

Homeland Towers, LLC

22 Shelter Rock Lane Danbury CT 06810 Phone 203-297-6345 Fax 203-797-1137

Sent via FedEx

December 17, 2015

Honorable Robert Stein, Chairman And Members of the Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

Re:

Docket No. 452 – Homeland Towers LLC (HT) and New Cingular Wireless PCS, LLC (AT&T) Application for Certificate of Environmental Compatibility and Public Need For A Tower Facility at intersection of 250 Canaan Road, Salisbury CT

Dear Chairman Stein and Members of the Siting Council,

As co-applicant, Homeland Towers ("HT") requests that you please accept for review and Council approval this Development & Management Plan ("D&M Plan") filing for the Facility as approved in Docket No. 452.

Tower, Compound & Other Equipment

Enclosed are fifteen (15) sets of 11"x17" Development & Management Plans being filed in accordance with the Council's Decision and Order dated March 5, 2015 ("Decision and Order"). Two full-sized sets of the Development & Management Plans are also enclosed. The D&M Plan incorporates a 150' stealth tree monopole with faux tree branch material not extending above 157' agl as provided for in the Siting Council's Decision and Order in this Docket. AT&T will mount twelve (12) panel antennas at a centerline of 146'as depicted on the drawings prepared by All Points Technology Corporation. Attached please also find a geotechnical study as well as a structural design report for the tower and foundation. Specifications for the antennas and generator are also provided.

The proposed D&M Plan also includes construction plans for the site clearing, drainage, and erosion and sedimentation control measures consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control as amended.

Required Notifications

In accordance with the provisions of RCSA Section 16-50j-77, Homeland Towers hereby notifies the Council of its intention to begin site work immediately after Council approval of the D&M Plan. Construction of the tower and other site improvements will commence upon issuance of a local building permit. The supervisor for all construction related matters on this project is Christian Carmody, located at InSite Towers, 1199 North Fairfax Street, Suite 700, Alexandria, VA 22314 and can be reached by telephone at 617-595-7254.

We respectfully request that this matter be included on the Council's next available agenda for review and approval. Thank you for your consideration of the enclosed.

Sincerely,

Raymond Vergati

rv@homelandtowers.us

Enclosures

cc: Honorable Curtis Rand, First Selectman, Town of Salisbury

Manny Vicente, Homeland Towers LLC

Michele Briggs, AT&T Scott Chasse, P.E., APT

Lucia Chiocchio, Esq., Cuddy & Feder LLP

Certificate of Service

I hereby certify that on this day, an original and fifteen copies of the foregoing was sent electronically and by overnight delivery to the Connecticut Siting Council with a copy to:

Town of Salisbury
The Honorable Curtis Rand
First Selectman
Town Hall
PO Box 548
27 Main Street
Salisbury, CT 06068

InSite Towers LLC 1199 North Fairfax Street Suite 700 Alexandria, VA 22314

Dated: December 17, 2015

Raymond M. Vergati

Site Development Manager

Homeland Towers, LLC

ATTACHMENT 1

Geotechnical Engineering Report

Proposed Homeland Towers: Salisbury CT-114
Salisbury, Connecticut

June 4, 2015

Terracon Project No. J2155143

Prepared for: Homeland Towers Danbury, Connecticut

Prepared by: Terracon Consultants, Inc. Rocky Hill, Connecticut

terracon.com

June 4, 2015

Homeland Towers 22 Shelter Rock Lane, Building C Danbury, CT 06810

Attn: Mr. Raymond Vergati, Site Development Manager

P: (203) 297 6345 F: (860) 797 1137

E: rv@homelandtowers.us

Re: Geotechnical Engineering Report

Proposed Homeland Towers: Salisbury CT-114

Salisbury, Connecticut

Terracon Project No. J2155143

Dear Mr. Vergati:

Terracon Consultants, Inc. (Terracon) has completed the geotechnical engineering services for the above referenced project. This study was performed in general accordance with the Authorization to Proceed, dated May 12, 2015. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design of foundations for the proposed telecommunications tower and accompanying equipment cabinets.

We appreciate the opportunity to be of service to you on this project. If you have questions concerning this report, or if we may be of further service, please contact us.

Sincerely,

Terraçon Consultants, Inc.

Brian D. Opp, P.E.

Project Engineer I

/rwm/J2155143

Attachment

Richard W.M. McLaren, P.E.

Senior Associate

Geotechnical Department Manager

Terracon Consultants, Inc. 201 Hammer Mill Road Rocky Hill, Connecticut 06067 P (860) 721 1900 F (860) 721 1939 terracon.com

TABLE OF CONTENTS

					Page
1.0	INTRO	DUCTI	ON		
2.0	PROJE	ECT IN	FORMAT	ION	1
	2.1	Projec	t Descrip	tion	
	2.2	Site Lo	ocation a	nd Description RATIONS AND CONDITIONS	
3.0	SUBSI	URFAC	E EXPLO	RATIONS AND CONDITIONS	2
	3.1	Typica	al Profile		2
	3.2	Karst	Geology		3
	3.3	In-situ	Resistiv	ity	, , , , , , , , , , , , , , , , , , , ,
	3.4				
4.0	RECO	MMENI		FOR DESIGN AND CONSTRUCTION	4
7.0	4.1			Considerations	
	4.2				
	4.2			tion Requirements	
		4.2.2	Grading	and Drainage	5
			Farthwo	rk Construction Considerations	6
	4.3			commendations	
	4.0	4.3.1		oundations	
		7.0.1	4311	Mat/Pad Foundation Design Recommendations	.,, 7
			4.3.1.2	Mat/Pad Foundation Construction Considerations	; 7
			4.3.1.3	Drilled Shaft Design Recommendations	8
			4.3.1.4	Drilled Shaft Construction Recommendations	S
		4.3.2	Equipme	ent Cabinet Foundations	10
			4.3.2.1	Slab Design Recommendations	10
			4.3.2.2	Slab Construction Considerations	10
	4.4	Seism	ic Consi	derations	11
5.0	GENE	RAL C	OMMENT	'S	11
APPE			D EXPLO	DRATION	
	Exhibit			Site Location Map	
	Exhibit			Exploration Location Diagram	
	Exhibit			Field Exploration Description	
	Exhibit			Boring Log – B-1	
	Exhibit	t A-5 thi	rough A-8	Probe Logs – P-1 through P-4	
APPE	NDIX B	– LAB	ORATOR	Y TESTING	
	Exhibit			Laboratory Testing	
APPE			PORTING	DOCUMENTS	
	Exhibit	t C-1		General Notes	

Unified Soil Classification System

Exhibit C-2

GEOTECHNICAL ENGINEERING REPORT PROPOSED HOMELAND TOWERS: SALISBURY CT-114 SALISBURY, CONNECTICUT

Terracon Project No. J2155143 June 4, 2015

1.0 INTRODUCTION

A geotechnical engineering report has been completed for the proposed 150-foot high steel "Monopine" telecommunications tower to be located at 250 Canaan Road in Salisbury, Connecticut. A single test boring was advanced to a depth of about 15 feet below existing ground surface close to the proposed tower location. Four test probes were advanced within the proposed 60-foot by 70-foot compound area to a depth of about 10 feet. Logs of the test boring and probes, along with a Site Location Map (Exhibit A-1) and an Exploration Location Diagram (Exhibit A-2), are included in Appendix A of this report.

The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- subsurface soil conditions
- groundwater conditions
- earthwork

- foundation design and construction
- seismic considerations
- slab design and construction

2.0 PROJECT INFORMATION

The project consists of the construction of a 150-foot high steel "Monopine" telecommunications tower with associated equipment cabinets within a 60-foot by 70-foot fenced compound inside a 70-foot by 80-foot area. Access to the site will be by a 25-foot wide access and utility easement from Canaan Road to the south of the site.

2.1 Project Description

Our knowledge of the project is based on review of the Drawing Set: Salisbury, 250 Canaan Road, Salisbury, CT 06068, revised November 14, 2014, by All-Points Technology Corporation of Killingworth, Connecticut. A summary description of the project is presented below:

Proposed Homeland Towers: Salisbury CT-114

Salisbury, Connecticut June 4, 2015

Terracon Project No. J2155143

ltem	Description	
Site layout	Exploration Location Diagram on Exhibit A-2, Appendix A	
Tower	A 150-foot high steel "Monopine" telecommunications tower.	
Estimated maximum loads	Tower dead load - 60 kips	
And the second s	Equipment pad - 150 pounds per square foot (psf)	
Grading	Cuts and fills up to a foot are anticipated to develop the site	
Permanent Slopes	No significant slopes.	

2.2 Site Location and Description

ltem	Description	
Location	Latitude 42.006223N / Longitude 73.391449W. Approximately 1,850 feet north of Canaan Road (Route 44) in the town of Salisbury, Connecticut.	
Existing improvements	None	
Current ground cover	Trees/vegetation	
Existing topography	Slopes downward to the southwest from approximately Elevations (El) 895 to 891 feet within the proposed compound.	

3.0 SUBSURFACE EXPLORATIONS AND CONDITIONS

3.1 Typical Profile

Based on the results of the exploration and observations at the time of drilling, subsurface conditions on the project site can be generalized as follows:

Description	Approximate Depth to Bottom of Stratum (feet)	Material Encountered ¹	Consistency <i>l</i> Relative Density
Glacial Till	15	Silty sand (SM), brown	Medium dense to dense (surficially loose)
Bedrock	> 15	Implied by power auger refusal at a similar depth on three attempts.	N/A

^{1.} Forest mat (about 6 to 8 inches thick) was encountered at the ground surface of the explorations.

The Surficial Materials Map of Connecticut, 1992, identifies native soils in the vicinity of the site as glacial till. B-1 terminated upon auger refusal on probable bedrock at a depth of approximately 15 feet. The probes terminated at a depth of 10 feet in the glacial till. The Bedrock Geologic Map of Connecticut, 1985, indicates that bedrock in the vicinity of the site consists of dark- to light-colored schistose marble, the basal marble member of Walloomsac Schist.

Conditions encountered at the exploration locations are indicated on the exploration logs in Appendix A of this report. Stratification boundaries on the exploration logs represent the approximate location of changes in soil types; *in situ*, the transition between materials may be gradual. Further details of the exploration can be found on the exploration logs.

3.2 Karst Geology

The site is located over marble bedrock in which solution features, including caves and sinkholes, can occur. Predicting future sinkhole activity is difficult. Sinkholes and caves in this area may be at various stages of development and may manifest at any time. Any construction in karst topography is accompanied by some degree of risk for future internal soil erosion and ground subsidence.

For a project of this size, investigating or designing to minimize the risk of damage due to sinkhole-related subsidence is not typically economical. Additional borings into bedrock could increase confidence in the site, if they do not encounter indications of solution features. However, the additional borings offer no assurance, as they may simply miss the solution features present at the site. Alternative foundation or site development systems to help address the risk subsidence, such as deep foundations, stone columns, grouting, etc. do not appear to be warranted for this project. We are available to further discuss this matter, if the owner is concerned about the challenges posed by karst geology.

3.3 In-situ Resistivity

On May 27, 2015, *in-situ* soil resistivity testing was completed by a Terracon field engineer. Resistivity testing was performed in general accordance with ASTM G57 by the Wenner Four Probe Method using a Megger DET5/4R Digital Earth Tester. Two resistivity lines were completed with electrodes spaced at 5, 10, 20, 30, and 40 feet. The location and orientation of the resistivity lines are shown on Exhibit A-2. The resistivity test results are tabulated below:

	Resistivity	(ohm-cm)
Electrode Spacing (ft)	Line 1	Line 2
5	19,630	29,685
10	19,535	30,255
20	24,395	32,940
30	32,170	26,425
40	30,640	21,450

Proposed Homeland Towers: Salisbury CT-114 m Salisbury, Connecticut

June 4, 2015 M Terracon Project No. J2155143

3.4 Groundwater

Groundwater was not encountered at the time of the explorations. However, fluctuations in groundwater level may occur because of seasonal variations in the amount of rainfall, runoff and other factors. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

4.0 RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION

4.1 Geotechnical Considerations

The proposed "Monopine" steel telecommunications tower may be supported on a monolithic mat or a pier-and-pad foundation bearing on the glacial till or on compacted structural fill placed over the glacial till. Minus ¾-inch crushed stone may be used in place of structural fill. Alternatively, the proposed telecommunications tower may be supported on a drilled shaft foundation. The proposed equipment platform and other ancillary structures may derive support from the glacial till. Design recommendations are presented in the following sections.

We recommend that the exposed subgrades be thoroughly evaluated after excavation to proposed grade. We further recommend that the geotechnical engineer be retained to evaluate the bearing material for the foundation subgrade. We also recommend that the geotechnical engineer review the construction of the drilled shaft, if selected as the foundation system.

4.2 Earthwork

Preparation of the site should include removal of topsoil, organic subsoil (subsoil with visible roots), or otherwise unsuitable materials. The soil subgrade should be proofrolled with a walk-behind vibratory roller or heavy plate compactor. Unstable subgrades should be removed and replaced with compacted structural fill. Minus ¾-inch crushed stone may be used in place of structural fill. If required, structural fill may then be placed within the compound area to attain the required grade.

Fill and backfill materials should meet the following material requirements:

Fill Type ¹	USCS Classification	Acceptable Location for Placement
Structural Fill ^{2,3}	GW	All locations and elevations. Based on observations, the glacial till may be selectively re-used as structural fill, provided it is free of organic and closely meets the gradation requirements in Note 2, below.

Proposed Homeland Towers: Salisbury CT-114

Salisbury, Connecticut June 4, 2015

Terracon Project No. J2155143

Fill Type ¹	USCS Classification	Acceptable Location for Placement
Common Fill⁴	Varies	Common fill may be used for general site grading to within 12 inches of finished grade. Common fill should not be used below sensitive structures. The glacial till may be re-used as common fill, provided it is free of organics and can be adequately compacted.

- 1. Compacted fill should consist of approved materials that are free of organic matter and debris. Frozen material should not be used. Fill should not be placed on a frozen subgrade.
- 2. Imported structural fill should meet the following gradation:

Percent Passing by Weight

Structural Fill
100
70 – 100
(100)*
45 – 95
30 – 90
25 – 80
10 – 50
0 – 12

^{*} Maximum 2-inch particle size within 12 inches of the underside of concrete elements

- 3. Recommendation for re-use of site soils as Structural Fill applies only to re-use on this site and only if Terracon is monitoring construction.
- Imported common fill should have a maximum particle size of 6 inches and no more than 25 percent by weight passing the US No. 200 sieve.

4.2.1 Compaction Requirements

ltem	Description	
Fill Lift Thickness	8 inches or less in loose thickness	
Compaction Requirements ¹	95 percent maximum modified Proctor dry density (ASTM D1557, Method C)	
Moisture Content – Granular Material	Workable moisture levels	

We recommend that fill be tested for moisture content and compaction during placement. Should
the results of the in-place density tests indicate the specified moisture or compaction limits have
not been met, the area represented by the test should be reworked and retested, as required, until
the specified moisture and compaction requirements are achieved.

4.2.2 Grading and Drainage

We understand that the compound area will be graded to slope downward to the southwest from about El 894 to 892. There will be no significant slopes.

Adequate drainage should be provided at the site to reduce the likelihood of an increase in moisture content of the foundation soils. Final site grading should be away from the tower to reduce the likelihood of water ponding near the structure.

4.2.3 Earthwork Construction Considerations

Although the exposed subgrade is anticipated to be relatively stable upon initial exposure, unstable subgrade conditions could develop during general construction operations, particularly if the soils are wetted and/or subjected to repetitive construction traffic. Should unstable subgrade conditions develop, stabilization measures will need to be employed.

Construction traffic over the completed soil subgrade should be avoided to the extent practical. The site should also be graded to prevent ponding of surface water on the prepared soil subgrades or in excavations. If the soil subgrade should become frozen, wet, or disturbed, the affected material should be removed or these materials should be scarified, moisture conditioned, and recompacted.

As a minimum, temporary excavations should be sloped or braced as required by Occupational Health and Safety Administration (OSHA) regulations to provide stability and safe working conditions. Temporary excavations may be required during grading operations. The contractor, by his contract, is usually responsible for designing and constructing stable, temporary excavations and should shore, slope or bench the sides of the excavations, as required, to maintain stability of both the excavation sides and bottom. All excavations should comply with applicable local, State, and federal safety regulations, including the current OSHA Excavation and Trench Safety Standards.

The geotechnical engineer should be retained during the construction phase of the project to observe earthwork and to perform necessary tests and observations during subgrade preparation; proofrolling; placement and compaction of controlled compacted fills; backfilling of excavations into the completed subgrade, and just prior to construction of foundations.

4.3 Foundation Recommendations

4.3.1 Tower Foundations

We recommend that the proposed "Monopine" telecommunications tower be supported on either a monolithic mat or a pier-and-pad foundation placed on the glacial till or on compacted structural fill placed over the glacial till. Minus ¾-inch crushed stone may be used in place of structural fill. Alternatively, the proposed telecommunications tower may be supported on a drilled shaft foundation extending into the glacial till. Design recommendations and construction considerations for the recommended foundation systems are presented in the following tables and paragraphs.

4.3.1.1 Mat/Pad Foundation Design Recommendations

Description	Value
Net allowable bearing pressure ¹	6,000 psf
Minimum embedment below finished grade for frost protection	42 inches
Approximate total settlement ²	1 inch
Estimated differential settlement ²	½ inch
Total soil unit weight (γ)	125 pcf
Passive pressure coefficient, Kp 3	3.0 (ultimate)
Coefficient of sliding friction 4	0.5 (ultimate)

- 1. The recommended net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the mat/pad base elevation.
- 2. Foundation settlement will depend upon the variations within the subsurface soil profile, the structural loading conditions, the embedment depth of the mat/pad the thickness of compacted fill, and the quality of the earthwork operations.
- 3. Passive pressure calculated with this parameter should be reduced by at least a factor of safety of 3, to reflect the amount of movement required to mobilize the passive resistance.
- 4. A factor of safety of at least 1.5 should be applied to the sliding resistance.

Uplift resistance for the tower foundation may be computed as the sum of the weight of the foundation element and the weight of the soil overlying the foundation. For this computation, we recommend using a soil unit weight of 100 pounds per cubic foot (pcf) for engineered fill overlying the footing placed as described in this section of this report. A unit weight of 150 pcf may be used for reinforced foundation concrete. A factor of safety of 1.0 may be applied to calculations of dead load; a higher factor of safety may be appropriate for loadings resisted by dead load.

4.3.1.2 Mat/Pad Foundation Construction Considerations

The base of foundation excavations should be free of water and loose soil prior to placing concrete. Concrete should be placed soon after excavating to reduce bearing disturbance. Should the soils at bearing level become wet, disturbed or frozen, the affected soil should be removed prior to placing concrete. The geotechnical engineer should be retained to observe and test the foundation bearing materials.

If unsuitable bearing soils are encountered in footing excavations, the excavation could be extended deeper to suitable soils and the footing could bear directly on these soils at the lower level. As an alternative, the footings could also bear on properly compacted structural fill. Minus ¾-inch crushed stone may be used in place of structural fill extending down to the suitable soils. Overexcavation for compacted structural fill placement below footings should extend laterally beyond all edges of the footings at least 8 inches per foot of overexcavation depth below footing base elevation. The overexcavation should then be backfilled up to the footing base elevation with well graded granular material placed in lifts of 8 inches or less in loose thickness and

compacted to at least 95 percent of the modified Proctor maximum dry density (ASTM D1557, Method C). The overexcavation and backfill procedure is described in the following figure:

NOTE: Excavations in sketches shown vertical for convenience. Excavations should be sloped as necessary for safety.

The contractor should prevent groundwater, if encountered, and surface water runoff from collecting in the excavation. Subgrade soils that become unstable because of water and/or reworking by construction activity should be replaced with compacted structural, as necessary.

The predominant soil type at the recommended subgrade level will be the glacial till, portions of which have an elevated silt content. Soils with a higher silt content will be sensitive to excess moisture and lose strength quickly during wet periods. Contractors experienced in earthwork construction in this region should be aware of the silty soil behavior and the effect that moisture and inclement weather can have on its workability. If a contractor bids construction knowing that earthwork must begin during the winter or wet months, the contractor should include a contingency in his bid to use off-site suitable fill, and to remove and dispose of on-site soils that become unsuitable.

4.3.1.3 Drilled Shaft Design Recommendations

Description	Value
Net Allowable Bearing Capacity ¹	
Bedrock (>16 feet)	10 ksf
Ultimate Side Friction ²	
Glacial Till (3.5 to 15 feet)	2 ksf
Ultimate Bond	
Bedrock (>15 feet)	10 ksf
Coefficient Lateral Subgrade Reaction ³	
Glacial Till (0 to 5 feet)	30 (z/D) kcf
Glacial Till (5 to 15 feet)	70 (z/D) kcf
Bedrock (>15 feet)	100 (z/D) kcf

Description	Value	
Angle of Internal Friction		
Glacial Till (0 to 5 feet)	32 degrees	
Glacial Till (5 to 15 feet)	34 degrees	
Bedrock (>15 feet)	40 degrees	
Estimated In-situ Unit Weight		
Glacial Till	125 pcf	
Bedrock	140 pcf	
Approximate Groundwater Depth (5/27/2015)	Not Encountered	
Concrete minimum 28-day unconfined compressive strength ⁴	4,000 psi	
Minimum drilled shaft diameter	Diameter of "Monopine" base	
Allowable deflection at top of shaft	0.5 inch	

- The allowable end bearing pressure assumes that loose rock and sloughed soil at the base of the shaft has been removed.
- Contribution to shaft capacity from soil above a depth of 3.5 feet should be ignored. The uplift capacity of the shaft will be based on side friction and the dead weight of the shaft.
- 3. z is depth below the ground surface and D is diameter of shaft, both in feet.
- 4. Use air entrained concrete.

We anticipate that the design length of the shaft will be primarily dependent on the embedment/lateral capacity required to resist live loading, such as the combination of wind and ice loads. However, the base of the drilled shaft should be in bedrock at least 16 feet below ground surface. The drilled shaft will be designed to resist tension loads and therefore should have reinforcing steel installed throughout the entire length of the shaft. Technical specifications should be prepared that require material and installation detail submittals, proof of experience in drilled shaft installation, concrete placement methods, and hole stabilization methods.

4.3.1.4 Drilled Shaft Construction Recommendations

The drilled shaft should be aligned vertically. The drilling method or combination of methods selected by the contractor should be submitted for review by the geotechnical engineer, prior to mobilization of drilling equipment.

A section of temporary casing may be required to reduce the likelihood of caving of the side walls of the shaft hole. Concrete should be placed by directing the concrete down the center of the shaft in order to reduce the likelihood of hitting the reinforcing steel and segregating. Groundwater, if encountered in the shaft, should be removed prior to placing concrete. The contractor should take these aspects into account in his proposed drilling method(s).

Proposed Homeland Towers: Salisbury CT-114 a Salisbury, Connecticut

June 4, 2015 # Terracon Project No. J2155143

4.3.2 Equipment Cabinet Foundations

Equipment cabinets and ancillary structures may be supported on slabs underlain by at least a 12-inch thickness of compacted structural fill. Minus ¾-inch crushed stone may be used in place of structural fill. Design recommendations for the proposed structures are presented in the following table:

4.3.2.1 Slab Design Recommendations

7.0.2.1	Olab Boolgii Hotoiiiii	
	Description	Value
	t (compacted structural fill or h crushed stone)	12-inch thick layer
Net allowabl	e bearing pressure	2,000 psf
Modulus of	subgrade reaction	200 pounds per square inch per in (psi/in) for point loading
	nbedment below finished est protection ^{1,2}	42 inches
Approximate	e total settlement ³	1 inch
Estimated d	ifferential settlement ³	½ inch
Coefficient of	of sliding friction 4,5	0.5 (ultimate)

- Consideration should be given to using dense insulation boards (Dow Styrofoam Highload, or similar) under and adjacent to lightly loaded slabs-on-grade, to provide the equivalent of 42 inches of earth cover, thus reducing frost penetration.
- 2. Air entraining admixtures should be used for concrete exposed to freezing.
- Settlement will depend upon the variations within the subsurface soil profile, the structural loading conditions, the thickness of compacted fill, and the quality of the earthwork operations.
- 4. A factor of safety of at least 1.5 should be applied to the sliding resistance.
- 5. If rigid insulation is used beneath the slab for frost protection, the coefficient of sliding friction between the concrete and the insulation should be based on the manufacturer's recommendation.

