

#### Final 2016 PV Forecast

Distributed Generation Forecast Working Group

**ISO-NE PUBLIC** 

#### Jon Black

MANAGER, LOAD FORECASTING

## **Presentation Outline**

- Background and Forecast Process
- Changes to February 2016 Draft PV Forecast and Final 2016 PV Forecast
- 2016 PV Energy Forecast
- Behind-the-meter PV: Estimated Energy and Summer Peak Load Reductions
- Geographic Distribution of PV Forecast

ISO-NE PUBLI

Summary and Next steps



#### **BACKGROUND AND FORECAST PROCESS**



## **Background and Forecast Review Process**



- The ISO discussed the draft PV forecast with the DGFWG at the February 24, 2016 meeting
  - See: <u>http://www.iso-ne.com/static-assets/documents/2016/03/2016\_draftpvf</u>
     <u>orecast\_20160224revised.pdf</u>
- Stakeholders provided many helpful comments on the draft forecast
  - See: <u>http://www.iso-</u> <u>ne.com/committees/planning/distributed-</u> <u>generation/?eventId=129509</u>
- The final PV forecast will be published in the 2016 CELT

## CHANGES TO FEBRUARY 2016 DRAFT PV FORECAST AND FINAL 2016 PV FORECAST

**ISO-NE PUBLIC** 

#### **Changes to the February 2016 Draft PV Forecast**

| State         | Changes/Comments                                                                                                                                                                                                                                                                  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Massachusetts | Made the MA forecast more "front-loaded" to reflect that<br>the SREC program is close to fully subscribed and the recent<br>faster-than-expected PV growth in MA. This change to the<br>forecast resulted in the achievement of the SREC policy goal<br>in 2018 rather than 2020. |
| Vermont       | Adjusted VT's 2017 forecast value downward to reflect the implementation of the Renewable Energy Standard goals.                                                                                                                                                                  |



#### FINAL 2016 PV NAMEPLATE FORECAST



# Draft 2016 PV Forecast – February 24, 2016

Nameplate Capacity, MW<sub>ac</sub>

| States                     | Annual Total MW (AC nameplate rating) |        |        |        |        |        |        |        |        |        |        |         |
|----------------------------|---------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| States                     | Thru 2015                             | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   | 2023   | 2024   | 2025   | TOLAIS  |
| СТ                         | 188.0                                 | 85.5   | 104.5  | 81.0   | 81.0   | 81.0   | 55.8   | 54.3   | 45.0   | 45.0   | 45.0   | 866.1   |
| МА                         | 947.1                                 | 122.7  | 122.7  | 77.5   | 77.5   | 77.5   | 43.0   | 43.0   | 43.0   | 43.0   | 43.0   | 1,640.0 |
| МЕ                         | 15.3                                  | 4.7    | 4.7    | 4.4    | 4.4    | 4.4    | 4.2    | 3.9    | 3.9    | 3.9    | 3.9    | 57.9    |
| NH                         | 26.4                                  | 13.3   | 7.6    | 4.0    | 4.0    | 4.0    | 4.0    | 4.0    | 4.0    | 4.0    | 4.0    | 79.3    |
| RI                         | 23.6                                  | 21.6   | 38.7   | 36.0   | 36.0   | 25.9   | 9.1    | 6.6    | 6.6    | 6.6    | 6.6    | 217.2   |
| VT                         | 124.6                                 | 30.2   | 30.2   | 22.5   | 22.5   | 22.5   | 21.3   | 20.0   | 20.0   | 20.0   | 20.0   | 353.7   |
| Regional - Annual (MW)     | 1325.0                                | 277.9  | 308.3  | 225.4  | 225.4  | 215.3  | 137.5  | 131.8  | 122.5  | 122.5  | 122.5  | 3,214.3 |
| Regional - Cumulative (MW) | 1325.0                                | 1602.9 | 1911.2 | 2136.6 | 2362.0 | 2577.3 | 2714.8 | 2846.6 | 2969.2 | 3091.7 | 3214.3 | 3,214.3 |

**ISO-NE PUBLIC** 

#### <u>Notes</u>:

(1) Forecast values include FCM Resources, non-FCM Energy Only Generators, and behind-the-meter PV resources

(2) The forecast reflects discount factors to account for uncertainty in meeting state policy goals

