Drainage

- Back to Basics 101

Prepared by: Christopher Zukowski - District IV Construction

Drainage 101

- Preconstruction
- Construction
- Finals and Follow up

Preconstruction

1) Getting started

- Review Plans \& Specifications
a) " A " Items
b) New items that are unfamiliar
c) Miscellaneous Details sheets for Catchbasins
- Look for Utility conflicts
- Set Up Drainage books(Volume\#3)
- Field inspect all CB's, MH's \& Pipes for damage
- Review PC-1 for 7 day cure time
- Review Contractors Schedule of Work

Preconstruction

- Equipment needed for drainage installations
- OSHA approved trench box
- Certified chains for rigging
- Certified straps / slings
- Ladder for trench box entry / exit
- Jumping Jack compactor
- Level and Rod
- 4 foot level

Preconstruction

- Familiarize yourself with structure details
- "Trained eye" for what you should expect to see in the field during installation
- Review miscellaneous details for drainage structures
- Note changes which may be project specific
-New details include Butyl Rubber Joint detail between sump and riser section

Structure details

SHIP LAP JOINT DETALL
(FOR USE WTH ROOND ETRUCTURES ONAY

Plans, Profiles \& Cross Sections

Plans, Profiles \& Cross Sections

Plans. Profiles \& Cross Sections

$4 A^{71}$ t?

Schedule of Prices as quoted on the "Proposal Form"

ITEM NUM	ITEMS	UNIT	QTY	UNIT PRICE	AMOUNT
			105	180.00	\$18,900.00
0601318A	\|PARTIAL DEPTH PATCH	\|c.f.			
0601604 A	ASPHALTIC PLUG EXPANSION	11.1.	56	110.00	\$6, 160.00
	JOINT SYSTEM		560	1.00	
0602001	DEPORMED STEEL BARS	\|lb.			\$560.00
0602910A	DRILLING HOLES AND GROUTING		55280	100.00	\$5,500.00
	DOWELS				
0606001	\|CEMENT RUBBLE MASONRY			280.0018.00	\$78,400.00
0651001	\|BEDDING MATERIAL	$\left\lvert\, \begin{aligned} & \mathrm{c}, \mathrm{y} \\ & 1, f \end{aligned}\right.$	260		\$67,500.00
0651011	\|12') R.C. PIPE		2250	30.00	
0651012	\|15'' R.C. PIPE	11.4	580	70.00	\$40,600.00
0651013	\|18'' R.C. PIPE	$11 . \mathrm{f} .$	32	74.00	\$2,368.00
0651015	$124^{\prime \prime}$ R.C. PIPE	$11.8 .$	12	80.00	\$960.00
0651021	\|48', R.C. PIPE		$\therefore \quad 60$	200:00	\$12,000.00
0651351A	\| 12 ', SLOTTED PIPE	11.f.	380	35.00	\$13,300.00
0652009	\|12'' R.C. CULVERT END	ea.	- 1	1,500,00	\$1,500.00
0652010	\| $15^{\prime \prime}$ ' R.C. CULVERT END		10	1,500,00	\$15,000.00
0652011	\|18'' R.C. CULVERT END	\|ea.	2	1,600.00	\$3,200.00
0653100	\| CLEAN EXISTING CULVERT	$\text { \|1. } 1 .$	750	10.00	\$7,500.00
0703010	\|STANDARD RIPRAP	\|c.y.	55	120.00	\$1,200.00
0703011	INTERMEDIATE RIPRA	\|c.y.	10	120.00	
0703012		\|c.Y.	70	120.00	\$8,400.00
0704002	*\|GABIONS	\|c.y.	1700	240.00	\$408, 000.00
0707001	\|MEMBRANE WATERPROOFING (WOVEN		395	28.00	\$11,060.00
	\| GLASS FABRIC)				
0714020	\|TEMPORARY SHEET PILING	18.£.	1670	10.00	\$16,700.00
0725002	\|BAGGED STONE	c.f.	120	6.00	\$720.00
0751711	\| $6^{\prime \prime}$. UNDERDRAIN	11.5	3100	20.00	\$62,000.00
0751831		11.f.	100	16.00	\$1,600.00
0803002	\|6'' OUTLET FOR UNDERDRAIN	\|s.y.	175	50.00	\$8,750.00
0814002	\| PAVED DITCH PRESET GRANTTE STONE CURBING	11.f.	140	35.00	\$4,900.00
0815001	\|BITUMINOUS CONCRETE LIP CURBING		12000	3.00	\$36,000.00

