STATE OF THE PARTY OF THE PARTY

Daniel F. Caruso Chairman June 2, 2009

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
Internet: ct.gov/csc

Mark R. Richard UMTS Project Manager T-Mobile USA, Inc. 35 Griffin Road South Bloomfield, CT 06002

RE:

EM-T-MOBILE-025-090429 - Omnipoint Communications, as subsidiary of T-Mobile USA, Inc., notice of intent to modify an existing telecommunications facility located at 1119 Summit Road, aka 1121 Summit Road, Cheshire, Connecticut.

Dear Mr. Richard:

The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies.

The proposed modifications are to be implemented as specified here and in your notice dated April 29, 2009, including the placement of all necessary equipment and shelters within the tower compound. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

Affirmative Action / Equal Opportunity Employer

Thank you for your attention and cooperation.

zecutive Director

SDP/MP/laf

c: The Honorable Matt Hall, Council Chairman, Town of Cheshire Michael A. Milone, Town Manager, Town of Cheshire William S. Voelker, AICP, Town Planner, Town of Cheshire Carrie L. Larson, Esq., Pullman & Comley, LLC Crown Castle USA, Inc.

Daniel F. Caruso Chairman

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
Internet: ct.gov/csc

May 5, 2009

The Honorable Matt Hall Council Chairman Town of Cheshire Town Hall 84 South Main Street Cheshire, CT 06410

RE: **EM-T-MOBILE-025-090429** - Omnipoint Communications, as subsidiary of T-Mobile USA, Inc., notice of intent to modify an existing telecommunications facility located at 1119 Summit Road aka 1121 Summit Road, Cheshire, Connecticut.

Dear Mr. Hall:

The Connecticut Siting Council (Council) received this request to modify an existing telecommunications facility, pursuant to Regulations of Connecticut State Agencies Section 16-50j-72.

If you have any questions or comments regarding this proposal, please call me or inform the Council by May 19, 2009.

Thank you for your cooperation and consideration.

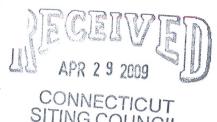
S. Derek Phelps Executive Director

SDP/ib

Enclosure: Notice of Intent

c: William S. Voelker, AICP, Town Planner, Town of Cheshire Michael A. Milone, Town Manager, Town of Cheshire

- T - Mobile •


April 29, 2009

EM-T-MOBILE-025-090429

Via Federal Express

S. Derek Phelps, Executive Director Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

ORIGINAL

Re: Notice of Exempt Modification

Crown Castle USA, Inc. Telecommunications Facility 1119 Summit Road aka 1121 Summit Road, Cheshire, Connecticut T-Mobile Site CT11352C

Dear Mr. Phelps:

Omnipoint Communications, a subsidiary of T-Mobile USA, Inc. ("T-Mobile"), intends to replace existing antennas, install additional antennas and replace existing ground equipment at the existing 167-foot Monopole facility owned by Crown Castle USA, Inc. and located at 1119 Summit Road aka 1121 Summit Road, Cheshire, Connecticut ("Facility"). T-Mobile is licensed Communications Commission (FCC) to provide PCS telecommunications service in the State of Connecticut, which includes the area to be served by the proposed installation. This installation constitutes an exempt modification pursuant to the Public Utility Environmental Standards Act, Connecticut General Statutes Section 16-50g et. seq. (PUESA), and Section 16-50j-72(b)(2) of the Regulations of the Connecticut State Agencies adopted pursuant to PUESA. In accordance with R.C.S.A. Section 16-50j-73, a copy of this notice has been sent to, Michael A. Milone, Town Manager, Town of Cheshire.

The existing Facility consists of a 167-foot self-supporting Monopole tower capable of supporting multiple carriers within a fenced compound and was previously approved by the Town of Cheshire. The coordinates for the Facility are approximately Lat: 41°-32'-11" and Long: 72°-57-28". The tower is located in the northwest portion of Cheshire. The town is approximately 1200 feet west of Summit Road and roughly 700 feet south east of Interstate 84 (see Site Map, attached as Exhibit A). The tower currently supports Pocket antennas at the one hundred eighteen foot (118') level centerline AGL (above ground level), Nextel antennas at the one hundred twenty eight foot (128') level centerline AGL (above ground level), T-Mobile antennas at the one hundred thirty-nine foot level (139') AGL, Sprint antennas at the one hundred forty-seven foot level (147') AGL, AT&T antennas at the one hundred sixty foot level (160') AGL, and Verizon antennas at the one hundred sixty-seven foot level (167') AGL. The current T-Mobile antenna configuration is one per sector, for a total of three antennas. T-Mobile proposes to add an additional three antennas (one per sector), for a total of six antennas at their current elevation on the tower. T-Mobile proposes to install three RFS APX16DWV-S-E antennas on existing pipe mounts at the same elevation, one hundred thirty-eight foot (138') level centerline AGL. T-Mobile also intends to add one UMTS 3206 equipment cabinet. Two existing S8000 equipment cabinets will remain. The three cabinets will all be mounted on T-Mobile's existing equipment pad contained within T-Mobile's existing lease area. T-Mobile intends to run new coaxial cable on its existing ice bridge from its current equipment to the

existing tower. Utilities will be run via a proposed underground conduit from existing utility sources at the Facility (See Design Drawings and Equipment Specifications, attached as Exhibits B and C respectively).

For the following reasons, the proposed modifications to the Summit Road Facility meet the exempt modification criteria set forth in R.C.S.A. Section 16-50j-72(b)(2):

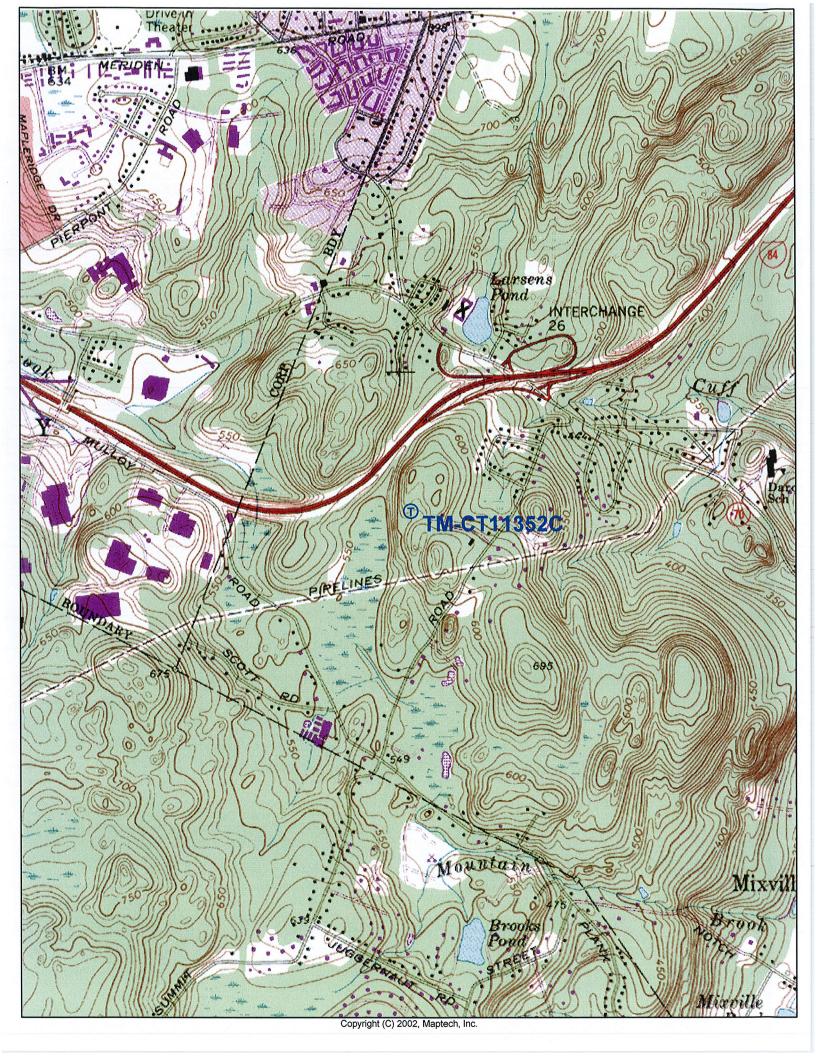
- 1. The proposed modification will not increase the height of the tower as T-Mobile seeks to add to its existing antenna configuration and install additional antennas at a center line height of approximately 138 feet.
- 2. The installation and replacement of T-Mobile's antennas and ground equipment will not require an extension of the site boundaries.
- 3. The proposed modifications will not increase the noise levels at the existing Facility by six decibels or more.
- 4. The operation of the additional antennas will not increase the total radio frequency (RF) power density, measured at the site boundary, to a level at or above the standard adopted by the Connecticut Department of Environmental Protection as set forth in Section 22a-162 of the Connecticut General Statutes and MPE limits established by the Federal Communications Commission. The worst-case RF power density calculations for the proposed T-Mobile antennas would be 35.1179% of the FCC standard (see general power density calculations table, attached as Exhibit D).

