STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

IN RE:	:	
::	100	
A PETITION OF SOLARCITY CORPORATION		PETITION NO
TO APPROVE BY DECLARATORY RULING		
THE CONSTRUCTION AND OPERATION OF		
A SOLAR PHOTOVOLTAIC ELECTRIC	:	
GENERATING FACILITY OFF OLD FORGE	:	
ROAD, ROCKY HILL, CONNECTICUT	:	MARCH 24, 2016

PETITION FOR A DECLARATORY RULING: INSTALLATION HAVING NO SUBSTANTIAL ADVERSE ENVIRONMENTAL EFFECT

I. Introduction

Pursuant to Section 16-50k(a) of the Connecticut General Statutes ("C.G.S.") and Sections 16-50j-38 et seq. of the Regulations of Connecticut State Agencies ("R.C.S.A.), SolarCity Corporation ("SolarCity") hereby petitions the Connecticut Siting Council ("Council") to approve, by declaratory ruling, the proposed construction and operation of a 3.9 megawatt ("MW") solar photovoltaic electric generating facility (the "Facility") on property located off Old Forge Road in Rocky Hill, Connecticut.

Connecticut General Stat. § 16-50k(a) provides that:

Notwithstanding the provisions of this chapter or title 16a, the council shall, in the exercise of its jurisdiction over the siting of generating facilities, approve by declaratory ruling...(B) the construction or location ... of any customer-side distributed resources project or facility or grid-side distributed resources project or facility with a capacity of not more than sixty-five megawatts, as long as such project meets air and water quality standards of the Department of Energy and Environmental Protection....

As discussed more fully below, SolarCity respectfully submits that the Facility constitutes a grid-side distributed resources facility, satisfies the criteria of C.G.S. Section 16-

50k(a) and will not have a substantial adverse environmental effect.

II. Petitioner

SolarCity is a Delaware Corporation with a local office at 714 Brook Street, Rocky Hill, Connecticut. SolarCity was established in 2006 and has quickly become the largest provider of solar power in the United States. SolarCity makes clean energy available to homeowners, businesses, schools and government organizations, like the Town of Rocky Hill, at lower cost. SolarCity has successfully secured Council approval for the development of grid-side solar generating facilities in Groton and Norwich, Connecticut¹.

Correspondence and/or communication regarding this petition should be addressed to:

Nichole Seidell, Director of Environmental Permitting SolarCity Corporation Two Logan Square 100 N. 18th Street, Suite 1900 Philadelphia, PA 19103 267-457-4412 nseidell@solarcity.com

A copy of all such correspondence and/or communications should also be sent to the petitioners' attorneys:

Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103 860-275-8200 Kenneth C. Baldwin, Esq. kbaldwin@rc.com Joey Lee Miranda, Esq. jmiranda@rc.com

III. Background

SolarCity has entered into a Solar Power Purchase Agreement ("PPA") with the Town of

¹ See generally Siting Council Petition Nos. 1181, 1192, 1195.

Rocky Hill. Under the terms of the PPA, SolarCity will construct, maintain and operate a 3.9 MW solar photovoltaic electric generating facility on the northerly portion of an undeveloped 61.38-acre parcel off Old Forge Road in Rocky Hill (the "Property"). The Property is owned by the Town of Rocky Hill ("Town"). All of the power generated by the Facility will be purchased by the Town. The Town will receive an annual site use payment from SolarCity. Environmental attributes and environmental incentives associated with the Facility will be retained by SolarCity.

IV. Property Description

The Property is located in the southerly portion of the Rocky Hill Industrial Park, in the Town's Office Park (OP) zone district. The Property is surrounded by existing commercial and light industrial uses to the north within the Industrial Park; Town-owned open space land including Dividend Pond and a portion of Dividend Brook to the west and north; an active rail line and undeveloped land to the east; and undeveloped land to the south. The Property and land of John Russo, Trustee to the south and southwest, were previously used as a part of a sand and gravel mining operation. Central portions of the Property are currently used by the Rocky Hill Department of Public Works ("DPW") for material storage (top soil, road millings, sand and gravel) and leaf composting. Access to these DPW use areas extends from Old Forge Road along an existing paved and gravel driveway. The remainder of the Property is undeveloped, maintaining some forested areas and early successional trees with a dense understory of mostly scrub/shrub and herbaceous growth.

Two (2) wetland areas proximate to the proposed Facility were evaluated by All-Points

Technology Corp. ("APT") for potential impacts from the proposed development activities.

Wetland 1 is located adjacent to Dividend Brook near the existing culvert that extends

² The Property is identified as Map 18, Lot 93 on the Rocky Hill Assessor's records and is also known and referred to as R013 Old Forge Road.

underneath the access driveway (Dividend Road) in the northerly portion of the Property.

Dividend Brook extends further to the east, beyond the access drive and eventually discharges into the Connecticut River. A smaller, isolated wetland area, identified as Wetland 2, is located on an undeveloped parcel to the east of the Property on land owned by Gardiner Nursery Inc.

The nearest residential area is located approximately 820 feet to the west, along Briarwood Court. (See Attachment 1 – Existing Conditions Map).

V. Project Description

The Facility and related improvements, including an access driveway, construction staging and laydown areas, will occupy an approximately twenty-four (24) acre area in the northerly portion of the Property (the "Project Area"). The Project Area is generally flat with a gentle grade sloping down from west to east toward the Connecticut River. Access to the Project Area will extend from Old Forge Road to the west of the Project Area, along a portion of an existing paved and gravel driveway used to access the Property and the DPW's materials storage areas. Project plans for the proposed Facility are included in <u>Attachment 2</u>. ³

Solar TSM-PD14 photovoltaic modules; three (3) advanced Energy AE 500 TX 500 kW inverters; and three (3) electric transformers within the Project Area. A 23 kilo volt (kV) electric interconnect service line will extend, overhead, from the northerly portion of the Project Area to Old Forge Road and the existing Eversource electric distribution infrastructure. The Facility will utilize a post-driven RBI Solar Inc. panel racking system. The individual photovoltaic panels will be fixed at a 30 degree tilt to the south to promote maximum efficiency. The Facility will be

³ Project plans for the Facility are a compilation of engineering plans prepared by Westson & Sampson (Plan Sheets T-1, 6-1, D-1, C-1, C-2 and C-3); Electrical Details prepared by SolarCity (Plan Sheets PV-5, PV-6 and PV-7); and Racking System Details prepared by RBI Solar Inc. (Plan Sheets S-201 and S-301).

surrounded by an eight (8) foot security fence. Two (2), sixteen (16) foot wide access gates will be installed along the west side of the fenced Project Area. (See Attachment 2, Plan Sheet C-2).

SolarCity expects construction of the Facility to take approximately three (3) to four (4) months. Construction will commence immediately after SolarCity receives all necessary permits and approvals.

APT, on behalf of SolarCity, has completed an exhaustive Environmental Assessment ("EA") of the Property and has evaluated the potential environmental effects that may occur following the development of the Facility. A copy of the EA is included in Attachment 3. Based on the conclusions in the EA, SolarCity respectfully submits that the Facility will comply with the DEEP's Air and Water Quality Standards and will not have a substantial adverse effect on the Property or its surrounding environment.

VI. The Facility Will Comply with the Department of Energy and Environmental Protection (DEEP) Air and Water Quality Standards and Will Not Have a Substantial Adverse Effect on the Environment

A. Air Quality Standards

Operation of the Facility will not produce emissions of any regulated air pollutants or greenhouse gases. No impacts to air quality are expected, and no DEEP air permit is required for the Facility. (*See* Attachment 3, p. 30).

B. Water Quality Standards

The Facility is unstaffed and does not require the use of potable water or any sanitary facilities in the production of electricity. Any water utilized during construction for dust control will be minimal and have no impact on water quality in the vicinity of the Property. No liquid fuels are associated with the operation of the Facility.

The Property is located in Flood Zone X, designated as an area outside both the 100-year and 500-year flood plain. The Property is also located in the Gardner Expansion Aquifer

Protection Area ("APA"). The closest water supply wells, however, are located more than 1,000 feet to the southwest of the Property in the Town of Cromwell. There are no water supply wells located on the Property. (See Attachment 3, pp. 14-15). To protect the APA, SolarCity will establish and implement protective measures in the form of an Aquifer Protection Plan.

Protective measures in this plan include, but are not limited to, the monitoring of established sedimentation and erosion controls, the development of a detailed stormwater management plan and compliance with the filing requirements of the DEEP's General Permit for the Discharge of Stormwater and Dewatering Wastewater. A copy of a Stormwater Management Report "SWMP" for the Facility is included in Attachment 4. As demonstrated in the SWMP, there will be no negative stormwater impacts resulting from the development and operation of the Rocky Hill Facility.

No inland wetlands or watercourses will be directly impacted by the development of the Facility. All clearing and grading activity within the limits of the Project Area would maintain a setback of 370 feet to Wetland 1, located along the existing access drive, in the northern reaches of the Project Area. Wetland 2 is an isolated wetland located approximately 260 feet to the east of the Project Area, east of the existing rail line. Any potential short term temporary impacts on Wetland 1 or Wetland 2 will be minimal and mitigated by the use and maintenance of proper soil erosion and sedimentation controls throughout the construction period. SolarCity does not, therefore, expect any adverse impacts to area wetland resources. Likewise, no areas supporting vernal pool habitat are located within 750 feet of the Project Area and no vernal pool habitat was identified in either Wetland 1 or Wetland 2. (See Attachment 3, pp. 3-6 and 24).

⁴ The installation of a new utility pole, required for interconnection to the existing distribution system may occur within 160 feet of Wetland 1. The final location of new utility poles required for electric interconnection has not yet been determined.

C. Vegetation and Wildlife

As mentioned above, a majority of the Project Area has been previously cleared during sand and gravel mining operations. Portions of the Project Area support early successional tree and scrub growth. While the construction of the Facility will alter vegetation and wildlife habitat within the Project Area, habitat beyond the limits of the Project Area will not be impacted. (*See* Attachment 3, pp. 6-9 and 25-26).

D. <u>Bird Habitat Impact Analysis</u>

APT has completed a detailed Bird Habitat Impact Analysis for the Project Area. Habitat loss is an unavoidable consequence of any type of land development including that necessary for the Facility. While development of the Facility will result in some loss of habitat, it will not result in fragmentation of the overall habitat matrix of the area. (*See Attachment 3*, pp. 26-27).

E. Rare Species

According to the DEEP Natural Diversity Database ("NDDB"), the *Big Sand Tiger Beetle*, a Connecticut species of special concern, may occur in southwestern portions of the Property. In anticipation of the filing of this Petition, APT conducted a habitat-based survey of the Project Area, using known habitat requirements and determined that the Facility would not impact the *Big Sand Tiger Beetle*. Due to the potential presence of *Tiger Beetle* populations proximate to this Project Area, SolarCity has committed to the implementation of proactive protective measures to be utilized during construction. These protection measures have been developed and submitted to DEEP for review.

Further, APT determined that one federally listed "threatened" species, the *Northern*Long Eared Bat ("NLEB") may occur in the vicinity of the Property. The identified range of the NLEB encompasses the entire State of Connecticut. To assess the potential impact of the SolarCity project on the NLEB, APT evaluated the recently established U.S. Fish and Wildlife

Service (USFWS) NLEB impact criteria and determined that the facility would not result in an adverse effect on or incidental take of NLEB. (*See Attachment 3*, pp. 28-29).

F. Scenic Areas

No State designated scenic areas would be physically or visually impacted by the development of the Facility. (*See Attachment 3*, p. 30).

G. Historic and Archeological Resources

No historic resources listed on or eligible for listing on the National Register of Historic Places exist on or proximate to the Property. The nearest historic resource is located approximately one mile from the Project Area. There are reported archeological sites in the general vicinity of the Property. Due to the historic sand and gravel mining operations at the Property, it is unlikely that any of these resources, if they exist, would remain intact. The Project Area, therefore, no longer possesses any potential to yield intact archeological deposits. (*See Attachment 3*, pp. 15-16).

SolarCity has consulted with the Connecticut State Historic Preservation Office regarding seeking concurrence with its findings that the Facility and the potential that the project may impact historic or archeological resources of the State. The SHPO is currently reviewing the SolarCity findings. Based on research conducted by SolarCity's consultant team, it was determined that the Facility would not impact historic and archeological resources of the State. (See Attachment 3, pp. 15-16 and 30-31).

H. <u>Recreational Resources</u>

The Facility will not impact any existing or proposed recreational resources in the Town of Rocky Hill. (See Attachment 3, p. 16).

Carbon Debt Analysis

The Facility will result in a net improvement in carbon reduction compared to the loss of

approximately twenty-four (24) acres of the forest woodland portions of the Property. The Carbon Debt Analysis included in <u>Attachment 5</u> accounts for the loss of trees on the Property and carbon associated with both the manufacturer of the solar panels and Facility construction activities. The results of this analysis demonstrate that the Facility would begin to have a measurable net improvement in carbon reduction in less than three (3) years.

J. Noise

The only equipment associated with the Facility that generates noise are the fans associated with the three (3) 500 kW inverters. According to a Noise Report prepared for the proposed installation, the Facility will comply with all State and local noise standards. (See Attachment 3, pp. 17 and 31).

K. Visibility

APT has completed a visual impact assessment for the proposed Facility. The Facility is setback sufficiently from all abutting properties and the nearest public roadways. Intervening vegetation between these adjacent points and the Facility provide adequate and complete visual screening. The Facility will, therefore, have minimal aesthetic impact on adjacent uses and/or properties. (*See Attachment 3*, p. 32).

L. Traffic

Traffic to the Facility, after the initial construction period, would be minimal. Unless there is a problem with a particular piece of equipment, SolarCity anticipates the need for annual maintenance visits by technicians. In addition, typical grounds maintenance involves mowing of the area between the solar panels approximately four (4) times during a typical calendar year.

M. <u>Decommissioning Plan</u>

SolarCity has developed a Decommissioning Plan to prepare for the eventual permanent closure of the Facility. The Decommissioning Plan describes the process for removal and

disposal or the recycling of all equipment and materials installed within the Project Area and the restoration of the land to its pre-development condition. A Decommissioning Plan is included in Attachment 6.

VII. Notice to the Government Officials and Abutting Landowners

Copies of this Petition have been sent by certificate of mailing to municipal, regional and State officials, pursuant to the requirements of C.G.S. Section 16-50*l*(b). A Certificate of Service, along with the lists of the officials who were sent a copy of the Petition, are included in Attachment 7. A Certificate of Service verifying that a copy of the Petition was also sent to all abutting landowners in accordance with R.C.S.A. Section 16-50j-40 along with a list of these abutters is included in Attachment 8.

VIII. Conclusion

For the reasons stated above, SolarCity respectfully requests that the Council approve the location and construction of the Facility by declaratory ruling.

Respectfully submitted,

CELLCO PARTNERSHIP d/b/a VERIZON WIRELESS

Kenneth C. Baldwin, Esq.

Joey Lee Miranda, Esq.

Robinson & Cole LLP

280 Trumbull Street

Hartford, CT 06103-3597

(860) 275-8200

Its Attorneys

List of Attachments

- 1. Existing Conditions Map
- 2. Project Plans
- 3. Environmental Assessment
- 4. Stormwater Management Report
- 5. Carbon Debt Analysis
- 6. Decommissioning Plan
- 7. Notice to the Government Officials
- 8. Notice to Abutting Landowners

ATTACHMENT 1

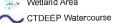
Town of Rocky Hill Property (+/-61.4 acres)

Existing Access Drive

Existing Materials Pile

2' Contour Line

10' Contour Line


X=X= Proposed Fenced Facility (+/-19 acres)

•••• Existing Treeline/Clearing Limit

Project Area - Limit of Proposed Work (+/-24 acres)

Start/End Wetland Flag

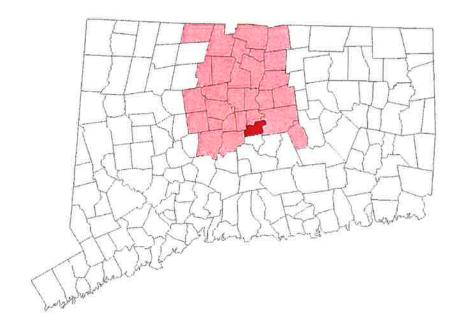
Delineated Wetland Boundary

🛂 Wetland Area

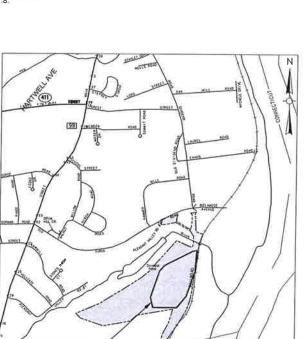
Approximate Assessor Parcel Boundary (CTDEEP)

Attachment 1 **Existing Conditions Map**

Proposed Solar PV Facility Town of Rocky Hill Old Forge Road Rocky Hill, Connecticut



ATTACHMENT 2


ROCKY HILL, CONNECTICUT

SOLAR PHOTOVOLTAIC (PV) PROJECT

R013 OLD FORGE ROAD ROCKY HILL, CONNECTICUT 06067

SCALE: N.T.S.

