

10 INDUSTRIAL AVE, SUITE 3 MAHWAH NJ 07430

PHONE: 201.684.0055 FAX: 201.684.0066

October 14, 2016

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

T-Mobile Northeast LLC – CT11180C Tower Share Application 130 Vernon Road, Bolton, CT 06043 Latitude- 41.80264800 Longitude- -72.44121300

Dear Ms. Bachman,

This letter and attachments are submitted on behalf of T-Mobile Northeast LLC ("T-Mobile"). T-Mobile plans to install antennas and related equipment at the tower site located at 130 Vernon Road in Bolton, Connecticut. Please note, T-Mobile currently has equipment installed at this same address. This proposed installation involves the installation and collocation at a different tower on the same property.

T-Mobile will install four (4) 700/1900 MHz antennas and four (4) RRHs at the 130' level of the existing 150' guyed tower. One (1) hybrid cable will also be installed. T-Mobile's equipment cabinets will be placed on an existing 4.5' X 7.5' concrete pad within the existing ground facility. Included are plans by Infinigy, dated October 11, 2016, depicting the planned changes and attached as **Exhibit A**. Also included is a structural analysis prepared by AECOM, dated September 20, 2016, confirming that the existing tower is structurally capable of supporting the proposed equipment. This is attached as **Exhibit B**.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of T-Mobile's intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Robert Morra, First Selectman of the Town of Bolton, as well as the tower and property owner, Mountaintop Enterprises, Inc. Please see the attached letter from Mountaintop Enterprises, Inc. authorizing the proposed shared use of this facility attached as **Exhibit C**.

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the guyed tower is 150'; T-Mobile's proposed antennas will be located at a center line height of 130'.
- 2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.

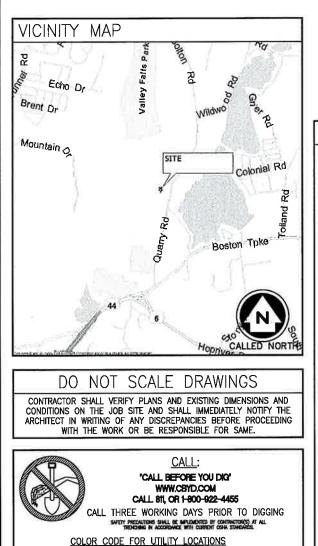
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.
- 4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 13.52%, as evidenced by **Exhibit D**.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, T-Mobile respectfully indicates that the shared use of this facility satisfies these criteria.

- A. <u>Technical Feasibility</u>. The existing guyed tower has been deemed structurally capable of supporting T-Mobile's proposed loading. The structural analysis is included as Exhibit B.
- B. <u>Legal Feasibility</u>. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this guyed tower in Bolton. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit T-Mobile to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit C, authorizing T-Mobile to file this application for shared use.
- C. <u>Environmental Feasibility</u>. The proposed shared use of this facility would have a minimal environmental impact. The installation of T-Mobile equipment at the 130' level of the existing 150' tower would have an insignificant visual impact on the area around the tower. T-Mobile's ground equipment would be installed within the existing facility compound. T-Mobile's shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit D, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. <u>Economic Feasibility</u>. T-Mobile will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist T-Mobile with this tower sharing application.
- E. <u>Public Safety Concerns</u>. As discussed above, the guyed tower is structurally capable of supporting T-Mobile's proposed loading. T-Mobile is not aware of any public safety concerns relative to the proposed sharing of the existing guyed tower. T-Mobile's intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Bolton.

Sincerely,

Kyle Richers


Kyle Richers Transcend Wireless 10 Industrial Ave., Suite 3 Mahwah, New Jersey krichers@transcendwireless.com 908-447-4716

cc: Robert Morra- First Selectman, Town of Bolton Mountaintop Enterprises, Inc

T-MOBILE NORTHE

CT11180C BOLTON CT.

130 VERNON ROA BOLTON, CT 0604

SEWER

SURVEY

RECLAIMED WATER

— GREEN

– PINK

- PURPLE

PROPOSED EXCAVATION - WHITE

ELECTRIC - RED

WATER

GAS/OIL - YELLOW

TEL/CATV - ORANGE

- BLUE

(701D_WOUTU21	CONFIGURATION)
---------------	----------------

GENERAL NOTES

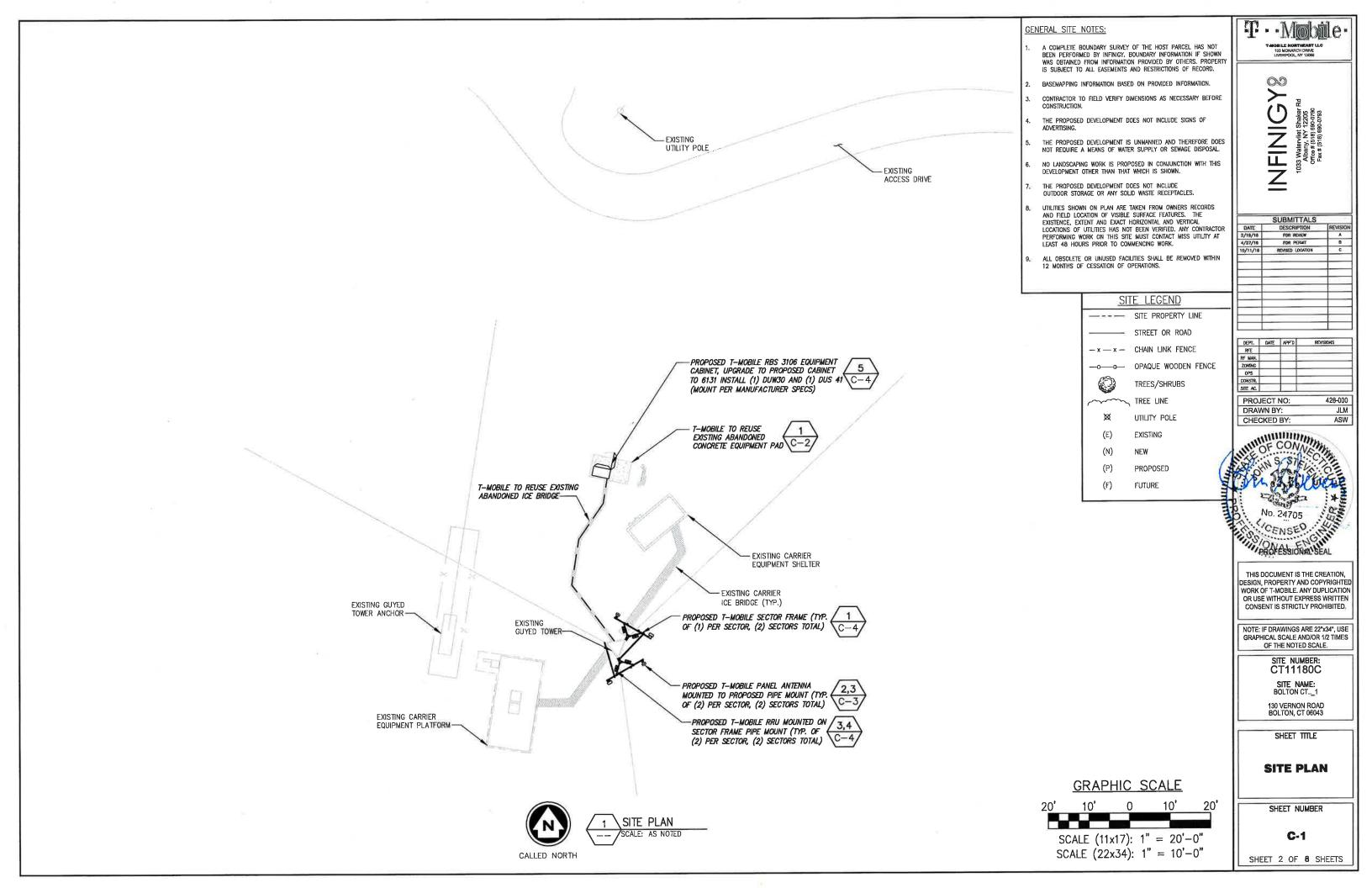
1. THE CONTRACTOR SHALL GIVE ALL NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES. RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY, MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS, AND LOCAL AND STATE JURISDICTIONAL CODES BEARING ON THE PERFORMANCE OF THE WORK, THE WORK PERFORMED ON THE PROJECT AND THE MATERIALS INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES.

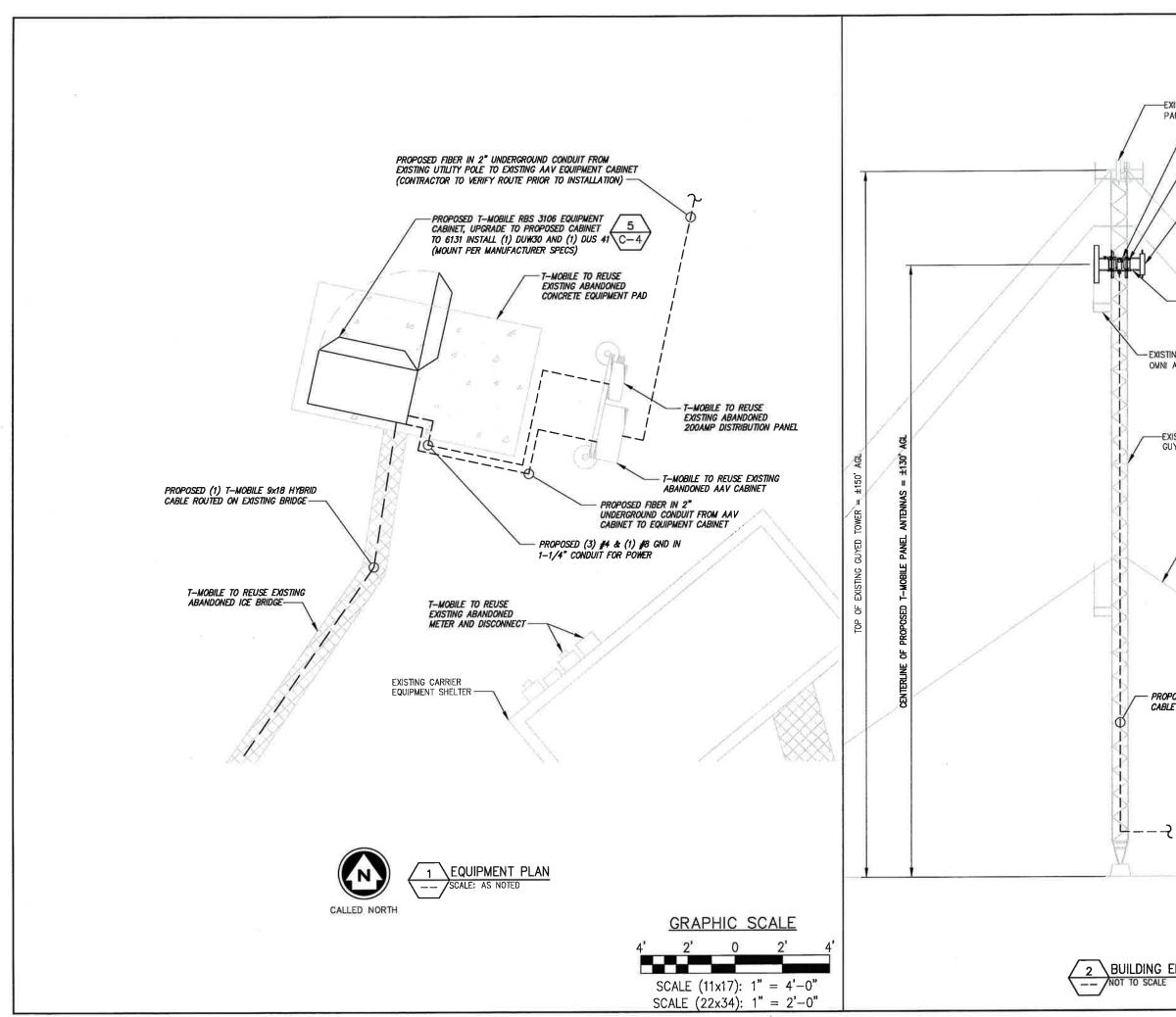
2. THE ARCHITECT/ENGINEER HAVE MADE EVERY EFFORT TO SET FORTH IN THE CONSTRUCTION AND CONSTRUCT DOCUMENTS THE COMPLETE SCOPE OF WORK. THE CONTRACTOR BIDDING THE JOB IS NEVERTHELESS CAUTIONED THAT MINOR OMISSIONS OR ERRORS IN THE DRAWINGS AND OR SPECIFICATIONS SHALL NOT EXCUSE SAID CONTRACTOR FROM COMPLETING THE PROJECT AND IMPROVEMENTS IN ACCORDANCE WITH THE INTENT OF THESE DOCUMENTS.

- 3. THE CONTRACTOR OR BIDDER SHALL BEAR THE RESPONSIBILITY OF NOTIFYING (IN WRITING) THE T-MOBILE REPRESENTATIVE OF ANY CONFLICTS, ERRORS, OR OMISSIONS PRIOR TO THE SUBMISSION OF THE CONTRACTOR'S PROPOSAL OR PERFORMANCE OF WORK, IN THE EVENT OF DISCREPANCIES, THE CONTRACTOR SHALL PRICE THE MORE COSTLY OR EXPENSIVE WORK, UNLESS DIRECTED IN WRITING OTHERWISE.
- 4. THE SCOPE OF WORK SHALL INCLUDE FURNISHING OF ALL MATERIALS, EQUIPMENT, LABOR AND ALL OTHER MATERIALS AND LABOR DEEMED NECESSARY TO COMPLETE THE WORK/PROJECT AS DESCRIBED HEREIN.
- 5. THE CONTRACTOR SHALL VISIT THE JOB SITE PRIOR TO THE SUBMISSION OF BIDS OR PERFORMING WORK TO FAMILIARIZE HIMSELF WITH THE FIELD CONDITIONS AND TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.

6. THE CONTRACTOR SHALL OBTAIN AUTHORIZATION TO PROCEED WITH CONSTRUCTION PRIOR TO STARTING WORK ON ANY ITEM NOT CLEARLY DEFINED BY THE CONSTRUCTION DRAWINGS/CONTRACT DOCUMENTS.

7. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS ACCORDING TO THE MANUFACTURER'S/VENDOR'S SPECIFICATIONS UNLESS NOTED OTHERWISE OR WHERE LOCAL CODES OR ORDINANCES TAKE PRECEDENCE.


8. THE CONTRACTOR SHALL PROVIDE A FULL SET OF CONSTRUCTION DOCUMENTS AT THE SITE UPDATED WITH THE LATEST REVISIONS AND ADDENDUM OR CLARIFICATIONS AVAILABLE FOR THE USE BY ALL PERSONNEL INVOLVED WITH THE PROJECT.

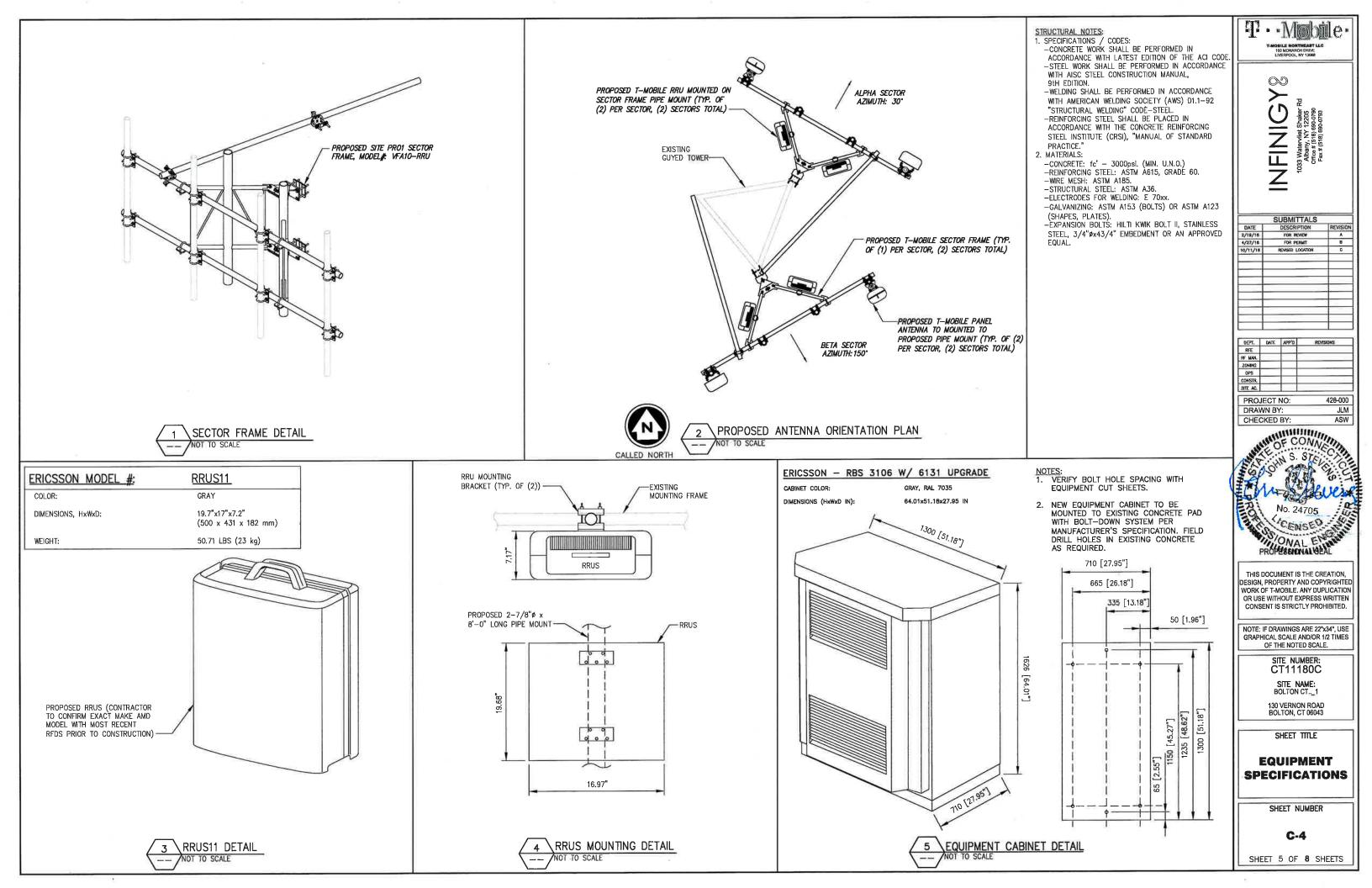

9. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER CONTRACT.

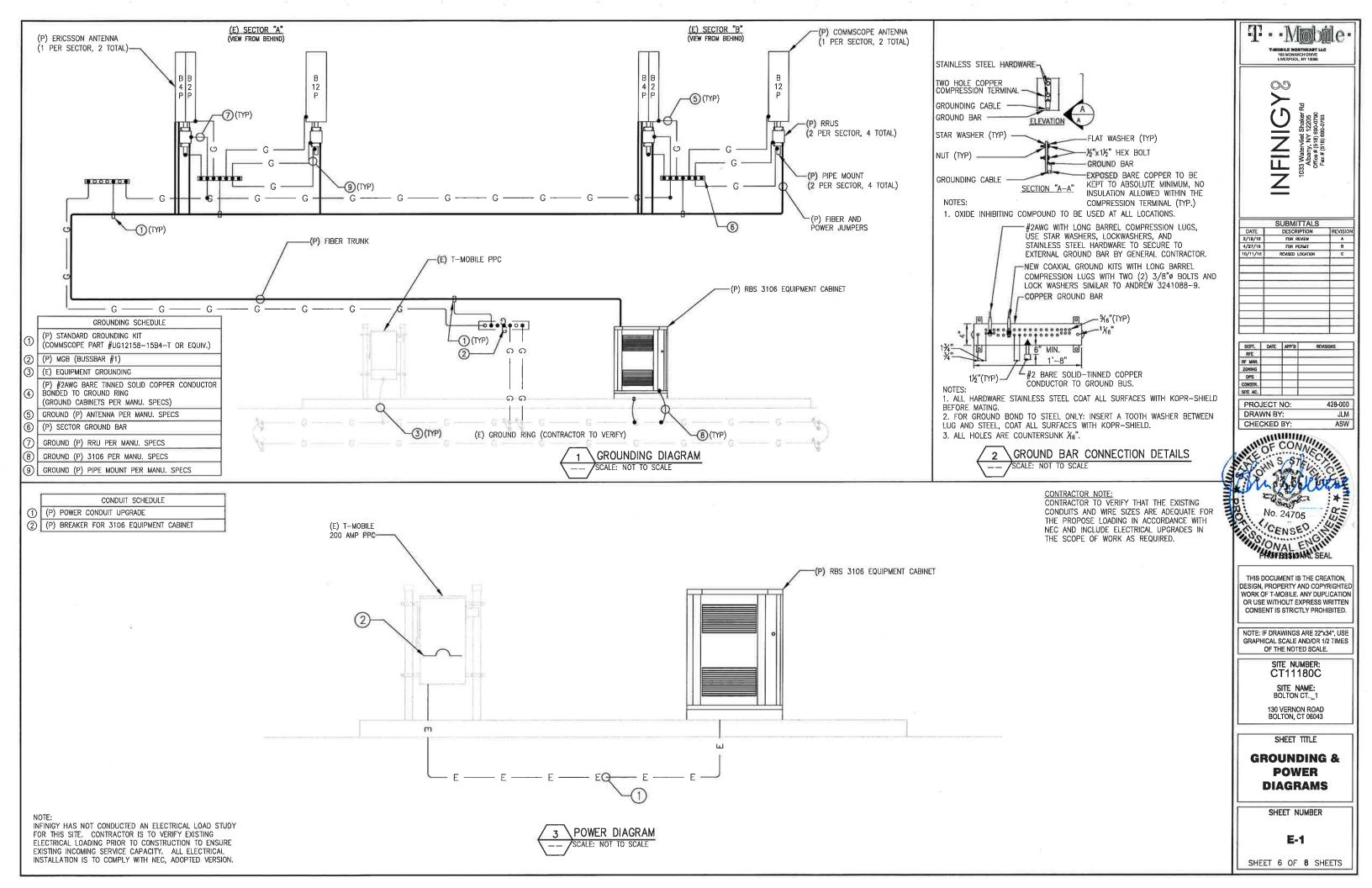
- 10. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ANY PERMITS AND INSPECTIONS WHICH ARE REQUIRED FOR THE WORK BY THE ARCHITECT/ENGINEER, THE STATE, COUNTY, OR LOCAL GOVERNMENT AUTHORITY.
- 11. THE CONTRACTOR SHALL MAKE NECESSARY PROVISIONS TO PROTECT EXISTING IMPROVEMENTS, EASEMENTS, PAVING, CURBING, ETC., DURING CONSTRUCTION. UPON COMPLETION OF WORK, THE CONTRACTOR SHALL REPAIR ANY DAMAGE THAT MAY HAVE OCCURRED DUE TO CONSTRUCTION ON OR ABOUT THE PROPERTY
- 12. THE CONTRACTOR SHALL KEEP THE GENERAL WORK AREA CLEAN AND HAZARD FREE DURING CONSTRUCTION AND DISPOSE OF ALL DIRT, DEBRIS, RUBBISH AND REMOVE EQUIPMENT NOT SPECIFIED AS REMAINING ON PROPERTY. PREMISES SHALL BE LEFT IN CLEAN CONDITION AND FREE FROM PAINT SPOTS, DUST. OR SMUDGES OF ANY NATURE.
- 13. THE CONTRACTOR SHALL COMPLY WITH ALL OSHA REQUIREMENTS, AS WELL AS THE LATEST EDITIONS OF ANY PERTINENT STATE SAFETY REGULATIONS.
- 14. THE CONTRACTOR SHALL NOTIFY THE T-MOBILE REPRESENTATIVE WHERE A CONFLICT OCCURS ON ANY OF THE CONTRACT DOCUMENTS. THE CONTRACTOR IS NOT TO ORDER MATERIAL OR CONSTRUCT ANY PORTION OF THE WORK THAT IS IN CONFLICT UNTIL CONFLICT IS RESOLVED BY THE T-MOBILE REPRESENTATIVE.
- 15. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, ELEVATIONS, PROPERTY LINES, ETC., ON THE JOB.
- 16. THE CONTRACTOR SHALL RETURN ALL DISTURBED AREAS TO THEIR ORIGINAL CONDITION AT THE COMPLETION OF WORK.

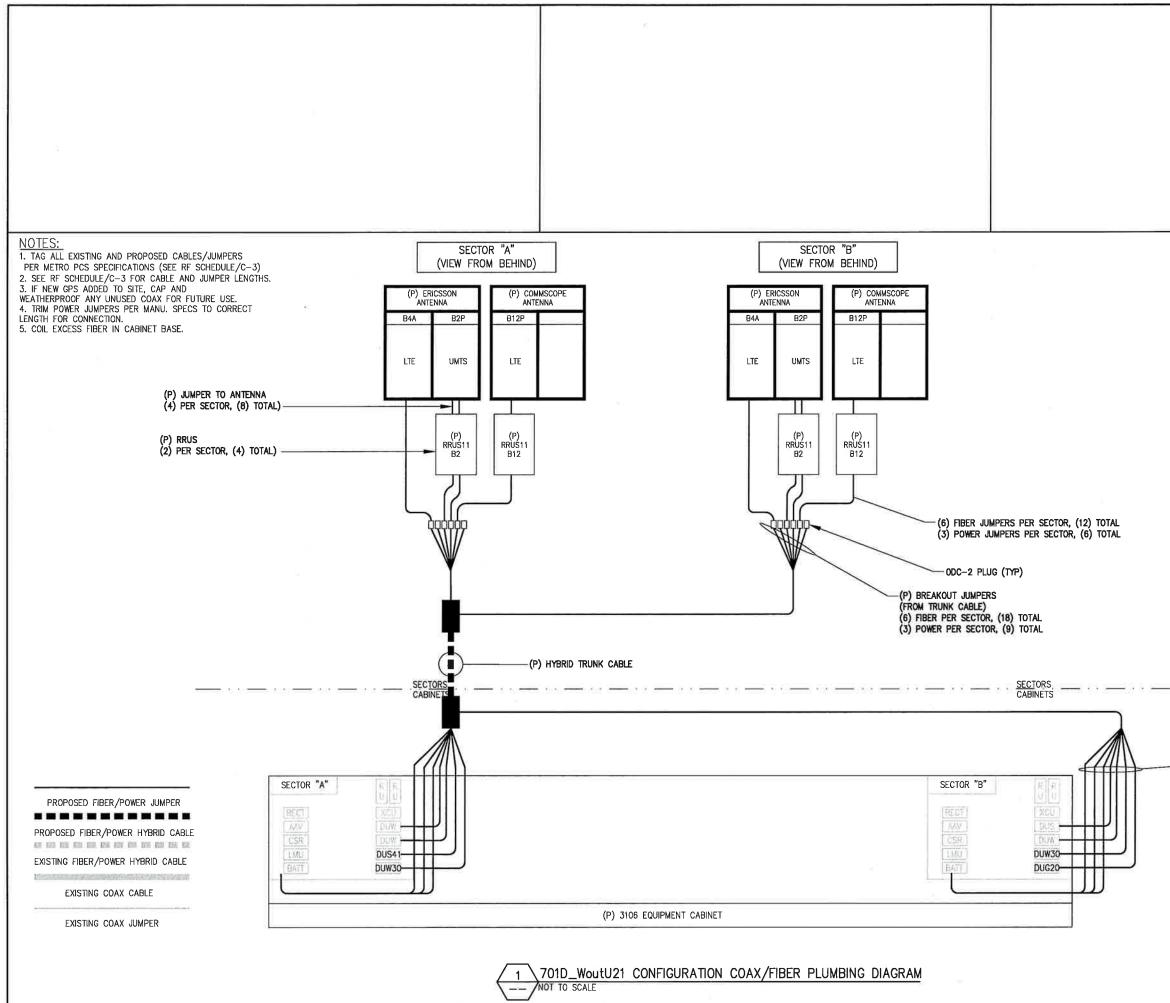
EAS	ST LLC	2	Instantiate Shaker Ra Instantiate Shaker Ra Instantiate Shaker Ra Shaker Shaker Ra Shaker Shaker Ra Shaker Shaker Ra Shaker Shaker Ra Shaker Shaker Ra Shaker Shaker Shak
			SUBMITTALS DATE DESCRIFTION REVISION 2/10/16 FOR REVIEW A 4/22/16 FOR REVIEW A 4/22/16 FOR REVIEW A 10/11/16 REVISION C
JRATIOI SITE NUMBER: SITE NAME: SITE ADDRESS: PROPERTY OWNER: PARCEL:	V) PROJECT SU CT11180C BOLTON CT1 130 VERNON ROAD BOLTON, CT 06043 MOUNTAINTOP ENTERPRISES, INC. C/O MILTON HIGHWAY PO BOX 9219 BOLTON, CT 06043 TBD	JMMARY APPLICANT: T-MOBILE NORTHEAST LLC 103 MONARCH DRIVE LIVERPOOL, NY 13088 PROJECT MANAGER: TRANSCEND WIRELESS 10 INDUSTRIAL AVE, SUITE 3 MAHWAH, NJ 07430 CONTACT: JAMIE MARCHINI (973) 885-0660	THIS DOCUMENT IS THE CREATION,
ZONING: JURISDICTION: LAT./LONG.: CONSTRUCTION TYPE:	R-1 TOWN OF BOLTON, CT N 41.802648" / W -72.441213"	ARCHITECT/ENGINEER: INFINIGY ENGINEERING 1033 WATERVLIET SHAKER ROAD ALBANY, NY 12205 CONTACT: ALEX WELLER 518-690-0790	DESIGN, PROPERTY AND COPYRIGHTED WORK OF T-MOBILE. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. NOTE: IF DRAWINGS ARE 22"x34", USE GRAPHICAL SCALE AND/OR 1/2 TIMES OF THE NOTED SCALE.
] Existing Billboard] Existing Rooftop] Existing Flagpole] Existing Fort Worth T-mobile Northeast Unmanned Wireless B	SCRIPTION EXISTING CABINET(S) EXISTING RBS 6201 INDOOR EXISTING RBS 6201 INDOOR EXISTING RBS 6201 STE SUPPORT RAT STEEL PLATFOR STEEL PLATFOR STEEL PLATFOR EXISTING PC EXIS	C-3 ANTENNA DETAIL & RE SCHEDULE C	SITE NUMBER: CT11180C SITE NAME: BOLTON CT1 130 VERNON ROAD BOLTON, CT 06043 SHEET TITLE TITLE SHEET
			SHEET NUMBER T-1 SHEET 1 OF 8 SHEETS

PROJECT DESC	CRIPTION	
EXISTING MONOPOLE EXISTING GUYED TOWER EXISTING TRANSMISSION TOWER EXISTING BILLBOARD EXISTING ROOFTOP EXISTING FLACPOLE EXISTING FORT WORTH	EXISTING CABINET(S) EXISTING RBS 6201 PROPOSED RBS 3106 EXISTING S8000 SITE SUPPORT KIT SITE SUPPORT CABINET GPS	OUTDOOR INDOOR INDOOR EXISTING CONCRETE PAD EXISTING STEEL PLATFORM EXISTING PPC PANELBOARD
UNMANNED WIRELESS BROA	LC PROPOSES THE MODIFIC Addand Facility, addition RRU's, fiber cable and Cabinet.	OF PROPOSED






STRUCTURAL ANALYSIS HAS NOT BEEN COMPLETED AT TIME OF ISSUANCE OF THESE DRAWINGS. STRUCTURAL ANALYSIS MUST BE COMPLETED PRIOR TO INSTALLATION.	T · · Modele Potterar LC 103 MOVARCH DRVE LIVERPOOL NY 1988
EXISTING CARRIER PANEL ANTENNA (TYP.)	
PROPOSED T-MOBILE SECTOR FRAME (TYP. 1 OF (1) PER SECTOR, (2) SECTORS TOTAL) PROPOSED T-MOBILE RRU MOUNTED ON 3,4 SECTOR FRAME PIPE MOUNT (TYP. OF 3,4	1033 Waterviet Shaker Rd Alberny, NY 12205 Critice # (518) 680-0736 Fax # (518) 680-0736
(2) PER SECTOR, (2) SECTORS TOTAL) C-4/ PROPOSED T-MOBILE PANEL ANTENNA MOUNTED TO PROPOSED PIPE MOUNT (TYP. 2,3)	Z [∞]
OF (2) PER SECTOR, (2) SECTORS TOTAL)	SUBMITTALS DATE DESCRIPTION REVISION 2/16/16 FOR REVEW A 4/22/16 FOR REVEW A 10/11/18 REVISED LOCATION C
PROPOSED T-MOBILE SECTOR FRAME (TYP. OF (1) PER SECTOR, (2) SECTORS TOTAL)	
STING CARRIER NI ANTENNA (TYP.)	DEPT, DATE APP'D REASONS
EXISTING GUYED TOWER	NFE
	PROJECT NO: 428-000 DRAWN BY: JLM CHECKED BY: ASW
EXISTING GUY WRE (TYP.)	PRO No.24705
OPOSED (1) T-MOBILE 9x18 HYBRID BLE ROUTED ON EXISTING BRIDGE	THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF T-MOBILE. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED.
	NOTE: IF DRAWINGS ARE 22*x34*, USE GRAPHICAL SCALE AND/OR 1/2 TIMES OF THE NOTED SCALE. SITE NUMBER:
	CT11180C SITE NAME: BOLTON CT1
ન	130 VERNON ROAD BOLTON, CT 06043 SHEET TITLE
	COMPOUND PLAN & ELEVATION
ELEVATION	SHEET NUMBER
E	SHEET 3 OF 8 SHEETS


					r							F SYSTEM	SCHEE	DULE (701	D_Wou	tU21 CONFIG			1			0.010-	I		1.
ECTOR	TECHNOLOGY	ANTENNA PORT	BAND	antenna model #	VENDOR	QTY (REMOVED)	QTY (NEW)	AZIMUTH	M-TILT		ANTENNA ENTERLINE	TMA MODEL #	VENDOR	RRU MODEL #	VENDOR	CABLE CABLE LENGTH DIAMETER	CABLE QTY.	CABLE TYPE	CABLE MODEL #	VENDOR	CABLE TAGGING	COLOR CODING	JUMPER TYPE	JUMPER TAGGING	COLO
	12100	P1	B4A	AIR21 B4A/B2P	ERICSSON	0	1	30"	σ	2"	130'-0"	340	-	-	-	TBD -	-	HYBRID	MASTERLINE EXTREME HYBRID (9/18)	ERICSSON	FIBER 1	0	FIBER		-
A	U1900	P2	B2P	MILET D WY DEI					Ů	2					ERICSSON		(ANT	ENNA CONNEC	CTED VIA PROPOSED F	ROPOSED CA	NBLE)		FIBER		
	L700	P3/P4	B12P	SBNH-1D65C	COMMSCOPE	0	1	30°	ď	2	130'-0"	-	-	(PROPOSED) RRUS 11 B12	ERICSSON				CTED VIA PROPOSED F				FIBER		_
	L2100	P1	B4A	AIR21 B4A/B2P	ERICSSON	0	1	150"	σ	2	130'-0"	~	12						CTED VIA PROPOSED F				FIBER		-
В	U1900		B2P				_							(PROPOSED) RRUS 11 B2 (PROPOSED)					CTED VIA PROPOSED F				FIBER FIBER		+
	L700	P3/P4	B12P	SBNH-1D65C	COMMSCOPE	0	1	150"	0°	2"	130'-0"	<u>.</u>	-	(PROPOSED) RRUS 11 B12	ERICSSON		(ANI)	ENNA CUNNE	CTED VIA PROPOSED F	MOPUSED CA	<i></i>		TIDEIT	 KEY	
														RF SCHEDU	JLE								ROPOSED BER CONNEC	G — GREEN — UM TION B — BLUE — UM Y — YELLOW — L O — ORANGE — F	TS AW
						MOUNTIN (2¾" –	IG PIPE 4½" O.D.)		5.85"			2.68" (LOWER CLAM	<i>I</i> ₽)		3.46" PER CLAMF)			PROPOSED PIPE (CONTRACTOR T				\bigcap	TAG #1 (TAG #2	
ADOME ADOME MENSI EIGHT,	OUNTED BRACKE		10.:	SBNH-1 FIBERGLASS, LIGHT GRAY 96.5"x11.9"x 49.6 LBS (1 7-16 DIN FE	UV RESISTAN	IT		ERICSS RADOME RADOME DIMENSION WEIGHT, N PRE-MOU CONNECTO	MATERIA COLOR: NS, HXW V/ NTED BI	IL: IXD:		FIBE LIGF 54" 90L	I⊺ GRAY X12"X8"	V RESISTANT			*****		*• *•	- PROPOSED BRACKET (1 - PROPOSED ANTENNA (1	IYP.)	1			
	4		2	C.96				€		8"				12.0"	-					- PROPOSED BRACKET (1					
		7.1"		REAR		11.9" TOP		€	1	SIDE.			56.0	IOP			60 00 V					1. TWO MET OF EVER' 2. CABLES METALLIC 3. TAGS MI APPROPR 4. STANDAR	Y CABLE LON LESS THAN TAGS ATTA LL BE FASTE IATE FOR CA RDIZED META S ALREADY	SHALL BE ATTACHED AT IGER THAN (3) THREE FE (3) THREE FEET WILL HA' HED AT THE CENTER OF NED WITH STAINLESS STE BLE DIAMETER. LIC TAG KITS WILL BE A ENGRAVED TO ACCOMODA	EET. IVE T F THE EEL Z ASSEN
							ENNA [<u> </u>								,	3 MO	UNTING DETAIL					ETALLIC TAG DE	тан

	INBIANCE IN THE ALTER THE ALTER AND A CONTRACT OF A CONTRA
•	SUBMITTALS DATE DESCRIPTION REVISION 2/19/16 FOR REVEW A 4/27/16 FOR REVEW A 10/11/16 REVISED LOCATION C
	PROJECT NO: 428-000 DRAWIN BY: JLM CHECKED BY: ASW OF COAL No. 24705 ONAL ENOINAL SEAL
×	PROFESSIONAL SEAL THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF T-MOBILE. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED.
(6) FIBER JUMPERS PER SECTOR, 18 TOTAL (3) POWER JUMPERS PER SECTOR, 9 TOTAL (PART OF (P) HYBRID TRUNK CABLE) (SEE NOTES 4 & 5)	OF THE NOTED SCALE. SITE NUMBER: CT11180C SITE NAME: BOLTON CT1 130 VERNON ROAD BOLTON, CT 06043 SHEET TITLE
	COAX/FIBER PLUMBING DIAGRAM SHEET NUMBER
	E-2 SHEET 7 OF 8 SHEETS

ELECTRICAL NOTES:

WORK INCLUDED

- 1. INCLUDE ALL LABOR. MATERIALS. FOUIPMENT, PLANT SERVICES AND ADMINISTRATIVE TASKS REQUIRED TO COMPLETE AND MAKE OPERABLE THE ELECTRICAL WORK SHOWN ON THE DRAWINGS AND SPECIFIED HEREIN, INCLUDING BUT NOT LIMITED TO THE FOLLOWING:
- A. PREPARE AND SUBMIT SHOP DRAWINGS, DIAGRAMS AND ILLUSTRATIONS.
- B. PROCURE ALL NECESSARY PERMITS AND APPROVALS AND PAY ALL REQUIRED FEES AND CHARGES IN CONNECTION WITH THE WORK OF THIS CONTRACT
- C. SUBMIT AS-BUILT DRAWINGS, OPERATING AND MAINTENANCE INSTRUCTIONS AND MANUALS.
- D EXECUTE ALL CUTTING, DRILLING, ROUGH AND FINISH PATCHING OF EXISTING OR NEWLY INSTALLED CONSTRUCTION REQUIRED FOR THE WORK OF THIS CONTRACT. FOR SLAB PENETRATIONS THROUGH POST TENSION SLABS, X-RAY EXACT AREA OF PENETRATION PRIOR TO PERFORMING WORK. COORDINATE ALL X-RAY WORK WITH BUILDING ENGINEER. E. PROVIDE HANGERS, SUPPORTS, FOUNDATIONS, STRUCTURAL
- FRAMING SUPPORTS, AND BASES FOR CONDULT AND EQUIPMENT PROVIDED OR INSTALLED UNDER THE WORK OF HIS CONTRACT. PROVIDE COUNTER FLASHING, SLEEVES AND SEALS FOR FLOOR AND WALL PENETRATIONS
- MAINTAIN ALL EXISTING ELECTRICAL SERVICES IN THE BUILDING AREAS NOT AFFECTED BY THE ALTERATION DURING THE PROGRESS OF THE WORK INCLUDING PROVIDING ALL EMPORARY JUMPERS, CONDUITS, CAPS, PROTECTIVE DEVICES, CONNECTIONS AND EQUIPMENT REQUIRED, PROVIDE TEMPORARY LIGHT AND POWER FOR CONSTRUCTION PURPOSES.
- 2. IT IS THE INTENT OF THESE DRAWINGS AND SPECIFICATIONS TO CALL FOR AN INSTALLATION THAT IS COMPLETE IN EVERY RESPECT. IT IS NOT THE INTENT TO GIVE EVERY DETAIL ON THE DRAWINGS AND IN THE SPECIFICATIONS. IF AN ITEM OF WORK IS INDICATED IN THE DRAWINGS IT IS CONSIDERED SUFFICIENT FOR INCLUSION IN THE CONTRACT. FURNISH AND INSTALL ALL MATERIAL AND EQUIPMENT USUALLY FURNISHED OR NEEDED TO MAKE A COMPLETE INSTALLATION WHETHER OR NO SPECIFICALLY MENTIONED IN THE CONTRACT DOCUMENTS.