"A" Items

MEDIAN BARRIER CURB INSTALLATION

TYPICAL PIPE SEGMENT
cagation vex

conectior detal

Utility Conflicts

CONSTRUCTION

Construction

- Review Contractor's schedule
- Typical start drainage run at lowest point or outlet
- All drainage structures shall be staked prior installation
- Utilize District Survey to check staking if confidence is not high

Construction

- Other methods can be utilized to check contractors accuracy
- Field inspection of area
- Scale distances to fixed objects
- Utilize lock level to check grades
- Compute change in elevation over 4 feet and check with a 4 foot level and tape measure
- Ask contractor questions

Construction

- Ask the contractor
- What is the invert at this structure?
- Where is the next structure located?
- Did you site the correct entrance into the structure?
- What is the percent slope of the pipe?

Is he confident in his responses?
Changes are easier to correct at this point!

Typical start of Drainage at low end

Staking and placement of catchbasin

Construction Staking

Catch Basin offsets must be staked

* minimum of 2 offsets required per catch basin

The catch basin offsets will provide all the information necessary to set the structure

* Catch basin number and corresponding station number
* Top of frame elevation
* Distance (offset) to Edge of Road
* The 2 stakes (or other reference point i.e. PK nails) provide proper alignment
* Cut or fill distance required to Top of Frame elevation

Proper Catch Basin Staking

Pull a string line \&/or tape from stake to stake extending the offset distance to determine exact catch basin location

Catch Basin Details

Catch Basin Details

Type 'C' Tops

Catch Basin Details

All Type C Catch Basins are not created equal. Front of catch basin varies with each manufacturer. Check your basins to ensure proper installation

Catch Basin Details

Top and bottom are parallel

Bottom is level, top slopes slightly

Catch Basin Details

Centerline of road

Catch basin tops set properly will match the cross slope of the roadway.

* Sump, riser, and corbel shall be set plumb
* Adjustment (shim) shall be performed under CB top.

Catch Basin Details

Catch Basin Details

Paving Details

* Screed should not have to be raised to clear a catch basin
* Rake men should remove excess Bituminous Concrete at catch basin
* Excess Bituminous Concrete can be left on shoulder to be removed later
* Rake men shall grade to drain as shown below.

Catch Basin Details

Centerline of road

Catch basin tops set properly will match the cross slope of the roadway.

* Sump, riser, and corbel shall be set plumb
* Adjustment (shim) shall be performed under CB top.

Catch Basin Details

Paving Details

* Screed should not have to be raised to clear a catch basin
* Rake men should remove excess Bituminous Concrete at catch basin
* Excess Bituminous Concrete can be left on shoulder to be removed later
* Rake men shall grade to drain as shown below.

Structures

- Common details
- Pervious material shall be used for backfilling
- In no case to a depth greater than 3 feet (1 meter) below the bottom of the subbase.
- Drainage openings may be formed in the four walls of the structure at or immediately above the bottom of the pervious backfill to convey subsurface drainage.
- The openings shall be covered with geotextile.

Type 'C’ CB typical

Limits of Pervious
Bottom of subbase to max 3 feet

* maximum corbelling allowed (3")

TYPE "C" \& "C-L" CATCH BASIN (TYPE "C" TOP SHOWN)

Is this structure per SPEC?

Note excessive corbelling

Is this structure per SPEC?

Is this structure per SPEC?

Pipe not flush cut

Type ‘CL’ CB typical

When maximum

 depth exceeds 10 feet, the basin will paid as CB over 10' DEEPDiscuss plan notes: limits of pervious backfill maximum corbelling allowed (3

For use where RCP would enter the structure on a corner (not permissible with a typical structure)

Manhole

Laying Pipe

- Site the next structure for proper alignment - RCP pipe not allowed to enter a corner of a structure - use round precast if needed
- Set up the laser
- Check the invert at first structure
- Flush cut RCP inside structures

What is wrong with this?

Laying Pipe

- Proper brick/block and mortar where pipe enters structure - 8" thick minimum
- Concrete block or brick only - NO RED BRICK
- Allow cure time prior to backfilling - if possible
- Ensure pipes are fully connected
- Gasket installed
- Asphalt joint

Backfilling before proper cure time

Laying Pipe

- Bedding Material
-4" minimum
-12 " in rock
- Sand or stone in wet conditions

Reinforced concrete pipe is forgiving, however Corrugated metal and ADS are not.
Care must be taken to evenly backfill the pipe for proper installation

Corrugated Metal Pipe

Corrugated Metal Pipe

Corrugated Metal Pipe

Bedding

Properly prepared bedding evenly distributes loads. Improperly prepared bedding may result in stress concentrations.

