

STATE OF CONNECTICUT
CONNECTICUT SITING COUNCIL

DWW SOLAR II, LLC PETITION FOR : PETITION NO. 1313
DECLARATORY RULING THAT NO :
CERTIFICATE OF ENVIRONMENTAL :
COMPATIBILITY AND PUBLIC NEED :
IS REQUIRED FOR A 26.4 MEGAWATT :
AC SOLAR PHOTOVOLTAIC ELECTRIC :
GENERATING FACILITY IN SIMSBURY :
CONNECTICUT : SEPTEMBER 5, 2017

ORIGINAL

DEPARTMENT OF AGRICULTURE WITNESS AND EXHIBIT LIST

Witnesses:

1. Kipen (Kip) Kolesinskas – Mr. Kolesinskas, a consulting conservation scientist, is expected to testify as to his background, education, qualifications, experience, and observations. He is further expected to testify concerning the impacts on agriculture of the solar array project that is the subject of this Petition.

Exhibits:

1. Pre-Filed Testimony of Kipen (Kip) Kolesinskas.

STEVEN K. REVICZKY, COMMISSIONER
CONNECTICUT DEPARTMENT OF AGRICULTURE

By:

Jason E. Bowsza
Jason E. Bowsza
Connecticut Department of Agriculture
450 Columbus Boulevard
Hartford, CT 06103
Tel.: (860) 713-2526
Fax: (860) 713-2514
Jason.Bowsza@ct.gov

Certification of Service

I, Jason E. Bowsza hereby certify that a copy of the foregoing Department of Agriculture Witness and Exhibit List was sent on September 5, 2017, by e-mail and by first class mail, postage prepaid to the following parties on the Service List in this matter:

Petitioner, DWW Solar II, LLC

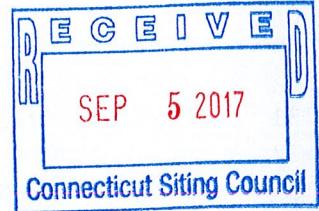
Lee D. Hoffman, Esq.
Pullman & Comley, LLC
90 State House Square
Hartford, CT 06103-3702
Tel.: (860) 424-4315
Fax: (860) 424-4370
lhoffman@pullcom.com

Town of Simsbury

Jesse A. Langer, Esq.
Robert M. DeCrescenzo, Esq.
Updike, Kelly & Spellacy, P.C.
One Century Tower
265 Church Street
New Haven, CT 06510
Tel.: (203) 786-8310
jlanger@uks.com
bdecrescenzo@uks.com

Simsbury Residents Flammini, *et al.*

Alan Kosloff, Esq.
Alter & Pearson, LLC
701 Hebron Ave.
Glastonbury, CT 06033
Tel: (860) 652-4020
Fax: (860) 652-4022
AKosloff@alterpearson.com


Aileen Kenney
Deepwater Wind, LLC
VP, Permitting & Environmental Affairs
56 Exchange Terrace, Suite 300
Providence, RI 02903
Tel.: (401) 648-0607
akenney@dwwind.com

Connecticut Department of Energy and Environmental Protection

Kirsten S.P. Rigney, Esq.
Bureau of Energy Technology Policy
DEEP
10 Franklin Square
New Britain, CT 06051
Tel.: (860) 827-2984
Fax: (860) 827-2806
Kirsten.Rigney@ct.gov

Jason E. Bowsza

STATE OF CONNECTICUT
CONNECTICUT SITING COUNCIL

**DWW SOLAR II, LLC PETITION FOR
DECLARATORY RULING THAT NO
CERTIFICATE OF ENVIRONMENTAL
COMPATIBILITY AND PUBLIC NEED
IS REQUIRED FOR A 26.4 MEGAWATT
AC SOLAR PHOTOVOLTAIC ELECTRIC
GENERATING FACILITY IN SIMSBURY
CONNECTICUT**

: PETITION NO. 1313

:
: **ORIGINAL**
: SEPTEMBER 5, 2017

PRE-FILED TESTIMONY OF KIPEN (KIP) KOLESINSKAS

1 1. Q: What is your name?
2
3 A: Kip Kolesinskas.
4
5 2. Q: What is your profession?
6
7 A: I am a consulting conservation scientist.
8
9 3. Q: What does that involve?
10
11 A: I provide soil science and conservation based consulting services to agencies,
12 non-profit organizations, and private farmers and landowners throughout New
13 England.
14
15 4. Q: How long have you been in your current consulting position?
16
17 A: Since 2012.
18
19 5. Q: Prior to that, were you employed?
20
21 A: Yes. From 1977 through 2011, I worked for the United States Department of
22 Agriculture (USDA), Soil Conservation Service (SCS), and Natural Resources
23 Conservation Service (NRCS).
24
25 6. Q: What is NRCS?
26
27 A: In 1935, after the experience of the Depression-era "Dust Bowl" in the United
28 States, Congress recognized that the loss of soil and water resources on farm,
29 grazing, and forest lands is "a menace to the national welfare," and established
30 SCS as a permanent agency within the USDA. After 1994, SCS was changed to

