Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

January 4, 2022

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification Aces High RV Park and Campground 301 Chesterfield Road, East Lyme, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of a pipe-mounted cannister antenna on the roof of the building, a remote radio head ("RRH") attached to the façade of the building and associated equipment located inside the building. The cannister antenna is concealed within a faux stovepipe extending to a height of 29 feet above ground level. The facility was approved by the Siting Council in January of 2015 (Petition No. 1127). A copy of the Council's Petition No. 1127 Staff Report is included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by removing the existing cannister antenna and installing a new model antenna in the same location. Cellco also intends to replace its wall mounted RRH with a new model RRH. A set of project plans showing Cellco's proposed facility modifications and the new antenna and RRH specifications are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to East Lyme's Chief Elected Official and Land Use Officer.

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Melanie A. Bachman, Esq. January 4, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing antenna. Cellco's new antenna will be installed on the existing pipe mount within the faux stovepipe and extend to an overall height of 28'-8". The RRH will be installed on the façade of the building.

2. The proposed modifications will not involve any change to any of the equipment inside the building and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antenna will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. Cellco's Far Field calculations are included in <u>Attachment 3</u>. The modified facility will not be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached engineer's certification letter, the existing mounts, with certain modifications, and the existing building have adequate capacity to support Cellco's proposed facility modifications. A copy of the engineer's certification letter is included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. January 4, 2022 Page 3

Sincerely,

Kung gm

Kenneth C. Baldwin

Enclosures

è.

Copy to:

Kevin A. Seery, East Lyme First Selectman Gary Goeschel, II, Director of Planning East Lyme RF & Resort LLC, Property Owner Elizabeth Glidden

ATTACHMENT 1

Petition No. 1127: Cellco 301 Chesterfield Road, East Lyme Staff Report January 14, 2015

On December 12, 2014, the Connecticut Siting Council (Council) received a petition from Cellco Partnership d/b/a Verizon Wireless for a declaratory ruling that no certificate of environmental compatibility and public need is required for the proposed installation of a small cell telecommunications facility at 301 Chesterfield Road, East Lyme. Cellco is currently experiencing a capacity issue in this area. In an effort to resolve this capacity problem and provide customers with improved wireless services in the area, Cellco proposes to install a small cell facility. Specifically, Cellco would install a single canister-type antenna at the top of a small mast structure attached to the roof of a two-story office and activities building at the Aces High RV Park and Campground. The mast and antenna would extend approximately 4-feet 4-inches above the peak of the roof and would be enclosed by a faux stovepipe made of RF transparent material. Cellco preformed a visual analysis. (See photograph on next page).

Equipment associated with the facility would be located inside the building in a first floor equipment room. Power and telephone service would extend underground, through an existing conduit from an existing garage structure on the property.

The plans have been stamped by a Professional Engineer duly licensed in the State of Connecticut. The maximum worst-case power density would be 1.44 percent of the applicable limit. Cellco also confirmed that no notice is required to the Federal Aviation Administration.

The visual impact of the project is expected to be negligible as the stealth design is intended to look like a flue pipe from the building's heating system. Furthermore, the faux stove pipe would extend less than five feet above the building.

Notice was provided to abutting property owners, the Town of East Lyme, as well as the Town of Waterford (located within 2,500 feet of the project). No comments have been received to date.

Cellco contends that this proposed project would not have a substantial adverse environmental impact.

ATTACHMENT 2

EAST LYME SC 2 - CT NENG_SC_ESN 301 CHESTERFIELD RD. EAST LYME, CT 06333

FUZE PROJECT ID: 16773996 PSLC: 467444

HUDON JANE TARA AND AND AND AND AND AND AND AND AND AN	ENGINEER DEWBERRY ENGINEERS INC. 99 SUMMER ST. SUITE 700 BOSTON, MA 02110 PHONE # (617) 531-0800 CONTACT: BENJAMIN REVETTE, PE CONSTRUCTION VERIZON WIRELESS 900 CHELMSFORD STREET TOWER 2 FLOOR 5 LOWELL, MA 01561 COORDINATES*: LATITUDE: N 41.405478* LONGITUDE: N 41.405478* LONGITUDE: N 41.405478*	SMART TOOL VENDOR PROJECT NUMBER: N/A VZW LOCATION CODE (PSLC): 467444 FUZE NUMBER: 18773998 VZE NUMBER: 18773998	EQUIPMENT TO BE REMOVED: • EXISTING (1) ANTENNA AND (1) RRH TO BE REMOVED PROM THE EXISTING SITE. • INSTALL (1) NEW CANTENNA AND (1) RRH INSIDE THE EXISTING FENCED AREA. • INSTALL JUMPERS AS REQUIRED BETWEEN SECTOR OVPS, RRH'S & ANTENNAS. • CAP AND WEATHERPROOF UNUSED ANTENNA PORTS. • GROUND EXISTING PIPE MOUNTS PER VERIZON WIRELESS SPECIFICATIONS.	SHT-, DESC NO. DESC CN-1 TITLE S CN-1 GENER/ C-2 SITE P C-3 ELEVAT C-4 CONSTR
VICINITY MAP NT.S.	GROUND ELEVATION*: 87'± *PER GOOGLE EARTH PROJECT INFORMATION	THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN. REUSE OF THIS DOCUMENT IS AT THE SOLE RISK OF THE USER. A.D.A. COMPLIANCE: FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION.	REDS. NOTE: 1. SCOPE OF WORK BASED ON ANTENNA REC FOR EAST LYME SC2 CT DATED 09/28/22. VERIFY SCOPE OF WORK WITH FINAL REDS PROR TO CONSTRUCTION. SCOPE OF WORK	

JAP	VERIZON WIRELESS 900 CHELMSFORD STREET 100WELL, MA 01581 EAST LYME SC 2 CT - NENG SC ESNAP FUZE ID: 16773996 LOCATION CODE: 467444
RIPTION	DRAWN BY: 12/14/2022 MR
IEET	REVIEWED BY: OAS
L NOTES	
MAP & SITE PLAN OTO & PROPOSED EQUIPMENT PLAN	CHECKED BY: BBR
UCTION DETAILS	PROJECT NUMBER: 50121487
	JOB NUMBER: 50156141
	COORDINATES:
	N 41.405478°
	W 72.224858°
	301 CHESTERFIELD RD. EAST LYME, CT 06333
	SHEET TITLE
SHEET INDEX	TITLE SHEET
	SHEET NUMBER
	$\top - 1$

GENERAL CONSTRUCTION NOTES:

- 1. ALL WORK SHALL CONFORM TO ALL CURRENT APPLICABLE FEDERAL, STATE, AND LOCAL CODES, AND COMPLY WITH VERIZON WIRELESS SPECIFICATIONS.
- CONTRACTOR SHALL CONTACT "DIG SAFE" (888-344-7233) FOR IDENTIFICATION OF UNDERGROUND UTILITIES PRIOR TO START OF CONSTRUCTION.
- CONTRACTOR IS RESPONSIBLE FOR COORDINATING ALL REQUIRED INSPECTIONS.
- ALL DIMENSIONS TO, OF, AND ON EXISTING BUILDINGS, DRAINAGE STRUCTURES, AND SITE IMPROVEMENTS SHALL BE VERIFIED IN FIELD BY CONTRACTOR WITH ALL DISCREPANCIES REPORTED TO THE ENGINEER.
- DO NOT CHANGE SIZE OR SPACING OF STRUCTURAL ELEMENTS.
- 6. DETAILS SHOWN ARE TYPICAL; SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS OTHERWISE NOTED.
- THESE DRAWINGS DO NOT INCLUDE NECESSARY COMPONENTS FOR CONSTRUCTION SAFETY WHICH IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR. 7.
- CONTRACTOR SHALL BRACE STRUCTURES UNTIL ALL STRUCTURAL ELEMENTS NEEDED FOR STABILITY ARE INSTALLED. THESE ELEMENTS ARE AS FOLLOWS: LATERAL BRACING, ANCHOR BOLTS, ETC.
- 9. CONTRACTOR SHALL DETERMINE EXACT LOCATION OF EXISTING UTILITIES, DRAIN PIPES, VENTS, ETC. BEFORE COMMENCING
- 10. INCORRECTLY FABRICATED, DAMAGED, OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE OWNER PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH REMEDIAL ACTION SHALL REQUIRE WRITEN APPROVAL BY THE OWNER'S REPRESENTATIVE PRIOR TO PROCEEDING.
- 11. EACH CONTRACTOR SHALL COOPERATE WITH THE OWNER'S REPRESENTATIVE, AND COORDINATE HIS WORK WITH THE WORK OF OTHERS.
- 12. CONTRACTOR SHALL REPAIR ANY DAMAGE CAUSED BY CONSTRUCTION OF THIS PROJECT TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION OF THE VERIZON WIRELESS CONSTRUCTION MANAGER.
- 13. ALL CABLE/CONDUIT ENTRY/EXIT PORTS SHALL BE WEATHERPROOFED DURING INSTALLATION USING A SILICONE SEALANT.
- 14. WHERE EXISTING CONDITIONS DO NOT MATCH THOSE SHOWN IN THIS PLAN SET, CONTRACTOR WILL NOTIFY ENGINEER, VERIZON WIRELESS PROJECT CONSTRUCTION MANAGER, AND LANDLORD IMMEDIATELY.
- 15. CONTRACTOR SHALL ENSURE ALL SUBCONTRACTORS ARE PROVIDED WITH A CURRENT SET OF DRAWINGS AND SPECIFICATIONS FOR THIS PROJECT.
- 16. ALL ROOF WORK SHALL BE DONE BY A QUALIFIED AND EXPERIENCED ROOFING CONTRACTOR IN COORDINATION WITH ANY CONTRACTOR WARRANTING THE ROOF TO ENSURE THAT THE WARRANTY IS MAINTAINED.
- 17. CONTRACTOR SHALL REMOVE ALL RUBBISH AND DEBRIS FROM THE SITE AT THE END OF EACH DAY.
- 18. CONTRACTOR SHALL COORDINATE WORK SCHEDULE WITH LANDLORD AND TAKE PRECAUTIONS TO MINIMIZE IMPACT AND DISRUPTION OF OTHER OCCUPANTS OF THE FACILITY.
- 19. CONTRACTOR SHALL FURNISH VERIZON WIRELESS WITH THREE AS-BUILT SETS OF DRAWINGS UPON COMPLETION OF WORK.
- 20. ANTENNAS AND CABLES ARE TYPICALLY PROVIDED BY VERIZON WIRELESS. PRIOR TO SUBMISSION OF BID, CONTRACTOR SHALL COORDINATE WITH PROJECT MANAGER TO DETERMINE WHAT, IF ANY, ITENS WILL BE PROVIDED BY VERIZON WIRELESS. ALL ITEMS NOT PROVIDED BY VERIZON WIRELESS SHALL BE PROVIDED AND INSTALLED BY THE CONTRACTOR. CONTRACTOR WILL INSTALL ALL ITEMS PROVIDED BY VERIZON WIRELESS.
- 21. PRIOR TO SUBMISSION OF BID, CONTRACTOR WILL COORDINATE WITH VERIZON WIRELESS PROJECT MANAGER TO DETERMINE IF ANY PERMITS WILL BE OBTINNED BY VERIZON WIRELESS. ALL REQUIRED PERMITS NOT OBTAINED BY VERIZON WIRELESS MUST BE OBTINNED, AND PAID FOR, BY THE CONTRACTOR.
- 22. GENERAL CONTRACTOR SHALL HAVE A LICENSED HVAC CONTRACTOR START THE HVAC UNITS, SYNCHRONIZE THE THERMOSTATS, ADJUST ALL SETTINGS ON EACH UNIT ACCORDING TO VERIZON WIRELESS CONSTRUCTION MANAGER'S SPECIFICATIONS, AND THOROUGHLY TEST AND BALANCE EACH UNIT TO ENSURE PROPER OPERATION PRIOR TO TURNING THE SITE OVER TO OWNER.
- 23. CONTRACTOR SHALL INSTALL ALL SITE SIGNAGE IN ACCORDANCE WITH VERIZON WIRELESS SPECIFICATIONS AND REQUIREMENTS.
- 24. CONTRACTOR SHALL SUBMIT ALL SHOP DRAWINGS TO ENGINEER FOR REVIEW AND APPROVAL PRIOR TO FABRICATION.
- 25. UNLESS OTHERWISE NOTED VERIZON WIRELESS SHALL PROVIDE ALL REQUIRED RF MATERIAL FOR CONTRACTOR TO INSTALL, INCLUDING ANTENINAS, TMA'S, BIAS-T'S, COMBINERS, PDU, DC BLOCKS, SURGE ARRESTORS, GPS ANTENNA, GPS SURGE ARRESTOR, COAXIAL CABLE.
- 26. PRIOR TO SUBMISSION OF BID, CONTRACTOR SHALL VERIFY ALL EQUIPMENT TO BE PROVIDED BY VERIZON WIRELESS FOR INSTALLATION BY CONTRACTOR.
- 27. ALL EQUIPMENT SHALL BE INSTALLED ACCORDING TO MANUFACTURER'S SPECIFICATIONS AND LOCATED ACCORDING TO VERIZON WIRELESS SPECIFICATIONS, AND AS SHOWN IN THESE PLANS.
- 28. DETAILS SHOWN ARE TYPICAL: SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS OTHERWISE NOTED.
- 29. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- CONTRACTOR SHALL NOTIFY THE ENGINEER A MINIMUM OF 48 HOURS IN ADVANCE PRIOR TO CONSTRUCTION START, MORE SPECIFICALLY BEFORE; SEALING ANY FLOOR, WALL OR ROOF PENETRATION, FINAL UTILITY CONNECTIONS, POURING CONCRETE, BACKFILLING UTILITY TRENCHES AND STRUCTURAL POST OR MOUNTING CONNECTIONS, FOR ENGINEERING REVIEW AND INSPECTION.
- 31. SEAL PENETRATIONS THROUGH FIRE RATED AREAS WITH UL LISTED D FIRE CODE APPROVED MATERIALS.
- 32. REPAIR ANY DAMAGE DURING CONSTRUCTION TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION OF THE CONSTRUCTION MANAGER AND LANDLORD.
- 33. ALL DISRUPTIVE WORK AND WORK WITHIN TENANT SPACES TO BE COORDINATED WITH BUILDING REPRESENTATIVE.

