CONNECTICUT SITING COUNCIL

)	
)	
)	PETITION NO
)	
)	
)	
)	
)	
)	
)	
)	

PETITION FOR DECLARATORY RULING TO MODIFY AN EXISTING WIRELESS FACILITY 250 MERIDEN WATERBURY TURNPIKE, SOUTHINGTON, CONNECTICUT

I. <u>Introduction</u>

New Cingular Wireless PCS, LLC ("AT&T"), the "Petitioner", hereby petitions the Connecticut Siting Council ("Council") pursuant to Sections 16-50j-38 and 16-50j-39 of the Regulations of Connecticut State Agencies ("R.C.S.A.") for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need ("Certificate") is required pursuant to Section 16-50k of the Connecticut General Statutes ("C.G.S.") to modify an existing wireless facility owned by Crown Castle located at 250 Meriden Waterbury Turnpike in Southington, Connecticut (the "Site"). Included in Attachment 1 is a July 19, 2018 letter from Crown Castle authorizing AT&T to file this Petition.

II. The Premises and Existing Wireless Facility

The approximately 1.2-acre Site is located on Meriden Waterbury Turnpike (aka Rt. 322) and is improved with a commercial building, associated outbuildings and a parking area. The Site is located within a business district with a mix of residential, commercial, and retail uses to the north and west. To the south and east, the surrounding area is characterized as a residential district with predominately residential uses. An aerial photo is provided in the enclosed drawings included in Attachment 2 on Sheet Number Z-2.

The existing wireless facility, owned by Crown Castle, is comprised of an 80-foot tall lattice tower with nine (9) AT&T antennas mounted at the top and six (6) Verizon Wireless antennas mounted at a height of approximately 60', with associated equipment

for both carriers located at grade in the AT&T equipment shelter and the Verizon equipment platform at the base of the lattice tower. In 1999, AT&T received Council approval to replace two (2) existing communications towers at the Site with a single 80-foot lattice tower and install its antennas at the top of the tower (TS-SCLP-131-990317). Subsequently, the Council approved several exempt modifications for AT&T and Verizon Wireless for upgrades to their facilities.

III. AT&T's Proposed Modification

AT&T is licensed by the Federal Communications Commission ("FCC") to provide wireless services in this area of the State of Connecticut. AT&T's proposed modification to the existing facility would consist of installing a 40-foot tall lattice extension to the existing tower, increasing the overall height of the tower to approximately 120' above grade level ("AGL"). An 11-foot tall lightning rod would be installed at the top of the lattice extension. AT&T is proposing to remove the existing nine (9) antennas and install a total of three (3) antennas on a new mount at the top of the lattice extension. The existing remote radio units ("RRU") would be relocated to a new mount at the top of the lattice extension. Minor equipment upgrades are being proposed inside AT&T's existing at-grade equipment shelter. No changes are proposed to Verizon Wireless' existing facility.

AT&T's proposed modification to the existing facility is detailed in the drawings included as Attachment 2 prepared by SAI Communications, Inc., dated April 2, 2018 and last revised April 30, 2018. Also, annexed hereto as Attachment 3 is a passing structural analysis prepared by Paul J. Ford & Company, dated March 16, 2018, concluding that the proposed extension will be designed to support AT&T's modification and Verizon Wireless' facility.

IV. The Proposal Will Not Have a Substantial Adverse Environmental Effect

A comparison of the existing and proposed conditions reveals no substantial or significant environmental impacts associated with AT&T's proposed modification to the existing facility. The lattice extension will be consistent with the existing lattice tower design, color, and material. Photosimulations depicting the existing and proposed facility at five surrounding locations are included in Attachment 4. These photosimulations demonstrate that visibility of the proposed lattice extension is mostly limited to the surrounding commercial area and views from the closest residential areas on Meriden Waterbury Turnpike and Orchard Lane are not substantial. While visibility from the surrounding residential areas will be minimally increased, it is respectfully submitted that this change will not adversely impact these properties.

Included in Attachment 5 is a copy of the summary of EBI Consulting's NEPA review for the proposed modification to the existing facility ("NEPA checklist"). The attached NEPA checklist further supports that AT&T's proposed modification will not have a substantial adverse environmental effect. Also enclosed in Attachment 6 is confirmation

that the proposed extension of the existing lattice tower will not require registration with the FAA.

A. <u>Minimal Physical Impact</u>

AT&T's proposed modifications will not result in any additional disturbance to the site as it will be a vertical extension of the existing tower. Existing access to the site will continue to be utilized and no tree removal or ground disturbance is necessary for these modifications. The facility is unmanned and requires no water or wastewater connections and generates no waste.

B. <u>Compliance with MPE Limits</u>

The operation of AT&T's antennas on the proposed extension along with the operation of Verizon Wireless' antennas will not increase the total radio frequency electromagnetic power density at the site to a level at or above applicable standards. A power density report is included in Attachment 7. The total radio frequency power density will be 25.16% of the allowable FCC established general public limit at ground level and well within standards adopted by the Connecticut Department of Energy & Environmental Protection as set forth in C.G.S. Section 22a-162.

V. AT&T's Need for the Proposed Modification to Provide Reliable Service

Included in Attachment 8 are AT&T radio frequency coverage maps which depict existing coverage at AT&T's current antenna height of approximately 80' and proposed coverage from the proposed modification antenna height of 120'. As shown in these maps, AT&T needs the proposed modification to provide reliable service within its network in this area of Southington. As such, while the Council does not have to find a public need for the facility as part of a ruling on this Petition, it is respectfully submitted that the enclosed information fully demonstrates the need for the proposed modification to provide reliable wireless services to the public.

VI. Notice of Petition Filing

Pursuant to R.C.S.A. Section 16-50j-40(a), notice of AT&T's intent to file this Petition was sent to each person appearing of record as an owner of property that abuts the site, as well as the appropriate municipal officials and government agencies as listed in Section 16-50e of the C.G.S. Certification of such notice, a copy of the notice and the list of property owners is included in Attachment 9 along with the map from the Town's GIS website used to identify abutting property owners. Attachment 9 also includes a certification of service to municipal officials and government agencies to whom notice was sent.

VII. Conclusion

As set forth herein, AT&T's proposed modifications to the existing wireless facility are wholly consistent with legislative findings outlined in C.G.S. Sections 16-50g and 16-50aa that seek to avoid the unnecessary proliferation of towers in the State. It is respectfully submitted that AT&T's facility does not present any significant adverse environmental effects as listed in Section 16-50p of the General Statutes. Therefore and for all the foregoing reasons, AT&T petitions the Connecticut Siting Council for a determination that the proposed wireless telecommunications facility does not require a Certificate of Environmental Compatibility and Public Need and that the Council issue an order approving same.

Respectfully Submitted,

Lucia Chiocchio, Esq.

On behalf of the Petitioner, AT&T

Cuddy & Feder, LLP

445 Hamilton Avenue, 14th Floor

White Plains, New York 10601

(914) 761-1300

1

Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277

Crown Castle, does hereby authorize AT&T Mobility and its authorized contractors/agents to act as "Applicant" in the processing of all applications, permits, research and other related activities associated with the processing, planning, design review, permitting, entitlement and construction of additional equipment, antennas and site improvements for the Crown Castle existing wireless communications facility described as follows:

Customer Site Name:	Southington Rogus	Crown Castle Site ID Number:	841298
Site Address:	250 Meriden Waterbury Turnpike, Southington, CT 06489	Crown Castle Site Name:	Southington Rogus

This authorization is fully contingent upon AT&T Mobility authorized contractors/agents' compliance with the following conditions:

- 1. Crown Castle must review the application prior to submittal. Crown Castle must be provided all applications, narratives, drawings and attachments at least 72 hours in advance of their submittal to the locality. Use of email and electronic attachments is encouraged. A Crown Castle Zoning Subject Matter Expert (SME) will review and provide written comment to the customer within 48 hours of receipt of a complete set of application materials. If Crown Castle indicates that changes are required, submissions shall be altered in accordance with Crown Castle comments prior to submission to the locality. Verification of corrections should also be accomplished via emails and attachments.
- 2. In no event may AT&T Mobility encourage, suggest, participate in, or permit the imposition of any restrictions or additional obligations whatsoever on the tower site or Crown Castle's current or future use or ability to license space at the tower site as part of or in exchange for obtaining any approval, permit, exception or variance.
- 3. A copy of the final permit and/or a written summary of the zoning/entitlement decision rendered by the locality and any/all conditions placed on that decision shall be communicated in detail to Crown Castle well within the appeal period provided by the locality (typically 10-15 days).
- 4. All conditions of approval pertinent to the construction of the proposed project must be included in the construction drawings for the project. The conditions of approval pertinent to the construction of the project shall be copied verbatim from the zoning permit approval language, and shall be present in the drawings prior to submission for building permits and contractor bidding. Crown Castle shall verify the inclusion of appropriate conditions of approval in the construction drawing redline process.
- 5. Crown Castle will provide a <u>Notice To Proceed (NTP) to construction</u> to the customer upon receipt of the final approved zoning permit and the approved Building Permit.

By Crown Castle:

Signature:

Printed Name: Zachary Plummer

Title: Real Estate Specialist

Date: July 19, 2018

The Foundation for a Wireless World.

CrownCastle.com

2

CONNECTICUT SITING COUNCIL

SITE NAME: SOUTHINGTON ROGUS SITE NUMBER: CT1033 250 MERIDEN WATERBURY TURNPIKE SOUTHINGTON, CT 06489

DIRECTIONS FROM 500 ENTERPRISE DRIVE, ROCKY HILL, CT:

HEAD SOUTHEAST ON ENTERPRISE DR. TURN LEFT ONTO CAPITAL BLVD. USE THE LEFT 2 LANES TO TURN LEFT ONTO STATE HWY 411. TURN LEFT TO MERGE ONTO I—91 S. MERGE ONTO I—91 S. TAKE EXIT 18 FOR I—691 W TOWARD MERIDEN/WATERBURY. CONTINUE ONTO I—691 W. TAKE EXIT 4 FOR CT—322 TOWARD SOUTHINGTON. TURN RIGHT ONTO CT—322 W. THE SITE WILL BE ON THE LEFT.

SITE COORDINATES:
LATTUDE: 41'-33'-24.56" N
LONGITUDE: 72'-51'-10.73" W
(PER FAA 1-A SURVEY)

ELEVATION DATA:
GRADE ELEVATION AT TOWER = 343'± A.M.S.L.
(PER FAA 1-A SURVEY)

MONOPOLE ELEVATION (TO TOP OF EXTENSION): ELEVATION = 120'-0"± A.G.L.

ANTENNA ELEVATION (TO TOP OF ANTENNA): ELEVATION = 123'-0"± A.G.L.

SITE INFORMATION

THE PROJECT CONSISTS OF THE INSTALLATION OF A PROPOSED 40'-0"± TALL LATTICE TOWER EXTENSION ON AN EXISTING 80'-0"± TALL LATTICE TOWER FOR A TOTAL HEIGHT OF 120'-0"± A.G.L., ALONG WITH THE INSTALLATION OF (3) SECTORS OF (1) PANEL ANTENNA PER SECTOR MOUNTED ON THE LATTICE TOWER AT A PROPOSED CENTERLINE OF 120'-0"± A.G.L.

THE PROPOSED USE DOES NOT REQUIRE FULL—TIME OR PART—TIME EMPLOYEES AT THE SITE. IT WILL BE TYPICALLY VISITED ONCE OR TWICE PER MONTH FOR MAINTENANCE. THE FACILITY IS NOT EXPECTED TO GENERATE ADDITIONAL NOISE, FUMES OR VIBRATIONS. POWER & TELCO SERVICES WILL BE TAKEN FROM THE EXISTING BUILDING. NO WATER OR SEWER SERVICES ARE NEEDED.

PROJECT DESCRIPTION

SITE NAME: SOUTHINGTON ROGUS SITE NUMBER: CT1033

LOCATION: 250 MERIDEN WATERBURY TURNPIKE SOUTHINGTON, CT 06489

TAX MAP DESIGNATION:
PARCEL ID: 015080 ACCOUNT #: 10848

PROPERTY OWNER:

JOHN ROGUS
250 MERIDEN WATERBURY TPKE
SOUTHINGTON, CT 06489

TOWER OWNER:
CROWN CASTLE
3530 TORINGDON WAY, SUITE 300
CHARLOTTE, NC 28277

APPLICANT/LESSEE:

AT&T MOBILITY

500 ENTERPRISE DRIVE, SUITE 3A

ROCKY HILL, CT 06067

PROJECT INFORMATION

THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN. REUSE OF THIS DOCUMENT IS AT THE SOLE RISK OF THE USER.

A.D.A. COMPLIANCE: FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION.

NUMBER	DESCRIPTÍON
T-1	TITLE SHEET
Z-1	PERIMETER PLAN & ABUTTERS LIST
Z-2	AERIAL PLAN
Z-3	COMPOUND PLAN & ELEVATION
Z-4	CONSTRUCTION DETAILS
-	
	CLIEFT INDEV
	SHEET INDEX

500 ENTERPRISE DRIVE, SUITE 3A ROCKY HILL, CT 06067

27 NORTHWESTERN DRIVE SALEM, NH 03079

CT1033 SOUTHINGTON ROGUS

	CERTI	FICATE DRAWINGS
L		
H		
H		
Г		
٥	05/02/18	ISSUED AS FINAL
В	04/30/18	REVISED PER COMMENTS
A	04/02/18	PRELIMINARY SUBMISSION

Dewberry Engineers Inc.
600 PARSIPPANY ROAD
SUITE 301
PARSIPPANY, NJ 07054
PHONE: 973,739,9400

IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER TO ALTER THIS DOCUMENT.

DRAWN BY:	JC
REVIEWED BY:	BSH
CHECKED BY:	GHN
PROJECT NUMBER:	50055106
JOB NUMBER:	50065689
SITE ADDRESS:	

250 MERIDEN
WATERBURY TURNPIKE,
SOUTHINGTON, CT 06489
HARTFORD COUNTY

SHEET TITLE

TITLE SHEET

SHEET NUMBER

T-1

NOTES:

- ABUTTERS LIST CONSISTS OF PARCELS PHYSICALLY TOUCHING THE SUBJECT PROPERTY OR ABUT ACROSS THE STREET FROM THE SUBJECT PROPERTY.
- PERIMETER PLAN DATA & ABUTTERS INFORMATION WAS COMPILED FROM INFORMATION OBTAINED FROM THE TOWN OF SOUGHTINGTON'S GIS WEBSITE.

ABUTTERS LIST				
PARCEL ID	ACCOUNT #	PROPERTY LOCATION	OWNER	MAILING ADDRESS
015081	11092	264 MERIDEN WATERBURY TPKE	SALS SUPER MARKET INC	C/O KATHLEEN MICHALAK, SOUTHINGTON, CT 06489
015079	2385	230 MERIDEN WATERBURY TPKE	CAMMUSO PETER & LORI A	230 MERIDEN WATERBURY TPKE, SOUTHINGTON, CT 06489
015072	7275	71 ORCHARD LN	SULLIVAN JOSEPH	71 ORCHARD LN, SOUTHINGTON, CT 06489
015071	1799	81 ORCHARD LN	CAPRISTO DEBORAH G	81 ORCHARD LN, PLANTSVILLE, CT 06479
015082	2026	47 PRATT ST	CELENTANO ROBERT J & KATHLEEN R	47 PRATT ST, SOUTHINGTON, CT 06489
015052	1494	247 MERIDEN WATERBURY TPKE	LARKIN EVACLARE	20 VILLAGE RD, SOUTHINGTON, CT 06489

GENERAL NOTES

- SUBJECT PROPERTY KNOWN AS PARCEL ID 015080 & ACCOUNT 10848 AS SHOWN ON THE TOWN OF SOUTHINGTON'S GIS WEBSITE.
- 2. APPLICANT:

AT&T MOBILITY 500 ENTERPRISE DRIVE SUITE 3A ROCKY HILL, CT 06067

3. PROPERTY OWNER:

JOHN ROGUS 250 MERIDEN WATERBURY TURNPIKE SOUTHINGTON, CT 06489

4 TOWER OWNER:

CROWN CASTLE 3530 TORINGDON WAY, SUITE 300 CHARLOTTE, NC 28277

- 5. PERIMETER PLAN DATA & ABUTTERS INFORMATION WAS COMPILED FROM INFORMATION OBTAINED FROM THE TOWN OF SOUTHINGTON'S GIS WEBSITE.
- 6. PARCEL AREA = 1.22± ACRES BASED ON INFORMATION OBTAINED FROM THE TOWN OF SOUTHINGTON'S GIS WEBSITE.
- ACCORDING TO THE FLOOD INSURANCE RATE MAP, THIS PROPERTY IS LOCATED IN AN AREA DESIGNATED AS ZONE X - "AREAS DETERMINED TO BE OUTSIDE THE 0.2% ANNUAL CHANCE FLOODPLAIN," PER MAP NUMBER 09003C0611G, PANEL 0611 OF 0675, HARTFORD COUNTY. CONNECTICUT (ALL JURISDICTIONS), MAP REVISED DATE: MAY 16, 2017.
- BASED ON THE U.S. FISH & WILDLIFE SERVICE, NATIONAL WETALNDS INVENTORY, WETLANDS MAPPER, THE CLOSEST WETLAND TO THE EXISTING TOWER LOCATION IS 1,155'±.
- BASED ON THE TOWN OF SOUTHINGTON'S GIS WEBSITE, THERE ARE 72 HOMES WITHIN 1,000' OF THE EXISTING TOWER. THE CLOSEST RESIDENCE TO THE EXISTING TOWER IS 10'± AND IS LOCATED ON THE SUBJECT PARCEL. THE CLOSEST RESIDENCE TO THE EXISTING TOWER OFF THE SUBJECT PARCEL IS 200'± AND IS LOCATED AT 81 ORCHARD LN.
- BASED ON THE TOWN OF SOUTHINGTON'S GIS WEBSITE, THE DISTANCE FROM THE EXISTING TOWER TO THE NEAREST PROPERTY LINE IS 86'±.
- 11. BASED ON THE TOWN OF SOUTHINGTON'S GIS WEBSITE, THE DISTANCE FROM THE EXISTING TOWER TO THE CITY OF MERIDEN IS 8,270'±.
- 12. BASED ON THE TOWN OF SOUTHINGTON GIS WEBSITE, THERE ARE NO SCHOOLS OR CHILD DAY CARE CENTERS WITHIN 1,000' OF THE EXISTING TOWER LOCATION. THE NEAREST SCHOOL IS SOUTH END ELEMENTARY SCHOOL WHICH IS 8,270'± FROM THE EXISTING TOWER LOCATION.
- 13. NO TREES WILL BE REMOVED DUE TO THE PROPOSED INSTALLATION.
- 14. THE PROPOSED USE IS FOR TELECOMMUNICATIONS AND IS NOT INTENDED FOR PERMANENT EMPLOYEE OCCUPANCY. THEREFORE, POTABLE WATER, SANITARY SEWER AND ADDITIONAL ON-SITE
- 15. FACILITY SHALL BE VISITED ON THE AVERAGE OF ONCE A MONTH FOR MAINTENANCE AND SHALL BE CONTINUOUSLY MONITORED FROM A REMOTE FACILITY.
- 16. ALL WORK SHALL CONFORM TO ALL CURRENT APPLICABLE FEDERAL, STATE, AND LOCAL CODES, INCLUDING ANSI/EIA/TIA-222. AND COMPLY WITH AT&T MOBILITY SPECIFICATIONS.
- 17. CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" (1-800-922-4455) FOR IDENTIFICATION OF UNDERGROUND UTILITIES PRIOR TO START OF CONSTRUCTION.
- 18. NO LIGHTING AT THE TOWER IS PROPOSED OR REQUIRED BY THE FCC OR FAA.
- 19. THERE WILL NOT BE ANY SIGNS OR ADVERTISING ON THE ANTENNAS OR EQUIPMENT.

500 ENTERPRISE DRIVE, SUITE 3A ROCKY HILL, CT 06067

27 NORTHWESTERN DRIVE SALEM, NH 03079

CT1033 SOUTHINGTON **ROGUS**

L	CERTI	FICATE DRAWINGS
H		
F		
0	05/02/18	ISSUED AS FINAL
В	04/30/18	REVISED PER COMMENTS
Α	04/02/18	PRELIMINARY SUBMISSION

Dewberry Engineers Inc.

SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973,739,9400

JIANG YU, P.E. CT LICENSE NO. 0023222

I IS A VIOLATION OF LAW FOR ANY PERSON, UNLES THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER TO ALTER THIS DOCUMENT.

DRAWN BY:	JC
REVIEWED BY:	BSH

CHECKED BY: GHN

PROJECT NUMBER: 50055106

JOB NUMBER: 50065689

SITE ADDRESS:

250 MERIDEN WATERBURY TURNPIKE, SOUTHINGTON, CT 06489 HARTFORD COUNTY

SHEET TITLE

PERIMETER PLAN & ABUTTERS LIST

SHEET NUMBER

7 - 1

NOTE:

1. AERIAL PLAN BASED ON GOOGLE MAPS.

500 ENTERPRISE DRIVE, SUITE 3A ROCKY HILL, CT 06067

27 NORTHWESTERN DRIVE SALEM, NH 03079

CT1033 SOUTHINGTON ROGUS

	CERTI	FICATE DRAWINGS
L		
H		
L		
٥	05/02/18	ISSUED AS FINAL
В		REVISED PER COMMENTS
A	04/02/18	PREI IMNARY SI IBMSSON

Dewberry Engineers Inc.
600 PARSIPPANY ROAD
SUITE 301
PARSIPPANY, NJ 07054
PHONE: 973.739.9400
FAX: 973.739.9710

JIANG YU, P.E. CT LICENSE NO. 0023222

T IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER TO ALTER THIS DOCUMENT.

DRAWN DI:	JC
REVIEWED BY:	BSH
CHECKED BY:	GHN
PROJECT NUMBER:	50055106
JOB NUMBER:	50065689

SITE ADDRESS:

250 MERIDEN
WATERBURY TURNPIKE,
SOUTHINGTON, CT 06489
HARTFORD COUNTY

SHEET TITLE

AERIAL PLAN

SHEET NUMBER

Z-2

- 1. NORTH SHOWN AS APPROXIMATE.
- 2. NOT ALL INFORMATION IS SHOWN FOR CLARITY.
- COMPOUND PLAN INFORMATION BASED ON EXISTING PLANS PREPARED BY DEWBERRY ENGINEERS INC. DATED 04/21/14 & FIELD MEASUREMENTS TAKEN BY DEWBERRY ENGINEERS INC. ON 02/01/17.
- 4. MODIFICATIONS TO EXISTING LATTICE TOWER & PROPOSED LATTICE TOWER EXTENSIONS ARE SHOWN AS CONCEPTUAL FINAL DESIGN SHALL BE COMPLETED IN ACCORDANCE WITH THE TOWER STRUCTURAL ANALYSIS & MODIFICATION DRAWINGS COMPLETED BY PAUL J. FORD & COMPANY DATED 03/19/18.

NOTES:

- ELEVATION INFORMATION BASED ON EXISTING PLANS PREPARED BY DEWBERRY ENGINEERS INC. DATED 04/21/14 & FIELD MEASUREMENTS TAKEN BY DEWBERRY ENGINEERS INC. ON 02/01/17.
- MODIFICATIONS TO EXISTING LATTICE TOWER & PROPOSED LATTICE TOWER EXTENSION ARE SHOWN AS CONCEPTUAL. FINAL DESIGN SHALL BE COMPLETED IN ACCORDANCE WITH THE TOWER STRUCTURAL ANALYSIS & MODIFICATION DRAWINGS COMPLETED BY PAUL J. FORD & COMPANY DATED 03/19/18.

500 ENTERPRISE DRIVE, SUITE 3A ROCKY HILL, CT 06067

27 NORTHWESTERN DRIVE SALEM, NH 03079

CT1033 SOUTHINGTON ROGUS

	CERTI	FICATE DRAWINGS
Т		
^	05/02/19	ISSUED AS FINAL
0		
В		REVISED PER COMMENTS
Α	04/02/18	PRELIMINARY SUBMISSION

Dewberry

Dewberry Engineers Inc. 600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973.739.9400 FAX: 973.739.9710

Town South State of the State o	- 23-2 Million 1/2	Charles and the

JIANG YU, P.E. CT LICENSE NO. 0023222

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER TO ALTER THIS DOCUMENT.

DRAWN BY:	1C
REVIEWED BY:	BSH

CHECKED BY: GHN

PROJECT NUMBER: 50055106

JOB NUMBER: 50065689

SITE ADDRESS:

250 MERIDEN
WATERBURY TURNPIKE,
SOUTHINGTON, CT 06489
HARTFORD COUNTY

SHEET TITLE

SITE PLAN & ELEVATION

SHEET NUMBER

Z-3

PROPOSED 24" STANDOFF FRAME -(SITE PRO 1 P/N USF-2U) (TYP.-1 PER SECTOR) (3 TOTAL) PROPOSED AT&T RRUS-11 (TYP.-1 PER SECTOR) (3 TOTAL) PROPOSED 40'-0"± TALL LATTICE TOWER EXTENSION

PROPOSED AT&T ANTENNA (TYP.-1 PER SECTOR) (3 TOTAL)

	ANTENNA B.O.M.								
ſ	#	ANTENNA MODEL	ANTENNA SIZE (HxWxD, WEIGHT)	TECHNOLOGY	ANTENNA AZIMUTH	MECHANICAL DOWNTILT	CABLES	RRH'S	OVP BOXES
ALPHA	A1	CCI OPA-65R-LCUU-H6	72.3"x14.4"x7.3", 56.9 LBS	700/850/1900	10°	0*			
BEIA	B1	CCI OPA-65R-LCUU-H6	72.3"x14.4"x7.3", 56.9 LBS	700/850/1900	140*	0*	(6) 1-1/4"ø COAX CABLES (1) FIBER CABLES & (2) DC CABLES HOUSED IN (1) 2"ø FLEX INNERDUCT	(3) ERICSSON RRUS-11 (19.7"x17.0"x7.2", 55.0 LBS) (3) ERICSSON RRUS-4415 (16.5"x13.4"x5.9", 46.0 LBS)	(1) RAYCAP DC6-48-60-18-8F (23.5*x9.7*ø, 20.0 LBS)
ZWIM25	C1	CCI OPA-65R-LCUU-H6	72.3"x14.4"x7.3", 56.9 LBS	700/850/1900	260*	Ġ	(.) 2 - 121 mileson	(

ANTENNA MOUNTING DETAIL SCALE: N.T.S.

