

July 3rd, 2018

Melanie Bachman, Executive Director Connecticut Siting Council 10 FranklinSquare New Britain, CT 06051

RE: Notice of Exempt Modification – Antenna Swap for wireless facility located at 99 DR. NOTT ROAD, NORTH FRANKLIN, CONNECTICUT – CT73XC005 (lat. 41° 35' 52.8" N, long. = 72° 08' 41.90" W)

Dear Ms. Bachman:

Sprint Spectrum, LP ("Sprint") currently maintains wireless telecommunications antennas at the (180-foot level) on an existing (300-foot Guyed Tower) at the above-referenced address. The property is owned by HIDDEN BROOK FARMS LLC, and the tower are owned by American Tower Corporation.

Sprint's proposed work involves antenna replacement and tower work. Sprint intends to replace three (3) antennas, adding three (3) new antennas, relocate three (3) RRHs from ground level to the tower and add nine (9) new RRHs onto the tower. All the proposed work is contained within the existing fenced area. Please refer to the attached drawings for site plans prepared by Infinigy Engineering. The Structural Analysis prepared by American Tower Corporation contains "existing" noted contracted equipment which is not on the tower.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to CHARLES GRANT, FIRST SELECTMAN, and ROLAND CHALECKI, ZONING ENFORCEMENT OFFICER of the Town of FRANKLIN. A copy of this letter is also being sent to JUSTINE PAUL the manager for AMERICAN TOWER CORPORATION who manages the tower and HIDDEN BROOK FARMS LLC who owns the land.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b).

1. The proposed modifications will not result in an increase in the height of the existing

tower.

2. The antennas work is a one-for-one replacement of facility components.

32 Clinton Street, Saratoga Springs, NY 12866 Office 518-306-1733 – Fax 518-306-1711 www.airosmithdevelopment.com

- The proposed modifications will include the addition of ground base equipment as depicted on the attached drawings; however, the proposed equipment will not require an extension of the site boundaries.
- 4. The proposed modifications will not increase noise levels at the facility by six decibels or more.
- 5. The additional ground based equipment will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) adopted safety standard.

For the foregoing reasons, Sprint respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b).

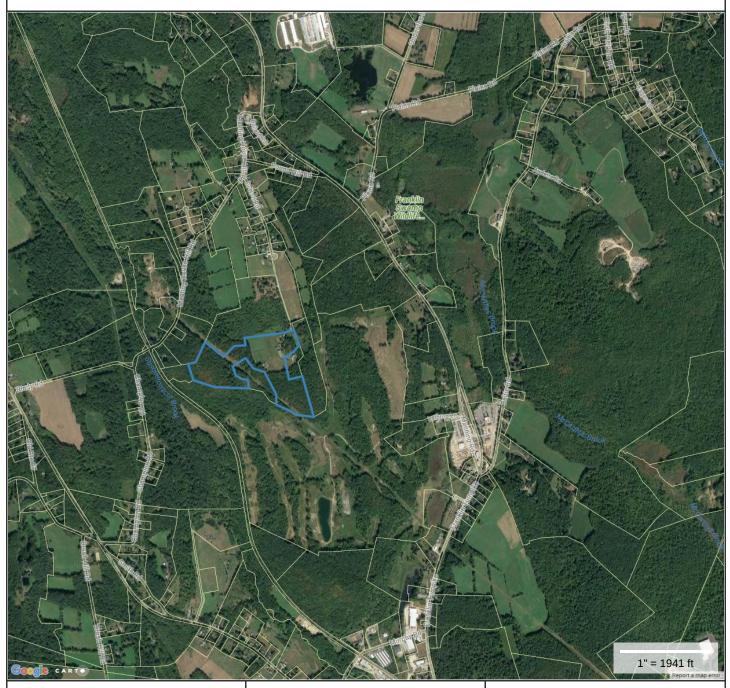
If you have any questions or require any additional information regarding this request, please do not hesitate to give me a call at (518) 350-4222 or email me to <u>aperkowski@airosmithdevelopment.com</u>

Kind Regards,

Arthur Perkowski Airosmith Development Inc. 32 Clinton Street Saratoga Springs, NY 12866 518-306-1711 desk & fax 518-871-3707 cell aperkowski@airosmithdevelopment.com

Attachment

CC: CHARLES GRANT (First Selectman, FRANKLIN, CT) JUSTINE PAUL (Manager, AMERICAN TOWER CORPORATION) ROLAND CHALECKI (Zoning Enforcement Officer, HAMPTON CT) HIDDEN BROOK FARMS LLC (Land Owner)



89 DR NOTT RD

Property		^	Ownership			^
Address	89 DR NOTT RD		Name 1	HIDDEN BROC	OK FARMS LLC	
ID	53-36-8		Address	248 ROUTE 32	,	
Account	263			FRANKLIN, CT	06254	
			Last Sale	\$650,000 on 2	013-08-29	
			Book / Page	91/719		
Valuation		^	Land			^
Total	\$445,550		Area		46.00 ACRES	
Building	\$130,210		Zone		R080	
Land	\$155,990		Land Use Code		1010	
			Land Description	า	RES ACLNDV	

CT73XC005

Property Information

Property ID	53-36-8
Location	89 DR NOTT RD
Owner	HIDDEN BROOK FARMS LLC

MAP FOR REFERENCE ONLY NOT A LEGAL DOCUMENT

SCCOG makes no claims and no warranties, expressed or implied, concerning the validity or accuracy of the GIS data presented on this map.

Parcels updated 05/31/2017 Properties updated 10/1/2013

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

SPRINT Existing Facility

Site ID: CT73XC005

Franklin-Dr. Nott Rd. 99 Dr. Nott Road North Franklin, CT 06254

June 26, 2018

EBI Project Number: 6218004705

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of				
FCC general	3.86 %			
population	3.00 70			
allowable limit:				

June 26, 2018

SPRINT Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Emissions Analysis for Site: CT73XC005 - Franklin-Dr. Nott Rd.

EBI Consulting was directed to analyze the proposed SPRINT facility located at **99 Dr. Nott Road**, **North Franklin, CT**, for the purpose of determining whether the emissions from the Proposed SPRINT Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

General population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 850 MHz Band is approximately 567 μ W/cm². The general population exposure limit for the 1900 MHz (PCS) and 2500 MHz (BRS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed SPRINT Wireless antenna facility located at **99 Dr. Nott Road**, **North Franklin, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since SPRINT is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 1 CDMA channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
- 2) 2 LTE channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 50 Watts per Channel.
- 3) 5 CDMA channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 16 Watts per Channel.
- 4) 2 LTE channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 5) 8 LTE channels (2500 MHz (BRS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.

- 6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 7) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antennas used in this modeling are the Commscope NNVV-65B-R4 and the RFS APXVTM14-ALU-I20 for transmission in the 850 MHz, 1900 MHz (PCS) and 2500 MHz (BRS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antenna mounting height centerlines of the proposed antennas are **180 feet** above ground level (AGL) for **Sector A**, **180 feet** above ground level (AGL) for **Sector B** and **180 feet** above ground level (AGL) for **Sector C**.
- 10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general population threshold limits.

SPRINT Site Inventory and Power Data by Antenna

Sector:	А	Sector:	В	Sector:	С
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	Commscope NNVV-65B-R4	Make / Model:	Commscope NNVV-65B-R4	Make / Model:	Commscope NNVV-65B-R4
Gain:	12.75 / 15.05 dBd	Gain:	12.75 / 15.05 dBd	Gain:	12.75 / 15.05 dBd
Height (AGL):	180 feet	Height (AGL):	180 feet	Height (AGL):	180 feet
Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)
Channel Count	10	Channel Count	10	Channel Count	10
Total TX Power(W):	280 Watts	Total TX Power(W):	280 Watts	Total TX Power(W):	280 Watts
ERP (W):	7,378.61	ERP (W):	7,378.61	ERP (W):	7,378.61
Antenna A1 MPE%	1.08 %	Antenna B1 MPE%	1.08 %	Antenna C1 MPE%	1.08 %
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	RFS APXVTM14-ALU- I20	Make / Model:	RFS APXVTM14-ALU- I20	Make / Model:	RFS APXVTM14-ALU- I20
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	180 feet	Height (AGL):	180 feet	Height (AGL):	180 feet
Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)
Channel Count	8	Channel Count	8	Channel Count	8
Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts
ERP (W):	6,224.72	ERP (W):	6,224.72	ERP (W):	6,224.72
Antenna A2 MPE%	0.74 %	Antenna B2 MPE%	0.74 %	Antenna C2 MPE%	0.74 %

Site Composite MPE%					
Carrier	MPE%				
SPRINT – Max per sector	1.82 %				
Verizon Wireless	1.69 %				
State Police	0.00 %				
AT&T	0.35 %				
Site Total MPE %:	3.86 %				

SPRINT Sector A Total:	1.82 %
SPRINT Sector B Total:	1.82 %
SPRINT Sector C Total:	1.82 %
Site Total:	3.86 %

SPRINT _ Frequency Band / Technology Max Power Values (All Sectors)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE
Sprint 850 MHz CDMA	1	376.73	180	0.45	850 MHz	567	0.09%
Sprint 850 MHz LTE	2	941.82	180	2.24	850 MHz	567	0.39%
Sprint 1900 MHz (PCS) CDMA	5	511.82	180	3.04	1900 MHz (PCS)	1000	0.30%
Sprint 1900 MHz (PCS) LTE	2	1,279.56	180	3.04	1900 MHz (PCS)	1000	0.30%
Sprint 2500 MHz (BRS) LTE	8	778.09	180	7.39	2500 MHz (BRS)	1000	0.74%
						Total:	1.82%

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the SPRINT facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

SPRINT Sector	Power Density Value (%)
Sector A:	1.82 %
Sector B:	1.82 %
Sector C:	1.82 %
SPRINT Maximum Total (per sector):	1.82 %
Site Total:	3.86 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **3.86 %** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

This report was prepared for American Tower Corporation by

TOWER ENGINEERING PROFESSIONALS

Structural Analysis Report

Structure	:	300 ft Guyed Tower
ATC Site Name	:	Franklin CT, CT
ATC Site Number	:	6310
Engineering Number	:	OAA710395_C3_06
Proposed Carrier	:	Sprint Nextel
Carrier Site Name	:	Franklin CT
Carrier Site Number	:	CT73XC005
Site Location	:	89 Dr. Nott Road North Franklin, CT 06254-1316 41.597700,-72.145000
County	:	New London
Date	:	April 30, 2018
Max Usage	:	87%
Result	:	Pass
Prepared By: Bobby L. McCarn TEP Belly L. Neben		Reviewed By:

COA: PEC.0001553

Table of Contents

Introduction	1
Supporting Documents	1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	. 2
Equipment to be Removed	2
Proposed Equipment	3
Structure Usages	3
Foundations	3
Deflection, Twist, and Sway	. 4
Standard Conditions	5
Calculations	Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 300 ft guyed tower to reflect the change in loading by Sprint Nextel.

Supporting Documents

Tower Drawings	FWT Job #18504, dated January, 20, 1999
Foundation Drawing	FWT Job #18504, dated January, 20, 1999
Geotechnical Report	Tectonic Engineering Consultants P.C. dated October 26, 1998
Modifications	ATC Project #430070H1, dated March 5, 1999

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	101 mph (3-Second Gust, V _{asd}) / 130 (3-Second Gust, V _{ult})
Basic Wind Speed w/ Ice:	50 mph (3-Second Gust) w/ 3/4" radial ice concurrent
Code:	ANSI/TIA-222-G / 2012 IBC / 2016 Connecticut State Building Code
Structure Class:	
Exposure Category:	в
Topographic Category:	3
Crest Height:	340 ft
Spectral Response:	$Ss = 0.17, S_1 = 0.06$
Site Class:	D - Stiff Soil

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elevatio	on ¹ (ft)						
Mount RAD		Qty	Antenna	Mount Type	Lines	Carrier	
307.0		1	10' Omni				
	306.0	1	20' Dipole	1			
294.0	303.0	1	13' Omni	Side Arms	(3) 7/8" Coax		
	302.0	1	6' Yagi		(1) 1 1/4" Coax		
	288.0	1	18' Dipole	1		-	
	277.0	1	10' Dipole			-	
	276.0	1	24" x 24" Junction Box	[
268.0	270.0	1	8' Omni	Side Arms	(2) 7/8" Coax		
	274.0	1	6' Omni		(1) 1 5/8" Coax		
262.0		1	Andrew DB810K-XT			AT&T Mobility	
	241.0	1	13' Omni				
	230.0	1	11' Omni			_	
233.0 228.0		1	14' Omni				
233.0		3	Sinclair SC479-HF1LDF(E5765)	Side Arms	(5) 1 5/8" Coax		
	240.0	1	Bird 432E-83I-01-T			AT&T Mobility	
			Scala OGT9-840				
213.0	213.0	1	22' Dipole			-	
215.0	213.0	1	Andrew DB224	Side Arms	(2) 1/2" Coax	Prov & Worcester RR	
180.0	180.0	3	Decibel DB844H90E-XY	-	(9) 1 5/8" Coax	Sprint Nextel	
		6	Commscope HBXX-6517DS-A2M	* 1 mm			
	ſ	3	Commscope LNX-8513DS-VTM (39.2				
	l	3	lb)			Marinan	
170.0	170.0	3	Antel 8XA-70063-6CF-EDIN-X	Carbon Francis	(12) 1 5/8" Coax		
1/0.0	1/0.0	1	RFS DB-T1-6Z-8AB-0Z	Sector Frames	(1) 1 5/8" Fiber	Verizon	
	[3	Alcatel-Lucent RRH 2X60-AWS				
	[3	Alcatel-Lucent RRH 2X60-1900				
		6	RFS FD9R6004/2C-3L				
130.0	130.0	1 [24" x 24" Junction Box	Cido Anno			
130.0	130.0	1	Scala AP7-850/065	Side Arm	(1) 1 5/8" Coax	ATOT MANA	
125.0	125.0	3	Antel WPA-70063-8CF-EDIN-0-25	Cida Amero	(2) 2 5 (0) Com	AT&T Mobility	
123.0	123.0	1	Bird 432E-83I-01-T	Side Arms	(3) 1 5/8" Coax		
115.0	115.0	1	20' Dipole	Side Arm	(1) 1/2" Coax	New England Central Railroad	
105.0	105.0	1	2' x 4' Rectangular Grid Dish	Side Arm			
		1	5' Yagi	Side Arm	-	-	
84.0	84.0	1	6' Ice Shield	Leg	-	AT&T Mobility	
80.0	80.0	1	RFS PA6-65AC w/ Radome	Leg	(1) EW65		

Equipment to be Removed

Elevatio Mount	n ¹ (ft) RAD	Qty	Antenna	Mount Type	Lines	Carrier	
190.0	190.0	3	EMS RR90-17-02DPL2	Contra Frances		Conduct Mandal	
100.0	180.0 180.0		Decibel DB844H90E-XY	Sector Frames	(6) 1 5/8" Coax	Sprint Nextel	

Proposed Equipment

Elevatio	on¹(ft)	0	A-11	Maximt Trans	Lines	Continu	
Mount RAD		Qty	Antenna	Mount Type	Lines	Carrier	
		3	Commscope NNVV-65B-R4				
180.0 180.0		3	RFS APXVTM14-ALU-I20			Sprint Novtol	
		2	Alcatel-Lucent TD-RRH8x20-25 w/ Solar	Site Pro VFA12-HD	(A) 1 1 (All 1) + + + + + + + + + + + + + + + + + +		
100.0	100.0	<u> </u>	Shield	w/ Stiff Arms	(4) 1 1/4" Hybriflex	Sprint Nextel	
100.0		3	Alcatel-Lucent 1900MHz 4X45 RRH				
			Alcatel-Lucent RRH2x50-08				

¹Mount elevation is defined as height above bottom of steel structure to the bottom of mount, RAD elevation is defined as center of antenna above ground level (AGL).

Install proposed coax alongside existing Sprint Nextel coax.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Legs	87%	Pass
Diagonals	80%	Pass
Horizontals	57%	Pass
Guys	87%	Pass

Foundations

Reaction Component	Original Design Reactions	Factored Design Reactions*	Analysis Reactions	% of Design
Base Axial (kips)	208.2	281.1	267.3	95%
Anchor 1 Uplift (kips)	73.5	99.2	69.2	70%
Anchor 1 Shear (kips)	85.9	116.0	88.6	76%

* The design reactions are factored by 1.35 per ANSI/TIA-222-G, Sec. 15.5.1

The structure base reactions resulting from this analysis are acceptable when compared to those shown on the original structure drawings, therefore no modification or reinforcement of the foundation will be required.

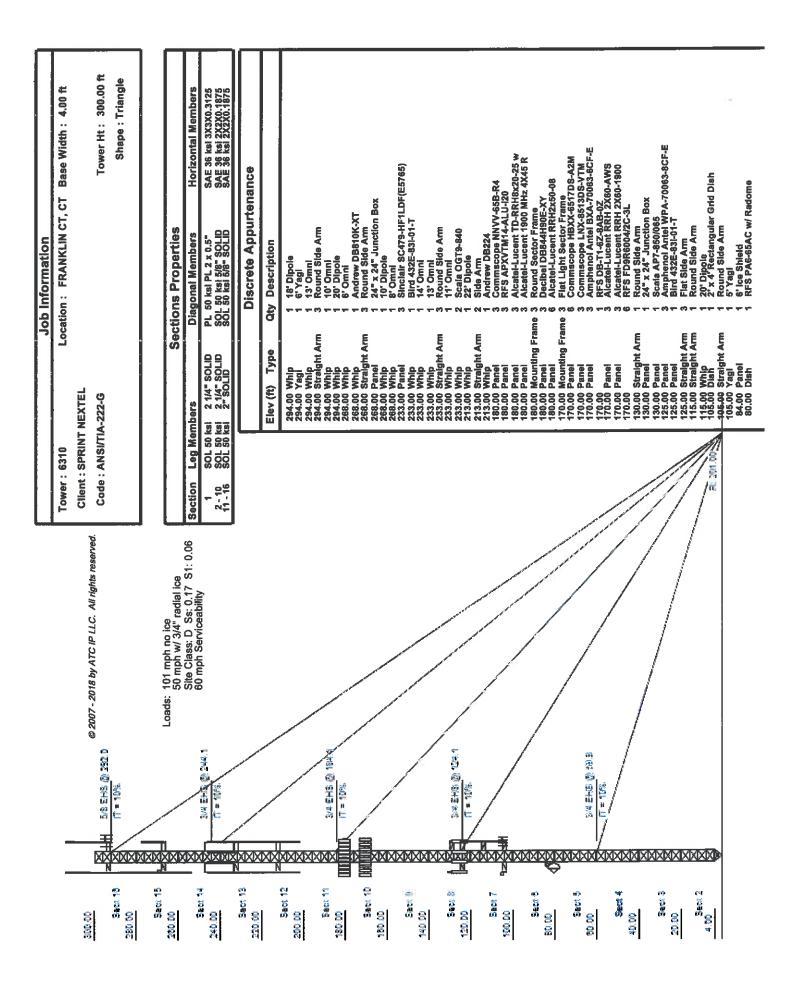
Deflection, Twist and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Twist (°)	Sway (Rotation) (°)
	Alcatel-Lucent 1900 MHz 4X45 RRH				
	Alcatel-Lucent RRH2x50-08				
180.0	Alcatel-Lucent TD-RRH8x20-25 w/ Solar Shield	Sprint Nextel	0.170	0.052	0.091
	Commscope NNVV-65B-R4				
	RFS APXVTM14-ALU-I20				
105.0	2' x 4' Rectangular Grid Dish		0.146	0.049	0.041
80.0	RFS PA6-65AC w/ Radome	AT&T Mobility	0.121	0.048	0.099

*Deflection, Twist and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-G

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:


- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

	Job Information	
	Tower: 6310 Location: FRANKLIN CT	Location : FRANKLIN CT, CT Base Width : 4.00 ft
	Client : SPRINT NEXTEL	
© 2007 - 2018 by ATC IP LLC. All rights reserved.	Code : ANSI/TIA-222-G	Tower Ht : 300.00 ft
		Shape : Triangle
-		
	Linear Appurtenance	nance
	(iii)	
	294.00 1	
	5.00 294.00 1 7/8" Coax 5.00 294.00 1 7/8" Coax	
	294.00 1	
	200.00	
	- 4	
	- 1	
	5.00 213.00 1 1/2" COBX 5.00 213.00 1 1/2" Coax	
	180.00	
	5.00 170.00 1 15% Fiber	
	115.00 3 1	
	5.00 80.00 1 EW65	

Tower Ht : 300.00 ft Shape : Triangle Shear (kip) Location : FRANKLIN CT, CT Base Width : 4.00 ft 88.33 88.64 88.15 **Global Base Foundation Design Loads** Horizontal (kip) **Guy Anchor Design Loads** Drop (ft) Azimuth (°) Uplift (kip) 66.72 68.61 69.17 3.70 240 120 Job Information 7.00 8.00 8.00 Vertical (kip) 190.00 190.00 201.00 267.29 Radius (ft) **Client : SPRINT NEXTEL** Code : ANSI/TIA-222-G Tower: 6310 R= 201.0 E= 4.0' © 2007 - 2018 by ATC IP LLC. All rights reserved. R= 190.0' E = +3.0'

R= 130.0' E=+7.0'

Site Number: Site Name:		IN CT, CT	Code: Engineering Number:	ANSI/TIA-222-G OAA710395_C3_06	© 2007 - 2018 by ATC	C IP LLC. All rights reserved. 4/30/2018 4:38:24 PM
Customer:	SPRINT N	IEXTEL				
			Analysis Parar	neters		
Location:		NEW LONDON County, CT	Height (ft):		300	
Code:		ANSI/TIA-222-G	Base Elevatio	n (ft):	0.00	
Shape:		Triangle	Bottom Face	Width (ft):	4.00	
Tower Manufac	cturer:	FWT Inc	Top Face Wid	th (ft):	4.00	
Tower Type:		Guyed				
Kd:						
Ke:						
			Ice & Wind Para	meters		
Structure Class	s:	Ш	Design Winds	peed Without Ice:	101 mph	
Exposure Cate	gory:	В	Design Winds	peed With Ice:	50 mph	
Topographic C	ategory:	3	Operational W	/indspeed:	60 mph	
Crest Height:		340 ft	Design Ice Th	ickness:	0.75 in	
			Seismic Paran	neters		
Analysis Metho	od:	Equivalent Modal Analysis & I	Equivalent Lateral Force N	lethods		
Site Class:		D - Stiff Sol	l			
Period Based o	on Rayleig	h Method (sec): 0.74	ļ			
T⊾(sec):	6	r	. 1.3		C _s :	0.053
Ss:	0.171	5	S,: 0.061		Ce, Max:	0.053
F.:	1.600	F	· · 2.400		C _s , Min:	0.030
S _{ds} :	0.182	\$	ia: 0.098			

Load Cases

1.2D + 1.6W Normal
1.2D + 1.6W 60 deg
1.2D + 1.6W 90 deg
1.2D + 1.6W 120 deg
1.2D + 1.6W 180 deg
1.2D + 1.6W 210 deg
1.2D + 1.6W 240 deg
1.2D + 1.6W 300 deg
1.2D + 1.6W 330 deg
1.2D + 1.0Di + 1.0Wi Normal
1.2D + 1.0Di + 1.0Wi 60 deg
1.2D + 1.0Di + 1.0Wi 90 deg
1.2D + 1.0Di + 1.0Wi 120 deg
1.2D + 1.0Di + 1.0Wi 180 deg
1.2D + 1.0Di + 1.0Wi 210 deg
1.2D + 1.0Di + 1.0Wi 240 deg
1.2D + 1.0Di + 1.0Wi 300 deg
1.2D + 1.0Di + 1.0WI 330 deg
(1.2 + 0.2Sds) * DL + E Normal

101 mph Normal with No Ice 101 mph 60 degree with No Ice 101 mph 90 degree with No Ice 101 mph 120 degree with No Ice 101 mph 180 degree with No Ice 101 mph 210 degree with No Ice 101 mph 240 degree with No Ice 101 mph 300 degree with No Ice 101 mph 330 degree with No Ice 50 mph Normal with 0.75 in Radial Ice 50 mph 60 deg with 0.75 in Radial Ice 50 mph 90 deg with 0.75 in Radial Ice 50 mph 120 deg with 0.75 in Radial Ice 50 mph 180 deg with 0.75 in Radial Ice 50 mph 210 deg with 0.75 in Radial Ice 50 mph 240 deg with 0.75 in Radial Ice 50 mph 300 deg with 0.75 in Radial Ice 50 mph 330 deg with 0.75 in Radial Ice Seismic Normal

Site Number:	6310		Code:	ANSI/TIA-222-G	© 2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	FRANKLIN CT, CT		Engineering Number:	OAA710395_C3_06	4/30/2018 4:38:24 PM
Customer:	SPRINT NEXTEL				
· · ·			Analysis Parar	neters	
(1.2 + 0.2Sds)	* DL + E 60 deg	Seismic 60 deg			
(1.2 + 0.2Sds)	* DL + E 90 deg	Selsmic 90 deg			
(1.2 + 0.2Sds)	* DL + E 120 deg	Seismic 120 deg			
(1.2 + 0.2Sds)	* DL + E 180 deg	Seismic 180 deg			
(1.2 + 0.2Sds)	* DL + E 210 deg	Seismic 210 deg			
(1.2 + 0.2Sds)	* DL + E 240 deg	Seismic 240 deg			
(1.2 + 0.2Sds)	* DL + E 300 deg	Seismic 300 deg			
(1.2 + 0.2Sds)	* DL + E 330 deg	Seismic 330 deg			
(0.9 - 0.2Sds) *	DL + E Normal	Seismic (Reduced D	L) Normal		
(0.9 - 0.2\$ds) *	DL + E 60 deg	Seismic (Reduced D	L) 60 deg		
(0.9 - 0.2Sds) *	DL + E 90 deg	Selsmic (Reduced D	L) 90 deg		
(0.9 - 0.2Sds) *	DL + E 120 deg	Seismic (Reduced D	L) 120 deg		
(0.9 - 0.2Sds) *	DL + E 180 deg	Seismic (Reduced D	L) 180 deg		
(0.9 - 0.2Sds) *	DL + E 210 deg	Seismic (Reduced D	L) 210 deg		
(0.9 - 0.2Sds) *	DL + E 240 deg	Selsmic (Reduced D	L) 240 deg		
(0.9 - 0.2Sds) *	DL + E 300 deg	Selsmic (Reduced D	L) 300 deg		
(0.9 - 0.2Sds) *	DL + E 330 deg	Seismic (Reduced D	L) 330 deg		
1.0D + 1.0W Se	ervice Normal	Serviceability - 60 m	ph Wind Normal		
1.0D + 1.0W Se	ervice 60 deg	Serviceability - 60 m	ph Wind 60 deg		
1.0D + 1.0W Se	ervice 90 deg	Serviceability - 60 m	ph Wind 90 deg		
1.0D + 1.0W Se	ervice 120 deg	Serviceability - 60 m	ph Wind 120 deg		
1.0D + 1.0W Se	ervice 180 deg	Serviceability - 60 m	ph Wind 180 deg		
1.0D + 1.0W Se	ervice 210 deg	Serviceability - 60 m	ph Wind 210 deg		
1.0D + 1.0W Se	ervice 240 deg	Serviceability - 60 m	ph Wind 240 deg		

Serviceability - 60 mph Wind 300 deg

Serviceability - 60 mph Wind 330 deg

1.0D + 1.0W Service 300 deg

1.0D + 1.0W Service 330 deg

Site Number:	6310	Code:	ANSI/TIA-222-G	© 2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name: Customer:	FRANKLIN CT, CT SPRINT NEXTEL	Engineering Number:	OAA710395_C3_06	4/30/2018 4:38:24 PM
		Engineering Number:	OAA710395_C3_06	4/30/2018 4:38