PROJECT DI	RECTORY
DEVELOPER(S): SOLAR CITY, INC 1376 LEAD HILL BLVD. ROSEVILLE. CA 95661	RACKING SYSTEM DESIGNER: RBI SOLAR 5513 VINE STREET CINCINNATI, OH 45217
CONTACT: JOSHUA TROGLIN (650) 332-0412	CONTACT: LOUIS "PAT" HUDEPOHL 513-618-2183
HOST: TOWN OF ROCKY HILL R013 OLD FORGE ROAD ROCKY HILL, CONNECTICUT 06067	UTILITY: EVERSOURCE
ENGINEER: WESTON & SAMPSON ENGINEERS, INC. 273 DIVIDEND ROAD ROCKY HILL, CONNECTICUT 08067	
CONTACT: JOHN FIGURELLI (860) 513-1473	
ELECTRICAL ENGINEER: PLUMP ENGINEERING, INC 914 E KATELLA AVENUE ANAHEIM, CA 92805	
CONTACT: ANN D'ALESSANDRO (518) 796-1030	

SHEET	SHEET TITLE
T-1	COVER SHEET
G-1	ABBREVIATIONS, NOTES AND LEGEND
D-1	DETAILS
C-1	EXISTING CONDITIONS
C-2	LAYOUT PLAN
C-3	EROSION & SEDIMENTATION CONTROL PLAN

F V-1	EQUIPMENT DETAILS
	DRAWING INDEX - RBI SOLAR
SHEET	SHEET TITLE
S-201	ADDITIONAL POST SECTIONS & ELEVATIONS
S-301	RACK SECTION & BAY PLAN VIEWS

STRUCTURAL DETAILS & INVERTER PADS
PV EQUIPMENT PLAN & ELEVATION

	SOLA	AR PHOTOVOLTAIC (PV) SYSTEM DESCRIPTION	
SYSTEM	MOUNTING PLANE I.D. 1	MOUNTING PLANE I.D. 2	MOUNTING PLANE I.D. 3
SYSTEM SIZE	1,300,750 kW	1,300,750 kW	1,301,520 kW
MODULE	(4,730) TRINA SOLAR TSM-PD14 (275W)	(4,730) TRINA SOLAR TSM-PD14 (275W)	(4,488) TRINA SOLAR TSM-PD14 (290W)
TILT ANGLE	30 DEGREES	30 DEGREES	30 DEGREES
AZIMUTH	170 DEGREES	170 DEGREES	170 DEGREES
RACKING	RBI RACKING	RBI RACKING	RBI RACKING

PV-5

SHEET TITLE

Project:

ROCKY HILL
SOLAR PROJECT

R013 OLD FORGE ROAD ROCKY HILL CT 06067

3055 Clearview Way San Malao, CA 94402 (550) 638-1028 www.solarcity.com

Waster Service

273 DMolend Road Rocky Hal, Commedicat (960) 513-1483 (900) Sampson www.westonandsampson.com

Revisions:

Rev Date Description

Seal:

PERMIT PLANS
JOB NO. 2150769

 Date:
 03.16.2016

 Scale:
 AS SHOWN

 Drawn By:
 LEC

 Reviewed By:
 JSP

 Checked By:
 JSP

 Approved By:
 RGT

Drawing Title:

COVER SHEET

et Number:

T-1

0769 - Rocky Hill CAD 01 - Cover T-1, dwg

PROJECT AREA

LEGEN	D	
DESCRIPTION	EXISTING	PROPOS
CATCH BASIN		
HYDRANT	ρ,	+
UTILITY POLE	-D	
POLE-MOUNTED LIGHT FIXTURE	¢	-0
EDGE OF PAVEMENT		
EDGE OF UNPAVED ROAD		
PROJECT AREA		
OVERHEAD WIRE (ELECTRICAL)	6	
ELECTRICAL CONDUIT (SUBGRADE)	E	— E -
RAILROAD	1111111	
STONE WALL	0000000000	0000000
RETAINING WALL		
FENCE		
INDIVIDUAL DECIDUOUS TREE	O.	0
INDIVIDUAL EVERGREEN TREE	*	*
EDGE OF WOODS/ CLEARING	unun	~~~
DEBRIS / SOIL PILE / RUBBLE		
ELECTRIC METER		
SURVEY MARKER		
PROPERTY BOUNDARY		
MOUNTING PLANE LIMIT	1	
SPOT ELEVATIONS	×	x 46
CONTOUR LINES		
RESOURCE FLAG	■ TOB/BVW	
GUY WIRE	0-	
EROSION CONTROL MATTING		
RIP RAP	******	
SIGN	-	
BENCH MARK	•	
SEDIMENT/EROSION CONTROLS	1 1	
ROCK OUTCROP		
SEWER MANHOLE	(5)	_
MANHOLE (MH) FOR UNDERDRAIN SYSTEM	0	
DRAIN MANHOLE (DMH)	0	
UTILITY MANHOLE	1 0	
GROUND-MOUNTED SOLAR PV MODULES		
(ELECTRICALLY CONNECTED)		
OVERHEAD WIRE	— он —	
BORDERED VEGETATED WETLAND BUFFER		
WETLAND FLAG	▲ WF	
IRON PIN		

ABBREVIATIONS

MORE OR LESS TYP TYPICAL

ACCMP

ALTERNATING CURRENT

CORRUGATED METAL PIPE

DC DIRECT CURRENT

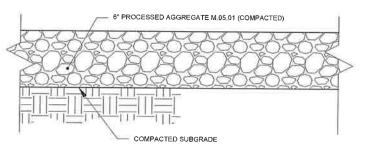
RCP REINFORCED CONCRETE PIPE

FEU FLARED END UNIT

W/ WITH

WETLAND FLAG WF #1

REC RECOVERED


N/F NOW OR FORMERLY

CT CONNECTICUT

DEEP DEPARTMENT OF ENERGY AND ENVIRONMENTAL PROTECTION

CONSTRUCTION NOTES:

- 1. THE CONTRACTOR SHALL CALL BEFORE YOU DIG (CBYD) AT 811 OR 1-800-922-4455 AT LEAST 72 HOURS, SATURDAYS, SUNDAYS, AND HOLIDAYS EXCLUDED, PRIOR TO EXCAVATING AT ANY LOCATION, A COPY OF THE CALL BEFORE YOU DIG PROJECT REFERENCE NUMBER(S) SHALL BE GIVEN TO THE OWNER PRIOR TO EXCAVATION.
- 2. LOCATIONS OF EXISTING PIPES, CONDUITS, UTILITIES, FOUNDATIONS AND OTHER UNDERGROUND OBJECTS ARE NOT WARRANTED TO BE CORRECT AND THE CONTRACTOR SHALL HAVE NO CLAIM ON THAT ACCOUNT SHOULD THEY BE OTHER THAN SHOWN...
- STONE WALLS, FENCES, CURBS, ETC, SHALL BE REMOVED AND REPLACED AS NECESSARY TO PERFORM THE WORK, UNLESS OTHERWISE INDICATED, ALL SUCH WORK SHALL BE INCIDENTAL TO CONSTRUCTION OF THE PROJECT.
- 4_{\odot} ALL AREAS DISTURBED BY THE CONTRACTOR BEYOND THE PROJECT AREA SHALL BE RESTORED AT NO ADDITIONAL COST TO THE OWNER,

ROCKY HILL SOLAR PROJECT

R013 OLD FORGE ROAD ROCKY HILL, CT 06067

Weston&Sampson

273 Dividend Road Rocky Hill, Connecticut (860) 513-1483 (800) Sampson

PERMIT PLANS JOB NO. 2150769

03 16 2016 AS SHOWN Drawn By: LEC Reviewed By: JSP Checked By: DCH

Drawing Title:

ABBREVIATIONS, NOTES, LEGEND, AND DETAILS

G-1

ALL EROSION AND SEDIMENT CONTROL MEASURES SHALL BE PERFORMED IN ACCORDANCE WITH THE "CONNECTICUT GUIDELINES FOR SOIL EROSION AND SEDIMENT CONTROL" (MAY 2002), THE CONTRACTOR SHALL OWN AND MAINTAIN A COPY OF THE GUIDELINES ON-SITE DURING CONSTRUCTION.

ALL DISTURBED AREAS SHALL BE KEPT TO A MINIMUM, FINAL GRADING AND RESTORATION SHALL BE ACCOMPLISHED AS SOON AS PRACTICAL.

EROSION AND SEDIMENT CONTROL STRUCTURES SHALL BE INSTALLED PRIOR TO SITE WORK, IF IT IS NOT POSSIBLE TO DO SO, THE ENGINEER SHALL BE NOTIFIED IN ORDER TO MAINTAIN THE INTEGRITY OF

ALL CONTROL STRUCTURES SHALL BE MAINTAINED THROUGHOUT CONSTRUCTION AND REMOVED WHEN STABILIZATION HAS BEEN ATTAINED. IF THE PROPOSED CONTROL MEASURES ARE NOT SATISFACTORY, ADDITIONAL CONTROL MEASURES SHALL BE TAKEN

ALL RUNGEF FROM THE DISTURBED AREA SHALL BE CONTROLLED AND FILTERED NON-WOVEN SYNTHETIC FIBER FILTER FABRIC, STRAW BALES OR SILT SOCKS SHALL BE USED IN THE AREAS SHOWN ON THE SITE PLAN AND INSTALLED AS SHOWN ON THIS PLAN.

A CT DEEP GENERAL PERMIT FOR THE DISCHARGE OF STORMWATER AND DEWATERING WASTEWATERS FROM CONSTRUCTION ACTIVITIES WILL BE REQUIRED FOR THE PROPOSED PROJECT. THE CONTRACTOR SHALL BE RESPONSIBLE FOR IMPLEMENTATION AND COMPLIANCE WITH THE APPROVED STORMWATER POLLUTION CONTROL PLAN (SWPCP),

THE CONTRACTOR MUST OBTAIN COPIES OF THE ZONING, WETLANDS AND CTDEP STORMWATER

THE CONTRACTOR SHALL BE RESPONSIBLE FOR IMPLEMENTATION OF SEDIMENT AND EROSION CONTROL MEASURES, THIS RESPONSIBILITY INCLUDES THE ACQUISITION OF MATERIALS, INSTALLATION, AND MAINTENANCE OF EROSION AND SEDIMENT STRUCTURES, THE COMMUNICATION AND DETAILED EXPLANATION TO ALL PEOPLE INVOLVED IN THE SITE WORK OF THE REQUIREMENTS AND OBJECTIVE OF THE EROSION AND SEDIMENT CONTROL MEASURES.

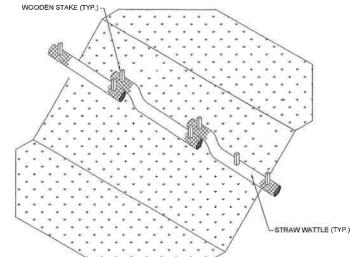
TWO (2) WEEKS PRIOR TO THE START OF WORK THE CONTRACTOR SHALL PROVIDE THE NAME AND PHONE NUMBER OF THE INDIVIDUAL RESPONSIBLE FOR IMPLEMENTATION OF THIS PLAN

IN THE EVENT THE APPLICANT IS NOT OWNER OF THE PROPERTY. THE CURRENT OWNER SHALL HAVE ALL THE RESPONSIBILITIES LISTED IN THIS PARAGRAPH AND SHALL SUBMIT A WORKING PHONE NUMBER FOR CONTACT AT TIME OF APPLICATION FOR PERMITS, ANY CHANGE IN ENGINEER SHALL BE NOTED AT

THE ENGINEER, WESTON & SAMPSON ENGINEERS, INC. (860-513-1473) #273 DIVIDEND ROAD, ROCKY HILL, CT. 06067 SHALL BE NOTIFIED OF ANY PROPOSED ALTERATION TO THE EROSION AND SEDIMENT CONTROL PLAN, PRIOR TO ALTERING, IN ORDER TO ENSURE THE FEASIBILITY OF THE ADDITION, SUBTRACTION, OR CHANGE IN THE PLAN.

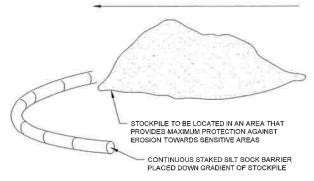
SEEDING WITHIN GROUND MOUNTED ARRAY AREA

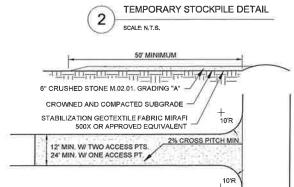
NEW ENGLAND SEMI-SHADE GRASS AND FORBS MIX - THE NEW ENGLAND SEMI-SHADE GRASS AND FORB MIX CONTAINS A BROAD SPECTRUM OF NATIVE GRASSES AND FORBS THAT WILL TOLERATE SEMI-SHADE AND EDGE CONDITIONS, ALWAYS APPLY ON CLEAN BARE SOIL, THE MIX MAY BE APPLIED BY HYDRO-SEEDING, BY MECHANICAL SPREADER, OR ON SMALL SITES IT CAN BE SPREAD BY HAND. LIGHTLY RAKE, OR ROLL TO ENSURE PROPER SEED TO SOIL CONTACT. BEST RESULTS ARE OBTAINED WITH A SPRING SEEDING, LATE SPRING AND EARLY SUMMER SEEDING WILL BENEFIT WITH A LIGHT MULCHING OF WEED-FREE STRAW TO CONSERVE MOISTURE, IF CONDITIONS ARE DRIER THAN USUAL, WATERING WILL BE REQUIRED, LATE FALL AND WINTER DORMANT SEEDING REQUIRE AN INCREASE IN THE SEEDING RATE, FERTILIZER OR LIMING IS PROHIBITED, UNLESS PRIOR APPROVAL BY THE LOCAL CONSERVATION COMMISSION IS OBTAINED, PREPARATION OF A CLEAN WEED FREE SEED BED IS NECESSARY FOR OPTIMAL RESULTS, APPLICATION RATE 30 POUNDS PER ACRE,

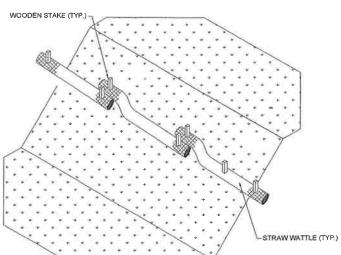

MAINTENANCE

MAINTENANCE OF SEEDED AREAS SHALL BE THE SOLE RESPONSIBILITY OF CONTRACTOR AS

- A, CONTRACTOR SHALL MAINTAIN THE ENTIRE SEEDED AREAS UNTIL FINAL ACCEPTANCE AT THE COMPLETION OF THE PROJECT OR FOR 90 DAY, WHICHEVER IS LONGER, MAINTENANCE SHALL INCLUDE WATERING AS SPECIFIED, WEEDING, REMOVAL OF STONES WHICH MAY APPEAR AND REGULAR CUTTINGS OF THE GRASS NO CLOSER THAN 10 DAYS APART, THE FIRST CUTTING SHALL BE ACCOMPLISHED WHEN THE GRASS IS FROM 2-1/2 TO 3 INCHES HIGH, WEEKLY WATERING SHALL PROVIDE THE SEEDED AREAS WITH THE EQUIVALENT OF 1 INCH OF RAINFALL PER WEEK, IF THE SEEDED AREAS ARE WATERED BY NORMAL RAINFALL OR THE NORMAL WATERING IS INADEQUATE DUE TO WEATHER THE CONTRACTOR MAY AT HIS/HER DISCRETION FLIMINATE OR INCREASE RESPECTIVELY, THE WATERING DURING A GIVEN WEEK, HOWEVER, SUCH ACTION BY CONTRACTOR SHALL IN NO WAY WAIVE CONTRACTOR'S RESPONSIBILITY FOR THE GROWTH AND HEALTH OF THE GRASS UNTIL FINAL ACCEPTANCE, CONTRACTOR SHALL FURNISH ALL TEMPORARY PIPE AND CONNECTIONS FOR SPRINKLING, CONTRACTOR SHALL FURNISH ALL REQUIRED WATER AT NO EXPENSE TO THE OWNER, GARDEN HOSE AND HAND SPRINKLING SHALL BE PERMITTED ONLY IN SPECIAL INSTANCES BY THE OWNER'S REPRESENTATIVE.
- B. ALL BARE SPOTS, WHICH BECOME APPARENT AS THE GRASS GERMINATES, SHALL BE RESEDED BY CONTRACTOR AT ITS OWN EXPENSE AS MANY TIMES AS NECESSARY TO SECURE A GOOD GROWTH AND THE ENTIRE AREA SHALL BE MAINTAINED AND CUT UNTIL ALL WORK HAS BEEN COMPLETED AND FINAL ACCEPTANCE HAS OCCURRED.
- C. CONTRACTOR SHALL TAKE WHATEVER MEASURES ARE NECESSARY TO PROTECT THE GRASS WHILE IT IS GERMINATING. THESE MEASURES SHALL INCLUDE FURNISHING OF WARNING SIGNS, BARRIERS, TEMPORARY FENCE OR ANY OTHER NECESSARY MEASURES OF PROTECTION.
- D. CONTRACTOR SHALL FURNISH, PROTECT, AND MAINTAIN ALL TEMPORARY BARRIERS UNTIL FINAL ACCEPTANCE OF THE SEEDED AREAS BY THE OWNER AND SHALL REMOVE THEM UPON SUCH FINAL ACCEPTANCE, THE BARRIERS SHALL REMAIN THE PROPERTY OF CONTRACTOR AT ALL TIMES.


TEMPORARY EROSION CONTROL MEASURES:

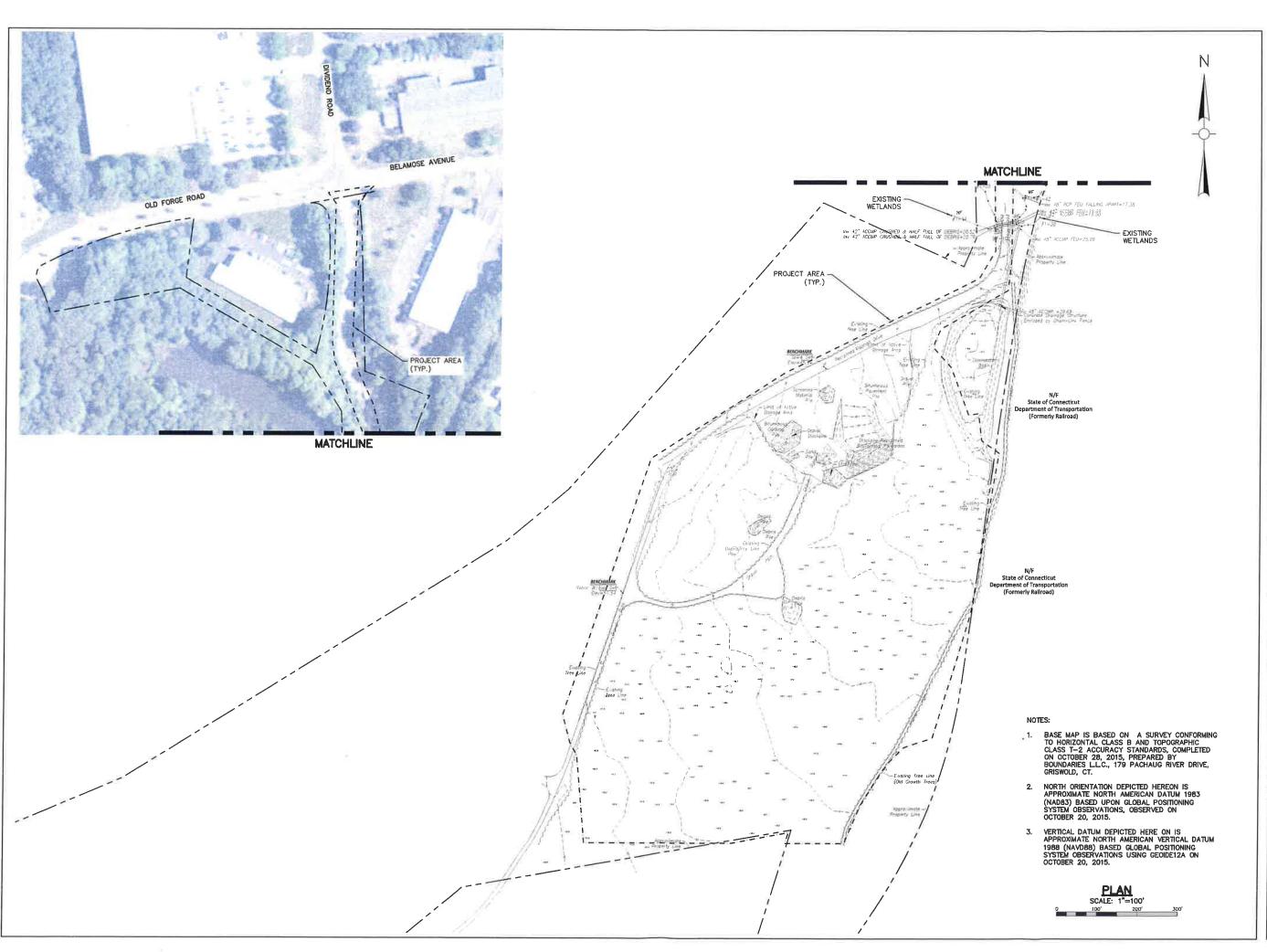

- EROSION CONTROL MEASURES SHALL BE IMPLEMENTED AS INDICATED ON THESE PLANS OR AS REQUIRED BY THE ON-SITE ENGINEER.
- 2. THE SMALLEST PRACTICAL AREA OF LAND SHALL BE EXPOSED AT ANY ONE TIME,
- 3. EROSION/SEDIMENT CONTROL MEASURES SHALL BE INSTALLED AS SHOWN ON PLANS. EROSION CONTROL BARRIERS ARE TO BE MAINTAINED AND CLEANED UNTIL ALL AREAS HAVE BEEN
- THE TEMPORARY AND PERMANENT STORMWATER CONTROLS SHALL BE PERIODICALLY CLEANED OF SEDIMENT, OR AS REQUIRED BY THE ENGINEER. THE SEDIMENT WILL BE REMOVED TO A SECURE LOCATION SO AS TO PREVENT SILTATION OF NATURAL WATER WAYS.
- SILT SOCK FILLED WITH COMPOST MUST BE A MINIMUM TUBE DIAMETER OF 12 INCHES (300mm) FOR SLOPES UP TO 50 FEET (15.24m) IN LENGTH WITH A SLOPE RATIO OF 3H:1V OR STEEPER. LONGER SLOPES OF 3H:11 MAY REQUIRE LARGER TUBE DIAMETER OR ADDITIONAL COURSING OF FILTER TUBES TO CREATE A FILTER BERM. SILT SOCK TO BE MADE OF BIODEGRADABLE BURLAP, SILT SOCK TO BE SEDIMENT FILTERMITT OR APPROVED EQUAL, OTHER REFER TO MANUFACTURER'S RECOMMENDATIONS FOR INSTALLATION INSTRUCTIONS.
- 6. INSTALL SOCK ALONG CONTOURS AND PERPENDICULAR TO SHEET OR CONCENTRATED FLOW.
- CONFIGURE SOCKS AROUND EXISTING SITE FEATURES TO MINIMIZE SITE DISTURBANCE AND MAXIMIZE CAPTURE AREA OF STORMWATER RUN-OFF.
- DISTURBED AREAS SHALL BE SEEDED IMMEDIATELY OR AS SOON AS PRACTICABLE.
- EROSION CONTROL MEASURES SHALL BE REMOVED WHEN DISTURBED AREA IS STABILIZED. DISTURBED AREA RESULTING FROM THE MEASURE REMOVAL OPERATION SHALL BE SEEDED IN ACCORDANCE WITH THE SPECIFICATIONS.
- 10. A CHECK LIST (PROVIDED BY THE ENGINEER) SHALL BE FILLED OUT BY THE CONTRACTOR EVERY WEEK OR AFTER EACH RAINFALL EVENT OF 1/2" OR GREATER AS NOTED ABOVE.
- 11, STRIP AND STOCKPILE TOPSOIL WITHIN THE LIMITS OF THE PROPOSED DEVELOPMENT, PROTECT STOCKPILE PERIMETER WITH EROSION CONTROLS. LOCATE STOCKPILES WHERE INDICATED ON PLANS. TREE STUMPS SHALL EITHER BE REMOVED OR CHIPPED IN PLACE.
- 12. CUT TREES WITHIN THE DEFINED CLEARING LIMITS AND REMOVE CUT WOOD. CHIP BRUSH AND SLASH, STOCKPILE CHIPS FOR USE ONSITE OR REMOVE OFF-SITE.


LONG AXIS OF STOCKPILE TO BE PERPENDICULAR TO CONTOUR

- 1. STABILIZATION FABRIC SHALL BE PLACED OVER THE ENTIRE ENTRANCE AREA PRIOR TO PLACING OF STONE, OVERLAP FABRIC PER MANUFACTURER'S SPECIFICATIONS.
- 2. ALL SURFACE WATER FLOWING OR DIVERTED TOWARDS THE CONSTRUCTION ENTRANCE SHALL BE PIPED BENEATH THE ENTRANCE ROAD.
- 3. WHEN EQUIPMENT WASHING IS REQUIRED IT SHALL BE DONE ON A SEPARATE AREA ADJACENT TO THE ENTRANCE ROAD AND STABILIZED WITH STONE FOLIPMENT WASHING WILL BE REQUIRED IF ROAD RECEIVES SIGNIFICANT SOILS OR DEBRIS ACCORDING TO JUDGMENT BY OWNER OR OWNER'S
- 4. KEEP ROADS CLEAR OF STONES, MUD, AND OTHER CONSTRUCTION DEBRIS. CLEAN PAVEMENT AS ACCUMULATIONS WARRANT AND AS ORDERED BY ENGINEER.
- 5. REMOVE SILT ACCUMULATIONS ROUTINELY AND DISPOSE OF PROPERLY SUCH THAT WATER QUALITY IS NOT IMPAIRED, DO NOT INTRODUCE SILT INTO DRAINAGE SYSTEM OR TOPSOIL/RESTORATION AREAS.

Weston & Sampson Idend Road Rocky Hill, Connecticut

R013 OLD FORGE ROAD ROCKY HILL, CT 06067


SolarCity

PERMIT PLANS JOB NO. 2150769

AS SHOW LEC JSP Approved By DCH

Drawing Title: DETAILS D-1

ROCKY H

ROCKY HILL SOLAR PROJEC

R013 OLD FORGE ROAD ROCKY HILL, CT 06067

9055 Climm/iew Way San Mairo, CA 94402 (550) 638-1028

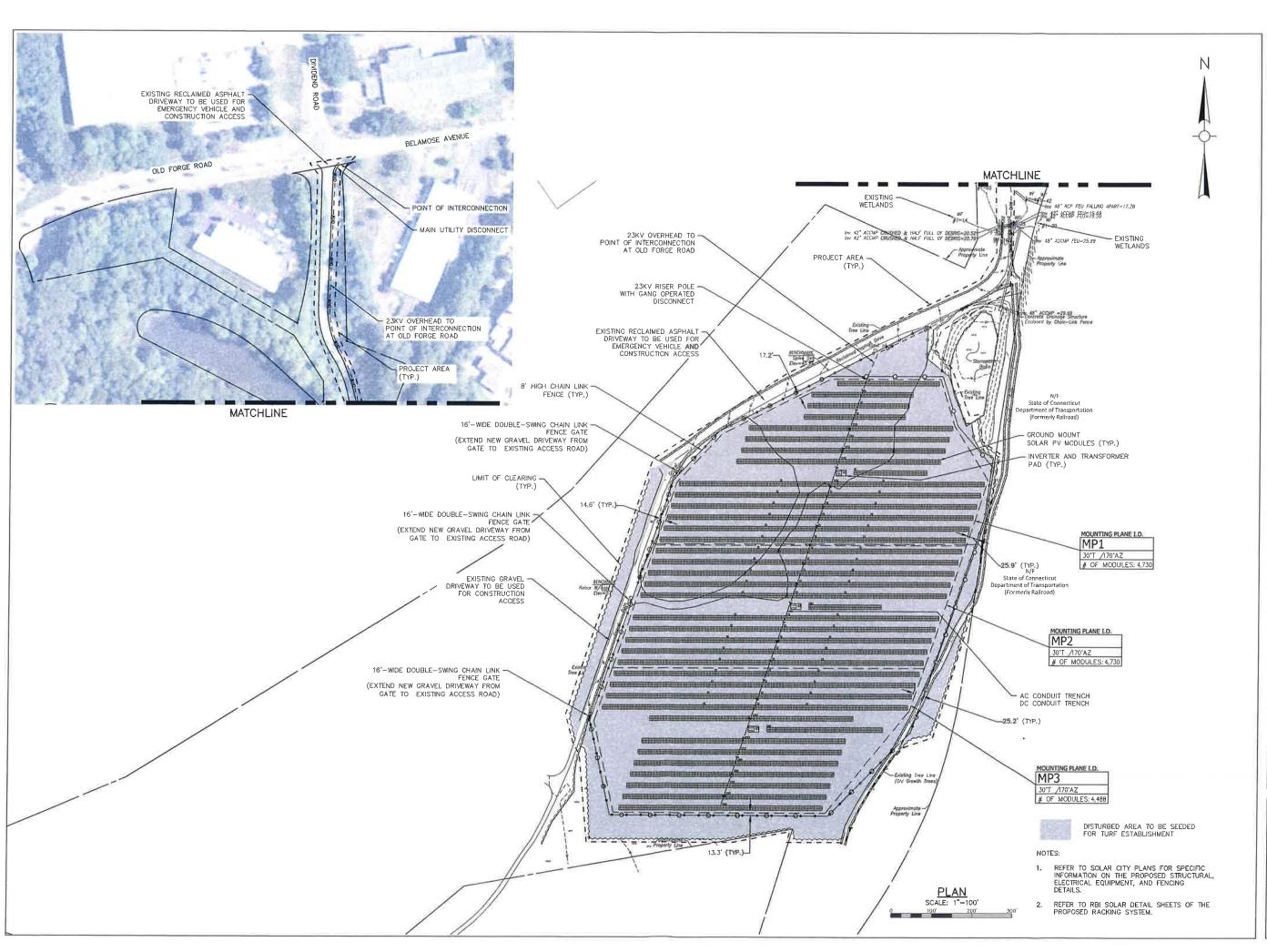
Weston&Sampson

273 Dividend Road Rocky HIII, Commodical (960) 513-1483 (900) Sampson www.westonandsampson.com

Revisions:

Rev Date Description

PERMIT PLANS JOB NO. 2150769


Date:	03.16.2016
Scale:	1"=100'
Drawn By:	LEC
Reviewed By:	LEC
Checked By:	JSP
Approved By:	RGT

Drawing Title:

EXISTING CONDITIONS

0.000

C-1

ROCKY HILL SOLAR PROJECT

R013 OLD FORGE ROAD ROCKY HILL, CT 06067

3055 Clearview Way San Maleo, CA 94402 (550) 538-1028 www.solarcity.com

Weston & Sampson

273 Dividend Road Rocky HII, Connecticut (660) 513-1483 (600) Sampson www_westonandsampson_com

Revisions

Rev Date Description

Seat

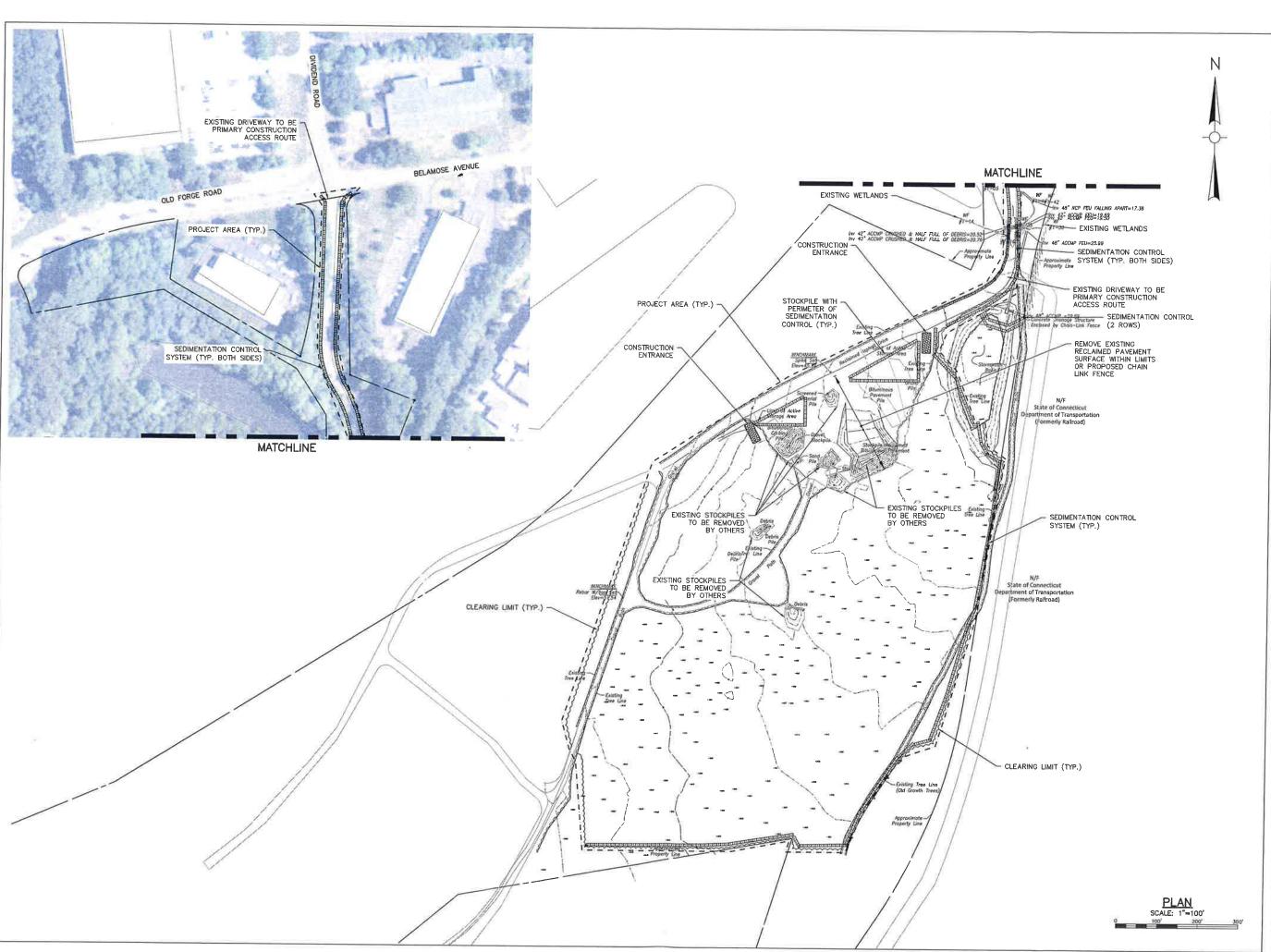
PERMIT PLANS JOB NO. 2150769

 Date:
 03.16.2016

 Scale:
 1"=100"

 Drawn By:
 LEC

 Reviewed By:
 LEC


 Checked By:
 JSP

 Approved By:
 RGT

Drawing Title:

LAYOUT PLAN

C-2

Project:

ROCKY HILL
SOLAR PROJECT

R013 OLD FORGE ROAD ROCKY HILL, CT 06067

3055 ClearNew Way San Malen, CA 94402 (550) 538-1028

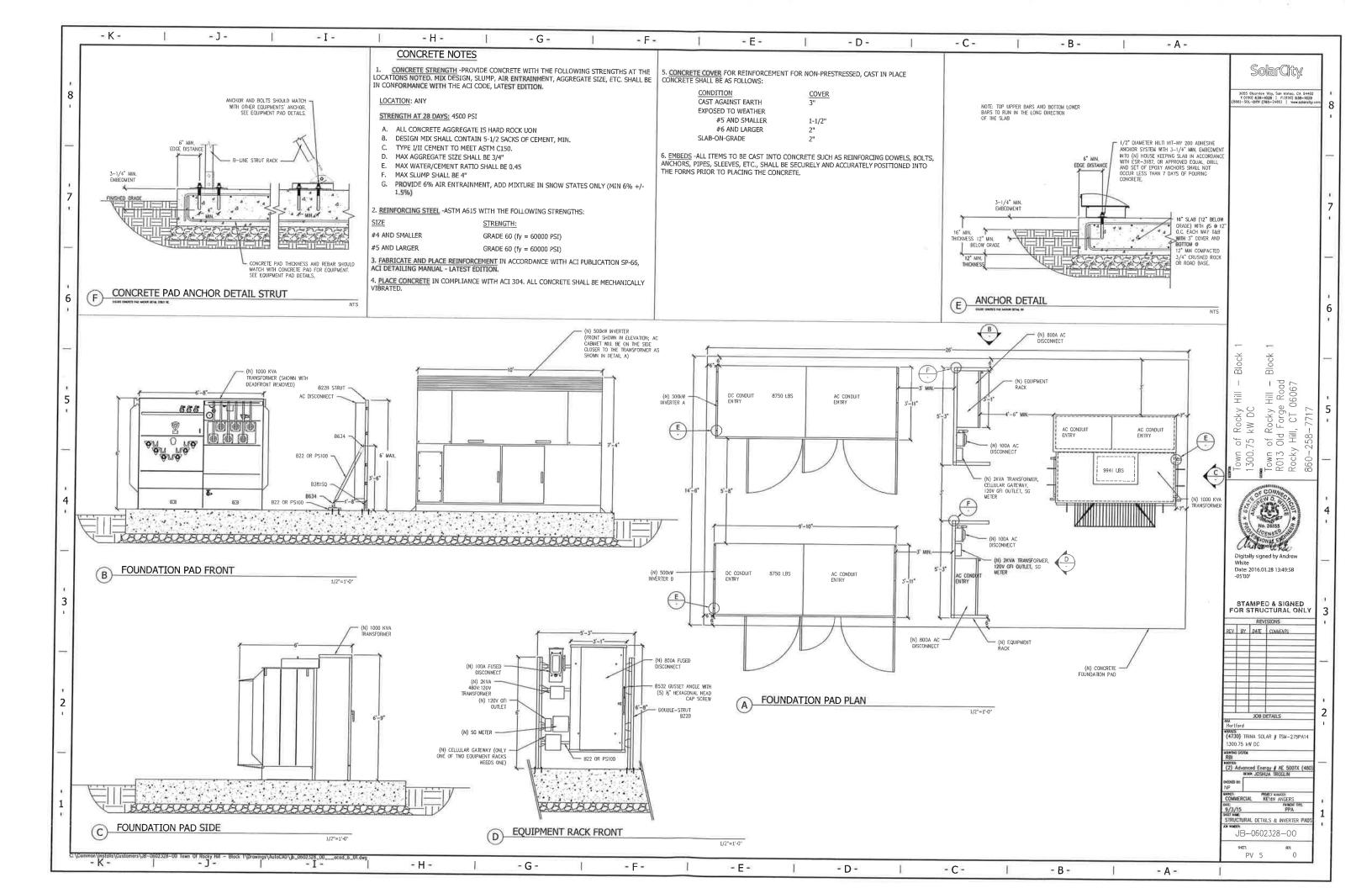
Wester & Sampson

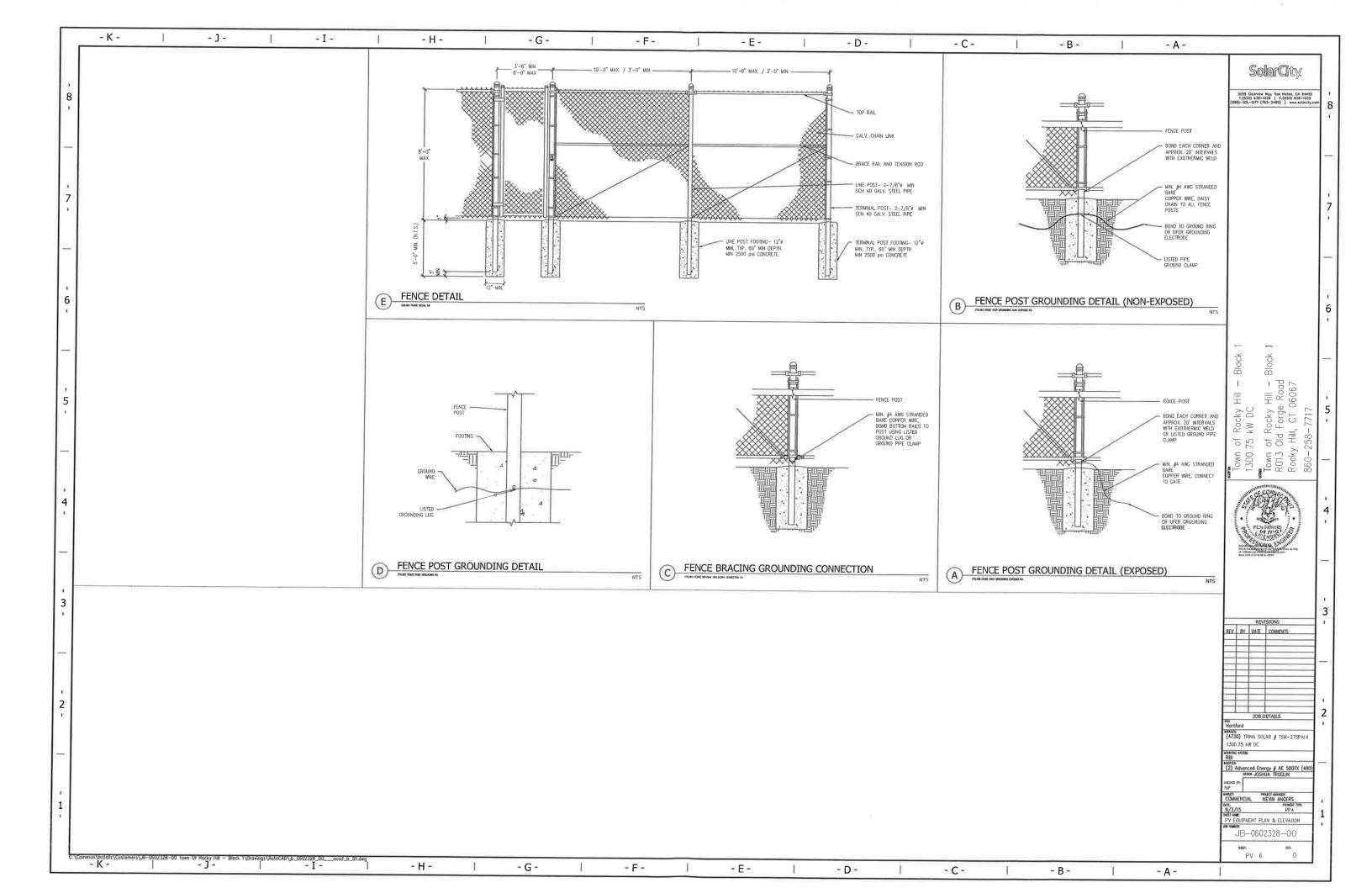
273 Dividend Road Rocky Hill, Connecticut (660) 513-1483 (800) Sampson www.westonandsampson.com

