

June 28, 2019

VIA EMAIL AND OVERNIGHT MAIL

Ms. Melanie A. Bachman
Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, Connecticut 06051

RE: **Petition No. 1372** – Derby Fuel Cell, LLC petition for declaratory ruling, pursuant to Connecticut General Statutes §4-176 and §16-50k, for the proposed construction, maintenance and operation of a 14.0-megawatt fuel cell facility and associated equipment to be located at 200 Roosevelt Drive, Derby, Connecticut.

Dear Ms. Bachman:

Pursuant to the Council’s request dated June 11, 2019, enclosed on behalf of Derby Fuel Cell, LLC (the “Company”) are an original and 15 copies of the Company’s responses to the Council’s questions 1-36 in the above-referenced matter. The Company is submitting its confidential response to Interrogatory CSC-36 under seal, along with a Motion for Protective Order, which is being filed simultaneously herewith.

If you have any questions regarding the enclosed, please feel free to contact me.

Respectfully submitted,

Jennifer D. Arasimowicz
Interim President, General Counsel, Chief
Commercial Officer and Corporate
Secretary

Encls.

c: Service List

Interrogatory CSC-1

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Irene Corea

Page 1 of 1

Q-CSC-1 Would the proposed facility be a “customer-side distributed resources” facility or a “grid-site distributed resources” facility pursuant to Connecticut General Statutes §16-1?

A-CSC-1: **The proposed facility would be a “grid-site distributed resources” facility pursuant to Connecticut General Statutes § 16-1.**

Interrogatory CSC-2

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Dmitriy Kamenetskiy

Page 1 of 1

Q-CSC-2 Referencing page 2 of the Petition, provide the date on which FuelCell Energy, Inc. (FCE) submitted its proposal in response to a Connecticut Department of Energy and Environmental Protection (DEEP) Request for Proposals (RFP). On what date did DEEP select this fuel cell project in its RFP? What percentage of the electrical energy and/or renewable energy credits (RECs) would be sold to The Connecticut Light and Power Company d/b/a Eversource Energy and The United Illuminating Company (UI) per the power purchase agreements?

A-CSC-2: **FuelCell Energy, Inc. submitted its proposal in response to the DEEP RFP on April 02, 2018. The project was selected by DEEP on or around June 13, 2018.**

The United Illuminating Company (UI) would purchase 19.62% of the facility electrical output. The remaining 80.38% would be sold to The Connecticut Light and Power Company d/b/a Eversource Energy. RECs are sold with the electrical energy and therefore are transferred to the utilities in the same percentages.

Interrogatory CSC-3

Derby Fuel Cell, LLC
Petition No. 1372

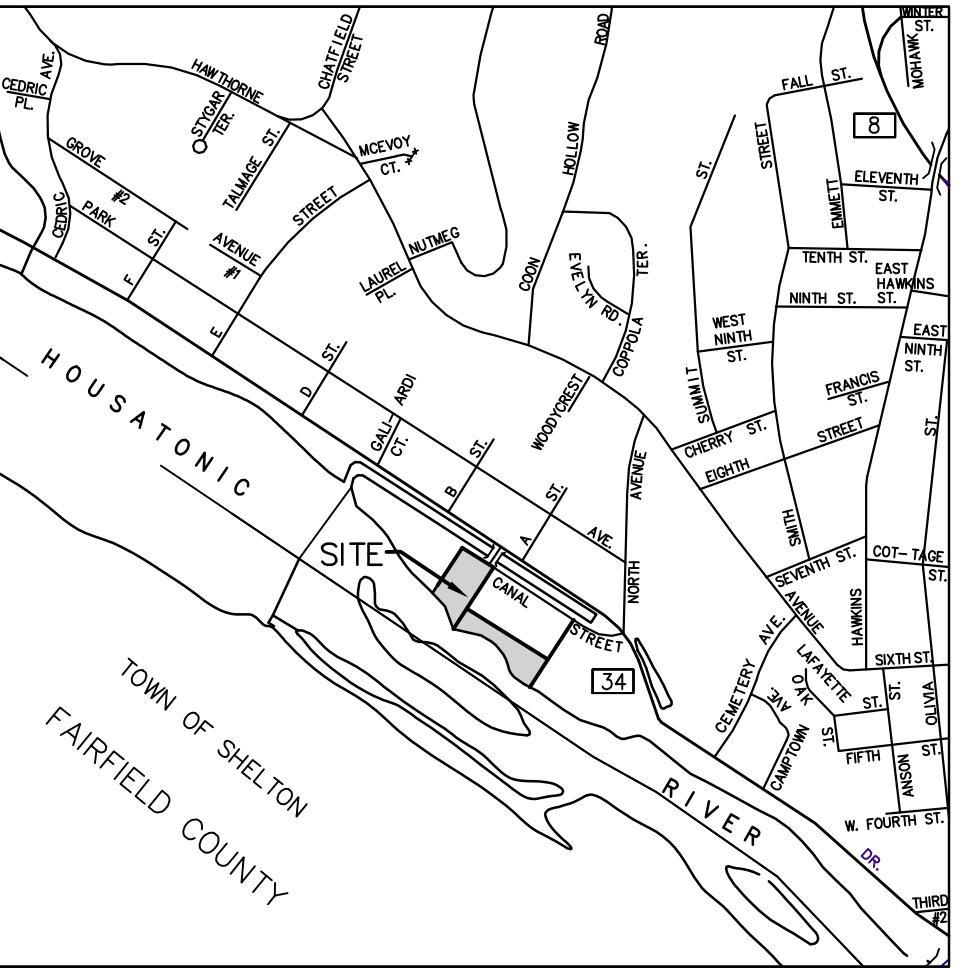
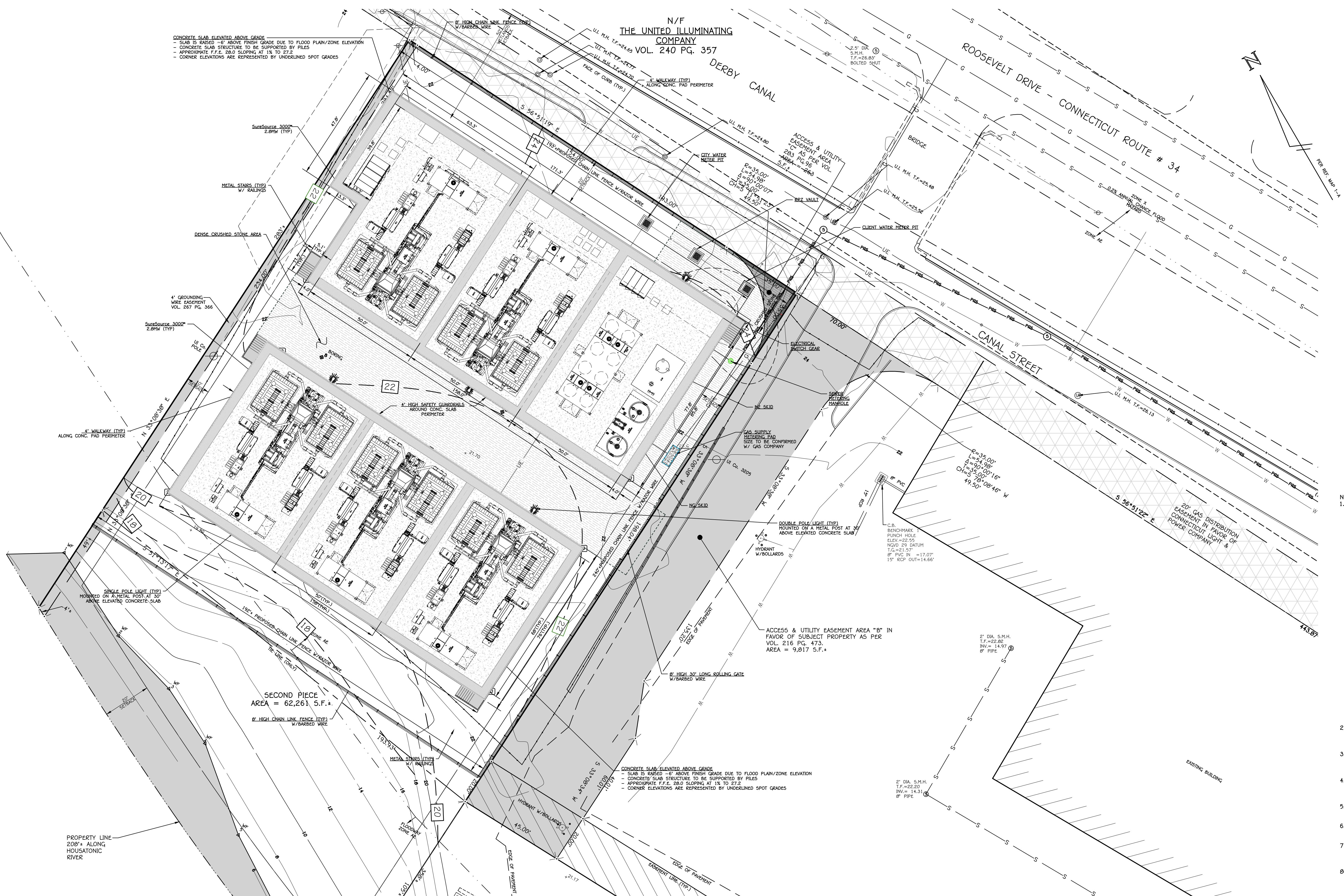
Witness: Jennifer D. Arasimowicz, Esq.
Page 1 of 1