4.3.2.2 Slab Construction Considerations

On most tower sites, the site grading is generally accomplished early in the construction phase. However, as construction proceeds, the subgrade may be disturbed by foundation excavations, construction traffic, rainfall, etc. As a result, the slab subgrade may not be suitable for placement of structural fill and corrective action will be required.

We recommend the area underlying the slabs be rough graded and then thoroughly compacted with a heavy plate compactor or vibratory roller prior to final grading and placement of structural fill. Minus ¾-inch crushed stone may be used in place of structural fill. Particular attention should be paid to high traffic areas that were rutted and disturbed earlier and to areas previously filled or backfilled. Areas where unsuitable or unstable conditions are located should be repaired by removing and replacing the affected material with properly compacted structural fill or minus ¾-inch crushed stone, as necessary.

4.4 Seismic Considerations

Description	Value				
Code Used ¹	Connecticut State Building Code (CBC)				
Site Class ²	С				
Maximum considered earthquake ground	0.065g (1.0 second spectral response acceleration)				
motions (5 percent damping)	0.231g (0.2 second spectral response acceleration				
Liquefaction potential in event of an earthquake	Not susceptible				

- The CBC incorporates the Seismic Design Category approach of the 2003 International Building Code (IBC).
- The CBC uses a site soil profile determination extending a depth of 100 feet for seismic site classification. The current scope requested does not include a 100-foot soil profile determination; the boring performed for this report extended to a maximum depth of 15 feet. However, the encountered bedrock will extend to a depth of at least 100 feet.

5.0 GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications, so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide observation and testing services during grading, excavation, foundation construction, and other earth-related construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the explorations performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between the explorations, across the site, or due to the modifying effects of weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified, so that further evaluation and supplemental recommendations can be provided.

Resistivity testing may be influenced by the presence of boulders or other anomalies within the test area. Resistivity results will also fluctuate depending on the degree of compaction, moisture content, soil constituent solubility, and temperature. Field resistivity values may vary depending upon season, precipitation, and other conditions, which may be different from those at the time of testing.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or

prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

APPENDIX A FIELD EXPLORATION

LEGEND

⊕ B-1 TEST BORING LOCATION

P-1 TEST PROBE LOCATION (TYP)

RESISTIVITY TEST LOCATION (TYP)

NOTES:

- 1. THIS DIAGRAM WAS PREPARED BASED ON A PLAN BY ALL-POINTS TECHNOLOGY CORPORATION OF KILLINGWORK, CONNECTICUT, SHEET No. SP-1, TITLED "SITE PLAN", REVISED: NOVEMBER 14, 2014.
- THE TEST BORING B-1 AND TEST PROBES P-1 THROUGH P-4 WERE ADVANCED ON MAY 20, 2015 UNDER THE DIRECTION OF TERRACON OWNED AND OPERATED BY NEW ENGLAND BORING CONTRACTORS, INC. OF GLASTONBURY, CONNECTICUT.
- RESISTIVITY TESTING WAS PERFORMED ON MAY 20, 2015 BY A TERRACON FIELD ENGINEER.
- 4. THE APPROXIMATE LOCATIONS OF THE TEST BORING, TEST PROBES, AND RESISTIVITY TESTS WERE TAPED FROM SITE FEATURES. THE LOCATIONS SHOULD BE CONSIDERED ACCURATE ONLY TO THE DEGREE IMPLIED BY THE METHOD USED.
- 5. UE OF THIS DIAGRAM IS LIMITED TO THE ILLUSTRATION OF THE APPROXIMATE LOCATIONS OF THE TEST BORING, TEST PROBES, RESISTIVITY TESTS, AND OTHER PERTINENT SITE FEATURES. ANY OTHER USE OF THIS DIAGRAM WITHOUT PERMISSION FROM TERRACON IS PROHIBITED.

Project Minyr	TKT	Project No.	J2155143
Drawn By:	TKT	Scale:	1" = 40"
Checked By:			1 -40
	RWM	Fie No.	J2155143
Approved By:	RWM	Date:	June 2015

EXPLORATION	LOCATION DIAGRA	М
-------------	-----------------	---

PROPOSED HOMELAND TOWERS: CT-114

250 CANAAN ROAD SALISBURY, CONNECTICUT

A-2

EXHIBIT

Proposed Homeland Towers: Salisbury CT-114

Salisbury, Connecticut June 4, 2015

Terracon Project No. J2155143

lerracon

Field Exploration Description

The approximate test boring and probe locations, which are shown on Exhibit A-2, were measured by taping from existing features in the field and by estimating right angles. The locations of the explorations should be considered accurate only to the degree implied by the method used to define them. The ground elevation at the exploration locations were estimated by interpolating between contours of existing grade shown on the provided "Compound Plan & Tower Elevation", Sheet No. SP-2, revised November 14, 2014, which includes contours at 2-foot intervals.

Terracon observed the advancement of one test boring (B-1) and four test probes (P-1 through P-4) within the proposed tower compound on May 27, 2015 using a ATV-mounted Mobile B-53 rotary drill rig, owned and operated by New England Boring Contractors, Inc. of Glastonbury, Connecticut. B-1 was advanced using 31/4-inch inside diameter hollow stem augers to a depth of approximately 15 feet, terminating upon refusal on probable bedrock. The boring was offset twice. The augers encountered refusal at a similar depth at the offset locations.

In the split-barrel sampling procedure utilized in B-1, the number of blows required to advance a standard 2-inch O.D. split-barrel sampler typically the middle 12 inches of the total 24-inch penetration by means of a 140-pound safety hammer with a free fall of 30 inches is the Standard Penetration Test (SPT) resistance value "N". This "N" value is used to estimate the *in-situ* relative density of cohesionless soils and consistency of cohesive soils.

The soil samples were placed in labeled glass jars and transported to our office for further review and classification by a Terracon geotechnical engineer. Information provided on the boring log attached to this report includes soil descriptions, relative density and/or consistency evaluations, boring depths, sampling intervals, and groundwater conditions. The boring was backfilled with auger cuttings prior to the drill crew leaving the site.

P-1 through P-4 were advanced with 4-inch diameter solid stem augers to further evaluate the subsurface conditions within the proposed tower compound and underground electrical and telecommunication conduits areas. The probes terminated in the glacial till at a depth of about 10 feet. The probes were backfilled with auger cuttings prior to the drill crew leaving the site.

Field logs of the explorations were prepared during drilling, including visual classification of the materials encountered as well as interpretation of the subsurface conditions between samples. The final exploration logs included with this report represents further interpretation by the geotechnical engineer of the field logs.

			BORING L	OG NO. B-	1				F	Page 1 of 1
PR	ROJECT:	Proposed Homeland Towers :	CT-114	CLIENT: Home Danb	eland Towers ury, Connection	cut _				
SI	TE:	250 Canaan Road Salisbury, Connecticut					,			
GRAPHICLOG	DEPTH	N See Exhibit A-2		Approximate Surfa	ce Elev: 893 (Ft.) +/- ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS
	_{0.5} FOR	EST MAT Y SAND (SM), brown, medium dense to	dense (surficially loc	ose), (GLACIAL TILL	892.5+/-			X	12	1-3-3-6 N=6
						_		M	14	4-6-6-7 N=12
						5-	,			0.40.40.40
						_		$\left\langle \right\rangle$	20	6-10-12-14 N=22
						_		\bigvee	18	12-14-16-16 N=30
						10-		\bigvee	26	9-13-19-17
						_		$/\backslash$		N=32
						_				
⟨Ø ∕€		r Refusal on Probable Bedrock at 15 i	Feet	1 11 11 11 11 11 11 11 11 11 11 11 11 1	878+/-	15			0	100/0"
		on lines are approximate. In-situ, the transition maken with a 2" O.D. split spoon sampler driven by		inch						
3 1/4 Aband	and cable. cement Meth 4-inch inside onment Meth	od: diameter hollow stem augers od:	See Exhibit A-3 for desc procedures. See Appendix B for des procedures and addition See Appendix C for exp	ription of field cription of laboratory al data (if any).	Notes: Boring offset 5 feet offset 5 south with a	north wit uger refi	h auge usal at	er refu : 14.5	ısal at feet.	15 feet. Boring
	ng backfilled	with soil cuttings upon completion.	abbreviations.							
		R LEVEL OBSERVATIONS Water Observed	16ee	acon	Boring Started: 5/27/2		E	loring	Comp	leted: 5/27/2015
**			. 201 Hamme	EJLLUI er Mill Road Connecticut	Driff Rig: Mobile B-53 Project No.: J215514			xhibi	: O. Cc	ne \-4
			I GOORY FIRE		,	-	14		., ,	

PROBE LOG NO. P-1 Page 1 of 1									
PROJEC	CT: Proposed Homeland Towers:	CT-114	CLIENT: Homel Danbu	and Towers ry, Connectio	ut				
SITE:	250 Canaan Road Salisbury, Connecticut					1	 -	· T	
GRAPHIC LOG	TION See Exhibit A-2		Approximate Surface	1	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS
DEPTH	OREST MAT			ELEVATION (Ft.) 893.5+/-		╁			
	ILTY SAND (SM), brown, (GLACIAL TILL)			693.041-	_				
10.0	ILI I SAND (SIA).			884+/-	5-				
Strat	ification lines are approximate. In-situ, the transition materials the solid stem augers	See Exhibit A-3 for de procedures.	escription of field escription of laboratory onal data (if any).	Notes:					
	kfilled with soil cuttings upon completion.		xplanation of symbols and				· · · ·		
	VATER LEVEL OBSERVATIONS Free Water Observed		in mand from Card Mandy	Probe Started: 5/27			├		pleted: 5/27/2015
NO I	100 ANGIGE Chroningn			Drill Rig: Mobile B-5	53		Drille	er: O. C	òne
		Rocky H	mer Mill Road II, Connecticut	Project No.: J21551	43		Exhi	bil:	A-5

		PROBE	LOG NO. P-2	2				Pa	nge 1 of 1
PROJEC	T: Proposed Homeland Towers : C	T-114	CLIENT: Homela Danbur	nd Towers y, Connectio	ut				
SITE:	250 Canaan Road Salisbury, Connecticut						· ·		
GRAPHIC LOG	TION See Exhibit A-2		Approximate Surface	Elev: 892 (Ft.) +/- ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS
DEPTH 21/2 22 FO 7/3 1/4 0.7	DREST MAT			891.5+/-					
SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL JZ135143 TOWER SALISBOOK TO STORY OF ST	Probe Terminated at 10 Feet tification lines are approximate. In-situ, the transition mat Method: meter solid stem augers	See Exhibit A-3 for o		Notes:	5-				
Abandonme Boring ba	nt Method: ckfilled with soil cuttings upon completion.	See Appendix B for procedures and add See Appendix C for abbreviations.	description of laboratory itional data (if any). explanation of symbols and						
9 Log	NATER LEVEL OBSERVATIONS			Probe Started: 5/2	7/2015		Pro	be Con	pleted: 5/27/2015
No No	Free Water Observed	ller	racon	Drill Rig: Mobile B	-53		Dri	ler: O.	Cone
8 B		201 Ha	mmer Mill Road Hill, Connecticut	Project No.: J2159	5143		Ext	sibit:	A-6

PROBE LOG NO. B-3 Page 1 of 1						
PROJECT: Proposed Homeland Towers : C	PROJECT: Proposed Homeland Towers : CT-114 CLIENT: Homeland Towers Danbury, Connecticut					
SITE: 250 Canaan Road Salisbury, Connecticut						
UNITED LOCATION See Exhibit A-2	Approximate Surface Elev: 892	DEPTH (Ft.) WATER LEVEL OBSERVATIONS	SAMPLE TYPE RECOVERY (In.) FIELD TEST RESULTS			
DEPTH 10 Algorithm FOREST MAT		891,5+/-				
SILTY SAND (SM), brown, (GLACIAL TILL) 10.0 Probe Terminated at 10 Feet Stratification lines are approximate. In-situ, the transition may advancement Method:		5—				
Stratification lines are approximate. In-situ, the transition may	y be gradual.					
EPARA	- I Make					
Advancement Method: 4-inch diameter solid stem augers Abandonment Method: Boring backfilled with soil cuttings upon completion. WATER LEVEL OBSERVATIONS No Free Water Observed	See Exhibit A-3 for description of field procedures. See Appendix B for description of laboratory procedures and additional data (if any). See Appendix C for explanation of symbols and abbreviations.					
WATER LEVEL OBSERVATIONS	Probe Sta	arted: 5/27/2015	Probe Completed: 5/27/2015			
No Free Water Observed		Mobile B-53	Driller: O. Cone			
2 2 2 2	201 Hammer Mill Road	lo.: J2155143	Exhibit: A-7			

PROBE LOG NO. P-4 Page 1 of 1									
PR	OJECT: Proposed Homeland Towers : 0	CT-114	CLIENT: Home Danbi	land Towers ury, Connectio	ut				
SIT	TE: 250 Canaan Road Salisbury, Connecticut								
GRAPHIC LOG	LOCATION See Exhibit A-2				DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS
GP.	DEPTH		Approximate Surfac	ce Elev: 894 (Ft.) +/- ELEVATION (Ft.)	<u> </u>	WA	SAIV	REC	ĒĽ
21. 7	0.5 FOREST MAT		-	893.5+/-					
	SILTY SAND (SM), brown, (GLACIAL TILL)				_				
					_				
			,		5-				
					_	-			
	10.0			884+/-	10-		:		
	Probe Terminated at 10 Feet								
				;					
	Stratification lines are approximate. In-situ, the transition may	y be gradual.	H-4 L-4						
4-in	ch diameter solid stem augers	See Exhibit A-3 for desc procedures. See Appendix B for des procedures and addition	cription of laboratory al data (if any).	Notes:					
Aband Bor		See Appendix C for exp abbreviations.	anation of symbols and						
	WATER LEVEL OBSERVATIONS No Free Water Observed	76		Probe Started: 5/27/2	2015		Probe	Comp	oleted: 5/27/2015
	NOTICO TRICI OMBOLYCO	201 Hamme	acon	Drill Rig: Mobile 8-53			Drille Exhib	r: O. C	опе A-8
		Rocky Hill,	Connecticut	Project No.: J215514	i o		CXI IIO	nt.	7 1°0

APPENDIX B LABORATORY TESTING

lerracon

Proposed Homeland Towers: Salisbury CT-114

■ Salisbury, Connecticut June 4, 2015

■ Terracon Project No. J2155143

Laboratory Testing

Descriptive classifications of the soils indicated on the Terracon boring and probe logs are in accordance with the enclosed General Notes and the Unified Soil Classification System (USCS). USCS symbols are also shown. A brief description of the USCS is attached to this report. Classification was by visual/manual procedures.

APPENDIX C SUPPORTING DOCUMENTS

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

	П	M		Water Initially Encountered		(HP)	Hand Penetrometer
	Auger	Split Spoon		Water Level After a Specified Period of Time		(T)	Torvane
٥			VEL	Water Level After a Specified Period of Time	STS	(b/f)	Standard Penetration Test (blows per foot)
PLI	Shelby Tube	Macro Core	RLE	Water levels indicated on the soil boring logs are the levels measured in the	D TE	(PID)	Photo-ionization Detector
SAMPLING	Ring Sampler	Rock Core	WATE	borehole at the times indicated. Groundwater level variations will occur over time. In low permeability soils,	FIELI	(OVA)	Organic Vapor Analyzer
	Grab Sample	No Recovery		accurate determination of groundwater levels is not possible with short term water level observations.			

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	(More than Density determin	NSITY OF COARSE-GRA n 50% retained on No. 200 ned by Standard Penetrali des gravels, sands and sil) sieve.) on Resistance	CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance					
RMS	Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength, Qu, tsf	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.		
뿌	Very Loose	0-3	0-6	Very Soft	less than 0.25	0 - 1	< 3		
NGTH	Loose	4 - 9	7 - 18	Soft	0.25 to 0.50	2 - 4	3 - 4		
TREN	Medium Dense	10 - 29	19 - 58	Medium-Stiff	0.50 to 1.00	4 - 8	5 - 9		
S	Dense	30 - 50	59 - 98	Stiff	1.00 to 2.00	8 - 15	10 - 18		
	Very Dense	> 50	<u>></u> 99	Very Stiff	2.00 to 4.00	15 - 30	19 - 42		
				Hard	> 4.00	> 30	> 42		

RELATIVE PROPORTIONS OF SAND AND GRAVEL

GRAIN SIZE TERMINOLOGY

PLASTICITY DESCRIPTION

Descriptive Term(s) of other constituents	Percent of Dry Weight	Major Component of Sample	Particle Size
Trace With Modifier	< 15 15 - 29 > 30	Boulders Cobbles Gravel Sand Silt or Clay	Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s)	Percent of	<u>Term</u>	Plasticity Index
of other constituents	<u>Dry Weight</u>	Non-plastic	0
Trace	< 5	Low	1 - 10
With	5 - 12	Medium	11 - 30
Modifier	> 12	High	> 30

UNIFIED SOIL CLASSIFICATION SYSTEM Soll Classification Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests A Group Group Name B Symbol GW Well-graded gravel f Cu ≥ 4 and 1 ≤ Cc ≤ 3 E Clean Gravels: Gravels: Less than 5% fines ^c GP Poorly graded gravel f Cu < 4 and/or 1 > Cc > 3 E More than 50% of Silty gravel F.G.H GM coarse fraction retained Fines classify as ML or MH Gravels with Fines: Coarse Grained Soils: on No. 4 sieve More than 12% fines c Clayey gravel F,G,H Fines classify as CL or CH GC More than 50% retained Cu ≥ 6 and 1 ≤ Cc ≤ 3^E Well-graded sand i SW Clean Sands: on No. 200 sieve Sands: Less than 5% fines ^D Cu < 6 and/or 1 > Cc > 3^E SP Poorly graded sand I 50% or more of coarse Silty sand ^{G,H,I} fraction passes No. 4 Fines classify as ML or MH SM Sands with Fines: Clayey sand GR, sieve More than 12% fines ^D Fines classify as CL or CH SC Lean clay K.L.M CL PI > 7 and plots on or above "A" line Inorganic: Silt KLIII PI < 4 or plots below "A" line " ML Silts and Clays: Organic clay K,L,M,N Liquid limit less than 50 Liquid limit - oven dried Organic: OL. < 0.75 Fine-Grained Soils: Organic silt K,L,M,O Liquid limit - not dried 50% or more passes the Fat clay KLM PI plots on or above "A" line СН No. 200 sieve Inorganic: Elastic Silt KLM Pł plots below "A" line МН Silts and Clays: Organic clay K,L,M,F Liquid limit 50 or more Liquid limit - oven dried Organic: < 0.75 OH Organic silt K,L,M,Q Liquid limit - not dried

Primarily organic matter, dark in color, and organic odor

E
$$Cu = D_{60}/D_{10}$$
 $Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}$

Highly organic soils:

PT

Peat

Q Pl plots below "A" line.

A Based on the material passing the 3-inch (75-mm) sieve

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.

D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with clay

^F If soil contains ≥ 15% sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

H If fines are organic, add "with organic fines" to group name.

If soil contains ≥ 15% gravel, add "with gravel" to group name.

If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.

K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.

^L If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.

^M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.

^N Pl ≥ 4 and plots on or above "A" line.

OPI < 4 or plots below "A" line.

P PI plots on or above "A" line.

ATTACHMENT 2

Structural Design Report

Structural Design Report

150' Extendible to 160' Monopine Site: Salisbury, CT Site Number: CT114

Prepared for: INSITE TOWERS LLC by: Sabre Towers & Poles TM

Job Number: 130280 Revision A November 3, 2015

Monopole Profile	1-2
Foundation Design Summary	3
Pole Calculations	4-15
Foundation Calculations	16-17

Load Case Reactions

Description	Axial (kips)	Shear (kips)	Moment (ft-k)	Deflection (ft)	Sway (deg)
3s Gusted Wind	92.59	87.08	10517.74	12.73	9.06
3s Gustad Wind 0,9 Dead	59,43	87.23	10407,82	12.53	8.9
3s Gusted Wind&lee	144.3	20.26	2530.75	3.16	2.23
Service Loads	77.21	21.71	2617.21	3.22	2.27

Base Plate Dimensions

Shape	Diamoter	Thiclness	Bolt Circle	Bolt Qty	Bolt Diameter
Round	83,51	2,51	77,75*	28	2,25"

Anchor Bolt Dimensions

-	Length	Diameter	Hole Diameter	Weight	Туре	Finish
0.	84"	2.251	2,625"	3390.8	A515-75	Ga\v-18"

Material List

	Display	Value
	A	3' - 3"
ŋ,	В	10 (Extension)

Notes

- 1241 j ter v 141 @ 601 1805 3101 | 1) Antenna Feed Lines Run Inside Pole
 - 2) All dimensions are above ground level, unless otherwise specified.
 - 3) Weights shown are estimates. Final weights may vary.
- y xeegins amount are estimates. Final weights may vary.

 The Monopole was designed for a basic wind speed of 90 mph with 0° of the control of radial ice, and 40 mph with 1" of radial ice, in accordance with ANSI/TIA-222-G, Structure Class II, Exposure Category C, Topographic Category 1.
 - 5) Foil Height Step Bolts
- 5) his reignt step done

 (b) his structure has been designed to support pine tree branches starting at the 85' elevation to an overall height of 165'.
 - These Appurtenances cannot be installed until the Monopole has been extended.