Improperly prepared bedding.

Figure 4-16 Transverse or circumferential cracks

Bedding

Figure 4-17 Correlation of bedding and supporting strength for rigid pipe

Pipe Installations

Figure 2-4.4
Pipe Installations with Gravel Fill

Pipe Installations

Construction Manual

Figure 2-4.5
Pipe Installations without Gravel Fill

Setting Pipe

Alternative Method to set pipe

Setting Pipe

- Without specialty tools
- Contractor may choose to calculate the invert required at each 8 foot pipe section and check with a level and rod
- Contractor may utilize a 4 foot level
- More common for small runs

Finals and Follow up

Volume 3 Documentation

- All drainage must be in documented in its own Volume 3 book. (i.e. Volume 3 Book 2)
- The Volume 3 Drainage book must include a summary sheet for all items paid within the book.
- The item totals must match the SiteManager contract line item totals for each item.

Sample of drainage summary sheet

PROJ ECT \#023-116
VOLUME III
BOOK II
DRAINAGE ITEM PAYMENT INDEX

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Date Paid \& SMID\# \& Ref. Page (Vol III, Book II or DWR) \& 12" R.C. Pipe
$$
0651011
$$ \& 15" R.C. Pipe
$$
0651012
$$ \& 18" R.C. Pipe

0651013 \& $$
\begin{aligned}
& \begin{array}{c}
\text { 24" R.C. } \\
\text { Pipe }
\end{array} \\
& 0651015
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \begin{array}{c}
\text { 30" R.C. } \\
\text { Pipe }
\end{array} \\
& 0651017
\end{aligned}
$$

\] \& | 15" R.C. Pipe |
| :--- |
| - Class V |
| 0651052 | \& 12" R.C. Culvert End

$$
0652009
$$ \& $\begin{gathered}\text { 18" R.C. } \\ \text { Culvert End }\end{gathered}$

0652011 \& 24" R.C. Culvert End

$$
0652013
$$ \& \[

$$
\begin{gathered}
\text { Reset } \\
\text { Manhole } \\
\text { (Water) } \\
\text { 1304025A }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\text { Reset } \\
\text { Manhole } \\
\text { (Sanitary) } \\
\\
1403501
\end{gathered}
$$

\] \& | Manhole |
| :--- |
| (5' dia.) |
| 9003 | \& \[

$$
\begin{gathered}
\begin{array}{c}
\text { Manhole } \\
\text { (5' dia. over } \\
\text { 10' Deep) }
\end{array} \\
\text { } 9004
\end{gathered}
$$
\]

