ATTACHMENT 3

Access Road Drainage Calculations

Falls Village/Canaan 8 Barnes Road Town of Canaan Litchfield County, Connecticut

Prepared for:

SAI Communications 500 Enterprise Drive Rocky Hill, CT 06067

Prepared by:

2139 Silas Deane Highway Suite 212 Rocky Hill, Connecticut 06067-2336 (518) 257-4557

> May 2010 Revised September 2010 Revised April 2011 Revised April 2013

	Revised April 2013
Falls Village/Canaan – Access Road Drainage Calculations	Page 1

TABLE OF CONTENTS

HYDROLOGIC EVALUATION	2
HYDRAULIC EVALUATION	5
Swales.	5
Culverts	
Outlet Protection	
CONCLUSIONS	

TABLES

Table 1 – Soil Analysis Summary. 3	3
Table 2 – Hydrologic Analysis Summary	4
Table 3 – Swale Hydraulic Analysis Summary	6
Table 4 – Shear Stress Analysis	7
Table 5 – Culvert Analysis 8	8
Table 6 – Outlet Protection Analysis.	10

APPENDICES

Appendix A - Composite Runoff Coefficient Calculation

- Appendix B Time of Concentration Calculations
- Appendix C CulvertMaster Output Data
- Appendix D Culvert Capacity Calculations
- Appendix E Swale Sizing Calculations
- Appendix F Shear Stress Calculations
- Appendix G Outlet Protection Calculations
- Appendix H Hydrologic Calculations

FIGURES

_	Site Location Map
_	Soils Map
_	Existing Site
_	Drainage Areas
_	Proposed Access Drive Drainage
_	Drainage Details

INTRODUCTION

The proposed tower site is located in the Town of Canaan, Litchfield County in northwest Connecticut. The Town is bounded by the town of Salisbury to the west, North Canaan to the north, Norfolk to the east, and Cornwall to the south. The project site is located about 35 miles northwest of Hartford, the State's capital.

The entrance to the existing gravel access drive at 8 Barnes Road is located at the base of Cobble Hill, approximately 1.75 miles east of Falls Village. The gravel access drive ascends Cobble Hill on a northwest to southeast oriented ridge that begins immediately at the Barnes Road entrance (Elevation 664 feet) and climbs steeply up to the ridge of Cobble Hill and terminates at elevation 1203 after passing over the Cobble Hill crest which is approximately 1000 feet west of the proposed tower. (See Figure 1 – Site Location Map and Figures 3A-3E – Existing Site).

The proposed gravel access drive to the cell site will consist of approximately 5,200 feet of re-graded 12 foot wide gravel road that will generally follow the existing alignment up and over the crest of Cobble Hill (Elevation 1270). Some improvements to the drive alignment are proposed to maintain the road on the parcel with the perpetual easement right-of-way. Several sections of cut and fill slopes will be constructed to support the proposed vertical alignment. Encounters with bedrock and rock outcrops are anticipated; therefore, rock cutting activities are expected during construction.

This report addresses the design of drainage swales to protect the access road from washout, safely convey stormwater flows, and protect outfall locations from erosion. This report does not address the design of groundwater controls, or slope stabilization, as geotechnical information was not available at the time of this report.

HYDROLOGIC EVALUATION

The steepness of the terrain subjects the gravel access road alignment to sheet flow and high velocity shallow concentrated flows that will concentrate on adjacent sides of the road subjecting it to erosion. (See Figures 4A through 4F - Drainage Areas). The maximum drainage area upstream of the access road is 2.2 acres (DA-E) and is located approximately 1,500 feet west of the Cobble Hill crest.

Aerial photos of the watershed show that the primary terrain cover is composed of forested area with pockets of exposed rock outcrops. The Connecticut USGS South Canaan Quadrangle Map indicates that

the predominant landform consists of moderately to steeply sloped forested knobs and ridges divided by flat valleys marked by mixed forested swampy terrain. Existing elevations range from 640± feet along the Hollenbeck River and Wangum Lake Brook watershed plains to an elevation of 1962 feet at Bradford Mountain in the Housatonic State Forest located 3 miles northeast of Cobble Hill.

The onsite soils on Cobble Hill consist of:

- Hydrologic Soil Group B (Copake Fine Sandy Loam) located at the base of the hill.
- Hydrologic Soil Group D (Hollis-Chatfield Rock Outcrop Complex soils) located on the top section of the hill.
- Hydrologic Soil Group D (Hollis-Chatfield Rock Outcrop Complex soils /Rock Outcrop Hollis Complex) located on the steep sides of the hill.

A summary of these soils can be found in Table 1 (below). See Figure 2 for a map of the onsite soils.

Soil Name	Hydrologic Soil Group
31A – Copake fine sandy loam, 0-3% Slopes	В
75C – Hollis-Chatfield Rock Outcrop Complex, 3-15% Slopes	D
75E – Hollis-Chatfield Rock Outcrop Complex, 15-45% Slopes	D
76F – Rock Outcrop - Hollis Complex, 45-60% Slopes	D

Table 1 - Soil Analysis Summary

Hollis-Chatfield Rock Outcrop Complex soils consist of gravely fine sandy loams with organic material, and cobbles and boulders at the surface. Depth to bedrock is shallow, ranging from 0 to 20 inches. These soils are situated on steep slopes, which can create excessive drainage. A high variability in permeability exists, and is dependent on the shallow, restrictive layer of rock (0.0 to 6.0 in / hr).

Copake fine sandy loams consist of gravely fine sandy loams. Depth to bedrock is deep (greater than 80 inches). These soils are situated on flat outwash plains and terraces, and are well drained. They have moderately high to high permeability (0.6 to 6.0 in / hr.).

No development other than the cell tower facilities (monopole, fenced compound with equipment shelter, gravel access road, and drainage improvements) is expected to occur in the watershed area that would influence the access road, so existing conditions have been used for design.

In order to determine the swale and rip rap apron end design for the access road of the site, peak flows were generated using the Rational Method. Rainfall intensities (I) for the 10-year and 25-year design storms were referenced from Chapter 6 - Appendix B of the Connecticut Department of Transportation (ConnDOT) Drainage Manual dated October 2000. Composite runoff coefficients (C) were developed from an analysis of existing land use and typical C-values provided in the ConnDOT Drainage Manual. Times of concentration (Tc) were computed using standard NRCS TR-55 Methodology. A frequency factor (Cf) was used to refine the calculated peak flow for the 25-year design storm as prescribed in Section 6.9.5 of the ConnDOT Drainage Manual.

The results of the hydrologic analysis are presented in Table 2 (below) and detailed calculations are included in Appendix H.

D I D I <i>I</i>	Watershed Area	Peak Discharge (ft ³ /sec)			
Design Point	(acres)	10-year	25-year		
DA A	1.76	3.5	4.5		
DA B	0.27	0.6	0.8		
DA C	DA C 1.25 2.6		3.3		
DA D	DA D 3.28 1.6		2.1		
DA E	2.16	4.4	5.6		
SDA E1 (Culvert 1)	0.05	0.1	0.2		
SDA E2 (Culvert 2)	0.10	0.2	0.3		
DA F	0.56	1.3	1.6		
DA G	1.33	2.4	3.0		

Table 2 – Hydrologic Analysis Summary

HYDRAULIC EVALUATION

Swales

Basis of Design

In accordance with the design criteria and procedures set forth in Sections 7.3 and 7.6 of the ConnDOT Drainage Manual, roadway swales shall be designed:

- to safely convey the 10-year frequency design storm peak flow without causing erosive damage.
- with a lining that is sufficient to resist the shear forces created from the transportation of storm flows (The permissible or critical shear stress in a swale defines the force required to initiate movement of the channel bed or lining).

Additionally, in accordance with Chapter 5, Section 6, Permanent Lined Waterway, of the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control by The Connecticut Council on Soil and Water Conservation in Cooperation with the Connecticut Department of Environmental Protection (CTDEP), swales shall be designed with a minimum freeboard of 3 inches if no out-of-bank damage would be expected.

Design Methodology

Flow capacity of the swales was determined from the following:

- Velocity (V) Equation 7.6 of the ConnDOT Drainage Manual (Manning's Equation)
- Flow capacity (Q) Equation 7.5 of the ConnDOT Drainage Manual (The Continuity Equation).

See Appendix E for swale sizing calculations.

Swale lining was determined by the following:

- Average Shear Stress (τ) Equation 7.11 of the ConnDOT Drainage Manual
- Maximum Shear Stress (τ_d) Equation 7.12 of the ConnDOT Drainage Manual
- Lining Category (Material) and Type– Table 7-4 of the ConnDOT Drainage Manual and Manufacturers data regarding turf reinforcement mats (TRM).