Sabre Industries

Sabre Communications Corporation

Sobre Communications Corporation From Foundations Corporation From Foundations Corporation From Foundations Corporation From Foundations Corporation From Foundation Foundation

Job: 130280A

Customer: INSITE TOWERS LLC Site Name Salisbury, CT CT114

BI: BD 11/3/2015

150' ext. 160' Monopine

Designed Appurtenance Loading

Elev	Description	⊤ c-Line
156***	3T-Arm - 10 Face - 3' Standoff	
156***	(1) DC5-48-60-18-8F	
156***	(4) GPS-TMG-HR-2ENs	(6) 1/2"
156***	(12) 8' x 1' x 7m Panels	(12) 1 5.81
148	3T-Arm - 8' Face - 3' Standoff	
146	(4) OC6-48-60-18-8Fs	
146	(12) 8' x 1' x 7in Parie's	(12; E/3"
142	(3) ZR Standoff - w* Dirat Finten to	
142	(6) RRUS A2 Modules	
142	(24) RRUS 11s	
136	3T-Arm - 10' Face - 3' Standoff	
136	(3) DC2-48-60-0-9Es	
136	(4) GPS-TMG-HR-26Ns	(4) 1/2
136	(12) 8' x 1' x 7m Panels	(18) 1 E/5"
132	(3) 2ft Standoff - w/ Dual Antanna	
132	(6) FD9R6004s	
132	(12) RRUS 11s	
126	3T-Arm - 10' Face - 3' Stan folf	

Elev	Description	Tx-Lin
126	(1) DC6-48-60-18-8F	1.7
28	(12) 6' x 1' x 7:n Pansia	(12) 15/8"
122	(3) 2it Standoff - v// Evel Antenna	
122	(12) E15S0SP3Cs	
122	(12) RRUS 116	(4) 1/2*
115	3T-Aun: - 10' Face - 3' Standoff	
116	(1) DC6-48-60-18-SF	
116	(12) 8's 1' x 7in Panols	(12) 1 5/8"
112	(3) 2ft Standoff - w/ Dual Antenna	
112	(12) E16809P803	
112	(12) RRUS 11s	(4) 1/2"
106	3T-Arm - 10' Face - 3' Standolf	
106	(1) 3GE-49-60-18-8F	
103	(12) 81 x 11 x 7 in Panets	(12) 15/8"
102	(3) 2f; Crandoff - W Eval Antenna	
:02	(12; £15\$09P80s	
102	(FZ) RRUS 11s	(4) 1/21

Sabre Communications Corporation
7/10/ Southing a Dave
9/0 Bex 658
Flowers and Poles
Flowers and Poles
Flowers and Poles
Flowers and Poles
Flowers (April 1992)
Flowers (April 19

130280A

Job:

Customer: INSITE TOWERS LLC

Site Name: Salisbury, CT CT114 Description: 150' ext. 160' Monopine

Date. 11/3/2015

By: BD

No.: 130280

Date: 11/3/15 By: BD Revision A

Customer: INSITE TOWERS LLC Site: Salisbury, CT CT114

150' Extendible to 160' Monopole at 90 mph Wind with no ice and 40 mph Wind with 1 in. Ice per ANSI/TIA-222-G. Antenna Loading per Page 1

<u>ELEVATION VIEW</u> (79.43 Cu. Yds.) (1 REQUIRED; NOT TO SCALE)

Notes:

- 1). Concrete shall have a minimum 28-day compressive strength of 4500 PSI, in accordance with ACI 318-05
- 2). Rebar to conform to ASTM specification A615 Grade 60.
- 3). All rebar to have a minimum of 3" concrete cover.
- 4). All exposed concrete corners to be chamfered 3/4".
- 5). The foundation design is based on the geotechnical report by Terracon, Project No. J2155143, dated June 4, 2015
- 6). See the geotechnical report for compaction requirements, if specified.
- 7). The foundation is based on the following factored loads:
 Moment (kip-ft) = 10517.74
 Axial (kips) = 92.59
 Shear (kips) = 87.08

	Rebar Schedule per Pad and Pier							
	(48) #10 vertical rebar w/ hooks at bottom w/							
Pier	#5 ties, two within top 5" of top of pier then							
	12" C/C							
Pac	(78) #10 horizontal rebar evenly spaced							
Pau	each way top and bottom (312 total)							

- 3). This is a design drawing only. Please see final construction drawings for al installation details.
- 9). 4.25 ft of soil cover is required over the entire area of the foundation slab.

Information contained herein is the sole property of Sabre Towers & Poles, constitutes a trade secret as defined by lowa Code Ch. 550 and shall not be reproduced, copied or used in whole or part for any purpose whatsoever without the prior written consent of Sabre Towers & Poles.

130280A - Extension

(USA) - Monopole Spatial Analysis (c) 2015 Guymast Inc. Fax:(416)736~4377 Tel:(416)736-7453 Web:www.guymast.com Processed under license at: Sabre Towers and Poles on: 3 nov 2015 at: 14:29:56

150' ext. 160' Monopine / Salisbury, CT

* All pole diameters shown on the following pages are across corners. See profile drawing for widths across flats.

POLE G	EOMETRY								
ELEV ft	SECTION NAME	No.of STDES	OUTSIDE DIAM in		%ESIS →*Pn kip	ብዛቸቁ	SPLICE TYPE	OVERI LENGTH ft	LAP RATIO
159.0				0.250		******			
	٨	18	10.07	0.050	33 Yn 3	100.0			
149.0		1	19.87	0.250	1138.7	450.2			
	ь	10	22.30	0.250	1280.2	569.3			
142.2			22.30	0.250	1280.2	569.8			
	B/C	18	22.99	0.375			SLIP	3.25	1.72
139.0			22.99	0.375	1963.8	893.9			
	c	18	37.45	0.375	3228.5	2418.8			
99.0		•••••	37.45	0.375	3223.5	2418.8			
	C/D	3	38.71	0.500	4435.5	3414.1	SLIP	5.50	1.73
93.5			38.71	0.500	4435.5	3414.1			
	D	18	53.25		6063.1				
53.2				0.500					
	D/E	18		0.500			SLIP	7.75	1,71
45.5				0.500					
	E	13	71.54		2713.4				
0.0									

POLE ASSEMBLY

SECTION NAME	BASE ELEV ft	NUMBER	BOLTS TYPE	AT BASE DIAM in	or SECTION STRENGTH ksi	THREADS IN SHEAR PLANE	CALC BASE ELEV ft
A B C D E	149.000 139.000 93.500 45.500 0.000	0 0 0 0	A325 A325 A325 A325 A325	0.00 0.00 0.00 0.00 0.00	92.0 92.0 92.0 92.0 92.0	0 0 0 0	149.000 139.000 93.500 45.500 0.000

POLE SECTIONS _____

SECTION NAME	No.of SIDES	LENGTH O	IO. AOXZTU T <u>Ç</u> B ni	LAMETER TOP in	THIC:- NESS in	MAT- ERIAL ID	F.AN BOT	GE.ID TOP	FLANGE GROUF BOT	
A 8 C D E	18 18 13 13	10.00 10.00 48.75 53.50 53.25	19.87 73.49 39.46 56.08 71.54	16.25 19.87 21.80 36.70 52.25	0.250 0.250 0.375 0.500 0.500	1. 2. 3. 4. 5.	0.00	0 0 0 0	0 0 0 0	0 0 0 0

^{* -} Diameter of circumscribed circle

MATERIAL TYPES

			& deg	in	io	130280A in	- Exten in	sion	deg
PL PL PL PL PL	1 2 3 4 5	1 1 1 1	0.0 0.0 0.0 0.0	19.87 23.49 39.46 56.08 71.54	0.25 0.25 0.38 0.50 0.50	0.250 0.250 0.375 0.500 0.500	0.250 0.250 0.375 0.500 0.500	0.00 6.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0

& - With respect to vertical

MATERIAL PROFERTIES

MATERIAL TYPE NO.	ELASTIC MODULUS ksi	UNIT WEIGHT pcf	STRI Fu ksi	ENGTH Fy ksi	THERMAL COEFFICIENT /deg
1	29000.0	490.0	80.0	65.0	0.00001170
2	29000.0	490.0	80.0	65.0	0.00001170
3	29000.0	490.0	80.0	65.0	0.00001170
4	29000.0	490.0	80.0	65.0	0.00001170
5	29000.0	490.0	80.0	65.0	0.00001170

LOADING CONDITION A

90 mph wind with no ice. Wind Azimuth: 04

LOADS ON POLE

TYPE	LOAD	ELEV	APPLYLO	ADAT	LOAD	FORCE	E S	EOM	
C 161.500	TYPE	6+		AZI	AZI				
C 155,000 0.00 0.0 0.0 0.0 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.000		ľť	тт,			ψÞ	χтр	1 (-1, 1)	•
C 155.000 0.00 0.0 0.0 0.0 0.0 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.									
C 145,000 0,00 0,0 0,0 0,0 0,0 0,0000 0,0000 0,0000 C 141,500 0,00 0,00 0,0 0,0 0,0 0,0 0,0 0,0 0	ç								
C 145,000 0,00 0,0 0,0 0,0 0,0 0,0000 2,1715 0,0000 0,0000 C 141,500 0,00 0,00 0,0 0,0 0,0000 2,1715 0,0000 0,0000 C 141,500 0,00 0,0 0,0 0,0 0,0 2,3638 0,6000 0,0000 0,0000 C 136,500 0,00 0,0 0,0 0,0 2,3461 0,6600 0,0000 0,0000 C 135,000 0,00 0,0 0,0 0,0 2,3461 0,6600 0,0000 0,0000 C 135,000 0,00 0,0 0,0 0,0 0,0 2,3461 0,6600 0,0000 0,0000 C 135,000 0,00 0,0 0,0 0,0 0,0 0,0 3,2738 0,0600 0,0000 0,0000 C 135,000 0,00 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	Č								
C 145,000 0,00 0,0 0,0 0,0 0,0 0,0000 2,1715 0,0000 0,0000 C 141,500 0,00 0,00 0,0 0,0 0,0000 2,1715 0,0000 0,0000 C 141,500 0,00 0,0 0,0 0,0 0,0 2,3638 0,6000 0,0000 0,0000 C 136,500 0,00 0,0 0,0 0,0 2,3461 0,6600 0,0000 0,0000 C 135,000 0,00 0,0 0,0 0,0 2,3461 0,6600 0,0000 0,0000 C 135,000 0,00 0,0 0,0 0,0 0,0 2,3461 0,6600 0,0000 0,0000 C 135,000 0,00 0,0 0,0 0,0 0,0 0,0 3,2738 0,0600 0,0000 0,0000 C 135,000 0,00 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	č								
C 145,000 0,00 0,0 0,0 0,0 0,0 0,0000 2,1715 0,0000 0,0000 C 141,500 0,00 0,00 0,0 0,0 0,0000 2,1715 0,0000 0,0000 C 141,500 0,00 0,0 0,0 0,0 0,0 2,3638 0,6000 0,0000 0,0000 C 136,500 0,00 0,0 0,0 0,0 2,3461 0,6600 0,0000 0,0000 C 135,000 0,00 0,0 0,0 0,0 2,3461 0,6600 0,0000 0,0000 C 135,000 0,00 0,0 0,0 0,0 0,0 2,3461 0,6600 0,0000 0,0000 C 135,000 0,00 0,0 0,0 0,0 0,0 0,0 3,2738 0,0600 0,0000 0,0000 C 135,000 0,00 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	č								
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.85.750 0.00 0.0 0.0 0.0 0.7098 0.3700 0.0090 0.2000 0.2	č					5.4361			
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.85.750 0.00 0.0 0.0 0.0 0.7098 0.3700 0.0090 0.2000 0.2	C								
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.85.750 0.00 0.0 0.0 0.0 0.7098 0.3700 0.0090 0.2000 0.2	C								
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.85.750 0.00 0.0 0.0 0.0 0.7098 0.3700 0.0090 0.2000 0.2	č								
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.7098 0.3700 0.00 0.00 0.0 0.00 0.7098 0.3700 0.000 0.30	č								
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.85.750 0.00 0.0 0.0 0.0 0.7098 0.3700 0.0090 0.2000 0.2	č								
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.7098 0.3700 0.00 0.00 0.0 0.00 0.7098 0.3700 0.000 0.30	č								
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.85.750 0.00 0.0 0.0 0.0 0.7098 0.3700 0.0090 0.2000 0.2	č								
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.85.750 0.00 0.0 0.0 0.0 0.7098 0.3700 0.0090 0.2000 0.2	C								
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.7098 0.3700 0.00 0.00 0.0 0.00 0.7098 0.3700 0.000 0.30	Č								
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.7098 0.3700 0.00 0.00 0.0 0.00 0.7098 0.3700 0.000 0.30	C								
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.7098 0.3700 0.00 0.00 0.0 0.00 0.7098 0.3700 0.000 0.30	Č						1.8354		
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.85.750 0.00 0.0 0.0 0.0 0.7098 0.3700 0.0090 0.2000 0.2	č		0.00			0.0000			0.0000
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.85.750 0.00 0.0 0.0 0.0 0.7098 0.3700 0.0090 0.2000 0.2	C						2.6000		0.5000
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.85.750 0.00 0.0 0.0 0.0 0.7098 0.3700 0.0090 0.2000 0.2	Ċ					4.U-27	Z.4043		
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.85.750 0.00 0.0 0.0 0.0 0.7098 0.3700 0.0090 0.2000 0.2	č						0.6000		
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.7098 0.3700 0.00 0.00 0.0 0.00 0.7098 0.3700 0.000 0.30	Ć								
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.7098 0.3700 0.00 0.00 0.0 0.00 0.7098 0.3700 0.000 0.30	č						0.2131		0.0000
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.7098 0.3700 0.00 0.00 0.0 0.00 0.7098 0.3700 0.000 0.30	č						0,6000		
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.7098 0.3700 0.00 0.00 0.0 0.00 0.7098 0.3700 0.000 0.30	C	105.000							
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.7098 0.3700 0.00 0.00 0.0 0.00 0.7098 0.3700 0.000 0.30	Ç								
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.7098 0.3700 0.00 0.00 0.0 0.00 0.7098 0.3700 0.000 0.30	Č					1 7357			
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.85.750 0.00 0.0 0.0 0.0 0.7098 0.3700 0.0090 0.2000 0.2	Ċ					0.500			
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.85.750 0.00 0.0 0.0 0.0 0.7098 0.3700 0.0090 0.2000 0.2	č					ž.4250			0.0000
C 86,500 0.00 0.0 0.0 2.3704 0.6060 0.6090 0.2090 0.2090 0.85.750 0.00 0.0 0.0 0.0 0.7098 0.3700 0.0090 0.2000 0.2	č	91.500				2.3983			
D 159.000 0.00 130.0 0.0 0.0744 0.0516 0.0000 0.0700 D 142.230 0.00 130.0 0.0 0.0745 0.0768 0.0000 0.0700 D 142.250 0.00 180.0 0.0 0.0745 0.0768 0.0000 0.0700 D 139.000 0.00 180.0 0.0 0.0716 0.3731 0.0000 0.0700 D 139.000 0.00 180.0 0.0 0.0716 0.3731 0.0000 0.0700 D 139.000 0.00 180.0 0.0 0.0711 0.3791 0.0000 0.0700 D 125.667 0.00 180.0 0.0 0.0711 0.3791 0.0000 0.0000 D 125.667 0.00 180.0 0.0 0.0711 0.3791 0.0000 0.0000 D 125.667 0.00 180.0 0.0 0.0716 0.3749 0.0000 0.0000 D 125.333 0.00 180.0 0.0 0.0746 0.3749 0.0000 0.0000 D 112.333 0.00 180.0 0.0 0.0746 0.3749 0.0000 0.0000 D 112.333 0.00 180.0 0.0 0.0746 0.3749 0.0000 0.0000 D 112.333 0.00 180.0 0.0 0.0746 0.3749 0.0000 0.0000 D 139.000 0.000 180.0 0.0 0.5746 0.3749 0.0000 0.0000 D 99.000 0.00 180.0 0.0 0.05444 0.3767 0.0000 0.0000 D 99.000 0.00 180.0 0.0 0.05444 0.3767 0.0000 0.0000 D 99.000 0.00 180.0 0.0 0.05499 0.4198 0.0000 0.5000 D 93.500 0.00 180.0 0.0 0.05493 0.4198 0.0000 0.5000 D 93.500 0.00 180.0 0.0 0.0403 0.4293 0.0000 0.2000 D 93.500 0.00 180.0 0.0 0.00011 0.2595 0.0000 0.2000 D 93.500 0.00 180.0 0.0 0.00011 0.2595 0.0000 0.25900 0.2000 D 93.500 0.00 180.0 0.0 0.00011 0.2595 0.0000 0.25900 0.2000 D 93.0003 0.00 180.0 0.0 0.00011 0.2595 0.0000 0.25900 0.2000	C								
D	C	85.750	0.00	0.9	0.0	0.7098	0.3300	00000	0.550
D	n	159,000	0.00	130.0	0.0	0.0434	0.0546	0.0000	
D 139,000 0,00 180,0 0,00 0,646 0,3731 0,0000 0,000 D 139,000 0,00 180,0 0,0 0,001 0,000						0.0545			0.0000
D		142.250		180.0		Ç.17.716			0.0000
D							0.1751		0.000
D 125.667 0.00 182.0 0.0 0.0746 0.8779 0.000 0.000 D 112.333 0.00 180.0 0.0 0.0746 0.3779 0.000 0.0000 D 112.333 0.00 180.0 0.0 0.5746 0.3779 0.0000 0.0000 D 112.333 0.00 180.0 0.0 0.0 0.544 0.3657 0.0000 0.0000 D 99.000 0.00 180.0 0.0 0.0000 0.30180.0 0.0 0.0000 0.30180.0 0.0 0.0000 0.4198 0.0000 0.5000 D 99.000 0.00 180.0 0.0 0.0000 0.4198 0.0000 0.5000 D 93.500 0.00 180.0 0.0 0.0001 0.4198 0.0000 0.2000 D 93.500 0.00 180.0 0.0 0.0001 0.4293 0.4000 0.2000 D 93.500 0.00 180.0 0.0 0.0001 0.2595 0.0000 0.2000 D 93.500 0.00 180.0 0.0 0.0001 0.2595 0.0000 0.2000 D 93.500 0.00 180.0 0.0 0.0001 0.2595 0.0000 0.2000 D 93.500 0.000 180.0 0.0 0.0001 0.2595 0.0000 0.2000 D 93.500 0.000 180.0 0.0 0.0001 0.2596 0.0000 0.2000 D 93.5000 0.000 180.0 0.0 0.0001 0.2596 0.0000 0.2000 D 93.500 0.000 180.0 0.0 0.0001 0.2596 0.0000 0.2000 D 93.5000 0.0001 0.0001 0.2596 0.0000 0.2000 D 93.5000 0.0000 0.0000 D 93.5000							0.3793		
D									
D 112,533 0.00 180.0 0.6 0.144 0.1887 0.000 0.020 D 99,000 0.00 180.0 0.0 0.644 0.187 0.009 0.009 D 93,000 0.00 180.0 0.0 0.649 0.4198 0.000 0.009 D 93,500 0.00 180.0 0.0 0.3293 0.4198 0.000 0.009 D 93.500 0.00 180.0 0.0 0.001							0.1729		0.000
D 99,000 0,000 180.0 0,00 0,000 0,4198 0,0000 0,0000 D 93,500 0,000 180.0 0,0 0,0001 0,2500 0,0000 0,0000 D 93.500 0,00 180.0 0,0 0,001 0,2500 0,000 0,0000 D 80.003 0,000 0,0001 0,2500 0,0000 D 80.003 0,00 180.0 0,0 0,0001 0,2500 0,0000 0,0000 D		112.533						0.0000	0.000
D 93.500 0.00 180.0 0.0 0.0509 0.4493 0.000 0.0000 D 93.500 0.00 180.0 0.0 0.0051 0.3593 0.0000 0.0000 D 80.033 0.00 180.0 0.0 0.6651 0.2596 9.0000 0.2590						0.0844	0.1817		0.0000
D 93.500 0.00 180.0 0.0 0.0051 0.3595 0.0000 0.0000 D 80.033 0.00 180.0 0.0 0.0051 0.2596 9.0000 0.0000						0.0199	0.4198		0.0000
D 80.033 0.00 180.0 0.0 0.0051 0.2596 0.0090 0.0000									
D 80.083 0.60 180.0 0.0 0.1077 0.2903 0.0000 0.0000							ŏ.2596		0.0000
							0.2903	h.égób	0.0000

^{*} Only 3 condition(s) shown in full * Some concentrated wind loads may have been derived from full-scale wind tunnel testing

					130280A - I	Extension	
66.667	0.00	180.0	0.0	0.1627	0.2003	0.0000	0.0000
66.667	0.00	180.0	0.0	0.1089	0.3209	0.0000	0.0000
53.250	0.00	180.0	0.0	0.1039	0.3209	0.0000	0.0000
53.250	0.00	180.0	0.0	0.1175	0.6348	0.0000	0.6000
45.500	0.00	180.0	0.0	0.1.125	0.6848	0.0000	0.0000
45.500	0.00	180.0	0.0	0.1124	0.3616	0.0000	0.0000
34.125	0.00	180.0	0.0	0.1124	0.3616	0.0000	0.0000
34.125	0.00	180.0	0.0	0.1175	0.3876	0.0000	0.0000
22.750	0.00	180.0	0.0	0.4.25	0.3876	0.0000	0.0000
22.750	0.00	180.0	0.0	0.1083	0.4137	0.0000	0.0000
11.375	0.00	180.0	0.0	0.1683	0.4137	0.0000	0.0000
11.375	0.00	180.0	0.0	0.1:09	0.4398	0.0000	0.0000
0.000	0.00	180.0	0.0	0.109	0.4298	0.0000	0.0000
	66.667 53.250 53.250 45.500 45.500 34.125 22.750 22.750 11.375	66.667 0.00 53.250 0.60 53.250 0.00 45.500 0.60 45.500 0.00 34.125 0.00 22.750 0.00 22.750 0.00 11.375 0.00	66.667 0.00 180.0 53.250 0.00 180.0 53.250 0.00 180.0 45.500 0.00 180.0 45.500 0.00 180.0 34.125 0.00 180.0 22.750 0.00 180.0 22.750 0.00 180.0 11.375 0.00 180.0	66.667 0.00 180.0 0.0 53.250 0.00 180.0 0.0 53.250 0.00 180.0 0.0 45.500 0.00 180.0 0.0 45.500 0.00 180.0 0.0 34.125 0.00 180.0 0.0 34.125 0.00 180.0 0.0 22.750 0.00 180.0 0.0 22.750 0.00 180.0 0.0 11.375 0.00 180.0 0.0 11.375 0.00 180.0 0.0	66.667 0.00 180.0 0.0 0.1089 53.250 0.60 180.0 0.0 0.10839 53.250 0.00 180.0 0.0 0.1235 45.500 0.60 180.0 0.0 0.1175 45.500 0.00 180.0 0.0 0.1125 45.500 0.00 180.0 0.0 0.1124 34.125 0.00 180.0 0.0 0.1124 34.125 0.00 180.0 0.0 0.1125 22.750 0.00 180.0 0.0 0.1235 22.750 0.00 180.0 0.0 0.1233 11.375 0.00 180.0 0.0 0.1383 11.375 0.00 180.0 0.0 0.1433	66.667 0.00 180.0 0.0 0.1927 0.203 66.667 0.00 180.0 0.0 0.1927 0.203 66.667 0.00 180.0 0.0 0.1927 0.3209 53.250 0.60 180.0 0.0 0.1039 0.3209 53.250 0.00 180.0 0.0 0.1175 0.6848 45.500 0.00 180.0 0.0 0.1175 0.6848 45.500 0.00 180.0 0.0 0.1175 0.6848 45.500 0.00 180.0 0.0 0.1124 0.3616 34.125 0.00 180.0 0.0 0.1145 0.3616 34.125 0.00 180.0 0.0 0.1145 0.3616 34.125 0.00 180.0 0.0 0.1145 0.3616 34.125 0.00 180.0 0.0 0.1145 0.3616 34.125 0.00 180.0 0.0 0.1145 0.3876 22.750 0.00 180.0 0.0 0.125 0.3876 22.750 0.00 180.0 0.0 0.1033 0.4137 11.375 0.00 180.0 0.0 0.1033 0.4137 11.375 0.00 180.0 0.0 0.1103 0.4337	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

LOADING CONDITION M

90 mph wind with no ice. Wind Azimuth: 00

LOADS	ON	POLd
=====		

LOAD TYPE	ELEV ft	APPLYLOA RADIUS ft	OAT AZ1	LOAD AZI	HORES	18 19.24 140	VERTICAL ft-kip	NTS TORSMAL ft-Wip
	161.500 155.600 155.600 155.600 146.500 146.500 141.500 141.500 141.500 141.500 141.500 135.000 135.000 131.500 131.500 131.600	0.000 0.000	00.000000000000000000000000000000000000		1.2771 1.2771 1.2771 1.2773 1.2773 2.3781 2.3781 2.3781 2.388 2.3890 2.3890 2.3890 2.3900 2.3900 2.3	0.222462 0.222462 0.222462 0.45600 0.4	0.0000 0.0000	0.0000 0.0000
D D D D D D D D D D D D D D D D D D D	159,000 142,250 142,250 139,000 125,667 125,667 125,667 112,333 112,333 112,333 112,333 109,000 99,000 93,500 80,033 80,0	0.000000000000000000000000000000000000	180.0 180.0	0.0000000000000000000000000000000000000	0.0014 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127	0.62.9 0.03015 0.0300 0.1353 0.0300 0.1353 0	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000

