# Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts

January 28, 2019

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Docket No. 471 – Application of Cellco Partnership d/b/a Verizon Wireless for a Certificate of Environmental Compatibility and Public Need for the Construction, Maintenance and Operation of a Wireless Telecommunications Facility Located at 208 Kirk Road, Hamden, Connecticut

**Antenna Modification** 

Dear Ms. Bachman:

As you know, on January 17, 2019, the Connecticut Siting Council approved the Development and Management ("D&M") Plan for the above-referenced tower site in Hamden. The applicant, Cellco Partnership d/b/a Verizon Wireless ("Cellco"), recently learned that the antenna model identified on the D&M Plan is no longer available from the manufacturer. Cellco has, therefore, decided to change the antenna at the Kirk Road tower site to Model MX06FRO660-03. This panel antenna is similar in size and appearance to the antenna that Cellco previously proposed to install at this facility. A copy of the specification sheet for the new antenna model is attached for your file.

Please let me know if you have any questions or need any additional information.

# Robinson+Cole

Melanie A. Bachman, Esq. January 28, 2019 Page 2

Sincerely,

Kenneth C. Baldwin

KCB/kmd Enclosure Copy to:

Curt B. Leng, Hamden Mayor Patricia Sorrentino Bridget M. D'Angelo, Esq. Jamie Laredo Mike Humphreys Aleksey Tyurin



# MX06FRO660-03

#### NWAV™ X-Pol Hex-Port Antenna

# X-Pol Hex-Port 6 ft 60° Fast Roll Off antenna with independent tilt on 700 & 850 MHz; 2 ports 698-798, 824-894 MHz and 4 ports 1695-2180 MHz

- Fast Roll Off (FRO™) azimuth beam pattern improves Intra- and Inter-cell SINR
- Compatible with dual band 700/850 MHz radios with independent low band EDT without external diplexers
- Fully integrated (iRETs) with independent RET control for low and high bands for ease of network optimization
- SON-Ready array spacing supports beamforming capabilities
- Suitable for LTE/CDMA/PCS/UMTS/GSM air interface technologies
- Integrated Smart Bias-Ts reduce leasing costs

#### Fast Roll-Off antennas increase data throughput without compromising coverage

The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference & Noise Ratio (SINR) by eliminating overlap between sectors .

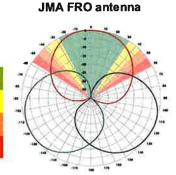
JMA's FRO antenna pattern minimizes overlap, thereby minimizing interference.

Non-FRO antenna

Large traditional antenna pattern overlap creates harmful interference.

LTE throughput SINR Speed (bps/Hz) increase CQI

Excellent >18 >4.5 333+% 8-10


 Excellent
 >18
 >4.5
 333+%
 8-10

 Good
 15-18
 3.3-4.5
 277%
 6-7

 Fair
 10-15
 2-3.3
 160%
 4-6

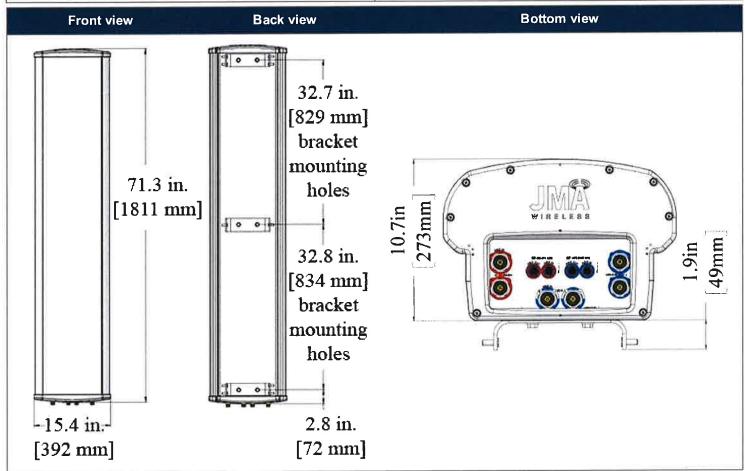
 Poor
 <10</td>
 <2</td>
 0%
 1-3

The LTE radio automatically selects the best throughput based on measured SINR





| Electrical specification (minimum/maximum)                | Ports 1, 2 Ports 3, 4, 5, 6 |         |             |           |           |
|-----------------------------------------------------------|-----------------------------|---------|-------------|-----------|-----------|
| Frequency bands, MHz                                      | 698-798                     | 824-894 | 1695-1880   | 1850-1990 | 1920-2180 |
| Polarization                                              | ± 45°                       |         | ± 45°       |           |           |
| Average gain over all tilts, dBi                          | 14.4                        | 14.0    | 17.6        | 18.0      | 18.2      |
| Horizontal beamwidth (HBW), degrees                       | 60.5                        | 53.0    | 55.0        | 55.0      | 55.5      |
| Front-to-back ratio, co-polar power @180°± 30°, dB        | >24                         | >24.0   | >25.0       | >25.0     | >25.0     |
| X-Pol discrimination (CPR) at boresight, dB               | >15.0                       | >14.2   | >18         | >18       | >15       |
| Sector power ratio, percent                               | <3.5                        | <3.0    | <3.7        | <3.8      | <3.6      |
| Vertical beamwidth (VBW), degrees <sup>1</sup>            | 13.1                        | 11.8    | 6.0         | 5.5       | 5.5       |
| Electrical downtilt (EDT) range, degrees                  | 2-14                        | 2-14    | 0-9         |           |           |
| First upper side lobe (USLS) suppression, dB <sup>1</sup> | ≤-15.0                      | ≤-16.5  | ≤-16.0      | ≤-16.0    | ≤-16.0    |
| Min cross-polar isolation, port-to-port, dB               | 25                          | 25      | 25          | 25        | 25        |
| Max VSWR / return loss, dB                                | 1.5 / -14.0                 |         | 1.5 / -14.0 |           |           |
| Max passive intermodulation (PIM), 2x20W carrier, dBc     | -153                        |         | -153        |           |           |
| Max input power per any port, watts                       | 300                         |         | 250         |           |           |
| Total composite power all ports, watts                    | 1500                        |         |             |           |           |