CODE SPECIFICATIONS:

- ALL WORK SHALL COMPLY WITH THE FOLLOWING APPLICABLE CODES:
- 2022 CONNECTICUT STATE BUILDING CODE WITH THE FOLLOWING APPLICABLE CODES:
- 2021 INTERNATIONAL RESIDENTIAL CODE (IRC)
- 2021 INTERNATIONAL RESIDENTIAL CODE (IIC) 2021 INTERNATIONAL BUILDING CODE (IBC) 2021 INTERNATIONAL BUILDING CODE (IBC) 2021 INTERNATIONAL MECHANICAL CODE (IMC)
- 2020 INTERNATIONAL ELECTRICAL CODE (INEC) (INFPA 70) 2021 INTERNATIONAL PLUMBING CODE (IPC) 2021 INTERNATIONAL ENERGY CONSERVATION CODE (IECC)

IN THE EVENT OF CONFLICT, THE MOST RESTRICTIVE CODE SHALL PREVAIL.

- 2. ALL STRUCTURAL WORK TO BE DONE IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION MANUAL, 15TH EDITION (AISC 15TH ED.)
- ALL CONCRETE WORK TO BE DONE IN ACCORDANCE WITH THE AMERICAN CONCRETE INSTITUTE (ACI 301) SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS (ACI 31B) AND BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE. 3.
- ALL REINFORCING STEEL WORK TO BE DONE IN ACCORDANCE WITH THE (ACI 315) MANUAL OF STANDARD PRACTICE FOR DETAILING REINFORCED CONCRETE STRUCTURES.

GROUNDING NOTES:

- 1. GROUNDING SHALL COMPLY WITH NEC ART. 250.
- 2. GROUNDING CONDUCTORS SHALL BE #6 COPPER STRANDED WIRE WITH GREEN COLOR INSULATION FOR INDOOR USE.
- ALL GROUND CONNECTIONS TO BE BURNDY HYGROUND COMPRESSION TYPE CONNECTORS OR CADWELD EXOTHERMIC WELD DO NOT ALLOW BARE COPPER WIRE TO BE IN CONTACT WITH GALVANIZED STEEL.
- ROUTE GROUNDING CONNECTORS ALONG THE SHORTEST AND STRAGHTEST PATH POSSIBLE. EXCEPT AS OTHERWISH INDICATED, GROUNDING LEADS SHOULD NOT BE BENT AT RIGHT ANGLE ALWAYS MAKE 12" RADIUS BENDS. #6 WIRE CAN BE BENT AT 6" RADIUS WHEN NECESSARY.
- CONNECTIONS TO GROUNDING BAR SHALL BE MADE WITH TWO HOLE COMPRESSION TYPE COPPER LUGS. APPLY OXIDE INHIBITING COMPOUND TO ALL LOCATIONS.
- TEST COMPLETED GROUNDING SYSTEM AND RECORD RESISTANCE VALUES FOR PROJECT CLOSE-OUT DOCUMENTATION. GROUND RESISTANCE SHALL NOT EXCEED 5 OHMS.
- GROUNDING CONDUCTORS BETWEEN MGB AND WATERMAIN SHALL BE \$2/0. BONDING JUMPERS FROM METALLIC SURFACES SHALL BE \$2 MINIMUM, ALL GROUND CONDUCTORS AND BONDING JUMPERS SHALL BE SOFT DRAWN ANNEALED, TINNED, BARE STRANDED COPPER WIRE, COAXIAL CABLES SHALL BE GROUNDED AT A MINIMUM OF TH LOCATIONS USING VERIZON PROVIDED GROUNDING KITS, EVACT LOCATIONS SHALL BE FINALIZED IN THE FIELD BY

STRUCTURAL STEEL NOTES:

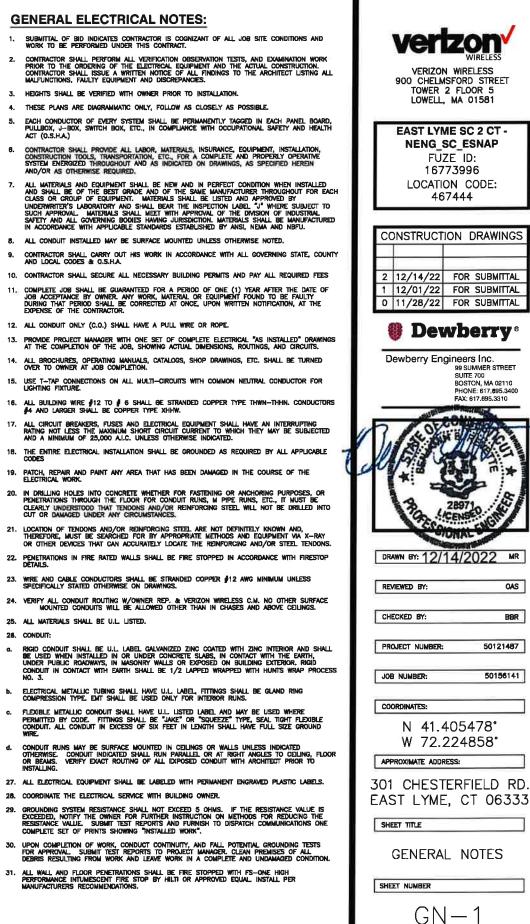
- STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF THE AISC "SPECIFICATION FOR THE DESIGN, FABRICATION AND FRECTION OF STRUCTURAL STEEL FOR BUILDINGS".
- 2. STRUCTURAL STEEL ROLLED SHAPES, PLATES, AND BARS SHALL CONFORM TO THE FOLLOWING ASTM DESIGNATIONS: ASTM A-992, GRADE 50 ASTM A-36 ALL W SHAPES, UNLESS NOTED OR A992 OTHERWISE. ALL OTHER ROLLED SHAPES, PLATES AND BARS UNLESS NOTED OTHERWISE. ASTM A-300, GRADE B ASTM A-325, TYPE SC OR N F1554, GRADE 36 ASTM A-53, GRADE B HSS SECTION (SQUARE, RECTANGULAR, ROUND) ALL BOLTS FOR CONNECTING STRUCTURAL MEMBERS. ALL ANCHORS BOLTS, UNLESS NOTED OTHERWISE STEEL PIPE
- ALL WELDING SHALL BE DONE USING E70XX ELECTRODES AND WELDING SHALL CONFORM TO AISC AND AWS D1.1 WHERE FILLET WELD SIZES ARE NOT SHOWN, PROMDE THE MINIMUM SIZE PER TABLE 42.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION", 14TH EDITION. WHERE WELD LENGTH IS NOT INDICATED, USE FULL LENGTH WELD. AT THE COMPLETION OF ALL WELDING, ALL DAMAGE TO CALVANIZED CONTING SHALL BE REPARED. 3.
- BOLTED CONNECTIONS SHALL USE BEARING TYPE GALVANIZED ASTM A325 BOLTS (3/4" DIA.) SUPPLIED WITH A NUT AND WASHER UNDER TURNED END AND SHALL HAVE MINIMUM OF TWO BOLTS UNLESS NOTED OTHERWISE.
- 5. DO NOT DRILL HOLES THROUGH STRUCTURAL STEEL MEMBERS EXCEPT AS SHOWN AND DETAILED ON STRUCTURAL DRAWINGS
- NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE 5/8" DIA. GALVANIZED ASTM A 307 BOLTS UNLESS NOTED OTHERWISE.
- 7. USE PRECAUTIONS & PROCEDURES PER AWS D1.1 WHEN WELDING GALVANIZED METALS.
- ALL EXISTING BEAM AND COLUMN DIMENSIONS SHALL BE FIELD VERIFY BY CONTRACTOR PRIOR TO FABRICATION. ANY DISCREPANCIES BETWEEN EXISTING CONDITIONS AND THOSE SHOWN SHALL BE REPORTED TO DEWBERRY ENGINEER IMMEDIATELY.
- 9. CONNECTION DESIGN BY FABRICATOR WILL BE SUBJECT TO REVIEW AND APPROVAL BY ENGINEER.
- 10. ALL EXTERIOR STEEL WORK SHALL BE GALVANIZED IN ACCORDANCE WITH SPECIFICATION ASTM A123/A123M-00 HOT-DIP GALVANIZED FINISH UNLESS OTHERWISE NOTED. GALVANIZING SHALL BE FERFORMED AFTER SHOP FABRICATION TO THE GREATEST EXTENT POSSIBLE. ALL DIRGS, SCRAPES, MARS, AND WELDS IN THE GALVANIZED AREAS SHALL BE REPARED MANGED GALVANIZED COATINGS ON GALVANIZED ITEMS WITH GALVANIZED REPAR PAINT ACCORDING TO ASTM A780 AND MANUFACTURER'S WRITTEN INSTRUCTIONS, PRIOR TO COMPLETION OF WORK. TOUCHUP ALL DAMAGED GALVANIZED STEEL WITH APPROVE COLD ZINC, "GALVANOX", "DRY GALV", "ZINC-IT", OR APPROVED EQUIVALENT, IN ACCORDANCE WITH MANUFACTURERS GUIDELINES. TOUCHUP DAMAGED NON GALVANIZED STEEL WITH SAME PAINT APPLIED IN SHOP OR FIELD.
- 11. ALL WELDED COMPONENTS TO BE SHOP WELDED PRIOR TO INSTALLATION. NO WELDING ACTIVITIES IS PERMITTED DURING INSTALLATION OF PROPOSED EQUIPMENTS AND/OR HARDWARE ON SITE.

GENERAL NOTES:

- 1. ALL DIMENSIONS TO, OF, AND ON EXISTING BUILDINGS, DRAINAGE STRUCTURES, AND SITE IMPROVEMENTS SHALL E VERIFIED IN FIELD BY CONTRACTOR PRIOR TO ALL FABRICATION WITH ALL DISCREPANCIES REPORTED IMMEDIATELY TO THE ENGINEER.
- 2. DO NOT CHANGE SIZE NOR SPACING OF STRUCTURAL ELEMENTS.
- 3. DETAILS SHOWN ARE TYPICAL; SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS OTHERWISE NOTED.
- THESE DRAWINGS DO NOT INCLUDE NECESSARY COMPONENTS FOR CONSTRUCTION SAFETY WHICH IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR. 4.
- BRACE STRUCTURES UNTIL ALL STRUCTURAL ELEMENTS NEEDED FOR STABILITY ARE INSTALLED. THESE ELEMENTS ARE AS FOLLOWS: LATERAL BRACING, ANCHOR BOLTS, ETC.
- 6. DETERMINE EXACT LOCATION OF EXISTING UTILITIES, GROUNDS DRAINS, DRAIN PIPES, VENTS, ETC. BEFORE COMMENCING WORK.
- INCORRECTLY FABRICATED, DAMAGED, OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE OWNER PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH REMEDIAL ACTION 7. SHALL REQUIRE WRITTEN APPROVAL BY THE OWNER'S REPRESENTATIVE PRIOR TO PROCEEDING.
- 8. EACH CONTRACTOR SHALL COOPERATE WITH THE OWNER'S REPRESENTATIVE AND COORDINATE THEIR WORK WITH THE WORK OF OTHERS.
- 9. REPAIR ANY DAMAGE DURING CONSTRUCTION TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION OF THE CONSTRUCTION MANAGER.
- 10. ALL CABLE/CONDUCT ENTRY/EXIT PORTS SHALL BE WEATHERPROOFED DURING INSTALLATION USING A SILICONE SEALANT.
- 11. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- 12. SEAL PENETRATIONS THROUGH FIRE RATED AREAS WITH UL LISTED D FIRE CODE APPROVED MATERIALS.
- 13. TURN OVER ALL SALVAGEABLE BUILDING MATERIAL TO BUILDING MANAGER.
- 14. ALL DISRUPTIVE WORK AND WORK WITHIN TENANT SPACES TO BE COORDINATED WITH BUILDING REPRESENTATIVE.
- 15. ALL ROOF PENETRATIONS SHALL BE RESTORED TO MAINTAIN ALL ROOF WARRANTIES AND ENSURE A PERMANENT WATERPROOF SEAL.
- 16. CONTRACTOR SHALL NOTIFY THE ENGINEER A MINIMUM OF 48 HOURS IN ADVANCE PRIOR TO CONSTRUCTION START, MORE SPECIFICALLY BEFORE; SEALING ANY FLOOR, WALL OR ROOF PENETRATION, FINAL UTILITY CONNECTIONS, POURING CONCRETE, BACKFILLING UTILITY TRENCHES AND STRUCTURAL POSTS OR MOUNTING CONNECTIONS, FOR ENGINEERING REVIEW AND INSPECTION.

GENERAL ELECTRICAL NOTES:

- 3. HEIGHTS SHALL BE VERIFIED WITH OWNER PRIOR TO INSTALLATION.
- 4. THESE PLANS ARE DIAGRAMMATIC ONLY, FOLLOW AS CLOSELY AS POSSIBLE.
- AND/OR AS OTHERWISE REQUIRED.
- 8. ALL CONDUIT INSTALLED MAY BE SURFACE MOUNTED UNLESS OTHERWISE NOTED.

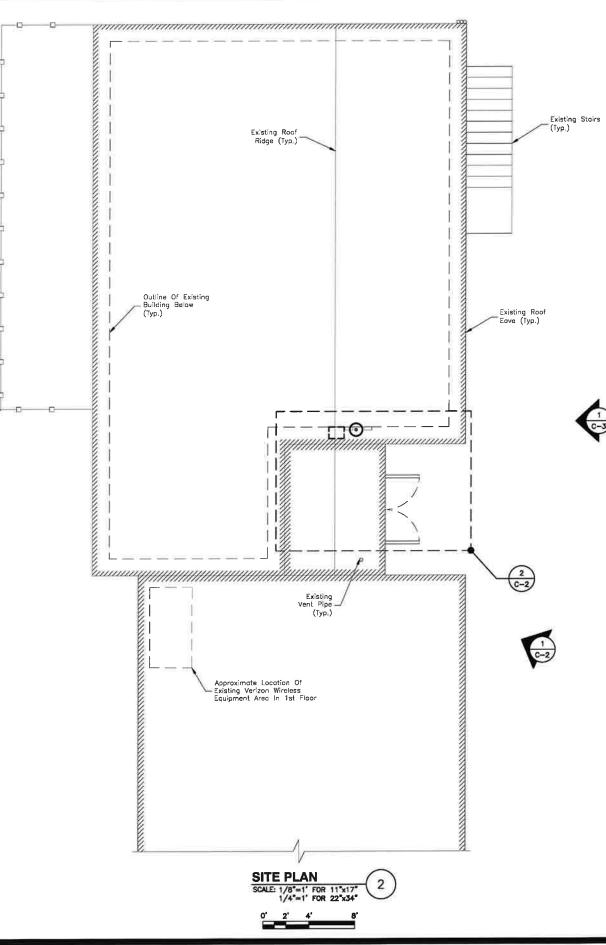

- 12. ALL CONDUIT ONLY (C.O.) SHALL HAVE A PULL WIRE OR ROPE.

