March 20, 2001

Sandy M. Carter Verizon Wireless 20 Alexander Drive P.O. Box 5029 Wallingford, CT 06492

RE: **TS-VER-023-010216-2** - Cellco Partnership d/b/a Verizon Wireless request for an order to approve tower sharing at an existing telecommunications facility located at 96 Powder Mill Road, Canton.

Dear Ms. Carter:

At a public meeting held March 15, 2001, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility may require an explicit request to this agency pursuant to General Statutes § 16-50aa or notice pursuant to Regulations of Connecticut State Agencies Section 16-50j-73, as applicable. Such request or notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

This decision applies only to this request for tower sharing and is not applicable to any other request or construction.

The proposed shared use is to be implemented as specified in your letter dated February 16, 2001.

Thank you for your attention and cooperation.

Very truly yours,

Mortimer A. Gelston Chairman

MAG/RKE/laf

c: Honorable Kathleen C. Corkum, First Selectman, Town of Canton Frederick E. Turkington, Jr., Chief Administrative Officer, Town of Canton Eric Barz, Town Planer, Town of Canton Esther McNany, SBA, Inc.
Julie M. Donaldson, Esq., Hurwitz & Sagarin LLC Christopher B. Fisher, Esq., Cuddy & Feder & Worby LLP

CONNECTICUT SITING COUNCIL

February 16, 2001

Mr. Mortimer A. Gelston, Chairman Connecticut Siting Council 10 Franklin Square New Britain, Connecticut 06051

Re: Request by Cellco Partnership d/b/a Verizon Wireless for an Order to Approve the Shared Use of a Tower Facility located at 96 Powder Mill Road, Canton, Connecticut.

Dear Chairman Gelston:

Pursuant to Connecticut General Statutes (C.G.S.) Sec.16-50aa, Cellco Partnership d/b/a Verizon Wireless hereby requests an order from the Connecticut Siting Council ("Council") to approve the proposed-shared use by Verizon Wireless of an existing tower located at 96 Powder Mill Road, Canton, Connecticut. The property is owned by Properties One LLC and the tower is owned and managed by SBA Towers, Inc.. As shown on the attached drawing and as further described below, Verizon Wireless proposes to install antennas on the existing tower and to locate its equipment building at the base of the tower. Verizon Wireless requests that the Council finds that the proposed shared use of the tower facility satisfy the criteria stated in C.G.S. Sec. 16-50aa, and to issue an order approving the proposed shared use.

Background

Verizon Wireless is licensed by the Federal Communications Commission to provide cellular telephone service in the Hartford County New England County Metropolitan Area (NECMA), which includes the area to be served by the proposed Canton installation.

The facility at 96 Powder Mill Road in Canton, consists of a 180 foot AGL monopole tower built by SBA Towers, Inc. and is located on a leased parcel of land owned by Properties One LLC. The monopole tower currently supports the antennas of Sprint Spectrum PCS, and AT&T. The latter are wireless carriers that provide mobile communications service to the public pursuant to their FCC licenses. Verizon Wireless and SBA Towers Inc. have agreed to the proposed-shared use of this tower pursuant to mutually acceptable terms and conditions.

Mr. Mortimer A. Gelston February 16, 2001 Page 2

Verizon Wireless proposes to install twelve (12) Swedcom Model ALP9011 antennas, approximately 43 inches in height, on a platform with their center of radiation at approximately 147 feet above ground level ("AGL"). Verizon Wireless will also install one (1) GPS antenna on the antenna platform. Equipment associated with these antennas would be located in a new approximately 12-foot x 20-foot equipment building located at the base of the tower.

C.G.S. Sec. 16-50aa provides that, upon written request for approval of a proposed shared use, "if the Council finds that the proposed shared use of the facility is technically, legally, environmentally and economically feasible and meets public safety concerns, the Council shall issue an order approving such shared use" (C.G.S. Sec. 16-50aa©(1).)

Discussion

- A. <u>Technical Feasibility.</u> The existing tower is structurally sound and capable of supporting the proposed Verizon Wireless antennas. The tower will not require any structural modification to support the proposed attachments. A copy of the structural design is attached to this application. Verizon Wireless engineers have determined that the proposed antenna installations present minimal potential for interference to or from existing radio transmissions from this location. In addition, the applicant is unaware of any occasion where its operations have caused interference with AM, FM or television reception. The proposed shared use of this tower therefore is technically feasible.
- B. <u>Legal Feasibility</u>. Under C.G.S. Sec. 16-50aa, the Council has been authorized to issue an order approving the proposed shared use of an existing communications tower facility such as the facility at 96 Powder Mill Road. (C.G.S. Sec. 16-50aa©(1).) This authority complements the Council's prior existing authority under C.G.S. sec. 16-50p to issue orders approving the construction of new towers that are subject to the Council's jurisdiction. C.G.S. Sec. 16-50x(a) directs the Council to "give consideration to other state laws and municipal regulations as it shall deem appropriate" in ruling on requests for the shared use of existing tower facilities. Under the authority vested in the Council by C.G.S. Sec. 16-50aa, an order by the Council approving the shared use would permit the applicant to obtain a building permit for the proposed installations.

- C. <u>Environmental Feasibility</u>. The proposed shared use would have a minimal environmental effect, for the following reasons:
 - 1. The proposed installations would have an insignificant incremental visual impact, and would not cause any significant change or alteration in the physical or environmental characteristics of the existing site. The addition of the proposed antennas would not increase the height of the tower, and would not extend the existing boundaries of the tower site, including the placement of the equipment building near the base of the tower.
 - 2. The proposed installation would not increase the noise levels at the existing facility by six decibels or more. The only noise will occur during emergency use or periodic exercising of the generator.
 - 3. Operation of the additional antennas will not increase the total radio frequency electromagnetic radiation power density, measured at the tower base to a level at or above the applicable standard. "Worst-case" exposure calculations for a point at the base of the tower in relation to operation of Verizon Wireless's and the other existing antenna arrays is as follows:

	Applicable ANSI Stnd	Calculated "Worst-Case"	Percentage Of Stnd
Verizon Wireless	0.583 mW/cm2	0.0316 mW/cm2	5.42%
Sprint	1.000 mW/cm2	0.0154 mW/cm2	1.54%
AT&T	1.000 mW/cm2	0.0117 mW/cm2	<u>1.17%</u>
		Total	8.13%

The collective "worst-case" exposure would be only 8.13% of the ANSI standard, as calculated for mixed frequency sites. Power density levels from shared use of the tower facility would thus be well below the applicable ANSI standards.

- 4. The proposed installations would not require any water or sanitary facilities or generate discharges to water bodies. Operation of the emergency back-up generator will result in limited air emissions, pursuant to R.C.S.A. Section 22a-174-3, the generator will require the issuance of a permit from the Department of Environmental Protection Bureau of Air Management by the owner of the generator. After construction is complete, the proposed installation would not generate any traffic other than periodic maintenance visits. The proposed use of this facility would therefore have a minimal environmental effect, and is environmentally feasible.
- D. <u>Economic Feasibility</u>. As previously mentioned, the tower owner and the applicant have entered into a mutual agreement to share the use of the existing tower on terms agreeable to the parties, and the proposed tower sharing is thus economically feasible.
- E. <u>Public Safety Concerns.</u> As stated above, the existing tower is structurally capable of supporting the proposed Verizon Wireless antennas. The Applicant is not aware of any other public safety concerns relative to the proposed tower sharing of the existing tower. In fact, the provision of new or improved cellular phone service in the Town of Canton, especially Route 44, Route 179, Route 202 and in the Collinsville area in Canton, through shared use of the tower is expected to enhance the safety and welfare of area residents and travelers. The public safety benefits of wireless service are further illustrated by the decision of local authorities elsewhere in Connecticut to provide cellular phones to residents to improve local public safety and emergency communications. The proposed-shared use of this facility would likewise improve public safety in the Canton area.

Conclusion

For the reasons discussed above, the proposed shared use of the existing telecommunications tower facility at 96 Powder Mill Road satisfies the criteria stated in C.G.S. Sec. 16-50aa, and advances the General Assembly's and the Council's goal of preventing the proliferation of towers in Connecticut. The Applicant therefore requests that the Council issue an order approving the proposed shared use.

Mr. Mortimer A. Gelston February 16, 2001 Page 5

Thank you for your consideration of this matter.

Pursuant to Connecticut General Statutes Sec. 16-50v and Section 16-50v-1(a) of the Regulations of Connecticut State Agencies, Verizon Wireless has enclosed a check in the amount of \$500.00 for the required filing fee.

Respectfully yours,

Sandy M. Carter Manager – Regulatory

Sandy M. Carter

Verison Wireless

Attachments

cc: Honorable Ms. Kathleen C. Corkum, First Selectman

Network Dept.

