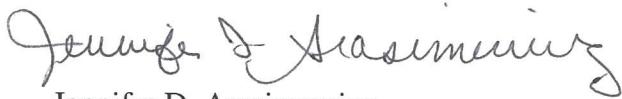


August 17, 2016

VIA EMAIL AND U.S. MAIL

Ms. Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

PETITION NO. 1248 - TRS Fuel Cell, LLC petition for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for the construction, maintenance, and operation of a 3.7 megawatt combined heat and power fuel cell facility to be located at 64 Triangle Street, Danbury, Connecticut


Dear Ms. Bachman:

Enclosed please find an original and fifteen copies of TRS Fuel Cell, LLC's ("TRS") responses to the Connecticut Siting Council's (the "Council") Interrogatories dated August 12, 2016 in the above-captioned proceeding.

TRS wishes to also advise the Council of a slight modification to some of the design characteristics of the proposed project as compared to the original submission. Subsequent to further study by the development team and discussions with the City of Danbury, TRS proposes to replace the existing berm and overgrown chain link fencing that surrounds the property with various landscaping improvements, including adding an ornamental fence and an access drive on the Northwestern perimeter of the property. These changes require that the access drive be moved to the center of the property and that the fuel cell project power block be rotated 90-degrees. A modified drawing reflecting these proposed changes is enclosed herewith for the Council's review and consideration. As is customary, TRS will provide final construction drawings prior to the commencement of construction at the site.

Please feel free to contact me if you have any questions with respect to the foregoing or the enclosed.

Respectfully submitted,
FUELCELL ENERGY, INC., sole member of
TRS FUEL CELL, LLC

Jennifer D. Arasimowicz
Vice President, Managing Counsel

Encl.

Q-CSC-1 The proposed facility would deliver electrical power directly to a “nearby substation.” What is the voltage of the substation?

A-CSC-1 The proposed facility would deliver electrical power to the existing 13.8kV distribution circuit 0.2 miles from the Triangle Street substation.

Interrogatory CSC-2

TRS Fuel Cell, LLC

Witness: Lou Ernst

Petition No. 1248

Page 1 of 1

Q-CSC-2 How would the generated power from the facility get to the substation? Does Eversource currently have a three-phase electrical distribution line in the area?

A-CSC-2 The generated power would be transmitted to the substation through the utilities 15kV transformer. The utility has a distribution line in the area.

Interrogatory CSC-3

TRS Fuel Cell, LLC

Witness: Lou Ernst

Petition No. 1248

Page 1 of 1

Q-CSC-3 Is a System Impact Study required for the interconnection process? Does the Petitioner have an Interconnection Agreement with Eversource?

A-CSC-3 An impact study is required. FCE has applied for an electrical interconnect agreement with Eversource.

Interrogatory CSC-4

TRS Fuel Cell, LLC

Witness: Lou Ernst

Petition No. 1248

Page 1 of 1

Q-CSC-4 Are gas and power lines already available at the location of the proposed facility? Please describe the routing of these connections.

A-CSC-4 Gas and power are in the area but additional underground infrastructure is new for the location.

Q-CSC-5 What is the height above ground level of the tallest structure or equipment in the project footprint? What are the heights of the proposed stacks?

A-CSC-5 The height above ground level of the tallest structure is approximately 27 feet. The height of the exhaust stack will be 30 feet or less.

Interrogatory CSC-6

TRS Fuel Cell, LLC

Witness: N/A

Petition No. 1248

Page 1 of 1

Q-CSC-6 Has the Petitioner received a written response from the State Historic Preservation Office regarding the Project Review Cover Form that was submitted? If so, please provide a copy of such response.

A-CSC-6 Yes. A copy of the response was filed with the Council on August 16, 2016.

TRS Fuel Cell, LLC

Witness: Kirk Arneson

Petition No. 1248

Page 1 of 1

Q-CSC-7 If approved, approximately when would construction commence and what would be the estimated in-service date for the project?

A-CSC-7 Construction on the project is scheduled to start February, 2017. It is estimated that the fuel cell will go online July, 2017.

