$\begin{array}{c} CUDDY\&\\ FEDER^{ILP} \end{array}$

445 Hamilton Avenue, 14th Floor White Plains, New York 10601 Tel 914.761.1300 Fax 914.761.5372 www.cuddyfeder.com

February 14, 2014

VIA EMAIL & OVERNIGHT DELIVERY

Hon. Robert Stein, Chairman and Members of the Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Docket No. 439

Message Center Management, Inc. (MCM) and New Cingular Wireless PCS, LLC (AT&T) Application for Certificate of Environmental Compatibility and Public Need for a Telecommunications Tower Facility at Bates Woods Park, New London, Connecticut

Dear Chairman Stein and Members of the Siting Council:

On behalf of Message Center Management, Inc. ("MCM"), please accept for review and Council approval this Development Management Plan ("D&M Plan") filing for the captioned Facility as approved in Docket No. 439.

Tower, Compound & Other Equipment

Enclosed are an original and fifteen (15) sets of 11"x 17" sized construction drawings being filed in accordance with the Siting Council's ("Council") Decision and Order dated October 31, 2013 ("Decision and Order"). Two full sized sets are being filed under separate cover. As per order number 1, the D&M Plan incorporates a 115' monopole tower as well as the details of the associated compound and AT&T's equipment. The D&M Plan also includes site clearing, drainage, and erosion and sedimentation control measures consistent with the <u>2002 Connecticut</u> <u>Guidelines for Soil Erosion and Sediment Control</u> as amended. Also enclosed is geotechnical information and tower and foundation drawings including information pertinent to the tower's design. In keeping with Siting Council Order 2(a) MCM consulted with the City of New London, its landlord, regarding the final tower finish. The City of New London indicated to MCM that the galvanized finish is acceptable.

Required Notifications

In accordance with RCSA Section 16-50j-61(d) copies of this filing are being provided to the Service list and City of New London. In accordance with the provisions of RCSA Section 16-50j-77, MCM hereby notifies the Council of its intention to begin site work immediately after Council approval of the D&M Plan. Construction of the tower and other site improvements will commence upon issuance of a local building permit. The supervisor for all construction related matters on this project is Mr. Jim Maher. Mr. Maher is located at MCM's office in Hartford, Connecticut and can be reached by telephone at (203) 223-4665.

We respectfully request that this matter be included on the Council's next available agenda for review and approval.

Thank you for your consideration of the enclosed.

Very truly yours, J Daniel M. Laub

Enclosures

cc: Mayor Daryl Justin Finizio, City of New London William Camosci, City of New London Maria Scotti, MCM Virginia King, MCM Scott Chasse, P.E., APT Christopher B. Fisher, Esq.

CERTIFICATE OF SERVICE

I hereby certify that on this day, an original and fifteen copies of the foregoing was sent electronically and by overnight delivery to the Connecticut Siting Council with copy to:

Mayor Daryl Justin Finizio Office of the Mayor 181 State Street New London, CT 06320

Dated: February 14, 2014

nhl

Daniel M. Laub

ATTACHMENT 1

GEOTECHNICAL ENGINEERING REPORT PROPOSED TELECOMMUNICATIONS TOWER BATES WOODS PARK NEW LONDON, CONNECTICUT Terracon Project No. J2135212 November 26, 2013

1.0 INTRODUCTION

A geotechnical engineering report has been completed for the proposed 115-foot high steel monopole telecommunications tower to be located south of the existing baseball fields within Bates Woods Park in New London, Connecticut. A single test boring (B-1) was advanced to a depth of about 18 feet below existing ground surface close to the proposed tower center location. In addition, two test probes (P-1 and P-2) were advanced to the east and west of the proposed tower center to auger refusal on probable bedrock at depths of 6 and 7 feet. Logs of the test boring and probes, along with a Site Location Map (Exhibit A-1) and an Exploration Location Diagram (Exhibit A-2), are included in Appendix A of this report.

The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- subsurface soil conditions
- groundwater conditions
- earthwork

- foundation design and construction
- slab design and construction
- seismic considerations

2.0 **PROJECT INFORMATION**

The project consists of the removal of an existing 90-foot high sport lighting stanchion associated with adjacent ball fields and construction of an approximately 115-foot high steel monopole telecommunications tower with antennas, stadium lights, and associated equipment cabinets within a 3,190-square foot irregularly shaped compound area.

2.1 **Project Description**

Our knowledge of the project is based on review of the drawing titled "*Partial Site Plan*", dated November of 2013, by All-Points Technology Corporation of Killingworth, Connecticut. A summary description of the project is presented below:

Item	Description
Site layout	Exploration Location Diagram on Exhibit A-2, Appendix A
Tower	A 115-foot high steel monopole telecommunications tower with

Geotechnical Engineering Report

Proposed Telecommunications Tower - Bates Woods Park
New London, Connecticut November 26, 2013
Terracon Project No. J2135212

Item	Description
	stadium lights at a height of about 90 feet
Estimated maximum loads	Tower dead load: 20 kips Equipment pad: 150 pounds per square foot (psf)
Grading	Site will remain close to current grades; only minor site grading expected
Fill slope	1.5 Horizontal (H) to 1 vertical (V) fill slope with rip rap located south of the proposed compound

2.2 Site Location and Description

Item	Description
Location	Bates Woods Park, southeast of the intersection of Chester Street and Clark Lane in New London, Connecticut
Existing improvements	90-foot high sport lighting stanchion adjacent to the baseball field
Current ground cover	Bare ground/trees/grass
Existing topography	Relatively level within the proposed compound area, then sloping downwards towards the south

3.0 SUBSURFACE EXPLORATIONS AND CONDITIONS

3.1 Typical Profile

Based on the results of the explorations and observations at the time of drilling, subsurface conditions on the project site can be generalized as follows:

Description	Approximate Depth to Bottom of Stratum (feet)	Material Encountered	Consistency / Relative Density
Fill	6	Silty sand, with gravel, occasional cobbles and boulders, brown	Medium dense to very dense
Glacial Till	8	Silty sand (SM), with gravel, occasional cobbles, brown to gray	Medium dense to very dense
Bedrock	>18	Gneiss, gray, hard	N/A

The *Surficial Materials Map of Connecticut (1992)*, identifies the native soils in the vicinity of the site as glacial till. The *Bedrock Geological Map of Connecticut (1985)*, indicates that bedrock in the vicinity of the site consists of New London Gneiss.

B-1 terminated with auger refusal upon bedrock at a depth of 8 feet below the existing ground surface. Bedrock was then cored from about 8 to 18 feet using an NQ2-sized core barrel. A Rock Quality Designation (RQD) value of 20 percent was obtained from 8 to 13 feet, indicating poor bedrock quality. An RQD value of 57 percent was obtained from 13 to 18 feet, indicating fair bedrock quality. P-1 and P-2 terminated with auger refusal on bedrock at depths of approximately 6 and 7 feet, respectively.

Conditions encountered at the exploration locations are indicated on the exploration logs in Appendix A of this report. Stratification boundaries on the exploration logs represent the approximate location of changes in soil/rock types; *in situ*, the transition between materials may be gradual. Further details of the exploration can be found on the exploration logs.

3.2 In-situ Resistivity

On November 18, 2013, *in-situ* soil resistivity testing was completed by a Terracon field engineer. Resistivity testing was performed in general accordance with ASTM G57 by the Wenner Four Probe Method using a Megger DET5/4R Digital Earth Tester. Two resistivity lines were completed with electrodes spaced at 5, 10, 20, 30, and 40 feet. The location and orientation of the resistivity lines are shown on Exhibit A-2. The resistivity test results are tabulated below:

	Resistivity	v (ohm-cm)
Electrode Spacing (ft)	Line 1	Line 2
5	71,140	65,300
10	51,900	72,005
20	54,005	58,215
30	61,930	43,660
40	41,365	31,405

3.3 Groundwater

Groundwater was not encountered at the time of the explorations. However, fluctuations in groundwater level may occur because of seasonal variations in the amount of rainfall, runoff, and other factors. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

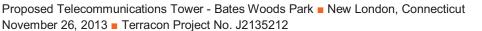
4.0 **RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION**

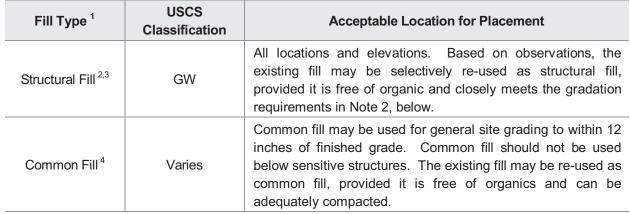
4.1 Geotechnical Considerations

Based on the subsurface conditions, the site is underlain by up to about 6 feet of fill, which is underlain by a thin glacial till stratum, which in turn is over shallow bedrock.

We therefore recommend the proposed steel monopole telecommunications tower be supported on a monolithic mat or a pier-and-pad, bearing directly on the bedrock or minus ³/₄-inch crushed placed on the bedrock. As an alternative, the proposed telecommunications tower may be supported on a drilled shaft foundation extending through the fill and the glacial till into the bedrock. The proposed equipment platform and other ancillary structures may derive support from the existing fill. Design recommendations are presented in the following sections.

Support of slabs on or above existing fill soils is discussed in this report. Even with the recommended construction testing services, there is an inherent risk for the owner that compressible fill or unsuitable material within or buried by the fill will not be discovered. This risk of unforeseen conditions cannot be eliminated without completely removing the existing fill, but can be reduced by performing additional testing and evaluation.


We recommend that the exposed subgrades be thoroughly evaluated after excavation to proposed grade. We recommend that the geotechnical engineer be retained to evaluate the bearing material for the foundation subgrade. We recommend that the geotechnical engineer review the construction of the drilled shaft, if selected.


4.2 Earthwork

Preparation of the site should include removal of topsoil or otherwise unsuitable materials. Organic soils are typically found deeper around trees, bushes, and their associated root structure. The contractor should take this into account in estimating stripping quantities. The soil subgrade should be proofrolled with a walk-behind vibratory roller or heavy plate compactor. Unstable subgrades should be removed and replaced with compacted structural fill. Minus ³/₄-inch crushed stone wrapped in geotextile separation fabric may be used in place of structural fill. If required, structural fill may then be placed within the compound area to attain the required grade.

Fill and backfill materials should meet the following material requirements:

Geotechnical Engineering Report

- 1. Compacted fill should consist of approved materials that are free of organic matter and debris. Frozen material should not be used. Fill should not be placed on a frozen subgrade.
- 2. Imported structural fill should meet the following gradation:

Percent Passing by Weight		
Sieve Size	Structural Fill	
6″	100	
3″	70 – 100	
2"	(100)*	
3/4"	45 – 95	
No. 4	30 - 90	
No. 10	25 – 80	
No. 40	10 – 50	
No. 200	0 – 12	

* Maximum 2-inch particle size within 12 inches of the underside of concrete elements

- 3. Recommendation for re-use of site soils as Structural Fill applies only to re-use on this site and only if Terracon is monitoring construction.
- 4. Imported common fill should have a maximum particle size of 6 inches and no more than 25 percent by weight passing the US No. 200 sieve.

4.2.1 Compaction Requirements

Item	Description
Fill Lift Thickness	8 inches or less in loose thickness
Compaction Requirements ¹	95 percent maximum modified Proctor dry density (ASTM D1557, Method C)
Moisture Content – Granular Material	Workable moisture levels

^{1.} We recommend that fill be tested for moisture content and compaction during placement. Should the results of the in-place density tests indicate the specified moisture or compaction limits have not been met, the area represented by the test should be reworked and retested, as required, until the specified moisture and compaction requirements are achieved.

Geotechnical Engineering Report

Proposed Telecommunications Tower - Bates Woods Park New London, Connecticut November 26, 2013 Terracon Project No. J2135212

4.2.2 Grading and Drainage

We understand that a permanent fill slope, up to approximately 18 feet in height and covered with a 1.5-foot thick rip rap, will be constructed to the south of the proposed compound area with a slope of 1.5 Horizontal : 1 Vertical (1.5H:1V). We recommend that the stability be reviewed when the final slope configuration is known. A fill slope at this grade will primarily depend on the rip rap for stability. The construction of the rip rap should therefore be monitored, so that the required thickness is placed. Soil placed to create the fill slope should be compacted to at least 92 percent of the maximum dry density, as determined by ASTM D1557, Method C.

Adequate drainage should be provided at the site to reduce the likelihood of an increase in moisture content of the foundation soils. Final site grading should be away from the tower to reduce the likelihood of water ponding near the structure.

4.2.3 Earthwork Construction Considerations

Although the exposed subgrade is anticipated to be relatively stable upon initial exposure, unstable subgrade conditions could develop during general construction operations, particularly if the soils are wetted and/or subjected to repetitive construction traffic. Should unstable subgrade conditions develop, stabilization measures will need to be employed.

Construction traffic over the completed soil subgrade should be avoided to the extent practical. The site should also be graded to prevent ponding of surface water on the prepared soil subgrades or in excavations. If the soil subgrade should become frozen, wet, or disturbed, the affected material should be removed or these materials should be scarified, moisture conditioned, and recompacted.

As a minimum, temporary excavations should be sloped or braced as required by Occupational Health and Safety Administration (OSHA) regulations to provide stability and safe working conditions. Temporary excavations may be required during grading operations. The contractor, by his contract, is usually responsible for designing and constructing stable, temporary excavations and should shore, slope or bench the sides of the excavations, as required, to maintain stability of both the excavation sides and bottom. All excavations should comply with applicable local, State, and federal safety regulations, including the current OSHA Excavation and Trench Safety Standards.

The geotechnical engineer should be retained during the construction phase of the project to observe earthwork and to perform necessary tests and observations during subgrade preparation; proofrolling; placement and compaction of controlled compacted fills; backfilling of excavations into the completed subgrade, and just prior to construction of foundations.

4.3 Foundation Recommendations

4.3.1 Tower Foundations

We recommend that the proposed monopole telecommunications tower be supported on either a monolithic mat or a pier-and-pad foundation placed directly on the bedrock or minus ³/₄-inch crushed stone placed on the bedrock. As an alternatively, the proposed telecommunications tower may be supported on a drilled shaft foundation extending through the fill and glacial till into the bedrock. Design recommendations and construction considerations for the recommended foundation systems are presented in the following tables and paragraphs.

4.3.1.1 Mat/Pad Foundation Design Recommendations

Description	Value
Net allowable bearing pressure ¹	10,000 psf
Minimum embedment below finished grade for frost protection	42 inches
Approximate total settlement ²	Negligible
Estimated differential settlement ²	Negligible
Total soil unit weight (γ)	125 pcf
Passive pressure coefficient, K _p ³	3.0 (ultimate)
Coefficient of sliding friction ⁴	0.5 (ultimate)

1. The recommended net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the mat/pad base elevation.

- 2. Foundation settlement should be negligible if founded directly on bedrock or on a few inches of ³/₄- inch minus crushed stone over bedrock.
- 3. Passive pressure calculated with this parameter should be reduced by at least a factor of safety of 3, to reflect the amount of movement required to mobilize the passive resistance.
- 4. A factor of safety of at least 1.5 should be applied to the sliding resistance.

Uplift resistance for tower foundation may be computed as the sum of the weight of the foundation element and the weight of the soil overlying the foundation. For this computation, we recommend using a soil unit weight of 100 pounds per cubic foot (pcf) for engineered fill overlying the footing placed as described in this section of this report. A unit weight of 150 pcf may be used for reinforced foundation concrete. A factor of safety of 1.0 may be applied to calculations of dead load; a higher factor of safety may be appropriate for loadings resisted by dead load.

4.3.1.2 Mat/Pad Foundation Construction Considerations

Bedrock subgrades should be no steeper than 4H:1V and free of loose rock or soil. Bedrock subgrades steeper than 4H:1V should be benched to provide a relatively level bearing surface. Minor irregularities in the level of the rock surface may be filled with lean concrete or minus $\frac{3}{4}$ -

inch crushed stone to provide a level working surface. The joints in competent bedrock should be tight; care should be taken not to displace the joints in the bedrock during excavation.

The base of foundation excavations should be free of water and loose soil/bedrock prior to placing concrete. Concrete should be placed soon after excavating to reduce bearing disturbance. Should the material at bearing level become wet, disturbed or frozen, the affected material should be removed prior to placing concrete. The geotechnical engineer should be retained to observe and test the foundation bearing materials.

Description	Value
Net Allowable Bearing Capacity ¹	
Bedrock (>15 feet)	20 ksf
Ultimate Side Friction ²	
Fill (3.5 to 6 feet)	1 ksf
Glacial till (6 to 8 feet)	2 ksf
Ultimate Rock Bond	
Bedrock (>8 feet)	200 psi
Coefficient Lateral Subgrade Reaction ³	
Fill (0 to 6 feet)	25 (z/D) kcf
Glacial till (6 to 8feet)	80 (z/D) kcf
Bedrock (>8 feet)	100 (z/D) kcf
Angle of Internal Friction	
Fill (0 to 6 feet)	30 degrees
Glacial till 6 to 8 feet)	34 degrees
Bedrock (>8 feet)	45 degrees
Estimated In-situ Soil Unit Weight	
Fill (0 to 6 feet)	120 pcf
Glacial till (6 to 8 feet)	125 pcf
Bedrock (8 to >18 feet)	165 pcf
Approximate Groundwater Depth	Not Encountered
Concrete minimum 28-day unconfined compressive strength ⁴	4,000 psi
Minimum drilled shaft diameter	Diameter of monopole base
Allowable deflection at top of shaft	0.5 inch

4.3.1.3 Drilled Shaft Design Recommendations

1. The allowable end bearing pressure assumes that loose soil/rock at the base of the shaft has been removed.

2. Contribution to shaft capacity from soil above a depth of 3.5 feet should be ignored. The uplift capacity of the shaft will be based on side friction and the dead weight of the shaft.

3. z is depth below the ground surface and D is diameter of shaft, both in feet.

Geotechnical Engineering Report

Proposed Telecommunications Tower - Bates Woods Park
New London, Connecticut
November 26, 2013
Terracon Project No. J2135212

	Description	Value
4.	Use air entrained concrete.	

We anticipate that the design length of the shaft will be primarily dependent on the embedment/lateral capacity required to resist live loading, such as the combination of wind and ice loads. We recommend the base of the drilled shaft be at least 15 feet below ground surface. The drilled shaft will be designed to resist tension loads and therefore should have reinforcing steel installed throughout the entire length of the shaft. Technical specifications should be prepared that require material and installation detail submittals, proof of experience in drilled shaft installation, concrete placement methods, and hole stabilization methods.

4.3.1.4 Drilled Shaft Construction Recommendations

The drilled shaft should be aligned vertically. The drilling method or combination of methods selected by the contractor should be submitted for review by the geotechnical engineer, prior to mobilization of drilling equipment. A rock socket will be required to construct the shaft.

A section of temporary casing may be required to reduce the likelihood of caving of the upper portions of the shaft. Concrete should be placed by tremie methods. The contractor should take these aspects into account in his proposed drilling method(s).