Verizon Wireless 20 Alexander Drive Wallingford, Connecticut 06492

February 16, 2001

Honorable Ms. Kathleen C. Corkum, First Selectman Town Hall 4 Market Street Collinsville, Connecticut 06019

Dear Ms. Corkum:

This letter is to inform you that Cellco Partnership d/b/a Verizon Wireless plans to install antennas and associated equipment at the existing tower facility located at 96 Powder Mill Road in Canton, Connecticut. I am enclosing a copy of Verizon Wireless's tower sharing application to the Connecticut Siting Council.

The application fully describes Verizon Wireless's proposal. However, if you have any questions or require any further information on our plans or the Siting Council's procedures, please call me at (203) 294-8519 or Joel Rinebold, Executive Director, Connecticut Siting Council at (860) 827-2935.

Sincerely,

Sandy M. Carter

Manager - Regulatory

Sandy M. Cartin

Verizon Wireless

Enclosure

February 7, 2001

Sandy Carter Regulatory Manager Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

RE:

SBA South Canton Facility 4275-029 / Powder Mill Road 96 Powder Mill Road

Dear Sandy:

Please consider this as a Letter of Authorization for Verizon to proceed with any and all necessary permits and approvals to collocate on the above referenced facility.

We acknowledge that Verizon has filed a Collocation Application with SBA and that that application has been approved. As always, we look forward to working with you. If I can be of further assistance, please call.

Sincerely,

Esther K. McNany Territory Manager

Consulting Engineers

February 6, 2001

Mr. Mark Gauger Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

Re.: Verizon ~ SBA Collinsville II Site 96 Powder Mill Road, Canton, Connecticut Natcomm, LLC Project No. 316C

Dear Mr. Gauger:

We have completed a review of the structural assessment and loading conditions for the existing SBA, Inc. tower at the above referenced site. The review was performed to determine the adequacy of the 180 ft. self supported monopole tower for carrying additional loads from the proposed Verizon Wireless antennas and cables. The analysis is in compliance with local codes and regulations.

The calculations are based on the proposed equipment being installed at 147 ft. above the tower base plate elevation. The dead loads of the proposed equipment, as well as live loads from wind forces and ice build-up on the tower and equipment were considered. Existing and future equipment were considered in the analysis, however, there are no current inventories available for the co-locating carriers to compare against the design parameters.

Review of the structural analysis report completed by Valmont – Microflect Engineering dated July 25, 2000 has shown that the tower is adequate to support the proposed Verizon equipment loading with the existing and future loading as indicated in the report. The structural report specifies a total of 12 generic antennas (Model No. DB896) at this elevation. The proposed antenna model to be installed is ALP 9011.

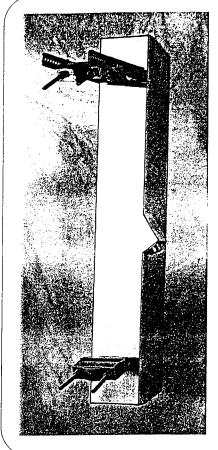
A comparison of the specifications for the two antenna models has shown that the proposed equipment will impose significantly less wind load on the tower and will ultimately reduce the overturning moment at the base of the structure. This evaluation is based on information provided by the antenna manufacturers.

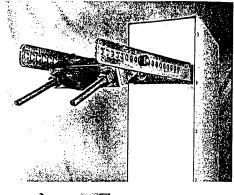
In conclusion, the existing monopole tower located at 96 Powder Mill Road, Canton, CT is suitable for installation of the proposed Verizon Wireless equipment based on the generic antenna models used for existing and future carriers. If there are any questions regarding this matter, please feel free to call.

Sincerely,

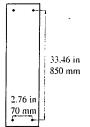
Walter E. Pierson, P.E.

Project Engineer


c.c. F. Tomcak, Natcomm, LLC. C.F. Centore, Natcomm, LLC.


ALP-E 9011-Din


Enhanced Log-Periodic Antenna


Features:

- ☐ Small Size
- □ Aesthetically Pleasing
- ☐ Suitable For TDMA/CDMA
- ☐ High Return Loss
- □ Low Intermodulation
- □ High FTB
- □ Broadbanded
- □ Side-lobe Suppression
- ☐ Sturdy Design
- □ Down-Tilt Brackets Incl.

The distance between the center of the bolts (on the back of the antenna) are shown in the drawing above.

Bolt diameter is: 3/8-16 [comes with lock nut].

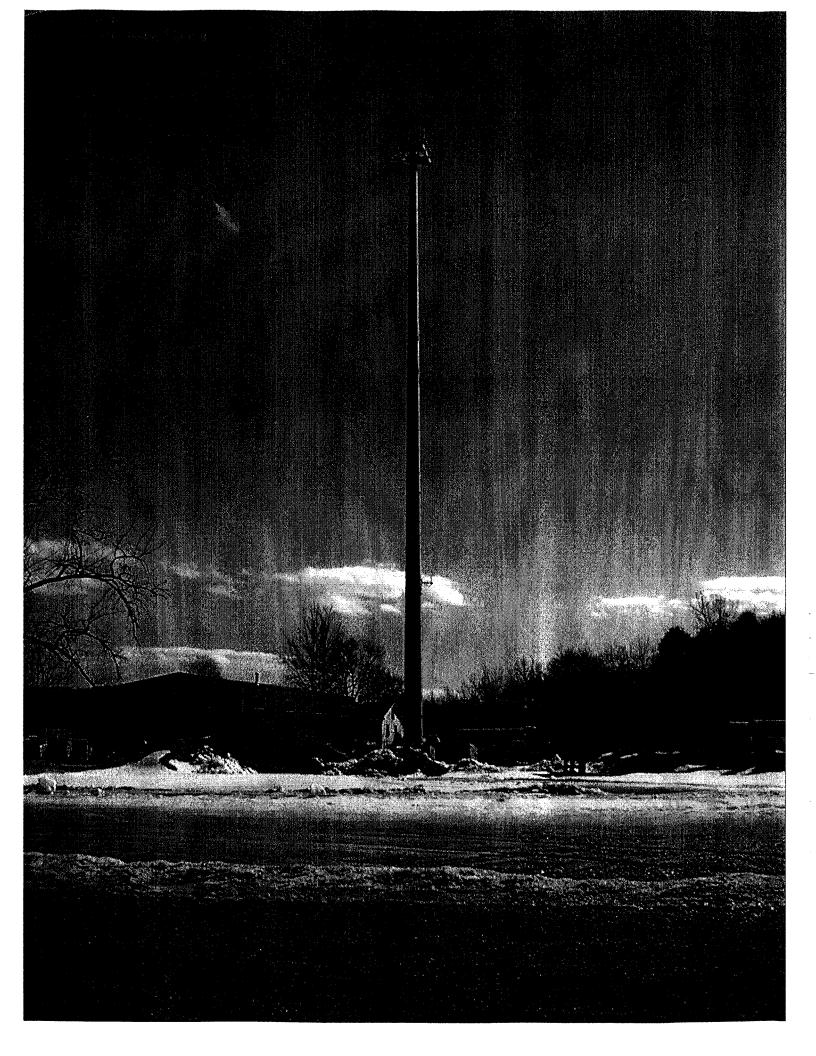
Frequency Range: 800-900 MHz Impedance: 50 ohm Connector Type: 7/16 Din Return Loss: 20 dB Polarization: Vertical Gain: > 11 dBd Front To Back Ratio: > 30 dBSide-Lobe Suppression: 18 dB

Intermodulation (2x25W): IM3 > 146 dBIM5 > 153 dBIM7/9 > 163 dB

Power Rating: 500 W H-Plane (-3 dB point): 85 - 92°

V-Plane (-3 dB point): 16 - 18° Lightning Protection: DC Grounded

[1092 mm] Overall Height: 43 in 6.5 in [165 mm] Width: 8 in [203 mm] Depth: Weight Including Tilt-Brackets: 20 lbs [9.1 Kg] Rated Wind Velocity: 113 mph [180 Km/h] Wind Area (CxA/Side): 2.3 sq. ft. $[0.22 \, \text{sq.m}]$ Lateral Thrust At Rated Wind Worst Case: [500 N] 112 lbs



Radiating Elements: Aluminum Extrusion: Aluminum Radome: **Grey PVC**

Hot Dip Galvanized Steel Tilt-Bracket:

Stainless Steel Antenna Bolts:

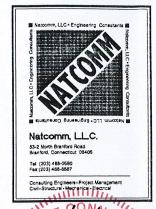
The ALP-E 9011-Din is made in U.S.A.

VERIZON wireless WIRELESS COMMUNICATIONS FACILITY COLLLINSVILLE 2 96 POWDER MILL RD.