Q-CSC-3 Was the project selected for the LREC/ZREC Program?

A-CSC-3: **The project was not eligible to be bid into the LREC/ZREC program. Pursuant to Section 2.2.2 of the DEEP RFP, “Eligible Projects cannot receive Connecticut ratepayer-funded incentives or subsidies or any other contract to sell products produced by the project to a Connecticut EDC, including but not limited to net metering, pursuant to C.G.S. § 16-243h, virtual net metering, pursuant to C.G.S. § 16-244u, or LREC/ZREC pursuant to C.G.S. §§ 16-244r and 16-244t or any successor programs.”**

Interrogatory CSC-4

Derby Fuel Cell, LLC
Petition No. 1372



Witness: Dmitriy Kamenetskiy
Page 1 of 1

Construction Specifications Questions

Q-CSC-4 Provide a clear copy of Figure 1 and Drawing Nos. C-001 through C-004 from the Petition, and depict the wastewater connection on Drawing No. C-004. Either 8.5" x 11" or 11" x 17" could be used for the drawing sizes.

A-CSC-4: **A copy of Figure 1 (Site Development Plan) and Drawing Nos. C-001 through C-004 are attached hereto as Exhibit A.**

EXHIBIT A

LEGEND

- UTILITY POLE
- EXISTING CONTOURS
- EXISTING SPOT ELEVATION
- PROPOSED SPOT ELEVATION
- PROPOSED CONTOUR
- BITUMINOUS CONCRETE LIP CURBING
- WATER SHUTOFF
- WATER GATE
- PROPOSED SEWER LINE
- EXISTING SEWER LINE
- EXISTING GAS LINE
- EXISTING UNDERGROUND ELECTRIC
- EXISTING WATER LINE

NOTE

ANY MODIFICATIONS TO THE LOCATION OR ELEVATION OF THE SEPTIC SYSTEM COMPONENTS SHOWN HEREON (INCLUDING CURTAIN DRAINS IF SHOWN) ARE SUBJECT TO THE WRITTEN APPROVAL OF THE DESIGN ENGINEER. THE DESIGN ENGINEER WILL NOT BE RESPONSIBLE FOR ANY CHANGES MADE WITHOUT SUCH WRITTEN APPROVAL.

STUART J. FAIRBANK
 CONN. P.E. #20206

BOUNDARY LINES OF ADJOINING PROPERTIES ARE SHOWN FOR GENERAL INFORMATION PURPOSES ONLY AND ARE NOT TO BE CONSTRUED AS BEING ACCURATELY LOCATED OR DEPICTED.

1. THIS SURVEY PLAN HAS BEEN PREPARED PURSUANT TO THE REGULATIONS OF CONNECTICUT STATE AGENCIES SECTION 20-300B-1 THROUGH 20-300B-20 AND THE "STANDARDS FOR SURVEYS AND MAPS IN THE STATE OF CONNECTICUT" AS ADOPTED BY THE CONNECTICUT AGENCY OF LAND SURVEYORS, INC. ON SEPTEMBER 26, 1996.

A. TYPE OF SURVEY:
 C. BOUNDARY DETERMINATION:
 C. THIS SURVEY CONFORMS TO THE STANDARDS AND ACCURACY OF CLASS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

