

**Petition No. 1312**  
**Responses to Interrogatories**  
**Set Two**  
**October 24, 2017**

**Project Schedule**

80. *Describe the commitments and/or time constraints related to project development that were referred to during the September 26, 2017 hearing.*

A solar PV project of this size is governed by multiple scheduling constraints, including:

- Consistent with NDDB's July 10, 2017 letter containing preliminary comments and recommendations, tree clearing will be completed after November 1 and before March 30 as a protection measure to avoid impacts to bats. To achieve substantial completion of construction in early 2019 and Commercial Operation in mid-2019, we need to commence construction in February or March of 2018. This deadline is set to keep the project on schedule so that we manage the project development costs and construction financing interest carrying costs within budgets.
- Utility interconnection work must occur either spring or fall of 2018 to fit into the CL&P substation's allowable construction downtime period and our construction schedule.
- Long lead time items, such as utility-scale transformers and other electrical protective equipment must be purchased 4 to 12 months ahead of site installation.
- The site lease option has been extended one month until the end of October 2017. Our landowners are negotiating with the bank that owns the property to extend the lease option until December 31, 2017.
- The land lease cannot be finalized until all permits, including the interconnection study requirements, are approved and complete.
- Due to new requirements that ISO-NE is imposing on CL&P and the project for the interconnection, the interconnection study is four months behind schedule and, hopefully, will be completed in another 45 days.
- Based on our executed PPAs with Eversource, National Grid, and Unitil, we are required to receive all Permits to construct the solar Facility by October 31, 2018, including interconnection. We seek to be in construction slightly ahead of this time to manage our costs and unexpected construction delays due to weather. We also plan to consult with DEEP to determine if tree cutting (but not removal) can be conducted ahead of full Construction General Permit approval, so that it can occur between November 1 and March 30 to be protective of bats that may use the Project area.
- Commercial Operation Date must occur no later than September 30, 2019 in accordance with the PPA. We seek to complete the construction ahead of schedule, preferably in early 2019, but no later than mid-2019, to control project costs and to leave buffer time for unexpected scheduling delays, such as weather delays and equipment long-lead time delays.

---

## **Public Outreach**

81. *Is it correct to say that, even though the proposed facility is a generating facility with a capacity of over 10 MW, it is exempt from Connecticut General Statutes Section 22a-20a (Environmental Justice Act) because it is a solar facility?*

Yes, the project is exempted from the Act because it is a nonemitting and nonpolluting renewable energy technology that emits zero pollutants.

## **Decommissioning Plan**

82. *What is the status of decommissioning plan? If the decommissioning plan has been finalized, please provide a copy.*

A decommissioning plan has not been finalized. We had anticipated finalizing the plan once a decision is obtained from the Siting Council on this Petition. A draft plan can be provided to the Siting Council on request.

## **Environmental/Wildlife**

83. *On page 8 of the pre-filed testimony of Brian Butler, it notes that a copy of the final report on the Golden-winged warbler study will be prepared and submitted to Connecticut Department of Energy and Environmental Protection (DEEP) and the Council when complete. What is the status of such report? If the report is complete, please provide a copy of such report.*

Oxbow Associates, Inc. (Oxbow) prepared a report documenting the field investigations relating to the potential compatibility of the four (4) hay fields/horse pastures to serve as breeding habitat for the golden-winged warbler. A copy of this report is provided as Exhibit 6 to Ms. Foster's prefiled testimony. A copy of this report will be filed with DEEP NDDB in the near term.

84. *Would the "Bat Protection Recommendations" in the DEEP Preliminary Natural Diversity Database Letter dated July 10, 2017 also be protective of the northern long-eared bat, particularly because of the seasonal restriction limiting tree cutting to November through March?*

Yes. While NDDB did not identify Northern long-eared bat (NLEB) as a species of concern for the Project Site in its July 10, 2017 letter, adherence with the NDDB tree clearing recommendations for bat protection (clearing limited to November 1 through March 30) would be protective of the non-migratory NLEB as well as the other bats identified.

---

85. *Has the Petitioner considered a seasonal restriction on tree cutting to protect the breeding birds listed in Table 2.4-1 on page 8 of the Environmental Assessment? If yes, would the timeline overlap with the seasonal restrictions to protect bats? Explain.*

While not specifically targeted to protection of breeding birds, tree cutting during the time period recommended for bat protection will occur prior to the initiation of nesting activity for most species. Further, following tree cutting, the Site will continue to be an active construction area through Project completion, which will deter birds seeking nest sites from locating within the Project Site.