CANTON, CONNECTICUT 06059

PROJECT SU	JMMARY	
SITE NAME:	COLLINSVILLE 2	
SITE ADDRESS:	98 POWDER MILL RD. CANTON, CONNECTICUT 06059	
SITE OWNER:	SBA, INC. 80 EASTERN BLVD. GLASTONBURY, CT 06033 (860) 659-9101	
PROPERTY OWNER:	PROPERTIES ONE, LLC P.O. BOX 125, 54 CHURCH STREET COLLINSVILLE, CONNECTICUT 06022	
APPLICANT:	CELLCO PARTNERSHIP 20 ALEXANDER DR. WALLINGFORD, CT 08492 (203) 294-7440	
CENTER OF TOWER:	LATITUDE: 41'-50'-02.93" LONGTUDE: 72'-55'-59.24"	

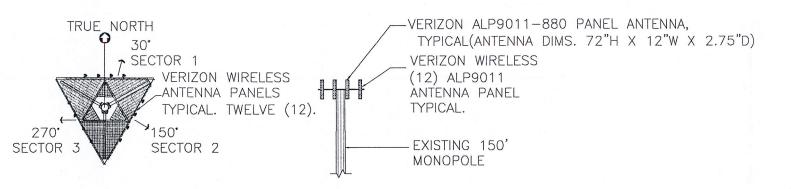
GENERAL NOTES


PROPOSED ANIENNA AND MODIFINE PLATFORM ELEVATIONS WERE PROVIDED VERZON WIRELESS. EXISTING PLATFORM HEIGHT INFORMATION PROVIDED BY THE SITE OWNER.

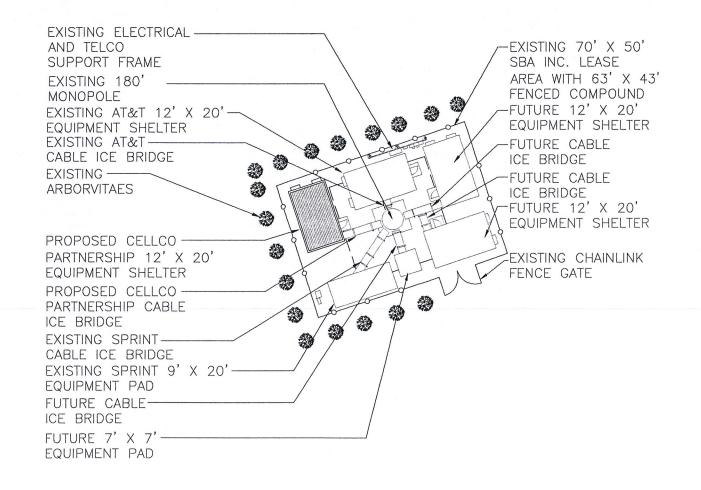
TO:	
NOT TO SCALE	O
747700	
127	N.
61.457	*
ulstat #	5
erry Brook	
CHIT !	
EM S	T
	1
	-1
(A) "是 (A) (A)	
	NOT TO SCALE

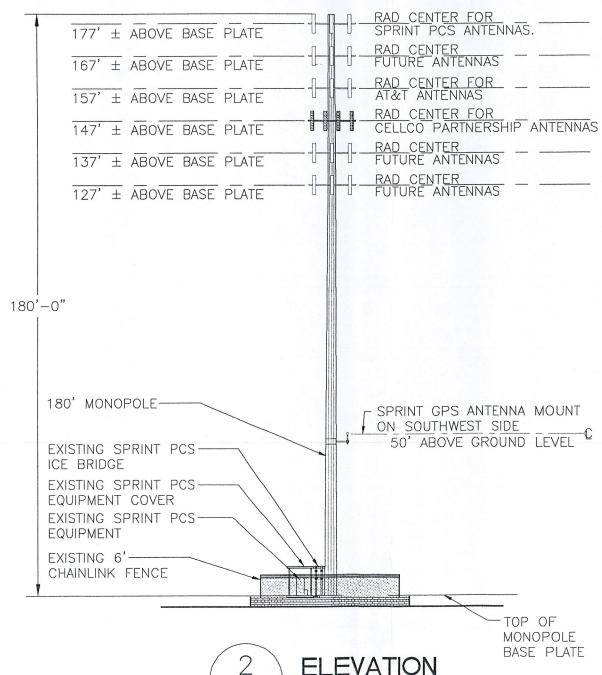
SHT. NO.	DESCRIPTION	REV. NO
T-1	TITLE SHEET	00
C-1	COMPOUNDPLAN&TOWER ELEVATIONS	00
	,	

REVISIONS									
00	02/12/01	SITING COUNCIL							
	1.49								



PROJECT NO:	316A
DRAWN BY:	DFB
CHECKED BY:	JJP
SCALE:	AS NOTED
DATE:	02/12/01


TITLE


LAT: 41° 50' 02.93" LONG.: 72° 55' 59.24" BASED ON CT SITING COUNCIL

MONOPOLE ANTENNA MOUNTING CONFIGURATION SCALE: NONE

COMPOUND PLAN

NOT TO SCALE



NOT TO SCALE

REVISIONS

00 02/12/01 SITING COUNCIL

Cellco Partnership
d.b.a. **verizon** wireless

110001111110000

COLLINSVILLE 2

96 POWDER MILL RD. CANTON, CT. 06059

PROJECT NO: 316A

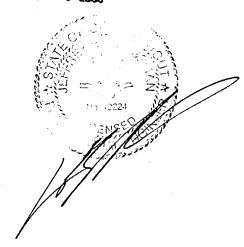
DRAWN BY: DFB

CHECKED BY: JJP

SCALE: AS NOTED

DATE: 02/12/01

COMPOUND PLAN & ELEVATION


C-1

valmont **V**MICROFLECT

VALMONT/MICROFLECT 3575 25TH ST. SE - P.O. BOX 12985 SALEM, OREGON 97302-1190 PHONE: 1-800-547-2151

COMMUNICATION POLE DESIGN CALCULATIONS

AUG 2 3 2000

SBA

VALMONT ORDER #12156-00

SITE NAME: 4275-029, South Canton, CT

POLE HEIGHT: 180

DATE SHEET NO. CHKD. BY _____ DATE

7/25/00

ENGINEERING DATA

for

SBA

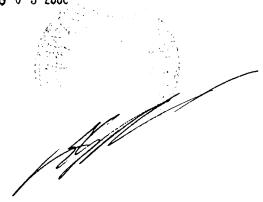
4275-029, South Canton, CT **VALMONT ORDER 12156-00**

EIA/TIA-222-F

BASIC WIND:

80.0

WIND & ICE:


69.3

MPH AND 0.5 IN. ICE

TWIST & SWAY: NOT REQUIRED

		DATA W.O. ICE	DATA W/ ICE
QTY DESCRIPTION	HEIGHT	EPA WT	EPA WT
1 Lightning Rod, 7'	@ 180.0 *	1.05 35	1.73 44
12 DB896	@ 177.0 '	54.60 264	58.92 660
1 Platform, Valmont w/o rails, 13	3.42' @ 177.0 '	24.80 2000	26.20 2500
12 DB896	@ 167.0 *	54.60 264	58.92 660
1 Platform, Valmont w/o rails, 13	3.42' @ 167.0 '	24.80 2000	26.20 2500
12 DB896	@ 157.0 '	54.60 264	58.92 660
1 Platform, Valmont w/o rails, 13	3.42' @ 157.0 '	24.80 2000	26.20 2500
12 DB896	@ 147.0 '	54.60 264	58.92 660
1 Platform, Valmont w/o rails, 13	3.42' @ 147.0 '	24.80 2000	26.20 2500
12 DB896	@ 137.0 '	54.60 264	58.92 660
1 Platform, Valmont w/o rails, 13	3.42' @ 137.0 '	24.80 2000	26.20 2500
12 DB896	@ 127.0 *	54.60 264	117.84 660
1 Platform, Valmont w/o rails, 13	3.42' @ 127.0 '	24.80 2000	26.20 2500

AUG 0 3 2000

5 2	10000000000000000000000000000000000000
1.00 1	0.00 Rod, 7 Valmon
0.00 4.00 0 5.00 1.00 1 0.80 0.00 0.0000 0.00000	0.00 1-Lightning 12-DB896 1-Platform, 12-DB896 1-Platform, 12-DB896 1-Platform, 12-DB896 1-Platform, 12-DB896 1-Lightning 12-DB896 1-Platform, 12-DB896 1-Platform, 12-DB896 1-Platform, 12-DB896 1-Platform, 12-DB896 1-Platform, 12-DB896 1-Platform, 12-DB896 1-Platform, 12-DB896 1-Platform, 12-DB896 1-Platform, 12-DB896
0.00	45.0 45.0 45.0 45.0 45.0 45.0 45.0 1.05 45.0 1.05 45.0 1.05 24.80 24.80 24.80 24.80 24.80 24.80 24.80 24.80 24.80 24.80 24.80 24.80 24.80 24.80 24.80 26.20 26.20 26.20 26.20 26.20
1.00 0.5000 0.00 137.00 0.28125	0.00 0.00
0.00 1.50 1.69 0.1950 98.00	183.50 180.10 177.00 170.10 167.00 150.10 147.00 137.00 45.00
180.00 0.00 1.00 60.000 52.75 0.50000	2.0 180.00 177.00 167.00 167.00 157.00 147.00 137.00 127.00 80.00
HEXD 7565 C DIA HEIG NESS	ARM
	BCON LOAD LOAD LOAD LOAD LOAD LOAD LOAD LOAD