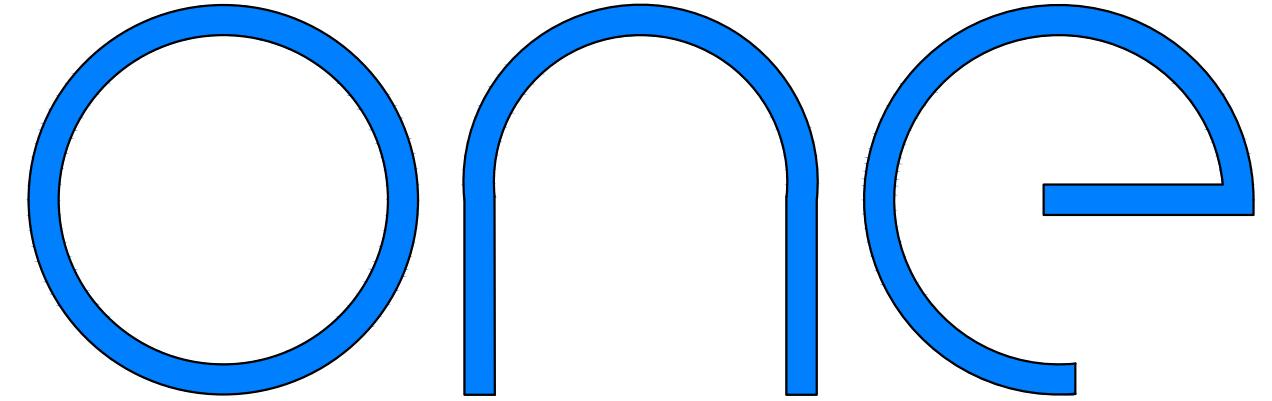
141

142

143

144

145


146

147

SURE SOURCE 3000TM POWER PLANT

200 ROOSEVELT DRIVE DERBY, CT 06418
PRELIMINARY SITE DEVELOPMENT

DEVELOPED & DESIGNED BY

DEVELOPMENT & CONSTRUCTION, LLC

68 UNION STREET
WESTFIELD, MA 01085
P: (413) 485-4060
F: (413) 485-4090

90 MAIN STREET
P.O. BOX 820
CENTERBROOK, CT 06426
P: (860) 982-0889

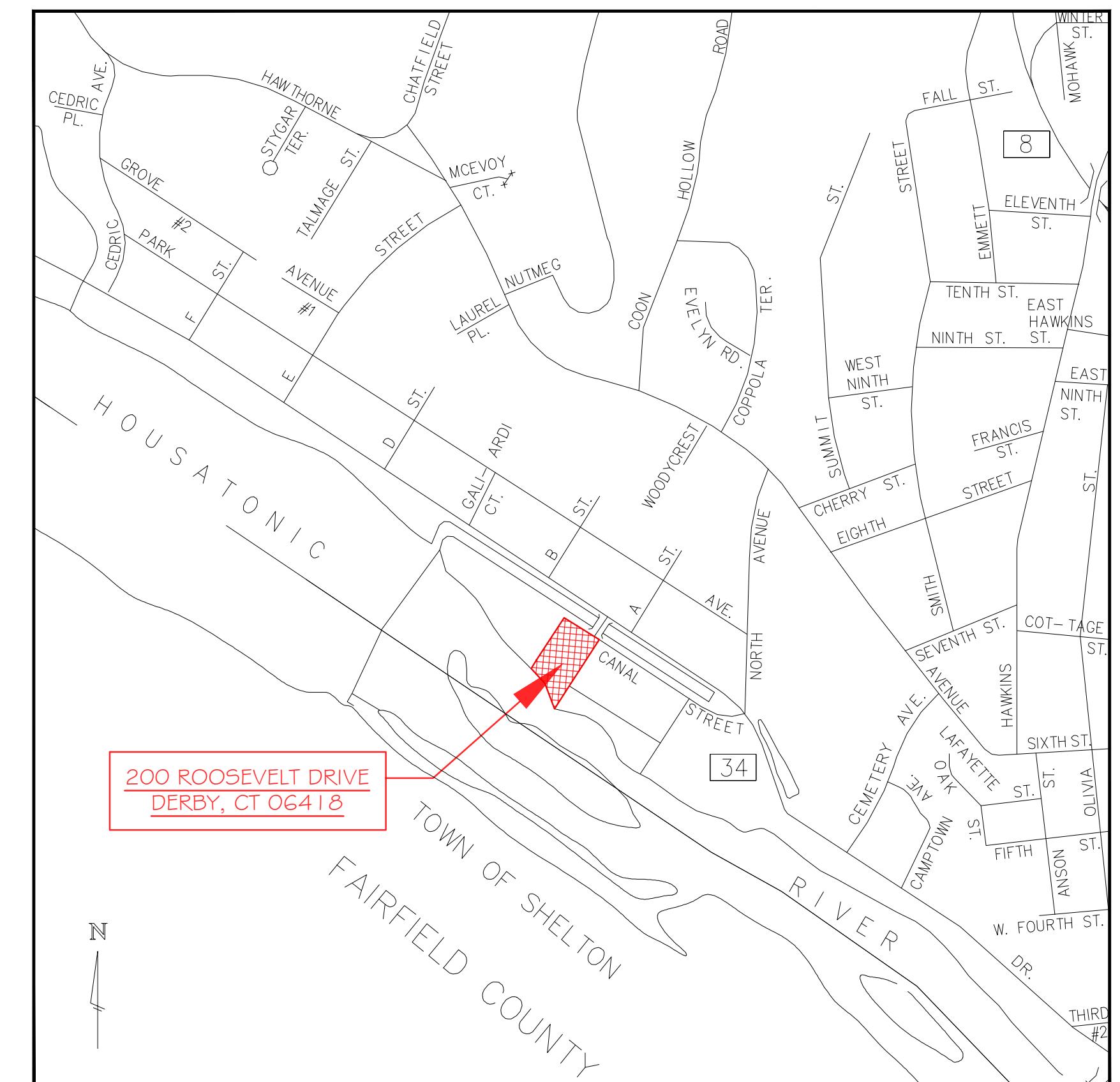
www.one-d-c.com

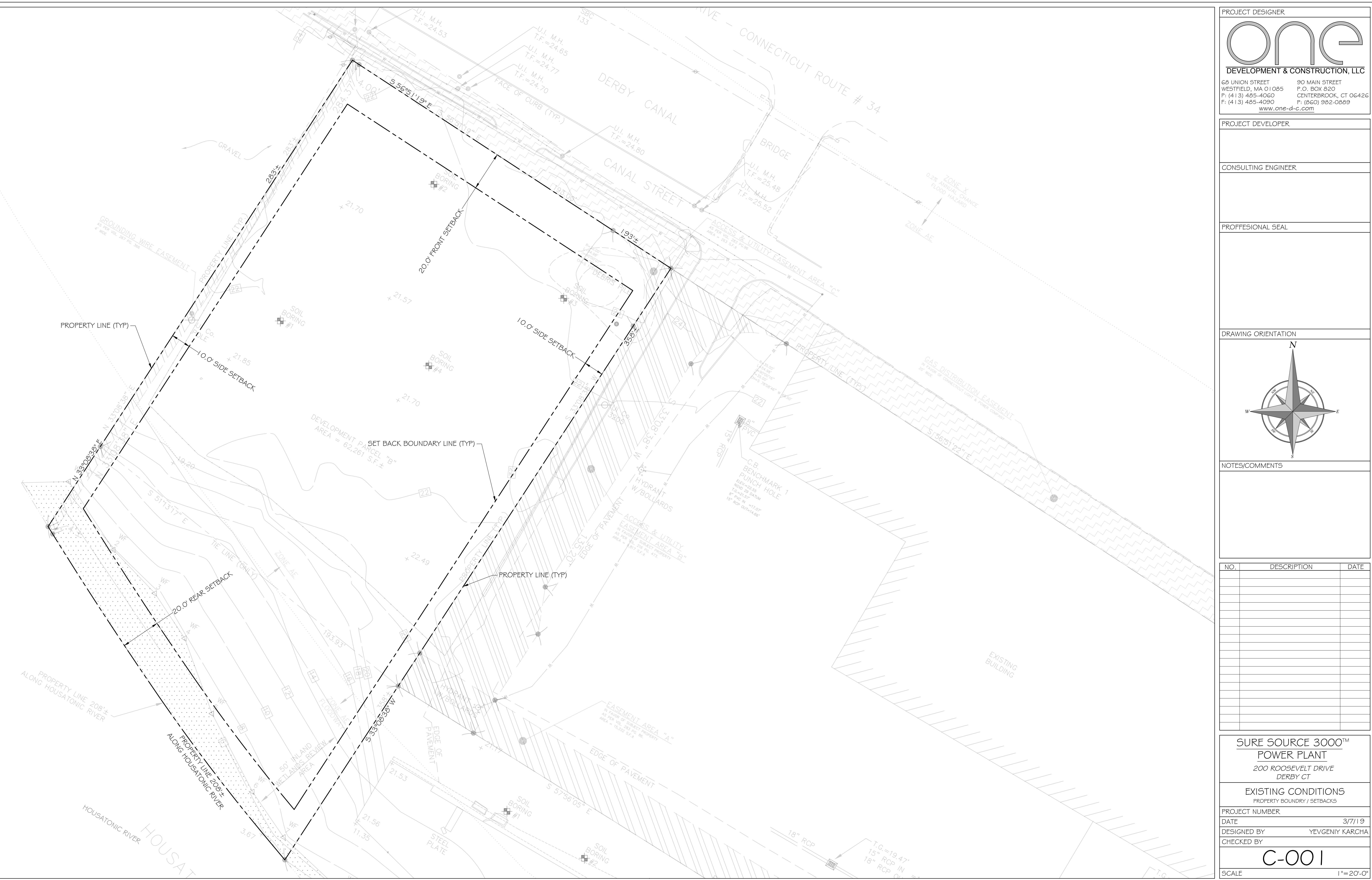
INDEX OF DRAWINGS

GENERAL PLANS

G-100 COVER SHEET & INDEX OF DRAWINGS

CIVIL PLANS


- C-001 EXISTING CONDITIONS (PROPERTY BOUNDARY/SETBACKS)
- C-002 SITE LAYOUT
- C-003 SITE GRADING PLAN
- C-004 UTILITIES LAYOUT


SureSource 3000™ SET UP

3 Great Pasture Road
Danbury, CT 06810
www.fce.com

LOCUS MAP

Interrogatory CSC-5

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Irene Corea

Page 1 of 1

Q-CSC-5 Referencing Drawing No. C-004, has the Petitioner determined how the natural gas connection would cross the existing bridge to reach the existing natural gas main on Route 34?

