° lce 6.25 0.50 0.02 11° lce 3.06 1.11 0.04 12° lce 3.06 1.11 0.04 12° lce 13.14 13.14 0.09 11° lce 13.98 18.98 0.12 10° PCS Frame (1) C From Leg 0.00 0.0000 155.00 No lce 7.30 7.30 0.07 12° lce 13.14 13.14 0.09 11° lce 13.98 18.98 0.12 10° PCS Frame (1) C From Leg 0.00 0.0000 155.00 No lce 7.30 7.30 0.07 12° lce 13.14 13.14 0.09 11° lce 12.61 12.61 0.07 11° lce 3.05 3.10 0.07 11° lce 3.05 3.00 0.09 11° lce 3.06 1.11 0.04 12° lce 3.10 3.10 0.07 11° lce 3.06 1.11 0.04 11° lce 3.06 1.11 0.04 11° lce 3.06 1.11 0.04 11° lce 3.06 1.11 0.04 11° lce 3.08 0.12° lce 3.00 0.000 11° lce 3.08 0.100 11°	(T-Mobile)			0.00			1" Ice	2.20	1.09	0.08
*AT1 Inventory on Bottom (Proposed) * Sinclair SY450-SF1SNM (2) (3-121) (3-121) (3-121) (3-121) (3-121) (3-121) (3-121) (3-121) (1-810 Tower Side-Light (1-83) (1-810 Tower Side-Light (1-810 Tower Side-Light (1-158)	*									
Sinchir SY450-SF1SNM C From Face 0.00 0.0000 21.00 No Ice 1.59 0.21 0.00 Yagi 0.00 122" Ice 1.77 0.28 0.01 (3-1.21) 0.00 122" Ice 1.95 0.35 0.022 L-810 Tower Side-Light A From Leg 1.50 0.0000 83.00 No Ice 0.22 0.22 0.01 Beacon 1.50 122" Ice 0.40 0.40 0.01 (1.83) 0.00 112" Ice 0.40 0.40 0.01 (1.83)	*ATT Inventory on Bottom									
Sinclair SY 40-SF1SNM C From Face 0.00 0.000 21.00 No Ice 1.59 0.21 0.00 (3-1,21) 0.00 112" Ice 1.77 0.28 0.01 Bencon 150 0.0000 83.00 No Ice 0.22 0.22 0.01 L+810 Tower Side-Light A From Leg 1.50 0.000 83.00 No Ice 0.22 0.22 0.02 L+810 Tower Side-Light C From Leg 1.50 11' Ice 0.40 0.01 (3.33) 0.00 1' Ice 0.50 0.50 0.02 (2'x2' Square - 1.85) 0.00 1'2" Ice 5.62 5.62 0.02 (10'6'x4" Pipe Mount A From Leg 0.25 0.000 1'2" Ice 5.82 5.90 0.03 (2:15) 0.00 1'2" Ice 5.62 5.62 0.11 0.04 (2'x2' Square - 1.85) 0.00 1'2" Ice 5.82 0.97 0.03 (2'15C 0.0	(Proposed)									
Sincian Stronger Vigel C From Leg 0.00 1/2" loc 1/2" loc 0.28 0.01 L=810 Tower Side-Light A From Leg 1.50 1/2" loc 0.40 0.40 0.01 L=810 Tower Side-Light A From Leg 1.50 0.000 83.00 No Ice 0.22 0.22 0.01 Beacon 1.50 0.00 1" loc 0.50 0.50 0.02 L=810 Tower Side-Light C From Leg 1.50 0.000 83.00 No Ice 0.22 0.22 0.01 (1.83) 0.00 -1.50 1/2" loc 0.40 0.40 0.01 (3.83) 0.00 10" loc 5.00 No Ice 5.62 5.62 0.02 PDI0054 A From Leg 0.00 1/2" loc 6.618 6.18 0.02 (215° strame 1.85) 0.00 1/2" loc 6.62 5.62 0.62 0.12 (215° strame 1.45) 0.00 -1/2" loc 6.62 5.62 0.19 (215° strame 1.45) 0.00 -1/2" loc 6.23 </td <td>Sinclair SV450-SEISNM</td> <td>C</td> <td>From Face</td> <td>0.00</td> <td>0.0000</td> <td>21.00</td> <td>No Ice</td> <td>1.50</td> <td>0.21</td> <td>0.00</td>	Sinclair SV450-SEISNM	C	From Face	0.00	0.0000	21.00	No Ice	1.50	0.21	0.00
1.32 0.00 1" Ref 1.95 0.35 0.02 L-810 Tower Side-Light A From Leg 1.50 1.70 0.35 0.02 L810 Tower Side-Light A From Leg 1.50 1.71 Re 0.40 0.01 (1.83) 0.00 1" Ice 0.50 0.50 0.02 L-810 Tower Side-Light C From Leg 1.50 1.71 Re 0.40 0.01 (3.83) 0.00 1.71 Ice 0.40 0.40 0.01 (3.83) 0.00 1.71 Ice 6.18 6.18 0.02 (2x2"Square - 1.85) 0.00 1" Ice 6.18 6.18 0.02 (10"s'4" Pipe Mount A From Leg 0.00 1" Ice 6.25 6.25 0.19 432E-831-01T TTA Unit C From Leg 0.00 172" Ice 3.66 0.07 (3.155 - TTA Unit) 0.00 1.72" Ice 3.26 0.07 0.30 0.22 0.2	Vagi	C	From Face	0.00	0.0000	21.00	1/2" Ice	1.59	0.21	0.00
L-810 Tower Side-Light A From Leg 1.50 0.0000 83.00 No Tee 0.22 0.22 0.01 Beacon 1.50 1.72" Tee 0.40 0.40 0.01 (1.83) 0.00 1" "Ee 0.50 0.50 0.02 L-810 Tower Side-Light C From Leg 1.50 0.0000 83.00 No Tee 0.22 0.22 0.01 Beacon 1.72" Tee 0.40 0.40 0.01 (3.83) 0.00 1.72" Tee 0.40 0.40 0.01 (3.83) 0.00 1.72" Tee 0.50 0.50 0.02 PD10054 A From Leg 1.00 0.0000 85.00 No Tee 5.62 5.62 0.02 (2x2" Square 1.85) 0.00 1.72" Tee 6.18 6.18 0.02 106" x4" Pipe Mount A From Leg 0.25 0.0000 85.00 No Tee 5.62 5.62 0.15 0.00 1.72" Tee 6.28 0.50 0.00 1.72" Tee 6.25 6.25 0.15 0.00 1.72" Tee 6.25 6.25 0.19 432E-83I-01T TTA Unit C From Leg 0.00 445.0000 155.00 No Tee 7.30 7.30 0.07 (2.155) 0.00 1.72" Tee 3.06 1.11 0.04 0.00 1.72" Tee 3.28 1.26 0.07 DB228-A B From Leg 1.00 0.0000 155.00 No Tee 7.30 7.30 0.07 (2.155) 0.00 1.72" Tee 13.14 13.14 0.09 0.00 1.72" Tee 13.20 1.32.0 0.33 2.1557 0.00 1.72" Tee 13.20 1.32.0 0.33 2.1577 0.00 1.72" Tee 13.20 1.32.0 0.33 2.1577 0.00 1.72" Tee 13.20 1.32.0 0.33 (3.155 - TTA Unit) C From Leg 0.00 0.0000 155.00 No Tee 7.30 7.30 0.07 (2.155) 0.00 1.72" Tee 13.20 1.32.0 0.35 2.1577 0.00 1.72" Tee 13.20 1.32.0 0.35 0.00 1.72" Tee 13.20 1.32.0 0.35 2.1557 0.00 1.72" Tee 3.06 1.11 0.04 1/2" Tee 13.20 1.32.0 0.35 2.1557 0.00 1.72" Tee 13.20 1.32.0 0.35 2.1557 0.00 1.72" Tee 13.20 1.32.0 0.35 0.00 1.72" Tee 13.20 1.32.0 0.35 0.00 1.72" Tee 13.20 1.32.0 0.35 0.00 1.72" Tee 3.06 1.11 0.04 1/2" Tee 3.73 2.80 0.00 1.72" Tee 3.06 1.11 0.04 1/2" Tee 3.00 0.000 155.00 No Tee 7.30 7.30 0.05 0.00 1.72" Tee 3.06 1.11 0.04 1/2" Tee 3.00 0.000 155.00 No Tee 7.30 7.30 0.05 1.158 0.00 1.12" Tee 3.00 0.000 155.00 No Tee 7.30 7.30 0.05 1.10" Tee 3.50 3.50 0.000 1.10" Tee 3.50 3.50 0.000 1.10" Tee 3.50 3.50 0.000 1.10" Tee 3.50 3.50 0.000 1.12" Tee 3.50 3.50 0.000 1.12" Tee 3.50 3.50 0.000 1.12" Tee 3.50 3.50 0.000 1.12" Tee 3.50 3.50	(3-1,21)			0.00			1" Ice	1.95	0.35	0.02
Beacon (1.83) Library (1.83) Library (0.00) Library (1.84) Library (0.00) Library (1.84) Library (1.84) Library (0.00) Library (1.84) Library	L-810 Tower Side-Light	А	From Leg	1.50	0.0000	83.00	No Ice	0.22	0.22	0.01
(1.83) 0.00 I" Ice 0.50 0.02 L-810 Tower Side-Light C From Leg 1.50 0.000 83.00 No Ice 0.22 0.22 0.01 Beacon 1.50 0.00 I" Ice 0.40 0.40 0.01 (3.83) 0.00 I" Ice 0.50 0.50 0.02 PD10054 A From Leg 0.00 I" Ice 5.90 5.90 0.02 (2'x2' Square - 1.85) 0.00 0.00 I" Ice 6.18 6.18 0.02 10'6'x4" Pipe Mount A From Leg 0.25 0.0000 I" Ice 6.18 6.18 0.02 10'6'x4" Pipe Mount A From Leg 0.00 I" Ice 6.25 6.25 0.15 432E-83I-01T TTA Unit C From Leg 0.00 I" Ice 3.66 1.11 0.04 10' PCS Frame (1) C From Leg 0.00 II'' Ice 3.62 0.07 0.32 1.2" Ice 1.3.14	Beacon		Trom Deg	1.50	0.0000	05.00	1/2" Ice	0.40	0.40	0.01
L-810 Tower Šide-Light C From Leg 1.50 0.0000 83.00 No Ice 0.22 0.22 0.01 Beacon -1.50 I''I ce 0.40 0.40 0.01 I/2'' Ice 5.62 5.62 0.02 I/2'' Ice 5.90 5.90 0.02 I/2'' Ice 5.90 5.90 0.02 I/2'' Ice 5.90 5.90 0.02 I/2'' Ice 5.62 5.62 0.15 0.00 I'' Ice 5.62 5.62 0.15 0.00 I'' Ice 5.62 5.62 0.15 I/2'' Ice 5.62 5.62 0.15 0.00 I'' Ice 5.62 5.62 0.15 I/2'' Ice 5.62 5.62 0.15 0.00 I'' Ice 5.62 5.62 0.15 0.00 I'' Ice 5.62 5.62 0.15 I/2'' Ice 3.06 I.11 0.04 I/2'' Ice 3.06 I.11 0.04 I/2'' Ice 3.06 I.11 0.04 I/2'' Ice 3.06 I.11 0.04 I/2'' Ice 3.14 I 3.14 0.09 I/2'' Ice 13.20 I 3.14 I 3.14 0.09 I/2'' Ice 13.20 I 3.20 0.35 2.1557) 0.00 I'' Ice 13.20 I 3.20 0.35 2.1557) 0.00 I'' Ice 13.20 I 3.20 0.35 2.1557) 0.00 I'' Ice 13.20 I 3.20 0.35 I/2'' Ice 3.14 I 3.14 0.09 I/2'' Ice 13.20 I 3.20 0.35 I/2'' Ice 3.10 I 3.10 0.07 I/2'' Ice 3.06 I.11 0.04 I/2'' Ice 3.06 I I 0.07 I/2'' Ice 3.06 I 0.00 I/2'' Ice 3.06 I 0.00 I/2'' Ice 3.06 I 0.00 I/2'' Ice 3.00 I 0.00 I'' Ice 5.05 I 3.80 0.30 I'' Ice 5.05 I 3.80 0.30 I'' Ice 5.05 I 3.80 0.30 I	(1.83)			0.00			1" Ice	0.50	0.50	0.02
Beacon -1.50 /2" lce 0.40 0.01 (3.83) 0.00 l" lce 0.50 0.50 0.02 PD10054 A From Leg 0.00 l" lce 0.50 0.00 (2"x2" Square - 1.85) 0.00 l" lce 5.62 5.62 0.02 (2"x2" Square - 1.85) 0.00 l" lce 6.18 6.18 0.00 10"6"x4" Pipe Mount A From Leg 0.25 0.000 85.00 No Ice 2.84 2.84 0.11 (Mt for 1.85) 0.00 -12" lce 5.62 5.62 0.19 432E-83I-01T TTA Unit C From Leg 0.00 -12" lce 3.06 1.11 0.04 0.00 -12" lce 3.06 1.11 0.04 0.07 0.28 0.26 0.07 DB228-A B From Leg 0.00 0.0000 155.00 No Ice 7.30 0.07 (2.155) 0.00 0.000 155.00 No Ice 7.30 <td>L-810 Tower Side-Light</td> <td>С</td> <td>From Leg</td> <td>1.50</td> <td>0.0000</td> <td>83.00</td> <td>No Ice</td> <td>0.22</td> <td>0.22</td> <td>0.01</td>	L-810 Tower Side-Light	С	From Leg	1.50	0.0000	83.00	No Ice	0.22	0.22	0.01
(3.83) 0.00 I'' Ice 0.50 0.50 0.02 PD10054 A From Leg 1.00 0.000 85.00 No Ice 5.62 5.62 0.02 (2'X2' Square - 1.85) 0.00 1'' Ice 6.18 6.18 0.02 10'6'x4" Pipe Mount A From Leg 0.25 0.000 1'' Ice 5.62 5.62 0.15 0.00 1'' Ice 5.62 5.62 0.15 0.00 1'' Ice 5.62 6.25 0.15 0.00	Beacon		Ũ	-1.50			1/2" Ice	0.40	0.40	0.01
PD10054 A From Leg 1.00 0.000 85.00 No lce 5.62 5.62 0.02 (2'x2' Square - 1.85) 0.00 1/2" lce 5.90 5.90 0.02 10'6",4" Pipe Mount (Mt for 1.85) A From Leg 0.25 0.000 85.00 No lce 2.84 2.84 0.01 432E-831-01T TTA Unit (Mt for 1.85) C From Leg 0.00 -1" lce 6.25 6.25 0.19 432E-831-01T TTA Unit C From Leg 0.00 -155.00 No lce 2.85 0.97 0.03 (2.155) 0.00 -11" lce 3.26 1.11 0.04 0.00 155.00 No lce 7.30 0.07 (2.155) 0.00 -11" lce 1.314 1.314 0.09 10' PCS Frame (1) C From Leg 0.00 155.00 No lce 9.00 0.25 (Mt for 2.155.1, 2.155.2 & 0.00 0.000 158.00 No lce 4.85 4.85 0.06 </td <td>(3.83)</td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td>1" Ice</td> <td>0.50</td> <td>0.50</td> <td>0.02</td>	(3.83)			0.00			1" Ice	0.50	0.50	0.02
(2'x2' Square - 1.85) 0.00 1/2" Ice 5.90 5.90 0.02 10'6"x4" Pipe Mount A From Leg 0.25 0.000 85.00 No Ice 2.84 2.84 0.11 (Mt for 1.85) 0.00	PD10054	Α	From Leg	1.00	0.0000	85.00	No Ice	5.62	5.62	0.02
0.00 I" Ice 6.18 6.18 0.02 10'6"x4" Pipe Mount A From Leg 0.25 0.000 No Ice 2.84 2.84 0.11 (Mt for 1.85) 0.00 I" Ice 6.62 6.62 0.15 432E-83I-01T TTA Unit C From Leg 0.00 -45.0000 155.00 No Ice 2.85 0.97 0.03 (3.155 - TTA Unit) 0.00 -45.0000 155.00 No Ice 2.85 0.97 0.03 (2.155) 0.00 I" Ice 3.28 1.26 0.07 0.228-A B From Leg 0.00 I" Ice 13.14 0.49 (2.155) 0.00 I" Ice 13.14 0.09 0.00 12" Ice 13.49 0.32 10 PCS Frame (1) C From Leg 0.00 155.00 No Ice 9.00 9.00 0.25 (At for 2.155.1, 2.155.2 & 0.00 0.000 I" Ice 13.20 0.35 (2.158) 0.00	(2'x2' Square - 1.85)			0.00			1/2" Ice	5.90	5.90	0.02
106"x4" Pipe Mount (Mt for 1.85) A From Leg 0.25 0.000 85.00 No Ice 2.84 2.84 0.11 (Mt for 1.85) 0.00 I/2" Ice 5.62 5.62 0.15 432E-83I-01T TTA Unit C From Leg 0.00 -45.0000 155.00 No Ice 2.85 0.97 0.03 (3.155 - TTA Unit) 0.00 -45.0000 155.00 No Ice 3.06 1.11 0.04 0.00 -000 -1" Ice 3.28 1.26 0.07 DB228-A B From Leg 1.00 0.0000 155.00 No Ice 7.30 7.30 0.07 (2.155) 0.00 -000 17" Ice 18.4 13.14 0.9 0.02 (Mt for 2.155.1, 2.4 0.00 0.0000 155.00 No Ice 9.00 9.00 0.25 (Mt for 2.155.1, 2.4 0.00 0.0000 155.00 No Ice 4.85 4.85 0.04 (2.158) 0.00 0.0000 158.00 No Ice 2.70 0.70 0.05 (1.158)				0.00			1" Ice	6.18	6.18	0.02
(Mt for 1.85) 0.00 1/2" Ice 5.62 5.62 0.15 432E-83I-01T TTA Unit C From Leg 0.00 -45.0000 155.00 No Ice 2.85 0.97 0.03 (3.155 - TTA Unit) 0.00 -45.0000 155.00 No Ice 2.85 0.97 0.03 (2.155) 0.00 1/2" Ice 3.06 1.11 0.04 (2.155) 0.00 1/2" Ice 13.14 13.14 0.09 (2.155) 0.00 0.00 1/2" Ice 13.14 13.14 0.09 (Wt for 2.155.1, 2.155.2 & 0.00 0.00 1/2" Ice 13.20 0.35 2.1557) 0.00 1/2" Ice 13.20 0.35 0.32 DB304-A B From Leg 0.00 1/2" Ice 13.20 0.35 (1.158) 0.00 0.0000 158.00 No Ice 2.70 2.70 0.05 (1.158) 0.00 0.000 1/2" Ice 3.10 3.10 0.07	10'6"x4" Pipe Mount	Α	From Leg	0.25	0.0000	85.00	No Ice	2.84	2.84	0.11
0.00 -45.0000 15.00 No Ice 2.85 0.97 0.03 (3.155 - TTA Unit) 0.00 -45.0000 155.00 No Ice 2.85 0.97 0.03 (3.155 - TTA Unit) 0.00 1" Ice 3.06 1.11 0.04 0.00 1" Ice 3.06 1.11 0.04 0.00 1" Ice 3.06 1.11 0.04 0.00 1" Ice 3.28 1.26 0.07 DB228-A B From Leg 0.00 No Ice 7.30 0.07 (2.155) 0.00 12" Ice 13.14 13.14 0.9 0.05 1/2" Ice 13.20 0.35 (Mt for 2.155.1, 2.155.2 & 0.00 1" Ice 17.40 17.40 0.45 DB304-A B From Leg 0.50 0.000 1" Ice 12.61 12.61 0.06 (2.158) 0.00 0.000 160.00 No Ice 2.85 0.97 0.03 (2.158) 0.00<	(Mt for 1.85)			0.00			1/2" Ice	5.62	5.62	0.15
432E-831-011 T1A Unit C From Leg 0.00 -45.0000 155.00 No Ice 2.85 0.97 0.03 (3.155 - TTA Unit) 0.00 12" Ice 3.06 1.11 0.04 0.00 I" Ice 3.28 1.26 0.07 DB228-A B From Leg 1.00 0.000 155.00 No Ice 7.30 7.30 0.07 (2.155) 0.00 0.00 12" Ice 13.14 13.14 0.09 0.00 (2.155) 0.00 0.000 155.00 No Ice 9.00 9.00 0.25 (Mt for 2.155.1, 2.155.2 & 0.00 0.000 155.00 No Ice 4.85 4.85 0.04 (2.158) 0.00 1/2" Ice 13.20 13.20 0.35 0.06 1/2" Ice 8.73 8.73 0.06 (2.158) 0.00 0.000 158.00 No Ice 2.85 0.97 0.03 (2.158) 0.00 0.000 160.00 No Ice 2.85 0.97 0.03 (1.158) 0.00 12" Ice		G		0.00	17.0000	1	1" Ice	6.25	6.25	0.19
(3.155 - 11A Unit) 0.00 1/2" Ice 3.06 1.11 0.04 0.00 1" Ice 3.28 1.26 0.07 DB228-A B From Leg 1.00 0.000 155.00 No Ice 7.30 0.07 (2.155) 0.00 1/2" Ice 13.14 13.14 0.09 0.00 1/2" Ice 13.14 13.14 0.09 10" PCS Frame (1) C From Leg 0.00 0.000 155.00 No Ice 9.00 9.00 0.25 (Mt for 2.155.1, 2.155.2 & 0.00 0.00 17" Ice 13.20 13.20 0.35 2.1557) 0.00 17" Ice 17.40 17.40 0.45 DB304-A B From Leg 0.00 158.00 No Ice 8.73 0.06 (2.158) 0.00 1/2" Ice 8.73 0.06 1/2" Ice 3.10 0.07 flash Beacon Lighting A From Leg 0.00 0.000 160.00 No Ice 2.85 0.97 0.03 (2-3.159 - TTA) 0.00 0.00 17" Ice	432E-831-011 TTA Unit	С	From Leg	0.00	-45.0000	155.00	No Ice	2.85	0.97	0.03
DB228-A B From Leg 1.00 0.000 155.00 No Ice 7.30 7.30 0.07 (2.155) 0.00 1/2" Ice 13.14 13.14 0.9 0.00 1/2" Ice 13.14 13.14 0.9 10" PCS Frame (1) C From Leg 0.00 0.000 155.00 No Ice 9.00 9.00 0.25 (Mt for 2.155.1, 2.155.2 & 0.00 0.000 155.00 No Ice 9.00 9.00 0.25 (2.155) 0.00 1" Ice 17.40 17.40 0.45 0.45 DB304-A B From Leg 0.50 0.00 12" Ice 8.73 8.73 0.06 (2.158) 0.00 17" Ice 3.10 3.10 0.07 Flash Beacon Lighting (1.158) A From Leg 0.00 160.00 No Ice 2.85 0.97 0.03 (2-3.159 - TTA) 0.00 0.000 159.00 No Ice 3.73 2.80 0.30 (2	(3.155 - 11A Unit)			0.00			1/2" Ice	3.06	1.11	0.04
DB226A B From Leg 1.00 0.000 153.00 No ice 7.30 7.30 0.07 (2.155) 0.00 1/2" Ice 13.14 13.14 0.09 10" PCS Frame (1) C From Leg 0.00 0.000 155.00 No ice 9.00 9.00 0.25 (Mt for 2.155.1, 2.155.2 & 0.00 0.00 1/2" Ice 13.20 13.20 0.35 2.1557) 0.00 1" Ice 17.40 17.40 0.45 DB304-A B From Leg 0.00 1/2" Ice 8.73 8.73 0.06 (2.158) 0.00 1/2" Ice 8.73 8.73 0.06 1/2" Ice 10.07 Flash Beacon Lighting A From Leg 0.00 0.000 160.00 No Ice 2.85 0.97 0.03 (2-3.159 - TTA) 0.00 0.000 159.00 No Ice 2.85 0.97 0.03 (2-3.159 - TTA) 0.00 0.000 159.00 No Ice 3.73 2.80 0.30 (DNK-5) 0.00 1/2" Ice	DD228 A	р	From Log	0.00	0.0000	155.00	I' Ice	5.28	1.20	0.07
10' PCS Frame (1) C From Leg 0.00 1" Ice 18.98 18.98 0.12 10' PCS Frame (1) C From Leg 0.00 0.000 155.00 No Ice 9.00 9.00 0.25 (Mt for 2.155.1, 2.155.2 & 0.00 1/2" Ice 13.20 13.20 0.35 2.1557) 0.00 1" Ice 17.40 17.40 0.45 DB304-A B From Leg 2.50 0.000 12" Ice 8.73 0.06 (2.158) 0.00 12" Ice 8.73 0.06 12" Ice 8.73 0.06 (1.158) 0.00 0.00 160.00 No Ice 2.70 2.70 0.05 (1.158) 0.00 0.00 1/2" Ice 3.10 3.10 0.07 432E-83I-01T TTA Unit C From Face 0.00 1/2" Ice 3.28 1.26 0.07 (2-3.159 - TTA) 0.00 0.000 1/2" Ice 3.36 1.11 0.04 * Ice Shields for Dishes	(2.155)	Б	FIOII Leg	0.00	0.0000	155.00	1/2" Ice	13.14	13.14	0.07
10° PCS Frame (1) C From Leg 0.00 0.000 155.00 No Ice 9.00 9.00 0.25 (Mt for 2.155.1, 2.155.2 & 0.00 0.000 155.00 No Ice 9.00 9.00 0.35 2.1557) 0.00 1" Ice 17.40 17.40 0.45 DB304-A B From Leg 2.50 0.000 158.00 No Ice 4.85 4.85 0.04 (2.158) 0.00 0.00 158.00 No Ice 2.70 0.05 (1.158) 0.00 0.00 160.00 No Ice 2.70 0.05 (1.158) 0.00 0.00 160.00 No Ice 2.85 0.97 0.03 (2-3.159 - TTA) 0.00 0.000 159.00 No Ice 2.85 0.97 0.03 (DNK-5) 0.00 1100 No Ice 3.73 2.80 0.30 (DNK-5) 0.00 115.00 No Ice 3.73 2.80 0.30 (DNK-5) 0.00 115.00 No Ice 3.73 2.80 0.30 <tr< td=""><td>(2.155)</td><td></td><td></td><td>0.00</td><td></td><td></td><td>1" Ice</td><td>18.08</td><td>18.08</td><td>0.12</td></tr<>	(2.155)			0.00			1" Ice	18.08	18.08	0.12
(Mt for 2.155.1, 2.155.2 & 0.00 0.00 1/2" Ice 13.20 13.20 0.35 (Mt for 2.155.7) 0.00 1" Ice 17.4" Ice	10' PCS Frame (1)	С	From Leg	0.00	0.0000	155.00	No Ice	9.00	9.00	0.25
2.1557) 0.00 1" Ice 17.40 17.40 0.45 DB304-A B From Leg 2.50 0.000 158.00 No Ice 4.85 4.85 0.04 (2.158) 0.00 1/2" Ice 8.73 8.73 0.06 Flash Beacon Lighting A From Leg 0.00 0.000 160.00 No Ice 2.70 2.70 0.05 (1.158) 0.00 0.00 1/2" Ice 3.10 3.10 0.07 432E-83I-01T TTA Unit C From Face 0.00 1/2" Ice 3.06 1.11 0.04 (2-3.159 - TTA) 0.00 0.000 159.00 No Ice 2.85 0.97 0.03 (2-3.159 - TTA) 0.00 0.000 1159.00 No Ice 3.73 2.80 0.30 (DNK-5) 0.00 11" Ice 3.73 2.80 0.30 0.55 0.00 11" Ice 5.05 3.80 0.81 4"x96"x72" Ice Canopy A From Leg 3.00 0.000 1/2" Ice 4.39 3.30 0.55	(Mt for 2.155.1, 2.155.2 &	C	r tom Leg	0.00	0.0000	155.00	1/2" Ice	13.20	13.20	0.35
DB304-A (2.158) B From Leg 2.50 0.00 0.000 158.00 No Ice 4.85 4.85 0.04 (2.158) 0.00 1/2" Ice 8.73 8.73 0.06 Flash Beacon Lighting (1.158) A From Leg 0.00 0.000 160.00 No Ice 2.70 2.70 0.05 (1.158) 0.00 0.00 160.00 No Ice 2.70 2.70 0.05 (2-3.159 - TTA) 0.00 0.000 159.00 No Ice 2.85 0.97 0.03 (2-3.159 - TTA) 0.00 0.00 172" Ice 3.06 1.11 0.04 (DNK-5) 0.00 112" Ice 3.28 1.26 0.07 * Ice Shields for Dishes	2.1557)			0.00			1" Ice	17.40	17.40	0.45
(2.158) 0.00 1/2" Ice 8.73 8.73 0.06 Flash Beacon Lighting A From Leg 0.00 0.0000 160.00 No Ice 2.70 2.70 0.05 (1.158) 0.00 0.00 1/2" Ice 3.10 3.10 0.07 432E-83I-01T TTA Unit C From Face 0.00 0.0000 159.00 No Ice 2.85 0.97 0.03 (2-3.159 - TTA) 0.00 0.000 159.00 No Ice 3.28 1.26 0.07 * Ice Shields for Dishes 0.00 0.0000 115.00 No Ice 3.73 2.80 0.30 (DNK-5) 0.00 0.000 115.00 No Ice 3.73 2.80 0.30 (DNK-5) 0.00 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 115.00 No Ice 3.73 2.80 0.30	DB304-A	В	From Leg	2.50	0.0000	158.00	No Ice	4.85	4.85	0.04
No. I'' Ice 12.61 12.61 0.07 Flash Beacon Lighting (1.158) A From Leg 0.00 0.0000 160.00 No Ice 2.70 2.70 0.05 (1.158) 0.00 0.00 1/2" Ice 3.10 3.10 0.07 432E-83I-01T TTA Unit (2-3.159 - TTA) C From Face 0.00 0.0000 159.00 No Ice 2.85 0.97 0.03 (2-3.159 - TTA) From Face 0.00 0.000 17" Ice 3.06 1.11 0.04 0.00 0.00 1" Ice 3.28 1.26 0.07 * Ice Shields for Dishes 4"x96"x72" Ice Canopy A From Leg 3.00 0.0000 115.00 No Ice 3.73 2.80 0.30 (DNK-5) 0.00 11" Ice 5.05 3.80 0.81 4"x96"x72" Ice Canopy C From Leg 3.00 0.0000 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 17" Ice	(2.158)		C	0.00			1/2" Ice	8.73	8.73	0.06
Flash Beacon Lighting (1.158) A From Leg 0.00 0.0000 160.00 No Ice 2.70 2.70 0.05 432E-83I-01T TTA Unit (2-3.159 - TTA) C From Face 0.00 0.0000 159.00 No Ice 2.85 0.97 0.03 * Ice Shields for Dishes 0.00 0.0000 159.00 No Ice 3.73 2.80 0.30 (DNK-5) 0.00 0.000 115.00 No Ice 3.73 2.80 0.30 4"x96"x72" Ice Canopy A From Leg 3.00 0.0000 115.00 No Ice 3.73 2.80 0.30 4"x96"x72" Ice Canopy C From Leg 3.00 0.0000 115.00 No Ice 3.73 2.80 0.30 (DNK-5) 0.00 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 115.00 No Ice 3.73 2.80 0				0.00			1" Ice	12.61	12.61	0.07
(1.158) 0.00 1/2" Ice 3.10 0.07 0.00 0.00 1" Ice 3.50 0.09 432E-83I-01T TTA Unit (2-3.159 - TTA) C From Face 0.00 0.0000 159.00 No Ice 2.85 0.97 0.03 * Ice Shields for Dishes 0.00 0.000 11" Ice 3.28 1.26 0.07 * Ice Shields for Dishes	Flash Beacon Lighting	Α	From Leg	0.00	0.0000	160.00	No Ice	2.70	2.70	0.05
0.00 1" Ice 3.50 0.09 432E-83I-01T TTA Unit (2-3.159 - TTA) C From Face 0.00 0.0000 159.00 No Ice 2.85 0.97 0.03 * Ice Shields for Dishes 0.00 0.000 11" Ice 3.28 1.26 0.07 * Ice Shields for Dishes 4"x96"x72" Ice Canopy A From Leg 3.00 0.0000 115.00 No Ice 3.73 2.80 0.30 (DNK-5) 0.00 115.00 No Ice 3.73 2.80 0.30 4"x96"x72" Ice Canopy C From Leg 3.00 0.0000 115.00 No Ice 3.73 2.80 0.30 4"x96"x72" Ice Canopy C From Leg 3.00 0.0000 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00	(1.158)			0.00			1/2" Ice	3.10	3.10	0.07
432E-83I-01T TTA Unit (2-3.159 - TTA) C From Face 0.00 0.0000 159.00 No Ice 2.85 0.97 0.03 * Ice Shields for Dishes 0.00 1/2" Ice 3.06 1.11 0.04 * Ice Shields for Dishes 1" Ice 3.28 1.26 0.07 * Ice Shields for Dishes 0.00 0.000 115.00 No Ice 3.73 2.80 0.30 (DNK-5) 0.00 1/2" Ice 4.39 3.30 0.55 0.00 115.00 No Ice 3.73 2.80 0.30 (DNK-5) 0.00 115.00 No Ice 3.73 2.80 0.30 4"x96"x72" Ice Canopy C From Leg 3.00 0.000 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 115.00 No Ice 3.73 2.80 0.30 0.00 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 1/2" Ice 4.39 3.30 0.55 0.00 115.00 No Ice 3.73 2.80				0.00			1" Ice	3.50	3.50	0.09
(2-3.159 - TTA) 0.00 1/2" Ice 3.06 1.11 0.04 0.00 1" Ice 3.28 1.26 0.07 * Ice Shields for Dishes 4"x96"x72" Ice Canopy A From Leg 3.00 0.000 115.00 No Ice 3.73 2.80 0.30 (DNK-5) 0.00 1/2" Ice 4.39 3.30 0.55 0.00 115.00 No Ice 3.73 2.80 0.30 4"x96"x72" Ice Canopy C From Leg 3.00 0.000 115.00 No Ice 3.73 2.80 0.30 4"x96"x72" Ice Canopy C From Leg 3.00 0.0000 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 115.00 No Ice 3.73 2.80 0.30 0.00 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 1/2" Ice 4.39 3.30 0.55 0.00 1" Ice 5.05 3.80 0.81 * AT&T Equipment	432E-83I-01T TTA Unit	С	From Face	0.00	0.0000	159.00	No Ice	2.85	0.97	0.03
* Ice Shields for Dishes 0.00 1" Ice 3.28 1.26 0.07 * Ice Shields for Dishes 4"x96"x72" Ice Canopy A From Leg 3.00 0.000 115.00 No Ice 3.73 2.80 0.30 (DNK-5) 0.00 1/2" Ice 4.39 3.30 0.55 0.00 115.00 No Ice 3.73 2.80 0.30 4"x96"x72" Ice Canopy C From Leg 3.00 0.0000 115.00 No Ice 3.73 2.80 0.30 4"x96"x72" Ice Canopy C From Leg 3.00 0.0000 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 115.00 No Ice 3.73 2.80 0.30 0.00 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 1/2" Ice 4.39 3.30 0.55 0.00 1" Ice 5.05 3.80 0.81 * AT&T Equipment	(2-3.159 - TTA)			0.00			1/2" Ice	3.06	1.11	0.04
4"x96"x72" Ice Canopy A From Leg 3.00 0.000 115.00 No Ice 3.73 2.80 0.30 (DNK-5) 0.00 1/2" Ice 4.39 3.30 0.55 0.00 1" Ice 5.05 3.80 0.81 4"x96"x72" Ice Canopy C From Leg 3.00 0.000 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 0.000 115.00 No Ice 3.73 2.80 0.30 * AT&T Equipment 0.00 115.00 No Ice 3.73 2.80 0.30	* Ing Chi-ld- from Did			0.00			I" Ice	3.28	1.26	0.07
4 x96 x72 recentopy A From Leg 5.00 0.000 115.00 No rec 5.75 2.80 0.30 (DNK-5) 0.00 1/2" Ice 4.39 3.30 0.55 0.00 1" Ice 5.05 3.80 0.81 4"x96"x72" Ice Canopy C From Leg 3.00 0.0000 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 115.00 No Ice 3.73 2.80 0.30 * AT&T Equipment 0.00 115.00 No Ice 3.73 2.80 0.81	" Ice Snields for Dishes	٨	Enore Lag	2.00	0.0000	115.00	No Lee	2 7 2	2 00	0.20
(DINES) 0.00 1/2" Ice 4.39 5.30 0.55 0.00 0.00 1" Ice 5.05 3.80 0.81 4"x96"x72" Ice Canopy C From Leg 3.00 0.000 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 1/2" Ice 4.39 3.30 0.55 0.00 1/2" Ice 5.05 3.80 0.81 * AT&T Equipment	+ x90 x/2 Ice Canopy	А	FIOID Leg	5.00	0.0000	115.00	1/2" Lag	5./5 1 20	2.80	0.50
4"x96"x72" Ice Canopy C From Leg 3.00 0.000 115.00 No Ice 3.73 2.80 0.30 (DNK-6) 0.00 1/2" Ice 4.39 3.30 0.55 * AT&T Equipment 0.00 1" Ice 5.05 3.80 0.81	(DINK-3)			0.00			172 ICe	4.39	3.50	0.35
(DNK-6) 0.00 1/2" Ice 4.39 3.30 0.55 * AT&T Equipment	4"x96"x72" Ice Canony	С	From Leg	3.00	0.0000	115.00	No Ice	3 73	2.80	0.30
* AT&T Equipment 0.00 1" Ice 5.05 3.80 0.81	(DNK-6)	C	1 Ioni Log	0.00	0.0000	115.00	1/2" Ice	4.39	3.30	0.55
* AT&T Equipment	(0.00			1" Ice	5.05	3.80	0.81
	* AT&T Equipment									

two	Job		Page
inx i ower		20 of 65	
AECOM	Project		Date
500 Enterprise Drive		Middlebury, CT	06:59:10 07/02/21
Rocky Hill, CT	Client	0.11/ 0.07 () (75 0.00	Designed by
Phone: (860) 529-8882 FAX:		SMK-007 / VZ5-228	KAB

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or	Туре	Horz	Adjustment			Front	Side	
	Leg		Lateral						
			Vert G	0	A		62	62	V
			ji ft		Ji		Ji	Л	A
			ft						
2020/06/23			2						
Commscope SFG22 (14'	Α	From Leg	0.50	0.0000	140.00	No Ice	10.50	2.50	0.52
Sector Frame)			0.00			1/2" Ice	14.30	3.00	0.67
(AT&T Proposed)	_		0.00			1" Ice	18.10	3.50	0.82
Commscope SFG22 (14'	в	From Leg	0.50	0.0000	140.00	No Ice	10.50	2.50	0.52
Sector Frame)			0.00			1/2" Ice	14.30	3.00	0.67
(A1&1 Proposed) Commiscone SEG22 (14)	C	From Leg	0.00	0.0000	140.00	I lce	18.10	3.50	0.82
Sector Frame)	C	FIOII Leg	0.50	0.0000	140.00	1/2" Ice	14 30	2.50	0.52
(AT&T Proposed)			0.00			1" Ice	18.10	3 50	0.82
7770.00	А	From Leg	3.00	0.0000	140.00	No Ice	5.90	4.01	0.05
(ATT)			-6.00			1/2" Ice	6.34	4.64	0.10
. ,			0.00			1" Ice	6.78	5.28	0.15
CCI DMP65R-BU8D Panel	Α	From Leg	3.00	0.0000	140.00	No Ice	17.87	8.12	0.11
(AT&T Proposed)			-3.00			1/2" Ice	18.50	8.72	0.21
			0.00			1" Ice	19.14	9.32	0.31
CCI OPA65R-BU8D Panel	Α	From Leg	3.00	0.0000	140.00	No Ice	18.09	8.20	0.08
(AT&T Proposed)			3.00			1/2" Ice	18.72	8.79	0.18
TDA (5D I CULULIU		Energy Lass	0.00	0.0000	1.40.00	I" Ice	19.36	9.40	0.28
IPA-05K-LCUUUU-H8	А	From Leg	1.50	0.0000	140.00	1/2" Ice	13.08	10.58	0.10
(ATT)			-0.00			172 ICC	12.01	13.05	0.20
RRUS-32	Δ	From Leg	1.50	0.0000	140.00	No Ice	3.88	2 76	0.01
(ATT)	11	110111 Leg	-5.00	0.0000	140.00	1/2" Ice	4 14	2.98	0.11
((((())))))))))))))))))))))))))))))))))			0.00			1" Ice	4.41	3.22	0.15
RRUS-12	А	From Leg	1.50	0.0000	140.00	No Ice	3.67	1.49	0.06
(ATT)			-5.00			1/2" Ice	3.93	1.67	0.08
			0.00			1" Ice	4.19	1.87	0.11
Radio 4449 B5/B12 RRH	Α	From Leg	1.50	0.0000	140.00	No Ice	1.66	1.16	0.08
(AT&T Proposed)			-5.00			1/2" Ice	1.82	1.29	0.10
			0.00			1" Ice	1.98	1.44	0.11
Radio 4478 B14 RRH	А	From Leg	1.50	0.0000	140.00	No Ice	1.08	1.08	0.06
(AT&T Proposed)			-5.00			1/2" Ice	1.21	1.21	0.07
DC(4, 40, 60, 10, 9E(0, arc; 4))		Enom Las	0.00	0.0000	146.00	I" Ice	1.35	1.35	0.09
DC0-48-00-18-8F (Squid)	A	From Leg	0.50	0.0000	146.00	1/2" Log	1.27	1.27	0.02
(ATT)			0.00			1" Ice	1.40	1.40	0.04
TT19-08BP111-001 TMA's	А	From Leg	1.50	0.0000	140.00	No Ice	0.55	0.45	0.02
(ATT)		r tom Deg	0.00	0.0000	1 10100	1/2" Ice	0.65	0.53	0.02
			0.00			1" Ice	0.75	0.63	0.03
(2) LGP21401 Diplexer	А	From Leg	1.50	0.0000	140.00	No Ice	1.10	0.21	0.01
(ATT)			0.00			1/2" Ice	1.24	0.27	0.02
			0.00			1" Ice	1.38	0.35	0.03
7770.00	в	From Leg	3.00	0.0000	140.00	No Ice	5.90	4.01	0.05
(ATT)			-6.00			1/2" Ice	6.34	4.64	0.10
	D		0.00	0.0000	1 40 00	I" Ice	6.78	5.28	0.15
CCI DMP65R-BU8D Panel	в	From Leg	3.00	0.0000	140.00	No Ice	12.50	8.12	0.11
(AT&T Proposed)			-5.00			1/2 ICe	10.30	0.72	0.21
CCI OPA65R-BU8D Papel	в	From Leg	3.00	0.0000	140.00	No Ice	18.09	8.20	0.08
(AT&T Proposed)	D	r tom Leg	3.00	0.0000	110.00	1/2" Ice	18.72	8.79	0.18
(0.00			1" Ice	19.36	9.40	0.28
TPA-65R-LCUUUU-H8	в	From Leg	1.50	0.0000	140.00	No Ice	13.08	10.38	0.10
Panel w/ RET		5	-6.00			1/2" Ice	13.81	11.79	0.20
(ATT)			0.00			1" Ice	14.54	13.05	0.31
RRUS-32	В	From Leg	1.50	0.0000	140.00	No Ice	3.88	2.76	0.08
(ATT)			-5.00			1/2" Ice	4.14	2.98	0.11

tnxTower	Job
AECOM	Project

Client

160' Self Support Lattice - CSP #20

21 of 65

Page

Date 06:59:10 07/02/21

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or Lea	Туре	Horz Lateral	Adjustment			Front	Side	
	Leg		Vert						
			ft	0	ft		ft^2	ft^2	K
			ft ft						
			0.00			1" Ice	4.41	3.22	0.15
RRUS-12	В	From Leg	1.50	0.0000	140.00	No Ice	3.67	1.49	0.06
(ATT)			-5.00			1/2" Ice	3.93	1.67	0.08
	-		0.00			1" Ice	4.19	1.87	0.11
Radio 4449 B5/B12 RRH	В	From Leg	1.50	0.0000	140.00	No Ice	1.66	1.16	0.08
(A1&1 Proposed)			-5.00			1/2" Ice	1.82	1.29	0.10
Radio 4478 B14 RRH	в	From Leg	1.50	0.0000	140.00	No Ice	1.08	1.08	0.06
(AT&T Proposed)		U	-5.00			1/2" Ice	1.21	1.21	0.07
			0.00			1" Ice	1.35	1.35	0.09
DC6-48-60-18-8F (Squid)	В	From Leg	0.50	0.0000	140.00	No Ice	1.27	1.27	0.02
Suppressor			0.00			1/2" Ice	1.46	1.46	0.04
(A11) TT19-08BP111-001 TMA's	в	From Leg	1.50	0.0000	140.00	No Ice	0.55	0.45	0.03
(ATT)	D	1 Ioni Leg	0.00	0.0000	110.00	1/2" Ice	0.65	0.53	0.02
			0.00			1" Ice	0.75	0.63	0.03
(2) LGP21401 Diplexer	В	From Leg	1.50	0.0000	140.00	No Ice	1.10	0.21	0.01
(ATT)			0.00			1/2" Ice	1.24	0.27	0.02
7770.00	C	From Log	0.00	0.0000	140.00	I" Ice	1.38	0.35	0.03
(ATT)	C	FIOIII Leg	-6.00	0.0000	140.00	1/2" Ice	6.34	4.64	0.03
			0.00			1" Ice	6.78	5.28	0.15
DMP65R-BU6D	С	From Leg	3.00	0.0000	140.00	No Ice	12.71	5.62	0.10
(AT&T Proposed)			-3.00			1/2" Ice	13.21	6.07	0.17
	G		0.00	0.0000	1 10 00	1" Ice	13.71	6.53	0.25
OPA65R-BU6D	С	From Leg	3.00	0.0000	140.00	No Ice	12.87	5.67	0.06
(AT&T Proposed)			5.00			1/2 1ce	13.57	6.15	0.14
OS66512	С	From Leg	1.50	0.0000	140.00	No Ice	8.13	6.80	0.11
(ATT)		Ð	-6.00			1/2" Ice	8.59	7.27	0.16
			0.00			1" Ice	9.05	7.72	0.23
RRUS-32	С	From Leg	1.50	0.0000	140.00	No Ice	3.88	2.76	0.08
(ATT)			-5.00			1/2" Ice	4.14	2.98	0.11
RRUS-12	С	From Leg	1.50	0.0000	140.00	No Ice	3.67	1.49	0.06
(ATT)	0	Trom Deg	-5.00	010000	1 10100	1/2" Ice	3.93	1.67	0.08
			0.00			1" Ice	4.19	1.87	0.11
Radio 4449 B5/B12 RRH	С	From Leg	1.50	0.0000	140.00	No Ice	1.66	1.16	0.08
(AT&T Proposed)			-5.00			1/2" Ice	1.82	1.29	0.10
Radio 4478 B14 RRH	C	From Leg	0.00	0.0000	140.00	No Ice	1.98	1.44	0.11
(AT&T Proposed)	C	1 Ioni Leg	-5.00	0.0000	110.00	1/2" Ice	1.21	1.21	0.07
()			0.00			1" Ice	1.35	1.35	0.09
DC6-48-60-18-8F (Squid)	С	From Leg	0.50	0.0000	140.00	No Ice	1.27	1.27	0.02
Suppressor			0.00			1/2" Ice	1.46	1.46	0.04
(AT&T Proposed)	C	Enom Log	0.00	0.0000	1.40.00	I" Ice	1.66	1.66	0.05
(ATT)	C	FIOID Leg	0.00	0.0000	140.00	1/2" Ice	0.55	0.43	0.02
			0.00			1" Ice	0.75	0.63	0.03
(2) LGP21401 Diplexer	С	From Leg	1.50	0.0000	140.00	No Ice	1.10	0.21	0.01
(ATT)			0.00			1/2" Ice	1.24	0.27	0.02
* Tomer I D			0.00			1" Ice	1.38	0.35	0.03
[*] Tower L.K. Lightning Rod 1/2"v4' on 15'	C	From Leg	0.00	0.0000	160.00	No Ice	4 4 1	4 4 1	0.13
Pole	C	1 tom Leg	0.00	0.0000	100.00	1/2" Ice	7.40	7.40	0.19
(Tower - LR)			8.00			1" Ice	9.29	9.29	0.26
2" Dia 10' Omni	в	From Leg	6.00	0.0000	124.00	No Ice	2.00	2.00	0.01

Anna Tanu an	Job		Page		
<i>tnx1ower</i>		160' Self Support Lattice - CSP #20			
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 06:59:10 07/02/21		
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB		

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or	Туре	Horz	Adjustment			Front	Side	
	Leg		Lateral						
			Vert	0	0		67	67	
			ft A	0	ft		ft	ft	K
			JI A						
(2.124)			0.00			1/2" Ice	3.03	3.03	0.03
(2.124)			1.00			1" Ice	4.06	4.06	0.03
Pirod 6' Side Mount Standoff	в	From Leg	0.00	0.0000	124.00	No Ice	4.00	4.00	0.07
(1)	Б	Tiom Log	0.00	0.0000	121.00	1/2" Ice	6.12	6.12	0.13
(Mt for 2.124)			0.00			1" Ice	7.27	7.27	0.19
DS7C09P36D-D	А	From Leg	3.00	0.0000	160.00	No Ice	4.80	4.80	0.08
(CSP)		5	-2.00			1/2" Ice	7.22	7.22	0.12
()			12.00			1" Ice	9.67	9.67	0.17
DS7C09P36D-D	Α	From Leg	3.00	0.0000	160.00	No Ice	4.80	4.80	0.08
(CSP)		e	2.00			1/2" Ice	7.22	7.22	0.12
. ,			12.00			1" Ice	9.67	9.67	0.17
DS7C09P36D-D	С	From Leg	3.00	0.0000	160.00	No Ice	4.80	4.80	0.08
(CSP)		e	-2.00			1/2" Ice	7.22	7.22	0.12
			12.00			1" Ice	9.67	9.67	0.17
DS7C09P36D-D	С	From Leg	3.00	0.0000	160.00	No Ice	4.80	4.80	0.08
(CSP)		e	2.00			1/2" Ice	7.22	7.22	0.12
			12.00			1" Ice	9.67	9.67	0.17
Commscope	Α	From Leg	1.50	0.0000	160.00	No Ice	13.20	9.20	0.85
SFG23HD-12-4-96 Mount		_	0.00			1/2" Ice	19.50	14.60	0.95
Assembly			0.00			1" Ice	25.80	19.50	1.09
(CSP)									
Commscope	С	From Leg	1.50	0.0000	160.00	No Ice	13.20	9.20	0.85
SFG23HD-12-4-96 Mount			0.00			1/2" Ice	19.50	14.60	0.95
Assembly			0.00			1" Ice	25.80	19.50	1.09
(CSP)									
JMA MX06FR0660-03	Α	From Leg	2.00	0.0000	77.50	No Ice	9.87	7.34	0.10
(VZW)			-4.00			1/2" Ice	10.34	7.78	0.16
			0.00			1" Ice	10.82	8.24	0.24
JMA MX06FR0660-03	Α	From Leg	2.00	0.0000	77.50	No Ice	9.87	7.34	0.10
(VZW)			-2.00			1/2" Ice	10.34	7.78	0.16
			0.00			1" Ice	10.82	8.24	0.24
JMA 2" Edge to Edge	А	From Leg	2.00	0.0000	77.50	No Ice	2.30	0.15	0.02
(VZW)			-3.00			1/2" Ice	2.54	0.21	0.04
			0.00	0.0000		1" Ice	2.79	0.28	0.05
JMA MX06FR0660-03	В	From Leg	2.00	0.0000	77.50	No Ice	9.87	7.34	0.10
(VZW)			-4.00			1/2" Ice	10.34	7.78	0.16
			0.00	0.0000	77.50	I lee	10.82	8.24	0.24
JMA MX06FR0660-03	в	From Leg	2.00	0.0000	//.50	No Ice	9.87	7.34	0.10
(VZW)			-2.00			1/2" Ice	10.34	7.78	0.16
	D	БТ	0.00	0.0000	77.50	1 Ice	10.82	8.24	0.24
JMA 2" Edge to Edge	В	From Leg	2.00	0.0000	//.50	No Ice	2.30	0.15	0.02
(VZW)			-5.00			1/2 100	2.54	0.21	0.04
Samana MT(407 77)	٨	Enour Loo	0.00	0.0000	77.50	I lee	2.79	0.28	0.05
Samsung M1040/-//A	A	From Leg	2.00	0.0000	//.50	NO ICE	4.70	1.84	0.09
(VZW)			5.00			1/2 100	4.99	2.07	0.12
Samana MT6407 774	р	Enom Log	2.00	0.0000	77.50	No Ioo	5.28	2.30	0.15
Samsung M16407-77A	Б	From Leg	2.00	0.0000	//.50	1/2" Ice	4.70	1.64	0.09
(*2**)			0.00			1" Ice	5.29	2.07	0.12
(2) DDU	٨	From Log	2.00	0.0000	77 50	No Ice	2.12	2.30	0.15
	А	From Leg	2.00	0.0000	77.50	1/2" Log	2.15	1.20	0.07
(v2w)			0.00			1" Ice	2.51	1.24	0.09
(3) PPH	в	From Leg	2.00	0.0000	77 50	No Ice	2.50	1.49	0.11
(V7W)	D	From Leg	0.00	0.0000	77.50	1/2" Ice	2.15	1.20	0.07
(1211)			0.00			1" Ice	2.51	1.54	0.09
			0.00			1 100	2.50	1.49	0.11
Project

Client

SMK-007 / VZ5-228

KAB

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

	Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight	
				ft	0	0	ft	ft		ft^2	K	
HPD2-4.7	Α	Paraboloid	From	0.50	Worst		159.00	2.00	No Ice	3.14	0.03	
(NWCT (C-A Face))		w/Shroud (HP)	Face	0.00					1/2" Ice	3.41	0.04	
				0.00					1" Ice	3.68	0.06	
6' w/ Radome	в	Paraboloid	From	1.00	Worst		110.00	6.00	No Ice	28.27	0.23	
(2.110)		w/Radome	Leg	0.00					1/2" Ice	29.07	0.34	
			-	0.00					1" Ice	29.86	0.45	
6' w/ Radome	С	Paraboloid	From	1.00	Worst		110.00	6.00	No Ice	28.27	0.23	
(3.110)		w/Radome	Leg	0.00					1/2" Ice	29.07	0.34	
			e	0.00					1" Ice	29.86	0.45	

222-H Verification Constants

Constant Value K _d 0.85 Ice Thickness Importance Factor 1.15		
K_d0.85Ice Thickness Importance Factor1.15	Constant	Value
Ice Thickness Importance Factor 1.15	K _d	0.85
7	Ice Thickness Importance Factor	1.15
Z _g 900	Zg	900
α 9.5	α	9.5
K _{zmin} 0.85	K_{zmin}	0.85
K _c 1	K _c	1
K _t 0.53	K	0.53
f 2	f	2
K _e 1	K _e	1

222-H Section Verification ArRr By Element

Casting	Flam	C:	C	C	F			4	4	4 D	A D
Section	Elem.	Size	C	C	P	e	e /Tere	A_r	A_r	$A_r K_r$	$A_r K_r$
Elevation	num.			w/ice	a		w/ice		w/ice		w/Ice
C					С			62	62	02	62
Jt					e			JE	JE	JE	JE
T1	1	P.5x.250	69.625	42.063	C	0.175	0.315	4.171	6.552	1.925	3.956
160.00-150.00											
	1	P.5x.250	69.625	42.063	Α	0.175	0.315	4.171	6.552	1.925	3.956
	2	P.5x.250	69.625	42.063	С	0.175	0.315	4.171	6.552	1.925	3.956
	2	P.5x.250	69.625	42.063	В	0.175	0.315	4.171	6.552	1.925	3.956
	3	P.5x.250	69.625	42.063	В	0.175	0.315	4.171	6.552	1.925	3.956
	3	P.5x.250	69.625	42.063	А	0.175	0.315	4.171	6.552	1.925	3.956
					Α		Sum:	8.342	13.103	3.849	7.912
					В			8.342	13.103	3.849	7.912
					С			8.342	13.103	3.849	7.912
T2	22	P.5x.250	70.015	42.31	С	0.13	0.236	10.428	16.384	4.599	9.530
150.00-125.00											
	22	P.5x.250	70.015	42.31	Α	0.13	0.236	10.428	16.384	4.599	9.530
	23	P.5x.250	70.015	42.31	С	0.13	0.236	10.428	16.384	4.599	9.530
	23	P.5x.250	70.015	42.31	В	0.13	0.236	10.428	16.384	4.599	9,530
	24	P.5x.250	70.015	42.31	B	0.13	0.236	10.428	16.384	4,599	9.530
	24	P.5x.250	70.015	42.31	Ā	0.13	0.236	10.428	16.384	4.599	9.530

