

445 Hamilton Avenue, 14th Floor White Plains, New York 10601 Tel 914.761.1300 Fax 914.761.5372 www.cuddyfeder.com

March 14, 2011

BY EMAIL & OVERNIGHT DELIVERY

Ms. Linda Roberts
Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, Connecticut 06051

Re:

Docket 404 - D&M Plan

New Cingular Wireless ("AT&T")

28 Great Oak Lane, Redding, Connecticut

Dear Ms. Roberts:

On behalf of New Cingular Wireless PCS LLC ("AT&T"), please accept for review and Council approval this Development Management Plan ("D&M Plan") filing for the captioned Facility as approved in Docket 404. Please note that this submission replaces AT&T's prior submission dated March 11, 2011 in its entirety.

Tower, Compound & Other Equipment

Enclosed are fifteen (15) sets of 11"x 17" construction drawings being filed in accordance with the Siting Council's ("Council") Decision and Order dated January 20, 2011 ("Decision and Order"). Two full-sized sets of the construction drawings will follow separately. The D&M Plan incorporates a 180' pole, tower compound and AT&T shelter as provided for in the Council's Order No. 1 in this Docket. AT&T will install a total of nine (9) panel antennas and nine (9) tower mounted amplifiers (TMAs) at centerline heights of 177', 167' and 157' AGL. The D&M Plan also includes site clearing, drainage, and erosion and sedimentation control measures consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control as amended. Enclosed, please also find a geotechnical report and tower and foundation drawings for the facility. Specifications for AT&T's antennas and backup generator are also enclosed.

Required Notifications

In accordance with the provisions of RCSA Section 16-50j-77, AT&T hereby notifies the Council of its intention to begin site work immediately after Council approval of the D&M Plan. Construction of the tower and other site improvements will commence upon issuance of a local building permit. The supervisor for all construction related matters on this project is Bryon Morawski of SAI. Mr. Morawski is located at 500 Enterprise Drive, Suite 3A, Rocky Hill, CT 06067 and can be reached by telephone at (860) 513-7223.

CUDDY& FEDER

Docket 404: AT&T D&M Plan

March 14, 2011

Page 2

We respectfully request that this matter be included on the Council's next available agenda for review and approval.

Thank you for your consideration of the enclosed.

Very truly yours,

Christopher B. Fisher

Enclosures

cc: Natalie Ketcham, Redding First Selectman

Michele Briggs, AT&T

ATTACHMENT 1

DR. CLARENCE WELTI, P.E., P.C.

GEOTECHNICAL ENGINEERING

227 Williams Street • P.O. Box 397 Glastonbury, CT 06033 (860) 633-4623 / FAX (860) 657-2514

July 7, 2008

Mr. Douglas J. Roberts, AIA URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067

Ref: Geotechnical Study for Proposed Tower at Redding Highway Department 28 Great Oak Lane, Redding, CT

Dear Doug:

- 1.0 Herewith are the data from the test boring and probes taken at the above referenced site. One boring was drilled at the proposed tower center location to a depth of 31.5 feet. Three probes were drilled to a depth of 10 feet. The boring and probe locations location is shown on the attached plan. The boring and probes were drilled by Clarence Welti Associates, Inc. and sampling was conducted by this firm solely to obtain indications of subsurface conditions as part of a geotechnical exploration program. No services were performed to evaluate subsurface environmental conditions.
- 2.0 The **Subject Project** will include the construction of a 150 foot high flagpole tower at the Redding Highway Department. The tower center is located about 23 feet in back of an existing garage.
- 3.0 The Soils Cross Section from the boring an probes is generally as follows:

FILL; fine to coarse SAND, some Asphalt Fragments and Gravel, little Silt to 3 feet Fine SAND and SILT to 1.5 feet

Fine to medium SAND, some Silt and Gravel, few Cobbles to about 15 feet, dense

Decomposed Rock to 31.5+ feet, very dense

- 3.1 The **Ground Water Table** was at 7 to 9 feet below the existing grades at the completion of the boring.
- 4.0 In general the criteria for tower support is that the foundation capacity would exceed the loads, which might collapse the tower. Movements from strains in the soils should be limited to

differential settlement (or lateral movements of less than ½").

5.0 The tower foundation type could be with a large mat. The weight of the mat would provide the required resistance to over turning. The foundation can be placed on the natural inorganic soils at least 4 feet below grade or on controlled fill placed after the removal of any existing fills and organic soils. The controlled fills should conform to section 6.0 below and should extend outside the foundations for a distance equal to at least the depth of fill below the foundations. There should be a minimum 6" layer of 3/8" crushed stone beneath foundations on the natural soils. The allowable loading on the natural soils or on the controlled fill can be 2 Tons/sf.

5.1 The following is a summary the soil properties and design values for the mat foundation.

Soil Property/Parameter	Value
Soil Unit Weight (Backfill)	125 pcf
Soil Unit Weight (Natural)	135 pcf
Soil Unit Weight Submerged (Natural)	75 pcf
Angle of Internal Friction (φ)	34°
Cohesion	0
Pull Out Angle from Vertical	30°
Sliding Coefficient	0.6
Frost Protection Depth (by code)	3.5 feet
Allowable Soil Bearing Pressure on the natural inorganic soil at 4+ feet below grade or on controlled fill	2 Tons/sf

5.2 An alternative to the mat would be a drilled pier/caisson foundation. The caisson shall have a minimum embedment depth of 20 feet. The actual depth is to be determined by the designer to provide the required resistance to uplift and overturning forces as well as maintaining the allowable lateral deflection**. The following is summary of design parameters for the caisson foundation:

Parameter Parameter	Value
Allowable Bearing for Caisson at 20 + feet	5 Tons/sf
Allowable Side Resistance (friction) at 4 to 10 feet below grade	300 psf

Allowable Side Resistance (friction) at 10+ feet below grade	600 psf
Soil Unit Weight	135 pcf
Soil Unit Weight (submerged)	75 pcf
Angle of internal friction	36°
Lateral Loading (at rest coefficient)	0.45
Lateral Loading (passive coefficient)	5.0
Coefficient of Lateral Subgrade Reaction (k ₁) from 4 feet below grade to bottom ***	80 pci *

^{*} These parameters should be used to evaluate lateral deflection at top of caisson.

6.0 Regarding **Controlled Fill** (if required) the material shall conform to the following or be 3/8" crushed stone.

Percent Passing	Sieve Size
100	3.5"
50 - 100	3/4"
25 - 85	No.4

The fraction, passing the No.4 sieve shall have less than 15% passing the No. 200 sieve.

All backfill and fill must be compacted to at least 95% of modified optimum density in accordance with ASTM D-1557.

The crushed stone could be placed in lifts up to 1 feet thick. It should be compacted with a minimum of 4 passes with a 750 lb compactor.

7.0 The soils at the subject site are generally in OSHA class C which would require excavations that are in excess of 5 feet to have slopes which are less than 34° i.e. 1.5H to 1.0V.

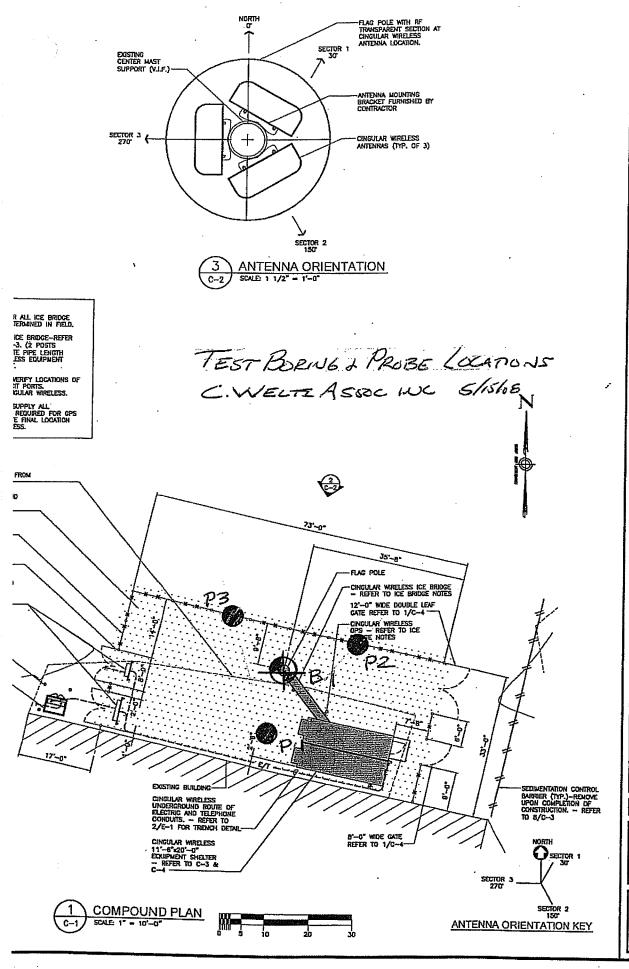
8.0 This report has been prepared for specific a application to the subject project in accordance with generally accepted soil and foundation engineering practices. No other warranty, express or implied, is made. In the event that any changes in the nature, design and location of structures are planned,

^{**} Typically this value would be about 1/2", higher values may be acceptable to the owner

^{***} k_1 is horizontal subgrade reaction for a 12" wide caisson at 1 foot depth, the value of $k = k_1$ (Z/B), where Z = Depth and B = Caisson Diameter

the conclusions and recommendations contained in this report should not be considered valid unless the changes are reviewed and conclusions of this report modified or verified in writing.

The analyses and recommendations submitted in this report are based in part upon data obtained from referenced explorations. The extent of variations between explorations may not become evident until construction. If variations then appear evident, it will be necessary to re-evaluate the recommendations of this report.


Dr. Clarence Welti, P.E., P.C., should perform a general review of the final design and specifications in order that geotechnical design recommendations may be properly interpreted and implemented as they were intended.

If you have any questions please call me.

May Wate

Very truly yours

Max Welti, P. E.

AME FIRM

uas corporation aes

500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT 1-(860)-529-8882

AME SEAL

PROJECT NO: 36924697

JOB NO:

SAI--027

RRH

DRAWN BY:

CHECKED BY:

Г	ISS	UED	FOR
Α	05-02-08	REVIEW	
<u> </u>			
<u> </u>			
<u> </u>			
Ŀ			
<u> </u>			
1	1 1		

THE INFORMATION CONTAINED IN THIS SET OF DOCUMENTS IS PROPRIETARY BY NATURE. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO CINGULAR WIRELESS IS STRICTLY PROHIBITED.

REDDING HIGHWAY DEPARTMENT

28 GREAT OAK LANE REDDING, CONNECTICUT 06896

SCALE:

AS NOTED

COMPOUND PLAN AND FLAG POLE ELEVATION

C-2

	ARENC BOX 39	E WELTI	ASSOC.,	INC.	ENT		PROJECT NAME CELL TOWER	@ REDDIN	G HIGHV	VAY DEPT.
		URY, CONN	06033			URS	LOCATION	OAKLANE	DEDDI	NO OT
		AUGER	CASING	SAMPLER	CORE E	Amagan	28 GREAT SURFACE ELEV	HOLE		B-1
TYPE		HSA		SS		LINE & STA.	GROUND WATER OBS		START	
SIZE I.I	Э,	3.75"		1.375"		N. COORDINATE	AT 8.7 FT. AFTER		DATE	5/15/08
HAMM	ER WT.			140 lbs) (he		AT FT. AFTER	HOURS	FINISH	5/15/08
НАММ	ER FALL			30"		I. COOKDINATE			DATE	
DEPTH	NO.	SAM BLOWS/6"		PTH A		STRAT	UM DESCRIPTION + REMARKS			ELEV.
0	1	19-10-12-1		-2.00'		BLACK FINE-CRS.SAND, S	OME ASPHALT FRAGM	ENTS &	···	
						GRAVEL, LITTLE SILT - FIL	L .			
	2	9-11-13-16	2.00'-	-4.00'						
						GREY FINE-MED. SAND, S COBBLES	OME SILT & GRAVEL, F	EW		3.0
5 –	3	17-60	4.00'-	-5.00'		COBBLEG				
J					::::::::					
					_					
		***************************************			_					
					-					
10 -	4	10-23-28	10.00'-	.11.50'						
		10-23-20	10.00	-11.50						
					-					
		······								
		·····								
15 –	5	9-20-24	15.00'-	16.50'		BR./GREY DECOMPOSED	ROCK		\ <u>1</u>	5.0
					_					
					_					
20 -					_		•			
	6	15-60	20.00'-	21.00'		,				
					-					
					_					
ŀ					-					
25 –	7	32-60	25.00'-2	25.67'	-					
					-					
l					7					
ľ										
30										
30 7	8	19-32-60	30.00'-3	31.50'						
L						BOTTOM OF BORING @ 31	.5'		31	.5
					_	~				
			_		_					
35										
LEGEN	D: COL.	A:RECOVE	RY"				DRILLER: D. BROMI INSPECTOR:	_EY		
						PISTON S=SPLIT SPOON	ANSPECTOR:			
PROPC	RTIONS	USED: TRA	CE=0-10% LI	ITTLE=10-20%	SOME=20	-35% AND=35-50%	SHEET 1 OF .1	HOLE NO.		B-1

CLARENCE P.O. BOX 397		\SSOC., I	NC.	:NT		PROJECT NAME CELL TOWER @	REDDIN	G HIGHW	AY DEPT.
GLASTONBU	RY, CONN	06033			URS	LOCATION 28 GREAT O	AKIANE	REDDIN	G CT
	AUGER	CASING	SAMPLER	CORE BAI		SURFACE ELEV.	HOLE	-	P-1
TYPE	HSA				LINE & STA.	GROUND WATER OBSE	WATIONS	START	
SIZE I.D.	3.75"				N. COORDINATE	AT NONE FT. AFTER (DATE	5/15/08
IAMMER WT.					E. COORDINATE	AT FT AFTER	HOURS	FINISH	5/15/08
HAMMER FALL								DATE	
DEPTH NO.	SAMI BLOWS/6"		PTH A		STRAT	UM DESCRIPTION + REMARKS			ELEV
10 15 20					FRAGMENTS, LITTLE SILT GREY FINE-MED. SAND, S COBBLES	OME SILT & GRAVEL, FE	w		
30 35 JEGEND: COL. A						DRILLER: D. BROMLE	Ϋ́		

CLARENC P.O. BOX 39 GLASTONBL	7		INC.	CLIE	N.L		PROJECT NAME CELL TOWER LOCATION			
	AUGER	CASING	SAMPL	ER	CORE BAR.	URS OFFSET	28 GREAT SURFACE ELEV.			
YPE	HSA	CASING	SS	.151	CORE BAR.	LINE & STA.		HOLE	NO.	P-2
IZE I.D.	3.75"		1.375	5"		7	GROUND WATER OBS		START DATE	5/15/08
AMMER WT.			140 lb			N. COORDINATE	AT 6.8 FT, AFTER			
AMMER FALL			30"			E. COORDINATE	AT FT. AFTER	HOURS	FINISH DATE	5/15/08
ЕРТН 118	SAM					STRAT	TUM DESCRIPTION			
NO.	BLOWS/6"	DEI	'TΗ			100 = 000 000 000	+ REMARKS .			ELE
10					G	RAVEL, TRACE SILT - FI	SOME SILT & GRAVEL, F			.0
35										
EGEND: COL. /	D=DRY A=A	AUGER C=CO				ON S=SPLIT SPOON	DRILLER: D. BROML INSPECTOR: .	EY		1

CL	ARENC	E WELTI	ASSOC	INC CLI	ENT		PROJECT NAME			
P.O	. BOX 39	7					CELL TOWER LOCATION	@ REDDIN	<u>G HIGHW</u>	AY DEPT.
GLA	STONBL	JRY, CONN	06033			URS	28 GREAT	OAK LANE	. REDDIN	G, CT
	<u> </u>	AUGER	CASING	SAMPLER	CORE B	AR. OFFSET	SURFACE ELEV.	HOLE	NO.	P-3
TYPE		HSA				LINE & STA.	GROUND WATER OB	SERVATIONS	START	5/15/08
SIZE I.I		3.75"				N. COORDINATE	AT 8.8 FT. AFTER	0 HOURS	DATE	37 13700
	ER WT.					E. COORDINATE	AT FT. AFTER	HOURS	FINISH DATE	5/15/08
	ER FALL	SAM	DIE	l	<u> </u>	יויא נייניי	HA DECORPTION			
DEPTH	NO.	BLOWS/6"		PTH A			UM DESCRIPTION + REMARKS			ELEV.
5 - 10 - 20 -						BLACK FINE-CRS. SAND, L GRAVEL & SILT - FILL GREY FINE-MED. SAND, SI	OME SILT, LITTLE GRA			
30										
35										<u> </u>
		A:RECOVEI		ORE U=UNDIS	TURBED P	ISTON S=SPLIT SPOON	DRILLER: D. BROM INSPECTOR:	LEY		
						35% AND=35-50%	SHEET 1 OF 1	HOLE NO.	F	-3

