

Crown Castle 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

November 9, 2018

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for T-Mobile Crown Site BU: 801367
T-Mobile Site ID: CT11352C
1121 Summit Road, Cheshire, CT 06410
Latitude: 41° 32' 11.2'' / Longitude: -72° 57' 26.3''

Dear Ms. Bachman:

T-Mobile currently maintains nine (9) existing antennas at the 138' level of the existing 167' monopole at 1121 Summit road in Cheshire, CT. The tower is owned by Crown Castle. The property is owned by Thomas & M. Joanne Didomizio. T-Mobile now intends to replace (6) of its existing antennas with (6) new antennas. These antennas would be installed at the same 138' level on the tower. T-Mobile also intends to add (3) RRUs and swap out (1) coax for (1) new hybrid fiber cable.

This facility was approved by the by the Connecticut Siting Council in Docket No. 199 on April 12, 2001. This approval included the conditions that:

1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of AT&T, Voicestream, Sprint, the Town of Cheshire and other entities, both public and private, but such tower shall not exceed a height of 170 feet above ground level.

This modification complies with the aforementioned condition(s).

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b) (2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to Mr. Robert Oris, Chairman – Town Council, William S. Voelker, Town Planner, as well as the property owner, and Crown Castle as the tower owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.

Page 2

- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: William Stone.

Sincerely,

William Stone Real Estate Specialist 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 518-373-3543 William.stone@crowncastle.com

Attachments:

Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes

Tab 2: Exhibit-2: Structural Modification Report

Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)

cc:

Mr. Robert Oris, Chairman – Town Council Town of Cheshire 84 South Main Street, Cheshire, CT 06410

William S. Voelker- Town Planner Town of Cheshire 84 South Main Street, Cheshire, CT 06410

Thomas & M. Joanne Didomizio 1119 Summit Road Cheshire, CT 06410 East Hartford, CT 06118

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, nondelivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, nondelivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Connecticut Siting Council assumes no responsibility for the use of documents posted on this site. For further information about the proper use of material posted on this site, please see the State of Connecticut <u>disclaimer</u>.

8. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the effective date of this Decision and Order or within three years after all appeals to this Decision and Order have been resolved.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in <u>The Hartford Courant</u>, <u>The Cheshire Herald</u>, <u>The Waterbury Republican-American</u> and <u>The Record Journal</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Crown Atlantic Company LLC And Cellco Partnership d/b/a Verizon Wireless	Robert Stanford, Project Manager Crown Atlantic Company LLC 703 Hebron Avenue Glastonbury, CT 06033
	Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597
AT&T Wireless Services, Inc.	Anthony B. Gioffre III, Esq. Cuddy & Feder & Worby 90 Maple Avenue White Plains, NY 10601

Content Last Modified on 10/9/2002 1:52:54 PM

Ten Franklin Square New Britain, CT 06051 / 860- 827-2935

Home | CT.gov Home | Send Feedback | Login | Register State of Connecticut <u>Disclaimer</u>, <u>Privacy Policy</u>, and <u>Web Site Accessibility Policy</u>. Copyright © 2002-2016 State of Connecticut.

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2013.

Information on the Property Records for the Municipality of Cheshire was last updated on 10/27/2016.

Parcel Information

Location:	1119 SUMMIT RD	Property Use:	Residential	Primary Use:	Residential
Unique ID:	00087800	Map Block Lot:	24 2	Acres:	22.52
Zone:	R-80	Volume / Page:	0798/0074	Developers Map / Lot:	15809
Census:	3432				

Value Information

	Appraised Value	70% Assessed Value
Land	377,245	264,070
Buildings	311,951	218,370

	Appraised Value	70% Assessed Value
Detached Outbuildings	6,370	4,460
Total	695,566	486,900

Owner's Information

Owner's Data
DIDOMIZIO JOANNE M 1115 SUMMIT RD
CHESHIRE CT 06410

Building 1

0087800 03/08/2012

Building Use:	Single Family	Style:	Raised Ranch	Living Area:	1,774
Stories:	1.00	Construction:	Wood Frame	Year Built:	1990
Total Rooms:	7	Bedrooms:	2	Full Baths:	3
Heating:	FHA	Fireplaces:	0	Half Baths:	1
Fuel:	Oil	Cooling Percent:	0%	Basement Area:	1,680

Basement Finished Area:	840	Basement Garages:	2	Roof Material:	Asphalt
Siding:	Clapboards				

Special Features

Whirlpool	1

Attached Components

Туре:	Year Built:	Area:
Wood Deck	1990	130
Open Porch	1990	300

Building 2	

Category:	Industrial	Use:	Light Industrial	Stories:	1.00
Above Grade:	1,802	Below Grade:	0	Below Grade Finish:	0
Construction:	Good	Year Built:	2002	Heating:	
Fuel:		Cooling Percent:	0%	Siding:	Stone
Roof Material:		Beds/Units:	0		

Special Features

Attached Components

Туре:	Year Built:	Area:
Concrete Patio	2002	625

_					_
R 11	i	А	ĭ.	\mathbf{a}	Z
DU		.u		IU	ر ر

photo Not Available

12	1\$ IND - LGT-
	20

Category:	Industrial	Use:	Light Industrial	Stories:	1.00
Above Grade:	240	Below Grade:	0	Below Grade Finish:	0

http://www.propertyrecordcards.com/PrintPage.aspx?towncode=025&uniqueid=00087800 10/27/2016

Construction:	Good	Year Built:	2004	Heating:	
Fuel:		Cooling Percent:	0%	Siding:	Concrete Block
Roof Material:		Beds/Units:	0		

Special Features

Attached Components

Detached Outbuildings

Туре:	Year Built:	Length:	Width:	Area:
Fencing	2002			1,600

Information Published With Permission From The Assessor

1 inch = 400 feet

This map is for informational purposes only. All information is subject to verification by any user. The Town of Cheshire and its mapping contractors assume no legal responsibility for the information contained herein. Map Produced January 2016

Date: October 26, 2018

Charles McGuirt Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277

Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 (919) 661-6351

Subject: Structural Analysis Report

Carrier Designation:	<i>T-Mobile</i> Co-Locate Carrier Site Number: Carrier Site Name:	CT11352C Crown Cheshire		
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Work Order Number: Crown Castle Order Number:	801367 CT NHV-2075 CAC 801367 512587 1652298 446057 Rev. 0		
Engineering Firm Designation:	TEP Project Number:	25630.193451		
Site Data:	1121 Summit Road, Cheshire, New Haven County, CT 06410 Latitude <i>41°32' 11.2"</i> , Longitude <i>-72°57' 26.3"</i> 167 Foot - Monopole Tower			

Dear Charles McGuirt,

Tower Engineering Professionals is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Christopher D. Crook, E.I. / MGY

Respectfully submitted by:

Aaron T. Rucker, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

- Table 5 Tower Component Stresses vs. Capacity
- 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 167-ft monopole tower designed by Paul J. Ford and Company. The tower has been modified multiple times in the past to accommodate additional loading, however the modifications were determined to be ineffective and not considered structurally in this analysis. All information provided to TEP was assumed to be accurate and complete.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	125 mph
Exposure Category:	В
Topographic Factor:	1.0
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		1	Tower Mounts	Platform Mount [LP 1201-1]		
140.0	140.0	1	Site Pro 1	PRK1245L Kicker		
		1 Commscope HRK14-U Handrail Kit				
	138.0	3	Ericsson	AIR -32 B2A/B66AA w/ Mount Pipe		1-3/8 1-1/2 1-5/8
		3	RFS Celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe	1	
		138.0	3	RFS Celwave	APX16DWV-16DWV-S-E-A20 w/ Mount Pipe	
		3	Ericsson	Radio 4449 B12/B71		
		3 Ericsson KRY 112 89/5				
		3	Ericsson	KRY 112 134/1		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
	171.0	1	RFS Celwave	201-7			
	169.0	1	GPS	GPS_A	-		
		6	Antel	LPA-80063-6CF-EDIN w/ Mount Pipe	-		
		3	Amphenol	BXA-171063-8CF-EDIN-X w/ Mount Pipe	18	1-5/8	
167.0	168.0	3	Antel	BXA-171063-8CF-EDIN-X w/ Mount Pipe	1	1-1/4 7/8 1/2	
		3	Amphenol	BXA-70063-6CF-EDIN-X w/ Mount Pipe		1/2	
		3	Alcatel Lucent	RRH2X40-AWS			
		1	Raycap	RRFDC-3315-PF-48	-		
	167.0	1	Tower Mounts	Platform Mount [LP 1201-1]			
		3	Powerwave Technologies	7770.00 w/ Mount Pipe			
	162.0	162.0	6	Powerwave Technologies	LGP21401		
		1	Tower Mounts	Handrail Kit [NA 510-1]			
	161.0	3	CCI Antennas	TPA-65R-LCUUUU-H8 w/ Mount Pipe			
		1	Raycap	DC6-48-60-18-8F	4	2/4	
160.0		3	Kathrein	78211056	2	3/4	
		3	Ericsson	RRUS 32 B30	12	1-5/8	
		6	Kaelus	DBC0061F1V51-2			
		3	Andrew	SBNH-1D6565C w/ Mount Pipe			
		3	Ericsson	RRUS 11 B12			
	160.0	3	Ericsson	RRUS 32 B2			
		1	Raycap	DC6-48-60-18-8F			
		1	Tower Mounts	Platform Mount [LP 1201-1]			
	158.0	1	Tower Mounts	Kicker Kit [NA 509-3]			
		3	Alcatel Lucent	PCS 1900MHz 4x45W-65MHz			
150.0	150.0	3	Alcatel Lucent	800MHz 2X50W RRH w/Filter	-	-]	
		2	Tower Mounts	Pipe Mount [PM 601-3]			
		3	RFS Celwave	APXVTM14-ALU-I20 w/ Mount Pipe			
148.0	148.0	3	RFS Celwave	APXVSPP18-C-A20 w/ Mount Pipe	4	1-1/4	
		3	Alcatel Lucent	TD-RRH8x20-25]		
		1	Tower Mounts	Platform Mount [LP 1201-1]			

 Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Geotechnical Report	Clough, Harbour & Associates, LLP	445076	CCISites
Tower Foundation Drawings	Paul J. Ford and Company	842573	CCISites
Foundation Mapping	FDH Velocitel	842573	CCISites
Tower Manufacturer Drawings	Paul J. Ford and Company	799210	CCISites

3.1) Analysis Method

tnxTower (version 8.0.4.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) The tower and foundation were built and maintained in accordance with the manufacturer's specification.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2, and the referenced drawings.
- 3) All tower components are in sufficient condition to carry their full design capacity.
- 4) Serviceability with respect to antenna twist, tilt, roll, or lateral translation, is not checked and is left to the carrier or tower owner to ensure conformance.
- 5) All antenna mounts and mounting hardware are structurally sufficient to carry the full design capacity requirements of appurtenance wind area and weight as provided by the original manufacturer specifications. It is the carrier's responsibility to ensure compliance to the structural limitations of the existing and/or proposed antenna mounts. TEP did not perform a site visit to verify the size, condition or capacity of the antenna mounts and did not analyze antennas supporting mounts as part of this structural analysis report.
- 6) The modifications designed by Paul J. Ford in June of 2012 and in January of 2013 were determined to be ineffective and not considered structurally in this analysis.

This analysis may be affected if any assumptions are not valid or have been made in error. Tower Engineering Professionals should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (lb)	ΦP_{allow} (lb)	% Capacity	Pass / Fail
L1	167 - 118.25	Pole	TP35.36x24x0.25	1	-22141	1890682	61.7	Pass
L2	118.25 - 77.75	Pole	TP44.297x33.8114x0.3125	2	-32445	2959603	73.6	Pass
L3	77.75 - 38.25	Pole	TP52.877x42.3904x0.375	3	-46571	4245622	69.9	Pass
L4	38.25 - 0	Pole	TP61.04x50.554x0.4375	4	-66620	5849434	64.0	Pass
							Summary	
						Pole (L2)	73.6	Pass
						RATING =	73.6	Pass

Table 4 - Section Capacity (Summary)¹

Table 5 - Tower	Component	Stresses vs	. Capa	city - LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1,2	Anchor Rods	-	64.5	Pass
1,2	Base Plate	-	49.7	Pass
1,2	Base Foundation Soil Interaction	-	80.7	Pass
1,2	Base Foundation Structural	-	42.7	Pass

Structure Rating (max from all components) =	80.7%
--	-------

Notes:

1) Rating per TIA-222-H Section 15.5

2) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the % capacity listed.

4.1) Recommendations

- 1) If the load differs from that described in Tables 1 and 2 of this report, the referenced drawings, or the provisions of this analysis are found to be invalid, another structural analysis should be performed.
- 2) The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

	ELEVATION	TYPE	ELEVATION
Lighthing Rod 5/8" x 6"	167	(2) LGP21401	160
(2) LPA-80063-6CF-EDIN W/ Mount Pipe	167	2.4" Dia x 6-ft Pipe	160
2) LPA-80063-6CF-EDIN W/ Mount Pipe	167	2.4 Dia x 6-it Pipe	160
(2) LPA-80063-6CF-EDIN w/ Mount Pipe	167	2.4" Dia x 6-tt Pipe	160
BXA-70063-6CF-EDIN-X w/ Mount Pipe	167	SBNH-1D6565C w/ Mount Pipe	160
BXA-70063-6CF-EDIN-X w/ Mount Pipe	167	Platform Mount [LP 1201-1]	160
BXA-70063-6CF-EDIN-X w/ Mount Pipe	167	Miscellaneous [NA 509-3]	158
3XA-171063-8CF-EDIN-X w/ Mount Pipe	167	PCS 1900MHz 4x45W-65MHz	150
3XA-171063-8CF-EDIN-X w/ Mount Pipe	167	(2) PCS 1900MHz 4x45W-65MHz	150
3XA-171063-8CF-EDIN-X w/ Mount Pipe	167	(2) 800MHz 2X50W RRH W/FILTER	150
3XA-171063-8CF-EDIN-X w/ Mount Pipe	167	800MHz 2X50W RRH W/FILTER	150
3XA-171063-8CF-EDIN-X w/ Mount Pipe	167	(2) Pipe Mount [PM 601-3]	150
3XA-171063-8CF-EDIN-X w/ Mount Pipe	167	APXVTM14-ALU-I20 w/ Mount Pipe	148
GPS_A	167	APXVTM14-ALU-I20 w/ Mount Pipe	148
201-7	167	APXVTM14-ALU-I20 w/ Mount Pipe	148
RH2X40-AWS	167	APXVSPP18-C-A20 w/ Mount Pipe	148
RRH2X40-AWS	167	APXVSPP18-C-A20 w/ Mount Pipe	148
RH2X40-AWS	167	APXVSPP18-C-A20 w/ Mount Pipe	148
RRFDC-3315-PF-48	167	TD-RRH8x20-25	148
2.4" Dia x 4-ft Mount Pipe	167	TD-RRH8x20-25	148
Platform Mount [LP 1201-1]	167	TD-RRH8x20-25	148
/liscellaneous [NA 510-1]	162	2.4" Dia x 6-ft Pipe	148
SBNH-1D6565C w/ Mount Pipe	160	2.4" Dia x 6-ft Pipe	148
SBNH-1D6565C w/ Mount Pipe	160	2.4" Dia x 6-ft Pipe	148
PA-65R-LCUUUU-H8 w/ Mount Pipe	160	Platform Mount [LP 1201-1]	148
PA-65R-LCUUUU-H8 w/ Mount Pipe	160	AIR -32 B2A/B66AA w/ Mount Pipe	140
PA-65R-LCUUUU-H8 w/ Mount Pipe	160	AIR -32 B2A/B66AA w/ Mount Pipe	140
7770.00 w/ Mount Pipe	160	AIR -32 B2A/B66AA w/ Mount Pipe	140
7770.00 w/ Mount Pipe	160	APXVAARR24 43-U-NA20 w/ Mount Pipe	140
7770.00 w/ Mount Pipe	160	APXVAABB24_43-U-NA20 w/ Mount Pipe	140
3BUS 11 B12	160	APXVAABB24_43-U-NA20 w/ Mount Pipe	140
RUS 11 B12	160	APX16DWV-16DWV-S-E-A20 w/ Mount	140
3BUS 11 B12	160	Pipe	
RRUS 32 B2	160	APX16DWV-16DWV-S-E-A20 w/ Mount	140
3BUS 32 B2	160	Pipe	
3BUS 32 B2	160	APX16DWV-16DWV-S-E-A20 w/ Mount	140
DC6-48-60-18-8F	160	Pipe	
DC6-48-60-18-8F	160	KRY 112 89/5	140
78211056	160	KRY 112 89/5	140
78211056	160	KRY 112 89/5	140
78211056	160	KRY 112 134/1	140
3BUS 32 B30	160		140
3BUS 32 B30	160	KRY 112 134/1	140
2018 22 230	160	RADIO 4449 B12/B71	140
2) DRC0061E1//E1 2	160	RADIO 4449 B12/B71	140
2) DB00001F1V51-2	100	RADIO 4449 B12/B71	140
2) DBC0061E1V51-2	160	SitePro1 PRK1245L Kicker	140
2) DD00001F1V31-2	100	Commscope HRK14-U Handrail Kit	140
(2) LOF2 1401	100	Platform Mount [LP 1201-1]	140
	1.3.6.0		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu						
A607-65	65 ksi	80 ksi									

TOWER DESIGN NOTES

- Tower is located in New Haven County, Connecticut.
 Tower designed for Exposure B to the TIA-222-H Standard.
 Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
- 4. Tower is also designed for a 50 mph basic wind with 1.27 in ice. Ice is considered to increase in thickness

with height. Deflections are based upon a 60 mph wind. 5.

ALL REACTIONS

MOMENT

1189411 lb-ft

MOMENT

4580303 lb-ft

AXIAL 105826 lb

AXIAL 66641 lb Town Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TIA-222-H Annex S

9. TOWER BATING: 73.6%

trees Tools on	Job		Page			
<i>tnx1</i> ower		CT NHV-2075 CAC 801367 (BU 801367)				
Tower Engineering Professionals 326 Tryon Road	Project	TEP No. 25630.193451	Date 13:11:15 10/26/18			
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350	Client	Crown Castle	Designed by cdcrook			

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard. The following design criteria apply: Tower is located in New Haven County, Connecticut. Tower base elevation above sea level: 616.00 ft. Basic wind speed of 125 mph. Risk Category II. Exposure Category B. Simplified Topographic Factor Procedure for wind speed-up calculations is used. Topographic Category: 1. Crest Height 0.00 ft. Nominal ice thickness of 1.2750 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. TIA-222-H Annex S. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1.05. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
 √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- $\sqrt{}$ Bypass Mast Stability Checks
- $\sqrt{\text{Use Azimuth Dish Coefficients}}$
- ✓ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
- ✓ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles
- √ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Arran Tonus or	Job		Page			
<i>inx1ower</i>		CT NHV-2075 CAC 801367 (BU 801367)				
Tower Engineering Professionals 326 Tryon Road	Project	TEP No. 25630.193451	Date 13:11:15 10/26/18			
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350	Client	Crown Castle	Designed by cdcrook			

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	167.00-118.25	48.75	4.50	18	24.0000	35.3600	0.2500	1.0000	A607-65
									(65 ksi)
L2	118.25-77.75	45.00	5.50	18	33.8114	44.2970	0.3125	1.2500	A607-65
									(65 ksi)
L3	77.75-38.25	45.00	6.75	18	42.3904	52.8770	0.3750	1.5000	A607-65
									(65 ksi)
L4	38.25-0.00	45.00		18	50.5540	61.0400	0.4375	1.7500	A607-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	Ι		r	С	I/C	J	It/Q	и	, w/t	
	in	in^2	in^4		in	in	in ³	in^4	in^2	ir	ı	
L1	24.3317	18.8456	1342.9	976	8.4313	12.1920	110.1540	2687.7623	9.4246	3.78	15.13	6
	35.8669	27.8598	4338.8	723	12.4641	17.9629	241.5466	8683.4538	13.9325	5.78	334 23.13	3
L2	35.3495	33.2267	4710.70	000	11.8921	17.1762	274.2577	9427.5985	16.6165	5.40	008 17.28	3
	44.9321	43.6271	10663.3	428	15.6145	22.5029	473.8658	21340.7168	21.8177	7.24	63 23.18	8
L3	44.2880	50.0089	11153.2	625	14.9155	21.5343	517.9293	22321.2007	25.0092	6.80	18.13	5
	53.6349	62.4905	21762.2	193	18.6382	26.8615	810.1635	43553.0740	31.2512	8.64	64 23.05	7
L4	52.8636	69.5930	22083.3	520	17.7914	25.6814	859.8954	44195.7618	34.8031	8.12	18.57	7
	61.9141	84.1541	39047.5	735	21.5139	31.0083	1259.2612	78146.5267	42.0851	9.97	22.79	6
Tower	Gus	set	Gusset	Gus	set Grade	Adjust. Factor	Adjust.	Weight Mi	ult. Doub	le Angle	Double Angle	Double Ang
Elevation	n Are	ea T	hickness			A_f	Factor	Ū.	Stite	h Bolt	Stitch Bolt	Stitch Bol
	(per f	ace)				-	A_r		Spe	acing	Spacing	Spacing
									Diag	gonals	Horizontals	Redundan
ft	ft^2	2	in							in	in	in
L1						1	1	1				
167.00-118	.25											
L2						1	1	1				
118.25-77.	75											
L3 77.75-38	.25					1	1	1				
L4 38.25-0.	.00					1	1	1				

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Component	Placement	Total	Number	Start/End	Width or	Perimeter	Weight
1		From	Type		Number	Per Row	Position	Diameter		0
		Torque		ft				in	in	plf
		Calculation								
561(1-5/8")	С	No	Surface Ar	167.00 -	6	6	0.000	1.6250		1.35
			(CaAa)	0.00			0.000			
MLE Hybrid	С	No	Surface Ar	167.00 -	1	1	0.000	1.2500		0.46
3Power/6Fiber RL 2			(CaAa)	0.00			0.000			
10AWG(1-1/4")										
FLC 158-50J(1-5/8")	А	No	Surface Ar	140.00 -	4	4	-0.250	2.0150		0.92
			(CaAa)	0.00			-0.250			

Step Pegs (5/8" SR) 7-in.	А	No	Surface Ar	167.00 -	1	1	0.500	0.3500		0.49
w/30" step			(CaAa)	0.00			0.500			
Aero MP3-04	А	No	Surface Ar	53.00 -	1	1	-0.250	1.6100		14.10

tanToman	Job		Page
<i>litx</i> 1 <i>ower</i>	(CT NHV-2075 CAC 801367 (BU 801367)	3 of 16
Tower Engineering Professionals 326 Tryon Road	Project	TEP No. 25630.193451	Date 13:11:15 10/26/18
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350	Client	Crown Castle	Designed by cdcrook

Sector	Exclude	Component	Placement	Total Number	Number Bar Baw	Start/End	Width or	Perimeter	Weight
	Torque Calculation	Туре	ft	number	rei Kow	FOSITION	in	in	plf
А	No	(CaAa) Surface Ar (CaAa)	43.00 53.00 - 43.00	1	1	-0.250 0.500 0.500	1.6100		14.10
А	No	Surface Ar (CaAa)	65.50 - 53.00	1	1	-0.250 -0.250	1.6100		14.10
А	No	Surface Ar (CaAa)	65.50 - 53.00	1	1	0.500 0.500	1.6100		14.10
А	No	Surface Ar (CaAa)	91.50 - 81.50	1	1	-0.250 -0.250	1.5700		9.90
А	No	Surface Ar (CaAa)	91.50 - 81.50	1	1	0.500 0.500	1.5700		9.90
	Sector A A A A A A	Sector Exclude From Torque Calculation A No A No A No A No A No	SectorExcludeComponentFromTypeTorqueTorqueCalculationIANoSurface ArANoSurface Ar(CaAa)NoSurface ArANoSurface Ar	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} Sector & Exclude & Component Placement Total Number \\ From Type & ft Number \\ Torque & ft \\ Calculation & ft \\ Calculation & 100 \\ & 100 & 100 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	51	ft			ft²/ft	plf
LDF4-50A(1/2")	С	No	No	Inside Pole	167.00 - 0.00	1	No Ice	0.00	0.15
							1/2" Ice	0.00	0.15
							1" Ice	0.00	0.15
							2" Ice	0.00	0.15
LDF5-50A(7/8)	С	No	No	Inside Pole	167.00 - 0.00	1	No Ice	0.00	0.33
							1/2" Ice	0.00	0.33
							1" Ice	0.00	0.33
							2" Ice	0.00	0.33
561(1-5/8")	С	No	No	Inside Pole	167.00 - 0.00	12	No Ice	0.00	1.35
· /							1/2" Ice	0.00	1.35
							1" Ice	0.00	1.35
							2" Ice	0.00	1.35