98	0																		
	21			VAL															
1.30	22.00		0.000	Λ	0.000	0.000	0.000	0.000		0.000	0.000								
175.35	•		0.000	72.000	0.000	000.0	000.0	000.0		0.000	0.000	4.0	4.0	4.0	4.0	4.0	4.0		
00.00			000.0	12.000	000.0	0.000	0.000	0.000		0.000	0.000	111.0	111.0	111.0	111.0	111.0	111.0		
			000.0	1.250	1.000	4.000	5.000	3.000		000.0	0.000	30.0	30.0	30.0	30.0	30.0	30.0		
			0.000	0.000	0.000	0.000	0.000	000.0	•	1.000	000.0	177.00	167.00	157.00	147.00	137.00	127.00		
00.00	1.0		0.0	0.0	1.0	3.0	15.0	5.0	156-00	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0		
	TITY								IDEN12										
OPTI	QUAN	HEF	HEF	HEF	HEF	HEF	HEF	HEF	HEF	CHEF	CHEF	CHEF	CHEF	CHEF	CHEF	CHEF	CHEF	END	

BY VALMONT INDUSTRIES FOR: SBA

SBA 180' POLE, SITE: 4275-029, SOUTH CANTON, CT

*** SUMMARY ***

VERSION CPL-01

12156-00 DATE 07/25/00

	SHAPE	16-SIDED SYMMETRICAL	FOLIGON		TH/	.46	000	3"	17.
T)	TOP DIAMETER (IN)	26.837			/FOURTH/	36.246	0.25000	48.	4087
DESIGN SUMMARY (DOES NOT INCLUDE EMBEDMENT)	GROUND LINE DIAMETER TOP (IN)	60.000	/THIRD/	137.00' LAP SPLICE	63" /THIRD/	43.560	0.28125	45' 4"	5364.
JMMARY (DOES NOT		.09	/SECOND/	98.00' LAP SPLICE	/e"/	52.015 41.765	0.43750	52' 7"	11568.
DESIGN S	SHT POLE TAPER (IN/FT)	0.1950	/FIRST/	52.75' LAP SPLICE	88" /FIRST/	60.000**	0.50000	52' 9"	15524.
	POLE SHAFT WEIGHT (LBS)	36542.	CONNECTIONS BETWEEN SECTIONS	T.	OVERLAP LENGTH SECTION CHARACTERISTICS	BASE DIAMETER (IN)	THICKNESS (IN)	ж	WEIGHT (LBS)
	HEIGHT (FT)	180.00	CONNECTIONS	HEIGHT	OVERI SECTION CHA	BASE TOP D	THICK	LENGTH	WEIGH

** AT GROUNDLINE

		ANALYSIS SUMMARY-	SUMMARY			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	GROUND	MAX. STRESS 1ST SECTION	MAX. STRESS 2ND SECTION	MAX. STRESS 3RD SECTION	MAX. STRESS 4TH SECTION	POLE
GOVERNING LOADING CASE	LOD1	LOD1	LOD1	LOD1	LOD1	LOD1
HEIGHT (FT)	00.0	0.00	52.75	98.00	137.00	180.00
RESULTANT MOMENT (IN-KIPS)	59085	59085,	35862.	18617.	6053.	2.
SHEAR FORCE (LBS)	38730.	38730.	32790.	27765.	20605.	48.
VERTICAL FORCE (LBS)	50161.	50161.	32875.	22248.	14938.	35.
COMBINED STRESS (KSI)	42.23	42.23	41.20	47.29	25.25	0.02
ALLOWABLE STRESS (KSI)	52.00	52.00	52.00	51.03	52.00	52.00
ALLOWABLE/COMBINED STRESS	1.23	1.23	1.26	1.08	2.06	66.666
TOTAL DEFLECTION (IN)	00.00	0.00	9.88	35.20	71.56	122.70

DATE 07/25/00 12156-00

*** GROUNDLINE REACTIONS ***

FOR: 180.00 FOOT

NOTES			A C B
******** SHEAR (LBS) ********* NOTES	RESULTANT	(X & Y)	38730.
SHEAR (LBS)	NI	Y-DIRECTION	27386. 21386.
****	NI	X-DIRECTION	27386. 21386.
* AXIAL	FORCE	(LBS)	50161. 60687.
************* MOMENTS (IN-KIPS) ********** AXIAL		FORSIONAL	-165. -132.
MENTS (IN-KIPS)	RESULTANT	(X & Y)	59085. 47474.
OW *****	ABOUT	Y-AXIS	41779.
****	ABOUT	X-AXIS	41779.
LOADING	CASE	IDENTIFIER	LOD1 LOD2

POSITIVE AXIAL FORCE IS DOWNWARD. AXIAL FORCE INCLUDES THE WEIGHT OF THE ABOVE-GROUND PORTION OF THE POLE SHAFT TIMES THE APPROPRIATE OVERLOAD FACTOR, IN ADDITION TO THE CONCENTRATED VERTICAL LOADING. NOTE:

KEY TO THE SPECIAL NOTE ENTRIES
A INDICATES LOAD CASE WITH MAXIMUM OVERTURNING MOMENT
B INDICATES LOAD CASE WITH MAXIMUM AXIAL FORCE
C INDICATES LOAD CASE WITH MAXIMUM RESULTANT SHEAR

*** INPUT LOADS ***

LOD1 LOADING CASE

	+X-AXIS (TRANSVERSE)														
SYSTEM	+***** +X-AXIS (TRANSVE	(VEKTICAL) +2-AXIS EPA (SQ. FT.)	1.0	54.6	24.8	54.6	24.8	54.6	24.8	54.6	24.8	54.6	24.8	54.6	24.8
ORIENTATION OF	* * * .	* * * * * * * * * * * * * * * * * * *	35	264	2000	264	2000	264	2000	264	2000	264	2000	264	2000
ORI		(LONGITUDINAL) +Y-AXIS FORCE-X (LBS)	34	1742	787	1713	774	1684	761	1653	746	1621	732	1587	716
		FORCE-Y (LBS)	34	1742	787	1713	774	1684	761	1653	746	1621	732	1587	716
(EIA NOTE #3)	.2- - AXIS GUST FACTOR 1.69 AXIS	LOCATION OF ARM IN XY PLANE (DEGREES)	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00
5	- ×	ARM LENGTH (FT)	00.00	00.00	00.0	00.00	00.00	00.00	00.00	00.00	0.00	00.00	00.00	0.00	0.00
_ H &	- MULTIPLIER IS 1.3, BUT RESULT NOT TO EXCEEN WIND ORIENTATION IS 45.0 DEGREES CLOCKWISE FROM POLE WEIGHT OVERLOAD FACTOR IS 1.000 EXPOSURE CARM LOCATION IS MEASURED CLOCKWISE FROM -X- AXIS POSITIVE -Y- AXIS IS 90 DEGREES CLOCKWISE FROM -3	0.50 DEGREES HEIGHT OF LOAD APPLICATION POINT (FT)	183.50	180.10	177.00	170.10	167.00	160.10	157.00	150.10	147.00	140.10	137.00	130.10	127.00
VELOCITY IS 80.00 COEFFICIENT INCREASE	MULTIPLIER IS 1.3, ORIENTATION IS 45.0 WEIGHT OVERLOAD FACTOCATION IS MEASURED IVE -Y- AXIS IS 90 I	FOUNDATION ROTATION OF (ARM MOUNTING HEIGHT M NO. (FT)	180.00	177.00	177.00	167.00	167.00	157.00	157.00	147.00	147.00	137.00	137.00	127.00	127.00
BASIC VELOC FORCE COEF	- MULTIPLIER IS WIND ORIENTATION IS POLE WEIGHT OVERLOAD ARM LOCATION IS MEAS: POSITIVE -Y- AXIS IS	FOUNDATION ARM NO.	н	7	т	4	ĸ	9	7	æ	თ	10	11	12	13

*** INPUT LOADS ***

LOADING CASE LOD2

SYSTEM		+***** +X-AXIS	(TRANSVERSE)		(VERTICAL)	+2-AXIS	EPA	(SQ. FT.)	1.7	58.9	26.2	58.9	26.2	58.9	26.2	58.9	26.2	58.9	26.2	58.9
ORIENTATION OF SYSTEM		***+	*	*	* *	*	2-	(TBS) (44	099	2500	099	2500	099	2500	099	2500	099	2500	099
ORI					(LONGITUDINAL)	+Y-AXIS	FORCE-X	(LBS)	41	1398	619	1376	809	1352	598	1327	287	1301	575	1274
							M FORCE-Y	(LBS)	41	1398	619	1376	809	1352	598	1327	587	1301	575	1274
) INCHES (EIA NOTE #3)	KIS	GUST FACTOR 1.69		S		LOCATION OF ARM IN XY PLANE	(DEGREES)	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00
	THICKNESS 0.50 FOR PROJECTIONS (٠.		XIS	FROM -X- AXIS	i	ARM LENGTH	(FT)	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00
	69.00 M.P.H.; ICE THICKNESS NCREASED TO ACCOUNT FOR PROJECT 1.3. BUT RESULT NOT TO EXCEET	WIND ORIENTATION IS 45.0 DEGREES CLOCKWISE FROM	WEIGHT OVERLOAD FACTOR IS 1.000 EXPOSURE C	×	POSITIVE -Y- AXIS IS 90 DEGREES CLOCKWISE FRO	0.50 DEGREES	HEIGHT OF LOAD APPLICATION POINT	(FT)	183.50	180.10	177.00	170.10	167.00	160.10	157.00	150.10	147.00	140.10	137.00	130.10
	9 71 8	NTATION IS 45.	HT OVERLOAD FAC	TION IS MEASURED	-Y- AXIS IS 90		ARM MOUNTING HEIGHT	(FT)	180.00	177.00	177.00	167.00	167.00	157.00	157.00	147.00	147.00	137.00	137.00	127.00
	BASIC VELOCITY IS FORCE COEFFICIENT - MILTIPLIER I	WIND ORIE	POLE WEIG	ARM LOCAT	POSITIVE	FOUNDATIC		ARM NO.	п	2	К	4	5	. 9	١	80	თ	10	11	12