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

Page 24 of 65

Date 06:59:10 07/02/21

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

Section	Elem.	Size	С	С	F	е	е	A_r	A_r	$A_r R_r$	$A_r R_r$
Elevation	Num.			w/Ice	a		w/Ice		w/Ice		w/Ice
ft					e			ft ²	ft²	ft²	ft^2
					Α		Sum:	20.856	32.768	9.198	19.061
					B			20.856	32.768	9.198	19.061
		D.C. 250	70.004	10.000	C	0.100	0.001	20.856	32.768	9.198	19.061
125 00 100 00	52	P.5x.250	/0.804	42.826	C	0.122	0.221	10.428	16.399	4.534	9.485
125.00-100.00	52	P.5x 250	70 804	42.826	А	0.122	0.221	10.428	16 399	4 534	9 4 8 5
	53	P.5x.250	70.804	42.826	Ĉ	0.122	0.221	10.428	16.399	4.534	9.485
	53	P.5x.250	70.804	42.826	В	0.122	0.221	10.428	16.399	4.534	9.485
	54	P.5x.250	70.804	42.826	В	0.122	0.221	10.428	16.399	4.534	9.485
	54	P.5x.250	70.804	42.826	Α	0.122	0.221	10.428	16.399	4.534	9.485
					Α		Sum:	20.856	32.798	9.067	18.970
					В			20.856	32.798	9.067	18.970
					С			20.856	32.798	9.067	18.970
T4 100.00-75.00	91	P5x0.3 w/ (3) 1.5x5/8 Plates	104.076	50.622	С	0.14	0.23	15.101	21.095	6.247	12.244
	91	P5x0.3 w/ (3) 1.5x5/8	104.076	50.622	А	0.14	0.23	15.101	21.095	6.247	12.244
	92	P5x0.3 w/ (3) 1.5x5/8	104.076	50.622	С	0.14	0.23	15.101	21.095	6.247	12.244
		Plates $P_{2,w}(2) = 1.5 \times 5/8$	104.076	50 622	р	0.14	0.22	15 101	21.005	6 2 4 7	12 244
	92	P3x0.5 w/ (5) 1.5x5/8 Plates	104.070	30.622	Б	0.14	0.25	15.101	21.095	0.247	12.244
	93	P5x0.3 w/ (3) 1.5x5/8 Plates	104.076	50.622	В	0.14	0.23	15.101	21.095	6.247	12.244
	93	P5x0.3 w/ (3) 1.5x5/8	104.076	50.622	А	0.14	0.23	15.101	21.095	6.247	12.244
		Flates			А		Sum	30.202	42 190	12 495	24 488
					B		oum.	30.202	42.190	12.495	24.488
					C			30.202	42.190	12.495	24.488
T5 75.00-66.67	130	P5x0.4 w/ (3) 1.5x5/8	105.267	51.227	C	0.134	0.221	5.034	7.036	2.066	4.071
	130	Plates P5x0.4 w/ (3) 1.5x5/8	105.267	51.227	А	0.134	0.221	5.034	7.036	2.066	4.071
	121	Plates	105 267	51 007	C	0.124	0.001	5.024	7.020	2.000	4.071
	151	P3x0.4 w/ (3) 1.5x5/8 Plates	105.207	31.227	C	0.154	0.221	5.054	7.030	2.000	4.071
	131	P5x0.4 w/ (3) 1.5x5/8	105.267	51.227	В	0.134	0.221	5.034	7.036	2.066	4.071
	132	Plates P5x0.4 w/ (3) 1.5x5/8	105.267	51.227	В	0.134	0.221	5.034	7.036	2.066	4.071
	122	Plates $P_{\text{Free}} = \frac{1}{2} \frac{1}{2}$	105 267	51 227		0.124	0.221	5.024	7.026	2.066	4.071
	152	P3x0.4 w/ (3) 1.5x5/8 Plates	105.207	51.227	А	0.134	0.221	5.034	/.030	2.000	4.071
					Α		Sum:	10.067	14.073	4.133	8.141
					В			10.067	14.073	4.133	8.141
					С			10.067	14.073	4.133	8.141
T6 66.67-58.33	145	P5x0.4 w/ (3) 1.5x5/8 Plates	105.866	51.526	С	0.131	0.217	5.034	7.038	2.059	4.066
	145	P5x0.4 w/ (3) 1.5x5/8	105.866	51.526	А	0.131	0.217	5.034	7.038	2.059	4.066
	146	P5x0.4 w/ (3) 1.5x5/8	105.866	51.526	С	0.131	0.217	5.034	7.038	2.059	4.066
	146	Plates P5x0.4 w/ (3) 1.5x5/8	105.866	51.526	в	0.131	0.217	5.034	7.038	2.059	4.066
		Plates			-		0.015		= 000		
	147	P5x0.4 w/ (3) 1.5x5/8 Plates	105.866	51.526	В	0.131	0.217	5.034	7.038	2.059	4.066
	147	P5x0.4 w/ (3) 1.5x5/8 Plates	105.866	51.526	А	0.131	0.217	5.034	7.038	2.059	4.066
					Α		Sum:	10.067	14.076	4.119	8.131
					В			10.067	14.076	4.119	8.131
					С			10.067	14.076	4.119	8.131
T7 58.33-50.00	160	HSS5x.4	73.49	44.562	С	0.132	0.249	3.476	5.480	1.487	3.205
	160	HSS5x.4	73.49	44.562	Α	0.132	0.249	3.476	5.480	1.487	3.205

tnxTower

160' Self Support Lattice - CSP #20

Page 25 of 65

Date 06:59:10 07/02/21

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

Section	Elem.	Size	С	С	F	е	е	A_r	A_r	$A_r R_r$	$A_r R_r$
Elevation	Num.			w/Ice	а		w/Ice		w/Ice		w/Ice
					с						
ft					е			ft^2	ft ²	ft^2	ft^2
	161	HSS5x.4	73.49	44.562	C	0.132	0.249	3.476	5.480	1.487	3.205
	161	HSS5x.4	73.49	44.562	В	0.132	0.249	3.476	5.480	1.487	3.205
	162	HSS5x.4	73.49	44.562	В	0.132	0.249	3.476	5.480	1.487	3.205
	162	HSS5x.4	73.49	44.562	A	0.132	0.249	3.476	5.480	1.487	3.205
					A		Sum:	6.952	10.960	2.974	6.409
					B			6.952	10.960	2.974	6.409
TO 50 00 05 50		110060000			C			6.952	10.960	2.974	6.409
T8 50.00-37.50	187	HSS6.875x.4	101.566	55.41	C	0.118	0.187	7.169	10.169	2.889	5.820
	187	HSS6.875x.4	101.566	55.41	A	0.118	0.187	7.169	10.169	2.889	5.820
	188	HSS6.875x.4	101.566	55.41	C	0.118	0.187	7.169	10.169	2.889	5.820
	188	HSS6.875x.4	101.566	55.41	B	0.118	0.187	7.169	10.169	2.889	5.820
	189	HSS6.875x.4	101.566	55.41	В	0.118	0.187	7.169	10.169	2.889	5.820
	189	HSS6.875x.4	101.566	55.41	A	0.118	0.187	7.169	10.169	2.889	5.820
					A		Sum:	14.338	20.338	5.779	11.639
					B			14.338	20.338	5.779	11.639
					C			14.338	20.338	5.779	11.639
T9 37.50-25.00	202	HSS6.875x.4	101.68	55.341	C	0.129	0.218	7.169	10.145	2.929	5.862
	202	HSS6.875x.4	101.68	55.341	A	0.129	0.218	7.169	10.145	2.929	5.862
	203	HSS6.875x.4	101.68	55.341	С	0.129	0.218	7.169	10.145	2.929	5.862
	203	HSS6.875x.4	101.68	55.341	B	0.129	0.218	7.169	10.145	2.929	5.862
	204	HSS6.875x.4	101.68	55.341	В	0.129	0.218	7.169	10.145	2.929	5.862
	204	HSS6.875x.4	101.68	55.341	A	0.129	0.218	7.169	10.145	2.929	5.862
					A		Sum:	14.338	20.290	5.858	11.723
					В			14.338	20.290	5.858	11.723
					C			14.338	20.290	5.858	11.723
T10 25.00-0.00	229	HSS6.875x0.5 w/ (3) 2x5/8 Bars	141.875	64.736	С	0.133	0.193	20.293	25.966	8.323	14.885
	229	HSS6.875x0.5 w/ (3)	141.875	64.736	Α	0.133	0.193	20.293	25.966	8.323	14.885
	230	HSS6.875x0.5 w/ (3)	141.875	64.736	С	0.133	0.193	20.293	25.966	8.323	14.885
	230	2x5/8 Bars HSS6.875x0.5 w/ (3)	141.875	64.736	В	0.133	0.193	20.293	25.966	8.323	14.885
	231	2x5/8 Bars HSS6.875x0.5 w/ (3)	141.875	64.736	в	0.133	0.193	20.293	25.966	8.323	14.885
	221	2x5/8 Bars	1 41 075	(1.72)		0.122	0.102	20.295	25,900	0.020	14.005
	231	1556.8/5x0.5 w/ (3) 2x5/8 Bars	141.875	64.736	A	0.133	0.193	20.293	25.966	8.323	14.885
					Α		Sum:	40.587	51.933	16.645	29.769
					В			40.587	51.933	16.645	29.769
					С			40.587	51.933	16.645	29.769

	222-H Section Verification Tables - No Ice											
G *			V	V	V			F		4 D		
Section Elevation	Z_{wind}	Z_{ice}	K_z	\mathbf{K}_{h}	\mathbf{K}_{zt}	l_z	q_z	r a	е	$A_r K_r$		
ft	ft	ft				in	psf	с e		ft ²		
T1 160.00-150.00	155.00		1.388	5.82	1.19		61	А	0.175	3.849		
								В С	0.175 0.175	3.849 3.849		
T2 150.00-125.00	137.50		1.353	4.771	1.235		61	A	0.13	9.198		
								С В	0.13	9.198		

1 Project Drive CT Client

Job

Project

Client

160' Self Support Lattice - CSP #20

Page 26 of 65 Date 06:59:10 07/02/21

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007	/ VZ5-228	

Middlebury, CT

Designed by KAB

Section	Z_{wind}	Z _{ice}	Kz	K_h	K_{zt}	tz	q_z	F	е	$A_r R_r$
Elevation								а		
								с		
ft	ft	ft				in	psf	е		ft^2
T3 125.00-100.00	112.50		1.297	3.591	1.317		63	А	0.122	9.067
								В	0.122	9.067
								C	0.122	9.067
T4 100.00-75.00	87.50		1.231	2.703	1.431		65	A	0.14	12.495
								В	0.14	12.495
								C	0.14	12.495
T5 75.00-66.67	70.83		1.177	2.237	1.53		66	A	0.134	4.133
								В	0.134	4.133
								C	0.134	4.133
T6 66.67-58.33	62.50		1.146	2.034	1.589		67	A	0.131	4.119
								В	0.131	4.119
								C	0.131	4.119
17 58.33-50.00	54.17		1.112	1.851	1.655		68	A	0.132	2.974
								B	0.132	2.974
TO 50 00 07 50	10.75		1.072	1.644	1 7 40		(0)	C	0.132	2.974
18 50.00-37.50	43.75		1.063	1.644	1.749		68	A	0.118	5.779
								В	0.118	5.//9
TO 27 50 25 00	21.25		0.001	1.406	1 001		(0)		0.118	5.//9
1937.50-25.00	51.25		0.991	1.420	1.881		09	A	0.129	5,858
									0.129	5.656
T10 25 00 0 00	12.50		0.95	1 1 5 2	2 1 2 1		67		0.129	5.050 16.645
110 25.00-0.00	12.50		0.85	1.133	2.131		0/		0.133	16.645
									0.133	16.645
								U	0.155	10.045

222-H Section Verification Tables - Ice

Section	Z_{wind}	Z _{ice}	K_z	K_h	Kzt	t_z	q_z	F	е	$A_r R_r$
Elevation								а		
								С		
ft	ft	ft				in	psf	е		ft^2
T1 160.00-150.00	155.00	155.00	1.388	5.82	1.19	1.4268	9	Α	0.315	14.843
								в	0.315	14.843
								С	0.315	14.843
T2 150.00-125.00	137.50	137.50	1.353	4.771	1.235	1.4279	9	Α	0.236	32.056
								В	0.236	32.056
								С	0.236	32.056
T3 125.00-100.00	112.50	112.50	1.297	3.591	1.317	1.4316	9	А	0.221	33.295
								В	0.221	33.295
								С	0.221	33.295
T4 100.00-75.00	87.50	87.50	1.231	2.703	1.431	1.4371	10	Α	0.23	40.146
								в	0.23	40.146
								С	0.23	40.146
T5 75.00-66.67	70.83	70.83	1.177	2.237	1.53	1.4405	10	Α	0.221	13.677
								В	0.221	13.677
								С	0.221	13.677
T6 66.67-58.33	62.50	62.50	1.146	2.034	1.589	1.4415	10	Α	0.217	13.825
								в	0.217	13.825
								С	0.217	13.825
T7 58.33-50.00	54.17	54.17	1.112	1.851	1.655	1.4414	10	Α	0.249	15.255
								В	0.249	15.255
								С	0.249	15.255
T8 50.00-37.50	43.75	43.75	1.063	1.644	1.749	1.4384	10	Α	0.187	18.435
								В	0.187	18.435
								С	0.187	18.435
T9 37.50-25.00	31.25	31.25	0.991	1.426	1.881	1.4269	10	Α	0.218	22.081
								В	0.218	22.081

AECOM 500 Enterprise Drive

Rocky Hill, CT Phone: (860) 529-8882 FAX:

Job		Page
	160' Self Support Lattice - CSP #20	27 of 65
Project		Date
	Middlebury, CT	06:59:10 07/02/21
Client	SMK-007 / VZ5-228	Designed by KAB

Section	Z_{wind}	Z _{ice}	K_z	K_h	K_{zt}	tz	q_z	F	е	$A_r R_r$
Elevation								а		
C C	G	G				÷		С		c2
Jî	Л	Л				in	psj	e		JF
								С	0.218	22.081
T10 25.00-0.00	12.50	12.50	0.85	1.153	2.131	1.3600	10	Α	0.193	43.573
								В	0.193	43.573
								С	0.193	43.573

222-H Section Verification Tables - Service

Section	Z_{wind}	Zice	K-	K_h	K_{zt}	t _z	q_z	F	е	$A_r R_r$
Elevation						-		а		
								с		
ft	ft	ft				in	psf	е		ft ²
T1 160.00-150.00	155.00		1.388	5.82	1.19		13	А	0.175	3.849
								в	0.175	3.849
								С	0.175	3.849
T2 150.00-125.00	137.50		1.353	4.771	1.235		13	Α	0.13	9.198
								В	0.13	9.198
								С	0.13	9.198
T3 125.00-100.00	112.50		1.297	3.591	1.317		13	А	0.122	9.067
								В	0.122	9.067
								C	0.122	9.067
T4 100.00-75.00	87.50		1.231	2.703	1.431		14	Α	0.14	12.495
								B	0.14	12.495
	70.00							C	0.14	12.495
15 75.00-66.67	70.83		1.177	2.237	1.53		14	A	0.134	4.133
								В	0.134	4.133
T ((((7 50 22	(2.50)		1.146	2 0 2 4	1 500			C	0.134	4.133
16 66.67-58.33	62.50		1.146	2.034	1.589		14	A	0.131	4.119
								Б С	0.131	4.119
T7 58 22 50 00	5417		1.112	1 951	1 655		14		0.131	4.119
17 38.55-50.00	34.17		1.112	1.651	1.055		14	A D	0.132	2.974
								C	0.132	2.974
T8 50 00-37 50	13 75		1.063	1.644	1 740		15	۰ ۸	0.152	5 770
18 50.00-57.50	-5.75		1.005	1.044	1.742		15	B	0.118	5 779
								C	0.118	5 779
T9 37 50-25 00	31.25		0.991	1 4 2 6	1 881		15	Ă	0.129	5 858
19 57 80 20:00	51.25		0.551	1.120	1.001		15	B	0.129	5 858
								ē	0.129	5.858
T10 25.00-0.00	12.50		0.85	1.153	2.131		14	Ā	0.133	16.645
								В	0.133	16.645
								С	0.133	16.645

Tower Pressures - No Ice

$G_{II} = \theta.85\theta$

Section	Z	KZ	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					с					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	155.00	1.388	61	110.170	Α	10.889	8.342	8.342	43.38	0.000	0.000
160.00-150.00					В	10.889	8.342		43.38	17.813	0.000
					С	10.889	8.342		43.38	0.000	0.000

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

Page 28 of 65

Date 06:59:10 07/02/21

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

Section	Ζ	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а			-	%	In	Out
					с					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T2	137.50	1.353	61	310.425	Α	19.557	20.856	20.856	51.61	0.000	0.000
150.00-125.00					В	19.557	20.856		51.61	102.696	0.000
					С	19.557	20.856		51.61	0.000	0.000
T3	112.50	1.297	63	360.425	Α	23.281	20.856	20.856	47.25	0.000	0.000
125.00-100.00					В	23.281	20.856		47.25	127.489	0.000
					С	23.281	20.856		47.25	59.400	0.000
T4	87.50	1.231	65	416.680	Α	28.157	30.202	30.202	51.75	0.000	0.000
100.00-75.00					в	28.157	30.202		51.75	137.689	0.000
					С	28.157	30.202		51.75	70.550	0.000
T5 75.00-66.67	70.83	1.177	66	150.004	Α	9.964	10.067	10.067	50.26	0.000	0.000
					В	9.964	10.067		50.26	48.266	0.000
					С	9.964	10.067		50.26	23.967	0.000
T6 66.67-58.33	62.50	1.146	67	155.560	Α	10.257	10.067	10.067	49.53	0.000	0.000
					В	10.257	10.067		49.53	48.241	0.000
					С	10.257	10.067		49.53	23.967	0.000
T7 58.33-50.00	54.17	1.112	68	159.031	Α	14.047	6.952	6.952	33.11	0.000	0.000
					в	14.047	6.952		33.11	48.218	0.000
					С	14.047	6.952		33.11	23.967	0.000
T8 50.00-37.50	43.75	1.063	68	250.917	Α	15.214	14.338	14.338	48.52	0.000	0.000
					В	15.214	14.338		48.52	72.293	0.000
					С	15.214	14.338		48.52	35.950	0.000
T9 37.50-25.00	31.25	0.991	69	263.417	Α	19.771	14.338	14.338	42.04	0.000	0.000
					В	19.771	14.338		42.04	72.285	0.000
					С	19.771	14.338		42.04	35.950	0.000
T10 25.00-0.00	12.50	0.85	67	572.674	Α	35.412	40.587	40.587	53.40	0.000	0.000
					В	35.412	40.587		53.40	146.083	0.000
					С	35.412	40.587		53.40	71.900	0.000

Tower Pressure - With Ice

 $G_H = 0.850$

Section	z	K_Z	q_z	t_Z	A_G	\overline{F}	\overline{A}_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation		1 '	'		, I	а				%	In	Out
		1 '	'		, I	с					Face	Face
ft	ft	L'	psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft ²
T1	155.00	1.388	9	1.4268	112.550	Α	10.889	24.583	13.103	36.94	0.000	0.000
160.00-150.00		1 '	'		, I	в	10.889	24.583		36.94	52.068	0.000
	1 1	1 '	'		1	С	10.889	24.583	1	36.94	0.000	0.000
T2	137.50	1.353	9	1.4279	316.379	Α	19.557	55.108	32.768	43.89	0.000	0.000
150.00-125.00	1 1	1 '	'		1	В	19.557	55.108	1	43.89	292.813	0.000
	1 1	1 '	'	1 1	, ,	С	19.557	55.108		43.89	0.000	0.000
T3	112.50	1.297	9	1.4316	366.395	Α	23.281	57.564	32.798	40.57	0.000	0.000
125.00-100.00	1 1	1 '	'		1	В	23.281	57.564	1	40.57	356.655	0.000
	1 1	1 '	'	1 1	, ,	С	23.281	57.564		40.57	81.776	0.000
T4 100.00-75.00	87.50	1.231	10	1.4371	422.673	Α	28.157	69.166	42.190	43.35	0.000	0.000
	1 1	1 '	'	1 1	, ,	В	28.157	69.166		43.35	384.868	0.000
	1 1	1 '	'	1 1	, ,	С	28.157	69.166		43.35	116.201	0.000
T5 75.00-66.67	70.83	1.177	10	1.4405	152.007	Α	9.964	23.642	14.073	41.88	0.000	0.000
	1 1	1 '	'	1 1	, ,	В	9.964	23.642		41.88	137.738	0.000
		1 '	1 '		, I	С	9.964	23.642	1	41.88	40.140	0.000
T6 66.67-58.33	62.50	1.146	10	1.4415	157.564	Α	10.257	23.933	14.076	41.17	0.000	0.000
	1 1	1 '	'	1 1	, ,	В	10.257	23.933		41.17	137.789	0.000
	1 1	1 '	'	1 1	, ,	С	10.257	23.933		41.17	40.145	0.000
T7 58.33-50.00	54.17	1.112	10	1.4414	161.034	Α	14.047	26.085	10.960	27.31	0.000	0.000
		1 '	'		, I	В	14.047	26.085		27.31	137.782	0.000

tnxTower	Job	160' Self Support Lattice - CSP #20	Page 29 of 65
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Section	Ζ	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
						С	14.047	26.085		27.31	40.144	0.000
T8 50.00-37.50	43.75	1.063	10	1.4384	253.916	Α	15.214	32.213	20.338	42.88	0.000	0.000
						В	15.214	32.213		42.88	206.446	0.000
						С	15.214	32.213		42.88	60.193	0.000
T9 37.50-25.00	31.25	0.991	10	1.4269	266.392	Α	19.771	38.215	20.290	34.99	0.000	0.000
						в	19.771	38.215		34.99	205.552	0.000
						С	19.771	38.215		34.99	60.101	0.000
T10 25.00-0.00	12.50	0.85	10	1.3600	578.346	Α	35.412	76.013	51.933	46.61	0.000	0.000
						в	35.412	76.013		46.61	407.806	0.000
						С	35.412	76.013		46.61	119.135	0.000

Tower Pressure - Service

Section	Z	Kz	q_z	Λ_G	F	Λ_F	Λ_R	Λ_{leg}	Leg	$C_A \Lambda_A$	$C_A \Lambda_A$
Elevation					а				%	In	Out
					с					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	155.00	1.388	13	110.170	Α	10.889	8.342	8.342	43.38	0.000	0.000
160.00-150.00					В	10.889	8.342		43.38	17.813	0.000
					С	10.889	8.342		43.38	0.000	0.000
T2	137.50	1.353	13	310.425	Α	19.557	20.856	20.856	51.61	0.000	0.000
150.00-125.00					В	19.557	20.856		51.61	102.696	0.000
					С	19.557	20.856		51.61	0.000	0.000
T3	112.50	1.297	13	360.425	Λ	23.281	20.856	20.856	47.25	0.000	0.000
125.00-100.00					В	23.281	20.856		47.25	127.489	0.000
					С	23.281	20.856		47.25	59.400	0.000
T4	87.50	1.231	14	416.680	Α	28.157	30.202	30.202	51.75	0.000	0.000
100.00-75.00					в	28.157	30.202		51.75	137.689	0.000
					С	28.157	30.202		51.75	70.550	0.000
T5 75.00-66.67	70.83	1.177	14	150.004	Α	9.964	10.067	10.067	50.26	0.000	0.000
					В	9.964	10.067		50.26	48.266	0.000
					С	9.964	10.067		50.26	23.967	0.000
T6 66.67-58.33	62.50	1.146	14	155.560	Α	10.257	10.067	10.067	49.53	0.000	0.000
					в	10.257	10.067		49.53	48.241	0.000
					С	10.257	10.067		49.53	23.967	0.000
T7 58.33-50.00	54.17	1.112	14	159.031	Α	14.047	6.952	6.952	33.11	0.000	0.000
					в	14.047	6.952		33.11	48.218	0.000
					С	14.047	6.952		33.11	23.967	0.000
T8 50.00-37.50	43.75	1.063	15	250.917	Α	15.214	14.338	14.338	48.52	0.000	0.000
					В	15.214	14.338		48.52	72.293	0.000
					С	15.214	14.338		48.52	35.950	0.000
T9 37.50-25.00	31.25	0.991	15	263.417	Α	19.771	14.338	14.338	42.04	0.000	0.000
					В	19.771	14.338		42.04	72.285	0.000
					С	19.771	14.338		42.04	35.950	0.000
T10 25.00-0.00	12.50	0.85	14	572.674	Α	35.412	40.587	40.587	53.40	0.000	0.000
					в	35.412	40.587		53.40	146.083	0.000
					С	35.412	40.587		53.40	71.900	0.000

$G_H = \theta.85\theta$

Tower Forces - No Ice - Wind Normal To Face

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

Page 30 of 65 Date

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

/ VZ5-228

Middlebury, CT

Designed by KAB

06:59:10 07/02/21

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	е						ft^2	K	plf	
T1	0.07	1.18	Α	0.175	2.683	61	1	1	14.738	2.59	259.43	С
160.00-150.00			В	0.175	2.683		1	1	14.738			
			С	0.175	2.683		1	1	14.738			
T2	0.47	2.32	Α	0.13	2.846	61	1	1	28.754	7.67	306.63	С
150.00-125.00			В	0.13	2.846		1	1	28.754			
			С	0.13	2.846		1	1	28.754			
T3	0.91	3.86	Α	0.122	2.875	63	1	1	32.349	11.25	450.04	С
125.00-100.00			В	0.122	2.875		1	1	32.349			
			С	0.122	2.875		1	1	32.349			
T4	1.04	5.08	Α	0.14	2.808	65	1	1	40.652	13.46	538.26	С
100.00-75.00			В	0.14	2.808		1	1	40.652			
			С	0.14	2.808		1	1	40.652			
T5	0.37	2.10	Α	0.134	2.833	66	1	1	14.097	4.79	574.64	С
75.00-66.67			В	0.134	2.833		1	1	14.097			
			С	0.134	2.833		1	1	14.097			
T6	0.37	2.14	Α	0.131	2.844	67	1	1	14.376	4.90	587.49	С
66.67-58.33			В	0.131	2.844		1	1	14.376			
			С	0.131	2.844		1	1	14.376			
T7	0.37	2.32	Α	0.132	2.839	68	1	1	17.021	5.37	644.87	С
58.33-50.00			В	0.132	2.839		1	1	17.021			
			С	0.132	2.839		1	1	17.021			
Т8	0.55	3.00	Α	0.118	2.894	68	1	1	20.993	7.46	596.79	С
50.00-37.50			В	0.118	2.894		1	1	20.993			
			С	0.118	2.894		1	1	20.993			
Т9	0.55	3.42	Α	0.129	2.848	69	1	1	25.629	8.19	655.20	С
37.50-25.00			В	0.129	2.848		1	1	25.629			
			С	0.129	2.848		1	1	25.629			
т10	1.10	8.68	А	0.133	2.836	67	1	1	52.057	16.07	642.73	С
25.00-0.00			В	0.133	2.836		1	1	52.057			-
			Ē	0.133	2.836		Î.	1	52.057			
Sum Weight:	5,79	34.11	-				-	OTM	5618.77	81.74		
3									kip-ft	<i>,,,</i> -		

Tower Forces - No Ice - Wind 45 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	K	Κ	е						ft^2	K	plf	
T1	0.07	1.18	Α	0.175	2.683	61	0.825	1	12.833	2.33	233.02	С
160.00-150.00			В	0.175	2.683		0.825	1	12.833			
			C	0.175	2.683		0.825	1	12.833			
T2	0.47	2.32	Α	0.13	2.846	61	0.825	1	25.332	7.16	286.29	С
150.00-125.00			В	0.13	2.846		0.825	1	25.332			
			C	0.13	2.846		0.825	1	25.332			
Т3	0.91	3.86	Α	0.122	2.875	63	0.825	1	28.274	10.63	425.01	C
125.00-100.00			В	0.122	2.875		0.825	1	28.274			
			C	0.122	2.875		0.825	1	28.274			
T4	1.04	5.08	Α	0.14	2.808	65	0.825	1	35.724	12.69	507.80	С
100.00-75.00			В	0.14	2.808		0.825	1	35.724			
			С	0.14	2.808		0.825	1	35.724			
T5	0.37	2.10	Α	0.134	2.833	66	0.825	1	12.353	4.51	541.27	С
75.00-66.67			В	0.134	2.833		0.825	1	12.353			
			C	0.134	2.833		0.825	1	12.353			

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

Job		Page
	160' Self Support Lattice - CSP #20	31 of 65
Project		Date
	Middlebury, CT	06:59:10 07/02/21
Client	SMK-007 / VZ5-228	Designed by KAB

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	K	K	е						ft^2	K	plf	
T6	0.37	2.14	Α	0.131	2.844	67	0.825	1	12.581	4.61	552.61	С
66.67-58.33			В	0.131	2.844		0.825	1	12.581			
			C	0.131	2.844		0.825	1	12.581			
T7	0.37	2.32	Α	0.132	2.839	68	0.825	1	14.563	4.97	596.69	С
58.33-50.00			В	0.132	2.839		0.825	1	14.563			
			C	0.132	2.839		0.825	1	14.563			
T8	0.55	3.00	Α	0.118	2.894	68	0.825	1	18.331	7.01	560.96	С
50.00-37.50			В	0.118	2.894		0.825	1	18.331			
			C	0.118	2.894		0.825	1	18.331			
Т9	0.55	3.42	Α	0.129	2.848	69	0.825	1	22.169	7.62	609.27	С
37.50-25.00			В	0.129	2.848		0.825	1	22.169			
			C	0.129	2.848		0.825	1	22.169			
T10	1.10	8.68	Α	0.133	2.836	67	0.825	1	45.860	15.07	602.92	С
25.00-0.00			В	0.133	2.836		0.825	1	45.860			
			C	0.133	2.836		0.825	1	45.860			
Sum Weight:	5.79	34.11						OTM	5261.29	76.60		
									kip-ft			

Tower Forces - No Ice - Wind 60 To Face

Section	Add	Self	F	P	C_{r}	a	D_{r}	$D_{\rm P}$	4.	F	w	Ctrl
Flevation	Weight	Weight		c	C_F	q_z	D_F	D_R	A_E	I.	w	Eace
Lievation	neighi	neigni	c u			nsf						1 ucc
ft	K	K	e			psj			ft^2	K	nlf	
	0.07	1.18	A	0.175	2 683	61	0.8	1	12 560	2 29	229.25	С
160.00-150.00	0.07	1.10	B	0.175	2.683	01	0.8	1	12.560	2.27	227.25	C
100100 100100			Ē	0.175	2.683		0.8	Î	12.560			
T2	0.47	2.32	A	0.13	2.846	61	0.8	1	24,843	7.08	283.38	С
150.00-125.00			В	0.13	2.846		0.8	Î	24.843		202120	÷
			Ċ	0.13	2.846		0.8	1	24.843			
Т3	0.91	3.86	Ā	0.122	2.875	63	0.8	1	27.692	10.54	421.44	С
125.00-100.00		2100	B	0.122	2.875		0.8	Î	27.692			č
			Ċ	0.122	2.875		0.8	l ī	27.692			
T4	1.04	5.08	A	0.14	2.808	65	0.8	1	35.021	12.59	503.45	С
100.00-75.00			В	0.14	2.808		0.8	1	35.021			
			Ċ	0.14	2.808		0.8	1 ī	35.021			
T5	0.37	2.10	Α	0.134	2.833	66	0.8	1	12.104	4.47	536.50	С
75.00-66.67			В	0.134	2.833		0.8	1	12.104			
			С	0.134	2.833		0.8	1	12.104			
T6	0.37	2.14	Α	0.131	2.844	67	0.8	1	12.324	4.56	547.63	С
66.67-58.33			В	0.131	2.844		0.8	1	12.324			
			С	0.131	2.844		0.8	1	12.324			
T7	0.37	2.32	Α	0.132	2.839	68	0.8	1	14.212	4.92	589.81	С
58.33-50.00			В	0.132	2.839		0.8	1	14.212			
			С	0.132	2.839		0.8	1	14.212			
T8	0.55	3.00	Α	0.118	2.894	68	0.8	1	17.950	6.95	555.84	С
50.00-37.50			В	0.118	2.894		0.8	1	17.950			
			С	0.118	2.894		0.8	1	17.950			
Т9	0.55	3.42	Α	0.129	2.848	69	0.8	1	21.675	7.53	602.71	С
37.50-25.00			В	0.129	2.848		0.8	1	21.675			
			С	0.129	2.848		0.8	1	21.675			
T10	1.10	8.68	Α	0.133	2.836	67	0.8	1	44.975	14.93	597.23	С
25.00-0.00			В	0.133	2.836		0.8	1	44.975			
			С	0.133	2.836		0.8	1	44.975			

 Job
 Page

 160' Self Support Lattice - CSP #20
 32 of 65

 Project
 Date

 Middlebury, CT
 06:59:10 07/02/21

 Client
 Designed by

 SMK-007 / VZ5-228
 KAB

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а			6						Face
			С			psf						
ft	K	K	е						ft^2	K	plf	
Sum Weight:	5.79	34.11						OTM	5210.22	75.86		
_									kip-ft			

Tower Forces - No Ice - Wind 90 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а			^-						Face
	5	Ŭ	c			psf						
ft	K	K	е						ft^2	K	plf	
T1	0.07	1.18	Α	0.175	2.683	61	0.85	1	13.105	2.37	236.80	С
160.00-150.00			В	0.175	2.683		0.85	1	13.105			
			C	0.175	2.683		0.85	1	13.105			
T2	0.47	2.32	Α	0.13	2.846	61	0.85	1	25.821	7.23	289.19	С
150.00-125.00			В	0.13	2.846		0.85	1	25.821			
			C	0.13	2.846		0.85	1	25.821			
T3	0.91	3.86	Α	0.122	2.875	63	0.85	1	28.856	10.71	428.59	С
125.00-100.00			В	0.122	2.875		0.85	1	28.856			
			C	0.122	2.875		0.85	1	28.856			
T4	1.04	5.08	Α	0.14	2.808	65	0.85	1	36.428	12.80	512.15	С
100.00-75.00			В	0.14	2.808		0.85	1	36.428			
			C	0.14	2.808		0.85	1	36.428			
T5	0.37	2.10	Α	0.134	2.833	66	0.85	1	12.603	4.55	546.03	С
75.00-66.67			В	0.134	2.833		0.85	1	12.603			
			C	0.134	2.833		0.85	1	12.603			
T6	0.37	2.14	Α	0.131	2.844	67	0.85	1	12.837	4.65	557.60	С
66.67-58.33			В	0.131	2.844		0.85	1	12.837			
			C	0.131	2.844		0.85	1	12.837			
T7	0.37	2.32	Α	0.132	2.839	68	0.85	1	14.914	5.03	603.57	С
58.33-50.00			В	0.132	2.839		0.85	1	14.914			
			C	0.132	2.839		0.85	1	14.914			
Т8	0.55	3.00	Α	0.118	2.894	68	0.85	1	18.711	7.08	566.08	С
50.00-37.50			В	0.118	2.894		0.85	1	18.711			
			С	0.118	2.894		0.85	1	18.711			
Т9	0.55	3.42	Α	0.129	2.848	69	0.85	1	22.663	7.70	615.83	С
37.50-25.00			в	0.129	2.848		0.85	1	22.663			
			С	0.129	2.848		0.85	1	22.663			
T10	1.10	8.68	Α	0.133	2.836	67	0.85	1	46.745	15.22	608.60	С
25.00-0.00			В	0.133	2.836		0.85	1	46.745			
			Ċ	0.133	2.836		0.85		46,745			
Sum Weight:	5,79	34.11						ОТМ	5312.36	77,33		
									kip-ft			

Tower Forces - With Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	a									Face
			с			psf						
ft	K	K	e						ft^2	K	plf	
T1	0.67	3.12	Α	0.315	2.256	9	1	1	25.732	0.68	68.23	С

Project

Client

160' Self Support Lattice - CSP #20

Page 33 of 65 Date

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

06:59:10 07/02/21 Designed by KAB

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а			-						Face
			с			psf						
ft	K	K	е						ft^2	K	plf	
160.00-150.00			В	0.315	2.256		1	1	25.732			
			C	0.315	2.256		1	1	25.732			
T2	3.80	6.17	Α	0.236	2.48	9	1	1	51.613	2.35	93.85	С
150.00-125.00			В	0.236	2.48		1	1	51.613			
			C	0.236	2.48		1	1	51.613			
T3	6.69	8.65	Α	0.221	2.528	9	1	1	56.577	3.21	128.34	С
125.00-100.00			В	0.221	2.528		1	1	56.577			
			C	0.221	2.528		1	1	56.577			
T4	7.47	11.43	Α	0.23	2.498	10	1	1	68.303	3.84	153.45	С
100.00-75.00			В	0.23	2.498		1	1	68.303			
			C	0.23	2.498		1	1	68.303			
T5	2.63	4.31	Α	0.221	2.527	10	1	1	23.641	1.39	166.35	С
75.00-66.67			В	0.221	2.527		1	1	23.641			
			C	0.221	2.527		1	1	23.641			
T6	2.64	4.40	Α	0.217	2.54	10	1	1	24.082	1.41	169.73	С
66.67-58.33			В	0.217	2.54		1	1	24.082			
			C	0.217	2.54		1	1	24.082			
T7	2.64	4.85	Α	0.249	2.44	10	1	1	29.302	1.52	182.06	С
58.33-50.00			В	0.249	2.44		1	1	29.302			
			C	0.249	2.44		1	1	29.302			
Т8	3.94	5.94	Α	0.187	2.641	10	1	1	33.649	2.14	171.18	С
50.00-37.50			В	0.187	2.641		1	1	33.649			
			C	0.187	2.641		1	1	33.649			
Т9	3.91	6.97	Α	0.218	2.538	10	1	1	41.851	2.29	183.13	С
37.50-25.00			В	0.218	2.538		1	1	41.851			
			C	0.218	2.538		1	1	41.851			
T10	7.54	15.93	Α	0.193	2.621	10	1	1	78.985	4.38	175.28	С
25.00-0.00			В	0.193	2.621		1	1	78.985			
			С	0.193	2.621		1	1	78.985			
Sum Weight:	41.93	71.76						OTM	1613.70	23.20		
									kip-ft			

	Tower Forces - With Ice - Wind 45 To Face												
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.	
Elevation	Weight	Weight	а									Face	
			С			psf							
ft	K	K	е						ft^2	K	plf		
T1	0.67	3.12	Α	0.315	2.256	9	0.825	1	23.826	0.65	64.94	С	
160.00-150.00			В	0.315	2.256		0.825	1	23.826				
			C	0.315	2.256		0.825	1	23.826				
T2	3.80	6.17	Α	0.236	2.48	9	0.825	1	48.191	2.28	91.23	С	
150.00-125.00			В	0.236	2.48		0.825	1	48.191				
			С	0.236	2.48		0.825	1	48.191				
Т3	6.69	8.65	Α	0.221	2.528	9	0.825	1	52.502	3.13	125.09	С	
125.00-100.00			В	0.221	2.528		0.825	1	52.502				
			С	0.221	2.528		0.825	1	52.502				
T4	7.47	11.43	Α	0.23	2.498	10	0.825	1	63.376	3.74	149.44	С	
100.00-75.00			В	0.23	2.498		0.825	1	63.376				
			С	0.23	2.498		0.825	1	63.376				
T5	2.63	4.31	Α	0.221	2.527	10	0.825	1	21.898	1.35	161.95	С	
75.00-66.67			В	0.221	2.527		0.825	1	21.898				
			С	0.221	2.527		0.825	1	21.898				
Т6	2.64	4.40	Α	0.217	2.54	10	0.825	1	22.287	1.38	165.12	С	

tnxTower	Job
AECOM	Project

Client

160' Self Support Lattice - CSP #20 Middlebury, CT

SMK-007 / VZ5-228

Page 34 of 65 Date 06:59:10 07/02/21 Designed by

KAB

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	K	K	е						ft^2	K	plf	
66.67-58.33			В	0.217	2.54		0.825	1	22.287			
			С	0.217	2.54		0.825	1	22.287			
T7	2.64	4.85	Α	0.249	2.44	10	0.825	1	26.844	1.47	175.93	С
58.33-50.00			В	0.249	2.44		0.825	1	26.844			
			С	0.249	2.44		0.825	1	26.844			
T8	3.94	5.94	Α	0.187	2.641	10	0.825	1	30.987	2.08	166.35	С
50.00-37.50			В	0.187	2.641		0.825	1	30.987			
			С	0.187	2.641		0.825	1	30.987			
Т9	3.91	6.97	Α	0.218	2.538	10	0.825	1	38.391	2.21	177.07	С
37.50-25.00			В	0.218	2.538		0.825	1	38.391			
			С	0.218	2.538		0.825	1	38.391			
T10	7.54	15.93	Α	0.193	2.621	10	0.825	1	72.788	4.25	169.84	С
25.00-0.00			В	0.193	2.621		0.825	1	72.788			
			С	0.193	2.621		0.825	1	72.788			
Sum Weight:	41.93	71.76						OTM	1567.19	22.52		
									kin-ft			

	Tower Forces - With Ice - Wind 60 To Face											
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	K	K	е						ft^2	K	plf	
T1	0.67	3.12	Α	0.315	2.256	9	0.8	1	23.554	0.64	64.47	С
160.00-150.00			В	0.315	2.256		0.8	1	23.554			
			C	0.315	2.256		0.8	1	23.554			
T2	3.80	6.17	Α	0.236	2.48	9	0.8	1	47.702	2.27	90.85	С
150.00-125.00			В	0.236	2.48		0.8	1	47.702			
			C	0.236	2.48		0.8	1	47.702			
T3	6.69	8.65	Α	0.221	2.528	9	0.8	1	51.920	3.12	124.62	С
125.00-100.00			В	0.221	2.528		0.8	1	51.920			
			C	0.221	2.528		0.8	1	51.920			
T4	7.47	11.43	Α	0.23	2.498	10	0.8	1	62.672	3.72	148.87	С
100.00-75.00			В	0.23	2.498		0.8	1	62.672			
			C	0.23	2.498		0.8	1	62.672			
T5	2.63	4.31	Α	0.221	2.527	10	0.8	1	21.648	1.34	161.32	С
75.00-66.67			В	0.221	2.527		0.8	1	21.648			
			С	0.221	2.527		0.8	1	21.648			
Т6	2.64	4.40	Α	0.217	2.54	10	0.8	1	22.031	1.37	164.46	С
66.67-58.33			В	0.217	2.54		0.8	1	22.031			
			C	0.217	2.54		0.8	1	22.031			
T7	2.64	4.85	Α	0.249	2.44	10	0.8	1	26.493	1.46	175.06	С
58.33-50.00			В	0.249	2.44		0.8	1	26.493			
			C	0.249	2.44		0.8	1	26.493			
Т8	3.94	5.94	Α	0.187	2.641	10	0.8	1	30.606	2.07	165.66	С
50.00-37.50			В	0.187	2.641		0.8	1	30.606			
			C	0.187	2.641		0.8	1	30.606			
Т9	3.91	6.97	Α	0.218	2.538	10	0.8	1	37.897	2.20	176.21	С
37.50-25.00			в	0.218	2.538		0.8	1	37.897			
			С	0.218	2.538		0.8		37.897			
T10	7.54	15.93	Α	0.193	2.621	10	0.8	1	71.903	4.23	169.06	С
25.00-0.00			В	0.193	2.621		0.8	1	71.903			
			С	0.193	2.621		0.8	1	71.903			
Sum Weight:	41.93	71.76						ОТМ	1560.55	22.43		

tnxTower	Job

Client

Page 160' Self Support Lattice - CSP #20 35 of 65 Project Date Middlebury, CT 06:59:10 07/02/21 Designed by SMK-007 / VZ5-228 KAB

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а			6						Face
G	V	V	С			psf			o2	V	16	
Л	Λ	Λ	e						<i>JГ</i>	Λ	pij	
									kip-ft			

Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			с			psf						
ft	K	K	е						ft^2	K	plf	
T1	0.67	3.12	Α	0.315	2.256	9	0.85	1	24.098	0.65	65.41	С
160.00-150.00			В	0.315	2.256		0.85	1	24.098			
			C	0.315	2.256		0.85	1	24.098			
T2	3.80	6.17	Α	0.236	2.48	9	0.85	1	48.680	2.29	91.60	С
150.00-125.00			В	0.236	2.48		0.85	1	48.680			
			C	0.236	2.48		0.85	1	48.680			
T3	6.69	8.65	A	0.221	2.528	.9	0.85	1	53.084	3.14	125.55	С
125.00-100.00			В	0.221	2.528		0.85	1	53.084			
			C	0.221	2.528		0.85	1	53.084			
T4	7.47	11.43	Α	0.23	2.498	10	0.85	1	64.080	3.75	150.01	С
100.00-75.00			В	0.23	2.498		0.85	1	64.080			
			С	0.23	2.498		0.85	1	64.080			
T5	2.63	4.31	Α	0.221	2.527	10	0.85	1	22.147	1.35	162.58	С
75.00-66.67			В	0.221	2.527		0.85	1	22.147			
			C	0.221	2.527		0.85	1	22.147			
T6	2.64	4.40	Α	0.217	2.54	10	0.85	1	22.543	1.38	165.78	С
66.67-58.33			В	0.217	2.54		0.85	1	22.543			
			C	0.217	2.54		0.85	1	22.543			
T7	2.64	4.85	Α	0.249	2.44	10	0.85	1	27.195	1.47	176.81	С
58.33-50.00			В	0.249	2.44		0.85	1	27.195			
			C	0.249	2.44		0.85	1	27.195			
Т8	3.94	5.94	Α	0.187	2.641	10	0.85	1	31.367	2.09	167.04	С
50.00-37.50			В	0.187	2.641		0.85	1	31.367			
			C	0.187	2.641		0.85	1	31.367			
Т9	3.91	6.97	Α	0.218	2.538	10	0.85	1	38.886	2.22	177.94	С
37.50-25.00			В	0.218	2.538		0.85	1	38,886			
			С	0.218	2.538		0.85	1	38.886			
T10	7.54	15.93	Α	0.193	2.621	10	0.85	1	73.673	4.27	170.61	С
25.00-0.00			В	0.193	2.621		0.85	1	73.673			_
			Ē	0.193	2.621		0.85		73.673			
Sum Weight:	41.93	71.76						ОТМ	1573.84	22.62		
									kip-ft			

		Точ	ver	Force	es - 9	Serv	ice -	Win	d Norn	nal To F	ace	
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	е						ft^2	K	plf	
T1	0.07	1.18	Α	0.175	2.683	13	1	1	14.738	0.55	55.26	С
160.00-150.00			В	0.175	2.683		1	1	14.738			

Project

Client

160' Self Support Lattice - CSP #20

Page 36 of 65 Date

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

06:59:10 07/02/21 Designed by KAB

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а		-	-	-		_			Face
	U	0	с			psf						
ft	K	K	е						ft^2	K	plf	
			С	0.175	2.683		1	1	14.738			
T2	0.47	2.32	Α	0.13	2.846	13	1	1	28.754	1.63	65.32	С
150.00-125.00			В	0.13	2.846		1	1	28.754			
			C	0.13	2.846		1	1	28.754			
T3	0.91	3.86	Α	0.122	2.875	13	1	1	32.349	2.40	95.87	С
125.00-100.00			В	0.122	2.875		1	1	32.349			
			C	0.122	2.875		1	1	32.349			
T4	1.04	5.08	Α	0.14	2.808	14	1	1	40.652	2.87	114.66	С
100.00-75.00			В	0.14	2.808		1	1	40.652			
			C	0.14	2.808		1	1	40.652			
T5	0.37	2.10	Α	0.134	2.833	14	1	1	14.097	1.02	122.41	С
75.00-66.67			В	0.134	2.833		1	1	14.097			
			C	0.134	2.833		1	1	14.097			
Т6	0.37	2.14	Α	0.131	2.844	14	1	1	14.376	1.04	125.15	С
66.67-58.33			В	0.131	2.844		1	1	14.376			
			C	0.131	2.844		1	1	14.376			
T7	0.37	2.32	Α	0.132	2.839	14	1	1	17.021	1.14	137.37	С
58.33-50.00			В	0.132	2.839		1	1	17.021			
			C	0.132	2.839		1	1	17.021			
Т8	0.55	3.00	Α	0.118	2.894	15	1	1	20.993	1.59	127.13	С
50.00-37.50			В	0.118	2.894		1	1	20.993			
			C	0.118	2.894		1	1	20.993			
Т9	0.55	3.42	Α	0.129	2.848	15	1	1	25.629	1.74	139.57	С
37.50-25.00			В	0.129	2.848		1	1	25.629			
			C	0.129	2.848		1	1	25.629			
T10	1.10	8.68	Α	0.133	2.836	14	1	1	52.057	3.42	136.91	С
25.00-0.00			В	0.133	2.836		1	1	52.057			
			C	0.133	2.836		1	1	52.057			
Sum Weight:	5.79	34.11						OTM	1196.90	17.41		
									kip-ft			

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tower Forces - Service - Wind 45 To Face											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- a 1											
Elevation Weight Weight a psf f f K k e psf ft ² K plf ft K K e 1 12.833 0.50 49.6 160.00-150.00 B 0.175 2.683 13 0.825 1 12.833 0.50 49.6	Ctrl.											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Face											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
100.00-150.00 B 0.175 2.085 0.825 1 12.855	1											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
B 0.13 2.840 0.825 1 23.32												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
75 00-66 67 8 0.37 2.10 A 0.134 2.833 14 0.825 1 12.353 0.90 113.5	ΊĽ											
T6 0.37 2.14 A 0.131 2.844 14 0.825 1 12.551 0.98 1177												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												

tnxTower	Job	160' Self Support Lattice - CSP #20	Page 37 of 65
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а			-						Face
			с			psf						
ft	K	K	е						ft^2	K	plf	
			С	0.131	2.844		0.825	1	12.581			
T7	0.37	2.32	Α	0.132	2.839	14	0.825	1	14.563	1.06	127.11	С
58.33-50.00			В	0.132	2.839		0.825	1	14.563			
			C	0.132	2.839		0.825	1	14.563			
T8	0.55	3.00	Α	0.118	2.894	15	0.825	1	18.331	1.49	119.49	С
50.00-37.50			В	0.118	2.894		0.825	1	18.331			
			C	0.118	2.894		0.825	1	18.331			
Т9	0.55	3.42	Α	0.129	2.848	15	0.825	1	22.169	1.62	129.79	С
37.50-25.00			В	0.129	2.848		0.825	1	22.169			
			C	0.129	2.848		0.825	1	22.169			
T10	1.10	8.68	Α	0.133	2.836	14	0.825	1	45.860	3.21	128.43	С
25.00-0.00			В	0.133	2.836		0.825	1	45.860			
			C	0.133	2.836		0.825	1	45.860			
Sum Weight:	5.79	34.11						OTM	1120.75	16.32		
									kip-ft			

		Т	้อง	ver Fo	rces	; - Se	ervic	e - W	/ind 60	To Face	e	
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	a									Face
<i>c</i>			С			psf			e2		10	
ft	K	K	e	0.155		10			ft^2	K	<i>plf</i>	~
T1	0.07	1.18	A	0.175	2.683	13	0.8		12.560	0.49	48.83	С
160.00-150.00			В	0.175	2.683		0.8		12.560			
70	0.47	2.22	C C	0.175	2.683	10	0.8		12.560	1.51	(0.2)	G
150.00.125.00	0.47	2.32	A	0.13	2.846	13	0.8		24.843	1.51	60.36	C
150.00-125.00			в	0.13	2.846		0.8		24.843			
772	0.01	2.00	C C	0.13	2.846	12	0.8		24.843	2.24	00.77	a
135 00 100 00	0.91	3.86	A	0.122	2.8/5	13	0.8		27.692	2.24	89.//	C
125.00-100.00			В	0.122	2.875		0.8		27.692			
π4	1.0.4	5.00		0.122	2.8/5	14	0.8		27.692	2 (9	107.24	C
14	1.04	5.08	A	0.14	2.808	14	0.8		35.021	2.68	107.24	C
100.00-/5.00			в	0.14	2.808		0.8		35.021			
77.5	0.27	2.10		0.14	2.808	14	0.8		35.021	0.05	114.00	C
15	0.37	2.10	A D	0.134	2.833	14	0.8		12.104	0.95	114.28	C
/5.00-00.0/			В	0.134	2.833		0.8		12.104			
TC	0.27	2.14		0.134	2.833	14	0.8		12.104	0.07	116.66	C
10	0.57	2.14	A D	0.131	2.844	14	0.8		12.324	0.97	110.00	C
00.07-38.33				0.131	2.044		0.0		12.324			
T7	0.37	2 2 2	ι ζ	0.131	2.044	14	0.8		12.324	1.05	125.64	C
58 22 50 00	0.57	2.52		0.132	2.039	14	0.0		14.212	1.05	125.04	C
38.33-30.00				0.132	2.639		0.8		14.212			
те	0.55	2.00		0.152	2.639	15	0.8		14.212	1.49	118.40	C
50.00.37.50	0.55	5.00	D A	0.110	2.094	15	0.8		17.950	1.40	116.40	C
50.00-57.50				0.118	2.094		0.8		17.950			
то	0.55	3 1 2	Ň	0.110	2.034	15	0.0		21 675	1.60	128 30	C
37 50-25 00	0.55	5.42	R	0.129	2.848	15	0.8		21.075	1.00	120.39	C
57.50-25.00				0.129	2.040		0.8		21.075			
т10	1.10	8 68		0.129	2.040	14	0.8		44 975	3 18	127.22	C
25.00-0.00	1.10	0.00	R	0.133	2.836	14	0.8		44 975	5.10	127.22	Č
25.00-0.00				0.133	2.836		0.8		44 975			
Sum Weight:	5 70	34.11		0.155	2.050		0.0		1109.87	16.16		
Sum weight.	5.19	54.11							kin-ft	10.10		
								l	I what			

	1		Daga		
tnxTower	Jop	160' Self Support Lattice - CSP #20			
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 06:59:10 07/02/21		
Rocky Hill, CT Phone: (860) 529-8882	Client	SMK-007 / VZ5-228	Designed by KAB		

Tower Forces - Service - Wind 90 To Face												
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	a									Face
			с			psf						
ft	K	K	е						ft^2	K	plf	
T1	0.07	1.18	Α	0.175	2.683	13	0.85	1	13.105	0.50	50.44	С
160.00-150.00			В	0.175	2.683		0.85	1	13.105			
			C	0.175	2.683		0.85	1	13.105			
T2	0.47	2.32	Α	0.13	2.846	13	0.85	1	25.821	1.54	61.60	С
150.00-125.00			В	0.13	2.846		0.85	1	25.821			
			C	0.13	2.846		0.85	1	25.821			
T3	0.91	3.86	Α	0.122	2.875	13	0.85	1	28.856	2.28	91.30	С
125.00-100.00			В	0.122	2.875		0.85	1	28.856			
			C	0.122	2.875		0.85	1	28.856			
T4	1.04	5.08	Α	0.14	2.808	14	0.85	1	36.428	2.73	109.10	С
100.00-75.00			В	0.14	2.808		0.85	1	36.428			
			C	0.14	2.808		0.85	1	36.428			
T5	0.37	2.10	Α	0.134	2.833	14	0.85	1	12.603	0.97	116.32	С
75.00-66.67			В	0.134	2.833		0.85	1	12.603			
			C	0.134	2.833		0.85	1	12.603			
T6	0.37	2.14	Α	0.131	2.844	14	0.85	1	12.837	0.99	118.78	С
66.67-58.33			В	0.131	2.844		0.85	1	12.837			
			C	0.131	2.844		0.85	1	12.837			
T7	0.37	2.32	Α	0.132	2.839	14	0.85	1	14.914	1.07	128.57	С
58.33-50.00			В	0.132	2.839		0.85	1	14.914			
			C	0.132	2.839		0.85	1	14.914			
T8	0.55	3.00	Α	0.118	2.894	15	0.85	1	18.711	1.51	120.58	С
50.00-37.50			В	0.118	2.894		0.85	1	18.711			
			C	0.118	2.894		0.85	1	18.711			
Т9	0.55	3.42	Α	0.129	2.848	15	0.85	1	22.663	1.64	131.18	С
37.50-25.00			В	0.129	2.848		0.85	1	22.663			
			С	0.129	2.848		0.85	1	22.663			
T10	1.10	8.68	Α	0.133	2.836	14	0.85	1	46.745	3.24	129.64	С
25.00-0.00			В	0.133	2.836		0.85	1	46.745			
			C	0.133	2.836		0.85	1	46.745			
Sum Weight:	5.79	34.11						OTM	1131.63	16.47		
									kip-ft			

Force Totals							
Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques	
Case	Forces	Forces	Forces	Overturning	Overturning		
		X	Z	Moments, M_x	Moments, M_z		
	K	K	K	kip-ft	kip-ft	kip-ft	
Leg Weight	11.77						
Bracing Weight	22.34						
Total Member Self-Weight	34.11			-5.71	-11.99		
Total Weight	51.56			-5.71	-11.99		
Wind 0 deg - No Ice		-0.29	-110.94	-9168.64	9.26	112.06	
Wind 30 deg - No Ice		52.62	-92.11	-7665.05	-4377.13	72.47	
Wind 45 deg - No Ice		74.04	-74.60	-6217.08	-6160.12	44.49	

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

Page 39 of 65 Date

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

06:59:10 07/02/21

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torayes
Case	Forces	Forces	Forces	Overturning	Overturning	Sum of Lorques
Cuse	10/003	X	Z	Moments M.	Moments M	'
	K	K	ĸ	kin_ft	kin_ft	kin-ft
Wind 60 deg - No Ice		90.15	-52.28	-4364 50	-7505 44	13.47
Wind 90 deg - No Ice		105.74	0.29	15 54	-8779.08	-49.14
Wind 120 deg - No Ice		95.54	55.72	4594.15	-7880 50	-98 59
Wind 135 deg - No Ice		76.53	77.09	6380.15	-6334 62	-113.99
Wind 150 deg - No Ice		53.12	92.40	7674.88	-4413.94	-121.62
Wind 180 deg - No Ice		0.29	105.06	8748 67	-33.24	-112.02
Wind 210 deg $-$ No Ice		-52.62	92.11	7653.63	4353 15	-72.00
Wind 225 deg - No Ice		-74.04	74.60	6205.66	6136.14	-44 49
Wind 240 deg - No Ice		-95.24	55.22	4557.35	7835.27	-13.47
Wind 270 deg - No Ice		-95.24	-0.29	-26.96	8755.10	-15.77
Wind 300 deg - No Ice		-105.74	-52.78	-4401.30	7502.71	98.59
Wind 315 deg - No Ice		-74.45	-75.01	-6247 13	6166.20	113.99
Wind 330 deg - No Ice		-53.12	-92.40	-7686 30	4389.96	121.62
Mamber Ice	37.65	-33.14	-92.40	-7000.50	TJ07.70	121.02
Total Weight Ice	142.05			-76.45	-91.54	
Wind 0 deg - Ice	142.05	-0.03	-29.45	-2476.92	-90.24	37.28
Wind 30 deg - Ice		14.33	-29.45	-2120.14	-1262.56	14 11
Wind 45 deg - Ice		20.21	-20.32	-1740.03	-1743 50	0.66
Wind 40 deg - Ice		20.21	-14.31	-1748.98	-17-5.55	-12.83
Wind 00 deg = Ice		24.05	0.03	-12-10.50	-2105.00	-36.34
Wind 120 deg - Ice		25.72	14.75	1124.92	-2455.85	-50.3
Wind 125 deg - Ice		20.54	20.64	1607.77	-1764 22	-52.06
Wind 150 deg - Ice		14 39	25.01	1968 55	-1264.81	-50.46
Wind 180 deg - Ice		0.03	28.67	2270.88	-92.84	-37.28
Wind 210 deg - Ice		-14 33	24.98	1967.25	1079.48	-14.11
Wind 225 deg - Ice		-20.21	20.32	1587.14	1560.51	-0.66
Wind 225 deg - Ice		-25.36	14 69	1122.66	1972.55	12.83
Wind 270 deg - Ice		-23.30	-0.03	-77.75	2252.76	3634
Wind 200 deg - Ice		-20.72	-14 36	-1251.24	1927.83	50.11
Wind 315 deg - Ice		-20.26	-20.37	-1741.87	1562.35	52.06
Wind 330 deg - Ice		-14 39	-25.01	-2121.45	1081 74	50.46
Total Weight	51.56	-1-1.57	-25.01	-2121.15	-11.99	50.10
Wind 0 deg - Service	51.50	-0.06	-23.63	-1958.23	8.71	23.87
Wind 30 deg - Service		11.21	-19.62	-1637.94	-925.67	15.44
Wind 45 deg - Service		15.77	-15.89	-1329 50	-1305 48	9.48
Wind 60 deg - Service		19.20	-11.14	-934.87	-1592.05	2.87
Wind 00 deg - Service		22.52	0.06	-1.84	-1863.36	-10.47
Wind 120 deg - Service		20.35	11.87	973.49	-1671.95	-21.00
Wind 125 deg - Service		16 30	16.42	1353.94	-1342.65	-24.28
Wind 150 deg - Service		11.32	19.68	1629.74	-933 51	-25.91
Wind 180 deg - Service		0.06	22.38	1858 47	-034	-23.87
Wind 210 deg - Service		-11.21	19.62	1625.21	934.04	-15.44
Wind 225 deg - Service		-15.77	15.89	1316 77	1313.84	-9.48
Wind 220 deg - Service		-20.29	11.76	965.65	1675 79	-2.87
Wind 270 deg - Service		-22.52	-0.06	-10.89	1871 73	10.47
Wind 300 deg - Service		-19.27	-11 24	-942 71	1604.95	21.00
Wind 315 deg - Service		-15.86	-15.98	-1335.90	1320.25	24.28
Wind 330 deg - Service		-11.32	-19.68	-1642.47	941.88	25.91

Load Combinations

Comb. No.