<sup>&</sup>lt;sup>1</sup> Typical value over frequency and tilt



# MX06FRO660-03

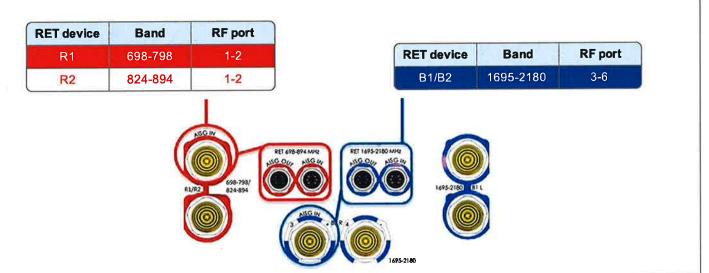
## NWAV™ X-Pol Hex-Port Antenna

| Mechanical specifications                                   |                                   |  |
|-------------------------------------------------------------|-----------------------------------|--|
| Dimensions height/width/depth, inches (mm)                  | 71.3/ 15.4/ 10.7 (1811/ 392/ 273) |  |
| Shipping dimensions length/width/height, inches (mm)        | 82/ 20/ 15 (2083/ 508/ 381)       |  |
| No. of RF input ports, connector type, and location         | 6 x 4.3-10 female, bottom         |  |
| RF connector torque                                         | 96 lbf·in (10.85 N·m or 8 lbf·ft) |  |
| Net antenna weight, lb (kg)                                 | 60 (27.0)                         |  |
| Shipping weight, lb (kg)                                    | 90 (41.0)                         |  |
| Antenna mounting and downtilt kit included with antenna     | 91900318                          |  |
| Net weight of the mounting and downtilt kit, lb (kg)        | 18 (8.18)                         |  |
| Range of mechanical up/down tilt                            | -2° to 14°                        |  |
| Rated wind survival speed, mph (km/h)                       | 150 (241)                         |  |
| Frontal, lateral, and rear wind loading @ 150 km/h, lbf (N) | 154 (685), 73 (325), 158 (703)    |  |
| Equivalent flat plate @ 100 mph and Cd=2, sq ft             | 2.6                               |  |



| Ordering information    |                                                                 |
|-------------------------|-----------------------------------------------------------------|
| Antenna model           | Description                                                     |
| MX06FRO660-03           | 6F X-Pol HEX FRO 60° independent tilt 700/850 RET, 4.3-10 & SBT |
| Optional accessories    | •                                                               |
| AISG cables             | M/F cables for AISG connections                                 |
| PCU-1000 RET controller | Stand-alone controller for RET control and configurations       |



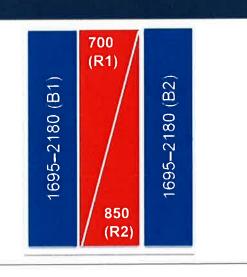

# MX06FRO660-03

## NWAV™ X-Pol Hex-Port Antenna

| Remote electrical tilt (RET 1000) information             |                                                           |  |
|-----------------------------------------------------------|-----------------------------------------------------------|--|
| RET location                                              | Integrated into antenna                                   |  |
| RET interface connector type                              | 8-pin AISG connector per IEC 60130-9                      |  |
| RET connector torque                                      | Min 0.5 N·m to max 1.0 N·m (hand pressure & finger tight) |  |
| RET interface connector quantity                          | 2 pairs of AISG male/female connectors                    |  |
| RET interface connector location                          | Bottom of the antenna                                     |  |
| Total no. of internal RETs (low bands)                    | 2                                                         |  |
| Total no. of internal RETs (high bands)                   | 1                                                         |  |
| RET input operating voltage, vdc                          | 10-30                                                     |  |
| RET max power consumption, idle state, W                  | ≤ 2.0                                                     |  |
| RET max power consumption, normal operating conditions, W | ≤ 13.0                                                    |  |
| RET communication protocol                                | AISG 2.0 / 3GPP                                           |  |

#### **RET and RF connector topology**

Each RET device can be controlled either via the designated external AISG connector or RF port as shown below:




### Array topology

3 sets of radiating arrays

R1/R2: 698-894 MHz B1: 1695-2180 MHz B2: 1695-2180 MHz

| Band      | RF port |
|-----------|---------|
| 1695-2180 | 3-4     |
| 698-894   | 1-2     |
| 1695-2180 | 5-6     |