See Appendix F for shear stress calculations.

Design Summary

Swale geometry and design varies and was based on existing topography and spacing constraints associated with an existing 30 f oot easement. Where possible the swales were graded to have a trapezoidal cross section that is 1-foot deep, has a 1-foot flat bottom, and 2:1 side slopes. Where space was constrained v-shaped swales were used and were generally 1-2 feet deep, with 2:1 side slopes. Due to this condition, multiple sections were analyzed, where necessary, for flow capacity, shear, and freeboard to ensure the swales would function properly.

See Table 3 below for a summary of the results of the swale analysis.

Swale	Slope (ft/ft)	Manning's n ¹ (unitless)	Velocity (ft/s)	10-yr Peak Design Flow (cfs)	Provided Flow Capacity (cfs)	Depth of Flow (in)	Provided Freeboard @ 10-year Peak Flow (in)
	0.110	0.035	5.65	3 5	29.9	6.8	11.2
DAA	0.250	0.035	9.80	5.5	20.6	3.2	8.8
DA B	0.300	0.035	4.64	0.6	24.9	1.3	10.7
DAC	0.100	0.035	4.71	26	11.4	5.3	6.7
DAC	0.255	0.035	9.11	2.6	23.5	2.0	10.0
	0.145	0.035	5.12	1.6	34.3	4.8	13.2
DAD	0.225	0.035	10.56	1.0	34.8	1.2	10.8
DAE	0.110	0.035	4.48	4.4	11.9	6.2	5.8
DAE	0.190	0.035	6.16	4.4	31.1	7.3	10.7
SDA E1	0.013	0.035	0.97	0.1	5.2	1.3	10.7
SDA E2	0.009	0.035	1.03	0.2	4.3	2.0	10.0
DAE	0.030	0.035	2.60	1.2	7.9	3.7	8.3
DA F	0.200	0.035	5.14	1.3	20.3	2.3	9.7
DAC	0.015	0.035	2.47	2.4	5.6	6.1	5.9
DAG	0.100	0.035	2.53	2.4	14.4	3.8	8.2

Table 3 – Swale Hydraulic Analysis Summary

¹Manning's n based on TR-55 guidelines for channels classified as earth/dense weeds.

To determine the type of swale lining necessary to amour the swales and protect against erosive forces imparted by stormwater flows, shear stresses were calculated. A vegetated turf reinforcement mat (TRM) lining was chosen to amour the swales and was selected because it can withstand the calculated shear stresses in all swales. See Table 4 (on the following page) for a summary of the results of the shear stress

analysis.

			Vegetated Turf Rei	nforcement Mat
Swale	Slope (ft/ft)	Design Shear Stress (lb/ft ²)	Permissible Shear Stress ¹ (lb/ft ²)	Classification
	0.11	3.91	8.00	Landlock TRM 450
DAA	0.25	4.90	8.00	Landlock TRM 450
DA B	0.30	2.06	8.00	Landlock TRM 450
	0.10	2.75	8.00	Landlock TRM 450
DAC	0.26	4.42	8.00	Landlock TRM 450
	0.15	3.62	8.00	Landlock TRM 450
DA D	0.23	5.34	8.00	Landlock TRM 450
DAE	0.11	3.57	8.00	Landlock TRM 450
DAE	0.19	7.23	8.00	Landlock TRM 450
SDA E1	0.01	0.09	8.00	Landlock TRM 450
SDA E2	0.01	0.10	8.00	Landlock TRM 450
	0.03	0.58	8.00	Landlock TRM 450
DA F	0.20	2.37	8.00	Landlock TRM 450
	0.02	0.48	8.00	Landlock TRM 450
DAG	0.10	2.00	8.00	Landlock TRM 450

Table 4 – Shear Stress Analysis

¹Determined from information provided by the manufacturer.

Based on the analyses, each of these swales will be capable of safely conveying the 10-year peak storm flows calculated for their respective Drainage Area, provide the required 3 inches of freeboard, and withstand calculated shear stresses.

Culverts

Basis of Design

In accordance with the design criteria and procedures set forth in Section 8.3 of the ConnDOT Drainage Manual, roadway culverts shall be designed to:

- Safely convey the 25-year design storm peak flow.
- Have a HW/D ratio less than 1.5 (The hydraulic performance of a culvert is commonly expressed as a ratio of headwater depth (HW), which equals the depth of water measured from the invert of the culvert, to the culvert diameter (D) as HW/D).
- Have a minimum diameter of 18 inches.

Design Methodology

The proposed culvert was analyzed using Haestad Methods CulvertMaster Computer Software (Version 3.1). This program was utilized to compute the headwater elevation and discharge velocity of the culvert (evaluating both inlet and outlet control equations) (See Appendix C for CulvertMaster output data).

The pipe flow capacity was calculated using:

- Velocity (V) Equation 7.6 of the ConnDOT Drainage Manual (Manning's Equation)
- Flow capacity (Q) Equation 7.5 of the ConnDOT Drainage Manual (The Continuity Equation).

See Appendix D for culvert capacity calculations.

Design Summary

The access road design requires two (2) culverts (Culvert 1 and Culvert 2) for stormwater conveyance (See Figure 5 for location). The culverts will be 18" diameter HDPE (See Figure 6 for drainage details). See Table 5 below for a summary of the results of the culvert analysis.

Culvert	Length (ft)	Slope (ft/ft)	Diameter (in)	Manning's n ¹ (unitless)	25-year Peak Design Flow (cfs)	Provided Flow Capacity (cfs)	Computed HW (in)	HW/D Ratio (ft/ft)
Culvert 1	28.5	0.0175	18	0.012	0.17	15.1	1.7	0.10
Culvert 2	27	0.0185	18	0.012	0.30	15.5	8.0	0.45

Table	5 –	Culvert	Analysis
-------	-----	---------	----------

Based on the analysis, the 18-inch diameter HDPE culverts will safely convey peak flows from the 25year frequency design storm, with a calculated HW/D ratio less than 1.5.

Outlet Protection Basis of Design

Dasis of Design

In accordance with the engineering guidelines established by the ConnDOT Drainage Manual, swale outlets must be protected to minimize scour and to provide downstream erosion protection.

Design Methodology and Summary

Due to the steep terrain onsite, high approach velocities with scour potential exist in the swales. The high flow velocities can result in downstream erosion such as scour holes and rills. As a protective measure in the design of the swale outlets, rip rap apron ends are proposed at the discharge points of the swales DA F and DA G. According to Chapter 11 – Section 13 of the ConnDOT Drainage Manual, rip rap apron ends are sufficient to dissipate energy at the swale outlets if the outlet velocities are less than or equal to 14 feet per second. Based on the hydraulic analysis results (Table 4), hydraulic conditions in swales DA F and DA G meet this criterion.

The remaining swale outlets all occur within the existing 30' easement, off the subject lot(s). In these areas, the easement must be respected, and there is not sufficient room to install rip rap apron ends as a means of outlet project. In these areas, a geosynthetic Pyramat® will be installed to help dissipate velocity, spread flows and minimize scour. A minimum length for the Pyramat has been established based on the existing and proposed topography, and available space within the existing easement (See Figures 5B-5C). The width of the Pyramat will be variable and determined in the field based upon available room between the proposed limits of grading and the existing 30 foot wide easement. Per the manufacturers provided information, this product is sufficient to dissipate energy at the swale outlets for outlet velocities up to 25 feet per second. Based on the hydraulic analysis results (Table 4), hydraulic conditions in all swales meet this criterion.

See Figures 5A through 5E – Proposed Access Drive Drainage for swales, riprap apron end, Pyamat® and culvert locations and Figure 6 – Drainage Details for swale, riprap apron end, and culvert design details. See Appendix G for outlet protection calculations. See Table 6 (on the following page) for the results of the outlet protection analysis.

	Outlat	Ontlot		Re	equired Dim	ensions ⁵
Outlet	Velocity (ft/sec)	Structure Type	L _a (ft)	W ₁ ² (ft)	W ₂ ³ (ft)	Lining Specification
Swale DA A	9.80	Vegetated High	30			Pyramat ® by SI Geosolutions
Swale DA B	4.64	Performance	20	Sized in	field based	
Swale DA C	9.11	Turf	30	on gra	aing and	
Swale DA D	10.56	Reinforcement	20	cons	straints	
Swale DA E	6.16	Mat	50			
Swale DA F	2.60	Type A	10 ¹	3	10	Modified Rip Rap ⁴
Swale DA G	2.40	Riprap Apron	10 ¹	3	10	Modified Rip Rap ⁴

Table 6 – Outlet Protection Analysis

 ${}^{1}L_{a}$ values determined using Table 11-12.1 and 11-13.1 of the ConnDOT Drainage Manual. ${}^{2}W_{1}$ = width of apron at pipe outlet

 ${}^{3}W_{2}$ = width of apron at terminus

⁴Riprap specification selected from Table 11.11 of the ConnDOT Drainage Manual

⁵Dimensions represent minimum acceptable parameters based on calculations. Actual dimensions selected for use may differ.

