


**Wallingford Energy, LLC**

c/o LS Power Development, LLC  
400 Chesterfield Center, Suite 110  
St. Louis, Missouri 63017  
(636) 532-2200 · Fax (636) 532-2250

October 20, 2016

Ms. Melanie Bachman  
Acting Executive Director  
Connecticut Siting Council  
Ten Franklin Square  
New Britain, CT 06051

ORIGINAL  
SUBMITTAL



**Re: Petition No. 1240 – Wallingford Energy, LLC on behalf of the Town of Wallingford  
Electric Division: Minor Changes to Routing & Structures and Notice of Start of  
Construction**

Dear Ms. Bachman:

Pursuant to Section 16-50j-62(b)(1) of the Regulations of Connecticut State Agencies and in accordance with the Petition for Declaratory Ruling approved on August 4, 2016, for the above referenced Project (“Approval”), Wallingford Energy, LLC (“WE”) hereby provides written notification to the Connecticut Siting Council that the construction work will commence on or soon after November 2, 2016. Officials of the affected municipalities have also been notified.

Additionally, pursuant to Section 16-50j-62(b)(1) of the Regulations of Connecticut State Agencies and in accordance with the Approval, WE hereby provides written notification to the Connecticut Siting Council for the minor Project modifications detailed herein.

**Routing**

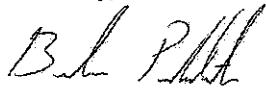
Provided within the enclosed is a map depicting the finalized transmission route. Some structure locations have shifted marginally from those depicted in the original submittal, but do not require that any additional property rights be obtained. Additionally, it has been determined that modifications to the 115-kV 1208 line will not be necessary and thus will not be pursued as part of this Project. Given the relatively minor route adjustments, impacts to the calculated EMF levels will be minimal.

**Structures**

Updated structural drawings are enclosed. As was submitted to the Council in the Petition, the

tallest structure height will be 115 feet. The enclosed structural drawings represent the final design for all structures with the exception of 1640-2. This structure will in fact be 115 feet tall while all other structures will range in height from 75 feet to 100 feet. An updated structural drawing will be submitted to the Council for 1640-2 once completed.

#### Soil Erosion and Sediment Control


After consulting with the Connecticut Department of Energy & Environmental Protection, it was determined that the Project will disturb less than one acre and accordingly, a general permit for the discharge of stormwater and dewatering wastewaters from construction activities is not required. Nevertheless, WE will direct the on-site contractor to utilize industry best practices, conforming to *the 2002 Connecticut Guidelines for Soil Erosion and Sediment control*.

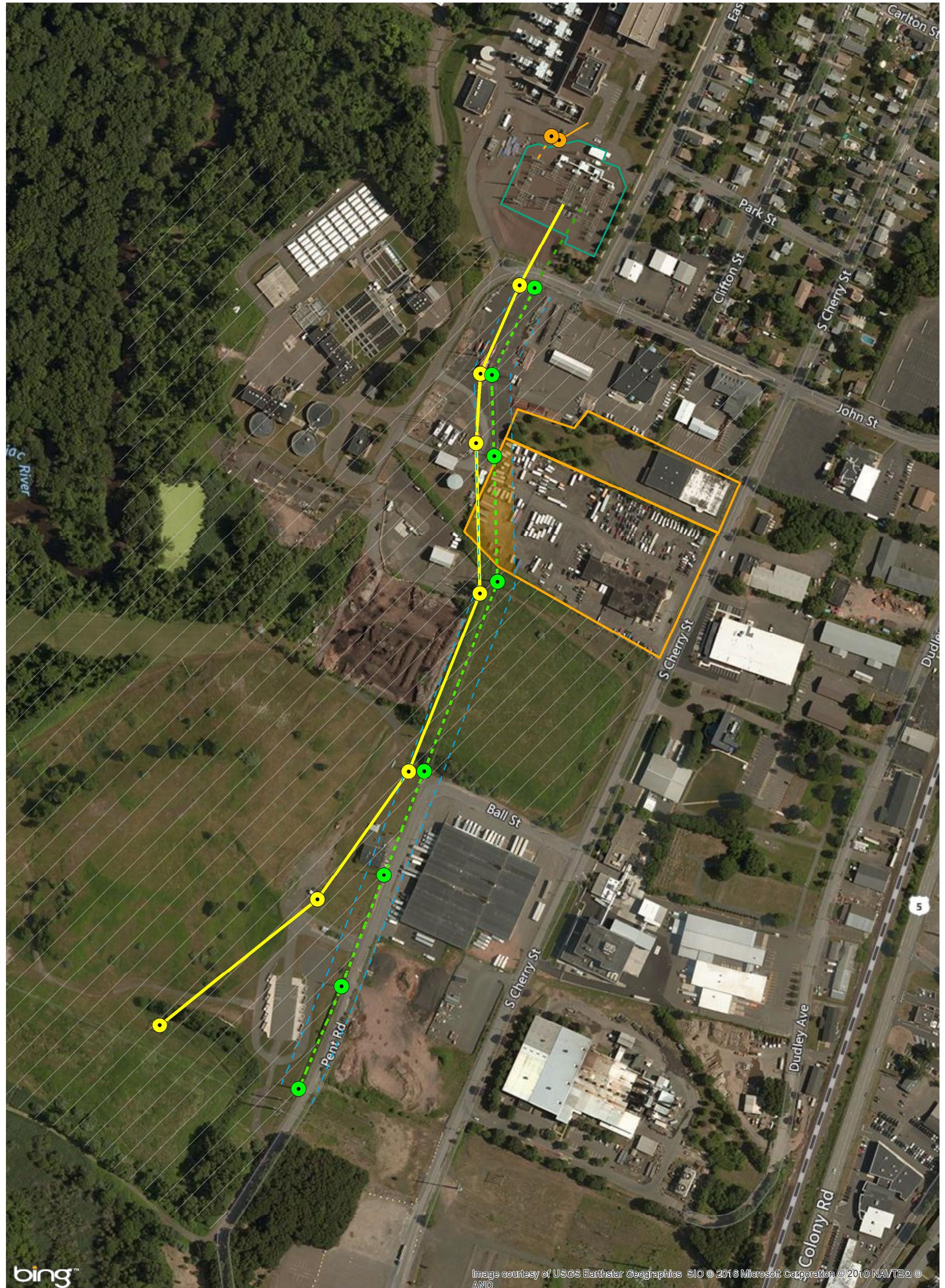
#### Laydown Area

The laydown area depicted on the enclosed has been secured for a separate project being undertaken by Wallingford Energy II, LLC. WE has been permitted to utilize this same space as a laydown area.

If you have any additional questions or wish to discuss please feel free to contact me at (636) 532-2200 or [bpollpeter@lspower.com](mailto:bpollpeter@lspower.com).

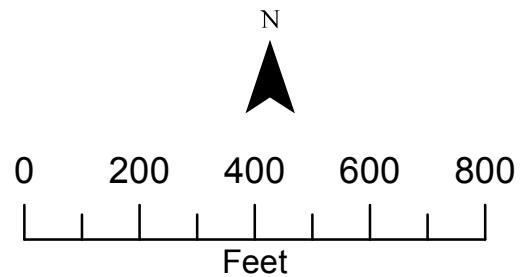
Sincerely,




Brandon Pollpeter

cc: The Honorable William W. Dickenson, Jr., Mayor, Town of Wallingford  
(via U. S. Mail)

Enclosures (3) – Transmission Modifications Map  
Transmission Structure Drawings  
Laydown Area


## **Transmission Modifications Map**

---

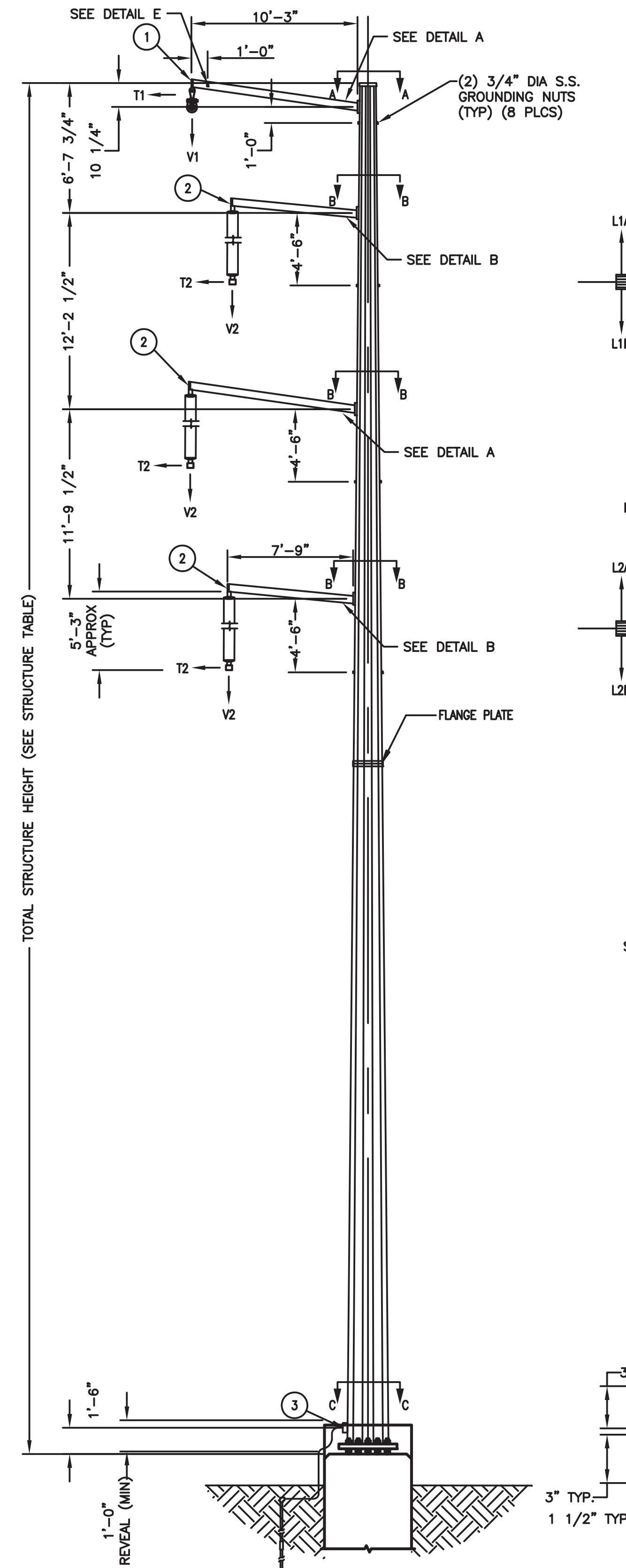


### Legend

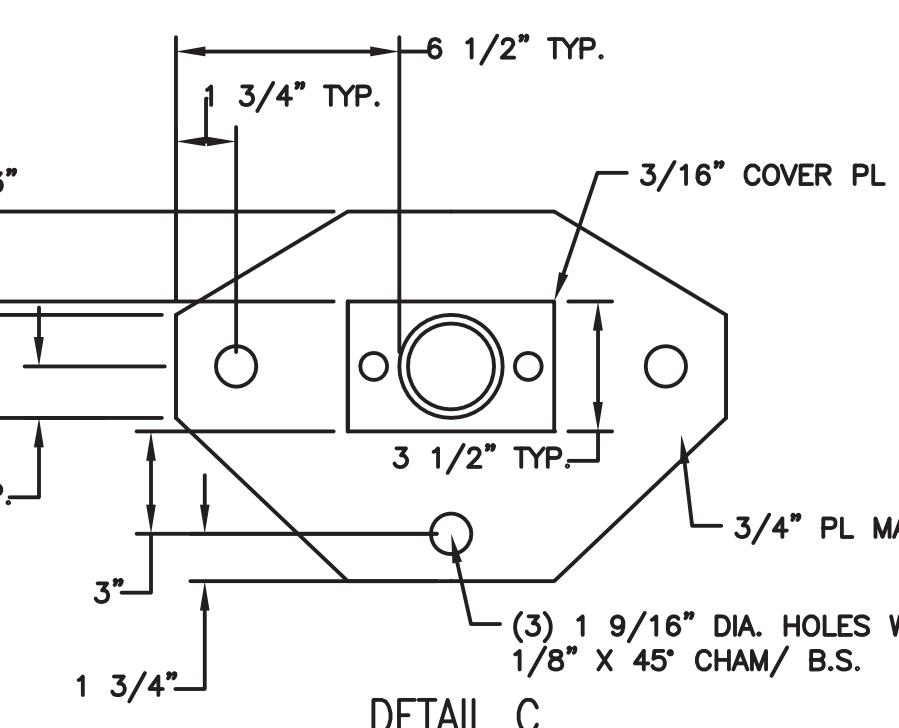
- - - Existing ROW
- - - Line 1630 (Existing)
- Line 1640 (New)
- Line 1305 (New)
- - - Line 1305 (Existing)
- Private Property
- Town Property
- New Easement
- Substation



