

•••**T**••Mobile•

Alex Murshteyn, Site Acquisition Consultant c/o T-Mobile Northeast LLC ("T-Mobile") Centerline Communications, LLC 750 West Center Street, Floor 3 West Bridgewater, MA 02379 Mobile: (508) 821-0159 AMurshteyn@centerlinecommunications.com

September 14, 2018

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification // Site Number: CT11182A (ATC: 302483) 260 Beckley Road (aka 268 aka 264 Beckley Rd), Berlin, CT 06037 N 41.63166 // W 72.72986

Dear Ms. Bachman:

T-Mobile Northeast LLC ("T-Mobile") currently maintains rights to 3 antennas, physically removed pursuant to structural modification required in 2017 by American Tower Corporation ("ATC"), with the de-stacking of the 20' tower-top extension section and their 162-foot level on the existing 151.5-foot monopole tower. ATC owns the tower, located at 260 Beckley Road, Berlin, CT. The property is owned by Elaine E. Matulis & John C. Matulis, Jr. The Council has allowed T-Mobile predecessors' use of the existing site since 1998. T-Mobile now intends to consolidate its tower equipment at the 142-foot level, upon a new platform mounts, along with 6 new antennas for its LTE (600/700/1900/2100 MHz) replacements as a part of this LTE/PCS/AWS upgrade. T-Mobile will additionally remove and replace 6 tower top amplifiers (TTAs), install 3 new remote radio head units (RRUs), and 1 new hybrid fiber cable; altogether updating leased equipment rights, as reflected by the final configuration outlined in the structural analysis and proposed hereby. Note that all structural upgrades to this tower which were described above, as previously required by ATC Project #11912109, have since been completed pursuant to the modification drawings last dated October 3, 2017 and stamped October 6, 2017, which are enclosed herewith for reference.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to

Mark H. Kaczynski, Mayor for the Town of Berlin, its Zoning Enforcement Officer Maureen Giusti, including for Planning and Zoning, to American Tower, the tower owner, and to the ground owners, Elaine E. Matulis & John C. Matulis, Jr.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

Enclosed to accommodate this filing are construction drawings dated September 6, 2018 by A.T. Engineering Service, PLLC a structural analysis dated August 28, 2018 by A.T. Engineering Service, PLLC and an RF Emissions Analysis Report dated August 6, 2018 by EBI Consulting.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the new antenna will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading, as shown in the attached structural analysis by A.T. Engineering Service, PLLC, dated August 28, 2018.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

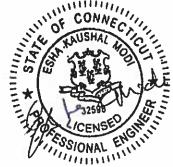
Sincerely

Alex Murshteyn, Site Acquisition Consultant c/o T-Mobile Northeast LLC Centerline Communications, LLC 750 West Center Street, Floor 3 West Bridgewater, MA 02379 Mobile: (508) 821-0159 AMurshteyn@centerlinecommunications.com

Attachments

cc: Mark Kaczynski, Mayor - as elected official - 1Z9Y45030338739459 Maureen Giusti, ZEO, Planning and Zoning - as P&Z official - 1Z9Y45030320044063 American Tower Corporation - as tower owner - 1Z9Y45030337341675 Elaine & John Matulis - as property owners - 1Z9Y45030321532284

AMERICAN TOWER®


CORPORATION

Structural Analysis Report

Structure	: 151.5 ft Monopole (De-stacked from 174.5')
ATC Site Name	: Brln - Berlin, CT
ATC Site Number	: 302483
Engineering Number	: OAA731959_C3_05
Proposed Carriers	: T-Mobile
Carrier Site Name	: Berlin/ Rt-9 X22_1
Carrier Site Number	: CT11182A
Site Location	: 260 Beckley Road Kensington, CT 06037-2419 41.631722,-72.729900
County	: Hartford
Date	: August 28, 2018
Max Usage	: 99.8%
Result	: Pass*

Prepared By: Travis J. Gatling Structural Engineer I

Travis J. Catting

Authorized by "EOR" Aug 29 2018 3:29 PM

COA: D94317

Table of Contents

Introduction	
Supporting Documents	1
Analysis	
Conclusion	1
Existing and Reserved Equipment	2
Structure Usages	3
Foundations	3
Deflection and Sway	3
Standard Conditions	4
Calculations Attache	d

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 151.5 ft monopole to reflect the changes proposed by T-Mobile.

Supporting Documents

Tower Drawings	ITT Meyer Type "B", dated July 21, 2001
	Mapping by Smith Cullum Acq. #CT-0019, dated July 21, 2001
	Mapping by ATC Report #0682, dated January 7, 2016
Foundation Drawing	SpectraSite Project #CT-0019, dated May 29, 2003
Geotechnical Report	Daniel G. Loucks Project #CT-0019, dated December 21, 2001
Modifications	Scientel Project #Berlin-CT0019, dated July 30, 2002
	ATC Project #11912109_P5_02, dated October 3, 2017*

* The changes outlined by ATC Project #11912109_P5_02 must be completed for this analysis to be valid.

Analysis

The tower was analyzed using tnxTower version 8.0.2.1 analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	97 mph (3-Second Gust, V _{ASD}) / 125 mph (3-second Gust, V _{ULT})
Basic Wind Speed w/ Ice:	50 mph (3-Second Gust) w/ 1" radial ice concurrent
Code:	ANSI/TIA-222-G / 2012 IBC / 2016 Connecticut State Building Code
Structure Class:	
Exposure Category:	В
Topographic Category:	1
Crest Height:	0 ft
Spectral Response:	Ss = 0.182, S ₁ = 0.063
Site Class:	D - Stiff Soil

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report. If the pending modifications cited in the Supporting Documents table are not completed prior to T-Mobile's installation, the results of this analysis are no longer valid, and T-Mobile should contact American Tower's Site Manager for further direction on how to proceed.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elevation ¹ (ft)			A-1	NA such Trans		<i>c</i> :	
Mount	RAD	Qty	Antenna	Mount Type	Lines	Carrier	
		6	CCI TPX-070821				
		6	Powerwave LGP21401				
		2	Raycap DC6-48-60-18-8F (32.8Lbs)				
		3	Ericsson RRUS 11 (Band 12) (55 Lbs)		(12) 1 1/4" Coax		
151.5	153.0	3	Ericsson RRUS 32 (50.8 Lbs)	Platform w/ Handrails	(4) 0.78" 8 AWG 6	AT&T Mobility	
		3	Ericsson RRUS 32 B2		(2) 0.39" Fiber Trunk		
		3	Powerwave 7770.00		(1) 3" conduit		
		3	Quintel QS66512-2	-			
		3	CCI OPA-65R-LCUU-H6				
	127.0	3	Alcatel-Lucent RRH2x50-08	/ Platform w/ Handrails	(4) 1 1/4" Hybriflex	Sprint Nextel	
		3	Alcatel-Lucent 800MHz 2X50W RRH w/				
		3	Filter				
127.0		6	Alcatel-Lucent 4x40W RRH				
127.0		3	Alcatel-Lucent TD-RRH8x20				
		2	RFS APXVSPP18-C-A20				
		1	RFS APXV9ERR18-C-A20				
		3	Commscope DT465B-2XR				
		3	Nokia AirScale RRH 4T4R B5 160W				
			AHCA		(18) 1 5/8" Coax (2) 1 5/8" Fiber	Verizon	
		3	Alcatel-Lucent RRH2X60-AW5				
119.0	119.0	3	Alcatel-Lucent B25 RRH4x30	Low Profile Platform			
110.0	119.0	2	RFS DB-T1-6Z-8AB-0Z	Low Profile Platform			
		3	Commscope LNX-6514DS-A1M				
		6	Commscope JAHH-65B-R3B				
	20 -	6	Antel LPA-80063-6CF-EDIN-X				

Equipment to be Removed

Elevatio Mount	on ¹ (ft) RAD	Qty	Antenna	Mount Type	Lines	Carrier
163.0	163.0	3	Ericsson AIR 21, 1.3 M, B2A B4P	Ekuah	(12) 1 5/8" Coax	Theshite
105.0	103.0	163.0 3 Ericsson KRY 112 144/1	Flush	(1) 1 5/8" Fiber	T-Mobile	

Proposed Equipment

Elevation ¹ (ft)					11	
Mount	RAD	Qty	Antenna	Antenna Mount Type	Lines	Carrier
		3	Ericsson KRY 112 144/2			
142.0 142	142.0	3	Ericsson KRY 112 489/2	Platform w/ Handrails	(12) 1 5/8" Coax	
		3	Ericsson Radio 4449 B12, B71		(2) 1 1/4" Fiber	T-Mobile
		3	Ericsson AIR32 B66Aa/B2a		(1) 1 5/8" Fiber	
		3	RFS APXVAARR24_43-U-NA20			

¹Mount elevation is defined as height above bottom of steel structure to the bottom of mount, RAD elevation is defined as center of antenna above ground level (AGL).

Eng. Number OAA731959_C3_05 August 28, 2018 Page 3

Install proposed coax inside the pole shaft.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail	
Anchor Bolts	86%	Pass	
Shaft	78%	Pass	
Base Plate	51%	Pass	

Foundations

Reaction Component	Analysis Reactions	% of Usage
Moment (Kips-Ft)	4,206.0	99.8%
Axial (Kips)	51.0	53%
Shear (Kips)	42.0	71%
Anchor Moment (Kips-Ft)	3,170.0	99.2%

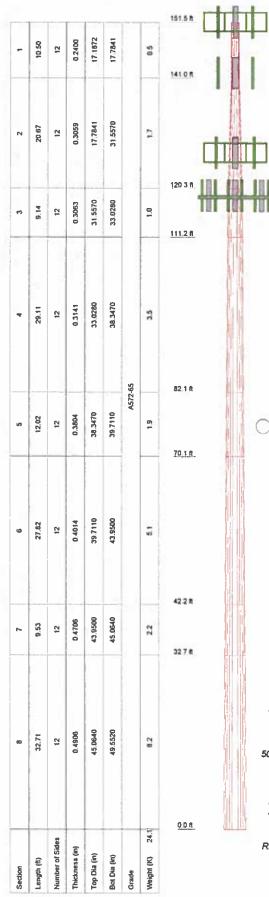
The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

Deflection and Sway

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Sway (Rotation) (°)
	Ericsson KRY 112 144/1		8.180	5.94
142.0	Ericsson Radio 4449 B12,B71			
142.0	Ericsson AIR32 B66Aa/B2a	T-Mobile		
	RFS APXVAARR24_43-U-NA20			

*Deflection and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-G

Standard Conditions

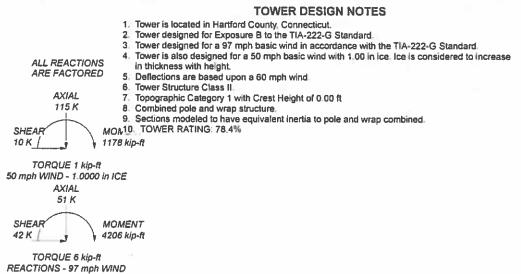

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessary limited, to:

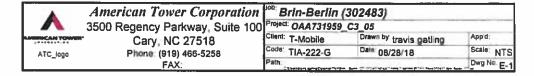
- -- Information supplied by the client regarding the structure itself, antenna, mounts and feed line loading on the structure and its components, or other relevant information.
- -- Information from drawings in the possession of American Tower Corporation, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and that their capacity has not significantly changed from the "as new" condition.

Unless explicitly agreed by both the client and American Tower Corporation, all services will be performed in accordance with the current revision of ANSI/TIA -222. The design basic wind speed will be determined based on the minimum basic wind speed as prescribed in ANSI/TIA-222. Although every effort is taken to ensure that the loading considered is adequate to meet the requirements of all applicable regulatory entities, we can provide no assurance to meet any other local and state codes or requirements. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.




DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
2) TPX-070821	151.5	Flat Platform w/ Handrails	142
(2) TPX-070821	151.5	RRH2x50-08	127
(2) TPX-070821	151.5	RRH2x50-D8	127
(2) LGP21401	151.5	RRH2x50-08	127
(2) LGP21401	151.5	800 MHz 2X50W RRH w/ Filter	127
(2) LGP21401	151.5	800 MHz 2X50W RRH w/ Filter	127
DC6-48-60-18-8F(32.8 lbs)	151.5	600 MHz 2X50W RRH w/ Filter	127
DC6-48-60-18-8F(32.8 lbs)	151.5	(2) 4x40W RRH (88 lb)	127
(2) RRUS 11 (Band 12) (55 lb)	151.5	(2) 4x40W RRH (68 lb)	127
(2) RRUS 11 (Band 12) (55 lb)	151.5	(2) 4x40W RRH (68 lb)	127
(2) RRUS 11 (Band 12) (55 lb)	151.5	TD-RRH8x20	127
RRUS 32 (50 8 lbs)	151.5	TD-RRH8x20	127
RRUS 32 (50 8 lbs)	151.5	TD-RRH8x20	127
RRUS 32 (50.8 lbs)	151.5	APXVSPP18-C-A20	127
RRUS 32 B2	151.5	APXVSPP18-C-A20	127
RRUS 32 B2	151.5	APXV9ERR18-C-A20	127
RRUS 32 82	151.5	DT465B-2XR	127
7770.00	151.5	DT465B-2XR	127
7770.00	151.5	DT465B-2XR	127
7770.00	151.5	Round Platform w/ Handralts	127
Q566512-2	151.5	AirScale RRH 4T4R B5 160W AHCA	119
Q\$66512-2	151.5	AirScale RRH 4T4R B5 160W AHCA	119
Q\$66512-2	151.5	AirScale RRH 4T4R B5 160W AHCA	119
OPA-65R-LCUU-H6	151.5	RRH2X60-AWS	119
OPA-65R-LCUU-H6	151.5	RRH2X60-AWS	119
OPA-65R-LCUU-H6	151.5	RRH2X60-AWS	119
Flat Platform w/ Handraits	151.5	B25 RRH4x30	119
KRY 112 144/2	142	B25 RRH4x30	119
KRY 112 144/2	142	B25 RRH4x30	119
KRY 112 144/2	142	OB-T1-62-8AB-02	119
KRY 112 469/2	142	DB-T1-6Z-8AB-0Z	119
KRY 112 469/2	142	LNX-8514DS-A1M	119
KRY 112 469/2	142	LNX-6514DS-A1M	119
Radio 4449 B12,B71	142	LNX-6514DS-A1M	119
Radio 4449 B12.871	142	(2) JAHH-65B-R3B	119
Radio 4449 B12.871	142	(2) JAHH-65B-R3B	119
AIR32 866Aa/82a	142	(2) JAHH-658-R38	119
AIR32 866Aa/82a	142	(2) LPA-80063-6CF-EDIN-X	119
AIR32 B66Aa/B2a	142	(2) LPA-80063-6CF-EDIN-X	119
APXVAARR24_43-U-NA29	142	(2) LPA-80063-6CF-EDIN-X	119
APXVAARR24 43-U-NA20	142	Round Low Profile Platform	119
APXVAARR24_43-U-NA20	142		

MATERIAL STRENGTH

G	RADE	Fy	Fu	GRADE	Fy	Fu
A57	2-65	65 ksi	60 ksi (

tnxTower	Job	Brin-Berlin (302483)	Page 1 of 15
American Tower Corporation 3500 Regency Parkway, Suite 100	Project	OAA731959_C3_05	Date 15:40:37 08/28/18
Cary, NC 27518 Phone: (919) 466-5258 FAX:	Client	T-Mobile	Designed by travis.gatling

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

- Tower is located in Hartford County, Connecticut.
- ASCE 7-10 Wind Data is used (wind speeds converted to nominal values).
- Basic wind speed of 97 mph.
- Structure Class II.
- Exposure Category B.
- Topographic Category 1.
- Crest Height 0.00 ft.
- Nominal ice thickness of 1.0000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- Combined pole and wrap structure..
- Sections modeled to have equivalent inertia to pole and wrap combined..
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- · Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

✓ Use Code Stress Ratios ✓ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Options

Distribute Leg Loads As Uniform Assume Legs Pinned

- Assume Rigid Index Plate
- Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- ✓ Bypass Mast Stability Checks
- ✓ Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist Exemption Use TIA-222-G Tension Splice Exemption Poles
- Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

tnxTower	Jop	Brin-Berlin (302483)	Page 2 of 15
American Tower Corporation 3500 Regency Parkway, Suite 100	Project	OAA731959_C3_05	Date 15:40:37 08/28/18
Cary, NC 27518 Phone: (919) 466-5258 FAX:	Client	T-Mobile	Designed by travis.gatling

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
LI	151,50-141,00	10.50	0.00	12 -	17,1872	17,7841	0.2400	0 9600	A572-65 (65 ksi)
L.2	141,00-120,33	20.67	0.00	12	17,7841	31.5570	0.3059	2.0000	A572-65 (65 ksi)
L3	120.33-111.19	9,14	0.00	12	31.5570	33.0280	0.3063	2 0000	A572-65 (65 ksi)
L4	111.19-82.08	29,11	0.00	12	33.0280	38,3470	0.3141	2.2000	A572-65 (65 ksi)
L5	82.08-70.06	12.02	0.00	12	38.3470	39.7110	0.3804	2,4000	A572-65 (65 ksi)
L6	70.06-42.24	27.82	0.00	12	39.7110	43.9500	0.4014	2.6000	A572-65 (65 ksi)
L7	42.24-32.71	9.53	0.00	12	43.9500	45.0640	0.4706	2.8000	A572-65
L8	32.71-0.00	32.71		12	45.0640	49.5520	0,4906	3.0000	(65 ksi) A572-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	1	r	С	1/C	J	II/O	н.	w/t
	in	in ²	in ⁴	in	in	in	in ⁴	in ²	in	
LI	17 7088	13.0968	480,1168	6.0671	8,9030	53 9277	972.8469	6,4458	3 9630	16 512
	18 3268	13.5581	532 6554	6.2808	9.2122	57.8209	1079.3043	6.6729	4.1229	17.179
1.2	18 3035	17.2160	671 2919	6.2572	9.2122	72 8702	1360,2194	8 4732	3 9463	12.901
	32,5623	30.7823	3837.2246	11.1879	16.3465	234.7425	7775.2574	15 1501	7.6375	24,967
1.3	32.5622	30 8221	3842.0947	11.1878	16.3465	235.0404	7785 1256	15.1697	7.6364	24,931
	34.0851	32 2730	4410.5870	11 7144	17.1085	257.8009	8937.0451	15.8838	8.0306	26.218
L4	34.0823	33.0869	4519.6700	11.7116	17.1085	264 1768	9158.0767	16.2844	8.0097	25.501
	39 5889	38.4666	7102.1213	13.6158	19.8637	357.5419	14390.8231	18.9321	9.4352	30.039
L5	39.5655	46 5048	8556 3285	13.5920	19.8637	430.7510	17337 4413	22 8883	9,2575	24.336
	40.9777	48,1756	9512.0483	14.0804	20.5703	462,4166	19273 9886	23 7106	9.6231	25.297
L6	40.9703	50.8080	10021.0923	14.0728	20.5703	487.1632	20305 4499	25.0061	9.5668	23.834
	45.3588	56.2869	13625,1654	15.5904	22.7661	598.4848	27608.2791	27 7027	10.7028	26,664
L7	45 3344	65 8857	15898.0688	15 5656	22.7661	698 3220	32213.7975	32,4270	10.5174	22.349
	46 4877	67.5738	17151.6341	15.9644	23.3432	734.7608	34753 8607	33.2578	10.8159	22.983
L8	46 4806	70.4140	17856.5130	15 9573	23 3432	764.9572	36182.1365	34.6556	10.7623	21.937
	51,1269	77,5039	23811.6328	17.5640	25.6679	927.6801	48248 8237	38 1450	11.9651	24.389