86. *Map the vernal pool (cryptic vernal pool portion) of Wetland 1 and provide a narrative of why the boundaries of this pool were established as shown. Discuss the physical characteristics of the pooled area (s) Wetland 1 that distinguish these areas from the rest of Wetland 1.*

See Attachment 1 to these responses, Oxbow Associates, Inc., Site Visit Summary – Cryptic Vernal Pool Delineation – October 5, 2017.

87. *Please provide photographs of the marbled salamander and four toed salamander found by Dr. Klemens during the Council site visit on September 26, 2017 at Wetland 1.*

See Exhibit 6 to Ms. Foster's prefiled testimony, Oxbow Associates, Inc., Species Account Responses to NDDP Preliminary Comment Letter (7/10/17); (non-Chiropteran species), dated October 20, 2017, Figures 3 and 4.

88. *Page 8 of the pre-filed testimony of Brian Butler states that two species of salamander and six frogs were found, but no species were identified. Provide a list of amphibians and reptiles documented on site as part of your work. Please describe where on site these were found and if multiple localities were documented for any species.*

See Exhibit 6 to Ms. Foster's pre-filed testimony, Oxbow Associates, Inc., Species Account Responses to NDDP Preliminary Comment Letter (7/10/17); (non-Chiropteran species), dated October 20, 2017, Table 2. List of herpetozoan species observed September – October, 2017.

89. *Please add the following species documented during the Council site visit to the previous information requested in question 88: Marbled Salamander, 4-toed Salamander, Slimy Salamander, Red-spotted Newt, Wood Frog, American Toad, and Spring Peeper on the site species list.*

See Exhibit 6 to Ms. Foster's prefiled testimony, Oxbow Associates, Inc., Species Account Responses to NDDP Preliminary Comment Letter (7/10/17); (non-Chiropteran species), dated October 20, 2017, Table 2. List of herpetozoan species observed September – October, 2017.

---

90. *Analyze the landscape around the vernal pool portion of Wetland 1 using Calhoun and Klemens (2002). Show the vernal pool area, the vernal pool envelope, and the critical terrestrial habitat.*

Based on the cryptic vernal pool delineation that was completed by Oxbow, two (2) cryptic vernal pools were delineated (see Attachment 1). However, because the two cryptic vernal pools are part of a single wetland system, we have evaluated potential impacts to them together, as a single system and not in isolation. Attachment 1, Figure 1 depicts the vernal pool depressions, envelope and critical terrestrial habitat (CTH) boundaries. Attachment 2, Figures 1 - 3 depict the vernal pool depressions, envelope and CTH boundaries with an overlay of the revised facility layout. Based on the revised facility layout, the proposed limits of disturbance will completely avoid the two cryptic vernal pools and 100-foot vernal pool envelopes within Wetland 1. The CTH (area within 100-750 feet of the pool's edge, Calhoun and Klemens (2002) page 16) covers an area of approximately 63.08 acres. Development within the CTH (tree clearing area and solar array development) will cover approximately 26.14 acres or 41.4 percent of the CTH projected by the Wetland 1 vernal pools ("CVP" and "CVPx"). However, with the reduction of alteration of CTH projected by Wetland 5 vernal pool (17.3%), the aggregate alteration of CTH for the pools on the Site is 31.6%. It should be noted that approximately two (2) percent of the CTH associated with Wetland 1 vernal pools (1.36 acres) is currently altered field area and the proposed condition will largely mimic the existing condition in that area in that it will remain field.

As a result of revisions to the facility layout, there have been changes to the proposed impacts to CTH associated with previously identified Wetland V. The proposed limits of disturbance completely avoid Wetland V, including the vernal pool depression and the 100-foot vernal pool envelope. The CTH covers an area of approximately 43.45 acres. Development under the reduced footprint design now under consideration within the CTH (tree clearing area and solar array development) will cover approximately 7.5 acres or 17.3 percent of the CTH. As depicted on Figures 1 - 3 in Attachment 2, the CTH associated with the vernal pool in Wetland V overlaps with the CTH associated with the cryptic vernal pools in Wetland 1 (approximately 11.94 acres of overlap). Based on the overlapping, continuous, unfragmented system between the CTHs, these areas likely function as a single, mutually supportive system and therefore, should be assessed together. As a single system, the CTH totals approximately 94.57 acres and the development area (tree clearing area and solar array development) within the single combined CTH system totals approximately 29.91 acres or 31.6 percent.