Also attached, Exhibit E, is a structural assessment confirming that the tower can support the existing and proposed antennas and associated equipment. Of note, because all antennas are internally mounted in the flagpole, the additional three antennas will not increase the ice and winding loading for the tower.

For the foregoing reasons, T-Mobile respectfully submits that the proposed antenna installation and equipment at the Cheshire Facility constitutes an exempt modification under R.C.S.A. Section 16-50j-72(b)(2).

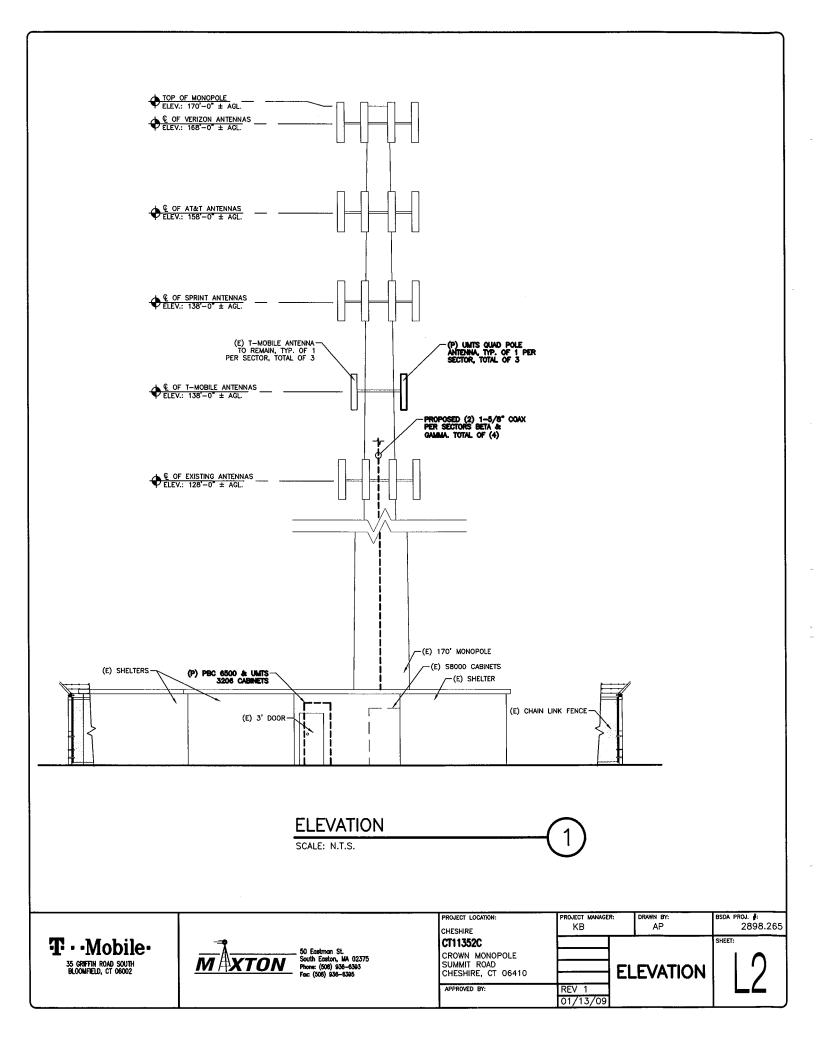
Respectfully Submitted

Mark R. Richard


UMTS Project Manager

Agent for T-Mobile

cc: Michael A. Milone, Town Manager, Town of Cheshire Ms. Joanne M. Didomizio, underlying property owner


Exhibit A

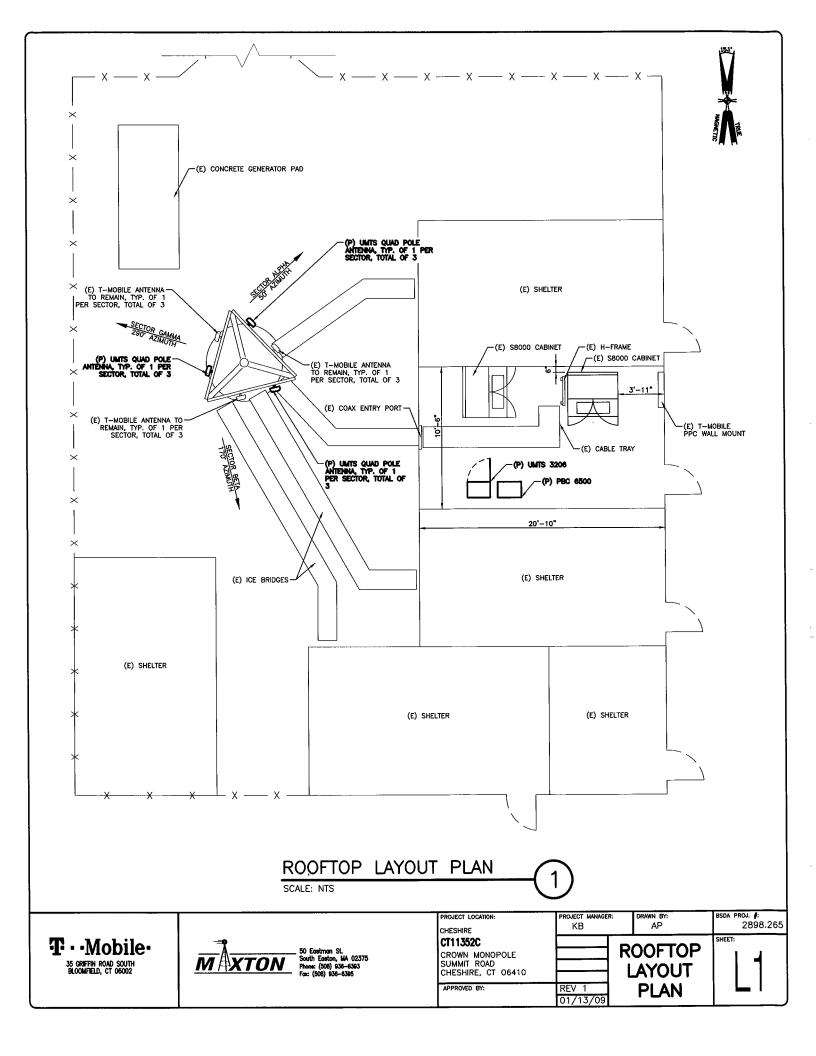

Site Map T-Mobile Site CT11352C 1119 Summit Road aka 1121 Summit Road Cheshire, Connecticut

Exhibit B

Design Drawings
T-Mobile Site CT11352C
1119 Summit Road
aka 1121 Summit Road
Cheshire, Connecticut

Exhibit C

Equipment Specifications
T-Mobile Site CT11352C
1119 Summit Road
aka 1121 Summit Road
Cheshire, Connecticut

Product Description

Gathering two X-Polarized antennas in a single radome this pair of variable tilt antenna provides exceptional suppression of all upper sidelobes at all downtilt angles. It also features a wide downtilt range with optional remote tilt.

This antenna is optimized for performance across the entire AWS frequency band (1710-2170 MHz). The antenna comes pre-connected with the antenna control unit (ACU).

Features/Benefits

- Variable electrical downtilt provides enhanced precision in controlling intercell interference. The tilt is infield adjustable 0-10 deg.
- High Suppression of all Upper Sidelobes (Typically <-20dB).
- Gain difference between UL and DL <1dB.
- Two X-Polarised panels in a single radome.
- Azimuth horizontal beamwidth difference <7deg between UL and DL (1710-1755 & 2110-2155).
- · Low profile for low visual impact.
- Dual polarization; Broadband design.

Technical Features	
Frequency Band	3G/UMTS
Horizontal Pattern	Directional
Antenna Type	Panel Dual Polarized
Electrical Down Tilt Option	Variable
Gain, dBi (dBd)	18.0 (16.0) Avg. across band
Frequency Range, MHz	1710-2170

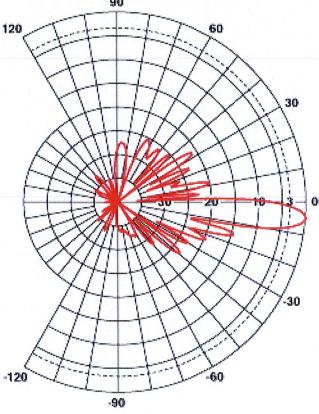
RFS The Clear Choice ™ APX16DWV-16DWV-S-E-ACU

Radio Frequency Systems

Print Date: 07.08.2006

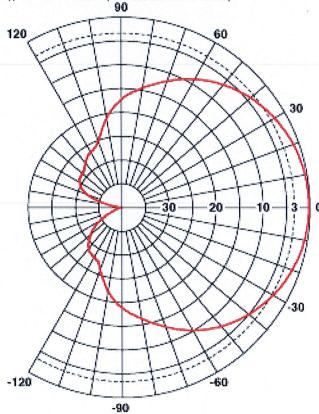
Bottom
Downtilt Kit w/Scissor Kit
0-10 , 0-10
65 ±5 (65.9 average across band)
APM40-2 + APM40-E2
160 (100)
< 1.4:1
5.8 to 7.8 across band
> 18 (typically > 20)
> 18 all (typically > 20)
Dual pol +/-45°
>28
300
> 30
Direct Ground
> 150 (155 Typical)
1.35 (4.42)
1349 x 330 x 80 (53 x 13 x 3.15)
Brass
Fiberglass
Aluminum
0.64 (6.6)
200 (125)
787 (177)
787 (177)
24.1 (52.7)
1550 x 420 x 210 (61 x 16.5 x 8.3)
18.0 (39.6)

Note


This data is provisional and subject to change.