GENERAL REQUIREMENTS

- 1. PROVIDE ALL WORK IN ACCORDANCE WITH THE NATIONAL ELECTRICAL CODE (NEC) AND LOCAL AND STATE ELECTRICAL
- 2. THE ELECTRICAL PLANS ARE DIAGRAMMATIC ONLY. REFER TO THE ARCHITECTURAL PLANS FOR THE EXACT DIMENSIONS OF THE BUILDING.
- 3. LOAD CALCULATIONS ARE BASED ON EXISTING BUILDING INFORMATION/DRAWINGS PROVIDED TO ENGINEERING CONTRACTOR IS TO VERIFY ALL EXISTING RATINGS AND LOADS PRIOR TO PURCHASING OF SPECIFIED EQUIPMENT FOR COMPLIANCE TO NEC. CONTRACTOR TO NOTIFY ENGINEER OF ANY DISCREPANCIES AND REQUEST FURTHER DIRECTION BY ENGINEER.
- 4. EXISTING BUILDING EQUIPMENT IS NOTED ON THE DRAWINGS NEW OR RELOCATED EQUIPMENT IS SHOWN WITH SOLID LINES. FUTURE EQUIPMENT (NOT IN THIS CONTRACT) IS DEPICTED WITH SHADED LINES, REQUEST CLARIFICATION OF DRAWINGS OR OF SPECIFICATIONS PRIOR TO PRICING OR INSTALLATION. 5. GENERAL
- A. AFTER CAREFULLY STUDYING THE DRAWINGS AND SPECIFICATIONS, AND BEFORE SUBMITTING THE PROPOSAL, MAKE A MANDATORY SITE VISIT TO ASCERTAIN CONDITIONS OF THE SITE, AND THE NATURE AND EXACT QUANTITY OF WORK TO BE PERFORMED, NO EXTRA COMPENSATION WILL BE ALLOWED FOR FAILURE TO NOTIFY THE OWNER, IN WRITING, OF ANY DISCREPANCIES THAT MAY HAVE BEEN NOTED. BETWEEN THE EXISTING CONDITIONS AND THE DRAWINGS AND SPECIFICATIONS.
- B. VERIFY ALL MEASUREMENTS AT THE SITE AND BE RESPONSIBLE FOR CORRECTNESS OF SAME.
- QUALITY, WORKMANSHIP, MATERIALS AND SAFETY A. PROVIDE NEW MATERIALS AND EQUIPMENT OF A DOMESTIC MANUFACTURER BY THOSE REGULARLY ENGAGED IN THE PRODUCTION AND MANUFACTURE OF SPECIFIED MATERIALS AND EQUIPMENT. WHERE UL, OR OTHER AGENCY, HAS ESTABLISHED STANDARDS FOR MATERIALS, PROVIDE MATERIALS WHICH ARE LISTED AND LABELED ACCORDINGLY. THE COMMERCIALLY STANDARD ITEMS OF EQUIPMENT AND THE SPECIFIC NAMES MENTIONED HEREIN ARE INTENDED FOR THE PROPER FUNCTIONING OF THE WORK.
- B. WORK SHALL BE PERFORMED BY WORKMEN SKILLED IN THE TRADE REQUIRED FOR THE WORK. INSTALL MATERIALS AND FOUIPMENT TO PRESENT A NEAT APPEARANCE WHEN COMPLETED AND IN ACCORDANCE WITH THE APPROVED RECOMMENDATIONS OF THE MANUFACTURER AND IN ACCORDANCE WITH CONTRACT DOCUMENTS. C. PROVIDE LABOR, MATERIALS, APPARATUS AND APPLIANCES
- ESSENTIAL TO THE ELINCTIONING OF THE SYSTEMS DESCRIBED. OR INDICATED HEREIN, OR WHICH MAY BE REASONABLY IMPLIED AS ESSENTIAL WHENEVER MENTIONED IN THE CONTRACT DOCUMENT OR NOT.
- D. MAKE WRITTEN REQUESTS FOR SUPPLEMENTARY INSTRUCTIONS TO ARCHITECT/ENGINEER IN CASE OF DOUBT AS TO WORK INTENDED OR IN EVENT OF NEED FOR EXPLANATION THEREOF
- E, PERFORMANCE AND MATERIAL REQUIREMENTS SCHEDULED OR SPECIFIED ARE MINIMUM STANDARD ACCEPTABLE. THE RIGHT TO JUDGE THE QUALITY OF EQUIPMENT THAT DEVIATES FROM THE CONTRACT DOCUMENT REMAINS SOLELY WITH ARCHITECT/ENGINEER, CONTRACT DOCUMENT OR NOT.
- GUARANTEE 1. GUARANTEE MATERIALS, PARTS AND LABOR FOR WORK FOR ONE YEAR FROM THE DATE OF ISSUANCE OF OCCUPANCY PERMIT. DURING THAT PERIOD, MAKE GOOD FAULTS OR IMPERFECTIONS THAT MAY ARISE DUE TO DEFECTS OR OMISSIONS IN MATERIALS OR WORKMANSHIP WITH NO ADDITIONAL COMPENSATION AND AS DIRECTED BY ARCHITECT.

CI FANING

- 1. REMOVE ALL CONSTRUCTION DEBRIS RESULTING FROM THE WORK.
- 2 CLEAN EQUIPMENT AND SYSTEMS FOLLOWING THE COMPLETION OF THE PROJECT TO THE SATISFACTION OF THE ENGINEER.
- COORDINATION AND SUPERVISION 1. CAREFULLY LAY OUT ALL WORK IN ADVANCE TO AVOID UNNECESSARY CUTTING, CHANNELING, CHASING OR DRILLING OF
 - FLOORS, WALLS, PARTITIONS, CEILINGS OR OTHER SURFACES. SUCH WORK IS NECESSARY, HOWEVER, PATCH AND REPAIR THE WORK IN AN APPROVED MANNER BY SKILLED MECHANICS AT NO ADDITIONAL COST TO THE OWNER. RENDER FULL COOPERATION TO OTHER TRADES WHERE WORK WILL BE INSTALLED IN CLOSE PROXIMITY TO WORK OF OTHER TRADES. ASSIST IN WORKING OUT SPACE CONDITIONS. IF WORK IS INSTALLED BEFORE COORDINATION WITH OTHER TRADES, OR CAUSES INTERFERENCE, MAKE CHANGES NECESSARY TO CORRECT CONDITIONS WITHOUT EXTRA CHARGE

SUBMITTALS. 1. AS-BUILT DRAWINGS:

- A. UPON COMPLETION OF THE WORK, FURNISH TO THE OWNER "AS-BUILT" DRAWINGS.
- 2. SERVICE MANUALS: A. UPON COMPLETION OF THE WORK, FULLY INSTRUCT T-MOBILE
- AS TO THE OPERATION AND MAINTENANCE OF ALL MATERIAL. EQUIPMENT AND SYSTEMS. B. PROVIDE 3 COMPLETE BOUND SETS OF INSTRUCTIONS FOR
- OPERATING AND MAINTAINING ALL SYSTEMS AND EQUIPMENT.
- CUTTING AND PATCHING
- 1. PROVIDE ALL CUTTING, DRILLING, ROUGH AND FINISH PATCHING REQUIRED TO COMPLETE THE WORK.
- OBTAIN OWNER APPROVAL PRIOR TO CUTTING THROUGH FLOORS OR WALLS FOR PIPING OR CONDUIT.
- TESTS, INSPECTION AND APPROVAL
- BEFORE ENERGIZING ANY ELECTRICAL INSTALLATION, INSPECT EACH UNIT IN DETAIL. TIGHTEN ALL BOLTS AND CONNECTIONS (TORQUE-TIGHTEN WHERE REQUIRED) AND DETERMINE THAT ALL COMPONENTS ARE ALIGNED, AND THE EQUIPMENT IS IN SAFE, OPERATIONAL CONDITION 2. PROVIDE THE COMPLETE ELECTRICAL SYSTEM FREE OF GROUND
- FAULTS AND SHORT CIRCUITS SUCH THAT THE SYSTEM WILL OPERATE SATISFACTORILY UNDER FULL LOAD CONDITIONS WITHOUT EXCESSIVE HEATING AT ANY POINT IN THE SYSTEM
- SPECIAL REQUIREMENTS
- 1. DO NOT LEAVE ANY WORK INCOMPLETE NOR ANY HAZARDOUS SITUATIONS CREATED WHICH WILL AFFECT THE LIFE OR SAFETY OF THE PUBLIC AND/OR BUILDING OCCUPANTS. DO NOT INTERFERE WITH OR CUTOFF ANY OF THE EXISTING SERVICES WITHOUT THE OWNER'S WRITTEN PERMISSION.
- 2. WHEN NECESSARY TO TEMPORARILY DISCONNECT ANY EXISTING BUILDING UTILITIES AND SERVICE SYSTEMS, INCLUDING FEEDER OR BRANCH CIRCUITING SUPPLYING EXISTING FACILITIES, CONFER WITH THE OWNER AND ARRANGE THE PERIOD OF INTERRUPTION FOR A TIME MUTUALLY AGREED UPON. SHUTDOWN NOTE: SCHEDULE AND NOTIEY OWNER 48 HOURS
- PRIOR TO SHUTDOWN. ALL SHUTDOWN WORK TO BE SCHEDULED AT A TIME CONVENIENT TO OWNER. GROUNDING
- 1. ROUTE ALL GROUNDING CONDUCTORS AS SHOWN ON CONDUIT/GROUNDING RISER.
- ROUTE 500 KCMIL CU. THHN CONDUCTOR FROM THE MGB LOCATION TO BUILDING STEEL, VERIEY BUILDING STEEL IS EFFECTIVELY GROUNDED PER NEC TO THE MAIN SERVICE GROUNDING ELECTRODE CONDUCTOR (GEC)
- MAKE ALL GROUND CONNECTIONS FROM MGB TO ELECTRICAL EQUIPMENT WITH 2 HOLE, CRIMP TYPE, BURNDY COMPRESSION TERMINATIONS, SIZED AS REQUIRED. 4. USE 1 HOLE, CRIMP TYPE, BURNDY COMPRESSIONS
- TERMINATIONS, SIZED AS REQUIRED, AT EQUIPMENT GROUND CONNECTIONS 5. HIRE AN INDEPENDENT LAB TO PERFORM THE SPECIFIED OHMS.
- TESTING. PROVIDE 4 SETS OF THE CERTIFIED DOCUMENTS TO THE OWNER FOR VERIFICATION PRIOR TO THE PROJECT COMPLETION.
- RACEWAYS
- 1. ALL WIRING TO BE INSTALLED IN CONDUIT SYSTEMS IN ACCORDANCE WITH THE FOLLOWING:
- A. EXTERIOR FEEDERS AND CONTROL, WHERE UNDERGROUND, TO BE IN SCH 40 PVC.
- B. EXTERIOR, ABOVE GROUND POWER CONDUITS TO BE GALVANIZED RIGID STEEL (RGS). C. ALL TELECOMMUNICATION CONDUITS, INTERIOR/EXTERIOR, TO
- BE EMT D. INSTALL PULL ROPES IN ALL NEW EMPTY CONDUITS INSTALLED ON THIS PROJECT.
- ON THIS PROJECT. E. ALL TELECOM CONDUITS AND PULL BOXES INSTALLED ON THIS PROJECT TO BE LABELED 'T-MOBILE". OWNER WILL PROVIDE LABELS FOR CONTRACTOR TO INSTALL.
- F. INTERIOR FEEDERS TO BE INSTALLED IN E.M.T. WITH STEEL COMPRESSION FITTINGS. G. MINIMUM SIZE CONDUIT TO BE $\frac{1}{4}$ " TRADE SIZE
- UNLESS OTHERWISE INDICATED ON THE DRAWINGS.
- H. FINAL CONNECTIONS TO MOTORS AND VIBRATING EQUIPMENT TO BE INSTALLED IN LIQUID-TIGHT FLEXIBLE METAL CONDUIT. I. CONDUIT TO BE RUN CONCEALED IN CEILINGS, FINISHED AREAS OR DRYWALL PARTITIONS, UNLESS OTHERWISE NOTED.
- J. THE ROUTING OF CONDUITS INDICATED ON THE DRAWINGS IS DIAGRAMMATIC. BEFORE INSTALLING ANY WORK, EXAMINE THE WORKING LAYOUTS AND SHOP DRAWINGS OF THE OTHER IRADES TO DETERMINE THE EXACT LOCATIONS AND CI FARANCES
- CLEARANCES. K. ALL EXTERIOR MOUNTING HARDWARE TO BE GALVANIZED STEEL, COORDINATE WITH BUILDING ENGINEER PRIOR TO ATTACHING TO BUILDING STRUCTURE.

- RACEWAYS CONT'D

 - L. PENETRATIONS OF WALLS, FLOORS AND ROOFS, FOR THE PASSAGE OF ELECTRICAL RACEWAYS, TO BE PROPERLY SEALED AFTER INSTALLATION OF RACEWAYS SO AS TO MAINTAIN THE STRUCTURAL OR WATERPROOF INTEGRITY OF THE WALL, FLOOR OR ROOF SYSTEM TO BE PENETRATED. ALL CONDUIT PENETRATIONS THROUGH FIRE OR SMOKE RATED WALLS. CEILINGS OR SMOKE TIGHT CORRIDOR PARTITIONS TO MAINTAIN PROPER RATING OF WALL OR

CONFLICTS

1. THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFICATIONS

OF ALL MEASUREMENTS AT THE SITE BEFORE ORDERING ANY MATERIALS OR DOING ANY WORK. NO EXTRA CHARGE OR COMPENSATION SHALL BE ALLOWED DUE TO DIFFERENCE BETWEEN ACTUAL DIMENSIONS AND DIMENSIONS INDICATED ON

THE CONSTRUCTION DRAWINGS. ANY SUCH DISCREPANCY IN DIMENSION WHICH MAY BE FOUND SHALL BE SUBMITTED TO THE

OWNER FOR CONSIDERATION BEFORE THE CONTRACTOR

PROCEEDS WITH THE WORK IN THE AFFECTED AREAS.

FULLY INFORMED THEMSELVES PRIOR TO THE BIDDING

GOVERNING THE WORK

OF CONTRACTOR LICENSES AND BONDS

CONTRACTS AND WARRANTIES

ADDITIONAL DETAILS.

STORAGE

2. EXTERIOR

3. INTERIOR

FOREIGN MATTER.

ADJACENT SURFACES.

FINISHED SURFACES.

SERVICE AGREEMENT FOR MCSA.

RELATED DOCUMENTS AND COORDINATION

CHANGE ORDER PROCEDURE:

APPROVAL

OWNER

SHEETS.

PRODUCTS AND SUBSTITUTIONS

ALLOWED ANY EXTRA COMPENSATION BY REASON OF ANY

MATTER OR THING CONCERNING SUCH BIDDER MIGHT HAVE

3 NO PLEA OF IGNORANCE OF CONDITIONS THAT EXIST. OR OF

DIFFICULTIES OR CONDITIONS THAT MAY BE ENCOUNTERED, OR

OF ANY OTHER RELEVANT MATTER CONCERNING THE WORK TO

BE PERFORMED IN THE EXECUTION OF THE WORK WILL BE ACCEPTED AS AN EXCUSE FOR ANY FAILURE OR OMISSION ON

THE PART OF THE CONTRACTOR TO FULFILL EVERY DETAIL OF ALL THE REQUIREMENTS OF THE CONTRACT DOCUMENTS

1. CONTRACTOR IS RESPONSIBLE FOR APPLICATION AND PAYMENT

1. ALL MATERIALS MUST BE STORED IN A LEVEL AND DRY FASHION

AND IN A MANNER THAT DOES NOT NECESSARILY OBSTRUCT THE

FLOW OF OTHER WORK, ANY STORAGE METHOD MUST MEET ALL

1. THE CONTRACTORS SHALL, AT ALL TIMES, KEEP THE SITE FREE FROM ACCUMULATION OF WASTE MATERIALS OR RUBBISH

COMPLETION OF THE WORK. THEY SHALL REMOVE ALL RUBBISH

FROM AND ABOUT THE BUILDING AREA. INCLUDING ALL THEIR

TOOLS, SCAFFOLDING AND SURPLUS MATERIALS AND SHALL

A. VISUALLY INSPECT EXTERIOR SURFACES AND REMOVE ALL

B. REMOVE ALL TRACES OF SPLASHED MATERIALS FROM

A. VISUALLY INSPECT INTERIOR SURFACE AND REMOVE ALL

B. REMOVE ALL TRACES OF SPLASHED MATERIALS FROM ADJACENT SURFACES. C. REMOVE PAINT DROPPINGS, SPOTS, STAINS, AND DIRT FROM

1. REFER TO SECTION 17 OF SIGNED MCSA: SEE PROFESSIONAL

1. GENERAL CARPENTRY, ELECTRICAL AND ANTENNA DRAWINGS ARE

1. CONTRACTOR SHALL SUBMIT SHOP DRAWINGS AS REQUIRED AND

CONTRACTOR MUST REFER TO ALL DRAWINGS. ALL COORDINATION

INTERRELATED, IN PERFORMANCE OF THE WORK, THE

LISTED IN THESE SPECIFICATIONS TO THE OWNER FOR

2. ALL SHOP DRAWINGS SHALL BE REVIEWED, CHECKED AND

CORRECTED BY CONTRACTOR PRIOR TO SUBMITTAL TO THE

1. SUBMIT 3 COPIES OF EACH REQUEST FOR SUBSTITUTION. IN

INCLUDE RELATED SPECIFICATION SECTION AND DRAWING

COMPLIANCE WITH THE REQUIREMENTS FOR SUBSTITUTIONS SUBMIT ALL NECESSARY PRODUCT DATA AND CUT SHEETS

NUMBERS AND COMPLETE DOCUMENTATION SHOWING

WHICH PROPERLY INDICATE AND DESCRIBE THE ITEMS. PRODUCTS AND MATERIALS BEING INSTALLED. THE CONTRACTOR

EACH REQUEST, IDENTIFY THE PRODUCT OR FABRICATION OR INSTALLATION METHOD TO BE REPLACED BY THE SUBSTITUTION.

SHALL, IF DEEMED NECESSARY BY THE OWNER, SUBMIT ACTUAL SAMPLES TO THE OWNER FOR APPROVAL IN LIEU OF CUT

ARCHITECTURAL SYMBOLS

ROOM

###

DETAIL REFERENCE KEY

- DRAWING DETAIL NUMBER-

LSHEET NUMBER OF DETAIL-

(x)-

- REFER TO

RE: 2/A-3

TO BE THE RESPONSIBILITY OF THE CONTRACTOR.

TRACES OF SOIL, WASTE MATERIALS, SMUDGES AND OTHER

C. IF NECESSARY, TO ACHIEVE A UNIFORM DEGREE OF CLEANLINESS, HOSE DOWN THE EXTERIOR OF THE STRUCTURE.

TRACES OF SOIL, WASTE MATERIALS, SMUDGES AND OTHER FOREIGN MATTER FROM WALLS, FLOOR, AND CEILING

RECOMMENDATIONS OF THE ASSOCIATED MANUFACTURER.

CAUSED BY THEIR EMPLOYEES AT WORK AND AT THE

LEAVE THEIR WORK CLEAN AND READY TO USE.

2. SEE MASTER CONTRACTION SERVICES AGREEMENT FOR

2. THE BIDDER, IF AWARDED THE CONTRACT, WILL NOT BI

- CEILING. M. PROVIDE ALL CONDUIT ENDS WITH INSULATED METALLIC
- GROUNDING BUSHINGS. N. CONDUIT TO BE SUPPORTED AT MAXIMUM DISTANCE OF 8'-0", OR AS REQUIRED BY NEC, IN HORIZONTAL AND
- VERTICAL DIRECTIONS O. PROVIDE STAINLESS STEEL BLANK COVER PLATES FOR ALL JUNCTION BOXES AND/OR OUTLET BOXES NOT USED IN EXPOSED AREAS. PROVIDE ALL OTHER UNUSED BOXES WITH
- STANDARD STEEL COVER PLATES. P. WHERE APPLICABLE, PROVIDE ROOFTOP CONDUIT SUPPORT SYSTEM, CONFORMING TO ROOFTOP WARRANTY REQUIREMENTS,

WIRES AND CABLES

- 1. CONTRACTOR TO COORDINATE WITH EQUIPMENT SUPPLIER AND VENDOR FOR EXACT EQUIPMENT OVER-CURRENT PROTECTION VOLTAGE, WIRE SIZE AND PLUG CONFIGURATION, IF APPLICABLE, PRIOR TO BID
- 2. ALL EQUIPMENT/DEVICES TO BE PROVIDED WITH INSULATED GROUND CONDUCTOR
- 3. ALL WIRE AND CABLE TO BE 600VOLT, COPPER, WITH THWN/ THEN INSULATION. EXCEPT AS NOTED.
- 4. WIRE FOR POWER AND LIGHTING WILL NOT BE LESS THAN NO. 12AWG, ALL WIRE NO. 8 AND LARGER TO BE STRANDED. 5. CONTROL WIRING IS NOT TO BE LESS THAN NO. 14AWG, CLEANUF
- FLEXIBLE IN SINGLE CONDUCTORS OR MULTI-CONDUCTOR CABLES CONTROL WIRING WILL CONSIST OF MULTI-CONDUCTOR CABLES WHEREVER POSSIBLE, CABLES TO BE PROVIDED WITH AN OVERALL FLAME-RETARDANT, EXTRUDED JACKET AND RATED FOR PLENUM USE. ALL CONTROL WIRE TO BE 600VOLT RATED.
- 6. WIRE PREVIOUSLY PULLED INTO CONDUIT IS CONSIDERED USED AND IS NOT TO BE RE-PULLED. 7. HOME RUNS AND BRANCH CIRCUIT WIRING FOR 20A. 120V
- CIRCUITS: LENGTH (FT.) HOME RUN WIRE SIZE NO. 12 NO. 10
- 51 TO 100 101 TO 150
- 8. VOLTAGE DROP IS NOT TO EXCEED 3%.
- 9. MAKE ALL CONNECTIONS WITH UL APPROVED, SOLDERLESS, PRESSURE TYPE INSULATED CONNECTORS: SCOTCHLOK OR AND APPROVED EQUAL.
- WIRING DEVICES
- ALL RECEPTACLES INSTALLED IN THIS PROJECT TO BE GROUNDING TYPE, WITH GROUNDING PIN SLOT CONNECTED TO DEVICE GROUND SCREW FOR GROUND WIRE CONNECTION. DISCONNECT SWITCHES AND FUSES
- 1. DISCONNECT SWITCHES TO BE VOLTAGE-RATED TO SUIT THE CHARACTERISTICS OF THE SYSTEM FROM WHICH THEY ARE SUPPLIED.
- 2. PROVIDE HEAVY-DUTY, METAL-ENCLOSED, EXTERNALLY-OPERATED DISCONNECT SWITCHES, FUSED OR UNFUSED, OF SUCH TYPE AND SIZE AS REQUIRED TO PROPERLY PROTECT OR DISCONNECT THE LOAD FOR WHICH THEY ARE INTENDED.
- PROVIDE NEMA 1 DISCONNECT SWITCHES FOR INTERIOR INSTALLATION, NEMA 3R FOR EXTERIOR INSTALLATION.
- 4. DISCONNECT SWITCHES TO BE MANUFACTURED BY: A. GENERAL ELECTRIC COMPANY
- B. SQUARE-D.
- 5. PROVIDE RK-1 TYPE FUSES, UNLESS NOTED OTHERWISE. INSTALLATION
- 1. INSTALL DISCONNECT SWITCHES WHERE INDICATED ON
- DRAWINGS.
- 2. INSTALL FUSES IN FUSIBLE DISCONNECT SWITCHES. FUSES MUST MATCH IN TYPE AND RATING.
- 3. FUSES TO BE MOUNTED SO THAT THE LABELS SHOWING THEIR
- RATINGS CAN BE READ WITHOUT REQUIRING FUSE REMOVAL. 4. FURNISH AND DEPOSIT SPARE FUSES AT THE JOB SITE AS
- FOLLOWS: A. THREE SPARES FOR EACH TYPE AND SIZE, IN EXCESS OF 60A, USED FOR INITIAL FUSING.
- B. TEN PERCENT SPARES FOR EACH TYPE AND SIZE. UP TO
- AND INCLUDING 60A, USED FOR INITIAL FUSING. IN NO CASE WILL LESS THAN THREE FUSES OF ONE PARTICULAR TYPE AND SIZE BE FURNISHED.

GENERAL NOTES:

TO COMPLETE THE WORK

CHANGE ORDER.

- INTENT THESE SPECIFICATIONS AND CONSTRUCTION DRAWINGS ACCOMPANYING THEM DESCRIBE THE WORK TO BE DONE AND
- THE MATERIALS TO BE FURNISHED FOR CONSTRUCTION. 2. THE DRAWINGS AND SPECIFICATIONS ARE INTENDED TO BE FULLY EXPLANATORY AND SUPPLEMENTARY, HOWEVER, SHOULD ANYTHING BE SHOWN, INDICATED, OR SPECIFIED ON ONE AND NOT THE OTHER. IT SHALL BE DONE THE SAME AS IF SHOWN,
- INDICATED OR SPECIFIED IN BOTH 3. THE INTENTION OF THE DOCUMENTS IS TO INCLUDE ALL LABOR AND MATERIALS REASONABLY NECESSARY FOR THE PROPER EXECUTION AND COMPLETION OF THE WORK AS STIPULATED IN
- THE CONTRACT 4. THE PURPOSE OF THE SPECIFICATIONS IS TO INTERPRET THE INTENT OF THE DRAWINGS AND TO DESIGNATE THE METHOD OF THE PROCEDURE, TYPE AND QUALITY OF MATERIALS REQUIRED

5. MINOR DEVIATIONS FROM THE DESIGN LAYOUT ARE ANTICIPATED

MADE OR PERMITTED BY THE OWNER WITHOUT ISSUING A

AND SHALL BE CONSIDERED AS PART OF THE WORK. NO CHANGES THAT ALTER THE CHARACTER OF THE WORK WILL BE

			10
			T · · Mobile
		WITH APPLICABLE LOCAL, SE SHALL INCLUDE, BUT	T-HOBILE NORTHEAST LLC
NOT BE LIMITED TO		ODES SET FORTH BY THE	103 NONARCH DRIVE LIVERPOOL, NY 13088
ADMINISTRATION	BUDY, SEE CODE (COMPLIANCE I-1.	
 BEFORE THE COMME 		WORK, THE CONTRACTOR WILL ACT AS A SINGLE	
POINT OF CONTACT PROJECT, THIS PROJ	FOR ALL PERSONNE	l involved in this	
	PROJECT WHICH WI	LL BE SUBMITTED TO	
2. SUBMIT A BAR TYPE	PROGRESS CHART,	NOT MORE THAN 3	
THE WORK ON THE	SCHEDULE, INDICATI		(518) XV.NI
EACH MAJOR CATEGO AT THE SITE, PROPE	ORY OR UNIT OF WO RLY SEQUENCED AN	DRK TO BE PERFORMED ID COORDINATED WITH	ABAN/NY 12205 Office # (519) 680-0790 Fax # (519) 680-0790
OTHER ELEMENTS OF WORK SUFFICIENTLY	WORK AND SHOW	NG COMPLETION OF THE	
FOR SUBSTANTIAL CO 3. PRIOR TO COMMENCE	OMPLETION OF THE	WORK.	
SCHEDULE AN ON-S	TTE MEETING WITH A	ALL MAJOR PARTIES. THIS	
MANAGER, CONTRACT	OR, LAND OWNER F	THE OWNER, PROJECT EPRESENTATIVE, LOCAL	
TELEPHONE COMPAN SUBCONTRACTED).			SUBMITTALS DATE DESCRIPTION REVISION
 CONTRACTOR SHALL CONSTANT COMMUNIC 	CATIONS, SUCH AS A	A MOBILE PHONE OR A	2/19/18 FOR REMEW A
BEEPER. THIS EQUIP OWNER, NOR WILL W	MENT WILL NOT BE	SUPPLIED BY THE	4/27/16 FOR PERMIT B 10/11/16 REVISED LOCATION C
5. DURING CONSTRUCT	ION, CONTRACTOR M	IUST ENSURE THAT R HARD HATS AT ALL	
TIMES. CONTRACTOR REQUIREMENTS IN TH	WILL COMPLY WITH		
6. PROVIDE WRITTEN D	AILY UPDATES ON S	TE PROGRESS TO THE	
OWNER. 7. COMPLETE INVENTOR			
8. NOTIFY THE OWNER	PROJECT MANAGER		
THAN 48 HOURS IN ERECTIONS, AND EQU			
NSURANCE AND BONDS			DEPT. DATE APP'D REVISIONS RFE
 CONTRACTOR, AT TH MAINTAIN, FOR THE 			RF MAN.
INSURANCE, AS REQ	uired and listed,		ZONING OPS
ORIGINAL CERTIFICATI	E OF INSURANCE ST	TATING ALL COVERAGES	CONSTR. SITE AC.
TO THE OWNER. REF REQUIRED INSURANC	e limits.		PROJECT NO: 428-000
ALL POLICIES.		ADDITIONAL INSURED ON	DRAWN BY: JLM
3. CONTRACTOR MUST	PROVIDE PROOF OF		CHECKED BY: ASW
	ADJ	ABBREVIATIONS	1 WOF CONNILL
	AGL	ABOVE GROUND LINE	S S CM
	& APPROX		ET 6 CONKUDES
	@ BTS	AT BASE TRANSMISSION STATION	I O TE
	CAB CLG	CABINET	E E Star + +
	CONC	CONCRETE	No. 24705
	CONT DIA OR Ø	CONTINUOUS DIAMETER	CENCED SS
	DWG EA	DRAWING EACH	MSS CNGIN
	ELEC	ELECTRICAL ELEVATION	FACTERBUTAL SEAL
	EQ	LYVAL	······
	EQUIP EGB	EQUIPMENT EQUIPMENT GROUND BAR	THIS DOCUMENT IS THE CREATION,
	(E) EXT	EXISTING EXTERIOR	DESIGN, PROPERTY AND COPYRIGHTED WORK OF T-MOBILE. ANY DUPLICATION
	FF	FINISHED FLOOR GAUGE	OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED.
	GA GALV	GALVANIZED	
	GC GRND	GENERAL CONTRACTOR GROUND	NOTE: IF DRAWINGS ARE 22"x34", USE GRAPHICAL SCALE AND/OR 1/2 TIMES
	LG MAX	LONG	OF THE NOTED SCALE.
	MECH	MECHANICAL MICROWAVE DISH	SITE NUMBER:
	MW MFR	MANUFACTURER	CT11180C
	MGB MIN	MASTER GROUND BAR	SITE NAME:
	MTL	METAL	BOLTON CT1
	(N) NIC	NOT IN CONTRACT	130 VERNON ROAD BOLTON, CT 06043
MBOLS	NTS OC	NOT TO SCALE ON CENTER	
	OPP (P)	OPPOSITE PROPOSED	SHEET TITLE
	PCS	PERSONAL COMMUNICATION SYSTEM	GENERAL AND
-	PPC SF	POWER PROTECTION CABINET SQUARE FOOT	ELECTRICAL
E KEY	SHT	SHEET SIMILAR	NOTES
	SS	STAINLESS STEEL	
	STL TOC	STEEL TOP OF CONCRETE	SHEET NUMBER
2	tom Typ	TOP OF MASONRY TYPICAL	
	VIF	VERIFY IN FIELD	N-1
	WWF	UNLESS OTHERWISE NOTED WELDED WIRE FABRIC	
	W/	WITH	SHEET 8 OF 8 SHEETS

ADMINISTRATION

INSURANCE AND BOND

Submitted to Transcend Wireless 10 Industrial Avenue Suite 3 Mahwah, New Jersey 07430 Submitted by AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 September 20, 2016

DETAILED STRUCTURAL ANALYSIS AND MODIFICATION OF AN EXISTING 150' GUYED TOWER AND FOUNDATION FOR PROPOSED ANTENNA ARRANGEMENT

•••**T**••Mobile•

Site ID : Site Address:

CT11180C 130 Vernon Road (West Coventry Tower) Bolton, CT

TWM-007

TABLE OF CONTENTS

- **1. EXECUTIVE SUMMARY**
- 2. INTRODUCTION
- 3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS
- 4. FINDINGS AND EVALUATION
- 5. CONCLUSIONS
- 6. DRAWINGS AND DATA
 - TNX TOWER INPUT / OUTPUT SUMMARY
 - TNX TOWER FEEDLINE DISTRIBUTION CHART
 - TNX TOWER FEEDLINE PLAN
 - TNX TOWER ANCHOR REACTIONS
 - TNX TOWER DETAILED OUTPUT
 - FOUNDATION ANALYSIS
 - ANCHOR DETAILS

1. EXECUTIVE SUMMARY

This report summarizes the structural analysis of the existing, previously reinforced, 150' guyed tower structure located at 130 Vernon Road, Bolton, CT. The structural analysis was conducted in accordance with the TIA-222-G¹ Standard for a wind velocity of 105 mph (3-second gust) and 50 mph (3-second gust) concurrent with 1" ice thickness, considered to increase in thickness with height and with the 2012 International Building Code with 2016 Connecticut State Building Code Amendments for a wind speed of 105 mph (3-second gust) and the AISC² Load Resistance Factor Design (LRFD). The design ice thickness for the State Code is to follow the ASCE 7³ Standard which is referenced in the TIA-222-G Standard. The antenna loading considered ion the analysis consists of all the existing antennas, transmission lines and ancillary items as outlined in the Introduction Section of this report.

The proposed T-Mobile antenna modification is listed below:

Antenna and Mount	Carrier	Antenna Center Elevation
Install:		
 (2) Ericsson AIR21 B4A/B2P Panel Antennas (Alpha and Beta Sectors) (2) Commscope SBNH-1D65C Panel Antennas (Alpha and Beta Sectors) (2) Ericsson RRUS11 B2 RRH Units (Alpha and Beta Sectors) (2) Ericsson RRHUS11 B12 Units (Alpha and Beta Sectors) (2) Ericsson RRHUS11 B12 Units (Alpha and Beta Sectors) (2) T-Arm Mounts (Alpha and Beta Sectors) (1) Fiber Optic Cable 	T-Mobile (Proposed)	@ 130'

The results of the analysis indicate that:

- 1. The existing steel tower structure IS considered structurally adequate for the proposed antenna loading with the wind classification specified above.
- 2. The existing tower foundation pad IS considered structurally adequate for the proposed antenna loading with the load classification specified above.
- 3. The existing guy anchor foundation components ARE considered structurally adequate for the proposed antenna loading with the load classification specified above.

1. TIA = Telecommunications Industry Association Structural Standard for Antenna Supporting Structures and Antennas (Version G)

2, AISC = American Institute of Steel Construction (14th Edition)

3. ASCE 7 = American Society of Civil Engineers Standard 7 (2010 Edition)

1. EXECUTIVE SUMMARY – continued

This analysis is based on:

- 1) The tower structure's theoretical capacity, not including any assessment of the condition of the tower.
- 2) Geotechnical Study for Proposed Tower off Quarry Road, Bolton, CT, prepared by DR. Clarence Welti, dated April 23, 2001.
- 3) PiROD Inc. Bill of Materials and Detail Drawings on behalf of Mountaintop Enterprises, Inc. dated October 29, 2001.
- 4) Construction Drawings for antenna upgrades, prepared by Ramaker & Associates on behalf of Sprint, dated May 8, 2014.
- 5) Previous structural analysis and assessment performed by URS Corporation on behalf of Sprint, project number 36928701 / TWS-016, signed and sealed on July 6, 2014.
- 6) Proposed antenna upgrades for installation to tower provided by Transcend Wireless on behalf of T-Mobile, obtained via e-mail dated 9/16/2016.
- 7) Antenna and mount configuration as specified on the following page of this report.