Tower Loading

Discrete Appurtenance Properties 1.2D + 1.6W

244.0 10' Omni 1 25 3.0 10.0 3.0 1.00 1.00 10.0 1	Elevation Description (ft)	Qty	Wt. (lb)	EPA (sf)	Length (ft)	Width (in)	Depth (in)	К,	Orient. Factor	Vert. Ecc.(ft)	M u (ib-ft)	Q _z (psf)	F. (WL) (Ib)	P_(DL) (Ib)
284.0 13° Omni 1 40 3.9 13.0 3.0 1.00 1.00 6.0 1677.3 35.14 182 284.0 13° Dipole 1 65 6.8 18.0 3.0 3.0 1.00 1.00 6.0 133.5 35.13 358 284.0 6'Yaji 1 25 8.9 6.0 60.0 0.0 1.00 1.00 8.0 342.1 35.14 428 284.0 F'Apil 1 25 8.9 6.0 60.0 0.0 1.00 8.0 422.1 35.0 144 285.0 F'Omni 1 20 4.8 2.0 2.4 8.0 0.00 1.00 6.0 432.3 3.09 9.2 285.0 Found Stice Arm 150 5.2 1.4 0.30 3.0 0.80 1.00 6.0 986.4 3.0.9 92 233.0 13'Omni 1 40 3.3 11.0 3.0 3.0 0.80 1.00 6.0 986.4 3.0.9 92 233.0 13'Omni 1 40 3.3 11.0 3.		1						1.00					. ,	3
284.0 16' Dipole 1 55 6.8 18.0 3.0 3.0 1.00 1.00 1.20 433.3 5.11 323 284.0 20' Dipole 1 25 8.9 6.0 60.0 3.0 1.00 1.00 1.00 1.20 431.3 3.51.4 428 284.0 Round Side Arm 1 30 3.8 10.0 3.0 0.00 1.00 8.0 342.13 3.51.4 428 286.0 47 X2"Junction 1 25 1.8 6.0 3.0 0.00 0.00 1.00 6.0 403.2 28.6.9 6' Ormi 1 25 2.4 8.0 3.0 0.80 1.00 6.0 7.33.1 3.0.9 92 286.0 Andraw D8010K-XT 1 35 4.3 1.10 3.0 3.0 0.80 1.00 6.0 7.3.3 35.19 4.35.9 126 1.21 1.22 1.22 1.22 1.22 3.13 3.0 1.00 1.00 7.0 1.00 2.0 3.0 3.0	294.0 13' Omni	1	40	3.9	13.0	3.0	3.0	1.00						4
284.0 20' Dipole 1 60 7.5 20.0 3.0 3.0 1.00 1.00 8.0 4313.3 35.45 358 284.0 6' Yeij 1 25 8.9 6.0 60.0 0.0 <t< td=""><td>294.0 18' Dipole</td><td>1</td><td>55</td><td>6.8</td><td>18.0</td><td>3.0</td><td>3.0</td><td>1.00</td><td>1.00</td><td></td><td></td><td></td><td>- + -</td><td>6</td></t<>	294.0 18' Dipole	1	55	6.8	18.0	3.0	3.0	1.00	1.00				- + -	6
284.0 Round Side Arm 3 150 5.2 0.0 </td <td></td> <td>1</td> <td>60</td> <td>7.5</td> <td>20.0</td> <td>3.0</td> <td>3.0</td> <td>1.00</td> <td>1.00</td> <td></td> <td>4313.3</td> <td>35.15</td> <td></td> <td>7</td>		1	60	7.5	20.0	3.0	3.0	1.00	1.00		4313.3	35.15		7
288.0 10 ⁺ Dipole 1 30 3.8 10.0 3.0 0.80 1.00 90.1 1292.1 35.00 144 288.0 24 ⁺ X24 ⁺ Junction 1 25 1.8 2.0 24.0 8.0 0.80 0.67 8.0 962.4 33.09 972 288.0 40 ⁺ X24 ⁺ Junction 1 25 1.8 6.0 3.0 0.80 1.00 6.0 982.4 33.09 92 286.0 Andrew DB810K-XT 1 35 4.3 14.5 3.0 3.0 0.80 1.00 6.0 994.4 3.509 92 283.0 11 ⁺ Ormni 1 40 3.3 13.0 3.0 3.0 0.80 1.00 -6.0 99.4 35.10 149 333.0 14 ⁺ Ormni 40 4.2 1.0 3.0 3.0 0.80 1.00 -5.0 802.4 35.10 123 333.0 Round Side Arm 3 150 5.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.10 13.0 13.1 13.3 3.10 13.3 <	294.0 6' Yagi	1	25	8.9	6.0	60.0		1.00	1.00			35.14		3
268.0 24"; 24" Junction 1 20 4.8 2.0 24.0 8.0 0.00 0.60 0.67 0.0 992.4 35.09 127 268.0 6 'Onni 1 25 2.4 8.0 3.0 0.80 1.00 8.0 733.1 35.09 92 268.0 Andrew DB810K-XT 1 35 2.4 8.0 3.0 0.80 1.00 8.0 733.1 35.09 92 288.0 Andrew DB810K-XT 1 35 5.2 0.0 0.0 0.0 0.0 6.0 733.1 35.09 92 233.0 11'Ornni 1 40 3.3 11.0 3.0 0.80 1.00 -6.0 984.4 35.10 23 233.0 14'Ornni 1 40 4.2 14.0 3.0 3.0 0.80 1.00 -5.0 602.4 35.10 23 233.0 Sala Gold GT9-640 2 19 2.3 11.4 2.0 2.0 0.0 0.0 0.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	294.0 Round Side Arm	3	150	5.2	0.0	0.0	0.0	1.00	0.67	0.0	0.0	35.12	499	54
268.0 6' Omni 1 25 1.8 6.0 3.0 0.80 1.00 6.0 403.2 35.0.9 92 268.0 6' Omni 1 25 2.4 8.0 3.0 3.0 0.80 1.00 6.0 996.4 35.0.9 92 268.0 6' Omni 1 25 2.4 8.0 3.0 3.0 0.80 1.00 6.0 996.4 35.09 92 268.0 6' Omni 1 40 3.3 11.0 3.0 3.0 0.80 1.00 6.0 996.4 35.12 126 233.0 11'Omni 1 40 3.9 13.0 3.0 0.80 1.00 8.0 1191.5 35.12 126 233.0 Found Side Arm 3 150 5.2 0.0 0.0 0.0 0.0 7.0 160.4 35.10 173 233.0 Bundar Side Arm 3 15 5.2 0.0 0.0 0.0 0.0 3.5.15 160 213.0 Z' Dipole 1 6 8.3 0.2 3.0 3.0 0.0 0.0	268.0 10' Dipole	1	30	3.8	10.0	3.0	3.0	0.80	1.00	9.0				3
268.0 8' Omni 1 25 2.4 8.0 3.0 1.80 1.00 -6.0 933.1 35.05 916 268.0 Andrew DB810K-XT 1 35 4.3 14.5 3.0 3.0 0.80 1.00 -6.0 996.4 35.09 166 268.0 Andrew DB810K-XT 1 35 4.3 14.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.80 1.00 -6.0 96.4 35.09 162 233.0 11'Ormi 1 40 3.3 11.0 3.0 0.30 0.80 1.00 -5.0 802.4 35.12 129 233.0 Brid 328-831-01-T 1 25 1.0 1.0 1.00 0.67 0.0 0.0 3.51 499 233.0 Sinclar SC479- 3 3.4 5.0 1.4.4 2.0 2.0 0.80 1.00 7.0 403.4 35.10 733.7 5.10 733.7 5.10 733.7 5.10 733.7 5.11 499 733.3 5.00 7.0 <td< td=""><td></td><td>1</td><td>20</td><td>4.8</td><td>2.0</td><td>24.0</td><td>8.0</td><td>0.80</td><td>0.67</td><td>8.0</td><td>982.4</td><td>35.09</td><td>123</td><td>2</td></td<>		1	20	4.8	2.0	24.0	8.0	0.80	0.67	8.0	982.4	35.09	123	2
130. Andrew DB810K-XT 1	268.0 6' Omni	1	25	1.8	6.0	3.0	3.0	0.80	1.00		403.2	35.09		3
568.0 Round Side Arm 3 150 5.2 0.0 0.0 0.0 0.0 35.09 499 333.0 11' Ornni 1 40 3.3 11.0 3.0 0.0 0.0 1.00 -3.0 376.2 35.12 128 333.0 13' Ornni 1 40 4.2 14.0 3.0 0.0 0.0 100 -5.0 802.4 35.12 163 333.0 Bird 32E-83-01-T 1 25 1.2 1.0 1.20 7.5 0.80 0.50 7.0 160.4 35.10 233 333.0 Sainclair SC479- 3 34 5.0 14.4 3.5 3.5 0.80 1.00 7.0 120.3 1576 13.0 Adrew DB224 1 36 6.1 23.0 3.0 0.90 1.00 0.0 35.15 356 13.0 Adrew DB224 1 36 123.2 2.11 10.7 0.80 0.67 0.0 0.0 35.15 488 80.0 Alcatel-Lucent 1900 3 60 2.3 2.11 10.7 0.80 0.67 </td <td></td> <td>1</td> <td>25</td> <td>2.4</td> <td>8.0</td> <td>3.0</td> <td>3.0</td> <td>0.80</td> <td>1.00</td> <td>8.0</td> <td>733.1</td> <td>35.09</td> <td>92</td> <td>3</td>		1	25	2.4	8.0	3.0	3.0	0.80	1.00	8.0	733.1	35.09	92	3
133.0 11'0 mni 1 40 3.3 11.0 3.0 3.0 0.80 1.00 -3.0 378.2 35.12 128 133.0 13' Omni 1 40 3.9 13.0 3.0 0.80 1.00 -3.0 378.2 35.12 128 133.0 14'Omni 1 40 4.2 14.0 3.0 3.0 0.80 1.00 -3.0 8.0 1191.5 35.10 149 133.0 Bird 432E-831.01-T 1 25 1.0 1.2.0 7.5 0.80 1.00 7.0 160.4 35.10 123 133.0 Sinclair SC479 3 34 5.0 114.4 3.5 3.5 0.80 1.00 7.0 403.4.1 35.10 576 133.0 Sinclair SC479 3 34 5.0 0.0 0.0 0.0 0.0 3.5.10 135.5 160 121.3 7.5 136 3.6 1.00 1.00 0.0 0.5.5 160 130.4 1.00 1.00 0.0 0.5.5 176 <td>268.0 Andrew DB810K-XT</td> <td>1</td> <td>35</td> <td>4.3</td> <td>14.5</td> <td>3.0</td> <td>3.0</td> <td>0.80</td> <td>1.00</td> <td>-6.0</td> <td>996.4</td> <td>35.09</td> <td>166</td> <td>4</td>	268.0 Andrew DB810K-XT	1	35	4.3	14.5	3.0	3.0	0.80	1.00	-6.0	996.4	35.09	166	4
323.0 11' Omni 1 40 3.3 11.0 3.0 3.0 0.80 1.00 3.0 378.2 35.12 126 33.0 13' Omni 1 40 3.9 13.0 3.0 0.80 1.00 8.0 1191.5 35.10 149 33.0 14' Omni 1 40 4.2 14.0 3.0 3.0 0.80 1.00 8.0 1191.5 35.10 123 33.0 Birci SC479- 3 34 5.0 14.4 2.0 0.80 1.00 7.0 1213.7 35.10 173 33.0 Sincial's SC479- 3 34 5.0 14.4 3.5 5.0 0.0 0.0 0.0 0.0 3.51 356 13.0 Adderw DB224 1 36 6.1 2.20 3.0 3.0 0.90 1.00 0.0 0.0 35.25 179 80.0 Alcatel-Lucent 1900 3 60 2.3 2.1 11.1 10.7 0.80 0.67 0.0 0.0 35.25 116	268.0 Round Side Arm	3	150	5.2	0.0	0.0	0.0	1.00	0.67	0.0	0.0	35.09	499	54
31.0 13'O Omni 1 40 3.9 13.0 3.0 1.00 8.0 1191.5 35.10 149 33.0 H'r Omni 1 40 4.2 14.0 3.0 3.0 0.80 1.00 -5.0 802.4 35.12 160 33.0 Bird 432E-83I-01-T 1 25 1.2 1.0 12.0 7.5 0.80 0.50 7.0 160.4 35.10 233 33.0 Scala OGT9-840 2 19 2.3 11.4 2.0 2.0 0.80 1.00 7.0 403.4 35.10 737 33.0 Scala OGT9-840 2 19 2.3 11.4 2.0 2.0 0.80 1.00 7.0 403.4 35.10 737 13.0 Scala Arrm 2 150 6.3 0.0 0.0 0.90 0.0 0.0 35.15 880 0.67 0.0 0.35.25 179 80.0 Alcatel-Lucent TD 3 70 4.1 2.2 18.6 6.7 0.80 0.67 0.0	233.0 11' Omni	1	40	3.3	11.0	3.0	3.0							4
33.0 I4' Omni 1 40 4.2 14.0 3.0 3.0 0.80 1.00 -5.0 602.4 35.12 160 33.0 Bird 432E-83-01-T 1 25 1.2 1.0 12.0 7.5 0.80 0.50 7.0 160.4 35.10 23 33.0 Bird 432E-83-01-T 1 25 1.2 0.0 0.0 1.00 0.57 0.0 0.0 35.11 499 33.0 Sinclair SC479- 3 34 5.0 14.4 2.0 0.0 0.0 1.00 0.0 0.0 0.35.15 260 13.0 ZP Dipole 1 66 8.3 22.0 3.0 3.0 0.90 1.00 0.0 0.0 35.15 260 13.0 Side Arm 2 150 6.3 0.0 0.0 0.0 0.0 0.0 35.25 176 80.0 Alcatel-Lucent 1900 3 60 2.3 2.1 11.1 10.7 0.80 0.64 0.0 0.0 35.25 136	233.0 13' Omni	1	40	3.9	13.0	3.0	3.0	0.80	1.00					4
133.0 Bird 432E-83I-01-T 1 25 1.2 1.0 12.0 7.5 0.80 0.50 7.0 160.4 35.10 23 133.0 Round Side Arm 3 150 5.2 0.0 0.0 0.0 0.0 0.0 0.0 1.00 0.67 0.0 0.0 35.10 173 133.0 Scala OGT9-840 2 19 2.3 11.4 2.0 2.0 0.80 1.00 7.0 4034.1 35.10 73 133.0 Scala OGT9-840 1 66 3.2 2.0 3.0 3.0 0.90 1.00 0.0 0.0 35.15 260 13.0 Side Arm 2 150 6.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.15 260 13.0 Side Arm 2 150 6.3 0.7 1.00 0.0 35.25 112 80.0 Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7	233.0 14' Omni	1	40	4.2										4
33.0 Round Side Arm 3 150 5.2 0.0	33.0 Bird 432E-83I-01-T	1	25	1.2										3
33.0 Scala OGT9-840 2 19 2.3 11.4 2.0 2.0 0.80 1.00 7.0 1213.7 35.10 173 33.0 Sinclair SC479- 3 34 5.0 14.4 3.5 3.5 0.80 1.00 7.0 4034.1 35.10 576 13.0 Andrew DB224 1 36 6.1 22.0 3.0 3.0 0.90 1.00 0.0 0.0 35.15 366 13.0 Andrew DB224 1 36 6.1 22.0 3.0 3.0 0.90 0.0 0.0 35.15 260 80.0 Alcatel-Lucent 1900 3 60 2.3 2.1 11.1 10.7 0.80 0.67 0.0 0.0 35.25 112 80.0 Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.64 0.0 0.0 35.25 903 80.0 Decibel DB844H90E- 3 14 3.6 4.0 8.0 6.5 0.60 0.0 0.35.27 1	33.0 Round Side Arm	3	150	5.2										54
33.0 Sinclair SC479- 3 34 5.0 14.4 3.5 3.5 0.80 1.00 7.0 4034.1 35.10 576 13.0 Andrew DB224 1 86 6.1 23.0 3.0 3.0 0.90 1.00 0.0 0.0 35.15 356 13.0 Andrew DB224 1 38 6.1 23.0 3.0 0.90 1.00 0.0 0.35.15 488 80.0 Alcatel-Lucent 1900 3 60 2.3 2.1 11.1 10.7 0.80 0.67 0.0 0.0 35.25 179 80.0 Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.67 0.0 0.0 35.25 312 80.0 Decibel DB844H90E- 3 17 12.3 6.0 19.6 7.8 0.80 0.64 0.0 0.0 35.25 307 80.0 Res APXVTM14-ALU- 56 6.3 4.7 12.6 6.3 0.80 0.66 0.0 0.35.27 108	33.0 Scala OGT9-840	2	19	2.3	11.4	2.0	2.0							4
13.0 22' Dipole 1 66 8.3 22.0 3.0 3.0 0.90 1.00 0.0 0.0 35.15 356 13.0 Andrew DB224 1 38 6.1 23.0 3.0 3.0 0.90 1.00 0.0 0.0 35.15 260 13.0 Side Arm 2 150 6.3 0.0 0.0 0.90 0.0 0.0 35.15 260 80.0 Alcatel-Lucent 1900 3 60 2.3 2.1 11.1 10.7 0.80 0.67 0.0 0.0 35.25 179 80.0 Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.67 0.0 0.0 35.25 903 80.0 Decibel DB844H90E- 3 14 3.6 4.0 8.0 6.7 0.80 0.66 0.0 0.3 35.25 107 80.0 Reund Sector Frame 3 300 14.4 0.0 0.0 0.66 0.0 0.0 35.27 108 100	33.0 Sinclair SC479-	3	34	5.0										12
13.0 Andrew DB224 1 38 6.1 23.0 3.0 3.0 0.90 1.00 0.0 35.15 260 13.0 Side Arm 2 150 6.3 0.0 0.0 0.90 0.0 0.0 35.15 260 13.0 Side Arm 2 150 6.3 0.0 0.0 0.90 0.0 0.0 35.25 179 80.0 Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.67 0.0 0.0 35.25 196 80.0 Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.67 0.0 0.0 35.25 196 80.0 Commscope NNVV-3 77 12.3 6.0 18.0 6.6 0.80 0.64 0.0 0.0 35.25 103 80.0 Reined Sector Frame 3 300 14.4 0.0 0.0 0.75 0.75 0.0 0.0 35.27 108 70.0 Alcatel-Lucent RRH 3 43 1.9 1.7 11.2 5.0 0.80 </td <td></td> <td>1</td> <td>66</td> <td>8.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>7</td>		1	66	8.3						-				7
13.0 Side Arm 2 150 6.3 0.0 0.0 0.0 0.90 0.90 0.0 0.0 33.15 488 80.0 Alcatel-Lucent 1900 3 60 2.3 2.1 11.1 10.7 0.80 0.67 0.0 0.0 35.25 179 80.0 Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.67 0.0 0.0 35.25 312 80.0 Commscope NNVV- 3 77 12.3 6.0 19.6 7.8 0.80 0.64 0.0 0.0 35.25 903 80.0 Decibe DB844H90E- 3 14 3.6 6.5 0.80 0.64 0.0 0.0 35.25 903 80.0 RFS APXVTM14-ALU- 3 56 6.3 4.7 12.6 6.3 0.80 0.66 0.0 0.3 35.25 1165 11 70.0 Alcatel-Lucent RRH 3 43 1.9 1.7 11.2 7.2 0.80 0.66 0.0 0.35		1	38	6.1					++					4
80.0 Alcatel-Lucent 1900 3 60 2.3 2.1 11.1 10.7 0.80 0.67 0.0 0.0 35.25 179 80.0 Alcatel-Lucent TD- 6 53 1.7 1.3 13.0 9.8 0.80 0.67 0.0 0.0 35.25 196 80.0 Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.67 0.0 0.0 35.25 903 80.0 Decibel DB844H90E- 3 14 3.6 4.0 8.0 6.6 0.80 0.67 0.0 0.0 35.25 903 80.0 Restrict Parate 3 300 14.4 0.0 0.0 0.0 0.75 0.75 0.0 0.0 35.25 1165 11 70.0 Alcatel-Lucent RRH 3 43 1.9 1.7 11.2 7.2 0.80 0.66 0.0 0.0 35.27 108 70.0 Aratel-Lucent RRH 3 44 1.9 1.7 1.2 5.2 0.80	13.0 Side Arm	2	150	6.3										36
80.0 Alcatel-Lucent 6 53 1.7 1.3 13.0 9.8 0.80 0.50 0.0 0.0 35.25 196 80.0 Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.67 0.0 0.0 35.25 312 80.0 Demmscope NNV- 3 77 12.3 6.0 19.6 7.8 0.80 0.64 0.0 0.0 35.25 903 80.0 Decibel DB844H90E- 3 14 3.6 4.0 8.0 6.5 0.80 0.74 0.0 0.0 35.25 307 80.0 Rcund Sector Frame 3 300 14.4 0 0.0 0.0 0.75 0.0 0.0 35.27 108 70.0 Alcatel-Lucent RRH 3 44 1.9 1.7 11.2 7.2 0.80 0.66 0.0 0.0 35.27 108 70.0 Commscope LNX- 3 39 8.2 6.1 11.9 7.1 0.80 0.69 0.0 0.0 </td <td>80.0 Alcatel-Lucent 1900</td> <td></td> <td></td> <td>2.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>21</td>	80.0 Alcatel-Lucent 1900			2.3										21
80.0 Alcatel-Lucent TD- 3 70 4.1 2.2 18.6 6.7 0.80 0.67 0.0 0.0 35.25 312 80.0 Commscope NNVV- 3 77 12.3 6.0 19.6 7.8 0.80 0.64 0.0 0.0 35.25 903 80.0 Decibel DB844H90E- 3 14 3.6 4.0 8.0 6.5 0.80 0.74 0.0 0.0 35.25 903 80.0 Resibel DB844H90E- 3 14 3.6 4.0 8.0 0.66 0.0 0.0 35.25 165 11 80.0 Rester RTmm 3 300 14.4 0.0 0.0 0.75 0.75 0.0 0.0 35.27 108 70.0 Alcatel-Lucent RRH 3 43 1.9 1.7 11.2 7.2 0.80 0.66 0.0 0.0 35.27 108 70.0 Commscope LNX- 3 39 8.2 6.1 11.9 7.1 0.80 0.66 0.0 0.0		6	53	1.7										38
80.0 Commscope NNVV- 3 77 12.3 6.0 19.6 7.8 0.80 0.64 0.0 0.0 35.25 903 80.0 Decibel DB844H90E- 3 14 3.6 4.0 8.0 6.5 0.80 0.74 0.0 0.0 35.25 307 80.0 Rex PXVTM14-ALU- 3 56 6.3 4.7 12.6 6.3 0.80 0.74 0.0 0.0 35.25 481 80.0 Round Sector Frame 3 300 14.4 0.0 0.0 0.75 0.75 0.0 0.0 35.27 108 70.0 Alcatel-Lucent RRH 3 44 1.9 1.7 11.2 7.2 0.80 0.66 0.0 0.0 35.27 108 70.0 Commscope HBXX- 6 41 8.5 6.2 11.9 7.1 0.80 0.69 0.0 0.35.27 1336 70.0 Commscope HBXX- 3 39 8.2 6.1 11.9 7.1 0.80 0.69 0.0 0.35.27	80.0 Alcatel-Lucent TD-	-												25
80.0 Decibel DB844H90E- 3 14 3.6 4.0 8.0 6.5 0.80 0.74 0.0 0.0 35.25 307 80.0 RFS APXVTM14-ALU- 3 56 6.3 4.7 12.6 6.3 0.80 0.66 0.0 0.0 35.25 1165 11 80.0 Rcund Sector Frame 3 300 14.4 0.0 0.0 0.75 0.75 0.0 0.0 35.25 1165 11 70.0 Alcatel-Lucent RRH 3 44 1.9 1.7 11.2 7.2 0.80 0.50 0.0 0.0 35.27 108 70.0 Amphenol Antel BXA- 3 17 7.6 5.9 11.2 5.2 0.80 0.66 0.0 0.0 35.27 108 70.0 Commscope LBXA- 3 9 8.2 6.1 11.9 7.1 0.80 0.66 0.0 0.0 35.27 149 14 70.0 RFS DB-T1-6Z-8AB- 1 4.8 2.0 24.0 10.0 0.80		-		12.3		-		-						27
80.0 RFS APXVTM14-ALU-3 56 6.3 4.7 12.6 6.3 0.80 0.66 0.0 0.0 35.25 1165 11 80.0 Round Sector Frame 3 300 14.4 0.0 0.0 0.75 0.75 0.0 0.0 35.25 1165 11 70.0 Alcatel-Lucent RRH 3 43 1.9 1.7 11.2 7.6 0.80 0.50 0.0 0.0 35.27 108 70.0 Alcatel-Lucent RRH 3 44 1.9 1.7 11.2 7.6 0.80 0.50 0.0 0.0 35.27 108 70.0 Amphenol Antel BXA-3 17 7.6 5.9 11.2 5.2 0.80 0.66 0.0 0.0 35.27 1336 37 70.0 Cammscope LNX-3 39 8.2 6.1 11.9 7.1 0.80 0.69 0.0 0.0 35.27 1449 14 70.0 Flat Light Sector 3 400 17.9 0.0 0.0 0.67 0.0 0.35.										-	+			5
80.0 Round Sector Frame 3 300 14.4 0.0 0.0 0.0 0.75 0.75 0.0 0.0 35.25 1165 11 70.0 Alcatel-Lucent RRH 3 43 1.9 1.7 11.2 7.2 0.80 0.50 0.0 0.0 35.27 108 70.0 Alcatel-Lucent RRH 3 44 1.9 1.7 11.2 7.6 0.80 0.50 0.0 0.0 35.27 108 70.0 Amphenol Antel BXA- 3 17 7.6 5.9 11.2 5.2 0.80 0.66 0.0 0.0 35.27 108 70.0 Commscope LNX- 3 39 8.2 6.1 11.9 7.1 0.80 0.69 0.0 0.0 35.27 143 14 70.0 Crss FD9R6004/2C-3L 6 3 0.4 0.5 6.5 1.5 0.80 0.67 0.0 0.0 35.27 143 30.0 24" x 24" Junction 1 20 4.8 2.0 24.0 8.0 <									-					20
70.0 Alcatel-Lucent RRH 3 43 1.9 1.7 11.2 7.2 0.80 0.50 0.0 0.0 35.27 108 70.0 Alcatel-Lucent RRH 3 44 1.9 1.7 11.2 7.6 0.80 0.50 0.0 0.0 35.27 108 70.0 Amphenol Antel BXA- 3 17 7.6 5.9 11.2 5.2 0.80 0.66 0.0 0.0 35.27 575 70.0 Commscope HBXX- 6 41 8.5 6.2 12.0 6.5 0.80 0.66 0.0 0.0 35.27 1336 70.0 Commscope LNX- 3 39 8.2 6.1 11.9 7.1 0.80 0.69 0.0 0.0 35.27 1449 14 70.0 RFS DB-T1-62-8AB- 1 44 4.8 2.0 24.0 10.0 0.80 0.67 0.0 0.0 35.27 123 70.0 RFS FD9R6004/2C-3L 6 3 0.4 0.5 6.5 1.5 0.80 <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>108</td></td<>		-				+								108
70.0 Alcatel-Lucent RRH 3 44 1.9 1.7 11.2 7.6 0.80 0.50 0.0 0.0 35.27 108 70.0 Amphenol Antel BXA- 3 17 7.6 5.9 11.2 5.2 0.80 0.66 0.0 0.0 35.27 575 70.0 Commscope HBXX- 6 41 8.5 6.2 12.0 6.5 0.80 0.66 0.0 0.0 35.27 1336 70.0 Commscope LNX- 3 39 8.2 6.1 11.9 7.1 0.80 0.69 0.0 0.0 35.27 1449 14 70.0 Flat Light Sector 3 400 17.9 0.0 0.0 0.67 0.0 0.0 35.27 1439 14 70.0 RFS DB-T1-6Z-8AB- 1 44 4.8 2.0 24.0 10.0 0.80 0.67 0.0 0.0 35.27 43 30.0 Z4" x 24" Junction 1 20 4.8 2.0 24.0 8.0 0.90 0.67 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>15</td></t<>		-							-					15
70.0 Amphenol Antel BXA- 70.0 3 17 7.6 5.9 11.2 5.2 0.80 0.66 0.0 0.5.27 575 70.0 Commscope HBXX- 70.0 6 41 8.5 6.2 12.0 6.5 0.80 0.66 0.0 0.0 35.27 1336 70.0 Commscope LNX- 70.0 3 39 8.2 6.1 11.9 7.1 0.80 0.69 0.0 0.0 35.27 649 70.0 FIat Light Sector 3 400 17.9 0.0 0.0 0.0 0.75 0.75 0.0 0.0 35.27 649 70.0 FIS FDB-T1-6Z-8AB- 1 44 4.8 2.0 24.0 10.0 0.80 0.67 0.0 0.35.27 1449 10 70.0 RFS FD9R6004/2C-3L 6 3 0.4 0.5 6.5 1.5 0.67 0.0 0.0 35.27 43 30.0 Res FD9R6004/2C-3L 6 3 0.4 0.5 6.5 1.50 0.67 0.0 0.35.31 139		-	- +											15
70.0 Commscope HBXX- 6 41 8.5 6.2 12.0 6.5 0.80 0.68 0.0 0.0 35.27 1336 70.0 Commscope LNX- 3 39 8.2 6.1 11.9 7.1 0.80 0.69 0.0 0.0 35.27 649 70.0 Flat Light Sector 3 400 17.9 0.0 0.0 0.0 0.75 0.75 0.0 0.0 35.27 1449 14 70.0 RFS DB-T1-6Z-8AB- 1 44 4.8 2.0 24.0 10.0 0.80 0.67 0.0 0.0 35.27 123 70.0 RFS FD9R6004/2C-3L 6 3 0.4 0.5 6.5 1.5 0.80 0.67 0.0 0.0 35.31 139 30.0 Z* 24'' Junction 1 150 5.2 0.0 0.0 1.00 0.67 0.0 0.0 35.31 139 30.0 Scala AP7-850/065 1 3 1.1 1.1 10.0 4.0 0.90 0.62 0.0		-												6
70.0 Commscope LNX- 3 39 8.2 6.1 11.9 7.1 0.80 0.69 0.0 0.0 35.27 649 70.0 Flat Llght Sector 3 400 17.9 0.0 0.0 0.75 0.75 0.0 0.0 35.27 1449 14 70.0 RFS DB-T1-6Z-8AB- 1 44 4.8 2.0 24.0 10.0 0.80 0.67 0.0 0.0 35.27 123 70.0 RFS FD9R6004/2C-3L 6 3 0.4 0.5 6.5 1.5 0.80 0.67 0.0 0.0 35.27 43 30.0 24" x 24" Junction 1 20 4.8 2.0 24.0 8.0 0.90 0.67 0.0 0.0 35.31 139 30.0 Rcund Side Arm 1 150 5.2 0.0 0.0 1.00 0.67 0.0 0.35.31 29 25.0 Bird 432E-83I-01-T 1 25 1.2 1.0 12.0 7.5 0.80 0.50 0.0 0.35.30 <														29
70.0 Flat Light Sector 3 400 17.9 0.0 0.0 0.75 0.75 0.0 0.0 35.27 1449 14 70.0 RFS DB-T1-6Z-8AB- 1 44 4.8 2.0 24.0 10.0 0.80 0.67 0.0 0.0 35.27 123 70.0 RFS DB-T1-6Z-8AB- 1 44 4.8 2.0 24.0 10.0 0.80 0.67 0.0 0.0 35.27 123 70.0 RFS FD9R6004/2C-3L 6 3 0.4 0.5 6.5 1.5 0.80 0.50 0.0 0.0 35.27 43 30.0 24" x 24" Junction 1 20 4.8 2.0 24.0 8.0 0.90 0.67 0.0 0.0 35.31 139 30.0 Scala AP7-850/065 1 3 1.1 1.1 10.0 4.0 0.90 0.62 0.0 0.0 35.31 29 25.0 Amphenol Antel 3 27 10.7 7.9 11.2 5.1 0.80 0.67		-												14
70.0 RFS DB-T1-6Z-8AB- 1 44 4.8 2.0 24.0 10.0 0.80 0.67 0.0 0.0 35.27 123 70.0 RFS FD9R6004/2C-3L 6 3 0.4 0.5 6.5 1.5 0.80 0.67 0.0 0.0 35.27 43 30.0 24" x 24" Junction 1 20 4.8 2.0 24.0 8.0 0.90 0.67 0.0 0.0 35.27 43 30.0 24" x 24" Junction 1 20 4.8 2.0 24.0 8.0 0.90 0.67 0.0 0.0 35.31 139 30.0 Round Side Arm 1 150 5.2 0.0 0.0 1.00 0.67 0.0 0.0 35.31 139 30.0 Scala AP7-850/065 1 3 1.1 1.1 10.0 4.0 0.90 0.62 0.0 0.0 35.31 29 25.0 Amphenol Antel 3 27 10.7 7.9 11.2 5.1 0.80 0.67 0.0 0.0 </td <td></td> <td>-</td> <td></td> <td>144</td>		-												144
70.0 RFS FD9R6004/2C-3L 6 3 0.4 0.5 6.5 1.5 0.80 0.50 0.0 0.0 35.27 43 30.0 24" x 24" Junction 1 20 4.8 2.0 24.0 8.0 0.90 0.67 0.0 0.0 35.31 139 30.0 Round Side Arm 1 150 5.2 0.0 0.0 0.0 1.00 0.67 0.0 0.0 35.31 139 30.0 Scala AP7-850/065 1 3 1.1 1.1 10.0 4.0 0.90 0.62 0.0 0.0 35.31 29 25.0 Amphenol Antel 3 27 10.7 7.9 11.2 5.1 0.80 0.67 0.0 0.0 35.30 823 25.0 Bird 432E-83i-01-T 1 25 1.2 1.0 12.0 7.5 0.80 0.50 0.0 0.0 35.30 23 25.0 Flat Side Arm 3 150 6.3 0.0 0.0 1.00 0.0 0.0 35.30									-					5
30.0 24" x 24" Junction 1 20 4.8 2.0 24.0 8.0 0.90 0.67 0.0 0.0 35.31 139 30.0 Round Side Arm 1 150 5.2 0.0 0.0 0.0 1.00 0.67 0.0 0.0 35.31 139 30.0 Scala AP7-850/065 1 3 1.1 1.1 10.0 4.0 0.90 0.62 0.0 0.0 35.31 167 30.0 Scala AP7-850/065 1 3 1.1 1.1 10.0 4.0 0.90 0.62 0.0 0.0 35.31 29 25.0 Amphenol Antel 3 27 10.7 7.9 11.2 5.1 0.80 0.67 0.0 0.0 35.30 823 25.0 Bird 432E-83i-01-T 1 25 1.2 1.0 12.0 7.5 0.80 0.50 0.0 0.0 35.30 608 43 15.0 20' Dipole 1 60 7.5 20.0 3.0 1.00 1.00 0.0		-			+						+	-		1
30.0 Round Side Arm 1 150 5.2 0.0 0.0 1.00 0.67 0.0 0.0 35.31 167 30.0 Scala AP7-850/065 1 3 1.1 1.1 10.0 4.0 0.90 0.62 0.0 0.0 35.31 167 30.0 Scala AP7-850/065 1 3 1.1 1.1 10.0 4.0 0.90 0.62 0.0 0.0 35.31 29 25.0 Amphenol Antel 3 27 10.7 7.9 11.2 5.1 0.80 0.67 0.0 0.0 35.30 823 25.0 Bird 432E-83I-01-T 1 25 1.2 1.0 12.0 7.5 0.80 0.50 0.0 0.0 35.30 23 25.0 Flat Side Arm 3 150 6.3 0.0 0.0 1.00 0.67 0.0 0.0 35.30 608 45 15.0 20' Dipole 1 60 7.5 20.0 3.0 1.00 1.00 0.0 0.0 35.25 <		-	-	+			-							2
30.0 Scala AP7-850/065 1 3 1.1 1.1 10.0 4.0 0.90 0.62 0.0 0.0 35.31 29 25.0 Amphenol Antel 3 27 10.7 7.9 11.2 5.1 0.80 0.67 0.0 0.0 35.30 823 25.0 Bird 432E-83I-01-T 1 25 1.2 1.0 12.0 7.5 0.80 0.67 0.0 0.0 35.30 23 25.0 Flat Side Arm 3 150 6.3 0.0 0.0 1.00 0.67 0.0 0.0 35.30 23 25.0 Flat Side Arm 3 150 6.3 0.0 0.0 1.00 0.67 0.0 0.0 35.30 23 25.0 Zo' Dipole 1 60 7.5 20.0 3.0 1.00 1.00 0.0 0.0 35.25 360 15.0 Round Side Arm 1 150 5.2 0.0 0.0 1.00 1.00 0.0 35.16 227 05.0		1				-								18
25.0 Amphenol Antel 3 27 10.7 7.9 11.2 5.1 0.80 0.67 0.0 0.0 35.30 823 25.0 Bird 432E-83I-01-T 1 25 1.2 1.0 12.0 7.5 0.80 0.67 0.0 0.0 35.30 823 25.0 Flat Side Arm 3 150 6.3 0.0 0.0 1.00 0.67 0.0 0.0 35.30 608 433 25.0 Flat Side Arm 3 150 6.3 0.0 0.0 1.00 0.67 0.0 0.0 35.30 608 433 15.0 20' Dipole 1 60 7.5 20.0 3.0 1.00 1.00 0.0 0.0 35.25 360 15.0 Round Side Arm 1 150 5.2 0.0 0.0 1.00 1.00 0.0 35.25 249 0.0 27 27 20 7.3 5.0 60.0 3.0 1.00 1.00 0.0 35.16 227 05.0 S' agi <td></td> <td>***</td> <td></td> <td></td> <td>10</td>											***			10
25.0 Bird 432E-83I-01-T 1 25 1.2 1.0 12.0 7.5 0.80 0.50 0.0 0.0 35.30 23 25.0 Flat Side Arm 3 150 6.3 0.0 0.0 1.00 0.67 0.0 0.0 35.30 23 25.0 Flat Side Arm 3 150 6.3 0.0 0.0 1.00 0.67 0.0 0.0 35.30 608 43 15.0 20' Dipole 1 60 7.5 20.0 3.0 1.00 1.00 0.0 0.0 35.25 360 15.0 Round Side Arm 1 150 5.2 0.0 0.0 1.00 1.00 0.0 35.25 249 05.0 2' x 4' Rectangular 1 40 4.8 2.0 48.0 0.0 1.00 1.00 0.0 35.16 227 05.0 5' Yagi 1 20 7.3 5.0 60.0 3.0 1.00 1.00 0.0 35.16 249 05.0 Round Side Arm		-	_											9
25.0 Flat Side Arm 3 150 6.3 0.0 0.0 1.00 0.67 0.0 0.0 35.30 608 9 15.0 20' Dipole 1 60 7.5 20.0 3.0 3.0 1.00 1.00 0.0 0.0 35.25 360 15.0 Round Side Arm 1 150 5.2 0.0 0.0 1.00 1.00 0.0 35.25 249 05.0 2' x 4' Rectangular 1 40 4.8 2.0 48.0 0.0 1.00 1.00 0.0 35.16 227 05.0 5' Yagi 1 20 7.3 5.0 60.0 3.0 1.00 1.00 0.0 35.16 227 05.0 S' Yagi 1 20 7.3 5.0 60.0 3.0 1.00 1.00 0.0 35.16 249 05.0 Round Side Arm 1 150 5.2 0.0 0.0 1.00 1.00 0.0 35.16 249 4.00 6' Ice Shield 1 450 </td <td></td> <td>-</td> <td></td> <td>3</td>		-												3
15.0 20' Dipole 1 60 7.5 20.0 3.0 3.0 1.00 1.00 0.0 0.0 35.25 360 15.0 Round Side Arm 1 150 5.2 0.0 0.0 0.0 1.00 1.00 0.0 0.0 35.25 249 05.0 2' x 4' Rectangular 1 40 4.8 2.0 48.0 0.0 1.00 1.00 0.0 35.16 227 05.0 5' Yagi 1 20 7.3 5.0 60.0 3.0 1.00 1.00 0.0 0.0 35.16 249 05.0 5' Yagi 1 20 7.3 5.0 60.0 3.0 1.00 1.00 0.0 0.0 35.16 249 05.0 Round Side Arm 1 150 5.2 0.0 0.0 1.00 1.00 0.0 35.16 249 4.00 6' Ice Shield 1 450 3.9 1.2 100.0 48.0 1.00 1.00 0.0 0.0 34.79 184 4														54
15.0 Round Side Arm 1 150 5.2 0.0 0.0 1.00 1.00 0.0 0.0 35.25 249 05.0 2' x 4' Rectangular 1 40 4.8 2.0 48.0 0.0 1.00 1.00 0.0 0.0 35.25 249 05.0 2' x 4' Rectangular 1 40 4.8 2.0 48.0 0.0 1.00 1.00 0.0 35.16 227 05.0 5' Yagi 1 20 7.3 5.0 60.0 3.0 1.00 1.00 0.0 35.16 249 05.0 Round Side Arm 1 150 5.2 0.0 0.0 1.00 1.00 0.0 35.16 249 4.00 6' Ice Shield 1 450 3.9 1.2 100.0 48.0 1.00 1.00 0.0 0.0 34.79 184 4 0.00 RFS PA6-65AC w/ 1 308 24.4 6.0 72.0 0.0 1.00 1.00 0.0 0.0 34.67 1151 3		-												
05.0 2' x 4' Rectangular 1 40 4.8 2.0 48.0 0.0 1.00 1.00 0.0 35.16 227 05.0 5' Yagi 1 20 7.3 5.0 60.0 3.0 1.00 1.00 0.0 35.16 227 05.0 5' Yagi 1 20 7.3 5.0 60.0 3.0 1.00 1.00 0.0 35.16 249 05.0 Round Side Arm 1 150 5.2 0.0 0.0 1.00 1.00 0.0 0.0 35.16 249 4.00 6' Ice Shield 1 450 3.9 1.2 100.0 48.0 1.00 1.00 0.0 34.79 184 30.0 100 1.00 0.0 0.0 34.67 1151 30.0 0.00 RFS PA6-65AC w/ 1 308 24.4 6.0 72.0 0.0 1.00 0.0 0.0 34.67 1151 30.0	-	-												18
D5.0 5' Yagi 1 20 7.3 5.0 60.0 3.0 1.00 0.0 0.0 35.16 349 05.0 Round Side Arm 1 150 5.2 0.0 0.0 0.0 1.00 0.0 0.0 35.16 349 05.0 Round Side Arm 1 150 5.2 0.0 0.0 1.00 1.00 0.0 35.16 249 4.00 6' Ice Shield 1 450 3.9 1.2 100.0 48.0 1.00 0.0 0.0 34.79 184 30.0 1.00 1.00 0.0 0.0 34.67 1151 30.0														18
05.0 Round Side Arm 1 150 5.2 0.0 0.0 0.0 1.00 0.0 0.0 35.16 249 4.00 6' Ice Shield 1 450 3.9 1.2 100.0 48.0 1.00 0.0 0.0 35.16 249 4.00 6' Ice Shield 1 450 3.9 1.2 100.0 48.0 1.00 1.00 0.0 0.0 34.79 184 400.00 RFS PA6-65AC w/ 1 308 24.4 6.0 72.0 0.0 1.00 0.0 0.0 34.67 1151 300		-												24
4.00 6' Ice Shield 1 450 3.9 1.2 100.0 48.0 1.00 0.0 0.0 34.79 184 100 184 100 1.00 0.0 0.0 34.79 184 100 100 1.00 0.0 34.79 184 100 100 100 0.0 34.79 184 100 100 100 0.0 34.67 1151		•												18
0.00 RFS PA6-65AC w/ 1 308 24.4 6.0 72.0 0.0 1.00 1.00 0.0 0.0 34.67 1151														180
		-												
Totais 101 8270 584.2 18334 99		-			0.0	12.0	0.0	1.00	1.00	V.V	0.0	34.0/		370
	Totais	101	8270	584.2									18334	992

Site Number: 6310

Code:

ANSI/TIA-222-G Engineering Number: OAA710395_C3_06 © 2007 - 2018 by ATC IP LLC. All rights reserved.

4/30/2018 4:38:24 PM

Site Name: FRANKLIN CT, CT SPRINT NEXTEL Customer:

Tower Loading

Discrete Appurtenance Properties 1.2D + 1.0Di + 1.0Wi

Elevation Description (ft)	Qty	ice Wt I (lb)	ce EPA (sf)	Length (ft)	Width (In)	Depth (in)	К.	Orient. Factor	Vert. Ecc.(ft)	M " (Ib-ft)	Q <u>,</u> F (psf)	(WL) F (lb)	'_(DL) (lb)
294.0 10' Omni	1	184	6.2	10.0	3.0	3,0	1.00	1.00	13.0	592.7	8.61	46	189
294.0 13' Omni	- 1	245	8.9	13.0	3.0	3.0	1.00	1.00	9.0	587.9	8.61	65	253
294.0 18' Dipole	- i	336	12.7	18.0	3.0	3.0	1.00	1.00	-6.0	559.1	8.60	93	347
294.0 20' Dipole	1	311	21.0	20.0	3.0	3.0	1.00	1.00	12.0	1842.8	8.61	154	323
294.0 6' Yagi	- i	314	36.0	6.0	60.0	3.0	1.00	1.00	8.0	2108.6	8.61	264	319
294.0 Round Side Arm	3	233	8.3	0.0	0.0	0.0	1.00	0.67	0.0	0.0	8.61	122	789
268.0 10' Dipole	1	156	10.6	10.0	3.0	3.0	0.80	1.00	9.0	555.4	8.60	62	162
268.0 24" x 24" Junction	1	173	5,8	2.0	24.0	8.0	0.80	0.67	8.0	181.7	8.60	23	177
268.0 6' Omni	1	123	3.3	6.0	3.0	3.0	0.80	1.00	6.0	114.1	8.60	19	128
268.0 8' Omni	1	153	4.7	8.0	3.0	3.0	0.80	1.00	8.0	217.6	8.60	27	158
268.0 Andrew DB810K-XT	1	263	10.3	14.5	3.0	3.0	0.80	1.00	-6.0	361.6	8.60	60	270
268.0 Round Side Arm	3	233	8.3	0.0	0.0	0.0	1.00	0.67	0.0	0.0	8.60	122	789
233.0 11' Omni	1	214	7.1	11.0	3.0	3.0	0.80	1.00	-3.0	124.3	8.61	41	222
233.0 13' Omni	1	143	9.2	13.0	3.0	3.0	0.80	1.00	8.0	429.6	8.60	54	151
233.0 14' Omni	1	260	9.9	14.0	3.0	3.0	0.80	1.00	-5.0	290.1	8.61	58	268
233.0 Bird 432E-83I-01-T	1	84	1.2	1.0	12.0	7.5	0.80	0.50	7.0	25.3	8.60	4	89
233.0 Round Side Arm	3	233	8.3	0.0	0.0	0.0	1.00	0.67	0.0	0.0	8.60	122	789
233.0 Scala OGT9-840	2	162	6.8	11.4	2.0	2.0	0.80	1.00	7.0	555.1	8.60	79	331
233.0 Sinclair SC479-	3	283	14.0	14.4	3.5	3.5	0.80	1.00	7.0	1718.4	8.60	245	870
213.0 22' Dipole	1	342	23.1	22.0	3.0	3.0	0.90	1.00	0.0	0.0	8.61	152	355
213.0 Andrew DB224	- i	396	16.2	23.0	3.0	3.0	0.90	1.00	0.0	0.0	8.61	107	404
213.0 Side Arm	2	233	9.1	0.0	0.0	0.0	0.90	0.90	0.0	0.0	8.61	108	526
180.0 Alcatel-Lucent 1900	3	155	3.5	2.1	11.1	10.7	0.80	0.67	0.0	0.0	8.64	42	501
180.0 Alcatel-Lucent	6	137	2.3	1.3	13.0	9.8	0.80	0.50	0.0	0.0	8.64	41	884
180.0 Alcatel-Lucent TD-	3	177	5.6	2.2	18.6	6.7	0.80	0.67	0.0	0.0	8.64	66	574
180.0 Commscope NNVV-	3	403	14.0	6.0	19.6	7.8	0.80	0.64	0.0	0.0	8.64	157	1254
180.0 Decibel DB844H90E-	3	144	4.6	4.0	8.0	6.5	0.80	0.74	0.0	0.0	8.64	61	439
180.0 RFS APXVTM14-ALU		216	8.8	4.7	12.6	6.3	0.80	0.66	0.0	0.0	8.64	103	681
180.0 Round Sector Frame	3	718	33.2	0.0	0.0	0.0	0.75	0.75	0.0	0.0	8.64	411	2334
170.0 Alcatel-Lucent RRH	3	77	3.4	1.7	11.2	7.2	0.80	0.50	0.0	0.0	8.64	30	257
170.0 Alcatel-Lucent RRH	3	79	3,4	1.7	11.2	7.6	0.80	0.50	0.0	0.0	8.64	30	263
170.0 Amphenol Antel BXA	_	30	13.6	5.9	11.2	5.2	0.80	0.66	0.0	0.0	8.64	158	102
170.0 Commscope HBXX-	6	241	11.3	6.2	12.0	6.5	0.80	0.68	0.0	0.0	8.64	270	1493
170.0 Commscope LNX-	3	70	14.6	6.1	11.9	7.1	0.80	0.69	0.0	0.0	8.64	178	234
170.0 Flat Light Sector	3	742	35.0	0.0	0.0	0.0	0.75	0.75	0.0	0.0	8.64	435	2466
170.0 RFS DB-T1-6Z-8AB-	1	79	8.6	2.0	24.0	10.0	0.80	0.67	0.0	0.0	8.64	34	88
170.0 RFS FD9R6004/2C-3L	-	5	0.7	0.5	6.5	1.5	0.80	0.50	0.0	0.0	8.64	12	31
130.0 24" x 24" Junction	1	174	5.8	2.0	24.0	8.0	0.90	0.67	0.0	0.0	8.65	26	178
130.0 Round Side Arm	1	233	8.3	0.0	0.0	0.0	1.00	0.67	0.0	0.0	8.65	41	263
130.0 Scala AP7-850/065	1	48	1.6	1.1	10.0	4.0	0.90	0.62	0.0	0.0	8.65	7	48
125.0 Amphenol Antel	3	291	12.5	7.9	11.2	5.1	0.80	0.67	0.0	0.0	8.65	148	889
125.0 Bird 432E-83I-01-T	1	85	1.7	1.0	12.0	7.5	0.80	0.50	0.0	0.0	8.65	5	90
125.0 Flat Side Arm	3	233	9.1	0.0	0.0	0.0	1.00		0.0	0.0	8.65	134	789
115.0 20' Dipole	1	311	21.0	20.0	3.0	3.0	1.00	1.00	0.0	0.0	8.64	154	323
115.0 Round Side Arm	1	233	8.3	0.0	0.0		1.00		0.0	0.0	8.64	61	263
105.0 2' x 4' Rectangular	1	211	41.4	2.0	48.0		1.00		0.0	0.0	8.62	303	219
105.0 5' Yagi	- i	261	29.9	5.0	60.0	3.0	1.00		0.0	0.0	8.62	219	265
105.0 Round Side Arm	- i	233	8.3	0.0	0.0		1.00		0.0	0.0	8.62	61	263
84.00 6' Ice Shield	i	805	7.0	1.2	100.0		1.00		0.0	0.0	8.53	50	895
80.00 RFS PA6-65AC w/	- i	1290	27.1	6.0	72.0		1.00		0.0	0.0	8.50	196	1352
Totals	101		1072.7									5456	25350

Site I	Number:	6310	
--------	---------	------	--

FRANKLIN CT, CT Site Name: Customer:

SPRINT NEXTEL

Code:

ANSI/TIA-222-G Engineering Number: OAA710395_C3_06 © 2007 - 2018 by ATC IP LLC. All rights reserved.

4/30/2018 4:38:24 PM

Tower Loading

Discrete Appurtenance Properties 1.0D + 1.0W Service

Elevation Description (ft)	Qty	Wt. (lb)	EPA (sf)	Length (ft)	Width (ln)	Depth (in)	к.	Orient. Factor	Vert. Ecc.(ft)	M . (Ib-ft)	Q ₂ F (psf)	。(WL) P, (Ib)	(Ib)
	1	25	3.0	10.0	3.0	3.0	1.00	1.00	13.0	411.2	12.40	32	25
294.0 10' Omni	1	25 40	3.9	13.0	3.0	3.0	1.00	1.00	9.0	370.0	12.40	41	40
94.0 13' Omni	1	40 55	6.8	18.0	3.0	3.0	1.00	1.00	-6.0	427.8	12.39	71	55
294.0 18' Dipole	1	55 60	7.5	20.0	3.0	3.0	1.00	1.00	12.0	951.4	12.40	79	60
294.0 20' Dipole	1	25	8.9	6.0	60.0	3.0	1.00	1.00	8.0	754.6	12.40	94	2
294.0 6' Yagi	3	150	5.2	0.0	0.0	0.0	1.00	0.67	0.0	0.0	12.39	110	45
294.0 Round Side Arm	3 1	30	3.8	10.0	3.0	3.0	0.80	1.00	9.0	285.0	12.39	32	3
268.0 10' Dipole	-		4.8	2.0	24.0	8.0	0.80	0.67	8.0	216.7	12.38	27	2
268.0 24" x 24" Junction	1	20 25	1.8	2.0 6.0	3.0	3.0	0.80	1.00	6.0	88.9	12.38	15	2
268.0 6' Omni	1	25	2.4	8.0	3.0	3.0	0.80	1.00	8.0	161.7	12.38	20	2
268.0 8' Omni		35	4.3	14.5	3.0	3.0	0.80	1.00	-6.0	219.8	12.38	37	3
268.0 Andrew DB810K-XT	1		5.2	0.0	0.0	0.0	1.00	0.67	0.0	0.0	12.38	110	45
268.0 Round Side Arm	3	150	3.3	11.0	3.0	3.0	0.80	1.00	-3.0	83.4	12.39	28	- 4
233.0 11' Omni	1	40	3.9	13.0	3.0	3.0	0.80	1.00	8.0	262.8	12.39	33	4
233.0 13' Omni	1	40	4.2		3.0	3.0	0.80	1.00	-5.0	177.0	12.39	35	4
233.0 14' Omni	1	40	1.2			7.5	0.80	0.50	7.0	35.4	12.39	5	2
233.0 Bird 432E-83I-01-T	1	25	5.2		12.0 0.0	0.0	1.00	0.67	0.0	0.0	12.39	110	45
233.0 Round Side Arm	3	150		0.0		2.0	0.80	1.00	7.0	267.7	12.39	38	3
233.0 Scala OGT9-840	2	19	2.3 5.0		2.0	2.0	0.80	1.00	7.0	889.8	12.39	127	10
233.0 Sinclair SC479-	3	34			3.5			1.00	0.0	0.0	12.41	78	6
213.0 22' Dipole	1	66	8.3	22.0	3.0	3.0	0.90	1.00	0.0	0.0	12.41	57	3
213.0 Andrew DB224	1	38	6.1	23.0	3.0	3.0		0.90	0.0	0.0	12.41	108	30
213.0 Side Arm	2	150	6.3	-	0.0	0.0	0.90	0.90	0.0	0.0	12.44	39	18
180.0 Alcatel-Lucent 1900	3	60	2.3		11.1	10.7	0.80	0.50	0.0	0.0	12.44	43	31
180.0 Alcatel-Lucent	6	53	1.7		13.0	9.8	0.80		0.0	0.0	12.44	69	21
180.0 Alcatel-Lucent TD-	3	70	4.1		18.6	6.7	0.80	0.67	0.0	0.0	12.44	199	23
180.0 Commscope NNVV-	3	77	12.3		19.6	7.8	0.80	0.64	0.0	0.0	12.44	68	- 4
180.0 Decibel DB844H90E-	3	14	3.6		8.0	6.5	0.80	0.74		0.0	12.44	106	16
180.0 RFS APXVTM14-ALU		56	6.3		12.6		0.80	0.66	0.0	0.0	12.44	257	90
180.0 Round Sector Frame	3	300	14.4		0.0	0.0	0.75	0.75	0.0	0.0	12.45	24	12
170.0 Alcatel-Lucent RRH	3	43	1.9		11.2		0.80	0.50	0.0	0.0	12.45	24	13
170.0 Alcatel-Lucent RRH	3	44	1.9		11.2		0.80	0.50	0.0			127	į
170.0 Amphenol Antel BXA	- 3	17	7.6		11.2		0.80	0.66	0.0	0.0		295	24
170.0 Commscope HBXX-	6	41	8.5	+			0.80	0.68	0.0	0.0		143	1
170.0 Commscope LNX-	3	39	8.2		11.9		0.80	0.69	0.0	0.0		320	120
170.0 Flat Light Sector	3	400	17.9		0.0		0.75		0.0	0.0 0.0		27	14
170.0 RFS DB-T1-6Z-8AB-	1	44	4.8				0.80	0.67	0.0	÷		9	
170.0 RFS FD9R6004/2C-3L	. 6	3	0.4	•			0.80		0.0	0.0		31	-
130.0 24" x 24" Junction	1	20	4.8				0.90		0.0	0.0		37	1
130.0 Round Side Arm	1	150	5.2				1.00		0.0	0.0		7	
130.0 Scala AP7-850/065	1	3	1.1				0.90		0.0	0.0		181	
125.0 Amphenol Antel	3	27	10.7				0.80		0.0	0.0			
125.0 Bird 432E-83I-01-T	1	25	1.2				0.80		0.0	0.0		5	4
125.0 Flat Side Arm	3	150	6.3				1.00		0.0	0.0		134	4:
115.0 20' Dipole	1	60	7.5				1.00		0.0	0.0			
115.0 Round Side Arm	1	150	5.2	2 0.0			1.00		0.0	0.0		55	1
105.0 2' x 4' Rectangular	1	40	4.8				1.00		0.0	0.0		50	:
105.0 5' Yagi	1	20	7.3		60.0	3.0	1.00		0.0	0.0		77	
	i	150	5.2		0.0	0.0	1.00		0.0	0.0		55	1 4
105 0 Koling Side Arm							4 66	4 66	0.0				- 4
105.0 Round Side Arm 84.00 6' Ice Shield	1	450	3.9) 1.2	2 100.0	48.0	1.00	1.00	0.0	0.0			
84.00 6' Ice Shield 80.00 RFS PA6-65AC w/	1	450 308	3.9 24.4				1.00		0.0	0.0			3

Site Number:	6310	Code:	ANSI/TIA-222-G	© 2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_06	4/30/2018 4:38:24 PM
Customer:	SPRINT NEXTEL			

Tower Loading

Linear Appurtenance Properties

Elev From (ft)	Elev To (ft)	Description	Qty	Width (in)	1 Weight (Ib/ft)	Pct In Block	Spread On Faces	Bundling Arrangement	Cluster Dia (in)	Out Of Zone	Spacing ((in)	Orientation Factor	n Ka Override
5.00	294.0	1 1/4" Coax	1	1.55	0.63	0	1	Individual	0.00	Ν	1.00	1.00	0.00
5.00	294.0	7/8" Coax	1	1.09	0.33	0	2	Individual	0.00	N	1.00	1.00	0.00
5.00	294.0	7/8" Coax	1	1.09	0.33	0	2	Individual	0.00	Ν	1.00	1.00	0.00
5.00	294.0	7/8" Coax	1	1.09	0.33	0	1	Individual	0.00	Ν	1.00	1.00	0.00
5.00	268.0	1 5/8" Coax	1	1.98	0.82	0	3	Individual	0.00	N	1.00	1.00	0.00
5.00	268.0	7/8" Coax	2	1.09	0.33	0	1	Individual	0.00	Ν	1.00	1.00	0.00
5.00	233.0	1 5/8" Coax	1	1,98	0.82	Ō	3	Individual	0.00	Ν	1.00	1.00	0.00
5.00	233.0	1 5/8" Coax	4	1.98	0.82	0	Lin App	Individual	0.00	Ν	1.00	1.00	0.00
5.00	213.0	1/2" Coax	1	0.63	0.15	0	1	Individual	0.00	N	1.00	1.00	0.00
5.00	213.0	1/2" Coax	1	0.63	0.15	0	1	Individual	0.00	N	1.00	1.00	0.00
5.00	180.0	1 1/4" Hybriflex	4	1.54	1.00	0	2	Individual	0.00	Ν	1.00	1.00	0.00
5.00	180.0	1 5/8" Coax	9	1.98	0.82	Ó	2	Individual	0.00	Ν	0.50	1.00	0.00
5.00	170.0	1 5/8" Coax	12	1.98	0.82	33	3	Block	0.00	N	0.50	1.00	0.00
5.00	170.0	1 5/8" Fiber	1	1.63	1.61	0	3	Individual	0.00	N	1.00	1.00	0.00
5.00	130.0	1 5/8" Coax	1	1.98	0.82	ō	3	Individual	0.00	N	1.00	1.00	0.00
5.00	125.0	1 5/8" Coax	3	1.98	0.82	Ŏ	Lin App	Individual	0.00	Ν	1.00	1.00	0.00
5.00	115.0	1/2" Coax	ĭ	0.63	0.15	ō	3	Individual	0.00	N	1.00	1.00	0.00
5.00	80.00	EW65	5	2.01	0.57	õ	3	individual	0.00	Ν	1.00	1.00	0.00

Site Number:	6310	Code:	ANSI/TIA-222-G	© 2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_06	4/30/2018 4:38:24 PM
Customer:	SPRINT NEXTEL			

Equivalent Lateral Force Method

(Based on ASCE7-10 Chapters 11, 12 & 15)

Spectral Response Acceleration for Short Period (S):	0.17
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.06
Long-Period Transition Period (T Seconds):	6
Importance Factor (I _e):	1.00
Site Coefficient F a:	1.60
Site Coefficient F _v :	2.40
Response Modification Coefficient (R):	2.50
Design Spectral Response Acceleration at Short Period (S ds):	0.18
Design Spectral Response Acceleration at 1.0 Second Period (S d):	0.10
Seismic Response Coefficient (C _s):	0.05
Upper Limit C _s :	0.05
Lower Limit C s:	0.03
Period based on Rayleigh Method (sec):	0.74
Redundancy Factor (p):	1.30
Seismic Force Distribution Exponent (k):	1.12
Total Unfactored Dead Load:	31.23 k
Seismic Base Shear (E):	2.13 k

LoadCase (1.2 + 0.2Sds) * DL + E

Seismic

Section	Height Above Base (ft)	Weight (Ib)	W _z (Ib-ft)	Cvx	Horizontal Force (lb)	Vertical Force (lb)
16	290.00	1,055	610,159	0.072	153	1,304
15	270.00	1,037	553,523	0.065	139	1,282
14	250.00	1,094	535,832	0.063	134	1,353
13	230.00	1,108	494,094	0.058	124	1,370
12	210.00	1,140	459,289	0.054	115	1,410
11	190.00	1,182	425,524	0.050	107	1,462
10	170.00	1,655	525,865	0.062	132	2,046
9	150.00	1,769	488,593	0.057	122	2,188
8	130.00	1,830	430,265	0.051	108	2,262
7	110.00	1,837	358,249	0.042	90	2,272
6	90.00	1,838	286,153	0.034	72	2,273
5	70.00	1,849	217,193	0.026	54	2,287
4	50.00	1,889	152,098	0.018	38	2,336
3	30.00	1,849	83,957	0.010	21	2,287
2	12.00	1,451	23,561	0.003	6	1,794
1	2.00	372	809	0.000	0	460
10' Omni	294.00	25	14,686	0.002	4	31
13' Omni	294.00	40	23,497	0.003	6	49
18' Dipole	294.00	55	32,309	0.004	8	68
20' Dipole	294.00	60	35,246	0.004	9	74
6' Yagi	294.00	25	14,686	0.002	4	31
Round Side Arm	294.00	450	264,346	0.031	66	556
10' Dipole	268.00	30	15,884	0.002	4	37
24" x 24" Junction Box	268.00	20	10,590	0.001	3	25

Site Number:	6310	Code:	ANSI/TIA-222-G	© 2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_06	4/30/2018 4:38:24 PM
Customer:	SPRINT NEXTEL			

6' Omni	268.00	25	13,237	0.002	3	31
8' Omni	268.00	25	13,237	0.002	3	31
Andrew DB810K-XT	268.00	35	18,532	0.002	5	43
Round Side Arm	268.00	450	238,267	0.028	60	556
	233.00	40	18,102	0.002	5	49
11' Omni 12' Omni	233.00	40	18,102	0.002	5	49
13' Omni 14' Omni	233.00	40	18,102	0.002	5	49
	233.00	25	11,314	0.002	3	31
Bird 432E-83I-01-T Round Side Arm	233.00	450	203,649	0.024	51	556
Koung Side Arm Scala OGT9-840	233.00	450	16,744	0.024	4	46
Scala OG 19-640 Sinclair SC479-HF1LDF(E5765)	233.00	102	46,160	0.002	12	126
• •	213.00	66	27,008	0.003	7	82
22' Dipole	213.00	38	•	0.002	4	47
Andrew DB224	213.00	38 300	15,550 122.763	0.002		371
Side Arm	215.00 180.00	300 180	122,763 60,983		15	223
Alcatel-Lucent 1900 MHz 4X45 RRH	180.00	180	107,533	0.007 0.013	27	392
Alcatel-Lucent RRH2x50-08	180.00	210	71,147	0.008	18	260
Alcatel-Lucent TD-RRH8x20-25 w/ Solar	180.00	232	78,668	0.009	20	287
Commscope NNVV-65B-R4	180.00	42	14,229	0.009	4	52
Decibel DB844H90E-XY RFS APXVTM14-ALU-I20	180.00	169	57,121	0.002	14	208
	180.00	900	304,915	0.036	76	1,113
Round Sector Frame			•		10	160
Alcatel-Lucent RRH 2X60-1900	170.00 170.00	129	40,990	0.005	11	163
Alcatel-Lucent RRH 2X60-AWS	170.00	132	41,943	0.005	4	63
Amphenol Antel BXA-70063-6CF-EDIN-X		51 245	16,205 77,786	0.002	20	303
Commscope HBXX-6517DS-A2M	170.00		-	0.009	9	145
Commscope LNX-8513DS-VTM (39.2 lb)	170.00	118	37,368	0.004	96	1.484
Flat Light Sector Frame	170.00 170.00	1,200	381,303	0.045	30 4	54
RFS DB-T1-6Z-8AB-0Z		44 16	13,981 4,957	0.002	1	19
RFS FD9R6004/2C-3L	170.00			0.001	1	25
24" x 24" Junction Box	130.00	20	4,704	0.001	9	185
Round Side Arm	130.00	150	35,277	0.004	9	165
Scala AP7-850/065	130.00 125.00	3	706	0.000	5	101
Amphenol Antel WPA-70063-8CF-EDIN-0-		82	18,432	0.002	8	31
Bird 432E-83I-01-T	125.00	25	5,626	0.001	25	556
Flat Side Arm	125.00	450	101,274	0.012	25	556
20' Dipole	115.00	60	12,297	0.001	3	185
Round Side Arm	115.00	150	30,744	0.004	2	49
2' x 4' Rectangular Grid Dish	105.00	40	7,403	0.001	2	45
5' Yagi	105.00	20	3,701	0.000	7	185
Round Side Arm	105.00	150	27,761	0.003	16	556
6' Ice Shield	84.00	450	64,840	0.008	16	381
RFS PA6-65AC w/ Radome	80.00	308	42,016	0.005	11	301

LoadCase (0.9 - 0.2Sds) * DL + E

Seismic (Reduced DL)

Section	Height Above Base (ft)	Weight (Ib)	W _z (lb-ft)	C _{vx}	Horizontal Force (lb)	Vertical Force (lb)
16	290.00	1,055	610,159	0.072	153	911
15	270.00	1,037	553,523	0.065	139	895
14	250.00	1,094	535,832	0.063	134	945
13	230.00	1,108	494,094	0.058	124	957
12	210.00	1.140	459,289	0.054	115	985
11	190.00	1,182	425,524	0.050	107	1,021

							•
Site Name:	FRANKLIN CT, CT		Engineering N	umber: OAA71	0395_C3_06		4/30/2018 4:38:24 PM
Customer:	SPRINT NEXTEL						
		<u>Equi</u>	valent Late	eral Force N	<u>lethod</u>		
10		170.00	1,655	525,865	0.062	132	1,429
9		150.00	1,769	488,593	0.057	122	1,528
8		130.00	1,830	430,265	0.051	108	1,580
7		110.00	1,837	358,249	0.042	90	1,587
6		90.00	1,838	286,153	0.034	72	1,587
5		70.00	1,849	217,1 9 3	0.026	54	1,597
4		50.00	1,88 9	152,098	0.018	38	1,631
3		30.00	1,849	83,957	0.010	21	1,597
2		12.00	1,451	23,561	0.003	6	1,253
1		2.00	372	809	0.000	0	321
10' Omni 121 Omni		294.00	25	14,686	0.002	4	22
13' Omni		294.00	40	23,497	0.003	6	35
18' Dipole		294.00 294.00	55	32,309	0.004	8	47
20' Dipole 6' Yagi		294.00	60	35,246	0.004	9	52
Round Sid	le Arm	294.00	25 450	14,686 264,346	0.002	4 66	22 389
10' Dipole		268.00	430		0.031	4	26
	Junction Box	268.00	20	15,884 10,590	0.002	4	17
6' Omni		268.00	25	13,237	0.001 0.002	3	22
8' Omni		268.00	25	13,237	0.002	3	22
Andrew Di	B810K-XT	268.00	35	18,532	0.002	5	30
Round Sid	le Arm	268.00	450	238,267	0.028	60	389
11' Omni		233.00	40	18,102	0.002	5	35
13' Omni		233.00	40	18,102	0.002	5	35
14' Omni		233.00	40	18,102	0.002	5	35
Bird 432E-	-83I-01-T	233.00	25	11,314	0.001	3	22
Round Sid	le Arm	233.00	450	203,649	0.024	51	389
Scala OGT	[9-840	233.00	37	16,744	0.002	4	32
Sinclair SC	C479-HF1LDF(E5765)	233.00	102	46,160	0.005	12	88
22' Dipole		213.00	66	27,008	0.003	7	57
Andrew Di	B224	213.00	38	15,550	0.002	4	33
Side Arm		213.00	300	122,763	0.014	31	259
	cent 1900 MHz 4X45 RRH	180.00	180	60,983	0.007	15	155
	cent RRH2x50-08	180.00	317	107,533	0.013	27	274
	cent TD-RRH8x20-25 w/ Solar	180.00	210	71,147	0.008	18	181
	pe NNVV-65B-R4	180.00	232	78,668	0.009	20	201
	3844H90E-XY	180.00	42	14,229	0.002	4	36
	TM14-ALU-I20	180.00 180.00	169	57,121	0.007	14	146
	ctor Frame cent RRH 2X60-1900		900	304,915	0.036	76	777
	cent RRH 2X60-AWS	170.00 170.00	129	40,990	0.005	10	111
	Antel BXA-70063-6CF-EDIN-X	170.00	132 51	41,943	0.005	11 4	114 44
-	pe HBXX-6517DS-A2M	170.00	245	16,205 77,786	0.002	20	211
	pe LNX-8513DS-VTM (39.2 lb)	170.00	118	37,368	0.009 0.004	9	102
	Sector Frame	170.00	1,200	381,303	0.045	96	1,036
-	-6Z-8AB-0Z	170.00	44	13,981	0.002	4	38
	6004/2C-3L	170.00	16	4,957	0.001	1	13
	unction Box	130.00	20	4,704	0.001	1	17
Round Sid	e Arm	130.00	150	35,277	0.004	9	130
Scala AP7-	-850/065	130.00	3	706	0.000	0	3
Amphenol	Antel WPA-70063-8CF-EDIN-0-	125.00	82	18,432	0.002	5	71
Bird 432E-		125.00	25	5,626	0.001	1	22
Flat Side A	rm	125.00	450	101,274	0.012	25	389
20' Dipole		115.00	60	12,297	0.001	3	52
Round Side	e Arm	115.00	150	30,744	0.004	8	130

Code:

ANSI/TIA-222-G

© 2007 - 2018 by ATC IP LLC. All rights reserved.