4.3.2 Equipment Foundations

Equipment cabinets and ancillary structures may be supported on a slabs-on-grade underlain by at least a 12-inch thickness of compacted structural fill placed directly on the existing fill, the surface of which should be thoroughly compacted. Minus ³/₄-inch crushed stone wrapped in geotextile separation fabric may be used in place of structural fill placed over the existing fill. Design recommendations for the proposed structure are presented in the following table:

4.3.2.1 Slab-on-Grade Design Recommendations

Description	Value
Slab support (compacted structural fill or minus ³ / ₄ -inch crushed stone, wrapped in geotextile separation fabric)	12-inch thick layer
Net allowable bearing pressure ¹	1,500 psf
Modulus of subgrade reaction	100 pounds per square inch per in (psi/in) for point loading
Minimum embedment below finished grade for frost protection ^{2,3}	42 inches
Approximate total settlement ⁴	~1 inch
Estimated differential settlement ⁴	1/2 to 3/4 of total settlement
Coefficient of sliding friction ^{5,6}	0.5 (ultimate)

Geotechnical Engineering Report

Proposed Telecommunications Tower - Bates Woods Park New London, Connecticut November 26, 2013 Terracon Project No. J2135212

Description	Value

- 1. The recommended net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the slab base elevation.
- 2. Consideration should be given to using dense insulation boards (Dow Styrofoam Highload, or similar) under and adjacent to lightly loaded slabs-on-grade, to provide the equivalent of 42 inches of earth cover, thus reducing frost penetration.
- 3. Air entraining admixtures should be used for concrete exposed to freezing.
- 4. Settlement will depend upon the variations within the subsurface soil profile, the structural loading conditions, the thickness of compacted fill, and the quality of the earthwork operations.
- 5. A factor of safety of at least 1.5 should be applied to the sliding resistance.
- 6. If rigid insulation is used beneath the slab for frost protection, the coefficient of sliding friction between the concrete and the insulation should be based on the manufacturer's recommendation.

4.3.2.2 Slab-on-Grade Construction Considerations

On most tower sites, the site grading is generally accomplished early in the construction phase. However, as construction proceeds, the subgrade may be disturbed by foundation excavations, construction traffic, rainfall, etc. As a result, the slab subgrade may not be suitable for placement of structural fill and corrective action will be required.

We recommend the area underlying the slabs be rough graded and then thoroughly compacted with a heavy plate compactor or roller prior to final grading and placement of structural fill. Minus ³/₄-inch crushed stone wrapped in geotextile separation fabric may be used in place of structural fill. Particular attention should be paid to high traffic areas that were rutted and disturbed earlier and to areas previously filled or backfilled. Areas where unsuitable or unstable conditions are located should be repaired by removing and replacing the affected material with properly compacted structural fill or minus ³/₄-inch crushed stone, as necessary.

4.4 Seismic Considerations

Description	Value
Code Used ¹	Connecticut State Building Code (CBC)
Site Class ²	В
Maximum considered earthquake ground	0.057g (1.0 second spectral response acceleration)
motions (5 percent damping)	0.210g (0.2 second spectral response acceleration)
Liquefaction potential in event of an earthquake	Not susceptible

1. The CBC incorporates the Seismic Design Category approach of the 2003 International Building Code (IBC).

2. The CBC uses a site soil profile determination extending a depth of 100 feet for seismic site classification. The current scope requested does not include a 100-foot soil profile determination; the boring performed for this report extended to a maximum depth of 18 feet. However, the encountered bedrock will extend to a depth of at least 100 feet.

5.0 GENERAL COMMENTS

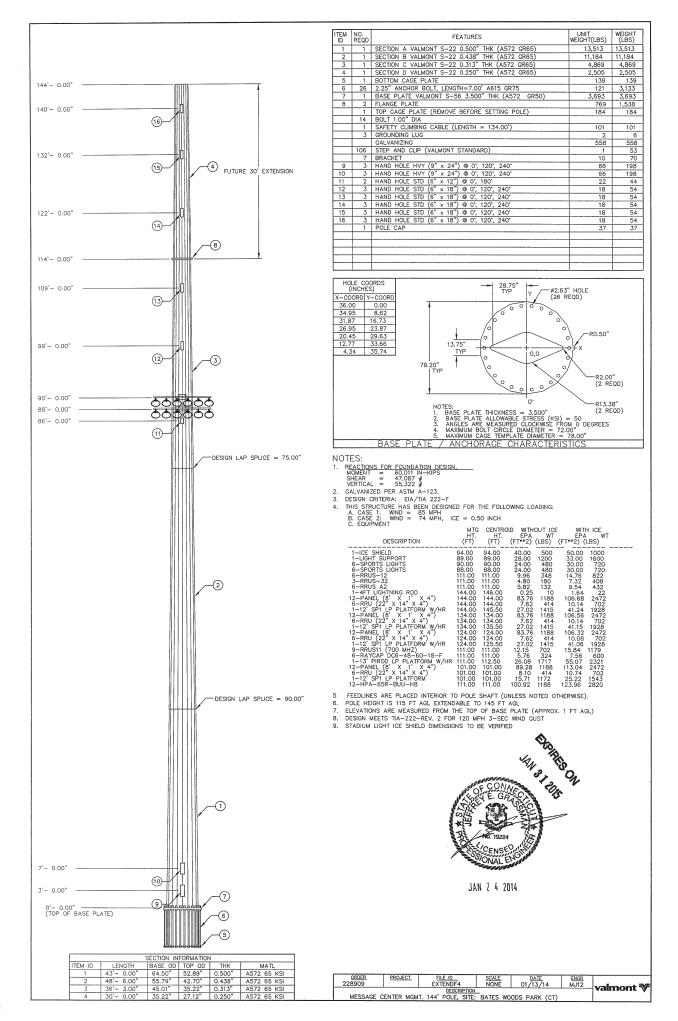
Terracon should be retained to review the final design plans and specifications, so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide observation and testing services during grading, excavation, foundation construction, and other earth-related construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the explorations performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between the explorations, across the site, or due to the modifying effects of weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified, so that further evaluation and supplemental recommendations can be provided.

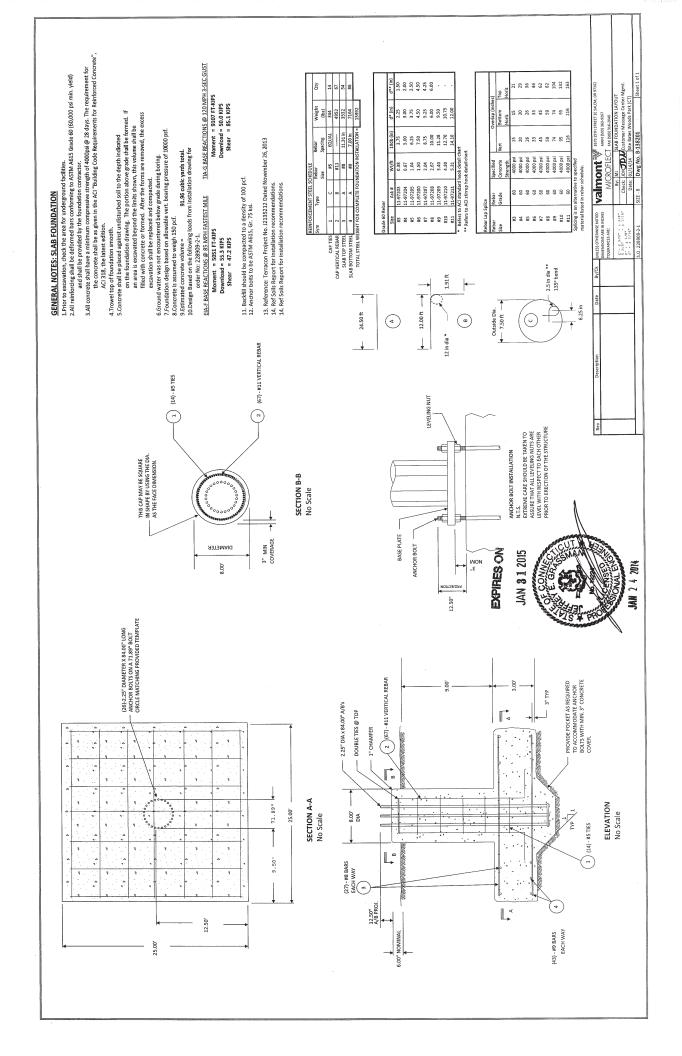
Resistivity testing may be influenced by the presence of boulders, chain-link fences, existing utilities, or other anomalies within the test area. Resistivity results will also fluctuate depending on the degree of compaction, moisture content, soil constituent solubility, and temperature. Field resistivity values may vary depending upon season, precipitation, and other conditions, which may be different from those at the time of testing.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or

Geotechnical Engineering Report



Proposed Telecommunications Tower - Bates Woods Park New London, Connecticut November 26, 2013 Terracon Project No. J2135212


prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

ATTACHMENT 2

·

VALMONT MICROFLECT 3575 25th St. SE Salem, OR 97302 PHONE: 1-800-547-2151 ENGINEER: Michael Jacobson 6703 Reviewed by: JDN

COMMUNICATION POLE DESIGN CALCULATIONS

JAN 2 4 2014

MESSAGE CENTER MGMT. VALMONT ORDER #228909 SITE NAME: BATES WOODS PARK (CT) POLE HEIGHT: 144 FT (115 FT AGL EXT. TO 145 FT AGL) 1)

2) 3) 4) 5)

6) 7) 8)

۰,

4.

Ρ

1/24/14 ENGINEERING DATA

for

MESSAGE CENTER MGMT. BATES WOODS PARK (CT) VALMONT QUOTATION 228909

/	officerence begich control of the Era the 222-1 indeceding.
	85.0 MPH FASTEST MILE BASIC WIND SPEED WITH NO ICE
	74.0 MPH FASTEST MILE BASIC WIND SPEED WITH ICE
	DESIGN ICE THICKNESS = 0.50 INCHES
	TWIST AND SWAY EVALUATION NOT REQUIRED
)	FEEDLINES ARE ASSUMED TO BE PLACED INTERIOR TO THE POLE.
)	ALL MICROWAVE ASSUMED TO BE 6 GHz UNLESS OTHERWISE NOTED.
)	POLE HEIGHT IS 115 FT AGL EXTENDABLE TO 145 FT AGL
)	ELEVATIONS ARE MEASURED FROM THE TOP OF BASE PLATE (APPROX. 1 FT AGL)
)	DESIGN MEETS TIA-222-REV. 2 FOR 120 MPH 3-SEC WIND GUST
)	STADIUM LIGHT ICE SHIELD DIMENSIONS TO BE VERIFIED
)	LOADING AS FOLLOWS:
	144.0' POLE
	1 - ICE SHIELD @ 94.0
	1 - LIGHT SUPPORT @ 89.0
	6 - SPORTS LIGHTS @ 90.0
	6 - SPORTS LIGHTS @ 88.0
	6 - RRUS-12 @ 111.0
	3 - RRUS-32 @ 111.0
	6 - RRUS A2 @ 111.0
	1 - 4ft lightning rod @ 144.0
	12 - PANEL (8' X 1' X 4") @ 144.0
	6 - RRU (22" x 14" x 4") @ 144.0
	1 - 12' SP1 LP Platform w/HR @ 144.0
	12 - PANEL (8' X 1' X 4") @ 134.0
	6 - RRU (22" x 14" x 4") @ 134.0
	1 - 12' SP1 LP Platform w/HR @ 134.0
	12 - PANEL (8' X 1' X 4") @ 124.0
	6 - RRU (22" x 14" x 4") @ 124.0
	1 - 12' SP1 LP Platform w/HR @ 124.0
	9 - RRUS11 (700 MHz) @ 111.0

STRUCTURE DESIGN CONFORMS TO EIA/TIA-222-F INCLUDING:

9 - RRUS11 (700 MHz) @ 111.0 6 - Raycap DC6-48-60-18-F (24"x11") @ 111.0

- 1 13' Pirod LP Platform w/HR @ 111.0
- 12 PANEL (8' X 1' X 4") @ 101.0
- 6 RRU (22" x 14" x 4") @ 101.0
- 1 12' SP1 LP Platform @ 101.0
- 12 HPA-65R-BUU-H8 @ 111.0

STRUCTURE ANCHORAGE INFORMATION

6

POLE HEIGHT(FT):	144	NUMBER OF A.B.'s:	26
BOLT CIRCLE(IN):	72.00	DIA. OF A.B.'s(IN):	2.25
BASE VERTICAL(K):	55.32	LENGTH OF A.B.'s(IN):	84.00
BASE SHEAR(K):	47.09	PROJECTION LENGTH(IN):	12.50
BASE MOMENT(FT-K):	5001	TEMPLATE OD(IN):	75.50

Valmont - Structures Engineering

BY_____ DATE _____ CHKD. BY _____ DATE _____

÷. . . . ,

STRUCTURES

SHEET NO. _____

1/24/14 ENGINEERING DATA for MESSAGE CENTER MGMT. BATES WOODS PARK (CT) VALMONT QUOTATION 228909

		EIA/TIA-222-F BASIC WIND: WIND & ICE: TWIST & SWAY:	85.0 74.0 NOT REQUIRED	MPH MPH AND 0.5 IN:	. ICE		
QTY	DESCRIPTION		HEIGHT	DATA W.(EPA	O. ICE WT	DATA EPA	W/ ICE WT
1	ICE SHIELD		@ 94.0 '	40.00	500	50.00	1000
1	LIGHT SUPPORT		@ 89.0 '	28.00	1200	33.00	1600
6	SPORTS LIGHTS		@ 90.0 '	24.00	480	30.00	720
6	SPORTS LIGHTS		@ 88.0 '	24.00	480	30.00	720
6	RRUS-12		@ 111.0 '	9.96	348	14.76	822
3	RRUS-32		@ 111.0 '	4.80	180	7.32	408
6	RRUS A2		@ 111.0 '	5.82	132	9.54	432
1	4ft lightning rod		@ 144.0 '	0.25	10	1.64	22
12	PANEL (8' X 1' X 4'	')	@ 144.0 '	83.76	1188	106.68	2472
6	RRU (22" x 14" x 4")		@ 144.0 '	7.62	414	10.14	702
1	12' SP1 LP Platform	w/HR	@ 144.0 '	27.02	1415	41.24	1928
12	PANEL (8' X 1' X 4'	")	@ 134.0 '	83.76	1188	106.56	2472
6	RRU (22" x 14" x 4")		@ 134.0 '	7.62	414	10.14	702
1	12' SP1 LP Platform	w/HR	@ 134.0 '	27.02	1415	41.15	1928
12	PANEL (8' X 1' X 4'	')	@ 124.0 '	83.76	1188	106.32	2472
6	RRU (22" x 14" x 4")		@ 124.0 '	7.62	414	10.08	702
1	12' SP1 LP Platform	w/HR	@ 124.0 '	27.02	1415	41.06	1928
9	RRUS11 (700 MHz)		@ 111.0 '	12.15	702	15.84	1179
6	Raycap DC6-48-60-1	8-F (24"x11")	@ 111.0 '	5.76	324	7.56	600
12 12	PANEL (8' X 1' X 4'	')	@ 101.0 '	89.28	1188	113.04	2472

Valmont - Structures Engineering

F

é tra

raye 4 DATE 01/24/14 Fuse 1.10.0.528	,	32071								
CT)										
CENTER MGMT. 144' POLE, SITE: BATES WOODS PARK (CT)		Pole Shaft Weight (lbs)		e: 18 Sides			/Fourth/	35.220 27.120 0.25000 30.000	/Fourth/	35.169 27.120 0.25000 29.813
POLE, SITE: BI	SECTION DIMENSIONS AS DETAILED	64.500 Pole	27.120	0.2700 Shape:	/Third/	114.00 Flange Joint 2.000 0.250	/Third/	45.008 35.220 0.31250 36.250	/Third/	45.008 35.271 0.31250 36.063
ER MGMT. 144'	CTION DIMENSIC	Diameter (in)		E)		0	/Second/	55.790 42.695 0.43750 48.500	/Second/	55.790 42.695 0.43750 48.500
MESSAGE CENT	SUMMARY OF SE	Ground Line Diam	Top Diameter (in)	Pole Taper (in/ft)	/First/ /Second/	43.00 84.0 Slip Joint Slip Joint	/First/	64.500 52.890 0.50000 43.000	/First/	64.500 52.890 0.50000 43.000
BY VALMONT INDUSTRIES FOR:	32-bit	Height Above Base Plate (ft) 144.00			Connections Between Sections /F	Height Above Ground (ft) Type Flange Thickness (in) Weld Root Gap (in)	Theoretical Design Section Dimension	Base Diameter (in) Top Diameter (in) Thickness (in) Length (ft)	As Detailed Section Characteristic	Base Diameter (in) Top Diameter (in) Thickness (in) Length (ft)

Note: Diameter are outside, measured across the flats

Page 4

;

14

DATE 01/24/14 Fuse 1 10 0 528		Notes nt	47087 44496
		Shear Resultant (X & Y) (1hs)	444
S PARK (CT)		Shear In Y-Direction (1bs)	36071 34086
CENTER MGMT. 144' POLE, SITE: BATES WOODS PARK (CT)	REACTIONS ***	Shear In X-Direction (1bs)	30267 28601
14' POLE, SIT	C OF FIXITY F	Vertical Force (1bs)	402
NTER MGMT. 14	POLE SHAFT POINT OF FIXITY REACTIONS ***	Moments Torsional (in-kips)	00
MESSAGE CE	IOđ ***	Moments Resultant (X & Y) (in-kins)	60010 58981
FOR:		Moments About Y-Axis (in-kips)	-38574 -37912 -37912
VALMONT INDUSTRIES		Moments About X-Axis (in-kins)	45971 45182
BY VALM	32-bit	Loading Case Identifier	WIND ICE + WIND

Note: Positive vertical force is downward. Reactions are considered in the global coordinate system.