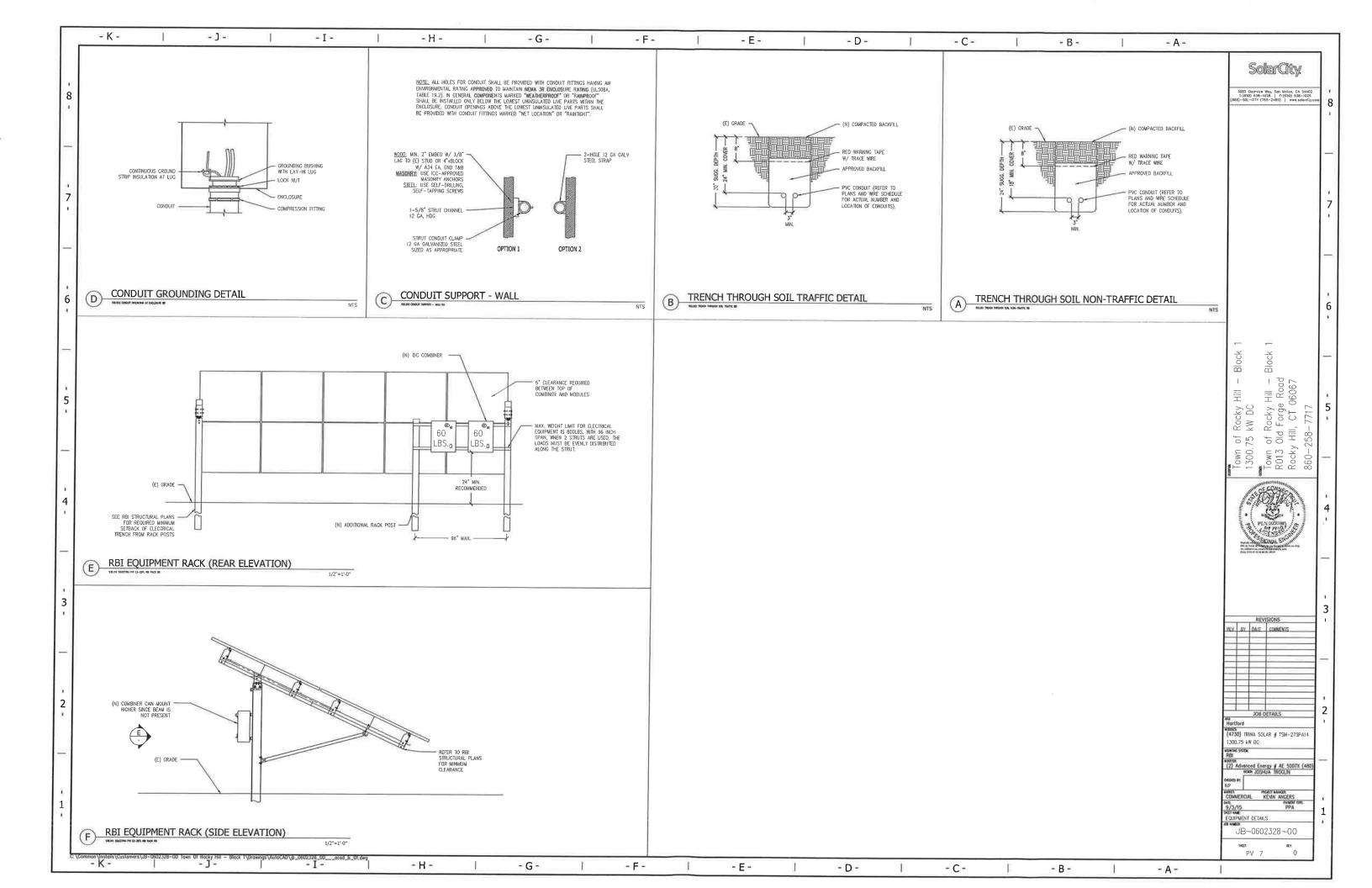
\---,--

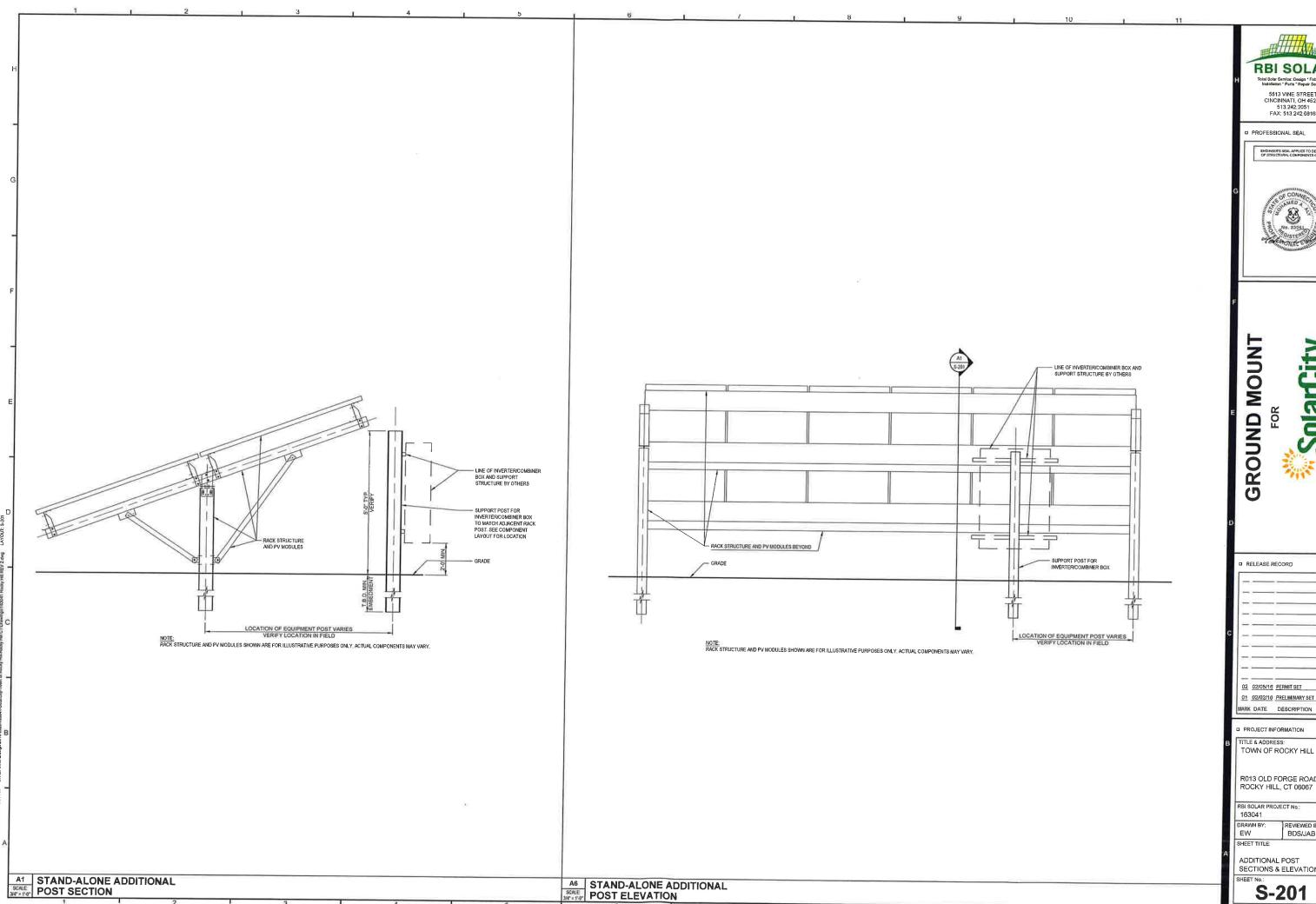
Revisions:	
Rev Date	Description

Seal:


PERMIT PLANS JOB NO. 2150769


Drawing Title:


SEDIMENTATION AND EROSION CONTROL PLAN


Sheet Number

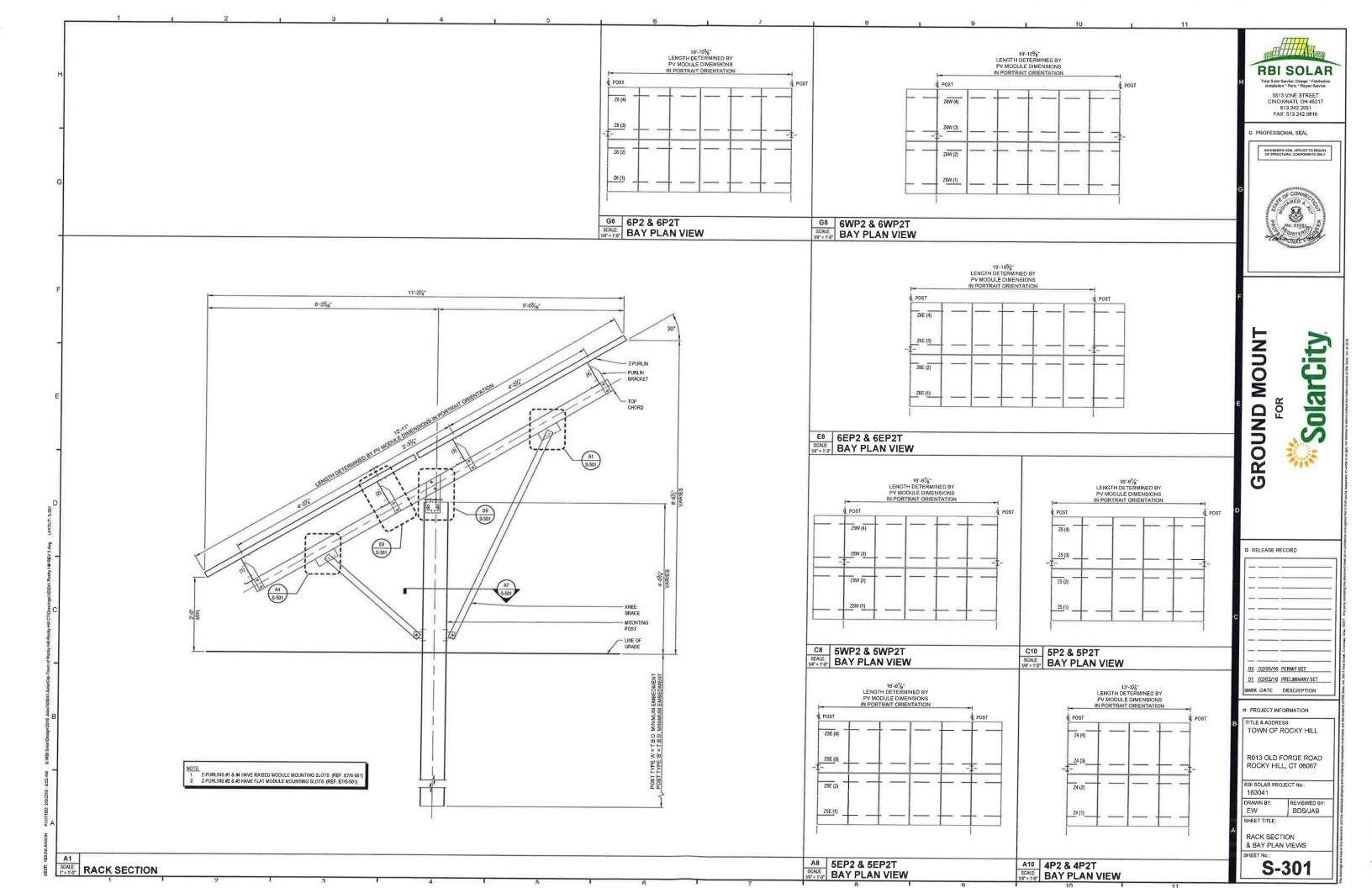
C-3

RBI SOLAR

5513 VINE STREET CINCINNATI, OH 45217 513 242 2051 FAX: 513 242 0816

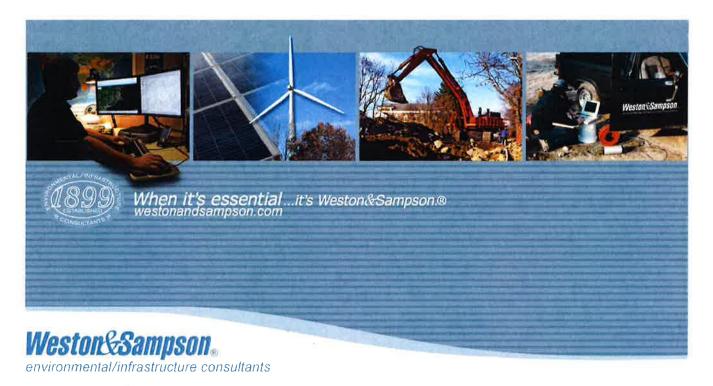
u	=		
	-		
ı	-	_	
ı	-		
ı	-	-	
С	-	_	
ı	-	_	-
ı	-	_	
ı	-	_	
	-		
	02	02/05/16	PERMIT SET
	01	02/02/16	PRELIMINARY SET

PROJECT INFORMATION


TITLE & ADDRESS: TOWN OF ROCKY HILL

R013 OLD FORGE ROAD ROCKY HILL, CT 06067

REVIEWED BY: BDS/JAB


ADDITIONAL POST SECTIONS & ELEVATIONS

S-201

ATTACHMENT 3

ATTACHMENT 4

273 Dividend Road, Rocky Hill, CT 06067 tel: 860-513-1473 fax: 860-513-1483

report

Storm Water Management Report

Prepared for: SolarCity

Site Location: 13 Old Forge Road Rocky Hill, Connecticut

March 15, 2016

TABLE OF CONTENTS

	INTRODUCTION	3
1.0	DESIGN METHODOLOGIES	3
2.0	PRE-DEVELOPMENT SITE CONDITIONS	4
3.0	POST-DEVELOPMENT SITE CONDITIONS	4
4.0	SUMMARY	5
	LIST OF TABLES	
Table ^r	Summary of Drainage Area Characteristics	4
Table 2	Summary of Pre and Post-Development Peak Flows	6

LIST OF FIGURES

Figure 1 Location Map

Figure DA-1 Pre-Development Drainage Area Map

Figure DA-2 Post-Development Drainage Area Map

APPENDIX

Location Map
Pre and Post Development Drainage Area Maps (DA-1 and DA-2)
TR-55 Data Sheet
Hydraflow Hydrograph Return Period Recap and Summary Reports
Hydraflow Hydrograph Reports

INTRODUCTION

Weston & Sampson Engineers, Inc. (Weston & Sampson) was retained by Solar City to provide professional engineering services related to the proposed Rocky Hill Solar Project located on the Town of Rocky Hill owned property having driveway access from the intersection of Old Forge Road, Belamose Avenue, and Dividend Road. (See Location Map in the Appendix). This Stormwater Management Report has been prepared as part of the submittal to the Siting Council for a Certificate of Environmental Compatibility and Public Need (Declaratory Ruling).

1.0 DESIGN METHODOLOGIES

Weston & Sampson estimated pre and post-development hydrographs using the hydrologic computer modeling program Hydraflow Hydrographs. The hydrologic methodology selected was the NRCS Method as detailed in Technical Release 55 (TR-55). Hydrographs were developed to determine peak rates of runoff for the 100-year design storm using a Type III (24-hour) distribution. The TR-55 method was used to develop times of concentration for multiple segment flow paths. Rainfall totals for Hartford County were taken from Appendix 6.B from the 2000 Connecticut DOT Drainage Manual.

According to NRCS Soils Mapping, the site is classified as "305 Udorthents- Pits complex, gravelly." The Udorthents was identified as Hydrologic Soil Group C by NRCS.

Runoff Curve Numbers (CN) used for pre-development analysis are as follows: 72 (cultivated fields), 89 (dirt/gravel pathways), 73 (woods), 79 (lawn), 71 (meadow), and 98 (reclaimed pavement). A weighted CN number was calculated based on these curve numbers and their associated drainage area.

Runoff Curve Numbers (CN) used for post-development analysis are as follows: 72 (cultivated fields), 89 (dirt/gravel pathways), 73 (woods), 79 (lawn), 71 (meadow), and 98 (impervious areas: reclaimed pavement and concrete utility pads). A weighted CN number was calculated based on these curve numbers and their associated drainage area. A tabulation of Runoff Curve Numbers and their associated subarea can be found in the Pre and Post Development Data Sheet in the Appendix section of this Stormwater Management Report.

An important aspect of this stormwater analysis is how the post-development peak flows are to be analyzed. The proposed development is for a raised solar panel system in which the lowest end of the panel is located approximately 3' off of existing grade. There is little to no grading proposed for this project. Solar panels shall be mounted to a racking system supported by posts driven into existing soil. Posts are to be designed by the manufacturer and will likely be steel H piles. Each array will be supported by a post at each end. The number panels per array and dimension between posts shall be designed by the manufacturer. The footprint of each post is negligible and will not be considered for impervious coverage.

The areas below and between the solar panels shall be seeded for turf establishment. This also shall be apply to the development areas beyond the solar arrays within the proposed security fence enclosure. Under this proposed design, stormwater runoff flow paths shall remain unchanged from pre to post-development conditions. This post-development analysis is also consistent with other analyses performed for similar raised panel photovoltaic systems throughout the country in which the post-development flow path(s) remain essentially unchanged from that of pre-development.