(3) All values represent end-of-year installed capacities

# Final 2016 PV Forecast

#### Nameplate, MW<sub>ac</sub>

#### **Note:** Values in **red boldface** have changed relative to the draft forecast

| Chabaa                     |           |        |        | Annual 1 | Total MW | (AC name | eplate rati | ing)   |        |        |        | Tatala  |
|----------------------------|-----------|--------|--------|----------|----------|----------|-------------|--------|--------|--------|--------|---------|
| States                     | Thru 2015 | 2016   | 2017   | 2018     | 2019     | 2020     | 2021        | 2022   | 2023   | 2024   | 2025   | TULAIS  |
| СТ                         | 188.0     | 85.5   | 104.5  | 81.0     | 81.0     | 81.0     | 55.8        | 54.3   | 45.0   | 45.0   | 45.0   | 866.1   |
| МА                         | 947.1     | 294.4  | 122.7  | 69.7     | 38.7     | 38.7     | 38.7        | 38.7   | 38.7   | 38.7   | 38.7   | 1,705.0 |
| ME                         | 15.3      | 4.7    | 4.7    | 4.4      | 4.4      | 4.4      | 4.2         | 3.9    | 3.9    | 3.9    | 3.9    | 57.9    |
| NH                         | 26.4      | 13.3   | 7.6    | 4.0      | 4.0      | 4.0      | 4.0         | 4.0    | 4.0    | 4.0    | 4.0    | 79.3    |
| RI                         | 23.6      | 21.6   | 38.7   | 36.0     | 36.0     | 25.9     | 9.1         | 6.6    | 6.6    | 6.6    | 6.6    | 217.2   |
| VT                         | 124.6     | 30.2   | 23.8   | 22.5     | 22.5     | 22.5     | 21.3        | 20.0   | 20.0   | 20.0   | 20.0   | 347.3   |
| Regional - Annual (MW)     | 1325.0    | 449.6  | 301.9  | 217.7    | 186.7    | 176.5    | 133.2       | 127.5  | 118.2  | 118.2  | 118.2  | 3,272.8 |
| Regional - Cumulative (MW) | 1325.0    | 1774.7 | 2076.5 | 2294.2   | 2480.9   | 2657.4   | 2790.6      | 2918.1 | 3036.3 | 3154.6 | 3272.8 | 3,272.8 |

**ISO-NE PUBLIC** 

#### <u>Notes</u>:

(1) Forecast values include FCM Resources, non-FCM Energy Only Generators, and behind-the-meter PV resources

(2) The forecast reflects discount factors to account for uncertainty in meeting state policy goals

(3) All values represent end-of-year installed capacities

#### **PV Growth: Reported Historical vs. Forecast**



#### **2016 PV ENERGY FORECAST**



# **Development of PV Energy Forecast**

- The 2016 PV nameplate forecast reflects end-of-year values
- Energy estimates in the PV forecast are inclusive of incremental growth during a given year
- ISO assumed that historical PV growth trends across the region are indicative of future intra-annual growth rates
  - Growth trends between 2012 and 2015 were used to estimate intraannual incremental growth over the forecast horizon (*see next slide*)

**ISO-NE PUBLI** 

- The PV energy forecast was developed using a monthly nameplate forecast along with average monthly capacity factors from Yaskawa-Solectria data (*see slide 14*)
  - Annual capacity factor = 14.1%
  - Yaskawa-Solectria data is described further (see slide 23)

#### Historical Monthly PV Growth Trends, 2012-2015

**ISO-NE PUBLIC** 



#### Average Monthly Growth Rates, % of Annual

| Month | Monthly<br>PV Growth<br>(% of Annual) | <b>Monthly PV</b><br><b>Growth</b><br>(Cumulative % of Annual) |
|-------|---------------------------------------|----------------------------------------------------------------|
| 1     | 6%                                    | 6%                                                             |
| 2     | 4%                                    | 10%                                                            |
| 3     | 6%                                    | 15%                                                            |
| 4     | 7%                                    | 22%                                                            |
| 5     | 6%                                    | 28%                                                            |
| 6     | 9%                                    | 37%                                                            |
| 7     | 10%                                   | 47%                                                            |
| 8     | 9%                                    | 56%                                                            |
| 9     | 7%                                    | 64%                                                            |
| 10    | 8%                                    | 72%                                                            |
| 11    | 6%                                    | 77%                                                            |
| 12    | 23%                                   | 100%                                                           |

<u>Note</u>: Monthly percentages represent end-of-month values, and may not sum to total due to rounding