Description

Dead Only 1

1.2 Dead+1.0 Wind 0 deg - No Ice 0.9 Dead+1.0 Wind 0 deg - No Ice

2 3

tnxTower

Page 40 of 65 160' Self Support Lattice - CSP #20 Project Date Middlebury, CT 06:59:10 07/02/21 Client Designed by SMK-007 / VZ5-228 KAB

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

Comb.	Description
No.	-
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 45 deg - No Ice
7	0.9 Dead+1.0 Wind 45 deg - No Ice
8	1 2 Dead+1 0 Wind 60 deg - No Ice
9	0.9 Dead-1.0 Wind 60 deg - No Ice
10	1.2 Dead+1.0 Wind 90 deg - No Ice
10	0.0 Dead-11.0 Wind 00 deg - No Lee
12	1.2 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Deart 1.0 which 120 deg - No fee
13	0.9 Dead+1.0 wind 120 deg - No ice
14	1.2 Dead+1.0 wind 135 deg - No ice
15	0.9 Dead+1.0 Wind 155 deg - No Ice
16	1.2 Dead+1.0 Wind 150 deg - No Ice
17	0.9 Dead+1.0 Wind 150 deg - No Ice
18	1.2 Dead+1.0 Wind 180 deg - No Ice
19	0.9 Dead+1.0 Wind 180 deg - No Ice
20	1.2 Dead+1.0 Wind 210 deg - No Ice
21	0.9 Dead+1.0 Wind 210 deg - No Ice
22	1.2 Dead+1.0 Wind 225 deg - No Ice
23	0.9 Dead+1.0 Wind 225 deg - No Ice
24	1.2 Dead+1.0 Wind 240 deg - No Ice
25	0.9 Dead+1.0 Wind 240 deg - No Ice
26	1.2 Dead+1.0 Wind 270 deg - No Ice
27	0.9 Dead+1.0 Wind 270 deg - No Ice
28	1.2 Dead+1.0 Wind 300 deg - No Ice
29	0.9 Dead+1.0 Wind 300 deg - No Ice
30	1.2 Dead+1.0 Wind 315 deg - No Ice
31	0.9 Dead+1.0 Wind 315 deg - No Ice
32	12 Dead+10 Wind 330 deg - No Ice
33	0.9 Dead+1.0 Wind 330 deg - No Ice
34	
35	1.2 Deta-1.0 Wind 0 deg+1.0 Ice
36	1.2 Deat+1.0 Wind 30 deg+1.0 Ice
37	1.2 Dead+1.0 Wind 45 deg+1.0 lee
20	1.2 Deat 1.0 Wind 60 deg 1.0 lee
20	1.2 Dead+1.0 Wind 00 deg+1.0 Lee
39 40	1.2 Deal + 1.0 wind 90 deg + 1.0 tec
40	1.2 Deart 1.0 which 120 degr 1.0 tee
41	1.2 Dead+1.0 wind 155 deg+1.0 fce
42	1.2 Dead+1.0 wind 150 deg+1.0 lce
43	1.2 Dead+1.0 Wind 180 deg+1.0 Ice
44	1.2 Dead+1.0 Wind 210 deg+1.0 Ice
45	1.2 Dead+1.0 Wind 225 deg+1.0 Ice
46	1.2 Dead+1.0 Wind 240 deg+1.0 Ice
47	1.2 Dead+1.0 Wind 270 deg+1.0 Ice
48	1.2 Dead+1.0 Wind 300 deg+1.0 Ice
49	1.2 Dead+1.0 Wind 315 deg+1.0 Ice
50	1.2 Dead+1.0 Wind 330 deg+1.0 Ice
51	Dead+Wind 0 deg - Service
52	Dead+Wind 30 deg - Service
53	Dead+Wind 45 deg - Service
54	Dead+Wind 60 deg - Service
55	Dead+Wind 90 deg - Service
56	Dead+Wind 120 deg - Service
57	Dead+Wind 135 deg - Service
58	Dead+Wind 150 deg - Service
59	Dead+Wind 180 deg - Service
60	Dead + Wind 100 deg - Service
61	Dade wind 210 deg - Service
62	Dead wind 223 deg = service
62	Dead wind 240 deg - Selvice
03	Dead wind 2/0 deg - Service
n4	Dead wind 500 deg - Service
65	Dood Wind 215 dog Compiles

Project

Client

160' Self Support Lattice - CSP #20

Date 06:59:10 07/02/21

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

Comb.		Description	
No.			
66	Dead+Wind 330 deg - Service		

			Maximum	Memb	per For	ces	
Section	Flevation	Component	Condition	Gov	Arial	Major Aris	Minor Aris
No	A	Tuna	Conuliion	Load	Алии	Moment	Moment
140.	ji	Type		Comb	K	kin-ft	kin_ft
T1	160 - 150	Leg	Max Tension	20	2 90	_0.22	-0.04
11	100 - 150	Leg	Max Compression	29	-5.27	-0.22	-0.04
			Max. Compression Max. Mx	18	1 38	0.33	0.04
			Max My	16	-2.20	0.45	0.37
			Max Vy	18	-1.01	0.01	0.00
			Max Vx	3	1.30	0.00	0.00
		Diagonal	Max Tension	5	3.07	0.00	0.00
		Diagonai	Max Compression	4	-3.19	0.00	0.00
			Max. Mx	34	-0.18	0.09	0.00
			Max My	34	-0.19	0.00	0.00
			Max Vy	34	-0.05	0.00	0.00
			Max Vx	34	-0.00	0.00	0.00
		Horizontal	Max Tension	6	2 33	0.00	0.00
		Honzontai	Max. Compression	3	-2.33	0.02	0.00
			May My	48	-0.10	0.02	0.00
			Max My	35	0.31	0.00	0.01
			May Vy	48	-0.05	0.00	0.01
			Max Vy	40	-0.05	0.00	0.01
		Top Girt	Max Tension	10	1.55	0.00	0.00
		Top Ont	Max Compression	2	1.55	0.00	0.00
			Max. Compression	2 19	-1.05	0.02	0.00
			Max. Max	40	-0.27	0.05	0.01
			Max. My	38 48	-0.07	0.05	0.01
			May Vy	40	0.05	0.05	0.01
T 2	150 105	т		38 20	0.00	0.00	0.00
12	150 - 125	Leg	Max Tension	29	20.19	-0.99	-0.18
			Max. Compression	2	-28.20	0.13	-0.14
			Max. Mx	28	9.11	2.52	-0.27
			Max. My	10	-2.55	-0.07	-2.61
			Max. Vy	28	-2.64	-1.85	-0.27
		D' 1	Max. Vx	10	2.72	-0.07	1.86
		Diagonal	Max Tension	17	11.11	0.00	0.00
			Max. Compression	16	-11.23	0.00	0.00
			Max. Mx	34	-0.18	0.15	0.00
			Max. My	34	-0.08	0.00	-0.01
			Max. Vy	34	-0.06	0.00	0.00
		· · · ·	Max. Vx	34	-0.00	0.00	0.00
		Horizontal	Max Tension	31	6.92	0.00	0.00
			Max. Compression	14	-7.04	0.02	0.01
			Max. Mx	48	-0.42	0.07	0.02
			Max. My	38	-0.41	0.07	0.02
			Max. Vy	48	0.05	0.07	0.02
			Max. Vx	35	-0.00	0.00	0.00
T3	125 - 100	Leg	Max Tension	19	67.25	-0.70	0.09
			Max. Compression	2	-81.40	0.65	-0.13
			Max. Mx	3	-60.43	0.73	-0.09
			Max. My	8	-30.88	0.33	0.93
			Max. Vy	28	-1.27	-0.09	-0.16
			Max. Vx	20	1.44	-0.00	0.17
		Diagonal	Max Tension	17	16.72	0.00	0.00
		-	Max. Compression	16	-17.00	0.00	0.00
			Max. Mx	34	-0.31	0.24	0.00
			Max. My	34	-0.23	0.00	-0.01

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

06:59:10 07/02/21

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
	2			Comb.	K	kip-ft	kip-ft
			Max. Vy	34	-0.09	0.00	0.00
			Max. Vx	34	-0.00	0.00	0.00
		Horizontal	Max Tension	16	11.31	0.05	-0.00
			Max. Compression	15	-11.20	0.05	0.01
			Max. Mx	48	-0.51	0.15	0.00
			Max. My	2	0.61	-0.00	-0.03
			Max. Vy	48	0.08	0.15	0.00
			Max Vx	2	-0.00	-0.00	-0.03
		Inner Bracing	Max Tension	3	0.01	0.00	0.00
		inner Brueing	Max Compression	18	-0.01	0.00	0.00
			Max My	34	-0.01	-0.07	0.00
			Max Vy	34	-0.01	-0.07	0.00
Т4	100 - 75	Leg	Max Tension	10	132 43	-0.86	0.00
14	100 - 75	Leg	Max Compression	2	155.66	-0.80	0.29
			Max. Compression	2	-135.00	2.60	-0.44
			Max. My	20	801	2.09	-0.03
			Max. My	20	-8.01	-0.03	-2.75
			Max. Vy	0	-1.1/	-0.00	0.04
		D'1	Max. vx	12	-1.35	-0.88	1.78
		Diagonal	Max Tension	17	23.22	0.00	0.00
			Max. Compression	16	-23.57	0.00	0.00
			Max. Mx	34	-0.43	0.30	0.00
			Max. My	34	-0.36	0.00	-0.01
			Max. Vy	34	-0.10	0.00	0.00
			Max. Vx	34	0.00	0.00	0.00
		Horizontal	Max Tension	16	16.75	0.10	-0.00
			Max. Compression	17	-16.58	0.07	-0.00
			Max. Mx	38	-0.32	0.21	0.00
			Max. My	2	-0.04	0.04	-0.04
			Max. Vy	38	-0.11	0.21	0.00
			Max. Vx	2	-0.01	0.04	-0.04
		Top Girt	Max Tension	16	13.23	0.04	-0.00
			Max. Compression	15	-13.14	0.04	0.01
			Max. Mx	38	-0.37	0.13	0.01
			Max. My	2	2.14	0.02	-0.03
			Max. Vy	38	0.08	0.13	0.01
			Max. Vx	2	-0.01	0.02	-0.03
		Inner Bracing	Max Tension	15	0.23	0.00	0.00
		U	Max. Compression	14	-0.23	0.00	0.00
			Max. Mx	34	-0.01	-0.10	0.00
			Max. Vy	34	0.05	0.00	0.00
Т5	75 - 66.6667	Leg	Max Tension	19	156.83	-1.54	0.44
	, 2 001000,	248	Max. Compression	2	-183.26	0.86	-0.05
			Max. Mx	28	153.00	-1.55	-0.46
			Max. My	12	74 46	-0.88	1.78
			Max Vy	28	-0.27	-1.55	-0.46
			Max Vx	20	-0.45	-0.88	-1 77
		Diagonal	Max Tension	17	26.21	0.00	0.00
		Diagonar	Max Compression	16	-26.62	0.00	0.00
			Max. Compression	34	-20.02	0.35	0.00
			Max My	34	-0.42	0.00	0.00
			Max. Wy	24	-0.43	0.00	-0.01
			Max Vy	34	-0.12	0.00	0.00
		Unizontal	May Taraian	J4 16	10.00	0.00	.0.00
		nonzontai	Max Commencies	10	19.24	0.11	-0.00
			Max. Compression	1/	-19.08	0.08	-0.00
			Max. Mx	58	-0.45	0.22	0.00
			Max. My	2	5.17	0.05	-0.04
			Max. Vy	58	0.12	0.22	0.00
		r n i	Max. Vx	2	-0.01	0.05	-0.04
		Inner Bracing	Max Tension	3	0.01	0.00	0.00
			Max. Compression	18	-0.01	0.00	0.00
			Max. Mx	34	-0.01	-0.10	0.00

Project

Client

160' Self Support Lattice - CSP #20

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

06:59:10 07/02/21

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Туре		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
			Max. Vy	34	0.05	0.00	0.00
T6	66.6667 - 58.3333	Leg	Max Tension	19	183.93	-0.73	0.05
			Max. Compression	2	-213.19	-0.82	-0.21
			Max. Mx	24	-209.80	0.87	0.04
			Max. My	4	-10.79	-0.15	-1.79
			Max. Vy	24	0.39	0.87	0.04
			Max. Vx	2	0.44	0.18	-1.71
		Diagonal	Max Tension	17	26.85	0.00	0.00
			Max. Compression	16	-27.28	0.00	0.00
			Max. Mx	34	-0.51	0.37	0.00
			Max. My	34	-0.46	0.00	-0.01
			Max. Vy	34	0.12	0.00	0.00
			Max. Vx	34	-0.00	0.00	0.00
		Top Girt	Max Tension	16	20.12	0.12	-0.00
			Max. Compression	17	-19.84	0.09	-0.00
			Max. Mx	38	0.43	0.24	0.00
			Max. My	2	2.39	0.06	-0.04
			Max. Vy	38	0.12	0.24	0.00
			Max. Vx	2	0.01	0.06	-0.04
		Inner Bracing	Max Tension	17	0.34	0.00	0.00
			Max. Compression	16	-0.35	0.00	0.00
			Max. Mx	34	-0.01	-0.11	0.00
			Max. Vy	34	0.05	0.00	0.00
T 7	58.3333 - 50	Leg	Max Tension	19	210.24	0.54	0.21
			Max. Compression	2	-242.40	0.01	-0.25
			Max. Mx	2	-242.30	2.93	0.16
			Max. My	4	-11.40	-0.15	-1.79
			Max. Vy	2	-0.97	2.93	0.16
			Max. Vx	4	-0.79	-0.15	-1.79
		Diagonal	Max Tension	17	27.79	0.00	0.00
			Max. Compression	16	-28.37	0.00	0.00
			Max. Mx	30	15.29	-0.28	0.01
			Max. My	38	-0.86	-0.01	-0.02
			Max. Vy	37	0.09	-0.12	-0.02
		T O	Max. Vx	40	0.00	0.00	0.00
		Top Girt	Max Tension	16	21.05	0.13	-0.00
			Max. Compression	17	-20.94	0.10	-0.00
			Max. Mx	38	-0.50	0.27	0.00
			Max. My	2	-0.62	0.04	-0.04
			Max. Vy	38	-0.13	0.27	0.00
		Deden dittern 1	Max. VX	2	0.01	0.04	-0.04
		Bracing	Max Tension	2	4.20	0.00	0.00
			Max. Compression	2	-4.20	0.00	0.00
			Max. Mx	34	0.63	-0.03	0.00
			Max. My	34	0.50	0.00	0.00
			Max. Vy	34	-0.03	0.00	0.00
		D 1 1 D' 1	Max. Vx	34	-0.00	0.00	0.00
		Bracing	Max Tension	2	2.78	0.00	0.00
			Max. Compression	2	-2.78	0.00	0.00
			Max. Mx	34	0.42	-0.04	0.00
			Max. My	34	0.33	0.00	-0.00
			Max. Vy	34	0.03	0.00	0.00
		I D '	Max. Vx	34	0.00	0.00	0.00
		Inner Bracing	Max Tension	33	0.36	0.00	0.00
			Max. Compression	32	-0.37	0.00	0.00
			Max. Mx	34	-0.01	-0.12	0.00
TO	50 27 5	т	Max. Vy	<i>5</i> 4	0.05	0.00	0.00
18	50 - 57.5	Leg	Max Tension	19	258.58	-0.16	0.26

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
	2			Comb.	K	kip-ft	kip-ft
			Max. Compression	2	-274.00	-0.90	-0.40
			Max. Mx	2	-274.00	-1.37	-0.40
			Max. My	4	-12.78	-0.18	-2.63
			Max. Vy	25	0.35	0.05	0.04
			Max. Vx	2	0.49	0.17	-2.55
		Diagonal	Max Tension	17	35.62	0.00	0.00
			Max. Compression	16	-36.14	0.00	0.00
			Max. Mx	34	-0.43	0.67	0.00
			Max. My	34	-0.49	0.00	-0.02
			Max. Vy	34	-0.17	0.00	0.00
		Tan Cint	Max. Vx Mar. Tanaian	34	0.01	0.00	0.00
		Top Girt	Max Tension	10	22.51	0.10	-0.00
			Max. Compression	17	-22.17	0.08	-0.00
			Max. Mx	20	0.44	-0.04	-0.07
			Max. My Max. Vy	38	0.13	-0.04	-0.07
			Max. Vy Max. Vy	2	-0.01	-0.04	-0.07
		Inner Bracing	Max Tension	17	0.38	0.00	0.00
		inner Bracing	Max. Compression	16	-0.39	0.00	0.00
			Max. Mx	34	-0.01	-0.14	0.00
			Max. Vy	34	0.06	0.00	0.00
Т9	37.5 - 25	Leg	Max Tension	19	277.89	0.60	0.41
		C C	Max. Compression	2	-317.84	-3.10	-0.47
			Max. Mx	2	-317.63	7.51	0.32
			Max. My	4	-14.20	-0.34	-3.34
			Max. Vy	2	1.84	7.51	0.32
			Max. Vx	4	1.04	-0.34	-3.34
		Diagonal	Max Tension	17	37.73	-0.31	0.01
			Max. Compression	32	-38.46	0.00	0.00
			Max. Mx	30	20.85	-0.47	0.02
			Max. My	35	-1.40	-0.18	0.03
			Max. Vy	37	-0.11	-0.21	-0.03
		Ton Girt	Max. VX May Tangian	48	24.06	0.00	0.00
		Top Gift	Max Tension	10	24.00	0.14	-0.00
			Max. Compression Max. My	38	-23.97	0.11	-0.00
			Max My	2	-0.39	-0.04	-0.08
			Max. Wy	38	-0.82	0.37	0.00
			Max. Vy Max. Vx	2	-0.15	-0.04	-0.08
		Redund Horz 1	Max Tension	$\frac{1}{2}$	5.51	0.00	0.00
		Bracing					
			Max. Compression	2	-5.51	0.00	0.00
			Max. Mx	34	0.75	-0.04	0.00
			Max. My	34	0.59	0.00	0.00
			Max. Vy	34	0.03	0.00	0.00
			Max. Vx	34	0.00	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	2	4.33	0.00	0.00
			Max. Compression	2	-4.33	0.00	0.00
			Max. Mx	34	0.59	-0.06	0.00
			Max. My	34	0.47	0.00	-0.00
			Max. Vy	34	0.03	0.00	0.00
		I D I	Max. Vx	34	0.00	0.00	0.00
		Inner Bracing	Max Tension	17	0.41	0.00	0.00
			Max. Compression	16	-0.42	0.00	0.00
			Max. Mx	54	-0.01	-0.16	0.00
T10	25 0	Lag	Max. Vy May Tansian	54 10	0.06	0.00	0.00
110	25 - 0	Leg	Max Compression	19	-416.46	-5.57	0.50
			May My	2	-367.92	3.80	-0.35
			Max. My	4	-15.06	-0.34	-3.34

tnxTower	Job 160' Self Support Lattice - CSP #20	0 Page 0 45 of 65
AECOM 500 Enterprise Drive	Project Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client SMK-007 / VZ5-228	Designed by KAB

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
			Max. Vy	2	-0.92	3.89	-0.35
			Max. Vx	2	-0.67	-1.90	-2.36
		Diagonal	Max Tension	33	40.79	0.00	0.00
			Max. Compression	32	-41.53	0.00	0.00
			Max. Mx	34	-0.73	0.88	0.00
			Max. My	34	-0.38	0.00	0.03
			Max. Vy	34	-0.21	0.00	0.00
			Max. Vx	34	-0.01	0.00	0.00
		Horizontal	Max Tension	16	27.97	0.25	-0.01
			Max. Compression	33	-27.58	0.00	0.00
			Max. Mx	38	-0.29	0.50	0.01
			Max. My	2	-1.09	0.07	-0.08
			Max. Vy	38	-0.19	0.50	0.01
			Max. Vx	2	0.01	0.05	-0.08
		Inner Bracing	Max Tension	3	0.01	0.00	0.00
			Max. Compression	18	-0.02	0.00	0.00
			Max. Mx	34	-0.01	-0.18	0.00
			Max. Vy	34	0.06	0.00	0.00

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	Κ	K
		Comb.			
Leg C	Max. Vert	24	460.27	52.48	-29.93
_	Max. H _x	24	460.27	52.48	-29.93
	Max. Hz	7	-394.23	-45.04	28.84
	Min. Vert	9	-405.81	-47.73	27.19
	Min. H _x	9	-405.81	-47.73	27.19
	Min. Hz	22	428.92	47.10	-30.02
Leg B	Max. Vert	12	463.37	-51.30	-32.54
-	Max. H _x	29	-406.72	46.54	29.78
	Max. H _z	33	-355.63	36.99	32.88
	Min. Vert	29	-406.72	46.54	29.78
	Min. H _x	12	463.37	-51.30	-32.54
	Min. Hz	14	441.78	-46.62	-34.49
Leg A	Max. Vert	2	465.70	2.86	60.90
-	Max. H _x	26	22.03	14.98	1.53
	Max. H _z	2	465.70	2.86	60.90
	Min. Vert	19	-409.24	-2.84	-55.39
	Min. H _x	11	14.66	-14.97	0.87
	Min. H _z	19	-409.24	-2.84	-55.39

Tower Mast Reaction Summary										
Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque				
Combination				Moment, M_x	Moment, M_z					
	Κ	Κ	K	kip-ft	kip-ft	kip-ft				
Dead Only	51.56	0.00	0.00	-5.71	-11.99	0.00				
1.2 Dead+1.0 Wind 0 deg - No	61.87	-0.29	-110.94	-8865.29	6.86	112.06				
Ice										
0.9 Dead+1.0 Wind 0 deg - No	46.40	-0.29	-110.94	-8863.57	10.46	112.06				
Ice										

tnxTower	Job	160' Self Support Lattice - CSP #20	Page 46 of 65
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Load	Vertical	Shear _x	$Shear_z$	Overturning	Overturning	Torque
Combination	Κ	Κ	Κ	Moment, M _x kip-ft	Moment, M _z kip-ft	kip-ft
1.2 Dead+1.0 Wind 30 deg - No	61.87	52.62	-92.11	-7412.17	-4232.87	72.47
Ice 0.9 Dead+1.0 Wind 30 deg - No	46.40	52.62	-92.11	-7410.46	-4229.27	72.47
1.2 Dead+1.0 Wind 45 deg - No	61.87	74.04	-74.60	-6012.13	-5956.43	44.49
0.9 Dead+1.0 Wind 45 deg - No Ice	46.40	74.04	-74.60	-6010.41	-5952.83	44.49
1.2 Dead+1.0 Wind 60 deg - No Ice	61.87	90.15	-52.28	-4220.84	-7257.03	13.47
0.9 Dead+1.0 Wind 60 deg - No Ice	46.40	90.15	-52.28	-4219.13	-7253.44	13.47
1.2 Dead+1.0 Wind 90 deg - No Ice	61.87	105.74	0.29	14.40	-8488.16	-49.14
0.9 Dead+1.0 Wind 90 deg - No Ice	46.40	105.74	0.29	16.11	-8484.56	-49.14
1.2 Dead+1.0 Wind 120 deg - No Ice	61.87	95.54	55.72	4440.77	-7619.20	-98.59
0.9 Dead+1.0 Wind 120 deg - No Ice	46.40	95.54	55.72	4442.48	-7615.60	-98.59
1.2 Dead+1.0 Wind 135 deg - No Ice	61.87	76.53	77.09	6167.65	-6125.66	-113.99
0.9 Dead+1.0 Wind 135 deg - No Ice	46.40	76.53	77.09	6169.36	-6122.06	-113.99
1.2 Dead+1.0 Wind 150 deg - No Ice	61.87	53.12	92.40	7419.72	-4269.68	-121.62
0.9 Dead+1.0 Wind 150 deg - No Ice	46.40	53.12	92.40	7421.43	-4266.08	-121.62
1.2 Dead+1.0 Wind 180 deg - No Ice	61.87	0.29	105.06	8457.93	-35.64	-112.06
0.9 Dead+1.0 Wind 180 deg - No Ice	46.40	0.29	105.06	8459.64	-32.04	-112.06
1.2 Dead+1.0 Wind 210 deg - No Ice	61.87	-52.62	92.11	7398.47	4204.09	-72.47
0.9 Dead+1.0 Wind 210 deg - No Ice	46.40	-52.62	92.11	7400.18	4207.69	-72.47
1.2 Dead+1.0 Wind 225 deg - No Ice	61.87	-74.04	74.60	5998.42	5927.65	-44.49
0.9 Dead+1.0 Wind 225 deg - No Ice	46.40	-74.04	74.60	6000.13	5931.25	-44.49
1.2 Dead+1.0 Wind 240 deg - No Ice	61.87	-95.24	55.22	4403.96	7569.17	-13.47
0.9 Dead+1.0 Wind 240 deg - No Ice	46.40	-95.24	55.22	4405.67	7572.77	-13.47
1.2 Dead+1.0 Wind 270 deg - No Ice	61.87	-105.74	-0.29	-28.10	8459.38	49.14
0.9 Dead+1.0 Wind 270 deg -	46.40	-105.74	-0.29	-26.39	8462.98	49.14
1.2 Dead+1.0 Wind 300 deg -	61.87	-90.44	-52.78	-4257.65	7249.51	98.59
0.9 Dead+1.0 Wind 300 deg -	46.40	-90.44	-52.78	-4255.93	7253.10	98.59
1.2 Dead+1.0 Wind 315 deg - No Ice	61.87	-74.45	-75.01	-6042.18	5957.70	113.99
0.9 Dead+1.0 Wind 315 deg - No Ice	46.40	-74.45	-75.01	-6040.46	5961.30	113.99
1.2 Dead+1.0 Wind 330 deg - No Ice	61.87	-53.12	-92.40	-7433.42	4240.90	121.62
0.9 Dead+1.0 Wind 330 deg - No Ice	46.40	-53.12	-92.40	-7431.71	4244.50	121.62
1.2 Dead+1.0 Ice	152.36	0.00	-0.00	-77.59	-93.94	-0.00

tnxTower	Job	160' Self Support Lattice - CSP #20	Page 47 of 65
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Load Ver	tical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination	V	K	K	Moment, M_x kin_ft	Moment, M_z kip_ft	kin_ft
1.2 Dead + 1.0 Wind 0 deg + 1.0	152.36	-0.03	-29.45			37.28
Ice	152.50	-0.05	-27.45	-2362.33	-92.05	57.20
1 2 Dead+1 0 Wind 30 deg+1 0	152.36	14 33	-24 98	-2039.85	-1217 94	14 11
Ice	102.00	11.55	21.90	2009.00	1217.91	1
1.2 Dead+1.0 Wind 45 deg+1.0	152.36	20.21	-20.32	-1674.88	-1679.69	0.66
Ice	102100		20122	10, 1100	1015105	0100
1.2 Dead+1.0 Wind 60 deg+1.0	152.36	24.69	-14.31	-1203.38	-2031.05	-12.83
Ice						
1.2 Dead+1.0 Wind 90 deg+1.0	152.36	28.72	0.03	-76.28	-2344.20	-36.34
Ice						
1.2 Dead+1.0 Wind 120	152.36	25.39	14.75	1075.92	-2076.44	-50.11
deg+1.0 Ice						
1.2 Dead+1.0 Wind 135	152.36	20.54	20.64	1539.55	-1699.53	-52.06
deg+1.0 Ice						
1.2 Dead+1.0 Wind 150	152.36	14.39	25.01	1885.98	-1220.20	-50.46
deg+1.0 Ice						
1.2 Dead+1.0 Wind 180	152.36	0.03	28.67	2176.26	-95.24	-37.28
deg+1.0 Ice						
1.2 Dead+1.0 Wind 210	152.36	-14.33	24.98	1884.67	1030.07	-14.11
deg+1.0 Ice						
1.2 Dead+1.0 Wind 225	152.36	-20.21	20.32	1519.70	1491.82	-0.66
deg+1.0 Ice						
1.2 Dead+1.0 Wind 240	152.36	-25.36	14.69	1073.67	1887.26	12.83
deg+1.0 Ice						
1.2 Dead+1.0 Wind 270	152.36	-28.72	-0.03	-78.89	2156.32	36.34
deg+1.0 Ice						
1.2 Dead+1.0 Wind 300	152.36	-24.72	-14.36	-1205.64	1844.47	50.11
deg+1.0 Ice						
1.2 Dead+1.0 Wind 315	152.36	-20.26	-20.37	-1676.72	1493.66	52.06
deg+1.0 Ice	1.00.00	14.00	25.01	2041.15	1000.00	50 46
1.2 Dead+1.0 Wind 330	152.36	-14.39	-25.01	-2041.15	1032.32	50.46
deg+1.0 Ice	51.50	0.07	22.62	1000 71	7.46	22.07
Dead+Wind 0 deg - Service	51.56	-0.06	-23.63	-1892./1	-/.46	25.87
Dead+wind 30 deg - Service	51.56	11.21	-19.02	-1585.18	-910.00	15.44
Dead+Wind 40 deg - Service	51.50	10.20	-15.89	-1284.94	-12/7.75	9.40
Dead+wind 00 deg - Service	51.50	19.20	-11.14	-903.37	-1554.80	2.8/
Dead+Wind 120 deg - Service	51.50	22.32	11.87	-1.10	-1617.05	-10.47
Dead+Wind 125 deg - Service	51.56	20.55	11.07	1200 57	-1051.95	-21.00
Dead+Wind 150 deg Service	51.56	11.30	10.42	1509.57	-1313.80	-24.20
Dead+Wind 180 deg - Service	51.56	0.06	19.08	1707 44	-916.44	-23.91
Dead+Wind 210 deg - Service	51.56	-11.21	19.62	1/9/.44	-10.52	-25.67
Dead+Wind 225 deg - Service	51.56	-15.77	15.89	1273 52	1253.77	-15.44
Dead+Wind 240 deg - Service	51.56	-20.29	11.76	933.87	1603 44	-2.40
Dead+Wind 270 deg - Service	51.56	-20.27	-0.06	-10.24	1793.07	10.47
Dead+Wind 300 deg - Service	51.56	-19.27	-11 24	-911 21	1535 35	21.00
Dead+Wind 315 deg - Service	51.56	-15.86	-15.98	-1291 34	1260.17	24.00
Dead+Wind 330 deg - Service	51.56	-11.32	-19.68	-1587.70	894.46	25.91

Solution Summary

	Sui	n of Applied Force.	\$		Sum of Reaction	15	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	Κ	K	K	
1	0.00	-51.56	0.00	0.00	51.56	0.00	0.000%
2	-0.29	-61.87	-110.94	0.29	61.87	110.94	0.000%
3	-0.29	-46.40	-110.94	0.29	46.40	110.94	0.000%
4	52.62	-61.87	-92.11	-52.62	61.87	92.11	0.000%

Job tnxTower

Project

Client

160' Self Support Lattice - CSP #20

Page 48 of 65 Date 06:59:10 07/02/21

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

	Sum of Applied Forces				Sum of Reactions			
Load	DY Sur	n oj Applieu Forces PV		PY	DV	D7	0% Error	
Comb	K	K	K	K	K	K	70 LITO	
5	52.62	-46.40	_02.11	-52.62	46.40	02.11	0.000%	
6	74 04	-61.87	-74.60	-74.04	61.87	74.60	0.000%	
7	74.04	-46.40	-74.60	-74.04	46.40	74.60	0.000%	
8	90.15	-61.87	-52.28	-90.15	61.87	52.28	0.000%	
9	90.15	-46.40	-52.28	-90.15	46.40	52.28	0.000%	
10	105.74	-61.87	0.29	-105.74	61.87	-0.29	0.000%	
11	105.74	-46.40	0.29	-105.74	46.40	-0.29	0.000%	
12	95.54	-61.87	55.72	-95.54	61.87	-55.72	0.000%	
13	95.54	-46.40	55.72	-95.54	46.40	-55.72	0.000%	
14	76.53	-61.87	77.09	-76.53	61.87	-77.09	0.000%	
15	76.53	-46.40	77.09	-76.53	46.40	-77.09	0.000%	
16	53.12	-61.87	92.40	-53.12	61.87	-92.40	0.000%	
17	53.12	-46.40	92.40	-53.12	46.40	-92.40	0.000%	
18	0.29	-61.87	105.06	-0.29	61.87	-105.06	0.000%	
19	0.29	-46.40	105.06	-0.29	46.40	-105.06	0.000%	
20	-52.62	-61.87	92.11	52.62	61.87	-92.11	0.000%	
21	-52.62	-46.40	92.11	52.62	46.40	-92.11	0.000%	
22	-74.04	-61.87	74.60	74.04	61.87	-74.60	0.000%	
23	-74.04	-46.40	74.60	74.04	46.40	-74.60	0.000%	
24	-95.24	-61.87	55.22	95.24	61.87	-55.22	0.000%	
25	-95.24	-46.40	55.22	95.24	46.40	-55.22	0.000%	
26	-105.74	-61.87	-0.29	105.74	61.87	0.29	0.000%	
27	-105.74	-46.40	-0.29	105.74	46.40	0.29	0.000%	
28	-90.44	-61.87	-52.78	90.44	61.87	52.78	0.000%	
29	-90.44	-46.40	-52.78	90.44	46.40	52.78	0.000%	
30	-74.45	-61.87	-75.01	74.45	61.87	75.01	0.000%	
31	-74.45	-46.40	-75.01	74.45	46.40	75.01	0.000%	
32	-53.12	-61.87	-92.40	53.12	61.87	92.40	0.000%	
33	-53.12	-46.40	-92.40	53.12	46.40	92.40	0.000%	
34	0.00	-152.36	0.00	0.00	152.36	0.00	0.000%	
35	-0.03	-152.36	-29.45	0.03	152.36	29.45	0.000%	
36	14.33	-152.36	-24.98	-14.33	152.36	24.98	0.000%	
37	20.21	-152.36	-20.32	-20.21	152.36	20.32	0.000%	
38	24.69	-152.36	-14.31	-24.69	152.36	14.31	0.000%	
39	28.72	-152.36	0.03	-28.72	152.36	-0.03	0.000%	
40	25.39	-152.36	14.75	-25.39	152.36	-14.75	0.000%	
41	20.54	-152.36	20.64	-20.54	152.36	-20.64	0.000%	
42	14.39	-152.36	25.01	-14.39	152.30	-25.01	0.000%	
43	0.03	-152.36	28.67	-0.03	152.36	-28.67	0.000%	
44	-14.55	-152.30	24.98	14.55	152.50	-24.98	0.000%	
45	-20.21	-152.50	20.52	20.21	152.50	-20.52	0.000%	
40	-23.30	-152.50	-0.03	23.50	152.50	-14.09	0.000%	
47	-20.72	-152.30	-0.05	20.72	152.50	14.36	0.000%	
40	-24.72	-152.36	-20.37	20.26	152.36	20.37	0.000%	
50	-20.20	-152.30	-25.01	14 39	152.36	25.01	0.000%	
51	-0.06	-51.56	-23.63	0.06	51.56	23.63	0.000%	
52	11.21	-51.56	-19.62	-11.21	51.56	19.62	0.000%	
53	15.77	-51.56	-15.89	-15.77	51.56	15.89	0.000%	
54	19.20	-51.56	-11.14	-19.20	51.56	11.14	0.000%	
55	22.52	-51.56	0.06	-22.52	51.56	-0.06	0.000%	
56	20.35	-51.56	11.87	-20.35	51.56	-11.87	0.000%	
57	16.30	-51.56	16.42	-16.30	51.56	-16.42	0.000%	
58	11.32	-51.56	19.68	-11.32	51.56	-19.68	0.000%	
59	0.06	-51.56	22.38	-0.06	51.56	-22.38	0.000%	
60	-11.21	-51.56	19.62	11.21	51.56	-19.62	0.000%	
61	-15.77	-51.56	15.89	15.77	51.56	-15.89	0.000%	
62	-20.29	-51.56	11.76	20.29	51.56	-11.76	0.000%	
63	-22.52	-51.56	-0.06	22.52	51.56	0.06	0.000%	
64	-19.27	-51.56	-11.24	19.27	51.56	11.24	0.000%	
65	-15.86	-51.56	-15.98	15.86	51.56	15.98	0.000%	

tnxTower	Job	160' Self Support Lattice - CSP #20	Page 49 of 65
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

	Sui	n of Applied Force.	5		Sum of Reaction.	5	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
66	-11.32	-51.56	-19.68	11.32	51.56	19.68	0.000%

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	160 - 150	2.742	51	0.1263	0.0218
T2	150 - 125	2.476	51	0.1256	0.0223
Т3	125 - 100	1.804	51	0.1203	0.0207
T4	100 - 75	1.205	51	0.1006	0.0180
T5	75 - 66.6667	0.690	51	0.0824	0.0142
T6	66.6667 - 58.3333	0.542	51	0.0755	0.0125
T 7	58.3333 - 50	0.408	51	0.0678	0.0108
Т8	50 - 37.5	0.295	51	0.0549	0.0092
Т9	37.5 - 25	0.166	51	0.0400	0.0067
T10	25 - 0	0.078	51	0.0234	0.0041

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
160.00	Flash Beacon Lighting	51	2.742	0.1263	0.0218	218944
159.00	HPD2-4.7	51	2.716	0.1262	0.0218	218944
158.00	DB304-A	51	2.689	0.1261	0.0219	218944
155.00	432E-83I-01T TTA Unit	51	2.609	0.1259	0.0221	218944
146.00	DC6-48-60-18-8F (Squid)	51	2.367	0.1253	0.0222	177391
	Suppressor					
140.00	Commscope SFG22 (14' Sector	51	2.204	0.1248	0.0219	447071
	Frame)					
125.00	DSM2 w/ additional SFS-H	51	1.804	0.1203	0.0207	75529
	Stabilizer					
124.00	2" Dia 10' Omni	51	1.778	0.1197	0.0206	74287
115.00	4"x96"x72" Ice Canopy	51	1.553	0.1133	0.0197	82516
110.00	6' w/ Radome	51	1.434	0.1091	0.0191	89861
97.00	APXVSPP18-C-A20	51	1.138	0.0982	0.0176	99373
85.00	PD10054	51	0.884	0.0897	0.0159	73562
83.00	L-810 Tower Side-Light Beacon	51	0.844	0.0883	0.0156	70488
77.50	5' T-arm	51	0.737	0.0843	0.0147	63615
21.00	Sinclair SY450-SF1SNM Yagi	51	0.058	0.0187	0.0034	52287

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	٥
T1	160 - 150	12.791	2	0.5844	0.1022

tnxTower	Job	160' Self Support Lattice - CSP #20	Page 50 of 65
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T2	150 - 125	11.555	2	0.5824	0.1047
Т3	125 - 100	8.427	2	0.5598	0.0971
T4	100 - 75	5.634	2	0.4693	0.0843
T5	75 - 66.6667	3.231	2	0.3845	0.0666
T6	66.6667 - 58.3333	2.540	2	0.3527	0.0588
T 7	58.3333 - 50	1.909	2	0.3168	0.0509
Τ8	50 - 37.5	1.384	2	0.2565	0.0432
Т9	37.5 - 25	0.777	2	0.1869	0.0314
T10	25 - 0	0.364	2	0.1097	0.0195

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
160.00	Flash Beacon Lighting	2	12.791	0.5844	0.1022	54414
159.00	HPD2-4.7	2	12.668	0.5842	0.1026	54414
158.00	DB304-A	2	12.545	0.5840	0.1029	54414
155.00	432E-83I-01T TTA Unit	2	12.175	0.5834	0.1039	54414
146.00	DC6-48-60-18-8F (Squid)	2	11.052	0.5817	0.1044	47752
	Suppressor					
140.00	Commscope SFG22 (14' Sector	2	10.293	0.5796	0.1028	169090
	Frame)					
125.00	DSM2 w/ additional SFS-H	2	8.427	0.5598	0.0971	16472
	Stabilizer					
124.00	2" Dia 10' Omni	2	8.307	0.5573	0.0966	16186
115.00	4"x96"x72" Ice Canopy	2	7.261	0.5282	0.0923	17914
110.00	6' w/ Radome	2	6.704	0.5088	0.0897	19468
97.00	APXVSPP18-C-A20	2	5.324	0.4585	0.0826	21406
85.00	PD10054	2	4.137	0.4188	0.0747	15831
83.00	L-810 Tower Side-Light Beacon	2	3.949	0.4123	0.0732	15167
77.50	5' T-arm	2	3.449	0.3936	0.0688	13685
21.00	Sinclair SY450-SF1SNM Yagi	2	0.273	0.0875	0.0160	11167

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft	-97-		in	Bolts	per Bolt K	per Bolt K	Allowable		
T1	160	Leg	A325X	0.7500	6	0.47	30.10	0.016 🖌	1	Bolt Tension
		Diagonal	A325N	0.7500	1	3.07	17.94	0.171 🖌	1	Member Block Shear
		Horizontal	A325X	0.6250	2	1.17	10.26	0.114 🖌	1	Member Block Shear
		Top Girt	A325N	0.6250	2	0.77	10.26	0.075 🖌	1	Member Block Shear
T2	150	Leg	A325X	0.7500	6	3.36	30.10	0.112 🖌	1	Bolt Tension
		Diagonal	A325N	0.7500	1	11.11	17.94	0.619 🖌	1	Member Block Shear
		Horizontal	A325X	0.6250	2	3.46	7.19	0.481 🖌	1	Member Block

tnxTo	wer

Project

Client

160' Self Support Lattice - CSP #20

Page 51 of 65

Date 06:59:10 07/02/21

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load per Bolt K	Ratio Load Allowable	Allowable Ratio	Criteria
T3	125	Leg	A325X	0.7500	6	11.21	30.10	0.272	1	Shear Bolt Tension
		Diagonal	A325N	0.7500	1	16.72	29.91	0.559	1	Member Block Shear
		Horizontal	A325X	0.6250	2	5.65	12.83	0.441 🖌	1	Member Block Shear
T4	100	Leg	A325X	0.7500	6	22.07	30.10	0.733 🖌	1	Bolt Tension
		Diagonal	A325N	0.7500	1	23.22	25.23	0.920 🖌	1	Member Bearing
		Horizontal	A325X	0.6250	2	8.38	17.26	0.485	1	Bolt Shear
T5	75	Leg	A325X	0.8750	6	26.14	41.56	0.629	1	Bolt Tension
		Diagonal	A325N	0.7500	1	26.21	35.34	0.741	1	Member Bearing
		Horizontal	A325X	0.6250	2	9.62	17.26	0.558	1	Bolt Shear
T6	66.6667	Leg	A325X	0.8750	6	30.66	41.56	0.738	1	Bolt Tension
		Diagonal	A325N	0.7500	1	26.85	35.34	0.760	1	Member Bearing
		Top Girt	A325X	0.6250	2	10.06	17.26	0.583	1	Bolt Shear
T 7	58.3333	Leg	A325X	0.8750	6	35.02	41.56	0.843	1	Bolt Tension
		Diagonal	A325N	0.7500	1	27.79	31.54	0.881	1	Member Bearing
		Top Girt	A325X	0.6250	2	10.52	17.26	0.610	1	Bolt Shear
T8	50	Leg	A325X	1.0000	8	29.82	54.52	0.547	1	Bolt Tension
		Diagonal	A325N	1.0000	1	35.62	48.81	0.730	1	Member Block Shear
Т9	37.5	Leg	A325X	1.0000	8	34.70	54.52	0.636 🖌	1	Bolt Tension
		Diagonal	A325N	1.0000	1	37.73	45.70	0.825	1	Member Block Shear
		Top Girt	A325X	0.6250	2	12.03	16.28	0.739 🖌	1	Member Block Shear
T10	25	Leg	A325X	1.0000	8	45.64	54.52	0.837 🖌	1	Bolt Tension
		Diagonal	A325N	1.0000	1	40.79	54.84	0.744 🖌	1	Member Block Shear
		Horizontal	A325X	0.6250	2	13.99	17.26	0.811 🖌	1	Bolt Shear

Compression Checks

	Leg Design Data (Compression)										
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio P_{μ}		
	ft		ft	ft		in^2	Κ	Κ	ϕP_n		
T1	160 - 150	P.5x.250	10.01	5.01	35.7 K=1.00	3.7306	-5.27	152.93	0.034 1		
T2	150 - 125	P.5x.250	25.03	8.34	59.5 K=1.00	3.7306	-28.20	129.56	0.218 1		
T3	125 - 100	P.5x.250	25.03	8.34	59.5	3.7306	-81.40	129.56	0.628^{-1}		

tnxTower	Job 160' Self Support Lattice - CSP #20	Page 52 of 65
AECOM 500 Enterprise Drive	Project Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client SMK-007 / VZ5-228	Designed by KAB

Section	Flevation	Size	I	I	Kl/r	4	Р	4 <i>D</i>	Ratio
No.	Lievation	5120	L	L_{u}	14/7	Л	1 u	$\Psi \Gamma_n$	P_{μ}
	ft		ft	ft		in^2	Κ	Κ	ϕP_n
					K=1.00				~
T4	100 - 75	P5x0.3 w/ (3) 1.5x5/8 Plates	25.03	8.34	51.4 K=1.00	7.2544	-155.66	269.04	0.579 ¹
Т5	75 - 66.6667	P5x0.4 w/ (3) 1.5x5/8 Plates	8.34	8.34	53.2 K=1.00	8.6530	-183.26	316.53	0.579 ¹
T6	66.6667 - 58.3333	P5x0.4 w/ (3) 1.5x5/8 Plates	8.34	8.34	53.2 K=1.00	8.6530	-213.19	316.53	0.674 ¹
T7	58.3333 - 50	HSS5x.4	8.34	4.17	30.7 K=1.00	5.7805	-242.40	287.44	0.843 1
Τ8	50 - 37.5	HSS6.875x.4	12.51	12.51	65.5 K=1.00	8.1367	-274.00	301.66	0.908 1
Т9	37.5 - 25	HSS6.875x.4	12.51	6.26	32.7 K=1.00	8.1367	-317.85	399.96	0.795 1
T10	25 - 0	HSS6.875x0.5 w/ (3) 2x5/8 Bars	25.03	12.51	58.7 K=1.00	13.1229	-416.46	459.19	0.907 1

¹ $P_{u} / \phi P_{n}$ controls

	Diagonal Design Data (Compression)								
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	160 - 150	2L2 1/2x2x3/16	7.43	6.88	104.5 K=1.00	1.6200	-3.19	38.28	0.083 1
T2	150 - 125	2L2 1/2x2x3/16	10.57	9.96	151.3 K=1.00	1.6200	-11.23	20.25	0.554 1
T3	125 - 100	2L2 1/2x2 1/2x5/16	11.21	10.63	167.6 K=1.00	2.9300	-17.00	29.84	0.570 1
T4	100 - 75	2L3x2 1/2x1/4	11.91	11.21	142.4 K=1.00	2.6300	-23.57	37.14	0.635 1
T5	75 - 66.6667	2L3x2 1/2x5/16	12.15	11.46	146.8 K=1.00	3.2422	-26.62	43.06	0.618 1
T6	66.6667 - 58.3333	2L3x2 1/2x5/16	12.39	11.71	150.0 K=1.00	3.2422	-27.28	41.23	0.662 1
T 7	58.3333 - 50	2L3x3x5/16	12.64	12.09	115.1 K=1.00	3.5500	-28.37	74.52	0.381 1
T8	50 - 37.5	2L3 1/2x3x3/8	16.01	15.22	167.5 K=1.00	4.5900	-36.14	46.80	0.772 ¹
Т9	37.5 - 25	2L3 1/2x3 1/2x5/16	16.33	15.55	126.9 K=1.00	4.1800	-38.46	74.26	0.518 1
T10	25 - 0	2L4x3x3/8	16.99	16.06	163.3 K=1.00	4.9700	-41.53	53.36	0.778 1

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

Job		Page
	160' Self Support Lattice - CSP #20	53 of 65
Project		Date
	Middlebury, CT	06:59:10 07/02/21
Client		Designed by
	SMK-007 / VZ5-228	KAB

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	Κ	ϕP_n
T1	160 - 150	L3x3x1/4	10.60	5.09	93.5 K=0.91	1.4400	-2.33	37.58	0.062 1
T2	150 - 125	L2 1/2x2 1/2x3/16	12.33	5.96	106.9 K=0.74	0.9020	-7.04	20.79	0.338 1
T3	125 - 100	L3x3x5/16	14.33	6.96	106.1 K=0.75	1.7800	-11.20	41.41	0.270 1
T4	100 - 75	L3x3x1/2	16.33	7.86	112.5 K=0.70	2.7500	-16.57	59.59	0.278 1
T5	75 - 66.6667	L3x3x1/2	17.00	8.20	114.7 K=0.68	2.7500	-19.08	58.01	0.329 1
T10	25 - 0	L4x4x1/2	22.00	10.59	112.8 K=0.69	3.7500	-27.58	80.95	0.341 1

¹ $P_u \neq \phi P_n$ controls

		Тор (Girt Des	ign D	Data (C	Compr	ession))	
Section No.	Elevation	Size	L	L _u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	160 - 150	L3x3x1/4	10.20	4.69	107.6 K=1.13	1.4400	-1.63	32.98	0.049 1
T4	100 - 75	L3x3x1/4	15.00	7.20	139.8 K=0.96	1.4400	-13.14	21.09	0.623 1
T6	66.6667 - 58.3333	L3x3x1/2	17.67	8.33	159.1 K=0.93	2.7500	-19.84	31.10	0.638 1
T7	58.3333 - 50	L3x3x1/2	18.33	8.76	165.8 K=0.92	2.7500	-20.94	28.64	0.731 1
T8	50 - 37.5	L4x4x1/4	19.00	9.21	134.6 K=0.97	1.9400	-22.17	30.66	0.723 1
Т9	37.5 - 25	L4x4x5/16	20.00	9.52	138.6 K=0.96	2.4000	-23.97	35.76	0.670 1

	R	edundant Ho	orizonta	al (1)	Desig	n Data	(Comp	oressio	n)
Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	Κ	K	ϕP_n
T7	58.3333 - 50	L2x2x5/16	4.58	4.38	134.6 K=1.00	1.1500	-4.20	18.16	0.231 1
T9	37.5 - 25	L2x2x5/16	5.00	4.71	145.0 K=1.00	1.1500	-5.51	15.65	0.352 1

tnxTower	Job 160' Self Support Lattice - CSP #20	Page 54 of 65
AECOM 500 Enterprise Drive	Project Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client SMK-007 / VZ5-228	Designed by KAB

Section Electation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.								P_u
ft		ft	ft		in^2	K	K	ϕP_n

¹ $P_u / \phi P_n$ controls

		Redundant D	iagonal	(1) C)esign	Data	(Comp	ression	I)
Section	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in ²	K	K	$\frac{P_u}{\Phi P_n}$
T7	58.3333 - 50	L2x2x5/16	6.07	5.79	178.0 K=1.00	1.1500	-2.78	10.38	0.268 1
Т9	37.5 - 25	L2x2x5/16	7.85	7.38	227.0 K=1.00	1.1500	-4.33	6.39	0.678^{-1}

¹ P_u / ϕP_n controls

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	Κ	K	ϕP_n
T3	125 - 100	L2 1/2x2x3/16	7.17	7.17	201.4 K=1.00	0.8090	-0.01	5.71	0.002 1
T4	100 - 75	L2 1/2x2x3/16	7.50	7.50	210.8 K=1.00	0.8090	-0.23	5.21	0.044 1
T5	75 - 66.6667	L2 1/2x2x3/16	8.50	8.50	238.9 K=1.00	0.8090	-0.01	4.06	0.003 1
T6	66.6667 - 58.3333	L2 1/2x2x3/16	8.83	8.83	248.2 K=1.00	0.8090	-0.35	3.76	0.093 1
T 7	58.3333 - 50	L2 1/2x2x3/16	9.17	9.17	257.6 K=1.00	0.8090	-0.37	3.49	0.106 1
		KL/R > 250 (C) - 185							
T8	50 - 37.5	L2 1/2x2 1/2x3/16	9.50	9.50	230.3 K=1.00	0.9020	-0.39	4.87	0.081 1
Т9	37.5 - 25	L2 1/2x2 1/2x3/16	10.00	10.00	242.4 K=1.00	0.9020	-0.42	4.39	0.096 1
T10	25 - 0	L2 1/2x2 1/2x3/16	11.00	11.00	266.7 K=1.00	0.9020	-0.02	3.63	0.006 1
		KL/R > 250 (C) - 242							

¹ $P_u / \phi P_n$ controls

Tension Checks

AECOM

500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX: Job

Project

Client

160' Self Support Lattice - CSP #20 Middlebury, CT Page 55 of 65 Date 06:59:10 07/02/21

SMK-007 / VZ5-228

Designed by KAB

Leg Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P.
	ft		ft	ft		in^2	Κ	Κ	$\frac{1}{\Phi P_n}$
T1	160 - 150	P.5x.250	10.01	5.01	35.7	3.7306	2.84	167.88	0.017 1
T2	150 - 125	P.5x.250	25.03	8.34	59.5	3.7306	20.19	167.88	0.120^{-1}
T3	125 - 100	P.5x.250	25.03	8.34	59.5	3.7306	67.25	167.88	0.401^{-1}
T4	100 - 75	P5x0.3 w/ (3) 1.5x5/8 Plates	25.03	8.34	51.4	7.2544	132.43	326.45	0.406^{-1}
T5	75 - 66.6667	P5x0.4 w/ (3) 1.5x5/8 Plates	8.34	8.34	53.2	8.6530	156.83	389.38	0.403^{-1}
T6	66.6667 - 58.3333	P5x0.4 w/ (3) 1.5x5/8 Plates	8.34	8.34	53.2	8.6530	183.93	389.38	0.472^{-1}
T7	58.3333 - 50	HSS5x.4	8.34	4.17	30.7	5.7805	210.24	312.15	0.674^{-1}
Т8	50 - 37.5	HSS6.875x.4	12.51	12.51	65.5	8.1367	238.58	439.38	0.543 ¹
T9	37.5 - 25	HSS6.875x.4	12.51	6.26	32.7	8.1367	277.89	439.38	0.632^{-1}
T10	25 - 0	HSS6.875x0.5 w/ (3) 2x5/8 Bars	25.03	12.51	58.7	13.1229	365.15	590.53	0.618 ¹

	Diagonal Design Data (Tension)								
Section No.	Elevation	Size	L	L _u	Kl/r	A	P_u	ϕP_n	Ratio P.,
	ft		ft	ft		in^2	Κ	Κ	$\frac{1}{\Phi P_n}$
T1	160 - 150	2L2 1/2x2x3/16	7.43	6.88	108.6	0.9689	3.07	42.15	0.073 1
T2	150 - 125	2L2 1/2x2x3/16	10.57	9.96	155.4	0.9689	11.11	42.15	0.264 1
T3	125 - 100	2L2 1/2x2 1/2x5/16	11.21	10.63	171.9	1.7873	16.72	77.75	0.215 1
T4	100 - 75	2L3x2 1/2x1/4	11.91	11.21	145.8	1.6444	23.22	71.53	0.325 1
T5	75 - 66.6667	2L3x2 1/2x5/16	12.15	11.46	150.3	2.0215	26.21	98.55	0.266 1
T6	66.6667 - 58.3333	2L3x2 1/2x5/16	12.39	11.71	153.5	2.0215	26.85	98.55	0.272 1
T 7	58.3333 - 50	2L3x3x5/16	12.64	12.09	117.7	2.2523	27.79	97.98	0.284 1
Т8	50 - 37.5	2L3 1/2x3x3/8	16.01	15.22	171.2	2.8097	35.62	122.22	0.291 1
Т9	37.5 - 25	2L3 1/2x3 1/2x5/16	16.33	15.55	129.6	2.6077	37.73	127.12	0.297 1
T10	25 - 0	2L4x3x3/8	16.99	16.06	166.7	3.0947	40.79	150.87	0.270 1

tnxTower	Jов 160' Self Support Lattice - CSP #20	Page 56 of 65
AECOM 500 Enterprise Drive	Project Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client SMK-007 / VZ5-228	Designed by KAB

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.									P_u
	ft		ft	ft		in^2	K	K	ϕP_n
									~
									-

¹ P_u / ϕP_n controls

	Horizontal Design Data (Tension)											
Section No.	Elevation	Size	L	L _u	Kl/r	A	P_u	ϕP_n	Ratio P_u			
	ft		ft	ft		in^2	K	K	ϕP_n			
T1	160 - 150	L3x3x1/4	10.60	5.09	98.5	0.9394	2.33	40.86	0.057 1			
T2	150 - 125	L2 1/2x2 1/2x3/16	12.33	5.96	137.9	0.5710	6.92	24.84	0.279 1			
T3	125 - 100	L3x3x5/16	14.33	6.96	90.6	1.1592	11.31	50.43	0.224 1			
T4	100 - 75	L3x3x1/2	16.33	7.86	105.1	1.7813	16.75	77.48	0.216 1			
T5	75 - 66.6667	L3x3x1/2	17.00	8.20	109.6	1.7813	19.24	77.48	0.248 1			
T10	25 - 0	L4x4x1/2	22.00	10.59	104.2	2.5313	27.97	110.11	0.254 1			

¹ $P_u \neq \phi P_n$ controls

	Top Girt Design Data (Tension)											
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	ϕP_n	Ratio P_{u}			
	ft		ft	ft		in^2	Κ	Κ	ϕP_n			
T1	160 - 150	L3x3x1/4	10.20	4.69	94.7	0.9394	1.55	40.86	0.038 1			
T4	100 - 75	L3x3x1/4	15.00	7.20	92.9	1.4400	13.23	46.66	0.284 1			
T6	66.6667 - 58.3333	L3x3x1/2	17.67	8.33	114.0	1.7813	20.12	77.48	0.260 1			
T7	58.3333 - 50	L3x3x1/2	18.33	8.76	119.7	1.7813	21.05	77.48	0.272 1			
T8	50 - 37.5	L4x4x1/4	19.00	9.21	88.4	1.9400	22.51	62.86	0.358 1			
Т9	37.5 - 25	L4x4x5/16	20.00	9.52	94.0	1.6242	24.06	79.18	0.304 1			

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

Job		Page
	160' Self Support Lattice - CSP #20	57 of 65
Project		Date
	Middlebury, CT	06:59:10 07/02/21
Client		Designed by
	SMK-007 / VZ5-228	KAB

Redundant Horizontal (1) Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	Κ	K	ϕP_n
T7	58.3333 - 50	L2x2x5/16	4.58	4.38	87.4	1.1500	4.20	37.26	0.113 1
Т9	37.5 - 25	L2x2x5/16	5.00	4.71	94.1	1.1500	5.51	37.26	0.148 1

¹ P_u / ϕP_n controls

	Redundant Diagonal (1) Design Data (Tension)												
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio P.				
	ft		ft	ft		in^2	Κ	K	$\frac{1}{\Phi P_n}$				
T 7	58.3333 - 50	L2x2x5/16	6.07	5.79	115.5	1.1500	2.78	37.26	0.075 1				
Т9	37.5 - 25	L2x2x5/16	7.85	7.38	147.3	1.1500	4.33	37.26	0.116 1				