A-CSC-5: **Based on the preliminary design completed by Eversource there will be no need to cross the existing bridge for the natural gas connection. Eversource will tie-in into its gas main located on Route 34 and bring gas to the site by installing a new line extension along-side the IDA building.**

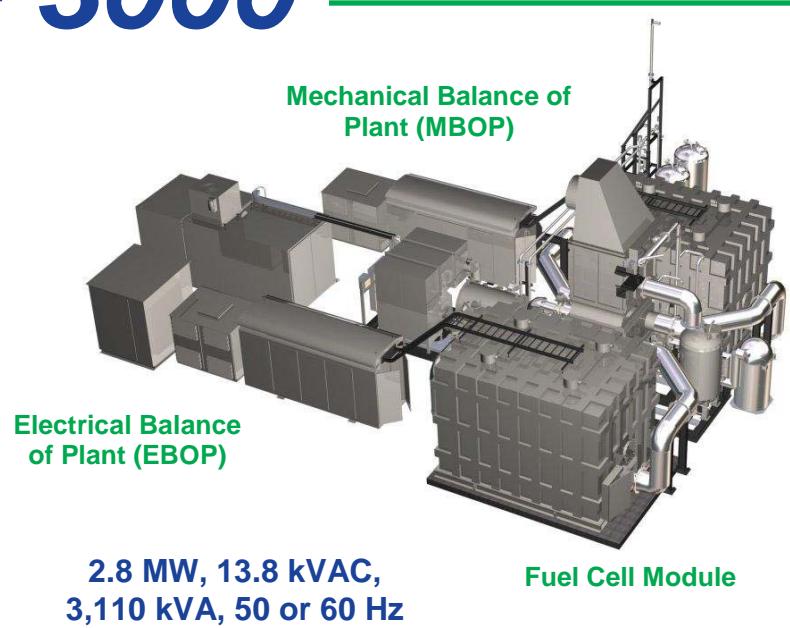
Interrogatory CSC-6

Derby Fuel Cell, LLC
Petition No. 1372

Witness: Dmitriy Kamenetskiy
Page 1 of 1

Q-CSC-6 Please provide a specifications sheet for the FCE SureSource 3000 fuel cell, or as applicable.

A-CSC-6: **The specification sheet for the SureSource 3000 fuel cell is attached hereto as Exhibit B.**


EXHIBIT B

SureSource 3000

2.8 MEGAWATTS

KEY FEATURES

- Predictable Power
- Highly Efficient
- Ultra-Clean
- Scalable
- Modest Footprint
- Quiet Operation
- Fuel Flexible

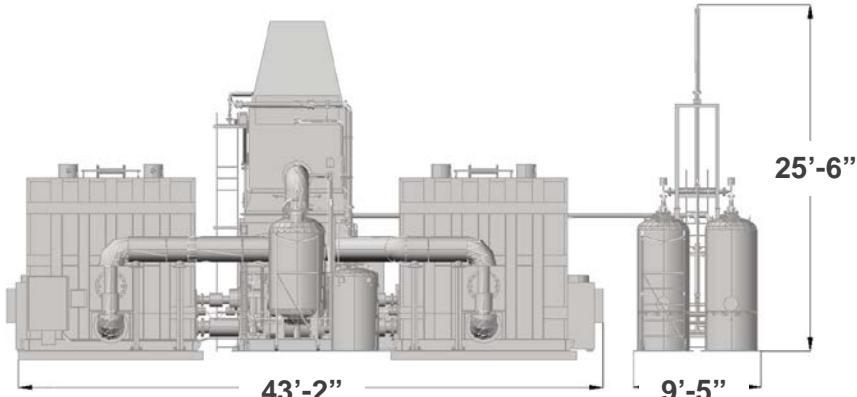
**2.8 MW, 13.8 KVAC,
3,110 kVA, 50 or 60 Hz**

APPLICATIONS

Comprised of two 1.4 megawatt (MW) modules, the SureSource 3000 generates 2.8 MW of ultra-clean power. The system is ideal for on-site applications including large universities, manufacturing facilities, wastewater treatment plants, or multi-plant fuel cell parks to support the electric grid.

PERFORMANCE

Gross Power Output		Water Consumption	
Power @ Plant Rating	2,800 kW	Average	9 gpm
Standard Output AC voltage	13,800 V	Peak during WTS backflush	30 gpm
Standard Frequency	60 Hz		
Optional Output AC Voltages	By Request		
Optional Output Frequency	50 Hz		
Efficiency		Water Discharge	
LHV	47 +/- 2 %	Average	4.5 gpm
		Peak during WTS backflush	30 gpm
Available Heat		Pollutant Emissions	
Exhaust Temperature	700 +/- 50 °F	NOx	0.01 lb/MWh
Exhaust Flow	36,600 lb/h	SOx	0.0001 lb/MWh
Allowable Backpressure	5 iwc	PM10	0.00002 lb/MWh
Heat Energy Available for Recovery		Greenhouse Gas Emissions	
(to 250 °F)	4,433,000 Btu/h	CO2	980 lb/MWh
(to 120 °F)	7,460,000 Btu/h	CO2 (with waste heat recovery)	520-680 lb/MWh
Fuel Consumption		Sound Level	
Natural gas (at 930 Btu/ft3)	362 scfm	Standard	72 dB(A) at 10 feet
Heat rate, LHV	7,260 Btu/kWh		


SPECIFICATIONS

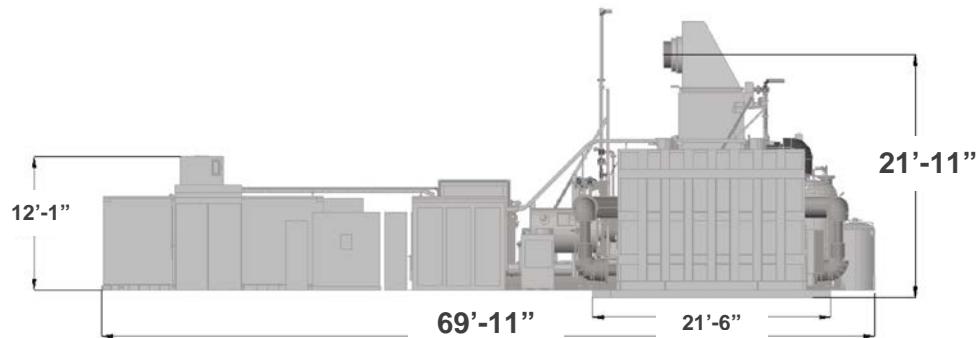
SureSource 3000

WEIGHTS

Water Treatment Skid

20,000 lb

Main Process Skid


50,000 lb

Desulfurization

15,000 lb

Electrical Balance of Plant

52,000 lb

Fuel Cell Module

107,000 lb (each module)

ABOUT FUELCELL ENERGY

FuelCell Energy (NASDAQ: FCEL) delivers efficient, affordable and clean solutions for the supply, recovery and storage of energy. We design, manufacture, undertake project development, install, operate and maintain megawatt-scale fuel cell systems, serving utilities, industrial and large municipal power users with solutions that include both utility-scale and on-site power generation, carbon capture, local hydrogen production for transportation and industry, and long duration energy storage. With SureSource installations on three continents and millions of megawatt hours of ultra-clean power produced, FuelCell Energy is a global leader with environmentally responsible power solutions.

Interrogatory CSC-7

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Mark Benedict

Page 1 of 1

Q-CSC-7

- a) How tall would the exhaust stack of the SureSource 3000 fuel cell be in feet above the top of concrete (TOC) pad?

The individual exhaust stack of the SureSource 3000 fuel cell unit will be approximately 32' above the TOC.

- b) Would there be a total of five stacks, i.e. one per fuel cell unit?

Yes, there will be a total of five stacks, i.e. one per fuel cell unit.

- c) Would the exhaust stack be the tallest feature on each fuel cell unit?

Yes, the exhaust stack will be the tallest feature on each fuel cell unit.

- d) If the exhaust stack is not the tallest feature for the proposed project, identify the tallest feature and provide its height in feet above the TOC.

N/A

- e) Figure 4 of the Facility Sound Assessment depicts the SureSource 3000 fuel cell unit as having a vertical exhaust stack. Figure 5 appears to show a horizontal (side) stack exit/outlet. Which is correct? Does that materially affect the noise study?

Each SureSource 3000 unit will have a vertical exhaust stack. This design is depicted on Figure 4 and was considered/evaluated by the noise study. Figure 5 wrongly depicts horizontal stack exhausts, which are not applicable to this Project. This will have no impact to the completed noise study.

Interrogatory CSC-8

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Derek Helie

Page 1 of 1

Q-CSC-8 Referencing Figure 1 of the Petition, the fuel cells would be located on concrete pads, and the center of the rectangular project footprint (between the fuel cell pads) would be paved. For the remaining areas of the fenced project footprint, would it also be paved, or would it have a different finish, e.g. gravel, traprock, concrete, etc.?