This report is only valid as per the information and data provided by others for antenna inventory, mounts, tower structure, existing foundation and associated cables. The user of this report shall field verify the antenna, cabling and mount configuration used, as well as the physical condition of the tower members, connections and foundations. Notify the engineer in writing immediately if any of the information in this report is found to be other than specified.

If you should have any questions, please call.

Sincerely,

AECOM, (and Anna SSIONAL EN Richard A. Sambor, P.E. Senior Structural Engineer RAS/mcd

2. INTRODUCTION

The subject tower is located at 130 Vernon Road, Bolton, CT. The structure is a 150' guyed tower structure designed by PiROD Industries.

The inventory is summarized in Table 1:

Table 1: Antenna and Mount Configuration

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
 (3) RFS APXVTM14-ALU- 120 Panel Antennas (3) Alcatel-Lucent TD- RRH8x20 RRH Units (3) APXVSPP18-C-A20 Panel Antennas (3) 1900 MHz RRH Units (3) 800 MHz RRH Units 	Sprint (Existing)	(3) T-Frame Sector Mounts	148'	(1) 5/8" F.O. Cable (2) Fiber Jumpers (27) Antenna/RRH Jumpers (3) 1 1/4" F.O. Cables
 (2) AIR 21 B4A/B2P (Sectors A & B) (2) SBNH-1DC65C (Sectors A & B) (2) RRUS-11 B2 (2) RRUS-11 B12 	T-Mobile (Proposed)	(2) T-Arm Mounts (Sectors A & B)	130'	(1) Fiber Optic Cable

This structural analysis of the communications tower was performed by AECOM for T-Mobile. The purpose of this analysis was to assess the existing tower for its existing and proposed loads This analysis was conducted to evaluate stress on the tower and the effect of forces to the foundation of the tower resulting from existing and proposed antenna arrangements.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS

The structural analysis was done in accordance with , the TIA/EIA-222-G–Structural Standard for Antenna Towers and Antenna Supporting Structures and Antennas, the 2012 International Building Code with 2016 Connecticut State Building Code Amendments and the American Institute of Steel Construction (AISC) Manual of Steel Construction – Load Resistance Factor Design (LRFD)

The structural analysis was conducted using TNX Tower version 7.0.7.0 and used the following conditions for this tower review (following the TIA/EIA-222-G Standard):

- Structure Class 2 (Substantial Communications)
 - NOTE: ASCE 7 and CT State Building Code Applied Risk Category 3 for design wind loads (see below)
- Topographic Category 1 (No abrupt changes in general topography)
 - NOTE: Tower base is surrounded by nearby hills that would restrict rolling wind speed build-up effects for this location.
- Exposure Class C (Open Terrain with scattered obstructions)
- Load Conditions:
 - Two load conditions were evaluated as shown which were compared to design stresses according to AISC and TIA/EIA-222-G Standard.

Basic Wind Speed:

- TIA-222-G:
 - Tolland County: **V = 105 mph** (3-second gust) [Annex of TIA/EIA-222-G 2006]
- IBC 2012 w/ 2016 CT State Building Code Amendment:
 - V.asd = 105 mph (3-second gust) for the following conditions:
 - IBC 2012 Section 1609.1 Exception 5 would apply, therefore wind speed is based off of "V.asd" not "V.ult"
 - Risk Category for wind speed determination = "III"

Load Condition 1 = 105 mph (3-second gust) Wind Load (without ice) + Tower Dead Load Load Condition 2 = 50 mph (3-second gust) Wind Load (with ice) + Ice Load + Tower Dead Load

Ice thickness used for this analysis is **1 inch** (assumed to start at the base of the tower) and is considered to increase in thickness with height. The initial ice thickness for design is referenced in the Annex of TIA-222-G and follows the same design criteria as the ASCE 7 Standard.

4. FINDINGS AND EVALUATION

Combined axial and bending stresses on the guyed tower structure were evaluated to compare with strength design in accordance with AISC (LRFD). The calculated stresses for portions of the structure were BELOW the required design strength under the proposed configuration and loading. Detailed analysis and calculations for the proposed load condition are provided in Section 6 of this report.

Component / Section No.	Controlling Component / Elevation	Stress (% Capacity)	Pass/Fail	Comments
Tower Leg (T3)	SR 2 / 100' – 120'	26.5	Pass	
Diagonal (T2)	SR 3/4 / 120' – 140'	62.1	Pass	
Horizontal (T9)	4"x1/2"(t) A36 Welded Plates / 0' – 5'	2.2	Pass	
Top Girt (T2)	SR 3/4" / 120' – 140'	55.9	Pass	
Bottom Girt (T8)	SR 3/4" / 120' – 140'	37.0	Pass	
Guy @ 138'	EHS 9/16"	58.7	Pass	
Guy @ 70'	EHS 11/16"	45.6	Pass	
Top Guy Pull-Off (T1)	SR 1 1/4" / 140' – 150'	29.7	Pass	
Torque Arm Top (T2)	2L 3"x3"x5/16" / 120' – 140'	43.4	Pass	
Torque Arm Bottom (T2)	2L 3"x3"x5/16" / 120' – 140'	35.6	Pass	
Connection Bolt	Torque Arm Connecting Bolt (5/8" A325N) / 138'	43.4	Pass	
Tower Foundation	Bearing Capacity/Foundation Pad	46.4	Pass	
Anchor Uplift Resistance	Concrete Guy Anchor (connected to solid rock)	15.0	Pass	
Anchor Slide Resistance	Concrete Guy Anchor (connected to solid rock)	29.3	Pass	
Guyed Anchor Connection Rod	1-1/4" Dia. @ 50 ksi (min.) / Tension	66.7	Pass	Modeled after PiROD # 102305. Size to be field verified.

Table 1: Tower Component Stress vs. Capacity Table

5. CONCLUSIONS

The results of the analysis indicate that:

- 1. The existing steel tower structure IS considered structurally adequate for the proposed antenna loading with the wind classification specified herein.
- 2. The existing tower foundation pad IS considered structurally adequate for the proposed antenna loading with the load classification specified herein.
- 3. The existing guy anchor foundation components ARE considered structurally adequate for the proposed antenna loading with the load classification specified herein.

Limitations/Assumptions:

This report is based on the following:

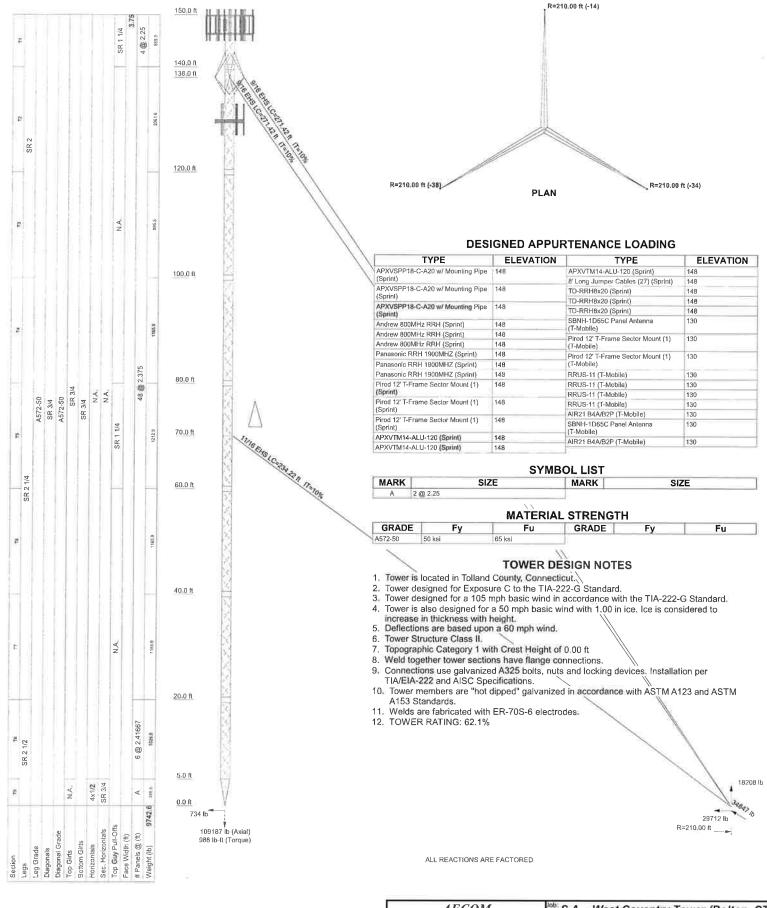
- 1. Tower inventory as listed in this report.
- 2. Tower is properly installed and maintained.
- 3. All members are as specified in the original design documents and are in good condition.
- 4. All required members are in place.
- 5. All bolts are in place and are properly tightened.
- 6. Tower is in plumb condition.
- 7. All member protective coatings are in good condition.
- 8. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- 9. Foundations are in good condition without defects and were properly constructed to support original design loads a specified in the original design documents.

AECOM is not responsible for any modifications completed prior to or hereafter in which AECOM is not or was not directly involved. Modifications include but are not limited to:

- A. Adding antennas
- B. Removing/replacing antennas
- C. Adding coaxial cables

AECOM hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact AECOM. AECOM disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Ongoing and Periodic Inspection and Maintenance:

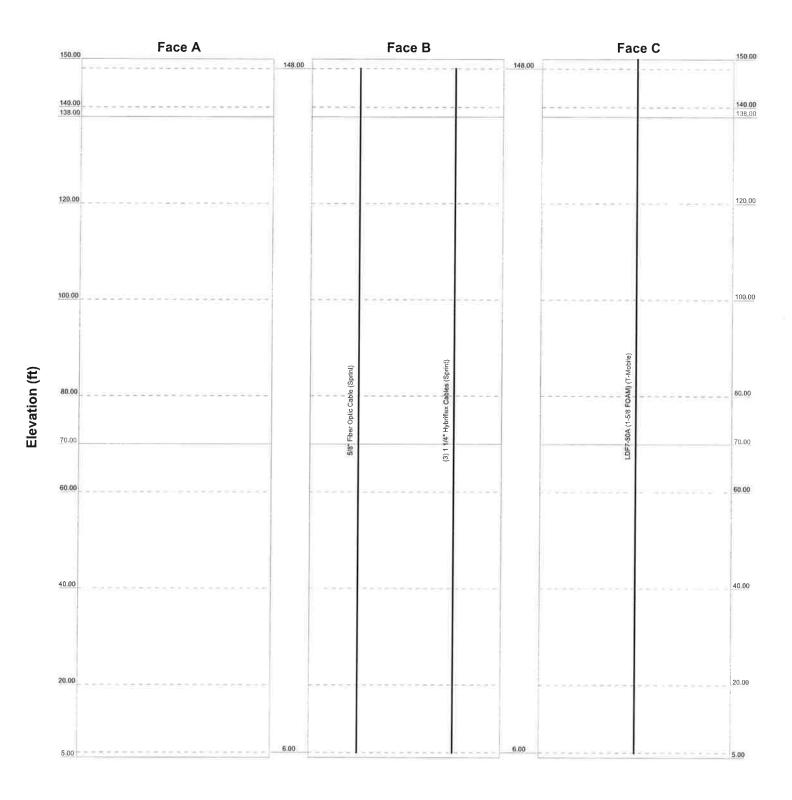

After the Contractor has successfully completed the installation and the work has been accepted, the owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The owner shall refer to TIA/EIA-222-G Section 14.2 for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. It is also recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions.

6. DRAWINGS AND DATA

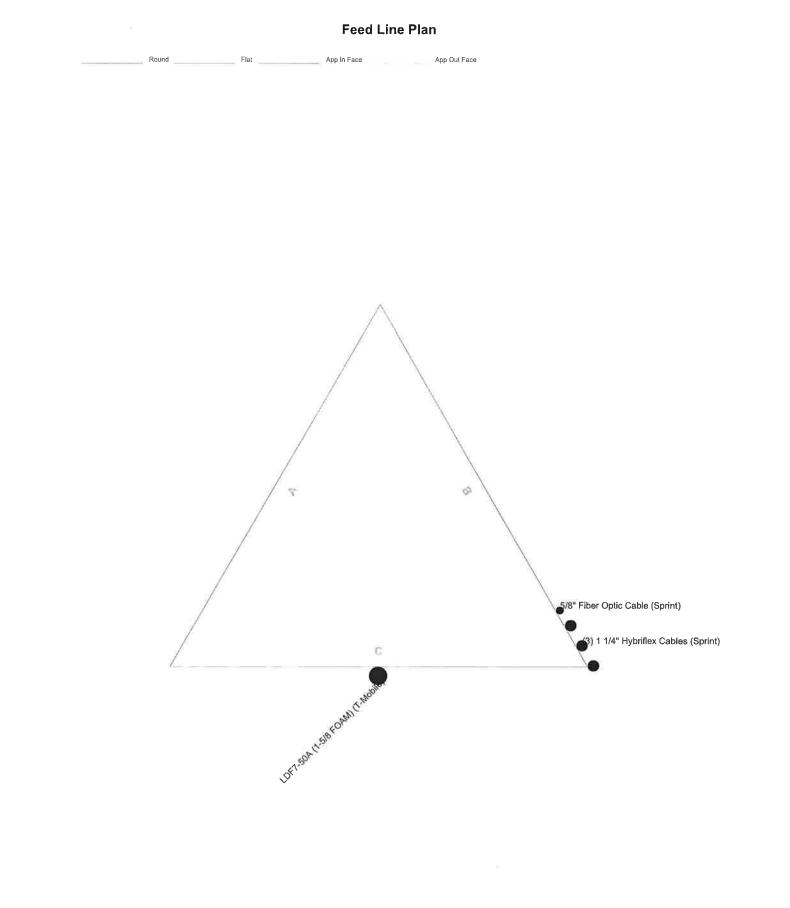
×.

TNX TOWER INPUT/OUTPUT SUMMARY


AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991 Path: Code: TIA-222-G Path: FAX: 860-529-3991 Path: Code: TIA-222-G Path: Code: Code

TNX TOWER FEEDLINE DISTRIBUTION CHART

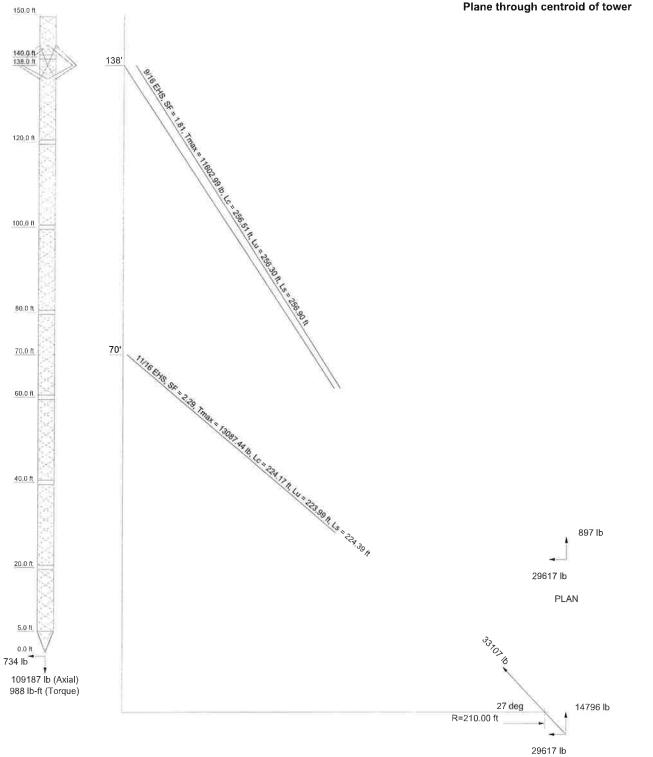
Feed Line Distribution Chart 5' - 150'


Flat _____ App In Face _____ App Out Face _____ Truss Leg

Round

AECOM	S.A West Co	ventry Tower (Bolton, CT			
500 Enterprise Drive, Suite 3B	Project: TWM-007 / T-Mobile				
Rocky Hill, CT	Client: Transcend Wirel	ess Drawn by: MCD App'd:			
Phone: 860-529-8882	Code: TIA-222-G	Date: 09/20/16 Scale: NTS			
FAX: 860-529-3991	Path;	Dwg No. E-7			

TNX TOWER FEEDLINE PLAN

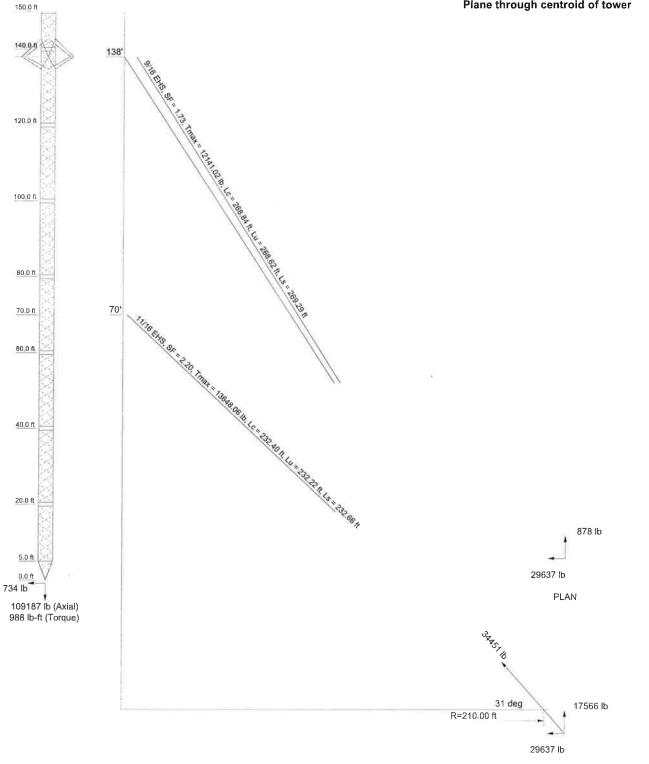


AECOM	^{Job:} S.A West Cove	ntry Towe	(Bolton, CT					
	Project: TWM-007 / T-Mobi	Project: TWM-007 / T-Mobile						
Rocky Hill, CT	Client: Transcend Wireless	Drawn by: MCD	App'd:					
Phone: 860-529-8882	Code: TIA-222-G	Date: 09/20/16						
FAX: 860-529-3991	Path:		Dwg No. E-7					

TNX TOWER ANCHOR REACTIONS

Guy Tensions and Tower Reactions TIA-222-G - 105 mph/50 mph 1.0000 in Ice Exposure C

Maximum Values Anchor 'A'@210 ft Azimuth 0 deg Elev -14 ft Plane through centroid of tower

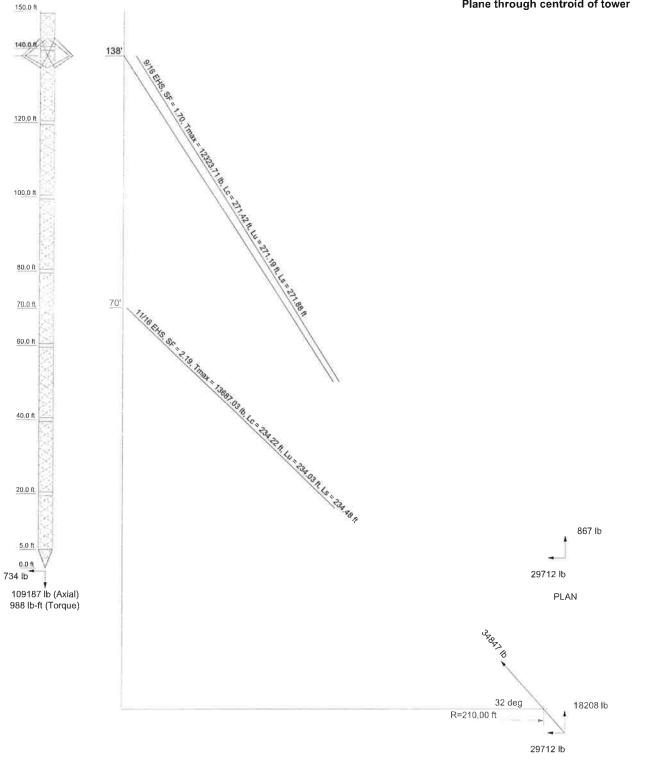


ELEVATION

AECOM	^{Job:} S.A West Co	ventry Tower (Bolton, C1
500 Enterprise Drive, Suite 3B	Project: TWM-007 / T-M	
Rocky Hill, CT	Client: Transcend Wirel	ess Drawn by: MCD App'd:
Phone: 860-529-8882	Code: TIA-222-G	Date: 09/20/16 Scale: NTS
FAX: 860-529-3991	Path:	Dwg No. E-6

Guy Tensions and Tower Reactions TIA-222-G - 105 mph/50 mph 1.0000 in Ice Exposure C

Maximum Values Anchor 'B'@210 ft Azimuth 120 deg Elev -34 ft Plane through centroid of tower



ELEVATION

AECOM	Job: S.A West Cove	ntry Towe	(Bolton, CT
500 Enterprise Drive, Suite 3B	Project: TWM-007 / T-Mobil	le	
Rocky Hill, CT	Client: Transcend Wireless	Drawn by MCD	App'd:
		Date: 09/20/16	
FAX: 860-529-3991	Path:	With special differences have	Dwg No. E-6

Guy Tensions and Tower Reactions TIA-222-G - 105 mph/50 mph 1.0000 in Ice Exposure C

Maximum Values Anchor 'C'@210 ft Azimuth 240 deg Elev -38 ft Plane through centroid of tower

ELEVATION

AECOM	Job: S.A West Cov	entry Tower (Bolton, Cl
500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Project: TWM-007 / T-Mol	bile
	Client: Transcend Wireles	S Drawn by MCD App'd:
	Code: TIA-222-G	Date: 09/20/16 Scale: NTS
	Path:	Dwg No. E-6

TNX TOWER DETAILED OUTPUT

· T	ob		Page
tnxTower	S.A West Coventry 7	ower (Bolton, CT)	1 of 55
AECOM	Project		Date
Soo Enterprise Drive, Suite 3B	TWM-007 / 1	T-Mobile	13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client Transcend \		Designed by MCD

Tower Input Data

The main tower is a 3x guyed tower with an overall height of 150.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 3.75 ft at the top and tapered at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Tolland County, Connecticut.

Basic wind speed of 105 mph.

Structure Class II.

Exposure Category C.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

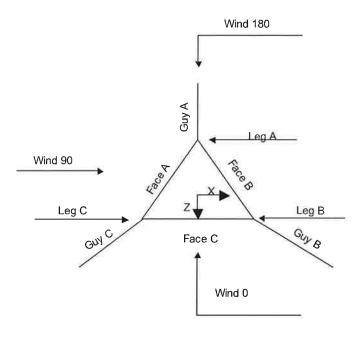
Weld together tower sections have flange connections..

Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications..

Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards..

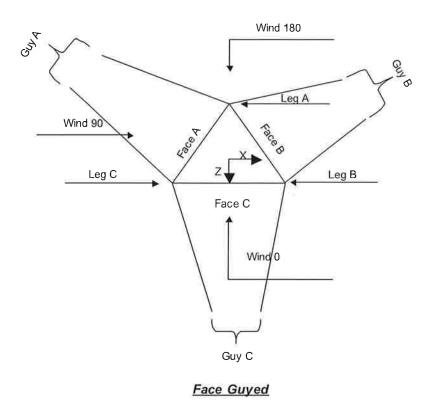
Welds are fabricated with ER-70S-6 electrodes..

Pressures are calculated at each section.


Safety factor used in guy design is 1.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.


Options Consider Moments - Legs Distribute Leg Loads As Uniform Use ASCE 10 X-Brace Ly Rules $\sqrt{}$ Consider Moments - Horizontals Assume Legs Pinned Calculate Redundant Bracing Forces Consider Moments - Diagonals Assume Rigid Index Plate Ignore Redundant Members in FEA Use Moment Magnification Use Clear Spans For Wind Area SR Leg Bolts Resist Compression Use Code Stress Ratios Use Clear Spans For KL/r All Leg Panels Have Same Allowable Use Code Safety Factors - Guys Retension Guys To Initial Tension Offset Girt At Foundation Escalate Ice Bypass Mast Stability Checks Consider Feed Line Torque Always Use Max Kz Use Azimuth Dish Coefficients Include Angle Block Shear Check Use Special Wind Profile Project Wind Area of Appurt. Use TIA-222-G Bracing Resist, Exemption Include Bolts In Member Capacity Autocalc Torque Arm Areas Use TIA-222-G Tension Splice Exemption Leg Bolts Are At Top Of Section Add IBC .6D+W Combination Poles Secondary Horizontal Braces Leg Sort Capacity Reports By Component Include Shear-Torsion Interaction Use Diamond Inner Bracing (4 Sided) Triangulate Diamond Inner Bracing Always Use Sub-Critical Flow SR Members Have Cut Ends Treat Feed Line Bundles As Cylinder Use Top Mounted Sockets SR Members Are Concentric

tnxTower	Job		Page
		S.A West Coventry Tower (Bolton, CT)	2 of 55
AECOM	Project		Date
500 Enterprise Drive, Suite 3B		TWM-007 / T-Mobile	13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Corner & Starmount Guyed Tower

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 3 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	0
	ft			ft		ft
T1	150,00-140,00			3.75	1	10.00
Т2	140.00-120.00			3.75	1	20.00
Т3	120.00-100.00			3.75	1	20,00
T4	100.00-80.00			3.75	1	20.00
Т5	80.00-60.00			3.75	1	20.00
Т6	60.00-40.00			3.75	1	20.00
Т7	40.00-20.00			3.75	1	20,00
Т8	20.00-5.00			3.75	1	15.00
T9	5.00-0.00			3.75	1	5.00

tnxTower	Job S.A V	Vest Coventry Tower (Bolton, CT)	Page 4 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Giri
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	150.00-140.00	2.25	X Brace	No	Steps	6.0000	6,0000
T2	140.00-120.00	2.38	X Brace	No	Steps	6.0000	6.0000
Т3	120.00-100.00	2.38	X Brace	No	Steps	6.0000	6.0000
T4	100.00-80.00	2.38	X Brace	No	Steps	6.0000	6,0000
Т5	80.00-60.00	2.38	X Brace	No	Steps	6.0000	6.0000
T6	60.00-40.00	2.38	X Brace	No	Steps	6,0000	6.0000
Τ7	40.00-20.00	2.38	X Brace	No	Steps	6.0000	6.0000
Т8	20.00-5.00	2.42	X Brace	No	Steps	6.0000	0.0000
Т9	5.00-0.00	2.25	X Brace	No	Yes	0.0000	6.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Type	Size	Grade	Туре	Size	Grade
ft						
Г1 150.00-140.00	Solid Round	2	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)
T2 140.00-120.00	Solid Round	2	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)
T3 120.00-100.00	Solid Round	2	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)
T4 100.00-80.00	Solid Round	2 1/4	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)
T5 80.00-60.00	Solid Round	2 1/4	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)
T6 60 00-40 00	Solid Round	2 1/4	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)
T7 40.00-20.00	Solid Round	2 1/4	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)
T8 20.00-5.00	Solid Round	2 1/2	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)
T9 5.00-0.00	Solid Round	2 1/2	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
Elevation	Туре	Size	Grade	Туре	Size	Grade
ft						
1 150,00-140.00	Solid Round	3/4	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)
2 140.00-120.00	Solid Round	3/4	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)
3 120.00-100.00	Solid Round	3/4	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)
Т4 100.00-80.00	Solid Round	3/4	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)
T5 80.00-60.00	Solid Round	3/4	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)
T6 60 00-40 00	Solid Round	3/4	A572-50	Solid Round	3/4	A572-50
			(50 ksi)			(50 ksi)
T7 40.00-20.00	Solid Round	3/4	A572-50	Solid Round	3/4	A572-50

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 5 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Tower Elevation	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T8 20.00-5.00	Solid Round	3/4	(50 ksi) A572-50	Solid Round	3/4	(50 ksi) A572-50
T9 5.00-0.00	Solid Round		(50 ksi) A572-50	Solid Round	3/4	(50 ksi) A572-50
19 5.00 0.00	Bond Round		(50 ksi)	bond Round		(50 ksi)

Tower Section Geometry (cont'd)											
Tower Elevation	No. of Mid	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade				
<i>ft</i> F9 5.00-0.00	Girts	Flat Bar		A36	Flat Bar	4x1/2	A36				
				(36 ksi)	A full Louit	17(1)	(36 ksi)				

Tower Secondary Secondary Horizontal Secondary Inner Bracing Inner Bracing Size Inner Bracing Elevation Horizontal Type Size Horizontal Type Grade Grade

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust	Weight Mult	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
	_						Diagonals	Horizontals	Redundants
ft	ft^2	in					īn	in	in
Tl	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
150.00-140.00			(36 ksi)						
Τ2	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
140.00-120.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1	36,0000	36.0000	36,0000
120.00-100.00			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1	36,0000	36.0000	36.0000
100.00-80.00			(36 ksi)						
T5 80 00-60 00	0.00	0.0000	A36	1	1	1	36,0000	36.0000	36.0000
			(36 ksi)						
T6 60 00-40 00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T7 40 00-20 00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T8 20.00-5.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36,0000
			(36 ksi)						

tnxTower	Job S.A West Coventry Tower (Bolton, CT)	Page 6 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client Transcend Wireless	Designed by MCD

Tower	Gusset	Gusset	Gusset Grade	Adjust Factor	Adjust.	Weight Mult	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				Α,		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	ĩn					în	in	īn
T9 5.00-0.00	0.00	0.0000	A36	1	1	1	36.0000	36,0000	36.0000
			(36 ksi)						

Tower Section Geometry (cont'd)

Tower Elevation										
	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz,	Sec. Horiz	Inner Brace
	Angles	Rounds		Х	X	Х	Х	X	X	X
ſi				Y	Y	Y	Y	Y	Y	Y
T1	No	No	1	1	1	1]	1	1	1
150,00-140.00				1	1	1	1	1	1	1
T2	No	No	1	1	1	1	1	1	1	1
140.00-120.00				1	1	1	1	1	1	1
Т3	No	No	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T4	No	No	1	1	1	I.	1	1	1	1
100.00-80.00				1	1	1	1	1	1	1
Т5	No	No	1	1	1	T	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
T6	No	No	1	1	1	1	1	1	1	1
60.00-40.00				1	1	1	1	1	1	1
Τ7	No	No	1	1	1	1	1	1	1	1
40.00-20.00				1	1	1	1	1	1	1
T8 20,00-5,00	No	No	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1
T9 5.00-0.00	No	No	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1

Tower Elevation ft	Leg		Diago	nal	Top G	irt	Botton	ı Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
j.	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 150.00-140.00	0.0000	1	0,0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 140.00-120.00	0.0000	1	0.0000	0,75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 120.00-100.00	0.0000	1	0.0000	0.75	0,0000	0.75	0,0000	0.75	0.0000	0.75	0.0000	0.75	0,0000	0.75
T4 100.00-80.00	0.0000	1	0.0000	0.75	0.0000	0,75	0.0000	0.75	0,0000	0.75	0,0000	0.75	0.0000	0.75
T5 80.00-60.00 T6 60.00-40.00		1 1	0.0000 0.0000	0.75 0.75	0.0000 0.0000	0.75 0.75	$0.0000 \\ 0.0000$	0.75 0.75	0.0000 0.0000	0.75 0.75	0.0000 0.0000	0.75 0.75	0.0000 0.0000	0.75 0.75

tnxTower	Job S.A West Coventry Tower (Bolton, CT)	Page 7 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client Transcend Wireless	Designed by MCD

Tower Elevation ft	Leg		Diago	nal	Top G	irt	Botton	ı Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct In	U	Net Width Deduct in	U	Net Width Deduct In	U	Net Width Deduct in	U	Net Width Deduct in	U
T7 40.00-20 .00		1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 20 00-5 00	1.2	1	0,0000	0.75	0,0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
Т9 5.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower Elevation	Leg Connection Tune	Leg		Diago	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hor	izontal	Short Hori	izontal
ft	Туре	Bolt Size	No.	Bolt Size	No	Bolt Size	No	Bolt Size	No	Bolt Size	No	Bolt Size	No	Bolt Size	No
		1n	NO	in	NO	in bon Size	IVO.	10	NO.	in	NO	in bolt Size	140.	in bou size	140.
	Sleeve DS	0.7500	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
150:00-140.00	Sleeve DS	A325N	0	A325N	0	A325N	0	A325N	0	A325N	0	A325N	0	A325N	0
T2	Sleeve DS	0.6250	5	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-120.00	SIEEVE DS	A325N	3	A325N	0	A325N	0	A325N	0	A325N	0	A325N	0	A325N	0
T3	Sleeve DS	0.6250	5	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00-100.00	Sleeve DS	0.0250 A325N	3		0	A325N	0		U	A325N	0		0		0
	Classe DC		5	A325N	0		0	A325N	0		0	A325N	0	A325N	0
T4	Sleeve DS	0.7500	5	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00-80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5 80,00-60.00	Sleeve DS	0.7500	5	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 60.00-40.00	Sleeve DS	0.7500	5	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7 40.00-20.00	Sleeve DS	0.7500	5	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 20.00-5.00	Sleeve DS	0.7500	5	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A32.5N		A325N		A325N		A325N		A325N	1	A325N	
T9 5.00-0.00	Sleeve DS	0.7500	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N	,	A325N	-	A325N	,	A325N	-	A325N	1	A325N	5

Guy Data												
Guy Elevation	Guy Grade	_	Guy Size	Initial Tension	%	Guy [,] Modulus	Guy [,] Weight	Lu	Anchor Radius	Anchor Azimuth Adj.	Anchor Elevation	End Fitting Efficiency
ft				16		ksi	plf	ft	ſt	õ	fi	%
138	EHS	А	9/16	3500.00	10%	21000	0.671	256.30	210.00	0.0000	-14.00	100%
		В	9/16	3500.00	10%	21000	0.671	268.63	210.00	0.0000	-34.00	100%
		С	9/16	3500.00	10%	21000	0.671	271.20	210.00	0.0000	-38.00	100%
70	EHS	А	11/16	5000.00	10%	21000	0.813	223.99	210.00	0.0000	-14.00	100%
		В	11/16	5000.00	10%	21000	0.813	232.22	210.00	0.0000	-34,00	100%
		С	11/16	5000.00	10%	21000	0.813	234.03	210.00	0.0000	-38.00	100%

tnxTower	Job S.A West Coventry Tower (Bolton, CT)	Page 8 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client Transcend Wireless	Designed by MCD

Guy Elevation ft	Mount Type	Torque-Arm Spread	Torque-Arm Leg Angle	Torque-Arm Style	Torque-Arm Grade	Torque-Arm Type	Torque-Arm Size
94		ft	۰				
138	Torque Arm	12.00	30.0000	Wing	A36 (36 ksi)	Double Angle	2L3x3x5/16
70	Corner						

				Guy Data (cont'a	d)		
Guy Elevation ft	Diagonal Grade	Diagonal Type	Upper Diagonal Size	Lower Diagonal Size	Is Strap.	Pull-O <u>ff</u> Grade	Pull-Off Type	Pull-Off Size
138.00	A572-50 (50 ksi)	Solid Round			No	A572-50 (50 ksi)	Solid Round	1 1/4
70.00	A572-50 (50 ksi)	Solid Round			No	A572-50 (50 ksi)	Solid Round	1 1/4

			(Guy Dat	ta (cont'o	1)		
Guy [,]	Cable	Cable	Cable	Cable	Tower	Tower	Tower	Tower
levation	Weight	Weight	Weight	Weight	Intercept	Intercept	Intercept	Intercept
	A	В	С	D	A	В	С	D
ft	lb	lb	lb	lb	ft	ft	ft	ft
138	171.98	180.25	181.98		6.21	6.81	6.94	
					4.3 sec/pulse	4.5 sec/pulse	4.5 sec/pulse	
70	182,10	188.79	190.27		4.06	4.35	4.42	
					3.5 sec/pulse	3.6 sec/pulse	3.6 sec/pulse	

				G	uy Da	ta (co	nťd)	
			Torqu	ie Arm	Pul	l Off	Diag	gonal
Guy	Calc	Calc	Kx	K_{ν}	K _x	K_{ν}	K _x	K_{ν}
Elevation	K	K				-		
ft	Single	Solid						
	Angles	Rounds						
138	No	No	1	1	1	1	1	1
70	No	No			1	1	1	1

Guv	Data	(cont'd)
July	- aca	1001104/

		Torq	ıe-Arm	_		Pu	ll Off		Diagonal			
Guy Elevation ft	Bolt Size in	Number	Net Width Deduct in	U	Bolt Size	Number	Net Width Deduct in	U	Bolt Size in	Number	Net Width Deduct in	U
138	0.6250 A325N	1	0.0000	1	0.6250 A325N	0	0.0000	0.75	0.6250 A325N	0	0.0000	0.75

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 9 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

		Torq	ie-Arm			Pull Off				Diagonal			
Guy Elevation ft	Bolt Size in	Number	Net Width Deduct in	U	<i>Bolt Size</i> in	Number	Net Width Deduct	U	Bolt Size in	Number	Net Width Deduct in	U	
70	0.6250 A325N	0	0.0000	0.75	0.6250 A325N	0	0.0000	0.75	0.6250 A325N	0	0.0000	0.75	

			G	Guy Pre	ssures	
Guy Elevation	Guy Location	2		q _z	q₂ Ice	Ice Thickness
ft		ft		psf	psf	ĩn
138	А	62.00		27	6	2.1302
	В	52,00		26	6	2,0930
	С	50.00		26	6	2.0849
70	А	28.00		23	5	1.9674
	В	18.00		21	5	1.8824
	С	16.00		21	5	1.8603