91. *Calculate the percentage of development proposed in each of these areas. Express this as a percentage of each ring—the pool, the envelope, the critical terrestrial habitat.*

The following table identifies the percentage of development (tree clearing area and solar array development) proposed in each of these areas expressed as a percentage of each ring. See response to Interrogatory Number 90 for additional information.

| Vernal Pool | Pool | Envelope | Critical Terrestrial |
|-------------|------|----------|----------------------|
|-------------|------|----------|----------------------|

|                                                       |   |   | Habitat (CTH) |
|-------------------------------------------------------|---|---|---------------|
| Wetland I - CVP                                       | 0 | 0 | 41.4%         |
| Wetland I - CVPx                                      | 0 | 0 |               |
| Wetland V                                             | 0 | 0 | 17.3%         |
| Single Complex (Wetland 1 CVP and CVPx and Wetland V) | 0 | 0 | 31.6%         |

92. *Is the post-development condition of the cryptic vernal pool in Wetland 1 compliant with development guidelines set forth in Table 3 on page 18 and pages 18-26 of Calhoun and Klemens (2002)?*

No. The post-development condition of the cryptic vernal pool in Wetland 1 exceeds the recommended less than 25% developed area guideline set forth in Table 3 on page 18 of Calhoun and Klemens (2002). Please see responses to Interrogatory Numbers 90 and 91 for additional information.

Nonetheless, the net impact to the aggregate, overlapping CTH associated with the three pools is 31.6% and, unlike more conventional development (commercial, residential) when completed, the array field will not have many of the legacy mortality sources (to vernal pool wildlife) that result from conventional projects built in close proximity to vernal pools. Specifically, there will be no ongoing road mortality to frogs, toads or salamanders. Similarly, no animals will be captured in storm gutters and deep sump catch basins. Although the array field will not provide terrestrial habitat, it will impede, but not prevent movement by salamander species and will do little to impede nocturnal migration by wood frogs.

93. *If compliance cannot be achieved as described in question 92, please describe the potential impacts to Wetland 1 and its wildlife and any potential mitigation by project redesign.*

The solar array field has been redesigned to reduce impacts to the vernal pool system located within Wetlands 1 (and V). Under the amended design the limit of work is at or greater than 145 horizontal feet at all points from CVP and CVPx. Additionally, approximately 100 contiguous acres encompassing all of Wetland 1 and Wetland V, including the vernal pool depressions and 100-foot envelopes and 58.58 percent of the CTH associated with Wetland 1 vernal pools will enjoy permanent protection (68.31 percent of the CTH for all three vernal pools (Wetland 1 and V)). Exhibit 3 to Mr. Lindsay's supplemental prefiled testimony depicts the approximate 100 acre area proposed for conservation restriction.

94. *Provide pre-development and post-development water budgets for all receiving wetlands on the site, including the 2 vernal pools.*

The Site stormwater management design is being revised based on the revised solar array configuration. Post-development water budgets for the receiving wetlands on the site cannot be calculated until this effort is complete. Ameresco will provide this information in its D&M plan submittal.

---

95. *Would eastern box turtles be expected to use the cleared areas around the solar arrays?*

Box turtles will be excluded from the fenced in array field by a counter-sunk fence. The secured fence is intended to avoid the potential for mowing mortality to turtles that would access the array with a raised fence configuration. However, the shade aprons, outside the fence, that will be maintained not more than twice annually and only between November 1 and April 15, will be available for feeding, thermoregulation, and possibly nesting.

96. *Would these cleared areas serve as an attraction zone for eastern box turtles?*

Yes. In that regard, we propose to isolate the array fields where harm may come to turtles during mowing, but as stated above, the cleared zones outside the security fence can provide habitat amenities with an easily implemented mowing schedule (November 1 - April 15).