LDF7-50A(1-5/8")	А	No	No	Inside Pole	160.00 - 0.00	12	No Ice	0.00	0.82
							1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82
FB-L98B-002-75000	А	No	No	Inside Pole	160.00 - 0.00	1	No Ice	0.00	0.06
(3/8")							1/2" Ice	0.00	0.06
. ,							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
FB-L98B-034-XXX(А	No	No	Inside Pole	160.00 - 0.00	1	No Ice	0.00	0.06
3/8")							1/2" Ice	0.00	0.06
,							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
WR-VG86ST-BRD(А	No	No	Inside Pole	160.00 - 0.00	4	No Ice	0.00	0.58
3/4")							1/2" Ice	0.00	0.58
2)							1" Ice	0.00	0.58
							2" Ice	0.00	0.58
2" Flexible Conduit	А	No	No	Inside Pole	160.00 - 0.00	3	No Ice	0.00	0.34
						-	1/2" Ice	0.00	0.34
							1" Ice	0.00	0.34
							2" Ice	0.00	0.34
***							2 100	0.00	0.51
MLE Hybrid	В	No	No	Inside Pole	148.00 - 0.00	4	No Ice	0.00	0.46
3Power/6Fiber RL 2	-	1.0	1.0		1.0.00 0.00	•	1/2" Ice	0.00	0.46
10AWG(1-1/4")							1" Ice	0.00	0.46

tnxTower

Job

Project

Client

CT NHV-2075 CAC 801367 (BU 801367)

Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25630.193451

Crown Castle

Date 13:11:15 10/26/18 Designed by cdcrook

4 of 16

Description Face Allow Exclude Component Placement Total $C_A A_A$ Weight Shield From Type Number orft²/ft Torque ft plf Leg Calculation 2" Ice 0.00 0.46 *** FLC 158-50J(1-5/8") В 0.00 0.92 No No Inside Pole 140.00 - 0.00 13 No Ice 1/2" Ice 0.00 0.92 0.000.92 1" Ice 2" Ice 0.00 0.92 MLC HYBRID 6x12 С CaAa (Out 140.00 - 0.00 0.000.59 No No 1 No Ice 1/2" Ice 0.00 1.83 6AWGx6(1-1/2) Of Face) 1" Ice 0.003.68 2" Ice 0.00 9.21 С CaAa (Out HCS 6X12 No 140.00 - 0.00 1 0.001.70 No No Ice 6AWG(1-3/8) Of Face) 1/2" Ice 0.00 2.85 1" Ice 0.00 4.61 2" Ice 0.00 9.96 CaAa (Out Aero MP3-04 С No No 53.00 - 43.00 1 No Ice 0.00 14.10 Of Face) 1/2" Ice 0.00 15.30 1" Ice 0.00 16.85 2" Ice 0.00 20.99 * Aero MP3-04 No No CaAa (Out 53.00 - 50.50 1 No Ice 0.0014.10А 1/2" Ice 0.00 15.30 Of Face) 1" Ice 0.00 16.85 2" Ice 0.00 20.99 Aero MP3-04 No No CaAa (Out 53.00 - 50.50 1 No Ice 0.00 14.10Α Of Face) 1/2" Ice 0.00 15.30 1" Ice 0.00 16.85 2" Ice 20.99 0.00 Aero MP3-04 С No No CaAa (Out 65.50 - 50.50 1 No Ice 0.00 14.10 Of Face) 1/2" Ice 0.00 15.30 1" Ice 0.00 16.85 2" Ice 0.00 20.99 Aero MP3-03 С CaAa (Out No No 91.50 - 81.50 1 No Ice 0.00 9.90 Of Face) 1/2" Ice 0.00 11.06 1" Ice 0.00 12.57 2" Ice 0.00 16.63 *

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	lb
L1	167.00-118.25	А	0.000	0.000	19.237	0.000	660
		В	0.000	0.000	0.000	0.000	315
		С	0.000	0.000	53.625	0.000	1280
L2	118.25-77.75	А	0.000	0.000	37.200	0.000	906
		В	0.000	0.000	0.000	0.000	559
		С	0.000	0.000	44.550	0.000	1214
L3	77.75-38.25	А	0.000	0.000	40.465	0.000	1395
		В	0.000	0.000	0.000	0.000	545
		С	0.000	0.000	43.450	0.000	1440
L4	38.25-0.00	А	0.000	0.000	32.168	0.000	669
		В	0.000	0.000	0.000	0.000	528
		С	0.000	0.000	42.075	0.000	1053

Page

tnxTower	Јор С	T NHV-2075 CAC 801367 (BU 801367)	Page 5 of 16
Tower Engineering Professionals 326 Tryon Road	Project	TEP No. 25630.193451	Date 13:11:15 10/26/18
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350	Client	Crown Castle	Designed by cdcrook

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
L1	167.00-118.25	А	1.475	0.000	0.000	46.016	0.000	1129
		В		0.000	0.000	0.000	0.000	315
		С		0.000	0.000	97.858	0.000	2543
L2	118.25-77.75	А	1.421	0.000	0.000	78.136	0.000	1725
		В		0.000	0.000	0.000	0.000	559
		С		0.000	0.000	81.298	0.000	2559
L3	77.75-38.25	А	1.349	0.000	0.000	86.468	0.000	2316
		В		0.000	0.000	0.000	0.000	545
		С		0.000	0.000	78.334	0.000	2760
L4	38.25-0.00	А	1.204	0.000	0.000	63.089	0.000	1269
		В		0.000	0.000	0.000	0.000	528
		С		0.000	0.000	74.612	0.000	2147

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	167.00-118.25	-1.8837	5.0122	-1.5054	3.7140
L2	118.25-77.75	-3.9484	4.7283	-3.2915	3.4164
L3	77.75-38.25	-4.4277	4.7508	-3.8697	3.3473
L4	38.25-0.00	-4.3473	5.7058	-3.6690	4.4723

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	-	Segment Elev.	No Ice	Ice
L1	4	561(1-5/8")	118.25 -	1.0000	1.0000
			167.00		
L1	5	MLE Hybrid 3Power/6Fiber	118.25 -	1.0000	1.0000
		RL 2 10AWG(1-1/4")	167.00		
L1	16	FLC 158-50J(1-5/8")	118.25 -	1.0000	1.0000
			140.00		
L1	20	Step Pegs (5/8" SR) 7-in.	118.25 -	1.0000	1.0000
		w/30" step	167.00		
L1	33	Aero MP3-03	118.25 - 91.50	1.0000	1.0000
L1	34	Aero MP3-03	118.25 - 91.50	1.0000	1.0000
L2	4	561(1-5/8")	77.75 - 118.25	1.0000	1.0000
L2	5	MLE Hybrid 3Power/6Fiber	77.75 - 118.25	1.0000	1.0000
		RL 2 10AWG(1-1/4")			
L2	16	FLC 158-50J(1-5/8")	77.75 - 118.25	1.0000	1.0000
L2	20	Step Pegs (5/8" SR) 7-in.	77.75 - 118.25	1.0000	1.0000

CT NHV-2075 CAC 801367 (BU 801367)

Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25630.193451

.5050.195451

Date 13:11:15 10/26/18 Designed by

Crown Castle

cdcrook

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	I.	Segment Elev.	No Ice	Ice
		w/30" step			
L2	23	Aero MP3-04	77.75 - 53.00	1.0000	1.0000
L2	24	Aero MP3-04	77.75 - 53.00	1.0000	1.0000
L2	28	Aero MP3-04	77.75 - 65.50	1.0000	1.0000
L2	30	Aero MP3-04	77.75 - 65.50	1.0000	1.0000
L3	4	561(1-5/8")	38.25 - 77.75	1.0000	1.0000
L3	5	MLE Hybrid 3Power/6Fiber	38.25 - 77.75	1.0000	1.0000
		RL 2 10AWG(1-1/4")			
L3	16	FLC 158-50J(1-5/8")	38.25 - 77.75	1.0000	1.0000
L3	20	Step Pegs (5/8" SR) 7-in.	38.25 - 77.75	1.0000	1.0000
		w/30" step			

Job

Project

Client

			Di	screte T	ower L	oads			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft ²	ft ²	lb
Lightning Rod 5/8" x 6'	С	From Leg	0.00 0.00 3.00	0.0000	167.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.38 0.99 1.62 2.46	0.38 0.99 1.62 2.46	7 11 19 48
167						2 100	2.10	2.10	10
(2) LPA-80063-6CF-EDIN w/ Mount Pipe	Α	From Centroid-Fa ce	4.00 0.00 1.00	0.0000	167.00	No Ice 1/2" Ice 1" Ice	9.97 10.54 11.08	10.25 11.42 12.31	52 145 247
(2) LPA-80063-6CF-EDIN w/ Mount Pipe	В	From Centroid-Fa	$4.00 \\ 0.00 \\ 1.00$	0.0000	167.00	No Ice 1/2" Ice	12.17 9.97 10.54 11.08	14.13 10.25 11.42 12.31	480 52 145 247
(2) LPA-80063-6CF-EDIN w/ Mount Pipe	C	From Centroid-Fa ce	4.00 0.00 1.00	0.0000	167.00	2" Ice No Ice 1/2" Ice 1" Ice	12.17 9.97 10.54 11.08	14.13 10.25 11.42 12.31	480 52 145 247
BXA-70063-6CF-EDIN-X w/ Mount Pipe	А	From Centroid-Fa ce	4.00 0.00 1.00	0.0000	167.00	2" Ice No Ice 1/2" Ice 1" Ice	12.17 7.81 8.36 8.87	14.13 5.80 6.95 7.82	480 42 103 171
BXA-70063-6CF-EDIN-X w/ Mount Pipe	В	From Centroid-Fa ce	4.00 0.00 1.00	0.0000	167.00	2" Ice No Ice 1/2" Ice 1" Ice	9.93 7.81 8.36 8.87	9.60 5.80 6.95 7.82	335 42 103 171 225
BXA-70063-6CF-EDIN-X w/ Mount Pipe	C	From Centroid-Fa ce	4.00 0.00 1.00	0.0000	167.00	No Ice 1/2" Ice 1" Ice	9.93 7.81 8.36 8.87	9.80 5.80 6.95 7.82	335 42 103 171
BXA-171063-8CF-EDIN-X w/ Mount Pipe	А	From Centroid-Fa ce	4.00 0.00 1.00	0.0000	167.00	No Ice 1/2" Ice 1" Ice	9.93 3.16 3.53 3.90	9.60 3.33 3.94 4.56	335 28 60 97
BXA-171063-8CF-EDIN-X	В	From	4.00	0.0000	167.00	2" Ice No Ice	4.66 3.16	5.86 3.33	28

tnxTower

Job

Project

Client

CT NHV-2075 CAC 801367 (BU 801367)

Page 7 of 16

Date

Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25630.193451

Crown Castle

Designed by cdcrook

13:11:15 10/26/18

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or Leg	Туре	Horz Lateral	Adjustment			Front	Side	
	- 0		Vert						
			ft	o	ft		ft^2	ft^2	lb
			ft ft						
w/ Mount Pipe		Centroid-Fa	0.00			1/2" Ice	3.53	3.94	60
Ī		ce	1.00			1" Ice	3.90	4.56	97
						2" Ice	4.66	5.86	191
BXA-171063-8CF-EDIN-X	С	From	4.00	0.0000	167.00	No Ice	3.16	3.33	28
w/ Mount Pipe		Centroid-Fa	0.00			1/2" Ice	3.53	3.94	60
		ce	1.00			1" Ice	3.90	4.56	97
DVA 1710(2.0CE EDDI V		F	4.00	0.0000	1(7.00	2" Ice	4.66	5.86	191
BAA-1/1003-8CF-EDIN-A	А	From Centroid Fa	4.00	0.0000	167.00	1/2" Lee	3.10	3.33	28 60
w/ Would Fipe		Centrolu-ra	1.00			1/2 ICC 1" Ice	3.00	3.94 4.56	00 97
		cc -	1.00			2" Ice	4 66	5.86	191
BXA-171063-8CF-EDIN-X	В	From	4.00	0.0000	167.00	No Ice	3.16	3.33	28
w/ Mount Pipe		Centroid-Fa	0.00			1/2" Ice	3.53	3.94	60
-		ce	1.00			1" Ice	3.90	4.56	97
						2" Ice	4.66	5.86	191
BXA-171063-8CF-EDIN-X	С	From	4.00	0.0000	167.00	No Ice	3.16	3.33	28
w/ Mount Pipe		Centroid-Fa	0.00			1/2" Ice	3.53	3.94	60
		ce	1.00			l" Ice	3.90	4.56	97
CDC A	р	Enner	4.00	0.0000	1(7.00	2" Ice	4.66	5.86	191
GPS_A	В	From Centroid Fa	4.00	0.0000	167.00	1/2" Lee	0.20	0.20	1
		Centrolu-17a	2.00			1" Ice	0.32	0.32	10
		ee	2.00			2" Ice	0.55	0.55	25
201-7	С	From	4.00	0.0000	167.00	No Ice	1.09	1.09	4
		Centroid-Fa	0.00			1/2" Ice	1.94	1.94	13
		ce	4.00			1" Ice	2.80	2.80	28
						2" Ice	4.12	4.12	74
RRH2X40-AWS	А	From	4.00	0.0000	167.00	No Ice	2.16	1.42	44
		Centroid-Fa	0.00			1/2" Ice	2.36	1.59	61
		ce	1.00			1" Ice	2.57	1.77	82
DDUOV40 AWG	р	Enner	4.00	0.0000	1(7.00	2" Ice	3.00	2.14	132
KKH2A40-AWS	D	Centroid Fa	4.00	0.0000	107.00	1/2" Ice	2.10	1.42	44 61
		centrolu-ra	1.00			1" Ice	2.50	1.57	82
		ee	1.00			2" Ice	3.00	2.14	132
RRH2X40-AWS	С	From	4.00	0.0000	167.00	No Ice	2.16	1.42	44
		Centroid-Fa	0.00			1/2" Ice	2.36	1.59	61
		ce	1.00			1" Ice	2.57	1.77	82
						2" Ice	3.00	2.14	132
RRFDC-3315-PF-48	А	From	4.00	0.0000	167.00	No Ice	3.36	2.19	21
		Centroid-Fa	0.00			1/2" Ice	3.60	2.39	50
		ce	1.00			l" Ice	3.84	2.61	82
2 4" Dia x 4 ft Mount Pina	C	From	4.00	0.0000	167.00	2 [°] Ice	4.34	3.05	158
2.4 Dia x 4-it Mount Tipe	C	Centroid-Fa	4.00	0.0000	107.00	1/2" Ice	1.12	1.12	22
		centrolu-ra	0.00			1" Ice	1.12	1.12	32
			0.00			2" Ice	1.91	1.91	62
Platform Mount [LP 1201-1]	С	None		0.0000	167.00	No Ice	23.10	23.10	2100
						1/2" Ice	26.80	26.80	2500
						1" Ice	30.50	30.50	2900
						2" Ice	37.90	37.90	3700
160		-		0.0000					0.7
SBNH-1D6565C w/ Mount	А	From Control I F	4.00	0.0000	160.00	No Ice	11.68	9.84	99
Ріре		Centroid-Fa	0.00			1/2" Ice	12.40	11.37	189
		ce	0.00			1 Ice	15.14	12.91	∠88 500
SBNH-1D6565C w/ Mount	R	From	4 00	0.0000	160.00	Z ICC	14.31	9.84	90
SERIE IEOSOSC W/ Moulit	Ъ	110111	7.00	0.0000	100.00	110 100	11.00	2.04	<i>,,</i>

tnxTower

Job

Project

Client

CT NHV-2075 CAC 801367 (BU 801367)

Page 8 of 16

Date

Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25630.193451

Crown Castle

Designed by cdcrook

13:11:15 10/26/18

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	-0		Vert ft	0	ft		ft ²	ft ²	lb
			ft ft						
Pine		Centroid-Fa	0.00			1/2" Ice	12.40	11.37	189
Tipe		ce	0.00			1" Ice	13.14	12.91	288
			0.00			2" Ice	14.51	15.27	522
SBNH-1D6565C w/ Mount	С	From	4.00	0.0000	160.00	No Ice	11.68	9.84	99
Pipe		Centroid-Fa	0.00			1/2" Ice	12.40	11.37	189
1		ce	0.00			1" Ice	13.14	12.91	288
						2" Ice	14.51	15.27	522
TPA-65R-LCUUUU-H8 w/	А	From	4.00	0.0000	160.00	No Ice	13.54	10.96	114
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	14.24	12.49	218
		ce	1.00			1" Ice	14.95	14.04	331
						2" Ice	16.31	16.39	593
TPA-65R-LCUUUU-H8 w/	В	From	4.00	0.0000	160.00	No Ice	13.54	10.96	114
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	14.24	12.49	218
		ce	1.00			1" Ice	14.95	14.04	331
						2" Ice	16.31	16.39	593
TPA-65R-LCUUUU-H8 w/	С	From	4.00	0.0000	160.00	No Ice	13.54	10.96	114
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	14.24	12.49	218
		ce	1.00			1" Ice	14.95	14.04	331
		_				2" Ice	16.31	16.39	593
7770.00 w/ Mount Pipe	A	From	4.00	0.0000	160.00	No Ice	5.75	4.25	55
		Centroid-Fa	0.00			1/2" Ice	6.18	5.01	103
		ce	2.00			I" Ice	6.61	5.71	157
7770.00 Manuat Dia a	р	F	4.00	0.0000	160.00	2" Ice	7.49	7.16	287
///0.00 w/ Mount Pipe	В	From Control I Fo	4.00	0.0000	160.00	No Ice	5./5	4.25	55 102
		Centroid-Fa	0.00			1/2" Ice	0.18	5.01	103
		ce	2.00			1 1ce	0.01	5./1	157
7770 00 w/ Mount Pine	C	Enom	4.00	0.0000	160.00	2 Ice	7.49 5.75	1.10	201
7770.00 w/ Mount Pipe	C	Centroid Ea	4.00	0.0000	100.00	1/2" Ice	5.75	4.23	103
		Centrolu-Fa	2.00			1/2 ICC	6.61	5.01	103
		CC	2.00			2" Ice	7.49	7.16	287
RRUS 11 B12	Δ	From	4 00	0.0000	160.00	No Ice	2 79	1 19	51
III 012	11	Centroid-Fa	0.00	0.0000	100.00	1/2" Ice	3.00	1.19	72
		ce	0.00			1" Ice	3.21	1.50	95
			0.00			2" Ice	3.67	1.84	153
RRUS 11 B12	В	From	4.00	0.0000	160.00	No Ice	2.79	1.19	51
	_	Centroid-Fa	0.00			1/2" Ice	3.00	1.34	72
		ce	0.00			1" Ice	3.21	1.50	95
						2" Ice	3.67	1.84	153
RRUS 11 B12	С	From	4.00	0.0000	160.00	No Ice	2.79	1.19	51
		Centroid-Fa	0.00			1/2" Ice	3.00	1.34	72
		ce	0.00			1" Ice	3.21	1.50	95
						2" Ice	3.67	1.84	153
RRUS 32 B2	А	From	4.00	0.0000	160.00	No Ice	2.73	1.67	53
		Centroid-Fa	0.00			1/2" Ice	2.95	1.86	74
		ce	0.00			1" Ice	3.18	2.05	98
						2" Ice	3.66	2.46	157
RRUS 32 B2	В	From	4.00	0.0000	160.00	No Ice	2.73	1.67	53
		Centroid-Fa	0.00			1/2" Ice	2.95	1.86	74
		ce	0.00			1" Ice	3.18	2.05	98
						2" Ice	3.66	2.46	157
RRUS 32 B2	С	From	4.00	0.0000	160.00	No Ice	2.73	1.67	53
		Centroid-Fa	0.00			1/2" Ice	2.95	1.86	74
		ce	0.00			1" Ice	3.18	2.05	98
		F	4.00	0.0000	1/0.00	2" Ice	3.66	2.46	157
DC6-48-60-18-8F	А	From	4.00	0.0000	160.00	No Ice	1.21	1.21	33
		Centroid-Fa	0.00			1/2° Ice	1.89	1.89	רר

Job

Project

Client

CT NHV-2075 CAC 801367 (BU 801367)

Page 9 of 16

Date

2.30

48

1" Ice

2.30

Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25630.193451

Crown Castle

Designed by cdcrook

13:11:15 10/26/18

Face Offset Offsets: Placement $C_A A_A$ $C_A A_A$ Weight Description Azimuth Type Horz Adjustment Front Side orLeg Lateral Vert 0 ft^2 ft^2 lb ft ft ft ft ce 1.00 1" Ice 2.11 2.11 80 2" Ice 2.57 138 2.57 0.0000 No Ice DC6-48-60-18-8F В From 4.00 160.00 1.21 1.21 33 Centroid-Fa 0.001/2" Ice 1.89 55 1.89 2.11 80 ce 0.00 1" Ice 2.11 2" Ice 2.57 2.57 138 78211056 4.00 0.0000 160.00 No Ice 0.15 0.05 2 Α From Centroid-Fa 0.08 3 0.001/2" Ice 0.20 1.00 1" Ice 0.26 0.12 6 ce 2" Ice 0.40 0.22 14 78211056 В From 4.00 0.0000 160.00 No Ice 0.15 0.05 2 Centroid-Fa 0.00 1/2" Ice 0.20 0.08 3 1.00 1" Ice 0.26 0.12 6 ce 0.22 2" Ice 0.40 14 78211056 С From 4.00 0.0000 160.00 No Ice 0.15 0.05 2 Centroid-Fa 0.00 1/2" Ice 0.20 0.08 3 ce 1.001" Ice 0.26 0.12 6 2" Ice 0.40 0.22 14 **RRUS 32 B30** А From 4.000.0000 160.00 No Ice 2.74 1.67 53 1/2" Ice Centroid-Fa 74 0.00 2.96 1.86 1.001" Ice 3.19 2.05 98 ce 2" Ice 2.46 157 3.68 **RRUS 32 B30** В From 4.000.0000 160.00 No Ice 2.74 1.67 53 Centroid-Fa 74 0.00 1/2" Ice 2.96 1.86 ce 1.00 1" Ice 3.19 2.05 98 2" Ice 3.68 2.46 157 С **RRUS 32 B30** 4.00 0.0000 160.00 From No Ice 2.74 1.67 53 74 Centroid-Fa 0.00 1/2" Ice 2.96 1.86 1" Ice 98 ce 1.003.19 2.05 2" Ice 3.68 2.46 157 (2) DBC0061F1V51-2 А From 4.00 0.0000 160.00 No Ice 0.43 0.41 26 Centroid-Fa 0.00 1/2" Ice 0.51 0.50 31 1" Ice 0.59 38 ce 1.00 0.61 2" Ice 0.81 0.79 57 -----26 31 38