Site Number: 6310

Site Number:	6310	(Code:	ANSI	/TIA-222-G	© 2007 - 2018 by A	TC IP LLC. All rights reserved.
Site Name:	FRANKLIN CT, CT	I	Engineering Nu	mber: OAA	710395_C3_06		4/30/2018 4:38:24 PM
Customer:	SPRINT NEXTEL						
		Equiv	alent Late	ral Force	Method		
2' x 4' Rec	tangular Grid Dish	105.00	40	7,403	0.001	2	35
5' Yagi	-	105.00	20	3,701	0.000	1	17
Round Sid	le Arm	105.00	150	27,761	0.003	7	130
6' Ice Shie	ld	84.00	450	64,840	0.008	16	389
RFS PA6-6	5AC w/ Radome	80.00	308	42,016	0.005	11	266
		-	31,226	8,501,086	1.000	2,131	26,964

Site Number:	6310	Code:	ANSI/TIA-222-G	© 2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_06	4/30/2018 4:38:25 PM
Customer:	SPRINT NEXTEL			

Equivalent Modal Analysis Method

(Based on ASCE7-10 Chapters 11, 12 & 15 and ANSI/TIA-G, section 2.7)

•	
Spectral Response Acceleration for Short Period (S a):	0.17
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.06
Importance Factor (I _e):	1.00
Site Coefficient F _a :	1.60
Site Coefficient F v:	2.40
Response Modification Coefficient (R):	2.50
Design Spectral Response Acceleration at Short Period (S ds):	0.18
Desing Spectral Response Acceleration at 1.0 Second Period (S d1):	0.10
Period Based on Rayleigh Method (sec):	0.74
Redundancy Factor (p):	1.30

adCase (1.2 + 0.2Sds) * D	Height Above Base	Weight					Horizontal Force	Vertical Force
Section	(ft)	(lb)	a	b	c	Saz	(lb)	(lb)
6	290.00	1,055	1.766	1.389	0.920	0.350	192	1,304
5	270.00	1,037	1.531	0.580	0.580	0.239	129	1,282
4	250.00	1,094	1.312	0.138	0.347	0.160	91	1,353
3	230.00	1,108	1.111	-0.064	0.194	0.111	64	1,370
2	210.00	1,140	0.926	-0.121	0.098	0.083	49	1,410
1	190.00	1,182	0.758	-0.103	0.043	0.071	43	1,462
0	170.00	1,655	0.607	-0.055	0.015	0.065	56	2,046
	150.00	1,769	0.472	-0.006	0.006	0.060	55	2,188
	130.00	1,830	0.355	0.031	0.008	0.054	51	2,262
	110.00	1,837	0.254	0.055	0.017	0.046	44	2,272
	90.00	1,838	0.170	0.066	0.027	0.038	36	2,273
	70.00	1,849	0.103	0.071	0.037	0.030	29	2,287
	50.00	1,889	0.053	0.071	0.042	0.024	24	2,336
	30.00	1,849	0.019	0.063	0.037	0.018	17	2,287
	12.00	1,451	0.003	0.037	0.021	0.010	7	1,794
	2.00	372	0.000	0.008	0.004	0.002	0	460
0' Omni	294.00	25	1.815	1.608	1.004	0.377	5	31
3' Omni	294.00	40	1.815	1.608	1.004	0.377	8	49
8' Dipole	294.00	55	1.815	1.608	1.004	0.377	11	68
0' Dipole	294.00	60	1.815	1.608	1.004	0.377	12	74
'Yagi	294.00	25	1.815	1.608	1.004	0.377	5	31
tound Side Arm	294.00	450	1.815	1.608	1.004	0.377	88	556
0' Dipole	268.00	30	1.508	0.522	0.553	0.230	4	37
4" x 24" Junction Box	268.00	20	1.508	0.522	0.553	0.230	2	25
' Omni	268.00	25	1.508	0.522	0.553	0.230	3	31
' Omni	268.00	25	1.508	0.522	0.553	0.230	3	31
ndrew DB810K-XT	268.00	35	1.508	0.522	0.553	0.230	4	43
ound Side Arm	268.00	450	1.508	0.522	0.553	0.230	54	556
1' Omni	233.00	40	1.140	-0.045	0.213	0.116	2	49
3' Omni	233.00	40	1.140	-0.045	0.213	0.116	2	49
4' Omni	233.00	40	1.140	-0.045	0.213	0.116	2	49
Bird 432E-83I-01-T	233.00	25	1.140	-0.045	0.213	0.116	2	31
lound Side Arm	233.00	450	1.140	-0.045	0.213	0.116	27	556
Scala OGT9-840	233.00	37	1.140	-0.045	0.213	0.116	2	46
Sinclair SC479-HF1LDF(E5765)	233.00	102	1.140	-0.045	0.213	0.116	6	126
2' Dipole	213.00	66	0.953	-0.119	0.109	0.086	3	82
Andrew DB224	213.00	38	0.953	-0.119	0.109	0.086	2	47
Side Arm	213.00	300	0.953	-0.119	0.109	0.086	13	371
Alcatel-Lucent 1900 MHz 4X45	180.00	180	0.680	-0.081	0.026	0.067	6	223

Site Number:	6310	Code:	ANSI/TIA-222-G	© 2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_06	4/30/2018 4:38:25 PM
Customer:	SPRINT NEXTEL			

Equivalent Modal Analysis Method

Alcatel-Lucent RRH2x50-08	180.00	317	0.680	-0.081	0.026	0.067	11	392	
Alcatel-Lucent TD-RRH8x20-25	180.00	210	0.680	-0.081	0.026	0.067	7	260	
Commscope NNVV-65B-R4	180.00	232	0.680	-0.081	0.026	0.067	8	287	
Decibel DB844H90E-XY	180.00	42	0.680	-0.081	0.026	0.067	1	52	
RFS APXVTM14-ALU-I20	180.00	169	0.680	-0.081	0.026	0.067	6	208	
Round Sector Frame	180.00	900	0.680	-0.081	0.026	0.067	31	1,113	
Alcatel-Lucent RRH 2X60-1900	170.00	129	0.607	-0.055	0.015	0.065	4	160	
Alcatel-Lucent RRH 2X60-AWS	170.00	132	0.607	-0.055	0.015	0.065	4	163	
Amphenol Antel BXA-70063-6CF-	170.00	51	0.607	-0.055	0.015	0.065	2	63	
Commscope HBXX-6517DS-A2M	170.00	245	0.607	-0.055	0.015	0.065	8	303	
Commscope LNX-8513DS-VTM	170.00	118	0.607	-0.055	0.015	0.065	4	145	
Flat Light Sector Frame	170.00	1,200	0.607	-0.055	0.015	0.065	40	1,484	
RFS DB-T1-6Z-8AB-0Z	170.00	44	0.607	-0.055	0.015	0.065	1	54	
RFS FD9R6004/2C-3L	170.00	16	0.607	-0.055	0.015	0.065	1	19	
24" x 24" Junction Box	130.00	20	0.355	0.031	0.008	0.054	1	25	
Round Side Arm	130.00	150	0.355	0.031	0.008	0.054	4	185	
Scala AP7-850/065	130.00	3	0.355	0.031	0.008	0.054	0	4	
Amphenol Antel WPA-70063-	125.00	82	0.328	0.039	0.010	0.052	2	101	
Bird 432E-83I-01-T	125.00	25	0.328	0.039	0.010	0.052	1	31	
Flat Side Arm	125.00	450	0.328	0.039	0.010	0.052	12	556	
20' Dipole	115.00	60	0.278	0.050	0.014	0.048	2	74	
Round Side Arm	115.00	150	0.278	0.050	0.014	0.048	4	185	
2' x 4' Rectangular Grid Dish	105.00	40	0.232	0.058	0.019	0.044	1	49	
5' Yagi	105.00	20	0.232	0.058	0.019	0.044	0	25	
Round Side Arm	105.00	150	0.232	0.058	0.019	0.044	3	185	
6' Ice Shield	84.00	450	0.148	0.068	0.030	0.036	8	556	
RFS PA6-65AC w/ Radome	80.00	308	0.134	0.069	0.032	0.034	5	381	
		31,226	53.420	13.887	14.059	7.682	1,331	38,610	

LoadCase (0.9 - 0.2Sds) * DL + E

Seismic (Reduced DL)

adCase (0.9 - 0.2Sds) '	* DL + E		Seismic	(Reduced	d DL)			
Section	Height Above Base (ft)	Weight (Ib)	а	b	с	Saz	Horizontal Force (lb)	Vertical Force (Ib)
	290.00	1,055	1.766	1.389	0.920	0.350	192	911
15	270.00	1,037	1.531	0.580	0.580	0.239	129	895
14	250.00	1,094	1.312	0.138	0.347	0.160	91	945
13	230.00	1,108	1.111	-0.064	0.194	0.111	64	957
12	210.00	1,140	0.926	-0.121	0.098	0.083	49	985
11	190.00	1,182	0.758	-0.103	0.043	0.071	43	1,021
10	170.00	1,655	0.607	-0.055	0.015	0.065	56	1,429
	150.00	1,769	0.472	-0.006	0.006	0.060	55	1,528
9 8	130.00	1,830	0.355	0.031	0.008	0.054	51	1,580
7	110.00	1,837	0.254	0.055	0.017	0.046	44	1,587
6	90.00	1,838	0.170	0.066	0.027	0.038	36	1,587
5	70.00	1,849	0.103	0.071	0.037	0.030	29	1,597
5 4	50.00	1,889	0.053	0.071	0.042	0.024	24	1,631
3	30.00	1,849	0.019	0.063	0.037	0.018	17	1,597
2	12.00	1,451	0.003	0.037	0.021	0.010	7	1,253
1	2.00	372	0.000	0.008	0.004	0.002	0	321
10' Omni	294.00	25	1.815	1.608	1.004	0.377	5	22
13' Omni	294.00	40	1.815	1.608	1.004	0.377	8	35
18' Dipole	294.00	55	1.815	1.608	1.004	0.377	11	47
20' Dipole	294.00	60	1.815	1.608	1.004	0.377	12	52
6' Yagi	294.00	25	1.815	1.608	1.004	0.377	5	22
Round Side Arm	294.00	450	1.815	1.608	1.004	0.377	88	389
10' Dipole	268.00	30	1.508	0.522	0.553	0.230	4	26
24" x 24" Junction Box	268.00	20	1.508	0.522	0.553	0.230	2 3	17
5' Omni	268.00	25	1.508	0.522	0.553	0.230		22
8' Omni	268.00	25	1.508	0.522	0.553	0.230	3	22
Andrew DB810K-XT	268.00	35	1.508	0.522	0.553	0.230	4	30
Round Side Arm	268.00	450	1.508	0.522	0.553	0.230	54	389
11' Omni	233.00	40	1.140	-0.045	0.213	0.116	2	35
13' Omni	233.00	40	1.140	-0.045	0.213	0.116	2	35

			Code:		ANSI/	TIA-222-G		© 2007 - 2018 by ATC	C IP LLC. All rights reserved.
Site Number:	6310								4/30/2018 4:38:25 PM
Site Name:	FRANKLIN CT, CT		Engine	ering Numbe	r: OAA7	10395_C3_06	•		4,0012070
Customer:	SPRINT NEXTEL								
Gustomer	-								
			Equivalent	Modal A	nalysis	<u>Method</u>	_		
		233.00	40	1.140	-0.045	0.213	0.116	2	35 22
14' Omni Bird 432E-	921-01-7	233.00	25	1.140	-0.045	0.213	0.116	2	
		233.00	450	1.140	-0.045	0.213	0.116	27	389
Round Sid		233.00	37	1.140	-0.045	0.213	0,116	2	32
Scala OGT		233.00	102	1.140	-0.045	0.213	0.116	6	88 57
	2479-HF1LDF(E5765)	213.00	66	0.953	-0.119	0,109	0.086	3	57
22' Dipole	2004	213.00	38	0.953	-0.119	0.109	0.086	2	*-
Andrew DI	3224	213.00	300	0.953	-0.119	0.109	0.086	13	259
Side Arm		180.00	180	0.680	-0.081	0.026	0.067	6	155
Alcatel-Lu	cent 1900 MHz 4X45	180.00	317	0.680	-0.081	0.026	0.067	11	274
Alcatel-Lu	cent RRH2x50-08	180.00	210	0.680	-0.081	0.026	0.067	7	181
Alcatei-Lu	cent TD-RRH8x20-25	180.00	232	0.680	-0.081	0.026	0.067	8	201
	pe NNVV-65B-R4	180.00	42	0.680	-0.081	0.026	0.067	1	36
	3844H90E-XY	180.00	169	0.680	-0.081	0.026	0.067	6	146
	TM14-ALU-I20	180.00	900	0.680	-0.081	0.026	0.067	31	777
Round Se	ctor Frame		129	0.607	-0.055	0.015	0.065	4	111
	cent RRH 2X60-1900	170.00	132	0.607	-0.055	9.015	0.065	4	114
Alcatel-Lu	cent RRH 2X60-AWS	170.00	51	0.607	-0.055	0.015	0.065	2	44
Ampheno	Antel BXA-70063-6CF-	170.00	245	0.607	-0.055	0.015	0.065	8	211
Commsco	pe HBXX-6517DS-A2M	170.00		0.607	-0.055	0.015	0.065	4	102
	pe LNX-8513DS-VTM	170.00	118 1.200	0.607	-0.055	0.015	0.065	40	1,036
	Sector Frame	170.00		0.607	-0.055	0.015	0.065	1	38
	1-6Z-8AB-0Z	170.00	44	0.607	-0.055	0.015	0.065	_	13
	16004/2C-3L	170.00	16		0.031	0.008	0.054	-	17
24" x 24"	Junction Box	130.00	20	0.355 0.355	0.031	0.008	0.054		130
Round Sid		130.00	150	0.355	0.031	0.008	0.054		3
Scala AP7		130.00	3	0.335	0.039	0.010	0.052	_	71
Ampheno	I Antel WPA-70063-	125.00	82		0.039	0.010	0.052	_	22
Bird 432E	-831-01-T	125.00	25	0.328	-	0.010	0.052		389
Flat Side	Arm	125.00	450	0.328 0.278	0.039 0.050	0.014	0.048		52
20' Dipole		115.00	60			0.014	0.048		130
Round Si		115.00	150	0.278	0.050 0.058	0.019	0.044		35
2' x 4' Re	ctangular Grid Dish	105.00	40	0.232		0.019	0.044		17
5' Yagi		105.00	20	0.232	0.058	0.019	0.044		130
Round Si	de Arm	105.00	150	0.232	0.058	0.019	0.036		389
6' Ice Shi	eld	84.00	450	0.148	0.068	0.030	0.034		266
RFS PA6	-65AC w/ Radome	80.00	308	0.134	0.069			-	26.964
			31,226	53.420	13.887	14.059	7.682	2 1,331	20,007

Site Number: 6310	Code:	ANSI/TIA-222-G	© 2007 - 2018 by ATC IP LLC, All rights reserved.
Site Name: FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_06	4/30/2018 4:38:25 PM
Customer: SPRINT NEXTEL			
	Force/Stress Su	mmary	
Section: 1 Base	Bot Elev (ft): 0.00 Hei	ght (ft): 4.000	

							· ·	*							
	Pu		Len	Bra	icing	J %		F'y I	Phic Pn	Num	Num	Shear phiRnv		Use	
Max Compression Member	(kip)	Load Case	(ft)	х	Y	Z	KL/R	(ksi)	(kip)	Bolts	Holes	(kip)	(kip)	%	Controls
LEG SOL - 2 1/4" SOLID HORIZ	-103.93 0.00	1.2D + 1.0Di +	2.31 0.000	100 0	100 0		49.3 0.0	50.0 0.0	149.83 0.00	-	0	0.00 0.00	0.00 0.00	69 0	Member X
DIAG PL - PL 2 x 0.5"	-2.88	1.2D + 1.6W	3.651	50	50	50	136.6	50.0	12.10	0	0	0.00	0.00		Member Y
Max Tension Member	Pu (kip)	Load Case	Fy (ksi)	Fu (ksi)		hit Pn kip)	Num Bolts	Num Hole:	1 C C C C C C C C C C C C C C C C C C C	Inv	Bear phiRr (kip)	, phi	Shear it Pn (ip)	Use %	Controls
LEG	0.00		0	ĺ	0	0.00	0	0	٥	00.	0.0)0		0	
HORIZ SAE - 3X3X0.3125 DIAG	26.33 0.00	1.2D + 1.0Di +	36 0	-	8 : 0	57.67 0.00	0 0	0 0	-).00).00	0.0 0.0		0.00 0.00	45 0	Member
Section: 2 16'-4 B	ays	Bot Elev	(ft): 4.	00		Hei	ght (f	t): 16.	000						
	Pu		Len	Bra	icing	%		F'y	Phic Pn	Num	Num	Shear phiRnv		Use	
Max Compression Member	(kip)	Load Case	(ft)	X	Y	z	KL/R	(ksi)	(kip)	Bolts	Holes	(kip)	(kip)	%	Controls
LEG SOL - 2 1/4" SOLID	-94.38	1.2D + 1.0Di +	3.90	100	100	100	83.2	50.0	107.86	0	0	0.00	0.00	87	Member X
HORIZSAE - 2X2X0.1875	-2.77	1.2D + 1.6W	4.000	100	100	100	121.8	36.0	10.61	0	0	0.00	0.00	26	Member Z
DIAG SOL - 5/8" SOLID	-1.63	1.2D + 1.6W	5.587	50	50	50	193.4	50.0	1.85	0	0	0.00	0.00		Member X
Max Tension Member	Pu (kip)	Load Case	Fy (ksi)	Fu (ksi)		hit Pn kip)	Num Bolts	Num Holes		Inv	Bear phIRr (kip)	n phi	Shear it Pn cip)	Use %	Controls
LEG	0.00		0		0	0.00	0	0		.00	0.0)0		0	
HORIZ SAE - 2X2X0.1875		1.2D + 1.0Di +	36		-	23.17	Ō	0	Q	.00	0.0)0	0.00	25	Member
DIAG SOL - 5/8" SOLID	4.01	1.2D + 1.6W 210	50	6	5	13.81	0	0	0	.00	0.0	00	0.00	29	Member
Section: 3 20'-5 B	ays	Bot Elev	(ft): 20	.00		Hei	ght (f	t): 20.	000						
	Pu		Len	Bra	cing	1%		F'y I	Phic Pn	Num	Num	Shear phiRny	Bear phiRn	Use	
Max Compression Member	(kip)	Load Case	(ft)	Х	Y		KL/R	-			Holes	-	(kip)	%	Controls
LEG SOL - 2 1/4" SOLID	-93.40	1.2D + 1.0Di +	3.92	100	100	100	83.6	50.0	107.30	0	0	0.00	0.00	87	Member X
HORIZSAE - 2X2X0.1875	-1 48	1.2D + 1.6W 90	4.000	100	100	100	121.8	36.0	10.61	0	0	0.00	0.00	13	Member Z
	-1.40	1770 - 17011 00						00.0	10101		-				

Max Tension Member	Pu (kip) Lo	oad Case	Fy (ksi)	Fu (ksi)	Phit Pn (kip)		Num Holes	Shear phiRnv (kip)	Bear phiRn (kip)	Bik Shear phit Pn (kip)	Use % Controls
LEG	0.00		0	0	0.00	0	0	0.00	0.00		0
HORIZ SAE - 2X2X0.1875	2.19 1.	.2D + 1.6W 60	36	58	23.17	0	0	0.00	0.00	0.00	9 Member
DIAG SOL - 5/8" SOLID	2.54 1.2	2D + 1.6W 90	50	65	13.81	0	0	0.00	0.00	0.00	18 Member

Site Number: 6310			ode:					I/TIA-22		© 200)	7 - 2018 :			All rights reserve
Site Name: FRANKLIN CT, CT Customer: SPRINT NEXTEL		E	nginee	ring M	lumb	er:	OAA	710395	_C3_06			4	/30/20	18 4:38:25 PM
		F	orce/	Stre	SS	Su	mma	ary_						
Section: 4 20'-5 Ba	ys	Bot Elev ((ft): 40	.00		Heig	ght (f	t): 20.	000					
	Pu		Len	Dra	olna	07		F'y F	Phic Pn Num	Num		Bear	lica	
New Compression Hember	ru (kip)	Load Case	(ft)	Бга Х	cing ' Y		KL/R		(kip) Bolts			(kip)	%	Controls
Max Compression Member			• •			100		50.0	107.30 0		0.00	0.00	81	Member X
LEG SOL - 2 1/4" SOLID HORIZSAE - 2X2X0.1875		1.2D + 1.0Di + 1.2D + 1.6W 90	3.92 4.000	100 100	100 100		83.6 121.8	36.0	107.30 0		0.00	0.00		Member Z
DIAG SOL - 5/8" SOLID		1.2D + 1.6W	5.601	50	50	50	193.9	50.0	1.84 0	0	0.00	0.00		Member X
	Pu		Fy	Fu	Phi	it Pn	Num	Num	Shear phiRnv	Bear phiRr	n ph	Shear it Pn	Use	Controls
Max Tension Member	(kip)	Load Case	(ksi)	(ksi)	(k	ip)	Bolts	Holes	s (kip)	(kip)	(kip)	%	Controis
	0.00		0			0.00	0	0	0.00	0.0		0.00	0	Member
HORIZ SAE - 2X2X0.1875 DIAG SOL - 5/8" SOLID		1.2D + 1.6W 1.2D + 1.6W 90	36 50	5- 6:		3.17 3.81	0	0	0.00 0.00	0.0 0.0		0.00		Member
	0.40	1.20 + 1.099 90	50		5 I	3.01			0.00			0.00		
Section: 5 20'-5 Ba	ys	Bot Elev ((ft): 60	.00		Heig	ght (f	t): 20.	000					
	-					•/		E 1	Phic Pn Num	Maria		Bear	Use	
	Pu (kip)	Load Case	Len (ft)	Бга	cing ' Y		KL/R	-	(kip) Bolts		(kip)	(kip)	%	Controls
Max Compression Member		1.2D + 1.0Di +	3.92			100		50.0	107.30 0		0.00	0.00		Member X
LEG SOL - 2 1/4" SOLID HORIZSAE - 2X2X0.1875		1.2D + 1.6W	3.92 4.000	100	100		121.8	36.0	107.50 0	_	0.00	0.00		Member Z
DIAG SOL - 5/8" SOLID		1.2D + 1.6W	5.601	50	50	50	193.9	50.0	1.84 0	0	0.00	0.00		Member X
	Pu		Fy	Fu	Shi	ił Da	Num	Num	Shear phiRnv	Bear phiRr		Shear it Pn	Use	
Max Tension Member		Load Case	(ksi)			ip)	Bolts			(kip)		kip)	%	Controls
EG	0.00		0	(0 (0.00	0	0	0.00	0.0)0		0	
IORIZ SAE - 2X2X0.1875		1.2D + 1.6W 240		5		3.17	0	0	0.00	0.0		0.00		Member
DIAG SOL - 5/8" SOLID	8.89	1.2D + 1.6W 330	50	6	5 1	3.81	0	0	0.00	0.0	0	0.00		Member
Section: 6 20'-5 Ba	ys	Bot Elev ((ft): 80	.00		Heig	ght (f	t): 20.	000					
	_							E., ,	ahin Din Muum	Marian	Shear		llee	
Max Compression Member	Pu (kip)	Load Case	Len (ft)	Bra X	cing ' Y		KL/R		Phic Pn Num (kip) Bolts			(kip)	Use %	Controls
LEG SOL - 2 1/4" SOLID	-76.25	1.2D + 1.0Di +	3.92	100	100	100	83.6	50.0	107.30 0	0	0.00	0.00		Member X
IORIZSAE - 2X2X0.1875		1.2D + 1.6W	4.000				121.8	36.0	10.61 0		0.00	0.00	16	Member Z
DIAG SOL - 5/8" SOLID	-0.11	1.2D + 1.6W	5.601	50	50	50	193.9	50.0	1.84 0	0	0.00	0.00		Member X
	Pu		Fy	Fu	-		Num	Num	Shear phiRnv	Bear phiRr	ph	Shear it Pn	Use	Controls
Max Tension Member		Load Case	(ksi)	(ksi)	(k	iD)	Bolts	Holes	; (kip)	(KID)		KIP}	%	-
	(kip)	Load Case	(ksi)		_	ip) 0.00		Holes		(kip) 0.0	_	kip)	[%]	
Max Tension Member LEG HORIZ SAE - 2X2X0.1875	(kip) 0.00	Load Case 1.2D + 1.6W 210	0		0 ((ip) 0.00 3.17	Bolts 0 0	Holes 0 0	6 (kip) 0.00 0.00	(KIP) 0.0 0.0	0	0.00	0	Member

Site Number: 6310		Code:	ANSI/TI	A-222-G	© 2007 - 2018 by ATC IP	LLC. All rights reserved.		
Site Name:FRANKLIN CT, CCustomer:SPRINT NEXTEL	т	Engineering Nurr	iber: OAA710	0395_C3_06	4,	/30/2018 4:38:25 PM		
		Force/Stress	s Summary	<u> </u>				
Section: 7 20'-5 Ba	avs Bot Ele	v (ft): 100.0	Height (ft):	20.000				
	-				Shear Bear			
	Pu (Max) Lood Coos	Len Bracing	-			Use Controla		
Max Compression Member	(kip) Load Case	(ft) X Y	Z KL/R (ks			% Controls		
LEG SOL - 2 1/4" SOLID HORIZSAE - 2X2X0.1875	-73.21 1.2D + 1.0Di -4.59 1.2D + 1.6W			50.0 107.30 0 16.0 10.61 0	0 0.00 0.00 0.00 0.00	68 Member X 43 Member Z		
DIAG SOL - 5/8" SOLID	-0.05 1.2D + 1.6W	5.601 50 50		i0.0 1.84 0	0 0.00 0.00	Member X		
Max Tension Member	Pu (kin) Load Case			• • • • •		Use % Controls		
	(oles (kip)	(kip) (kip)			
LEG HORIZ SAE - 2X2X0.1875	0.00 2.55 1.2D + 1.6W 1	00 203658	0.00 0 23.17 0	0 0.00 0 0.00	0.00 0.00 0.00	11 Member		
DIAG SOL - 5/8" SOLID	7.38 1.2D + 1.6W 9	0 50 65	13.81 0	0 0.00	0.00 0.00	53 Member		
Section: 8 20'-5 Bays Bot Elev (ft): 120.0 Height (ft): 20.000								
	_				Shear Bear	Max		
Max Compression Member	Pu (kip) Load Case	Len Bracine (ft) X Y	g% F') ZKL/R(ks			Use % Controls		
LEG SOL - 2 1/4" SOLID	-66.16 1.2D + 1.0Di		•	0.0 107.30 0	0 0.00 0.00	61 Member X		
HORIZSAE - 2X2X0.1875	-6.06 1.2D + 1.6W			6.0 10.61 0	0 0.00 0.00	57 Member Z		
DIAG SOL - 5/8" SOLID	-0.98 1.2D + 1.6W	5.601 50 50	0 50 193.9 5	0.0 1.84 0	0 0.00 0.00	Member X		
Max Tension Member	Pu (kip) Load Case		hit Pn Num N (kip) Boits H		Bear Bik Shear phiRn phit Pn (kip) (kip)	Use % Controls		
LEG	0.00	0 0	0.00 0	0 0.00	0.00	0		
HORIZ SAE - 2X2X0.1875	2.35 1.2D + 1.0Di +		23.17 0	0 0.00	0.00 0.00	10 Member		
DIAG SOL - 5/8" SOLID	8.85 1.2D + 1.6W 2	10 50 65	13.81 0	0 0.00	0.00 0.00	64 Member		
Section: 9 20'-5 Ba	ays Bot Elev	v (ft): 140.0	Height (ft):	20.000				
	Pu	Len Bracing	a% F'y	/ Phic Pp Num	Shear Bear Num phiRnyphiRn	lleo		
Max Compression Member	(kip) Load Case	(ft) X Y	v			% Controls		
LEG SOL - 2 1/4" SOLID	-64.86 1.2D + 1.6W	3.92 100 100	100 83.6 5	0.0 107.30 0	0 0.00 0.00	60 Member X		
HORIZSAE - 2X2X0.1875	-3.43 1.2D + 1.6W			6.0 10.61 0	0 0.00 0.00	32 Member Z		
DIAG SOL - 5/8" SOLID	-1.54 1.2D + 1.6W	5.601 50 50) 50 193.9 5	0.0 1.84 0	0 0.00 0.00	Member X		
Max Tension Member	Ри (kip) Load Case		hit Pn Num N (kip) Bolts He		Bear Bik Shear phiRn phit Pn (kip) (kip)	Use % Control s		
LEG SOL - 2 1/4" SOLID	12.88 1.2D + 1.6W 2	40 50 65 1	78.92 0	0 0.00	0.00	7 Member		
HORIZ SAE - 2X2X0.1875	2.37 1.2D + 1.6W		23.17 0	0 0.00	0.00 0.00	10 Member		
DIAG SOL - 5/8" SOLID	5.33 1.2D + 1.6W 9) 50 65	13.81 0	0 0.00	0.00 0.00	38 Member		

Site Number:	6310	Code:	ANSI/TIA-222-G	© 2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_06	4/30/2018 4:38:25 PM
Customer:	SPRINT NEXTEL			

Force/Stress Summary

Section: 10 20'-5 E	lays	Bot Elev	(ft): 16	0.0		Hei	ght (1	ft): 20.	.000						
	_			_	_								Bear		
	Pu (kin)	Load Case	Len	Bra X	icing		KL/R		Phic Pn			-	-		Controls
Max Compression Member	(kip)		(ft)		Y	z	NUR	(K\$1)	(KIP)	DOILS	Holes	(kip)	(kip)	%	
LEG SOL - 2 1/4" SOLID HORIZSAE - 2X2X0.1875		4 1.2D + 1.6W	3.92 4.000		100 100	100		50.0 36.0	107.30		0	0.00	0.00		Member X Member Z
DIAG SOL - 5/8" SOLID		1.2D + 1.6W	5,601	50	50		121.8 193.9		10.61 1.84		0	0.00	0.00		Member X
	-0.00	/ 1120 - 11011	0.001				100.0	00.0	1.04		Ŭ	0.00	0.00		inemper y
	D		E.	E.c.	04	54 D-	Num	ħ1	She		Bear		Shear	llee	
Max Tension Member	Pu (kip)	Load Case	Fy (ksi)	Fu (ksi)		dip)	Bolts	Num Hole:			phiRn (kip)	· · ·	lt Pn cip)	Use %	Controls
LEG SOL - 2 1/4" SOLID	14.36	1.2D + 1.6W 240	50	6	5 17	8.92	0	0	(0.00	0.0	0		8	Member
HORIZ SAE - 2X2X0.1875	3.12	1.2D + 1.6W	36	5	8 2	23.17	0	0		0.00	0.0	0	0.00	-	Member
DIAG SOL - 5/8" SOLID	6.86	1.2D + 1.6W 210	50	6	5 1	3.81	0	0	(9.00	0.0	0	0.00	49	Member
Section: 11 20'-5 B	ays	Bot Elev	(ft): 18	0.0		Hei	ght (f	t): 20.	000						
	_			-		•/						Shear			
	Pu	1	Len		cing				Phic Pn				· · · ·		0
Max Compression Member	(kip)	Load Case	(ft)	X	Y	Z	KL/R	(KSI)	(kip)	Bolts	Holes	(kip)	(kip)	%	Controls
LEG SOL - 2" SOLID		1.2D + 1.0Di +			100		94.1	50.0	74.01		0	0.00	0.00		Member X
HORIZSAE - 2X2X0.1875 DIAG SOL - 5/8" SOLID		1.2D + 1.6W	4.000		100 50		121.8	36.0	10.61		0	0.00	0.00		Member Z Member X
DIAG 301-3/6 30110	-1.34	1.2D + 1.6W	5.601	50	90	90	193.9	50.0	1.84	0	U	0.00	0.00		
	_								She	-	Bear		Shear		
Max Tension Member	Pu (kip)	Load Case	Fy (ksi)	Fu (ksi)		it Pn tip)	Num Bolts	Num Holes	phiR 6 (kip		phiRn (kip)		it Pn (ip)	Use %	Controls
LEG	0.00		0	(0	0.00	0	0	C	J.00	0.0	0	_	0	
HORIZ SAE - 2X2X0.1875		1.2D + 1.6W	36	5		3.17	0	0		00.0	0.0		0.00		Member
DIAG SOL - 5/8" SOLID	11.11	1.2D + 1.6W 210	50	6	5 1	3.81	0	0	0	0.00	0.0	0	0.00	80	Member
Section: 12 20'-5 B	ays	Bot Elev ((ft): 20	0.0		Hei	ght (f	t): 20.	000						
												Shear			
	Pu		Len		cing				hic Pn			•	phiRn		Controlo
Max Compression Member	(kip)	Load Case	(ft)	X	Y	Z	KL/R	(KSI)	(KIP)	Boits	Holes	(kip)	(kip)	%	Controls
LEG SOL - 2" SOLID HORIZ		1.2D + 1.0Di +	3.92	100 0	100	100		50.0	74.01	-	0	0.00	0.00	47	Member X
DIAG SOL - 5/8" SOLID	0.00	1.2D + 1.6W	0.000 5.601	U 50	0 50	0	0.0 193.9	0.0 50.0	0.00 1.84	0	0	0.00 0.00	0.00 0.00	Ų	Member X
01AG 302-318 30210	-1.91	1.20 + 1.000	5.001	50	50	30	199.9	50.0	1.04	v	U	0.00	0.00		
	Pu		Fy	Fu	Ph	t Pr	Num	Num	She: phiR		Bear phiRn		Shear t Pn	Use	
Max Tension Member		Load Case	гу (ksi)			ic Pri lp)		Holes			(kip)	· · · ·	ip)		Controls
LEG SOL - 2" SOLID	2.89	1.2D + 1.6W 240	50	65	i 14	1.37	0	0		.00	0.0	0		2	Member
HORIZ SAE - 2X2X0.1875		1.2D + 1.6W	36	51		3.17	0	Ō		.00	0.0		0.00		Member
DIAG SOL - 5/8" SOLID		1.2D + 1.6W 60	50	65		3.81	0	0		.00	0.0	-	0.00	2	Member

Site Number:	6310	Code:	ANSI/TIA-222-G	© 2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_06	4/30/2018 4:38:25 PM
Customer:	SPRINT NEXTEL			

Force/Stress Summary

Section: 13 20'-5 Bay	ys	Bot Elev (ft): 22	0.0	E F	leig	ght (fi	t): 20.	000						
												Shear			
	Pu		Len	Bra	cing %	6		F'y I				phiRnv	phIRn		
Max Compression Member	(kip)	Load Case	(ft)	X	Y	Z	KL/R	(ksi)	(kip)	Bolts	Holes	(kip)	(kip)	%	Controls
LEG SOL - 2* SOLID	-33.33	1.2D + 1.0Di +	3.92	100	100	100	94.1	50.0	74.01		0	0.00	0.00		Member X
HORIZSAE - 2X2X0.1875	-3.08	1.2D + 1.6W 90	4.000	100	100	100	121.8	36.0	10.61		0	0.00	0.00	29	Member Z
DIAG SOL - 5/8" SOLID	-1.04	1.2D + 1.6W	5.601	50	50	50	193.9	50.0	1.84	. 0	0	0.00	0.00		Member X
									She	ar	Bear	Bik	Shear		
	Pu		Fy	Fu	Phit	t Pn	Num	Num			phiRn		t Pn	Use %	Controls
Max Tension Member	(kip)	Load Case	(ksi)	(ksi)	(ki	p)	Boits	Holes	s (ki	<u>) </u>	(kip)	()	(ip)		
LEG SOL - 2" SOLID	0.27	1.2D + 1.6W 120		65			0	0		0.00	0.0				Member
HORIZ SAE - 2X2X0.1875	1.65	1.2D + 1.6W 120	36	51	3 23	3.17	0	0	1	0.00	0.0		0.00	-	Member
DIAG SOL - 5/8" SOLID	4.72	1.2D + 1.6W 210	50	65	i 13	3.81	0	0	I	0.00	0.0	00	0.00	34	Member
Section: 14 20'-5 Ba	ys	Bot Elev ((ft): 24	0.0	ŀ	lei	ght (f	t): 20.	.000						
												Shear			
	Pu		Len	Bra	cing %	%		F'y I	Phic Pr			-	phiRn	Use	
Max Compression Member	(kip)	Load Case	(ft)	х	Y	Ζ	KL/R	(ksi)	(kip)	Bolts	Holes	(kip)	(kip)	%	Controls
LEG SOL - 2" SOLID	-26.7	5 1.2D + 1.0Di +	3.92	100	100	100	94.1	50.0	74.0	1 0	0	0.00	0.00		Member X
HORIZSAE - 2X2X0.1875	-1.96	5 1.2D + 1.6W	4.000	100	100	100	121.8	36.0	10.6	I 0	0	0.00	0.00	18	Member Z
DIAG SOL - 5/8" SOLID	-0.49) 1.2D + 1.6W	5.601	50	50	50	193.9	50.0	1.84	L 0	0	0.00	0.00		Member X
									She	ar	Bear	Blk	Shear		
	Pu		Fy	Fu	Phi	t Pn	Num	Num	phil	Rnv	phiR		it Pn	Use	Controls
Max Tension Member	(kip)	Load Case	(ksi)	(ksi)	(ki	ip)	Bolts	Hole	s (ki	p)	(kip)) (I	kip)	%	
LEG SOL - 2" SOLID	10.52	1.2D + 1.6W 180	50	6	5 141	1.37	0	0		0.00	0.0			-	Member
HORIZ SAE - 2X2X0.1875	0.95	1.2D + 1.6W	36	5	B 23	3.17	0	0		0.00	0.0		0.00		Member
DIAG SOL - 5/8" SOLID	5.23	1.2D + 1.6W 210	50	6	5 1:	3.81	0	0		0.00	0.0	DO	0.00	37	Member
Section: 15 20'-5 Ba	iys	Bot Elev	(ft): 26	0.0		Hei	ght (f	t): 20	.000						
													Bear		
	Pu		Len	Bra	cing 9	%		F'y	Phic Pi				vphiRn		
Max Compression Member	(kip)	Load Case	(ft)	X	Y	Z	KL/R	(ksi)	(kip)	Bolts	Holes	(kip)	(kip)	%	Controls
	-15.5	6 1.2D + 1.0Di +	3.92	100	100	100	94.1	50.0	74.0	1 0	0	0.00	0.00	21	Member >
LEG SOL 2" SOLID					0	0	0.0	0.0	0.0	0 0	0	0.00	0.00		
LEG SOL - 2" SOLID HORIZ	0.0		0.000	0	•										Member >
	0.0		0.000 5.601	50	50	50	193.9	50.0	1.8	4 0	0	0.00	0.00		(HOILDOL /
HORIZ	0.0	0		-	-	50	193.9	50.0	1.8 She		Bea	r Bik	Shear		
HORIZ DIAG SOL - 5/8" SOLID	0.0 -1.0 Pu	0		50 Fu	50 Phi		Num		Sho phi	ar Rnv	-	r Bik n ph		Use %	Controls
HORIZ DIAG SOL - 5/8" SOLID Max Tension Member	0.0 -1.0 Pu (kip)	0 8 1.2D + 1.6W	5.601 Fy (ksi)	50 Fu (ksi)	50 Phi (ki	it Pn ip)	Num Bolts	Num	She phi s (ki	ar Rnv	Bea phiR (kip	r Bik n ph	Shear it Pn	Use	Controls
HORIZ	0.0 -1.0 (kip) 0.00	0 8 1.2D + 1.6W	5.601 Fy	50 Fu (ksi)	50 Phi (ki	it Pn	Num Bolts 0	Num Hole	She phi s (ki	ar Rnv p)	Bea phiR (klp	r Bik n ph) (Shear it Pn	Use %	Controls

Site Number: 6310 Site Name: FRANKLIN CT, CT Customer: SPRINT NEXTEL		_	ode: nginee	ring N	umber:		I/TIA-222 710395_		© 2007 ·			All rights reserved. 18 4:38:25 PM
		Fo	orce/	Stre	ss Su	mma	ary					
Section: 16 20'-5 Bays	3	Bot Elev (ft): 28	0.0	He	ight (f	t): 20.0	000				
	Pu (kip) L	oad Case	Len (ft)	Brac X	cing % Y Z	KL/R		hic Pn Num (kip) Bolts	Num p	Shear Bear hiRnyphiRn (kip) (kip)		Controls
Max Compression Member												
LEG SOL - 2" SOLID HORIZSAE - 2X2X0.1875 DIAG SOL - 5/8" SOLID	-0.37 1	.2D + 1.0Di + .2D + 1.6W .2D + 1.6W	3.92 4.000 5.601		100 10) 94.1) 121.8) 193.9	50.0 36.0 50.0	74.01 0 10.61 0 1.84 0	0 0 0	0.00 0.00 0.00 0.00 0.00 0.00	3	Member X Member Z Member X
	-0.34 1	.20 * 1.00	5.001	30	30 30	199.9	30.0	1.04 0	v	0.00 0.00		WEINDER X
	Pu (kip) Lo	oad Case	Fy (ksi)	Fu (ksi)	Phit Pı (kip)	n Num Bolts	Num Holes	Shear phiRnv (kip)	Bear phiRn (klp)	Bik Shear phit Pn (kip)	Use %	Controls
LEG SOL - 2" SOLID		2D + 1.6W 180	50	65		-	0	0.00	0.00			Member
HORIZ SAE - 2X2X0.1875 DIAG SOL - 5/8" SOLID		2D + 1.6W 60 2D + 1.6W 180	36 50	58 65		-	0 0	0.00 0.00	0.00 0.00		-	Member Member

Site Number:	6310	Code:	ANSI/TIA-222-G	© 2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_06	4/30/2018 4:38:25 PM
Customer:	SPRINT NEXTEL			

Detailed Reactions

	Radius	Elevation	Azimuth		FX	FY	FZ		<i>(</i>) =
Load Case	(ft)	(ft)	(deg)	Node	(kip)	(kip)	(kip)	(-) = Uplift	(+) = Down
1.2D + 1.6W Normal	0.00	00.00		1	0.01	164.57	-3.08		
	190.00	07.00	0	A1	0.00	-3.58	2.58		
	190.00	03.00	240	A1a	-64.86	-59.01	-39.77 -39. 79		
	201.00	-08.00	120	A1b	64.82	-59.77	-33.13		
1.2D + 1.6W 60 deg	0.00	00.00	_	1	-3.14	134.88	-1.88		
	190.00	07.00	0	A1	-1.60	-12.98	13.66		
	190.00	03.00	240	A1a	-74.20	-67.20	-42.82		
	201.00	-08.00	120	A1b	10.96	-13.40	-8.25		
1.2D + 1.6W 90 deg	0.00	00.00		1	-3.24	152.74	-0.37		
	190.00	07.00	0	A1	-2.19	-36.39	46.83		
	190.00	03.00	240	A1a	-77.31	-68.61	-43.36		
	201.00	-08.00	120	A1b	3.89	-6.06	-3.15		
1.2D + 1.6W 120 deg	0.00	00.00		1	-2.71	162.63	1.57		
	190.00	07.00	0	A1	-1.99	-57.57	76.20		
	190.00	03.00	240	A1a	-67.00	-59.06	-36.38 -1.39		
	201.00	-08.00	120	A1b	2.41	-3.92	-1.39		
1.2D + 1.6W 180 deg	0.00	00.00		1	0.02	133.86	3.70		
-	190.00	07.00	0	A1	-0.01	-65.67	85.74		
	190.00	03.00	240	A1a	-12.73	-13.44	-5.49		
	201.00	-08.00	120	A1b	12.76	-13.48	-5.44		
1.2D + 1.6W 210 deg	0.00	00.00		1	1.33	151.86	3.04		
•	190.00	07.00	0	A1	1.10	-66.72	88.32		
	190.00	03.00	240	A1a	-4.44	-5.84	-1.69		
	201.00	-08.00	120	A1b	41.45	-37.58	-21.34		
1.2D + 1.6W 240 deg	0.00	00.00		1	2.67	163.21	1.60		
	190.00	07.00	0	A 1	2.01	-57.49	76.09		
	190.00	03.00	240	A1a	-2.29	-3.80	-1.32		
	201.00	-08.00	120	A1b	66.96	-59.74	-36.31		
1.2D + 1.6W 300 deg	0.00	00.00		1	3.15	134.21	-1.86		
•	190.00	07.00	0	A1	1.60	-12.49	12.99		
	190.00	03.00	240	A1a	-10.40	-12.86	-7.86		
	201.00	-08.00	120	A1b	73.58	-67.46	-42.48		
1.2D + 1.6W 330 deg	0.00	00.00		1	1.94	153.54	-2.62		
	190.00	07.00	0	A1	0.75	-5.48	4.50 -25.09		
	190.00 201.00	03.00 -08.00	240 120	A1a A1b	-39.05 75.77	-37.07 -69.17	-45.05		
							0.50		
1.2D + 1.0Di + 1.0Wi Normal	0.00	00.00		1	0.01	267.06	-0.56 23.93		
	190.00	07.00	0	A1 A1a	0.00 -43.22	-15.13 -36.52	-26.78		
	190.00 201.00	03.00 -08.00	240 120	A1a A1b	43.18	-36.66	-26.82		
1.2D + 1.0Di + 1.0Wi 60 deg	0.00	00.00	~	1	-0.54	266.88 -22.25	-0.36 32.64		
	190.00 190.00	07.00 03.00	0 240	A1 A1a	-1.56 -51.45	-22.25 -43.75	-29.70		
	201.00	-08.00	120	A1a A1b	27.42	-23.01	-17.70		
	0.00	00.00			-0.60	267.02	-0.06		
1.2D + 1.0Di + 1.0Wi 90 deg	0.00 190.00	00.00 07.00	0	1 A1	-0.80 -1.94	-28.99	41.98		
	190.00	03.00	240	Ala	-50.13	-41.86	-28.04		
	201.00	-08.00	120	A1b	22.53	-17.93	-13.91		
	201.00						'		