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor Aj	Adjust Factor A	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ſt	ft ²	in					in	in	in
Ll				l	L	1			
151.50-141.00									
L2				l	L	1			
141.00-120.33									
L3				L	L	1			
120 33-111.19									
L4				L	L	1			
111.19-82.08									
L5 82.08-70 06				1	ł	1			
L6 70.06-42 24				1	1	1			
L7 42 24-32 71				1	1	1			

tnxTower	Jop	Brin-Berlin (302483)	Page 3 of 15
American Tower Corporation 3500 Regency Parkway, Suite 100	Project	OAA731959_C3_05	Date 15:40:37 08/28/18
Cary, NC 27518 Phone: (919) 466-5258 FAX:	Client	T-Mobile	Designed by travis.gatling

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust Factor	Weight Mult	Double Angle Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing
	(per juce)				π_r		Diagonals	Horizontals	Redundants
ft	jr²	in					in	in	in
L8 32 71-0.00					1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Component Type	Placement	Total Number	Number Per Row	Start/End Position		Perimeter	Weigh
			/t				in	in	plf

1 5/8" Coax	В	Surface Ar	119.00 - 5.00	18	6	0.300	1.9800		0.82
		(CaAa)				0.500			
1 5/8" (1.63"-41.3mm) Fiber	С	Surface Ar	119.00 - 5.00	2	2	-0.490	1.6300		1.61
- · ·		(CaAa)				-0.480			

4" Wrap Seams	Α	Surface Ar	141.00 - 5.00	ł	L	0.000	4.0000		0.00
		(CaAa)				0.000			
4" Wrap Seams	В	Surface Ar	141.00 - 5.00	ĩ	L	0.000	4.0000		0.00
-		(CaAa)				0.000			
4" Wrap Seams	С	Surface Ar	141.00 - 5.00	1	1	0.000	4.0000		0.00
•		(CaAa)				0.000			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Component Type	Placement	Total Number		C.,A.1	Weight
	Leg			ſi	_		ſr²/ſi	plf
1-1/4 ⁶ Coax	С	No	Inside Pole	151.50 - 5.00	12	No Ice	0.00	0.66
						1/2= lce	0.00	0.66
						1" Ice	0.00	0.66
0.39" (10mm) Fiber	С	No	Inside Pole	151.50 - 5.00	2	No Ice	0.00	0.06
Trunk						1/2" Ice	0.00	0.06
						1ª lee	0.00	0.06
0.78" (19.7mm) 8 AWG	С	No	Inside Pole	151:50 - 5.00	4	No Ice	0.00	0.59
6						1/2" Ice	0.00	0.59
						1" Ice	0.00	0 59
3" conduit	С	No	Inside Pole	151.50 - 5.00	1	No Ice	0.00	1.78
						1/2" Ice	0 00	1.78
						l" Ice	0.00	1.78

1 5/8" (1.63"-41.3mm)	С	No	Inside Pole	142.00 - 5.00	1	No Ice	0.00	1.61
Fiber						1/2" Ice	0.00	1.61
						l" Ice	0.00	1 61
1 1/4" (1.25"- 31.8mm)	С	No	Inside Pole	142.00 - 5.00	2	No Ice	0.00	1.05
Fiber						1/2" lce	0.00	1.05
						l" Ice	0.00	1.05
1 5/8" Coax	С	No	Inside Pole	142.00 - 5.00	12	No Ice	0.00	0.82
						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82

1-1/4" Hybriflex	С	No	Inside Pole	127.00 - 5.00	4	No Ice	0.00	0 66
						1/2* Ice	0.00	0.66
						I" lce	0.00	0.66

tnxTower	dot	Brln-Berlin (302483)	Page 4 of 15
American Tower Corporation 3500 Regency Parkway, Suite 100	Project	OAA731959_C3_05	Date 15:40:37 08/28/18
Cary, NC 27518 Phone: (919) 466-5258 FAX:	Client	T-Mobile	Designed by travis.gatling

1- 7		Feed	d Line/l	_inear A	ppurter	nances S	Section A	reas
Tower Section	Tower Elevation	Face	A _R		C ₁ A ₁ In Face	C ₁ A. Out Face	Weight	
			fr²	fr²	ft'	ft²	K	
ել	151,50-141,00	A	0.000	0.000	0.000	0 000	0.00	
		В	0.000	0 000	0.000	0.000	0.00	
		C	0.000	0.000	0.000	0.000	0.14	
L.2	141.00-120.33	Α	0.000	0.000	7.937	0.000	0.00	
		B	0.000	0.000	7.937	0.000	0.00	
		С	0.000	0.000	7 937	0.000	0.55	
L3	120.33-111.19	A	0.000	0.000	3 571	0.000	0.00	
		В	0.000	0.000	12.849	0.000	0.12	
		С	0.000	0.000	6 1 1 7	0.000	0.28	
L4	111.19-82,08	Α	0.000	0.000	11.644	0.000	0.00	
		В	0.000	0.000	46.227	0.000	0.43	
		C	0.000	0 000	21,134	0.000	0.92	
L5	82.08-70.06	A	0.000	0.000	4 808	0.000	0.00	
		в	0.000	0.000	19.088	0.000	0.18	
		C	0.000	0.000	8 727	0.000	0.38	
L6	70.06-42.24	A	0.000	0,000	11.128	0.000	0.00	
		В	0.000	0.000	44.178	0.000	0.41	
		С	0.000	0.000	20,197	0.000	0.88	
L7	42.24-32.71	А	0,000	0 000	3 812	0.000	0.00	
		В	0.000	0.000	15:134	0.000	0.14	
		C	0.000	0.000	6.919	0.000	0.30	
L8	32 71-0.00	Α	0.000	0.000	11.084	0.000	0.00	
		B	0.000	0.000	44.003	0.000	0.41	
		С	0.000	0.000	20.117	0.000	0.88	

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A _R	AF	$C_{trl,t}$	C ₁ A ₁	Weight
Section	Elevation	or	Thickness			In Face	Out Face	Ū
	ſŧ	Leg	in	ft ²	ft ²	ſr²	ſr²	K
LI	151.50-141.00	A	2.321	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0 0 0 0	0.14
1.2	141.00-120.33	Α	2.293	0.000	0.000	17.749	0.000	0.36
		В		0.000	0 0 0 0	17.749	0.000	0.36
		С		0.000	0.000	17.749	0.000	0.91
L3	120.33-111.19	Α	2.267	0.000	0.000	7.801	0 0 0 0 0	0.16
		B		0.000	0.000	23.826	0.000	0.60
		С		0.000	0.000	15.410	0.000	0.55
L4	111 19-82.08	Α	2.226	0.000	0.000	24.604	0.000	0.49
		В		0.000	0.000	84.032	0.000	2.12
		C		0.000	0.000	52.666	0.000	1.81
L5	82.08-70.06	Α	2.174	0.000	0.000	10.035	0.000	0.20
		B		0.000	0.000	34.417	0 0 0 0	0 86
		С		0.000	0.000	21.466	0.000	0 73
L6	70.06-42.24	Α	2.108	0.000	0.000	22.859	0.000	0.44
		B		0.000	0.000	78,834	0 0 0 0	1.93
		С		0.000	0 0 0 0	48.858	0.000	1.66
L7	42.24-32 71	Α	2.025	0.000	0.000	7.673	0.000	0:14
		В		0.000	0.000	26.650	0.000	0.64
		С		0.000	0.000	16 382	0.000	0.56
L.8	32 71-0 00	Α	1.861	0.000	0 000	21,400	0.000	0.37
		В		0.000	0.000	75.445	0.000	1.73

tnxTower	Jop	Brln-Berlin (302483)	Page 5 of 15
American Tower Corporation 3500 Regency Parkway, Suite 100	Project	OAA731959_C3_05	Date 15:40:37 08/28/18
Cary, NC 27518 Phone: (919) 466-5258 FAX:	Client	T-Mobile	Designed by travis.gatling

Tower	Tower	Face	Ice	A_R	A_F	C.A.	$C_{\rm P} l_{\rm d}$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	<i>fi</i>	Leg	in	ft²	ft ²	ft ²	jt²	K
_	C 10	C		0.000	0.000	45.587	0.000	1.54

Feed Line Center of Pressure

Section	Elevation	CP_X	CPz	CP_X	CPz
				lce	lce
	ft	in	in	in	in
LI	151 50-141 00	0,0000	0.0000	0.0000	0.0000
L2	141.00-120.33	0.0000	0.0000	0.0000	0.0000
L3	120.33-111.19	3.8867	1.4679	4.2779	1.7354
L4	111.19-82.08	4 4839	1.6954	4.9580	2.0125
L5	82.08-70.06	4.6041	1.7425	5.2080	2,1144
L6	70.06-42.24	4.6949	1.7782	5.4025	2.1924
L7	42.24-32.71	4.8097	1.8228	5.5759	2 2605
L8	32.71-0.00	4.6140	1.7495	5.2735	2.1315

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

			Shieldi	ng Fac	tor Ka
Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
L2	15	4" Wrap Seams	120.33 -	1.0000	1.0000
			141.00		
L2	16	4" Wrap Seams	120.33 -	1.0000	1.0000
ι I			141.00	1	
L2	17	4" Wrap Seams	120.33 -	1.0000	1.0000
1 1			141,00		
L.3	12	1 5/8" Coax	111.19 -	1.0000	1.0000
			119.00		
L.3	13	l 5/8" (1.63"-41.3mm) Fiber	111.19 -	1.0000	1.0000
			119.00		
L.3	15	4" Wrap Seams	111.19 -	1.0000	0000
			120.33		
L3	16	4" Wrap Seams	111.19 -	1.0000	1.0000
			120.33		
L3	17	4" Wrap Seams	111.19 -	1.0000	1.0000
			120.33		
L4	12		82.08 - 111,19	1.0000	1.0000
L4	13	1 5/8" (1.63"-41 3mm) Fiber		1.0000	1.0000
L4	15	4" Wrap Seams		1.0000	1.0000
L4	16	4" Wrap Seams		1.0000	1.0000
L4	17	4" Wrap Seams		1.0000	1.0000
L5	12	1 5/8" Coax		1.0000	1.0000
L5	13	1 5/8" (1.63"-41.3mm) Fiber		1.0000	1.0000
L5	15	4" Wrap Seams		1.0000	1.0000
L5	16	4" Wrap Seams		1 0000	1.0000
L5	17	4" Wrap Seams		1.0000	1.0000
L.6	12	1 5/8" Coax	42 24 - 70 06	1.0000	1.0000

tnxTower	Job	Brln-Berlin (302483)	Page 6 of 15
American Tower Corporation 3500 Regency Parkway, Suite 100	Project	OAA731959_C3_05	Date 15:40:37 08/28/18
Cary, NC 27518 Phone: (919) 466-5258 FAX:	Client	T-Mobile	Designed by travis.gatling

Tower	Feed Line	Description	Feed Line	K _e	K.
Section	Record No.	26467) AL1	Segment Elev.	No Ice	Ice
L.6	= 13	1 5/8" (1.63"-41.3mm) Fiber	42.24 - 70.06	1.0000	1.0000
L6	15	4* Wrap Seams	42.24 - 70.06	1.0000	1.0000
L.6	16	4" Wrap Seams	42.24 - 70.06	1.0000	1.0000
L6	17	4" Wrap Seams	42.24 - 70.06	1 0000	1.0000
L7	12	1 5/8" Coax	32.71 - 42.24	1.0000	1.0000
L7	13	1 5/8" (1.63"-41 3mm) Fiber	32.71 - 42.24	1.0000	1.0000
L7	15	4" Wrap Seams	32.71 - 42.24	1.0000	1.0000
L7.	16	4" Wrap Seams	32.71 - 42.24	1.0000	1.0000
L7	17	4" Wrap Seams	32.71 - 42.24	1.0000	1.0000
L8	12	I 5/8" Coax	5 00 - 32 71	1.0000	L.0000
1.8	13	1 5/8" (1 63"-41 3mm) Fiber	5.00 - 32.71	1.0000	1.0000
L8	15	4* Wrap Seams	5.00 - 32.71	1.0000	1.0000
L8	16	4* Wrap Seams	5.00 - 32.71	1.0000	1.0000
L8	17	4* Wrap Seams	5.00 - 32.71	1.0000	1.0000

Sugar State			Di	screte T	ower L	oads		4 - 1 - 8	1.1.1
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _a A _d Front	C ₁ A ₄ Side	Weight
			ft ft ft	٥	ſì		ft²	ft²	K
(2) TPX-070821	A	From Leg	3,00 0.00 0.00	0.0000	151.50	No Ice 1/2" Ice 1" Ice	0.55 0.56 0.66	0.18 0.25 0.32	0.01 0.01 0.02
(2) TPX-070821	В	From Leg	3.00 0.00	0.0000	151.50	No Ice 1/2" Ice	0.55 0.56	0.18 0.25	0.01 0.01
(2) TPX-070821	С	From Leg	0.00 3.00 0.00	0.0000	151.50	1" Ice No Ice 1/2" Ice	0.66 0.55 0.56	0 32 0 18 0 25	0.02 0.01 0.01
(2) LGP21401	Α	From Leg	0.00 3.00 0.00	0.0000	151.50	1" Ice No Ice 1/2" Ice	0.66 0.00 1.45	0.32 0.36 0.48	0.02 0.01 0.02
(2) LGP21401	В	From Leg	0.00 3.00 0.00	0.0000	151.50	1" Ice No Ice 1/2" Ice	1.61 0.00 1.45	0.60 0.36 0.48	0.03 0.01 0.02
(2) LGP21401	С	From Leg	0.00 3.00 0.00	0.0000	151.50	l" lee No lee 1/2" lee	1.61 0.00 1.45	0.60 0.36 0.48	0.03 0.01 0.02
48-60-18-8F(32.8 lbs)	В	From Leg	0.00 0.50 0.00	0 0000	151.50	l" Ice No Ice 1/2" Ice	1.61 1.28 1.27	0.60 0.79 1.27	0.03 0.02 0.04
-48-60-18-8F(32.8 lbs)	с	From Leg	0.00 0.50 0.00	0.0000	151.50	l" Ice No Ice I/2" Ice	1.45 1.28 1.27	1.45 0.79 1.27	0 05 0 02 0 04
RUS 11 (Band 12) (55 lb)	A	From Leg	0.00 3.00 0.00	0,0000	151.50	1" Ice No Ice I/2" Ice	1.45 0.00 2.72	1 45 1 07 1 21	0 05 0 06 0 07
RUS 11 (Band 12) (55	В	From Leg	0.00	0.0000	151.50	1" Ice No Ice	2.92 0.00	1.36 1.07	0.10 0.06
lb) RRUS 11 (Band 12) (55	с	From Leg	0.00 0.00 3.00	0.0000	151.50	1/2" lce 1" lce No lce	2.72 2.92 0.00	1.21 1.36 1.07	0.07 0.10 0.06

tnxTower	dop	Brln-Berlin (302483)	Page 7 of 15
American Tower Corporation 3500 Regency Parkway, Suite 100	Project	OAA731959_C3_05	Date 15:40:37 08/28/18
Cary, NC 27518 Phone: (919) 466-5258 FAX:	Client	T-Mobile	Designed by travis.gatling

	_								
Description	Face	O∬set	Offsets	Azimuth	Placement		Carla	$C_{1}A_{1}$	Weig
	or Leg	Туре	Hor z Lateral	Adjustment			Front	Side	
	Leg		Vert						
			- fi	0	ſŧ		ſr²	ft²	К
			fi		<i>J•</i>		<i></i>	<i>J</i> 1	
lb)						1/2" lce	2 72	1.21	0.0
,			0.00			1" Ice	2.92	1:36	0.1
RRUS 32 (50.8 lbs)	В	From Leg	3.00	0.0000	151 50	No Ice	0.00	2.42	0.0
	-		0.00	0.0000		1/2" lce	0.00	2.64	0 1
			0.00			1" lce	0.00	2.86	0.1
RRUS 32 (50.8 lbs)	С	From Leg	3.00	0.0000	151.50	No lce	0.00	2.42	0.0
			0.00			1/2" Ice	0.00	2.64	0.1
			0.00			1" Ice	0.00	2.86	0.1
RRUS 32 (50.8 lbs)	С	From Leg	3.00	0.0000	151.50	No lce	0.00	2 42	0.0
		•	0.00			1/2* Ice	0.00	2.64	0.1
			0.00			1" Ice	0.00	2.86	0.1
RRUS 32 B2	Α	From Leg	3.00	0.0000	151.50	No Ice	0.00	1.67	0.0
		-	0.00			1/2 ⁼ [ce	0.00	1.86	0.0
			0.00			I" Ice	0.00	2.05	0.1
RRUS 32 B2	Α	From Leg	3.00	0.0000	151.50	No Ice	0.00	1.67	0.0
			0.00			1/2" [ce	0.00	1.86	0.0
			0.00			l''Ice	0.00	2.05	0.1
RRUS 32 B2	С	From Leg	3.00	0.0000	151.50	No Ice	0.00	1.67	0.0
			0.00			1/2" Ice	0.00	1.86	0.0
			0.00			1 ⁼ Ice	0.00	2.05	0.1
7770 00	A	From Leg	3.00	0.0000	151.50	No Ice	5.51	2.93	0.0
			0.00			1/2" lce	6.31	3.27	0.0
			0.00			1" Ice	6.75	3.63	0.1
7770 00	B	From Leg	3.00	0.0000	151.50	No Ice	5.51	2.93	0.0
			0.00			1/2" Ice	6.31	3.27	0.0
			0.00			1" Ice	6.75	3.63	01
7770.00	С	From Leg	3 00	0 0000	151 50	No lce	5.51	2.93	0.0
			0.00			1/2" Ice	6.31	3.27	0.0
			0.00			l" Ice	6.75	3 63	0 1
QS66512-2	A	From Leg	3.00	0 0000	151.50	No Ice	8.13	5 00	0.1
			0.00			1/2" Ice	9.23	5.80	0_1
			0 00			l" Ice	10.33	6.60	0 2
QS66512-2	в	From Leg	3.00	0.0000	151.50	No Ice	8.13	5 00	0.1
			0 00			1/2" Ice	9.23	5.80	0.1
	_		0 00			1" Ice	10.33	6.60	0.2
QS66512-2	С	From Leg	3.00	0.0000	151.50	No Ice	8.13	5.00	01
			0 00			1/2" lce	9.23	5.80	0.1
			0.00			1" Ice	10 33	6.60	0.2
OPA-65R-LCUU-H6	A	From Leg	3.00	0.0000	151.50	No lce	9.66	5,52	0.0
			0.00			1/2" Ice	10 13	5,97	0.1
			0.00			1" lce	10.61	6.43	0.2
DPA-65R-LCUU-H6	В	From Leg	3.00	0.0000	151.50	No Ice	9.66	5.52	0.0
			0.00			1/2" Ice	10.13	5.97	0.1
			0.00			l" Ice	10.61	6.43	0.2
OPA-65R-LCUU-H6	С	From Leg	3.00	0.0000	151.50	No Ice	9.66	5.52	0.0
			0.00			1/2" [ce	10.13	5.97	0.1
			0 00			I" Ice	10.61	6 43	0.2
t Platform w/ Handrails	С	None		0 0000	151.50	No Ice	42.40	42.40	2.0
						1/2" Ice	48.40	48.40	2.4
***						I" Ice	54.40	54,40	2.9
KRY 112 144/2	А	From Leg	3,00	0.0000	142,00	No Ice	0.00	0.23	0.0
		-	0.00			1/2" Ice	0.00	0.30	0.0
			0.00			1" Ice	0.00	0.38	0.0
KRY 112 144/2	В	From Leg	3 00	0.0000	142.00	No lce	0.00	0.23	0.0
		-	0.00			1/2" Ice	0.00	0.30	0.0

tnxTower	Job	Brln-Berlin (302483)	Page 8 of 15
American Tower Corporation 3500 Regency Parkway, Suite 100	Project	OAA731959_C3_05	Date 15:40:37 08/28/18
Cary, NC 27518 Phone: (919) 466-5258 FAX:	Client	T-Mobile	Designed by travis.gatling