(2) DBC0061F1V51-2	В	From	4.00	0.0000	160.00	No Ice	0.43	0.41	26
		Centroid-Fa	0.00			1/2" Ice	0.51	0.50	31
		ce	1.00			1" Ice	0.61	0.59	38
						2" Ice	0.81	0.79	57
(2) DBC0061F1V51-2	С	From	4.00	0.0000	160.00	No Ice	0.43	0.41	26
		Centroid-Fa	0.00			1/2" Ice	0.51	0.50	31
		ce	1.00			1" Ice	0.61	0.59	38
						2" Ice	0.81	0.79	57
(2) LGP21401	А	From	4.00	0.0000	160.00	No Ice	1.10	0.21	14
		Centroid-Fa	0.00			1/2" Ice	1.24	0.27	21
		ce	2.00			1" Ice	1.38	0.35	30
						2" Ice	1.69	0.52	55
(2) LGP21401	В	From	4.00	0.0000	160.00	No Ice	1.10	0.21	14
		Centroid-Fa	0.00			1/2" Ice	1.24	0.27	21
		ce	2.00			1" Ice	1.38	0.35	30
						2" Ice	1.69	0.52	55
(2) LGP21401	С	From	4.00	0.0000	160.00	No Ice	1.10	0.21	14
		Centroid-Fa	0.00			1/2" Ice	1.24	0.27	21
		ce	2.00			1" Ice	1.38	0.35	30
						2" Ice	1.69	0.52	55
2.4" Dia x 6-ft Pipe	А	From	4.00	0.0000	160.00	No Ice	1.43	1.43	22
-		Centroid-Fa	0.00			1/2" Ice	1.93	1.93	33

0.00

ce

tnxTower	Job C	CT NHV-2075 CAC 801367 (BU 801367)	Page 10 of 16
Tower Engineering Professionals 326 Tryon Road	Project	TEP No. 25630.193451	Date 13:11:15 10/26/18
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350	Client	Crown Castle	Designed by cdcrook

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adiustment	Placement		C _A A _A Front	$C_A A_A$ Side	Weight
	Leg		Lateral Vert						
			ft ft	0	ft		ft^2	ft ²	lb
			ft						
	Б		1.00	0.0000	1 < 0 0 0	2" Ice	3.06	3.06	90
2.4" Dia x 6-ft Pipe	В	From Controid Eq	4.00	0.0000	160.00	No Ice	1.43	1.43	22
		Сепигона-га	0.00			1/2 ICe	1.95	1.95	33
		ce	0.00			1 ICC 2" Icc	2.50	2.30	40
2 4" Dia x 6-ft Pipe	C	From	4 00	0.0000	160.00	No Ice	1 43	1 43	22
2.1 Dia x 6 11 1 pc	C	Centroid-Fa	0.00	0.0000	100.00	1/2" Ice	1.93	1.93	33
		ce	0.00			1" Ice	2.30	2.30	48
						2" Ice	3.06	3.06	90
Miscellaneous [NA 509-3]	С	None		0.0000	158.00	No Ice	11.84	11.84	275
						1/2" Ice	16.96	16.96	296
						1" Ice	22.08	22.08	317
						2" Ice	32.32	32.32	360
Miscellaneous [NA 510-1]	С	None		0.0000	162.00	No Ice	6.00	6.00	256
						1/2" Ice	8.50	8.50	340
						1" Ice	11.00	11.00	409
Platform Mount [I P 1201 1]	C	None		0.0000	160.00	Z ICE	23.10	23.10	2100
	C	None		0.0000	100.00	1/2" Ice	25.10	25.10	2500
						1" Ice	20.00	30.50	2900
						2" Ice	37.90	37.90	3700
150									
PCS 1900MHz	В	From Face	1.00	0.0000	150.00	No Ice	2.32	2.24	60
4x45W-65MHz			0.00			1/2" Ice	2.53	2.44	83
			0.00			1" Ice	2.74	2.65	110
			1.00	0.0000	1 70 00	2" Ice	3.19	3.09	173
(2) PCS 1900MHz	С	From Face	1.00	0.0000	150.00	No Ice	2.32	2.24	60
4x45w-65MHz			0.00			1/2" Ice	2.53	2.44	83
			0.00			2" Ice	2.74	2.05	173
(2) 800MHz 2X50W RRH	А	From Face	1.00	0.0000	150.00	No Ice	2.06	1.93	64
W/FILTER		1101111400	0.00	0.0000	100100	1/2" Ice	2.24	2.11	86
			0.00			1" Ice	2.43	2.29	111
						2" Ice	2.83	2.68	172
800MHz 2X50W RRH	В	From Face	1.00	0.0000	150.00	No Ice	2.06	1.93	64
W/FILTER			0.00			1/2" Ice	2.24	2.11	86
			0.00			1" Ice	2.43	2.29	111
(2) \mathbf{D}_{m} Married (DM (01.2))	C	Nama		0.0000	150.00	2" Ice	2.83	2.68	172
(2) Pipe Mount [PM $601-3$]	C	None		0.0000	150.00	1/2" Loo	4.39	4.39	195
						1/2 ICC	5.40 6.57	5.40 6.57	237
						2" Ice	8.75	8.75	365
148						2 100	0170	0.70	200
APXVTM14-ALU-I20 w/	А	From	4.00	0.0000	148.00	No Ice	6.58	4.96	77
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	7.03	5.75	132
		ce	0.00			1" Ice	7.47	6.47	193
	_	_				2" Ice	8.38	7.94	339
APXVTM14-ALU-I20 w/	В	From	4.00	0.0000	148.00	No Ice	6.58	4.96	77
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	7.03	5.75	132
		ce	0.00			$\frac{1}{2}$ Ice	/.4/ 8.38	0.47	193
APXVTM14-ALU-I20 w/	C	From	4.00	0.0000	148.00	No Ice	6.58	4.96	77
Mount Pipe	C	Centroid-Fa	4.00	0.0000	1 10.00	1/2" Ice	7.03	5.75	132
· · · · · · · · · · · · · · · · · · ·		ce	0.00			1" Ice	7.47	6.47	193
						2" Ice	8.38	7.94	339
APXVSPP18-C-A20 w/	А	From	4.00	0.0000	148.00	No Ice	8.26	6.95	83
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	8.82	8.13	151

tnxTower	Job

Project

Client

CT NHV-2075 CAC 801367 (BU 801367)

Page 11 of 16

Date

Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25630.193451

Crown Castle

Designed by cdcrook

13:11:15 10/26/18

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	o	ft		ft ²	ft ²	lb
		ce	0.00			1" Ice	9.35	9.02	227
						2" Ice	10.42	10.84	406
APXVSPP18-C-A20 w/	В	From	4.00	0.0000	148.00	No Ice	8.26	6.95	83
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	8.82	8.13	151
		ce	0.00			1" Ice	9.35	9.02	227
ADVVSDD18 C A20 m/	C	From	4.00	0.0000	148.00	2 Ice	10.42 8.26	10.84	406
Mount Pipe	C	Centroid-Fa	4.00	0.0000	148.00	1/2" Ice	8.82	8.13	151
Mount Tipe		centrolu i a	0.00			1" Ice	9.35	9.02	227
						2" Ice	10.42	10.84	406
TD-RRH8x20-25	А	From	4.00	0.0000	148.00	No Ice	3.70	1.29	66
		Centroid-Fa	0.00			1/2" Ice	3.95	1.46	90
		ce	0.00			1" Ice	4.20	1.64	117
						2" Ice	4.72	2.02	183
TD-RRH8x20-25	В	From	4.00	0.0000	148.00	No Ice	3.70	1.29	66
		Centroid-Fa	0.00			1/2" Ice	3.95	1.46	90
		ce	0.00			1" Ice	4.20	1.64	117
TD BBU9-20 25	C	Enom	4.00	0.0000	149.00	2 Ice	4.72	2.02	185
1D-RRH8x20-23	C	Centroid Fa	4.00	0.0000	148.00	1/2" Ice	3.05	1.29	00
		centrolu-ra	0.00			1" Ice	4 20	1.40	117
			0.00			2" Ice	4.72	2.02	183
2.4" Dia x 6-ft Pipe	А	From	4.00	0.0000	148.00	No Ice	1.43	1.43	22
211 211 10 11 190		Centroid-Fa	0.00			1/2" Ice	1.93	1.93	33
		ce	0.00			1" Ice	2.30	2.30	48
						2" Ice	3.06	3.06	90
2.4" Dia x 6-ft Pipe	В	From	4.00	0.0000	148.00	No Ice	1.43	1.43	22
		Centroid-Fa	0.00			1/2" Ice	1.93	1.93	33
		ce	0.00			1" Ice	2.30	2.30	48
	C	F	1.00	0.0000	1 40 00	2" Ice	3.06	3.06	90
2.4 Dia x 6-ft Pipe	C	From Controid Eq	4.00	0.0000	148.00	1/2" Loo	1.45	1.43	22
		ce	0.00			172 ICC 1" Icc	2 30	2 30	
			0.00			2" Ice	3.06	3.06	90
Platform Mount [LP 1201-1]	С	None		0.0000	148.00	No Ice	23.10	23.10	2100
						1/2" Ice	26.80	26.80	2500
						1" Ice	30.50	30.50	2900
						2" Ice	37.90	37.90	3700
140									
AIR -32 B2A/B66AA w/	А	From	4.00	0.0000	140.00	No Ice	6.75	6.07	153
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	7.20	6.87	214
		ce	-2.00			1 Ice	/.05 8.57	7.58	282
AIR -32 B2A/B66AA w/	в	From	4.00	0.0000	140.00	Z ICC No Ice	6.37 6.75	9.00	441
Mount Pipe	Б	Centroid-Fa	4.00 0.00	0.0000	140.00	1/2" Ice	7 20	6.87	214
Mount 1 Ipc		ce	-2.00			1" Ice	7.65	7.58	282
						2" Ice	8.57	9.06	441
AIR -32 B2A/B66AA w/	С	From	4.00	0.0000	140.00	No Ice	6.75	6.07	153
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	7.20	6.87	214
		ce	-2.00			1" Ice	7.65	7.58	282
		_				2" Ice	8.57	9.06	441
APXVAARR24_43-U-NA20	А	From	4.00	0.0000	140.00	No Ice	20.48	11.02	161
w/ Mount Pipe		Centroid-Fa	0.00			1/2" Ice	21.23	12.55	297
		ce	-2.00			1 Ice	21.99	14.10	444
APXVAARR24 43_II_NA20	в	From	4 00	0.0000	140.00	2 ICC No Ice	20.44	11.45	161
w/ Mount Pipe	J	Centroid-Fa	0.00	0.0000	1 10.00	1/2" Ice	21.23	12.55	297
1									

|--|

Job

Project

Client

CT NHV-2075 CAC 801367 (BU 801367)

Page 12 of 16

Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

TEP No. 25630.193451

Crown Castle

Date 13:11:15 10/26/18

Designed by

cdcrook

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft	o	ft		ft ²	ft^2	lb
		Ce.	-2.00			1" Ice	21.99	14 10	444
			2.00			2" Ice	23.44	16.45	775
APXVAARR24_43-U-NA20	С	From	4.00	0.0000	140.00	No Ice	20.48	11.02	161
w/ Mount Pipe		Centroid-Fa	0.00			1/2" Ice	21.23	12.55	297
		ce	-2.00			1" Ice	21.99	14.10	444
		Enom	4.00	0.0000	140.00	2º Ice	23.44	16.45	775
APA16DW V-16DW V-S-E-A 20 w/ Mount Pine	А	From Centroid-Fa	4.00	0.0000	140.00	1/2" Ice	0.82	5.49 4.26	110
20 w/ Would Tipe		ce	-2.00			1" Ice	7.72	4.96	165
			2.00			2" Ice	8.63	6.40	298
APX16DWV-16DWV-S-E-A	В	From	4.00	0.0000	140.00	No Ice	6.82	3.49	61
20 w/ Mount Pipe		Centroid-Fa	0.00			1/2" Ice	7.28	4.26	110
		ce	-2.00			1" Ice	7.72	4.96	165
	C	г	1.00	0.0000	1 40 00	2" Ice	8.63	6.40	298
APX16DW V-16DW V-S-E-A	C	From Controid Eq	4.00	0.0000	140.00	No Ice	6.82 7.28	3.49	61
20 W Would Pipe		Centrolu-Fa	-2.00			1/2 ICe	7.28	4.20	165
			2.00			2" Ice	8.63	6.40	298
KRY 112 89/5	А	From	4.00	0.0000	140.00	No Ice	0.20	0.37	15
		Centroid-Fa	0.00			1/2" Ice	0.26	0.45	20
		ce	-2.00			1" Ice	0.33	0.55	27
			1.00	0.0000	1 40 00	2" Ice	0.48	0.76	46
KRY 112 89/5	В	From Controid Eq	4.00	0.0000	140.00	No Ice	0.20	0.37	15
		Centrolu-Fa	-2.00			1/2 ICe	0.20	0.43	20
			2.00			2" Ice	0.48	0.76	46
KRY 112 89/5	С	From	4.00	0.0000	140.00	No Ice	0.20	0.37	15
		Centroid-Fa	0.00			1/2" Ice	0.26	0.45	20
		ce	-2.00			1" Ice	0.33	0.55	27
		_				2" Ice	0.48	0.76	46
KRY 112 134/1	Α	From Control I Fo	4.00	0.0000	140.00	No Ice	0.86	0.43	10
		Centrold-Fa	-2.00			1/2 Ice	0.98	0.53	17
		CC	-2.00			2" Ice	1 39	0.05	20 49
KRY 112 134/1	в	From	4.00	0.0000	140.00	No Ice	0.86	0.43	10
		Centroid-Fa	0.00			1/2" Ice	0.98	0.53	17
		ce	-2.00			1" Ice	1.11	0.63	26
	~	_				2" Ice	1.39	0.85	49
KRY 112 134/1	С	From	4.00	0.0000	140.00	No Ice	0.86	0.43	10
		Centroid-Fa	0.00			1/2" Ice	0.98	0.53	17
		ce	-2.00			2" Ice	1.11	0.05	20 49
RADIO 4449 B12/B71	А	From	4.00	0.0000	140.00	No Ice	1.65	1.16	74
		Centroid-Fa	0.00			1/2" Ice	1.81	1.30	90
		ce	-2.00			1" Ice	1.98	1.45	109
						2" Ice	2.34	1.76	155
RADIO 4449 B12/B71	В	From	4.00	0.0000	140.00	No Ice	1.65	1.16	74
		Centroid-Fa	0.00			1/2" Ice	1.81	1.30	90
		ce	-2.00			1" Ice	1.98	1.45	109
RADIO 4449 B12/B71	C	From	4 00	0.0000	140.00	2 ICe No Ice	2.54	1.70	133
MILLO (TTT / D12/D/1	C	Centroid-Fa	0.00	0.0000	170.00	1/2" Ice	1.81	1.30	90
		ce	-2.00			1" Ice	1.98	1.45	109
		-				2" Ice	2.34	1.76	155
SitePro1 PRK1245L Kicker	С	None		0.0000	140.00	No Ice	11.84	11.84	275
						1/2" Ice	16.96	16.96	296
						1" Ice	22.08	22.08	317
tran Tony or	Job		Page						
--	---------	----------------------	---------------------------						
lnx10wer		13 of 16							
Tower Engineering Professionals 326 Tryon Road	Project	TEP No. 25630.193451	Date 13:11:15 10/26/18						
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350	Client	Crown Castle	Designed by cdcrook						

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft ²	ft ²	lb
						2" Ice	32.32	32.32	360
Commscope HRK14-U	С	None		0.0000	140.00	No Ice	6.00	6.00	256
Handrail Kit						1/2" Ice	8.50	8.50	340
						1" Ice	11.00	11.00	409
						2" Ice	16.00	16.00	563
Platform Mount [LP 1201-1]	С	None		0.0000	140.00	No Ice	23.10	23.10	2100
						1/2" Ice	26.80	26.80	2500
						1" Ice	30.50	30.50	2900
						2" Ice	37.90	37.90	3700

	Load Combinations	
Comb.	Description	
No.		
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 60 deg - No Ice	
7	0.9 Dead+1.0 Wind 60 deg - No Ice	
8	1.2 Dead+1.0 Wind 90 deg - No Ice	
9	0.9 Dead+1.0 Wind 90 deg - No Ice	
10	1.2 Dead+1.0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	
12	1.2 Dead+1.0 Wind 150 deg - No Ice	
13	0.9 Dead+1.0 Wind 150 deg - No Ice	
14	1.2 Dead+1.0 Wind 180 deg - No Ice	
15	0.9 Dead+1.0 Wind 180 deg - No Ice	
16	1.2 Dead+1.0 Wind 210 deg - No Ice	
17	0.9 Dead+1.0 Wind 210 deg - No Ice	
18	1.2 Dead+1.0 Wind 240 deg - No Ice	
19	0.9 Dead+1.0 Wind 240 deg - No Ice	
20	1.2 Dead+1.0 Wind 270 deg - No Ice	
21	0.9 Dead+1.0 Wind 270 deg - No Ice	
22	1.2 Dead+1.0 Wind 300 deg - No Ice	
23	0.9 Dead+1.0 Wind 300 deg - No Ice	
24	1.2 Dead+1.0 Wind 330 deg - No Ice	
25	0.9 Dead+1.0 Wind 330 deg - No Ice	
26	1.2 Dead+1.0 Ice+1.0 Temp	
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	

tran	Job		Page
<i>inx10wer</i>		14 of 16	
Tower Engineering Professionals 326 Tryon Road	Project	TEP No. 25630.193451	Date 13:11:15 10/26/18
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350	Client	Crown Castle	Designed by cdcrook

Comb.	Description
No.	
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	167 - 118.25	24.089	48	1.3418	0.0007
L2	122.75 - 77.75	12.565	48	1.0563	0.0002
L3	83.25 - 38.25	5.414	48	0.6460	0.0001
L4	45 - 0	1.520	48	0.3099	0.0000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
167.00	Lightning Rod 5/8" x 6'	48	24.089	1.3418	0.0007	44650
162.00	Miscellaneous [NA 510-1]	48	22.700	1.3154	0.0006	44650
160.00	SBNH-1D6565C w/ Mount Pipe	48	22.146	1.3048	0.0006	31893
158.00	Miscellaneous [NA 509-3]	48	21.593	1.2940	0.0006	24805
150.00	PCS 1900MHz 4x45W-65MHz	48	19.407	1.2495	0.0005	13132
148.00	APXVTM14-ALU-I20 w/ Mount	48	18.869	1.2378	0.0005	11749
	Pipe					
140.00	AIR -32 B2A/B66AA w/ Mount	48	16.760	1.1879	0.0004	8268
	Pipe					

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	167 - 118.25	117.541	20	6.5594	0.0034
L2	122.75 - 77.75	61.318	20	5.1643	0.0011
L3	83.25 - 38.25	26.408	20	3.1551	0.0004
L4	45 - 0	7.411	22	1.5119	0.0002

tnxTower	Job	CT NHV-2075 CAC 801367 (BU 801367)	Page 15 of 16
Tower Engineering Professionals 326 Tryon Road	Project	TEP No. 25630.193451	Date 13:11:15 10/26/18
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350	Client	Crown Castle	Designed by cdcrook

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
167.00	Lightning Rod 5/8" x 6'	20	117.541	6.5594	0.0034	9335
162.00	Miscellaneous [NA 510-1]	20	110.766	6.4309	0.0031	9335
160.00	SBNH-1D6565C w/ Mount Pipe	20	108.063	6.3789	0.0030	6667
158.00	Miscellaneous [NA 509-3]	20	105.368	6.3265	0.0029	5185
150.00	PCS 1900MHz 4x45W-65MHz	20	94.702	6.1088	0.0024	2743
148.00	APXVTM14-ALU-I20 w/ Mount Pipe	20	92.075	6.0517	0.0023	2454
140.00	AIR -32 B2A/B66AA w/ Mount Pipe	20	81.786	5.8080	0.0019	1724

Compression Checks

	Pole Design Data											
Section No.	Elevation	Size	L	L_u	Kl/r	Α	P _u	ϕP_n	Ratio P _u			
	ft		ft	ft		in^2	lb	lb	ϕP_n			
L1	167 - 118.25 (1)	TP35.36x24x0.25	48.75	0.00	0.0	27.0277	-22141	1800650	0.012			
L2	118.25 - 77.75 (2)	TP44.297x33.8114x0.3125	45.00	0.00	0.0	42.3560	-32445	2818670	0.012			
L3	77.75 - 38.25 (3)	TP52.877x42.3904x0.375	45.00	0.00	0.0	60.6183	-46571	4043450	0.012			
L4	38.25 - 0 (4)	TP61.04x50.554x0.4375	45.00	0.00	0.0	84.1541	-66620	5570890	0.012			

Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
	ft		lb-ft	lb-ft	ϕM_{nx}	lb-ft	lb-ft	ϕM_{ny}
L1	167 - 118.25 (1)	TP35.36x24x0.25	798301	1261850	0.633	0	1261850	0.000
L2	118.25 - 77.75 (2)	TP44.297x33.8114x0.3125	1882292	2476442	0.760	0	2476442	0.000
L3	77.75 - 38.25 (3)	TP52.877x42.3904x0.375	3058842	4236658	0.722	0	4236658	0.000
L4	38.25 - 0 (4)	TP61.04x50.554x0.4375	4580300	6946783	0.659	0	6946783	0.000

Pole Shear Design Data

Areas Tossa or	Job		Page
inxlower		16 of 16	
Tower Engineering Professionals 326 Tryon Road	Project	TEP No. 25630.193451	Date 13:11:15 10/26/18
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350	Client	Crown Castle	Designed by cdcrook

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual T	ϕT_n	Ratio T
<i>NO</i> .	ft		lb	lb	$\frac{V_u}{\phi V_n}$	lb-ft	lb-ft	$\frac{T_u}{\phi T_n}$
L1	167 - 118.25 (1)	TP35.36x24x0.25	25729	474336	0.054	142	1394217	0.000
L2	118.25 - 77.75 (2)	TP44.297x33.8114x0.3125	29079	743347	0.039	142	2739367	0.000
L3	77.75 - 38.25 (3)	TP52.877x42.3904x0.375	32207	1063850	0.030	141	4675267	0.000
L4	38.25 - 0 (4)	TP61.04x50.554x0.4375	35271	1476910	0.024	141	7725558	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{ux}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	167 - 118.25 (1)	0.012	0.633	0.000	0.054	0.000	0.648	1.050	4.8.2
L2	118.25 - 77.75 (2)	0.012	0.760	0.000	0.039	0.000	0.773	1.050	4.8.2
L3	77.75 - 38.25 (3)	0.012	0.722	0.000	0.030	0.000	0.734	1.050	4.8.2
L4	38.25 - 0 (4)	0.012	0.659	0.000	0.024	0.000	0.672	1.050	4.8.2

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${}^{\phi P_{allow}}_{lb}$	% Capacity	Pass Fail
L1	167 - 118.25	Pole	TP35.36x24x0.25	1	-22141	1890682	61.7	Pass
L2	118.25 - 77.75	Pole	TP44.297x33.8114x0.3125	2	-32445	2959603	73.6	Pass
L3	77.75 - 38.25	Pole	TP52.877x42.3904x0.375	3	-46571	4245622	69.9	Pass
L4	38.25 - 0	Pole	TP61.04x50.554x0.4375	4	-66620	5849434	64.0	Pass
							Summary	
						Pole (L2)	73.6	Pass
						RATING =	73.6	Pass

Program Version 8.0.4.0 - 8/15/2018 File:C:/Users/cdcrook/Desktop/TNX Tower Run/25630/801367_LC5.eri

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 615.93 ft (NAVD 88)

 Latitude:
 41.536444

 Longitude:
 -72.957306

Wind

Results:

Wind Speed:	122 Vmph	*125 mph ultimate 3-second gust wind speed	
10-year MRI	76 Vmph	considered per Appendix N Municipality of the Connecticut State Building Code	
25-year MRI	86 Vmph		
50-year MRI	92 Vmph		
100-year MRI	99 Vmph		
Data Source:	ASCE/SEI 7 March 12, 2	7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, inc 2014	corporating errata of
Date Accessed:	Wed Oct 24	2018	

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class:	D - Stiff Soil						
Results:							
S _S :	0.187	S _{DS} :	0.199				
S ₁ :	0.064	S _{D1} :	0.102				
F _a :	1.600	T _L :	6.000				
F _v :	2.400	PGA :	0.097				
S _{MS} :	0.299	PGA M:	0.154				
S _{M1} :	0.153	F _{PGA} :	1.600				
		l _e :	1				

Seismic Design Category B

Data Accessed: Date Source:

Wed Oct 24 2018

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

....