- All Building Wire \$12 to \$6 Shall be stranded copper type thwn-thhn. Conductors \$4 and larger shall be copper type xhhw.

25. ALL MATERIALS SHALL BE U.L. LISTED.

COMPLETE SET OF PRINTS SHOWING

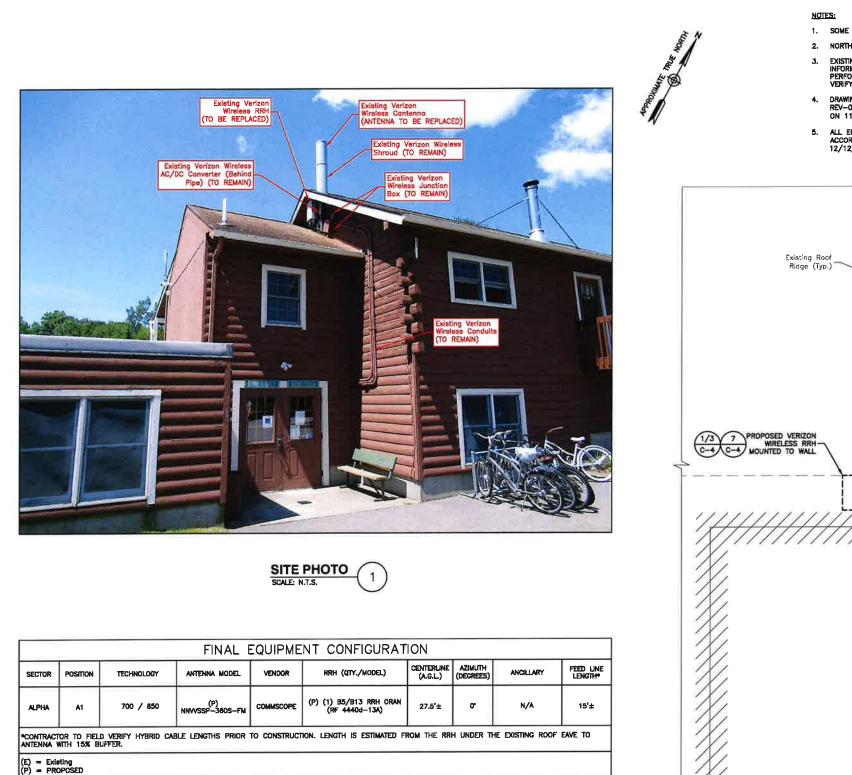
26. CONDUIT:


NORTH RUE APPROXIMATE TRU

The A

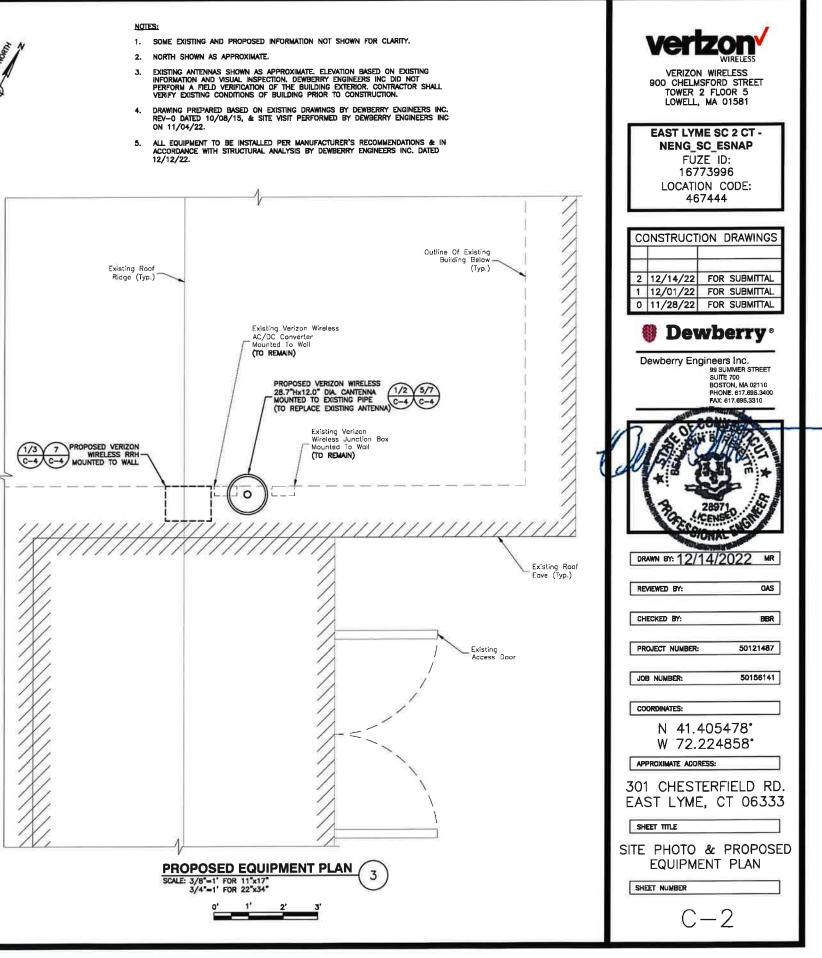
*0

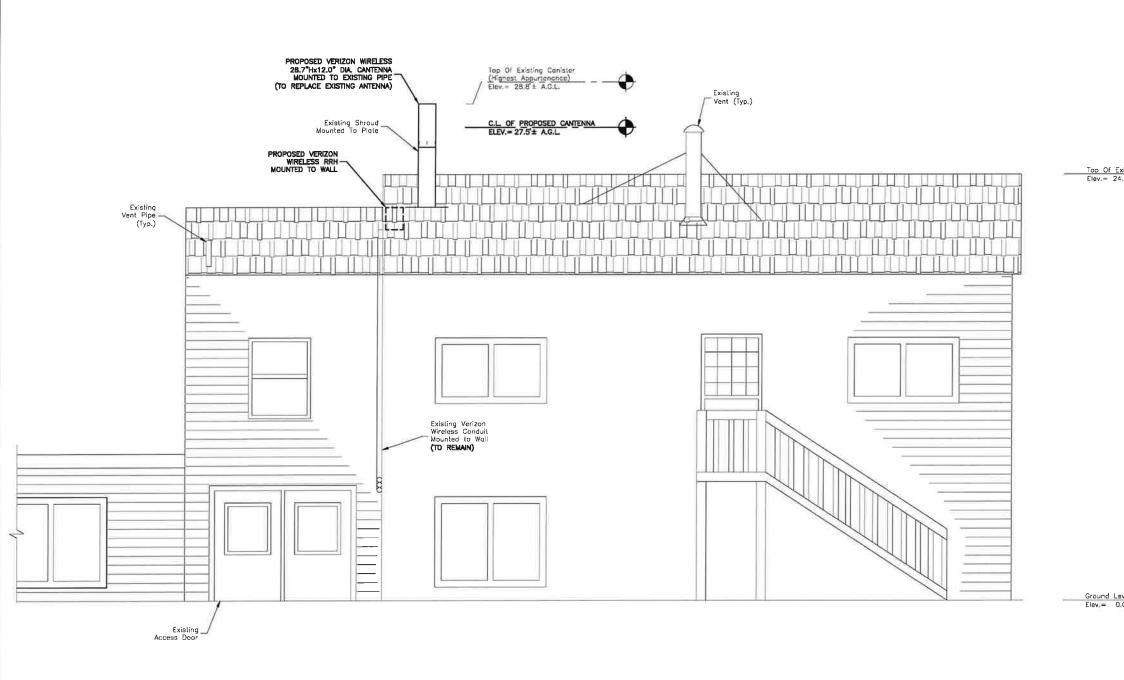
AERIAL MAP 1 SCALE: N.T.S.



NOTES:

- 1. SOME EXISTING AND PROPOSED INFORMATION NOT SHOWN FOR CLARITY.
- 2. NORTH SHOWN AS APPROXIMATE.
- 3. EXISTING ANTENNAS SHOWN AS APPROXIMATE. ELEVATION BASED ON EXISTING INFORMATION AND VISUAL INSPECTION. DEWBERRY ENGINEERS INC DID NOT PERFORM A FIELD VERIFICATION OF THE BUILDING EXTERIOR. CONTRACTOR SHALL VERIFY EXISTING CONDITIONS OF BUILDING PRIOR TO CONSTRUCTION.
- DRAWING PREPARED BASED ON EXISTING DRAWINGS BY DEWBERRY ENGINEERS INC. REV-0 DATED 10/08/15, & STE VIST PERFORMED BY DEWBERRY ENGINEERS INC ON 11/04/22.
- 5. ALL EQUIPMENT TO BE INSTALLED PER MANUFACTURER'S RECOMMENDATIONS & IN ACCORDANCE WITH STRUCTURAL ANALYSIS BY DEWBERRY ENGINEERS INC. DATED 12/12/22.

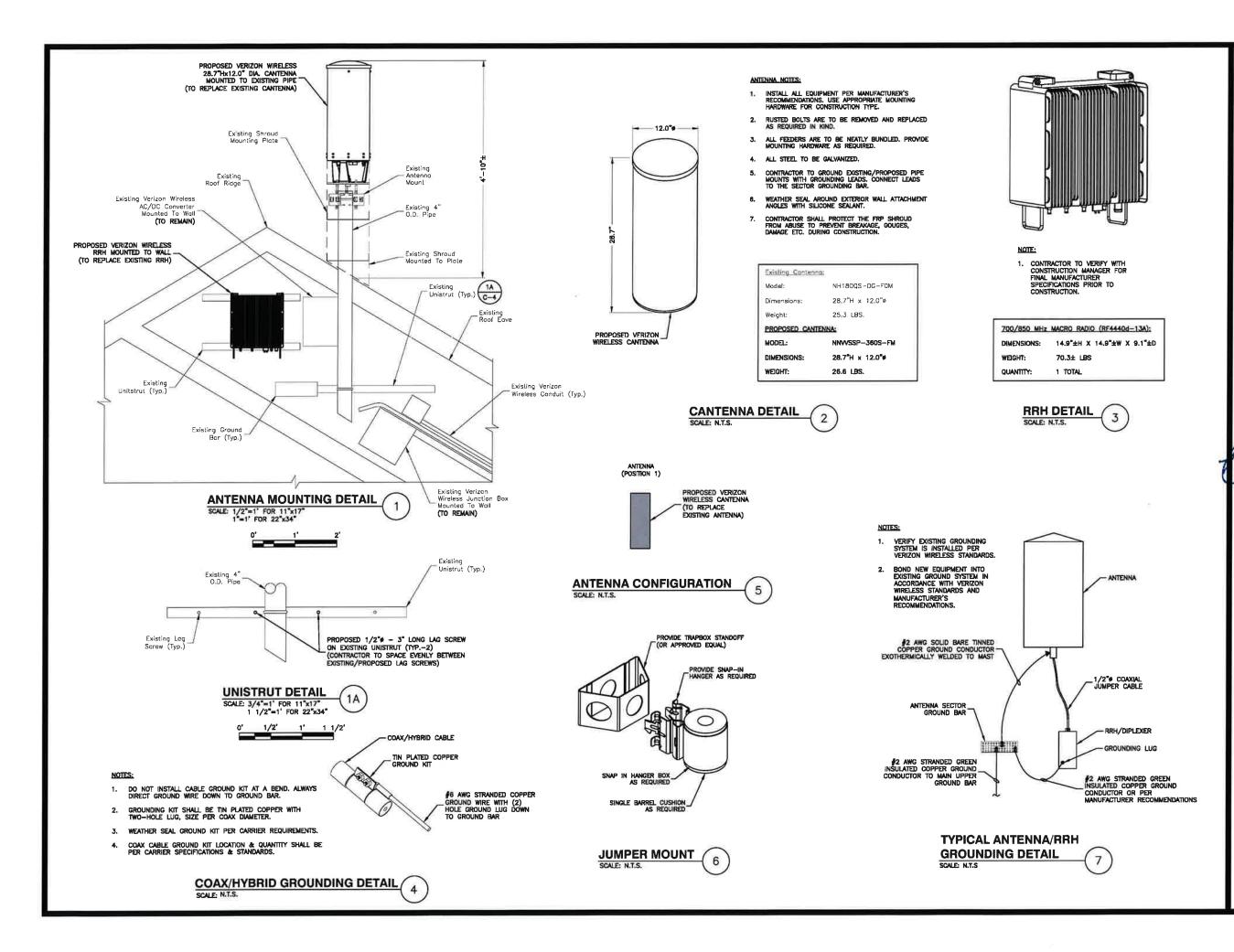

VERIZON WIRELESS 900 CHELMSFORD STREET TOWER 2 FLOOR 5 LOWELL, MA 01581 EAST LYME SC 2 CT - NENG_SC_ESNAP FUZE ID: 16773996 LOCATION CODE: 467444
CONSTRUCTION DRAWINGS 2 12/14/22 FOR SUBMITTAL 1 12/01/22 FOR SUBMITTAL 0 11/28/22 FOR SUBMITTAL 0 SUME 700 BOSTON, MA 02110 PHONE: 617.6895.3310 FAX: 617.6895.3310
DRAWN BY: 12/14/2022 MR REVIEWED BY: QAS CHECKED BY: BBR PROJECT NUMBER: 50121487
JOB NUMBER: 50156141 COORDINATES: N N 41.405478° W 72.224858° APPROXIMATE ADDRESS: 301 GO1 CHESTERFIELD RD EAST LYME, CT OG333 SHEET TTLE AERIAL MAP
AERIAL MAP & SITE PLAN SHEET NUMBER C-1



2

FINAL EQUIPMENT CONFIGURATION

SCALE: N.T.S.



NOTES:

- 1. SOME EXISTING AND PROPOSED INFORMATION NOT SHOWN FOR CLARITY.
- 2. ELEVATION SHOWN AS APPROXIMATE.
- 3. EXISTING ANTENNAS SHOWN AS APPROXIMATE ELEVATION BASED ON DUSTING INFORMATION AND VISUAL INSPECTION. DEWBERRY ENGINEESS INC DID NOT PERFORM A FIELD VERIFICATION OF THE BUILDING EXTERIOR, CONTRACTOR SHALL VERIFICATION OF THE BUILDING EXTERIOR, CONTRACTOR SHALL VERIFICATION OF THE BUILDING EXTERIOR, CONTRACTOR SHALL VERIFICATION OF THE BUILDING PRIOR TO CONSTRUCTION.
- DRAWING PREPARED BASED ON EXISTING DRAWINGS BY DEWBERRY ENGINEERS INC. REV-0 DATED 10/08/15, & STE VIST PERFORMED BY DEWBERRY ENGINEERS INC ON 11/04/22.
- ALL EQUIPMENT TO BE INSTALLED PER MANUFACTURER'S RECOMMENDATIONS & IN ACCORDANCE WITH STRUCTURAL ANALYSIS BY DEWBERRY ENGINEERS INC. DATED 12/12/22.