40 mph wind with 1 ice. Mino Azimuth: 0♦

LOADS	ON	FOLE	
======	===		

LOAD TYPE	ELEV ft	APPLYLOAD RADIUS fi	AZI	LOAD AZI	FORCE HOTEZ HOTO	5 Down kio	VERTICAL ft-Wis	NTS TORSNAL ft-kip
	161 . SCO 155 . 600 155 . 600 155 . 600 155 . 600 146 . 500 146 . 500 145 . 600 141 . 500 141 . 500 141 . 500 135 . 000 135 . 000 135 . 000 135 . 000 125 . 000 125 . 000 121 . SCO 131 .	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.0000000000000000000000000000000000000	0.2063 0.2063 1.3049 0.0099 0.0099 0.0099 0.4099 0.4099 0.4453 0.4560 0.4453 0.4560 0.	3330003275300753335300333330033753353003353000753355335	0.0000 0.0000	0.0030 0.0030
D D D D D D D D D D D D D D D D D D D	159.C60 151.500 151.500 142.250 142.250 139.000 125.667 112.343 112.34	0.000000000000000000000000000000000000	180.00 18	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.45.33 0.45.34 0.45.35 0.45.3	0.3	0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000

(USA) - Monegole Spatia: Ana	enr uspansedasna Tysis	====:	/015	Suymast F C.
Tel:(416)736-7453	Fax:(416)736-4		Web : www	.guymast.com
Processed under licers: at:				
Sabre Towers and Poles		on:	1:0V 2011	it: 14:2-:56

150' ext. 160' Monopina / Schisbury, CT

130280) - Extension MAXIMUM POLE DEFORMATIONS CARCULATED(w.r.t. with direction)

MAXIMUM	POLE DEFORMATIO	NS CALCULA	TED(w.r.t.	wisd directiv	nn) :==	
MAST ELEV ft	DEFLEC HORIZONT ALONG		DOWN	ROTA T.E. ALONG	ACROES	TW15.1
159.0	12.730	0.01K	1.44L	9.060	0.034	0.014
151.5	11.570	0.04K	1.26ı.	9.010	0.034	0.0 is.
146.7	10.850	(1.04K	1.14L	8.890	0. .Csk	0. 038
142.2	10.170	0.03K	1.04L	8.730	0.53K	0.02K
139.0	9,690	0.03K	0.97L	8,620	0 . #3X	0,014
125.7	7.80D	0.02K	0.69L	7.910	0.03K	0.033
112.3	6,100	0.02K	0.47L	6.940	0.023	0,064
99.0	4.63D	0.01K	0.31L	5.830	0.02K	0.00K
93.5	4.090	0. 01 K	0.25L	\$.470	0.0/X	0. 7896
80.1	2.93D	0.01K	0.15L	4.54D	0.013	0.čók
66.7	1.980	0.01k	0,08L	3,641	0.0.3	0,00%
53.2	1.23D	€ 00K	0.04L	2,803	0.714	0.00
45.5	0.88p	0.00K	0.02L	2.14D	0.11K	0.000
34.1	0.48A	0.00K	0.01L	1.685	0.45¢	0.000 0.000
22.7	0.21A	0.00K	0.001	1.084	0.16K	0.00. 0.000
11.4	0.05A	0.00K	0.000			
0.0	0.00A	0.00A		0.52A	6 : ex	0.101
0.0	0.00A	************	0.00A	0.(0)	0.05	9.75
	POLE FORCES CAL					
MAST ELEV ft		MEAR.w.r.t. ALOAG Pip		ALONG ft-kip	.WIND.DJk ACROSS ft-ki;	TORSION ft-kip
159.0	1,24 ¢	1.22 K	0.00.0	-3.05	-0.03 0	0.0000
151.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7.12 к 3.54 т	0.00 o	-37.43	0.01 c	0.0± <
146.7).78 ∓).83 ⊭	-0.03 Q	-37.02 ti	0.09 q 0.10 q	-0.0- F
142.2		7.89 M €06 U	0.04 R -0.13 B	-162. 29 C	0.20 1 0.25 C	-0.03 V
139.0	28.18 a 2:	3.84 H 3.72 Ř		-133.47 € -238.29 €	0.46 × 0.48 c	-0.17 U
125.7	45.77 a 37 45.78 a 37					0.71 K
112.3			0.24 F		-6.05 X	1.3%
99.0	68 21 a 53 87 .12 a 68		0.24 F ··· 0.26 F ··· 0.26 F ··	1945, 3 6 Я 194 5,39 В 239 ,7 4 В	-6.05 K -6.03 K -9.14 F	1.3° (
	66 21 a 53 87.12 a 68 87.11 a 68 91.52 a 78	.78 U .84 D	0.24 F 0.26 F 0.23 K	1°45,36 H 11°45,39 H 22,19,74 H 22,19,63 D	-6.05 K -6.03 K -9.14 F -9.03 K -10.25 R	1.37 k 1.97 k 1.91 d 2.21 k
99.0	66 21 a 53 87.12 a 68 87.11 a 63 91.52 a 75 91.52 a 75	78 U 78 U 75 O 73 D	0.24 F 0.26 F 0.23 K 0.23 K 0.23 K	1745,36 H 1315,39 P 1219,74 H 2019,63 D 7641,58 B	-6.03 K -9.14 F -9.03 K -10.23 K -10.23 K	1.3° . 1.9° . 1.9° . 2.7° K
99.0 93.5	66 21 a 53 87 .12 a 68 87 .11 a 63 91 .52 a 75 91 .52 a 75	78 0 78 0 76 0 76 0 73 0	0.24 F 0.26 F 0.23 K 0.23 K 0.20 K 0.20 K	1245,36 H (315,39 H (219,74 H (2)9,63 D (441,58 B (442,67 H (490,07 b	-6.05 X -6.03 F -9.14 F -9.03 E -10.25 E -10.22 X -12.69 F	1.3° (1.9° (1.9° (2.7° K
99.0	66 21 a 53 87.12 a 68 87.11 a 63 91.52 a 75 91.52 a 75 101.02 a 18	.02 0 .78 0 .84 0 .75 0 .75 0 .55 0	0.24 F 0.26 F 0.23 K 0.23 K 0.20 K 0.20 K 0.19 K	1245,36 H 1245,39 F 2249,74 F 2249,63 D 2441,58 B 442,67 H (250,07 D	-6.05 x -6.03 x -9.14 f -9.03 x -10.23 x -10.22 x -12.69 x -12.73 x	1.3° (1.9° (1.8° ? 2.2° K 2.2° C 2.7° C
99.0 93.5 80.1	66 21 a 53 87.12 a 68 87.11 a 63 91.52 a 75 91.52 a 75 101.02 a 18 101.02 a 26 106.63 a 79	.02 0 .78 0 .84 0 .75 0 .75 0 .55 0 .48 8	0.24 F 0.26 F 0.23 K 0.23 K 0.20 K 0.20 K 0.19 K 0.19 K	1245,36 H 1245,39 F 2249,74 F 2249,63 D 2441,58 B 442,67 H (250,07 D 1493,03 D	-6.05 × -6.03 × -9.14 ÷ -9.03 × -10.23 × -10.22 × -12.69 × -12.73 × -15.16 ×	1.3° k 1.9° k 1.9° k 2.2° k 2.2° k 2.7° k 3.3° k
99.0 93.5	66 21 a 53 87.12 a 68 87.11 a 63 91.52 a 75 91.52 a 75 101.02 a 18 101.02 a 26 106.63 a 79	.02 0 .78 0 .84 0 .75 0 .75 0 .55 0 .48 8	0.24 F 0.26 F 0.23 K 0.23 K 0.20 K 0.20 K 0.19 K 0.19 K	1245,36 H 1245,39 F 2249,74 F 2249,63 D 2441,58 B 442,67 H (250,07 D	-6.05 × -6.03 × -9.14 ÷ -9.03 × -10.23 × -10.22 × -12.69 × -12.73 × -15.16 ×	1.3° (1.9° (1.8° ? 2.2° K 2.2° C 2.7° C
99.0 93.5 80.1	66 21 a 53 87.12 a 68 87.11 a 63 91.52 a 75 91.52 a 75 101.02 a 18 101.02 a 26 106.63 a 79	.02 0 .78 0 .84 0 .75 0 .75 0 .51 0 .86 8 .86 8	0.24 F 0.26 F 0.23 K 0.23 K 0.20 K 0.19 K 0.19 K 0.20 K	1245,36 H 1245,39 F 1249,74 F 2449,63 D 2441,58 B 1442,67 H 1440,07 D 1440,07 D 1440,07 D	-6.05 × -6.03 × -9.14 ε -9.03 κ -10.25 π -10.22 x -12.69 × -12.73 × -15.16 × -15.16 ×	1.37 k 1.97 k 2.21 k 2.21 k 2.76 k 2.76 k 3.30 k 3.41 k

7	₹ί`	13:	የጉ	4	-	ΕX	+	n	m sc	٦	Æ	n

base reaction	144.30 a	-87.23 R	-0.22 K 10517.74 A	29. 24 K	-3.98 K
	144.30 a	87.23 R	0.22 K -105/7.74 A	-29.24 K	3.98 (
11.4	137.67 a	85.97 P	0 22 K -0523.86 A	-26.78 K	3.9
	137.67 a	85.97 R	0.22 K -6589.86 A	-26.78 K	3.95 ←
22.7	131.15 a	€4.74 R	0.22 K -8547.92 D	-24.36 K	3.88 <
^^	131.15 a	84.74 R	0.23 K -25587.92 D	-24.36 F	3.88 K
34.1	125.00 a	83,46 R	0.23 K - 2.49 D	-21.82 K	3.76 k
7. 1	125.00 a	83.45 R	0.22 K -7372.47 O	-21.83 K	3.7% K
45.5	119.21 a	82.18 R	0.22 к -6503.35 р	-19.41 k	3.5° K
	119.21 a	82.20 R	0.22 K -6603.41 D	-19,40 K	3.53 K

COMPLIANCE WITH 4.8.2 & 4.5.4

		≠= ::::::::::::::::::::::::::::::::::::	=				
ELEV	AXIAL	BONDING	SHEAR + TORSIONAL	Techni	SATISFIED	D/t(い/t)	MAX ALLOHED
ft							
159.00	0.00€	0.011.	0.00K		YES	9.52A	
	0.01c	0.09€	0.01%	0b4	YES	11.4.A	45.2
151.50	0.01g	0.09к	0.027	0.10K	YES	L. GIA	45.2
	0.01g	0.188	0.02T	0.183	YES	12.€0≥	45.2
146.75	0.01a	0.183	0.02M	0.00	YES	12.604	41.2
	0.02a	0.28C	0.03M	0.360	YES	13.73A	15.2
142.25	0.01a	0.190	0.025	0.35 €	YES	8.57A	43.2
	0.01a	0.260	0.020	0.360	YES	9.11A	45.2
139.00	0.01a	0.27F	0.02R	0.183	YES	433.8	45.2
	0.02a	0.52Н	0.03R	0.32h	YE5	11.134	45.2
125.67	0.02a	0.5290	0.038	0.7 (H	· · · · · · · · · · · · · · · · · · ·	19.114	45. 2
*** 77	0,02a	0.74н	0.04R	0.333	v <u>e</u> s	13.755	/f 2
112.33	0.02a	0.74н	0.04u		YES	13.35%	2
99.00	0.03a	0.92F	0.040	$0.6 \cdots$	MES	15.393	. 2
	0.02a	С.69Н	0.03b	0.719	MES	11,211	5.2
93.50	0.02a	0.744	0.030	0.159	YE5	1,,521	: 2
93.30	0. 02 a	41,274	0.030	0. HE	YES	11.06%	45.2
80.08	0. 02 a	0.830	0.030	0.679	YES	15.864	₹.2
80.08	0.02a	0.85)	0.03R	0.50	YE5	13.36	2
66.67	0.02a	0.900	0.03K	0.233	MES	15.054	25.2
00.07	n.02a	0.500	0.03%	6.43	YE5	13.0%	2
53.25	0.02a	୍, ୨୬୭	0.03%	0. ' '	MES	16, NeA	2
33.23	0.02a	0.925	0.03K	(t. (r.)	ΛĒ.∄	16,777	5.2
45.50	0.02a	0.930	0.03K	0.313	YE!	<u>1</u> 7.795	57.2
	0.02a	ତ.୧୫୨	0. 0 3K	0.90	/F:	17.3.	1,2
34.12	0.02a	0.975	0.03K	C.953	MEE.	18.795	11.2 11.2
	0.02a	0.975	0.03%	0.5	V.Et	18.7°	-
22.75	C,02a	6.935 	0.02K	0.00	YES	20,223 **********	
	0.02a	0.980	0.02K	0	MES.	20.234	.2
11.37	0.02a	0.93A	0.02%	1.000 • • • • • • • • • •	**************************************	2 9.756 ••• 3 ••41 3 ••	7 - 2 - • • • • • • • • • • • • • • • • • • •
	0.02a	0.983	0.02%	1 \	ANES.	2	() 2 () 3
0.00	C.02a	0.984	0.07K	1	MES.	22.000	2

130280A - Extension MAXIMUM LOADS ONTO FOUNDATION(w.r.t. wind discretion)

TORSION ft-kip	.t.WIND.DIR ACROSS ft-lija	MOMENT.W.: ALONE ft-kip	t.WIND.DIR ACROSS kip	SHEAR.W.r. ALONG kip	DOWN kip
3.98	-29,24	-10517.74	0.22	87.23	144.30
<	K	A	K	R	a

(c)2015 Guymast Inc. (USA) - Monopole Spatial Analysis

Tel:(416)736-7453

Fax: (416)736-43/2

Web:www.guymast.com

Processed under license at:

Sabre Towers and Poles

rs and Poles on: 3 nov 2015 at: 14:30:07

150' ext. 160' Monopine / Salisbury, CT

* Only 1 condition(s) shown in full * Some concentrated wind loads may have been derived from full-scale wind tunnel testing

LOADING CONDITION A

60 mph wind with no ice. Wind Azinuth: 00

LOADS ON POLE

LOAD	ELEV	APPLY, LOA	TA, GA	LOAD	FORC	E5		NTS
TYPE		RADIUS	AZI	AZI	EOR€Z	DÖMN	VERTICAL.	TORSHAL
	ft	ft			R≐p	kip	ft-kip	ft kip
c	161,500	0.00	0.0	0.0	0.3020	0,2500	0.0000	0.0000
č	156.500	ŏ.ŏŏ	0.0	ő.ő	0.3003	0.2300	0.0000	0.0000
č	155.000	0.00	0.0	0.0	1,0796	1.9718	0.0000	0.000
C	155.000	0.00	0.0	0.0	0.0602	2,1824	0.0000	0.0000
c c	151.500	0.00	0.0	0.0	0.5060	0.5000	0.000 0 0.0000	0.0000 0.0000
C	146.500	0.00	0.0	0.0	0.7918 1.3313	0.5000 1.9954	0.0000	0.000
č	145,000 145,000	$0.00 \\ 0.00$	$0.0 \\ 0.0$	0.0	0.0000	1.8096	0.0000	0.0000
C C	141.500	0.00	0.0	0.0	0.5775	0.5000	0.0000	0.0000
č	141.000	0.00	0.0	ŏ.ŏ	0.5612	2.5192	0,0000	0.0000
č	136.500	0.00	0.0	0.0	0.3331	0.5000	0.0000	0.0000
č	135.000	0.00	0.0	0.0	<u>1</u> .035 7	1.9763	0.0000	0.5000
C	135.000	0.00	0.0	0.0	0.0090	2.7432	0.0000	0.0000
C.	131.500	0.00	0.0	0.0	0.536	0.5000	0,0000 0,000	0.0000
C	131.000	0.00	0.0	0.0	0,4235 0,5739	1.5256 0.5600	0.0003	0.0000
Ċ C	126.500 125.000	0.00 0.00	0.0	$0.0 \\ 0.0$	1.0230	1.9694	0.0033	0.0000
<u> </u>	125.000	0.00	0.0	0.0	$\dot{\mathbf{o}}$. $\dot{\mathbf{o}}\dot{\mathbf{o}}\dot{\mathbf{o}}$	1.5300	0.0000	0.0000
C C	121.500	0.00	0.0	0.0	0.5591	0.5000	0.0000	0.0000
č	121,000	0.00	0.0	0.0	0.4478	1.5712	0.0000	0.0000
C	121,000	0.00	0.0	0.0	0.6 03	0.3936	0.0000	0.0000
C	116.500	0.00	0.0	0.0	0.1.11	9,5000	9.9(99	0,0000
Ç	115.000	0.00	9.0	0.0	$\frac{1}{0}$, $\frac{1}{1}$	$\frac{1.9094}{1.4352}$	6,310 0 8,010 0	0.000
C	115.(00	0.03 0.00	0.0	0.0 0.0	0	0.5000	6,0100	0.100
Č	111.500 111.000	0.00	0.0	0.0	9 - 13	1. 7.2	53.55	0.1000
C C	111,000	0.60	0.0	0.0	0.25-10	0.1776	0.0120	0.000
Č	106.500	0.50	0.0	0.0	0. + + = 2	0.7500	0.0 00	0.00
č	105.000	0.00	0.0	0.0	0.1.55	96.24	0.0100	0. %30
C	105.000	0.00	(1.0	0.0	0.000	1.7704	9.0092	0,1100
C	101.500	0.00	0.0	0.0	0.6:41	0.1500	0.0000 0.0000	0.2000
Ç	101.000	0.00	0.0	0.0	0.173 0.750	1.5712 0.3816	0.000 0 0.0000	0.1500
č	101.000 96.500	0.00 0.00	C.0 0.0	0,0 0, 0	0.6.17	0.500	0.0000	0.5550
C C	91.500	0.00	0.0	9.0	è.ori	0.3000	0.0000	o.ncéo
č	86.500	0.00	0.5	0.0	€. 39ī	0.3000	ó.anaá	0.1300
č	85.750	0.00	0.0	0,0	0254	0.150	0,0000	0.000
						5 5 45	0.0000	0.0000
D	159.000	0.00	180.0	3.0	0.013	0.0415	0.0000 0.0000	0.0000 0.5500
D	142.250	0.69	180.0	0.0	0.0.35 0.116	0.0557 0.1524	0,0000	0.0000
D	142,250 139,000	0.00 0.00	$\frac{180.0}{180.0}$	0.0	0 0 : 5	0.1174	0.5050	0. 13
D D	133.000	0.55	180.0	0.0	0.5155	0.000	9.5 60	ő. Dő
D	125.667	0.65	180.0	0.0	0.7449	0, (00)	0.010	0.500
Ď	125.607	ŏ.Sč	180.4	0.0	0.0008	19-179	i i i i i i i i i i i i i i i i i i i	0.000
Ď	112.343	0.1.7	180.0	0.0	9.4 B	6.2.01	5.4122	0.0000
Ð	112.333	0.00	180.0	0.0	0.030	0. 55%	0.000	0.1100

180.0 0.0 180.0 0.0	0.6380 0.6269 0.6369	0.3230 0.3230 0.3448	0000.0 0000.0 0000.0	0,0000 0,0000 0,0000
180.0 0.0	0.0269	0.3418	0.0000	0.0000
				0.0000 0.0000
	180.0 0.0	180.0 0.0 0.0269 180.0 0.0 0.0269 180.0 0.0 0.0776	180.0 0.0 0.0269 0.3448 180.0 0.0 0.0269 0.3448 180.0 0.0 0.0269 0.3448 180.0 0.0 0.0276 0.3665	180.0 0.0 0.0269 0.3448 0.000 180.0 0.0 0.0269 0.3448 0.000 180.0 0.0 0.0269 0.3448 0.000 180.0 0.0 0.0269 0.3655 0.000

MAST ELEV ft	DEFLECTIO HORIZONYME ALONG		DOWN	ROTOTI TILT. ALONG	ONS (45))	TWIST
159.0	3.22H	0.01K	0. 0 9K	2.278	0.614	0.00=
151.5	2.93н	0.01K	0.08K	2,26	žíť.0	0.435
146.7	2.74н	0.01K	0.08K	2.23H	0.01K	0.005
142.2	2.57H	0.01K	0.07κ	2.19s	0ik	O,COF
139.0	2.44Н	0.01κ	0.06κ	2.1611	0.0K	0.000
125.7	1.96н	0. 0 0к	0.05K	1.988	0 esg	0.000
112.3	1.53н	0.00B	0.03K	1.730	0.004	0.00:
99.0	1.16н	0.00н	0.02K	1.466	0.00g	0.700
93.5	1.02ห	0.00H	0.02K	1.375	0.0°K	0.100
80.1	0.73н	о.00н	0.01K	1.15E	6.99K	o Mác
66.7	.0.499	0.00H	0.01K	0.91	0.104	0.400
53.2	0.31H	0.00н	0.00к	0.795	<u>0</u> - 44	0,755
45.5	0.22н	0,000	0.00κ	0.980	PO 1.0	0.700
34.1	0,12н	а. о он	0.00к	0.424	0. ИН	0.000
22.7	0.05H	0.00н	0.0 0 K	0.270	0.003	9.000
11.4	0.01H	0.00H	0.00κ	0.333	C (64	inalieni.
0.0	0.00A	60.004	0.00A	0.00%	$\Delta B = 0$	9.10.