CONCLUSIONS

Based on the hydraulic analysis, the graded drainage swales are sufficient in size to safely convey the 10year frequency design storm with a proposed lining that is sufficient to resist the shear forces imparted by the anticipated design flows. For outlet protection, riprap aprons and Pyramat® geosynthetic mats are proposed at all swale discharge points. In addition, both required drainage culverts will meet the ConnDOT requirements of safely conveying the 25-year design storm peak flows with an HW/D ratio of less than 1.5.

APPENDICES

Appendix A

Composite Runoff Coefficient Calculations

		Area (Acres)													
Drainage Area		HSG A			HSG B			HSG C	l ,		HSG D		Gravel	Total	Average C
	F	Α	S	F	Α	S	F	Α	S	F	Α	S			
DA A	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	1.61	0.14	1.76	0.42
DA B	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.22	0.05	0.27	0.47
DA C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.12	0.13	1.25	0.43
DA D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.71	0.08	3.28	0.10
DA E	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.93	0.22	2.16	0.43
SDA E1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.02	0.05	0.53
SDA E2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.02	0.10	0.47
DA F	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.45	0.11	0.56	0.47
DA G	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.26	0.07	1.33	0.40

	Runoff Coefficient $(C)^3$						
Surface Type	Flat (F)	Average (A)	Steep (S)				
	0 - 1%	2 - 6%	> 6%				
HSG A	0.09	0.14	0.18				
HSG B	0.12	0.17	0.24				
HSG C	0.16	0.21	0.31				
HSG D	0.2	0.25	0.38				
Gravel		0.85					

³C-values obtained from Tables 6-3 and 6-5 of the ConnDOT Drainage Manual

Appendix A CHA Project No.: 18301.1026.43000

Appendix B

Time of Concentration Calculations

Worksheet 3: Time of Concentration (Tc)

Project: Location:	FALLS VIL Falls Villag	LAGE ge, CT	Job No.	18301-1026	By Checked	JDM	Date Date	4/12/2013
	Proposed				Subarea:		DA A Outfal	1
Sheet	AB	<u>High</u> 860	<u>Low</u> 851	<u>Run</u> 36	<u>Slope</u> 0.250			
Shallow	BC	851	722	468	0.276			
Channel	CD	722	673	268	0.183			
1.	Sheet Flow			Segment ID	A-B			
	1. Surface Description	(table 3-1)			WOODS			
	2. Manning's roughness	s coeff., 'n' (table 3-	-1)		0.400			
	3. Flow length, L (total	L <u><</u> 150 ft		ft	36			
	4. Two-year 24-hour ra	infall, P ₂		in	3.2			
	5. Land Slope, s			ft/ft	0.250			
	6. T _t =	$\frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$		hr	0.058	0.000	0.000	0.058
2.	Shallow Concentrated	Flow		Segment ID	В-С]
	7. Surface description (Paved or Unpaved)		U			
	8. Flow length, L			ft	468			
	9. Watercourse slope, s	S (Common 2, 1)		ft/ft	0.276			
	10. Average velocity, v 11. $T_t =$	L 3600 V		hr	0.015	0.000	0.000	0.015
3.	Channel Flow			Segment ID	C-D]
	12. Cross sectional flow	area, a		ft^2	4.50			1
	13. Wetted perimeter, p	N		ft	6.7			
	14. Hydraulic radius, r =	= a/p _w		ft	0.67			
	15. Channel slope, s			ft/ft	0.183			
	16. Manning's roughnes	s coefficient, n			0.035			
	17. V =	$\frac{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}{\text{n}}$		ft/s	13 961			
	18. Flow Length, L			ft	268			1
	19. $T_t =$	L 3600 V		hr	0.005	0.000	0.000	0.005

20. Total Tc For Watershed or Subarea (Add Steps 6, 11, and 19)

hr =

min =

Page 17

Worksheet 3: Time of Concentration (Tc)

Project: Location:	FALLS VIL Falls Villag	LAGE e, CT	Job No.	18301-1026	By Checked	JDM	Date Date	4/12/2013
	Proposed				Subarea:		DA B Outfall	
Sheet	AB	<u>High</u> 865.5	<u>Low</u> 838	<u>Run</u> 100	<u>Slope</u> 0.275			
Shallow Channel	CD	838	/59	181	0.436			
Channel	CD	Ū	0	000	0.000			
1.	Sheet Flow			Segment ID	A-B			
	1. Surface Description (table 3-1)			WOODS			
	2. Manning's roughness	coeff., 'n' (table 3-	1)		0.400			
	3. Flow length, L (total	L <u><</u> 150 ft		ft	100			
	4. Two-year 24-hour ra	infall, P ₂		in	3.2			
	5. Land Slope, s	0.8		ft/ft	0.275			
	6. T _t =	$\frac{0.007 \text{ (nL)}^{0.8}}{P_2^{0.5} \text{ s}^{0.4}}$		hr	0.125	0.000	0.000	0.125
2.	Shallow Concentrated	Flow		- 	D.C.			
				Segment ID	B-C			
	7. Surface description (Paved or Unpaved)			U			
	8. Flow length, L			ft eve	181		-	
	9. Watercourse slope, s	(figure 2, 1)		ft/ft	0.436			
	10. Average velocity, \mathbf{v} 11. $T_t =$	L		hr	0.005	0.000	0.000	0.005
		3600 V		L				
3.	Channel Flow			Segment ID	C-D			
	12. Cross sectional flow	area, a		ft^2	3.00			
	13. Wetted perimeter, p _v	v		ft	5.5			
	14. Hydraulic radius, r =	a/p _w		ft	0.55			
	15. Channel slope, s			ft/ft	0.000			
	16. Manning's roughnes	s coefficient, n			0.035			
	17. V =	$\frac{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}{\text{n}}$		ft/s	0.000			
	18. Flow Length, L			ft	800		1	
	19. $T_t =$	L 3600 V		hr	0.000	0.000	0.000	0.000

20. Total Tc For Watershed or Subarea (Add Steps 6, 11, and 19)

hr =

Worksheet 3: Time of Concentration (Tc)

Project: Location:	FALLS VIL Falls Villag	LAGE e, CT	Job No.	18301-1026	By Checked	JDM	Date Date	4/12/2013
	Proposed				Subarea:		DA C Outfal	1
Sheet	AB	<u>High</u> 1036	<u>Low</u> 1023	<u>Run</u> 56	<u>Slope</u> 0.232			
Channel	CD	1023	862	761	0.212			
1.	Sheet Flow			Segment ID	A-B]
	1. Surface Description ((table 3-1)	1	-	WOODS			
	2. Manning's roughness 3. Flow length L (total	$s \operatorname{coeff.}$, 'n' (table 3	5-1)	ft	0.400			-
	4. Two-vear 24-hour ra	<u>nfall.</u> P ₂		in	3.2			-
	5. Land Slope, s	, <u>2</u>		ft/ft	0.232			1
	6. T _t =	$\frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$	-	hr	0.084	0.000	0.000	0.084
2.	Shallow Concentrated	Flow		Segment ID	B-C]
	7. Surface description (Paved or Unpaved	ł)		U			
	8. Flow length, L			ft A/A	1			_
	10 Average velocity V	(figure 3-1)		ft/s	0.000			-
	11. $T_t =$	L 3600 V	-	hr	0.000	0.000	0.000	0.000
3.	Channel Flow			Segment ID	C-D]
	12. Cross sectional flow	area, a		ft^2	3.00			1
	13. Wetted perimeter, p _v	v		ft	6.3			
	14. Hydraulic radius, r =	= a/p _w		ft	0.48			
	15. Channel slope, s			ft/ft	0.212			
	16. Manning's roughnes	s coefficient, n		-	0.035			_
	17. V =	$1.49 r^{2/3} s^{1/2}$	-	ft/s	11.041			
	18 Flow Length L	I1		ft	761			-
	19. $T_t =$	L 3600 V	-	hr	0.018	0.000	0.000	0.018

20. Total Tc For Watershed or Subarea (Add Steps 6, 11, and 19)

hr =	0.10
min =	6.13

Worksheet 3: Time of Concentration (Tc)