\hline 12/13/04 \& lavignj \& 2 \& \& \& \& \& \& \& \& 1.00 \& \& \& \& \&

\hline 12/13/04 \& lavignj \& 3 \& \& \& 44.00 \& \& \& \& \& \& \& \& \& \&

\hline 12/14/04 \& lavignj \& 4 \& \& \& \& \& \& \& \& \& 1.00 \& \& \& \&

\hline 12/14/04 \& lavignj \& 5 \& \& \& \& 136.00 \& \& \& \& \& \& \& \& \&

\hline 12/14/04 \& lavignj \& 6 \& \& \& \& 8.00 \& \& \& \& \& \& \& \& \&

\hline 12/17/04 \& moyniht \& 7 \& \& \& 108.00 \& \& \& \& \& \& \& \& \& \&

\hline 12/21/04 \& moyniht \& 10 \& \& \& 36.00 \& \& \& \& \& \& \& \& \& \&

\hline 12/22/04 \& moyniht \& 12 \& \& \& 16.00 \& \& \& \& \& \& \& \& \& \&

\hline 12/23/04 \& moyniht \& 14 \& \& \& 16.00 \& \& \& \& \& \& \& \& \& \&

\hline 12/23/04 \& lavignj \& 15 \& \& \& \& \& \& \& \& \& 1.00 \& \& \& \&

\hline 12/23/04 \& lavignj \& 16 \& \& \& \& 10.00 \& \& \& \& \& \& \& \& \&

\hline 12/23/04 \& lavignj \& 19 \& \& \& \& 49.00 \& \& \& \& \& \& \& \& \&

\hline 01/04/05 \& moyniht \& 21 \& \& \& \& 138.00 \& \& \& \& \& \& \& \& \&

\hline 02/28/05 \& moyniht \& 24 \& \& \& \& 196.00 \& \& \& \& \& \& \& \& \&

\hline 11/10/06 \& lavignj \& 25 \& \& 32.00 \& \& \& \& \& \& \& \& \& \& \&

\hline 03/02/05 \& moyniht \& 28 \& \& 4.00 \& \& \& \& \& \& \& \& \& \& \&

\hline 04/20/05 \& moyniht \& 37 \& \& \& \& \& \& \& \& 1.00 \& \& \& \& \&

\hline 04/20/05 \& moyniht \& 38 \& \& \& \& \& \& \& \& 1.00 \& \& \& \& \&

\hline 04/22/05 \& moyniht \& 39 \& \& 56.00 \& \& \& \& \& \& \& \& \& \& \&

\hline 05/06/05 \& moyniht \& 05/06/05 \& \& \& \& \& \& \& \& \& \& \& 2.00 \& \&

\hline 05/31/05 \& moyniht \& 43 \& \& \& \& \& \& \& \& \& \& \& \& 1.00 \&

\hline 06/01/05 \& moyniht \& 44 \& \& \& \& \& 6.00 \& \& \& \& \& \& \& \&

\hline 06/02/05 \& moyniht \& 45 \& \& \& \& 20.00 \& \& \& \& \& \& \& \& \&

\hline \multicolumn{3}{|l|}{Original Quantities} \& 32.00 L.F. \& 640.00 L.F. \& 304.00 L.F. \& $1,320.00$ L.F. \& 56.00 L.F. \& 40.00 L.F. \& 1.00 ea. \& 3.00 ea. \& 2.00 ea. \& 2.00 ea. \& 4.00 ea. \& 1.00 ea. \& 1.00 ea.

\hline \multicolumn{3}{|l|}{PROJ ECT TOTAL} \& 0.00 \& 92.00 \& 220.00 \& 557.00 \& 6.00 \& 0.00 \& 0.00 \& 3.00 \& 2.00 \& 0.00 \& 2.00 \& 1.00 \& 0.00

\hline
\end{tabular}

Volume III, Book II, Payment Index - Sheet 2

Sample

Drainage Notes and Factors

Top of trench

General Notes (for Trenching)

op of trench (within cut) = existing grade
op of trench (within fill) $=1.00 \mathrm{ft}$. above top of culvert
Bottom of trench = elevation as shown on plans
ength ${ }_{\text {r.C.P. }}=$ Field measured length of installed R.C.P.
Length ${ }_{\text {bedding mat. }}=$ Length $_{\text {R.C.P. }}-$ thickness of walls of C.B./M.H.
Length treng ex $=2.00 \mathrm{ft}$. - Length ${ }_{\text {bedding mat }}-2.00 \mathrm{ft}$.
where $2.00 \mathrm{ft}=$ width of excavation included in the
computations for the C.B./M.H.
Depth of trench $=$ top of trench - bottom of trench +1.00 ft . (in rock)
$=$ top of trench - bottom of trench (in earth)

Trench Excavation (for C.B., M.H.)
For Type "C" or "C-L" Catch Basin
Length $\left.{ }_{\text {C.B. Ex. }}=2.00 \mathrm{ft} .+5.333 \mathrm{ft}\right)^{*}+2.00 \mathrm{ft}=9.333 \mathrm{ft}$. Width с.в. Ex. $=2.00 \mathrm{ft} .+4.333 \mathrm{ft} . *+2.00 \mathrm{ft} .=8.333 \mathrm{ft}$.
Area ${ }_{\text {c.b. Ex. }}=$ Length c.b. ex. X Width c.b.Ex.
$=9.333 \mathrm{ft} . \mathrm{X} 8.333 \mathrm{ft} .=\underline{77.77 \mathrm{ft}^{2}}$.