31 the NRCS.
32

33 NRCS' mission is to protect the nation's soil and water resources through
34 "Helping People Help the Land" by means of technical and financial assistance
35 programs. NRCS is a decentralized federal agency with offices in every state and
36 most counties.
37

38 One of the main things NRCS does is to create tools and technical standards and
39 information that people can use when doing land use planning, development,
40 farming, and conservation. For example, NRCS as a federal agency has the lead
41 responsibility for mapping, classifying, and interpreting soils information, and
42 develops technical standards and soils information for lands across the United
43 States. One of the outputs is the digitally published soil survey available to the
44 public. Another main task of the agency is to educate, train, and consult with all
45 manner of planners, developers, engineers, farmers, governments, non-profits,
46 and businesses in how to protect and conserve our natural resources.
47

48 7. Q: What were your titles and duties with NRCS?
49

50 A: From 1977 to 1978, when I was still an undergraduate at Cornell University, I was
51 a student trainee. I was graduated from Cornell in 1978 with a Bachelor of
52 Science in Soil Science. When I started fulltime with SCS in 1978, my title was
53 Soil Scientist. I worked on developing soil surveys all over New York State: as
54 part of a team I went to locations, transected the landscape, took samples, and
55 classified the soils based on their characteristics. Then, I prepared the soil maps,
56 descriptions, and interpretations for those areas.
57

58 8. Q: Soil maps?
59

60 A: Yes. NRCS, as I stated, maps soil types nationally for use in planning and
61 conservation. These were the maps I was creating for soil survey areas in New
62 York State. The maps and information I created are still in use, and now they are
63 available digitally to the public.
64

65 9. Q: How long were you in that position?
66

67 A: In 1983, I left USDA SCS in New York. I moved to Connecticut for a new
68 position as a Resource Soil Scientist and have been here since then. I continued
69 to do field investigations and sampling. It's fair to say I have dug holes all over
70 the State of Connecticut.
71

72 One of my responsibilities was helping people with using the soils information. I
73 did on-site investigations, and assisted farmers, planners, engineers, and
74 developers to use the information. I assessed soils on farms for farmers so they
75 could address erosion, manure management, and other problems, and successfully
76 preserve and conserve the soils for farming. I trained local wetlands agents and

77 commissions – as you probably know, the identification of wetlands in
78 Connecticut is based on soil type. I served on NRCS committees and task forces.
79 I worked with local communities on farmland preservation using LESA – The
80 Land Use Evaluation Site Assessment System – which is a program that ranks
81 farmland parcels and assesses their vulnerability to development.

82
83 I also helped update the eight previously-published soil surveys and bring them up
84 to current standards to be digitized. GIS (Geographic Information System) was
85 just really getting rolling, and one of the things NRCS was doing was to digitize
86 its soil maps and make them available to the public. In fact, the federal
87 government in general was making a big push to put its data on-line.

88 10. Q: Did you take on new duties over time in your position as Resource Soil
89 Scientist?

90 A. Yes, I continued to take on additional responsibilities, and in 1991, I became the
91 State Soil Scientist for Connecticut and Rhode Island. I continued doing field
92 work, on-site investigations, and training and outreach to planners, municipal
93 engineers, and wetlands agents for soil identification and conservation. I had
94 responsibility for training NRCS staff and was the primary soils trainer for the
95 Connecticut Department of Energy and Environmental Protection's municipal
96 inland wetlands training program.

97 I was also supervising numerous people by this time, and I developed and
98 reviewed technical standards for the national soils program as well as soil
99 conservation practices – things like nutrient management and erosion control.

100 I also continued to update and digitize the Connecticut soil survey and the
101 Rhode Island soil survey. Under my supervision, we updated Connecticut's
102 eight previously-published county soil surveys and made them into a modern
103 seamless statewide soil survey that is available on-line.

104 In 1995, NRCS started the Farmland Preservation Program. This is a program
105 that supplies federal dollars to conservation partners to preserve local farmland. I
106 was running the Connecticut portion of that program. This involved evaluating
107 sites to see if they qualified for farmland preservation, working with and advising
108 recipients, and reviewing and developing deed language.

109 I also had two details to Washington, D.C. In the first, which was during the
110 Clinton/Gore administration, I was working on digital standards for soil surveys.
111 I worked with the United States Geological Survey on this. In the second, I was
112 with NRCS' Resource Analysis Division developing a national analysis of
113 resource trends across the United States such as, for example, loss of farmland.

114 11. Q: Did you have other duties?

123 A. Yes. During the entire time I was with NRCS in Connecticut, I was responsible
124 for reviewing the impacts of projects on prime farmland.
125

126 12. Q: What is "prime farmland"?