PROPOSED AT&T — SURGE ARRESTOR (TYP.-1 TOTAL)

PROPOSED AT&T RRUS-4415 (TYP.-1 PER SECTOR) (3 TOTAL)

500 ENTERPRISE DRIVE, SUITE 3A ROCKY HILL, CT 06067

27 NORTHWESTERN DRIVE SALEM, NH 03079

CT1033 SOUTHINGTON **ROGUS**

	CERTI	FICATE DRAWINGS
_		
H		
H		
0	05/02/18	ISSUED AS FINAL
В	04/30/18	REVISED PER COMMENTS
Α	04/02/18	PRELIMINARY SUBMISSION

Dewberry Engineers Inc. 600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973.739.9400 FAX: 973.739.9710

JIANG YU, P.E. CT LICENSE NO. 0023222

T IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER TO ALTER THIS DOCUMENT.

DRAWN BY: C REVIEWED BY: BSH

CHECKED BY: GHN

PROJECT NUMBER: 50055106

JOB NUMBER: 50065689

SITE ADDRESS:

250 MERIDEN WATERBURY TURNPIKE, SOUTHINGTON, CT 06489 HARTFORD COUNTY

SHEET TITLE

CONSTRUCTION **DETAILS**

SHEET NUMBER

Z-4

3

Date: March 16, 2018

Jay Patton Crown Castle 3530 Toringdon Way Suite 300 Charlotte, NC 28277

Paul J. Ford and Company 250 East Broad st., Suite 600 Columbus, OH 43215 kswarts@pjfweb.com

Subject:

Structural Modification Report

Carrier Designation:

AT&T Mobility Co-Locate

Carrier Site Number:

Carrier Site Name:

CT1033

SOUTHINGTON

ROGUS

Crown Castle Designation:

Crown Castle BU Number:

Crown Castle Site Name:

Crown Castle JDE Job Number: Crown Castle Work Order Number:

Crown Castle Order Number:

841298

SOUTHINGTON ROGUS

482771 1537529

424357 Rev. 1

Engineering Firm Designation:

Paul J. Ford and Company Project Number: 37518-0484.002.8800

Site Data:

250 MERIDEN WATERBURY TURNPIKE, SOUTHINGTON, Hartford County, CT

Latitude 41° 33' 24.54", Longitude -72° 51' 10.84"

120 Foot - Self Support Tower

Dear Jay Patton,

Paul J. Ford and Company is pleased to submit this "Structural Modification Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 1152645, in accordance with order 424357, revision 1.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC4.5: Modified Structure w/ Existing + Proposed Equipment Note: See Table I and Table II for the proposed and existing loading, respectively. **Sufficient Capacity**

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 123 mph converted to a nominal 3-second gust wind speed of 95 mph per Section 1609.3 and Appendix N as required for use in the ANSI/TIA-222-G-2005 Standard, "Structural Standard for Antenna Supporting Structures and Antennas", with ANSI/TIA-222-G-1-2007 and ANSI/TIA-222-G-2-2009 Addenda per Exception #5 of Section 1609.1.1. Risk Category II, Exposure Category B and Topographic Category 1 were used in this analysis.

All modifications and equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

Kurt J. Swarts, P.E. Project Manager

tnxTower Report - version 7.0.5.1

MAR 1 9 2018

Date: March 16, 2018

Jay Patton Crown Castle 3530 Toringdon Way Suite 300 Charlotte, NC 28277

Paul J. Ford and Company 250 East Broad st., Suite 600 Columbus, OH 43215 kswarts@pjfweb.com

Subject:

Structural Modification Report

Carrier Designation:

AT&T Mobility Co-Locate

Carrier Site Number: Carrier Site Name:

CT1033

SOUTHINGTON

ROGUS

Crown Castle Designation:

Crown Castle BU Number:

841298

482771

Crown Castle Site Name:

SOUTHINGTON ROGUS

Crown Castle JDE Job Number: Crown Castle Work Order Number: Crown Castle Order Number:

1537529 424357 Rev. 1

Engineering Firm Designation:

Paul J. Ford and Company Project Number: 37518-0484.002.8800

Site Data:

250 MERIDEN WATERBURY TURNPIKE, SOUTHINGTON, Hartford County, CT

Latitude 41° 33' 24.54", Longitude -72° 51' 10.84"

120 Foot - Self Support Tower

Dear Jay Patton,

Paul J. Ford and Company is pleased to submit this "Structural Modification Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 1152645, in accordance with order 424357, revision 1.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC4.5: Modified Structure w/ Existing + Proposed Equipment Note: See Table I and Table II for the proposed and existing loading, respectively. **Sufficient Capacity**

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 123 mph converted to a nominal 3-second gust wind speed of 95 mph per Section 1609.3 and Appendix N as required for use in the ANSI/TIA-222-G-2005 Standard, "Structural Standard for Antenna Supporting Structures and Antennas", with ANSI/TIA-222-G-1-2007 and ANSI/TIA-222-G-2-2009 Addenda per Exception #5 of Section 1609.1.1. Risk Category II, Exposure Category B and Topographic Category 1 were used in this analysis.

All modifications and equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

Kurt J. Swarts, P.E. Project Manager

tnxTower Report - version 7.0.5.1

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information
Table 2 - Existing and Reserved Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Components vs. Capacity
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 120-ft Self Support tower designed by Pirod and mapped by GPD in April of 2014. The original design standard and wind speed are not known at the time of the analysis. The tower has been modified multiple times in the past to accommodate additional loading.

The tower has been analyzed with proposed modifications to the existing structure and a 40-ft extension. See attached modification drawings for details.

2) ANALYSIS CRITERIA

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 123 mph converted to a nominal 3-second gust wind speed of 95 mph per Section 1609.3 and Appendix N as required for use in the ANSI/TIA-222-G-2005 Standard, "Structural Standard for Antenna Supporting Structures and Antennas", with ANSI/TIA-222-G-1-2007 and ANSI/TIA-222-G-2-2009 Addenda per Exception #5 of Section 1609.1.1. Risk Category II, Exposure Category B and Topographic Category 1 were used in this analysis.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)		Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		3	cci antennas	OPA65R-BU6BA-K w/ Mount Pipe			
	120.0	3	ericsson	RRUS 11	6 2 1	1-1/4 3/4 3/8	
119.0		3	ericsson	RRUS 4415 B25			
		1	raycap	DC6-48-60-18-8C			
	119.0	6	tower mounts	5' x 2' Pipe Mount			
	119.0	1	tower mounts	Side Arm Mount [SO 304-3]			

Table 2 - Existing Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
	127.0	1	scala	OGB6-900			
119.0	123.0 1 rfs celwave BA1012-0		3	7/8	1		
	122.0	122.0 1 pctel MFB9157		MFB9157			
Transport Control of the Control of Control	88.0	1	scala	OGB6-900			•
80.0	84.0	1	rfs celwave	BA1012-0	3	7/8	2
	83.0	1	pctel	MFB9157			
hain'i Baselitaig scioneasason, kus haifeadha.		3	adc	DD700/DD1900	-		
		3	cci antennas	DTMABP0721VG12A			
		4	cci antennas	HPA-65R-BUU-H8 w/ Mount Pipe			
		2	cci antennas	OPA-65R-LCUU-H6 w/ Mount Pipe	of the cipromit manufacture of		
		2	ericsson	RRU-11			
	78.0	3	ericsson	RRU-12	12	7/8 3/4	3
76.0		1	ericsson	RRUL-11	2		
		2	ericsson	RRUS 32 B30			
		3	ericsson	RRUS A2 MODULE	•		
		3	ericsson	RRUS E2 B29			
		1	ericsson	RRUS-32 B30			
		3	kathrein	800 10121 w/ Mount Pipe			
		3	raycap	DC6-48-60-18-8F	Service of the servic		
	76.0	1 1	tower mounts	Sector Mount [SM 1306-3]			
A August - October 11 - Hermital (1871 - A.) William (1871 - A.) Berlin (1871 - A.)	and the state of t	3	alcatel lucent	B13 RRH4X30-4R			
		3	alcatel lucent	B66A RRH4X45			
58.0	60.0	6	commscope	SBNHH-1D65B w/ Mount Pipe	2	1-1/4	1
		2	rfs celwave	DB-T1-6Z-8AB-0Z			
	58.0	1	tower mounts	Sector Mount [SM 402-3]			
	65.0	1 1	rfs celwave	BA1012-0			
58.0	03.0	1	scala	OGD6-905/945	2	7/8	1
56.0	58.0	2	tower mounts	Side Arm Mount [SO 305- 1]	_	170	
100000000000000000000000000000000000000	60.0	1 1	scala	OGD6-905/945			
50.0	56.0	1 1	scala	OGB9-900-DT3	1	7/8	1
00.0	50.0	2	tower mounts	Side Arm Mount [SO 305- 1]	1	1/2	
42.0	46.0	2	empty	EMPTY_MOUNT w/ Mount Pipe	-	-	1

Notes:

Existing Equipment Existing Equipment and feedlines relocated to 119-ft. Equipment To Be Removed

1) 2) 3)

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source	
4-GEOTECHNICAL REPORTS	GPD: 2014723.59347.01: 4/4/2014	5114302	CCISITES	
4-POST-MODIFICATION INSPECTION	TEP: 55617_27883:3/23/2015	6175357	CCISITES	
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	GPD: 2014723.59347.01: 4/4/2014	5114267	CCISITES	
4-TOWER MANUFACTURER DRAWINGS	GPD: 2014723.21.59347.01: 41/4/2014	5114299	CCISITES	
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	Jacobs: 1080709:7/20/2015	6175374	CCISITES	
PROPOSED MODIFICATION DESIGN DRAWINGS	PJF: 37518- 0484.002.8800:3/16/2018		-	

3.1) Analysis Method

tnxTower (version 7.0.5.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) Foundation steel reinforcement was not provided at the time of the analysis. Minimum steel has been assumed in the analysis
- 5) Existing tower and foundation material grades were not known at the time of the analysis. The material grades used in this analysis have been assumed, based on knowledge of the material grades commonly used by Pirod.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	120 - 100	Leg	1 1/2	3	-14.19	52.90	26.8	Pass
T2	100 - 80	Leg	1 1/2	87	-34.40	52.90	65.0	Pass
Т3	80 - 60	Leg	1 1/2	173	-52.30	52.89	98.9	Pass
T4	60 - 40	Leg	(37518-0484) 1.75" SR w_2.375" x 0.154" half pipe sleeve	252	-82.75	93.68	88.3	Pass
T5	40 - 20	Leg	(37518-0484) 2" SR	330	-111.27	150.13	74.1	Pass

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
			w_2.875" x 0.276" half pipe sleeve		THE REST OF THE PARTY OF THE PA			
Т6	20 - 0	Leg	(37518-0484) 2 1/4" SR w_2.875" x 0.276" half pipe sleeve	408	-138.58	186.03	74.5	Pass
T1	120 - 100	Diagonal	5/8 .	14	-1.34	4.32	31.0	Pass
T2	100 - 80	Diagonal	5/8	101	-1.89	4.32	43.8	Pass
T3	80 - 60	Diagonal	5/8	186	-1.64	3.53	46.5	Pass
T4	60 - 40	Diagonal	3/4	262	-2.70	6.16	43.8	Pass
T5	40 - 20	Diagonal	7/8	403	-3.16	10.37	30.4	Pass
T6	20 - 0	Diagonal	7/8	419	-2.90	8.06	35.9	Pass
T1	120 - 100	Horizontal	3/4	27	-0.30	5.98	5.0	Pass
T2	100 - 80	Horizontal	3/4	115	-0.84	5.98	14.1	Pass
T3	80 - 60	Horizontal	3/4	198	-1.17	4.73	24.7	Pass
T4	60 - 40	Horizontal	3/4	277	-1.09	3.69	29.6	Pass
T5	40 - 20	Horizontal	7/8	400	-1.56	6.26	24.9	Pass
T6	20 - 0	Horizontal	7/8	478	-1.38	4.90	28.2	Pass
T1	120 - 100	Secondary Horizontal	5/8	86	0.00	13.81	0.7	Pass
T2	100 - 80	Secondary Horizontal	5/8	172	0.00	13.81	0.6	Pass
T1	120 - 100	Top Girt	1	4	-0.18	15.57	1.1	Pass
T2	100 - 80	Top Girt	1	91	-0.23	15.57	1.4	Pass
T3	80 - 60	Top Girt	1	177	-0.29	15.48	1.8	Pass
T4	60 - 40	Top Girt	1	256	-0.21	13.22	1.6	Pass
T5	40 - 20	Top Girt	1	333	-0.37	10.90	3.4	Pass
T6	20 - 0	Top Girt	1	412	-0.32	8.59	3.7	Pass
T1	120 - 100	Bottom Girt	3/4	9	-0.72	5.98	12.0	Pass
T2	100 - 80	Bottom Girt	3/4	95	-1.14	5.98	19.1	Pass
T3	80 - 60	Bottom Girt	3/4	180	-1.24	4.41	28.0	Pass
T4	60 - 40	Bottom Girt	1	259	-1.76	10.86	16.2	Pass
T5	40 - 20	Bottom Girt	1	337	-1.70	8.73	19.5	Pass
T6	20 - 0	Bottom Girt	1	415	-1.64	6.98	23.4	Pass
							Summary	
						Leg (T3)	98.9	Pass
						Diagonal (T3)	46.5	Pass
						Horizontal (T4)	29.6	Pass
						Secondary Horizontal (T1)	0.7	Pass
						Top Girt (T6)	3.7	Pass
				***		Bottom Girt (T3)	28.0	Pass
						Bolt Checks	66.6	Pass
MANAGEMENT AND THE STATE OF THE						Rating =	98.9	Pass

Table 5 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fai
1	Anchor Rods	0	50.6	Pass
1	Base Foundation	0	13.4	Pass
1	Base Foundation Soil Interaction	0	54.1	Pass

Characterist Dation (see all accounts)	00.00/
Structure Rating (max from all components) =	98.9%

Notes:

4.1) Recommendations

The tower and its foundation will have sufficient capacity to carry the proposed loading configuration once the proposed modifications are installed.

Install the proposed 40-ft tower extension.

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed

APPENDIX A TNXTOWER OUTPUT

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 120.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 3.00 ft at the top and 5.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Hartford County, Connecticut.

ASCE 7-10 Wind Data is used (wind speeds converted to nominal values).

Basic wind speed of 95.00 mph.

Structure Class II.

Exposure Category B.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 1.00 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50.00 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60.00 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

√ Use Code Stress Ratios

- √ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile
- √ Include Bolts In Member Capacity
- Leg Bolts Are At Top Of Section

 Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
 SR Members Have Cut Ends
 SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
 √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination

✓ Sort Capacity Reports By Component
Triangulate Diamond Inner Bracing
Treat Feed Line Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules

√ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA

√ SR Leg Bolts Resist Compression

√ All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption

Use TIA-222-G Tension Splice Exemption

Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Triangular Tower

Tower	Section	Geometry
AND PERSONAL PROPERTY		The second secon

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	3
	ft			ft		ft
T1	120.00-100.00			3.00	1	20.00
T2	100.00-80.00			3.00	1	20.00
T3	80.00-60.00	4		3.00	1	20.00
T4	60.00-40.00			3.50	1	20.00
T5	40.00-20.00			4.00	1	20.00
T6	20.00-0.00			4.50	1	20.00

	Tower	Section	Geometry	(cont'd)
--	--------------	---------	----------	----------

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girl
Section	Elevation	Spacing	Type	K Brace End	Horizontals	Offset	Offset
	ft	ft		Panels		in	in
T1	120.00-100.00	2.33	X Brace	No	Yes+Steps	8.00	8.00
T2	100.00-80.00	2.33	X Brace	No	Yes+Steps	8.00	8.00
T3	80.00-60.00	2.33	X Brace	No	Yes	8.00	8.00
T4	60.00-40.00	2.33	X Brace	No	Yes	8.00	8.00
T5	40.00-20.00	2.33	X Brace	No	Yes	8.00	8.00
T6	20.00-0.00	2.33	X Brace	No	Yes	8.00	8.00

Tower	Section	Geometry	(cont'd)
IOMACI	OCCUOII	ocometry	(com a)

Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 120.00- 100.00	Solid Round	1 1/2	A572-50 (50 ksi)	Solid Round	5/8	A36 (36 ksi)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Туре	Size	Grade	Type	Size	Grade
T2 100.00- 80.00	Solid Round	1 1/2	A572-50 (50 ksi)	Solid Round	5/8	A36 (36 ksi)
T3 80.00-60.00	Arbitrary Shape	(37518-0484) 1.5" SR w_1.9" x 0.188" half pipe sleeve	À572-50 (50 ksi)	Solid Round	5/8	A36 (36 ksi)
T4 60.00-40.00		(37518-0484) 1.75" SR w_2.375" x 0.154" half pipe sleeve	A572-50 (50 ksi)	Solid Round	3/4	A36 (36 ksi)
T5 40.00-20.00	Arbitrary Shape	(37518-0484) 2" SR w_2.875" x 0.276" half pipe sleeve	A572-50 (50 ksi)	Solid Round	7/8	A36 (36 ksi)
T6 20.00-0.00	Arbitrary Shape	(37518-0484) 2 1/4" SR w_2.875" x 0.276" half pipe sleeve	A572-50 (50 ksi)	Solid Round	7/8	A36 (36 ksi)

Strangerick .	0 1:	•	/ 11 11
Lower	Section	Geometry	(conf'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 120.00- 100.00	Solid Round	1	A36 (36 ksi)	Solid Round	3/4	A36 (36 ksi)
T2 100.00- 80.00	Solid Round	1	A36 (36 ksi)	Solid Round	3/4	A36 (36 ksi)
T3 80.00-60.00	Solid Round	1	A36 (36 ksi)	Solid Round	3/4	`A36 (36 ksi)
T4 60.00-40.00	Solid Round	. 1	A36 (36 ksi)	Solid Round	1	A36 (36 ksi)
T5 40.00-20.00	Solid Round	1	A36 (36 ksi)	Solid Round	1	A36 (36 ksi)
T6 20.00-0.00	Solid Round	1	A36 (36 ksi)	Solid Round	1	A36 (36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	No. of Mid	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade
π T1 120.00-	Girts None	Flat Bar		A36	Solid Round	3/4	A36
100.00	140110	riat bai		(36 ksi)	Solid Round	3/4	(36 ksi)
T2 100.00-	None	Flat Bar		A36	Solid Round	3/4	`A36 [′]
80.00				(36 ksi)			(36 ksi)
T3 80.00-60.00	None	Flat Bar		A36	Solid Round	3/4	A36
				(36 ksi)			(36 ksi)
T4 60.00-40.00	None	Flat Bar		A36	Solid Round	3/4	A36
				(36 ksi)			(36 ksi)
T5 40.00-20.00	None	Flat Bar		A36	Solid Round	7/8	A36
				(36 ksi)			(36 ksi)
T6 20.00-0.00	None	Flat Bar		A36	Solid Round	7/8	A36
				(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft T1 120.00-	Solid Round	5/8	A572-50	Solid Round		A572-50
100.00	220 1400 <u>12</u> 0 10	000000	(50 ksi)			(50 ksi)
T2 100.00~ 80.00	Solid Round	5/8	A572-50 (50 ksi)	Solid Round		A572-50 (50 ksi)

Tower S	Section	Geometry	(cont'd)
---------	---------	----------	----------

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area (per face)	Thickness		A_f	Factor A,		Stitch Bolt Spacing Diagonals	Stitch Bolt Spacing Horizontals	Stitch Bolt Spacing Redundants
ft	ft²	in					in	in	in
T1 120.00-	0.00	0.00	A36	1	1	1	36.00	36.00	36.00
100.00			(36 ksi)						
T2 100.00-	0.00	0.00	A36	1	1	1	36.00	36.00	36.00
80.00			(36 ksi)						
T3 80.00-	0.00	0.00	A36	1	1	1	36.00	36.00	36.00
60.00			(36 ksi)						
T4 60.00-	0.00	0.00	A36	1	1	1	36.00	36.00	36.00
40.00			(36 ksi)						
T5 40.00-	0.00	0.00	A36	1	1	1	36.00	36.00	36.00
20.00			(36 ksi)						
T6 20.00-0.00	0.00	0.00	A36	1	1	1	36.00	36.00	36.00
		7/2	(36 ksi)						

Tower Section Geometry (cont'd)

						K Fac	ctors1			Serve state interest and directly
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T1 120.00-	No	No	1	0.9	1	1	0.7	0.7	1	1
100.00				0.9	1	1	0.7	0.7	1	1
T2 100.00-	No	No	1	0.9	1	1	0.7	0.7	1	1
80.00				0.9	1	1	0.7	0.7	1	1
T3 80.00-	No	No	1	0.9	1	1	0.7	0.7	1	1
60.00				0.9	1	1	0.7	0.7	1	1
T4 60.00-	No	No	1	0.9	1	1	0.7	0.7	1	1
40.00				0.9	1	1	0.7	0.7	1	1
T5 40.00-	No	No	1	0.9	1	1	0.7	0.7	1	1
20.00				0.9	1	1	0.7	0.7	1	1
T6 20.00-	No	No	1	0.9	1	1	0.7	0.7	1	1
0.00				0.9	1	1	0.7	0.7	1 _	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diago	nal	Top G	irt	Bottom	Girt	Mid	Girt	Long Hor	rizontal	Short Ho	rizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 120.00-	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
100.00 T2 100.00-	0.00	4	0.00	1	0.00	4	0.00	4	0.00	0.75	0.00	4	0.00	0.75
80.00	0.00	ŗ	0.00	1	0.00		0.00	1	0.00	0.75	0.00	1	0.00	0.75
T3 80.00-	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
60.00														
T4 60.00- 40.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
T5 40.00- 20.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
T6 20.00-0.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75

Tower Section Geometry (cont'	Geometry (cont'd)
-------------------------------	-------------------

Tower Elevation ft	Leg Connection Type	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Shor Horizor	N. S. 100
	0.500	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.
T1 120.00- 100.00	Flange	0.63 A325N	4	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0
T2 100.00- 80.00	Flange	0.63 A325N	4	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0
T3 80.00- 60.00	Sleeve DS	0.63 A325N	8	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0
T4 60.00- 40.00	Sleeve DS	0.63 A325N	10	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0
T5 40.00- 20.00	Sleeve DS	0.75 A325N	10	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0
T6 20.00-0.00	Flange	0.75 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimete r	Weight
	Leg			ft	in	(Frac FW)		Row	in	in	in	plf
Safety Line 3/8	В	No	Ar (CaAa)	120.00 - 8.00	0.00	0	1	1	0.38	0.38		0.22
LDF6-50A(1- 1/4)	Α	No	Ar (CaAa)	119.00 - 8.00	0.00	-0.25	6	3	1.00 0.50	1.55		0.60
FB-L98B- 034- XXX(3/8)	Α	No	Ar (CaAa)	119.00 - 8.00	0.00	-0.35	1	1	0.39	0.39		0.06
WR- VG86ST- BRD(3/4)	Α	No	Ar (CaAa)	119.00 - 8.00	0.00	-0.38	2	2	0.80	0.80		0.58
T-Brackets (Af)	С	No	Af (CaAa)	80.00 - 8.00	0.00	-0.4	1	1	1.00	1.00		8.40
FLC 78- 50J(7/8)	С	No	Ar (CaAa)	119.00 - 8.00	0.00	-0.4	3	3	1.11	1.11		0.40
FLC 78- 50J(7/8)	С	No	Ar (CaAa)	60.00 - 8.00	0.00	-0.3	2	1	1.11	1.11		0.40
FLC 12-	C	No	Ar (CaAa)	58.00 - 8.00	0.00	-0.28	1	1	0.64	0.64		0.17

tnxTower Report - version 7.0.5.1

Description		Allow Shield	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimete r	Weight
	Leg			ft	in	(Frac FW)		Row	in	in	in	plf
50J(1/2)	***************************************				**************	***************************************			***************************************			***************************************
FLC 78- 50J(7/8)	С	No	Ar (CaAa)	58.00 - 8.00	0.00	-0.26	1	1	1.11	1.11		0.40
LDF4- 50A(1/2)	С	No	Ar (CaAa)	42.00 - 8.00	0.00	-0.25	1	1	0.63	0.63		0.15

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft²	ft²	ft²	ft ²	K
T1	120.00-100.00	Α	0.000	0.000	21.439	0.000	0.09
		В	0.000	0.000	0.750	0.000	0.00
		C	0.000	0.000	6.338	0.000	0.02
T2	100.00-80.00	Α	0.000	0.000	22.567	0.000	0.10
		В	0.000	0.000	0.750	0.000	0.00
		C	0.000	0.000	6.672	0.000	0.02
T3	80.00-60.00	Α	0.000	0.000	22.567	0.000	0.10
		В	0.000	0.000	0.750	0.000	0.00
		C	0.000	0.000	10.005	0.000	0.19
T4	60.00-40.00	Α	0.000	0.000	22.567	0.000	0.10
		В	0.000	0.000	0.750	0.000	0.00
		C	0.000	0.000	17.732	0.000	0.22
T5	40.00-20.00	Α	0.000	0.000	22.567	0.000	0.10
		В	0.000	0.000	0.750	0.000	0.00
		C	0.000	0.000	19.207	0.000	0.22
T6	20.00-0.00	Α	0.000	0.000	13.540	0.000	0.06
		В	0.000	0.000	0.450	0.000	0.00
		C	0.000	0.000	11.524	0.000	0.13

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft²	ft²	III Face ft²	ft²	K
T1	120.00-100.00	A	2.256	0.000	0.000	62.758	0.000	0.98
		В		0.000	0.000	9.774	0.000	0.15
		C		0.000	0.000	27.397	0.000	0.37
T2	100.00-80.00	Α	2.211	0.000	0.000	65.255	0.000	1.00
		В		0.000	0.000	9.594	0.000	0.14
		C		0.000	0.000	28.534	0.000	0.38
T3	80.00-60.00	Α	2.156	0.000	0.000	64.268	0.000	0.97
		В		0.000	0.000	9.375	0.000	0.14
		C		0.000	0.000	40.119	0.000	0.74
T4	60.00-40.00	Α	2.085	0.000	0.000	62.985	0.000	0.94
		В		0.000	0.000	9.089	0.000	0.13
		С		0.000	0.000	81.418	0.000	1.35
T5	40.00-20.00	Α	1.981	0.000	0.000	61.118	0.000	0.89
		В		0.000	0.000	8.674	0.000	0.12
		С		0.000	0.000	88.979	0.000	1.41
T6	20.00-0.00	Α	1.775	0.000	0.000	34.449	0.000	0.47
		В		0.000	0.000	4.710	0.000	0.06
	***************************************	С		0.000	0.000	49.715	0.000	0.74