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top Bottom Ib	F_x	Fy	Fz	M _x	M_y	Mz
ſt		0		lb	lb	lb	lb-ft	lb-ft	lb-ft
138	А	36.3397	3601.90 3500.00	-83.04	2190.05	-2858.41	-7586.54	17438.12	-13140.28
	А	36.3397	3601.90 3500.00	83.04	2190.05	-2858.41	-7586,54	-17438.12	13140.28
	В	39.7751	3615.31 3500.00	2405.99	2366.08	1297.44	16392.71	16669.17	0.00
	В	39.7751	3615.31 3500.00	2326.61	2366.08	1434.93	-8196.36	-16669.17	-14196.50
	С	40.4241	3617.99 3500.00	-2305.38	2398.64	1421.83	-8309.13	16517.09	14391.84
	С	40.4241	3617.99 3500.00	-2384.04	2398.64	1285.60	16618.26	-16517.09	0.00
			Sum:	43.18	13909.54	-277.02	1332.40	0.00	195.33
70	А	22.0069	5068.23 5000.00	0.00	1977.34	-4666.60	-4281.06	0.00	0.00
	В	26.5833	5084.48 5000.00	3904.45	2350.68	2254.23	2544.68	0.00	-4407.52
	С	27.4583	5087.73 5000.00	-3875.39	2420.77	2237.46	2620.56	-0.00	4538.94
			Sum:	29.05	6748.78	-174.91	884.18	0.00	131.42

Guy-Mast Forces (Excluding Wind) - Ice

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 10 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Guy	Guy	Chord	Guy Tension	F_x	F_y	F_z	M_x	M_{γ}	M_z
Elevation	Location	Angle	Тор					-	
			Bottom						
			lb						
_ft		٥		lb	lb	lb	lb-ft	lb-ft	lb-ft
138	А	36.3397	10042.46	-220_22	6583.15	-7580.55	-22804.70	46246.14	-39498.8
			8877.61						
	А	36.3397	10042,46	220.22	6583,15	-7580.55	-22804.70	-46246.14	39498.89
			8877.61						
	В	39,7751	9969.77	6279.50	6964.01	3386.25	48248.08	43505.64	0.00
			8688,88						
	В	39.7751	9969.77	6072.33	6964.01	3745.08	-24124.04	-43505.64	-41784.0
			8688.88						
	С	40.4241	9951.71	-5995.88	7029.31	3697.93	-24350.26	42957.90	42175.89
			8649.36						
	С	40.4241	9951.71	-6200.44	7029.31	3343.62	48700.52	-42957.90	0,00
			8649.36						
			Sum:	155.51	41152,95	-988.22	2864.91	-0.00	391.83
70	А	22.0069	11464.48	0.00	4985.45	-10323.73	-10793.83	0.00	0.00
			10861.08						
	В	26.5833	11190.16	8375.82	5628.55	4835.78	6093.08	0.00	-10553.53
			10492.02						
	С	27.4583	11114.63	-8247.76	5730.13	4761.84	6203.05	-0.00	10744.00
			10402.49						
			Sum:	128.07	16344.14	-726.10	1502.31	0.00	190.47

Guy-Mast Forces (Excluding Wind) - Service

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top Bottom Ib	F_x	F_y	F_z	M_x	M_y	M _z
ft		o	10	lb	lb	lb	lb-ft	lb-ft	lb-ft
138	А	36.3397	3601.90 3500.00	-83.04	2190.05	-2858.41	-7586.54	17438.12	-13140.28
	А	36.3397	3601.90 3500.00	83.04	2190.05	-2858.41	-7586,54	-17438.12	13140.28
	В	39.7751	3615.31 3500.00	2405.99	2366.08	1297,44	16392.71	16669.17	0.00
	В	39,7751	3615.31 3500.00	2326.61	2366.08	1434,93	-8196.36	-16669.17	-14196.50
	С	40.4241	3617.99 3500.00	-2305.38	2398.64	1421.83	-8309.13	16517.09	14391.84
	С	40.4241	3617.99 3500.00	-2384.04	2398.64	1285.60	16618.26	-16517.09	0.00
			Sum:	43.18	13909.54	-277.02	1332.40	0.00	195.33
70	А	22.0069	5068.23 5000.00	0.00	1977.34	-4666,60	-4281.06	0.00	0.00
	В	26.5833	5084.48 5000.00	3904.45	2350.68	2254.23	2544.68	0.00	-4407.52
	С	27.4583	5087.73 5000.00	-3875.39	2420.77	2237:46	2620.56	-0.00	4538.94
			Sum:	29.05	6748.78	-174.91	884.18	0.00	131.42

Guy-Tensioning Information

tnxTower	Jop	S.A West Coventry Tower (Bolton, CT)	Page 11 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

									Tempe	rature At 7	Time Of Tens	oning					
				6	F	- 2	0 F	4	0 F	6	0 F	8) F	10	0 F	12	0 F
Guy		Н	V	Initial	Intercept	Initial	Intercept	Initial	Intercept	Initial	Intercept	Initial	Intercept	Initial	Intercept	Initial	Intercept
Elevatio	9			Tension		Tension		Tension		Tension		Tension		Tension	-	Tension	
ft		ſ	ft	16	ft	lb	ft	lb	ft	lb	fl	lb	ft	lb	fi	lb	fi
138	Λ	206.62	152_00	4437	4_91	4118	5_29	3805	5.72	3500	6.21	3205	6_78	2922	7.42	2654	8.16
	В	206,62	172.00	4351	5.49	4062	5.88	3778	6.32	3500	6.81	3231	7.37	2971	8.00	2724	8.72
	С	206,62	176_00	4335	5.62	4051	6.01	3772	6.45	3500	6.94	3235	7.50	2981	8:13	2737	8.84
70	Α	207.83	84 00	6871	2.96	6235	3 26	5610	3_62	5000	4.06	4412	4.59	3855	5.25	3341	6.05
	В	207_83	104.00	6738	3 23	6148	3.54	5567	3.91	5000	4.35	4452	4.88	3929	5.53	3443	6.30
	С	207.83	108.00	6710	3.30	6130	3.61	5558	3.98	5000	4.42	4460	4.95	3945	5.59	3465	6.36

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg		-)F-	ft	in	(Frac FW)		Row	in	lin	ĩn	plf
5/8" Fiber	В	Yes	Ar (CaAa)	148.00 - 6.00	0.0000	0,35	1	1	0.8400	0.8400		0.24
Optic Cable												
(Sprint)												
1 1/4"	В	Yes	Ar (CaAa)	148.00 - 6.00	0.0000	0.45	3	3	1.2500	1.2500		0.42
Hybriflex												
Cables												
(Sprint)												
LDF7-50A	С	Yes	Ar (CaAa)	150.00 - 6.00	0.0000	0	1	1	1.9800	1,9800		0.99
-5/8 FOAM) (T-Mobile)												

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation ft	Face	A_R ft^2	A_F ft^2	$C_A A_A$ In Face fl^2	$C_A A_A$ Out Face ft^2	Weight lb
T1	150.00-140.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	3.672	0.000	12.12
		С	0.000	0.000	1.980	0.000	9.92
T2	140.00-120.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	9.180	0.000	30.30
		С	0.000	0.000	3.960	0.000	19.84
Т3	120.00-100.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	9.180	0.000	30.30
		С	0.000	0.000	3.960	0.000	19.84
T4	100.00-80.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	9.180	0.000	30.30
		С	0.000	0.000	3.960	0.000	19.84
Т5	80.00-60.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	9.180	0.000	30.30
		С	0.000	0.000	3.960	0.000	19.84
Т6	60.00-40.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	9.180	0.000	30.30
		С	0.000	0.000	3.960	0.000	19.84
T7	40.00-20.00	А	0,000	0.000	0.000	0.000	0.00
		В	0.000	0.000	9.180	0.000	30.30
		С	0.000	0.000	3.960	0.000	19.84
Т8	20.00-5.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	6.426	0.000	21.21

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 12 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
	ft		ft^2	ft^2	ft^2	ft^2	lb
		С	0.000	0.000	2.772	0.000	13.89
Т9	5.00-0.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness	c 2		In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft²	ft^2	<i>lb</i>
Tl	150.00-140.00	Α	2.319	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	16.761	0.000	248.58
		С		0.000	0,000	6,618	0.000	131.73
T2	140.00-120.00	А	2.294	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	41.631	0.000	612,53
		С		0.000	0.000	13.136	0.000	259.39
T3	120.00-100.00	А	2.256	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	41.221	0.000	599.18
		С		0.000	0.000	12.984	0.000	253.33
T4	100.00-80.00	А	2.211	0.000	0,000	0.000	0.000	0.00
		В		0.000	0.000	40.739	0.000	583.62
		С		0.000	0.000	12.804	0.000	246.27
T5	80.00-60.00	A	2.156	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	40.149	0.000	564.84
		С		0.000	0.000	12.585	0.000	237.76
T6	60.00-40.00	А	2.085	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	39.382	0.000	540.86
		С		0.000	0.000	12.299	0.000	226,91
Τ7	40.00-20.00	А	1.981	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	38,267	0.000	506.85
		С		0.000	0.000	11.884	0.000	211.58
T8	20.00-5.00	А	1.815	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	25.542	0.000	318.26
		С		0.000	0.000	7.854	0.000	131.70
T9	5.00-0.00	А	1.545	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00

	Feed Line Shielding										
Section	Elevation	Face	A _R	A _R	AF	A _F					
	ft		ft^2	Ice ft ²	ft^2	Ice ft^2					
T1	150.00-140.00	А	0.000	0.000	0.000	0.000					
		В	0.249	6.086	0.000	0.000					
		С	0.134	3.076	0.000	0.000					
Т2	140.00-120.00	А	0.000	0.000	0.000	0.000					
		В	0.501	12.625	0.000	0.000					
		С	0.216	5.098	0.000	0.000					
Т3	120.00-100.00	А	0.000	0.000	0.000	0.000					
		В	0.501	12.329	0.000	0.000					
		С	0.216	4.967	0.000	0.000					
T4	100.00-80.00	А	0.000	0.000	0.000	0.000					
		В	0.501	11.984	0.000	0.000					

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 13 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section	Elevation	Face	AR	AR	A_F	AF
				Ice		Ice
	ft		ft^2	ft^2	ft ²	ft^2
		С	0.216	4,815	0.000	0,000
T5	80.00-60.00	А	0.000	0.000	0.000	0.000
		В	0.540	12.175	0.000	0.000
		С	0.233	4.875	0.000	0.000
T6	60.00-40.00	А	0.000	0.000	0.000	0.000
		В	0.501	11.038	0.000	0.000
		С	0.216	4,399	0.000	0.000
Т7	40.00-20.00	А	0.000	0,000	0.000	0.000
		В	0.501	10.287	0.000	0.000
		С	0.216	4.071	0.000	0.000
Т8	20.00-5.00	А	0.000	0.000	0.000	0.000
		В	0.363	6.630	0.000	0.000
		С	0.157	2.592	0.000	0.000
Т9	5.00-0.00	А	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	150.00-140.00	1,7948	1.4689	0.3880	0.4430
T2	140.00-120.00	2,1693	1.6231	0.6212	0.5737
Т3	120.00-100.00	2.1693	1.6231	0.6371	0.5838
T4	100.00-80.00	2.1099	1.5786	0.6525	0.5925
T5	80.00-60.00	2.0754	1.5528	0.6306	0.5734
Т6	60.00-40.00	2,1099	1,5786	0.7067	0.6264
T 7	40.00-20.00	2.1099	1.5786	0.7527	0.6551
Т8	20.00-5.00	1.9775	1.4796	0.7691	0.6543
Т9	5.00-0.00	0.0000	0.0000	0.0000	0.0000

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
T1	4	5/8" Fiber Optic Cable	140.00 -	1.0000	1.0000
			148.00		
T1	6	1 1/4" Hybriflex Cables	140.00 -	1.0000	1.0000
			148.00		
T 1	7	LDF7-50A (1-5/8 FOAM)	140.00 -	1.0000	1.0000
			150.00		
T2	4	5/8" Fiber Optic Cable	120.00 -	1.0000	1.0000
			140.00		
T2	6	1 1/4" Hybriflex Cables	120.00 -	1.0000	1.0000
			140.00	1	
T2	7	LDF7-50A (1-5/8 FOAM)	120.00 -	1.0000	1.0000
			140.00		
T3	4	5/8" Fiber Optic Cable	100.00 -	1.0000	1.0000
			120.00		
T3	6	1 1/4" Hybriflex Cables	100.00 -	1.0000	1.0000

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 14 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Tower	Feed Line	Description	Feed Line	K _a	K _a
Section	Record No.	-	Segment Elev.	No Ice	Ice
			120.00		
Т3	7	LDF7-50A (1-5/8 FOAM)	100.00 -	1,0000	1,0000
			120,00		
T4	4	5/8" Fiber Optic Cable	80.00 - 100.00	1.0000	1.0000
T4	6	1 1/4" Hybriflex Cables	80.00 - 100.00	1.0000	1,0000
T4	7	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	1.0000	1.0000
T5	4	5/8" Fiber Optic Cable		1.0000	1.0000
T5	6	1 1/4" Hybriflex Cables	60.00 - 80.00	1,0000	1.0000
T5	7	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	1,0000	1.0000
T6	4	5/8" Fiber Optic Cable	40.00 - 60.00	1.0000	1.0000
Т6	6	1 1/4" Hybriflex Cables	40.00 - 60.00	1.0000	1.0000
T6	7	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	1.0000	1,0000
T7	4	5/8" Fiber Optic Cable		1.0000	1.0000
T7	6	1 1/4" Hybriflex Cables	20.00 - 40.00	1.0000	1.0000
Т7	7	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	1.0000	1.0000
Т8	4	5/8" Fiber Optic Cable		1.0000	1.0000
Т8	6	1 1/4" Hybriflex Cables	6.00 - 20.00	1,0000	1.0000
Т8	7	LDF7-50A (1-5/8 FOAM)	6.00 - 20.00	1.0000	1.0000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft^2	lb
APXVSPP18-C-A20 w/	A	From Leg	4.00	0.0000	148,00	No Ice	5.93	4.61	26.20
Mounting Pipe		0	0.00			1/2" Ice	6.39	4.99	66.22
(Sprint)			0.00			1" Ice	6.85	5.43	111.47
APXVSPP18-C-A20 w/	В	From Leg	4.00	0.0000	148.00	No Ice	5.93	4.61	26.20
Mounting Pipe		5	0.00			1/2" Ice	6.39	4.99	66.22
(Sprint)			0.00			1" Ice	6.85	5.43	111.47
APXVSPP18-C-A20 w/	С	From Leg	4,00	0.0000	148,00	No Ice	5.93	4.61	26.20
Mounting Pipe		-	-6.00			1/2" Ice	6.39	4.99	66.22
(Sprint)			0.00			1" Ice	6.85	5.43	111.47
Andrew 800MHz RRH	А	From Leg	4.00	0.0000	148.00	No Ice	2.36	1.97	57.00
(Sprint)		-	-2.00			1/2" Ice	2.57	2.17	77.36
			0.00			1" Ice	2.79	2.37	100.68
Andrew 800MHz RRH	В	From Leg	4.00	0.0000	148.00	No Ice	2.36	1.97	57.00
(Sprint)		-	-2.00			1/2" Ice	2.57	2.17	77.36
			0.00			1" Ice	2,79	2.37	100.68
Andrew 800MHz RRH	С	From Leg	4.00	0.0000	148.00	No Ice	2.36	1.97	57.00
(Sprint)		e	-2.00			1/2" Ice	2,57	2.17	77.36
			0.00			1" Ice	2.79	2.37	100.68
anasonic RRH 1900MHZ	А	From Leg	4.00	0.0000	148.00	No Ice	2.49	3.06	90.00
(Sprint)		2	-2.00			1/2" Ice	2.71	3.30	116.87
			0.00			1" Ice	2.93	3.54	147.08
anasonic RRH 1900MHZ	А	From Leg	4.00	0.0000	148.00	No Ice	2.49	3.06	90.00
(Sprint)		e	-2.00			1/2" lce	2.71	3.30	116.87
			0.00			1" Ice	2,93	3.54	147.08
anasonic RRH 1900MHZ	А	From Leg	4.00	0.0000	148.00	No Ice	2.49	3.06	90.00
(Sprint)		e	-2.00			1/2" Ice	2.71	3.30	116.87
			0.00			1" Ice	2.93	3.54	147.08

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 15 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft^2	ft^2	lb
Pirod 12' T-Frame Sector	A	From Leg	0.00	0.0000	148.00	No Ice	13.60	13.60	465.00
Mount (1)		0	0.00			1/2" Ice	18.40	18.40	600,00
(Sprint)			0.00			1" Ice	23.20	23.20	735.00
Pirod 12' T-Frame Sector	В	From Leg	0.00	0.0000	148.00	No Ice	13.60	13.60	465.00
Mount (1)			0.00			1/2" Ice	18,40	18_40	600.00
(Sprint)			0.00			1" Ice	23.20	23.20	735.00
Pirod 12' T-Frame Sector	С	From Leg	0.00	0.0000	148,00	No lce	13.60	13.60	465.00
Mount (1)			0.00			1/2" Ice	18,40	18.40	600,00
(Sprint)			0.00			1" Ice	23,20	23,20	735.00
APXVTM14-ALU-120	А	From Leg	4.00	0.0000	148.00	No Ice	3.61	7.76	81.20
(Sprint)			6.00			1/2" Ice	3.97	8.46	131.40
			0,00			1" Ice	4.33	9.17	187,95
APXVTM14-ALU-120	В	From Leg	4.00	0.0000	148_00	No Ice	3.61	7.76	81.20
(Sprint)			6.00			1/2" Ice	3.97	8.46	131.40
			0.00			1" Ice	4.33	9.17	187.95
APXVTM14-ALU-120	С	From Leg	4.00	0.0000	148.00	No Ice	3.61	7.76	81.20
(Sprint)			6.00			1/2" Ice	3.97	8.46	131,40
			0.00			1" Ice	4.33	9.17	187.95
8' Long Jumper Cables (27)	С	None		0.0000	148.00	No Ice	0.01	0.01	30.00
(Sprint)						1/2" Ice	0.03	0.03	30.23
						1" Ice	0.05	0.05	30.84
AIR21 B4A/B2P	А	From Leg	3.00	0.0000	130.00	No Ice	6.05	5.56	110.02
(T-Mobile)			-3.00			1/2" Ice	6.42	6.19	166.56
			0.00			1" Ice	6.80	6.85	230.27
SBNH-1D65C Panel Antenna	А	From Leg	3.00	0.0000	130.00	No Ice	11.46	8.89	67.85
(T-Mobile)			3.00			1/2" Ice	12.08	9.80	147.06
			0.00			1" lce	12.70	10,71	235.43
AIR21 B4A/B2P	В	From Leg	3.00	0.0000	130.00	No Ice	6.05	5.56	110.02
(T-Mobile)			-3.00			1/2" Ice	6.42	6.19	166.56
			0.00			1" Ice	6.80	6.85	230.27
BNH-1D65C Panel Antenna	в	From Leg	3.00	0.0000	130.00	No Ice	11.46	8.89	67.85
(T-Mobile)			3.00			1/2" Ice	12.08	9,80	147.06
			0.00			1" Ice	12.70	10.71	235.43
Pirod 12' T-Frame Sector	A	None		0.0000	130.00	No Ice	13.60	13.60	465.00
Mount (1)						1/2" Ice	18.40	18.40	600.00
(T-Mobile)						1" Ice	23.20	23.20	735.00
Pirod 12' T-Frame Sector	А	None		0.0000	130.00	No Ice	13.60	13.60	465.00
Mount (1)						1/2" Ice	18.40	18.40	600.00
(T-Mobile)						1" Ice	23.20	23.20	735.00
RRUS-11	A	From Leg	3.00	0.0000	130.00	No Ice	2.57	1.07	50.00
(T-Mobile)			-3.00			1/2" Ice	2.76	1,21	69.57
			0.00			1" Ice	2.97	1.36	92.08
RRUS-11	A	From Leg	3.00	0.0000	130.00	No Ice	2.57	1.07	50.00
(T-Mobile)			3.00			1/2" Ice	2,76	1.21	69.57
			0.00			l" Ice	2.97	1.36	92.08
RRUS-11	В	From Leg	3.00	0.0000	130.00	No Ice	2.57	1.07	50,00
(T-Mobile)			-3.00			1/2" Ice	2.76	1.21	69.57
			0.00			1" Ice	2.97	1.36	92.08
RRUS-11	В	From Leg	3.00	0.0000	130.00	No Ice	2.57	1.07	50.00
(T-Mobile)			3.00			1/2" Ice	2.76	1.21	69.57
			0.00			1" Ice	2,97	1.36	92.08
TD-RRH8x20	А	From Leg	4.00	0.0000	148,00	No Ice	4.05	1.53	66.13
(Sprint)			-2.00			1/2" Ice	4.30	1.71	93.27
			0.00			1" Ice	4.56	1.90	123.93
TD-RRH8x20	В	From Leg	4.00	0.0000	148.00	No Ice	4.05	1.53	66.13
(Sprint)			-2.00			1/2" Ice	4.30	1.71	93.27
			0.00			1" Ice	4.56	1.90	123.93

tnxTower	Job S.A West Coventry Tower (Bolton, CT)	Page 16 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client Transcend Wireless	Designed by MCD

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weigh
			Vert ft ft ft	D	ft		$_{\odot}ft^{2}$	ft^2	lb
TD-RRH8x20 (Sprint)	С	From Leg	4.00 -2.00 0.00	0.0000	148.00	No Ice 1/2" Ice 1" Ice	4.05 4.30 4.56	1.53 1.71 1.90	66.13 93.27 123.93

222-G Verification Constants

Constant	Value
Wind Importance Factor Without Ice	1
Wind Importance Factor With Ice Factor	1
Ice Importance Factor	1
K _d	0.85
Zg	900
α	9.5
K _{zmin}	0.85
Kc	1
K	1
f	1

									-		
Section	Elem.	Size	С	C	F	е	е	A _r	A,	$A_r R_r$	$A_r R_r$
Elevation	Num.			w/Ice	а		w/Ice		w/Ice		w/Ice
					С						
ft			_		е			ft^2	ft^2	ft^2	ft ²
T1	1	2	20.473	32.357	C	0.156	0.65	1.667	5.532	0.947	4.295
150.00-140.00					1						
	1	2	20.473	32.357	A	0.159	0.722	1.667	5.532	0.948	4.573
	2	2	20.473	32.357	С	0.156	0.65	1.667	5.532	0.947	4.295
	2	2	20,473	32,357	В	0.153	0.58	1.667	5.532	0.946	4.046
	3	2	20.473	32.357	В	0.153	0.58	1.667	5.532	0.946	4.046
	3	2	20.473	32.357	Α	0.159	0.722	1.667	5,532	0.948	4.573
	4	3/4	7.677	26.264	С	0.156	0.65	0.224	1.609	0.127	1.249
	5	3/4	7.677	26.264	В	0.153	0.58	0.224	1.609	0.127	1.177
	6	3/4	7.677	26,264	Α	0.159	0.722	0.224	1.609	0.127	1.330
	7	3/4	7.677	26.264	С	0.156	0.65	0.224	1.609	0.127	1.249
	8	3/4	7,677	26.264	В	0.153	0.58	0.224	1.609	0.127	1.177
	9	3/4	7,677	26.264	Α	0.159	0.722	0.224	1.609	0.127	1.330
	10	3/4	7.677	26.264	С	0.156	0.65	0.261	1.876	0.148	1.457
	11	3/4	7.677	26.264	С	0.156	0.65	0.261	1.876	0.148	1.457
	12	3/4	7.677	26,264	В	0.153	0.58	0.261	1.876	0.148	1.372
	13	3/4	7.677	26.264	В	0.153	0.58	0.261	1.876	0.148	1.372
	14	3/4	7.677	26,264	А	0.159	0.722	0.261	1.876	0.148	1.551
	15	3/4	7.677	26.264	А	0.159	0.722	0.261	1.876	0.148	1.551
	16	3/4	7.677	26.264	С	0.156	0.65	0.261	1.876	0.148	1.457
	16 17	3/4	7.677	26.264	С	0.156	0.65	0.261	1.876	0.148	1.457
	18	3/4	7.677	26.264	В	0.153	0.58	0.261	1.876	0.148	1.372
	19	3/4	7.677	26.264	В	0.153	0.58	0.261	1.876	0.148	1.372
	20	3/4	7.677	26.264	A	0.159	0.722	0.261	1.876	0.148	1.551

222-G Section Verification ArRr By Element

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 17 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section	Elem.	Size	C	С	F	е	е	A,	A,	A,R,	A,R,
Elevation	Num			w/Ice	a		w/Ice		w/Ice		w/Ice
ft					С			ft ²	ft^2	ft^2	ft^2
	21	3/4	7.677	26.264	e A	0.159	0.722	0.261	1.876	0,148	1.55
	22	3/4	7.677	26.264	C	0.156	0.65	0,261	1.876	0.148	1.45
	23	3/4	7.677	26.264	Č	0.156	0.65	0,261	1.876	0.148	1.45
	24	3/4	7.677	26.264	B	0.153	0.58	0.261	1.876	0.148	1.37
	24 25	3/4	7.677	26.264	B	0.153	0.58	0.261	1.876	0.148	1.37
	26	3/4	7.677	26.264	Ã	0.159	0.722	0.261	1.876	0.148	1.55
	27	3/4	7.677	26.264	Â	0.159	0.722	0.261	1.876	0.148	1.55
	28	3/4	7.677	26.264	C	0.156	0.65	0.261	1.876	0.148	1.45
	28 29	3/4	7,677	26.264	c	0.156	0.65	0.261	1.876	0.148	1.45
	30	3/4	7.677	26.264	B	0.150	0.58	0.261	1.876	0.148	1.31
	31	3/4	7.677	26.264	B	0.153	0.58	0.261	1.876	0.148	1.37
	32	3/4	7.677	26.264	A	0.155	0.722	0.261	1.876	0.148	1.55
	33	3/4	7.677	26.264	Â	0.159	0.722	0.261	1.876	0.148	1.55
	452	1 1/4	12.795	28.702	Ĉ	0.156	0.65	0.373	1.758	0.212	1.36
	453	1 1/4	12.795	28.702	В	0.150	0.58	0.373	1.758	0.212	1.30
	454	1 1/4	12.795	28.702	A	0.155	0.722	0.373	1.758	0.212	1.45
	4.24	1 1/4	12,195	20,702	A	0.155	Sum:	6.244	31.051		25.66
					B		Sum	6.244	31.051	3.550 3.546	
					Б С			6.244	31.051	3.540	22.70 24.11
T2	34	2	20.239	31.745	C	0.142	0.584				
140.00-120.00	24	2	20.239	51.745	C	0.142	0.584	3.333	10.980	1,889	8.05
140.00-120.00	34	2	20.239	31.745	٨	0.145	0.644	3.333	10.980	1.890	8.47
	35	2	20.239	31.745	A C	0.143	0.584	3.333	10.980		
	35					112 Sec. 113 Sec. 1				1.889	8.05
	35	2	20.239	31.745 31.745	B	0.139	0.497	3.333	10.980	1.888	7.50
	36	2	20.239		B	0.139	0.497	3.333	10.980	1.888	7.50
		2	20.239	31.745	A	0.145	0.644	3.333	10.980	1.890	8.47
	37	3/4	7.59	25.721	C	0.142	0.584	0.224	1.594	0.127	1.17
1	38	3/4	7.59	25.721	В	0.139	0.497	0.224	1.594	0.127	1.08
	39	3/4	7.59	25.721	A	0.145	0.644	0.224	1.594	0.127	1.23
	40	3/4	7.59	25.721	C	0.142	0.584	0.224	1.594	0.127	1.17
	41	3/4	7.59	25.721	В	0.139	0.497	0.224	1.594	0.127	1.08
	42	3/4	7.59	25.721	A	0.145	0.644	0.224	1.594	0.127	1.23
	43	3/4	7,59	25.721	С	0.142	0.584	0.265	1.887	0.150	1.38
	44	3/4	7.59	25.721	С	0.142	0.584	0.265	1.887	0.150	1.38
	45	3/4	7.59	25.721	В	0.139	0.497	0.265	1.887	0.150	1.28
	46	3/4	7.59	25.721	В	0.139	0.497	0,265	1.887	0.150	1.28
	47	3/4	7.59	25.721	A	0.145	0.644	0.265	1.887	0.150	1.45
	48	3/4	7.59	25.721	A	0.145	0.644	0.265	1.887	0.150	1.45
	49	3/4	7.59	25.721	С	0.142	0.584	0.265	1.887	0.150	1.38
	50	3/4	7.59	25.721	С	0.142	0.584	0.265	1.887	0.150	1.38
	51	3/4	7.59	25.721	В	0.139	0.497	0.265	1.887	0.150	1.28
	52	3/4	7.59	25.721	В	0.139	0.497	0.265	1.887	0.150	1.28
	53	3/4	7,59	25.721	Α	0.145	0.644	0.265	1.887	0,150	1.45
	54	3/4	7.59	25,721	А	0.145	0.644	0.265	1.887	0.1 50	1.45
	55	3/4	7.59	25.721	С	0.142	0.584	0.265	1.887	0.150	1.38
	56	3/4	7,59	25.721	C	0.142	0.584	0.265	1.887	0.150	1.38
	57	3/4	7.59	25.721	В	0.139	0.497	0.265	1.887	0.150	1.28
	58	3/4	7,59	25.721	В	0.139	0.497	0.265	1.887	0.150	1.28
	59	3/4	7.59	25.721	A	0.145	0.644	0.265	1.887	0.150	1.45
	60	3/4	7.59	25.721	A	0.145	0.644	0.265	1.887	0.150	1.45
	61	3/4	7.59	25.721	C	0.142	0.584	0.265	1.887	0.150	1.38
	62	3/4	7.59	25.721	C	0.142	0.584	0.265	1.887	0.150	1.38
	63	3/4	7.59	25,721	в	0.139	0.497	0.265	1.887	0.150	1.28
	64	3/4	7.59	25.721	В	0.139	0.497	0.265	1.887	0.150	1.28
	65	3/4	7.59	25.721	Ā	0.145	0.644	0.265	1.887	0.150	1.45
	66	3/4	7.59	25.721	A	0.145	0.644	0.265	1.887	0.150	1.45
	67	3/4	7.59	25.721	ĉ	0.142	0.584	0.265	1.887	0.150	1.38
	68	3/4	7.59	25.721	č	0.142	0.584	0.265	1.887	0.150	1.38
	69	3/4	7.59	25.721	B	0.139	0.497	0.265	1.887	0.150	1.28
	70	3/4		25.721	B	0.139	0.497	0.265	1.887	0.150	1,28
	1.24	21	1 1921		_ <u>≓</u> _1	0.104	A. 1. 4	Water Wal	1.00/	0.1.00	1,40

ton Tonnon	Job		Page
tnxTower		S.A West Coventry Tower (Bolton, CT)	18 of 55
AECOM	Project		Date
500 Enterprise Drive, Suite 3B		TWM-007 / T-Mobile	13:47:34 09/20/16
Rocky Hill, CT	Client		Designed by
Phone: 860-529-8882 FAX: 860-529-3991		Transcend Wireless	MCD

Section	Elem.	Size	C	С	F	е	е	A _r	A,	$A_r R_r$	$A_r R_r$
Elevation	Num_	Dize		w/Ice	a	C	w/Ice	21 _F	w/Ice	$A_{F} A_{F}$	w/Ice
					с			,			
ft		2/4	7.50	0.5.701	e	0.1.45	0.44	ft^2	ft^2	ft ²	ft^2
	71	3/4 3/4	7.59 7.59	25.721 25.721	A	0.145	0.644	0.265	1.887 1.887	0.150 0.150	1.457
	72 73 74	3/4	7.59	25.721	Ĉ	0.143	0.584	0.265	1.887	0.150	1.385
	74	3/4	7.59	25.721	č	0.142	0.584	0.265	1,887	0.150	1.385
	75	3/4	7.59	25.721	В	0.139	0.497	0.265	1,887	0.150	1.289
	76	3/4	7.59	25.721	В	0.139	0.497	0.265	1.887	0.150	1.289
	77	3/4	7.59	25.721	A	0.145	0.644	0.265	1.887	0.150	1.457
	78	3/4	7.59	25.721	A	0.145	0.644	0.265	1.887	0.150	1.457
	79 80	3/4 3/4	7.59	25.721 25.721	C C	0.142	0.584	0.265	1.887	0.150	1.385
	81	3/4	7.59	25.721	B	0.142 0.139	0.584 0.497	0.265	1.887 1.887	0.150 0.150	1.385 1.289
	82	3/4	7.59	25.721	B	0.139	0.497	0.265	1.887	0.150	1.289
	83	3/4	7.59	25.721	Ā	0.145	0.644	0.265	1.887	0.150	1.457
	84	3/4	7.59	25,721	A	0.145	0.644	0.265	1.887	0.150	1.457
	85	3/4	7,59	25.721	С	0.142	0.584	0.265	1.887	0.150	1.385
	86	3/4	7.59	25.721	C	0.142	0.584	0.265	1.887	0,150	1.385
	87	3/4	7.59	25.721	B	0.139	0.497	0.265	1.887	0.150	1.289
	88 89	3/4 3/4	7.59 7.59	25.721 25.721	B A	0.139 0.145	0.497 0.644	0.265	1.887 1.887	0.150 0.150	1.289 1.457
	90	3/4	7.59	25.721	A	0.145	0.644	0.265	1.887	0.150	1.457
			1.45 3	201121	A	St. ((55	Sum:	11.356	55.334	6.439	42.725
					В			11.356	55.334	6.433	37.807
					С			11.356	55.334	6.437	40.611
T3	91	2	19.886	30.832	С	0.142	0.578	3.333	10.853	1.889	7.924
120.00-100.00	91	2	10.00/	20.022		0.146	0.020	2 2 2 2	10.962	1.800	0.200
	91	2 2	19.886 19.886	30.832 30.832	A C	0.145 0.142	0.636 0.578	3.333 3.333	10.853 10.853	1.890 1.889	8.325 7.924
	92	2	19.886	30.832	B	0.139	0.492	3.333	10.853	1.888	7.390
	93	2	19.886	30.832	B	0.139	0.492	3.333	10.853	1.888	7.390
	93	2	19.886	30.832	Α	0.145	0.636	3.333	10.853	1.890	8.325
	94	3/4	7.457	24.913	С	0.142	0.578	0.224	1.571	0.127	1.147
	95	3/4	7.457	24.913	В	0.139	0.492	0.224	1.571	0.127	1.070
	96 97	3/4 3/4	7.457	24.913 24.913	A	0.145	0.636	0.224	1.571	0.127	1.205
	98	3/4	7.457 7.457	24.913	C B	0.142 0.139	0.578 0.492	0.224	1.571 1.571	0.127 0.127	1.147 1.070
	99	3/4	7.457	24.913	A	0.145	0.636	0.224	1.571	0.127	1.205
	100	3/4	7.457	24.913	С	0.142	0.578	0.265	1.860	0.150	1.358
	101	3/4	7.457	24.913	С	0.142	0.578	0.265	1.860	0.150	1.358
	102	3/4	7.457	24.913	В	0.139	0.492	0.265	1.860	0.150	1.266
	103	3/4	7.457	24.913	B	0.139	0.492	0.265	1.860	0.150	1.266
	104 105	3/4 3/4	7.457 7.457	24.913 24.913	A A	0.145	0.636	0.265	1.860 1.860	0.150	1.427
	105	3/4	7.457	24.913	ĉ	0.143	0.636	0.265	1.860	0.150 0.150	1.427 1.358
	107	3/4	7.457	24.913	č	0.142	0.578	0.265	1.860	0.150	1.358
	108	3/4	7.457	24.913	В	0.139	0.492	0.265	1.860	0.150	1.266
1	109	3/4	7.457	24.913	В	0.139	0.492	0.265	1.860	0.150	1.266
	110	3/4	7.457	24.913	A	0.145	0.636	0.265	1.860	0.150	1.427
	111	3/4	7.457	24.913	A	0.145	0.636	0.265	1.860	0.150	1.427
	112 113	3/4	7.457	24.913	C	0.142	0.578	0.265	1.860	0.150	1.358
	114	3/4 3/4	7,457 7.457	24.913 24.913	C B	0.142 0.139	0.578 0.492	0.265	1.860 1.860	0.150 0.150	1.358
	115	3/4	7.457	24.913	B	0.139	0.492	0.265	1.860	0.150	1.266
	116	3/4	7.457	24.913	Ā	0.145	0.636	0.265	1.860	0.150	1.427
	117	3/4	7.457	24.913	A	0.145	0.636	0.265	1.860	0.150	1.427
	118	3/4	7.457	24.913	C	0.142	0.578	0.265	1.860	0.150	1.358
	119	3/4	7.457	24.913	C	0.142	0.578	0.265	1.860	0.150	1.358
	120	3/4	7.457	24.913	B	0.139	0.492	0.265	1.860	0.150	1.266
	121	3/4	7-457	24.913	B	0.139	0.492	0.265	1.860	0.150	1.266
	122	3/4 3/4	7.457 7.457	24.913 24.913	AA	0.145	0.636	0.265	1.860 1.860	0.150 0.150	1.427 1.427
1	123	J/4	1.431	24.713	A	0.143	0.020	0.205	1.600	0.150	1.427