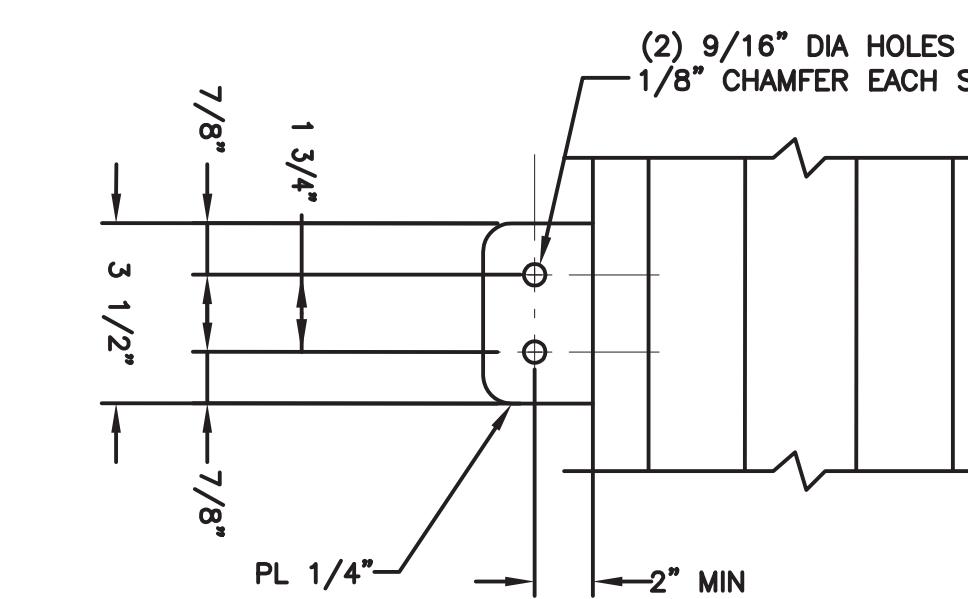
**Wallingford Energy, LLC**


**Transmission Modifications**

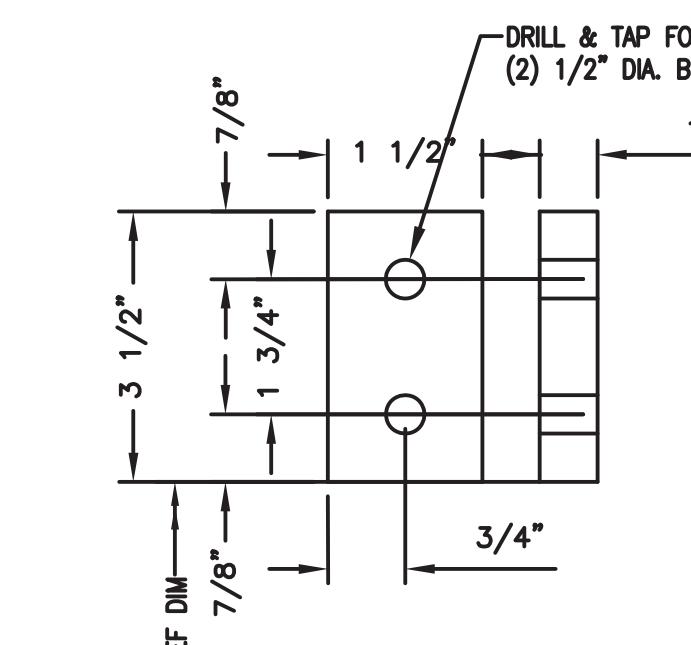
1:4,000


## **Transmission Structure Drawings**

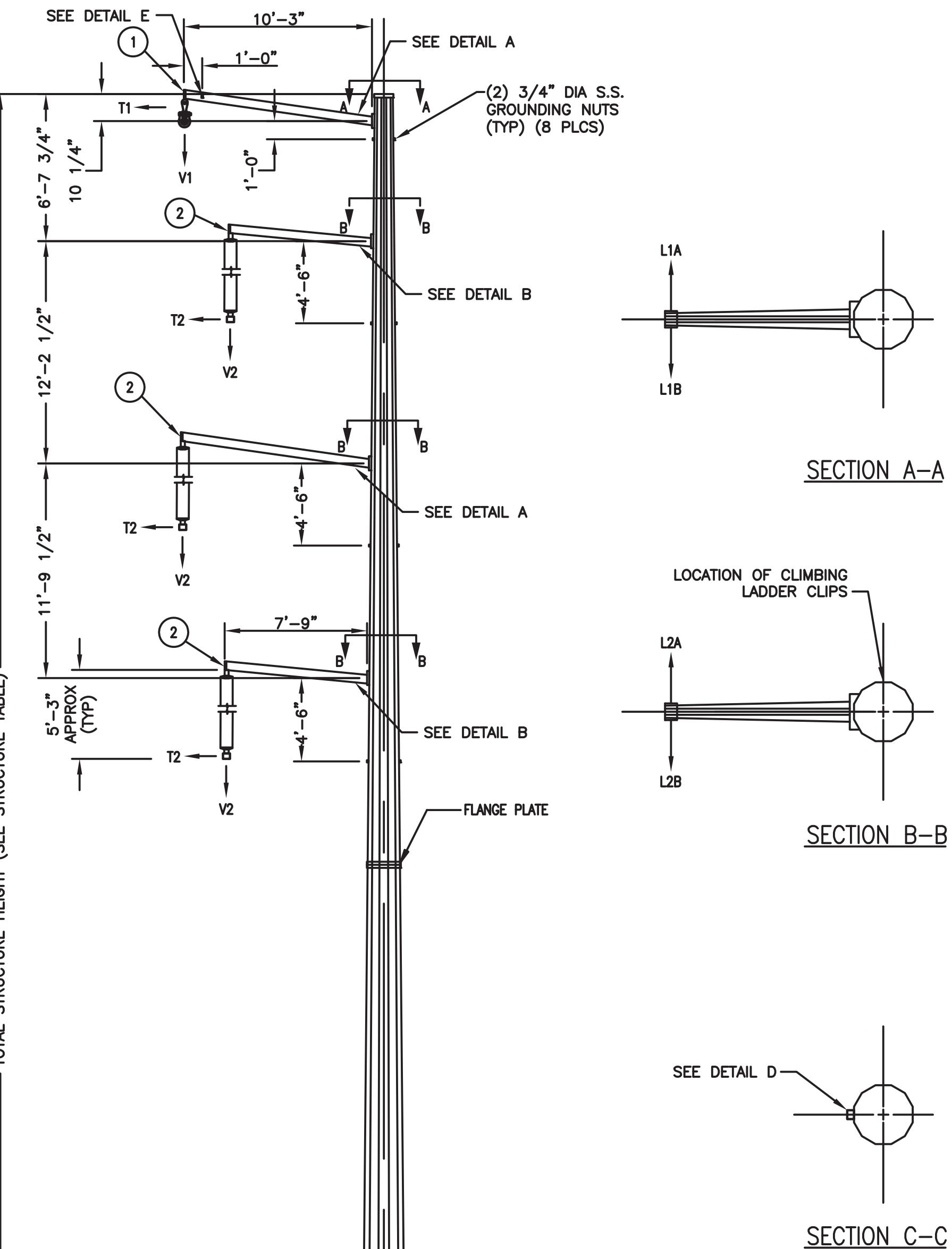
---



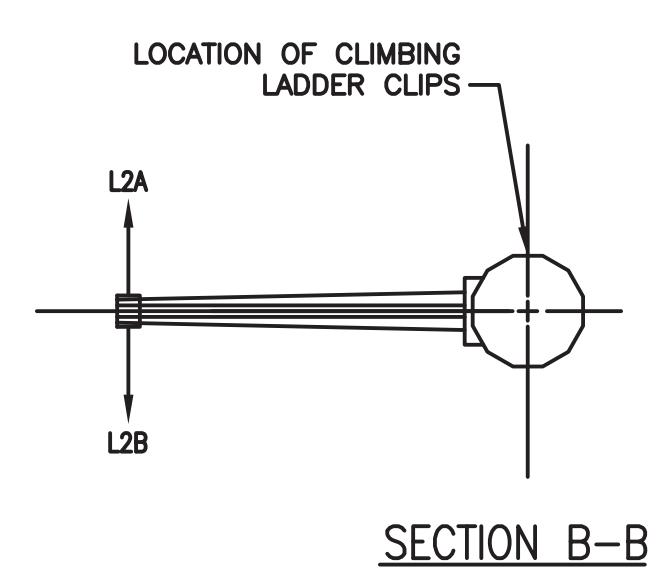




ELEVATION  
(LOOKING AHEAD IN-LINE TOWARDS  
TAP STRUCTURE 1640-1)

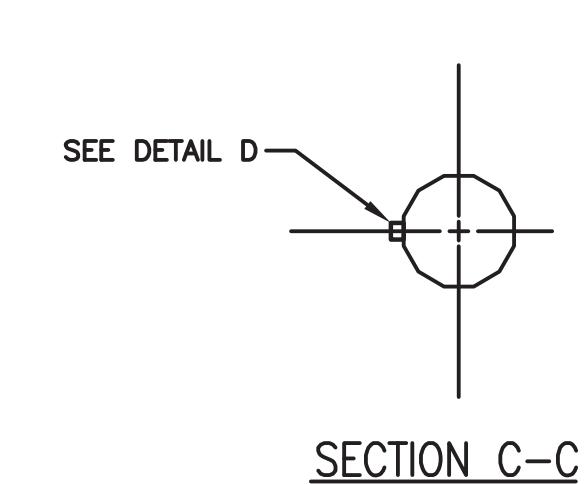



DETAIL C  
GROUNDING PAD

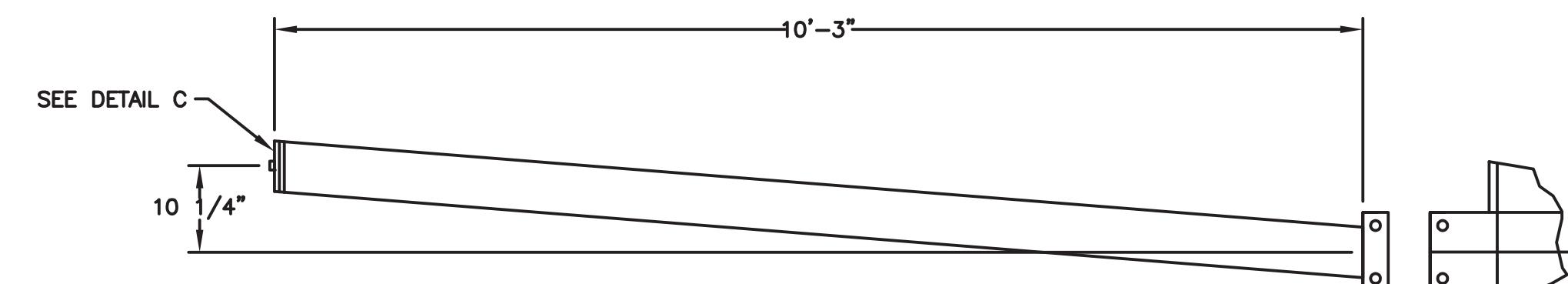



DETAIL D  
GROUNDING PAD

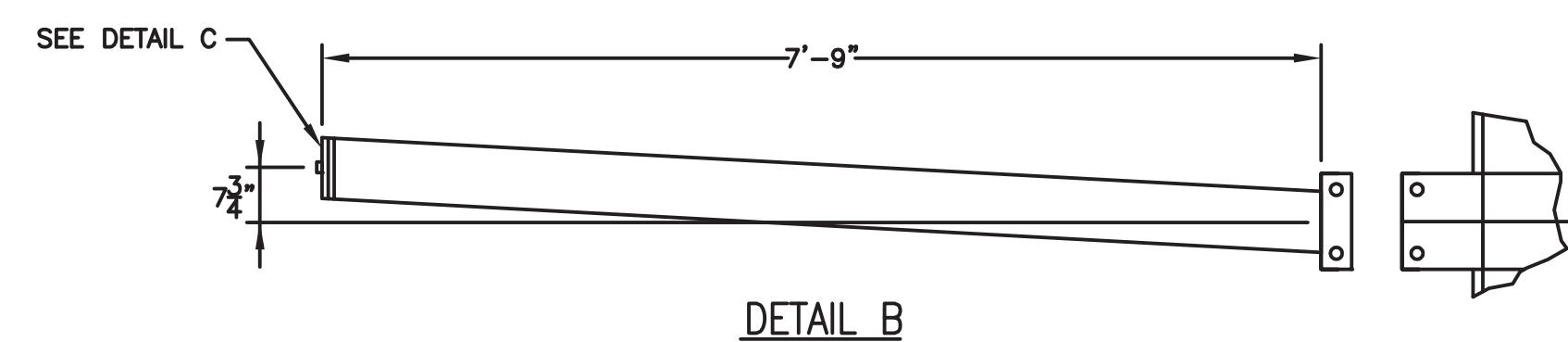



DETAIL E  
SHIELDWIRE GROUNDING PAD




SECTION A-A




SECTION B-B



SECTION C-C



DETAIL A



DETAIL B

### WIRE AND SPAN DATA

| WIRE        | NESC HEAVY TENSION (LBS)  | RULING SPAN (FT) | WEIGHT SPAN (FT) | WIND SPAN (FT) |     |     |
|-------------|---------------------------|------------------|------------------|----------------|-----|-----|
| SHIELD WIRE | 3/8" EHS                  | AHEAD            | 3300             | 550            | 50  | 200 |
|             | 3/8" EHS                  | BACK             | 3300             | 550            | 250 | 150 |
| CONDUCTOR   | 1272 KCMIL ACSR "BITTERN" | AHEAD            | 10000            | 550            | 50  | 200 |
|             | 1272 KCMIL ACSR "BITTERN" | BACK             | 10000            | 550            | 300 | 150 |

### LOADING TABLE

| ITEMS            | LOAD | CASE 1 | CASE 2 | CASE 3 | CASE 4 | CASE 5 | CASE 6 |
|------------------|------|--------|--------|--------|--------|--------|--------|
| SW               |      |        |        |        |        |        |        |
|                  | T1   | 800    | 500    | 500    | 300    | 200    | 100    |
|                  | V1   | 500    | 200    | 500    | 1400   | 1000   | 0      |
|                  | L1A  | 0      | 0      | 0      | 0      | 5700   | 0      |
|                  | L1B  | 0      | 0      | 0      | 0      | 5000   | 0      |
| 115KV CONDUCTORS |      |        |        |        |        |        |        |
|                  | T2   | 2000   | 1700   | 900    | 500    | 500    | 200    |
|                  | V2   | 1900   | 900    | 1600   | 3000   | 2300   | 800    |
|                  | L2A  | 0      | 0      | 0      | 0      | 15200  | 0      |
|                  | L2B  | 0      | 0      | 0      | 0      | 15100  | 0      |

### DESIGN APPLICATION

#### MECHANICAL LOADING CRITERIA

CASE 1 - NESC 250B HEAVY, 4 PSF WIND ON STRUCTURE AND WIRES, 0.5" RADIAL ICE, 0 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 2.50, LONGITUDINAL OLF = 1.65, VERTICAL OLF = 1.50

CASE 2 - NESC 250C EXTREME WIND, 31 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

CASE 3 - NESC 250D WIND & ICE, 6.4 PSF WIND ON STRUCTURE AND WIRES, 0.75" RADIAL ICE, 15 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

CASE 4 - EXTREME ICE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.1, LONGITUDINAL OLF = 1.1, VERTICAL OLF = 1.1

CASE 5 - UNBALANCED ICE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

CASE 6 - DEFLECTION, 0 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

#### STRUCTURE TABLE

| STRUCTURE NO. | HEIGHT | QUANTITY | WE |
|---------------|--------|----------|----|
| 1640-5        | 85'-0" | 1        | 0' |