#### **Monthly PV Capacity Factors**

Yaskawa-Solectria PV Site Data, 2012-2015



**ISO-NE PUBLIC** 

Source: http://www.solrenview.com/

## **Final 2016 PV Energy Forecast** *All Resource Types, GWh*

| States                         | Total Estimated Annual Energy (GWh) |       |       |       |       |       |       |       |       |       |  |  |
|--------------------------------|-------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| States                         | 2016                                | 2017  | 2018  | 2019  | 2020  | 2021  | 2022  | 2023  | 2024  | 2025  |  |  |
| ст                             | 287                                 | 409   | 535   | 642   | 749   | 844   | 917   | 984   | 1,043 | 1,103 |  |  |
| МА                             | 1383                                | 1,692 | 1,829 | 1,907 | 1,958 | 2,009 | 2,060 | 2,111 | 2,162 | 2,213 |  |  |
| ME                             | 22                                  | 28    | 35    | 40    | 46    | 52    | 57    | 62    | 68    | 73    |  |  |
| NH                             | 41                                  | 56    | 64    | 69    | 75    | 80    | 85    | 91    | 96    | 101   |  |  |
| RI                             | 41                                  | 77    | 127   | 175   | 217   | 244   | 255   | 263   | 272   | 281   |  |  |
| VT                             | 178                                 | 215   | 246   | 275   | 305   | 334   | 361   | 388   | 414   | 440   |  |  |
| Regional - Annual Energy (GWh) | 1953                                | 2,477 | 2,836 | 3,109 | 3,350 | 3,563 | 3,735 | 3,899 | 4,055 | 4,211 |  |  |

#### <u>Notes</u>:

(1) Forecast values include energy from FCM Resources, non-FCM Energy Only Generators, and behind-the-meter PV resources

**ISO-NE PUBLIC** 

- (2) Monthly in service dates of PV assumed based on historical development
- (3) All values are grossed up by 6.5% to reflect avoided transmission and distribution losses

### BREAKDOWN OF PV NAMEPLATE FORECAST INTO RESOURCE TYPES



#### **Forecast Includes Classification by Resource Type**

- In order to properly account for existing and future PV in planning studies and avoid double counting, ISO classified PV into three distinct types related to the resources assumed market participation/non-participation
- These market distinctions are important for the ISO's use of the PV forecast in a wide range of planning studies
- The classification process requires the estimation of hourly PV production that is behind-the-meter (BTM), i.e., PV that does not participate in ISO markets

**ISO-NE PUBLIC** 

 This requires historical hourly BTM PV production data to reconstitute PV into the historical load data used to develop the long-term load forecast

# **Three Mutually Exclusive PV Resource Types**

#### **1.** PV as a resource in the Forward Capacity Market (FCM)

- Qualified for the FCM and have acquired a capacity supply obligations
- Size and location identified and visible to the ISO
- May be supply or demand-side resources

#### 2. Non-FCM Settlement Only Resources (SOR) and Generators

- ISO collects energy output
- Participate only in the energy market

#### 3. Behind-the-Meter (BTM) PV

- Not in ISO Market
- Reduces system load
- ISO has an incomplete set of information on generator characteristics
- ISO does not collect energy meter data, but can estimate it using other available data

18

#### <u>Notes</u>:

For 2015 CELT, BTM was further subdivided into two categories, behind-the-Meter PV embedded in load (BTMEL) and behind-themeter PV not embedded in load (BTMNEL); Full PV reconstitution allowed ISO to combine these two categories into one (BTM)

# **Determining PV Resource Type By State**

- Resource types vary by state
  - Can be influenced by state regulations and policies (*e.g.*, net metering requirements)
- ate
- The following steps were used to determine

PV resource types for each state over the forecast horizon:

- 1. FCM
  - Identify all Generation and Demand Response FCM PV resources for each Capacity Commitment Period (CCP) through FCA 10
- 2. Non-FCM SOR/Gen
  - Determine the % share of non-FCM PV participating in energy market at the end of 2015 and assume this share remains constant throughout the forecast period
- 3. BTM
  - Subtract the values from steps 1 and 2 from the annual state PV forecast, the remainder is the BTM PV

# **PV in ISO New England Markets**

- FCM
  - ISO identified all PV generators or demand resources (DR) that have Capacity Supply Obligations (CSO) in FCM up through FCA 10
  - Assume aggregate total PV in FCM as of FCA 10 remains constant from 2019-2025