¹ $P_u / \phi P_n$ controls

		ension							
Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
Т3	125 - 100	L2 1/2x2x3/16	7.17	7.17	143.4	0.8090	0.01	26.21	0.000 1
T4	100 - 75	L2 1/2x2x3/16	7.50	7.50	150.1	0.8090	0.23	26.21	0.009 1
T5	75 - 66.6667	L2 1/2x2x3/16	8.50	8.50	170.1	0.8090	0.01	26.21	0.000 1
T6	66.6667 - 58.3333	L2 1/2x2x3/16	8.83	8.83	176.7	0.8090	0.34	26.21	0.013 1
T 7	58.3333 - 50	L2 1/2x2x3/16	9.17	9.17	183.4	0.8090	0.36	26.21	0.014 1
T8	50 - 37.5	L2 1/2x2 1/2x3/16	9.50	9.50	146.5	0.9020	0.38	29.22	0.013 1
Т9	37.5 - 25	L2 1/2x2 1/2x3/16	10.00	10.00	154.2	0.9020	0.41	29.22	0.014 1
T10	25 - 0	L2 1/2x2 1/2x3/16	10.50	10.50	162.0	0.9020	0.01	29.22	0.000 1

tnxTower

Project

Client

Date

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

Middlebury, CT

SMK-007 / VZ5-228

06:59:10 07/02/21 Designed by KAB

Component Size Critical P ØPallow

Section	Elevation	Component	Size	Critical	P		%	Pass
No	ft	Type		Element	Κ	K	Capacity	Fail
	1(0, 150	T	D.C. 250	1	6.07	152.02		
11	160 - 150	Leg	P.5x.250	1	-5.27	152.93	3.4	Pass
		Leg	P.5x.250	2	-3.36	152.93	2.2	Pass
		Leg	P.5x.250	3	-4.94	152.93	3.2	Pass
T2	150 - 125	Leg	P.5x.250	22	-27.76	129.56	21.4	Pass
		Leg	P.5x.250	23	-26.15	129.56	20.2	Pass
		Leg	P.5x.250	24	-28.20	129.56	21.8	Pass
T3	125 - 100	Leg	P.5x.250	52	-80.42	129.56	62.1	Pass
		Leg	P.5x.250	53	-79.11	129.56	61.1	Pass
		Leg	P.5x.250	54	-81.40	129.56	62.8	Pass
Τ4	100 - 75	Leg	P5x(0.3 w/ (3) + 5x5/8 Plates)	91	-153 13	269.04	56.9	Pass
	100 /0	248		<i>,</i>	100110	20,101	72.6 (b)	1 400
		Lea	P5x(0,2,w/(2)) = 5x5/8 Plates	02	153 10	260.04	56.0	Doce
		Leg	$F_{3X0.3} \text{ w/ (3)} 1.3X3/8 \text{ Filtes}$	92	-135.19	209.04	30.9 72.7 (h)	rass
		T		02	155.66	260.04	72.7(0)	D
		Leg	P5x0.3 w/(3) 1.5x5/8 Plates	93	-155.66	269.04	57.9	Pass
							73.3 (b)	
T5	75 - 66.6667	Leg	P5x0.4 w/ (3) 1.5x5/8 Plates	130	-180.53	316.53	57.0	Pass
							62.5 (b)	
		Leg	P5x0.4 w/ (3) 1.5x5/8 Plates	131	-180.81	316.53	57.1	Pass
							62.4 (b)	
		Leg	P5x0.4 w/(3) 1.5x5/8 Plates	132	-183.26	316.53	57.9	Pass
							62.9 (h)	
т6	66 6667 -	Lea	P5x(1.4 w/(3) = 1.5 s/8 Plates	145	-210.05	316 53	66 4	Pass
10	59 2222	LUg	1 5X0.4 W/ (5) 1.5X5/8 1 lates	145	-210.05	510.55	72.2 (h)	1 455
	20.2222	т		146	010.76	216.52	75.2 (0)	D
		Leg	P5x0.4 w/(3) 1.5x5/8 Plates	146	-210.76	316.53	66.6	Pass
							73.2 (b)	
		Leg	P5x0.4 w/ (3) 1.5x5/8 Plates	147	-213.19	316.53	67.4	Pass
							73.8 (b)	
T 7	58.3333 - 50	Leg	HSS5x.4	160	-238.93	287.44	83.1	Pass
							83.6 (b)	
		Leg	HSS5x.4	161	-240.01	287.44	83.5	Pass
		- 0					83.6 (b)	
		Leg	HSS5x 4	162	-242.40	287 44	84 3	Pass
Τ8	50 - 37 5	Leg	HSS6 875x 4	187	-270.15	301.66	89.6	Pass
10	50-57.5	Log	HSS6.875x.4	107	271.66	201.66	00.1	Daga
		Leg	1100(975-4	100	-271.00	201.00	90.1	F ass
70	27.5 25	Leg	HSS6.875X.4	189	-2/4.00	301.66	90.8	Pass
19	37.5 - 25	Leg	HSS6.8/5X.4	202	-313.58	399.96	78.4	Pass
		Leg	HSS6.875x.4	203	-315.58	399.96	78.9	Pass
		Leg	HSS6.875x.4	204	-317.85	399.96	79.5	Pass
T10	25 - 0	Leg	HSS6.875x0.5 w/ (3) 2x5/8 Bars	229	-411.34	459.19	89.6	Pass
		Leg	HSS6.875x0.5 w/ (3) 2x5/8 Bars	230	-414.25	459.19	90.2	Pass
		Leg	HSS6.875x0.5 w/ (3) 2x5/8 Bars	231	-416.46	459.19	90.7	Pass
T1	160 - 150	Diagonal	2L2 1/2x2x3/16	8	-2.29	38.28	6.0	Pass
		0					12.4 (b)	
		Diagonal	2L2 1/2x2x3/16	9	-2.36	38.28	6.2	Pass
		Diagonai		-	2.00	20.20	121(h)	1 400
		Diagonal	$2I = 2 \frac{1}{2} \frac{2}{3} \frac{3}{16}$	11	-2.24	38.28	5.8	Pass
		Diagonai	262 1/28285/10	11	-2.24	50.20	11.2 (b)	1 455
		D'1	21.2.1/2-2-2/16	10	2.15	20.20	11.5 (0)	Deer
		Diagonal	2L2 1/2X2X3/16	12	-2.15	38.28	5.0	Pass
							11.8 (D)	
		Diagonal	2L2 1/2x2x3/16	14	-3.19	38.28	8.3	Pass
							17.0 (b)	
		Diagonal	2L2 1/2x2x3/16	15	-3.17	38.28	8.3	Pass
							17.1 (b)	
		Diagonal	2L2 1/2x2x3/16	16	-1.13	39.13	2.9	Pass
		Ũ					6.1 (b)	
		Diagonal	2L2 1/2x2x3/16	17	-1.21	39.13	3.1	Pass
		2		± /	1.21		5.7 (b)	1 450
							2.7 (0)	
tnxTower	Job	160' Self Support Lattice - CSP #20	Page 59 of 65					
---	---------	-------------------------------------	---------------------------					
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 06:59:10 07/02/21					
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB					

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	${}^{ heta P_{allow}} K$	% Capacity	Pass Fail
		Diagonal	2L2 1/2x2x3/16	18	-1.21	39.13	3.1	Pass
		Diagonal	2L2 1/2x2x3/16	19	-1.14	39.13	5.8 (b) 2.9	Pass
		Diagonal	2L2 1/2x2x3/16	20	-2.12	39.13	6.1 (b) 5.4	Pass
		Diagonal	2L2 1/2x2x3/16	21	-2.11	39.13	11.1 (b) 5.4	Pass
T2	150 - 125	Diagonal	2L2 1/2x2x3/16	26	-9.18	20.25	11.2 (b) 45.3	Pass
		Diagonal	2L2 1/2x2x3/16	27	-9.24	20.25	50.8 (b) 45.6	Pass
		Diagonal	2L2 1/2x2x3/16	29	-11.23	20.25	50.5 (b) 55.4	Pass
		Diagonal	2L2 1/2x2x3/16	30	-11.17	20.25	61.7 (b) 55.2	Pass
		Diagonal	2L2 1/2x2x3/16	32	-10.98	20.25	61.9 (b) 54.2	Pass
		Diagonal	2L2 1/2x2x3/16	33	-10.98	20.25	60.5 (b) 54.2	Pass
		Diagonal	2L2 1/2x2x3/16	35	-7.86	21.10	60.6 (b) 37.3	Pass
		Diagonal	2L2 1/2x2x3/16	36	-7.93	21.10	43.5 (b) 37.6	Pass
		Diagonal	2L2 1/2x2x3/16	38	-9.37	21.10	43.2 (b) 44.4	Pass
		Diagonal	2L2 1/2x2x3/16	39	-9.31	21.10	51.3 (b) 44.1	Pass
		Diagonal	2L2 1/2x2x3/16	41	-9.53	21.10	45.2	Pass
		Diagonal	2L2 1/2x2x3/16	42	-9.52	21.10	45.1	Pass
		Diagonal	2L2 1/2x2x3/16	44	-2.78	21.97	12.6	Pass
		Diagonal	2L2 1/2x2x3/16	45	-2.88	21.97	13.4(0) 13.1 14.9(b)	Pass
		Diagonal	2L2 1/2x2x3/16	47	-3.15	21.97	14.3 16.1 (b)	Pass
		Diagonal	2L2 1/2x2x3/16	48	-2.99	21.97	13.6	Pass
		Diagonal	2L2 1/2x2x3/16	50	-4.14	21.97	18.9 18.9 22.4 (b)	Pass
		Diagonal	2L2 1/2x2x3/16	51	-4.13	21.97	18.8 22.5 (b)	Pass
T3	125 - 100	Diagonal	2L2 1/2x2 1/2x5/16	56	-15.47	29.84	51.9	Pass
		Diagonal	2L2 1/2x2 1/2x5/16	57	-15.52	29.84	52.0	Pass
		Diagonal	2L2 1/2x2 1/2x5/16	59	-17.00	29.84	57.0	Pass
		Diagonal	2L2 1/2x2 1/2x5/16	60	-16.96	29.84	56.8	Pass
		Diagonal	2L2 1/2x2 1/2x5/16	62	-15 43	29.84	51.7	Pass
		Diagonal	$2I_2 1/2x_2 1/2x_5/16$	63	-15.43	29.84	51.7	Pass
		Diagonal	2L2 1/2x2 1/2x5/16	69	12.03	21.12	41.5	Pass
		Diagonal	2L2 1/2x2 1/2x5/16	08	-12.93	31.12	41.5 42.5 (b)	Pass
		Diagonal	2L2 1/2x2 1/2x5/16	69	-12.98	31.12	41.7 42.4 (b)	Pass
		Diagonal	2L2 1/2x2 1/2x5/16	/1	-15.27	31.12	49.1 50.0 (b)	Pass
		Diagonal	2L2 1/2x2 1/2x5/16	72	-15.21	31.12	48.9 50.1 (b)	Pass
		Diagonal	2L2 1/2x2 1/2x5/16	74	-14.00	31.12	45.0 45.9 (b)	Pass
		Diagonal	2L2 1/2x2 1/2x5/16	/5	-14.01	51.12	45.0	Pass

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

Page 60 of 65

Date 06:59:10 07/02/21

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	${{{\mathscr I}\! {P}}_{allow}} \ K$	% Capacity	Pass Fail
		Diagonal	2L2 1/2x2 1/2x5/16	80	-11.36	32.44	45.9 (b) 35.0 37.3 (b)	Pass
		Diagonal	2L2 1/2x2 1/2x5/16	81	-11.41	32.44	35.2 37.2 (b)	Pass
		Diagonal	2L2 1/2x2 1/2x5/16	83	-13.75	32.44	42.4 45.0 (b)	Pass
		Diagonal	2L2 1/2x2 1/2x5/16	84	-13.71	32.44	42.3 45.1 (b)	Pass
		Diagonal	2L2 1/2x2 1/2x5/16	86	-12.79	32.44	39.4 41.9 (b)	Pass
		Diagonal	2L2 1/2x2 1/2x5/16	87	-12.80	32.44	39.4 41.9 (b)	Pass
T4	100 - 75	Diagonal	2L3x2 1/2x1/4	98	-20.50	37.14	55.2 79.9 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	99	-20.52	37.14	55.2 79.9 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	101	-23.57	37.14	63.5 91.9 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	102	-23.54	37.14	63.4 92.0 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	104	-20.60	37.14	55.5 80.3 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	105	-20.61	37.14	55.5 80.3 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	110	-19.71	38.75	50.9 76.9 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	111	-19.74	38.75	51.0 76.8 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	113	-21.80	38.75	56.3 85.0 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	114	-21.77	38.75	56.2 85.1 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	116	-19.50	38.75	50.3 76.0 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	117	-19.50	38.75	50.3 76.0 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	121	-17.53	40.43	43.4 68.6 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	122	-17.57	40.43	43.5 68.5 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	123	-19.42	40.43	48.0 75.8 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	124	-19.38	40.43	47.9 75.9 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	125	-17.44	40.43	43.1 68.1 (b)	Pass
		Diagonal	2L3x2 1/2x1/4	126	-17.44	40.43	43.1 68.1 (b)	Pass
T5	75 - 66.6667	Diagonal	2L3x2 1/2x5/16	134	-22.30	43.06	51.8 61.9 (b)	Pass
		Diagonal	2L3x2 1/2x5/16	135	-22.29	43.06	51.8 61.9 (b)	Pass
		Diagonal	2L3x2 1/2x5/16	137	-26.62	43.06	61.8 74.1 (b)	Pass
		Diagonal	2L3x2 1/2x5/16	138	-26.59	43.06	61.8 74.1 (b)	Pass
		Diagonal	2L3x2 1/2x5/16	140	-22.41	43.06	52.0 62.4 (b)	Pass
		Diagonal	2L3x2 1/2x5/16	141	-22.45	43.06	52.1 62.3 (b)	Pass

two	Job		Page
<i>inx10wer</i>		160' Self Support Lattice - CSP #20	61 of 65
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Section	Elevation	Component	Size	Critical	Р		%	Pass
No	ft	Type		Element	K	K	Capacity	Fail
	66 6667 -	Diagonal	2I 3x2 1/2x5/16	151	-22.98	41.23	55.7	Pass
10	58 3333	Diagonai	22372 1/273/10	151	-22.90	41.25	63.8 (b)	1 455
		Diagonal	$2I_{3x}2_{1/2x}5/16$	152	-22.97	41.23	55 7	Pass
		Diagonal	22372 1/273/10	152	-22.91	41.25	63.8 (b)	1 455
		Diagonal	21.2×2.1/2×5/16	153	27.28	41.22	66 2	Doce
		Diagonal	223X2 1/2X3/10	155	-27.20	41.23	75.0 (1-)	r ass
		D'1	21.2-2.1/2-5/16	154	27.26	41.00	73.9(0)	D
		Diagonal	2L3X2 1/2X5/16	154	-27.26	41.23	66.1 7(0(1)	Pass
		D' 1		1.5.5	22.04	11.00	/6.0 (b)	D
		Diagonal	2L3X2 1/2X5/16	155	-22.96	41.23	55.7	Pass
							63.8 (b)	
		Diagonal	2L3x2 1/2x5/16	156	-22.99	41.23	55.8	Pass
							63.8 (b)	
T 7	58.3333 - 50	Diagonal	2L3x3x5/16	166	-23.96	74.52	32.2	Pass
							74.0 (b)	
		Diagonal	2L3x3x5/16	169	-23.95	74.52	32.1	Pass
							74.0 (b)	
		Diagonal	2L3x3x5/16	172	-28.37	74.52	38.1	Pass
							88.1 (b)	
		Diagonal	2L3x3x5/16	175	-28.36	74.52	38.1	Pass
							88.1 (b)	
		Diagonal	2L3x3x5/16	178	-23.84	74.52	32.0	Pass
							73.8 (b)	
		Diagonal	2L3x3x5/16	181	-23.87	74.52	32.0	Pass
		U					73.6 (b)	
Т8	50 - 37.5	Diagonal	2L3 1/2x3x3/8	193	-30.33	46.80	64.8	Pass
		Diagonal	2L3 1/2x3x3/8	194	-30.31	46.80	64.8	Pass
		Diagonal	2L3 1/2x3x3/8	195	-36.14	46.80	77.2	Pass
		Diagonal	$2L_3 \frac{1}{2x_3x_3/8}$	196	-36.12	46.80	77.2	Pass
		Diagonal	$2L_{2} = 1/2x_{3}x_{3}/8$	197	-30.02	46.80	64.1	Pass
		Diagonal	$213 \frac{1}{2} \frac{3}{3} \frac{3}{8}$	198	-30.06	46.80	64.2	Pass
TO	375 25	Diagonal	213 1/2x3x3/8	208	-30.00	74.26	13.8	Doce
19	37.5 - 25	Diagoniai	213 1/283 1/285/10	208	-52.50	74.20	45.0 60.5 (b)	r ass
		Diagonal	$21.2.1/2x^2.1/2x^5/16$	211	22.48	74.26	42.7	Page
		Diagonal	215 1/285 1/285/10	211	-52.40	/4.20	45.7	1 455
		Diagonal	21.2.1/2#2.1/2#5/16	214	20 15	74.26	51 8	Daga
		Diagonal	2L3 1/2X3 1/2X3/16	214	-38.45	/4.20	51.8 83.5 (h)	Pass
		D' 1		217	20.46	74.00	82.5 (0)	D
		Diagonal	2L3 1/2X3 1/2X3/16	217	-38.46	/4.20	51.8	Pass
		D' 1		220	22.02	74.00	82.5 (0)	D
		Diagonal	2L3 1/2x3 1/2x5/16	220	-32.02	/4.26	43.1	Pass
		D : 1			22.04	-	68.5 (b)	
		Diagonal	2L3 1/2x3 1/2x5/16	223	-32.04	74.26	43.1	Pass
							68.4 (b)	
110	25 - 0	Diagonal	2L4x3x3/8	233	-34.93	53.36	65.5	Pass
		Diagonal	2L4x3x3/8	234	-34.89	53.36	65.4	Pass
		Diagonal	2L4x3x3/8	236	-41.53	53.36	77.8	Pass
		Diagonal	2L4x3x3/8	237	-41.53	53.36	77.8	Pass
		Diagonal	2L4x3x3/8	239	-34.15	53.36	64.0	Pass
		Diagonal	2L4x3x3/8	240	-34.20	53.36	64.1	Pass
		Diagonal	2L4x3x3/8	245	-32.88	55.65	59.1	Pass
		Diagonal	2L4x3x3/8	246	-32.84	55.65	59.0	Pass
		Diagonal	2L4x3x3/8	248	-39.22	55.65	70.5	Pass
		Diagonal	2L4x3x3/8	249	-39.22	55.65	70.5	Pass
		Diagonal	2L4x3x3/8	251	-32.25	55.65	57.9	Pass
		Diagonal	2L4x3x3/8	252	-32.30	55.65	58.0	Pass
T1	160 - 150	Horizontal	L3x3x1/4	7	-1.92	37.58	5.1	Pass
							9.1 (b)	
		Horizontal	L3x3x1/4	10	-1.74	37.58	4.6	Pass
							8.3 (b)	
		Horizontal	L3x3x1/4	13	-2.33	37.58	6.2	Pass
							11.4 (b)	
T2	150 - 125	Horizontal	L2 1/2x2 1/2x3/16	25	-5.61	20.79	27.0	Pass

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

Page 62 of 65

Date 06:59:10 07/02/21

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	${{\mathscr O}P_{allow}} \over K$	% Capacity	Pass Fail
		Horizontal	L2 1/2x2 1/2x3/16	28	-7.04	20.79	39.2 (b) 33.8 48.1 (b)	Pass
		Horizontal	L2 1/2x2 1/2x3/16	31	-6.78	20.79	48.1 (b) 32.6	Pass
		Horizontal	L2 1/2x2 1/2x3/16	34	-5.25	21.36	24.6	Pass
		Horizontal	L2 1/2x2 1/2x3/16	37	-6.13	21.36	28.7 41.1 (b)	Pass
		Horizontal	L2 1/2x2 1/2x3/16	40	-6.17	21.36	28.9 41.6 (b)	Pass
		Horizontal	L2 1/2x2 1/2x3/16	43	-1.61	21.91	7.4 11.4 (b)	Pass
		Horizontal	L2 1/2x2 1/2x3/16	46	-1.74	21.91	8.0 12.4 (b)	Pass
		Horizontal	L2 1/2x2 1/2x3/16	49	-2.29	21.91	10.4 16.5 (b)	Pass
T3	125 - 100	Horizontal	L3x3x5/16	55	-10.19	41.41	24.6 40.2 (b)	Pass
		Horizontal	L3x3x5/16	58	-11.20	41.41	27.0 44.1 (b)	Pass
		Horizontal	L3x3x5/16	61	-10.13	41.41	24.5 40.0 (b)	Pass
		Horizontal	L3x3x5/16	67	-8.28	42.34	19.5 32.7 (b)	Pass
		Horizontal	L3x3x5/16	70	-9.87	42.34	23.3 38.5 (b)	Pass
		Horizontal	L3x3x5/16	73	-9.02	42.34	21.3 35.6 (b)	Pass
		Horizontal	L3x3x5/16	79	-7.09	43.26	16.4 27.8 (b)	Pass
		Horizontal	L3x3x5/16	82	-8.78	43.26	20.3 33.7 (b)	Pass
		Horizontal	L3x3x5/16	85	-8.13	43.26	18.8 31.8 (b)	Pass
T4	100 - 75	Horizontal	L3x3x1/2	97	-14.41	59.59	24.2 42.3 (b)	Pass
		Horizontal	L3x3x1/2	100	-16.57	59.59	27.8 48.5 (b)	Pass
		Horizontal	L3x3x1/2	103	-14.47	59.59	24.3 42.5 (b)	Pass
		Horizontal	L3x3x1/2	109	-13.59	61.13	22.2 39.8 (b)	Pass
		Horizontal	L3x3x1/2	112	-15.04	61.13	24.6 43.9 (b)	Pass
		Horizontal	L3x3x1/2	115	-13.46	61.13	22.0 39.4 (b)	Pass
T5	75 - 66.6667	Horizontal	L3x3x1/2	133	-15.98	58.01	27.5 46.8 (b)	Pass
		Horizontal	L3x3x1/2	136	-19.08	58.01	32.9 55.8 (b)	Pass
		Horizontal	L3x3x1/2	139	-16.14	58.01	27.8 47.2 (b)	Pass
T10	25 - 0	Horizontal	L4x4x1/2	232	-23.11	80.95	28.5 68.1 (b)	Pass
		Horizontal	L4x4x1/2	235	-27.58	80.95	34.1 81.1 (b)	Pass
		Horizontal	L4x4x1/2	238	-22.61	80.95	27.9 66.7 (b)	Pass
		Horizontal	L4x4x1/2	244	-21.45	83.31	25.7 62.3 (b)	Pass

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

Page 63 of 65

Date 06:59:10 07/02/21

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	${{\mathscr O}P_{allow}} \over K$	% Capacity	Pass Fail
		Horizontal	L4x4x1/2	247	-25.46	83.31	30.6	Pass
		Horizontal	L4x4x1/2	250	-21.03	83.31	25.2	Pass
T1	160 - 150	Top Girt	L3x3x1/4	4	-1.25	32.98	3.8 5.7 (b)	Pass
		Top Girt	L3x3x1/4	5	-1.23	32.98	3.7 5.6 (b)	Pass
		Top Girt	L3x3x1/4	6	-1.63	32.98	4.9 7.5 (b)	Pass
T4	100 - 75	Top Girt	L3x3x1/4	94	-11.84	21.09	56.1	Pass
		Top Girt	L3x3x1/4	95	-13.14	21.09	62.3	Pass
		Top Girt	L3x3x1/4	96	-11.80	21.09	55.9	Pass
T6	66.6667 - 58.3333	Top Girt	L3x3x1/2	148	-16.67	31.10	53.6	Pass
		Top Girt	L3x3x1/2	149	-19.84	31.10	63.8	Pass
		Top Girt	L3x3x1/2	150	-16.68	31.10	53.6	Pass
T 7	58.3333 - 50	Top Girt	L3x3x1/2	163	-17.56	28.64	61.3	Pass
		Top Girt	L3x3x1/2	164	-20.94	28.64	73.1	Pass
		Top Girt	L3x3x1/2	165	-17.51	28.64	61.1	Pass
T8	50 - 37.5	Top Girt	L4x4x1/4	190	-18.55	30.66	60.5	Pass
		Top Girt	L4x4x1/4	191	-22.17	30.66	72.3	Pass
		Top Girt	L4x4x1/4	192	-18.37	30.66	59.9	Pass
T9	37.5 - 25	Top Girt	L4x4x5/16	205	-20.08	35.76	56.1 62.0 (b)	Pass
		Top Girt	L4x4x5/16	206	-23.97	35.76	67.0 73.9 (b)	Pass
		Top Girt	L4x4x5/16	207	-19.83	35.76	55.5 61.1 (b)	Pass
T7	58.3333 - 50	Redund Horz 1 Bracing	L2x2x5/16	167	-4.14	18.16	22.8	Pass
		Redund Horz 1 Bracing	L2x2x5/16	170	-4.16	18.16	22.9	Pass
		Redund Horz I Bracing	L2x2x5/16	173	-4.16	18.16	22.9	Pass
		Bracing	L2x2x5/16	176	-4.20	18.16	23.1	Pass
		Bracing	L2x2x5/16	179	-4.20	18.16	23.1	Pass
то	375-25	Bracing Bracing	L2x2x5/16	209	-4.14	15.10	34.8	Pass
19	57.5 - 25	Bracing Redund Horz 1	L2x2x5/16	209	-5.47	15.65	35.0	Pace
		Bracing Redund Horz 1	L2x2x5/16	212	-5.47	15.65	35.0	Pass
		Bracing Redund Horz 1	L2x2x5/16	218	-5.51	15.65	35.2	Pass
		Bracing Redund Horz 1	L2x2x5/16	221	-5.51	15.65	35.2	Pass
		Bracing Redund Horz 1	L2x2x5/16	224	-5.44	15.65	34.8	Pass
T 7	58.3333 - 50	Bracing Redund Diag 1	L2x2x5/16	168	-2.74	10.38	26.4	Pass
		Bracing Redund Diag 1	L2x2x5/16	171	-2.76	10.38	26.5	Pass
		Bracing Redund Diag 1 Bracing	L2x2x5/16	174	-2.76	10.38	26.5	Pass
		Redund Diag 1 Bracing	L2x2x5/16	177	-2.78	10.38	26.8	Pass

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

Page 64 of 65

Date 06:59:10 07/02/21

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
		Redund Diag 1	L2x2x5/16	180	-2.78	10.38	26.8	Pass
		Bracing Redund Diag 1	L2x2x5/16	183	-2.74	10.38	26.4	Pass
Т9	37.5 - 25	Bracing Redund Diag 1	L2x2x5/16	210	-4.27	6.39	66.9	Pass
		Bracing Redund Diag 1	L2x2x5/16	213	-4.30	6.39	67.3	Pass
		Redund Diag 1 Bracing	L2x2x5/16	216	-4.30	6.39	67.3	Pass
		Redund Diag 1 Bracing	L2x2x5/16	219	-4.33	6.39	67.8	Pass
		Redund Diag 1 Bracing	L2x2x5/16	222	-4.33	6.39	67.8	Pass
		Redund Diag 1 Bracing	L2x2x5/16	225	-4.27	6.39	66.9	Pass
T3	125 - 100	Inner Bracing	L2 1/2x2x3/16	64	-0.01	5.71	0.4	Pass
		Inner Bracing	L2 1/2x2x3/16	65	-0.01	5.71	0.4	Pass
		Inner Bracing	L2 1/2x2x3/16	66	-0.01	5.71	0.4	Pass
		Inner Bracing	L2 1/2x2x3/16	76	-0.01	6.28	0.4	Pass
		Inner Bracing	L2 1/2x2x3/16	77	-0.01	6.28	0.4	Pass
		Inner Bracing	L2 1/2x2x3/16	78	-0.01	6.28	0.4	Pass
		Inner Bracing	L2 1/2x2x3/16	88	-0.01	6.94	0.4	Pass
		Inner Bracing	L2 1/2x2x3/16	89	-0.01	6.94	0.4	Pass
		Inner Bracing	L2 1/2x2x3/16	90	-0.01	6.94	0.4	Pass
T4	100 - 75	Inner Bracing	L2 1/2x2x3/16	106	-0.01	4.40	0.5	Pass
		Inner Bracing	L2 1/2x2x3/16	107	-0.01	4.40	0.5	Pass
		Inner Bracing	L2 1/2x2x3/16	108	-0.01	4.40	0.5	Pass
		Inner Bracing	L2 1/2x2x3/16	118	-0.01	4.78	0.5	Pass
		Inner Bracing	L2 1/2x2x3/16	119	-0.01	4.78	0.5	Pass
		Inner Bracing	L2 1/2x2x3/16	120	-0.01	4.78	0.5	Pass
		Inner Bracing	L2 1/2x2x3/16	127	-0.23	5.21	4.4	Pass
		Inner Bracing	L2 1/2x2x3/16	128	-0.23	5.21	4.4	Pass
		Inner Bracing	L2 1/2x2x3/16	129	-0.21	5.21	4.0	Pass
T5	75 - 66.6667	Inner Bracing	L2 1/2x2x3/16	142	-0.01	4.06	0.5	Pass
		Inner Bracing	L2 1/2x2x3/16	143	-0.01	4.06	0.5	Pass
		Inner Bracing	L2 1/2x2x3/16	144	-0.01	4.06	0.5	Pass
T6	66.6667 - 58.3333	Inner Bracing	L2 1/2x2x3/16	157	-0.35	3.76	9.3	Pass
		Inner Bracing	L2 1/2x2x3/16	158	-0.35	3.76	9.3	Pass
		Inner Bracing	L2 1/2x2x3/16	159	-0.29	3.76	7.8	Pass
T7	58.3333 - 50	Inner Bracing	L2 1/2x2x3/16	184	-0.37	3.49	10.6	Pass
		Inner Bracing	L2 1/2x2x3/16	185	-0.37	3.49	10.6	Pass
-		Inner Bracing	L2 1/2x2x3/16	186	-0.31	3.49	8.9	Pass
18	50 - 37.5	Inner Bracing	L2 1/2x2 1/2x3/16	199	-0.39	4.87	8.1	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	200	-0.39	4.87	8.1	Pass
-		Inner Bracing	L2 1/2x2 1/2x3/16	201	-0.33	4.87	6.8	Pass
19	37.5 - 25	Inner Bracing	L2 1/2x2 1/2x3/16	226	-0.42	4.39	9.6	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	227	-0.42	4.39	9.6	Pass
	• • •	Inner Bracing	L2 1/2x2 1/2x3/16	228	-0.35	4.39	8.1	Pass
T10	25 - 0	Inner Bracing	L2 1/2x2 1/2x3/16	241	-0.02	3.63	0.7	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	242	-0.02	3.63	0.7	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	243	-0.02	3.63	0.7	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	253	-0.02	3.98	0.7	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	254	-0.02	3.98	0.7	Pass
		Inner Bracing	L2 1/2x2 1/2x3/16	255	-0.02	3.98	0.7 Summary	Pass
						L ag (TQ)	on e	Dage
						Diagonal	90.8	Pass
						(T4)	92.0	r ass
						Horizontal	81.1	Pace
						Horizontal	01.1	r ass

tnxTower	Job	160' Self Support Lattice - CSP #20	Page 65 of 65
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 06:59:10 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	Κ	K	Capacity	Fail
						(T10)		
						Top Girt	73.9	Pass
						(T9)		
						Redund	35.2	Pass
						Horz 1		
						Bracing (T9)		
						Redund	67.8	Pass
						Diag 1		
						Bracing (T9)		
						Inner	10.6	Pass
						Bracing (T7)		
						Bolt Checks	92.0	Pass
						RATING =	92.0	Pass

Program Version 8.0.7.5 - 8/3/2020 File:C:/Users/kevin.barker/AECOM Directory/RH Telecom - General/Structurals By Location/Connecticut/CSP 20 - Middlebury/31_ATT & VZW Mod/TNX/Rev H/SMK-007-VZ5-228_Middlebury_CT_CSP20-H.eri

ANCHOR BOLT EVALUATION

JOB NO. VZ5-228 / SMK-007_ CALCULATION	N NO ORIGI	NATOR <u>K.Barker</u> DATE <u>07/02/2021</u>
SHEETOF	REVIE	WERDATE
TNX Output / Max Leg Rea	actions	
Max Compression	Compression	:= 466kip
Concurrent Shear	Shear _c := 61k	tip
Max Uplift	Uplift := 409ki	p
Concurrent Shear	Shear _u := 55k	ip
Anchor Rod Data		Note: Previous anchor rod reinforcement does not
Diameter of Anchor Rod	D := 1.75in	provide additional compressive resistance (per TIA-H, grout does not provide compressive resistance). Grout
Number of An chor Rods	N := 6	shall be removed and replaced with shim plates. See updated compressive resistance below.
Length from Top of Conc to Bottom of Anchor Rod Leveling Nut	$I_{ar} \coloneqq 1.5$ in	[Assumed. Note: values less than or equal to bolt diameter do not reduce capacity of anchor bolts]
Threads per Inch	n := 5	
Anchor Rod Ultimate Strength	F _u := 58ksi	[A36 - Original Design Calculations]
Anchor Rod Yield Strength	F _y := 36ksi	[A36 - Original Design Calculations]
Modulus of Elasticity of Steel	E := 29000ksi	
Anchor Rod Section Prope	erties	
Gross Area of Rod	$A_g := \frac{\pi}{4} \cdot D^2 =$	$= 2.405 \cdot in^2$
NetArea of Rod	$A_n := \frac{\pi}{4} \cdot \left(D - \frac{\pi}{4} - \frac{\pi}$	$-\frac{0.9743 \cdot \text{in}}{\text{n}} \bigg)^2 = 1.899 \cdot \text{in}^2$
Net Diameter of Rod	$D_n := D - \frac{0.9}{2}$	$\frac{9743\text{in}}{\text{n}} = 1.555 \cdot \text{in}$
	D.,	

Radius of Gyration of Rod

 $r := \frac{D_n}{4} = 0.389 \cdot in$

 $Z := \frac{D_n^{3}}{6} = 0.627 \cdot in^3$

Plastic Section Modulus of Rod

JOB TITLE Anchor Rod Analysis - TIA-H - Middlebury CSP#20

AECOM

JOB NO. VZ5-228 / SMK-007_ CALCULATION NO. _____ ORIGINATOR K.Barker DATE 07/02/2021

OF_____REVIEWER _____ SHEET DATE Anchor Rod Capacities Design Tensile Strength [4.9.6.1] Nominal Tensile Strength $R_{nt} := F_{u} \cdot A_{n} = 110.168 \cdot kip$ **Resistance Factor - Tension** $\phi_{t} := 0.75$ **Design Tensile Strength** $\phi R_{nt} := \phi_t \cdot R_{nt} = 82.626 \cdot kip$ Design Compression Yield Strength [4.9.9 A1] Nominal Compression Yield Strength $R_{nc} := F_v \cdot A_a = 86.59 \cdot kip$ $A_{g} = 2.405 \cdot in^{2}$ **Resistance Factor - Compression** $\phi_{c} := 0.9$ $\phi R_{nc} := \phi_c \cdot R_{nc} = 77.931 \cdot kip$ Design Compression Yield Strength Design Buckling Strength [4.5.4.2] Column Effective Length Factor [4.9.9] k := 1.2 $\mathsf{F}_{\mathsf{e}} := \frac{\pi^2 \cdot \mathsf{E}}{\left(\frac{\mathsf{k} \cdot \mathsf{I}_{\mathsf{ar}}}{\mathsf{r}}\right)^2} = 13352.78 \cdot \mathsf{ksi}$ Elastic Critical Buckling Stress $F_{cr} \coloneqq 0.658 \xrightarrow{F_{g}} F_{e} \cdot F_{v} = 35.959 \cdot ksi$ Critical Compressive Stress $R_{nb} := F_{cr} \cdot A_{q} = 86.492 \cdot kip$ Nominal Buckling Strength **Design Buckling Strength** $\phi R_{nb} := \phi_c \cdot R_{nb} = 77.843 \cdot kip$ Design Shear Rupture Strength [4.9.9] $R_{nv} := 0.5 \cdot F_u \cdot A_a = 69.753 \cdot kip$ Nominal Shear Rupture Strength **Resistance Factor - Shear** $\phi_{\rm V} := 0.75$ Design Shear Rupture Strength $\phi R_{nv} := \phi_v \cdot R_{nv} = 52.315 \cdot kip$ Design Shear Yield Strength [4.9.9 A1] $R_{nvc} := 0.6 \cdot F_{V} \cdot 0.75 A_{g} = 38.966 \cdot kip$ Nominal Shear Yield Strength $\phi R_{nvc} := \phi_c \cdot R_{nvc} = 35.069 \cdot kip$ Design Shear Yield Strength

-----. 000

JOB IIILE Anchor Rod Analysis - IIA-H - Middle	bury CSP#20	
JOB NO. VZ5-228 / SMK-007 CALCULATION N	IOORIGINATOR <u>K.Barker</u> DATE <u>07/02</u>	2/2021
SHEETOF	REVIEWER	DATE
Design Flexural Strength [4.9.9]		
Nominal Flexural Strength	$M_n := F_y \cdot Z = 1.881 \cdot ft \cdot kip$	
Resistance Factor - Flexure	$\phi_{f} \coloneqq 0.90$	
Design Flexural Strength	$\phi M_n := \phi_f \cdot M_n = 20.31 \cdot \text{in} \cdot \text{kip}$	
Anchor Rod Demands		
Uplift		
Tension Demand	$P_{ut} := \frac{Uplift}{N} = 68.167 \cdot kip$	
Shear Demand	V _{ut} := $\frac{\text{Shear}_u}{N}$ = 9.167⋅kip	
Flexure Demand [4.9.9]	$M_{ut} := 0.65 \cdot I_{ar} \cdot V_{ut} = 8.938 \cdot in \cdot kip$	
Compression		
Compression Demand	$P_{uc} := \frac{Compression}{N+2} = 58.25 \cdot kip$	Conservatively assume shim plates provide compressive
Shear Demand	$V_{uc} := \frac{Shear_c}{N} = 10.167 \cdot kip$	anchor bolts.
Flexure Demand [4.9.9]	$M_{uc} := 0.65 \cdot I_{ar} \cdot V_{uc} = 9.912 \cdot in \cdot kip$	

Anchor Rod Interaction Equations

.

$$Inter_{t} := \begin{bmatrix} \left(\frac{\mathsf{P}_{ut}}{\mathsf{q}\mathsf{R}_{nt}}\right)^{2} + \left(\frac{\mathsf{V}_{ut}}{\mathsf{q}\mathsf{R}_{nv}}\right)^{2} & \text{if } \mathsf{I}_{ar} \leq \mathsf{D} = 0.711 \\ \left(\frac{\mathsf{P}_{ut}}{\mathsf{q}\mathsf{R}_{nt}} + \frac{\mathsf{M}_{ut}}{\mathsf{q}\mathsf{M}_{n}}\right)^{2} + \left(\frac{\mathsf{V}_{ut}}{\mathsf{q}\mathsf{R}_{nv}}\right)^{2} & \text{if } \mathsf{I}_{ar} \geq 4 \cdot \mathsf{D} \\ \left(\frac{\mathsf{P}_{ut}}{\mathsf{q}\mathsf{R}_{nt}} + \frac{\mathsf{M}_{ut}}{\mathsf{q}\mathsf{M}_{n}}\right)^{2} + \left(\frac{\mathsf{V}_{ut}}{\mathsf{q}\mathsf{R}_{nv}}\right)^{2} & \text{otherwise} \\ Inter_{c} := \begin{bmatrix} \left(\frac{\mathsf{P}_{uc}}{\mathsf{q}\mathsf{R}_{nc}}\right) + \left(\frac{\mathsf{V}_{uc}}{\mathsf{q}\mathsf{R}_{nvc}}\right)^{2} & \text{if } \mathsf{I}_{ar} \leq \mathsf{D} \\ \left(\frac{\mathsf{P}_{uc}}{\mathsf{q}\mathsf{R}_{nb}} + \frac{\mathsf{M}_{uc}}{\mathsf{q}\mathsf{M}_{n}}\right) + \left(\frac{\mathsf{V}_{uc}}{\mathsf{q}\mathsf{R}_{nvc}}\right)^{2} & \text{if } \mathsf{I}_{ar} \geq 4 \cdot \mathsf{D} \\ \left(\frac{\mathsf{P}_{uc}}{\mathsf{q}\mathsf{R}_{nb}} + \frac{\mathsf{M}_{uc}}{\mathsf{q}\mathsf{M}_{n}}\right) + \left(\frac{\mathsf{V}_{uc}}{\mathsf{q}\mathsf{R}_{nvc}}\right)^{2} & \text{if } \mathsf{I}_{ar} \geq 4 \cdot \mathsf{D} \\ \left(\frac{\mathsf{P}_{uc}}{\mathsf{q}\mathsf{R}_{nc}} + \frac{\mathsf{M}_{uc}}{\mathsf{q}\mathsf{M}_{n}}\right) + \left(\frac{\mathsf{V}_{uc}}{\mathsf{q}\mathsf{R}_{nvc}}\right)^{2} & \text{otherwise} \\ \end{bmatrix}$$

FOUNDATION ANALYSIS

Rebar Area

AECOM

JOB NO. VZ5-228 / SMK-007_ CALCULATION NO. _____ ORIGINATOR K.Barker DATE 07/02/2021

_____ REVIEWER ____ SHEET _____ OF____ DATE **Tower Data** Legend Design Check Output Height of Tower H.:= 160f Input BW := 23.0f Tower Base Width TNX Output / Max Leg Reactions Base PL Dist to Foundation ^{bp}dist ^{:=} 2in M := 8865ft kip Tower Moment Pier Data Tower Axial P := 62kip Dia of Pier $d_{pier} := 3.5 ft + 1.5 ft$ Tower Shear V := 111kip E := 1.0ftExtension above Grade Leg Compression comp := 466kip Pier Rebar Size Sc := 7 **Concurrent Shear** ′u comp≔61kip Pier Rebar Quantity **mc** := 16 Leg Uplift uplift ^{:=} 409kip Pier Confinement Bar Size St := 4 Concurrent Shear u_uplift := 55kip Pier Confinement Bar Count mt := 4 Pier Confinement Type Type := "Tie" Soil Data Pier Rebar Clear Cover cc_{pier} := 3in Unit Weight Soil $\gamma := 125 pcf$ Number of Piers $N_{pier} = 3$ $Q_{ult} := 4.5 \text{ksf} \cdot 2$ Note: Allowable BP Ultimate Gross **Bearing Capacity** 4.5ksf & FOS=2 Position of Tower Relative ^{>os}tower ^{:=} to Center of Pad Cohesion Cu := 0kst(1=Offset, 2=Not Offset) **Friction Angle** $\phi := 34 deg$ Pad Data **Base Friction** $\mu := 0$ Total Depth D := 5f Neglected Depth N_:= 0ft Pad Width & Length L := 36f W := 34f Foundation Bearing on Bear := "Soil" Pad Thickness T.:= 2.25f gw := 5ft Depth to Groundwater [Welti 12/17/2012] Pad Rebar Size **S**p := 9 $\mathsf{K}_{\mathsf{p}} \coloneqq \frac{1 + \sin(\phi)}{1 - \sin(\phi)} = 3.537$ Coefficient of Lateral mp := 39 Soil Pressure Pad Rebar Count cc_{pad} ≔ 3in Pad Rebar Clear Cover Note: 11 #11, 17 #8 & 11 #11 in pad. 39 bars total with Load Factors/Resistance Factors average bar area = 1.22in^2, Use 39 #9 bars in calc. Min Dead Load Factor $^{\gamma}$ DL.min $\coloneqq 0.9$ Material Properties Max Dead Load Factor ^γDL.max^{∶=} 1.2 Rebar Yield Strength v = 60ks Resistance Factor for Concrete Comp Strength c≔3ksi $\phi_{s} := 0.75$ Bearing on Rock/Soil Concrete Density $\delta_{\mathbf{c}} \coloneqq 150 \, \mathrm{pc}$ Rebar Data Water Density $b_{w} := 62.4 \text{pc}$ Redefine Origin for Programming

 Redefine Origin for Programming
 ORIGIN := 1
 Modulus of Elasticity - Steel
 $E_s := 29000 \text{ ks}$

 Rebar Size
 No_Bar_Size := (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)^T

 Rebar Diameter
 $d_{bar} := (0 \ 0 \ 0.375 \ 0.5 \ 0.625 \ 0.75 \ 0.875 \ 1.00 \ 1.128 \ 1.27 \ 1.41 \ 0 \ 0 \ 1.693 \ 0 \ 0 \ 2.257$

 $A_{\text{bar}} := (0 \ 0 \ 0.11 \ 0.20 \ 0.31 \ 0.44 \ 0.60 \ 0.79 \ 1.00 \ 1.27 \ 1.56 \ 0 \ 0 \ 2.25 \ 0 \ 0 \ 0 \ 4.00)^{\mathsf{T}} \cdot \mathsf{in}^{\mathsf{T}}$

JOB NO. VZ5-228 / SMK-007 CALCULATION NO. ORIGINATOR K.Barker DATE 07/02/2021

_____ OF_____ REVIEWER ___ SHEET DATE Global Stability $h_{pier.above} := min(gw, D - T) + E = 3.75 \cdot ft$ Pier Height Above Water Table $h_{pier, below} := D - T - min(gw, D - T) = 0 ft$ Pier Height Below Water Table $W_{\text{pier}} := \frac{\pi}{4} \cdot d_{\text{pier}}^{2} \cdot h_{\text{pier},\text{above}} \cdot \delta_{\text{c}} + \frac{\pi}{4} \cdot d_{\text{pier}}^{2} \cdot h_{\text{pier},\text{below}} \cdot (\delta_{\text{c}} - \delta_{\text{w}}) = 11.045 \cdot \text{kip}$ Bouyant Weight of Pier $h_{pad.above} := if[gw \le D - T, 0, if[gw > D, T, T - (D - gw)]] = 2.25 ft$ Pad Height Above Water Table Pad Height Below Water Table $h_{pad,below} := T - h_{pad,above} = 0$ ft $W_{pad} := W \cdot L \cdot h_{pad.above} \cdot \delta_{c} + W^{2} \cdot h_{pad.below} \cdot (\delta_{c} - \delta_{w}) = 413.1 \cdot kip$ Bouyant Weight of Pad Concrete Weight $W_c := N_{pier} \cdot W_{pier} + W_{pad} = 446.234 \cdot kip$ $W_{s} := (D - T) \cdot \left(W \cdot L - N_{pier} \cdot \frac{\pi \cdot d_{pier}^{2}}{4} \right) \cdot \gamma = 400.501 \cdot kip$ Soil Weight Above Pad Lateral Resistance $\mathsf{P}_{\mathsf{pn}} := \mathsf{K}_{\mathsf{p}} \cdot \gamma \cdot \mathsf{N} + \mathsf{Cu} \cdot 2\sqrt{\mathsf{K}_{\mathsf{p}}} = 0 \cdot \mathsf{ksf}$ Passive Pressure at Depth to Neglect $P_{D,TOF} := K_{D} \cdot \gamma \cdot (D - T) + Cu \cdot 2\sqrt{K_{D}} = 1.216 \cdot ksf$ Passive Pressure at Bottom of Pier/TOF $P_{p,BOF} := K_p \cdot \gamma \cdot (D) + Cu \cdot 2\sqrt{K_p} = 2.211 \cdot ksf$ Passive Pressure at Bottom of Footing $\mathsf{P}_{\mathsf{p},\mathsf{pier}} \coloneqq \frac{\mathsf{P}_{\mathsf{p}} + \mathsf{P}_{\mathsf{p}}.\mathsf{TOF}}{2} = 0.608 \cdot \mathsf{ksf}$ Average Passive Pressure on Pier $P_{p,pad} := \frac{P_{p,TOF} + P_{p,BOF}}{2} = 1.713 \cdot ksf$ Average Passive Pressure on Pad $P_{pr,pier} := max(D - T - N, 0) \cdot d_{pier} \cdot P_{p,pier} = 8.359 \cdot kip$ Pier Passive Resistance per Pier Pad Passive Resistance $P_{\text{pr.pad}} := \min(T, D - N) \cdot \min(W, L) \cdot P_{p, pad} = 131.067 \cdot \text{kip}$ $P_{pr.total} := P_{pr.pier} \cdot N_{pier} + P_{pr.pad} = 156.145 \cdot kip$ Total Passive Resistance $\mathsf{P}_{\mathsf{fact.comp}} \coloneqq \gamma_{\mathsf{DL.min}} \cdot \left(\mathsf{W}_{\mathsf{C}} + \mathsf{W}_{\mathsf{S}} + \frac{\mathsf{P}}{\gamma_{\mathsf{DL.max}}} \right) = 808.562 \cdot \mathsf{kip}$ Factored Total Weight for Compression $R_{s.comp} := Cu \cdot W \cdot L = 0 \cdot kip$ Nominal Base Friction Resistance $\phi V_{n} := \phi_{s} \cdot \left(\mathsf{P}_{pr.total} + \mathsf{R}_{s.comp} \right) = 117.109 \cdot \mathsf{kip}$ Lateral Resistance Check_{lat} := if $(\phi V_n \ge V, "OK", "NG") = "OK"$ Lateral Check $\cdot = 94.784.\%$

JOB TITLE Foundation Analysis - TIA-H - Middlebury CSP#20

AECOM

SHEETOF	REVIEWER	DATE
Overturning Resistance		
Dist from Center of Tower to Edge of Pad	$x_{t1} := \frac{W}{2} - \frac{BW \cdot cos(30 \cdot deg)}{2}$ $x_{t2} := \frac{W}{2} - $	$\frac{BW \cdot \cos(30 \cdot deg)}{3}$
	$X_{t} := if(Pos_{tower} = 1, X_{t1}, X_{t2}) = 10.36 ft$	
Offset of Tower/Piers Relative to Center of Pad	Offset := $\frac{W}{2} - \left(\frac{BW \cdot \cos(30 \cdot \text{deg})}{3} + X_t\right) = 0$ for	t
Overturning Moment M _{0.0.9} := M -	+ V · $\left(D + E + bp_{dist} \right) + \left(\frac{\gamma_{DL.min}}{\gamma_{DL.max}} \cdot P + \gamma_{DL.min} \cdot N \right)$	N _{pier} ·W _{pier})·Offset = 9550 ft⋅kip
M _{0.1.2} := M -	+ $V \cdot (D + E + bp_{dist}) + (P + \gamma_{DL.max} \cdot N_{pier} \cdot W_{pier})$	vr)·Offset = 9550 ft·kip
Axial Load	$P_{0.9} \coloneqq \gamma_{DL.min} \cdot \left(W_{C} + W_{S} + \frac{P}{\gamma_{DL.max}} \right) = 8$	808.562 · kip
	$P_{1.2} \coloneqq \gamma_{DL.max} \cdot \left(W_{C} + W_{S}\right) + P = 1078.083$	·kip
Eccentricity	$e_{0.9} := \frac{M_{0.0.9}}{P_{0.9}} = 11.81 \cdot ft$ $e_{1.2} := \frac{M_0}{P_0}$	$\frac{0.1.2}{1.2} = 8.858 \cdot \text{ft}$
Eccentricity Limit [9.4.1]	$e_{\text{limit}} \coloneqq 0.45 \cdot \min(W, L) = 15.3 \cdot \text{ft}$	$\max(e_{0,9},e_{1,2})$
Eccentricity Check Checke :	= if(max(e _{0.9} , e _{1.2}) < e _{limit} , "OK" , "NG") = "OK"	$\frac{1}{\text{elimit}} = 77.193 \cdot \%$
Bearing Pressure		
Area of Pad	$A_{pad} := W \cdot L = 1224 \cdot ft^2$	
Section Modulus of Pad	$S_{pad} := min\left(\frac{W \cdot L^2}{6}, \frac{L \cdot W^2}{6}\right) = 6936 \cdot ft^3$	
Max Pressure (Min Load Factor)	$P_{max.0.9} \coloneqq \frac{P_{0.9}}{A_{pad}} + \frac{M_{0.0.9}}{S_{pad}} = 2.037 \cdot ksf$	
Min Pressure (Min Load Factor)	$P_{min.0.9} := \frac{P_{0.9}}{A_{pad}} - \frac{M_{o.0.9}}{S_{pad}} = -0.716 \cdot ksf$	
Adjusted Max Pressure	$P_{adj.0.9} := \frac{2 \cdot P_{0.9}}{3 \cdot min(W,L) \cdot \left(\frac{min(W,L)}{2} - e_{0.9}\right)}$	$ = 3.055 \cdot \text{ksf} $ Note: Applicable only if $P_{\text{min}} < 0$

JOB TITLE Foundation Analysis - TIA-H - Middlebury CSP#20

JOB NO. VZ5-228 / SMK-007 CALCULATION NO. ORIGINATOR K.Barker DATE 07/02/2021

SHEET	OF	REVIEWER	DATE
Max Pressure (N	Nax Load Factor)	$P_{max.1.2} := \frac{P_{1.2}}{A_{pad}} + \frac{M_{o.1.2}}{S_{pad}} = 2.25$	8∙ksf
Min Pressure (M	lax Load Factor)	$P_{min.1.2} := \frac{P_{1.2}}{A_{pad}} - \frac{M_{o.1.2}}{S_{pad}} = -0.49$	∂6∙ksf
Adjusted Max Pr	ressure	$P_{adj.1.2} \coloneqq \frac{2 \cdot P_{1.2}}{3 \cdot min(W,L) \cdot \left(\frac{min(W,L)}{2}\right)}$	$\frac{1}{1-e_{1.2}} = 2.596 \cdot \text{ksf}$ Note: Applicable only if $P_{\text{min}} < 0$
Maximum Press	sure	$q_{u.0.9} := if(P_{min.0.9} < 0, P_{adj.0.9}, F_{u.1.2} := if(P_{min.1.2} < 0, P_{adj.1.2}, F_{u.1.2})$	$P_{max.0.9} = 3.055 \cdot ksf$ $P_{max.1.2} = 2.596 \cdot ksf$
		$q_{u} := max(q_{u.0.9}, q_{u.1.2}) = 3.055 \cdot ks$	sf
Bearing Capacit	У	$q_{n} := \phi_{s} \cdot Q_{ult} = 6.75 \cdot ksf$	
Bearing Capacit	y Check	$Check_{bp} := if \left(q_u < q_n, "OK", "NG"\right)$	$= "OK" \qquad \qquad \frac{q_u}{q_n} = 45.26 \cdot \%$
Pad Design	<u>1</u>		
One-Way Sh	near		
Effective Depth		$d_{c} := T - cc_{pad} - 1.5 \cdot d_{bar_{Sp}} = 22.3$	08.in
		dataa	

JOB TITLE Foundation Analysis - TIA-H - Middleb	ury CSP#20 AECOM®
JOB NO. VZ5-228 / SMK-007 CALCULATION N	D ORIGINATOR <u>K.Barker</u> DATE <u>07/02/2021</u>
SHEETOF	REVIEWERDATE
Resistance Factor - Shear	$V_{n1} := 2 \cdot \min(W, L) \cdot \sqrt{f_c \cdot psi} \cdot d_c = 997.037 \cdot kip$ $\phi_V := 0.75$
Design Shear Strength	$\Phi V_{n1} := \Phi_v \cdot V_{n1} = 747.778 \cdot \text{kip}$
Applied Shear	$V_{u1.0.9} := \frac{\min(W, L) \cdot d'' \cdot (q_{u.0.9} + q_{u.d''.0.9})}{2} = 503.227 \cdot kip$
Check	$V_{u1.1.2} := \frac{\min(W, L) \cdot d'' \cdot (q_{u.1.2} + q_{u.d''.1.2})}{2} = 464.681 \cdot \text{kip}$ $\boxed{\text{Check}_{V1} := if(\max(V_{u1.0.9}, V_{u1.1.2}) < \phi V_{n1}, "OK", "NG") = "OK"}$ $\boxed{\max(V_{u1.0.9}, V_{u1.1.2}) < \phi V_{n1}, "OK", "NG"}$
Two-Way Shear (Compression)	$\frac{-(-(-1)(-1)(-1)(-1)(-1))}{\phi V_{n1}} = 67.296.\%$
Average Effective Depth	$d_{c.2} := T - cc_{pad} - d_{bar_{Sp}} = 22.872 \cdot in$
Radius of Two-Way Shear Plane	$r_{2way} := 0.5 \cdot (d_{pier} + d_{c.2}) = 3.453 \text{ ft}$
Length to Edge of Pad from Pier Centroid	$L_{edge.2} := \frac{\min(W, L)}{2} - \frac{2}{3}\sin(60 \text{deg}) \cdot \text{BW} + \text{Offset} = 3.721 \text{ ft}$
Critical Perimeter	$P_{crit.cir} \coloneqq \left(d_{pier} + d_{c.2}\right) \cdot \pi = 260.35 \cdot in$
Area of Conc in Shear	$A_{c} := P_{crit.cir} \cdot d_{c.2} = 5954.727 \cdot in^{2}$
Polar Moment if Inertia of Critical Section	$J_{c.cir} := \frac{\pi \cdot (d_{pier} + d_{c.2})^4}{32} = 4630535.037 \cdot in^4$
Applied Share Force	$V_{u.1.2} := 1.2 \cdot W_{pier} + P_{comp} = 479.254 \cdot kip$
Total Moment to Pier	$M_{u.comp} := V_{u_comp} \cdot \left(D + E + bp_{dist} - T \right) = 238.917 \cdot ft \cdot kip$
Controlling Shear Stress	$v_{u.1.2} \coloneqq \frac{V_{u.1.2}}{A_c} + 0.4 \cdot M_{u.comp} \cdot \frac{\left(\frac{d_{pier} + d_{c.2}}{2}\right)}{J_{c.cir}} = 0.091 \cdot ksi$
Shear Stress Capacity	$\phi v_{n} := \phi_{s} \cdot 4 \cdot \sqrt{f_{c} \cdot psi} = 164.317 \cdot psi$
Two-Way Shear Check	$Check_{v2.comp} := if(v_{u.1.2} < \varphi v_n, "OK", "NG") = "OK" \qquad \frac{v_{u.1.2}}{\varphi v_n} = 55.226 \cdot \%$

JOB NO. VZ5-228 / SMK-007_ CALCULATIO	N NO ORIGINATOR <u>K.Barker</u> DATE <u>07/02/2021</u>	
SHEETOF	REVIEWER	DATE
Two-Way Shear (Compressio	n, Flexure)	
Distance to Outside Edge	dist _{outside} := min $\left(\frac{\min(W, L) - BW}{2}, \frac{BW}{2}\right) \cdot 2 = 11 \text{ ft}$	
Effective Pad Width	$b_{pad} := min(d_{pier} + 3 \cdot T, min(W, L), dist_{outside}) = 11$	ft
Bar Spacing in Pad	$B_{s.pad} := \frac{min(W, L) - 2 \cdot cc_{pad} - d_{bar_{Sp}}}{mp - 1} = 10.549 \cdot in$	
Fraction of Bars in Effective Width	$m_{eff} := if\left(b_{pad} = min(W, L), mp, \frac{b_{pad}}{B_{s,pad}}\right) = 12.513$	
Area of Steel in Effective Width	$A_{s.eff} := m_{eff} \cdot A_{bar_{Sp}} = 12.513 \cdot in^2$	
Depth of Equivalent Rectangular Stress Block	$a_{eff} := \frac{A_{s.eff} \cdot F_{y}}{0.85 \cdot f_{c} \cdot b_{pad}} = 2.23 \cdot in$	<u>\</u> П
Dist from Top to Neutral Axis	$\beta_{pad} \coloneqq \text{if } \left \begin{array}{l} f_{c} \leq 4 \text{ksi}, 0.85, \text{if } \\ f_{c} \geq 8 \text{ksi}, 0.65, 0.85 - \left(\frac{f_{c}}{\text{ks}} \right) \\ c_{eff} \coloneqq \frac{a_{eff}}{\beta_{pad}} = 2.624 \text{ in } \end{array} \right $	$\left[\frac{1}{10} - 4\right) \cdot 0.05 $ = 0.85
Strain in Steel	$\varepsilon_{s.eff} \coloneqq 0.003 \cdot \left(\frac{d_{c} - c_{eff}}{c_{eff}} \right) = 0.023 \cdot \frac{in}{in}$	
Compression-Controlled Strain Limit	$\varepsilon_{c} \coloneqq \frac{F_{y}}{E_{s}} = 2.069 \times 10^{-3} \cdot \frac{\text{in}}{\text{in}}$	
Resistance Factor [¢] flex.ef	$\mathbf{f} := if \left[\varepsilon_{S,eff} \ge 0.005, 0.9, if \right] \varepsilon_{S,eff} \le \varepsilon_{C}, 0.65, 0.65 + (0.9 + C) \right]$	$0.65) \cdot \frac{\left(\varepsilon_{\text{s.eff}} - \varepsilon_{\text{c}}\right)}{\left(0.005 - \varepsilon_{\text{c}}\right)} = 0.9$
Nominal Flexural Strength	$M_{n.eff} := A_{s.eff} \cdot F_{y} \cdot \left(d_{c} - \frac{a_{eff}}{2} \right) = 1.326 \times 10^{3} \cdot ft \cdot kip$	
Design Flexural Strength	$\phi M_{n.eff} := \phi_{flex.eff} \cdot M_{n.eff} = 1.193 \times 10^3 \cdot ft \cdot kip$	$\frac{0.6M_{u.comp}}{0.6M_{u.comp}} = 6.006.\%$
Since top and bottom reinforcement in	pad is the same, the total moment capacity will be 2x.	^{ϕM} n.eff ^{·2}
Two-Way Shear Check	$Check_{v2.comp.flex} := if(0.6M_{u.comp} < \varphi M_{n.eff} \cdot 2, "Or the set of $	K", "NG") = "OK"

. .. . aleria TIA U. Middlahuma OOD#00

JOB NO. VZ5-228 / SMK-007_ CALCULATION NO ORIGINATOR K.Barker DATE 07/02/2021					
SHEET	OF	REVIEWER	DATE		
Two-Way She	ear (Uplift)				
Diameter of Long	jitudinal Rebar Cage	$d_{cage} := d_{pier} - 2 \cdot (cc_{pier} + d_{bar_{St}}) - d_{bar_{Sc}} = 52.12$	25∙in		
		$d_{c.2} = 22.872 \cdot in$			
Steel Embedmer	nt Length	$L_{embed} := d_{c.2} = 22.872 \cdot in$			
Radius of Two-W	ay Shear Plane	$r_{2way.tens} \coloneqq 0.5 \cdot (d_{cage} + L_{embed}) = 3.125 \text{ft}$			
Critical Perimeter		$P_{crit.tens} \coloneqq (d_{cage} + L_{embed}) \cdot \pi = 235.61 \cdot in$			
Area of Concrete	in Shear	$A_{c.tens} := P_{crit.tens} \cdot L_{embed} = 5388.872 \cdot in^2$			
Polar Moment of Critical Section	Inertia of	$J_{c.tens} \coloneqq \frac{\pi \cdot \left(d_{cage} + L_{embed} \right)^4}{32} = 3105814.116 \cdot in^4$			
Total Moment in F	Pier	$M_{u.uplift} := V_{u_uplift} \cdot (D + E + bp_{dist} - T) = 215.417 \cdot T$	ft∙kip		
		$d_{cage} + L$	-embed		
Controlling Shea	r Stress	$v_{u.0.9.tens} \coloneqq \frac{V_{u.0.9.tens}}{A_{c.tens}} + 0.4 \cdot M_{u.uplift} \cdot \frac{2}{J_{c.tens}}$	$= 0.087 \cdot ksi$		
Two-Way Shear	Check Check	$k_{v2.uplift} := if(v_{u.0.9.tens} < \phi v_n, "OK", "NG") = "OK"$	$\frac{v_{u.0.9.tens}}{\phi v_n} = 52.665 \cdot \%$		
Two-Way She	ear (Uplift, Flexure)			
		M _{u.up.pier} := 0.6·M _{u.uplift} = 129.25·ft·kip	$M_{u.up.pier} = 5.416.\%$		
Since top and bottom reinforcement in pad is the same, the total moment capacity will be 2x. $\phi M_{n.eff}$. ²					
Two-Way Shear	Check	$Check_{v2.uplift.flex} := if(M_{u.up.pier} < \phi M_{n.eff} \cdot 2, "OK")$, "NG") = "OK"		

JOB NO. VZ5-228 / SMK-007_ CALCULATION NO. _____ ORIGINATOR K.Barker DATE 07/02/2021

SHEET	OF		DATE
Pad Flexure			
Area of Steel in Pad		$A_{s.pad} := A_{bar_{Sp}} \cdot mp = 39 \cdot in^2$	
Depth to Equivalent	Stress Block	$a_{pad} \coloneqq \frac{A_{s,pad} \cdot F_y}{0.85 \cdot f_c \cdot min(W, L)} = 2.249 \cdot in$	
Dist from Top to Neu	itral Axis	$c_{pad} \coloneqq \frac{a_{pad}}{\beta_{pad}} = 2.646 \cdot in$	
Strain in Steel		$\varepsilon_{s} \coloneqq 0.003 \cdot \frac{d_{c} - c_{pad}}{c_{pad}} = 0.022 \cdot \frac{in}{in}$	
Resistance Factor	[¢] flex.	pad := if $\varepsilon_{s} \ge 0.005, 0.9, \text{ if } \varepsilon_{s} \le \varepsilon_{c}, 0.65, 0.9$	$0.65 + (0.9 + 0.65) \cdot \frac{(\varepsilon_{s} - \varepsilon_{c})}{(0.005 - \varepsilon_{c})} = 0.9$
Nominal Flexural St	rength	$M_{n} := A_{s.pad} \cdot F_{y} \cdot \left(d_{c} - \frac{a_{pad}}{2} \right) = 4130.7$	769·ft·kip
Design Flexural Stre	ngth	$\phi M_n := \phi_{flex.pad} \cdot M_n = 3717.692 \cdot ft \cdot kip$	
Bearing Pressure at	Critical Section	$qmid_{0.9} := q_{u.0.9} - sq_{s.0.9} \cdot d' = 1.513 \cdot d'$	ksf
		$qmid_{1,2} := q_{u,1,2} - sq_{s,1,2} \cdot d' = 1.761 \cdot d'$	ksf
Factored Bending M	oment ^M u.pad	$\mathbf{h}_{0.0.9} := \left[\frac{qmid_{0.9} \cdot d'^2}{2} + \frac{(q_{u.0.9} - qmid_{0.9})}{3}\right]$	$\frac{\left(1 - \frac{1}{2}\right) \cdot d^{2}}{\left(1 - \frac{1}{2}\right) \cdot d^{2}} \cdot d^{2} $
	M _{u.pac}	$\mathbf{d.1.2} := \left[\frac{qmid_{1.2} \cdot d'^2}{2} + \frac{(q_{u.1.2} - qmid_{1.2})}{3}\right]$	$\left(\frac{1}{2}\right) \cdot d'^{2} = 2.435 \times 10^{3} \cdot \text{ft} \cdot \text{kip}$
Check	Chec	^k Mu.pad := if(max(M _{u.pad.0.9} , M _{u.pad.1} .	$(2) < \phi M_n, "OK", "NG") = "OK"$
		max(M _u	.pad.0.9 , M _{u.pad.1.2}) ∲M _n = 71.789 ⋅%

AECOM

JOB NO. VZ5-228	/ SMK-007_ CALCULATION N	D	ORIGINATOR	K	.Ba	<u>ker</u> DA	ATE <u>07/02</u>	/2021	
SHEET	OF		REVIEWER _						DATE
Pier Desig	In								
Compute Axia I	Loads to Pier	P _{pier.c.}	1.2 ^{:=} −1 ·(P _c	com	р +	^γ DL.ma	ax [.] Wpier)	= -479.2	254 · kip
		P _{pier.c.}	$0.9 := -1 \cdot \left(P_{0}\right)$	com	p	^γ DL.min ^γ DL.ma≯	$\frac{1}{x}$ + 0.9.W	pier) = -	-359.44·kip
		P _{pier.u.}	1.2 ^{:= P} uplift	- 1	.2V	V _{pier} = 3	395.746∙ki	р	
		P _{pier.u.}	0.9 ^{:= P} uplift	. <u>γ</u> γ _D)L.ı)L.r	<u>min</u> – 0. nax	9∙W _{pier} ⁼	= 296.81 ·	kip
Compute Mom (Passive resista	ents to Base of Pier ance of soil neglected	M _{pier.c}	:= (D - T + I)	E +	bp	dist)·∨u_	_comp = 2	238.917.1	ft∙kip
due to movem resistance)	ent required to develop	M _{pier.u}	:= (D - T +	E +	bp	dist) ∙V _{u_}	_uplift = 2	15.417 ·ft	t-kip
			(Ppier.c.1.2	2)			ſ	M _{pier.c}	
Format Data fo	r Graphing	D	P _{pier.c.0.9})		N	4	M _{pier.c}	
		⊂pier :=	P _{pier.u.1.2}	2		IV	"pier :=	M _{pier.u}	
			Ppier.u.0.9)				M _{pier.u})	
CSiBridge Ve following inpu	rsion 22.0 has been utilized its were used:	to compu	ite PM-aurves	for t	he	pier in ac	cordance	with ACI 3	318-14. The
Pier Siz	e	d _{pier} =	60∙in						
Pier Re	bar Size	Sc = 7]						
No of P	ier Rebar	mc = 16	5						
Dist to 0	Center of Pier Rebar	cc _{pier} +	d _{barst} + 0.5	5∙d _b	arç	= 3.93	8 · in		
Concre	te Compressive Strength	$f_{c} = 300$	00 psi						
			(-5310058)				(0		1
P-M Curve Da	ata from CSiBridge		-5310058				2034654	18	
			-5115433				3405767	70	
Note:	Negative P is		-4412494				4392014	13	
Positiv	ression and /e P is tension		-3673317				5014647	73	
		P _{csi} :=	-2879374	·lbf		M _{csi} :=	5293043	36 √in ∙lb	of
			-2506717				592253 ⁻	2	
			-2014955				6213123	39	
			-1038191				478514 ⁻	3	
			-40701				271310	54	
			971173				(0		

 $\frac{M_{csi}}{ft \cdot kip}, \frac{M_{pier}}{ft \cdot kip}$

As shown graphically, the plotted axial and moments applied to the pier are within the graphed capacity, therefore the pier is structurally adequate for the applied loading.