ELEVATION SCALE: 3/16"=1' FOR 11"x17" 3/8"=1' FOR 22"x34" 0' 2' 4' 6'

<u>Exisling Upper Roof Peck</u> 24.7 ¹ ± A.G.L.	VERIZON WIRELESS SOO CHELMSFORD STREET TOWER 2 FLOOR 5 LOWELL, MA 01581 DOWELL, MA 01581 LAST LYME SC 2 CT - NENG SC ESNAP RENG SC ESNAP FUZE ID: 16773996 LOCATION CODE: LOCATION CODE: 467444 VERIZON DIRAWINGS 11/201/22 PROSTRUCTION DRAWINGS 11/201/22 11/201/22 FOR SUBMITTAL 11/28/22 FOR SUBMITTAL 11/28/22 FOR SUBMITTAL 11/28/22 FOR SUBMITTAL 11/28/22 FOR SUBMITTAL SUMMER SUBMITTAL DEVENDERTS BUSUMMER STREET SUMMER STREET
Level 0.0°± AGL	BOSTON, MA 02110 PHONE: 617.895.3400 PAX: 617.845.3400 PAX: 617.84
	COORDINATES: N 41.405478° W 72.224858° APPROXIMATE ADDRESS: 301 CHESTERFIELD RD. EAST LYME, CT 06333 SHEET TILE ELEVATION SHEET NUMBER C - 3

VERIZON WIRELESS 900 CHELMSFORD STREET TOWER 2 FLOOR 5 LOWELL, MA 01581	
EAST LYME SC 2 CT - NENG_SC_ESNAP FUZE ID: 16773996 LOCATION CODE: 467444	
CONSTRUCTION DRAWINGS 2 12/14/22 FOR SUBMITTAL 1 12/01/22 FOR SUBMITTAL 0 11/28/22 FOR SUBMITTAL	
Dewberry © Dewberry Engineers Inc. Suff rol Boston, Ma 02110 PHONE: 617,895.3400 FAX: 617,895.3400	
DRAWN BY: 12/14/2022 MR	
REVIEWED BY: OAS	
CHECKED BY: BBR PROJECT NUMBER: 50121487	
JOB NUMBER: 50156141	
COORDINATES: N 41.405478* W 72.224858* APPROXIMATE ADDRESS: 301 CHESTERFIELD RD. EAST LYME, CT 06333	
CONSTRUCTION DETAILS	
C-4	

14-port quasi-omni antenna, 4x 698–896, 4x 1695–2690, 4x 3400-3800 and 2x 5150-5925 MHz, 360° horizontal beamwidth. Fixed and manual tilt.

Electrical Specifications

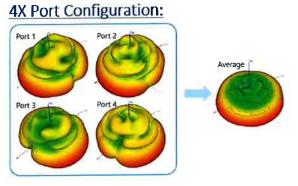
Frequency Band, MHz	698-806	806-896	1695–1920	1920–2180	2300-2690	3400-3800	5150-5925
Gain, dBi	4.8	4.6	6.1	6.6	7.5	5.7	4.0
Beamwidth, Horizontal, degrees	360	360	360	360	360	360	360
Beamwidth, Vertical, degrees	62.3	55.1	19.2	16.9	14.3	38.2	20.9
Beam Tilt, degrees	0	0	5–15	5-15	5-15	0	0
Isolation, Cross Polarization, dB	25	25	25	25	25	25	25
Isolation, Inter-band, dB	25	25	25	25	25	25	25
VSWR Return Loss, dB	1,5 14.0	1.5 14.0	1,5 14.0	1.5 14.0	1.5 14.0	1,5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-150		
Input Power per Port at 50°C, maximum, watts	75	75	75	75	75		
Polarization	±45°	±45°	±45°	±45°	±45°	±45°	±45°
Impedance	50 ohm						

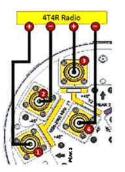
Electrical Specifications, BASTA*

Frequency Band, MHz	698-806	806-896	1695–1920	1920–2180	2300-2690	3400-3800	5150-5925
Gain by all Beam Tilts, average, dBi	4.6	4.3	5.5	6.1	7.0	5.3	3.2
Gain by all Beam Tilts Tolerance, dB	±0.4	±0.4	±1	±0.5	±0.9	±0.8	±0.9
			5° 5.7	5° 6.0	5° 7.2		
Gain by Beam Tilt, average, dBi			10 º 5.6	10° 6.2	10 ° 7.1		
Gain by beam the ateragat eet			15° 5.4	15° 6.1	15 ° 6.9		
Beamwidth, Vertical Tolerance, degrees	±12,9	±12.3	±2.4	±1.6	±1.6	±5.5	±5.3

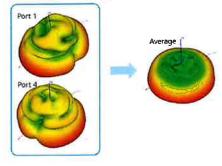
* CommScope® supports NGMN recommendations on Base Station Antenna Standards (BASTA). To learn more about the benefits of BASTA, download the whitepaper Time to Raise the Bar on BSAs.

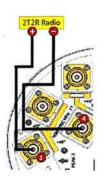
5 GHz Port Power Table


5 GHz FCC Power Requirements				
U-NII Band	U-NII 1	U-NII 2A	U-NII 2C	U-NII 3
Frequency (MHz)	5150 - 5250	5250 - 5350	5470 - 5725	5725 - 5850
Max Input power per port to align with FCC Title 47 Part 15 (Watts)	0.5	0.125	0.125	0.5


page 1 of 3 September 19, 2019

©2019 CommScope, Inc. All rights reserved. All trademarks identified by © or ^m are registered trademarks, respectively, of CommScope.All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 18, 2019


Port Configuration



When using a 4T4R radio, use ports 1 – 4 of the pattern diversity antenna

2X Port Configuration:

- When using a 2T2R radio, use ports 1 & 4 of the pattern diversity antenna
- Using ports 2 & 3 yields the same result
- This ensures that both orientations and both polarizations are used
- When using this antenna in 2T2R, then this antenna does not have full polarization diversity

General Specifications

Operating Frequency Band	1695 – 2690 MHz 3400 – 3800 MHz 5	5150 – 5925 MHz 698 – 896 MHz
Antenna Type	Small Cell	
Band	Multiband	
Performance Note	Outdoor usage	

Mechanical Specifications

RF Connector Quantity, total	14
RF Connector Quantity, low band	4
RF Connector Quantity, high band	10

page 2 of 3 September 19, 2019

© 2019 CommScope, Inc, All rights reserved. All trademarks identified by ⁽¹⁾/₂ or ¹⁰/₂ are registered trademarks, respectively, of CommScope.All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 18, 2019

NNVVSSP-360S-FM

RF Connector Interface	4.3-10 Female
Grounding Type	RF connector inner conductor and body grounded to reflector and mounting bracket
Radiator Material	Aluminum Low loss circuit board
Radome Material	ASA, UV stabilized
Reflector Material	Aluminum
RF Connector Location	Bottom
Wind Loading, frontal	122.0 N @ 150 km/h 31.5 lbf @ 150 km/h
Wind Loading, maximum	122.0 N @ 150 km/h 27.4 lbf @ 150 km/h
Wind Speed, maximum	241 km/h 150 mph
Dimensions	

Length	730.0 mm	28.7 in
Outer Diameter	305.0 mm	12.0 in
Net Weight, without mounting kit	12.1 kg	26 7 lb

Packed Dimensions

Length	1000.0 mm 39.4 in
Width	418.0 mm 16.5 in
Depth	404.0 mm 15.9 in
Shipping Weight	16.7 kg 36.8 lb

Regulatory Compliance/Certifications

Agency RoHS 2011/65/EU ISO 9001:2015 China RoHS SJ/T 11364-2014 **Classification** Compliant by Exemption Designed, manufactured and/or distributed under this quality management system Above Maximum Concentration Value (MCV)

* Footnotes

Performance Note

Severe environmental conditions may degrade optimum performance

page 3 of 3 September 19, 2019

©2019 CommScope, Inc, All rights reserved. All trademarks identified by [®] or [®] are registered trademarks, respectively, of CommScope.All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 18, 2019

SAMSUNG

Dual-Band Radio Unit 700/850MHz (B13/B5) RFV01U-D2A

Samsung's RFV01U-D2A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

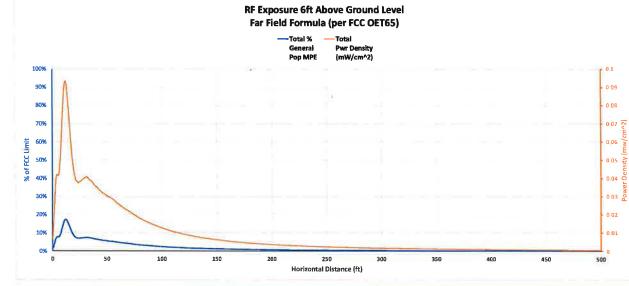
The RFV01U-D2A RU targets dual-band support across Band 13 (700MHz) and Band 5 (850MHz), making it an ideal product for broad coverage footprints across multiple common low-end, long-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributedand central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation


Key Technical Specifications

Duplex Type: FDD Operating Frequencies: B13: DL(746-756MHz)/UL(777-787MHz) B5: DL(869-894MHz)/UL(824-849MHz) Instantaneous Bandwidth: 10MHz(B13) + 25MHz(B5) RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 207mm (29.9L) Weight: 31.9kg Input Power: -48V DC Operating Temp.: -40 - 55°(w/o solar load) Cooling: Natural convection

ATTACHMENT 3

.

Location	EAST LYME SC 2 CT											
Date	11/21/2022											
Band	C-Band	AWS	PCS	850-LTE	850-CDMA	700						
Operating Frequency (NHz)	3,700	2,145	1,970	880	869	746						
General Population MPE (mW/cm*2)	t	î.	1	0.586666667	0.579333333	0.497333333						
ERP Per Transmitter (Watts)	0	0	0	56	0	60						
Number of Transmitters	0	0	0	4	0	4						
Antenna Centerline (feet)	27.5	27.5	27.5	27.5	27.5	27.5						
Total ERP (Watts)	0	0	0	225	0	239						
Total ERP (dBm)	#N/A	#N/A	#N/A	54	#N/A	54						
Manimum % of General Providion Land				7.2%		**						

Angle			Power De	msity ((mW/cm^2)						Percent of G	neeral Peanla	CON MITS	1-2-3		12.5		Contraction of	
Below Horizon	C-Band	AWS	PCS		650-LTE	850-CDMA	700 Miltz		20046	Chand	-646	-	-	(Solution	-	and here	Distance	Total Per Density (mW/cm*3)	Tatal N.
90	0	0		0	0,003835692	0	0.002186758	0.00%	0,00%	0,00%	0.00%	0.00%	0.00%	0.65%	0.00%	0.44%	0	0.00602245	1.09%
89	0	0		o	0.005416409	0	0.002689481	0.00%	0.00%	D.00%	0.00%	0.00%	0.00%	0.92%	0.00%	0.54%	0 375283896	0.00810589	1.46%
88	0	0		0	0,00782194	0	0.003305761	0.00%	0,00%	0.00%	0.00%	0.00%	0.00%	1.33%	0.00%	0.66%	0 750796544	0.011127701	2.00%
87	0	0		0	0.010780839	0	0.003968346	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	1.84%	0.00%	0,80%	1 126767255	0.014749185	2.64%
86	0	0		0	0.014511935	0	0.00487172	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	2.47%	0.00%	0.98%	1.503426457	0.019383655	3.45%
85	0	0		0	0,018643704	0	0,005841026	0,00%	0.00%	0.00%	0.00%	0.00%	0.00%	3.18%	0.00%	1,17%	1,881006266	0.02448473	4.35%
84	0	0		0	0.022339449	0	0.006996894	0.00%	0,00%	0.00%	0.00%	0.00%	0.00%	3.81%	0.00%	1,41%	2.259741058	0.029338342	5.22%
83	0	0		Ð	0.02554731	0	0.008381121	0.00%	0,00%	0.00%	0.00%	0.00%	0.00%	4.35%	0.00%	1,69%	2.639868059	0.033928431	6.04%
82	0	0		D	0.027883629	0	0.00980181	0.00%	0.00%	0.00%	0.00%	0,00%	0.00%	4.75%	0,00%	1,97%	3.021627946	0.037685439	6.72%
81	0	0		0	0.029045818	• 0	0.011195424	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	4.95%	0.00%	2,25%	3,405265467	0.040241242	7.20%
80	0	0		0	0.026876641	0	0.012488309	0,00%	0.00%	0.00%	0.00%	0.00%	0.00%	4.92%	0.00%	2.51%	3,791030085	0.041364949	7.43%
79	0	D		0	0.028037346	0	0.013921751	0.00%	0.00%	0.00%	0.00%	0,00%	0.00%	4.78%	0,00%	2.80%	4.179176646	0,041959097	7.58%
78	0	0		0	0.026585972	0	0.015156869	0,00%	0.00%	0.00%	0.00%	0.00%	0.00%	4.53%	0.00%	3.05%	4.569966076	0 041742841	7,58%
77	0	0		0	0.0251.9368	0	0.016115678	0,00%	0.00%	0.00%	0.00%	0.00%	0,00%	4.29%	0,00%	3,24%	4.963666109	0.041309358	7.53%
76	0	0		0	0.024414733	σ	0.017124147	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	4 16%	0.00%	3.44%	5.360552061	0.04153888	7.60%
75	0	0		0	0.023644564	0	0.017770034	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	4.03%	0.00%	3,57%	5.760907637	0.041414598	7.60%
74	0	0		0	0.02452037	0	0.018857494	0.00%	0.00%	0,00%	0.00%	0.00%	0.00%	4,18%	0.00%	3,79%	6.165025794	0.043377865	7.97%
73	0	0		0	0.025411856	0	0.019543095	0.00%	0,00%	0.00%	0.00%	0.00%	0.00%	4.33%	0.00%	3.93%	6.573209651	0.044954951	8 26%
72	0	0		0	0.027558552	0	0.020711586	0.00%	0,00%	0.00%	0.00%	0.00%	0.00%	4.70%	0.00%	4.16%	6,985773469	0.048270139	8.86%