ATTACHMENT 2

Structural Design Report

180' Slimline located at: Redding DPW, CT Site Number: 943

prepared for: SAI COMMUNICATIONS by: Sabre Towers & Poles TM

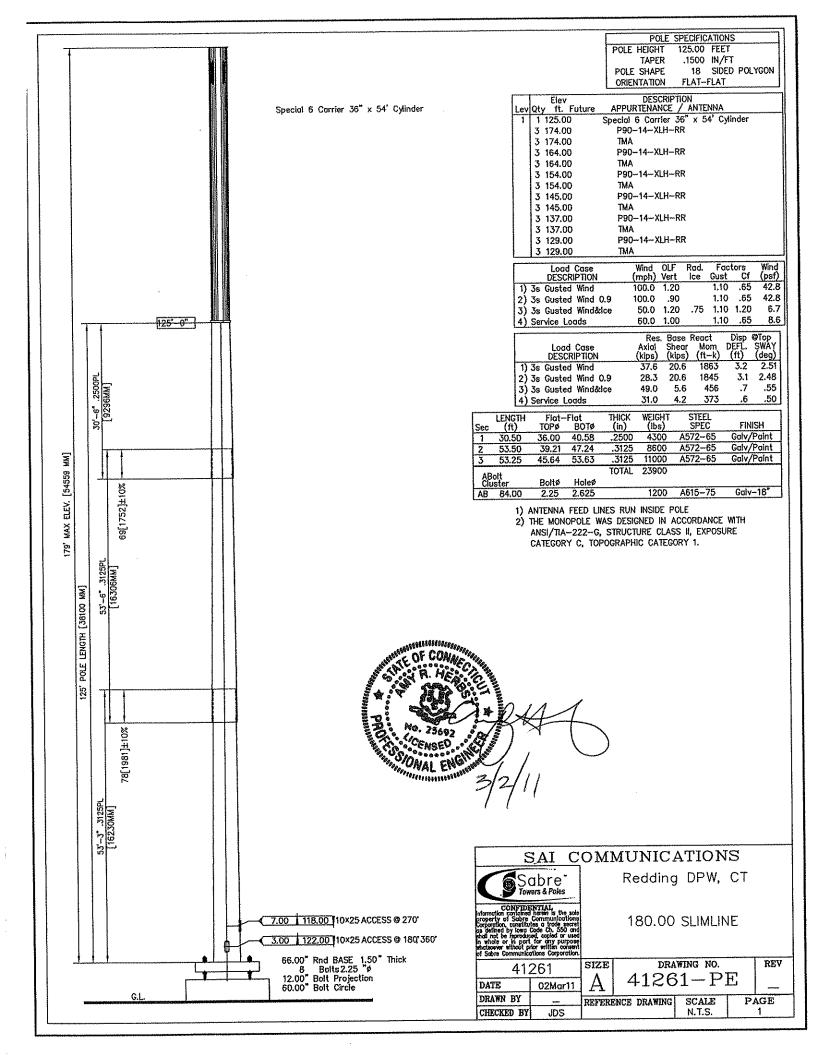
Job Number: 41261

March 2, 2011

Slimline Profile	1
Foundation Design Summary (Option 1)	2
Foundation Design Summary (Option 2)	3
Pole Calculation	C1-C6
Foundation Calculations	A1-A13

Monopole by

Foundation by

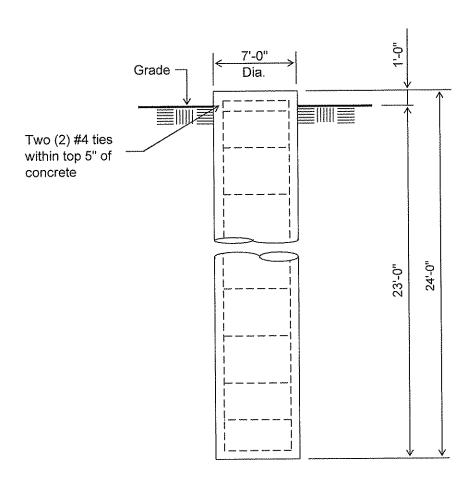

Approved by

No. 25602

No. 25602

CENSEO

CONAL ENGINEERS


No.: 41261 Page: 2 Date: 3/2/11 By: REB

Customer: SAI COMMUNICATIONS Site: Redding DPW, CT 943

180' Slimline at

100 mph Wind with no ice and 50 mph Wind with 0.75 in. Ice per ANSI/TIA-222-G-2005.

Antenna Loading per Page 1

ELEVATION VIEW

(34.21 Cu. Yds. each) (1 REQUIRED; NOT TO SCALE)

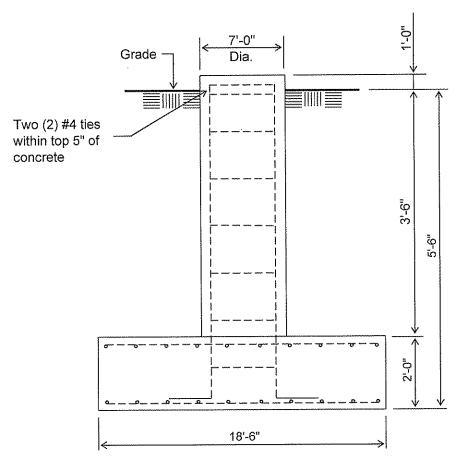
Notes:

- 1). Concrete shall have a minimum 28-day compressive strength of 4000 PSI, in accordance with ACI 318-05.
- 2). Rebars to conform to ASTM specification A615 Grade 60.
- 3). All rebar to have a minimum of 3" concrete cover.
- 4). All exposed concrete corners to be chamfered 3/4".
- 5). The foundation design is based on the geotechnical report by Dr. Clarence Welti, P.E., P.C., dated: 7/7/08
- 6). See the geotechnical report for drilled pier installation requirements, if specified.
- 7). The foundation is based on the following factored loads:
 Moment (kip-ft) = 1863.33
 Axial (kips) = 37.578
 Shear (kips) = 20.634

MO. 25692 MO. 25692 CONNECTION MO. 25692 CONNECTION MO. 25692
--

	Rebar Schedule per Pier
Pier	(36) #8 vertical rebar w/#4 ties, two within top 5" of pier then 12" C/C

Information contained herein is the sole property of Sabre Towers & Poles, constitutes a trade secret as defined by lowa Code Ch. 550 and shall not be reproduced, copied or used in whole or part for any purpose whatsoever without the prior written consent of Sabre Towers & Poles.


No.: 41261 Page: 3 Date: 3/2/11 By: REB

Customer: SAI COMMUNICATIONS
Site: Redding DPW, CT 943

180' Slimline at

100 mph Wind with no ice and 50 mph Wind with 0.75 in. Ice per ANSI/TIA-222-G-2005.

Antenna Loading per Page 1

ELEVATION VIEW

(31.77 Cu. Yds. each) (1 REQUIRED; NOT TO SCALE)

Notes:

- 1). Concrete shall have a minimum 28-day compressive strength of 4000 PSI, in accordance with ACI 318-05
- 2). Rebar to conform to ASTM specification A615 Grade 60.
- 3). All rebar to have a minimum of 3" concrete cover.
- 4). All exposed concrete corners to be chamfered 3/4".
- 5). The foundation design is based on the geotechnical report by Dr. Clarence Welti, P.E., P.C., dated: 7/7/08
- 6). See the geotechnical report for compaction requirements, if specified.
- 7). The foundation is based on the following factored loads:
 Moment (kip-ft) = 1863.33
 Axial (kips) = 37.578
 Shear (kips) = 20.634

Mo. 25692 H. Mo. 2
--

		Rebar Schedule per Pad and Pier
1		(36) #8 vertical rebar w/hooks at bottom
	Pier	w/#4 ties, two within top 5" of top of pier then
		12" C/C
	Pad	(20) #8 horizontal rebar evenly spaced each
	Pau	way top and bottom (80 Total)

Information contained herein is the sole property of Sabre Towers & Poles, constitutes a trade secret as defined by Iowa Code Ch. 550 and shall not be reproduced, copied or used in whole or part for any purpose whatsoever without the prior written consent of Sabre Towers & Poles.

SABRE COMMUNICATIONS CORP	JOB: 00-41261	02-Mar-11 07:56
2101 Murray Street	SAI COMMUNICATIONS	Ph 712.258.6690
Sioux City, IA 51101	Redding DPW, CT	Fx 712.258.8250

TOP DIAMETER 36.00 in. [36.56 in. Point-Point] 53.63 in. [54.45 in. Point-Point] 125.00 ft. 18 SIDED FLAT ORIENTATION ABOVE GROUND 29000 ksi [12000 ksi SHEAR MODULUS]

APPURTENANCES -

ATTACH POINTS: NO. X,ft Qty Description Status
1 125.00 1 Standard 6 Carrier (2P) 100mph Initial Appurt

Pole	Bottom	Thick	Connect	LAP	Taper	Length	Weight	Steel	Pole
Section	X,ft.	in.	Type	in.	in/ft	ft.	lbs	Spec	Finish
1	30.50	.25000	SLIP-JNT	69.	.1500	30.50	3132	A572-65	GALV/PAINT
2	78.25	.31250	SLIP-JNT	78.	.1500	53.50	7748	A572-65	GALV/PAINT
3	125.00	.31250	C-WELD		.1500	53.25	8863	A572-65	GALV/PAINT

ç	ECTION	PROPE	פתדתפ		ar gardin en				and the state of t		
_		UP,ft	D,in	T,in	Area in²	Iz in ⁴	IxIy in ⁴	SxSy in ³	w/t	d/t	F _y (ksi)
	16.75 11.75 6.75 1.75	00000005550000000005550000000000000000	05050168383838386916161616163 07520790853085302363186318636 667899900112333 333333333444444444444444444444444	00000005555555555555555555555555555555	76655134837160597027150493728 39517334196419635796419631868 8890011990011233344444444444444444444444444444444	91746982659961890961890961890961890961890961890961991111111111	4814991 4814991 4814991 554838089603555333725163113224404831163113244048311631155446311122440483116311564163111224332	52125490993980524346189297932 012345490993980524346189297932 5678908880162730637052246791421007 2222223333344444449555555556666666666666666666	36914595702469134146813580259 61627278271593823459382605934 344555600112222334444445556677788 22222222222222222222222222222222	000000992604826040426048260486 4703687803570257889146881368801 14155555223333444444455556666801 141666677	65.00 TOP P06 65.00 65.00 65.00 Slip-B01 65.00 Slip-T02 65.00 Slip-T02 65.00 65.00 65.00 65.00 Slip-B02 65.00 Slip-B02 65.00 Slip-T03 65.00 Slip-T03 65.00 Slip-T03 65.00 BASE

SABRE COMMUNICATIONS CORP JOB: 00-41261	02-Mar-11 07:56
2101 Murray Street SAI COMMUNICATIONS Sioux City, IA 51101 Redding DPW, CT	Ph 712.258.6690 Fx 712.258.8250
	ANSI-TIA-222-G
DESIGN ICE .00 in EXP-POWER COEFF2105 GUST FACTOR (Gh) 1.10 REFERENCE HEIGHT 900.0 ft FORCE COEFF (Cf) .65 PRESSURE @ 32.7 ft 42.8 ps IMPORTANCE FAC (I) 1.00 BASE ABOVE Grd 1.0 DIRECTION FAC (Kd) .95 CREST HEIGHT .0 ft TOPOGRAPHIC CAT 1	
	59.2 5.76 -6.4**** .04 60.9 .00 -1.1 .00 60.9 .00 .0 .04 60.2 .00 -1.1 .00 60.2 .00 .0 .04 59.4 .00 -1.1 .00 59.4 .00 -1.1 .00 58.7 .00 -1.1 .00 58.7 .00 .0 .04 58.0 .00 -1.1 .00 58.0 .00 -1.1
3 TMA 129.0 8 .0 None 1	.00 57.2 .00 .0
WIND ICE	ps: F'y Inter 4.8.2 73.58 .120 .0 72.96 .139 .0 72.34 .160 .0 71.72 .181 .0 71.09 .203 .0 76.93 .185 .0 76.86 .187 .0 76.86 .222 .0 75.86 .2222 .0 75.86 .2239 .0 74.87 .275 .0 73.87 .292 .0 73.87 .292 .0 73.87 .311 .0 72.87 .3333 .0 72.66 .359 .0 72.75 .3633 .0 72.66 .359 .0 72.75 .3683 .0 72.52 .402 .0 77.52 .420 .0 70.52 .439 .0 70.52 .439 .0 70.52 .439 .0 69.53 .512 .0 68.03 .531 .0 67.86 .537
	ION, degrees Z XY-Result .00 2.51

SABRE COMMUNICATIONS CORP	JOB: 00-41261	02-Mar-11 07:56
	SAI COMMUNICATIONS Redding DPW, CT	Ph 712.258.6690 Fx 712.258.8250
CASE - 2: 3s Gusted Wind 0.9 Dead		-ANSI-TIA-222-G
WIND OLF 1.60	CHOTED WIND (2000) 100 0 mmb	-
# Qty Description E	enter WEIGHT AREA Tx-CABLE Line each each lev-Ft Lbs Ft^2 Type Qty #/Ft	FORCES MOM. WIND Tra-Y Ax-Z Lg-X Psf Kips Kips Ft-K
1 1 Standard 6 Carrier (2P) 100mph 3	125.0 5300 97.2 174.0 52 .0 1 5/8" 6 1.04 174.0 8 .0 None 1 .00 164.0 52 .0 1 5/8" 6 1.04 164.0 52 .0 1 5/8" 6 1.04 154.0 52 .0 1 5/8" 6 1.04 154.0 52 .0 1 5/8" 6 1.04 154.0 52 .0 1 5/8" 6 1.04 145.0 52 .0 1 5/8" 6 1.04 145.0 8 .0 None 1 .00 137.0 52 .0 1 5/8" 6 1.04 137.0 8 .0 None 1 .00 137.0 8 .0 None 1 .00 129.0 52 .0 1 5/8" 6 1.04 129.0 8 .0 None 1 .00	58.0 .008
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RCES, kips:MOMENTS, ft-kips- Sheary AxiaZ BendY Tore 6.19 -9.9 -155.5 .0 7.63 -10.8 -223.1 .0 8.22 -11.3 -261.3 .0 9.39 -12.6 -344.2 .0 9.74 -13.1 -391.1 .0 10.09 -13.6 -398.4 .0 11.29 -15.0 -502.3 .0 11.89 -15.7 -502.3 .0 11.89 -15.7 -618.2 .0 11.89 -15.7 -618.2 .0 11.89 -15.7 -746.0 .0 11.89 -15.7 -746.0 .0 11.89 -15.7 -746.0 .0 13.68 -17.7 -746.0 .0 13.68 -17.7 -746.0 .0 13.68 -17.7 -746.0 .0 15.39 -20.3 -979.2 .0 15.30 -21.9 -1162.5 .0 17.41 -23.5 -11246.7 .0 17.95 -24.3 -1334.2 .0 18.50 -25.1 -1424.2 .0 19.05 -26.7 -15116.7 .0 19.60 -26.7 -15116.7 .0 20.16 -27.6 -1709.2	F'y Inter qZ ksi 4.8.2 .0 73.58 .118 .0 72.96 .137 .0 72.34 .157 .0 71.72 .177 .0 71.09 .199 .0 76.50 .220 .0 76.86 .181 .0 76.86 .184 .0 76.36 .234 .0 75.86 .217 .0 75.86 .217 .0 74.87 .269 .0 74.87 .322 .0 74.87 .322 .0 72.65 .3558 .0 72.65 .3558 .0 72.65 .3558 .0 72.02 .376 .0 71.52 .395 .0 71.52 .395 .0 71.52 .395 .0 71.52 .458 .0 70.02 .458 .0 70.02 .458 .0 70.02 .458 .0 70.02 .458 .0 70.02 .458 .0 70.02 .458 .0 70.02 .458 .0 70.02 .458 .0 70.02 .458 .0 70.02 .458 .0 70.02 .458 .0 70.02 .458 .0 70.02 .458 .0 70.02 .458 .0 70.02 .458 .0 69.03 .486 .0 68.53 .504 .0 68.53 .529
DISPLACEMENTS ELEV DEFLECTION feet X, ft X Y Z Z 125.00 .00 3.1205	XY-Result X Y 3.12< 2.49%> -2.48 .00	, degrees Z XY-Result .00 2.48