Description	Face or	Offset Type	Offsets Horz	Azimuth Adjustment	Placement		C ₁ A ₁ Front	C ₁ A ₁ Side	Weigh
	Leg		Lateral Vert						
			ſ	0	ſi		ft²	ſŕ	K
			ſi ſi		-		5	<u> </u>	
KRY 112 144/2	С	From Leg	3.00	0.0000	142.00	No Ice	0.00	0.23	0.01
			0.00			1/2" lce	0.00	0.30	0.01
			0 00			1" Ice	0.00	0.38	0.02
KRY 112 489/2	Α	From Leg	3.00	0.0000	142.00	No Ice	0.00	0.36	0.02
			0.00			1/2" Ice	0.00	0.44	0 02
KRY 112 489/2	В	From Leg	3.00	0.0000	142.00	1" lce No lce	0.00 0.00	0.54 0.36	0.03
KKT 112 409/2	D	FIOR Leg	0.00	0.0000	142.00	1/2" Ice	0.00	0.30	0.02
			0.00			1/2 ice	0.00	0.44	0.02
KRY 112 489/2	С	From Leg	3.00	0.0000	142.00	No Ice	0.00	0.36	0.02
	-	110111 202	0.00	0.0000	112.00	1/2" [ce	0.00	0.44	0.02
			0.00			I" Ice	0 00	0.54	0.03
Radio 4449 B12,B71	Α	From Leg	3.00	0.0000	142.00	No Ice	1.64	1.16	0.07
			0.00			1/2" [ce	2 20	1,55	0.90
			0.00			l" Ice	2.76	1.94	1.73
Radio 4449 B12,B71	В	From Leg	3.00	0.0000	142.00	No Ice	1.64	1.16	0.07
		-	0.00			1/2" Ice	2.20	1.55	0.90
			0.00			l" Ice	2,76	1,94	1.73
Radio 4449 B12,B71	С	From Leg	3.00	0.0000	142.00	No Ice	1.64	1.16	0.07
			0 00			1/2" Ice	2.20	1.55	0.90
			0.00			l" Ice	2,76	1.94	1.73
AIR32 B66Aa/B2a	Α	From Leg	3.00	0.0000	142.00	No Ice	6.51	2.70	0.13
			0.00			1/2" Ice	7.78	3.22	0.18
	_		0.00			1" Ice	9.05	3.74	0.22
AIR32 B66Aa/B2a	В	From Leg	3 00	0.0000	142.00	No Ice	6.51	2 70	0.13
			0.00			1/2" lce	7 78	3.22	0.18
41035 D// 4 (D5	~		0 00	0.0000	110.00	1" Ice	9.05	3.74	0.22
AIR32 B66Aa/B2a	С	From Leg	3 00	0.0000	142.00	No Ice	6.51	2.70	0.13
			0.00			1/2" Ice	7.78	3 22	0.18
DVMA ADDOL 42 HINIA20	4	From Lan	0.00	0.0000	142.00	"]" Ice	9.05	3.74	0.22
APXVAARR24_43-U-NA20	A	From Leg	3.00 0.00	0.0000	142.00	No lce 1/2" lce	20.24 23.53	5.15 5.99	0.13
			0.00			172 ice	23.53	6.83	0.24
PXVAARR24_43-U-NA20	в	From Leg	3.00	0.0000	142.00	No Ice	20.82	5.15	0.35
1 A T AARCET 45-0-11A20	D	Profit Leg	0.00	0 0000	144.00	1/2" Ice	23.53	5.99	0.13
			0.00			1" Ice	26.82	6.83	0.24
PXVAARR24_43-U-NA20	С	From Leg	3.00	0.0000	142.00	No Ice	20.24	5.15	0.13
	•	Tront Deg	0.00	0.0000	142.00	1/2" [ce	23.53	5.99	0.24
			0.00			l" lce	26.82	6.83	0.35
Flat Platform w/ Handrails	С	None	10	0.0000	142.00	No Ice	42.40	42.40	2.00
						1/2" Ice	48.40	48.40	2.45
***						I" Ice	54.40	54 40	2.90
RRH2x50-08		Erom Free	2.00	0.0000	137.00	No fee	1.70	1.10	0.07
KK112X3U-08	A	From Face	3 00 0.00	0 0000	127.00	No Ice 1/2" Ice	1.70 2.27	1.10 1.80	0.05
			0.00			1/2" ice	2.27	2.50	0.07
RRH2x50-08	В	From Face	3 00	0 0000	127.00	No Ice	1.70	1.10	0.05
INITERSOND		a rom race	0 00	0.0000	147.00	1/2" lce	2.27	1.80	0.03
			0.00			1" Ice	2.84	2.50	0.09
RRH2x50-08	С	From Face	3.00	0.0000	127.00	No lce	1.70	1.10	0.05
	-		0.00			1/2" Ice	2.27	1.80	0.07
			0 00			l" lce	2.84	2.50	0.09
800 MHz 2X50W RRH w/	Α	From Leg	3.00	0.0000	127.00	No lee	0 00	1.93	0.06
Filter			0.00		= -	1/2" Ice	2.24	2.11	0.09
			0 00			l" Ice	2.43	2.29	0.11
800 MHz 2X50W RRH w/	в	From Leg	3.00	0.0000	127.00	No Ice	0.00	1,93	0.06
Filter		-	0.00			1/2" Ice	2.24	2,11	0.09

tnxTower	Job	Brln-Berlin (302483)	Page 9 of 15
American Tower Corporation 3500 Regency Parkway, Suite 100	Project	OAA731959_C3_05	Date 15:40:37 08/28/18
Cary, NC 27518 Phone: (919) 466-5258 FAX:	Client	T-Mobile	Designed by travis.gatling

Description	Face or	O∬set Type	Offsets: Horz	Azimuth Adjustment	Placement		C ₁ A ₁ Front	C ₁ A Side	Weight
	Leg		Lateral						
	-		Vert						
			ſi	Q	ft		ſr'	ft ²	K
			ft ft						
			0.00			l" Ice	2.43	2.29	0.11
800 MHz 2X50W RRH w/	С	From Leg	3 00	0.0000	127.00	No Ice	0.00	1.93	0.06
Filter			0.00			1/2" Ice	2.24	2,11	0.09
			0.00			I" lce	2.43	2.29	0.11
(2) 4x40W RRH (88 lb)	Α	From Leg	3.00	0.0000	127.00	No Ice	0.00	3.80	0.09
			0.00			1/2" Ice	0.00	4.06	0.12
(2) 4x40W RRH (88 lb)	С	From Leg	0.00	0.0000	127 00	1" lce No lce	0.00	4.34 3.80	0.15
(2) 4340 W KKII (66 15)	C	FIOUL COR	0.00	0.0000	127 00	1/2" Ice	0.00	4.06	0.09
			0.00			l" Ice	0.00	4.34	012
(2) 4x40W RRH (88 lb)	в	From Leg	3.00	0.0000	127.00	No Ice	0.00	3.80	0.09
(2)		1101111045	0.00	0.0000	127.00	1/2" lce	0.00	4.06	0 12
			0.00			l" Ice	0.00	4.34	0.15
TD-RRH8x20	Α	From Face	3.00	0.0000	127.00	No Ice	0.00	1.40	0.07
			0.00			1/2" lce	4.59	1.61	0.09
			0.00			1" Ice	4.88	1,82	0.12
TD-RRH8x20	В	From Face	3.00	0.0000	127.00	No lce	0.00	1.40	0.07
			0.00			1/2" lce	4.59	1.61	0.09
	_		0.00			1" Ice	4.88	1.82	0.12
TD-RRH8x20	С	From Face	3.00	0.0000	127.00	No Ice	0.00	1.40	0.07
			0.00			1/2" lce	4.59	1.61	0.09
ADVICTOIR C ATO		E I	0.00	0.0000	137.00	1"ice	4.88	1.82	0.12
APXVSPP18-C-A20	A	From Leg	3.00 0.00	0.0000	127,00	No lce 1/2" lce	8 02 8 48	5.28 5.74	0.06
			0.00			1/2 ice	8.94	6.20	0.16
APXVSPP18-C-A20	В	From Leg	3.00	0.0000	127.00	No Ice	8.02	5.28	0.06
	5	Troit Leg	0.00	0.0000	127.00	1/2" Ice	8 48	5.74	0.11
			0.00			1" Ice	8.94	6.20	0.16
APXV9ERR18-C-A20	С	From Leg	3.00	0.0000	127.00	No Ice	8.02	5.81	0.06
		-	0.00			1/2" Ice	8.48	6.27	0.11
			0.00			l''Ice	8,94	6 73	0.17
DT465B-2XR	A	From Leg	3 00	0.0000	127.00	No Ice	9.10	5.97	0.06
			0.00			1/2" Ice	9.56	6.43	0.12
	-		0.00			l" Ice	10.04	6.90	0.18
DT465B-2XR	В	From Leg	3.00	0 0000	127.00	No Ice	9.10	5.97	0.06
			0.00			1/2 [ce	9.56	6 43	0.12
DT465B-2XR	С	From Leg	0.00	0.0000	127.00	l" lce No Ine	10.04 9.10	6.90 5.97	0.18
D14030-2AR	L	rion Leg	0.00	0.0000	127,00	No Ice 1/2" Ice	9.10	5.97 6.43	0.06 0.12
			0.00			1/2 lice	10.04	6 90	0.12
Round Platform w/ Handrails	С	None		0.0000	127.00	No Ice	27.20	27.20	2.00
	-					1/2" Ice	34.20	34.20	2.40
						1 [™] Ice	41.20	41.20	2,80
		-							
AirScale RRH 4T4R B5	A	From Leg	3.00	0.0000	119.00	No Ice	L.29	0.65	0.04
160W AHCA			0.00			1/2" lce	1.75	0.88	0.05
AirScale RRH 4T4R B5	В	From Leg	0.00 3.00	0.0000	110.00	1ª Ice	2.21	1.11	0.06
160W AHCA	t)	FIONI Leg	0.00	0.0000	119.00	No Ice 1/2" Ice	1.29 1.75	0.65 0.88	0.04 0.05
INCH ALICA			0.00			172 1ce	2.21	1.11	0.05
AirScale RRH 4T4R B5	С	From Leg	3.00	0.0000	119.00	No Ice	1.29	0.65	0.08
160W AHCA	-		0.00	0.0000	112.00	1/2" Ice	1.75	0.88	0.04
			0.00			1" Ice	2.21	1.11	0.06
RRH2X60-AWS	Α	From Leg	3.00	0.0000	119.00	No Ice	0.00	1.49	0.04
		0	0.00			1/2" Ice	2.40	1.67	0.06
			0.00			l" lce	2.61	1.86	0.08

	Job		Page
tnxTower		Brln-Berlin (302483)	10 of 15
American Tower Corporation 3500 Regency Parkway, Suite 100	Project	OAA731959_C3_05	Date 15:40:37 08/28/18
Cary. NC 27518 Phone: (919) 466-5258 FAX	Client	T-Mobile	Designed by travis.gatling

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C ₄ A ₁ Front	C ₄ A ₄ Side	= Weight
			Vert ft ft ft	٥	ft =		ft²	ſr²	K
Y =			0.00			1/2" [ce	2,40	1.67	0.06
			0 00			l" Ice	2.61	1.86	0.08
RRH2X60-AWS	С	From Leg	3.00	0.0000	119.00	No Ice	0.00	1.49	0.04
			0 00			1/2" [ce	2.40	1.67	0.06
			0 00			l" lce	2.61	1.86	0.08
B25 RRH4x30	A	From Leg	3.00	0.0000	119.00	No Ice	0.00	1.29	0.05
			0.00			1/2" Ice	2.31	1.45	0.07
035 00114-30	n	P t	0.00	0.0000		1" Ice	2.50	1.61	0.09
B25 RRH4x30	В	From Leg	3.00	0.0000	119.00	No Ice	0.00	1.29	0.05
			0.00			1/2" Ice	2.31	1.45	0 07
B25 RRH4x30	с	From Lag	0.00 3.00	0.0000	119.00	1" Ice No Ice	2.50 0.00	1.61	0.09
B25 KK114X50	C	From Leg	0.00	0.0000	119.00	1/2" Ice	2.31	1.29 1.45	0.05 0.07
			0.00			I' lee	2.51	1.45	0.09
DB-T1-6Z-8AB-0Z	В	From Leg	0.50	0.0000	119.00	No Ice	4.80	2.00	0.09
DD-11-02-000-02	5	Troil Leg	0.00	0,0000	117.00	1/2" lce	5.07	2.19	0.04
			0.00			1º lce	5.35	2 39	0.12
DB-T1-6Z-8AB-0Z	С	From Leg	0.50	0.0000	119.00	No Ice	4.80	2.00	0.04
	-		0.00	0.0000	112,00	1/2" lce	5.07	2.19	0.08
			0.00			l" lce	5.35	2.39	0.12
LNX-6514DS-A1M	Α	From Leg	3.00	0.0000	119.00	No Ice	8:17	5.41	0.04
			0.00			1/2" Ice	8.63	5.86	0.09
			0.00			1" Ice	9.10	6 33	0.15
LNX-6514DS-A1M	В	From Leg	3.00	0.0000	119.00	No Ice	8.17	5.41	0.04
		0	0.00			1/2" Ice	8.63	5.86	0.09
			0.00			1" Ice	9.10	6.33	0.15
LNX-6514DS-A1M	С	From Leg	3.00	0.0000	119.00	No Ice	8 17	5.41	0.04
		-	0.00			1/2" Ice	8.63	5.86	0.09
			0.00			1" lce	9.10	6.33	0.15
(2) JAHH-65B-R3B	Α	From Leg	3.00	0.0000	119.00	No Ice	9.11	5.98	0.06
			0.00			1/2" Ice	9 58	6.44	0.12
			0.00			1" Ice	10.05	6.91	0.18
(2) JAHH-65B-R3B	В	From Leg	3.00	0.0000	119.00	No Ice	9.11	5.98	0.06
			0.00			1/2" Ice	9.58	6 44	0.12
	-		0.00			l" Ice	10.05	6.91	0.18
(2) JAHH-65B-R3B	С	From Leg	3.00	0.0000	119.00	No Ice	9.11	5.98	0.06
			0.00			1/2" Ice	9.58	6.44	0.12
			0.00	0.0000		l" Ice	10.05	6.91	0.18
) LPA-80063-6CF-EDIN-X	A	From Leg	3.00	0.0000	119.00	No Ice	9.73	9.06	0.03
			0.00			1/2" Ice	11.07	9.61	0.10
) LPA-80063-6CF-EDIN-X	в	Ecom Log	0.00	0.0000	110.00	l" lce	11.64	10.16	0.18
JEI A-00003-0CF*EDIN*X	а ,	From Leg	3.00 0.00	0.0000	119.00	No Ice 1/2" Ice	9.73 11.07	9.06 9.61	0.03
			0.00			172°10e	11.64	9.61	0.10
) LPA-80063-6CF-EDIN-X	С	From Leg	3.00	0.0000	119.00	No Ice	9.73	9.06	0.03
, 51 A-00005-061-66414-A	2	LIGHT LEE	0.00	0 0000	117,00	1/2" lce	9.75	9.61	0.03
			0.00			172 ice	11.64	10.16	010
ound Low Profile Platform	С	None	0.00	0.0000	119.00	No lee	21.70	21.70	1.50
and work a source a successful	•			0 0000	112.00	l/2" lce	27.20	27 20	1.70
						I" lce	32.70	32.70	1.90

tnxTower

Job

Client

American Tower Corporation 3500 Regency Parkway, Suite 100 Cary NC 27518 Phone: (919) 466-5258 FAX

Page 11 of 15 Brln-Berlin (302483) Project Date OAA731959_C3_05 15:40:37 08/28/18 Designed by T-Mobile travis.gatling

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	1.2 Dead+1.6 Wind 0 deg - No Ice	
3	0.9 Dead+1.6 Wind 0 deg - No Ice	
4	1.2 Dead+1.6 Wind 30 deg - No Ice	
5	0.9 Dead+1.6 Wind 30 deg - No Ice	
6	1 2 Dead+1 6 Wind 60 deg - No Ice	
7	0 9 Dead+1 6 Wind 60 deg - No Ice	
8	1.2 Dead+1.6 Wind 90 deg - No Ice	
9 9	0.9 Dead+1.6 Wind 90 deg - No Ice	
10	1 2 Dead+1.6 Wind 120 deg - No Ice	
11	0.9 Dead+1.6 Wind 120 deg - No Ice	
12	1.2 Dead+1.6 Wind 150 deg - No Ice	
13	0.9 Dead+1.6 Wind 150 deg - No Ice	
14		
15	1.2 Dead+1.6 Wind 180 deg - No Ice 0.9 Dead+1.6 Wind 180 deg - No Ice	
16		
17	1.2 Dead+1.6 Wind 210 deg - No Ice	
	0.9 Dead+1.6 Wind 210 deg - No Ice	
18 19	1.2 Dead+1.6 Wind 240 deg - No Ice	
20	0.9 Dead+1.6 Wind 240 deg - No Ice	
	1.2 Dead+1.6 Wind 270 deg - No Ice	
21	0.9 Dead+1.6 Wind 270 deg - No Ice	
22	1.2 Dead+1.6 Wind 300 deg - No Ice	
23	0.9 Dead+1.6 Wind 300 deg - No Ice	
24	1.2 Dead+1.6 Wind 330 deg - No Ice	
25	0.9 Dead+1.6 Wind 330 deg - No Ice	
26	1.2 Dead+1.0 Ice+1.0 Temp	
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	
35	1.2 Dead+1.0 Wind 240 deg+1.0 Tce+1.0 Temp	
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	
39	Dead+Wind 0 deg - Service	
40	Dead+Wind 30 deg - Service	
41	Dead+Wind 60 deg - Service	
42	Dead+Wind 90 deg - Service	
43	Dead+Wind 120 deg - Service	
44	Dead+Wind 150 deg - Service	
45	Dead+Wind 180 deg - Service	
46	Dead+Wind 210 deg - Service	
47	Dead+Wind 240 deg - Service	
48	Dead+Wind 270 deg - Service	
49	Dead+Wind 300 deg - Service	
50	Dead+Wind 330 deg - Service	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gor	Tilt	Twist
No.		Deflection	Load		
	ft	ft	Comb	0	0

tnxTower	Job	Brin-Berlin (302483)	Page 12 of 15
American Tower Corporation 3500 Regency Parkway, Suite 100	Project	OAA731959_C3_05	Date 15:40:37 08/28/18
Cary, NC 27518 Phone: (919) 466-5258 FAX:	Client	T-Mobile	Designed by travis.gatling

Section No.	Elevation	Horz Deflection	Gor Load	Tilt	Twist
	ft	ft	Comb.	۰	0
LI	151:5 - 141	1.951	46	1.2908	0.0019
1.2	141 - 120.33	1.716	46	1.2569	0.0015
L3	120.33 - 111.19	1.283	46	1.1480	0.0018
L4	111 19 - 82.08	1.104	46	1.0957	0.0019
L5	82.08 - 70.06	0 608	40	0.8387	0.0015
L6	70.06 - 42.24	0.444	40	0.7245	0.0013
17	42 24 - 32 71	0.161	40	0.4312	0.0008
L8	32.71 - 0	0.097	40	0.3366	0.0006

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ſi		Comb.	ſt	0	0	ſı
151.50	(2) TPX-070821	46	1,951	1.2908	0.0019	19909
142.00	KRY 112 144/2	46	1.739	1.2608	0.0015	11034
127.00	RRH2x50-08	46	1.419	1.1858	0.0018	11328
119.00	AirScale RRH 4T4R B5 160W	46	1.257	L.1407	0.0018	11240
	AHCA					

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gor. Load	Tilı	Twist
	ſt	ſ	Comb	0	0
£1	151.5 - 141	9.177	16	6.0753	0.0091
L2	141 - 120.33	8.077	16	5 9228	0.0074
L3	120 33 + 111 19	6 041	16	5.4126	0 0087
L4	111.19 - 82.08	5.198	16	5 1663	0.0087
L5	82.08 - 70.06	2.863	4	3 9534	0 0071
L6	70.06 - 42.24	2.089	4	3 4 1 4 7	0.0062
L.7	42 24 - 32 71	0 760	4	2 0311	0.0036
L8	32.71 - 0	0.459	4	1.5849	0.0028