Results:

Ice Thick	ness:	0.75 in.
Concurre	nt Temperature:	15 F
Gust Spe	ed:	50 mph
Data Source:		Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accesse	d:	Wed Oct 24 2018

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Monopole Base Plate Connection

CROWN CASTLE

Site Info	
BU #	801367
Site Name	NHV-2075 CAC 8013
Order #	446057 Rev. 0

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
l _{ar} (in)	1

Applied Loads	
Moment (kip-ft)	4580.30
Axial Force (kips)	66.64
Shear Force (kips)	35.23
*TIA 222 Il Costion 1E E An	nlind

*TIA-222-H Section 15.5 Applied

Analysis Results

Anchor Rod Summary	(ui	nits of kips, kip-in
Pu_c = 164.92	φPn_c = 243.75	Stress Ratin
Vu = 1.76	φVn = 73.13	64.5%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Base Plate Summary Max Stress (ksi):	25.83	(Flexural)
Base Plate Summary Max Stress (ksi): Allowable Stress (ksi):	25.83 49.5	(Flexural)

Connection Properties

Anchor Rod Data

(20) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 68" BC

Base Plate Data

67" OD x 3" Plate (A572-55; Fy=55 ksi, Fu=70 ksi)

Stiffener Data

N/A

Pole Data

61.04" x 0.4375" 18-sided pole (A607-65; Fy=65 ksi, Fu=80 ksi)

1			JOB:	CT NHV-2075	CAC 801367 (E	BU 801367): TEF	P# 25630.193451	
Å			SHEET NUMB	ER:	1	OF	2	
			CALCULATED	BY:	CDC	DATE	10/26/2018	
PROFESSI	ONALS		CHECKED BY	:	MGY	DATE	10/26/2018	
Pad and Pier F	oundatio	n for Monop	ole - TIA-22	2-H - Perpe	ndicular to V	Vind Directio	n	
(For pads of upeque	al side dime	ensions and eco	entric tower lo	cation)			<u></u>	
q _a , ALLOW	ABLE SOIL	PRESS. (ksf)	8.00			F'c (ksi)	3	
		NFT or GROSS	GBOSS			Fv (ksi)	60	
	SAFET		2	$\varphi^{\mathbf{q}} =$	12.0 ksf	, (1101)	00	
	SOI	DENSITY (pcf)	100					
	Base R	eactions LC1:	1.2D + 1.0W		Base F	eaction LC 2:	0.9D + 1.0W	
	M.N	MOMENT (k-ft)	4580.3		2000	M (k-ft)	4580.3	
P,	, TOTAL D	OWNLOAD (k)	66.6			$\mathbf{P}_{t}(\mathbf{k})$	50.0	
H, İ	HORIZONT	AL SHEAR (k)	35.2			H (k)	35.2	
Т	ower Ecce	ntricity , e _{l T} (ft)	0.0					
Т	ower Eccer	ntricity , e _{RT} (ft)	0.0					
			0.0	l				
_ [I (ft)	B (ft)	t (ft)	Depth to top	Pier dia./width	Pier Height, h	Pier Shane	
Try:	E (11.)	B (it.)	t (it:)	of pad (ft.)	(ft.)	(cu.ft.)		
	28	25	2.5	2.9	8.00	3.50	Round	
		abt of Mat (k) -	000 F	Carry	avete V(el. (ev. ft)	71.00		
		ght of Pior $(k) =$	262.5	Cond	crete vol. (cu it)	/1.33		
	W Woid	ght of Soil $(k) =$	26.4					
	w s, wei	$g(\mathbf{R}) = g(\mathbf{R}) = g(\mathbf{R})$	188.4					
CHECK BEARING	PRESSUR	E for LC1: 1.2L	0 + 1.0W	I				
	r = 1	t + W + WS =	039.4 K					
		e _L =	7.49 1					
		L/4 =	7.00 ft					
		L' =	13.01 ft					
			7.49 Il					
		B/4 =	6.25 ft					
	Orth	B' =	10.01 ft					
	Die	ogonal: q _{max} =	2.20 KSI		Consoituu	00.09/		
	Dia	g. Axis: $\mathbf{q}_{max} =$	2.00 KSI		<u>Capacity:</u>	20.2%		
CHECK BEARING	STABILITY	/ FOR LC2: 0.9	D +1.0W					
		$W_{\varphi qn} =$	5652.3 k-tt					
90° Axis		M _{ot} /M _{∉qn} =	0.85					
		™ _{¢qn} =	6783.0 k-tt					
Diag. Axi	S	M _{ot} /M _{∉qn} =	0.71		Capacity:	80.7%		
$^+$ M $_{arphi$ qn is the over	urning mo	ment at which	$\mathbf{q}_{\max} = \varphi \mathbf{q}_{n}$	<u>I</u>				
CHECK OVERTU	HECK OVERTURNING: LC2 CONTROLS							
$M_{st} = (P_t + 0.9W_p)^*($	[B/2-е _{вт})+(0	0.9W _{m+s} *B/2) =	5994.5 k-ft					
	M _{ot} =	= M+H*(t+h) =	4791.7 k-ft					
		$M_{ot}/M_{st} =$	0.80		<u>Capacity:</u>	76.1%		
				•				

JOB:	CT NHV-2075	CAC 801367 (B	BU 801367): TEF	P# 25630.193451
SHEET NUMB	ER:	2	OF	2
CALCULATED	BY:	CDC	DATE	10/26/2018
CHECKED BY	:	MGY	DATE	10/26/2018

CALCULATE REINFORCING REQUIRED

				PASS	PASS		CT NHV-2075	CAC 801	367 (BU 801367)
PROFESSIONALS		R	esults Summary:	LC1	LC2		TEP #:	256	30.193451
			Soil Interaction:	N/A	N/A		Analysis:	CDC	10/26/2018
Drilled Caisson Tool - In	put	Found	ation Structural:	40.7%	10.5%		Check:	MGY	10/26/2018
Code Revisions:	TIA-222-H	ACI 318-14	l	То	wer Type:	Monopole			
	LC1	LC2			S	haft Informat	ion		
Moment:	4,703.62	1,220.38	kip-ft	1	Diameter:	8.00	ft		
Axial (download):	66.64	105.83	kip	Р	rojection:	0.60	ft		
Shear:	35.23	8.85	kip	Caisso	on Length:	3.50	ft		

3.000

0.003

ksi

in/in

f'c:

Max ɛc:

kip

Cage 1 Reinforcement				
Tie Bar Size:	ze: 4 (fy = 40.0 ksi)			
Clear Cover to Tie:	3.00	in (Cage Ø = 87.59in)		
Tie Bar Spacing:	6.00	in		
Vertical Bar Size:	11			
Vertical Bar Quantity:	40	(ρ =0.862%)		
fy:	60.0	ksi		
E:	29,000	ksi		

Axial (uplift):

Reinforcement Capacity

Dear Charles McGuirt,

Maser Consulting, P.A. is pleased to submit this "**Mount Modification Design Report**" to determine the structural integrity of T-Mobile's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform

Sufficient*

*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

The analysis has been performed in accordance with the TIA-222-H Standard. This analysis utilizes an ultimate 3-second gust wind speed of 125 mph from the 2012 International Building Code. Exposure Category B with a maximum topographic factor, Kzt, of 1.0 and Risk Category II was/were used in this analysis.

Mount structural analysis prepared by: Carol Luengas Respectfully Submitted by:

11111111111111111 CONN Peros E. Tsoukalas, R.E.

Principal Associate/Cecyraphic Discipline Leader Connecticul License: 02577 856-797-0412 Ptsoukalas@Maserconsulting.com

and many

Carol Luengas, E.I.T. Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity Table 4 - Tieback End Reactions 4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D Additional Calculations

9) APPENDIX E

Mount Modification Design Drawings (MDD)

1) INTRODUCTION

This mount is an existing 14 ft Platform mapped by Tower Engineering Professionals. This mount is installed at the 138 ft elevation on 3 sector(s) of the 167 ft monopole.

2) ANALYSIS CRITERIA

TIA-222 Revision:TIA-222-HRisk Category:IIUltimate Wind Speed:125 mphExposure Category:BTopographic Factor:1.0Ice Thickness:0.75 inWind Speed with Ice:50 mphLive Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:500 lb	Building Code:	2012 IBC
Risk Category:IIUltimate Wind Speed:125 mphExposure Category:BTopographic Factor:1.0Ice Thickness:0.75 inWind Speed with Ice:50 mphLive Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:250 lbMan Live Load at Mount Pipes:500 lb	TIA-222 Revision:	TIA-222-H
Ultimate Wind Speed:125 mphExposure Category:BTopographic Factor:1.0Ice Thickness:0.75 inWind Speed with Ice:50 mphLive Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:250 lbMan Live Load at Mount Pipes:500 lb	Risk Category:	П
Exposure Category:BTopographic Factor:1.0Ice Thickness:0.75 inWind Speed with Ice:50 mphLive Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:250 lbMan Live Load at Mount Pipes:500 lb	Ultimate Wind Speed:	125 mph
Topographic Factor:1.0Ice Thickness:0.75 inWind Speed with Ice:50 mphLive Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:250 lbMan Live Load at Mount Pipes:500 lb	Exposure Category:	В
Ice Thickness:0.75 inWind Speed with Ice:50 mphLive Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:250 lbMan Live Load at Mount Pipes:500 lb	Topographic Factor:	1.0
Wind Speed with Ice:50 mphLive Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:250 lbMan Live Load at Mount Pipes:500 lb	Ice Thickness:	0.75 in
Live Loading Wind Speed:30 mphMan Live Load at Mid/End-Points:250 lbMan Live Load at Mount Pipes:500 lb	Wind Speed with Ice:	50 mph
Man Live Load at Mid/End-Points:250 lbMan Live Load at Mount Pipes:500 lb	Live Loading Wind Speed:	30 mph
Man Live Load at Mount Pipes: 500 lb	Man Live Load at Mid/End-Points:	250 lb
	Man Live Load at Mount Pipes:	500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount Details
			Ericsson	AIR-32 B2A/B66AA	
			RFS	APX16DWV-16DWVS-E-A20	
120	120	3	RFS	APXVAARR24_43-U-NA20	Diatform
138	130		Ericsson	KRY112 134/1	Flation
			Ericsson	KRY 112 89/5	
			Ericsson	Radio 4449 B12/B71	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
CT NHV-20750CAC 801367 Mount Mapping Dated September 14, 2018	Crown Castle	TEP# 25630.177476	Tower Engineering Professionals

3.1) Analysis Method

RISA-3D, a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases. The program performs design checks of structures under user specified loads. The user specified loads have been calculated separately based on the requirements of the above referenced codes. The program performs an analysis based on the steel code to determine the adequacy of the members and produces the reactions at the connection points of the mounts to the existing structure.

Proprietary excel sheets were used to calculate appurtenance and member loading for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

77.9%

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)
HSS (Rectangular)	ASTM 500 (GR B-46)
Pipe	ASTM A53 (GR 35)
Connection Bolts	ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Maser Consulting, P.A. should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3(a) - Mount Component Stresses vs. Capacity (Platform, All Sectors)

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
1,3	Single Platform Angles		138	77.9	Pass
1,3	Double Platform Angles		138	58.3	Pass
1,3	Standoff Arm		138	25.1	Pass
1,3	Standoff Arm Reinforcement		138	5.9	Pass
1,3	Antenna Pipes		138	41.9	Pass
2,3	Connection to Tower		138	27.7	Pass
1,3	Modification kickers		138	11.4	Pass
1,3	Handrail		138	12.7	Pass

Structure Rating (max from all components	s) =
---	------

Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

- 2) See additional documentation in "Appendix C Additional Calculations" for calculations supporting the % capacity consumed.
- 3) All sectors are typical

4.1) Recommendations

The modification has sufficient capacity to support the proposed loading configuration with the proposed modifications, therefore, the proposed installation **can** be installed as intended, once the modifications are installed. The proposed modifications consists of:

- Installing a Platform Kicker Kit (SitePro 1 P/N PRK-1245L or engineer approved equivalent) mid-way along the existing LL3x3x4 members and 4' below the existing platform.
- Installing a Handrail Kit (SitePro 1 P/N HRK14-U or engineer approved equivalent) 1'-6" above the existing platform. Contractor to cut the proposed pipe masts down to 13'-6". Please see Appendix E for the modification design details.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

Envelope Only Solution		SK _ 1
	Antonno Mount Analysia	Oct 11, 2019 at 2:22 DM
19022050		
18922050	Rendered Model	ACAD-18922050.R3D

APPENDIX B

SOFTWARE INPUT CALCULATIONS

TMobile	Computed By:	VD
801367	Date:	10/11/2018
18922050A	Verified By:	PET
Antenna Mount Analysis	Page:	1

Version 2.1

LOADING SUMMARY

Client: Site Name:

Quantity	Manufacturer	Antenna/ Appurtenance	Status	Sector
3	ERICSSON	Air 32 DB B2A B66Aa	Existing	Alpha, Beta, & Gamma
3	RFS	APX16DWV-16DWVS-E-A20	Proposed	Alpha, Beta, & Gamma
3	RFS	APXVAARR24_43-U-NA20	Proposed	Alpha, Beta, & Gamma
3	ERICSSON	KRY 112 134/1	Existing	Alpha, Beta, & Gamma
3	ERICSSON	KRY 112 89/5	Existing	Alpha, Beta, & Gamma
3	ERICSSON	RRU 4449 B71 + B12	Proposed	Alpha, Beta, & Gamma

Client:	TMobile	Computed By:	VD
Site Name:	801367	Date:	10/11/2018
Project No.	18922050A	Verified By:	PET
Title:	Antenna Mount Analysis	Page:	2

I. DESIGN INPUTS

Calculations for gravity and lateral loading on equipment and support mounts are determined as per the ANSI/TIA-222-H Code

		<u>Reference</u>	<u>Equation</u>
Wind Load Inputs Parameters			
Antenna Centerline	z 138 ft		
Ultimate Wind Speed	V _u 125 mph		
Normal Wind Speed with Ice (3 sec. Gust):	V _i 50 mph	Figure B9, p. 238	
Maintenace Wind Speed:	Vs 30 mph	Section 2.8.3	
Design Ice Thickness	t _i 1.50 in	Figure B9, p. 238	
Surface Roughness:	В	Section 2.6.5.1.1	
Exposure Category:	В	Section 2.6.5.1.2	
Risk Category:	Ш	Table 2-1	
Rooftop Wind Speed-Up Factor	K _s 1.0	Section 2.6.7	
Ground Elevation:	615.0 ft		
Ground Elevation Factor:	K _e 0.97798	Table 2-6	
Gust Effect Factor:	G _h 1.00	Section 2.6.9	
Wind Directionality Factor:	К _d 0.95	Table 2-2	
Topographic Category:	1	Section 2.6.6.2	
Wind Load Coefficients			
Importance Factors:			
Iced:	I _{ice} 1	Table 2-3	
Exposure Category Coefficients:			
3-s Gust-Speed Power Law Exponent:	α 7.0	Table 2-4	
Nominal Height of the Atmospheric Boundary Layer:	Z _g 1200 ft	Table 2-4	
Min. Value for k _z :	Kz _{min} 1.03	Table 2-4	
Terrain Constant:	K _e 1.10	Table 2-4	
Velocity Pressure Exposure Coefficient:	K _z 1.083	Section 2.6.5.2	=2.01 $\cdot (z/z_g)^{2/\alpha'}$
Topographic Category Coefficients:			
Topographic Constant:	K _t N/A	Table 2-5	
Height Attenuation Factor:	f N/A	Table 2-5	
Height Reduction Factor:	K _h N/A	Section 2.6.6.2.1	=e ^(f·z/H)
Topographic Factor:	K _{zt} 1.00	Section 2.6.6.2	=[1+($K_c \cdot K_t/K_h$)] ²
Ice Accumulation:			
Ice Velocity Pressure Exposure Coefficient:	K _{iz} 1.15		$=(z/33)^{0.10}$
Factored Ice Thickness:	t _{iz} 1.73 in	Section 2.6.10	$=t_{i}\cdot I\cdot K_{i\tau}\cdot (K_{\tau t})^{0.35}$
Ice Density:	ρ _i 56.00 _{pcf}		1 12 (21/
Design Wind Pressures:			
Velocity Pressure:	q _z 40.27 psf	Section 2.6.11.6	=0.00256·K ₇ ·K ₇ ·K _{5·K6} ·K _d ·V ²
Velocity Pressure (With Ice):	q _{zi} 6.44 psf	Section 2.6.11.6	=0.00256·K . ·K . K . ·K . · V . 2
Velocity Pressure (Maintenance):	q _{zm} 2.32 psf	Section 2.6.11.6	=0.00256·K , ·K , K K K ·K ·

Client:	TMobile	Computed By:	VD
Site Name:	801367	Date:	10/11/2018
Project No.	18922050A	Verified By:	PET
Title:	Antenna Mount Analysis	Page:	3

II. CALCULATIONS

• Wind Load on Appurtenances

Dimensions and Force Coefficients

				Non-Iced C	ondition				Iced Condition							
	Ν	/lounting Pipe	5			Equipment				Mounting Pip	e			Equipment		
Antenna/ Appurtenance	Length	Diameter	Force Coefficient	Height	Width	Depth	Force Co	efficient	Length	h Diameter Force Height Width Depth Force Co		Vidth Depth Force		efficient		
	(in)	(in)	Ca	(in)	(in)	(in)	C _{a Front}	C _{a Side}	(in)	(in)	Ca	(in)	(in)	(in)	C _{a Front}	C _{a Side}
Air 32 DB B2A B66Aa	80.0	2.375	1.200	56.60	12.90	8.70	1.28	1.38	83.5	5.8	0.962	60.06	16.36	12.16	1.25	1.31
APX16DWV-16DWVS-E-A20	72.0	2.375	1.200	55.90	13.00	3.20	1.28	1.75	75.5	5.8	0.932	59.36	16.46	6.66	1.25	1.46
APXVAARR24_43-U-NA20	108.0	2.875	1.200	95.90	24.00	8.70	1.27	1.53	111.5	6.3	1.035	99.36	27.46	12.16	1.25	1.44
KRY 112 134/1	0.0	0.000	0.000	13.11	7.91	3.82	1.20	1.24	0.0	0.0	0.000	16.57	11.37	7.28	1.20	1.20
KRY 112 89/5	0.0	0.000	0.000	4.00	6.00	11.00	1.20	1.20	0.0	0.0	0.000	7.46	9.46	14.46	1.20	1.20
RRU 4449 B71 + B12	0.0	0.000	0.000	14.90	13.20	9.30	1.20	1.20	0.0	0.0	0.000	18.36	16.66	12.76	1.20	1.20

		N	on-Iced Cond	ition	I	ced Conditio	n	Maintenance Condition	
Antenna/ Appurtenance	# of Brackets	Wind Fo	rce (lbs.)	Gravity (lbs.)	Wind Fo	rce (lbs.)	Gravity (lbs.)	Wind Force (lbs.)	
		F _N	F _T		F _N	FT		F _N	FT
Air 32 DB B2A B66Aa	2	140.4	126.7	73.6	31.2	31.9	91.5	8.1	7.3
APX16DWV-16DWVS-E-A20	2	136.5	72.4	23.5	29.8	22.1	79.1	7.9	4.2
APXVAARR24_43-U-NA20	2	413.4	231.0	76.7	78.3	55.3	238.6	23.8	13.3
KRY 112 134/1	1	34.8	17.4	10.1	10.1	6.5	30.7	2.0	1.0
KRY 112 89/5	1	8.1	14.8	15.4	3.8	5.8	18.7	0.5	0.9
RRU 4449 B71 + B12	1	0.0	46.5	78.0	0.0	12.6	57.8	0.0	2.7

* ALL CALCULATED LOADS ARE PER MOUNTING BRACKET. TO GET THE TOTAL EQUIPMENT LOAD, MULTIPLY THE INDIVIDUAL LOADS BY THE NUMBER OF BRACKETS

• Wind Load on Framing Members

				Non	-Iced Conditi	on		Iced Condition					Maintenance Condition
Member	Member	Length (in)	Member	Exposed Wind	Force Coefficient	Wind Load	Exposed Wind	Depth	Length	Force Coefficient	Wind Load	Ice Weight	Wind Load (plf)
Category	Snape		Surface	Height (in)	Ca	(pii)	Height (in)	(11)	(11)	Ca	(pir) (pir)		
Pipe	Pipe 2.0	80	Round	2.38	1.20	9.56	5.84	5.84	83.46	1.20	3.76	8.68	0.55
Pipe	Pipe 2.5	108	Round	2.88	1.20	11.58	6.34	6.34	111.46	1.20	4.08	9.74	0.67
Square HSS	HSS 4x4x3/16	30	HSS	4.00	0.99	13.27	7.46	7.46	33.46	0.99	3.96	15.62	0.76
Square HSS	HSS 4.5x4.5x3/8	24	HSS	4.50	0.88	13.31	7.96	7.96	27.46	0.88	3.77	17.12	0.77
Equal Angle	L3x3	168	Square	3.00	2.00	20.13	6.46	6.46	171.46	2.00	6.94	12.63	1.16
Double Angle	2L3x3	40	Square	6.00	1.39	27.88	9.46	6.46	43.46	1.39	7.04	17.84	1.61
Grating												16.15	(psf)
Double Angle	2L2.5x2.5	84	Square	5.00	1.73	28.96	8.46	5.96	87.46	1.73	7.84	15.48	1.67
Pipe	Pipe 2.0	162	Round	2.38	1.20	9.56	5.84	5.84	165.46	1.20	3.76	8.68	0.55

	Client:	TMobile	Computed By:	VD
	Site Name:	801367	Date:	10/11/2018
	Project No.	18922050A	Verified By:	PET
	Title:	Antenna Mount Analysis	Page:	4
MASER				

BASIC EQUATIONS

ANSI/TIA-222-H Reference

Force Coefficient:
(Square)
$$C_{f_square}(h, w) := \begin{bmatrix} 1.2 & \text{if } \frac{h}{w} \le 2.5 & \text{`able 2-9} \\ 1.2 + \frac{0.2}{4.5} \cdot \left(\frac{h}{w} - 2.5\right) \end{bmatrix} & \text{if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \\ \begin{bmatrix} 1.4 + \frac{0.6}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} & \text{if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ 2.0 & \text{otherwise} \end{bmatrix}$$

Force Coefficient:
(Round)
$$C_{f_round}(h, w) := \begin{bmatrix} 0.7 & \text{if } \frac{h}{w} \le 2.5 & \text{Table 2-9} \\ 0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 2.5\right) \end{bmatrix} & \text{if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \\ \left[0.8 + \frac{0.4}{18} \cdot \left(\frac{h}{w} - 7\right) \right] & \text{if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ 1.2 & \text{otherwise} \end{bmatrix}$$

 Terrain Exposure Constants:
 Table 2-5

 $\alpha :=$ 7.0 if Exp = "B"
 $Z_g :=$ 1200ft if Exp = "B"
 $K_{zmin} :=$ 0.70 if Exp = "B"

 9.5 if Exp = "C"
 900ft if Exp = "C"
 0.85 if Exp = "C"
 0.85 if Exp = "C"
 1.03 if Exp = "D"

	Client:	TMobile	Computed By:
	Site Name:	801367	Date:
	Project No.	18922050A	Verified By:
	Title:	Antenna Mount Analysis	Page:
MASER			

BASIC EQUATIONS

Velocity Pressure Coefficient:

$K_{z}(z) := \begin{bmatrix} K_{z} \leftarrow \max\left[2.01 \cdot \left(\frac{z}{Z_{g}}\right)^{\alpha}, K_{zmin}\right] \\ K_{z} \leftarrow \min(K_{z}, 2.01) \end{bmatrix}$

ANSI/TIA-222-H Reference

VD

10/11/2018

PET 5

Section 2.6.5.6

 $K_z := Kz(z)$

$$\begin{array}{lll} \text{Kzt}(z) \coloneqq \text{K}_{zt} \leftarrow & 1.0 \quad \text{if Topo} = "1" \\ \text{otherwise} \\ & \text{K}_{e} \leftarrow & 0.90 \quad \text{if Exp} = "B" \\ & 1.00 \quad \text{if Exp} = "C" \\ & 1.10 \quad \text{if Exp} = "D" \\ & \text{K}_{t} \leftarrow & 0.43 \quad \text{if Topo} = "2" \\ & 0.53 \quad \text{if Topo} = "3" \\ & 0.72 \quad \text{if Topo} = "4" \\ & \text{f} \leftarrow & 1.25 \quad \text{if Topo} = "3" \\ & 1.50 \quad \text{if Topo} = "3" \\ & 1.50 \quad \text{if Topo} = "4" \\ & \text{K}_{h} \leftarrow e^{\left(\frac{\text{f} \cdot z}{\text{CH}}\right)} \\ & \text{K}_{h} \leftarrow e^{\left(\frac{\text{f} \cdot z}{\text{CH}}\right)} \\ & \left(1 + \frac{\text{K}_{e} \cdot \text{K}_{t}}{\text{K}_{h}}\right)^{2} \end{array}$$

 $K_{zt} := Kzt(z)$

Velocity Pressure:
$$q_z := 0.00256 \cdot K_z \cdot K_z \cdot K_s \cdot K_e \cdot K_d \cdot V^2 \cdot psf$$
 Section 2.6.9.6

Client:	TMobile	Computed By:	VD
Site Name:	801367	Date:	10/11/2018
Project No.	18922050A	Verified By:	PET
Title:	Antenna Mount Analysis	Page:	6
	· ····································		

LOAD EQUATIONS

WIND LOAD

Area (Normal):
Area (Side):
Force Coefficient (Normal):
Force Coefficient (Side):
Pipe Area (Normal):
Pipe Area (Side):
Force Coefficient (Normal):
Normal Effective Projected Area:
Side Effective Projected Area:
Effective Projected Area:
Wind Force:

 $AN_{area} = H_{ant} \cdot Want$ $AT_{area} = H_{ant} \cdot Dant$ $C_{fn} = C_{fsquare}(H_{ant}, Want)$ $C_{fs} = C_{fsquare}(H_{ant}, Dant)$ $AN_p = \max[(L_p - H_{ant}) * Dp, 0]$ $AT_p = L_p \cdot Dp$ $C_{fp} = C_{fround}(Lp, Dp)$ $E_{pan} = (C_{fn} \cdot ANarea) + (Cfp \cdot ANp)$ $E_{pat} = (C_{fs} \cdot ATarea) + (Cfp \cdot ATp)$ $EPA = max(E_{pan}, Epat)$ $F_{ant} = q_z \cdot Gh \cdot EPA$

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

Company : Maser C Designer : CL Job Number : 1892205 Model Name : Antenna

: Maser Consulting P.A. : CL : 18922050 : Antenna Mount Analysis

Oct 12, 2018

Checked By: PET

Member Primary Data

1 M1 N1 N2 270 Single Platform Angles Beam Single Angle A36 Gr.36 T 2 M2 N1 N3 N3 N2 Single Platform Angles Beam Single Angle A36 Gr.36 T 3 M3 N3 N2 Single Platform Angle. Beam Single Angle A36 Gr.36 T 4 M4 N1 N5 180 Double Platform Angl Beam Double Angle .436 Gr.36 T 6 M6 N3 N4 180 Double Platform Angl Beam Double Angle .436 Gr.36 T 7 M7 N4 N5 Single Platform Angles Beam Single Angle A36 Gr.36 T 9 M9 N5 N6 Single Platform Angles Beam Single Angle A36 Gr.36 T 10 M10 N7 N8 RIGID None None RIGID T 11 M11 N9	sign Rules
2 M2 N1 N3 Single Platform Angles Beam Single Angle A36 Gr.36 T 3 M3 N3 N2 Single Platform Angles Beam Single Angle A36 Gr.36 T 4 M4 N1 N5 180 Double Platform Angl. Beam Double Angle A36 Gr.36 T 5 M5 N2 N6 180 Double Platform Angl. Beam Double Angle A36 Gr.36 T 6 M6 N3 N4 180 Double Platform Angles Beam Single Angle A36 Gr.36 T 9 M9 N5 N6 Single Platform Angles Beam Single Angle A36 Gr.36 T 9 M9 N5 N6 Single Platform Angles Beam Single Angle A36 Gr.36 T 10 M10 N7 N8 RIGID None None RIGID T 11 M11 N12 RIGID None	Typical
3 M3 N3 N2 Single Platform Angles Beam Single Angle A36 Gr. 36 T 4 M4 N1 N5 180 Double Platform Angl Beam Double Angle A36 Gr. 36 T 5 M5 N2 N6 180 Double Platform Angl Beam Double Angle A36 Gr. 36 T 6 M6 N3 N4 180 Double Platform Angl Beam Double Angle A36 Gr. 36 T 7 M7 N4 N5 Single Platform Angles Beam Single Angle A36 Gr. 36 T 9 M9 N5 N6 Single Platform Angles Beam Single Angle A36 Gr. 36 T 10 M10 N7 N8 RIGID None None RIGID T 11 M11 N12 RIGID None None RIGID T T A15 G	Typical
4 M4 N1 N5 180 Double Platform Angl Beam Double Angle A36 Gr.36 T 5 M5 N2 N6 180 Double Platform Angl Beam Double Angle A36 Gr.36 T 6 M6 N3 N4 180 Double Platform Angl Beam Double Angle A36 Gr.36 T 7 M7 N4 N5 Single Platform Angles Beam Single Angle A36 Gr.36 T 9 M9 N5 N6 Single Platform Angles Beam Single Angle A36 Gr.36 T 10 M10 N7 N8 RIGID None None RIGID T 11 M11 N9 N10 RIGID None None RIGID T 12 M12 N11 N12 RIGID None None RIGID T 13 M13 N13 N14 Antenna Pipes 2.0 Beam <td< td=""><td>Typical</td></td<>	Typical
5M5N2N6180Double Platform AnglBeamDouble AngleA36 Gr.36T6M6N3N4180Double Platform AnglBeamDouble AngleA36 Gr.36T7M7N4N5Single Platform AnglesBeamSingle AngleA36 Gr.36T8M8N6N4Single Platform AnglesBeamSingle AngleA36 Gr.36T9M9N5N6Single Platform AnglesBeamSingle AngleA36 Gr.36T10M10N7N8RIGIDNoneNoneRIGIDT11M11N9N10RIGIDNoneNoneRIGIDT12M12N11N12RIGIDNoneNoneRIGIDT13M13N14Antenna Pipes 2.5BeamPipeA53 Gr. BT14M14N15N16Antenna Pipes 2.0BeamPipeA53 Gr. BT15M15N17N18Antenna Pipes 2.0BeamPipeA53 Gr. BT16M16N19N20RIGIDNoneNoneRIGIDT17M17N21N22RIGIDNoneNoneRIGIDT18M18N23N24RIGIDNoneNoneRIGIDT19M19N25N26Antenna Pipes 2.5BeamPipeA53 Gr. BT20M20N27 </td <td>Typical</td>	Typical
6 M6 N3 N4 180 Double Platform Angl Beam Double Angle A36 Gr.36 T 7 M7 N4 N5 Single Platform Angles Beam Single Angle A36 Gr.36 T 8 M8 N6 N4 Single Platform Angles Beam Single Angle A36 Gr.36 T 9 M9 N5 N6 Single Platform Angles Beam Single Angle A36 Gr.36 T 10 M10 N7 N8 RIGID None None RIGID T 11 M11 N9 N10 RIGID None None RIGID T 13 M13 N14 Antenna Pipes 2.5 Beam Pipe A53 Gr. B T 14 M14 N15 N16 Antenna Pipes 2.0 Beam Pipe A53 Gr. B T 15 M15 N17 N18 Antenna Pipes 2.0 Beam Pipe A53 Gr. B T </td <td>Typical</td>	Typical
7 M7 N4 N5 Single Platform Angles Beam Single Angle A36 Gr.36 T 8 M8 N6 N4 Single Platform Angles Beam Single Angle A36 Gr.36 T 9 M9 N5 N6 Single Platform Angles Beam Single Angle A36 Gr.36 T 10 M10 N7 N8 RIGID None None RIGID T 11 M11 N9 N10 RIGID None None RIGID T 12 M12 N11 N12 RIGID None None RIGID T 13 M13 N14 Antenna Pipes 2.5 Beam Pipe A53 Gr. B T 14 M14 N15 N16 Antenna Pipes 2.0 Beam Pipe A53 Gr. B T 16 M16 N19 N20 RIGID None None RIGID	Typical
8M8N6N4Single Platform AnglesBeamSingle AngleA36 Gr.36T9M9N5N6Single Platform AnglesBeamSingle AngleA36 Gr.36T10M10N7N8RIGIDNoneNoneRIGIDT11M11N9N10RIGIDNoneNoneRIGIDT12M12N11N12RIGIDNoneNoneRIGIDT13M13N13N14Antenna Pipes 2.5BeamPipeA53 Gr. BT14M14N15N16Antenna Pipes 2.0BeamPipeA53 Gr. BT15M15N17N18Antenna Pipes 2.0BeamPipeA53 Gr. BT16M16N19N20RIGIDNoneNoneRIGIDT18M18N23N24RIGIDNoneNoneRIGIDT19M19N25N26Antenna Pipes 2.0BeamPipeA53 Gr. BT20M20N27N28Antenna Pipes 2.0BeamPipeA53 Gr. BT21M21N29N30Antenna Pipes 2.0BeamPipeA53 Gr. BT22M20N27N28Antenna Pipes 2.0BeamPipeA53 Gr. BT23M23N33N34RIGIDNoneNoneRIGIDT24M24N35N36RIGIDNone<	Typical
9M9N5N6Single Platform AnglesBeamSingle AngleA36 Gr.36T10M10N7N8RIGIDNoneNoneRIGIDT11M11N9N10RIGIDNoneNoneRIGIDT12M12N11N12RIGIDNoneNoneRIGIDT13M13N13N14Antenna Pipes 2.5BeamPipeA53 Gr. BT14M14N15N16Antenna Pipes 2.0BeamPipeA53 Gr. BT15M15N17N18Antenna Pipes 2.0BeamPipeA53 Gr. BT16M16N19N20RIGIDNoneNoneRIGIDT18M18N23N24RIGIDNoneNoneRIGIDT19M19N25N26Antenna Pipes 2.0BeamPipeA53 Gr. BT20M20N27N28Antenna Pipes 2.0BeamPipeA53 Gr. BT21M21N29N30Antenna Pipes 2.0BeamPipeA53 Gr. BT22M22N31N32RIGIDNoneNoneRIGIDT23M23N33N34RIGIDNoneNoneRIGIDT24M24N35N36RIGIDNoneNoneRIGIDT25M25N37N38Antenna Pipes 2.5BeamPipeA53 Gr. B <td>Typical</td>	Typical
10M10N7N8RIGIDNoneNoneRIGIDT11M11N9N10RIGIDNoneNoneNoneRIGIDT12M12N11N12RIGIDNoneNoneRIGIDT13M13N13N14Antenna Pipes 2.5BeamPipeA53 Gr. BT14M14N15N16Antenna Pipes 2.0BeamPipeA53 Gr. BT15M15N17N18Antenna Pipes 2.0BeamPipeA53 Gr. BT16M16N19N20RIGIDNoneNoneRIGIDT17M17N21N22RIGIDNoneNoneRIGIDT18M18N23N24RIGIDNoneNoneRIGIDT19M19N25N26Antenna Pipes 2.5BeamPipeA53 Gr. BT20M20N27N28Antenna Pipes 2.0BeamPipeA53 Gr. BT21M21N29N30Antenna Pipes 2.0BeamPipeA53 Gr. BT22M22N31N32RIGIDNoneNoneRIGIDT23M23N33N34RIGIDNoneNoneRIGIDT24M24N35N36RIGIDNoneNoneRIGIDT25M25N37N38Antenna Pipes 2.5BeamPipeA53 Gr. BT<	Typical
11M11N9N10RIGIDNoneNoneRIGIDT12M12N11N12RIGIDNoneNoneRIGIDT13M13N13N14Antenna Pipes 2.5BeamPipeA53 Gr. BT14M14N15N16Antenna Pipes 2.0BeamPipeA53 Gr. BT15M15N17N18Antenna Pipes 2.0BeamPipeA53 Gr. BT16M16N19N20RIGIDNoneNoneRIGIDT17M17N21N22RIGIDNoneNoneRIGIDT18M18N23N24RIGIDNoneNoneRIGIDT19M19N25N26Antenna Pipes 2.5BeamPipeA53 Gr. BT20M20N27N28Antenna Pipes 2.0BeamPipeA53 Gr. BT21M21N29N30Antenna Pipes 2.0BeamPipeA53 Gr. BT23M23N33N34RIGIDNoneNoneRIGIDT24M24N35N36RIGIDNoneNoneRIGIDT25M25N37N38Antenna Pipes 2.5BeamPipeA53 Gr. BT26M26N39N40Antenna Pipes 2.0BeamPipeA53 Gr. BT26M27N28Antenna Pipes 2.0BeamPipeA53 Gr. B <t< td=""><td>Typical</td></t<>	Typical
12 M12 N11 N12 RIGID None None RIGID T 13 M13 N13 N14 Antenna Pipes 2.5 Beam Pipe A53 Gr. B T 14 M14 N15 N16 Antenna Pipes 2.0 Beam Pipe A53 Gr. B T 15 M15 N17 N18 Antenna Pipes 2.0 Beam Pipe A53 Gr. B T 16 M16 N19 N20 RIGID None None RIGID T 17 M17 N21 N22 RIGID None None RIGID T 18 M18 N23 N24 RIGID None None RIGID T 19 M19 N25 N26 Antenna Pipes 2.0 Beam Pipe A53 Gr. B T 20 M20 N27 N28 Antenna Pipes 2.0 Beam Pipe A53 Gr. B T 21 M21 N29	Typical
13M13N14Antenna Pipes 2.5BeamPipeA53 Gr. BT14M14N15N16Antenna Pipes 2.0BeamPipeA53 Gr. BT15M15N17N18Antenna Pipes 2.0BeamPipeA53 Gr. BT16M16N19N20RIGIDNoneNoneRIGIDT17M17N21N22RIGIDNoneNoneRIGIDT18M18N23N24RIGIDNoneNoneRIGIDT19M19N25N26Antenna Pipes 2.5BeamPipeA53 Gr. BT20M20N27N28Antenna Pipes 2.0BeamPipeA53 Gr. BT21M21N29N30Antenna Pipes 2.0BeamPipeA53 Gr. BT23M23N33N34RIGIDNoneNoneRIGIDT24M24N35N36RIGIDNoneNoneRIGIDT25M25N37N38Antenna Pipes 2.0BeamPipeA53 Gr. BT26M26N39N40Antenna Pipes 2.0BeamPipeA53 Gr. BT27M27N41N42Antenna Pipes 2.0BeamPipeA53 Gr. BT	Typical
14 M14 N15 N16 Antenna Pipes 2.0 Beam Pipe A53 Gr. B T 15 M15 N17 N18 Antenna Pipes 2.0 Beam Pipe A53 Gr. B T 16 M16 N19 N20 RIGID None None RIGID T 17 M17 N21 N22 RIGID None None RIGID T 18 M18 N23 N24 RIGID None None RIGID T 19 M19 N25 N26 Antenna Pipes 2.5 Beam Pipe A53 Gr. B T 20 M20 N27 N28 Antenna Pipes 2.0 Beam Pipe A53 Gr. B T 21 M21 N29 N30 Antenna Pipes 2.0 Beam Pipe A53 Gr. B T 23 M23 N33 N34 RIGID None None RIGID T 24 M24 N35	Typical
15M15N17N18Antenna Pipes 2.0BeamPipeA53 Gr. BT16M16N19N20RIGIDNoneNoneRIGIDT17M17N21N22RIGIDNoneNoneRIGIDT18M18N23N24RIGIDNoneNoneRIGIDT19M19N25N26Antenna Pipes 2.5BeamPipeA53 Gr. BT20M20N27N28Antenna Pipes 2.0BeamPipeA53 Gr. BT21M21N29N30Antenna Pipes 2.0BeamPipeA53 Gr. BT22M22N31N32RIGIDNoneNoneRIGIDT23M23N33N34RIGIDNoneNoneRIGIDT24M24N35N36RIGIDNoneNoneRIGIDT25M25N37N38Antenna Pipes 2.0BeamPipeA53 Gr. BT26M26N39N40Antenna Pipes 2.0BeamPipeA53 Gr. BT27M27N41N42Antenna Pipes 2.0BeamPipeA53 Gr. BT	Typical
16M16N19N20RIGIDNoneNoneRIGIDT17M17N21N22RIGIDNoneNoneRIGIDT18M18N23N24RIGIDNoneNoneRIGIDT19M19N25N26Antenna Pipes 2.5BeamPipeA53 Gr. BT20M20N27N28Antenna Pipes 2.0BeamPipeA53 Gr. BT21M21N29N30Antenna Pipes 2.0BeamPipeA53 Gr. BT22M22N31N32RIGIDNoneNoneRIGIDT23M23N33N34RIGIDNoneNoneRIGIDT24M24N35N36RIGIDNoneNoneRIGIDT25M25N37N38Antenna Pipes 2.0BeamPipeA53 Gr. BT26M26N39N40Antenna Pipes 2.0BeamPipeA53 Gr. BT27M27N41N42Antenna Pipes 2.0BeamPipeA53 Gr. BT	Typical
17M17N21N22RIGIDNoneNoneRIGIDT18M18N23N24RIGIDNoneNoneRIGIDT19M19N25N26Antenna Pipes 2.5BeamPipeA53 Gr. BT20M20N27N28Antenna Pipes 2.0BeamPipeA53 Gr. BT21M21N29N30Antenna Pipes 2.0BeamPipeA53 Gr. BT22M22N31N32RIGIDNoneNoneRIGIDT23M23N33N34RIGIDNoneNoneRIGIDT24M24N35N36RIGIDNoneNoneRIGIDT25M25N37N38Antenna Pipes 2.0BeamPipeA53 Gr. BT26M26N39N40Antenna Pipes 2.0BeamPipeA53 Gr. BT27M27N41N42Antenna Pipes 2.0BeamPipeA53 Gr. BT	Typical
18M18N23N24RIGIDNoneNoneRIGIDT19M19N25N26Antenna Pipes 2.5BeamPipeA53 Gr. BT20M20N27N28Antenna Pipes 2.0BeamPipeA53 Gr. BT21M21N29N30Antenna Pipes 2.0BeamPipeA53 Gr. BT22M22N31N32RIGIDNoneNoneRIGIDT23M23N33N34RIGIDNoneNoneRIGIDT24M24N35N36RIGIDNoneNoneRIGIDT25M25N37N38Antenna Pipes 2.0BeamPipeA53 Gr. BT26M26N39N40Antenna Pipes 2.0BeamPipeA53 Gr. BT27M27N41N42Antenna Pipes 2.0BeamPipeA53 Gr. BT	Typical
19M19N25N26Antenna Pipes 2.5BeamPipeA53 Gr. BT20M20N27N28Antenna Pipes 2.0BeamPipeA53 Gr. BT21M21N29N30Antenna Pipes 2.0BeamPipeA53 Gr. BT22M22N31N32RIGIDNoneNoneRIGIDT23M23N33N34RIGIDNoneNoneRIGIDT24M24N35N36RIGIDNoneNoneRIGIDT25M25N37N38Antenna Pipes 2.5BeamPipeA53 Gr. BT26M26N39N40Antenna Pipes 2.0BeamPipeA53 Gr. BT	Typical
20M20N27N28Antenna Pipes 2.0BeamPipeA53 Gr. BT21M21N29N30Antenna Pipes 2.0BeamPipeA53 Gr. BT22M22N31N32RIGIDNoneNoneRIGIDT23M23N33N34RIGIDNoneNoneRIGIDT24M24N35N36RIGIDNoneNoneRIGIDT25M25N37N38Antenna Pipes 2.5BeamPipeA53 Gr. BT26M26N39N40Antenna Pipes 2.0BeamPipeA53 Gr. BT	Typical
21M21N29N30Antenna Pipes 2.0BeamPipeA53 Gr. BT22M22N31N32RIGIDNoneNoneRIGIDT23M23N33N34RIGIDNoneNoneRIGIDT24M24N35N36RIGIDNoneNoneRIGIDT25M25N37N38Antenna Pipes 2.5BeamPipeA53 Gr. BT26M26N39N40Antenna Pipes 2.0BeamPipeA53 Gr. BT	Typical
22M22N31N32RIGIDNoneNoneRIGIDT23M23N33N34RIGIDNoneNoneRIGIDT24M24N35N36RIGIDNoneNoneRIGIDT25M25N37N38Antenna Pipes 2.5BeamPipeA53 Gr. BT26M26N39N40Antenna Pipes 2.0BeamPipeA53 Gr. BT27M27N41N42Antenna Pipes 2.0BeamPipeA53 Gr. BT	Typical
23M23N33N34RIGIDNoneNoneRIGIDT24M24N35N36RIGIDNoneNoneRIGIDT25M25N37N38Antenna Pipes 2.5BeamPipeA53 Gr. BT26M26N39N40Antenna Pipes 2.0BeamPipeA53 Gr. BT27M27N41N42Antenna Pipes 2.0BeamPipeA53 Gr. BT	Typical
24M24N35N36RIGIDNoneNoneRIGIDT25M25N37N38Antenna Pipes 2.5BeamPipeA53 Gr. BT26M26N39N40Antenna Pipes 2.0BeamPipeA53 Gr. BT27M27N41N42Antenna Pipes 2.0BeamPipeA53 Gr. BT	Typical
25M25N37N38Antenna Pipes 2.5BeamPipeA53 Gr. BT26M26N39N40Antenna Pipes 2.0BeamPipeA53 Gr. BT27M27N41N42Antenna Pipes 2.0BeamPipeA53 Gr. BT	Typical
26 M26 N39 N40 Antenna Pipes 2.0 Beam Pipe A53 Gr. B T 27 M27 N41 N42 Antenna Pipes 2.0 Beam Pipe A53 Gr. B T	Typical
27 M27 N41 N42 Antenna Pines 2.0 Ream Pines A53 Gr B T	Typical
	Typical
28 M29 N43 N44 Standoff Arm Beam SquareTube A500 Gr.46 T	Typical
29 M30 N45 N46 RIGID None None RIGID T	Typical
30 M31 N47 N48 RIGID None None RIGID T	Typical
31 M33 N49 N50 Standoff Arm Beam SquareTube A500 Gr.46 T	Typical
32 M34 N51 N52 RIGID None None RIGID T	Typical
33 M35 N53 N54 RIGID None None RIGID T	Typical

RISA-3D Version 12.0.2 [\...\...\...\...\...\...\...\...\...\Risa 3D\ACAD-18922050.R3D]

Member Primary Data (Continued)