For Type "C-L" Catch Basin Double Grate - Type II
Length ${ }_{\text {C.B. (Dbl.Grate) }}$ Ex. $=2.00 \mathrm{ft}+7.875 \mathrm{ft} .^{*}+2.00 \mathrm{ft} .=11.875 \mathrm{ft}$ Width c.B. (Dbl.Grate) Ex. $=2.00 \mathrm{ft} .+4.333 \mathrm{ft})^{*}+2.00 \mathrm{ft}=8.333 \mathrm{ft}$ Area ${ }_{\text {C.B. (Du.Grate) Ex. }}=$ Length $_{\text {C.B. (Oversized) Ex. }}$ X Width C.B. (Oversized) Ex $=11.875 \mathrm{ft} . \mathrm{X} 8.333 \mathrm{ft} .=\underline{\mathbf{9 8 . 9 5} \mathrm{ft}^{2}}$

For Special Type "C-L" Catch Basin
Area ${ }_{\underline{C . B} \text { (Special Type " } \mathrm{C}-\mathrm{L}^{\prime} \text {) Ex. }}=$ Calculated Individually.

For Manhole
Area $_{\text {M.н. Ex. }}=\pi \mathrm{D}^{2} / 4$
where $\mathrm{D}=\left(2.00 \mathrm{ft} .+\right.$ M.H. Footprint Dia. $\left.{ }^{*}+2.00 \mathrm{ft}.\right)$
$=\pi\left(2.00 \mathrm{ft} .+6.00 \mathrm{ft} .^{*}+2.00 \mathrm{ft}\right)^{2} / 4$
$=\pi(10.00 \mathrm{ft} .)^{2} / 4=\underline{\mathbf{7 8 . 5 4} \mathrm{ft}^{2}}$.
For Manhole (5.0' dia.)
Area M.H. Ex. $=\pi \mathrm{D}^{2} / 4$
where $\mathrm{D}=\left(2.00 \mathrm{ft} .+\right.$ M.H. Footprint Dia. $\left.{ }^{*}+2.00 \mathrm{ft}.\right)$
$=\pi\left(2.00 \mathrm{ft} .+7.00 \mathrm{ft} .^{*}+2.00 \mathrm{ft}\right)^{2} / 4$
$=\pi(11.00 \mathrm{ft} .)^{2} / 4=\underline{95.03} \mathrm{ft}^{2}$

Trench Excavation (for R.C.C.E.)

For 12" Reinforced Concrete Culvert End
 Width $1{ }_{12}{ }^{\prime \prime}$ r.C.C.E. ex. $=1.00 \mathrm{ft} .^{\#}+1.00 \mathrm{ft}^{*}+1.00 \mathrm{ft}^{*}=3.00 \mathrm{ft}$. Width $2{ }_{12}{ }^{\prime \prime}$ r.c.c.e. Ex. $=1.00 \mathrm{ft}.{ }^{\#}+2.00 \mathrm{ft} .^{\#}+1.00 \mathrm{ft} .^{\#}=4.00 \mathrm{ft}$. Area $_{12^{\prime \prime} \text { r.c.C.E. Ex }}=8.031 \mathrm{ft}$. X $1 / 2(3.00 \mathrm{ft} .+4.00 \mathrm{ft}$)

$$
=8.031 \mathrm{ft} . \times 3.50 \mathrm{ft} .=28.11 \mathrm{ft}^{2} .
$$

For 15" Reinforced Concrete Culvert End
Length ${ }_{15 \text { " }}$ R.C.C.E. Ex. $=1.00 \mathrm{ft} .^{\#}+6.057 \mathrm{ft} .+1.00 \mathrm{ft} .^{\#}=8.057 \mathrm{ft}$. Width $1_{15 " \text { r.c.c.e. Ex. }}=1.00 \mathrm{ft} .{ }^{\#}+1.25 \mathrm{ft} .^{\#}+1.00 \mathrm{ft}^{\#}=3.25 \mathrm{ft}$. Width $2{ }_{15}{ }^{\prime \prime}$ R.c.c.e. ex. $=1.00 \mathrm{ft}.{ }^{\#}+2.50 \mathrm{ft} .{ }^{\#}+1.00 \mathrm{ft}.{ }^{\#}=4.50 \mathrm{ft}$. Area $_{15 " \text { R.c.C.E. Ex. }}=8.057 \mathrm{ft}$. X $1 / 2(3.25 \mathrm{ft} .+4.50 \mathrm{ft}$.)

$$
=8.057 \mathrm{ft} . \mathrm{X} 3.88 \mathrm{ft} .=\underline{\mathbf{3 1} .26 \mathrm{ft}^{2}} .
$$