2.0 PRE-DEVELOPMENT SITE CONDITIONS

The project site has a total area of approximately 98.0 acres. The Pre-Developed Drainage Area can be seen on the Pre-Developed Drainage Area Plan (DA-1). This area consists of a combination of wooded areas, cultivated fields, bare earth/dirt areas, gravel driveways, reclaimed pavement driveways, and a high grass meadow area where an existing stormwater basin is located at the lowest elevation of the watershed. There is an outlet control structure which mitigates the peak rate of runoff from the watershed area and ultimately discharges to an existing wetland area further north via a 48" RC pipe. The discharge point used in this analysis will be located in front of the existing outlet control structure. A time of concentration was calculated for the drainage area and used for calculation of a pre-development hydrograph.

A summary of the pre-development characteristics and peak runoff estimates can be seen in Tables 1 and 2. (Refer to the Appendix for detailed Hydrograph Reports)

3.0 POST-DEVELOPMENT SITE CONDITIONS

For the proposed development, access to the development will be made using existing reclaimed pavement and gravel roadways. No additional roadways or improvements to existing roadways are proposed at this time. As mentioned previously, the entire PV development area within the proposed fencing will be seeded for turf establishment to control erosion and sediment transport as well as maintain the peak rate of runoff as close to existing as possible. Tree clearing will be performed only to the minimum extent required to prevent shading of the solar arrays. There is no regrading proposed for the solar development, only as required to prevent localized ponding of stormwater runoff and ensure that existing drainage patterns are maintained. All electrical conduits shall be constructed below grade and the interconnection to the existing distribution system shall be made at the intersection of Old Forge Road, Belamose Avenue, and Dividend Road.

Table 1
Drainage Area Characteristics

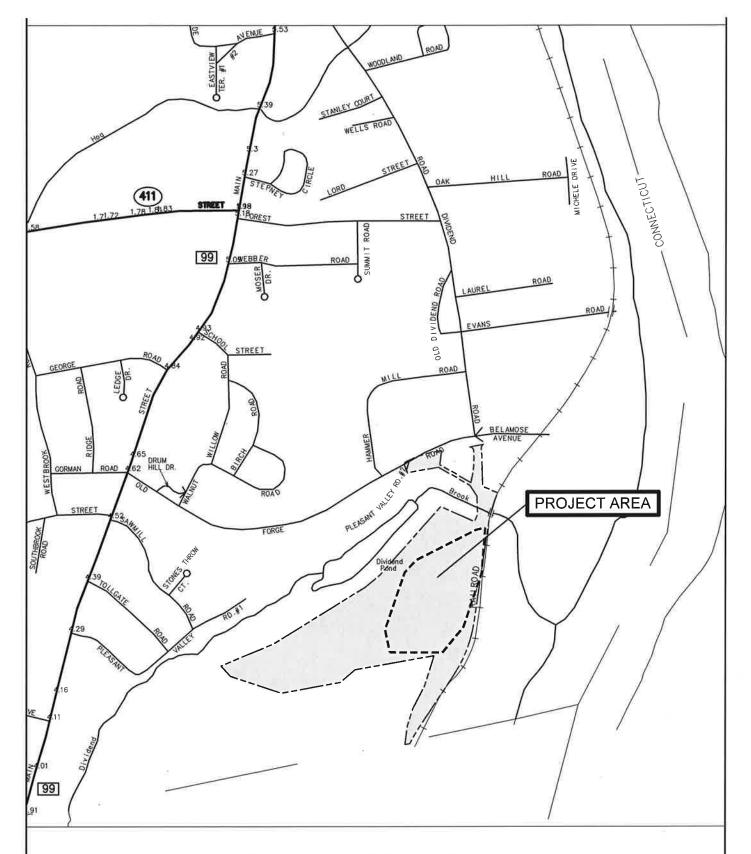
Area (Acres)	% Impervious (Pre)	% Impervious (Post)	CN (Pre)	CN (Post)	
97.9	3.06	0.7	81	81	

Stormwater runoff generally travels from the southwestern corner to the existing stormwater basin in the northeastern corner of the site. The runoff initially flows as sheet flow and then becomes shallow concentrated flow for the remainder of the distance. The stormwater eventually makes its way to the existing outlet control structure at the low point of the basin and it is at this point that the peak rate of runoff is determined and compared with that of predevelopment. FEMA flood mapping has been reviewed and the proposed project does not fall within a 100-year flood zone boundary.

The capacity of the existing stormwater basin and 48" discharge pipe have not been evaluated as part of this stormwater evaluation. It is presumed that these stormwater management features have been sufficiently designed to manage the applicable design storms for the current watershed configuration, groundcover, and resulting peak rates of runoff.

A summary of the post-development peak flow rates for each Subarea is shown below in Table 2 along with a summary of pre-development peak flow rates. (Refer to the Appendix for detailed Hydrograph Reports)

Table 2
Pre and Post-Development Peak Flows

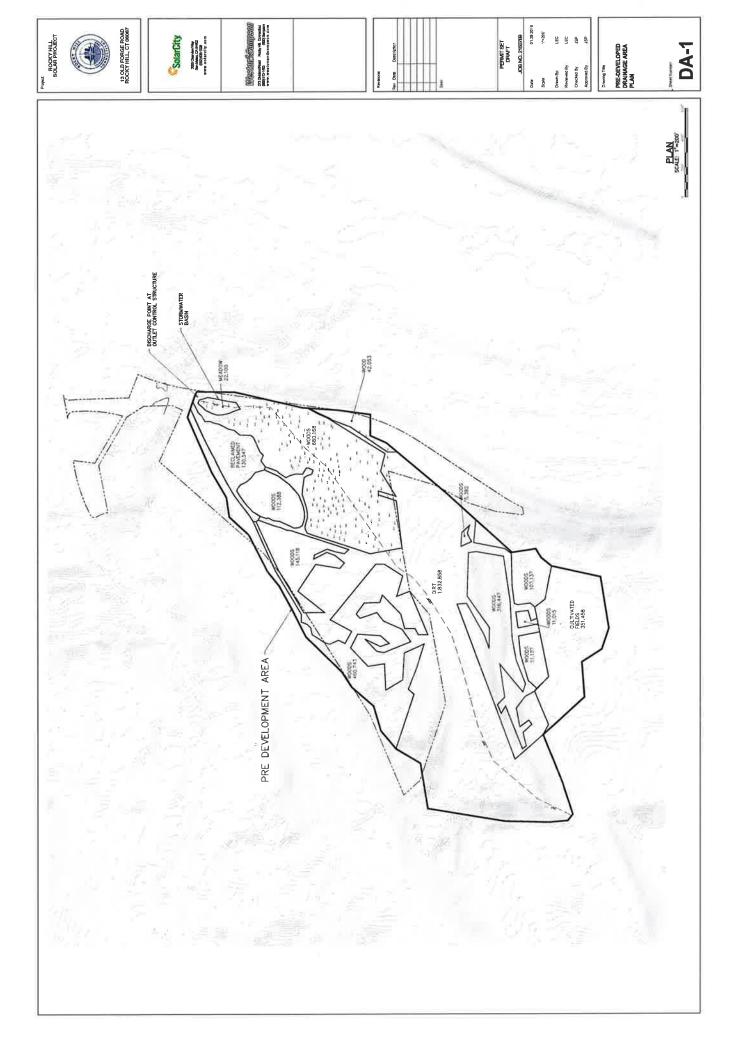

2-year, 24-hour storm		_			25-year, 24- hour storm hour storm			ear, 24- storm	
Peak Flow (cfs) (Pre)	Peak Flow (cfs) (Post)	Peak Flow (cfs) (Pre)	Peak Flow (cfs) (Post)	Peak Flow (cfs) (Pre)	Peak Flow (cfs) (Post)	Peak Flow (cfs) (Pre)	Peak Flow (cfs) (Post)	Peak Flow (cfs) (Pre)	Peak Flow (cfs) (Post)
47.5	45.4	158.8	151.99	249.4	239.0	311.9	299.1	381.9	366.4

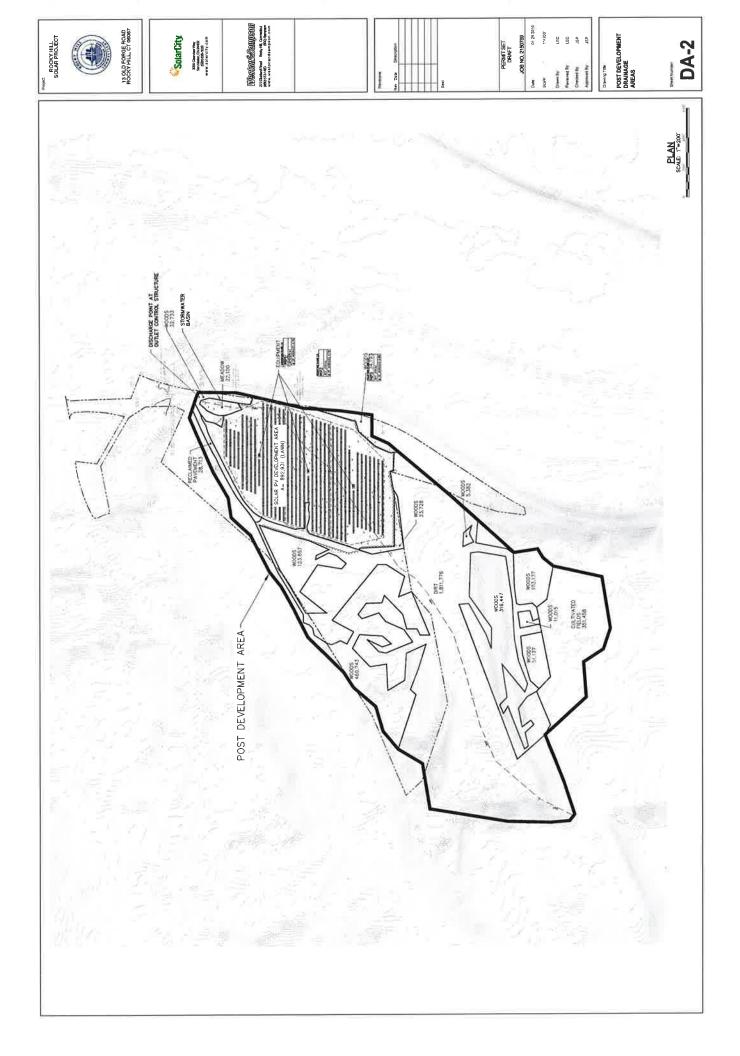
4.0 SUMMARY

Tables 1 and 2 demonstrate that there will be no negative stormwater impacts associated with the proposed solar PV development. The reduction in the percent of impervious area due to the reduction of reclaimed pavement combined with the addition of turf establishment within the solar PV development area and the resulting change in time of concentration results in a net decrease in the peak rate of runoff for post-development when compared with that of predevelopment.

APPENDIX:

Location Map
Pre and Post Development Drainage Area Maps (DA-1 and DA-2)
TR-55 Data Sheet
Hydraflow Hydrograph Return Period Recap and Summary Reports
Hydraflow Hydrograph Reports


FIGURE 1: LOCATION MAP


13 OLD FORGE ROAD, ROCKY HILL, CONNECTICUT

SCALE: 1"=1000'

SOURCE:

CONN DOT TRU MAP

SUBJECT

JOB NO.

Total

4,265,099

97.913

Solar City- Rocky Hill, CT

2150769

Pre & Post Drainage Areas

Weston&Sampson

SHEET NO. COMPUTED BY

1 OF LEC

DATE 1/26/2016

JSP DATE 1/26/2016

DATA SHEET FOR TR-55 METHOD STORM DRAINAGE DESIGN TIME OF CONCENTRATION- TR55 RUNOFF COEFFICIENT NODE AREA SLOPE COVER ELEV. DIFF. LENGTH Flow AREA AREA ACRES DESCRIPTION CN_x п % value Type (S.F.) I.D. PRE-DEVELOPMENT 3230 0.011 sheet 44.251 Woods 73 55 260 21.15 Dirt Pre_Dev 1,927,578 conc **Cultivated Fields** 581 4.24 351,458 8.068 72 36 849 unpaved 3745 conc 1,832,858 42.077 Dirt/Gravel 89 30 2559 1.17 paved 2.997 Reclaim Pave. 98 294 conc 130,547 414 2.42 unpaved 79 0 0.000 Lawn 0 Meadow 71 36 22,100 0.507 4,264,541 81 Total 97.900 0 POST-DEVELOPMENT Post_Dev 1,162,362 26.684 Woods 73 1948 55 260 21.15 Dirt 0.011 sheet Cultivated Fields 72 581 4.24 conc 351,458 8.068 36 849 unpaved Dirt/Gravel 89 3691 1091 1,37 paved conc 1,806,395 41.469 15 Reclaim Pave/Equipment 98 conc 29,853 0.685 Pads 67 23.31 1882 1.24 unpaved 79 1619 892,931 20.499 Lawn (good C) 71 22,100 0.507 Meadow 36

81

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Friday, 01 / 29 / 2016

Hydrograph Return Period Recap	1
2 - Year Summary Report	2
10 - Year Summary Report	3
25 - Year Summary Report	4
50 - Year Summary Report	5
100 - Year Summary Report	6

Hydrograph Return Period Recap Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

	Hydrograph Inflow					Hydrograph					
).	type (origin)	hyd(s)	1-yr	2-уг	3-yr	5-yr	10-уг	25-уг	50-yr	100-yr	Description
	SCS Runoff			47.49	*********	24101112	158.76	249.42	311.90	381.94	Pre Development
	SCS Runoff	\$ 500000	ROBBERG	45.44	HATE COMMITTEE OF THE PARTY OF		151.99	239.04	299.07	366.39	Post Development
											-
	-										
											W

Proj. file: Pre_Post Hydrograph_RH.gpw

Friday, 01 / 29 / 2016

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	_ Hydrograph Description
1 2	SCS Runoff SCS Runoff	47.49 45.44	2 2	742 746	261,196 264,461	197944			Pre Development Post Development
									_
			×						
Pre	e_Post Hydrog	 graph_RH	.gpw		Return P	eriod: 2 Ye	ar	Friday, 01 /	29 / 2016

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
	SCS Runoff	158.76	2	740	829,278	000000V	XIIAANS U	S <u>318/275</u> 3	Pre Development
2	SCS Runoff	151.99	2	742	839,644	555555A			Post Development
	ë'								
		6							
								20	
-<									4
-									
									*
Pre	_Post Hydrog	raph_RH	l.gpw		Return P	eriod: 10 Y	'ear	Friday, 01 /	29 / 2016

Hyd. No.	type	Peak flow (cfs)	Time interval (min)	Peak	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
	SCS Runoff	249.42 239.04	2	740 742	1,306,057 1,322,382	(111111			Pre Development Post Development
								×	
					's'				
Pre	e_Post Hydrog] graph_RF	l.gpw		Return P	Period: 25 Y	ear	Friday, 01 /	29 / 2016

Hyd. No.		Peak flow (cfs)		Peak	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
	SCS Runoff SCS Runoff	311.90 299.07	2	740 742	1,641,771 1,662,294	:: 			Pre Development Post Development
							N2		
							1 0		
		30 E							
					×				
	1								-
Pre	e_Post Hydrog	raph_RH	l.gpw		Return F	Period: 50 Y	′ear	Friday, 01 /	29 / 2016

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)		Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1 2	SCS Runoff SCS Runoff	381.94 366.39	2	740 742	2,024,122 2,049,422				Pre Development Post Development
					c				
									9
	×								
Pre	e_Post Hydro	graph_RF	l.gpw		Return F	Period: 100	Year	Friday, 01 /	29 / 2016

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Friday, 01 / 29 / 2016

2 - Year	-
Hydrograph Reports	. 7
Hydrograph No. 1, SCS Runoff, Pre Development	7
TR-55 Tc Worksheet	12
Hydrograph No. 2, SCS Runoff, Post Development	13
TR-55 Tc Worksheet	
IO - Year	
Hydrograph Reports	19
Hydrograph No. 1, SCS Runoff, Pre Development	19
Hydrograph No. 2, SCS Runoff, Post Development	24
25 - Year	
Hydrograph Reports	29
Hydrograph No. 1, SCS Runoff, Pre Development	29
Hydrograph No. 2, SCS Runoff, Post Development	34
50 - Year	
Hydrograph Reports	39
Hydrograph No. 1, SCS Runoff, Pre Development	39
Hydrograph No. 2, SCS Runoff, Post Development	44
100 - Year	
Hydrograph Reports	49
Hydrograph No. 1, SCS Runoff, Pre Development	49
Hydrograph No. 2. SCS Runoff, Post Development	54

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Friday, 01 / 29 / 2016

Hyd. No. 1

Pre Development

Hydrograph type	= SCS Runoff	Peak discharge	= 47.49 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.37 hrs
Time interval	= 2 min	Hyd. volume	= 261,196 cuft
Drainage area	= 97.910 ac	Curve number	= 81.000*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.4 min
Total precip.	= 2.20 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = $[(44.250 \times 73) + (8.070 \times 72) + (42.080 \times 89) + (3.000 \times 98) + (0.510 \times 71)] / 97.910$

Hydrograph Discharge Table

(Printed values >= 1.00% of Qp.)