127
128 A: Prime farmland is actually defined by federal law, and it is "soils defined
129 by the United States Department of Agriculture as best suited to producing
130 food, feed, forage, fiber and oilseed crops." The definition can also be found at
131 Conn. Gen. Stat. § 22-26bb(g).
132

133 13. Q: The USDA defines prime farmland?

134
135 A: Yes – actually, it is the NRCS part of USDA that defined it. The full
136 definition is:
137

138 Land that has the best combination of physical and chemical characteristics for
139 producing food, feed, forage, fiber, and oilseed crops and is also available for
140 these uses. It has the soil quality, growing season, and moisture supply needed to
141 produce economically sustained high yields of crops when treated and managed
142 according to acceptable farming methods, including water management. In
143 general, prime farmlands have an adequate and dependable water supply from
144 precipitation or irrigation, a favorable temperature and growing season,
145 acceptable acidity or alkalinity, acceptable salt and sodium content, and few or no
146 rocks. They are permeable to water and air. Prime farmlands are not excessively
147 erodible or saturated with water for a long period of time, and they either do not
148 flood frequently or are protected from flooding.
149

150 There are also definitions and processes for defining "statewide important
151 farmland," "locally important farmland," and "unique soils."

152
153 14. Q: When USDA maps soils – and when you did your soil mapping for NRCS –
154 did that mapping include analyzing the soils and then showing on the maps
155 which areas are prime farmland?

156
157 A: Yes, that is one of the soil interpretations that have been developed.

158
159 15. Q: You just mentioned that you were responsible for reviewing the impacts of
160 projects in Connecticut on prime farmland; what was that about?

161
162 A: In 1981, Congress passed the Farmland Protection Policy Act, which says if
163 there are federal dollars in a project, the project's impacts to prime farmland
164 must be assessed. Final rules and regulations for this Act were adopted in 1994.
165 I was responsible for assessing these impacts for projects in Connecticut.
166

167 Also, from 1995 to 2011, I managed the federal Farm and Ranch Lands
168 Protection Program in Connecticut, which protected over 10,000 acres of

169 Connecticut farmland.
170

171 16. Q: What have you been doing since you left NRCS at the end of 2011?

172
173 A: As I stated, I am a consulting conservation scientist. Major clients of mine
174 include the American Farmland Trust (AFT), which is an organization founded
175 in 1980 to save the land that sustains us by protecting farmland, promoting sound
176 farming practices, and keeping farmers on the land. Their motto, which you may
177 have seen, is "No Farms, No Food." Other clients of mine are the Connecticut
178 Department of Agriculture (CTDOA) and the University of Connecticut
179 Cooperative Extension (UConn Extension).

180
181 I am currently assisting UConn Extension with a three-year grant,
182 developing and presenting courses and providing technical assistance on soil
183 science, soil health, land access, and climate change and adaptation for new and
184 beginning farmers.

185
186 I am also currently assisting AFT with a number of projects, including developing
187 soil landscape analysis as part of the *"State of America's Farmland"* project,
188 which is going to be a comprehensive analysis of our nation's land use changes
189 and loss of agricultural lands.

190
191 I am working with CTDOA on a number of programs, including farmland
192 restoration and farmland preservation. This has included evaluating the soil
193 quality of farmland that has been impacted by mining, construction, and
194 agricultural activities.

195
196 I also participate in all of the Connecticut initiatives around land access,
197 affordability, and technical assistance to new and beginning farmers. I have
198 served as a technical advisor to a number of statewide efforts including the
199 Working Lands Alliance, Governor's Climate Change subcommittees, Long
200 Island Sound Management Committee, Connecticut Council on Soil and Water
201 Conservation, and the Farms, Food, and Jobs Working Group.

202
203 17. Q: Have you done any teaching?

204
205 A: Yes. In 2016-2017, I taught two courses at UConn Extension's Solid Ground
206 Farmer Training: BF 104 - Soil Health and Management; and BF 102 - Finding
207 Farm Sites, Leasing Farmland.

208
209 From 1983 through 2011, I taught Soils Training for Municipal Inland Wetland
210 Commissions, which was offered by the Connecticut Department of Energy and
211 Environmental Protection. Also from 1983 through 2011, I taught Soils Training
212 for Sanitarians and Engineers, which was offered by the Connecticut Department
213 of Public Health. I was also the primary trainer on soils for NRCS employees.