Page 5

4

1.4

SITE:
POLE,
144'
MGMT.
CENTER
MESSAGE CENTER MGMT.
2
FOR: N
5 FOR:

32-bit

*** INPUT LOADS ***

Design Code EIA-222-F Loading Case WIND Basic Wind Velocity is 85.00 mph Ice Thickness 0.00 Wind Orientation is 50.0 Degrees Clockwise From -X- Axis Structure Weight Overload Factor is 1.000 Exposure C, Gust Factor 1.69 Orientations are Measured Clockwise From -X- Axis Positive -Y- Axis is 90 Degrees Clockwise From -X- Axis Foundation Rotation of 0.00 Degrees Elevation of structure base above surrounding terrain = 1.00 ft

1-LIGHT SUPPO 6-SPORTS LIGH 6-SPORTS LIGH 1-4ft lightni 9-RRUS11 (700 × × 1-ICE SHIELD 1-12' SP1 LP 6-RRU (22" x 1-12' SP1 LP 1-12' SP1 LP 8 8) 12-PANEL (8' 6-RRU (22" 6-RRU (22" 6-RRUS-12 3-RRUS-32 6-RRUS A2 12-PANEL 12-PANEL 28.00 27.02 40.00 0.25 83.76 7.62 27.02 9.96 4.80 5.82 7.62 83.76 7.62 27.02 24.00 12.15 24.00 83.76 EPA (ft^2) 1200 480 180 132 500 480 348 10 1188 414 1415 1188 1415 1188 1415 702 414 414 Force-Z (lbs)768 1296 893 338 198 279 990 950 413 763 163 σ 3061 3000 273 971 2934 267 (lbs) Force-Y 749 640 1087 644 284 137 166 ω 2569 234 2517 229 815 346 831 2462 224 797 Force-X (lbs) in XY Plane Orientation 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 (Degrees) Load Eccentricity 00.00 00.00 0.00 00.00 0.00 00.00 0.00 00.00 00.00 0.00 0.00 0.00 0.00 0.00 00.00 0.00 0.00 00.00 (ft) 88.00 124.00 94.00 89.00 90.00 111.00 111.00 111.00 146.00 144.00 144.00 145.50 134.00 135.50 125.50 111.00 Height (ft) 134.00 124.00 Load Mounting Height (ft) 90.00 88.00 111.00 94.00 89.00 111.00 111.00 144.00 134.00 111.00 144.00 144.00 144.00 134.00 134.00 124.00 124.00 124.00 Number Load 10 11 12 13 14 15 16 17 1 1 σ Ч N m ഹ ω Q 5

Page 6

DATE 01/24/14 Fuse 1.10.0.528

BATES WOODS PARK (CT)

(Transverse)

* * *

(Vertical) +Z-Axis

* *

(Longitudinal) +Y-Axis

Orientation of System +***** +X-Axis

1.4

DATE 01/24/14 Fuse 1 10 0 528			SYSCEM 9-RRUSII (700 9-RRUSII (700 9-RRUSII (700	6-Raycap DC6-	1-13' Pirod L	12-PANEL (8'	6-RRU (22" x	1-12' SP1 LP	12-HPA-65R-BUU
(Urientation of System 9-RF EPA 9-RF (ft^2) 9-RF	5.76	26.08	89.28	8.10	15.71	100.92
WOODS PARK (CT		C	0 Force-Z (lbs)	324	1717	1188	414	1172	1188
, SITE: BATES	*		Force-Y (1bs)	196	889	2951	268	519	3426
CENTER MGMT. 144' POLE, SITE: BATES WOODS PARK (CT) *** INPUT LOADS ***		Force-X (1bs)	164	746	2476	225	436	2875	
MESSAGE CENTER 1	* * *		Orientation in XY Plane (Degrees)	50.00	50.00	50.00	50.00	50.00	50.00
FOR: N		WIND - Continued	Load Eccentricity (ft)	0.00	00.00	00.00	00.00	0.00	0.00
USTRIES		- CINIM	Load Height (ft)	111.00	112.50	101.00	101.00	101.00	111.00
BY VALMONT INDUSTRIES		Loading Case	Mounting Height (ft)	111.00	111.00	101.00	101.00	101.00	111.00
ВҮ	32-bit	ΓO	Load Number	19	20	21	22	23	24

Page 7

:

'¥

DATE 01/24/14 Evise 1 10 0 528			System *** +X-Axis (Transverse)	ical) is		1-ICE SHIELD	1-LIGHT SUPPO	6-SPORTS LIGH	6-SPORTS LIGH	6 - RRUS - 12	3 - RRUS - 32	6-RRUS A2	1-4ft lightni	12-PANEL (8'	6-RRU (22" x	1-12' SP1 LP	12-PANEL (8'	6-RRU (22" x	1-12' SP1 LP	12-PANEL (8'	6-RRU (22" x	1-12' SP1 LP	9-RRUS11 (700
Д ́ь́	4		Orientation of Syst +****** * * * * * *	*	EPA (ft^2)	50.00	33.00	30.00	30.00	14.76	7.32	9.54	1.64	106.68	10.14	41.24	106.56	10.14	41.15	106.32	10.08	41.06	15.84
100DS PARK (CT)		č	OF.	(Longitudinal) +Y-Axis	Force-Z (lbs)	1000	1600	720	720	822	408	432	22	2472	702	1928	2472	702	1928	2472	702	1928	1179
. SITE: BATES WOODS					Force-Y (lbs)	1227	798	727	723	380	188	245	46	2955	281	1146	2892	275	1120	2823	268	1094	408
. 144'	MT. 144' POLE, NPUT LOADS *** 	uxis m -X- Axis terrain = 1.00 ft	Force-X (lbs)	1030	669	019	607	319	158	206	38	2480	236	961	2427	231	940	2369	225	918	342		
MESSAGE CENTER MGMT	* * *		oh Ice Thickness S Clockwise From 1.000	From -X- A ockwise Frc urrounding	Orientation in XY Plane (Degrees)	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
FOR: M		F. IND	Basic Wind Velocity is 74.00 mph Wind Orientation is 50.0 Degrees (Structure Weight Overload Factor is Extonsure (Gust Factor 1,69	Clockwi ggrees 00 Degre	Load Eccentricity (ft)	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	00.00	00.00	0.00	0.00	0.00
USTRIES	Code EIA-222-F Case ICE + WIND ? Wind Velocity is Orientation is	<pre>id Velocity is 74. intation is 50.0 D Weight Overload Fac C, Gust Factor 1.69 ons are Measured Clo -Y- Axis is 90 Degre m Rotation of 0.00 D of structure base a</pre>	Load Height (ft)	94.00	89.00	90.00	88.00	111.00	111.00	111.00	146.00	144.00	144.00	145.50	134.00	134.00	135.50	124.00	124.00	125.50	111.00		
VALMONT INDUSTRIES		Design Code Loading Case	Basic Wind Velocity Wind Orientation is Structure Weight Ove Exposure C Gust Pro		Mounting Height (ft)	94.00	89.00	90.00	88.00	111.00	111.00	111.00	144.00	144.00	144.00	144.00	134.00	134.00	134.00	124.00	124.00	124.00	111.00
ВΥ	32-bit	De: Loč			Load Number	Ч	7	м	4	Ŋ	9	7	ω	ሻ	ΠO	11	12	13	14	15	16	17	18

~

Page 8

٩,

' **i**

(CT)	
PARK	
BATES WOODS PARK	
BATES	
SITE:	
144' POLE,	
144'	
MGMT.	
CENTER	
MESSAGE CENTER MGMT. :	
FOR:	
' INDUSTRIES	
3Y VALMONT	
щ	

*** INPUT LOADS ***

32-bit

Svstem	9-RRUS11 (700 9-RRUS11 (700 9-RRUS11 (700	6-Raycap DC6-	1-13' Pirod L	12-PANEL (8'	6-RRU (22" x	1-12' SP1 LP	12-HPA-65R-BUU
Orientation of System	EPA (ft^2)	7.56	55.07	113.04	10.74	25.22	123.96
ć	Force-Z (lbs)	600	2321	2472	702	1543	2820
	Force-Y (lbs)	195	1422	2832	269	632	3190
	Force-X (lbs)	163	1194	2376	226	530	2677
TO.	Orientation in XY Plane (Degrees)	50.00	50.00	50.00	50.00	50.00	50.00
ICE + WIND - Continued	Load Eccentricity (ft)	0.00	0.00	0.00	0.00	0.00	0.00
	Load Height (ft)	111.00	112.50	101.00	101.00	101.00	111.00
Loading Case	Mounting Height (ft)	111.00	111.00	101.00	101.00	101.00	111.00
Loi	Load Number	19	20	21	22	23	24

Page 9

Ą

• •

DATE 01/24/14 Fuse 1.10.0.528

BY VALMONT INDUSTRIES FOR:

32-bit

MESSAGE CENTER MGMT. 144' POLE, SITE: BATES WOODS PARK (CT)

DATE 01/24/14 Fuse 1.10.0.528

· .

*** Properties ***

Page 10

۰,

ï	۰.				-							
Page 11	DATE 01/24/14 Fuse 1.10.0.528											
	PARK (CT)		Area (in^2) 97.71	99.85 101.56								
	SITE: BATES WOODS PARK (CT)		Moments of Inertia (in^4) 46781	49926 52541								
	144' POLE, SI	es ***	w/t Across Flats 20.13									
	MESSAGE CENTER MGMT. 144' POLE,	*** Properties	D/t Across Flats 124.14									
	MESSAGE (**	r Thio	0.5000								
	FOR:		Diameter Across Flats (in) 62.070	63.420 64.500								
	BY VALMONT INDUSTRIES t		Distance From Base (ft) 9,00	4.00						·		
	BY VALMONT 32-bit		Connection Locations	Pt of Fixity								

Page 12

DATE 01/24/14 Fuse 1.10.0.528

MESSAGE CENTER MGMT. 144' POLE, SITE: BATES WOODS PARK (CT)

۰,

32-bit Forces and Moments for Pole in the Local Element Coordinate System

FOR:

BY VALMONT INDUSTRIES

יי ר ע Loa Dis

	Axial (1bs)	64	55) 4 C	ч С) 4 (0	0 0 0	200	10535	056	σ	509	538	605	643	898	930	997	047	103	151	S	282	96	346	403	413	595	645	733	852	975	31015	231	363	495	520	525	750	39491
Resultant	Shear (1bs)	5854	50	15	47	44	10	21	19165		5	19873	~	~	œ	ω	\sim	\mathcal{O}	4	ഹ	Ś	~		ω	œ	σ	5	œ	03	4	~	\sim	6	42098	IN	σ	4	10	49	α α	44185
Shear	Y-Dir. (lbs)	4484	56	5071	φ 2	9760	008	436	14681	502	15011	22	103	11	150	172	555	567	605	733	763	839	847	940	947	022	054	30493	088	097	122	156	190	2	258	291	327	335	33	ม ท	33847
Shear	X-Dir. (1bs)	76	4003	4255	7933	81.90	8460	205	12319	260	25	12774	765		804	822	144	154	186	293	319	382	σ	467	24735	536	562	558	591	598	619	648	677	27060	734	762	792	798	27957	28192	28401
	Torsion (in-kips)	0	· C) C	C	C C	, c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0
Resultant	Mx & My (in-kips)	25	α		· O	5	50	35	3489	65	4653	5363	5386	6047	7719	8734	8734	6	12	5	33	33	13731	ĥ	-	41	60	16096	18501	19107	20935	23396	25885	28400	30942	33510	36104	36626	36626	38724	40574
	My (in-kips)		4	49		6	49	151	-2243	299	299	-3447	346	388	496	561	561	613	743	743	854	854	882	882	912	912	034	034	189	1228	1345	1503	1663	-18255	1988	2154	2320	2354	2354	2489	-26080
DNIM	Mx (in-kips)	19	σ	ι σ		201	18	80	2673	56	56	4108	12	63	91	69	69	30	85	85	017	017	51	051	087	087	233	233	417	463	603	792	982	21756	370	567	765	805	80	966	31081
Jist From		44.0	0 6 6	34.0	34.0	2.9.0	24.0	24.0	119.00	14.0	14.0	111.00	11.0	0.60	04.0	01.0	0.10	0.0	4.0	4.0	0.0	0.0	0.0	0.0	8.0	8.0	4.0	4.0	9.0	7.7	4.0	9.0	4.0	59.00	4.0	9.0	4.0	3.0	3.0	9.0	35.50

٠.

BY VALMONT INDUSTRIES FOR:

MESSAGE CENTER MGWT. 144' POLE, SITE: BATES WOODS PARK (CT)

DATE 01/24/14 Fuse 1.10.0.528

٠.

32-bit Forces and Moments for Pole in the Local Element Coordinate System

Loading Case WIND

		Axial	(lbs)	40007	41620	43269	44954	46675	48432	50213	51584
	Resultant	Shear	(lbs)	44268	44659	45055	45456	45863	46274	46702	47137
	Shear	Y-Dir.	(lbs)	33912	34211	34514	34822	35133	35448	35776	36109
	Shear	X-Dir.	(lbs)	28455	28706	28961	29219	29480	29744	30019	30299
		Torsion	(in-kips)	0	0	0	0	0	0	0	0
	Resultant	Mx & My	(in-kips)	41371	44042	46736	49455	52198	54966	57758	60010
		MY	(in-kips)	-26593	-28309	-30042	-31789	-33552	-35331	-37126	-38574
TNTM		MX	(in-kips)	31692	33738	35802	37885	39986	42106	44245	45971
TNITH DOD ATTINDON	Dist. From	Base	(ft)	34.00	29.00	24.00	19.00	14.00	00.6	4.00	0.00

Page 13

۰,

SSAGE CENTER MGMT. 144' POLE, SITE: BATES WOODS PARK (CT)

Page 14

DATE 01/24/14 Fuse 1.10.0.528

, ,

32-bit Deflections and Stresses for Pole

	Allowable Divided by Combined		υ. Γ	9.8	Ч	0.5	9	24	" "	; (2.63	?	σ.	σ,	۲.	2		-	1.99		. [. (<u>،</u> ه	9	പ	S.	ŝ	<u>ں</u>	4.	6.	00	5		, (۰ ۱ ۱	ι.	4.	4.	4.	ς.	1.37	Ł	1.48 1.48
	Allowable Di Stress C (ksi)	1	- 7	1.9	1.9	1.9	б Г		, c		51.99	1.9	1.9	1.9	1.9	1.9	1.9	6	50°-12	1 0 1 m	- 0 		י ר י ר	н	ч. Ч	1.9	1.9	1.9	1.9	1.9	6.1	1.9				۲. ک	ч.	1.9	1.9	1.9	51.99	c T	51.99 51.99
	Applied Combined Stress (ksi)	(, U		9.	<u>о</u>	L,) (, () (r	א ד י ו ע	19.79	5.9	7.5	7.6	9.2	2.7	4.6	4	26.17	ט א יייי יייי	л ц . с) r) r		2	7 8	2.8	3.5	3.5	6.0	6.7	8.8	6		? (> (1 1 1 1	. · ·	4.9	6.0	7.0	7.9	38.07	L	35.07
36S ***	Applied Shear Stress (ksi)	1	ų	പ	.5	°.	C			* 5	1.42	4	4	<u>ں</u>	ŝ	ŝ	ц С	5	1.74	. [• •		Υ	°,	<u>∞</u>	~	<u>م</u>	°.	с.	ς.	3	1	<u></u> , .	10	2	?	2	2	Ч.	1.18	Ċ	20.1 1.04
and Stresses	Applied Torsion Stress (ksi)	•	2	0	°.	0	C	\sim	, ,	, ,	0.00	°	٩	٩	°,	0	0	C	00.00	\sim		•		2	•	•	°.	°.	°.	0.	0	0	\sim		? '	2	0	°	•	0	0.00	Ċ	0.00
Deflections	Applied Axial Stress (ksi)	1	-	Ч.	4	2	5		• •	, c	0.38	e,	e,	4	4.	4	4.	ſ	0.50	ע (י	л u	, r	Ω.I	υ.	٩ ١	n.	പ	<u>ں</u>	ц,	4.	4.	4		• -	. 4	4	4.	4.	4	4.	0.48	•	0.44
*** De	Applied Bending Stress (ksi)	1	-	4	5	9	0		ዞ Li • • •	0 C - L	19.41	5.6	7.1	7.2	8.8	2.3	4.1	4	25.67) () ;	0 \ 	9. -	7. M	2.9	2.9	2.9	5.5	6.3	8.4	6 8		0 0 1 0	0. 1.		4.5	5.6	6.5	7.4	37.59	*	34.12 34.63
	Rotation (deg.)	1	α.	ω.	5.	5	5	· '		0 1	. ч. ч . 45	4.	с,	e.	с,	2	Ч.	-	3.06	, o	, c				5	٢.	9.	9	ъ.	ы Ч	3	~) (1 0	2.1	<u>ر</u>	٢.	9.	4.	2	1.24	¢	1.12 1.12
	Defl. Z-Dir 1 (in)		1.6	1.5	1.3	1.3	 -		۲ ۲ • •	 	6.0	6.0	0.8	0.8	0.7	0.6	0.6	20		о и о с	п ш Э с	n •	0.4	0.4	0.4	0.4	0.4	0.4	0.3												0.0		0.0
	Defl. Resultant X & Y (in)		4	0.	9	9	5	ι α	• 5 c	σ •	40.9	0	8.00		7.	ო						÷.	ກໍເ		4.	4.	4.	4	21.8	H	6				י יד	N.	。	•	•	•	5.5		ບ 4 ບ ທ
	Defl. F Y-Dir (in)		Б	9	m	M					04.F		ь.	б	8	9	4			, , ,	÷.	- 0	ה ה	б	ထ	თ	8	00	16.7	9	4		• c	1 r	÷	•	•	•	•		4.2		4. 7. 4.
Case WIND	Defl. X-Dir (in)		H	8	9	Ś		` -			26.3	9	4.	4.	4.	,	0		σ	` [· r		0 '	.9	د	ч С	د	ഗ	14.0	4.	0		1 c		•	•	•	•	•	•	3.5		2 0. 2 0.
Loading C	Distance From Base (ft)		44.0	39.0	34.0	34.0) < 	0 0 	4. 0. 4.0. 7.0. 7.0. 7.0. 7.0. 7.0. 7.0.	114.00	14.0	11.0	11.0	0.60	4.0	01.0		0 0 1 0 0) <) () (0.0	0.0	0.0	0.6	8.0	8.0	84.00	4.0	0) (- + (ч. О	4.0	9.0	4.0	9.0	4.0	43.00	(43.00 39.00

~

۰.

Page 15

\$

DATE 01/24/14 Fuse 1.10.0.528

٠,

MESSAGE CENTER MGMT. 144' POLE, SITE: BATES WOODS PARK (CT) FOR: BY VALMONT INDUSTRIES

32-bit Deflections and Stresses for Pole

Loading Case WIND

*** Deflections and Stresses ***

Allowable Divided by Combined	1.46	1.46	1.44	1.42	1.41	1.40	1.39	1.38	1.37
Allowable : Stress (ksi)	51.99	51.99	51.99	51.99	51.99	51.99	51.99	51.99	51.99
Applied Combined Stress (ksi)							37.52		
Applied Shear Stress (ksi)	1.03	1.02	1.01	0.99	0.98	0.96	0.95	0.94	0.93
Applied Torsion Stress (ksi)	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00
Applied Axial Stress (ksi)	0.46	0.46	0.47	0.47	0.48	0.49	0.50	0.50	0.51
Applied Bending Stress (ksi)	35.03	35.19	35.67	36.09	36.45	36.76	37.03	37.25	37.40
Rotation (deg.)	1.01	0.97	0.82	0.67	0.53	0.39	0.25	0.11	0.00
Defl. Z-Dir (in)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Defl. Resultant X & Y (in)							0.2		
Defl. Y-Dir (in)	2.8	2.6	1.9	1.3	0.8	0.4	0.2	0.0	0.0
Defl. X-Dir (in)	2.4	2.2	1.6	1.1	0.7	0.4	0.1	0.0	0.0
Distance From Base (ft)	35.50	34.00	29.00	24.00	19.00	14.00	9.00	4.00	00.00

Page 16

٩,

٠,

DATE 01/24/14 Fuse 1.10.0.528

MESSAGE CENTER MGMT. 144' POLE, SITE: BATES WOODS PARK (CT) FOR: BY VALMONT INDUSTRIES

32-bit Forces and Moments for Pole in the Local Element Coordinate System

MINI	
+	
ICE	
adin	Dist. From

Axial (1bs)	4725	5183	5661	10387	10902	11425	16191	16773	73	17373	77	25919	26251	27042	27496	31980	32355	33145	34157	34808	35538	0	\sim	37443	818	38860	38965	41010	41569	42556	88	25	46668	H	59	00	35	51408	000005	56101
Resultant Shear (1bs)	6110	6414	6733	12651	12969	13310	19068	19387	19749	19720	19946	28289	28400	28734	28968	34054	34148	34547	36109	36432	37361	37442	38535	38617	39530	39857	ហ	40147	40206	40420	40721	41018	41309	41594	41872	42201	42283	42215	27463	42693
Shear Y-Dir. (lbs)	68	4914	12	69	9935	019	460	14851	512	510	527	167	175	201	219	608	615	646	766	790	862	868	952	29582	028	053	045	30755	080	096	119	14	4	186	20	232	239	233	252	32705
Shear X-Dir. (lbs)	3928	4123	4328	8132	8336	10	25	10	69	12676	12821	Н	18255	18470	18621	21889	21950	22206	23210	23418	24015	24067	\sim	24822		01	25554	25806	25844	25982	26175	26366	26553	26736	26915	27126	27179	27135	10070	27443
Torsion (in-kips)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c	0
Resultant Mx & My (in-kips)	31	406	801	829	1598	2387	2415	3569	4743	4743	5457	5493	6174	7889	8928	8928	9747	180	180	13549	354	399	399	46	446	16366	63	87	6	11	23623	60	ഹ	10	355	60	658	- 0	α	40408
My (in-kips)	-20	26	51	53	102	153	-1552	229	304	04	350	353	96	507	573	573	626	759	759	870	870	899	99	- 9295	929	52	1052	1206	1245	1361	1518	1676	-18353	1995	2156	2319	2351	351	2482	-25974
: ICE + WIND Mx (in-kips)	23	Ч	Ч	$^{\circ}$	22	82	1850	73	63	63	ω	20	72	04	83	83	46	04	04	037	037	072	072	11078	107	253	253	437	483	622	809	997	21872	378	570	763	802	802	9 T R	30954
oading Case ist. From Base (ft)	44.0	39.0	34.0	34.0	29.0	24.0	124.00	19.0	14.0	14.0	11.0	11.0	9.0	04.0	0.10	01.0	0.6	4.0	4.0	0.0	0.0	0.6	9.0	88.00	8.0	4.0	4.0	9.0	7.7	4.0	9.0	4.0	59.00	4.0	9.0	4.0	3.0	о. С	0.0	35.50

..