Time ((hrs	Outflow cfs)	Time ((hrs	Outflow cfs)	Time (hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
11.07	0.475	11.67	2.825	12.27	43.47	12.87	18.52
11.10	0.537	11.70	3.204	12.30	45.81	12.90	17.15
11.13	0.604	11.73	3.671	12.33	47.07	12.93	15.93
11.17	0.675	11.77	4.245	12.37	47.49	12.97	14.86
11.20	0.750	11.80	4.947	12.40	47.32	13.00	13.92
11.23	0.831	11.83	5.795	12.43	46.73	13.03	13.10
11.27	0.917	11.87	6.799	12.43	45.73	13.07	12.40
11.30	1.010	11.90	7.974	12.47	44.33	13.10	11.80
11.33	1.110	11.93	9.400	12.53	42.56	13.13	11.29
11.37	1.217	11.97	11.24	12.57	40.46	13.17	10.86
11.40	1.333	12.00	13.72	12.60	38.09	13.20	10.50
11.43	1.456	12.03	16.85	12.63	35.50	13.23	10.19
11.47	1.588	12.07	20.47	12.67	32.75	13.27	9.930
11.50	1.730	12.10	24.36	12.70	29.90	13.30	9.692
11.53	1.883	12.13	28.35	12.73	27.05	13.33	9.475
11.57	2.059	12.17	32.38	12.77	24.37	13.37	9.275
11.60	2.267	12.20	36.40	12.80	22.03	13.40	9.093
11.63	2.518	12.23	40.20	12.83	20.11	13.43	8.927

Time (hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time (hrs	Outflow cfs)		Time ((hrs	Outflow cfs)
13.47	8.775	14.37	6.345	15.27	5.081		16.17	3.803
13.50	8.636	14.40	6.283	15.30	5.035		16.20	3.759
13.53	8.509	14.43	6.225	15.33	4.989		16.23	3.716
13.57	8.393	14.47	6.169	15.37	4.943		16.27	3.675
13.60	8.285	14.50	6.116	15.40	4.897		16.30	3.637
13.63	8.185	14.53	6.065	15.43	4.850		16.33	3.600
13.67	8.091	14.57	6.016	15.47	4.804		16.37	3.566
13.70	8.001	14.60	5.969	15.50	4.757		16.40	3.534
13.73	7.915	14.63	5.923	15.53	4.710		16.43	3.504
13.77	7.830	14.67	5.878	15.57	4.663		16.47	3.475
13.80	7.746	14.70	5.834	15.60	4.616	51	16.50	3.448
13.83	7.660	14.73	5.791	15.63	4.569		16.53	3.422
13.87	7.574	14.77	5.748	15.67	4.522		16.57	3.397
13.90	7.488	14.80	5.704	15.70	4.474		16.60	3.373
13.93	7.401	14.83	5.661	15.73	4.426		16.63	3.351
13.97	7.313	14.87	5.618	15.77	4.379		16.67	3.328
14.00	7.225	14.90	5.574	15.80	4.331		16.70	3.307
14.03	7.136	14.93	5.530	15.83	4.283		16.73	3.286
14.07	7.048	14.97	5.486	15.87	4.234		16.77	3.264
14.10	6.961	15.00	5.441	15.90	4.186		16.80	3.243
14.13	6.874	15.03	5.397	15.93	4.138		16.83	3.222
14.17	6.790	15.07	5.352	15.97	4.089		16.87	3.201
14.20	6.707	15.10	5.307	16.00	4.040		16.90	3.180
14.23	6.628	15.13	5.263	16.03	3.992		16.93	3.159
14.27	6.551	15.17	5.217	16.07	3.944		16.97	3.138
14.30	6.479	15.20	5.172	16.10	3.896		17.00	3.117
14.33	6.410	15.23	5.127	16.13	3.849		17.03	3.095

Time (hrs	Outflow cfs)	Time C (hrs	Outflow cfs)	Time ((hrs	Outflow cfs)	Time (hrs	Outflow cfs)
17.07	3.074	17.97	2.486	18.87	2.132	19.77	1.959
17.10	3.053	18.00	2.464	18.90	2.126	19.80	1.952
17.13	3.031	18.03	2.442	18.93	2.120	19.83	1.946
17.17	3.010	18.07	2.420	18.97	2.113	19.87	1.939
17.20	2.988	18.10	2.398	19.00	2.107	19.90	1.933
17.23	2.967	18.13	2.377	19.03	2.100	19.93	1.926
17.27	2.945	18.17	2.357	19.07	2.094	19.97	1.919
17.30	2.924	18.20	2.337	19.10	2.088	20.00	1.913
17.33	2.902	18.23	2.318	19.13	2.081	20.03	1.906
17.37	2.881	18.27	2.301	19.17	2.075	20.07	1.900
17.40	2.859	18.30	2.285	19.20	2.068	20.10	1.893
17.43	2.837	18.33	2.270	19.23	2.062	20.13	1.887
17.47	2.816	18.37	2.256	19.27	2.056	20.17	1.880
17.50	2.794	18.40	2.243	19.30	2.049	20.20	1.873
17.53	2.772	18.43	2.231	19.33	2.043	20.23	1.867
17.57	2.750	18.47	2.221	19.37	2.036	20.27	1.860
17.60	2.728	18.50	2.211	19.40	2.030	20.30	1.854
17.63	2.707	18.53	2.202	19.43	2.023	20.33	1.847
17.67	2.685	18.57	2.193	19.47	2.017	20.37	1.840
17.70	2.663	18.60	2.185	19.50	2.011	20.40	1.834
17.73	2.641	18.63	2.178	19.53	2.004	20.43	1.827
17.77	2.619	18.67	2.171	19.57	1.998	20.47	1.820
17.80	2.597	18.70	2.164	19.60	1.991	20.50	1.814
17.83	2.575	18.73	2.158	19.63	1.985	20.53	1.807
17.87	2.553	18.77	2.151	19.67	1.978	20.57	1.801
17.90	2.530	18.80	2.145	19.70	1.972	20.60	1.794
17.93	2.508	18.83	2.139	19.73	1.965	20.63	1.787

Continuos on nout noso

Time ((hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time · (hrs	Outflow cfs)	Time (hrs	Outflow cfs)
20.67	1.781	21.57	1.598	22.47	1.682	23.37	1.389
20.70	1.774	21.60	1.592	22.50	1.664	23.40	1.384
20.73	1.767	21.63	1.585	22.53	1.645	23.43	1.379
20.77	1.760	21.67	1.578	22.57	1.626	23.47	1.373
20.80	1.754	21.70	1.571	22.60	1.606	23.50	1.368
20.83	1.747	21.73	1.564	22.63	1.586	23.53	1.363
20.87	1.740	21.77	1.557	22.67	1.565	23.57	1.358
20.90	1.734	21.80	1.551	22.70	1.544	23.60	1.353
20.93	1.727	21.83	1.544	22.73	1.522	23.63	1.347
20.97	1.720	21.87	1.537	22.77	1.500	23.67	1.342
21.00	1.713	21.90	1.530	22.80	1.477	23.70	1.337
21.03	1.707	21.93	1.523	22.83	1.471	23.73	1.332
21.07	1.700	21.97	1.516	22.87	1.466	23.77	1.327
21.10	1.693	22.00	1.509	22.90	1.461	23.80	1.321
21.13	1.687	22.03	1.533	22.93	1.456	23.83	1.316
21.17	1.680	22.07	1.559	22.97	1.451	23.87	1.311
21.20	1.673	22.10	1.585	23.00	1.446	23.90	1.306
21.23	1.666	22.13	1.612	23.03	1.441	23.93	1.300
21.27	1.659	22.17	1.640	23.07	1.435	23.97	1.295
21.30	1.653	22.20	1.670	23.10	1.430	24.00	1.290
21.33	1.646	22.23	1.700	23.13	1.425	24.03	1.273
21.37	1.639	22.27	1.732	23.17	1.420	24.07	1.245
21.40	1.632	22.30	1.764	23.20	1.415	24.10	1.206
21.43	1.626	22.33	1.749	23.23	1.410	24.13	1.155
21.47	1.619	22.37	1.733	23.27	1.404	24.17	1.094
21.50	1.612	22.40	1.716	23.30	1.399	24.20	1.021
21.53	1.605	22.43	1.699	23.33	1.394	24.23	0.937

Time ((hrs	Outflow cfs)
24.27	0.841
24.30	0.735
24.33	0.636
24.37	0.545

...End

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1Pre Development

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.011 = 260.0 = 3.20 = 21.15		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 1.01	+	0.00	+	0.00	=	1.01
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 849.00 = 4.24 = Unpaved =3.32	d	2559.00 1.17 Paved 2.20		414.00 2.42 Unpave 2.51	d	
Travel Time (min)	= 4.26	+	19.40	+	2.75	=	26.40
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Friday, 01 / 29 / 2016

Hyd. No. 2

Post Development

Hydrograph type	= SCS Runoff	Peak discharge	= 45.44 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.43 hrs
Time interval	= 2 min	Hyd. volume	= 264,461 cuft
Drainage area	= 97.910 ac	Curve number	= 81.000*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 30.4 min
Total precip.	= 2.20 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = $[(26.680 \times 73) + (8.070 \times 72) + (41.470 \times 89) + (0.685 \times 98) + (20.499 \times 79) + (0.510 \times 71)] / 97.910$

Hydrograph Discharge Table

(Printed values >= 1,00% of Qp.)

Time ((hrs	Outflow cfs)						
11.10	0.473	11.70	2.924	12.30	41.53	12.90	20.07
11.13	0.535	11.73	3.331	12.33	43.65	12.93	18.47
11.17	0.601	11.77	3.827	12.37	44.89	12.97	17.14
11.20	0.672	11.80	4.428	12.40	45.42	13.00	15.98
11.23	0.748	11.83	5.155	12.43	45.44	13.03	14.94
11.27	0.829	11.87	6.022	12.47	45.09	13.07	14.02
11.30	0.917	11.90	7.041	12.50	44.37	13.10	13.20
11.33	1.011	11.93	8.281	12.53	43.30	13.13	12.50
11.37	1.112	11.97	9.879	12.57	41.91	13.17	11.88
11.40	1.220	12.00	12.01	12.60	40.24	13.20	11.36
11.43	1.336	12.03	14.70	12.63	38.33	13.23	10.91
11.47	1.460	12.07	17.81	12.67	36.21	13.27	10.54
11.50	1.592	12.10	21.16	12.70	33.93	13.30	10.22
11.53	1.736	12.13	24.63	12.73	31.53	13.33	9.956
11.57	1.899	12.17	28.18	12.77	29.08	13.37	9.727
11.60	2.089	12.20	31.75	12.80	26.61	13.40	9.521
11.63	2.316	12.23	35.28	12.83	24.21	13.43	9.330
11.67	2.590	12.27	38.63	12.87	21.99	13.47	9.154

Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)
13.50	8.992	14.40	6.459	15.30	5.159	16.20	3.869
13.53	8.842	14.43	6.395	15.33	5.113	16.23	3.825
13.57	8.703	14.47	6.334	15.37	5.067	16.27	3.782
13.60	8.574	14.50	6.276	15.40	5.020	16.30	3.741
13.63	8.455	14.53	6.220	15.43	4.973	16.33	3.702
13.67	8.344	14.57	6.166	15.47	4.926	16.37	3.665
13.70	8.240	14.60	6.115	15.50	4.879	16.40	3.629
13.73	8.141	14.63	6.065	15.53	4.832	16.43	3.596
13.77	7 8.048	14.67	6.017	15.57	4.785	16.47	3.564
13.80	7.957	14.70	5.970	15.60	4.737	16.50	3.534
13.80	7.869	14.73	5.924	15.63	4.689	16.53	3.506
13.87	7.783	14.77	5.878	15.67	4.642	16.57	3.478
13.90	7.696	14.80	5.834	15.70	4.594	16.60	3.452
13.90	7.609	14.83	5.790	15.73	4.546	16.63	3.427
13.97	7.521	14.87	5.746	15.77	4.497	16.67	3.403
14.00	7.432	14.90	5.702	15.80	4.449	16.70	3.379
14.03	7.343	14.93	5.658	15.83	4.401	16.73	3.357
14.0	7 7.255	14.97	5.613	15.87	4.352	16.77	3.334
14.10	7.166	15.00	5.569	15.90	4.303	16.80	3.313
14.13	3 7.079	15.03	5.524	15.93	4.254	16.83	3.291
14.1	7 6.993	15.07	5.479	15.97	4.205	16.87	3.270
14.20	6.908	15.10	5.434	16.00	4.156	16.90	3.248
14.23	3 6.826	15.13	5.388	16.03	4.107	16.93	3.227
14.2	7 6.746	15.17	5.343	16.07	4.058	16.97	3.206
14.30	0 6.669	15.20	5.297	16.10	4.010	17.00	3.184
14.3	3 6.595	15.23	5.251	16.13	3.962	17.03	3.163
14.3	7 6.525	15.27	5.206	16.17	3.915	17.07	3.141

Continuos on novt nos

Time (hrs	Outflow cfs)	Time C (hrs	Outflow cfs)	Time ((hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
17.10	3.120	18.00	2.525	18.90	2.161	19.80	1.985
17.13	3.098	18.03	2.502	18.93	2.155	19.83	1.979
17.17	3.076	18.07	2.480	18.97	2.148	19.87	1.972
17.20	3.055	18.10	2.458	19.00	2.142	19.90	1.965
17.23	3.033	18.13	2.436	19.03	2.135	19.93	1.959
17.27	3.011	18.17	2.415	19.07	2.129	19.97	1.952
17.30	2.989	18.20	2.395	19.10	2.122	20.00	1.946
17.33	2.968	18.23	2.375	19.13	2.116	20.03	1.939
17.37	2.946	18.27	2.357	19.17	2.109	20.07	1.932
17.40	2.924	18.30	2.339	19.20	2.103	20.10	1.926
17.43	2.902	18.33	2.322	19.23	2.096	20.13	1.919
17.47	2.880	18.37	2.307	19.27	2.090	20.17	1.912
17.50	2.858	18.40	2.293	19.30	2.084	20.20	1.906
17.53	2.836	18.43	2.279	19.33	2.077	20.23	1.899
17.57	2.814	18.47	2.267	19.37	2.071	20.27	1.892
17.60	2.792	18.50	2.255	19.40	2.064	20.30	1.886
17.63	2.770	18.53	2.245	19.43	2.057	20.33	1.879
17.67	2.748	18.57	2.235	19.47	2.051	20.37	1.872
17.70	2.725	18.60	2.226	19.50	2.044	20.40	1.866
17.73	2.703	18.63	2.217	19.53	2.038	20.43	1.859
17.77	2.681	18.67	2.209	19.57	2.031	20.47	1.852
17.80	2.659	18.70	2.201	19.60	2.025	20.50	1.845
17.83	2.637	18.73	2.194	19.63	2.018	20.53	1.839
17.87	2.614	18.77	2.187	19.67	2.012	20.57	1.832
17.90	2.592	18.80	2.180	19.70	2.005	20.60	1.825
17.93	2.569	18.83	2.174	19.73	1.998	20.63	1.819
17.97	2.547	18.87	2.167	19.77	1.992	20.67	1.812

Time (hrs	Outflow cfs)	Time C (hrs	Outflow cfs)		Time ((hrs	Outflow cfs)	Time (h r s	Outflow cfs)
20.70	1.805	21.60	1.621		22.50	1.690	23.40	1.408
20.73	1.798	21.63	1.614		22.53	1.675	23.43	1.403
20.77	1.791	21.67	1.607		22.57	1.660	23.47	1.398
20.80	1.785	21.70	1.600		22.60	1.645	23.50	1.392
20.83	1.778	21.73	1.593		22.63	1.629	23.53	1.387
20.87	1.771	21.77	1.586		22.67	1.613	23.57	1.382
20.90	1.764	21.80	1.579	3	22.70	1.596	23.60	1.376
20.93	1.758	21.83	1.572		22.73	1.579	23.63	1.371
20.97	1.751	21.87	1.565		22.77	1.561	23.67	1.366
21.00	1.744	21.90	1.558		22.80	1.543	23.70	1.361
21.03	1.737	21.93	1.551		22.83	1.525	23.73	1.355
21.07	1.730	21.97	1.544		22.87	1.506	23.77	1.350
21.10	1.724	22.00	1.538		22.90	1.486	23.80	1.345
21.13	1.717	22.03	1.556		22.93	1.481	23.83	1.340
21.17	1.710	22.07	1.575		22.97	1.476	23.87	1.334
21.20	1.703	22.10	1.594		23.00	1.471	23.90	1.329
21.23	1.696	22.13	1.615		23.03	1.466	23.93	1.324
21.27	1.689	22.17	1.637		23.07	1.460	23.97	1.318
21.30	1.683	22.20	1.659		23.10	1.455	24.00	1.313
21.33	1.676	22.23	1.682		23.13	1.450	24.03	1.299
21.37	1.669	22.27	1.707		23.17	1.445	24.07	1.275
21.40	1.662	22.30	1.732		23.20	1.439	24.10	1.242
21.43	1.655	22.33	1.758		23.23	1.434	24.13	1.200
21.47	1.648	22.37	1.745		23.27	1.429	24.17	1.149
21.50	1.641	22.40	1.732		23.30	1.424	24.20	1.089
21.53	1.634	22.43	1.718		23.33	1.418	24.23	1.019
21.57	1.628	22.47	1.704		23.37	1.413	24.27	0.941

Continuos on novt soc

Time ((hrs	Outflow cfs)
24.30	0.854
24.33	0.758
24.37	0.668
24.40	0.584
24.43	0.505

...End

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2Post Development

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.011 = 260.0 = 3.20 = 21.15		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 1.01	+	0.00	+	0.00	=	1.01
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 849.00 = 4.24 = Unpaved =3.32	d	1091.00 1.37 Paved 2.38)	1882.00 1.24 Unpave 1.80		
Travel Time (min)	= 4.26	+	7.64	+	17.46	=	29.36
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Friday, 01 / 29 / 2016

Hyd. No. 1

Pre Development

Hydrograph type	= SCS Runoff	Peak discharge	= 158.76 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 829,278 cuft
Drainage area	= 97.910 ac	Curve number	= 81.000*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.4 min
Total precip.	= 4.25 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = $[(44.250 \times 73) + (8.070 \times 72) + (42.080 \times 89) + (3.000 \times 98) + (0.510 \times 71)] / 97.910$

Hydrograph Discharge Table

(Printed values >= 1,00% of Qp.)

Time (hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time (hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
9.23	1.591	9.83	3.135	10.43	5.297	11.03	8.840
9.27	1.665	9.87	3.234	10.47	5.458	11.07	9.077
9.30	1.740	9.90	3.334	10.50	5.624	11.10	9.326
9.33	1.817	9.93	3.436	10.53	5.794	11.13	9.590
9.37	1.895	9.97	3.539	10.57	5.970	11.17	9.872
9.40	1.974	10.00	3.644	10.60	6.150	11.20	10.18
9.43	2.055	10.03	3.750	10.63	6.335	11.23	10.51
9.47	2.137	10.07	3.858	10.67	6.523	11.27	10.87
9.50	2.221	10.10	3.969	10.70	6.716	11.30	11.27
9.53	2.306	10.13	4.082	10.73	6.913	11.33	11.70
9.57	2.392	10.17	4.198	10.77	7.114	11.37	12.17
9.60	2.480	10.20	4.318	10.80	7.318	11.40	12.68
9.63	2.569	10.23	4.443	10.83	7.525	11.43	13.22
9.67	2.660	10.27	4.572	10.87	7.736	11.47	13.79
9.70	2.752 ⁻	10.30	4.706	10.90	7.950	11.50	14.39
9.73	2.846	10.33	4.846	10.93	8.167	11.53	15.05
9.77	2.941	10.37	4.991	10.97	8.388	11.57	15.81
9.80	3.037	10.40	5.141	11.00	8.612	11.60	16.71

Time C (hrs	Outflow cfs)	Time ((hrs	Outflow cfs)	Time Outflow (hrs cfs)		Time Outflow (hrs cfs)	
11.63	17.82	12.50	139.88	13.40	24.73	14.30	17.14
11.67	19.18	12.53	132.74	13.43	24.24	14.33	16.94
11.70	20.85	12.57	124.80	13.47	23.80	14.37	16.76
11.73	22.89	12.60	116.20	13.50	23.39	14.40	16.58
11.77	25.37	12.63	107.13	13.53	23.02	14.43	16.42
11.80	28.35	12.67	97.76	13.57	22.67	14.47	16.26
11.83	31.87	12.70	88.27	13.60	22.36	14.50	16.10
11.87	35.94	12.73	78.99	13.63	22.06	14.53	15.96
11.90	40.55	12.77	70.44	13.67	21.78	14.57	15.82
11.93	45.95	12.80	63.15	13.70	21.52	14.60	15.68
11.97	52.69	12.83	57.27	13.73	21.26	14.63	15.55
12.00	61.37	12.87	52.46	13.77	21.01	14.67	15.43
12.03	71.98	12.90	48.35	13.80	20.76	14.70	15.30
12.07	83.83	12.93	44.72	13.83	20.51	14.73	15.18
12.10	96.18	12.97	41.54	13.87	20.26	14.77	15.05
12.13	108.53	13.00	38.77	13.90	20.01	14.80	14.93
12.17	120.70	13.03	36.38	13.93	19.76	14.83	14.81
12.20	132.46	13.07	34.33	13.97	19.51	14.87	14.69
12.23	143.17	13.10	32.58	14.00	19.26	14.90	14.56
12.27	151.77	13.13	31.11	14.03	19.00	14.93	14.44
12.30	157.04	13.17	29.87	14.07	18.75	14.97	14.32
12.33	158.76	13.20	28.82	14.10	18.50	15.00	14.19
12.37	157.79	13.23	27.93	14.13	18.26	15.03	14.07
12.37	157.79	13.27	27.16	14.17	18.02	15.07	13.94
12.40	155.07	13.30	26.47	14.20	17.78	15.10	13.82
12.43	146.05	13.33	25.84	14.23	17.56	15.13	13.69
12.41	140.00	13.37	25.26	14.27	17.34	15.17	13.57