MAXIMUM POLE FORCES CALCULATED(w.r.t. to win indirection)

MAST ELEV	TOTAL AXIAL	SHEAR.W.r.	t.WIND.DIR ACROSS	DOMENT.VI.C.	S.WIND.STA ACROSS	TORSICN
ft	kip	«ip	kip	ft-k ip	ft-ki.	ft-‹ip
159.0		*********			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	0.25 L	0.30 L	0.09 в	9.76	0.00 E	0.00
151.5	5.01 L	1.77 L	0.00 B	-3.36 H	0.00 ⊦	0.01 <
15113	5.51 L	2.37 D	0.00 н	-9. 3 7 ±	-0.01 R	0.0
146.7	5.76 L	2.43 D	0.00 н	-31.79 n	-0.01 C	0.01 <
2,01,	5.76 o	2.45 t	-0.01 C	- 1.79	-0.03 c	0.0
142.2	10.31 D	≟.45 t.	-0.01 C	-30.63	-0.05 K	-0.0) (
1,212	10.31 L	4.45 C	-0.03 B	0.63 f	-0.05 в	0.0
139.0	13.81 ∟	5. 8 3 C	-0.03 B	i).73 (-0.11	0.01 %
	13.82 I	5.93 H	-0.04 L	-59 .76 1.	-0.33 6	0.01 7
125.7	22.90 I	9.36 H	-0.04 L	∵1.31 H	0.62 t	0.01 =
	22.90 E	₹.35 ₩	-0.04 L	-3.7 1.31 ft	0.62	0.05 -
	34.19 E	13.21 B	-0.04 L	-33 7.22 **	1.16 %	0.0: =

				1	30280A -	- Extension	
112.3	34.19 E	13.21 н	-0.04 i			1.16 t.	0.017
	44,29 E	17.13 Н	-0.04 1	-554.79	i H	1.71 1	-0.07 ⊆
99.0	44.29 E	17.13 H	0.04 6	-514.74	¥ H	1.73 L	-0.07 C
	46.71 E	17.85 н	0.04 6	3 -657.10	ā H	1.93 L	-0.03 €
93.5	46.71 E	17,86 н	0.05	-657.15	5 H	1.95 L	-0.03 C
	50.76 €	19.54 н	0.05 1	в - 0.14.50) 	-2.51 K	-0.10 €
80.1	50.76 E	19.53 н	0.05	-0.14.50) н	-2.51 K	-0.10 C
	54.01 E	19.88 H	0.05 1	н -1201.1	7 н	-3.10 K	-0.12 C
66.7	54.01 €	19.87 н	0.05	H -1201.1	7 H	-3.10 K	-0.1. (
	57.60 E	20,24 н	0.05	н1,180.5	7 H	-3.65 4	-0.14 €
53.2	57.60 €	20.23 H	0.05	н -1450.6	0 1	-3.64 <	-0,14 E
	62.02 E	20.45 B	0.05	H -1643.3	5 B	-3.94 K	-0.14 €
45.5	62.02 E	20,46 8	0.05	н -16/3.3	6 ⊞	-3.95 K	-0.14 C
	65.45 E	20,77 в	0.05	B -1384.0	9 =	-4.41 H	-0.11.3
34.1	65.45 E	120,77 в	0.05	н -1374.0	8 11	-4.4i P	-0.11 C
	69.12 E	21.09 H	0.05	н - 1746.7	1 %	-4.96 F	-0. <u>1</u> € C
22.7	69.12 E	72.09 8	0.05	н -2 ³ 26.7	1 3	-4.96	-0.53
	73.04 E	21.40 H	0.05	н -2371.1	2 🕑	-5.42 B	-0.00 0
11.4	73,04 E	71.39 Я	0.05	H 11.1	Ž	-5.5 0 4	-0.1(
	77.21 E	21.71 H	6.05	н ~ 1017.2	1 1	-6.01	-0.16 %
base			0.05		71 11	<i>E</i> /13 11	0.16 C
reaction	n 77.21 €	-21.71 н	-0.05	Н 2617.	Z1 H	6.03. H	
COMPLIA	NCE WITH 4.8.	.2 & 4.5.4					
#======	AXIAL	BENDING S	HEAR +	TOVAL S	SATISF18	D D/%(0/t)	
£LEV ft		BENDING S	HEAR + ORSIONAL	TOWAL S	SATISFIE	D D/%(0/t)	MAX AULUMED
ELEV	AXIAL	BEMDING SI	ORSIONAL		, , , , , , , , , , , , , , , , , , , ,		ALLOWED
£LEV ft	0.00L	BENDING SUTE	0.00L	0.0ca	YES	9,52A	ALLCZED 45.2
£LEV ft	0.00L 0.00L	BEMDING SITE	0.00L	0.0ca 0.0ca	YES VES	9.52A 11.49A	45.2 45.2
ELEV ft 159.00	0.00L 0.00L	8EMDING SI 0.00A 0.02H	0.00L 0.00D	0.04A 0.03H 0.033	YES YES YES	9.52A 11.43A 11.43A	45.2 45.2 45.2
ELEV ft 159.00	0.00L 0.00L 0.00L 0.01L 0.00L	BENDING SI 0.00A 0.02H 0.02B 0.04D	0.00L 0.00D 0.00D	0.00A 0.0°H 0.0°B 0.0°D	YES YES YES	9.52A 11.43A 11.43A 12.60A	45.2 45.2 45.2 45.2
ELEV ft 159.00	0.00L 0.00L 0.00L 0.00L	BEMDING SI 0.00A 0.02H 0.02B 0.04D	0.00L 0.00D 0.00D 0.00D	0.0ca 0.0°H 0.0°B 0.0°C	YES YES YES YES YES	9.52A 11.45A 11.41A 12.60A	45.2 45.2 45.2 45.2 45.2
ELEV ft 159.00	0.00L 0.00L 0.01L 0.00L 0.00D 0.01D	0.00A 0.00A 0.02H 0.02B 0.04D 0.04B 0.04C	0.00L 0.00D 0.00D 0.00D 0.00L 0.00L	0.00A 0.00B 0.00B 0.00B 0.00B 0.00B	YES YES YES YES YES YES	9.52A 11.45A 11.45A 12.60A 12.60A 13.73A	45.2 45.2 45.2 45.2 45.2 45.2 45.2
ELEV ft 159.00 151.50 146.75	0.00L 0.00L 0.00L 0.00L 0.00L 0.00D 0.01D	8EMDING SI 0.00A 0.02H 0.02B 0.04D 0.04E 0.07C	0.00L 0.00D 0.00D 0.00D 0.00L 0.01L	0.00A 0.00B 0.00B 0.00B 0.00B 0.00B	YES YES YES YES YES YES YES YES	9.52A 11.44A 11.41A 12.60A 12.60A 13.73A 8.57A	45.2 45.2 45.2 45.2 45.2 45.2 45.2
ELEV ft 159.00 151.50 146.75	0.00L 0.00L 0.00L 0.00L 0.00D 0.01D 0.01L 0.01L	0.00A 0.00A 0.02H 0.02B 0.04D 0.04E 0.07C 0.050 0.06E	0.00L 0.00D 0.00D 0.00D 0.00D 0.00L 0.01L	0.00A 0.00B 0.00B 0.00B 0.00B 0.00B 0.00B	YES YES YES YES YES YES YES YES YES	9.52A 11.41A 11.41A 12.60A 12.60A 13.73A 8.57A 9.11A	45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2
ELEV ft 159.00 151.50 146.75	0.00L 0.00L 0.00L 0.00L 0.00D 0.01D 0.01L 0.01L	0.00A 0.00A 0.02H 0.02B 0.04D 0.04E 0.07L 0.050 0.06L	0.00L 0.00D 0.00D 0.00D 0.00L 0.01L 0.00C 0.01C	0.00A 0.03H 0.03B 0.05D 0.03B 0.03D 0.07E	YES	9.52A 11.44A 11.41A 12.60A 17.60A 13.73A 8.57A 9.11A 8.88A	45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2
ELEV ft 159.00 151.50 146.75	0.00L 0.00L 0.00L 0.00L 0.00D 0.01D 0.01L 0.01L 0.01I	0.00A 0.00A 0.02H 0.02B 0.04D 0.04B 0.07C 0.050 0.06E 0.07L	0.00L 0.00D 0.00D 0.00D 0.00L 0.01L 0.00C 0.01C	0.00A 0.03H 0.03B 0.03C 0.03C 0.03D 0.07E 0.03C	YES	9.52A 11.44A 11.44A 12.60A 17.60A 13.73A 8.57A 9.11A 8.88A 11.11A	45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2
ELEV ft 159.00 151.50 146.75 142.25	0.00L 0.00L 0.00L 0.00L 0.00D 0.01D 0.01L 0.01L 0.01T	0.00A 0.00A 0.02H 0.02B 0.04D 0.04B 0.07C 0.05D 0.06E 0.07L 0.13B	0.00L 0.00D 0.00D 0.00D 0.00L 0.01L 0.00C 0.01C 0.01H 0.01H	0.00A 0.00B 0.00B 0.00B 0.00B 0.00B 0.00B 0.00B 0.00B	YES	9.52A 11.44A 11.41A 12.60A 12.60A 13.73A 8.57A 9.11A 8.88A 11.11A	45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2
ELEV ft 159.00 151.50 146.75 142.25	0.00L 0.00L 0.00L 0.00L 0.00D 0.01D 0.01L 0.01L 0.01I 0.01I	8EMDING ST 0.00A 0.02H 0.02B 0.04D 0.04B 0.07C 0.050 0.06E 0.07L 0.13H 0.139 0.188	0.00L 0.00L 0.00D 0.00D 0.00L 0.01L 0.00C 0.01C 0.01H 0.01H 0.01H	0.00A 0.03H 0.03B 0.050 0.03A 0.05b 0.07b 0.07b 0.07d 0.34B	YES	9.52A 11.41A 11.41A 12.60A 13.73A 8.57A 9.11A 8.88A 11.11A 11.11A	45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2
ELEV ft 159.00 151.50 146.75 142.25 139.00 125.67	0.00L 0.00L 0.00L 0.00L 0.00D 0.01D 0.01L 0.01L 0.01I 0.01I 0.01E	0.00A 0.00A 0.02H 0.02B 0.040 0.04B 0.07L 0.050 0.06L 0.07L 0.13H 0.138 0.188	0.00L 0.00L 0.00D 0.00D 0.00L 0.01L 0.00C 0.01C 0.01H 0.01H 0.01H 0.01H	0.00A 0.03H 0.03B 0.050 0.03B 0.03D 0.07 0.02B 0.02B	AE2	9.52A 11.43A 11.43A 12.60A 17.60A 13.73A 8.57A 9.11A 8.88A 11.11A 11.174 13.754	45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2
ELEV ft 159.00 151.50 146.75 142.25 139.00 125.67	0.00L 0.00L 0.00L 0.00L 0.00D 0.01D 0.01L 0.01L 0.01I 0.01E 0.01E	8EMDING SI 0.00A 0.02H 0.02B 0.04D 0.04B 0.07C 0.050 0.06E 0.07L 0.13B 0.18B 0.18B	0.00L 0.00L 0.00D 0.00D 0.00L 0.01L 0.00C 0.01C 0.01H 0.01H 0.01H 0.01H 0.01H	0.00A 0.07H 0.03B 0.05D 0.073 0.05D 0.073 0.074 0.34B 0.34B	YES	9.52A 11.41A 11.41A 12.60A 12.60A 13.73A 8.57A 9.11A 8.88A 11.11A 11.11A 13.11A 13.11A	45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2
ELEV ft 159.00 151.50 146.75 142.25 139.00 125.67 112.33	0.00L 0.00L 0.00L 0.00L 0.00D 0.01D 0.01L 0.01L 0.01I 0.01E 0.01E 0.01E	8EMDING ST 0.00A 0.02H 0.02B 0.04D 0.04B 0.07C 0.050 0.06E 0.07L 0.13B 0.13B 0.18B 0.18B 0.18B	0.00L 0.00D 0.00D 0.00D 0.00D 0.00L 0.01C 0.01C 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H	0.70A 0.07H 0.03B 0.05D 0.03R 0.05D 0.07E 0.07E 0.07E 0.07E 0.07E	YES	9.52A 11.44A 11.41A 12.60A 13.60A 13.73A 8.57A 9.11A 8.88A 11.11A 13.75A 13.75A 15.75A	45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2
ELEV ft 159.00 151.50 146.75 142.25 139.00 125.67 112.33	0.00L 0.00L 0.00L 0.00L 0.00D 0.01D 0.01L 0.01L 0.01I 0.01E 0.01E 0.01E 0.01E 0.01E	8EMDING SITE OF THE PROPERTY O	0.00L 0.00L 0.00D 0.00D 0.00L 0.01L 0.00C 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H	0.00A 0.03B 0.03B 0.03B 0.03B 0.03B 0.03B 0.07B 0.07B 0.04B 0.34B 0.34B 0.34B 0.34B	YES	9.52A 11.41A 11.41A 12.60A 13.73A 8.57A 9.11A 8.88A 11.11A 11.11A 13.73A 13.73A 13.73A	45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2
ELEV ft 159.00 151.50 146.75 142.25 139.00 125.67 112.33	0.00L 0.00L 0.00L 0.00L 0.00L 0.01D 0.01L 0.01L 0.01L 0.01E 0.01E 0.01E 0.01E 0.01E 0.01E	8EMDING SITE OF THE PROPERTY O	0.00L 0.00L 0.00D 0.00D 0.00D 0.00L 0.01L 0.00C 0.01C 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H	0.70A 0.07H 0.033 0.07D 0.034 0.05D 0.07C 0.07C 0.34H 0.74C 0.74C 0.34A 0.34A 0.34A	YES YES YES YES YES YES YES YES	9.52A 11.44A 11.41A 12.60A 12.60A 13.73A 8.57A 9.11A 8.88A 11.11A 13.75A 13.75A 13.75A 13.75A 13.75A	45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2
ELEV ft 159.00 151.50 146.75 142.25 139.00 125.67 112.33	0.00L 0.00L 0.00L 0.00L 0.00L 0.00D 0.01D 0.01L 0.01L 0.01T 0.01E 0.01E 0.01E 0.01E 0.01E 0.01E 0.01E 0.01E	0.00A 0.00A 0.02B 0.04D 0.04B 0.07C 0.050 0.06C 0.07L 0.13B 0.12B 0.18B 0.18B 0.18B 0.18B 0.18B 0.18B	0.00L 0.00D 0.00D 0.00D 0.00D 0.00L 0.01C 0.01C 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H	0.70A 0.07H 0.013 0.05D 0.013 0.05D 0.07: 0.07: 0.07: 0.07: 0.14H 0.77: 0.14H 0.77: 0.77: 0.75:	YES YES YES YES YES YES YES YES	9.52A 11.41A 11.41A 12.60A 12.60A 13.73A 8.57A 9.11A 8.88A 11.11A 11.1.6 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A	45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2
ELEV ft 159.00 151.50 146.75 142.25 139.00 125.67 112.33 99.00 93.50	0.00L 0.00L 0.00L 0.00L 0.00D 0.01D 0.01L 0.01I 0.01I 0.01E	8EMDING STORM 0.00A 0.02H 0.02B 0.04D 0.04B 0.07C 0.050 0.06E 0.07L 0.13B 0.139 0.184 0.139 0.184 0.23H 0.175 0.194 0.21B 0.22B	0.00L 0.00L 0.00D 0.00D 0.00D 0.00C 0.01C 0.01C 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H	0.00A 0.03H 0.050 0.053 0.053 0.053 0.075 0.075 0.075 0.348 0.349 0.349 0.349 0.349 0.349 0.349	YES	9.52A 11.45A 11.45A 12.60A 13.73A 8.57A 9.13A 8.88A 11.11A 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A	45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2
ELEV ft 159.00 151.50 146.75 142.25 139.00 125.67 112.33 99.00 93.50	0.00L 0.00L 0.00L 0.00L 0.00L 0.00D 0.01D 0.01L 0.01L 0.01I 0.01E	8EMDING SITE OF THE PROPERTY O	0.00L 0.00L 0.00D 0.00D 0.00D 0.00C 0.01C 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H	0.00A 0.03H 0.03B 0.050 0.03B 0.03D 0.07E 0.07E 0.07E 0.32B 0.32B 0.32B 0.32B 0.32B 0.32B	YES	9.52A 11.44A 11.44A 12.60A 17.60A 13.73A 8.57A 9.11A 8.88A 11.11A 11.1.6 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A	45.2 45.2
ELEV ft 159.00 151.50 146.75 142.25 139.00 125.67 112.33 99.00 93.50 80.08	0.00L 0.00L 0.00L 0.00L 0.00D 0.01D 0.01L 0.01I 0.01I 0.01E	8EMDING STORM 0.00A 0.02B 0.04D 0.04B 0.07C 0.050 0.06C 0.07L 0.13B 0.12M 0.12M 0.12M 0.12M 0.12M 0.12M 0.21M 0.19M 0.21M 0.21M 0.22M	0.00L 0.00L 0.00D 0.00D 0.00D 0.00C 0.01C 0.01C 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H 0.01H	0.70A 0.03B 0.05D 0.03B 0.03D 0.03D 0.03C 0.03C 0.34B 0.34A	YES YES YES YES YES YES YES YES	9.52A 11.45A 11.45A 12.60A 13.73A 8.57A 9.13A 8.88A 11.11A 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A 13.75A	45.2 45.2

53.25					130280A -	Extension	
33.23	0.01E	0.23H	0.010	0	YES	16.7-A	45.2
45.50	0.01E	0.230	0.01박	0 - 1	YES	17.77A	-3.2
43,30	0.01E	0.24н	0.01H	0. 1	YES	17.30A	5.2
34.12	0.01E	0.24H	0.01н	0.1118	VES	18.79A	45.2
34.12	0.016	0.24E	0.01н	0.234	YE\$	18.79A	45.2
22.75	0.018	0.249	0.018	0.358	YE'5	20.23A	45.2
22.13	0.01E	0.244	0.01н	0.25π	YES	20.22A	45.2
11,37	0.01E	0.248	0. 01 H	0.258	YES	21.65A	45.2
11,37	0.01E	0.244	0.01н	0,25н	YES	21.65 <i>j</i> .	45.2
0.00	0.01E			0.208	YES	23.08A	45.2
	LOADS ONTO F				ion) ====		
DOW	N SHEAR.W. ALONG	n.t.WEND.D ACRO		NT.W. P. C.N ALONG	WIND.DJR ACROSS	TORSTON	
ki				t-kip	ft-kip	$f(t) \vdash \exists p$	
77.2: E	1 21.71 H		05 -26 ⊀	17.21 B	-6.01 H	-0.16 C	

SO#: 130280A Site Name: Salisbury, CT

Date: 11/3/2015

Round Flange Plate and Bolts per ANSI/TIA 222-G Elevation = 149 feet

Pole Data

Diameter: 19.57 ir Thickness: 0.25 in Yield (Fy): 65 ksi

of Sides: 18 "0" IF Round

Strength (Fu): 80 ksi

Reactions

Moment, Mu: 37.46 ft-kips Axial, Pu: 6.63 kips Shear, Vu: 9.53 kips

Bolt Data

Flange Bolt Results

Allowable Φ*Rnt: 20.34 kips Quantity: 4 20.09 kips Adjusted Φ*Rnt (due to shear): Diameter: 0.625 in 18.55 kips **Bolt Material:** A325 Maximum Bolt Tension: 92.3% Pass Bolt Interaction Ratio: Strength (Fu): 120 KS

Yield (Fy): 92 ksi

BC Diam. (in): 22.25 BC Override:

Plate Data

Flange Plate Results

Diameter (in): 24 Dia. Override: Compression Side Plate (Mu/Z): 4.9 ksi
Thickness: 1.5 in Altovable ⊕*Fy: 45.0 ksi
Center Hole Diam.: 13 in Compr. Plate Interaction Ratio: 10.9% Pass

Yield (Fy): 50 ksi Single-Rod B-eff: 5.99 in

SO#: 130280A Site Name: Salisbury, CT

Date: 11/3/2015

Round Base Plate and Anchor Rods, per ANSI/TIA 222-G

Pole Data

Diameter: 70.450 in (flat to flat)

Thickness: 0.5 i.ī Yield (Fy): 65 кsі

of Sides: 18 "0" IF Round

Strength (Fu): 80 ksi

Reactions

Moment, Mu: 10517.74 ft-kips

Axial, Pu: 92.59 kips Shear, Vu: 87.08 kips

Anchor Rod Data

Quantity: 28 Diameter: 2.25

in

Rod Material: A615

Strength (Fu): 100 ksi Maximum Rod (Pu+ Vu/n): 241.4 Kips

Yield (Fy): 75 ksi Allowable Φ*Rnt: 260.0 Kips (per 4.9.9) BC Diam. (in): 77.75 BC Override: Anchor Rod Interaction Ratio: 92.9% Pass

Ancher Rod Results

Plate Data

Base Plate Results

Diameter (in): Dia. Override: 83.5 Thickness: 2.5 in Pase Plate (Mu/Z): 43.7 ksi

Yield (Fy): 50 ksi Allowable Φ*Fy: 45.0 ksi (per AISC)

Eff Width/Rod: 7.99 Base Plate Interaction Ratio: in 97.1% Pass

Drain Hole: 2.625 in, diameter

Drain Location: 33 in, center of pole to center of drain hole

Center Hole: 58 in, diameter

MAT FOUNDATION DESIGN BY SABRE TOWERS & POLES

160' Monopole INSITE TOWERS LLC Salisbury, CT (130280) 11-3-15 BD

Overall Loads:			
Factored Moment (ft-kips)	10517.74		
Factored Axial (kips)	92.59		
Factored Shear (kips)	87.08		
Bearing Design Strength (ksf)	9	Max. Net Bearing Press. (ksf)	8.68
Water Table Below Grade (ft)	999		
Width of Mat (ft)	33	Allowable Bearing Pressure (ksf)	6.00
Thickness of Mat (ft)	1.75	Safety Factor	2.00
Depth to Bottom of Slab (ft)	6	Ultimate Bearing Pressure (ksf)	12.00
Quantity of Bolts in Bolt Circle	28	Bearing Φs	0.75
Bolt Circle Diameter (in)	77.75		
Top of Concrete to Top	<u> </u>		
of Bottom Threads (in)	60		
Diameter of Pier (ft)	8	Minimum Pier Diameter (ft)	7.98
Ht. of Pier Above Ground (ft)	0.5	Equivalent Square b (ft)	7.09
Ht. of Pier Below Ground (ft)	4.25		
Quantity of Bars in Mat	78		
Bar Diameter in Mat (in)	1.27		
Area of Bars in Mat (in ²)	98.81		
Spacing of Bars in Mar (in)	5 05	Recommended Spacing (in)	5 to 12
Quantity of Bars Pier	43		
Bar Diameter in Pier (in)	1.27		
Tie Bar Diameter in Pier (in)	0.625		
Spacing of Ties (in)	12		
Area of Bars in Pier (in²)	60.80	Minimum Pier A _s (in²)	36.19
Spacing of Bars in Pier (in)	5.73	Recommended Spacing (in)	5 to 12
f'c (ksi)	4.5	, i passag ()	
fy (ksi)	60		
Unit Wt. of Soil (kcf)	0.1		
Unit Wt. of Concrete (kcf)	0.15		
·	I		
Volume of Concrete (yd3)	79.43		
Two-Way Shear Action:	. (710		
Average d (in)	i€. 73		
φV _c (kips)	1334.1	\/ (kino)	100.7
*	`	V _u (kips)	166.7
$\phi V_c = \phi (2 + 4/\beta_1) T_c^{1/2} b_o d$	2027.0		
$\phi V_0 = \phi (\alpha_s d/b_0 + 2) \Gamma_0^{-1/2} b_0 d$	1314.1		
$\phi V_c = \phi 4 f_c^{1/2} b_o d$	1357.4		
Shear perimeter, b_o (in)	354.15		
$eta_{ m c}$	1		
One-Way Shear:			
one way onear.			
φV _c (kips)	755.5	V _u (kips)	596.6
Stability:		, a (labo)	000.0
Overturning Design Strength (ft-k)	18478.4	Total Applied M (ft-k)	11083.8
o remaining sooign on onger (it it)	The Control of the Co	rotal ripplica wi (it-it)	11000.0

Pier Design:			
φV _n (kips)	846.2	V _u (kips)	87.1
$\phi V_c = \phi 2 (1 + N_u / (2000 A_g)) f_c^{1/2} b_w d$	846.2		
V _s (kips)	0.0	*** $V_s \text{ max} = 4 f_c^{1/2} b_w d \text{ (kips)}$	1978.3
Maximum Spacing (in)	7.62	(Only if Shear Ties are Required)	
Actual Hook Development (in)	5 5.4 6	Req'd Hook Development I _{dh} (in)	15.31
		*** Ref. To Spacing Requirements ACI	11543
Flexure in Slab:		opacing vioquilothomo (to)	71.0.1.0
φM _n (ft-kips)	6598.6	M _u (ft-kips)	6547.4
a (in)	3 91	,	
Steel Ratio	0.01491		
eta_1	0.825		
Maximum Steel Ratio (ρ_t)	0.01 97		
Minimum Steel Ratio	0.0018	•	
Rebar Development in Pad (in)	152.46	Required Development in Pad (in)	42.64
Condition	1 is OK, 0 Fails		
Maximum Soil Bearing Pressure			
Pier Area of Steel			
Pier Shear	!!		
Interaction Diagram Visual Check			
Two-Way Shear Action	1		
One-Way Shear Action	:		
Overturning			
Flexure	1		
Steel Ratio	! ! !		

Length of Development in Pad Hook Development

ATTACHMENT 3

AT&T Antenna Specs

HPA Antenna Series

HEXPORT Multi-Band Antenna

Model HPA-65R-BUU-H8

The CCI Hexport Multi-Band Antenna Array is an industry first 6-port antenna with full WCS Band Coverage. With four high band ports and two low band ports, our hexport antenna is ready for 4X4 high band MIMO.

Modern networks demand high performance, consequently CCI has incorporated several new and innovative design techniques to provide an antenna with excellent side-lobe performance, sharp elevation beams, and high front to back ratio.