#### • Non-FCM Gen/SOR (Energy Only Resources (EOR))

- ISO identified total nameplate capacity of PV in each state registered in the energy market as of 12/31/15
- Assume % share of nameplate PV in energy market as of 12/31/15 remains constant throughout the forecast horizon
- Other assumptions:
  - Supply-side FCM PV resources operate as SOR/Gen prior to their first
     FCM commitment period (this has been observed in Massachusetts)
  - Planned PV projects known to be > 5 MW<sub>ac</sub> nameplate are assumed to trigger OP-14 requirement to register in ISO energy market as a Generator

# **Estimation of Hourly BTM PV**

- In order to estimate hourly BTM PV production, ISO developed hourly state PV profiles for the period 1/1/2012 –1/31/2015 using publicly-available historical production (see slide 23)
  - Data aggregated into normalized PV profiles for each state, which represent a per-MW-of-nameplate production profile for PV

**ISO-NE PUBLIC** 





# Estimation of Hourly BTM PV (continued)

- Using the normalized PV profiles, total state PV production was then estimated by scaling the profiles up to the total PV installed over the period according to recently-submitted distribution utility data
  - (Normalized Hrly Profile) x (Total installed PV Capacity) = Hourly PV production
- Subtracting the hourly PV settlements energy (where applicable) yields the total BTM PV energy for each state
  - BTM profiles were used for PV reconstitution in the development of the gross load forecast

**ISO-NE PUBLIC** 

# **Historical PV Profile Development and Analysis**

- Hourly state PV profiles developed for four years (2012-2015) using production data using Yaskawa-Solectria Solar's web-based monitoring system, SolrenView\*
  - Represents PV generation at the inverter or at the revenue-grade meter
- A total of more than 1,200 individual sites representing more than 125 MW<sub>ac</sub> in nameplate capacity were used
  - Total nameplate capacity represents approximately 10% of installed PV capacity in the region as of 12/31/15
  - The site distribution throughout the region is sufficient for estimating profiles of all PV installations in New England
  - Site locations depicted on adjacent map



\*Source: http://www.solrenview.com/

# FINAL 2016 PV NAMEPLATE FORECAST BY RESOURCE TYPE

**ISO-NE PUBLIC** 

# Final 2016 PV Forecast

#### *Cumulative Nameplate, MW<sub>ac</sub>*

| States                     | Cumulative Total MW (AC nameplate rating) |        |        |        |        |        |        |        |        |        |        |  |
|----------------------------|-------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| States                     | Thru 2015                                 | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   | 2023   | 2024   | 2025   |  |
| СТ                         | 188.0                                     | 273.5  | 378.0  | 459.0  | 540.0  | 621.0  | 676.9  | 731.2  | 776.2  | 821.1  | 866.1  |  |
| МА                         | 947.1                                     | 1241.5 | 1364.2 | 1433.9 | 1472.6 | 1511.3 | 1550.1 | 1588.8 | 1627.6 | 1666.3 | 1705.0 |  |
| ME                         | 15.3                                      | 20.0   | 24.6   | 29.1   | 33.5   | 37.9   | 42.1   | 46.1   | 50.0   | 53.9   | 57.9   |  |
| NH                         | 26.4                                      | 39.7   | 47.3   | 51.3   | 55.3   | 59.3   | 63.3   | 67.3   | 71.3   | 75.3   | 79.3   |  |
| RI                         | 23.6                                      | 45.2   | 83.9   | 119.9  | 155.9  | 181.8  | 190.9  | 197.5  | 204.1  | 210.7  | 217.2  |  |
| VT                         | 124.6                                     | 154.8  | 178.5  | 201.0  | 223.5  | 246.0  | 267.3  | 287.3  | 307.3  | 327.3  | 347.3  |  |
| Regional - Cumulative (MW) | 1325.0                                    | 1774.7 | 2076.5 | 2294.2 | 2480.9 | 2657.4 | 2790.6 | 2918.1 | 3036.3 | 3154.6 | 3272.8 |  |

**ISO-NE PUBLIC** 

#### <u>Notes</u>:

(1) Forecast values include FCM Resources, non-FCM Energy Only Generators, and behind-the-meter PV resources

(2) The forecast reflects discount factors to account for uncertainty in meeting state policy goals

(3) All values represent end-of-year installed capacities

# Final 2016 PV Forecast

#### *Cumulative Nameplate, MW<sub>ac</sub>*



# **Cumulative Nameplate by Resource Type, MW**<sub>ac</sub>

![](_page_26_Figure_1.jpeg)