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ſi		Comb.	ſt	o	٥	ſt
151.50	(2) TPX-070821	16	9,177	6.0753	0.0091	4394
142.00	KRY 112 144/2	16	8.180	5.9406	0.0072	2433
127.00	RRH2x50-08	16	6.678	5.5905	0.0086	2449
119.00	AirScale RRH 4T4R B5 160W AHCA	16	5,916	5.3782	0.0087	2421

tnxTower	Job	Brln-Berlin (302483)	Page 13 of 15
American Tower Corporation 3500 Regency Parkway, Suite 100	Project	OAA731959_C3_05	Date 15:40:37 08/28/18
Cary, NC 27518 Phone: (919) 466-5258 FAX:	Client	T-Mobile	Designed by travis.gatling

Compression Checks

			Po	le Des	sign l	Data			
Section No.	Elevation	Size	L	L _#	Kl/r	A	Pu	φP _n	Ratio P _u
	ft		ſi	ſı		in ²	K	K	φ <i>P</i> _n
LI	151 5 - 141 (1)	TP17_7841x17_1872x0.24	10.50	0.00	0.0	13.5581	-7.85	999.37	0.008
1.2	141 - 120.33 (2)	TP31.557x17.7841x0.3059	20 67	0 00	0.0	30.7823	-14 23	2146.63	0.007
L.3	120 33 - 111 19 (3)	TP33 028x31.557x0 3063	9.14	0.00	0,0	32,2730	-18 34	2210,95	0.008
L4	111.19 - 82.08 (4)	TP38,347x33,028x0,3141	29 11	0.00	0.0	38_4666	-24.26	2491.00	0.010
1.5	82 08 - 70 06 (5)	TP39.711x38.347x0.3804	12.02	0.00	0.0	48.1756	-27.38	3343.96	0 008
L6	70.06 - 42.24 (6)	TP43.95x39.711x0.4014	27.82	0.00	0.0	56 2869	-35.55	3831.48	0.009
L7	42.24 - 32.71 (7)	TP45.064x43.95x0 4706	9-53	0 00	0.0	67.5738	-38,92	4843,91	0.008
L8	32.71 - 0 (8)	TP49 552x45 064x0.4906	32.71	0.00	0,0	77 5039	-51.35	5448.80	0 009

Pole Bending Design Data

Section No	Elevation	Size	Mut	ϕM_{au}	Ratio Mar	$M_{\mu\nu}$	ϕM_{m}	Ratio M _{uv}
	ft		kip-ft	kip-ft	ϕM_{av}	kip-ft	kip-ft	ϕM_{m}
L1	151.5 - 141 (1)	TP17 7841x17 1872x0 24	57.62	355.17	0.162	0.00	355.17	0.000
L2	141 - 120.33 (2)	TP31.557x17.7841x0.3059	300.92	1364.17	0.221	0 00	1364.17	0.000
L3	120.33 - 111.19 (3)	TP33.028x31.557x0.3063	493.54	1471.78	0.335	0.00	1471.78	0.000
L4	111 19 - 82 08 (4)	TP38.347x33.028x0.3141	1246 22	1929,46	0.646	0.00	1929.46	0.000
L.5	82.08 - 70.06 (5)	TP39.711x38.347x0.3804	1607.03	2674.77	0 601	0.00	2674_77	0.000
L6	70.06 - 42.24 (6)	TP43.95x39.711x0.4014	2544 35	3394 93	0.749	0.00	3394.93	0.000
L7	42-24 - 32-71 (7)	TP45 064x43 95x0 4706	2896.72	4389.17	0.660	0 00	4389_17	0.000
L8	32.71 - 0 (8)	TP49.552x45.064x0.4906	4206 35	5434.94	0.774	0.00	5434.94	0.000

Pole Shear Design Data

Section No	Elevation	Size	Actual V-	φ1' _n	Ratio	Actual T _u	ф <i>Т</i> "	Ratio T
	ft		K	K.	φ1'	kip-ft	kip-ft	$\frac{T_n}{\phi T_n}$
LI	151,5 - 141 (1)	TP17.7841x17.1872x0.24	9.53	499.68	0.019	0.41	723.49	0.001
1.2	141 - 120.33 (2)	TP31.557x17.7841x0.3059	15.47	1073.31	0.014	0.59	2775 27	0.000
L3	120 33 - 111 19 (3)	TP33.028x31.557x0.3063	22.97	1105 48	0.021	0.09	2993.78	0.000

tnxTower	Job	Brin-Berlin (302483)	Page 14 of 15
American Tower Corporation 3500 Regency Parkway, Suite 100	Project	OAA731959_C3_05	Date 15:40:37 08/28/18
Cary, NC 27518 Phone: (919) 466-5258 FAX:	Client	T-Mobile	Designed by travis.gatling

Section No.	Elevation	Size	Actual V.	φ <i>V</i> _π	Ratio V.	Actual T _u	φT _n	Ratio T _H
	fi		K	K	φ <i>V</i> _n	kip-fi	kip-ft	φT,
L4	111 19 - 82 08 (4)	TP38.347x33.028x0.3141	28.86	1245 50	0.023	1.62	3923 29	0.000
L5	82 08 - 70 06 (5)	TP39.711x38.347x0.3804	31.22	1671.98	0.019	2.26	5441.35	0.000
L6	70 06 - 42 24 (6)	TP43 95x39.711x0 4014	36.23	1915.74	0.019	3.70	6905 35	0.001
L7	42.24 - 32.71 (7)	TP45 064x43 95x0 4706	37.76	2421.95	0.016	4 17	8931.67	0.000
L8	32.71 - 0 (8)	TP49 552x45 064x0.4906	42.32	2724_40	0.016	5.50	11057.67	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M _{ur}	Ratio M _{av}	Ratio V.	Ratio T _n	Comb. Stress	Allow Stress	Criteria
	ft	φ <i>P</i> ,,	ϕM_{nx}	ϕM_m	φ <i>Γ</i> ,	ϕT_n	Ratio	Ratio	
LI	151;5 - 141 (1)	0 008	0.162	0.000	0.019	0.001	0.170	1.000	4.8.2
L2	141 - 120.33 (2)	0.007	0.221	0 000	0.014	0.000	0.227	1.000	482
L3	120.33 - 111,19 (3)	0.008	0.335	0.000	0.021	0.000	0.344	1.000	482 🗸
L4	111,19 - 82,08 (4)	0.010	0.646	0.000	0,023	0,000	0.656	1.000	4.8.2 🖌
L5	82.08 - 70.06 (5)	0.008	0.601	0 000	0,019	0.000	0.609	1.000	482 🖌
L6	70.06 - 42.24 (6)	0.009	0,749	0 000	0.019	0.001	0.759	1.000	482
L7	42 24 - 32,71 (7)	0 008	0.660	0.000	0.016	0.000	0 668	1.000	4.8.2 🖌
L8	32.71 - 0 (8)	0.009	0.774	0 000	0.016	0,000	0.784	1.000	4.8.2 🖌

Section Capacity Table

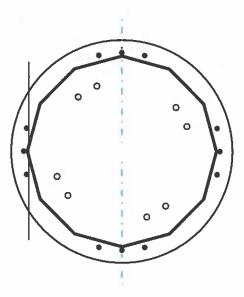
Section No.	Elevation ft	Component Type	Size	Critical Element	Р К	oP _{allow} K	% Capacity	Pass Fail
LI	151.5 - 141	Pole	TP17.7841x17.1872x0.24	1	-7:85	999.37	17.0	Pass
L2	141 - 120,33	Pole	TP31.557x17.7841x0.3059	2	-14.23	2146.63	22.7	Pass
L3	120 33 - 111 19	Pole	TP33 028x31 557x0 3063	3	-18.34	2210.95	34.4	Pass
L4	111.19 - 82.08	Pole	TP38 347x33 028x0 3141	4	-24.26	2491.00	65.6	Pass
L5	82.08 - 70.06	Pole	TP39 711x38 347x0 3804	5	-27.38	3343.96	60.9	Pass
L6	70.06 - 42.24	Pole	TP43.95x39.711x0.4014	6	-35.55	3831.48	75.9	Pass
L7	42 24 - 32 71	Pole	TP45 064x43 95x0 4706	7	-38.92	4843.91	66.8	Pass
L8	32 71 - 0	Pole	TP49.552x45.064x0.4906	8	-51.35	5448.80	78.4	Pass
							Summary	

tnxTower	Job	Brln-Berlin (302483)	Page 15 of 15
American Tower Corporation 3500 Regency Parkway, Suite 100	Project	OAA731959_C3_05	Date 15:40:37 08/28/18
Cary, NC 27518 Phone: (919) 466-5258 FAX:	Client	T-Mobile	Designed by travis.gatling

Section	Elevation	Component	Size	Critical	P	oP _{attor}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
				_		Pole (L8) RATING =	78.4 78.4	Pass Pass

Program Version 8 0.2,1 - 5/2/2018 File:C./Users/travis.gatling/Desktop/TNX/Brin - Berlin, CT (302483)/OAA731959 T-MOBILE/TNX Files/302483 Brln-Berlin, CT eri

Base Plate & Anchor Rod Analysis


Pole D	imensions	Alex I alex
Number of Sides	12	-
Diameter	51	in
Thickness	0.75	in
Orientation Offset		•

Base	Plate	
Shape	Round	-
Diameter, ø	62	in
Thickness	2	in
Grade	A572-60	-
Yield Strength, Fy	60	ksi
Tensile Strength, Fu	-75	ksi
Clip	N/A	In
Orientation Offset		•
Anchor Rod Detail	с	η=0.55
Clear Distance	N/A	in
Applied Moment, Mu	790.5	k
Bending Stress, φMn	1563.2	k

Original A	Anchor Rods	
Arrangement	Cluster	-
Quantity	12	÷
Diameter, ø	13/4	in
Bolt Circle	55	łn
Grade	Other	
Yield Strength, Fy	127.7	ksi
Tensile Strength, Fu	150	ksi
Spacing	6.5	in
Orientation Offset	45	•
Applied Force, Pu	195.9	k
Anchor Rods, dPn	227.9	k

Base Reactions							
Moment, Mu	4206	k-ft					
Axial, Pu	51	k					
Shear, Vu	42	k					
Neutral Axis	90	•					

Report Capacities				
Component	Capacity	Result		
Base Plate	51%	Pass		
Anchor Rods	86%	Pass		
Dwyldag	-	-		

Additional	Anchor Rod	s
Quantity	8	-
Diameter, ø	2 1/4	in
Bolt Circle	39	in
Grade	A325	
Yield Strength, Fy	92	ksi
Tensile Strength, Fu	120	ksi
Bypass Base?	Na	
Orientation Offset		•
Applied Force, Pu	220.9	k
Additional Rod, oPn	811.8	k

X:\A-B\Brin-Berlin, CT (302483)\OAA731959 T-MOBILE\OAA731959_05_CUST_STRUCTRL\3. Monopole.Base-Plate-and-Anchor-Rod.v1.3

Calculations for Monopole Base Plate & Anchor Rod Analysis

			Geometric Properties					
Shear Vu	Moment Mu	Factor	Section	Gross Area	Net Area	Indíviduai Inertia	Threads per Inch	Moment of Inertia
k	kaft	-	-	in ²	in ²	in ⁴	#	in ⁴
42.0	4206.0	1.00	Pole	117.0509	9.7542	1.8426		36967.22
37.9	2672.7	0.64	Bolt	2.4053	1.8995	0.2871	5	8622.24
4.1	1533.3	0.36	Bolt1	3.9761	3.2477	0.8393	4.5	4946.45
		0.001	Bolt2			00.0600		0.01
			Dywidag			11112023		510
The second se		10000	Stiffener	1000			100000	0.000
	Vu k 42.0 37.9	Vu Mu k ksft 42.0 4206.0 37.9 2672.7	Vu Mu Factor k ksft - 42.0 4206.0 1.00 37.9 2672.7 0.64	Shear Moment Factor Vu Mu Factor k k=ft - 42.0 4206.0 1.00 37.9 2672.7 0.64 4.1 1533.3 0.36 Bolt2 Dywidag	Shear Moment Mu Factor Section Gross Area k ksft - in ² 42.0 4206.0 1.00 Pole 117.0509 37.9 2672.7 0.64 Bolt 2.4053 4.1 1533.3 0.36 Bolt1 3.9761 Bolt2 Dywidag D D	Shear Moment Factor Gross Net Area ko ksft - in ² in ² 42.0 4206.0 1.00 Pole 117.0509 9.7542 37.9 2672.7 0.64 Bolt 2.4053 1.8995 4.1 1533.3 0.36 Bolt1 3.9761 3.2477 Bolt2 Dywidag D D D D	Shear Moment Factor Gross Net Area Individual Inertia k k=ft - in ² in ² in ⁴ 42.0 4206.0 1.00 Pole 117.0509 9.7542 1.8426 37.9 2672.7 0.64 Bolt 2.4053 1.8995 0.2871 4.1 1533.3 0.36 Bolt1 3.9761 3.2477 0.8393 Bolt2 Dywidag D D D D D	Shear Moment Factor Gross Net Area Individual Threads ko ksft - in ² in ² in ⁴ # 42.0 4206.0 1.00 Pole 117.0509 9.7542 1.8426 37.9 2672.7 0.64 Bolt 2.4053 1.8995 0.2871 5 4.1 1533.3 0.36 Bolt1 3.9761 3.2477 0.8393 4.5 Bolt2 Dywidag D D D D D D

Base Plate Stiffene	ers	
Applied Axial Force, Pu	0.0	k
Applied Horizontal Force, Vu	0.00	k
Vertical Weld	1	
Vertto-Stiffener a=e,/i	#DIV/01	
Spacing Ratio, k	#DIV/01	
Weld Coefficient, C	#DIV/01	្
Compressive Capacity, pPn	#DIV/01	k
Vertto-Plate a=e_/I	#DIV/01	
Spacing Ratio, k	#DIV/01	×.
Weld Coefficient, C	#DIV/01	÷
Shear Capacity, фVn	#DIV/01	k
$P_u/\phi_P P_n + V_u/\phi_V V_n$	•	
Horizontal Weld		_
Horzto-Stiffener a=e _x /l	#DIV/01	
Spacing Ratio, k	#DIV/01	
Weld Coefficient, C	#DIV/01	-
Effective Fillet	0.000	In
Compressive Capacity, ϕ Pn	#DIV/01	k
Horzto-Pole a=e,/I	#DIV/01	4
Spacing Ratio, k	#DIV/01	
Weld Coefficient, C	#DIV/01	
Shear Capacity, фVn	#DIV/01	k
$P_u/\phi_P P_n + V_u/\phi_V V_n$	1	
Plate Tension		
Gross Cross Section	0.000	in
Net Cross Section	0.000	in
Tensile Capacity, φTn	0.0	k
Capacity, Tu/фTn	-	
Plate Compressio	n	
Radius of Gyration	#DIV/01	In
ki/r	#DIV/0!	-
4.71 √(E/Fγ)	0.00	
Buckling Stress(Fe)	0.0	-
Crit. Buckling Stress(Fcr)	0.0	k
	0.0	k
Compressive Capacity, φPn Capacity, Pu/φPn		

Anchor Rods		
Anchor Rod Quantity, N	12	-
Rod Diameter, d	1.75	in
Bolt Circle, BC	55	in
Yield Strength, Fy	127.7	ksł
Tensile Strength, Fu	150	ksi
Applied Axial, Pu	195.9	k
Applied Shear, Vu	0.0	k
Compressive Capacity, ϕ Pn	227.9	k
Tensile Capacity, ¢ Rnt	0.860	ОК
Interaction Capacity	0.860	OK
Additional Bolt Grou	n 1	

Additional Bolt Group 1				
Bolt Quantity, N	8	•		
Bolt Diameter, d	2.25	in		
Bolt Circle, BC	39	in		
Yield Strength, Fy	92	ksi		
Tensile Strength, Fu	120	ksi		
Applied Axial, Pu	220.9	k		
Applied Shear, Vu	0.0	k		
Compressive Capacity, dPn	311.8	k		
Compressive Capacity, dPn	0.708	OK		
Interaction Capacity	0.708	OK		

Additional Bolt Group	o 2	
Bolt Quantity, N	0	-
Bolt Diameter, d	0	in
Bolt Circle, BC	0	in
Yield Strength, Fy	0	ksi
Tensile Strength, Fu	0	ksi
Applied Axial, Pu	0.0	k
Applied Shear, Vu	0.0	k
Compressive Capacity, oPn	0.0	k
Compressive Capacity, oPn		
Interaction Capacity		

Dywidag Reinforcer	ment	
Dywidag Quantity, N	0	•
Dywidag Dlameter, d	2.5	in
Bolt Circle, BC	57.88	in
Yield Strength, Fy	80	ksi
Tensile Strength, Fu	100	ksi
Applied Axial, Pu	0.0	k
Compressive Capacity, dPn	0.0	k
Capacity, Pu/фPn		

iener Forces		
Base Plate		
Shape	Round	•
Diameter, D	62	in
Thickness, t	2	in
Yield Strength, Fy	60	ksi
Tensile Strength, Fu	75	ksi
Base Plate Chord	35.256	in
Detail Type	с	•
Detail Factor	0.55	-
Clear Distance	N/A	-
External Base Pl	ate	10.3
Chord Length AA	24 949	in
Additional AA	4.000	in
Section Modulus, Z	28.949	in ³
Applied Moment, Mu	790.5	k-ft
Bending Capacity, ϕ Mn	1563.2	k-ft
Capacity, Mu/фMn	0.506	OK
Chord Length AB	20.829	in
Additional AB	4.000	in
Section Modulus, Z	24.829	in ³
Applied Moment, Mu	268.9	k-ft
Bending Capacity, ϕ Mn	1340.8	k-ft
Capacity, Mu/oMn	0.201	OK
		4e 13
Bend Line Length	0.000	in
Additional Bend Line	0.000	in
Section Modulus, Z	0.000	in ³
account interacting &		k-ft
Applied Moment, Mu	0.0	- N-17
	0.0	k-ft

Internal Base Pla	te	
Arc Length	0.000	in
Section Modulus, Z	0.000	in ³
Moment Arm	0.000	in
Applied Moment, Mu	0.0	k-ft
Bending Capacity, ϕ Mn	0.0	k-ft
Capacity, Mu/фMn		

Date: Fower Type: Design Loads (Factored) - Analysis p	OAA731959 TJG 08/28/18 MP			- ²	
Tower Type: Design Loads (Factored) - Analysis p	08/28/18			그마는 나라마	
Design Loads (Factored) - Analysis p					
Tower Type: <u>Design Loads (Factored) - Analysis p</u> Design / Analysis / Mapping:	MP				
Design / Applyris / Manning	er TIA-222-G Standa	<u>rds</u>			
DesiRit / Augusts / Mighhuig:		Mapping			
Compression/Leg:		51			
Total Shear:		42 k			
Moment:		4206 k-ft			
Tower + Appurtenance Weight:		51 k			
Depth to Base of Foundation (I + t - h		8 ft			
Diameter of Pier (d):	<i></i>	7 ft			
Height of Pier above Ground (h):	1	0.5 ft			
Width of Pad (W): Length of Pad (L):		11 ft 11 ft			
Length of Pad (L): Thickness of Pad (t):		and the second sec			
		2.6 ft 0 ft			
Tower Leg Center to Center:		the second se	MD - 071		
Number of Tower Legs: Tower Center from Mat Center:	1	1 (1 if 0 ft	MP or GT)		
Depth Below Ground Surface to Wat	er Table:	99 ft			
Unit Weight of Concrete:	1	150 pcf			
Unit Weight of Soil Above Water Tab	ole:	135 pcf			
Unit Weight of Water:		62.4 pcf			
Unit Weight of Soil Below Water Tab	ole:	72.6 pcf			
Friction Angle of Uplift:		40 Deg	rees		
Ultimate Coefficient of Shear Friction		0.35			
Ultimate Compressive Bearing Press		52000 psf			
Ultimate Passive Pressure on Pad Fa		500 psf			
Factored Moment Applied to Rock A	Anchors	3170 k-ft			
♥Soil and Concrete Weight		0.9			
ф _{soil} :		0.75			
Rock Anchor Usage					
Rock Anchor Resistance:			3360	With a start of the start of th	
Rock Anchor Tensile Resistance:			0.95	92 Result: OK	
Overturning Moment Usage					
Design OTM:	• .			.0 k-ft	
Weight of Soil and Concrete OTM Re				.4 k	
OTM Resistance from Soil and Concr	ete:			.6 k-ft	
OTM Resistance from Tower:				.8 k-ft	
OTM Resistance from Soil Facture: OTM Resistance from Passive Pressu	ure on Ord Error			.8 k-ft	
OTM Resistance from Passive Pressu OTM Resistance:	ne on rau race:			.5 k-ft .1 k-ft	
Design OTM / OTM Resistance:				98 Result: OK	
Soil Bearing Pressure Usage			0.5		
Total Weight (Foundation, Soil, Tow	ar).		107	.9 k	
Factored Nominal Bearing Pressure:			-	.9 k D0 psf	
Net Bearing Pressure/Factored Nom		- •		53 Result: OK	10
Load Direction Controling Design Be	_		onal to Pad Ed		
Sliding Factor of Safety		Dide		- <u>-</u> -	
Total Factored Sliding Resistance:			FO	.9 k	
Sliding Design / Sliding Resistance:				71 Result: OK	