Multiple networks can now be connected to a single antenna, reducing tower loading and leasing expense, while decreasing deployment time and installation cost.

Full band capability for 700 MHz , Cellular 850 MHz, PCS 1900 MHz, AWS 4710/2170 MHz and WCS 2300 MHz coverage in a single enclosure.

Hexport Multi-Band Antenna Array

Benefits

- ♦ Includes WCS Band
- Reduces tower loading
- Frees up space for tower mounted E-nodes
- Single radome with six ports
- All Band design simplifies radio assignments
- Sharp elevation beam eases network planning

Features

- High Band Ports include WCS Band
- Four High Band ports with two Low Band ports in one antenna
- Sharp elevation beam
- ♦ Excellent elevation side-lobe performance
- ♦ Excellent MIMO performance due to array specing
- Excellent PIM Performance
- A multi-network solution in one radome

Applications

- ♦ 4x4 MIMO on High Band and 2x2 MIMO on Low Band
- Adding additional capacity without adding additional antennas
- Adding WCS Band without increasing antenna count

HPA Antenna Series

HEXPORT Multi-Band Antenna

Wodel HPA-65R-BUU-H8

HPA-65R Multi-Band Antenna

Electrical	S	pecií	icati	ons

	2 X Low Band Ports which cover the full range from 698-894 MHz		4 X High Band Ports which cover the full range from 1710-2360 MHz			
Frequency Range	698-806 MHz	624-694 WHZ	1850-1990 NHz		1710-1755/2110-2170 2305-23	
Galn	15.3 dBi	16.2 dBi	17.1 dBi	16.3 dBi	17.4 dBi	17.7 dBi
Azlmuth Beamwidth (-3dB)	65°	61°	62°	68°	64°	60°
Elevation Beamwidth (-3dB)	10.1°	8.4°	5.6°	6.2°	5.0°	4.5°
Electrical Downtilt	2° to 10°	2° to 10°	0° to 8°	0° to 8°	0° to 8°	0° to 8°
Elevation Sidelobes (1st Upper)	< -17 dB	< -17 dB	< -19 dB	< -18 dB	< -18 dB	< -17 dB
Front-to-Back Ratio @180°	> 29 dB	> 28 d8	> 35 dB	> 35 dB	> 35 dB	> 35 dB
Front-to-Back Ratio over ± 20°	> 28 dB	> 27 dB	> 28 dB	> 27 dB	> 28 dB	> 28 dB
Cross-Polar Discrimination (at Peak)	> 24 dB	> 20 dB	> 25 dB	> 25 dB	> 25 dB	> 25 dB
Cross-Polar Discrimination (at :: 60°)	> 16 dB	> 14 d3	> 18 dB	> 18 dB	> 18 dB	> 18 dB
Cross-Polar Port-to-Port Isolation	> 25 dB	> 25 dB	> 25 dB	> 25 dB	> 25 dB	> 25 dB
VSWR	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1
Passive Intermodulation (2x20W)	≤ -150dBc	s -150dBc	≤ -150dBc	≤-150dBc	≤ -150dBc	≤ -150dBc
Input Power	500 Walls CW	500 Watts CW	300 Watts CW	300 Watts CW	300 Watts CW	300 Walls CW
Polarization	Dual Pol 45°	Dual Pol 45°	Dual Pol 45°	Dual Pol 45°	Dual Pol 45°	Dual Pol 45°
Input Impedance	50 Ohms	50 Ohms	50 Ohms	50 Ohms	50 Ohms	50 Ohms
Lightning Protection	DC Ground	DC Ground	DC Ground	DC Ground	DC Ground	DC Ground

Mechanical Specifications

92.4 x 14.8 x 7.4 inches (2348 x 376 x 189 mm) Dimensions (LxWxD)

> 150 mph Survival Wind Speed

Front Wind Load

332 lbs (1479 N) @ 100 mph (161 kph) 193 lbs (860 N) @ 100 mph (161 kph) Side Wind Load

Equivalent Flat Plate Area 13.0 ft² (1.2 m²) Weight (without Mounting) 68 lbs (31 kg)

RET System Weight 5.0 lbs (2.25 kg)

6; 7-16 DIN female long neck Connector

2-5 inches (5-12 cm) Mounting Pole

^{*}Typical antenna patterns. For detail information on antenna pattern, please contact us at info@coproducts.com. All specifications are subject to change without notice.

Elevation 63

www.cciproducts.com

894 MHz Azimuth

USA HQ: 89 Leuning Street, South Hackensack, NJ 07606 Telephone: 201-342-3338, Canada: 411 Legget Drive, Suite 104, Otlawa, ON, Canada K2K 3C9 Telephone: 613-591-6696

7/24/2013

Page 2

Revision 1.2

HPA Antenna Series

Model HPA-65R-BUU-H8

Ordering Information:

HPA-65R-BUU-H8

8 Foot Hexport Antenna with 65° Azimuth Beamwidth with Factory

Installed Actuators (13)

HPA-65R-BUU-H8-K Complete Kit with Antenna, Factory installed Actuators (3) and M03

Mounting Bracket

BSA-RET200

RET Actuator BSA-M03

Mounting Bracket (Top & Bottom) with 0° through 10° Mechanical tilt

Adjustment

M03 Top No ming Bracket

M03 Bottom Mounting Bracket

RET [Remote Electrical Tilt] System

General Specification

BSA-RET200

Part Number

Protocols Adjustment Cycles

Tilt Accuracy

Temperature Range

AISG 2.0 >10,000 cycles

±0.1°

-40°C to +70°C

8 x 5 x 2 inches (213 x 135 x 51 mm)

Hardware Interface Input Connector

Output Connector

Electrical Specification

Current consumption idle

Data | dc Interface Signal

10-30 Vdc, Specifications at +24 VDC Input Voltage Range Current consumption during Illing

120mA at Vin = 24V

55mA at Vin=24V AISG - RS 485 A/B

1x8-pin Dalsy Chain In Male

1x8-pin Dalsy Chain Out Female

Mechanical Specification and Dimensions

Housing Material

ASA / ABS / Aluminum

Dimensions (H x W x D)

1.5 lbs (0.68 kg)

Standards Compliance

Safely

Weight

EN 60950-1, UL 60950-1

Emission Immunity EN 55022

Environmental

EN 55024 IEC 60068-2-1, IEC 60068-2-2, IEC 60068-2-5, IEC 60068-2-6, IEC 60068-2-11, IEC 60068-2-14, IEC 60068-2-18, IEC 60068-2-27, IEC 60068-2-29, IEC 60068-2-30, IEC 60068-2-52, IEC 60068-2-64, GR-63-CORE 4.3.1, EN60529 IP24

Regulatory Certification

AISG, FCC Part 15 Class B, CE, CSA US

www.cciproducts.com

USA HQ: 89 Leuning Street, South Hackensack, NJ 07606 Telephone: 201-342-3338, Canada: 411 Legget Drive, Suite 104, Ottawa, ON, Canada K2K 3C9 Telephone: 613-591-6696

7/24/2013

Page 3

Revision 1.2

Installation concept Back to back with RRU

Ericsson inc. 2012 | Commercial in Confidence | 2012-10-04 | Rev A | Page 10

RRUS A2 A2 Building practice

© Ericsson Inc. 2012 | Commercial in Confidence | 2012-10-04 | Rev A | Page 8

RRUS A2 Module

V RRUS A2 Module

- > 2 Rx expansion module for RRUS > Works with RRUS 01, 11 and 12
- Eases deployment for 4Rx diversity

Antenna 3 & 4	ACCOMMENSATE LOSS STOCKET CONTRACTOR STOCKET TO A VALUE OF STOCKET TO STOCKET	48 VDC
Antenna 1 % 2	A second size. A second size of the second size of	CPRI -

© Ericsson Inc. 2012 | Commercial in Confidence | 2012-10-04 | Rev A | Page 6

DATA SHEET

Tower Fiber Optic & DC Overvoltage Protection Power Connection Solutions DCG-48-60-18-8F & DC6-48-60-0-8F

BORREST STATES AND THE TANKS AND

The DC6-48-60-18-8F and DC6-48-60-0-8F are dual chambered, DC surge suppression systems for use in multi-circuit, distributed node B/e-node B applications. The system will protect up to six remote radio heads (RRH) from voltage surges and lightning. The DC6-48-60-18-8F supports up to 18 pair of fiber. The DC6-48-60-0-8F is designed for use when a site is upgrading to more than 6 total RRH's.

Strikesorb

Features

- Protects up to six remote radio heads, each with its own protection circuit.
- Flexible design allows for installation at the top of a tower for RRH protection.
- · Light-emitting diode (LED) indicators on individual circuits provide visual indication of suppressor status.
- Form C relays allow for remote morabiling of the suppressor status.
- Strikesorb⁶ suppression modules are fully recognized to UL 1449-3rd Edition Safety Standard, meeting all intermediate and high-current fault requirements to facilitate use in other equipment manufacturers (OEM) applications.
- Raycap recommends that DC protection system be installed within 5 meters or 15 feet of the radio.
- DC6-48-60-18-8F includes fiber connections for up to eighteen pair of fiber.
- Patent pending

Benefits

 Dome design is lightweight and aerodynamic providing maximum flexibility for installation on top of towers.

> Strikesorb is a registered trademark of Raycap © 2013 Raycap All rights reserved. G02-00-272 130308

www.raycapsurgeprotection.com

Tower Fiber Optic & DC
Overvoltage Protection Power Connection Solutions
DC6-48-60-18-8F & DC6-48-60-0-8F

Strikesorb'

Mechanical

Model Number		DC6-48-60-18-8F	DC6-48-60-0-8F	
CEQ / ANT Number		ANT. 13884	ANT. 10529	
Suppression Connection Method		Compression Lug	Compression Lug	
	Copper	#14 to #2 AWG [2.5 to 35 mm²]	#14 to #2 AWG [2.5 to 35 mm²]	
Fiber Connection Method		LC-LC Single Mode	N/A	
Environmental Ingress Protection (IP) F	Rating	IP68	IP68	
Operating Temperature		-40° C to +80° C	-40° C to +80° C	
Storage Temperature		-70° C to +80° C	-70° C to +80° C	
Cold Temperature Cycling IEC 61300-	2-22	-30" C to +60° C 200 hrs @ 5 PSI	-30° C to +60° C 200 hrs @ 5 PSI	
Resistance to Aggressive Materials CE	I IEC 61073-2	Including Acids and Bases	Including Acids and Bases	
UV Protection ISO 4892-2 Method A		Xenon-Arc 2160 hrs	Xenon-Arc 2160 hrs	
Weight*	System	18.9 lbs [8.57 kg]	18.9 lbs [8,57 kg]	
	Mount	13.9 lbs [6.30 kg]	13.9 lbs [6.30 kg]	
	Total	32.8 lbs [14.88 kg]	32.8 lbs [14.88 kg]	
Combined Wind Loading	Sustained	150 mph Sustained: 105.7 lbs (470 N)	150 mph Sustained: 105.7 lbs [470 N]	
	Gust	195 mph Gust: 213.6 lbs [950 N]	195 mph Gust: 213.6 lbs [950 N]	
Containte Wieber C.		The Parthology Commencer	Crewage See	
Module Assembly (Field Upgradeable)	DC6-48-60-18-8F-U	ANT.10082	
Pre-wired Module Kit for a single re				
*Module Weight: 5.64 oz [160 g] (Calculated into the above Pa	nt Number weights.)		
Accessory Kit		DC6-8F-ACC-KIT	CEQ.11443	
Modification Kit		DC6-8F-MOD-KIT	CEQ.11444	
Continue Characteristics				
A contract contract to the contract of the con	= -	FC18-PC6-8F	 In the control of the	

Product Diagram

AWG=American Wire Gaug

[mm] inches

ATTACHMENT 4

AT&T Generator Spec

SD035

3.4L

Industrial Diesel Generator Set

EPA Certified Stationary Emergency

of 6

SB 035 35 KW

Standby Power Rating 35 kW 44 kVA 60 Hz

Prime Power Rating*
32 kW 39 kVA 60 Hz

*EPA Certified Prime ratings are not available in the U.S. or its Territories

Codes and Standards

Generac products are designed to the following standards:

UL2200, UL508, UL142, UL498

NFPA70, 99, 110, 37

NEC700, 701, 702, 708

ISO9001, 8528, 3046, 7637, Pluses #2b, 4

NEMA ICS10, MG1, 250, ICS6, AB1

SI ANSI C62.41 Imerican Hational Standards Institute

Powering Ahead

For over 50 years, Generac has led the industry with innovative design and superior manufacturing.

Generac ensures superior quality by designing and manufacturing most of its generator components, including alternators, enclosures and base tanks, control systems and communications software.

Generac's gensets utilize a wide variety of options, configurations and arrangements, allowing us to meet the standby power needs of practically every application.

Generac searched globally to ensure the most reliable engines power our generators. We choose only engines that have already been proven in heavy-duty industrial application under adverse conditions.

Generac is committed to ensuring our customers' service support continues after their generator purchase.

SD035 35 KW

GENERAC' INDUSTRIAL

SD035

Standard Features

ENGINE SYSTEM

General

- Oil Drain Extension
- Air Cleaner
- Fan Guard
- Stainless Steet flexible exhaust connection
- Critical Exhaust Silencer (enclosed only)
- Factory Filled Oil
- Radiator Duct Adapter (open set only)

Fuel System

- Fuel lockoff solenoid
- Primary fuel filter

Cooling System

- Closed Coolant Recovery System
- UV/Ozone resistant hoses
- Factory-Installed Radiator
- Radiator Drain Extension
- 50/50 Ethylene glycol antifreeze
- 120 VAC Coolant Heater

Engine Electrical System

- Battery charging alternator
- Battery cables
- Battery tray
- Solenoid activated starter motor
- Rubber-booted engine electrical connections

ALTERNATOR SYSTEM

- UL2200 GENprotect[™]
- 12 leads (3-phase, non 600 V)
- Class H insulation material
- Vented rotor
- 2/3 pitch
- Skewed stator
- Auxiliary voltage regulator power winding
- Amortisseur winding
- Brushless Excitation
- Sealed Bearings
- Automated manufacturing (winding, insertion, lacing, varnishing)
- Rotor dynamically spin balanced (get tolerance)
- Full load capacity alternator
- Protective thermal switch

GENERATOR SET

- Internal Genset Vibration Isolation
- Separation of circuits high/low voltage
- Separation of circuits multiple breakers
- Silencer Heat Shield
- Wrapped Exhaust Piping
- Silencer housed in discharge hood (enclosed only)
- Standard Factory Testing
- 2 Year Limited Warranty (Standby rated Units)
- 1 Year Limited Warranty (Prime rated units)
- Silencer mounted in the discharge hood (enclosed only)

ENCLOSURE (if selected)

- Rust-proof fasteners with nylon washers to protect
- High performance sound-absorbing material
- Gasketed doors
- Stamped air-intake louvers
- Air discharge hoods for radiator-upward pointing
- Stainless steel lift off door hinges
- Stainless steel lockable handles
- Rhino Coat™ Textured polyester powder coat

TANKS (if selected)

- UL 142
- Double wall
- Vents
- Sloped top
- Sloped bottom
- Factory pressure tested (2 psi)
- Rupture basin alarm
- Fuel level
- Check valve in supply and return lines
- Rhino Coat™ Textured polyester powder coat
- Stainless hardware

CONTROL SYSTEM

Control Panel

- Digital H Control Panel Dual 4x20 Display
- Programmable Crank Limiter
- 7-Day Programmable Exerciser
- Special Applications Programmable PLC
- RS-232/485
- All-Phase Sensing DVR
- Full System Status
- Utility Monitoring
- Low Fuel Pressure Indication
- 2-Wire Start Compatible Power Output (kW)
- Power Factor
- kW Hours, Total & Last Run

- Real/Reactive/Apparent Power
- All Phase AC Voltage
- All Phase Currents
- Oil Pressure
- Coolant Temperature Coolant Level
- Engine Speed
- Battery Voltage Frequency
- Date/Time Fault History (Event Log)
- Isochronous Governor Control
- Waterproof/sealed Connectors Audible Alarms and Shutdowns
- Not in Auto (Flashing Light)
- Auto/Off/Manual Switch
- E-Stop (Red Mushroom-Type)
- NFPA110 Level I and II (Programmable)
- Customizable Alarms, Warnings, and Events
- Modbus protocol
- Predictive Maintenance algorithm
- Sealed Boards
- Password parameter adjustment protection
- Single point ground

- 15 channel data logging
- 0.2 msec high speed data logging
- Alarm information automatically comes up on the display

Alarms

- Oil Pressure (Pre-programmable Low Pressure Shutdown)
- Coolant Temperature (Pre-programmed High Temp Shutdown)
- Coolant Level (Pre-programmed Low Level Shutdown)
- Low Fuel Pressure Alarm
- Engine Speed (Pre-programmed Over speed Shutdown)
- Battery Voltage Warning
- Alarms & warnings time and date stamped
- Alarms & warnings for transient and steady state conditions
- Snap shots of key operation parameters during alarms & warnings
- Alarms and warnings spelled out (no alarm codes)

SD (85

SD035

ENGINE SYSTEM		ALTE	RNATOR SYSTEM	ENCLOSURE			
General		0	Alternator Upsizing	0	Wealher Protected		
О	Oil Make-Up System	0	Anti-Condensation Heater	0	Level 1 Sound Attenuation		
O	Oil Heater	0	Tropical coating	0	Level 2 Sound Attenuation		
О	Industrial Exhaust Silencer	0	Permanent Magnet Excitation	0	Steel Enctosure		
				0	Aluminum Enclosure		
	Fuel System	CIRC	CUIT BREAKER OPTIONS	0	150 MPH Wind Kit		
0	Flexible fuel lines			0	12 VDC Enclosure Lighting Kit		
0	Primary fuel filter	0	Main Line Circuit Breaker	0	120 VAC Enclosure Lighting Kit		
		0	2nd Main Line Circuit Breaker	O	AC/DC Enclosure Lighting Kit		
	Engine Electrical System	0	Shunt Trip and Auxiliary Contact	0	Door Alarm Switch		
0	10A UL battery charger	0	Electronic Trip Breakers				
0	2.5A UL battery charger			TAN	KS (Size on last page)		
0	Battery Warmer	GEN	ERATOR SET				
				0	Electrical Fuel Level		
		0	Gen-Link Communications Software (English Only)	O	Mechanical Fuel Level		
		0	8 Load Position Load Center	0	54 Gal (204.4 L) Usable Capacity		
		0	2 Year Extended Warranty	0	132 Gal (499.7 L) Usable Capacity		
		0	5 Year Warranty	0	211 Gal (798.7 L) Usable Capacity		
		0	5 Year Extended Warranty	0	300 Gal (1135.6 L) Usable Capacity		
				0	8" Vent Extension		
				0	13' Vent Extension		
				0	19* Vent Extension		
CON	TROL SYSTEM						
0	21-Light Remote Annunciator	0	Remote E-Stop (Red Mushroom-Type, Surface	0	Remote Communication - Ethernet		
0	Remote Relay Panel (8 or 16)		Mount)	0	10A Run Relay		
O	Oil Temperature Sender with Indication Alarm	0	Remote E-Stop (Red Mushroom-Type, Flush	O	Ground fault indication and protection function		
0	Remote E-Stop (Break Glass-Type, Surface	_	Mount)				
U	Mount)	0	Remote Communication - Modern				

Engineered Options

ENGINE SYSTEM ALTERNATOR SYSTEM **ENCLOSURE** O Motorized Dampers O Coolant heater ball valves O 3rd Breaker System O Door switched for intrusion alert O Block Heaters O Fluid containment pans GENERATOR SET O Enclosure ambient heaters TANKS CONTROL SYSTEM O Special Testing O IBC Seismic Certification O Overfill protection valve O Spare inputs (x4) / outputs (x4) - H Panel Only O UL2085 Tank O ULC S-601 Tank O Battery Disconnect Switch O Stainless Steel Tank O Special Fuel Tanks (MIDEO and FL DEP/DERM, etc.) O Vent Extensions

Rating Definitions

Standby - Applicable for a varying emergency load for the duration of a utility power outage with no overload capability. Prime - Applicable for supplying power to a varying load in lieu of utility for an unlimited amount of running time. A 10% overload capacity is available for 1 out of every 12 hours. The Prime Power option is only available on International applications.

Power ratings in accordance with ISO 8528-1, Second Edition dated 2005-06-01, definitions for Prime Power (PRP) and Emergency Standby Power (ESP).

SD035 35 KW

SD035

application and engineering data

ENGINE SPECIFICATIONS

Generac		
Stationary Emergency		
See Emissions Data Sheet		
1717 17414 1 14115		
In-Line		
3.4 (207.48)		
98 (3.86)		
113 (4.45)		
18.5:1		
Turbocharged/Altercooled		
Cast Iron OHV		
Aluminum		
Forged Steel		

Engine Governing

Governor	Electronic Isochronous			
Frequency Regulation (Steady State)	± 0.25%			

Lubrication System

Oil Pump Type	Gear
Oil Filter Type	Full Flow Cartridge
Crankcase Capacity - L (qts)	7 (7.4)

Cooling System

Cooling System Type	Closed Recovery Pre-Lubed, Self Sealing			
Water Pump Flow				
an Type	Pusher			
Fan Speed (rpm)	HAMMAN NA TANÀHARA			
Fan Diameter mm (in)	560 (22)			
Coolant Heater Wattage	1500			
Coolant Heater Standard Voltage	120 V /240 V			

Fuel System

Fuel Type	Ultra Low Sulfur Diesel Fuel			
Fuel Specifications	ASTM			
Fuel Filtering (microns)	10			
Fuel Inject Pump	Bosch (VE)			
Fuel Pump Type	Engine Driven Gear			
Injector Type	Pintel - 2100 PSI			
Fuel Supply Line - mm (in)	7.92 (0.312)			
Fuel Return Line - mm (in)	7.92 (0.312)			

Engine Electrical System

ystem Voltage	12 VDC 20 Å			
attery Charging Alternator				
attery Size	See Battery Index 0161970SBY			
aftery Voltage	12 VDC			
round Polarity	Negative			

ALTERNATOR SPECIFICATIONS

Standard Model	390
Poles	4
Field Type	Revolving
Insulation Class - Rotor	i in assert H stranger
Insulation Class - Stator	H
Total Harmonic Distortion	< 3%
Telephone Interference Factor (TIF)	< 50
Standard Excitation	Synchronous
Bearings	Single Sealed Cartridge
Coupling	Direct, Flexible Disc
Load Capacity - Standby	100%
Prototype Short Circuit Test	Yes

Voltage Regulator Type Number of Sensed Phases Regulation Accuracy (Steady State)

Digital							
All							
± 0.2	5%						

SD035

operating data

POWER RATINGS

Single-Phase 120/240 VAC @1.0pf Three-Phase 120/208 VAC @0.8pf Three-Phase 120/240 VAC @0.8pf Three-Phase 277/480 VAC @0.8pf Three-Phase 346/600 VAC @0.8pf

Standby 35 kW Amps: 146 35 kW Amps: 122 35 kW Amps: 105 35 kW Amps: 53 35 kW Amps: 42

STARTING CAPABILITIES (SKVA)

sKVA vs. Voltage Dip

		[480 VAC					208/240 VAC					
Alternator	<u>kw</u>	10%	15%	20%	25%	30%	35%	10%	15%	20%	25%	30%	35%
Standard	35	24	36	48	60	72	84	18	27	36	45	54	63
Upsize 1	40	27	-41	54	68	81	95	20	31	41	51	61	1 71
Upsize 2	50	34	52	69	86	103	120	26	39	52	65	77	90
Upsize 3	60	42	63	83	104	125	146	32	47	62	78	94	110

FUEL CONSUMPTION RATES*

Diesel - gph (lph)

 Fuel Pump Lift - ft	(m)
 3 (1)	

Total Fuel Pump Flow (Combustion + Return)	_
5.5 gph	

Percent Load	gph (lph)
25%	1.03 (3.90)
50%	1.72 (6.52)
75%	2.4 (9.09)
100%	3.1 (11.74)

^{*} Fuel supply installation must accommodate fuel consumption rates at 100% load.