Site Number:	6310		Code:		A	NSI/TIA-222-G		© 2007 - 2018 by A	TC IP LLC. All rights reserved.
			Engineeri	ing Numbe	ar: O	AA710395_C3_06			4/30/2018 4:38:25 PM
Site Name:	FRANKLIN CT, CT		Engineeri		n. u	MAT 10320_00_00			
Customer:	SPRINT NEXTEL								
	⊦ 1.0Wi 120 deg	0.00	00.00		1	-0.43 26	7.29	0.27	
1.20 + 1.001	- 1.0441 120 deg	190.00	07.00	0	Å1		5.80	51.36	
		190.00	03.00	240	A1a		6.80	-24.32	
		201.00	-08.00	120	A1b	21.20 -1	6.06	-12.24	
1.2D + 1.0Di ∛	+ 1,0Wl 180 deg	0.00	00.00		1		6.49	0.72	
		190.00	07.00	0	A1		2.63	59.37	
		190.00	03.00	240	A1a		2.97	-14.99 -14.95	
		201.00	-08.00	120	A1b	29.12 -2	3.05	-14.33	
1 2D + 1.0Di -	+ 1.0Wi 210 deg	0.00	00.00		1		6.48	0.54	
		190.00	07.00	0	A1		0.66	57.17	
		190.00	03.00	240	A1a		7.74	-12.46 -19.10	
		201.00	-08.00	120	A1b	37.09 -2	9.80	-19.10	
1.2D + 1.0Di -	+ 1.0Wi 240 deg	0.00	00.00		1		6.60	0.32	
	•	190.00	07.00	0	A1		5.52	50.80	
		190.00	03.00	240	A1a A1b		5.71 6.65	-11.98 -24.00	
		201.00	-08.00	120	AIU	44.00 -0	0.00	-24.00	
1 2D ± 1 0Di .	+ 1.0Wi 300 deg	0.00	00.00		1	0.59 26	5.92	-0.34	
1,20 + 1.001	· I.om soo deg	190.00	07.00	0	Â1	1.55 -2	1.90		
		190.00	03.00	240	A1a		2.58		
		201.00	-08.00	120	A1b	50.92 -4	3.47	-29.40	
1 2D + 1 0Di -	+ 1.0Wi 330 deg	0.00	00.00		1	0.34 26	6.33	-0.50	
1.20 . 1.001		190.00	07.00	0	A1		6.90		
		190.00	03.00	240	A1a		9.44		
		201.00	-08.00	120	A1b	48.79 -4	1.62	-29.10	
(1.2 + 0.2Sds	;) * DL + E Normal M1	0.00	00.00		1		6.38		
(,	190.00	07.00	0	A1		2.84		
		190.00	03.00	240	A1a		5.26		
		201.00	-08.00	120	A1b	16.87 -1	5.41	-3.74	
(1 2 ± 0 29de	;) * DL + E Normal M2	0.00	00.00		1	0.01 8	36.36	-0.01	
(1.2 • 0.2003		190.00	07.00	0	A1		3.29		
		190.00	03.00	240	A1a		5.03		
		201.00	-08.00	120	A1b	16.63 - 1	5.18	-9.60	
(1.2 + 0.2Sds	s) * DL + E 60 deg M1	0.00	00.00		1		36.46		
•	-	190.00	07.00	0	A1		13.55 15.94		
		190.00 201.00	03.00 -08.00	240 120	A1a A1b		4.10		
			•						
(1.2 + 0.2\$ds	s) * DL + E 60 deg M2	0.00	00.00		1		86.42		
		190.00	07.00	0	A1		13.75 15.51		
		190.00 201.00	03.00 -08.00	240 120	A1a A1b		15.51 14.30		
		201.00	-00.00	120		10100			
(1.2 + 0.2Sds	s) * DL + E 90 deg M1	0.00	00.00		1		86.50		
•	-	190.00	07.00	0	A1		14.23 15.81		
		190.00 201.00	03.00 -08.00	240 120	A1a A1b		13.60		
		201.00	-00.00	120		10.20			
(1.2 + 0.2\$ds	s) * DL + E 90 deg M2	0.00	00.00	_	1		86.45		
-	-	190.00	07.00	0	A1		14.21 15.41		
		190.00	03.00	240 120	A1a A1b		13.41 13.96		
		201.00	-08.00	120	~10	10.00			
(1.2 + 0.2\$d	s) * DL + E 120 deg M1	0.00	00.00		1		B6.52		
· ·····	· •	190.00	07.00	0	A1		14.91 15.31		
		190.00 201.00	03.00 -08.00	240 120	A1a A1b		15.31 13.43		
		201.00	-00.00	120	- A 10	10110			

Site Number: 6310		Code:			ANSI/TIA-222-G		© 2007 - 2018 by ATC IP LLC. All	rights reserved.
Site Name: FRANKLIN CT, CT		Engineeri	ing Numb		OAA710395_C3_	ng	4/30/2018	4:38:25 PM
		Engineeri	ing rauno	igr.	OAA110393_03_		4/00/2010	4.00.20 T M
Customer: SPRINT NEXTEL								
(1.2 + 0.2Sds) * DL + E 120 deg M2	0.00	00.00		1	0.01	86.46	-0.01	
	190.00	07.00	0	A1	0.00	-14.68	19.26	
	190.00	03.00	240	A1a		-15.07	-9.63	
	201.00	-08.00	120	A1b	15.57	-13.84	-8.99	
	0.00	00.00			0.04	00 40	-0.04	
(1.2 + 0.2Sds) * DL + E 180 deg M1	0.00 190.00	00.00 07.00	0	1 A1	0.01 0.00	86.46 -15.55	20.23	
	190.00	03.00	240	A1a		-13.94	-9.07	
	201.00	-08.00	120	A1b		-14.11	-9.08	
(1.2 + 0.2Sds) * DL + E 180 deg M2	0.00	00.00		1	0.01	86.43	-0.01	
	190.00	07.00	0	A1	0.00	-15.12	19.67	
	190.00	03.00	240	A1a		-14.14	-9.20	
	201.00	-08.00	120	A1b	15.94	-14.31	-9.20	
(1.2 + 0.2\$ds) * DL + E 210 deg M1	0.00	00.00		1	-0.01	86.42	-0.03	
	190.00	07.00	0	Å1	0.00	-15.36	20.03	
	190.00	03.00	240	A1a		-13.44	-8.82	
	201.00	-08.00	120	A1b		-14.76	-9.41	
(1.2 + 0.2\$ds) * DL + E 210 deg M2	0.00	00.00		1	0.01	86.40	-0.01	
	190.00	07.00	0	A1	0.00	-14.99	19.55	
	190.00	03.00	240	A1a		-13.79	-9.04	
	201.00	-08.00	120	A1b	16.29	-14.75	-9.40	
(1.2 + 0.2Sds) * DL + E 240 deg M1	0.00	00.00		1	-0.02	86.38	-0.02	
(1.2 · 0.2003) DE · E 240 deg mit	190.00	07.00	0	Å1	0.00	-14.86	19.50	
	190.00	03.00	240	A1a		-13.24	-8.72	
	201.00	-08.00	120	A1b		-15.41	-9.74	
(1.2 + 0.2Sds) * DL + E 240 deg M2	0.00	00.00		1	0.01	86.37	-0.01	
	190.00	07.00	0	A1	0.00	-14.64	19.23	
	190.00	03.00	240	A1a A1b		-13.66 -15.19	-8.98 -9.61	
	201.00	-08.00	120	AID	10.04	-15.15	-3.01	
(1.2 + 0.2Sds) * DL + E 300 deg M1	0.00	00.00		1	-0.02	86.33	0.01	
(I.L. 0.2003) DE . E 000 deg mi	190.00	07.00	0	Å1	0.00	-13.52	18.10	
	190.00	03.00	240	A1a		-13.89	-9.05	
	201.00	-08.00	120	A1b	17.45	-16.06	-10.07	
(1.2 + 0.2Sds) * DL + E 300 deg M2	0.00	00.00	•	1	0.01	86.33	-0.01	
	190.00	07.00	0	A1	0.00	-13.73	18.38	
	190.00 201.00	03.00 -08.00	240 120	A1a A1b		-14.10 -15.63	-9.19 -9.81	
	101100							
(1.2 + 0.2Sds) * DL + E 330 deg M1	0.00	00.00		1	-0.01	86.34	0.02	
	190.00	07.00	0	A1	0.00	-13.04	17.60	
	190.00	03.00	240	A1a		-14.56	-9.39	
	201.00	-08.00	120	A1b	17.29	-15.88	-9.98	
	0.00				0.01	86.34	-0.01	
(1.2 + 0.2Sds) * DL + E 330 deg M2	0.00 190.00	00.00 07.00	0	1 A1	0.00	-13.40	-0.01 18.07	
	190.00	03.00	240	Ala		-14.56	-9.39	
	201.00	-08.00	120	A1b		-15.51	-9.75	
(0.9 - 0.2Sds) * DL + E Normal M1	0.00	00.00	_	1	0.01	75.32	0.02	
	190.00	07.00	0	A1	0.00	-13.06	17.62	
	190.00	03.00	240	A1a		-15.43	-9.84	
	201.00	-08.00	120	A1b	17.03	-15.59	-9.83	
(0.9 - 0.2Sds) * DL + E Normal M2	0.00	00.00		1	0.01	75.31	-0.01	
	190.00	07.00	0	Â1	0.00	-13.47	18.16	
	190.00	03.00	240	A1a	-16.81	-15.22	-9.70	
	201.00	-08.00	120	A1b	16.80	-15.38	-9.70	
					A 44	7= **	0.01	
(0.9 - 0.2Sds) * DL + E 60 deg M1	0.00	00.00		1	0.03	75.40	0.01	

Site Number: 6310		Code:			ANSI/TIA-222-G		© 2007 - 2018 by A	TC IP LLC. All rights reserved.
	T 07	Engineerii	na Numbr	or: (DAA710395_C3_	a 0		4/30/2018 4:38:25 PM
Site Name: FRANKLIN C	-	Cuâmeeu	ng Mumbu	er. v	UAR/10333_03_			
Customer: SPRINT NEX	TEL							
	190.00	07.00	0	A1	0.00	-13.74	18.34	
	190.00	03.00	240	A1a		-16.14 -14.29	-10.20 -9.17	
	201.00	-08.00	120	A1b	15.88	-14.23	-9,17	
				1	0.01	75.37	-0.01	
(0.9 - 0.2Sds) * DL + E 60 de	eg M2 0.00 190.00	00.00 07.00	0	A1	0.00	-13.94	18.59	
	190.00	03.00	240	A1a		-15.70	-9.92	
	201.00	-08.00	120	A1b	16.10	-14.49	-9.30	
(0,9 - 0,2Sds) * DL + E 90 de	eg M1 0.00	00.00		1	0.04	75.45	-0.01	
. ,	190.00	07.00	0	A1	0.00	-14.42	19.05	
	190.00	03.00	240 120	A1a A1b		-16.00 -13.79	-10.13 -8.92	
	201.00	-08.00	120	AID	13.44	-19.75	-0.01	
	ea M2 0.00	00.00		1	0.01	75.40	-0.01	
(0.9 - 0.2Sds) * DL + E 90 de	eg m∠ 0.00 190.00	07.00	0	Â1	0.00	-14.40	19.02	
	190.00	03.00	240	A1a		-15.61	-9.88	
	201.00	-08.00	120	A1b	15.83	-14.15	-9.14	
(0.9 - 0.2Sds) * DL + E 120 c	deg M1 0.00	00.00		1	0.04	75.46	-0.02	
	190.00	07.00	0	A1	0.00	-15.10 -15.51	19.76 -9.87	
	190.00 201.00	03.00 -08.00	240 120	A1a A1b		-15.51	-8.83	
	201.00	-00.00	120		- IVILO	10104		
	deg M2 0.00	00.00		1	0.01	75.40	-0.01	
(0.9 - 0.2Sds) * DL + E 120 c	deg m∠ 0.00 190.00	07.00	0	Å1	0.00	-14.86	19.45	
	190.00	03.00	240	A1a	-16.84	-15.25	-9.72	
	201.00	-08.00	120	A1b	15.75	-14.06	-9.10	
(0.9 - 0.2Sds) * DL + E 180 d		00.00		1	0.01 0.00	75.41 -15.74	-0.04 20.42	
	190.00 190.00	07.00 03.00	0 240	A1 A1a		-14.13	-9.17	
	201.00	-08.00	120	A1b		-14.30	-9.17	
	201100				· · · · · · · · · · · · · · · · · · ·			
(0.9 - 0.2Sds) * DL + E 180 d	dea M2 0.00	00.00		1	0.01	75.37	-0.01	
(0.5 - 0.2003) DE : E 100 (190.00	07.00	0	Å1	0.00	-15.31	19.86	
	190.00	03.00	240	A1a		-14.33	-9.30	
	201.00	-08.00	120	A1b	16.11	-14.50	-9.30	
					0.04	76 97	-0.03	
(0.9 - 0.2Sds) * DL + E 210 (deg M1 0.00 190.00	00.00 07.00	0	1 A1	-0.01 0.00	75.37 -15.55	20.22	
	190.00	03.00	240	Ala		-13.63	-8.91	
	201.00	-08.00	120	A1b		-14.95	-9.51	
(0.9 - 0.2Sds) * DL + E 210 (00.00	_	1	0.01	75.34		
	190.00	07.00	0	A1	0.00	-15.18	19.74 -9.14	
	190.00 201.00	03.00 -08.00	240 120	A1a A1b		-13.99 -14.94	-9.50	
	201.00	-00.00	120	~ ~ ~	, 10.40	-14194	0.00	
(0.9 - 0.2Sds) * DL + E 240 (dea M1 0.00	00.00		1	-0.02	75.32	-0.02	
(U.9-U.230S) DL + E 240	190.00	07.00	0	Å1	0.00	-15.05		
	190.00	03.00	240	A1a		-13.44	-8.81	
	201.00	-08.00	120	A1b	o 17.04	-15. 6 0	-9.84	
					0.04	75 64	-0.01	
(0.9 - 0.2Sds) * DL + E 240		00.00	0	1 A1	0.01 0.00	75.31 -14.83		
	190.00 190.00	07.00 03.00	240	Ala		-13.86		
	201.00	-08.00	120	Alt		-15.39		
(0.9 - 0.2Sds) * DL + E 300 (dea M1 0.00	00.00		1	-0.02	75.28		
	190.00	07.00	0	A1	0.00	-13.70		
	190.00	03.00	240	A1a		-14.08		
	201.00	-08.00	120	A1b	o 17.62	-16.25	-14.15	
		00.00		1	0.01	75.28	-0.01	
(0.9 - 0.2Sds) * DL + E 300	deg M2 0.00 190.00	00.00 07.00	0	1 A1	0.01	-13.92		
	130.00	~	•					

Site Number: 6310	Code:	ANSI/TIA-222-G	© 2007 - 2018 by ATC IP LLC. All rights reserved.
	Engineering Numbe	er: OAA710395 C3 06	4/30/2018 4:38:25 PM
	Eußwestwä wanne	1: OAA/10395_C3_00	4/30/2010 4.30.201 M
Customer: SPRINT NEXTEL			
190.00	03.00 240	A1a -16.08 -14.30	-9.28
201.00	-08.00 120	A1b 17.16 -15.83	-9.91
			A A A
(0.9 - 0.2Sds) * DL + E 330 deg M1 0.00 190.00	00.00 07.00 0	1 -0.01 75.29 A1 0.00 -13.23	0.02 17.79
190.00	03.00 240	Ala -16.43 -14.75	-9.49
201.00	-08.00 120	A1b 17.46 -16.07	-10.08
(0.9 - 0.2Sds) * DL + E 330 deg M2 0.00	00.00	1 0.01 75.29	-0.01
190.00	07.00 0	A1 0.00 -13.59	18.26
190.00	03.00 240	A1a -16.44 -14.75	-9.49
201.00	-08.00 120	A1b 17.06 -15.70	-9.85
1.0D + 1.0W Service Normal 0.00	00.00	1 0.01 82.00	-0. 96
1.00 + 1.00 Service Normal 0.00 190.00	07.00 0	A1 0.00 -7.26	9.30
190.00	03.00 240	A1a -21.66 -19.46	-12.92
201.00	-08.00 120	A1b 21.63 -19.68	-12.92
1.3D + 1.0W Service 60 deg 0.00	00.00	1 -0.79 82.11	-0.47
190.00	07.00 0	A1 -0.35 -11.40	14.67
190.00	03.00 240	A1a -26.29 -23.48	-15.18
201.00	-08.00 120	A1b 12.51 -11.84	-7.65
1.0D + 1.0W Service 90 deg 0.00	00.00	1 -0.92 82.10	-0.01
1.0D + 1.000 Service so deg 0.00 190.00	07.00 0	A1 -0.44 -15.24	20.07
190.00	03.00 240	A1a -25.37 -22.51	-14.45
201.00	-08.00 120	A1b 9.39 -8.87	-5.63
		4 0.00 00.40	0.47
1.0D + 1.0W Service 120 deg 0.00 190.00	00.00 07.00 0	1 -0.82 82.16 A1 -0.36 -19.16	0.47 25.58
190.00	03.00 240	Ala -22.33 -19.66	-12.48
201.00	-08.00 120	A1b 8.37 -7.77	-4.83
1.0D + 1.0W Service 180 deg 0.00	00.00	1 0.01 82.00	0.92
190.00	07.00 0	A1 0.00 -22.95	30.44
190.00	03.00 240	A1a -12.94 -11.77	-7.07
201.00	-08.00 120	A1b 12.95 -11.89	-7.06
1.0D + 1.0W Service 210 deg 0.00	00.00	1 0.47 81.88	0.80
1.00 + 1.00 Service 210 deg 0.00 190.00	07.00 0	A1 0.17 -21.89	29.07
190.00	03.00 240	A1a -9.46 -8.74	-5.26
201.00	-08.00 120	A1b 17.49 -15.76	-9.58
1.0D + 1.0W Service 240 deg 0.00	00.00	1 0.83 81.87 A1 0.36 -19.01	0.47 25.29
190.00 190.00	07.00 0 03.00 240	A1 0.36 -19.01 A1a -8.11 -7.54	-4.68
201.00	-08.00 120	A1b 22.07 -19.73	-12.32
201.00	-00.00 120	AID 22.07 -13.70	- 12.02
1.0D + 1.0W Service 300 deg 0.00	00.00	1 0.81 81.68	-0.48
190.00	07.00 0	A1 0.35 -11.21	14.35
190.00	03.00 240	A1a -12.24 -11.52	-7.47
201.00	-08.00 120	A1b 25.98 -23.53	-15.00
1.0D + 1.0W Service 330 deg 0.00	00.00	1 0.48 81.74	-0.82
1.00 + 1.00 Service 330 deg 0.00 190.00	07.00 0	A1 0.17 -8.33	10.58
190.00	03.00 240	A1a -16.81 -15.42	-10.21
201.00	-08.00 120	A1b 24.80 -22.48	-14.53

Site Number: 6310 Site Name: FRANKLIN Customer: SPRINT NE	-	Code: Engineering Number:	ANSI/TIA-222-G OAA710395_C3_06	© 2007 - 2018 by ATC IP LLC. All rights reserved. 4/30/2018 4:38:25 PM
		Maximum Reaction	s Summary	
Vertical (kip) Horlzontal (kip)	Base 267.29 3.70	<u>Anch1</u> -69.17 88.64		

	6310 FRANKLIN CT, CT SPRINT NEXTEL	Code: Engine	ANSI/TIA eering Number: OAA7103	-222-G 95_C3_06	© 2007 - 2018 by ATC IP LLC. All rights reserved. 4/30/2018 4:38:25 PM
		Guy	Anchor Design Lo	ads_	
Radius (ft) Drop (ft)	Azimuth (°)	Uplift (kip)	Shear (kip)	
190.0	0 7.00	0	66.72	88.33	
190.0	0 3.00	240	68.61	88.64	
201.0	0.8- 0	120	69.17	88.15	

Maximum Cable Forces Summary

Load Case	Elevation (ft)	Cable	Anchor Node	Tower Node	Allow Tension (kip)	Applied Tension (kip)	Use %	
					-		67	
1.2D + 1.6W 330 deg	59.79	3/4 EHS	A1b	22a	34.98	23.42	67	
1.2D + 1.6W 90 deg	124.12	3/4 EHS	A1a	46b	34.98	30.40	87	
1.2D + 1.6W 90 deg	184.11	3/4 EHS	Aia	67b	34.98	27.95	80	
1.2D + 1.6W 60 deg	244.11	3/4 EHS	A1a	88b	34.98	21.51	62	
1.2D + 1.0Di + 1.0Wi 60 deg	291.95	5/8 EHS	A1a	104b	25.44	14.03	55	

Site Number:	6310	Code:	ANSI/TIA-222-G	© 2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_06	4/30/2018 4:38:25 PM
Customer:	SPRINT NEXTEL			

Deflections and Rotations

Load Case (ft) (ft) (ftg) (ftg) (ftg) (ftg) 161 mph Narmal with No Ice 88.04 1.027 -0.4076 0.4276 0.4276 161 mph Narmal with No Ice 142.12 1.053 -0.036 0.4312 0.3312 0.3312 0.3312 0.3312 0.3312 0.3312 0.3312 0.4331 161 mph Narmal with No Ice 128.04 1.461 -0.0116 0.4332 0.4331 161 mph Narmal with No Ice 128.04 1.668 -0.0240 0.1166 0.1166 161 mph Narmal with No Ice 221.96 1.6481 -0.0364 0.01702 0.1520 161 mph Narmal with No Ice 288.58 1.571 -0.374 0.3322 0.5346 161 mph Narmal with No Ice 288.58 1.571 -0.3733 0.5332 0.5346 161 mph Narmal with No Ice 115.88 0.728 0.0274 0.3733 0.5332 0.5346 161 mph Narmal with No Ice 128.44 0.585 -0.0284 0.2771 0.3733 161		Flevetion	Deflection	Twist	Sway	Resultant
161 mph Hormal with No Ice 80.01 1.027 -0.4876 0.8270 0.8419 101 mph Hormal with No Ice 104.12 1.283 -0.0686 0.6555 0.6592 101 mph Hormal with No Ice 112.412 1.383 -0.0117 0.3327 0.3327 101 mph Hormal with No Ice 124.12 1.383 -0.0117 0.5775 0.5779 101 mph Hormal with No Ice 128.04 1.686 -0.0226 0.3114 0.3184 101 mph Hormal with No Ice 128.04 1.686 -0.0226 0.3174 0.3184 101 mph Hormal with No Ice 221.136 1.645 -0.0326 0.7724 0.7789 101 mph Hormal with No Ice 235.85 1.510 -0.0387 0.0387 0.5370 101 mph Hormal with No Ice 235.85 1.516 -0.0223 0.5346 0.1789 101 mph Gregree with No Ice 142.1 0.584 -0.0223 0.6469 0.6952 101 mph Gregree with No Ice 128.12 0.782 0.0223 0.1748 0.1733 101 mph G	Load Case	Elevation			-	
101 mph Normal with No Los 04.12 1.076 -0.0889 0.4555 0.6592 101 mph Normal with No Los 115.88 1.329 -0.0119 0.4329 0.4331 101 mph Normal with No Los 122.04 1.401 -0.0119 0.4329 0.4331 101 mph Normal with No Los 122.04 1.401 -0.0119 0.4329 0.4331 101 mph Normal with No Los 122.04 1.401 -0.0117 0.5775 0.5775 101 mph Normal with No Los 211.96 1.660 -0.0346 0.0172 0.1166 101 mph Normal with No Los 211.96 1.646 -0.0326 0.1782 0.1800 101 mph Normal with No Los 285.88 1.510 -0.0327 0.5322 0.5346 101 mph Normal with No Los 122.04 0.758 -0.0223 0.5118 0.3747 0.3725 101 mph Normal with No Los 122.04 0.758 -0.0232 0.5118 0.3221 0.2728 0.1739 101 mph 80 degree with No Los 122.04 0.758 -0.0232 0.747 0.3759 101 mph 80 degree with No Los 122.04						
101 mph Normal with No Les 104.12 1.283 -0.0816 0.312 0.3327 101 mph Normal with No Les 124.12 1.363 -0.0117 0.5775 0.5778 101 mph Normal with No Les 128.04 1.469 -0.0240 0.1128 0.1168 101 mph Normal with No Les 168.04 1.469 -0.0240 0.1128 0.1169 101 mph Normal with No Les 211.96 1.489 -0.0326 0.0519 0.6000 101 mph Normal with No Les 228.04 1.560 -0.0324 0.0774 0.3784 101 mph Normal with No Les 228.04 1.560 -0.0325 0.5712 0.1820 101 mph Normal with No Les 228.04 1.560 -0.0323 0.5019 0.5022 101 mph Of degree with No Les 104.12 0.644 -0.0233 0.5174 0.3733 101 mph Of degree with No Les 128.12 0.722 -0.0233 0.5019 0.5022 101 mph Of degree with No Les 128.12 0.724 0.0233 0.5174 0.3733 101 mph Of degree with No Les 128.14 0.756 -0.0232 0.774	-					
101 mph Normal with No Les 115.88 1.229 -0.0316 0.3322 0.3321 101 mph Normal with No Les 122.02 1.363 0.0119 0.4322 0.4331 101 mph Normal with No Les 122.04 1.401 -0.0119 0.4322 0.4331 101 mph Normal with No Les 122.04 1.668 -0.0240 0.1128 0.1166 101 mph Normal with No Les 211.968 1.680 -0.0346 0.0740 0.1782 101 mph Normal with No Les 231.96 1.645 -0.0348 0.0740 0.1782 101 mph Normal with No Les 285.88 1.510 -0.0348 0.0740 0.0788 101 mph Normal with No Les 285.88 1.510 -0.0242 0.1728 0.1739 101 mph 80 degree with No Les 146.12 0.584 -0.0242 0.1728 0.1739 101 mph 80 degree with No Les 128.04 0.758 -0.0232 0.546 0.4271 0.2739 101 mph 80 degree with No Les 128.04 0.758 -0.0232 0.2741 0.2739 101 mph 80 degree with No Les 128.04 0.758 -0.0232	• • • • • • • • • • • • • • • • • • • •					
191 mph Normal with No Ica 124.12 1.363 -0.0117 0.5779 191 mph Normal with No Ica 168.04 1.669 -0.0245 0.3174 0.3184 191 mph Normal with No Ica 168.04 1.669 -0.0245 0.3174 0.3184 191 mph Normal with No Ica 211.96 1.680 -0.0255 0.3174 0.3184 191 mph Normal with No Ica 221.96 1.640 -0.0236 0.1728 0.1802 191 mph Normal with No Ica 226.04 1.560 -0.0235 0.5174 0.3184 191 mph Of digrae with No Ica 285.08 1.510 -0.0323 0.5019 0.5022 191 mph Of digrae with No Ica 194.12 0.644 -0.0233 0.1728 0.1728 191 mph Of digrae with No Ica 126.12 0.722 -0.0233 0.1740 0.3735 191 mph Of digrae with No Ica 126.14 0.786 -0.0233 0.1740 0.1735 191 mph Of digrae with No Ica 126.14 0.786 -0.0232 0.771 0.1739 191 mph Of digrae with No Ica 126.14 0.786 -0.0232 0.2741 0.2754 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>	•					
101 mph Narmal with No Los 128.04 1.461 -0.4717 0.5778 0.5779 101 mph Narmal with No Los 168.00 1.668 -0.0240 0.1126 0.1146 101 mph Narmal with No Los 231.96 1.568 -0.0346 0.0510 0.0600 101 mph Narmal with No Los 231.96 1.546 -0.0346 0.0764 0.4788 101 mph Narmal with No Los 288.86 1.510 -0.0347 0.03783 0.5332 0.5342 101 mph S0 degree with No Los 288.86 1.510 -0.0324 0.0778 0.0773 101 mph S0 degree with No Los 104.12 0.684 -0.0224 0.3733 0.1739 101 mph S0 degree with No Los 104.12 0.764 -0.0224 0.1726 0.1739 101 mph S0 degree with No Los 128.04 0.755 -0.0324 0.4064 0.4076 101 mph S0 degree with No Los 128.04 0.755 -0.0324 0.4077 0.0773 101 mph S0 degree with No Los 21.96 0.956 -0.0224 0.4076 0.4076 101 mph S0 degree with No Los 21.98 0.956 -0.0227						
101 mph Normal with No Ice 168.04 1.669 0.0224 0.1126 0.1166 101 mph Normal with No Ice 211.96 1.880 0.0336 0.0510 0.0690 101 mph Normal with No Ice 223.96 1.644 0.0336 0.0714 0.1182 101 mph Normal with No Ice 223.96 1.645 0.0336 0.0704 0.0782 101 mph Normal with No Ice 285.88 1.510 -0.0337 0.5352 0.5344 101 mph Ol degree with No Ice 80.06 0.565 -0.0223 0.5174 0.3753 101 mph Ol degree with No Ice 104.12 0.594 -0.0224 0.1728 0.1739 101 mph Ol degree with No Ice 115.88 0.721 -0.0224 0.1728 0.1737 101 mph Ol degree with No Ice 128.04 0.358 -0.0321 0.2771 0.2770 101 mph Ol degree with No Ice 128.04 0.369 -0.0222 0.0399 0.0227 0.0399 0.0237 0.3773 101 mph Ol degree with No Ice 231.96 0.999 -0.0227 0.3990 0.0237 0.3774 0.3774 101 mph Ol	•					
101 mph Normal with No ice 180.00 1.668 -0.255 0.3174 0.3184 101 mph Normal with No ice 231.96 1.645 -0.0366 0.0774 0.4788 101 mph Normal with No ice 286.04 1.566 -0.0348 0.0774 0.4788 101 mph Normal with No ice 286.04 1.566 -0.0348 0.0474 0.4788 101 mph S0 degree with No ice 86.00 0.565 -0.0223 0.0478 0.4782 101 mph S0 degree with No ice 115.88 0.726 -0.2242 0.7734 0.4773 101 mph S0 degree with No ice 128.12 0.735 -0.0243 0.1483 0.1483 101 mph S0 degree with No ice 128.12 0.735 -0.0244 0.4640 0.4771 0.4773 101 mph S0 degree with No ice 128.04 0.756 -0.0242 0.0374 0.4774 0.4774 101 mph S0 degree with No ice 213.96 0.9896 -0.0222 0.3980 0.4680 101 mph S0 degree with No ice 219.96 0.9224 0.1775 0.1775 0.1795 101 mph S0 degree with No ice 229.88 1.0	•					
101 mph Normal with No Ice 211.96 1.680 -0.0306 0.0510 0.0600 101 mph Normal with No Ice 231.96 1.645 -0.0326 0.1782 0.1782 101 mph Normal with No Ice 295.86 1.510 -0.0327 0.5332 0.5346 101 mph 80 degree with No Ice 84.12 0.584 -0.0223 0.5019 0.3743 101 mph 80 degree with No Ice 115.88 0.720 -0.0324 0.1726 0.1739 101 mph 80 degree with No Ice 124.12 0.732 -0.0324 0.2726 0.7379 101 mph 80 degree with No Ice 126.94 0.738 -0.0232 0.2741 0.2726 101 mph 80 degree with No Ice 126.94 0.738 -0.0324 0.4664 0.4070 101 mph 80 degree with No Ice 285.94 0.738 -0.0232 0.2771 0.7784 101 mph 80 degree with No Ice 285.94 0.999 -0.0232 0.3791 0.4407 101 mph 80 degree with No Ice 285.98 0.999 -0.02324 0.3792 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.3184</td>						0.3184
101 mph Normal with No Ice 231.96 1.645 0.0226 0.1782 0.1820 101 mph Normal with No Ice 265.04 1.560 -0.0325 0.5019 0.5322 101 mph 60 degree with No Ice 80.00 0.565 -0.0223 0.5019 0.5322 101 mph 60 degree with No Ice 84.12 0.584 -0.0118 0.3747 0.3753 101 mph 60 degree with No Ice 115.88 0.720 -0.0224 0.1728 0.1483 101 mph 60 degree with No Ice 128.04 0.738 -0.0214 0.4779 0.483 101 mph 60 degree with No Ice 128.04 0.738 -0.0224 0.2771 0.4815 101 mph 60 degree with No Ice 21.96 0.999 -0.0222 0.0779 0.4815 101 mph 60 degree with No Ice 231.96 0.999 -0.0222 0.3980 0.4840 101 mph 60 degree with No Ice 285.04 0.999 -0.0222 0.3775 0.1779 101 mph 60 degree with No Ice 285.04 0.999 -0.0224 0.4753 0.4840 101 mph 50 degree with No Ice 285.04 0.999 -0.0224 0	•					0.0600
101 mph Normal with No Ice 266.04 1.560 -0.0346 0.0704 6.0788 101 mph Normal with No Ice 80.00 0.565 -0.0213 0.5019 0.5322 101 mph 60 degree with No Ice 84.12 0.584 -0.0213 0.4169 0.1733 101 mph 60 degree with No Ice 115.88 0.720 -0.0223 0.1469 0.1483 101 mph 60 degree with No Ice 124.12 0.732 -0.0244 0.4721 0.4739 101 mph 60 degree with No Ice 126.04 0.965 -0.0232 0.0744 0.4064 101 mph 60 degree with No Ice 126.04 0.965 -0.0232 0.0774 0.6815 101 mph 60 degree with No Ice 231.96 0.999 -0.0287 0.0399 0.0480 101 mph 60 degree with No Ice 256.04 0.999 -0.0287 0.3989 0.4480 101 mph 60 degree with No Ice 256.04 0.999 -0.0287 0.3939 0.4480 101 mph 50 degree with No Ice 266.04 0.999 -0.0287 0.3639 0.4427 101 mph 50 degree with No Ice 126.04 1.171 0.2076 <td< td=""><td>•</td><td></td><td>1.645</td><td>-0.0326</td><td>0.1782</td><td>0.1820</td></td<>	•		1.645	-0.0326	0.1782	0.1820
101 mp 60 degree with No Ice 295.86 1.570 -0.0327 0.5322 0.5191 101 mp 60 degree with No Ice 80.00 0.565 -0.0233 0.5191 0.5774 101 mp 60 degree with No Ice 104.12 0.684 -0.0243 0.1469 0.1473 101 mp 60 degree with No Ice 115.85 0.720 -0.0233 0.5146 0.4070 101 mp 60 degree with No Ice 126.44 0.758 -0.0243 0.2741 0.2774 101 mp 60 degree with No Ice 126.04 0.980 -0.0223 0.2774 0.2774 101 mp 60 degree with No Ice 126.04 0.980 -0.0222 0.3980 0.0490 101 mp 60 degree with No Ice 231.96 0.999 -0.0224 0.1775 0.1774 101 mp 60 degree with No Ice 265.85 1.012 -0.0244 0.1775 0.1784 101 mp 60 degree with No Ice 265.84 0.999 -0.0224 0.3783 0.66633 101 mp 60 degree with No Ice 140.12 1.055 0.3143 0.5424 0.5272 0.5764 101 mp 60 degree with No Ice 140.12 1.058 0.31	•		1.560	-0.0348	0.0704	0.0788
101 mp. 60 degree with No Ice 80.00 0.565 -0.0223 0.5019 0.5022 101 mp. 60 degree with No Ice 104.12 0.684 -0.0242 0.1728 0.1739 101 mp. 60 degree with No Ice 115.85 0.720 -0.0243 0.1463 0.1413 101 mp. 60 degree with No Ice 124.12 0.732 -0.0244 0.2721 0.2730 101 mp. 60 degree with No Ice 126.04 0.752 -0.0243 0.1464 0.4070 101 mp. 60 degree with No Ice 126.04 0.756 -0.0233 0.2741 0.2754 101 mp. 60 degree with No Ice 211.96 0.999 -0.0222 0.0379 0.0460 101 mp. 60 degree with No Ice 231.96 0.999 -0.0224 0.1775 0.1799 101 mp. 60 degree with No Ice 265.04 0.999 -0.0228 0.0780 0.6841 101 mp. 60 degree with No Ice 265.04 0.999 -0.0228 0.7742 0.4627 101 mp. 60 degree with No Ice 15.88 1.019 0.2345 0.2927 0.3720 101 mp. 60 degree with No Ice 122.0.4 1.171 0.2078	•	295.88	1.510	-0.0357	0.5332	0.5346
101 mph 60 degree with No Ice 84.12 0.584 -0.2218 0.3747 0.3753 101 mph 60 degree with No Ice 104.12 0.684 -0.0233 0.1463 0.1483 101 mph 60 degree with No Ice 115.86 0.720 -0.0233 0.2721 0.2730 101 mph 60 degree with No Ice 120.44 0.758 -0.0241 0.4760 0.4670 101 mph 60 degree with No Ice 180.00 0.980 -0.0232 0.2774 0.2774 101 mph 60 degree with No Ice 211.96 0.999 -0.0222 0.3960 0.3971 101 mph 60 degree with No Ice 231.96 0.999 -0.0224 0.1775 0.1799 101 mph 60 degree with No Ice 265.04 0.999 -0.0224 0.6763 0.6641 101 mph 90 degree with No Ice 265.04 0.999 -0.0224 0.6753 0.6643 101 mph 90 degree with No Ice 104.12 0.055 0.3144 0.4627 0.1753 0.7642 101 mph 90 degree with No Ice 104.12 0.458 0.4527 0.3720 0.4644 101 mph 90 degree with No Ice 124.12 0.585		80.00	0.565	-0.0223	0.5019	0.5022
101 mph 60 degree with No Ice 115.86 0.720 -0.0283 0.1469 0.4433 101 mph 60 degree with No Ice 124.12 0.732 -0.0294 0.2721 0.2730 101 mph 60 degree with No Ice 128.04 0.758 -0.0314 0.4040 0.4070 101 mph 60 degree with No Ice 186.04 0.960 -0.0323 0.2741 0.2754 101 mph 60 degree with No Ice 211.96 0.999 -0.0287 0.0390 0.0490 101 mph 60 degree with No Ice 258.04 0.999 -0.0284 0.1775 0.1799 101 mph 60 degree with No Ice 258.04 0.999 -0.0284 0.1775 0.7842 101 mph 60 degree with No Ice 295.86 1.012 -0.0278 0.6653 0.6641 101 mph 90 degree with No Ice 114.12 1.055 0.3103 0.3439 0.4627 101 mph 90 degree with No Ice 128.04 1.171 0.2071 0.5489 0.4627 101 mph 90 degree with No Ice 128.04 1.171 0.2071 0.5489 0.4627 101 mph 90 degree with No Ice 128.04 1.171 0.2071		84.12	0.594	-0.0218	0.3747	0.3753
101 mph 60 degree with No ice 124.12 0.732 0.0294 0.2721 0.2730 101 mph 60 degree with No ice 128.04 0.758 -0.0314 0.4064 0.4070 101 mph 60 degree with No ice 180.00 0.963 -0.0323 0.2741 0.2754 101 mph 60 degree with No ice 231.96 0.999 -0.0287 0.3989 0.0490 101 mph 60 degree with No ice 231.96 0.999 -0.0284 0.1775 0.1799 101 mph 60 degree with No ice 295.88 1.012 -0.0274 0.6635 0.6641 101 mph 90 degree with No ice 104.12 1.055 0.3103 0.3439 0.4627 101 mph 90 degree with No ice 115.85 1.109 0.2345 0.2327 0.3720 101 mph 90 degree with No ice 115.85 1.109 0.2454 0.2675 0.6685 101 mph 90 degree with No ice 128.04 1.171 0.2071 0.5489 0.5855 101 mph 90 degree with No ice 128.04 1.311 0.3012 0.1134 0.3185 101 mph 90 degree with No ice 128.04 1.431 0.3012 <	• •	104.12	0.694	-0.0242	0.1728	0.1739
101 mph 80 degree with No Ice 128.04 0.758 -0.0314 0.4064 0.4070 101 mph 60 degree with No Ice 186.04 0.965 -0.0323 0.2741 0.2754 101 mph 60 degree with No Ice 211.96 0.999 -0.0227 0.0390 0.0490 101 mph 60 degree with No Ice 231.96 0.999 -0.0224 0.3971 0.13971 101 mph 60 degree with No Ice 256.04 0.999 -0.0224 0.1775 0.1799 101 mph 60 degree with No Ice 280.06 0.4833 0.3214 0.7153 0.7642 101 mph 50 degree with No Ice 84.12 0.988 0.3434 0.5632 0.6664 101 mph 50 degree with No Ice 104.12 1.055 0.3103 0.3439 0.4404 101 mph 50 degree with No Ice 128.04 1.471 0.2045 0.2227 0.3720 101 mph 50 degree with No Ice 128.04 1.431 0.3012 0.1144 0.3183 101 mph 50 degree with No Ice 128.04 1.471 0.2045 0.2276 0.3720 101 mph 50 degree with No Ice 128.04 1.431 0.3012	101 mph 60 degree with No Ice	115.88	0.720	-0.0283	0.1469	
101 mph 60 degree with No ice 168.04 0.965 -0.0222 0.0779 0.0815 101 mph 60 degree with No ice 186.00 0.965 -0.0222 0.0399 0.02741 0.2754 101 mph 60 degree with No ice 231.96 0.999 -0.0267 0.0398 0.03971 101 mph 60 degree with No ice 285.86 1.012 -0.0278 0.6635 0.6641 101 mph 60 degree with No ice 285.86 1.012 -0.0278 0.6325 0.6641 101 mph 90 degree with No ice 84.12 0.898 0.3434 0.5632 0.6686 101 mph 90 degree with No ice 104.12 1.055 0.3103 0.3439 0.4627 101 mph 90 degree with No ice 124.12 1.136 0.2088 0.3849 0.4404 101 mph 90 degree with No ice 128.04 1.171 0.2145 0.2372 0.4827 101 mph 90 degree with No ice 128.04 1.431 0.3012 0.1344 0.3145 101 mph 90 degree with No ice 128.04 1.431 0.3012 0.1344 0.3145 101 mph 90 degree with No ice 211.86 1.438	101 mph 60 degree with No Ice	124.12	0.732	-0.0294	0.2721	0.2730
101 mph 60 degree with No Icc 180.00 0.960 -0.0223 0.2741 0.2754 101 mph 60 degree with No Icc 211.96 0.999 -0.0267 0.0399 0.0490 101 mph 60 degree with No Icc 231.96 0.999 -0.0284 0.1775 0.1799 101 mph 60 degree with No Icc 285.86 1.012 -0.0276 0.6633 0.6641 101 mph 50 degree with No Icc 285.86 1.012 -0.0276 0.6633 0.6641 101 mph 50 degree with No Icc 84.12 0.883 0.3434 0.5632 0.6641 101 mph 50 degree with No Icc 115.85 1.109 0.2345 0.2227 0.3720 101 mph 50 degree with No Icc 128.04 1.171 0.2071 0.5489 0.5855 101 mph 50 degree with No Icc 128.04 1.319 0.2345 0.2227 0.3744 101 mph 50 degree with No Icc 128.04 1.311 0.2071 0.5489 0.5855 101 mph 50 degree with No Icc 128.04 1.313 0.0276 0.3744 101 mph 50 degree with No Icc 281.96 1.405 0.1823 0.5162 <t< td=""><td>101 mph 60 degree with No Ice</td><td>128.04</td><td>0.758</td><td>-0.0314</td><td>0.4064</td><td></td></t<>	101 mph 60 degree with No Ice	128.04	0.758	-0.0314	0.4064	
101 mph 60 degree with No Icc 211.96 0.999 -0.0267 0.0399 0.0460 101 mph 60 degree with No Icc 231.96 0.999 -0.0222 0.3960 0.3971 101 mph 60 degree with No Icc 286.04 0.999 -0.0278 0.6635 0.6641 101 mph 60 degree with No Icc 285.88 1.012 -0.0278 0.6635 0.6641 101 mph 80 degree with No Icc 80.00 0.853 0.3214 0.7153 0.7442 101 mph 80 degree with No Icc 104.12 1.085 0.3103 0.3439 0.4627 101 mph 80 degree with No Icc 115.88 1.090 0.2345 0.2287 0.3720 101 mph 80 degree with No Icc 128.04 1.171 0.2011 0.5489 0.4404 101 mph 80 degree with No Icc 186.04 1.431 0.3012 0.1134 0.3185 101 mph 80 degree with No Icc 211.96 1.428 0.2394 0.2287 0.3744 101 mph 90 degree with No Icc 211.96 1.428 0.2394 0.2676 0.3631 101 mph 90 degree with No Icc 211.96 1.428 0.2394 <td< td=""><td>101 mph 60 degree with No Ice</td><td>168.04</td><td>0.965</td><td>-0.0252</td><td>0.0779</td><td>0.0815</td></td<>	101 mph 60 degree with No Ice	168.04	0.965	-0.0252	0.0779	0.0815
101 mph 60 degree with No Ice 231.96 0.999 -0.0292 0.3960 0.3971 101 mph 60 degree with No Ice 286.04 0.999 -0.0284 0.1775 0.6635 0.6641 101 mph 60 degree with No Ice 286.04 0.999 -0.0284 0.7153 0.7842 101 mph 50 degree with No Ice 80.00 0.853 0.3434 0.5632 0.6586 101 mph 50 degree with No Ice 104.12 1.055 0.3103 0.3439 0.4627 101 mph 50 degree with No Ice 115.88 1.109 0.2345 0.2927 0.3720 101 mph 50 degree with No Ice 128.04 1.171 0.2071 0.5489 0.4404 101 mph 50 degree with No Ice 186.04 1.431 0.3012 0.1134 0.3155 101 mph 50 degree with No Ice 211.96 1.438 0.1539 0.6551 0.6331 101 mph 50 degree with No Ice 221.96 1.405 0.1922 0.5142 0.5465 101 mph 50 degree with No Ice 231.96 1.405 0.1922 0.5142 0.5661 101 mph 50 degree with No Ice 285.88 1.253	101 mph 60 degree with No Ice	180.00	0.960	-0.0323	0.2741	
101 mph 60 degree with No ice 268.04 0.999 -0.0284 0.1775 0.1799 101 mph 60 degree with No ice 295.88 1.012 -0.0278 0.6635 0.6641 101 mph 90 degree with No ice 84.12 0.898 0.3434 0.5632 0.6536 101 mph 90 degree with No ice 104.12 1.055 0.3103 0.3439 0.4627 101 mph 90 degree with No ice 115.88 1.109 0.2345 0.2927 0.3720 101 mph 90 degree with No ice 128.04 1.171 0.2071 0.5489 0.5855 101 mph 90 degree with No ice 128.04 1.431 0.3012 0.1134 0.3185 101 mph 90 degree with No ice 128.04 1.431 0.3012 0.1134 0.3185 101 mph 90 degree with No ice 211.96 1.428 0.1399 0.0551 0.1633 101 mph 90 degree with No ice 288.04 1.319 0.2444 0.2676 0.5631 101 mph 90 degree with No ice 289.04 1.319 0.2484 0.2676 0.5631 101 mph 90 degree with No ice 280.04 1.319 0.2484 0	101 mph 60 degree with No Ice	211.96	0.999	-0.0267		
101 mph 80 degree with No Ice 295.88 1.012 -0.0278 0.6635 0.6641 101 mph 90 degree with No Ice 80.00 0.853 0.3214 0.7153 0.7842 101 mph 90 degree with No Ice 104.12 1.055 0.3103 0.3439 0.4627 101 mph 90 degree with No Ice 115.88 1.109 0.2345 0.2927 0.3720 101 mph 90 degree with No Ice 124.12 1.136 0.2068 0.3889 0.4404 101 mph 90 degree with No Ice 128.04 1.171 0.2071 0.5489 0.5885 101 mph 90 degree with No Ice 188.04 1.431 0.3012 0.1134 0.3185 101 mph 90 degree with No Ice 211.96 1.438 0.1539 0.5512 0.5465 101 mph 90 degree with No Ice 288.04 1.319 0.2454 0.2676 0.3631 101 mph 90 degree with No Ice 288.04 1.319 0.2454 0.5142 0.5465 101 mph 90 degree with No Ice 288.04 1.319 0.2454 0.6334 0.6331 101 mph 20 degree with No Ice 104.12 1.015 -0.3844 0	101 mph 60 degree with No Ice	231.96				
101 mph 90 degree with No Ice 80.00 0.853 0.3214 0.7153 0.7842 101 mph 90 degree with No Ice 84.12 0.898 0.3434 0.5632 0.6586 101 mph 90 degree with No Ice 115.88 1.109 0.2345 0.2927 0.3720 101 mph 90 degree with No Ice 124.12 1.136 0.2068 0.3849 0.4444 101 mph 90 degree with No Ice 128.04 1.171 0.2071 0.5489 0.5885 101 mph 90 degree with No Ice 188.04 1.431 0.3012 0.1134 0.3185 101 mph 90 degree with No Ice 180.00 1.428 0.2334 0.2878 0.3744 101 mph 90 degree with No Ice 231.96 1.405 0.1922 0.5142 0.5465 101 mph 90 degree with No Ice 280.04 1.319 0.4454 0.2676 0.3631 101 mph 90 degree with No Ice 285.85 1.253 0.2490 0.7780 0.8163 101 mph 20 degree with No Ice 104.12 1.193 0.0043 0.3313 0.3913 101 mph 120 degree with No Ice 124.12 1.015 -0.0384 0.	101 mph 60 degree with No Ice	268.04	0.999			
101 mph 90 degree with No ice 84.12 0.898 0.3434 0.5632 0.6586 101 mph 90 degree with No ice 104.12 1.055 0.3103 0.3439 0.4627 101 mph 90 degree with No ice 115.88 1.109 0.2345 0.2827 0.3720 101 mph 90 degree with No ice 124.12 1.136 0.2068 0.3889 0.4404 101 mph 90 degree with No ice 128.04 1.471 0.2071 0.5489 0.5855 101 mph 90 degree with No ice 188.04 1.431 0.3012 0.1134 0.3185 101 mph 90 degree with No ice 211.96 1.438 0.1539 0.0551 0.1633 101 mph 90 degree with No ice 231.96 1.405 0.1922 0.5142 0.5485 101 mph 90 degree with No ice 295.88 1.253 0.2490 0.7780 0.8163 101 mph 90 degree with No ice 80.00 0.668 -0.6589 0.7989 101 mph 120 degree with No ice 115.88 1.259 0.0368 0.3235 0.3247 101 mph 120	101 mph 60 degree with No Ice					
101 mph 90 degree with No ice 104.12 1.055 0.3103 0.3439 0.4627 101 mph 90 degree with No ice 115.88 1.009 0.2345 0.2927 0.3720 101 mph 90 degree with No ice 124.12 1.136 0.2068 0.3869 0.4404 101 mph 90 degree with No ice 128.04 1.171 0.2071 0.5489 0.5855 101 mph 90 degree with No ice 188.04 1.431 0.3012 0.1134 0.3185 101 mph 90 degree with No ice 180.00 1.428 0.2334 0.2876 0.3774 101 mph 90 degree with No ice 211.96 1.438 0.1539 0.0551 0.1633 101 mph 90 degree with No ice 288.04 1.319 0.2454 0.2676 0.3681 101 mph 90 degree with No ice 288.04 1.319 0.2454 0.6347 0.3663 101 mph 120 degree with No ice 80.00 0.968 -0.0589 0.7965 0.7989 101 mph 120 degree with No ice 104.12 1.193 0.0043 0.3913 0.3913 101 mph 120 degree with No ice 128.04 1.331 0.0337 <td< td=""><td>101 mph 90 degree with No Ice</td><td></td><td></td><td></td><td></td><td></td></td<>	101 mph 90 degree with No Ice					
101 mph 90 degree with No ice 115.85 1.109 0.2345 0.2927 0.3720 101 mph 90 degree with No ice 124.12 1.136 0.2068 0.3889 0.4404 101 mph 90 degree with No ice 128.04 1.171 0.2071 0.5489 0.5855 101 mph 90 degree with No ice 180.00 1.428 0.2334 0.2878 0.3744 101 mph 90 degree with No ice 119.66 1.438 0.1539 0.0551 0.1633 101 mph 90 degree with No ice 211.96 1.438 0.1539 0.0551 0.1633 101 mph 90 degree with No ice 295.88 1.253 0.2490 0.7780 0.8163 101 mph 90 degree with No ice 295.88 1.253 0.2490 0.7780 0.8163 101 mph 120 degree with No ice 104.12 1.015 -0.0384 0.6334 0.6347 101 mph 120 degree with No ice 104.12 1.933 0.0435 0.3235 0.3247 101 mph 120 degree with No ice 124.12 1.015 -0.0384 0.6334 0.6347 101 mph 120 degree with No ice 128.04 1.331 0.0337	• •					
101 mph 90 degree with No ice 124.12 1.136 0.2068 0.3889 0.4404 101 mph 90 degree with No ice 128.04 1.171 0.2071 0.5489 0.5855 101 mph 90 degree with No ice 180.00 1.428 0.2394 0.2878 0.3744 101 mph 90 degree with No ice 281.96 1.438 0.1539 0.0551 0.1633 101 mph 90 degree with No ice 281.96 1.405 0.1922 0.5142 0.5465 101 mph 90 degree with No ice 268.04 1.319 0.2454 0.2676 0.3631 101 mph 90 degree with No ice 268.04 1.319 0.2454 0.2676 0.3631 101 mph 90 degree with No ice 268.04 1.319 0.2454 0.2676 0.3631 101 mph 120 degree with No ice 84.12 1.015 -0.0384 0.6334 0.6347 101 mph 120 degree with No ice 104.12 1.913 0.0043 0.3913 0.3913 101 mph 120 degree with No ice 128.04 1.331 0.0337 0.5805 0.5807 101 mph 120 degree with No ice 128.04 1.331 0.0337 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
101 mph 90 degree with No Ice 128.04 1.171 0.2071 0.5489 0.5855 101 mph 90 degree with No Ice 168.04 1.431 0.3012 0.1134 0.3185 101 mph 90 degree with No Ice 180.00 1.428 0.2394 0.2878 0.3744 101 mph 90 degree with No Ice 231.96 1.405 0.1922 0.5142 0.5465 101 mph 90 degree with No Ice 231.96 1.405 0.1922 0.5465 0.3661 101 mph 90 degree with No Ice 295.88 1.253 0.2490 0.7766 0.3661 101 mph 120 degree with No Ice 80.00 0.968 -0.0589 0.7965 0.7989 101 mph 120 degree with No Ice 104.12 1.193 0.0043 0.3913 0.3313 101 mph 120 degree with No Ice 124.12 1.294 0.0388 0.4319 0.4327 101 mph 120 degree with No Ice 128.04 1.617 0.0337 0.5805 0.5807 101 mph 120 degree with No Ice 128.04 1.610 0.0266 0.1315 0.1324 101 mph 120 degree with No Ice 128.04 1.613 0.0199						
101 mph 90 degree with No Ice 168.04 1.431 0.3012 0.1134 0.3185 101 mph 90 degree with No Ice 180.00 1.428 0.2394 0.2878 0.3744 101 mph 90 degree with No Ice 211.96 1.438 0.1539 0.0551 0.1633 101 mph 90 degree with No Ice 231.96 1.405 0.1922 0.5142 0.5465 101 mph 90 degree with No Ice 268.04 1.319 0.2454 0.2676 0.3631 101 mph 90 degree with No Ice 295.88 1.253 0.2490 0.7780 0.8163 101 mph 120 degree with No Ice 80.00 0.968 -0.0589 0.7965 0.7989 101 mph 120 degree with No Ice 104.12 1.013 0.0043 0.3913 0.3913 101 mph 120 degree with No Ice 124.12 1.933 0.0043 0.3913 0.3913 101 mph 120 degree with No Ice 128.04 1.331 0.0337 0.5805 0.5807 101 mph 120 degree with No Ice 128.04 1.331 0.0337 0.5805 0.5807 101 mph 120 degree with No Ice 128.04 1.637 0.0035						
101 mph 90 degree with No Ice 180.00 1.428 0.2394 0.2878 0.3744 101 mph 90 degree with No Ice 211.96 1.438 0.1539 0.0551 0.1633 101 mph 90 degree with No Ice 231.96 1.405 0.1922 0.5142 0.5465 101 mph 90 degree with No Ice 268.04 1.319 0.2454 0.2676 0.3631 101 mph 120 degree with No Ice 295.88 1.253 0.2490 0.7780 0.8163 101 mph 120 degree with No Ice 80.00 0.968 -0.0384 0.6334 0.6347 101 mph 120 degree with No Ice 104.12 1.193 0.0043 0.3913 0.3913 101 mph 120 degree with No Ice 124.12 1.294 0.0338 0.4319 0.4327 101 mph 120 degree with No Ice 128.04 1.331 0.0337 0.5805 0.5807 101 mph 120 degree with No Ice 128.04 1.610 0.0206 0.1315 0.1324 101 mph 120 degree with No Ice 128.04 1.613 0.0137 0.0337 0.0337 101 mph 120 degree with No Ice 168.04 1.610 0.0206						
101 mph 90 degree with No Ice 211.96 1.438 0.1539 0.0551 0.1633 101 mph 90 degree with No Ice 231.96 1.405 0.1922 0.5142 0.5465 101 mph 90 degree with No Ice 286.04 1.319 0.2454 0.2676 0.3631 101 mph 90 degree with No Ice 295.88 1.253 0.2490 0.7780 0.8163 101 mph 120 degree with No Ice 80.00 0.968 -0.0589 0.7965 0.7989 101 mph 120 degree with No Ice 84.12 1.015 -0.0384 0.6334 0.6347 101 mph 120 degree with No Ice 104.12 1.193 0.0043 0.3913 0.3913 101 mph 120 degree with No Ice 124.12 1.294 0.0338 0.4319 0.4327 101 mph 120 degree with No Ice 128.04 1.331 0.0337 0.5807 101 mph 120 degree with No Ice 180.00 1.613 0.0199 0.2933 0.2933 101 mph 120 degree with No Ice 180.00 1.613 0.0199 0.2933 0.2933 101 mph 120 degree with No Ice 231.96 1.603 0.0355 0.4805						
101 mph 90 degree with No Ice 231.96 1.405 0.1922 0.5142 0.5465 101 mph 90 degree with No Ice 268.04 1.319 0.2454 0.2676 0.3631 101 mph 90 degree with No Ice 295.88 1.253 0.2490 0.7780 0.8163 101 mph 120 degree with No Ice 80.00 0.968 -0.0589 0.7965 0.7989 101 mph 120 degree with No Ice 104.12 1.193 0.0043 0.3913 0.3913 101 mph 120 degree with No Ice 104.12 1.93 0.0043 0.3913 0.3913 101 mph 120 degree with No Ice 128.04 1.331 0.0337 0.5805 0.5807 101 mph 120 degree with No Ice 128.04 1.331 0.0337 0.5805 0.5807 101 mph 120 degree with No Ice 180.00 1.613 0.0199 0.2931 0.2933 101 mph 120 degree with No Ice 231.96 1.603 0.0355 0.4805 0.4818 101 mph 120 degree with No Ice 231.96 1.603 0.0355 0.4805 0.4818 101 mph 120 degree with No Ice 285.88 1.443 -0.0234						
101 mph 90 degree with No Ice 288.04 1.319 0.2454 0.2676 0.3631 101 mph 90 degree with No Ice 295.88 1.253 0.2490 0.7780 0.8163 101 mph 120 degree with No Ice 80.00 0.968 -0.0589 0.7965 0.7989 101 mph 120 degree with No Ice 84.12 1.015 -0.0384 0.6334 0.6347 101 mph 120 degree with No Ice 104.12 1.193 0.0043 0.3913 0.3913 101 mph 120 degree with No Ice 124.12 1.294 0.0338 0.4319 0.4327 101 mph 120 degree with No Ice 124.12 1.294 0.0338 0.4319 0.4327 101 mph 120 degree with No Ice 128.04 1.331 0.0337 0.5805 0.5807 101 mph 120 degree with No Ice 180.00 1.613 0.0199 0.2931 0.2933 101 mph 120 degree with No Ice 231.96 1.603 0.0355 0.4805 0.4818 101 mph 120 degree with No Ice 285.88 1.443 -0.0234 0.7454 0.7457 101 mph 120 degree with No Ice 295.88 1.443 -0.0234	• •					
101 mph 90 degree with No Ice 295,83 1.253 0.2490 0.7780 0.8163 101 mph 120 degree with No Ice 80.00 0.968 -0.0589 0.7965 0.7989 101 mph 120 degree with No Ice 84.12 1.015 -0.0384 0.6334 0.6347 101 mph 120 degree with No Ice 104.12 1.193 0.0043 0.3913 0.3913 101 mph 120 degree with No Ice 114.12 1.259 0.0368 0.3235 0.3247 101 mph 120 degree with No Ice 124.12 1.294 0.0338 0.4319 0.4327 101 mph 120 degree with No Ice 128.04 1.331 0.0337 0.5805 0.5807 101 mph 120 degree with No Ice 180.00 1.613 0.0199 0.2931 0.2933 101 mph 120 degree with No Ice 211.96 1.603 0.0355 0.4805 0.4818 101 mph 120 degree with No Ice 213.96 1.603 0.0355 0.4805 0.4818 101 mph 120 degree with No Ice 295.88 1.443 -0.0224 0.2507 0.2517 101 mph 120 degree with No Ice 295.88 1.443 -0.0234	· · · ·					
101 mph 120 degree with No Ice 80.00 0.968 -0.0589 0.7965 0.7989 101 mph 120 degree with No Ice 84.12 1.015 -0.0384 0.6334 0.6347 101 mph 120 degree with No Ice 104.12 1.193 0.0043 0.3913 0.3913 101 mph 120 degree with No Ice 115.88 1.259 0.0368 0.3235 0.3247 101 mph 120 degree with No Ice 124.12 1.294 0.0338 0.4319 0.4327 101 mph 120 degree with No Ice 128.04 1.331 0.0337 0.5805 0.5807 101 mph 120 degree with No Ice 168.04 1.610 0.0206 0.1315 0.1324 101 mph 120 degree with No Ice 180.00 1.613 0.0199 0.2931 0.2933 101 mph 120 degree with No Ice 211.96 1.637 0.0035 0.4816 101 mph 120 degree with No Ice 295.88 1.443 -0.0224 0.2507 0.2517 101 mph 120 degree with No Ice 295.88 1.443 -0.0234 0.7454 <					-	
101 mph 120 degree with No Ice 84.12 1.015 -0.0384 0.6334 0.6347 101 mph 120 degree with No Ice 104.12 1.193 0.0043 0.3913 0.3913 101 mph 120 degree with No Ice 115.88 1.259 0.0368 0.3235 0.3247 101 mph 120 degree with No Ice 124.12 1.294 0.0338 0.4319 0.4327 101 mph 120 degree with No Ice 128.04 1.331 0.037 0.5805 0.5807 101 mph 120 degree with No Ice 168.04 1.610 0.0206 0.1315 0.1324 101 mph 120 degree with No Ice 180.00 1.613 0.0199 0.2931 0.2933 101 mph 120 degree with No Ice 211.96 1.637 0.0035 0.0337 0.0337 101 mph 120 degree with No Ice 231.96 1.603 0.0355 0.4805 0.4818 101 mph 120 degree with No Ice 258.04 1.513 -0.0224 0.2507 0.2517 101 mph 120 degree with No Ice 295.88 1.443 -0.0234 0.7454 0.7457 101 mph 180 degree with No Ice 80.00 0.552 0.0297						
101 mph 120 degree with No Ice 104.12 1.193 0.0043 0.3913 0.3913 101 mph 120 degree with No Ice 115.88 1.259 0.0368 0.3235 0.3247 101 mph 120 degree with No Ice 124.12 1.294 0.0338 0.4319 0.4327 101 mph 120 degree with No Ice 128.04 1.331 0.0337 0.5805 0.5807 101 mph 120 degree with No Ice 168.04 1.610 0.0206 0.1315 0.1324 101 mph 120 degree with No Ice 180.00 1.613 0.0199 0.2931 0.2933 101 mph 120 degree with No Ice 231.96 1.603 0.0355 0.4805 0.4818 101 mph 120 degree with No Ice 231.96 1.603 0.0355 0.4805 0.4818 101 mph 120 degree with No Ice 295.88 1.443 -0.0224 0.2507 0.2517 101 mph 120 degree with No Ice 80.00 0.552 0.0297 0.4882 0.4888 101 mph 180 degree with No Ice 104.12 0.676 0.0313 0.1581 0.1604 101 mph 180 degree with No Ice 104.12 0.676 0.0313	• •					
101 mph 120 degree with No loc 115.88 1.259 0.0368 0.3235 0.3247 101 mph 120 degree with No loc 124.12 1.294 0.0338 0.4319 0.4327 101 mph 120 degree with No loc 128.04 1.331 0.0337 0.5805 0.5807 101 mph 120 degree with No loc 128.04 1.610 0.0206 0.1315 0.1324 101 mph 120 degree with No loc 168.04 1.610 0.0206 0.1315 0.1324 101 mph 120 degree with No loc 180.00 1.613 0.0199 0.2931 0.2933 101 mph 120 degree with No loc 231.96 1.603 0.0355 0.4805 0.4818 101 mph 120 degree with No loc 268.04 1.513 -0.0224 0.2507 0.2517 101 mph 120 degree with No loc 295.88 1.443 -0.0234 0.7454 0.7457 101 mph 180 degree with No loc 84.12 0.581 0.0289 0.3616 0.3627 101 mph 180 degree with No loc 104.12 0.676 0.0313 0.1581 0.1604 101 mph 180 degree with No loc 115.88 0.699 0.0351	· · ·					
101 mph 120 degree with No ice 124.12 1.294 0.0338 0.4319 0.4327 101 mph 120 degree with No ice 128.04 1.331 0.0337 0.5805 0.5807 101 mph 120 degree with No ice 168.04 1.610 0.0206 0.1315 0.1324 101 mph 120 degree with No ice 180.00 1.613 0.0199 0.2931 0.2933 101 mph 120 degree with No ice 211.96 1.637 0.0035 0.0337 0.0337 101 mph 120 degree with No ice 231.96 1.603 0.0355 0.4805 0.4818 101 mph 120 degree with No ice 295.88 1.443 -0.0224 0.2507 0.2517 101 mph 120 degree with No ice 295.88 1.443 -0.0234 0.7454 0.7457 101 mph 180 degree with No ice 80.00 0.552 0.0297 0.4882 0.4888 101 mph 180 degree with No ice 104.12 0.676 0.0313 0.1581 0.1604 101 mph 180 degree with No ice 115.88 0.699 0.0351 0.1318 0.1346 101 mph 180 degree with No ice 124.12 0.709 0.0357						
101 mph 120 degree with No Ice128.041.3310.03370.58050.5807101 mph 120 degree with No Ice168.041.6100.02060.13150.1324101 mph 120 degree with No Ice180.001.6130.01990.29310.2933101 mph 120 degree with No Ice211.961.6370.00350.03370.0337101 mph 120 degree with No Ice231.961.6030.03550.48050.4818101 mph 120 degree with No Ice268.041.513-0.02240.25070.2517101 mph 120 degree with No Ice295.881.443-0.02340.74540.7457101 mph 120 degree with No Ice80.000.5520.02970.48820.4888101 mph 180 degree with No Ice84.120.5810.02890.36160.3627101 mph 180 degree with No Ice104.120.6760.03130.15810.1604101 mph 180 degree with No Ice115.880.6990.03510.13180.1346101 mph 180 degree with No Ice1128.040.7090.03570.25680.2584					0.4319	0.4327
101 mph 120 degree with No Ice168.041.6100.02060.13150.1324101 mph 120 degree with No Ice180.001.6130.01990.29310.2933101 mph 120 degree with No Ice211.961.6370.00350.03370.0337101 mph 120 degree with No Ice231.961.6030.03550.48050.4818101 mph 120 degree with No Ice268.041.513-0.02240.25070.2517101 mph 120 degree with No Ice295.881.443-0.02340.74540.7457101 mph 120 degree with No Ice80.000.5520.02970.48820.4888101 mph 180 degree with No Ice84.120.5810.02890.36160.3627101 mph 180 degree with No Ice104.120.6760.03130.15810.1604101 mph 180 degree with No Ice115.880.6990.03510.13180.1346101 mph 180 degree with No Ice115.880.6990.03510.13180.1346101 mph 180 degree with No Ice124.120.7090.03570.25680.2584101 mph 180 degree with No Ice128.040.7330.03750.39050.3915					0.5805	0.5807
101 mph 120 degree with No Ice180.001.6130.01990.29310.2933101 mph 120 degree with No Ice211.961.6370.00350.03370.0337101 mph 120 degree with No Ice231.961.6030.03550.48050.4818101 mph 120 degree with No Ice268.041.513-0.02240.25070.2517101 mph 120 degree with No Ice295.881.443-0.02340.74540.7457101 mph 120 degree with No Ice80.000.5520.02970.48820.4888101 mph 180 degree with No Ice84.120.5810.02890.36160.3627101 mph 180 degree with No Ice104.120.6760.03130.15810.1604101 mph 180 degree with No Ice115.880.6990.03510.13180.1346101 mph 180 degree with No Ice124.120.7090.03570.25680.2584101 mph 180 degree with No Ice128.040.7330.03750.39050.3915			1.610	0.0206	0.1315	0.1324
101 mph 120 degree with No Ice231.961.6030.03550.48050.4818101 mph 120 degree with No Ice268.041.513-0.02240.25070.2517101 mph 120 degree with No Ice295.881.443-0.02340.74540.7457101 mph 180 degree with No Ice80.000.5520.02970.48820.4888101 mph 180 degree with No Ice84.120.5810.02890.36160.3627101 mph 180 degree with No Ice104.120.6760.03130.15810.1604101 mph 180 degree with No Ice115.880.6990.03510.13180.1346101 mph 180 degree with No Ice124.120.7090.03570.25680.2584101 mph 180 degree with No Ice128.040.7330.03750.39050.3915		180.00	1.613	0.0199	0.2931	0.2933
101 mph 120 degree with No Ice231.961.6030.03550.48050.4818101 mph 120 degree with No Ice268.041.513-0.02240.25070.2517101 mph 120 degree with No Ice295.881.443-0.02340.74540.7457101 mph 180 degree with No Ice80.000.5520.02970.48820.4888101 mph 180 degree with No Ice84.120.5810.02890.36160.3627101 mph 180 degree with No Ice104.120.6760.03130.15810.1604101 mph 180 degree with No Ice115.880.6990.03510.13180.1346101 mph 180 degree with No Ice124.120.7090.03570.25680.2584101 mph 180 degree with No Ice128.040.7330.03750.39050.3915		211.96	1.637	0.0035	0.0337	0.0337
101 mph 120 degree with No Ice268.041.513-0.02240.25070.2517101 mph 120 degree with No Ice295.881.443-0.02340.74540.7457101 mph 180 degree with No Ice80.000.5520.02970.48820.4888101 mph 180 degree with No Ice84.120.5810.02890.36160.3627101 mph 180 degree with No Ice104.120.6760.03130.15810.1604101 mph 180 degree with No Ice115.880.6990.03510.13180.1346101 mph 180 degree with No Ice124.120.7090.03570.25680.2584101 mph 180 degree with No Ice128.040.7330.03750.39050.3915		231.96	1.603	0.0355	0.4805	0.4818
101 mph 180 degree with No Ice 80.00 0.552 0.0297 0.4882 0.4888 101 mph 180 degree with No Ice 84.12 0.581 0.0289 0.3616 0.3627 101 mph 180 degree with No Ice 104.12 0.676 0.0313 0.1581 0.1604 101 mph 180 degree with No Ice 115.88 0.699 0.0351 0.1318 0.1346 101 mph 180 degree with No Ice 124.12 0.709 0.0357 0.2568 0.2584 101 mph 180 degree with No Ice 128.04 0.733 0.0375 0.3905 0.3915		268.04	1.513	-0.0224	0.2507	0.2517
101 mph 180 degree with No Ice 84.12 0.581 0.0289 0.3616 0.3627 101 mph 180 degree with No Ice 104.12 0.676 0.0313 0.1581 0.1604 101 mph 180 degree with No Ice 115.88 0.699 0.0351 0.1318 0.1346 101 mph 180 degree with No Ice 124.12 0.709 0.0357 0.2568 0.2584 101 mph 180 degree with No Ice 128.04 0.733 0.0375 0.3905 0.3915	101 mph 120 degree with No Ice	295.88	1.443	-0.0234	0.7454	
101 mph 180 degree with No Ice84.120.5810.02890.36160.3627101 mph 180 degree with No Ice104.120.6760.03130.15810.1604101 mph 180 degree with No Ice115.880.6990.03510.13180.1346101 mph 180 degree with No Ice124.120.7090.03570.25680.2584101 mph 180 degree with No Ice128.040.7330.03750.39050.3915	101 mph 180 degree with No Ice	80.00	0.552	0.0297	0.4882	0.4888
101 mph 180 degree with No Ice 115.88 0.699 0.0351 0.1318 0.1346 101 mph 180 degree with No Ice 124.12 0.709 0.0357 0.2568 0.2584 101 mph 180 degree with No Ice 128.04 0.733 0.0375 0.3905 0.3915	-	84.12	0.581	0.0289		
101 mph 180 degree with No Ice 124.12 0.709 0.0357 0.2568 0.2584 101 mph 180 degree with No Ice 128.04 0.733 0.0375 0.3905 0.3915	101 mph 180 degree with No Ice	104.12	0.676	0.0313	_	
101 mph 180 degree with No Ice 128.04 0.733 0.0375 0.3905 0.3915	101 mph 180 degree with No Ice					
	101 mph 180 degree with No Ice					
101 mph 180 degree with No Ice 168.04 0.930 0.0309 0.0651 0.0715						
	101 mph 180 degree with No Ice	168.04	0.930	0.0309	0.0651	0.0/15