Feed Line Center of Pressure

Section	Elevation	CP_X	CPz	CP_X	CPz
				Ice	Ice
	ft	in	in	in	in
T1	120.00-100.00	-1.34	0.73	-0.13	0.13
T2	100.00-80.00	-1.36	0.75	-0.14	0.15
T3	80.00-60.00	-1.02	0.94	0.55	0.69
T4	60.00-40.00	-0.50	1.35	0.86	1.07
T5	40.00-20.00	-0.43	1.48	0.97	1.25
T6	20.00-0.00	-0.36	1.29	0.77	1.10

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
T1	1	Safety Line 3/8	100.00 - 120.00	0.6000	0.1946
T1	3	LDF6-50A(1-1/4)	100.00 -	0.6000	0.1946
1 1	Ĭ	EBI 0-00/4(1-1/4)	119.00	0.0000	0.1540
T1	4	FB-L98B-034-XXX(3/8)	100.00 -	0.6000	0.1946
3.0		, , , , , , , , , , , , , , , , , , , ,	119.00		31.10.10
T1	5	WR-VG86ST-BRD(3/4)	100.00 -	0.6000	0.1946
			119.00		
T1	8	FLC 78-50J(7/8)	100.00 -	0.6000	0.1946
			119.00		o sarosa y
T2	1	Safety Line 3/8	80.00 -	0.6000	0.2062
Т0		1 DEC 504/4 4/4)	100.00	0.0000	0.0000
T2	3	LDF6-50A(1-1/4)	80.00 -	0.6000	0.2062
T2	4	FB-L98B-034-XXX(3/8)	100.00 80.00 -	0.6000	0.2062
12	7	1 B-L90B-034-XXX(3/0)	100.00	0.0000	0.2002
T2	5	WR-VG86ST-BRD(3/4)	80.00 -	0.6000	0.2062
,-	Ĭ	WIT VOGGOT BITE(0/4)	100.00	0.0000	0.2002
T2	8	FLC 78-50J(7/8)	80.00 -	0.6000	0.2062
			100.00	0.0000	0.2002
Т3	1	Safety Line 3/8	60.00 -	0.6000	0.2292
			80.00		
T3	3	LDF6-50A(1-1/4)	60.00 -	0.6000	0.2292
			80.00		
T3	4	FB-L98B-034-XXX(3/8)	60.00 -	0.6000	0.2292
			80.00		
Т3	5	WR-VG86ST-BRD(3/4)	60.00 -	0.6000	0.2292
	_	T.D. 1 /4.0	80.00		
T3	7	T-Brackets (Af)	60.00 -	0.6000	0.2292
ТЗ	8	FLC 78-50J(7/8)	80.00 60.00 -	0.0000	0.0000
13	9	FLC 76-503(7/6)	80.00	0.6000	0.2292
T4	1	Safety Line 3/8	40.00 -	0.6000	0.2633
	'1	Salety Line 3/6	60.00	0.0000	0.2033
T4	3	LDF6-50A(1-1/4)	40.00 -	0.6000	0.2633
			60.00	0.0000	0.2000
T4	4	FB-L98B-034-XXX(3/8)	40.00 -	0.6000	0.2633
			60.00		
T4	5	WR-VG86ST-BRD(3/4)	40.00 -	0.6000	0.2633
	1		60.00		
T4	7	T-Brackets (Af)	40.00 -	0.6000	0.2633
		=	60.00		
T4	8	FLC 78-50J(7/8)	40.00 -	0.6000	0.2633
	ار	EL C 70 E0 1/7/0	60.00	0.0000	0.0000
T4	9	FLC 78-50J(7/8)	40.00 -	0.6000	0.2633
T4	10	FLC 12-50J(1/2)	60.00 40.00 -	0.6000	0.2633
14	10	FLC 12-303(1/2)	58.00	0.0000	0.2033
T4	11	FLC 78-50J(7/8)	40.00 -	0.6000	0.2633
' -	. '	1 20 70 000(770)	58.00	0.0000	0.2000
T4	12	LDF4-50A(1/2)	40.00 -	0.6000	0.2633
				2.0000	0.2000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
		7 1	Elev.		
			42.00		
T5	1	Safety Line 3/8	20.00 -	0.6000	0.2950
		10	40.00		
T5	3	LDF6-50A(1-1/4)	20.00 -	0.6000	0.2950
		Constitution (Company CO) - No. (No. 1) - NAMES AND RESIDENCE (CO. 1)	40.00		
T5	4	FB-L98B-034-XXX(3/8)	20.00 -	0.6000	0.2950
			40.00	10 100000000000000000000000000000000000	
T5	5	WR-VG86ST-BRD(3/4)	20.00 -	0.6000	0.2950
	_		40.00		
T5	7	T-Brackets (Af)	20.00 -	0.6000	0.2950
~-		51 0 70 50 V7/0V	40.00		
T5	8	FLC 78-50J(7/8)	20.00 -	0.6000	0.2950
7.5		EL O 70 E0 1/7/0)	40.00	0.0000	0.0050
T5	9	FLC 78-50J(7/8)	20.00 -	0.6000	0.2950
T5	10	FLC 12-50J(1/2)	40.00 20.00 -	0.6000	0.2050
13	10	FLC 12-303(1/2)	40.00	0.6000	0.2950
T5	11	FLC 78-50J(7/8)	20.00 -	0.6000	0.2950
,,,	''	1 20 70-303(770)	40.00	0.0000	0.2950
T5	12	LDF4-50A(1/2)	20.00 -	0.6000	0.2950
	'-	LB: 1 00/1(1/2)	40.00	0.0000	0.2300
Т6	1	Safety Line 3/8	8.00 - 20.00	0.6000	0.4059
T6	3	LDF6-50A(1-1/4)	8.00 - 20.00	0.6000	0.4059
T6	4	FB-L98B-034-XXX(3/8)	8.00 - 20.00	0.6000	0.4059
Т6	5	WR-VG86ST-BRD(3/4)	8.00 - 20.00	0.6000	0.4059
Т6	7	T-Brackets (Af)	8.00 - 20.00	0.6000	0.4059
Т6	8	FLC 78-50J(7/8)	8.00 - 20.00	0.6000	0.4059
Т6	9	FLC 78-50J(7/8)	8.00 - 20.00	0.6000	0.4059
Т6	10	FLC 12-50J(1/2)	8.00 - 20.00	0.6000	0.4059
Т6	11	FLC 78-50J(7/8)	8.00 - 20.00	0.6000	0.4059
T6	12	LDF4-50A(1/2)	8.00 - 20.00	0.6000	0.4059

		- Simple Court and Court State Court	Disc	rete Tov	ver Loa	ds			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
OPA65R-BU6BA-K w/ Mount Pipe	A	From Leg	2.00 0 1	0.000	119.00	No Ice 1/2" Ice 1" Ice	8.09 8.64 9.16	7.65 8.83 9.71	0.08 0.15 0.23
RRUS 11	Α	From Leg	2.00 0 1	0.000	119.00	No Ice 1/2" Ice 1" Ice	2.79 3.00 3.21	1.19 1.34 1.50	0.05 0.07 0.10
RRUS 4415 B25	Α	From Leg	2.00 0 1	0.000	119.00	No Ice 1/2" Ice 1" Ice	1.64 1.80 1.97	0.68 0.79 0.91	0.04 0.06 0.07
DC6-48-60-18-8C	Α	From Leg	2.00 0 1	0.000	119.00	No Ice 1/2" Ice 1" Ice	2.74 2.96 3.20	2.74 2.96 3.20	0.03 0.05 0.08
OPA65R-BU6BA-K w/ Mount Pipe	В	From Leg	2.00 0 1	0.000	119.00	No Ice 1/2" Ice 1" Ice	8.09 8.64 9.16	7.65 8.83 9.71	0.08 0.15 0.23
RRUS 11	В	From Leg	2.00	0.000	119.00	No Ice	2.79	1.19	0.05

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement	White place the same	C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	К
			0 1			1/2" Ice 1" Ice	3.00 3.21	1.34 1.50	0.07 0.10
RRUS 4415 B25	В	From Leg	2.00 0 1	0.000	119.00	No Ice 1/2" Ice 1" Ice	1.64 1.80 1.97	0.68 0.79 0.91	0.04 0.06 0.07
OPA65R-BU6BA-K w/ Mount Pipe	С	From Leg	2.00 0 1	0.000	119.00	No Ice 1/2" Ice 1" Ice	8.09 8.64 9.16	7.65 8.83 9.71	0.08 0.15 0.23
RRUS 11	С	From Leg	2.00 0 1	0.000	119.00	No Ice 1/2" Ice 1" Ice	2.79 3.00 3.21	1.19 1.34 1.50	0.05 0.07 0.10
RRUS 4415 B25	С	From Leg	2.00 0 1	0.000	119.00	No Ice 1/2" Ice 1" Ice	1.64 1.80 1.97	0.68 0.79 0.91	0.04 0.06 0.07
(2) 5' x 2' Pipe Mount	Α	From Leg	1.00 0 0	0.000	119.00	No Ice 1/2" Ice 1" Ice	1.00 1.39 1.70	1.00 1.39 1.70	0.03 0.04 0.05
(2) 5' x 2' Pipe Mount	В	From Leg	1.00 0 0	0.000	119.00	No Ice 1/2" Ice 1" Ice	1.00 1.39 1.70	1.00 1.39 1.70	0.03 0.04 0.05
(2) 5' x 2' Pipe Mount	С	From Leg	1.00 0 0	0.000	119.00	No Ice 1/2" Ice 1" Ice	1.00 1.39 1.70	1.00 1.39 1.70	0.03 0.04 0.05
Side Arm Mount [SO 304-3]	С	None		0.000	119.00	No Ice 1/2" Ice 1" Ice	1.76 2.75 3.74	1.76 2.75 3.74	0.07 0.10 0.12
OGB6-900	Α	From Leg	4.00 0 8	0.000	119.00	No Ice 1/2" Ice 1" Ice	1.18 1.77 2.13	1.18 1.77 2.13	0.01 0.02 0.03
BA1012-0	В	From Leg	4.00 0 4	0.000	119.00	No Ice 1/2" Ice 1" Ice	0.47 0.96 1.31	0.47 0.96 1.31	0.00 0.01 0.01
MFB9157	С	From Leg	4.00 0 3	0.000	119.00	No Ice 1/2" Ice 1" Ice	1.20 2.02 2.86	1.20 2.02 2.86	0.00 0.01 0.03
****						1 100			
BA1012-0	В	From Leg	3.00 0 7	0.000	58.00	No Ice 1/2" Ice	0.47 0.96 1.31	0.47 0.96 1.31	0.00 0.01 0.01
OGD6-905/945	Α	From Leg	3.00 0 7	0.000	58.00	1" Ice No Ice 1/2" Ice 1" Ice	2.51 3.74 4.98	2.51 3.74 4.98	0.03 0.04 0.07
Side Arm Mount [SO 305- 1]	Α	From Leg	1.50 0 0	0.000	58.00	No Ice 1/2" Ice 1" Ice	0.94 1.48 2.02	1.41 2.17 2.93	0.03 0.04 0.06
Side Arm Mount [SO 305- 1]	В	From Leg	1.50 0 0	0.000	58.00	No Ice 1/2" Ice	0.94 1.48 2.02	1.41 2.17 2.93	0.03 0.04 0.06

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement	der Amerika de Seculos	C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	K
***				***************************************	****	1" Ice	of the contract of the contrac		
B13 RRH4X30-4R	Α	From Leg	4.00 0 2	0.000	58.00	No Ice 1/2" Ice 1" Ice	2.16 2.35 2.55	1.62 1.79 1.97	0.06 0.08 0.10
B66A RRH4X45	Α	From Leg	4.00 0 2	0.000	58.00	No Ice 1/2" Ice 1" Ice	2.58 2.79 3.01	1.63 1.81 2.00	0.07 0.09 0.11
(2) SBNHH-1D65B w/ Mount Pipe	Α	From Leg	4.00 0 2	0.000	58.00	No Ice 1/2" Ice 1" Ice	8.40 8.96 9.49	7.07 8.26 9.18	0.07 0.14 0.21
DB-T1-6Z-8AB-0Z	Α	From Leg	4.00 0 2	0.000	58.00	No Ice 1/2" Ice 1" Ice	4.80 5.07 5.35	2.00 2.19 2.39	0.04 0.08 0.12
B13 RRH4X30-4R	В	From Leg	4.00 0 2	0.000	58.00	No Ice 1/2" Ice 1" Ice	2.16 2.35 2.55	1.62 1.79 1.97	0.06 0.08 0.10
B66A RRH4X45	В	From Leg	4.00 0 2	0.000	58.00	No Ice 1/2" Ice 1" Ice	2.58 2.79 3.01	1.63 1.81 2.00	0.07 0.09 0.11
(2) SBNHH-1D65B w/ Mount Pipe	В	From Leg	4.00 0 2	0.000	58.00	No Ice 1/2" Ice 1" Ice	8.40 8.96 9.49	7.07 8.26 9.18	0.07 0.14 0.21
DB-T1-6Z-8AB-0Z	В	From Leg	4.00 0 2	0.000	58.00	No Ice 1/2" Ice 1" Ice	4.80 5.07 5.35	2.00 2.19 2.39	0.04 0.08 0.12
B13 RRH4X30-4R	С	From Leg	4.00 0 2	0.000	58.00	No Ice 1/2" Ice 1" Ice	2.16 2.35 2.55	1.62 1.79 1.97	0.06 0.08 0.10
B66A RRH4X45	С	From Leg	4.00 0 2	0.000	58.00	No Ice 1/2" Ice 1" Ice	2.58 2.79 3.01	1.63 1.81 2.00	0.07 0.09 0.11
(2) SBNHH-1D65B w/ Mount Pipe	С	From Leg	4.00 0 2	0.000	58.00	No Ice 1/2" Ice 1" Ice	8.40 8.96 9.49	7.07 8.26 9.18	0.07 0.14 0.21
Sector Mount [SM 402-3]	С	None		0.000	58.00	No Ice 1/2" Ice 1" Ice	18.91 26.78 34.65	18.91 26.78 34.65	0.85 1.23 1.62
OGB9-900-DT3	Α	From Leg	4.00 0 6	0.000	50.00	No Ice 1/2" Ice	1.94 2.94 3.95	1.94 2.94 3.95	0.02 0.03 0.05
OGD6-905/945	В	From Leg	4.00 0 10	0.000	50.00	1" Ice No Ice 1/2" Ice 1" Ice	2.51 3.74 4.98	2.51 3.74 4.98	0.03 0.04 0.07
Side Arm Mount [SO 305- 1]	Α	From Leg	4.00 0 0	0.000	50.00	No Ice 1/2" Ice	0.94 1.48 2.02	1.41 2.17 2.93	0.03 0.04 0.06
Side Arm Mount [SO 305- 1]	В	From Leg	4.00 0	0.000	50.00	1" Ice No Ice 1/2"	0.94 1.48	1.41 2.17	0.03 0.04

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	K
***			0	rational desiration (naisonal)	4	Ice 1" Ice	2.02	2.93	0.06
(2) EMPTY_MOUNT w/ Mount Pipe	Α	From Leg	4.00 0 4	0.000	42.00	No Ice 1/2" Ice 1" Ice	0.15 0.23 0.32	0.15 0.23 0.32	0.00 0.00 0.00

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 lce+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service

Comb.	Description
No.	
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
T1	120 - 100	Leg	Max Tension	23	13.00	-0.41	-0.26
			Max. Compression	2	-14.17	0.00	0.01
			Max. Mx	8	-0.69	0.51	0.00
			Max. My	14	-7.39	0.01	0.50
			Max. Vy	8	0.78	-0.01	0.00
			Max. Vx	14	0.76	0.00	-0.01
		Diagonal	Max Tension	4	1.32	0.00	0.00
			Max. Compression	4	-1.34	0.00	0.00
			Max. Mx	36	0.49	-0.00	0.00
			Max. My	32	0.16	-0.00	0.00
			Max. Vy	36	0.01	-0.00	0.00
			Max. Vx	32	0.00	0.00	0.00
		Horizontal	Max Tension	6	0.36	0.00	0.00
			Max. Compression	3	-0.30	0.00	0.00
			Max. Mx	26	0.12	0.01	0.00
			Max. My	18	0.03	0.00	0.00
			Max. Vy	26	-0.02	0.00	0.00
			Max. Vx	18	-0.00	0.00	0.00
		Secondary Horizontal	Max Tension	36	0.00	0.00	0.00
			Max. Compression	8	-0.00	0.00	0.00
			Max. Mx	27	0.00	0.00	0.00
			Max. My	20	0.00	0.00	-0.00
			Max. Vý	36	-0.05	0.00	0.00
			Max. Vx	38	-0.00	0.00	0.00
		Top Girt	Max Tension	10	0.18	0.00	0.00
		Composition Committee	Max. Compression	15	-0.18	0.00	0.00
			Max. Mx	26	0.03	0.01	0.00
			Max. My	18	-0.07	0.00	0.00
			Max. Vy	26	-0.02	0.00	0.00
			Max. Vx	18	-0.00	0.00	0.00
		Bottom Girt	Max Tension	6	0.70	0.00	0.00
		Dottom one	Max. Compression	11	-0.72	0.00	0.00
			Max. Mx	29	0.44	0.01	0.00
			Max. My	20	0.11	0.00	-0.00
			Max. Vy	29	-0.02	0.00	0.00
			Max. Vx	20	0.02	0.00	0.00
T2	100 - 80	Leg	Max Tension	22	32.38	-0.45	-0.27
-	100 00	Log	Max. Compression	18	-34.23	0.22	-0.27
			Max. Mx	8	-0.70	-0.53	-0.14
			Max. My	2	-34.19	0.04	-0.52
			Max. Vy	20	-1.06	0.22	-0.07
			Max. Vx	2	-1.18	-0.01	0.27
		Diagonal	Max Tension	6	1.79	0.00	
		Diagonal	Max. Compression	18	-1.83	0.00	0.00
			Max. Mx	35	0.42	-0.00	
							-0.00
			Max. My	32	0.03	-0.00	0.00
			Max. Vy Max. Vx	34	0.01	-0.00	0.00
		Horizontal	Max. Vx Max Tension	32	0.00	0.00	0.00
		Honzontal		14	0.93	0.00	0.00
			Max. Compression	11	-0.83	0.00	0.00
			Max. Mx	29	0.51	0.01	0.00
			Max. My	20	0.04	0.00	-0.00
			Max. Vy	29	0.01	0.00	0.00
		0	Max. Vx	20	0.00	0.00	0.00
		Secondary Horizontal	Max Tension	36	0.00	0.00	0.00
			Max. Compression	8	-0.00	0.00	0.00

Most	Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
Top Girt	No.			NA P.	Comb.	K 0.00	kip-ft	kip-ft
Max								
Max								
Top Girt								
Bottom Girt			Top Girt					
Bottom Girt			7 - E					
Bottom Girt								
Bottom Girt				Max. My				
Bottom Girt				Max. Vy	29	-0.02	0.00	0.00
Top Girt				Max. Vx	18	-0.00	0.00	0.00
Max. My			Bottom Girt	Max Tension		1.02	0.00	0.00
T3 80 - 60 Leg Max. My 20 0.22 0.00 0.00 0.00 Max. Vy 26 0.001 0.00 0.00 Max. Vx 20 0.00 0.00 0.00 0.00 Max. Harrision 15 49.76 0.43 0.03 Max. Errision 15 49.76 0.43 0.03 Max. My 8 -1.00 -0.01 0.74 Max. My 8 -1.00 0.00 0.00 Max. My 8 -1.00 0.01 0.74 Max. Wy 2 0.099 0.20 0.01 0.74 Max. Wy 2 0.099 0.20 0.01 0.74 Max. Wy 2 0.099 0.20 0.01 0.74 Max. Wy 3 0.092 0.00 0.00 Max. Max. Wy 3 0.00 0.00 Max. Max. Wy 3 0.00 0.00 Max. Mx 35 0.41 0.00 0.00 Max. Wy 33 0.01 0.00 0.00 Max. Wy 33 0.01 0.00 0.00 Max. Wy 33 0.00 0.00 0.00 Max. Wy 33 0.00 0.00 0.00 Max. Wy 32 0.22 0.00 0.00 Max. Wy 26 0.26 0.01 0.00 Max. Wy 26 0.26 0.01 0.00 Max. Wy 26 0.02 0.00 0.00 Max. Wy 26 0.00 0.00 0.00 Max. Wy 31 0.01 0.01 0.00 Max. Wy 32 0.00 0.00 0.00 Max. Wy 31 0.01 0.01 0.00 Max. Wy 32 0.00 0.00 0.00 Max. Wy 31 0.01 0.01 0.00 Max. Wy 32 0.00 0.00 0.00 Max. Wy 31 0.01 0.01 0.00 Max. Wy 32 0.00 0.00								
Table Tabl								
T3								
T3								
Max. Compression 18 -52.50 0.20 -0.01	то.	00 00	■ 00880					
Max. My	13	80 - 60	Leg					
Max My				그 전에 하고 아이지에게 즐겁지 않는데 아이들이 없어. 중에 두 맛있었다고 있는데 아이지 아니라 되었다면 하다.				
Max								
Max. Vix								
Diagonal Max Tension 6				September 1000 -	2			
Max. Compression			Diagonal					
Max. My			Diagonal					
Max. My								
Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal Max. Vx 32 0.00 0.00 0.00 0.00 Max. Tension 14 1.18 0.00 0.00 0.00 Max. Compression 11 -1.08 0.00 0.00 0.00 Max. My 26 -0.02 0.00 0.00 0.00 Max. My 26 0.02 0.00 0.00 0.00 Max. Mx 26 0.10 0.01 0.00 Max. Mx 26 0.10 0.01 0.00 Max. Wy 26 0.02 0.00 0.00 Max. Wy 26 0.02 0.00 0.00 Max. Mx 26 0.10 0.01 0.00 0.00 Max. Mx 26 0.10 0.01 0.00 0.00 Max. Mx 26 0.10 0.00 0.00 Max. Mx 26 0.10 0.01 0.00 0.00 Max. Mx 26 0.10 0.01 0.00 0.00 Max. Mx 26 0.02 0.00 0.00 0.00 Max. Mx 26 0.10 0.00 0.00 0.00 Max. Mx 26 0.02 0.00 0.00 0.00 0.00 Max. Mx 26 0.02 0.00 0.00 0.00 0.00 0.00 Max. Mx 26 0.02 0.00								
Horizontal Max Tension								
Horizontal Max Tension								
Max. Mx			Horizontal					
Max Mx								
Top Girt								
Top Girt				Max. My	32	0.22	0.00	0.00
Top Girt				Max. Vy	26	-0.02	0.00	0.00
Max. Compression				Max. Vx	8	0.00	0.00	0.00
Max. Mx			Top Girt	Max Tension	10	0.37	0.00	0.00
Bottom Girt								
Bottom Girt								
Bottom Girt				119000				
Bottom Girt								
Max. Compression			D-44 O'-4					
Max. Mx			Bottom Girt					
Max. My Max. Wy Max.								
T4								
T4 60 - 40 Leg Max. Vx 32 -0.00 0.00 0.00 Max. Pension 7 77.69 0.78 -0.03 Max. Compression 10 -83.10 0.39 0.03 Max. My 2 -52.39 0.83 0.05 Max. My 8 -1.38 -0.01 0.78 Max. Vy 2 -1.82 0.39 -0.01 Max. Vy 2 -1.82 0.39 -0.01 Max. Vy 2 -1.82 0.39 -0.01 Max. Compression 10 -2.71 0.00 0.00 Max. Mx 31 0.51 -0.01 -0.00 Max. My 31 0.51 -0.01 -0.00 Max. Wy 31 0.01 -0.01 0.00 Max. Vy 31 0.01 -0.01 0.00 Max. Mx 26 0.34 0.02 0.00 Max. My 32 0.30 0.00 0.00								
T4 60 - 40 Leg Max Tension 7 77.69 0.78 -0.03 -0.03 Max. Mx 2 -52.39 0.83 0.05 -0.01 0.78 Max. My 8 -1.38 -0.01 0.78 -0.01 0.78 Max. Vy 2 -1.82 0.39 -0.01 -0.00 -0.33 Max. Vx 20 1.67 -0.00 -0.00 -0.00 Max. Tension 23 2.64 0.00 0.00 0.00 Max. Mx 31 0.51 -0.01 -0.01 0.00 Max. My 4 -1.98 0.00 -0.00 -0.00 Max. Vy 31 0.01 -0.01 0.00 0.00 Max. Vy 31 0.01 -0.01 0.00 0.00 Max. Vy 4 0.00 0.00 0.00 0.00 0.00 Max. Compression 11 -1.10 0.00 0.00 0.00 Max. Mx 26 0.34 0.02 0.00 0.00 Max. My 32 0.30 0.00 0.00 0.00 Max. Vy 26 0.02 0.00 0.00 0.00 Max. Vy 26 0.02 0.00 0.00 0.00 Max. Vy 32 0.00 0.00 0.00 0.00 Max. Compression 3 0.017 0.00 0.00 0.00 Max. My 32 0.00 0.00 0.00<								
Max. Compression 10 -83.10 0.39 0.03 Max. Mx 2 -52.39 0.83 0.05 Max. My 8 -1.38 -0.01 0.78 Max. Vy 2 -1.82 0.39 -0.01 Max. Vy 2 -1.82 0.39 -0.01 Max. Vy 2 -1.82 0.39 -0.01 Max. Vx 20 1.67 -0.00 -0.33 Max. Compression 10 -2.71 0.00 0.00 Max. Mx 31 0.51 -0.01 -0.00 Max. My 4 -1.98 0.00 -0.00 Max. Vy 31 0.01 -0.01 0.00 Max. Vy 31 0.00 0.00 0.00 0.00 Max. Vy 32 0.30 0.00 0.00 0.00 Max. Mx 26 0.34 0.02 0.00 Max. My 32 0.30 0.00 0.00 0.00 Max. Vy 26 0.02 0.00 0.00 Max. Vy 26 0.02 0.00 0.00 Max. Vy 26 0.02 0.00 0.00 Max. Vx 32 -0.00 0.00 0.00 Max. Mx 26 0.15 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.0	T4	60 - 40	l en					
Max. Mx	17	00 40	Leg					
Max. My 8 -1.38 -0.01 0.78 Max. Vy 2 -1.82 0.39 -0.01 Max. Vx 20 1.67 -0.00 -0.33 Diagonal Max Tension 23 2.64 0.00 0.00 Max. Compression 10 -2.71 0.00 0.00 Max. My 4 -1.98 0.00 -0.00 Max. Vy 31 0.01 -0.01 0.00 Max. Vy 31 0.01 -0.01 0.00 Max. Vx 4 0.00 0.00 -0.00 Max. Vx 4 0.00 0.00 -0.00 Max. Compression 11 -1.10 0.00 0.00 Max. Mx 26 0.34 0.02 0.00 Max. My 32 0.30 0.00 0.00 Max. Vy 26 0.02 0.00 0.00 Max. Vy 26 0.02 0.00 0.00 Top Girt Max Tension 31 0.25 0.00 0.00 Max. Compression 3 -0.17 0.00 0.00 Max. Mx 26 0.15 0.02 0.00					2			
Max. Vy					8			
Diagonal Max. Vx 20					2			
Diagonal Max Tension 23 2.64 0.00 0.00 0.00 Max. Compression 10 -2.71 0.00 0.00 0.00 Max. Mx 31 0.51 -0.01 -0.00 0.00 Max. My 4 -1.98 0.00 -0.00 Max. Vy 31 0.01 -0.01 0.00 0								
Max. Compression 10			Diagonal					
Max. Mx 31 0.51 -0.01 -0.00 Max. My 4 -1.98 0.00 -0.00 Max. Vy 31 0.01 -0.01 0.00 Max. Vx 4 0.00 0.00 -0.00 Horizontal Max Tension 6 1.25 0.00 0.00 Max. Compression 11 -1.10 0.00 0.00 Max. Mx 26 0.34 0.02 0.00 Max. My 32 0.30 0.00 0.00 Max. Vy 26 0.02 0.00 0.00 Max. Vy 26 0.02 0.00 0.00 Max. Vy 32 -0.00 0.00 0.00 Top Girt Max Tension 31 0.25 0.00 0.00 Max. Compression 3 -0.17 0.00 0.00 Max. Mx 26 0.15 0.02 0.00 Max. Mx 26 0.15 0.02 0.00 Max. Mx 26 0.15 0.02 0.00 Max. My 32 0.06 0.00			-	Max. Compression				
Max. Vy 31 0.01 -0.01 0.00 Max. Vx 4 0.00 0.00 -0.00 Horizontal Max Tension 6 1.25 0.00 0.00 Max. Compression 11 -1.10 0.00 0.00 Max. Mx 26 0.34 0.02 0.00 Max. My 32 0.30 0.00 0.00 Max. Vy 26 0.02 0.00 0.00 Max. Vx 32 -0.00 0.00 0.00 Top Girt Max Tension 31 0.25 0.00 0.00 Max. Compression 3 -0.17 0.00 0.00 Max. Mx 26 0.15 0.02 0.00 Max. Mx 26 0.15 0.02 0.00 Max. My 32 0.06 0.00				Max. Mx	31	0.51	-0.01	-0.00
Horizontal Max. Vx 4 0.00 0.00 -0.00 Horizontal Max Tension 6 1.25 0.00 0.00 Max. Compression 11 -1.10 0.00 0.00 Max. Mx 26 0.34 0.02 0.00 Max. My 32 0.30 0.00 0.00 Max. Vy 26 0.02 0.00 0.00 Max. Vx 32 -0.00 0.00 0.00 Top Girt Max Tension 31 0.25 0.00 0.00 Max. Compression 3 -0.17 0.00 0.00 Max. Mx 26 0.15 0.02 0.00 Max. Mx 26 0.15 0.02 0.00 Max. My 32 0.06 0.00				Max. My	4	-1.98	0.00	-0.00
Horizontal Max. Vx 4 0.00 0.00 -0.00 Horizontal Max Tension 6 1.25 0.00 0.00 Max. Compression 11 -1.10 0.00 0.00 Max. Mx 26 0.34 0.02 0.00 Max. My 32 0.30 0.00 0.00 Max. Vy 26 0.02 0.00 0.00 Max. Vx 32 -0.00 0.00 0.00 Top Girt Max Tension 31 0.25 0.00 0.00 Max. Compression 3 -0.17 0.00 0.00 Max. Mx 26 0.15 0.02 0.00 Max. Mx 26 0.15 0.02 0.00 Max. My 32 0.06 0.00								
Max. Compression 11 -1.10 0.00 0.00 Max. Mx 26 0.34 0.02 0.00 Max. My 32 0.30 0.00 0.00 Max. Vy 26 0.02 0.00 0.00 Max. Vx 32 -0.00 0.00 0.00 Top Girt Max Tension 31 0.25 0.00 0.00 Max. Compression 3 -0.17 0.00 0.00 Max. Mx 26 0.15 0.02 0.00 Max. My 32 0.06 0.00 0.00				Max. Vx	4		0.00	-0.00
Max. Mx 26 0.34 0.02 0.00 Max. My 32 0.30 0.00 0.00 Max. Vy 26 0.02 0.00 0.00 Max. Vx 32 -0.00 0.00 0.00 Top Girt Max Tension 31 0.25 0.00 0.00 Max. Compression 3 -0.17 0.00 0.00 Max. Mx 26 0.15 0.02 0.00 Max. My 32 0.06 0.00 0.00			Horizontal					
Max. My 32 0.30 0.00 0.00 Max. Vy 26 0.02 0.00 0.00 Max. Vx 32 -0.00 0.00 0.00 Top Girt Max Tension 31 0.25 0.00 0.00 Max. Compression 3 -0.17 0.00 0.00 Max. Mx 26 0.15 0.02 0.00 Max. My 32 0.06 0.00 0.00								
Max. Vy 26 0.02 0.00 0.00 Max. Vx 32 -0.00 0.00 0.00 Top Girt Max Tension 31 0.25 0.00 0.00 Max. Compression 3 -0.17 0.00 0.00 Max. Mx 26 0.15 0.02 0.00 Max. My 32 0.06 0.00 0.00								
Max. Vx 32 -0.00 0.00 0.00 Top Girt Max Tension 31 0.25 0.00 0.00 Max. Compression 3 -0.17 0.00 0.00 Max. Mx 26 0.15 0.02 0.00 Max. My 32 0.06 0.00 0.00								
Top Girt Max Tension 31 0.25 0.00 0.00 Max. Compression 3 -0.17 0.00 0.00 Max. Mx 26 0.15 0.02 0.00 Max. My 32 0.06 0.00 0.00								
Max. Compression 3 -0.17 0.00 0.00 Max. Mx 26 0.15 0.02 0.00 Max. My 32 0.06 0.00 0.00			- -					
Max. Mx 26 0.15 0.02 0.00 Max. My 32 0.06 0.00 0.00			Top Girt					
Max. My 32 0.06 0.00 0.00								
Max. Vy 26 0.02 0.00 0.00								
				Max. Vy	26	0.02	0.00	0.00