	Label	l Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
34	M37	N55	N56			Standoff Arm	Beam	SquareTube	A500 Gr.46	Typical
35	M38	N57	N58			RIGID	None	None	RIGID	Typical
36	M39	N59	N60			RIGID	None	None	RIGID	Typical
37	M40	N48	N43			Standoff Reinforcem	Beam	SquareTube	A500 Gr.46	Typical
38	M41	N54	N49			Standoff Reinforcem	Beam	SquareTube	A500 Gr.46	Typical
39	M42	N60	N55			Standoff Reinforcem	Beam	SquareTube	A500 Gr.46	Typical
40	M43	N93	N94		270	Handrail	Beam	Pipe	A53 Gr. B	Typical
41	M44	N95	N96			RIGID	None	None	RIGID	Typical
42	M45	N97	N98			RIGID	None	None	RIGID	Typical
43	M46	N99	N100			RIGID	None	None	RIGID	Typical
44	M47	N101	N102		270	Handrail	Beam	Pipe	A53 Gr. B	Typical
45	M48	N103	N104			RIGID	None	None	RIGID	Typical
46	M49	N105	N106			RIGID	None	None	RIGID	Typical
47	M50	N107	N108			RIGID	None	None	RIGID	Typical
48	M51	N109	N110		270	Handrail	Beam	Pipe	A53 Gr. B	Typical
49	M52	N111	N112			RIGID	None	None	RIGID	Typical
50	M53	N113	N114			RIGID	None	None	RIGID	Typical
51	M54	N115	N116			RIGID	None	None	RIGID	Typical
52	M55	N89	N92			Kickers - Mods	Beam	None	A36 Gr.36	Typical
53	M56	N90	N118			Kickers - Mods	Beam	None	A36 Gr.36	Typical
54	M57	N91	N120			Kickers - Mods	Beam	None	A36 Gr.36	Typical
55	M58	N115	N103			RIGID	None	None	RIGID	Typical
56	M59	N99	N111			RIGID	None	None	RIGID	Typical
57	M60	N95	N107			RIGID	None	None	RIGID	Typical

Joint Loads and Enforced Displacements (BLC 1 : Dead)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N74	L	Y	-76.7
2	N77	L	Y	-76.7
3	N68	L	Y	-23.5
4	N71	L	Y	-23.5
5	N62	L	Y	-73.6
6	N65	L	Y	-73.6
7	N75	L	Y	-76.7
8	N76	L	Y	-76.7
9	N78	L	Y	-76.7
10	N79	L	Y	-76.7
11	N69	L	Y	-23.5
12	N70	L	Y	-23.5
13	N72	L	Y	-23.5
14	N73	L	Y	-23.5
15	N63	L	Y	-73.6
16	N64	L	Y	-73.6
17	N66	L	Y	-73.6
18	N67	L	Y	-73.6
19	N80	L	Y	-25.5
20	N81	L	Y	-25.5
21	N82	L	Y	-25.5
22	N83	L	Y	-78
23	N84	L	Y	-78

Joint Loads and Enforced Displacements (BLC 1 : Dead) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
24	N85	L	Y	-78

Joint Loads and Enforced Displacements (BLC 2 : Wx)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N74	L	X	413.49
2	N77	L	Х	413.49
3	N68	L	Х	136.5
4	N71	L	X	136.5
5	N62	L	X	140.385
6	N65	L	X	140.385
7	N75	L	X	231.105
8	N76	L	X	231.105
9	N78	L	X	231.105
10	N79	L	X	231.105
11	N69	L	X	72.45
12	N70	L	X	72.45
13	N72	L	X	72.45
14	N73	L	X	72.45
15	N63	L	X	126.735
16	N64	L	X	126.735
17	N66	L	X	126.735
18	N67	L	X	126.735
19	N80	L	X	17.43
20	N81	L	X	34.755
21	N82	L	Х	34.755
22	N84	L	X	46.515
23	N85	L	Х	46.515

Joint Loads and Enforced Displacements (BLC 3 : Wz)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N74	L	Z	231.105
2	N77	L	Z	231.105
3	N68	L	Z	72.45
4	N71	L	Z	72.45
5	N62	L	Z	126.735
6	N65	L	Z	126.735
7	N75	L	Z	413.49
8	N76	L	Z	413.49
9	N78	L	Z	413.49
10	N79	L	Z	413.49
11	N69	L	Z	136.5
12	N70	L	Z	136.5
13	N72	L	Z	136.5
14	N73	L	Z	136.5
15	N63	L	Z	140.385
16	N64	L	Z	140.385
17	N66	L	Z	140.385
18	N67	L	Z	140.385
19	N80	L	Z	34.755
20	N81	L	Z	17.43
21	N82	L	Z	17.43

Joint Loads and Enforced Displacements (BLC 3 : Wz) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
22	N83	L	Z	46.515

Joint Loads and Enforced Displacements (BLC 4 : Ice Wx)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N74	L	X	82.215
2	N77	L	Х	82.215
3	N68	L	Х	31.29
4	N71	L	X	31.29
5	N62	L	X	32.76
6	N65	L	X	32.76
7	N75	L	X	58.065
8	N76	L	X	58.065
9	N78	L	X	58.065
10	N79	L	X	58.065
11	N69	L	X	23.205
12	N70	L	X	23.205
13	N72	L	X	23.205
14	N73	L	X	23.205
15	N63	L	X	33.495
16	N64	L	X	33.495
17	N66	L	X	33.495
18	N67	L	X	33.495
19	N80	L	X	6.825
20	N81	L	X	10.605
21	N82	L	X	10.605
22	N84	L	X	13.23
23	N85	L	Х	13.23

Joint Loads and Enforced Displacements (BLC 5 : Ice Wz)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N74	L	Z	58.065
2	N77	L	Z	58.065
3	N68	L	Z	23.205
4	N71	L	Z	23.205
5	N62	L	Z	33.495
6	N65	L	Z	33.495
7	N75	L	Z	82.215
8	N76	L	Z	82.215
9	N78	L	Z	82.215
10	N79	L	Z	82.215
11	N69	L	Z	31.29
12	N70	L	Z	31.29
13	N72	L	Z	31.29
14	N73	L	Z	31.29
15	N63	L	Z	32.76
16	N64	L	Z	32.76
17	N66	L	Z	32.76
18	N67	L	Z	32.76
19	N80	L	Z	10.605
20	N81	L	Z	6.825
21	N82	L	Z	6.825

Joint Loads and Enforced Displacements (BLC 5 : Ice Wz) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
22	N83	L	Z	13.23

Joint Loads and Enforced Displacements (BLC 6 : Ice weight)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N74	L	Y	-238.6
2	N77	L	Y	-238.6
3	N68	L	Y	-79.1
4	N71	L	Y	-79.1
5	N62	L	Y	-91.5
6	N65	L	Y	-91.5
7	N75	L	Y	-238.6
8	N76	L	Y	-238.6
9	N78	L	Y	-238.6
10	N79	L	Y	-238.6
11	N69	L	Y	-79.1
12	N70	L	Y	-79.1
13	N72	L	Y	-79.1
14	N73	L	Y	-79.1
15	N63	L	Y	-91.5
16	N64	L	Y	-91.5
17	N66	L	Y	-91.5
18	N67	L	Y	-91.5
19	N80	L	Y	-49.4
20	N81	L	Y	-49.4
21	N82	L	Y	-49.4
22	N83	L	Y	-57.8
23	N84	L	Y	-57.8
24	N85	L	Y	-57.8

Joint Loads and Enforced Displacements (BLC 7 : Service X)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N74	L	Х	24.99
2	N77	L	Х	24.99
3	N68	L	Х	8.295
4	N71	L	Х	8.295
5	N62	L	Х	8.505
6	N65	L	Х	8.505
7	N75	L	Х	13.965
8	N76	L	Х	13.965
9	N78	L	Х	13.965
10	N79	L	Х	13.965
11	N69	L	Х	4.41
12	N70	L	Х	4.41
13	N72	L	Х	4.41
14	N73	L	Х	4.41
15	N63	L	Х	7.665
16	N64	L	Х	7.665
17	N66	L	Х	7.665
18	N67	L	Х	7.665
19	N80	L	Х	1.05
20	N81	L	Х	2.1

Joint Loads and Enforced Displacements (BLC 7 : Service X) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
21	N82	L	Х	2.1
22	N84	L	Х	2.835
23	N85	L	Х	2.835

Joint Loads and Enforced Displacements (BLC 8 : Service Z)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N74	L	Z	13.965
2	N77	L	Z	13.965
3	N68	L	Z	4.41
4	N71	L	Z	4.41
5	N62	L	Z	7.665
6	N65	L	Z	7.665
7	N75	L	Z	14.49
8	N76	L	Z	14.49
9	N78	L	Z	14.49
10	N79	L	Z	14.49
11	N69	L	Z	8.295
12	N70	L	Z	8.295
13	N72	L	Z	8.295
14	N73	L	Z	8.295
15	N63	L	Z	8.505
16	N64	L	Z	8.505
17	N66	L	Z	8.505
18	N67	Ĺ	Z	8.505
19	N80	L	Z	2.1
20	N81	Ĺ	Z	1.05
21	N82	L	Z	1.05
22	N83	L	Z	2.835

Joint Loads and Enforced Displacements (BLC 9 : Service 1 Pipe)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft),	(in,rad), (lb*s^2/in, lb*s^2*in)]				
1	N8	L	Y		-500				
Joint Loa	ds and Enforced Dis	splacements (E	BLC 10 : Serv	ice 2 Pipe)					
	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft),	(in,rad), (lb*s^2/in, lb*s^2*in)]				
1	N10	L	Y		-500				
Joint Loa	Joint Loads and Enforced Displacements (BLC 11 : Service 3 Pipe)								
	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft),	(in,rad), (lb*s^2/in, lb*s^2*in)]				
1	N12	L	Y		-500				
Member H	Point Loads (BLC 13	: Service 5 Mi	ddle)						
	Member Label	Directio	on	Magnitude[lb,k-ft]	Location[in,%]				
1	M1	Y		-250	%50				
Member H	Member Point Loads (BLC 14 : Service 6 End)								
	Member Label	Directio	on	Magnitude[lb,k-ft]	Location[in,%]				
1	M1	Y		-250	%100				

Member Distributed Loads (BLC 2 : Wx)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in	End Location[in,
1	M1	PX	20.139	20.139	0	0
2	M2	PX	20.139	20.139	0	0
3	M3	PX	20.139	20.139	0	0
4	M7	PX	20.139	20.139	0	0
5	M8	PX	20.139	20.139	0	0
6	M9	PX	20.139	20.139	0	0
7	M4	PX	27.888	27.888	0	0
8	M5	PX	27.888	27.888	0	0
9	M6	PX	27.888	27.888	0	0
10	M29	PX	13.272	13.272	0	0
11	M33	PX	13.272	13.272	0	0
12	M37	PX	13.272	13.272	0	0
13	M40	PX	13.314	13.314	0	22
14	M41	PX	13.314	13.314	0	22
15	M42	PX	13.314	13.314	0	22
16	M55	PX	28.96	28.96	0	0
17	M56	PX	28.96	28.96	0	0
18	M57	PX	28.96	28.96	0	0
19	M43	PX	9.56	9.56	0	0
20	M51	PX	9.56	9.56	0	0
21	M47	PX	9.56	9.56	0	0

Member Distributed Loads (BLC 3 : Wz)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in	End Location[in,
1	M1	PZ	20.139	20.139	0	0
2	M2	PZ	20.139	20.139	0	0
3	M3	PZ	20.139	20.139	0	0
4	M7	PZ	20.139	20.139	0	0
5	M8	PZ	20.139	20.139	0	0
6	M9	PZ	20.139	20.139	0	0
7	M4	PZ	27.888	27.888	0	0
8	M5	PZ	27.888	27.888	0	0
9	M6	PZ	27.888	27.888	0	0
10	M29	PZ	13.272	13.272	0	0
11	M33	PZ	13.272	13.272	0	0
12	M37	PZ	13.272	13.272	0	0
13	M40	PZ	13.314	13.314	0	22
14	M41	PZ	13.314	13.314	0	22
15	M42	PZ	13.314	13.314	0	22
16	M43	PZ	20.139	20.139	0	0
17	M55	PZ	28.96	28.96	0	0
18	M57	PZ	28.96	28.96	0	0
19	M56	PZ	28.96	28.96	0	0
20	M51	PZ	9.56	9.56	0	0
21	M47	PZ	9.56	9.56	0	0

Member Distributed Loads (BLC 4 : Ice Wx)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in	End Location[in,
1	M1	PX	7.287	7.287	0	0
2	M2	PX	7.287	7.287	0	0

Member Distributed Loads (BLC 4 : Ice Wx) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in	End Location[in,
3	M3	PX	7.287	7.287	0	0
4	M7	PX	7.287	7.287	0	0
5	M8	PX	7.287	7.287	0	0
6	M9	PX	7.287	7.287	0	0
7	M4	PX	7.392	7.392	0	0
8	M5	PX	7.392	7.392	0	0
9	M6	PX	7.392	7.392	0	0
10	M29	PX	4.158	4.158	0	0
11	M33	PX	4.158	4.158	0	0
12	M37	PX	4.158	4.158	0	0
13	M40	PX	3.958	3.958	0	22
14	M41	PX	3.958	3.958	0	22
15	M42	PX	3.958	3.958	0	22
16	M55	PX	7.84	7.84	0	0
17	M57	PX	7.84	7.84	0	0
18	M56	PX	7.84	7.84	0	0
19	M51	PX	3.76	3.76	0	0
20	M43	PX	3.76	3.76	0	0
21	M47	PX	3.76	3.76	0	0

Member Distributed Loads (BLC 5 : Ice Wz)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in	End Location[in,
1	M1	PZ	7.392	7.392	0	0
2	M2	PZ	7.392	7.392	0	0
3	M3	PZ	7.392	7.392	0	0
4	M7	PZ	7.392	7.392	0	0
5	M8	PZ	7.392	7.392	0	0
6	M9	PZ	7.392	7.392	0	0
7	M4	PZ	7.287	7.287	0	0
8	M5	PZ	7.287	7.287	0	0
9	M6	PZ	7.287	7.287	0	0
10	M29	PZ	4.158	4.158	0	0
11	M33	PZ	4.158	4.158	0	0
12	M37	PZ	4.158	4.158	0	0
13	M40	PZ	3.958	3.958	0	22
14	M41	PZ	3.958	3.958	0	22
15	M42	PZ	3.958	3.958	0	22
16	M43	PZ	7.392	7.392	0	0
17	M55	PZ	7.84	7.84	0	0
18	M57	PZ	7.84	7.84	0	0
19	M56	PZ	7.84	7.84	0	0
20	M51	PZ	3.76	3.76	0	0
21	M47	ΡZ	3.76	3.76	0	0

Member Distributed Loads (BLC 6 : Ice weight)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in	.End Location[in,
1	M29	Y	-15.62	-15.62	0	0
2	M33	Y	-15.62	-15.62	0	0
3	M37	Y	-15.62	-15.62	0	0
4	M14	Y	-8.68	-8.68	0	0
5	M15	Y	-8.68	-8.68	0	0

Member Distributed Loads (BLC 6 : Ice weight) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in.	End Location[in,
6	M20	Y	-8.68	-8.68	0	0
7	M21	Y	-8.68	-8.68	0	0
8	M26	Y	-8.68	-8.68	0	0
9	M27	Y	-8.68	-8.68	0	0
10	M13	Y	-9.74	-9.74	0	0
11	M19	Y	-9.74	-9.74	0	0
12	M25	Y	-9.74	-9.74	0	0
13	M55	Y	-15.48	-15.48	0	0
14	M57	Y	-15.48	-15.48	0	0
15	M56	Y	-15.48	-15.48	0	0
16	M43	Y	-8.68	-8.68	0	0
17	M51	Y	-8.68	-8.68	0	0
18	M47	Y	-8.68	-8.68	0	0

Member Distributed Loads (BLC 7 : Service X)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in.	End Location[in,
1	M1	PX	1.218	1.218	0	0
2	M2	PX	1.218	1.218	0	0
3	M3	PX	1.218	1.218	0	0
4	M7	PX	1.218	1.218	0	0
5	M8	PX	1.218	1.218	0	0
6	M9	PX	1.218	1.218	0	0
7	M4	PX	1.69	1.69	0	0
8	M5	PX	1.69	1.69	0	0
9	M6	PX	1.69	1.69	0	0
10	M29	PX	.798	.798	0	0
11	M33	PX	.798	.798	0	0
12	M37	PX	.798	.798	0	0
13	M40	PX	.809	.809	0	22
14	M41	PX	.809	.809	0	22
15	M42	PX	.809	.809	0	22
16	M55	PX	1.67	1.67	0	0
17	M57	PX	1.67	1.67	0	0
18	M56	PX	1.67	1.67	0	0
19	M51	PX	.55	.55	0	0
20	M43	PX	.55	.55	0	0
21	M47	PX	.55	.55	0	0

Member Distributed Loads (BLC 8 : Service Z)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in	End Location[in,
1	M1	PZ	1.218	1.218	0	0
2	M2	PZ	1.218	1.218	0	0
3	M3	PZ	1.218	1.218	0	0
4	M7	PZ	1.218	1.218	0	0
5	M8	PZ	1.218	1.218	0	0
6	M9	PZ	1.218	1.218	0	0
7	M4	PZ	1.69	1.69	0	0
8	M5	PZ	1.69	1.69	0	0
9	M6	PZ	1.69	1.69	0	0
10	M29	PZ	.798	.798	0	0
11	M33	PZ	.798	.798	0	0

Member Distributed Loads (BLC 8 : Service Z) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in	End Location[in,
12	M37	PZ	.798	.798	0	0
13	M40	PZ	.809	.809	0	22
14	M41	PZ	.809	.809	0	22
15	M42	PZ	.809	.809	0	22
16	M43	PZ	1.218	1.218	0	0
17	M55	PZ	1.67	1.67	0	0
18	M57	PZ	1.67	1.67	0	0
19	M56	PZ	1.67	1.67	0	0
20	M51	PZ	.55	.55	0	0
21	M47	PZ	.55	.55	0	0

Member Distributed Loads (BLC 15 : BLC 1 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in.	.End Location[in,
1	M2	Y	716	-5.408	0	24
2	M2	Y	-5.408	-8.281	24	48
3	M2	Y	-8.281	-8.676	48	72
4	M2	Y	-8.676	-8.483	72	96
5	M2	Y	-8.483	-8.216	96	120
6	M2	Y	-8.216	-5.54	120	144
7	M2	Y	-5.54	598	144	168
8	M4	Y	745	-4.005	0	8.1
9	M4	Y	-4.005	-6.691	8.1	16.2
10	M4	Y	-6.691	-10.617	16.2	24.3
11	M4	Y	-10.617	-14.023	24.3	32.4
12	M4	Y	-14.023	-15.099	32.4	40.5
13	M6	Y	745	-4.005	0	8.1
14	M6	Y	-4.005	-6.691	8.1	16.2
15	M6	Y	-6.691	-10.617	16.2	24.3
16	M6	Y	-10.617	-14.023	24.3	32.4
17	M6	Y	-14.023	-15.099	32.4	40.5
18	M7	Y	-6.464	-8.21	0	19.57
19	M7	Y	-8.21	-8.519	19.57	39.141
20	M7	Y	-8.519	-8.148	39.141	58.711
21	M7	Y	-8.148	-8.577	58.711	78.282
22	M7	Y	-8.577	-9.049	78.282	97.852
23	M3	Y	716	-5.408	0	24
24	M3	Y	-5.408	-8.281	24	48
25	M3	Y	-8.281	-8.676	48	72
26	M3	Y	-8.676	-8.483	72	96
27	M3	Y	-8.483	-8.216	96	120
28	M3	Y	-8.216	-5.54	120	144
29	M3	Y	-5.54	598	144	168
30	M5	Y	745	-4.005	0	8.1
31	M5	Y	-4.005	-6.691	8.1	16.2
32	M5	Y	-6.691	-10.617	16.2	24.3
33	M5	Y	-10.617	-14.023	24.3	32.4
34	M5	Y	-14.023	-15.099	32.4	40.5
35	M8	Y	-6.464	-8.21	0	19.57
36	M8	Y	-8.21	-8.519	19.57	39.141
37	M8	Y	-8.519	-8.148	39.141	58.711
38	M8	Y	-8.148	-8.577	58.711	78.282

Member Distributed Loads (BLC 15 : BLC 1 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in	End Location[in,
39	M8	Y	-8.577	-9.049	78.282	97.852
40	M1	Y	598	-5.54	0	24
41	M1	Y	-5.54	-8.216	24	48
42	M1	Y	-8.216	-8.483	48	72
43	M1	Y	-8.483	-8.676	72	96
44	M1	Y	-8.676	-8.281	96	120
45	M1	Y	-8.281	-5.408	120	144
46	M1	Y	-5.408	716	144	168
47	M9	Y	-6.464	-8.21	0	19.57
48	M9	Y	-8.21	-8.519	19.57	39.141
49	M9	Y	-8.519	-8.148	39.141	58.711
50	M9	Y	-8.148	-8.577	58.711	78.282
51	M9	Y	-8.577	-9.049	78.282	97.852

Member Distributed Loads (BLC 16 : BLC 6 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in.	End Location[in,
1	M2	Y	-1.156	-8.735	0	24
2	M2	Y	-8.735	-13.373	24	48
3	M2	Y	-13.373	-14.011	48	72
4	M2	Y	-14.011	-13.7	72	96
5	M2	Y	-13.7	-13.269	96	120
6	M2	Y	-13.269	-8.947	120	144
7	M2	Y	-8.947	965	144	168
8	M4	Y	-1.203	-6.468	0	8.1
9	M4	Y	-6.468	-10.807	8.1	16.2
10	M4	Y	-10.807	-17.146	16.2	24.3
11	M4	Y	-17.146	-22.648	24.3	32.4
12	M4	Y	-22.648	-24.384	32.4	40.5
13	M6	Y	-1.203	-6.468	0	8.1
14	M6	Y	-6.468	-10.807	8.1	16.2
15	M6	Y	-10.807	-17.146	16.2	24.3
16	M6	Y	-17.146	-22.648	24.3	32.4
17	M6	Y	-22.648	-24.384	32.4	40.5
18	M7	Y	-10.439	-13.259	0	19.57
19	M7	Y	-13.259	-13.758	19.57	39.141
20	M7	Y	-13.758	-13.159	39.141	58.711
21	M7	Y	-13.159	-13.851	58.711	78.282
22	M7	Y	-13.851	-14.614	78.282	97.852
23	M3	Y	-1.156	-8.735	0	24
24	M3	Y	-8.735	-13.373	24	48
25	M3	Y	-13.373	-14.011	48	72
26	M3	Y	-14.011	-13.7	72	96
27	M3	Y	-13.7	-13.269	96	120
28	M3	Y	-13.269	-8.947	120	144
29	M3	Y	-8.947	965	144	168
30	M5	Y	-1.203	-6.468	0	8.1
31	M5	Y	-6.468	-10.807	8.1	16.2
32	M5	Y	-10.807	-17.146	16.2	24.3
33	M5	Y	-17.146	-22.648	24.3	32.4
34	M5	Y	-22.648	-24.384	32.4	40.5
35	M8	Y	-10.439	-13.259	0	19.57

Member Distributed Loads (BLC 16 : BLC 6 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in	End Location[in,
36	M8	Y	-13.259	-13.758	19.57	39.141
37	M8	Y	-13.758	-13.159	39.141	58.711
38	M8	Y	-13.159	-13.851	58.711	78.282
39	M8	Y	-13.851	-14.614	78.282	97.852
40	M1	Y	965	-8.947	0	24
41	M1	Y	-8.947	-13.269	24	48
42	M1	Y	-13.269	-13.7	48	72
43	M1	Y	-13.7	-14.011	72	96
44	M1	Y	-14.011	-13.373	96	120
45	M1	Y	-13.373	-8.735	120	144
46	M1	Y	-8.735	-1.156	144	168
47	M9	Y	-10.439	-13.259	0	19.57
48	M9	Y	-13.259	-13.758	19.57	39.141
49	M9	Y	-13.758	-13.159	39.141	58.711
50	M9	Y	-13.159	-13.851	58.711	78.282
51	M9	Y	-13.851	-14.614	78.282	97.852