#### **Cumulative Nameplate by Resource Type, MW**<sub>ac</sub> *Massachusetts*

![](_page_27_Figure_1.jpeg)

#### **Cumulative Nameplate by Resource Type, MW**<sub>ac</sub> *Maine*

![](_page_28_Figure_1.jpeg)

**ISO-NE PUBLIC** 

#### **Cumulative Nameplate by Resource Type, MW**<sub>ac</sub> New Hampshire

![](_page_29_Figure_1.jpeg)

#### **Cumulative Nameplate by Resource Type, MW**<sub>ac</sub> *Rhode Island*

![](_page_30_Figure_1.jpeg)

ISO-NE PUBLIC

# **Cumulative Nameplate by Resource Type, MW**<sub>ac</sub>

![](_page_31_Figure_1.jpeg)

# **BTM PV: ESTIMATED ENERGY & SUMMER PEAK LOAD REDUCTIONS**

![](_page_32_Picture_1.jpeg)

### **BTM PV Forecast Used in CELT Net Load Forecast**

- The 2016 CELT net load forecast will reflect deductions associated with the BTM PV portion of the PV forecast
- The following slides show values for annual energy and summer peak load reductions anticipated from BTM PV that will be reflected in the 2016 CELT net load forecast

   PV does not reduce winter peak loads
- Values for expected summer peak load reductions from BTM PV incorporates the results of ISO's analysis discussed at the 2/24/16 DGFWG meeting
  - This analysis is described on slides 33-59 here: <u>http://www.iso-ne.com/static-assets/documents/2016/03/2016\_draftpvforecast\_20160224revised.pdf</u>

**ISO-NE PUBLIC** 

#### Final 2016 PV Energy Forecast BTM PV, GWh

| States                         | Total Estimated Annual Energy (GWh) |       |       |       |       |       |       |       |       |       |  |  |
|--------------------------------|-------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| States                         | 2016                                | 2017  | 2018  | 2019  | 2020  | 2021  | 2022  | 2023  | 2024  | 2025  |  |  |
| ст                             | 283                                 | 394   | 500   | 600   | 699   | 788   | 857   | 919   | 975   | 1,030 |  |  |
| МА                             | 768                                 | 943   | 1,021 | 1,065 | 1,094 | 1,123 | 1,152 | 1,181 | 1,209 | 1,238 |  |  |
| ME                             | 22                                  | 29    | 35    | 40    | 46    | 52    | 57    | 62    | 68    | 73    |  |  |
| NH                             | 39                                  | 53    | 61    | 66    | 71    | 76    | 81    | 86    | 91    | 96    |  |  |
| RI                             | 11                                  | 22    | 37    | 50    | 63    | 71    | 74    | 76    | 79    | 81    |  |  |
| VT                             | 178                                 | 215   | 246   | 275   | 305   | 334   | 362   | 388   | 414   | 441   |  |  |
| Regional - Annual Energy (GWh) | 1301                                | 1,655 | 1,898 | 2,097 | 2,278 | 2,444 | 2,582 | 2,713 | 2,836 | 2,959 |  |  |

#### <u>Notes</u>:

(1) Forecast values include energy from FCM Resources, non-FCM Energy Only Generators, and behind-the-meter PV resources

**ISO-NE PUBLIC** 

(2) Monthly in service dates of PV assumed based on historical development

(3) All values are grossed up by 6.5% to reflect avoided transmission and distribution losses