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Туре	Condition	Load	rixidi	Moment	Moment
No.		,		Comb.	K	kip-ft	kip-ft
			Max. Vx	32	0.00	0.00	0.00
		Bottom Girt	Max Tension	14	1.73	0.00	0.00
			Max. Compression	11	-1.77	0.00	0.00
			Max. Mx	26	0.22	0.02	0.00
			Max. My	32	0.29	0.00	0.00
			Max. Vy	26	0.02	0.00	0.00
			Max. Vx	32	0.00	0.00	0.00
T5	40 - 20	Leg	Max Tension	15	104.94	0.96	-0.03
			Max. Compression	10	-111.80	0.31	0.01
			Max. Mx	2	-82.88	1.55	-0.06
			Max. My	20	-2.88	-0.02	-1.45
			Max. Vy	2	-1.99	0.31	-0.01
			Max. Vx	20	1.67	-0.02	-1.45
		Diagonal	Max Tension	23	2.94	0.00	0.00
			Max. Compression	10	-3.18	0.00	0.00
			Max. Mx	31	0.61	-0.01	-0.00
			Max. My	24	-3.04	0.00	0.00
			Max. Vy	31	0.01	-0.01	-0.00
			Max. Vx	24	-0.00	0.00	0.00
		Horizontal	Max Tension	14	1.73	0.00	0.00
			Max. Compression	11	-1.57	0.00	0.00
			Max. Mx	26	0.32	0.02	0.00
			Max. My	33	-0.10	0.00	-0.00
			Max. Vy Max. Vx	26 33	0.02 0.00	0.00	0.00
		Top Girt	Max Tension	2	0.52	0.00	0.00 0.00
		TOP GIT	Max. Compression	11	-0.38	0.00	0.00
			Max. Mx	26	0.16	0.02	0.00
			Max. My	32	0.09	0.00	0.00
			Max. Vy	26	-0.02	0.00	0.00
			Max. Vx	32	-0.00	0.00	0.00
		Bottom Girt	Max Tension	14	1.71	0.00	0.00
			Max. Compression	11	-1.71	0.00	0.00
			Max. Mx	26	0.21	0.03	0.00
			Max. Vy	26	0.02	0.00	0.00
T6	20 - 0	Leg	Max Tension	15	130.72	1.35	-0.03
			Max. Compression	10	-139.24	0.00	-0.00
			Max. Mx	2	-111.41	1.60	-0.05
			Max. My	20	-3.60	-0.01	-1.35
			Max. Vy	2	-2.20	0.00	-0.00
			Max. Vx	20	1.67	-0.01	-1.35
		Diagonal	Max Tension	25	2.92	0.00	0.00
			Max. Compression	10	-3.07	0.00	0.00
			Max. Mx	31	0.44	-0.01	0.00
			Max. My	24	-2.97	0.00	0.00
			Max. Vy	31	0.01	-0.01	-0.00
			Max. Vx	24	-0.00	0.00	0.00
		Horizontal	Max Tension	14	1.55	0.00	0.00
			Max. Compression	11	-1.39	0.00	0.00
			Max. Mx	26	0.03	0.02	0.00
		T 011	Max. Vy	26	0.02	0.00	0.00
		Top Girt	Max Tension	2	0.45	0.00	0.00
			Max. Compression	19	-0.32	0.00	0.00
			Max. Mx	26	0.14	0.02	0.00
		Dotto Ci-t	Max. Vy	26	0.02	0.00	0.00
		Bottom Girt	Max Tension	14	1.61	0.00	0.00
			Max. Compression	11	-1.65 0.72	0.00	0.00
			Max. Mx	26	0.73	0.03	0.00
			Max. Vy	26	-0.02	0.00	0.00
TO THE PARTY AND THE SECOND SE	NO TO THE CHIEF CONTROL TO THE TOWN						

			Maximur	n Reactions	
Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load Comb	K	K	K

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Leg C	Max. Vert	18	138.35	3.13	-1.83
	Max. H _x	18	138.35	3.13	-1.83
	Max. H _z	5	-111.63	-2.75	2.72
	Min. Vert	7	-130.34	-3.80	2.23
	Min. H _x	7	-130.34	-3.80	2.23
	Min. Hz	16	119.34	2.44	-2.10
Leg B	Max. Vert	10	139.21	-3.12	-1.87
¥i	Max. H _x	23	-130.28	3.78	2.27
	Max. Hz	25	-111.61	2.73	2.79
	Min. Vert	23	-130.28	3.78	2.27
	Min. H _x	10	139.21	-3.12	-1.87
	Min. Hz	12	120.26	-2.41	-2.16
Leg A	Max. Vert	2	138.73	0.04	3.64
	Max. H _x	21	3.34	1.65	0.02
	Max. H _z	2	138.73	0.04	3.64
	Min. Vert	15	-130.65	-0.05	-4.42
	Min. H _x	11	-64.03	-1.67	-2.13
	Min. Hz	15	-130.65	-0.05	-4.42

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	10.86	0.00	0.00	0.52	-1.08	0.0
1.2 Dead+1.6 Wind 0 deg -	13.03	-0.01	-8.50	-581.92	-0.47	0.3
No Ice	2.2					17.00
0.9 Dead+1.6 Wind 0 deg - No Ice	9.77	-0.01	-8.50	-579.77	-0.13	0.3
1.2 Dead+1.6 Wind 30 deg -	13.03	4.16	-7.24	-498.99	-288.79	0.0
No Ice				100.00	200.10	0.0
0.9 Dead+1.6 Wind 30 deg -	9.77	4.16	-7.24	-497.22	-287.35	0.0
No Ice				C.F.		0.0
1.2 Dead+1.6 Wind 60 deg -	13.03	7.26	-4.19	-289.43	-503.72	-0.2
No Ice						
0.9 Dead+1.6 Wind 60 deg -	9.77	7.26	-4.19	-288.47	-501.45	-0.2
No Ice						
1.2 Dead+1.6 Wind 90 deg -	13.03	8.35	0.01	1.48	-577.73	-0.5
No Ice		70.00	2.2.2	W 1888		
0.9 Dead+1.6 Wind 90 deg -	9.77	8.35	0.01	1.32	-575.18	-0.5
No Ice	40.00	7.00	4.00	000.04	505.00	
1.2 Dead+1.6 Wind 120 deg - No Ice	13.03	7.36	4.26	292.64	-505.39	-0.5
0.9 Dead+1.6 Wind 120 deg	9.77	7.36	4.26	291.36	-503.12	-0.5
- No Ice	3.11	7.30	4.20	291.30	-303.12	-0.5
1.2 Dead+1.6 Wind 150 deg	13.03	4.19	7.25	501.10	-290.26	-0.5
- No Ice	1,517.5	\$1.557)		331113	200,20	0.0
0.9 Dead+1.6 Wind 150 deg	9.77	4.19	7.25	499.02	-288.81	-0.5
- No Ice						
1.2 Dead+1.6 Wind 180 deg	13.03	0.01	8.41	582.23	-2.17	-0.3
- No Ice						
0.9 Dead+1.6 Wind 180 deg	9.77	0.01	8.41	579.83	-1.83	-0.3
- No Ice	10.00					
1.2 Dead+1.6 Wind 210 deg - No Ice	13.03	-4.16	7.24	500.25	286.16	-0.0
0.9 Dead+1.6 Wind 210 deg	9.77	-4.16	7.24	498.17	285.38	-0.0
- No Ice	9.77	-4.10	1.24	490.17	200.30	-0.0
1.2 Dead+1.6 Wind 240 deg	13.03	-7.35	4.24	291.17	501.91	0.2
No Ice	10.00	7.00	7.24	201.17	501.51	0.2
0.9 Dead+1.6 Wind 240 deg	9.77	-7.35	4.24	289.89	500.30	0.2
- No Ice	200 b			200.00	000.00	0.2
1.2 Dead+1.6 Wind 270 deg	13.03	-8.35	-0.01	-0.22	575.11	0.5
· No Ice						,
0.9 Dead+1.6 Wind 270 deg	9.77	-8.35	-0.01	-0.37	573.16	0.5
No Ice					*	

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
o o montation.	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.6 Wind 300 deg	13.03	-7.28	-4.22	-290.91	501.94	0.58
- No Ice		7.120		200.01	001.01	0.00
0.9 Dead+1.6 Wind 300 dea	9.77	-7.28	-4.22	-289.91	500.28	0.58
- No Ice				200.01	000.20	0.00
1.2 Dead+1.6 Wind 330 deg	13.03	-4.19	-7.25	-499.84	287.63	0.53
- No Ice		7,0,000	23,020,000	3.5.5.3.		0.00
0.9 Dead+1.6 Wind 330 deg	9.77	-4.19	-7.25	-498.02	286.82	0.53
- No Ice						0.00
1.2 Dead+1.0 Ice+1.0 Temp	46.68	-0.00	-0.00	4.84	-2.76	-0.00
1.2 Dead+1.0 Wind 0	46.68	0.00	-3.93	-285.73	-2.80	0.43
deg+1.0 Ice+1.0 Temp						0.10
1.2 Dead+1.0 Wind 30	46.68	1.95	-3.38	-245.89	-147.02	0.29
deg+1.0 Ice+1.0 Temp			0.00	_ 10.00	111.02	0.20
1.2 Dead+1.0 Wind 60	46.68	3.37	-1.95	-139.46	-251.90	0.07
deg+1.0 Ice+1.0 Temp				100.10	201.00	0.07
1.2 Dead+1.0 Wind 90	46.68	3.90	-0.00	4.96	-291.25	-0.16
deg+1.0 Ice+1.0 Temp	10.00	0.00	0.00	1.50	201.20	-0.10
1.2 Dead+1.0 Wind 120	46.68	3.40	1.96	150.29	-253.47	-0.35
deg+1.0 Ice+1.0 Temp	10100	0.10	1.00	100.20	200.11	-0.50
1.2 Dead+1.0 Wind 150	46.68	1.95	3.38	255.80	-147.03	-0.45
deg+1.0 Ice+1.0 Temp	10.00	1.00	0.00	200.00	147.00	-0.40
1.2 Dead+1.0 Wind 180	46.68	-0.00	3.89	293.82	-2.81	-0.43
deg+1.0 Ice+1.0 Temp	10.00	0.00	0.00	200.02	2.01	-0.43
1.2 Dead+1.0 Wind 210	46.68	-1.95	3.38	255.79	141.41	-0.29
deg+1.0 Ice+1.0 Temp	.10.00	1.00	0.00	200.10	171.71	-0.23
1.2 Dead+1.0 Wind 240	46.68	-3.40	1.96	150.27	247.86	-0.08
deg+1.0 Ice+1.0 Temp		0.10	1.00	100.21	217.00	0.00
1.2 Dead+1.0 Wind 270	46.68	-3.90	0.00	4.94	285.64	0.16
deg+1.0 Ice+1.0 Temp		0.00	0.00	1.01	200.01	0.10
1.2 Dead+1.0 Wind 300	46.68	-3:37	-1.95	-139,48	246.30	0.35
deg+1.0 Ice+1.0 Temp	0.00		,,,,,	1001.0	210.00	0.00
1.2 Dead+1.0 Wind 330	46.68	-1.95	-3.38	-245.90	141.42	0.45
deg+1.0 Ice+1.0 Temp	715.1.515		0.00	2.10.00	111.12	0.40
Dead+Wind 0 deg - Service	10.86	-0.00	-2.12	-144.35	-0.88	0.09
Dead+Wind 30 deg - Service	10.86	1.04	-1.80	-123.72	-72.58	0.01
Dead+Wind 60 deg - Service	10.86	1.81	-1.05	-71.61	-126.04	-0.07
Dead+Wind 90 deg - Service	10.86	2.08	0.00	0.74	-144.44	-0.13
Dead+Wind 120 deg -	10.86	1.83	1.06	73.15	-126.45	-0.14
Service			115.5	1 = 10.30		0
Dead+Wind 150 deg -	10.86	1.04	1.81	124.99	-72.95	-0.13
Service						0.10
Dead+Wind 180 deg -	10.86	0.00	2.10	145.16	-1.31	-0.09
Service	0.000.0000.000	5055	500,000	, , , , , ,	,,,,,	0.00
Dead+Wind 210 deg -	10.86	-1.04	1.80	124.78	70.40	-0.01
Service		0.0200				0.07
Dead+Wind 240 deg -	10.86	-1.83	1.06	72.78	124.05	0.06
Service			1.00	, 20	12 1.00	0.00
Dead+Wind 270 deg -	10.86	-2.08	-0.00	0.31	142.26	0.13
Service	. 5.55	2.00	0.50	5.01	1712.20	5.15
Dead+Wind 300 deg -	10.86	-1.81	-1.05	-71.98	124.06	0.15
Service	10.00	1.01	21.00	=1 1,50	124.00	0.13
Dead+Wind 330 deg -	10.86	-1.04	-1.81	-123.94	70.76	0.13
Service			1.01	120.04	70.70	0.10

So	lution	Sum	mary

	Sur	m of Applied Force	S		Sum of Reaction	าร	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-10.86	0.00	-0.00	10.86	-0.00	0.000%
2	-0.01	-13.03	-8.51	0.01	13.03	8.50	0.014%
3	-0.01	-9.77	-8.51	0.01	9.77	8.50	0.021%
4	4.16	-13.03	-7.24	-4.16	13.03	7.24	0.014%
5	4.16	-9.77	-7.24	-4.16	9.77	7.24	0.017%
6	7.27	-13.03	-4.19	-7.26	13.03	4.19	0.014%
7	7.27	-9.77	-4.19	-7.26	9.77	4.19	0.017%

	Sur	n of Applied Force	S		Sum of Reaction	าร	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
8	8.35	-13.03	0.01	-8.35	13.03	-0.01	0.014%
9	8.35	-9.77	0.01	-8.35	9.77	-0.01	0.017%
10	7.36	-13.03	4.26	-7.36	13.03	-4.26	0.015%
11	7.36	-9.77	4.26	-7.36	9.77	-4.26	0.017%
12	4.19	-13.03	7.25	-4.19	13.03	-7.25	0.014%
13	4.19	-9.77	7.25	-4.19	9.77	-7.25	0.017%
14	0.01	-13.03	8.41	-0.01	13.03	-8.41	0.014%
15	0.01	-9.77	8.41	-0.01	9.77	-8.41	0.017%
16	-4.16	-13.03	7.24	4.16	13.03	-7.24	0.014%
17	-4.16	-9.77	7.24	4.16	9.77	-7.24	0.016%
18	-7.35	-13.03	4.24	7.35	13.03	-4.24	0.014%
19	-7.35	-9.77	4.24	7.35	9.77	-4.24	0.016%
20	-8.35	-13.03	-0.01	8.35	13.03	0.01	0.014%
21	-8.35	-9.77	-0.01	8.35	9.77	0.01	0.021%
22	-7.28	-13.03	-4.22	7.28	13.03	4.22	0.014%
23	-7.28	-9.77	-4.22	7.28	9.77	4.22	0.021%
24	-4.19	-13.03	-7.25	4.19	13.03	7.25	0.014%
25	-4.19	-9.77	-7.25	4.19	9.77	7.25	0.021%
26	0.00	-46.68	0.00	0.00	46.68	0.00	0.001%
27	0.00	-46.68	-3.93	-0.00	46.68	3.93	0.002%
28	1.95	-46.68	-3.38	-1.95	46.68	3.38	0.003%
29	3.37	-46.68	-1.95	-3.37	46.68	1.95	0.003%
30	3.91	-46.68	-0.00	-3.90	46.68	0.00	0.003%
31	3.40	-46.68	1.96	-3.40	46.68	-1.96	0.003%
32	1.95	-46.68	3.38	-1.95	46.68	-3.38	0.003%
33	-0.00	-46.68	3.89	0.00	46.68	-3.89	0.002%
34	-1.95	-46.68	3.38	1.95	46.68	-3.38	0.003%
35	-3.40	-46.68	1.96	3.40	46.68	-1.96	0.003%
36	-3.91	-46.68	0.00	3.90	46.68	-0.00	0.003%
37	-3.37	-46.68	-1.95	3.37	46.68	1.95	0.003%
38	-1.95	-46.68	-3.38	1.95	46.68	3.38	0.003%
39	-0.00	-10.86	-2.12	0.00	10.86	2.12	0.005%
40	1.04	-10.86	-1.80	-1.04	10.86	1.80	0.005%
41	1.81	-10.86	-1.05	-1.81	10.86	1.05	0.005%
42	2.08	-10.86	0.00	-2.08	10.86	-0.00	0.005%
43	1.84	-10.86	1.06	-1.83	10.86	-1.06	0.005%
44	1.04	-10.86	1.81	-1.04	10.86	-1.81	0.005%
45 46	0.00	-10.86	2.10	-0.00	10.86	-2.10	0.005%
46	-1.04	-10.86	1.80	1.04	10.86	-1.80	0.005%
47	-1.83	-10.86	1.06	1.83	10.86	-1.06	0.005%
48	-2.08	-10.86	-0.00	2.08	10.86	0.00	0.005%
49 50	-1.81 -1.04	-10.86 -10.86	-1.05 -1.81	1.81 1.04	10.86 10.86	1.05 1.81	0.005% 0.005%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	6	0.00000001	0.00000001
2	Yes	24	0.00009712	0.00012180
3	Yes	22	0.00011999	0.00015000
4	Yes	24	0.00009764	0.00012237
5	Yes	23	0.00009321	0.00011677
6	Yes	24	0.00009812	0.00012289
7	Yes	23	0.00009376	0.00011741
8	Yes	24	0.00009824	0.00012308
8 9	Yes	23	0.00009397	0.00011770
10	Yes	24	0.00009820	0.00012304
11	Yes	23	0.00009396	0.00011771
12	Yes	24	0.00009825	0.00012307
13	Yes	23	0.00009398	0.00011770
14	Yes	24	0.00009814	0.00012290
15	Yes	23	0.00009379	0.00011743
16	Yes	24	0.00009764	0.00012237
17	Yes	23	0.00009321	0.00011678

tnxTower Report - version 7.0.5.1

18	Yes	24	0.00009713	0.00012184
19	Yes	23	0.00009264	0.00011614
20	Yes	24	0.00009705	0.00012181
21	Yes	22	0.00011986	0.00014994
22	Yes	24	0.00009708	0.00012183
23	Yes	22	0.00011987	0.00014995
24	Yes	24	0.00009701	0.00012175
25	Yes	22	0.00011981	0.00014986
26	Yes	16	0.00000001	0.00013761
27	Yes	31	0.00012562	0.00013018
28	Yes	30	0.00012594	0.00014726
29	Yes	30	0.00011793	0.00013732
30	Yes	30	0.00011332	0.00013206
31	Yes	30	0.00011759	0.00013728
32	Yes	30	0.00012570	0.00014676
33	Yes	31	0.00010384	0.00011955
34	Yes	30	0.00012589	0.00014754
35	Yes	30 ·	0.00011772	0.00013843
36	Yes	30	0.00011316	0.00013323
37	Yes	30	0.00011743	0.00013780
38	Yes	30	0.00012563	0.00014686
39	Yes	23	0.0000001	0.00012964
40	Yes	23	0.00000001	0.00012967
41	Yes	23	0.0000001	0.00012965
42	Yes	23	0.0000001	0.00012954
43	Yes	23	0.0000001	0.00012946
44	Yes	23	0.0000001	0.00012952
45	Yes	23	0.0000001	0.00012963
46	Yes	23	0.0000001	0.00012967
47	Yes	23	0.0000001	0.00012966
48	Yes	23	0.0000001	0.00012971
49	Yes	23	0.00000001	0.00012973
50	Yes	23	0.00000001	0.00012968

			100			
Maximum	TOWAR	Doflo	ctions	- Sar	VICA	Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	120 - 100	6.85	43	0.458	0.047
T2	100 - 80	4.93	43	0.439	0.037
T3	80 - 60	3.17	43	0.367	0.023
T4	60 - 40	1.78	43	0.273	0.016
T5	40 - 20	0.79	43	0.173	0.010
T6	20 - 0	0.21	43	0.085	0.004

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	o	ft
119.00	OPA65R-BU6BA-K w/ Mount Pipe	43	6.75	0.458	0.047	139411
58.00	BA1012-0	43	1.66	0.263	0.015	11821
50.00	OGB9-900-DT3	43	1.23	0.222	0.013	12004
42.00	(2) EMPTY_MOUNT w/ Mount Pipe	43	0.87	0.182	0.010	12172