MESSAGE CENTER MGMT. 144' POLE, SITE: BATES WOODS PARK (CT) FOR: BY VALMONT INDUSTRIES

Fus

DATE 01/24/14 Fuse 1.10.0.528

•

32-bit Forces and Moments for Pole in the Local Element Coordinate System

Loading Case ICE + WIND

		Axial	(lbs)	56665	58444	60263	62122	64020	65957	67924	69452
	Resultant	Shear	(lbs)	42718	42960	43205	43453	43703	43955	44226	44561
	Shear	Y-Dir.	(lbs)	32724	32909	33097	33287	33478	33672	33879	34136
	Shear	X-Dir.	(lbs)	27458	27614	27772	27931	28092	28254	28428	28643
		Torsion	(in-kips)	0	0	0	0	0	0	0	0
	Resultant	Mx & My	(in-kips)	41178	43753	46342	48946	51566	54200	56850	58981
		MΥ	(in-kips)	-26469	-28124	-29788	-31462	-33146	-34839	-36542	-37912
ICE + MIND		Mx	(in-kips)	31544	33516	35500	37495	39502	41520	43550	45182
Loading Case ICE + WIND	Dist. From	Base	(ft)	34.00	29.00	24.00	19.00	14.00	9.00	4.00	0.00

Page 17

4

Page 18

DATE 01/24/14 Fuse 1.10.0.528

٠,

32-bit Deflections and Stresses for Pole

FOR:

BY VALMONT INDUSTRIES

MESSAGE CENTER MGMT. 144' POLE, SITE: BATES WOODS PARK (CT)

	Allowable Divided by Combined	0.8	÷.	0.5	9.83 283	. ?	H	Ч.	ъ.		ω.	ω.	9.	2	°.	0.	6.		. 7	<u>،</u>	S.	<u>،</u>	<u>،</u>	<u>ں</u>	1.51	4	ω.	5	5	9.	ч.	പ	1.47	4.	с,	с.	ς.	j j	1.48
	Allowable Stress (ksi)	1.9	1.9	6.1	51.99 51 99	 . 0	1.9	1.9	1.9	ч.	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	Ι.9	1.9	1.9	51.99	1.9	1.9	1.9	ч. С.	1.9	1.9	1.9	51.99	1.9	1.9	1.9	1.9	1.9	51.99
	Applied Combined Stress (ksi)	°.	8	ი.	υ α 2 2 4	200	4.	6.7	0.4	6.4	7.9	8.3	9.9	3.5	5.4	5.5	7.0	0.5	0.5	3.1	ч.	а. 8	3.8	4.4	34.51	7.0	7.4	9.5	0.0	1.3	2.8	4.2	35.41	6.4	7.3	8.1	8.2	4.7	35.17
Ses ***	Applied Shear Stress (ksi)	. 5	<u>ں</u>	<u>د</u> ،	1.06 1.06	<u> </u>	ۍ ۲	4	4.	Ч.	-	9.	ŝ	ъ,	റ	÷.	5	5	°,		ω.	ω.	ω.	8.	1.91	ω.	ч.	e.	ę.	ų.	2	2	1.22	2	.1	Ч.		°.	1.01
and Stresses	Applied Torsion Stress (ksi)	۰.	0.1	• •		<u> </u>	0.	°.	0.	°.	°.	°	°.	°.	°.	°.	0.	°.	°	°	0	•	0	°.	0.00	0.	۰.	°	°	۰.	۰.	°.	0.00	۰.	0.	°	•	0	0.00
Deflections	Applied Axial Stress (ksi)	~	0.23	N .	0.44	4	.6	.6	9.	ۍ ۲	S.	5.	5.	5.	5	æ.	8	8.	æ.	ω.	ω.	ω.	ς.	б.	0.92	σ.	9.	9.	9.	9.	. و	9.	0.69	9.	9.	9.	9.	9.	0.64
Ŭ ***	Applied Bending Stress (ksi)	5.	9.	9.0	4.00 8.54	1.7	°,	6.1	9.7	5.9	7.4	7.6	9.2	2.8	4.7	4.7	6.2	9.6	9.6	2.3	2.3	2.9	2.9	ъ.5	33.59	6.1	6.8	8.8	9.3	0.6	2.1	3.5	34.72	5.7	6.6	7.4	7.5	4.0	34.54
	Rotation (deg.)	.0	œ (œ, c	3.76	9	9.	<u>ں</u>	.4	4.	.4	4.	ς,	.2	Ч.	4	0.	<u>م</u>	م	5				9.	2.69	• 2	<u>ى</u>	e.	e.	?	°	σ.	1.75	<u>ں</u>	4	?	.2	.2	1.11
	Defl. Z-Dir (in)	•	•	•	1.2	•	•		•	•	•		•	•	•	•	•		•	•	•	•		•	0.4	•	•	•	•	•	٠	•	0.1	•		•	•	•	0.0
	Defl. Resultant X & Y (in)	4.	0 1		52.2	ω.	8.	4.	0	0.	00	ŝ	7.	т. М		÷	。	7.	7.	س	د. د	4	4.		23.9	H		Ч	•	.9	4.	3	10.4	•	•	•	•	•	4.4
UNIM +	Defl. 1 Y-Dir (in)	С	9 0		40.0	7.	7.	4.		,	б.	ъ.	∞	س	4.	4.		÷		б	σ	∞	∞	യ	18.3	. 0	9.	4.	•	3	1		8.0		•	•	•	•	3.4
Case ICE	Defl. X-Dir (in)			0 v	33.6	i Li		დ	. 0	.9	4.	4.	т. М	H	0.	0	თ		7.	9		س	م	در	15.3	ო	•	5	H	0.	•	•	6.7	•	•	•	•	٠	2.9
Loading C	Distance From Base (ft)	44.0	39.0	47. 0.47. 0.0	129.00	24.0	24.0	19.0	14.0	14.0	11.0	11.0	0.60	04.0	1.0	01.0	о. 6	4.0	4.0	0.0	0.0	0.0	0. 0	0.0 8	88.00	4.0	4.0	9.0	7.7	4.0	9.0	4.0	59.00	4.0	0.6	4.0	о.е	3.0	39.00

4 8

Page 19

DATE 01/24/14 Fuse 1.10.0.528

MESSAGE CENTER MGMT. 144' POLE, SITE: BATES WOODS PARK (CT)

٠,

BY VALMONT INDUSTRIES

FOR:

32-bit Deflections and Stresses for Pole

Loading Case ICE + WIND

*** Deflections and Stresses ***

Applied Allowable Divided by Stress Stress Combined (ksi)	35.54 51.99 1.46	51.99		51.99	51.99	51.99	51.99	51.99	51.99
Applied Ap Shear Com Stress S (ksi) (0.99	0.99	0.97	0.95	0.93	0.92	0.90	0.89	0.88
Applied Torsion Stress (ksi)	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00
Applied Axial Stress (ksi)	0.65	0.65	0.66	0.66	0.66	0.67	0.68	0.68	0.68
Applied Bending Stress (ksi)	34.89	35.03	35.44	35.79	36.08	36.32	36.51	36.66	36.76
Rotation (deg.)	1.00	0.96	0.81	0.67	0.52	0.38	0.24	0.11	00.00
Defl. Z-Dir (in)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Defl. Resultant X & Y (in)	3.7	3.4	2.4	1.7	1.0	0.6	0.2	0.0	0.0
Defl. Y-Dir (in)	2.8	2.6	1.9	1.3	0.8	0.4	0.2	0.0	0.0
Defl. X-Dir (in)	2.4	2.2	1.6	1.1	0.7	0.4	0.1	0.0	0.0
Distance From Base (ft)	35.50	34.00	29.00	24.00	19.00	14.00	9.00	4.00	0.00

MINIMUM DEFLECTION RATIO // DEFLECTION LIMIT / DEFLECTION // IS

4

ANALYSIS Version IMPAX-15.2.15 FLANGE

	11	lbs lbs ksi	lbs	
		35,755 1,411 85 1.15	Shear 2.866 5.61 2.86 85.05 85.05	Y-COORD 8.52 19.14
HIND +		kial Force= lear = [Stress = / Factor =	ing Stress Safety Factor = Safety Factor = Safety Factor = Safety Factor =	X-COORD 17.69 4.37
LOAD CASE ICE	Results ===============	Bolts Maximum Bolt Axial Maximum Bolt Shear Allowable Axial Str Combined Safety Fac	Flange Weight Controlling Stress Minimum Safety Factor Bending Safety Factor Bearing Safety Factor	*** BOLT NO. 2 4
: CONTROLLING LOAD CASE	R6	Bo in-kips in-kips lbs lbs	in in ksi ksi ksi ksi ksi	BOLT COORDINATES * *
TNIOL D - D		4,743 4,743 19,749 -17,341	1.00 1.00 A325 2.000 2.000 3.26 3.220 3.220 3.220 3.220 3.220 3.220 3.220 3.220 3.220 3.256 1.06 3.220 3.256 3.557 3.5566 3.5566 3.5566 3.5566 3.5566 3.5566 3.5566 3.5566 3.5566 3.5566 3.5566 3.5566 3.5566 3.5566 3.5566 3.5566 3.5566 3.5566 3.5566 3.	Y-COORD 0.00 15.35
THE C		11 11 11 H		P1
FLANGE FOR 7		stions Moment Shear	Bolts eter rial le ength trength aterial Spec des ameter c" Sect. Dia D" Sect. Dia	X-COORD 19.63 12.24
	Input Data	Applied Reactions Resultant Moment Torsion Resultant Shear Axial	Bolts Number of Bolts Bolt Diameter Bolt Material Bolt Circle Flange Outside Diameter Thickness Yield Strength Tensile Strength Valmont Material No. of sides Design Diameter Design Diameter Detailed "D" Sect. Thickness Yield "D" Sect.	BOLT NO. 1 3

Page 20

4

۰,

DATE 01/24/14 Fuse 1.10.0.528		THREAD SIZE	4.5-UNC-2A	CONFIGURATION OF BOTTOM END OF ANCHOR BOLT THREADED WITH HEAVY HEX HEAD NUT		TENSION-LB MAX FORCE-LB 39438 43410 91093 95064 121428 125399			SIDE LENGTH (IN.)	13.75	TOTAL MOMENT ALONG FAIL LINE (INLB.)	3423926			**************************************
PARK (CT)	*** (GALVANIZED LENGTH (IN.)	84.00	BOTTOM THREADED W		Y-COORD MAX TENSION 8.615 39438 23.871 91093 33.658 121428		***	RAW MATERIAL WEIGHT (LB.)	6125	EFFECTIVE LENGTH (IN.)	75.75	VERTICAL AR STRESS (PSI)	7014	CASES
BATES WOODS PARK	ING CASE WIND	PROJECTION LLENGTH (IN.)	12.50	SAFETY FACTOR 1.50		X-COORD 34.951 26.945 12.765	78.00 IN.	NG CASE WIND	ACTUAL WEIGHT (LB.)	3693	TOTAL LENGTH OF FAIL MODE LINE (IN.)	00.06	MAX. VI SHEAR (PS		**************************************
POLE, SITE: H	NED BY LOADING	SHI PPED AS	TEMPLATES	STRESS AREA (SQ. IN.) 3.250	FORCES ***	BOLT NO. 2 4 6	IAMETER =	ED BY LOADING	AC WF (1						* * *
144	TICS GOVERNED	E4	5 BOLTS,		AND	FORCE-LB * 13162 * 71250 * 113473 * 130153	TEMPLATE DIAMETER	'ICS GOVERNED	THICKNESS (IN.)	3.5000	CRITICAL FAILURE MODE	N	LOWABLE STRESS (PSI)	50010	****** Marsys
E CENTER MGMT.	CHARACTERISTICS	WEIGHT (LB.)	3525	ALLOWABLE STRESS (PSI) 59985	BOLT COORDINATES	MAX		PLATE CHARACTERISTICS	ALL TH	79.20	POLE DIAM. (MAJOR DIAM.) (IN.)	0	ALLOWABLE STRESS (PSI)	50)INATE ICE 45182 - 37912 69493 69493
MESSAGE	*** ANCHOR BOLT	LENGTH (IN.)	84	MAXIMUM STRESS (PSI) 40080	***	MAX TENSION-LB 9191 67278 109502 126182	72.00 IN.	*** BASE PLATE C	OVERALL WIDTH (IN.)	2	POLE DIAM. (MAJOR DIAM (IN.)	64.50	BENDING STRESS (PSI)	22138	E GLOBAL COORI WIND 45971 - 38574 47087 51629
S FOR:	* * *	DIAMETER (IN.)	2.250	MAXIMUM BOLT FORCE (LB.) 130226		D Y-COORD 0.00 16.729 29.625 35.735	11	***	OVERALL LENGTH (IN.)	78.00			OTHER	A572	T POLE BASE IN THE IDENTIFICATION - AXIS (IN-KIP) - AXIS (IN-KIP) - AXIS (IN-KIP) LB.) E. (LB.)
NDUSTRIE			0	MA) BOL (]		X-COORD 36.000 31.874 20.449 4.339	BOLT CIRCLE						SPECIF.		R AT POLE R IDENTIF X-AXIS (Y-AXIS ((LB.) RCE (LB.)
BY VALMONT INDUSTRIES	bit	NUMBER OF BOLTS	26	STEEL SPECIF. A615		BOLT NO. 1 3 5 5	MAX. B		DRAWING NUMBER	SD18-99	TOP WIDTH (IN.)	13.75	VALMONT	S56	** LOADS AT POLJ LOADING CASE IDENT MOMENT ABT. X-AXIS MOMENT ABT. Y-AXIS SHEAR FORCE (LB.) VERTICAL FORCE (LB.)

-

al ar V K

32-bit

ATTACHMENT 3

HEXPORT Multi-Band ANTENNA

Model HPA-65R-BUU-H8

The CCI Hexport Multi-Band Antenna Array is an industry first 6-port antenna with full WCS Band Coverage. With four high band ports and two low band ports, our hexport antenna is ready for 4X4 high band MIMO.

Modern networks demand high performance, consequently CCI has incorporated several new and innovative design techniques to provide an antenna with excellent side-lobe performance, sharp elevation beams, and high front to back ratio.

Multiple networks can now be connected to a single antenna, reducing tower loading and leasing expense, while decreasing deployment time and installation cost.

Full band capability for 700 MHz , Cellular 850 MHz, PCS 1900 MHz, AWS 1710/2170 MHz and WCS 2300 MHz coverage in a single enclosure.

Hexport Multi-Band Antenna Array

Benefits

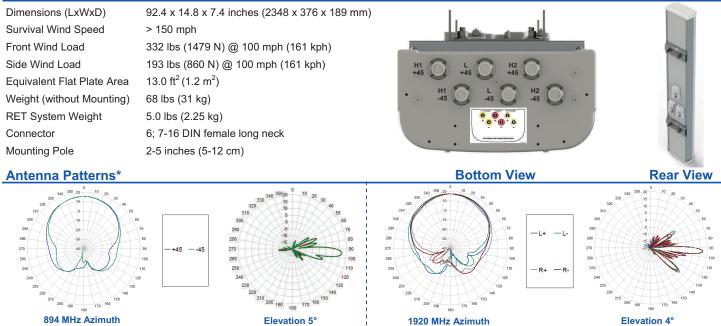
- Includes WCS Band
- Reduces tower loading
- Frees up space for tower mounted E-nodes
- Single radome with six ports
- All Band design simplifies radio assignments
- Sharp elevation beam eases network planning

Features

- High Band Ports include WCS Band
- Four High Band ports with two Low Band ports in one antenna
 - Sharp elevation beam
- Excellent elevation side-lobe performance
- Excellent MIMO performance due to array spacing
- Excellent PIM Performance
- A multi-network solution in one radome

Applications

- 4x4 MIMO on High Band and 2x2 MIMO on Low Band
- Adding additional capacity without adding additional antennas
- Adding WCS Band without increasing antenna count


HEXPORT Multi-Band ANTENNA

Model HPA-65R-BUU-H8

HPA-65R Multi-Band Antenna Electrical Specifications

		Ports which cover om 698-894 MHz	4 X High Band Ports which cover the full range from 1710-2360 MH								
Frequency Range	698-806 MHz	824-894 MHz	1850-1990 MHz		5/2110-2170 /IHz	2305-2360 MHz					
Gain	15.3 dBi	16.2 dBi	17.1 dBi	16.3 dBi	17.4 dBi	17.7 dBi					
Azimuth Beamwidth (-3dB)	65°	61°	62°	68°	64°	60°					
Elevation Beamwidth (-3dB)	10.1°	8.4°	5.6°	6.2°	5.0°	4.5°					
Electrical Downtilt	2° to 10°	2° to 10°	0° to 8°	0° to 8°	0° to 8°	0° to 8°					
Elevation Sidelobes (1st Upper)	< -17 dB	< -17 dB	< -19 dB	< -18 dB	< -18 dB	< -17 dB					
Front-to-Back Ratio @180°	> 29 dB	> 28 dB	> 35 dB	> 35 dB	> 35 dB	> 35 dB					
Front-to-Back Ratio over ± 20°	> 28 dB	> 27 dB	> 28 dB	> 27 dB	> 28 dB	> 28 dB					
Cross-Polar Discrimination (at Peak)	> 24 dB	> 20 dB	> 25 dB	> 25 dB	> 25 dB	> 25 dB					
Cross-Polar Discrimination (at ± 60°)	> 16 dB	> 14 dB	> 18 dB	> 18 dB	> 18 dB	> 18 dB					
Cross-Polar Port-to-Port Isolation	> 25 dB	> 25 dB	> 25 dB	> 25 dB	> 25 dB	> 25 dB					
VSWR	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1					
Passive Intermodulation (2x20W)	≤ -150dBc	≤ -150dBc	≤ -150dBc	≤ -150dBc	≤ -150dBc	≤ -150dBc					
Input Power	500 Watts CW	500 Watts CW	300 Watts CW	300 Watts CW	300 Watts CW	300 Watts CW					
Polarization	Dual Pol 45°	Dual Pol 45°	Dual Pol 45°	Dual Pol 45°	Dual Pol 45°	Dual Pol 45°					
Input Impedance	50 Ohms	50 Ohms	50 Ohms	50 Ohms	50 Ohms	50 Ohms					
Lightning Protection	DC Ground	DC Ground	DC Ground	DC Ground	DC Ground	DC Ground					

Mechanical Specifications

*Typical antenna patterns. For detail information on antenna pattern, please contact us at info@cciproducts.com. All specifications are subject to change without notice.