97. *What provisions could be made for the fence that surrounds the facility to allow for the passage of small wildlife such as eastern box turtles?*

CS is proposing to counter-sink the security fence as explained above. Smaller animals (snakes, Anurans, and to lesser extent salamanders) will be able to enter and exit the array field without impediment.

98. *Testimony was provided that the grassy areas between the arrays will be mowed. How will this be accomplished? Provide details.*

Conventional mowing equipment will be utilized. Isolating the solar array with a counter-sunk security fence will avoid potential for mortality of adult box turtles.

99. *Incidental take by mower kill can be a major impact to the long-lived eastern box turtle. How will this be avoided?*

See Interrogatories 95 through 98.

100. *In testimony/cross examination it was established that the State-threatened slimy salamander is present on the site. To recap, one large male was collected on September 13, 2017, at Lookout Point, 0.4 mi SSE of the summit of Candlewood Mountain. A specimen that was likely a juvenile of this species escaped capture during the Council site visit on September 26, 2017. As the presence of this species has been confirmed on or immediately adjacent to the subject property, what measures will be taken to avoid impacts to this species?*

We understand through verbal communications that one large male State-threatened slimy salamander was collected on September 13, 2017, at Lookout Point, 0.4 mi SSE of the summit of Candlewood Mountain, however, we have not independently verified who, or what the disposition of the specimen was through documented evidence (museum record, etc.). A dark, blackish salamander was observed when a decaying log was turned during a

---

site visit on September 26th as part of the Connecticut Siting Council (CSC) proceedings. The individual exhibited rapid movements and in consultation with Dr. Michael Klemens, the individual is thought to have been either a lead-back salamander or potentially a juvenile slimy salamander. As noted, the specimen escaped capture and as such, the species was not confirmed. The Oxbow Species Account report included as Exhibit 6 to Ms. Foster's prefiled testimony discusses measures that will be taken to avoid impacts to this species.

101. *Please map all areas of potential slimy salamander habitat on the entire site and provide a narrative describing how these areas were determined to be slimy salamander habitat. Please include the size/species of trees, the presence of talus, the amount of duff and rotting logs, slope, and aspect. Also, provide photographs to document these findings keyed to a map illustrating these areas.*

Attachment 3 to these responses contains maps of all areas identified as prime or preferred slimy salamander habitat on the Site. These areas of prime habitat were determined based on the presence of mature deciduous woodland with slopes greater than 35%. However, the entire site is potential habitat for the slimy salamander. Photographs documenting these findings keyed to the maps included in Attachment 3 are also included in Attachment 3.

102. *Provide three maps as follows:*

- a) *A map showing the designated slimy salamander habitat areas;* See Appendix A of Exhibit 6 to Ms. Foster's prefiled testimony.
- b) *A map showing the designated slimy salamander habitat areas with a 100, 200, and 300 foot buffer clearly demarcated;* See Appendix B of Exhibit 6 to Ms. Foster's prefiled testimony.
- c) *A map showing the designated slimy salamander habitat areas with a 100, 200, and 300-foot buffer clearly demarcated overlain onto the site development plan;* See Appendix B of Exhibit 6 to Ms. Foster's prefiled testimony.

103. *Provide a narrative that expresses the amount of slimy salamander habitat present over the entire site as a percentage of the site.*

The solar array site totals approximately 163.5 acres. Of this approximately 20.9 acres (12%) are pasture land that is unsuitable habitat for slimy salamander. Oxbow mapped 32 acres (19.5%) of steeply sloped, high quality *P. glutinosus* in the northerly portion of the site, including areas east of the cryptic vernal pools (Wetland 1). An additional 15.6+/- acres (9.5%) of similar, high-quality habitat lies southeast of the cryptic pools and is bisected by Wetland 1 and its outfall to Rocky River. Finally, an area of qualitatively suitable high quality habitat in the southwestern portion of the property is 2.8+/- acres (1.7%). In total, 50.4+/- acres (30%) of high-quality slimy salamander habitat has been mapped for the property. See Appendix A of Exhibit 6 to Ms. Foster's prefiled testimony.

In addition to the two general cover types described and quantified above, the majority of the remainder of the site is mature, mesic, mixed age hardwood forest, comprising approximately 71.3 acres (43%).