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz. Deflection	Gov.	Tilt	Twist
No.	8	Dellection	Load		0
	π	in	Comb.	(Y)	
T1	120 - 100	27.46	10	1.842	0.193
T2	100 - 80	19.74	10	1.763	0.152
T3	80 - 60	12.67	10	1.471	0.092
T4	60 - 40	7.10	10	1.090	0.063
T5	40 - 20	3.17	10	0.691	0.039
T6	20 - 0	0.85	10	0.339	0.015

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	o	ft
119.00	OPA65R-BU6BA-K w/ Mount Pipe	10	27.07	1.840	0.191	35247
58.00	BA1012-0	10	6.64	1.050	0.062	2945
50.00	OGB9-900-DT3	10	4.94	0.888	0.054	2997
42.00	(2) EMPTY_MOUNT w/ Mount Pipe	10	3.49	0.729	0.042	3045

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load per	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	Bolt K	K	Allowable		
T1	120	Leg	A325N	0.63	4	3.25	20.71	0.157	1	Bolt Tension
T2	100	Leg	A325N	0.63	4	8.10	20.71	0.391	1	Bolt Tension
T3	80	Leg	A325N	0.63	8	13.12	24.85	0.528	1	Bolt DS
T4	60	Leg	A325N	0.63	10	16.62	24.85	0.669	1	Bolt DS
T5	40	Leg	A325N	0.75	10	22.36	35.78	0.625	1	Bolt DS

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
T1	120 - 100	1 1/2	20.00	2.33	74.7 K=1.00	1.77	-14.17	52.90	0.268 1
T2	100 - 80	1 1/2	20.00	2.33	74.7 K=1.00	1.77	-34.23	52.90	0.647 1
Т3	80 - 60	(37518-0484) 1.5" SR w_1.9" x 0.188" half pipe sleeve	20.00	2.33	88.6 K=1.00	2.27	-52.50	57.62	0.911 1
T4	60 - 40	(37518-0484) 1.75" SR w_2.375" x 0.154" half pipe sleeve	20.00	2.33	68.8 K=1.00	2.94	-83.10	93.68	0.887 1
T5	40 - 20	(37518-0484) 2" SR w_2.875" x 0.276" half pipe sleeve	20.00	2.33	58.1 K=1.00	4.27	-111.80	150.13	0.745 1
T6	20 - 0	(37518-0484) 2 1/4" SR w_2.875" x 0.276" half	20.00	2.33	53.7 K=1.00	5.10	-139.24	186.03	0.748 1

Section	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in²	К	K	$\frac{P_u}{\Phi P}$
	11	pipe sleeve	П.	П			Λ	K	φP

¹ P _u / ϕ P_n controls

Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	ϕP_n	Ratio Pu
	ft		ft	ft		in²	K	K	$\frac{1}{\Phi P_n}$
T1	120 - 100	5/8	3.80	1.82	125.9 K=0.90	0.31	-1.34	4.32	0.310 1
T2	100 - 80	5/8	3.80	1.82	125.9 K=0.90	0.31	-1.83	4.32	0.423 1
T3	80 - 60	5/8	4.17	2.01	138.7 K=0.90	0.31	-1.61	3.60	0.447 1
T4	60 - 40	3/4	4.59	2.20	126.6 K=0.90	0.44	-2.71	6.16	0.441 1
T5	40 - 20	7/8	4.67	2.22	109.4 K=0.90	0.60	-3.18	10.37	0.306 1
T6	20 - 0	7/8	5.48	2.62	129.4 K=0.90	0.60	-2.91	8.06	0.361 1

¹ P_u / ϕP_n controls

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	φPn	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
T1	120 - 100	3/4	3.00	2.88	128.8 K=0.70	0.44	-0.30	5.98	0.050 1
T2	100 - 80	3/4	3.00	2.88	128.8 K=0.70	0.44	-0.83	5.98	0.138 1
Т3	80 - 60	3/4	3.37	3.21	143.7 K=0.70	0.44	-0.92	4.83	0.191 1
T4	60 - 40	3/4	3.87	3.67	164.4 K=0.70	0.44	-1.10	3.69	0.297
T5	40 - 20	7/8	4.08	3.84	147.3 K=0.70	0.60	-1.57	6.26	0.250 1
T6	20 - 0	7/8	4.58	4.34	166.5 K=0.70	0.60	-1.39	4.90	0.284 1

¹ P _u / ϕ P_n controls

		condary Ho	7112011tai	DC3	gii Da	ta joc	mpres.	31011)	
Section No.	Elevation	Size	L	Lu	KI/r	A	Pu	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
T1	120 - 100	5/8	1.50	1.44	110.4 K=1.00	0.31	-0.00	5.66	0.000 1
T2	100 - 80	5/8	1.50	1.44	110.4 K=1.00	0.31	-0.00	5.66	0.000 1

 $^{1}P_{u}/_{\phi}P_{n}$ controls

Section No.	Elevation	Size	L	L_u	KI/r	Α	Pu	φPn	Ratio P _u
	ft		ft	ft		in²	K	K	ΦP_n
T1	120 - 100	1	3.00	2.88	96.6 K=0.70	0.79	-0.18	15.57	0.011 1
T2	100 - 80	1	3.00	2.88	96.6 K=0.70	0.79	-0.23	15.57	0.014 1
Т3	80 - 60	1	3.02	2.86	96.0 K=0.70	0.79	-0.29	15.66	0.018 1
T4	60 - 40	1	3.52	3.32	111.5 K=0.70	0.79	-0.17	13.22	0.013 1
T5	40 - 20	1	4.02	3.78	126.9 K=0.70	0.79	-0.38	10.90	0.034 1
T6	20 - 0	1	4.52	4.28	143.7 K=0.70	0.79	-0.32	8.59	0.037 1

¹ P _u / ϕ P_n controls

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
T1	120 - 100	3/4	3.00	2.88	128.8 K=0.70	0.44	-0.72	5.98	0.120 1
T2	100 - 80	3/4	3.00	2.88	128.8 K=0.70	0.44	-1.08	5.98	0.181 1
Т3	80 - 60	3/4	3.48	3.33	149.0 K=0.70	0.44	-1.10	4.50	0.245
T4	60 - 40	1	3.98	3.79	127.2 K=0.70	0.79	-1.77	10.86	0.163 1
T5	40 - 20	1	4.48	4.24	142.6 K=0.70	0.79	-1.71	8.73	0.196 ¹
T6	20 - 0	1	4.98	4.74	159.4 K=0.70	0.79	-1.65	6.98	0.236 ¹

¹ P _u / ϕ P_n controls

Tension Checks

was the first state of the same		Leg	Desig	n Dat	a (Te	nsion)			
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	φPn	Ratio Pu
	ft		ft	ft		in²	K	K	ϕP_n
T1	120 - 100	1 1/2	20.00	2.33	74.7	1.77	13.00	79.52	0.164 1
T2	100 - 80	1 1/2	20.00	2.33	74.7	1.77	32.38	79.52	0.407 1
Т3	80 - 60	(37518-0484) 1.5" SR w_1.9" x 0.188" half pipe sleeve	20.00	2.33	88.6	2.27	49.76	102.27	0.487 1
T4	60 - 40	(37518-0484) 1.75" SR w_2.375" x 0.154" half	20.00	2.33	68.8	2.94	77.69	132.41	0.587 1

Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	φPn	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
T5	40 - 20	pipe sleeve (37518-0484) 2" SR w_2.875" x 0.276" half pipe sleeve	20.00	2.33	58.1	4.27	104.94	192.08	0.546 1
Т6	20 - 0	(37518-0484) 2 1/4" SR w_2.875" x 0.276" half pipe sleeve	20.00	2.33	53.7	5.10	130.72	229.63	0.569 1

¹ P _u / ϕ P_n controls

	Diagonal Design Data (Tension)											
Section No.	Elevation	Size	L	Lu	KI/r	A	P _u	ϕP_n	Ratio Pu			
	ft	+	ft	ft		in²	K	K	ϕP_n			
T1	120 - 100	5/8	3.80	1.82	139.9	0.31	1.32	9.94	0.132 1			
T2	100 - 80	5/8	3.80	1.82	139.9	0.31	1.79	9.94	0.180 1			
T3	80 - 60	5/8	3.84	1.84	141.4	0.31	1.62	9.94	0.163 1			
T4	60 - 40	3/4	4.59	2.20	140.7	0.44	2.64	14.31	0.184 1			
T5	40 - 20	7/8	4.67	2.22	121.6	0.60	2.94	19.48	0.151 1			
T6	20 - 0	7/8	5.48	2.62	143.8	0.60	2.92	19.48	0.150 1			

¹ P_u / ϕP_n controls

	Horizontal Design Data (Tension)									
Section No.	Elevation	Size	ur unn a nann ann ann an an ann an an an an	Lu	KI/r	A	P_u	ϕP_n	Ratio P _u	
	ft		ft	ft		in²	K	K	ΦP_n	
T1	120 - 100	3/4	3.00	2.88	184.0	0.44	0.36	14.31	0.025 1	
T2	100 - 80	3/4	3.00	2.88	184.0	0.44	0.93	14.31	0.065 1	
T3	80 - 60	3/4	3.08	2.92	186.7	0.44	1.18	14.31	0.083 1	
T4	60 - 40	3/4	3.87	3.67	234.8	0.44	1.25	14.31	0.088 1	
T5	40 - 20	7/8	4.08	3.84	210.4	0.60	1.73	19.48	0.089 1	
T6	20 - 0	7/8	4.58	4.34	237.8	0.60	1.55	19.48	0.080 1	

¹ P_u / ϕ P_n controls

Secondary Horizontal Design Data (Tension)									
Section No.	Elevation	Size	L	Lu	KI/r	A	Pu	φP _n	Ratio P.,
	ft		ft	ft		in²	K	K	ΦP_n
T1	120 - 100	5/8	1.50	1.44	110.4	0.31	0.00	13.81	0.000 1
T2	100 - 80	5/8	1.50	1.44	110.4	0.31	0.00	13.81	0.000 1

¹ P , / ϕ P, controls

Top Girt Design Data (Tension)

Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	φPn	Ratio P.,
	ft	ft	ft		in²	K	K	ΦP_n	
T1	120 - 100	1	3.00	2.88	138.0	0.79	0.18	25.45	0.007 1
T2	100 - 80	1	3.00	2.88	138.0	0.79	0.33	25.45	0.013 1
T3	80 - 60	1	3.02	2.86	137.2	0.79	0.37	25.45	0.014 1
T4	60 - 40	1	3.52	3.32	159.3	0.79	0.25	25.45	0.010 1
T5	40 - 20	1	4.02	3.78	181.3	0.79	0.52	25.45	0.021 1
T6	20 - 0	1	4.52	4.28	205.3	0.79	0.45	25.45	0.018 1

¹ P_u / ϕP_n controls

Bottom (Girt De	sign Da	ta (Ten	sion)
----------	---------	---------	---------	-------

Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	ϕP_n	Ratio P.,
ft	ft	ft	ft		in²	K	K	${\Phi P_n}$	
T1	120 - 100	3/4	3.00	2.88	184.0	0.44	0.70	14.31	0.049 1
T2	100 - 80	3/4	3.00	2.88	184.0	0.44	1.02	14.31	0.071 1
T3	80 - 60	3/4	3.48	3.33	212.8	0.44	1.08	14.31	0.075 1
T4	60 - 40	1	3.98	3.79	181.7	0.79	1.73	25.45	0.068 1
T5	40 - 20	1	4.48	4.24	203.7	0.79	1.71	25.45	0.067 1
T6	20 - 0	1 .	4.98	4.74	227.7	0.79	1.61	25.45	0.063 1

¹ P , / ϕ P, controls

Section Capacity Table

Section	Elevation	Component	Size	Critical	P	$ \emptyset P_{allow} $	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
T1	120 - 100	Leg	1 1/2	3	-14.17	52.90	26.8	Pass
T2	100 - 80	Leg	1 1/2	87	-34.23	52.90	64.7	Pass
T3	80 - 60	Leg	(37518-0484) 1.5" SR w_1.9" x 0.188" half pipe sleeve	173	-52.50	57.62	91.1	Pass
T4	60 - 40	Leg	(37518-0484) 1.75" SR w_2.375" x 0.154" half pipe sleeve	252	-83.10	93.68	88.7	Pass
T5	40 - 20	Leg	(37518-0484) 2" SR w_2.875" x 0.276" half pipe sleeve	330	-111.80	150.13	74.5	Pass
T6	20 - 0	Leg	(37518-0484) 2 1/4" SR w_2.875" x 0.276" half pipe sleeve	408	-139.24	186.03	74.8	Pass
T1	120 - 100	Diagonal	5/8	14	-1.34	4.32	31.0	Pass
T2	100 - 80	Diagonal	5/8	101	-1.83	4.32	42.3	Pass
T3	80 - 60	Diagonal	5/8	186	-1.61	3.60	44.7	Pass
T4	60 - 40	Diagonal	3/4	262	-2.71	6.16	44.1	Pass
T5	40 - 20	Diagonal	7/8	403	-3.18	10.37	30.6	Pass
T6	20 - 0	Diagonal	7/8	419	-2.91	8.06	36.1	Pass
T1	120 - 100	Horizontal	3/4	27	-0.30	5.98	5.0	Pass
T2	100 - 80	Horizontal	3/4	115	-0.83	5.98	13.8	Pass
T3	80 - 60	Horizontal	3/4	198	-0.92	4.83	19.1	Pass
T4	60 - 40	Horizontal	3/4	277	-1.10	3.69	29.7	Pass
T5	40 - 20	Horizontal	7/8	400	-1.57	6.26	25.0	Pass
T6	20 - 0	Horizontal	7/8	478	-1.39	4.90	28.4	Pass
T1	120 - 100	Secondary Horizontal	5/8	86	0.00	13.81	0.6	Pass
T2	100 - 80	Secondary Horizontal	5/8	172	0.00	13.81	0.6	Pass
T1	120 - 100	Top Girt	1	4	-0.18	15.57	1.1	Pass
T2	100 - 80	Top Girt	1	91	-0.23	15.57	1.4	Pass
T3	80 - 60	Top Girt	1	177	-0.29	15.66	1.8	Pass
T4	60 - 40	Top Girt	1	256	-0.17	13.22	1.3	Pass

tnxTower Report - version 7.0.5.1

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
T5	40 - 20	Top Girt	1	333	-0.38	10.90	3.4	Pass
T6	20 - 0	Top Girt	1	412	-0.32	8.59	3.7	Pass
T1	120 - 100	Bottom Girt	3/4	9	-0.72	5.98	12.0	Pass
T2	100 - 80	Bottom Girt	3/4	95	-1.08	5.98	18.1	Pass
T3	80 - 60	Bottom Girt	3/4	180	-1.10	4.50	24.5	Pass
T4	60 - 40	Bottom Girt	1	259	-1.77	10.86	16.3	Pass
T5	40 - 20	Bottom Girt	1	337	-1.71	8.73	19.6	Pass
T6	20 - 0	Bottom Girt	1	415	-1.65	6.98	23.6	Pass
							Summary	
						Leg (T3)	91.1	Pass
						Diagonal (T3)	44.7	Pass
						Horizontal (T4)	29.7	Pass
						Secondary Horizontal (T1)	0.6	Pass
						Top Girt (T6)	3.7	Pass
						Bottom Girt (T3)	24.5	Pass
						Bolt Checks	66.9	Pass
						RATING =	91.1	Pass

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

120,0 ft SR 5/8 100.0 ft SR 11/2 SR 5/8 SR 3/4 SR 3/4 80.0 ft 54 @ 2.33333 A36 SR 1 60.0 ft 3.5 × SR 40.0 ft N.A. SR 1 1/8 SR 7/8 20.0 ft 5.5 SR 0.0 ft Leg Grade
Diagonals
Diagonal Grade
Top Girts
Bottom Girts Horizontals
Sec. Horizontals
Face Width (ft)
Panels @ (ft)
Weight (K) 6

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
OPA65R-BU6BA-K w/ Mount Pipe	119	Side Arm Mount [SO 305-1]	58
RRUS 11	119	Side Arm Mount [SO 305-1]	58
RRUS 4415 B25	119	B13 RRH4X30-4R	58
DC6-48-60-18-8C	119	B66A RRH4X45	58
OPA65R-BU6BA-K w/ Mount Pipe	119	(2) SBNHH-1D65B w/ Mount Pipe	58
RRUS 11	119	DB-T1-6Z-8AB-0Z	58
RRUS 4415 B25	119	B13 RRH4X30-4R	58
OPA65R-BU6BA-K w/ Mount Pipe	119	B66A RRH4X45	58
RRUS 11	119	(2) SBNHH-1D65B w/ Mount Pipe	58
RRUS 4415 B25	119	DB-T1-6Z-8AB-0Z	58
(2) 5' x 2' Pipe Mount	119	B13 RRH4X30-4R	58
(2) 5' x 2' Pipe Mount	119	B66A RRH4X45	58
(2) 5' x 2' Pipe Mount	119	(2) SBNHH-1D65B w/ Mount Pipe	58
Side Arm Mount [SO 304-3]	119	Sector Mount [SM 402-3]	58
OGB6-900	119	OGB9-900-DT3	50
BA1012-0	119	OGD6-905/945	50
MFB9157	119	Side Arm Mount [SO 305-1]	50
BA1012-0	58	Side Arm Mount [SO 305-1]	50
OGD6-905/945	58	(2) EMPTY_MOUNT w/ Mount Pipe	42

SYMBOL LIST

MARK	SIZE	MARK	SIZE
Α	(37518-0484) 1,75" SR w_2,375" x 0,154" half pipe sleeve	С	(37518-0484) 2 1/4" SR w_2.875" x 0.276" half pipe sleeve
В	(37518-0484) 2" SR w 2.875" x 0.276" half pipe	-	

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

- Tower is located in Hartford County, Connecticut.
 Tower designed for Exposure B to the TIA-222-G Standard.
 Tower designed for a 95.00 mph basic wind in accordance with the TIA-222-G Standard.
 Tower is also designed for a 50.00 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.

- Deflections are based upon a 60.00 mph wind.
 Tower Structure Class II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 98.9%

ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE:

DOWN: 139 K SHEAR: 4 K

UPLIFT: -130 K SHEAR: 4 K

AXIAL 47 K SHEAR MOMENT 4K/ 295 kip-ft

TORQUE 0 kip-ft 50.00 mph WIND - 1.00 in ICE AXIAL

13 K

SHEAR MOMENT 8K/ ₹ 581 kip-ft

TORQUE 1 kip-ft REACTIONS - 95.00 mph WIND

Paul J. Ford and Company 250 East Broad st., Suite 600

Columbus, OH 43215 Phone: (614) 221-6679 FAX:

Job: 80-Ft Self-Support Tower w/ 40-Ft Extension: Southington, Project: BU841298 (37518-0484.001.8700)						
Client: Crown Castle		App'd:				
Code: TIA-222-G	Date: 03/19/18	Scale: NTS				
Path:		Dwg No. E-1				

250 E Broad St, Ste 600 • Columbus, OH 43215 Phone 614.221.6679 www.pauljford.com Job Number: 37518-0484.002.8800

Site Number: 841298

Site Name: Southington Rogus

By: KJS

Page: 1

Date: 3/19/2018 Version: v0.1

Effective: 3/5/2015

PiRod Leg Splice Connections - LRFD

Elevation =	60	ft
Leg Tension =	49.65	7
Leg Compression =	52.3	
Yield strength of steel = F _y =	50	ksi
Tensile strength of steel = F _u =	65	ksi
Leg Diameter Above Splice = Dia =	1.5	in
Leg Diameter Below Splice= Dia =	1.75	in
Bolt Diameter =	0.625	inch
Number of bolts =	4	
,		1000

Threads included on one side, excluded on the opposite side. A325N & A325X

Ag = 1.767 Ag = 2.405 h= 0.531 s= 1.609

U = 1 (U = 1 when load is transmitted directly thru the cross-section) $\phi_i = 0.9$ For tension yielding in the gross section 0.75 For tension rupture in the effective net section

Tension:

1.5 inch diameter leg above splice

Gross allowable tension = (0.9)(Fy)(Ag) = (0.9)(50 ksi)(1.7671 in2) = 79.52 kips (at connection)1.75 inch diameter leg below splice

An = net area = $2((h/6s)(3h^2+4s^2)) = 1.23 \text{ in}^2$ Gross allowable tension = (0.9)(Fy)(Ag) = (0.9)(50 ksi)(2.4053 in2) = 108.24 kipsNet allowable tension = (0.75)(U)(Fu)(Aen) = (0.75)(1)(65 ksi)(1.2331 in2) = 60.11 kips (at connection)

Bolt Capacity

Gross area of one bolt = 0.307

PF & COMPANY

250 E Broad St, Ste 600 • Columbus, OH 43215 Phone 614.221.6679 www.pauljford.com

Loads

Page	1	of	1
Ву	KJS	Date	3/19/2018
Project #		37518-048	4

Existing and Post-Installed Anchor Rod Capacity

Loads		1 100 14	
Compression: 139 kips		1.00 Maxin	num Ratio
Shear: 4 kips			
10 July 10 Jul			
Existing Anchor Rods			
Anchor Rod Condition (n):	0.5		
Anchor Rod ø :	1 3/4	in	
Anchor Rod Quantity:	2		
Anchor Rod Grade :	A572 Gr.	50	
F _y :	50	ksi	
F _u :	65	ksi	
Threads per Inch:	5		
Total Net Area:	3.80	in ²	
Applied Compressive Load :	92.04	kip	
Applied Shear Load:	4.00	kip	
φ:	0.8		
Total Anchor Rod Capacity	: 197.54	kip	
Existing Anchor Rod Ratio:	0.506	1	

I _{ar} :	1.75	inches
Moment : ϕR_{nv} :	2.28 52.77	k-in kips
ϕK_{nt} :	98.77	kips
ϕR_{nm} :	26.59	k-in
Interaction Ratio:]

Governing Stress Ratio : 0

SECTION A-A

Detail Type (a)

n=0.90

0.506
Concreta

SECTION B-B

Detail Type (b)

R = 0-70

PAUL J. FORD & COMPANY 250 E Broad St, Ste 600 • Columbus, OH 43215

Phone 614.221.6679 www.pauljford.com

Page	1	of	1
Ву	KJS	Date	3/19/2018
Project #		37518-04	84

Anchor Rod Bracket Plate Analysis

Existing Leg Outer Diameter : Existing Pipe Leg Wall Thickness : Existing Pipe Leg F_y : Existing Pipe Leg Load :	2.25 inches inches ksi kip	Pipe Leg?: No
Anchor CL to Structure Face: Anchor Type: Anchor Size: Anchor Net Area: Anchor Fu: Anchor Design Tensile Capacity: Anchor Analysis Tensile Load:	9.1875 inches Anchor Rod 1.25" A193 Gr. B7 in² ksi kip 43.51 kip	1.00 Maximum Ratio
Tube Size : Tube Grade: Tube F _y : Tube Unbraced Length : Tube Compressive Capacity :	Pipe 2.375 x 0.436 (XXS) A500 Gr. B (Fy=42) 42 ksi 6 inches 93.07 kip	Analysis Ratio 0.468
Washer Plate Thickness : Washer Plate F _y : Washer Shear Capacity	1.25 inches A572 Gr. 50 212.06 kip	Analysis Ratio 0.205
Bracket Plate Thickness: Bracket Plate Height: Bracket Plate Width: Bracket Plate Grade: Bracket Plate F _y : Bracket Moment Capacity: Bracket Shear Capacity:	1.25 inches 16 inches 8 inches A572 Gr. 50 50 ksi 3462 kip-in 540.0 kip	Analysis Ratio
Tube to Bracket Weld Size: Tube to Bracket Weld Length: Tube to Bracket Weld Capacity: Structure to Bracket Weld Size: Structure to Bracket Weld Length: Structure to Bracket Weld Capacity	5 /16 inch 14 inches 97.91 kip 5 /16 inch 14 inches 97.91 kip	Analysis Ratio 0.444 Analysis Ratio 0.444
Local Pipe Moment : Local Pipe Moment Capacity :	399.748 kip-in kip-in	Analysis Ratio N/A Not Pipe Leg

SST Unit Base Foundation

BU #: 841298
Site Name: Southington
App. Number: 424357 Rev 1

TIA-222 Revision: G

Tower Centroid Offset?:	Γ	
Block Foundation?:	P	

Superstructure Analysis	Reactio	ns
Global Moment, M :	581	ft-kips
Global Axial, P:	13	kips
Global Shear, V :	8	kips
Leg Compression, P _{comp} :	139	kips
Leg Comp. Shear, V _{u_comp} :	4	kips
Leg Uplift, P _{uplift} :	130	kips
Leg Uplift. Shear, V _{u_uplift} :	4	kips
Tower Height, H:	120	ft
Base Face Width, BW:	5	ft
BP Dist. Above Fdn, bp_{dist}:	1.75	in
Anchor Bolt Circle, BC:	20.625	in

	Capacity	Demand	Rating	Check
Lateral (Sliding) (kips)	53.26	8.00	15.0%	Pass
Bearing Pressure (ksf)	3.75	1.58	42.0%	Pass
Overturning (kip*ft)	1156.75	626.17	54.1%	Pass
Pad Flexure (kip*ft)	1725.30	198.00	11.5%	Pass
Pad Shear - 1-way (kips)	502.81	39.36	7.8%	Pass
Pad Shear - 2-way (ksi)	0.16	0.02	13.4%	Pass

Soil Rating:	54.1%
Structural Rating:	13.4%

Pad Properties		
Depth, D:	5.50	ft
Pad Width, W:	16.00	ft
Pad Thickness, T :	3.25	ft
Pad Rebar Size (Bottom), Sp:	6	
Pad Rebar Quantity (Bottom), mp:	28	
Pad Clear Cover, ccpad:	6	in

Material Propert	ies	Major de
Rebar Grade, Fy :	60000	psi
Concrete Compressive Strength, F'c:	3000	psi
Dry Concrete Density, δc:	150	pcf

Soil Properties		
Total Soil Unit Weight, γ:	110	pcf
Ultimate Gross Bearing, Qult:	5.000	ksf
Cohesion, Cu:		ksf
Friction Angle, φ:	Walter T.	degrees
SPT Blow Count, Nblows:	7	
Base Friction, μ:	0.35	
Neglected Depth, N:	3.3	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	None	ft

<-- Toggle between Gros's and Net

MODIFIED 80' (EXTENDED TO 120') SELF SUPPORT TOWER

BU #841298; SOUTHINGTON ROGUS

250 MERIDEN WATERBURY TURNPIKE SOUTHINGTON, CONNECTICUT 06489 HARTFORD COUNTY

LAT: 41° 33' 24.54"; LONG: -72° 51' 10.84" ORDER: 424357 REV. 1; WO: 1537529

PROJECT CONTACTS

STRUCTURE OWNER:

CROWN CASTLE MOD PM: DAN VADNEY AT DAN. VADNEY@CROWNCASTLE.COM PH: (518) 373-3510

MOD CM: JASON D'AMICO AT JASON.D'AMICO@CROWNCASTLE.COM PH: (860) 209-0104

ENGINEER OF RECORD:

PJFMOD@PJFWEB.COM

WIND DESIGN DATA				
REFERENCE STANDARD	ANSI/TIA-222-G-2-2009			
LOCAL CODE	2016 CONNECTICUT BUILDING CODE			
ULTIMATE WIND SPEED (3-SECOND GUST)	123 MPH			
CONVERTED NOMINAL WIND SPEED (3-SECOND GUST)	95 MPH			
ICE THICKNESS	1.0 IN			
ICE WIND SPEED	50 MPH			
SERVICE WIND SPEED	60 MPH			
RISK CATEGORY				
EXPOSURE CATEGORY	В			
Kzt	1.0			

THIS PROJECT INCLUDES THE FOLLOWING ITEMS	
ADD TOWER EXTENSION TO TOP OF EXISTING TOWER	
EXTEND SAFETY CLIMB TO NEW TOP OF TOWER	
COORDINATE WITH CROWN CASTLE TO RELOCATE EXISTING ANTENNA	
FROM 80'± TO 126'±	_

SHEET INDEX		
SHEET NUMBER	DESCRIPTION	
T-1	TITLE SHEET	
MI-1	MI CHECKLIST AND NOTES	
N-1	GENERAL NOTES	
S-1	TOWER ELEVATION	
S-2	TOP OF TOWER FLANGE PLATE DETAIL	
S-5	NEW TOWER SECTION DETAILS	

TOWER MANUFACTURER: PIROD CCISITES DOC #: 5114299

QUALIFIED ENGINEERING SERVICES ARE AVAILABLE FROM PAUL J. FORD AND COMPANY TO ASSIST CONTRACTORS IN CLASS IV RIGGING PLAN REVIEWS. FOR REQUESTED QUALIFIED ENGINEERING SERVICES, PLEASE CONTACT US AT RIGGING@PJFWEB.COM

ATTENTION ALL CONTRACTORS, ANYTIME YOU ACCESS A CROWN SITE FOR ANY REASON YOU ARE TO CALL THE CROWN NOC UPON ARRIVAL AND DEPARTURE, DAILY AT (800) 788-7011.