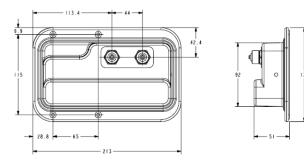
USA HQ: 89 Leuning Street, South Hackensack, NJ 07606 Telephone: 201-342-3338, Canada: 411 Legget Drive, Suite 104, Ottawa, ON, Canada K2K 3C9 Telephone: 613-591-6696

www.cciproducts.com

HEXPORT Multi-Band ANTENNA

Model HPA-65R-BUU-H8

Ordering Information:

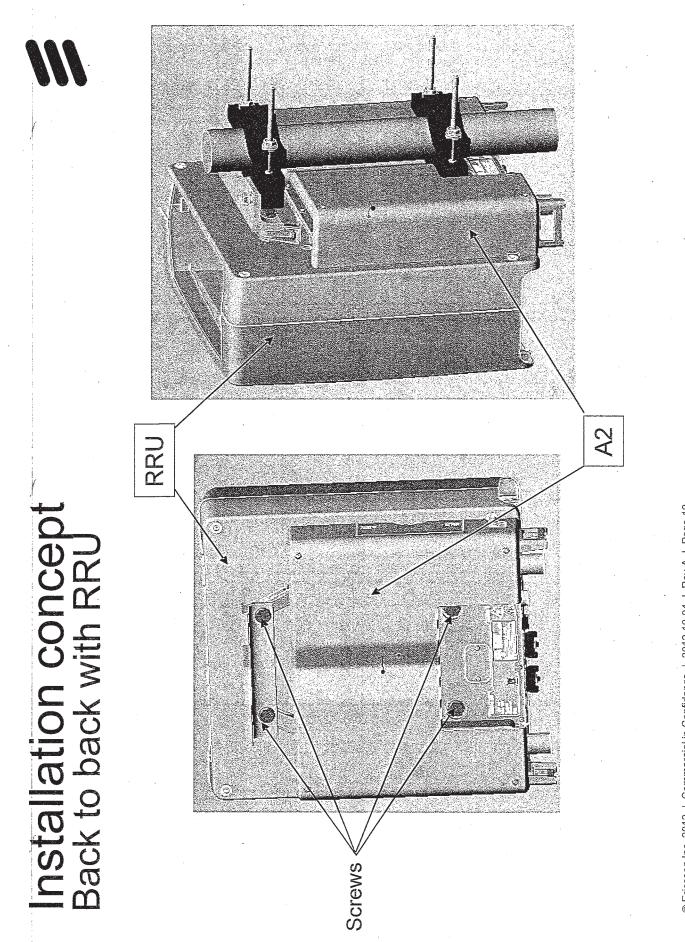

HPA-65R-BUU-H8	8 Foot Hexport Antenna with 65° Azimuth Beamwidth with Factory Installed Actuators (\3)	М03 Тор	a colored and ac
HPA-65R-BUU-H8-K	Complete Kit with Antenna, Factory Installed Actuators (3) and M03 Mounting Bracket	Mounting Bracket	Co a a
BSA-RET200	RET Actuator		
BSA-M03	Mounting Bracket (Top & Bottom) with 0° through 10° Mechanical tilt Adjustment	M03 Bottom Mounting Bracket	0 0 0 0 0 0 0 0 0

RET [Remote Electrical Tilt] System

General Specification	า	Electrical Specification	
Part Number	BSA-RET200	Interface Signal	Data dc
Protocols	AISG 2.0	Input Voltage Range	10-30 Vdc, Specifications at +24 VDC
Adjustment Cycles	>10,000 cycles	Current consumption during tilting	120mA at Vin = 24V
Tilt Accuracy	±0.1°	Current consumption idle	55mA at Vin=24V
Temperature Range	-40°C to +70°C	Hardware Interface	AISG - RS 485 A/B
		Input Connector	1x8-pin Daisy Chain In Male
		Output Connector	1x8-pin Daisy Chain Out Female

Mechanical Specification and Dimensions

Housing Material Dimensions (H x W x D) Weight ASA / ABS / Aluminum 8 x 5 x 2 inches (213 x 135 x 51 mm) 1.5 lbs (0.68 kg)


Standards Compliance

Safety	EN 60950-1, UL 60950-1
Emission	EN 55022
Immunity	EN 55024
Environmental	IEC 60068-2-1, IEC 60068-2-2, IEC 60068-2-5, IEC 60068-2-6, IEC 60068-2-11, IEC 60068-2-14, IEC 60068-2-27, IEC 60068-2-29, IEC 60068-2-30, IEC 60068-2-52, IEC 60068-2-64, GR-63-CORE 4.3.1, EN60529 IP24

Regulatory Certification

AISG, FCC Part 15 Class B, CE, CSA US

ts.com USA HQ: 89 Leuning Street, South Hackensack, NJ 07606 Telephone: 201-342-3338, Canada: 411 Legget Drive, Suite 104, Ottawa, ON, Canada K2K 3C9 Telephone: 613-591-6696

© Ericsson Inc. 2012 | Commercial in Confidence | 2012-10-04 | Rev A | Page 10

RRUS A2 Building practice

Ω

Ŵ

F		
	No solar shield	With solar shield
-	12.8" (325.5mm)	12.8" (325.5mm) 12.8" (325.5mm)
	14.7" (374mm)	15.0" (380mm)
က	3.2" (81mm)	3.5" (88mm)
		15 lbs

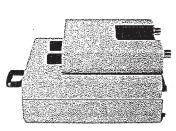
T

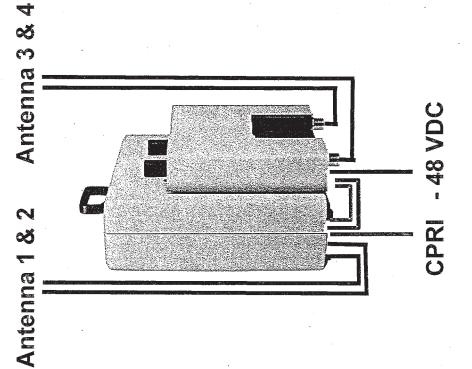
2116

Ber ew

250

SFP


- 2 x 7-16 Ant Connections
- RET Interface
 2 CPRI Interfaces -
- Power In / Out, to RRU

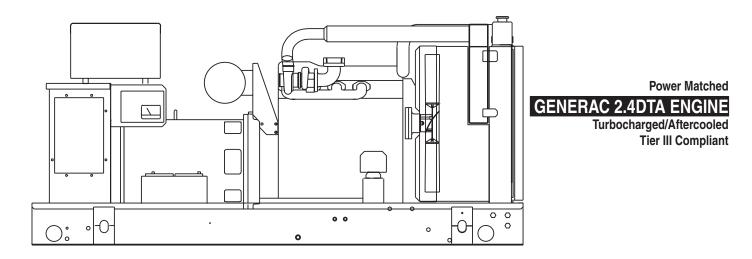

© Ericsson Inc. 2012 | Commercial in Confidence | 2012-10-04 | Rev A | Page 8

RRUS A2 Module

> RRUS A2 Module

- > 2 Rx expansion module for RRUS
 - > Works with RRUS 01, 11 and 12
- Eases deployment for 4Rx diversity

© Ericsson Inc. 2012 | Commercial in Confidence | 2012-10-04 | Rev A | Page 6


ATTACHMENT 4

SD050

Liquid Cooled Diesel Engine Generator Sets

Standby Power Rating 50KW 60 Hz / 50KVA 50 Hz

Prime Power Rating 44KW 60 Hz / 44KVA 50 Hz

FEATURES

■ INNOVATIVE DESIGN & PROTOTYPE TESTING are key components of GENERAC'S success in "IMPROVING POWER BY DESIGN." But it doesn't stop there. Total commitment to component testing, reliability testing, environmental testing, destruction and life testing, plus testing to applicable CSA, NEMA, EGSA, and other standards, allows you to choose GENERAC POWER SYSTEMS with the confidence that these systems will provide superior performance.

TEST CRITERIA:

- ✓ PROTOTYPE TESTED
- ✓ SYSTEM TORSIONAL TESTED
- ✓ ELECTRO-MAGNETIC INTERFERENCE
- ✓ NEMA MG1 EVALUATION
- ✓ MOTOR STARTING ABILITY
- ✓ SHORT CIRCUIT TESTING
- ✓ UL COMPLIANCE AVAILABLE
- SOLID-STATE, FREQUENCY COMPENSATED DIGITAL VOLTAGE REGULATION. This state-of-the-art power maximizing regulation system is standard on all Generac models. It provides

optimized FAST RESPONSE to changing load conditions and MAXIMUM MOTOR STARTING CAPABILITY by electronically torque-matching the surge loads to the engine.

- SINGLE SOURCE SERVICE RESPONSE from Generac's dealer network provides parts and service know-how for the entire unit, from the engine to the smallest electronic component. You are never on your own when you own a GENERAC POWER SYSTEM.
- ECONOMICAL DIESEL POWER. Low cost operation due to modern diesel engine technology. Better fuel utilization plus lower cost per gallon provide real savings.
- LONGER ENGINE LIFE. Generac heavy-duty diesels provide long and reliable operating life.
- GENERAC TRANSFER SWITCHES, SWITCHGEAR AND ACCESSORIES. Long life and reliability is synonymous with GENERAC POWER SYSTEMS. One reason for this confidence is that the GENERAC product line includes its own transfer systems, accessories, switchgear and controls for total system compatibility.

APPLICATION & ENGINEERING DATA

SD050

GENERATOR SPECIFICATIONS

TYPE	Four-pole, revolving field
ROTOR INSULATION	Class H
STATOR INSULATION	Class H
TOTAL HARMONIC DISTORTION	<3%
TELEPHONE INTERFERENCE FACTOR (TIL	F)<50
ALTERNATORSe	If-ventilated and drip-proof
BEARINGS (PRE-LUBED & SEALED)	
COUPLING	Direct, Flexible Disc
LOAD CAPACITY (STANDBY)	
LOAD CAPACITY (PRIME)	110%

NOTE: Emergency loading in compliance with NFPA 99, NFPA 110. Generator rating and performance in accordance with ISO8528-5, BS5514, SAE J1349, ISO3046 and DIN6271 standards.

VOLTAGE REGULATOR

TYPE	Full Digital
SENSING	
REGULATION	± 1/4%
FEATURES	Built into H-100 Control Panel, V/F Adjustable
	Adjustable Voltage and Gain

GENERATOR FEATURES

- Revolving field heavy duty generator
- Quiet drive coupling
- Operating temperature rise 120°C above a 40°C ambient
- Insulation is Class H rated at 150°C rise
- All prototype models have passed three phase short circuit testing

CONTROL PANEL FEATURES

■ TWO FOUR LINE LCD DISPLAYS READ:

- Voltage (all phases) • Current (all phases) • kW
- · Power factor
- kVAR
- Engine speed
- Run hours
- · Fault history
- Coolant temperature
- · Time and date · Low oil pressure shutdown · High coolant temp shutdown Overspeed

· ATS selection

• Transfer switch status

· Low fuel pressure

· Service reminders · Oil pressure

- Overvoltage
- · Low coolant level
- Low coolant level Exercise speed
- Not in auto position (flashing light)
- INTERNAL FUNCTIONS:
 - I²T function for alternator protection from line to neutral and line to line short circuits
 - · Emergency stop
 - · Programmable auto crank function
 - 2 wire start for any transfer switch
 - · Communicates with the Generac HTS transfer switch
 - Built-in 7 day exerciser
 - Adjustable engine speed at exerciser
 - RS232 port for GenLink[®] control
 - RS485 port remote communication
 - Canbus addressable
 - Governor controller and voltage regulator are built into the master • control board
 - Temperature range -40°C to 70°C

ENGINE SPECIFICATIONS

MAKE	GENERAC/DEERE
MODEL	4024HF285B
ENGINE FAMILY	8JDXL03.0113
CYLINDERS	4
DISPLACEMENT	2.4 Liter (149 cu.in.)
BORE	
STROKE	105 mm (4.1 in.)
COMPRESSION RATIO	
INTAKE AIR	Turbocharged/Aftercooled
NUMBER OF MAIN BEARINGS	5
CONNECTING RODS	4-Drop Forged Steel
CYLINDER HEAD	Cast Iron
PISTONS	4-Aluminum Alloy
CRANKSHAFT	Die Forged, Induction Hardened Steel

VALVE TRAIN

LIFTER TYPE	Solid
INTAKE VALVE MATERIAL	Heat Resistant Steel
EXHAUST VALVE MATERIAL	Heat Resistant Steel
HARDENED VALVE SEATS	Replaceable

ENGINE GOVERNOR

	Standard
FREQUENCY REGULATION, NO-LOAD TO FULL LOAD	Isochronous
STEADY STATE REGULATION	<u>+</u> 0.25%

LUBRICATION SYSTEM

TYPE OF OIL PUMP	Gear
OIL FILTER	Full flow, Cartridge
CRANKCASE CAPACITY	

COOLING SYSTEM

TYPE OF SYSTEM	Pressurized, Closed Recovery
WATER PUMP	Pre-Lubed, Self-Sealing
TYPE OF FAN	Pusher
NUMBER OF FAN BLADES	6
DIAMETER OF FAN	
COOLANT HEATER	

FUEL SYSTEM

FUEL	#2D Fuel (Min Cetane #40)
	(Fuel should conform to ASTM Spec.)
FUEL FILTER	
FUEL INJECTION PUMP	Bosch
FUEL PUMP	Mechanical
INJECTORS	Unit Type Multi-Hole, Nozzle
ENGINE TYPE	Pre-combustion
FUEL LINE (Supply)	6.35 mm (0.25 in.)
FUEL RETURN LINE	6.35 mm (0.25 in.)

ELECTRICAL SYSTEM

BATTERY CHARGE ALTERNATOR	20 Amps at 12 V
STARTER MOTOR	
RECOMMENDED BATTERY	12 Volt, 90 A.H., 27F
GROUND POLARITY	Negative

Rating definitions - Standby: Applicable for supplying emergency power for the duration of the utility power outage. No overload capability is available for this rating. (All ratings in accordance with BS5514, ISO3046 and DIN6271). Prime (Unlimited Running Time): Applicable for supplying electric power in lieu of commercially purchased power. Prime power is the maximum power available at variable load. A 10% overload capacity is available for 1 hour in 12 hours. (All ratings in accordance with BS5514, ISO3046, ISO8528 and DIN6271).

SD050

I

OPERATING DATA

	STAN		PRI	
	SDO		SD050	
GENERATOR OUTPUT VOLTAGE/KW-60Hz 120/240V, 1-phase, 1.0 pf 120/208V, 3-phase, 0.8 pf 120/240V, 3-phase, 0.8 pf 277/480V, 3-phase, 0.8 pf 600V, 3-phase, 0.8 pf	50 50 50 50 50	Rated AMP 208 173 150 75 60	44 44 44 44 44	<u>Rated AMP</u> 183 153 133 66 53
	50	00	44	55
GENERATOR OUTPUT VOLTAGE/KVA-50Hz 110/220V, 1-phase, 1.0 pf 115/200V, 3-phase, 0.8 pf 100/200V, 3-phase, 0.8 pf 231/400V, 3-phase, 0.8 pf Additional voltage	40 50 50 50	Rated AMP 182 144 144 72	35 44 44 44	Rated AMP 159 127 127 63
MOTOR STARTING KVA Maximum at 35% instantaneous voltage dip with standard alternator; 50/60 Hz	<u>208/240/416V</u> 82/100	480V 93/113	<u>208/240/416V</u> 82/100	480V 93/113
FUEL Fuel consumption—60 Hz Load gal./hr. liters/hr. gal./hr. Fuel consumption—50 Hz liters/hr. Fuel pump lift	25% 50% 1.12 2.19 4.25 8.3 0.9 1.75 3.4 6.64 44	75% 100% 3.21 4.16 12.13 15.76 2.56 3.33 9.71 12.61	25% 50% 0.99 1.93 3.74 7.3 0.79 1.54 2.99 5.84 40	75% 100% 2.82 3.66 10.68 13.87 2.26 2.93 8.54 11.1
$\begin{array}{c} \textbf{COOLING} \\ \hline \textbf{Coolant capacity} & System - US gal. (lit.) \\ & Engine - US gal. (lit.) \\ \hline \textbf{Coolant flow/min.} & 60 Hz - US gal. (lit.) \\ & 50 Hz - US gal. (lit.) \\ & 50 Hz - US gal. (lit.) \\ \hline \textbf{Heat rejection to coolant 60 Hz full load BTU/hr.} \\ \hline \textbf{Heat rejection to coolant 50 Hz full load BTU/hr.} \\ \hline \textbf{Inlet air} & 60 Hz - cfm (m^3/min.) \\ & 50 Hz - cfm (m^3/min.) \\ \hline \textbf{Max. air temperature to radiator} & ^{\circ}\text{C} (^{\circ}\text{F}) \\ \hline \textbf{Max. ambient temperature} & ^$	$\begin{array}{c} 4.5 \ (17.0) \\ 2.75 \ (10.4) \\ 28 \ (106) \\ 23 \ (87) \\ 135,900 \\ 115,500 \\ 7500 \ (212.4) \\ 6225 \ (176.3) \\ 60 \ (140) \\ 50 \ (122) \end{array}$		$\begin{array}{c} 4.5 \ (17.0) \\ 2.75 \ (10.4) \\ 28 \ (106) \\ 23 \ (87) \\ 109,000 \\ 92,600 \\ 7500 \ (212.4) \\ 6225 \ (176.3) \\ 60 \ (140) \\ 50 \ (122) \end{array}$	
COMBUSTION AIR REQUIREMENTS Flow at rated power 60 Hz - cfm (m³/min.) 50 Hz - cfm (m³/min.)		6 (4.7) 0 (4.0)	140 120	(4.0) (3.4)
EXHAUST Exhaust flow at rated output 60 Hz - cfm (m ³ /min.) 50 Hz - cfm (m ³ /min.) Max recommended back pressure Inches Hg Exhaust temperature 60 Hz (full load) °F (°C) Exhaust outlet size	448 (12.7) 380 (10.8) 2.2 1044 (562) 2.5" O.D. Turbo		380 (10.8) 320 (9.1) 2.2 925 (496) 2.5" O.D. Muffler	
ENGINE 60 Hz / 50 Hz Rated RPM 60 Hz / 50 Hz HP at rated KW 60 Hz / 50 Hz Piston speed 60 Hz - ft./min. (m/min.) 50 Hz - ft./min. (m/min.) 50 Hz - ft./min. (m/min.) BMEP 60 Hz / 50 Hz - psi	79 1536 1279	/ 1500 / 64 (1230) (1025) / 181	64 1536 1279	00 / 52 (1230) (1025) / 147
DERATION FACTORS Temperature 6.7% for every 10°C above - °C 4.0% for every 10°F above - °F Altitude 0.8% for every 100 m above - m 2.6% for every 1000 ft. above - ft.	1	25 77 067 500	7 10	5 7 67 00

STANDARD ENGINE & SAFETY FEATURES

- High Coolant Temperature Automatic Shutdown
- Low Coolant Level Automatic Shutdown
- Low Oil Pressure Automatic Shutdown
- Overspeed Automatic Shutdown (Solid-state)
- Crank Limiter (Solid-state)
- Oil Drain Extension
- Radiator Drain Extension
- Factory-Installed Cool Flow Radiator
- Closed Coolant Recovery System
- UV/Ozone Resistant Hoses
- Rubber-Booted Engine Electrical Connections
- Coolant Heater
- Secondary Fuel Filter

OPTIONS

OPTIONAL COOLING SYSTEM ACCESSORIES O 208/240V Coolant Heater

OPTIONAL FUEL ACCESSORIES

- O Flexible Fuel Lines
- O UL Listed Fuel Tanks
- O Base Tank Low Fuel Alarm
- O Primary Fuel Filters
- **OPTIONAL EXHAUST ACCESSORIES** O Critical Exhaust Silencer

OPTIONAL ELECTRICAL ACCESSORIES

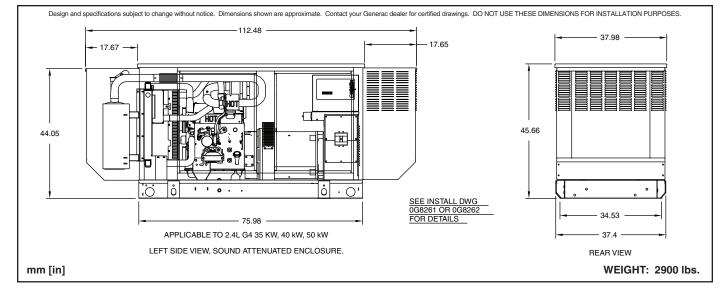
- O 2A Battery Charger
- O 10A Dual Rate Battery Charger
- O Battery, 12 Volt, 135 A.H.