215 In 2012 and 2016, I taught Plants and Agriculture- Environmental Studies School,
216 offered through the Federated Garden Clubs of Connecticut.
217

218 I have also given webinars, lectures, field sessions, and classes on: understanding
219 and using soils information; soils and conservation planning; soil health and
220 quality; Connecticut wetland and hydric soils; soil classification; soil mapping;
221 describing soils; soil interpretations; farmland protection; conservation easements;
222 accessing federal and state grants; farmland access and affordability; farmland
223 restoration; best management practices for agriculture; climate change adaptation
224 strategies for agriculture; and large landscape strategic planning for a variety of
225 audiences at national, regional, state, and local levels. Audiences include federal
226 and State agencies, land trusts, engineers, sanitarians, soil scientists,
227 conservationists, municipal planners, wetland and conservation commissions,
228 farmers, foresters, landowners, and agricultural and environmental organizations.
229 Venues have included Yale University Seminars, AFT conferences, NRCS, the
230 Connecticut and New York Farm Bureaus, and conferences of the Connecticut
231 Land Conservation Council.
232

233 18. Q: Do you have additional education beyond your Cornell undergraduate degree?

234
235 A: Yes. I have had hundreds of hours of training in all aspects of soils and
236 conservation, through USDA, including additional coursework at Texas A&M
237 University and Lancaster College and Schumacher College in the United
238 Kingdom.

239 19. Q: Do you have any current professional affiliations?

240
241 A: Yes. I am a member of the Connecticut Council on Environmental Quality. I also
242 am currently affiliated with the following organizations:

243
244 Soil and Water Conservation Society
245 Working Lands Alliance Steering Committee
246 New Connecticut Farmer Alliance
247 Connecticut Land Conservation Council
248 Connecticut Food System Alliance
249 Connecticut Northeast Organic Farming Association
250 National Young Farmers Coalition
251 Northeast Sustainable Ag Working Group
252 Connecticut Farmland Access Working Group
253

254 20. Q: Do you have any publications?

255
256 A: Yes. I have contributed to the content and outreach for many publications,
257 including the following:
258

260 A. PLANNING FOR AGRICULTURE: A GUIDE FOR CONNECTICUT
261 MUNICIPALITIES, American Farmland Trust and Connecticut Conference of
262 Municipalities, 2016 edition.

263

264 B. PLOWING AHEAD: Farmland Preservation in 2010 and Beyond, Working
265 Lands Alliance, March 2010.

266

267 C. ZONING REGULATIONS AND ORDINANCES FOR LIVESTOCK-
268 Guidance and Recommendations for Connecticut Municipalities, Eastern
269 Connecticut Resource Conservation and Development Area, Inc., 2012.

270

271 D. FARMLAND CONNECTIONS- A Guide for Connecticut Towns, Institutions,
272 and Land Trusts Using or Leasing Farmland, American Farmland Trust and
273 University of Connecticut, 2011.

274

275 E. CONSERVATION OPTIONS FOR CONNECTICUT FARMLAND- a Guide
276 for Landowners, Land Trusts and Municipalities, 2015.

277

278 F. A LANDOWNERS GUIDE TO LEASING LAND FOR FARMING, Land for
279 Good, Land Access Project, 2012.

280

281 G. UNITED STATES DEPARTMENT OF AGRICULTURE, Natural Resources
282 Conservation Service, Soil Survey of Connecticut, 2008.

283

284 H. UNITED STATES DEPARTMENT OF AGRICULTURE, Natural Resources
285 Conservation Service, Soil Survey of Chenango County, NY, 1985.

286

287 I. UNITED STATES DEPARTMENT OF AGRICULTURE, Natural Resources
288 Conservation Service, Soil Survey of Sullivan County, NY, 1989.

289

290 J. UNITED STATES DEPARTMENT OF AGRICULTURE, Natural Resources
291 Conservation Service, Soil Survey of Putnam and Westchester Counties, NY,
292 1994.

293

294 K. LANDSCAPE DETERMINANTS OF SOIL CARBON AND NITROGEN
295 STORAGE IN SOUTHERN NEW ENGLAND, Kulmatiski, *et al.*, 2014.

296

297 L. ECOSYSTEMS: BALANCING SCIENCE WITH MANAGEMENT, Vogt, *et*
298 *al.*, 1996.

299

300

301 * * * * *

302

303

304 21. Q: Have you read the Petition for Declaratory Ruling in this case?

305

306 A: Yes.

307

308 22. Q: Have you reviewed Ex. H to that Petition, which is entitled "Soil Scientists

309 Report"?

310

311 A: Yes.

312

313 23. Q: Does that Report include a document called, "Custom Soil Resource Report for

314 State of Connecticut"?

315

316 A: Yes.

317

318 24. Q: Now, this Custom Report has the NRCS letterhead on the first page – why is that?

319

320 A: This is a custom soil survey report that includes a soil map for the area in

321 Simsbury where this project is going to be located. This is an example of the soil

322 maps I was talking about earlier that are available digitally to the public through

323 the NRCS. The petitioner here is using the NRCS map to identify the soils, and

324 which ones are potentially dominated by prime farmland soils.

325

326 25. Q: Could you explain how to read this map to find out where the prime farmland is?

327

328 A. Yes. Page 6 of the Custom Report has the map on it. There are five areas

329 (polygons), indicated by green labels numbered 1 through 5. Each of these areas

330 has several orange numbers clustered in it. These orange numbers are symbols

331 that denote "map units."