Il Rights Reserved. This document and he data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without th prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the ntended use for this specific project.

V

CROWN

Copyright 2018, by Paul J. Ford and Compa

RCOMPANY
St. Ste 600 · Columbus, OH 43215
21.6679 www.pauliford.com

SLOTTE,

CONNECTICUT 120') SELF SUPPORT TOWER SOUTHINGTON ROGUS SOUTHINGTON, ((EXTENDED TO 1 #841298; MODIFIED 80' B

37518-0484.002.8800 DRAWN BY: DESIGNED BY CHECKED BY: 3-19-201

> TITLE SHEET

T-1

REV DATE

DESCRIPTION

	-		
		P	OST-MODIFICATION CHECKLIST
REQUIRED	SECTION	REPORT ITEM	BRIEF DESCRIPTION (SEE ENG-SOW-10007)
			PRE-CONSTRUCTION
X	6.1.1	MI CHECKLIST DRAWING	THIS CHECKLIST SHALL BE INCLUDED IN THE MI REPORT
Х	6.1.2	EOR APPROVED SHOP DRAWINGS	FABRICATION DRAWINGS SHALL BE SUBMITTED TO THE ENGINEER OF RECORD FOR REVIEW. THE CONTRACTOR SHALL PROVIDE THI APPROVED SHOP DRAWINGS TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
Х	6.1.3	FABRICATION INSPECTION	A LETTER FROM THE FABRICATOR, STATING THAT THE WORK WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AND THE CONTRACT DOCUMENTS SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
x	6.1.4	FABRICATOR CERTIFIED WELD INSPECTION	CRITICAL SHOP WELDS THAT REQUIRE TESTING (PER ENG-STD-10069) ARE NOTED ON THESE CONTRACT DRAWINGS. A CERTIFIED WELD INSPECTOR SHALL PERFORM NON-DESTRUCTIVE TESTING AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
х	6.1.5	MATERIAL TEST REPORT (MTR)	MILL CERTIFICATION SHALL BE PROVIDED FOR ALL STEEL WITH A YIELD STRENGTH GREATER THAN 36 KSI AND THIS DOCUMENTATIO SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
Х	6.1.6	FABRICATOR NDE INSPECTION	A VISUAL OBSERVATION OF A PORTION OF THE EXISTING STRUCTURE (AS NOTED ON THESE DRAWINGS) IS REQUIRED AND A WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
NA	6.1.7	NDE REPORT OF MONOPOLE BASE PLATE (AS REQUIRED)	A VISUAL OBSERVATION OF THE POLE TO BASE PLATE CONNECTION IS REQUIRED AND A WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
Х	6.1.8	PACKING SLIPS	THE MATERIAL SHIPPING LIST SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
			CONSTRUCTION
Х	6.2.1	CONSTRUCTION INSPECTIONS	A LETTER FROM THE GENERAL CONTRACTOR STATING THAT THE WORKMANSHIP WAS PERFORMED IN ACCORDANCE WITH INDUSTR' STANDARDS AND THESE CONTRACT DRAWINGS SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
NA	6.2.2	FOUNDATION INSPECTIONS	A VISUAL OBSERVATION OF THE EXCAVATION AND REBAR SHALL BE PERFORMED BEFORE PLACING THE CONCRETE. A WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
NA	6.2.3	CONCRETE COMP. STRENGTH AND SLUMP TESTS	THE CONCRETE MIX DESIGN, SLUMP TEST, AND COMPRESSIVE STRENGTH TESTS SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
NA	6.2.4	POST INSTALLED ANCHOR ROD VERIFICATION	ANCHOR ROD INSTALLATION SHALL INCLUDE VERIFICATION BY LETTER AND PHOTOGRAPHIC DOCUMENTATION.
NA	6.2.5	BASE PLATE GROUT VERIFICATION	A LETTER FROM THE GENERAL CONTRACTOR SHALL BE PROVIDED TO THE MI INSPECTOR THAT CERTIFIES THAT THE GROUT WAS INSTALLED IN ACCORDANCE WITH CROWN ENG-PRC-10012 FOR INCLUSION IN THE MI REPORT.
х	6.2.6	CONTRACTOR'S CERTIFIED WELD INSPECTION	A CERTIFIED WELD INSPECTOR SHALL INSPECT AND TEST AS NECESSARY ALL FIELD WELDS AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT. PRE, DURING AND POST WELD INSPECTION IS REQUIRED PER CROWN SOW AND DOCUMENT #ENG-SOW-10007.
NA	6.2.7	EARTHWORK: LIFT AND DENSITY	FOUNDATION SUB-GRADES SHALL BE INSPECTED AND APPROVED BY A GEOTECHNICAL ENGINEER AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
Х	6.2.8	ON SITE COLD GALVANIZING VERIFICATION	THE GENERAL CONTRACTOR SHALL PROVIDE DOCUMENTATION TO THE MI INSPECTOR VERIFYING THAT ANY ON-SITE COLD GALVANIZING WAS APPLIED IN ACCORDANCE WITH ENG-BUL-10149.
NA	6.2.9	GUY WIRE TENSION REPORT	THE GENERAL CONTRACTOR SHALL PROVIDE A REPORT TO THE MI INSPECTOR INDICATING THE TEMPERATURE AND TENSION IN EVERY GUY CABLE FOR INCLUSION IN THE MI REPORT.
X	6.2.10	GC AS-BUILT DOCUMENTS	THE GENERAL CONTRACTOR SHALL SUBMIT A COPY OF THE CONTRACT DRAWINGS EITHER STATING "INSTALLED AS DESIGNED" OR NOTING ANY CHANGES THAT WERE REQUIRED AND APPROVED BY THE ENGINEER OF RECORD DUE TO FIELD CONDITIONS.
NA	-	MAGNI 565 COATING VERIFICATION	THE GENERAL CONTRACTOR SHALL PROVIDE DOCUMENTATION TO THE MI INSPECTOR VERIFYING THAT ANY MAGNI 565 COATING WAS APPLIED IN ACCORDANCE PER ASTM F1136.
NA	-	MICROPILE / ROCK ANCHOR	THE GENERAL CONTRACTOR SHALL PROVIDE INSTALLER'S DRILLING AND INSTALLATION LOGS AND QA/QC DOCUMENTATION TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
			POST-CONSTRUCTION
х	6.3.1	MI INSPECTOR REDLINE OR RECORD DRAWING(S)	THE MI INSPECTOR SHALL OBSERVE AND REPORT ANY DISCREPANCIES BETWEEN THE CONTRACTORS REDLINE DRAWING AND THE ACTUAL COMPLETED INSTALLATION.
NA	6.3.2	POST INSTALLED ANCHOR ROD PULL TESTING	POST INSTALLED ANCHOR RODS SHALL BE TESTED IN ACCORDANCE WITH ENG-PRC-10119 AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
х	6.3.3	PHOTOGRAPHS	PHOTOGRAPHS SHALL BE SUBMITTED TO THE MI WHICH DOCUMENT ALL PHASES OF THE CONSTRUCTION. THE PHOTOS SHALL BE ORGANIZED IN A MANNER THAT EASILY IDENTIFIES THE EXACT LOCATION OF THE PHOTO.
NA		POST INSTALLED MICROPILE / ROCK ANCHOR TESTING	POST INSTALLED ANCHORS SHALL BE TESTED AND INSPECTED IN ACCORDANCE WITH SPECIFICATION STATED ON MICROPILE/ROCK ANCHOR NOTES.

NOTE: X DENOTES A DOCUMENT NEEDED FROM THE CONTRACTOR FOR THE MI REPORT NA DENOTES A DOCUMENT THAT IS NOT REQUIRED FOR THE MI REPORT

MODIFICATION INSPECTION NOTES:

THE MODIFICATION INSPECTION (MI) IS A VISUAL INSPECTION OF TOWER MODIFICATIONS AND A REVIEW OF CONSTRUCTION INSPECTIONS AND OTHER REPORTS TO ENSURE THE INSTALLATION WAS CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, NAMELY THE MODIFICATION DRAWINGS, AS DESIGNED BY THE ENGINEER OF RECORD

THE MI IS TO CONFIRM INSTALLATION CONFIGURATION AND WORKMANSHIP ONLY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN ITSELF, NOR DOES THE MI INSPECTOR TAKE OWNERSHIP OF THE MODIFICATION DESIGN. OWNERSHIP OF THE STRUCTURAL MODIFICATION DESIGN EFFECTIVENESS AND INTEGRITY RESIDES WITH THE EOR AT ALL TIMES.

ALL MI'S SHALL BE CONDUCTED BY A CROWN ENGINEERING VENDOR (AEV) OR ENGINEERING SERVICE VENDOR (AESV) THAT IS APPROVED TO PERFORM ELEVATED WORK FOR CROWN. SEE ENG-BUL-10173 LIST OF APPROVED MI

TO ENSURE THAT THE REQUIREMENTS OF THE MI ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MI INSPECTOR BEGIN COMMUNICATING AND COORDINATING AS SOON AS A PO IS RECEIVED. IT IS EXPECTED THAT EACH PARTY WILL BE PROACTIVE IN REACHING OUT TO THE OTHER PARTY. IF CONTACT INFORMATION IS NOT KNOWN, CONTACT YOUR CROWN POINT OF CONTACT (POC).

REFER TO ENG-SOW-10007: MODIFICATION INSPECTION SOW FOR FURTHER DETAILS AND REQUIREMENTS

THE MI INSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS RECEIVING A PO FOR THE MI TO AT A MINIMUM

- · REVIEW THE REQUIREMENTS OF THE MI CHECKLIST
- WORK WITH THE GC TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS

THE MI INSPECTOR IS RESPONSIBLE FOR COLLECTING ALL GENERAL CONTRACTOR (GC) INSPECTION AND TEST REPORTS, REVIEWING THE DOCUMENTS FOR ADHERENCE TO THE CONTRACT DOCUMENTS. CONDUCTING THE IN-FIELD INSPECTIONS, AND SUBMITTING THE MI REPORT

GENERAL CONTRACTOR
THE GC IS REQUIRED TO CONTACT THE MI INSPECTOR AS SOON AS
RECEIVING A PO FOR THE MODIFICATION INSTALLATION OR TURNKEY PROJECT TO, AT A MINIMUM:

- REVIEW THE REQUIREMENTS OF THE MI CHECKLIST.
- . WORK WITH THE MI INSPECTOR TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS
- BETTER UNDERSTAND ALL INSPECTION AND TESTING REQUIREMENTS

THE GC SHALL PERFORM AND RECORD THE TEST AND INSPECTION RESULTS IN ACCORDANCE WITH THE REQUIREMENTS OF THE MI CHECKLIST AN DENG-SOW-10007.

RECOMMENDATIONS
THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING A MI

- IT IS SUGGESTED THAT THE GC PROVIDE A MINIMUM OF 5 BUSINESS DAYS NOTICE, PREFERABLE 10, TO THE MI INSPECTOR AS TO WHEN THE SITE WILL BE READY FOR THE MI TO BE CONDUCTED.
- THE GC AND MI INSPECTOR COORDINATE CLOSELY THROUGHOUT THE ENTIRE PROJECT.
- WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR. ON-SITE SIMULTANEOUSLY FOR ANY GUY WIRE TENSIONING OR RE-TENSIONING OPERATIONS
- IT MAY BE BENEFICIAL TO INSTALL ALL TOWER MODIFICATIONS PRIOR TO CONDUCTING THE FOUNDATION INSPECTIONS TO ALLOW FOUNDATION AND MI INSPECTION(S) TO COMMENCE WITH ONE SITE VISIT.
- WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR ON-SITE DURING THE MI TO HAVE ANY DEFICIENCIES CORRECTED DURING THE INITIAL MI. THEREFORE, THE GC MAY CHOOSE TO COORDINATE THE MI CAREFULLY TO ENSURE ALL CONSTRUCTION FACILITIES ARE AT THEIR DISPOSAL WHEN THE MI INSPECTOR IS ON

CANCELLATION OR DELAYS IN SCHEDULED MI

IF THE GC AND MI INSPECTOR AGREETO A DATE ON WHICH THE MI WILL BE CONDUCTED, AND EITHER PARTY CANCELS OR DELAYS, CROWN SHALL NOT BE RESPONSIBLE FOR ANY COSTS, FEES, LOSS OF DEPOSITS AND/OR OTHER PENALTIES RELATED TO THE CANCELLATION OR DELAY INCURRED BY EITHER PARTY FOR ANY TIME (E.G. TRAVEL AND LODGING, COSTS OF KEEPING EQUIPMENT ON-SITE, ETC.). IF CROWN CONTRACTS DIRECTLY FOR A THIRD PARTY MI. EXCEPTIONS MAY BE MADE IN THE EVENT THAT THE DELAY/CANCELLATION IS CAUSED BY WEATHER OR OTHER CONDITIONS THAT MAY COMPROMISE THE SAFETY OF THE PARTIES INVOLVED.

CORRECTION OF FAILING MIS
IF THE MODIFICATION INSTALLATION WOULD FAIL THE MI ("FAILED MI"), THE GC SHALL WORK WITH CROWN TO COORDINATE A REMEDIATION PLAN IN ONE OF

- CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL CONTRACT DOCUMENTS AND COORDINATE A SUPPLEMENT MI.
- OR, WITH CROWN'S APPROVAL, THE GC MAY WORK WITH THE EOR TO RE-ANALYZE THE MODIFICATION/REINFORCEMENT USING THE AS-BUILT

MI VERIFICATION INSPECTIONS

CROWN RESERVES THE RIGHT TO CONDUCT A MI VERIFICATION INSPECTION TO VERIFY THE ACCURACY AND COMPLETENESS OF PREVIOUSLY COMPLETED MI INSPECTION(S) ON TOWER MODIFICATION PROJECTS.

ALL VERIFICATION INSPECTIONS SHALL BE HELD TO THE SAME SPECIFICATIONS AND REQUIREMENTS IN THE CONTRACT DOCUMENTS AND IN ACCORDANCE WITH ENG-SOW-10007.

VERIFICATION INSPECTION MAY BE CONDUCTED BY AN INDEPENDENT AEVIAESV FIRM AFTER A MODIFICATION PROJECT IS COMPLETED, AS MARKED BY THE DATE OF AN ACCEPTED "PASSING MI" OR "PASS AS NOTED MI" REPORT FOR THE ORIGINAL PROJECT.

BETWEEN THE GC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A MINIMUM, ARE TO BE TAKEN AND INCLUDED IN THE MI REPORT:

- PRE-CONSTRUCTION GENERAL SITE CONDITION
- PHOTOGRAPHS DURING THE REINFORCEMENT MODIFICATION CONSTRUCTION/ERECTION AND INSPECTION
- **RAW MATERIALS**
- PHOTOS OF ALL CRITICAL DETAILS
- FOUNDATION MODIFICATIONS
- WELD PREPARATION
- BOLT INSTALLATION AND TORQUE FINAL INSTALLED CONDITION
- SURFACE COATING REPAIR
- POST CONSTRUCTION PHOTOGRAPHS .. FINAL INFIELD CONDITION

PHOTOS OF ELEVATED MODIFICATIONS TAKEN FROM THE GROUND SHALL BE CONSIDERED INADEQUATE.

THIS IS NOT A COMPLETE LIST OF REQUIRED PHOTOS, PLEASE REFER TO ENG-SOW-10007.

Copyright 2018, by Paul J. Ford and Compa All Rights Reserved This document and he data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the rior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the ended use for this specific project.

43215 I.com 04

70 όΣ, & CO t, Ste 600 · 11.6679

S \triangleleft N N O 2

CONNECTICUT 120') SELF SUPPORT TOWER SOUTHINGTON ROGUS SOUTHINGTON, ((EXTENDED TO 1 #841298; 80 MODIFIED BU

37518-0484.002.8800 PROJECT No: DRAWN BY DESIGNED BY: CHECKED BY DATE: 3-19-2018

> MI CHECKLIST AND NOTES

> > MI-1

GENERAL NOTES:

- THIS TOWER MODIFICATION DRAWING IS BASED UPON A STRUCTURAL ANALYSIS PERFORMED BY PAUL J. FORD AND COMPANY DATED 3-19-2018.
- PAUL J. FORD AND COMPANY HAS NOT PERFORMED A FIELD VISIT TO VERIFY THE EXISTING TOWER MEMBER SIZES AND DIMENSIONS. THE MODIFICATIONS SHOWN ON THESE PAGES WERE DEVELOPED USING INFORMATION PROVIDED TO US BY CROWN-CASTLE.
- THE CONTRACTOR IS EXPECTED TO PERFORM A SITE VISIT BEFORE FABRICATING ANY MATERIAL. IF THE CONTRACTOR DISCOVERS ANY EXISTING CONDITIONS THAT ARE NOT AS REPRESENTED ON THESE DRAWINGS. PAUL J. FORD AND COMPANY SHALL BE CONTACTED IMMEDIATELY TO EVALUATE THE STRUCTURAL SIGNIFICANCE OF THE DEVIATION.
- PAUL J. FORD AND COMPANY WAS NOT PROVIDED WITH THE EXACT LOCATION OF EVERY EXISTING APPURTENANCE THAT COULD POTENTIALLY INTERFERE WITH THE MODIFICATIONS AS INDICATED ON THESE DRAWINGS. IT IS IMPORTANT THAT THE MODIFICATION MATERIAL BE PLACED IN THE PROPER LOCATION TO BE EFFECTIVE. THIS MAY REQUIRE THE REPOSITIONING OF SOME EXISTING NON-STRUCTURAL ITEMS CURRENTLY ATTACHED TO THE TOWER.
- THE CONTRACTOR MUST BE EXPERIENCED IN THE PERFORMANCE OF WORK SIMILAR TO THAT DESCRIBED ON THESE DRAWINGS. BY ACCEPTANCE OF THIS PROJECT, THE CONTRACTOR IS ATTESTING THAT HE DOES HAVE SUFFICIENT EXPERIENCE AND ABILITY, THAT HE IS KNOWLEDGEABLE OF THE WORK TO BE PERFORMED AND THAT HE IS PROPERLY LICENSED TO DO THIS WORK IN THE JURISDICTION IN WHICH THE WORK IS TO BE PERFORMED.
- THE STRUCTURAL DESIGN OF THE MODIFICATIONS INDICATED ON THESE DRAWINGS IS FOR THE COMPLETED CONDITION ONLY. THE CONTRACTOR SHALL MAKE ADEQUATE PROVISIONS FOR CONSTRUCTION STRESSES AND PROVIDE SUFFICIENT TEMPORARY SHORING AND BRACING AS REQUIRED.
- INSPECTIONS SHALL BE COMPLETED IN ACCORDANCE WITH LOCAL BUILDING CODES.
- ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND CROWN STANDARD CED-STD-10253 INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH THE ANSI/TIA-322 (LATEST EDITION).
- THE CLIMBING FACILITIES, SAFETY CLIMB AND ALL PARTS THEREOF SHALL NOT BE IMPEDED, MODIFIED OR ALTERED WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE ENGINEER OF RECORD.
- 10. ANY WORK PERFORMED WITHOUT A PREFABRICATION MAPPING IS DONE AT THE RISK OF THE GC AND/OR FABRICATOR.

CONSTRUCTION NOTES:

- 1. PRIOR TO FABRICATION AND INSTALLATION, CONTRACTOR SHALL FIELD VERIFY ALL LENGTHS AND QUANTITIES GIVEN. LENGTH AND QUANTITIES PROVIDED ARE FOR QUOTING PURPOSES ONLY, AND SHALL NOT BE USED FOR FABRICATION.
- REFER TO CCI DOC ENG-PLN-10015 FOR CUTTING AND WELDING SAFETY PLAN.

Copyright 2018, by Paul J. Ford and Compan Il Rights Reserved. This document and he data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not without the orior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project

ORDIY IX OH 43215 ifford.com S \triangleleft

PAN Slumbus, C Zolun Www. & CO . . Ste 600 .

C N N O <u>M</u>

CONNECTICUT 120') SELF SUPPORT TOWER SOUTHINGTON ROGUS SOUTHINGTON, (EXTENDED TO 1 #841298; 80' MODIFIED B

PROJECT No: 37518-0484.002.880 DRAWN BY: KJS DESIGNED BY CHECKED BY: 3-19-2018 DATE:

> **GENERAL** NOTES

> > N-1

REV DATE

DESCRIPTION

	TO	WER MODIFICATION SCHEDULE	
	ELEVATION	TOWER MODIFICATION DESCRIPTION	REFERENCE SHEETS
A	80'±	WELD NEW FLANGE PLATES TO TOP OF EXISTING TOWER	S-2
B	80'± TO 120'±	ADD TOWER EXTENSIONS TO TOP OF EXISTING TOWER	S-3
0	80'± TO 120'±	EXTEND SAFETY CLIMB TO TOP OF NEW TOWER	S-1
0	126'±	COORDINATE WITH CROWN CASTLE TO RELOCATE EXISTING ANTENNA FROM 80'± TO 126'±	S-1

	EXISTING TOWER MEMBER
0	2 1/4"ø SOLID ROD W/ 2.875" OD x 0.276" THK HALF SLEEVE
2	2"ø SOLID ROD W/ 2.875" OD x 0.276" THK HALF SLEEVE
3	1 3/4"ø SOLID ROD W/ 2.375" OD x 0.154" THK HALF SLEEVE

© Copyright 2018, by Paul J. Ford and Compan All Rights Reserved. This document and the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project.

ASTLI CHARLOTTE, NC 28

PAUL J. FORD & COMPANY St, Ste 600 · Columbus, OH 43215 221.6679 www.pauliford.com

CROWN (3530 TORINGDON WAY SUITE: PH: (724) 416-2000

BU #841298; SOUTHINGTON ROGUS SOUTHINGTON, CONNECTICUT MODIFIED 80' (EXTENDED TO 120') SELF SUPPORT TOWER 37518-0484.002.8800 PROJECT No: DRAWN BY:

DESIGNED BY CHECKED BY: DATE: 3-19-2018 **TOWER**

S-1

ELEVATION

REV DATE

DESCRIPTION

MATERIAL LIST			
ELEVATION	QTY	MATERIAL	LENGTH
80'±	3	FLANGE PLATE 1 1/4" x 6"ø	

MATERIAL NOTES:

- PRIOR TO FABRICATION AND INSTALLATION, CONTRACTOR SHALL FIELD VERIFY ALL LENGTHS AND QUANTITIES GIVEN. LENGTH AND QUANTITIES PROVIDED ARE FOR QUOTING PURPOSES ONLY, AND SHALL NOT BE USED FOR FABRICATION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE PROPER FIT AND CLEARANCE OF THE REINFORCING MATERIAL IN THE FIELD. THE CONTRACTOR IS EXPECTED TO PERFORM A SITE VISIT BEFORE FABRICATING ANY MATERIAL.
- 2. ALL STEEL SHALL CONFORM TO THE FOLLOWING (U.N.O.): A. FLANGE PLATES: ASTM A572 GR 50 (50 KSI YIÈLD PÓINT MATERIAL)
- ALL MATERIAL GRADES GREATER THAN 36 KSI WILL REQUIRE MATERIAL TEST
- 4. ALL NEW STEEL SHALL BE HOT-DIP GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH THE "SPECIFICATION FOR ZINC (HOT GALVANIZED) COATING ON PRODUCTS FABRICATED FROM ROLLED, PRESSED AND FORGED STEEL SHAPES, PLATES BAR, AND STRIP" ASTM A123.
- 5. FIELD DRILLED OR CUT MATERIAL OR ANY GALVANIZED SURFACE THAT IS SCRATCHED OR DAMAGED DUE TO THE CONTRACTORS EFFORTS, TO BE COATED WITH TWO BRUSH COATS OF CROWN APPROVED ZINC RICH PAINT IN ACCORDANCE WITH
- 6. REFER TO CCI DOC ENG-PLN-10015 FOR CUTTING AND WELDING SAFETY PLAN.
- SHOP OR FIELD-WELDED CONNECTIONS SHALL CONFORM TO THE LATEST REVISED CODE OF THE AMERICAN WELDING SOCIETY AWS D1.1 USING E70XX ELECTRODES. ANY FIELD-WELDING SPECIFIED ON THESE DRAWINGS MUST BE ACCOMPLISHED IN STRICT CONFORMANCE WITH DOCUMENT ENG-PLN-10015 "CROWN-CASTLE FIELD CUTTING AND WELDING PROCEDURE".