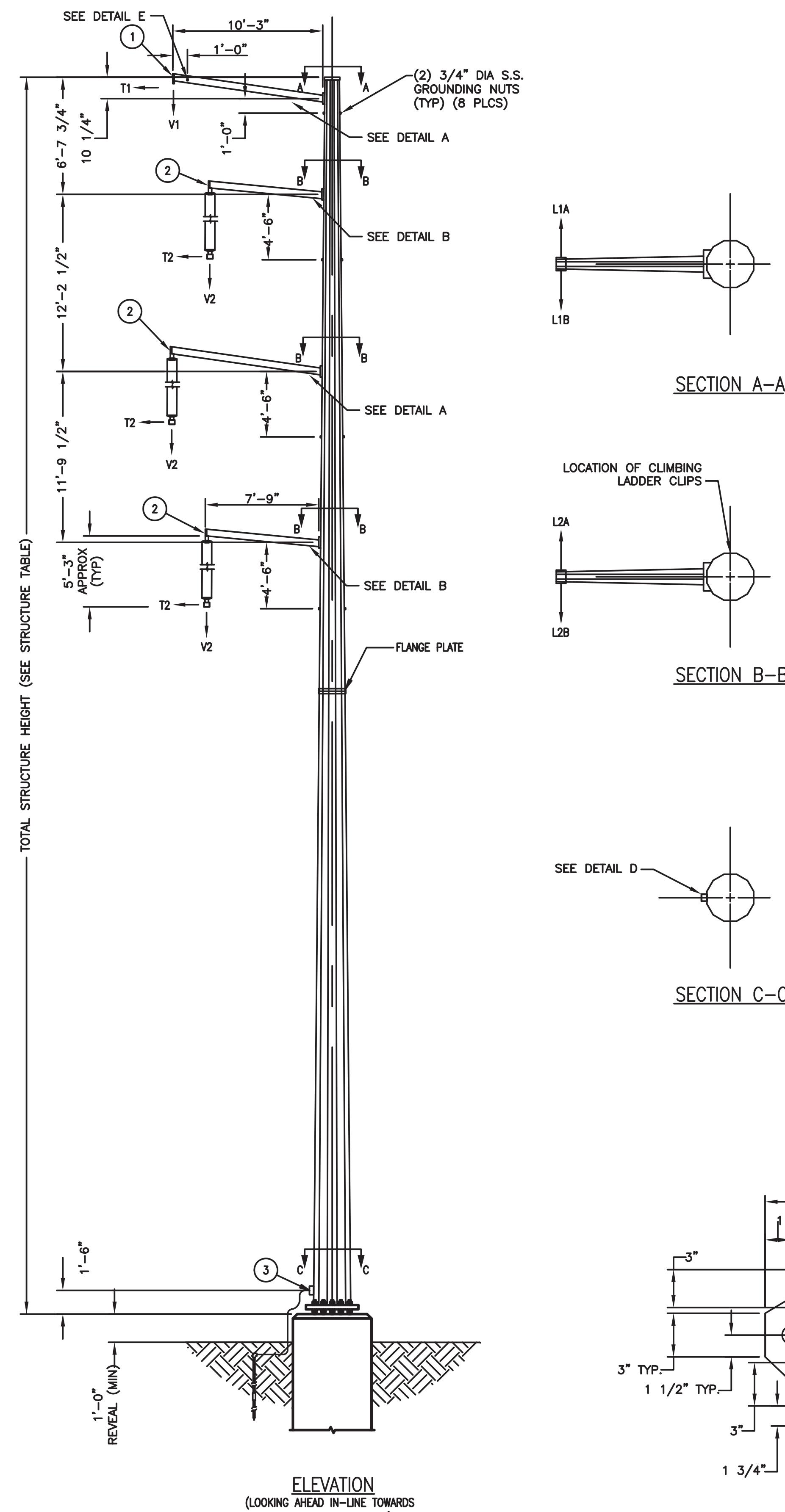
#### MATERIAL LIST

| ITEM | DESCRIPTION                              | ASSEMBLY | QUANTITY | DRAWING |
|------|------------------------------------------|----------|----------|---------|
| 1    | 3/8" EHS SHIELD WIRE SUSPENSION ASSEMBLY | SW1      | 1        | -       |
| 2    | 115KV SUSPENSION INSULATOR ASSEMBLY      | C1       | 3        | -       |
| 3    | STEEL POLE GROUNDING ASSEMBLY            | G1       | 1        | -       |

#### NOTES

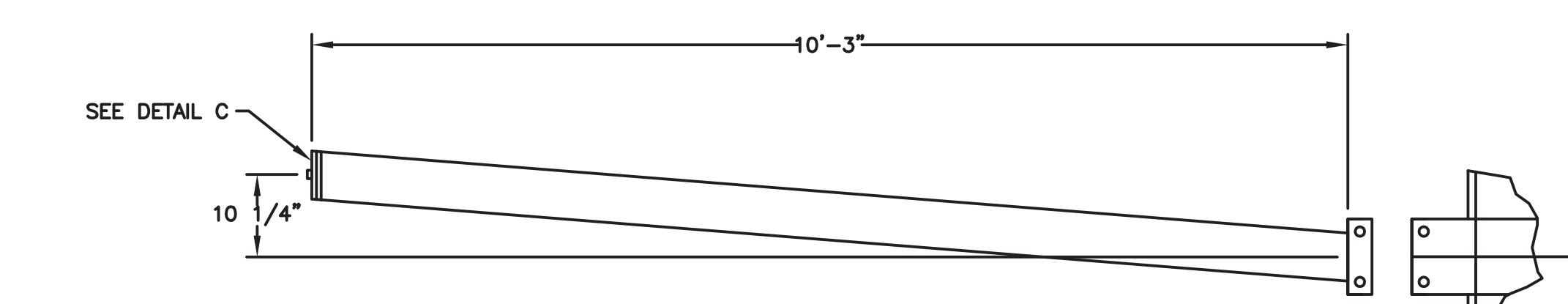
1. LADDER CLIPS SHALL BE INSTALLED FROM BASE PLATE TO ONE FOOT BELOW TOP OF POLE ON FLAT INDICATED ON DRAWING.
2. UNITS OF ENTRIES IN THE LOADING TABLE ARE AS FOLLOWS UNLESS NOTED OTHERWISE: LENGTHS - FEET, WIRE LOADS - LBS, WIND PRESSURE - LBS PER SQ FOOT, ANGLES - DEGREES.
3. THE LOADS IN THE LOADING TABLE ARE ULTIMATE LOADS AND INCLUDE ALL OVERLOAD FACTORS.
4. THE VERTICAL LOADS (V) INCLUDE ONLY DEAD WEIGHT OF THE CONDUCTOR, ICE ON THE CONDUCTOR, AND WEIGHT OF INSULATORS. THE DEAD WEIGHT OF THE STRUCTURE SHALL BE CALCULATED BY THE FABRICATOR AND USED IN THE DESIGN. THE OVERLOAD FACTOR APPLIED TO THE DEAD WEIGHT SHALL BE AS FOLLOWS: CASE 1 - 1.50, CASE 2, 3, 5, & 6 - 1.00, CASE 4 - 1.10.
5. THE STRUCTURE SHALL BE DESIGNED FOR A 31 PSF WIND ON THE STRUCTURE ONLY WITH NO WIRES ATTACHED. ALL OLF'S = 1.0.
6. FOR STRUCTURAL DESIGN, THE LONGITUDINAL (L), TRANSVERSE (T) AND VERTICAL (V) LOADS SHALL BE CONSIDERED TO ACT SIMULTANEOUSLY WITH WIND AND THE DEAD WEIGHT OF THE STRUCTURE.
7. ALL STEEL MATERIALS SHALL BE COATED IN ACCORDANCE WITH SPECIFICATION 191301.16881.5
8. THE ANCHOR BOLT CAGES SHALL HAVE A MAXIMUM BOLT CIRCLE DIAMETER OF 42 INCHES OR LESS.
9. GROUNDING NUTS TO BE LOCATED ON SAME FLAT AS CONDUCTOR OR SHIELDWIRE ARM.
10. STRUCTURE DRAWING AND DETAILS ARE NOT TO SCALE.

|   |            |                                          |     |     |  |  |
|---|------------|------------------------------------------|-----|-----|--|--|
| 2 | 09/26/2016 | UPDATE LOADS FOR MODIFIED LOCATION       | EJJ | KMS |  |  |
| 1 | 09/14/2016 | ADD INSULATOR LENGTH, CHANGE CASE 6 NAME |     |     |  |  |
| 0 | 09/07/2016 | ISSUED FOR FABRICATION - PROJECT 191301  | DWJ |     |  |  |
| A | 08/31/2016 | ISSUED FOR BID - PROJECT 191301          | EJJ | DWJ |  |  |

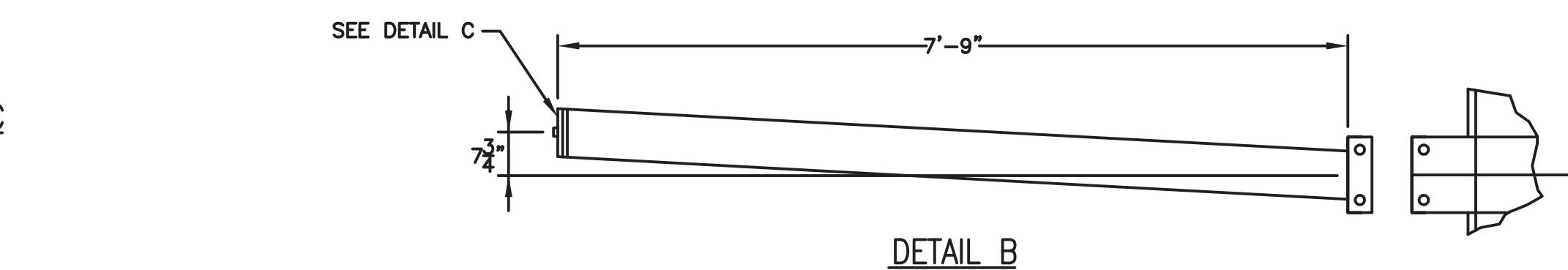

DESIGNER DWJ DRAWN EJJ  
CHECKED DATE NO DATE REVISIONS AND RECORD OF ISSUE

WALLINGFORD 115KV LINE 1640

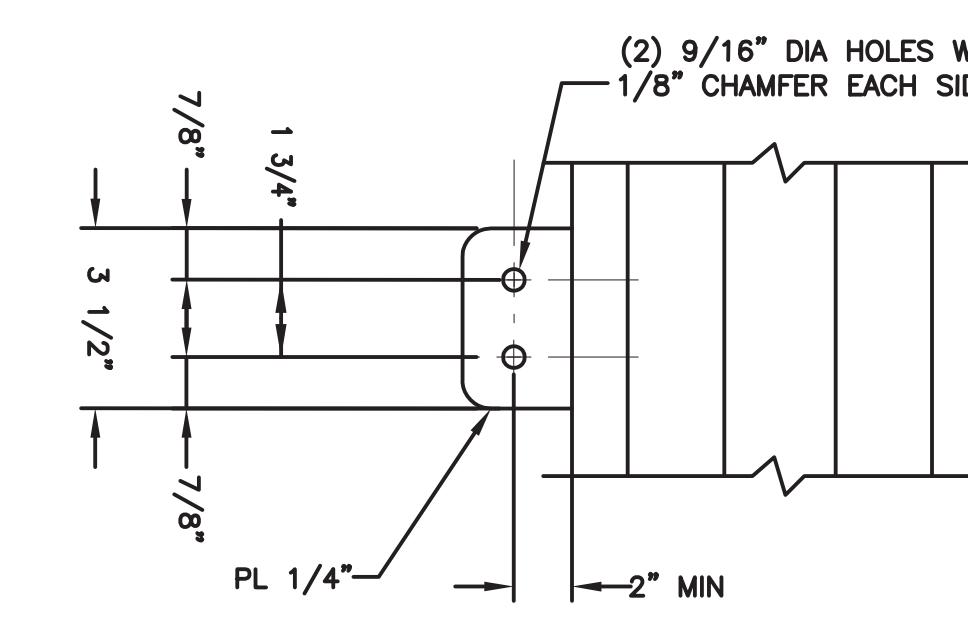
| PROJECT | DRAWING NUMBER | REV |
|---------|----------------|-----|
| 191301  | STRD-002       | 1   |


TANGENT (0-1.5°)  
STRUCTURE 1640-5

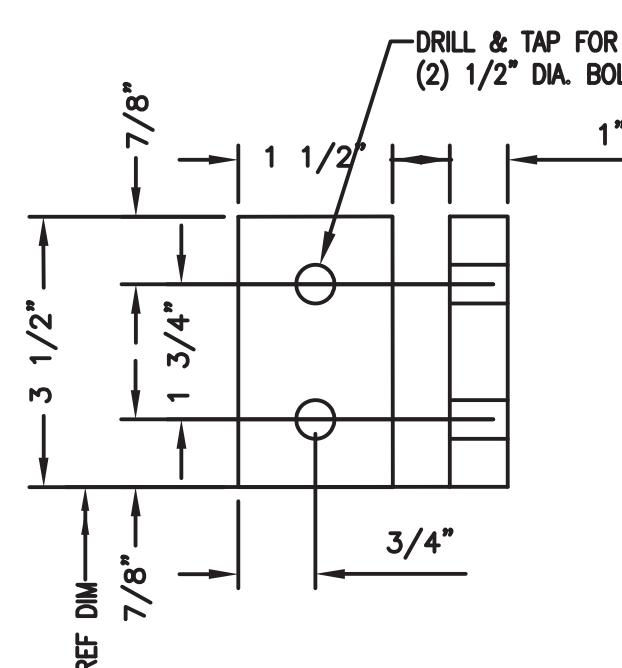
| CODE | AREA |
|------|------|
|      |      |




ELEVATION  
(LOOKING AHEAD IN-LINE TOWARDS  
TAP STRUCTURE 1640-1)


DETAIL C




DETAIL A



DETAIL B



DETAIL D  
GROUNDING PAD



DETAIL E  
SHIELDWIRE GROUNDING PAD

WIRE AND SPAN DATA

| WIRE                                | NESC HEAVY TENSION (LBS)              | RULING SPAN (FT)       | WEIGHT SPAN (FT)      | WIND SPAN (FT)        |
|-------------------------------------|---------------------------------------|------------------------|-----------------------|-----------------------|
| SHIELD WIRE 3/8" EHS                | 2500                                  | 300                    | 250                   | 150                   |
| CONDUCTOR 1272 KCMIL ACSR "BITTERN" | AHEAD 4300<br>BACK 4300               | 300                    | 200<br>250            | 150                   |
| LOADING TABLE                       |                                       |                        |                       |                       |
| ITEMS                               | LOAD                                  | CASE 1                 | CASE 2                | CASE 3                |
| SW                                  | T1 300<br>V1 400<br>L1A 4200<br>L1B 0 | 200<br>200<br>1900     | 200<br>400<br>2900    | 100<br>800<br>5100    |
| 115KV CONDUCTORS                    | T2 900<br>V2 2200<br>L2A 0<br>L2B 0   | 1200<br>1200<br>0<br>0 | 700<br>1900<br>0<br>0 | 800<br>3500<br>0<br>0 |
| CASE 4                              | T2 900<br>V2 2200<br>L2A 0<br>L2B 0   | 1200<br>1200<br>0<br>0 | 700<br>1900<br>0<br>0 | 800<br>3500<br>0<br>0 |
| CASE 5                              | T2 900<br>V2 2200<br>L2A 0<br>L2B 0   | 1200<br>1200<br>0<br>0 | 700<br>1900<br>0<br>0 | 800<br>3500<br>0<br>0 |
| CASE 6                              | T2 900<br>V2 2200<br>L2A 0<br>L2B 0   | 1200<br>1200<br>0<br>0 | 700<br>1900<br>0<br>0 | 800<br>3500<br>0<br>0 |