71	0	a	0	0,029866469		0,021435857	0.00%	0.00%	0.00%	0,00%	0.00%	0.00%	5,09%	0.00%	4.31%	7.403043686	0,051302326	9,40%
70	0	0	0	0,033099039		0,023215195	0,00%	D.00%	0.00%	0.00%	0.00%	0.00%	5.64%	0.00%	4.67%	7.825360037	0,056314234	10.31%
69	0	0	D	0,036656182		0,024552979	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	6 25%	0.00%	4,94%	8 253076753	0.06120916	11,19%
68	0	G	0	0.039643818		0,026554152	0,00%	0_00%	0,00%	0.00%	0.00%	0.00%	6.76%	0.00%	5,34%	8,686563855	0.06619797	12,10%
67	0	0	0	0.042844583		0.029366546	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	7.30%	0.00%	5.90%	9.126208549	0.072211129	13.21%
66	0	0	0	0,046270488		0.031714731	0.00%	0.00%	0.00%	0,00%	0.00%	0.00%	7.89%	0.00%	6,38%	9.572416734	0.077985219	14.26%
65	0	0	0	0.04879723		0.034225684	0.00%	0.00%	0.00%	0,00%	0,00%	0,00%	8.32%	0.00%	6,88%	10,02561465	0.083022914	15,20%
64	0	0	0	0.051423795		0_036067919	0_00%	0_00%	0.00%	0.00%	0,00%	0,00%	8 77%	0.00%	7,25%	10,48625065	0,087491714	16.02%
63	0	Ó	0	0.052918256		0.037980658	0.00%	0.00%	0.00%	0.00%	0,00%	0,00%	9,02%	0.00%	7,64%	10.95479716	0.090898913	16 66%
62	0	0	0	0.053175748	1		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	9.06%	0.00%	7,85%	11,43175278	0,092230201	16.92%
61	0	0	0	0 053392747			0.00%	0.00%	0.00%	0.00%	0,00%	0.00%	9.10%	0.00%	B.07%	11,91764461	0.093519982	17.17%
60	0	0	0	0 052348593			0,00%	0.00%	0.00%	0.00%	0,00%	0,00%	8.92%	0.00%	8,09%	12,41303079	0 0926075	17_D2%
59	0	0	0	0.051283179			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	8.74%	0.00%	8 11%	12,91850331	0.09164139	16 86%
58	0	0	0	0.049055162			0.00%	0.00%	0.00%	0,00%	0,00%	0,00%	8 36%	0.00%	7.94%	13,43469107	0.088559217	16,30%
57	0	0	٥	0,046884205			0.00%	0,00%	0.00%	0,00%	0,00%	0,00%	7,99%	0,00%	7,59%	13,96226325	0.084639991	15.58%
56	0	0	٥	0,043751422			0.00%	0.00%	0.00%	0,00%	0.00%	0.00%	7,46%	0,00%	7.42%	14,50193311	0.080644861	14_88%
55	0	0	D	0.040791792		-,	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	6.95%	0,00%	7.08%	15,05446207	0,075990746	14.03%
54	0	0	0	0,037132915	1		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	6.33%	0.00%	6.75%	15,62066435	0,070584728	13,08%
53	0	0	0	0.033770772	1		0,00%	0.00%	0.00%	0.00%	0.00%	0.00%	5.76%	0.00%	6.42%	16 20141208	0.065722764	12 18%
52	٥	0	0	0.030683722			0.00%	0,00%	0.00%	0.00%	0.00%	0.00%	5.23%	0.00%	6,11%	16 79764097	0.061083121	11.34%
51 50	0	0	0	0.027851522				0.00%	0.00%	0.00%	0.00%	0.00%	4,75%	0.00%	5.68%	17.41035671	0.0560877	10,42%
49	0	0	-	0.025255251				0.00%	0.00%	0.00%	0.00%	0.00%	4.30%	0.00%	5,27%	18,04064207	0.051455694	9.57%
49	0	0	0	0.023410111 0.021676575			0.00%	0.00%	0.00%	0.00%	0.00%	0,00%	3,99%	0.00%	5.00%	18 68966486	0,048262059	8,99%
48	0	0	0	0.020994168			0.00%	0.00%	0.00%				010010	0.00%	4,63%	19,35868695	0.044688218	8.32%
46	0	0	0	0.020994168			0.00%	0.00%	0.00%	0.00%	0.00%	0,00%	3,58%	0.00%	4,28%	20,04907435	0.042278286	7 86%
45	0	0	0	0.020550091				0.00%	0.00%	0.00%	0.00%	0.00%	3,59%	0.00%	3,95%	20.76230866	0.040447042	7.50%
44	0	0	0	0.021251339				0.00%						0.00%	3,65%	21.5	0.038695665	7.15%
43	0	0	0						0.00%	0.00%	0,00%	0,00%	3,62%	0.00%	3,44%	22,26390175	0.038365013	7.06%
42	0	0	0	0.021948781 0.022639433				0.00%	0.00%	0.00%	0.00%	0.00%	3,74%	0.00%	3.17% 2.98%	23,05592727 23,87816907	0.03770193	6.91%
41	0	0	0	0.02386325				0.00%	0.00%	0.00%	0.00%	0.00%	4.07%	0.00%	2,98%	24,73292076	0.037458556 0.03810904	6.84% 6.93%
40	0	0	0	0.024545888				0.00%	0.00%	0.00%	0.00%	0.00%	4.07%	0.00%	2.75%	25.62270224	0.038221151	6.93%
39	0	0	0	0.025798078			0.00%	0.00%	0.00%	D.00%	0.00%	0.00%	4.40%	0.00%	2.64%	26.55028887	0.038906316	7.03%
38	0	õ	0	0.026456215			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	4.51%	0.00%	2.58%	27,51874509	0.039293839	7.09%
37	0	0	0	0.027087555			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	4.62%	0.00%	2.52%	28.53146366	0.039639954	7.14%
36	0	ō	0	0.027687333			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	4.72%	0.00%	2 52%	29.59221129	0.040225616	7.24%
35	0	0	0	0.028250514			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	4.82%	0.00%	2 51%	30.70518214	0.040752624	7.33%
34	0	0	ū	0.028116875				0.00%	0.00%	0.00%	0.00%	0.00%	4.79%	0.00%	2.50%	31.87506082	0.040559844	7.29%
33	0	ō	D	0.027293629		0.012359993		0.00%	0.00%	0.00%	0.00%	0.00%	4,65%	0.00%	2.49%	33.10709672	0.039653622	7.14%
32	0	0	D	0.026440104				0.00%	0.00%	0.00%	0.00%	0.00%	4.51%	0.00%	2.52%	34.40719237	0.038977869	7.03%
31	0	0	0	0.026153055		0.012119352	0,00%	0.00%	0.00%	0.00%	0.00%	0.00%	4.46%	0.00%	2.44%	35.78200887	0.038272406	6.89%
30	0	0	0	0.025222246		0.011960263	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	4.30%	0.00%	2.40%	37.23909236	0.037182509	6.70%
29	0	0	0	0.02426533		0.011506498	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	4.14%	0.00%	2 31%	38.78702674	0.035771828	6.45%
28	0	0	0	0.023826614		0.011298461	0,00%	0.00%	0.00%	0.00%	0.00%	0.00%	4,06%	0,00%	2 27%	40.435619	0.035125075	6.33%
27	0	0	0	0.023331211		0.010565602	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	3,98%	0,00%	2.12%	42 19612587	0.033896813	6.10%
26	0	0	0	0 022778634		0.010080559	0,00%	0.00%	0.00%	0.00%	0.00%	0.00%	3.88%	0,00%	2,03%	44.08153259	0.032859193	5,91%
25	Ö	0	0	0.022168702				0,00%	0.00%	0,00%	0.00%	0.00%	3,78%	0,00%	1,93%	46,10689879	0.031756022	5,71%
24	0	0	0	0.022002415		0.009087142		0.00%	0.00%	0.00%	0.00%	0.00%	3,75%	0.00%	1.83%	48.28979064	0.031089557	5.58%
23	0	0	0	0 021261788		0.008581372		0.00%	0.00%	0.00%	0.00%	0.00%	3,62%	0.00%	1,73%	50,65082587	0,02984316	5,35%
22	0	0	0	0.020940863		0.008259458		0.00%	0.00%	0.00%	0.00%	0.00%	3,57%	0.00%	1,66%	53,21436735	0 029200321	5.23%
21	0	o	0	0,020067907		0.007915148		0.00%	0.00%	0.00%	0.00%	0.00%	3.42%	0.00%	1,59%	56.00941489	0.027983055	5.01%
20	0	0	0	0.018704544		0.007549255		0.00%	0.00%	0.00%	0.00%	0.00%	3,19%	0.00%	1,52%	59.07076452	0 026253799	4.71%
19	0	0	0	0.017343134		0.007329672		0.00%	0.00%	0.00%	0.00%	0.00%	2.96%	0.00%	1.47%	62,440533B7	0.024672806	4.43%
18	0	0	0	0.015988528		0.007075635		0.00%	0.00%	0.00%	0.00%	0,00%	2,73%	0.00%	1.42%	66.17019605	0.023064163	4.15%
	0	0	0	0.014645845		0,006944986		0.00%	0.00%	0.00%	0.00%	0.00%	2.50%	0.00%	1,40%	70,3233313	0.021590831	3.89%
16	0	0	0	0.01301727		0.005614193		0.00%	0.00%	0.00%	0.00%	0.00%	2.22%	0.00%	1.33%	74.97941054	0.019631463	3.55%
15 14	0	0	0	0.011477207		0.00624875		0,00%	0.00%	0.00%	0.00%	0.00%	1.96%	0.00%	1.26%	80,23909236	0.017725957	3.21%
13	0	0	0	0.008670014		0.005419719		0.00%	0.00%	0.00%	0.00%	0.00%	1.71%	0,00%	1,18%	86 23179007	0.015877468	2,89%
12	õ	ő	0	0.007406305		0.004847954		0.00%	0.00%	0.00%	0.00%	0.00%		0,00%	1,09%	93,1267313	0.014089733	2.57%
11	ő	ő	0	0.007408303		0.004275613		0.00%	0.00%	0.00%	0.00%	0.00%	1 26%	0.00%	0.97%	101 1495474	0.012254259	2 24%
10	o	ő	ő	0.005166355		0.003708012		0.00%	0.00%	0.00%	0.00%	0.00%	0.88%	0.00%	0.75%	110.6079113	0.010513557	1,92%
9	ō	ő	0	0.004192843		0.003079396		0.00%	0.00%	0.00%	0.00%	0.00%	0.71%	0,00%	0.62%	121,9325591 135,7456576	0.008874367	1 63%
8	0	0	0	0.003395896		0.002494085		0.00%	0.00%	0.00%	0.00%	0.00%	0.58%	0,00%	0.50%	152.980449	0.00727224	1.33%
7	ů.	õ	ő	0.00260395		0.001912448		0.00%	0.00%	0.00%	0.00%	0.00%	0.44%	0.00%	0.38%	175,1034482	0.004516398	1.08%
6	ő	ŏ	0	0.001915636		0.001439693		0.00%	0.00%	0.00%	0.00%	0.00%	0.33%	0.00%	0.29%	204,5588358	0.003355328	0.62%
5	ō	0	0	0.00133179		0.001000905		0.00%	0.00%	0.00%	0.00%	0.00%	0.23%	0.00%	0.20%	245,7461245	0.002332695	0.43%
4	0	0	0	0.000853125		0.000641165		0.00%	0.00%	0.00%	0.00%	0.00%	0.15%	0.00%	0.13%	307,4643245	0.00149429	0.27%
3	0	0	0	0.000469293		0.000369318		0.00%	0.00%	0.00%	0.00%	0.00%	0.08%	0.00%	0.07%	410.2444388	0.000838611	0.15%
2	0	0	Q	0.000208681		0.000164225		0.00%	0.00%	0.00%	0,00%	0.00%	0.04%	0,00%	0.03%	615.6794456	0.000372906	0.07%
1	0	0	D	5.09981E 05		4.20254E-05	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.01%	1231,734175	9.30235E 05	0.02%
										211			02	- 20				

ATTACHMENT 4

Dewberry Engineers Inc. 99 Summer Street, Suite 700 Boston, MA 02110-1200 617.695.3400 617.695.3310 fax www.dewberry.com

December 12, 2022

Andrew Leone Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

Re: East Lyme SC2 CT (Rev 1) PSLC #: 467444 Fuze #: 16773996 301 Chesterfield Road East Lyme, CT 06333

Dear Mr. Leone:

Verizon Wireless has proposed to replace (1) antenna and (1) RRH with (1) new NNVVSSP-360S-FM antenna and (1) new B5/B13 RRH on the rooftop at the above referenced site. The proposed antenna will be mounted within (1) existing FRP canister that is façade mounted to the existing structure. The proposed RRH will be mounted on existing unistrut members mounted on the existing structure.

Dewberry Engineers Inc. (Dewberry) has reviewed the antenna design sheets (dated 09/26/22) provided by Verizon Wireless and has determined that <u>the existing mounts</u>, with the proposed modifications, and <u>existing building have adequate capacity to support the proposed equipment configuration</u>. The maximum <u>utilization of a single structural member is 64.5%</u>. Dewberry assumes that the new antenna and associated equipment are installed per the latest Construction Drawings by Dewberry.

This assessment is based on our visual inspection that the existing mount and building are in good condition and were constructed in conformance with all applicable state and local building codes. If, during construction, any damage, deterioration, and/or discrepancies are noticed, Dewberry is to be notified to assess any deviation from the assumed condition. Any alteration in equipment loading described above and on the associated plans will void any conclusions expressed herein and will require further analysis and design. No structural qualification is made or implied by this structural letter for existing structural members not supporting the proposed installation.

If you have any questions, please do not hesitate to call me at 617-531-0800.

Benjamin Revette, P.E. Associate Vice President CT License No.: 28971

\\bos-fs\dei\telecomev\projects\vzw\50121487-ne\50156141 - east lyme sc2 ct esnap\eng\struct\rev 1\report\sa_east lyme sc2 ct_467444_16773996_rec092622_rev1_121222.docx

Dewberry

ž

Structural Analysis Summary Sheet

Job No.: 50121487/50156141 By: CY Job Name: East Lyme SC2 CT Checked: BGI	Date: 12/9/22 Date: 12/10/22
---	--

301 Chesterfield Road, East Lyme, CT 06333 Location:

Client: VZW

Scope of Work:

• Proposed replacement of (1) antenna and (1) RRH with (1) new NNVVSSP-360S-FM antenna and (1) new B5/B13 RRH

Codes / Standards / References:

- IBC 2021
- 2022 CT State Building Code
- ТІА-222-Н
- **ASCE 7-16**
- NDS 2015
- AISC 15th Ed.
- RFDS dated 09/26/22 •
- Previous structural analysis by Dewberry Engineers on 09/03/15
- Site visit by Dewberry Engineers on 11/4/22
- Latest Construction Drawings by Dewberry Engineers

Design & Analysis Assumptions:

- Design and analysis are based on dead and wind loads. The analysis checks for normal bending and shear stresses.
- Analysis assumes equipment are installed per latest Construction Drawings by Dewberry Engineers.
- The previous new site build structural analysis by Dewberry Engineers (dated 09/03/15) does not match the as-built conditions as documented by the site visit by Dewberry Engineers on 11/4/22, therefore:
 - o Analysis assumes existing FRP canister dimensions are 12" dia. x 58" H x 0.25" thick.
 - Analysis assumes (2) 3/8" dia. lag screws were used for the mast pipe to existing 0 structure connection.