Copyright 2018, by Paul J. Ford and Compa All Rights Reserved. This document and the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the rior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project.

43215 d.com PAUL J. FORD & COMPANY St, Ste 600 · Columbus, OH 43218 21.6679 www.pauliford.com

SLOTTE,

BU #841298; SOUTHINGTON ROGUS SOUTHINGTON, CONNECTICUT MODIFIED 80' (EXTENDED TO 120') SELF SUPPORT TOWER

37518-0484.002.8800 PROJECT No: DRAWN BY: DESIGNED BY CHECKED BY: 3-19-2018

> TOP OF TOWER FLANGE PLATE DETAIL

> > **S-2**

DESCRIPTION

REV DATE

WELDO	IADT
WELD CH	1AK I
SOLID ROD SIZE	WELD SIZE
5/8"ø	1/4"
3/4"ø	1/4"
1"ø	5/16"

PLAN VIEW

FLANGE DETAIL SEE CHART

	FLAN	GE PLAT	ES		
ELEVATION	PLATE	BOLT CIRCLE	BOLT	OUTSIDE WELD	INSIDE WELD
120'±	1 1/4" THK x 6"ø	4"ø	(4) 5/8"ø	1/4"	5/16"
100'±	1 1/4" THK x 6"ø	4"ø	(4) 5/8"ø	1/4"	5/16"
80'±	1 1/4" THK x 6"ø	4"ø	(4) 5/8"ø	1/4"	5/16"

		MATERIAL LIST	
ELEVATION	QTY	MATERIAL	LENGTH
	3	TOWER LEG 1 1/2"ø SOLID ROD	20'-0"±
	6	FLANGE PLATE 1 1/4" x 6"ø	
	3	TOP GIRT 1"ø SOLID ROD	2'-11"±
400). TO 400).	48	DIAGONALS 5/8"ø SOLID ROD	3'-8"±
100'± TO 120'±	21	HORIZONTALS 3/4"ø SOLID ROD	2'-11"±
	3	BOTTOM GIRT 3/4"ø SOLID ROD	2'-11"±
	8	STEP RUNGS 5/8"ø SOLID ROD	1'-5"±
	12	5/8"ø BOLTS	3 3/4"
	3	TOWER LEG 1 1/2"ø SOLID ROD	20'-0"±
	6	FLANGE PLATE 1 1/4" x 6"ø	
	3	TOP GIRT 1"ø SOLID ROD	2'-11"±
001: TO 4001:	48	DIAGONALS 5/8"ø SOLID ROD	3'-8"±
80'± TO 100'±	21	HORIZONTALS 3/4"ø SOLID ROD	2'-11"±
	3	BOTTOM GIRT 3/4"ø SOLID ROD	2'-11"±
	8	STEP RUNGS 5/8"ø SOLID ROD	1'-5"±
	12	5/8"ø BOLTS	3 3/4"

- PRIOR TO FABRICATION AND INSTALLATION, CONTRACTOR SHALL FIELD VERIFY ALL LENGTHS AND QUANTITIES GIVEN. LENGTH AND QUANTITIES PROVIDED ARE FOR QUOTING PURPOSES ONLY, AND SHALL NOT BE USED FOR FABRICATION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE PROPER FIT AND CLEARANCE OF THE REINFORCING MATERIAL IN THE FIELD. THE CONTRACTOR IS EXPECTED TO PERFORM A SITE VISIT BEFORE FABRICATING ANY MATERIAL.
- 2. ALL STEEL SHALL CONFORM TO THE FOLLOWING (U.N.O.): A. SOLID RODS: ASTM A572 GR 50 (50 KSI YIELD POINT MATERIAL) FLANGE PLATES: ASTM A572 GR 50 (50 KSI YIELD POINT MATERIAL)
- 3. ALL MATERIAL GRADES GREATER THAN 36 KSI WILL REQUIRE MATERIAL TEST
- 4. ALL NEW STEEL SHALL BE HOT-DIP GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH THE "SPECIFICATION FOR ZINC (HOT GALVANIZED) COATING ON PRODUCTS FABRICATED FROM ROLLED, PRESSED AND FORGED STEEL SHAPES, PLATES BAR, AND STRIP" ASTM A123.
- 5. ALL BOLTS SHALL CONFORM TO THE REQUIREMENTS OF ASTM A325. USE BEARING TYPE CONNECTIONS, TIGHTEN TO A SNUG TIGHT CONNECTION, UNO.
- ALL BOLTS SHALL BE PROVIDED WITH LOCK-WASHERS, OR LOCK-NUTS, OR PAL-NUTS AND SHALL BE GALVANIZED ACCORDING TO ASTM A153/ASTM153M.
- ANY GALVANIZED SURFACE THAT IS SCRATCHED OR DAMAGED DUE TO THE CONTRACTORS EFFORTS, TO BE COATED WITH TWO BRUSH COATS OF CROWN APPROVED ZINC RICH PAINT IN ACCORDANCE WITH ENG-BUL-10149.
- 8. REFER TO CCI DOC ENG-PLN-10015 FOR CUTTING AND WELDING SAFETY PLAN.
- 9. SHOP OR FIELD-WELDED CONNECTIONS SHALL CONFORM TO THE LATEST REVISED CODE OF THE AMERICAN WELDING SOCIETY AWS D1.1 USING E70XX ELECTRODES. ANY FIELD-WELDING SPECIFIED ON THESE DRAWINGS MUST BE ACCOMPLISHED IN STRICT CONFORMANCE WITH DOCUMENT ENG-PLN-10015 "CROWN-CASTLE FIELD CUTTING AND WELDING PROCEDURE".

Copyright 2018, by Paul J. Ford and Compa All Rights Reserved This document and the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project.

PAUL J. FORD & COMPANY St, Ste 600 · Columbus, OH 43215 21.6679 www.pauljford.com

Storie,

BU #841298; SOUTHINGTON ROGUS SOUTHINGTON, CONNECTICUT MODIFIED 80' (EXTENDED TO 120') SELF SUPPORT TOWER

PROJECT No: 37518-0484.002.8800 DRAWN BY: DESIGNED BY: CHECKED BY: 3-19-2018 **NEW TOWER**

> SECTION **DETAILS**

> > S-3

REV DATE

DESCRIPTION

MODIFIED 80' (EXTENDED TO 120') SELF SUPPORT TOWER

BU #841298; SOUTHINGTON ROGUS

250 MERIDEN WATERBURY TURNPIKE SOUTHINGTON, CONNECTICUT 06489 HARTFORD COUNTY

LAT: 41° 33' 24.54"; LONG: -72° 51' 10.84" ORDER: 424357 REV. 1; WO: 1537529

PROJECT CONTACTS

STRUCTURE OWNER:

CROWN CASTLE

MOD PM: DAN VADNEY AT DAN. VADNEY@CROWNCASTLE.COM PH: (518) 373-3510

MOD CM: JASON D'AMICO AT JASON.D'AMICO@CROWNCASTLE.COM PH: (860) 209-0104

ENGINEER OF RECORD: PJFMOD@PJFWEB.COM

WIND DESIGN DATA		
REFERENCE STANDARD	ANSI/TIA-222-G-2-2009	
LOCAL CODE	2016 CONNECTICUT BUILDING CODE	
ULTIMATE WIND SPEED (3-SECOND GUST)	123 MPH	
CONVERTED NOMINAL WIND SPEED (3-SECOND GUST)	95 MPH	
ICE THICKNESS	1.0 IN	
ICE WIND SPEED	50 MPH	
SERVICE WIND SPEED	60 MPH	
RISK CATEGORY	II	

В 1.0

EXPOSURE CATEGORY

	THIS PROJECT INCLUDES THE FOLLOWING ITEMS	
ADD	TOWER EXTENSION TO TOP OF EXISTING TOWER	_
EXT	END SAFETY CLIMB TO NEW TOP OF TOWER	_
	ORDINATE WITH CROWN CASTLE TO RELOCATE EXISTING ANTENNA M 80'± TO 126'+	

SHEET INDEX					
SHEET NUMBER	DESCRIPTION				
T-1	TITLE SHEET				
MI-1	MI CHECKLIST AND NOTES				
N-1	GENERAL NOTES				
S-1	TOWER ELEVATION				
S-2	TOP OF TOWER FLANGE PLATE DETAIL				
S-5	NEW TOWER SECTION DETAILS				

TOWER MANUFACTURER: PIROD CCISITES DOC #: 5114299

QUALIFIED ENGINEERING SERVICES ARE AVAILABLE FROM PAUL J. FORD AND COMPANY TO ASSIST CONTRACTORS IN CLASS IV RIGGING PLAN REVIEWS. FOR REQUESTED QUALIFIED ENGINEERING SERVICES, PLEASE CONTACT US AT RIGGING@PJFWEB.COM.

ATTENTION ALL CONTRACTORS, ANYTIME YOU ACCESS A CROWN SITE FOR ANY REASON YOU ARE TO CALL THE CROWN NOC UPON ARRIVAL AND DEPARTURE, DAILY AT (800) 788-7011.

REV DATE

Copyright 2018, by Paul J. Ford and Comp All Rights Reserved. This document and the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the prior written permission of Paul J. Ford used for any purpose other than the intended use for this specific project.

S

d

CROWN

ANY ANY hbus, OH 43215 pauliford.com

BU #841298; SOUTHINGTON ROGUS SOUTHINGTON, CONNECTICUT MODIFIED 80' (EXTENDED TO 120') SELF SUPPORT TOWER

PROJECT No: 37518-0484.002.8800 DRAWN BY: CHECKED BY: MCB 3-19-2018 TITLE SHEET

T-1

The second second second						
		P	OST-MODIFICATION CHECKLIST			
REQUIRED	SECTION	REPORT ITEM	BRIEF DESCRIPTION (SEE ENG-SOW-10007)			
			PRE-CONSTRUCTION			
X 6.1.1 MI CHECKLIST DRAWING THIS CHECKLIST SHALL BE INCLUDED IN THE MI REPORT						
Х	6.1.2	EOR APPROVED SHOP DRAWINGS	FABRICATION DRAWINGS SHALL BE SUBMITTED TO THE ENGINEER OF RECORD FOR REVIEW. THE CONTRACTOR SHALL PROVIDE THE APPROVED SHOP DRAWINGS TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.			
х	6.1.3	FABRICATION INSPECTION	A LETTER FROM THE FABRICATOR, STATING THAT THE WORK WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AND THE CONTRACT DOCUMENTS SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.			
х	6.1.4	FABRICATOR CERTIFIED WELD INSPECTION	CRITICAL SHOP WELDS THAT REQUIRE TESTING (PER ENG-STD-10069) ARE NOTED ON THESE CONTRACT DRAWINGS. A CERTIFIED WELD INSPECTOR SHALL PERFORM NON-DESTRUCTIVE TESTING AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.			
Х	6.1.5	MATERIAL TEST REPORT (MTR)	MILL CERTIFICATION SHALL BE PROVIDED FOR ALL STEEL WITH A YIELD STRENGTH GREATER THAN 36 KSI AND THIS DOCUMENTATION SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.			
х	6.1.6	FABRICATOR NDE INSPECTION	A VISUAL OBSERVATION OF A PORTION OF THE EXISTING STRUCTURE (AS NOTED ON THESE DRAWINGS) IS REQUIRED AND A WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.			
NA	6.1.7	NDE REPORT OF MONOPOLE BASE PLATE (AS REQUIRED)	A VISUAL OBSERVATION OF THE POLE TO BASE PLATE CONNECTION IS REQUIRED AND A WRITTEN REPORT SHALL BE PROVIDE THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.			
Х	6.1.8	PACKING SLIPS	THE MATERIAL SHIPPING LIST SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.			
			CONSTRUCTION			
Х	6.2.1	CONSTRUCTION INSPECTIONS	A LETTER FROM THE GENERAL CONTRACTOR STATING THAT THE WORKMANSHIP WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AND THESE CONTRACT DRAWINGS SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.			
NA	6.2.2	FOUNDATION INSPECTIONS	A VISUAL OBSERVATION OF THE EXCAVATION AND REBAR SHALL BE PERFORMED BEFORE PLACING THE CONCRETE. A WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.			
NA	6.2.3	CONCRETE COMP. STRENGTH AND SLUMP TESTS	THE CONCRETE MIX DESIGN, SLUMP TEST, AND COMPRESSIVE STRENGTH TESTS SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.			
NA	6.2.4	POST INSTALLED ANCHOR ROD VERIFICATION	ANCHOR ROD INSTALLATION SHALL INCLUDE VERIFICATION BY LETTER AND PHOTOGRAPHIC DOCUMENTATION.			
NA	6.2.5	BASE PLATE GROUT VERIFICATION	A LETTER FROM THE GENERAL CONTRACTOR SHALL BE PROVIDED TO THE MI INSPECTOR THAT CERTIFIES THAT THE GROUT WAS INSTALLED IN ACCORDANCE WITH CROWN ENG-PRC-10012 FOR INCLUSION IN THE MI REPORT.			
х	6.2.6	CONTRACTOR'S CERTIFIED WELD INSPECTION	A CERTIFIED WELD INSPECTOR SHALL INSPECT AND TEST AS NECESSARY ALL FIELD WELDS AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT. PRE, DURING AND POST WELD INSPECTION IS REQUIRED PER CROWN SOW AND DOCUMENT #ENG-SOW-10007.			
NA	6.2.7	EARTHWORK: LIFT AND DENSITY	FOUNDATION SUB-GRADES SHALL BE INSPECTED AND APPROVED BY A GEOTECHNICAL ENGINEER AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.			
Х	6.2.8	ON SITE COLD GALVANIZING VERIFICATION	THE GENERAL CONTRACTOR SHALL PROVIDE DOCUMENTATION TO THE MI INSPECTOR VERIFYING THAT ANY ON-SITE COLD GALVANIZING WAS APPLIED IN ACCORDANCE WITH ENG-BUL-10149.			
NA	6.2.9	GUY WIRE TENSION REPORT	THE GENERAL CONTRACTOR SHALL PROVIDE A REPORT TO THE MI INSPECTOR INDICATING THE TEMPERATURE AND TENSION IN EVERY GUY CABLE FOR INCLUSION IN THE MI REPORT.			
Х	6.2.10	GC AS-BUILT DOCUMENTS	THE GENERAL CONTRACTOR SHALL SUBMIT A COPY OF THE CONTRACT DRAWINGS EITHER STATING "INSTALLED AS DESIGNED" OR NOTING ANY CHANGES THAT WERE REQUIRED AND APPROVED BY THE ENGINEER OF RECORD DUE TO FIELD CONDITIONS.			
NA	•	MAGNI 565 COATING VERIFICATION	THE GENERAL CONTRACTOR SHALL PROVIDE DOCUMENTATION TO THE MI INSPECTOR VERIFYING THAT ANY MAGNI 565 COATING WAS APPLIED IN ACCORDANCE PER ASTM F1136.			
NA	8#6	MICROPILE / ROCK ANCHOR	THE GENERAL CONTRACTOR SHALL PROVIDE INSTALLER'S DRILLING AND INSTALLATION LOGS AND QA/QC DOCUMENTATION TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.			
			POST-CONSTRUCTION			
х	6.3.1	MI INSPECTOR REDLINE OR RECORD DRAWING(S)	THE MI INSPECTOR SHALL OBSERVE AND REPORT ANY DISCREPANCIES BETWEEN THE CONTRACTORS REDLINE DRAWING AND THE ACTUAL COMPLETED INSTALLATION.			
NA	6.3.2	POST INSTALLED ANCHOR ROD PULL TESTING	POST INSTALLED ANCHOR RODS SHALL BE TESTED IN ACCORDANCE WITH ENG-PRC-10119 AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.			
х	6.3.3	PHOTOGRAPHS	PHOTOGRAPHS SHALL BE SUBMITTED TO THE MI WHICH DOCUMENT ALL PHASES OF THE CONSTRUCTION. THE PHOTOS SHALL BE ORGANIZED IN A MANNER THAT EASILY IDENTIFIES THE EXACT LOCATION OF THE PHOTO.			
NA	NA POST INSTALLED MICROPILE / ROCK ANCHOR POST INSTALLED ANCHORS SHALL BE TESTED AND INSPECTED IN ACCORDANCE WITH SPECIFICATION STATED ON MICE					

ANCHOR NOTES.

NOTE: X DENOTES A DOCUMENT NEEDED FROM THE CONTRACTOR FOR THE MI REPORT NA DENOTES A DOCUMENT THAT IS NOT REQUIRED FOR THE MI REPORT

TESTING

MODIFICATION INSPECTION NOTES:

THE MODIFICATION INSPECTION (MI) IS A VISUAL INSPECTION OF TOWER MODIFICATIONS AND A REVIEW OF CONSTRUCTION INSPECTIONS AND OTHER REPORTS TO ENSURE THE INSTALLATION WAS CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, NAMELY THE MODIFICATION DRAWINGS, AS DESIGNED BY THE ENGINEER OF RECORD

THE MI IS TO CONFIRM INSTALLATION CONFIGURATION AND WORKMANSHIP ONLY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN ITSELF, NOR DOES THE MI INSPECTOR TAKE OWNERSHIP OF THE MODIFICATION DESIGN. OWNERSHIP OF THE STRUCTURAL MODIFICATION DESIGN EFFECTIVENESS AND INTEGRITY RESIDES WITH THE EOR AT ALL TIMES.

ALL MI'S SHALL BE CONDUCTED BY A CROWN ENGINEERING VENDOR (AEV) OR ENGINEERING SERVICE VENDOR (AESV) THAT IS APPROVED TO PERFORM ELEVATED WORK FOR CROWN. SEE ENG-BUL-10173 LIST OF APPROVED MI

TO ENSURE THAT THE REQUIREMENTS OF THE MI ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MI INSPECTOR BEGIN COMMUNICATING AND COORDINATING AS SOON AS A PO IS RECEIVED. IT IS EXPECTED THAT EACH PARTY WILL BE PROACTIVE IN REACHING OUT TO THE OTHER PARTY. IF CONTACT INFORMATION IS NOT KNOWN, CONTACT YOUR CROWN POINT OF CONTACT (POC).

REFER TO ENG-SOW-10007: MODIFICATION INSPECTION SOW FOR FURTHER DETAILS AND REQUIREMENTS.

THE MI INSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS RECEIVING A PO FOR THE MI TO, AT A MINIMUM:

- . REVIEW THE REQUIREMENTS OF THE MI CHECKLIST
- WORK WITH THE GC TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS

THE MI INSPECTOR IS RESPONSIBLE FOR COLLECTING ALL GENERAL CONTRACTOR (GC) INSPECTION AND TEST REPORTS, REVIEWING THE DOCUMENTS FOR ADHERENCE TO THE CONTRACT DOCUMENTS. CONDUCTING THE IN-FIELD INSPECTIONS, AND SUBMITTING THE MI REPORT

GENERAL CONTRACTOR
THE GC IS REQUIRED TO CONTACT THE MI INSPECTOR AS SOON AS RECEIVING A PO FOR THE MODIFICATION INSTALLATION OR TURNKEY PROJECT TO, AT A MINIMUM:

- . REVIEW THE REQUIREMENTS OF THE MI CHECKLIST
- . WORK WITH THE MI INSPECTOR TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS
- . BETTER UNDERSTAND ALL INSPECTION AND TESTING REQUIREMENTS

THE GC SHALL PERFORM AND RECORD THE TEST AND INSPECTION RESULTS. IN ACCORDANCE WITH THE REQUIREMENTS OF THE MI CHECKLIST AN

THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING A MI

- . IT IS SUGGESTED THAT THE GC PROVIDE A MINIMUM OF 5 BUSINESS DAYS NOTICE, PREFERABLE 10, TO THE MI INSPECTOR AS TO WHEN THE SITE WILL BE READY FOR THE MI TO BE CONDUCTED.
- THE GC AND MI INSPECTOR COORDINATE CLOSELY THROUGHOUT THE
- WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR ON-SITE SIMULTANEOUSLY FOR ANY GUY WIRE TENSIONING OR RE-TENSIONING OPERATIONS
- . IT MAY BE BENEFICIAL TO INSTALL ALL TOWER MODIFICATIONS PRIOR TO CONDUCTING THE FOUNDATION INSPECTIONS TO ALLOW FOUNDATION AND MI INSPECTION(S) TO COMMENCE WITH ONE SITE VISIT.
- WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR. ON-SITE DURING THE MI TO HAVE ANY DEFICIENCIES CORRECTED DURING THE INITIAL MI. THEREFORE, THE GC MAY CHOOSE TO COORDINATE THE MI CAREFULLY TO ENSURE ALL CONSTRUCTION FACILITIES ARE AT THEIR DISPOSAL WHEN THE MI INSPECTOR IS ON

CANCELLATION OR DELAYS IN SCHEDULED MI IF THE GC AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED, AND EITHER PARTY CANCELS OR DELAYS, CROWN SHALL NOT BE RESPONSIBLE FOR ANY COSTS, FEES, LOSS OF DEPOSITS AND/OR OTHER PENALTIES RELATED TO THE CANCELLATION OR DELAY INCURRED BY EITHER PARTY FOR ANY TIME (E.G. TRAVEL AND LODGING, COSTS OF KEEPING EQUIPMENT ON-SITE, ETC.). IF CROWN CONTRACTS DIRECTLY FOR A THIRD PARTY MI EXCEPTIONS MAY BE MADE IN THE EVENT THAT THE DELAY/CANCELLATION IS CAUSED BY WEATHER OR OTHER CONDITIONS THAT MAY COMPROMISE THE SAFETY OF THE PARTIES INVOLVED.

CORRECTION OF FAILING MI'S
IF THE MODIFICATION INSTALLATION WOULD FAIL THE MI ("FAILED MI"), THE GC SHALL WORK WITH CROWN TO COORDINATE A REMEDIATION PLAN IN ONE OF

- CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL CONTRACT DOCUMENTS AND COORDINATE A SLIPPI EMENT MI
- · OR, WITH CROWN'S APPROVAL, THE GC MAY WORK WITH THE EOR TO RE-ANALYZE THE MODIFICATION/REINFORCEMENT USING THE AS-BUILT

MI VERIFICATION INSPECTIONS
CROWN RESERVES THE RIGHT TO CONDUCT A MI VERIFICATION INSPECTION TO VERIFY THE ACCURACY AND COMPLETENESS OF PREVIOUSLY COMPLETED MI INSPECTION(S) ON TOWER MODIFICATION PROJECTS.

ALL VERIFICATION INSPECTIONS SHALL BE HELD TO THE SAME SPECIFICATIONS AND REQUIREMENTS IN THE CONTRACT DOCUMENTS AND IN ACCORDANCE WITH ENG-SOW-10007.

VERIFICATION INSPECTION MAY BE CONDUCTED BY AN INDEPENDENT AEVIAESV FIRM AFTER A MODIFICATION PROJECT IS COMPLETED, AS MARKED BY THE DATE OF AN ACCEPTED "PASSING MI" OR "PASS AS NOTED MI" REPORT FOR THE ORIGINAL PROJECT.

BETWEEN THE GC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A MINIMUM, ARE TO BE TAKEN AND INCLUDED IN THE MI REPORT:

- PRE-CONSTRUCTION GENERAL SITE CONDITION
- PHOTOGRAPHS DURING THE REINFORCEMENT MODIFICATION CONSTRUCTION/ERECTION AND INSPECTION
- .. RAW MATERIALS
- PHOTOS OF ALL CRITICAL DETAILS
- FOUNDATION MODIFICATIONS
- WELD PREPARATION
- BOLT INSTALLATION AND TORQUE FINAL INSTALLED CONDITION
- .. SURFACE COATING REPAIR
- POST CONSTRUCTION PHOTOGRAPHS
- .. FINAL INFIELD CONDITION

PHOTOS OF ELEVATED MODIFICATIONS TAKEN FROM THE GROUND SHALL BE CONSIDERED INADEQUATE.

THIS IS NOT A COMPLETE LIST OF REQUIRED PHOTOS, PLEASE REFER TO

Copyright 2018, by Paul J. Ford and Compa he data contained herein, is proprietary o Paul J. Ford and Company, issued in strict confidence and shall not, without the rior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the ended use for this specific project.

S

V

S

L. FORD ANY mbus, OH 43215 v.pauliford.com ַבַּׁ ּ

PAUI & COI Broad St, Ste 600 · 6 6 614.221.6679

ROWN TOWER

ROGU 1298; SOUTHINGTON ROC SOUTHINGTON, CONNECTICUT (EXTENDED TO 120') SELF SUPPORT #84 80' MODIFIED BU

37518-0484,002.880 PROJECT No: DESIGNED BY: CHECKED BY DATE: 3-19-201

> MI CHECKLIST AND NOTES

> > MI-1

MAR 1 9 2018

REV DATE

DESCRIPTION

GENERAL NOTES:

- THIS TOWER MODIFICATION DRAWING IS BASED UPON A STRUCTURAL ANALYSIS PERFORMED BY PAUL J. FORD AND COMPANY DATED 3-19-2018.
- 2. PAUL J. FORD AND COMPANY HAS NOT PERFORMED A FIELD VISIT TO VERIFY THE EXISTING TOWER MEMBER SIZES AND DIMENSIONS. THE MODIFICATIONS SHOWN ON THESE PAGES WERE DEVELOPED USING INFORMATION PROVIDED TO US BY CROWN-CASTLE.
- THE CONTRACTOR IS EXPECTED TO PERFORM A SITE VISIT BEFORE FABRICATING ANY MATERIAL. IF THE CONTRACTOR DISCOVERS ANY EXISTING CONDITIONS THAT ARE NOT AS REPRESENTED ON THESE DRAWINGS, PAUL J. FORD AND COMPANY SHALL BE CONTACTED IMMEDIATELY TO EVALUATE THE STRUCTURAL SIGNIFICANCE OF THE DEVIATION.
- PAUL J. FORD AND COMPANY WAS NOT PROVIDED WITH THE EXACT LOCATION OF EVERY EXISTING APPURTENANCE THAT COULD POTENTIALLY INTERFERE WITH THE MODIFICATIONS AS INDICATED ON THESE DRAWINGS. IT IS IMPORTANT THAT THE MODIFICATION MATERIAL BE PLACED IN THE PROPER LOCATION TO BE EFFECTIVE. THIS MAY REQUIRE THE REPOSITIONING OF SOME EXISTING NON-STRUCTURAL ITEMS CURRENTLY ATTACHED TO THE TOWER.
- THE CONTRACTOR MUST BE EXPERIENCED IN THE PERFORMANCE OF WORK SIMILAR TO THAT DESCRIBED ON THESE DRAWINGS. BY ACCEPTANCE OF THIS PROJECT, THE CONTRACTOR IS ATTESTING THAT HE DOES HAVE SUFFICIENT EXPERIENCE AND ABILITY, THAT HE IS KNOWLEDGEABLE OF THE WORK TO BE PERFORMED AND THAT HE IS PROPERLY LICENSED TO DO THIS WORK IN THE JURISDICTION IN WHICH THE WORK IS TO BE PERFORMED.
- 6. THE STRUCTURAL DESIGN OF THE MODIFICATIONS INDICATED ON THESE DRAWINGS IS FOR THE COMPLETED CONDITION ONLY. THE CONTRACTOR SHALL MAKE ADEQUATE PROVISIONS FOR CONSTRUCTION STRESSES AND PROVIDE SUFFICIENT TEMPORARY SHORING AND BRACING AS REQUIRED.
- 7. INSPECTIONS SHALL BE COMPLETED IN ACCORDANCE WITH LOCAL BUILDING CODES.
- 8. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND CROWN STANDARD CED-STD-10253 INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH THE ANSI/TIA-322 (LATEST EDITION).
- THE CLIMBING FACILITIES, SAFETY CLIMB AND ALL PARTS THEREOF SHALL NOT BE IMPEDED, MODIFIED OR ALTERED WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE ENGINEER OF RECORD.
- 10. ANY WORK PERFORMED WITHOUT A PREFABRICATION MAPPING IS DONE AT THE RISK OF THE GC AND/OR FABRICATOR.