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 19 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section	Elem.	Size	С	С	F	е	е	A _r	A_{r}	$A_r R_r$	$A_r R_r$
Elevation	Num.	Size		w/Ice	r a	e	e w/Ice	A_r	A, w/Ice	$A_r K_r$	w/Ice
Literation	1.141			11/100	c		10/100		111200		111100
ft					е			ft^2	ft^2	ft^2	ft^2
	124	3/4	7,457	24.913	C	0,142	0.578	0.265	1.860	0.150	1.358
	125	3/4	7.457	24,913	C	0.142	0.578	0.265	1.860	0.150	1.358
	126	3/4	7.457	24.913	B	0.139	0.492	0.265	1.860	0.150	1.266
	127	3/4	7.457	24.913	B	0.139	0.492	0.265	1.860	0.150	1.266
	128 129	3/4 3/4	7.457	24.913 24.913	A	0.145	0.636	0.265	1.860	0.150	1.427
	129	3/4	7.457	24.913	A C	0.145	0.636 0.578	0.265	1.860 1.860	0.150 0.150	1.427 1.358
	131	3/4	7.457	24.913	c	0.142	0.578	0.265	1.860	0.150	1.358
	132	3/4	7,457	24.913	B	0.139	0.492	0.265	1.860	0.150	1.266
	133	3/4	7.457	24.913	B	0.139	0.492	0.265	1.860	0.150	1.266
	134	3/4	7.457	24.913	A	0.145	0.636	0.265	1.860	0.150	1.427
	135	3/4	7.457	24.913	A	0.145	0.636	0.265	1.860	0.150	1.427
	136	3/4	7,457	24.913	C	0.142	0.578	0.265	1.860	0.150	1.358
	137	3/4	7.457	24.913	C	0.142	0.578	0.265	1.860	0.150	1.358
	138	3/4	7,457	24.913	В	0.139	0.492	0.265	1.860	0.150	1.266
	139	3/4	7,457	24.913	В	0.139	0.492	0.265	1.860	0.150	1.266
	140	3/4	7.457	24.913	A	0.145	0.636	0.265	1.860	0.150	1.427
	141	3/4	7.457	24.913	A	0.145	0.636	0.265	1.860	0.150	1.427
	142 143	3/4 3/4	7.457	24.913	C C	0.142	0.578 0.578	0.265	1.860	0.150	1.358 1.358
	145	3/4	7.457	24.913	B	0.142	0.378	0.265	1.860 1.860	0.150 0.150	1.358
	145	3/4	7.457	24.913	B	0.139	0.492	0.265	1.860	0.150	1.266
	146	3/4	7.457	24.913	Ă	0.145	0.636	0.265	1.860	0.150	1.427
	147	3/4	7.457	24.913	A	0.145	0.636	0.265	1.860	0.150	1.427
					Α		Sum:	11.356	54.606	6.439	41.889
					В			11.356	54.606	6.433	37.183
					С			11.356	54.606	6.437	39.871
T4 100.00-80.00	148	2 1/4	21,904	30.931	С	0.152	0.576	3.750	11.120	2.129	8.102
	148	2 1/4	21.904	30.931	A	0.154	0.632	3.750	11.120	2.130	8.498
	149	2 1/4	21.904	30.931	C	0.152	0.576	3.750	11.120	2.129	8.102
	149 150	2 1/4 2 1/4	21.904 21.904	30.931 30.931	B B	0.148	0.492	3.750 3.750	11.120 11.120	2.128	7.5 72 7.5 72
	150	2 1/4	21.904	30,931	A	0.148 0.154	0.492	3.750	11.120	2.128 2.130	8.498
	151	3/4	7.301	23.977	Ĉ	0.154	0.576	0.223	1.535	0.126	1.119
	152	3/4	7.301	23.977	B	0.148	0.492	0.223	1.535	0.126	1.046
	153	3/4	7.301	23.977	Ā	0.154	0.632	0.223	1.535	0.126	1.173
	154	3/4	7.301	23.977	С	0.152	0.576	0.223	1.535	0.126	1.119
	155	3/4	7.301	23.977	В	0,148	0.492	0.223	1.535	0.126	1.046
	156	3/4	7.301	23,977	А	0.154	0.632	0.223	1.535	0.126	1.173
	157	3/4	7.301	23.977	С	0.152	0.576	0.264	1.818	0.150	1.324
	158	3/4	7.301	23,977	C	0.152	0.576	0.264	1.818	0.150	1.324
	159	3/4	7.301	23.977	B	0.148	0.492	0.264	1,818	0.150	1.238
	160 161	3/4 3/4	7.301 7.301	23.977 23.977	B A	0.148 0.154	0.492 0.632	0.264 0.264	1.818 1.818	0.150 0.150	1.238 1.389
	161	3/4	7.301	23.977	A	0.154	0.632	0.264	1.818	0.150	1.389
	163	3/4	7.301	23.977	C	0.154	0.576	0.264	1.818	0.150	1.324
1	164	3/4	7.301	23.977	C	0.152	0.576	0.264	1.818	0.150	1.324
	165	3/4	7.301	23.977	В	0.148	0.492	0.264	1.818	0.150	1.238
	166	3/4	7.301	23.977	В	0.148	0.492	0.264	1.818	0.150	1.238
	167	3/4	7.301	23.977	A	0.154	0.632	0.264	1.818	0.150	1.389
	168	3/4	7,301	23.977	А	0.154	0.632	0.264	1.818	0.150	1.389
	169	3/4	7.301	23.977	С	0.152	0.576	0.264	1.818	0.150	1.324
	170	3/4	7.301	23.977	С	0.152	0.576	0.264	1.818	0.150	1.324
	171	3/4	7.301	23.977	B	0.148	0.492	0.264	1.818	0.150	1.238
	172	3/4	7.301	23.977	B	0.148	0.492	0.264	1.818	0.150	1.238
	173	3/4	7:301	23.977	A	0.154	0.632	0.264	1.818	0.150	1.389
	174 175	3/4 3/4	7.301 7.301	23.977 23.977	A C	0.154	0.632	0.264 0.264	1.818 1.818	0.150	1.389
	175	3/4 3/4	7.301	23.977	c	0.152	0.576	0.264	1.818	0.150 0.150	1.324 1.324
	177	3/4		23.977	В	0.132	0.492	0.264	1.818	0.150	1.238
1	10000	2/ 7	1 501	-2.711	2	0.111	V. 174	0.204	1.010	On A west	1.4.00

tnxTower	Job		Page
<i>inx i ower</i>		S.A West Coventry Tower (Bolton, CT)	20 of 55
AECOM	Project		Date
500 Enterprise Drive, Suite 3B		TWM-007 / T-Mobile	13:47:34 09/20/16
Rocky Hill, CT	Client		Designed by
Phone, 860-529-8882 FAX: 860-529-3991		Transcend Wireless	MCD

Section	Elem.	Size	С	C	F	е	е	A_r	Α,	$A_r R_r$	$A_r R_r$
Elevation	Num.			w/Ice	а		w/Ice		w/Ice		w/Ice
ft					с е			ft^2	ft^2	ft^2	ft^2
	178	3/4	7,301	23.977	В	0.148	0.492	0.264	1.818	0.150	1.23
	179	3/4	7.301	23.977	A	0.154	0.632	0.264	1.818	0.150	1.38
	180	3/4	7.301	23.977	A	0.154	0.632	0.264	1.818	0.150	1.3
	181	3/4	7.301	23.977	C	0.152	0.576	0.264	1.818	0.150	1.3
	182	3/4	7.301	23.977	C	0.152	0.576	0.264	1.818	0.150	1.3
	183	3/4	7,301	23.977	B	0.148	0.492	0.264	1.818	0.150	1.2
	184 185	3/4 3/4	7.301	23,977	B	0.148 0.154	0.492	0.264	1.818	0.150	1.2
	185	3/4	7.301	23.977	A	0.154	0.632	0.264	1.818 1.818	0.150 0.150	1.3
	180	3/4	7.301	23.977	ĉ	0.154	0.576	0.264	1.818	0.150	1.3
	188	3/4	7,301	23.977	C	0.152	0.576	0.264	1.818	0.150	1.3
	189	3/4	7.301	23.977	В	0.148	0.492	0.264	1.818	0.150	1.2
	190	3/4	7,301	23.977	В	0,148	0.492	0.264	1,818	0.150	1.2
	191	3/4	7.301	23.977	A	0.154	0.632	0.264	1.818	0.150	1.3
	192	3/4	7.301	23.977	А	0.154	0.632	0.264	1.818	0.150	1.3
	193	3/4	7,301	23.977	С	0.152	0.576	0.264	1.818	0.150	1.3
	194	3/4	7.301	23.977	C	0.152	0.576	0.264	1.818	0,150	1.3
	195	3/4	7.301	23.977	В	0.148	0.492	0.264	1.818	0.150	1.2
	196	3/4	7.301	23.977	В	0.148	0.492	0.264	1.818	0.150	1.2
	197 198	3/4 3/4	7.301 7.301	23.977 23.977	A	0.154 0.154	0.632	0.264 0.264	1.818	0.150	1,3
	198	3/4	7.301	23.977	A C	0.154	0.632	0.264	1.818 1.818	0.150 0.150	1.3 1.3
	200	3/4	7.301	23.977	c	0.152	0.576	0.264	1.818	0.150	1.3
	201	3/4	7.301	23.977	B	0.148	0.492	0.264	1.818	0.150	1.2
	202	3/4	7.301	23.977	B	0.148	0.492	0.264	1.818	0.150	1.2
	203	3/4	7.301	23.977	Α	0.154	0.632	0.264	1.818	0.150	1.3
	204	3/4	7.301	23.977	Α	0.154	0.632	0.264	1.818	0.150	1.3
					Α		Sum:	12.162	54.392	6.908	41.5
					В			12.162	54.392	6.900	37.0
					C			12,162	54.392	6.905	39.6
5 80.00-60.00	205	2 1/4	21.332	29.628	С	0.156	0.583	3.750	10.937	2.131	8.0
	205 206	2 1/4 2 1/4	21.332 21.332	29.628 29.628	A C	0.159 0.156	0.64	3.750 3.750	10.937 10.937	2.1 32 2.131	8.4
	206	2 1/4	21.332	29.628	В	0.150	0.383	3.750	10.937	2.131	8.0
	207	2 1/4	21.332	29.628	B	0.152	0.498	3.750	10.937	2.129	7.4
1	207	2 1/4	21.332	29.628	Ă	0.159	0.64	3.750	10.937	2.122	8.4
	208	3/4	7.111	22.855	C	0.156	0.583	0.223	1.503	0,127	1.1
	209	3/4	7.111	22,855	В	0.152	0.498	0.223	1.503	0.126	1.03
	210	3/4	7.111	22.855	Α	0.159	0.64	0.223	1.503	0.127	1.1:
	211	3/4	7,111	22.855	C	0.156	0.583	0.223	1.503	0.127	1.10
	212	3/4	7.111	22.855	В	0.152	0.498	0.223	1.503	0.126	1.0
	213	3/4	7.111	22.855	A	0.159	0.64	0.223	1.503	0.127	1.1
	214 215	3/4 3/4	7.111	22.855	C	0.156	0.583	0.264	1.779	0.150	1.3
	210	5/4		22.855	C B	0.156 0.152	0.583 0.498	0.264	1.779 1.779	0.150 0.150	1.3
	216									0.150	
	216	3/4	7.111	22.855							
	216 217	3/4 3/4	7.111 7.111	22.855	В	0.152	0.498	0.264	1.779	0.150	1.2
	216 217 218	3/4 3/4 3/4	7.111 7.111 7.111	22.855 22.855	B A	0.152 0.159	0.498 0.64	0.264 0.264	1.779 1.779	0.1 50 0.1 50	1.2 1.3
	216 217 218 219	3/4 3/4 3/4 3/4	7.111 7.111 7.111 7.111 7.111	22.855	В	0.152 0.159 0.159	0.498 0.64 0.64	0.264 0.264 0.264	1.779 1.779 1.779	0.150 0.150 0.150	1.2 1.3 1.3
	216 217 218	3/4 3/4 3/4	7.111 7.111 7.111	22.855 22.855 22.855	B A A	0.152 0.159	0.498 0.64	0.264 0.264	1.779 1.779	0.150 0.150 0.150 0.150	1.2 1.3 1.3
	216 217 218 219 220 221 222	3/4 3/4 3/4 3/4 3/4	7.111 7.111 7.111 7.111 7.111 7.111	22.855 22.855 22.855 22.855 22.855	B A A C	0.152 0.159 0.159 0.156	0.498 0.64 0.64 0.583	0.264 0.264 0.264 0.264	1.779 1.779 1.779 1.779	0.150 0.150 0.150	1.2 1.3 1.3 1.3 1.3
	216 217 218 219 220 221 222 223	3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4	7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111	22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855	B A A C C	0.152 0.159 0.159 0.156 0.156 0.152 0.152	0.498 0.64 0.583 0.583 0.498 0.498	0.264 0.264 0.264 0.264 0.264 0.264 0.264	1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779	0.150 0.150 0.150 0.150 0.150 0.150 0.150	1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.2
	216 217 218 219 220 221 222 223 223 224	3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4	7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111	22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855	B A C C B	0.152 0.159 0.159 0.156 0.156 0.152 0.152 0.152	0.498 0.64 0.583 0.583 0.498 0.498 0.64	0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264	1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779	0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150	1.2 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.3
	216 217 218 219 220 221 222 223 224 225	3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4	7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111	22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855	B A C C B B A A	0.152 0.159 0.159 0.156 0.156 0.152 0.152 0.152 0.159 0.159	0.498 0.64 0.583 0.583 0.498 0.498 0.64 0.64	0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264	1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779	0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150	1.2 1.3(1.3) 1.3(1.2 1.2 1.2 1.3(1.3)
	216 217 218 219 220 221 222 223 224 225 226	3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4	7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111	22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855	B A C C B B A A C	0.152 0.159 0.156 0.156 0.152 0.152 0.152 0.159 0.159 0.159	0.498 0.64 0.583 0.583 0.498 0.498 0.64 0.64 0.583	0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264	1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779	0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150	1.2 1.3(1.3) 1.3(1.3) 1.2 1.2 1.2 1.3(1.3) 1.3(1.3)
	216 217 218 219 220 221 222 223 224 225 226 227	3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4	7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111	22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855	B A C C B B A A C C	0.152 0.159 0.159 0.156 0.156 0.152 0.152 0.152 0.159 0.159 0.156 0.156	0.498 0.64 0.583 0.583 0.498 0.498 0.64 0.64 0.583 0.583	0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264	1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779	0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150	1.2 1.3(1.3) 1.3(1.3) 1.2 1.2 1.3(1.3(1.3(1.3(1.3(
	216 217 218 219 220 221 222 223 224 225 226 227 228	3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4	7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111	22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855	B A C C B B A A C C B	0.152 0.159 0.159 0.156 0.156 0.152 0.152 0.159 0.159 0.156 0.156 0.156	0.498 0.64 0.583 0.583 0.498 0.498 0.64 0.64 0.583 0.583 0.498	0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264	1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779	0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150	1.2 1.3(1.3) 1.3(1.3) 1.2 1.2 1.3(1.3) 1.3(1.3) 1.3(1.3) 1.3(1.3)
	216 217 218 219 220 221 222 223 224 225 226 227 228 229	3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4	7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111	22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855	B A C C B B A A C C B B B	0.152 0.159 0.159 0.156 0.156 0.152 0.152 0.159 0.159 0.156 0.156 0.156 0.152 0.152	0.498 0.64 0.583 0.583 0.498 0.498 0.64 0.583 0.583 0.583 0.583 0.498 0.498	0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264	1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779	0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150	1.21 1.22 1.36 1.36 1.30 1.21 1.36 1.36 1.36 1.36 1.30 1.30 1.21 1.21
	216 217 218 219 220 221 222 223 224 225 226 227 228	3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4	7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111 7.111	22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855 22.855	B A C C B B A A C C B	0.152 0.159 0.159 0.156 0.156 0.152 0.152 0.159 0.159 0.156 0.156 0.156	0.498 0.64 0.583 0.583 0.498 0.498 0.64 0.64 0.583 0.583 0.498	0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264	1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779	0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150	1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3

17	
tny I	ower
CIGOL I	Unici

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	S.A West Coventry Tower (Bolton, CT)	21 of 55
Project		Date
	TWM-007 / T-Mobile	13:47:34 09/20/16
Client	Transcend Wireless	Designed by MCD

Section	Elem.	Size	С	C	F	е	е	A_r	A,	A,R,	A,R,
Elevation	Num.			w/Ice	а		w/Ice		w/Ice	2.0	w/Ice
ft					с е			ft ²	ft^2	ft ²	ft^2
	232	3/4	7.111	22.855	C	0.156	0.583	0.264	1.779	0.150	1.304
	233	3/4	7.111	22.855	Ċ	0.156	0.583	0.264	1.779	0.150	1.304
	234	3/4	7.111	22.855	В	0.152	0.498	0.264	1.779	0.150	1.217
	235	3/4	7.111	22.855	В	0.152	0.498	0.264	1.779	0.150	1.217
	236	3/4	7.111	22.855	A	0.159	0.64	0.264	1.779	0.150	1,369
	237	3/4	7.111	22.855	A	0.159	0.64	0.264	1.779	0.150	1.369
	238	3/4	7.111	22.855	С	0.156	0,583	0.264	1.779	0.150	1.304
	239	3/4	7.111	22.855	С	0.156	0.583	0.264	1.779	0.150	1.304
	240	3/4	7.111	22.855	В	0.152	0.498	0.264	1.779	0.150	1.217
	241	3/4	7.111	22.855	B	0.152	0.498	0.264	1.779	0.150	1.217
	242	3/4 3/4	7.111	22.855	A	0,159	0.64	0.264	1.779	0.150	1.369
	243 244	3/4	7.111 7.111	22,855 22.855	A	0.159 0.156	0.64	0.264	1.779	0.150	1.369
1	245	3/4	7.111	22.855	C C	0.156	0.583 0.583	0.264	1.779 1.779	0.150 0.150	1.304 1.304
	245	3/4	7.111	22.855	B	0.150	0.498	0.264	1.779	0.150	1.217
	247	3/4	7.111	22.855	B	0.152	0.498	0.264	1.779	0.150	1.217
	248	3/4	7.111	22.855	A	0.152	0.64	0.264	1.779	0.150	1.369
	249	3/4	7.111	22.855	A	0.159	0.64	0.264	1.779	0.150	1.369
	250	3/4	7.111	22.855	C	0.156	0.583	0.264	1.779	0.150	1.304
	251	3/4	7,111	22.855	С	0.156	0.583	0.264	1.779	0.150	1.304
	252	3/4	7.111	22.855	В	0.152	0.498	0.264	1.779	0.150	1.217
	253	3/4	7.111	22.855	В	0.152	0.498	0.264	1.779	0.150	1.217
	254	3/4	7.111	22.855	Α	0.159	0.64	0.264	1.779	0.150	1.369
	255	3/4	7.111	22.855	А	0.159	0.64	0.264	1.779	0.150	1.369
	256	3/4	7 1 1 1	22,855	С	0.156	0.583	0.264	1.779	0.150	1.304
	257	3/4	7.111	22.855	C	0.156	0.583	0.264	1.779	0.150	1.304
	258	3/4	7.111	22.855	B	0.152	0.498	0.264	1.779	0.150	1.217
	259 260	3/4 3/4	7.111	22.855 22.855	B	0.152	0.498	0.264	1.779	0.150	1.217
	261	3/4	7.111	22.855	A A	0.159 0.159	0.64 0.64	0.264 0.264	1.779 1.779	0.150	1.369
	470	1 1/4	11.851	25.113	Ĉ	0.159	0.583	0.204	1.651	0.150	1.369 1.211
	471	1 1/4	11.851	25.113	B	0.150	0.498	0.371	1.651	0.211	1.130
	472	1 1/4	11.851	25.113	Ā	0.159	0.64	0.371	1.651	0.211	1.271
			111001		A	01142.0	Sum	12.533	54.995	7.126	42.330
					В			12.533	54.995	7.116	37.620
					C			12.533	54.995	7.121	40.326
T6 60.00-40.00	262	2 1/4	20.59	27.975	C	0.152	0.555	3.750	10.700	2.129	7.664
	262	2 1/4	20.59	27.975	A	0.154	0.607	3.750	10.700	2.130	8.002
	263	2 1/4	20.59	27.975	C	0.152	0.555	3.750	10.700	2.129	7.664
	263	2 1/4	20.59	27.975	В	0.148	0.478	3.750	10.700	2.128	7.203
	264	2 1/4	20.59	27.975	В	0.148	0.478	3.750	10.700	2.128	7.203
	264	2 1/4	20.59	27.975	A	0.154	0.607	3.750	10.700	2.130	8.002
	265	3/4	6.863	21.438 21.438	C	0.152	0.555	0.223	1.461	0.126	1.046
	266 267	3/4 3/4	6,863		B	0.148	0.478	0.223	1.461	0.126	0.983 1.092
1	268	3/4	6.863 6.863	21.438 21.438	A C	0.154 0.152	0.607 0.555	0.223	1.461 1.461	0.126	1.046
	269	3/4	6.863	21.438	в	0.132	0.333	0.223	1.461	0.126	0.983
	270	3/4	6.863	21.438	A	0.154	0.607	0.223	1.461	0.126	1.092
	271	3/4	6.863	21.438	c	0.152	0.555	0.264	1.729	0.150	1.238
	272	3/4	6.863	21.438	c	0.152	0.555	0.264	1.729	0.150	1.238
	273	3/4	6.863	21.438	B	0.148	0.478	0.264	1.729	0.150	1.164
	274	3/4	6,863	21,438	В	0.148	0.478	0.264	1.729	0.150	1.164
	275	3/4	6.863	21.438	A	0.154	0.607	0.264	1.729	0.150	1.293
	276	3/4	6.863	21.438	A	0.154	0.607	0.264	1.729	0.150	1.293
	277	3/4	6.863	21.438	C	0.152	0.555	0.264	1.729	0.150	1.238
	278	3/4	6.863	21.438	С	0.152	0.555	0.264	1.729	0.150	1,238
	279	3/4	6.863	21.438	В	0.148	0.478	0.264	1.729	0.150	1.164
	280	3/4	6.863	21.438	В	0.148	0.478	0.264	1.729	0.150	1.164
	281	3/4	6.863	21.438	A	0.154	0.607	0.264	1.729	0.150	1.293
1	282	3/4	1 6 6 6 6	21.438	A	0.154	0.607	0.264	1.729	0.150	1.293

tnxTower	
----------	--

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	S.A West Coventry Tower (Bolton, CT)	22 of 55
Project		Date
	TWM-007 / T-Mobile	13:47:34 09/20/16
Client	_	Designed by
	Transcend Wireless	MCD

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Section	Elem.	Size	C	C	F	е	е	A _r	A,	$A_r R_t$	$A_r R_r$
B - - C			5120				e		A _r		$A_r \Lambda_i$	
283 3/4 6.863 21.478 C 0.152 0.255 0.264 1.725 0.151 0.532 286 3/4 6.863 21.478 B 0.148 0.478 0.264 1.729 0.151 0.146 286 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.151 0.129 288 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.151 1.238 290 3/4 6.863 21.438 C 0.155 0.555 0.264 1.729 0.156 1.248 291 3/4 6.863 21.438 R 0.148 0.478 0.264 1.729 0.156 1.238 292 3/4 6.863 21.438 R 0.150 0.677 0.264 1.729 0.150 1.238 296 3/4 6.863 21.438 R 0.154 0.607 0.264		<u> </u>				с						
284 3/4 6.863 21.438 B 0.148 0.78 0.264 1.729 0.150 1.248 286 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.156 1.249 287 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.156 1.238 289 3/4 6.863 21.438 A 0.155 0.555 0.264 1.729 0.150 1.238 290 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.156 1.238 291 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.156 1.238 2924 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.156 1.238 296 3/4 6.863 21.438 B 0.148 0.478 0.264	fi											
288 3/4 6.863 21.488 B 0.148 0.478 0.264 1.729 0.150 1.164 287 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 288 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.238 290 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 291 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.293 2929 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.238 2969 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.238 296 3/4 6.863 21.438 B 0.148 0.478 0.264										1.729		
286 3/4 6.863 21.438 A 0.148 0.478 0.0264 1.729 0.150 1.299 288 3/4 6.863 21.438 A 0.155 0.667 0.626 1.729 0.150 1.239 289 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 291 3/4 6.863 21.438 B 0.148 0.748 0.664 1.729 0.150 1.238 293 3/4 6.863 21.438 A 0.154 0.067 0.264 1.729 0.150 1.238 2949 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 2967 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.238 2969 3/4 6.863 21.438 A 0.155 0.264 1.729												
287 344 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.239 288 344 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 290 344 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.164 292 344 6.863 21.438 A 0.154 0.067 0.264 1.729 0.156 1.293 2949 344 6.863 21.438 A 0.154 0.067 0.264 1.729 0.156 1.238 296 344 6.863 21.438 B 0.148 0.478 0.264 1.729 0.156 1.268 297 344 6.863 21.438 B 0.148 0.478 0.264 1.729 0.156 1.269 300 344 6.863 21.438 A 0.155 0.264 1.729										1 729		
288 3/4 6.66 21.438 A 0.154 0.607 0.266 1.729 0.150 1.239 290 3/4 6.663 21.438 C 0.152 0.555 0.266 1.729 0.150 1.238 291 3/4 6.633 21.438 B 0.148 0.478 0.266 1.729 0.150 1.266 293 3/4 6.633 21.438 R 0.154 0.067 0.266 1.729 0.150 1.293 2949 3/4 6.633 21.438 C 0.152 0.555 0.266 1.729 0.150 1.238 2967 3/4 6.633 21.438 R 0.154 0.070 0.66 1.729 0.150 1.268 300 3/4 6.636 21.438 R 0.152 0.555 0.266 1.729 0.150 1.238 3003 3/4 6.636 21.438 R 0.148 0.478 0.266												
280 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 291 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.164 292 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.293 294 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 295 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.283 296 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.293 300 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.293 301 3/4 6.863 21.438 A 0.154 0.667 0.264						A						
291 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.166 292 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 294 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 296 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.164 296 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.205 300 3/4 6.863 21.438 A 0.154 0.667 0.264 1.729 0.150 1.238 301 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.238 302 3/4 6.863 21.438 B 0.148 0.478 0.264												
292 3/4 6.863 21.438 8 0.148 0.6607 0.264 1.729 0.150 1.269 294 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 295 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 296 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.164 298 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 300 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.238 302 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.238 302 3/4 6.863 21.438 B 0.148 0.478 0.264							1.000					
293 3/4 6.863 21.438 A 0.154 0.607 0.266 1.729 0.150 1.299 295 3/4 6.863 21.438 C 0.152 0.555 0.266 1.729 0.150 1.238 296 3/4 6.863 21.438 B 0.148 0.478 0.266 1.729 0.150 1.248 297 3/4 6.863 21.438 B 0.148 0.478 0.266 1.729 0.150 1.299 300 3/4 6.863 21.438 C 0.152 0.555 0.266 1.729 0.150 1.299 301 3/4 6.863 21.438 C 0.152 0.555 0.266 1.729 0.150 1.248 303 3/4 6.863 21.438 R 0.154 0.607 0.266 1.729 0.150 1.293 306 3/4 6.863 21.438 R 0.148 0.478 0.266												
294 3/4 6.863 21.438 A 0.154 0.607 0.266 1.729 0.150 1.238 296 3/4 6.863 21.438 C 0.152 0.555 0.266 1.729 0.150 1.238 297 3/4 6.863 21.438 B 0.148 0.478 0.266 1.729 0.150 1.238 298 3/4 6.863 21.438 A 0.154 0.607 0.266 1.729 0.150 1.238 300 3/4 6.863 21.438 A 0.154 0.607 0.266 1.729 0.150 1.238 301 3/4 6.863 21.438 R 0.148 0.478 0.266 1.729 0.150 1.238 303 3/4 6.863 21.438 R 0.148 0.478 0.266 1.729 0.150 1.238 306 3/4 6.863 21.438 R 0.148 0.478 0.266												
295 3/4 6.863 21.438 C 0.152 0.555 0.266 1.729 0.150 1.238 297 3/4 6.863 21.438 B 0.148 0.478 0.266 1.729 0.150 1.166 299 3/4 6.863 21.438 A 0.154 0.607 0.266 1.729 0.150 1.238 300 3/4 6.863 21.438 A 0.154 0.607 0.266 1.729 0.150 1.238 301 3/4 6.863 21.438 C 0.152 0.555 0.266 1.729 0.150 1.238 303 3/4 6.863 21.438 R 0.148 0.478 0.266 1.729 0.150 1.248 306 3/4 6.863 21.438 A 0.154 0.607 0.266 1.729 0.150 1.238 306 3/4 6.863 21.438 A 0.154 0.607 0.266												
296 3.4 6.863 21.438 C 0.152 0.555 0.266 1.729 0.150 1.238 298 3.4 6.863 21.438 B 0.148 0.478 0.266 1.729 0.150 1.166 299 3.44 6.863 21.438 A 0.154 0.607 0.266 1.729 0.150 1.238 300 3.4 6.863 21.438 C 0.152 0.555 0.266 1.729 0.150 1.238 301 3.44 6.863 21.438 C 0.152 0.555 0.266 1.729 0.150 1.238 303 3.44 6.863 21.438 R 0.154 0.607 0.266 1.729 0.150 1.238 306 3.44 6.863 21.438 R 0.154 0.607 0.266 1.729 0.150 1.238 308 3.44 6.863 21.438 R 0.148 0.478 0.266 <td></td>												
297 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.164 299 3/4 6.863 21.438 A 0.154 0.067 0.264 1.729 0.150 1.293 300 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 302 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.164 304 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.203 306 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.238 306 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.238 309 3/4 6.863 21.438 A 0.154 0.607 0.264												1.238
299 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 301 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 302 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.124 303 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.1293 306 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 306 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.248 308 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 310 3/4 6.863 21.438 A 0.154 0.607 0.264						В				1.729		1.164
300 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.238 302 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 303 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.164 304 304 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 306 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.293 307 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 308 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.248 313 3/4 6.863 21.438 A 0.154 0.607 0.264										1.729		
301 344 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 302 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.238 303 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.293 306 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 306 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 308 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 309 3/4 6.863 21.438 A 0.148 0.478 0.264 1.729 0.150 1.238 313 3/4 6.863 21.438 C 0.152 0.555 0.264												
302 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.166 303 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.164 305 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 306 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 308 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 309 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.243 310 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.243 313 3/4 6.863 21.438 C 0.152 0.555 0.264									0.264			1.293
303 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.164 304 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 306 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.238 307 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 308 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.238 310 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.238 313 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 313 3/4 6.863 21.438 C 0.152 0.555 0.264												
304 3/4 6.863 21.438 A 0.145 0.677 0.264 1.729 0.150 1.164 305 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 307 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 309 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.288 310 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.293 311 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 313 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.283 314 3/4 6.863 21.438 C 0.152 0.555 0.264		22570										
305 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 306 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 308 3/4 6.863 21.438 C 0.152 0.555 0.264 1.729 0.150 1.238 309 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.238 310 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 311 3/4 6.863 21.438 A 0.152 0.555 0.264 1.729 0.150 1.293 313 3/4 6.863 21.438 A 0.152 0.555 0.264 1.729 0.150 1.293 316 3/4 6.863 21.438 A 0.154 0.607 0.264							175.2					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						А	0.154			1.729		1.293
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											0.150	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									0.264			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												1.293
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			3/4			С						
316 3/4 6.863 21.438 B 0.148 0.478 0.264 1.729 0.150 1.164 317 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 318 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 318 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 318 3/4 6.863 21.438 A 0.154 0.607 0.264 1.729 0.150 1.293 319 2.1/4 19.512 25.653 C 0.152 0.538 3.750 10.353 2.129 7.312 320 2.1/4 19.512 25.653 B 0.148 0.465 3.750 10.353 2.128 6.904 321 2.1/4 19.512 25.653 B 0.148 0.465 3.7												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		20.05										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							5.5200					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		510	514	0.005	21.450		0.154					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								0 dini				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		10.11				С			12.162			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T7 40.00-20.00					С						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2000										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						_	07282	100002			Contract of the second s	12 20 20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					24		To Greek .					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									0.223			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
328 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.169 329 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.169 330 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.169 331 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 1.104 332 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 1.217 333 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 1.217 333 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 1.217 334 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.217 335 3/4 6.504 19.459		12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -										
329 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.169 330 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 1.104 331 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 1.104 332 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 1.104 332 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 1.217 333 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 1.217 334 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.217 335 3/4 6.504 19.459 C 0.152 0.538 0.264												
330 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 1.104 331 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 1.104 332 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 1.104 332 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 1.217 333 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 1.217 334 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.217 335 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.169 335 3/4 6.504 19.459 C 0.152 0.538 0.264												
331 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 1.104 332 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 1.217 333 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 1.217 334 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 1.217 334 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.217 335 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.169 335 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.169												
332 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 1.217 333 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 1.217 334 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 1.217 334 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.169 335 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.169												100 C 100 C
334 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.169 335 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.169			3/4	~	· · · · ·		1					
335 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.169		100000000000000000000000000000000000000										
335 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 1.169 336 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 1.104												
		335										
	1	220	5/4	0-304	17.439	ы	0.148	0.405	0.204	1.020	0.150	1.104

	100	7		
tn	YI	au	ver	
		UV		

Job		Page
	S.A West Coventry Tower (Bolton, CT)	23 of 55
Project		Date
	TWM-007 / T-Mobile	13:47:34 09/20/16
Client	T 1047 1	Designed by

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Transcend Wireless

MCD

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Section	Elem.	Size	С	С	F	е	е	A _r	А,	A,R,	$A_r R_r$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Elevation	Num			w/Ice	a		w/Ice		w/Ice		w/Ice
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ft					1					-	ft^2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							0 1 2.53					1.104
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												1.217 1.217
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									0.264			1.169
342 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 343 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 344 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 345 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 346 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 347 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 348 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 349 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 350 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 351 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.169</td></t<>												1.169
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		342		6.504	19.459	В	0.148	0.465	0.264			1.104
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							1.					1.104
346 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 347 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 348 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 349 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 350 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 351 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 352 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 353 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 353 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 355 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.217</td></t<>												1.217
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		100000										1.217 1.169
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												1.169
349 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 350 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 351 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 351 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 352 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 353 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 354 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 355 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 356 3/4 6.504 19.459 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.104</td></t<>												1.104
351 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 352 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 353 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 353 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 354 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 355 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 356 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 356 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 357 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150						В		0.465	0.264	1.656	0.150	1.104
352 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 353 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 354 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 355 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 355 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 356 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 357 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150												1.217
353 3/4 6.504 19.459 C 0.152 0.538 0.264 1.656 0.150 354 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 355 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 355 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 356 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 357 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150												1.217
354 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 355 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 355 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 356 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 357 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150								0.538				1.169 1.169
355 3/4 6.504 19.459 B 0.148 0.465 0.264 1.656 0.150 356 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150 357 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150							7.000				0420	1.104
357 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150												1.104
		356	3/4		19.459		1	0.586	0.264	1.656	0.150	1.217
												1.217
												1.169
2 · · · · · · · · · · · · · · · · · · ·												1.169 1.104
												1.104
												1.217
							2201					1.217
												1.169
							2,245.0					1.169 1.104
												1.104
								0.586				1.217
369 3/4 6.504 19.459 A 0.154 0.586 0.264 1.656 0.150		369	3/4				24 5433					1.217
												1.169
												1.169
								Pro12 4 100 5 12 10				1.104 1.104
												1.217
							10-2			1.656		1.217
A Sum: 12.162 49.998 6.908 3								Sum:	12.162			36.741
												33.341
	8 20 00-5 00	376	21/2	20.168	23 5/18		0.163	0.528				35.312 5.369
그는 물건 전에 이상적이 있었다. 이상적이 가지 않는 것이 이상적이 가지 않는 것이 이상적이 있었다.	0 20.00-5.00						N/mit					5.552
		CP1 (1-2)					C 2000					5.369
377 2 1/2 20.168 23.548 B 0.16 0.465 3.125 7.662 1.777					23.548							5.110
												5.110
							8297					5.552
									0.221			0.906
												0.862
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					0.906
383 3/4 6.05 16.825 B 0.16 0.465 0.221 1.293 0.126		383	3/4	6.05	16.825		0.16	0.465	0.221	1.293	0.126	0.862
							0.0013					0.937
							A. 5.1.0					1.078
												1.078
												1,026
389 3/4 6.05 16.825 A 0.166 0.569 0.263 1.538 0.150		389							0.263	1.538		1.114
		390	3/4	6.05	16.825	A	0.166	0.569	0.263	1.538	0.150	1.114

tnxT	ower
LIVAL	UIVUI

Client

Job		Page
	S.A West Coventry Tower (Bolton, CT)	24 of 55
Project		Date
	TWM-007 / T-Mobile	13:47:34 09/20/16

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Transcend Wireless

Designed by

MCD

Section	Elem	Size	C	C	F	e	е	A _r	Α,	$A_i R_i$	$A_r R_r$
Elevation	Num.	0120		w/Ice	a	C	w/Ice	CI _T	w/Ice	21,114	w/Ice
					с			,			
ft	201	2/4	6.05	16.005	e	0.163	0.520	ft^2	ft^2	ft ²	ft^2
	391 392	3/4 3/4	6.05 6.05	16.825 16.825	C C	0.163	0.528	0.263	1.538 1.538	0.150 0.150	1.078 1.078
	393	3/4	6.05	16.825	B	0.16	0.328	0.263	1.538	0.150	1.026
	394	3/4	6.05	16.825	B	0.16	0.465	0.263	1.538	0.150	1.026
	395	3/4	6.05	16.825	Ā	0.166	0.569	0.263	1.538	0,150	1.114
	396	3/4	6.05	16.825	A	0.166	0.569	0.263	1.538	0,150	1.114
	397	3/4	6.05	16.825	С	0.163	0.528	0.263	1.538	0.150	1.078
	398	3/4	6.05	16.825	С	0.163	0.528	0.263	1,538	0.150	1.078
	399	3/4	6.05	16.825	В	0.16	0.465	0.263	1.538	0.150	1.026
	400	3/4	6.05	16.825	В	0.16	0.465	0.263	1.538	0.150	1.026
	401	3/4	6.05	16.825	A	0.166	0.569	0.263	1.538	0.150	1.114
	402	3/4	6.05	16.825	A	0.166	0.569	0.263	1.538	0.150	1.114
	403	3/4	6.05	16.825	C	0.163	0.528	0.263	1.538	0.150	1.078
	404	3/4	6.05	16.825	C	0.163	0.528	0.263	1.538	0.150	1.078
	405	3/4	6.05	16.825	B	0.16	0.465	0.263	1.538	0.150	1.026
	406	3/4 3/4	6.05 6.05	16.825 16.825	B	0.16	0.465 0.569	0.263	1.538 1.538	0.150 0.150	1.026 1.114
	407 408	3/4 3/4	6.05	16.825	A A	0.166	0.569	0.263	1.538	0.150	1.114
	409	3/4	6.05	16.825	C	0.163	0.528	0.263	1.538	0.150	1.078
	410	3/4	6.05	16.825	C	0.163	0.528	0.263	1.538	0.150	1.078
	411	3/4	6.05	16.825	B	0.16	0.465	0.263	1.538	0.150	1.026
	412	3/4	6.05	16.825	В	0.16	0.465	0.263	1.538	0.150	1.026
	413	3/4	6.05	16,825	Α	0.166	0.569	0.263	1.538	0.150	1.114
	414	3/4	6.05	16.825	A	0.166	0.569	0.263	1.538	0.150	1.114
	415	3/4	6.05	16.825	С	0.163	0.528	0.263	1.538	0.150	1.078
	416	3/4	6.05	16.825	С	0.163	0.528	0.263	1.538	0.150	1.078
	417	3/4	6.05	16.825	В	0.16	0.465	0.263	1.538	0.150	1.026
	418	3/4	6.05	16.825	В	0.16	0.465	0.263	1.538	0.150	1.026
	419	3/4	6.05	16.825	A	0.166	0.569	0.263	1.538	0.150	1.114
	420	3/4	6.05	16.825	A A	0.166	0.569	0.263 9.853	1.538 36.365	0.1 50 5.610	1.114 26.348
					B		Sum:	9.853	36.365	5.602	24.249
					C			9.853	36.365	5.606	25.482
T9 5.00-0.00	421	2 1/2	20.168	21.475	C	0.361	0.907	1.135	2.538	0.704	2.465
	421	2 1/2	20.168	21,475	Ă	0.361	0.907	1.135	2.538	0.704	2.465
	422	2 1/2	20.168	21.475	С	0.361	0.907	1.135	2.538	0.704	2.465
	422	2 1/2	20,168	21.475	В	0.361	0.907	1.135	2.538	0.704	2.465
	423	2 1/2	20.168	21.475	В	0.361	0.907	1.135	2.538	0.704	2.465
	423	2 1/2	20.168	21.475	А	0.361	0.907	1.135	2.538	0.704	2.465
	424	3/4	6.05	14.752	С	0.361	0.907	0.010	0.053	0.006	0.052
	425	3/4	6.05	14.752	В	0.361	0.907	0.010	0.053	0.006	0.052
	426	3/4	6.05	14.752	A	0.361	0.907	0.010	0.053	0.006	0.052
	427 428	3/4 3/4	6.05 6.05	14.752 14.752	C C	0.361	0.907	0.137 0.137	0.701 0.701	0.085	0.681 0.681
	428	3/4	6.05	14.752	B	0.361	0.907	0.137	0.701	0.085	0.681
	430	3/4	6.05	14.752	В	0.361	0.907	0.137	0.701	0.085	0.681
	431	3/4	6.05	14.752	A	0.361	0.907	0.137	0.701	0.085	0.681
	432	3/4	6.05	14.752	A	0.361	0.907	0.137	0.701	0.085	0.681
	436	3/4	6.05	14.752	С	0.361	0.907	0.027	0.136	0.017	0.132
	437	3/4	6.05	14.752	В	0.361	0.907	0.027	0.136	0.017	0.132
	438	3/4	6.05	14.752	Α	0.361	0.907	0.027	0.136	0.017	0.132
	439	3/4	6.05	14.752	С	0.361	0.907	0.215	1.103	0.134	1.071
	440	3/4	6.05	14.752	C	0.361	0.907	0.215	1.103	0.134	1.071
	441	3/4	6.05	14.752	B	0.361	0.907	0.215	1.103	0.134	1.071
	442	3/4	6.05	14.752	B	0.361	0.907	0.215	1.103	0.134	1.071
	443	3/4	6.05	14.752	A	0.361	0.907	0.215	1.103	0.134	1.071
	444 445	3/4 3/4	6.05 6.05	14.752 14.752	A C	0.361	0.907	0.215 0.153	1.103 0.785	0.134 0.095	1.071 0.762
	445	3/4	6.05	14.752	В	0.361	0.907	0.153	0.785	0.095	0.762
	440	3/4	6.05	14.752	A	0.361	0.907	0.153	0.785	0.095	0.762
		577	0.05			0.501	act and	O T T T T	011024	- and a set	OL F SIDE