332

333 Pages 8 through 10 contain a chart that has a box for each green area. Within the

334 box for each green area, there is a list of the orange numbers, called "map unit

335 symbols," that appear in that area. For example, green area #1 has eight (8) map

336 unit symbols: 23A, 34A, 34B, 38C, 38E, 305, 306, and 308. Each of these map

337 unit symbols corresponds to a dominant soil or soils, called "map unit name" on

338 the chart.

339

340 Then, pages 12 through 45 contain a brief description of dominant soils. For

341 example, the first soil type for green area #1 is Sudbury sandy loam, which is map

342 unit symbol 23A. The brief description of the dominant soil in this map unit,

343 Sudbury sandy loam, is found on pages 19 – 20. The description of the soil type

344 includes, on the last line under the first heading ("Map Unit Setting"), the

345 farmland classification for the soil type. You can see that Sudbury sandy loam is

346 designated prime farmland.

347

348 26. Q: Are there other types of farmland soils besides prime farmland?

349

350 A: Yes. Under the Farmland Protection Policy Act, which I mentioned earlier,

351 farmland also includes farmland "that is of statewide or local importance for the
352 production of food, feed, fiber, forage, or oilseed crops, as determined by the
353 appropriate State or unit of local government agency or agencies, and that the
354 Secretary [of Agriculture] determines should be considered as farmland for the
355 purposes of this chapter." 7 U.S.C. § 4201(c).

356
357 27. Q: Does this Custom Report show that the project will be located on farmland soils?

358
359 A: Yes. This project will be located on about 213 acres of farmland soils out of the
360 289 total acres, or 74%.

361
362 28. Q: Does the Custom Report indicate that any of this is prime farmland?

363
364 A: Yes. About 90 acres of this is prime farmland.

365
366 29. Q: Does the Custom Report indicate that any of the farmland is farmland of
367 statewide importance?

368
369 A: Yes. About 123 acres of this is farmland of statewide importance.

370
371 * * * * *

372
373

374 30. Q: What makes soil good for farming?

375
376 A: There are many factors, including: texture (whether it's sandy, silty, or clay-like);
377 consistence (whether it's firm or soft); structure (how the soil particles are bound
378 together, that is, whether the soil is crumbly or compacted); nutrient status (there
379 are 13 different nutrients); the soil biology (what biota are present); depth to
380 bedrock and the water table; and the slope of the land (the rise or run over 100
381 feet). Current and past management practices, climate, and spacial extent are also
382 important.

383
384 There are five soil-forming factors that combine to make soils different. We have
385 very complex soil landscape patterns in Connecticut. For example, in this portion
386 of Simsbury, the parent material is dominated by sand and gravel deposited by
387 glacial meltwaters. In combination with the topography, biota, climate, and
388 passage of time, it has created the soils we see today.

389
390 The soils in Simsbury have been 16,000 - 17,000 years in the making. Over time,
391 soils develop a sequence of layers – called "horizons." The number of horizons
392 varies with the soil. There can be anywhere from 2 to 30 horizons. The upper 6
393 feet are the most important for supporting plant growth; the upper 24 inches are
394 the most critical. Each horizon will have different physical and chemical
395 properties and vary spatially across the landscape. So, understanding the horizons
396 and the order that they appear, and their variability is also very important for

397 classifying and interpreting the soils for different uses, including for agricultural
398 productivity. It also helps us understand how water, nutrients, and biota move
399 over and through the soil.

400
401 Generally, soils that are prime farmland soils, and have been properly managed,
402 are excellent for growing common crops with the fewest inputs and least
403 environmental impact. They are also the most resilient to the impacts of climate
404 change.

405
406 31. Q: Is the soil where this project is proposed to be located on such soils?

407
408 A: Yes. The soils in the Connecticut River Valley, which is where this project is
409 proposed to be located, has some of the highest concentrations of prime farmland
410 soils in Connecticut.

411
412 32. Q: Is there anything else unique about the farmland in the Connecticut River Valley?

413
414 A: Yes. The Connecticut River Valley (or Lowlands) is also a "micro-climate," that
415 is, it is an area where temperature, humidity, wind, and sunlight vary from the
416 larger surrounding area. It has different climate and soils and a longer growing
417 season than most of New England, with a corresponding different – and greater –
418 potential for agriculture. It is a USDA recognized unique physiographic region
419 known as a Major Land Resource Area.

420
421 The AFT has recognized the Connecticut River Valley as one of the most
422 threatened – from a farmland resource point of view – in the United States. It
423 has easy access to highways, is between New York City and Boston, and has a
424 dominance of well drained soils that are easy to develop. It is also in an area
425 where sprawl development is the norm.

426
427 * * * * *

428
429 430 33. Q: You testified that you have reviewed the Petition in this case. What, if anything,
431 about the construction of this project will degrade the soil?