Site Number:	6310	Code:	ANSI/TIA-222-G	© 2	007 - 2018 by ATC	IP LLC. All rights reserved.
Site Name:	FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_06	i		4/30/2018 4:38:25 PM
Customer:	SPRINT NEXTEL	•				
	degree with No Ice	180.00	0.923	0.0354	0.2858	0.2874
-	degree with No Ice	211.96	0.958	0.0326	0.0432	0.0542
	degree with No Ice	231.96	0.964	0.0341	0.3137	0.3156
	degree with No Ice	268.04	0.986	0.0344	0.2493	0.2516
	degree with No Ice	295.88	1.029	0.0348	0.7219	0.7227
-	degree with No Ice	80.00	0.861	0.4025	0.7101	0.8163
	degree with No Ice	84.12	0.905	0.4255	0.5569	0.6997
-	degree with No ice	104.12	1.059	0.3930	0.3360	0.5163
	degree with No ice	115.88	1.111	0.3173	0.2815	0.4211
101 mph 210	degree with No Ice	124.12	1.137	0.2907	0.3722	0.4722 0.6046
101 mph 210	degree with No Ice	128.04	1.171	0.2921	0.5312	0.4180
101 mph 210	degree with No Ice	168.04	1.415	0.4104	0.0889 0.3116	0.4697
	degree with No Ice	180.00	1.406	0.3514	0.0831	0.2053
	degree with No Ice	211.96	1.401 1.365	0.1883 0.1998	0.4339	0.4765
	degree with No Ice	231.96	1.385	0.2189	0.3008	0.3717
	degree with No Ice	268.04 295.88	1.236	0.2243	0.7861	0.8168
	degree with No Ice	80.00	1.018	0.1682	0.8222	0.8384
	degree with No Ice	84.12	1.066	0.1386	0.6691	0.6828
	degree with No Ice	104.12	1.247	-0.0233	0.3940	0.3947
	degree with No Ice	115.88	1.315	-0.0246	0.3316	0.3320
•	degree with No Ice	124.12	1.350	-0.0181	0.4353	0.4354
	degree with No Ice degree with No Ice	128.04	1.387	-0.0164	0.5822	0.5822
	degree with No ice	168.04	1.661	0.0243	0.1165	0.1190
	degree with No Ice	180.00	1.661	0.0309	0.3133	0.3141
	degree with No Ice	211.96	1.671	0.0404	0.0657	0.0768
	degree with No Ice	231.96	1.624	0.0163	0.5180	0.5181
•	degree with No Ice	268.04	1.508	0.0074	0.2932	0.2932
	degree with No Ice	295.88	1.420	0.0100	0.7851	0.7852
	degree with No Ice	80.00	0.608	-0.0029	0.5264	0.5264
101 mph 300	degree with No Ice	84.12	0.639	-0.0035	0.3966	0.3967 0.1869
	degree with No Ice	104.12	0.745	-0.0014	0.1868 0.1557	0.1558
101 mph 300	degree with No Ice	115.88	0.774	0.0022	0.2769	0.2769
101 mph 300	degree with No Ice	124.12	0.787	0.0030 0.0049	0.4093	0.4094
	degree with No Ice	128.04	0.813 1.015	-0.0049	0.0685	0.0686
	degree with No Ice	168.04	1.007	0.0039	0.2908	0.2908
	degree with No Ice	180.00 211.96	1.032	-0.0029	0.0191	0.0193
	degree with No Ice	231.96	1.023	-0.0011	0.4199	0.4199
) degree with No Ice	268.04	1.004	-0.0031	0.1900	0.1900
	degree with No ice	295.88	1.002	-0.0041	0.6822	0.6822
) degree with No ice) degree with No ice	80.00	0.914	0.3342	0.7432	0.8149
•) degree with No Ice	84.12	0.960	0.3572	0.5830	0.6822
) degree with No Ice	104.12	1.123	0.2930	0.3532	0.4581
) degree with No Ice	115.88	1.178	0.2178	0.2942	0.3628
	degree with No Ice	124.12	1.206	0.1905	0.3831	0.4279
) degree with No Ice	128.04	1.240	0.1910	0.5393	0.5709 0.3022
101 mph 330) degree with No Ice	168.04	1.487	0.2916	0.0887 0.3200	0.3947
101 mph 330) degree with No Ice	180.00	1.477	0.2311	0.0649	0.1650
) degree with No Ice	211.96	1.473 1.436	0.1519 0.1613	0.2397	0.2889
) degree with No Ice	231.96		0.2330	0.0665	0.2413
) degree with No Ice	268.04	1.358 1.310	0.2364	0.5519	0.5989
	0 degree with No Ice	295.88 80.00	0.275	0.0247	0.2335	0.2348
	mal with 0.75 in Radial Ice	84.12	0.286	0.0662	0.1425	0.1567
	mal with 0.75 in Radial Ice	104.12	0.340	-0.1230	0.0973	0.1564
	mal with 0.75 in Radial Ice mal with 0.75 in Radial Ice	115.88	0.342	-0.0374	0.0287	0.0479
	mai with 0.75 in Radial Ice	124.12	0.342	-0.0441	0.0916	0.1000
	mai with 0.75 in Radial Ice	128.04	0.352	-0.0341	0.1586	0.1635
	mal with 0.75 in Radial Ice	168.04	0.399	-0.0372	0.0393	0.0541
	mal with 0.75 in Radial Ice	180.00	0.380	-0.0372	0.1984	0.2018
-	mai with 0.75 in Radial Ice	211.96	0.318	-0.0384	0.1568	0.1616

Site Number: 6310	Code:	ANSI/TIA-222-G		© 2007 - 2018 by ATC	PLLC. All rights reserved.
Site Name: FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_0	6		4/30/2018 4:38:25 PM
Customer: SPRINT NEXTEL					
50 mph Normal with 0.75 in Radial Ice	231.96	0.253	-0.0393	0.0959	0.1037
50 mph Normal with 0.75 in Radial Ice	268.04	0.115	-0.0407	0.2116	0.2155
50 mph Normal with 0.75 in Radial Ice	295.88	0.079	-0.0414	0.0655	0.0779
50 mph 60 deg with 0.75 in Radial ice	80.00	0.231	0.2426		0.3085
50 mph 60 deg with 0.75 in Radial Ice	84.12	0.238	0.1944		0.2406
50 mph 60 deg with 0.75 in Radlal Ice 50 mph 60 deg with 0.75 in Radial Ice	104.12 115.88	0.283	-0.2518		0.2692
50 mph 60 deg with 0.75 in Radial Ice	124.12	0.285 0.288	-0.1587		0.1626 0.1960
50 mph 60 deg with 0.75 in Radial Ice	128.04	0.299	-0.1407		0.2268
50 mph 60 deg with 0.75 in Radial Ice	168.04	0.393	-0.1155		0.1222
50 mph 60 deg with 0.75 in Radial Ice	180.00	0.393	-0.1109		0.1344
50 mph 60 deg with 0.75 in Radial Ice	211.96	0.413	-0.1017	0.0293	0.1067
50 mph 60 deg with 0.75 in Radial Ice	231.96	0.415	-0.0992		0.1799
50 mph 60 deg with 0.75 in Radial Ice	268.04		-0.0965		0.1070
50 mph 60 deg with 0.75 in Radial Ice 50 mph 90 deg with 0.75 in Radial Ice	295.88	0.404	-0.0962		0.3382
50 mph 90 deg with 0.75 in Radial Ice	80.00 84.12	0.254 0.263	0.1279		0.2515 0.1676
50 mph 90 deg with 0.75 in Radial ice	104.12	0.317	0.1630		0.1932
50 mph 90 deg with 0.75 in Radial Ice	115.88	0.321	0.0652		0.0836
50 mph 90 deg with 0.75 in Radial Ice	124.12	0.322	0.0360		0.1149
50 mph 90 deg with 0.75 in Radial Ice	128.04	0.334	0.0387	0.2116	0.2149
50 mph 90 deg with 0.75 in Radial Ice	168.04	0.425	0.1987	0.0299	0.2002
50 mph 90 deg with 0.75 in Radial Ice	180.00	0.418	0.2071	0.1371	0.2484
50 mph 90 deg with 0.75 in Radial Ice 50 mph 90 deg with 0.75 in Radial Ice	211.96 231.96	0.402	0.1841	0.0924	0.2059
50 mph 90 deg with 0.75 in Radial Ice	268.04	0.375 0.316	0.1858	0.2818 0.2065	0.3375 0.2797
50 mph 90 deg with 0.75 in Radial Ice	295.88	0.278	0.1910	0.4853	0.5210
50 mph 120 deg with 0.75 in Radial ice	80.00	0.288	0.0584	0.2489	0.2556
50 mph 120 deg with 0.75 in Radial Ice	84.12	0.300	0.0837	0.1365	0.1601
50 mph 120 deg with 0.75 in Radial Ice	104.12		-0.0940	0.1145	0.1492
50 mph 120 deg with 0.75 in Radial Ice	115.88	0.354	0.0020	0.0703	0.0703
50 mph 120 deg with 0.75 in Radial Ice 50 mph 120 deg with 0.75 in Radial Ice	124.12	0.358	0.0370	0.1052	0.1101
50 mph 120 deg with 0.75 in Radial Ice	128.04 168.04	0.369 0.434	0.0391 0.0274	0.1796 0.0101	0.1836 0.0287
50 mph 120 deg with 0.75 in Radial Ice	180.00	0.420	0.0269	0.1715	0.1730
50 mph 120 deg with 0.75 in Radial Ice	211.96	0.370	0.0217	0.1362	0.1379
50 mph 120 deg with 0.75 in Radiai Ice	231.96	0.308	0.0204	0.3230	0.3237
50 mph 120 deg with 0.75 in Radial Ice	268.04	0.161	0.0191	0.2811	0.2817
50 mph 120 deg with 0.75 in Radial Ice	295.88	0.029	0.0203	0.5263	0.5266
50 mph 180 deg with 0.75 in Radial Ice	80.00		-0.0107	0.1528	0.1531
50 mph 180 deg with 0.75 in Radial ice 50 mph 180 deg with 0.75 in Radial ice	84.12 104.12	0.218	0.0205	0.1304	0.1320
50 mph 180 deg with 0.75 in Radial Ice	115.88	0.269 0.272	0.0627	0.0821 0.0317	0.1031 0.0331
50 mph 180 deg with 0.75 in Radial Ice	124.12	0.273	0.0027	0.1081	0.1081
50 mph 180 deg with 0.75 in Radial Ice	128.04		-0.0111	0.1716	0.1720
50 mph 180 deg with 0.75 in Radial Ice	168.04	0.371	-0.0010	0.0355	0.0355
50 mph 180 deg with 0.75 in Radial Ice	180.00	0.369	0.0052	0.0883	0.0883
50 mph 180 deg with 0.75 in Radial Ice	211.96	0.387	0.0077	0.0312	0.0321
50 mph 180 deg with 0.75 in Radial Ice 50 mph 180 deg with 0.75 in Radial Ice	231.96	0.392	0.0105	0.1448	0.1451
50 mph 180 deg with 0.75 in Radial Ice	268.04 295.88	0.400 0.409	0.0133 0.0153	0.0694 0.3228	0.0705 0.3231
50 mph 210 deg with 0.75 in Radial Ice	80.00	0.241	0.2856	0.2055	0.3518
50 mph 210 deg with 0.75 in Radial Ice	84.12	0.249	0.2664	0.1155	0.2904
50 mph 210 deg with 0.75 In Radial Ice	104.12	0.285	0.1079	0.1019	0.1481
50 mph 210 deg with 0.75 in Radial Ice	115.88	0.286	0.0111	0.0439	0.0453
50 mph 210 deg with 0.75 in Radial Ice	124.12		0.0104	0.0962	0.0968
50 mph 210 deg with 0.75 in Radial Ice	128.04		-0.0037	0.1972	0.1972
50 mph 210 deg with 0.75 in Radial Ice 50 mph 210 deg with 0.75 in Padial Ice	168.04		0.1902	0.0546	0.1964
50 mph 210 deg with 0.75 in Radial Ice 50 mph 210 deg with 0.75 in Radial Ice	180.00 211.96		0.2060	0.1637 0.1254	0.2632 0.2293
50 mph 210 deg with 0.75 in Radial Ice	231.96		0.1925 0.1991	0.2638	0.3299
50 mph 210 deg with 0.75 in Radial Ice	268.04		0.2075	0.2198	0.3021

Site Number: 6310	Code:	ANSI/TIA-222-G	© 2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name: FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_06	4/30/2018 4:38:25 PM
Customer: SPRINT NEXTEL	• -		
	205 20	0.340 0.21	17 0.4461 0.4931
50 mph 210 deg with 0.75 in Radial Ice	295.88 80.00	0.269 -0.01	
50 mph 240 deg with 0.75 in Radial Ice	84.12	0.281 -0.05	
50 mph 240 deg with 0.75 in Radial Ice 50 mph 240 deg with 0.75 in Radial Ice	104.12	0.331 -0.08	
50 mph 240 deg with 0.75 in Radial Ice	115.88	0.335 0.01	
50 mph 240 deg with 0.75 in Radial Ice	124.12	0.335 0.01	
50 mph 240 deg with 0.75 in Radial Ice	128.04	0.345 0.02	
50 mph 240 deg with 0.75 in Radial Ice	168.04	0.393 0.03	23 0.0377 0.0486
50 mph 240 deg with 0.75 in Radial Ice	180.00	0.374 0.03	48 0.1985 0.2010
50 mph 240 deg with 0.75 in Radial Ice	211.96	0.309 0.03	
50 mph 240 deg with 0.75 in Radial Ice	231.96	0.239 0.03	
50 mph 240 deg with 0.75 in Radial Ice	268.04	0.090 0.03	
50 mph 240 deg with 0.75 In Radial Ice	295.88	0.110 0.03	
50 mph 300 deg with 0.75 in Radial Ice	80.00	0.230 0.06	
50 mph 300 deg with 0.75 In Radial Ice	84.12	0.236 0.03	
50 mph 300 deg with 0.75 in Radial Ice	104.12	0.285 0.06 0.288 -0.01	
50 mph 300 deg with 0.75 in Radial Ice	115.88	0.288 -0.01 0.289 -0.00	
50 mph 300 deg with 0.75 in Radial Ice	124.12 128.04	0.299 -0.00	
50 mph 300 deg with 0.75 in Radial Ice	168.04	0.379 0.00	
50 mph 300 deg with 0.75 in Radial Ice 50 mph 300 deg with 0.75 in Radial Ice	180.00	0.373 0.00	
50 mph 300 deg with 0.75 in Radial Ice	211.96	0.373 0.00	
50 mph 300 deg with 0.75 in Radial ice	231.96	0.360 0.00	
50 mph 300 deg with 0.75 in Radial Ice	268.04	0.326 0.00	
50 mph 300 deg with 0.75 In Radial Ice	295.88	0.294 0.00	36 0.3702 0.3702
50 mph 330 deg with 0.75 in Radial Ice	80.00	0.253 0.24	
50 mph 330 deg with 0.75 in Radial Ice	84.12	0.260 0.20	
50 mph 330 deg with 0.75 in Radial Ice	104.12	0.307 0.14	
50 mph 330 deg with 0.75 in Radial Ice	115.88	0.309 0.04	
50 mph 330 deg with 0.75 in Radial Ice	124.12	0.308 0.01	
50 mph 330 deg with 0.75 in Radial Ice	128.04	0.318 0.02	
50 mph 330 deg with 0.75 In Radial Ice	168.04	0.392 0.16	
50 mph 330 deg with 0.75 in Radial Ice	180.00	0.379 0.17 0.347 0.15	
50 mph 330 deg with 0.75 in Radial Ice	211.96 231.96	0.347 0.15	
50 mph 330 deg with 0.75 in Radial Ice	268.04	0.238 0.16	
50 mph 330 deg with 0.75 in Radial ice 50 mph 330 deg with 0.75 in Radial ice	295.88	0.193 0.17	
Seismic Normal M1	80.00	0.008 0.00	
Seismic Normal M1	84.12	0.009 -0.00	01 0.0102 0.0102
Seismic Normal M1	104.12	0.013 -0.00	
Seismic Normal M1	115.88	0.015 -0.00	
Seismic Normal M1	124.12	0.017 -0.00	
Seismic Normal M1	128.04	0.018 -0.00	
Seismic Normal M1	168.04	0.028 -0.00	
Seismic Normal M1	180.00	0.030 -0.00	
Seismic Normal M1	211.96	0.035 -0.00 0.038 -0.00	
Seismic Normal M1	231.96	0,038 -0.00 0,043 -0.00	
Seismic Normal M1	268.04 295.88	0.045 -0.00	
Seismic Normal M1	80.00	0.005 0.00	
Seismic Normal M2 Seismic Normal M2	84.12	0.005 0.00	
Seismic Normal M2	104.12	0.006 0.00	
Seismic Normal M2	115.88	0.007 0.00	
Seismic Normal M2	124.12	0.008 0.00	000 0.0059 0.0059
Seismic Normal M2	128.04	0.008 0.00	000 0.0067 0.0067
Seismic Normal M2	168.04	0.012 0.00	
Seismic Normal M2	180.00	0.014 0.00	
Seismic Normal M2	211.96	0.020 0.00	
Seismic Normal M2	231.96	0.025 0.00	
Seismic Normal M2	268.04	0.038 0.00	
Selsmic Normal M2	295.88	0.048 0.00	
Seismic 60 deg M1	80.00	0.007 -0.00	01 0.0106 0.0106

ANSI/TIA-222-G

Code:

© 2007 - 2018 by ATC IP LLC, All rights reserved.