Conclusion / Recommendations:

- The existing structure has sufficient capacity to support the proposed installation. .
- The existing mount has sufficient capacity to support the proposed installation.
- Dewberry Engineer recommends installing (2) additional 1/2" dia. lag screws onto existing • unistrut connecting the mast pipe to the existing structure. Contractor to evenly space proposed lag screws on unistrut. Please see latest Construction Drawings by Dewberry Engineers for more
- details. Due to the negligible weight and dimension change in the proposed RRH and existing RRH, the . existing RRH unistrut passes by inspection.

	Job Number	50156141	
	Made by:	CY	
	Date:	12/9/22	
	Checked by:	BGK	
esign Wind Load	Date:	12/9/22	
E\50156141 - East Lyme SC2 CT ESNAP\Eng\Struct\Rev 1\0	Calcs\Rooftop Mount SA	V1.0	

(East Lyme SC2 CT - Rev 1) - Design Wind Loa

\\bos-fs\DEI\TelecomEV\Projects\VZW\50121487-NE\50156141 - East Lyme SC2 CT ESNAP\Eng\Struct\Rev 1\Calcs\Rooftop Mount SA

Wind Load Design Criteria

Site Name: East Lyme SC2 CT - Rev 1

ltem	Value	Description	Reference				
V =	130.00	Design Wind Speed (mph)	2022 CT State Building Code				
K _d =	0.95	Wind Directionality Factor	Table 26.6-1				
Risk Cat.	Н	Risk Category	Table 1.5-1				
=	1.00	Importance Factor (Without Ice)	Table 1.5-2				
z = h =	26.00	ft. (A.G.L.)	Max. Center of Appurtenance				
Exp. Cat.	С	Exposure Category	Sect. 26.7.3				
z _g =	900.00	Terrain Exposure Constant	Table 26.9-1				
α =	9.50	Terrain Exposure Constant	Table 26.9-2				
K _z =	0.95	Velocity Pressure Coefficient	Table 29.3-1				
Topo. Cat.	1	Topographic Feature	Sect. 26.8.1				
e =	2.72	Natural Logarithmic base					
γ =	N/A	Height attenuation Factor					
L _h ≐	N/A	Distace upwind of crest					
H =	N/A	ft. Height of crest above surrounding terrain					
K ₁ =	N/A	Topographic Multiplier	Figure 26.8-1				
K ₂ =	N/A	Topographic Multiplier	Figure 26.8-1				
K ₃ =	N/A	Topographic Multiplier	Figure 26.8-1				
K _{zt} =	1.00	$=(1+K_1K_2K_3)^2$	Sect. 26.8.2				
G =	0.85	Gust Effect Factor	Sect. 26.9.1				
q _{z design} =	39.2 psf	$= 0.00256(K_z)(K_{zt})(K_d)(V^2)$	Sect.29.3.2				

General Information & Design Input from ASCE 7-16

Design Wind Forces:

Section 29.5

 $F_{A} = q_{z \text{ design}}GC_{f}A_{f}$ (see calculation tables on following pages)

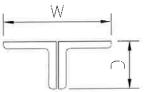
(where $A_f = (EPA)_A = effective projected area of the appurtenance)$

Dewberry

(East Lyme SC2 CT - Rev 1) - Design Wind Load

\bos-fs\DEI\TelecomEV\Projects\VZW\50121487-NE\50156141 - East Lyme SC2 CT ESNAP\Eng\Struct\Rev 1\Calcs\Rooftop Mount SA Loading STAAD XX-X

Element Definition


D	imensions (i	n.)	Weight	Length /	1
W	D	Н	(lb)	# Supports	
12.00	12.00	58.00	40.00	1.00	
12.00	12.00	28.74	41.70	1.00	
STRUC	I FURAL MEMBER	as and a second se			1
4.00	4.00	12.00	STAAD	Pipe	(See Note 2,
	W 12.00 12.00 STRUC	W D 12.00 12.00 12.00 12.00 12.00 12.00 STRUCTURAL MEMBER STRUCTURAL MEMBER	12.00 12.00 58.00 12.00 12.00 28.74	W D H (Ib) 12.00 12.00 58.00 40.00 12.00 12.00 28.74 41.70 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	W D H (lb) # Supports 12.00 12.00 58.00 40.00 1.00 12.00 12.00 28.74 41.70 1.00 12.00 12.00 28.74 41.70 1.00 12.00 12.00 28.74 41.70 1.00 12.00 12.00 28.74 41.70 1.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <

(Mounting Pipe)

190

<u>Note:</u>

1) For Double Angles assume the following:

2) For mounting pipes that <u>do not</u> support equipment or portions which are not shielded by equipment, create an additional entry below.

Job Number 50156141

CY

12/9/22 BGK

12/9/22

V1.0

Made by:

Checked by:

Date:

Date:

(East Lyme SC2 CT - Rev 1) - Design Wind Load

Job Number _ 50156141 Made by: CY Date: 12/9/22 BGK Checked by: Date: 12/9/22 V1.0

\bos-fs\DEI\TelecomEV\Projects\VZW\50121487-NE\50156141 - East Lyme SC2 CT ESNAP\Eng\Struct\Rev 1\Calcs\Rooftop Mount SA Loading STAAD XX-X

Design Wind Load

	Di	mensions	(ft.)	Area (A _a) _n	Area (A _a) _t	Aspect	Aspect	C _{an}	Cat
Members	Width	Depth	Height	(normal)	(tangent)	Ratio	Ratio	(normal)	(tangent)
	(Normal)	(Tangent)	(or span)	(sf)	(sf)	(normal)	(tangent)	Table 2-8	Table 2-6
FRP canister	1.00	1.00	4.83	4.83	4.83	4.83	4.83	1.30	1.30
NNVVSSP-360S-FM	1.00	1.00	2.40	2.40	2.40	2.40	2.40	1.20	1.20
				STRUCTURAL	MEMBERS				
4" OD pipe	0.33	0.33	1.00	0.33	0.33	3.03	3.03	0.71	0.71

Design Effective Projected Area & Wind Loads

Members	EPA _a @ 0.0° (sf)	EPA _a @ 30.0° (sf)	EPA _a @ 60.0° (sf)	EPA _a @ 90.0° (sf)	F _a @ 0.0° (/b)	F _a @ 30.0° (/b)	F _a @ 60.0° (/b)	F _a @ 90.0° (/b)	Gravity Load @ Support (/b)
FRP canister	6.28	6.28	6.28	6.28	209.2	209.2	209.2	209.2	40.0
NNVVSSP-360S-FM	2.88	2.88	2.88	2.88	96.0	96.0	96.0	96.0	41.7
				STRUCTURAL I	MEMBERS				
4" OD pipe	0.23				7.8	(,)	•		-
							54		
								1	

Bentley	Job No 50156141	Sheet No	1	Rev O
Software licensed to Dewberry Engineers Inc. CONNECTED User: Carmen Yan	Part			
Job Title East Lyme SC2 CT	Ref			
	ву СҮ	Date11/18	/2022 ^{Chd} BG	Ж
Client VZW	File East Lyme SC2	CT.STD	Date/Time 09-Dec-	2022 17:39

Job Information

	Engineer	Checked	Approved
Name:	CY	BGK	
Date:	11/18/2022	11/22/2022	

Project ID Project Name

Structure Type SPACE FRAME

Number of Nodes	6	Highest Node	6
Number of Elements	5	Highest Beam	5

 Number of Basic Load Cases
 3

 Number of Combination Load Cases
 4

Included in this printout are data for:
All The Whole Structure

Included in this printout are results for load cases:

Туре	L/C	Name
Primary	1	DEAD LOAD
Primary	2	WIND (X)
Primary	3	WIND (Z)
Combination	4	1.2D+1.0W(X)
Combination	5	1.2D+1.0W(Z)
Combination	7	1.0D+0.6W(X)
Combination	8	1.0D+0.6W(Z)

-	
1	
1	

entley		Job No 50156141	Sheet No 2	Rev 0
vare licensed to Dewberry Engineers Inc. NECTED User: Carmen Yan		Part	-k	
^{ītle} East Lyme SC2 CT		Ref		
		^{By} CY		BGK
t VZW		File East Lyme SC2	2 CT.STD Date/Time 09-De	e-2022 17:3
	*2			
	*6			
	\$			
	<u>^</u>			
	2.5			
	7.4			
ξ×.			Load 2	
£	1		2000 2	
Node Layout				
	5			
	4			
	3			
	ź			
	3			
	4 . A 11			
	1			
Ę.	2		Load 2	
	0			

Bentley	Job No 50156141	Sheet No	3	Rev O
Software licensed to Dewberry Engineers Inc. CONNECTED User: Carmen Yan	Part			
Job Title East Lyme SC2 CT	Ref			
	^{By} CY	Date11/18	/2022 ^{Chd} BG	к
Client VZW	File East Lyme SC2	CT.STD	Date/Time 09-Dec-	2022 17:39

Section Properties

Prop	Section	Area (in ²)	lyy (in⁴)	l₂₂ (in⁴)	J (in⁴)	Material
1	PIPS35	2.500	4.520	4.520	9.043	STEEL

Materials

Mat	Name	E (kip/in ²)	ν	Density (kip/in ³)	α: (/°F)
1	STEEL	29E+3	0.300	0.000	6.5E -6
2	CONCRETE	3.15E+3	0.170	8.68 e- 05	5.5E -6
3	ALUMINUM	10E+3	0.330	9.8e-05	12.8E -6
4	STAINLESSSTEEL	28E+3	0.300	0.000	9.9E -6
5	STEEL_36_KSI	29E+3	0.300	0.000	6.5E -6
6	STEEL_50_KSI	29E+3	0.300	0.000	6.5E -6
7	STEEL_275_NMM2	29.7E+3	0.300	0.000	6.67E -6
8	STEEL_355_NMM2	29.7E+3	0.300	0.000	6.67E -6
9	Q235	29.9E+3	0.300	0.000	6.67E -6
10	Q345	29.9E+3	0.300	0.000	6.67E -6
11	Q355	29.9E+3	0.300	0.000	6.67E-6
12	Q390	29.9E+3	0.300	0.000	6.67E -6
13	Q420	29.9E+3	0.300	0.000	6.67E -6
14	Q460	29.9E+3	0.300	0.000	6.67E -6
15	TIMBER	1.5E+3	0.150	0.000	3E -6

Supports

Node	X	Y	Z	rX	Ý	٢Z
	(kip/in)	(kip/in)	(kip/in)	(kip ⁻ ft/deg)	(kip ⁻ ft/deg)	(kip ⁻ ft/deg)
3	Fixed	Fixed	Fixed	-	1	4
4	Fixed	Fixed	Fixed	•	Fixed	-

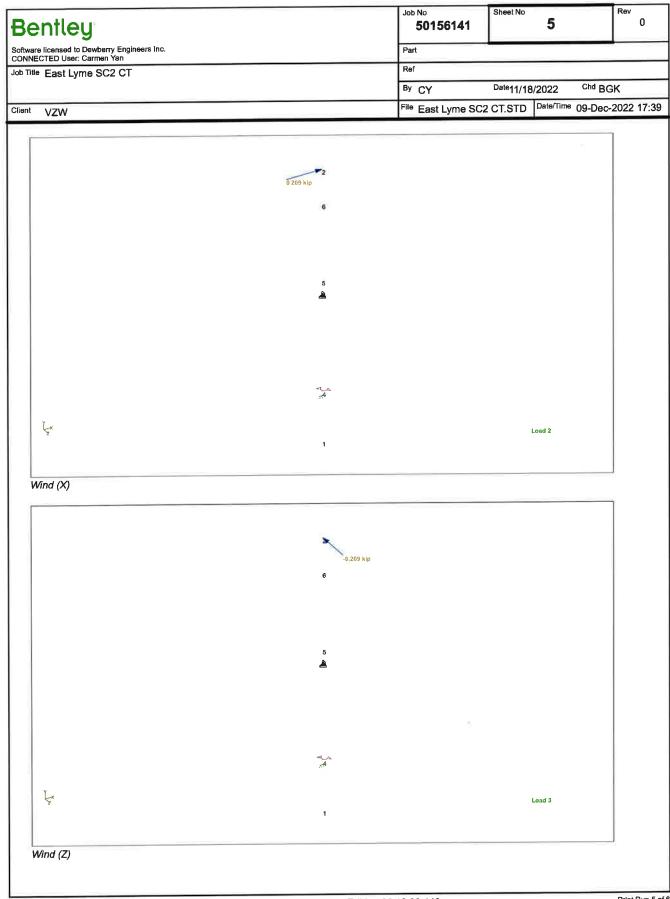
<u>Releases</u>

There is no data of this type.

Primary Load Cases

Number	Name	Туре
1	DEAD LOAD	Dead
2	WIND (X)	Wind
3	WIND (Z)	Wind

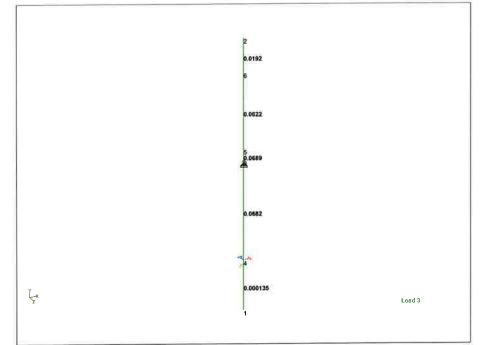
Bentley	Job No 50156141	Sheet No	4	Rev O
Software licensed to Dewberry Engineers Inc. CONNECTED User: Carmen Yan	Part			
Job Title East Lyme SC2 CT	Ref			
	^{By} CY	Date11/18	/2022 ^{Chd} BG	Ж
Client VZW	File East Lyme SC2	CT.STD	Date/Time 09-Dec-	2022 17:39


Combination Load Cases

Comb.	Combination L/C Name	Primary	Primary L/C Name	Factor
4	1.2D+1.0W(X)	1	DEAD LOAD	1.20
		2	WIND (X)	1.00
5	1.2D+1.0W(Z)	1	DEAD LOAD	1.20
		3	WIND (Z)	1.00
7	1.0D+0.6W(X)	1	DEAD LOAD	1.00
		2	WIND (X)	0.60
8	1.0D+0.6W(Z)	1	DEAD LOAD	1.00
		3	WIND (Z)	0.60

Failed Members

There is no data of this type.