SABRE COMMUNICATIONS CORP 2101 Murray Street	JOB: 00-41261 SAI COMMUNICATIONS	02-Mar-11 07:56 Ph 712.258.6690
Sioux City, IA 51101		Fx 712.258.8250
CASE - 3: 3s Gusted Wind&Ice		ANSI-TIA-222-G
WIND OLF 1.00 VERTICAL OLF 1.20 DESIGN ICE .75 in	GUSTED WIND (3sec) 50.0 mph EXP-CAT/STRUC CLASS C-II	80.5 kph
FORCE COEFF (Cf) 1.10 FORCE COEFF (Cf) 1.20 IMPORTANCE FAC (I) 1.00 DIRECTION FAC (Kd) .95 TOPOGRAPHIC CAT 1	EXP-POWER COEFF2105 REFERENCE HEIGHT 900.0 ft PRESSURE @ 32.7 ft 6.7 psf BASE ABOVE Grd 1.0 CREST HEIGHT .0 ft	320.0 Pa
APPURTENANCE LOADS	Conton METCHE ADEA Ex CADIE	EODOEC MOM
# Qty Description E	Center WEIGHT AREA Tx-CABLE Line each each Llev-Ft Lbs Ft^2 Type Qty #/Ft	FORCES MOM. WIND Tra-Y Ax-Z Lg-X Psf Kips Kips Ft-K
1 1 Standard 6 Carrier (2P) 100mph 3	125.0 5830 106.9 174.0 84 .0 1 5/8" 6 1.04 174.0 11 .0 None 1 .00 164.0 84 .0 1 5/8" 6 1.04 164.0 84 .0 1 5/8" 6 1.04 154.0 84 .0 1 5/8" 6 1.04 154.0 84 .0 1 5/8" 6 1.04 154.0 11 .0 None 1 .00 145.0 84 .0 1 5/8" 6 1.04 145.0 11 .0 None 1 .00 137.0 84 .0 1 5/8" 6 1.04 137.0 11 .0 None 1 .00 137.0 84 .0 1 5/8" 6 1.04 137.0 11 .0 None 1 .00 129.0 84 .0 1 5/8" 6 1.04	9.3
WIND TOE · FO	DRCES.kips:MOMENTS.ft-kips-	: F'v Inter
X, ft Kzt psf in Shearx 125.00 1.00 10.66 1.72 .0 120.00 1.00 10.57 1.71 .0 115.00 1.00 10.48 1.70 .0 110.00 1.00 10.38 1.69 .0 105.00 1.00 10.18 1.68 .0 100.25 1.00 10.08 1.67 .0 94.50 1.00 10.06 1.67 .0 89.50 1.00 9.95 1.66 .0 79.50 1.00 9.83 1.65 .0 79.50 1.00 9.70 1.64 .0 74.50 1.00 9.57 1.63 .0 69.50 1.00 9.29 1.61 .0 59.50 1.00 9.29 1.61 .0 59.50 1.00 9.14 1.59 .0 64.50 1.00 9.29 1.61 .0 59.50 1.00 8.97 1.58 .0 46.75 1.00 8.97 1.58 .0 46.75 1.00 8.49 1.56 .0 41.75 1.00 8.49 1.54 .0 36.75 1.00 8.49 1.54 .0 21.75 1.00 8.03 1.50 .0 26.75 1.00 7.44 1.45 .0 21.75 1.00 8.03 1.50 .0 26.75 1.00 7.44 1.45 .0 11.75 1.00 6.82 1.36 .0 DISPLACEMENTS	PRCES, kips: MOMENTS, ft-kips- X ShearY AxiaZ BendX BendY Tor 1.14 -14.4 -26.7 .0 1.59 -16.4 -39.8 .0 1.78 -17.4 -47.8 .0 1.97 -18.6 -56.7 .0 2.15 -20.0 -66.0 .0 2.26 -20.9 -76.8 .0 2.37 -21.8 -78.5 .0 2.57 -23.3 -90.3 .0 2.75 -24.6 -103.2 .0 2.94 -25.8 -116.9 .0 3.13 -27.2 -131.7 .0 3.32 -28.5 -147.3 .0 3.50 -29.9 -163.9 .0 3.69 -31.2 -181.4 .0 3.80 -32.2 -199.8 .0 3.69 -31.2 -181.4 .0 3.80 -32.2 -199.8 .0 4.03 -34.5 -224.2 .0 4.15 -35.8 -230.3 .0 4.32 -37.4 -250.9 .0 4.48 -38.9 -272.5 .0 4.65 -40.3 -294.9 .0 4.48 -38.9 -272.5 .0 4.65 -40.3 -342.2 .0 5.13 -44.8 -318.2 .0 4.97 -43.3 -342.2 .0 5.13 -44.8 -318.2 .0 5.59 -49.0 456.2	F'Y Inter 4.8.2 73.58 .027 .027 .0294 .0316 .040 .046 .048 .071.72 .040 .051 .071.09 .046 .048 .075.86 .048 .057 .075.86 .057 .075.86 .057 .075.86 .0667 .075.86 .0667 .075.87 .082 .075.887 .082 .072.87 .082 .072.87 .082 .093 .093 .093 .093 .093 .093 .093 .093
ELEV DEFLECTION feet	ROTATION	J, degrees Z XY-Result
$\frac{X}{125.00}$ $\frac{X}{.00}$ $\frac{Y}{.72}$ $\frac{Z}{01}$	XY-Result X Y .72< .58%>55 .00	Z XY-Result

SABRE COMMUNICATIONS CORP		02-Mar-11 07:56
2101 Murray Street Sioux City, IA 51101	SAI COMMUNICATIONS Redding DPW, CT	Ph 712.258.6690 Fx 712.258.8250
CASE - 4: Service Loads =		ANSI-TIA-222-G
WIND OLF VERTICAL OLF DESIGN ICE GUST FACTOR (Gh) FORCE COEFF (Cf) IMPORTANCE FAC (I) DIRECTION FAC (Kd) TOPOGRAPHIC CAT	1.00 GUSTED WIND (3sec) 60.0 mph 1.00 EXP-CAT/STRUC CLASS C-II .00 in EXP-POWER COEFF2105 1.10 REFERENCE HEIGHT 900.0 ft .65 PRESSURE @ 32.7 ft 8.6 psf 1.00 BASE ABOVE Grd 1.0 .85 CREST HEIGHT .0 ft	96.6 kph 412.3 Pa
# Qty Description 1 1 Standard 6 Carrier (2P) 3	154.0 52 .0 1 5/8" 6 1.04 154.0 8 .0 None 1 .00 145.0 52 .0 1 5/8" 6 1.04 145.0 8 .0 None 1 .00 137.0 52 .0 1 5/8" 6 1.04 137.0 8 .0 None 1 .00 137.0 8 .0 None 1 .00 129.0 52 .0 1 5/8" 6 1.04	FORCES MOM. WIND Tra-Y Ax-Z Lg-X Psf Kips Kips Ft-K
X, ft Kzt psf in 125.00 1.00 7.44 .00 120.00 1.00 7.38 .00 115.00 1.00 7.31 .00 110.00 1.00 7.31 .00 110.00 1.00 7.11 .00 105.00 1.00 7.11 .00 95.25 1.00 7.03 .00 94.50 1.00 6.94 .00 84.50 1.00 6.86 .00 79.50 1.00 6.86 .00 79.50 1.00 6.86 .00 69.50 1.00 6.59 .00 644.50 1.00 6.48 .00 69.50 1.00 6.38 .00 69.50 1.00 6.38 .00 644.50 1.00 6.38 .00 659.50 1.00 6.23 .00 644.50 1.00 6.23 .00 644.50 1.00 6.26 .00 70 1.00 6.75 1.00 6.26 .00 1.00 6.75 1.00 6.26 .00 1.00 6.75 1.00 6.27 1.00 6.75 1.00 6.75 1.00 5.41 .00 6.75 1.00 5.41 .00 6.75 1.00 5.41 .00 6.75 1.00 4.76 .00 1.00 4.76 .00 1.00 1.00 4.76 .00 1.00 1.00 4.76 .00 1.00 1.00 4.76 .00 1.00 1.00 4.76 .00 1.00 1.00 4.76 .00 1.00 1.00 4.76 .00 1.00 1.00 4.76 .00 1.00 1.00 4.76 .00 1.00 1.00 1.00 1.00 4.76 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T-: F'Y Inter 4.8.2 0 73.58 0 029 0 72.96 0 033 0 72.34 0 041 0 71.09 0 046 0 70.50 0 76.93 0 041 0 76.86 0 042 0 75.86 0 049 0 75.86 0 049 0 75.86 0 049 0 75.86 0 049 0 75.86 0 060 0 74.87 0 060 0 73.87 0 067 0 72.87 0 72.87 0 72.66 0 74.86 0 74.87 0 72.75 0 72.66 0 77.07 0 72.75 0 72.66 0 77.07 0 72.75 0 72.02 0 72.66 0 77.07 0 72.02 0 73.37 0 71.52 0 72.02 0 72.02 0 72.02 0 73.37 0 71.52 0 72.03
	CTION feetROTATION Z XY-Result X Y .00 .63< .50%>50 .00	, degrees MicroWZXY-Result AlloW.00 .50

 SABRE COMMUNICATIONS CORP
 JOB: 00-41261
 02-Mar-11 07:56

 2101 Murray Street
 SAI COMMUNICATIONS
 Ph 712.258.6690

 Sioux City, IA 51101
 Redding DPW, CT
 Fx 712.258.8250

SHAPE: 18 SIDED POLYGON with FLAT-FLAT ORIENTATION BOLTS: EVENLY SPACED BOLTS 22.96 in. ON CENTER

LOCATE:

POLE DATA

-37.6 kips Vert 20.6 kips Long .0 kips Tran 1317.4 ft-kips Tran 1317.4 ft-kips Long .0 ft-kips Vert 53.63 in. .3125 in. .1500 in/ft AXIAL FORCE= BASE DIAMETER = SHEAR X SHEAR Y **** === PLATE ACTIONS 1222 222 TAPER POLE Fy 65.00 ksi X-AXIS MOM = Y-Axis MOM = Z-Axis MOM =

DESIGN CASE = 1 3s Gusted Wind -

Design: ANY Orientation Reactions at 45.00 deg to X-AXIS

BOLT LOADS -

AXIAL - COMPRESSION AXIAL - TENSION 191.03 kips 181.64 kips 2.58 kips 58.78 ksi SHEAR === STRESS STRESS AXIAL = .84 ksi 75.00 ksi SHEAR == STRENGTH Fy YIELD === = 100.00 ksiULT. STRENGTH Fu Interaction .80 x 1.00] .80 x .40] 80.00 ALLOW STRESS Fa == ksi .756 TIA-G Fv SHEAR ksi 2.39 in^2 3.25 in^2 3.07 in^2 TENSION AREA REQUIRED TENSION AREA FURNISHED -ROOT AREA FURNISHED

A615 ::: ANCHOR BOLT DESIGN USED 60.000 in. Bolt Circle Bolts on a SHIP 2.250 67.13 in. Diameter in. Embedded (lbs) 12.00 84.00 in. Total Length 1188 in. Exposed

CONCRETE - Fc= 4000 psi

ANCHOR BOLTS are STRAIGHT w\ UPLIFT NUT

BASE PLATE

[Bend Model: 1/4 Circ]
YIELD STRENGTH = 50.0 ksi
BEND LINE WIDTH = 42.5 in.
PLATE MOMENT = 1028.3 in-k
THICKNESS REQD = 1.466 in.
BENDING STRESS = 43.0 ksi
ALLOWABLE STRESS = 45.0 ksi
[Fy x .90 x 1.00]

	BAS	E PLATE	USED	
1.50	in.	THICK		SHIP
66.00	in.	ROUND		(lbs)
41.50	in.	CENTER	HOLE	857

---- LOAD CASE SUMMARY

							ABol	t-Str	Plate-	Str	1
	FO	RCES-(k:	ips)	MOME	NTS-(ft	-k)		Allow	_Actual	Allow	_Design
ГC	Axial	ShearX	ShearY	X-axis	Y-axis	TorQ	CSR	ksi	ksi	ksi	Code
1	37.6	20.6	.0	1863	0	0	.756	75.00	42.96	45.00	TIA-G
2	28.3	20.6	.0	1845	0	0	.745	75.00	42.27	45.00	TIA-G
3	49.0	5.6	.0	456	. 0	0	.205	75.00	11.82	45.00	TIA-G
4	31.0	4.2	.0	373	0	0	.163	75.00	9.37	45.00	TIA-G

LPILE Plus for Windows, Version 5.0 (5.0.39)

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method

(c) 1985-2007 by Ensoft, Inc. All Rights Reserved

This program is licensed to: Rob Beacom Sabre Towers and Poles Path to file locations:
Name of input data file:
Name of output file:
Name of plot output file:
Name of runtime file: C:\Progra~1\Ensoft\LpileP5\ 4141261P.]pd4141261P. Tpo 4141261P. lpp 4141261P.lpr Time and Date of Analysis Date: March 2, 2011 Time: 13:49:50 Problem Title Redding DPW, CT (41261) 3-2-11 REB 180' Slimline Program Options Units Used in Computations - US Customary Units: Inches, Pounds Basic Program Options: Analysis Type 3: - Computation of Nonlinear Bending Stiffness and Ultimate Bending Moment Capacity with Pile Response Computed Using Nonlinear EI Computation Options: - Only internally-generated p-y curves used in analysis - Analysis does not use p-y multipliers (individual pile or shaft action only) Analysis does not use p-y multipliers (individual pile or shaft analysis assumes no shear resistance at pile tip
 Analysis for fixed-length pile or shaft only
 No computation of foundation stiffness matrix elements
 Output summary table of values for pile-head deflection, maximum bending moment, and shear force only
 Analysis assumes no soil movements acting on pile
 No additional p-y curves to be computed at user-specified depths Solution Control Parameters: 100 - Number of pile increments - Maximum number of iterations allowed = 300 1.0000E-05 in - Deflection tolerance for convergence =

- Maximum allowable deflection

Printing Options: - Only summary tables of pile-head deflection, maximum bending moment, and maximum shear force are to be printed in output file.

______ Pile Structural Properties and Geometry

288.00 in Pile Length

12.00 in Depth of ground surface below top of pile =

.00 deq. Slope angle of ground surface

Structural properties of pile defined using 2 points

Point	Depth	Pile	Moment of	Pile	Modulus of
	X	Diameter	Inertia	Area	Elasticity
	in	in	in**4	Sq.in	lbs/Sq.in
1	0.0000	84.00000000	2443920.	5541.8000	3604997.
2	288.0000	84.00000000	2443920.	5541.8000	3604997.

Please note that because this analysis makes computations of ultimate moment capacity and pile response using nonlinear bending stiffness that the above values of moment of inertia and modulus of are not used for any computations other than total stress due to combined axial loading and bending.

Soil and Rock Layering Information

The soil profile is modelled using 3 layers

```
Layer 1 is soft clay, p-y criteria by Matlock, 1970 Distance from top of pile to top of layer = Distance from top of pile to bottom of layer =
                                                                                                                        12.000 in
                                                                                                                       60.000 in
```

Layer 2 is sand, p-y criteria by Reese et al., 1974
Distance from top of pile to top of layer =
Distance from top of pile to bottom of layer =
p-y subgrade modulus k for top of soil layer = 60.000 in 96.000 in 62.800 lbs/in**3 62.800 lbs/in**3

p-y subgrade modulus k for bottom of layer

Layer 3 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = p-y subgrade modulus k for top of soil layer = p-y subgrade modulus k for bottom of layer = 96.000 in

390.000 in 171.000 lbs/in**3 171.000 lbs/in**3

(Depth of lowest layer extends 102.00 in below pile tip)

Effective Unit Weight of Soil vs. Depth

Effective unit weight of soil with depth defined using 6 points

Point Depth X Eff. Unit Weight

4141261P. Tpo

No.	in	lbs/in**3	•
1 2 3 4 5	12.00 60.00 60.00 96.00 96.00 390.00	.07810 .07810 .07810 .07810 .04340 .04340	

Shear Strength of Soils

Shear strength parameters with depth defined using 6 points

Point No.	Depth X in	Cohesion c lbs/in**2	Angle of Friction Deg.	E50 or k_rm	RQD %
1	12.000	.10000	.00	.10000	.0
2	60.000	.10000	.00	.10000	.0
3	60.000	.00000	36.00		
4	96.000	.00000	36.00	-	
5	96.000	.00000	36.00		-
6	390.000	.00000	36.00		

Notes:

- Cohesion = uniaxial compressive strength for rock materials. Values of E50 are reported for clay strata. Default values will be generated for E50 when input values are 0. RQD and k_rm are reported only for weak rock strata.