Site Number:	6310	Code:	ANSI/TIA-222-G		© 2007 - 2018 by AT	"C IP LLC. All rights	reserved.
Site Name:	FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_0	06		4/30/2018 4:38	:25 PM
Customer:	SPRINT NEXTEL						
Seismic 60 de	ea M1	84.12	0.008	-0.0001	0.0099	0.0099	
Seismic 60 de	•	104.12	0.011	-0.0001	0.0111	0.0111	
Seismic 60 de	ag M1	115.88	0.013	-0.0001	0.0129	0.0129	
Seismic 60 de	eg M1	124.12	0.015	-0.0001		0.0153	
Seismic 60 de	-	128.04	0.016	-0.0001		0.0178	
Seismic 60 de	-	168.04	0.027 0.02 9	0.0000		0.0124 0.0035	
Seismic 60 de	-	180.00 211.96	0.025	0.0000		0.0111	
Seismic 60 de Seismic 60 de	-	231,96	0.039	0.0000		0.0076	
Seismic 60 de	-	268.04	0.045	0.0000		0.0099	
Seismic 60 de	-	295.88	0.048	-0.0001	0.0078	0.0078	
Seismic 60 de		80.00	0.003	0.0000		0.0044	
Seismic 60 de	eg M2	84.12	0.004	0.0000		0.0042	
Seismic 60 de	-	104.12	0.005	0.0000		0.0048 0.0058	
Seismic 60 de	-	115.88	0.006	0.0000		0.0069	
Seismic 60 de Seismic 60 de	•	124.12 128.04	0.007 0.007	-0.0001		0.0083	
Seismic 60 de	-	168.04	0.012	0.0000		0.0084	
Seismic 60 d	•	180.00	0.014	0.0000		0.0055	
Seismic 60 de	•	211.96	0.021	-0.0001		0.0156	
Seismic 60 de	eg M2	231.96	0.027	-0.0001		0.0180	
Seismic 60 de	•	268.04	0.041	0.0000		0.0250	
Selsmic 60 de	-	295.88	0.052	0.0000		0.0237 0.0108	
Selsmic 90 de	•	80.00	0.006 0.007	-0.0001 -0.0001		0.0108	
Seismic 90 de	-	84.12 104.12	0.011	-0.0001		0.0120	
Selsmic 90 de Seismic 90 de		115.88	0.013	-0.0001		0.0137	
Selsmic 90 de		124.12	0.015	-0.0001		0.0166	
Seismic 90 de	•	128.04	0.016	-0.0001	0.0187	0.0187	
Seismic 90 de	eg M1	168.04	0.028	0.0000		0.0137	
Seismic 90 de	eg M1	180.00	0.030	0.0000		0.0045	
Seismic 90 de	-	211.96	0.038	0.0000		0.0125 0.0089	
Seismic 90 de Selsmic 90 de	-	231.96 268.04	0.042 0.048	0.0000		0.0111	
Seismic 90 de	•	295.88	0.052	0.0000		0.0088	
Seismic 90 de	-	80.00	0.003	0.0000		0.0043	
Selsmic 90 di	•	84.12	0.003	0.0000) 0.0044	0.0044	
Selsmic 90 de	•	104.12	0.004	0.0000		0.0052	
Seismic 90 de	•	115.88	0.005	-0.0001		0.0061	
Seismic 90 de	-	124.12	0.006	-0.0001		0.0077 0.0088	
Seismic 90 de Seismic 90 de		128.04 168.04	0.006 0.013	-0.0001 0.0000		0.0094	
Seismic 90 de	· · · · · · · · · · · · · · · · · · ·	180.00	0.014	-0.0001		0.0065	
Seismic 90 de	-	211.96	0.022	-0.0001		0.0173	
Seismic 90 de	-	231.96	0.029	-0.0001		0.0198	
Seismic 90 de	eg M2	268.04	0.044	0.0000		0.0269	
Seismic 90 de	•	295.88	0.056	0.0000		0.0255	
Seismic 120 (-	80.00 84.12	0.006 0.006	0.0000		0.0106 0.0105	
Seismic 120 (Seismic 120 (-	84.12 104.12	0.000	0.0000		0.0122	
Seismic 120 (-	115.88	0.013	-0.0001		0.0137	
Seismic 120		124.12	0.015	-0.0001		0.0170	
Seismic 120	•	128.04	0.016	-0.0001		0.0187	
Seismic 120 (deg M1	168.04	0.028	0.0000		0.0139	
Seismic 120	•	180.00	0.030	0.0000		0.0044	
Seismic 120 (•	211.96	0.038 0.042	0.0000		0.0128 0.0091	
Seismic 120 (÷	231.96 268.04	0.042	0.0000		0.0113	
Seismic 120 (Seismic 120 (-	206.04 295.88	0.053	0.0000		0.0088	
Seismic 120	-	80.00	0.002	0.0000		0.0040	
Selsmic 120	-	84.12	0.002	0.0000	0.0043	0.0043	
Seismic 120	deg M2	104.12	0.004	0.0000	0.0052	0.0052	
		Page 31					

Site Number:	6310	Code:	ANSI/TIA-222-G	ſ	© 2007 - 2018 by ATC	: IP LLC. All rights reserv	ved.
Site Name:	FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_00	6		4/30/2018 4:38:25 Pl	М
Customer:	SPRINT NEXTEL						
		115.88	0.005	0.0000	0.0060	0.0060	
Seismic 120 d Seismic 120 d	-	124.12	0.005	0.0000	0.0078	0.0078	
Seismic 120 0	-	128.04	0.006	0.0000	0.0086	0.0086	
Seismic 120 c	-	168.04	0.012	0.0000	0.0096	0.0096	
Seismic 120 c	-	180.00	0.014	0.0000	0.0064 0.0177	0.0064 0.0177	
Seismic 120 d		211.96	0.022 0.029	-0.0001	0.0202	0.0202	
Seismic 120 c		231.96 268.04	0.044	0.0000		0.0274	
Seismic 120 c Seismic 120 c		295.88	0.057	0.0000		0.0258	
Seismic 120 C		80.00	0.005	0.0000		0.0095	
Seismic 180 (84.12	0.006	0.0000		0.0090	
Selsmic 180 d	-	104.12	0.009	0.0000		0.0102 0.0121	
Seismic 180 d	leg M1	115.88	0.011	0.0001		0.0146	
Selsmic 180 o	-	124.12 128.04	0.013 0.014	0.0001	-	0.0170	
Seismic 180 (-	168.04	0.024	0.0001		0.0117	
Seismic 180 (Seismic 180 (-	180.00	0.026	0.0001		0.0031	
Seismic 180 (-	211.96	0.033	0.0001		0.0106	
Seismic 180		231.96	0.036	0.0001		0.0072	
Seismic 180	-	268.04	0.041	0.0001		0.0096 0.0078	
Seismic 180	deg M1	295.88	0.045	0.0000		0.0034	
Seismic 180	-	80.00 84.12	0.002 0.002	0.0000		0.0034	
Seismic 180	-	104.12	0.003	0.0000		0.0041	
Selsmic 180 (Seismic 180 (115.88	0.004	0.0000		0.0051	
Seismic 180		124.12	0.004	0.0000		0.0063	
Seismic 180		128.04	0.005	0.0000		0.0077	
Seismic 180	deg M2	168.04	0.010	0.0000		0.0078 0.0050	
Seismic 180	deg M2	180.00	0.011 0.018	0.0000		0.0150	
Seismic 180	-	211.96 231.96	0.024	0.0001		0.0174	
Seismic 180		268.04	0.038	0.0000		0.0246	
Seismic 180 Seismic 180	-	295.88	0.049	0.0000) 0.0235	0.0235	
Seismic 210		80.00	0.006	0.0000		0.0094	
Selsmic 210		84.12	0.007	0.0001		0.0090 0.0100	
Seismic 210	deg M1	104.12	0.010	0.0001		0.0115	
Seismic 210		115.88 124.12	0.012 0.013	0.0001		0.0142	
Seismic 210	-	124.12	0.014	0.0001		0.0163	
Selsmic 210 Seismic 210	-	168.04	0.024	0.0001		0.0108	
Seismic 210	-	180.00	0.026	0.0001		0.0026	
Seismic 210		211.96	0.032	0.000		0.0095	
Selsmic 210		231.96	0.034	0.000		0.0062 0.0086	
Seismic 210		268.04	0.039 0.042	0.000		0.0068	
Seismic 210		295.88 80.00	0.003	0.000		0.0032	
Seismic 210	-	84.12	0.003	0.000		0.0033	
Seismic 210 Seismic 210	-	104.12	0.004	0.000		0.0036	
Seismic 210		115.88	0.004	0.000		0.0045	
Seismic 210		124.12	0.005	0.000		0.0057 0.0069	
Seismic 210	deg M2	128.04	0.005	0.000		0.0068	
Selsmic 210	•	168.04	0.009 0.011	0.000		0.0042	
Seismic 210	-	180.00 211.96	0.017	0.000		0.0139	
Seismic 210	-	231.96	0.022	0.000	-	0.0164	
Seismic 210 Seismic 210	-	268.04	0.035	0.000	1 0.0235	0.0235	
Seismic 210	-	295.88	0.046	0.000		0.0224	
Seismic 240	-	80.00	0.007	0.000		0.0098	
Selsmic 240	-	84.12	0.008	0.000		0.0094 0.0102	
Selsmic 240	•	104.12	0.011 0.013	0.000 0.000		0.0112	
Seismic 240	-	115.88 124.12	0.015	0.000		0.0142	
Seismic 240	Ceg M1	124,12					
		Page 32					

Site Number:	6310	Code:	ANSI/TIA-222-G	Ø.	2007 - 2018 by ATC	IP LLC. All rights	reserved.
Site Name:	FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_06			4/30/2018 4:38	:25 PM
Customer:	SPRINT NEXTEL						
Seismic 240 d		128.04	0.016	0.0001	0.0158	0.0158	
Seismic 240 d	-	168.04	0.025	0.0001	0.0101	0.0101	
Seismic 240 d	-	180.00	0.027	0.0001	0.0026	0.0026	
Seismic 240 d	-	211.96	0.032	0,0001	0.0084	0.0084	
Seismic 240 d	leg M1	231.96	0.034	0.0001	0.0051	0.0051	
Seismic 240 d		268.04	0.038	0.0001 0.0001	0.0072 0.0054	0.0072 0.0054	
Seismic 240 d	-	295.88	0.041 0.004	0.0000	0.0034	0.0034	
Seismic 240 d	-	80.00 84.12	0.004	0.0000	0.0035	0.0035	
Seismic 240 d Seismic 240 d	-	104.12	0.005	0.0000	0.0036	0.0036	
Seismic 240 d	-	115.88	0.005	0.0000	0.0039	0.0039	
Selsmic 240 c	+	124.12	0.006	0.0000	0.0053	0.0053	
Seismic 240 c	leg M2	128.04	0.006	0.0000	0.0061	0.0061	
Selsmic 240 c	-	168.04	0.010	0.0000 0.0000	0.0060 0.0032	0.0060 0.0032	
Seismic 240 c	-	180.00	0.011 0.017	0.0000	0.0131	0.0131	
Seismic 240 c	•	211.96 231.96	0.022	0.0001	0.0155	0.0155	
Seismic 240 c Selsmic 240 c	+	268.04	0.034	0.0001	0.0226	0.0226	
Seismic 240 c	•	295.88	0.045	0.0001	0.0214	0.0214	
Seismic 300 d	-	80.00	0.009	0.0000	0.0107	0.0107	
Seismic 300 d	-	84.12	0.009	0.0000	0.0097	0.0097	
Seismic 300 d	leg M1	104.12	0.013	0.0000	0.0101	0.0101	
Seismic 300 d	leg M1	115.88	0.015	0.0000	0.0115	0.0115	
Selsmic 300 d	-	124.12	0.016	0.0000 0.0000	0.0134 0.0158	0.0134 0.0158	
Seismic 300 d		128.04 168.04	0.017 0.027	0.0001	0.0094	0.0094	
Selsmic 300 d	-	180.00	0.028	0.0001	0.0026	0.0026	
Seismic 300 (Seismic 300 (-	211.96	0.033	0.0000	0.0070	0.0070	
Seismic 300 (•	231.96	0.035	0.0000	0.0033	0.0033	
Seismic 300 d	-	268.04	0.038	0.0000	0.0055	0.0055	
Seismic 300 d	deg M1	295.88	0.039	0.0000	0.0036	0.0036	
Seismic 300 d	deg M2	80.00	0.005	0.0000	0.0042 0.0038	0.0042 0.0038	
Seismic 300 (-	84.12 104.12	0.005 0.006	0.0000 0.0000	0.0036	0.0036	
Seismic 300 (115.88	0.007	0.0000	0.0040	0.0040	
Seismic 300 (Seismic 300 (-	124.12	0.008	0.0000	0.0047	0.0047	
Selsmic 300 (-	128.04	800.0	0.0000	0.0061	0.0061	
Selsmic 300 (-	168.04	0.012	0.0000	0.0053	0.0053	
Seismic 300	-	180.00	0.013	0.0000	0.0020	0.0020	
Seismic 300 (deg M2	211.96	0.018	0.0000	0.0119	0.0119 0.0141	
Seismic 300	-	231.96	0.022 0.034	0.0000 0.0000	0.0141 0.0211	0.0141	
Seismic 300	-	268.04 295.88	0.043	0.0000	0.0201	0.0201	
Seismic 300 (Seismic 330 (-	80.00	0.009	0.0000	0.0108	0.0108	
Selsmic 330		84.12	0.010	0.0000	0.0100	0.0100	
Seismic 330	-	104.12	0.013	0.0000	0.0106	0.0106	
Seismic 330	deg M1	115.88	0.015	0.0000	0.0116	0.0116	
Seismic 330	-	124.12	0.017	0.0000	0.0140	0.0140 0.0160	
Selsmic 330	-	128.04	0.018 0.027	0.0000	0.0160 0.0098	0.0098	
Seismic 330 (-	168.04 180.00	0.029	0.0000	0.0028	0.0028	
Seismic 330 (Seismic 330 (-	211.96	0.034	0.0000	0.0077	0.0077	
Seismic 330		231.96	0.036	0.0000	0.0041	0.0041	
Seismic 330	-	268.04	0.039	0.0000	0.0061	0.0061	
Seismic 330	-	295.88	0.041	0.0000	0.0040	0.0040	
Seismic 330	-	80.00	0.005	0.0000	0.0043	0.0043 0.0042	
Seismic 330	-	84.12	0.005	0.0000	0.0042 0.0040	0.0042	
Seismic 330	-	104.12 115.88	0.007 0.007	0.0000 0.0000	0.0040	0.0040	
Seismic 330	•	124.12	0.008	0.0000	0.0053	0.0053	
Seismic 330 Seismic 330	•	128.04	0.008	0.0000	0.0063	0.0063	
Seismic 330	-	168.04	0.012	0.0000	0.0057	0.0057	

Site Number: 6310	Code:	ANSI/TIA-222-G	© 2007 - 2018 by AT	C IP LLC. All rights reserved.
Site Name: FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_06		4/30/2018 4:38:25 PM
Customer: SPRINT NEXTEL				
Seismic 330 deg M2	180.00	0.013 0.0	000 0.0025	0.0025
Selsmic 330 deg M2	211.96		000 0.0124	0.0124
Seismic 330 deg M2	231.96	0.023 0.0	000 0.0147	0.0147
Seismic 330 deg M2	268.04		000 0.0216	0.0216
Seismic 330 deg M2	295.88		000 0.0204	0.0204
Seismic (Reduced DL) Normal M1	80.00		000 0.0106	0.0106
Seismic (Reduced DL) Normal M1	84.12		000 0.0100	0.0100
Seismic (Reduced DL) Normal M1	104.12		000 0.0108 000 0.0117	0.0108 0.0117
Seismic (Reduced DL) Normal M1	115.88 124.12		000 0.0117 000 0.0145	0.0145
Seismic (Reduced DL) Normal M1	124.12		000 0.0162	0.0162
Seismic (Reduced DL) Normal M1 Seismic (Reduced DL) Normal M1	168.04	0.027 -0.0		0.0105
Seismic (Reduced DL) Normal M1	180.00	0.029 -0.0		0.0030
Selsmic (Reduced DL) Normal M1	211.96	0.034 -0.0	001 0.0089	0.0089
Seismic (Reduced DL) Normal M1	231.96	0.037 -0.0	001 0.0054	0.0054
Selsmic (Reduced DL) Normal M1	268.04	0.041 -0.0		0.0074
Seismic (Reduced DL) Normal M1	295.88	0.043 -0.0		0.0054
Seismic (Reduced DL) Normal M2	80.00		000 0.0043	0.0043
Seismic (Reduced DL) Normal M2	84.12		000 0.0043	0.0043
Seismic (Reduced DL) Normal M2	104.12		000 0.0043	0.0043 0.0046
Seismic (Reduced DL) Normal M2	115.88		000 0.0046 000 0.0059	0.0059
Seismic (Reduced DL) Normal M2	124.12 128.04		000 0.0059 000 0.0068	0.0068
Seismic (Reduced DL) Normal M2	128.04		000 0.0065	0.0065
Selsmic (Reduced DL) Normal M2 Seismic (Reduced DL) Normal M2	180.00		000 0.0037	0.0037
Seismic (Reduced DL) Normal M2	211.96		000 0.0134	0.0134
Seismic (Reduced DL) Normal M2 Seismic (Reduced DL) Normal M2	231.96		000 0.0157	0.0157
Seismic (Reduced DL) Normal M2	268.04	0.037 0.0	000 0.0226	0.0226
Seismic (Reduced DL) Normal M2	295.88	0.047 0.0	000 0.0211	0.0211
Seismic (Reduced DL) 60 deg M1	80.00	0.007 -0.0		0.0105
Seismic (Reduced DL) 60 deg M1	84.12	0.007 -0.0		0.0098
Seismic (Reduced DL) 60 deg M1	104.12	0.011 -0.0		0.0109
Selsmic (Reduced DL) 60 deg M1	115.88	0.013 -0.0		0.0127 0.0151
Seismic (Reduced DL) 60 deg M1	124.12	0.015 -0.0		0.0177
Selsmic (Reduced DL) 60 deg M1	128.04 168.04	0.016 -0.0 0.027 0.0	000 0.0122	0.0122
Seismic (Reduced DL) 60 deg M1	180.00		000 0.0033	0.0033
Seismic (Reduced DL) 60 deg M1 Seismic (Reduced DL) 60 deg M1	211.96		000 0.0110	0.0110
Seismic (Reduced DL) 60 deg M1	231.96		000 0.0075	0.0075
Seismic (Reduced DL) 60 deg M1	268.04	0.044 0.0	000 0.0098	0.0098
Seismic (Reduced DL) 60 deg M1	295.88	0.048 -0.0	001 0.0078	0.0078
Seismic (Reduced DL) 60 deg M2	80.00		000 0.0043	0.0043
Selsmic (Reduced DL) 60 deg M2	84.12		000 0.0041	0.0041
Seismic (Reduced DL) 60 deg M2	104.12		000 0.0046	0.0046 0.0056
Selsmic (Reduced DL) 60 deg M2	115.88		000 0.0056 000 0.0067	0.0067
Seismic (Reduced DL) 60 deg M2	124.12 128.04		000 0.0067 001 0.0082	0.0082
Seismic (Reduced DL) 60 deg M2	168.04		000 0.0082	0.0082
Seismic (Reduced DL) 60 deg M2 Seismic (Reduced DL) 60 deg M2	180.00		000 0.0054	0.0054
Seismic (Reduced DL) 60 deg M2	211.96		001 0.0155	0.0155
Seismic (Reduced DL) 60 deg M2	231.96		001 0.0178	0.0178
Selsmic (Reduced DL) 60 deg M2	268.04	0.041 0.0	000 0.0248	0.0248
Seismic (Reduced DL) 60 deg M2	295.88		000 0.0236	0.0236
Selsmic (Reduced DL) 90 deg M1	80.00		001 0.0106	0.0106
Seismic (Reduced DL) 90 deg M1	84.12		001 0.0102	0.0102
Seismic (Reduced DL) 90 deg M1	104.12		001 0.0117	0.0117
Seismic (Reduced DL) 90 deg M1	115.88		001 0.0135	0.0135 0.0164
Seismic (Reduced DL) 90 deg M1	124.12		001 0.0164 001 0.0186	0.0186
Seismic (Reduced DL) 90 deg M1	128.04 168.04		000 0.0134	0.0134
Seismic (Reduced DL) 90 deg M1 Seismic (Reduced DL) 90 deg M1	168.04		000 0.0043	0.0043
Seismic (Reduced DL) 90 deg M1 Selsmic (Reduced DL) 90 deg M1	211.96		000 0.0124	0.0124
ANNUL ILANGAR NET AA ARA IN I				

© 2007 - 2018 by ATC IP LLC. All rights reserved.

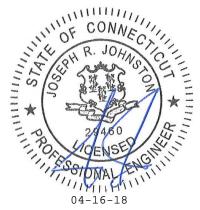
Site Number: 6310	Code:	ANSI/TIA-222-G	@ 20	07 - 2018 by ATC	CIP LLC. All rights reserved.
Site Name: FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_0	6		4/30/2018 4:38:25 PM
Customer: SPRINT NEXTEL					
Seismic (Reduced DL) 90 deg M1	231.96	0.041	0.0000	0.0088	0.0088
Seismic (Reduced DL) 90 deg M1	268.04	0.048	0.0000	0.0110	0.0110
Seismic (Reduced DL) 90 deg M1	295.88	0.052	0.0000	0.0087	0.0087
Seismic (Reduced DL) 90 deg M2	80.00	0.003	0.0000	0.0042	0.0042 0.0043
Seismic (Reduced DL) 90 deg M2	84.12 104.12	0.003 0.004	0.0000 0.0000	0.0043 0.0050	0.0050
Seismic (Reduced DL) 90 deg M2 Seismic (Reduced DL) 90 deg M2	115.88	0.005	-0.0001	0.0060	0.0060
Seismic (Reduced DL) 90 deg M2	124.12	0.006	-0.0001	0.0075	0.0075
Seismic (Reduced DL) 90 deg M2	128.04	0.006	-0.0001	0.0087	0.0087
Seismic (Reduced DL) 90 deg M2	168.04	0.012	0.0000	0.0092	0.0092
Seismic (Reduced DL) 90 deg M2	180.00	0.014	-0.0001	0.0063	0.0063 0.0171
Seismic (Reduced DL) 90 deg M2 Seismic (Reduced DL) 90 deg M2	211.96 231.96	0.022 0.028	-0.0001 -0.0001	0.0171 0.0196	0.0196
Seismic (Reduced DL) 90 deg M2	268.04	0.044	0.0000	0.0267	0.0267
Seismic (Reduced DL) 90 deg M2	295.88	0.056	0.0000	0.0253	0.0253
Seismic (Reduced DL) 120 deg M1	80.00	0.006	0.0000	0.0105	0.0105
Seismic (Reduced DL) 120 deg M1	84.12	0.006	0.0000	0.0103	0.0103
Seismic (Reduced DL) 120 deg M1	104.12	0.010	0.0000 -0.0001	0.0119 0.0134	0.0119 0.0134
Seismic (Reduced DL) 120 deg M1	115.88 124.12	0.012 0.014	-0.0001	0.0167	0.0167
Seismic (Reduced DL) 120 deg M1 Seismic (Reduced DL) 120 deg M1	128.04	0.016	-0.0001	0.0185	0.0185
Seismic (Reduced DL) 120 deg M1	168.04	0.028	0.0000	0.0136	0.0136
Seismic (Reduced DL) 120 deg M1	180.00	0.030	0.0000	0.0042	0.0042
Seismic (Reduced DL) 120 deg M1	211.96	0.037	0.0000	0.0126	0.0126
Seismic (Reduced DL) 120 deg M1	231.96	0.041	0.0000	0.0090	0.0090 0.0112
Seismic (Reduced DL) 120 deg M1 Selemic (Reduced DL) 120 deg M1	268.04 295.88	0.048 0.052	0.0000 0.0000	0.0112 0.0088	0.0088
Selsmic (Reduced DL) 120 deg M1 Seismic (Reduced DL) 120 deg M2	295.88	0.002	0.0000	0.0039	0.0039
Selsmic (Reduced DL) 120 deg M2 Selsmic (Reduced DL) 120 deg M2	84.12	0.002	0.0000	0.0041	0.0041
Seismic (Reduced DL) 120 deg M2	104.12	0.003	0.0000	0.0049	0.0049
Seismic (Reduced DL) 120 deg M2	115.88	0.004	0.0000	0.0057	0.0057
Seismic (Reduced DL) 120 deg M2	124.12	0.005	0.0000	0.0075 0.0083	0.0075 0.0083
Seismic (Reduced DL) 120 deg M2 Seismic (Reduced DL) 120 deg M2	128.04 168.04	0.006 0.012	0.0000 0.0000	0.0089	0.0089
Seismic (Reduced DL) 120 deg M2	180.00	0.013	0.0000	0.0058	0.0058
Seismic (Reduced DL) 120 deg M2	211.96	0.021	-0.0001	0.0168	0.0168
Seismic (Reduced DL) 120 deg M2	231.96	0.027	-0.0001	0.0193	0.0193
Seismic (Reduced DL) 120 deg M2	268.04	0.042	0.0000	0.0265	0.0265
Seismic (Reduced DL) 120 deg M2	295.88	0.054	0.0000 0.0000	0.0250 0.0094	0.0250 0.00 94
Seismic (Reduced DL) 180 deg M1 Seismic (Reduced DL) 180 deg M1	80.00 84.12	0.005 0.006	0.0000	0.0088	0.0088
Selsmic (Reduced DL) 180 deg M1 Selsmic (Reduced DL) 180 deg M1	104.12	0.009	0.0000	0.0100	0.0100
Seismic (Reduced DL) 180 deg M1	115.88	0.011	0.0001	0.0119	0.0119
Selsmic (Reduced DL) 180 deg M1	124.12	0.013	0.0001	0.0144	0.0144
Seismic (Reduced DL) 180 deg M1	128.04	0.014	0.0001	0.0169	0.0169 0.0115
Selsmic (Reduced DL) 180 deg M1 Seismic (Reduced DL) 180 deg M1	168.04 180.00	0.024 0.026	0.0001 0.0001	0.0115 0.0030	0.0030
Seismic (Reduced DL) 180 deg M1	211.96	0.032	0.0001	0.0104	0.0104
Seismic (Reduced DL) 180 deg M1	231.96	0.035	0.0001	0.0071	0.0071
Seismic (Reduced DL) 180 deg M1	268.04	0.041	0.0001	0.0096	0.0096
Seismic (Reduced DL) 180 deg M1	295.88	0.044	0.0000	0.0077	0.0077
Seismic (Reduced DL) 180 deg M2	80.00	0.002	0.0000	0.0033 0.0033	0.0033 0.0033
Seismic (Reduced DL) 180 deg M2 Seismic (Reduced DL) 180 deg M2	84.12 104.12	0.002 0.003	0.0000 0.0000	0.0033	0.0039
Seismic (Reduced DL) 180 deg m2 Seismic (Reduced DL) 180 deg M2	115.88	0.004	0.0000	0.0049	0.0049
Seismic (Reduced DL) 180 deg M2	124.12	0.004	0.0000	0.0062	0.0062
Seismic (Reduced DL) 180 deg M2	128.04	0.005	0.0000	0.0076	0.0076
Selsmic (Reduced DL) 180 deg M2	168.04	0.010	0.0000	0.0076	0.0076
Seismic (Reduced DL) 180 deg M2	180.00	0.011	0.0000 0.0000	0.0048 0.0149	0.0048 0.0149
Selsmic (Reduced DL) 180 deg M2 Seismic (Reduced DL) 180 deg M2	211.96 231.96	0.018 0.023	0.0000	0.0149	0.0173
Seismic (Reduced DL) 180 deg M2 Seismic (Reduced DL) 180 deg M2	268.04	0.037	0.0000	0.0244	0.0244
	B A ⁻				

Site Number: 6310	Code:	ANSI/TIA-222-G		© 2007 - 2018 by ATC IP LLC. All rig	hts reserved.
Site Name: FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_06	5	4/30/2018 4	:38:25 PM
Customer: SPRINT NEXTEL					
Seismic (Reduced DL) 180 deg M2	295.88	0.048	0.0000	0.0233 0.0233	
Selsmic (Reduced DL) 100 deg M1	80.00	0.006	0.0000	0.0093 0.0093	
Seismic (Reduced DL) 210 deg M1	84.12	0.007	0.0001	0.0088 0.0088	
Selsmic (Reduced DL) 210 deg M1	104.12	0.010	0.0001	0.0099 0.0099	
Seismic (Reduced DL) 210 deg M1	115.88	0.012	0.0001	0.0114 0.0114	
Seismic (Reduced DL) 210 deg M1	124.12 128.04	0.013 0.014	0.0001	0.0140 0.0140 0.0162 0.0162	
Seismic (Reduced DL) 210 deg M1	168.04	0.024	0.0001	0.0106 0.0106	
Seismic (Reduced DL) 210 deg M1 Seismic (Reduced DL) 210 deg M1	180.00	0.026	0.0001	0.0025 0.0025	
Seismic (Reduced DL) 210 deg M1	211.96	0.031	0.0001	0.0094 0.0094	
Seismic (Reduced DL) 210 deg M1	231.96	0.034	0.0001	0.0061 0.0061	
Seismic (Reduced DL) 210 deg M1	268.04	0.039	0.0001	0.0085 0.0085	
Seismic (Reduced DL) 210 deg M1	295.88	0.042	0.0001	0.0067 0.0067 0.0032 0.0032	
Seismic (Reduced DL) 210 deg M2	80.00 84.12	0.003 0.003	0.0000	0.0032 0.0032 0.0033 0.0033	
Selsmic (Reduced DL) 210 deg M2 Seismic (Reduced DL) 210 deg M2	104.12	0.004	0.0000	0.0036 0.0036	
Seismic (Reduced DL) 210 deg m2 Seismic (Reduced DL) 210 deg M2	115.88	0.004	0.0000	0.0044 0.0044	
Seismic (Reduced DL) 210 deg M2	124.12	0.005	0.0000	0.0056 0.0056	
Selsmic (Reduced DL) 210 deg M2	128.04	0.005	0.0000	0.0069 0.0069	
Seismic (Reduced DL) 210 deg M2	168.04	0.009	0.0000	0.0067 0.0067	
Seismic (Reduced DL) 210 deg M2	180.00	0.011	0.0000	0.0041 0.0041	
Seismic (Reduced DL) 210 deg M2	211.96	0.017 0.022	0.0000	0.0138 0.0138 0.0162 0.0162	
Seismic (Reduced DL) 210 deg M2	231.96 268.04	0.022	0.0001	0.0233 0.0233	
Seismic (Reduced DL) 210 deg M2 Seismic (Reduced DL) 210 deg M2	295.88	0.046	0.0000	0.0222 0.0222	
Seismic (Reduced DL) 210 deg M1	80.00	0.007	0.0000	0.0098 0.0098	
Selsmic (Reduced DL) 240 deg M1	84.12	0.008	0.0000	0.0093 0.0093	
Seismic (Reduced DL) 240 deg M1	104.12	0.011	0.0001	0.0101 0.0101	
Seismic (Reduced DL) 240 deg M1	115.88	0.013	0.0001	0.0111 0.0111	
Seismic (Reduced DL) 240 deg M1	124.12	0.015 0.015	0.0001	0.0140 0.0140 0.0157 0.0157	
Seismic (Reduced DL) 240 deg M1	128.04 168.04	0.015	0.0001	0.0100 0.0100	
Seismic (Reduced DL) 240 deg M1 Seismic (Reduced DL) 240 deg M1	180.00	0.027	0.0001	0.0025 0.0025	
Seismic (Reduced DL) 240 deg M1	211.96	0.032	0.0001	0.0084 0.0084	
Seismic (Reduced DL) 240 deg M1	231.96	0.034	0.0001	0.0050 0.0050	
Seismic (Reduced DL) 240 deg M1	268.04	0.038	0.0001	0.0072 0.0072	
Seismic (Reduced DL) 240 deg M1	295.88	0.040	0.0001	0.0054 0.0054	
Seismic (Reduced DL) 240 deg M2	80.00	0.004	0.0000	0.0034 0.0034 0.0034 0.0034	
Seismic (Reduced DL) 240 deg M2	84.12 104.12	0.004 0.005	0.0000	0.0035 0.0035	
Seismic (Reduced DL) 240 deg M2 Seismic (Reduced DL) 240 deg M2	115.88	0.005	0.0000	0.0038 0.0038	
Selsmic (Reduced DL) 240 deg M2	124.12	0.006	0.0000	0.0053 0.0053	
Seismic (Reduced DL) 240 deg M2	128.04	0.006	0.0000	0.0061 0.0061	
Selsmic (Reduced DL) 240 deg M2	168.04	0.010	0.0000	0.0059 0.0059	
Seismic (Reduced DL) 240 deg M2	180.00	0.011	0.0000	0.0031 0.0031 0.0130 0.0130	
Seismic (Reduced DL) 240 deg M2	211.96 231.96	0.017 0.022	0.0001	0.0130 0.0130 0.0154 0.0154	
Seismic (Reduced DL) 240 deg M2 Seismic (Reduced DL) 240 deg M2	268.04	0.034	0.0001	0.0225 0.0225	
Seismic (Reduced DL) 240 deg M2 Seismic (Reduced DL) 240 deg M2	295.88	0.044	0.0001	0.0212 0.0212	
Seismic (Reduced DL) 300 deg M1	80.00	0.009	0.0000	0.0107 0.0107	
Selsmic (Reduced DL) 300 deg M1	84.12	0.009	0.0000	0.0097 0.0097	
Seismic (Reduced DL) 300 deg M1	104.12	0.013	0.0000	0.0101 0.0101	
Seismic (Reduced DL) 300 deg M1	115.88	0.015	0.0000	0.0114 0.0114 0.0133 0.0133	
Seismic (Reduced DL) 300 deg M1	124.12	0.016 0.017	0.0000	0.0133 0.0133 0.0158 0.0158	
Seismic (Reduced DL) 300 deg M1 Seismic (Reduced DL) 200 deg M1	128.04 168.04	0.017	0.0000	0.0093 0.0093	
Selsmic (Reduced DL) 300 deg M1 Seismic (Reduced DL) 300 deg M1	180.00	0.028	0.0001	0.0025 0.0025	
Seismic (Reduced DL) 300 deg M1	211.96	0.033	0.0000	0.0071 0.0071	
Seismic (Reduced DL) 300 deg M1	231.96	0.035	0.0000	0.0033 0.0033	
Seismic (Reduced DL) 300 deg M1	268.04	0.038	0.0000	0.0056 0.0056	
Seismic (Reduced DL) 300 deg M1	295.88	0.039	0.0000	0.0037 0.0037	
Seismic (Reduced DL) 300 deg M2	80.00	0.005	0.0000	0.0042 0.0042	

Site Number: 6310	Code:	ANSI/TIA-222-G		© 2007 - 2018 by ATC	IP LLC. All rights reserved.
Site Name: FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_0	6		4/30/2018 4:38:25 PM
Customer: SPRINT NEXTEL					
Seismic (Reduced DL) 300 deg M2	84.12	0.005	0.0000	0.0038	0.0038
Seismic (Reduced DL) 300 deg M2	104.12	0.006	0.0000		0.0036
Seismic (Reduced DL) 300 deg M2	115.88	0.007	0.0000	0.0040	0.0040
Seismic (Reduced DL) 300 deg M2	124.12	800.0	0.0000		0.0048
Seismic (Reduced DL) 300 deg M2	128.04	0.008	0.0000		0.0062
Seismic (Reduced DL) 300 deg M2	168.04	0.012 0.013	0.0000		0.0053 0.0020
Seismic (Reduced DL) 300 deg M2	180.00 211.96	0.013	0.0000		0.0118
Seismic (Reduced DL) 300 deg M2 Seismic (Reduced DL) 300 deg M2	231.96	0.022	0.0000		0.0140
Seismic (Reduced DL) 300 deg M2	268.04	0.034	0.0000		0.0210
Seismic (Reduced DL) 300 deg M2	295.88	0.043	0.0000	0.0200	0.0200
Selsmic (Reduced DL) 330 deg M1	80.00	0.009	0.0000		0.0107
Seismic (Reduced DL) 330 deg M1	84.12	0.010	0.0000		0.0099
Seismic (Reduced DL) 330 deg M1	104.12	0.013	0.0000		0.0105 0.0116
Seismic (Reduced DL) 330 deg M1	115.88 124.12	0.015 0.017	0.0000		0.0140
Selsmic (Reduced DL) 330 deg M1 Seismic (Reduced DL) 330 deg M1	128.04	0.018	0.0000		0.0160
Seismic (Reduced DL) 330 deg M1	168.04	0.027	-0.0001	0.0098	0.0098
Seismic (Reduced DL) 330 deg M1	180.00	0.029	0.0000		0.0028
Seismic (Reduced DL) 330 deg M1	211.96	0.034	0.0000		0.0077
Seismic (Reduced DL) 330 deg M1	231.96	0.036	0.0000		0.0041
Seismic (Reduced DL) 330 deg M1	268.04	0.039	0.0000		0.0062
Seismic (Reduced DL) 330 deg M1	295.88	0.041	0.0000		0.0041
Seismic (Reduced DL) 330 deg M2	80.00	0.005	0.0000		0.0043 0.0041
Seismic (Reduced DL) 330 deg M2	84.12 104.12	0.005 0.007	0.0000		0.0040
Seismic (Reduced DL) 330 deg M2 Seismic (Reduced DL) 330 deg M2	115.88	0.007	0.0000		0.0042
Seismic (Reduced DL) 330 deg M2	124.12	0.008	0.0000		0.0053
Seismic (Reduced DL) 330 deg M2	128.04	0.008	0.0000		0.0064
Seismic (Reduced DL) 330 deg M2	168.04	0.012	0.0000	0.0057	0.0057
Seismic (Reduced DL) 330 deg M2	180.00	0.013	0.0000		0.0025
Seismic (Reduced DL) 330 deg M2	211.96	0.019	0.0000		0.0124
Seismic (Reduced DL) 330 deg M2	231.96	0.023	0.0000		0.0146 0.0215
Seismic (Reduced DL) 330 deg M2	268.04 295.88	0.035 0.045	0.0000		0.0203
Selsmic (Reduced DL) 330 deg M2 Serviceability - 60 mph Wind Normal	295.00	0.121	-0.0047		0.0990
Serviceability - 60 mph Wind Normal	84.12	0.126	-0.0048		0.0688
Serviceability - 60 mph Wind Normal	104.12	0.146	-0.0050	0.0393	0.0396
Serviceability - 60 mph Wind Normal	115.88	0.152	-0.0051	0.0308	0.0312
Serviceability - 60 mph Wind Normal	124.12	0.154	-0.0051		0.0397
Serviceability - 60 mph Wind Normal	128.04	0.157	-0.0052		0.0455
Serviceability - 60 mph Wind Normal	168.04	0.172	-0.0056		0.0201 0.0907
Serviceability - 60 mph Wind Normal	180.00 211.96	0.165 0.144	-0.0061		0.0496
Serviceability - 60 mph Wind Normal Serviceability - 60 mph Wind Normal	231.96	0.123	-0.0063		0.0139
Serviceability - 60 mph Wind Normal	268.04	0.087	-0.0066		0.0213
Serviceability - 60 mph Wind Normal	295.88	0.062	-0.0068	0.0881	0.0884
Serviceability - 60 mph Wind 60 deg	80.00	0.102	-0.0053		0.0870
Serviceability - 60 mph Wind 60 deg	84.12	0.107	-0.0053		0.0610
Serviceability - 60 mph Wind 60 deg	104.12	0.124	-0.0055		0.0375
Serviceability - 60 mph Wind 60 deg	115.88	0.130	-0.0059		0.0355 0.0464
Serviceability - 60 mph Wind 60 deg	124.12 128.04	0.134 0.137	-0.0061	0.0460 0.0550	0.0554
Serviceability - 60 mph Wind 60 deg Serviceability - 60 mph Wind 60 deg	128.04	0.165	-0.0062		0.0108
Serviceability - 60 mph Wind 60 deg	180.00	0.164	-0.0067		0.0598
Serviceability - 60 mph Wind 60 deg	211.96	0.161	-0.0071		0.0138
Serviceability - 60 mph Wind 60 deg	231.96	0.154	-0.0075		0.0976
Serviceability - 60 mph Wind 60 deg	268.04	0.140	-0.0080		0.0489
Serviceability - 60 mph Wind 60 deg	295.88	0.129	-0.0083		0.1577
Serviceability - 60 mph Wind 90 deg	80.00	0.112	0.0369		0.0989
Serviceability - 60 mph Wind 90 deg	84.12	0.117 0.136	0.0370		0.0754 0.0543
Serviceability - 60 mph Wind 90 deg	104.12	0.130	0.0313		310070
	D				

Site Number:	6310	Code:	ANSI/TIA-222-G		© 2007 - 2018 by ATC I	P LLC. All rights reserved.
Site Name:	FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_0	6		4/30/2018 4:38:25 PM
Customer:	SPRINT NEXTEL					
	- 60 mph Wind 90 deg	115.88	0.142	0.0378	0.0347	0.0511
	- 60 mph Wind 90 deg	124.12	0.146	0.0377		0.0587
	- 60 mph Wind 90 deg	128.04	0.149	0.0380		0.0653
-	- 60 mph Wind 90 deg	168.04	0.173	0.0392	0.0099	0.0403
-	- 60 mph Wind 90 deg	180.00	0.169	0.0392	0.0696	0.0796
Serviceability	- 60 mph Wind 90 deg	211.96	0.159	0.0394		0.0510
Serviceability	- 60 mph Wind 90 deg	231.96	0.146	0.0397		0.1357
Serviceability	- 60 mph Wind 90 deg	268.04	0.121	0.0400		0.0863
-	- 60 mph Wind 90 deg	295.88	0.102	0.0403		0.1949
	7 - 60 mph Wind 120 deg	80.00	0.120 0.126	0.0001		0.0993 0.0697
	7 - 60 mph Wind 120 deg	84.12	0.146	0.0001		0.0413
	7 - 60 mph Wind 120 deg 7 - 60 mph Wind 120 deg	104.12 115.88	0.152	-0.0001		0.0335
	- 60 mph Wind 120 deg	124.12	0.155	-0.0002		0.0428
	r - 60 mph Wind 120 deg	128.04	0.159	-0.0003		0.0489
•	- 60 mph Wind 120 deg	168.04	0.176	0.0003	0.0146	0.0146
•	- 60 mph Wind 120 deg	180.00	0.170	0.0000	0.0857	0.0857
-	- 60 mph Wind 120 deg	211.96	0.150	0.0000		0.0475
Serviceability	- 60 mph Wind 120 deg	231.96	0.130	-0.0001		0.1298
Serviceability	7 - 60 mph Wind 120 deg	268.04	0.090	-0.0003		0.0835
-	r - 60 mph Wind 120 deg	295.88	0.059	-0.0004		0.1873
	r - 60 mph Wind 180 deg	80.00	0.099	0.0053		0.0845 0.0586
-	r - 60 mph Wind 180 deg	84.12	0.104	0.0054		0.0348
-	r - 60 mph Wind 180 deg	104.12 115.88	0.120 0.126	0.0055		0.0328
•	r - 60 mph Wind 180 deg	124.12	0.129	0.0054		0.0437
	r - 60 mph Wind 180 deg r - 60 mph Wind 180 deg	128.04	0.132	0.0056		0.0526
-	/ - 60 mph Wind 180 deg	168.04	0.158	0.0065		0.0084
•	v - 60 mph Wind 180 deg	180.00	0.156	0.0064	0.0617	0.0620
-	v - 60 mph Wind 180 deg	211.96	0.153	0.0066	i 0.0113	0.0130
	- 60 mph Wind 180 deg	231.96	0.147	0.0068		0.0502
Serviceability	r - 60 mph Wind 180 deg	268.04	0.137	0.0070		0.0274
	r - 60 mph Wind 180 deg	295.88	0.133	0.0073		0.1303
	r - 60 mph Wind 210 deg	80.00	0.107	0.0476		0.0994
-	r - 60 mph Wind 210 deg	84.12	0.112 0.12 9	0.0479 0.0487		0.0779 0.0598
	7 - 60 mph Wind 210 deg	104.12 115.88	0.125	0.0492		0.0577
-	7 - 60 mph Wind 210 deg 7 - 60 mph Wind 210 deg	124.12	0.138	0.0493		0.0641
•	/ - 60 mph Wind 210 deg	128.04	0.141	0.0497		0.0698
	/ - 60 mph Wind 210 deg	168.04	0.162	0.0518		0.0532
	/ - 60 mph Wind 210 deg	180.00	0.158	0.0521		0.0891
	/ - 60 mph Wind 210 deg	211.96	0.147	0.0528		0.0625
Serviceability	/ - 60 mph Wind 210 deg	231.96	0.136	0.0536		0.1056
	y - 60 mph Wind 210 deg	268.04	0.117	0.0544		0.0804
-	y - 60 mph Wind 210 deg	295.88	0.108	0.0552		0.1691
	/ - 60 mph Wind 240 deg	80.00	0.119 0.125	0.0052 0.0053		0.0981 0.0683
-	7 - 60 mph Wind 240 deg	84.12 104.12	0.125	0.0055		0.0396
	y - 60 mph Wind 240 deg y - 60 mph Wind 240 deg	115.88	0.150	0.0055		0.0316
-	7 - 60 mph Wind 240 deg	124.12	0.153	0.0055		0.0404
-	7 - 60 mph Wind 240 deg	128.04	0.156	0.0055		0.0464
	/ - 60 mph Wind 240 deg	168.04	0.172	0.0066	6 0.0177	0.0187
	y - 60 mph Wind 240 deg	180.00	0.165	0.0065	5 0.0888	0.0890
	y - 60 mph Wind 240 deg	211.96	0.144	0.0068		0.0500
	y - 60 mph Wind 240 deg	231.96	0.123	0.0069		0.1338
	y - 60 mph Wind 240 deg	268.04	0.083	0.0071		0.0866
-	y - 60 mph Wind 240 deg	295.88	0.053	0.0073		0.1913
	y - 60 mph Wind 300 deg	80.00	0.109	0.0007		0.0897 0.0629
•	y - 60 mph Wind 300 deg	84.12	0.114 0.132	0.0008 0.0009		0.0374
-	y - 60 mph Wind 300 deg	104.12 115.88	0.132	0.0009		0.0343
-	y - 60 mph Wind 300 deg y - 60 mph Wind 300 deg	124.12	0.141	0.0007		0.0444
Sei Aireaniiiti	- os mhii muri oos ach					

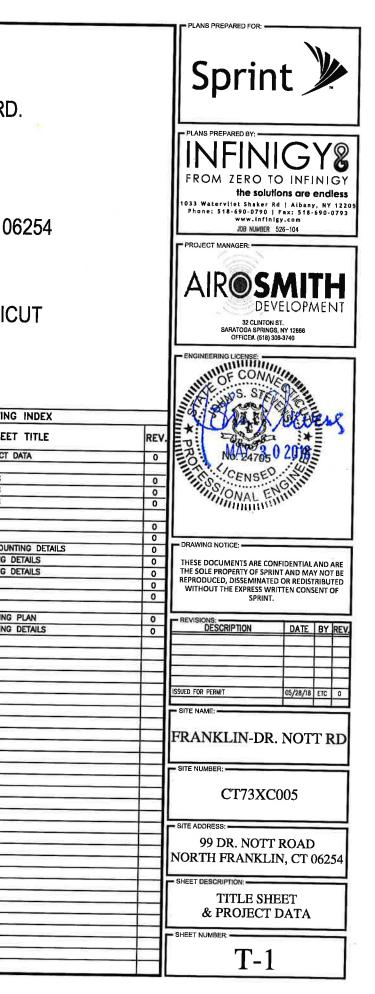
Site Number:	6310	Code:	ANSI/TIA-222-G	© 20	07 - 2018 by AT	C IP LLC. All rights reserved.
Site Name:	FRANKLIN CT, CT	Engineering Number:	OAA710395_C3_0	5		4/30/2018 4:38:25 PM
Customer:	SPRINT NEXTEL					
Serviceability	- 60 mph Wind 300 deg	128.04	0.144	0.0008	0.0530	0.0530
	- 60 mph Wind 300 deg	168.04	0.170	0.0014	0.0032	0.0034
	- 60 mph Wind 300 deg	180.00	0.168	0.0012	0.0651	0.0652
Serviceability	- 60 mph Wind 300 deg	211.96	0.161	0.0013	0.0194	0.0194
-	- 60 mph Wind 300 deg	231.96	0.151	0.0014	0.1044	0.1044
-	- 60 mph Wind 300 deg	268.04	0.132	0.0014	0.0558	0.0558
-	- 60 mph Wind 300 deg	295.88	0.117	0.0015	0.1639	0.1639
Serviceability	- 60 mph Wind 330 deg	80.00	0.115	0.0337	0.0924	0.0981
	- 60 mph Wind 330 deg	84.12	0.121	0.0339	0.0655	0.0737
•	- 60 mph Wind 330 deg	104.12	0.139	0.0345	0.0379	0.0509
	- 60 mph Wind 330 deg	115.88	0.145	0.0348	0.0318	0.0469
-	- 60 mph Wind 330 deg	124.12	0.148	0.0348	0.0410	0.0537
•	- 60 mph Wind 330 deg	128.04	0.151	0.0350	0.0487	0.0600
-	- 60 mph Wind 330 deg	168.04	0.171	0.0364	0.0122	0.0384
	- 60 mph Wind 330 deg	180.00	0.166	0.0365	0.0763	0.0843
-	- 60 mph Wind 330 deg	211.96	0.153	0.0368	0.0356	0.0510
	- 60 mph Wind 330 deg	231.96	0.138	0.0372	0.0585	0.0691
-	- 60 mph Wind 330 deg	268.04	0.112	0.0376	0.0298	0.0478
-	- 60 mph Wind 330 deg	295.88	0.094	0.0382	0.1220	0.1277


FROM ZERO TO INFINIGY the solutions are endless

Mount Analysis Report

April 15, 2018

Sprint Site #	CT73XC005
Infinigy Job Number	526-104
Client	Airosmith
Proposed Carrier	Sprint
	89 Dr. Nott Road
Site Location	North Franklin, CT 06254
Site Location	41.59770° N NAD83
	72.14500° W NAD83
Mount Centerline EL.	180.0'
Mount Classification	Sector Frame
Failing Structural Usage	155.0%
Passing Structural Usage	46.0%
Overall Result	Contingent Pass – See Modification Below
Notes	Replace existing mounts with SitePro1
	VFA12-HD prior to installation of proposed
	appurtenances.


Upon reviewing the results of this analysis, it is our opinion that the structure and anchorage meets the specified TIA code requirements. The mount is therefore deemed adequate to support the existing and proposed loading as listed in this report.

Nathaniel R. Ober, E.I.T. Northeast Structural Region Lead

		PROJECT: D	O MACRO UPGRADE
		SITE NAME: F	RANKLIN-DR. NOTT RD
		SITE CASCADE: C	CT73XC005
Spr			9 DR. NOTT ROAD IORTH FRANKLIN, CT 06
			SUYED TOWER
		MARKET: N	ORTHERN CONNECTIC
SITE INFORMATION	AREA MAP	PROJECT DESCRIPTION	
	Columbia Frencement		DRAWING
TOWER OWNER: AMERICAN TOWER CORPORATION 10 PRESIDENTIAL WAY	South Windham	SPRINT PROPOSES TO MODIFY AN EXISTING UNMANNED TELECOMMUNICATIONS FACILITY.	SHEET NO. SHEET T-1 TITLE SHEET & PROJECT D
WOBURN, MA 01801	Hebron	INSTALL (6) PANEL ANTENNAS	
LATITUDE (NAD83): 41' 35' 52.8" N 41.598'	Lebanon	REMOVE (3) PANEL ANTENNAS RELOCATE (3) 1900 MHz RRHS BEHIND ANTENNAS	SP-1 SPRINT SPECIFICATIONS SP-2 SPRINT SPECIFICATIONS SP-3 SPRINT SPECIFICATIONS
41.598" LONGITUDE (NAD83):	Exeter Sprague Lisbon	• INSTALL (3) 2.5 GHZ RRH'S & (3) 800 MHz RRH'S BEHIND	A-1 SITE PLAN
72° 8' 41.9" W -72.145'	SITE SITE	• INSTALL (3) 800 MHz RRH'S ON PROPOSED PIPE MOUNT	A-2 TOWER ELEVATION A-3 ANTENNA LAYOUT & MOUNT
	Eelchester Gilman PROJECT SITE	• INSTALL (48) JUMPER CABLES	A-4 EQUIPMENT & MOUNTING D A-5 EQUIPMENT & MOUNTING D
COUNTY: NEW LONDON	Borran	INSTALL (4) HYBRID CABLE	A-6 CIVIL DETAILS A-7 PLUMBING DIAGRAM
ZONING JURISDICTION:	Norwith A	INSTALL 2.5 EQUIPMENT INSIDE EXISTING N.V. MMBS CABINET INSTALL (4) NEW BATTERIES IN EXISTING BBU CABINET	E-1 ELECTRICAL & GROUNDING
CONNECTICUT SITING COUNCIL	Milestone Corner	THESE PLANS HAVE BEEN DEVELOPED FOR THE MODIFICATION OF AN	E-2 ELECTRICAL & GROUNDING
ZONING DISTRICT: TBD	Salem Montville Ventes	SPRINT IN ACCORDANCE WITH THE SCOPE OF WORK PROVIDED BY SPRINT IN ACCORDANCE WITH THE SCOPE OF WORK PROVIDED BY SPRINFINIGY HAS INCORPORATED THIS SCOPE OF WORK IN THE PLANS, THE PLANS ARE NOT FOR CONSTRUCTION UNLESS ACCOMPANIED BY A PASS STRUCTURAL STABILITY ANALYSIS BERADED DY A HOR DOT FOR CONSTRUCTION UNLESS ACCOMPANIED BY A PASS STRUCTURAL STABILITY ANALYSIS BERADED DY A HOR DOT FOR CONSTRUCTION UNLESS ACCOMPANIED BY A PASS STRUCTURAL STABILITY ANALYSIS BERADED DY A HOR DOT FOR CONSTRUCTION UNLESS ACCOMPANIED BY A PASS STRUCTURAL STABILITY ANALYSIS BERADED DY A HOR DOT FOR CONSTRUCTION UNLESS ACCOMPANIED BY A PASS STRUCTURAL S	
POWER COMPANY:	Center Tallar	STRUCTURAL STABILTY ANALYSIS PREPARED BY A LICENSED STRUCTURAL ENGINEER. STRUCTURAL ANALYSIS MUST INCLUDE BOTH TOWER AND MC	
CL&P PHONE: (800) 286-2000	LOCATION MAP	APPLICABLE CODES	
AAV PROVIDER:	the state of the s	ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALL IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK	
FRONTIER COMMUNICATIONS PHONE: (866) 502-7167		1. INTERNATIONAL BUILDING CODE (2015 100)	
PROJECT MANAGER: AIROSMITH DEVELOPMENT		3. NEPA 780 - LIGHTNING PROTECTION CODE	
TERRI BURKHOLDER (315) 719–2928		4. 2011 NATIONAL ELECTRIC CODE OR LATEST EDITION 5. ANY OTHER NATIONAL OR LOCAL APPLICABLE CODES, MOST RECENT EDITIONS	
TBURKHOLDER CAIROSMITHDEVELOPMENT.COM	seaste SITE	6. NY BUILDING CODE 7. LOCAL BUILDING CODE 8. CITY/COUNTY ORDINANCES	
	PROJECT SITE	G. CITYCOUNTY UNDINANCES	
		l Rii	
		Know what's below.	
		Call before you di	lg.