Interrogatory CSC-8

TRS Fuel Cell, LLC

Petition No. 1248

Witness: Kirk Arneson

Page 1 of 1

Q-CSC-8 What is the proposed mesh size of the fence? Would the Petitioner be willing to consider the installation of an anti-climb fence with less than two-inch mesh or other deterrent?

A-CSC-8 While FCE is willing to accommodate a 1" mesh size, FCE is aware that the City of Danbury may want to provide input into the aesthetics of the fencing. Therefore, FCE respectfully suggests collaborating with the City to determine a mutually agreeable fencing specification and provide that to the Council for its review and consideration.

Q-CSC-9 Would any vegetative clearing and grading be required for the installation of the proposed facility?

A-CSC-9 No. The area affected by the fuel cell installation is currently being used as a storage facility and parking lot. The vast majority of the affected area is pavement and compacted stone. Minor grass and weed removal will be required, but no overgrowth or trees will be removed.

Q-CSC-10 Page 5 of the Petition mentions liquid nitrogen that would be stored on site. What would that liquid nitrogen be used for?

A-CSC-10 Nitrogen is only used for storage of the fuel cells or during an upset condition. Normal operation of the fuel cells does not require nitrogen. The electro chemical process used by the fuel cells to convert hydrogen and oxygen to electricity, heat and water is sensitive to humidity. During normal operation, natural gas is humidified using purified potable water. At the elevated temperatures at which the fuel cells normally operate, such humidity is not a problem. However, during a shutdown, if the humid mixture begins to cool and condense, it could negatively impact the expected life and performance of the fuel cells. Similarly, natural humidity associated with the atmosphere could negatively impact the fuel cells. In an upset condition or during storage, nitrogen is used to purge the fuel cell modules of all humidified natural gas and prevent ambient air intrusion. The nitrogen is used in the gaseous form, but stored in the liquid form for ease of transport and to minimize storage space.

TRS Fuel Cell, LLC

Witness: Lou Ernst

Petition No. 1248

Page 1 of 1

Q-CSC-11 Would the proposed fuel cell shut down in the event of a power outage, and if so, does it have “black start” capability and the ability to automatically restart?

A-CSC-11 The fuel cell will shut down in the event of a power outage. It is equipped with a utility-specified UL certified protective relay and is capable of starting remotely. The fuel cell’s control system is designed to allow the system to “fail safe” in the event of a process upset.

TRS Fuel Cell, LLC

Witness: Kirk Arneson

Petition No. 1248

Page 1 of 1

Q-CSC-12 Please identify media to be used for pipe cleaning procedures at the proposed facility in accordance with Public Act 11-101, An Act Adopting Certain Safety Recommendations of the Thomas Commission.

A-CSC-12 A clean rag will be drawn through the pipe multiple times to ensure there is not construction debris or foreign matter remaining in the pipe. Air will then be used to blow out any remaining dust.

Interrogatory CSC-13

TRS Fuel Cell, LLC

Petition No. 1248

Witness: Kirk Arneson

Page 1 of 1

Q-CSC-13 Would bollards be used to protect the fuel cell facility from being accidentally struck by vehicles?

A-CSC-13 Yes. Bollards will be used to protect the fuel cell facility.

TRS Fuel Cell, LLC

Witness: N/A (calls for legal conclusion)

Petition No. 1248

Page 1 of 1

Q-CSC-14 What statutes and/or regulations govern fuel cell emissions for the proposed facility?

A-CSC-14 Section 22a-174-3a of the Regulations of Connecticut State Agencies identifies those facilities that are required to obtain an air permit from the Connecticut Department of Energy and Environmental Protection. The potential emissions from the proposed installation at the Triangle Street project are below the regulation's applicability threshold, and therefore an air permit is not required.

TRS Fuel Cell, LLC

Witness: Lou Ernst

Petition No. 1248

Page 1 of 1

Q-CSC-15 Provide a table showing state criteria thresholds and projected emissions from the proposed facility for all greenhouse gas emissions listed in the Regulations of Connecticut State Agencies Section 22a-174-1(49). Please provide the response in pounds per megawatt hour.