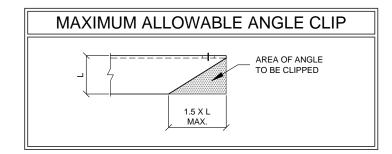
AMERICAN TOWER® AMERICAN TOWER® A.T. ENGINEERING SERVICE, PLLC 3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 COA: PEC.0001553

302483 - BRLN - BERLIN, CONNECTICUT

174.5 FT MONOPOLE MODIFICATIONS

AS-BUILT SIGN-OFF					
DESCRIPTION	SIGNATURE	DATE			
CONTRACTOR NAME					
CONTRACTOR REPRESENTATIVE (PRINT NAME)					
CONTRACTOR REPRESENTATIVE (SIGNATURE)					
REDEVELOPMENT P.M. (PRINT NAME)					
REDEVELOPMENT P.M. (SIGNATURE)					

PROJECT SUMMARY	PROJECT DESCRIPTION	SHEET	SHEET TITLE
	THE MODIFICATIONS PRESENTED ON THESE DRAWINGS	IGN	IBC GENERAL NOTES
ATC PROJECT NUMBER: 11912109_P5_02	ARE BASED ON THE RECOMMENDATIONS OUTLINED IN THE	A-1	MODIFICATION PROFILE
	STRUCTURAL ANALYSIS COMPLETED UNDER ENGINEERING		
CUSTOMER: OPERATIONS	PROJECT NUMBER 11912109_P8_01 DATED 11/09/16. SATISFACTORY COMPLETION OF THE WORK INDICATED ON THESE DRAWINGS WILL RESULT IN THE STRUCTURE MEETING THE REQUIREMENTS OF THE SPECIFICATIONS UNDER WHICH THE STRUCTURAL WAS COMPLETED.		
CUSTOMER SITE NAME: N/A			
CUSTOMER SITE NUMBER: N/A			
SITE ADDRESS: 260 BECKLEY ROAD KENSINGTON, CT 06037			
DATE: 10/03/17			
41.63172222			
GEOGRAPHIC COORDINATES: -72.7299			


	AMERICAN TOWER® AMERICAN TOWER® A.T. ENGINEERING SERVICE, PLLC 3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 COA: PEC.0001553				
	AS INSTRUMENTS OR SERVICE ARE THE EXCLUSI OF AMERICAN TOWER. THEIR USE AND PUBLICATI RESTRICTED TO THE ORIGINAL SITE FOR WHICH T PREPARED. ANY USE OR DISCLOSURE OTHER TH/ RELATES TO AMERICAN TOWER OR THE SPECIFIE STRICTLY PROHIBITED. TITLE TO THESE DOCUMEI REMAIN THE PROPERTY OF AMERICAN TOWER WI THE PROJECT IS EXECUTED. NEITHER THE ARCHI ENGINEER WILL BE PROVIDING ON-SITE CONSTRL OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY DIMENSIONS AND ADVISE AMERICAN TOWER OF A DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS D SUPERSEDED BY THE LATEST VERSION ON FILE V TOWER.	VE PROPERTY ON SHALL BE HEY ARE NN THAT WHICH D CARRIER IS VITS SHALL HETHER OR NOT TECT NOR THE ICTION REVIEW 'ALL NY RAWING IS			
	<u></u>				
	$\bigwedge^{$				
	\bigtriangleup				
	ATC SITE NUMBER:				
	302483				
	ATC SITE NAME:				
	BRLN - BERLIN				
	CONNECTICUT				
	SITE ADDRESS: 260 BECKLEY ROAD				
	KENSINGTON, CT 06037				
0 0					
	DRAWN BY: CWB				
	DRAWN BY: CWB APPROVED BY: JDB				
	DATE DRAWN: 10/03/17				
	ATC JOB NO: 11912109_P5_02				
	COVER				
	SHEET NUMBER:	REVISION:			
	COVER	U			

GENERAL

- 1. ALL WORK TO BE COMPLETED PER APPLICABLE LOCAL, STATE, FEDERAL CODES AND ORDINANCES AND COMPLY WITH ATC MASTER SPECIFICATIONS FOR WIRELESS TOWER SITES. THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING AND ABIDING BY ALL REQUIRED PERMITS.
- 2. ALL WORK INDICATED ON THESE DRAWINGS SHALL BE PERFORMED BY QUALIFIED CONTRACTORS EXPERIENCED IN TOWER AND FOUNDATION CONSTRUCTION.
- 3. THE CONTRACTOR SHALL NOTIFY THE ENGINEER OF RECORD IMMEDIATELY OF ANY INSTALLATION INTERFERENCES. ALL NEW WORK SHALL ACCOMMODATE EXISTING CONDITIONS. DETAILS NOT SPECIFICALLY SHOWN ON THE DRAWINGS SHALL FOLLOW SIMILAR DETAILS FOR THIS JOB.
- 4. ANY SUBSTITUTIONS SHALL CONFORM TO THE REQUIREMENTS OF THESE NOTES AND SPECIFICATIONS, AND SHOULD BE SIMILAR TO THOSE SHOWN. ALL SUBSTITUTIONS SHALL BE SUBMITTED TO THE ENGINEER OF RECORD FOR REVIEW AND APPROVAL PRIOR TO FABRICATION.
- 5. ANY MANUFACTURED DESIGN ELEMENTS SHALL CONFORM TO THE REQUIREMENTS OF THESE NOTES AND SPECIFICATIONS AND SHOULD BE SIMILAR TO THOSE SHOWN. THESE DESIGN ELEMENTS MUST BE STAMPED BY AN ENGINEER PROFESSIONALLY REGISTERED IN THE STATE OF THE PROJECT, AND SUBMITTED TO THE ENGINEER OF RECORD FOR APPROVAL PRIOR TO FABRICATION.
- 6. ALL WORK SHALL BE DONE IN ACCORDANCE WITH LOCAL CODES AND OSHA SAFETY REGULATIONS.
- THE CONTRACTOR IS RESPONSIBLE FOR THE DESIGN AND EXECUTION OF ALL MISCELLANEOUS SHORING, BRACING, TEMPORARY SUPPORTS, ETC. NECESSARY, PER ANSI/TIA-322 AND ANSI/ASSE A10.48, TO PROVIDE A COMPLETE AND STABLE STRUCTURE AS SHOWN ON THESE DRAWINGS.
- 8. CONTRACTOR'S PROPOSED INSTALLATION SHALL NOT INTERFERE, NOR DENY ACCESS TO, ANY EXISTING OPERATIONAL AND SAFETY EQUIPMENT.

STRUCTURAL STEEL

- 1. ALL DETAILING, FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AISC SPECIFICATIONS, LATEST EDITION.
- 2. ALL EXPOSED STRUCTURAL STEEL MEMBERS SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION PER ASTM A123. EXPOSED STEEL HARDWARE AND ANCHOR BOLTS SHALL BE GALVANIZED PER ASTM A153 OR B695.
- 3. ALL U-BOLTS SHALL BE ASTM A36 OR EQUIVALENT, WITH LOCKING DEVICE, UNLESS NOTED OTHERWISE.
- 4. FIELD CUT EDGES, EXCEPT DRILLED HOLES, SHALL BE GROUND SMOOTH.
- 5. ALL FIELD CUT SURFACES, FIELD DRILLED HOLES & GROUND SURFACES WHERE EXISTING PAINT OR GALVANIZATION REMOVAL WAS REQUIRED SHALL BE REPAIRED WITH (2) BRUSHED COATS OF ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS RECOMMENDATIONS.
- 6. ALL STRUCTURAL STEEL EMBEDDED IN THE CONCRETE SHALL BE APPLIED WITH (2) BRUSHED COATS OF POLYGUARD CA-14 MASTIC OR EQUIVALENT. REFER TO THE MANUFACTURER SPECIFICATIONS FOR SURFACE PREPARATION AND APPLICATION. APPLICATION OF POLYGUARD 400 WRAP IS NOT ESSENTIAL.
- 7. CONTRACTOR SHALL PERFORM WORK ON ONLY ONE (1) TOWER FACE AND REPLACE/REINFORCE ONE (1) BOLT/MEMBER AT A TIME.
- ALL FIELD DRILLED HOLES TO BE USED FOR FIELD BOLTING INSTALLATION SHALL BE STANDARD HOLES, AS DEFINED BY AISC, UNLESS NOTED OTHERWISE.

PAINT

1. AS REQUIRED, CLEAN AND PAINT PROPOSED STEEL ACCORDING TO FAA ADVISORY CIRCULAR AC 70/7460-1L.

WELDING

- 1. ALL WELDING TO BE PERFORMED BY AWS CERTIFIED WELDERS AND CONDUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1.1.
- 2. ALL WELDS SHALL BE INSPECTED VISUALLY. IF DIRECTED BY ENGINEER OF RECORD, 25% OF WELDS SHALL BE INSPECTED WITH DYE PENETRANT OR MAGNETIC PARTICLE (100% IF REJECTABLE DEFECTS ARE FOUND) TO MEET THE ACCEPTANCE CRITERIA OF AWS D1.1. REPAIR ALL WELDS AS NECESSARY.
- 3. INSPECTION SHALL BE PERFORMED BY AN AWS CERTIFIED WELD INSPECTOR.
- 4. ALL ELECTRODES TO BE LOW HYDROGEN, MATCHING FILLER METAL, PER AWS D1.1, UNLESS NOTED OTHERWISE.
- 5. ALL WELDING ON LATTICE TOWERS SHALL BE DONE WITH E70XX ELECTRODES. ALL WELDING ON POLE STRUCTURES SHALL BE DONE WITH E80XX ELECTRODES UNLESS NOTED OTHERWISE.
- 6. PRIOR TO FIELD WELDING GALVANIZED MATERIAL, CONTRACTOR SHALL GRIND OFF GALVANIZING 1/2" BEYOND ALL FIELD WELD SURFACES. AFTER WELD AND WELD INSPECTION IS COMPLETE, REPAIR ALL GROUND AND WELDED SURFACES WITH ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS RECOMMENDATIONS.

BOLT TIGHTENING PROCEDURE

- 1. STRUCTURAL CONNECTIONS TO BE ASSEMBLED AND INSPECTED IN ACCORDANCE WITH RCSC SPECIFICATIONS.
- FLANGE BOLTS SHALL BE INSTALLED AND TIGHTENED USING DIRECT TENSION INDICATING (DTI) SQUIRTER WASHERS. DTI SQUIRTER WASHERS ARE TO BE INSTALLED AND ORIENTED / TIGHTENED PER MANUFACTURER SPECIFICATIONS TO ACHIEVE DESIRED LEVEL OF BOLT PRE-TENSION.
- 3. IN LIEU OF USING DTI SQUIRTER WASHERS, FLANGE BOLTS MAY BE TIGHTENED USING AISC / RCSC "TURN-OF-THE-NUT" METHOD, PENDING APPROVAL BY THE ENGINEER OF RECORD (EOR). TIGHTEN FLANGE BOLTS USING THE CHART BELOW:

BOLT LENGTHS UP TO AND INCLUDING FOUR DIAMETERS

1/2"	BOLTS UP TO AND INCLUDING 2.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
5/8"	BOLTS UP TO AND INCLUDING 2.5 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
3/4"	BOLTS UP TO AND INCLUDING 3.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
7/8"	BOLTS UP TO AND INCLUDING 3.5 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1"	BOLTS UP TO AND INCLUDING 4.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1-1/8"	BOLTS UP TO AND INCLUDING 4.5 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1-1/4"	BOLTS UP TO AND INCLUDING 5.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1-3/8"	BOLTS UP TO AND INCLUDING 5.5 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1-1/2"	BOLTS UP TO AND INCLUDING 6.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT

BOLT LENGTHS OVER FOUR DIAMETERS BUT NOT EXCEEDING EIGHT DIAMETERS

1/2"	BOLTS 2.25 TO 4.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
5/8"	BOLTS 2.75 TO 5.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
3/4"	BOLTS 3.25 TO 6.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
7/8"	BOLTS 3.75 TO 7.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1"	BOLTS 4.25 TO 8.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1-1/8"	BOLTS 4.75 TO 9.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1-1/4"	BOLTS 5.25 TO 10.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1-3/8"	BOLTS 5.75 TO 11.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1-1/2"	BOLTS 6.25 TO 12.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT

4. SPLICE BOLTS SUBJECT TO DIRECT TENSION SHALL BE INSTALLED AND TIGHTENED AS PER SECTION 8.2.1 OF THE AISC "SPECIFICATION FOR STRUCTURAL JOINTS USING A325 OR A490 BOLTS", LOCATED IN THE AISC MANUAL OF STEEL CONSTRUCTION. THE INSTALLATION PROCEDURE IS PARAPHRASED AS FOLLOWS:

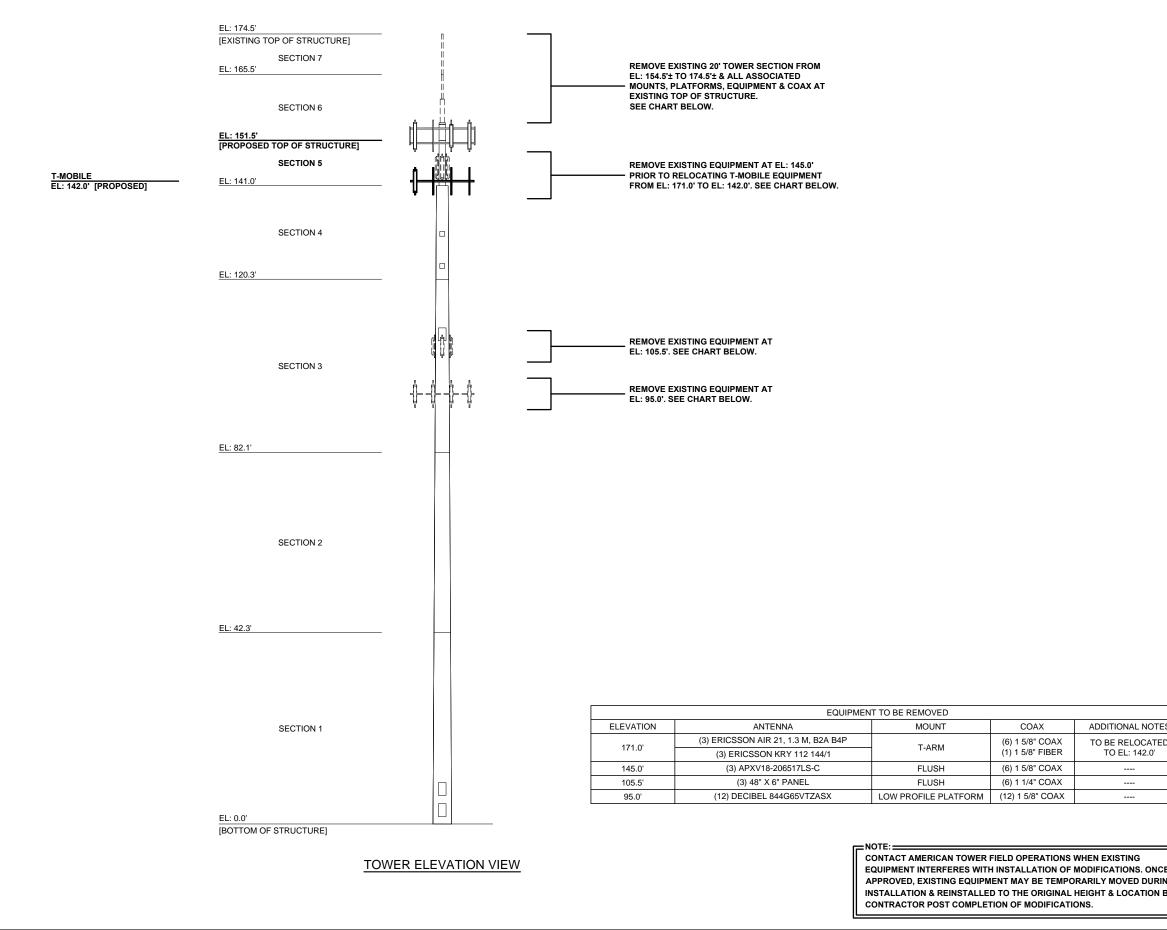
FASTENERS SHALL BE INSTALLED IN PROPERLY ALIGNED HOLES AND TIGHTENED BY ONE OF THE METHODS DESCRIBED IN SUBSECTION 8.2.1 THROUGH 8.2.4.

8.2.1 TURN-OF-NUT PRETENSIONING

BOLTS SHALL BE INSTALLED IN ALL HOLES OF THE CONNECTION AND BROUGHT TO A SNUG TIGHT CONDITION AS DEFINED IN SECTION 8.1, UNTIL ALL THE BOLTS ARE SIMULTANEOUSLY SNUG TIGHT AND THE CONNECTION IS FULLY COMPACTED. FOLLOWING THIS INITIAL OPERATION ALL BOLTS IN THE CONNECTION SHALL BE TIGHTENED FURTHER BY THE APPLICABLE AMOUNT OF ROTATION SPECIFIED ABOVE. DURING THE TIGHTENING OPERATION THERE SHALL BE NO ROTATION OF THE PART NOT TURNED BY THE WRENCH. TIGHTENING SHALL PROGRESS SYSTEMATICALLY.

5. ALL OTHER BOLTED CONNECTIONS SHALL BE BROUGHT TO A SNUG TIGHT CONDITION AS DEFINED IN SECTION 8.1 OF THE SPECIFICATION.

ALL BOLT HOLES SHALL BE ALIGNED TO PERMIT INSERTION OF THE BOLTS WITHOUT UNDUE DAMAGE TO THE THREADS. BOLTS SHALL BE PLACED IN ALL HOLES WITH WASHERS POSITIONED AS REQUIRED AND NUTS THREADED TO COMPLETE THE ASSEMBLY. COMPACTING THE JOINT TO THE SNUG-TIGHT CONDITION SHALL PROGRESS SYSTEMATICALLY FROM THE MOST RIGID PART OF THE JOINT. THE SNUG-TIGHTENED CONDITION IS THE TIGHTNESS THAT IS ATTAINED WITH A FEW IMPACTS OF AN IMPACT WRENCH OR THE FULL EFFORT OF AN IRONWORKER USING AN ORDINARY SPUD WRENCH TO BRING THE CONNECTED PLIES INTO FIRM CONTACT.