THESE OUTLINE SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT STANDARD CONSTRUCTION SPECIFICATIONS, INCLUDING CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.

SECTION 01 100 - SCOPE OF WORK

PART 1 - GENERAL

- 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT CONSTRUCTION STANDARDS FOR WIRELESS SITES, CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.
- 1.2 RELATED DOCUMENTS:
- A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
- B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES' ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.
- 1.3 PRECEDENCE: SHOULD CONFLICTS OCCUR BETWEEN THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES INCLUDING THE STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES AND THE CONSTRUCTION DRAWINGS, INFORMATION ON THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE. NOTIFY SPRINT CONSTRUCTION MANAGER IF THIS OCCURS.
- 1.4 NATIONALLY RECOGNIZED CODES AND STANDARDS:
 - A. THE WORK SHALL COMPLY WITH APPLICABLE NATIONAL AND LOCAL CODES AND STANDARDS, LATEST EDITION, AND PORTIONS THEREOF, INCLUDED BUT NOT LIMITED TO THE FOLLOWING:
 - 1. GR-63-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTION
 - 5. GR-78-CORE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN AND MANUFACTURE OF TELECOMMUNICATIONS EQUIPMENT,
 - GR-1089 CORE, ELECTROMAGNETIC COMPATIBILITY AND ELECTRICAL SAFETY -GENERIC CRITERIA FOR NETWORK TELECOMMUNICATIONS EQUIPMENT,
 - 4. NATIONAL FIRE PROTECTION ASSOCIATION CODES AND STANDARDS (NFPA) INCLUDING NFPA 70 (NATIONAL ELECTRICAL CODE - "NEC") AND NFPA 101 (LIFE SAFETY CODE).
 - 5. AMERICAN SOCIETY FOR TESTING OF MATERIALS (ASTM)
 - 6. INSTITUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE)
 - 7. AMERICAN CONCRETE INSTITUTE (ACI)
 - 8. AMERICAN WIRE PRODUCERS ASSOCIATION (AWPA)
 - 9. CONCRETE REINFORCING STEEL INSTITUTE (CRSI)
 - 10. AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)
 - 11. PORTLAND CEMENT ASSOCIATION (PCA)
 - 12. NATIONAL CONCRETE MASONRY ASSOCIATION (NCMA)
 - 13. BRICK INDUSTRY ASSOCIATION (BIA)
 - 14. AMERICAN WELDING SOCIETY (AWS)
 - 15. NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)
 - 16. SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)
 - 17. DOOR AND HARDWARE INSTITUTE (DHI)
 - 18. OCCUPATIONAL SAFETY AND HEALTH ACT (OSHA)
 - 19. APPLICABLE BUILDING CODES INCLUDING UNIFORM BUILDING CODE, SOUTHERN BUILDING CODE, BOCA, AND THE INTERNATIONAL BUILDING CODE.

1.5 DEFINITIONS:

- A. WORK: THE SUM OF TASKS AND RESPONSIBILITIES IDENTIFIED IN THE CONTRACT DOCUMENTS.
- B. COMPANY: SPRINT CORPORATION
- C. ENGINEER: SYNONYMOUS WITH ARCHITECT & ENGINEER AND "A&E". THE DESIGN PROFESSIONAL HAVING PROFESSIONAL RESPONSIBILITY FOR DESIGN OF THE PROJECT
- D. CONTRACTOR: CONSTRUCTION CONTRACTOR; CONSTRUCTION VENDOR; INDIVIDUAL OR ENTITY WHO AFTER EXECUTION OF A CONTRACT IS BOUND TO ACCOMPLISH THE
- E. THIRD PARTY VENDOR OR AGENCY: A VENDOR OR AGENCY ENGAGED SEPARATELY BY THE COMPANY, A&E, OR CONTRACTOR TO PROVIDE MATERIALS OR TO ACCOMPLISH SPECIFIC TASKS RELATED TO BUT NOT INCLUDED IN THE WORK.
- F. OFCI: OWNER FURNISHED, CONTRACTOR INSTALLED EQUIPMENT.
- G. CONSTRUCTION MANAGER ALL PROJECTS RELATED COMMUNICATION TO FLOW THROUGH SPRINT REPRESENTATIVE IN CHARGE OF PROJECT ...

- 1.6 SITE FAMILIARITY: CONTRACTOR SHALL BE RESPONSIBLE FOR FAMILIARIZING HIMSELF WITH ALL CONTRACT DOCUMENTS, FIELD CONDITIONS AND DIMENSIONS PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE SPRINT CONSTRUCTION MANAGER PRIOR TO THE COMMENCEMENT OF NO COMPENSATION WILL BE AWARDED BASED ON CLAIM OF LACK OF KNOWLEDGE OR FIELD CONDITIONS.
- 1.7 POINT OF CONTACT: COMMUNICATION BETWEEN SPRINT AND THE CONTRACTOR SHALL FLOW THROUGH THE SINGLE SPRINT CONSTRUCTION MANAGER APPOINTED TO MANAGE THE PROJECT FOR SPRINT.
- 1.8 ON-SITE SUPERVISION: THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL EMPLOY A COMPETENT SUPERINTENDENT WHO SHALL BE IN ATTENDANCE AT THE SITE AT ALL TIMES DURING PERFORMANCE OF THE WORK.
- 1.9 DRAWINGS, SPECIFICATIONS AND DETAILS REQUIRED AT JOBSITE: THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A FULL SET OF THE CONSTRUCTION DRAWINGS, STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES AND THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AT THE JOBSITE FROM MOBILIZATION THROUGH CONSTRUCTION COMPLETION.
- A. THE JOBSITE DRAWINGS, SPECIFICATIONS AND DETAILS SHALL BE CLEARLY MARKED DAILY IN RED PENCIL WITH ANY CHANGES IN CONSTRUCTION OVER WHAT IS DEPICTED IN THE DOCUMENTS. AT CONSTRUCTION COMPLETION, THIS JOBSITE MARKUP SET SHALL BE DELIVERED TO THE COMPANY OR COMPANY'S DESIGNATED REPRESENTATIVE TO BE FORWARDED TO THE COMPANY'S A&E VENDOR FOR PRODUCTION OF 'AS-BUILT' DRAWINGS.
- B. DETAILS ARE INTENDED TO SHOW DESIGN INTENT. MODIFICATIONS MAY BE REQUIRED TO SUIT JOB DIMENSIONS OR CONDITIONS, AND SUCH MODIFICATIONS SHALL BE INCLUDED AS PART OF THE WORK. CONTRACTOR SHALL NOTIFY SPRINT CONSTRUCTION MANAGER OF ANY VARIATIONS PRIOR TO PROCEEDING WITH THE
- C. DIMENSIONS SHOWN ARE TO FINISH SURFACES UNLESS NOTED OTHERWISE SPACING BETWEEN EQUIPMENT IS THE REQUIRED CLEARANCE. SHOULD THERE BE ANY QUESTIONS REGARDING THE CONTRACT DOCUMENTS, EXISTING CONDITIONS AND/OR DESIGN INTENT, THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING A CLARIFICATION FROM THE SPRINT CONSTRUCTION MANAGER PRIOR TO PROCEEDING WITH THE WORK.
- 1.10 USE OF JOB SITE: THE CONTRACTOR SHALL CONFINE ALL CONSTRUCTION AND RELATED OPERATIONS INCLUDING STAGING AND STORAGE OF MATERIALS AND EQUIPMENT, PARKING, TEMPORARY FACILITIES, AND WASTE STORAGE TO THE LEASE PARCEL UNLESS OTHERWISE PERMITTED BY THE CONTRACT DOCUMENTS.
- 1.11 UTILITIES SERVICES: WHERE NECESSARY TO CUT EXISTING PIPES, ELECTRICAL WIRES, CONDUITS, CABLES, ETC., OF UTILITY SERVICES, OR OF FIRE PROTECTION OR COMMUNICATIONS SYSTEMS, THEY SHALL BE CUT AND CAPPED AT SUITABLE PLACES OR WHERE SHOWN. ALL SUCH ACTIONS SHALL BE COORDINATED WITH THE UTILITY NVOLVED:
- 1.12 PERMITS / FEES: WHEN REQUIRED THAT A PERMIT OR CONNECTION FEE BE PAID TO A PUBLIC UTILITY PROVIDER FOR NEW SERVICE TO THE CONSTRUCTION PROJECT, PAYMENT OF SUCH FEE SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.
- 1.13 CONTRACTOR SHALL TAKE ALL MEASURES AND PROVIDE ALL MATERIAL NECESSARY FOR PROTECTING EXISTING EQUIPMENT AND PROPERTY.
- 1.14 METHODS OF PROCEDURE (MOPS) FOR CONSTRUCTION: CONTRACTOR SHALL PERFORM WORK AS DESCRIBED IN THE FOLLOWING INSTALLATION AND COMMISSIONING

NOTE: IN SHORT-FORM SPECIFICATIONS ON THE DRAWINGS, A/E TO INSERT LIST OF APPLICABLE MOPS INCLUDING EN-2012-001, EN-2013-002, EL-0568, AND TS-0193

- 1.15 USE OF ELECTRONIC PROJECT MANAGEMENT SYSTEMS:
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

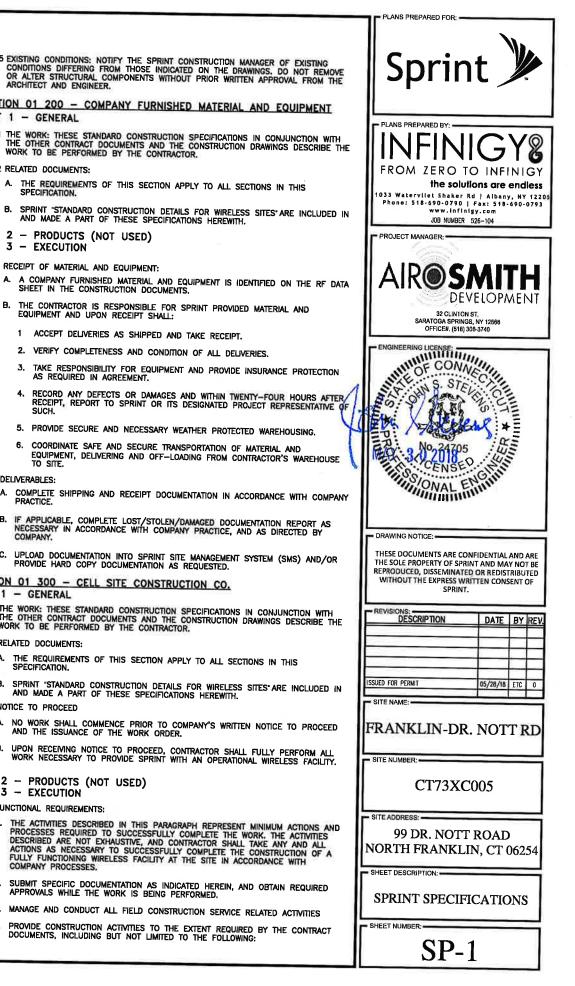
- 3.1 TEMPORARY UTILITIES AND FACILITIES: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY UTILITIES AND FACILITIES NECESSARY EXCEPT AS OTHERWISE INDICATED IN THE CONSTRUCTION DOCUMENTS. TEMPORARY UTILITIES AND FACILITIES INCLUDE POTABLE WATER, HEAT, HVAC, ELECTRICITY, SANITARY FACILITIES, WASTE DISPOSAL FACILITIES, AND TELEPHONE/COMMUNICATION SERVICES. PROVIDE TEMPORARY UTILITIES AND FACILITIES IN ACCORDANCE WITH OSHA AND THE AUTHORITY HAVING UURISDICTION CONTRACTOR MAY UTILIZE THE COMPANY ELECTRICAL SERVICE IN THE COMPLETION OF THE WORK WHEN IT BECOMES AVAILABLE. USE OF THE LESSORS OR SITE OWNER'S UTILITIES OR FACILITIES IS EXPRESSLY FORBIDDEN EXCEPT AS OTHERWISE ALLOWED IN THE CONTRACT DOCUMENTS.
- 3.2 ACCESS TO WORK: THE CONTRACTOR SHALL PROVIDE ACCESS TO THE JOB SITE FOR AUTHORIZED COMPANY PERSONNEL AND AUTHORIZED REPRESENTATIVES OF THE ARCHITECT/ENGINEER DURING ALL PHASES OF THE WORK.
- 3.3 TESTING: REQUIREMENTS FOR TESTING BY THIS CONTRACTOR SHALL BE AS INDICATED HEREWITH, ON THE CONSTRUCTION DRAWINGS, AND IN THE INDIMUDUAL SECTIONS OF THESE SPECIFICATIONS. SHOULD COMPANY CHOOSE TO ENGAGE ANY THIRD-PARTY TO CONDUCT ADDITIONAL TESTING, THE CONTRACTOR SHALL COOPERATE WITH AND PROVIDE A WORK AREA FOR COMPANY'S TEST AGENCY.
- 3.4 DIMENSIONS: VERIFY DIMENSIONS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE FABRICATION OR ORDERING OF MATERIALS. DO NOT SCALE DRAWINGS.

3.5 EXISTING CONDITIONS: NOTIFY THE SPRINT CONSTRUCTION MANAGER OF EXISTING CONDITIONS DIFFERING FROM THOSE INDICATED ON THE DRAWINGS, DO NOT REMOVE OR ALTER STRUCTURAL COMPONENTS WITHOUT PRIOR WRITTEN APPROVAL FROM THE ARCHITECT AND ENGINEER.

SECTION 01 200 - COMPANY FURNISHED MATERIAL AND EQUIPMENT PART 1 - GENERAL

- 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.
- 1.2 RELATED DOCUMENTS:
 - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
- B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION


- 3.1 RECEIPT OF MATERIAL AND EQUIPMENT:
- SHEET IN THE CONSTRUCTION DOCUMENTS.
- B. THE CONTRACTOR IS RESPONSIBLE FOR SPRINT PROVIDED MATERIAL AND EQUIPMENT AND UPON RECEIPT SHALL:
- 1 ACCEPT DELIVERIES AS SHIPPED AND TAKE RECEIPT.
- 2. VERIFY COMPLETENESS AND CONDITION OF ALL DELIVERIES. 3. TAKE RESPONSIBILITY FOR EQUIPMENT AND PROVIDE INSURANCE PROTECTION AS REQUIRED IN AGREEMENT
- RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY-FOUR HOURS AFTER/ RECEIPT, REPORT TO SPRINT OR ITS DESIGNATED PROJECT REPRESENTATIVE OF
- 5. PROVIDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING.
- 6. COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND EQUIPMENT, DELIVERING AND OFF-LOADING FROM CONTRACTOR'S WAREHOUSE

3.2 DELIVERABLES:

- A. COMPLETE SHIPPING AND RECEIPT DOCUMENTATION IN ACCORDANCE WITH COMPANY
- B. IF APPLICABLE, COMPLETE LOST/STOLEN/DAMAGED DOCUMENTATION REPORT AS NECESSARY IN ACCORDANCE WITH COMPANY PRACTICE, AND AS DIRECTED BY COMPANY
- C. UPLOAD DOCUMENTATION INTO SPRINT SITE MANAGEMENT SYSTEM (SMS) AND/OR PROVIDE HARD COPY DOCUMENTATION AS REQUESTED.

SECTION 01 300 - CELL SITE CONSTRUCTION CO. PART 1 - GENERAL

- 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.
- 1.2 RELATED DOCUMENTS:
- A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS
- B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.
- 1.3 NOTICE TO PROCEED
- A. NO WORK SHALL COMMENCE PRIOR TO COMPANY'S WRITTEN NOTICE TO PROCEED AND THE ISSUANCE OF THE WORK ORDER.
- B. UPON RECEIVING NOTICE TO PROCEED, CONTRACTOR SHALL FULLY PERFORM ALL WORK NECESSARY TO PROVIDE SPRINT WITH AN OPERATIONAL WIRELESS FACILITY.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION
- 3.1 FUNCTIONAL REQUIREMENTS:
 - A. THE ACTIVITIES DESCRIBED IN THIS PARAGRAPH REPRESENT MINIMUM ACTIONS AND PROCESSES REQUIRED TO SUCCESSFULLY COMPLETE THE WORK, THE ACTIVITIES DESCRIBED ARE NOT EXHAUSTIVE, AND CONTRACTOR SHALL TAKE ANY AND ALL ACTIONS AS NECESSARY TO SUCCESSFULLY COMPLETE THE CONSTRUCTION OF A FULLY FUNCTIONING WIRELESS FACILITY AT THE SITE IN ACCORDANCE WITH COMPANY PROCESSES
 - B. SUBMIT SPECIFIC DOCUMENTATION AS INDICATED HEREIN, AND OBTAIN REQUIRED APPROVALS WHILE THE WORK IS BEING PERFORMED.
 - C. MANAGE AND CONDUCT ALL FIELD CONSTRUCTION SERVICE RELATED ACTIVITIES
 - D. PROVIDE CONSTRUCTION ACTIVITIES TO THE EXTENT REQUIRED BY THE CONTRACT DOCUMENTS, INCLUDING BUT NOT LIMITED TO THE FOLLOWING:

CONTINUE FROM SP-1

- 1. PERFORM ANY REQUIRED SITE ENVIRONMENTAL MITIGATION.
- 2. PREPARE GROUND SITES; PROVIDE DE-GRUBBING; AND ROUGH AND FINAL ADING, AND COMPOUND SURFACE TREATMENTS.
- 3. MANAGE AND CONDUCT ALL ACTIVITIES FOR INSTALLATION OF UTILITIES INCLUDING ELECTRICAL AND TELCO BACKHAUL
- 4. INSTALL UNDERGROUND FACILITIES INCLUDING UNDERGROUND POWER AND COMMUNICATIONS CONDUITS, AND UNDERGROUND GROUNDING SYSTEM.
- 5. INSTALL ABOVE GROUND GROUNDING SYSTEMS.
- 6. PROVIDE NEW HVAC INSTALLATIONS AND MODIFICATIONS.
- 7. INSTALL, "H-FRAMES", CABINETS AND SHELTERS AS INDICATED.
- 8. INSTALL ROADS, ACCESS WAYS, CURBS AND DRAINS AS INDICATED.
- 9. ACCOMPLISH REQUIRED MODIFICATION OF EXISTING FACILITIES.
- 10. PROVIDE ANTENNA SUPPORT STRUCTURE FOUNDATIONS.
- 11. PROVIDE SLABS AND EQUIPMENT PLATFORMS.
- 12. INSTALL COMPOUND FENCING, SIGHT SHIELDING, LANDSCAPING AND ACCESS
- 13. PERFORM INSPECTION AND MATERIAL TESTING AS REQUIRED HEREINAFTER.
- 14. CONDUCT SITE RESISTANCE TO EARTH TESTING AS REQUIRED HEREINAFTER
- 15, INSTALL FIXED GENERATOR SETS AND OTHER STANDBY POWER SOLUTIONS.
- 16. INSTALL TOWERS, ANTENNA SUPPORT STRUCTURES AND PLATFORMS ON EXISTING TOWERS AS REQUIRED.
- 17. INSTALL CELL SITE RADIOS, MICROWAVE, GPS, COAXIAL MAINLINE, ANTENNAS, CROSS BAND COUPLERS, TOWER TOP AMPLIFIERS, LOW NOISE AMPLIFIERS AND RELATED EQUIPMENT.
- 18. PERFORM, DOCUMENT, AND CLOSE OUT ANY CONSTRUCTION CONTROL DOCUMENTS THAT MAY BE REQUIRED BY GOVERNMENT AGENCIES AND
- 19. PERFORM ANTENNAL AND COAX SWEEP TESTING AND MAKE ANY AND ALL NECESSARY CORRECTIONS
- 20. REMAIN ON SITE MOBILIZED THROUGHOUT HAND-OFF AND INTEGRATION TO ASSIST AS NEEDED UNTIL SITE IS DEEMED SUBSTANTIALLY COMPLETE AND PLACED "ON AIR."
- 3.2 GENERAL REQUIREMENTS FOR CIVIL CONSTRUCTION:
 - CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH. AT THE COMPLETION OF THE WORK, CONTRACTOR SHALL REMOVE FROM THE SITE ALL REMAINING RUBBISH, IMPLEMENTS, TEMPORARY FACILITIES, AND SURPLUS MATERIALS.
- B. EQUIPMENT ROOMS SHALL AT ALL TIMES BE MAINTAINED "BROOM CLEAN" AND CLEAR OF DEBRIS.
- C. CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO DISCOVER AND LOCATE ANY HAZARDOUS CONDITION.
- 1. IN THE EVENT CONTRACTOR ENCOUNTERS ANY HAZARDOUS CONDITION WHICH HAS NOT BEEN ABATED OR OTHERWISE MITIGATED, CONTRACTOR AND ALL OTHER PERSONS SHALL IMMEDIATELY STOP WORK IN THE AFFECTED AREA AND NOTIFY COMPANY IN WRITING. THE WORK IN THE AFFECTED AREA SHALL NOT BE RESUMED EXCEPT BY WRITTEN NOTIFICATION BY COMPANY.
- 2. CONTRACTOR AGREES TO USE CARE WHILE ON THE SITE AND SHALL NOT TAKE ANY ACTION THAT WILL OR MAY RESULT IN OR CAUSE THE HAZARDOUS CONDITION TO BE FURTHER RELEASED IN THE ENVIRONMENT, OR TO FURTHER EXPOSE INDIVIDUALS TO THE HAZARD.
- D. CONTRACTOR'S ACTIVITIES SHALL BE RESTRICTED TO THE PROJECT LIMITS. SHOULD AREAS OUTSIDE THE PROJECT LIMITS BE AFFECTED BY CONTRACTOR'S ACTIVITIES, CONTRACTOR SHALL IMMEDIATELY RETURN THEM TO ORIGINAL CONDITION
- E. CONDUCT TESTING AS REQUIRED HEREIN.

3.3 DELIVERABLES:

- A. CONTRACTOR SHALL REVIEW, APPROVE, AND SUBMIT TO SPRINT SHOP DRAWINGS, PRODUCT DATA, SAMPLES, AND SIMILAR SUBMITTALS AS REQUIRED HEREINAFTER
- B. PROVIDE DOCUMENTATION INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING. DOCUMENTATION SHALL BE FORWARDED IN ORIGINAL FORMAT AND/OR UPLOADED INTO SMS
- 1. ALL CORRESPONDENCE AND PRELIMINARY CONSTRUCTION REPORTS.
- 2. PROJECT PROGRESS REPORTS.
- 3. CIVIL CONSTRUCTION START DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 4. ELECTRICAL SERVICE COMPLETION DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).

- 5. LINES AND ANTENNA INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 6. POWER INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 7. TELCO READY DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 8. PPC (OR SHELTER) INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 9. TOWER CONSTRUCTION START DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 10. TOWER CONSTRUCTION COMPLETE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 11. BTS AND RADIO EQUIPMENT DELIVERED AT SITE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 12. NETWORK OPERATIONS HANDOFF CHECKLIST (HOC WALK) COMPLETE (UPLOAD FORM IN SMS)
- 13. CIVIL CONSTRUCTION COMPLETE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 14. SITE CONSTRUCTION PROGRESS PHOTOS UNLOADED INTO SMS.

SECTION 01 400 - SUBMITTALS & TESTS

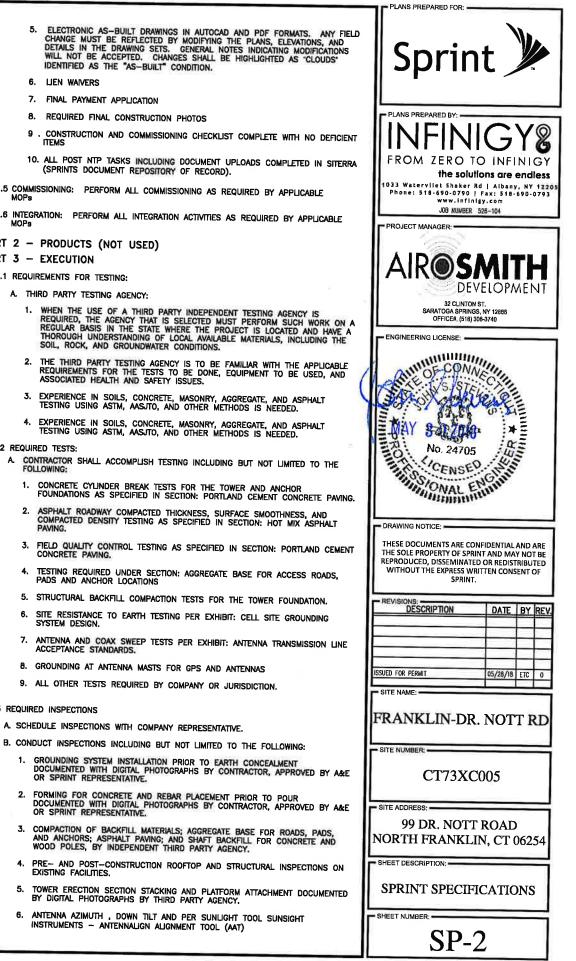
- PART 1 GENERAL
- 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.
- 1.2 RELATED DOCUMENTS:
- A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
- B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.

1.3 SUBMITTALS:

- A. THE WORK IN ALL ASPECTS SHALL COMPLY WITH THE CONSTRUCTION DRAWINGS AND THESE SPECIFICATIONS.
- B. SUBMIT THE FOLLOWING TO COMPANY REPRESENTATIVE FOR APPROVAL.
 - 1. CONCRETE MIX-DESIGNS FOR TOWER FOUNDATIONS, ANCHORS PIERS, AND CONCRETE PAVING.
 - 2. CONCRETE BREAK TESTS AS SPECIFIED HEREIN.
 - 3. SPECIAL FINISHES FOR INTERIOR SPACES, IF ANY,
- ALL EQUIPMENT AND MATERIALS SO IDENTIFIED ON THE CONSTRUCTION DRAWINGS.
- 5. CHEMICAL GROUNDING DESIGN
- D. ALTERNATES: AT THE COMPANY'S REQUEST, ANY ALTERNATIVES TO THE MATERIALS OR METHODS SPECIFIED SHALL BE SUBMITTED TO SPRINT'S CONSTRUCTION MANAGER FOR APPROVAL PRIOR TO BEING SHIPPED TO SITE. SPRINT WILL REVIEW AND APPROVE ONLY THOSE REQUESTS MADE IN WRITING. NO VERBAL APPROVALS WILL BE CONSIDERED, SUBMITTAL FOR APPROVAL SHALL INCLUDE A STATEMENT OF COST REDUCTION PROPOSED FOR USE OF ALTERNATE PRODUCT.

1.4 TESTS AND INSPECTIONS:

- A. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS, INSPECTIONS AND PROJECT DOCUMENTATION.
- B. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE FOLLOWING:
- 1. COAX SWEEPS AND FIBER TESTS PER TS-0200 REV 4 ANTENNA LINE ACCEPTANCE STANDARDS.
- 2. AGL, AZIMUTH AND DOWNTILT USING ELECTRONIC COMMERCIAL MADE-FOR-THE-PURPOSE ANTENNA ALIGNMENT TOOL
- 3. CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING.
- C. REQUIRED CLOSEOUT DOCUMENTATION INCLUDES, BUT IS NOT LIMITED TO THE
- 1. AZIMUTH, DOWNTILT, AGL UPLOAD REPORT FROM ANTENNA ALIGNMENT TOOL TO SITERRA TASK 465. INSTALLED AZIMUTH, DOWNTILT, AND AGL MUST CONFORM TO THE RF DATA SHEETS. SWEEP AND FIBER TESTS
- 2. SCANABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT
- 3. ALL AVAILABLE JURISDICTIONAL INFORMATION
- 4. PDF SCAN OF REDLINES PRODUCED IN FIELD

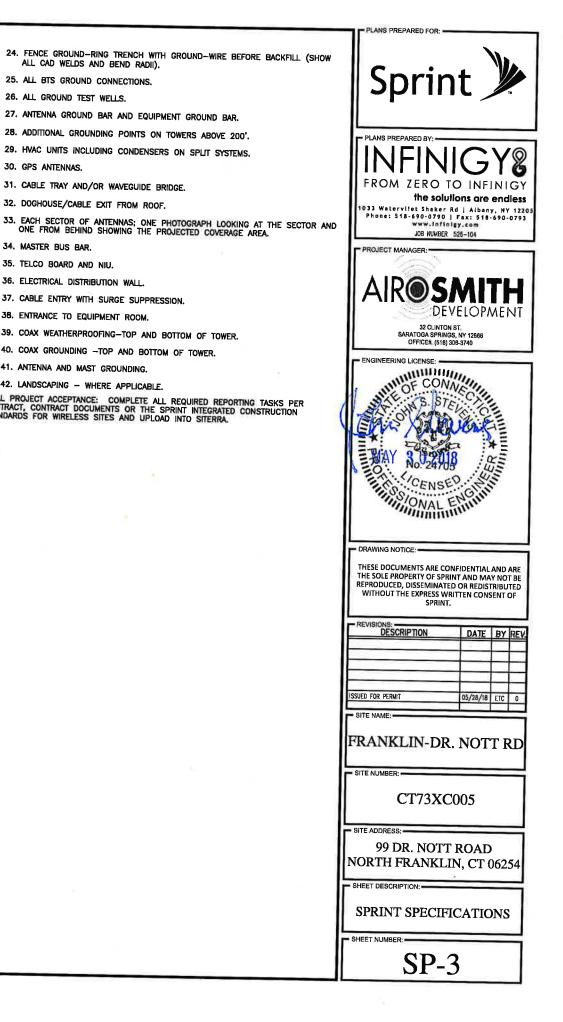

- 5. ELECTRONIC AS-BUILT DRAWINGS IN AUTOCAD AND PDF FORMATS. ANY FIELD CHANGE MUST BE REFLECTED BY MODIFYING THE PLANS, ELEVATIONS, AND DETAILS IN THE DRAWING SETS. GENERAL NOTES INDICATING MODIFICATIONS WILL NOT BE ACCEPTED. CHANGES SHALL BE HIGHLIGHTED AS "CLOUDS" IDENTIFIED AS THE "AS-BUILT" CONDITION.
- 6. LIEN WAIVERS
- 7. FINAL PAYMENT APPLICATION
 - 8. REQUIRED FINAL CONSTRUCTION PHOTOS
 - 9 . CONSTRUCTION AND COMMISSIONING CHECKLIST COMPLETE WITH NO DEFICIENT
 - 10. ALL POST NTP TASKS INCLUDING DOCUMENT UPLOADS COMPLETED IN SITERRA (SPRINTS DOCUMENT REPOSITORY OF RECORD).
 - 1.5 COMMISSIONING: PERFORM ALL COMMISSIONING AS REQUIRED BY APPLICABLE
 - 1.6 INTEGRATION: PERFORM ALL INTEGRATION ACTIVITIES AS REQUIRED BY APPLICABLE
 - PART 2 PRODUCTS (NOT USED)
 - PART 3 EXECUTION
 - 3.1 REQUIREMENTS FOR TESTING:
 - A. THIRD PARTY TESTING AGENCY:
 - 1. WHEN THE USE OF A THIRD PARTY INDEPENDENT TESTING AGENCY IS REQUIRED, THE AGENCY THAT IS SELECTED MUST PERFORM SUCH WORK ON A REGULAR BASIS IN THE STATE WHERE THE PROJECT IS LOCATED AND HAVE A THOROUGH UNDERSTANDING OF LOCAL AVAILABLE MATERIALS, INCLUDING THE SOIL, ROCK, AND GROUNDWATER CONDITIONS.
 - 2. THE THIRD PARTY TESTING AGENCY IS TO BE FAMILLAR WITH THE APPLICABLE REQUIREMENTS FOR THE TESTS TO BE DONE, EQUIPMENT TO BE USED, AND ASSOCIATED HEALTH AND SAFETY ISSUES.

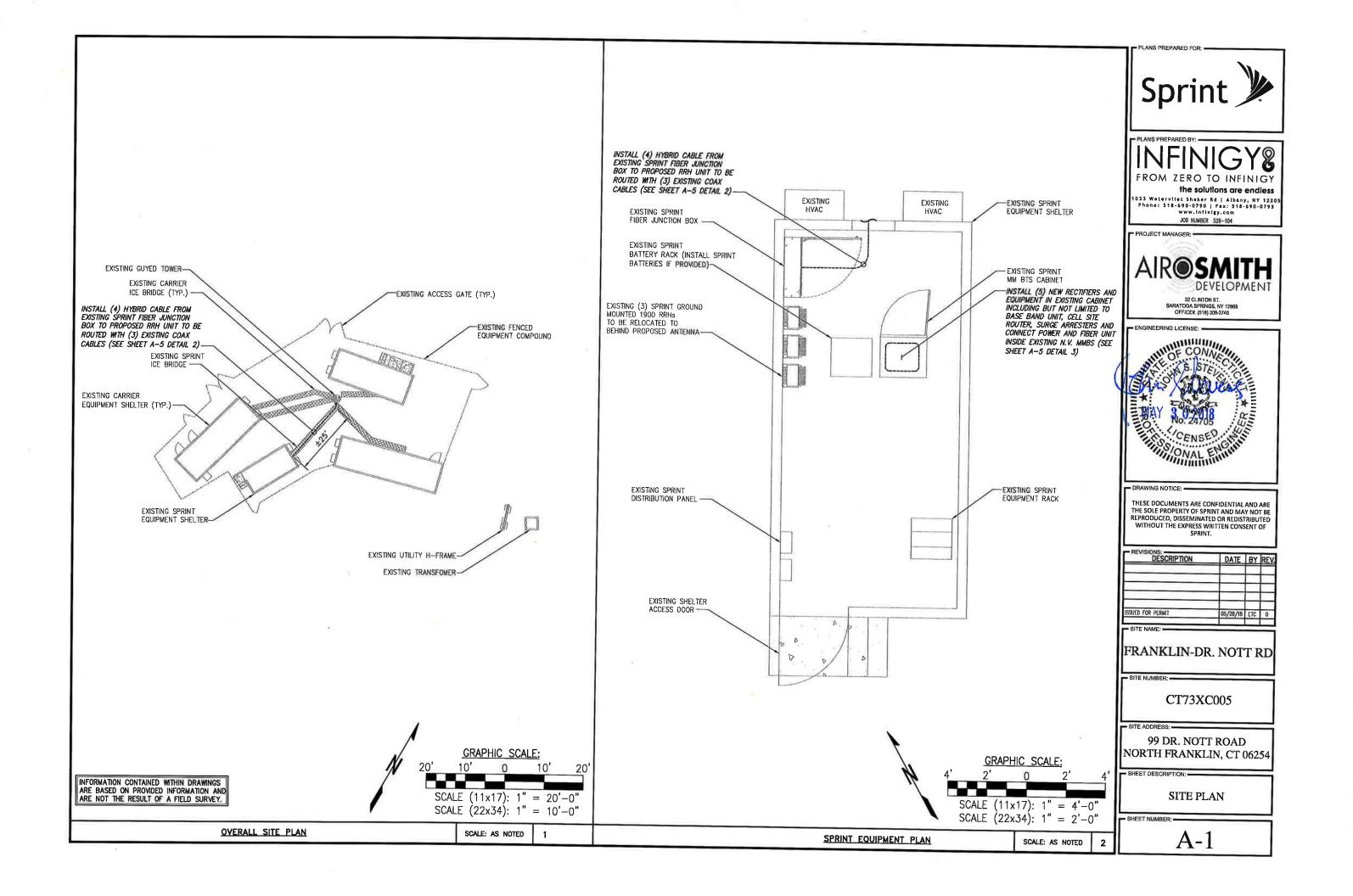
 - 4. EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM, AASJTO, AND OTHER METHODS IS NEEDED.
 - 3.2 REQUIRED TESTS:
 - A. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE FOLLOWING:
 - 1. CONCRETE CYLINDER BREAK TESTS FOR THE TOWER AND ANCHOR FOUNDATIONS AS SPECIFIED IN SECTION: PORTLAND CEMENT CONCRETE PAVING.
 - 2. ASPHALT ROADWAY COMPACTED THICKNESS, SURFACE SMOOTHNESS, AND COMPACTED DENSITY TESTING AS SPECIFIED IN SECTION: HOT MIX ASPHALT PAVING
 - 3. FIELD QUALITY CONTROL TESTING AS SPECIFIED IN SECTION: PORTLAND CEMENT CONCRETE PAVING.
 - TESTING REQUIRED UNDER SECTION: AGGREGATE BASE FOR ACCESS ROADS, PADS AND ANCHOR LOCATIONS
 - 5. STRUCTURAL BACKFILL COMPACTION TESTS FOR THE TOWER FOUNDATION.
 - 6. SITE RESISTANCE TO EARTH TESTING PER EXHIBIT: CELL SITE GROUNDING SYSTEM DESIGN
 - ANTENNA AND COAX SWEEP TESTS PER EXHIBIT: ANTENNA TRANSMISSION LINE ACCEPTANCE STANDARDS.
 - 8. GROUNDING AT ANTENNA MASTS FOR GPS AND ANTENNAS
 - 9. ALL OTHER TESTS REQUIRED BY COMPANY OR JURISDICTION.

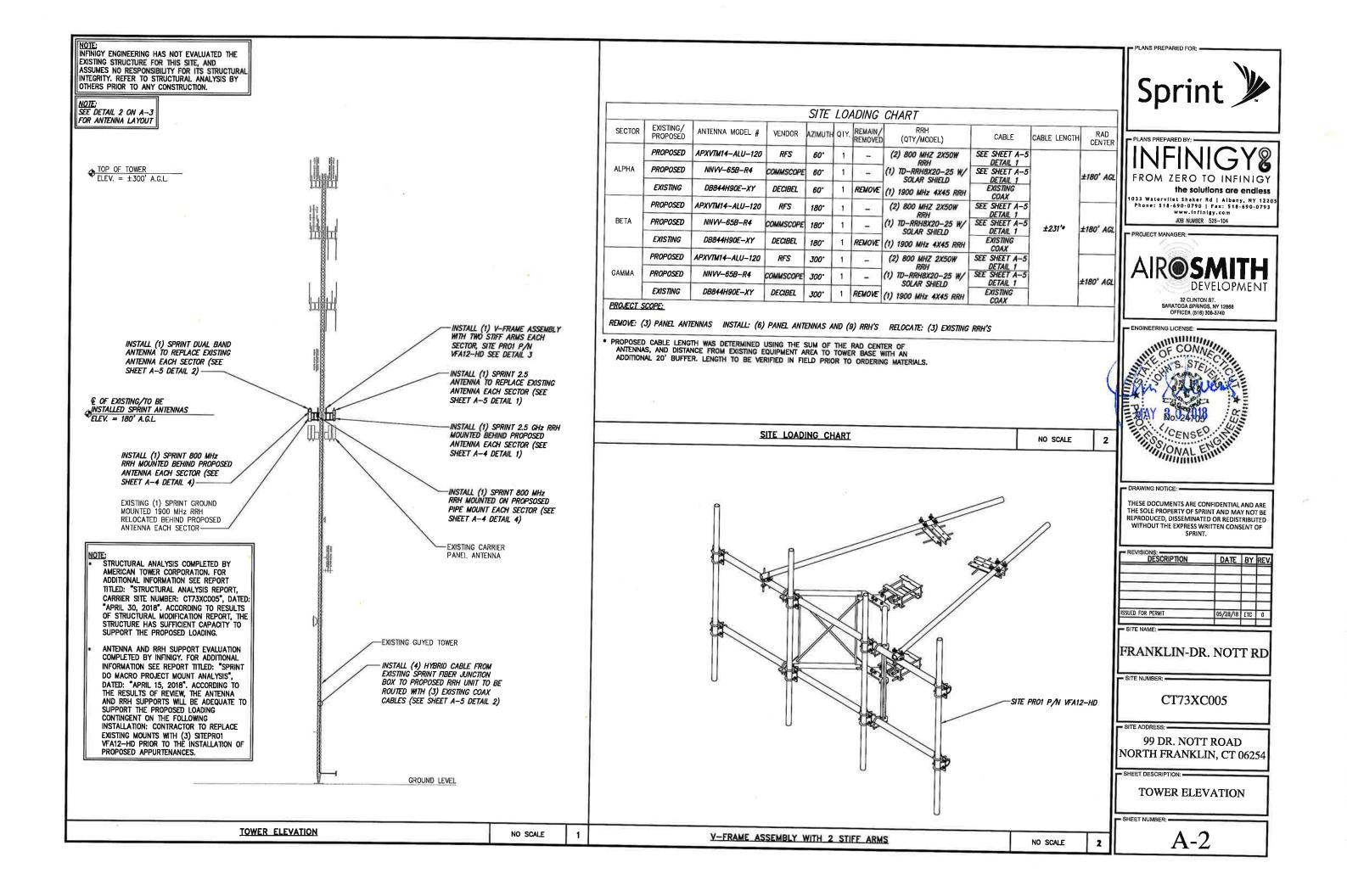
OR SPRINT REPRESENTATIVE.

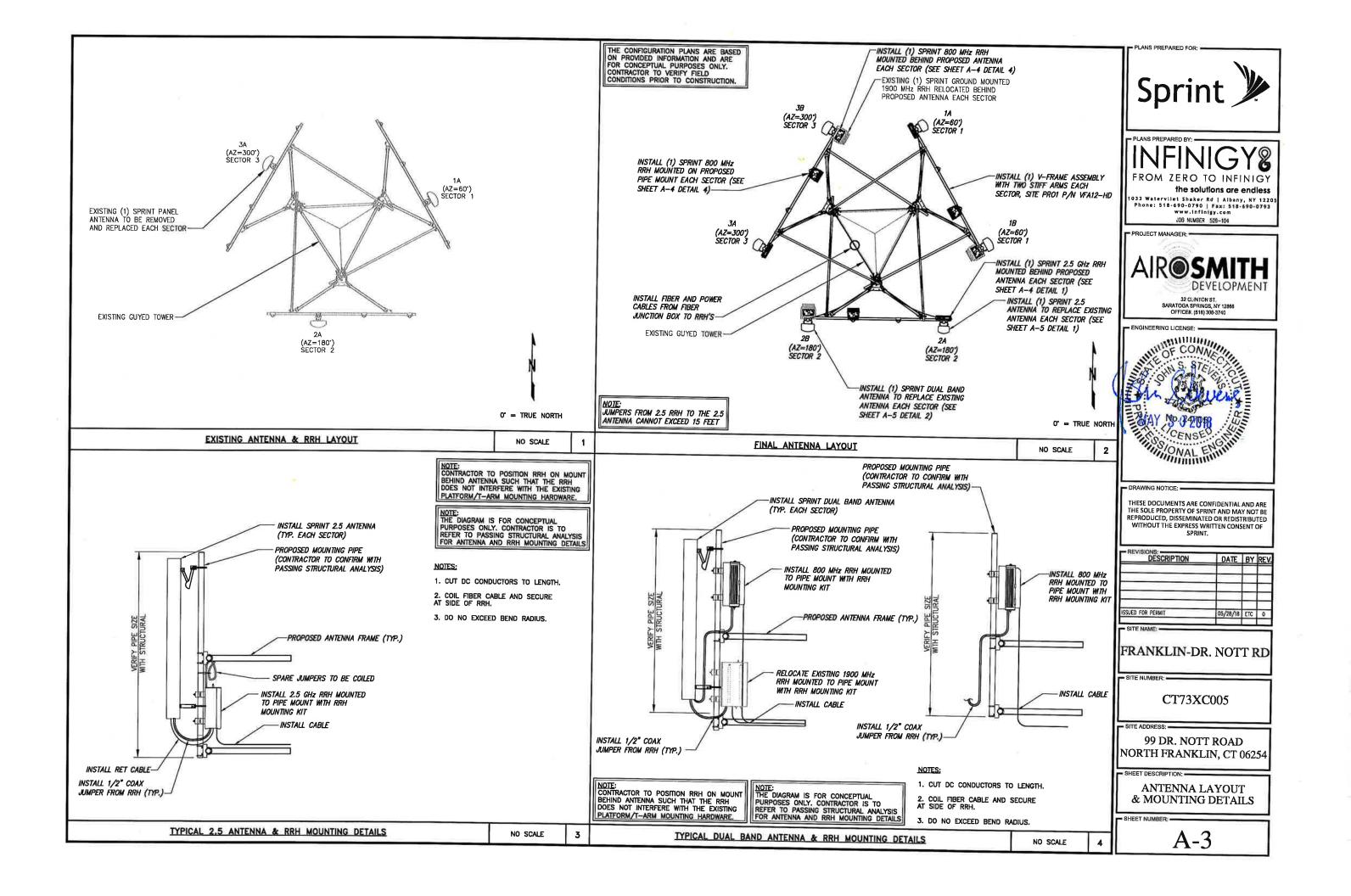
EXISTING FACILITIES.