A-CSC-8: **The facility will have a stone driveway between the fuel cell pads. Areas underneath the pads will be 2" stone over fabric. All other areas will be seeded.**

Interrogatory CSC-9

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Angus L. McDonald, Jr.

Page 1 of 2

Q-CSC-9 Page 4 of the Petition notes that, “The Project will be elevated approximately six feet above grade to account for the 100-year floodplain and zone elevation.”

- a) Please provide a FEMA flood map showing the proposed facility location and flood zone designation.

A FEMA flood map showing the proposed facility is attached hereto as Exhibit C.

- b) Please estimate the existing ground elevation at the site.

The existing ground elevations are estimated between 19'-24'.

- c) Please provide the 100-year flood elevation.

The 1% annual recurrence (100-year) flood elevation is 25'.

- d) Please provide the 500-year flood elevation.

The 0.2% annual recurrence (500-year) flood elevation is 33.5'.

- e) Please estimate the proposed elevation of the top of the concrete pads (i.e. TOC elevation).

The proposed elevation of the top of the concrete pads is 30'.

- f) How many feet above the 100-year flood elevation would the TOC be?

TOC would be 5' above the 100-year flood elevation.

- g) How many feet above the 500-year flood elevation would the TOC be (if any)?

TOC would be 3.5' below the 500-year flood elevation.

Interrogatory CSC-9

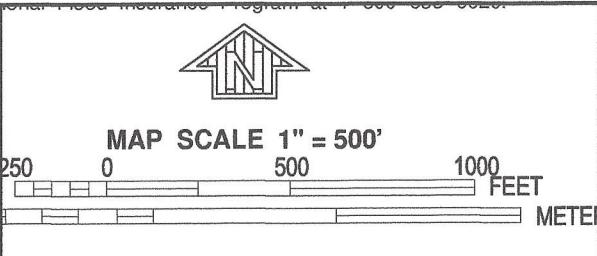
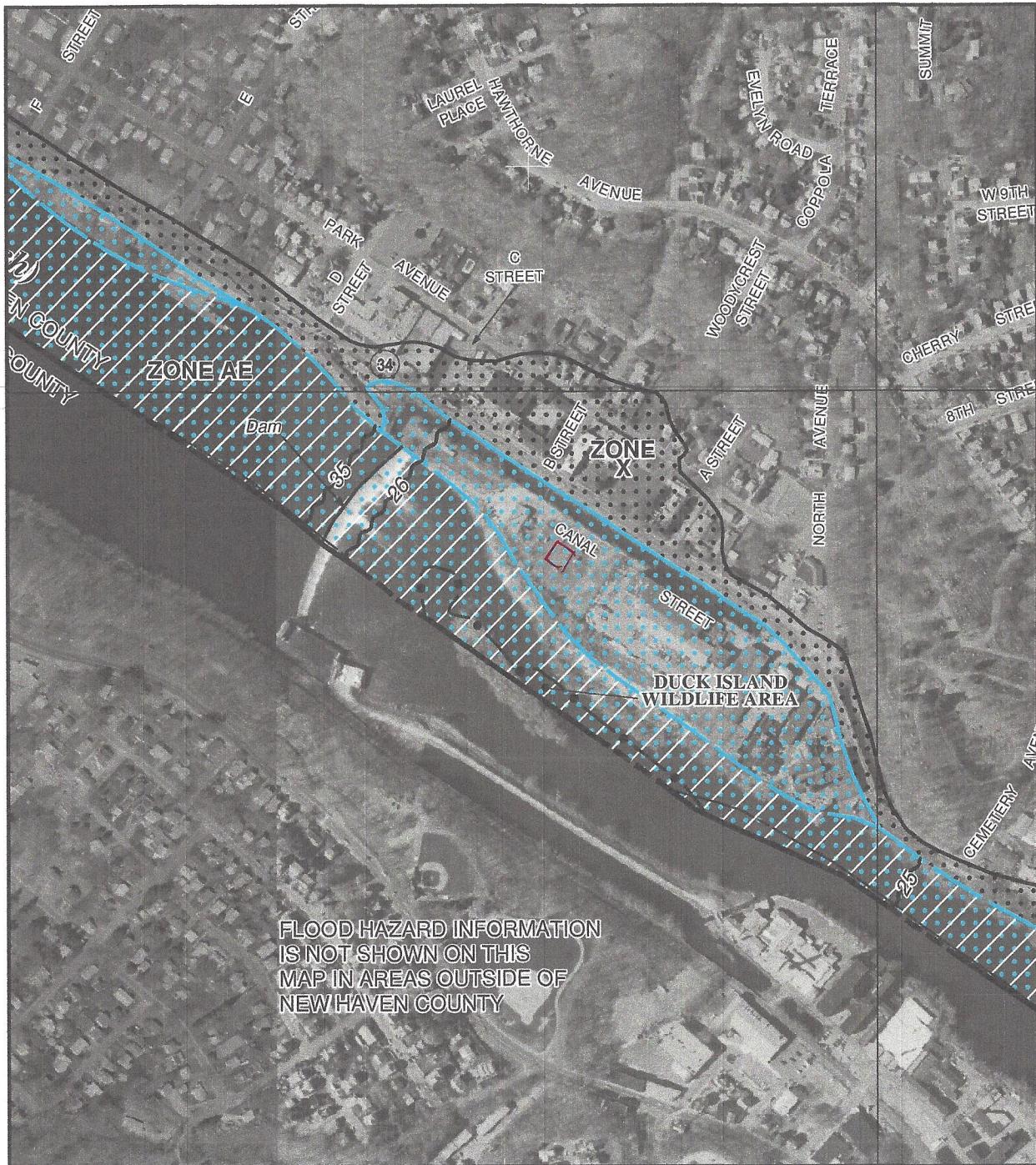
Derby Fuel Cell, LLC

Petition No. 1372

Witness: Dmitriy Kamenetskiy

Page 2 of 2

h) Could the proposed facility be installed to one-foot above the 500-foot flood elevation? If so, explain how this can be accomplished. If not, please indicate why not.



The proposed facility could be potentially installed to one-foot above 500-foot flood elevation by further elevating support platforms (by 4.5'). This would require redesign of piling system and structural steel for support platforms and would create additional technical and construction challenges. This would most likely also have a very significant cost impact to the Project.

i) What is the additional cost to install the facility one foot above the 500 year flood elevation?

In order to provide the additional installation cost for raising the facility above the 500-year flood elevation the structural design would have to be revised. We anticipate that this change would most likely have significant impact on pile and support structure sizing. Rough Order of Magnitude Estimate for such a change is between \$1.1M and \$2.2M.