APPLICABLE CODES AND STANDARDS

- ANSI/TIA: STRUCTURAL STANDARDS FOR STEEL ANTENNA TO SUPPORTING STRUCTURES, 222-G EDITION.
- 2. 2016 CONNECTICUT STATE BUILDING CODE.
- 3. 2012 INTERNATIONAL BUILDING CODE.
- ACI 318: AMERICAN CONCRETE INSTITUTE, BUILDING CODE F STRUCTURAL CONCRETE, 318-02.
- 5. CRSI: CONCRETE REINFORCING STEEL INSTITUTE, MANUAL C PRACTICE, LATEST EDITION.
- 6. AISC: AMERICAN INSTITUTE OF STEEL CONSTRUCTION, MANU CONSTRUCTION, LATEST EDITION.
- 7. AWS: AMERICAN WELDING SOCIETY D1.1, STRUCTURAL WELD EDITION.

SPECIAL INSPECTION

- A QUALIFIED INDEPENDENT TESTING LABORATORY, EMPLOY SHALL PERFORM INSPECTION AND TESTING IN ACCORDANCE SECTION 1704 AS REQUIRED BY PROJECT SPECIFICATIONS FOR CONSTRUCTION WORK:
 - a) STRUCTURAL WELDING (CONTINUOUS INSPECTION OF
 b) HIGH STRENGTH BOLTS (PERIODIC INSPECTION OF A32 FLANGE BOLTS TO BE TIGHTENED PER "TURN-OF-THE-M
- THE INSPECTION AGENCY SHALL SUBMIT INSPECTION AND T BUILDING DEPARTMENT, THE ENGINEER OF RECORD, AND TH ACCORDANCE WITH IBC 2012, SECTION 1704, UNLESS THE F/ APPROVED BY THE BUILDING OFFICIAL TO PERFORM SUCH W SPECIAL INSPECTIONS.

ERS AND ANTENNA						
ERS AND ANTENNA						
		MERICAN T				
		IGINEERING SE 3500 REGENCY PA				
UIREMENTS FOR		SUITE 100				
		CARY, NC 275 PHONE: (919) 46				
TANDARD		COA: PEC.000	1553			
OF STEEL	AS INSTRUMEN OF AMERICAN T RESTRICTED TO PREPARED. AN	IGS AND/OR THE ACCOMI TS OR SERVICE ARE THE O'WER. THEIR USE AND F O'THE ORIGINAL SITE FOF Y USE OR DISCLOSURE C	EXCLUSIN PUBLICATIO R WHICH T OTHER THA	/E PROPERTY ON SHALL BE HEY ARE .N THAT WHICH		
IG CODE, LATEST	STRICTLY PROF REMAIN THE PR THE PROJECT I ENGINEER WILL OF THIS PROJE DIMENSIONS AN DISCREPANCIES	RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. TITLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NOT THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE BIGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN				
BY THE OWNER,	SUPERSEDED E TOWER.	BY THE LATEST VERSION	ON FILE W	ITH AMERICAN		
TH IBC 2012, THE FOLLOWING	REV.	DESCRIPTION	B	Y DATE		
		FIRST ISSUE	CV	VB_10/03/17		
D WELD ONLY)						
TENSION						
METHOD)						
REPORTS TO THE WNER IN						
CATOR IS		ATC SITE NUM	BER:			
WITHOUT THE		302483				
		ATC SITE NAM	ME:			
		BRLN - BEF	RLIN			
		CONNECTI	сит			
		SITE ADDRES				
		260 BECKLEY R				
		KENSINGTON, CT	06037			
	DRAWN BY:	CWB				
	APPROVED					
	DATE DRAW		00			
	ATC JOB NC): 11912109_P5	_02			
	IB	C GENERAL	NOTE	ES		
	Sł	HEET NUMBER:		REVISION:		
		IGN		\cap		
	11			U		

		-	RICAN T		
			NEERING SE		
	A.1.		REGENCY PAI		, FLLO
			SUITE 100		
		Ы	CARY, NC 275 HONE: (919) 468		
			COA: PEC.0001		
	AS INSTRU	IMENTS OF	ND/OR THE ACCOMP R SERVICE ARE THE	EXCLUSIV	E PROPERTY
	RESTRICTE	ED TO THE	R. THEIR USE AND P ORIGINAL SITE FOR	WHICH TH	IEY ARE
	RELATES T	O AMERIC	OR DISCLOSURE OT	SPECIFIED	CARRIER IS
	REMAIN TH	IE PROPER	D. TITLE TO THESE I RTY OF AMERICAN TO	OWER WH	ETHER OR NOT
	ENGINEER	WILL BE P	CUTED. NEITHER TH ROVIDING ON-SITE (CONSTRUC	TION REVIEW
	DIMENSION	NS AND AD	ONTRACTOR(S) MUS	VER OF AN	IY
	SUPERSED	NCIES. AN DED BY TH	Y PRIOR ISSUANCE O E LATEST VERSION O	OF THIS DR ON FILE WI	AWING IS TH AMERICAN
	TOWER.				
	REV.	DES	SCRIPTION	B١	/ DATE
		FIF	RST ISSUE	CW	<u>B 10/03/17</u>
	\triangle				
	\triangle				
	\triangle_{-}				
	$\overline{\bigtriangleup}$				
			ATC SITE NUME	BER:	
			302483		
			ATC SITE NAM	1E.	
			RLN - BER		
		D	RLIN - DER		
		С	ONNECTIO	CUT	
			SITE ADDRES	S:	
			260 BECKLEY R		
		KE	NSINGTON, CT	06037	
	1				
	1				
	1				
	1				
	1				
	DRAWN	BY:	CWB		
	APPROV	ED BY:	JDB		
↓ ┃	DATE DF	RAWN:	10/03/17		
	ATC JOB	NO:	11912109_P5_	02	
	<u>۸</u>	יים∩ו	FICATION F		
		וועטוי	ICATION P	RUF	ILC
	1				
		0			
		SHEE	T NUMBER:		REVISION:
	1		4-1		\cap
	1		x 1	1	

DAX	ADDITIONAL NOTES
8" COAX 8" FIBER	TO BE RELOCATED TO EL: 142.0'
8" COAX	
4" COAX	
/8" COAX	

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11182A

Berlin/ Rt-9 X22_1 260 Beckley Road Berlin, CT 06037

August 6, 2018

EBI Project Number: 6218005409

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of				
FCC general	16.66 %			
population				
allowable limit:				

August 6, 2018

T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002

Emissions Analysis for Site: CT11182A - Berlin/ Rt-9 X22_1

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **260 Beckley Road**, **Berlin, CT**, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at **260 Beckley Road, Berlin, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 LTE channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 4) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 5) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 6) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.

- 7) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 8) For the following calculations the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antennas used in this modeling are the Ericsson AIR32 B66Aa/B2A & RFS APXVAARR24_43-U-NA20 for 1900 MHz (PCS), 2100 MHz (AWS), 600 MHz and 700 MHz channels. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 10) The antenna mounting height centerline of the proposed antennas is **142 feet** above ground level (AGL).
- 11) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 12) All calculations were done with respect to uncontrolled / general population threshold limits.

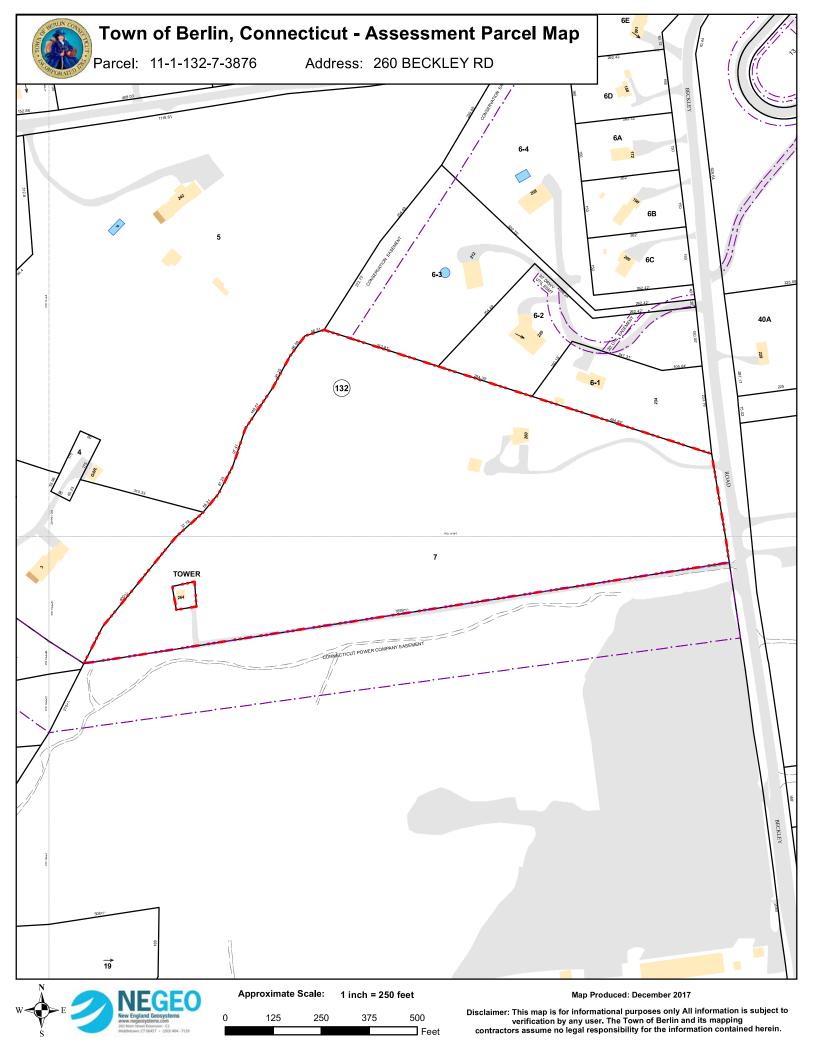
T-Mobile Site Inventory and Power Data							
Sector:	А	Sector:	В	Sector:	С		
Antenna #:	1	Antenna #:	1	Antenna #:	1		
Make / Model:	Ericsson AIR32 B66Aa/B2A	Make / Model:	Ericsson AIR32 B66Aa/B2A	Make / Model:	Ericsson AIR32 B66Aa/B2A		
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd		
Height (AGL):	142 feet	Height (AGL):	142 feet	Height (AGL):	142 feet		
Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)		
Channel Count	4	Channel Count	4	Channel Count	4		
Total TX Power(W):	240	Total TX Power(W):	240	Total TX Power(W):	240		
ERP (W):	9,337.08	ERP (W):	9,337.08	ERP (W):	9,337.08		
Antenna A1 MPE%	1.81	Antenna B1 MPE%	1.81	Antenna C1 MPE%	1.81		
Antenna #:	2	Antenna #:	2	Antenna #:	2		
Make / Model:	RFS APXVAARR24_43-U- NA20	Make / Model:	RFS APXVAARR24_43-U- NA20	Make / Model:	RFS APXVAARR24_43-U- NA20		
Gain:	15.65 / 16.35 / 12.95 / 13.35 dBd	Gain:	15.65 / 16.35 / 12.95 / 13.35 dBd	Gain:	15.65 / 16.35 / 12.95 / 13.35 dBd		
Height (AGL):	142 feet	Height (AGL):	142 feet	Height (AGL):	142 feet		
Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS) / 600 MHz / 700 MHz	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS) / 600 MHz / 700 MHz	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS) / 600 MHz / 700 MHz		
Channel Count	8	Channel Count	8	Channel Count	8		
Total TX Power(W):	240	Total TX Power(W):	240	Total TX Power(W):	240		
ERP (W):	7,273.89	ERP (W):	7,273.89	ERP (W):	7,273.89		
Antenna A2 MPE%	2.05	Antenna B2 MPE%	2.05	Antenna C2 MPE%	2.05		

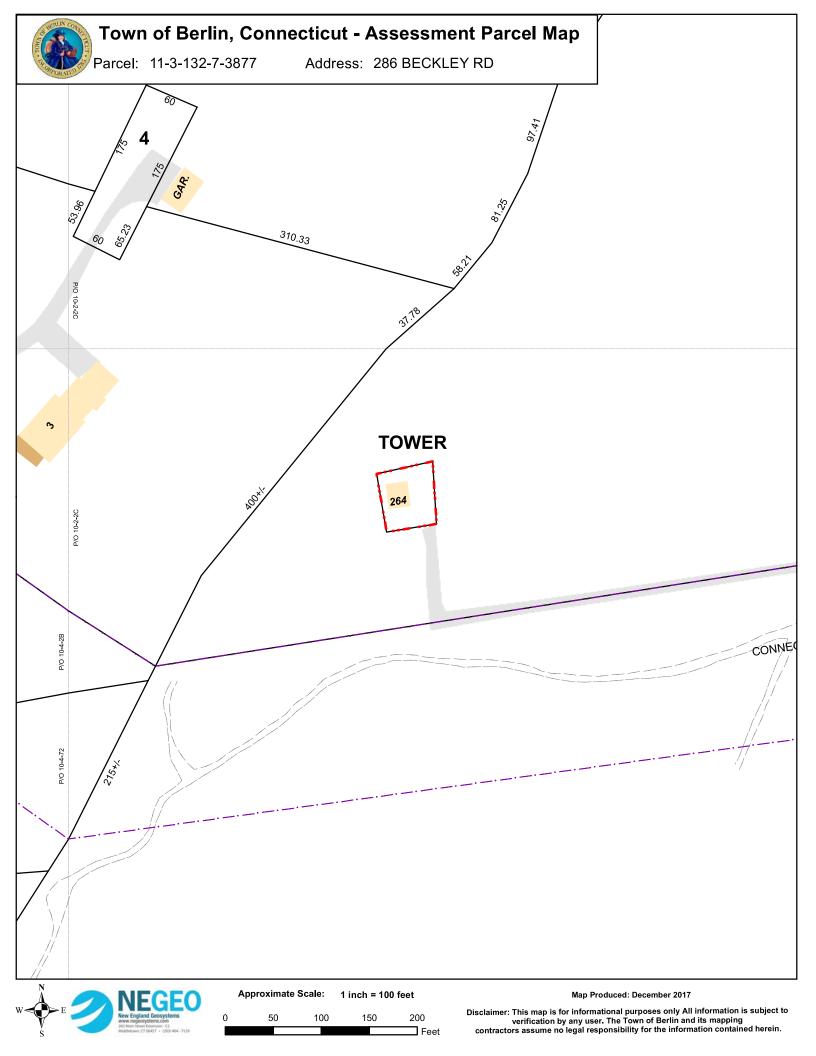
Site Composite MPE%				
Carrier	MPE%			
T-Mobile (Per Sector Max)	3.86 %			
AT&T	2.73			
MetroPCS	0.66			
Berlin FD	0.02			
Verizon Wireless	7.17			
Sprint	1.14			
Nextel	1.08			
Site Total MPE %:	16.66 %			

T-Mobile Sector A Total:	3.86 %
T-Mobile Sector B Total:	3.86 %
T-Mobile Sector C Total:	3.86 %
Site Total:	16.66 %

T-Mobile _Frequency Band / Technology (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
T-Mobile AWS - 2100 MHz LTE	2	2,334.27	142	9.07	AWS - 2100 MHz	1000.00	0.91%
T-Mobile PCS - 1900 MHz LTE	2	2,334.27	142	9.07	PCS - 1900 MHz	1000.00	0.91%
T-Mobile PCS - 1900 MHz GSM	2	1,101.85	142	4.28	PCS - 1900 MHz	1000.00	0.42%
T-Mobile AWS - 2100 MHz UMTS	2	1,294.56	142	5.03	AWS - 2100 MHz	1000.00	0.50%
T-Mobile 600 MHz LTE	2	591.73	142	2.30	600 MHz	400.00	0.58%
T-Mobile 700 MHz LTE	2	648.82	142	2.52	700 MHz	467.00	0.54%
						Total:	3.86%

Summary


All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.


The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

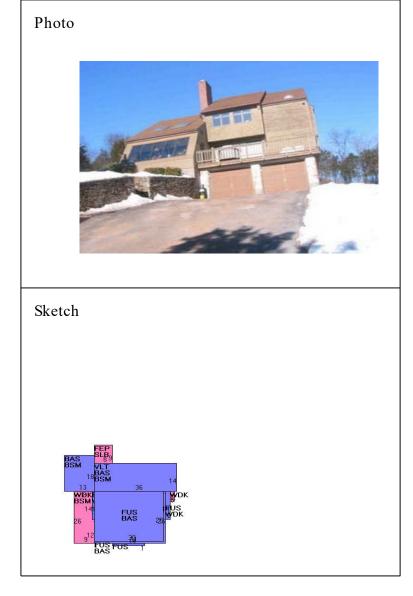
T-Mobile Sector	Power Density Value (%)
Sector A:	3.86 %
Sector B:	3.86 %
Sector C:	3.86 %
T-Mobile Maximum	3.86 %
MPE % (Per Sector):	5.80 %
Site Total:	16.66 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **16.66%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Property Listing Report

Map Block Lot **11-1-132-7-3876**


Account

1040690

Property Information

Property Location	260 BECK	260 BECKLEY RD		
Owner	MATULIS	ELAINE E	& JOHN	I C JR
Co-Owner				
Mailing Address	260 BECK	260 BECKLEY RD		
	BERLIN	BERLIN CT 06037		
Land Use	1010	Single F	amily	
Land Class	R			
Zoning Code	R-43			
Census Tract				

Street Index	2
Acreage	17.9
Utilities	All Public
Lot Setting/ Desc	Above
Additional Info	

Primary Construction Details

Year Built	1981
Stories	2
Building Style	Contemp
Building Use	Residential
Building Condition	В-
Floors	Hardwood
Total Rooms	8

Bedrooms	4 Bedrooms
Full Bathrooms	2
Half Bathrooms	1
Bath Style	Average
Kitchen Style	Average
Roof Style	Gable
RoofCover	Asph/F Gls/Cmp

Exterior Walls	Clapboard
Interior Walls	Drywall
Heating Type	Forced Air-Duc
Heating Fuel	Oil/Gas
АС Туре	Central
Gross Bldg Area	4284
Total Living Area	2406

Property Listing Report

Map Block Lot 11-1-132-7-3876

Account

1040690

Valuation Summary (Assessed value = 70% of Appraised Value)

Item	Appraised	Assessed
Buildings	185600	129900
Extras	0	0
Improvements	201300	141000
Outbuildings	15700	11100
Land	453600	100511
Total	654900	241511

Sub Areas

Subarea Type	Gross Area (sq ft)	Living Area (sq ft)
Vaulted Ceiling	504	0
Porch, Enclosed, Finished	72	0
Slab	72	0
First Floor	1544	1544
Deck, Wood	272	0
Upper Story, Finished	862	862
Basement	958	0
Total Area	4284	2406

Outbuilding and Extra Items

Туре	Description
Barn 1 Story	1024 S.F.
Shed Wd Res	64 S.F.
SCREEN HOUSE	72 S.F.
Shed Wd Res	140 S.F.