CONSTRUCTION NOTES:

- 1. PRIOR TO FABRICATION AND INSTALLATION, CONTRACTOR SHALL FIELD VERIFY ALL LENGTHS AND QUANTITIES GIVEN, LENGTH AND QUANTITIES PROVIDED ARE FOR QUOTING PURPOSES ONLY, AND SHALL NOT BE USED FOR FABRICATION.
- REFER TO CCI DOC ENG-PLN-10015 FOR CUTTING AND WELDING SAFETY PLAN.

All Rights Reserved. This document ar the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not without the prior written permission of Paul J. Ford and Company, be reproduced, copied of used for any purpose other than the tended use for this specific project.

S

 \triangleleft

OWN

43215 .com ×

O>£ ₹ T S S **_ ≥** o × **PAU** & CO t, Ste 600

> S S S CONNECTICUT 120') SELF SUPPORT ROO NO SOUTHINGTON, (EXTENDED TO 1 SOUTI N #841 80' BU IODIFI

ROJECT No. 37518-0484 002 880 DRAWN BY DESIGNED BY: CHECKED BY: DATE: 3-19-201

GENERAL NOTES

N-1

MAR 1 9 2018

DESCRIPTION

REV DATE

Copyright 2018, by Paul J. Ford and Compa All Rights Reserved. This document an the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project.

AS

CROWN
3530 TORINGDON WAY SUITE
PH: (724) 416-2000

PAUL J. FORD & COMPANY 1St, Ste 600 · Columbus, OH 43215 221.6679 www.pauliford.com

四日

BU #841298; SOUTHINGTON ROGUS SOUTHINGTON, CONNECTICUT DDIFIED 80' (EXTENDED TO 120') SELF SUPPORT TOWER MODIFIED (

PROJECT No: 37518-0484.002.880 DRAWN BY: DESIGNED BY: CHECKED BY: DATE: 3-19-2018 **TOWER**

> **ELEVATION** S-1

MATERIAL LIST LENGTH ELEVATION OTY MATERIAL 80'± FLANGE PLATE 1 1/4" x 6"ø

MATERIAL NOTES:

- PRIOR TO FABRICATION AND INSTALLATION, CONTRACTOR SHALL FIELD VERIFY ALL LENGTHS AND QUANTITIES GIVEN. LENGTH AND QUANTITIES PROVIDED ARE FOR QUOTING PURPOSES ONLY, AND SHALL NOT BE USED FOR FABRICATION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE PROPER FIT AND CLEARANCE OF THE REINFORCING MATERIAL IN THE FIELD. THE CONTRACTOR IS EXPECTED TO PERFORM A SITE VISIT BEFORE FABRICATING ANY MATERIAL.
- ALL STEEL SHALL CONFORM TO THE FOLLOWING (U.N.O.):
 A. FLANGE PLATES: ASTM A572 GR 50 (50 KSI YIELD POINT MATERIAL)
- 3. ALL MATERIAL GRADES GREATER THAN 36 KSI WILL REQUIRE MATERIAL TEST
- . ALL NEW STEEL SHALL BE HOT-DIP GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH THE "SPECIFICATION FOR ZINC (HOT GALVANIZED) COATING ON PRODUCTS FABRICATED FROM ROLLED, PRESSED AND FORGED STEEL SHAPES, PLATES BAR, AND STRIP" ASTM A123.
- . FIELD DRILLED OR CUT MATERIAL OR ANY GALVANIZED SURFACE THAT IS SCRATCHED OR DAMAGED DUE TO THE CONTRACTORS EFFORTS, TO BE COATED WITH TWO BRUSH COATS OF CROWN APPROVED ZINC RICH PAINT IN ACCORDANCE WITH
- 6. REFER TO CCI DOC ENG-PLN-10015 FOR CUTTING AND WELDING SAFETY PLAN.
- 7. SHOP OR FIELD-WELDED CONNECTIONS SHALL CONFORM TO THE LATEST REVISED CODE OF THE AMERICAN WELDING SOCIETY AWS D1.1 USING E70XX ELECTRODES. ANY FIELD-WELDING SPECIFIED ON THESE DRAWINGS MUST BE ACCOMPLISHED IN STRICT CONFORMANCE WITH DOCUMENT ENG-PLN-10015 "CROWN-CASTLE FIELD CUTTING AND WELDING PROCEDURE".

© Copyright 2018, by Paul J. Ford and Compan All Rights Reserved. This document and the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project.

L. FORD
ANY
mbus, OH 43215 S V

R COMPA t. Ste 600 · Colum 11.6679 www.

CROWN

BU #841298; SOUTHINGTON ROGUS SOUTHINGTON, CONNECTICUT DDIFIED 80' (EXTENDED TO 120') SELF SUPPORT TOWER MODIFIED

PROJECT No: 37518-0484.002.880 DRAWN BY: DESIGNED BY: CHECKED BY: 3-19-201

TOP OF TOWER FLANGE PLATE **DETAIL**

S-2

MAR 1 9 2018

DESCRIPTION

REV DATE

WELD CHART						
SOLID ROD SIZE	WELD SIZE					
5/8"ø	1/4"					
3/4"ø	1/4"					
1*ø	5/16"					

FLANGE PLATES									
ELEVATION	PLATE	BOLT CIRCLE	BOLT	OUTSIDE WELD	INSIDE WELD				
120'±	1 1/4" THK x 6"ø	4*ø	(4) 5/8°ø	1/4"	5/16"				
100'±	1 1/4" THK x 6"ø	4*ø	(4) 5/8"ø	1/4"	5/16"				
80'±	1 1/4" THK x 6"ø	4*ø	(4) 5/8°ø	1/4"	5/16"				

MATERIAL LIST ELEVATION QTY MATERIAL LENGTH TOWER LEG 1 1/2"ø SOLID ROD FLANGE PLATE 1 1/4" x 6"ø TOP GIRT 1"ø SOLID ROD 2'-11"± 3'-8"± DIAGONALS 5/8*ø SOLID ROD 100'± TO 120'± 2'-11"± HORIZONTALS 3/4"ø SOLID ROD 2'-11"± BOTTOM GIRT 3/4"ø SOLID ROD STEP RUNGS 5/8"ø SOLID ROD 12 3 3/4" 5/8"ø BOLTS 20'-0"± TOWER LEG 1 1/2"ø SOLID ROD FLANGE PLATE 1 1/4" x 6"ø TOP GIRT 1"ø SOLID ROD 2'-11"± 48 3'-8"± DIAGONALS 5/8*ø SOLID ROD 80'± TO 100'± HORIZONTALS 3/4"ø SOLID ROD 2'-11"± BOTTOM GIRT 3/4"ø SOLID ROD 2'-11"± 1'-5"± STEP RUNGS 5/8"ø SOLID ROD 5/8"ø BOLTS 3 3/4"

MATERIAL NOTES:

- PRIOR TO FABRICATION AND INSTALLATION, CONTRACTOR SHALL FIELD VERIFY ALL LENGTHS AND QUANTITIES GIVEN. LENGTH AND QUANTITIES PROVIDED ARE FOR QUOTING PURPOSES ONLY, AND SHALL NOT BE USED FOR FABRICATION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE PROPER FIT AND CLEARANCE OF THE REINFORCING MATERIAL IN THE FIELD. THE CONTRACTOR IS EXPECTED TO PERFORM A SITE VISIT BEFORE FABRICATING ANY MATERIAL.
- ALL STEEL SHALL CONFORM TO THE FOLLOWING (U.N.O.): A. SOLID RODS: ASTM A572 GR 50 (50 KSI YIELD POINT MATERIAL) B. FLANGE PLATES: ASTM A572 GR 50 (50 KSI YIELD POINT MATERIAL)
- 3. ALL MATERIAL GRADES GREATER THAN 36 KSI WILL REQUIRE MATERIAL TEST REPORTS.
- 4. ALL NEW STEEL SHALL BE HOT-DIP GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH THE "SPECIFICATION FOR ZINC (HOT GALVANIZED) COATING ON PRODUCTS FABRICATED FROM ROLLED, PRESSED AND FORGED STEEL SHAPES, PLATES BAR, AND STRIP" ASTM A123.
- ALL BOLTS SHALL CONFORM TO THE REQUIREMENTS OF ASTM A325. USE BEARING TYPE CONNECTIONS, TIGHTEN TO A SNUG TIGHT CONNECTION, UNO.
- ALL BOLTS SHALL BE PROVIDED WITH LOCK-WASHERS, OR LOCK-NUTS, OR PAL-NUTS AND SHALL BE GALVANIZED ACCORDING TO ASTM A153/ASTM153M.
- ANY GALVANIZED SURFACE THAT IS SCRATCHED OR DAMAGED DUE TO THE CONTRACTORS EFFORTS, TO BE COATED WITH TWO BRUSH COATS OF CROWN APPROVED ZINC RICH PAINT IN ACCORDANCE WITH ENG-BUL-10149.
- REFER TO CCI DOC ENG-PLN-10015 FOR CUTTING AND WELDING SAFETY PLAN.
- SHOP OR FIELD-WELDED CONNECTIONS SHALL CONFORM TO THE LATEST REVISED CODE OF THE AMERICAN WELDING SOCIETY AWS D1.1 USING E70XX ELECTRODES. ANY FIELD-WELDING SPECIFIED ON THESE DRAWINGS MUST BE ACCOMPLISHED IN STRICT CONFORMANCE WITH DOCUMENT ENG-PLN-10015 "CROWN-CASTLE FIELD CUTTING AND

opyright 2018, by Paul J. Ford and Compar All Rights Reserved. This document and the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without th rior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the tended use for this specific project.

43215 .com 04 O≻£ ₹

2 ∞ 2

S \triangleleft S S OWN

#841298; SOUTHINGTON ROGUS SOUTHINGTON, CONNECTICUT ED 80' (EXTENDED TO 120') SELF SUPPORT TOWER MODIFIED BU

PROJECT No: 37518-0484,002,880 DRAWN BY DESIGNED BY: CHECKED BY: 3-19-201 **NEW TOWER**

> SECTION **DETAILS**

> > S-3

REV DATE

MAR 1 9 2018

DESCRIPTION

B NEW TOWER SECTION,

4

For visual reference only. Actual visibility is dependent upon weather conditions, season, sunlight, and viewer location.

550 Enterprise Drive Suite 3A Rocky Hill, CT 06067

Site No.: CT1033

DEWBERRY NO. 50065689 (Page 1 of 12)

27 Northwestern Drive Salem, NH 03079

Dewberry Engineers Inc. 600 Parsippany Road Suite 301 Parsippany, NJ 07054

Actual View Existing AT&T Antennas & Appurtenances To Be Removed **€** at&t **SOUTHINGTON ROGUS** Photo 4A View Facing North From Orchard Lane (Page 9 of 12) Dewberry*

21 B Street Burlington, MA 01803 Tel: (781) 273-2500 Fax: (781) 273-3311 www.ebiconsulting.com

July 30, 2018

Mr. Peter Crane Crown Castle USA, Inc. 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

Subject:

National Environmental Policy Act (NEPA) Screening Report

841298 / Southington Rogus

250 Meriden Waterbury Turnpike, Southington, Hartford County, Connecticut

EBI Project #6118002966

Dear Mr. Crane:

EBI Consulting (EBI) is pleased to provide you with this National Environmental Policy Act (NEPA) Screening Report (the Report) for the proposed communications installation at the address noted above (the Subject Property). The purpose of this Report is to determine if the proposed communications installation may have a significant environmental effect per 47 CFR §1.1307 of Federal Communications Commission (FCC) rules implementing NEPA, for which an Environmental Assessment (EA) must be prepared.

The Subject Property, known as 841298 / Southington Rogus, is an approximately 1.2-acre lot improved with Rogus Electronics and several small accessory buildings. As of the date of this Report, Crown Castle USA, Inc. proposes to modify an existing telecommunications tower at the Subject Property. The self-support lattice tower will be extended from an existing height of 80 feet above ground level (AGL) to a proposed height of 120 feet AGL (131 feet total including proposed lightning rod). Three antennas (one per sector) and three RRUs (one per sector) will be installed at a centerline height of 120 feet AGL. Utilities will be routed via replacement cables using the existing cable bridge and equipment shelter. No ground disturbance is planned for this installation. Please refer to the attached plans for complete details (see Appendix C).

Please find the attached NEPA and Nationwide Programmatic Agreement (NPA) checklists, summary report, and associated support documentation. Based upon the results of EBI's assessment, the proposed installation will not result in a significant environmental effect per the criteria outlined in §1.1307(a), Items (I) through (8). As such the preparation of an Environmental Assessment (EA) for these criteria is not required.

Please note regarding Item (4), the State Historic Preservation office (SHPO) has concurred with EBI's determination that 'the proposed undertaking will have no adverse effect to sites listed on or eligible for listing on the National Register of Historic Places, with the following conditions: I. The antennas, RRUs, and associated equipment will be designed, painted to match adjacent materials, and installed to be as non-visible as possible, and 2. If not in use for six consecutive months, antennas, RRUs and all other equipment shall be removed by the telecommunications facility owner. This removal shall occur within 90 days of the end of such six-month period.'

The Report was completed according to the terms and conditions authorized by you. There are no intended or unintended third party beneficiaries to this Report, unless specifically named. EBI is an independent contractor, not an employee of either the property owner or the project proponent, and its compensation was not based on the findings or recommendations made in the Report or on the closing of any business transaction. Note that the

findings of this Report are based on the project specifications provided to EBI and described in this Report. In the event that the design or location of the installation changes, please contact EBI as additional review and/or consultation may be required.

Thank you for the opportunity to prepare this Report, and assist you with this project. Please call us if you have any questions or if we may be of further assistance.

Respectfully Submitted,

Author/Architectural Historian

Ms. Tiffany Skrobiszewski Reviewer/Senior Scientist

Direct# (757) 582-3866

Mr. Gregory Ritter Project Manager

Appendix A - NEPA Checklists

Appendix B - NEPA Summary Report

Appendix C - Figures

Appendix D - Natural Resource Review

Appendix E - Section 106 Review

Appendix F - Tribal Correspondence Documentation

Appendix G - Resumes of Signatories

CROWN CASTLE USA FCC / NEPA ENVIRONMENTAL COMPLIANCE CHECKLIST

Site Name: BU#:		Southington Rogus 841298	Contact Person: Contact Number:	Peter Crane (518) 433-6244			
YES	<u>NO</u>						
\boxtimes		1. A site inspection has been performed specifically for the information required in items 2-8 and 11.					
	\boxtimes	2. Will the facility be located in an officially designated wilderness area?					
	\boxtimes	3. Will the facility be located in an officially designated wildlife preserve?					
		4. Will the facility affect federally listed, threatened or endangered species or designated critical habitats or is the facility likely to jeopardize the continued existence of any federally proposed endangered or threatened species or likely to result in the destruction or adverse modification of federally proposed critical habitats?					
	\boxtimes	5. Will the facility affect districts, sites, buildings, structures, objects or other cultural resources listed, or eligible for listing, in the National Register of Historic Places?					
	\boxtimes	6. Will the facility affect Indian i	religious sites?				
	\boxtimes	7. Will the facility be located in a 100-year flood plain? If yes, will equipment be installed 1 foot or more above the base flood plain elevation?					
		8. Will the construction of the facility involve a significant change in the surface features (e.g., wetland fill, deforestation, or water diversion)?					
	\boxtimes	9. Will the antenna tower and/or supporting structure be equipped with high intensity white lights and be located in a residential neighborhood, as defined by local zoning laws?					
	\boxtimes	10. Will the proposed facility fall outside the categorical exclusions contained in Table 1 of 47 CFR Section 1,1307(b) (1)?					
	\boxtimes	11. Will the proposed facility be constructed within one (1) mile of the centerline of a National Scenic Trail and has the Trail Management Office indicated that the proposed construction will have a significant adverse effect?					
A COPY OF A COMPLETED CROWN CASTLE INTERNATIONAL CORPORATION FCC ENVIRONMENTAL COMPLIANCE SURVEY DOCUMENTING THE PROCESS USED IN ARRIVING AT THE ABOVE ANSWERS MUST BE ATTACHED TO THIS FORM. IF ALL OF THE QUESTIONS ABOVE WERE ANSWERED "NO", NO FURTHER ACTION IS REQUIRED FOR FCC ENVIRONMENTAL PURPOSES.							
ASSES PROCI	SMEN'	I MUST BE PREPARED AND F	ILED WITH THE FC	THE EXCEPTION OF #1, AN ENVIRONMENTAL C.IN ACCORDANCE WITH APPLICABLE CROWN E FCC HAS REVIEWED THE ASSESSMENT AND			
Kate Ri Name	tter		July 30, 201: Date	8			
EBI Co Compar		e	Date.				

ASAC SITE SPECIFIC EVALUATION FOR

Site Name: Southington Rogus Site Number: 841298 Site Location: Meriden, CT.

Requestors Name: Peter Crane Company Name: Crown Castle Street Address: 3 Corporate Park Drive, Ste 101 City and Zip: Clifton Park, NY. 12065

This is an evaluation based on application of surfaces identified in Federal Aviation Regulation (FAR) Part 77 and Federal Communication Commission (FCC) Rules Part 17.

EXECUTIVE SUMMARY

- ♣ The max height that can be built at this site without notice to the FAA is 200 feet AGL or 545 feet AMSL.
- ♣ The max No Extended Study height at this site is 499 AGL, or 844 AMSL.
- The max no hazard height at this site is 499 AGL, or 844 AMSL.
- The max no marking and lighting height at this site is 200 AGL, or 545 AMSL.

SITE DATA

Structure Type: Antenna Tower

Coordinates of site:

Lat:

41°33'24.54"

Long:

72°51'10.84"

Datum:

NAD 83

Site ground elevation:

345

Total height above the ground of the entire structure (AGL):

135

Total height above mean sea level (AMSL):

AIRPORT/HELIPORT INFORMATION

Nearest public use or Government Use (DOD) facility: Meriden Markham Municipal.

This structure will be located 3.0 NM or 18714 FT from the airport on a bearing of 159 degrees true to the airport.

Nearest private use landing facility is: Meriden Wallingford Hospital.

This structure will be located 2.4 NM from the helipad on a bearing of 125 degrees true to the helipad.

STUDY FINDINGS

FAA FAR Part 77 paragraph 9 (FAR 77.9): (Construction or Alteration requiring notice.) (These are the imaginary surfaces that the FAA has implemented to provide general criteria for notification purposes.)

This structure does not require notification to the FAA.

FAA FAR Part 77 paragraph 17(FAR 77.17): (Standards for Determining Obstructions.)(These are the imaginary surfaces that the FAA has implemented to protect aircraft safety. If any of these surfaces are penetrated, the structure may pose a Hazard to Air Navigation.)

This structure does not exceed these surfaces.

FCC Notice Requirements:

(FCC Rules, Part 17)

This structure does not require notification to the FAA or FCC based on these rules.

FAA EMI:

(The FAA protects certain air navigational aids, radio transmitters, and RADAR facilities from possible interference. The distance and direction are dependent on the type of facility being evaluated. Some of these transmission and receiver facilities are listed in the National Flight Data Center (NFDC) database.)

This site would not affect any FAA air navigational aids or transmitters.

Military Airspace:

(This would include low level visual and instrument routes along with operations areas and special use airspace.)

This structure will not affect this airspace.

AM Facilities:

(The FCC protects AM radio stations from possible interference for a distance of 3.0 km for directional facilities, and 1.0 km for non-directional facilities. New changes to the FCC critical distances are calculated based on the AM transmission Movement Method Proof evaluation.)

This site was evaluated against the FCC's AM antenna database using the Movement Method proof calculations and no further action is required.

MARKING AND LIGHTING

FAA Advisory Circular 70/7460-1:

Marking and lighting is not required for this structure.

RECOMMENDATIONS

This site was evaluated in accordance with the requirements specified by the FAA under Federal Aviation Rules part 77, and found not to be a hazard to air navigation.

Gmap4 - Use at your own risk mappingsupport.com

Sanket Joshi
SAI Communications
12 Industrial Way
Salem, NH 03079
Sanket.Joshi@sai-comm.com

July 16, 2018

Connecticut Siting Council

Subject: AT&T Wireless, CT1033 - Southington, CT

Dear Connecticut Siting Council:

At the request of AT&T Wireless, SAI Comunications has performed an assessment of the RF Power Density at the proposed site located at 250 Meriden Waterbury Turnpike, Southington, CT. Calculations were done in compliance with FCC OET Bulletin 65. This report provides an FCC compliance assessment based on a "worst-case" analysis that all transmitters are simultaneously operating at full power and pointing directly at the ground.

FCC OET Bulletin 65 formula:

$$S = \frac{2.56 * 1.64 * ERP}{4 * \pi * R^2}$$

Transmission Mode	Antenna Centerline AGL (ft)	Frequency (MHz)	Number of Channels	Effective Radiated Power per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	% MPE (Uncontrolled/ General Public)
AT&T UMTS	120	850	1	1,054	0.0263	0.5667	4.65%
AT&T LTE	120	700	1	2,427	0.0606	0.4667	12.99%
Other carriers per CSC records							7.53%
Total							25.16%

Conclusion: AT&T's proposed antenna installation along with other carriers is calculated to be within 25.16% of FCC Standard for General Public/Uncontrolled Maximum Permissible Exposure (MPE).

Sincerely,

Sanket Y Joshi

SAI Communications

Color 13A

NOTICE

Notice is hereby given, pursuant to Section 16-50j-40(a) of the Regulations of Connecticut State Agencies of a Petition being filed with the Connecticut Siting Council ("Siting Council") on or after August 31, 2018 by New Cingular Wireless PCS, LLC ("AT&T"). AT&T seeks a declaratory ruling that modification of an existing wireless facility does not have significant adverse environmental effects that might otherwise require a certificate of environmental compatibility and public need ("Certificate").

AT&T currently operates a co-located wireless facility on an existing 80-foot lattice tower located at 250 Meriden Waterbury Turnpike in Southington that is owned by Crown Castle. AT&T's facility includes nine AT&T antennas on the tower with associated equipment used to operate the antennas at the base of the tower. In order to upgrade its existing facility to provide reliable wireless service, AT&T proposes to add a 40-foot tall extension at the top of the existing tower, increasing the height to a total of 120 feet. AT&T proposes to remove its existing 6 antennas and place 3 new antennas to the top of the proposed extension.

The Petition will provide additional details of the proposal and explain why AT&T submits that this modification presents no significant adverse environmental effects. The location, height and other features of the proposal are subject to review and potential change under provisions Connecticut General Statutes Sections 16-50g et. seq.

Copies of the Petition will be available for review during normal business hours on or after August 31, 2018 at the following:

Connecticut Siting Council 10 Franklin Square New Britain, Connecticut 06051 Town Clerk of Southington Kathy Larkin 75 Main Street Southington, CT 06489

or the offices of the undersigned. All inquiries should be addressed to the Connecticut Siting Council or to the undersigned.

Lucia Chiocchio, Esq. Cuddy & Feder LLP 445 Hamilton Ave, 14th Floor White Plains, New York 10601 (914) 761-1300 Attorneys for the Petitioner

CERTIFICATION OF SERVICE

I hereby certify that on the 29th day of August 2018, a copy of the foregoing notice of the intended filing of a Petition with the Connecticut Siting Council for a declaratory ruling was sent by certified mail, return receipt requested, to the list below:

Dated: 8/29/18

Cuddy & Feder LLP

45 Hamilton Avenue, 14th Floor White Plains, New York 10601

Attorneys for:

New Cingular Wireless PCS, LLC (AT&T)

Abutters List

John Rogus	Joseph Sullivan
250 Meriden Waterbury TPKE	71 Orchard LN
Southington, CT 06489	Southington, CT 06489
Sals Super Market Inc.	Deborah G Capristo
264 Meriden Waterbury TPKE	81 Orchard LN
C/O Kathleen Michalak	Plantsville, CT 06479
Southington, CT 06489	~
Peter & Lori A Cammuso	Robert J & Kathleen R Celentano
230 M&W Road	47 Pratt St
Southington, CT 06489	Southington, CT 06489
Evaclare Larkin	Evaclare Larkin
20 Village Road	247 Meriden Waterbury TPKE
Southington, CT 06489	Southington, CT 06489

Abutters Map

CERTIFICATION OF SERVICE

I hereby certify that on the 29th day of August 2018, a copy of the foregoing notice of the intended filing of a Petition with the Connecticut Siting Council for a declaratory ruling was sent by certified mail, return receipt requested, to the list below:

Dated: 8/29/18

Cuddy & Feder LLP

45 Hamilton Avenue, 14th Floor

White Plains, New York 10601

Attorneys for:

New Cingular Wireless PCS, LLC (AT&T)

State and Regional

The Honorable George Jepsen	Department of Economic and		
Attorney General	Community Development		
Office of the Attorney General	Catherine Smith, Commissioner		
55 Elm Street	450 Columbus Boulevard, Suite 5		
Hartford, CT 06106	Hartford, CT 06103		
Department of Public Health	Department of Energy and		
Dr. Raul Pino, Commissioner	Environmental Protection		
410 Capitol Avenue	Public Utilities Regulatory Authority		
P.O. Box 340308	Chair Katie Dykes		
Hartford, CT 06134	Ten Franklin Square		
	New Britain, CT 06051		
Council on Environmental Quality	Department of Transportation		
Karl J. Wagener, Executive Director	James P. Redeker, Commissioner		
79 Elm Street	2800 Berlin Turnpike		
Hartford, CT 06106	Newington, CT 06111		