Loading Type

Static loading criteria was used for computation of p-y curves.

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 1

Load Case Number 1

Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 27512.000 lbs

Bending moment at pile head = 29813280.000 in-lbs

Axial load at pile head = 50104.000 lbs

Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.

Number of sections = 1

Pile Section No. 1

The sectional shape is a circular drilled shaft (bored pile).

Outside Diameter = 84.0000 in

Material Properties:

Compressive Strength of Concrete = Yield Stress of Reinforcement = Modulus of Elasticity of Reinforcement = 4.000 kip/in**2 60. kip/in**2 29000 kip/in**2 36 Number of Reinforcing Bars .79000 in**2 Area of Single Bar Number of Rows of Reinforcing Bars Area of Steel Area of Shaft 19 28.440 in**2 5541.769 in**2 == Percentage of Steel Reinforcement .513 percent 4.000 in Cover Thickness (edge to bar center)

Unfactored Axial Squash Load Capacity = 20451.72 kip

Distribution and Area of Steel Reinforcement

Row Number	Area of Reinforcement in**2	Distance to Centroidal Axis in
1	.790	38.000
2	1.580	37.423
3	1.580	35.708
4	1.580	32.909
5	1.580	29.110
6	1.580	24.426
7	1.580	19.000
1 2 3 4 5 6 7 8 9	1.580	12.997
9	1.580	6.599
10	1.580	0.000
11	1.580	-6.599
12	1.580	-12.997
13	1.580	-19.000
14	1.580	-24.426
15	1.580	-29.110
16	1.580	-32.909
17	1.580	-35.708
18	1.580	-37.423
19	.790	-38.000

Axial Thrust Force = 50104.00 lbs

Bending	Bending	Bending	Maximum	Neutral Axis	Max. Concrete
Max. Steel Moment	Stiffness	Curvature	Strain	Position	Stress
Stress in-lbs psi	lb-in2	rad/in	in/in	inches	psi
		w			
5914750. 761.59922	9.463600E+12	6.250000E-07	.00002876	46.01926714	102.22542

		4141261P.	Тро		
11775922. 1453.32496	9.420738E+12	.00000125	.00005511	44.09172302	194.38815
17583339. 2144.50803	9.377781E+12	.00000188	.00008145	43.43922812	285.17960
23340103.	9.336041E+12	.00000250	.00010786	43.14271349	374.92177
2837.84673 29042197.	9.293503E+12	.00000313	.00013421	42.94692296	463.16331
3529.56489 29042197.	7.744586E+12	.00000375	.00007771	20.72168630	267.56042
6446.51661 29042197.	6.638217E+12	.00000438	.00008876	20.28754002	304.50064
7576.01836 29042197.	5.808439E+12	.00000500	.00009982	19.96397370	341.25699
8705.22381 29042197.	5.163057E+12	.00000563	.00011089	19.71413487	377.82899
9834.13175 29042197.	4.646752E+12	.00000625	.00012233	19.57255286	415.42243
10952.47479 29042197.	4.224320E+12	.00000688	.00013336	19.39718753	451.39482
12082.68574 29042197.	3.872293E+12	.00000750	.00014439	19.25253135	487.18651
13212.57443 29042197.	3.574424E+12	.00000813	.00015544	19.13150722	522.79708
14342.13861 29042197.	3.319108E+12	.00000875	.00016650	19.02905327	558.22589
15471.37773 29042197.	3.097834E+12	.00000938	.00017758	18.94146448	593.47254
16600.28934 29042197.	2.904220E+12	.00001000	.00018866	18.86596209	628.53660
17728.87099 29042197.	2.733383E+12	.00001063	.00019975	18.80041569	663.41745
18857.12191 29042197.	2.581529E+12	.00001125	.00021086	18.74317306	698.11463
19985.03979 29042197.	2.445659E+12	.00001188	.00022198	18.69292742	732.62760
21112.62312 29042197.	2.323376E+12	.00001250	.00023311	18.64863735	766.95597
22239.86896 29042197.	2.212739E+12	.00001313	.00024425	18.60945421	801.09910
23366.77649 29042197.	2.112160E+12	.00001375	.00025540	18.57468706	835.05650
24493.34353 29042197.	2.020327E+12	.00001438	.00026657	18.54376513	868.82767
25619.56791 29042197.	1.936146E+12	.00001500	.00027774	18.51621276	902.41210
26745.44745 29042197.	1.858701E+12	.00001563	.00028893	18.49162692	935.80912
27870.98155 29042197.	1.787212E+12	.00001625	.00030013	18.46967465	969.01843
28996.16582 29042197.	1.721019E+12	.00001688	.00031134	18.45006305	1002.03928
30121.00040 29042197.	1.659554E+12	.00001750	.00032257	18.43254679	1034.87119
31245.48250 29042197.	1.602328E+12	.00001813	.00033381	18.41691560	1067.51374
32369.60874 29042197.	1.548917E+12	.00001875	.00034506	18.40298170	1099.96622
33493.37870 29042197.	1.498952E+12	.00001938	.00035632	18.39058489	1132.22807
34616.79012 29042197.	1.452110E+12	.00002000	.00036759	18.37958497	1164.29875
35739.84072 29042197.	1.408107E+12	.00002063	.00037888	18.36985928	1196.17773
36862.52792 29419105.	1.384428E+12	.00002125	.00039018	18.36129767	1227.86436
37984.85031					

20225020	1 202172e.12	4141261P.	lpo .00040149	18.35380501	1259.35813
30235038. 39106.80495	1.382173E+12				1290.65850
31050252. 40228.38924	1.380011E+12	.00002250	.00041281	18.34729618	
31864741. 41349.60174	1.377935E+12	.00002313	.00042415	18.34169358	1321.76480
32678502. 42470.43972	1.375937E+12	.00002375	.00043550	18.33692962	1352.67647
33491535.	1.374012E+12	.00002438	.00044687	18.33294421	1383.39299
43590.90006 35115385.	1.370357E+12	.00002563	.00046963	18.32708627	1444.23765
45830.68402 36736271.	1.366931E+12	.00002688	.00049245	18.32374424	1504.29414
48068.93183 38354160.	1.363703E+12	.00002813	.00051532	18.32260519	1563.55737
50305.62514 39969016.	1.360647E+12	.00002938	.00053825	18.32340878	1622.02208
52540.74614 41580821.	1.357741E+12	.00003063	.00056123	18.32594472	1679.68348
54774.27034 43189532.	1.354966E+12	.00003188	.00058427	18.33002776	1736.53596
57006.18059 44795127.	1.352306E+12	.00003313	.00060736	18.33550769	1792.57440
59236.45292 46236180.	1,345052E+12	.00003438	.00062978	18.32080775	1845.98134
60000.00000 47370239.	1.329691E+12	.00003563	.00065083	18.26881224	1895.18441
60000.00000 48364766.	1.311587E+12	.00003688	.00067125	18.20341855	1942.11029
60000.00000	1.291500E+12	.00003813	.00069375	18.19673449	1993.15064
49238456. 60000.00000		.00003938	.00071305	18.10912818	2035.91350
50041246. 60000.00000	1.270889E+12		.00071303	18.00798351	2076.27198
50707739. 60000.00000	1.248190E+12	.00004063		17.91362554	2116.09444
51372895. 60000.00000	1.226815E+12	.00004188	.00075013		
51971265. 60000.00000	1.205131E+12	.00004313	.00076829	17.81552750	2154.43462
52477314. 60000.00000	1.182587E+12	.00004438	.00078589	17.71012956	2190.95963
52982268. 60000.00000	1.161255E+12	.00004563	.00080351	17.61109775	2226.99870
53486117. 60000.00000	1.141037E+12	.00004688	.00082115	17.51792639	2262.54955
53927283.	1.120567E+12	.00004813	.00083837	17.42070454	2296.66717
60000.00000 54299515.	1.099737E+12	.00004938	.00085511	17.31872624	2329.29021
60000.00000 54670828.	1.079918E+12	.00005063	.00087188	17.22224790	2361.47091
60000.00000 55041214.	1.061035E+12	.00005188	.00088866	17.13087398	2393.20729
60000.00000 55410665.	1.043024E+12	.00005313	.00090548	17.04424649	2424.49741
60000.00000 55779192.	1.025824E+12	.00005438	.00092231	16.96204501	2455.33978
60000.00000 56046621.	1.007580E+12	.00005563	.00093831	16.86851567	2484.11019
60000.00000 56407258.	9.917760E+11	.00005688	.00095550	16.80000025	2514.64325
60000.00000 56626546.	9.742201E+11	.00005813	.00097519	16.77746469	2549.21501
60000.00000 56883824.	9.580434E+11	.00005938	.00099068	16.68518203	2575.59873
60000.00000	, , , , , , , , , , , , , , , , , , ,	10000000			

		41.413.61 D	lno		
57140407.	9.425222E+11	4141261P. .00006063	.00100620	16.59704751	2601.60349
60000.00000 57396285.	9.276167E+11	.00006188	.00102173	16.51281077	2627.22764
60000.00000 57651462.	9.132905E+11	.00006313	.00103729	16.43224400	2652.46980
60000.00000 57894402.	8.993305E+11	.00006438	.00105273	16.35306162	2677.10453
60000.00000 58070648.	8.848861E+11	.00006563	.00106743	16.26554042	2700.09751
60000.00000 58246314.	8.709729E+11	.00006688	.00108214	16.18156403	2722.74852
60000.00000		.00006813	.00100211	16.10093969	2745.05635
58421403. 60000.00000	8.575619E+11			16.02348715	2767.01960
58595907. 60000.00000	8.446257E+11	.00006938	.00111163		
58769822. 60000.00000	8.321391E+11	.00007063	.00112640	15.94903868	2788.63686
58943145. 60000.00000	8.200785E+11	.00007188	.00114119	15.87743908	2809.90679
59115870.	8.084222E+11	.00007313	.00115600	15.80854315	2830.82797
60000.00000 59288006.	7.971497E+11	.00007438	.00117083	15.74221820	2851.39928
60000.00000 59630461.	7.756808E+11	.00007688	.00120054	15.61677808	2891.48593
60000.00000 59921171.	7.549124E+11	.00007938	.00122961	15.49120528	2929.18930
60000.00000 59921171.	7.318616E+11	.00008188	.00126087	15.39999908	2968.27786
60000.00000 60445833.	7.163951E+11	.00008438	.00129415	15.33809763	3008.16621
60000.00000 60659607.	6.982401E+11	.00008688	.00132121	15.20817393	3038.78756
60000.00000 60871607.	6.810809E+11	.00008938	.00134833	15.08625358	3068.23785
60000.00000	6.648361E+11	.00000330	.00137552	14.97169071	3096.50810
61081815. 60000.00000			.00137332	14.86390454	3123.58883
61290192. 60000.00000	6.494325E+11	.00009438			
61496742. 60000.00000	6.348051E+11	.00009688	.00143011	14.76238185	3149.47122
61701443. 60000.00000	6.208950E+11	.00009938	.00145750	14.66665703	3174.14580
61842890. 60000.00000	6.070468E+11	.00010188	.00148361	14.56301898	3196.39974
61972902.	5.937524E+11	.00010438	.00150956	14.46285063	3217.36823
60000.00000 62101360.	5.810654E+11	.00010688	.00153557	14.36794442	3237.24649
60000.00000 62228263.	5.689441E+11	.00010938	.00156165	14.27794737	3256.02643
60000.00000 62353556.	5.573502E+11	.00011188	.00158779	14.19252902	3273.69909
60000.00000 62477254.	5.462492E+11	.00011438	.00161399	14.11139899	3290.25636
60000.00000 62599339.	5.356093E+11	.00011688	.00164026	14.03428692	3305.68953
60000.00000 62977177.	5.275575E+11	.00011938	.00167125	14.00000042	3322.56954
60000.00000 63565163.	5.215603E+11	.00012388	.00170625	14.00000042	3339.74208
60000.00000			.00173352	13.93782359	3351.46246
63565163. 60000.00000	5.110767E+11	.00012438			
63565163. 60000.00000	5.010062E+11	.00012688	.00175867	13.86147255	3361.10041
		Da. 44	A 77		

		4141261P.			2262 62403
63565163. 60000.00000	4.913249E+11	.00012938	.00178390	13.78857118	3369.69492
63565163. 60000.00000	4.820107E+11	.00013188	.00180918	13.71892673	3377.23727
63565163.	4.730431E+11	.00013438	.00183454	13.65236646	3383.71886
60000.00000 63565163.	4.644030E+11	.00013688	.00185856	13.57852131	3388.84160
60000.00000 63569413.	4.561034E+11	.00013938	.00188243	13.50622576	3392.97417
60000.00000 63626032.	4.484654E+11	.00014188	.00190636	13.43688673	3396.16222
60000.00000 63681415.	4.410834E+11	.00014438	.00193035	13.37035650	3398.39830
60000.00000 63735544.	4.339441E+11	.00014688	.00195439	13.30649489	3399.67481
60000.00000 63787468.	4.270291E+11	.00014938	.00197850	13.24517173	3398.92572
60000.00000 63834394.	4.203088E+11	.00015188	.00200266	13.18626434	3393.00262
60000.00000 63880889.	4.138033E+11	.00015438	.00202689	13.12966257	3387.06331
60000.00000 63926935.	4.075024E+11	.00015688	.00205118	13.07525879	3381.10766
60000.00000 63972521.	4.013962E+11	.00015938	.00207553	13.02295285	3383.81218
60000.00000 64017658.	3.954759E+11	.00016188	.00209995	12.97265464	3388.26418
60000.00000 64062319.	3.897327E+11	.00016438	.00212443	12.92427403	3392.01304
60000.00000 64106509.	3.841589E+11	.00016688	.00214897	12.87773091	3395.05176
60000.00000 64150234.	3.787468E+11	.00016938	.00217358	12.83295017	3397.37317
60000.00000 64193466.	3.734893E+11	.00017188	.00219826	12.78985673	3398.96984
60000.00000	3.683797E+11	.00017438	.00222300	12.74838299	3399.83432
64236202. 60000.00000		.00017438	.00227287	12.67106563	3393.04662
64318312. 60000.00000	3.585690E+11		.00232312	12.59999925	3382.54280
64318312. 60000.00000	3.488451E+11	.00018438		12.59999925	3379.11361
64318312. 60000.00000	3.396347E+11	.00018938	.00238612		
64342924. 60000.00000	3.310247E+11	.00019438	.00244912	12.59999925	3390.06933
64682058. 60000.00000	3.244241E+11	.00019938	.00250640	12.57126278	3396.34774
64709163. 60000.00000	3.166198E+11	.00020438	.00255155	12.48466283	3398.90043
64735607. 60000.00000	3.091850E+11	.00020938	.00259689	12.40305465	3399.96748
64759823. 60000.00000	3.020866E+11	.00021438	.00264271	12.32751471	3394.04711
64783301.	2.953085E+11	.00021938	.00268873	12.25630063	3386.51257
60000.00000 64806446.	2.888310E+11	.00022438	.00273485	12.18873650	3378.94982
60000.00000 64829277.	2.826344E+11	.00022938	.00278108	12.12459451	3371.35817
60000.00000 64851778.	2.767009E+11	.00023438	.00282742	12.06366187	3364.56759
60000.00000 64873935.	2.710138E+11	.00023938	.00287387	12.00574332	3372.24921
60000.00000 64895754.	2.655581E+11	.00024438	.00292044	11.95066363	3379.02618
60000.00000			. 0		