Sales History

	-			
Owner of Record	Book/ Page	Sale Date	Sale Price	

Property Listing Report

Map Block Lot 11-3

11-3-132-7-3877

Account

1040691

Property Information

Property Location	286 BECKLEY RD		
Owner	MATULIS ELAINE E & JOHN C JR		
Co-Owner			
Mailing Address	260 BECKLEY RD BERLIN CT 0603		
Maining Address			06037
Land Use	4330	Rad/TV Twr	
Land Class	I		
Zoning Code	R-43		
Census Tract			

Photo

No Photo Available

Street Index	2030
Acreage	0.01
Utilities	
Lot Setting/Desc	
Additional Info	

Sketch

Primary Construction Details

Year Built	
Stories	
Building Style	
Building Use	
Building Condition	
Floors	
Total Rooms	

Exterior Walls	
Interior Walls	
Heating Type	
Heating Fuel	
АС Туре	
Gross Bldg Area	
Total Living Area	

port Map Block Lot

k Lot 11-3-132-7-3877

Account

1040691

Valuation Summary (Assessed value = 70% of Appraised Value)

Item	Appraised	Assessed
Buildings		
Extras		
Improvements		
Outbuildings		
Land		
Total		

Sub Areas

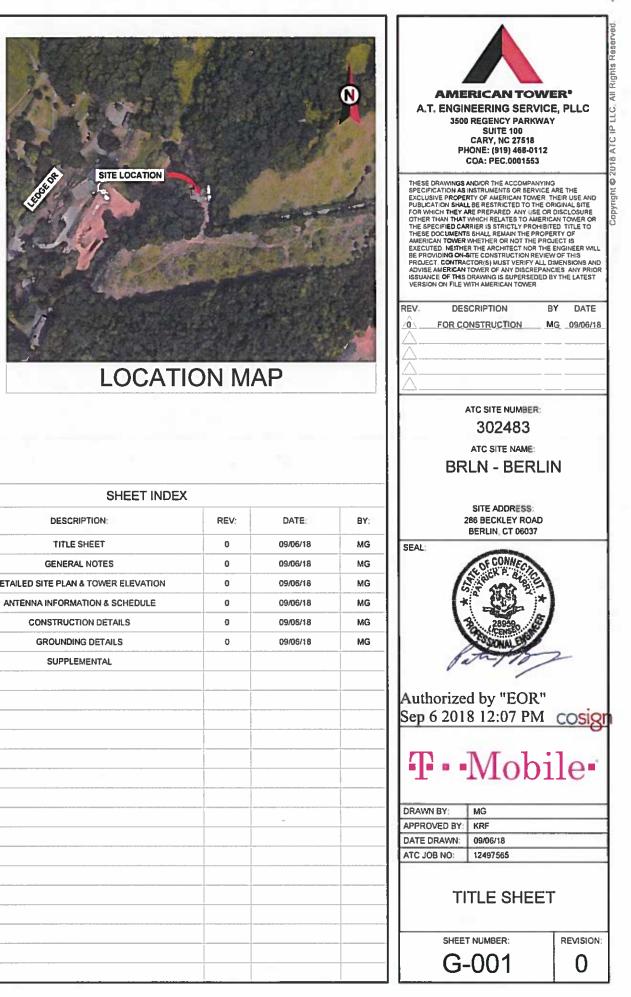
Subarea Type	Gross Area (sq ft)	Living Area (sq ft)
Total Area		0

Outbuilding and Extra Items

Туре	Description
Generator	130 UNITS

Sales History

Owner of Record	Book/ Page	Sale Date	Sale Price	


MATULIS ELAINE E & JOHN C JR

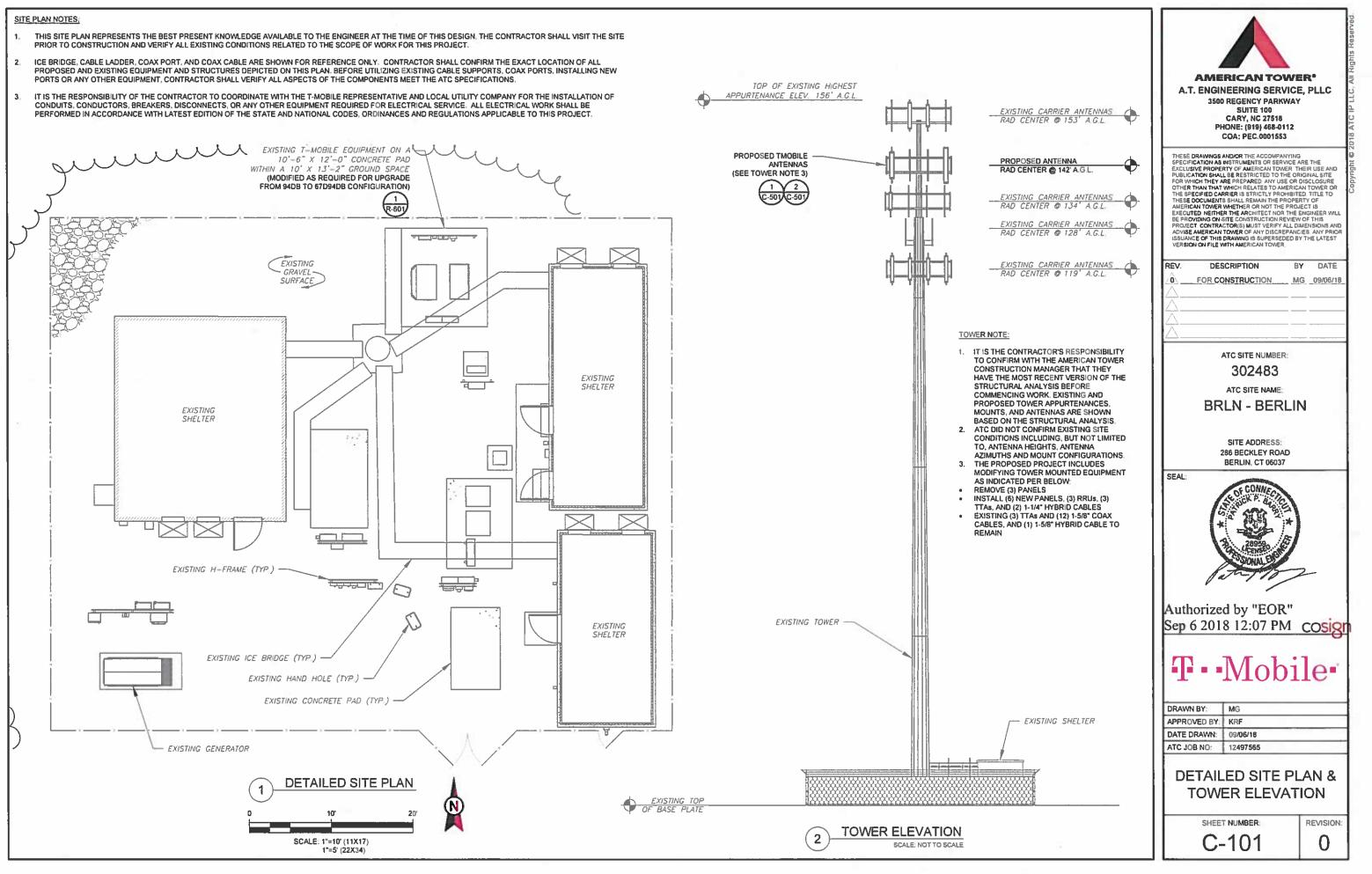
AMERICAN TOWER®

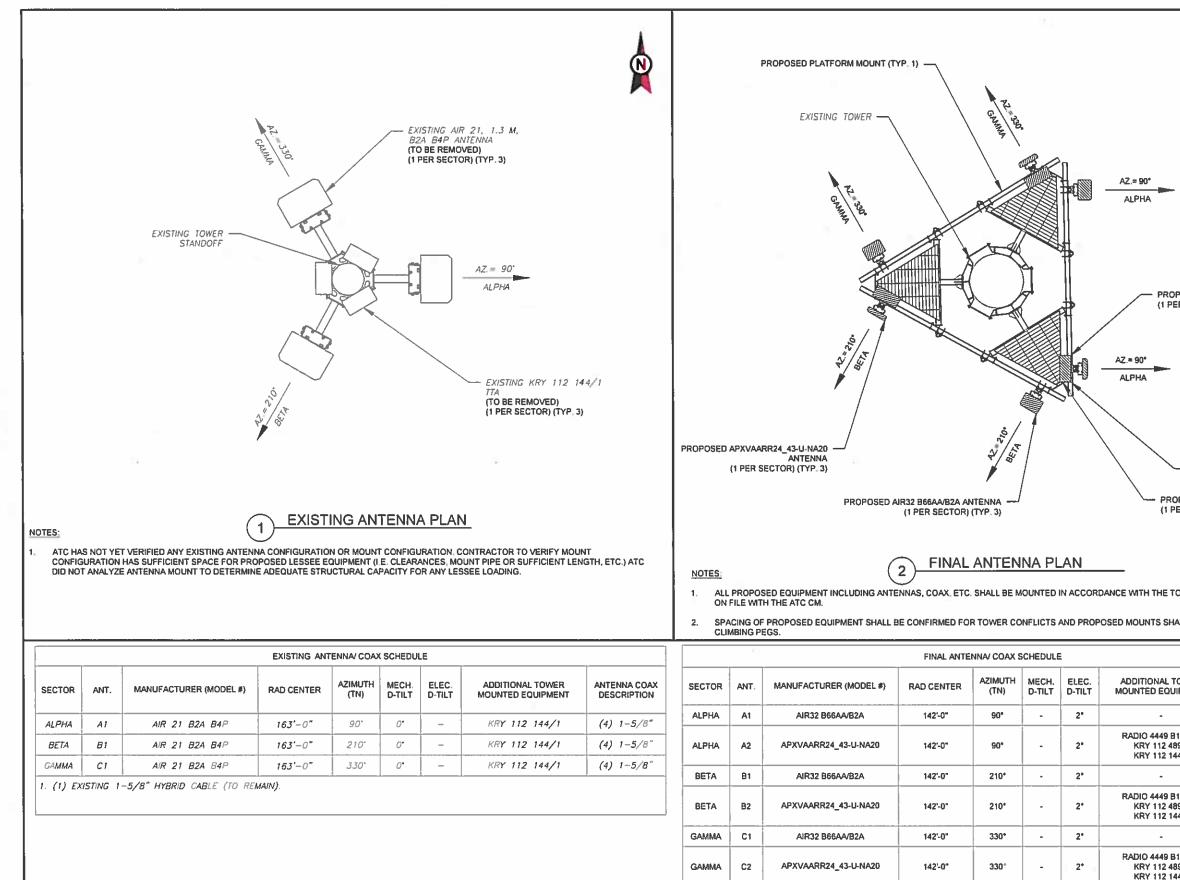
ATC SITE NAME: BRLN - BERLIN ATC SITE NUMBER: 302483 T-MOBILE SITE ID: CT11182A SITE ADDRESS: 286 BECKLEY ROAD BERLIN, CT 06037

T-MOBILE ANTENNA AMENDMENT 67D94B HYBRID CONFIGURATION

COMPLIANCE CODE	PROJECT S	UMMARY	PROJECT DESCRIPTION		SHEET INDEX	
ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE	SITE ADD	RESS:	THE PROPOSED PROJECT INCLUDES MODIFYING GROUND BASED AND TOWER MOUNTED EQUIPMENT AS INDICATED PER BELOW:	SHEET NO:	DESCRIPTION:	REV:
FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNMENT AUTHORITIES, NOTHING IN THESE PLANS IS	286 BECKLE		REMOVE (3) PANELS AND (3) TTAs	G-001	TITLE SHEET	0
TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES	BERLIN, CT 06037 COUNTY: HARTFORD GEOGRAPHIC COORDINATES:		INSTALL (6) NEW PANELS, (3) RRUs, (6) TTAS, AND (2) 1-1/4" HYBRID CABLES	G-002	GENERAL NOTES	0
				C-101	DETAILED SITE PLAN & TOWER ELEVATION	0
1. INTERNATIONAL BUILDING CODE (IBC)	LATITUDE: 41	63172222	EXISTING (12) 1-5/8" COAX CABLES AND (1) 1-5/8" HYBRID CABLE TO REMAIN	C-501	ANTENNA INFORMATION & SCHEDULE	0
2. NATIONAL ELECTRIC CODE (NEC)	LONGITUDE: GROUND ELEVATI	2. TO	PROJECT NOTES	C-502	CONSTRUCTION DETAILS	0
3. LOCAL BUILDING CODE	GROUND ELEVAIT	UN: 183 AMSL		E-501	GROUNDING DETAILS	O
4. CITY/COUNTY ORDINANCES			1. THE FACILITY IS UNMANNED.	R-601	SUPPLEMENTAL	
			2. A TECHNICIAN WILL VISIT THE SITE APPROXIMATELY ONCE A MONTH FOR ROUTINE INSPECTION AND MAINTENANCE.			
			3 THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT LAND			
			DISTURBANCE OR EFFECT OF STORM WATER DRAINAGE.	i		
UTILITY COMPANIES	PROJECT	TEAM	 NO SANITARY SEWER, POTABLE WATER OR TRASH DISPOSAL IS REQUIRED. 			
	TOWER OWNER:	APPLICANT:	5. HANDICAP ACCESS IS NOT REQUIRED.			
POWER COMPANY: EVERSOURCE PHONE: (877) 659-6326	AMERICAN TOWER 10 PRESIDENTIAL WAY WOBURN, MA 01601	T-MOBILE 200 WESTGATE PARKWAY SUITE 200				
TELEPHONE COMPANY FRONTIER COMMUNICATIONS	ENGINEER:	RICHMOND, VA 23233				
PHONE. (800) 376-6843	ATC TOWER SERVICES, LLC 3500 REGENCY PKWY STE 100	CARRIER CONTACT	PROJECT LOCATION DIRECTIONS			
	CARY, NC 27518	(757) 305-8000				
	PROPERTY OWNER		FROM NEW BRITAIN, CT:			
011	JOHN & ELAINE MATULIS		HEAD WEST ON WHITING ST TOWARD FRANKLIN SO/TURN LEFT			_
	260 BECKLEY RD BERLIN, CT 06037		AT THE 1ST CROSS STREET ONTO S MAIN ST/TURN LEFT ONTO ELLIS ST/TURN RIGHT AT THE 2ND CROSS STREET ONTO			
			COLUMBUS BLVD/MERGE ONTO CT-9 S VIA THE RAMP ON THE LEFT TO MIDDLETOWN/TAKE EXIT 22 FOR CT-372 E/TURN RIGHT			
Know what's below.			AT THE 1ST CROSS STREET TO STAY ON CT-372 E/TURN LEFT ONTO BERLIN ST/TURN LEFT AT THE 1ST CROSS STREET ONTO			
Call before you dig.			BECKLEY RD. DESTINATION WILL BE ON THE LEFT.			

GENERAL CONSTRUCTION NOTES:

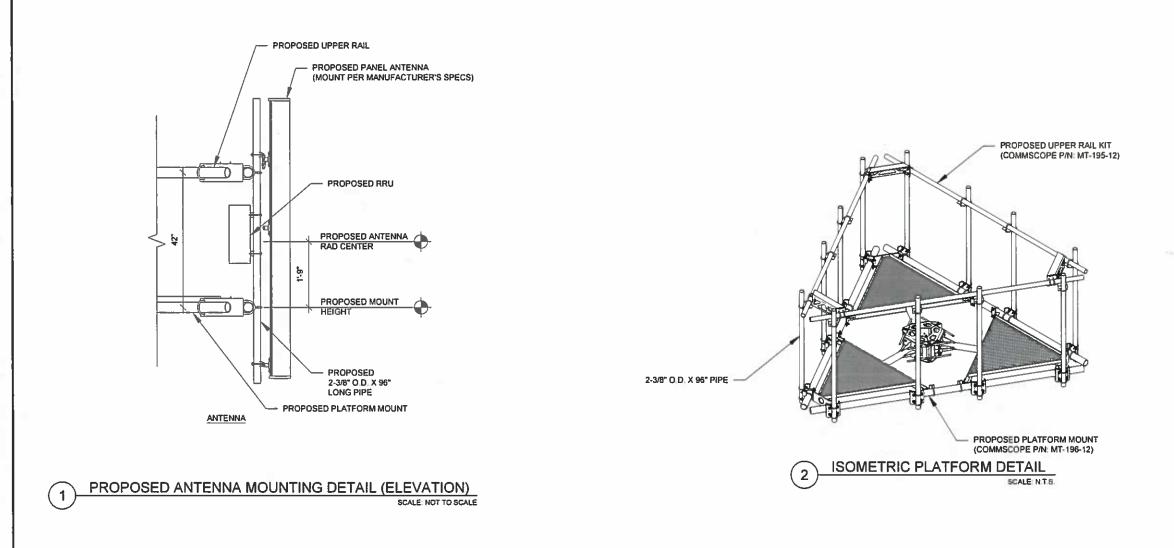

- ALL WORK SHALL CONFORM TO ALL CURRENT APPLICABLE FEDERAL, STATE, AND LOCAL CODES, INCLUDING ANSI/EIA/TIA-222, AND COMPLY WITH ATC MASTER SPECIFICATIONS.
- CONTRACTOR SHALL CONTACT LOCAL 811 FOR IDENTIFICATION OF UNDERGROUND UTILITIES PRIOR TO START OF CONSTRUCTION.
- 3. CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING ALL REQUIRED INSPECTIONS.
- ALL DIMENSIONS TO, OF, AND ON EXISTING BUILDINGS, DRAINAGE STRUCTURES, AND SITE IMPROVEMENTS SHALL BE VERIFIED IN FIELD BY CONTRACTOR WITH ALL DISCREPANCIES REPORTED TO THE ENGINEER.
- 5. DO NOT CHANGE SIZE OR SPACING OF STRUCTURAL ELEMENTS.
- 6. DETAILS SHOWN ARE TYPICAL; SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS OTHERWISE NOTED.
- THESE DRAWINGS DO NOT INCLUDE NECESSARY COMPONENTS FOR CONSTRUCTION SAFETY WHICH SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 8. CONTRACTOR SHALL BRACE STRUCTURES UNTIL ALL STRUCTURAL ELEMENTS NEEDED FOR STABILITY ARE INSTALLED. THESE ELEMENTS ARE AS FOLLOWS: LATERAL BRACING, ANCHOR BOLTS, ETC.
- CONTRACTOR SHALL DETERMINE EXACT LOCATION OF EXISTING UTILITIES, GROUNDS DRAINS, DRAIN PIPES, VENTS, ETC. BEFORE COMMENCING WORK.
- INCORRECTLY FABRICATED, DAMAGED, OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE T-MOBILE WRELESS REP PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH REMEDIAL ACTION SHALL REQUIRE WRITTEN APPROVAL BY THE T-MOBILE WRELESS REP PRIOR TO PROCEEDING.
- 11. EACH CONTRACTOR SHALL COOPERATE WITH THE T-MOBILE WIRELESS REP, AND COORDINATE HIS WORK WITH THE WORK OF OTHERS.
- 12. CONTRACTOR SHALL REPAIR ANY DAMAGE CAUSED BY CONSTRUCTION OF THIS PROJECT TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION OF THE T-MOBILE WIRELESS CONSTRUCTION MANAGER.
- 13. ALL CABLE/CONDUIT ENTRY/EXIT PORTS SHALL BE WEATHERPROOFED DURING INSTALLATION USING A SILICONE SEALANT.
- 14. WHERE EXISTING CONDITIONS DO NOT MATCH THOSE SHOWN IN THIS PLAN SET, CONTRACTOR SHALL NOTIFY THE T-MOBILE WIRELESS REP IMMEDIATELY.
- 15. CONTRACTOR SHALL ENSURE ALL SUBCONTRACTORS ARE PROVIDED WITH A COMPLETE AND CURRENT SET OF DRAWINGS AND SPECIFICATIONS FOR THIS PROJECT.
- 16. CONTRACTOR SHALL REMOVE ALL RUBBISH AND DEBRIS FROM THE SITE AT THE END OF EACH DAY.
- 17. CONTRACTOR SHALL COORDINATE WORK SCHEDULE WITH LANDLORD AND TAKE PRECAUTIONS TO MINIMIZE IMPACT AND DISRUPTION OF OTHER OCCUPANTS OF THE FACILITY.
- 18. CONTRACTOR SHALL FURNISH T-MOBILE WIRELESS WITH A PDF MARKED UP AS-BUILT SET OF DRAWINGS UPON COMPLETION OF WORK.
- 19. PRIOR TO SUBMISSION OF BID, CONTRACTOR SHALL COORDINATE WITH T-MOBILE WIRELESS REP TO DETERMINE WHAT, IF ANY, ITEMS WILL BE PROVIDED. ALL ITEMS NOT PROVIDED SHALL BE PROVIDED AND INSTALLED BY THE CONTRACTOR. CONTRACTOR WILL INSTALL ALL ITEMS PROVIDED.
- PRIOR TO SUBMISSION OF BID, CONTRACTOR SHALL COORDINATE WITH T-MOBILE WIRELESS REP TO DETERMINE IF ANY PERMITS WILL BE OBTAINED BY CONTRACTOR. ALL REQUIRED PERMITS NOT OBTAINED BY T-MOBILE WIRELESS MUST BE OBTAINED, AND PAID FOR, BY THE CONTRACTOR.
- 21. CONTRACTOR SHALL INSTALL ALL SITE SIGNAGE IN ACCORDANCE WITH T-MOBILE WIRELESS SPECIFICATIONS AND REQUIREMENTS.
- 22. CONTRACTOR SHALL SUBMIT ALL SHOP DRAWINGS TO T-MOBILE WIRELESS FOR REVIEW AND APPROVAL PRIOR TO FABRICATION.
- 23. ALL EQUIPMENT SHALL BE INSTALLED ACCORDING TO MANUFACTURER'S SPECIFICATIONS AND LOCATED ACCORDING TO T-MOBILE WIRELESS SPECIFICATIONS, AND AS SHOWN IN THESE PLANS.
- 24. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- CONTRACTOR SHALL NOTIFY T-MOBILE WRELESS REP A MINIMUM OF 48 HOURS IN ADVANCE OF POURING CONCRETE OR BACKFILLING ANY UNDERGROUND UTILITIES, FOUNDATIONS OR SEALING ANY WALL, FLOOR OR ROOF PENETRATIONS FOR ENGINEERING REVIEW AND APPROVAL.
- 26. CONTRACTOR SHALL BE RESPONSIBLE FOR SITE SAFETY INCLUDING COMPLIANCE WITH ALL APPLICABLE OSHA STANDARDS AND RECOMMENDATIONS AND SHALL PROVIDE ALL NECESSARY SAFETY DEVICES INCLUDING PPE AND PPM AND CONSTRUCTION DEVICES SUCH AS WELDING AND FIRE PREVENTION, TEMPORARY SHORING, SCAFFOLDING, TRENCH BOXES/SLOPING, BARRIERS, ETC.