JOB NO. VZ5-228 / SMK-007 CALCULATION NO. ORIGINATOR K.Barker DATE 07/02/2021

OF_____REVIEWER ____ SHEET DATE **Rebar Detail Checks** $A_{st.c} := \frac{\pi}{4} \cdot d_{pier}^2 \cdot 0.005 = 14.137 \cdot in^2$ Minimum Longitudinal Rebar in Pier $A_{s.pier} := A_{bar_{sc}} \cdot mc + 9 \cdot A_{bar_{o}} = 18.6 \cdot in^2$ Longitduinal Rebar in Pier check_{min.pier} := if(A_{st.c} < A_{s.pier}, "OK", "NG") = "OK" Check $\mathsf{B}_{s.pier} \coloneqq \frac{\mathsf{d}_{cage} \cdot \pi}{\mathsf{mc}} - \mathsf{d}_{bar_{Sc}} = 9.36 \cdot \mathsf{in}$ Max Longitudinal Bar Spacing in Pier check_{max.spa.pier} := if(B_{s.pier} ≤ 18in, "OK", "NG") = "OK" Check Minimum Transverse Pier Bar Size $s_{t min} := if(Sc \le 10, 3, 4) = 3$ check_{trans.pier.size} := if(s_{t.min} ≤ St, "OK" , "NG") = "OK" Check $B_{s.t.max1} := \frac{8}{0.5} \cdot d_{bar_{Sc}} = 14 \cdot in$ Max Transverse Pier Bar Spacing $B_{s.t.max2} \coloneqq \frac{24}{0.5} \cdot d_{bar_{St}} = 24 \cdot in$ $\mathsf{B}_{s,t} := \frac{\mathsf{D} - \mathsf{T} + \mathsf{E} - 2 \cdot \mathsf{cc}_{\mathsf{pier}}}{\mathsf{mt} - 1} = 13 \cdot \mathsf{in}$ Transverse Bar Spacing check_{trans.pier.pa} := if $(B_{s,t} \le min(B_{s,t.max1}, B_{s,t.max2}), "OK", "NG") = "OK"$ Check $\rho_{sh} := if(F_v \ge 60ksi, 0.0018, 0.002) = 0.0018$ Min Rebar Density for Shrinkage $A_{st.p.sh} \coloneqq \rho_{sh} \cdot max(W, L) \cdot T = 20.995 \cdot in^2$ Min Temp/Shrink Rebar in Pad $\mathsf{A}_{s.p} \coloneqq \mathsf{A}_{bar_{Sp}} \cdot \mathsf{mp} \cdot 2 = 78 \cdot \mathsf{in}^2$ Area of Steel Provided check_{shrink.pad} := if(A_{st.p.sh} ≤ A_{s.p}, "OK", "NG") = "OK" Check

ANALYSIS UNDER TIA-222-F DESIGN CRITERIA (DESPP / CSP)

	DESIGNED APPU	RTENANCE LOADING	
TYPE	ELEVATION	TYPE	ELEVATION
Flash Beacon Lighting (1. 158)	160	DSM2 w/ additional SFS-H Stabilizer (T-Mobile)	125
Lightning Rod 1/2*x4' on 15' Pole (Tower - LR)	160	DSM2 w/ additional SFS-H Stabilizer (T-Mobile)	125
DS7C09P36D-D (CSP)	160	DSM2 w/ additional SFS-H Stabilizer (T-Mobile)	125
DS7C09P36D-D (CSP)	160	EMS RR90-17-xx (T-Mobile)	125
DS7C09P36D-D (CSP)	160	EMS RR90-17-xx (T-Mobile)	125
D\$7C09P36D-D (CSP)	160	EMS RR90-17-xx (T-Mobile)	125
Commscope SFG23HD-12-4-96 Mount Assembly	160	LNX-6515DS-A1M Andrew P anel (T-Mobile)	125
(CSP)		LNX-6515DS-A1M Andrew P anel (T-Mobile)	125
Commscope SFG23HD-12-4-96 MountAssembly	160	LNX-6515DS-A1M Andrew Panel (T-Mobile)	125
(CSP)		Ericsson Radio 4415 B25 RRH Unit (T-Mobile)	125
432E-83I-01T TTA Unit (2-3.159 - TTA)	159	Ericsson Radio 4415 B25 RRH Unit (T-Mobile)	125
HPD2-4.7 (NWCT (C-A Face))	159	Ericsson Radio 4415 B25 RRH Unit (T-Mobile)	125
DB304-A (2.158)	158	2" Dia 10' Omni (2.124)	124
432E-83I-01T TTA Unit (3.155 - TTA Unit)	155	Pirod 6' Side Mount Standoff (1) (Mt for 2.124)	124
DB228-A (2.155)	155	4"x96"x72" loe Canory (DNK-5)	115
10 PCS Frame (1) (Mt for 2.155.1, 2.155.2	155	4"x96"x72" los Canorer (DNK-6)	115
2.1557)		6 w (Badome (2 110)	110
DC6-48-60-18-8F (Squid) Suppressor (ATT)	146	6' w/ Badome (3.110)	110
Commscope SFG22 (14' Sector Frame) (ATT	140	TD_RRH8/20 (Soriet)	97
Proposed)		RRH 800MHz 2x50W (Sprint)	97
Commscope SFG22 (14' Sector Frame) (AT1 Proposed)	140	RDH 1900 MHz 2x40W (Sprint)	97
Commence (FO22 (44) Contro Franch (4TT	440	DDH 800MHz 2x50M (Sprint)	07
Commscope SEG22 (14' Sector Frame) (ATL Proposed)	140	DDLI 900MLla 2x50W (Sprint)	57
7770 00 (ATT)	140	DDH 900MHz 2x50W (Sprint)	07
CCLDMP65B,BLI8D, Panel (ATT Proposed)	140	PDLI 900MUz 2x50W (Sprint)	07
CCLOPA65R-BURD Papel (ATT Proposed)	140	DT465D 2VD V2 Davada (Commissione) (Ential)	07
TPA-65RJ CIULIULH8 Panel w/ RET (ATT)	140	D14005-2AR-92 Failes (Contribution) (Sprint)	07
RRUS-32 (ATT)	140	PM-3033-40 - Pipe Mount 40 (aprint)	07
RRUS-12 (ATT)	140	TD DD1/0-20 (English)	07
Radio 4449 B5B12 RBH (ATT Proposed)	140	DDH 1000 MHz 2x40W (Seciet)	97
Radio 4478 B14 RRH (ATT Proposed)	140	RRH 1900 MHz 2x40W (Splitt)	07
TT19.088P111.001 TMA% (ATT)	140	ADV//EDD19 C A20 /Enrich	07
(2) LGP 21401 Diplexer (ATT)	140	APXVSPP10-C-A20 (Sprint)	07
7770 00 (ATT)	140	ADV//EDD19 C A20 (Ended)	07
CCLDMP65B,BLI8D, Panel (ATT Proposed)	140	DT465P 3YD V3 Datala (Commonate) (Entiat)	07
CCLOPA65R-BURD Papel (ATT Proposed)	140	DT4650-2AR-v2 Palets (Commiscope) (Sprint)	07
TDA 65D L CHUHULHR Danalay (DET (ATT)	140	D14658-2XR-V2 Panels (Commiscope) (Sprint)	97
DDUS 32(ATT)	140	RRH 800WHz 2500W (Sprint)	97
PPUS-12(ATT)	140	PM-S035-46 - Pipe Mount 46" (Sprint)	97
Partio 4449 R5/R12 DDH (ATT Proposed)	140	TD-RR1020 (Splin)	91
Parto 4478 B14 PDH (ATT Proposed)	140	DD 4005 4 (0:00 0:0000 4 005)	80
DC6.48.60.18.8F (Smid) Suppressor (ATT)	140	PD 10004 (2X2 Square - 1.00)	00
TT19.08BP111.001 TMA% (ATT)	140	L-o to Tower Side-Light Deacon (1.63)	00
(2) LCP 21401 Diplever (ATT)	140	E-5 to Tower Side-Light Beacon (3.53)	60 77 E
7770.00 (ATT)	140	D 1-8IIII(VZW)	77.5
DMD65D BLIED (ATT Promoved)	140	JNA MAUGEROOD 03 (VZIV)	77.5
OPA65B.BUGD (ATT Proposed)	140	JRMA MADDERUBBU-US (VZIV)	77.5
OS66512(ATT)	140	JMA Z E0ge to E0ge (VZW)	77.5
DDIS.22(ATT)	140	JREA MADDERUDDU-US (VZIV)	11.3
RRIS.12(ATT)	140	JRVA MADDE HUBBO-U3 (V ZIV)	77.5
Parks 4440 P5/P12 PDU (ATT Prepared)	140	JNA Z Edge to Edge (VZW)	11.5
Darko 4479 B 14 DDH (ATT Droposed)	140	Samsung M16407-77A (VZW)	11.5
DC6 49 60 19 9E (Smid) Suppress (ATT	140	Samsung M16407-77A (VZW)	11.5
Proposed)	140	(3) RRH (VZW)	11.5
TT19-08BP111-001 TMA's (ATT)	140	(3) KRTI (VZW)	11.5
(2) L GP 21401 Diplexer (ATT)	140	5 1-am (VZW)	11.5
feet mean an easy and have an Area and	1	DC0-48-60-18-8F (VZW)	11.5
		Sinciar SY450-SE1SNM Yagi (3-1.21)	21

<hr/>	MATERIAL STRENGTH								
7	GRADE	Fy	Fu	GRADE	Fy	Fu			
	A500-50	50 ksi	62 ksi	A529-50	50 ksi	65 ksi			
	A36	36 ksi	58 ksi	A514-60	60 ksi	80 ksi			
	A572-50	50 ksi	65 ksi						

TOWER DESIGN NOTES

Tower designed for a 90 mph basic wind in accordance with the TIA/EIA-222-F Standard.
 Tower is also designed for a 90 mph basic wind with 0.50 in ice.
 Deflections are based upon a 90 mph wind.

MAX. CORNER REACTIONS AT BASE: DOWN: 371 K SHEAR: 44 K

MOMENT 6885 kip-ft

MOMENT 5386 kip-ft

UPLIFT: -314 K SHEAR: 39 K

AXIAL 77 K

AXIAL 52 K

AECOM	^{lob:} 160' Self Support Lattice - CSP #20				
500 Enterprise Drive	Project: Middlebury, CT				
Rocky Hill, CT	Client: SMK-007 / VZ5-228	Drawn by: KAB	App'd:		
Phone: (860) 529-8882	Code: TIA/EIA-222-F	Date: 07/02/21	Scale: NTS		
FAX:	Path:		Dwg No. E-1		

Feed Line Distribution Chart

0' - 160'

App Out Face

App In Face

Round

Flat

Truss Leg

AECOM	^{Job:} 160' Self Support Lattice - CSP #20				
500 Enterprise Drive	Project: Middlebury, CT				
Rocky Hill CT	Client: SMK-007 / VZ5-228	Drawn by: KAB	App'd:		
Phone: (860) 529-8882	Code: TIA/EIA-222-F	Date: 07/02/21	Scale: NTS		
FAX:	Path: Dispersive and DECON Descent Fill takens. Description and Dispersive Add DEF 21.	Nederský i Alt Aven Mathematicke za Ostore v	Dwg No. E-7		

Feed Line Plan

AECOM	^{Job:} 160' Self Support Lattice - CSP #20				
500 Enterprise Drive	Project: Middlebury, CT				
Rocky Hill CT	Client: SMK-007 / VZ5-228	Drawn by: KAB	App'd:		
Phone: (860) 529-8882	Code: TIA/EIA-222-F	Date: 07/02/21	Scale: NTS		
FAX:	Path: Dispersive and DECON Descent Fill takens. Description and Dispersive Add DEF 21.	Nederský i Alt Aven Mathematicke za Ostore v	Dwg No. E-7		

Г	AECOM	^{Job:} 160' Self Support Lattice - CSP #20					
5	00 Enterprise Drive	Project: Middlebury, CT					
	Rocky Hill CT	Client: SMK-007 / VZ5-228	Drawn by: KAB	App'd:			
F	Phone: (860) 529-8882	Code: TIA/EIA-222-F	Date: 07/02/21	Scale: NTS			
Ľ	FAX:	Path:	Dwg No. E-5				

tnxTower	Job	Job 160' Self Support Lattice - CSP #20		
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 07:03:55 07/02/21	
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB	

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 160.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 10.20 ft at the top and 23.00 ft at the base.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

Basic wind speed of 90 mph.
Nominal ice thickness of 0.5000 in.
Ice density of 56 pcf.
A wind speed of 90 mph is used in combination with ice.
Deflections calculated using a wind speed of 90 mph.
Pressures are calculated at each section.
Stress ratio used in tower member design is 1.333.
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz
- Use Special Wind Profile √ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
- ✓ Secondary Horizontal Braces Leg
- Use Diamond Inner Bracing (4 Sided) \sqrt{SR} Members Have Cut Ends
- SR Members Are Concentric

- Distribute Leg Loads As Uniform Assume Legs Pinned
- ✓ Assume Rigid Index Plate
- $\sqrt{}$ Use Clear Spans For Wind Area
- Retension Guys To Initial Tension √ Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients √ Project Wind Area of Appurt. Autocalc Torque Arm Areas
- Add IBC .6D+W Combination √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

Ignore KL/ry For 60 Deg. Angle Legs

- Use ASCE 10 X-Brace Ly Rules √ Calculate Redundant Bracing Forces
- Ignore Redundant Members in FEA \sqrt{SR} Leg Bolts Resist Compression
- $\sqrt{}$ All Leg Panels Have Same Allowable
- Offset Girt At Foundation
 √ Consider Feed Line Torque
- ✓ Include Angle Block Shear Check
 Use TIA-222-G Bracing Resist. Exemption
 Use TIA-222-G Tension Splice Exemption
 Poles
- ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

tnxTower	Job 160' Solf Support Lattice CSP #20	Page 2 of 32
	100 Sell Support Laulce - CSP #20	2 01 02
AECOM 500 Enterprise Drive	Project Middlebury, CT	Date 07:03:55 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client SMK-007 / VZ5-228	Designed by KAB

<u>Triangular Tower</u>

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	160.00-150.00			10.20	1	10.00
T2	150.00-125.00			11.00	1	25.00
T3	125.00-100.00			13.00	1	25.00
T4	100.00-75.00			15.00	1	25.00
T5	75.00-66.67			17.00	1	8.33
T6	66.67-58.33			17.67	1	8.33
T 7	58.33-50.00			18.33	1	8.33
T8	50.00-37.50			19.00	1	12.50
T9	37.50-25.00			20.00	1	12.50
T10	25.00-0.00			21.00	1	25.00

	Tower Section Geometry (cont'd)							
<i>T</i>	<i>T</i>	Diagonal	Duration	II	II	Tan Cint	Dettem Cint	
Section	Elevation	Spacing	Type	ниs K Brace	nas Horizontals	Offset	Dollom Giri Offset	
Section	Enevation	spacing	Type	End	110/120/11415	0))301	0))301	
	ft	ft		Panels		in	in	
T1	160.00-150.00	5.00	K Brace Down	No	Yes	0.0000	0.0000	
T2	150.00-125.00	8.33	K Brace Down	No	Yes	0.0000	0.0000	
T3	125.00-100.00	8.33	K Brace Down	No	Yes	0.0000	0.0000	
T4	100.00-75.00	8.33	K Brace Down	No	Yes	0.0000	0.0000	
T5	75.00-66.67	8.33	K Brace Down	No	Yes	0.0000	0.0000	

tnxTower	Job 160' Self Support Lattice - CSP #20	Page 3 of 32
AECOM 500 Enterprise Drive	Project Middlebury, CT	Date 07:03:55 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client SMK-007 / VZ5-228	Designed by KAB

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T6	66.67-58.33	8.33	K Brace Down	No	Yes	0.0000	0.0000
T 7	58.33-50.00	8.33	K1 Down	No	Yes	0.0000	0.0000
T8	50.00-37.50	12.50	K Brace Down	No	Yes	0.0000	0.0000
Т9	37.50-25.00	12.50	K1 Down	No	Yes	0.0000	0.0000
T10	25.00-0.00	12.50	K Brace Down	No	Yes	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Type	Size	Grade	Туре	Size	Grade
ft						
T1 160.00-150.00	Pipe	P.5x.250	A500-50	Double Angle	2L2 1/2x2x3/16	A36
			(50 ksi)			(36 ksi)
T2 150.00-125.00	Pipe	P.5x.250	A500-50	Double Angle	2L2 1/2x2x3/16	A36
	-		(50 ksi)	-		(36 ksi)
T3 125.00-100.00	Pipe	P.5x.250	A500-50	Double Angle	2L2 1/2x2 1/2x5/16	A36
	•		(50 ksi)	Ū.		(36 ksi)
T4 100.00-75.00	Arbitrary Shape	P5x0.3 w/ (3) 1.5x5/8 Plates	À500-50	Double Angle	2L3x2 1/2x1/4	A36
			(50 ksi)	-		(36 ksi)
T5 75.00-66.67	Arbitrary Shape	P5x0.4 w/ (3) 1.5x5/8 Plates	A572-50	Double Angle	2L3x2 1/2x5/16	A529-50
			(50 ksi)	-		(50 ksi)
T6 66.67-58.33	Arbitrary Shape	P5x0.4 w/ (3) 1.5x5/8 Plates	A572-50	Double Angle	2L3x2 1/2x5/16	A529-50
			(50 ksi)	Ū.		(50 ksi)
T7 58.33-50.00	Pipe	HSS5x.4	À514-60	Double Angle	2L3x3x5/16	A36
	1		(60 ksi)	U		(36 ksi)
T8 50.00-37.50	Pipe	HSS6.875x.4	A514-60	Double Angle	2L3 1/2x3x3/8	A36
	1		(60 ksi)	e e		(36 ksi)
T9 37.50-25.00	Pipe	HSS6.875x.4	À514-60	Double Angle	2L3 1/2x3 1/2x5/16	A529-50
	1		(60 ksi)	U		(50 ksi)
T10 25.00-0.00	Arbitrary Shape	HSS6.875x0.5 w/ (3) 2x5/8	À500-50	Double Angle	2L4x3x3/8	À529-50
	J	Bars	(50 ksi)	0		(50 ksi)

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
Elevation	Туре	Size	Grade	Туре	Size	Grade
ft						
T1 160.00-150.00	Single Angle	L3x3x1/4	A36	Solid Round		A36M-50
			(36 ksi)			(50 ksi)
T4 100.00-75.00	Single Angle	L3x3x1/4	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
T6 66.67-58.33	Single Angle	L3x3x1/2	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
T7 58.33-50.00	Single Angle	L3x3x1/2	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
T8 50.00-37.50	Single Angle	L4x4x1/4	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
T9 37.50-25.00	Single Angle	L4x4x5/16	A529-50	Single Angle		A36
			(50 ksi)			(36 ksi)

FAX:

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 Job

Project

Client

Middlebury, CT

SMK-007 / VZ5-228

Designed by KAB

07:03:55 07/02/21

Tower Section Geometry (cont'd)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Type	Size	Grade	Type	Size	Grade
	Mid						
ft	Girts						
T1 160.00-150.00	None	Flat Bar		A36	Single Angle	L3x3x1/4	A36
				(36 ksi)			(36 ksi)
T2 150.00-125.00	None	Flat Bar		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
				(36 ksi)			(36 ksi)
T3 125.00-100.00	None	Flat Bar		A36	Single Angle	L3x3x5/16	A36
				(36 ksi)			(36 ksi)
T4 100.00-75.00	None	Flat Bar		A36	Single Angle	L3x3x1/2	A36
				(36 ksi)			(36 ksi)
T5 75.00-66.67	None	Flat Bar		A36	Single Angle	L3x3x1/2	A36
				(36 ksi)			(36 ksi)
T6 66.67-58.33	None	Flat Bar		A36	Single Angle	L3x3x1/2	A36
				(36 ksi)			(36 ksi)
T7 58.33-50.00	None	Flat Bar		A36	Single Angle	L3x3x1/2	A36
				(36 ksi)			(36 ksi)
T8 50.00-37.50	None	Flat Bar		A36	Single Angle	L4x4x1/4	A36
				(36 ksi)			(36 ksi)
T9 37.50-25.00	None	Flat Bar		A36	Single Angle	L4x4x1/4	A36
				(36 ksi)			(36 ksi)
T10 25.00-0.00	None	Flat Bar		A36	Single Angle	L4x4x1/2	A36
				(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft						
T3 125.00-100.00	Solid Round		A36	Single Angle	L2 1/2x2x3/16	A36
			(36 ksi)			(36 ksi)
T4 100.00-75.00	Solid Round		A36	Single Angle	L2 1/2x2x3/16	A36
			(36 ksi)			(36 ksi)
T5 75.00-66.67	Solid Round		A36	Single Angle	L2 1/2x2x3/16	A36
			(36 ksi)			(36 ksi)
T6 66.67-58.33	Solid Round		A36	Single Angle	L2 1/2x2x3/16	A36
			(36 ksi)			(36 ksi)
T7 58.33-50.00	Equal Angle		A36	Single Angle	L2 1/2x2x3/16	A36
			(36 ksi)	0 0		(36 ksi)
T8 50.00-37.50	Equal Angle		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)	0 0		(36 ksi)
T9 37.50-25.00	Equal Angle		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
	1 0		(36 ksi)	0 0		(36 ksi)
T10 25.00-0.00	Solid Round		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)	0		(36 ksi)

tnxTower	Job 160' Self Support Lattice - CSP #20	Page 5 of 32
AECOM 500 Enterprise Drive	Project Middlebury, CT	Date 07:03:55 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client SMK-007 / VZ5-228	Designed by KAB

Tower Elevation	Redundant Bracing Grade		Redundant Type	Redundant Size	K Factor
ft					
T7	A36	Horizontal (1)	Equal Angle	L2x2x5/16	1
58.33-50.00	(36 ksi)	Diagonal (1)	Equal Angle	L2x2x5/16	1
Т9	A36	Horizontal (1)	Equal Angle	L2x2x5/16	1
37.50-25.00	(36 ksi)	Diagonal (1)	Single Angle	L2x2x5/16	1

Tower Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
	. 2						Diagonals	Horizontals	Redundants
ft	ft²	in					in	in	in
T1	0.00	0.0000	A36	1	1	1	0.0000	0.0000	36.0000
160.00-150.00			(36 ksi)						
T2	0.00	0.0000	A36	1	1	1	0.0000	36.0000	36.0000
150.00-125.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1	0.0000	36.0000	36.0000
125.00-100.00			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1	0.0000	36.0000	36.0000
100.00-75.00			(36 ksi)						
T5 75.00-66.67	0.00	0.0000	A36	1	1	1	0.0000	36.0000	36.0000
			(36 ksi)						
T6 66.67-58.33	0.00	0.0000	A36	1	1	1	0.0000	36.0000	36.0000
			(36 ksi)						
T7 58.33-50.00	0.00	0.0000	A36	1	1	1.03	0.0000	36.0000	36.0000
			(36 ksi)						
T8 50.00-37.50	0.00	0.0000	A36	1	1	1	0.0000	36.0000	36.0000
			(36 ksi)						
T9 37.50-25.00	0.00	0.0000	A36	1	1	1.03	0.0000	36.0000	36.0000
			(36 ksi)						
T10 25 00-0 00	0.00	0 0000	A 36	1	1	1	0.0000	36 0000	36 0000
110 20.00 0.00	0.00	0.0000	(36 ksi)	*			0.0000	2 3.30000	20.0000

				K Factors ¹									
Tower Elevation	Calc K	Calc K	Legs	X Brace	K Brace Diana	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace			
ft	Single Angles	Solid Rounds		Diags X Y	Diags X Y	X Y	X Y	X Y	X Y	X			
<u></u>	Yes	Yes	1	1	1	1	1	0.65	0.65	1			
160.00-150.00			-	Î	ĩ	ĩ	ĩ	0.65	0.65	î			
T2	Yes	Yes	1	1	1	1	1	0.65	0.65	1			
150.00-125.00				1	1	1	1	0.65	0.65	1			
T3	Yes	Yes	1	1	1	1	1	0.65	0.65	1			
125.00-100.00				1	1	1	1	0.65	0.65	1			
T4	Yes	Yes	1	1	1	1	1	0.65	0.65	1			
100.00-75.00				1	1	1	1	0.65	0.65	1			
T5	Yes	Yes	1	1	1	1	1	0.65	0.65	1			
75.00-66.67				1	1	1	1	0.65	0.65	1			
T6	Yes	Yes	1	1	1	1	1	0.65	0.65	1			
66.67-58.33				1	1	1	1	0.65	0.65	1			

A	Job	Page	
<i>tnx1ower</i>		6 of 32	
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 07:03:55 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

			K Factors ¹									
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner		
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace		
	Single	Solid		Diags	Diags							
	Angles	Rounds		X	X	X	X	X	X	X		
ft				Y	Y	Y	Y	Y	Y	Y		
T7	Yes	Yes	1	1	1	1	1	0.65	0.65	1		
58.33-50.00				1	1	1	1	0.65	0.65	1		
T8	Yes	Yes	1	1	1	1	1	0.65	0.65	1		
50.00-37.50				1	1	1	1	0.65	0.65	1		
T9	Yes	Yes	1	1	1	1	1	0.65	0.65	1		
37.50-25.00				1	1	1	1	0.65	0.65	1		
T10	Yes	Yes	1	1	1	1	1	0.65	0.65	1		
25.00-0.00				1	1	1	1	0.65	0.65	1		

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Towar	Leg Diagonal			nal	Ton Cirt Bottom Cirt			Mid	Civt	Long Hovizontal		Short Horizontal		
Floration	Leg		Diagon	iui		.,.	Donom	i Uiri		Jiri		120niui		n20mai
fievation														
ji	Not Width	17	Not Width	I.I.	Not Width	I.I.	Not	II	Mat	I.I.	Mat	I.I.	Not	II
	Net Wiain	U	net wiain	U	net wiain	U	net wet	U	INEL	U	Ivel IV: L1	U	Ivel IVel	U
	Deauct		Deauci		Deauct		wiain		wiath		wiath		wiath	
	ın		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00-150.00														
T2	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
150.00-125.00														
T3	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
125.00-100.00														
T4	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-75.00														
T5 75.00-66.67	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 66.67-58.33	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 58.33-50.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 50.00-37.50	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 37.50-25.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 25.00-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower		Connection Offsets												
Elevation		Diag	gonal			K-Br	acing							
	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.						
	Тор	Тор	Bot.	Bot.	Top Top Bot. Bot									
ft	in	in	in	in	in	in	in	in						
T1	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000						
160.00-150.00														
T2	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000						
150.00-125.00														
T3	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000						
125.00-100.00														

tnxTower

160' Self Support Lattice - CSP #20

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

Tower				Connecti	on Offsets			
Elevation		Diag	gonal			K-Br	acing	
	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.
	Тор	Тор	Bot.	Bot.	Тор	Тор	Bot.	Bot.
ft	in	in	in	in	in	in	in	in
T4	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
100.00-75.00								
T5 75.00-66.67	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
T6 66.67-58.33	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
T7 58.33-50.00	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
T8 50.00-37.50	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
T9 37.50-25.00	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000
T10 25.00-0.00	0.0000	3.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg		Diagonal Top Girt Bottom Girt		Mid G	irt	Long Horizontal		l Short Horizontal					
Elevation	Connection														
Jt	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		ın		1n		1n		111		1n		1n		111	
T1	Flange	0.7500	6	0.7500	1	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
160.00-150.00		A325X		A325N		A325N		A325N		A325N		A325X		A325N	
T2	Flange	0.7500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
150.00-125.00		A325X		A325N		A325N		A325N		A325N		A325X		A325N	
T3	Flange	0.7500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
125.00-100.00	-	A325X		A325N		A325N		A325N		A325N		A325X		A325N	
T4	Flange	0.7500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
100.00-75.00	_	A325X		A325N		A325N		A325N		A325N		A325X		A325N	
T5 75.00-66.67	Flange	0.8750	6	0.7500	1	0.6250	0	0.0000	0	0.6250	0	0.6250	2	0.6250	0
	0	A325X		A325N		A325N		A325N		A325N		A325X		A325N	
T6 66.67-58.33	Flange	0.8750	6	0.7500	1	0.6250	2	0.0000	0	0.6250	0	0.6250	2	0.6250	0
	e	A325X		A325N		A325X		A325N		A325N		A325X		A325N	
T7 58.33-50.00	Flange	0.8750	6	0.7500	1	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
	e	A325X		A325N		A325X		A325N		A325N		A325X		A325N	
T8 50.00-37.50	Flange	1.0000	8	1.0000	1	0.6250	0	0.0000	0	0.6250	0	0.6250	2	0.6250	0
	0.	A325X		A325N		A325N		A325N		A325N		A325X		A325N	
T9 37.50-25.00	Flange	1.0000	8	1.0000	1	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
		A325X	5	A325N	•	A325X	-	A325N	~	A325N		A325X	-	A325N	
T10 25.00-0.00	Flange	1.0000	8	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
	0	A325X		A325N		A325N		A325N		A325N		A325X	_	A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Face	Allow	Exclude	Component	Placement	Face	Lateral	#	#	Clear	Width or	Perimeter	Weight
or	Shield	From	Type		Offset	Offset		Per	Spacing	Diameter		
Leg		Torque		ft	in	(Frac FW)		Row	in	in	in	plf
		Calculation										
В	Yes	No	Ar (CfAe)	159.00 -	-0.5000	-0.12	1	1	1.1020	1.1020		0.29
				0.00								
В	Yes	No	Ar (CfAe)	77.50 - 0.00	-1.0000	0	1	1	1.6250	1.6250		1.48
	Face or Leg B B	Face orAllow ShieldBYesBYes	FaceAllowExcludeorShieldFromLegTorqueCalculationBYesNoBYesNo	FaceAllowExcludeComponentorShieldFromTypeLegTorqueCalculationBYesNoAr (CfAe)BYesNoAr (CfAe)	Face AllowExcludeComponentPlacementorShieldFromTypeLegTorqueftCalculationBYesNoAr (CfAe)159.00 - 0.00BYesNoAr (CfAe)77.50 - 0.00	FaceAllowExcludeComponentPlacementFaceorShieldFromTypeOffsetLegTorqueftinBYesNoAr (CfAe)159.000.50000.000.000.000.00BYesNoAr (CfAe)77.50 - 0.00-1.0000	FaceAllowExcludeComponentPlacementFaceLateralorShieldFromTypeOffsetOffsetLegTorqueftin(Frac FW)Calculation000BYesNoAr (CfAe)159.00 - 0.5000-0.12BYesNoAr (CfAe)77.50 - 0.00-1.00000	FaceAllowExcludeComponentPlacementFaceLateral#orShieldFromTypeOffsetOffset#LegTorqueftin(Frac FW)Calculation159.000.5000-0.121BYesNoAr (CfAe)159.00 -0.00001BYesNoAr (CfAe)77.50 - 0.00-1.000001	FaceAllowExcludeComponentPlacementFaceLateral##orShieldFromTypeOffsetOffsetPerLegTorqueftin(Frac FW)RowCalculation159.000.5000-0.121BYesNoAr (CfAe)159.00 -0.000011BYesNoAr (CfAe)77.50 - 0.00-1.0000011	FaceAllowExcludeComponentPlacementFaceLateral##ClearorShieldFromTypeOffsetOffsetPerSpacingLegTorqueftin(Frac FW)RowinBYesNoAr (CfAe)159.00 - 0.5000-0.12111.1020BYesNoAr (CfAe)77.50 - 0.00-1.00000111.6250	FaceAllowExcludeComponentPlacementFaceLateral##ClearWidth ororShieldFromTypeOffsetOffsetOffsetPerSpacingDiameterLegTorqueftin(Frac FW)RowinininBYesNoAr (CfAe)159.00 - 0.5000-0.12111.10201.1020BYesNoAr (CfAe)77.50 - 0.00-1.00000111.62501.6250	FaceAllowExcludeComponentPlacementFaceLateral##ClearWidth orPerimeterorShieldFromTypeOffsetOffsetOffsetPerSpacingDiameterLegTorqueftin(Frac FW)NoinininBYesNoAr (CfAe)159.00 - 0.5000-0.12111.10201.1020BYesNoAr (CfAe)77.50 - 0.00-1.00000111.62501.6250

Project Client

Job

Anna Tanu an	Job	Page					
<i>tnx1ower</i>		160' Self Support Lattice - CSP #20					
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 07:03:55 07/02/21				
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB				

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Description	Face	Allow	Exclude	Component	Placement	Face	Lateral	#	#	Clear	Width or	Perimeter	Weight
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		or	Shield	From	Type		Offset	Offset		Per	Spacing	Diameter		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Leg		Torque		ft	in	(Frac FW)		Row	in	in	in	plf
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.5/0	C	V	Calculation	A = (CICA =)	125.00	2 0000	0	10	(1.0000	1.0000		1.04
$ \begin{array}{ccccc} \begin{array}{cccccccccccccccccccccccccccc$	T 3/8 (T-Mobile)	C	res	INO	Ar (CIAe)	125.00 -	-3.0000	0	12	0	1.9800	1.9800		1.04
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(1-Moone) 1 1/4	в	Ves	No	Ar (CfAe)	140.00 -	-4 0000	0.38	6	6	1 5500	1 5500		0.66
$\begin{array}{ccccc} \begin{array}{ccccccc} X^{+} \Gamma P & S & Ves & No & Ar (CfAe) & 140.00 & -1.000 & 0.43 & 1 & 1 & 3.000 & $	(ATT)	D	103	NO	m (ente)	0.00	-4.0000	0.50	0	0	1.5500	1.5500		0.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3" Flex	в	Yes	No	Ar (CfAe)	140.00 -	-1.0000	0.43	1	1	3.0000	3.0000		3.00
	Conduit w 2	D	100	110	in (enit)	0.00	1.0000	0.15			210000	2.0000		5.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fiber & 4 DC													
$ HB 158.1-08U \ B Yes No Ar (CEAe) 140.00 - 1.0000 0.4 1 1 15 1.9800 1.9800 1.30 $	(ATT)													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HB158-1-08U	В	Yes	No	Ar (CfAe)	140.00 -	-1.0000	0.4	1	1	1.9800	1.9800		1.30
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8-S8J18					0.00								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(ATT)													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1/4"	С	No	No	Ar (CfAe)	97.30 - 0.00	-0.5000	-0.09	4	4	1.2500	1.2500		1.13
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hybriflex													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cables (Servicet)													
	(Sprint)													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* CSP Cables													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LDF7-50A	В	Yes	No	Ar (CfAe)	159.00 -	-1.0000	-0.49	1	1	1.9800	1.9800		0.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1-5/8 FOAM)				()	0.00								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(2-3.159-2)													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LDF7-50A	В	Yes	No	Ar (CfAe)	159.00 -	-1.0000	-0.47	1	1	1.9800	1.9800		0.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1-5/8 FOAM)					0.00								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(2.3.159-1)	D		N		150.00	1 0000	0.455	1	1	1.0000	1.0000		0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LDF /-50A	В	Yes	NO	Ar (CIAe)	159.00 -	-1.0000	-0.455	I	I	1.9800	1.9800		0.82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1-5/8 FOAM) (2.2.150.1)					0.00								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2.5.159-1) I DF4-50A	в	Ves	No	$\Delta r (Cf \Delta e)$	159.00 -	-1.0000	-0.44	1	1	0.6300	0.6300		0.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1/2 FOAM)	D	105	110	m (ente)	0.00	-1.0000	-0.11	1	1	0.0500	0.0500		0.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2.3.159-1)					0.00								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2	в	Yes	No	Ar (CfAe)	158.00 -	-1.0000	-0.425	1	1	0.5800	0.5800		0.25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1.158)					0.00								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LDF5-50A	В	Yes	No	Ar (CfAe)	158.00 -	-1.0000	-0.41	1	1	1.0900	1.0900		0.33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(7/8 FOAM)					0.00								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(2.158)	D		N		157.00	1 0000	0.005			1.0000	1.0000		0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LDF 7-50A	В	Yes	No	Ar (CIAe)	157.00 -	-1.0000	-0.395	1	I	1.9800	1.9800		0.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1-5/8 FOAM) (2 157 1)					0.00								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2.157.1) LDF7-50A	в	Ves	No	Ar (CfAe)	155.00 -	-1 0000	-0.38	1	1	1 9800	1 9800		0.82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1-5/8 FOAM)	D	103	110	m (ente)	0.00	-1.0000	-0.50	1	1	1.9000	1.9000		0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2.155.2)													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LDF7-50A	В	Yes	No	Ar (CfAe)	155.00 -	-1.0000	-0.365	1	1	1.9800	1.9800		0.82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1-5/8 FOAM)					0.00								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2.155.1)													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LDF7-50A	В	Yes	No	Ar (CfAe)	155.00 -	-1.0000	-0.35	1	1	1.9800	1.9800		0.82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1-5/8 FOAM)					0.00								
(7/8 FOAM) 0.00 -1.0000 -0.335 1 1 1.9500 1.9500 1.9500 0.35 LDF7-50A B Yes No Ar (CfAe) 155.00 - -1.0000 -0.32 2 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00 0.00 0.00 -0.305 1 1 0.6300 0.6300 0.15 (1/2 FOAM) 0.00 0.00 -0.000 -0.305 1 1 0.6300 0.6300 0.15 (1/2 FOAM) 0.00 0.00 -0.000 -0.29 1 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00 0.00 -0.29 1 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00 0.00 -0.29 1 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00 0.00 -0.275 1 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00 0.00 0.00 -1.0000 -0.275 1 1 1.9800 1.9800 <td>(2-3.155) LDE5-50A</td> <td>в</td> <td>Vec</td> <td>No</td> <td>Ar (CfAe)</td> <td>155.00 -</td> <td>-1.0000</td> <td>-0.335</td> <td>1</td> <td>1</td> <td>1 0000</td> <td>1 0000</td> <td></td> <td>0.33</td>	(2-3.155) LDE5-50A	в	Vec	No	Ar (CfAe)	155.00 -	-1.0000	-0.335	1	1	1 0000	1 0000		0.33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(7/8 FOAM)	Б	1 05	NO	AI (CIAC)	0.00	-1.0000	-0.555	т	1	1.0900	1.0900		0.55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(2.155)					0.00								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LDF7-50A	В	Yes	No	Ar (CfAe)	155.00 -	-1.0000	-0.32	2	1	1.9800	1.9800		0.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1-5/8 FOAM)				()	0.00								
LDF4-50A B Yes No Ar (CfAe) 155.001.0000 -0.305 1 1 0.6300 0.6300 0.15 (1/2 FOAM) 0.00 0.00 0.00 0.15 0.00 0.00 0.15 (1/2 FOAM) 0.00 0.00 -0.29 1 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00 0.00 0.00 -1.0000 -0.275 1 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00 0.00 -0.275 1 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00 0.00 -0.275 1 1 1.9800 1.9800 0.82	(3.155)													
(1/2 FOAM) 0.00 (3.155) LDF7-50A B Yes No Ar (CfAe) 155.001.0000 -0.29 1 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00 0.00 0.00 0.275 1 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00 0.00 -0.275 1 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00 -0.00 -0.275 1 1 1.9800 0.82	LDF4-50A	В	Yes	No	Ar (CfAe)	155.00 -	-1.0000	-0.305	1	1	0.6300	0.6300		0.15
(3.155) LDF7-50A B Yes No Ar (CfAe) 155.001.0000 -0.29 1 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00 0.00 0.01 0.00 0.155) 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00 -0.275 1 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00 -0.000 -0.275 1 1 1.9800 1.9800 0.82	(1/2 FOAM)					0.00								
LDF /-50A B Fes No AF (CTAe) 155.001.0000 -0.29 1 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00 0.00 0.155 0.00 0.155 1 1 1.9800 1.9800 0.82 LDF /-50A B Yes No Ar (CfAe) 154.001.0000 -0.275 1 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00 0.00 0.00 0.275 1 1 1.9800 0.82	(3.155)	р	Vaa	No	Ar (CEA a)	155.00	1 0000	0.20	1	1	1 0000	1 0000		0.82
(3-1.155) LDF7-50A B Yes No Ar (CfAe) 154.001.0000 -0.275 1 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00	LDF /-50A (1-5/8 FOAM)	в	1 es	INO	Ar (CIAe)	155.00 - 0.00	-1.0000	-0.29	T	1	1.9800	1.9800		0.82
LDF7-50A B Yes No Ar (CfAe) 154.001.0000 -0.275 1 1 1.9800 1.9800 0.82 (1-5/8 FOAM) 0.00	(3-1155)					0.00								
(1-5/8 FOAM) 0.00	LDF7-50A	в	Yes	No	Ar (CfAe)	154.00 -	-1.0000	-0.275	1	1	1.9800	1.9800		0.82
	(1-5/8 FOAM)				()	0.00								
traveTown	Job		Page											
---	---------	-------------------------------------	--------------------											
inxTower		160' Self Support Lattice - CSP #20	9 of 32											
AECOM	Project		Date											
500 Enterprise Drive		Middlebury, CT	07:03:55 07/02/21											
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB											

Description	Face	Allow	Exclude	Component	Placement	Face	Lateral	#	#	Clear	Width or	Perimeter	Weight
	or	Shield	From	Туре		Offset	Offset		Per	Spacing	Diameter		
	Leg		Torque		ft	in	(Frac FW)		Row	in	in	in	plf
			Calculation										
(3-1.154)													
LDF7-50A	в	Yes	No	Ar (CfAe)	153.00 -	-1.0000	-0.26	1	1	1.9800	1.9800		0.82
(1-5/8 FOAM)					0.00								
(2-3.153)													
LDF5-50A	в	Yes	No	Ar (CfAe)	149.00 -	-1.0000	-0.245	2	1	1.0900	1.0900		0.33
(7/8 FOAM)					0.00								
(3-1.149)													
LDF5-50A	в	Yes	No	Ar (CfAe)	124.00 -	-1.0000	-0.23	1	1	1.0900	1.0900		0.33
(7/8 FOAM)					0.00								
(2.124)													
EW63	в	Yes	No	Ar (CfAe)	110.00 -	-1.0000	0.215	1	1	1.5742	1.5742		0.51
(3.110)					0.00								
EW63	в	Yes	No	Ar (CfAe)	110.00 -	-1.0000	0.2	1	1	1.5742	1.5742		0.51
(2.110)					0.00								
LDF5-50A	в	Yes	No	Ar (CfAe)	85.00 - 0.00	-1.0000	-0.185	1	1	1.0900	1.0900		0.33
(7/8 FOAM)													
(1.85)	_												
1/2	в	Yes	No	Ar (CfAe)	83.00 - 0.00	-1.0000	-0.17	1	1	0.5800	0.5800		0.25
(3.83)	_												
1/2	в	Yes	No	Ar (CfAe)	83.00 - 0.00	-1.0000	-0.155	1	1	0.5800	0.5800		0.25
(1.83)	P			. (68)		1 0000	0.14			0.000	0.000		
LDF4P-50A	в	Yes	No	Ar (CfAe)	21.00 - 0.00	-1.0000	-0.14	I	1	0.6300	0.6300		0.15
(1/2 FOAM)													
(3-1.21)	D				1.40.00	1 0000	0.45			2 0000	2 0000		2.00
2 DC m	в	Yes	No	Ar (CfAe)	140.00 -	-1.0000	0.45	I	1	3.0000	3.0000		3.00
Existing					0.00								
Conduit													
(ATT)													

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	An	Ar	C.A.	C.A.	Weight
Section	Elevation	ruce	21K	m_F	In Face	Out Face	n eigni
beenon	ft		ft^2	ft^2	ft^2	ft^2	K
T1	160.00-150.00	А	0.000	0.000	0.000	0.000	0.00
		В	14.019	0.000	0.000	0.000	0.07
		С	0.000	0.000	0.000	0.000	0.00
T2	150.00-125.00	А	0.000	0.000	0.000	0.000	0.00
		В	79.826	0.000	0.000	0.000	0.47
		С	0.000	0.000	0.000	0.000	0.00
T3	125.00-100.00	А	0.000	0.000	0.000	0.000	0.00
		В	99.120	0.000	0.000	0.000	0.60
		С	24.750	0.000	0.000	0.000	0.31
T4	100.00-75.00	А	0.000	0.000	0.000	0.000	0.00
		В	105.167	0.000	0.000	0.000	0.63
		С	34.042	0.000	0.000	0.000	0.41
T5	75.00-66.67	А	0.000	0.000	0.000	0.000	0.00
		В	37.073	0.000	0.000	0.000	0.22
		С	11.722	0.000	0.000	0.000	0.14
T6	66.67-58.33	А	0.000	0.000	0.000	0.000	0.00
		В	37.073	0.000	0.000	0.000	0.22
		С	11.722	0.000	0.000	0.000	0.14
T 7	58.33-50.00	Α	0.000	0.000	0.000	0.000	0.00
		В	37.073	0.000	0.000	0.000	0.22
		С	11.722	0.000	0.000	0.000	0.14
T8	50.00-37.50	А	0.000	0.000	0.000	0.000	0.00

tnxTower	Job 160' Self Support Lattice - CSP #20	10 of 32
AECOM 500 Enterprise Drive	Project Middlebury, CT	Date 07:03:55 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client SMK-007 / VZ5-228	Designed by KAB

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft²	ft^2	Κ
		В	55.610	0.000	0.000	0.000	0.34
		С	17.583	0.000	0.000	0.000	0.21
Т9	37.50-25.00	Α	0.000	0.000	0.000	0.000	0.00
		В	55.610	0.000	0.000	0.000	0.34
		С	17.583	0.000	0.000	0.000	0.21
T10	25.00-0.00	А	0.000	0.000	0.000	0.000	0.00
		В	112.322	0.000	0.000	0.000	0.68
		С	35.167	0.000	0.000	0.000	0.42

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft ²	K
T1	160.00-150.00	А	0.500	0.000	0.000	0.000	0.000	0.00
		В		23.186	0.000	0.000	0.000	0.21
		С		0.000	0.000	0.000	0.000	0.00
T2	150.00-125.00	А	0.500	0.000	0.000	0.000	0.000	0.00
		В		128.493	0.000	0.000	0.000	1.29
		С		0.000	0.000	0.000	0.000	0.00
T3	125.00-100.00	А	0.500	0.000	0.000	0.000	0.000	0.00
		В		159.037	0.000	0.000	0.000	1.61
		С		37.250	0.000	0.000	0.000	0.77
T4	100.00-75.00	А	0.500	0.000	0.000	0.000	0.000	0.00
		В		170.042	0.000	0.000	0.000	1.70
		С		53.975	0.000	0.000	0.000	0.96
T5	75.00-66.67	А	0.500	0.000	0.000	0.000	0.000	0.00
		В		60.684	0.000	0.000	0.000	0.60
		С		18.667	0.000	0.000	0.000	0.33
T6	66.67-58.33	А	0.500	0.000	0.000	0.000	0.000	0.00
		В		60.684	0.000	0.000	0.000	0.60
		С		18.667	0.000	0.000	0.000	0.33
T 7	58.33-50.00	А	0.500	0.000	0.000	0.000	0.000	0.00
		В		60.684	0.000	0.000	0.000	0.60
		С		18.667	0.000	0.000	0.000	0.33
T8	50.00-37.50	А	0.500	0.000	0.000	0.000	0.000	0.00
		В		91.026	0.000	0.000	0.000	0.90
		С		28.000	0.000	0.000	0.000	0.49
Т9	37.50-25.00	А	0.500	0.000	0.000	0.000	0.000	0.00
		В		91.026	0.000	0.000	0.000	0.90
		С		28.000	0.000	0.000	0.000	0.49
T10	25.00-0.00	А	0.500	0.000	0.000	0.000	0.000	0.00
		в		184.905	0.000	0.000	0.000	1.83
		С		56.000	0.000	0.000	0.000	0.99

Feed Line Shielding									
Section	Elevation	Face	A_R	A_R	A_F	A_F			
	ft		ft²	ft ²	ft^2	ft ²			
T1	160.00-150.00	А	0.000	0.000	0.000	0.000			
		в	0.000	0.913	1.497	2.476			
		С	0.000	0.000	0.000	0.000			
T2	150.00-125.00	Α	0.000	0.000	0.000	0.000			

<i>tnxTower</i>	Job	Page
	160' Self Support Lattice - CSP #20	11 01 32
4FCOM	Project	Date
500 Enterprise Drive	Middlebury, CT	07:03:55 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client SMK-007 / VZ5-228	Designed by KAB

Section	Elevation	Face	A_R	A_R	A_F	A_F
				Ice		Ice
	ft		ft^2	ft^2	ft ²	ft^2
		В	0.000	3.448	5.354	8.619
		С	0.000	0.000	0.000	0.000
T3	125.00-100.00	Α	0.000	0.000	0.000	0.000
		в	0.000	4.031	6.777	10.874
		С	0.000	0.944	1.692	2.547
T4	100.00-75.00	Α	0.000	0.000	0.000	0.000
		В	0.000	4.131	7.665	12.394
		С	0.000	0.905	1.804	2.715
T5	75.00-66.67	А	0.000	0.000	0.000	0.000
		в	0.000	1.441	2.641	4.323
		С	0.000	0.295	0.588	0.885
T6	66.67-58.33	Α	0.000	0.000	0.000	0.000
		в	0.000	1.427	2.615	4.281
		С	0.000	0.292	0.582	0.876
T 7	58.33-50.00	Α	0.000	0.000	0.000	0.000
		в	0.000	2.855	4.352	7.124
		С	0.000	0.584	0.969	1.458
T8	50.00-37.50	Α	0.000	0.000	0.000	0.000
		в	0.000	1.578	3.560	5.826
		С	0.000	0.323	0.792	1.192
Т9	37.50-25.00	А	0.000	0.000	0.000	0.000
		в	0.000	3.160	5.466	8.948
		С	0.000	0.646	1.216	1.831
T10	25.00-0.00	А	0.000	0.000	0.000	0.000
		В	0.000	3.076	7.473	12.303
		С	0.000	0.620	1.647	2.478

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	160.00-150.00	1.9184	-19.6729	2.7155	-26.5237
T2	150.00-125.00	19.7398	-34.7966	25.5894	-47.4806
T3	125.00-100.00	25.1117	-15.8603	31.6652	-22.9633
T4	100.00-75.00	25.2824	-11.2542	32.3785	-16.4447
T5	75.00-66.67	27.7236	-12.8520	35.8461	-19.0730
T6	66.67-58.33	28.3072	-13.1364	36.6274	-19.5046
T 7	58.33-50.00	26.0880	-12.1052	32.8670	-17.2026
T8	50.00-37.50	30.8713	-14.3587	40.3495	-21.5907
Т9	37.50-25.00	28.1171	-13.0341	36.3675	-19.1995
T10	25.00-0.00	30.0280	-14.1919	40.3796	-22.1121