Bentley	Job No 50156141	Sheet No	6	Rev O
Software licensed to Dewberry Engineers Inc. CONNECTED User: Carmen Yan	Part			
Job Title East Lyme SC2 CT	Ref			
S2	^{By} CY	Date11/18	/2022 ^{Chd} BG	K
Client VZW	File East Lyme SC2	CT.STD	Date/Time 09-Dec-	2022 17:39

Utilization Ratio

Beam	Analysis	Design	Actual	Allowable	Ratio	Clause	L/C	Ax	lz	ly	Ix
	Property	Property	Ratio	Ratio	(Act./Allow.)			(in²)	(in⁴)	(in⁴)	(in ⁴)
1	PIPS35	PIPS35	0.000	1.000	0.000	Cl.D2	4	2.500	4.520	4.520	9.040
2	PIPS35	PIPS35	0.069	1.000	0.069	Eq.H1-1b	4	2.500	4.520	4.520	9.040
3	PIPS35	PIPS35	0.068	1.000	0.068	Eq.H1-1b	4	2.500	4.520	4.520	9.040
4	PIPS35	PIPS35	0.062	1.000	0.062	Eq.H1-1b	4	2.500	4.520	4.520	9.040
5	PIPS35	PIPS35	0.019	1.000	0.019	Eq.H1-1b	4	2.500	4.520	4.520	9.040

Utilization Ratio

Bentley	Job No 50156141	Sheet No	1	Rev O
Software licensed to Dewberry Engineers Inc. CONNECTED User: Carmen Yan	Part			
Job Tille East Lyme SC2 CT	Ref			
	By CY Date11/18/2022 Chd BGK			К
Client VZW	File East Lyme SC2	CT.STD	Date/Time 09-Dec-	2022 17:39

Job Information

	Engineer	Checked	Approved
Name:	CY	BGK	
Date:	11/18/2022	11/22/2022	

3

4

Project ID Project Name

Structure Type SPACE FRAME

6	Highest Node	6
5	Highest Beam	5
		6 Highest Node 5 Highest Beam

Number of Basic Load Cases
Number of Combination Load Cases

Included in this printout are data for: Nodes 3

Included in this printout are results for load cases:

Туре	L/C	Name			
Combination	7	1.0D+0.6W(X)			
Combination	8	1.0D+0.6W(Z)			

Node 3 is the top connection where the mast pipe goes through the roof. The reactions are taken by that connection therefore only the axial load (Fy) is considered in the lag screw check.

Reaction Summary

	Horizontal Vertical Horizontal Moment							
	Node	L/C	FX	FY	FZ	MX	MY	MZ
			(kip)	(kip)	(kip)	(kip⁻in)	(kip⁻in)	(kip ⁻ in)
Max FX	3	8:1.0D+0.6W(Z	0	0.114	0.280	0	0	(
Min FX	3	7:1.0D+0.6W(>	-0.280	0.114	0	0	0	(
Max FY	3	7:1.0D+0.6W(>	-0.280	0.114	0	0	0	(
Min FY	3	7:1.0D+0.6W(>	-0.280	0.114	0	0	0	(
Max FZ	3	8:1.0D+0.6W(Z	0	0.114	0.280	0	0	(
Min FZ	3	7:1.0D+0.6W(>	-0.280	0.114	0	0	0	
Max MX	3	7:1.0D+0.6W(>	-0.280	0.114	0	0	0	(
Min MX	3	7:1.0D+0.6W()	-0.280	0.114	0	0	0	(
Max MY	3	7:1.0D+0.6W(>	-0.280	0.114	0	0	0	(
Min MY	3	7:1.0D+0.6W(>	-0.280	0.114	0	0	0	
Max MZ	3	7:1.0D+0.6W(>	-0.280	0.114	0	0	0	
Min MZ	3	7:1.0D+0.6W(>	-0.280	0.114	0	0	0	

Bentley	Job No 50156141	Sheet No	1	Rev O
Software licensed to Dewberry Engineers Inc. CONNECTED User: Carmen Yan	Part			
Job Title East Lyme SC2 CT	Ref			
	By CY Date11/18/2022 Chd BGK			к
Client VZW	File East Lyme SC2	CT.STD	Date/Time 09-Dec-	2022 17:39

Job Information

	Engineer	Checked	Approved
Name:	CY	BGK	
Date:	11/18/2022	11/22/2022	

3

4

Project ID Project Name

Structure Type SPACE FRAME

Number of Nodes	6	Highest Node	6
Number of Elements	5	Highest Beam	5

Number of Basic Load Cases Number of Combination Load Cases

Included in this printout are data for: Nodes 4

Included in this printout are results for load cases:

Туре	L/C	Name
Combination	7	1.0D+0.6W(X)
Combination	8	1.0D+0.6W(Z)

Node 4 is the single U-bolt connection between the mast pipe and the existing structure.

Reaction Summary

			Horizontal	Vertical	Horizontal			
	Node	L/C	FX	FY	FZ	MX	MY	MZ
			(kip)	(kip)	(kip)	(kip`in)	(kipīn)	(kip ⁻ in)
Max FX	4	7:1.0D+0.6W(>	0.154	0.018	0	0	0	0
Min FX	4	8:1.0D+0.6W(Z	0	0.018	-0.154	0	0	0
Max FY	4	7:1.0D+0.6W(>	0.154	0.018	0	0	0	0
Min FY	4	7:1.0D+0.6W(>	0.154	0.018	0	0	0	0
Max FZ	4	7:1.0D+0.6W(>	0.154	0.018	0	0	0	0
Min FZ	4	8:1.0D+0.6W(Z	0	0.018	-0.154	0	0	0
Max MX	4	7:1.0D+0.6W(>	0.154	0.018	0	0	0	0
Min MX	4	7:1.0D+0.6W()	0.154	0.018	0	0	0	0
Max MY	4	7:1.0D+0.6W(>	0.154	0.018	0	0	0	0
Min MY	4	7:1.0D+0.6W(>	0.154	0.018	0	0	0	0
Max MZ	4	7:1.0D+0.6W(>	0.154	0.018	0	0	0	0
Min MZ	4	7:1.0D+0.6W(>	0.154	0.018	0	0	0	0

Fy = 114 lb + 18 lb = 132 lb

Dewberry Dewberry (East Lyme SC2 CT - Rev 1) - \\bos-fs\DE\\TelecomEV\Projects\VZW\5012148 Size Lag Screws for Antenna Angle Existing (2x) lag screw used for mast Assumed 3/8" diameter x 1" lag screw	Lag Screw Des ^{17-NE\50156141 - East} Supports pipe to existing stru	Lyme SC2 CT ESNA		uct\Rev 1	Job Number Made by: Date: Checked by: Date: \Calcs\Hilti Anchora	50156141 CY 12/9/2022 BGK 12/9/2022 Ige Check XX-XX-
$\begin{array}{l} \underline{Design \ Loading} \\ Fz = \\ Moment = \\ F_y = \\ Fx = \\ z = \\ w = \\ z\alpha = \end{array}$ $\begin{array}{l} \underline{Lag \ Screw \ Dimensions:} \\ Dia. (D) = & 0.375 \ in. \\ Length = & 1 \ in. \end{array}$	77 lbSTAAD Ma0 lb-inSTAAD Ma66 lbSTAAD Ma77 lbSTAAD Ma101 lbMax Comb77 lbWithdrawa127 lbCombinedT = 0.75 in S =S = 0.25 in S	ax Tension Load ax Moment - Prying ax Vertical Load ax Shear Load oined Shear Load I Load Lateral and Withdraw T-E = 0.53	(θ = α = Table L2,		
=	800G ^{3/2} D ^{3/4})C _d 431 lb Z ₆ C _d C _g 183 lb	where: where:	$C_{d} = G = G$ $C_{d} = C_{g} = Z_{\theta} = G$	1.6 0.46 1.6 1 113.9	(duration factor, w (spec. grav. south (duration factor, w (group factor, calo (Yield Mode III m)	ind)

$$Z'\alpha = \frac{(W'p) Z'}{(W'p) \cos^2 \alpha + Z' \sin^2 \alpha}$$

Z'α = 197 lb

Unity Checks

$$\frac{Z\alpha}{Z'\alpha} = \frac{127 \text{ lb}}{197 \text{ lb}} = 64.5\%$$

EAST > North East > New England > New England West > EAST LYME SC 2 CT

RF Submit by: Stevens, Wesley - wesley.stevens@verizonwireless.com - 9/26/2022, 11:16:38 AM

EE Submit by: Driscoll, Janet - janet.driscoll@verizonwireless.com - 7/18/2022, 1:32:36 PM

Project Details

Location Information

FUZE Project ID: 16773996	Site ID: 2715807
Project Name: Radio Swap	E-NodeB ID: 064116
Project Alt Name: EAST LYME SC 2 CT - NENG_SC_ESNAP	PSLC: 467444
Project Type: Modification	Switch Name: Wallingford 1
Modification Type: RF	Tower Owner:
Designed Sector Carrier 4G: 2	Tower Type: Rooftop
Designed Sector Carrier 5G: N/A	Site Type: SMALL-CELL
Additional Sector Carrier 4G: N/A	Site Sub Type: SPOKE
Additional Sector Carrier 5G: N/A	Street Address: 301 Chesterfield Rd
FP Solution Type & Tech Type: MODIFICATION;4G_850,4G_Radio Swap	City: East Lyme
Carrier Aggregation: false	State: CT
MPT Id:	Zip Code: 06333
eCIP-0: false	County: New London
Suffix: Rev4_20220926	Latitude: 41.405478 / 41° 24' 19.7208" N
	Longitude: -72.224858 / 72° 13' 29.4888" W

RFDS Project Scope: Add AWS/PCS/850 Swap antenna Swap RRHs to SS ORAN

Rev0_20220121: initial design

Rev1_20220121: changed RRHs to ORAN, removed diplexer (ORAN has 4 ports)

Rev2_20220805: revised RFDS to show the need for a diplexer - the AWS/PCS RRH does have 8 ports. Added a plumbing diagram.

Rev3 20220906: Per RE there is only space for 1 RRH, so removing the AWS/PCS RRH

Rev4_20220926: Updated plumbing diagram and removed diplexer

Antenna Summary

			02325	2210.0024-00	020012-0100	27217/122-1	10.00	100000	20222000	egonomications.	40339223
700	850	Make	Model	Centerline		Azimuth	RET	4xRx	Inst. Type	Quantity	Item ID
LTE	LTE	COMMSCOPE	NNVVSSP-3605-FM	27.51	28.7	50(01)	false	false	PHYSICAL	(II)	NNWVSSP-360S-FM
Remov	ed										
700	850	Make	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity	Item ID
LTE		ANDREW	NHIBOQS-DG-FOM	27.51	28.7	50(01)	false	false	PHYSICAL	1	
Retain	be										
700	850	Make	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity	item ID
								No data av			
		þ	¢.								

Equipment Summary

Equipment Type	Location	700	850	Make	Model	Cable Length	Cable Size	Install Type	Quantity	Item ID
nd	Tower			COMMSCOPE	ATCB RET CABLE			PHYSICAL	4	E
Kit	Tower			GEMIN	1600131299A			PHYSICAL	2	1600131299A
Kit	Tower			GEMINI	1600270671A			PHYSICAL	2	1600270671A
Mounts/ Brackets	Tower			QUADELEGTR- 001	V-324			PHYSICAL	2	V-324
Kit	Tower			QUADELECTRIC	F113CGRS0101FLF025			PHYSICAL	2	F113CGRS0101FLF0
KIX	Tower			QUADELECTRIC	FLI0020T010046M010			PHYSICAL	2	FL10020T010046M
Kit	Tower	-		QUADELECTRIC	SAM-CORS-BRT-NID	1. 10		PHYSICAL	1	SAMSUNG CBRS- BRKT
Kit	Tower			QUADELECTRIC	TRAT303HIBIJ00F006			PHYSICAL	8	TRAT303H1B1J00F
KG1	Tower			QUADELECTRIC	TRAT303HIBIJ00F050			PHYSICAL	9	TRAT303HIEIJ00F
Kit	Tower	1		QUADELECTRIC	UXP-4MT-125			PHYSICAL	8	UXP-4MT-12S
Kit	Tower			QUADELECTRIC	WPS-4F			PHYSICAL	8	WPS-4F
Kit	Tower			QUADELECTRIC	WPS-N-48			PHYSICAL	8	WPS-N-4S
Kit	Tower			QUADELELECTRIC	¥3000			PHYSICAL	î	V3000
Other	Tower			SAMSUNGELE-	SLS-BBH50EDEX			PHYSICAL	1	SLS-BB1150EDEX
RRQ	Tower	LTE	LTE	Samsung	85/613 REH ORAN (RF4440d-13A)			PHYSICAL	1	
Removed										
Equipment Type	Location	700	850	Make	Model	Cable Length	Cable Size	Install Type	Quantity	Item ID
RRU	Tower	LTE		Nokia	UHBA B13 RRH 4x30			PHYSICAL	1	
Retained										
Equipment Type	Location	700	850	Make	Model	Cable Longth	Cable Size	Install Type	Quantity	item ID