COOLING

Standby

Coolant Flow per Minute	gpm (lpm)	12.2 (46)
Coolant System Capacity	gal (L)	2.5 (9.5)
Heat Rejection to Coolant	BTU/hr	96,000
Inlet Air	cfm (m3/hr)	7500 (212)
Max. Operating Radiator Air Temp	Fº (Cº)	122 (50)
Max. Ambient Temperature (before derate)	Fº (Cº)	110 (43.3)
Maximum Radiator Backpressure	in H ₂ O	0.5

COMBUSTION AIR REQUIREMENTS

Flow at Raled Power cfm (m3/min)

Standby 150 (4.2)

ENGINE

EXHAUST

	Standby		
Rated Engine Speed	rpm	1800	
Horsepower at Rated kW**	hp	56	
Piston Speed	fl/min (m/min)	1335	
ВМЕР	psi	118	

		Standby
Exhaust Flow (Rated Output)	cfm (m³/min)	342 (9.7)
Max. Backpressure (Post Silencer)	inHg (Kpa)	1.5 (5.1)
Exhaust Temp (Rated Output)	ºF (ºC)	900 (482)
Exhaust Outlet Size (Open Set)	mrn (in)	63.5 (2.5)

^{**} Refer to "Emissions Data Street" for maximum bHP for EPA and SCAQMD permitting purposes.

Deration – Operational characteristics consider maximum ambient conditions. Derate factors may apply under atypical site conditions. Please consult a Generac Power Systems Industrial Dealer for additional details. All performance ratings in accordance with ISO3046, BS5514, ISO8528 and DIN6271 standards.

SD035 35 kW

dimensions and weights*

	\neg	OPEN SET	
2		RUN TIME HOURS	
o	H	NO TANK	
		17	
	i	43	Γ
		68	
W		97	

RUN TIME HOURS	USABLE Capacity Gal (L)	L x W x H in (mm)	WT lbs (kg) – Tank & Open Set
NO TANK	-	76 (1930.4) x 38 (914.4) x 45 (1143)	1756 (796)
17	54 (204.4)	76 (1930.4) x 38 (914.4) x 58 (1473.2)	2236 (1014)
43	132 (499.7)	76 (1930.4) x 38 (914.4) x 70 (1778)	2466 (1119)
68	211 (798.7)	76 (1930.4) x 38 (914.4) x 82 (2082.8)	2675 (1213)
97	300 (1135.6)	93 (2362.2) x 38 (914.4) x 86 (2184.4)	2738 (1242)

RUN TIME USABLE		RUN TIME	WT lbs (kg) - l	Enclosure Only
HOURS	CAPACITY GAL (L)	LxWxHin (mm)	Steel	Aluminum
NO TANK	~	95 (2413) x 38 (965.2) x 50 (1270)		
17	54 (204.4)	95 (2413) x 38 (965.2) x 63 (1600.2)		
43	132 (499.7)	95 (2413) x 38 (965.2) x 75 (1905)	334 (152)	115 (52)
68	211 (798,7)	95 (2413) x 38 (965.2) x 87 (2209.8)		
97	300 (1135.6)	95 (2413) x 38 (965.2) x 91 (2311.4)		

RUN TIME	USABLE	WT lbs (kg) - Er			Enclosure Only
HOURS	CAPACITY GAL (L)	LxWxHin (mm)	Steel	Aluminum	
NO TANK	-	113 (2870.2) x 38 (965.2) x 50 (1270)		2) x 38 (965.2) x 50 (1270)	
.17	54 (204.4)	113 (2870.2) x 38 (965.2) x 63 (1600.2)			
43	132 (499.7)	113 (2870.2) x 38 (965.2) x 75 (1905)	435 (198)	150 (68)	
68	211 (798.7)	113 (2870.2) x 38 (965.2) x 87 (2209.8)			
97	300 (1135.6)	113 (2870.2) x 38 (965.2) x 91 (2311.4)			

RUN TIME	USABLE	() Mark thin (man)	WT lbs (kg) - Enclosuce O	
HOURS	CAPACITY GAL (L)	ExWxHin (mm)	Steel	Aluminum
NO TANK	-	95 (2413) x 38 (965.2) x 62 (1574.8)	·	
17	54 (204.4)	95 (2413) x 38 (965.2) x 75 (1905)		
43	132 (499.7)	95 (2413) x 38 (965.2) x 87 (2209.8)	520 (236)	179 (81)
68	211 (798.7)	95 (2413) x 38 (965.2) x 99 (2514.6)		
97	300 (1135.6)	95 (2413) x 38 (965.2) x 103 (2616.2)		

^{*}All measurements are approximate and for estimation purposes only. Sound dBA can be found on the sound data sheet. Enclosure Only weight is added to Tank & Open Set weight to determine folal weight.

YOUR FACTORY RECOGNIZED (YOUR FACTORY RECOGNIZED GENERAC INDUSTRIAL DEALER		

Specification characteristics may change without notice. Dimensions and weights are for preliminary purposes only. Please consult a General Power Systems Industrial Dealer for detailed installation drawings.

Generac Power Systems, Inc. • S45 W29290 HWY. 59, Waukesha, WI 53189 • generac.com ©2013 Generac Power Systems, Inc. All rights reserved. All specifications are subject to change without notice. Bulletin OK5086-B / Printed in U.S.A. 12/06/13

ATTACHMENT 5

D&M Plans

LOCATION MAP

USGS TOPOGRAPHIC MAP

NEW CINGULAR WIRELESS PCS, LLC (AT&T)

500 ENTERPRISE DRIVE ROCKY HILL, CT 06067

3 SADDLEBROOK DRIVE KILLINGWORTH, CT 06419 PHONE: (860)-663-1697

HOMELAND TOWERS

22 SHELTER ROCK LANE **BUILDING C** DANBURY, CT 06810 (203) 297-6345

DEVELOPMENT & MANAGEMENT PLAN DRAWING INDEX

T-1 TITLE SHEET & INDEX

EX-1 EXISTING CONDITIONS SURVEY

R-1 ABUTTERS MAP & CONST. SEQUENCE

SP-1 SITE PLAN

SP-2 TREE REMOVAL PLAN

A-1 COMPOUND PLAN & TOWER ELEVATION

C-1 AT&T EQUIP. SHELTER PLAN & DETAILS

C-2 AT&T ANTENNA PLAN & DETAILS

C-3 SITE DETAILS

C-4 SEDIMENTATION & EROSION CONTROL DETAILS

N-1 NOTES & SPECIFICATIONS

ALL-POINTS TECHNOLOGY CORPORATION

WWW.ALLPOINTSTECH.COM

FAX: (860)-663-0935

CONTACT PERSONNEL

APPLICANTS: HOMELAND TOWERS 22 SHELTER ROCK LANE BUILDING C DANBURY, CONNECTICUT 06810

CO-APPLICANTS AT&T MOBILITY 500 ENTERPRISE DRIVE ROCKY HILL, CT 06067

LANDLORD SALISBURY SCHOOL INC. ROUTE 44 EAST SALISBURY, CT 06068

HOMELAND PROJECT ATTORNEY: CUDDY & FEDER, LLP 445 HAMILTON AVENUE 14TH FLOOR WHITE PLAINS, NY 10601

POWER PROVIDER: EVERSOURCE (860) 496-5267 RICHARD REYNOLDS - CASE #2286103

GOVERNING CODES: 2009 CONNECTICUT BUILDING CODE (2003 IBC BASIS) 2011 NATIONAL ELECTRIC CODE

SITE INFORMATION

SALISBURY 250 CANAAN ROAD SALISBURY, CT 06068

DEVELOPMENT & MANAGEMENT DOCUMENTS TITLE SHEET 250 CANAAN ROAD & INDEX SALISBURY, CT 06068 DESIGN TYPE: APT FILING NUMBER: CT-283-170 APT DRAWING NUMBER: CT-114 T-1 **RAW LAND DEVELOPMENT SITE** SCALE AS NOTED DRAWN BY: RCB CHECKED BY: SMC REVISIONS REV.0: 11/05/15: FOR REVIEW: SMC REV.1: 11/09/15: CLIENT COMMENTS: RCB REV.3:

REV.4:

*SITE INFORMATION:

-SITE NAME:

CT-114

SALISBURY, CT 06068

-LATITUDE - ...

-FEMA/FIRM -ACREAGE:

PANEL#0900520008B - ZONE X 169.3 ± Ac (VOL. 52, PAGE 197)

42° 00' 22 403' N

893.1'± AMSL

-SITE ID NUMBER:

250 CANAAN ROAD

SURVEY NOTES

THIS SURVEY AND MAP HAS BEEN PREPARED IN ACCORDANCE WITH SECTIONS 20-3008-1 THRU 20-3008-20 OF THE REGULATIONS OF CONNECTICUT STATE AGENCES - "MINIMUM STANDARDS FOR SURVEYS AND MAPS IN THE STATE OF CONNECTICUT AS ENDORSED BY THE CONNECTICUT ASSOCIATION OF LAND SURVEYORS, INC. ON SEPT. 26, 1996. IT IS A MAPROVEMENT LOCATION SURVEY AND IS BASED UPON A DEPENDENT RESURVEY CONFORMING TO HORIZONTAL ACCURACY CLASS A-2 AND A VERTICAL ACCURACY OF CLASS T-2, AND IS INTENDED TO BE USED FOR THE PURPOSE OF SHOWING EXISTING CONDITIONS AND PROPERTY UNE INFORMATION

MAP REFERENCES

1) MAP PREPARE FOR SALISBURY SCHOOL, INCORPORATED, CANAAN ROAD-ROUTE 44 SALISBURY, CONNECTICUT, SCALE 1"=100, DATED JUNE 25, 2008, PREPARED BY LAMB KEIFER LAND SURVEYORS LLC.

NORTH ORIENTATION AND COORDINATES REFER TO CONNECTICUT GRID SYSTEM NAD 83.

ELEVATIONS BASED ON NAVD 1988 DATUM.

PARCEL ADDRESS: 250 CANAAN ROAD, SALISBURY, CT 06068.

PARCEL OWNER OF RECORD. SALISBURY SCHOOL, MAP 16 LOT 5 SALISBURY ASSESSORS MAP.

PARCEL AREA = 169 3 ± ACRES.

AREA OF SURVEY IS NOT IN A FLOOD HAZARD ZONE ON THE FLOOD INSURANCE RATE MAP, TOWN OF SALISBURY, LITCHFIELD COUNTY, CONNECTICUT, PANEL 8 OF 30, MAP NUMBER 09005200088, EFFECTIVE DATE JANUARY 5, 1989, BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY.

NOTE: DUE TO THE EXCESSIVE SNOW COVER AND ICE, THERE MAY SOME FEATURES SUCH AS ELECTRIC MANHOLES, CULIVERTS AND INVERTS, ETC. THAT WERE NOT ACCESSBLE IN ORDER TO FIELD LOCATE.

THE POSITION OF THE WETLANDS DEPICTED HEREON WERE PROVIDED BY ALL-PONTS TECHNOLOGY CORPORATION AND HAVE NOT BEEN FIELD LOCATED BY MARTINEZ COUCH & ASSOCIATES.

CONSTRUCTION SEQUENCING

CONTRACTOR TO FOLLOW THE FOLLOWING CONSTRUCTION PHASING AS CLOSELY AS POSSIBLE

1. MOBILIZATION, BRING MATERIAL AND EQUIPMENT TO SITE, ALL CONSTRUCTION TRAFFIC AND ACTIMITIES MUST RESDE INSDE ACCESS PATH DELINEATED, WITHIN STAGING AND STOCKPILE AREA, OR WITHIN AREA WHERE PROPOSED WORK IS BEING COMPLETED. THE CONTRACTOR IS TO PROTECT WEILLANDS FROM DISTURBANCE AT ALL TIMES AND NO CONSTRUCTION ACTIMITIES OR DUMPING SHALL OCCUR IN THE WETLANDS.

- 2. INSTALL TEMPORARY EROSION AND SEDIMENTATION CONTROL BARRIERS
- 3. INSTALL FRENCH MATRESS & CONSTRUCTION ENTRANCE
- 4. INSTALL TEMPORARY SNOW FENCE SURROUNDING EXISTING ARCHEOLOGICAL TEST PIT (25' RADIUS).
- 5. REMOVE TREES AND STUMPS IN ACCORDANCE WITH ENVIRONMENTAL NOTES ON DRAWING SP-2.
- 6. CLEAR AND ROUGH GRADE ACCESS ROAD TO THE NEW EQUIPMENT COMPOUND.
- 7. CONSTRUCT NEW UTILITY TRENCH & SET CONDUITS & BACKFILL
- 8. ROUGH GRADE COMPOUND AREA
- 9. EXCAVATE FOR TOWER FOUNDATION AND EQUIPMENT SHELTER FOUNDATION
- 10. FINALIZE ACCESS ROAD GRADES AND INSTALL WEARING COURSE
- 11. PREPARE SUBGRADE AND INSTALL FORMS, STEEL REINFORCING, AND CONCRETE FOR TOWER FOUNDATION & EQUIPMENT SHELTER FOUNDATION.
- 12. INSTALL BURIED GROUND RINGS, GROUND RODS, GROUND LEADS, UTILITY CONDUITS, AND UTILITY EQUPMENT.
- 13 BACKFILL FOUNDATION & EQUIPMENT SHELTER FOUNDATION
- 14. ERECT MONOPINE.
- 15. INSTALL TELECOMMUNICATIONS EQUIPMENT ON TOWER AND IN COMPOUND.
- 16. INSTALL COMPOUND GRAVEL SURFACES
- 17. INSTALL FENONG
- 18. CONNECT GROUNDING LEADS AND LIGHTENING PROTECTION
- 19. FINAL GRADE AROUND COMPOUND.
- 20. LOAM AND SEED DISTURBED AREAS OUTSIDE COMPOUND, AS REQUIRED.
- 21. REMOVE TEMPORARY EROSION & SEDMENTATION CONTROL BARRER AND TEMPORARY SNOW FENCE AFTER SEEDED AREAS HAVE ESTABLISHED VEGETATION
- 22. FINAL CLEANUP AND EQUIPMENT TESTING.

THE ESTIMATED TIME FOR COMPLETION OF THE WORK IS APPROXMATELY SEVEN (7) WEEKS. THE EXACT PROCESS MAY VARY DEPENDING ON THE CONTRACTORS AND SUBCONTRACTORS AVAILABLITY TO COMPLETE WORK AND WEATHER DELAYS.

4 CHAIN-LINK FENCING DETAIL SCALE: NTS

TYPICAL

7 GRAVEL ROAD SECTION

C-3 SCALE: NTS

C-3

SUBBASE MAY CONSIST OF NATIVE MATERIALS IF FOUND ACCEPTABLE BY THE ENGINEER SUBBASE TO BE COMPACTED TO 95% MAX DRY DENSITY.
 SUBBASE IS TO CLEAN GRANULAR MATERIAL (SEE NATISE SELECTION).

(SEE NOTES, SHEET N-1),
FREE FROM DEBRIS AND UNSUITABLE MATERIALS.
RECYCLED CONCRETE MAY BE SUBSTITUTED FOR GRAVEL.
OR CRUSHED STONE BASE IN NON-WETLANDS AREAS.

8 GRAVEL ROAD X-SECTION
C-3 SCALE: NTS

1. SET POSTS AND EXCAVATE A 6x6'
TRENCH, SET POST
DOWNSLOPE.

COMPACTED BACKFILL WKKV.

BOTTOM OF DRAINAGEWAY

PLAN VIEW

SILT FENCE CHECK DAM

SEDIMENTATION CONTROL BARRIER

ANGLE 10 UPSLOPE FOR STABILITY AND SILT.

3. BACKFILL THE TRENCH AND COMPACT EXCAVATED SOL

ELEVATION POINTS 'A' SHOULD BE HIGHER THAN POINT 'B'

2. ATTACH FILTER FABRIC TO THE POSTS AND EXTEND IT TO THE TRENCH

SEDIMENTATION CONTROL BARRIER

1. BEGIN AT THE LOCATION WHERE THE WATTLE IS TO BE INSTALLED BY EXCAVATING A 2-3* (5-7.5 CM) DEEP X 9* (2.2.9 CM) WIDE TRENCH ALONG THE CONTOUR OF THE SLOPE EXCAVATED SOIL SHOULD BE PLACED UPSLOPE FROM THE ANOHOR TRENCH 2. PLACE THE WATTLE IN THE TRENCH SO THAT IT CONTOURS TO THE SOIL SURFACE. COMPACT SOIL FROM THE EXCAVATED TRENCH AGAINST THE WATTLE ON THE UPHILL SDE. ADJACENT WATTLES SHOULD TIGHTLY ABUT. 3. SEQURE THE WATTLE WITH 18-24* (45.7-61 CM) STAKES SHOYLD FROM THE WATTLE WITH 18-24* (45.7-61 CM) STAKES SHOYLD BE DRIVEN THROUGH THE MODILE OF THE WATTLE LEAVING AT LEAST 2-3* (5-7.5 CM) OF STAKE EXTENDING ABOVE THE WATTLE SLAVES SHOULD BE DRIVEN PERPENDICULAR TO THE SLOPE FACE

STRAW WATTLE

ASTM C-33 #2 STONE ON FILTER FABRIC MARAFI 140(N)

(CE) CONSTRUCTION ENTRANCE DETAIL

UPGRADIENT FLOW

GEOTEXTILE

6 SILT FENCE DETAIL

STAKE 60' MIN.; 6FT O.C.

COMMERCIAL TYPE 'C' SILT FILTER FABRIC (TYP.)
(W/ WIRE FENCING, WHERE REQUIRED)

COMPACTED BACKFILL

GENERAL NOTES:

- 1. ALL MATERIALS AND METHODS OF CONSTRUCTION SHALL COMPLY WITH THE STANDARDS AND SPECFICATIONS OF THE TOWN OF SALISBURY, AND OTHER GOVERNMENTAL AGENCIES, AS APPLICABLE
- 2. THE CONTRACTOR SHALL BE RESPONSIBLE FOR SECURING ALL NECESSARY PERMITS BEFORE COMMENCING WORK. THE CONTRACTOR SHALL FOLLOW CONDITIONS OF ALL APPLICABLE PERMITS AND WORK IN ACCORD WITH OSHA REGULATIONS.
- 3. UTILITY INFORMATION SHOWN ON THE PLAN IS BASED ON VISIBLE FIELD EVIDENCE AND AVAILABLE RECORDS. THE CONTRACTOR SHALL FIELD VERRY THE LOCATION OF ALL UTILITIES PRIOR TO COMMENCING WORK. THE CONTRACTOR IS ADVISED THAT THESE DRAWNOS MAY NOT ACCURATELY DEPICT AS-BULT LOCATIONS AND OTHER UNKNOWN STRUCTURES. THE CONTRACTOR SHALL THEREFORE DETERMINE THE EXACT LOCATION OF EXISTING UNDERGROUND ELEMENTS AND EXCAVATE WITH CARE AFTER CALLING MARKOUT SERVICE AT 1-800-922-4455 (72) HOURS BEFORE DEGONS, DRILLING OR BLASTING. CARE SHALL BE TAKEN NOT TO DISTURB EXISTING UTILITIES AND SERVICE CONNECTIONS (OR PORTIONS THERE OF) TO REMAN. CONTRACTOR IS RESPONSIBLE FOR REPAIRING OR REPLACING STRUCTURES OR UTILITIES DAMAGED BY HIS OPERATIONS.
- 4. THE CONTRACTOR IS RESPONSIBLE FOR THE INSTALLATION OF NEW SERVICE CONNECTIONS AND SHALL COORDINATE WORK WITH THE APPROPRIATE UTILITY COMPANY.
- 5. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, FIBER OPTIC, AND OTHER UTLITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY THE ENGINEER.
- 6 EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR PER DRILLING AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRANNING FOR THE WORKING CREW. THIS WILL INCLUDE, BUT NOT BE LIMITED TO.

 A) FALL PROTECTION,
 B) CONFINED SPACE ENTRY,
- 7. ELECTRIC SERVICE SHALL BE COORDINATED WITH CONNECTICUT LIGHT & POWER (CL & P).
- 8. ALL ELEVATIONS SHOWN ARE IN N.G.V. DATUM 1929.
- 9. ALL RUBBISH, STUMPS, DEBRIS, STICKS, STONES, AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 10. CONTRACTOR SHALL PROTECT EXISTING PAVED AND GRAVEL SURFACES, CURBS, LANDSCAPE AND STRUCTURES AND RESTORE SITE TO PRECONSTRUCTION CONDITION WITH AS GOOD, OR BETTER, MATERIALS. NEW MATERIALS SHALL MATCH EXISTING THICKNESS AND TYPE.
- THE CONTRACTOR SHALL SHORE ALL TRENCH EXCAVATION GREATER THAN 5 FEET IN DEPTH OR LESS WHERE SOIL CONDITIONS ARE DEEMED UNSTABLE. ALL SHEETING AND/OR SHORING METHODS SHALL BE DESIGNED BY A PROFESSIONAL ENGINEER
- 12. THE CONTRACTOR IS RESPONSIBLE FOR MANAGING GROUNDWATER LEVELS IN THE VICINITY OF EXCAVATIONS TO PROTECT ADJACENT PROPERTIES AND NEW WORK GROUNDWATER SHALL BE DRAINED IN ACCORDANCE WITH LOCAL SEDIMENTATION & EROSON CONTROL GUIDELINES
- 13. THE CONTRACTOR IS REQUIRED TO REVIEW THE STATEMENT OF SPECIAL INSPECTION PRIOR TO THE START OF WORK. THE CONTRACTOR TO PROVIDE E-MAIL REQUEST TO THE PROJECT ENGINEER FOR INSPECTION 72 HOURS IN ADVANCE OF INSPECTION.

14. EXCAVATION

CONTRACTOR SHALL GRADE ONLY AREAS SHOWN TO BE MODIFIED HEREIN AND ONLY TO THE EXTENT REQURED TO SHED OVERLAND WATER FLOW AWAY FROM SITE. ALL SLOPES SHALL NOT BE STEEPER THAN 3.1 (HORZ-VERT)

BEDROCK SUBGRADE SHOULD NOT BE STEEPER THAN 4H 1V. HIGH SPOTS IN BEDROCK SUBGRADES MAY NEED TO BE REMOVED AND LOW SPOTS MAY BE FILLED WITH LEAN CONCRETE OR MINUS. 1/2 CRUSHED STONE TO PROVIDE A LEVEL SURFACE. BEDROCK SUBGRADES DO NOT REQUIRE PROOFROLLING

SEDIMENTATION AND EROSION CONTROLS SHOWN AND SPECIFIED SHALL BE ESTABLISHED BEFORE STRIPPING EXISTING VEGETATION.

ORGANIC MATERIAL AND DEBRIS SHALL BE STRIPPED AND STOCKPILED BEFORE ADDING FILL MATERIAL

NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR

ALL FILL SHALL BE PLACED IN EIGHT INCHLIFTS AND COMPACTED IN PLACE. STRUCTURAL FILL SHALL BE COMPACTED TO 95% MAXIMUM MODIFIED PROCTOR DRY DENSITY TESTED IN ACCORDANCE WITH ASTM D1557, METHOD C.

EXCAVATIONS FOR FOOTINGS SHALL BE CUT LEVEL TO THE REQUIRED DEPTH AND TO UNDSTURBED SOL. REPORT UNSUITABLE SOL CONDITIONS TO THE ENGINEER.