432
433 A: There are a number of things. The soil will be disturbed by a number of
434 activities: trenching for placing the wiring that connects the panels to the
435 equipment pads and substation; cutting and filling (grading) slopes to maximize
436 solar efficiency; building of access roads; driving of posts into the ground;
437 pouring for concrete supports; general construction activity; potential for erosion
438 and sedimentation; creation of impervious surfaces that will change how water
439 moves over and through the landscape; and changing the vegetation that is already
440 there.
441

443 These activities create a number of problems. A major problem is compaction of
444 the soil. All the construction activities at the site will cause compaction.

445 Compaction changes the structure and consistence of the soil, making it harder
446 and firmer. This changes the way water, nutrients, and biota pass through the soil,
447 and that change then leads to changes in the soil's chemistry, biology, and
448 hydrology. Compaction of a soil never leads to greater productivity— it always
449 reduces it.

450
451 Another major problem is disturbance of the soil horizons by trenching and
452 grading, and installation/removal of infrastructure, including the steel piles that
453 hold the panels. Any time there is digging in the soil, the soil horizons will be
454 changed. As with compaction, changing the soil horizons will affect the soil's
455 structure, consistence, and possibly texture (if horizons are not placed back in the
456 correct sequence), and will change the way water, nutrients, and biota move over
457 and through it. Remember that the existing soil horizons at the project site have
458 been thousands of years in the making. In their current state, they are providing
459 very productive soil and land. Construction of this project will cause these soil
460 horizons to be changed – for the worse, not for the better.

461
462 34. Q: In Section 7.12 of the Petition, the petitioner describes how it plans to minimize
463 the effects of the construction of the project on the soil; do you agree that this
464 analysis is adequate?

465
466 A: No.

467
468 35. Q: Why not?

469
470 A: There is a lack of detail and underestimation of the impact of the activities. For
471 example, if driven steel posts are used to hold the panels, there will be
472 approximately 363 per acre and 45,738+ on the 126 acres! Heavy equipment is
473 needed to pound these into the soils and to remove them in the future. Trenches
474 3-8 feet across and 3-8 feet in depth will be needed for conduit and wire
475 installation, disturbing over a mile with heavy equipment and disrupting soil
476 horizons and properties. Excavations and heavy equipment will be needed to
477 install the 14 equipment pads and roads. Heavy equipment on the site used under
478 wet soil conditions can exacerbate compaction. Who will decide if it's too wet to
479 drive on the soils? Even under a best case scenario there will be soil impacts that
480 would degrade soil health. Details that include base line soil information, erosion
481 and sediment control, qualified personnel to evaluate and monitor soils during
482 construction, and extra efforts to reduce compaction prior to planting the
483 vegetative cover are needed. Overall there will be over 40 acres of direct
484 disturbance to prime and important farmland soils, hardly a minimal impact.

485
486 36. Q: Have you visited the project site?

487
488 A: Yes. I went there on August 14, 2017.

489
490 37. Q: Did you meet any representatives of the petitioner there?
491
492 A: Yes. I met with three people representing the petitioner – Jeff Peterson, who is a
493 soil scientist, and Aileen Kenney of Wind Solar LLC, and Susan Moberg of
494 Vanasse, Hangen, Brustlin, Inc.
495
496 38. Q: Did you inspect the site with them?
497
498 A: Yes. We looked at portions of each piece of land that will have a solar array on it.
499 We also examined the soils with spade and hand auger in some areas.
500
501 39. Q: Did you have any discussions with them about the steps the petitioner was
502 proposing to protect the soils during construction?
503
504 A: Yes.
505
506 40. Q: And what was the substance of those discussions?
507
508 A: They acknowledged that the focus of the soil investigations was to locate map
509 areas of wetland soils and not to provide detailed soils information for
510 construction or remediation. They also agreed that the petitioner should provide
511 more detailed information on how the petitioner intends to protect and restore the
512 soil resources for agriculture.
513
514 41. Q: Looking again at Section 7.12 of the Petition, the petitioner describes how soil
515 health at the project site will actually improve if the agricultural fields are taken
516 out of production for 20 – 25 years and covered with grasslands; do you agree
517 with this analysis?
518
519 A: No.
520
521 42. Q: Why not?
522
523 A: If the land is not being managed for agriculture, but is under a vegetative
524 management regime to minimize costs and support the solar array, there will be
525 ongoing changes to the soil that will not be beneficial to the soil health for future
526 agricultural use. The soil health will already have been compromised during the
527 development of the solar arrays. The compaction, grading, and trenching that
528 occurred during construction will change the way water, air, and nutrients move
529 through the soil. This will cause a change in the soil's biological, physical, and
530 chemical properties. For example, different biota will grow. There could be a
531 buildup of nematodes, insects, or weed seeds. Metal posts could corrode and
532 leach contaminants into the soil. Since the soil is not being farmed, this will
533 change the amount and kind of organic matter in it. The pH and other nutrients
534 could drop since lime and fertilizer are not being added. There could be sheeting