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut.	.Area (M	Surface
1	Dead	DL		-1.05		24			3	
2	Wx	VVL				23		21		
3	Wz	VVL				22		21		
4	Ice Wx	VVL				23		21		
5	lce Wz	VVL				22		21		
6	Ice weight	DL				24		18	3	
7	Service X	WL				23		21		
8	Service Z	VVL				22		21		
9	Service 1 Pipe	OL1				1				
10	Service 2 Pipe	OL1				1				
11	Service 3 Pipe	OL1				1				
12	Service 4 Pipe	OL1								
13	Service 5 Middle	OL1					1			
14	Service 6 End	OL1					1			
15	BLC 1 Transient Area Loa	None						51		
16	BLC 6 Transient Area Loa	None						51		

Load Combinations

	Description	Solve	PDelta	S	BLC	Fac	BLC	Fac	В	Fac	В	Fac.	в	Fac.	В	Fac.	.В	Fac	В	Fac
1	1.4D	Yes	Y		1	1.4														
2	1.2D+1.0W1	Yes	Y		1	1.2	2	1	3											
3	1.2D+1.0W2	Yes	Y		1	1.2	2	.866	3	.5										
4	1.2D+1.0W3	Yes	Y		1	1.2	2	.5	3	.866										
5	1.2D+1.0W4	Yes	Y		1	1.2	2		3	1										
6	1.2D+1.0W5	Yes	Y		1	1.2	2	5	3	.866										
7	1.2D+1.0W6	Yes	Y		1	1.2	2	866	3	.5										
8	1.2D+1.0W7	Yes	Y		1	1.2	2	-1	3											
9	1.2D+1.0W8	Yes	Y		1	1.2	2	866	3	5										
10	1.2D+1.0W9	Yes	Y		1	1.2	2	5	3	866										
11	1.2D+1.0W10	Yes	Y		1	1.2	2		3	-1										

Load Combinations (Continued)

	Description	Solve	PDelta	S	BLC	Fac	BLC	Fac	В	Fac	В	Fac	В	FacB	Fac	B	FacE	3 F	ac
12	1.2D+1.0W11	Yes	Y		1	1.2	2	.5	3	866									
13	1.2D+1.0W12	Yes	Y		1	1.2	2	.866	3	5									
14	1.2D+1.0 lce	Yes	Y		1	1.2	6	1											
15	1.2D+1.0ICE+1.0W1ICE	Yes	Y		1	1.2	6	1	4	1	5								
16	1.2D+1.0ICE+1.0W2ICE	Yes	Y		1	1.2	6	1	4	.866	5	.5							
17	1.2D+1.0ICE+1.0W3ICE	Yes	Y		1	1.2	6	1	4	.5	5	.866							
18	1.2D+1.0ICE+1.0W4ICE	Yes	Y		1	1.2	6	1	4		5	1							
19	1.2D+1.0ICE+1.0W5ICE	Yes	Ý		1	1.2	6	1	4	5	5	.866							
20	1.2D+1.0ICE+1.0W6ICE	Yes	Ŷ		1	1.2	6	1	4	866	5	.5							
21	1.2D+1.0ICE+1.0W7ICE	Yes	Y	-	1	1.2	6	1	4	-1	5								
22	1.2D+1.0ICE+1.0W8ICE	Yes	Y		1	1.2	6	1	4	866	5	- 5							
23	1.2D+1.0ICE+1.0W9ICE	Yes	Y	-	1	12	6	1	4	- 5	5	866							
24	1.2D+1.0ICE+1.0W10ICE	Yes	Y		1	12	6	1	4		5	-1							
25	1.2D+1.0ICE+1.0W11ICE	Yes	Ý		1	12	6	1	4	5	5	866	_					_	
26	1.2D+1.0ICE+1.0W12ICE	Yes	Y		1	12	6	1	4	.866	5	- 5							
27	1.2D+1.5LM1+1.0W1SER	Yes	Y	-	1	1.2	9	15	7	1	8							_	
28	1.2D+1.5LM1+1.0W2SER	Yes	Y		1	1.2	q	1.5	7	.866	8	5							
29	1 2D+1 5LM1+1 0W3SER	Ves	V		1	1.2	 	1.5	7	5	8	866						_	
30	1 2D+1 5LM1+1 0W4SER	Vec	V		1	1.2	<u>a</u>	1.5	7		8	1							
31	1 2D+1 5LM1+1 0W5SER	Ves	V	-	1	1.2	 Q	1.5	7	- 5	8	866	_		-			_	
37	1 2D+1 5LM1+1 0W6SER	Voc	V		1	1.2	9	1.5	7	- 866	8	5						_	
22	1 2D+1 5I M1+1 0W/7SER	Voc	V		1	1.2	9	1.5	7	1	0	.5						_	
24	1 2D+1 5LM1+1 0\W8SER	Voc			1	1.2	9	1.5	7	- 866	0	5							
25	1 2D+1 5I M1+1 0W/9SER	Voc	I V		1	1.2	9	1.5	7	.000	0	5							
35	1.2D+1.5LM1+1.0V/10S	Vec	T V		1	1.2	9	1.5	7	5	0	000							
27	1 2D+1 5LM1+1 0\0/11S	Vee	T V		1	1.2	9	1.5	7	5	0	- 1						_	
20	1.2D+1.5LM1+1.0W115	Vec	T V		1	1.2	9	1.5	7	.C.	0	000							
20	1.2D+1.3EW1+1.0W125	165	I			1.2	3	1.5	1	.000	0	5						_	
39	1 2D+1 51 M2+1 0\0/1 SEP	Vee	V		1	10	10	1 5	7	1	0								
40	1.2D+1.5LW2+1.0W1SER	Yes	Y		1	1.2	10	1.5	7	000	0	-							
41	1.2D+1.5LW2+1.0W2SER	Yes	Y		1	1.2	10	1.5	7	.000	0	C.							
42	1.2D+1.5LW2+1.0W35ER	Yes	Y		1	1.2	10	1.5	7	.5	0	.000							
43	1.2D+1.5LW2+1.0W45ER	Yes	Y		1	1.2	10	1.5	7	F	0	966			_				
44	1.2D+1.5LW2+1.0W55ER	Yes	Y		1	1.2	10	1.5	7	5	0	.000							
45	1.2D+1.5LW2+1.0W05ER	Yes	Y		1	1.2	10	1.5	7	000	0	.S			_				
40	1.2D+1.5LW2+1.0W7 SER	Yes	Y		1	1.2	10	1.5	7	-1	0	5							
47	1.2D+1.5LW2+1.0W03ER	Yes	Y		1	1.2	10	1.5	7	000	0	5							
40	1.2D+1.5LW2+1.0W93ER	Yes	Y		1	1.2	10	1.5	7	5	0	000							
49	1.2D+1.5LW2+1.0W105	Yes	Y		1	1.2	10	1.5	7	_	0	-1							
50	1.2D+1.5LW2+1.0W115	Yes	Y		1	1.2	10	1.5	1	.5	8	800			_				
51	1.2D+1.3LW12+1.0W125	Yes	Y		1	1.2	10	1.5	1	.000	8	5			_			_	
52		Vaa	V		4	1.0	4.0	4 5											
53	1.2D+1.5LV1	Yes	Y		1	1.2	13	1.5							_			_	
54	1.2D+1.5LV2	Yes	Y		1	1.2	14	1.5							_				
55		Maa	Y		4	10		4 5	-	4	•				_			_	
56	1.2D+1.5LW3+1.0W1SER	Yes	Y		1	1.2	11	1.5	1	1	8	_							
5/	1.20+1.3LW3+1.0VV2SER	Yes	Y		1	1.2	11	1.5	1	.000	ð	.5							
58	1.2D+1.5LW3+1.0W3SER	Yes	Y		1	1.2	11	1.5	7	.5	8	.000							
59	1.2D+1.5LW3+1.0VV4SER	Yes	Y		1	1.2	11	1.5	1	_	ð	1							
60	1.2D+1.3LW3+1.0VV3SER	Yes	Ý		1	1.2	11	1.5	7	5	8	.000							
61	1.20+1.5LW3+1.0VV6SER	Yes	Y		1	1.2	11	1.5	1	000	8	.5							
62	1.2D+1.5LW3+1.0W7SER	res	Y		1	1.2	11	1.5	1	-1	8	_							
63	1.2D+1.5LW3+1.0W8SER	Yes	Y		1	1.2	11	1.5	1	866	8	5							

Checked By: PET

Load Combinations (Continued)

	Description	Solve	PDelta	S	BLC	Fac	BLC	FacE	З	Fac	В	Fac	В	Fac.	В	Fac	В	Fac	В	Fac
64	1.2D+1.5LM3+1.0W9SER	Yes	Y		1	1.2	11	1.5	7	5	8	866								
65	1.2D+1.5LM3+1.0W10S	Yes	Y		1	1.2	11	1.5	7		8	-1								
66	1.2D+1.5LM3+1.0W11S	Yes	Y		1	1.2	11	1.5	7	.5	8	866								
67	1.2D+1.5LM3+1.0W12S	Yes	Y		1	1.2	11	1.5	7	.866	8	5								
68			Y																	
69	1.2D+1.5LM4+1.0W1SER	Yes	Y		1	1.2	12	1.5	7	1	8									
70	1.2D+1.5LM4+1.0W2SER	Yes	Y		1	1.2	12	1.5	7	.866	8	.5								
71	1.2D+1.5LM4+1.0W3SER	Yes	Y		1	1.2	12	1.5	7	.5	8	.866								
72	1.2D+1.5LM4+1.0W4SER	Yes	Y		1	1.2	12	1.5	7		8	1								
73	1.2D+1.5LM4+1.0W5SER	Yes	Y		1	1.2	12	1.5	7	5	8	.866								
74	1.2D+1.5LM4+1.0W6SER	Yes	Y		1	1.2	12	1.5	7	866	8	.5								
75	1.2D+1.5LM4+1.0W7SER	Yes	Y		1	1.2	12	1.5	7	-1	8									
76	1.2D+1.5LM4+1.0W8SER	Yes	Y		1	1.2	12	1.5	7	866	8	5								
77	1.2D+1.5LM4+1.0W9SER	Yes	Y		1	1.2	12	1.5	7	5	8	866								
78	1.2D+1.5LM4+1.0W10S	Yes	Y		1	1.2	12	1.5	7		8	-1								
79	1.2D+1.5LM4+1.0W11S	Yes	Y		1	1.2	12	1.5	7	.5	8	866								
80	1.2D+1.5LM4+1.0W12S	Yes	Y		1	1.2	12	1.5	7	.866	8	5								

Envelope Joint Reactions

	Joint		X llb1	LC	Y lb]	LC	Z [lb]	LC	MX [k-ft]		MY [k-ft]		MZ [k-ft]	
1	N44	max	710.577	8	790.46	48	2483.557	11	.347	11	1.155	5	2.064	50
2		min	-549.927	2	254.717	4	-2490.205	5	466	43	-1.162		.613	6
3	N50	max	2719.442	7	646.539	19	1737.374	12	1.566	25	2.269		.152	13
4		min	-2805.147	13	234.43	12	-1874.345	6	.548	6	-2.276	7	864	20
5	N56	max	2481.551	9	644.57	16	1808.647	10	274	9	2.028		124	3
6		min	-2555.38	3	244.824	9	-1665.048	4	-1.503	16	-2.033	4	-1.037	22
7	N92	max	1519.719	20	2289.612	18	2594.618	17	.05	13	.137	7	.087	13
8		min	494.004	13	837.803	11	1017.91	9	05	7	138		087	7
9	N118	max	1510.017	23	2295.192	26	-944.777	8	.056	8	.152	2	.096	2
10		min	538.613	3	814.556	7	-2611.522	15	056	2	153	8	097	8
11	N120	max	-1104.651	57	2296.98	22	133.878	11	.149	11	.204		0	1
12		min	-3010.51	22	809.734	3	-134.697	5	15	5	205	5	0	1
13	Totals:	max	5147.262	8	8671.252	24	5485.627	11						
14		min	-5147.264	2	3685.781	5	-5485.628	5						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Mem	Shape	Code Check	Loc	.LC	Shear	Loc	Dir	LC	phi	phi	phi*Mn y-y [k-ft]	phi*Mn	Eqn
1	M1	L3x3	.779	168	13	.107	168	у	8	39	46	1.688	2.748	H
2	M2	L3x3	.762	0	5	.092	0	Z	12	39	46	1.688	3.024	H
3	M3	L3x3	.716	0	10	.100	0	z	5	39	46	1.688	2.808	H
4	M4	LL3x	.579	0	19	.071	20.25	у	20	80	93	6.48	3.069	H
5	M5	LL 3x	.582	0	15	.071	20.25	у	16	80	93	6.48	3.069	H
6	M6	LL 3x	.583	0	24	.071	20.25	у	24	80	93	6.48	3.069	H
7	M7	L3x3	.193	49	10	.014	0	у	24	11	46	1.688	3.359	H
8	M8	L3x3	.226	47	6	.015	97	у	18	11	46	1.688	3.366	H
9	M9	L3x3	.181	0	18	.014	97	У	21	11	46	1.688	3.487	H
10	M13	PIP	.418	54	8	.111	54		13	26	50	3.596	3.596	H
11	M14	PIP	.181	36	13	.096	36		13	20	32	1.872	1.872	H
12	M15	PIP	.209	40	3	.070	40		16	18	32	1.872	1.872	H

Checked By: PET

Envelope AISC 14th(360-10): LRFD Steel Code Checks (Continued)

	MemShape	Code Check	Loc	.LC	Shear.	Loc	Dir	LC	phip	hi	phi*Mn y-y [k-ft]	phi*Mn	Eqn
13	M19 PIP	.419	54	11	.079	54		9	265	0	3.596	3.596	H
14	M20 PIP	.185	36	6	.083	36		10	203	2	1.872	1.872	H
15	M21 PIP	.192	40	11	.070	40		25	183	2	1.872	1.872	H
16	M25 PIP	.411	54	11	.121	54		5	265	0	3.596	3.596	H
17	M26 PIP	.186	36	4	.095	36		5	20 3	2	1.872	1.872	H
18	M27 PIP	.203	40	6	.070	40		20	18 3	2	1.872	1.872	H
19	M29 HSS	.175	8	43	.124	8	z	5	10 1	0	12.662	12.662	H
20	M33 HSS	.251	8	7	.157	8	z	13	10 1	0	12.662	12.662	H
21	M37 HSS	.234	8	4	.143	8	z	9	10 1	0	12.662	12.662	H
22	M40 HSS	.059	20	11	.059	22	z	5	222	2	28.842	28.842	H
23	M41 HSS	.048	23.5	18	.075	22	z	13	222	2	28.842	28.842	H
24	M42 HSS	.049	20	3	.068	22	z	9	222	2	28.842	28.842	H
25	M43 PIP	.127	15	42	.034	15		40	53 3	2	1.872	1.872	H
26	M47 PIP	.118	15	12	.026	15		23	53 3	2	1.872	1.872	H
27	M51 PIP	.112	15	8	.025	57		24	53 3	2	1.872	1.872	H
28	M55 LL2	.114	40	16	.006	84	z	13	31 5	8	4.246	2.614	H
29	M56 LL2	.114	42	25	.007	84	z	9	31 5	8	4.246	2.614	H
30	M57 LL2	.112	40	20	.009	84	z	5	31 5	8	4.246	2.614	H

APPENDIX D

ADDITIONAL CALCUATIONS

Connection Check 801367

Rectangular Weld Check (Existing 5/16" weld all around):						
X-Direction Tension (lbs):	$T_x := 711 \cdot lbf$	(From RISA3-D, resulting in worst case reaction combination)				
Y-Direction Shear (lbs):	$V_y := 790 \cdot lbf$	(From RISA3-D, resulting in worst case reaction combination)				
Z-Direction Shear (lbs):	$V_z := 2490 \cdot lbf$	(From RISA3-D, resulting in worst case reaction combination)				
X-Moment (lbs):	$M_{x} := 0.5 \cdot kip \cdot ft$	(From RISA3-D, resulting in worst case reaction combination)				
Y-Moment (lbs):	$M_y := 1.16 \cdot kip \cdot ft$	(From RISA3-D, resulting in worst case reaction combination)				
Z-Moment (lbs):	$M_{Z} := 2.06 \cdot kip \cdot ft$	(From RISA3-D, resulting in worst case reaction combination)				
Length of Weld, d (in):	d := 4in	(Length of Weld)				
Width of Weld, b (in):	b := 4in	(Width of Weld)				
Section Modulus Bending:	$Sx_z := b \cdot d + \frac{d^2}{3} = 21.333 \cdot in^2$	$Sx_y := b \cdot d + \frac{b^2}{3} = 21.333 \cdot in^2$				
Polar Moment of Inertia:	$Jw := \frac{(b+d)^3}{6} = 85.333 \cdot in^3$					
Shear Component on Weld:	Vu	V				
Shear from Concentrated Load:	$f_{VX} := \frac{Y}{2d} = 98.8 \cdot \frac{1bf}{in}$	$f_{VZ} := \frac{VZ}{2b} = 311.3 \cdot \frac{1bf}{in}$				
Shear from Moment Load:	$f_{vh_my} := \frac{M_x \cdot \left(\frac{d}{2}\right)}{J_w} = 140.625 \cdot \frac{lbf}{in}$	$f_{VV_my} := \frac{M_x \cdot \left(\frac{b}{2}\right)}{J_W} = 140.625 \cdot \frac{lbf}{in}$				
Horizontal Shear:	$f_{vh} := f_{vh_my} + f_{vz} = 451.875 \cdot \frac{lbf}{in}$					
Vertical Shear:	$f_{VV} := f_{VV} my + f_{VX} = 239.375 \cdot \frac{lbf}{in}$					
Resultant Shear:	$F_{v} := \sqrt{f_{vh}^{2} + f_{vv}^{2}} = 511.362 \cdot \frac{lbf}{in}$					
Tensile Component on Weld:	Тил					
Tension from Concentrated Load:	$f_{ty} := \frac{f_x}{2d + 2b} = 44.4 \cdot \frac{lbf}{in}$					
Tension from Moment Load:	$f_{t_mx} := \frac{M_y}{Sx_y} = 652.5 \cdot \frac{lbf}{in}$	$f_{t_mz} := \frac{M_z}{Sx_y} = 1158.75 \cdot \frac{lbf}{in}$				

Resultant Tension:

Total Force on Weld: (force per linear inch):

Weld sized (1/16 inch):

Weld Capacity using 1/4" weld (kip/in):

$$\begin{split} F_t &:= f_{ty} + f_{t_mx} + f_{t_mz} = 1.856 \cdot \frac{kip}{in} \\ f_r &:= \sqrt{F_v^2 + F_t^2} = 1924.9 \cdot \frac{lbf}{in} \\ D &:= 5 \\ \text{(Used)} \\ \text{Weld}_{Cap} &:= 1.392 \cdot D \cdot \frac{kip}{in} = 6.96 \cdot \frac{kip}{in} \\ \text{Check} &:= \quad \text{"OK, connection can be used"} \quad \text{if } f_r \leq \text{Weld}_{Cap} \end{split}$$

"No Good" otherwise

Check = "OK, connection can be used"

Interaction := $\frac{f_r}{Weld_{Cap}} = 27.7.\%$

APPENDIX E

MOUNT MODIFICATION DESIGN DRAWINGS (MDD)

PLATFORM MODIFICATION DETAILS ELEVATION VIEW

LOADING SUMMARY

Quantity	Manufacturer	Antenna/ Appurtenance	Status	Sector
3	ERICSSON	Air 32 DB B2A B66Aa	Existing	Alpha, Beta, & Gamma
3	RFS	APX16DWV-16DWVS-E-A20	Proposed	Alpha, Beta, & Gamma
3	RFS	APXVAARR24_43-U-NA20	Proposed	Alpha, Beta, & Gamma
3	ERICSSON	KRY 112 134/1	Existing	Alpha, Beta, & Gamma
3	ERICSSON	KRY 112 89/5	Existing	Alpha, Beta, & Gamma
3	ERICSSON	RRU 4449 B71 + B12	Proposed	Alpha, Beta, & Gamma

NOTE:

MASER CONSULTING P.A. HAS DETERMINED THAT THE SUPPORT MOUNTS, WITH THE PROPOSED MODIFICATIONS, HAVE ADEQUATE STRUCTURAL CAPACITY TO SUPPORT THE EXISTING AND PROPOSED LOADING. THE SUPPORT MOUNTS HAVE BEEN DETERMINED TO BE STRESSED TO A MAXIMUM OF 77.9% OF ITS STRUCTURAL CAPACITY, ONCE THE PROPOSED MODIFICATIONS IN THIS DRAWING ARE INSTALLED AS INTENDED AT EACH SUPPORT MOUNT.

STRUCTURAL STEEL

- DESIGN, FABRICATION, ERECTION AND WORKMANSHIP SHALL CONFORM TO AISC MANUAL OF STEEL CONSTRUCTION, THIRTEENTH EDITION.
- 2. CONNECTION BOLTS SHALL BE 3/4"Ø ASTM A325N UNLESS OTHERWISE NOTED.
- 3. FIELD WELDING SHALL BE PERFORMED BY WELDERS THAT ARE CERTIFIED (AWS "STANDARD QUALIFICATION PROCEDURE") TO PERFORM THE TYPE OF WORK REQUIRED. WELDS SHALL CONFORM TO AMERICAN WELDING SOCIETY (AWS) D1.1 "STRUCTURAL WELDING CODE - STEEL", PROVIDE THE MINIMUM SIZE PER PART 8 IN THE AISC "MANUAL OF STEEL CONSTRUCTION", LRFD 3RD EDITION, WHEN WELD SIZES ARE NOT SHOWN. USE E70XX ELECTRODES FOR ALL WELDING.
- RETURN ALL WELDS AT CORNERS TWICE THE NOMINAL SIZE OF THE WELD MINIMUM, 4. UNLESS OTHERWISE NOTED.
- TO REDUCE WARPING TO A MINIMUM WHEN WELDING TO EXISTING MEMBERS 5. CARRYING LOAD, SHORE OR BRACE EXISTING MEMBER DURING WELDING.
- ALL COPES, BLOCKS, CUT OUTS, AND OTHER CUTTING OF STRUCTURAL MEMBERS 6. SHALL HAVE ALL RE-ENTRANT CORNERS SHAPED, NOTCHED FREE TO A RADIUS OF AT LEAST 1/2"
- CONTRACTOR IS RESPONSIBLE FOR ADEQUATE BRACING OF STEEL CONSTRUCTION.
- 8. ALL NEW STRUCTURAL STEEL SHAPES SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A123.
- 9. ALL NEW STEEL BOLTS, NUTS, AND HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153.
- 10. DAMAGED GALVANIZED SURFACES SHALL BE REPAIRED BY COLD GALVANIZING IN ACCORDANCE WITH ASTM A780.
- 11. ALL STRUCTURAL STEEL SHALL ABIDE BY THE FOLLOWING MATERIAL STRENGTH LIST UNLESS OTHERWISE NOTED:

PLATES	ASTM A572 (GR 50)
ANGLES	ASTM A36 (GR 36)
PIPES	ASTM A53 (GR B)
SOLID ROUND	ASTM A572 (GR 50)
BOLTS	ASTM A325 (ALL BOLT HOLES STANDARD
SIZE U.N.O.	
NUTS	ASTM A194-2H
WASHERS	ASTM F436
HOT-DIPPED GALVANIZING	ASTM A123
WELDS	E70XX

CUSTOM MOUNTING BRACKET PLAN VIEW

BOLT DETAIL NOT TO SCALE

NOTE:

I. CONTRACTOR SHALL FIELD DRILL INTO THE EXISTING STEEL AS REQUIRED FOR THE PROPOSED CONNECTIONS. DAMAGED GALVANIZED SURFACES, SUCH AS THE PROPOSED BOLT HOLE LOCATIONS SHALL BE REPAIRED BY COLD GALVANIZING IN ACCORDANCE WITH ASTM A780.