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 25 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section Elevation	Elem, Num.	Size	С	C w/Ice	F a c	е	e w/Ice	A _r	A _r w/Ice	A _e R _e	A _r R _r w/Ice
fi					e			ft^2	ft^2	ft^2	ft^2
1					А		Sum	3.165	9,659	1,963	9.380
					В			3,165	9,659	1,963	9.380
					С			3,165	9.659	1.963	9.380
									ļ		

222-G Section Verification Tables - No Ice

Section	Zwind	Z_{iev}	Kz	K _h	Kzt	tz	q_z	F	е	$A_{\mu}R_{r}$
Elevation								а		
1 1			1 1					С	1	
fi	ft	ft				in	psf	е		ft^2
T1 150.00-140.00	145.00		1.369	1	1		33	А	0.159	3.550
								В	0.153	3.546
1 1								С	0.156	3.548
T2 140.00-120.00	130.00		1.337	1	1		32	А	0.145	6.439
								В	0.139	6.433
			1 1					С	0.142	6.437
T3 120.00-100.00	110.00		1.291	1	1		31	A	0.145	6.439
			1 1					В	0.139	6,433
								С	0.142	6.437
T4 100.00-80.00	90.00		1.238	1	1		30	Α	0.154	6.908
								В	0.148	6.900
								С	0.152	6.905
T5 80.00-60.00	70.00		1,174	1	1		28	Α	0.159	7.126
								В	0.152	7.116
								С	0.156	7,121
T6 60.00-40.00	50.00		1,094	1	L		26	Α	0.154	6,908
								В	0.148	6.900
								С	0.152	6.905
T7 40,00-20,00	30.00		0,982	1	1		24	Α	0.154	6.908
	1							В	0.148	6.900
								С	0.152	6,905
T8 20.00-5.00	12,50		0.85	1	1		20	Α	0.166	5.610
								В	0.16	5.602
								С	0.163	5.606
T9 5.00-0.00	2.50		0.85	1	1		20	А	0.361	1.963
								В	0.361	1.963
								С	0.361	1.963

222-G Section Verification Tables - Ice

Section Elevation	Zwind	Z_{lec}	Kz	K _h	Kzi	tz	q _z	F a	е	$A_r R_r$
ft	ft	ft				in	psf	с е		ft^2
T1 150.00-140.00	145.00	145.00	1.369	1	1	2.3191	7	А	0.722	25.666
								В	0.58	22,709
								С	0.65	24.111
T2 140.00-120.00	130.00	130.00	1,337	1	1	2,2939	7	А	0.644	42.725
								В	0.497	37.807
	1							С	0.584	40.611

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 26 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section Elevation	Z_{wind}	Zive	K ₂	K _h	K _{zt}	t _z	qz	F a	е	$A_r R_r$
6	A	G						С		ft^2
<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	ft	ft	1.001			în D D T T D	psf	е	0.606	
T3 120.00-100.00	110,00	110,00	1.291	1	1	2,2559	7	А	0.636	41.889
1								В	0.492	37.183
								С	0.578	39.871
T4 100.00-80.00	90.00	90.00	1.238	1	1	2.2111	7	A	0.632	41.564
1								В	0.492	37.038
								С	0,576	39.631
T5 80.00-60.00	70.00	70.00	1.174	1	1	2,1562	6	А	0.64	42,330
1				1. I.				В	0,498	37.620
								С	0.583	40,326
T6 60.00-40.00	50.00	50.00	1.094	1	1	2.0849	6	А	0.607	38.878
								В	0.478	34.996
								С	0,555	37.234
T7 40.00-20.00	30,00	30.00	0.982	1	1	1.9810	5	А	0,586	36.741
								В	0.465	33,341
								С	0.538	35.312
T8 20.00-5.00	12.50	12.50	0.85	1	1	1.8150	5	A	0.569	26.348
	0.00			-	-		_	В	0,465	24,249
								Č	0.528	25.482
T9 5.00-0.00	2.50	2.50	0.85	1	1	1.5452	5	Ă	0.907	9.844
19 5.00 0.00	2.50	2.00	0.05	÷	۴	1,5152	5	B	0.907	9.844
1								C	0.907	9.844
		(i.						C	0.907	7.044

222-G Section Verification Tables - Service

Section	Z_{wind}	Z_{her}	Kz	K _h	Kzt	tz	q_z	F	е	$A_r R_r$
Elevation								а		
								С		
fi	ft	ft				în	psf	е		ft^2
T1 150,00-140,00	145.00		1,369	1	1		11	A	0.159	3.550
								В	0.153	3.546
								С	0.156	3.548
T2 140 00-120 00	130.00		1,337	1	1		10	А	0.145	6.439
								В	0.139	6,433
					1010			С	0.142	6.437
T3 120.00-100.00	110.00		1 291	1	1		10	A	0.145	6.439
								В	0.139	6.433
								С	0.142	6.437
T4 100.00-80.00	90.00		1.238	1	1		10	А	0.154	6.908
								В	0.148	6,900
								С	0.152	6.905
T5 80,00-60,00	70.00		1.174	1	1		9	А	0.159	7.126
								В	0.152	7,116
								С	0.156	7.121
T6 60.00-40.00	50.00		1.094	1	1		9	А	0.154	6,908
	1							В	0.148	6.900
								С	0.152	6.905
T7 40.00-20.00	30,00		0.982	1	1		8	Α	0.154	6.908
1								В	0.148	6.900
1 1								С	0.152	6.905
T8 20.00-5.00	12.50		0.85	1	1		7	А	0.166	5.610
								В	0.16	5,602
1					65			С	0.163	5.606
Т9 5.00-0.00	2,50		0.85	1	1		7	А	0.361	1.963
		l l						В	0.361	1.963
								C	0.361	1.963

tnxTower

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	S.A West Coventry Tower (Bolton, CT)	27 of 55
Project		Date
	TWM-007 / T-Mobile	13:47:34 09/20/16
Client		Designed by
	Transcend Wireless	MCD

Tower Pressures - No Ice

$G_H =$	0.850
---------	-------

Section	Z	Kz	q_z	AG	F	AF	A_R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation			-		a				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	e	ft^2	ft^2	ft^2		ft^2	ft^2
T1	145.00	1.369	33	39.167	Α	0.000	6.244	3,333	53.39	0.000	0.000
150.00-140.00					В	0.000	5.995		55.60	3.672	0.000
					C	0.000	6,110		54,56	1.980	0.000
T2	130.00	1.337	32	78.333	Α	0.000	11.356	6.667	58.71	0.000	0.000
140.00-120.00					В	0.000	10.856		61.41	9.180	0.000
					C	0.000	11,140		59.84	3,960	0.000
T3	110.00	1.291	31	78.333	A	0.000	11.356	6.667	58.71	0.000	0.000
120.00-100.00					В	0.000	10.856		61.41	9,180	0.000
					С	0.000	11.140		59.84	3.960	0.000
T4	90.00	1.238	30	78.750	Α	0.000	12.162	7.500	61.67	0.000	0.000
100.00-80.00					В	0.000	11.662		64,31	9.180	0.000
					С	0.000	11.946		62.78	3.960	0.000
T5 80.00-60.00	70.00	1.174	28	78,750	Α	0.000	12.533	7.500	59.84	0,000	0.000
					В	0.000	11.993		62.54	9.180	0.000
					С	0.000	12.300		60.97	3,960	0,000
T6 60.00-40.00	50.00	1.094	26	78.750	Α	0.000	12,162	7,500	61,67	0.000	0.000
					В	0.000	11.662		64.31	9.180	0.000
					С	0.000	11.946		62.78	3.960	0.000
T7 40.00-20.00	30.00	0.982	24	78.750	Α	0.000	12.162	7.500	61.67	0.000	0,000
					В	0.000	11.662		64.31	9,180	0,000
					С	0,000	11.946		62.78	3.960	0.000
T8 20.00-5.00	12.50	0.85	20	59.375	Α	0.000	9.853	6.250	63.43	0.000	0.000
					В	0.000	9,490		65,86	6,426	0.000
					С	0.000	9.696		64.46	2.772	0.000
T9 5.00-0.00	2.50	0.85	20	10.488	А	0.618	3,165	2.270	60.01	0.000	0.000
					В	0,618	3.165		60.01	0.000	0.000
					C	0.618	3.165		60.01	0.000	0.000

Tower Pressure - With Ice

$G_H = 0.850$

Section	Z	K _Z	qz	tz	A_G	F	A _F	A_R	Aleg	Leg	$C_A A_A$	C_AA_A
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	$\int t^2$	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	145.00	1,369	7	2,3191	43.032	Α	0.000	31.051	11.064	35.63	0.000	0.000
150.00-140.00					1.0.000	В	0.000	24,965		44.32	16.761	0.000
						С	0.000	27.974		39.55	6.618	0.000
T2	130.00	1.337	7	2.2939	85.980	Α	0.000	55,334	21.959	39.68	0.000	0.000
140.00-120.00						В	0.000	42.710		51.42	41.631	0.000
						С	0.000	50.237		43.71	13,136	0.000
T3	110.00	1.291	7	2.2559	85.853	Α	0.000	54.606	21.706	39.75	0.000	0.000
120.00-100.00						В	0.000	42.277		51.34	41.221	0.000
50 111112-035						С	0.000	49.639		43.73	12.984	0.000
T4 100.00-80.00	90.00	1.238	7	2.2111	86.120	Α	0.000	54.392	22.240	40.89	0.000	0.000
						В	0.000	42.408		52.44	40.739	0.000
						С	0.000	49.577		44.86	12.804	0.000
T5 80.00-60.00	70.00	1.174	6	2.1562	85.937	А	0.000	54.995	21.875	39,78	0.000	0.000
			~			В	0.000	42.820		51.08	40.149	0.000

tnxTower	dof	S.A West Coventry Tower (Bolton, CT)	Page 28 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section	Z	Kz	q_z	tz	A_G	F	AF	A_R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation						a				%	In	Out
						С					Face	Face
fi	fi		psf	- în	ft^2	е	ft^2	ft^2	$_{ft^2}$		ft^2	ft^2
						С	0.000	50,120		43.64	12,585	0.000
T6 60.00-40.00	50.00	1,094	6	2.0849	85.700	А	0.000	51.981	21.399	41,17	0,000	0.000
						В	0.000	40.943		52.26	39.382	0,000
						С	0.000	47.582		44.97	12.299	0.000
T7 40 00-20.00	30.00	0.982	5	1,9810	85.353	А	0.000	49.998	20.707	41.42	0.000	0.000
	0					В	0.000	39.711		52.14	38.267	0.000
						С	0.000	45,927		45.09	11.884	0.000
T8 20.00-5.00	12,50	0.85	5	1,8150	63.912	А	0.000	36.365	15.325	42.14	0,000	0.000
						В	0.000	29.734		51.54	25.542	0.000
						С	0.000	33.773		45.38	7.854	0.000
T9 5.00-0.00	2.50	0.85	5	1.5452	11.863	А	0.618	10.137	5.077	47.20	0.000	0.000
						В	0.618	10,137		47.20	0.000	0.000
						С	0.618	10.137		47.20	0.000	0.000

Tower Pressure - Service

$G_H = \theta.85\theta$

Section	Z	Kz	qz	A_G	F	A_F	A_R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation					а			_	%	In	Out
			1 1		С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft ²	ft^2		ft^2	ft^2
T1	145.00	1.369	11	39.167	A	0.000	6.244	3.333	53.39	0.000	0.000
150.00-140.00					В	0.000	5.995		55.60	3.672	0.000
					C	0.000	6,110		54.56	1.980	0.000
T2	130.00	1.337	10	78.333	A	0.000	11.356	6.667	58.71	0.000	0.000
140.00-120.00					В	0,000	10.856		61,41	9,180	0.000
					C	0.000	11.140		59.84	3.960	0.000
T3	110.00	1,291	10	78.333	A	0.000	11.356	6.667	58.71	0.000	0.000
120.00-100.00					В	0.000	10.856		61.41	9.180	0.000
		- 1			С	0.000	11,140		59.84	3.960	0.000
T4	90.00	1.238	10	78,750	Α	0.000	12.162	7.500	61.67	0,000	0.000
100.00-80.00					В	0.000	11.662		64.31	9.180	0,000
					С	0.000	11.946		62.78	3.960	0.000
T5 80.00-60.00	70.00	1.174	9	78.750	Α	0.000	12.533	7.500	59.84	0.000	0.000
					В	0.000	11,993		62.54	9.180	0.000
					С	0.000	12.300		60.97	3.960	0.000
T6 60.00-40.00	50.00	1.094	9	78.750	Α	0.000	12.162	7.500	61.67	0.000	0.000
					В	0.000	11.662		64.31	9.180	0.000
					С	0.000	11.946		62.78	3.960	0.000
T7 40.00-20.00	30.00	0.982	8	78.750	Α	0.000	12.162	7.500	61,67	0.000	0.000
					В	0.000	11.662		64.31	9.180	0,000
					С	0.000	11.946		62.78	3.960	0.000
T8 20.00-5.00	12.50	0.85	7	59.375	Α	0.000	9,853	6.250	63.43	0.000	0,000
					В	0.000	9.490		65.86	6.426	0.000
					С	0.000	9.696		64.46	2.772	0.000
T9 5.00-0.00	2.50	0.85	7	10.488	А	0.618	3.165	2.270	60.01	0.000	0.000
					В	0.618	3.165		60.01	0.000	0.000
					С	0.618	3.165		60.01	0.000	0.000

Tower Forces - No Ice - Wind Normal To Face

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 29 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl
Elevation	Weight	Weight	а									Face
			С			psf						
fi	lb	lb	e						ft^2	lb	plf	
T1	22.04	559.29	A	0.159	2.737	33	1	1	3.550	430.87	43.09	B
150.00-140.00			В	0.153	2.76		1	1	3.546			
			С	0.156	2.75	l l	1	1	3.548			
T2	50.14	995,54	A	0.145	2.79	32	1	1	6.439	852.10	42.60	В
140.00-120.00		TA	В	0.139	2.814		1	1	6.433			
		1066.05	С	0.142	2.8		1	1	6.437			
Т3	50,14	995.54	Α	0.145	2.79	31	1	1	6.439	822,65	41.13	В
120.00-100.00			В	0,139	2.814		1	1	6,433			
		-	С	0.142	2.8		1	1	6.437			
T4	50.14	1165.91	Α	0.154	2.755	30	1	1	6.908	815,64	40.78	В
100.00-80.00			В	0.148	2.779		1	1	6.900			
			С	0.152	2.765		1	1	6.905			
T5	50.14	1212.89	Α	0.159	2.738	28	1	1	7.126	785.33	39,27	В
80.00-60.00			В	0.152	2.763		1	1	7:116			
			С	0,156	2.749		1	1	7.121			
Т6	50.14	1165.91	Α	0.154	2,755	26	1	1	6.908	720,70	36.04	В
60.00-40.00			В	0.148	2.779		1	1	6.900			
			С	0.152	2.765		1	1	6.905			
T7	50.14	1165.91	Α	0.154	2.755	24	1	1	6.908	647.22	32,36	В
40.00-20.00			В	0.148	2.779		1	1	6.900			
			С	0.152	2.765		1	1	6.905			
T8 20.00-5.00	35.10	1026,92	Α	0.166	2.714	20	1	1	5.610	425.08	28,34	В
			В	0.16	2.736		- 1	1	5.602			
			С	0.163	2.723		1	1	5.606			
T9 5.00-0.00	0.00	388.63	Α	0.361	2.147	20	1	1	2.581	96.05	19.21	С
			В	0.361	2.147		1	1	2.581			
			С	0.361	2.147		1	1	2.581			
Sum Weight:	357.96	9742.58					~			5595.64		

Tower	Forces -	No	Ice -	Wind	60	To Face
				VVIIIM		

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
fi	lb	lb	е					<u>) </u>	ft^2	lb	plf	
T1	22.04	559.29	А	0.159	2.737	33	0.8	1	3.550	430.87	43.09	В
150.00-140.00			В	0.153	2.76		0.8	1	3.546			
			С	0.156	2,75		0.8	1	3.548			
T2	50.14	995.54	Α	0.145	2.79	32	0.8	1	6.439	852.10	42.60	В
140.00-120.00		TA	В	0,139	2.814		0.8	1	6.433			
		1066.05	С	0.142	2.8		0.8	1	6.437			
T3	50.14	995,54	Α	0.145	2,79	31	0.8	1	6.439	822_65	41.13	В
120.00-100.00		114	В	0.139	2.814		0.8	1	6.433	~	~~~	
			С	0.142	2.8		0.8	1	6.437			
T4	50.14	1165.91	Α	0.154	2.755	30	0.8	1	6.908	815.64	40.78	В
100.00-80.00			В	0.148	2.779		0.8	1	6.900			
			С	0.152	2.765		0.8	1	6.905			
Т5	50.14	1212.89	Α	0.159	2,738	28	0.8	1	7.126	785.33	39.27	В
80.00-60.00			В	0.152	2.763		0.8	1	7.116			11
			С	0.156	2.749		0.8	1	7.121			
Т6	50.14	1165.91	А	0.154	2.755	26	0.8	1	6.908	720.70	36,04	В
60.00-40.00			В	0.148	2.779		0.8	1	6.900			
· · · · ·			С	0.152	2.765		0.8	1	6.905			
Т7	50.14	1165.91	Α	0.154	2.755	24	0.8	1	6.908	647.22	32,36	В

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 30 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section	Add	Self	F	е	C_F	q _z	D_F	D_R	A_E	F	W	Ctrl
Elevation	Weight	Weight	а									Face
			с			psf						
ft	lb	lb	е						ft^2	lb	plf	
40.00-20.00			В	0.148	2.779		0.8	1	6.900			
			С	0.152	2,765		0,8	1	6.905			
T8 20.00-5.00	35.10	1026.92	Α	0.166	2.714	20	0.8	1	5,610	425.08	28.34	В
			В	0.16	2,736		0.8	1	5.602			
			С	0,163	2,723		0.8	1	5.606			
T9 5.00-0.00	0.00	388.63	Α	0.361	2:147	20	0.8	1	2.457	91.45	18.29	С
			В	0.361	2,147		0,8	1	2.457			1
			С	0.361	2.147		0.8	1	2.457			1
Sum Weight:	357.96	9742.58								5591.04		

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	AE	F	w	Ctrl.
Elevation	Weight	Weight	a	Ŭ	0,-	92	27	27	112	· ·		Face
	0	0	с			psf						
ft	lb	lb	е			1.0			ft^2	lb	plf	
T1	22.04	559.29	A	0.159	2.737	33	0.85	1	3.550	430.87	43.09	В
50.00-140.00			В	0.153	2.76		0.85	1	3.546			
			C	0,156	2.75		0.85	1	3.548			
T2	50.14	995.54	Α	0.145	2.79	32	0.85	1	6,439	852.10	42,60	В
40.00-120.00		TA	В	0.139	2.814		0.85	1	6.433			
		1066.05	C	0.142	2.8		0.85	1	6.437			
Т3	50.14	995,54	Α	0.145	2.79	31	0.85	1	6.439	822.65	41.13	В
20.00-100.00			В	0.139	2.814		0.85	1	6.433			
			C	0.142	2.8		0.85	1	6.437			
T4	50.14	1165.91	A	0.154	2.755	30	0.85	1	6.908	815.64	40.78	В
100.00-80.00			В	0.148	2.779		0.85	1	6.900			
			C	0.152	2.765		0.85	1	6.905			
T5	50.14	1212.89	Α	0.159	2.738	28	0.85	1	7.126	785.33	39.27	В
80.00-60.00			В	0.152	2.763		0.85	1	7.116			
			С	0.156	2.749		0.85	1	7.121			
Т6	50.14	1165.91	Α	0.154	2,755	26	0.85	1	6,908	720.70	36.04	В
60.00-40.00			В	0.148	2.779		0.85	1	6.900			
		1	С	0.152	2.765		0.85	1	6.905			
T7	50.14	1165.91	Α	0.154	2.755	24	0.85	1	6,908	647.22	32.36	В
40.00-20.00			В	0.148	2.779		0.85	1	6.900			
			C	0.152	2.765		0.85	1	6.905			
8 20.00-5.00	35.10	1026.92	A	0.166	2.714	20	0.85	1	5.610	425.08	28.34	в
			В	0.16	2.736		0.85	1	5,602			
			С	0,163	2.723		0.85	1	5.606			
T9 5.00-0.00	0.00	388.63	Α	0.361	2.147	20	0.85	1	2.488	92.60	18.52	С
			В	0,361	2,147		0.85	1	2.488			
			C	0.361	2.147		0:85	1	2.488			
Sum Weight:	357.96	9742.58								5592.19		

Tower Forces - With Ice - Wind Normal To Face

tnxTower	Jop	S.A West Coventry Tower (Bolton, CT)	Page 31 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A _E	F	w	Ctrl
Elevation	Weight	Weight	a			<u> </u>						Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
T1	380,30	2148_48	Α	0.722	1.779	7	1	1	25.666	436.88	43.69	A
150.00-140.00			В	0.58	1.818		1	1	22.709			
			С	0.65	1.781		1	1	24,111			
T2	871.92	3727.05	Α	0,644	1.783	7	1	1	42.725	809.95	40.50	A
140.00-120.00		ТА	В	0.497	1.904		Î.	1	37.807			
		3117.31	С	0.584	1.815		1	1	40.611			
T3	852.51	3650,84	Α	0,636	1.786	7	1	1	41.889	770.36	38.52	A
120.00-100.00			В	0.492	1.91		1	1	37,183			
			С	0.578	1.819		I.	1	39,871			
T4	829.89	3773.20	A	0.632	1.788	7	1	1	41.564	731.81	36.59	A
100.00-80.00			В	0.492	1.91		1	1	37.038			
			C	0.576	1.821		1	1	39.631			
T5	802.60	3813.68	Α	0,64	1.785	6	1	1	42.330	696.41	34,82	A
80.00-60.00			В	0.498	1,902		1	1	37.620			
			С	0.583	1.815		1	1	40.326			
Т6	767.77	3529.34	А	0.607	1.8	6	1	- 1	38.878	615.33	30.77	A
60.00-40.00			В	0.478	1.931		1	1	34.996			
			С	0.555	1,839		I	1	37.234			
T7	718.43	3337.37	Α	0.586	1.814	5	1	1	36.741	530.41	26.52	Α
40.00-20.00			В	0.465	1.949		1	- (i	33.341			
		1	С	0.538	1.855		1.	1	35.312			
T8 20.00-5.00	449,95	2498.90	Α	0.569	1.827	5	1	1	26.348	320.41	21.36	Α
			В	0,465	1.949		1	1	24.249			
			С	0.528	1.866		1	1	25.482			
T9 5.00-0.00	0.00	790.40	Α	0.907	1.934	5	1	1	10.462	79.50	15.90	С
			В	0.907	1.934		1		10,462			
			С	0.907	1.934		1	1	10.462			
Sum Weight:	5673.38	30386.56								4991.07		

		Т	ow	er Fo	rces	- Wi	th Ic	e - V	Vind 60	To Fac	е	Tower Forces - With Ice - Wind 60 To Face								
Section	Add	Self	F	е	C_F	q _z	D_F	D_R	A _E	F	w	Ctrl.								
Elevation	Weight	Weight	а									Face								
			C			psf			2											
ft	lb	lb	е						ft^2	lb	plf									
T1	380.30	2148.48	A	0.722	1.779	7	0.8	1	25,666	436.88	43.69	А								
150.00-140.00			В	0.58	1.818		0.8	1	22.709											
			C	0.65	1.781		0.8	1	24.111											
T2	871,92	3727.05	A	0.644	1.783	7	0.8	1	42.725	809.95	40.50	А								
140.00-120.00		TA	В	0.497	1.904		0.8	1	37.807											
		3117.31	C	0.584	1.815		0.8	1	40.611											
T3	852.51	3650.84	A	0.636	1.786	7	0.8	1	41.889	770.36	38.52	А								
120,00-100.00			В	0.492	1.91) (0.8	1	37.183											
			С	0.578	1.819		0.8	1	39.871											
T4	829.89	3773.20	Α	0.632	1.788	7	0.8	Ť	41.564	731.81	36.59	А								
100.00-80.00			В	0.492	1,91		0.8	1	37.038	2.5										
			С	0.576	1.821		0.8	1	39.631											
Т5	802.60	3813.68	Α	0.64	1.785	6	0.8	1	42,330	696.41	34.82	А								
80.00-60.00			В	0.498	1.902		0.8	1	37.620		~									
			С	0.583	1.815		0.8	1	40.326											
Т6	767.77	3529.34	A	0.607	1.8	6	0.8	1	38.878	615.33	30.77	А								
60.00-40.00			В	0.478	1.931	Ŭ	0.8	1	34.996											
			Ċ	0.555	1.839		0.8	Ē	37.234											
Т7	718.43	3337.37	Ă	0.586	1.814	5	0.8	1	36.741	530.41	26.52	А								

T	Job		Page
tnxTower		S.A West Coventry Tower (Bolton, CT)	32 of 55
AECOM	Project		Date
500 Enterprise Drive, Suite 3B		TWM-007 / T-Mobile	13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section	Add	Self	F	е	C_F	q _z	D_F	D_R	AE	F	w	Ctrl
Elevation	Weight	Weight	а									Face
			С			psf						
ft	<i>lb</i>	<i>lb</i>	е						ft^2	lb	plf	
40.00-20.00			В	0.465	1,949		0.8	1	33.341			
			С	0.538	1.855		0.8	1	35.312			
T8 20.00-5.00	449.95	2498.90	A	0,569	1.827	5	0.8	1	26,348	320.41	21.36	A
			В	0.465	1.949	()	0,8	- Î	24.249			
			С	0.528	1.866		0.8	1	25.482		I I	
T9 5.00-0.00	0.00	790.40	Α	0.907	1.934	5	0.8	1	10.338	78,57	15.71	С
			В	0.907	1.934		0.8	1	10,338			
			С	0.907	1.934		0.8	1	10.338			
Sum Weight:	5673.38	30386.56								4990.13		

	Tower Forces - With Ice - Wind 90 To Face											
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			1						Face
	-		С			psf						
ft	lb	lb	е						ft^2	lb	plf	
Tl	380.30	2148,48	A	0.722	1.779	7	0.85	1	25.666	436.88	43,69	Α
150.00-140.00			В	0.58	1.818		0.85	1	22.709			
			C	0.65	1.781		0.85	1	24.111			0
T2	871.92	3727.05	Α	0.644	1.783	7	0.85	1	42.725	809.95	40.50	А
140.00-120.00		ТА	В	0.497	1.904		0.85	1	37.807			
		3117.31	С	0.584	1.815		0.85	1	40.611			
T3	852,51	3650.84	Α	0.636	1.786	7	0.85	1	41.889	770.36	38.52	А
120.00-100.00			В	0.492	1.91		0.85	1	37,183			
			С	0.578	1,819		0.85	1	39.871			
T4	829.89	3773.20	A	0.632	1.788	7	0.85	1	41.564	731.81	36.59	А
100.00-80.00			В	0.492	1.91		0.85	1	37.038			
	0		С	0.576	1.821		0.85	1	39.631			
T5	802.60	3813.68	Α	0.64	1.785	6	0.85	1	42.330	696.41	34.82	А
80.00-60.00	64 U		В	0.498	1.902		0.85	1	37.620			
			С	0.583	1.815		0.85	1	40.326			
Т6	767.77	3529.34	Α	0.607	1.8	6	0.85	1.	38.878	615.33	30.77	А
60.00-40.00			В	0.478	1.931		0.85	1	34.996			
			С	0.555	1.839		0.85	1	37.234			
T7	718.43	3337.37	Α	0.586	1.814	5	0.85	1	36.741	530,41	26.52	А
40.00-20.00			В	0.465	1.949		0.85	1	33.341			
			С	0.538	1.855		0.85	1	35,312			
T8 20 00-5 00	449.95	2498.90	А	0.569	1.827	5	0.85	1	26.348	320.41	21.36	А
			В	0.465	1.949		0.85	- î	24,249			
			C	0.528	1.866		0.85	1	25.482			
T9 5.00-0.00	0.00	790.40	Ă	0.907	1.934	5	0.85	í.	10.369	78.80	15.76	С
			B	0.907	1.934		0.85	i i	10.369	, 0.00		Ŭ
			č	0.907	1.934		0.85	1	10.369			
Sum Weight:	5673.38	30386.56		0.507			0.05		. 01507	4990.37		

Tower Forces - Service - Wind Normal To Face

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 33 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			С	0 0		psf						
ft	lb	<i>lb</i>	е						ft^2	lb	plf	
T1	22_04	559.29	A	0.159	2.737	11	1	1	3.550	140.69	14.07	B
150.00-140.00) (В	0.153	2.76		1	1	3.546			
			С	0.156	2,75		1	1	3,548			
T2	50.14	995:54	A	0.145	2.79	10	1	1	6.439	278.24	13.91	В
140,00-120,00		ТА	В	0.139	2,814	0	1	1	6.433			
		1066.05	С	0.142	2.8		1	1	6.437			
T3	50.14	995.54	A	0.145	2.79	10	1	1. I.	6.439	268.62	13.43	В
120,00-100.00			В	0.139	2,814		1	1	6.433			
			С	0.142	2.8		1	1	6.437			
T4	50.14	1165,91	Α	0.154	2,755	10	1	1	6.908	266.33	13.32	В
100.00-80.00			В	0.148	2.779		1	1	6.900			
		l (С	0.152	2,765		1	Ĩ	6.905			
T5	50,14	1212.89	Α	0.159	2,738	9	1	1	7,126	256.44	12.82	В
80.00-60.00			В	0.152	2.763		1	E.	7.116			
			С	0.156	2.749		1	E.	7,121			
T6	50.14	1165.91	Α	0.154	2.755	9	1	1	6.908	235.33	11.77	В
60.00-40.00			В	0,148	2,779		1	1	6.900			
			С	0.152	2.765		1	1/	6.905			
T7	50.14	1165.91	Α	0.154	2.755	8	1	1	6.908	211.34	10.57	В
40.00-20.00			В	0.148	2.779		1	1	6.900			
			С	0.152	2.765		1	1	6.905			
T8 20.00-5.00	35.10	1026.92	Α	0.166	2.714	7	1	1	5.610	138.80	9.25	В
			В	0.16	2.736		1	1	5.602			
			С	0.163	2.723		1	T	5.606			
'T9 5.00-0.00	0.00	388.63	Α	0.361	2.147	7	1	1	2.581	31.36	6.27	С
			В	0.361	2.147		1	1	2.581			
			С	0.361	2.147		I	1	2.581			
Sum Weight:	357.96	9742.58								1827.15		

		Т	ow	ver Fo	rces	- Se	rvic	e - N	/ind 60	To Face	Э	
Section	111	R-16	F		C	_	D	D		F		Cul
Elevation	Add	Self		е	C_F	q_z	D_F	D_R	A_E	F'	w	Ctrl.
Elevation	Weight	Weight	a			naf						Face
A	lb	lb	с е			psf			ft^2	lb	plf	
	22.04	559.29	A	0.159	2.737	11	0.8	(1	3.550	140.69	14.07	В
150.00-140.00	22.04	555.25	B	0.153	2.76		0.8	i i	3.546	140.05	14.07	Ъ
10000 110.00			C	0.156	2.75		0.8	i	3.548			
Т2	50.14	995.54	Ā	0.145	2.79	10	0.8	1	6.439	278.24	13.91	В
140.00-120.00	0.0001	TA	В	0,139	2.814	10.0	0.8	1	6.433		1.201.0	_
		1066.05	С	0.142	2.8		0.8	1	6,437			
Т3	50.14	995.54	A	0.145	2,79	10	0.8	1	6.439	268,62	13.43	В
120.00-100.00			В	0.139	2.814		0.8	1	6.433			
			C	0.142	2.8		0.8	1	6.437			
T4	50.14	1165.91	A	0.154	2.755	10	0.8	1	6.908	266.33	13.32	в
100.00-80.00			В	0.148	2.779		0.8	1	6.900			
			С	0.152	2.765		0.8	1	6.905			
T5	50.14	1212.89	Α	0.159	2.738	9	0.8	1	7.126	256.44	12.82	в
80.00-60.00			В	0.152	2.763		0.8	1	7.116			
			С	0,156	2.749		0.8	1	7.121			2250
T6	50.14	1165.91	A	0:154	2.755	9	0.8	1	6.908	235.33	11.77	B
60.00-40.00			B	0,148	2.779		0.8	1	6.900			
77	50.14	11/2 01	С	0.152	2.765	0	0.8		6.905	211.24	10.77	D
Т7	50.14	1165.91	A	0.154	2.755	8	0.8	11	6.908	211.34	10.57	В

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 34 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
fi	lb	lb	е						ft^2	lb	plf	
40,00-20,00			В	0.148	2,779		0.8	1	6.900			
			С	0.152	2,765		0.8	1	6.905			
T8 20,00-5.00	35.10	1026.92	Α	0.166	2.714	7	0,8	1	5.610	138.80	9.25	В
			В	0.16	2.736		0,8	1	5.602			
			С	0,163	2.723		0.8	15	5,606			
T9 5.00-0.00	0.00	388.63	А	0.361	2,147	7	0.8	Ē	2.457	29.86	5.97	С
			В	0.361	2,147		0.8	1	2.457			
			С	0.361	2.147		0.8	1	2.457			
Sum Weight:	357.96	9742.58								1825.65		

Tower Forces - Service - Wind 90 To Face												
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
T1	22.04	559.29	A	0.159	2.737	11	0.85	1	3,550	140.69	14.07	В
150.00-140.00			B	0.153	2,76		0.85	1	3.546			
			C	0.156	2.75		0.85	- T	3.548			
T2	50.14	995.54	A	0.145	2.79	10	0.85	1	6.439	278.24	13.91	В
40.00-120.00		TA	B	0,139	2.814		0.85	1	6.433			
		1066.05	C	0.142	2.8		0.85	1	6,437			
T3	50,14	995.54	A	0.145	2.79	10	0.85	1	6.439	268.62	13.43	В
20.00-100.00			В	0.139	2.814		0.85	1	6.433			
			C	0.142	2.8		0.85	1	6,437			
T4	50.14	1165,91	A	0.154	2.755	10	0.85	1	6.908	266.33	13.32	В
100,00-80.00			В	0.148	2.779		0,85	1	6.900			
			C	0.152	2.765		0.85	1	6.905			
T5	50.14	1212.89	A	0.159	2.738	9	0.85	1	7,126	256.44	12.82	В
80.00-60.00			В	0,152	2,763		0.85	1	7.116			
			C	0.156	2.749		0.85	1	7.121			
Т6	50.14	1165.91	A	0.154	2.755	9	0.85	1	6.908	235,33	11.77	В
60.00-40.00			В	0,148	2.779		0.85	1	6.900			
			C	0.152	2.765		0.85	1	6.905			
Т7	50.14	1165,91	A	0.154	2.755	8	0.85	1	6,908	211.34	10.57	В
40.00-20.00			В	0.148	2.779		0.85	1	6,900			
			С	0.152	2.765		0.85	1	6.905			
Г8 20.00-5.00	35.10	1026.92	A	0.166	2.714	7	0.85	1	5.610	138.80	9.25	В
			В	0.16	2.736		0.85	1	5.602			
			С	0.163	2,723		0.85	1	5,606			
T9 5.00-0.00	0.00	388.63	Α	0.361	2.147	7	0.85	1	2.488	30.24	6.05	С
			В	0.361	2.147		0.85	1	2.488			
			С	0.361	2,147		0.85	1	2.488			
Sum Weight:	357.96	9742.58								1826.02		

Force Totals (Does not include forces on guys)

tnxTower

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT

Phone: 860-529-8882 FAX: 860-529-3991

Page Job S.A. - West Coventry Tower (Bolton, CT) 35 of 55 Project Date TWM-007 / T-Mobile 13:47:34 09/20/16 Client Designed by **Transcend Wireless** MCD