		4141261P	. Тро		
64917215.	2.603197E+11	.00024938	.00296713	11.89825755	3384.88409
60000.00000 64938325.	2.552858E+11	.00025438	.00301393	11.84837741	3389.80843
60000.00000				44 00000000	2202 70442
64959079.	2.504446E+11	.00025938	.00306085	11.80088550	3393.78412
60000.00000 64979449.	2.457852E+11	.00026438	.00310790	11.75565165	3396.79555
60000.00000		00000000	00245522	11 71751701	3398.84418
64998264.	2.412929E+11	.00026938	.00315533	11.71351701	3390.04410
60000.00000 65014138.	2.369536E+11	.00027438	.00320345	11.67545289	3399.88554
60000.00000					2226 22244
65028642.	2.327647E+11	.00027938	.00325196	11.64014000	3396.52344
60000.00000	2.287195E+11	.00028438	.00330077	11.60710019	3390.10131
65042116. 60000.00000	7.20/133E+TT	.00020430	.00330077	11.007.0015	333012023
65055431.	2.248136E+11	.00028938	.00334965	11.57545727	3383.65968
60000.00000					2277 10045
65068566.	2.210397E+11	.00029438	.00339860	11.54514116	3377.19845
60000.00000	a amanan- 44	00020020	.00344819	11.51796681	3370.56880
65079259.	2.173837E+11	.00029938	.00344019	TT. 31/ 3000T	3370.30000
60000.00000 65084876.	2.138312E+11	.00030438	.00349908	11.49594444	3363.59660
60000.00000	2	.00030.30			
65090231.	2.103927E+11	.00030938	.00355007	11.47497100	3356.59685
60000.00000			00260447	11 45500000	3349,56892
65095324.	2.070627E+11	.00031438	.00360117	11.45500392	3349.30092
60000.00000	2.038361E+11	.00031938	.00365237	11.43600315	3348.75645
65100152. 60000.00000	7.03830TE+TT	.00031330	.00303237	TT.430003T3	55 (01.50.5
65104708.	2.007082E+11	.00032438	.00370369	11.41793114	3357.22235
60000.00000	_,00,00=,12				

Unfactored (Nominal) Moment Capacity at Concrete Strain of 0.003 = 64932.04179 in-kip

Computed Values of Load Distribution and Deflection
for Lateral Loading for Load Case Number 1
for lateral loading for Load Case Number 1

Pile-head boundary conditions are Shear and Moment (BC Type 1)
Specified shear force at pile head = 27512.000 lbs
Specified moment at pile head = 29813280.000 in-lbs
Specified axial load at pile head = 50104.000 lbs

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

Output Verification:

Computed forces and moments are within specified convergence limits.

Summary of Pile Response(s)	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

Definition of Symbols for Pile-Head Loading Conditions:

4141261P.lpo Type 1 = Shear and Moment,
Type 2 = Shear and Slope,
Type 3 = Shear and Rot. Stiffness,
Type 4 = Deflection and Moment, y = pile-head displacment in M = Pile-head Moment lbs-in V = Pile-head Shear Force lbs
S = Pile-head Slope, radians
R = Rot. Stiffness of Pile-head in-lbs/rad Type 5 = Deflection and Slope,Pile-Head Condition Load Pile-Head Type Condition Pile-Head Maximum Maximum Axial Load Deflection Moment Shear lbs in-1bs lbs 1 2 in -292558. 50104.0000 1.1950 3.2054E+07 27512. M== 2.98E+07 1 V=

The analysis ended normally.

1805.7.2.1 (2006 IBC) & 1807.3.2.1 (2009 IBC)

$d = A/2*(1+(1+(4.36*h/A))^0.5)$

Monopole

Moment (ft-k)	1863.33
Shear (k)	20.6
Caisson Diameter, b (ft)	7
Caisson Height Above Ground (ft)	1
Caisson Height Below Ground (ft)	19
Lateral soil pressure per foot (lb/ft3)	400

Applied lateral force, P (lbs)	20634
Dist. from ground to application of P, h (ft)	91.30
A = 2.34*P/(S1*b)	2.72
Min. Depth of Embedment Required, d (ft)	17.88

MAT FOUNDATION DESIGN BY SABRE TOWERS & POLES

180' Slimline SAI COMMUNICATIONS Redding DPW, CT (41261) 3-2-11 REB

Overall Loads:			
Factored Moment (ft-kips)	1863.33		
Factored Axial (kips)	37.578		
Factored Shear (kips)	20.634		
Bearing Design Strength (ksf)	6	Max. Net Bearing Press. (ksf)	3.44
Water Table Below Grade (ft)	7		
Width of Mat (ft)	18.5	Ultimate Bearing Pressure (ksf)	8.00
Thickness of Mat (ft)	2	Bearing Φs	0.75
Depth to Bottom of Slab (ft)	5.5		
Quantity of Bolts in Bolt Circle	8		
Bolt Circle Diameter (in)	60		
Top of Concrete to Top	[12.18.18.18.18.18.18.18.18.18.18.18.18.18.		
of Bottom Threads (in)	60	Minimum Pier Diameter (ft)	6.50
Diameter of Pier (ft)	1	Equivalent Square b (ft)	6.20
Ht. of Pier Above Ground (ft) Ht. of Pier Below Ground (ft)	3.5	Equivalent Square b (it)	0.20
Quantity of Bars in Mat	20		
Bar Diameter in Mat (in)	1		
Area of Bars in Mat (in ²)	15.71		
, ,	11.32	Recommended Spacing (in)	6 to 12
Spacing of Bars in Mat (in) Quantity of Bars Pier	36	(iii)	
Bar Diameter in Pier (in)	1,32,33,43,41		
Tie Bar Diameter in Pier (in)	0.5		
Spacing of Ties (in)	12		
Area of Bars in Pier (in ²)	28.27	Minimum Pier A _s (in ²)	27.71
Spacing of Bars in Pier (in)	6,63	Recommended Spacing (in)	6 to 12
fc (ksi)	4	recommended opdoing (iii)	
fy (ksi)	60		
Unit Wt. of Soil (kcf)	0.125		
Unit Wt. of Concrete (kcf)	0.15		
· · · · · · · · · · · · · · · · · · ·			
Volume of Concrete (yd³)	31.77		
Two-Way Shear Action:			
Average d (in)	20		
φV _c (kips)	1239.8	V _u (kips)	68.8
$\phi V_c = \phi (2 + 4/\beta_c) f_c^{-1/2} b_o d$	1859.8		<u>Line in the second sec</u>
$\phi V_c = \phi(\alpha_s d/b_o + 2) f_c^{1/2} b_o d$	1378.9		
$\phi V_c = \phi 4 f_c^{1/2} b_o d$	1239.8		
Shear perimeter, b _o (in)	326.73		
$eta_{\mathbf{c}}$	1		
One-Way Shear:			
∳V _c (kips)	477.4	V _u (kips)	159.4
Stability:	Communication (MEGF of CECARAS)	W (1 /	THE STATE OF STREET STREET, ST
Overturning Design Strength (ft-k)	2075.2	Total Applied M (ft-k)	1997.5

MAT FOUNDATION DESIGN BY SABRE TOWERS & POLES (CONTINUED) 180' Slimline SAI COMMUNICATIONS Redding DPW, CT (41261) 3-2-11 REB

609.0	V _u (kips)	20.6
609.0		
0.0	*** V_s max = 4 $f_c^{1/2}b_w d$ (kips)	1428.0
5.61	(Only if Shear Ties are Required)	
19.00	Req'd Hook Development l _{dh} (in)	13.28
	*** Ref. To Spacing Requirements ACI	11.5.4.3
1369.6	M _u (ft-kips)	694.4
1.25		
0.00354		
0.85		
0.0214		
0.0018		
108.00	Required Development in Pad (in)	23.67
	609.0 0.0 5.61 19.00 1369.6 1.25 0.00354 0.85 0.0214 0.0018	609.0 *** V _s max = 4 f _c ^{1/2} b _w d (kips) 5.61 (Only if Shear Ties are Required) 19.00 Req'd Hook Development I _{dh} (in) *** Ref. To Spacing Requirements ACI 1369.6 M _u (ft-kips) 1.25 0.00354 0.85 0.0214 0.0018

Condition	1 is OK, 0 Fails
Maximum Soil Bearing Pressure	1
Pier Area of Steel	1
Pier Shear	1
Interaction Diagram Visual Check	1
Two-Way Shear Action	1
One-Way Shear Action	1
Overturning	1
Flexure	1
Steel Ratio	1
Length of Development in Pad	1
Hook Development	1

ATTACHMENT 3

NEW CINGULAR WIRELESS PCS, LLC WIRELESS COMMUNICATIONS FACILITY SR943 REDDING HIGHWAY DEPT.

28 GREAT OAK LANE REDDING, CONNECTICUT

PROJECT SUMMARY

SITE NUMBER:

SITE NAME: REDDING HIGHWAY DEPT. SITE ADDRESS: 28 CREAT OAK LANE

TOWN OF REDDING PROPERTY OWNER: 28 GREAT OAK LANE REDDING, CT 06896

NEW CINGULAR WIRELESS PCS, LLC 500 ENTERPRISE DRIVE ROCKY HILL, CT 06067 APPLICANT:

CONTACT: BRYON MORAWSKI (860) 513-7223

41° 18' 24 6"N 1A COORDINATES: 73° 23' 10.7"W

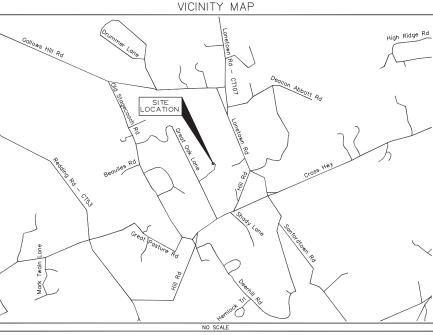
HORIZONTAL DATUM: NAD 83 GROUND FLEVATION: 588' AMSI

SITE PARCEL NO .:

CURRENT ZONING:

CLOUGH HARBOUR & ASSOCIATES LLP 2139 SILAS DEANE HIGHWAY SUITE 212

ROCKY HILL, CT 06067


PAUL LUSITANI CONTACT: (860) 257-4557

DRIVING DIRECTIONS

- FROM HARTFORD: -I-91 SOUTH -I-691 WEST (EXIT 18)
- -1-94 WEST (EXIT 18)
 -1-84 WEST (EXIT 1)
 -TAKE EXIT 9 TOWARDS CT-25
 -TURN LEFT ON CT-25
 -TURN RIGHT ON US-6
 -TURN LEFT ONTO OLD HAWLEYVILLE ROAD
 -TURN RIGHT ON CT-302/DODGINGTOWN ROAD
- -TURN LEFT ONTO PUTNAM PARK ROAD/CT-58 -TURN SLIGHT RIGHT ONTO PUTNAM PARK ROAD/CT-107
- -TURN LEFT ONTO LONETOWN ROAD/CT-107 -TUNR RIGHT ONTO HILL ROAD -TURN RIGHT ONTO GREAT OAK LANE

PROJECT DESCRIPTION

THIS PROJECT CONSISTS OF A 180' MONOPOLE TOWER WITH THREE PANEL ANTENNAS AT AN ELEVATION OF 177' AND THREE PANEL ANTENNAS AT AN ELEVATION OF 167' INSIDE THE TOWER. TELECOMMUNICATIONS EQUIPMENT WILL BE PLACED WITHIN A 33' X 73' FENCED COMPOUND AREA AT THI

Hemioco		///	DO NOT SCA
NO SCALE			DRAWINGS
			CONTRACTOR SHALL V ALL PLANS & EXIST

FEBRUARY 08, 2011

	SHEET HADEN		
SHEET	SHEET	REV	ISION HISTORY
NO:	TITLE	NO:	DATE
T01	TITLE SHEET	0	02 / 08 / 11
C01	SITE PLAN	0	02 / 08 / 11
C02	PARTIAL SITE PLAN		02 / 08 / 11
C03	COMPOUND PLAN & SITE NOTES		02 / 08 / 11
C04	ELEVATION & DETAILS	0	02 / 08 / 11
C05	SITE DETAILS	0	02 / 08 / 11
C06	SITE DETAILS	0	02 / 08 / 11
C07	STRUCTURAL DETAILS	0	02 / 08 / 11
C08	STRUCTURAL DETAILS	0	02 / 08 / 11
C09	STRUCTURAL NOTES	0	02 / 08 / 11

SHEET INDEX

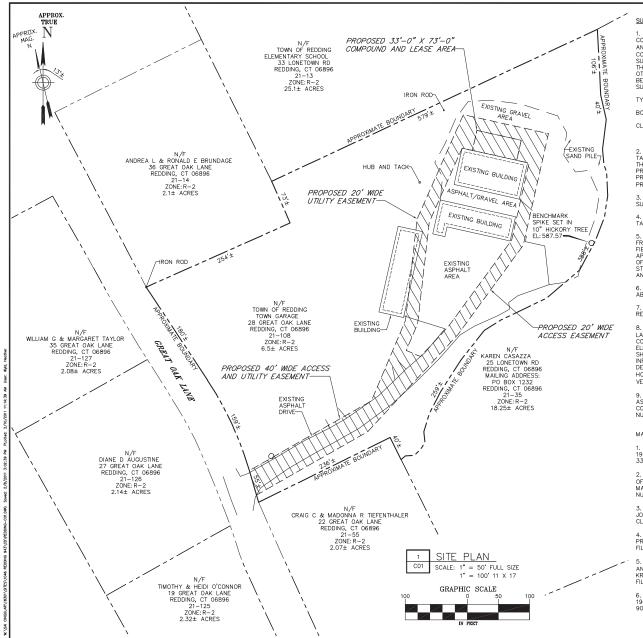
ALE

VERIFY ALL PLANS & EXISTING
DIMENSIONS & CONDITIONS ON
THE JOB SITE & SHALL
IMMEDIATELY NOTIFY THE
ENGINEER IN WRITING OF ANY
DISCREPANCIES BEFORE
PROCEEDING WITH THE WORK
OR BE RESPONSIBLE FOR

NEW CINGULAR WIRELESS PCS, LLC 500 ENTERPRISE DRIVE ROCKY HILL, CT 06067

18301 - 1046 - 43000

ı	NO.	SUBMITTAL		
1	١.	02/08/11	ISSUED FOR D&	:M
	0	BY: PAL	CHK: PAL	APP'D: JPS
	г			
	ı			
	ᆫ			
	ı			
- 1	ı			


UNLESS THEY ARE ACTING UNDER THE DIRECTIO TO ALTER THIS DOCUMENT.

SR943 SITE NAME: REDDING HIGHWAY DEPT SITE ADDRESS: 28 GREAT OAK LANE REDDING, CT 06896 FAIRFIELD COUNTY

> SHEET TITLE TITLE SHEET

> > SHEET NUMBER

T01

SURVEY NOTES:

1. THIS SURVEY HAS BEEN PREPARED PURSUANT TO THE REGULATIONS OF CONNECTICUT STATE AGENCIES SECTIONS 20–300b–1 THROUGH 20–300b–20 AND THE "STANDARDS FOR SURVEYS AND MAPS IN THE STATE OF CONNECTICUT" AS ADOPTED BY THE CONNECTICUT ASSOCIATION OF LAND SURVEYORS INC. ON SEPTEMBER 26, 1996. THE BOUNDARY LINES SHOWN ON THIS PLAN WERE COMPILED FROM OTHER MAPS, RECORD RESEARCH OR OTHER SURVEY STATE OF A FIELD SURVEY, AND IS SUBJECT TO SUCH CHARGE AS THE RESULT OF A FIELD SURVEY, AND IS SUBJECT TO SUCH CHARGE AS AN ACCURATE FIELD SURVEY MAY DISCLOSE.

TYPE OF SURVEY: COMPILATION PLAN

BOUNDARY DETERMINATION CATEGORY: NONE

CLASS OF ACCURACY: HORIZONTAL CLASS A-2
VERTICAL CLASS V-2
TOPOGRAPHIC CLASS T-2

2. PROPERTY LINE SHOWN HEREON ARE FROM RECORD DEEDS PLOTS AND TAX MAPS AS OVERLAID ON ANY MONIMENTATION OR OTHER EVIDENCE THAT MAY HAVE BEEN LOCATED DURING THE TOPOGRAPHIC SURVEY. A PROPERTY SURVEY WAS NOT PERFORMED BY CHA AND AS A RESULT THE PROPERTY LINES SHOWN ARE APPROXIMATE AND DO NOT PRESENT A PROPERTY FORDUNDARY OPINION.