A-CSC-15 The criteria threshold for greenhouse gases is new stationary sources that emit, or has the potential to emit, equal to or greater than 100,000 tons/year of CO₂e and one hundred (100) tons per year of greenhouse gases.

Greenhouse Gas	State of CT Criteria Thresholds for GHGs (applicability requires <u>both</u> thresholds be exceeded)		Facility Projected Emissions		
	(tpy equivalent to 100,000 typ CO ₂ -e)	(tpy GHG)	(tpy CO ₂ -e)	(tpy GHG)	(Lb/MWh)
Carbon Dioxide (CO ₂) (GWP =1)	100,000	100	11,750	11,750	725
Methane (CH ₄) (GWP=23)	4,348	100	17	0.7	0.04
Nitrous Oxide (N ₂ O) (GWP = 296)	337	100	0	0	0
Sulfur Hexafluoride (SF ₆) (GWP = 22,200)	4.5	100	0	0	0
Any Hydrofluorocarbon (HFC) (GWP varies)	Varies; (8 – 8,333)	100	0	0	0
Any Perfluorocarbon (PFC) (GWP varies)	Varies; (4.5 – 18)	100	0	0	0
Total CO₂-e & GHG	100,000	100	11,767	11751	N/A

Interrogatory CSC-16

TRS Fuel Cell, LLC

Witness: Lou Ernst

Petition No. 1248

Page 1 of 1

Q-CSC-16 Provide a comparison of carbon dioxide emissions for the proposed facility in pounds per megawatt hour with waste heat recovery and without waste heat recovery.

A-CSC-16 Carbon dioxide emissions from the proposed facility will be 725 lb/MW-hr without waste heat recovery. The project also has heat recovery to provide hot water to the host facility for comfort heating. The maximum heat recovery duty during winter months will be approximately 300,00 Btu/hr, at which time the equivalent carbon dioxide emissions would be 708 lb/MW-hr. See also response to CSC-17.

TRS Fuel Cell, LLC

Witness: Lou Ernst

Petition No. 1248

Page 1 of 1

Q-CSC-17 Provide information regarding available technologies to reduce greenhouse gas emissions from the proposed facility.

A-CSC-17 The fuel cell itself is considered by many to be the best available control technology on a baseload, non-intermittent basis to reduce greenhouse gas emissions from distributed or grid-provided generation to the facility. The proposed fuel cell project is projected to reduce carbon dioxide emissions by 6,191 tons per year, which is almost a 35% reduction versus current carbon dioxide emissions associated with the grid. Carbon dioxide emissions are inversely related to fuel efficiency. By virtue of the high electrical efficiency of the proposed project, it already has a very low carbon dioxide emissions factor. Additional heat recovery for this proposed High Efficiency Fuel Cell project is not practical.

Interrogatory CSC-18

TRS Fuel Cell, LLC

Petition No. 1248

Witness: Lou Ernst

Page 1 of 1

Q-CSC-18 Could offsets be used to mitigate air emissions impacts from the facility?

A-CSC-18 Yes.

Q-CSC-19 Discuss other mitigation techniques that could be used to offset air emissions from the proposed facility e.g. planting trees. If planting trees is listed as an option, estimate the number and size of trees required.

A-CSC-19 The fuel cell itself is being used to offset the air emissions of the typical and traditional methods of power generation supporting the electrical distribution system. The fuel cell power plant will generate 3.7 MW of power that would otherwise be supplied from the distribution grid. Criteria emissions from the proposed fuel cell project are minimal (as such no air permit is required) and CO2 emissions are substantially below the current emissions resulting from grid power use. Due to the proposed project's high overall efficiency, it will actually reduce CO2 emissions by 6,191 tons per year over the current utilization of grid power. The amount of carbon dioxide absorbed by trees varies widely, however one quoted figure is 2.6 tons of CO2 absorbed per year per acre of hardwood trees (see <https://www.ncsu.edu/project/treesofstrength/benefits.htm>.) Using this carbon dioxide uptake value, calculations estimate that the operation of the proposed fuel cell project itself is equivalent to the planting of 2400 acres (3.7 square miles) of trees.