## Final 2016 Forecast

#### BTM PV: July 1<sup>st</sup> Estimated Summer Peak Load Reductions

| States                                            | Estimated Summer Peak Load Reduction - BTM PV (MW) |       |       |       |       |       |       |       |       |       |  |  |
|---------------------------------------------------|----------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| States                                            | 2016                                               | 2017  | 2018  | 2019  | 2020  | 2021  | 2022  | 2023  | 2024  | 2025  |  |  |
| СТ                                                | 92.1                                               | 123.9 | 153.6 | 181.0 | 207.7 | 230.6 | 247.6 | 262.8 | 275.7 | 288.2 |  |  |
| МА                                                | 249.4                                              | 295.6 | 312.6 | 320.4 | 324.0 | 327.9 | 332.5 | 337.1 | 341.8 | 346.2 |  |  |
| ME                                                | 7.3                                                | 9.0   | 10.6  | 12.2  | 13.7  | 15.2  | 16.6  | 17.8  | 19.1  | 20.3  |  |  |
| NH                                                | 12.7                                               | 16.7  | 18.7  | 19.9  | 21.1  | 22.2  | 23.4  | 24.6  | 25.8  | 26.9  |  |  |
| RI                                                | 3.7                                                | 7.0   | 11.3  | 15.2  | 18.7  | 20.6  | 21.3  | 21.8  | 22.3  | 22.7  |  |  |
| VT                                                | 57.8                                               | 67.4  | 75.4  | 83.0  | 90.5  | 97.7  | 104.5 | 110.9 | 117.1 | 123.3 |  |  |
| Regional - Cumulative Peak Load Reduction<br>(MW) | 422.9                                              | 519.5 | 582.2 | 631.6 | 675.6 | 714.3 | 745.9 | 775.0 | 801.7 | 827.6 |  |  |

#### <u>Notes</u>:

(1) Forecast values are for behind-the-meter PV resources only

(2) Values include the effect of diminishing PV production as increasing PV penetrations shift the timing of peaks later in the day

(3) All values represent anticipated July 1<sup>st</sup> installed PV, and are grossed up by 8% to reflect avoided transmission and distribution losses

ISO-NE PUBLIC

36

(4) Different planning studies may use values different that these estimated peak load reductions based on the intent of the study

#### **GEOGRAPHIC DISTRIBUTION OF PV FORECAST**

**ISO-NE PUBLIC** 

## Background

- A reasonable representation of the locations of existing and future PV resources is required for appropriate modeling
- The locations of most future PV resources are ultimately unknown
- Mitigation of some of this uncertainty (especially for nearterm development) is possible via analysis of available data

**ISO-NE PUBLIC** 

# **Forecasting Solar By DR Dispatch Zone**

ISO-NE PUBLIC

- Demand Response (DR) Dispatch Zones were created as part of the DR Integration project
- These zones were created in consideration of electrical interfaces
- Quantifying existing and forecasted PV resources by Dispatch Zone (with nodal placement of some) will aid in the modeling of PV resources for planning and operations purposes

![](_page_38_Figure_4.jpeg)

# **Geographic Distribution of PV Forecast**

![](_page_39_Picture_1.jpeg)

- Existing MWs:
  - Apply I.3.9 project MWs nodally
  - For remaining existing MWs, determine Dispatch Zone locations of projects already interconnected based on utility distribution queue data (town/zip), and apply MWs equally to all nodes in Zone
- Future MWs:

ISO-NE PUBLI

- Apply I.3.9 project MWs nodally
- For longer-term forecast, assume the same distribution as existing MWs

# **Dispatch Zone Distribution of PV**

Based on December 31, 2015 Utility Data

| State | Dispatch Zone    | % Share |
|-------|------------------|---------|
|       | SEMA             | 21.5%   |
|       | Boston           | 10.9%   |
|       | Lower SEMA       | 18.7%   |
| MA    | Central MA       | 15.3%   |
|       | Spfld            | 6.0%    |
|       | North Shore      | 4.9%    |
|       | Western MA       | 22.7%   |
|       | Eastern CT       | 18.8%   |
| ст    | Western CT       | 53.7%   |
| CI    | Northern CT      | 20.1%   |
|       | Norwalk-Stamford | 7.5%    |
|       | New Hampshire    | 88.3%   |
| INIT  | Seacoast         | 11.7%   |
| VT    | Northwest VT     | 62.9%   |
| VI    | Vermont          | 37.1%   |
| RI    | Rhode Island     | 100.0%  |
|       | Bangor Hydro     | 15.6%   |
| ME    | Maine            | 51.2%   |
|       | Portland         | 33.3%   |

#### **SUMMARY AND NEXT STEPS**

![](_page_41_Picture_1.jpeg)

# Stakeholder and State Regulator Input Has Resulted in Improved Forecast

- The 2016 PV nameplate and energy forecasts have been finalized
- ISO has classified the 2016 state and regional PV forecasts according to the three PV resource categories
- The ISO has updated its geographic distribution assumptions based on recent data
- The final PV forecast will appear in the 2016 CELT, which will be published by May 1<sup>st</sup>

ISO-NE PUBLI

# Questions

**ISO-NE PUBLIC** 

![](_page_43_Picture_1.jpeg)

![](_page_43_Picture_2.jpeg)