For 18" Reinforced Concrete Culvert End
Length ${ }_{18}{ }^{n}{ }^{\text {R }}{ }^{2}=1.00 \mathrm{ft}{ }^{\#}+6.083 \mathrm{ft} .+1.00 \mathrm{ft}{ }^{\#}=8.083 \mathrm{ft}$. Width $1_{18 " \text { R.C.C.E. Ex }}=1.00 \mathrm{ft} .^{\#}+1.50 \mathrm{ft} .^{\#}+1.00 \mathrm{ft}=3.50 \mathrm{ft}$. Width $2{ }_{18}{ }^{18}{ }^{\prime \prime}$ R.C.C.C.C.E. Ex. $=1.00 \mathrm{ft} .^{\#}+3.00 \mathrm{ft} .^{\#}+1.00 \mathrm{ft} .^{\#}=5.00 \mathrm{ft}$. Area ${ }_{18 " \text { r.c.C.E. Ex }}=8.083 \mathrm{ft} . \mathrm{X} 1 / 2(3.50 \mathrm{ft} .+5.00 \mathrm{ft}$) $=8.083 \mathrm{ft} . \mathrm{X} 4.25 \mathrm{ft} .=\underline{\mathbf{3 4} .35 \mathrm{ft}^{2}}$.
For 24" Reinforced Concrete Culvert End
Length 24 " R.c.C.E.Ex. $=1.00 \mathrm{ft} .{ }^{\#}+6.125 \mathrm{ft} .+1.00 \mathrm{ft} .{ }^{\#}=8.125 \mathrm{ft}$. Width $1_{24^{\prime \prime}}$ rcce: $\mathrm{Exx}=1.00 \mathrm{ft} .{ }^{\#}+2.00 \mathrm{ft} .^{\#}+1.00 \mathrm{ft}^{\#}=4.00 \mathrm{ft}$. Width $22_{2 \text { " }}$ R.c.c.e. ex. $=1.00 \mathrm{ft}.{ }^{\#}+4.00 \mathrm{ft} .{ }^{\#}+1.00 \mathrm{ft}.{ }^{\#}=6.00 \mathrm{ft}$. Area $_{24 \text { " R.C.C.E. Ex. }}=8.125 \mathrm{ft}$. X $1 / 2(4.00 \mathrm{ft} .+6.00 \mathrm{ft}$. $)$

$=8.125 \mathrm{ft} . \mathrm{X} 5.00 \mathrm{ft} .=40.63 \mathrm{ft}^{\mathbf{2}}$.

For 30" Reinforced Concrete Culvert End
Length ${ }_{30 \text { " }}$ R.C.C.E. ex. $=1.50 \mathrm{ft}.{ }^{\text {. }}+6.146 \mathrm{ft} .+1.50 \mathrm{ft}.{ }^{\#}=9.146 \mathrm{ft}$. Width $1_{30^{\prime \prime} \text { r.c.c.e. Ex. }}=1.50 \mathrm{ft} .{ }^{\#}+2.50 \mathrm{ft} .^{\#}+1.50 \mathrm{ft}^{\#}=5.50 \mathrm{ft}$. Width $230^{\text {" }}$ R.C.C.E. ex. $=1.50 \mathrm{ft}.{ }^{\#}+5.00 \mathrm{ft} .^{*}+1.50 \mathrm{ft}{ }^{.}=8.00 \mathrm{ft}$.
Area $_{30 \text { " } \text { R.C.C.E. Ex. }}=9.146 \mathrm{ft}$ X $1 / 2(5.50 \mathrm{ft} .+8.00 \mathrm{ft}$.)
$=9.146 \mathrm{ft} . \mathrm{X} 6.75 \mathrm{ft} .=\mathbf{6 1 . 7 4 \mathrm { ft } ^ { 2 }}$.

Drainage Notes and Factors

Top of trench

Trench Excavation (for R.C.P.)
Volume $=$ Length $_{I_{\text {machex }}} \mathrm{X}$ Depth Aw. X Width
for 12.00 in . RCP , width $=1.00 \mathrm{ft}+2.00 \mathrm{ft}=\underline{\mathbf{3 . 0 0} \mathrm{ft}}$
for $15.00 \mathrm{in} . \mathrm{RCP}$, width $=1.25 \mathrm{ft}+2.00 \mathrm{ft}=\underline{\mathbf{3 . 2 5} \mathrm{ft}}$
for 18.00 in . RCP, width $=1.50 \mathrm{ft}+2.00 \mathrm{ft}=\underline{\mathbf{3 . 5 0} \mathrm{ft}}$
for $24.00 \mathrm{in} . \mathrm{RCP}$, width $=2.00 \mathrm{ft}+2.00 \mathrm{ft}=\underline{4.00 \mathrm{ft}}$
for $30.00 \mathrm{in} . \mathrm{RCP}$, width $=2.50 \mathrm{ft}+3.00 \mathrm{ft} .=\mathbf{5 . 5 0} \mathbf{f t}$