---

The steeply sloped habitat is predominantly south, east or west facing. Only those portions significantly north of the summit of Candlewood Mountain has a northward aspect. Most of the mapped high quality habitat has the potential to be supportive of slimy salamander. The lower slope, lower elevation woodland is not a barrier to dispersal or movement, and may in part support slimy salamander though this trend would be in contrast with reported occurrences in the State. The pastures have no particular value to the species in terms of habitation, breeding and feeding.

Additionally, an approximate 100 acre contiguous, steep slope, mature forest perpetual conservation parcel will be created to preserve slimy salamander habitat, conserve existing unfragmented forest, and protect existing wetlands and vernal pools. It should be noted that approximately 30 acres located on an adjacent parcel are included in the 100 acre area proposed for conservation restriction and all of this area is steeply sloped mature forested habitat, suitable for slimy salamander habitation. Exhibit 3 to Mr. Lindsay's supplemental prefilled testimony depicts the approximate 100 acre area proposed for conservation restriction.

Finally, approximately 0.45+/- acre of high quality habitat will be altered by the realigned interconnection route. However, whereas the alignment is thirty (30) feet wide there will be secondary habitat effects, but this narrow cut is unlikely to preempt long-term movement by slimy salamander or other herpetozoan species.

104. *Provide a narrative that provides the percentages of that previously identified habitat that will be lost through the proposed clearing and development (1) without buffers, (2) with a 100-foot buffer, (3) with a 200-foot buffer, and (4) with a 300-foot buffer. This could be most usefully expressed in tabular format.*

The following table summarizes the previously identified high quality (HQ) slimy salamander habitat that will be lost through the proposed tree clearing and solar array development.

| Habitat Zone                                          | Steep Forest | 0 -100 foot buffer | 100 – 200 foot buffer | 200 - 300-foot buffer |
|-------------------------------------------------------|--------------|--------------------|-----------------------|-----------------------|
| Acres                                                 | 1.0 (1.4)*   | 2.9                | 6.4                   | 7.1                   |
| % of HQ Habitat Impact                                | 2 (2.8)*     | 0                  | 0                     | 0                     |
| % HQ Habitat Impact inclusive of additional 27 acres. | 1 (1.8)*     | 0                  | 0                     | 0                     |

\*Includes work within the interconnection corridor.

Based upon the tabular data above, 2% of on-site high-quality slimy salamander habitat will be directly altered. Using a denominator value inclusive of the additional, out-of-

---

property land to be conserved, 1% of the available high-quality habitat will be altered. The values derived inclusive of the interconnection corridor are included parenthetically.

105. *Can losses of slimy salamander habitat be mitigated by project re-design?*

Yes. The revised site plan included in Exhibit 2 of Mr. Lindsay's supplemental pre-filed testimony, contains revisions to the original site plan included in the Petition and Environmental Assessment. The revisions to the site plan were incorporated to reduce Project impacts to the vernal pools located in Wetlands 1 and V, slimy salamander habitat, and archaeological resources.

The currently proposed limit of work will, in large part avoid the encumbrance of steeply sloped forested habitat, with a concentration of the condensed solar array occupying the less significant, low-slope mesic forest and pasture land habitats. Additionally, the reduced panel field footprint will result in a concomitant reduction in tree clearing north and east of the array; contributing to the protection of potential or actual habitat for slimy salamander and other species.

Work within steep rocky forest for the interconnection alignment has been modified to take advantage of a relict haul road feature therein, thus reducing the number of trees to be cut and the ground surface disturbance necessary for pole installation.

A total or one (1) acre of steeply sloped woodland will be occupied within the limit of work for the arrays. Approximately 0.45 acre will be altered within the revised interconnection alignment.

The conservation of 100 acres of contiguous forested habitat, approximately 75% of which is steeply sloped, mature forest will preserve slimy salamander habitat in perpetuity. This habitat is subject to alteration and loss for activities not requiring CSC or other State review.

Any direct loss of habitat cannot readily be mitigated against, with the exception of additional land protection as proposed. However, whereas there are numerous literature citations relating the quality and quantity of downed course woody debris (DCWD) to the density of plethodontid and other terrestrial salamanders, the careful distribution of small bore (< 6" diameter) logs cut from the site into the 35m/115 ft. zone between array activity and steeply sloped woodland may provide a mitigating effect against buffer impacts to forested salamander habitat.