OPTIONAL ALTERNATOR ACCESSORIES

- O Alternator Upsizing
- O Alternator Strip Heater
- O Alternator Tropicalization
- O Voltage Changeover Switch
- O Main Line Circuit Breaker

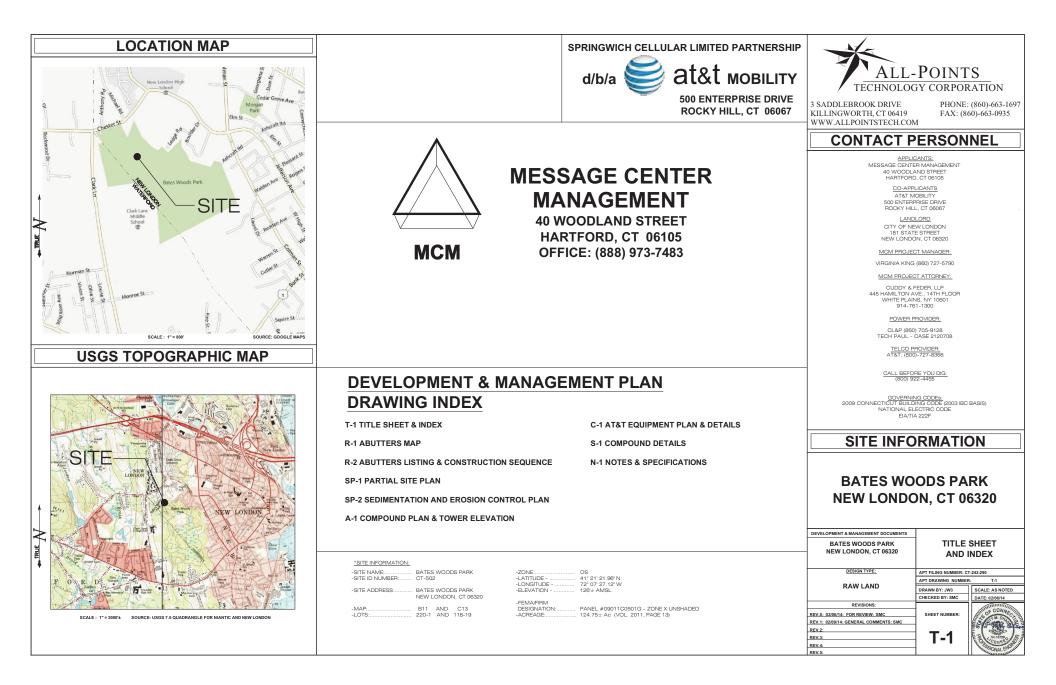
CONTROL CONSOLE OPTIONS

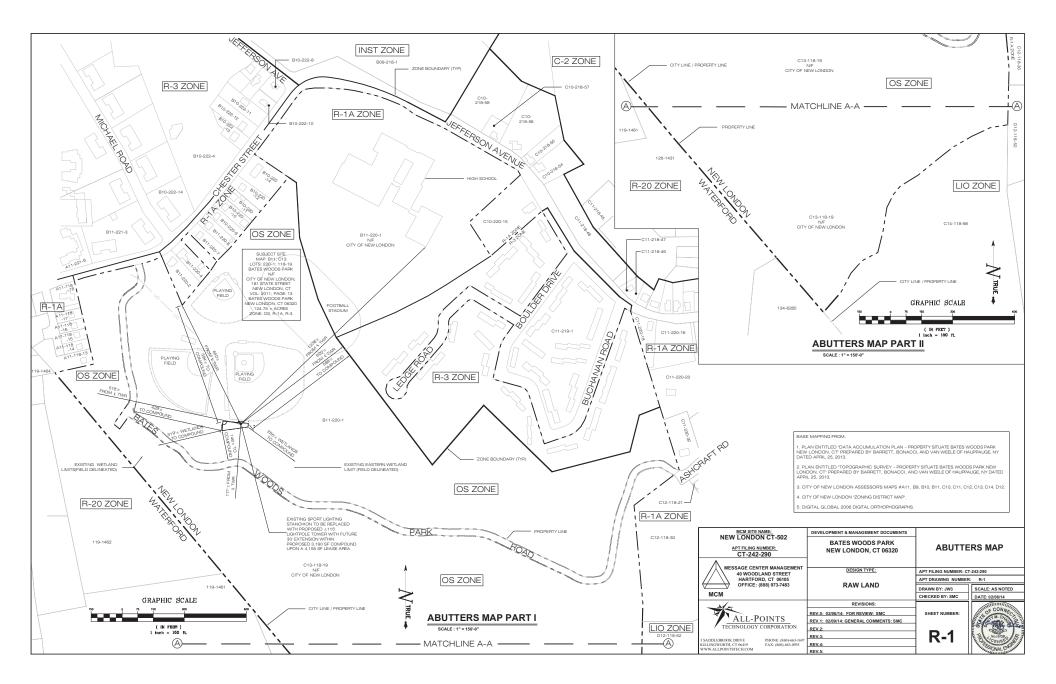
O Digital Controller H100 (Bulletin 0172110SBY)


- Fuel Lockoff Solenoid
- Stainless Steel Flexible Exhaust Connection
- Battery Charge Alternator
- Battery Cables
- Battery Tray
- Vibration Isolation of Unit to Mounting Base
- 12 Volt, Solenoid-activated Starter Motor Air Cleaner
- Fan Guard
- Control Console
- Radiator Duct Adaptor
- Ischronous Governor
- ADDITIONAL OPTIONAL EQUIPMENT
- O Remote Relay Panels

- O 5 Year Warranties
- O Export Boxing
- O GenLink® Communications Software

OPTIONAL ENCLOSURE


- O Weather Protective
- O Sound Attenuated
- O Aluminum and Stainless Steel
- O Enclosed Muffler


Distributed by:

GENERAC[®] POWER SYSTEMS, INC. • P.O. BOX 8 • WAUKESHA, WI 53187 262/544-4811 · FAX 262/544-4851

- - O Automatic Transfer Switch
 - O Unit Vibration Isolators
 - O Oil Make-Up System
 - O Oil Heater

WATERFORD ABUTTERS LIST (as of June 2013)

LOCATION

119-1461 ARCHAMBAULT LEO MARY P 119-1462 NEW LONDON CITY OF WATER DEPARTMENT 119-1464 WATERFORD TOWN OF 126-1431 WATERFORD TOWN OF CLARK LANE SCHOOL 134-6285 WATERFORD TOWN OF, FIRST SELECTMAN

OWNER

PARNO (MBL)

109-R CLARK LANE, WATERFORD CT 06385 131-R CLARK LANE, WATERFORD CT 06385 189-R CLARK LANE, WATERFORD CT 06385 105 CLARK LANE, WATERFORD, CT 06385 50 PINE STREET, WATERFORD, CT 06385 141 NOBLE HILL ROAD, OAKDALE, CT 06370 120 BROAD STREET, NEW LONDON, CT 06320 15 ROPE FERRY ROAD, WATERFORD, CT 06385 15 ROPE FERRY ROAD, WATERFORD, CT 06385 15 ROPE FERRY ROAD, WATERFORD, CT 06385

MAILING ADDRESS

CONSTRUCTION SEQUENCING

CONTRACTOR TO FOLLOW THE FOLLOWING CONSTRUCTION PHASING AS CLOSELY AS POSSIBLE 1 INSTALL NEW GATES

2. MOBILIZATION: BRING MATERIAL AND EQUIPMENT TO STE. ALL CONSTRUCTION TRAFFIC AND ACTIVITES MUST RESIDE INDER ACCESS PATH DELINEATED, WITHIN STAGING AND STOCKPIEL AREA, OR WITHIN AREA WHERE PROPOSED WORK IS BEING COMPLETED. THE CONTRACTOR IS TO POPTCET WITHIN ANDS FROM DISTURBANCE AT ALL TIMES AND NO CONSTRUCTION ACTIVITIES OR DUMPING SHALL OCCUR IN THE WITH ANDRO. WETLANDS

3. INSTALL TEMPORARY EROSION AND SEDIMENTATION CONTROL BARRIERS/MEASURES.

A DEMOVE TREES

5. CLEAR AND ROUGH GRADE ACCESS DRIVE/AREA AT THE PROPOSED EQUIPMENT COMPOUND. 6. DECOMMISSION EXISTING LIGHT STANTION, RETAIN EXISTING LIGHT SYSTEM - DEMOLISH, REMOVE EXISTING POLE FOUNDATION.

7. CONSTRUCT NEW UTILITY TRENCH & SET CONDUITS & BACKFILL.

8. CLEAR, GRUB & ROUGH GRADE COMPOUND AND EMBANKMENT AREA

9. STABILIZE EMBANKMENT & INSTALL MODIFIED RIPRAP ARMOUR

10. EXCAVATE FOR TOWER FOUNDATION AND EQUIPMENT SHELTER FOUNDATION.

11. FINALIZE ACCESS DRIVE/AREA GRADES AND INSTALL WEARING COURSE.

12. PREPARE SUBGRADE AND INSTALL FORMS, STEEL REINFORCING, AND CONCRETE FOR TOWER FOUNDATION AND EQUIPMENT SHELTER FOUNDATION.

13. INSTALL BURIED GROUND RINGS, GROUND RODS, GROUND LEADS, UTILITY CONDUITS, AND UTILITY

14. BACKFILL TOWER FOUNDATION AND EQUIPMENT SHELTER FOUNDATION.

15. ERECT LIGHT POLE TOWER.

16. INSTALL TELECOMMUNICATIONS EQUIPMENT ON TOWER AND IN COMPOUND.

17. REINSTALL LIGHTING RACK LIGHTS & ICE SHIELD AND RECONNECT TO EXISTING ELECTRICAL SERVICE

18. INSTALL COMPOUND GRAVEL SURFACES.

19. INSTALL FENCING.

20. CONNECT GROUNDING LEADS AND LIGHTENING PROTECTION.

21. FINAL GRADE AROUND COMPOUND.

22. INSTALL PROPOSED LANDSCAPING

23. LOAM AND SEED DISTURBED AREAS OUTSIDE COMPOUND, AS REQUIRED.

24. REMOVE SILT FENCING AFTER SEEDED AREAS HAVE ESTABLISHED VEGETATION.

25. FINAL CLEANUP AND EQUIPMENT TESTING.

THE ESTIMATED TIME FOR COMPLETION OF THE WORK IS APPROXIMATELY SIX (6) WEEKS. THE EXACT PROCESS MAY VARY DEPENDING ON THE CONTRACTORS AND SUBCONTRACTORS AVAILABILITY TO COMPLETE WORK AND WEATHER DELAYS.

MAP LOT	OWNER
A11 118-14	RIVARD STACEY BRYAN DOUGLAS + MICHELLE
	ROSARIO ZENAIDA
A11 118-16 A11 118-17	CAMPBELL TALIA BONDY SALLY
A11 118-18	SEQUIST DIANE
	FAIRE HARBOUR LANDINGS, LLC
B09 218-1	NEW LONDON CEMETERY ASSOC.
B10 220-9	BAHAMUNDI DIANA
B10 220-10	WILLOUGHBY THERESA SWIFT
	ALVARADO PAULINE & ISAIAS
B10 220-12	AQUINO EVELYN
B10 220-14	MARIANI BRENDA
B10 222-4	ST MARY NEW LONDON CEMETERY
B10 222-8	SANTANA KERRI L
B10 222-10	DAMATO LYNN L
B10 222-11	15 CHESTER LLC
B10 222-12 B10 222-13	SISK SHERRI ET AL
	PETERS DANIEL E JR EAGLE POINTE LLC
BIU 222-14	EAGLE POINTE LLC
B11 220-2	GRAVELL JAMES R
B11 220-4	SFERRAZZA PAULETTE A + DALEY ANTONELLE N+MATTHEW
B11 220-7	KYDD TIMOTHEA
B11 220-8	LINSKENS DONALD
B11 221-3	EAGLE POINTE LLC
C10 218-54	MARTELL KARRI L
C10 218-55	MERCADO JEANNE
C10 218-56	SAGLAM LORRAINE + BILGEHAN
	NYE DAWN M
C10 218-58	NYE DAWN M
C10 220-15	THE CONNECTION FUND INC
C11 218-45	ROGOVIN SAMUEL EST + BERMAN STANLEY TTE
C11 218-45 C11 218-46	ROGOVIN SAMUEL EST + BERMAN STANLET THE ROGOVIN SAMUEL EST + BERMAN STANLEY TTE
	ROGOVIN SAMUEL EST + BERMAN STANLET THE
C11 218-48	ROGOVIN SAMUEL EST + BERMAN STANLET THE
C11 219-1	NEW LONDON CITY OF- HSNG AUTHORITY
C11 220-16	SPEER SHERI A
C11 220-18	BANKS ROBERT L & LORRIE E
C11 220-20	SCARPA GARY J + ANN L
C11 220-32	MORALES NANCY
C12 118-21	MORTON MARY
C12 118-30	KUNAJUKR SUTIP
C14 118-68	TRADING COVE PARTNERS LLC
014 118-68	THADING ODVE PARTNERS LEG
D10 119 50	

NEW LONDON ABUTTERS LIST (as of June 2013)

LOCATION 14 DAVIS FARM WAY, NEW LONDON, CT 06320 12 DAVIS FARM WAY, NEW LONDON, CT 06320 10 DAVIS FARM WAY, NEW LONDON, CT 06320 8 DAVIS FARM WAY, NEW LONDON, CT 06320 6 DAVIS FARM WAY, NEW LONDON, CT 06320 118 CHESTER STREET, NEW LONDON, CT 06320 11 ANTHONY BOAD, NEW LONDON, CT 06320 BROAD STREET, NEW LONDON, CT 06320

JEFFERSON AVENUE, NEW LONDON, CT 06320 7 CHESTER STREET, NEW LONDON, CT 06320 11 CHESTER STREET, NEW LONDON, CT 06320 15 CHESTER STREET, NEW LONDON, CT 06320 17 CHESTER STREET, NEW LONDON, CT 06320 9 CHESTER STREET, NEW LONDON, CT 06320

MICHAEL ROAD, NEW LONDON, CT 06320 80 CHESTER STREET, NEW LONDON, CT 06320 76 CHESTER STREET, NEW LONDON, CT 06320 68 CHESTER STREET, NEW LONDON, CT 06320 62 CHESTER STREET, NEW LONDON, CT 06320

8 MICHAEL ROAD, NEW LONDON, CT 06320

449 JEFFERSON AVENUE, NEW LONDON, CT 06320 451 JEFFERSON AVENUE, NEW LONDON, CT 06320 463 JEFFERSON AVENUE, NEW LONDON, CT 06320 JEFFERSON AVENUE, NEW LONDON, CT 06320

354 COLMAN STREET, NEW LONDON, CT 06320 377 JEFFERSON AVENUE, NEW LONDON, CT 06320 387 JEFFERSON AVENUE, NEW LONDON, CT 06320 JEFFERSON AVENUE, NEW LONDON, CT 06320

5-114 BOLLIDER DRIVE NEWLONDON CT08320

D12 118-52 NEW LONDON CITY OF HOUSING AUTHORITY

58 CHESTER STREET, NEW LONDON, CT 06320 52 CHESTER STREET, NEW LONDON, CT 06320 48 CHESTER STREET, NEW LONDON, CT 06320 44 CHESTER STREET, NEW LONDON, CT 06320 36 CHESTER STREET, NEW LONDON, CT 06320

447 JEEEERSON AVENUE NEW LONDON CT 06320

432 JEFFERSON AVENUE, NEW LONDON, CT 06320

372 JEFEEBSON AVENUE NEW LONDON CT 06320 366 JEFFERSON AVENUE, NEW LONDON, CT 06320 356 JEFFERSON AVENUE REAR, NEW LONDON, CT 06320 187 ASHCRAFT ROAD, NEW LONDON, CT 06320

190 ASHCRAFT ROAD, NEW LONDON, CT 06320 70 FULLER STREET, NEW LONDON, CT 06320

ROSEWAY STREET, NEW LONDON, CT 06320

202 COLMAN STREET, NEW LONDON, CT 06320

14 DAVIS FARM WAY, NEW LONDON, CT 06320 12 DAVIS FARM WAY, NEW LONDON, CT 06320 10 DAVIS FARM WAY, NEW LONDON, CT 06320 8 DAVIS FARM WAY, NEW LONDON, CT 06320 6 DAVIS FARM WAY, NEW LONDON, CT 06320 118 CHESTER STREET, NEW LONDON, CT 06320

ONE MILL STREET, SUITE 200, NEWPORT, RI 02840

638 BROAD STREET, NEW LONDON, CT 06320

MAILING ADDRESS

58 CHESTER STREET, NEW LONDON, CT 06320 52 CHESTER STREET, NEW LONDON, CT 06320 48 CHESTER STREET, NEW LONDON, CT 06320 44 CHESTER STREET, NEW LONDON, CT 06320 36 CHESTER STREET, NEW LONDON, CT 06320

JEFFERSON AVENUE, NEW LONDON, CT 06320 7 CHESTER STREET, NEW LONDON, CT 06320 11 CHESTER STREET, NEW LONDON, CT 06320 7 BUCK HILL ROAD, CLD SAYBROOK, CT 06475 PO BOX 129 QUAKER HILL, CT 06375 3 CAMBRIDGE COURT E, OLD SAYBROOK, CT 06475 342 NO MAIN ST, STE 200, WEST HARFORD, CT 06117

80 CHESTER STREET, NEW LONDON, CT 06320 76 CHESTER STREET, NEW LONDON, CT 06320 24 ALELAIDE STREET, NEW LONDON, CT 06320 62 CHESTER STREET, NEW LONDON, CT 06320

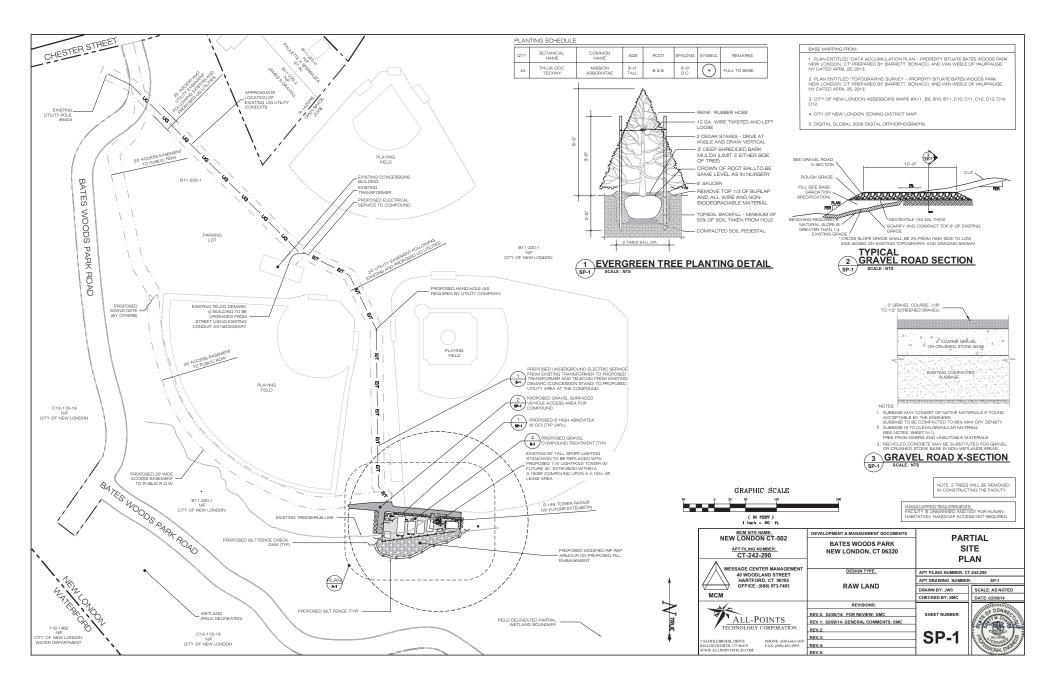
342 NO MAIN ST, STE 200, WEST HARFORD, CT 06117