DESIGN APPLICATION

MECHANICAL LOADING CRITERIA

CASE 1 - NESC 250B HEAVY, 4 PSF WIND ON STRUCTURE AND WIRES, 0.5" RADIAL ICE, 0 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 2.50, LONGITUDINAL OLF = 1.65, VERTICAL OLF = 1.50

CASE 2 - NESC 250C EXTREME WIND, 31 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

CASE 3 - NESC 250D WIND & ICE, 6.4 PSF WIND ON STRUCTURE AND WIRES, 0.75" RADIAL ICE, 15 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

CASE 4 - EXTREME ICE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.1, LONGITUDINAL OLF = 1.1, VERTICAL OLF = 1.1

CASE 5 - UNBALANCED ICE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

CASE 6 - DEFLECTION, 0 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

STRUCTURE TABLE

| STRUCTURE NO. | HEIGHT | QUANTITY | ∅  |
|---------------|--------|----------|----|
| 1640-7        | 85'-0" | 1        | 0" |

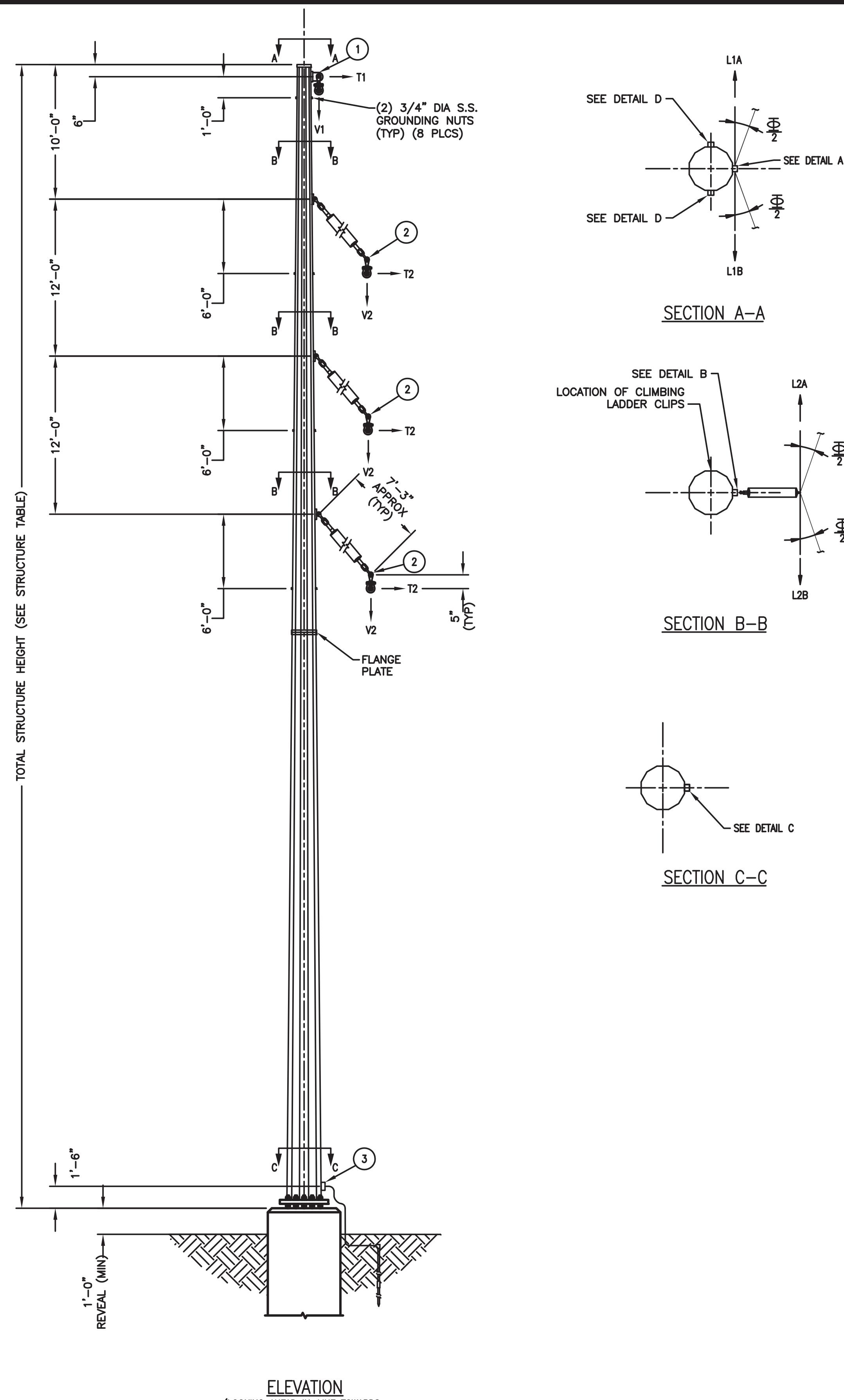
MATERIAL LIST

| ITEM | DESCRIPTION                           | ASSEMBLY | QUANTITY | DRAWING |
|------|---------------------------------------|----------|----------|---------|
| 1    | 3/8" EHS SHIELD WIRE DEADEND ASSEMBLY | SW2      | 1        | -       |
| 2    | 115KV SUSPENSION INSULATOR ASSEMBLY   | C1       | 3        | -       |
| 3    | STEEL POLE GROUNDING ASSEMBLY         | G1       | 1        | -       |

NOTES

1. LADDER CLIPS SHALL BE INSTALLED FROM BASE PLATE TO ONE FOOT BELOW TOP OF POLE ON FLAT INDICATED ON DRAWING.
2. UNITS OF ENTRIES IN THE LOADING TABLE ARE AS FOLLOWS UNLESS NOTED OTHERWISE: LENGTHS - FEET, WIRE LOADS - LBS, WIND PRESSURE - LBS PER SQ FOOT, ANGLES - DEGREES.
3. THE LOADS IN THE LOADING TABLE ARE ULTIMATE LOADS AND INCLUDE ALL OVERLOAD FACTORS.
4. THE VERTICAL LOADS (V) INCLUDE ONLY DEAD WEIGHT OF THE CONDUCTOR, ICE ON THE CONDUCTOR, AND WEIGHT OF INSULATORS. THE DEAD WEIGHT OF THE STRUCTURE SHALL BE CALCULATED BY THE FABRICATOR AND USED IN THE DESIGN. THE OVERLOAD FACTOR APPLIED TO THE DEAD WEIGHT SHALL BE AS FOLLOWS: CASE 1 - 1.50, CASE 2, 3, 5, & 6 - 1.00, CASE 4 - 1.10.
5. THE STRUCTURE SHALL BE DESIGNED FOR A 31 PSF WIND ON THE STRUCTURE ONLY WITH NO WIRES ATTACHED. ALL OLF'S = 1.0.
6. FOR STRUCTURAL DESIGN, THE LONGITUDINAL (L), TRANSVERSE (T) AND VERTICAL (V) LOADS SHALL BE CONSIDERED TO ACT SIMULTANEOUSLY WITH WIND AND THE DEAD WEIGHT OF THE STRUCTURE.
7. ALL STEEL MATERIALS SHALL BE COATED IN ACCORDANCE WITH SPECIFICATION 191301.16881.5
8. THE ANCHOR BOLT CAGES SHALL HAVE A MAXIMUM BOLT CIRCLE DIAMETER OF 42 INCHES OR LESS.
9. GROUNDING NUTS TO BE LOCATED ON SAME FLAT AS CONDUCTOR OR SHIELDWIRE ARM.
10. STRUCTURE DRAWING AND DETAILS ARE NOT TO SCALE.

WALLINGFORD 115KV LINE 1640


PROJECT 191301 DRAWING NUMBER STRD-003 REV 1

|                                                                                                                                                  |                                    |         |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------|--|--|
|  <b>BLACK &amp; VEATCH</b><br>Building a world of difference® | 2 09/26/2016 UPDATE DETAIL CALLOUT | EJJ KMS |  |  |
| 1 09/14/2016 ADD INSULATOR LENGTH, EXCHANGE CASE 6 NAME                                                                                          |                                    | EJJ KMS |  |  |
| 0 09/07/2016 ISSUED FOR FABRICATION - PROJECT 191301                                                                                             |                                    | EJJ DWJ |  |  |
| A 08/31/2016 ISSUED FOR BID - PROJECT 191301                                                                                                     |                                    | EJJ DWJ |  |  |

|              |           |                               |
|--------------|-----------|-------------------------------|
| DESIGNER DWJ | DRAWN EJJ | DRN DES CHK PDE APP           |
| CHECKED NO   | DATE      | REVISIONS AND RECORD OF ISSUE |

TANGENT (0-1.5°)  
STRUCTURE 1640-7

CODE AREA



### WIRE AND SPAN DATA

| WIRE        | NESC HEAVY TENSION (LBS)  | RULING SPAN (FT) | WEIGHT SPAN (FT) | WIND SPAN (FT) |     |     |
|-------------|---------------------------|------------------|------------------|----------------|-----|-----|
| SHIELD WIRE | 3/8" EHS                  | AHEAD            | 3300             | 550            | 300 | 350 |
|             | 3/8" EHS                  | BACK             | 3300             | 550            | 350 | 300 |
| CONDUCTOR   | 1272 KCMIL ACSR "BITTERN" | AHEAD            | 10000            | 550            | 300 | 350 |
|             | 1272 KCMIL ACSR "BITTERN" | BACK             | 10000            | 550            | 300 | 300 |

### LOADING TABLE

| ITEMS            | LOAD | CASE 1 | CASE 2 | CASE 3 | CASE 4 | CASE 5 | CASE 6 |
|------------------|------|--------|--------|--------|--------|--------|--------|
| SW               |      |        |        |        |        |        |        |
|                  | T1   | 3300   | 1500   | 2100   | 2800   | 2100   | 500    |
|                  | V1   | 800    | 300    | 900    | 2600   | 1700   | 300    |
|                  | L1A  | 0      | 0      | 0      | 0      | 6900   | 0      |
|                  | L1B  | 0      | 0      | 0      | 0      | 3300   | 0      |
| 115KV CONDUCTORS |      |        |        |        |        |        |        |
|                  | T2   | 9000   | 5400   | 6600   | 6600   | 5600   | 1900   |
|                  | V2   | 2600   | 1200   | 2200   | 4500   | 3500   | 2000   |
|                  | L2A  | 0      | 0      | 0      | 0      | 15000  | 0      |
|                  | L2B  | 0      | 0      | 0      | 0      | 14300  | 0      |

### DESIGN APPLICATION

#### MECHANICAL LOADING CRITERIA

CASE 1 - NESC 250B HEAVY, 4 PSF WIND ON STRUCTURE AND WIRES, 0.5" RADIAL ICE, 0 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 2.50, LONGITUDINAL OLF = 1.65, VERTICAL OLF = 1.50

CASE 2 - NESC 250C EXTREME WIND, 31 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