Discrete Tower Loads								
Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement	$C_A A_A$ Front	$C_A A_A$ Side	Weight
	0		Vert ft ft	D	ft	ft²	ft²	K

tnxTower	Job	160' Self Support Lattice - CSP #20	Page 12 of 32
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 07:03:55 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	o	ft		ft^2	ft²	K
*									
*** Existing Carrier VZW									
5' T-arm	А	None		0.0000	77.50	No Ice	4.50	2.50	0.25
(VZW)						1/2" Ice	5.50	3.20	0.32
5' T-arm	в	None		0.0000	77.50	No Ice	4.50	2.50	0.25
(VZW)	G			0.0000		1/2" Ice	5.50	3.20	0.32
DC6-48-60-18-8F (VZW) *	С	None		0.0000	77.50	No Ice 1/2" Ice	1.27 1.46	1.27 1.46	0.02 0.04
*** Existing Carrier Sprint									
APXVSPP18-C-A20	А	From Face	0.50	0.0000	97.00	No Ice	8.26	6.71	0.09
(Sprint)		1101111400	0.00	010000	5,100	1/2" Ice	8.81	7.66	0.15
			0.00						
APXVSPP18-C-A20	в	From Face	0.50	0.0000	97.00	No Ice	8.26	6.71	0.09
(Sprint)			0.00			1/2" Ice	8.81	7.66	0.15
			0.00						
APXVSPP18-C-A20	С	From Leg	0.50	0.0000	97.00	No Ice	8.26	6.71	0.09
(Sprint)			0.00			1/2" Ice	8.81	7.66	0.15
			0.00	0.0000	07.00	N ² T	0.65	5.05	0.07
D1465B-2XR-V2 Panels	А	From Leg	1.50	0.0000	97.00	No Ice	9.65	5.97	0.06
(Commscope)			0.00			$1/2^{-1}$ ice	10.21	6.43	0.12
(Sprint) DT465B 2XB V2 Papels	в	From Leg	1.50	0.0000	97.00	No Ice	0.65	5.07	0.06
(Commscope)	Б	FIOII Leg	0.00	0.0000	97.00	1/2" Ice	10.21	6.43	0.00
(Sprint)			0.00			1/2 100	10.21	0.45	0.12
DT465B-2XR-V2 Panels	С	From Leg	1.50	0.0000	97.00	No Ice	9.65	5.97	0.06
(Commscope) (Sprint)			0.00			1/2" Ice	10.21	6.43	0.12
RRH 800MHz 2x50W	Α	From Face	1.00	0.0000	97.00	No Ice	2.49	2.34	0.07
(Sprint)			$\begin{array}{c} 1.00 \\ 0.00 \end{array}$			1/2" Ice	2.71	2.66	0.10
RRH 800MHz 2x50W	в	From Face	1.00	0.0000	97.00	No Ice	2.49	2.34	0.07
(Sprint)			1.00			1/2" Ice	2.71	2.66	0.10
	C	F F	0.00	0.0000	07.00	N 7 T	2.40	2.24	0.07
(Sprint)	C	From Face	5.00	0.0000	97.00	1/2" Lee	2.49	2.34	0.07
(Sprint)			-5.00			1/2 100	2.71	2.00	0.10
RRH 800MHz 2x50W	А	From Face	1.00	0.0000	97.00	No Ice	2.49	2.34	0.07
(Sprint)			1.00		5,100	1/2" Ice	2.71	2.66	0.10
			0.00						
RRH 800MHz 2x50W	в	From Face	1.00	0.0000	97.00	No Ice	2.49	2.34	0.07
(Sprint)			1.00			1/2" Ice	2.71	2.66	0.10
			0.00						
RRH 800MHz 2x50W	С	From Face	1.00	0.0000	97.00	No Ice	2.49	2.34	0.07
(Sprint)			-5.00			1/2" Ice	2.71	2.66	0.10
TD DDU9-20		Energy Energy	0.00	0.0000	07.00	Ma Isa	4 70	1.70	0.07
ID-RRH8X20 (Sprint)	А	From Face	0.50	0.0000	97.00	1/2" Ice	4.72	1.70	0.07
(oprint)			0.00			1/2 100	5.01	1.72	0.09
TD-RRH8x20	в	From Face	0.50	0.0000	97.00	No Ice	4.72	1.70	0.07
(Sprint)	2		0.00	0.0000	2,100	1/2" Ice	5.01	1.92	0.09
(0.00						
TD-RRH8x20	С	From Face	0.50	0.0000	97.00	No Ice	4.72	1.70	0.07
(Sprint)			-5.00			1/2" Ice	5.01	1.92	0.09
			0.00						
RRH 1900 MHz 2x40W	Α	From Face	0.50	0.0000	97.00	No Ice	2.49	3.34	0.10
(Sprint)			0.00			1/2" Ice	2.71	3.69	0.13

tran Tana an	Job		Page
<i>inx1ower</i>		13 of 32	
AECOM	Project		Date
500 Enterprise Drive		Middlebury, C1	07:03:55 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg	- 21	Lateral	<i>y</i>					
			Vert ft	0	ft		ft^2	ft^2	K
			ft		Ji		ji	ji	n
			0.00						
RRH 1900 MHz 2x40W	В	From Face	0.50	0.0000	97.00	No Ice	2.49	3.34	0.10
(Sprint)			0.00			1/2" Ice	2.71	3.69	0.13
RRH 1900 MHz 2x40W	С	From Face	0.00	0.0000	97.00	No Ice	2.49	3 34	0.10
(Sprint)	e	11011111000	-5.00	0.0000	27100	1/2" Ice	2.71	3.69	0.13
			0.00	0.0000	07.00				
PM-SU35-48 - Pipe Mount	А	From Leg	1.50	0.0000	97.00	No Ice	5.60	5.60	0.11
(Sprint)			0.00			1/2 100	5.99	5.99	0.10
PM-SU35-48 - Pipe Mount	в	From Leg	1.50	0.0000	97.00	No Ice	5.60	5.60	0.11
48"			0.00			1/2" Ice	5.99	5.99	0.16
(Sprint) PM-SU35-48 - Pine Mount	С	From Leg	0.00	0.0000	97.00	No Ice	5.60	5.60	0.11
48"	C	I Ionii Leg	0.00	0.0000	27.00	1/2" Ice	5.99	5.99	0.16
(Sprint)			0.00						
* DSM2 w/ additional SES_H	Δ	From Leg	0.50	0.0000	125.00	No Ice	6.65	2 3 2	0.16
Stabilizer	Λ	FIOII Leg	0.00	0.0000	125.00	1/2" Ice	8.00	2.86	0.10
(T-Mobile)			0.00						
DSM2 w/ additional SFS-H	в	From Leg	0.50	0.0000	125.00	No Ice	6.65	2.32	0.16
Stabilizer (T-Mobile)			0.00			1/2" Ice	8.00	2.86	0.22
DSM2 w/ additional SFS-H	С	From Leg	0.50	0.0000	125.00	No Ice	6.65	2.32	0.16
Stabilizer		0	0.00			1/2" Ice	8.00	2.86	0.22
(T-Mobile)		E I	0.00	0.0000	125.00	NT T	1.26	1.20	0.02
EMS RR90-17-xx (T-Mobile)	А	From Leg	3.00	0.0000	125.00	No Ice 1/2" Ice	4.36	4.36	0.02
(1 Moone)			0.00			1,2 100	1.77	1.77	0.01
EMS RR90-17-xx	в	From Leg	3.00	0.0000	125.00	No Ice	4.36	4.36	0.02
(T-Mobile)			1.50			1/2" Ice	4.99	4.99	0.04
EMS RR90-17-xx	С	From Leg	3.00	0.0000	125.00	No Ice	4.36	4.36	0.02
(T-Mobile)			1.50			1/2" Ice	4.99	4.99	0.04
		Б I	0.00	0.0000	125.00	N. 7	11.50	0.74	0.00
LNX-6515DS-A1M Andrew	А	From Leg	3.00	0.0000	125.00	No Ice	11.58	9.74	0.08
(T-Mobile)			0.00			1/2 100	12.25	11.21	0.10
LNX-6515DS-A1M Andrew	в	From Leg	3.00	0.0000	125.00	No Ice	11.58	9.74	0.08
Panel			-1.50			1/2" Ice	12.25	11.21	0.16
(1-Mobile) LNX-6515DS-A1M Andrew	С	From Leg	3.00	0.0000	125.00	No Ice	11.58	9 74	0.08
Panel	e	Trom Deg	-1.50	0.0000	120.00	1/2" Ice	12.25	11.21	0.16
(T-Mobile)			0.00						
Ericsson Radio 4415 B25	А	From Leg	3.00	0.0000	125.00	No Ice	1.86	0.83	0.05
(T-Mobile)			0.00			1/2 100	2.03	0.90	0.00
Ericsson Radio 4415 B25	в	From Leg	3.00	0.0000	125.00	No Ice	1.86	0.83	0.05
RRH Unit			1.50			1/2" Ice	2.03	0.96	0.06
(1-Mobile) Fricsson Radio 4415 R25	C	From Leg	0.00	0.0000	125.00	No Ice	1 86	0.83	0.05
RRH Unit	<i>.</i>	i iom Dog	1.50	0.0000	120.00	1/2" Ice	2.03	0.96	0.06
(T-Mobile)			0.00						
*									

*ATT Inventory on Bottom (Proposed) *

traveTowner	Job		Page
<i>inx10wer</i>		160' Self Support Lattice - CSP #20	14 of 32
AECOM	Project		Date
500 Enterprise Drive		Middlebury, CT	07:03:55 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Description	Face	Offset Type	Offsets: Horz	Azimuth Adiustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg	турс	Lateral	mynstment			110111	Sitte	
			ft ft	0	ft		ft²	ft²	Κ
			ft						
Sinclair SY450-SF1SNM Yagi (3-1-21)	С	From Face	$0.00 \\ 0.00 \\ 0.00$	0.0000	21.00	No Ice 1/2" Ice	1.59 1.77	0.21 0.28	$\begin{array}{c} 0.00\\ 0.01 \end{array}$
L-810 Tower Side-Light Beacon	А	From Leg	1.50 1.50	0.0000	83.00	No Ice 1/2" Ice	0.22 0.40	0.22 0.40	0.01 0.01
(1.83) L-810 Tower Side-Light Beacon	С	From Leg	0.00 1.50 -1.50	0.0000	83.00	No Ice 1/2" Ice	0.22 0.40	0.22 0.40	$0.01 \\ 0.01$
(3.83) PD10054	А	From Leg	$0.00 \\ 1.00$	0.0000	85.00	No Ice	5.62	5.62	0.02
(2'x2' Square - 1.85)			0.00 0.00			1/2" Ice	5.90	5.90	0.02
10'6"x4" Pipe Mount (Mt for 1.85)	Α	From Leg	0.25 0.00 0.00	0.0000	85.00	No Ice 1/2" Ice	4.72 5.62	4.72 5.62	0.11 0.15
432E-83I-01T TTA Unit (3.155 - TTA Unit)	С	From Leg	0.00	-45.0000	155.00	No Ice 1/2" Ice	2.85 3.06	$0.97 \\ 1.11$	0.03 0.04
DB228-A (2.155)	В	From Leg	$0.00 \\ 1.00 \\ 0.00$	0.0000	155.00	No Ice 1/2" Ice	7.30 13.14	7.30 13.14	0.07 0.09
10' PCS Frame (1)	C	From Leg	$0.00 \\ 0.00$	0.0000	155.00	No Ice	9.00	9.00	0.25
(Mt for 2.155.1, 2.155.2 & 2.1557)	C	Tiolii Log	0.00	0.0000	155.00	1/2" Ice	13.20	13.20	0.35
DB304-A (2.158)	В	From Leg	2.50 0.00	0.0000	158.00	No Ice 1/2" Ice	4.85 8.73	4.85 8.73	0.04 0.06
Flash Beacon Lighting (1.158)	Α	From Leg	0.00	0.0000	160.00	No Ice 1/2" Ice	2.70 3.10	2.70 3.10	0.05 0.07
432E-83I-01T TTA Unit (2-3.159 - TTA)	С	From Face	0.00 0.00 0.00	0.0000	159.00	No Ice 1/2" Ice	2.85 3.06	0.97 1.11	0.03 0.04
* Ice Shields for Dishes			0.00						
4"x96"x72" Ice Canopy (DNK-5)	А	From Leg	3.00 0.00 0.00	0.0000	115.00	No Ice 1/2" Ice	3.73 4.39	2.80 3.30	0.30 0.55
4"x96"x72" Ice Canopy (DNK-6)	С	From Leg	3.00	0.0000	115.00	No Ice 1/2" Ice	3.73 4.39	2.80 3.30	0.30 0.55
* AT&T Equipment 2020/06/23			0.00						
Commscope SFG22 (14' Sector Frame)	А	From Leg	0.50 0.00	0.0000	140.00	No Ice 1/2" Ice	10.50 14.30	2.50 3.00	0.52 0.67
(AT&T Proposed) Commscope SFG22 (14' Sector Frame)	В	From Leg	0.00 0.50 0.00	0.0000	140.00	No Ice 1/2" Ice	10.50 14.30	2.50 3.00	0.52 0.67
(AT&T Proposed) Commscope SFG22 (14' Sector Frame)	С	From Leg	0.00 0.50 0.00	0.0000	140.00	No Ice 1/2" Ice	10.50 14.30	2.50 3.00	0.52 0.67
(AT&T Proposed) 7770.00 (ATT)	А	From Leg	0.00 3.00 -6.00	0.0000	140.00	No Ice 1/2" Ice	5.90 6.34	4.01 4.64	0.05 0.10
CCI DMP65R-BU8D Panel (AT&T Proposed)	А	From Leg	0.00 3.00 -3.00	0.0000	140.00	No Ice 1/2" Ice	17.87 18.50	8.12 8.72	0.11 0.21

traveTownan	Job		Page
<i>inx10wer</i>		160' Self Support Lattice - CSP #20	15 of 32
AECOM	Project		Date
500 Enterprise Drive		Middlebury, CT	07:03:55 07/02/21
Rocky Hill, CT	Client	0.1/2 0.07 ()/75 0.00	Designed by
Phone: (860) 529-8882 FAX:		SMK-007 / VZ5-228	KAB

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or	Туре	Horz	Adjustment			Front	Side	
	Leg		Lateral						
			ft	0	ft		ft^2	ft^2	Κ
			ft		<u> </u>		<u> </u>	<i>Ji</i>	
			ft						
CCI OPA65R-BU8D Panel	А	From Leg	3.00	0.0000	140.00	No Ice	18.09	8.20	0.08
(AT&T Proposed)			3.00			1/2" Ice	18.72	8.79	0.18
TPA-65P-I CUUUU-H8	٨	From Leg	0.00	0.0000	140.00	No Ice	13.08	10.38	0.10
Panel w/ RET	А	FIOII Leg	-6.00	0.0000	140.00	1/2" Ice	13.08	11.79	0.10
(ATT)			0.00			1.2 100	15101		0120
RRUS-32	А	From Leg	1.50	0.0000	140.00	No Ice	3.88	2.76	0.08
(ATT)			-5.00			1/2" Ice	4.14	2.98	0.11
DDUG 12		E I	0.00	0.0000	1 40 00	NT T	2.67	1 40	0.07
KRUS-12 (ATT)	А	From Leg	-5.00	0.0000	140.00	No Ice 1/2" Ice	3.67	1.49	0.06
(ATT)			0.00			1/2 100	5.95	1.07	0.08
Radio 4449 B5/B12 RRH	А	From Leg	1.50	0.0000	140.00	No Ice	1.66	1.16	0.08
(AT&T Proposed)		C	-5.00			1/2" Ice	1.82	1.29	0.10
			0.00						
Radio 4478 B14 RRH	А	From Leg	1.50	0.0000	140.00	No Ice	1.08	1.08	0.06
(AT&T Proposed)			-5.00			$1/2^{-1}$ Ice	1.21	1.21	0.07
DC6-48-60-18-8F (Squid)	А	From Leg	0.00	0.0000	146.00	No Ice	1.27	1.27	0.02
Suppressor		r tom Log	0.00	0.0000	110.00	1/2" Ice	1.46	1.46	0.04
(ATT)			0.00						
TT19-08BP111-001 TMA's	А	From Leg	1.50	0.0000	140.00	No Ice	0.55	0.45	0.02
(ATT)			0.00			1/2" Ice	0.65	0.53	0.02
(2) I CP21401 Diployon	٨	From Loc	0.00	0.0000	1.40.00	No Iso	1.10	0.21	0.01
(2) LGP21401 Diplexer (ATT)	А	From Leg	1.50	0.0000	140.00	1/2" Ice	1.10	0.21	0.01
(AII)			0.00			1/2 100	1.27	0.27	0.02
7770.00	в	From Leg	3.00	0.0000	140.00	No Ice	5.90	4.01	0.05
(ATT)		-	-6.00			1/2" Ice	6.34	4.64	0.10
	_		0.00						
CCI DMP65R-BU8D Panel	В	From Leg	3.00	0.0000	140.00	No Ice	17.87	8.12	0.11
(AI&I Proposed)			-3.00			$1/2^{-1}$ ice	18.50	8.72	0.21
CCLOPA65R-BU8D Panel	в	From Leg	3.00	0.0000	140.00	No Ice	18.09	8.20	0.08
(AT&T Proposed)	2	110111 2008	3.00	010000	1 10100	1/2" Ice	18.72	8.79	0.18
			0.00						
TPA-65R-LCUUUU-H8	в	From Leg	1.50	0.0000	140.00	No Ice	13.08	10.38	0.10
Panel W/ RET			-6.00			1/2" Ice	13.81	11.79	0.20
(ATT) RRUS-32	в	From Leg	1.50	0.0000	140.00	No Ice	3.88	2.76	0.08
(ATT)	D	Tion Leg	-5.00	0.0000	140.00	1/2" Ice	4.14	2.98	0.00
< , ,			0.00						
RRUS-12	в	From Leg	1.50	0.0000	140.00	No Ice	3.67	1.49	0.06
(ATT)			-5.00			1/2" Ice	3.93	1.67	0.08
D. 4: 4440 D5/D12 DD11	р	Enom Lag	0.00	0.0000	1.40.00	No Isa	1.66	1.16	0.08
(AT&T Proposed)	в	From Leg	-5.00	0.0000	140.00	1/2" Ice	1.00	1.10	0.08
(AT&T Hoposed)			0.00			1/2 100	1.02	1.29	0.10
Radio 4478 B14 RRH	В	From Leg	1.50	0.0000	140.00	No Ice	1.08	1.08	0.06
(AT&T Proposed)			-5.00			1/2" Ice	1.21	1.21	0.07
	_		0.00						
DC6-48-60-18-8F (Squid)	в	From Leg	0.50	0.0000	140.00	No Ice	1.27	1.27	0.02
Suppressor (ATT)			0.00			1/2 Ice	1.40	1.40	0.04
TT19-08BP111-001 TMA's	в	From Leg	1.50	0.0000	140.00	No Ice	0.55	0.45	0.02
(ATT)		248	0.00			1/2" Ice	0.65	0.53	0.02
- *			0.00						

Arras Torse are	Job		Page
<i>tnx1ower</i>		160' Self Support Lattice - CSP #20	16 of 32
AECOM	Project		Date
500 Enterprise Drive		Middlebury, CT	07:03:55 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or Leg	Туре	Horz Lateral	Adjustment			Front	Side	
	0		Vert					. 7	
			ft ft	0	ft		ft^2	ft^2	K
			ft						
(2) LGP21401 Diplexer	В	From Leg	1.50	0.0000	140.00	No Ice	1.10	0.21	0.01
(ATT)			0.00			1/2" Ice	1.24	0.27	0.02
7770.00	C	From Leg	0.00	0.0000	140.00	No Ice	5.90	4.01	0.05
(ATT)	C	1 Ionii Log	-6.00	0.0000	140.00	1/2" Ice	6.34	4.64	0.10
			0.00						
DMP65R-BU6D	С	From Leg	3.00	0.0000	140.00	No Ice	14.33	5.62	0.10
(AI&I Proposed)			-3.00			$1/2^{-1}$ Ice	14.95	6.07	0.17
OPA65R-BU6D	С	From Leg	3.00	0.0000	140.00	No Ice	14.54	5.67	0.06
(AT&T Proposed)			3.00			1/2" Ice	15.14	6.13	0.14
0866512	C	From Log	0.00	0.0000	140.00	No Ice	8 40	6.80	0.11
(ATT)	C	FIOII Leg	-6.00	0.0000	140.00	1/2" Ice	8.95	7.27	0.11
()			0.00				0.75		
RRUS-32	С	From Leg	1.50	0.0000	140.00	No Ice	3.88	2.76	0.08
(ATT)			-5.00			1/2" Ice	4.14	2.98	0.11
RRUS-12	С	From Leg	1.50	0.0000	140.00	No Ice	3.67	1.49	0.06
(ATT)		C	-5.00			1/2" Ice	3.93	1.67	0.08
D 1: 4440 DC/D10 DD11	G	F 1	0.00	0.0000	1.40.00	NT T	1.00	1.16	0.00
(AT&T Proposed)	С	From Leg	-5.00	0.0000	140.00	No Ice	1.66	1.16	0.08
(Artær Hoposed)			0.00			1/2 100	1.02	1.29	0.10
Radio 4478 B14 RRH	С	From Leg	1.50	0.0000	140.00	No Ice	1.08	1.08	0.06
(AT&T Proposed)			-5.00			1/2" Ice	1.21	1.21	0.07
DC6-48-60-18-8F (Squid)	С	From Leg	0.00	0.0000	140.00	No Ice	1.27	1 27	0.02
Suppressor	C	1 toni Lug	0.00	0.0000	1 10:00	1/2" Ice	1.46	1.46	0.04
(AT&T Proposed)			0.00						
TT19-08BP111-001 TMA's	С	From Leg	1.50	0.0000	140.00	No Ice	0.55	0.45	0.02
(ATT)			0.00			1/2 100	0.05	0.55	0.02
(2) LGP21401 Diplexer	С	From Leg	1.50	0.0000	140.00	No Ice	1.10	0.21	0.01
(ATT)			0.00			1/2" Ice	1.24	0.27	0.02
* Tower I R			0.00						
Lightning Rod 1/2"x4' on 15'	С	From Leg	0.00	0.0000	160.00	No Ice	5.45	5.45	0.13
Pole		C	0.00			1/2" Ice	7.40	7.40	0.19
(Tower - LR)	р	F I	8.00	0.0000	124.00	N. I	2.00	2.00	0.01
(2.124)	в	From Leg	0.00	0.0000	124.00	1/2" Ice	2.00	2.00	0.01
(2.1.2.1)			1.00			112 100	5.05	5.05	0102
Pirod 6' Side Mount Standoff	в	From Leg	0.00	0.0000	124.00	No Ice	4.97	4.97	0.07
(1)			0.00			1/2" Ice	6.12	6.12	0.13
DS7C09P36D-D	А	From Leg	3.00	0.0000	160.00	No Ice	4.80	4.80	0.08
(CSP)			-2.00		200100	1/2" Ice	7.22	7.22	0.12
DOCOMPACE D			12.00	0.0000	1 60 00	NT 7	1.00	4.00	0.00
DS/C09P36D-D	А	From Leg	3.00	0.0000	160.00	No Ice	4.80	4.80	0.08
(051)			12.00			1/2 100	1.22	1.22	0.12
DS7C09P36D-D	С	From Leg	3.00	0.0000	160.00	No Ice	4.80	4.80	0.08
(CSP)			-2.00			1/2" Ice	7.22	7.22	0.12
DS7C09P36D-D	С	From Leg	3.00	0.0000	160.00	No Ice	4.80	4.80	0.08
(CSP)	~		2.00			1/2" Ice	7.22	7.22	0.12

tnxTower	Job	160' Self Support Lattice - CSP #20	Page 17 of 32
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 07:03:55 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	o	ft		ft ²	ft²	K
			12.00						
Commscope	А	From Leg	1.50	0.0000	160.00	No Ice	13.20	9.20	0.85
SFG23HD-12-4-96 Mount Assembly (CSP)			$\begin{array}{c} 0.00\\ 0.00\end{array}$			1/2" Ice	19.50	14.60	0.95
Commscope	С	From Leg	1.50	0.0000	160.00	No Ice	13.20	9.20	0.85
SFG23HD-12-4-96 Mount Assembly (CSP)		- C	$\begin{array}{c} 0.00\\ 0.00\end{array}$			1/2" Ice	19.50	14.60	0.95
JMA MX06FR0660-03	А	From Leg	2.00	0.0000	77.50	No Ice	10.68	7.42	0.10
(VZW)		_	-4.00 0.00			1/2" Ice	11.24	7.95	0.16
JMA MX06FR0660-03	А	From Leg	2.00	0.0000	77.50	No Ice	10.68	7.42	0.10
(VZW)			-2.00 0.00			1/2" Ice	11.24	7.95	0.16
JMA 2" Edge to Edge (VZW)	А	From Leg	2.00 -3.00 0.00	0.0000	77.50	No Ice 1/2" Ice	2.69 2.97	0.17 0.24	0.02 0.04
JMA MX06FR0660-03 (VZW)	В	From Leg	2.00 -4.00 0.00	0.0000	77.50	No Ice 1/2" Ice	10.68 11.24	7.42 7.95	0.10 0.16
JMA MX06FR0660-03 (VZW)	В	From Leg	2.00	0.0000	77.50	No Ice 1/2" Ice	10.68 11.24	7.42 7.95	0.10 0.16
JMA 2" Edge to Edge (VZW)	В	From Leg	2.00 -3.00	0.0000	77.50	No Ice 1/2" Ice	2.69 2.97	0.17 0.24	0.02 0.04
Samsung MT6407-77A (VZW)	А	From Leg	2.00 3.00	0.0000	77.50	No Ice 1/2" Ice	5.48 5.82	1.88 2.15	0.09 0.12
Samsung MT6407-77A (VZW)	В	From Leg	2.00 3.00	0.0000	77.50	No Ice 1/2" Ice	5.48 5.82	1.88 2.15	0.09 0.12
(3) RRH (VZW)	А	From Leg	2.00 0.00 0.00	0.0000	77.50	No Ice 1/2" Ice	2.49 2.70	1.40 1.57	0.07 0.09
(3) RRH (VZW)	В	From Leg	2.00 0.00 0.00	0.0000	77.50	No Ice 1/2" Ice	2.49 2.70	1.40 1.57	0.07 0.09

					Dis	shes					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				Vert ft	D	D	ft	ft		ft ²	K
HPD2-4.7	Α	Paraboloid	From	0.50	Worst		159.00	2.00	No Ice	3.14	0.03
(NWCT (C-A Face)))	w/Shroud (HP)	Face	$0.00 \\ 0.00$					1/2" Ice	3.41	0.04
6' w/ Radome	В	Paraboloid	From	1.00	Worst		110.00	6.00	No Ice	28.27	0.23

tnxTower	Јоb 16	Page 18 of 32	
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 07:03:55 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vart	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	o	ft	ft		ft^2	Κ
(2.110)		w/Radome	Leg	0.00					1/2" Ice	29.07	0.34
(m. 1	~	~		0.00							
6' w/ Radome	С	Paraboloid	From	1.00	Worst		110.00	6.00	No Ice	28.27	0.23
(3.110)		w/Radome	Leg	0.00					1/2" Ice	29.07	0.34
				0.00							

Tower Pressures - No Ice

$G_H = 1.129$

Section	Ζ	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation				_	а	_			%	In	Out
					с					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	155.00	1.556	32	110.170	Α	10.889	8.342	8.342	43.38	0.000	0.000
160.00-150.00					в	9.392	22.361		26.27	0.000	0.000
					С	10.889	8.342		43.38	0.000	0.000
T2	137.50	1.503	31	310.425	Α	19.557	20.856	20.856	51.61	0.000	0.000
150.00-125.00					в	14.202	100.681		18.15	0.000	0.000
					С	19.557	20.856		51.61	0.000	0.000
T3	112.50	1.42	29	360.425	Α	23.281	20.856	20.856	47.25	0.000	0.000
125.00-100.00					в	16.504	119.976		15.28	0.000	0.000
					С	21.589	45.606		31.04	0.000	0.000
T4	87.50	1.321	27	416.680	Α	28.157	30.202	30.202	51.75	0.000	0.000
100.00-75.00					В	20.492	135.369		19.38	0.000	0.000
					С	26.353	64.243		33.34	0.000	0.000
T5 75.00-66.67	70.83	1.244	26	150.004	Α	9.964	10.067	10.067	50.26	0.000	0.000
					в	7.323	47.140		18.48	0.000	0.000
					С	9.377	21.789		32.30	0.000	0.000
T6 66.67-58.33	62.50	1.2	25	155.560	Α	10.257	10.067	10.067	49.53	0.000	0.000
					в	7.642	47.140		18.38	0.000	0.000
					С	9.675	21.789		32.00	0.000	0.000
T7 58.33-50.00	54.17	1.152	24	159.031	Α	14.047	6.952	6.952	33.11	0.000	0.000
					в	9.695	44.025		12.94	0.000	0.000
					С	13.078	18.674		21.89	0.000	0.000
T8 50.00-37.50	43.75	1.084	22	250.917	Α	15.214	14.338	14.338	48.52	0.000	0.000
					в	11.655	69.948		17.57	0.000	0.000
					С	14.422	31.922		30.94	0.000	0.000
T9 37.50-25.00	31.25	1	21	263.417	Α	19.771	14.338	14.338	42.04	0.000	0.000
					В	14.304	69.948		17.02	0.000	0.000
					С	18.554	31.922		28.41	0.000	0.000
T10 25.00-0.00	12.50	1	21	572.674	Α	35.412	40.587	40.587	53.40	0.000	0.000
					В	27.939	152.909		22.44	0.000	0.000
					С	33.765	75.754		37.06	0.000	0.000

Tower Pressure - With Ice

 $G_H = 1.129$

tnxTower	Job	160' Self Support Lattice - CSP #20	Page 19 of 32
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 07:03:55 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 EAY	Client	SMK-007 / VZ5-228	Designed by KAB

Section	Ζ	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	155.00	1.556	32	0.5000	111.004	Α	10.889	14.033	10.011	40.17	0.000	0.000
160.00-150.00						В	8.413	36.306		22.39	0.000	0.000
						С	10.889	14.033		40.17	0.000	0.000
T2	137.50	1.503	31	0.5000	312.510	А	19.557	32.849	25.027	47.76	0.000	0.000
150.00-125.00						В	10.938	157.894		14.82	0.000	0.000
						С	19.557	32.849		47.76	0.000	0.000
T3	112.50	1.42	29	0.5000	362.510	Α	23.281	33.677	25.027	43.94	0.000	0.000
125.00-100.00						В	12.408	188.682		12.45	0.000	0.000
						С	20.734	69.982		27.59	0.000	0.000
T4 100.00-75.00	87.50	1.321	27	0.5000	418.765	Α	28.157	43.759	34.373	47.80	0.000	0.000
						В	15.764	209.669		15.25	0.000	0.000
						С	25.442	96.829		28.11	0.000	0.000
T5 75.00-66.67	70.83	1.244	26	0.5000	150.699	А	9.964	14.779	11.458	46.31	0.000	0.000
						в	5.641	74.022		14.38	0.000	0.000
						С	9.080	33.151		27.13	0.000	0.000
T6 66.67-58.33	62.50	1.2	25	0.5000	156.255	Α	10.257	14.877	11.458	45.59	0.000	0.000
						в	5.976	74.134		14.30	0.000	0.000
						С	9.381	33.251		26.88	0.000	0.000
T7 58.33-50.00	54.17	1.152	24	0.5000	159.726	Α	14.047	13.589	8.342	30.19	0.000	0.000
						В	6.923	71.418		10.65	0.000	0.000
						С	12.589	31.672		18.85	0.000	0.000
T8 50.00-37.50	43.75	1.084	22	0.5000	251.960	А	15.214	20.551	16.424	45.92	0.000	0.000
						в	9.388	110.000		13.76	0.000	0.000
						С	14.022	48.228		26.38	0.000	0.000
T9 37.50-25.00	31.25	1	21	0.5000	264.460	А	19.771	22.705	16.424	38.67	0.000	0.000
						в	10.823	110.572		13.53	0.000	0.000
						С	17.940	50.058		24.15	0.000	0.000
T10 25.00-0.00	12.50	1	21	0.5000	574.759	Α	35.412	53.611	44.758	50.28	0.000	0.000
						в	23.109	235.441		17.31	0.000	0.000
						С	32.933	108.991		31.54	0.000	0.000

Tower Pressure - Service

$G_H = 1.129$

Section	Z	K_Z	q_z	A_G	F	A_F	A_R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					с					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft ²	ft ²		ft^2	ft ²
T1	155.00	1.556	32	110.170	Α	10.889	8.342	8.342	43.38	0.000	0.000
160.00-150.00					В	9.392	22.361		26.27	0.000	0.000
					C	10.889	8.342		43.38	0.000	0.000
T2	137.50	1.503	31	310.425	Α	19.557	20.856	20.856	51.61	0.000	0.000
150.00-125.00					В	14.202	100.681		18.15	0.000	0.000
					C	19.557	20.856		51.61	0.000	0.000
Т3	112.50	1.42	29	360.425	Α	23.281	20.856	20.856	47.25	0.000	0.000
125.00-100.00					В	16.504	119.976		15.28	0.000	0.000
					C	21.589	45.606		31.04	0.000	0.000
T4	87.50	1.321	27	416.680	Α	28.157	30.202	30.202	51.75	0.000	0.000
100.00-75.00					В	20.492	135.369		19.38	0.000	0.000
					C	26.353	64.243		33.34	0.000	0.000
T5 75.00-66.67	70.83	1.244	26	150.004	Α	9.964	10.067	10.067	50.26	0.000	0.000
					В	7.323	47.140		18.48	0.000	0.000
					C	9.377	21.789		32.30	0.000	0.000
T6 66.67-58.33	62.50	1.2	25	155.560	Α	10.257	10.067	10.067	49.53	0.000	0.000

tnxTower	Job	160' Self Support Lattice - CSP #20	Page 20 of 32
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 07:03:55 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB

Section	Ζ	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft ²	ft^2	ft^2		ft^2	ft^2
					В	7.642	47.140		18.38	0.000	0.000
					С	9.675	21.789		32.00	0.000	0.000
T7 58.33-50.00	54.17	1.152	24	159.031	Α	14.047	6.952	6.952	33.11	0.000	0.000
					В	9.695	44.025		12.94	0.000	0.000
					С	13.078	18.674		21.89	0.000	0.000
T8 50.00-37.50	43.75	1.084	22	250.917	Α	15.214	14.338	14.338	48.52	0.000	0.000
					В	11.655	69.948		17.57	0.000	0.000
					С	14.422	31.922		30.94	0.000	0.000
T9 37.50-25.00	31.25	1	21	263.417	Α	19.771	14.338	14.338	42.04	0.000	0.000
					в	14.304	69.948		17.02	0.000	0.000
					С	18.554	31.922		28.41	0.000	0.000
T10 25.00-0.00	12.50	1	21	572.674	Α	35.412	40.587	40.587	53.40	0.000	0.000
					в	27.939	152.909		22.44	0.000	0.000
					С	33.765	75.754		37.06	0.000	0.000

		То	we	r Ford	es -	No I	ce - '	Wind	d Norm	al To Fa	ace	
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	AF	F	W	Ctrl.
Elevation	Weight	Weight	a	_	-1	A	- 1	- 1	2			Face
	3	8	c									
ft	K	K	е						ft^2	Κ	plf	
T1	0.07	1.18	Α	0.175	2.683	0.586	1	1	15.774	1.96	195.70	В
160.00-150.00			В	0.288	2.328	0.612	1	1	23.085			
			C	0.175	2.683	0.586	1	1	15.774			
T2	0.47	2.32	Α	0.13	2.846	0.579	1	1	31.625	5.88	235.33	В
150.00-125.00			В	0.37	2.126	0.64	1	1	78.623			
			C	0.13	2.846	0.579	1	1	31.625			
Т3	0.91	3.86	Α	0.122	2.875	0.578	1	1	35.328	6.56	262.43	В
125.00-100.00			В	0.379	2.108	0.643	1	1	93.664			
			C	0.186	2.642	0.588	1	1	48.393			
T4	1.04	5.08	Α	0.14	2.808	0.58	1	1	45.674	7.03	281.14	В
100.00-75.00			В	0.374	2.118	0.641	1	1	107.312			
			C	0.217	2.539	0.594	1	1	64.521			
T5	0.37	2.10	Α	0.134	2.833	0.579	1	1	15.794	2.33	279.59	В
75.00-66.67			В	0.363	2.142	0.637	1	1	37.363			
			C	0.208	2.57	0.592	1	1	22.276			
Т6	0.37	2.14	Α	0.131	2.844	0.579	1	1	16.083	2.28	273.85	В
66.67-58.33			В	0.352	2.167	0.633	1	1	37.493			
			C	0.202	2.588	0.591	1	1	22.550			
T7	0.37	2.32	Α	0.132	2.839	0.579	1	1	18.071	2.22	265.97	В
58.33-50.00			В	0.338	2.2	0.628	1	1	37.351			
			C	0.2	2.597	0.59	1	1	24.102			
Т8	0.55	3.00	Α	0.118	2.894	0.577	1	1	23.489	3.13	250.42	В
50.00-37.50			В	0.325	2.231	0.624	1	1	55.298			
			C	0.185	2.648	0.587	1	1	33.173			
Т9	0.55	3.42	Α	0.129	2.848	0.579	1	1	28.066	3.04	243.05	В
37.50-25.00			В	0.32	2.245	0.622	1	1	57.824			
			C	0.192	2.624	0.589	1	1	37.347			
T10	1.10	8.68	Α	0.133	2.836	0.579	1	1	58.911	6.49	259.42	В
25.00-0.00			В	0.316	2.255	0.621	1	1	122.874			
			C	0.191	2.626	0.589	1	1	78.358			
Sum Weight:	5.79	34.11						OTM	3206.03	40.91		
									kip-ft			

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

Page 21 of 32

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

Middlebury, CT

SMK-007 / VZ5-228

Date 07:03:55 07/02/21 Designed by KAB

Tower Forces - No Ice - Wind 45 To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	K	K	е						ft^2	K	plf	
T1	0.07	1.18	Α	0.175	2.683	0.586	0.825	1	13.868	1.82	181.77	В
160.00-150.00			В	0.288	2.328	0.612	0.825	1	21.441			
			С	0.175	2.683	0.586	0.825	1	13.868			
T2	0.47	2.32	Α	0.13	2.846	0.579	0.825	1	28.202	5.70	227.89	В
150.00-125.00			В	0.37	2.126	0.64	0.825	1	76.138			
			С	0.13	2.846	0.579	0.825	1	28.202			
T3	0.91	3.86	Α	0.122	2.875	0.578	0.825	1	31.254	6.36	254.33	В
125.00-100.00			В	0.379	2.108	0.643	0.825	1	90.776			
			С	0.186	2.642	0.588	0.825	1	44.615			
T4	1.04	5.08	Α	0.14	2.808	0.58	0.825	1	40.747	6.79	271.75	В
100.00-75.00			В	0.374	2.118	0.641	0.825	1	103.726			
			С	0.217	2.539	0.594	0.825	1	59.909			
T5	0.37	2.10	Α	0.134	2.833	0.579	0.825	1	14.051	2.25	270.00	В
75.00-66.67			В	0.363	2.142	0.637	0.825	1	36.081			
			С	0.208	2.57	0.592	0.825	1	20.636			
Т6	0.37	2.14	Α	0.131	2.844	0.579	0.825	1	14.288	2.20	264.08	В
66.67-58.33			В	0.352	2.167	0.633	0.825	1	36.156			
			С	0.202	2.588	0.591	0.825	1	20.856			
T7	0.37	2.32	Α	0.132	2.839	0.579	0.825	1	15.613	2.12	253.88	В
58.33-50.00			В	0.338	2.2	0.628	0.825	1	35.654			
			С	0.2	2.597	0.59	0.825	1	21.814			
Т8	0.55	3.00	Α	0.118	2.894	0.577	0.825	1	20.826	3.01	241.18	В
50.00-37.50			В	0.325	2.231	0.624	0.825	1	53.259			
			С	0.185	2.648	0.587	0.825	1	30.649			
Т9	0.55	3.42	Α	0.129	2.848	0.579	0.825	1	24.606	2.91	232.53	В
37.50-25.00			В	0.32	2.245	0.622	0.825	1	55.321			
			С	0.192	2.624	0.589	0.825	1	34.100			
T10	1.10	8.68	Α	0.133	2.836	0.579	0.825	1	52.714	6.23	249.09	В
25.00-0.00			В	0.316	2.255	0.621	0.825	1	117.985			
			С	0.191	2.626	0.589	0.825	1	72.449			
Sum Weight:	5.79	34.11						OTM	3086.97	39.38		
									kip-ft			

	Tower Forces - No Ice - Wind 60 To Face												
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.	
Elevation	Weight	Weight	a									Face	
			с										
ft	K	K	е						ft^2	K	plf		
T1	0.07	1.18	Α	0.175	2.683	0.586	0.8	1	13.596	1.80	179.78	В	
160.00-150.00			В	0.288	2.328	0.612	0.8	1	21.207				
			С	0.175	2.683	0.586	0.8	1	13.596				
T2	0.47	2.32	Α	0.13	2.846	0.579	0.8	1	27.713	5.67	226.83	В	
150.00-125.00			В	0.37	2.126	0.64	0.8	1	75.783				
			С	0.13	2.846	0.579	0.8	1	27.713				
T3	0.91	3.86	Α	0.122	2.875	0.578	0.8	1	30.672	6.33	253.18	В	
125.00-100.00			В	0.379	2.108	0.643	0.8	1	90.363				
			С	0.186	2.642	0.588	0.8	1	44.075				
T4	1.04	5.08	Α	0.14	2.808	0.58	0.8	1	40.043	6.76	270.41	В	
100.00-75.00			В	0.374	2.118	0.641	0.8	1	103.213				
			С	0.217	2.539	0.594	0.8	1	59.250				
T5	0.37	2.10	Α	0.134	2.833	0.579	0.8	1	13.801	2.24	268.63	В	
75.00-66.67			В	0.363	2.142	0.637	0.8	1	35.898				

Project

Client

160' Self Support Lattice - CSP #20

Page 22 of 32 Date 07:03:55 07/02/21

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			с									
ft	K	K	е						ft^2	K	plf	
			C	0.208	2.57	0.592	0.8	1	20.401			
T6	0.37	2.14	Α	0.131	2.844	0.579	0.8	1	14.032	2.19	262.68	В
66.67-58.33			В	0.352	2.167	0.633	0.8	1	35.965			
			C	0.202	2.588	0.591	0.8	1	20.615			
T7	0.37	2.32	Α	0.132	2.839	0.579	0.8	1	15.262	2.10	252.16	В
58.33-50.00			В	0.338	2.2	0.628	0.8	1	35.412			
			C	0.2	2.597	0.59	0.8	1	21.487			
Т8	0.55	3.00	Α	0.118	2.894	0.577	0.8	1	20.446	3.00	239.87	В
50.00-37.50			В	0.325	2.231	0.624	0.8	1	52.967			
			C	0.185	2.648	0.587	0.8	1	30.288			
Т9	0.55	3.42	Α	0.129	2.848	0.579	0.8	1	24.112	2.89	231.02	В
37.50-25.00			В	0.32	2.245	0.622	0.8	1	54.963			
			C	0.192	2.624	0.589	0.8	1	33.637			
T10	1.10	8.68	Α	0.133	2.836	0.579	0.8	1	51.829	6.19	247.62	В
25.00-0.00			В	0.316	2.255	0.621	0.8	1	117.286			
			C	0.191	2.626	0.589	0.8	1	71.605			
Sum Weight:	5.79	34.11						OTM	3069.96	39.16		
									kip-ft			

Tower Forces - No Ice - Wind 90 To Face

G		G 16			a	D	D	D	(<i>a</i> . 1
Section	Add	Self	F	е	C_F	K_R	D_F	D_R	A_E	r	W	Ctrl.
Elevation	weight	weight	a									race
c	V	V	c						62	V	10	
jt	K	K	e			0.507			ft^2	K	<i>plf</i>	
T1	0.07	1.18	A	0.175	2.683	0.586	0.85		14.140	1.84	183.76	В
160.00-150.00			В	0.288	2.328	0.612	0.85		21.676			
	o 1 -		C	0.175	2.683	0.586	0.85		14.140			
12	0.47	2.32	A	0.13	2.846	0.579	0.85		28.691	5.72	228.95	В
150.00-125.00			В	0.37	2.126	0.64	0.85		76.493			
			C C	0.13	2.846	0.579	0.85		28.691			
13	0.91	3.86	A	0.122	2.875	0.578	0.85		31.836	6.39	255.49	В
125.00-100.00			В	0.379	2.108	0.643	0.85	1	91.188			
			C	0.186	2.642	0.588	0.85	1	45.154			
T4	1.04	5.08	Α	0.14	2.808	0.58	0.85	1	41.451	6.83	273.09	В
100.00-75.00			В	0.374	2.118	0.641	0.85	1	104.238			
			C	0.217	2.539	0.594	0.85	1	60.568			
T5	0.37	2.10	A	0.134	2.833	0.579	0.85	1	14.300	2.26	271.37	В
75.00-66.67			В	0.363	2.142	0.637	0.85	1	36.264			
			C	0.208	2.57	0.592	0.85	1	20.870			
T6	0.37	2.14	A	0.131	2.844	0.579	0.85	1	14.544	2.21	265.47	В
66.67-58.33			В	0.352	2.167	0.633	0.85	1	36.347			
			C	0.202	2.588	0.591	0.85	1	21.098			
T7	0.37	2.32	Α	0.132	2.839	0.579	0.85	1	15.964	2.13	255.61	В
58.33-50.00			В	0.338	2.2	0.628	0.85	1	35.897			
			C	0.2	2.597	0.59	0.85	1	22.141			
Т8	0.55	3.00	Α	0.118	2.894	0.577	0.85	1	21.206	3.03	242.50	В
50.00-37.50			В	0.325	2.231	0.624	0.85	1	53.550			
			C	0.185	2.648	0.587	0.85	1	31.010			
Т9	0.55	3.42	Α	0.129	2.848	0.579	0.85	1	25.101	2.93	234.03	В
37.50-25.00			В	0.32	2.245	0.622	0.85	1	55.679			
			C	0.192	2.624	0.589	0.85	1	34.564			
T10	1.10	8.68	Α	0.133	2.836	0.579	0.85	1	53.599	6.26	250.57	В
25.00-0.00			В	0.316	2.255	0.621	0.85	1	118.683			
			C	0.191	2.626	0.589	0.85	1	73.293			

AECOM

500 Enterprise Drive

Rocky Hill, CT Phone: (860) 529-8882 FAX: Job Page 23 of 32 Project Middlebury, CT 07:03:55 07/02/21 Client SMK-007 / VZ5-228 KAB

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	K	K	е						ft^2	K	plf	
Sum Weight:	5.79	34.11						OTM	3103.98	39.60		
									kip-ft			

Tower Forces - With Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С						-1			
ft	K	K	е						ft²	K	plf	
T1	0.21	1.72	Α	0.225	2.516	0.596	1	1	19.249	2.41	240.72	В
160.00-150.00			В	0.403	2.058	0.653	1	1	32.112			
			C	0.225	2.516	0.596	1	1	19.249			
T2	1.29	3.38	Α	0.168	2.707	0.584	1	1	38.752	8.12	324.63	В
150.00-125.00			В	0.54	1.853	0.719	1	1	124.440			
			C	0.168	2.707	0.584	1	1	38.752			
T3	2.37	5.25	Α	0.157	2.745	0.583	1	1	42.901	9.14	365.62	В
125.00-100.00			В	0.555	1.839	0.727	1	1	149.567			
			C	0.25	2.437	0.602	1	1	62.859			
T4	2.66	6.93	Α	0.172	2.693	0.585	1	1	53.758	9.54	381.60	В
100.00-75.00			В	0.538	1.855	0.718	1	1	166.263			
			C	0.292	2.318	0.613	1	1	84.844			
T5	0.93	2.74	Α	0.164	2.72	0.584	1	1	18.592	3.17	380.56	В
75.00-66.67			В	0.529	1.866	0.713	1	1	58.384			
			C	0.28	2.35	0.61	1	1	29.304			
T6	0.93	2.79	Α	0.161	2.732	0.583	1	1	18.933	3.08	369.48	В
66.67-58.33			В	0.513	1.884	0.704	1	1	58.171			
			C	0.273	2.371	0.608	1	1	29.597			
T7	0.93	3.03	Α	0.173	2.689	0.585	1	1	22.000	2.91	349.07	В
58.33-50.00			В	0.49	1.913	0.693	1	1	56.394			
			С	0.277	2.359	0.609	1	1	31.882			
Т8	1.40	3.84	Α	0.142	2.801	0.58	1	1	27.140	4.16	332.83	В
50.00-37.50			В	0.474	1.936	0.685	1	1	84.683			
			C	0.247	2.446	0.601	1	1	43.014			
Т9	1.40	4.46	Α	0.161	2.733	0.583	1	1	33.011	3.93	314.50	В
37.50-25.00			В	0.459	1.959	0.677	1	1	85.731			
			С	0.257	2.416	0.604	1	1	48.161			
T10	2.81	10.92	Α	0.155	2.754	0.582	1	1	66.626	8.39	335.63	В
25.00-0.00			В	0.45	1.974	0.673	1	1	181.608			
			С	0.247	2.447	0.601	1	1	98.448			
Sum Weight:	14.95	45.05						ОТМ	4336.48	54.84		
0									kip-ft			

	Tower Forces - With Ice - Wind 45 To Face											
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			с									
ft	K	K	е						ft^2	K	plf	
T1	0.21	1.72	Α	0.225	2.516	0.596	0.825	1	17.343	2.30	229.68	В
160.00-150.00			В	0.403	2.058	0.653	0.825	1	30.640			
			С	0.225	2.516	0.596	0.825	1	17.343			

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

Page 24 of 32 Date

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

Middlebury, CT

Designed by KAB

07:03:55 07/02/21

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			с									
ft	K	K	е						ft^2	K	plf	
T2	1.29	3.38	Α	0.168	2.707	0.584	0.825	1	35.329	7.99	319.64	В
150.00-125.00			В	0.54	1.853	0.719	0.825	1	122.526			
			С	0.168	2.707	0.584	0.825	1	35.329			
T3	2.37	5.25	Α	0.157	2.745	0.583	0.825	1	38.827	9.01	360.32	В
125.00-100.00			В	0.555	1.839	0.727	0.825	1	147.395			
			С	0.25	2.437	0.602	0.825	1	59.231			
T4	2.66	6.93	Α	0.172	2.693	0.585	0.825	1	48.830	9.38	375.26	В
100.00-75.00			В	0.538	1.855	0.718	0.825	1	163.505			
			С	0.292	2.318	0.613	0.825	1	80.392			
T5	0.93	2.74	Α	0.164	2.72	0.584	0.825	1	16.848	3.12	374.13	В
75.00-66.67			В	0.529	1.866	0.713	0.825	1	57.396			
			С	0.28	2.35	0.61	0.825	1	27.715			
T6	0.93	2.79	Α	0.161	2.732	0.583	0.825	1	17.138	3.02	362.84	В
66.67-58.33			В	0.513	1.884	0.704	0.825	1	57.125			
			С	0.273	2.371	0.608	0.825	1	27.955			
T7	0.93	3.03	Α	0.173	2.689	0.585	0.825	1	19.542	2.85	341.57	В
58.33-50.00			В	0.49	1.913	0.693	0.825	1	55.182			
			С	0.277	2.359	0.609	0.825	1	29.679			
T8	1.40	3.84	Α	0.142	2.801	0.58	0.825	1	24.477	4.08	326.37	В
50.00-37.50			В	0.474	1.936	0.685	0.825	1	83.040			
			С	0.247	2.446	0.601	0.825	1	40.560			
T9	1.40	4.46	Α	0.161	2.733	0.583	0.825	1	29.551	3.84	307.55	В
37.50-25.00			В	0.459	1.959	0.677	0.825	1	83.837			
			С	0.257	2.416	0.604	0.825	1	45.022			
T10	2.81	10.92	Α	0.155	2.754	0.582	0.825	1	60.429	8.20	328.15	В
25.00-0.00			В	0.45	1.974	0.673	0.825	1	177.564			
			С	0.247	2.447	0.601	0.825	1	92.685			
Sum Weight:	14.95	45.05						OTM	4254.20	53.79		
									kip-ft			

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			c									
ft	K	K	е						ft^2	K	plf	
T1	0.21	1.72	Α	0.225	2.516	0.596	0.8	1	17.071	2.28	228.10	В
160.00-150.00			В	0.403	2.058	0.653	0.8	1	30.430			
			C	0.225	2.516	0.596	0.8	1	17.071			
T2	1.29	3.38	Α	0.168	2.707	0.584	0.8	1	34.841	7.97	318.92	В
150.00-125.00			В	0.54	1.853	0.719	0.8	1	122.253			
			C	0.168	2.707	0.584	0.8	1	34.841			
T3	2.37	5.25	Α	0.157	2.745	0.583	0.8	1	38.245	8.99	359.56	В
125.00-100.00			В	0.555	1.839	0.727	0.8	1	147.085			
			C	0.25	2.437	0.602	0.8	1	58.713			
T4	2.66	6.93	Α	0.172	2.693	0.585	0.8	1	48.126	9.36	374.36	В
100.00-75.00			В	0.538	1.855	0.718	0.8	1	163.111			
			C	0.292	2.318	0.613	0.8	1	79.756			
T5	0.93	2.74	Α	0.164	2.72	0.584	0.8	1	16.599	3.11	373.21	В
75.00-66.67			В	0.529	1.866	0.713	0.8	1	57.255			
			C	0.28	2.35	0.61	0.8	1	27.488			
T6	0.93	2.79	Α	0.161	2.732	0.583	0.8	1	16.881	3.02	361.89	В
66.67-58.33			В	0.513	1.884	0.704	0.8	1	56.975			
			C	0.273	2.371	0.608	0.8	1	27.720			
T7	0.93	3.03	Α	0.173	2.689	0.585	0.8	1	19.191	2.84	340.50	В
58.33-50.00			В	0.49	1.913	0.693	0.8	1	55.009			

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

er	Job	160' Self Support Lattice - CSP #20	Page 25 of 32
Drive	Project	Middlebury, CT	Date 07:03:55 07/02/21
T -8882	Client	SMK-007 / VZ5-228	Designed by KAB

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			с									
ft	K	K	е						ft^2	K	plf	
			С	0.277	2.359	0.609	0.8	1	29.365			
T8	1.40	3.84	Α	0.142	2.801	0.58	0.8	1	24.097	4.07	325.45	В
50.00-37.50			В	0.474	1.936	0.685	0.8	1	82.806			
			C	0.247	2.446	0.601	0.8	1	40.209			
Т9	1.40	4.46	Α	0.161	2.733	0.583	0.8	1	29.057	3.83	306.56	В
37.50-25.00			В	0.459	1.959	0.677	0.8	1	83.567			
			C	0.257	2.416	0.604	0.8	1	44.573			
T10	2.81	10.92	Α	0.155	2.754	0.582	0.8	1	59.544	8.18	327.08	В
25.00-0.00			В	0.45	1.974	0.673	0.8	1	176.987			
			С	0.247	2.447	0.601	0.8	1	91.861			
Sum Weight:	14.95	45.05						OTM	4242.45	53.64		
									kip-ft			

Tower Forces - With Ice - Wind 90 To Face												
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
ft	K	K	C Q						ft ²	K	nlf	
	0.21	1.72	е Л	0.225	2 5 1 6	0.506	0.85	1	<u>ji</u> 17.615	2 31	231.26	в
160.00-150.00	0.21	1./2	R	0.223	2.510	0.590	0.85	1	30.850	2.31	231.20	Ъ
100.00-150.00			C C	0.405	2.000	0.596	0.85	1	17 615			
Т2	1 29	3 38	Ă	0.168	2.707	0.590	0.85	1	35.818	8.01	320 35	в
150 00-125 00	1.29	5.50	B	0.100	1 853	0.719	0.85	1	122,800	0.01	520.55	5
120100 120100			Ē	0.168	2.707	0.584	0.85	1	35.818			
Т3	2.37	5.25	Ā	0.157	2.745	0.583	0.85	1	39,409	9.03	361.07	в
125.00-100.00			В	0.555	1.839	0.727	0.85	1	147.706			_
			С	0.25	2.437	0.602	0.85	1	59.749			
T4	2.66	6.93	Α	0.172	2.693	0.585	0.85	1	49.534	9.40	376.17	В
100.00-75.00			В	0.538	1.855	0.718	0.85	1	163.899			
			C	0.292	2.318	0.613	0.85	1	81.028			
T5	0.93	2.74	Α	0.164	2.72	0.584	0.85	1	17.097	3.13	375.05	В
75.00-66.67			В	0.529	1.866	0.713	0.85	1	57.537			
			C	0.28	2.35	0.61	0.85	1	27.942			
Т6	0.93	2.79	Α	0.161	2.732	0.583	0.85	1	17.394	3.03	363.78	В
66.67-58.33			В	0.513	1.884	0.704	0.85	1	57.274			
			C	0.273	2.371	0.608	0.85	1	28.190			
T7	0.93	3.03	Α	0.173	2.689	0.585	0.85	1	19.893	2.86	342.64	В
58.33-50.00			В	0.49	1.913	0.693	0.85	1	55.355			
			C	0.277	2.359	0.609	0.85	1	29.994			
Т8	1.40	3.84	Α	0.142	2.801	0.58	0.85	1	24.858	4.09	327.30	В
50.00-37.50			В	0.474	1.936	0.685	0.85	1	83.275			
			C	0.247	2.446	0.601	0.85	1	40.910			
Т9	1.40	4.46	Α	0.161	2.733	0.583	0.85	1	30.046	3.86	308.54	В
37.50-25.00			В	0.459	1.959	0.677	0.85	1	84.108			
			С	0.257	2.416	0.604	0.85	1	45.470			
T10	2.81	10.92	Α	0.155	2.754	0.582	0.85	1	61.314	8.23	329.22	В
25.00-0.00			В	0.45	1.974	0.673	0.85	1	178.142			
			C	0.247	2.447	0.601	0.85	1	93.508			
Sum Weight:	14.95	45.05						OTM	4265.96	53.94		
									kip-ft			

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

Page 26 of 32 Date 07:03:55 07/02/21

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

Tower Forces - Service - Wind Normal To Face												
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			c									
ft	K	K	е						ft^2	K	plf	
T1	0.07	1.18	Α	0.175	2.683	0.586	1	1	15.774	1.96	195.70	В
160.00-150.00			В	0.288	2.328	0.612	1	1	23.085			
			С	0.175	2.683	0.586	1	1	15.774			
T2	0.47	2.32	Α	0.13	2.846	0.579	1	1	31.625	5.88	235.33	В
150.00-125.00			В	0.37	2.126	0.64	1	1	78.623			
			С	0.13	2.846	0.579	1	1	31.625			
T3	0.91	3.86	Α	0.122	2.875	0.578	1	1	35.328	6.56	262.43	В
125.00-100.00			В	0.379	2.108	0.643	1	1	93.664			
			С	0.186	2.642	0.588	1	1	48.393			
T4	1.04	5.08	Α	0.14	2.808	0.58	1	1	45.674	7.03	281.14	В
100.00-75.00			В	0.374	2.118	0.641	1	1	107.312			
			С	0.217	2.539	0.594	1	1	64.521			
T5	0.37	2.10	Α	0.134	2.833	0.579	1	1	15.794	2.33	279.59	В
75.00-66.67			В	0.363	2.142	0.637	1	1	37.363			
			С	0.208	2.57	0.592	1	1	22.276			
T6	0.37	2.14	Α	0.131	2.844	0.579	1	1	16.083	2.28	273.85	В
66.67-58.33			В	0.352	2.167	0.633	1	1	37.493			
			С	0.202	2.588	0.591	1	1	22.550			
T7	0.37	2.32	Α	0.132	2.839	0.579	1	1	18.071	2.22	265.97	В
58.33-50.00			В	0.338	2.2	0.628	1	1	37.351			
			С	0.2	2.597	0.59	1	1	24.102			
T8	0.55	3.00	Α	0.118	2.894	0.577	1	1	23.489	3.13	250.42	В
50.00-37.50			В	0.325	2.231	0.624	1	1	55.298			
			С	0.185	2.648	0.587	1	1	33.173			
Т9	0.55	3.42	Α	0.129	2.848	0.579	1	1	28.066	3.04	243.05	В
37.50-25.00			В	0.32	2.245	0.622	1	1	57.824			
			С	0.192	2.624	0.589	1	1	37.347			
T10	1.10	8.68	Α	0.133	2.836	0.579	1	1	58.911	6.49	259.42	В
25.00-0.00			В	0.316	2.255	0.621	1	1	122.874			
			С	0.191	2.626	0.589	1	1	78.358			
Sum Weight:	5.79	34.11						OTM	3206.03	40.91		
									kip-ft			