26.2

2500

563

563

45.00

0.00

127.00

127.00

13

*** PROPERTIES ***

AREA (IN2)	94.76 93.20 91.65 90.10 88.55 86.99 85.44 83.89	80.65 79.23 69.89 69.27 67.92 66.56 65.20 63.84 62.48 61.12 59.76	59.31 58.40 37.67 37.32 36.44 35.57 34.70 33.82	32.60 32.60 31.77 31.20 27.85 27.85 27.85 26.61	26.30 25.83 25.05 24.74 24.74
MOMENTS OF INERTIA (IN4)	42535. 40478. 38488. 36565. 34707. 32913. 21182. 29512. 26355.	26223. 24864. 22287. 21707. 20454. 19251. 16988. 15927. 13938.	13621. 13009. 8443. 8210. 7647. 7110. 6599. 5652.	5474. 5474. 5214. 4800. 4319. 4119. 3766.	3636. 3446. 31446. 3029. 2861.
W/T ACROSS FLATS	21.90 21.51 21.15 20.73 20.35 19.96 19.57 18.79	18.37 18.02 20.83 20.83 19.94 19.50 18.61 17.72	17.58 17.28 27.97 27.69 27.00 26.31 25.62 24.93	23.97 23.97 23.55 26.06 26.06 25.59 24.82	24.50 24.50 23.26 22.95 22.95
D/T ACROSS FLATS	120.0 118.0 116.1 112.1 110.2 108.3 106.3	100.5 1115.6 1112.4 110.2 100.2 103.5 101.3	98.3 150.5 149.1 142.2 138.7 131.8	130.4 130.4 128.3 124.8 140.9 138.5	133.1 133.1 123.1 125.3 125.3
WALL THK. (IN)	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	0.5000 0.5000 0.4375 0.4375 0.4375 0.4375 0.4375	0.4375 0.2813 0.2813 0.2813 0.2813 0.2813 0.2813	0.2813 0.2813 0.2813 0.2813 0.2813 0.2500 0.2500 0.2500	0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
DIAMETER ACROSS FLATS (IN)	60.000 59.025 58.025 57.075 56.125 54.125 53.175 51.225	51.125 50.150 50.150 49.175 48.200 47.225 46.250 43.325	42.998 42.350 42.327 41.937 40.962 39.987 39.012 38.037	672 672 087 112 222 222 637	33.272 33.272 32.687 31.712 31.322 31.322
L HEIGHT (FEET)	5.00 10.00 15.00 25.00 25.00 35.00 40.00	45.43 50.05 52.75 60.00 65.00 75.00 85.00	91.68 95.00 98.00 100.00 110.00 120.00	127.00 127.00 130.00 131.75 135.00 137.00 137.00	147.00 147.00 150.00 155.00 157.00 157.00
CONNECTION	BASE	SEC TOP	SEC TOP	ARM ARM SEC BASE SEC TOP ARM ARM	ARM ARM ARM ARM

.2500 119.0 21.71 2595. 23.5	117.5 21.40 2494.	117.5 21.40 2494.	115.1 20.93 2346.	111.2 20.16 2114.	109.7 19.85 2026.	109.7 19.85 2026.	107.3 19.38 1898.	107.3 19.38 1898.
119.0	117.5	117.5	115.1	111.2	109.7	109.7	107.3	107.3
0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500
29.762	29.372	29.372	28.787	27.812	27.422	27.422	26.837	26.837
165.00	167.00	167.00	170.00	175.00	177.00	177.00	180.00	180.00

ARM ARM ARM ARM ARM TOP

50161 DATE 07/25/00 SHEAR FORCE AT BASE (LB) = 38730. TOTAL VERTICAL FORCE AT BASE (LB) = 3720. 1416. 2655. 2655. 1639 1416 9052. 6290. 5615. 5277. 4657. 4280. 4280. 2211 6290. 12668. 6742. 27631. 27502. 26158. 7887 23282. 6480. 3916. 3164 25358. 24709. 11442 36885. 35294. 33723. 32170. 30638. 29124. 9134 7796 10128. 20494 41779 12156-00 *** MOMENTS ABOUT -Y- AXIS (IN-KIPS) *** 451. 421. 379. 379. 313. 287. 287. 287. 252. 179. 178. 178. 1501. 1449. 1417. 1333. 1272. 1012. 945. 922. 876. 836. 741. 670. 598. 1858. 1836. 1778. 1773. 1702. 1658. 611. 560. DEFL 709. 609. 552. 552. 552. 472. 353. 311. 112747. 11990. 11258. 10551. 9869. 9211. 8576. 7374. 6808. 6760. 6265. 5277. 5746. 5251. 4780. 943. 870. 766. 2782. 2669. 2452. 2265. 2145. 1599. 1359. 1140. 3510. SBA 180' POLE, SITE: 4275-029, SOUTH CANTON, CT WIND 3442. 2997. 2403. 2166. 2166. 1808. 1358. 1178. 909. 8841. 7968. 7095. 6222. 5349. 5000. 4470. 3442. 18444. 17964. 17571. 16698. 15825. 14079. 13206. 12333. 11167. 11167. 3736. 23683. 22810. 21937. 21063. 20190. 19241. 27175. 26302. 25429. 24556. LOAD *** REACTIONS *** 4657. 4280. 4280. 4280. 3720. 2955. 2655. 2655. 1639. 1416. 1416. 1090. 40128. 38497. 36885. 35294. 33723. 32170. 30638. 29124. 27502. 27502. 26158. 26158. 26158. 26158. 26158. 26158. 26158. 26158. 26158. 12668. 11442. 10237. 9052. 7887. 6742. 6290. 14758. 3164. 5615. 5277. TOTAL 11779. *** MOMENTS ABOUT -X- AXIS (IN-KIPS) *** 1858. 1836. 1778. 1743. 1743. 1658. 1611. 1560. 1505. 1505. 1272. 1333. 1012. 945. 945. 945. 945. 945. 945. 945. 945. 945. 945. 945. 945. 927. 937. 937. 9379. 9379. 9379. 9379. 9379. 9379. 149. 11258. 10551. 9869. 9211. 8576. 7364. 7374. 6808. 6760. 6265. 5977. 5746. 5251. 4333. 3510. 3134. 2782. 2782. 2782. 2782. 2782. 2782. 1359. 552. 552. 552. 472. 353. 311. 254. DNIM 173. 145. 943. 870. 870. 609. 766. 709. 12747. FOR: 5349. 5000. 4470. 4471. 3736. 3442. 3442. 3442. 2403. 2403. 2166. 1358. 1178. 15825. 14952. 14079. 10587. 6222. 23683. 22810. 21937. 20190. 19317. 13206. 8841. 095. 21063. 17964. 11460. 11167. 9714. 19241. 8444. .86991 BY VALMONT INDUSTRIES 25429. 24556. 26302. LOAD LOADING CASE LOD1 135.00 137.00 137.00 140.00 147.00 147.00 155.00 155.00 157.00 75.00 80.00 85.00 90.00 91.68 95.00 100.00 110.00 115.00 125.00 127.00 0.00 5.00 10.00 115.00 225.00 330.00 445.00 445.00 52.75 60.00 65.00 HEIGHT

46. 27. 7. 20. 0. 4884. 305. 151. 90. 20. 564. 564. 354. 166. 96. 2. 222. 222. 000. 00. 46. 27. 7. 20. 0. 484. 484. 305. 151. 90. 2.

167.00 167.00 170.00 175.00 177.00 180.00

564. 3564. 166. 96. 2.