General Notes (for Trenching)

Top of trench (within cut) = existing grade
Top of trench (within fill) $=1.00 \mathrm{ft}$. above top of culvert
Bottom of trench = elevation as shown on plans
Length k R. P. $=$ Field measured length of installed R.C.P
Length
Length trachax. $=2.00 \mathrm{ft}$. Length koddigymat. -2.00 ft .
where 2.00 ft . = width of excavation included in the
computations for the C.B.M.H.
Depth of trench $=$ top of trench - bottom of trench +1.00 ft . (in rock)
$=$ top of trench - bottom of trench (in earth)

Bedding Material

```
Volume = Length Eoddig% X Bedding Factore
            (note: values are C.Y. per L.F.)
for 12"RCP.
    in earth (4" below RCP): factor = 0.0640
    in rock (12"below RCP): factor = \underline{0.1380}
for 15"RCP
    in earth (4" below RCP): factor = 0.0740
    in rock (12"below RCP): factor = 0.1521
```

for $18^{\prime \prime} \mathrm{RCP}$,
in earth ($4^{\prime \prime}$ below RCP): factor $=\mathbf{0 . 0 8 4 4}$
in rock (12 "below RCP): factor $=\underline{\mathbf{0 . 1 7 0 8}}$
for $24^{\prime \prime} \mathrm{RCP}$.
in earth (4 " below RCP): factor $=\mathbf{0 . 1 0 6 5}$
in rock $(12 "$ below RCP$):$ factor $=\underline{\mathbf{0 . 2 0 5 2}}$
for $30^{\prime \prime} \mathrm{RCP}$,
in earth (4" below RCP): factor $=\mathbf{0 . 1 7 0 9}$
in rock (12 "below RCP): factor $=\underline{\mathbf{0 . 3 0 6 7}}$

Excel Forms

- Drainage forms can be found on the share drive, use the following link:
- IISdcdbs60\Groups\DOTSHARE\ConstManual\Approved_Forms

Common mistakes to avoid

- Make payments for complete drainage runs only.
- Pay complete catch basins.
- Make sure all comps are reviewed, checked and signed.

Common mistakes to avoid

- If an item, such as rip rap, geotextile, or compacted granular fill is paid in other books, as well as the drainage book, make sure the represented item quantity is properly referenced in the drainage book summary sheet so all item totals match.

```
PROJECT \#051-254 VOLUMEIII BOOKII Section 2 DRAINAGE ITEMPAYMENTINDEX
```


Clearly reference payments made elsewhere so item totals match SiteManager

Testing

- Ensure all precast concrete products have PC-1's.
- Field verify cast dates
- Field inspect all precast for damage, reject if necessary look for the following:
- Cracked or broken bells or spigots
- Transverse of Longitudinal cracks
- Exposed rebar

Per Construction Manual Volume 2
2-4.16 ver. 1.2 (April 2006)

- Individual units may be rejected for any of the following conditions:
-Units do not bear proper identification
-Structures show evidence of honeycomb or patching in excess of 30 sq. in.

Individual units may be rejected for any of the following conditions:

- Structures have the following defects:
- Fractures or cracks passing through the wall
- Defects that indicate imperfect concrete mix
- Surface defects which indicate honeycombing
- Damaged or cracked ends which prevent making satisfactory joints
- Damage caused by mishandling by the contractor

Samples of RCP which should be rejected.

Samples of RCP which should be rejected.

Samples of RCP which should be rejected.

Project Completion

- Are all structures clean?
- Has construction debris been removed from sumps
- Removal of concrete block for laser installation
- Removal of excess mortar from parging operation

Are all structures clean?

Are all structures clean?

Project Completion

- Has final pointing \& parging been completed?

Pointing and Parging

Parging Required

Form 816 - Supplemental

- Drainage method payment to change
- Trench excavation, bedding, and pipe to be included in the pay item for the pipe.
- Catch basins / manholes will include the excavation per vertical foot