3. BASE MAPPING PREPARED BY CHA FROM AN FEBRUARY 2010 FIELD SURVEY.

4. NORTH ORIENTATION IS TRUE NORTH BASED ON GPS OBSERVATIONS TAKEN AT THE TIME OF THE FIELD SURVEY.

5. UNDERGROUND UTILITIES, STRUCTURES AND FACILITIES HAVE BEEN SHOWN FROM SURFACE LOCATIONS AND MEASUREMENTS OBTAINED FROM A FIELD SURVEY, THEREFORE THEIR LOCATIONS MUST BE CONSIDERED APPROXIMATE ONLY. THERE MAY BE OTHER UTILITIES WHICH THE EXISTENCE OF ARE NOT KNOWN. SIZE, TYPE AND LOCATION OF ALL UTILITIES AND STRUCTURES MUST BE VERIFIED BY PROPER AUTHORITIES PRIOR TO ANY AND ALL CONSTRUCTION. CALL DIE SARE PRIOR.

6. SUBJECT TO ANY STATEMENT OF FACTS THAT AN UP-TO-DATE ABSTRACT OF TITLE WOULD DISCLOSE.

7. SUBJECT TO ALL RIGHTS, EASEMENTS, COVENANTS OR RESTRICTIONS OF RECORD.

8. LATITUDE/LONGITUDE PELEVATIONS WERE OBTAINED BY OPS OBSERVATIONS. LATITUDE/LONGITUDE ARE REFERENCED TO NADB3 CONNECTICUT ZONE. COORDINATES SHOWN, IF ANY, ARE EXPRESSED IN U.S. SURVEY FEET. ELEVATIONS ARE REFERENCED TO NAVOBB. TOP OF STRUCTURE HEIGHT AS SHOWN, IF ANY, DETERMINED BY VERTICAL ANGLE OR BY ACTUAL LOCATION. INFORMATION SHOWN BASED ON FAA 2C CERTIFICATION ACCURACY LEVEL DEFINED AS:

HORIZONTAL: ±50 FEET / 15 METERS
VERTICAL: ±20 FEET / 6 METERS

9. SITE FALLS WITHIN ZONE "C" DEFINED AS AREAS OF MINIMAL FLOODING AS SHOWN ON FLOOD INSURANCE RATE MAP, TOWN OF REDDING, CONNECTICUT, FAIRFIELD COUNTY, PANEL 5 OF 9, COMMUNITY PANEL NUMBER 090141 0005 B, EFFECTIVE DATE JUNE 15, 1982.

MAP REFERENCES:

1. MAP ENTITLED "MAP OF PROPERTY OF TOWN OF REDDING" DATED AUGUST 1945 AND FILED IN THE REDDING TOWN CLERKS OFFICE AS MAP NUMBER 338.

2. MAP ENTITLED "AS-BUILT PLAN OF PROPERTY PREPARED FOR THE TOWN OF REDDING CONNECTICUT" PREPARED BY LEONARD SURVEYORS, DATED MARCH 15, 1974 AND FILED IN THE REDDING TOWN CLERKS OFFICE AS MAP NUMBER 1575

3. MAP ENTITLED "MAP PREPARED FOR TOWN OF REDDING" PREPARED BY JOHN W. FULLER, DATED JANUARY 7, 1987 AND FILED IN THE REDDING TOWN CLERKS OFFICE AS MAP NUMBER 3390.

4. MAP ENTITLED "GRADING PLAN - REDDING PUBLIC WORKS GARAGE SITE ' PREPARED BY MILONE & MACBROOM, INC., DATED SEPTEMBER 1990 AND FILED IN THE REDDING TOWN CLERKS OFFICE AS MAP NUMBER 3580.

5. MAP ENTITLED "COMPILATION PLAN TO COMBINE TAX LOTS 39-48-14 AND 39-48-15A PREPARED FOR KAREN CASAZZA" PREPARED BY KRISTOFFERSON LAND SURVEYING, LLC, DATED SEPTEMBER 6, 2005 AND FILED IN THE REDDING TOWN CLERKS OFFICE AS MAP NUMBER 4210.

 MAP ENTITLED "PREPARED FOR LEONARD J. PALCESKI" DATED APRIL 20, 1962 AND FILED IN THE REDDING TOWN CLERKS OFFICE AS MAP NUMBER 907.

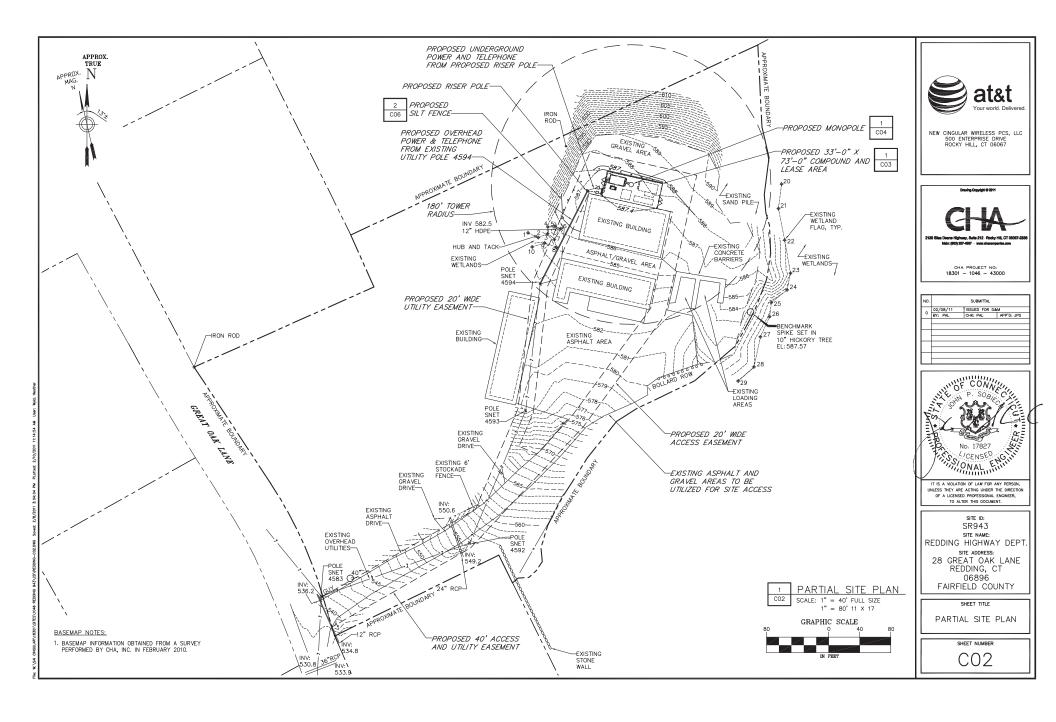
NEW CINGULAR WIRELESS PCS, LLC 500 ENTERPRISE DRIVE ROCKY HILL, CT 06067

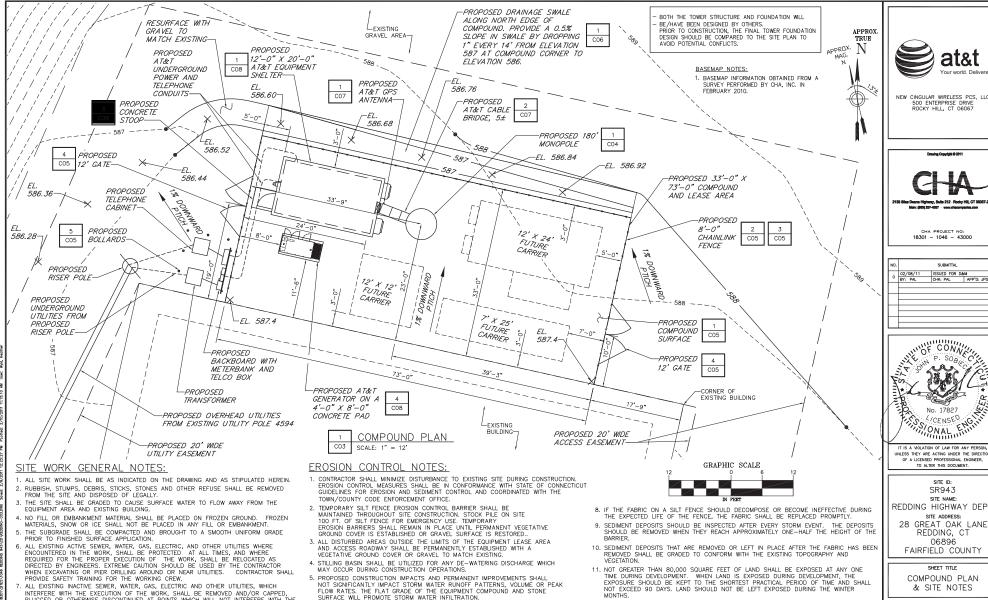
Drawing Copyright @ 2011

CHA PROJECT NO: 18301 - 1046 - 43000

-1	NO.		SUBMITTAL	
	T.	02/08/11	ISSUED FOR DA	
	0	BY: PAL	CHK: PAL	APP'D: JPS
	\perp			
	\vdash			
	1			
	\vdash			
	1			

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A UCENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.


SITE ID:


SR943 STE NAME: REDDING HIGHWAY DEPT SIE ADDRESS: 28 GREAT OAK LANE REDDING, CT 06896

SHEET TITLE

SITE PLAN

SHEET NUMBER

6. CONTRACTOR SHALL INSTALL ALL EROSION AND SEDIMENTATION CONTROL MEASURES

. SILT FENCES SHALL BE INSPECTED IMMEDIATELY AFTER EACH RAINFALL AND AT LEAST DAILY DURING PROLONGED RAINFALL. ANY REPAIRS THAT ARE REQUIRED SHALL BE MADE

PRIOR TO ANY GRADING ACTIVITIES IN LOCATIONS SHOWN ON THIS PLAN

INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF ENGINEERING.

8. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE BUILDING OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, FE SEEDED, AND COVERED WITH MULCH, GRAVEL AREAS SHALL BE RESTORED.

CONTRACTOR IS TO SUPPLY COMBINATION LOCKS PER OWNER SPECIFICATIONS

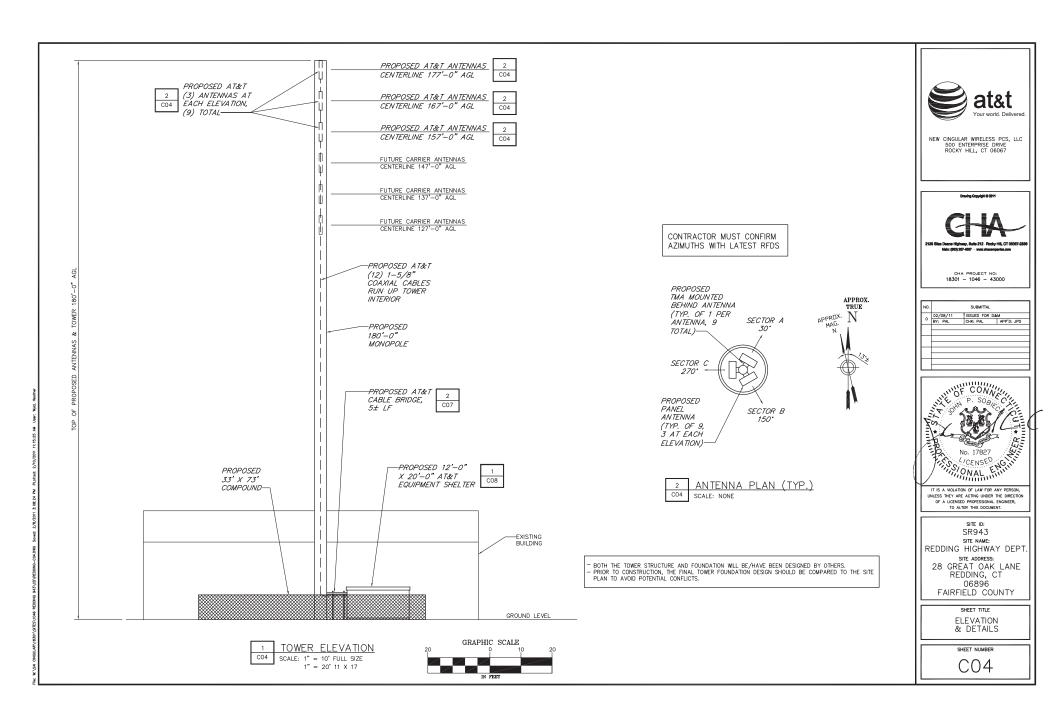
at&t

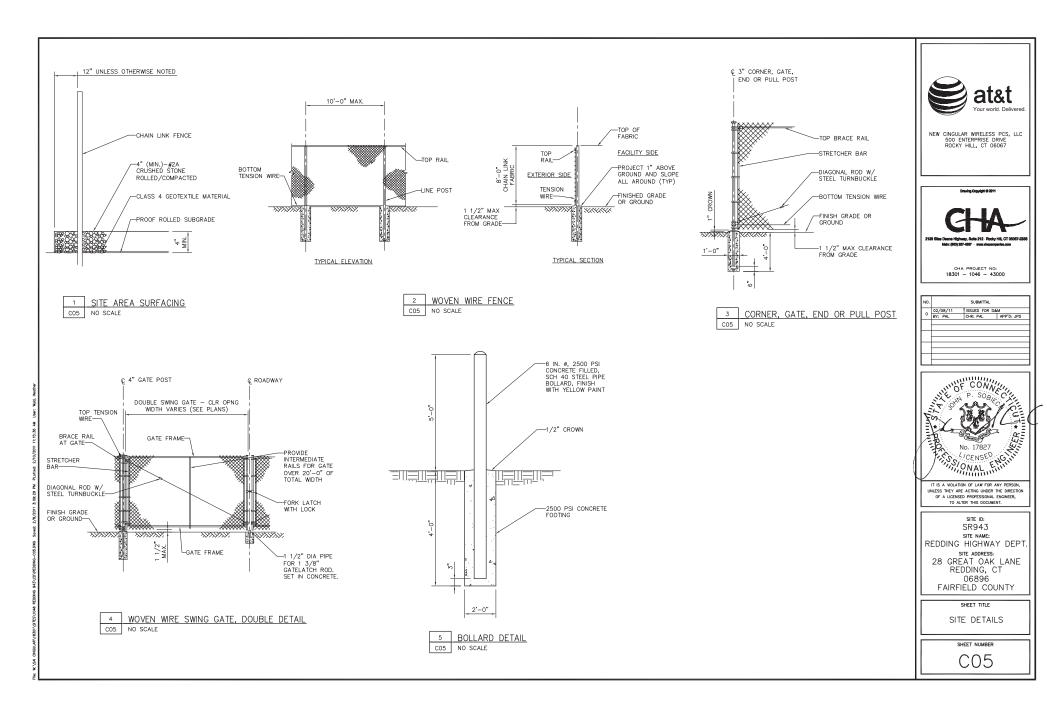
NEW CINGULAR WIRELESS PCS, LLC 500 ENTERPRISE DRIVE ROCKY HILL, CT 06067

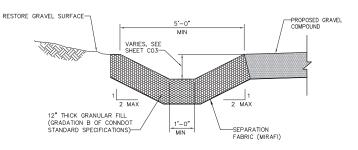
CHA PROJECT NO 18301 - 1046 - 43000

	H	NO.		SUBMITTAL	
- 1	Ιſ	0	02/08/11	ISSUED FOR DA	kM
- 1	П	U	BY: PAL	CHK: PAL	APP'D: JPS
- 1	Ιſ				
١, ١	П				
`\	П				
- 1	П				
- 1	П				
- 1	П				
- 1	П				
	П				

UNLESS THEY ARE ACTING UNDER THE DIRECTIO TO ALTER THIS DOCUMENT.