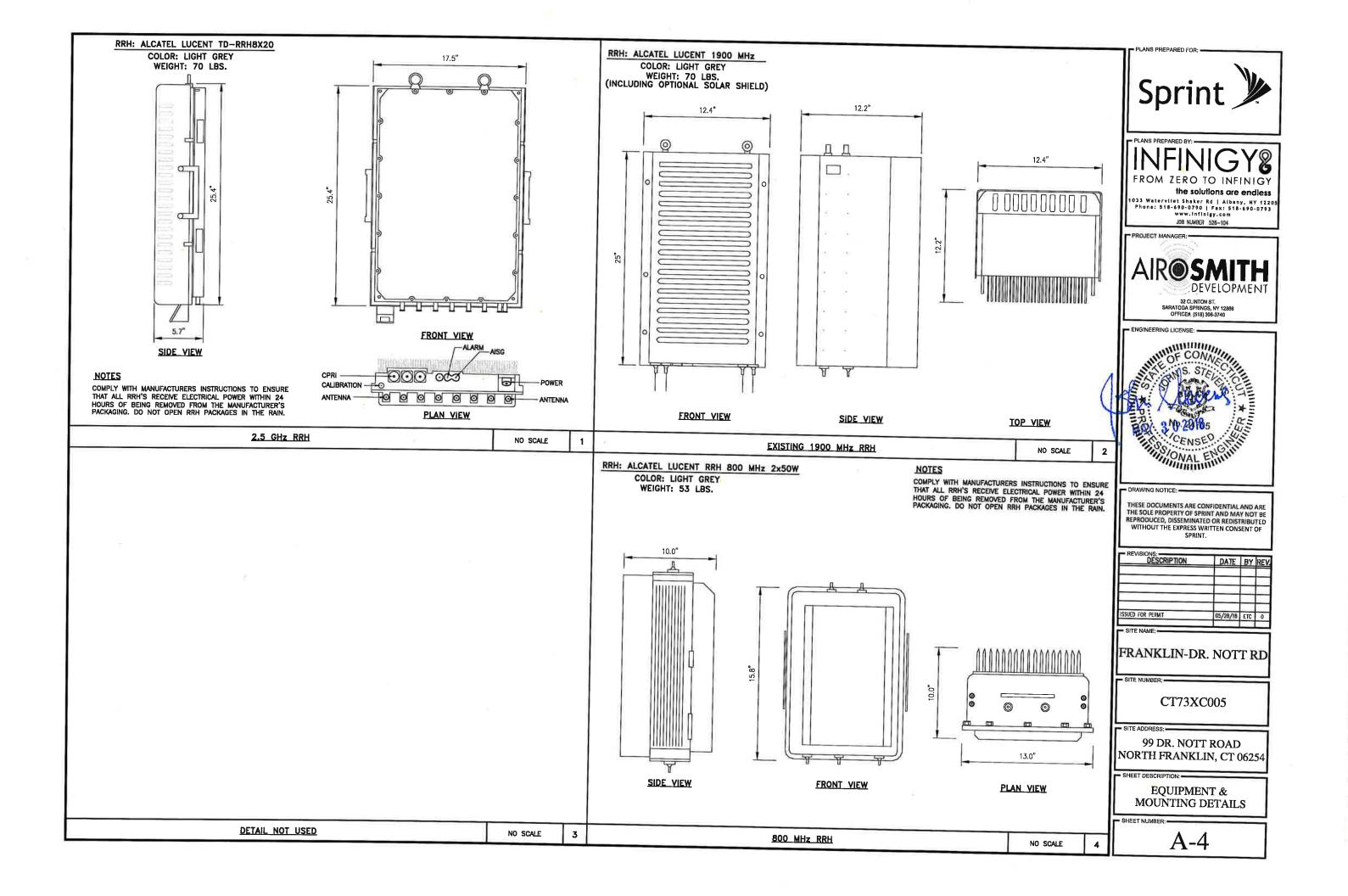
3.3 REQUIRED INSPECTIONS

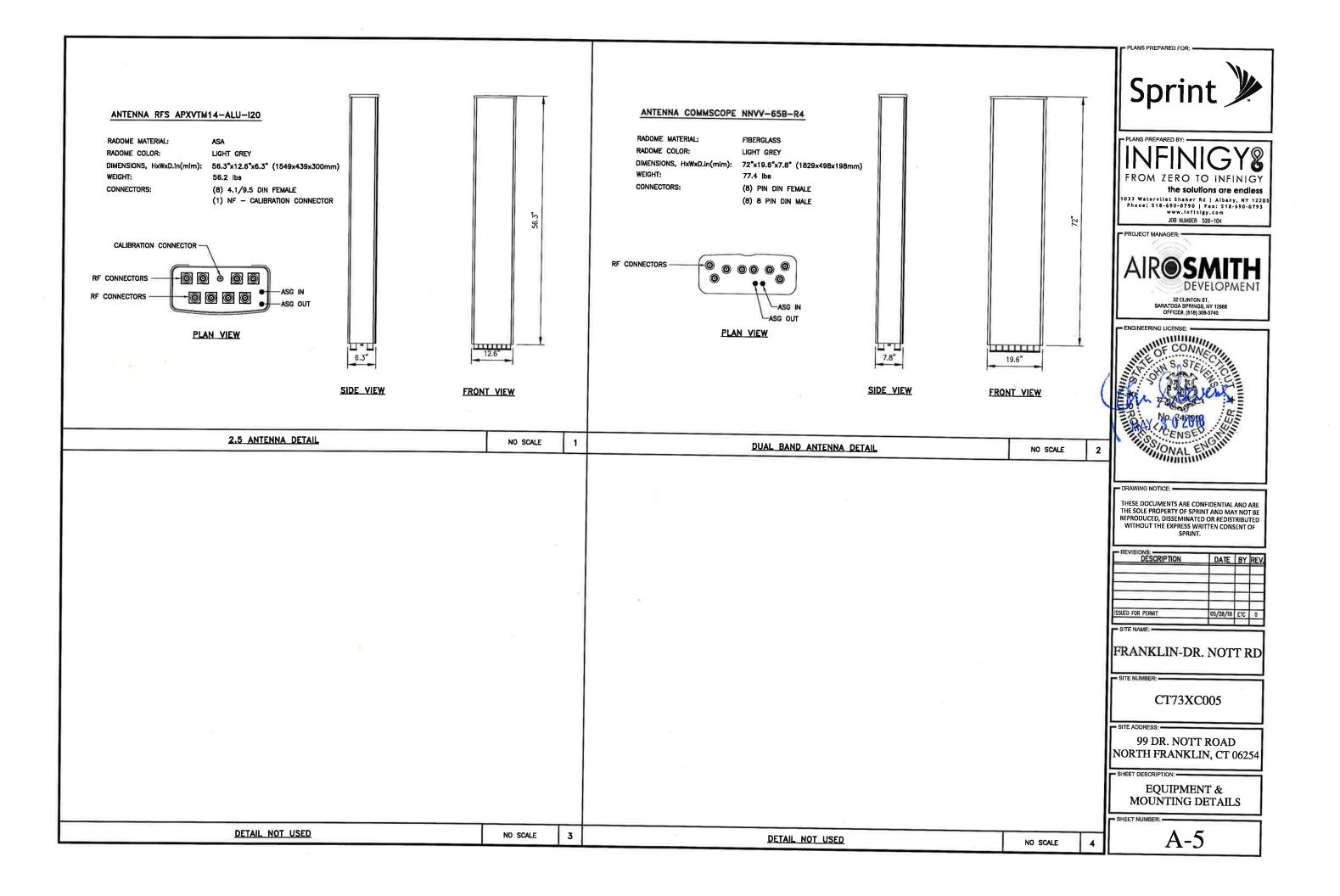

CONTINUE FROM SP-2

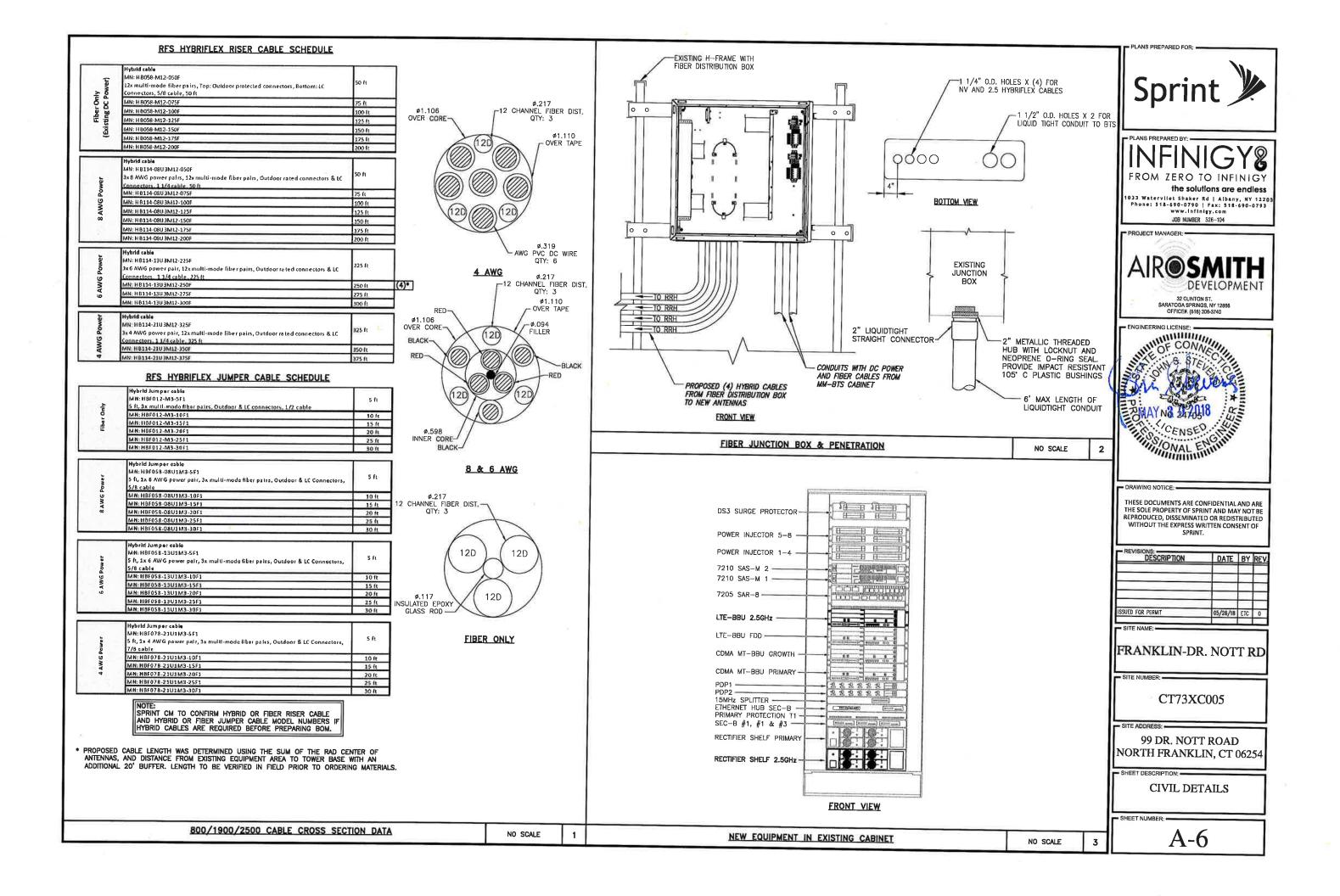

- 7. VERIFICATION DOCUMENTED WITH THE ANTENNA CHECKLIST REPORT, BY A&E. SITE DEVELOPMENT REP, OR RF REP.
- 8. FINAL INSPECTION CHECKLIST AND HANDOFF WALK (HOC.). SIGNED FORM SHOWING ACCEPTANCE BY FIELD OPS IS TO BE UPLOADED INTO SMS.
- 9. COAX SWEEP AND FIBER TESTING DOCUMENTS SUBMITTED VIA SMS FOR RF
- 10. SCAN-ABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT
- 11. ALL AVAILABLE JURISDICTIONAL INFORMATION
- 12. PDF SCAN OF REDLINES PRODUCED IN FIELD
- C, THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING.
- D. CONSTRUCTION INSPECTIONS AND CORRECTIVE MEASURES SHALL BE DOCUMENTED BY THE CONTRACTOR WITH WRITTEN REPORTS AND PHOTOGRAPHS. PHOTOGRAPHS MUST BE DIGITAL AND OF SUFFICIENT QUALITY TO CLEARLY SHOW THE SITE CONSTRUCTION. PHOTOGRAPHS MUST CLEARLY IDENTIFY THE PHOTOGRAPHED ITEM AND BE LABELED WITH THE SITE CASCADE NUMBER, SITE NAME, DESCRIPTION, AND
- 3.4 DELIVERABLES: TEST AND INSPECTION REPORTS AND CLOSEOUT DOCUMENTATION SHALL BE UPLOADED TO THE SMS AND/OR FORWARDED TO SPRINT FOR INCLUSION INTO THE PERMANENT SITE FILES
- A. THE FOLLOWING TEST AND INSPECTION REPORTS SHALL BE PROVIDED AS APPLICABLE.
- 1. CONCRETE MIX AND CYLINDER BREAK REPORTS.
- 2. STRUCTURAL BACKFILL COMPACTION REPORTS.
- 3. SITE RESISTANCE TO EARTH TEST,
- 4. ANTENNA AZIMUTH AND DOWN TILT VERIFICATION
- 5. TOWER ERECTION INSPECTIONS AND MEASUREMENTS DOCUMENTING TOWER INSTALLED PER SUPPLIER'S REQUIREMENTS AND THE APPLICABLE SECTIONS
- 6. COAX CABLE SWEEP TESTS PER COMPANY'S "ANTENNA LINE ACCEPTANCE STANDARDS".
- B. REQUIRED CLOSEOUT DOCUMENTATION INCLUDES THE FOLLOWING;
- TEST WELLS AND TRENCHES: PHOTOGRAPHS OF ALL TEST WELLS; PHOTOGRAPHS SHOWING ALL OPEN EXCAVATIONS AND TRENCHING PRIOR TO BACKFILLING SHOWING A TAPE MEASURE VISIBLE IN THE EXCAVATIONS INDICATING DEPTH.
- 2. CONDUITS, CONDUCTORS AND GROUNDING: PHOTOGRAPHS SHOWING TYPICAL INSTALLATION OF CONDUCTORS AND CONNECTORS; PHOTOGRAPHS SHOWING TYPICAL BEND RADIUS OF INSTALLED GROUND WIRES AND GROUND ROD
- 3. CONCRETE FORMS AND REINFORCING: CONCRETE FORMING AT TOWER AND EQUIPMENT/SHELTER PAD/FOUNDATIONS - PHOTOGRAPHS SHOWING ALL REINFORCING STEEL, UTILITY AND CONDUIT STUB OUTS; PHOTOGRAPHS SHOWING CONCRETE POUR OF SHELTER SLAB/FOUNDATION, TOWER FOUNDATION AND GUY ANCHORS WITH VIBRATOR IN USE; PHOTOGRAPHS SHOWING EACH ANCHOR ON GUYED TOWERS, BEFORE CONCRETE POUR.
- 4. TOWER, ANTENNAS AND MAINLINE: INSPECTION AND PHOTOGRAPHS OF SECTION STACKING; INSPECTION AND PHOTOGRAPHS OF PLATFORM COMPONENT ATTACHMENT POINTS; PHOTOGRAPHS OF TOWER TOP GROUNDING; PHOTOS OF TOWER COAX LINE COLOR CODING AT THE TOP AND AT GROUND LEVEL; INSPECTION AND PHOTOGRAPHS OF OPERATIONAL OF TOWER LIGHTING, AND INSPECTION AND PHOTOGRAPHS OF OPERATIONAL OF TOWER LIGHTING, AND PLACEMENT OF FAA REGISTRATION SIGN; PHOTOGRAPHS SHOWING ADDITIONAL GROUNDING POINTS FOR TOWERS GREATER THAN 200 FEET; PHOTOS OF ANTENNA GROUND BAR, EQUIPMENT GROUND BAR, AND MASTER GROUND BAR; PHOTOS OF GPS ANTENNA(S); PHOTOS OF EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA; PHOTOS OF COAX WEATHERPROOFING - TOP AND BOTTOM; PHOTOS OF COAX GROUNDING--TOP AND BOTTOM; PHOTOS OF ANTENNA AND MAST GROUNDING; PHOTOS OF COAX CABLE ENTRY INTO SHELTER; PHOTOS OF PLATFORM MECHANICAL CONNECTIONS TO TOWER/MONOPOLE.
- 5. ROOF TOPS: PRE-CONSTRUCTION AND POST-CONSTRUCTION VISUAL INSPECTION AND PHOTOGRAPHS OF THE ROOF AND INTERIOR TO DETERMINE AND DOCUMENT CONDITIONS; ROOF TOP CONSTRUCTION INSPECTIONS AS REQUIRED BY THE JURISDICTION; PHOTOGRAPHS OF CABLE TRAY AND/OR ICE BRIDGE; PHOTOGRAPHS OF DOGHOUSE/CABLE EXIT FROM ROOF;
- 6. SITE LAYOUT PHOTOGRAPHS OF THE OVERALL COMPOUND, INCLUDING EQUIPMENT PLATFORM FROM ALL FOUR CORNERS.
- 7. FINISHED UTILITIES: CLOSE-UP PHOTOGRAPHS OF THE PPC BREAKER PANEL; CLOSE-UP PHOTOGRAPH OF THE INSIDE OF THE TELCO PANEL AND NIU; CLOSE-UP PHOTOGRAPH OF THE POWER METER AND DISCONNECT; PHOTOS OF POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE; PHOTOGRAPHS AT METER BOX AND/OR FACILITY DISTRIBUTION PANEL.
- 8. REQUIRED MATERIALS CERTIFICATIONS: CONCRETE MIX DESIGNS; MILL CERTIFICATION FOR ALL REINFORCING AND STRUCTURAL STEEL; AND ASPHALT PAVING MIX DESIGN.
- 9. ANY AND ALL SUBMITTALS BY THE JURISDICTION OR COMPANY.

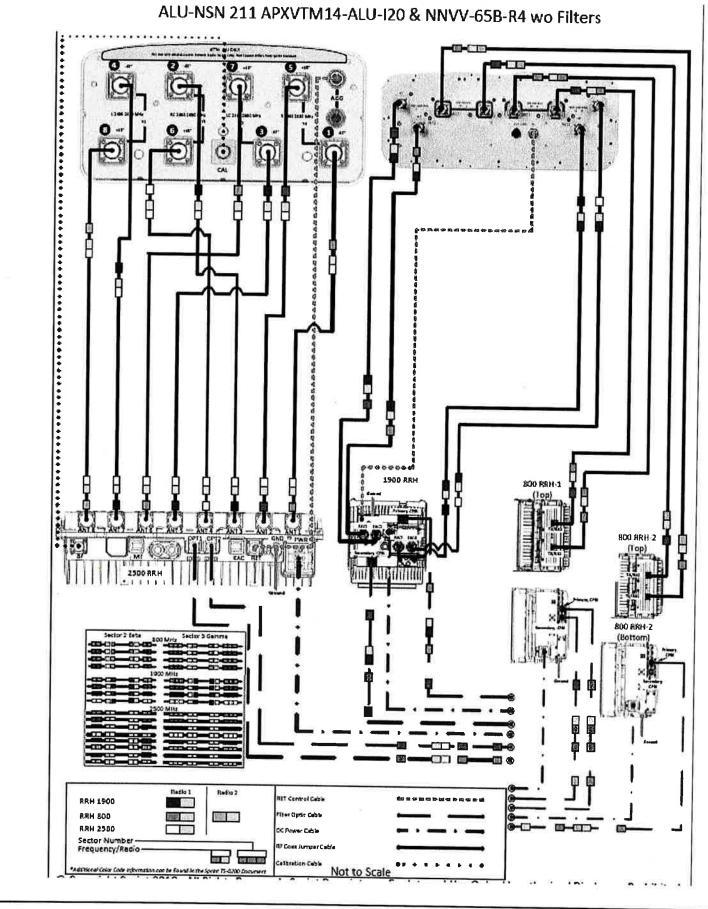

SECTION 01 400 - SUBMITTALS & TESTS

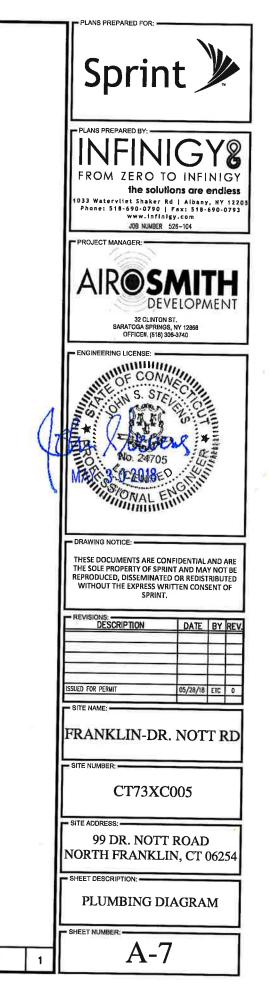

- PART 1 GENERAL
- 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.
- 1.2 RELATED DOCUMENTS:
- A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
- B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION
- 3.1 WEEKLY REPORTS:
- A. CONTRACTOR SHALL PROVIDE SPRINT WITH WEEKLY REPORTS SHOWING PROJECT STATUS. THIS STATUS REPORT FORMAT WILL BE PROVIDED TO THE CONTRACTOR BY SPRINT. THE REPORT WILL CONTAIN SITE ID NUMBER, THE MILESTONES FOR EACH SITE, INCLUDING THE BASELINE DATE, ESTIMATED COMPLETION DATE AND ACTUAL COMPLETION DATE.
- B. REPORT INFORMATION WILL BE TRANSMITTED TO SPRINT VIA ELECTRONIC MEANS AS REQUIRED. THIS INFORMATION WILL PROVIDE A BASIS FOR PROGRESS MONITORING AND PAYMENT.
- 3.2 PROJECT CONFERENCE CALLS:
- A. SPRINT MAY HOLD WEEKLY PROJECT CONFERENCE CALLS. CONTRACTOR WILL BE REQUIRED TO COMMUNICATE SITE STATUS, MILESTONE COMPLETIONS AND UPCOMING MILESTONE PROJECTIONS, AND ANSWER ANY OTHER SITE STATUS QUESTIONS AS
- 3.3 PROJECT TRACKING IN SMS:
 - A. CONTRACTOR SHALL PROVIDE SCHEDULE UPDATES AND PROJECTIONS IN THE SMS SYSTEM ON A WEEKLY BASIS.
- 3.4 ADDITIONAL REPORTING:
- A. ADDITIONAL OR ALTERNATE REPORTING REQUIREMENTS MAY BE ADDED TO THE REPORT AS DETERMINED TO BE REASONABLY NECESSARY BY COMPANY.
- 3.5 PROJECT PHOTOGRAPHS:
- A. FILE DIGITAL PHOTOGRAPHS OF COMPLETED SITE IN JPEG FORMAT IN THE SMS PHOTO LIBRARY FOR THE RESPECTIVE SITE, PHOTOGRAPHS SHALL BE CLEARLY LABELED WITH SITE NUMBER, NAME AND DESCRIPTION, AND SHALL INCLUDE AT A MINIMUM THE FOLLOWING AS APPLICABLE:
- 1. 1SHELTER AND TOWER OVERVIEW,
- 2. TOWER FOUNDATION(S) FORMS AND STEEL BEFORE POUR (EACH ANCHOR ON GUYED TOWERS).
- 3. TOWER FOUNDATION(S) POUR WITH VIBRATOR IN USE (EACH ANCHOR ON GUYED TOWERS).
- 4. TOWER STEEL AS BEING INSTALLED INTO HOLE (SHOW ANCHOR STEEL ON GUYED TOWERS).
- 5. PHOTOS OF TOWER SECTION STACKING.
- 6. CONCRETE TESTING / SAMPLES.
- 7. PLACING OF ANCHOR BOLTS IN TOWER FOUNDATION.
- 8. BUILDING/WATER TANK FROM ROAD FOR TENANT IMPROVEMENTS OR COMMENTS.
- 9. SHELTER FOUNDATION --- FORMS AND STEEL BEFORE POURING.
- 10. SHELTER FOUNDATION POUR WITH VIBRATOR IN USE.
- 11. COAX CABLE ENTRY INTO SHELTER.
- 12. PLATFORM MECHANICAL CONNECTIONS TO TOWER/MONOPOLE.
- 13. ROOFTOP PRE AND POST CONSTRUCTION PHOTOS TO INCLUDE PENETRATIONS AND INTERIOR CEILING.
- 14. PHOTOS OF TOWER TOP COAX LINE COLOR CODING AND COLOR CODING AT GROUND LEVEL.
- 15. PHOTOS OF ALL APPROPRIATE COMPANY OR REGULATORY SIGNAGE.
- 16. PHOTOS OF EQUIPMENT BOLT DOWN INSIDE SHELTER.
- 17. POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE AND POWER AND TELCO SUPPLY LOCATIONS INCLUDING METER/DISCONNECT.
- 18. ELECTRICAL TRENCH(S) WITH ELECTRICAL / CONDUIT BEFORE BACKFILL
- 19. ELECTRICAL TRENCH(S) WITH FOIL-BACKED TAPE BEFORE FURTHER BACKFILL.
- 20. TELCO TRENCH WITH TELEPHONE / CONDUIT BEFORE BACKFILL.
- 21. TELCO TRENCH WITH FOIL-BACKED TAPE BEFORE FURTHER BACKFILL.
- 22. SHELTER GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII).
- 23. TOWER GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII).

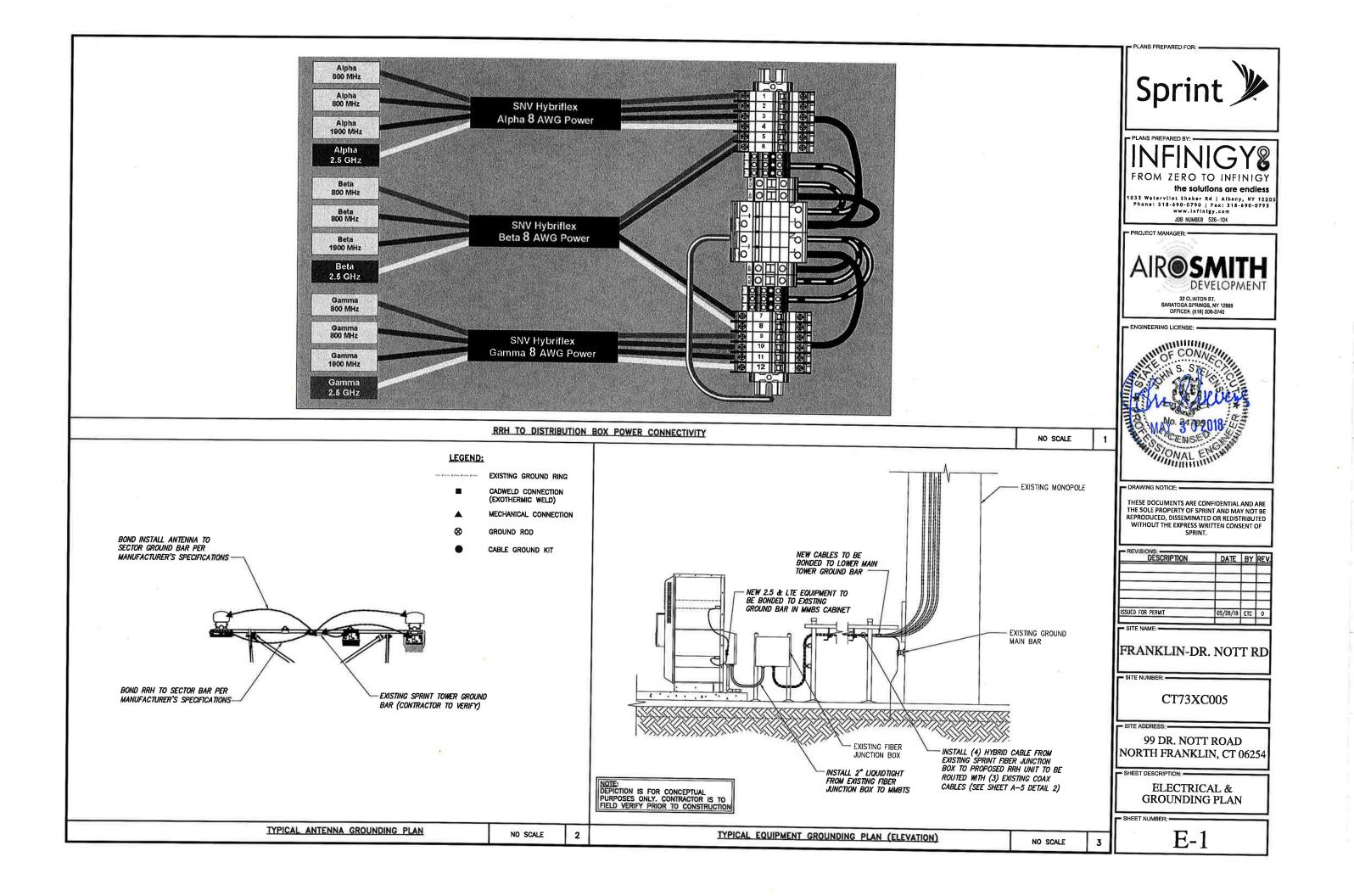

- ALL CAD WELDS AND BEND RADII).
- 25. ALL BTS GROUND CONNECTIONS
- 26. ALL GROUND TEST WELLS.
- 27. ANTENNA GROUND BAR AND EQUIPMENT GROUND BAR.
- 28. ADDITIONAL GROUNDING POINTS ON TOWERS ABOVE 200'.
- 29. HVAC UNITS INCLUDING CONDENSERS ON SPLIT SYSTEMS.
 - 30. GPS ANTENNAS.
- 31. CABLE TRAY AND/OR WAVEGUIDE BRIDGE.
- 32. DOGHOUSE/CABLE EXIT FROM ROOF.
- 34. MASTER BUS BAR
- 35. TELCO BOARD AND NIU.
- 36. ELECTRICAL DISTRIBUTION WALL.
 - 37. CABLE ENTRY WITH SURGE SUPPRESSION.
 - 38. ENTRANCE TO EQUIPMENT ROOM.
 - 39. COAX WEATHERPROOFING-TOP AND BOTTOM OF TOWER.
 - 40. COAX GROUNDING -TOP AND BOTTOM OF TOWER.
 - 41. ANTENNA AND MAST GROUNDING.
- 42. LANDSCAPING WHERE APPLICABLE.
- 3.6 FINAL PROJECT ACCEPTANCE: COMPLETE ALL REQUIRED REPORTING TASKS PER CONTRACT, CONTRACT DOCUMENTS OR THE SPRINT INTEGRATED CONSTRUCTION STANDARDS FOR WIRELESS SITES AND UPLOAD INTO SITERRA.

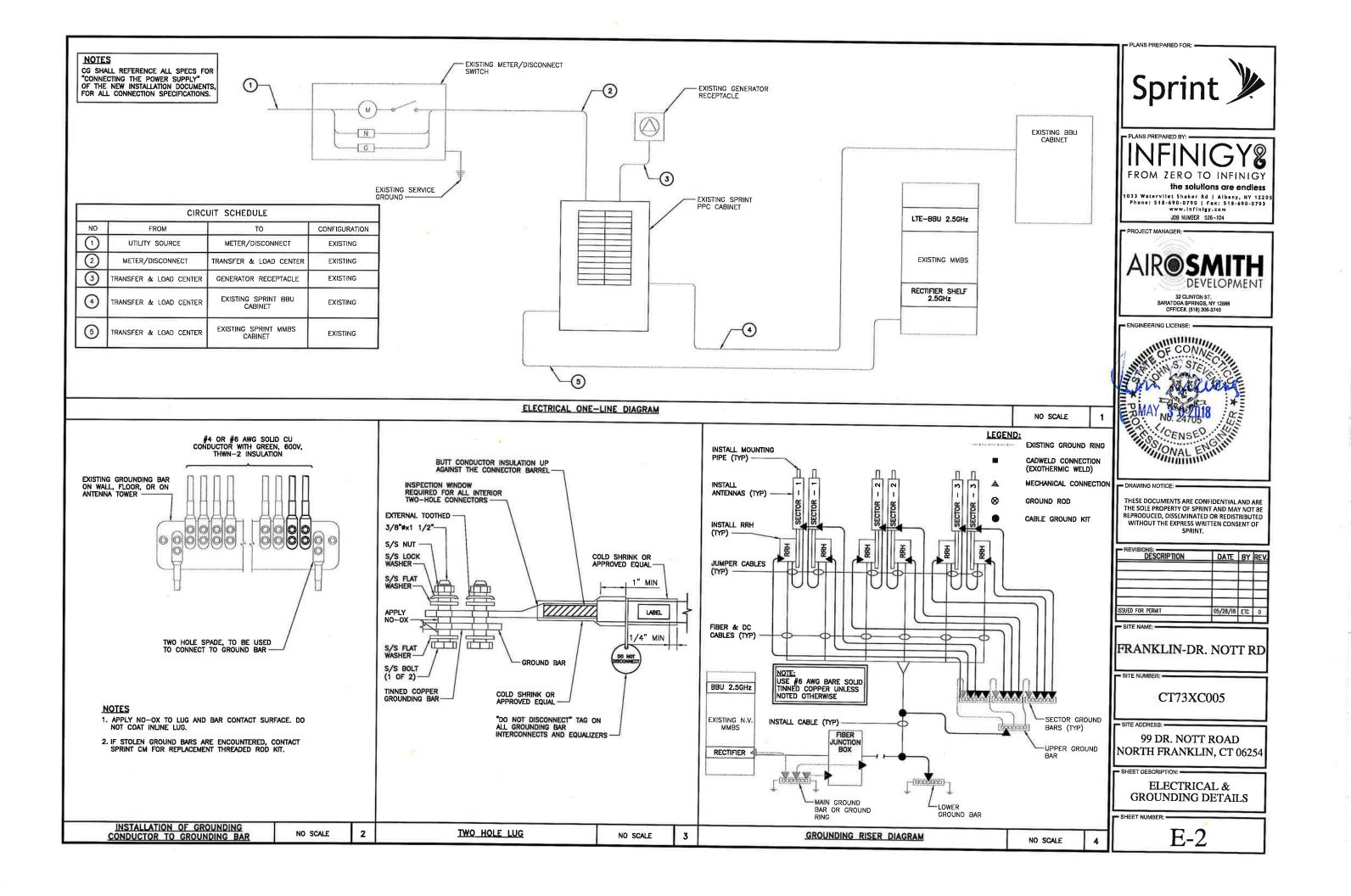












PLUMBING DIAGRAM

NO SCALE

Contents

Introduction	3
Supporting Documentation	3
Analysis Code Requirements	3
Conclusion	3
Final Configuration Loading	4
Structure Usages	4
Assumptions and Limitations	4
Calculations	Appended

Introduction

Infinigy Engineering has been requested to perform a mount analysis on the existing Sprint mounts. All supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The mount was analyzed using RISA-3D Version 16.0.2 structural analysis software.

Supporting Documentation

Wind Speed	101 mph (3-Second Gust, V _{asd}) / 130 mph (3-Second Gust V _{ult})
Wind Speed w/ ice	50 mph (3-Second Gust) w/ 3/4" ice
TIA Revision	ANSI/TIA222-G
Adopted IBC	2012 IBC / 2016 Connecticut State Building Code
Structure Class	II
Exposure Category	В
Topographic Category	1
Calculated Crest Height	0 ft

Analysis Code Requirements

Conclusion

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA code requirements. The mount for the proposed carrier is therefore deemed adequate to support the final loading configuration as listed in this report.

If you have any questions, require additional information, or actual conditions differ from those as detailed in this report please contact me via the information below:

Nathaniel R Ober E.I.T. Northeast Structural Region Lead | Infinigy 1033 Watervliet Shaker Road, Albany, NY 12205 (O) (518) 690-0790 | (M) (303) 704-0322 nober@infinigy.com | www.infinigy.com April 15, 2018

Final Configuration Loading

Mount Centerline (ft)	RAD Height (ft)	Horizontal Offset (ft)*	Qty.	Appurtenance	Carrier
		12.0	3	Commscope NNVV-65B-R4	
		0.0	3	RFS APXVTM14-ALU-I20	
180.0	180.0	4.0	3	Alcatel-Lucent TD-RRH8x20-25	Sprint
		0.0,12.0	6	Alcatel-Lucent RRH2x50-08	
		8.0	3	Alcatel-Lucent 1900 MHz 4X45 RRH	

* Horizontal Offset is defined as the distance from the left most edge of the mount face horizontal when viewed facing the tower

Structure Usages

Stand off	46.0	Pass
Face Horizontal	40.8	Pass
Mount Pipe	38.8	Pass
RATING =	46.0	Pass

Assumptions and Limitations

Our structural calculations are completed assuming all information provided to Infinigy Engineering is accurate and applicable to this site. For the purposes of calculations, we assume an overall structure condition of "like new" and all members and connections to be free of corrosion and/or structural defects. The structure owner and/or contractor shall verify the structure's condition prior to installation of any proposed equipment. If actual conditions differ from those described in this report Infinigy Engineering should be notified immediately to complete a revised evaluation.

Our evaluation is completed using standard TIA, AISC, ACI, and ASCE methods and procedures. Our structural results are proprietary and should not be used by others as their own. Infinigy Engineering is not responsible for decisions made by others that are or are not based on our supplied assumptions and conclusions.

This report is an evaluation of the proposed carriers mount structure only and does not reflect adequacy of the existing tower, other mounts, or coax mounting attachments. These elements are assumed to be adequate for the purposes of this analysis and are assumed to have been installed per their manufacturer requirements.

Site Name: Client: Carrier: Engineer: Date:						FRC	TWIND LOAD	TO INFIN utions are en	NIGY ndless
Sit	e Information Input	s:	Ro	oftop Inp	uts:				
Adopted Building Code:	2015 IBC	Rooftop Wind Sp	eed-Up?:	No					
Structure Load Standard:	TIA-222-G								
Antenna Load Standard:	TIA-222-G								
Structure Risk Category:	Ш								
Structure Type:	Mount - Sector								
Number of Sectors:	2								
Structure Shape 1:	Round								
V	/ind Loading Inputs	:	Wi	nd with No	o Ice		W	/ind with lo	e
Design Wind Velocity:	101 r	mph (nominal 3-second gust)	q _z (psf)	Gh	F _{ST} (psf)		q _z (psf)	Gh	F _{ST} (psf)
Wind Centerline 1 (z ₁):	180.0 f	ť	29.00	1.00	34.80		7.11	1.00	26.10
Side Face Angle (θ):	60 0	degrees							
Exposure Category:	В								
Topographic Category:	1								

	Ice Loading Inputs:	1
Is Ice Loading Needed?:	Yes	
Ice Wind Velocity:	50	mph (nominal 3-second gust)
Base Ice Thickness:	0.75	in

Input Appurtenance Information and Load Placements:

Appurtenance Name	Elevation (ft)	Total Quantity	Ка	Front Shape	Side Shape	q _z (psf)	EPA (ft ²)	Fz (Ibs)	Fx (lbs)	Fz(60) (lbs)	Fx(30) (lbs)
RFS APXVTM14-ALU-I20	180.0	3	1.00	Flat	Flat	29.00	6.34	183.93	104.61	124.44	164.10
Commscope NNVV-65B-R4	180.0	3	1.00	Flat	Flat	29.00	12.27	355.86	166.75	214.03	308.59
Alcatel-Lucent 800 MHz 2x50W RRH	180.0	6	1.00	Flat	Flat	29.00	2.06	59.69	56.02	56.94	58.77
Alcatel-Lucent TD-RRH8x20-25	180.0	3	1.00	Flat	Flat	29.00	4.05	117.32	44.44	62.66	99.10
Alcatel-Lucent 1900 MHz 4x45 RRH	180.0	3	1.00	Flat	Flat	29.00	2.31	67.06	68.88	68.42	67.52

Envelope Only Solution		
Infinigy Engineering PLLC NRO	VFA12-HD	Apr 15, 2018 at 11:47 AM

Company : Infinigy Engineering PLLC Designer : NRO Job Number : 526-104 Model Name : VFA12-HD

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N3	N4			2.5"pipe	Beam	None	A53 Gr.B	Typical
2	M2	N1	N2			2.5"pipe	Beam	None	A53 Gr.B	Typical
3	M3	N8	N6			2" pipe	Beam	None	A53 Gr.B	Typical
4	M4	N9	N6			2" pipe	Beam	None	A53 Gr.B	Typical
5	M5	N7	N5			2" pipe	Beam	None	A53 Gr.B	Typical
6	M6	N10	N5			2" pipe	Beam	None	A53 Gr.B	Typical
7	M7	N12	N14			0.625" S.R.	Beam	None	A36 Gr.36	Typical
8	M8	N14	N16			0.625" S.R.	Beam	None	A36 Gr.36	Typical
9	M9	N16	N18			0.625" S.R.	Beam	None	A36 Gr.36	Typical
10	M10	N18	N12			0.625" S.R.	Beam	None	A36 Gr.36	Typical
11	M11	N19	N13			0.625" S.R.	Beam	None	A36 Gr.36	Typical
12	M12	N13	N15			0.625" S.R.	Beam	None	A36 Gr.36	Typical
13	M13	N15	N17			0.625" S.R.	Beam	None	A36 Gr.36	Typical
14	M14	N17	N19			0.625" S.R.	Beam	None	A36 Gr.36	Typical
15	M15	N21	N23			2" pipe	Beam	None	A53 Gr.B	Typical
16	M16	N22	N24			2" pipe	Beam	None	A53 Gr.B	Typical
17	MP4	N37	N33			2" pipe	Beam	None	A53 Gr.B	Typical
18	MP3	N39	N35			2" pipe	Beam	None	A53 Gr.B	Typical
19	MP2	N40	N36			2" pipe	Beam	None	A53 Gr.B	Typical
20	MP1	N38	N34			2" pipe	Beam	None	A53 Gr.B	Typical

Material Takeoff

	Material	Size	Pieces	Length[in]	Weight[K]
1	Hot Rolled Steel				
2	A36 Gr.36	0.625" S.R.	8	353.6	0
3	A53 Gr.B	PIPE 2.0	10	809	.2
4	A53 Gr.B	PIPE 2.5	2	300	.1
5	Total HR Steel		20	1462.6	.4

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut.	Area(M	Surface
1	Self Weight	DĽ		-1			8			
2	Wind Load AZI 000	WLZ					8		1	
3	Wind Load AZI 090	WLX					8		1	
4	Ice Weight	OL1					8	20		
5	Wind + Ice Load AZI 000	OL2					8		1	
6	Wind + Ice Load AZI 090	OL3					8		1	
7	Service Live 1	LL				2				
8	BLC 2 Transient Area Loads	None						16		
9	BLC 3 Transient Area Loads	None						16		
10	BLC 5 Transient Area Loads	None						16		
11	BLC 6 Transient Area Loads	None						16		

Load Combinations

	Description	So	P	S	BLC	Fac	BLC	Fac.	BLC	Fac.	BLC	Fac.	BLC	Fac	BLC	Fac								
1	1.4D	Yes	Y		DL	1.4																		
2	1.2D + 1.6W AZI 000	Yes	Y		DL	1.2	W	1.6																
3	1.2D + 1.6W AZI 030	Yes	Y		DL	1.2	W	1.3	W	.8														
4	1.2D + 1.6W AZI 060	Yes	Y		DL	1.2	W	.8	W	1.3														
5	1.2D + 1.6W AZI 090	Yes	Y		DL	1.2			W	1.6														
6	1.2D + 1.6W AZI 120	Yes	Υ		DL	1.2	W	8	W	1.3														

Company:Infinigy Engineering PLLCDesigner:NROJob Number:526-104Model Name:VFA12-HD

Load Combinations (Continued)

Description	SO P S	BLCFacBLCFacBLCFacBLCFacBLCFacBLCF	ac BLCEac BLCE	ac BLCEac BLCEac
7 1.2D + 1.6W AZI 150	Yes Y	DL 1.2 W1.3. W8		
8 1.2D + 1.6W AZI 180	Yes Y	DL 1.2 W1.6		
9 1.2D + 1.6W AZI 210	Yes Y	DL 1.2 W1.3W8		
10 1.2D + 1.6W AZI 240	Yes Y	DL 1.2 W8 W1.3		
11 1.2D + 1.6W AZI 270	Yes Y	DL 1.2 W1.6		
12 1.2D + 1.6W AZI 300	Yes Y	DL 1.2 W8 W1.3		
13 1.2D + 1.6W AZI 330	Yes Y	DL 1.2 W1.3 W8		
14 0.9D + 1.6W AZI 000	Yes Y	DL .9 W 1.6		
15 0.9D + 1.6W AZI 030	Yes Y	DL .9 W1.3W8		
16 0.9D + 1.6W AZI 060	Yes Y	DL .9 W8 W1.3		
17 0.9D + 1.6W AZI 090	Yes Y	DL .9 W 1.6		
18 0.9D + 1.6W AZI 120	Yes Y	DL .9 W8 W 1.3		
19 0.9D + 1.6W AZI 150	Yes Y	DL .9 W1.3W8		
20 0.9D + 1.6W AZI 180	Yes Y	DL .9 W1.6		
21 0.9D + 1.6W AZI 210	Yes Y	DL .9 W1.3W8		
22 0.9D + 1.6W AZI 240	Yes Y	DL .9 W8 W1.3		
23 0.9D + 1.6W AZI 270	Yes Y	DL .9 W1.6		
24 0.9D + 1.6W AZI 300	Yes Y	DL .9 W8 W1.3		
25 0.9D + 1.6W AZI 330	Yes Y	DL .9 W1.3W8		
26 1.2D + 1.0Di	Yes Y	DL 1.2 OL1 1		
27 1.2D + 1.0Di + 1.0Wi A.	Yes Y	DL 1.2 OL1 1 OL2 1		
28 1.2D + 1.0Di + 1.0Wi A.		DL 1.2 OL1 1 OL2 .866 OL3 .5		
29 1.2D + 1.0Di + 1.0Wi A.		DL 1.2 OL1 1 OL2 .5 OL3 .866		
30 1.2D + 1.0Di + 1.0Wi A.		DL 1.2 OL1 1 OL3 1		
31 1.2D + 1.0Di + 1.0Wi A.		DL 1.2 OL1 1 OL25 OL3.866		
32 1.2D + 1.0Di + 1.0Wi A.		DL 1.2 OL1 1 OL2866 OL3 .5		
33 1.2D + 1.0Di + 1.0Wi A.		DL 1.2 OL1 1 OL2 -1		
34 1.2D + 1.0Di + 1.0Wi A.		DL 1.2 OL1 1 OL2866 OL35		
35 1.2D + 1.0Di + 1.0Wi A.		DL 1.2 OL1 1 OL25 OL3866		
36 1.2D + 1.0Di + 1.0Wi A.		DL 1.2 OL1 1 OL3 -1		
37 1.2D + 1.0Di + 1.0Wi A.		DL 1.2 OL1 1 OL2 .5 OL3866		
38 1.2D + 1.0Di + 1.0Wi A.		DL 1.2 OL1 1 OL2.866 OL35		
<u>39</u> 1.2D + 1.5L + 1.0WL (· · ·	DL 1.2 LL 1.5 W111		
40 1.2D + 1.5L + 1.0WL (-	DL 1.2 LL 1.5 W096 W056		
41 1.2D + 1.5L + 1.0WL (DL 1.2 LL 1.5 W056 W096		
42 1.2D + 1.5L + 1.0WL (DL 1.2 LL 1.5 W111		
43 1.2D + 1.5L + 1.0WL (DL 1.2 LL 1.5 W056 W		
44 1.2D + 1.5L + 1.0WL (DL 1.2 LL 1.5 W096 W		
45 1.2D + 1.5L + 1.0WL (DL 1.2 LL 1.5 W111		
46 1.2D + 1.5L + 1.0WL (DL 1.2 LL 1.5 W096 W056		
47 1.2D + 1.5L + 1.0WL (DL 1.2 LL 1.5 W056 W096		
48 1.2D + 1.5L + 1.0WL (DL 1.2 LL 1.5 W111		
49 1.2D + 1.5L + 1.0WL (DL 1.2 LL 1.5 W056 W096		
50 1.2D + 1.5L + 1.0WL (Yes Y	DL 1.2 LL 1.5 W096 W		

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N6	max	867.42	17	1546.46	33	2457.488	14	-172.019	14	81.091	15	174.881	6
2		min	-930.893	11	283.677	14	-3312.509	8	-886.71	33	-79.658	9	-160.49	12
3	N5	max	617.452	5	1369.963	27	2010.619	27	-156.236	20	463.046	6	149.298	18
4		min	-554.814	23	275.249	20	-696.916	20	-797.312	27	-441.272	24	-120.023	24
5	N23	max	40.537	5	54.222	37	1311.315	19	0	1	0	1	0	1
6		min	-40.536	23	9.909	19	-1360.894	13	0	1	0	1	0	1
7	N24	max	40.987	16	55.539	29	860.127	22	0	1	0	1	0	1
8		min	-40.89	10	10.392	22	-883.923	4	0	1	0	1	0	1

RISA-3D Version 16.0.2 [C:\Users\nober\Desktop\Weekend Sites 4-14-18\CT73XC005\VFA12-HD.r3d] Page 2

Envelope Joint Reactions (Continued)

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
9	Totals:	max	1557.168	17	2994.56	35	2207.51	14						
10		min	-1557.168	23	722.834	16	-2207.51	8						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Check	Lo		Shear C	.Loc[in].	LC	_phi*Pncphi*Pntphi* phi* Eqn
1	M14	0.625"	.460	40		.010	40	6	2339.328 9946.8 96.768 96.768 H1
2	M9	0.625"	.438	40		.011	0	6	2017.074 9946.8 96.768 96.768 H1
3	M12	0.625"	.438	40		.011	0	12	2339.328 9946.8 96.768 96.768 H1
4	M7	0.625"	.422	40		.010	0	5	2017.074 9946.8 96.768 96.768 H1
5	M4	PIPE_2.0	.419	44		.143	44.7	30	29772 32130 187118711 H1
6	M1	PIPE_2.5	.408	10		.142	104	14	41331 50715 359635961 H1
7	MP1	PIPE_2.0	.388	68	2	.044	68	36	28122 32130 187118711 H1
8	M6	PIPE_2.0	.375	44		.135	2.798	32	29772 32130 1871 1871 1 H1
9	M2	PIPE_2.5	.367	10	. 8	.132	106	8	41331 50715 359635961 H1
10	M3	PIPE_2.0	.342	44		.113	44.7	36	29772 32130 1871 1871 1 H1
11	M13	0.625"	.321	0		.021	0	13	675.067 9946.8 96.768 96.768 1 H1
12	M5	PIPE_2.0	.310	44		.094	2.798	35	29772 32130 187118711 H1
13	MP4	PIPE_2.0	.283	68		.036	68	31	28122 32130 187118711 H1
14	M16	PIPE_2.0	.197	2.5.	8	.146	2.563	8	9362.615 32130 1871 1871 H1
15	MP3	PIPE_2.0	.192	68		.049	68	5	28122 32130 187118711 H1
16	MP2	PIPE_2.0	.189	68		.058	68	12	28122 32130 187118711 H1
17	M8	0.625"	.187	0		.013	0	3	675.067 9946.8 96.768 96.768 H1
18	M15	PIPE_2.0	.169	0		.091	2.563	9	9362.615 32130 1871 1871 H1
19	M10	0.625"	.000	0	1	.000	0	1	13.777 9946.8 96.768 96.768 1 H1
20	M11	0.625"	.000	0	1	.016	48.4	8	675.067 9946.8 96.768 96.768 H1