*** DEFLECTIONS AND STRESSES **

| ********** DEFLECTIONS
F WITH SECONDARY M | ****** DEFLECTIONS WITH SECONDARY M | EFLECTIONS *:
SECONDARY MON | S * NOW | ****** | * | *** | | တ | ********(KSI) | | ALLOWABLE | ALLOWABLE
DIVIDED BY | |
|---|---|--------------------------------|---------|------------|---|----------------|----------|---------|-------------------|------------------|-----------|-------------------------|------------|
| x-DIR. Y-DIR. TOTAL (| -DIR. Y-DIR. TOTAL (| -DIR. TOTAL (| _ | (DEGREES) | | BENDING | AXIAL | TORSION | SHEAR | COMBINED | STRESS | COMBINED | |
| 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0. | 0.0 0.0 0.0 | 0.0 | 0 | | 41.70 | S | -0.07 | 0.83 | 42.23 | 52.00 | 1.231 | |
| 1 0.1 0 | .1 0.1 0.1 0.1 | 0.1 0.1 | .1 | ٦~ | | 41.41 | 0.52 | -0.07 | | σ | 52.00 | 1.250 | |
| 7 0.6 0.0 0.5 | 5:0 8:0 9:0 9:
5:0 8:0 9:0 9:0 | 0.8 0.5 | 8.0 | S | | 40.74 | 2 | -0.08 | ω. | · OI | 52.00 | 1.261 | |
| 3 1.0 1.0 1.4 0.6 | 0 1.0 1.4 0.6 | 0 1.4 0.6 | 4 0.6 | 9 | | 40.37 | 2 | °. | 8. | œ | 52.00 | 1.272 | |
| 1 1.5 1.5 2.2 0.8 | 5 1.5 2.2 0.8 | 5 2.2 0.8 | 2 0.8 | æ | | 39.97 | 4 | ۰. | ω. | ₹, | 52.00 | 1.285 | |
| 0 2.2 2.2 3.2 1.0 | 2 2.2 3.2 1.0 | 3.2 1.0 | 2 1.0 | 0 | | 39.53 | 4.4 | ۰. | ∞ c | \circ | 52.00 | 1.300 | |
| 3.0 3.0 4.3 L.L | 0 3.0 4.3 1.1
0 4.0 6.6 1.3 | 0 4.3 1.1 | 7 T. L | ⊣ ი | | 39.06
38.55 | 5 | 60.01 | ρα |) C | 52.00 | 1.333 | |
| 4 4.0 4.0 0.0 1.3 | 1.3 0.0 1.3 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 | 7 0.0 1.3 | 0 T. C | വ | | 38.00 | 7 | | . α | 7 7 | 52.00 | 1.352 | |
| 0 5.2 5.2 7.3 1.5 | 2 5.2 7.3 1.5 | 2 7.3 1.5 | 3 1.5 | ט ע | | 37.95 | י די | 0.1 | 0.84 | . ~ | 52.00 | 1.354 | |
| 4 6.3 6.3 8.9 1.7 | 6.3 6.3 8.9 1.7 | 3 8.9 1.7 | 9 1.7 | 7 | | 37.41 | 4 | ∹: | 0.84 | œ | 52.00 | 1.374 | |
| 1.4 7.0 7.0 9.9 1.8 | 7.0 7.0 9.9 1.8 | 0 9.9 1.8 | 9 1.8 | æ | | 40.73 | 4 | ٦. | 0.95 | (V) | 52.00 | 1.262 | - |
| 7.6 7.6 10.8 1.9 | 7.6 7.6 10.8 1.9 | 6 10.8 1.9 | 9.1.0 | 0, 0 | | 40.40 | ₹ | | 0.95 | ω ι | 52.00 | 1.273 | |
| 9.1 9.1 17.8 2.0
4 10.7 10.7 15.1 2.2 | 9.1 9.1 12.8 2.0 | 7 15 1 2.0 | 2.0 | <u>ی</u> د | | 39.6I
38.76 | 0.40 | _ | 0.0
0.0
1.0 | <i>_</i> | 52.00 | 1.326 | |
| 7.7 12.5 12.5 17.6 2.4 | 12.5 12.5 12.6 2.4 | 5 17.6 2.4 | 2.7 | 1 4 | | 37.85 | 4 | . ~ | 96.0 | , ,, | 52.00 | 1.358 | |
| 1,3 14.4 14.4 20.3 2.6 | 14.4 14.4 20.3 2.6 | .4 20.3 2.6 | 3 2.6 | | | 36.86 | 0.44 | _ | 96.0 | ٠, | 52.00 | 1.394 | |
| 0 16.4 16.4 23.2 2.8 | 16.4 16.4 23.2 2.8 | 3.4 23.2 2.8 | 1.2 2.8 | w | | 35.80 | 0.43 | | 96.0 | ' ' | 52.00 | 1.435 | |
| 1.9 18.6 18.6 26.3 3.0 | 18.6 18.6 26.3 3.0 | 1.6 26.3 3.0 | 3.0 | 9 | | 34.65 | 0.42 | ~ 1 | 0.96 | _ , | 52.00 | 483 | - |
| 3.0 20.9 20.9 29.6 3.2 | 20.9 20.9 29.6 3.2 | 29.6 3.2 | 3.6 | .4.0 | | 33.41 | 4.0 | | 76.0 | ~ . | 52.00 | 558 | Thea Rench |
| 3 23.4 23.4 33.0 3. | 23.4 23.4 33.0 3.4 | 33.0 3.4 | 3.0 | , , | | 32.06 | 0.41 | -0.16 | .97 | , , | 52.00 | | الله الله |
| 3.4 24.9 24.9 35.2 3.5 | 24.9 24.9 35.2 3.5 | 1.9 35.2 3.5 | 5.2 3.5 | ٠. | | 46.70 | 0.59 | ., | 1.49 | ••• | 51.03 | V620 | LHILVER |
| 1.8 26.0 26.0 36.7 3.6 | 26.0 26.0 36.7 3.6 | 36.7 3.6 | 5.7 3.6 | ٠. | | 45.79 | 0.59 | | 1.49 | | 51.25 | 1.105 | でする |
| 3.5 28.7 28.7 40.6 3.8 | 28.7 28.7 40.6 3.6 | 3.7 40.6 3.8 | 3.6 | ₩, - | | 43.37 | 0.59 | | 1.50 | | 51.82 | 1.1/9 | 90 |
| 2.3 34.9 49.3 4.5
7.7 34.9 34.9 49.3 4.5 | 34 9 34 9 49 3 | 4 6 3 4 | 7. 4 | | | 37.87 | 0.58 | • | 1.51 | | 52.00 | 1,352 | 5 |
| 1.1 38.2 38.2 54.0 4.0 | 38.2 38.2 54.0 4.0 | 3.2 54.0 4.0 | 1.0 4.6 | | | 34.73 | 0.58 | | 1.52 | ٠. | 52.00 | 1.473 | |
| 5.8 41.7 41.7 58.9 4.8 | 41.7 41.7 58.9 4.8 | 1.7 58.9 4.8 | 3.9 4.8 | Ψ, | | 31.29 | 0.58 | ., | 1.53 | | 52.00 | 1.632 | ٠. |
| 7.7 43.1 43.1 61.0 4.8 | 43.1 43.1 61.0 4.8 | 3.1 61.0 4.6 | 0.1 | ۳. ۱ | | 29.82 | 90.0 | | 1.54
1.54 | - | 52.00 | 1./10 | |
| /./ 43.1 43.1 61.0 4.8 | 45.1 45.1 01.0 4.8 | 5.1 61.0 4.6
5.3 64 1 5.6 | 7.7 | ~ - | | 27.50 | 0.00 | 10.33 | 1.34 | _ | 52.00 | 1.857 | |
| 7.3 46.6 46.6 65.9 5.0 | 46.6 46.6 65.9 5.0 | 5.6 65.9 5.0 | 5.9 | . ~ | | 26,35 | 0.50 | | 1.34 | | 52.00 | 1.936 | |
| 5.6 49.1 49.1 69.4 5. | 49.1 49.1 69.4 5. | 9.1 69.4 5. | 9.4 5. | ٠. | | 24.11 | 0.50 | | 1.35 | | 52.00 | 2.112 | |
| 7.7 50.6 50.6 71.6 5.3 | 50.6 50.6 71.6 5.3 | 0.6 71.6 5.3 | 1.6 5. | `: | | 24.70 | 0.54 | -0.33 | 1.49 | | 52.00 | 2.060 | |
| 7.7 50.6 50.6 71.6 5.3 | 50.6 50.6 71.6 5.3 |).6 71.6 5. | 1.6 5.3 | `` | | 24.70 | 0.54 | ٠. | 1.49 | | 52.00 | 2.060 | |
| 7.7 50.6 50.6 71.6 5.3 | 50.6 50.6 71.6 5.3 |).6 71.6 5.3 | 1.6 5. | ``` | | 24.70 | 0.54 | ٠. | 1.49 | | 52.00 | 2.060 | |
| 52.9 52.9 74.9 5. | 52.9 52.9 74.9 5. | 2.9 74.9 5. | 4.9 | ` : | | 22.21 | 0.45 | 0 | 1.25 | | 52.00 | 2.294 | • |
| 5.1 56.9 56.9 80.5 5. | 56.9 56.9 80.5 | 80.5 | 2.5 | • | | 18.69 | 0.45 | 5 6 | 1.20 | | 22.00 | 01/.7 | |
| 8.3 58.6 58.6 82.8 5.1 | 58.6 58.6 82.8 5 | 3.6 82.8 5. | 2.8 | • | | 17.19 | 0.45 | -0.29 | 1.26 | | 52.00 | 2.947 | |
| 8.3 58.6 58.8 5.8 | 58.6 58.6 82.8 | 3.6 82.8 5. | 2.8 | | | 11.19 | 0.40 | ٧. (| 1.40 | | 22.00 | | |
| 61.0 61.0 86.3 $5.$ | 61.0 61.0 86.3 5. | 1.0 86.3 5. | 6.3 | • | | 14.84 | 0.36 | 2 0 | 00.0 | | 52.00 | 0.420 | |
| 7.1 65.2 65.2 3.5 7.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 | 65.2 63.2 32.2 3. | 5.26 2.26 3.6 | 7.7 | • | | 10.36 | | , 0 | 000 | | 52.00 | 4.852 | |
| | | | . ה | • | | 36.01 |
 | | 66.0 | | 52.00 | 4.852 | |
| 5.50 6.50 6.50 | | | | • | |)
•
• |) | • | i
• | • | | | |