Continuos on novt noss

Time (hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time - (hrs	- Outflow cfs)	Time (hrs	Outflow cfs)
15.20	13.44	16.10	10.00	17.00	7.934	17.90	6.399
15.23	13.32	16.13	9.879	17.03	7.877	17.93	6.342
15.27	13.19	16.17	9.758	17.07	7.821	17.97	6.285
15.30	13.07	16.20	9.640	17.10	7.765	18.00	6.227
15.33	12.94	16.23	9.527	17.13	7.708	18.03	6.170
15.37	12.81	16.27	9.419	17.17	7.652	18.07	6.113
15.40	12.69	16.30	9.317	17.20	7.595	18.10	6.057
15.43	12.56	16.33	9.221	17.23	7.539	18.13	6.003
15.47	12.44	16.37	9.131	17.27	7.482	18.17	5.950
15.50	12.31	16.40	9.045	17.30	7.425	18.20	5.899
15.53	12.18	16.43	8.965	17.33	7.369	18.23	5.851
15.57	12.05	16.47	8.888	17.37	7.312	18.27	5.806
15.60	11.93	16.50	8.816	17.40	7.255	18.30	5.763
15.63	11.80	16.53	8.747	17.43	7.198	18.33	5.724
15.67	11.67	16.57	8.681	17.47	7.141	18.37	5.688
15.70	11.54	16.60	8.618	17.50	7.085	18.40	5.655
15.73	11.42	16.63	8.557	17.53	7.028	18.43	5.625
15.77	11.29	16.67	8.498	17.57	6.971	18.47	5.597
15.80	11.16	16.70	8.440	17.60	6.914	18.50	5.571
15.83	11.03	16.73	8.383	17.63	6.857	18.53	5.547
15.87	10.90	16.77	8.327	17.67	6.800	18.57	5.524
15.90	10.77	16.80	8.271	17.70	6.743	18.60	5.504
15.93	10.64	16.83	8.215	17.73	6.685	18.63	5.484
15.97	10.52	16.87	8.159	17.77	6.628	18.67	5.465
16.00	10.39	16.90	8.103	17.80	6.571	18.70	5.447
16.03	10.26	16.93	8.046	17.83	6.514	18.73	5.430
16.07	10.13	16.97	7.990	17.87	6.457	18.77	5.413

Continues on next neces

Time (hrs	· Outflow cfs)	Time C (hrs	Outflow cfs)	Time (hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
18.80	5.396	19.70	4.939	20.60	4.476	21.50	4.008
18.83	5.380	19.73	4.922	20.63	4.459	21.53	3.991
18.87	5.363	19.77	4.905	20.67	4.441	21.57	3.974
18.90	5.346	19.80	4.888	20.70	4.424	21.60	3.956
18.93	5.329	19.83	4.871	20.73	4.407	21.63	3.939
18.97	5.312	19.87	4.853	20.77	4.390	21.67	3.921
19.00	5.295	19.90	4.836	20.80	4.372	21.70	3.904
19.03	5.278	19.93	4.819	20.83	4.355	21.73	3.887
19.07	5.261	19.97	4.802	20.87	4.338	21.77	3.869
19.10	5.245	20.00	4.785	20.90	4.321	21.80	3.852
19.13	5.228	20.03	4.768	20.93	4.303	21.83	3.834
19.17	5.211	20.07	4.751	20.97	4.286	21.87	3.817
19.20	5.194	20.10	4.734	21.00	4.269	21.90	3.799
19.23	5.177	20.13	4.717	21.03	4.251	21.93	3.782
19.27	5.160	20.17	4.699	21.07	4.234	21.97	3.764
19.30	5.143	20.20	4.682	21.10	4.217	22.00	3.747
19.33	5.126	20.23	4.665	21.13	4.199	22.03	3.806
19.37	5.109	20.27	4.648	21.17	4.182	22.07	3.868
19.40	5.092	20.30	4.631	21.20	4.165	22.10	3.933
19.43	5.075	20.33	4.614	21.23	4.147	22.13	4.000
19.47	5.058	20.37	4.596	21.27	4.130	22.17	4.069
19.50	5.041	20.40	4.579	21.30	4.113	22.20	4.142
19.53	5.024	20.43	4.562	21.33	4.095	22.23	4.217
19.57	5.007	20.47	4.545	21.37	4.078	22.27	4.295
19.60	4.990	20.50	4.528	21.40	4.061	22.30	4.375
19.63	4.973	20.53	4.510	21.43	4.043	22.33	4.336
19.67	4.956	20.57	4.493	21.47	4.026	22.37	4.296

Time ((hrs	Outflow cfs)	Time C (hrs	Outflow cfs)	Time O	utflow cfs)
22.40	4.254	23.30	3.459	24.20	2.517
22.43	4.212	23.33	3.446	24.23	2.309
22.47	4.168	23.37	3.432	24.27	2.075
22.50	4.122	23.40	3.419	24.30	1.813
22.53	4.076	23.43	3.406	End	
22.57	4.028	23.47	3.393	_{zu} LII0	
22.60	3.979	23.50	3.380		
22.63	3.929	23.53	3.367		
22.67	3.877	23.57	3.354		
22.70	3.824	23.60	3.340		
22.73	3.769	23.63	3.327		
22.77	3.713	23.67	3.314		
22.80	3.655	23.70	3.301		
22.83	3.642	23.73	3.288		
22.87	3.629	23.77	3.275		
22.90	3.616	23.80	3.261		
22.93	3.603	23.83	3.248		
22.97	3.590	23.87	3.235		
23.00	3.577	23.90	3.222		
23.03	3.564	, 23.93	3.209		
23.07	3.550	23.97	3.196		
23.10	3.537	24.00	3.182		
23.13	3.524	24.03	3.141		
23.17	3.511	24.07	3.072		
23.20	3.498	24.10	2.974		
23.23	3.485	24.13	2.849		
23.27	3.472	24.17	2.697		

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Friday, 01 / 29 / 2016

Hyd. No. 2

Post Development

Hydrograph type	= SCS Runoff	Peak discharge	= 151.99 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.37 hrs
Time interval	= 2 min	Hyd. volume	= 839,644 cuft
Drainage area	= 97.910 ac	Curve number	= 81.000*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 30.4 min
Total precip.	= 4.25 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = $[(26.680 \times 73) + (8.070 \times 72) + (41.470 \times 89) + (0.685 \times 98) + (20.499 \times 79) + (0.510 \times 71)] / 97.910$

Hydrograph Discharge Table

(Printed values >= 1.00% of Qp.)

Time ((hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time Outflow (hrs cfs)			Time Outflow (hrs cfs)		
9.27	1.592	9.87	3.145	10.47	5.329		11.07	8.890	
9.30	1.666	9.90	3.245	10.50	5.490		11.10	9.134	
9.33	1.741	9.93	3.347	10.53	5.655		11.13	9.391	
9.37	1.818	9.97	3.449	10.57	5.826		11.17	9.664	
9.40	1.897	10.00	3.553	10.60	6.001		11.20	9.957	
9.43	1.976	10.03	3.659	10.63	6.181		11.23	10.27	
9.47	2.058	10.07	3.766	10.67	6.366		11.27	10.61	
9.50	2.141	10.10	3.876	10.70	6.555		11.30	10.98	
9.53	2.225	10.13	3.988	10.73	6.748		11.33	11.38	
9.57	2.310	10.17	4.103	10.77	6.945		11.37	11.82	
9.60	2.397	10.20	4.221	10.80	7.146		11.40	12.28	
9.63	2.486	10.23	4.343	10.83	7.351		11.43	12.79	
9.67	2.576	10.27	4.469	10.87	7.560		11.47	13.32	
9.70	2.667	10.30	4.600	10.90	7.772		11.50	13.89	
9.73	2.760	10.33	4.735	10.93	7.988		11.53	14.50	
9.77	2.854	10.37	4.876	10.97	8.206		11.57	15.20	
9.80	2.950	10.40	5.022	11.00	8.429		11.60	16.03	
9.83	3.047	10.43	5.173	11.03	8.656		11.63	17.03	

Time (hrs	Outflow cfs)	Time C (hrs	Time Outflow (hrs cfs)		Time Outflow (hrs cfs)			Time Outflow (hrs cfs)		
11.67	18.24	12.53	137.82		13.43	25.39		14.33	17.45	
11.70	19.71	12.57	131.97		13.47	24.88		14.37	17.25	
11.73	21.48	12.60	125.40		13.50	24.40		14.40	17.06	
11.77	23.62	12.63	118.22		13.53	23.96		14.43	16.88	
11.80	26.17	12.67	110.57		13.57	23.56		14.47	16.71	
11.83	29.20	12.70	102.59		13.60	23.18		14.50	16.54	
11.87	32.73	12.73	94.42		13.63	22.83		14.53	16.38	
11.90	36.78	12.77	86.19		13.67	22.50		14.57	16.23	
11.93	41.54	12.80	78.06		13.70	22.20		14.60	16.08	
11.97	47.46	12.83	70.29		13.73	21.91		14.63	15.94	
12.00	55.04	12.87	63.24		13.77	21.63		14.67	15.80	
12.03	64.26	12.90	57.25		13.80	21.36		14.70	15.67	
12.07	74.58	12.93	52.38		13.83	21.11		14.73	15.54	
12.10	85.41	12.97	48.34		13.87	20.85		14.77	15.41	
12.13	96.34	13.00	44.87		13.90	20.60		14.80	15.28	
12.17	107.23	13.03	41.78		13.93	20.35		14.83	15.16	
12.20	117.90	13.07	39.05		13.97	20.09		14.87	15.03	
12.23	128.18	13.10	36.67		14.00	19.84		14.90	14.91	
12.27	137.57	13.13	34.60		14.03	19.58		14.93	14.79	
12.30	145.18	13.17	32.82		14.07	19.33		14.97	14.66	
12.33	150.05	13.20	31.29		14.10	19.07		15.00	14.53	
12.37	151.99	13.23	30.00		14.13	18.82		15.03	14.41	
12.40	151.65	13.27	28.91		14.17	18.58		15.07	14.28	
12.40	149.79	13.30	27.99		14.20	18.34		15.10	14.16	
12.43	146.83	13.33	27.22		14.23	18.11		15.13	14.03	
12.47	142.81	13.37	26.55		14.27	17.88		15.17	13.91	
12.50	142.01	13.40	25.95		14.30	17.66		15.20	13.78	

Continuos on novt noco

						 :	S 161
Time (hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time (hrs	Outflow cfs)	Time ((hrs	cfs)
15.23	13.65	16.13	10.17	17.03	8.052	17.93	6.499
15.27	13.53	16.17	10.05	17.07	7.995	17.97	6.440
15.30	13.40	16.20	9.929	17.10	7.938	18.00	6.382
15.33	13.27	16.23	9.812	17.13	7.881	18.03	6.324
15.37	13.14	16.27	9.698	17.17	7.824	18.07	6.267
15.40	13.02	16.30	9.589	17.20	7.766	18.10	6.210
15.43	12.89	16.33	9.486	17.23	7.709	18.13	6.154
15.47	12.76	16.37	9.387	17.27	7.652	18.17	6.100
15.50	12.63	16.40	9.294	17.30	7.595	18.20	6.047
15.53	12.50	16.43	9.206	17.33	7.537	18.23	5.997
15.57	12.38	16.47	9.122	17.37	7.480	18.27	5.948
15.60	12.25	16.50	9.042	17.40	7.422	18.30	5.902
15.63	12.12	16.53	8.965	17.43	7.365	18.33	5.859
15.67	11.99	16.57	8.892	17.47	7.307	18.37	5.819
15.70	11.86	16.60	8.823	17.50	7.250	18.40	5.782
15.73	11.73	16.63	8.756	17.53	7.192	18.43	5.747
15.77	11.60	16.67	8.691	17.57	7.135	18.47	5.715
15.80	11.47	16.70	8.629	17.60	7.077	18.50	5.685
15.83	11.34	16.73	8.568	17.63	7.019	18.53	5.657
15.87	11.21	16.77	8.509	17.67	6.962	18.57	5.631
15.90	11.08	16.80	8.451	17.70	6.904	18.60	5.607
15.93	10.95	16.83	8.393	17.73	6.846	18.63	5.584
15.97	10.82	16.87	8.336	17.77	6.788	18.67	5.563
16.00	10.69	16.90	8.279	17.80	6.730	18.70	5.543
16.03	10.56	16.93	8.223	17.83	6.672	18.73	5.523
16.07	10.43	16.97	8.166	17.87	6.615	18.77	5.505
16.10	10.30	17.00	8.109	17.90	6.557	18.80	5.487

Time (hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time (hrs	Outflow cfs)	Time ((hrs	Time Outflow (hrs cfs)		
18.83	5.470	19.73	5.006	20.63	4.538	21.53	4.064		
18.87	5.452	19.77	4.989	20.67	4.520	21.57	4.047		
18.90	5.435	19.80	4.972	20.70	4.503	21.60	4.029		
18.93	5.418	19.83	4.954	20.73	4.485	21.63	4.012		
18.97	5.401	19.87	4.937	20.77	4.468	21.67	3.994		
19.00	5.384	19.90	4.920	20.80	4.450	21.70	3.976		
19.03	5.367	19.93	4.903	20.83	4.433	21.73	3.959		
19.07	5.350	19.97	4.885	20.87	4.415	21.77	3.941		
19.10	5.333	20.00	4.868	20.90	4.398	21.80	3.923		
19.13	5.316	20.03	4.851	20.93	4.380	21.83	3.906		
19.17	5.299	20.07	4.833	20.97	4.363	21.87	3.888		
19.20	5.281	20.10	4.816	21.00	4.345	21.90	3.870		
19.23	5.264	20.13	4.799	21.03	4.328	21.93	3.853		
19.27	5.247	20.17	4.781	21.07	4.310	21.97	3.835		
19.30	5.230	20.20	4.764	21.10	4.293	22.00	3.817		
19.33	5.213	20.23	4.747	21.13	4.275	22.03	3.862		
19.37	5.196	20.27	4.729	21.17	4.258	22.07	3.908		
19.40	5.179	20.30	4.712	21.20	4.240	22.10	3.957		
19.43	5.161	20.33	4.694	21.23	4.223	22.13	4.008		
19.47	5.144	20.37	4.677	21.27	4.205	22.17	4.061		
19.50	5.127	20.40	4.660	21.30	4.188	22.20	4.116		
19.53	5.110	20.43	4.642	21.33	4.170	22.23	4.173		
19.57	5.092	20.47	4.625	21.37	4.152	22.27	4.233		
19.60	5.075	20.50	4.607	21.40	4.135	22.30	4.295		
19.63	5.058	20.53	4.590	21.43	4.117	22.33	4.359		
19.67	5.041	20.57	4.573	21.47	4.100	22.37	4.327		
19.70	5.024	20.60	4.555	21.50	4.082	22.40	4.293		

Time (hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time C (hrs	outflow cfs)
22.43	4.260	23.33	3.506	24.23	2.514
22.47	4.225	23.37	3.493	24.27	2.321
22.50	4.189	23.40	3.480	24.30	2.106
22.53	4.152	23.43	3.466	24.33	1.870
22.57	4.114	23.47	3.453	24.37	1.647
22.60	4.076	23.50	3.440	End	
22.63	4.036	23.53	3.426	EIIG	
22.67	3.995	23.57	3.413		
22.70	3.953	23.60	3.400		
22.73	3.910	23.63	3.387		
22.77	3.866	23.67	3.373		
22.80	3.821	23.70	3.360		
22.83	3.775	23.73	3.347		
22.87	3.727	23.77	3.333		
22.90	3.679	23.80	3.320		
22.93	3.665	23.83	3.307		
22.97	3.652	23.87	3.293		
23.00	3.639	23.90	3.280	78	
23.03	3.626	23.93	3.267		
23.07	3.612	23.97	3.253	41	
23.10	3.599	24.00	3.240		
23.13	3.586	24.03	3.204		
23.17	3.573	24.07	3.145		
23.20	3.559	24.10	3.064		
23.23	3.546	24.13	2.960		
23.27	3.533	24.17	2.833		
23.30	3.520	24.20	2.685		

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Friday, 01 / 29 / 2016

Hyd. No. 1

Pre Development

Hydrograph type	= SCS Runoff	Peak discharge	= 249.42 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 1,306,057 cuft
Drainage area	= 97.910 ac	Curve number	= 81.000*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.4 min
Total precip.	= 5.77 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = $[(44.250 \times 73) + (8.070 \times 72) + (42.080 \times 89) + (3.000 \times 98) + (0.510 \times 71)] / 97.910$

Hydrograph Discharge Table

(Printed values >= 1,00% of Qp.)