Interrogatory CSC-20

TRS Fuel Cell, LLC

Witness: Lou Ernst

Petition No. 1248

Page 1 of 1

Q-CSC-20 Other than the initial startup, what other factors would require a startup of the facility as referred to on pages 11 and 12 of the petition? Does a startup typically take four days?

A-CSC-20 There are no additional factors requiring startup. Commissioning of the fuel cell takes approximately one month.

Q-CSC-21 Please submit a desulfurization plan narrative for the proposed fuel cell facility containing the following information:

- a) Chemical reaction overview concerning what substances are produced from the desulfurization process, as well as plans for their containment and transport;
- b) How much solid sulfur oxide would result from the desulfurization process, and methods and locations for containment, transport, and disposal;
- c) Whether any of these desulfurization substances are considered hazardous, and if so, plans for the containment, transport, and disposal of hazardous substances;
- d) Anticipated method of disposal for any other desulfurization substances; and
- e) Whether any gaseous substances resulting from desulfurization can be expected to vent from the fuel cells, as well as the applicable DEEP limits regarding discharge of these gasses.

A-CSC-21 The fuel cell stacks that generate the electric power can be fouled by the sulfur odorant compounds (primarily mercaptans and/or sulfides) that the gas utility company injects into the natural gas. Accordingly, the fuel cell plant incorporates a desulfurization process that consists of two flow-through vessels configured in series filled with a specialized, proprietary desulfurization adsorption media. The sulfur removal mechanism is a physical adsorption or chemisorption process wherein the sulfur atoms are captured by the granular solid media without the release (production) of any other chemical species. In the process of removing the sulfur compounds from the gas, the capacity of the media for continued sulfur removal is diminished up until the point when it becomes exhausted and, if the media is not changed, sulfur break through would occur. At this point the media is deemed to be "spent." When the spent media in the lead desulfurizer vessel needs to be replaced, the fuel gas process flow is switched to the lag vessel only so that the spent media can then be removed from the off-line vessel and replaced with fresh media. Prior to accessing the spent media, the vessel is inerted with nitrogen to allow safe access into the vessel. During this inertion process, a small volume of natural gas is vented to atmosphere. After media replacement and once the vessel containing the fresh media has been inerted and purged into service, it then serves as the second (polishing) desulfurizer vessel in the process flow series.

The spent solid waste media removed from the process has been characterized at similar locations to be RCRA hazardous by toxicity characteristic for benzene (D018). The benzene, present in the natural gas in very low parts per million concentrations or less, is co-adsorbed onto the media along with the target sulfur compounds.

TRS Fuel Cell, LLC

Witness: Lou Ernst

Petition No. 1248

Page 2 of 2

The total waste generation quantity (media plus adsorbed sulfur compounds) during any single desulfurizer media replacement event is less than 2000 pounds (900 kg) and previous operating experience throughout Connecticut suggests that desulfurizer maintenance events will be no more frequent than annually, and more likely less frequent than every two years (it varies, depending on the actual sulfur concentration in the gas locally). The monthly waste generation rate is within the range for generators that operate under Small Quantity Generator rules. TRS Fuel Cell, LLC, as plant owner/operator, will comply with all rules for hazardous waste generators as promulgated through the regulations at Regulations Connecticut State Agencies § 22a-449(c).

The waste generated when removing the spent desulfurizer media from the process is managed by immediately containerizing and transporting the waste off-site to a licensed disposal facility. Waste will not be treated, stored or disposed of at the site. The containerized waste is shipped off-site under a Uniform Hazardous Waste Manifest under the generator's EPA RCRA identification number. A licensed hazardous waste transporter under contract to FuelCell Energy, Inc., as service provider for the fuel cell project (e.g. Clean Harbors, Triumvirate, Miller Environmental), will be contracted to pick up the waste and transport it to an approved designated disposal facility. The licensed waste destination facility will be determined at the time of contracting the waste contractor firm.