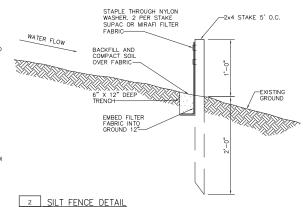

REDDING HIGHWAY DEPT SITE ADDRESS: 28 GREAT OAK LANE REDDING, CT


> COMPOUND PLAN & SITE NOTES


> > SHEET NUMBER

12. ANY DISTURBED AREAS OUTSIDE LIMITS OF CONSTRUCTION SHALL BE TOPSOILED, SEEDED WITH RYE GRASS, AND MACHINE HAY MULCHED TO PREVENT EROSION. HAY OR STRAW MULCH SHALL BE APPLIED TO ALL FRESHLY SEEDED AREAS AT A RATE OF 2 TONS PER ACRES. BALES SHALL BE UNSPOLLED, AND FREE FROM WEED, SEEDS, AND

ANY COARSE MATERIAL. RESTORE GRAVEL AREAS TO MATCH EXISTING


1 STONE DRAINAGE SWALE
CO6 NO SCALE

NOTE:

- THE GOETEXTILE FABRIC SHALL MEET THE DESIGN CRITERIA FOR SILT FENCES.
- 2. THE FABRIC SHALL BE EMBEDDED A MINIMUM OF 12" INTO THE GROUND AND THE SOIL COMPACTED OVER THE EMBEDDED FABRIC.
- WOVEN WIRE FENCES SHALL BE FASTENED SECURELY TO THE FENCE POSTS WITH WIRE TIES OR STAPLES.
- 4. FILTER CLOTH SHALL BE FASTENED SECURELY TO THE WOVEN WIRE FENCE WITH TIES SPACED EVERY 24 INCHES AT THE TOP, MID—SECTION, AND BOTTOM.
- 5. WHEN TWO SECTIONS OF FILTER CLOTH ADJOIN ONE ANOTHER, THEY SHALL BE OVERLAPPED BY 6 INCHES, FOLDED AND STAPLED.
- 6- FENCE POSTS SHALL BE A MINIMUM OF 36" LONG AND DRIVEN A MINIMUM OF 24" INTO THE GROUND, WOOD POSTS SHALL BE OF SOUND QUALITY HARDWOOD AND SHALL HAVE A MINIMUM CROSS SECTIONAL AREA OF 3.0 SQUARE INCHES.
- 7. MAINTENANCE SHALL BE PERFORMED AS NEEDED TO PREVENT BULGES IN THE SILT FENCE DUE TO DEPOSITION OF SEDIMENT.

C06

NO SCALE

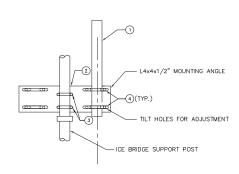
NEW CINGULAR WIRELESS PCS, LLC 500 ENTERPRISE DRIVE ROCKY HILL, CT 06067

CHA PROJECT NO: 18301 - 1046 - 43000

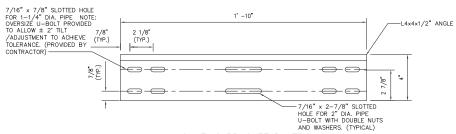
0 02/08/11 ISSUED FOR D&M BY: PAL CHK: PAL APP'D: JP.	NO.	SUBMITTAL			
U DV. DAI CUIV. DAI ADD'O. ID		02/08/11	ISSUED FOR D		
	0	BY: PAL	CHK: PAL	APP'D: JPS	
	⊢				
	⊢				
	ı				
	\vdash				

IT IS A VOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

SITE ID:


SR943 SITE NAME: REDDING HIGHWAY DEPT SITE ADDRESS: 28 GREAT OAK LANE REDDING, CT 06896 FAIRFILELD COUNTY

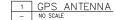
SHEET TITLE
SITE DETAILS


SHEET NUMBER

C06

ANN DEFONDED AND FOLLOW OF THE STATE OF THE STATE OF THE STATE STA

GPS ANTENNA MOUNTING BRACKET


MOUNTING BRACKET PLATE


ITEM #	DESCRIPTION	QUANTITY (EACH)
1	1-1/2" SCH. 40 X 18" LG. MIN SS OR GALV. PIPE	1
2	ANGLE 4" X 4" X 1/2" GALV.(A-36)	1
3	STD. U-BOLT FOR 2" PIPE W/ DOUBLE HEX NUTS AND WASHER, GALV.	2
4	STD. U-BOLT FOR 2" PIPE W/ DOUBLE HEX NUTS AND WASHER, GALV. (SEE NOTE 2)	2

BILL OF MATERIALS

NOTES:

 THE MOUNTING PLATE SHALL BE FABRICATED AS SHOWN AND ATTACHED TO THE APPROPRIATE SUPPORT STRUCTURE USING U-BOLTS. THE SUPPORT PIPE SHALL THEN BE ATTACHED TO THE MOUNTING PLATE USING THE OVERSIZE U-BOLTS PROVIDED TO ALLOW ADJUSTMENT. IT IS CRITICAL THAT THE GPS ANTENNA IS MOUNTED SUCH THAT IT IS WITHIN 2 DEGREES OF VERTICAL AND THE BASE OF THE ANTENNA IS WITHIN 2 DEGREES OF LEVEL.

2 ICE BRIDGE SUPPORT POST W/GPS DETAIL

- NO SCALE

NOTES:

1. LOCATION OF ANTENNA MOUNTING PIPE MUST HAVE CLEAR VIEW OF SOUTHERN SKY AND CANNOT HAVE ANY BLOCKAGES EXCEEDING 25% OF THE SURFACE AREA OF A HEMISPHERE AROUND THE GPS ANTENNA.

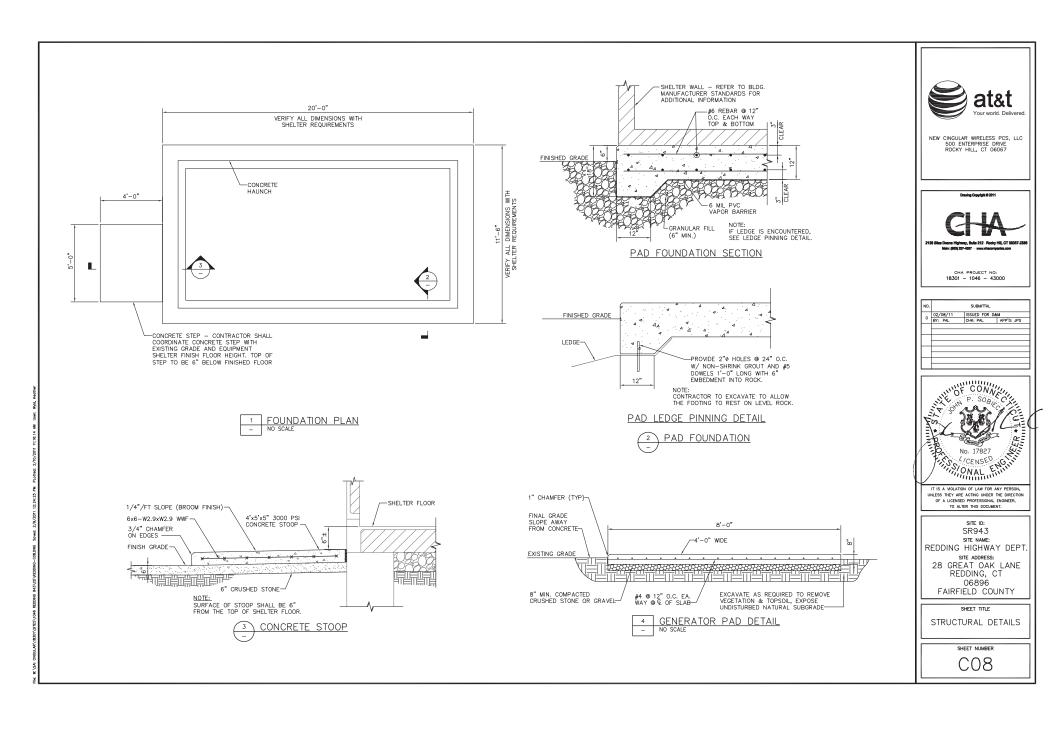
2. THE GPS ANTENNA LOCATION MUST BE ABLE TO RECEIVE CLEAR SIGNALS FROM A MINIMUM OF FOUR (4) SATELLITES. VERIFY WITH HANDHELD GPS BEFORE FINAL LOCATION OF GPS ANTENNA.


NEW CINGULAR WIRELESS PCS, LLC 500 ENTERPRISE DRIVE ROCKY HILL, CT 06067

Drawing Copyright @ 201

CHA PROJECT NO: 18301 - 1046 - 43000

	SUBMITTAL			
0 0	2/08/11	ISSUED FOR I		
B	r: PAL	CHK: PAL	APP'D: JPS	


IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

SITE ID:
SR943
SR9 NAME:
REDDING HIGHWAY DEPT
SITE ADDRESS:
28 GREAT OAK LANE

REDDING, CT 06896 FAIRFIELD COUNTY

SHEET TITLE
STRUCTURAL DETAILS

SHEET NUMBER

GENERAL NOTES

- 1. ALL DIMENSIONS TO, OF, AND ON EXISTING BUILDINGS, DRAINAGE STRUCTURES, AND SITE IMPROVEMENTS SHALL BE VERIFIED IN FIELD BY CONTRACTOR WITH ALL DISCREPANCIES REPORTED TO THE ENGINEER.
- 2. DO NOT CHANGE SIZE NOR SPACING OF STRUCTURAL ELEMENTS.
- 3. DETAILS SHOWN ARE TYPICAL: SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS OTHERWISE NOTED.
- 4. THESE DRAWINGS DO NOT INCLUDE NECESSARY COMPONENTS FOR CONSTRUCTION SAFETY.
- 5. BRACE STRUCTURES UNTIL ALL STRUCTURAL ELEMENTS NEEDED FOR STABILITY ARE INSTALLED. THESE ELEMENTS ARE AS FOLLOWS: LATERAL BRACING, ANCHOR BOLTS,
- 6. DETERMINE EXACT LOCATION OF EXISTING UTILITIES, GROUNDS DRAINS, DRAIN PIPES, VENTS, ETC. BEFORE COMMENCING WORK.
- 7. INCORRECTLY FABRICATED, DAMAGED, OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE OWNER PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE APPROVAL.
- 8. EACH CONTRACTOR SHALL COOPERATE WITH THE OWNER'S REPRESENTATIVE, AND COORDINATE HIS WORK WITH THE WORK OF OTHERS.
- 9. CONTRACTOR TO FOLLOW ALL STATE, LOCAL AND NATIONAL CODES AS APPLICABLE.

DESIGN DATA

LIVE LOADS: PER INTERNATIONAL BUILDING CODE WIND LOADS: PER INTERNATIONAL BUILDING CODE & TIA/EIA-222-F ICE LOADS: 1/2" RADIAL ON ALL COMPONENTS & CABLE SNOW LOAD: PER INTERNATIONAL BUILDING CODE SEISMIC LOADS: PER INTERNATIONAL BUILDING CODE

ANTENNA SUPPORT BRACKET NOTES

- 1. DESIGN RESPONSIBILITY OF ANTENNA MOUNTING BRACKETS AND POLES AND ALL COMPONENTS THERE OF AND ATTACHMENT THERE TO SHALL BE THE RESPONSIBILITY OF THE MANUFACTURER. MFR. SHALL PROVIDE TO THE ENGINEER FOR APPROVAL, DRAWINGS DETAILING ALL COMPONENTS OF THE ASSEMBLY, INCLUDING CONNECTIONS, DESIGN LOADS, AND ALL OTHER PERTINENT DATA. ALL SUBMISSIONS SHALL BEAR THE STAMP AND SIGNATURE OF A PROFESSIONAL ENGINEER REGISTERED IN THE STATE THE WORK IS BEING PERFORMED.
- 2 BRACKETS SHALL BE DESIGNED TO SUPPORT CURRENT AND FUTURE PANEL ANTENNAS AND COAXIAL CABLES AS SHOWN.

STRUCTURAL STEEL NOTES

- 1 STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF THE AISC "SPECIFICATION FOR THE DESIGN, FABRICATION AND FRECTION OF STRUCTURAL STEEL FOR BUILDINGS"
- 2 ALL INTERIOR STRUCTURAL STEEL LISED SHALL BE WHEN DELIVERED FINISHED WITH ONE COAT FABRICATOR'S NON-LEAD, RED OXIDE PRIMER. PRIMING SHALL BE PERFORMED AFTER SHOP FABRICATION TO THE GREATEST EXTENT POSSIBLE. ALL DINGS, SCRAPES, MARS, AND WELDS IN THE PRIMED AREAS SHALL BE REPAIRED BY FIELD TOUCHUP PRIOR TO COMPLETION OF THE WORK.
- 3. ALL EXTERIOR STEEL WORK SHALL BE GALVANIZED IN ACCORDANCE WITH SPECIFICATION ASTM A123 UNLESS OTHERWISE NOTED, GALVANIZING SHALL BE PERFORMED AFTER SHOP FABRICATION TO THE GREATEST EXTENT POSSIBLE. ALL DINGS, SCRAPES, MARS, AND WELDS IN THE GALVANIZED AREAS SHALL BE REPAIRED BY FIELD TOUCHUP PRIOR TO COMPLETION OF THE WORK USING ZRC COLD GALVANIZING COMPOUND OR APPROVED EQUAL.
- 4. DO NOT PLACE HOLES THROUGH STRUCTURAL STEEL MEMBERS EXCEPT AS SHOWN AND DETAILED ON STRUCTURAL DRAWINGS.

- A. ALL WELDING SHALL BE DONE BY A CERTIFIED WELDER USING E70XX ELECTRODES AND WELDING SHALL CONFORM TO AISC AND AWS D1.1. WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLE J2.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION", 9TH EDITION. AT THE COMPLE WELDING, ALL DAMAGE TO GALVANIZED COATING SHALL BE REPAIRED AT THE COMPLETION OF
- B. BOLTED CONNECTIONS SHALL USE BEARING TYPE GALVANIZED ASTM A325 BOLTS (3/4" DIA) AND SHALL HAVE MINIMUM OF TWO BOLTS UNLESS NOTED OTHERWISE.
- C. NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE 5/8" DIA. GALVANIZED ASTM A 307 BOLTS UNLESS NOTED OTHERWISE.
- D. CONNECTION DESIGN BY FABRICATOR WILL BE SUBJECT TO REVIEW AND APPROVAL
- E. ALL BOLTED CONNECTIONS SHALL HAVE A FLAT WASHER & NUT TIGHTENED TO AISC "SNUGTIGHT" CRITERIA, UNLESS NOTED OTHERWISE.

STRUCTURAL STEEL NOTES (CONT.)

- 6. STRUCTURAL STEEL GRATING SHALL BE 1 1/2" X 3/16" GALVANIZED STEEL BAR GRATING (IKG BORDEN TYPE-WB OR EQUAL) ATTACHED @ 1'-6" o.c. WITH GRATING CLAMPS, UNLESS OTHERWISE NOTED.
- 7. NEW STRUCTURAL STEEL LOCATED WITHIN A BUILDING OR ENCLOSURE SHALL BE
- 8. REINFORCING BARS: ASTM A625, GRADE 60 DEFORMED BARS.
- 9. WELDED WIRE MESH: TO ASTM A185. PROVIDE IN FLAT SHEETS ONLY. VERTICAL PLACEMENT TOLERANCE TO BE 3/8 INCH.
- 10. THE CONTRACTOR SHALL FABRICATE ALL REINFORCEMENT AND FURNISH ALL ACCESSORIES, BOLSTERS, CHAIRS, SPACER BARS AND SUPPORTS NECESSARY TO SECURE THE REINFORCEMENT UNLESS INDICATED OTHERWISE.
- 11. IN SLABS WHERE REINFORCING IS SHOWN IN ONE DIRECTION ONLY, PROVIDE INDICATED TEMPERATURE REINFORCEMENT AT 90 DEGREES TO PRINCIPAL REINFORCEMENT.
- 12 LAP SPLICES:
- a) CONCRETE: PROVIDE CLASS B TENSION LAP SPLICES U.N.O.
- b) WELDED WIRE MESH: MINIMUM LAP 8 INCHES, MEASURED BETWEEN OUTERMOST

CONCRETE NOTES

- 1 DESIGN AND CONSTRUCTION OF ALL CONCRETE FLEMENTS SHALL CONFORM TO THE LATEST EDITIONS OF THE FOLLOWING APPLICABLE CODES: ACI 301
 "SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS"; ACI 318, BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE"
- 2. MIX DESIGN SHALL BE APPROVED BY OWNER'S REPRESENTATIVE PRIOR TO PLACING CONCRETE. PREPARE AND SUBMIT MIX DESIGNS FOR EACH TYPE AND STRENGTH OF CONCRETE IN ACCORDANCE WITH ACI 211. "PROPORTIONING CONCRETE MIXTURES, AND ACI 301, "SPECIFICATIONS FOR STRUCTURAL CONCRETE"
- CONCRETE (EXCEPT TREMIE MIX) SHALL BE NORMAL WEIGHT, 6% AIR ENTRAINED (±1.5%) WITH A MAXIMUM 4" SLUMP, AND HAVE A MINIMUM 28-DAY COMPRESSIVE STRENGTH OF 3000 PSI UNLESS OTHERWISE NOTED.
- 4. MAXIMUM AGGREGATE SIZE SHALL BE 3/4".
- 5. THE FOLLOWING MATERIALS SHALL BE USED:

PORTLAND CEMENT: ASTM C 150, TYPE I REINFORCEMENT: ASTM A 615, GRADE 60 ASTM C 33 POTABLE NORMAL WEIGHT AGGREGATE: NON-CHLORIDE CONTAINING ADMIXTURES:

- 6. REINFORCING DETAILS SHALL BE IN ACCORDANCE WITH THE LATEST EDITION OF ACI
- 7. REINFORCING STEEL SHALL CONFORM TO ASTM A 615, GRADE 60, DEFORMED UNLESS NOTED OTHERWISE. WELDED WIRE FABRIC SHALL CONFORM TO ASTM A 185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE. SPLICES SHALL BE CLASS "B" AND ALL HOOKS SHALL BE STANDARD, UNO.
- 8. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:

CONCRETE CAST AGAINST EARTH.......3 IN.