No data available

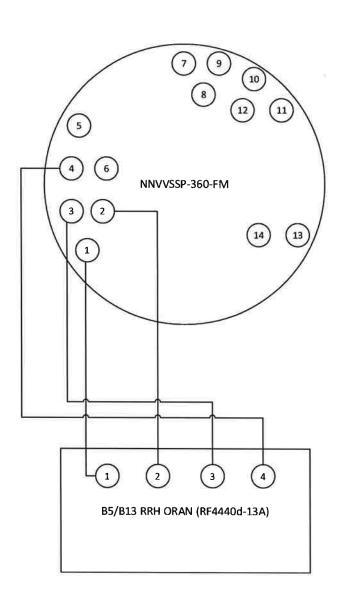
Added

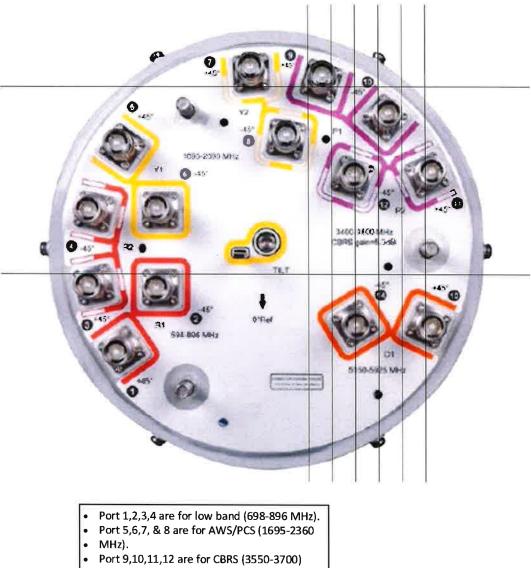
Service Info

00 MHz LTE		0000		0002
Sector				
Azimuth				
Cell / ENode B ID_	064116		064116	
Antenna Model	NH180QS-DG-F0M		NNVVSSP-360S-FM	
1.46 é revela bis mén dan revela s	111120003-0-0-001			
			COMMSCOPE	
Antenna Make	ANDREW			
Antenna Centerline(Ft)	27.51		27.51	
Mechanical Down-Tilt(Deg.)	0	12	0	
Electrical Down-Tilt	0		0	
Tip Height	28.7		28.7	
Regulatory Power	11.63		6.65	
DLEARFCN	5230		5230	
Channel Bandwidth(MHz)	10		10	
Total ERP_(W)			59.81	
The A Marken	U4+/.1			
TMA Model	144120040			
RRU Make	Nokia		Samsung	
RRU Model	UHBA B13 RRH 4x30		B5/B13 RRH ORAN (RF4440d-13A)	
Number of Tx, Rx Lines	2,2		2,2	
Position				
Transmitter.id	1951746		12196724	
Source	ATOLL APL		ATOLL API	
ISO MH2 LTE				0002
			124	0002
Sector			01 50	
Azimuth			50	
Cell / ENode B ID			064116	
Antenna Model			NNVVSSP-360S-FM	
Antenna Make			COMMSCOPE	
Antenna Centerline(Ft)			27.51	
Mechanical Down-Tilt(Deg.)			0	K ²
Electrical Down-Tilt			0	
Tip Height			28.7	
Regulatory Power			12.52	
DLEARFCN			2450	
Channel Bandwidth(MHz)			10	
Total ERP (W)			56.34	
TMA Make				
TMA Model				
RRU Make			Samsung	
RRU Modei			B5/B13 RRH ORAN (RF4440d-13A)	
Number of Tx, Rx Lines			2.2	
Position			- 7777	
			Care a la contra	
Personal Contraction International Contraction International Contraction Contractication Contractitaticati			12196727	
Transmitter Id Source			12196727 ATOLL_API	

Service Comments

Callsigns Per Antenna

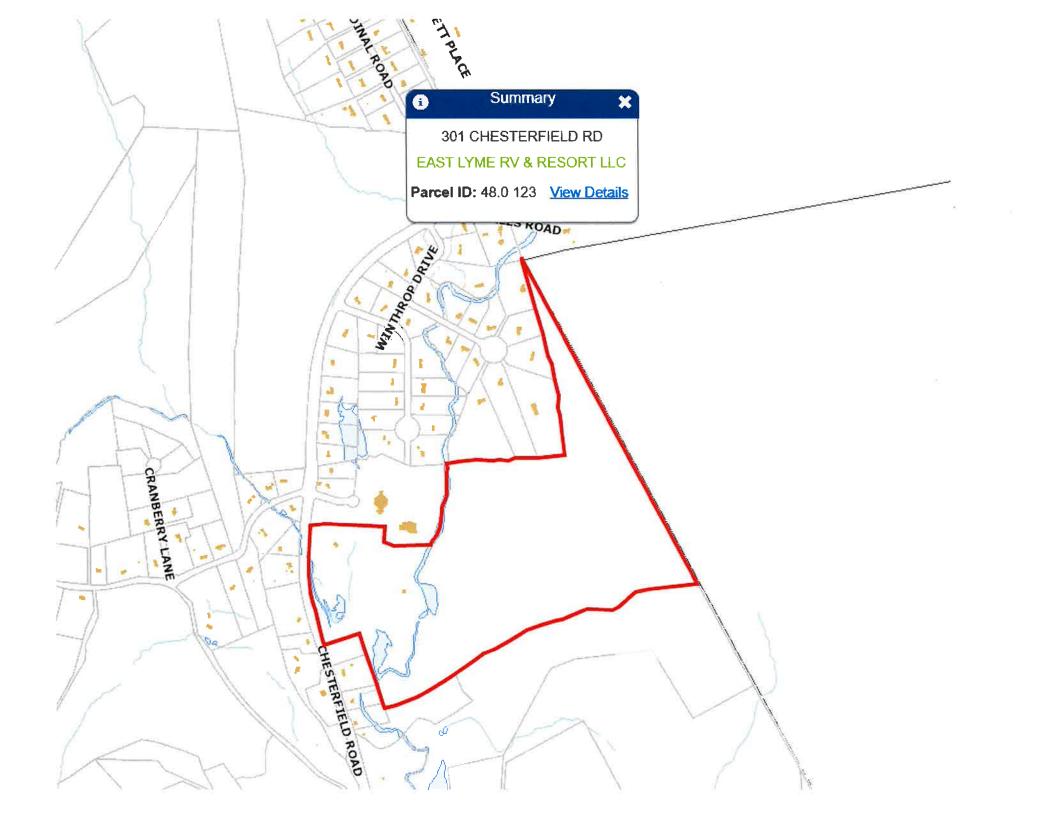

Sector	Antenna Make	Antenna Model	Ant CL	Tip	Azimuth	Elec		Gain			Callsigns						
			Height AGL	Height	(TN)	Titt	Tilt		Width	Power	700	850	1900	2100	28 GHz	31 GHz	39 GHz
01	COMMSCOPE	NNVVSSP-360S-FM	27.51	28.7	50	0	0	1.508	360	12.52		KNKA745					
01	COMMSCOPE	NNVVSSP-3605-FM	27.51	28.7	50	0	0	1.768	360	6.65	WQJQ689						


Callsigns

Calisign	Market	Radio Code	Market Number	Block	State	County	Licensee Name		Total MHZ	Freq Range 1	Freq Range 2	Freq Range 3	Freq Range 4	Regulatory Power	Threshold (W)	POPs /Sq Mi	Status	Action	Approved for Insvc
WQJQ689	Northeast	wu	REA001	с	ст	New London	Cellco Partnership	Yes	22.000	746.000- 757.000	776.000- 787.000	.000000	.000000	6.65	1000	403.90	Active	added	Yes
KNKA745	New London- Norwich, CT	СL	CMA154	A	ст	New London	Cellco Partnership	Yes	25,000	824.000- 835,000	869.000- 880.000	845.000- 846.500	890.000- 891.500	12.52	400	403.90	Active	added	Yes
WQDU931	New London- Norwich, CT	C₩	BTA319	c	ст	New London	Cellco Partnership	Yes	10.000	1900.000- 1905.000	1980.000- 1985.000	.000000	.000000		1640	403.90	Active		Yes
WQEM954	New London- Norwich, CT	cw	BTA319	с	ст	New London	Cellco Partnership	Yes	10.000	1895.000- 1900.000	1975.000- 1980.000	.000000	.000000		1640	403.90	Active		Yes
KNLH263	New London- Norwich, CT	cw	BTA319	F	ст	New London	Cellco Partnership	Yes	10.000	1890.000- 1895.000	1970.000- 1975.000	.000000	.000000		1640	403.90	Active		Yes
WREE835	C09011 - New London, CT	UU	C09011	ы	ст	New London	Cellco Partnership	Yes	425,000	27500.000- 27925.000	.000000	,000000,	.000000			403.90	Active		Yes
WREE836	C09011 - New London, CT	UU	C09011	L2	ст	New London	Cellco Partnership	Yes	425.000	27925.000- 28350.000	.000000	.000000.	.000000			403.90	Active		Yes
WRHD609	New York, NY	UU	PEA001	MI	ст	New London	Straight Path Spectrum, LLC	Yes	100.000	37600.000- 37700.000	.000000	.000000	.000000			403.90	Active		Yes
WRHD610	New York, NY	UU	PEA001	M10	ст	New London	Straight Path Spectrum, LLC	Yes	100.000	38500.000- 38600.000	.000000	.000000	.000000			403.90	Active		Yes
WRHD611	New York, NY	UU	PEA001	M2	ст	New London	Straight Path Spectrum, LLC	Yes	100.000	37700.000- 37800.000	.000000	.000000	.000000			403.90	Active		Yes
WRHD612	New York, NY	UU	PEA001	MЗ	ст	New London	Straight Path Spectrum, LLC	Yes	100.000	37800.000- 37900.000	.000000	.000000	.000000.			403.90	Active		Yes
WRHD613	New York, NY	UU	PEA001	M4	ст	New London	Straight Path Spectrum, LLC	Yes	100.000	37900.000- 38000.000	.000000	.000000	.000000			403.90	Active		Yes
WRHD614	New York, NY	UU	PEA001	M5	ст	New London	Straight Path Spectrum, LLC	Yes	100.000	38000.000- 38100.000	.000000.	.000000	.000000			403.90	Active		Yes
WRHD615	New York, NY	UU	PEA001	M6	ст	New London	Straight Path Spectrum, LLC	Yes	100.000	38100.000- 38200.000	.000000	.000000	.000000			403.90	Active		Yes
WRHD616	New York, NY	UU	PEA001	M7	ст	New London	Straight Path Spectrum, LLC	Yes	100.000	38200.000- 38300.000	.000000	.000000	.000000			403.90	Active		Yes
WRHD617	New York, NY	UU	PEA001	MØ	ст	New London	Straight Path Spectrum, LLC	Yes	100.000	38300.000- 38400.000	.000000	.000000	.000000			403.90	Active		Yes
WRHD616	New York, NY	UU	PEA001	M9	ст	New London	Straight Path Spectrum, LLC	Yes	100.000	38400.000- 38500.000	.000000	.000000	.000000			403.90	Active		Yes
WRHD619	New York, NY	UU	PEA001	N1	ст	New London	Straight Path Spectrum, LLC	Yes	100.000	38600.000- 38700.000	.000000	.000000	.000000			403.90	Active	N/A	No
WQGD494	New London- Norwich, CT	AW	CMA154	∔ A	ст	New London	Cellco Partnership	Yes	20.000	1710.000- 1720.000	2110.000- 2120.000	.000000	.000000		1640	403.90	Active		Yes
WRNE581	New York, NY	РМ	PEAOOI	A1	ст	New London	Cellco Partnership	Yes	20.000	3700.000- 3720.000	.000000	.000000	.000000		1640	403.90	Active		Yes
WRNE582	New York, NY	PM	PEA001	I A2	ст	New London	Cellco Partnership	Yes	20.000	3720.000- 3740.000	.000000	.000000.	.000000		1640	403.90	Active		Yes
WRNE583	New York, NY	PM	PEAOOI	A3	ст	New London	Celico Partnership	Yes	20.000	3740.000- 3760.000	.000000	.000000	.000000		1640	403.90	Active		Yes

Proprietary and Confidential, Not for disclosure outside of Verizon,

WRNE584	New York, NY	PM	PEA001	A 4	ст	New London	Cellco Partnership	Yes	20.000	3760.000- 3780.000	.000000	.000000	.000000	1640	403.90	Active	No
WRNE585	New York, NY	PM	PEAOOI	A5	ст	New London	Cellco Partnership	Yes	20.000	3780.000- 3800.000	.000000	.000000	.000000	1640	403.90	Active	No
WQGA906	New York-No. New JerLong Island, NY-NJ-CT-PA-MA-	AW	BEA010	в	ст	New London	Cellco Partnership	Yes	20.000	1720.000- 1730.000	2120.000- 2130.000	.000000	.000000	1640	403.90	Active	Yes
WRNE586	New York, NY	РМ	PEA001	B1	ст	New London	Cellco Partnership	Yes	20.000	3800.000- 3820.000	.000000	.000000	.000000	1640	403.90	Active	No
WRNE587	New York, NY	РМ	PEA001	82	Ст	New London	Cellco Partnership	Yes	20.000	3820.000- 3840.000	.000000	.000000	.000000	1640	403.90	Active	No
WRNE588	New York, NY	РМ	PEA001	B 3	ст	New London	Cellco Partnership	Yes	20.000	3840.000- 3860.000	.000000	.000000	.000000.	1640	403.90	Active	No



- Port 13,14, are for LAA (5150-5925)
- Antenna has no Smart Bias Tee (SBT)
 AISG cable is not needed (low band is fixed) tilt)

14

ATTACHMENT 5

Search	Street Listing	Sales Search	Feedback	Back	<u>Home</u>				
301 CH	ESTERFIE	LD RD				Q Sales	ê Print	Field Card	Q Map It
	Location	301 CHESTERFIE	LD RD		мы	u 48.0/ *	123///		
	Acct#	005439			Owne	EAST	LYME RV 8	RESORT LLC	
A	ssessment	\$1,442,080			Appraisa	al \$2,36	7,500		
	PID	8047		B	uilding Cour	nt 2			

Current Value

	Appraisal		
Valuation Year	Improvements	Land	Total
2021	\$640,100	\$1,727,400	\$2,367,500
	Assessment		
Valuation Year	Improvements	Land	Total
2021	\$448,070	\$994,010	\$1,442,080

Owner of Record

Owner	EAST LYME RV & RESORT LLC	Sale Price	\$1,700,000
Co-Owner		Certificate	
Address	301 CHESTERFIELD RD	Book & Page	1010/0075
	EAST LYME, CT 06333	Sale Date	04/12/2019
		Instrument	03

ATTACHMENT 6

				Eas	st Lyme SC 2	
UNITED STATES POSTAL SERVICE ®				Cert	ficate of Mail	ing — Firm
Name and Address of Sender	TOTAL NO. of Pieces Listed by Sender	TOTAL NO. of Pieces Received at Post Office™	Affix Stamp Here Postmark with Date			
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	Bestmaster, per (name of receiving	g employee)	HOUSE STRITTON DEILOS 0 4 2023	neopost ^M 01/04/2023 US POSTAGE \$003.099 ZIP 06103 041L12203937		
USPS [®] Tracking Number Firm-specific Identifier	A (Name, Street, Cit	u ddress y, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
1.	Kevin A. Seery, First Town of East Lyme 108 Pennsylvania Avo Niantic, CT 06357		-			
2.	Gary Goeschel II, Dir Town of East Lyme 108 Pennsylvania Av		-			
3.	Niantic, CT 06357 East Lyme RV & Res 301 Chesterfield Road East Lyme, CT 0633	d	-			
4.			-			
5.			-			
6.	-		-			
			-			

PS Form **3665**, January 2017 (Page <u>1</u> of <u>1</u>) PSN 7530-17-000-5549