| 6.089
8.635
10.502
10.502
16.200
30.967
49.621
49.621
99.990 | · | |
|--|---|---|
| 52.00
52.00
52.00
52.00
52.00
52.00
52.00
52.00 | | |
| 8.54
6.02
4.95
1.05
1.05
0.02 | | |
| 0.70
0.69
0.38
0.36
0.36
0.00 | | • |
| -0.16
-0.18
-0.18
-0.10
-0.10
-0.10
-0.00 | | |
| 0.25
0.24
0.24
0.12
0.12
0.00 | | |
| 8.28
5.77
4.70
4.70
1.55
0.92
0.02 | | |
| 6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00 | | |
| 98.2
104.3
106.7
106.7
110.4
116.5
119.0
122.7 | | , |
| 69.5
73.7
75.5
78.1
82.4
86.8
86.8 | | |
| 69.57.7.5.57.78.88.88.11.88.11.88.11.88.11.19.88.11.19.88.88.88.88.88.88.88.88.88.88.88.88.88 | | |
| 92.7
98.4
100.7
100.7
104.2
110.0
112.3
112.3
115.8 | | |
| 160.00
165.00
167.00
167.00
170.00
175.00
177.00
180.00 | | |

1

.

,

SBA 180' POLE, SITE: 4275-029, SOUTH CANTON, CT

SHEAR FORCE AT BASE (LB) = 30244. TOTAL VERTICAL FORCE AT BASE (LB) = 60687.

12156-00 DATE 07/25/00

*** REACTIONS *** FOR: BY VALMONT INDUSTRIES LOADING CASE LOD2

| | | | | | , |
|-------------------------------|--|--|--|---|--|
| PS) ***
TOTAL | 35
20
20
20
20
20
30
30
30 | 24776.
23576.
22389.
22287.
21218.
20581.
20064.
18926.
17804. | 560
3453
347
2243
209
141
040
040 | | 3579.
3579.
3105.
2234.
2234.
1388.
1204.
923. |
| AXIS (IN-KIPS)
DEFL | 2043.
2017.
1987.
1953.
1870. | 1772.
1717.
1660.
1655.
1600.
1566.
1539.
1476.
1343. | 8903333634
830333633 | 754.
5092.
5092.
4475.
4405.
3364. | 1448400740084 |
| TS ABOUT -Y-
WIND | 9728.
9152.
8595.
8057.
7537. | 6086.
5636.
5168.
4791.
4571.
4395.
3657. | 2993.
2688.
2401.
2131.
2045.
1879.
1644. | 1226.
1042.
875.
724.
668.
588.
544. | 424.
424.
362.
272.
240.
195.
112.
112. |
| *** MOMENTS
LOAD | 179
110
040
970
901
831 | 16919.
16222.
15525.
14827.
14444.
14130.
12736. | 11342.
10645.
9948.
9250.
9017.
8553.
7856. | 6462.
5765.
4371.
4092.
3446. | 2830.
2830.
2850.
2457.
1983.
1793.
1491.
1131.
988.
757. |
| PS) ***
TOTAL | W 4 0 0 0 0 4 4 | 6906888777
6906888777 | 15609.
14536.
13479.
12438.
12093.
11415.
10409. | 8442.
7481.
5535.
5235.
4668.
33887. | 3579.
3579.
3105.
2234.
2234.
1856.
1204.
923.
612. |
| AXIS (IN-KIPS)
DEFL | 2043.
2017.
1987.
1953.
1870. | 1725.
1717.
1660.
1655.
1566.
1539.
1411. | 1274.
1203.
1130.
1057.
1032.
982.
938. | 754.
592.
509.
475.
356. | 325.
325.
325.
226.
202.
170.
103.
105. |
| -X- | 200000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 393
588
588
101
131
045
379
379
427 | 20879984 | 424.
424.
362.
272.
240.
195.
133.
112.
84. |
| *** MOMENTS ABOUT
LOAD WIN | 179
110
110
110
110
970
901
831 | 00004640000 | 134
0064
9994
9925
9901
7185
7185 | 6462.
5765.
5068.
4371.
4092.
3692.
3446. | 2830.
2830.
2830.
2457.
1983.
1793.
1491.
1131.
988.
988. |
| HEIGHT | | | 35
30
30
30
30
30
30
30
30 | 0.00.0000000000000000000000000000000000 | 137.00
137.00
137.00
140.00
147.00
147.00
150.00
157.00
160.00 |

491. 305. 151. 92. 2.

39. 10. 10. 4. 0.

35. 21. 21. 2. 2. 0.

417. 417. 2559. 136. 86. 86.

491. 491. 305. 151. 92. 22.

399. 100. 44.

35. 21. 5. 22. 0.

417. 259. 136. 86. 86.

167.00 167.00 170.00 175.00 177.00 180.00

FOR:

LOADING CASE LOD2

*** DEFLECTIONS AND STRESSES **

| ALT.OWARLE | DIVIDED BY
COMBINED | 1.523 | | | | | | | | | | | | | | | | | | | | | | 1.420 | 1.513 | 1.621 | 1.760 | 2.031 | 2.031 | 2.209 | 2.300 | 2.500 | 2.431 | 2.431 | 2.431 | 2.714 | 3.190 | 3.447 | 3.447 | 4.016 | 5.007 | 5.594
5.594 | |
|---|--|-------|-----|-----|-----|-----|----------|------|------|-----|----------|-----|-----|------------|-------|-----|-----|-----|-----------|----|----------|----------|-----|---------|------------|----------|-------------|-------|-------|-------|-------|-------|-------|----------|-------------|-----------|-----------|---------|----------|-----------|-------|----------------|--|
| | ALLOWABLE
D STRESS | 52.00 | . 0 | | 0. | ٥. | 0. | 0 0 | | | 0 | : | : | | | : . | : | | <u>``</u> | ζ: | <u>.</u> | | | <u></u> | <u>.</u> | | | | | · .: | ~; | ∵. | ~ | ~ | ٠.
داد | ~ | ~.
N (|
N (| N. | N (| N (| | |
| | ******
COMBINED | 34.15 | | 4. | ۲. | æ | 3 | ۲. | • " | ີຕ | ٠. | 9 | ۳. | | ፣ ፣ | | | ω. | <u>:</u> | -: | Ξ. | Ξ. | 3. | | | ~ . |
T | | | | | Ξ. | `: : | <u>:</u> | ``.
~ . |
 |
 | | ٠.
ش | `.
N (| | 9.30 | |
| | (KSI) ***
SHEAR | 0.64 | 2 | 9 | 9 | 9 | 9 | 9 | ט ס | ၁ ဖ | ဖ | 7 | 7 | , | - L | - [| - (| - | _ | - | - | ~ | Π. | ~ | Α, | ., | | 40 | | | ٠. | ٠. | Ξ. | Ξ. | Ξ. | ٠. | ٠. ١ | ٠. ١ | ٠. ١ | • | • • | | |
| | STRESSES | 90.0- | . 0 | 0.0 | ٥. | 0.0 | 0.0 | ۰. |) c | | ٥. | 0.0 | 0.0 | 0.0 | ፣ r | | | 0.1 | 0 | ٦: | -0.13 | ۲. | 7 | -0.21 | ? | 4 | \sim | ٠, د | | 7 | ~ | 7 | -0.26 | ς. | 0.2 | 0.5 | 0.5 | . i | 0.0 | ٠. | ፣ | -0.19 | |
| | ** APPLIED
AXIAL | 0.64 | യ | 9 | 9 | 9 | S | n, | വ | വ | S | S | L) | וו | ות נו |) u |) u | u, | u, | 47 | u, | | 1 - | | | | - (| - 1 | | | • | Ψ. | | ٠: | ٠. | _ | 9 | œ٬ | ٠ ب | 4. | 4 | 0.48 | |
| | ************************************** | 33.51 | 10 | 8 | .5 | ? | <u>.</u> | ຕິເ | N O | | <u>.</u> | | 8 | 2. | | | | | ~ | ~ | | · · | 7. | | ۳.
ش | | m (| | | . ~ | : | 5 | 3 | <u>.</u> | ·. | ~;
œ (| ັ.
ທ່ | ζ, | ੋ.
ਵਾ | N G | • | | |
| * | ROTATION
(DEGREES) | 0.00 | 4 0 | 4 | S | 9 | ω . | σ, | ⊣ ი | 1 N | (C) | 4 | ഗ | ω (| פס | - د | - C | 4 | w | w | 1- | w. | ٠: | Γ. | | ٠, ١ | • | | | | Π. | ٠, | `` | `` | `` | `: | `. ' | -; ` | • | • | 4.65 | 4.68
4.68 | |
| * * * * * * * S | TOTAL | 0.0 | 1.0 | 0.6 | 1.1 | 1.8 | 2.5 |
 | 4. n | ຸກ | 7.1 | 8.0 | | <u>.</u> . | ·: - | • | • | : | · | _: | 40 | ~ | ~ | ^_ | in i | ~ં. | <u>ກ່</u> ເ | ٠, | | | m | 10 | m | m | m | 0 | n I | ~ 1 | ~ | 0 1 | o s | 76.9 | |
| DEFLECTIONS ****** | Y-DIR. | 0.0 | | | • | • | • | • | • | | | • | • | • | | : | : | | | ~: | ~ | ÷. | | m. | ٠٨٠ | mi, | ٠. | · - | | | ~ | ď | | ٠. | _ | ത് | o i | · 1 | <u> </u> | ത | m· | 54.4
54.4 | |
| ******* | | 0.0 | | | | | | | | | | | | | ٠. | : | : | | ٠.٠ | ~ | ~ | i. | | m. | ٠ <u>٠</u> | <u>.</u> | ∹ ‹ | · - | : - | | ζ. | œ. | | | | ന് ' | ശ് | ~ . | ς, | ത് | m. | 54.4
54.4 | |
| ************************************** | SECONDARY
MOMENTS | 0.0 | | | | | | | | | | | | <u>.</u> . | : ~ | • | | · ~ | | ~· | _: | Ġ | ~ | ċ | ന് | · . | ં, | | • | | œ. | ٠. | m. | m | m | ۰œ۰ | o . | oi (| α. | • | σ, | 71.1 | |
| | S
HEIGHT | 00.00 | | . 0 | | ŏ. | 0. | | | 2 4 | 0 | | 0 | · · | | • | | | | | | <u>«</u> | 00. | 05.(| 10.0 | 15.(| 20.0 | 7.0.0 | | 30.0 | 31.7 | 35.0 | 37.(| 37.(| 37.(| 40.(| 45.(| 47.(| 47.(| 50. | 55. | -, -, | |