Project: Location:	FALLS VIL Falls Villag	LAGE ge, CT	Job No.	18301-1026	By Checked	JDM	Date Date	4/12/2013
	Proposed				Subarea:		DA D Outfal	1
		<u>High</u>	Low	<u>Run</u>	Slope			
Sheet	AB	1015	981	100	0.340			
Shallow	BC	981	928	158	0.335			
Channel	CD	928	913	86	0.174			
1.	Sheet Flow			Segment ID	A-B]
	1. Surface Description	(table 3-1)			WOODS			
	2. Manning's roughness	s coeff., 'n' (table 3-	-1)	_	0.400			
	3. Flow length, L (total	L <u><</u> 150 ft		ft	100			
	4. Two-year 24-hour ra	unfall, P ₂		in	3.2			
	5. Land Slope, s			ft/ft	0.340			
	6. T _t =	$\frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$		hr	0.115	0.000	0.000	0.115
2.	Shallow Concentrated	Flow		Segment ID	B-C			
	7. Surface description (Paved or Unpaved)		U			_
	8. Flow length, L			tt e./e	158			-
	9. watercourse slope, s	(figure 2, 1)		π/π £/a	0.335			_
	11. $T_t =$	L 3600 V		hr	0.005	0.000	0.000	0.005
3.	<u>Channel Flow</u>			Segment ID	C-D]
	12. Cross sectional flow	v area, a		ft^2	4.50			
	13. Wetted perimeter, p.	w		ft	6.7			
	14. Hydraulic radius, r =	$= a/p_w$		ft	0.67			
	15. Channel slope, s			ft/ft	0.174			
	16. Manning's roughness	s coefficient, n			0.035			
	17. V =	$1.49 r^{2/3} s^{1/2}$		ft/s	13 636			
	18. Flow Length, L			ft	86			1
	19. $T_t =$	L 3600 V		hr	0.002	0.000	0.000	0.002

20. Total Tc For Watershed or Subarea (Add Steps 6, 11, and 19)

Worksheet 3: Time of Concentration (Tc)

Project: Location:	FALLS VI Falls Villa	LLAGE age, CT	Job No.	18301-1026	By Checked	JDM	Date Date	4/12/2013
	Proposed				Subarea:	S	DA E1 - Culve	ert 1
Sheet Shallow	AB BC	<u>High</u> 1228 0	<u>Low</u> 1212.5 0	<u>Run</u> 73 1	<u>Slope</u> 0.212 0.000			
Channel	CD	1212.5	1207	41	0.134			
1.	Sheet Flow			Segment ID	A-B]
	 Surface Description Manning's roughne 	n (table 3-1) ss coeff., 'n' (table	3-1)		WOODS 0.400			
	3. Flow length, L (tota	al L <u><</u> 150 ft		ft	73			
	 Two-year 24-nour 1 Land Slope, s 			ft/ft	0.212			-
	6. $T_t =$ -	$\frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$	_	hr	0.108	0.000	0.000	0.108
2.	Shallow Concentrate	d Flow		Segment ID	B-C]
	7. Surface description	(Paved or Unpave	ed)	A	U 1			
	 Plow length, L Watercourse slope, 	S		ft/ft	0.000			-
	10. Average velocity,	V (figure 3-1)		ft/s	0.000			1
	11. T _t =	L 3600 V	_	hr	0.000	0.000	0.000	0.000
3.	Channel Flow			Segment ID	С-D]
	12. Cross sectional flor	w area, a		ft^2	3.00			
	13. Wetted perimeter,	p _w		ft	5.5			
	14. Hydraulic radius, r	$r = a/p_w$		ft	0.55			_
	15. Channel slope, s			ft/ft	0.134			_
	16. Manning's roughne			-	0.035		1	-
	17. V = -	1.49 r s	_	ft/s	10 409			
	18. Flow Length, L			ft	41			
	19. $T_t =$	L 3600 V	_	hr	0.001	0.000	0.000	0.001

20. Total Tc For Watershed or Subarea (Add Steps 6, 11, and 19)

hr =

Worksheet 3: Time of Concentration (Tc)

Project: Location:	FALLS VI Falls Villa	LLAGE ge, CT	Job No.	18301-1026	By Checked	JDM	Date Date	4/12/2013
	Proposed				Subarea:	S	DA E2 - Culve	ert 2
Sheet Shallow	AB BC	<u>High</u> 1228 0	<u>Low</u> 1212.5 0	<u>Run</u> 73 1	<u>Slope</u> 0.212 0.000			
Channel	CD	1212.5	1201	206	0.056			
1.	Sheet Flow			Segment ID	A-B]
	 Surface Description Manning's roughness 	(table 3-1) ss coeff., 'n' (table	3-1)		WOODS 0.400			
	3. Flow length, L (tota	ll L <u><</u> 150 ft		ft	73			
	4. Two-year 24-hour r	ainfall, P ₂		រព ជ/ជ	3.2			_
	6. $T_t = -$	$\frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$	_	hr	0.108	0.000	0.000	0.108
2.	Shallow Concentrate	d Flow		Segment ID	В-С]
	7. Surface description	(Paved or Unpave	ed)	. [U			
	8. Flow length, L 9. Watercourse slope	s		ft ft/ft	1			-
	10. Average velocity, V	V (figure 3-1)		ft/s	0.000			-
	11. $T_t =$ -	L 3600 V	_	hr	0.000	0.000	0.000	0.000
3.	<u>Channel Flow</u>			Segment ID	C-D]
	12. Cross sectional flor	w area, a		ft^2	3.00			
	13. Wetted perimeter, J	\mathcal{D}_{W}		ft	5.5			
	14. Hydraulic radius, r	$= a/p_w$		ft	0.55			
	15. Channel slope, s	<u>.</u>		ft/ft	0.056			_
	16. Manning's roughne	ess coefficient, n $\frac{2}{3}$ $\frac{1}{2}$		-	0.035			-
	17. V =	$1.49 r^{2/3} s^{1/2}$ n	_	ft/s	6.715			
	18. Flow Length, L			ft	206]
	19. $T_t =$	L 3600 V	_	hr	0.009	0.000	0.000	0.009

20. Total Tc For Watershed or Subarea (Add Steps 6, 11, and 19)

hr =

min =

Worksheet 3: Time of Concentration (Tc)

Project: Location:	FALLS VII Falls Villa	LLAGE ge, CT	Job No.	18301-1026	By Checked	JDM	Date Date	4/12/2013
	Proposed				Subarea:		DA E Outfal	1
Sheet Shallow Channel	AB BC CD	High 1228 0 1212.5	Low 1212.5 0 1049	<u>Run</u> 73 1 1377	<u>Slope</u> 0.212 0.000 0.119			
1.	Sheet Flow			Segment ID	A-B]
	 Surface Description Manning's roughness Flow length, L (tota Two-year 24-hour rational structures) Land Slope, s T_t = 	(table 3-1) s coeff., 'n' (table 3 l L \leq 150 ft ainfall, P ₂ 0.007 (nL) ^{0.8} P ₂ ^{0.5} s ^{0.4}	3-1) _	ft in ft/ft hr	WOODS 0.400 73 3.2 0.212 0.108	0.000	0.000	0.108
2.	Shallow Concentrated	<u>l Flow</u>	D.	Segment ID	B-C			
	 Surface description (Flow length, L Watercourse slope, Average velocity, V 	s (figure 3-1) L	a)	ft ft/ft ft/s	1 0.000 0.000	0.000	0.000	
3.	Channel Flow	3600 V	_	nr Segment ID	0.000 C-D	0.000	0.000	
	 12. Cross sectional flow 13. Wetted perimeter, p 14. Hydraulic radius, r 15. Channel slope, s 16. Manning's roughner 17. V = 18. Flow Length, L 	v area, a $f_w^{lw} = a/p_w$ ss coefficient, n <u>1.49</u> r ^{2/3} s ^{1/2} n	_	ft ² ft ft/ft ft/ft ft/s ft	3.00 6.3 0.48 0.119 0.035 8.945 1377			
	19. T _t =	L 3600 V	_	hr	0.043	0.000	0.000	0.043

20. Total Tc For Watershed or Subarea (Add Steps 6, 11, and 19)

hr =

min =

Page 23

Worksheet 3: Time of Concentration (Tc)