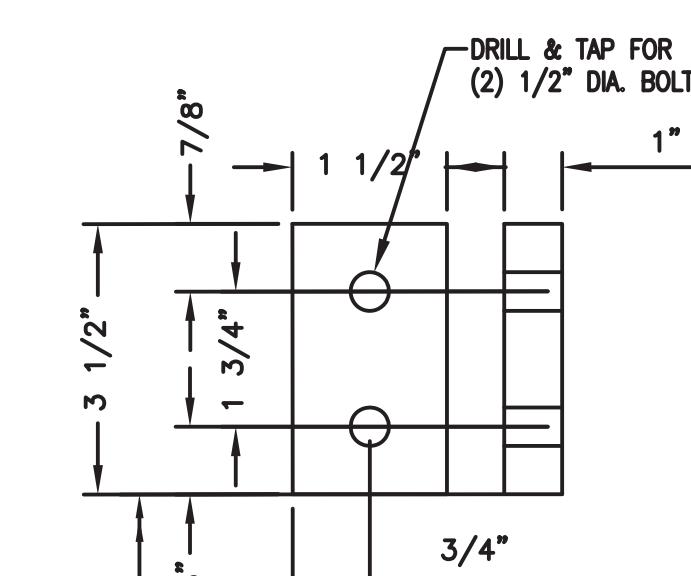
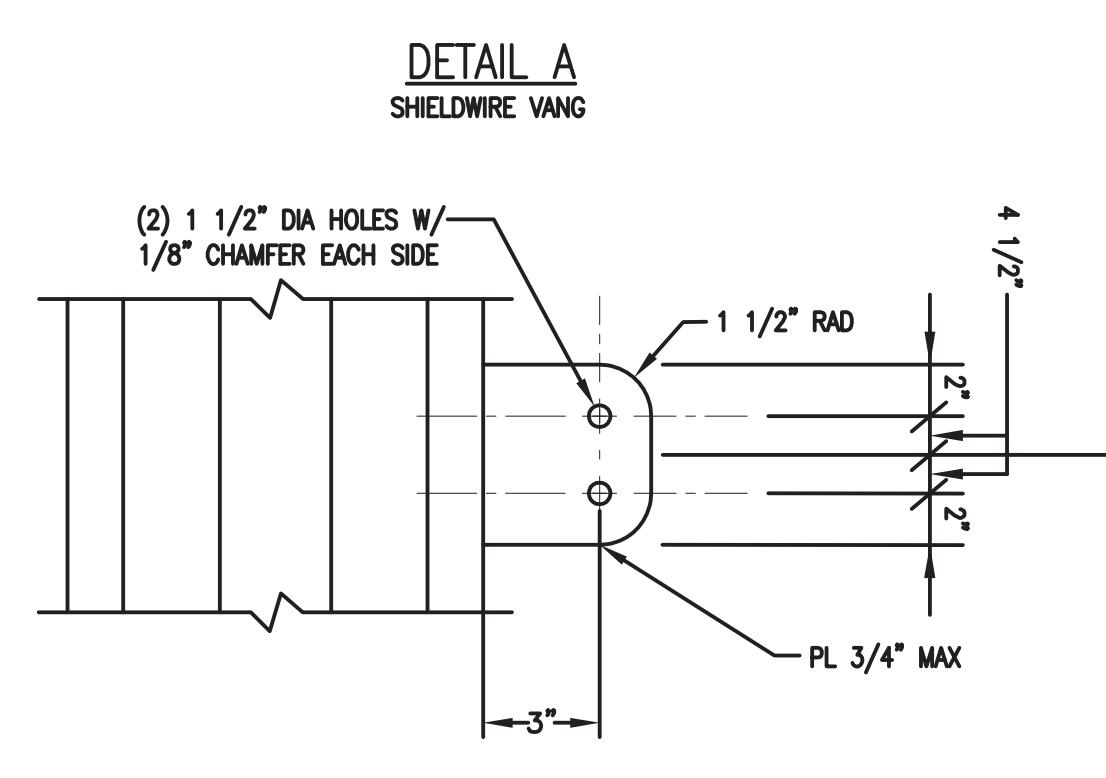
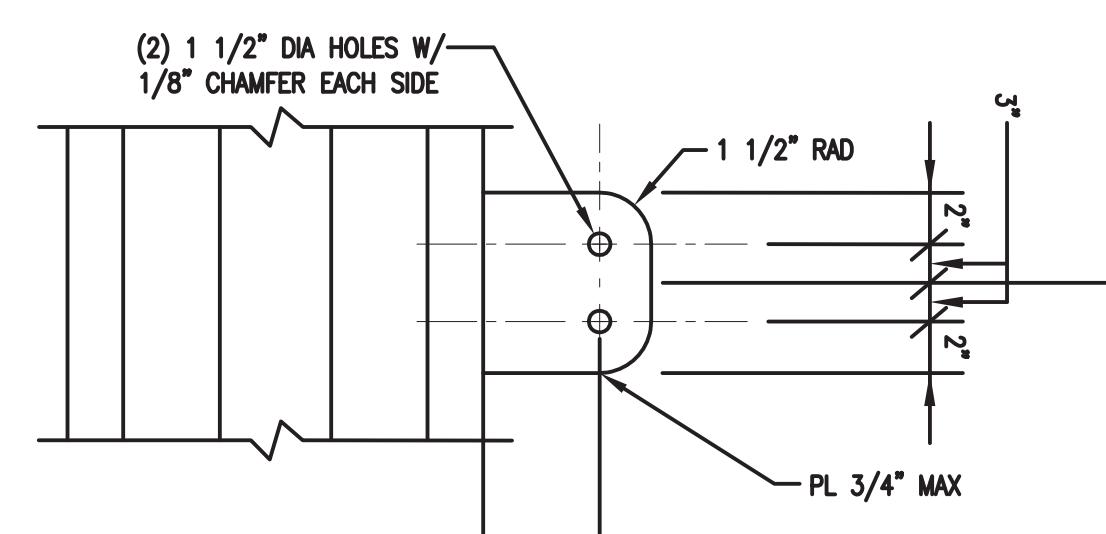
CASE 3 - NESC 250D WIND & ICE, 6.4 PSF WIND ON STRUCTURE AND WIRES, 0.75" RADIAL ICE, 15 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

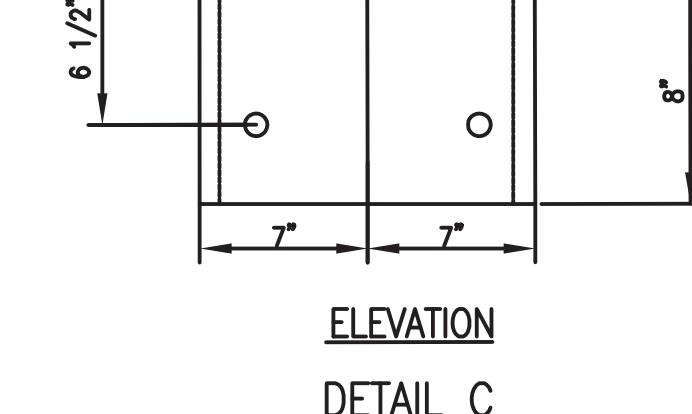
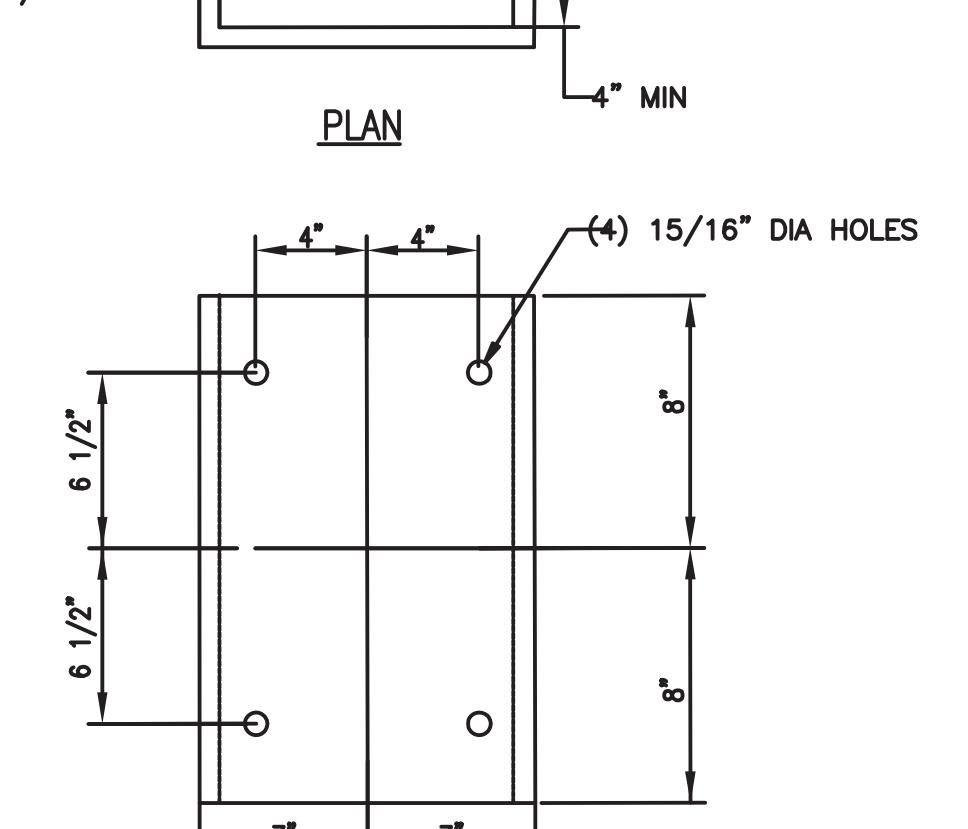
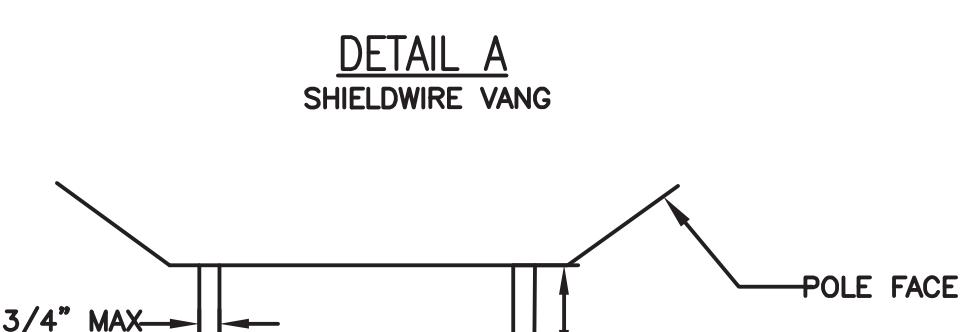
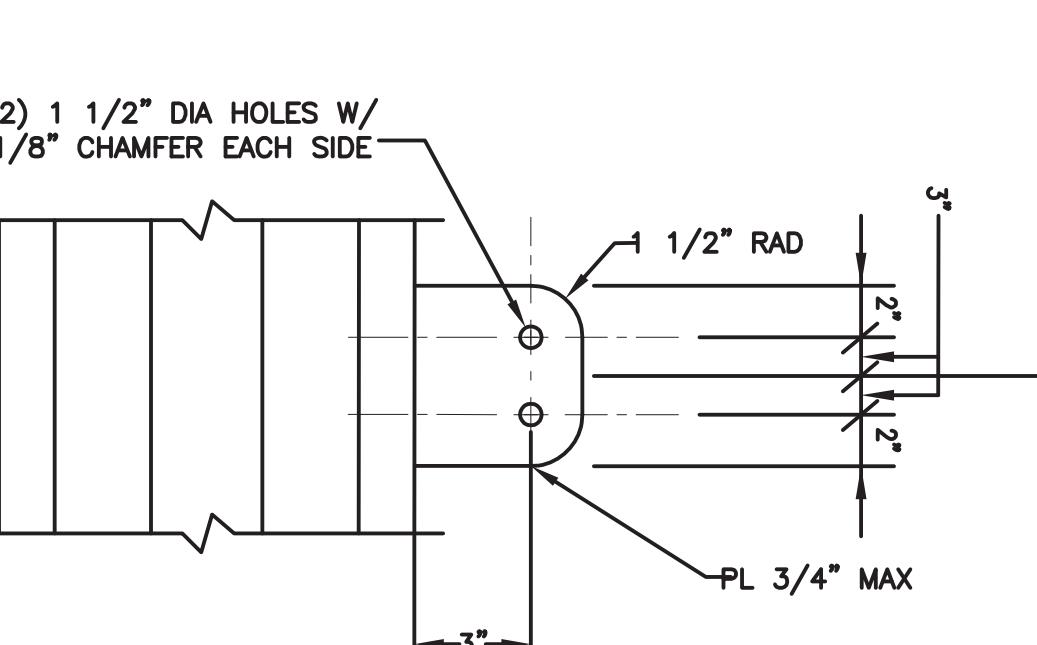
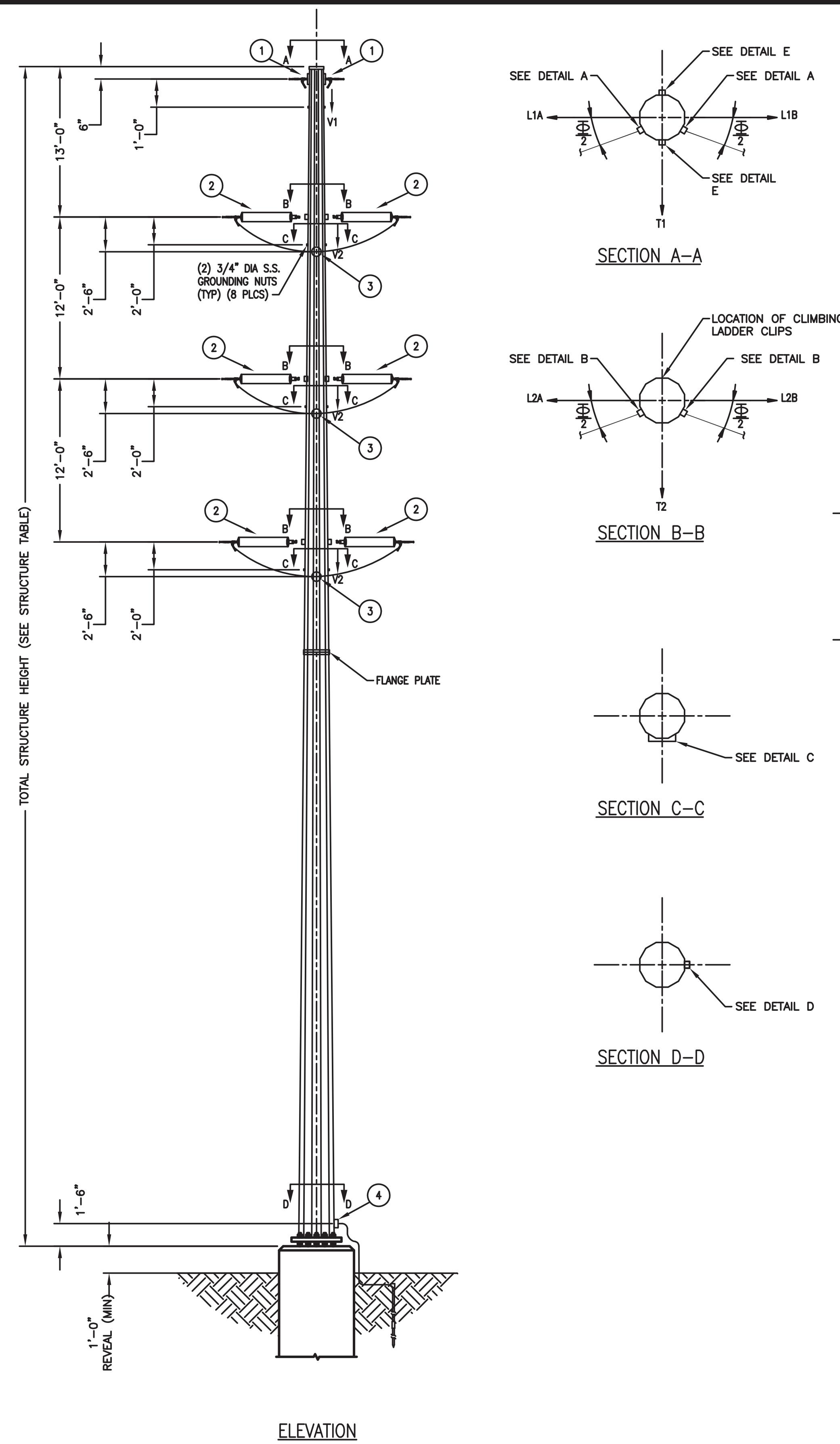
CASE 4 - EXTREME ICE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.1, LONGITUDINAL OLF = 1.1, VERTICAL OLF = 1.1

CASE 5 - UNBALANCED ICE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

CASE 6 - DEFLECTION, 0 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

### STRUCTURE TABLE




| STRUCTURE NO. | HEIGHT  | QUANTITY | Φ   |
|---------------|---------|----------|-----|
| 1640-3        | 100'-0" | 1        | 24" |
| 1640-4        | 100'-0" | 1        | 24" |