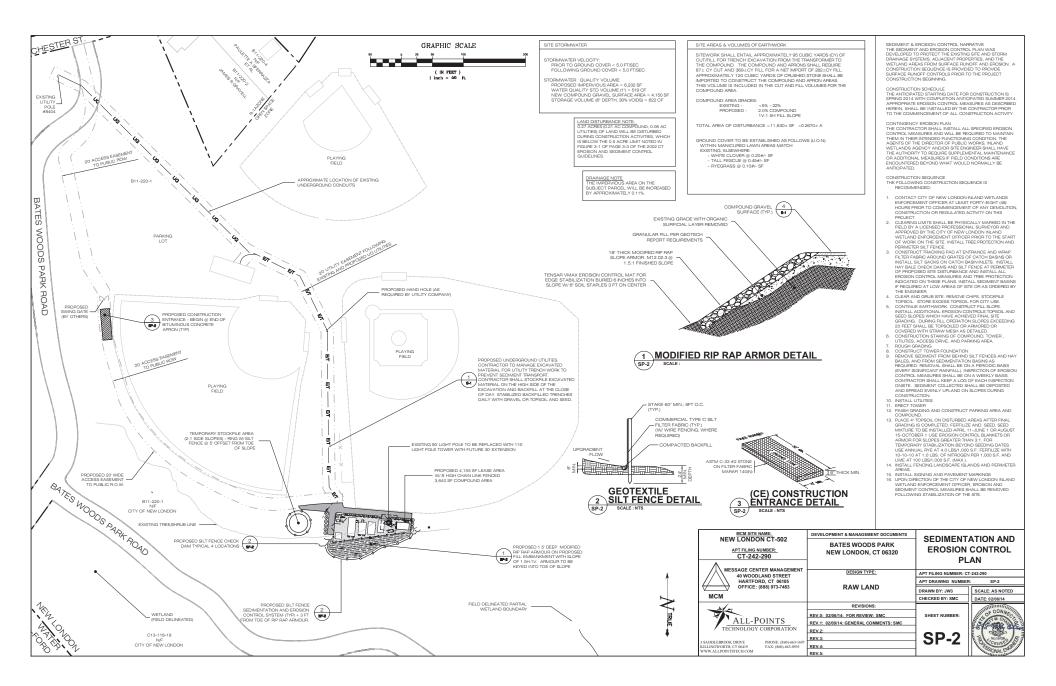
447 JEEEERSON AVENUE NEW LONDON CT 06320 449 JEFFERSON AVENUE, NEW LONDON, CT 06320 451 JEFFERSON AVENUE, NEW LONDON, CT 06320 115 FRANKLIN TPKE, #364, MAHWAH, NJ 07430-1325 115 FRANKLIN TPKE, #364, MAHWAH, NJ 07430-1325

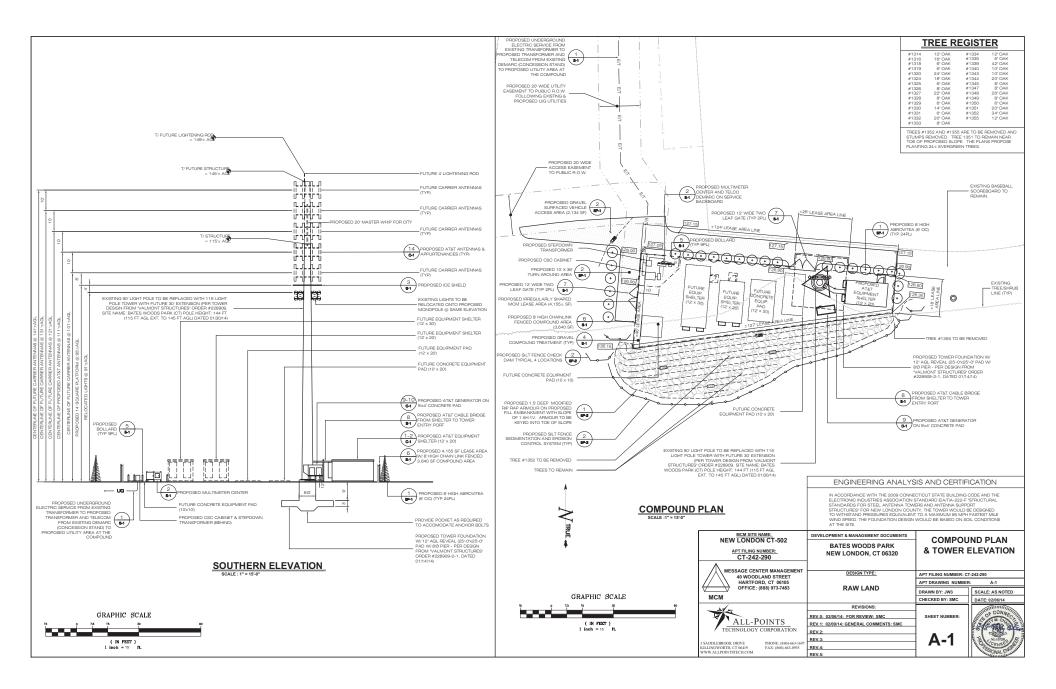
100 ROSCOMMON DRIVE STE 203, MIDDLETOWN, CT 06457

354 COLMAN STREET, NEW LONDON, CT 06320 354 COLMAN STREET, NEW LONDON, CT 06320 354 COLMAN STREET, NEW LONDON, CT 06320 354 COLMAN STREET, NEW LONDON, CT 06320

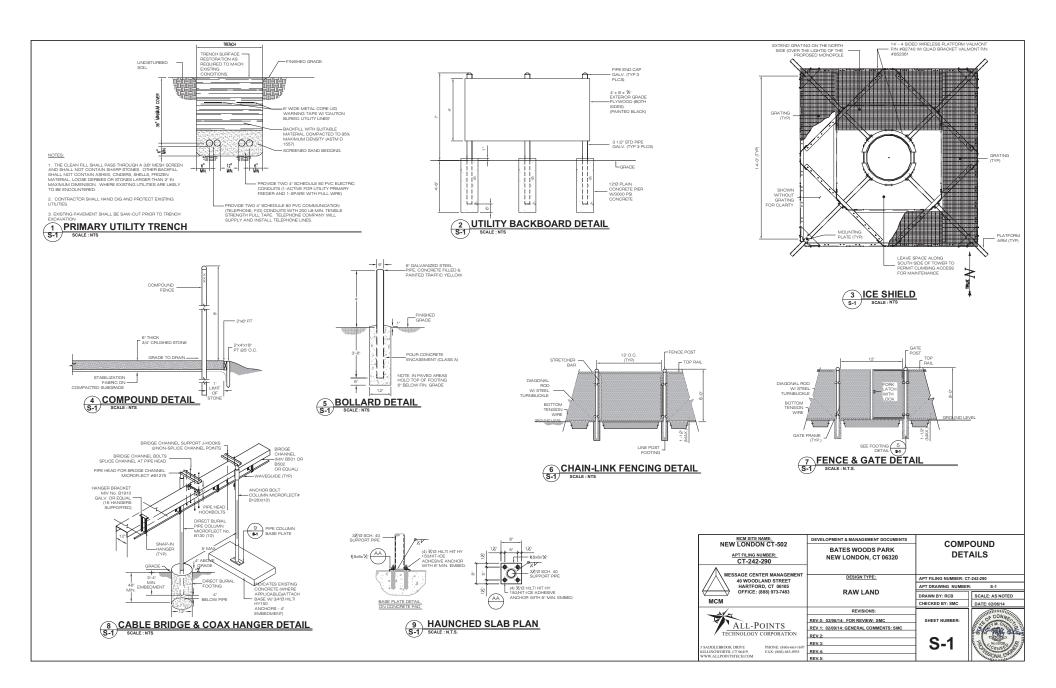
CONEW LONDON COMMUNITIES U.P. 200 PRATT STREET MERIDEN, CT 06450


151 TALMAN STREET NORWICH CT 06360 366 JEFFERSON AVENUE. NEW LONDON. CT 06320 340 COLMAN STREET, NEW LONDON, CT 06320 187 ASHCRAFT ROAD, NEW LONDON, CT 06320


190 ASHCRAFT ROAD, NEW LONDON, CT 06320 496 OCEAN AVENUE, NEW LONDON, CT 06320


120 TOLLAND ST STE 2, EAST HARTFORD, CT 06108


78 WALDEN AVENUE, NEW LONDON, CT 06320



GENERAL NOTES:

1. ALL MATERIALS AND METHODS OF CONSTRUCTION SHALL COMPLY WITH THE STANDARDS AND SPECIFICATIONS OF THE CITY OF NEW LONDON, AND OTHER GOVENIMENTAL AGENCIES, AS APPLICABLE.

THE CONTRACTOR SHALL BE RESPONSIBLE FOR SECURING ALL NECESSARY PERMITS BEFORE COMMENCING WORK. THE CONTRACTOR SHALL FOLLOW CONDITIONS OF ALL APPLICABLE PERMITS AND WORK IN ACCORD WITH OSHA REGULATIONS.

3. UTILITY INFORMATION SHOWN ON THE PLAN IS BASED ON VISIBLE FIELD EVIDENCE AND AVAILABLE RECORDS. THE CONTRACTOR SHALL FIELD VERY THE LOCATION OF ALL UTILITIES PROR TO COMMENDING WORK. THE CONTRACTOR IS AUSSED THAT THESE DETERMINE THE EXACT ACQUARTELY DEPOLY AS BUILT LOCATIONS MOL OTHER UNIVOUS TRIFUCTURES. THE CONTRACTOR SHALL THERPORE DETERMINE THE EXACT LOCATION OF EXISTING UNDERGROUND ELEMENTS AND EXCAVITE WITH CARE AFTER CALLING MARKNOT SERVICE AT 1-80-02-24465 (2) HOURS BEFORE DIGINAL, DRILLING BLASTING, CARE SHALL BET ARKIN NOT TO DISTURE DESTING UTILES AND SERVICE CONNECTIONS (OR HOURS BEFORE DIGINAL DRILLING BLASTING, CARE SHALL BET ARKIN NOT TO DISTURE DESTING UTILES AND SERVICE CONNECTIONS (OR HOURS BEFORE DIGINAL DRILLING BLASTING, CARE SHALL BET ARKIN NOT TO DISTURE DESTING UTILES AND SERVICE CONNECTIONS (OR HOURS BEFORE DISTURG UND SERVICE SHALL BET ARKIN NOT TO DISTURE DESTING UTILES AND SERVICE CONNECTIONS (OR HOURS BEFORE DISTURG UND SERVICE CONNECTIONS (OR HOURS BEFORE DISTURGUES AND DESCRIPTION OF TO DISTURE DESTING UTILES AND SERVICE CONNECTIONS (OR HOURS BEFORE DISTURGUES AND DESCRIPTION OF TO DISTURE DESTING UTILES AND SERVICE CONNECTIONS (OR HOURS BEFORE DISTURGUES AND DESCRIPTION OF TO DISTURE DESTING UTILES AND SERVICE CONNECTIONS (OR HOURS BEFORE DISTURGUES AND DESCRIPTION OF TO DISTURE DESTING UTILES AND SERVICE CONNECTIONS (OR HOURS BEFORE DISTURGUES AND DESCRIPTION OF TO DISTURE DESTING UTILES AND SERVICE CONNECTIONS (OR HOURS BEFORE DISTURGUES AND DESCRIPTION OF TO DISTURE DESTING UTILES AND DESTING PORTIONS THERE OF) TO REMAIN. CONTRACTOR IS RESPONSIBLE FOR REPAIRING OR REPLACING STRUCTURES OR UTILITIES DAMAGED BY HIS OPERATIONS.

4. THE CONTRACTOR IS RESPONSIBLE FOR THE INSTALLATION OF NEW SERVICE CONNECTIONS AND SHALL COORDINATE WORK WITH THE APPROPRIATE UTILITY COMPANY.

5. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, FIBER OPTIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY THE ENGINEER

8. EXTREME CAUTION SHOLLD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR PER DRILLING ARQUIND OR NEAR ITUITIES. CONTRACTOR SHULL PROVIDE SHERTY TRAINING FOR THE WORKING OREW. THIS WILL INCLUDE, BUT NOT BE LAWTED TO: A FALL PROTECTION. OF LECTIFICAL SHERTY, AND

D) TRENCHING & EXCAVATION.

ELECTRIC SERVICE SHALL BE COORDINATED WITH CONNECTICUT LIGHT & POWER (CL & P).

8. ALL ELEVATIONS SHOWN ARE IN N.G.V. DATUM 1929.

9. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES, AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF UEG

10. CONTRACTOR SHALL PROTECT EXISTING PAVED AND GRAVEL SURFACES, CURBS, LANDSCAPE AND STRUCTURES AND RESTORE SITE TO PRECONSTRUCTION CONDITION WITH AS GOOD, OR BETTER, MATERIALS. NEW MATERIALS SHALL MATCH EXISTING THICKNESS AND TYPE.

11. THE CONTRACTOR SHALL SHORE ALL TRENCH EXCAVATION GREATER THAN 5 FEET IN DEPTH OR LESS WHERE SOIL CONDITIONS ARE DEEMED UNSTABLE. ALL SHEETING AND/OR SHORING METHODS SHALL BE DESIGNED BY A PROFESSIONAL ENGINEER.

12. THE CONTRACTOR IS RESPONSIBLE FOR MANAGING GROUNDWATER LEVELS IN THE VICINITY OF EXCAVATIONS TO PROTECT ADJAC PROPERTIES AND NEW WORK. GROUNDWATER SHALL BE DRAINED IN ACCORDANCE WITH LOCAL SEDIMENTATION & EROSION CONTROL GUIDELINES.

13. EXCAVATOR: CONTRACTOR SWALL GRADE ONLY AREAS SHOWN TO BE MODIFIED HEREIN AND ONLY TO THE EXTENT REQUIRED TO SHED OVERLAND WATER FLOW AWAY FROM STE. ALL SLOPES SHALL NOT BE STEEPER THAN 3.1 (HORZ-VERT).

REDROCK SURGRADE SHOULD NOT BE STEEPED THAN 4H-1V, HIGH SPOTS IN BEDROCK SURGRADES MAY NEED TO BE REMOVED AND LO REQUIRE PROOF POLICY IN THE AND CONCRETE OF MINUS
 CRUSHED STONE TO PROVIDE A LEVEL SURFACE. BEDROCK SUBGRADES DO NOT
 REQUIRE PROOF POLICY

SEDIMENTATION AND EDOSION CONTROLS SHOWN AND SPECIFIED SHALL BE ESTABLISHED BEFORE STRIPPING EVISTING VEGETATION ORGANIC MATERIAL AND DEBRIS SHALL BE STRIPPED AND STOCKPILED BEFORE ADDING FILL MATERIAL.

NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

ALL FILL SHALL BE PLACED IN EIGHT INCH LIFTS AND COMPACTED IN PLACE. STRUCTURAL FILL SHALL BE COMPACTED TO 95% MAXIMUM MODIFIED REPORTAD DRV DENSITY TESTED IN ACCORDANCE WITH ASTM D1557, METHOD C

EXCAVATIONS FOR FOOTINGS SHALL BE CUT LEVEL TO THE REQUIRED DEPTH AND TO UNDISTURBED SOIL. REPORT UNSUITABLE SOIL CONDITIONS TO THE ENGINEER.

STRUCTURAL FILL BE TESTED FOR MOISTURE CONTENT AND COMPACTION DURING PLACEMENT. SHOULD THE RESULTS OF THE IN-PLACE DENSITY TESTS INDICATE THE SPECIFIED MOISTURE OR COMPACTION LIMITS HAVE NOT BEEN MET, THE AREA REPRESENTED BY THE SHOLD BE REVORKED AND RETISTED, AS REQUIRED, UNIT. THE SPECIFIED MOISTURE AND COMPACTION REQUIREMENTS ARE AD(FED

EQUIPMENT CABINETS MAY BE SUPPORTED ON SLABS-ON-GRADE UNDERLAIN BY AT LEAST A 12-INCH THICKNESS OF COMPACTE STRUCTURAL FILL OR MINUS ∛HOCH CRUSHED STONE PLACED ON THE EXISTING FILL, THE SURFACE OF WHICH SHOULD BE THOROUGHLY COMPACTED AND CLEAR OF ORGANIC MATTER.

THE AREA LINDERLYING THE SLARS SHOULD BE ROUGH GRADED AND THEN THOROUGHLY PROOFROLLED WITH A VIBRATORY ROLLER OR HEAVY PLATE COMPACTOR PRIOR TO FINAL GRADING AND PLACEMENT OF STRUCTURAL FILL OR MINUS 2-INCH CRUSHED STONE

A SOIL UNIT WEIGHT OF 100 LBS PER CUBIC FOOT (PCF) SHOULD BE USED FOR ENGINEERED FILL OVERLYING THE FOOTINGS.

TRENCH EXCAVATIONS SHALL BE BACKFILLED AT THE END OF EACH DAY.

SURPLUS MATERIAL SHALL BE REMOVED FROM THE SITE.

TOWER FOUNDATION EXCAVATION, BACKFILL AND COMPACTION SHALL BE IN ACCORD WITH TOWER MANUFACTURERS DESIGNS AND SPECIFICATIONS

14. MATERIALS NATIVE GRAVEL MATERIAL MAY BE USED FOR TRENCH BACKFILL WHERE SELECT MATERIAL IS NOT SPECIFIED. GRAVEL MATERIAL FOR CONDUIT TRENCH BACKFILL SHALL NOT CONTAIN ROCK GREATER THAN 2 INCHES IN DIAMETER.

BANK OR CRUSHED GRAVEL SHALL CONSIST OF TOUGH, DURABLE PARTICLES OF CRUSHED OR UNCRUSHED GRAVEL FREE OF SOFT, THIN, ELONGATED OR LAMINATED PIECES AND MEET THE GRADATION.

FILL SHOULD MEET THE FOLLOWING MATERIAL

PROPERTY REQUIREMENTS

FILL TYPE (1) USCS CLASSIFICATION ACCEPTABLE LOCATION FOR PLACEMENT GW (2) STRUCTURAL FILL ALL LOCATIONS AND ELEVATIONS. THE NATIVE SOILS ARE SUITABLE FOR SELECTIVE ALL LOCALIDING STRAUDI ELE WILL PROVIDED THE PORTIONS SUBJECTIVE RE-USE AS STRAUDICALE FILL PROVIDED THE PORTIONS USED CLOSELY MEET THE GRADATION REQUIREMENTS IN NOTE 2, BELOW. TOPSOL SHOULD NOT BE RE-USED AS STRUCTURAL FILL COMMON FILL COMMON FILL MAY BE USED FOR SITE GRADING TO WITHIN 12 INCHES OF FINISHED GRADE. COMMON FILL SHOULD NOT BE USED UNDER SETTLEMENT SENSITIVE STRUCTURES. THE NATIVE SOL MAY BE RE-USED AS COMMON FILL, PROVIDE FREE OF ORGANICS AND CAN BE ADEQUATELY COMPACTED.