Proposed protective measures targeting other species including the installation of a perimeter siltation fence exclusion barrier may reduce incidental mortality to slimy salamanders wandering from intact woodland to the array project area.

106. *Provide references from the scientific literature for the optimal size buffer required to minimize the edge effects of forest clearing on slimy salamander habitat.*

---

Although the subject of forest alteration upon terrestrial salamanders, including Plethodontids has been well studied and published in the preceding quarter century, the majority of this literature examines the effects of clearing, and differing forest practices upon resident salamander populations – essentially how forestry practices impact populations over time. These studies are not directly applicable to the matter under review; in those studies the forest is altered and allowed to regrow for subsequent harvests. In this case, a small area of primary forest habitat and a larger area of lesser quality habitat will be altered and converted to grassland (with photovoltaic panels installed).

We found no specific literature citations with regard to the specific buffer tolerances of *P. glutinosus*. However, Semlitsch, et al., (2007) found a statistically significant influence upon numbers as well as size classes of salamanders relative to forest breeches studying three (3) other Plethodontid species (and other, non-Plethodontids). This study determined that narrow cuts (e.g., logging roads or similar) in intact forested landscapes impact the status of these species to a bilateral distance of 35m (~115 feet) within the intact woodland surrounding. And, that this effect was persistent for a considerable period after the activity. Impacts correlated with fragmentation included both numeric values and average body size for Plethodontid salamanders in adjacency to forest cuts.

Demaynadier, et al., (1998), examining the common *Plethodon cinereus* and two sympatric amphibians in Maine similarly concluded that an edge effect of 25-35m (82-115 feet) was significant to the status of the resident amphibian biota, with the influence on salamander distribution being more significant than on frog species.

deMaynadier, P. G. and M. L. Hunter, Jr. 1998. Effects of Silvicultural Edges on the Distribution and Abundance of Amphibians in Maine. *Conservation Biology* 12:340-352.

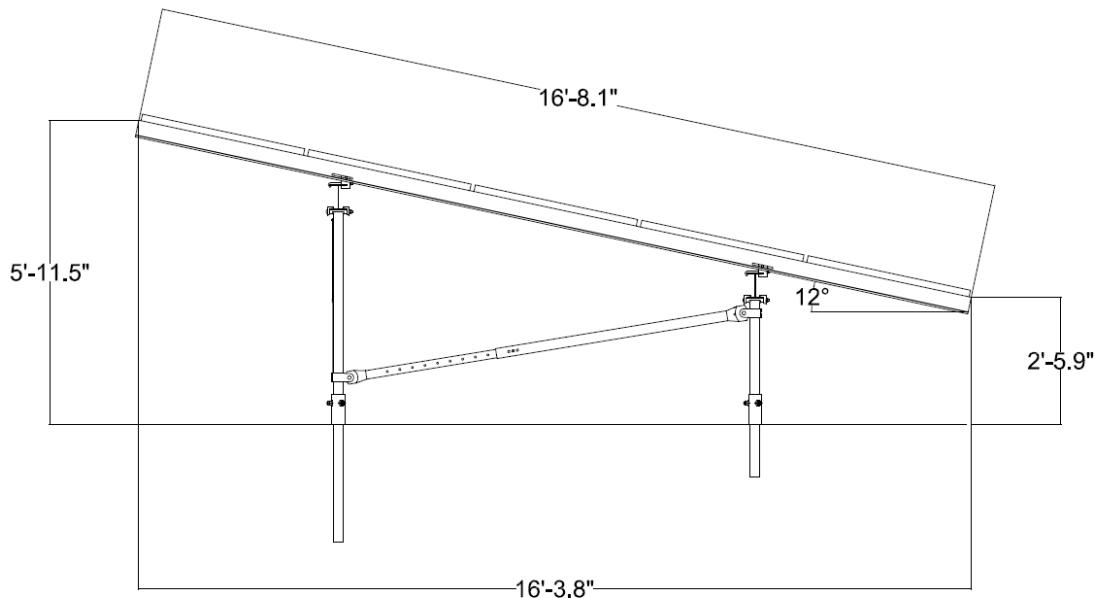
Semlitsch, R. D., T. J. Ryan, K. Hamed, M. Charfield, B. Drehman, N. Pekarek, M. Spath and A. Watland. 2007. Salamander Abundance along Road Edges and within Abandoned Logging Roads in Appalachian Forests. *Conservation Biology* 21:159-167.