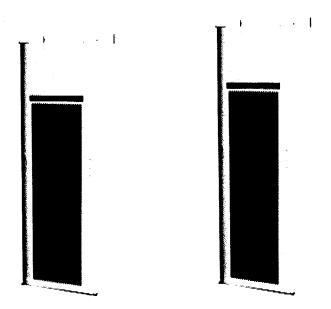
All information contained in the present datasheet is subject to confirmation at time of ordering.

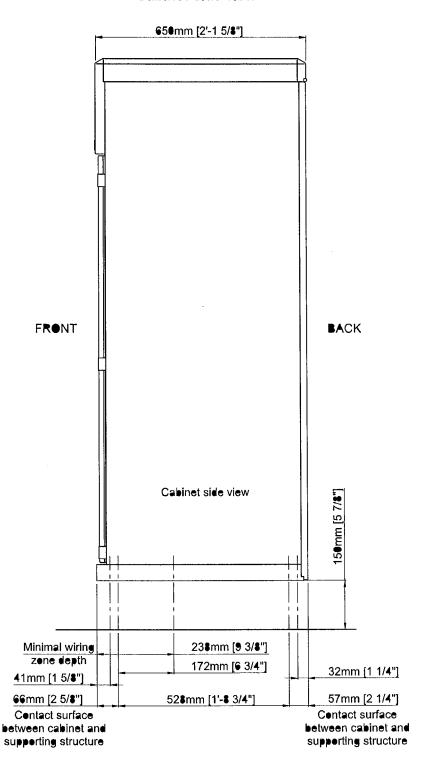
Please visit us on the internet at http://www.rfsworld.com



(This is a general representation of the antenna family pattern. For the latest detailed pattern contact Applications Engineering. You may also download the CELplot(TM) pattern reader and antenna pattern data fields from our website.)

The Indoor Cabinets (Two Variants Available)




Figure 1 RBS 3206 F and E Cabinet

- · Indoor specified
- RBS 3206F cabinet with slots for 6 radio units (single and dual band configurations)
- RBS 3206E cabinet with slots for 9 radio units (dual-band configurations only)
- The cabinets fulfil seismic requirements
- Minimal footprint
- Hot-spot heat management and fan control

The RBS 3206 cabinet footprint is the same as for the GSM RBS 2206 and WCDMA RBS 3202 cabinet. The RBS 3206 cabinet is intended for indoor sites with primarily high capacity and high coverage requirements. The RBS 3206 can be equipped with an optional integrated power supply voltages other than -48 VDC or a space for auxiliary transport network equipment.

Cabinet side view

This confidential document is the property of NORTEL MATRA CELLULAR and should not be copied or circulated without permission.

Exhibit D

Power Density Calculations
T-Mobile Site CT11352C
1119 Summit Road
aka 1121 Summit Road
Cheshire, Connecticut

T-Mobile USA Inc.

35 Griffin Rd South, Bloomfield, CT 06002-1853

Phone: (860) 692-7100 Fax: (860) 692-7159

Technical Memo

To: Maxton

From: Farid Marbouh - Radio Frequency Engineer

cc: Jason Overbey

Subject: Power Density Report for CT11352C

Date: April 22, 2009

1. Introduction:

This report is the result of an Electromagnetic Field Intensities (EMF - Power Densities) study for the T-Mobile antenna installation on a Monopole at 1119 Summit Road, Cheshire, CT. This study incorporates the most conservative consideration for determining the practical combined worst case power density levels that would be theoretically encountered from locations surrounding the transmitting location.

2. Discussion:

The following assumptions were used in the calculations:

- 1) The emissions from T-Mobile transmitters are in the (1935-1944.8), (2140-2145), (2110-2120)MHz frequency Band.
- 2) The antenna array consists of three sectors, with 2 antennas per sector.
- 3) The model number for GSM antenna is APX16PV-16PVL.
- 3) The model number for UMTS antenna is APX16DWV-16DWV.
- 4) GSM antenna center line height is 139 ft.
- 4) UMTS antenna center line height is 139 ft.
- 5) The maximum transmit power from any GSM sector is 2231.1 Watts Effective Radiated Power (EiRP) assuming 8 channels per sector.
- 5) The maximum transmit power from any UMTS sector is 2330.72 Watts Effective Radiated Power (EiRP) assuming 2 channels per sector.
- 6) All the antennas are simultaneously transmitting and receiving, 24 hours a day.
- 7) Power levels emitting from the antennas are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 8) The average ground level of the studied area does not change significantly with respect to the transmitting location.

Equations given in "FCC OET Bulletin 65, Edition 97-01" were then used with the above information to perform the calculations.

3. Conclusion:

Based on the above worst case assumptions, the power density calculation from the T-Mobile antenna installation on a Monopole at 1119 Summit Road, Cheshire, CT, is 0.05658 mW/cm^2. This value represents 5.658% of the Maximum Permissible Exposure (MPE) standard of 1 milliwatt per square centimeter (mW/cm^2) set forth in the FCC/ANSI/IEEE C95.1-1991. Furthermore, the proposed antenna location for T-Mobile will not interfere with existing public safety communications, AM or FM radio broadcasts, TV, Police Communications, HAM Radio communications or any other signals in the area. The combined Power Density from other carriers is 29.46%. The combined Power Density for the site is 35.118% of the M.P.E. standard.

Connecticut Market T · Mobile · **Worst Case Power Density** CT11352C Site Address: 1119 Summit Road Town: Cheshire 170 ft. **Tower Height: Tower Style:** Monopole **UMTS Data GSM Data Base Station TX output** 40 W 20 W **Base Station TX output** Number of channels **Number of channels** APX16DWV-16DWV **Antenna Model** APX16PV-16PVL Antenna Model Cable Size Cable Size 1 5/8 160 ft. Cable Length Cable Length 160 ft. 139.0 ft. Antenna Height Antenna Height 139.0 ft. **Ground Reflection Ground Reflection** 1.6 1.6 1945.0 MHz Frequency 2.1 GHz Frequency Jumper & Connector loss **Jumper & Connector loss** 1.50 dB 4.50 dB Antenna Gain Antenna Gain 18.0 dBi 17.8 dBi Cable Loss per foot 0.0116 dB Cable Loss per foot 0.0116 dB 1.8560 dB **Total Cable Loss Total Cable Loss** 1.8560 dB **Total Attenuation** 6.3560 dB **Total Attenuation** 3.3560 dB Total EIRP per Channel 60.66 dBm Total EIRP per Channel 54.45 dBm 1165.36 W (In Watts) 278.89 W (In Watts) Total EIRP per Sector Total EIRP per Sector 63.67 dBm 63.49 dBm (In Watts) 2231.10 W (In Watts) 2330.72 W nsg 11.4440 nsg 14.6440 Power Density (S) = 0.028907 mW/cm^2 Power Density (S) = 0.027672 mW/cm^2 T-Mobile Worst Case % MPE = 5.6579% Equation Used (1000)(grf)2 (Power)*10 (nsg10) $4\pi (R)^2$

Co-Location Total		
Carrier	% of Standard	
Verizon	4.6700 %	
Cingular	3.0000 %	
Sprint	8.6700 %	
AT&T Wireless		
Nextel	4.6400 %	
MetroPCS		
Pocket	8.4800 %	
Other Antenna Systems		
Total Excluding T-Mobile	29.4600 %	
T-Mobile	5.6579	
Total % MPE for Site	35.1179%	

Office of Engineering and Technology (OET) Bulletin 65, Edition 97-01, August 1997

Exhibit E

Structural Analysis
T-Mobile Site CT11352C
1119 Summit Road
aka 1121 Summit Road
Cheshire, Connecticut

Date: March 24, 2009

Marianne Leech Crown Castle USA, Inc. 3530 Toringdon Way Suite 300 Charlotte, NC 28277 PSG Engineering, Ltd. 1006 Thompson Highway Richmond, TX 77469

Phone: (281) 239-8490 Fax: (281) 239-8515

Subject:

(704) 405-6580

Structural Analysis Report

Carrier Designation

T-Mobile Co-Locate

Carrier Site Number: "CT11352C"

Carrier Site Name: "Summit Road - Cheshire"

Crown Castle Designation

Crown Castle BU Number: 801367

Crown Castle Site Name: CT NHV-2075 CAC 801367

Crown Castle JDE Job Number: 116714

Engineering Firm Designation

PSG Engineering Project Number: 0901H108-A060167

Site Data

1121 Summit Road, Cheshire, CT, New Haven County

Latitude 41° 32′ 11.2″, Longitude -72° 57′ 26.3″

167 Foot - Monopole Tower

Dear Ms. Leech,

PSG Engineering, Ltd. is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the aforementioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 324877, in accordance with application 77027, revision 1.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC1: Existing + Reserved + Proposed Equipment

Note: See Table 1 and Table 2 for the proposed and existing/reserved loading.