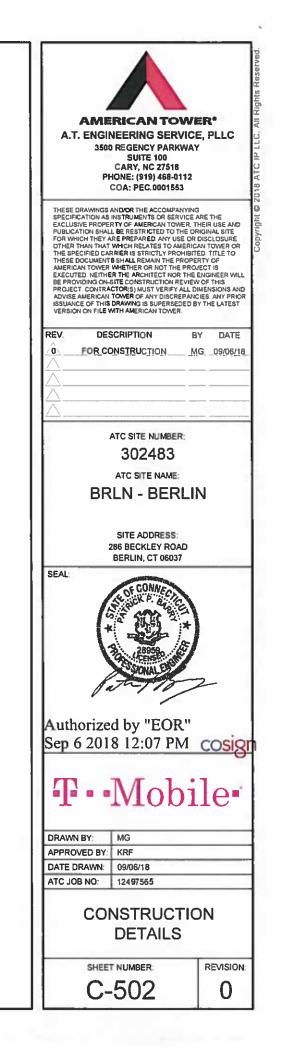

- 27. THE CONTRACTOR SHALL PROTECT AT HIS OWN EXPENSE, ALL EXISTING FACILITIES AND SUCH OF HIS NEW WORK LIABLE TO INJURY DURING THE CONSTRUCTION PERIOD, ANY DAMAGE CAUSED BY NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES, OR BY THE ELEMENTS DUE TO NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES, EITHER TO THE EXISTING WORK, OR TO HIS WORK OR THE WORK OF ANY OTHER CONTRACTOR, SHALL BE REPARED AT HIS EXPENSE TO THE OWNER'S SATISFACTION.
- 28. ALL WORK SHALL BE INSTALLED IN A FIRST CLASS, NEAT AND WORKMANLIKE MANNER BY MECHANICS SKILLED IN THE TRADE INVOLVED. THE QUALITY OF WORKMANSHIP SHALL BE SUBJECT TO THE APPROVAL OF THE T-MOBILE WIRELESS REP. ANY WORK FOUND BY THE T-MOBILE WIRELESS REP TO BE OF INFERIOR QUALITY AND/OR WORKMANSHIP SHALL BE REPLACED AND/OR REWORKED AT CONTRACTOR EXPENSE UNTIL APPROVAL IS OBTAINED.
- 29. IN ORDER TO ESTABLISH STANDARDS OF QUALITY AND PERFORMANCE, ALL TYPES OF MATERIALS LISTED HEREINAFTER BY MANUFACTURER'S NAMES AND/OR MANUFACTURER'S CATALOG NUMBER SHALL BE PROVIDED BY THESE MANUFACTURERS AS SPECIFIED.

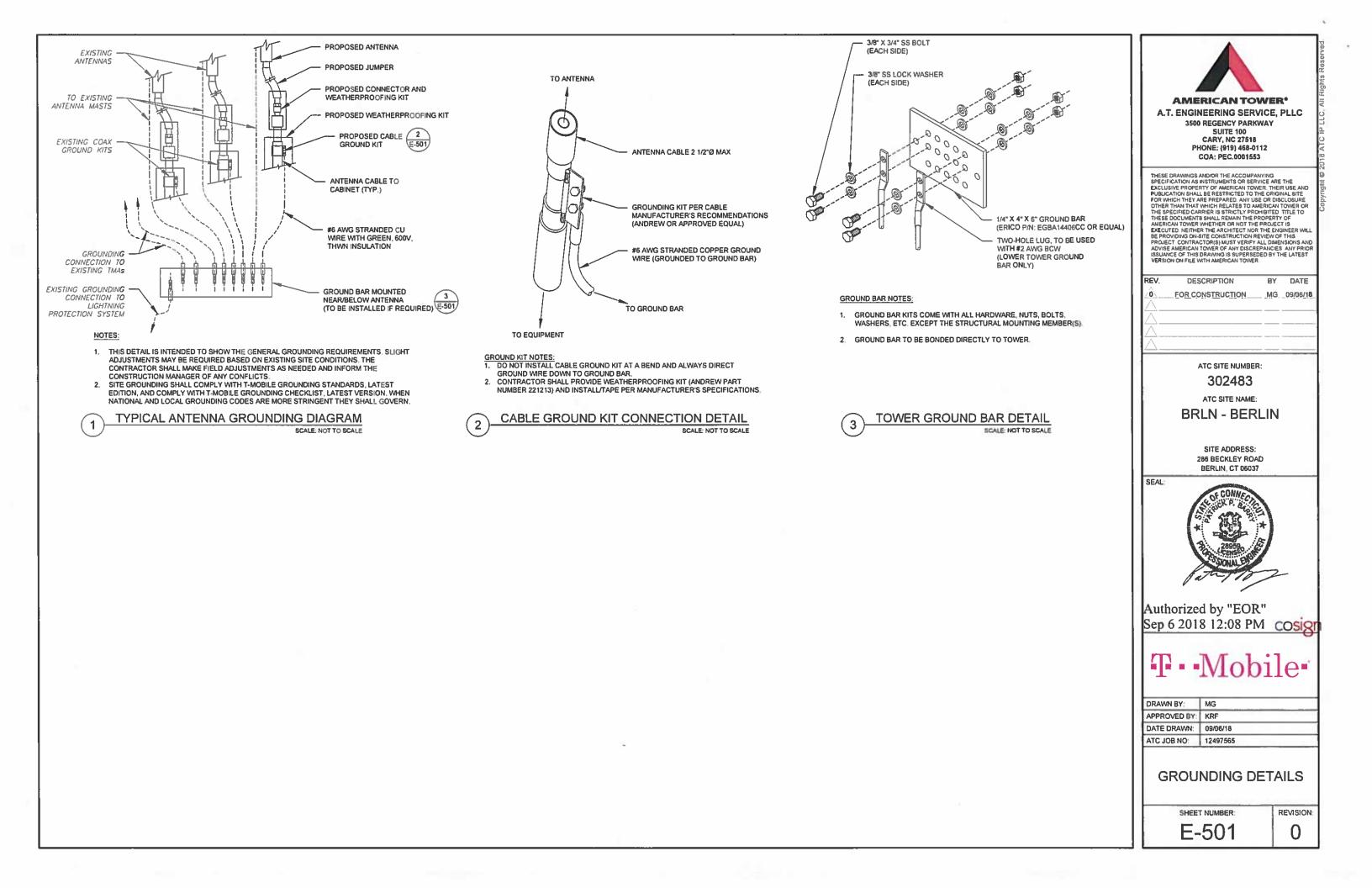
STRUCTURAL STEEL NOTES:

- STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF THE AISC "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS."
- STRUCTURAL STEEL ROLLED SHAPES, PLATES AND BARS SHALL CONFORM TO THE FOLLOWING ASTM DESIGNATIONS:
 - A. ASTM A-572, GRADE 50 ALL W SHAPES, UNLESS NOTED OR A992 OTHERWISE
 - B. ASTM A-36 ALL OTHER ROLLED SHAPES, PLATES AND BARS UNLESS NOTED OTHERWISE,
 - C. ASTM A-500, GRADE B HSS SECTION (SQUARE, RECTANGULAR, AND ROUND)
 - D. ASTM A-325, TYPE SC OR N ALL BOLTS FOR CONNECTING STRUCTURAL MEMBERS
 - E, ASTM F-1554 07 + ALL ANCHOR BOLTS, UNLESS NOTED OTHERWISE
- 3 ALL EXPOSED STRUCTURAL STEEL MEMBERS SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION PER ASTM A123. EXPOSED STEEL HARDWARE AND ANCHOR BOLTS SHALL BE GALVANIZED PER ASTM A153 OR B695.
- 4. ALL FIELD CUT SURFACES, FIELD DRILLED HOLES AND GROUND SURFACES WHERE EXISTING PAINT OR GALVANIZATION REMOVAL WAS REQUIRED SHALL BE REPAIRED WITH (2) BRUSHED COATS OF ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURER'S RECOMMENDATIONS.
- 5. DO NOT DRILL HOLES THROUGH STRUCTURAL STEEL MEMBERS EXCEPT AS SHOWN AND DETAILED ON STRUCTURAL DRAWINGS.
- 6. CONNECTIONS:
 - A. ALL WELDING TO BE PERFORMED BY AWS CERTIFIED WELDERS AND CONDUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1.1.
 - B. ALL WELDS SHALL BE INSPECTED VISUALLY, 25% OF WELDS SHALL BE INSPECTED WITH DYE PENETRANT OR MAGNETIC PARTICLE TO MEET THE ACCEPTANCE CRITERIA OF AWS D1.1. REPAIR ALL WELDS AS NECESSARY.
 - C. INSPECTION SHALL BE PERFORMED BY AN AWS CERTIFIED WELD INSPECTOR.
 - D. IT IS THE CONTRACTORS RESPONSIBILITY TO PROVIDE BURNING/WELDING PERMITS AS REQUIRED BY LOCAL GOVERNING AUTHORITY AND IF REQUIRED SHALL HAVE FIRE DEPARTMENT DETAIL FOR ANY WELDING ACTIVITY.
 - E. ALL ELECTRODES TO BE LOW HYDROGEN, MATCHING FILLER METAL, PER AWS D1.1, UNLESS NOTED OTHERWISE.
 - F. MINIMUM WELD SIZE TO BE 0.1875 INCH FILLET WELDS, UNLESS NOTED OTHERWISE,
 - G. PRIOR TO FIELD WELDING GALVANIZING MATERIAL, CONTRACTOR SHALL GRIND OFF GALVANIZING 3" BEYOND ALL FIELD WELD SURFACES, AFTER WELD AND WELD INSPECTION IS COMPLETE, REPAIR ALL GROUND AND WELDED SURFACES WITH ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS RECOMMENDATIONS.

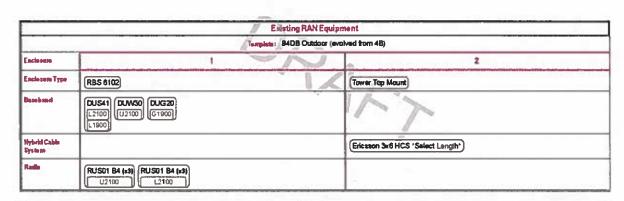
Α.	T. ENGIN 3500 PH	RICAN TO REERING SEL REGENCY PAR SUITE 100 CARY, NC 275 AONE: (919) 468- COA: PEC.0001	RVICE, KWAY 6 0112	
SPECI EXCLU PUBLI FOR V OTHEI THE S THESI AMERI EXECI BE PR PROJE ADVIS ISSUA	FICATION AS JSIVE PROPEL CATION SHALL WHICH THEY A R THAN THAT PECIFIED CAP E DOCUMENT COAN TOWER UTED. NEITHE OVIDING ON-3 ECT. CONTRA' E AMERICAN NCE OF THIS	AND/OR THE ACCOM INSTRUMENTS OR SI RTY OF AMERICAN T LE RESTRICTED TO RE REPARED ANY WHICH RELATES TO RRIER IS STRICTLY P S BHALL REMAIN THE S BHALL REMAIN THE S BHALL REMAIN THE STRE CONSTRUCTION CTOR(S) MUST VERIN TO/WER OF ANY DISC DRAWING IS SUPER: WITH AMERICAN TOW	ERVICE AR DWER. THI DTHE ORIC USE OR DI USE OR DI AMERICAN ROHIBITEL PROPER HE PROJE OR THE EN I REVIEW C I REVIEW C FY ALL DIM GEDED BY	EIR USE AND JINAL SITE ISCLOSURE ISCLOSURE ISCLOSURE ISCLOSURE ISCLOSURE ISCLOSURE ISCOMENTIAL ISCOMENTIAL ISCOMENTIAL ISCOMENTIAL
REV.	DES	CRIPTION	BY	DATE
	FOR CO	NSTRUCTION	MG	09/06/18
\square				
$\overline{\Delta}$				
Δ_				
	,	ATC SITE NUMB		
		ATC SITE NAM	E:	
	BR	LN - BEI	RLIN	1
SEAL	2	SITE ADDRES 86 BECKLEY RO BERLIN, CT 060	DAD	
SEAL	2	86 BECKLEY RO	DAD	
	15 * T	BEB BECKLEY RC BERLIN, CT 060 CF CONNECTOR CK P. CC 200596 200596 200596	AD 37	
Autl	horized	BEBECKLEY ROBERLIN, CT 060 BERLIN, CT 060 CECK P. do 289590 CERLEY 289590 CERLEY CONNEC	AD 37	
Autl	horized	BEB BECKLEY RC BERLIN, CT 060 CF CONNECTOR CK P. CC 200596 200596 200596	AD 37	
Autl Sep	horized 6 2012	BEBECKLEY ROBERLIN, CT 060 BERLIN, CT 060 CECK P. do 289590 CERLEY 289590 CERLEY CONNEC	AD 37	
Autl Sep	horized 6 201	d by "EO	AD 37	
Autl Sep	horized 6 2012	ABB BECKLEY RO BERLIN, CT 060 CF CONNE CK P. 28059 20059 20050 20059 20050 20050 20050 20050 20050 20050 20050 20050 20050 200	AD 37	
Auti Sep DRAW APPR DATE	horized 6 2013 N BY: DVED BY: DRAWN	ABB BECKLEY RO BERLIN, CT 060 CF CONNE CK P. 28059 20059 20050 20050 20050 20050 20050 20050 20050 20050 20050 200	R"	
Auti Sep DRAW APPR DATE	horized 6 2012	ABB BECKLEY RO BERLIN, CT 060 CF CONNE CK P. 28059 20059 20050 20059 20050 20050 20050 20050 20050 20050 20050 20050 20050 200	R"	
Auti Sep DRAW APPR DATE	N BY: DVED BY: DRAWN OB NO:	ABB BECKLEY RO BERLIN, CT 060 CF CONNE CK P. 28059 20059 20050 20050 20050 20050 20050 20050 20050 20050 20050 200	R" M 01	le•
Auti Sep DRAW APPR DATE	N BY: DVED BY: DRAWN OB NO: GEN	Beschley RC BERLIN, CT 060 SF CONNEC BERLIN, CT 060 BERLIN, CT 060 MG KRF 09/06/18 12497565	R" M 01	le•

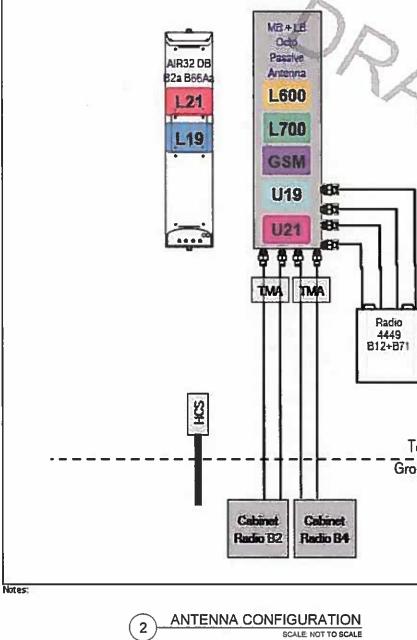

1. BASED ON APPROVED ATC APPLICATION OAA731959, DATED 05/11/18. CONFIRM WITH T-MOBILE REP FOR APPLICABLE UP MOST RECENT RFDS.


2. (1) EXISTING 1-5/8" HYBRID CABLE (TO REMAIN). 3. (2) PROPOSED 1-1/4" HYBRID CABLE (177'±)


ANTENNA SCHEDULE

3


		AMERICAN TOWER* A.T. ENGINEERING SERVICE, PLLC 3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 COA: PEC.0001553
		THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARLEN IS STIRCTLY PROHIBITED TITLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NOT THE PROJECT IS EXECUTED MEITHER THE ARCHITECT NOR THE ENGINEER WIL BE PROVIDING CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTORIS) MUST VERIEY ALL DIMENSIONS AN ADVISE AMERICAN TOWER OF ANY DISCREPANCIES ANY PRIC ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN TOWER.
POSED KRY	(112 144/2 TTA (TYP: 3)	REV. DESCRIPTION BY DATE
		0 FOR CONSTRUCTION MG_09/06/1 0
		ATC SITE NUMBER:
		302483
		ATC SITE NAME:
	SED KRY 112 489/2 TTA	BRLN - BERLIN
	SECTOR) (TYP. 3) ADIO 4449 B12, B71 RRU R) (TYP. 3)	SITE ADDRESS: 286 BECKLEY ROAD BERLIN, CT 06037
	UCTURAL ANALYSIS PEDE TOWER	SEAL:
		fatigos
IOWER	ANTENNA COAX DESCRIPTION	Authorized by "EOR" Sep 6 2018 12:07 PM COSIC
49.074	-	Sep 6 2018 12:07 PM COSIE
112,871 89/2 44/2	(4) 1-5/8"	T-Mobile
12.871 89/2	(4) 1-5/8"	DRAWN BY: MG
44/2	(*) 1-3/0	APPROVED BY: KRF
	-	DATE DRAWN: 09/06/18 ATC JOB NO: 12497565
812,B71 89/2 44/2	(4) 1-5/8"	ANTENNA INFORMATION
JPDATES/RI		& SCHEDULE
		C-501 0



67D94D8_1xAIR+10PJPG

Proposed RAN Equipment Template: 67D94D8 Hybrid (evolved from 48)				
Евсіонно Тури	(RBS 6102)	(Ancillary Equipment)		
Baseb and	B8 5216 1.2100 1.000 1.000 1.000 BUG20 (G1500) (G1500)			
Hybrid Cable System		(Ericsson &c12 HCS 'Select Lungth & AVAG' (s2)) (Ericsson &c12 HCS 'Select AVAG & Length')		
Mattiplame	(XNU)			
Rado	RUSD1 E2 (c1) G1900 U2100 RUSD1 E2 (c1)			
RAN Scope of Wor	E			
Swap DUI, with	h DUS41.Remove existing LMU coex.Remove existing Metro loading a	and use RC for 1700		

12			•
Top round		Convriciti © 2018 ATC /P LLC. All Rubbs Reserved.	
REATED BY OTHERS AND PROVIDED OF CUSTOMER WITHOUT EDIT.	SUPPLEMENTA	AL REVISION: O	