Load Case	Vertical Forces	Sum of Forces	Sum of Forces	Sum of Torques
Cuse	101000	X	Z	
	lb	lb	lb	lb-ft
Leg Weight	5875.36	South States	and the second	and the second s
Bracing Weight	3867.22		and the st	111
Total Member Self-Weight	9742.58			Ford States In
Guy Weight	1629.57			
Total Weight	15602.44	and the second		NED BOOK
Wind 0 deg - No Ice	THE REAL OF ME	-71.46	-11040.91	3279.84
Wind 30 deg - No Ice	State State State	5434.49	-9513.90	2442.49
Wind 60 deg - No Ice	The second second	9492.38	-5456.27	954.60
Wind 90 deg - No Ice		11003.26	71.46	-791.33
Wind 120 deg - No Ice		9558.73	5577.10	-2325.51
Wind 150 deg - No Ice		5570.28	9606.17	-3237.24
Wind 180 deg - No Ice		71.46	11025.82	-3278.01
Wind 210 deg - No Ice	Card Angle Street	-5434.49	9513.90	-2442,49
Wind 240 deg - No Ice	그 말 손을 가슴?	-9508.08	5465.33	-957.32
Wind 270 deg - No Ice	HAR HINNING	-11003.26	-71,46	791,33
Wind 300 deg - No Ice		-9575.55	-5586.81	2324.87
Wind 330 deg - No Ice		-5570.28	-9606.17	3237.24
Member Ice	20643.99	LE LA STREET	Read Frank	PERSONAL PLAN
Guy Ice	15055.03		ALL AND ALL ALL	Post in a la
Total Weight Ice	64758.14	They wanted	<u>1 2 2 2 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	Litt V-V Shine H
Wind 0 deg - Ice	the set of the	-10.35	-7225.08	1040.01
Wind 30 deg - Ice	1.47 CALLER AND	3646.70	-6325.99	759.47
Wind 60 deg - Ice		6251.75	-3603.11	265.42
Wind 90 deg - Ice	OVER STREET	7225.11	10.35	-293.97
Wind 120 deg - Ice		6337.58	3664.61	-773.25
Wind 150 deg - Ice		3593.91	6213.85	-1046.56
Wind 180 deg - Ice	State States	10.35	7310.36	-1044.34
Wind 210 deg - Ice		-3646.70	6325.99	-759.47
Wind 240 deg - Ice		-6204.75	3575.97	-261.80
Wind 270 deg - Ice		-7225.11	-10.35	293.97
Wind 300 deg - Ice	A REAL PROPERTY.	-6214.28	-3593.43	775.45
Wind 330 deg - Ice		-3593.91	-6213.85	1046.56
Total Weight	15602.44	Aug. 37,394, 21	1147 - 42 TO 14	
Wind 0 deg - Service		-23.33	-3605.20	1070.97
Wind 30 deg - Service		1774.53	-3106.58	797.55
Wind 60 deg - Service	A CONTRACTOR AND INCOME	3099.55	-1781.64	311.71
Wind 90 deg - Service		3592.90	23.33	-258.39
Wind 120 deg - Service	1	3121.22	1821.09	-759.35
Wind 150 deg - Service		1818.87	3136.71	-1057.06
Wind 180 deg - Service	1 - C - C - C - C - C - C - C - C - C -	23.33	3600.27	-1070.37
Wind 210 deg - Service	(123)	-1774.53	3106.58	-797.55
Wind 240 deg - Service	121-12-12	-3104.68	1784.60	-312.59
Wind 270 deg - Service		-3592,90	-23.33	258.39
Wind 300 deg - Service	THE TWE	-3126.71	-1824.26	759.14
Wind 330 deg - Service		-1818.87	-3136.71	1057.06

Load Combinations

Description

Comb. No 1 Dead Only

2 1.2 Dead+1.6 Wind 0 deg - No Ice+1.0 Guy

3 4

1.2 Dead+1.6 Wind 30 deg - No Ice+1.0 Guy 1.2 Dead+1.6 Wind 60 deg - No Ice+1.0 Guy

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 36 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Comb.	Description
No. 5	1.2 Dead+1.6 Wind 90 deg - No Ice+1.0 Guy
6	1.2 Dead+1.6 Wind 120 deg - No Ice+1.0 Guy
7	1.2 Dead+1.6 Wind 120 deg - No Ice+1.0 Guy
8	1.2 Dead+1.6 Wind 180 deg - No Ice+1.0 Guy
9	1.2 Dead+1.6 Wind 100 deg - No Ice+1.0 Guy
10	1.2 Dead+1.6 Wind 240 deg - No Ice+1.0 Guy
11	1.2 Dead+1.6 Wind 270 deg - No Ice+1.0 Guy
12	1.2 Dead+1.6 Wind 300 deg - No Ice+1.0 Guy
13	1.2 Dead+1.6 Wind 330 deg - No Ice+1.0 Guy
14	1.2 Dead+1.0 Ice+1.0 Temp+Guy
15	1.2 Dead+1.0 Wind 0 deg+1.0 Temp+1.0 Guy
16	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp+1.0 Guy
17	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp+1.0 Guy
18	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp+1.0 Guy
19	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp+1.0 Guy
20	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp+1.0 Guy
21	1.2 Dcad+1.0 Wind 180 deg+1.0 Ice+1.0 Temp+1.0 Guy
22	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp+1.0 Guy
23	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp+1.0 Guy
24	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy
25	1,2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp+1.0 Guy
26	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp+1.0 Guy
27	Dead+Wind 0 deg - Service+Guy
28	Dead+Wind 30 deg - Service+Guy
29	Dead+Wind 60 deg - Service+Guy
30	Dead+Wind 90 deg - Service+Guy
31	Dead+Wind 120 deg - Service+Guy
32	Dead+Wind 150 deg - Service+Guy
33	Dead+Wind 180 deg - Service+Guy
34	Dead+Wind 210 deg - Service+Guy
35	Dead+Wind 240 deg - Service+Guy
36	Dead+Wind 270 deg - Service+Guy
37	Dead+Wind 300 deg - Service+Guy
38	Dead+Wind 330 deg - Service+Guy

Section No	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
(701	1.50 1.40			Comb.	lb	lb-ft	lb-ft
T1	150 - 140	Leg	Max Tension	12	5608.20	-35,90	-29.92
			Max. Compression	2	-17536.59	13.03	773.21
			Max, Mx	6	-15473.51	-644.35	-356,82
			Max, My	2	-16007.82	12.98	773,22
			Max. Vy	5	1238.73	-297,96	-5.30
			Max. Vx	2	1441.67	12.98	773.22
		Diagonal	Max Tension	6	2130.30	0.00	0.00
			Max, Compression	6	-2189.40	0,00	0.00
			Max. Mx	16	-512.78	-6.16	-0.05
			Max My	12	-2034.11	-0.92	0.71
			Max, Vy	16	12.66	-6.16	-0.05
			Max. Vx	12	-0.33	-0.80	0.71
		Top Girt	Max Tension	4	93.00	0.00	0.00
		*	Max. Compression	10	-135.88	0.00	0.00
			Max, Mx	20	-77.01	18.46	0.00
			Max. My	3	-26.22	0.00	-0.00
			Max. Vy	20	19.69	0.00	0.00
			Max. Vx	3	0.00	0.00	0.00
		Bottom Girt	Max Tension	2	645.70	0.00	0.00

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 37 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

ection No:	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	3	-77 -		Comb.	lb	lb-ft	lb-ft
			Max, Compression	4	-348.49	0.00	0.00
			Max, Mx	19	37.49	18.46	0.00
			Max. My	3	42.96	0.00	-0.00
			Max. Vy	19	19,69	0.00	0.00
			Max. Vx	3	0.00	0.00	0.00
		Top Guy Pull-Off	Max Tension	8	5791.70	0.00	0.00
			Max. Compression	2	-4353.58	0.00	0.00
			Max, Mx	20	217.44	26,58	0.00
			Max. My	3	885.40	0.00	-0.00
			Max. Vy	20	-28.36	0.00	0.00
T 2	140 100	т	Max. Vx	3	0.00	0.00	0.00
Т2	140 - 120	Leg	Max Tension	12	1861.45	8.14	7.23
			Max. Compression	25 5	-28241.90	-34.38	-19.77
			Max, Mx Max, My	2	-8613.11 -16019.54	-564.01 -9.18	60.73 -665.74
			Max, Vy	12	1389.46	158.28	-13.58
			Max, Vx	8	-1562.60	88.91	-124.80
		Diagonal	Max Tension	8	2941.26	0.00	0.00
		Diagonal	Max. Compression	9	-3365.95	0.00	0.00
			Max, Mx	15	-1345.67	-8.90	-0.67
			Max. My	2	-1263.46	6.12	-102.98
			Max. Vy	15	13.70	-8.90	-0.67
			Max. Vx	2	46.42	6.12	-102.98
		Top Girt	Max Tension	12	1099.41	0.00	0.00
			Max. Compression	2	-1060.03	0.00	0.00
			Max. Mx	19	138.50	18.17	0.00
			Max. My	3	-82.02	0.00	-0.00
			Max. Vy	19	-19.38	0.00	0.00
			Max. Vx	3	0.00	0.00	0.00
		Bottom Girt	Max Tension	19	214.34	0.00	0.00
			Max. Compression	17	-9.01	0.00	0.00
			Max. Mx	23	53.70	18.17	0.00
			Max. My	3	73.95	0.00	-0.00
			Max. Vy	23	-19.38	0.00	0.00
			Max. Vx	3	0.00	0.00	0.00
		Guy A	Bottom Tension	21	10647.31		
			Top Tension	8	11602.99		
			Top Cable Vert	21	7591.96		
			Top Cable Norm	21	8774.47		
			Top Cable Tan Bot Cable Vert	21	6.43 -6165.44		
			Bot Cable Vert Bot Cable Norm	8 8	-6165.44 8680.58		
			Bot Cable Tan	8 8	8680.58 4.44		
		Guy B	Bottom Tension	8 25	4.44 10921.17		
			Top Tension	12	12141.02		
			Top Cable Vert	25	8444.89		
			Top Cable Norm	25	8722.86		
			Top Cable Tan	25	8.89		
			Bot Cable Vert	12	-6834.70		
			Bot Cable Norm	12	8518.15		
			Bot Cable Tan	12	5.13		
		Guy C	Bottom Tension	17	11022.95		
			Top Tension	17	12323.71		
			Top Cable Vert	17	8660.32		
			Top Cable Norm	17	8767.71		
			Top Cable Tan	17	3.59		
			Bot Cable Vert	17	-6441.85		
			Bot Cable Norm	17	8944.71		
			Bot Cable Tan	17	8.64		
		Torque Arm Top	Max Tension	21	10781.86	0.00	0.00
			Max. Compression	6	-1133.76	0.00	0.00

tnxTower	
----------	--

Job		Page
	S.A West Coventry Tower (Bolton, CT)	38 of 55
Project		Date
	TWM-007 / T-Mobile	13:47:34 09/20/16
Client		Designed by

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Transcend Wireless

MCD

Section No.	Elevation ft	Component Type	Condition	Gov Load	Axial	Major Axis Moment	Minor Ax Moment
	Ω			Comb.	lb	lb-ft	lb-ft
			Max. Mx	17	10396,53	224.98	0.00
			Max. My	2	7806.06	0.00	0.44
			Max. Vy	17	-115.94	0.00	0,00
			Max. Vx	2	-0.23	0.00	0.00
		Torque Arm Bottom	Max Tension	13	5197.83	0.00	0.00
			Max. Compression	13	-8842.58	0.00	0.00
			Max. Mx	17	-3263.02	201.32	0.00
			Max. My	2	4253.65	0.00	-0,18
			Max. Vy	17	115,93	0.00	0.00
			Max. Vx	2	0.11	0.00	0.00
Т3	120 - 100	Leg	Max Tension	1	0.00	0.00	0.00
			Max. Compression	25	-29594.61	54.36	33.13
			Max, Mx	11	-11115.81	-219.57	-44.81
			Max, My	2	-10375.63	-11.12	-230 44
			Max. Vy	5	525.28	-61.15	-24.56
			Max. Vx	2	-599.77	2.64	68.46
		Diagonal	Max Tension	13	721.58	0.00	0.00
			Max. Compression	13	-850,64	0.00	0.00
			Max. Mx	24	-274.12	-6.67	0.05
			Max. My	12	-697.50	-1.61	0.26
			Max. Vy	24	12.46	-6.67	0.05
			Max. Vx	12	-0.12	-1.61	0.26
		Top Girt	Max Tension	17	149.96	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Max. Mx	23	92.27	17.73	0.00
			Max, My	3	12.66	0.00	-0.00
			Max. Vy	23	-18.92	0.00	0.00
			Max, Vx	3	0.00	0.00	0.00
		Bottom Girt	Max Tension	12	277.86	0.00	0.00
			Max. Compression	6	-210.36	0.00	0.00
			Max. Mx	24	197.46	17.73	0.00
			Max. My	3	92.68	0.00	-0.00
			Max, Vy	24	-18.92	0.00	0.00
			Max. Vx	3	0.00	0.00	0.00
T4	100 - 80	Leg	Max Tension	1	0.00	0.00	0.00
			Max. Compression	25	-29246.15	82.36	49.07
			Max. Mx	11	-418.22	-501.12	-72.57
			Max. My	2	-24332.93	-31.97	-527.21
			Max. Vy	5	1019.84	-28.41	-15.82
			Max. Vx	2	-1122.82	0.14	33.15
		Diagonal	Max Tension	13	1431.45	0.00	0.00
			Max. Compression	13	-1558.11	0.00	0.00
			Max. Mx	23	-144.28	-6.20	0.04
			Max. My	13	-1548.56	-1.15	0.32
			Max. Vy	15	11.99	-6.20	-0.05
			Max. Vx	13	-0.15	-1.15	0.32
		Top Girt	Max Tension	6	339.24	0.00	0.00
			Max. Compression	12	-210-71	0.00	0.00
			Max. Mx	24	-13.09	17.23	0.00
			Max. My	3	25.31	0.00	-0.00
			Max. Vy	24	-18.38	0.00	0.00
			Max. Vx	3	0.00	0.00	0.00
		Bottom Girt	Max Tension	12	525.71	0.00	0.00
			Max. Compression	6	-451.59	0.00	0.00
			Max. Mx	14	146.07	17,23	0.00
			Max. My	3	111.12	0.00	-0.00
			Max. Vy	14	-18,38	0.00	0.00
		_	Max. Vx	3	0.00	0.00	0.00
T5	80 - 60	Leg	Max Tension	12	7496.91	-46.89	-28.56
			Max, Compression	6	-34682.82	15.17	8.68
			Max. Mx	5	-24045.60	-538.71	-134.58

tnxTower	Jop	S.A West Coventry Tower (Bolton, CT)	Page 39 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section No	Elevation ft	Component Type	Condition	Gov Load Comb.	Axial lb	Major Axis Moment lb-ft	Minor Axis Moment lb-ft
			Mary Mar		-24348.28		
			Max. My	2		32.71	594.74
			Max Vy	5	1022.76	-538.71	-134.58
		D:1	Max. Vx	2	-1125.18	32.71	594.74
		Diagonal	Max Tension	13	1485.77	0.00	0.00
			Max. Compression	13	-1652.25	0.00	0.00
			Max, Mx	16	-39.08	-6.20	-0.04
			Max. My	13	-1643.26	-0.72	0.51
			Max. Vy	22	11.66	-6.20	0.02
		-	Max. Vx	13	-0.23	-0.72	0.51
		Top Girt	Max Tension	6	483.94	0.00	0.00
			Max. Compression	12	-331.40	0.00	0.00
			Max, Mx	14	134.45	16.63	0.00
			Max. My	3	36.96	0.00	-0.00
			Max. Vy	14	17.74	0.00	0.00
			Max. Vx	3	0.00	0.00	0.00
		Bottom Girt	Max Tension	6	424.36	0.00	0.00
			Max. Compression	8	-231.14	0.00	0.00
			Max. Mx	14	183.29	16.63	0.00
			Max. My	3	67.85	0.00	-0.00
			Max. Vy	14	17.74	0.00	0.00
			Max. Vx	3	0.00	0.00	0.00
		Guy A	Bottom Tension	21	12484.51		
			Top Tension	21	13087.44		
			Top Cable Vert	21	5619.72		
			Top Cable Norm	21	11819.47		
			Top Cable Tan	21	0.37		
			Bot Cable Vert	21	-3947.92		
			Bot Cable Norm	21	11843.86		
			Bot Cable Tan	21	0.37		
		Guy B	Bottom Tension	25	12950.49		
			Top Tension	25	13648.06		
			Top Cable Vert	25	6760.72		
			Top Cable Norm	25	11855.90		
			Top Cable Tan	25	2.19		
			Bot Cable Vert	25	-5124.00		
			Bot Cable Norm	25	11893.69		
			Bot Cable Tan	25	2.19		
		Guy C	Bottom Tension	17	12975.48		
			Top Tension	17	13687.03		
			Top Cable Vert	17	6949.29		
			Top Cable Norm	17	11791.62		
			Top Cable Tan	17	1.80		
			Bot Cable Vert	17	-5326.36		
			Bot Cable Norm	17	11831.86		
			Bot Cable Tan	17	1.80		
		Top Guy Pull-Off	Max Tension	23	6099.41	0.00	0.00
		Tob on Tun-Ott	Max, Compression	1	0.00	0.00	0.00
			Max, Compression Max, Mx	14	5300.88	24.58	0.00
			Max. My	3	2879.28	0.00	-0.00
			-				
			Max. Vy Max. Vy	14	-26.22 0.00	0.00	0.00
Τ (60 40	Ĭ	Max. Vx May Tanaian	3		0.00	0.00
Т6	60 - 40	Leg	Max Tension	1	0.00	0.00	0.00
			Max. Compression	25	-37306,05	-47.88	-27.69
			Max, Mx	5	-5316.74	444.24	-11.49
			Max. My	8	-4261.44	-26.81	433.31
			Max. Vy	5	-894.11	-32,25	-18,12
			Max. Vx	2	921.53	0.21	37.39
		Diagonal	Max Tension	5	1131.34	0.00	0.00
			Max, Compression	5	-1298.70	0.00	0.00
			Max. Mx	26	-105.29	-6.07	-0.05
			Max. My	3	-1281.91	-1,28	0.23

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 40 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section No	Elevation ft	Component Type	Condition	Gov Load	Axial	Major Axis Moment	Minor Ax Moment
		21		Comb.	lb	lb-ft	lb-ft
			Max. Vy	15	11.19	-6.06	-0.05
			Max. Vx	3	-0.11	-1.28	0.23
		Top Girt	Max Tension	12	451.70	0.00	0.00
		rop one	Max, Compression	6	-359.27	0.00	0.00
			Max, Mx	14	165.37	15.86	0.00
			Max, My	3	111.65	0.00	-0.00
			Max. Vy	14	-16.92	0.00	0.00
			Max. Vx	3	0.00	0.00	0.00
		Bottom Girt	Max Tension	6	273.25	0.00	0.00
		Dottom Ont	Max. Compression	12	-90.56	0.00	0.00
			Max, Mx	14	173.53	15.86	0.00
				3	64.56	0.00	-0.00
			Max. My Max. My	14	-16.92	0.00	-0.00
			Max. Vy May Vy	3	0.00	0.00	0.00
T7	40 20	τ	Max, Vx	1	0.00		
Τ7	40 - 20	Leg	Max Tension			0.00	0.00
			Max. Compression	25	-38566.90	71,22	42.77
			Max. Mx	5	-14120.17	238.38	2,45
			Max. My	2	-13672.18	22.38	-233.96
			Max. Vy	5	-461.40	-22.30	-12.13
			Max. Vx	2	467.24	0.19	24.31
		Diagonal	Max Tension	3	612.75	0.00	0.00
			Max. Compression	3	-780.42	0.00	0.00
			Max. Mx	26	-249.37	-5.84	-0.08
			Max. My	3	-772.02	-1.07	0.22
			Max. Vy	15	10.52	-5.83	-0.06
			Max. Vx	3	-0.10	-1.07	0.22
		Top Girt	Max Tension	12	233.51	0.00	0.00
			Max. Compression	6	-137.10	0.00	0.00
			Max. Mx	14	169.58	14.79	0.00
			Max. My	3	101.42	0.00	-0.00
			Max. Vy	14	-15.78	0.00	0.00
			Max. Vx	3	0.00	0.00	0.00
		Bottom Girt	Max Tension	25	241.03	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Max. Mx	14	183.62	14.79	0.00
			Max. My	3	67.21	0.00	-0.00
			Max, Vy	14	-15.78	0.00	0.00
			Max. Vx	3	0.00	0.00	0.00
Т8	20 - 5	Leg	Max Tension	1	0.00	0.00	0.00
10	20 5	200	Max. Compression	25	-38314.25	33.03	35.34
			Max. Mx	15	-38098.96	604.89	316.68
			Max. My	20	-37612.27	7.08	-673.60
			Max. Vy	15	-411.49	-389.30	-214.65
			Max. Vx	20	461.93	7.08	-673.60
		Diagonal			1384.23	0.00	0.00
		Diagonal	Max Tension Max, Compression	15 15	-880.69	0.00	0.00 0.00
			Max, Compression Max, Mx	15	-539,21	-5.53	-0.08
				3	-539,21	-0.40	-0.08
			Max. My Max. Vy				
			Max, Vy Max, Vy	15	9.50	-5.53	-0.08
		T C' .	Max, Vx	3	-0.10	-0.40	0.22
		Top Girt	Max Tension	15	264.71	0.00	0.00
			Max. Compression]	0.00	0.00	0.00
			Max. Mx	14	179.80	13.17	0.00
			Max. My	3	100.01	0.00	-0.00
			Max. Vy	14	-14.05	0.00	0.00
			Max. Vx	3	0.00	0.00	0.00
		Bottom Girt	Max Tension	15	7356.33	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Max, Mx	14	7082.62	13.17	0.00
			Max. My	3	3114.35	0.00	-0.00

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 41 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

No T9	<i>ft</i> 5 - 0	Type Leg	Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy	Load Comb. 3 1 26 26	<i>lb</i> 0.00 0.00 -41250,11	<i>Moment</i> <i>Ib-ft</i> 0.00 0.00 18.75	<i>Moment</i> <i>lb-ft</i> 0.00 0.00 -4,19
T9	5 - 0	Leg	Max Tension Max. Compression Max. Mx Max. My	3 1 26 26	0.00 0.00 -41250.11	0.00 0.00	0.00 0.00
T9	5 - 0	Leg	Max Tension Max. Compression Max. Mx Max. My	1 26 26	0.00 -41250.11	0.00	0.00
T9	5 - 0	Leg	Max. Compression Max. Mx Max. My	26 26	-41250-11		
			Max. Mx Max. My	26		18.75	-4-10
			Max. My		10502 01		-4.17
					-40583.01	684.24	-6.82
			Max. Vy	3	-16642.35	-176.89	690.22
				15	1202.05	-425.11	123.94
			Max. Vx	3	-853.56	-176.89	690,22
		Diagonal	Max Tension	3	608.39	-0.20	1.02
			Max. Compression	16	-3029.03	0.00	0.00
			Max. Mx	16	422.39	-5.76	-1.72
			Max. My	9	-2109.68	-1.14	-5.79
			Max. Vy	3	10.60	0.00	0.00
			Max. Vx	9	-14.46	0.00	0.00
		Horizontal	Max Tension	1	0.00	0.00	0.00
			Max. Compression	15	-412.86	0.00	0.00
			Max. Mx	21	-404.68	9.71	0.00
			Max. My	16	-411.34	0.00	2.10
		Max. Vy	21	18.84	0.00	0.00	
			Max. Vx	16	-4.08	0.00	0.00
	Secondary Horizontal	Max Tension	16	925.44	0.00	0.00	
			Max. Compression	26	-760.95	0.00	0.00
			Max. Mx	15	832.44	-2.73	3.27
			Max. My	22	876.69	-2.58	3.47
			Max. Vy	9	7.51	0.00	0.00
			Max. Vx	9	5.58	0.00	0.00
	Bottom Girt	Max Tension	15	1015.10	0.00	0.00	
		Max. Compression	1	0.00	0.00	0.00	
		Max. Mx	14	983.12	0.11	0.00	
			Max. My	3	428.06	0.00	-0.00
			Max. Vy	14	-1.15	0.00	0,00
			Max. Vx	3	0.00	0.00	0.00

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical lb	Horizontal, X lb	Horizontal, Z lb
Mast	Max, Vert	15	109186.84	64.16	578.80
	Max. H _x	24	107841.56	598,84	-49.26
	Max. Hz	15	109186.84	64.16	578.80
	Max, M _x	1	0.00	1.87	11.17
	Max. M ₂	1	0.00	1.87	11,17
	Max. Torsion	9	953.15	186.12	-595.42
	Min. Vert	1	34627.12	1.87	11,17
	Min. H _x	4	46983.82	-580.60	378.33
	Min. Hz	8	45735.20	19.30	-733.98
	Min_*M_x	1	0.00	1.87	11.17
	Min. Mz	1	0.00	1.87	11-17
	Min. Torsion	3	-987.84	-392,93	419.02
Guy C @ 210 ft Elev -38 ft Azimuth 240 deg	Max. Vert	10	-1072.02	-1270.66	734.06
	Max, H _x	10	-1072.02	-1270.66	734.06
	Max, H _z	17	-18208.18	-25728.35	14861.27
	Min. Vert	4	-18578.55	-22918.21	13228,36
	Min. H _x	17	-18208,18	-25728.35	14861.27

tnxTower	Jop	S.A West Coventry Tower (Bolton, CT)	Page 42 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Location	Condition	Gov Load Comb	Vertical lb	Horizontal, X lb	Horizontal, 2 lb
	Min. H _z	10	-1072.02	-1270.66	734.06
Guy B @ 210 ft Elev -34 ft	Max. Vert	6	-963.53	1194,89	689.62
Azimuth 120 deg					
	Max. H _x	25	-17566.26	25661,22	14826.56
	Max, H _z	25	-17566.26	25661.22	14826.56
	Min. Vert	12	-18251.92	23103.10	13350.60
	Min. H _x	6	-963.53	1194.89	689.62
	Min _* H _z	6	-963.53	1194.89	689.62
Guy A @ 210 ft Elev -14 ft Azimuth 0 deg	Max. Vert	2	-605.65	0.37	-1196.63
	Max. H _x	24	-11752.08	894.17	-24076.42
	Max. H ₂	2	-605.65	0.37	-1196.63
	Min. Vert	8	-15910.89	-13.85	-26861.03
	Min. H.	18	-11763.96	-897.13	-24092.88
	Min. H _z	21	-14796.18	-3.57	-29617.07

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
V	lb	lb	lb	lb-ft	lb-ft	lb-ft
Dead Only	34627.12	-1.87	-11.17	0.00	0.00	-0.07
1.2 Dead+1.6 Wind 0 deg - No	46546.21	2.73	-537.31	0.00	0.00	892.41
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 30 deg - No	47002.80	392.93	-419.02	0.00	0.00	987.84
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 60 deg - No	46983.82	580.60	-378.33	0.00	0.00	574.06
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 90 deg - No	46559.56	528.72	-168.97	0.00	0.00	10.67
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 120 deg -	45501.58	410.67	248.56	0.00	0,00	-298.78
No lce+1.0 Guy						
1.2 Dead+1.6 Wind 150 deg -	45710.81	147.74	580.19	0.00	0.00	-529.13
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 180 deg -	45735.20	-19.30	733.98	0.00	0.00	-863.48
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 210 deg -	45421.06	-186-12	595.42	0.00	0.00	-953.15
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 240 deg -	45050.64	-437.41	266.00	0.00	0.00	-560,56
No Ice+1.0 Guy				2.00	0.00	
1.2 Dead+1.6 Wind 270 deg -	46226.51	-553 26	-146.10	0.00	0.00	-11.54
No Ice+1.0 Guy	10000 10	500 D.C	0.50 (1	0.00	0.00	224.05
1.2 Dead+1.6 Wind 300 deg -	46858.45	-589.06	-358,61	0.00	0.00	336.05
No Ice+1.0 Guy	4(000.05	200.25	100-10	0.00	0.00	571.27
1.2 Dead+1.6 Wind 330 deg - No Ice+1.0 Guy	46980.05	-390.35	-409.19	0.00	0.00	571.27
1.2 Dead+1.0 Ice+1.0	106956.02	-66.14	-13.64	0.00	0.00	2.65
Temp+Guy	100920-02	-00:14	-13.04	0.00	0.00	2.05
1.2 Dead+1.0 Wind 0 deg+1.0	109186.84	-64.16	-578.80	0.00	0.00	179.07
Ice+1.0 Temp+1.0 Guy	107100.04	-04.10	-570.00	0.00	0.00	175.07
1.2 Dead+1.0 Wind 30 deg+1.0	108533.41	147.49	-502.12	0.00	0.00	264.17
I.2 Deau $+1.0$ with 30 deg $+1.0$ Ice $+1.0$ Temp $+1.0$ Guy	100000.41	17/,77	-202.12	0.00	0.00	20417
1.2 Dead+1 0 Wind 60 deg+1 0	107820.78	348.52	-258.09	0.00	0.00	103.23
Ice+1.0 Temp+1.0 Guy	10/020 /0	570.52	-250:09	0.00	0.00	105-25
1 2 Dead+1 0 Wind 90 deg+1.0	108041.53	464.85	42.96	0.00	0.00	-82.48
1.2 Dead 1 0 Willia So acg 1.0	1000110001	101.05	72.70	0.00	0.00	04.70

tnxTower

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	S.A West Coventry Tower (Bolton, CT)	43 of 55
Project		Date
	TWM-007 / T-Mobile	13:47:34 09/20/16
Client	Transcend Wireless	Designed by MCD

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	lb	lb	lb	lb-ft	lb-ft	lb-ft
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 120	108286.09	430.63	274.08	0.00	0,00	-73.27
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 150	107471.99	251.28	419.73	0.00	0.00	-41.63
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 180	106841.40	-69.65	470,22	0.00	0.00	-172.72
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 210	107373.98	-390.70	422.81	0.00	0.00	-256.19
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 240	108098.99	-569.18	280.00	0.00	0.00	-94.61
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 270	107841.56	-598.84	49.26	0.00	0,00	89.15
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 300	107650.07	-479.09	-252.84	0.00	0,00	78.41
deg+1.0 Ice+1.0 Temp+1.0 Guy	100100.01		100.11			
1.2 Dead+1.0 Wind 330	108432,34	-276.30	-499.14	0.00	0.00	46.87
deg+1.0 Ice+1.0 Temp+1.0 Guy	25045 46	0.50		0.00	0.00	
Dead+Wind 0 deg -	35045.46	-0.53	-214.18	0.00	0.00	155.80
Service+Guy	240/5 25	00.10	104.20	0.00	0.00	171.65
Dead+Wind 30 deg -	34965.35	88.18	-184.39	0.00	0.00	171.65
Service+Guy Dead+Wind 60 deg -	34889.90	158.28	-104.87	0.00	0.00	109.63
Service+Guy	34069.90	138.28	-104.67	0.00	0.00	109.03
Dead+Wind 90 deg -	34890.92	191,19	-2.99	0.00	0.00	17.65
Service+Guy	34090.92	191,19	-2.99	0.00	0.00	17.05
Dead+Wind 120 deg -	34903.45	172.29	92,21	0.00	0.00	-46.37
Service+Guy	54,00,45	172.29	12,21	0.00	0.00	-+U.J/
Dead+Wind 150 deg -	34809.25	100.51	156.96	0.00	0.00	-97.00
Service+Guy	54007 25	100.51	150.90	0.00	0.00	-77.00
Dead+Wind 180 deg -	34751.89	-3.79	180.13	0.00	0.00	-153,90
Service+Guy	51151.05	2.19	100.15	0.00	0.00	-155,70
Dead+Wind 210 deg -	34800.21	-107.71	158.63	0.00	0.00	-169.61
Service+Guy	51000.21	101.11	120,05	0,00	0.00	109.01
Dead+Wind 240 deg -	34883.99	-178.41	95.05	0.00	0.00	-108.37
Service+Guy	01000100	1,01,11	90.00	0.00	0.00	100.57
Dead+Wind 270 deg -	34871.87	-195.78	0.20	0.00	0.00	-17.70
Service+Guy	0.011.01		0120	0.00	0.00	11110
Dead+Wind 300 deg -	34873.60	-161.23	-102.25	0.00	0.00	45.78
Service+Guy					0.00	
Dead+Wind 330 deg -	34955.41	-89.75	-182.90	0.00	0.00	97.69
Service+Guy					0.00	

Solution Summary

	Sui	n of Applied Force.	S		Sum of Reaction	15	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
1	-0.00	-15602.41	0.00	0.43	15602.41	-1,34	0.009%
2	-105.94	-18688.88	-20307.23	106.05	18688.67	20296,28	0.040%
3	10045.87	-18443.27	-17520.35	-10048.31	18443.09	17508.40	0.045%
4	17554.79	-18192.19	-10052.57	-17564.42	18192.28	10048.54	0.038%
5	20339.35	-18403.07	110.10	-20327.36	18402.84	-100.11	0.057%
6	17667,95	-18613.42	10240.23	-17662.34	18613.31	-10237.43	0.023%
7	10230.65	-18356.78	17620.19	-10216.96	18356.59	-17616.61	0.052%
8	105.94	-18105.08	20299.87	-102.36	18105.16	-20305.37	0.024%
9	-10045.87	-18350.69	17520.35	10034.46	18350.55	-17517.46	0.043%
10	-17561.16	-18601.77	10056.25	17552.50	18601.60	-10051.83	0.035%
11	-20339.35	-18390.89	-110.10	20329.42	18390.72	118.77	0.048%

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 44 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

	Sui	n of Applied Force.	5		Sum of Reaction	1.5	
Load	PX	PY	PZ	PX	PY	PZ	% Erro
Comb.	lb	lb	lb	lb	lb	lb	
12	-17661.57	-18180.55	-10236.55	17673.64	18180.63	10228.44	0.053%
13	-10230.65	-18437.18	-17620.19	10233.30	18437.00	17608.01	0.045%
14	-0.00	-67552.33	-0.00	0.28	67552.33	-3.07	0.005%
15	0.80	-67863.52	-10255.32	-0.83	67863.43	10247.65	0.0119
16	5154.90	-67592_08	-8874.85	-5157.04	67591,98	8863.83	0.016%
17	8989.34	-67318.11	-5124.33	-8990.53	67318.06	5116.04	0.012%
18	10389,90	-67556.77	4.12	-10383.33	67556.72	-0.92	0.011%
19	8989.43	-67795.52	5123.45	-8982.41	67795.45	-5119.65	0.012%
20	5154.51	-67517.02	8865.94	-5149.12	67516.99	-8863.90	0.008%
21	-0.80	-67241.15	10254.38	3.77	67241.11	-10249.31	0.009%
22	-5154.90	-67512.58	8874.85	5150.99	67512.56	-8873,19	0.006%
23	-8990.16	-67786.56	5124.80	8984.40	67786.50	-5121.79	0.009%
24	-10389.90	-67547.90	-4.12	10379.38	67547.81	6.54	0.016%
25	-8988.61	-67309,15	-5122.98	8990.30	67309.09	5113.21	0.015%
26	-5154 51	-67587.65	-8865,94	5156.61	67587.54	8854.52	0.017%
27	-21.62	-15661.98	-4144.33	21.61	15661.97	4141.66	0.016%
28	2050,18	-15611.85	-3575.58	-2052.62	15611.85	3571.34	0.030%
29	3582.61	-15560.61	-2051.55	-3588.59	15560.62	2048.54	0.042%
30	4150.89	-15603.65	22.47	-4149.22	15603.65	-17.15	0.035%
31	3605.70	-15646.58	2089.84	-3602.26	15646.57	-2087.60	0.025%
32	2087.89	-15594.20	3595.96	-2084.62	15594.20	-3596.09	0.020%
33	21.62	-15542.84	4142.83	-20.54	15542.84	-4147.01	0.027%
34	-2050.18	-15592.96	3575.58	2047.39	15592.96	-3575.85	0.017%
35	-3583.91	-15644.20	2052.30	3580.87	15644.19	-2050.35	0.022%
36	-4150.89	-15601.17	-22.47	4149.85	15601.17	27.10	0.029%
37	-3604.40	-15558.24	-2089.09	3607.97	15558.24	2087.01	0.026%
38	-2087.89	-15610.61	-3595.96	2090.33	15610.61	3591.59	0.031%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	6	0.0000001	0.00021110
2	Yes	17	0.00057742	0.00080862
3	Yes	16	0.00060638	0.00051933
4	Yes	12	0.00044397	0.00052553
5	Yes	15	0.00072768	0.00068526
6	Yes	17	0.00035756	0.00076043
7	Yes	15	0.00074335	0.00065157
8	Yes	12	0.00033456	0.00048348
9	Yes	15	0.00061373	0.00052379
10	Yes	16	0.00055968	0.00096962
11	Yes	15	0.00062453	0.00058071
12	Yes	12	0.00065790	0.00061397
13	Yes	16	0.00064060	0.00060175
14	Yes	12	0.00063852	0.00008723
15	Yes	14	0.00058091	0.00023411
16	Yes	13	0.00082488	0.00032110
17	Yes	12	0.00058863	0.00021954
18	Yes	12	0.00057675	0.00019943
19	Yes	13	0.00079550	0.00023228
20	Yes	13	0.00066690	0.00016902
21	Yes	11	0.00059350	0.00015215
22	Yes	13	0.00052892	0.00013092
23	Yes	13	0.00073242	0.00019695
24	Yes	11	0.00088361	0.00029410

tnx	Tower	Job	S A - West Cover	ntry Tower (Bolton, CT)	Page 45 of 55
AECOM 500 Enterprise Drive, Suite 3B		Project		07 / T-Mobile	Date 13:47:34 09/20/16
Roi Phone.	cky Hill, CT : 860-529-8882 860-529-3991	Client	Transc	Designed by MCD	
25	Yes	12	0.00074734	0.00025534	
26	Yes	13	0.00089009	0.00033235	
27	Yes	10	0.0000001	0.00025709	
28	Yes	9	0.00080315	0.00036166	
29	Yes	7	0.00090963	0.00025131	
30	Yes	8	0.00087352	0.00030653	
31	Yes	9	0.0000001	0.00030838	
32	Yes	9	0.0000001	0.00023149	
33	Yes	7	0.0000001	0.00018483	
34	Yes	9	0.0000001	0.00020234	
35	Yes	9	0.0000001	0.00027173	
36	Yes	8	0.00077732	0.00026239	
37	Yes	8	0.0000001	0.00021258	
38	Yes	9	0.00084474	0.00036488	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	150 - 140	1.311	29	0.0441	0.0287
T2	140 - 120	1.225	29	0.0411	0,0285
Т3	120 - 100	1.065	29	0.0432	0.0369
T4	100 - 80	0.867	29	0.0494	0.0388
T5	80 - 60	0.651	29	0.0477	0.0403
T6	60 - 40	0.473	29	0.0375	0.0398
T7	40 - 20	0.329	29	0,0361	0.0367
Т8	20 - 5	0.173	29	0.0396	0.0317
Т9	5 - 0	0.044	29	0.0413	0.0269