### MATERIAL LIST

| ITEM | DESCRIPTION                                       | ASSEMBLY | QUANTITY | DRAWING |
|------|---------------------------------------------------|----------|----------|---------|
| 1    | 3/8" EHS SHIELD WIRE SUSPENSION ASSEMBLY          | SW1      | 1        | -       |
| 2    | 115KV RUNNING ANGLE SUSPENSION INSULATOR ASSEMBLY | C6       | 3        | -       |
| 3    | STEEL POLE GROUNDING ASSEMBLY                     | G1       | 1        | -       |

### NOTES

- LADDER CLIPS SHALL BE INSTALLED FROM BASE PLATE TO ONE FOOT BELOW TOP OF POLE ON FLAT INDICATED ON DRAWING.
- UNITS OF ENTRIES IN THE LOADING TABLE ARE AS FOLLOWS UNLESS NOTED OTHERWISE: LENGTHS - FEET, WIRE LOADS - LBS, WIND PRESSURE - LBS PER SQ FOOT, ANGLES - DEGREES.
- THE LOADS IN THE LOADING TABLE ARE ULTIMATE LOADS AND INCLUDE ALL OVERLOAD FACTORS.
- THE VERTICAL LOADS (V) INCLUDE ONLY DEAD WEIGHT OF THE CONDUCTOR, ICE ON THE CONDUCTOR, AND WEIGHT OF INSULATORS. THE DEAD WEIGHT OF THE STRUCTURE SHALL BE CALCULATED BY THE FABRICATOR AND USED IN THE DESIGN. THE OVERLOAD FACTOR APPLIED TO THE DEAD WEIGHT SHALL BE AS FOLLOWS: CASE 1 - 1.50, CASE 2, 3, 5, & 6 - 1.00, CASE 4 - 1.10.
- THE STRUCTURE SHALL BE DESIGNED FOR A 31 PSF WIND ON THE STRUCTURE ONLY WITH NO WIRES ATTACHED. ALL OLF'S = 1.0.
- FOR STRUCTURAL DESIGN, THE LONGITUDINAL (L), TRANSVERSE (T) AND VERTICAL (V) LOADS SHALL BE CONSIDERED TO ACT SIMULTANEOUSLY WITH WIND AND THE DEAD WEIGHT OF THE STRUCTURE.
- ALL STEEL MATERIALS SHALL BE COATED IN ACCORDANCE WITH SPECIFICATION 191301.16881.5
- THE ANCHOR BOLT CAGES SHALL HAVE A MAXIMUM BOLT CIRCLE DIAMETER OF 54 INCHES OR LESS.
- GROUNDING NUTS TO BE LOCATED ON SAME FLAT AS CONDUCTOR OR SHIELDWIRE VANG.
- STRUCTURE DRAWING AND DETAILS ARE NOT TO SCALE.





### WIRE AND SPAN DATA

| WIRE        | NESC HEAVY TENSION (LBS)  | RULING SPAN (FT) | WEIGHT SPAN (FT) | WIND SPAN (FT) |     |     |
|-------------|---------------------------|------------------|------------------|----------------|-----|-----|
| SHIELD WIRE | 3/8" EHS                  | AHEAD            | 3300             | 550            | 100 | 150 |
|             | 3/8" EHS                  | BACK             | 2500             | 300            | 100 | 150 |
| CONDUCTOR   | 1272 KCMIL ASCR "BITTERN" | AHEAD            | 10000            | 550            | 100 | 150 |
|             | 1272 KCMIL ASCR "BITTERN" | BACK             | 4300             | 300            | 100 | 150 |

### DESIGN APPLICATION

#### MECHANICAL LOADING CRITERIA

CASE 1 - NESC 250B HEAVY, 4 PSF WIND ON STRUCTURE AND WIRES, 0.5" RADIAL ICE, 0 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 2.50, LONGITUDINAL OLF = 1.65, VERTICAL OLF = 1.50

CASE 2 - NESC 250C EXTREME WIND, 31 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

CASE 3 - NESC 250D WIND & ICE, 6.4 PSF WIND ON STRUCTURE AND WIRES, 0.75" RADIAL ICE, 15 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

CASE 4 - EXTREME ICE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.1, LONGITUDINAL OLF = 1.1, VERTICAL OLF = 1.1

CASE 5 - UNBALANCED ICE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

CASE 6 - DEFLECTION, 0 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

CASE 7 - NESC 250B HEAVY DE, 4 PSF WIND ON STRUCTURE AND WIRES, 0.5" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 2.50, LONGITUDINAL OLF = 1.65, VERTICAL OLF = 1.50, ALL WIRES ON ONE SIDE OF THE STRUCTURE SHOULD BE BROKEN

CASE 8 - NESC 250C EXTREME WIND DE, 31 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0, ALL WIRES ON ONE SIDE OF THE STRUCTURE SHOULD BE BROKEN

CASE 9 - NESC 250D WIND & ICE DE, 6.4 PSF WIND ON STRUCTURE AND WIRES, 0.75" RADIAL ICE, 15 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0, ALL WIRES ON ONE SIDE OF THE STRUCTURE SHOULD BE BROKEN

CASE 10 - EXTREME ICE DE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.1, LONGITUDINAL OLF = 1.1, VERTICAL OLF = 1.1, ALL WIRES ON ONE SIDE OF THE STRUCTURE SHOULD BE BROKEN

### LOADING TABLE

| ITEMS            | LOAD | CASE 1                 | CASE 2                       | CASE 3                      | CASE 4                         | CASE 5                       | CASE 6                      | CASE 7                     | CASE 8                      | CASE 9                     | CASE 10                     |
|------------------|------|------------------------|------------------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|
| SW               |      | T1<br>V1<br>L1A<br>L1B | 2800<br>200<br>5400<br>4000  | 1400<br>200<br>2500<br>1900 | 2100<br>200<br>3900<br>2800    | 3200<br>500<br>7100<br>4900  | 2000<br>100<br>5000<br>2400 | 600<br>100<br>1200<br>900  | 1600<br>100<br>2500<br>1700 | 800<br>100<br>3900<br>4600 | 1200<br>400<br>7100<br>2900 |
| 115KV CONDUCTORS |      | T2<br>V2<br>L2A<br>L2B | 6500<br>700<br>16100<br>6800 | 4400<br>300<br>8800<br>4000 | 4400<br>10600<br>16400<br>4800 | 6300<br>900<br>14600<br>8300 | 4800<br>200<br>4900<br>4200 | 1700<br>0<br>16100<br>1800 | 3100<br>0<br>8800<br>0      | 4300<br>900<br>16400<br>0  | 1900<br>900<br>1600<br>0    |

### STRUCTURE TABLE

| STRUCTURE NO. | HEIGHT | QUANTITY | Ø   |
|---------------|--------|----------|-----|
| 1640-6        | 75'-0" | 1        | 28" |

### MATERIAL LIST

| ITEM | DESCRIPTION                           | ASSEMBLY | QUANTITY | DRAWING |
|------|---------------------------------------|----------|----------|---------|
| 1    | 3/8" EHS SHIELD WIRE DEADEND ASSEMBLY | SW2      | 2        | -       |
| 2    | 115KV DEADEND INSULATOR ASSEMBLY      | C2       | 6        | -       |
| 3    | 115KV LINE POST JUMPER ASSEMBLY       | C4       | 3        | -       |
| 4    | STEEL POLE GROUNDING ASSEMBLY         | G1       | 1        | -       |

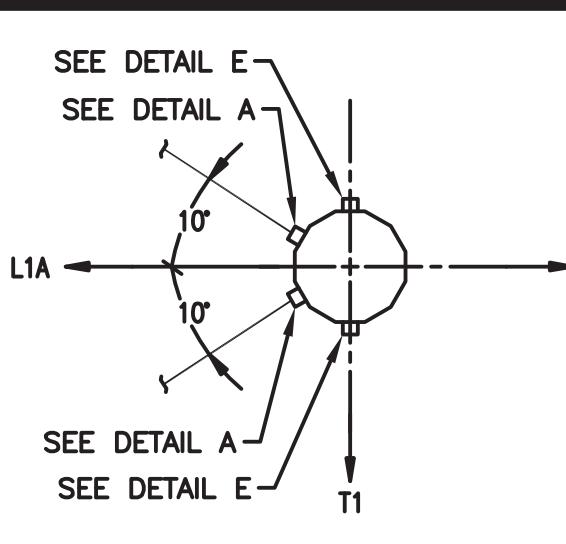
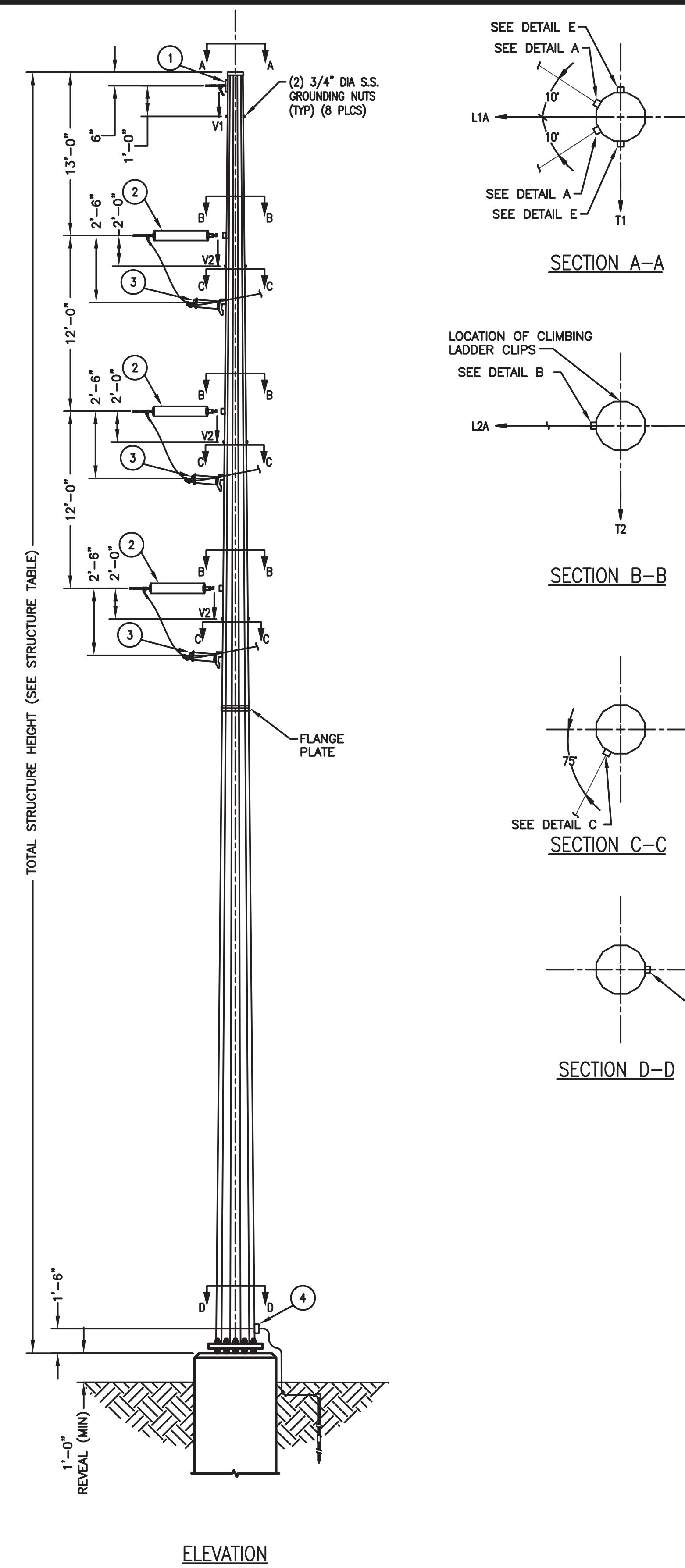
### NOTES

- LADDER CLIPS SHALL BE INSTALLED FROM BASE PLATE TO ONE FOOT BELOW TOP OF POLE ON FLAT INDICATED ON DRAWING.
- UNITS OF ENTRIES IN THE LOADING TABLE ARE AS FOLLOWS UNLESS NOTED OTHERWISE: LENGTHS - FEET, LOADS - LBS, WIND PRESSURE - LBS PER SQ FOOT, ANGLES - DEGREES.
- THE LOADS IN THE LOADING TABLE ARE ULTIMATE LOADS AND INCLUDE ALL OVERLOAD FACTORS.
- THE VERTICAL LOADS (V) INCLUDE ONLY DEAD WEIGHT OF THE CONDUCTOR, ICE ON THE CONDUCTOR, AND WEIGHT OF INSULATORS. THE DEAD WEIGHT OF THE STRUCTURE SHALL BE CALCULATED BY THE FABRICATOR AND USED IN THE DESIGN. THE OVERLOAD FACTOR APPLIED TO THE DEAD WEIGHT SHALL BE AS FOLLOWS: CASE 1 AND 7 - 1.50, CASE 2, 3, 5, 6, 8 & 9 - 1.00, CASE 4 AND 10 - 1.10.
- THE STRUCTURE SHALL BE DESIGNED FOR A 31 PSF WIND ON THE STRUCTURE ONLY WITH NO WIRES ATTACHED. ALL OLF'S = 1.0.
- FOR STRUCTURAL DESIGN, THE LONGITUDINAL (L), TRANSVERSE (T) AND VERTICAL (V) LOADS SHALL BE CONSIDERED TO ACT SIMULTANEOUSLY WITH WIND AND THE DEAD WEIGHT OF THE STRUCTURE.
- ALL STEEL MATERIALS SHALL BE COATED IN ACCORDANCE WITH SPECIFICATION 191301.16881.5
- THE ANCHOR BOLT CAGES SHALL HAVE A MAXIMUM BOLT CIRCLE DIAMETER OF 60 INCHES OR LESS.
- GROUNDING NUTS TO BE LOCATED ON SAME FLAT AS CONDUCTOR OR SHIELDWIRE VANG.
- STRUCTURE DRAWING AND DETAILS ARE NOT TO SCALE.