Project: Location:	FALLS VII Falls Villag	LLAGE ge, CT	Job No.	18301-1026	By Checked	JDM	Date Date	4/12/2013
	Proposed				Subarea:		DA F Outfal	1
Sheet	AB BC	<u>High</u> 1270	<u>Low</u> 1269	<u>Run</u> 12 1	<u>Slope</u> 0.083 0.000			
Channel	CD	1269	1201	790	0.086			
1.	Sheet Flow			Segment ID	A-B]
	 Surface Description Manning's roughnes 	(table 3-1) s coeff., 'n' (table 3	3-1)	_	WOODS 0.400			
	 Flow length, L (total Two-year 24-hour ra Land Slope, s 	$L \leq 150 \text{ ft}$ ainfall, P ₂		rt in ft/ft	3.2 0.083			-
	6. $T_t =$	$\frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$	-	hr	0.037	0.000	0.000	0.037
2.	Shallow Concentrated	l Flow		Segment ID	В-С]
	7. Surface description ((Paved or Unpaved	d)	. [U			1
	8. Flow length, L 9. Watercourse slope	s		ft ft/ft	1			-
	10. Average velocity, V	(figure 3-1)		ft/s	0.000			
	11. $T_t =$	L 3600 V	-	hr	0.000	0.000	0.000	0.000
3.	<u>Channel Flow</u>			Segment ID	C-D]
	12. Cross sectional flow	v area, a		ft^2	3.00			
	13. Wetted perimeter, p	w		ft	5.5			
	14. Hydraulic radius, r	$= a/p_w$		ft	0.55			_
	15. Channel slope, s	a apofficient n		tt/tt	0.086			_
	10. Manning S Toughines	$1 40 r^{2/3} c^{1/2}$		-	0.035			-
	17. V =	1. 1 71 5	-	ft/s	8 338			
	18. Flow Length, L	11		ft	790			-
	19. $T_t =$	L 3600 V	-	hr	0.026	0.000	0.000	0.026

20. Total Tc For Watershed or Subarea (Add Steps 6, 11, and 19)

hr =	0.06
min =	3.80

Worksheet 3: Time of Concentration (Tc)

Project: Location:	FALLS VILI Falls Villag	LAGE e, CT	Job No.	18301-1026	By Checked	JDM	Date Date	4/12/2013
	Proposed				Subarea:		DA G Outfal	1
Sheet	AB	<u>High</u> 1249	<u>Low</u> 1240	<u>Run</u> 100	<u>Slope</u> 0.090			
Shallow	BC	1240	1202.25	293	0.129			
Channel	CD	1202.25	1200	66	0.034			
1.	Sheet Flow			Segment ID	A-B]
	1. Surface Description (table 3-1)			WOODS			
	2. Manning's roughness	coeff., 'n' (table	3-1)		0.400			_
	3. Flow length, L (total	L <u><</u> 150 ft		ft	100			_
	4. Two-year 24-hour rai	infall, P ₂		in	3.2			
	5. Land Slope, s			ft/ft	0.090			
	6. T _t =	$\frac{0.007 (\text{nL})^{0.8}}{\text{P}_2^{-0.5} \text{ s}^{0.4}}$	_	hr	0.196	0.000	0.000	0.196
2.	Shallow Concentrated	Flow		Segment ID	В-С			1
	7 Surface description (1	Dowed or Linnow	(b.	-	I.I.			_
	8 Flow length L	raved of <u>O</u> npave	(u)	ft	293			-
	9. Watercourse slope. s			ft/ft	0.129		1	-
	10. Average velocity, V	(figure 3-1)		ft/s	5.791			
	11. $T_t =$	L 3600 V	-	hr	0.014	0.000	0.000	0.014
3.	<u>Channel Flow</u>			Segment ID	C-D]
	10 0 10			~2	2.00			_
	12. Cross sectional flow	area, a		ft ²	3.00			
	13. Wetted perimeter, p_w	1		ft	5.5			
	14. Hydraulic radius, r =	a/p _w		IT 0/0	0.55			
	15. Channel slope, s	a a affiai ant n		π/π	0.034			_
	10. Maining S Toughness	$\frac{1}{10} \frac{2}{3} \frac{1}{2}$		F	0.035			-
	17. V =	1.49 r S	_	ft/s	5.945			
	10 Elour Longth I	n		<u>е</u>	5.247			-
	10. Flow Length, L 19. $T_{t} =$	L	_	n hr	0.003	0.000	0.000	0.003
	··· = L	3600 V			0.000	0.000	0.000	0.005

20. Total Tc For Watershed or Subarea (Add Steps 6, 11, and 19)

Appendix C

CulvertMaster Output Data

Falls Village/Canaan Access Road Drainage Calculations CHA Project No: 18301.1026.43000

Culvert Calculator Report Culvert 1 (SDA E1)

Solve For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation Computed Headwater Elevation	1,208.50 1,206.71	ft ft	Headwater Depth/Height Discharge	0.14 0.17	cfs
Inlet Control HW Elev. Outlet Control HW Elev.	1,206.69 1,206.71	ft ft	Tailwater Elevation Control Type	0.00 Entrance Control	ft
Grades					
Upstream Invert Length	1,206.50 28.50	ft ft	Downstream Invert Constructed Slope	1,206.00 0.017544	ft ft/ft
Hydraulic Profile					
Profile Slope Type Flow Regime Velocity Downstream	S2 Steep Supercritical 2.84	ft/s	Depth, Downstream Normal Depth Critical Depth Critical Slope	0.11 0.11 0.15 0.004933	ft ft ft/ft
Section					
Section Shape Section Material	Circular Corrugated HDPE (Smooth		Mannings Coefficient Span	0.012 1.50	ft
Section Size Number Sections	18 inch 1		Rise	1.50	ft
Outlet Control Properties					
Outlet Control HW Elev. Ke	1,206.71 0.20	ft	Upstream Velocity Head Entrance Loss	0.05 0.01	ft ft
Inlet Control Properties					
Inlet Control HW Elev. Inlet Type	1,206.69 Beveled ring, 33.7°	ft	Flow Control Area Full	N/A 1.8	ft²
K M C Y	0.00180 2.50000 0.02430 0.83000		HDS 5 Chart HDS 5 Scale Equation Form	3 B 1	

 w:\...\misc\drainage\culvert master\march_2013.cvm
 CHA, Inc.
 Project Engineer: 3197

 4/12/2013 10:52 AM © Bentley Systems, Inc.
 Haestad Methods Solution Center
 Watertown, CT 06795 USA
 +1-203-755-1666
 Page 1

Culvert Calculator Report Culvert 2 (SDA E2)

Solve For: Headwater Elevation

Culvert Summary				
Allowable HW Elevation Computed Headwater	1,203.00 ft 1,201.50 ft	Headwater Depth/Height Discharge	0.67 0.30	cfs
Inlet Control HW Elev. Outlet Control HW Elev.	1,201.50 ft 1,201.50 ft	Tailwater Elevation Control Type	1,201.50 Outlet Control	ft
Grades				
Glades		-		
Upstream Invert Length	1,200.50 ft 27.00 ft	Downstream Invert Constructed Slope	1,200.00 0.018519	ft ft/ft
Hydraulic Profile				
Profile Slope Type Flow Regime Velocity Downstream	S1 Steep Subcritical 0.17 ft/s	Depth, Downstream Normal Depth Critical Depth Critical Slope	1.50 0.14 0.20 0.004607	ft ft ft/ft
Section				
Section Shape Section Material	Circular Corrugated HDPE (Smooth	Mannings Coefficient Span	0.012 1.50	ft
Section Size Number Sections	18 inch 1	Rise	1.50	ft
Outlet Control Properties				
Outlet Control HW Elev. Ke	1,201.50 ft 0.20	Upstream Velocity Head Entrance Loss	0.00 0.00	ft ft
Inlet Control Properties				
Inlet Control HW Elev. Inlet Type	1,201.50 ft Beveled ring, 33.7° bevels	Flow Control Area Full	N/A 1.8	ft²
K M C	0.00180 2.50000 0.02430	HDS 5 Chart HDS 5 Scale Equation Form	3 B 1	
Y	0.83000	, -		

 w:\...\misc\drainage\culvert master\march_2013.cvm
 CHA, Inc.
 Project Engineer: 3197

 4/12/2013 10:53 AM © Bentley Systems, Inc.
 Haestad Methods Solution Center
 Watertown, CT 06795 USA
 +1-203-755-1666
 Page 1

Appendix D

Culvert Capacity Calculations

CHA

CULVERT CAPACITY By CHA Inc.

JOB DATA

Project:	SAI - Falls Village
Calc. by:	JDM
Date:	4/1/13
Pipe at:	SDA E1 - Culvert 1

EQUATIONS:

Manning's Equation, $V = (1.49/n)R^{2/3}S^{1/2}$ Q = VA Froude Number = V/(gd)^{1/2}

INPUT:

Diameter (D) =	1.50 ft	
Depth of flow $(d) =$	1.50 ft	
Manning's n =	0.012	from CulvertMaster
Slope of pipe (s) =	0.0175 ft/ft	

OUTPUT:

Angle (a) =	0.00 radians				
Wet Perimeter (P) =	4.71 ft				
Area of Flow $(A) =$	1.77 sq. ft.				
Hydr. Radius (R) =	0.38 ft				
Velocity of Flow $(V) =$	8.5 fps				
Flow Capacity $(Q) =$	15.06 cfs	=	9,734,385 gpd	=	6760.0 gpm
Froude Number $(F) =$	1.23 >1, supe	ercritical flo	W		

Appendix D CHA Project No.: 18301.1026.43000

CHA

CULVERT CAPACITY By CHA Inc.