		Т	้อพ	ver Fo	rces	- Se	rvice	e - W	ind 45	To Face	e		
S	111	S-IC	E		C	D	D	D	4	E		Chil	
Flevation	Auu Weiaht	Selj Weight	$\begin{bmatrix} r \\ a \end{bmatrix}$	e	C_F	Λ_R	D_F	D_R	A_E	Г	W	Eace	
Enevation	" cigin	" cigiu	c									1 400	
ft	Κ	Κ	e						ft^2	K	plf		
T1	0.07	1.18	Α	0.175	2.683	0.586	0.825	1	13.868	1.82	181.77	В	
160.00-150.00			В	0.288	2.328	0.612	0.825	1	21.441				
			C	0.175	2.683	0.586	0.825	1	13.868				
T2	0.47	2.32	Α	0.13	2.846	0.579	0.825	1	28.202	5.70	227.89	В	
150.00-125.00			В	0.37	2.126	0.64	0.825	1	76.138				
			C	0.13	2.846	0.579	0.825	1	28.202				
Т3	0.91	3.86	Α	0.122	2.875	0.578	0.825	1	31.254	6.36	254.33	В	
125.00-100.00			В	0.379	2.108	0.643	0.825	1	90.776				
			C	0.186	2.642	0.588	0.825	1	44.615				
T4	1.04	5.08	Α	0.14	2.808	0.58	0.825	1	40.747	6.79	271.75	В	
100.00-75.00			В	0.374	2.118	0.641	0.825	1	103.726				
			C	0.217	2.539	0.594	0.825	1	59.909				
T5	0.37	2.10	Α	0.134	2.833	0.579	0.825	1	14.051	2.25	270.00	В	
75.00-66.67			В	0.363	2.142	0.637	0.825	1	36.081				

Project

Client

160' Self Support Lattice - CSP #20 Middlebury, CT Page 27 of 32 Date 07:03:55 07/02/21

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Designed by KAB

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			с									
ft	K	K	е						ft^2	K	plf	
			C	0.208	2.57	0.592	0.825	1	20.636			
T6	0.37	2.14	Α	0.131	2.844	0.579	0.825	1	14.288	2.20	264.08	В
66.67-58.33			В	0.352	2.167	0.633	0.825	1	36.156			
			C	0.202	2.588	0.591	0.825	1	20.856			
T7	0.37	2.32	Α	0.132	2.839	0.579	0.825	1	15.613	2.12	253.88	В
58.33-50.00			В	0.338	2.2	0.628	0.825	1	35.654			
			C	0.2	2.597	0.59	0.825	1	21.814			
T8	0.55	3.00	Α	0.118	2.894	0.577	0.825	1	20.826	3.01	241.18	В
50.00-37.50			В	0.325	2.231	0.624	0.825	1	53.259			
			C	0.185	2.648	0.587	0.825	1	30.649			
Т9	0.55	3.42	Α	0.129	2.848	0.579	0.825	1	24.606	2.91	232.53	В
37.50-25.00			В	0.32	2.245	0.622	0.825	1	55.321			
			C	0.192	2.624	0.589	0.825	1	34.100			
T10	1.10	8.68	Α	0.133	2.836	0.579	0.825	1	52.714	6.23	249.09	В
25.00-0.00			В	0.316	2.255	0.621	0.825	1	117.985			
			C	0.191	2.626	0.589	0.825	1	72.449			
Sum Weight:	5.79	34.11						OTM	3086.97	39.38		
									kip-ft			

Tower Forces - Service - Wind 60 To Face

Section	Add	Salf	F	a	C_{π}	<i>P</i> .,	Da	D.	4-	F	142	Ctrl
Flevation	Weight	Weight		c	C_F	Λ_R	D_F	D_R	AE	T	w	Eace
Elevation	neigni	neigni	C C									1 ucc
ft	Κ	Κ	e						ft^2	K	plf	
	0.07	1.18	Α	0.175	2.683	0.586	0.8	1	13.596	1.80	179.78	В
160.00-150.00			В	0.288	2.328	0.612	0.8	1	21.207			
			С	0.175	2.683	0.586	0.8	1	13.596			
T2	0.47	2.32	Α	0.13	2.846	0.579	0.8	1	27.713	5.67	226.83	В
150.00-125.00			В	0.37	2.126	0.64	0.8	1	75.783			
			C	0.13	2.846	0.579	0.8	1	27.713			
T3	0.91	3.86	Α	0.122	2.875	0.578	0.8	1	30.672	6.33	253.18	В
125.00-100.00			В	0.379	2.108	0.643	0.8	1	90.363			
			С	0.186	2.642	0.588	0.8	1	44.075			
T4	1.04	5.08	Α	0.14	2.808	0.58	0.8	1	40.043	6.76	270.41	В
100.00-75.00			В	0.374	2.118	0.641	0.8	1	103.213			
			C	0.217	2.539	0.594	0.8	1	59.250			
T5	0.37	2.10	Α	0.134	2.833	0.579	0.8	1	13.801	2.24	268.63	В
75.00-66.67			В	0.363	2.142	0.637	0.8	1	35.898			
			C	0.208	2.57	0.592	0.8	1	20.401			
T6	0.37	2.14	Α	0.131	2.844	0.579	0.8	1	14.032	2.19	262.68	В
66.67-58.33			В	0.352	2.167	0.633	0.8	1	35.965			
			C	0.202	2.588	0.591	0.8	1	20.615			
T7	0.37	2.32	Α	0.132	2.839	0.579	0.8	1	15.262	2.10	252.16	В
58.33-50.00			В	0.338	2.2	0.628	0.8	1	35.412			
			C	0.2	2.597	0.59	0.8	1	21.487			
Т8	0.55	3.00	Α	0.118	2.894	0.577	0.8	1	20.446	3.00	239.87	В
50.00-37.50			В	0.325	2.231	0.624	0.8	1	52.967			
			C	0.185	2.648	0.587	0.8	1	30.288			
Т9	0.55	3.42	Α	0.129	2.848	0.579	0.8	1	24.112	2.89	231.02	В
37.50-25.00			В	0.32	2.245	0.622	0.8	1	54.963			
			С	0.192	2.624	0.589	0.8	1	33.637			
T10	1.10	8.68	Α	0.133	2.836	0.579	0.8	1	51.829	6.19	247.62	В
25.00-0.00			В	0.316	2.255	0.621	0.8	1	117.286			
			C	0.191	2.626	0.589	0.8	1	71.605			

AECOM

500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882

FAX:

Job Page 28 of 32 28

Add Self D_F D_R Ctrl. Section C_F R_R A_E FFе W Elevation Weight Weight а Face С ft^2 ft Κ K е K plf 5.79 3069.96 kip-ft 39.16 34.11 OTM Sum Weight:

Tower Forces - Service - Wind 90 To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С						.2			
ft	K	K	е						ft²	K	plf	
T1	0.07	1.18	Α	0.175	2.683	0.586	0.85	1	14.140	1.84	183.76	В
160.00-150.00			В	0.288	2.328	0.612	0.85	1	21.676			
			C	0.175	2.683	0.586	0.85	1	14.140			
T2	0.47	2.32	Α	0.13	2.846	0.579	0.85	1	28.691	5.72	228.95	В
150.00-125.00			В	0.37	2.126	0.64	0.85	1	76.493			
			C	0.13	2.846	0.579	0.85	1	28.691			
T3	0.91	3.86	Α	0.122	2.875	0.578	0.85	1	31.836	6.39	255.49	В
125.00-100.00			В	0.379	2.108	0.643	0.85	1	91.188			
			C	0.186	2.642	0.588	0.85	1	45.154			
T4	1.04	5.08	Α	0.14	2.808	0.58	0.85	1	41.451	6.83	273.09	В
100.00-75.00			В	0.374	2.118	0.641	0.85	1	104.238			
			C	0.217	2.539	0.594	0.85	1	60.568			
T5	0.37	2.10	Α	0.134	2.833	0.579	0.85	1	14.300	2.26	271.37	В
75.00-66.67			В	0.363	2.142	0.637	0.85	1	36.264			
			C	0.208	2.57	0.592	0.85	1	20.870			
T6	0.37	2.14	Α	0.131	2.844	0.579	0.85	1	14.544	2.21	265.47	В
66.67-58.33			В	0.352	2.167	0.633	0.85	1	36.347			
			C	0.202	2.588	0.591	0.85	1	21.098			
T7	0.37	2.32	Α	0.132	2.839	0.579	0.85	1	15.964	2.13	255.61	В
58.33-50.00			В	0.338	2.2	0.628	0.85	1	35.897			
			C	0.2	2.597	0.59	0.85	1	22.141			
Т8	0.55	3.00	Ā	0.118	2.894	0.577	0.85	1	21.206	3.03	242.50	в
50.00-37.50			В	0.325	2.231	0.624	0.85	1	53,550			_
			Ē	0.185	2.648	0.587	0.85	1	31.010			
Т9	0.55	3 42	Ā	0.129	2.848	0.579	0.85	1	25 101	2.93	234.03	в
37 50-25 00	0.00	5.1.2	B	0.32	2.245	0.622	0.85	1	55 679	2005	20 1100	2
57.50 25.00			Č	0 192	2.624	0.589	0.85	1	34 564			
T10	1.10	8.68	Ă	0.133	2.836	0.579	0.85		53,599	6.26	250.57	в
25 00-0 00	1.10	0.00	B	0.316	2.255	0.621	0.85		118 683	0.20	200.07	2
25.00 0.00			L C	0.191	2.626	0.589	0.85		73 293			
Sum Weight	5 79	34.11		0.171	2.020	0.207	0.05		3103.98	39.60		
Sum or orgin.	5.19	5							kin-ft	57.00		

			Force To	otals		
Load Case	Vertical Forces K	Sum of Forces X K	Sum of Forces Z K	Sum of Overturning Moments, M _x kip-ft	Sum of Overturning Moments, M _z kip-ft	Sum of Torques kip-ft
Leg Weight Bracing Weight Total Member Self-Weight	11.77 22.34 34.11			-4.96	-12.42	

tnxTower

Project

Client

160' Self Support Lattice - CSP #20

AECOM 500 Enterprise Drive Rocky Hill, CT Phone: (860) 529-8882 FAX:

SMK-007 / VZ5-228

Middlebury, CT

Designed by KAB

07:03:55 07/02/21

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturnina	Sum of 10rques
Cuse	10/003	Y	7	Moments M	Moments M	
	K	K K	L K	kin_{x}	kin_{z}	kin_ft
Total Weight	A 51.56	A	K	кір-јі 4.06	12 A2	кір-јі
Wind 0 deg No Ice	51.50	0.14	50.70	5542.24	-12.42	99.69
Wind 0 deg - No Ice		-0.14	-39.79	-5545.24	-0.17	45.00
Wind 50 deg - No Ice		20.00	-30.37	-4/09./4	-2096.45	45.25
Wind 43 deg - No Ice		40.77	-41.10	-3652.30	-5602.21	19.50
Wind 00 deg - No Ice		49.79	-28.90	-2700.03	-4041.31	-7.30
Wind 120 deg - No Ice		50.01	20.01	2760.50	-3393.23	-36.51
Wind 120 deg - No Ice		51.44	50.01	2709.39	-4/05.00	-90.38
Wind 155 deg - No Ice		40.90	41.29	3031.42	-3611.03	-101.07
Wind 150 deg - No Ice		29.12	50.71	4/06.07	-2/09.25	-105.75
Wind 180 deg - No Ice		0.14	58.04	5397.24	-18.07	-85.14
Wind 210 deg - No Ice		-28.88	50.57	4699.82	20/3.39	-45.25
Wind 225 deg - No Ice		-40.//	41.10	3822.58	3///.3/	-19.36
Wind 240 deg - No Ice		-51.30	29.77	2/58.//	4734.51	7.90
Wind 270 deg - No Ice		-58.01	-0.14	-11.21	5370.41	58.51
Wind 300 deg - No Ice		-49.93	-29.14	-2/11.4/	4622.91	92.72
Wind 315 deg - No Ice		-40.96	-41.29	-3841.34	3/86.21	101.67
Wind 330 deg - No Ice	10.04	-29.12	-50.71	-4715.99	2684.41	103.75
Member Ice	10.94			10.00		
Total Weight Ice	76.87	0.12	26.24	-18.22	-33.97	151 51
Wind 0 deg - Ice		-0.12	-/6./4	-/105.45	-31.47	151.51
Wind 30 deg - Ice		37.56	-65.62	-6093.62	-3511.59	/2.89
Wind 45 deg - Ice		53.08	-53.43	-4969./0	-4945.05	25.81
Wind 60 deg - Ice		64.92	-37.66	-3512.65	-6039.52	-22.78
Wind 90 deg - Ice		75.33	0.12	-15.72	-6993.54	-112.58
Wind 120 deg - Ice		66.08	38.47	3527.56	-6123.45	-174.81
Wind 135 deg - Ice		53.24	53.60	4936.81	-4948.58	-184.59
Wind 150 deg - Ice		37.77	65.73	6059.68	-3515.92	-185.47
Wind 180 deg - Ice		0.12	75.53	6974.99	-36.47	-148.39
Wind 210 deg - Ice		-37.56	65.62	6057.19	3443.65	-72.89
Wind 225 deg - Ice		-53.08	53.43	4933.27	4877.11	-25.81
Wind 240 deg - Ice		-65.96	38.27	3523.24	6053.02	23.30
Wind 270 deg - Ice		-75.33	-0.12	-20.72	6925.60	112.58
Wind 300 deg - Ice		-65.04	-37.87	-3516.98	5974.09	171.17
Wind 315 deg - Ice		-53.24	-53.60	-4973.24	4880.65	184.59
Wind 330 deg - Ice		-37.77	-65.73	-6096.12	3447.98	185.47
Total Weight	51.56			-4.96	-12.42	
Wind 0 deg - Service		-0.14	-59.79	-5544.64	10.43	88.68
Wind 30 deg - Service		28.88	-50.57	-4711.15	-2681.82	45.25
Wind 45 deg - Service		40.77	-41.10	-3833.91	-3785.61	19.36
Wind 60 deg - Service		49.79	-28.90	-2702.05	-4624.90	-7.58
Wind 90 deg - Service		58.01	0.14	-0.12	-5378.65	-58.51
Wind 120 deg - Service		51.44	30.01	2768.18	-4749.00	-96.58
Wind 135 deg - Service		40.96	41.29	3830.01	-3794.45	-101.67
Wind 150 deg - Service		29.12	50.71	4704.66	-2692.65	-103.75
Wind 180 deg - Service		0.14	58.04	5395.83	-2.07	-85.14
Wind 210 deg - Service		-28.88	50.57	4698.41	2690.19	-45.25
Wind 225 deg - Service		-40.77	41.10	3821.18	3793.98	-19.36
Wind 240 deg - Service		-51.30	29.77	2757.36	4751.11	7.90
Wind 270 deg - Service		-58.01	-0.14	-12.61	5387.02	58.51
Wind 300 deg - Service		-49.93	-29.14	-2712.88	4639.52	92.72
Wind 315 deg - Service		-40.96	-41.29	-3842.74	3802.81	101.67
Wind 330 deg - Service		-29.12	-50.71	-4717.39	2701.01	103.75

Load Combinations

tnxTower

AECOM

500 Enterprise Drive

Rocky Hill, CT Phone: (860) 529-8882 FAX: Job

160' Self Support Lattice - CSP #20 Project Middlebury, CT Client

SMK-007 / VZ5-228

Designed by KAB

07:03:55 07/02/21

30 of 32

Page

Date

Comb.	Description
No.	-
1	Dead Only
2	Dead+Wind 0 deg - No Ice
3	Dead+Wind 30 deg - No Ice
4	Dead+Wind 45 deg - No Ice
5	Dead+Wind 60 deg - No Ice
6	Dead+Wind 90 deg - No Ice
7	Dead+Wind 120 deg - No Ice
8	Dead+Wind 135 deg - No Ice
9	Dead+Wind 150 deg - No Ice
10	Dead+Wind 180 deg - No Ice
11	Dead+Wind 210 deg - No Ice
12	Dead+Wind 225 deg - No Ice
13	Dead+Wind 240 deg - No Ice
14	Dead+Wind 270 deg - No Ice
15	Dead+Wind 300 deg - No Ice
16	Dead+Wind 315 deg - No Ice
17	Dead+Wind 330 deg - No Ice
18	Dead+Ice
19	Dead+Wind 0 deg+Ice
20	Dead+Wind 30 deg+Ice
21	Dead+Wind 45 deg+Ice
22	Dead+Wind 60 deg+Ice
23	Dead+Wind 90 deg+Ice
24	Dead+Wind 120 deg+Ice
25	Dead+Wind 135 deg+Ice
26	Dead+Wind 150 deg+Ice
27	Dead+Wind 180 deg+Ice
28	Dead+Wind 210 deg+Ice
29	Dead+Wind 225 deg+Ice
30	Dead+Wind 240 deg+Ice
31	Dead+Wind 270 deg+Ice
32	Dead+Wind 300 deg+Ice
33	Dead+Wind 315 deg+Ice
34	Dead+Wind 330 deg+Ice
35	Dead+Wind 0 deg - Service
36	Dead+Wind 30 deg - Service
37	Dead+Wind 45 deg - Service
38	Dead+Wind 60 deg - Service
39	Dead+Wind 90 deg - Service
40	Dead+Wind 120 deg - Service
41	Dead+Wind 135 deg - Service
42	Dead+Wind 150 deg - Service
43	Dead+Wind 180 deg - Service
44	Dead+Wind 210 deg - Service
45	Dead+Wind 225 deg - Service
46	Dead+Wind 240 deg - Service
47	Dead+Wind 270 deg - Service
48	Dead+Wind 300 deg - Service
49	Dead+Wind 315 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	٥	٥
T1	160 - 150	8.347	35	0.3911	0.1293
T2	150 - 125	7.520	35	0.3896	0.1297
T3	125 - 100	5.425	35	0.3730	0.1070

tnxTower	Job	Page 31 of 32
	160 Sell Support Lattice - CSP #20	51 61 52
AECOM 500 Enterprise Drive	Project Middlebury, CT	Date 07:03:55 07/02/21
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client SMK-007 / VZ5-228	Designed by KAB

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T4	100 - 75	3.575	35	0.3082	0.0864
T5	75 - 66.6667	2.012	35	0.2492	0.0629
Т6	66.6667 - 58.3333	1.568	35	0.2277	0.0549
T 7	58.3333 - 50	1.166	35	0.2036	0.0469
T8	50 - 37.5	0.834	35	0.1638	0.0393
Т9	37.5 - 25	0.456	35	0.1183	0.0280
T10	25 - 0	0.206	35	0.0687	0.0170

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load	5			Curvature
ft		Comb.	in	0	٥	ft
160.00	Flash Beacon Lighting	35	8.347	0.3911	0.1293	76014
159.00	HPD2-4.7	35	8.265	0.3909	0.1295	76014
158.00	DB304-A	35	8.183	0.3908	0.1297	76014
155.00	432E-83I-01T TTA Unit	35	7.935	0.3903	0.1301	76014
146.00	DC6-48-60-18-8F (Squid)	35	7.183	0.3890	0.1279	66842
	Suppressor					
140.00	Commscope SFG22 (14' Sector	35	6.674	0.3874	0.1230	216581
	Frame)					
125.00	DSM2 w/ additional SFS-H	35	5.425	0.3730	0.1070	22803
	Stabilizer					
124.00	2" Dia 10' Omni	35	5.345	0.3712	0.1061	22389
115.00	4"x96"x72" Ice Canopy	35	4.649	0.3503	0.0985	24399
110.00	6' w/ Radome	35	4.280	0.3364	0.0945	26221
97.00	APXVSPP18-C-A20	35	3.372	0.3006	0.0838	28582
85.00	PD10054	35	2.598	0.2728	0.0725	22324
83.00	L-810 Tower Side-Light Beacon	35	2.476	0.2683	0.0706	21532
77.50	5' T-arm	35	2.153	0.2554	0.0653	19731
21.00	Sinclair SY450-SF1SNM Yagi	35	0.152	0.0546	0.0139	17621

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	160 - 150	10.680	19	0.5032	0.2378
T2	150 - 125	9.614	19	0.5011	0.2381
T3	125 - 100	6.927	19	0.4779	0.1986
T4	100 - 75	4.563	19	0.3938	0.1592
T5	75 - 66.6667	2.569	19	0.3182	0.1131
T6	66.6667 - 58.3333	2.003	19	0.2906	0.0986
T 7	58.3333 - 50	1.490	19	0.2599	0.0840
T8	50 - 37.5	1.066	19	0.2092	0.0703
Т9	37.5 - 25	0.584	19	0.1511	0.0500
T10	25 - 0	0.264	19	0.0878	0.0304

Critical Deflections and Radius of Curvature - Design Wind

tran Torn on	Job		Page	
<i>inx1ower</i>		160' Self Support Lattice - CSP #20		
AECOM 500 Enterprise Drive	Project	Middlebury, CT	Date 07:03:55 07/02/21	
Rocky Hill, CT Phone: (860) 529-8882 FAX:	Client	SMK-007 / VZ5-228	Designed by KAB	

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
160.00	Flash Beacon Lighting	19	10.680	0.5032	0.2378	64321
159.00	HPD2-4.7	19	10.574	0.5030	0.2381	64321
158.00	DB304-A	19	10.468	0.5028	0.2384	64321
155.00	432E-83I-01T TTA Unit	19	10.149	0.5022	0.2390	64321
146.00	DC6-48-60-18-8F (Squid)	19	9.181	0.5001	0.2348	59402
	Suppressor					
140.00	Commscope SFG22 (14' Sector	19	8.527	0.4977	0.2262	128075
	Frame)					
125.00	DSM2 w/ additional SFS-H	19	6.927	0.4779	0.1986	17453
	Stabilizer					
124.00	2" Dia 10' Omni	19	6.825	0.4755	0.1968	17155
115.00	4"x96"x72" Ice Canopy	19	5.935	0.4482	0.1825	18768
110.00	6' w/ Radome	19	5.463	0.4301	0.1749	20212
97.00	APXVSPP18-C-A20	19	4.303	0.3839	0.1540	22182
85.00	PD10054	19	3.316	0.3483	0.1318	17399
83.00	L-810 Tower Side-Light Beacon	19	3.161	0.3425	0.1280	16791
77.50	5' T-arm	19	2.748	0.3261	0.1177	15409
21.00	Sinclair SY450-SF1SNM Yagi	19	0.195	0.0698	0.0248	13780

Program Version 8.0.7.5 - 8/3/2020 File:C:/Users/kevin.barker/AECOM Directory/RH Telecom - General/Structurals By Location/Connecticut/CSP 20 - Middlebury/31_ATT & VZW Mod/TNX/Rev F/VZ5-228_Middlebury_CT_CSP20-F.eri

About AECOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With approximately 45,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$6 billion.

More information on AECOM and its services can be found at www.aecom.com.

500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 860-529-8882 Fax: 860-529-3991

Maser Consulting Connecticut 1055 Washington Boulevard Stamford, CT 06901 203.324.0800 greg.dulnik@collierseng.com

Antenna Mount Analysis Report and PMI Requirements

Mount ReAnalysis-PMI

SMART Tool Project #: 10163461 Maser Consulting Connecticut Project #: 20777368A (Rev 1)

August 30, 2022

Site Information

Site ID: Site Name: Carrier Name: Address: 468946-VZW / Middlebury I-84 Middlebury I-84 Verizon Wireless 2 Larkin Drive Middlebury, Connecticut 06762 New Haven County 41.51361111° -73.12444444°

Latitude: Longitude:

Structure Information

Tower Type: Mount Type: 140-Ft Self Support 5.00-Ft T-Arm

FUZE ID # 16244626

Analysis Results

T-Arm: 40.9% Pass*

*Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

<u>***Contractor PMI Requirements:</u> Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com

For additional questions and support, please reach out to: pmisupport@colliersengineering.com

Report Prepared By: Garrett Smith

Digitally signed by Justin Linette Date: 2022.08.30 14:57:29-04'00'

Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS Site ID: 2954976, dated May 24, 2022
Mount Mapping Report	Tower Engineering Professionals, Site ID: 468946, dated December 2, 2020

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H	
Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), V _{ULT} : Ice Wind Speed (3-sec. Gust): Design Ice Thickness: Risk Category: Exposure Category: Topographic Category: Topographic Feature Considered: Topographic Method: Ground Elevation Factor, K _e :	117 mph 50 mph 1.00 in II C 1 N/A N/A 0.973
Seismic Parameters:	Ss: S1:	0.195 0.054
Maintenance Parameters:	Wind Speed (3-sec. Gust): Maintenance Live Load, Lv: Maintenance Live Load, Lm:	30 mph 250 lbs. 500 lbs.
Analysis Software:	RISA-3D (V17)	

Final Loading Configuration:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status
		2	Samsung	MT6407-77A	
		4	JMA Wireless	MX06FRO660-03	Addad
77.50	77.50	2	Samsung	B2/B66A RRH-BR049	Audeu
		2	Samsung	B5/B13 RRH-BR04C	
		1	Raycap	RRFDC-3315-PF-48*	Retained

The following equipment has been considered for the analysis of the mounts:

* Equipment to be flush mounted directly to the Self Support. They are not mounted on the T-Arm mounts and are not included in this mount analysis.

Any proposed antennas not currently installed should be mounted such that the centerline of the antennas does not exceed 6 inches vertically from the center of the antenna mounts.

The recent mount mapping reported existing OVP units. It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- 1. All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting Connecticut to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.

- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:
 - o Channel, Solid Round, Angle, Plate
 - HSS (Rectangular)
 - Pipe
 - o Threaded Rod
 - Bolts

ASTM 500 (Gr. B-46) ASTM A53 (Gr. B-35) F1554 (Gr. 36) ASTM A325

ASTM A36 (Gr. 36)

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

Analysis Results:

Component	Utilization %	Pass/Fail
Antenna Pipe	24.8%	Pass
Face Horizontal	40.9%	Pass
Standoff Arm	18.1%	Pass
Connection Check	17.6%	Pass

Structure Rating – (Controlling Utilization of all Components)

40.9%

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

Ice	Mount Pipe	s Excluded	Mount Pipes Included				
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)			
0	2.0	0.2	6.6	4.8			
0.5	2.7	0.3	9.1	6.8			
1	3.3	0.3	11.7	8.7			

Notes:

- (EPA)a values listed above may be used in the absence of more precise information

- (EPA)a values in the table above include 1 sector(s).

- Ka factors included in (EPA)a calculations

Requirements:

The existing mounts are **SUFFICIENT** for the final loading configuration shown in attachment 2 and do not require modifications. Additional requirements are noted below.

If required, ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other. Separate review fees will apply.

Attachments:

- 1. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Photos
- 4. Mount Mapping Report (for reference only)
- 5. Analysis Calculations
- 6. TIA Adoption and Wind Speed Usage Letter

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Passing Mount Analysis

Passing Mount Analysis requires a PMI due to a modification in loading. Electronic pdf version of this can be downloaded at <u>https://pmi.vzwsmart.com</u>. For additional questions and support, please reach out to pmisupport@colliersengineering.com

PSLC #: 468946 SMART Project #: 10163461 Fuze Project ID: 16244626

<u>Purpose</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown. NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool engineer for recommendations.
- The PMI can be accessed at the following portal: *https://pmi.vzwsmart.com*

Photo Requirements:

- Photos taken at ground level
 - \circ $\;$ Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- Photos taken at Mount Elevation
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - Photos showing the climbing facility and safety climb if present.
 - Photos showing each individual sector after installation. Each entire sector shall be in one photo to show the interconnection of members.

- These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.

Antenna & equipment placement and Geometry Confirmation:

• The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.

□ The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.

OR

□ The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.

<u>Special Instructions / Validation as required from the MA or any other information the contractor</u> <u>deems necessary to share that was identified:</u>

lssue:

Response:

Special Instruction Confirmation:

 \Box The contractor has read and acknowledges the above special instructions.

□ All hardware listed in the Special Instructions above (if applicable) has been properly installed, and the existing hardware was inspected.

□ The material utilized was as specified in the SMART Tool engineering vendor Special Instructions above (if applicable) and included in the material certification folder is a packing list or invoice for these materials.

OR

□ The material utilized was approved by a SMART Tool engineering vendor as an "equivalent" and this approval is included as part of the contractor submission.

Comments:

Contractor certifie	<u>s that the climbing facility / safety climb was not damaged prior to starting work:</u>
□ Yes	□ No

Contractor certifies no new damage created during the current installation:

Yes	🗆 No

Contractor to certify the condition of the safety climb and verify no damage when leaving the site:

□ Safety Climb in Good Condition

□ Safety Climb Damaged

Certifying Individual:

Company:	
Employee Name:	
Contact Phone:	
Email:	
Date:	

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R1	MT6407-77A	35.1	16.1	56	1	а	Front	50.04	0	Added	
R5	B5/B13 RRH-BR04C	15	15	56	1	а	Behind	24	0	Added	
A2	MX06FRO660-03	71.3	15.4	4	2	а	Front	50.04	10	Added	
A2	MX06FRO660-03	71.3	15.4	4	2	b	Front	50.04	-10	Added	
R4	B2/B66A RRH-BR049	15	15	4	2	а	Behind	38.04	0	Added	

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R1	MT6407-77A	35.1	16.1	56	1	а	Front	50.04	0	Added	
R5	B5/B13 RRH-BR04C	15	15	56	1	а	Behind	24	0	Added	
A2	MX06FRO660-03	71.3	15.4	4	2	а	Front	50.04	10	Added	
A2	MX06FRO660-03	71.3	15.4	4	2	b	Front	50.04	-10	Added	
R4	B2/B66A RRH-BR049	15	15	4	2	а	Behind	38.04	0	Added	

FCC # Antenna Mount Mapping Form (PATENT PENDING) 1045077 ASER Tower Owner: Unknown Mapping Date: 12/2/2020 Site Name: Middlebury I-84 Self Support Tower Type: Site Number or ID: 468946 Tower Height (Ft.): 140 Mapping Contractor: TEP Mount Elevation (Ft.): 77.5 This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication nodification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements Mount Pipe Configuration and Geometries [Unit = Inches] 00 Vertica Vertica Horizonta Horizontal Plan Sector / Offset Sector / Offset Mount Pipe Size & Length Offset "C1 Mount Pipe Size & Length Offset "C1, 00 Position Dimension Position Dimension C2, C3, etc C2, C3, etc. A1 2.4"Øx0.154"x8'-0' 50.00 4.00 C1 2.4"Øx0.154"x8'-0 50.00 4.00 2.4"Øx0.154"x8'-0" 50.00 56.00 2.4"Ø"0.154"x8'-0" 50.00 56.00 A2 C2 A3 C3 A4 C4 A5 C5 A6 C6 B1 D1 B2 D2 **B3** D3 B4 D4 ,00 B5 D5 de D6 B6 Distance between bottom rail and mount CL elevation (dim d). Unit is inches. See 'Mount Elev Ref' tab for details. 0.00 H ß 4 Distance from top of bottom support rail to lowest tip of ant./eqpt. of Carrier above. (N/A if > 10 ft.) 1: SBNHH-1065B 32 Distance from top of bottom support rail to highest tip of ant./eopt. of Carrier below. (N/A if > 10 ft.) 2: BY RRH 2×60-4R 25 7 Please enter additional infomation or comments below. 3- 813 RRH 41×30 15 7 4. RREDC-3315-PE-44 Tower Face Width at Mount Elev. (ft.): 16.75 Tower Leg Size or Pole Shaft Diameter at Mount Elev. (in.): 6.9 Mounting Locations Photos of SECTOR B SECTOR C Enter antenna model. If not labeled, enter "Unknown". [Units are inches and degrees] antennas FACE B Horiz. Items Vertical LEG B IFG C Coax Antenna Offset "h' Antenna Antenna Models if Width Depth Height Photo Distances"b1a, b2a EACE / Size and Center-(Use "-" if Azimuth Known (in.) (in.) (in.) Numbers Ants. B Ant. is b_{3a}, b_{1b}...." (Inches) Qty line (Ft.) (Degrees) hehind) Sector A Ant_{1a} -Ant_{1b} SBNHH-1D65B 11.85 7.10 72.87 from R 79 32.00 8.00 80.00 108 SECTOR LEG A Ant1 B4 RRH2x60-4R 5.74 er from R 10.63 36.60 79.3333 28.00 7.00 112 φ Ant_{2a} Horizonta Offset "h" Ant_{2b} SBNHH-1D65B 11.85 7.10 72.87 er from R 79 32.00 8.00 80.00 118 Ant₂₀ B13 RRH4x30 12.00 9.00 21.60 80.1667 18.00 7.00 er from R Ant_{3a} Ant_{3b} Antsa 刻 2 $\mathsf{Ant}_{\mathsf{3c}}$.Antsu Anta ŝ Ant_{4a} Ξ Ant_{4b} $\frac{2}{2}$ ŝ ŝġ 2 Ant Ant_{5a} Ant_{5b} Ant_{5c} Ant on Arth Anta Ante Ċĩ Standoff Ant on -03 Standoff 64 Ant on RREDC-3315-PE-48 1 1/4" Hybrid 141 rsTower Ant on Antenna Layout (Looking Out From Tower) Towe

Mou	int Azimuth	n (Degree)	Tower Leg Azim	nuth (Degree)						Sector B	i.				
	for Each Se	ector		for Each	Sector	Ant _{1a}										
Sector A:	80.00	Deg	Leg A:	40.00	Deg	Ant _{1b}										
Sector B:		Deg	Leg B:	160.00	Deg	Ant _{1c}										
Sector C:	260.00	Deg	Leg C:	280.00	Deg	Ant _{2a}										
Sector D:		Deg	Leg D:		Deg	Ant _{2b}										
		Climbi	ing Fac	ility Information	0	Ant _{2c}										
Location:	40.00	Deg		Sector A		Ant _a										
Location	Corro	sion Type	p.	Good condition.		Antas										
Climbing	Δ	cross.		Climbing nath was un	obstructed	Ant.										
Facility		ndition:		Good condition	lobstructeu.	Ant										
		nution.		Good condition.		Ant _{4a}										
	a	a III -	a	B		Ant _{4b}										
						Ant _{4c}										
						Ant _{5a}										
c		十章	##			Ant _{5b}										
		π'		TT THE OF EQUIPMENT		Ant _{5c}										
					DISTANCE FORM TOO OF MAN	Standoff										
					PLATFORM NEWBER TO LOWEST TIP OF ANT./EQPT. OF CARRIER ABOVE. (N/A IF > 10 FT.)	Ant on										
_						Standoff										
						Ant on										
EXISTING PLATFORM-	T	ʻ		U	INJUSTIC: FROM TOP OF MAIN PLATFORM NEMBER TO HIGHEST TIP OF ANT/EQPT. OF CARRIER BELOW. (N/A IF > 10 FT)	Tower										
	а г		n	D TP OF EQUIPMENTS		Tower										
[Ë É	ווור	[["] []							Sector C					
						Ant _{1a}										
c		計章	ttt:	P		Ant _{1b}	SBNHH-1D65B	11.85	7.10	72.87	er from R	79	32.00	8.00	260.00	156
l	Ļ Ļ	ЧЦЦ	1114			Ant _{1c}	B4 RRH2x60-4R	10.63	5.74	36.60	er from R	79.3333	28.00	7.00		159
						Ant _{za}										
Γ] [Antah	SBNHH-1D65B	11.85	7.10	72.87	er from R	79	32.00	8.00	260.00	162
d						Antac	B13 RRH4x30	12.00	9.00	21.60	er from R	80.1667	18.00	7.00		165
						Anta										
L,	,	┙᠆┣		T TP OF EQUIPMENT	-	Antak										
						Antac										
г	-	- K			DISTANCE FROM TOP OF BOTTOM	Ant										
					ANT./EQPT. OF CARRIER ABOVE. (N/A IF > 10 FT.)	Antas										
						Ant										
c					L.	Ant _{4c}										
EXISTING SECTOR FR		⊸	7		DISTANCE FROM TOP OF BOTTOM SUPPORT RAL TO HIGHEST TIP OF	Ant										
MO	JUNT	K	/	-	ANT./EQPT. OF CARRIER HELOW. (N/A IF > 10 FT.)	Ant_										
ہے	L L	டி ∥்	L.		L	Ant on										
						Standoff										
1						Ant on										
r.	····· A		/	h		Standoff										
4	-	- K	· لها			Ant on										
						Ant on										
						Tower										
								-		_	Sector D)	-	-		
						Ant _{1a}										
						Ant _{1b}										
						Ant _{1c}										
						Ant _{za}										
						Ant _{2b}										
						Ant _{2c}										
						Ant _{3a}										
						Ant _{3b}										
						Ant _{3c}										
						Ant _{4a}										
						Ant _{4b}										
						Ant _{4c}										
						Ant _{5a}										
						Ant _{5b}										
						Ant _{sc}										
						Ant on										
						Standoff										
						Ant on										
						Standoff Apt or										
						Tower										
					Ant on											
					Tower											
1					Ob	served Saf	ety and Structural Issu	les Durin	g the Mou	nt Mappin	5					Dk - t - "
Issue #	1						Description of	orissue								Pnoto #

1	
2	
3	
4	
5	
6	
7	
8	

Mapping Notes

1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)

2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.

3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.

4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.

5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.

6. Please measure and report the size and length of all existing antenna mounting pipes.

7. Please measure and report the antenna information for all sectors.

8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

Standard Conditions
1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.

side

MP Connection

Front

z X		
Maser Consulting	468946-VZW_MT_LOT_SectorA_H	SK - 1 Aug 29, 2022 at 3:20 PM 468946-VZW_MT_LOT_A_H.r3d

z X		Code Check (Env) No Cali > 1.0 50 .5075
Member Code Checks Displayed (Envel Results for LC 1, 1.2D+1.0Wo (0 Deg)	pped)	
Maser Consulting	468946-VZW_MT_LOT_SectorA_H	SK - 2 Aug 29, 2022 at 3:20 PM 468946-VZW_MT_LOT_A_H.r3d

z v v		Shear Chec (Env) 90-1,
Member Shear Checks Displayed (Enve Results for LC 1, 1.2D+1.0Wo (0 Deg) Maser Consulting	pped) 468946-VZW_MT_LOT_SectorA_H	SK - 3 Aug 29, 2022 at 3:20 PM

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Antenna D	None					24			
2	Antenna Di	None					24			
3	Antenna Wo (0 Deg)	None					24			
4	Antenna Wo (30 Deg)	None					24			
5	Antenna Wo (60 Deg)	None					24			
6	Antenna Wo (90 Deg)	None					24			
7	Antenna Wo (120 Deg)	None					24			
8	Antenna Wo (150 Deg)	None					24			
9	Antenna Wo (180 Deg)	None					24			
10	Antenna Wo (210 Deg)	None					24			
11	Antenna Wo (240 Deg)	None					24			
12	Antenna Wo (270 Deg)	None					24			
13	Antenna Wo (300 Deg)	None					24			
14	Antenna Wo (330 Deg)	None					24			
15	Antenna Wi (0 Deg)	None					24			
16	Antenna Wi (30 Deg)	None					24			
17	Antenna Wi (60 Deg)	None					24			
18	Antenna Wi (90 Deg)	None					24			
19	Antenna Wi (120 Deg)	None					24			
20	Antenna Wi (150 Deg)	None					24			
21	Antenna Wi (180 Deg)	None	-				24			
22	Antenna Wi (210 Deg)	None					24			
23	Antenna Wi (240 Deg)	None	-				24			
24	Antenna Wi (270 Deg)	None					24			
25	Antenna Wi (300 Deg)	None	-				24			
26	Antenna Wi (330 Deg)	None					24			
20	Antenna Wm (0 Deg)	None					24			
21	Antenna Wm (30 Deg)	None					24			
20	Antenna Wm (60 Deg)	None					24			
20	Antenna Wm (00 Deg)	None					24			
31	Antenna Wm (120 Deg)	None					24			
32	Antenna Wm (150 Deg)	None					24			
22	Antenna Wm (180 Deg)	None					24			
24	Antenna Wm (210 Deg)	None					24			
25	Antenna Wm (240 Deg)	None					24			
30	Antenna Wm (270 Deg)	None					24			
27	Antenna Wm (200 Deg)	None					24			
20	Antenna Wm (300 Deg)	None					24			
30	Antenna Win (000 Deg)	None	-	1			24			
39	Structure Di	None		-1				1		
40	Structure DI	None	-					4		
41	Structure Wo (0 Deg)	None						0		
42	Structure Wo (S0 Deg)	None						0		
43	Structure Wo (60 Deg)	None						0		
44	Structure Wo (90 Deg)	None						8		
45	Structure Wo (120 D	None						8		
46	Structure Wo (150 D	None	-					8		
47	Structure Wo (180 D	None						8		
48	Structure Wo (210 D	None						8		
49	Structure Wo (240 D	None						8		
50	Structure Wo (270 D	None						8		
51	Structure Wo (300 D	None						8		
52	Structure Wo (330 D	None						8		
53	Structure Wi (0 Deg)	None						8		
54	Structure Wi (30 Deg)	None						8		
55	Structure Wi (60 Deg)	None						8		
56	Structure Wi (90 Deg)	None						8		

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
57	Structure Wi (120 De	None		·				8		
58	Structure Wi (150 De	None						8		
59	Structure Wi (180 De	None						8		
60	Structure Wi (210 De	None						8		
61	Structure Wi (240 De	None						8		
62	Structure Wi (270 De	None						8		
63	Structure Wi (300 De	None						8		
64	Structure Wi (330 De	None						8		
65	Structure Wm (0 Deg)	None						8		
66	Structure Wm (30 De	None						8		
67	Structure Wm (60 De	None						8		
68	Structure Wm (90 De	None						8		
69	Structure Wm (120 D	None						8		
70	Structure Wm (150 D	None						8		
71	Structure Wm (180 D	None						8		
72	Structure Wm (210 D	None						8		
73	Structure Wm (240 D	None						8		
74	Structure Wm (270 D	None						8		
75	Structure Wm (300 D	None						8		
76	Structure Wm (330 D	None						8		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	Antenna Ev	None					24			
82	Antenna Eh (0 Deg)	None					16			
83	Antenna Eh (90 Deg)	None					16			
84	Structure Ev	ELY		042						
85	Structure Eh (0 Deg)	ELZ			104					
86	Structure Eh (90 Deg)	ELX	.104							

Load Combinations

	Description	S	PDelta	<u>S</u> E	3	Fa	<u>В</u>	Fa	В	Fa	<u>. В</u>	Fa	В	Fa	.B	Fa	В	Fa	B	Fa	.B	Fa	<u>B</u>	<u>Fa</u>
1	1.2D+1.0Wo (0 Deg)	Yes	Y		1	1.2	39	1.2	3	1	41	1												
2	1.2D+1.0Wo (30 Deg)	Yes	Y		1	1.2	<u> 39</u>	1.2	4	1	42	1												
3	1.2D+1.0Wo (60 Deg)	Yes	Y		1	1.2	39	1.2	5	1	43	1												
4	1.2D+1.0Wo (90 Deg)	Yes	Y		1	1.2	39	1.2	6	1	44	1												
5	1.2D+1.0Wo (120 Deg)	Yes	Y		1	1.2	39	1.2	7	1	45	1												
6	1.2D+1.0Wo (150 Deg)	Yes	Y		1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0Wo (180 Deg)	Yes	Y		1	1.2	39	1.2	9	1	47	1												
8	1.2D+1.0Wo (210 Deg)	Yes	Y		1	1.2	39	1.2	10	1	48	1												
9	1.2D+1.0Wo (240 Deg)	Yes	Y		1	1.2	39	1.2	11	1	49	1												
10	1.2D+1.0Wo (270 Deg)	Yes	Y		1	1.2	39	1.2	12	1	50	1												
11	1.2D+1.0Wo (300 Deg)	Yes	Y		1	1.2	39	1.2	13	1	51	1												
12	1.2D+1.0Wo (330 Deg)	Yes	Y		1	1.2	39	1.2	14	1	52	1												
13	1.2D + 1.0Di + 1.0Wi (0 Deg)	Yes	Y		1	1.2	39	1.2	2	1	40	1	15	1	53	1								
14	1.2D + 1.0Di + 1.0Wi (30 Deg)	Yes	Y		1	1.2	39	1.2	2	1	40	1	16	1	54	1								
15	1.2D + 1.0Di + 1.0Wi (60 Deg)	Yes	Y		1	1.2	39	1.2	2	1	40	1	17	1	55	1								
16	1.2D + 1.0Di + 1.0Wi (90 Deg)	Yes	Y		1	1.2	39	1.2	2	1	40	1	18	1	56	1								
17	1.2D + 1.0Di + 1.0Wi (120 Deg)	Yes	Y		1	1.2	39	1.2	2	1	40	1	19	1	57	1								
18	1.2D + 1.0Di + 1.0Wi (150 Deg)	Yes	Y		1	1.2	39	1.2	2	1	40	1	20	1	58	1								
19	1.2D + 1.0Di + 1.0Wi (180 Deg)	Yes	Y		1	1.2	39	1.2	2	1	40	1	21	1	59	1								
20	1.2D + 1.0Di + 1.0Wi (210 Deg)	Yes	Y		1	1.2	39	1.2	2	1	40	1	22	1	60	1								
21	1.2D + 1.0Di + 1.0Wi (240 Deg)	Yes	Y		1	1.2	39	1.2	2	1	40	1	23	1	61	1								
22	1.2D + 1.0Di + 1.0Wi (270 Deg)	Yes	Y		1	1.2	39	1.2	2	1	40	1	24	1	62	1								

Load Combinations (Continued)

	Description	S	PDelta	S	B	Fa	B	Fa	В	Fa	B	Fa	B	Fa	B	Fa	В	Fa	B	Fa	B	Fa	B	<u>Fa</u>
23	1.2D + 1.0Di + 1.0Wi (300 Deg)	Yes	Y		1	1.2	39	1.2	2	1	40	1	25	1	63	1								
24	1.2D + 1.0Di + 1.0Wi (330 Deg)	Yes	Y		1	1.2	39	1.2	2	1	40	1	26	1	64	1								
25	1.2D + 1.5Lm1 + 1.0Wm (0 D	Yes	Y		1	1.2	39	1.2	77	1.5	27	1	65	1										
26	1.2D + 1.5Lm1 + 1.0Wm (30	Yes	Y		1	1.2	39	1.2	77	1.5	28	1	66	1										
27	1.2D + 1.5Lm1 + 1.0Wm (60	Yes	Y		1	1.2	39	1.2	77	1.5	29	1	67	1										
28	1.2D + 1.5Lm1 + 1.0Wm (90	Yes	Y		1	1.2	39	1.2	77	1.5	30	1	68	1										
29	1.2D + 1.5Lm1 + 1.0Wm (120	Yes	Y		1	1.2	39	1.2	77	1.5	31	1	69	1										
30	1.2D + 1.5Lm1 + 1.0Wm (150	Yes	Y		1	1.2	39	1.2	77	1.5	32	1	70	1										
31	1.2D + 1.5Lm1 + 1.0Wm (180	Yes	Ý		1	1.2	39	1.2	77	1.5	33	1	71	1										
32	1.2D + 1.5Lm1 + 1.0Wm (210	Yes	Ý		1	1.2	39	1.2	77	1.5	34	1	72	1										
33	1.2D + 1.5Lm1 + 1.0Wm (240	Yes	Ý		1	1.2	39	1.2	77	1.5	35	1	73	1										
34	1.2D + 1.5Lm1 + 1.0Wm (270	Yes	Ý		1	1.2	39	1.2	77	1.5	36	1	74	1										
35	1.2D + 1.5Lm1 + 1.0Wm (300	Yes	Ý		1	12	39	12	77	1.5	37	1	75	1										
36	1.2D + 1.5Lm1 + 1.0Wm (330	Yes	Ý		1	12	39	12	77	1.5	38	1	76	1										
37	1.2D + 1.5Lm2 + 1.0Wm (0 D	Yes	Ý		1	1.2	39	12	78	1.5	27	1	65	1										
38	1.2D + 1.5Lm2 + 1.0Wm (30	Yes	Y		1	1.2	39	12	78	1.5	28	1	66	1										
39	$1.2D + 1.5I m^2 + 1.0Wm (60)$	Yes	Ý		1	1.2	30	1.2	78	1.5	29	1	67	1							-			
40	$1.2D + 1.5I m^2 + 1.0Wm (90)$	Yes	V		1	1.2	30	1.2	78	1.5	30	1	68	1										
40	$1.2D + 1.5I m^2 + 1.0Wm (120)$	Yes	- <u>-</u>		1	1.2	30	1.2	78	1.5	31	1	69	1						_				
41	1.2D + 1.5Lm2 + 1.0Wm (120.1)	Yes	- I - V		1	1.2	30	1.2	78	1.5	32	1	70	1										
42	1.2D + 1.5Lm2 + 1.0Wm (180	Yes	 		1	1.2	30	1.2	78	1.5	32	1	71	1	_						_			
43	$1.2D + 1.5Lm^2 + 1.0Wm$ (210	Yes			1	1.2	30	1.2	78	1.5	34	1	72	1										
44	$1.2D + 1.5Lm^2 + 1.0Wm (240)$	Vae			1	1.2	29	1.2	70	1.5	25	1	72	1						_				
45	$1.2D + 1.5Lm^2 + 1.0Wm$ (270	Ves			1	1.2	39	1.2	70	1.5	30	1	73	1										
40	$1.2D \pm 1.5Lm^2 \pm 1.0Wm$ (200	Voc			1	1.2	29	1.2	70	1.5	27	1	74	1	_								_	
47	$1.2D \pm 1.5Lm^2 \pm 1.0Wm$ (330	Voc			1	1.2	20	1.2	70	1.5	31	1	75	1										
48	1.2D + 1.5EIII2 + 1.0WIII (350	Voc	<u>ř</u>			1.2	39	1.2	70	1.5	30		70		_					_			_	
49	1.2D + 1.5LV1	Yes	<u> </u>		1	1.2	39	1.2	79	1.5													_	
50	1.2D + 1.5LV2	res	<u> </u>		1	1.2	39	1.2	80	1.5														
51	1.4D	res	<u> </u>		1	1.4	39	1.4	0.4	4	_	4	00	4	00			4	-				_	
52	1.2D + 1.0EV + 1.0ER (0 Deg)	res	<u> </u>		1	1.2	39	1.2	81	1	E	1	82	1	83	_	E	1	E	_				
53	1.2D + 1.0EV + 1.0Eh (30 Deg)	Yes	<u> </u>		1	1.2	39	1.2	81	1	E	1	82	.866	83	.5	E	.866	E	.5				
54	1.2D + 1.0EV + 1.0En (60 Deg)	res	<u> </u>		1	1.2	39	1.2	81	1	E	1	82	.5	83	.866	E	.5	E	.866				
55	1.2D + 1.0EV + 1.0Eh (90 Deg)	Yes	<u> </u>		1	1.2	39	1.2	81	1	E	1	82	_	83	1	E	-	E	1				
56	1.2D + 1.0Ev + 1.0Eh (120 De	Yes	<u>Y</u>		1	1.2	39	1.2	81	1	E	1	82	5	83	.866	۲	5	E	.866				
57	1.2D + 1.0Ev + 1.0Eh (150 De	Yes	<u>Y</u>		1	1.2	39	1.2	81	1	E	1	82	8	83	.5	E	8	E	.5				
58	1.2D + 1.0Ev + 1.0Eh (180 De	Yes	Y		1	1.2	39	1.2	81	1	E	1	82	-1	83	_	E	-1	E					
59	1.2D + 1.0Ev + 1.0Eh (210 De	Yes	<u>Y</u>		1	1.2	39	1.2	81	1	E	1	82	8	83	5	E	8	E	5				
60	1.2D + 1.0Ev + 1.0Eh (240 De	Yes	Y		1	1.2	39	1.2	81	1	E	1	82	5	83	8	E	5	E	8				
61	1.2D + 1.0Ev + 1.0Eh (270 De	Yes	<u>Y</u>		1	1.2	39	1.2	81	1	E	1	82		83	-1	E	_	E	-1				
62	1.2D + 1.0Ev + 1.0Eh (300 De	Yes	Y		1	1.2	39	1.2	81	1	E	1	82	.5	83	8	E	.5	E	8				
63	1.2D + 1.0Ev + 1.0Eh (330 De	Yes	<u>Y</u>		1	1.2	39	1.2	81	1	E	1	82	.866	83	5	E	.866	E	5				
64	0.9D - 1.0Ev + 1.0Eh (0 Deg)	Yes	Y		1	.9	39	.9	81	-1	E	-1	82	1	83		E	1	E					
65	0.9D - 1.0Ev + 1.0Eh (30 Deg)	Yes	Y		1	.9	39	.9	81	-1	E	-1	82	.866	83	.5	E	.866	E	.5				
66	0.9D - 1.0Ev + 1.0Eh (60 Deg)	Yes	Y		1	.9	39	.9	81	-1	E	-1	82	.5	83	.866	E	.5	E	.866				
67	0.9D - 1.0Ev + 1.0Eh (90 Deg)	Yes	Y		1	.9	39	.9	81	-1	E	-1	82		83	1	E		E	1				
68	0.9D - 1.0Ev + 1.0Eh (120 Deg)	Yes	Y		1	.9	39	.9	81	-1	E	-1	82	5	83	.866	E.:	5	E	.866				
69	0.9D - 1.0Ev + 1.0Eh (150 Deg)	Yes	Y		1	.9	39	.9	81	-1	E	-1	82	8	83	.5	E	8	E	.5				
70	0.9D - 1.0Ev + 1.0Eh (180 Deg)	Yes	Y		1	.9	39	.9	81	-1	E	-1	82	-1	83		E	-1	E					
71	0.9D - 1.0Ev + 1.0Eh (210 Deg)	Yes	Y		1	.9	39	.9	81	-1	E	-1	82	8	83	5	E	8	E	5				
72	0.9D - 1.0Ev + 1.0Eh (240 Deg)	Yes	Y		1	.9	39	.9	81	-1	E	-1	82	5	83	8	E	5	E	8				
73	0.9D - 1.0Ev + 1.0Eh (270 Deg)	Yes	Y		1	.9	39	.9	81	-1	E	-1	82		83	-1	E		E	-1				
74	0.9D - 1.0Ev + 1.0Eh (300 Deg)	Yes	Y		1	.9	39	.9	81	-1	E	-1	82	.5	83	8	E	.5	E	8				
75	0.9D - 1.0Ev + 1.0Eh (330 Deg)	Yes	Y		1	.9	39	.9	81	-1	E	-1	82	.866	83	5	E	.866	E	5				

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N1	0	0	1.46875	0	
2	N2	0	0	2.052083	0	
3	N5	0	0	2.197917	0	
4	N6	2.5	0	2.197917	0	
5	N7	-2.5	0	2.197917	0	
6	N11	2.166667	0	2.197917	0	
7	N12	2.166667	0	2.447917	0	
8	N13	2.166667	4.166667	2.447917	0	
9	N15	-2.166667	0	2.197917	0	
10	N16	-2.166667	0	2.447917	0	
11	N17	-2.166667	4.166667	2.447917	0	
12	N14A	2.166667	-3.833333	2.447917	0	
13	N15A	-2.166667	-3.833333	2.447917	0	
14	N14	-2.166667	2	2.447917	0	
15	N15B	-2.166667	-2	2.447917	0	
16	N16A	-2.166667	1	2.447917	0	
17	N17A	-2.166667	-1	2.447917	0	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Materia	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Antenna Pipe	PIPE 2.0	Column	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
2	Standoff Arm	HSS4X4X4	Beam	Tube	A500 Gr.46	Typical	3.37	7.8	7.8	12.8
3	Horizontal	PIPE 3.0	Column	Pipe	A53 Gr. B	Typical	2.07	2.85	2.85	5.69

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
3	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.4	58	1.3
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.4	58	1.3
6	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
7	A500 Gr 50	29000	11154	.3	.65	.49	50	1.5	58	1.2

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M1	N1	N2			Standoff Arm	Beam	Tube	A500 Gr.46	Typical
2	FACE	N7	N6			Horizontal	Column	Pipe	A53 Gr. B	Typical
3	MP1A	N13	N14A			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
4	M8	N11	N12			RIGID	None	None	RIGID	Typical
5	MP2A	N17	N15A			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
6	M10	N15	N16			RIGID	None	None	RIGID	Typical
7	M10A	N2	N5			RIGID	None	None	RIGID	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatA	Analysis	Inactive	Seismic
1	M1						Yes	Default			None
2	FACE						Yes	** NA **			None
3	MP1A						Yes	** NA **			None
4	M8						Yes	** NA **			None

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical Defl RatAnalysis	. Inactive	Seismic
5	MP2A						Yes ** NA **		None
6	M10						Yes ** NA **		None
7	M10A						Yes ** NA **		None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Y	-43.55	3.17
2	MP1A	My	022	3.17
3	MP1A	Mz	0	3.17
4	MP1A	Y	-43.55	5.17
5	MP1A	My	022	5.17
6	MP1A	Mz	0	5.17
7	MP2A	Y	-23	2.17
8	MP2A	My	021	2.17
9	MP2A	Mz	.019	2.17
10	MP2A	Y	-23	6.17
11	MP2A	My	021	6.17
12	MP2A	Mz	.019	6.17
13	MP2A	Y	-23	2.17
14	MP2A	My	021	2.17
15	MP2A	Mz	019	2.17
16	MP2A	Y	-23	6.17
17	MP2A	My	021	6.17
18	MP2A	Mz	019	6.17
19	MP2A	Y	-84.4	3.17
20	MP2A	My	.042	3.17
21	MP2A	Mz	0	3.17
22	MP2A	Y	-70.3	5.17
23	MP2A	My	.035	5.17
24	MP2A	Mz	0	5.17

Member Point Loads (BLC 2 : Antenna Di)

=

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Y	-33.276	3.17
2	MP1A	My	017	3.17
3	MP1A	Mz	0	3.17
4	MP1A	Y	-33.276	5.17
5	MP1A	My	017	5.17
6	MP1A	Mz	0	5.17
7	MP2A	Y	-77.195	2.17
8	MP2A	My	071	2.17
9	MP2A	Mz	.064	2.17
10	MP2A	Y	-77.195	6.17
11	MP2A	My	071	6.17
12	MP2A	Mz	.064	6.17
13	MP2A	Y	-77.195	2.17
14	MP2A	My	071	2.17
15	MP2A	Mz	064	2.17
16	MP2A	Y	-77.195	6.17
17	MP2A	My	071	6.17
18	MP2A	Mz	064	6.17
19	MP2A	Y	-41.912	3.17
20	MP2A	My	.021	3.17
21	MP2A	Mz	0	3.17
22	MP2A	Y	-37.674	5.17

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
23	MP2A	My	.019	5.17
24	MP2A	Mz	0	5.17

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	0	3.17
2	MP1A	Z	-68.068	3.17
3	MP1A	Mx	0	3.17
4	MP1A	Х	0	5.17
5	MP1A	Z	-68.068	5.17
6	MP1A	Mx	0	5.17
7	MP2A	Х	0	2.17
8	MP2A	Z	-82.134	2.17
9	MP2A	Mx	068	2.17
10	MP2A	Х	0	6.17
11	MP2A	Z	-82.134	6.17
12	MP2A	Mx	068	6.17
13	MP2A	Х	0	2.17
14	MP2A	Z	-82.134	2.17
15	MP2A	Mx	.068	2.17
16	MP2A	Х	0	6.17
17	MP2A	Z	-82.134	6.17
18	MP2A	Mx	.068	6.17
19	MP2A	X	0	3.17
20	MP2A	Z	-53.83	3.17
21	MP2A	Mx	0	3.17
22	MP2A	Х	0	5.17
23	MP2A	Z	-53.83	5.17
24	MP2A	Mx	0	5.17