| 7.066 | 9.805 | 11.741 | 11.741 | 18.357 | 33.017 | 49.325 | 49.325 | 066.66 | 066 66 | |
|-------|--------|--------|--------|--------|---------|--------|--------|--------|--------|----------------|
| 52.00 | 52.00 | 52.00 | 52.00 | 52.00 | . 52.00 | 52.00 | 52.00 | 52.00 | 52.00 |)
)
) |
| 7.36 | 5.30 | 4.43 | 4.43 | 2.83 | 1.57 | 1.05 | 1.05 | 0.02 | 0.02 | |
| 0.56 | 0.56 | 0.55 | 0.55 | 0.30 | 0.29 | 0.29 | 0.29 | 0.01 | 0.01 | |
| -0.13 | -0.14 | -0.14 | -0.14 | -0.07 | -0.08 | -0.08 | -0.08 | 0.00 | 0.00 | 0 |
| 0.34 | 0.33 | 0.33 | 0.33 | 0.18 | 0.17 | 0.16 | 0.16 | 00.0 | 00.00 | 8150243. |
| 7.01 | 4.97 | 4.09 | 4.09 | 2.65 | 1.40 | 0.88 | 0.88 | 0.02 | 0.02 | // IS |
| 4.72 | 4.77 | 4.78 | 4.78 | 4.80 | 4.81 | 4.82 | 4.82 | 4.82 | 4.82 | / DEFLECTION |
| 79.9 | 84.9 | 86.9 | 86.9 | 89.9 | 94.9 | 96.9 | 6.96 | 66.66 | 99.9 | ON LIMIT |
| 56.5 | 0.09 | 61.4 | 61.4 | 63.5 | 67.1 | 68.5 | 68.5 | 70.7 | 7.07 | DEFLECTION LIM |
| 56.5 | 0.09 | 61.4 | 61.4 | 63.5 | 67.1 | 68.5 | 68.5 | 7.07 | 7.07 | RATIO // |
| 73.8 | 78.4 | 80.2 | 80.2 | 83.0 | 87.6 | 89.4 | 89.4 | 92.2 | 92.2 | |
| | 165.00 | | | | | | | - | | O MINIMOM D |

!

| 12156-00 | |
|---------------------------------------|--|
| , CI | |
| " POLE, SITE: 4275-029, SOUTH CANTON, | |
| : 4275-029, | |
| POLE, SITE | |
| SBA 180' | |
| S FOR: | |
| VALMONT INDUSTRIES | |
| BY | |

DATE 07/25/00

*** ANCHORAGE *** VERSION MPX-15

*** ANCHOR BOLT CHARACTERISTICS GOVERNED BY LOADING CASE LOD1 ***

| THREAD
SIZE | 4.5-UNC-2A | CONFIGURATION OF BOTTOM END OF ANCHORBOLT THREADED WITH HEAVY HEX HEAD NUT $ > \cdot \circ 3 - v \frac{v}{2} $ | -LB MAX FORCE-LB
105947.
124028.
117899.
88773. | | | SIDE
LENGTH
(IN.) | 14.84 | TOTAL MOMENT
ALONG FAIL LINE
(INLB.) | 3834611. | | | ************************************** |
|-------------------------------|------------------|--|--|-------------------|----------------------------|---------------------------------|---------|--|----------|--------------------------------|------------|--|
| GALVANIZED
LENGTH
(IN.) | 18.00 | 2 (.57 8 | Y-COORD MAX TENSION-LB
7.634 102364.
21.391 120445.
30.911 114316.
34.309 85190. | | · * | RAW MATERIAL
WEIGHT
(LB.) | 4338. | EFFECTIVE
LENGTH AI | 72.48 | VERTICAL
AR STRESS
(PSI) | .8066 | ************************************** |
| PROJECTION
LENGTH
(IN.) | | SAFETY FACTOR) 1.18 *** (1.13) $\left(\frac{60 \text{Ke}_1}{45 \text{Ke}_1}\right)$ | NO. X-COORD
33.449
26.824
14.886
0.000 | = 74.62 IN. | LOADING CASE LOD1 | ACTUAL
WEIGHT
(LB.) | 2959. | TOTAL LENGTH OF FAIL MODE LINE (IN.) | 81.33 | | 6.7 Y CY.1 | ** |
| SHIPPED
AS | BOLTS, TEMPLATES | STRESS
AREA
(SQ. IN.
3.250
AND FORCES | E-LB * BOLT 2 2 99. * 4 4 6 6 17. * 8 | TEMPLATE DIAMETER | GOVERNED BY | THICKNESS
(IN.) | 2.7500 | CRITICAL 1
FAILURE MODE | 8 | 600æ 851 | 1 | * LOADING CASES********* |
| WEIGHT
(LB.) | 3860. | ALLOWABLE
STRESS
(PSI)
#5000.
6000. | B MAX FORCE-LB
88773.
117899.
124028.
105947. | TEN | RACTERISTICS | | 8 | Α· | | ALLOWABLE
STRESS
(PSI) | 60012 | ************************************** |
| LENGTH
(IN.) | .96 | MAXIMUM
STRESS
(PSI)
38170. | MAX TENSION-LB
85190.
114316.
120445. | 2 IN. | BASE PLATE CHARACTERISTICS | OVERALL
WIDTH
(IN.) | 74.62 | POLE DIAM
(MAJOR DIAI
(IN.) | 60.00 | BENDING
STRESS
(PSI) | 41972. | ************************************** |
| DIAMETER
(IN.) | 2.250 | MAXIMUM
BOLT FORCE
(LB.)
124028. | X-COORD Y-COORD
34.309 0.000
30.911 14.886
21.391 26.824
7.634 33.449 | CIRCLE = 68.62 | * * | OVERALL
LENGTH
(IN.) | 74.62 | | | STEEL
SPECIF. | A-633 | BASE
ICATI
IN-KI
IN-KI |
| NUMBER OF BOLTS | 28 | STEEL
SPECIF.
A615 | BOLT NO. 3 | MAX. BOLT | | DRAWING
NUMBER | HXD6-98 | TOP
WIDTH
(IN.) | 14.84 | ;
:
:
: | 1 | ** LOADS AT POLE LOADING CASE IDENTIE MOMENT ABT. X-AXIS (MOMENT ABT. Y-AXIS (SHEAR FORCE (LB.) VERTICAL FORCE (LB.) |