535 of water in front of the drip-edge of the panels, leading to the leaching of nutrients
536 from the soil and the loss of organic matter.
537

538 The Petition says that the planting of grasslands will improve soil health, but this
539 is not correct because soil health is a function of assessing and managing dynamic
540 soil properties for a particular use (in this case soil health for agriculture and not
541 for marginal grassland habitat). Since the soils will be degraded by developing
542 the solar arrays, it is already a negative for soil health. Will there be erosion
543 during and after the development? How much compaction will take place pre and
544 post development? How much organic matter will be added with the vegetation
545 under so much shading from the arrays? These potential impacts are likely to
546 further degrade the soil health under solar array conditions. Agriculture in
547 Connecticut is very dynamic and diverse. If the site were to continue in
548 agriculture, a management regime with better soil health than under a solar array
549 is much more likely.
550

551 43. Q: Well, is it possible to restore the soil after construction to its pre-construction
552 state?
553

554 A: In principal one can attempt to reclaim the soils post-construction to
555 preconstruction conditions, but this project does not provide for that.
556

557 44. Q: What do you mean, this project does not provide for reclamation?
558

559 A: The first thing one has to know is what the current state of the soil is, so that one
560 has a baseline for what to reclaim the soil to. The idea is to measure what is there
561 before construction and then meet or exceed it after.
562

563 One needs to know the vertical and spacial extent of specific soil features and
564 horizons to make sure the restoration doesn't further damage the soils. A
565 qualified soil scientist should take transects in the areas where there will be
566 trenching and grading, and where the concrete pads and access roads will go in
567 order to determine the soil horizons and their physical and chemical properties.
568 Essentially, the petitioner needs to do a field verification of the soils and of the
569 map units listed on the NRCS map in the Custom Report. This has not been done
570 here.
571

572 Then, for true reclamation, where there is soil removal and/or disturbance, the
573 topsoil, subsoil, and substratum need to be properly removed, protected, managed,
574 and replaced. Again, during construction, a qualified soil scientist should be on-
575 site measuring the thickness of the soil horizons, working with the installers, and
576 stockpiling the soils separately. The Petition does not say that this is going to be
577 done. In fact, nothing says that the topsoil that is going to be removed is even
578 going to be staying on-site. Right now what would prevent it from being sold?
579

580 So, while it is possible to reduce impacts to the soils, there has to be a well
581 thought out process for how the site is developed and how it is managed, which
582 this project lacks. For example, how will the activities be sequenced? Will the
583 areas to be graded just be bulldozed to the desired grade or will soil horizons be
584 carefully removed and then replaced? What is the level of compaction that is
585 going to occur and where?

586
587 45. Q: The Petition includes a Decommissioning Plan, which is Exhibit S to the Petition;
588 have you reviewed this?

589 A: Yes.

590
591 46. Q: Does this plan adequately provide for soil restoration and reclamation?

592 A: No.

593
594 47. Q: Why not?

595
596 A: There is little detail in this plan that describes how the soils will be protected and
597 restored during the decommissioning process. It appears that project components
598 are going to be ripped from the ground. It also looks as though major components
599 may be disassembled and staged on the ground during the process, further
600 impacting soils. In addition, it appears that not all buried elements are going to be
601 removed. For example, Section 3.5 of the Petition says footings for the concrete
602 pads will extend 4 to 5 feet below grade, but Section 4.3 of the Decommissioning
603 Plan says that anchors for the pads will be removed only to a depth of 2 feet
604 below grade. So that leaves only 2 feet of soil material in those areas which in
605 sandy soils is less than adequate. Where is the back fill coming from, has it been
606 stored on site? The valuable wire will be removed from the ground, but will the
607 conduit be left? Removing it causes more soil disruption; leaving it may change
608 the soil hydrologic system as a preferential flow path. The innovation of placing
609 the gravel road on geotextile to reduce soil disturbance is good, but the
610 compaction needs to be restored to prior development conditions, not just to the
611 current surrounding areas. There is no mention of restoring the soil fertility, or
612 addressing any weeds or invasive species that have taken hold.

613
614
615 Another major problem with the Decommissioning Plan is that no money is being
616 set aside for it. The plan assumes that the salvage value of the project's
617 components will cover the cost of decommissioning; however, there are at least
618 two problems with this. One, decommissioning that actually restores the site and
619 the soils to their original condition is likely to be more expensive than the
620 estimates the petitioner has provided. Two, the future sale of scrap metal is not a
621 secure source of funds – prices can vary; there may be no entity around at the end
622 of the project that is motivated to conduct the sale. A set-aside now of actual
623 funds provides a much better assurance that the funds will be there when they are
624 needed at the time of decommissioning.