Sufficient Capacity

The analysis has been performed in accordance with the TIA/EIA 222-F standard based upon a wind speed of 85 mph fastest mile (105 mph 3-second gust).

We at *PSG Engineering*, *Ltd.* appreciate the opportunity of providing our continuing professional services to you and Crown Castle USA, Inc. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted,

Oscar Pedraza, P.E. President

Date: March 24, 2009

Marianne Leech Crown Castle USA, Inc. 3530 Toringdon Way Suite 300 Charlotte, NC 28277

(704) 405-6580

PSG Engineering, Ltd. 1006 Thompson Highway Richmond, TX 77469

Phone: (281) 239-8490 Fax: (281) 239-8515

Subject:

Structural Analysis Report

Carrier Designation

T-Mobile Co-Locate

Carrier Site Number: "CT11352C"

Carrier Site Name: "Summit Road - Cheshire"

Crown Castle Designation

Crown Castle BU Number: 801367

Crown Castle Site Name: CT NHV-2075 CAC 801367

Crown Castle JDE Job Number: 116714

Engineering Firm Designation

PSG Engineering Project Number: 0901H108-A060167

Site Data

1121 Summit Road, Cheshire, CT, New Haven County

Latitude 41° 32' 11.2", Longitude -72° 57' 26.3"

167 Foot - Monopole Tower

Dear Ms. Leech,

PSG Engineering, Ltd. is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the aforementioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 324877, in accordance with application 77027, revision 1.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC1: Existing + Reserved + Proposed Equipment Note: See Table 1 and Table 2 for the proposed and existing/reserved loading. **Sufficient Capacity**

The analysis has been performed in accordance with the TIA/EIA 222-F standard based upon a wind speed of 85 mph fastest mile (105 mph 3-second gust).

We at PSG Engineering, Ltd. appreciate the opportunity of providing our continuing professional services to you and Crown Castle USA, Inc. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted,

Oscar Pedraza, P.E. President

all million of the state of the A STREET OF THE PARTY OF THE PA

0901H108-A060167 (801367) (CT NHV-2075 CAC 801367) (T-Mobile)

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

- Table 1 Proposed (P) Antenna and Cable Information
- Table 2 Installed and Reserved (R) Antenna and Cable Information
- Table 3 Original Tower Manufacturer Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Tower Component Stresses vs. Capacity

4.1) Recommendations (if applicable)

5) APPENDIX A

RISA Tower Output

6) APPENDIX B

Base Level Drawing

1) INTRODUCTION

The tower superstructure analysis is based on the original tower design by Paul J, Ford And Company for Summit Manufacturing dated June 13, 2001 (TIA/EIA-222-F: 85 mph and 74 mph with 1/2" radial ice). The tower substructure analysis is based on a comparison to the original foundation design loads by Paul J, Ford for Summit Manufacturing dated June 06, 2001 since it is unknown if a drilled pier or a mat foundation was used and a geotechnical Report by Clough, Harbour & Associates LLP Engineers, Surveyors, Planners & Landscape Architects dated May 15, 1991.

2) ANALYSIS CRITERIA

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

- Basic wind speed of 85 mph.
- Nominal ice thickness of 0.5000 in.
- Ice density of 56 pcf.
- A wind speed of 74 mph is used in combination with ice.
- Deflections calculated using a wind speed of 50 mph.
- Feedline torque is considered.
- Pressures are calculated at each section.
- Stress ratio used in tower member design is 1.333

Table Legend
Proposed = (P)
Reserved = (R)

Table 1 – Proposed (P) Antenna and Cable Information

Center Line Elevation (feet)	Number Of Antenna	Antenna Manufacturer	Antenna Model	Mount	Number Of Feed Lines	Feed Line Size (inches)
	3(P)	RFS/Celwave	APX16DWV-16DWV-S-E-A20		4(P)	
139	3(P)	Ericsson	KRY 112 89/5	_	(External)	1 5/8
	3(P)	Elicssoll	KRY 112 134/1		(LAGITIAI)	

Table 2 – Installed and Reserved (R) Antenna and Cable Information

Center Line Elevation (feet)	Number Of Antenna	Antenna Manufacturer	. Antenna Model	Mount	Number Of Feed Lines	Feed Line Size (inches)
174	1	Decibel	DB222-A		1 (Internal)	7/8
	6	Antel	WPA-80090/4CF	Laur Baséla Blatfansa (4)	12	1 5/0
407	6	Decibel	DB948F85T2E-M	Low Profile Platform (1)	(Internal)	1 5/8
167	1	Standard	GPS		1 (Internal)	1/2
	6	D	7770.00	Low Profile Platform (1)	12 (Internal)	
160	6	Powerwave	LGP21401			1 5/8
160	6	Technologies	LGP13519			
	6(R)	Allgon	7184			
147	6+6(R)	Decibel	DB978H90T2E-M	Low Profile Platform (1)	6+6(R) (Internal)	1 5/8
	3	DE0/Oaksess	APX16PV-16PVL-E		14	
*139	39 6(R) RFS/Celv	RFS/Celwave	APX16PV-16PVL	Low Profile Platform (1)	14	1 5/8
	9+3(R)	REMEC	S20057A-1		(Internal)	
128	12	Decibel	DB846G90A-XY	Low Profile Platform (1)	12 (Internal)	1 1/4
118	3	RFS/Celwave	APXV18-206517S-C	Flush Mount (3)	6 (External)	1 5/8

*Note: Proposed loads will be added to level. All shown equipment will remain.

Table 3 – Original Tower Manufacturer Design Antenna and Cable Information

Center Line Elevation (feet)	Number Of Antenna Manufacturer	Antenna Model	Mount	Number Feed Of Line Feed Size Lines (inches)
167		40 Sq. Ft.	Platform w/Handrail (1)	
158		40 Sq. Ft.	Platform w/Handrail (1)	
148	Not Available	40 Sq. Ft.	Platform w/Handrail (1)	Not Available
138	Not Available	40 Sq. Ft.	Platform w/Handrail (1)	(Internal)
128		40 Sq. Ft.	Platform w/Handrail (1)	
118		40 Sq. Ft.	Platform w/Handrail (1)	

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
Original Tower Design		799210	
Original Foundation Design	Paul J. Ford Company	842573	Crown Site Data Manager
Geotechnical Report	Clough, Harbour & Associates LLP	445076	
CAD Level Drawing(s)	167',160',158',148',138',128',118' Level Drawing(s)	-	Crown CAD Dept.

3.1) Analysis Method

RISATower (Version 5.3.1.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate member stresses for various dead, live, wind, and ice load cases. All loads were computed in accordance with the ANSI/EIA/TIA 222F or the local building code requirements. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1. Tower and structures were built in accordance with the manufacturer's specifications.
- 2. The tower and structures have been maintained in accordance with the manufacturer's specifications.
- 3. The configuration of antennas, transmission cables, mounts, and other appurtenances are as specified in Tables 1 and 2 and the Level drawing(s) listed in Table 4.
- 4. When applicable, transmission cables are considered to be structural components for calculating wind loads, as allowed by TIA/EIA-222F.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and PSG Engineering should be allowed to review any new information to determine its effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Tower Component Stresses vs. Capacity - LC1

			Summary	
Notes:	Component	Elevation	% Capacity	Pass/Fail
	L1	167 - 118.25	57.2	Pass
	L2	118.25 - 77.75	83.5	Pass
	L3	77.75 - 38.25	85.0	Pass
	L4	38.25 - 0	80.5	Pass
Individua	l Components:			
Notes:	Component	Elevation	% Capacity	Pass/Fail
	Base Plate	-	68.3	Pass
	Anchor Bolts	-	95.5	Pass
	Base Foundation (Compared with original design loads)	-	85.0	Pass

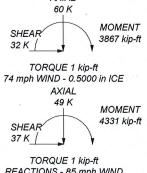
4.1) Recommendations (if applicable) No modifications are necessary.