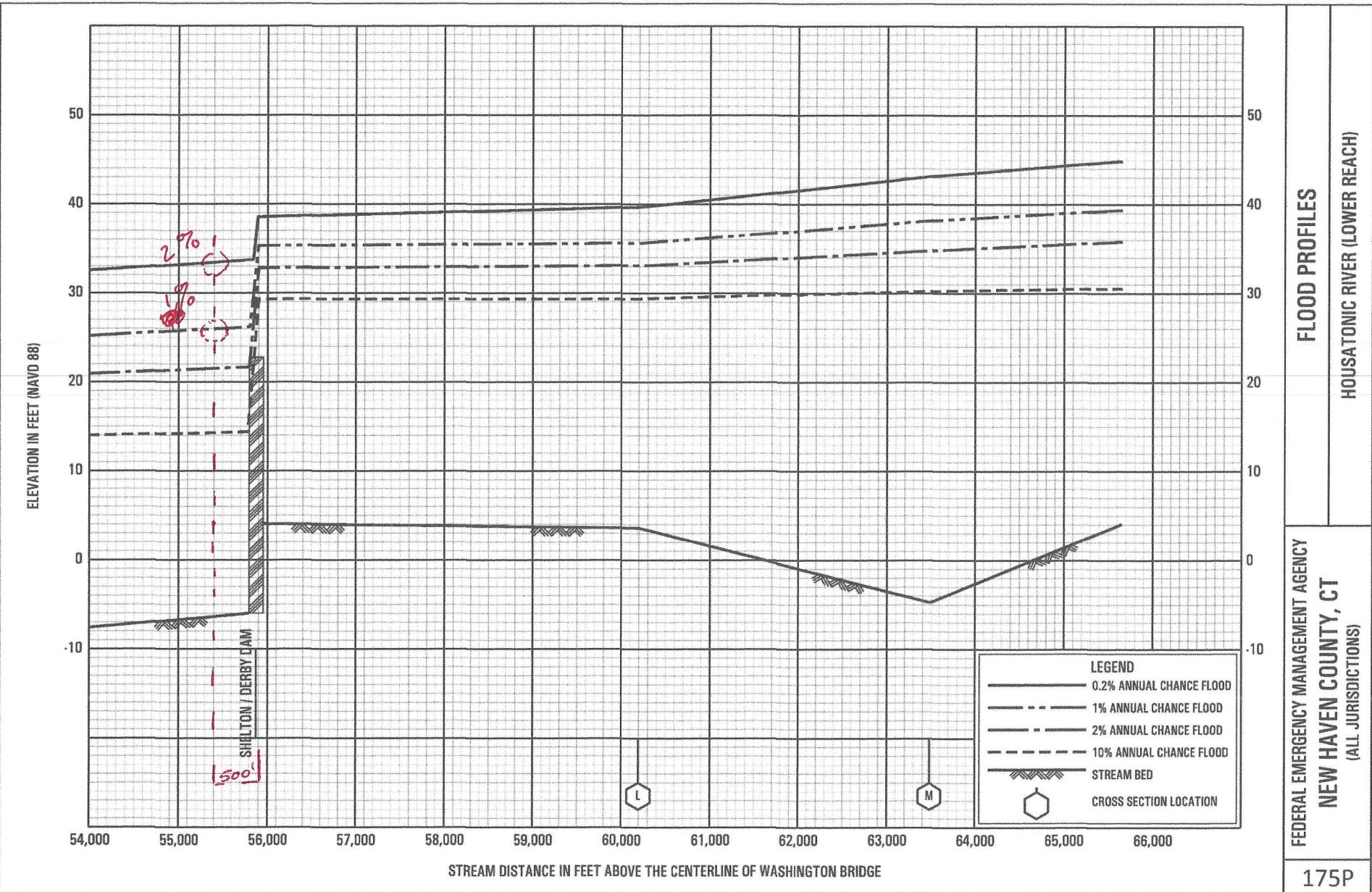
We believe that raising the facility by 1' above Base Flood Elevation set-up by FEMA (at 25') as considered by our current facility design would provide sufficient level of flood protection compliant with FEMA requirements and consistent with prudent utility and industry practices.

EXHIBIT C

NFIP
PANEL 0403H

FIRM
FLOOD INSURANCE RATE MAP
**NEW HAVEN COUNTY,
CONNECTICUT**
(ALL JURISDICTIONS)

PANEL 403 OF 635
(SEE MAP INDEX FOR FIRM PANEL LAYOUT)
CONTAINS:
COMMUNITY NUMBER PANEL SUFFIX
ANSONIA, CITY OF 090071 0403 H
DERBY, CITY OF 090075 0403 H


Notice to User: The Map Number shown below should be used when placing map orders; the Community Number shown above should be used on insurance applications for the subject community.

MAP NUMBER
09009C0403H

EFFECTIVE DATE
DECEMBER 17, 2010

Federal Emergency Management Agency

This is an official copy of a portion of the above referenced flood map. It was extracted using F-MIT On-Line. This map does not reflect changes or amendments which may have been made subsequent to the date on the title block. For the latest product information about National Flood Insurance Program flood maps check the FEMA Flood Map Store at www.msfc.fema.gov

Interrogatory CSC-10

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Derek Helie

Page 1 of 1

Q-CSC-10 Page 11 of the Petition note that, “Limited excavation of soils will be required for the installation of the project.” Approximately how many cubic yards of cut (and fill if applicable) would be required to construct the project? Would any net cut material be reused on-site or removed from the site and hauled away?

A-CSC-10: **All Soils remain onsite. No cuts or fill will be required.**

Interrogatory CSC-11

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Mark Benedict

Page 1 of 1

Water Consumption/Wastewater Discharge Questions

Q-CSC-11 Referencing page 2 of the Emergency Response/Safety Plan, the water treatment system includes a 35-gallons per minute (gpm) reverse osmosis/electro-deionization system. However, page 11 of the Petition notes that the proposed project would have a water consumption rate of about 65,000 gallons per day (or roughly 45 gpm). Please reconcile these two numbers.

A-CSC-11: **Both values are correct. The 35 gpm water treatment system product flow rate is not continuous throughout the day because the purified water is directed into a product water storage tank for use by the process at a lower rate. The water treatment system cycles on and off as required to maintain required inventory in the storage tank. Additionally, the water treatment system has an overall product water recovery rate of about 63%. This means that for every 1 gallon of source water consumed, 0.63 gallons are recovered for product use and 0.37 gallons are discarded to sewer.**

Interrogatory CSC-12

Derby Fuel Cell, LLC

Witness: Mark Benedict

Petition No. 1372

Page 1 of 1

Q-CSC-12 Referencing page 11 of the Petition, the total water consumption and discharge for the proposed project would be approximately 65,000 gallons per day (gpd) and 32,500 gpd, respectively. Would this increase during water treatment skid (WTS) backflush? By how much would it increase the consumption and discharge rates, and how often would WTS backflush typically occur?

A-CSC-12: **The water used and wastewater discharged during the periodic water treatment system backflushes are included in the above-referenced average daily water consumption and discharge flow volumes. It is anticipated that the water treatment systems will backflush approximately once every three days.**

Interrogatory CSC-13

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Nicholas Pasquale

Page 1 of 1

Electrical Interconnection Questions

Q-CSC-13 How would the proposed facility interconnect to UI's Indian Well Substation? For example, would it be an all-underground connection to the substation? Would it be a distribution-level connection, e.g. 13.8-kilovolt?

A-CSC-13: **There will be an underground 13.8kV (distribution level) connection between the fuel cell plant and the substation.**

Interrogatory CSC-14

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Nicholas Pasquale

Page 1 of 1

Q-CSC-14 Was a system impact study or interconnection study (as applicable) performed to see if substation could accommodate the proposed 14 MW? Would any modifications need to be performed by UI at the substation to accommodate this interconnection?

A-CSC-14: **A feasibility study was conducted by UI and confirmed that the Indian Well substation could accommodate the generation of the fuel cell plant with minor upgrades (a new 13.8kV circuit breaker and load tap changer).**

Interrogatory CSC-15

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Nicholas Pasquale

Page 1 of 1

Facility Operation and Maintenance Questions

Q-CSC-15 Page 4 of the Petition notes that the facility "...will generate a nominal 14.0 MW of Connecticut Class I renewable energy that will be exported to the utility grid." Would any of the power be used to provide baseload or backup power (or both) for IDA Properties, Inc. (or another nearby customer), or would all 14.0 MW be exported to the grid? If used to serve a customer's building load, what percentage of the building's load would the proposed fuel cell facility provide?

A-CSC-15: **All power will be exported to the utility per the terms of the PPAs.**

Interrogatory CSC-16

Derby Fuel Cell, LLC
Petition No. 1372

Witness: Nicholas Pasquale
Page 1 of 1

Q-CSC-16 Would the proposed facility be part of a microgrid, or could it potentially be upgraded to be part of a microgrid in the future?

A-CSC-16: **The proposed facility would not be a part of a microgrid at this time. However, all FCE fuel cell plants are “microgrid capable,” meaning they can be part of a microgrid if the surrounding microgrid infrastructure is established in the future.**

Interrogatory CSC-17

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Nicholas Pasquale

Page 1 of 1

Q-CSC-17 Would the proposed fuel cell shut down in the event of a power outage, and would it automatically restart when power is restored?

A-CSC-17: **Per applicable utility interconnection rules, the fuel cell must disconnect itself from the utility grid within 2 seconds of an outage. The fuel cells are designed to disconnect and remain in a low-power “grid independent mode” where they power their own internal loads until the grid comes back. When the grid returns and is deemed stable, the plants will automatically reconnect to the grid and ramp back up in power.**

Interrogatory CSC-18

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Dmitriy Kamenetskiy

Page 1 of 1

Q-CSC-18 Would any waste heat from the fuel cell be used for internal building use (e.g. for IDA Properties, Inc. or another customer) such as to provide or supplement domestic heating and/or hot water?