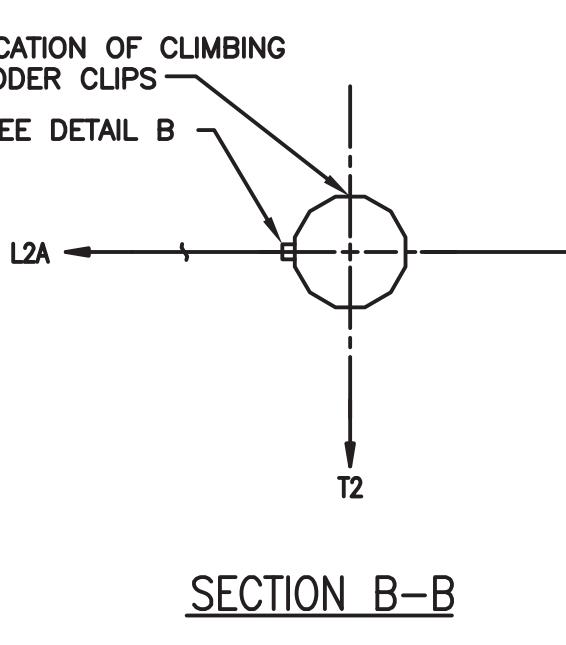


2 09/26/2016 UPDATE LOADS FOR MODIFIED LOCATION  
1 09/14/2016 CHANGE BRACKET DIM'S AND CASE 6 NAME  
0 09/07/2016 ISSUED FOR FABRICATION - PROJECT 191301  
A 08/31/2016 ISSUED FOR BID - PROJECT 191301  
CHECKED DATE NO. DATE REVISIONS AND RECORD OF ISSUE

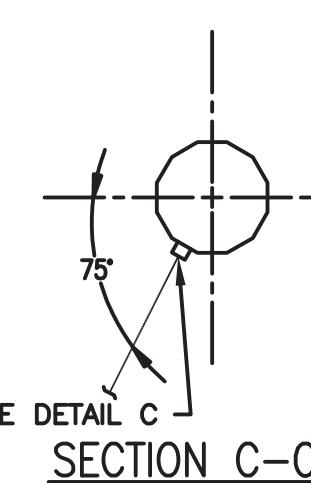
EJJ KMS  
EJJ KMS  
EJJ DWJ  
EJJ DWJ  
DRN DES CHK PDE APP



### WALLINGFORD 115KV LINE 1640

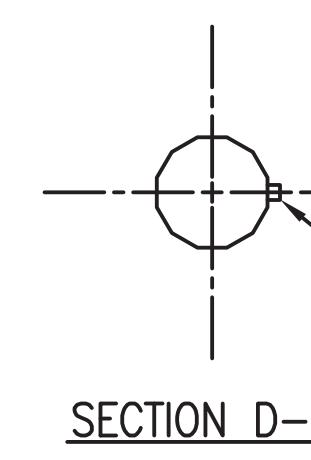
PROJECT 191301 DRAWING NUMBER STRD-005 REV 1