107. *Discuss whether the proposed clearing and development, apart from outright loss of slimy salamander habitat, will fragment the site into islands of slimy salamander habitat and provide an opinion of the long term viability of these fragments of slimy salamander habitat.*

There are currently three (3) geographic zones of high quality slimy salamander habitat; adjacent and north of Wetland 1 (32+/- acres), southeast of Wetland 1 (15.6+/- acres), and east of the existing haul road from Candlewood Mountain Road (2.8+/- acres).

The latter area is already partially insular owing to an adjacent haul road and pasture and its remoteness from the other areas referenced above. This diminutive patch will be further isolated from the expansive (on and off site) contiguous habitat to the east and north of the proposed array fields.

---


In contrast, both the amended site layout and limit of work, and the added acreage of protected offsite land will serve to maintain a perpetual continuity from the high quality habitat at the extreme southeast of the property, through the northern-most portions. Only natural changes to more modest sloped habitat will separate any of the high quality habitat from its nearest neighbor, and do not pose a barrier to long-term dispersal of the species.

In view of these proposed conditions, the large majority of high-quality habitat on, and partially adjacent (added land to be conserved) will remain intact, in a swath of nearly 100 contiguous acres; approximately 75% of which is steeply sloped mature forest.

## **Construction**

108. *Provide an end view drawing of the solar panels on a rack to show the 15 degree angle (or as applicable) and the edges of the solar panels along the hypotenuse of the triangle. Also include the heights to the top and bottom vertices of the hypotenuse above grade. (An example of such a drawing is Petition No. 1310, Sheet G-001, Solar Racking System Detail.) With the proposed panels using a “landscape” orientation and a width of 991 mm (39 inches or as applicable), how many panels would be placed along the hypotenuse of the triangle? (See JA Solar Specifications Sheet under Attachment 9 of the Petition.)*

Per the figure shown below, there will be 5 panels placed in landscape orientation along the hypotenuse of the triangle.



## Geology

109. *Is the proposed project at risk of any seismic events? Is the proposed project located in the vicinity of Cameron's Line, an existing fault line?*

The Project Site is located on Candlewood Mountain, in an area mapped as Ordovician granite (see EA Section 2.2 and Figure 4). According to the US Department of the Interior, US Geological Survey report “Bedrock Geologic Map of the New Milford Quadrangle, Litchfield and Fairfield Counties, Connecticut”, the proposed Project Site is not located on a mapped fault line, including the Cameron's Line which runs generally north to south and is located to the east of the Housatonic River in the Project area (Figure 1, <https://pubs.usgs.gov/of/2003/of03-487/of03487s.pdf>).

According to the DEEP 2014 Connecticut State Hazard Mitigation Plan Update ([http://www.ct.gov/deep/lib/deep/water\\_inland/hazard\\_mitigation/ct\\_nhmp\\_adopted\\_final.pdf](http://www.ct.gov/deep/lib/deep/water_inland/hazard_mitigation/ct_nhmp_adopted_final.pdf)):

“Earthquake events do occur in the state, though of much less intensity than elsewhere in the region or on the west coast. Additionally, earthquake events are more likely to be felt as a result of an earthquake that occurs in the surrounding region rather than originating within Connecticut. Based on historical information, it is reasonable to assume that Connecticut has a medium-low probability of future earthquake events.”

---

Further,

“Connecticut may be categorized as having a low or moderate risk for an earthquake  $> 3.5$  occurring in the future and a moderate risk of an earthquake  $< 3.0$  occurring in the future. USGS currently ranks Connecticut as 43 out of 50 states for earthquake activity (based on geologic and historical data) and notes that no earthquake with a magnitude of  $> 3.5$  has occurred in Connecticut within at least the last 30 years.”

The Project Site is not located on an area of unconsolidated materials such as sands or artificial fill with a potential for liquefaction in the event of an earthquake. Further, the Project Site is not located on an area of fine sand and clay material which can amplify seismic waves. In general, while the Site, and all of the Northeast US, including Connecticut, is in an area of potential earthquake activity, the nature of the materials underlying the site, combined with the overall probability of high intensity earthquake activities indicate that risk of a significant seismic event at the site is relatively low.