March 25, 2009 CCI BU No. 801367 Application 77027, Revision 1

APPENDIX A RISA TOWER OUTPUT

0.2500 48'9" 18 3.9 4'6" 118.3 ft 45 0.3125 19 5.9 N 2'6" 77.8 ft 45 52.8700 0.3750 42.3931 18 8.6 ..6.9 38.3 ft AXIAL 60 K SHEAR 32 K / 45 61.0400 0.4375 18 AXIAL 49 K SHEAR 37 K 0.0 ft TORQUE 1 kip-ft 30.1 REACTIONS - 85 mph WIND Thickness (in) Lap Splice (ft) Top Dia (in) Bot Dia (in) Weight (K) Length (ft) Grade

DESIGNED APPURTENANCE LOADING


TYPE	ELEVATION	TYPE	ELEVATION	
DB222-A	174	(4) S20057A-1	139	
ERIA-1 Lightning Spur	169	KRY 112 89/5	139	
(2) WPA-80090/4CF w/Mount Pipe	167	KRY 112 134/1	139	
(2) WPA-80090/4CF w/Mount Pipe	167	(2) APX16PV-16PVL w/Mount Pipe	139	
(2) DB948F85T2E-M w/Mount Pipe	167	APX16PV-16PVL-E w/Mount Pipe	139	
(2) WPA-80090/4CF w/Mount Pipe	167	APX16DWV-16DWV-S-E-A20	139	
(2) DB948F85T2E-M w/Mount Pipe	167	w/Mount Pipe		
GPS	167	(4) S20057A-1	139	
PiROD 13' Low Profile Platform Top	167	KRY 112 89/5	139	
(Monopole)		KRY 112 134/1	139	
(2) DB948F85T2E-M w/Mount Pipe	167	(2) APX16PV-16PVL w/Mount Pipe	139	
(2) LGP2140X (TMA)	160	APX16PV-16PVL-E w/Mount Pipe	139	
(2) LGP13519	160	APX16DWV-16DWV-S-E-A20	139	
(2) 7184 w/Mount Pipe	160	w/Mount Pipe		
(2) 7770.00 w/Mount Pipe	160	(4) S20057A-1	139	
(2) LGP2140X (TMA)	160	KRY 112 89/5	139	
(2) LGP13519	160	KRY 112 134/1	139	
(2) 7184 w/Mount Pipe	160	(2) APX16PV-16PVL w/Mount Pipe	139	
(2) 7770.00 w/Mount Pipe	160	PiROD 13' Low Profile Platform	138	
(2) LGP2140X (TMA)	160	(Monopole)		
(2) LGP13519	160	5' Standoff T-Arm (14' face width)	128	
(2) 7184 w/Mount Pipe	160	(4) DB846G90A-XY w/Mount Pipe	128	
(2) 7770.00 w/Mount Pipe	160	5' Standoff T-Arm (14' face width)	128	
PiROD 13' Low Profile Platform	158	(4) DB846G90A-XY w/Mount Pipe	128	
(Monopole)		PiROD 13' Low Profile Platform	128	
PiROD 13' Low Profile Platform	148	(Monopole) (4) DB846G90A-XY w/Mount Pipe	128	
(Monopole)		APXV18-206517S-C w/Mount Pipe	118	
(4) DB978H90T2E-M w/Mount Pipe	147	APXV18-206517S-C w/Mount Pipe	118	
(4) DB978H90T2E-M w/Mount Pipe	147			
(4) DB978H90T2E-M w/Mount Pipe	147	APXV18-206517S-C w/Mount Pipe	118	
APX16PV-16PVL-E w/Mount Pipe	139			
APX16DWV-16DWV-S-E-A20 w/Mount Pipe	139			

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A607-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- 1. Tower is located in New Haven County, Connecticut.
- 2. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
- 3. Tower is also designed for a 74 mph basic wind with 0.50 in ice.
- 4. Deflections are based upon a 50 mph wind.
- 5. TOWER RATING: 95.5%

PSG Engineering Project Number: 0901H108-A06016 PSG Engineering, Ltd. Project: (801367) (CT NHV-2075 CAC 801367) 1006 Thompson Highway Client: Crown Castle USA, Inc. Drawn by: JHuwe App'd: Richmond, TX Code: TIA/EIA-222-F Date: 03/25/09 Scale: NTS Phone: 281.239.8490 Dwg No. E-1 FAX: 281.239.8515

PSG Engineering, Ltd. 1006 Thompson Highway Richmond, TX Phone: 281.239.8490 FAX: 281.239.8515

Client	Crown Castle USA, Inc.	Designed by JHuwel
Project	(801367) (CT NHV-2075 CAC 801367)	Date 17:59:18 03/25/09
Job PSG E	Engineering Project Number: 0901H108-A060167	Page 1 of 11

Tower Input Data

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

Tower is located in New Haven County, Connecticut.

Basic wind speed of 85 mph.

Nominal ice thickness of 0.5000 in.

Ice density of 56 pcf.

A wind speed of 74 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 50 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.333.

Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Tapered Pole Section Geometry

Section	on Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	167'-118'3"	48'9"	4'6"	18	24.0000	35.3600	0.2500	1.0000	A607-65
L2	118'3"-77'9"	45'	5'6"	18	33.8114	44.3000	0.3125	1.2500	(65 ksi) A607-65 (65 ksi)
L3	77'9"-38'3"	45'	6'9"	18	42.3931	52.8700	0.3750	1.5000	A607-65 (65 ksi)
L4	38'3"-0'	45'		18	50.5485	61.0400	0.4375	1.7500	À607-65 (65 ksi)

Tapered Pole Properties

C	m. D.		TO THE RESIDENCE OF THE PARTY O		C	T/C	7	14/0		/4
Section	Tip Dia.	Area	1	r	C	I/C	J :4	It/Q	w	w/t
	in	in²	in⁴	in	in	in ³	in ⁴	in	in	
L1	24.3702	18.8456	1342.9976	8.4313	12.1920	110.1540	2687.7623	9.4246	3.7840	15.136
	35.9055	27.8598	4338.8723	12.4641	17.9629	241.5466	8683.4538	13.9325	5.7834	23.133
L2	35.3980	33.2267	4710.7000	11.8921	17.1762	274.2577	9427.5985	16.6165	5.4008	17.283
	44.9834	43.6301	10665.5249	15.6156	22.5044	473.9306	21345.0838	21.8192	7.2468	23.19
L3	44.3473	50.0120	11155.3595	14.9164	21.5357	517.9945	22325.3974	25.0107	6.8012	18.136
	53.6856	62.4822	21753.5159	18.6357	26.8580	809.9467	43535.6557	31.2470	8.6451	23.054
L4	52.9263	69.5853	22076.0095	17.7894	25.6786	859.7040	44181.0672	34.7993	8.1265	18.575
	61.9816	84.1541	39047.5735	21.5139	31.0083	1259.2612	78146.5267	42.0851	9.9730	22.796

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing
ft	fr²	in				Diagonals in	Horizontals in

PSG Engineering, Ltd. 1006 Thompson Highway Richmond, TX Phone: 281.239.8490 FAX: 281.239.8515

Job PSG I	Engineering Project Number: 0901H108-A060167	Page 2 of 11
Project	(801367) (CT NHV-2075 CAC 801367)	Date 17:59:18 03/25/09
Client	Crown Castle USA, Inc.	Designed by JHuwel

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals
ft	ft^2	in					in	in
L1 167'-118'3"				1	1	1		
L2 118'3"-77'9"				1	1	1		
L3 77'9"-38'3"				1	1	1		
L4 38'3"-0'				1	1	1		

Monopole Base Plate Data

Base Plate D	ata
Base plate is square	1
Base plate is grouted	
Anchor bolt grade	A615
Anchor bolt size	2.2500 in
Number of bolts	20
Embedment length	84.0000 in
$\mathbf{f}_{\mathbf{c}}$	3 ksi
Grout space	3.0000 in
Base plate grade	A572-55
Base plate thickness	3.0000 in
Bolt circle diameter	68.0000 in
Outer diameter	67.0000 in
Inner diameter	51.0000 in
Base plate type	Plain Plate

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Component Type	Placement	Total Number	Number Per Row		Diameter		Weight plf
	Leg ft	ft			in	in	in in			
*										
*										
*										
*										
*										
*										
*										
*										
*										
*										
*										
*										

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Component Type	Placement	Total Number		C_AA_A	Weight
	Leg		-77	ft			ft²/ft	plf
EL. 167' LEVEL LDF7-50A (1-5/8 FOAM)	A	No	Inside Pole	167' - 10'	12	No Ice 1/2" Ice	0.00 0.00	0.82 0.82

PSG Engineering, Ltd. 1006 Thompson Highway Richmond, TX Phone: 281.239.8490 FAX: 281.239.8515 | Date | Project | Project