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	28.456	3.17
2	MP1A	Z	-49.287	3.17
3	MP1A	Mx	014	3.17
4	MP1A	Х	28.456	5.17
5	MP1A	Z	-49.287	5.17
6	MP1A	Mx	014	5.17
7	MP2A	Х	38.484	2.17
8	MP2A	Z	-66.656	2.17
9	MP2A	Mx	091	2.17
10	MP2A	Х	38.484	6.17
11	MP2A	Z	-66.656	6.17
12	MP2A	Mx	091	6.17
13	MP2A	Х	38.484	2.17
14	MP2A	Z	-66.656	2.17
15	MP2A	Mx	.02	2.17
16	MP2A	Х	38.484	6.17
17	MP2A	Z	-66.656	6.17
18	MP2A	Mx	.02	6.17
19	MP2A	Х	24.701	3.17
20	MP2A	Z	-42.783	3.17
21	MP2A	Mx	.012	3.17
22	MP2A	X	23.876	5.17
23	MP2A	Z	-41.355	5.17
24	MP2A	Mx	.012	5.17

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	29.963	3.17
2	MP1A	Z	-17.299	3.17
3	MP1A	Mx	015	3.17
4	MP1A	Х	29.963	5.17
5	MP1A	Z	-17.299	5.17
6	MP1A	Mx	015	5.17
7	MP2A	Х	57.708	2.17
8	MP2A	Z	-33.318	2.17
9	MP2A	Mx	081	2.17
10	MP2A	Х	57.708	6.17
11	MP2A	Z	-33.318	6.17
12	MP2A	Mx	081	6.17
13	MP2A	Х	57.708	2.17
14	MP2A	Z	-33.318	2.17
15	MP2A	Mx	025	2.17
16	MP2A	Х	57.708	6.17
17	MP2A	Z	-33.318	6.17
18	MP2A	Mx	025	6.17
19	MP2A	Х	35.114	3.17
20	MP2A	Z	-20.273	3.17
21	MP2A	Mx	.018	3.17
22	MP2A	Х	30.828	5.17
23	MP2A	Z	-17.799	5.17
24	MP2A	Mx	.015	5.17

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	23.442	3.17
2	MP1A	Z	0	3.17
3	MP1A	Mx	012	3.17
4	MP1A	Х	23.442	5.17
5	MP1A	Z	0	5.17
6	MP1A	Mx	012	5.17
7	MP2A	Х	61.47	2.17
8	MP2A	Z	0	2.17
9	MP2A	Mx	056	2.17
10	MP2A	Х	61.47	6.17
11	MP2A	Z	0	6.17
12	MP2A	Mx	056	6.17
13	MP2A	Х	61.47	2.17
14	MP2A	Z	0	2.17
15	MP2A	Mx	056	2.17
16	MP2A	Х	61.47	6.17
17	MP2A	Z	0	6.17
18	MP2A	Mx	056	6.17
19	MP2A	Х	36.118	3.17
20	MP2A	Z	0	3.17
21	MP2A	Mx	.018	3.17
22	MP2A	Х	29.519	5.17
23	MP2A	Z	0	5.17
24	MP2A	Mx	.015	5.17

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	29.963	3.17
2	MP1A	Z	17.299	3.17

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	MP1A	Mx	015	3.17
4	MP1A	Х	29.963	5.17
5	MP1A	Z	17.299	5.17
6	MP1A	Mx	015	5.17
7	MP2A	Х	57.708	2.17
8	MP2A	Z	33.318	2.17
9	MP2A	Mx	025	2.17
10	MP2A	Х	57.708	6.17
11	MP2A	Z	33.318	6.17
12	MP2A	Mx	025	6.17
13	MP2A	Х	57.708	2.17
14	MP2A	Z	33.318	2.17
15	MP2A	Mx	081	2.17
16	MP2A	Х	57.708	6.17
17	MP2A	Z	33.318	6.17
18	MP2A	Mx	081	6.17
19	MP2A	Х	35.114	3.17
20	MP2A	Z	20.273	3.17
21	MP2A	Mx	.018	3.17
22	MP2A	X	30.828	5.17
23	MP2A	Z	17.799	5.17
24	MP2A	Mx	.015	5.17

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	28.456	3.17
2	MP1A	Z	49.287	3.17
3	MP1A	Mx	014	3.17
4	MP1A	Х	28.456	5.17
5	MP1A	Z	49.287	5.17
6	MP1A	Mx	014	5.17
7	MP2A	Х	38.484	2.17
8	MP2A	Z	66.656	2.17
9	MP2A	Mx	.02	2.17
10	MP2A	Х	38.484	6.17
11	MP2A	Z	66.656	6.17
12	MP2A	Mx	.02	6.17
13	MP2A	X	38.484	2.17
14	MP2A	Z	66.656	2.17
15	MP2A	Mx	091	2.17
16	MP2A	Х	38.484	6.17
17	MP2A	Z	66.656	6.17
18	MP2A	Mx	091	6.17
19	MP2A	Х	24.701	3.17
20	MP2A	Z	42.783	3.17
21	MP2A	Mx	.012	3.17
22	MP2A	Х	23.876	5.17
23	MP2A	Z	41.355	5.17
24	MP2A	Mx	.012	5.17

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	0	3.17
2	MP1A	Z	68.068	3.17
3	MP1A	Mx	0	3.17
4	MP1A	X	0	5.17

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP1A	Z	68.068	5.17
6	MP1A	Mx	0	5.17
7	MP2A	Х	0	2.17
8	MP2A	Z	82.134	2.17
9	MP2A	Mx	.068	2.17
10	MP2A	Х	0	6.17
11	MP2A	Z	82.134	6.17
12	MP2A	Mx	.068	6.17
13	MP2A	Х	0	2.17
14	MP2A	Z	82.134	2.17
15	MP2A	Mx	068	2.17
16	MP2A	Х	0	6.17
17	MP2A	Z	82.134	6.17
18	MP2A	Mx	068	6.17
19	MP2A	Х	0	3.17
20	MP2A	Z	53.83	3.17
21	MP2A	Mx	0	3.17
22	MP2A	Х	0	5.17
23	MP2A	Z	53.83	5.17
24	MP2A	Mx	0	5.17

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-28.456	3.17
2	MP1A	Z	49.287	3.17
3	MP1A	Mx	.014	3.17
4	MP1A	Х	-28.456	5.17
5	MP1A	Z	49.287	5.17
6	MP1A	Mx	.014	5.17
7	MP2A	Х	-38.484	2.17
8	MP2A	Z	66.656	2.17
9	MP2A	Mx	.091	2.17
10	MP2A	Х	-38.484	6.17
11	MP2A	Z	66.656	6.17
12	MP2A	Mx	.091	6.17
13	MP2A	Х	-38.484	2.17
14	MP2A	Z	66.656	2.17
15	MP2A	Mx	02	2.17
16	MP2A	Х	-38.484	6.17
17	MP2A	Z	66.656	6.17
18	MP2A	Mx	02	6.17
19	MP2A	Х	-24.701	3.17
20	MP2A	Z	42.783	3.17
21	MP2A	Mx	012	3.17
22	MP2A	Х	-23.876	5.17
23	MP2A	Z	41.355	5.17
24	MP2A	Mx	012	5.17

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-29.963	3.17
2	MP1A	Z	17.299	3.17
3	MP1A	Mx	.015	3.17
4	MP1A	Х	-29.963	5.17
5	MP1A	Z	17.299	5.17
6	MP1A	Mx	.015	5.17

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
7	MP2A	Х	-57.708	2.17
8	MP2A	Z	33.318	2.17
9	MP2A	Mx	.081	2.17
10	MP2A	Х	-57.708	6.17
11	MP2A	Z	33.318	6.17
12	MP2A	Mx	.081	6.17
13	MP2A	Х	-57.708	2.17
14	MP2A	Z	33.318	2.17
15	MP2A	Mx	.025	2.17
16	MP2A	Х	-57.708	6.17
17	MP2A	Z	33.318	6.17
18	MP2A	Mx	.025	6.17
19	MP2A	Х	-35.114	3.17
20	MP2A	Z	20.273	3.17
21	MP2A	Mx	018	3.17
22	MP2A	Х	-30.828	5.17
23	MP2A	Z	17.799	5.17
24	MP2A	Mx	015	5.17

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-23.442	3.17
2	MP1A	Z	0	3.17
3	MP1A	Mx	.012	3.17
4	MP1A	Х	-23.442	5.17
5	MP1A	Z	0	5.17
6	MP1A	Mx	.012	5.17
7	MP2A	Х	-61.47	2.17
8	MP2A	Z	0	2.17
9	MP2A	Mx	.056	2.17
10	MP2A	Х	-61.47	6.17
11	MP2A	Z	0	6.17
12	MP2A	Mx	.056	6.17
13	MP2A	Х	-61.47	2.17
14	MP2A	Z	0	2.17
15	MP2A	Mx	.056	2.17
16	MP2A	Х	-61.47	6.17
17	MP2A	Z	0	6.17
18	MP2A	Mx	.056	6.17
19	MP2A	Х	-36.118	3.17
20	MP2A	Z	0	3.17
21	MP2A	Mx	018	3.17
22	MP2A	Х	-29.519	5.17
23	MP2A	Z	0	5.17
24	MP2A	Mx	015	5.17

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-29.963	3.17
2	MP1A	Z	-17.299	3.17
3	MP1A	Mx	.015	3.17
4	MP1A	Х	-29.963	5.17
5	MP1A	Z	-17.299	5.17
6	MP1A	Mx	.015	5.17
7	MP2A	Х	-57.708	2.17
8	MP2A	Z	-33.318	2.17

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP2A	Mx	.025	2.17
10	MP2A	Х	-57.708	6.17
11	MP2A	Z	-33.318	6.17
12	MP2A	Mx	.025	6.17
13	MP2A	Х	-57.708	2.17
14	MP2A	Z	-33.318	2.17
15	MP2A	Mx	.081	2.17
16	MP2A	Х	-57.708	6.17
17	MP2A	Z	-33.318	6.17
18	MP2A	Mx	.081	6.17
19	MP2A	Х	-35.114	3.17
20	MP2A	Z	-20.273	3.17
21	MP2A	Mx	018	3.17
22	MP2A	Х	-30.828	5.17
23	MP2A	Z	-17.799	5.17
24	MP2A	Mx	015	5.17

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-28.456	3.17
2	MP1A	Z	-49.287	3.17
3	MP1A	Mx	.014	3.17
4	MP1A	Х	-28.456	5.17
5	MP1A	Z	-49.287	5.17
6	MP1A	Mx	.014	5.17
7	MP2A	X	-38.484	2.17
8	MP2A	Z	-66.656	2.17
9	MP2A	Mx	02	2.17
10	MP2A	Х	-38.484	6.17
11	MP2A	Z	-66.656	6.17
12	MP2A	Mx	02	6.17
13	MP2A	X	-38.484	2.17
14	MP2A	Z	-66.656	2.17
15	MP2A	Mx	.091	2.17
16	MP2A	Х	-38.484	6.17
17	MP2A	Z	-66.656	6.17
18	MP2A	Mx	.091	6.17
19	MP2A	Х	-24.701	3.17
20	MP2A	Z	-42.783	3.17
21	MP2A	Mx	012	3.17
22	MP2A	X	-23.876	5.17
23	MP2A	Z	-41.355	5.17
24	MP2A	Mx	012	5.17

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	0	3.17
2	MP1A	Z	-16.72	3.17
3	MP1A	Mx	0	3.17
4	MP1A	Х	0	5.17
5	MP1A	Z	-16.72	5.17
6	MP1A	Mx	0	5.17
7	MP2A	Х	0	2.17
8	MP2A	Z	-33.958	2.17
9	MP2A	Mx	028	2.17
10	MP2A	Х	0	6.17

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
11	MP2A	Z	-33.958	6.17
12	MP2A	Mx	028	6.17
13	MP2A	Х	0	2.17
14	MP2A	Z	-33.958	2.17
15	MP2A	Mx	.028	2.17
16	MP2A	Х	0	6.17
17	MP2A	Z	-33.958	6.17
18	MP2A	Mx	.028	6.17
19	MP2A	Х	0	3.17
20	MP2A	Z	-14.046	3.17
21	MP2A	Mx	0	3.17
22	MP2A	Х	0	5.17
23	MP2A	Z	-14.046	5.17
24	MP2A	Mx	0	5.17

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	7.156	3.17
2	MP1A	Z	-12.394	3.17
3	MP1A	Mx	004	3.17
4	MP1A	X	7.156	5.17
5	MP1A	Z	-12.394	5.17
6	MP1A	Mx	004	5.17
7	MP2A	Х	15.942	2.17
8	MP2A	Z	-27.612	2.17
9	MP2A	Mx	038	2.17
10	MP2A	Х	15.942	6.17
11	MP2A	Z	-27.612	6.17
12	MP2A	Mx	038	6.17
13	MP2A	X	15.942	2.17
14	MP2A	Z	-27.612	2.17
15	MP2A	Mx	.008	2.17
16	MP2A	X	15.942	6.17
17	MP2A	Z	-27.612	6.17
18	MP2A	Mx	.008	6.17
19	MP2A	X	6.485	3.17
20	MP2A	Z	-11.233	3.17
21	MP2A	Mx	.003	3.17
22	MP2A	X	6.281	5.17
23	MP2A	Z	-10.879	5.17
24	MP2A	Mx	.003	5.17

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	8.223	3.17
2	MP1A	Z	-4.747	3.17
3	MP1A	Mx	004	3.17
4	MP1A	Х	8.223	5.17
5	MP1A	Z	-4.747	5.17
6	MP1A	Mx	004	5.17
7	MP2A	Х	24.019	2.17
8	MP2A	Z	-13.868	2.17
9	MP2A	Mx	034	2.17
10	MP2A	Х	24.019	6.17
11	MP2A	Z	-13.868	6.17
12	MP2A	Mx	034	6.17

Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
13	MP2A	Х	24.019	2.17
14	MP2A	Z	-13.868	2.17
15	MP2A	Mx	01	2.17
16	MP2A	Х	24.019	6.17
17	MP2A	Z	-13.868	6.17
18	MP2A	Mx	01	6.17
19	MP2A	Х	9.372	3.17
20	MP2A	Z	-5.411	3.17
21	MP2A	Mx	.005	3.17
22	MP2A	Х	8.311	5.17
23	MP2A	Z	-4.798	5.17
24	MP2A	Mx	.004	5.17

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	7.086	3.17
2	MP1A	Z	0	3.17
3	MP1A	Mx	004	3.17
4	MP1A	Х	7.086	5.17
5	MP1A	Z	0	5.17
6	MP1A	Mx	004	5.17
7	MP2A	Х	25.661	2.17
8	MP2A	Z	0	2.17
9	MP2A	Mx	024	2.17
10	MP2A	Х	25.661	6.17
11	MP2A	Z	0	6.17
12	MP2A	Mx	024	6.17
13	MP2A	Х	25.661	2.17
14	MP2A	Z	0	2.17
15	MP2A	Mx	024	2.17
16	MP2A	X	25.661	6.17
17	MP2A	Z	0	6.17
18	MP2A	Mx	024	6.17
19	MP2A	Х	9.747	3.17
20	MP2A	Z	0	3.17
21	MP2A	Mx	.005	3.17
22	MP2A	Х	8.113	5.17
23	MP2A	Z	0	5.17
24	MP2A	Mx	.004	5.17

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	8.223	3.17
2	MP1A	Z	4.747	3.17
3	MP1A	Mx	004	3.17
4	MP1A	Х	8.223	5.17
5	MP1A	Z	4.747	5.17
6	MP1A	Mx	004	5.17
7	MP2A	Х	24.019	2.17
8	MP2A	Z	13.868	2.17
9	MP2A	Mx	01	2.17
10	MP2A	Х	24.019	6.17
11	MP2A	Z	13.868	6.17
12	MP2A	Mx	01	6.17
13	MP2A	X	24.019	2.17
14	MP2A	Z	13.868	2.17

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
15	MP2A	Mx	034	2.17
16	MP2A	Х	24.019	6.17
17	MP2A	Z	13.868	6.17
18	MP2A	Mx	034	6.17
19	MP2A	Х	9.372	3.17
20	MP2A	Z	5.411	3.17
21	MP2A	Mx	.005	3.17
22	MP2A	Х	8.311	5.17
23	MP2A	Z	4.798	5.17
24	MP2A	Mx	.004	5.17

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	7.156	3.17
2	MP1A	Z	12.394	3.17
3	MP1A	Mx	004	3.17
4	MP1A	Х	7.156	5.17
5	MP1A	Z	12.394	5.17
6	MP1A	Mx	004	5.17
7	MP2A	Х	15.942	2.17
8	MP2A	Z	27.612	2.17
9	MP2A	Mx	.008	2.17
10	MP2A	Х	15.942	6.17
11	MP2A	Z	27.612	6.17
12	MP2A	Mx	.008	6.17
13	MP2A	Х	15.942	2.17
14	MP2A	Z	27.612	2.17
15	MP2A	Mx	038	2.17
16	MP2A	Х	15.942	6.17
17	MP2A	Z	27.612	6.17
18	MP2A	Mx	038	6.17
19	MP2A	Х	6.485	3.17
20	MP2A	Z	11.233	3.17
21	MP2A	Mx	.003	3.17
22	MP2A	X	6.281	5.17
23	MP2A	Z	10.879	5.17
24	MP2A	Mx	.003	5.17

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	0	3.17
2	MP1A	Z	16.72	3.17
3	MP1A	Mx	0	3.17
4	MP1A	Х	0	5.17
5	MP1A	Z	16.72	5.17
6	MP1A	Mx	0	5.17
7	MP2A	Х	0	2.17
8	MP2A	Z	33.958	2.17
9	MP2A	Mx	.028	2.17
10	MP2A	Х	0	6.17
11	MP2A	Z	33.958	6.17
12	MP2A	Mx	.028	6.17
13	MP2A	Х	0	2.17
14	MP2A	Z	33.958	2.17
15	MP2A	Mx	028	2.17
16	MP2A	X	0	6.17

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP2A	Z	33.958	6.17
18	MP2A	Mx	028	6.17
19	MP2A	X	0	3.17
20	MP2A	Z	14.046	3.17
21	MP2A	Mx	0	3.17
22	MP2A	Х	0	5.17
23	MP2A	Z	14.046	5.17
24	MP2A	Mx	0	5.17

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-7.156	3.17
2	MP1A	Z	12.394	3.17
3	MP1A	Mx	.004	3.17
4	MP1A	Х	-7.156	5.17
5	MP1A	Z	12.394	5.17
6	MP1A	Mx	.004	5.17
7	MP2A	Х	-15.942	2.17
8	MP2A	Z	27.612	2.17
9	MP2A	Mx	.038	2.17
10	MP2A	Х	-15.942	6.17
11	MP2A	Z	27.612	6.17
12	MP2A	Mx	.038	6.17
13	MP2A	Х	-15.942	2.17
14	MP2A	Z	27.612	2.17
15	MP2A	Mx	008	2.17
16	MP2A	Х	-15.942	6.17
17	MP2A	Z	27.612	6.17
18	MP2A	Mx	008	6.17
19	MP2A	Х	-6.485	3.17
20	MP2A	Z	11.233	3.17
21	MP2A	Mx	003	3.17
22	MP2A	Х	-6.281	5.17
23	MP2A	Z	10.879	5.17
24	MP2A	Mx	003	5.17

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-8.223	3.17
2	MP1A	Z	4.747	3.17
3	MP1A	Mx	.004	3.17
4	MP1A	Х	-8.223	5.17
5	MP1A	Z	4.747	5.17
6	MP1A	Mx	.004	5.17
7	MP2A	Х	-24.019	2.17
8	MP2A	Z	13.868	2.17
9	MP2A	Mx	.034	2.17
10	MP2A	Х	-24.019	6.17
11	MP2A	Z	13.868	6.17
12	MP2A	Mx	.034	6.17
13	MP2A	Х	-24.019	2.17
14	MP2A	Z	13.868	2.17
15	MP2A	Mx	.01	2.17
16	MP2A	Х	-24.019	6.17
17	MP2A	Z	13.868	6.17
18	MP2A	Mx	.01	6.17

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
19	MP2A	Х	-9.372	3.17
20	MP2A	Z	5.411	3.17
21	MP2A	Mx	005	3.17
22	MP2A	Х	-8.311	5.17
23	MP2A	Z	4.798	5.17
24	MP2A	Mx	004	5.17

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-7.086	3.17
2	MP1A	Z	0	3.17
3	MP1A	Mx	.004	3.17
4	MP1A	Х	-7.086	5.17
5	MP1A	Z	0	5.17
6	MP1A	Mx	.004	5.17
7	MP2A	Х	-25.661	2.17
8	MP2A	Z	0	2.17
9	MP2A	Mx	.024	2.17
10	MP2A	Х	-25.661	6.17
11	MP2A	Z	0	6.17
12	MP2A	Mx	.024	6.17
13	MP2A	Х	-25.661	2.17
14	MP2A	Z	0	2.17
15	MP2A	Mx	.024	2.17
16	MP2A	Х	-25.661	6.17
17	MP2A	Z	0	6.17
18	MP2A	Mx	.024	6.17
19	MP2A	Х	-9.747	3.17
20	MP2A	Z	0	3.17
21	MP2A	Mx	005	3.17
22	MP2A	Х	-8.113	5.17
23	MP2A	Z	0	5.17
24	MP2A	Mx	004	5.17

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-8.223	3.17
2	MP1A	Z	-4.747	3.17
3	MP1A	Mx	.004	3.17
4	MP1A	Х	-8.223	5.17
5	MP1A	Z	-4.747	5.17
6	MP1A	Mx	.004	5.17
7	MP2A	Х	-24.019	2.17
8	MP2A	Z	-13.868	2.17
9	MP2A	Mx	.01	2.17
10	MP2A	Х	-24.019	6.17
11	MP2A	Z	-13.868	6.17
12	MP2A	Mx	.01	6.17
13	MP2A	Х	-24.019	2.17
14	MP2A	Z	-13.868	2.17
15	MP2A	Mx	.034	2.17
16	MP2A	Х	-24.019	6.17
17	MP2A	Z	-13.868	6.17
18	MP2A	Mx	.034	6.17
19	MP2A	Х	-9.372	3.17
20	MP2A	Z	-5.411	3.17

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP2A	Mx	005	3.17
22	MP2A	Х	-8.311	5.17
23	MP2A	Z	-4.798	5.17
24	MP2A	Mx	004	5.17

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-7.156	3.17
2	MP1A	Z	-12.394	3.17
3	MP1A	Mx	.004	3.17
4	MP1A	Х	-7.156	5.17
5	MP1A	Z	-12.394	5.17
6	MP1A	Mx	.004	5.17
7	MP2A	Х	-15.942	2.17
8	MP2A	Z	-27.612	2.17
9	MP2A	Mx	008	2.17
10	MP2A	Х	-15.942	6.17
11	MP2A	Z	-27.612	6.17
12	MP2A	Mx	008	6.17
13	MP2A	Х	-15.942	2.17
14	MP2A	Z	-27.612	2.17
15	MP2A	Mx	.038	2.17
16	MP2A	Х	-15.942	6.17
17	MP2A	Z	-27.612	6.17
18	MP2A	Mx	.038	6.17
19	MP2A	Х	-6.485	3.17
20	MP2A	Z	-11.233	3.17
21	MP2A	Mx	003	3.17
22	MP2A	Х	-6.281	5.17
23	MP2A	Z	-10.879	5.17
24	MP2A	Mx	003	5.17

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	0	3.17
2	MP1A	Z	-4.475	3.17
3	MP1A	Mx	0	3.17
4	MP1A	Х	0	5.17
5	MP1A	Z	-4.475	5.17
6	MP1A	Mx	0	5.17
7	MP2A	Х	0	2.17
8	MP2A	Z	-5.4	2.17
9	MP2A	Mx	004	2.17
10	MP2A	Х	0	6.17
11	MP2A	Z	-5.4	6.17
12	MP2A	Mx	004	6.17
13	MP2A	Х	0	2.17
14	MP2A	Z	-5.4	2.17
15	MP2A	Mx	.004	2.17
16	MP2A	Х	0	6.17
17	MP2A	Z	-5.4	6.17
18	MP2A	Mx	.004	6.17
19	MP2A	Х	0	3.17
20	MP2A	Z	-3.539	3.17
21	MP2A	Mx	0	3.17
22	MP2A	Х	0	5.17

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
23	MP2A	Z	-3.539	5.17
24	MP2A	Mx	0	5.17

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	1.871	3.17
2	MP1A	Z	-3.24	3.17
3	MP1A	Mx	000935	3.17
4	MP1A	Х	1.871	5.17
5	MP1A	Z	-3.24	5.17
6	MP1A	Mx	000935	5.17
7	MP2A	Х	2.53	2.17
8	MP2A	Z	-4.382	2.17
9	MP2A	Mx	006	2.17
10	MP2A	Х	2.53	6.17
11	MP2A	Z	-4.382	6.17
12	MP2A	Mx	006	6.17
13	MP2A	Х	2.53	2.17
14	MP2A	Z	-4.382	2.17
15	MP2A	Mx	.001	2.17
16	MP2A	Х	2.53	6.17
17	MP2A	Z	-4.382	6.17
18	MP2A	Mx	.001	6.17
19	MP2A	Х	1.624	3.17
20	MP2A	Z	-2.813	3.17
21	MP2A	Mx	.000812	3.17
22	MP2A	Х	1.57	5.17
23	MP2A	Z	-2.719	5.17
24	MP2A	Mx	.000785	5.17

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

=

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	1.97	3.17
2	MP1A	Z	-1.137	3.17
3	MP1A	Mx	000985	3.17
4	MP1A	Х	1.97	5.17
5	MP1A	Z	-1.137	5.17
6	MP1A	Mx	000985	5.17
7	MP2A	Х	3.794	2.17
8	MP2A	Z	-2.191	2.17
9	MP2A	Mx	005	2.17
10	MP2A	Х	3.794	6.17
11	MP2A	Z	-2.191	6.17
12	MP2A	Mx	005	6.17
13	MP2A	Х	3.794	2.17
14	MP2A	Z	-2.191	2.17
15	MP2A	Mx	002	2.17
16	MP2A	Х	3.794	6.17
17	MP2A	Z	-2.191	6.17
18	MP2A	Mx	002	6.17
19	MP2A	Х	2.309	3.17
20	MP2A	Z	-1.333	3.17
21	MP2A	Mx	.001	3.17
22	MP2A	Х	2.027	5.17
23	MP2A	Z	-1.17	5.17
24	MP2A	Mx	.001	5.17

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	1.541	3.17
2	MP1A	Z	0	3.17
3	MP1A	Mx	00077	3.17
4	MP1A	Х	1.541	5.17
5	MP1A	Z	0	5.17
6	MP1A	Mx	00077	5.17
7	MP2A	X	4.041	2.17
8	MP2A	Z	0	2.17
9	MP2A	Mx	004	2.17
10	MP2A	Х	4.041	6.17
11	MP2A	Z	0	6.17
12	MP2A	Mx	004	6.17
13	MP2A	Х	4.041	2.17
14	MP2A	Z	0	2.17
15	MP2A	Mx	004	2.17
16	MP2A	X	4.041	6.17
17	MP2A	Z	0	6.17
18	MP2A	Mx	004	6.17
19	MP2A	X	2.375	3.17
20	MP2A	Z	0	3.17
21	MP2A	Mx	.001	3.17
22	MP2A	X	1.941	5.17
23	MP2A	Z	0	5.17
24	MP2A	Mx	.000971	5.17

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	1.97	3.17
2	MP1A	Z	1.137	3.17
3	MP1A	Mx	000985	3.17
4	MP1A	Х	1.97	5.17
5	MP1A	Z	1.137	5.17
6	MP1A	Mx	000985	5.17
7	MP2A	Х	3.794	2.17
8	MP2A	Z	2.191	2.17
9	MP2A	Mx	002	2.17
10	MP2A	Х	3.794	6.17
11	MP2A	Z	2.191	6.17
12	MP2A	Mx	002	6.17
13	MP2A	Х	3.794	2.17
14	MP2A	Z	2.191	2.17
15	MP2A	Mx	005	2.17
16	MP2A	Х	3.794	6.17
17	MP2A	Z	2.191	6.17
18	MP2A	Mx	005	6.17
19	MP2A	Х	2.309	3.17
20	MP2A	Z	1.333	3.17
21	MP2A	Mx	.001	3.17
22	MP2A	Х	2.027	5.17
23	MP2A	Z	1.17	5.17
24	MP2A	Mx	.001	5.17

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

=

1 MP1A X 1.871 3.17 2 MP1A Z 3.24 3.17		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
2 MP1A 7 324 317	1	MP1A	Х	1.871	3.17
	2	MP1A	Z	3.24	3.17

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	MP1A	Mx	000935	3.17
4	MP1A	Х	1.871	5.17
5	MP1A	Z	3.24	5.17
6	MP1A	Mx	000935	5.17
7	MP2A	Х	2.53	2.17
8	MP2A	Z	4.382	2.17
9	MP2A	Mx	.001	2.17
10	MP2A	Х	2.53	6.17
11	MP2A	Z	4.382	6.17
12	MP2A	Mx	.001	6.17
13	MP2A	Х	2.53	2.17
14	MP2A	Z	4.382	2.17
15	MP2A	Mx	006	2.17
16	MP2A	Х	2.53	6.17
17	MP2A	Z	4.382	6.17
18	MP2A	Mx	006	6.17
19	MP2A	Х	1.624	3.17
20	MP2A	Z	2.813	3.17
21	MP2A	Mx	.000812	3.17
22	MP2A	X	1.57	5.17
23	MP2A	Z	2.719	5.17
24	MP2A	Mx	.000785	5.17

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	0	3.17
2	MP1A	Z	4.475	3.17
3	MP1A	Mx	0	3.17
4	MP1A	Х	0	5.17
5	MP1A	Z	4.475	5.17
6	MP1A	Mx	0	5.17
7	MP2A	Х	0	2.17
8	MP2A	Z	5.4	2.17
9	MP2A	Mx	.004	2.17
10	MP2A	Х	0	6.17
11	MP2A	Z	5.4	6.17
12	MP2A	Mx	.004	6.17
13	MP2A	Х	0	2.17
14	MP2A	Z	5.4	2.17
15	MP2A	Mx	004	2.17
16	MP2A	Х	0	6.17
17	MP2A	Z	5.4	6.17
18	MP2A	Mx	004	6.17
19	MP2A	Х	0	3.17
20	MP2A	Z	3.539	3.17
21	MP2A	Mx	0	3.17
22	MP2A	Х	0	5.17
23	MP2A	Z	3.539	5.17
24	MP2A	Mx	0	5.17

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-1.871	3.17
2	MP1A	Z	3.24	3.17
3	MP1A	Mx	.000935	3.17
4	MP1A	Х	-1.871	5.17

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP1A	Z	3.24	5.17
6	MP1A	Mx	.000935	5.17
7	MP2A	Х	-2.53	2.17
8	MP2A	Z	4.382	2.17
9	MP2A	Mx	.006	2.17
10	MP2A	Х	-2.53	6.17
11	MP2A	Z	4.382	6.17
12	MP2A	Mx	.006	6.17
13	MP2A	Х	-2.53	2.17
14	MP2A	Z	4.382	2.17
15	MP2A	Mx	001	2.17
16	MP2A	Х	-2.53	6.17
17	MP2A	Z	4.382	6.17
18	MP2A	Mx	001	6.17
19	MP2A	Х	-1.624	3.17
20	MP2A	Z	2.813	3.17
21	MP2A	Mx	000812	3.17
22	MP2A	Х	-1.57	5.17
23	MP2A	Z	2.719	5.17
24	MP2A	Mx	000785	5.17

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-1.97	3.17
2	MP1A	Z	1.137	3.17
3	MP1A	Mx	.000985	3.17
4	MP1A	Х	-1.97	5.17
5	MP1A	Z	1.137	5.17
6	MP1A	Mx	.000985	5.17
7	MP2A	Х	-3.794	2.17
8	MP2A	Z	2.191	2.17
9	MP2A	Mx	.005	2.17
10	MP2A	Х	-3.794	6.17
11	MP2A	Z	2.191	6.17
12	MP2A	Mx	.005	6.17
13	MP2A	Х	-3.794	2.17
14	MP2A	Z	2.191	2.17
15	MP2A	Mx	.002	2.17
16	MP2A	Х	-3.794	6.17
17	MP2A	Z	2.191	6.17
18	MP2A	Mx	.002	6.17
19	MP2A	X	-2.309	3.17
20	MP2A	Z	1.333	3.17
21	MP2A	Mx	001	3.17
22	MP2A	Х	-2.027	5.17
23	MP2A	Z	1.17	5.17
24	MP2A	Mx	001	5.17

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-1.541	3.17
2	MP1A	Z	0	3.17
3	MP1A	Mx	.00077	3.17
4	MP1A	Х	-1.541	5.17
5	MP1A	Z	0	5.17
6	MP1A	Mx	.00077	5.17

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
7	MP2A	Х	-4.041	2.17
8	MP2A	Z	0	2.17
9	MP2A	Mx	.004	2.17
10	MP2A	Х	-4.041	6.17
11	MP2A	Z	0	6.17
12	MP2A	Mx	.004	6.17
13	MP2A	Х	-4.041	2.17
14	MP2A	Z	0	2.17
15	MP2A	Mx	.004	2.17
16	MP2A	Х	-4.041	6.17
17	MP2A	Z	0	6.17
18	MP2A	Mx	.004	6.17
19	MP2A	Х	-2.375	3.17
20	MP2A	Z	0	3.17
21	MP2A	Mx	001	3.17
22	MP2A	Х	-1.941	5.17
23	MP2A	Z	0	5.17
24	MP2A	Mx	000971	5.17

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-1.97	3.17
2	MP1A	Z	-1.137	3.17
3	MP1A	Mx	.000985	3.17
4	MP1A	Х	-1.97	5.17
5	MP1A	Z	-1.137	5.17
6	MP1A	Mx	.000985	5.17
7	MP2A	Х	-3.794	2.17
8	MP2A	Z	-2.191	2.17
9	MP2A	Mx	.002	2.17
10	MP2A	Х	-3.794	6.17
11	MP2A	Z	-2.191	6.17
12	MP2A	Mx	.002	6.17
13	MP2A	Х	-3.794	2.17
14	MP2A	Z	-2.191	2.17
15	MP2A	Mx	.005	2.17
16	MP2A	Х	-3.794	6.17
17	MP2A	Z	-2.191	6.17
18	MP2A	Mx	.005	6.17
19	MP2A	Х	-2.309	3.17
20	MP2A	Z	-1.333	3.17
21	MP2A	Mx	001	3.17
22	MP2A	Х	-2.027	5.17
23	MP2A	Z	-1.17	5.17
24	MP2A	Mx	001	5.17

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-1.871	3.17
2	MP1A	Z	-3.24	3.17
3	MP1A	Mx	.000935	3.17
4	MP1A	Х	-1.871	5.17
5	MP1A	Z	-3.24	5.17
6	MP1A	Mx	.000935	5.17
7	MP2A	Х	-2.53	2.17
8	MP2A	Z	-4.382	2.17

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP2A	Mx	001	2.17
10	MP2A	Х	-2.53	6.17
11	MP2A	Z	-4.382	6.17
12	MP2A	Mx	001	6.17
13	MP2A	Х	-2.53	2.17
14	MP2A	Z	-4.382	2.17
15	MP2A	Mx	.006	2.17
16	MP2A	Х	-2.53	6.17
17	MP2A	Z	-4.382	6.17
18	MP2A	Mx	.006	6.17
19	MP2A	Х	-1.624	3.17
20	MP2A	Z	-2.813	3.17
21	MP2A	Mx	000812	3.17
22	MP2A	X	-1.57	5.17
23	MP2A	Z	-2.719	5.17
24	MP2A	Mx	000785	5.17

Member Point Loads (BLC 77 : Lm1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	FACE	Y	-500	%93

Member Point Loads (BLC 78 : Lm2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	FACE	Y	-500	%7

Member Point Loads (BLC 79 : Lv1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	FACE	Y	-250	%50

Member Point Loads (BLC 80 : Lv2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	FACE	Y	-250	0

Member Point Loads (BLC 81 : Antenna Ev)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Y	-1.812	3.17
2	MP1A	My	000906	3.17
3	MP1A	Mz	0	3.17
4	MP1A	Y	-1.812	5.17
5	MP1A	My	000906	5.17
6	MP1A	Mz	0	5.17
7	MP2A	Y	957	2.17
8	MP2A	My	000877	2.17
9	MP2A	Mz	.000797	2.17
10	MP2A	Y	957	6.17
11	MP2A	My	000877	6.17
12	MP2A	Mz	.000797	6.17
13	MP2A	Y	957	2.17
14	MP2A	My	000877	2.17
15	MP2A	Mz	000797	2.17
16	MP2A	Y	957	6.17
17	MP2A	My	000877	6.17
18	MP2A	Mz	000797	6.17
19	MP2A	Y	-3.511	3.17

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP2A	My	.002	3.17
21	MP2A	Mz	0	3.17
22	MP2A	Y	-2.924	5.17
23	MP2A	My	.001	5.17
24	MP2A	Mz	0	5.17

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Z	-4.529	3.17
2	MP1A	Mx	0	3.17
3	MP1A	Z	-4.529	5.17
4	MP1A	Mx	0	5.17
5	MP2A	Z	-2.392	2.17
6	MP2A	Mx	002	2.17
7	MP2A	Z	-2.392	6.17
8	MP2A	Mx	002	6.17
9	MP2A	Z	-2.392	2.17
10	MP2A	Mx	.002	2.17
11	MP2A	Z	-2.392	6.17
12	MP2A	Mx	.002	6.17
13	MP2A	Z	-8.778	3.17
14	MP2A	Mx	0	3.17
15	MP2A	Z	-7.311	5.17
16	MP2A	Mx	0	5.17

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	4.529	3.17
2	MP1A	Mx	002	3.17
3	MP1A	Х	4.529	5.17
4	MP1A	Mx	002	5.17
5	MP2A	Х	2.392	2.17
6	MP2A	Mx	002	2.17
7	MP2A	Х	2.392	6.17
8	MP2A	Mx	002	6.17
9	MP2A	Х	2.392	2.17
10	MP2A	Mx	002	2.17
11	MP2A	Х	2.392	6.17
12	MP2A	Mx	002	6.17
13	MP2A	X	8.778	3.17
14	MP2A	Mx	.004	3.17
15	MP2A	X	7.311	5.17
16	MP2A	Mx	.004	5.17

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	Y	-8.942	-8.942	0	%100
2	FACE	Y	-6.082	-6.082	0	%100
3	MP1A	Y	-4.59	-4.59	0	%100
4	MP2A	Y	-4.59	-4.59	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

		Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
	1	M1	X	0	0	0	%100
=							

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[l	End Magnitude[Ib/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
2	M1	Z	0	0	0	%100
3	FACE	X	0	0	0	%100
4	FACE	Z	-10.386	-10.386	0	%100
5	MP1A	X	0	0	0	%100
6	MP1A	Z	-8.248	-8.248	0	%100
7	MP2A	X	0	0	0	%100
8	MP2A	Z	-8.248	-8.248	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	1.23	1.23	0	%100
2	M1	Z	-2.13	-2.13	0	%100
3	FACE	Х	3.895	3.895	0	%100
4	FACE	Z	-6.746	-6.746	0	%100
5	MP1A	Х	4.124	4.124	0	%100
6	MP1A	Z	-7.143	-7.143	0	%100
7	MP2A	Х	4.124	4.124	0	%100
8	MP2A	Z	-7.143	-7.143	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[l	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	6.391	6.391	0	%100
2	M1	Z	-3.69	-3.69	0	%100
3	FACE	Х	2.249	2.249	0	%100
4	FACE	Z	-1.298	-1.298	0	%100
5	MP1A	Х	7.143	7.143	0	%100
6	MP1A	Z	-4.124	-4.124	0	%100
7	MP2A	Х	7.143	7.143	0	%100
8	MP2A	Z	-4.124	-4.124	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	9.84	9.84	0	%100
2	M1	Z	0	0	0	%100
3	FACE	X	0	0	0	%100
4	FACE	Z	0	0	0	%100
5	MP1A	X	8.248	8.248	0	%100
6	MP1A	Z	0	0	0	%100
7	MP2A	X	8.248	8.248	0	%100
8	MP2A	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	6.391	6.391	0	%100
2	M1	Z	3.69	3.69	0	%100
3	FACE	X	2.249	2.249	0	%100
4	FACE	Z	1.298	1.298	0	%100
5	MP1A	X	7.143	7.143	0	%100
6	MP1A	Z	4.124	4.124	0	%100
7	MP2A	X	7.143	7.143	0	%100
8	MP2A	Z	4.124	4,124	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

Member Label

Direction Start Magnitude[I...

End Magnitude[lb/ft,F,ksf]

Start Location[ft,%] End Location[ft,%]

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	1.23	1.23	0	%100
2	M1	Z	2.13	2.13	0	%100
3	FACE	X	3.895	3.895	0	%100
4	FACE	Z	6.746	6.746	0	%100
5	MP1A	X	4.124	4.124	0	%100
6	MP1A	Z	7.143	7.143	0	%100
7	MP2A	X	4.124	4.124	0	%100
8	MP2A	Z	7.143	7.143	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	Ŭ Ū	0	0	%100
2	M1	Z	0	0	0	%100
3	FACE	X	0	0	0	%100
4	FACE	Z	10.386	10.386	0	%100
5	MP1A	X	0	0	0	%100
6	MP1A	Z	8.248	8.248	0	%100
7	MP2A	X	0	0	0	%100
8	MP2A	Z	8.248	8.248	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-1.23	-1.23	0	%100
2	M1	Z	2.13	2.13	0	%100
3	FACE	X	-3.895	-3.895	0	%100
4	FACE	Z	6.746	6.746	0	%100
5	MP1A	X	-4.124	-4.124	0	%100
6	MP1A	Z	7.143	7.143	0	%100
7	MP2A	X	-4.124	-4.124	0	%100
8	MP2A	Z	7.143	7.143	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-6.391	-6.391	0	%100
2	M1	Z	3.69	3.69	0	%100
3	FACE	X	-2.249	-2.249	0	%100
4	FACE	Z	1.298	1.298	0	%100
5	MP1A	X	-7.143	-7.143	0	%100
6	MP1A	Z	4.124	4.124	0	%100
7	MP2A	X	-7.143	-7.143	0	%100
8	MP2A	Z	4.124	4.124	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-9.84	-9.84	0	%100
2	M1	Z	0	0	0	%100
3	FACE	X	0	0	0	%100
4	FACE	Z	0	0	0	%100
5	MP1A	X	-8.248	-8.248	0	%100
6	MP1A	Z	0	0	0	%100
7	MP2A	X	-8.248	-8.248	0	%100
8	MP2A	Z	0	0	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

 Member Label
 Direction
 Start Magnitude[I
 End Magnitude[Ib/ft_E.ksf]
 Start Location[ft %] End Location[ft %]

 RISA-3D Version 17.0.4
 [R:\...\...\...\...\Rev 1\Risa\468946-VZW_MT_LOT_A_H.r3d]
 Page 26

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-6.391	-6.391	0	%100
2	M1	Z	-3.69	-3.69	0	%100
3	FACE	X	-2.249	-2.249	0	%100
4	FACE	Z	-1.298	-1.298	0	%100
5	MP1A	X	-7.143	-7.143	0	%100
6	MP1A	Z	-4.124	-4.124	0	%100
7	MP2A	X	-7.143	-7.143	0	%100
8	MP2A	Z	-4.124	-4.124	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-1.23	-1.23	0	%100
2	M1	Z	-2.13	-2.13	0	%100
3	FACE	Х	-3.895	-3.895	0	%100
4	FACE	Z	-6.746	-6.746	0	%100
5	MP1A	Х	-4.124	-4.124	0	%100
6	MP1A	Z	-7.143	-7.143	0	%100
7	MP2A	Х	-4.124	-4.124	0	%100
8	MP2A	Z	-7.143	-7.143	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	Ŏ	0	0	%100
2	M1	Z	0	0	0	%100
3	FACE	Х	0	0	0	%100
4	FACE	Z	-3.274	-3.274	0	%100
5	MP1A	Х	0	0	0	%100
6	MP1A	Z	-2.883	-2.883	0	%100
7	MP2A	X	0	0	0	%100
8	MP2A	Z	-2.883	-2.883	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	.327	.327	0	%100
2	M1	Z	567	567	0	%100
3	FACE	Х	1.228	1.228	0	%100
4	FACE	Z	-2.126	-2.126	0	%100
5	MP1A	Х	1.442	1.442	0	%100
6	MP1A	Z	-2.497	-2.497	0	%100
7	MP2A	Х	1.442	1.442	0	%100
8	MP2A	Z	-2.497	-2.497	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	1.701	1.701	0	%100
2	M1	Z	982	982	0	%100
3	FACE	X	.709	.709	0	%100
4	FACE	Z	409	409	0	%100
5	MP1A	X	2.497	2.497	0	%100
6	MP1A	Z	-1.442	-1.442	0	%100
7	MP2A	X	2.497	2.497	0	%100
8	MP2A	Z	-1.442	-1.442	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

 Member Label
 Direction
 Start Magnitude[I
 End Magnitude[Ib/ft E.ksf]
 Start Location[ft %] End Location[ft %]

 RISA-3D Version 17.0.4
 [R:\...\...\...\...\Rev 1\Risa\468946-VZW_MT_LOT_A_H.r3d]
 Page 27

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	2.619	2.619	0	%100
2	M1	Z	0	0	0	%100
3	FACE	Х	0	0	0	%100
4	FACE	Z	0	0	0	%100
5	MP1A	Х	2.883	2.883	0	%100
6	MP1A	Z	0	0	0	%100
7	MP2A	Х	2.883	2.883	0	%100
8	MP2A	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	1.701	1.701	0	%100
2	M1	Z	.982	.982	0	%100
3	FACE	Х	.709	.709	0	%100
4	FACE	Z	.409	.409	0	%100
5	MP1A	Х	2.497	2.497	0	%100
6	MP1A	Z	1.442	1.442	0	%100
7	MP2A	X	2.497	2.497	0	%100
8	MP2A	Z	1.442	1.442	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	.327	.327	0	%100
2	M1	Z	.567	.567	0	%100
3	FACE	Х	1.228	1.228	0	%100
4	FACE	Z	2.126	2.126	0	%100
5	MP1A	Х	1.442	1.442	0	%100
6	MP1A	Z	2.497	2.497	0	%100
7	MP2A	X	1.442	1.442	0	%100
8	MP2A	Z	2.497	2.497	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	FACE	X	0	0	0	%100
4	FACE	Z	3.274	3.274	0	%100
5	MP1A	X	0	0	0	%100
6	MP1A	Z	2.883	2.883	0	%100
7	MP2A	X	0	0	0	%100
8	MP2A	Z	2.883	2.883	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	327	327	0	%100
2	M1	Z	.567	.567	0	%100
3	FACE	X	-1.228	-1.228	0	%100
4	FACE	Z	2.126	2.126	0	%100
5	MP1A	X	-1.442	-1.442	0	%100
6	MP1A	Z	2.497	2.497	0	%100
7	MP2A	X	-1.442	-1.442	0	%100
8	MP2A	Z	2.497	2.497	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

 Member Label
 Direction
 Start Magnitude[I
 End Magnitude[Ib/ft_E.ksf]
 Start Location[ft %] End Location[ft %]

 RISA-3D Version 17.0.4
 [R:\...\...\...\...\Rev 1\Risa\468946-VZW_MT_LOT_A_H.r3d]
 Page 28
Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-1.701	-1.701	0	%100
2	M1	Z	.982	.982	0	%100
3	FACE	X	709	709	0	%100
4	FACE	Z	.409	.409	0	%100
5	MP1A	Х	-2.497	-2.497	0	%100
6	MP1A	Z	1.442	1.442	0	%100
7	MP2A	X	-2.497	-2.497	0	%100
8	MP2A	Z	1.442	1.442	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-2.619	-2.619	0	%100
2	M1	Z	0	0	0	%100
3	FACE	X	0	0	0	%100
4	FACE	Z	0	0	0	%100
5	MP1A	X	-2.883	-2.883	0	%100
6	MP1A	Z	0	0	0	%100
7	MP2A	X	-2.883	-2.883	0	%100
8	MP2A	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-1.701	-1.701	0	%100
2	M1	Z	982	982	0	%100
3	FACE	X	709	709	0	%100
4	FACE	Z	409	409	0	%100
5	MP1A	X	-2.497	-2.497	0	%100
6	MP1A	Z	-1.442	-1.442	0	%100
7	MP2A	X	-2.497	-2.497	0	%100
8	MP2A	Z	-1.442	-1.442	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	327	327	0	%100
2	M1	Z	567	567	0	%100
3	FACE	X	-1.228	-1.228	0	%100
4	FACE	Z	-2.126	-2.126	0	%100
5	MP1A	X	-1.442	-1.442	0	%100
6	MP1A	Z	-2.497	-2.497	0	%100
7	MP2A	X	-1.442	-1.442	0	%100
8	MP2A	Z	-2.497	-2.497	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	FACE	Х	0	0	0	%100
4	FACE	Z	683	683	0	%100
5	MP1A	Х	0	0	0	%100
6	MP1A	Z	542	542	0	%100
7	MP2A	X	0	0	0	%100
8	MP2A	Z	542	542	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

 Member Label
 Direction
 Start Magnitude[I
 End Magnitude[Ib/ft_E.ksf]
 Start Location[ft %] End Location[ft %]

 RISA-3D Version 17.0.4
 [R:\...\...\...\...\Rev 1\Risa\468946-VZW_MT_LOT_A_H.r3d]
 Page 29

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	.081	.081	0	%100
2	M1	Z	14	14	0	%100
3	FACE	X	.256	.256	0	%100
4	FACE	Z	444	444	0	%100
5	MP1A	X	.271	.271	0	%100
6	MP1A	Z	47	47	0	%100
7	MP2A	X	.271	.271	0	%100
8	MP2A	Z	47	47	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	.42	.42	0	%100
2	M1	Z	243	243	0	%100
3	FACE	Х	.148	.148	0	%100
4	FACE	Z	085	085	0	%100
5	MP1A	Х	.47	.47	0	%100
6	MP1A	Z	271	271	0	%100
7	MP2A	X	.47	.47	0	%100
8	MP2A	Z	271	271	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	.647	.647	0	%100
2	M1	Z	0	0	0	%100
3	FACE	X	0	0	0	%100
4	FACE	Z	0	0	0	%100
5	MP1A	X	.542	.542	0	%100
6	MP1A	Z	0	0	0	%100
7	MP2A	X	.542	.542	0	%100
8	MP2A	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.42	.42	0	%100
2	M1	Z	.243	.243	0	%100
3	FACE	Х	.148	.148	0	%100
4	FACE	Z	.085	.085	0	%100
5	MP1A	Х	.47	.47	0	%100
6	MP1A	Z	.271	.271	0	%100
7	MP2A	Х	.47	.47	0	%100
8	MP2A	Z	.271	.271	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.081	.081	0	%100
2	M1	Z	.14	.14	0	%100
3	FACE	Х	.256	.256	0	%100
4	FACE	Z	.444	.444	0	%100
5	MP1A	Х	.271	.271	0	%100
6	MP1A	Z	.47	.47	0	%100
7	MP2A	Х	.271	.271	0	%100
8	MP2A	Z	.47	.47	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

 Member Label
 Direction
 Start Magnitude[I
 End Magnitude[Ib/ft E.ksf]
 Start Location[ft %] End Location[ft %]

 RISA-3D Version 17.0.4
 [R:\...\...\...\...\Rev 1\Risa\468946-VZW_MT_LOT_A_H.r3d]
 Page 30

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	FACE	Х	0	0	0	%100
4	FACE	Z	.683	.683	0	%100
5	MP1A	Х	0	0	0	%100
6	MP1A	Z	.542	.542	0	%100
7	MP2A	Х	0	0	0	%100
8	MP2A	Z	.542	.542	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	081	081	0	%100
2	M1	Z	.14	.14	0	%100
3	FACE	Х	256	256	0	%100
4	FACE	Z	.444	.444	0	%100
5	MP1A	Х	271	271	0	%100
6	MP1A	Z	.47	.47	0	%100
7	MP2A	X	271	271	0	%100
8	MP2A	Z	.47	.47	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	42	42	0	%100
2	M1	Z	.243	.243	0	%100
3	FACE	X	148	148	0	%100
4	FACE	Z	.085	.085	0	%100
5	MP1A	X	47	47	0	%100
6	MP1A	Z	.271	.271	0	%100
7	MP2A	X	47	47	0	%100
8	MP2A	Z	.271	.271	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	647	647	0	%100
2	M1	Z	0	0	0	%100
3	FACE	X	0	0	0	%100
4	FACE	Z	0	0	0	%100
5	MP1A	X	542	542	0	%100
6	MP1A	Z	0	0	0	%100
7	MP2A	X	542	542	0	%100
8	MP2A	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	42	42	0	%100
2	M1	Z	243	243	0	%100
3	FACE	X	148	148	0	%100
4	FACE	Z	085	085	0	%100
5	MP1A	X	47	47	0	%100
6	MP1A	Z	271	271	0	%100
7	MP2A	X	47	47	0	%100
8	MP2A	Z	271	271	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

 Member Label
 Direction
 Start Magnitude[I
 End Magnitude[Ib/ft E.ksf]
 Start Location[ft %] End Location[ft %]

 RISA-3D Version 17.0.4
 [R:\...\...\...\...\Rev 1\Risa\468946-VZW_MT_LOT_A_H.r3d]
 Page 31

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M1	X	081	081	0	%100
2	M1	Z	14	14	0	%100
3	FACE	X	256	256	0	%100
4	FACE	Z	444	444	0	%100
5	MP1A	X	271	271	0	%100
6	MP1A	Z	47	47	0	%100
7	MP2A	X	271	271	0	%100
8	MP2A	Z	47	47	0	%100

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
		No	Data to Print			• • •

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N1	max	496.11	10	1267.489	28	756.235	1	392	64	1.024	12	1.2	28
2		min	-496.11	4	370.177	73	-756.235	7	-1.375	19	-1.025	6	-2.028	46
3	Totals:	max	496.11	10	1267.489	28	756.235	1						
4		min	-496.11	4	370.177	73	-756.235	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Ch	Loc[.LC	Shear	Loc[ft]		LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y-y	phi*Mn z-z	. Cb	Eqn
1	M1	HSS4X4	.111	0	18	.181	0	y	46	139319.454	139518	16.181	16.181	1.224	H1-1b
2	FACE	PIPE_3.0	.409	2.5	47	.128	2.5		19	57037.472	65205	5.749	5.749	1.578	8 <mark>H1-1</mark> b
3	MP1A	PIPE_2.0	.091	4.167	7	.018	4.167		6	14916.096	32130	1.872	1.872	1.361	H1-1b
4	MP2A	PIPE_2.0	.248	4.167	7	.083	3.167		10	14916.096	32130	1.872	1.872	2.413	H1-1b

17 117	Client:	Verizon	Date:	8/29/2022
vzw	Site Name:	Middlebury I-84		
SMART Tool [©]	PSLC #:	468946		
Vendor	Fuze ID #:	16244626	Page:	1
				Version 1.01

I. Mount-to-Tower Connection Check

Custom	Orientation	Required

Tower Connection Bolt Checks

Bolt Orientation

Bolt Quantity per Reaction: d_x (in) (*Delta X of typ. bolt config. sketch*) : d_y (in) (*Delta Y of typ. bolt config. sketch*) : Bolt Type: Bolt Diameter (in): Required Tensile Strength / bolt (kips): Required Shear Strength / bolt (kips): Tensile Capacity / bolt (kips): Shear Capacity / bolt (kips): Bolt Overall Utilization:

No

Tower Connection Baseplate Checks

<u>Subject</u>

TIA-222-H Usage

Site Information	Site ID:	468946-VZW / Middlebury I-84
	Site Name:	Middlebury I-84
	Carrier Name:	Verizon Wireless
	Address:	2 Larkin Drive
		Middlebury, Connecticut 06762
		New Haven County
	Latitude:	41.51361111°
	Longitude:	-73.1244444°
Structure Information	Tower Type:	140-Ft Self Support
	Mount Type:	5.00-Ft T-Arm

To Whom It May Concern,

We respectfully submit the above referenced Antenna Mount Structural Analysis report in conformance with ANSI/TIA-222-H, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

The 2015 International Building Code states that, in Section 3108, telecommunication towers shall be designed and constructed in accordance with the provisions of TIA-222. The TIA-222-H is the latest revision of the TIA-222 Standard, effective as of January 01, 2018.

As with all ANSI standards and engineering best practice is to apply the most current revision of the standard. This ensures the engineer is applying all updates. As an example, the TIA-222-H standard includes updates to bring it in line with the latest AISC and ACI standards and it also incorporates the latest wind speed map by ASCE 7 based on updated studies of the wind data.

The TIA-222-H standard clarifies these specific requirements for the antenna mount analysis such as modeling method, seismic analysis, 30-degree increment wind direction and maintenance loading. Therefore, it is our opinion that TIA-222-H is the most appropriate standard for antenna mount structural analysis and is acceptable for use at this site to ensure the engineer is taking into account the most current engineering standard available.

Sincerely,

Justin Linette, PE Technical Specialist

2000 Midlantic Drive, Suite 100, Mt. Laurel, NJ 08054 Phone: 856.797.0412

ATTACHMENT 5

Map Produced May 2020

Disclaimer: This map is for informational purposes only. All information is subject to verification by any user. The Town of Middlebury and its mapping contractors assume no legal responsibility for the information contained herein.

Town of Middlebury, CT

Property Listing Report

Map Block Lot 6-06/073

Account

18400000

Property Information

Property Location	84 I		
Owner	CONN STATE OF		
Co-Owner	DEPT OF PUBLIC SAFETY		
Mailing Address	PO BOX 2794		
Maining Address	MIDDLETOWN CT 06457		
Land Use	913 State Land Res		
Land Class	E		
Zoning Code			
Census Tract			

Neighborhood	
Acreage	0
Utilities	
Lot Setting/Desc	
Additional Info	

Primary Construction Details

Year Built	
Stories	
Building Style	
Building Use	
Building Condition	
Floors	
Total Rooms	

Bedrooms	
Full Bathrooms	
Half Bathrooms	
Bath Style	
Kitchen Style	
Roof Style	
Roof Cover	

Exterior Walls	
Interior Walls	
Heating Type	
Heating Fuel	
АС Туре	
Gross Bldg Area	
Total Living Area	

Account

18400000

Valuation Summary (Assessed value = 70% of Appraised Value)

Item	Appraised	Assessed		
Buildings				
Extras				
Improvements				
Outbuildings				
Land				
Total				

Sub Areas

Subarea Type	Gross Area (sq ft)	Living Area (sq ft)		
Total Area				

Sales History

 Owner of Record
 Book/ Page
 Sale Date
 Sale Price

CONN STATE OF

Outbuilding and Extra Items

Туре	Description
Cell Tower	1 Units

ATTACHMENT 6

UNITED STATES POSTAL SERVICE ®

MIDDLEBURY I-84 Certificate of Mailing — Firm

Name and Address of Sender Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	TOTAL NO. of Pieces Listed by Sender Postmaster, per (name of receiving employee)		Affix Stamp Here Postmark with Date of Receipt. neopost ²⁴ 09/13/2022 US POSTAGE SOO3.09 ZIP 06103 041I_12203937			
USPS® Tracking Number	Add (Name, Street, City, S	ress tate, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
Prim-specific identitier 1. 2. 3. 4.	Edward St. John, First S Town of Middlebury 1212 Whittemore Road Middlebury, CT 06762 Curtis Bosco, Zoning E Town of Middlebury 1212 Whittemore Road Middlebury, CT 06762 State of Connecticut, D Attn: Brian Benito 1111 Country Club Roa Middletown, CT 06457	epartment of Emergency	Services & Pub	lic Protection		
5,			US SEP	13 2020		
6.						

PS Form **3665**, January 2017 (Page 1 of 1) PSN 7530-17-000-5549