A-CSC-18: **Waste heat from the fuel cell will not be utilized for internal building use (e.g. for IDA Properties, Inc. or any other customer).**

Interrogatory CSC-19

Derby Fuel Cell, LLC

Witness: Mark Benedict

Petition No. 1372

Page 1 of 1

Q-CSC-19 Explain how nitrogen would be used at the proposed facility. For example, would it be used for cooling purposes in a closed-loop system, or would it be used as an inert gas for emergency shutdown (ESD) purposes? If used for ESD purposes, how would the nitrogen be used? For example, would the nitrogen mix with the natural gas inside the fuel cell as a safety measure during ESD?

A-CSC-19: **Nitrogen is only used for storage of the fuel cells or during an upset condition. Normal operation of the fuel cells does not require nitrogen. The electro chemical process used by the fuel cells to convert hydrogen and oxygen to electricity, heat and water is sensitive to humidity. During normal operation, natural gas is humidified using purified potable water. At the elevated temperatures at which the fuel cells normally operate, such humidity is not a problem. However, during a shutdown, if the humid mixture begins to cool and condense, it could negatively impact the expected life and performance of the fuel cells. Similarly, natural humidity associated with the atmosphere could negatively impact the fuel cells. In an upset condition or during storage, nitrogen is used to purge the fuel cell modules of all humidified natural gas and prevent ambient air intrusion. The nitrogen is used in the gaseous form, but stored in the liquid form for ease of transport and to minimize storage space.**

Interrogatory CSC-20

Derby Fuel Cell, LLC

Witness: Mark Benedict

Petition No. 1372

Page 1 of 1

Q-CSC-20 What is the operational life of the facility? Does the fuel cell media have to be changed? If so, at what intervals?

A-CSC-20: **The operational design life of the facility is 20 years.**

The fuel cell module itself has to be replaced every five (5) to seven (7) years. The service life of other media (i.e., catalysts/chemicals) utilized by the fuel cell are as below:

Item	Service Life ⁽¹⁾
<i>Fuel Preparation</i>	
Sulfur Sorbent	6-24 months ⁽²⁾
Pre-converter Catalyst	60 months
<i>Water Treatment</i>	
Anti Scalant	Dependent on water supply water quality
RO Membranes	18 months
Dechlorination Chemical	Replenished at 6 months
<i>Electrical Balance of Plant</i>	
Chiller Glycol	18 months

Notes:

(1) Service life is based on typical site conditions. Actual service life will vary with site conditions and fuel, water and air quality.

(2) At 100% capacity; dependent on type of odorant in natural gas.

Interrogatory CSC-21

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Kirk Arneson

Page 1 of 1

Q-CSC-21 If the proposed facility is approved, approximately when would construction commence, and when would it be expected to be completed and operational? What are the expected typical work hours and days of the week that construction would occur?

A-CSC-21: **If the proposed facility is approved, construction is expected to begin in October 2019 and commercial operation of the facility would be expected to commence by the end of May 2021. The typical construction work hours and days of the week would be 7:00 a.m. to 5:00 p.m., Monday through Friday.**

Interrogatory CSC-22

Derby Fuel Cell, LLC
Petition No. 1372

Witness: Dmitriy Kamenetskiy
Page 1 of 1

Q-CSC-22 Provide a decommissioning plan for the proposed facility.

A-CSC-22: **The decommissioning plan for the proposed facility, upon the expiration of the power purchase agreement (including any extension thereof) would be as follows: (a) all utility connections would be cut and capped; (b) all fuel cell equipment would be removed from the site; and (c) equipment pads and associated support structures would remain as-is.**

Interrogatory CSC-23

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Mark Benedict

Page 1 of 1

Facility Safety Questions

Q-CSC-23 Please identify media to be used for pipe cleaning procedures at the proposed facility in accordance with Public Act 11-101, An Act Adopting Certain Safety Recommendations of the Thomas Commission.

A-CSC-23: **A clean rag will be drawn through the pipe multiple times to ensure there is no construction debris or foreign matter remaining in the pipe. Compressed air will then be used to blow out any remaining dust. All fuel pipe-cleaning operations will be conducted in accordance with Public Act 11-101 and Connecticut Sitting Council Docket NT-2010.**

Interrogatory CSC-24

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Mark Benedict

Page 1 of 1

Q-CSC-24 In addition to National Fire Protection Association (NFPA) 853, are than any other NFPA or other codes and standards apply to fuel cell construction, installation and/or modifications?

A-CSC-24: **The basic product certification standard for fuel cells is ANSI/CSA FC 1-2014, Fuel cell technologies – Part 3-100: Stationary fuel cell power systems – Safety. The SureSource 3000 fuel cell plant is certified to the FC 1 standard. This standard incorporates dozens of normative references to other codes and standards, including from such standard issuing organizations as NEMA, ASME, ASTM, NFPA and UL. The SureSource 3000 plant complies with the applicable provisions of mechanical, piping, fire protection, safety and electric codes.**

Interrogatory CSC-25

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Dmitriy Kamenetskiy

Page 1 of 1

Q-CSC-25 What is the distance and direction of the proposed facility to the nearest airport? Did the petitioner provide notification to the Federal Aviation Administration regarding the proposed fuel cell facility?

A-CSC-25: **The nearest airport to the proposed facility is Waterbury-Oxford Airport, approximately 11 miles to the northeast, and Sikorski Memorial Airport, approximately 11 miles to the southwest. The Company has not provided notification to the Federal Aviation Administration regarding the proposed facility.**

Interrogatory CSC-26

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Derek Helie

Page 1 of 1

Environmental Questions

Q-CSC-26 Provide the number of trees six inches in diameter or greater that would be removed for installation of the proposed facility, if applicable.

A-CSC-26: **No trees six inches in diameter or greater would be removed for installation of the proposed facility. The site is open with no existing trees.**

Interrogatory CSC-27

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Dmitriy Kamenetskiy

Page 1 of 1

Q-CSC-27 Provide the distance and direction to the nearest wetland. Provide the distance and direction to the nearest watercourse. Would erosion and sedimentation controls be installed per the *2002 Connecticut Guidelines for Soil Erosion and Sediment Control*, as necessary to protect such resources?

A-CSC-27: **The proposed facility will be at least 50' away from the flagged wetlands and approximately 75' from the Housatonic River (both are located to the west direction from the site). Erosion and sedimentation controls will be installed per the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control.**

Interrogatory CSC-28

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Dmitriy Kamenetskiy

Page 1 of 1

Q-CSC-28 Is the proposed facility within a Department of Energy and Environmental Protection-designated Aquifer Protection Area?

A-CSC-28: **The proposed facility is not within a Department of Energy and Environmental Protection-designated Aquifer Protection Area.**

Interrogatory CSC-29

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Dmitriy Kamenetskiy

Page 1 of 1

Q-CSC-29 Referencing page 11 of the Petition, has the Petitioner submitted an application for a General Permit for the Discharge of Stormwater and Dewatering Wastewaters from Construction Activities (General Permit) to the DEEP? If no, approximately when would such General Permit application be filed with DEEP? And would a Stormwater Pollution Control Plan be part of the General Permit application filing? Explain.

A-CSC-29: **Application for General Permit for the Discharge of Stormwater and Dewatering Wastewaters from Construction Activities (General Permit) have not yet been submitted to CT DEEP. It is planned to be submitted on or around August-September 2019. A Stormwater Pollution Control plan will be part of the General application filing as outlined by CT DEEP requirements for this permit.**

Interrogatory CSC-30

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Dmitriy Kamenetskiy

Page 1 of 1

Q-CSC-30 Figure 1 of the Petition depicts on-site lighting, e.g. single-pole light and double-pole light. Would such lighting be on at night and during inclement weather, or only when work is being performed? Would such lighting affect nearby properties?