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg			ft			ft^2/ft	plf
LDF5-50A (7/8 FOAM)	A	No	Inside Pole	167' - 10'	1	No Ice	0.00	0.33
						1/2" Ice	0.00	0.33
LDF4P-50A (1/2 FOAM)	Α	No	Inside Pole	167' - 10'	1	No Ice	0.00	0.15
						1/2" Ice	0.00	0.15
*								
*								
EL. 158' LEVEL								
LDF7-50A (1-5/8	В	No	Inside Pole	158' - 10'	18	No Ice	0.00	0.82
FOAM)		110	morae role	130 10	10	1/2" Ice	0.00	0.82
*						1/2 100	0.00	0.02
*								
EL. 148' LEVEL								
LDF7-50A (1-5/8	C	No	Inside Pole	148' - 10'	12	No Ice	0.00	0.82
FOAM)	C	NO	mside Pole	146 - 10	12	1/2" Ice	0.00	0.82
*						1/2 100	0.00	0.02
*								
EL. 138' LEVEL								
		No	Inside Pole	138' - 10'	14	No Ice	0.00	0.82
LDF7-50A (1-5/8	Α	NO	inside Pole	138 - 10	14	1/2" Ice	0.00	0.82
FOAM)		NT.	0-1-10-106	1201 101	2	No Ice	0.00	0.82
LDF7-50A (1-5/8	Α	No	CaAa (Out Of	138' - 10'	3	1/2" Ice	0.00	2.33
FOAM)			Face)	1001 101				
LDF7-50A (1-5/8	Α	No	CaAa (Out Of	138' - 10'	1	No Ice	0.20	0.82
FOAM)			Face)			1/2" Ice	0.30	2.33
*								
EL. 128' LEVEL	_				_		0.00	0.00
LDF7-50A (1-5/8	В	No	CaAa (Out Of	118' - 10'	5	No Ice	0.00	0.82
FOAM)			Face)		1000 200	1/2" Ice	0.00	2.33
LDF7-50A (1-5/8	В	No	CaAa (Out Of	118' - 10'	1	No Ice	0.20	0.82
FOAM)			Face)			1/2" Ice	0.30	2.33
*								
*								
EL. 118' LEVEL					1 7			
LDF6-50A (1-1/4	В	No	Inside Pole	128' - 10'	12	No Ice	0.00	0.66
FOAM)						1/2" Ice	0.00	0.66
*								
*								
***TOWER								
HARDWARE***								
Climbing Ladder (Ar)	C	No	CaAa (Out Of	167' - 10'	1	No Ice	0.04	1.00
			Face)			1/2" Ice	0.14	1.53

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	K
L1	167'-118'3"	A	0.000	0.000	0.000	3.910	0.79
		В	0.000	0.000	0.000	0.000	0.66
		C	0.000	0.000	0.000	1.828	0.34
L2	118'3"-77'9"	Α	0.000	0.000	0.000	8.019	1.02
		В	0.000	0.000	0.000	7.970	1.12
		C	0.000	0.000	0.000	1.519	0.44
L3	77'9"-38'3"	Α	0.000	0.000	0.000	7.821	0.99
		В	0.000	0.000	0.000	7.821	1.09
		C	0.000	0.000	0.000	1.481	0.43
L4	38'3"-0'	Α	0.000	0.000	0.000	5.594	0.71
		В	0.000	0.000	0.000	5.594	0.78

PSG Engineering, Ltd. 1006 Thompson Highway Richmond, TX Phone: 281.239.8490 FAX: 281.239.8515

Job PSG I	Engineering Project Number: 0901H108-A060167	Page 4 of 11
Project	(801367) (CT NHV-2075 CAC 801367)	Date 17:59:18 03/25/09
Client	Crown Castle USA, Inc.	Designed by JHuwel

Tower	Tower	Face	A_R	A_F	C_AA_A	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	K
		C	0.000	0.000	0.000	1.059	0.31

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	$C_A A_A$ In Face	$C_A A_A$ Out Face	Weight
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	K
L1	167'-118'3"	A	0.500	0.000	0.000	0.000	5.885	0.91
		В		0.000	0.000	0.000	0.000	0.66
		C		0.000	0.000	0.000	6.703	0.37
L2	118'3"-77'9"	A	0.500	0.000	0.000	0.000	12.069	1.26
		В		0.000	0.000	0.000	11.994	1.48
		C		0.000	0.000	0.000	5.569	0.46
L3	77'9"-38'3"	Α	0.500	0.000	0.000	0.000	11.771	1.23
		В		0.000	0.000	0.000	11.771	1.45
		C		0.000	0.000	0.000	5.431	0.45
L4	38'3"-0'	A	0.500	0.000	0.000	0.000	8.418	0.88
		В		0.000	0.000	0.000	8.418	1.04
		C		0.000	0.000	0.000	3.884	0.32

				30
llec	rata		· Loads	٠
DISC	CIC	IOVVEI	Luaus	9

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	K
EL. 167' LEVEL									
(2) WPA-80090/4CF w/Mount Pipe	A	From Leg	4.00 0' 0'	0.0000	167'	No Ice 1/2" Ice	4.22 4.75	4.13 4.94	0.03 0.07
(2) DB948F85T2E-M w/Mount Pipe	Α	From Leg	4.00 0' 0'	0.0000	167'	No Ice 1/2" Ice	2.62 3.23	4.92 6.01	0.03 0.07
DB222-A	Α	From Leg	4.00 0' 0'	0.0000	174'	No Ice 1/2" Ice	1.60 2.88	1.60 2.88	0.02 0.02
(2) WPA-80090/4CF w/Mount Pipe	В	From Leg	4.00 0' 0'	0.0000	167'	No Ice 1/2" Ice	4.22 4.75	4.13 4.94	0.03 0.07
(2) DB948F85T2E-M w/Mount Pipe	В	From Leg	4.00 0' 0'	0.0000	167'	No Ice 1/2" Ice	2.62 3.23	4.92 6.01	0.03 0.07
(2) WPA-80090/4CF w/Mount Pipe	С	From Leg	4.00 0' 0'	0.0000	167'	No Ice 1/2" Ice	4.22 4.75	4.13 4.94	0.03 0.07
(2) DB948F85T2E-M w/Mount Pipe	С	From Leg	4.00 0' 0'	0.0000	167'	No Ice 1/2" Ice	2.62 3.23	4.92 6.01	0.03 0.07
GPS	С	From Leg	4.00 0' 0'	0.0000	167'	No Ice 1/2" Ice	2.70 3.10	2.70 3.10	0.05 0.07

PSG Engineering, Ltd. 1006 Thompson Highway Richmond, TX Phone: 281.239.8490 FAX: 281.239.8515

Crown Castle USA, Inc.	Designed by JHuwel
Project (801367) (CT NHV-2075 CAC 801367)	Date 17:59:18 03/25/09
PSG Engineering Project Number: 0901H108-A060167	Page 5 of 11

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C_AA_A Front	$C_A A_A$ Side	Weigh
			ft ft ft	٥	ft		ft²	ft²	K
PiROD 13' Low Profile Platform Top (Monopole)	С	None		0.0000	167'	No Ice 1/2" Ice	15.70 20.10	15.70 20.10	1.30 1.76
EL. 158' LEVEL (2) 7770.00 w/Mount Pipe	Α	From Leg	4.00 0' 0'	0.0000	160'	No Ice 1/2" Ice	6.22 6.77	4.35 5.20	0.06 0.10
(2) LGP2140X (TMA)	Α	From Leg	4.00 0' 0'	0.0000	160'	No Ice 1/2" Ice	1.23 1.38	0.37 0.48	0.02 0.02
(2) LGP13519	Α	From Leg	4.00 0' 0'	0.0000	160'	No Ice 1/2" Ice	0.34 0.42	0.21 0.28	0.01 0.01
(2) 7184 w/Mount Pipe	Α	From Leg	4.00 0'	0.0000	160'	No Ice 1/2" Ice	3.33 3.94	3.56 4.60	0.04 0.07
2) 7770.00 w/Mount Pipe	В	From Leg	0' 4.00 0'	0.0000	160'	No Ice 1/2" Ice	6.22 6.77	4.35 5.20	0.06 0.10
(2) LGP2140X (TMA)	В	From Leg	0' 4.00 0'	0.0000	160'	No Ice 1/2" Ice	1.23 1.38	0.37 0.48	0.02 0.02
(2) LGP13519	В	From Leg	0' 4.00 0' 0'	0.0000	160'	No Ice 1/2" Ice	0.34 0.42	0.21 0.28	0.01
(2) 7184 w/Mount Pipe	В	From Leg	4.00 0'	0.0000	160'	No Ice 1/2" Ice	3.33 3.94	3.56 4.60	0.04
2) 7770.00 w/Mount Pipe	C	From Leg	0' 4.00 0'	0.0000	160'	No Ice 1/2" Ice	6.22 6.77	4.35 5.20	0.06
(2) LGP2140X (TMA)	C	From Leg	0' 4.00 0'	0.0000	160'	No Ice 1/2" Ice	1.23 1.38	0.37 0.48	0.02
(2) LGP13519	С	From Leg	0' 4.00 0'	0.0000	160'	No Ice 1/2" Ice	0.34 0.42	0.21 0.28	0.0
(2) 7184 w/Mount Pipe	С	From Leg	0' 4.00 0'	0.0000	160'	No Ice 1/2" Ice	3.33 3.94	3.56 4.60	0.04
PiROD 13' Low Profile Platform (Monopole)	Α	None	0'	0.0000	158'	No Ice 1/2" Ice	15.70 20.10	15.70 20.10	1.30 1.76
EL. 148' LEVEL (4) DB978H90T2E-M w/Mount Pipe	A	From Leg	4.00 0' 0'	0.0000	147'	No Ice 1/2" Ice	3.70 4.32	3.36 4.38	0.00
(4) DB978H90T2E-M w/Mount Pipe	В	From Leg	4.00 0' 0'	0.0000	147'	No Ice 1/2" Ice	3.70 4.32	3.36 4.38	0.0
(4) DB978H90T2E-M w/Mount Pipe	С	From Leg	4.00 0'	0.0000	147'	No Ice 1/2" Ice	3.70 4.32	3.36 4.38	0.0
PiROD 13' Low Profile Platform (Monopole)	C	None	0'	0.0000	148'	No Ice 1/2" Ice	15.70 20.10	15.70 20.10	1.3 1.7