CONCRETE EXPOSED TO EARTH OR WEATHER

CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR NOT CAST AGAINST THE SLAR AND WALL BEAMS AND COLUMNS1 1/2 IN.

- 9. A CHAMFER 1" SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNO, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.
- 10. INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHOR SHALL BE PER MANUFACTURES WRITTEN RECOMMENDED PROCEDURE. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWINGS. NO REBAR SHALL BE CUT WITHOUT PRIOR ENGINEERING APPROVAL WHEN DRILLING HOLES IN CONCRETE.
- 11. CURING COMPOUNDS SHALL CONFORM TO ASTM C-309.
- 12. ADMIXTURES SHALL CONFORM TO THE APPROPRIATE ASTM STANDARD AS REFERENCED IN ACI-301
- 13, DO NOT WELD OR TACKWELD REINFORCING STEEL
- 14. ALL DOWELS, ANCHOR BOLTS, EMBEDDED STEEL, ELECTRICAL CONDUITS, PIPE SLEEVES, GROUNDS AND ALL OTHER EMBEDDED ITEMS AND FORMED DETAILS SHALL BE IN PLACE BEFORE START OF CONCRETE PLACEMENT.

CONCRETE NOTES (CONT.)

- 15. LOCATE ADDITIONAL CONSTRUCTION JOINTS REQUIRED TO FACILITATE CONSTRUCTION AS ACCEPTABLE TO ENGINEER. PLACE REINFORCEMENT CONTINUOUSLY THROUGH
- 16. REINFORCEMENT SHALL BE COLD BENT WHENEVER BENDING IS REQUIRED.
- 17. PLACE CONCRETE IN A UNIFORM MANNER TO PREVENT THE FORMATION OF COLD JOINTS AND OTHER PLANES OF WEAKNESS. VIBRATE THE CONCRETE TO FULLY EMBED REINFORCING. DO NOT USE VIBRATORS TO TRANSPORT CONCRETE THROUGH CHUTES
- 18. DO NOT PLACE CONCRETE IN WATER, ICE, OR ON FROZEN GROUND.
- 19. DO NOT ALLOW CONCRETE SUBBASE TO FREEZE DURING CONCRETE CURING AND SETTING PERIOD, OR FOR A MINIMUM OF 14 DAYS AFTER PLACEMENT.
- 20. FOR COLD-WEATHER AND HOT-WEATHER CONCRETE PLACEMENT, CONFORM TO POR CUID-MEATICE AND FOUL WEATHER CONCRETE PLACEMENT, CONTORN LO APPLICABLE ACT CODES AND RECOMMENDATIONS. IN EITHER CASE, MATERIALS CONTAINING CHLORIDE, CALCIUM, SALTS, ETC. SHALL NOT BE USED. PROTECT FRESH CONCRETE FROM WEATHER FOR 7 DAYS MINIMUM.
- 21. READY-MIX CONCRETE SUPPLIERS TO BE NRMCA-CERTIFIED.
- 22. NO ADDITIONAL WATER SHALL BE ADDED TO THE CONCRETE AT THE JOB SITE.
- 23. HOT WEATHER CONCRETE: COMPLY WITH ACI 305R.
- 24. NO PLASTIZISOR TO BE USED IN TREMIE MIX.

EXCAVATIONS/FOUNDATION

- 1. FOUNDATION EXCAVATION SHALL BE HAND-TRIMMED TO REMOVE LOOSE MATERIALS.
- 2. DO NOT PLACE FOOTINGS IN WATER OR ON FROZEN GROUND.
- 3. SOIL BEARING SURFACES, PREVIOUSLY ACCEPTED BY GEOTECHNICAL ENGINEER, WHICH ARE ALLOWED TO BECOME SATURATED, FROZEN OR DISTURBED SHALL BE REWORKED TO SATISFACTION OF GEOTECHNICAL ENGINEER.
- 4. DO NOT ALLOW GROUND BENEATH FOOTINGS TO FREEZE.
- 5. ALL STRUCTURAL BACKFILL AND SUBBASE UNDER SLABS SHALL BE SELECT STRUCTURAL FILL MEETING THE GRADATION AND SOUNDNESS REQUIREMENTS IN ACCORDANCE WITH THE FOLLOWING GRADATION:
 - A. GRADATION, THE MATERIAL SHALL HAVE THE FOLLOWING GRADATION

SEIVE SIZE PERCENT PASSING BY WEIGHT 4 INCH NO. 40 100 0 TO 70

NO. 200 0 TO 15

- R MATERIALS SHALL BE SUBSTANTIALLY FREE OF SHALE OR OTHER SOFT POOR DURABILITY PARTICLES. IF TESTING IS ELECTED BY OWNER, MATERIAL WITH A
 MAGNESIUM SULFATE SOUNDNESS LOSS EXCEEDING 30% WILL BE REJECTED.
- 6. COMPACT TO 95% STANDARD PROCTOR DENSITY PER ASTM D-698
- SUBGRADE BELOW SLAB-ON-GRADE SHALL BE REVIEWED AND ACCEPTED BY GEOTECHNICAL ENGINEER BEFORE CONCRETE SLAB PLACEMENT.
- 8. ALL LOOSE AND/OR ORGANIC MATERIAL SHALL BE REMOVED PRIOR TO PREPARATION OF THE AREA FOR PLACEMENT OF STRUCTURAL BACKFILL. OVERALL PLAN AREA OF WORK SHALL EXTEND 3'-O" MINIMUM BEYOND THE FINAL DIMENSIONS.
- 9. SCARIFY THE EXISTING SOILS TO A DEPTH OF 6" AND RE-COMPACT USING A PLATE TAMPER. ANY SOFT AREAS SHALL BE OVEREXCAVATED 12" AND BACKFILLED WITH MATERIALS AND COMPACTION REQUIREMENTS SHOWN ON THE DRAWINGS.
- 10. PLACEMENT AND COMPACTION OF STRUCTURAL BACKFILL AND SUBBASE SHALL BE DONE IN 8" LIFTS. EXCAVATE FOR THE FOOTING EDGE AS SHOWN ON THE DRAWINGS.
- 11. CONTRACTOR TO GRADE SITE LEVEL WITH EXISTING, TWO FEET BEYOND PROPOSED EQUIPMENT PAD FOOTPRINT, THEN TAPER TO EXISTING GRADE IF REQUIRED AT A MAXIMUM OF 3:1 SLOPE.

DESIGN NOTES

MATERIALS: STRUCTURAL STEEL ANGLES AND PLATES RECTANGULAR STRUCTURAL TUBING STANDARD PIPE HIGH STRENGTH BOLTS ANCHOR BOLTS WELDING ELECTRODES

CONCRETE (28 DAYS): SLAB-ON-GRADE ALL OTHER CONCRETE REINFORCING STEEL WELDED WIRE FARRIC

A572 GRADE 50 A36 A500 GRADE B (46 KSI) A501 OR A53 GRADE B A325 N OR SC CLASS A F70XX

4000 PSI 4000 PSI 3000 PSI A615 GRADE GO A185 A108

NEW CINGULAR WIRELESS PCS. LLC 500 ENTERPRISE DRIVE ROCKY HILL, CT 06067

CHA PROJECT NO 18301 - 1046 - 43000

NO.				
_	02/08/11	ISSUED FOR D		
0	BY: PAL	CHK: PAL	APP'D: JPS	

IT IS A VIOLATION OF LAW FOR ANY PERSON UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIO NAL ENGINEER. TO ALTER THIS DOCUMENT SITE ID:

SR943 SITE NAME: REDDING HIGHWAY DEPT SITE ADDRESS: 28 GREAT OAK LANE REDDING, CT 06896 FAIRFIELD COUNTY

SHEET TITLE STRUCTURAL NOTES

SHEET NUMBER

ATTACHMENT 4

POWERWAVE Dual Broadband Antennas

P65-16-XLH-RR

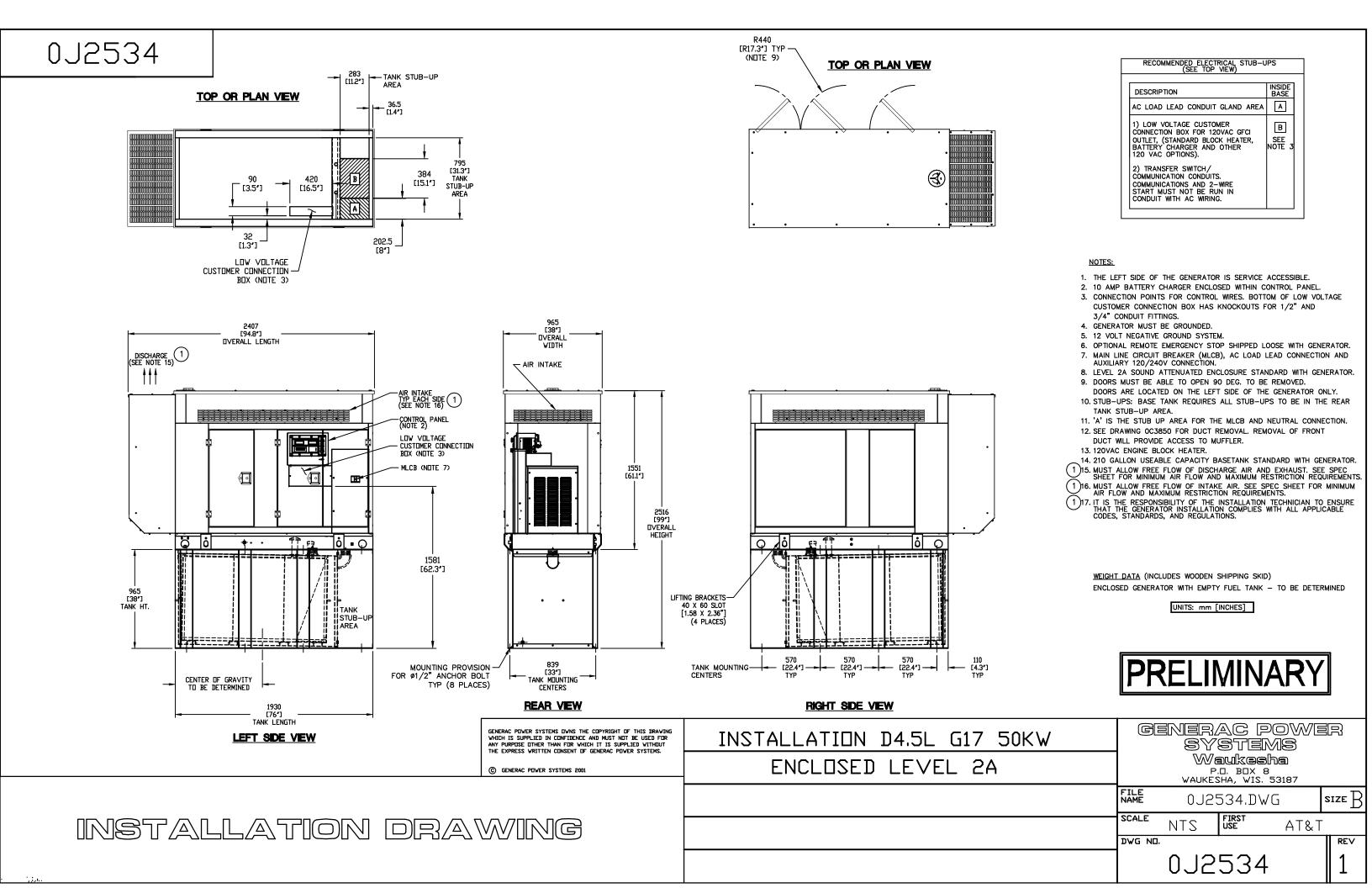
Dual Broadband Antennas

POLARIZATION: Dual linear ±45° FREQUENCY (MHz): 698-894, 1710-2170 HORIZONTAL BEAM WIDTH (°): 65, 65 GAIN (dBi/dBd): 15.5/13.4 17.5/15.4 TILT: 2-10, 0-10

LENGTH: 72"

	1					
ELECTRICAL SPECIFICATIONS*						
Frequency range (MHz)	698-	894		1710-2170		
Frequency band (MHz)	698-806	806-894	1710-1880	1850-1990	1900-2170	
Gain (dBi/dBd)	14.8/12.7	15.5/13.4	16.9/14.8	17.2/15.1	17.5/15.4	
Polarization	Dual Line	ar +/- 45		Dual Linear +/- 45		
Nominal Impedance (Ω)	50			50		
VSWR	< 1.5:1		< 1.5:1			
Horizontal beam width, -3 dB (°)	66	65	60	63	63	
Vertical beam width, -3 dB (°)	14.7	12.5	6.8	6.4	5.7	
Electrical down tilt (°)	2 to	10		0 to 10		
Side lobe suppression, vertical 1st upper (dB)	> 16	>16	> 16			
	>16	>16				
Isolation between inputs (dB)	> 30	> 30	> 30	> 30		
Inter band Isolation (dB)	> 4	10		> 40		
Tracking, horizontal plane ±60° (dB)	< 2		< 2	< 2	< 2	
First null fill (dB)			>-20	>-20	>-20	
Vertical beam squint (°)	< 0.8	< 0.8	< 0.5	< 0.5	< 0.5	
Front to back ratio (dB) 180°±30° copolar	>24	>24	> 30	>30	>28	
Front to back ratio (dB) 180°±30° total power						
Cross polar discrimination (XPD) 0° (dB)	> 15	> 15	> 15	> 15	> 15	
Cross polar discrimination (XPD) ±60° (dB)	> 10	> 10	> 10	> 10	> 10	
Far field coupling						
IM3, 2xTx@43dBm (dBc)	<-1	53		<-153		
IM7, 2xTx@43dBm (dBc)						
Power handling, average per input (W)	500			250		
Power handling, average total (W)	100	00		500		

MECHANICAL SPECIFICATIONS*	
Connector	4 X 7/16 DIN Female, IP67
Connector position	Bottom
Dimensions, HxWxD, mm (ft)	72" x 12" x 6" (1829 x 305 x 152)
Mounting	Pre-mounted Tilt Brackets
Weight, with brackets, kg (lbs)	29 (64)
Weight, without brackets, kg (lbs)	24 (53)
Wind load, frontal/lateral/rear side 42 m/s Cd=1.6 (N)	1380
Maximum operational wind speed, m/s (mph)	100 (45)
Survival wind speed, m/s (mph)	150 (67)
Lightning protection	DC Ground
Operating Temperature	-40C to +60C
Radome material	PVC, IP55
Packet size, HxWxD, mm (ft)	87" x 16" x 10" (2225 x 400 x 225)
Radome colour	Light Grey
Shipping weight, kg (lbs)	34 (75)
RET	iRET AISGv1.1, MET and AISGv2.0
Brackets	7256.00, 7454.00



^{*}All specifications subject to change without notice. Please contact your Powerwave representative for complete performance data.

ANTENNA PATTERNS*

For detailed patterns visit http://www.powerwave.com/rpa/.

ATTACHMENT 5