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb	in	٥	0	ft
148.00	APXVSPP18-C-A20 w/ Mounting	29	1,294	0.0434	0.0285	163988
	Pipe					
138.00	Guy	29	1.208	0.0409	0.0290	110607
130.00	AIR21 B4A/B2P	29	1.146	0.0410	0.0323	421538
70.00	Guy	29	0.556	0.0425	0.0404	98148

		Maximum	Tower	Deflection	s - Design Wind
Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
140	ſt	in	Comb	0	0
T1	150 - 140	8.851	2	0.3439	0.2034
T2	140 - 120	8,162	2	0.3304	0.2025
Т3	120 - 100	6.852	2	0.3370	0.2378
T4	100 - 80	5.376	2	0,3535	0.2420
T5	80 - 60	3.888	4	0.3245	0.2452

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 46 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section	Elevation	Horz,	Gov.	Tilt	Twist
No		Deflection	Load		
	ft	in	Comb.	0	0
T6	60 - 40	2.766	4	0.2443	0.2357
Τ7	40 - 20	1.876	4	0.2158	0.2142
Т8	20 - 5	0_969	4	0.2254	0.1832
Т9	5 - 0	0.245	4	0.2321	0.1551

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
148.00	APXVSPP18-C-A20 w/ Mounting	2	8.711	0.3403	0.2024	37209
	Pipe					
138.00	Guy	2	8.029	0.3291	0.2044	24964
130.00	AIR21 B4A/B2P	2	7.511	0.3291	0.2187	60241
70.00	Guy	4	3.289	0.2843	0.2421	12196

Bolt Design Data

Section No	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt lb	Allowable Load lb	Ratio Load Allowable	Allowable Ratio	Criteria
T2	140	Leg	A325N	0.6250	5	372.29	24850.50	0.015	1	Bolt DS
		Torque Arm Top@138	A325N	0.6250	1	10781.90	24850.50	0.434	1	Bolt Shear
		Torque Arm Bottom@138	A325N	0.6250	1	8842.58	24850.50	0.356	1	Bolt Shear
Т3	120	Leg	A325N	0.6250	5	0.00	24850.50	0.000	1	Bolt DS
Τ4	100	Leg	A325N	0.7500	5	0.00	35784.70	0.000	1	Bolt DS
Т5	80	Leg	A325N	0.7500	5	0.00	35784.70	0.000	1	Bolt DS
T6	60	Leg	A325N	0.7500	5	0.00	35784,70	0.000	1	Bolt DS
Т7	40	Leg	A325N	0.7500	5	0.00	35784.70	0.000	1	Bolt DS
T8	20	Leg	A325N	0.7500	5	0,00	35784.70	0.000	1	Bolt DS

		ić.		Guy De	esign Dat	a		
Section No.	Elevation	Size	Initial Tension Ib	Breaking Load lb	Actual T _u lb	Allowable ¢T" lb	Required S.F.	Actual S.F.
T2	138.00 (A) (463)	9/16 EHS	3500.00	35000.04	11603.00	21000.00	1.000	1.810
	138.00 (A) (464)	9/16 EHS	3500.00	35000.04	11552.80	21,000.00	1.000	1.818 🖌

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 47 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section No	Elevation	Size	Initial Tension	Breaking Load	Actual T _"	Allowable ϕT_n	Required S.F.	Actual S.F.
	ft		lb	lb	lb	lb		
	138,00 (B) (457)	9/16 EHS	3500.00	35000.04	12094,30	21000.00	1.000	1,736
	138.00 (B) (458)	9/16 EHS	3500.00	35000.04	12141.00	21000.00	1.000	1.730
	138.00 (C) (448)	9/16 EHS	3500.00	35000.04	12320.90	21000.00	1.000	1.704
	138.00 (C) (449)	9/16 EHS	3500.00	35000.04	12323.70	21000.00	1.000	1.704
T5	70.00 (A) (474)	11/16 EHS	5000.00	49999.91	13087.40	30000.00	1.000	2,292
	70.00 (B) (473)	11/16 EHS	5000.00	49999.91	13648.10	30000.00	1.000	2.198
	70.00 (C) (469)	11/16 EHS	5000.00	49999.91	13687.00	30000.00	1.000	2.192

Compression Checks

		Le	g Desig	n Dat	a (Coi	mpres	ssion)		
Section No.	Elevation	Size	L	L_u	Kl/r	А	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	¢₽"
T1	150 - 140	2	10.00	2.25	54.0 K=1.00	3.1416	-17536.60	114226.00	0.154
T2	140 - 120	2	20.00	2.38	57.0 K=1.00	3,1416	-28241.90	111479.00	0.253
Т3	120 - 100	2	20.00	2,38	57.0 K=1,00	3.1416	-29594.60	111479.00	0.265
T4	100 - 80	2 1/4	20.00	2.38	50.7 K=1.00	3.9761	-29246.10	148303.00	0.197
Т5	80 - 60	2 1/4	20.00	2.38	50.7 K=1.00	3.9761	-34682.80	148303.00	0.234
Т6	60 - 40	2 1/4	20.00	2.38	50.7 K=1.00	3.9761	-37306.10	148303.00	0.252
Т7	40 - 20	2 1/4	20.00	2.38	50.7 K=1.00	3.9761	-38566.90	148303.00	0.260
Т8	20 - 5	2 1/2	15,00	2.42	46.4 K=1.00	4.9087	-38314.30	188719.00	0.203 '
Т9	5 - 0	2 1/2	5.45	2.07	39.8 K=1.00	4,9087	-41250,10	196697.00	0 210 '

 $^{1}P_{u}$ / ϕP_{n} controls

Diagonal Design Data (Compression)

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 48 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section No.	Elevation	Size	L	L_{ii}	Kl/r	A	P_{μ}	φ <i>P</i> "	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	150 - 140	3/4	4.37	2,09	133.7 K=1.00	0.4418	-2189.40	5581.35	0.392 '
T2	140 - 120	3/4	4.44	2,12	135.7 K=1.00	0.4418	-3365.95	5417.58	0,621
Т3	120 - 100	3/4	4.44	2.12	135.7 K=1,00	0.4418	-850.64	5417.58	0.157 1
T4	100 - 80	3/4	4.44	2.11	134.9 K=1.00	0.4418	-1558.11	5481.13	0.284
T5	80 - 60	3/4	4.44	2.11	134.9 K=1.00	0.4418	-1652.25	5481.13	0.301 '
Т6	60 - 40	3/4	4.44	2.11	134.9 K=1.00	0,4418	-1298.70	5481,13	0.237 '
Τ7	40 - 20	3/4	4.44	2.11	134.9 K=1.00	0.4418	-780.42	5481.13	0.142
Т8	20 - 5	3/4	4.46	2.11	134.8 K≃1.00	0,4418	-880.69	5490.17	0.160 1
Т9	5 - 0	3/4	2.60	2.00	127.8 K=1.00	0.4418	-3029.03	6107.75	0.496 1

¹ P_{u} / ϕP_{u} controls

Horizontal Design Data (Compression)										
Section No.	Elevation	Size	L	L _n	Kl/r	A	P _u	φP _n	Ratio P _u	
	ft		ft	ft		in ²	lb	lb	φ <i>P</i> ,,	
T9	5 - 0	4x1/2	2.06	1.85	154.2 K=1.00	2.0000	-412.86	19013.80	0.022 '	

¹ P_u / ϕP_u controls

Secondary Horizontal Design Data (Compression)									
Section No.	Elevation	Size	L	L_{μ}	Kl/r	A	P_{u}	φ <i>P</i> ,,	Ratio Pu
	ft		ft	ft		in^2	lb	lb	ϕP_{w}
Т9	5 - 0	3/4	2.66	2.45	157.0 K=1.00	0.4418	-760.95	4049.60	0.188

 $^{1}P_{u}$ / ϕP_{u} controls

Top Girt Design Data (Compression)

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 49 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u} ,	ϕP_n	Ratio P ₁₁
	ft		ft	ft		in ²	lb	lb	φ <i>P</i> ,,
T1	150 - 140	3/4	3.75	3.58	229.3 K=1.00	0,4418	-135.88	1897,66	0.072
		KL/R > 200 (C) - 5							
T2	140 - 120	3/4	3,75	3.58	229.3 K=1.00	0.4418	-1060.03	1897.66	0.559 1
		KL/R > 200 (C) - 37							
T4	100 - 80	3/4	3.75	3.56	228.0 K=1.00	0.4418	-210.71	1919.92	0.110
		KL/R > 200 (C) - 153							*
T5	80 - 60	3/4	3.75	3.56	228.0 K=1.00	0.4418	-331.40	1919.92	0.173 1
		KL/R > 200 (C) - 210							
Т6	60 - 40	3/4	3.75	3.56	228.0 K=1.00	0.4418	-359.27	1919.92	0.187 '
		KL/R > 200 (C) - 267							
Τ7	40 - 20	3/4	3.75	3.56	228.0 K=1.00	0.4418	-137.10	1919.92	0.071
		KL/R > 200 (C) - 324							

¹ P_{μ} / ϕP_{μ} controls

Bottom Girt Design Data (Compression)

Section No	Elevation	Size	L	Lui	Kl/r	А	P_u	ϕP_n	Ratio Pu
	ft		ſt	ft		in^2	lb	lb	ϕP_n
T1	150 - 140	3/4	3.75	3.58	229.3 K=1.00	0.4418	-348.49	1897.66	0.184 '
		KL/R > 200 (C) - 8							r.
T2	140 - 120	3/4	3.75	3.58	229.3 K=1.00	0.4418	-9:01	1897.66	0.005
		KL/R > 200 (C) - 41							
Т3	120 - 100	3/4	3.75	3.58	229.3 K=1.00	0.4418	-210.36	1897.66	0.111
		KL/R > 200 (C) - 99							
Т4	100 - 80	3/4	3.75	3.56	228.0 K=1.00	0.4418	-451.59	1919.92	0.235
		KL/R > 200 (C) - 156							*
T5	80 - 60	3/4	3.75	3.56	228.0 K=1.00	0.4418	-231-14	1919.92	0.120
		KL/R > 200 (C) - 211							
Т6	60 - 40	3/4	3.75	3.56	228.0 K=1.00	0.4418	-90.56	1919.92	0.047 1
		KL/R > 200 (C) - 270							

 $^{1} P_{u} / \phi P_{u}$ controls

Top Guy Pull-Off Design Data (Compression)

tnxTower	Job S.A West Coventry Tower (Bolton, CT)	Page 50 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client Transcend Wireless	Designed by MCD

Section No	Elevation	Size	L	L _u	Kl/r	А	$P_{"}$	ϕP_n	Ratio P.,
	ft		ft	ft		in^2	lb	lb	φ <i>P</i> _n
T1	150 - 140	1 1/4	3.75	3.58	137.6 K=1.00	1.2272	-4353.58	14642.40	0.297

¹ P_{μ} / ϕP_{μ} controls

		То	orque-A	Arm T	op De	sign I	Data		
Section No.	Elevation	Size	L	L _a	Kl/r	А	P_{y}	ϕP_n	Ratio P _{il}
	ft		ft	ft		in^2	lb	lb	φ <i>P</i> ,,
Т2	140 - 120 (450)	2L3x3x5/16	7.76	7.66	99.7 K=1.00	3.5500	-854.49	68190.30	0.013
Т2	140 - 120 (451)	2L3x3x5/16	7.76	7.66	99.7 K=1.00	3.5500	-1097.75	68190.30	0.016
T2	140 - 120 (459)	2L3x3x5/16	7.76	7.66	99.7 K=1.00	3.5500	-266.55	68190.30	0.004
Т2	140 - 120 (460)	2L3x3x5/16	7.76	7.66	99.7 K=1.00	3.5500	-503.20	68190.30	0.007
T2	140 - 120 (465)	2L3x3x5/16	7.76	7.66	99.7 K=1.00	3,5500	-618.51	68190.30	0.009
T2	140 - 120 (466)	2L3x3x5/16	7.76	7.66	99.7 K=1.00	3.5500	-1133.76	68190.30	0.017

¹ P_{μ} / ϕP_{μ} controls

		Tor	que-Arı	n Bo	ttom [Desigr	n Data		
Section No.	Elevation	Size	L	L _n	Kl/r	A	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	ϕP_n
Т2	140 - 120 (455)	2L3x3x5/16	6.95	6.85	89.2 K=1.00	3.5500	-8217.55	75673.60	0.109 *
T2	140 - 120 (456)	2L3x3x5/16	6.95	6.85	89.2 K=1.00	3.5500	-7554.18	75673.60	0.100 '
T2	140 - 120 (461)	2L3x3x5/16	6.95	6.85	89.2 K=1.00	3:5500	-8434.05	75673.60	0.111 '
Т2	140 - 120 (462)	2L3x3x5/16	6.95	6.85	89.2 K=1.00	3.5500	-8529.59	75673.60	0.113 '
Т2	140 - 120 (467)	2L3x3x5/16	6.95	6.85	89.2 K=1.00	3.5500	-8842.58	75673.60	0.117
T2	140 - 120 (468)	2L3x3x5/16	6.95	6.85	89.2 K=1.00	3.5500	-8302.25	75673.60	0.110

 $^{1}P_{u}$ / ϕP_{u} controls

tnxTower

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	S.A West Coventry Tower (Bolton, CT)	51 of 55
Project		Date
	TWM-007 / T-Mobile	13:47:34 09/20/16
Client	Transcend Wireless	Designed by MCD

Tension Checks

Leg Design Data (Tension)

Section	Elevation	Size	L	L_{θ}	Kl/r	A	P_{μ}	ϕP_n	Ratio
No.	ft		ft	ft		in^2	lb	lb	$P_u = \frac{P_u}{\Phi P_u}$
T1	150 - 140	2	10.00	2.25	54.0	3.1416	5608.20	141372.00	0.040
T2	140 - 120	2	20.00	2.38	57.0	1.7942	1861.45	87466.00	0.021
T5	80 - 60	2 1/4	20.00	2.38	50.7	3,9761	7496.92	178924.00	0.042

¹ $P_{\mu} / \phi P_{\mu}$ controls

Section No.	Elevation	Size	L	L_u	Kl/r	А	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	ϕP_n
T1	150 - 140	3/4	4.37	2.09	133.7	0.4418	2130,30	19880.40	0.107
T2	140 - 120	3/4	4.44	2.12	135.7	0.4418	2941.26	19880.40	0.148
Т3	120 - 100	3/4	4_44	2.12	135.7	0.4418	721,58	19880,40	0.036
T4	100 - 80	3/4	4.44	2.11	134.9	0,4418	1431.45	19880.40	0.072
Т5	80 - 60	3/4	4.44	2.11	134.9	0.4418	1485,77	19880.40	0.075
Т6	60 - 40	3/4	4.44	2.11	134.9	0.4418	1131.34	19880.40	0.057
Т7	40 - 20	3/4	4.44	2,11	134,9	0.4418	612.75	19880.40	0.031
Т8	20 - 5	3/4	4.46	2.11	134.8	0.4418	1384.23	19880.40	0.070
Т9	5 - 0	3/4	3.71	2.19	139.9	0.4418	608.39	19880.40	0.031

¹ P_{μ} / ϕP_{μ} controls

Secondary Horizontal Design Data (Tension)

	tnxTower	Jop	S.A \	West Co	ventry T	ower (Bo	lton, CT)		Page 52 of 55	5
500	AECOM) Enterprise Drive, Suite 3B	Project		TWM	Л-007 / ⁻	F-Mobile			Date 13:47:34 09/2	20/16
	Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client		Trar	nscend V	Vireless			Designed by MCD	
Section No.	Elevation	Size	L	L _u	K1/r	A	P _u	φP _n	Ratio P _"	
	ft		ft	ft		in^2	lb	lb	ϕP_n	
Т9	5 - 0	3/4	2.66	2.45	157.0	0.4418	925.44	19880,40	0.047	

¹ $P_{u} / \phi P_{u}$ controls

Section No.	Elevation	Size	L	Lu	Kl/r	A	$P_{"}$	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	ϕP_n
Tl	150 - 140	3/4	3.75	3_58	229.3	0,4418	93.00	19880.40	0.005
T2	140 - 120	3/4	3.75	3.58	229.3	0.4418	1099.41	19880.40	0.055
Т3	120 - 100	3/4	3,75	3,58	229,3	0.4418	149.96	19880.40	0.008
T4	100 - 80	3/4	3.75	3.56	228.0	0.4418	339.24	19880.40	0.017
Т5	80 - 60	3/4	3.75	3.56	228.0	0.4418	483.94	19880.40	0.024
T6	60 - 40	3/4	3.75	3.56	228,0	0.4418	451.70	19880.40	0.023
Τ7	40 - 20	3/4	3.75	3.56	228.0	0.4418	233.51	19880.40	0.012
Т8	20 - 5	3/4	3.75	3.54	226.7	0,4418	264.71	19880.40	0.013

¹ P_u / ϕP_u controls

	Bottom Girt Design Data (Tension)								
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_{μ}	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	φ <i>P</i> ,,
T1	150 - 140	3/4	3.75	3.58	229,3	0.4418	645.70	19880.40	0.032
T2	140 - 120	3/4	3.75	3.58	229.3	0.4418	214.34	19880.40	0.011
T3	120 - 100	3/4	3.75	3.58	229.3	0.4418	277.86	19880.40	0.014
Т4	100 - 80	3/4	3.75	3.56	228.0	0.4418	525.71	19880.40	0.026 '
T5	80 - 60	3/4	3.75	3.56	228.0	0,4418	424.36	19880.40	0.021
Т6	60 - 40	3/4	3.75	3.56	228.0	0.4418	273.25	19880.40	0.014 '
Т7	40 - 20	3/4	3.75	3,56	228.0	0.4418	241.03	19880.40	0.012 1

to a Tanana	Job	Page
tnxTower	S.A West Coventry Tower (Bolton, CT)	53 of 55
AECOM	Project	Date
500 Enterprise Drive, Suite 3B	TWM-007 / T-Mobile	13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client Transcend Wireless	Designed by MCD

Section No	Elevation	Size	L	L_{μ}	Kl/r	A	Ри	ϕP_n	Ratio P _u
ft		ft	ft		in ²	lb	lb	ϕP_n	
T8	20 - 5	3/4	3.75	3.54	226.7	0.4418	7356.33	19880.40	0.370
T9	5 - 0	3/4	0.38	0.17	10.7	0.4418	1015.10	19880.40	0.051

 $^{1}P_{u}$ / ϕP_{u} controls

Top Guy Pull-Off Design Data (Tension)									
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	φP"	Ratio P ₁₁
	ft		ft	ft		in^2	lb	lb	φ <i>P</i> ,
T1	150 - 140	1 1/4	3.75	3.58	137.6	1.2272	5791,70	55223.30	0,105
T5	80 - 60	1 1/4	3.75	3,56	136.8	1.2272	6099.41	55223.30	0.110 '

¹ P_u / ϕP_u controls

Torque-Arm Top Design Data

Section No	Elevation	Size	L	Lu	Kl/r	A	P_{μ}	ϕP_n	Ratio P _#	
	ft		ft	ft		in ²	lb	lb	φ <i>P</i> "	
T2	140 - 120 (450)	2L3x3x5/16	7.76	7.66	99.7	3.5500	10781.90	115020.00	0.094	
T2	140 - 120 (451)	2L3x3x5/16	7,76	7.66	99.7	3.5500	9995.62	115020_00	0.087	
T2	140 - 120 (459)	2L3x3x5/16	7.76	7.66	99.7	3,5500	10575.50	115020.00	0.092	
T2	140 - 120 (460)	2L3x3x5/16	7.76	7.66	99,7	3.5500	10683.10	115020.00	0.093	
T2	140 - 120 (465)	2L3x3x5/16	7.76	7.66	99.7	3.5500	10641.90	115020.00	0,093	
T2	140 - 120 (466)	2L3x3x5/16	7.76	7.66	99.7	3.5500	9965.64	115020.00	0.087	

¹ P_{u} / ϕP_{u} controls

Torque-Arm Bottom Design Data

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 54 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	φ <i>P</i> "
T2	140 - 120 (455)	2L3x3x5/16	6.95	6.85	89.2	3,5500	4495.44	115020.00	0.039
T2	140 - 120 (456)	2L3x3x5/16	6.95	6.85	89.2	3,5500	4613.07	115020.00	0.040
Т2	140 - 120 (461)	2L3x3x5/16	6.95	6.85	89.2	3.5500	4744,46	115020.00	0.041
T2	140 - 120 (462)	2L3x3x5/16	6,95	6.85	89.2	3.5500	4731.26	115020.00	0.041
T2	140 - 120 (467)	2L3x3x5/16	6.95	6.85	89.2	3,5500	5157.93	115020.00	0.045 1
T2	140 - 120 (468)	2L3x3x5/16	6.95	6.85	89.2	3,5500	5197,83	115020.00	0.045

¹ $P_u / \phi P_n$ controls

Section Capacity Table

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
T1	150 - 140	Leg	2	3	-17536.60	114226.00	15.4	Pass
T2	140 - 120	Leg	2	35	-28241.90	111479.00	25.3	Pass
T3	120 - 100	Leg	2	92	-29594.60	111479.00	26.5	Pass
T4	100 - 80	Leg	2 1/4	149	-29246.10	148303.00	19.7	Pass
T5	80 - 60	Leg	2 1/4	206	-34682.80	148303.00	23.4	Pass
T6	60 - 40	Leg	2 1/4	263	-37306.10	148303.00	25.2	Pass
T7	40 - 20	Leg	2 1/4	320	-38566.90	148303.00	26.0	Pass
T8	20 - 5	Leg	2 1/2	377	-38314.30	188719.00	20.3	Pass
Т9	5 - 0	Leg	2 1/2	422	-41250.10	196697.00	21.0	Pass
T1	150 - 140	Diagonal	3/4	24	-2189.40	5581.35	39.2	Pass
T2	140 - 120	Diagonal	3/4	76	-3365.95	5417.58	62.1	Pass
T3	120 - 100	Diagonal	3/4	103	-850.64	5417.58	15.7	Pass
T4	100 - 80	Diagonal	3/4	160	-1558.11	5481.13	28.4	Pass
T5	80 - 60	Diagonal	3/4	259	-1652.25	5481.13	30.1	Pass
Т6	60 - 40	Diagonal	3/4	313	-1298.70	5481.13	23.7	Pass
Т7	40 - 20	Diagonal	3/4	375	-780.42	5481.13	14.2	Pass
Т8	20 - 5	Diagonal	3/4	394	-880.69	5490.17	16.0	Pass
T9	5 - 0	Diagonal	3/4	428	-3029.03	6107.75	49.6	Pass
Т9	5 - 0	Horizontal	4x1/2	434	-412.86	19013.80	2.2	Pass
Т9	5 - 0	Secondary Horizontal	3/4	445	-760,95	4049.60	18.8	Pass
T1	150 - 140	Top Girt	3/4	5	-135.88	1897.66	7.2	Pass
T2	140 - 120	Top Girt	3/4	37	-1060.03	1897.66	55.9	Pass
T3	120 - 100	Top Girt	3/4	95	149.96	19880.40	0.8	Pass
T4	100 - 80	Top Girt	3/4	153	-210.71	1919.92	11.0	Pass
Т5	80 - 60	Top Girt	3/4	210	-331.40	1919.92	17.3	Pass
T6	60 - 40	Top Girt	3/4	267	-359.27	1919.92	18.7	Pass
Τ7	40 - 20	Top Girt	3/4	324	-137.10	1919.92	7.1	Pass
T8	20 - 5	Top Girt	3/4	379	264.71	19880.40	1.3	Pass
T1	150 - 140	Bottom Girt	3/4	8	-348.49	1897.66	18.4	Pass
T2	140 - 120	Bottom Girt	3/4	42	214.34	19880.40	1.1	Pass
Т3	120 - 100	Bottom Girt	3/4	99	-210.36	1897.66	11.1	Pass
Т4	100 - 80	Bottom Girt	3/4	156	-451.59	1919.92	23.5	Pass
Т5	80 - 60	Bottom Girt	3/4	211	-231.14	1919.92	12.0	Pass
Т6	60 - 40	Bottom Girt	3/4	270	-90.56	1919.92	4.7	Pass
T7	40 - 20	Bottom Girt	3/4	327	241.03	19880.40	1.2	Pass

tnxTower	Job	S.A West Coventry Tower (Bolton, CT)	Page 55 of 55
AECOM 500 Enterprise Drive, Suite 3B	Project	TWM-007 / T-Mobile	Date 13:47:34 09/20/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Transcend Wireless	Designed by MCD

ł

Section	Elevation	Component	Size	Critical	Р	ØP _{allow}	%	Pas
No	ft	Туре		Element	lb	lb	Capacity	Fai
T8	20 - 5	Bottom Girt	3/4	382	7356.33	19880.40	37.0	Pas
T9	5 - 0	Bottom Girt	3/4	424	1015.10	19880.40	5.1	Pas
T2	140 - 120	Guy A@138	9/16	463	11603.00	21000.00	55,3	Pas
T5	80 - 60	Guy A@70	11/16	474	13087.40	30000.00	43.6	Pas
T2	140 - 120	Guy B@138	9/16	458	12141.00	21000.00	57.8	Pass
T5	80 - 60	Guy B@70	11/16	473	13648.10	30000.00	45.5	Pas
T2	140 - 120	Guy C@138	9/16	449	12323.70	21000.00	58.7	Pas
T5	80 - 60	Guy C@70	11/16	469	13687.00	30000.00	45.6	Pass
T1	150 - 140	Top Guy Pull-Off@138	1 1/4	452	-4353.58	14642.40	29.7	Pas
T5	80 - 60	Top Guy Pull-Off@70	1 1/4	471	6099.41	55223.30	11.0	Pas
T2	140 - 120	Torque Ann Top@138	2L3x3x5/16	450	10781.90	115020.00	9.4 43.4 (b)	Pas
T2	140 - 120	Torque Arm Bottom@138	2L3x3x5/16	467	-8842.58	75673.60	11.7 35.6 (b) Summary	Pas
						Leg (T3)	26.5	Pass
						Diagonal (T2)	62.1	Pas
						Horizontal (T9)	2.2	Pass
						Secondary Horizontal (T9)	18.8	Pas
						Top Girt (T2)	55.9	Pas:
						Bottom Girt (T8)	37.0	Pass
						Guy A (T2)	55.3	Pass
						Guy B (T2)	57,8	Pass
						Guy C (T2)	58.7	Pass
						Top Guy Pull-Off (T1)	29.7	Pass
						Torque Arm Top (T2)	43.4	Pass
						Torque Arm Bottom (T2)	35.6	Pass
						Bolt Checks	43.4	Pass
						RATING =	62.1	Pass

Program Version 7.0.7.0 - 7/18/2016 File:P:/Projects/Telcom/Structurals_By_Location/Connecticut/Bolton150'Guyed/TWM-007/ERI/130 Vernon Road (W.Coventry) Tower_Bolton_CT.eri

FOUNDATION ANALYSIS

AECOM		Page of
Job Rolton, C+ (mconentry) towar Assessment	Project No.	Sheet of
	Computed by MCD	Date 9/19/2016
Standard.	Checked by	Date

Reference

- Check-Foundation Bearing
- · Foundation width of Bare = 7'-0"
- e Foundation thickness of Base=1-311
- · Foundation column = 316"-1-3"= 2'-3" ht x 2-6" Dig pier

• (PL) concrete foundation =
$$(7'x)'x'izs')$$
 x 150pcf + $(\frac{1}{4}(2s))^2 x 2.2s') x 150pcf$
= $918765 + 1656.716f$
= $1084416f$

•TNX (compression Load from tower) = 109,187 165

Location of Footins pad Not identified in Construction plans nor Geotechnical report of nearby 280' Guyrd towar structure . Assume the collowing

- Bearing (Presumptive Load Bearing) values for Soil S yoorPSF(ASD) (+ Building (cole (2016)
- Consider Georechical Fichs, From AsDick RED=2,0; → gacops F/LRED) (++ASection 9,4)

$$11A-222-G$$
 (Cpolucs, on Factor = 0.60

Ult: mate Bearing pressure = 0.60×8000PSF= 4800 pSF ((aracity)

)

CLASS OF MATERIALS	VERTICAL FOUNDATION	LATERAL BEARING	LATERAL SLIDING RESISTANCE		
-	PRESSURE (pfs)	PRESSURE (psf/ft below natural grade)	Coefficient of friction ^a	Cohesion (psf) ^b	
1. Crystalline bedrock	100,000	1,200	0.6		
2. Sedimentary and foliated rock	20,000	400	0.35		
Cemented sand, gravel, silt, clay (hard pan)	8,000	300	0.35		
 Sandy gravel and/or gravel (GW and GP) 	6,000	200	0.35		
5. Sand, silty sand, clayey sand, silty gravel and clayey gravel (SW, SP, SM, SC, GM, and GC)	4,000	150	0.25		
 Clay, sandy clay, silty clay, clayey silt, silt and sandy silt (CL, ML, MH, and CH) A pound pay aguage fast = 0.047 	1,500	100		130	

(Amd) Table 1806.2 PRESUMPTIVE LOAD-BEARING VALUES

For SI: 1 pound per square foot = 0.0479 kPa, 1 pound per square foot per foot = 0.157 kPa/m a. Coefficient to be multiplied by the dead load.

b. Cohesion value to be multiplied by the contact area, as limited by Section 1806.3.2

(Add) **1807.2.1.1 Guards.** Retaining walls with a difference in finished grade from the top of the wall to the bottom of the wall that is greater than 4 feet (1219 mm) shall be provided with guards complying with Sections 1013.3, 1013.4 and 1607.8 when there is a walking surface, parking lot or driveway on the high side located closer than 2 feet (610 mm) to the retaining wall. For the purpose of this section, grass, planting beds or landscaped areas shall not be considered a walking surface.

(Add) **1808.3.2 Surcharge.** No fill or other surcharge loads shall be placed adjacent to any building or structure unless such building or structure is capable of withstanding the additional loads caused by the fill or the surcharge. Existing footings or foundations that will be affected by any excavation shall be underpinned or otherwise protected against settlement and shall be protected against detrimental lateral or vertical movement or both.

Exception: Minor grading for landscaping purposes shall be permitted where done with walk-behind equipment, where the grade is not increased more than 1 foot (305 mm) from original design grade or where approved by the building official.

(Amd) **1809.4 Depth of footings.** The minimum depth of footings below the undisturbed ground surface shall be in accordance with Section 1809.5. The minimum width of footings shall be 12 inches (305 mm).

(Amd) **1809.5 Frost protection.** Except where otherwise protected from frost, foundations and other permanent supports of buildings and structures shall be protected from frost by one or more of the following methods:

1. Extending a minimum of 42 inches below finished grade;

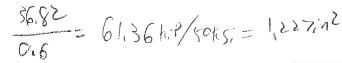
2. Constructing in accordance with ASCE 32; or

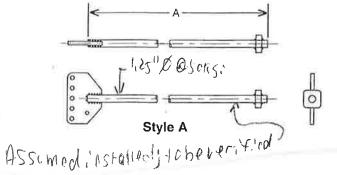
ANCHOR DETAILS

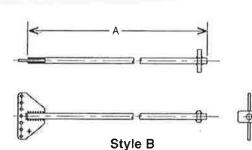
)

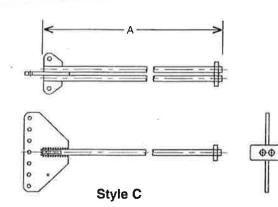
AECOM		Page	of
Job	Project No	Sheet	of
Description	Computed by	Date	
	Checked by	Date	

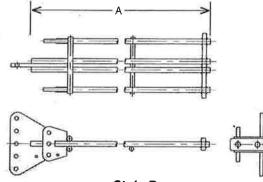
Reference


· Check Tension Anchor rod Steel 1/8" D.'a Rod -> 1.1611" × Fy=122755: = 148, 132165 Fy=1277 (Net tension) Area 148,132165 × 2 = 296, 264165 × Cigo= 266, 638165 (Cit) viscalias Protion


checkAnchershaft


)


4 (1.25") KICKSI KOG


Rod-Type Guy Anchors

Style	D
-------	---

Style	Length Dim. A	Anchor Holes	Allowable Tension(KIPS)*	Turnbrickie Size	Weight	Part Number	Price
А	10'	5	36.82	5/8" & 3/4"	56#	102305	99.00
В	10'	7		5/8" & 3/4"	79#	125964	150.00
В	12.5'	7	53.01	5/8" & 3/4"	94#	125965	179.00
В	15'	7		5/8" & 3/4"	110#	125966	208.00
С	10'	7		7/8" & 1"	175#	105000	331.00
С	12.5'	7		7/8" & 1"	206#	125967	391.00
С	15'	7	106.03	7/8" & 1"	235#	105001	445.00
С	17'	7		7/8" & 1"	259#	105999	490.00
С	20'	7		7/8" & 1"	301#	125968	570.00
D	10'	11		7/8" & 1"	235#	125969	445.00
D	12.5'	11	Large Head	7/8" & 1"	279#	125970	528.00
D	15'	11	73.64	7/8" & 1"	319#	125971	604.00
D	17.5'	11	Small Head 36.82	7/8" & 1"	362#	112371	686.00
Ď	20'	11	50,02	7/8" & 1"	481#	116466	911.00

* The Allowable Tension is based upon the following: Allowable Tension Stress; Fa=0.6 x Fy.

Allowable Tension Stress is computed using the gross cross sectional area.

No 1/3rd increase in allowable stresses is considered.

The Allowable Tension Stress is computed without consideration of the effects of a combined tension and shear loading.

About AECOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With approximately 45,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$6 billion.

More information on AECOM and its services can be found at www.aecom.com.

500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 860-529-8882 Fax: 860-529-3991

LETTER OF AUTHORIZATION for CT Siting Council Application

LEESOR: Mountaintop Enterprises, Inc **LEESEE: T-Mobile Northeast LLC** SITE: 150' Guyed Tower at 130 Vernon Road, Bolton CT 06043

I, Milton Hathaway, President of Mountaintop Services, Inc., who manages Mountaintop Enterprises, Inc. and its tower facility located at the address identified above (the "Lessor"), do hereby authorize T-Mobile Northeast LLC, its successors and assigns, and/or its agent, (collectively, the "Leesee") to act as Mountaintop Enterprise's non-exclusive agent for the sole purpose of filing a tower sharing application and consummating any permit application(s) as may be required by the CT Siting Council's applicable permitting authorities for Licensee's telecommunications' installation between 120' & 130', strictly for their Second Amendment to their existing Lease currently in negotiation with the Lessor.

We understand that this application may be denied, modified, or approved with conditions which we require notice thereof. The above authorization is limited to the acceptance by Leesee only of conditions related to Leesee's installation and any such conditions of approval or modification will be Licensee's sole responsibility.

Signature:

MILTON HATHANAL

Milton Hathaway Mountaintop Services, Inc.

<u>10-19-16</u> Date

10 Quarry Road Suites C Bolton, CT 06043 Office: 860-647-7772 Fax: 860-647-8519 mts@mountaintopservices.com

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11180C

Bolton Ct.._1 130 Vernon Road Bolton, CT 06043

September 30, 2016

EBI Project Number: 6216004445

Site Compliance Summary				
COMPLIANT				
13.52 %				

September 30, 2016

T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002

Emissions Analysis for Site: CT11180C – Bolton Ct.._1

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **130 Vernon Road**, **Bolton, CT**, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the 700 MHz Band is approximately 467 μ W/cm², and the general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure and can exercise control over the potentia

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at **130 Vernon Road, Bolton, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 UMTS channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel
- 3) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.

- 5) For the following calculations the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antennas used in this modeling are the Ericsson AIR21 B4A/B2P 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope SBNH-1D65C for 700 MHz and 2100 MHz (AWS) channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Ericsson AIR21 B4A/B2P has a maximum gain of 15.9 dBd at its main lobe at 1900 MHz and 2100 MHz. The Commscope SBNH-1D65C has a maximum gain of 15.1 dBd at its main lobe at 1900 MHz and 2100 MHz and a maximum gain of 13.6 dBd at its main lobe at 700 MHz. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is **130 feet** above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general public threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	А	Sector:	В
Antenna #:	1	Antenna #:	1
Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P
Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	130	Height (AGL):	130
Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)
Channel Count	4	Channel Count	4
Total TX Power(W):	180	Total TX Power(W):	180
ERP (W):	7,002.81	ERP (W):	7,002.81
Antenna A1 MPE%	1.64	Antenna B1 MPE%	1.64
Antenna #:	2	Antenna #:	2
Make / Model:	Commscope SBNH- 1D65C	Make / Model:	Commscope SBNH- 1D65C
Gain:	13.6 dBd	Gain:	13.6 dBd
Height (AGL):	130	Height (AGL):	130
Frequency Bands	700 MHz	Frequency Bands	700 MHz
Channel Count	1	Channel Count	1
Total TX Power(W):	30	Total TX Power(W):	30
ERP (W):	687.26	ERP (W):	687.26
Antenna A2 MPE%	0.34	Antenna B2 MPE%	0.34

Site Composite MPE%				
Carrier	MPE%			
T-Mobile (Per Sector Max)	1.98 %			
AT&T	1.31 %			
Verizon Wireless	2.71 %			
Sprint	0.74 %			
Nextel	0.32 %			
Bolton Radio Station	0.00 %			
Commsite Internat'l	0.04 %			
Metrocall	0.12 %			
Pagemart	2.30 %			
AirTouch	0.63			
Conn. Radio	0.23			
Eversource	3.14			
Site Total MPE %:	13.52 %			

T-Mobile Sector A Total:	1.98 %
T-Mobile Sector B Total:	1.98 %
T-Mobile Sector C Total:	1.98 %
Site Total:	13.52 %

T-Mobile _per sector	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
T-Mobile AWS - 2100 MHz LTE	2	2,334.27	130	10.92	AWS - 2100 MHz	1000	1.09%
T-Mobile PCS - 1950 MHz UMTS	2	1,167.14	130	5.46	PCS - 1950 MHz	1000	0.55%
T-Mobile 700 MHz LTE	1	687.26	130	1.61	700 MHz	467	0.34%
						Total:	1.98%

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)
Sector A:	1.98 %
Sector B:	1.98 %
T-Mobile Per Sector Maximum:	1.98 %
Site Total:	13.52 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **13.52%** of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.