PSG Engineering, Ltd. 1006 Thompson Highway Richmond, TX Phone: 281.239.8490 FAX: 281.239.8515

Job PSG E	Engineering Project Number: 0901H108-A060167	Page 6 of 11
Project	(801367) (CT NHV-2075 CAC 801367)	Date 17:59:18 03/25/09
Client	Crown Castle USA, Inc.	Designed by JHuwel

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C_AA_A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	K
*			J.						
*									
EL. 138' LEVEL (2) APX16PV-16PVL w/Mount Pipe	Α	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	7.02 7.59	3.41 4.23	0.06 0.11
APX16PV-16PVL-E w/Mount Pipe	A	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	7.07 7.64	3.43 4.25	0.06 0.11
APX16DWV-16DWV-S-E-A 20 w/Mount Pipe	Α	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	7.55 8.11	3.57 4.41	0.06 0.11
(4) S20057A-1	A	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	0.83 0.96	0.39 0.50	0.01 0.01
KRY 112 89/5	A	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	0.64 0.76	0.43 0.53	0.02 0.02
KRY 112 134/1	Α	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	1.01 1.15	0.49 0.60	0.01 0.02
(2) APX16PV-16PVL w/Mount Pipe	В	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	7.02 7.59	3.41 4.23	0.06 0.11
APX16PV-16PVL-E w/Mount Pipe	В	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	7.07 7.64	3.43 4.25	0.06 0.11
APX16DWV-16DWV-S-E-A 20 w/Mount Pipe	В	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	7.55 8.11	3.57 4.41	0.06 0.11
(4) S20057A-1	В	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	0.83 0.96	0.39 0.50	0.01 0.01
KRY 112 89/5	В	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	0.64 0.76	0.43 0.53	0.02 0.02
KRY 112 134/1	В	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	1.01 1.15	0.49 0.60	0.01 0.02
(2) APX16PV-16PVL w/Mount Pipe	C	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	7.02 7.59	3.41 4.23	0.06 0.11
APX16PV-16PVL-E w/Mount Pipe	C	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	7.07 7.64	3.43 4.25	0.06 0.11
APX16DWV-16DWV-S-E-A 20 w/Mount Pipe	C	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	7.55 8.11	3.57 4.41	0.06 0.11
(4) S20057A-1	С	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	0.83 0.96	0.39 0.50	0.01 0.01
KRY 112 89/5	C	From Leg	4.00 0' 0'	0.0000	139'	No Ice 1/2" Ice	0.64 0.76	0.43 0.53	0.02 0.02
KRY 112 134/1	C	From Leg	4.00 0'	0.0000	139'	No Ice 1/2" Ice	1.01 1.15	0.49 0.60	0.01 0.02

PSG Engineering, Ltd.
1006 Thompson Highway
Richmond TY

Richmond, TX Phone: 281.239.8490 FAX: 281.239.8515

Client	Crown Castle USA, Inc.	Designed by JHuwel
Project	(801367) (CT NHV-2075 CAC 801367)	Date 17:59:18 03/25/09
Job PSG E	Engineering Project Number: 0901H108-A060167	Page 7 of 11

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft²	ft²	K
PiROD 13' Low Profile Platform (Monopole)	С	None		0.0000	138'	No Ice 1/2" Ice	15.70 20.10	15.70 20.10	1.30 1.76
EL. 128' LEVEL									
(4) DB846G90A-XY w/Mount Pipe	Α	From Leg	4.00 0' 0'	0.0000	128'	No Ice 1/2" Ice	5.23 5.78	7.53 8.72	0.04 0.09
5' Standoff T-Arm (14' face width)	Α	From Leg	2.67 0' 0'	0.0000	128'	No Ice 1/2" Ice	6.90 8.70	6.90 8.70	0.20 0.26
(4) DB846G90A-XY w/Mount Pipe	В	From Leg	4.00 0' 0'	0.0000	128'	No Ice 1/2" Ice	5.23 5.78	7.53 8.72	0.04 0.09
5' Standoff T-Arm (14' face width)	В	From Leg	2.67 0' 0'	0.0000	128'	No Ice 1/2" Ice	6.90 8.70	6.90 8.70	0.20 0.26
(4) DB846G90A-XY w/Mount Pipe	С	From Leg	4.00 0' 0'	0.0000	128'	No Ice 1/2" Ice	5.23 5.78	7.53 8.72	0.04 0.09
PiROD 13' Low Profile Platform (Monopole)	С	None	v	0.0000	128'	No Ice 1/2" Ice	15.70 20.10	15.70 20.10	1.30 1.76
*									
EL. 118' LEVEL APXV18-206517S-C w/Mount Pipe	Α	From Leg	1.00 0' 0'	0.0000	118'	No Ice 1/2" Ice	5.40 5.96	4.70 5.86	0.05 0.09
APXV18-206517S-C w/Mount Pipe	В	From Leg	1.00 0' 0'	0.0000	118'	No Ice 1/2" Ice	5.40 5.96	4.70 5.86	0.05 0.09
APXV18-206517S-C w/Mount Pipe	C	From Leg	1.00 0' 0'	0.0000	118'	No Ice 1/2" Ice	5.40 5.96	4.70 5.86	0.05 0.09
*									
* ***TOWER HARDWARE***									
ERIA-1 Lightning Spur	В	None		0.0000	169'	No Ice 1/2" Ice	2.00 4.00	2.00 4.00	0.05

Load Combinations

Comb. No.		Description			
1	Dead Only				
2	Dead+Wind 0 deg - No Ice				
3	Dead+Wind 30 deg - No Ice				
4	Dead+Wind 60 deg - No Ice				
5	Dead+Wind 90 deg - No Ice				
6	Dead+Wind 120 deg - No Ice				

PSG Engineering, Ltd. 1006 Thompson Highway

Richmond, TX Phone: 281.239.8490 FAX: 281.239.8515

Job PSG Engineering Pr	oject Number: 0901H108-A060167	Page 8 of 11
Project (801367) (CT NHV-2075 CAC 801367)	Date 17:59:18 03/25/09
Client	wn Castle USA, Inc.	Designed by