COMPACTED FILL SHOULD CONSIST OF APPR MATERIALS THAT ARE FREE OF ORGANIC MATTER AND DEBRIS. FROZEN MATERIAL SHOULD NOT BE USED. FILL SHOULD NOT BE PLACED ON A FROZEN SUBGRADE

2. IMPORTED STRUCTURAL FILL SHOULD MEET THE FOLLOWING GRADATION

PERCENT	PASSING	BY WEIGHT	
---------	---------	-----------	--

SIEVE SIZE STRUCTURAL FILL 100 70-100 (100)

30 NO. 4 NO. 10 NO. 40 NO. 200

(IMUM 2-INCH PARTICLE SIZE WITHIN 12 INCHES OF THE UNDERSIDE OF CONCRETE ELEMENTS

3. COMMON FILL SHOULD HAVE A MAXIMUM PARTICLE SIZE OF 6 INCHES AND NO MORE THAN 25 PERCENT BY WEIGHT PASSING THE US NO. 200 SIEVE.

SEDIMENTATION/EROSION

1. THE CONTRACTOR SHALL MINIMIZE DISTURBANCE TO THE EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES SHALL BE IN CONFORMANCE WITH THE 2002 CONVECTICUT GUIDLINES FOR SOL EROSION AND SEDIMENT CONTROL.

CONTRACTOR SHALL PERFORM CONSTRUCTION SEQUENCING SUCH THAT E. DOWNERG DATE PROFESSION OF A MINIMUM OF TIME BECKET SOUTH THEY ARE COVERED, SEEDED, OR OTHERWISE STABILIZED TO PREVENT EROSION. THE FOLLOWING GENERAL CONDITIONS SHALL BE OBSERVED:

A. LIMITS OF CLEARING AND GRUBBING SHALL BE CLEARLY MARKED BEFORE COMMENCING WITH SUCH WOR

B. EXISTING VEGETATION TO REMAIN SHALL BE PROTECTED AND REMAIN UNDISTURBED.

C. CLEARING AND GRADING SHALL BE SCHEDULED SO AS TO MINIMIZE THE SIZE EXPOSED AREAS AND THE LENGTH OF TIME THAT AREAS ARE EXPOSED. OF EVE

D. TOPSOIL SHALL BE SPREAD TO FINISH GRADES AND SEEDED AS SOON AS SHIFT GRADES ARE ESTABLISHED. STRAW MULCH, JUTE NETTING OR MATS SHALL FINISHED GRADES ARE ESTABLISHED. STRAV BE USED WHERE THE NEW SEED IS PLACED.

- E. THE LENGTH AND STEEPNESS OF CLEARED SLOPES SHALL BE MINIMIZED TO REDUCE RUNOFF VELOCITIES.
- F. RUNOFF SHALL BE DIVERTED AWAY FROM CLEARED SLOPES.
- G ALL SEDIMENT SHALL BE TRAPPED ON THE SITE

SEDIMENTATION AND EROSION CONTROL SEC) MEASURES SHOWN SHALL BE INSTALLED PRIOR TO LAND CLEARING, EXCAVATION OR GRADING OPERATIONS. REQUIREMENTS SPECIFIED SHALL BE MET PRIOR TO COMMENCING EARTHWORK OPERATIONS.

4. IT IS THE CONTRACTOR'S RESPONSIBILITY TO MAINTAIN SEC MEASURES THROUGHOUT DURATION OF PROJECT UNTIL DISTURBED LAND IS THOROUGHLY VEGETATED

FAILURE OF THE SEC SYSTEMS SHALL BE CORRECTED IMMEDIATELY AND PPLEMENTED WITH ADDITIONAL MEASURES AS NEEDED.

EGETATIVE SEEDING: UON, AREA TO BE SEEDED SHALL BE LOOSE AND FR IABLE DEPTH OF 3". TOPSOIL SHALL BE LOOSENED BY RAKING OR DISKING BEFORE DING. APPLY 50 Lbs. OF DOLOMITIC LIMESTONE AND 25 Lbs. OF 10-10-10 COMMON BERMUDA AND RYE GRASS AT 50 Lbs/ACRE. USE CYCLONE SEED CULTIPACKER SEEDER OR HYDROSEEDER (SEED & FERTILIZER SLURRY) FOR STEE SLOPES. IRRIGATE UNTIL VEGETATION IS COMPLETELY ESTABLISHED.

PRIOR TO STARTING ANY OTHER WORK ON THE SITE, THE CONTRACTOR SHALL NOTIFY APPROPRIATE AGENCIES AND SHALL INSTALL EROSION CONTROL MEASURES AS SHOWN ON THE PLANS AND AS IDENTIFIED IN FEDERAL, STATE, AND LOCAL APPROVAL DOCUMENTS PERTAINING TO THIS PROJECT.

8. INSPECT AND MAINTAIN EROSION CONTROL MEASURES, AND REMOVE SEDIMENT THEREFROM ON A WEEKLY BASIS AND WITHIN TWELVE HOURS AFTER EACH STORM EVENT AND DISPOSE OF SEDIMENTS IN AN UPLAND AREA SUCH THAT THEY DO NOT ENCUMBER OTHER DRAINAGE STRUCTURES AND PROTECTED AREAS.

CONTRACTOR SHALL BE FULLY RESPONSIBLE TO CONTROL CONSTRUCTION WETHER SUCH SEDIMENTATION IS CAUSED BY WATER, WIND, OR DIRECT DEPOS

10. UPON COMPLETION OF CONSTRUCTION AND ESTABLISHMENT OF PERMANENT GROUND COVER, CONTRACTOR SHALL REMOVE AND DISPOSE OF ERCISION CONTR MEASURES AND CLEAN SEDIMENT AND DEBRIS FROM ENTIRE DRAINAGE SYSTEMS LOCATED ON SITE TROL

11 APPROPRIATE MEANS SHALL BE USED TO CONTROL DUST DURING CONSTRUCTION

12. A STABILIZED CONSTRUCTION ENTRANCE SHALL BE MAINTAINED TO PREVENT SOL AND LOOSE DEBRS FORM BEING TRACKED ONTO LOCAL ROADS. THE CONSTRUCTION ENTRANCE SHALL BE MAINTAINED UNTL THE SITE IS PERMANENTLY STABILIZED.

HALL MINIMIZE DISTURBANCE TO EXISTING SITE D CONSTRUCTION EROSON CONTROL MEASURES DIALLE DIVIDUALE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSON CONTROL MEASURES SHALL BE IN CONFORMACE WITH STATE OF CONNECTICUT GUIDELINES FOR EROSION AND SEDIMENT CONTROL, AS AMENDED. ACE WITH THE

14. TEMPORARY SILT FENCE EROSION CONTROL BARRIER SHALL BE MAINTAINED THE LEWINDARY SULT PERCE POSICIAL CONTINUE BARMELE ANALLE DE WARMEN ANALLE DE

15. ALL DISTURBED AREAS OUTSIDE THE LIMITS OF THE EQUIPMENT LEASE AREA SHALL BE PERMANENTLY ESTABLISHED WITH A VEGETATIVE GROUND COVER.

16. STILLING BASIN SHALL BE UTILIZED FOR ANY DE-WATERING DISCHARGE WHICH MAY OCCUR DURING CONSTRUCTION OPERATIONS.

17. PROPOSED CONSTRUCTION IMPACTS AND PERMANENT IMPROVEMENTS SHALL NOT SIGNIFICANTLY IMPACT STORM WATER PUNOFF PATTERNS, VOLLIME OR PEAK FLOW PATES. THE FLAT GRADE OF THE EQUIPMENT COMPOUND AND STONE SUPFACE WILL PROMOTE STORM WATER INSLITUATION.

18. CONTRACTOR SHALL INSTALL ALL EROSION AND SEDIMENTATION CONTROL VIEASURES PRIOR TO ANY GRADING ACTIVITIES IN LOCATIONS SHOWN ON THESE

19. SILT FENCES SHALL BE INSPECTED IMMEDIATELY AFTER EACH RAINFALL AND AT LEAST DAILY DURING PROLONGED RAINFALL. ANY REPAIRS THAT ARE REQUIRED SHALL BE MADE IMMEDIATELY.

20. IF THE FABRIC ON A SILT FENCE SHOULD DECOMPOSE OR BECOME INEFFECTIVE DURING THE EXPECTED LIFE OF THE FENCE, THE FABRIC SHALL BE REPLACED PROMPTLY.

SHOULD BE REMOVED WHEN THEY REACH APPROXIMATELY ONE-HALF THE HEIGHT OF THE BARRIER.

22. SEDIMENT DEPOSITS THAT ARE REMOVED OR LEFT IN PLACE AFTER THE FABRIC HAS BEEN REMOVED SHALL BE GRADED TO CONFORM WITH THE EXISTING TOPOGRAPHY AND VGGETATION.

IAN 80.000 SQUARE FEET OF LAND SHALL BE EXPOSED AT ANY ONE TIME DURING DEVELOPMENT, WHEN LAND IS EXPOSED DURING DEVELOPMENT, TI SHOULD BE KEPT TO THE SHORTEST PRACTICAL PERIOD OF TIME AND SHAULD DAYS, LAND SHOULD NOT BE LEFT EXPOSED DURING THE WINTER MONTHS. ALL NOT EXCEED 10

24. ANY DISTURBED AREAS WHICH ARE TO BE LEFT TEMPORARILY, AND WHICH WILL BE REGRADED LATER DURING CONSTRUCTION SHALL BE MACHINE HAY MULCHED AND SEEDE WITH RYE GARSS TO PREVINT FROGON I HAY OR STRAW MULCH SHALL BE APRLED TO ALL FRESHLY SEEDED AREAS AT A RATE OF 2 TONS PER ACRES, BALES SHALL BE UNFOLLED, AIR-DIRED, MAR DHEE FROM WEGS SEEDS, AND ANY COARSE MATERIAL

SITE NOTES STRUCTURAL NOTES & SPECIFICATIONS

STEEL

- CONTRACTORS SHALL VERIFY ALL DIMENSIONS AND CONDITIONS CONTRACTORS GRADE VEHICLE CONTRACTOR AND ERECTION OF ANY MATERIAL. THE ENGINEER SHALL BE NOTIFIED OF ANY CONDITIONS WHICH PRECLUBE COMPLETION OF THE WORK IN ACCORDANCE WHICH PRECLUDE COMPLETION OF WITH THE CONTRACT DOCUMENTS.
- DESIGN AND CONSTRUCTION OF STRUCTURAL STEEL SHALL CONFORM TO LATEST EDITION OF THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION SPECIFICATION FOR THE DESIGN FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BULDINGS
- STRUCTURAL AND MISCELLANEOUS STEEL SHALL CONFORM TO ASTM A992 (FY-50 KSI), UNLESS OTHERWISE NOTED.
- STEEL PIPE SHALL CONFORM TO ASTM A500, GRADE B, STEEL PIPE DIAMETERS NOTED ON THE DRAWINGS ARE NOMINAL.
- STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM AS25. ALL BOLTS SHALL B'AI' DIAMETER MINIMUM AND SHALL HAVE MINIMUM OF TWO BOLTS, UNLESS NOTED OTHERWISE ON THE DRAWINGS. LOCK WASHER ARE NOT PERMITTED FOR A325 STELL ASSEMBLIES.
- NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE 5/8° DIAMETER GALVANIZED ASTM A 307 BOLTS UNLESS OTHERWISE NOTED.
- ALL STEEL MATERIAL EXPOSED TO WEATHER SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 'ZINC (HOT-DIPPED GALVANIZED) COATINGS' ON IRON AND STEEL PRODUCTS
- 8. ALL BOLTS ANCHORS AND MISCELLANEOUS HARDWARE EXPOSED TO WEATHER SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 'ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE.'
- 9 DAMAGED GAI VANIZED SUBFACES SHALL BE BEPAIRED BY UP ALL DAMAGED GALVANIZED SUPPACES SHALL BE REPARED BY OP DAMAGED GALVANIZED STEEL WITH COLD ZINC, 'GALVANOX', GALV', 'ZINC IT', OR APPROVED EQUIVALENT, IN ACCORDANCE WITH MANUFACTURERS GUIDELINES, TOUCH UP DAMAGED NO GALVANIZED STEEL WITH SAME PAINT APPLIED IN SHOP OR FIELD
- 10 CONTRACTOR SHALL COMPLY WITH AWS CODE FOR PROCEDURES. APPEARANCE AND QUALITY OF WELDS, AND WELDING PROCESSES SHALL BE QUALIFIED IN ACCORDANCE WITH AWS 'STANDARD QUALIFICATION PROCEDURES * ALL WEI DING SHALL BE DONE USING E70XX ELECTRODES AND WELDING SHALL CONF AISC AND D1.1. WHERE FILLET WELD SIZES ARE NOT SHOWN PROVIDE THE MINIMUM SIZE PER TABLE J2.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION' 9TH EDITION. AT THE COMPLETION OF WELDING, ALL DAMAGE TO GALVANIZED COATING SHALL BE REPAIRED, SEE NOTE 9.
- THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY 11 ABRICATED. DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
- APPLY A QUALITY CONCRETE SEALER SUCH AS THEROSEAL TO 12. EXPOSED CONCRETE IN ACCORDANCE WITH MANUFACTURERS APPLICATIONS DIRECTIONS.

1. ALL DIMENSIONS, ELEVATIONS AND EXISTING CONDITIONS SHOWN ON THE DRAWINGS SHALL BE VERFIED BY THE CONTRACTOR AND THE TISTING AGENCY PROR TO BEDINNING ANY MATERIAL OPDERING, FABRICATION OR CONSTRUCTION MORK ON THE BRACET ANY DISCRETARIES SHALL BE MAKEDIATE. Y BOOLGHT TO THE ATTENTON STO PROCEED WITH THE WORK THE CONTRACT DOLUMENTS DO NOT INDICATE THE METHOD OF CONSTRUCTIONS IS TO PROCEED WITH THE WORK THE CONTRACT DOLUMENTS DO NOT INDICATE THE METHOD OF CONSTRUCTIONS IS TO PROCEED WITH THE WORK THE CONTRACT DOLUMENTS DO NOT INDICATE THE METHOD OF CONSTRUCTORS. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLELY RESPONSELE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNOLISS, SEQLENCES AND PROCEDURES. OSERIA/IDON WITS TO THE STO THE CONTRACTOR DATE MALA DIRECT HER SHALL DOT INCLUDE INSERCION OF THE PROTECTIVE MELAJURES OF THE WITH CONTRACTOR MEANS. METHODS. TECHNOLISS, SEQLENCES AND PROCEDURES. OSERIA/IDON WITS TO THE STO WITH CONTRACTOR MEANS. METHODS. TECHNOLISS, SEQLENCES AND PROCEDURES. OSERIA/IDON WITS TO THE STO WITH CONTRACTOR MEANS. MELABURE SHALL DIFFECTIVE DURG IN THE PROTECTIVE MELAJURES OF THE WITH CONTRACTOR MEANS. MELABURE SHALL DIFFECTIVE OF THE PROTECTIVE MELAJURES OF THE WITH CONTRACTOR MEANS. MELABURE SHALL DIFFECTIVE OF THE PROTECTIVE MELAJURES OF THE WITH CONTRACTOR MELAJURE MELADIACIES. SECURITIES AND PROCEDURES. DESERVATION WITH TO THE STO WITH CONTRACTOR MELAJURE MELADIACIES AND PROCEDURES. DESERVATION WITH TO THE STO WITH CONTRACTOR MELAJOR MELADIACIES AND MELADIACIES AND PROCEDURES. DESERVATION WITH TO THE STO WITH CONTRACTOR MELAJOR MELADIACIES AND MELADIACIES AND PROCEDURES. DESERVATION WITH TO THE STO WITH CONTRACTOR MELAJOR MELADIACIES AND MELADIACIES AND PROCEDURES. DESERVATION WITH TO THE STO WITH CONTRACTOR MELAJOR MELADIACIES AND MELADIACIES STRUCTION PROCEDURES

2. DAMAGE BY THE CONTRACTOR TO UTILITIES OR PROPERTY OF OTHERS, INCLUDING EXISTING PAVEMENT AND OTHER SURFACES DISTURBED BY THE CONTRACTOR DURING CONTREM, INJULUTING EXSILING HAVEMENT AND OTHER SURFACES DISTURBED BY THE CONTRACTOR JURING CONSTRUCTION SHALL BE REPARIED TO PRE-CONSTRUCTION CONDITIONE BY THE CONTRACTOR AT NO ADDITIONAL COST TO THE CLENT. FOR GRASSED AREAS, SEED AND MULCH SHALL BE ACCEPTABLE.

3. THE CONTINUED BY ALL BENCEN DRY SCAREY (ETC) ALL MATERIAL NOT BUTABLE FOR BUBGADE BITS PRESENT STATE I THE MATERIAL AND REPLACED WITH APPROVED MATERIAL AT HIS EXPENSE. ALL SUBGRADES SHALL BU UNDERCUTT HIS MATERIAL AND REPLACED WITH APPROVED MATERIAL AT HIS EXPENSE. ALL SUBGRADES SHALL BE PROOF ROLED WITH A FLULY LOCADE TANDEM ALL DUINF TRUCK PROOF TO PAVING. ANY SOFT MATERIAL SHALL BE REWORKED AND REPLACED.

4. THE CONTRACTOR IS REQUIRED TO MAINTAIN ALL DITCHES, PIPES, AND OTHER DRAINAGE STRUCTURES FREE FROM OBSTRUCTION UNTIL WORK IS ACCEPTABLE BY THE OWNER. THE CONTRACTOR IS RESPONSIBLE FOR ANY DAMAGES CAUSED BY FAILURE TO MAINTAIN DRAINAGE STRUCTURES IN OPERABLE CONDITION.

5. ALL DIMENSIONS SHALL BE VERIFIED WITH THE PLANS (LATEST REVISION) PRIOR TO COMMENCING CONSTRUCTION. NOTIFY THE OWNER IMMEDIATELY IF DISCREPANCIES ARE DISCOVERED. THE CONTRACTOR SHALL HA APPROVED PLANS AVAILABLE AT THE SITE AT ALL TIMES WHEN WORK IS BEINS PERFORMED. A DESIG RESPONSIBLE EMPLOYEE SHALL BE AVAILABLE FOR CONTACT BY GOVERNING AGENCY INSPECTORS.

6. CONTRACTOR SHALL SECURE ALL NECESSARY PERMITS FOR THIS PROJECT FROM ALL APPLICABLE GOVERNMENTAL AGENCIES (NOT SUPPLIED BY OWNER).

7. ANY PERMITS WHICH MUST BE OBTAINED SHALL BE THE CONTRACTORS RESPONSIBILTY. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ABIDING BY ALL CONDITIONS AND REQUIREMENTS OF THE PERMITS (NOT SUPPLIED BY OWNER).

8. ALL WORK SHALL BE IN ACCORDANCE WITH LOCAL CODES AND THE LATEST APPLICABLE CODES AND STANDARDS.

9. THE CONTRACTOR SHALL NOTIFY THE APPLICABLE JURISDICTIONAL (STATE, COUNTY, OR CITY) ENGINEER 24 HOURS PRIOR TO BEGINNING OF CONSTRUCTION.

10. CONTRACTOR RESPONSIBLE FOR CLOSING AND FILING ALL PERMITS ASSOCIATED WITH THE SITE.

11. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE EQUIPMENT AND TOWER

12. ALL EXISTING AREAS DISTURBED BY CONSTRUCTION ACTIVITIES SHALL BE RESTORED TO MATCH

13. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO CONSTRUCTION TIVITIES COMMENCING