SINGLE POLE DEADEND  
STRUCTURE 1640-6

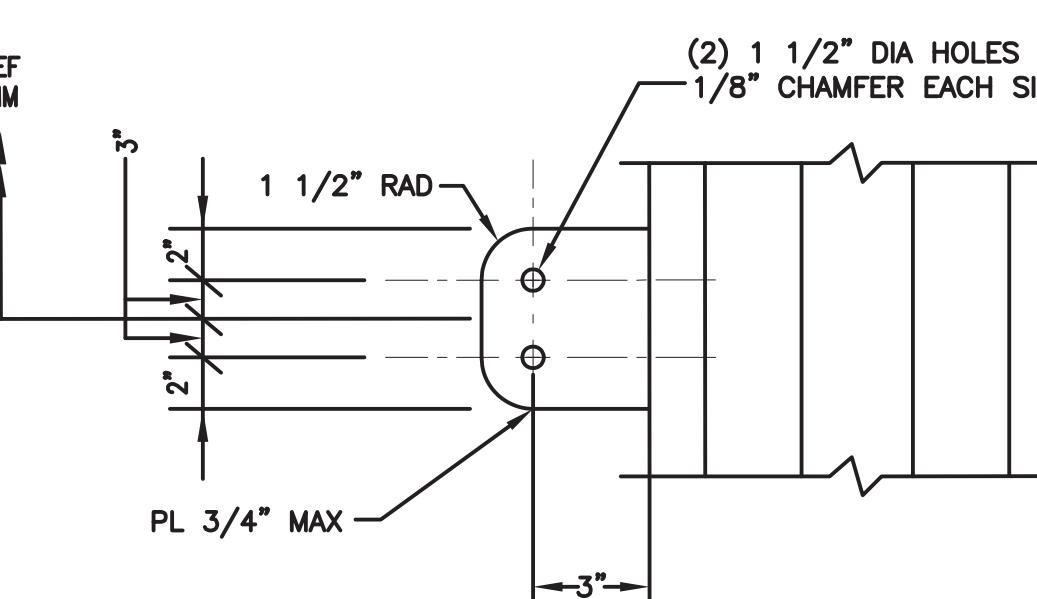
CODE AREA



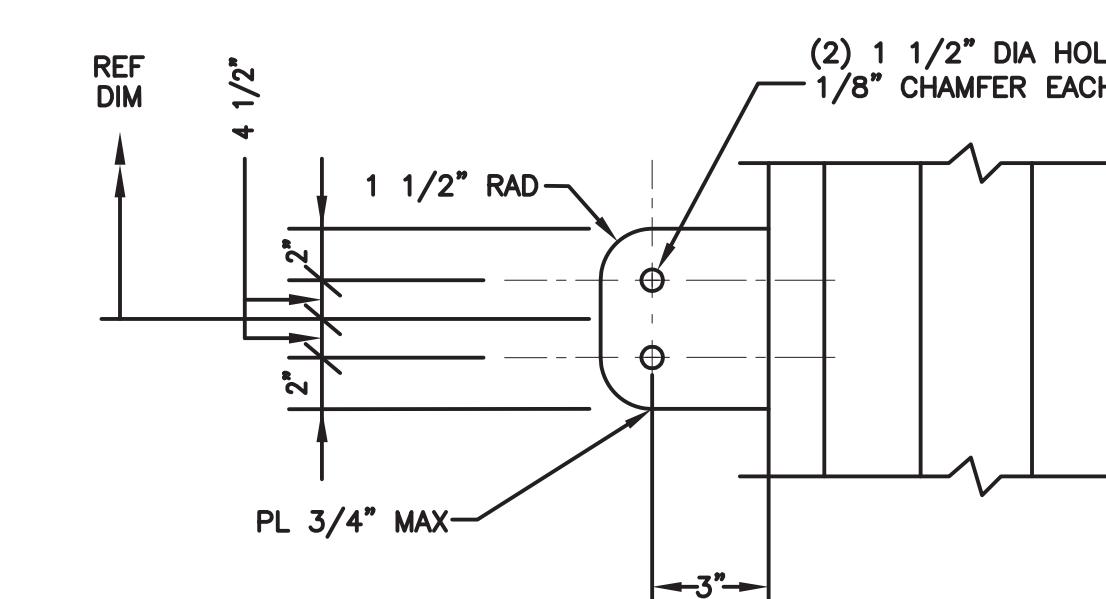




SECTION A-A

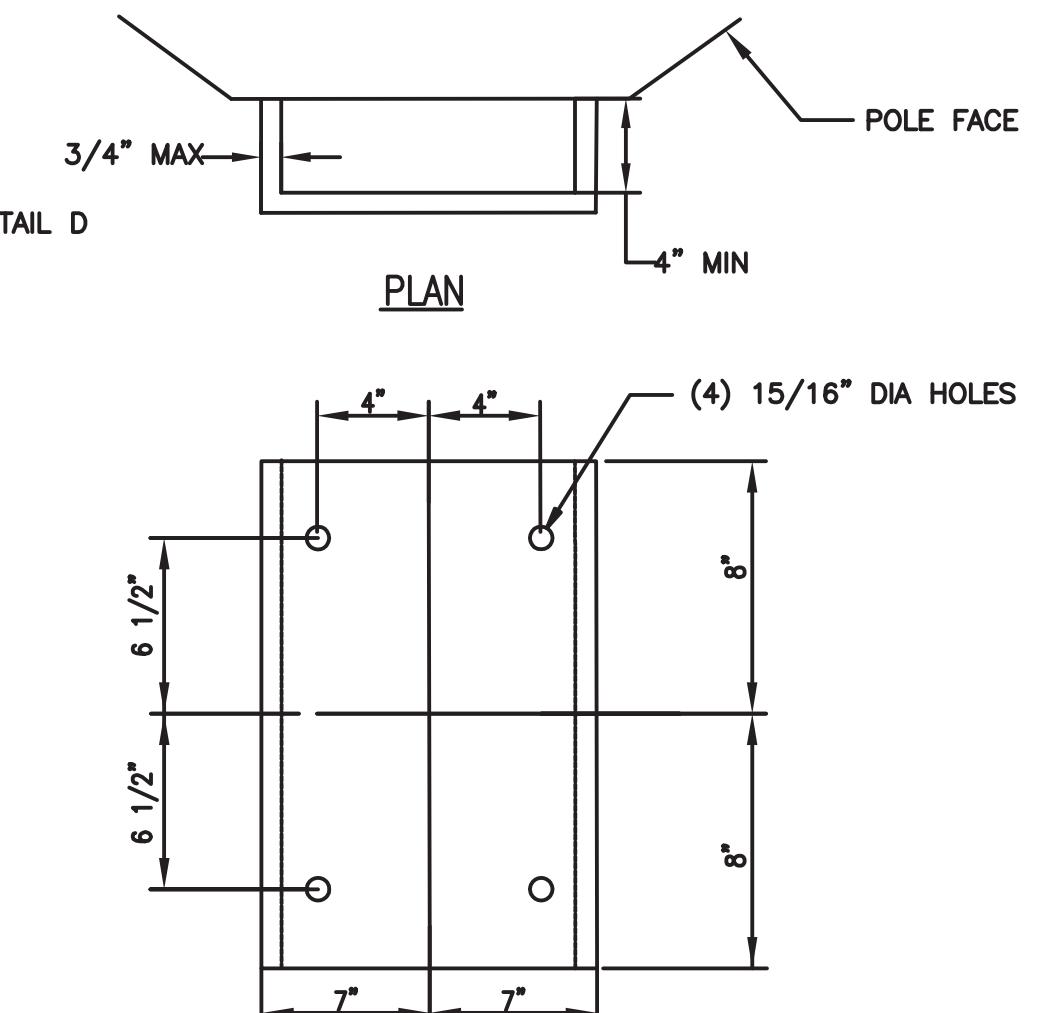



SECTION B-B

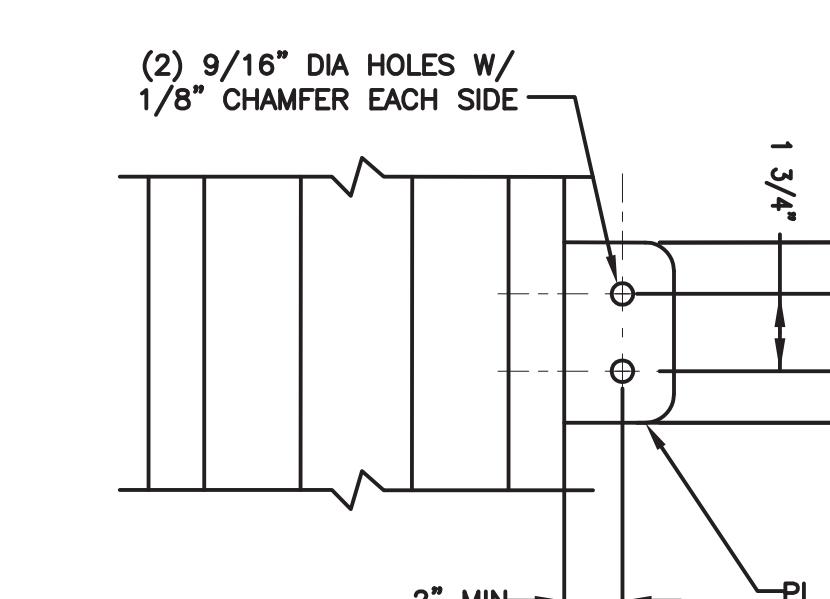



SECTION C-C

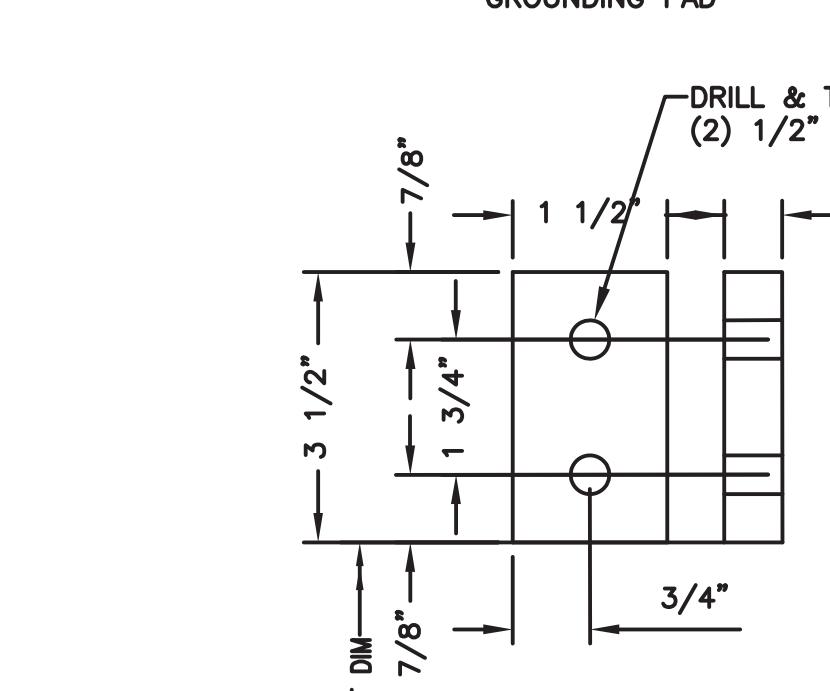



SECTION D-D




DETAIL A  
SHIELDWIRE VANG




DETAIL B  
CONDUCTOR VANG



ELEVATION  
DETAIL C  
POST INSULATOR SUPPORT BRACKET



DETAIL D  
GROUNDING PAD



DETAIL E  
SHIELDWIRE GROUNDING PAD

### WIRE AND SPAN DATA

| WIRE        | NESC HEAVY TENSION (LBS) | RULING SPAN (FT) | WEIGHT SPAN (FT) | WIND SPAN (FT) | DESIGN APPLICATION |          |       |      |     |     |    |                                                                                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                        |                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                      |
|-------------|--------------------------|------------------|------------------|----------------|--------------------|----------|-------|------|-----|-----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                          |                  |                  |                | SHIELD WIRE        | 3/8" EHS | AHEAD | 1500 | 100 | 450 | 50 | MECHANICAL LOADING CRITERIA                                                                                                                                                                                                               |                                                                                                                                                                                      |                                                                                                                                                                                        |                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                      |
| SHIELD WIRE | -                        | BACK             | -                | -              | 115KV ACSS "DRAKE" | AHEAD    | 2000  | 100  | 150 | 50  | 50 | CASE 1 - NES 250B HEAVY, 4 PSF WIND ON STRUCTURE AND WIRES, 0.5" RADIAL ICE, 0 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 2.50, LONGITUDINAL OLF = 1.65, VERTICAL OLF = 1.50                                                              | CASE 2 - NES 250C EXTREME WIND, 31 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0     | CASE 3 - NES 250D WIND & ICE, 6.4 PSF WIND ON STRUCTURE AND WIRES, 0.75" RADIAL ICE, 15 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0     | CASE 4 - EXTREME ICE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.1, LONGITUDINAL OLF = 1.1, VERTICAL OLF = 1.1     | CASE 5 - UNBALANCED ICE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0                                                                | CASE 6 - DEFLECTION, 0 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0                 | CASE 7 - NES 250B HEAVY DE, 4 PSF WIND ON STRUCTURE AND WIRES, 0.5" RADIAL ICE, 0 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 2.50, LONGITUDINAL OLF = 1.65, VERTICAL OLF = 1.50, ALL WIRES ON ONE SIDE OF THE STRUCTURE SHOULD BE BROKEN | CASE 8 - NES 250C EXTREME WIND DE, 31 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0, ALL WIRES ON ONE SIDE OF THE STRUCTURE SHOULD BE BROKEN | CASE 9 - NES 250D WIND & ICE DE, 6.4 PSF WIND ON STRUCTURE AND WIRES, 0.75" RADIAL ICE, 15 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0, ALL WIRES ON ONE SIDE OF THE STRUCTURE SHOULD BE BROKEN | CASE 10 - EXTREME ICE DE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.1, LONGITUDINAL OLF = 1.1, VERTICAL OLF = 1.1, ALL WIRES ON ONE SIDE OF THE STRUCTURE SHOULD BE BROKEN |
| CONDUCTOR   | -                        | BACK             | -                | -              | -                  | -        | -     | -    | -   | -   | -  | CASE 11 - NES 250B HEAVY DE, 4 PSF WIND ON STRUCTURE AND WIRES, 0.5" RADIAL ICE, 0 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 2.50, LONGITUDINAL OLF = 1.65, VERTICAL OLF = 1.50, ALL WIRES ON ONE SIDE OF THE STRUCTURE SHOULD BE BROKEN | CASE 12 - NES 250C EXTREME WIND DE, 31 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0 | CASE 13 - NES 250D WIND & ICE DE, 6.4 PSF WIND ON STRUCTURE AND WIRES, 0.75" RADIAL ICE, 15 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0 | CASE 14 - EXTREME ICE DE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.1, LONGITUDINAL OLF = 1.1, VERTICAL OLF = 1.1 | CASE 15 - NES 250B HEAVY DE, 4 PSF WIND ON STRUCTURE AND WIRES, 0.5" RADIAL ICE, 0 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 2.50, LONGITUDINAL OLF = 1.65, VERTICAL OLF = 1.50, ALL WIRES ON ONE SIDE OF THE STRUCTURE SHOULD BE BROKEN | CASE 16 - NES 250C EXTREME WIND DE, 31 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0 | CASE 17 - NES 250D WIND & ICE DE, 6.4 PSF WIND ON STRUCTURE AND WIRES, 0.75" RADIAL ICE, 15 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0                                                   | CASE 18 - EXTREME ICE DE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.1, LONGITUDINAL OLF = 1.1, VERTICAL OLF = 1.1                                                                  |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                      |

### LOADING TABLE

| ITEMS            | LOAD | CASE 1 | CASE 2 | CASE 3 | CASE 4 | CASE 5 | CASE 6 | CASE 7 | CASE 8 | CASE 9 | CASE 10 |
|------------------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| SW               | T1   | 100    | 200    | 100    | 100    | 100    | 100    | 200    | 200    | 100    | 100     |
|                  | V1   | 1100   | 600    | 1000   | 1700   | 1600   | 400    | 1100   | 600    | 1000   | 1700    |
|                  | L1A  | 4700   | 1800   | 3000   | 4800   | 4300   | 1200   | 4700   | 1800   | 3000   | 4800    |
| 115KV CONDUCTORS | T2   | 500    | 500    | 400    | 400    | 300    | 100    | 500    | 500    | 400    | 400     |
|                  | V2   | 1000   | 600    | 800    | 1300   | 1000   | 400    | 1000   | 600    | 800    | 1300    |
|                  | L2A  | 3300   | 1600   | 2200   | 3600   | 2700   | 700    | 3300   | 1600   | 2200   | 3600    |
|                  | L2B  | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       |

### DESIGN APPLICATION

#### MECHANICAL LOADING CRITERIA

CASE 1 - NES 250B HEAVY, 4 PSF WIND ON STRUCTURE AND WIRES, 0.5" RADIAL ICE, 0 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 2.50, LONGITUDINAL OLF = 1.65, VERTICAL OLF = 1.50

CASE 2 - NES 250C EXTREME WIND, 31 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

CASE 3 - NES 250D WIND & ICE, 6.4 PSF WIND ON STRUCTURE AND WIRES, 0.75" RADIAL ICE, 15 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

CASE 4 - EXTREME ICE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.1, LONGITUDINAL OLF = 1.1, VERTICAL OLF = 1.1

CASE 5 - UNBALANCED ICE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

CASE 6 - DEFLECTION, 0 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0

CASE 7 - NES 250B HEAVY DE, 4 PSF WIND ON STRUCTURE AND WIRES, 0.5" RADIAL ICE, 0 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 2.50, LONGITUDINAL OLF = 1.65, VERTICAL OLF = 1.50, ALL WIRES ON ONE SIDE OF THE STRUCTURE SHOULD BE BROKEN

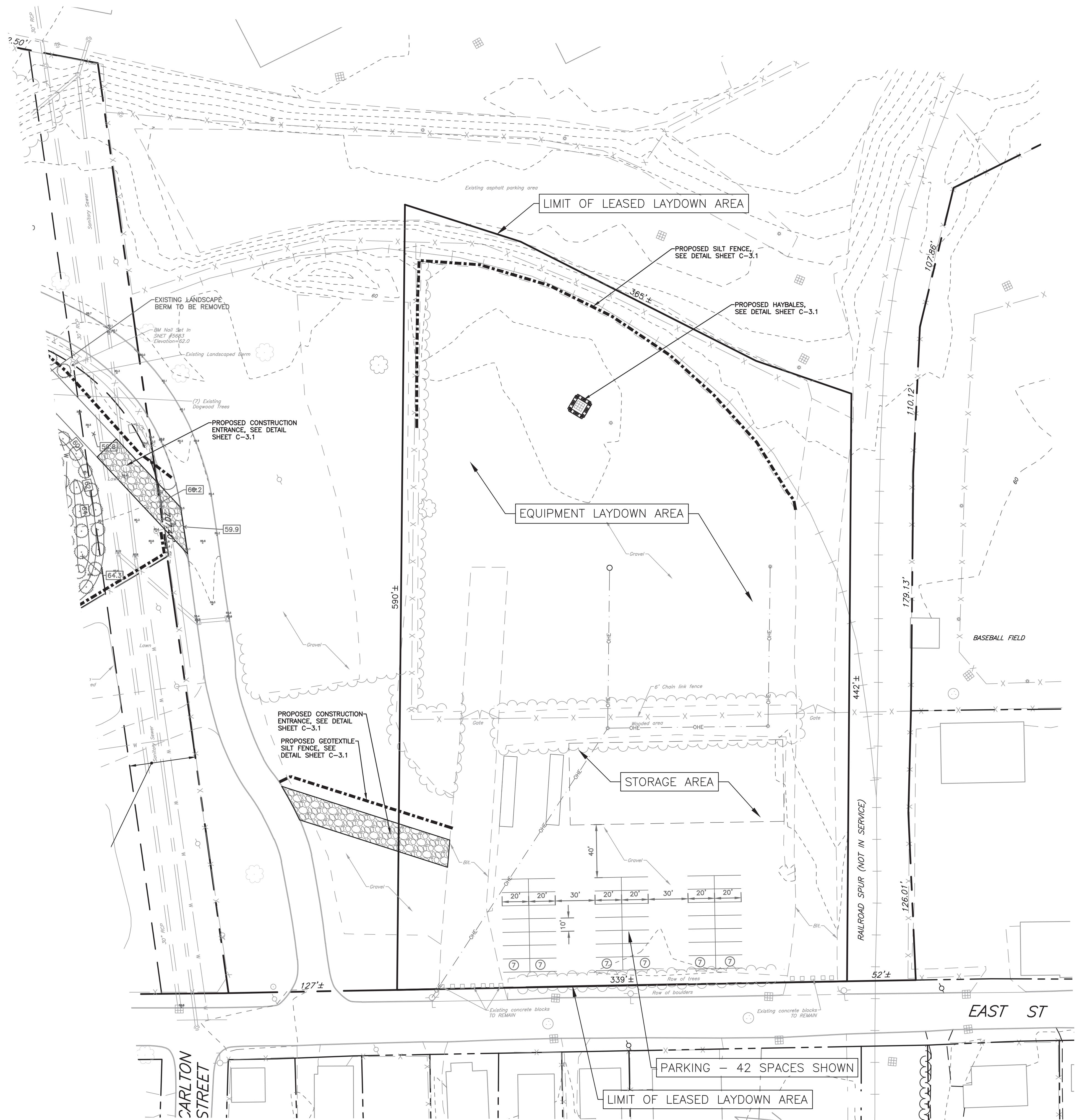
CASE 8 - NES 250C EXTREME WIND DE, 31 PSF WIND ON STRUCTURE AND WIRES, 0" RADIAL ICE, 60 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0, ALL WIRES ON ONE SIDE OF THE STRUCTURE SHOULD BE BROKEN

CASE 9 - NES 250D WIND & ICE DE, 6.4 PSF WIND ON STRUCTURE AND WIRES, 0.75" RADIAL ICE, 15 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.0, LONGITUDINAL OLF = 1.0, VERTICAL OLF = 1.0, ALL WIRES ON ONE SIDE OF THE STRUCTURE SHOULD BE BROKEN

CASE 10 - EXTREME ICE DE, 0 PSF WIND ON STRUCTURE AND WIRES, 1.5" RADIAL ICE, 30 F, INITIAL TENSIONS, TRANSVERSE WIND OLF = 1.1, LONGITUDINAL OLF = 1.1, VERTICAL OLF = 1.1, ALL WIRES ON ONE SIDE OF THE STRUCTURE SHOULD BE BROKEN

| STRUCTURE NO. | HEIGHT | QUANTITY | REV |
|---------------|--------|----------|-----|
| 1305-1B       | 75'-0" | 1        | 0   |

### MATERIAL LIST


| ITEM | DESCRIPTION                                                 | ASSEMBLY | QUANTITY | DRAWING |
|------|-------------------------------------------------------------|----------|----------|---------|
| 1    | 3/8" EHS SHIELD WIRE DEADEND ASSEMBLY                       | SW2      | 2        | -       |
| 2    | 115KV DEADEND INSULATOR ASSEMBLY FOR 795 KCMIL ACSS "DRAKE" | C3       | 3        | -       |
| 3    | 115KV LINE POST JUMPER ASSEMBLY FOR 795 KCMIL ACSS "DRAKE"  | C5       | 3        | -       |
| 4    | STEEL POLE GROUNDING ASSEMBLY                               | G1       | 1        | -       |

### NOTES

1. LADDER CLIPS SHALL BE INSTALLED FROM BASE PLATE TO ONE FOOT BELOW TOP OF POLE ON FLAT INDICATED ON DRAWING.
2. UNITS OF ENTRIES IN THE LOADING TABLE ARE AS FOLLOWS UNLESS NOTED OTHERWISE: LENGTHS - FEET, WIRE LOADS - LBS, WIND PRESSURE - LBS PER SQ FOOT, ANGLES - DEGREES.
3. THE LOADS IN THE LOADING TABLE ARE ULTIMATE LOADS AND INCLUDE ALL OVERLOAD FACTORS.
4. THE VERTICAL LOADS (V) INCLUDE ONLY DEAD WEIGHT OF THE CONDUCTOR, ICE ON THE CONDUCTOR, AND WEIGHT OF INSULATORS. THE DEAD WEIGHT OF THE STRUCTURE SHALL BE CALCULATED BY THE FABRICATOR AND USED IN THE DESIGN. THE OVERLOAD FACTOR APPLIED TO THE DEAD WEIGHT SHALL BE AS FOLLOWS: CASE 1 AND 7 - 1.50, CASE 2, 3, 5, 6, 8 & 9 - 1.00, CASE 4 AND 10 - 1.10.
5. THE STRUCTURE SHALL BE DESIGNED FOR A 31 PSF WIND ON THE STRUCTURE ONLY WITH NO WIRES ATTACHED. ALL OLF'S = 1.0.
6. FOR STRUCTURAL DESIGN, THE LONGITUDINAL (L), TRANSVERSE (T) AND VERTICAL (V) LOADS SHALL BE CONSIDERED TO ACT SIMULTANEOUSLY WITH WIND AND THE DEAD WEIGHT OF THE STRUCTURE.
7. ALL STEEL MATERIALS SHALL BE COATED IN ACCORDANCE WITH SPECIFICATION 191301.16881.5
8. THE ANCHOR BOLT CAGES SHALL HAVE A MAXIMUM BOLT CIRCLE DIAMETER OF 54 INCHES OR LESS.
- 9.

## **Laydown Area**

---



IMPORTANT NOTE:  
ALL ABOVE AND BELOW GROUND IMPROVEMENTS ARE  
NOT SHOWN OR DEPICTED HEREON.  
ADDITIONAL UNDERGROUND UTILITIES MAY EXIST.  
PRIOR TO ANY EXCAVATION OR CONSTRUCTION,  
CONTACT:  
"CALL BEFORE YOU DIG" 1-800-922-4455

C-4.0

PROJECT: FACILITY EXPANSION PROJECT  
LEASED LAYDOWN AREA  
115 JOHN STREET  
WALLINGFORD, CONNECTICUT  
PREPARED FOR:  
WALLINGFORD ENERGY II, LLC  
400 CHESTERFIELD CENTER, SUITE 110  
ST. LOUIS, MO 63017

POTENTIAL LAYOUT LEASED LAYDOWN AREA

DRAWN BY: MP  
CHECKED BY: JR  
SCALE: 1"=40'  
PROJECT: 15-011  
DATE: 8/22/2016

**GODFREY HOFFMAN**  
ASSOCIATES, LLC  
PROFESSIONAL AND DEDICATED CIVIL ENGINEERS  
26 BROADWAY, YONKERS, NY 10501  
TEL: 212.391.4217 FAX: 212.391.2088 WWW.GODFREYHOFFMAN.COM