STRUCTURAL FILL SHALL BE TESTED FOR MOSTURE CONTENT AND COMPACTION DURING PLACEMENT. SHOULD THE RESULTS OF THE IN-PLACE DENSITY TESTS INDICATE THE SPECIFIED MOSTURE OR COMPACTION LIMITS HAVE NOT BEEN MET, THE AREA REPRESENTED BY THE TEST SHOULD BE REWORKED AND RETESTED, AS REQUIRED, UNTIL THE SPECIFIED MOSTURE AND COMPACTION REQUIREMENTS ARE ACHEVED.

EQUIPMENT CABINETS MAY BE SUPPORTED ON SLABS-ON-GRADE UNDERLAIN BY AT LEAST A 12-INCH THICKNESS OF COMPACTED STRUCTURAL FILL OR MINUS \$1-INCH CRUSHED STONE PLACED ON THE EXISTING FILL, THE SURFACE OF WHICH SHOULD BE THOROUGHLY COMPACTED AND CLEAR OF ORGANIC MATTER.

THE AREA UNDERLYING THE SLABS SHOULD BE ROUGH GRADED AND THEN THOROUGHLY PROOFROLLED WITH A VIBRATORY ROLLER OR HEAVY PLATE COMPACTOR PRIOR TO FINAL GRADING AND PLACEMENT OF STRUCTURAL FILL OR MINUS 3-HINCH CRUSHED STONE

A SOIL UNIT WEIGHT OF 100 LBS PER CUBIC FOOT (PCF) SHOULD BE USED FOR ENGINEERED FILL OVERLYING THE FOOTINGS.

TRENCH EXCAVATIONS SHALL BE BACKFILLED AT THE END OF EACH DAY.

SURPLUS MATERIAL SHALL BE REMOVED FROM THE SITE.

TOWER FOUNDATION EXCAVATION, BACKFILL AND COMPACTION SHALL BE IN ACCORD WITH TOWER MANUFACTURERS DESIGNS AND SPECIFICATIONS

CONTRACTOR TO VER FY THAT FOOTING ELEVATIONS AND PIER ELEVATION PROVIDED HEREIN ARE CONSISTENT WITH THE TOWER DESIGN REQUIREMENTS.

14. MATERIALS
NATIVE GRAVEL MATERIAL MAY BE USED FOR TRENCH BACKFILL WHERE SELECT MATERIAL IS NOT SPECIFIED, GRAVEL
MATERIAL FOR CONDUIT TRENCH BACKFILL SHALL NOT CONTAIN ROCK GREATER THAN 2 NOHES IN DIAMETER.

BANK OR CRUSHED GRAVEL SHALL CONSIST OF TOUGH, DURABLE PARTICLES OF CRUSHED OR UNCRUSHED GRAVEL FREE OF SOFT, THN, ELONGATED OR LAMINATED PECES AND MEET THE GRADATION

FILL SHOULD MEET THE FOLLOWING MATERIAL

FILL TYPE (1)	USCS CLASS/FICATION	ACCEPTABLE LOCATION FOR PLACEMENT
STRUCTURAL FILL	GW (2)	ALL LOCATIONS AND ELEVATIONS. THE EXISTING FILL MAY BE SELECTIVELY RE-USED AS STRUCTURAL FILL PROVIDED IT IS FREE OF ORGANIC AND CLOSELY MEETS THE GRADATION REQUIREMENTS IN NOTE 2, BELOW.
COMMON FILL	VARES (3)	COMMON FILL MAY BE USED FOR GENERAL SITE GRADING TO WITHIN 12 INCHES OF FINSHED GRADE. COMMON FILL SHOULD NOT BE USED UNDER SETTLEMENT SENSITIVE STRUCTURES. THE EXISTING STILL MAY BE RE-USED AS COMMON FILL, PROVIDED IT IS FREE OF ORGANCS AND CAN BE ADEQUATELY COMPACTED.

- COMPACTED FILL SHOULD CONSIST OF APPROVED MATERIALS THAT ARE FREE OF ORGANIC MATTER AND DEBRIS
 FROZEN MATERIAL SHOULD NOT BE USED. FILL SHOULD NOT BE PLACED ON A FROZEN SUBGRADE
- 2. IMPORTED STRUCTURAL FILL SHOULD MEET THE FOLLOWING GRADATION

PEHCENI PA	SSING BY WEIGHT
SEVE SIZE	STRUCTURAL FILL
6"	100
3*	70-100
2.	(100)*
3,	45-95
NO. 4	30-90
NO. 10	25-80
NO 40	10-50

NO. 40 10-50
NO. 200 0-12
* MAXMUM 24NCH PARTICLE SIZE WITHIN 12 INCHES OF THE UNDERSIDE OF CONCRETE ELEMENTS

3. COMMON FILL SHOULD HAVE A MAXIMUM PARTICLE SIZE OF 6 INCHES AND NO MORE THAN 25 PERCENT BY WEIGHT PASSING

SEDIMENTATION/EROSION

- THE CONTRACTOR SHALL MINIMIZE DISTURBANCE TO THE EXISTING SITE DURING STEEL STRUCTION EROSION CONTROL MEASURES SHALL BE IN CONFORMANCE WITH THE 2002 CONNECTICUT GUIDLINES FOR SOIL EROSION AND SEDMENT CONTROL
- CONTRACTOR SHALL PERFORM CONSTRUCTION SEQUENCING SUCH THAT EARTH MATERIALS ARE EXPOSED FOR A MINMUM OF TIME BEFORE THEY ARE COVERED, SEEDED, OR OTHERWISE STABILIZED TO PREVENT EROSON THE FOLLOWING GENERAL CONDITIONS SHALL BE OBSERVED
- A LIMITS OF CLEARING AND GRUBBING SHALL BE CLEARLY MARKED BEFORE
- B. EXISTING VEGETATION TO REMAIN SHALL BE PROTECTED AND REMAIN
- C. CLEARING AND GRADING SHALL BE SCHEDULED SO AS TO MINIMZE THE SIZE OF EXPOSED AREAS AND THE LENGTH OF TIME THAT AREAS ARE EXPOSED.
- D. TOPSO'L SHALL BE SPREAD TO FINISH GRADES AND SEEDED AS SOON AS FINISHED GRADES ARE ESTABLISHED. STRAW MULCH, JUTE NETTING OR MATS SHALL BE USED WHERE THE NEW SEED IS PLACED.
- E. THE LENGTH AND STEEPNESS OF CLEARED SLOPES SHALL BE MINIMIZED TO REDUCE RUNOFF VELOCITIES.
- F. RUNOFF SHALL BE DIVERTED AWAY FROM CLEARED SLOPES
- G. ALL SEDIMENT SHALL BE TRAPPED ON THE SITE
- SEDMENTATION AND EROS ON CONTROL (SEC) MEASURES SHOWN SHALL BE INSTALLED PROR TO LAND CLEARING, EXCAVATION OR GRADING OPERATIONS. REQUIREMENTS SPECIFIED SHALL BE MET PROR TO COMMENCING EARTHWORK OPERATIONS.
- IT IS THE CONTRACTOR'S RESPONSIBILITY TO MAINTAIN SEC MEASURES THROUGHOUT DURATION OF PROJECT UNTIL DISTURBED LAND IS THOROUGHLY VEGETATED.
- FAILURE OF THE SEC SYSTEMS SHALL BE CORRECTED IMMEDIATELY AND SUPPLEMENTED WITH ADDITIONAL MEASURES AS NEEDED
- VEGETATIVE SEEDING UON, AREA TO BE SEEDED SHALL BE LOOSE AND FRIABLE TO A DEPTH OF 3". TOPSOIL SHALL BE LOOSENED BY RAKING OR DISKING BEFORE SEEDING APPLY SO LOS OF DOLOMITIC LIMESTONE AND 25 LOS OF 10-10-10 FERTILIZER PER 1000 SF. HARROW LIME AND FERTILIZER INTO LOOSE SOL. AF COMMON BERMUDA AND RYE GRASS AT 50 LOS/ACRE. USE CYCLONE SEED D CULTIPACKER SEEDER OR HYDROSEEDER (SEED & FERTILIZER SLURRY) FOR S SLOPES. IRRGATE UNTIL VEGETATION IS COMPLETELY ESTABLISHED.
- 7. PROR TO STARTING ANY OTHER WORK ON THE SITE, THE CONTRACTOR SHALL NOTIFY APPROPRATE AGENCIES AND SHALL INSTALL EROS ON CONTROL MEASURES AS SHOWN ON THE PLANS AND AS DENTIFIED IN FEDERAL, STATE, AND LOCAL APPROVAL DOCUMENTS PERTAINING TO THIS PROJECT.
- 8. INSPECT AND MAINTAIN EROSION CONTROL MEASURES, AND REMOVE SEDMENT THEREFROM ON A WEEKLY BASIS AND WITHIN TWELVE HOURS AFTER EACH STORM EVENT AND DISPOSE OF SEDMENTS IN AN UPLAND AREA SUCH THAT THEY DO NOT ENCUMBER OTHER DRAINAGE STRUCTURES AND PROTECTED AREAS.
- 9. CONTRACTOR SHALL BE FULLY RESPONS BLE TO CONTROL CONSTRUCTION SUCH THAT SEDMENTATION SHALL NOT AFFECT REGULATORY PROTECTED AREAS, WHETHER SUCH SEDMENTATION IS CAUSED BY WATER, WIND, OR DRECT DEPOS IT.
- 10. UPON COMPLETION OF CONSTRUCTION AND ESTABLISHMENT OF PERMANENT GROUND COVER, CONTRACTOR SHALL REMOVE AND DISPOSE OF EROSION CONTROL MEASURES AND CLEAN SEDIMENT AND DEBRIS FROM ENTIRE DRAINAGE SYSTEM LOCATED ON SITE
- 11. APPROPRIATE MEANS SHALL BE USED TO CONTROL DUST DURING CONSTRUCTION.
- 12. A STABLIZED CONSTRUCTION ENTRANCE SHALL BE MAINTAINED TO PREVENT SOL AND LOOSE DEBRIS FORM BEING TRACKED ONTO LOCAL ROADS. THE CONSTRUCTION ENTRANCE SHALL BE MAINTAINED UNTIL THE SITE IS PERMANENTLY STABLIZED.
- 13. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION EROSION CONTROL MEASURES SHALL BE IN CONFORMACE WITH THE STATE OF CONNECTICUT GUIDELINES FOR EROSION AND SEDIMENT CONTROL, AS
- 14. TEMPORARY SLT FENCE EROSION CONTROL BARRER SHALL BE MAINTAINED THROUGHOUT SITE CONSTRUCTION STOCKPILE ON SITE 100 FT. OF SLT FENCE FOR EMERGENCY USE. TEMPORARY EROSION BARRERS SHALL REMAIN IN PLACE UNTIL PERMANENT VEGETATIVE GROUND COVER IS ESTABLISHED.
- 15. ALL DISTURBED AREAS OUTS DE THE LIMITS OF THE EQUIPMENT LEASE AREA SHALL BE PERMANENTLY ESTABLISHED WITH A VEGETATIVE GROUND COVER
- 16. STILLING BASIN SHALL BE UTILIZED FOR ANY DE-WATERING DISCHARGE WHICH MAY OCCUR DURING CONSTRUCTION OPERATIONS.
- 17. PROPOSED CONSTRUCTION IMPACTS AND PERMANENT IMPROVEMENTS SHALL NOT SIGNIFICANTLY IMPACT STORM WATER RUNOFF PATTERNS, VOLUME OR PEAK FLO RATES. THE FLAT GRADE OF THE EQUIPMENT COMPOUND AND STONE SURFACE WILL PROMOTE STORM WATER INFILTRATION.
- 18. CONTRACTOR SHALL INSTALL ALL EROSION AND SEDMENTATION CONTROL MEASURES PRIOR TO ANY GRADING ACTIVITIES IN LOCATIONS SHOWN ON THESE
- 19. SILT FENCES SHALL BE INSPECTED IMMEDIATELY AFTER EACH RAINFALL AND AT LEAST DAILY DURING PROLONGED RAINFALL, ANY REPAIRS THAT ARE REQUIRED SHALL BE MADE MIMEDIATELY.
- 20. IF THE FABRIC ON A SILT FENCE SHOULD DECOMPOSE OR BECOME INEFFECTIVE DURING THE EXPECTED LIFE OF THE FENCE, THE FABRIC SHALL BE REPLACED PROMPTLY
- 21. SEDIMENT DEPOSTS SHOULD BE INSPECTED AFTER EVERY STORM EVENT. THE DEPOSTS SHOULD BE REMOVED WHEN THEY REACH APPROXIMATELY ONE-HALF THE HEIGHT OF THE
- 22 SEDMENT DEPOSITS THAT ARE REMOVED OR LEFT IN PLACE AFTER THE FABRIC HAS BEEN REMOVED SHALL BE GRADED TO CONFORM WITH THE EXISTING TOPOGRAPHY AND VEGETATION
- 23. NO GREATER THAN 80,000 SQUARE FEET OF LAND SHALL BE EXPOSED AT ANY ONE TIME DURN'S DEVELOPMENT, WHEN LAND IS EXPOSED DURN'S DEVELOPMENT, THE EXPOSURE SHOULD BE KEPT TO THE SHORTEST PRACTICAL PERIOD OF TIME AND SHALL NOT EXCEED 10 DAYS. LAND SHOULD NOT BE LEFT EXPOSED DURN'S THE WINTER MONTHS.
- 24. ANY DISTURBED AREAS WHICH ARE TO BE LEFT TEMPORARLY, AND WHICH WILL BE REGRADED LATER DURING CONSTRUCTION SHALL BE MACHINE HAY MULCHED AND SEEDED WITH ANY GRASS TO PREVENT EROSION HAY OR STRAW MULCH SHALL BE APPLIED TO ALL FRESHLY SEEDED AREAS AT A RATE OF 2 TONS PER ACRES BALES SHALL BE UNSPOLED. AIR-DRIED, AND FREE FROM WEED, SEEDS, AND ANY COARSE MATERIAL

STRUCTURAL NOTES & SPECS

CONTRACTORS SHALL VERIEVALL DIMENSIONS AND CONDITIONS M THE FIELD PROR TO FABRICATION AND ERECTION OF ANY
MATERIAL THE ENGINEER SHALL BE NOTIFED OF ANY CONDITIONS WHICH PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS

- DESIGN AND CONSTRUCTION OF STRUCTURAL STEEL SHALL CONFORM TO LATEST EDITION OF THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION 'SPECFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR
- STRUCTURAL AND MISCELLANEOUS STEEL SHALL CONFORM TO ASTM A992 (FY-50 KS), UNLESS OTHERWISE NOTED
- STEEL PIPE SHALL CONFORM TO ASTM A500, GRADE B, STEEL PIPE DIAMETERS NOTED ON THE DRAWINGS ARE NOMINAL
- STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325 ALL BOLTS SHALL BE 3/4' DIAMETER MINIMUM AND SHALL HAVE MINMUM OF TWO BOLTS, LINEESS NOTED OTHERW THE DRAWINGS. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES
- NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE 5/8" DIAMETER GALVANIZED ASTM A 307 BOLTS UNLESS OTHERWISE NOTED
- ALL STEEL MATERIAL EXPOSED TO WEATHER SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 'ZINC (HOT-DIPPED GALVANIZED) COATINGS' ON IRON AND
- ALL BOLTS ANCHORS AND MISCELL ANEOUS HARDWARE EXPOSED TO WEATHER SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 'ZNC COATING (HOT-DP) ON IRON AND STEEL HARDWARE.
- DAMAGED GALVANIZED SURFACES SHALL BE REPAIRED BY UP ALL DAMAGED GALVANIZED STEEL WITH COLD ZINC, "GALVANOX", "DRY GALV', 'ZINC IT', OR APPROVED EQUIVALENT, IN ACCORDANCE WITH MANUFACTURERS GUIDE INES, TOUCH UP DAMAGED NO GALVANIZED STEEL WITH SAME PAINT APPLIED IN SHOP OR FELD.
- CONTRACTOR SHALL COMPLY WITH AWS CODE FOR PROCEDURES APPEARANCE AND QUALITY OF WELDS, AND WELDING PROCESSES SHALL BE QUALIFIED IN ACCORDANCE WITH AWS STANDARD QUALIFICATION PROCEDURES." ALL WELDING SHALL BE DONE USING E70XX ELECTRODES AND WELDING SHALL CONFORM TO AISC AND D1.1. WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINMUM SIZE PER TABLE J2 4 IN THE AISC MANUAL OF STEEL CONSTRUCTION 9TH EDITION, AT THE COMPLETION OF WELDING, ALL DAMAGE TO GALVANIZED COATING SHALL BE REPAIRED SEE NOTE 9
- THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION, ANY SUCH ACTION SHALL REQUIRE

1. ALL DIMENSIONS, ELEVATIONS AND EXISTING CONDITIONS SHOWN ON THE DRAWINGS SHALL BE VERFIED BY THE CONTRACTOR AND THE TESTING AGENCY PROR TO BEGINNING ANY MATERIAL, ORDERING, FABRICATION OR CONSTRUCTION WORK ON THIS PROJECT. ANY DISCREPANCES SHALL BE IMMEDIATELY BROUGHT TO THE ATTENTION OF THE OWNER AND THE OWNERS ENGINEED BEFORE THE CONTRACTOR IN 15 OF PROCEED WITH THE WORK THE CONTRACT DOCUMENTS DO NOT INDICATE THE METHOD OF CONSTRUCTION THE CONTRACTOR SHALL SUPPERVISE AND DRECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES. OBSERVATION VISITS TO THE SITE BY THE FOWNER BE SHALL BY BY THE OWNER AND/OR THE ENGINEER SHALL NOT INCLUDE INSPECTION OF THE PROTECTIVE MEASURES OR THE CONSTRUCTION PROCEDURES.

2. DAMAGE BY THE CONTRACTOR TO UTILITIES OR PROPERTY OF OTHERS, INCLUDING EXISTING PAVEMENT AND OTHER SURFACES DISTURBED BY THE CONTRACTOR DURING CONSTRUCTION SHALL BE REPAIRED TO PRE-CONSTRUCTION CONDITIONS BY THE CONTRACTOR AT NO ADDITIONAL COST TO THE CLIENT. FOR GRASSED AREAS, SEED AND MULCH SHALL BE ACCEPTABLE.

3. THE CONTRACTOR SHALL REWORK (DRY, SCARFY, ETC.) ALL MATERIAL NOT SUITABLE FOR SUBGRADE IN ITS PRESENT STATE. IF THE MATERIAL, AFTER REWORKING, REMAINS UNSUITABLE THEN THE CONTRACTOR SHALL NUMBEROUT THIS MATERIAL AND REPLACED WITH APPROVED MATERIAL ATH SEXPENSE. ALL SUBGRADES SHALL BE PROOF ROLLED WITH A FULLY LOADED TANDEM AXLE DUMP TRUCK PRIOR TO PAVING, ANY SOFT MATERIAL SHALL BE REWORKED AND REPLACED

4. THE CONTRACTOR IS REQUIRED TO MAINTAIN ALL DITCHES, P.PES, AND OTHER DRAINAGE STRUCTURES FREE FROM OBSTRUCTION UNTIL WORK IS ACCEPTABLE BY THE OWNER. THE CONTRACTOR IS RESPONSBLE FOR ANY DAMAGES CAUSED BY FAILURE TO MAINTAIN DRAINAGE STRUCTURES IN OPERABLE CONDITION.

5. ALL DMENSIONS SHALL BE VERFIED WITH THE PLANS (LATEST REVISION) PRIOR TO COMMENCING CONSTRUCTION NOTIFY THE OWNER IMMEDIATELY IF DISCREPANCES ARE DISCOVERED. THE CONTRACTOR SHALL HAVE A SET OF APPROVED PLANS AVAILABLE AT THE SITE AT ALL TIMES WHEN WORK IS BEING PERFORMED. A DESIGNATED RESPONSIBLE EMPLOYEE SHALL BE AVAILABLE FOR CONTRACT BY GOVERNING AGENCY INSPECTORS.

6. CONTRACTOR SHALL SECURE ALL NECESSARY PERMITS FOR THIS PROJECT FROM ALL APPLICABLE GOVERNMENTAL AGENCIES (NOT SUPPLIED BY OWNER)

7. ANY PERMITS WHICH MUST BE OBTAINED SHALL BE THE CONTRACTORS RESPONSIBLTY. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ABIDING BY ALL CONDITIONS AND REQUIREMENTS OF THE PERMITS (NOT SUPPLIED BY OWNER).

8. ALL WORK SHALL BE IN ACCORDANCE WITH LOCAL CODES AND THE LATEST APPLICABLE CODES AND STANDARDS.

9. THE CONTRACTOR SHALL NOTIFY THE APPLICABLE JURISDICTIONAL (STATE, COUNTY, OR CITY) ENGINEER 24 HOURS PROR TO BEGINNING OF CONSTRUCTION

10. CONTRACTOR RESPONSIBLE FOR CLOSING AND FILING ALL PERMITS ASSOCIATED WITH THE SITE

11. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE EQUIPMENT AND TOWER

12. ALL EXISTING AREAS DISTURBED BY CONSTRUCTION ACTIVITIES SHALL BE RESTORED TO MATCH PRECONSTRUCTION CONDITIONS.

13 THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO CONSTRUCTION ACTIVITIES COMMENCING

CONCRETE NOTES

1. ALL CONCRETE CONSTRUCTION SHALL BE DONE IN ACCORD WITH AMERICAN CONCRETE INSTITUTE (AC) CODES 301 & 318, LATEST REVISION

2. TOWER FOUNDATION WORK SHALL BE IN ACCORDANCE WITH TOWER MANUFACTURERS DESIGNS AND

3. ALL CONCRETE USED SHALL BE 4000 PSI (28 DAY COMP STRENGTH). THE CONCRETE MX SHALL BE BASED ON USING THE FOLLOWING MATERIALS AND PARAMETERS:

PORTLAND CEMENT: ASTM C150, T1 AGGREGATE ASTM C33, 1 INCH MAX WATER ADM/XTURE: NON-CHLORIDE

6%* 4 INCH JNLESS NOTED OTHERWS

*ALL CONCRETE EXPOSED TO FREEZING WEATHER SHALL CONTAIN ENTRAINED AR PER ACI 211 TABLE 4 2.1 OF ACI 318-95.

4. ALL REINFORCING STEEL SHALL BE ASTM A615, GR 60 (DEFORMED) UNLESS NOTED OTHERWISE. WELDED WRE FABRIC SHALL CONFORM TO ASTM A185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE. SPLICES SHALL BE CLASS BY "AND ALL HOCKS SHALL BE ACK STANDARD UND. REINFORCING BARS SHALL BE COLD BENT WHERE REQUIRED AND TED (NOT WELDED).

5. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS: CONCRETE CAST AGAINST EARTH = 3 IN.

CONCRETE EXPOSED TO EARTH OR WEATHER #6 AND LARGER = 2 IN #5 AND SMALLER = 1 1/2 IN CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR NOT CAST AGAINST THE GROUND.
SLAB AND WALL = 3/4 IN.
BEAMS AND COLUMNS = 1 1/2 IN.

6. A 3/4 IN CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OR CONCRETE, UNO, IN ACCORDANCE WITH ACI

7. CONCRETE SHALL BE PLACED IN A UNIFORM MANNER AND CONSOLIDATED IN PLACE

8. CONCRETE FOOTINGS SHALL BE CAST AGAINST LEVEL, COMPACTED, NON-FROZEN BASE SOIL FREE OF STANDING

minimum

9. APPLY A QUALITY CONCRETE SEALER SUCH AS THEROSEAL TO EXPOSED CONCRETE IN ACCORDANCE WITH MANUFACTURERS APPLICATIONS DIRECTIONS.