626
627 48. Q: You've discussed the impacts to the soils at the project site of having a solar array
628 be in place there for 25 years; are there other impacts to agriculture that would
629 result from this land not being farmed for a quarter century?

630
631 A: Yes. A basic problem with a project like this is that it takes the land out of
632 agricultural production for 25 years while the solar array is in place. This is a
633 large parcel of high-quality agricultural land. There are certain types of
634 agriculture that need this much space, like large scale specialty crop or forage
635 crop production. We have a deficit of available high quality farmland in the State.
636 For example, the Connecticut Farmlink, a matching service of farm seekers and
637 land owners, has over 400 people looking for land to farm in Connecticut, and
638 that doesn't include many of the existing farms that want a secure land base to
639 grow their businesses. It will be difficult for the current lessee to find comparable
640 acreage, which either puts that business in jeopardy or results in the current lessee
641 out-competing other farmers for a dwindling land base. When access to a parcel
642 of this size and quality is lost, even temporarily, it makes it more difficult for
643 local farming to succeed. Also, as I've mentioned, this parcel is in the unique
644 micro-climate of the Connecticut River Valley, so it is even more valuable as
645 agricultural land. Losing 130 acres in the Connecticut River Valley is significant
646 from a regional perspective. As agricultural land disappears, so does the
647 infrastructure that supports local agriculture, like feed and equipment vendors,
648 technical specialists, and skilled labor, making it even harder for existing farms to
649 survive.

650
651 That is an alarming result because we want local agriculture as part of the
652 ecosystem, the economy, and our quality of life. Connecticut has recognized this
653 as a major policy goal. Connecticut has a well-established farmland protection
654 program – it is one of the oldest in the country. Well-managed agricultural land
655 provides habitat, clean air and water, water quantity, scenic vistas, and
656 community character. It protects cultural resources and benefits the local
657 economy. Farms are small businesses that create local jobs, and they support
658 other small businesses that supply them, generating local economic activity by
659 relying on local people and materials. They also generate more tax dollars than
660 they require in State or municipal services, a good deal for us all.

661
662 The ultimate goal is sustainability. Locally grown food is important to the food
663 system because it is consumed locally and thus transported shorter distances,
664 reducing our carbon footprint. There is the need for less storage of the food,
665 which also saves energy and results in less food waste. The food is sold directly
666 to consumers, which raises food-choice consciousness.

667
668 Actually, the sustainability goal is the same goal that is behind the installation of
669 renewable energy facilities – the obtaining of a local, sustainable source for
670 energy and food. There is no question that a renewable solar energy project like
671 the one proposed here is good, but it should not be put on precious, irreplaceable

672 agricultural land. From a climate change mitigation and adaptation strategy both
673 local agriculture and solar arrays have much to offer. Agricultural land can be
674 managed to store large quantities of carbon, and prime farmland is more resilient
675 to the impacts of climate change. Connecticut will be one of the few regions of
676 the country that will have a climate suitable for people and for many forms of
677 agriculture. Our agricultural land in New England will only become more critical
678 in the face of floods, drought, unpredictable weather patterns, and searing heat in
679 other parts of the United States. It would be a mistake to jeopardize food security
680 in the region by removing farmland from production for 25 years.

Certification of Service

I, Jason E. Bowsza hereby certify that a copy of the foregoing Pre-Filed Testimony of Kipen (Kip) Kolesinskas was sent on September 5, 2017, by e-mail and by first class mail, postage prepaid to the following parties on the Service List in this matter:

Petitioner, DWW Solar II, LLC

Lee D. Hoffman, Esq.
Pullman & Comley, LLC
90 State House Square
Hartford, CT 06103-3702
Tel.: (860) 424-4315
Fax: (860) 424-4370
lhoffman@pullcom.com

Town of Simsbury

Jesse A. Langer, Esq.
Robert M. DeCrescenzo, Esq.
Updike, Kelly & Spellacy, P.C.
One Century Tower
265 Church Street
New Haven, CT 06510
Tel.: (203) 786-8310
jlanger@uks.com
bdecrescenzo@uks.com

Simsbury Residents Flammini, *et al.*

Alan Kosloff, Esq.
Alter & Pearson, LLC
701 Hebron Ave.
Glastonbury, CT 06033
Tel: (860) 652-4020
Fax: (860) 652-4022
AKosloff@alterpearson.com

Aileen Kenney
Deepwater Wind, LLC
VP, Permitting & Environmental Affairs
56 Exchange Terrace, Suite 300
Providence, RI 02903
Tel.: (401) 648-0607
akenney@dwwind.com

Connecticut Department of Energy and Environmental Protection

Kirsten S.P. Rigney, Esq.
Bureau of Energy Technology Policy
DEEP
10 Franklin Square
New Britain, CT 06051
Tel.: (860) 827-2984
Fax: (860) 827-2806
Kirsten.Rigney@ct.gov

Jason E. Bowsza