A-CSC-30: **Site lighting will remain on at night for security purposes. Lighting design and lighting fixture selection will be completed per International Dark Sky Association guidelines to minimize any impact to nearby properties (minimum or no impact is anticipated since existing facilities including UI's sub-station already have lighting on during night time).**

Interrogatory CSC-31

Derby Fuel Cell, LLC

Witness: Mark Benedict

Petition No. 1372

Page 1 of 1

Q-CSC-31 Provide a table showing state criteria thresholds and projected emissions from the proposed facility for all greenhouse gases listed in the Regulations of Connecticut State Agencies Section 22a-174-1(49) with and without the use of waste heat (as applicable), taking into account cumulative emissions associated with the five units.

A-CSC-31: **The below table lists the RCSA greenhouse gas permitting thresholds, as well as projected potential emissions, based on 8760 hours per year of full power operation from the five Derby plants. Although the Derby plants will not include waste heat recovery, the tpy of CO₂-e and GHG would not be affected if heat recovery was included.**

Greenhouse Gas	State of CT Criteria Thresholds for GHGs <i>(applicability requires both thresholds be exceeded)</i>		Facility Projected Emissions (tpy CO ₂ -e)	(5 units with no waste heat recovery) (tpy GHG)
	(tpy, equivalent to 100,000 tpy CO ₂ -e)	(tpy GHG)		
Carbon Dioxide (CO ₂) (GWP=1)	100,000	100	60,094	60,094
Methane (CH ₄) (GWP=23)	4,348	100	1,154	50.2
Nitrous Oxide (N ₂ O) (GWP=296)	337	100	0	0
Sulfur Hexafluoride (SF ₆) (GWP=22,200)	4.5	100	0	0
Any Hydrofluorocarbon (HFC) (GWP varies)	Varies (8 – 8,333)	100	0	0
Any Perfluorocarbon (PFC) (GWP varies)	Varies (4.5 – 18)	100	0	0
Total CO₂-e & GHG	100,000	100	61,248	60,144

Interrogatory CSC-32

Derby Fuel Cell, LLC

Witness: Mark Benedict

Petition No. 1372

Page 1 of 1

Q-CSC-32 Provide information regarding available technologies and/or mitigation techniques to reduce greenhouse gas emissions from the proposed facility.

A-CSC-32: **The fuel cell itself is considered by many to be the best available control technology on a baseload, non-intermittent basis to reduce greenhouse gas emissions from distributed or grid-provided generation resources. The proposed fuel cell project is projected to reduce carbon dioxide emissions by 31,948 tons per year, which is a 34% reduction versus current carbon dioxide emissions associated with the grid. Carbon dioxide emissions are inversely related to fuel efficiency and the high efficiency of the fuel cell significantly reduces greenhouse gas emissions versus existing grid resources. Additional heat recovery for this project is not practical or required to achieve high generation efficiency.**

Interrogatory CSC-33

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Mark Benedict

Page 1 of 1

Q-CSC-33 Is methane (CH₄) broken down to zero in the reforming process? Is there some small amount of CH₄ emissions that would still occur?

A-CSC-33: **Methane is normally completely converted to hydrogen by the reforming reaction within the fuel cell stacks, but if any is left unconverted (for example at low power conditions) it is destroyed by a subsequent catalytic oxidation reactor in the fuel cell process. Between the reforming and oxidation processes virtually all of the methane is destroyed, with only trace amounts surviving to be present in the exhaust at very low levels (parts per million.)**

Interrogatory CSC-34

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Mark Benedict

Page 1 of 2

Q-CSC-34 Natural gas contains an odorant. Please submit a desulfurization plan narrative for the proposed fuel cell facility containing the following information:

- a) Chemical reaction overview concerning what substances are produced from the desulfurization process, as well as plans for their containment and transport;
- b) How much solid sulfur oxide would result from the desulfurization process, and methods and locations for containment, transport, and disposal;
- c) Whether any of these desulfurization substances are considered hazardous, and if so, plans for the containment, transport, and disposal of hazardous substances;
- d) Anticipated method of disposal for any other desulfurization substances; and
- e) Whether any gaseous substances resulting from desulfurization can be expected to vent from the fuel cells, as well as the applicable DEEP limits regarding discharge of these gases.

A-CSC-34: **The fuel cell stacks that generate the electric power can be fouled by the sulfur odorant compounds (primarily mercaptans and/or sulfides) that the gas utility company injects into the natural gas. Accordingly, the fuel cell plant incorporates a desulfurization process that consists of two flow-through vessels configured in series filled with a specialized, proprietary desulfurization adsorption media. The sulfur removal mechanism is a physical adsorption or chemisorption process wherein the sulfur atoms are captured by the granular solid media without the release (production) of any other chemical species. In the process of removing the sulfur compounds from the gas, the capacity of the media for continued sulfur removal is diminished up until the point when it becomes exhausted and, if the media is not changed, sulfur break-through would occur. At this point, the media is deemed to be “spent.” When the spent media in the lead desulfurizer vessel needs to be replaced, the fuel gas process flow is switched to the lag vessel only so that the spent media can then be removed from the off-line vessel and replaced with fresh media. Prior to accessing the spent media, the vessel is inerted with nitrogen to allow safe access into the vessel. During this inertion process, a small volume of natural gas is vented to atmosphere. After media replacement and once the vessel containing the fresh media has been inerted and purged into service, it then serves as the second (polishing) desulfurizer vessel in the process flow service.**

The spent solid waste media removed from the process has been characterized at similar locations to be RCRA hazardous by toxicity characteristic for benzene (D018). The benzene, present in the natural gas in very low parts per

Interrogatory CSC-34

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Mark Benedict

Page 2 of 2

million concentrations or less, is co-adsorbed onto the media along with the target sulfur compounds.

The total waste generation quantity (media plus adsorbed sulfur compounds) during any single desulfurizer media replacement event is less than 2000 pounds (900 kg) and previous operating experience throughout Connecticut suggests that desulfurizer maintenance events for any single fuel cell plant will be no more frequent than annually, and more likely less frequent than every two years (it varies, depending on the actual sulfur concentration in the gas locally.) The scheduling for media replacements for multiple fuel cell plants can be arranged such that no two plants are serviced in any single month, so the monthly waste generation rate is within the range for generators that operate under Small Quantity Generator rules. Derby Fuel Cell, LLC, as plant owner/operator, will comply with all rules for hazardous waste generators as promulgated through the regulations at RSCA §22a-449(c).

The waste generated when removing the spent desulfurizer media from the process is managed by immediately containerizing and transporting the waste off-site to a licensed disposal facility. Waste will not be treated, stored or disposed of at the site. The containerized waste is shipped off-site under a Uniform Hazardous Waste Manifest under the generator's EPA RCRA identification number. A licensed hazardous waste transporter under contract to FuelCell Energy, Inc., as service provider for the fuel cell project (e.g., Clean Harbors, Triumvirate, Miller Environmental, etc.), will be contracted to pick up the waste and transport it to an approved designated disposal facility. The licensed waste destination facility will be determined at the time of contracting the waste contractor firm.

Interrogatory CSC-35

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Dmitriy Kamenetskiy

Page 1 of 1

Agricultural Questions

Q-CSC-35 Is any portion of the project on prime farmland soils? If so, what is the area of prime farmland soils that would be impacted by the proposed project?

A-CSC-35: **No portion of the project is on prime farmland soils.**

Interrogatory CSC-36

Derby Fuel Cell, LLC

Petition No. 1372

Witness: Frank Wolak

Page 1 of 1

Cost Questions

Q-CSC-36 Estimate the total cost of the proposed project. Break down the total cost into categories that the Petitioner deems appropriate.

A-CSC-36: **The Petitioner is providing a redacted version of a breakdown of the total cost of the proposed project and is filing an unredacted copy in a sealed envelope marked “CONFIDENTIAL,” along with a Motion for Protective Order, filed simultaneously herewith.**

<i>Capital Cost</i>	(000)s
Power Plant	[REDACTED]
Equipment	[REDACTED]
Installation	[REDACTED]
Interconnects	[REDACTED]
Construction Interest	[REDACTED]
Sales	[REDACTED]
Taxes	[REDACTED]
Total Installed Cost	[REDACTED]