JOB DATA

Project:	SAI - Falls Village
Calc. by:	JDM
Date:	4/1/13
Pipe at:	SDA E2 - Culvert 2

EQUATIONS:

Manning's Equation, $V = (1.49/n)R^{2/3}S^{1/2}$ Q = VA Froude Number = V/(gd)^{1/2}

INPUT:

Diameter (D) =	1.50 ft	
Depth of flow $(d) =$	1.50 ft	
Manning's n =	0.012	from CulvertMaster
Slope of pipe (s) =	0.0185 ft/ft	

OUTPUT:

Angle (a) =	0.00 radians				
Wet Perimeter (P) =	4.71 ft				
Area of Flow $(A) =$	1.77 sq. ft.				
Hydr. Radius (R) =	0.38 ft				
Velocity of Flow $(V) =$	8.8 fps				
Flow Capacity $(Q) =$	15.48 cfs	=	10,002,360 gpd	=	6946.1 gpm
Froude Number $(F) =$	1.26 >1, supe	ercritical fl	ow		

Appendix D CHA Project No.: 18301.1026.43000

Appendix E

Swale Sizing Calculations

CHA

TRAPEZOIDAL/V-SHAPE SWALE CAPACITY CHA, Inc.

PROJECT DATA:

Project:	18301-1015
Calc. by:	JDM
Date:	March 2013
Swale ID:	DA A - Min

EQUATIONS:

$$\begin{split} & \text{Manning's Equation, V} = (1.49/n) R^{2/3} S^{1/2} \\ & \text{Froude number, F} = V/(gd)^{1/2} \\ & \text{Q} = VA \\ & \text{d75} = 12(118 Q S_b^{13/6} R/P)^{2/5} \end{split}$$

INPUT:

Base width (b) =	0.0 ft	
Sideslope (z) =	2 on 1	
Depth of flow (d) =	1.25 ft	
Swale Depth=	1.50 ft	
Manning's n =	0.035	TRM
Slope of ditch (s) =	0.1100 ft/ft	

OUTPUT:

Wet Perimeter (P) =	5.59 ft
Area of Flow (A) =	3.13 sq. ft.
Hydr. Radius (R) =	0.56 ft
Freeboard =	0.25 ft
Velocity of Flow (V) =	9.56 fps
Flow Capacity (Q) =	29.88 cfs
Froude number, F =	1.51 >1, supercritical flow

Appendix E CHA Project No.: 18301.1026.43000

CHA

TRAPEZOIDAL/V-SHAPE SWALE CAPACITY CHA, Inc.

PROJECT DATA:

Project:	18301-1015
Calc. by:	JDM
Date:	March 2013
Swale ID:	DA A - Max

EQUATIONS:

$$\begin{split} & \text{Manning's Equation, V} = (1.49/n) R^{2/3} S^{1/2} \\ & \text{Froude number, F} = V/(gd)^{1/2} \\ & \text{Q} = VA \\ & \text{d75} = 12(118 \text{QS}_{b}^{13/6} \text{R/P})^{2/5} \end{split}$$

INPUT:

Base width (b) =	1.0 ft	
Sideslope (z) =	1 1/2 on 1	
Depth of flow (d) =	0.75 ft	
Swale Depth=	1.00 ft	
Manning's n =	0.035	TRM
Slope of ditch (s) =	0.2500 ft/ft	

OUTPUT:

3.35 ft
1.59 sq. ft.
0.48 ft
0.25 ft
2.93 fps
0.61 cfs
2.63 >1, supercritical flow

Appendix E CHA Project No.: 18301.1026.43000

CHA

TRAPEZOIDAL/V-SHAPE SWALE CAPACITY CHA, Inc.

PROJECT DATA:

Project: 18301-1015 Calc. by: JDM Date: March 2013 Swale ID: DA B

EQUATIONS:

$$\begin{split} & \text{Manning's Equation, V} = (1.49/n) R^{2/3} S^{1/2} \\ & \text{Froude number, F} = V/(gd)^{1/2} \\ & \text{Q} = VA \\ & \text{d75} = 12(118 QS_b^{13/6} R/P)^{2/5} \end{split}$$

INPUT:

Base width (b) =	1.0 ft	
Sideslope (z) =	2 on 1	
Depth of flow (d) =	0.75 ft	
Swale Depth=	1.00 ft	
Manning's n =	0.035	TRM
Slope of ditch (s) =	0.3000 ft/ft	

OUTPUT:

Wet Perimeter (P) =	4.35 ft
Area of Flow (A) =	1.88 sq. ft.
Hydr. Radius (R) =	0.43 ft
Freeboard =	0.25 ft
Velocity of Flow (V) =	13.26 fps
Flow Capacity (Q) =	24.86 cfs
Froude number, F =	2.70 >1, supercritical flow

Appendix E CHA Project No.: 18301.1026.43000

CHA

TRAPEZOIDAL/V-SHAPE SWALE CAPACITY CHA, Inc.

PROJECT DATA:

Project:	18301-1015
Calc. by:	JDM
Date:	March 2013
Swale ID:	DA C - Min

EQUATIONS:

$$\begin{split} & \text{Manning's Equation, V} = (1.49/n) R^{2/3} S^{1/2} \\ & \text{Froude number, F} = V/(gd)^{1/2} \\ & \text{Q} = VA \\ & \text{d75} = 12(118 Q S_b^{13/6} R/P)^{2/5} \end{split}$$

INPUT:

Base width (b) =	0.0 ft	
Sideslope (z) =	3 on 1	
Depth of flow (d) =	0.75 ft	
Swale Depth=	1.00 ft	
Manning's n =	0.035	TRM
Slope of ditch (s) =	0.1000 ft/ft	

OUTPUT:

Wet Perimeter (P) =	4.74 ft
Area of Flow (A) =	1.69 sq. ft.
Hydr. Radius (R) =	0.36 ft
Freeboard =	0.25 ft
Velocity of Flow (V) =	6.74 fps
Flow Capacity (Q) =	11.37 cfs
Froude number, F =	1.37 >1, supercritical flow

Appendix E CHA Project No.: 18301.1026.43000
CHA

PROJECT DATA:

Project:	18301-1015
Calc. by:	JDM
Date:	March 2013
Swale ID:	DA C - Max

EQUATIONS:

$$\begin{split} & \text{Manning's Equation, V} = (1.49/n) R^{2/3} S^{1/2} \\ & \text{Froude number, F} = V/(gd)^{1/2} \\ & \text{Q} = VA \\ & \text{d75} = 12 (118 \text{QS}_{b}^{13/6} \text{R/P})^{2/5} \end{split}$$

INPUT:

Base width (b) =	1.5 ft	
Sideslope (z) =	1 1/2 on 1	
Depth of flow (d) =	0.75 ft	
Swale Depth=	1.00 ft	
Manning's n =	0.035	TRM
Slope of ditch (s) =	0.2550 ft/ft	

OUTPUT:

4.74 ft
1.97 sq. ft.
0.42 ft
0.25 ft
11.93 fps
23.48 cfs
2.43 >1, supercritical flow

Appendix E CHA Project No.: 18301.1026.43000

CHA

PROJECT DATA:

Project:	18301-1015
Calc. by:	JDM
Date:	March 2013
Swale ID:	DA D - Min

EQUATIONS:

$$\begin{split} & \text{Manning's Equation, V} = (1.49/n) R^{2/3} S^{1/2} \\ & \text{Froude number, F} = V/(gd)^{1/2} \\ & \text{Q} = VA \\ & \text{d75} = 12(118 Q S_b^{13/6} R/P)^{2/5} \end{split}$$

INPUT:

Base width (b) =	0.0 ft	
Sideslope (z) =	2 on 1	
Depth of flow (d) =	1.25 ft	
Swale Depth=	1.50 ft	
Manning's n =	0.035	TRM
Slope of ditch (s) =	0.1450 ft/ft	

OUTPUT:

Wet Perimeter (P) =	5.59 ft
Area of Flow (A) =	3.13 sq. ft.
Hydr. Radius (R) =	0.56 ft
Freeboard =	0.25 ft
Velocity of Flow (V) =	10.98 fps
Flow Capacity (Q) =	34.31 cfs
Froude number, F =	1.73 >1, supercritical flow

Appendix E CHA Project No.: 18301.1026.43000

CHA

PROJECT DATA:

Project:	18301-1015
Calc. by:	JDM
Date:	March 2013
Swale ID:	DA D - Max

EQUATIONS:

$$\begin{split} & \text{Manning's Equation, V} = (1.49/n) R^{2/3} S^{1/2} \\ & \text{Froude number, F} = V/(gd)^{1/2} \\ & \text{Q} = VA \\ & \text{d75} = 12 (118 \text{QS}_{b}^{13/6} \text{R/P})^{2/5} \end{split}$$

INPUT:

Base width (b) =	1.5 ft	
Sideslope (z) =	2 on 1	
Depth of flow (d) =	0.75 ft	
Swale Depth=	1.00 ft	
Manning's n =	0.035	TRM
Slope of ditch (s) =	0.2250 ft/ft	

OUTPUT:

Wet Perimeter (P) =	3.35 ft
Area of Flow (A) =	2.25 sq. ft.
Hydr. Radius (R) =	0.67 ft
Freeboard =	0.25 ft
Velocity of Flow (V) =	15.45 fps
Flow Capacity (Q) =	34.77 cfs
Froude number, F =	3.14 >1, supercritical flow

Appendix E CHA Project No.: 18301.1026.43000

CHA

PROJECT DATA:

Project:	18301-1015
Calc. by:	JDM
Date:	March 2013
Swale ID:	DA E - Min

EQUATIONS:

$$\begin{split} & \text{Manning's Equation, V} = (1.49/n) R^{2/3} S^{1/2} \\ & \text{Froude number, F} = V/(gd)^{1/2} \\ & \text{Q} = VA \\ & \text{d75} = 12(118 Q S_b^{13/6} R/P)^{2/5} \end{split}$$

INPUT:

Base width (b) =	0.0 ft	
Sideslope (z) =	3 on 1	
Depth of flow (d) =	0.75 ft	
Swale Depth=	1.00 ft	
Manning's n =	0.035	TRM
Slope of ditch (s) =	0.1100 ft/ft	

OUTPUT:

Wet Perimeter (P) =	4.74 ft
Area of Flow (A) =	1.69 sq. ft.
Hydr. Radius (R) =	0.36 ft
Freeboard =	0.25 ft
Velocity of Flow (V) =	7.06 fps
Flow Capacity (Q) =	11.92 cfs
Froude number, $F =$	1.44 >1, supercritical flow

Appendix E CHA Project No.: 18301.1026.43000

CHA

TRAPEZOIDAL RIPRAP SWALE CAPACITY CHA, Inc.

PROJECT DATA:

Project:	18301-1015
Calc. by:	JDM
Date:	March 2013
Swale ID:	DA E - Max

EQUATIONS:

$$\begin{split} & \text{Manning's Equation, V} = (1.49/n) R^{2/3} S^{1/2} \\ & \text{Froude number, F} = V/(gd)^{1/2} \\ & \text{Q} = VA \\ & \text{d75} = 12 (118 Q S_b^{13/6} R/P)^{2/5} \end{split}$$

INPUT:

Base width (b) =	0.0 ft	
Sideslope (z) =	2 on 1	
Depth of flow (d) =	1.25 ft	
Swale Depth=	1.50 ft	
Manning's n =	0.035	TRM
Slope of ditch (s) =	0.1900 ft/ft	

OUTPUT:

Wet Perimeter (P) =	7.91 ft
Area of Flow (A) =	3.13 sq. ft.
Hydr. Radius (R) =	0.40 ft
Freeboard =	0.25 ft
Velocity of Flow (V) =	9.96 fps
Flow Capacity (Q) =	31.14 cfs
Froude number, F =	1.57 >1, supercritical flow

Appendix E CHA Project No.: 18301.1026.43000

CHA

PROJECT DATA:

Project:	18301-1015
Calc. by:	JDM
Date:	March 2013
Swale ID:	DA F - Min

EQUATIONS:

$$\begin{split} & \text{Manning's Equation, V} = (1.49/n) R^{2/3} S^{1/2} \\ & \text{Froude number, F} = V/(gd)^{1/2} \\ & \text{Q} = VA \\ & \text{d75} = 12(118 Q S_b^{13/6} R/P)^{2/5} \end{split}$$

INPUT:

Base width (b) =	1.0 ft	
Sideslope (z) =	2 on 1	
Depth of flow (d) =	0.75 ft	
Swale Depth=	1.00 ft	
Manning's n =	0.035	TRM
Slope of ditch $(s) =$	0.0300 ft/ft	

OUTPUT:

4.35 ft
1.88 sq. ft.
0.43 ft
0.25 ft
4.19 fps
7.86 cfs
0.85 < 1, subcritical flow

Appendix E CHA Project No.: 18301.1026.43000

CHA

PROJECT DATA:

Project:	18301-1015
Calc. by:	JDM
Date:	March 2013
Swale ID:	DA F - Max

EQUATIONS:

$$\begin{split} & \text{Manning's Equation, V} = (1.49/n) R^{2/3} S^{1/2} \\ & \text{Froude number, F} = V/(gd)^{1/2} \\ & \text{Q} = VA \\ & \text{d75} = 12(118 \text{QS}_{b}^{13/6} \text{R/P})^{2/5} \end{split}$$

INPUT:

Base width (b) =	1.0 ft	
Sideslope (z) =	2 on 1	
Depth of flow (d) =	0.75 ft	
Swale Depth=	1.00 ft	
Manning's n =	0.035	TRM
Slope of ditch $(s) =$	0.2000 ft/ft	

OUTPUT:

4.35 ft
1.88 sq. ft.
0.43 ft
0.25 ft
10.83 fps
20.30 cfs
2.20 >1, supercritical flow

Appendix E CHA Project No.: 18301.1026.43000

CHA

PROJECT DATA:

Project:	18301-1015
Calc. by:	JDM
Date:	March 2013
Swale ID:	DA G - Min

EQUATIONS:

$$\begin{split} & \text{Manning's Equation, V} = (1.49/n) R^{2/3} S^{1/2} \\ & \text{Froude number, F} = V/(gd)^{1/2} \\ & \text{Q} = VA \\ & \text{d75} = 12(118 Q S_b^{13/6} R/P)^{2/5} \end{split}$$

INPUT:

Base width (b) =	1.0 ft	
Sideslope (z) =	2 on 1	
Depth of flow (d) =	0.75 ft	
Swale Depth=	1.00 ft	
Manning's n =	0.035	TRM
Slope of ditch (s) =	0.0150 ft/ft	

OUTPUT:

Wet Perimeter (P) =	4.35 ft
Area of Flow (A) =	1.88 sq. ft.
Hydr. Radius (R) =	0.43 ft
Freeboard =	0.25 ft
Velocity of Flow (V) =	2.96 fps
Flow Capacity (Q) =	5.56 cfs
Froude number, F =	0.60 < 1, subcritical flow

Appendix E CHA Project No.: 18301.1026.43000

CHA

PROJECT DATA:

Project:	18301-1015
Calc. by:	JDM
Date:	March 2013
Swale ID:	DA G - Max

EQUATIONS:

$$\begin{split} & \text{Manning's Equation, V} = (1.49/n) R^{2/3} S^{1/2} \\ & \text{Froude number, F} = V/(gd)^{1/2} \\ & \text{Q} = VA \\ & \text{d75} = 12(118 \text{QS}_{b}^{13/6} \text{R/P})^{2/5} \end{split}$$

INPUT:

Base width (b) =	1.0 ft	
Sideslope (z) =	2 on 1	
Depth of flow (d) =	0.75 ft	
Swale Depth=	1.00 ft	
Manning's n =	0.035	TRM
Slope of ditch (s) =	0.1000 ft/ft	

OUTPUT:

Wet Perimeter (P) =	4.35 ft
Area of Flow (A) =	1.88 sq. ft.
Hydr. Radius (R) =	0.43 ft
Freeboard =	0.25 ft
Velocity of Flow (V) =	7.66 fps
Flow Capacity (Q) =	14.35 cfs
Froude number, F =	1.56 >1, supercritical flow

Appendix E CHA Project No.: 18301.1026.43000

CHA

PROJECT DATA:

Project:	18301-1015
Calc. by:	JDM
Date:	March 2013
Swale ID:	Culvert 1 Outlet Swale

EQUATIONS:

$$\begin{split} & \text{Manning's Equation, V} = (1.49/n) R^{2/3} S^{1/2} \\ & \text{Froude number, F} = V/(gd)^{1/2} \\ & \text{Q} = VA \\ & \text{d75} = 12(118 Q S_b^{13/6} R/P)^{2/5} \end{split}$$

INPUT:

Base width (b) =	1.0 ft	
Sideslope (z) =	2 on 1	
Depth of flow (d) =	0.75 ft	
Swale Depth=	1.00 ft	
Manning's n =	0.035	Rip-Rap
Slope of ditch (s) =	0.0130 ft/ft	

OUTPUT:

4.35 ft
1.88 sq. ft.
0.43 ft
0.25 ft
2.76 fps
5.18 cfs
0.56 < 1, subcritical flow

Appendix E CHA Project No.: 18301.1026.43000

CHA

TRAPEZOIDAL/V-SHAPE SWALE CAPACITY

PROJECT DATA:

Project:	18301-1015
Calc. by:	JDM
Date:	March 2013
Swale ID:	Culvert 2 Outlet Swale

EQUATIONS:

$$\begin{split} & \text{Manning's Equation, V} = (1.49/n) R^{2/3} S^{1/2} \\ & \text{Froude number, F} = V/(gd)^{1/2} \\ & \text{Q} = VA \\ & \text{d75} = 12 (118 \text{QS}_{b}^{13/6} \text{R/P})^{2/5} \end{split}$$

INPUT:

Base width (b) =	1.0 ft	
Sideslope (z) =	2 on 1	
Depth of flow (d) =	0.75 ft	
Swale Depth=	1.00 ft	
Manning's n =	0.035	Rip-Rap
Slope of ditch (s) =	0.0090 ft/ft	

OUTPUT:

Wet Perimeter (P) =	4.35 ft
Area of Flow (A) =	1.88 sq. ft.
Hydr. Radius (R) =	0.43 ft
Freeboard =	0.25 ft
Velocity of Flow (V) =	2.30 fps
Flow Capacity (Q) =	4.31 cfs
Froude number, F =	0.47 <1, subcritical flow

Appendix E CHA Project No.: 18301.1026.43000

Appendix F

Shear Stress Calculations

ID

1

2

3

4

5

6

8

9

Swale

DA A

DA C

DA D

DA B

Slope

(ft/ft)

0.11

0.25

0.30

0.10

0.26

0.15

0.23

0.11

0.25

0.52

TT 1 1.	May Flaw	Aviana aa	Mar	Design Shear	Vegetated Turf	Reinforcement Mat
Radius (ft)	Depth ¹ (ft)	Shear Stress (lb/ft ²)	Shear Stress (lb/ft ²)	Stress ² (lb/ft ²)	Permissible Shear Stress (lb/ft ²)	Classification
0.25	0.57	1.75	3.91	3.91	8.00	Landlock TRM 450
0.31	0.27	4.90	4.21	4.90	8.00	Landlock TRM 450
0.09	0.11	1.68	2.06	2.06	8.00	Landlock TRM 450
0.21	0.44	1.30	2.75	2.75	8.00	Landlock TRM 450
0.28	0.17	4.42	2.71	4.42	8.00	Landlock TRM 450
0.18	0.40	1.62	3.62	3.62	8.00	Landlock TRM 450
0.38	0.10	5.34	1.40	5.34	8.00	Landlock TRM 450

8.00

Landlock TRM 450

3.57

DA E 0.19 Landlock TRM 450 11 0.19 0.61 2.29 7.23 7.23 8.00 12 0.03 0.21 0.31 0.39 0.58 0.58 8.00 Landlock TRM 450 DA F 13 0.20 0.19 1.77 Landlock TRM 450 0.14 2.37 2.37 8.00 0.29 0.48 0.02 0.31 0.51 0.48 8.00 Landlock TRM 450 14 DA G 15 0.10 0.22 0.32 1.35 2.00 2.00 8.00 Landlock TRM 450 Culvert 1 16 0.01 0.11 0.07 0.09 8.00 Landlock TRM 450 0.09 0.09 Culvert 2 17 0.01 0.13 0.17 0.07 0.10 0.10 8.00 Landlock TRM 450

3.57

¹Max flow depth based on 10-year design storm

²Shear stress used to design swale armoring. Largest value among the average and maximum shear stresses.

1.69

|--|

Appendix G

Outlet Protection Calculations

			10 D I		Min. Required Dimensions ⁵			
Design Point	Discharging Structure	Outlet Velocity (ft/sec)	Discharge (ft ³ /sec)	Outlet Structure Type	L_a^{1} (ft)	W ₁ ² (ft)	$ \begin{array}{c} W_2^3 \\ (ft) \end{array} $	Lining Specification
DA A		9.80	3.53		30	Sized	in field	
DA B	4.64	4.64	0.61	Vegetated High	20	base	ed on	Puramat ® by SI
DA C		9.11	2.58	Performance Turf	30	gradiı	ng and	Geosolutions
DA D	Swale	10.56	1.64	Reinforcement Mat	Reinforcement Mat 20 easement	ment	Geosolutions	
DA E		6.16	4.43		50	const	raints	
DA F		2.60	1.28	Type A	10	3	10	Modified Rip Rap
DA G		2.40	2.43	Riprap Apron	10	3	10	Modified Rip Rap

 ${}^{1}L_{a}$ values determined using Table 11-12.1 and 11-13.1 of the ConnDOT Drainage Manual.

 $^{2}W_{1}$ = width of apron at pipe outlet

 $^{3}W_{2}$ = width of apron at terminus

⁴Riprap specification selected from Table 11.11 of the ConnDOT Drainage Manual

⁵Dimensions represent minimum acceptable parameters based on calculations. Actual dimensions selected for use may differ.

Appendix H

Hydrologic Calculations

Proposed Drainage Analysis								
Drainage Area/	ainage Area/ Area Composite sign Point (acres) C	Composite	T _c	I (in/hr)		Q (cfs)		
Design Point		(min)	10-year	25-year	10-year	25-year ¹		
DA A	1.76	0.42	10.00	4.80	5.50	3.53	4.45	
DA B	0.27	0.47	10.00	4.80	5.50	0.61	0.76	
DA C	1.25	0.43	10.00	4.80	5.50	2.58	3.25	
DA D	3.28	0.10	10.00	4.80	5.50	1.64	2.07	
DA E	2.16	0.43	10.00	4.80	5.50	4.43	5.59	
SDA E1	0.05	0.53	10.00	4.80	5.50	0.13	0.17	
SDA E2	0.10	0.47	10.00	4.80	5.50	0.23	0.30	
DA F	0.56	0.47	10.00	4.80	5.50	1.28	1.61	
DA G	1.33	0.40	12.00	4.50	5.10	2.43	3.03	

¹Frequency Factor for 25-year recurrence intervall is 1.1 (Table 6-2 of ConnDOT Drainage Manual)

	Recurrence
C_{f}^{1}	Interval
1.1	25
1.2	50
1.25	100

FIGURES

Figure 1

Site Location Map

DATE: 4/12/2013 11:06 AM FILE: W:\SAI CINGULAR\18301\SITES\1026 FALLS VILLAGE 2413\MISC\DRAINAGE_MARCH 2013\FIGURE 1 AND 2.DWG

Figure 2

Soils Map

DATE: 4/12/2013 11:06 AM FILE: W:\SAI CINGULAR\18301\SITES\1026 FALLS VILLAGE 2413\MISC\DRAINAGE_MARCH 2013\FIGURE 1 AND 2.DWG

Figures 3A-3E

Existing Site

	NEW CINGULAR WIRELESS PCS, LLC 500 ENTERPRISE DRIVE ROCKY HILL, CT 06067
	SALEM, NH 03079
	2199 Bits Deens Highway, Sule 212 - Rocky Hil, CT 00067-2398 Maix: (880) 257-4557 - www.chacompanies.com CHA PROJECT NO: 18301 - 1026 - 43000
	0 05/19/10 REPORT FIGURE BY: RKW CHK: PAL APP'D: JPS 1 09/23/10 REPORT FIGURE BY: JDM CHK: DP JPS 2 04/02/13 REPORT FIGURE JPS JPS JPS 9Y: JDM CHK: KDT APP'D: JPS
VEL	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
EMENT RIGHT OF WAY FOR ALL WHICH A PUBLIC HIGHWAY NOW MAY BE USED, INCLUDING PUBLIC BEING 30 FEET WIDE, 15 FEET ON THE CENTERLINE OF A ROADWAY LAID OUT ACROSS PARCEL 2 & FROM BARNS ROAD TO OTHER BAKER.	SITE ID: SR2413 SITE NAME: FALLS VILLAGE/CANAAN SITE ADDRESS: 8 BARNES ROAD FALLS VILLAGE, CT 06031 LITCHFIELD COUNTY
LARVEL Z MAP REF. NO. 3	SHEET TITLE EXISTING SITE
	sheet number FIGURE 3A

Figures 4A-4F

Drainage Areas

Figures 5A-5F

Proposed Access Drive Drainage

Figure 6

Drainage Detail