WT4x9 DETAIL

NOT TO SCAL

MASER CONSULTING - CONNECTICUTtomer Loyalty through Client Satisfaction www.maserconsulting.com Engineers Planners Surveyors cape Architects Environmental Scientis - vp. v JUIS. Maser Consulting Connecticut All Rights Reserved. This drawing and mation comained herein is activitized for use only by the party for whom the service, acted or to whom it is a certified. This drawing may not be copied, need, die, and or ruled upon for any constraint Connection. Consulting Connecticut: T · Mobile PROTECT YOURSEL **SI** EXCAVATORS, DESIGNERS, OR ANY PERSO PREPARING TO DISTURB THE EARTH'S Know what's below Call before you o FOR STATE SPI IC DIRECT PHONE NUMBERS VISIT: CALLSI AS SHOWN 189220504 DRAWN CHECKE BY BY REV DATE DESCRIPTION ONNE TSOUL TETROS COUKALAS CTICUT PROFESSIONAL CENS IT IS A VIOLATION OF A MANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF THE RESPONSIBLE LICENSED PROFFESIONAL ENGINEER, TO ALTER THIS DOCUMENT. SITE NAME: BU: 801367 SITE NAME: CT NHV-2075 CAC 801367 CARRIER SITE NUMBER: CT11352C 1121 SUMMIT ROAD CHESHIRE, CT 06410 NEW HAVEN COUNTY MT. LAUREL OFFICE Suite 100 Mt. Laurel NJ 08054 Phone: .856.797.0412 Phone: .856.797.0412 Fax: .856.722.1120 STRUCTURAL MODIFICATION DETAILS S-3

GENERAL NOTES

- CONTRACTOR IS RESPONSIBLE FOR DISSEMINATION OF REVISIONS TO CONTRACT DOCUMENTS AND REQUIREMENTS TO ALL SUBCONTRACTORS. THE CONTRACTOR SHALL COORDINATE ALL WORK WITH OTHER TRADES AND EQUIPMENT MANUFACTURERS.
- CONTRACTOR SHALL VERIFY ALL DIMENSIONS, ELEVATIONS AND EXISTING FIELD CONDITIONS BEFORE PROCEEDING WITH CONSTRUCTION. DETERMINE EXACT LOCATIONS OF EXISTING UTILITIES, GROUNDS, DRAIN PIPES AND VENTS BEFORE COMMENCING WORK. CONTRACTOR SHALL NOTIFY ENGINEER IF ACTUAL CONDITIONS DIFFER SIGNIFICANTLY FROM WHAT IS SHOWN ON DRAWINGS.
- THE CONTRACTOR IS RESPONSIBLE FOR MAINTAINING A NEAT AND ORDERLY PROJECT SITE, REMOVE AND DISPOSE OF OFF SITE RUBBISH, WASTE MATERIALS, LITTER, AND ALL FOREIGN SUBSTANCES DAILY
- INCORRECTLY FABRICATED, DAMAGED, OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE ENGINEER PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REOUIRE OWNER'S WRITTEN APPROVAL
- THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING SUCH COVERING, SHIELDING, AND BARRICADES AS REQUIRED TO PROTECT BYSTANDERS AND PASSERSBY, EQUIPMENT, SUPPLIES, ETC. FROM DUST, DEBRIS AND OTHER CAUSE OF DAMAGE RESULTING FROM CONSTRUCTION. ANY DAMAGE DURING CONSTRUCTION SHALL BE RESTORED TO PREVIOUS CONDITIONS.
- 6. IN AREAS WHERE EXISTING ANTENNA MOUNTS, TRANSMISSION LINES OR OTHER SUPPORTING EQUIPMENT IS TO BE REMOVED. THE EXISTING STRUCTURE SHALL BE REPAIRED AS REQUIRED
- ALL SAFETY AND OSHA REGULATIONS SHALL BE FOLLOWED STRICTLY. METHODS OF CONSTRUCTION AND ERECTION OF STRUCTURAL MATERIAL ARE THE CONTRACTOR'S RESPONSIBILITY.
- CONTRACTOR TO PROVIDE TEMPORARY SUPPORT FOR ALL EXISTING ANTENNAS, TRANSMISSION LINES OR OTHER APPURTENANCES DURING CONSTRUCTION
- CONTRACTOR SHALL PROTECT EXISTING APPURTENANCES FROM DAMAGE DURING CONSTRUCTION
- NO ANTENNAS, CABLES, OR OTHER APPURTENANCES SHALL BE ADDED TO THE TOWER UNTIL THE MODIFICATION WORK IS COMPLETE.
- ALL DIMENSIONS SHOWN ARE APPROXIMATE. CONTRACTOR SHALL COORDINATE DIMENSIONS WITH TOWER MANUFACTURER OR FIELD VERIFY DIMENSIONS PRIOR TO FABRICATING MEMBERS.
- THE CONTRACTOR SHALL LOCATE ALL UTILITIES IN THE AREA OF CONSTRUCTION AND PREVENT DAMAGE TO 12 THEM. SHOULD DAMAGE OCCUR TO ANY UTILITIES, THE CONTRACTOR IS REQUIRED TO REPAIR THE DAMAGE TO THE SATISFACTION OF THE OWNER AT HIS OWN EXPENSE.
- 13. ALL EXISTING PLANS, DETAILS, DIMENSIONS, AND ELEVATIONS INDICATE EXISTING CONDITIONS AS KNOWN. THE EXISTING INFORMATION SHOWN IS NOT INTENDED TO BE "AS BUILT" AND THE ACTUAL CONSTRUCTION MAY DIFFER FROM THAT SHOWN. THE CONTRACTOR SHALL FIELD VERIFY ALL EXISTING CONDITIONS INCLUDING DIMENSIONS AND FLEVATIONS PRIOR TO STARTING CONSTRUCTION, MINOR VARIATIONS CAN BE EXPECTED AND ANY REQUIRED DEVIATION FROM THE CONTRACT DOCUMENTS SHALL BE APPROVED BY THE ENGINEER PRIOR TO PROCEEDING WITH CONSTRUCTION.
- MODIFICATION DETAILS REPRESENTS TYPICAL CONDITIONS, CONTRACTOR SHALL NOTIFY ENGINEER OF ANY DEVIATION AS A RESULT OF SITE SPECIFIC CONDITIONS. REINFORCE ALL TOWER FACES IDENTICALLY, UNLESS OTHERWISE NOTED.
- 15. IN AREAS TO BE MODIFIED, ANY ANTENNA, COAX, OR CONDUIT SHALL BE TEMPORARILY MOVED AND THEN REPLACED AFTER COMPLETION OF WORK. COORDINATE WITH OWNER.
- 16. CONTRACTOR IS RESPONSIBLE FOR DISPOSAL OF ALL MATERIAL TO BE REMOVED.
- 17. CONTRACTOR SHALL ENSURE STABILITY OF THE ANTENNA PLATFORM DURING ALL WORK.
- CONTRACTOR IS RESPONSIBLE FOR PROVIDING ADEQUATE TEMPORARY BRACING OF THE STRUCTURE DURING ALL STAGES OF CONSTRUCTION. THE STRUCTURE IS DESIGNED FOR A COMPLETED CONDITION ONLY AND THEREFORE MAY REQUIRE ADDITIONAL SUPPORT BEFORE COMPLETIONS.
- THIS DESIGN ASSUMES THE ANTENNA PLATFORM HAVE BEEN WELL MAINTAINED IN GOOD CONDITION AND ARE WITHOUT DEFECT. BENT MEMBERS, CORRODED MEMBERS, LOOSE BOLTS, CRACKED WELDS AND OTHER MEMBER DEFECTS HAVE NOT BEEN CONSIDERED. THE TOWER IS ASSUMED TO BE PLUMB AND THE SITE IS ASSUMED TO BE LEVEL. THIS DESIGN IS BEING PROVIDED WITHOUT THE BENEFIT OF A CONDITION BY MASER CONSULTING P.A., CONTRACTOR SHALL COMMISSION A COMPLETE CONDITION ASSESSMENT PRIOR TO ORDERING ANY REINFORCING MATERIALS. CONTRACTOR SHALL SUPPLY CONDITION ASSESSMENT TD ENGINEER FOR REVIEW. SEE CONTRACTOR NOTES.
- 20. ALL SUBSTITUTES PROPOSED BY THE CONTRACTOR SHALL BE APPROVED IN WRITING BY THE ENGINEER. CONTRACTOR SHALL PROVIDE DOCUMENTATION TO ENGINEER FOR DETERMINING IF SUBSTITUTE IS SUITABLE FOR USE AND MEETS THE ORIGINAL DESIGN CRITERIA. DIFFERENCES FROM THE ORIGINAL DESIGN, INCLUDING MAINTENANCE, REPAIR AND REPLACEMENT, SHALL BE NOTED, ESTIMATES OF COSTS/CREDITS ASSOCIATED WITH THE SUBSTITUTION (INCLUDING RE-DESIGN COSTS AND COSTS TO SUB-CONTRACTORS) SHALL BE PROVIDED TO THE ENGINEER. CONTRACTOR SHALL PROVIDE ADDITIONAL DOCUMENTATION AND/OR SPECIFICATIONS TO THE ENGINEER AS REQUESTED.
- 21. PROVIDE STRUCTURAL STEEL SHOP DRAWINGS TO ENGINEER FOR APPROVAL PRIOR TO FABRICATION.
- 22. INSPECTION OF THE MODIFICATIONS SHALL BE COMPLETED BY A THIRD PARTY. INSPECTION SHALL TAKE PLACE WITHIN 72 HOURS OF THE COMPLETION OF THE ANTENNA PLATFORM MODIFICATIONS NO PROPOSED LOADING SHALL BE INSTALLED PRIOR TO INSPECTOR APPROVAL

DESIGN LOADS

- I. WIND: ANSI/TIA/EIA-222-H ULTIMATE WIND SPEED: 125 MPH
- 2 ANTENNA PLATFORM MODIFICATIONS WERE DESIGNED IN ACCORDANCE TO TIA-222-H AND 2016 CONNECTICUT STATE BUILDING CODE, INCORPORATING THE 2012 IBC, AS WELL AS APPLICABLE LOCAL BUILDING CODES

STRUCTURAL STEEL

PIPE

PLATES

BOLTS

NUTS

WASHERS

PAINT

ANGLES

SOLID ROUND

HOT-DIPPED GALVANIZING

- DESIGN, FABRICATION, ERECTION AND WORKMANSHIP SHALL CONFORM TO AISC MANUAL OF STEEL CONSTRUCTION, FOURTEENTH EDITION
- 2. CONNECTION BOLTS SHALL BE 3/4"Ø ASTM A325N UNLESS OTHERWISE NOTED.
- FIELD WELDING SHALL BE PERFORMED BY WELDERS THAT ARE CERTIFIED (AWS "STANDARD OUAL FICATION PROCEDURE") TO PERFORM THE TYPE OF WORK REQUIRED. WELDS SHALL CONFORM TO AMERICAN WELDING SOCIETY (AWS) DI.I "STRUCTURAL WELDING CODE - STEEL". PROVIDE THE MINIMUM SIZE PER PART 8 IN THE AISC 3. "MANUAL OF STEEL CONSTRUCTION", LRFD 3RD EDITION, WHEN WELD SIZES ARE NOT SHOWN. USE E70XX ELECTRODES FOR ALL WELDING
- RETURN ALL WELDS AT CORNERS TWICE THE NOMINAL SIZE OF THE WELD MINIMUM, UNLESS OTHERWISE NOTED.
- TO REDUCE WARPING TO A MINIMUM WHEN WELDING TO EXISTING MEMBERS CARRYING LOAD, SHORE OR BRACE EXISTING MEMBER DURING WELDING
- 6. ALL COPES, BLOCKS, CUT OUTS, AND OTHER CUTTING OF STRUCTURAL MEMBERS SHALL HAVE ALL RE-ENTRANT CORNERS SHAPED, NOTCHED FREE TO A RADIUS OF AT LEAST 1/2".
- 7. CONTRACTOR IS RESPONSIBLE FOR ADEQUATE BRACING OF STEEL CONSTRUCTION.
- 8. ALL NEW STRUCTURAL STEEL SHAPES SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A123.
- ALL NEW STEEL BOLTS. NUTS. AND HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153.
- 10. DAMAGED GALVANIZED SURFACES SHALL BE REPAIRED BY COLD GALVANIZING IN ACCORDANCE WITH ASTM A780
- 11. ALL STRUCTURAL STEEL SHALL ABIDE BY THE FOLLOWING MATERIAL STRENGTH LIST UNLESS OTHERWISE NOTED:

A-53 (GR B) ASTM A572 (GR 50) ASTM A36 (GR 36) ASTM A572 (GR 50) ASTM A325 (ALL BOLT HOLES STANDARD SIZE U.N.O.) ASTM A194-2H ASTM F436 ASTM A123 F70XX NEW STEEL TO BE PAINTED TO MATCH EXISTING TOWER

CONTRACTOR NOTES

6

- AND MASER CONSULTING P.A. THAT THEY HAVE OBTAINED, UNDERSTAND, AND WILL FOLLOW TOWER OWNER STANDARDS OF PRACTICE, CONSTRUCTION GUIDELINES, ALL SITE AND TOWER SAFETY PROCEDURES ALL PRODUCT LIMITATIONS AND INSTALLATION PROCEDURES USED ON SITE, AND PROPOSED MODIFICATIONS DESCRIBED. RECEIPT OF ACKNOWLEDGMENT MUST OCCUR PRIOR TO BEGINNING CONSTRUCTION OR CLIMBING. IT IS THE RESPONSIBILITY OF THE GENERAL CONTRACTOR TO PROVIDE THIS DOCUMENTATION FOR TOWER OWNER AND MASER CONSULTING P.A. ON COMPANY LETTERHEAD AND THE RESPONSIBILITY OF THE GENERAL CONTRACTOR TO OBTAIN THIS DOCUMENTATION FROM LOWER TIER SUBCONTRACTORS (ON SUBCONTRACTOR LETTERHEAD) AND DELIVER IT TO TOWER OWNER AND MASER CONSULTING P.A
- 2. IF THE CONTRACTOR DISCOVERS ANY EXISTING CONDITIONS THAT ARE NOT REPRESENTED ON THESE DRAWINGS, OR ANY CONDITIONS THAT WOULD INTERFERE WITH THE INSTALLATION OF THE MODIFICATIONS, MASER CONSULTING P.A. SHALL BE CONTACTED IMMEDIATELY TO EVALUATE THE SIGNIFICANCE OF THE DEVIATION
- IT IS ASSUMED THAT ANY STRUCTURAL MODIFICATION WORK SPECIFIED ON THESE PLANS WILL BE ACCOMPLISHED BY KNOWLEDGEABLE WORKMEN WITH TELECOMMUNICATION CONSTRUCTION EXPERIENCE. THIS INCLUDES PROVIDING THE NECESSARY CERTIFICATIONS TO THE TOWER OWNER AND ENGINEER.
- AND DIRECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION METHODS, MEANS, TECHNIQUES SEQUENCES AND PROCEDURES
- PROGRAMS AND PRECAUTIONS IN CONNECTION WITH THIS WORK.
- SHALL BE RESOLVED PRIOR TO MOBILIZATION. THE CONTRACTOR MUST VISIT THE SITE PRIOR TO ORDERING ANY MATERIAL AND MUST RESOLVE ALL ISSUES WITH THE OWNER PREVENTING A CONTINUOUS INSTALLATION CONTRACTOR SHALL NOTE ALL ANTENNAS, MOUNTS, COAX, LIGHTING AND ANY OTHER TOWER APPURTENANCES IN THE REGION OF THE MODIFICATIONS.
- 7. ALL TOWER APPURTENANCES MUST BE REPLACED AND/OR RESTORED TO ITS ORIGINAL LOCATION. ANY CARRIER DOWNTIME MUST BE COORDINATED WITH THE TOWER OWNER IN WRITING
- STRUCTURE. THESE CUSTOMIZATIONS ARE DESIGNED BY OTHERS AND MUST BE APPROVED BY THE ENGINEER PRIOR TO REMOVING SUCH ATTACHMENTS. ANY CARRIER DOWNTIME MUST BE COORDINATED WITH THE TOWER OWNER IN WRITING
- BOUNDARIES CONTRACTOR SHALL EMPLOY A SURVEYOR AS REQUIRED ANY WORK OUTSIDE THESE BOUNDARIES SHALL BE APPROVED IN WRITING BY THE LAND OWNER PRIOR TO MOBILIZATION. CONSTRUCTION STAKING AND BOUNDARY MARKING IS THE RESPONSIBILITY OF THE CONTRACTOR
- RESPONSIBLE FOR ALL TEMPORARY LOCAL ANTENNA PLATFORM SHORING, TEMPORARY GLOBAL ANTENNA PLATFORM SHORING, AND ALL SHORING OF SURROUNDING BUILDINGS, PADS, AND OTHER OUTDOOR SITE OBSTRUCTIONS. ALL SHORING. TEMPORARY BRACING, AND TEMPORARY SUPPORTS ARE THE RESPONSIBILITY OF THE CONTRACTOR.

ALL CONTRACTORS AND LOWER TIER CONTRACTORS MUST ACKNOWLEDGE IN WRITING TO TOWER OWNER

THESE DRAWINGS DO NOT INDICATE THE METHOD OF CONSTRUCTION. THE CONTRACTOR SHALL SUPERVISE

THE CONTRACTOR IS SOLELY RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY

THE CONTRACTOR SHALL VISIT THE SITE PRIOR TO BIDDING; ANY PROBLEMS WITH ACCESS, INTERFERENCE, ETC.

CONTRACTOR IS RESPONSIBLE FOR TEMPORARILY REMOVING ALL COAX, T-BRACKETS, ANTENNA MOUNTS, AND ANY OTHER TOWER APPURTENANCE THAT MAY INTERFERE WITH THE ANTENNA PLATFORM MODIFICATIONS.

SOME ATTACHMENTS MAY REQUIRE CUSTOM MODIFICATIONS TO PROPERLY FIT THE MODIFIED REGION OF THE

CONTRACTOR SHALL ONLY WORK WITHIN THE LIMITS OF THE TOWER OWNER'S PROPERTY OR LEASE AREA AND APPROVED EASEMENTS. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO VERIFY WORK IS WITHIN THESE

10. WORK SHALL ONLY BE PERFORMED DURING CALM DRY DAYS (WINDS LESS THAN 10-MPH) CONTRACTOR IS

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11352C

Crowne Cheshire 1119 Summit Road Cheshire, CT 06410

October 5, 2018

EBI Project Number: 6218006519

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of				
FCC general	7 77 %			
population	1.21 /0			
allowable limit:				

October 5, 2018

T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002

Emissions Analysis for Site: CT11352C - Crowne Cheshire

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **1119 Summit Road**, **Cheshire**, **CT**, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at **1119 Summit Road, Cheshire, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 1 GSM channels (PCS Band 1900 MHz) was considered for each sector of the proposed installation. These Channels have a transmit power of 15 Watts per Channel.
- 2) 1 UMTS channel (PCS Band 1900 MHz) was considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 1 UMTS channel (AWS Band 2100 MHz) was considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) 2 LTE channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 5) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 6) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.

- 7) 1 microwave backhaul channel (10GHz) was considered for the proposed facility. This channel has a transmit power of 1 Watt.
- 8) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 9) For the following calculations the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 10) The antennas used in this modeling are the Ericsson AIR32 KRD901146-1 B66A/B2A & RFS APX16DWV-16DWVS-E-A20 for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the RFS APXVAARR24_43-U-NA20 for 600 MHz and 700 MHz channels. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 11) The antenna mounting height centerline of the proposed antennas is **138 feet** above ground level (AGL).
- 12) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 13) All calculations were done with respect to uncontrolled / general population threshold limits.

1-Mobile Site Inventory and Power Data					
Sector:	А	Sector:	В	Sector:	С
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	Ericsson AIR32 KRD901146-1 B66A/B2A	Make / Model:	Ericsson AIR32 KRD901146-1 B66A/B2A	Make / Model:	Ericsson AIR32 KRD901146-1 B66A/B2A
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	138 feet	Height (AGL):	138 feet	Height (AGL):	138 feet
Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power(W):	200	Total TX Power(W):	200	Total TX Power(W):	200
ERP (W):	7,780.90	ERP (W):	7,780.90	ERP (W):	7,780.90
Antenna A1 MPE%	1.60	Antenna B1 MPE%	1.60	Antenna C1 MPE%	1.60
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	RFS APX16DWV-16DWVS-E- A20	Make / Model:	RFS APX16DWV-16DWVS- E-A20	Make / Model:	RFS APX16DWV-16DWVS- E-A20
Gain:	16.3 dBd	Gain:	16.3 dBd	Gain:	16.3 dBd
Height (AGL):	138 feet	Height (AGL):	138 feet	Height (AGL):	138 feet
Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)
Channel Count	3	Channel Count	3	Channel Count	3
Total TX Power(W):	95	Total TX Power(W):	95	Total TX Power(W):	95
ERP (W):	4,052.51	ERP (W):	4,052.51	ERP (W):	4,052.51
Antenna A2 MPE%	0.84	Antenna B2 MPE%	0.84	Antenna C2 MPE%	0.84
Antenna #:	3	Antenna #:	3	Antenna #:	3
Make / Model:	RFS APXVAARR24_43-U- NA20	Make / Model:	RFS APXVAARR24_43-U- NA20	Make / Model:	RFS APXVAARR24_43-U- NA20
Gain:	12.95 / 13.35 dBd	Gain:	12.95 / 13.35 dBd	Gain:	12.95 / 13.35 dBd
Height (AGL):	138 feet	Height (AGL):	138 feet	Height (AGL):	138 feet
Frequency Bands	600 MHz / 700 MHz	Frequency Bands	600 MHz / 700 MHz	Frequency Bands	600 MHz / 700 MHz
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power(W):	120	Total TX Power(W):	120	Total TX Power(W):	120
ERP (W):	2,443.03	ERP (W):	2,443.03	ERP (W):	2,443.03
Antenna A3 MPE%	1 20	Antenno B3 MDE%	1 20	Antenna C3 MPE%	1 20

T-Mobile Site Inventory and Power 1	Data
-------------------------------------	------

Site Composite MPE%				
Carrier	MPE%			
T-Mobile (Per Sector Max)	3.64 %			
Verizon Wireless	1.41 %			
Sprint	0.77 %			
AT&T	1.45 %			
Site Total MPE %:	7.27 %			

T-Mobile Sector A Total:	3.64 %
T-Mobile Sector B Total:	3.64 %
T-Mobile Sector C Total:	3.64 %
Site Total:	7.27 %

T-Mobile Maximum MPE Power Values (Per Sector)

T-Mobile _Frequency Band / Technology (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
T-Mobile PCS - 1900 MHz LTE	2	2,334.27	138	9.63	PCS - 1900 MHz	1000.00	0.96%
T-Mobile AWS - 2100 MHz LTE	2	1,556.18	138	6.42	AWS - 2100 MHz	1000.00	0.64%
T-Mobile PCS - 1900 MHz GSM	1	639.87	138	1.35	PCS - 1900 MHz	1000.00	0.14%
T-Mobile PCS - 1900 MHz UMTS	1	1,706.32	138	3.52	PCS - 1900 MHz	1000.00	0.35%
T-Mobile AWS - 2100 MHz UMTS	1	1,706.32	138	3.52	AWS - 2100 MHz	1000.00	0.35%
T-Mobile 600 MHz LTE	2	788.97	138	3.27	600 MHz	400.00	0.82%
T-Mobile 700 MHz LTE	2	432.54	138	1.78	700 MHz	467.00	0.38%
						Total:	3.64%

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)		
Sector A:	3.64 %		
Sector B:	3.64 %		
Sector C:	3.64 %		
T-Mobile Maximum	2 64 0/		
MPE % (Per Sector):	5.04 %		
Site Total:	7.27 %		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **7.27%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.