Comb.		Description
<i>No.</i> 7	Dead+Wind 150 deg - No Ice	
8	Dead+Wind 180 deg - No Ice	
9	Dead+Wind 210 deg - No Ice	
10	Dead+Wind 240 deg - No Ice	
11	Dead+Wind 270 deg - No Ice	
12	Dead+Wind 300 deg - No Ice	
13	Dead+Wind 330 deg - No Ice	
14	Dead+Ice+Temp	
15	Dead+Wind 0 deg+Ice+Temp	
16	Dead+Wind 30 deg+Ice+Temp	
17	Dead+Wind 60 deg+Ice+Temp	
18	Dead+Wind 90 deg+Ice+Temp	
19	Dead+Wind 120 deg+Ice+Temp	
20	Dead+Wind 150 deg+Ice+Temp	
21	Dead+Wind 180 deg+Ice+Temp	
22	Dead+Wind 210 deg+Ice+Temp	
23	Dead+Wind 240 deg+Ice+Temp	
24	Dead+Wind 270 deg+Ice+Temp	
25	Dead+Wind 300 deg+Ice+Temp	
26	Dead+Wind 330 deg+Ice+Temp	
27	Dead+Wind 0 deg - Service	
28	Dead+Wind 30 deg - Service	
29	Dead+Wind 60 deg - Service	
30	Dead+Wind 90 deg - Service	
31	Dead+Wind 120 deg - Service	
32	Dead+Wind 150 deg - Service	
33	Dead+Wind 180 deg - Service	
34	Dead+Wind 210 deg - Service	
35	Dead+Wind 240 deg - Service	
36	Dead+Wind 270 deg - Service	
37	Dead+Wind 300 deg - Service	
38	Dead+Wind 330 deg - Service	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	ft	Deflection in	Load Comb.	0	۰
L1	167 - 118.25	35.252	29	1.8396	0.0013
L2	122.75 - 77.75	19.104	29	1.5427	0.0010
L3	83.25 - 38.25	8.423	29	0.9891	0.0004
L4	45 - 0	2.398	29	0.4864	0.0002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	۰	0	ft
174'	DB222-A	29	35.252	1.8396	0.0013	39370
169'	ERIA-1 Lightning Spur	29	35.252	1.8396	0.0013	39370
167'	(2) WPA-80090/4CF w/Mount Pipe	29	35.252	1.8396	0.0013	39370
160'	(2) 7770.00 w/Mount Pipe	29	32.562	1.8055	0.0011	28122
158'	PiROD 13' Low Profile Platform (Monopole)	29	31.796	1.7955	0.0011	21872
148'	PiROD 13' Low Profile Platform	29	28.010	1.7414	0.0010	10360

PSG Engineering, Ltd. 1006 Thompson Highway Richmond, TX Phone: 281.239.8490 FAX: 281.239.8515

Job PSG	Engineering Project Number: 0901H108-A060167	Page 9 of 11
Project	(801367) (CT NHV-2075 CAC 801367)	Date 17:59:18 03/25/09
Client	Crown Castle USA, Inc.	Designed by JHuwel

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
	(Monopole)					
147'	(4) DB978H90T2E-M w/Mount	29	27.637	1.7355	0.0010	9842
	Pipe					
139'	(2) APX16PV-16PVL w/Mount	29	24.700	1.6835	0.0010	7029
	Pipe					
138'	PiROD 13' Low Profile Platform	29	24.340	1.6764	0.0010	6787
	(Monopole)					
128'	(4) DB846G90A-XY w/Mount Pipe	29	20.846	1.5944	0.0010	5046
118'	APXV18-206517S-C w/Mount Pipe	29	17.590	1.4900	0.0010	4406

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	ft	Deflection in	Load Comb.	0	0
L1	167 - 118.25	101.557	5	5.3025	0.0050
L2	122.75 - 77.75	55.066	5	4.4462	0.0033
L3	83.25 - 38.25	24.293	5	2.8525	0.0014
L4	45 - 0	6.920	5	1.4033	0.0005

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	•	0	ft
174'	DB222-A	5	101.557	5.3025	0.0050	13868
169'	ERIA-1 Lightning Spur	5	101.557	5.3025	0.0050	13868
167'	(2) WPA-80090/4CF w/Mount Pipe	5	101.557	5.3025	0.0050	13868
160'	(2) 7770.00 w/Mount Pipe	5	93.812	5.2066	0.0046	9905
158'	PiROD 13' Low Profile Platform (Monopole)	5	91.608	5.1784	0.0045	7704
148'	PiROD 13' Low Profile Platform (Monopole)	5	80.709	5.0247	0.0040	3647
147'	(4) DB978H90T2E-M w/Mount Pipe	5	79.634	5.0078	0.0040	3464
139'	(2) APX16PV-16PVL w/Mount Pipe	5	71.179	4.8581	0.0037	2473
138'	PiROD 13' Low Profile Platform (Monopole)	5	70.142	4.8373	0.0036	2387
128'	(4) DB846G90A-XY w/Mount Pipe	5	60.084	4.5983	0.0035	1773
118'	APXV18-206517S-C w/Mount Pipe	5	50.706	4.2907	0.0031	1546

Base Plate Design Data

PSG Engineering, Ltd. 1006 Thompson Highway Richmond, TX Phone: 281.239.8490 FAX: 281.239.8515

Job PSG I	Engineering Project Number: 0901H108-A060167	Page 10 of 11
Project	(801367) (CT NHV-2075 CAC 801367)	Date 17:59:18 03/25/09
Client	Crown Castle USA, Inc.	Designed by JHuwel

Plate	Number	Anchor Bolt	Actual	Actual	Actual	Actual	Controlling	Ratio
Thickness	of Anchor Bolts	Size	Allowable Ratio Bolt	Allowable Ratio Bolt	Allowable Ratio Plate	Allowable Ratio Stiffener	Condition	
in		in	Tension K	Compression K	Stress ksi	Stress ksi		
3.0000	20	2.2500	150.41 118.09 1.27	155.28 196.03 0.79	37.573 41.250 0.91		Bolt T	1.27

Compression Checks

	Pole Design Data									
Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in ²	K	K	P_a
L1	167 - 118.25 (1)	TP35.36x24x0.25	48'9"	0'	0.0	39.000	27.0277	-13.10	1054.08	0.012
L2	118.25 - 77.75 (2)	TP44.3x33.8114x0.3125	45'	0'	0.0	39.000	42.3586	-21.54	1651.98	0.013
L3	77.75 - 38.25 (3)	TP52.87x42.3931x0.375	45'	0'	0.0	39.000	60.6116	-32.58	2363.85	0.014
L4	38.25 - 0 (4)	TP61.04x50.5485x0.4375	45'	0'	0.0	39.000	84.1541	-48.78	3282.01	0.015

Pole Bending Design Data										
Section No.	Elevation ft	Size	Actual M _x kip-ft	Actual f _{bx} ksi	Allow. F _{bx} ksi	Ratio f _{bx} F _{bx}	Actual M _y kip-ft	Actual f _{by} ksi	Allow. F _{by} ksi	$\frac{Ratio}{f_{by}}$
L1	167 - 118.25 (1)	TP35.36x24x0.25	554.35	-29.268	39.000	0.750	0.00	0.000	39.000	0.000
L2	118.25 - 77.75 (2)	TP44.3x33.8114x0.3125	1597.64	-42.927	39.000	1.101	0.00	0.000	39.000	0.000
L3	77.75 - 38.25	TP52.87x42.3931x0.375	2771.03	-43.638	39.000	1.119	0.00	0.000	39.000	0.000
L4	38.25 - 0 (4)	TP61.04x50.5485x0.4375	4330.58	-41.268	39.000	1.058	0.00	0.000	39.000	0.000

Pole Interaction Design Data								
Section No.	Elevation ft	Size	Ratio P Pa	Ratio f_{bx} F_{bx}	Ratio $\frac{f_{by}}{F_{bv}}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
L1	167 - 118.25 (1)	TP35.36x24x0.25	0.012	0.750	0.000	0.763	1.333	H1-3 🗸
L2	118.25 - 77.75 (2)	TP44.3x33.8114x0.3125	0.013	1.101	0.000	1.114	1.333	H1-3 🖊
L3	77.75 - 38.25 (3)	TP52.87x42.3931x0.375	0.014	1.119	0.000	1.133	1.333	H1-3 🖊

PSG Engineering, Ltd. 1006 Thompson Highway Richmond, TX Phone: 281.239.8490 FAX: 281.239.8515

	Engineering Project Number: 0901H108-A060167	Page 11 of 11
Project	(801367) (CT NHV-2075 CAC 801367)	Date 17:59:18 03/25/09
Client	Crown Castle USA, Inc.	Designed by JHuwel

Section No.	Elevation	Size	Ratio P	Ratio f_{bx}	Ratio f_{by}	Comb. Stress	Allow. Stress	Criteria	
	ft		P_a	F_{bx}	F_{bv}	Ratio	Ratio		
L4	38.25 - 0 (4)	TP61.04x50.5485x0.4375	0.015	1.058	0.000	1.073	1.333	H1-3	

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	SF*P _{allow} K	% Capacity	Pass Fail
L1	167 - 118.25	Pole	TP35.36x24x0.25	1	-13.10	1405.09	57.2	Pass
L2	118.25 - 77.75	Pole	TP44.3x33.8114x0.3125	2	-21.54	2202.09	83.5	Pass
L3	77.75 - 38.25	Pole	TP52.87x42.3931x0.375	3	-32.58	3151.01	85.0	Pass
L4	38.25 - 0	Pole	TP61.04x50.5485x0.4375	4	-48.78	4374.92	80.5	Pass
							Summary	
						Pole (L3)	85.0	Pass
						Base Plate	95.5	Pass
						RATING =	95.5	Pass

Program Version 5.3.1.0 - 10/3/2008 File:C:/Users/JHuwel/Documents/Work Items/0901H108/801367.eri

APPENDIX B BASE LEVEL DRAWING

BUSINESS UNIT: 801367 TOWER ID: C_BASELEVEL