Time ((hrs	Outflow cfs)	Time C (hrs	outflow cfs)		Time Outflow (hrs cfs)		Time (hrs	Outflow cfs)
8.50	2.541	9.10	4.473	ģ	9.70	7.044	10.30	10.33
8.53	2.629	9.13	4.600	9	9.73	7.204	10.33	10.56
8.57	2.720	9.17	4.728	9	9.77	7.367	10.37	10.81
8.60	2.814	9.20	4.859	9	9.80	7.531	10.40	11.06
8.63	2.910	9.23	4.991		9.83	7.697	10.43	11.33
8.67	3.008	9.27	5.125	9	9.87	7.865	10.47	11.60
8.70	3.109	9.30	5.261	9	9.90	8.034	10.50	11.88
8.73	3.211	9.33	5.400	9	9.93	8.205	10.53	12.17
8.77	3.316	9.37	5.540	•	9.97	8.378	10.57	12.46
8.80	3.423	9.40	5.682		10.00	8.553	10.60	12.77
8.83	3.532	9.43	5.826		10.03	8.730	10.63	13.08
8.87	3.643	9.47	5.971	,	10.07	8.909	10.67	13.40
8.90	3.755	9.50	6.119		10.10	9.093	10.70	13.72
8.93	3.870	9.53	6.268		10.13	9.281	10.73	14.05
8.97	3.987	9.57	6.420		10.17	9.475	10.77	14.38
9.00	4.105	9.60	6.573	,	10.20	9.675	10.80	14.72
9.03	4.226	9.63	6.728	,	10.23	9.883	10.83	15.06
9.07	4.349	9.67	6.885		10.27	10.10	10.87	15.40

Time Outflow (hrs cfs)		Time Outflow (hrs cfs)			Time Outflow (hrs cfs)			Time Outflow (hrs cfs)		
10.90	15.75	11.80	49.54	1	2.67	148.65		13.57	33.52	
10.93	16.11	11.83	55.34	1	2.70	133.80		13.60	33.04	
10.97	16.46	11.87	62.00	1	2.73	119.37		13.63	32.59	
11.00	16.83	11.90	69.49	1	2.77	106.13		13.67	32.17	
11.03	17.20	11.93	78.22	1	2.80	94.93		13.70	31.77	
11.07	17.58	11.97	89.00	1	2.83	85.93		13.73	31.39	
11.10	17.98	12.00	102.76	1	12.87	78.59		13.77	31.01	
11.13	18.41	12.03	119.40	1	2.90	72.33		13.80	30.63	
11.17	18.86	12.07	137.83	1	2.93	66.82		13.83	30.26	
11.20	19.36	12.10	156.90	1	2.97	62.00		13.87	29.88	
11.23	19.91	12.13	175.84	1	3.00	57.81		13.90	29.50	
11.27	20.51	12.17	194.33	1	3.03	54.20		13.93	29.12	
11.30	21.16	12.20	212.05	1	3.07	51.10		13.97	28.74	
11.33	21.88	12.23	228.01	1	13.10	48.47		14.00	28.36	
11.37	22.67	12.27	240.53	1	13.13	46.25		14.03	27.98	
11.40	23.50	12.30	247.74	1	13.17	44.38		14.07	27.61	
11.43	24.40	12.33	249.42	1	13.20	42.80		14.10	27.23	
11.47	25.35	12.37	246.95	1	13.23	41.46		14.13	26.86	
11.50	26.35	12.40	241.82	1	13.27	40.30		14.17	26.51	
11.53	27.44	12.43	234.86	1	13.30	39.26		14.20	26.16	
11.57	28.70	12.47	226.20	1	13.33	38.30		14.23	25.82	
11.60	30.20	12.50	215.95	1	13.37	37.42		14.27	25.49	
11.63	32.04	12.53	204.29	1	13.40	36.62		14.30	25.19	
11.67	34.31	12.57	191.48	1	13.43	35.89		14.33	24.89	
11.70	37.09	12.60	177.76	1	13.47	35.22		14.37	24.62	
11.73	40.49	12.63	163.39	1	13.50	34.60		14.40	24.36	
11.77	44.61	12.00		1	13.53	34.04		14.43	24.11	

Continues on next ness

Time Outflow (hrs cfs)		Time Outflow (hrs cfs)		Time Outflow (hrs cfs)			Time Outflow (hrs cfs)		
14.47	23.87	15.37	18.73	16.27	13.72		17.17	11.12	
14.50	23.64	15.40	18.54	16.30	13.57		17.20	11.04	
14.53	23.42	15.43	18.35	16.33	13.43		17.23	10.96	
14.57	23.21	15.47	18.17	16.37	13.30		17.27	10.87	
14.60	23.01	15.50	17.98	16.40	13.17		17.30	10.79	
14.63	22.81	15.53	17.79	16.43	13.05		17.33	10.71	
14.67	22.62	15.57	17.60	16.47	12.94		17.37	10.62	
14.70	22.43	15.60	17.41	16.50	12.83		17.40	10.54	
14.73	22.25	15.63	17.23	16.53	12.73		17.43	10.46	
14.77	22.06	15.67	17.04	16.57	12.64		17.47	10.37	
14.80	21.88	15.70	16.85	16.60	12.54		17.50	10.29	
14.83	21.70	15.73	16.66	16.63	12.45		17.53	10.21	
14.87	21.51	15.77	16.47	16.67	12.37		17.57	10.12	
14.90	21.33	15.80	16.28	16.70	12.28		17.60	10.04	
14.93	21.14	15.83	16.09	16.73	12.20		17.63	9.957	
14.97	20.96	15.87	15.90	16.77	12.11		17.67	9.874	
15.00	20.77	15.90	15.71	16.80	12.03		17.70	9.790	
15.03	20.59	15.93	15.52	16.83	11.95		17.73	9.707	
15.07	20.40	15.97	15.33	16.87	11.87		17.77	9.623	
15.10	20.22	16.00	15.14	16.90	11.78		17.80	9.539	
15.13	20.03	16.03	14.95	16.93	11.70		17.83	9.456	
15.17	19.85	16.07	14.77	16.97	11.62		17.87	9.372	
15.20	19.66	16.10	14.58	17.00	11.54		17.90	9.288	
15.23	19.48	16.13	14.40	17.03	11.45		17.93	9.204	
15.27	19.29	16.17	14.22	17.07	11.37		17.97	9.121	
15.30	19.10	16.20	14.05	17.10	11.29		18.00	9.037	
15.33	18.92	16.23	13.88	17.13	11.21		18.03	8.953	

Time Outflow (hrs cfs)		Time Outflow (hrs cfs)			Time Outflow (hrs cfs)			Time Outflow (hrs cfs)		
18.07	8.870	18.97	7.697	1	9.87	7.024		20.77	6.347	
18.10	8.789	19.00	7.673	19	9.90	6.999		20.80	6.321	
18.13	8.710	19.03	7.648	19	9.93	6.974		20.83	6.296	
18.17	8.632	19.07	7.623	1	9.97	6.949		20.87	6.271	
18.20	8.558	19.10	7.598	2	0.00	6.924		20.90	6.246	
18.23	8.488	19.13	7.573	2	0.03	6.899		20.93	6.220	
18.27	8.421	19.17	7.548	2	0.07	6.874		20.97	6.195	
18.30	8.360	19.20	7.523	2	0.10	6.849		21.00	6.170	
18.33	8.303	19.23	7.499	2	0.13	6.824		21.03	6.145	
18.37	8.250	19.27	7.474	2	0.17	6.799		21.07	6.120	
18.40	8.202	19.30	7.449	2	0.20	6.774		21.10	6.094	
18.43	8.157	19.33	7.424	2	0.23	6.749		21.13	6.069	
18.47	8.116	19.37	7.399	2	0.27	6.724		21.17	6.044	
18.50	8.078	19.40	7.374	2	0.30	6.699		21.20	6.019	
18.53	8.042	19.43	7.349	2	0.33	6.674		21.23	5.993	
18.57	8.010	19.47	7.324	2	0.37	6.648		21.27	5.968	
18.60	7.979	19.50	7.299	2	0.40	6.623		21.30	5.943	
18.63	7.950	19.53	7.274	2	0.43	6.598		21.33	5.917	
18.67	7.923	19.57	7.249	2	0.47	6.573		21.37	5.892	
18.70	7.897	19.60	7.224	2	0.50	6.548		21.40	5.867	
18.73	7.871	19.63	7.199	2	0.53	6.523		21.43	5.842	
18.77	7.846	19.67	7.174	2	0.57	6.498		21.47	5.816	
18.80	7.821	19.70	7.149	2	0.60	6.472		21.50	5.791	
18.83	7.797	19.73	7.124	2	0.63	6.447		21.53	5.766	
18.87	7.772	19.77	7.099	2	0.67	6.422		21.57	5.740	
18.90	7.747	19.80	7.074	2	0.70	6.397		21.60	5.715	
18.93	7.722	19.83	7.049	2	0.73	6.372		21.63	5.690	

Time (hrs	Outflow cfs)	Time ((hrs	Outflow cfs)	Time O (hrs	utflow cfs)
21.67	5.664	22.57	5.814	23.47	4.893
21.70	5.639	22.60	5.743	23.50	4.874
21.73	5.614	22.63	5.670	23.53	4.855
21.77	5.588	22.67	5.595	23.57	4.836
21.80	5.563	22.70	5.518	23.60	4.817
21.83	5.538	22.73	5.438	23.63	4.798
21.87	5.512	22.77	5.357	23.67	4.778
21.90	5.487	22.80	5.274	23.70	4.759
21.93	5.461	22.83	5.255	23.73	4.740
21.97	5.436	22.87	5.236	23.77	4.721
22.00	5.411	22.90	5.217	23.80	4.702
22.03	5.496	22.93	5.198	23.83	4.683
22.07	5.585	22.97	5.179	23.87	4.664
22.10	5.678	23.00	5.160	23.90	4.645
22.13	5.774	23.03	5.141	23.93	4.626
22.17	5.875	23.07	5.122	23.97	4.606
22.20	5.979	23.10	5.103	24.00	4.587
22.23	6.087	23.13	5.084	24.03	4.528
22.27	6.200	23.17	5.065	24.07	4.428
22.30	6.316	23.20	5.046	24.10	4.287
22.33	6.259	23.23	5.026	24.13	4.107
22.37	6.201	23.27	5.007	24.17	3.887
22.40	6.141	23.30	4.988	24.20	3.628
22.43	6.079	23.33	4.969	24.23	3.329
22.47	6.015	23.37	4.950	24.27	2.990
22.50	5.950	23.40	4.931	24.30	2.613
22.53	5.883	23.43	4.912	End	

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Friday, 01 / 29 / 2016

Hyd. No. 2

Post Development

Hydrograph type	= SCS Runoff	Peak discharge	= 239.04 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.37 hrs
Time interval	= 2 min	Hyd. volume	= 1,322,382 cuft
Drainage area	= 97.910 ac	Curve number	= 81.000*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 30.4 min
Total precip.	= 5.77 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = $[(26.680 \times 73) + (8.070 \times 72) + (41.470 \times 89) + (0.685 \times 98) + (20.499 \times 79) + (0.510 \times 71)] / 97.910$

Hydrograph Discharge Table

(Printed values >= 1 00% of Qp.)

Time ((hrs	Outflow cfs)	Time C (h r s	outflow cfs)	Tin (hr		Outflow cfs)	Time ((hrs	Outflow cfs)
8.50	2.466	9.10	4.368	9.	70	6.924	10.30	10.18
8.53	2.552	9.13	4.493	9.	73	7.084	10.33	10.41
8.57	2.641	9.17	4.621	9.	77	7.246	10.37	10.64
8.60	2.732	9.20	4.750	9.	80	7.410	10.40	10.89
8.63	2.826	9.23	4.882	9.	83	7.575	10.43	11.15
8.67	2.922	9.27	5.015	9.	87	7.743	10.47	11.41
8.70	3.020	9.30	5.150	9.	90	7.912	10.50	11.68
8.73	3.121	9.33	5.287	9.	93	8.083	10.53	11.96
8.77	3.224	9.37	5.427	9.	97	8.256	10.57	12.25
8.80	3.329	9.40	5.568	10	0.00	8.430	10.60	12.55
8.83	3.436	9.43	5.711	10	0.03	8.607	10.63	12.85
8.87	3.546	9.47	5.856	10	0.07	8.786	10.67	13.16
8.90	3.657	9.50	6.003	10).10	8.969	10.70	13.48
8.93	3.771	9.53	6.152	10	0.13	9.155	10.73	13.80
8.97	3.886	9.57	6.302	10	0.17	9.347	10.77	14.13
9.00	4.004	9.60	6.455	10	0.20	9.545	10.80	14.46
9.03	4.123	9.63	6.609	10).23	9.749	10.83	14.80
9.07	4.244	9.67	6.766	10).27	9.960	10.87	15.14

Time ((hrs	Outflow cfs)	Time C (hrs	Outflow cfs)	Time ((hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
10.90	15.49	11.80	45.95	12.67	169.21	13.57	34.84
10.93	15.85	11.83	50.94	12.70	156.57	13.60	34.27
10.97	16.20	11.87	56.74	12.73	143.70	13.63	33.75
11.00	16.56	11.90	63.33	12.77	130.80	13.67	33.25
11.03	16.93	11.93	71.04	12.80	118.11	13.70	32.79
11.07	17.31	11.97	80.55	12.83	106.05	13.73	32.35
11,10	17.70	12.00	92.59	12.87	95.15	13.77	31.93
11.13	18.12	12.03	107.11	12.90	85.95	13.80	31.53
11.17	18.57	12.07	123.23	12.93	78.49	13.83	31.14
11.20	19.04	12.10	140.01	12.97	72.34	13.87	30.76
11.23	19.56	12.13	156.85	13.00	67.06	13.90	30.38
11.27	20.11	12.17	173.49	13.03	62.37	13.93	29.99
11.30	20.72	12.20	189.68	13.07	58.24	13.97	29.61
11.33	21.39	12.23	205.15	13.10	54.63	14.00	29.23
11.37	22.11	12.27	219.11	13.13	51.51	14.03	28.84
11.40	22.89	12.30	230.19	13.17	48.82	14.07	28.46
11.43	23.72	12.33	236.91	13.20	46.52	14.10	28.08
11.47	24.60	12.37	239.04	13.23	44.57	14.13	27.71
11.50	25.54	12.40	237.67	13.27	42.93	14.17	27.34
11.53	26.56	12.43	233.97	13.30	41.55	14.20	26.98
11.57	27.72	12.47	228.61	13.33	40.38	14.23	26.63
11.60	29.10	12.50	221.67	13.37	39.37	14.27	26.29
11.63	30.76	12.53	213.28	13.40	38.46	14.30	25.96
11.67	32.78	12.57	203.65	13.43	37.62	14.33	25.65
11.70	35.22	12.60	192.96	13.47	36.84	14.37	25.35
11.73	38.18	12.63	181.41	13.50	36.12	14.40	25.07
11.77	41.72	12.00	101.71	13.53	35.46	14.43	24.80

Time (hrs	· Outflow cfs)	Time C (hrs	outflow cfs)	Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)
14.47	24.54	15.37	19.21	16.2	7 14.13	17.17	11.37
14.50	24.29	15.40	19.03	16.3	0 13.97	17.20	11.29
14.53	24.05	15.43	18.84	16.3	3 13.82	17.23	11.21
14.57	23.82	15.47	18.65	16.3	7 13.67	17.27	11.12
14.60	23.60	15.50	18.46	16.4	0 13.54	17.30	11.04
14.63	23.39	15.53	18.27	16.4	3 13.41	17.33	10.95
14.67	23.18	15.57	18.08	16.4	7 13.28	17.37	10.87
14.70	22.98	15.60	17.89	16.5	0 13.17	17.40	10.78
14.73	22.79	15.63	17.69	16.5	3 13.05	17.43	10.70
14.77	22.59	15.67	17.50	16.5	7 12.95	17.47	10.62
14.80	22.40	15.70	17.31	16.6	0 12.84	17.50	10.53
14.83	22.22	15.73	17.12	16.6	3 12.74	17.53	10.45
14.87	22.03	15.77	16.93	16.6	7 12.65	17.57	10.36
14.90	21.84	15.80	16.74	16.7	0 12.56	17.60	10.28
14.93	21.66	15.83	16.55	16.7	3 12.47	17.63	10.19
14.97	21.47	15.87	16.36	16.7	7 12.38	17.67	10.11
15.00	21.28	15.90	16.17	16.8	0 12.30	17.70	10.03
15.03	21.10	15.93	15.97	16.8	3 12.21	17.73	9.941
15.07	20.91	15.97	15.78	16.8	7 12.13	17.77	9.856
15.10	20.72	16.00	15.59	16.9	0 12.04	17.80	9.771
15.13	20.53	16.03	15.40	16.9	3 11.96	17.83	9.687
15.17	20.35	16.07	15.21	16.9	7 11.88	17.87	9.602
15.20	20.16	16.10	15.02	17.0	0 11.79	17.90	9.517
15.23	19.97	16.13	14.83	17.0	3 11.71	17.93	9.432
15.27	19.78	16.17	14.65	17.0	7 11.62	17.97	9.348
15.30	19.59	16.20	14.47	17.1	0 11.54	18.00	9.263
15.33	19.40	16.23	14.30	17.1	3 11.46	18.03	9.178

Time (hrs	Outflow cfs)	Time C (hrs	Outflow cfs)	Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)
18.07	9.094	18.97	7.827	19.87	7.146	20.77	6.460
18.10	9.011	19.00	7.802	19.90	7.121	20.80	6.434
18.13	8.930	19.03	7.777	19.93	7.095	20.83	6.409
18.17	8.851	19.07	7.752	19.97	7.070	20.87	6.383
18.20	8.774	19.10	7.727	20.00	7.045	20.90	6.358
18.23	8.699	19.13	7.701	20.03	7.019	20.93	6.332
18.27	8.629	19.17	7.676	20.07	6.994	20.97	6.307
18.30	8.562	19.20	7.651	20.10	6.969	21.00	6.281
18.33	8.499	19.23	7.626	20.13	6.943	21.03	6.256
18.37	8.440	19.27	7.601	20.17	6.918	21.07	6.230
18.40	8.386	19.30	7.575	20.20	6.892	21.10	6.205
18.43	8.335	19.33	7.550	20.23	6.867	21.13	6.179
18.47	8.288	19.37	7.525	20.27	6.842	21.17	6.153
18.50	8.244	19.40	7.500	20.30	6.816	21.20	6.128
18.53	8.203	19.43	7.475	20.33	6.791	21.23	6.102
18.57	8.165	19.47	7.449	20.37	6.765	21.27	6.077
18.60	8.130	19.50	7.424	20.40	6.740	21.30	6.051
18.63	8.096	19.53	7.399	20.43	6.715	21.33	6.026
18.67	8.065	19.57	7.374	20.47	6.689	21.37	6.000
18.70	8.035	19.60	7.348	20.50	6.664	21.40	5.974
18.73	8.007	19.63	7.323	20.53	6.638	21.43	5.949
18.77	7.979	19.67	7.298	20.57	6.613	21.47	5.923
18.80	7.953	19.70	7.273	20.60	6.587	21.50	5.897
18.83	7.928	19.73	7.247	20.63	6.562	21.53	5.872
18.87	7.902	19.77	7.222	20.67	6.536	21.57	5.846
18.90	7.877	19.80	7.197	20.70	6.511	21.60	5.821
18.93	7.852	19.83	7.171	20.73	6.485	21.63	5.795

Continuos on novt noss

Time ((hrs	Outflow cfs)	Time ((hrs	Outflow cfs)	Time O (hrs	utflow cfs)
21.67	5.769	22.57	5.938	23.47	4.980
21.70	5.744	22.60	5.882	23.50	4.961
21.73	5.718	22.63	5.824	23.53	4.941
21.77	5.692	22.67	5.765	23.57	4.922
21.80	5.667	22.70	5.705	23.60	4.903
21.83	5.641	22.73	5.643	23.63	4.883
21.87	5.615	22.77	5.579	23.67	4.864
21.90	5.590	22.80	5.514	23.70	4.845
21.93	5.564	22.83	5.447	23.73	4.825
21.97	5.538	22.87	5.378	23.77	4.806
22.00	5.513	22.90	5.308	23.80	4.787
22.03	5.577	22.93	5.288	23.83	4.767
22.07	5.644	22.97	5.269	23.87	4.748
22.10	5.714	23.00	5.250	23.90	4.729
22.13	5.787	23.03	5.231	23.93	4.709
22.17	5.863	23.07	5.211	23.97	4.690
22.20	5.942	23.10	5.192	24.00	4.670
22.23	6.025	23.13	5.173	24.03	4.618
22.27	6.111	23.17	5.154	24.07	4.533
22.30	6.200	23.20	5.134	24.10	4.416
22.33	6.292	23.23	5.115	24.13	4.266
22.37	6.246	23.27	5.096	24.17	4.084
22.40	6.198	23.30	5.076	24.20	3.870
22.43	6.148	23.33	5.057	24.23	3.624
22.47	6.098	23.37	5.038	24.27	3.346
22.50	6.046	23.40	5.019	24.30	3.036
22.53	5.993	23.43	4.999	24.33	2.695

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Friday, 01 / 29 / 2016

Hyd. No. 1

Pre Development

Hydrograph type	= SCS Runoff	Peak discharge	= 311.90 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 1,641,771 cuft
Drainage area	= 97.910 ac	Curve number	= 81.000*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.4 min
Total precip.	= 6.80 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = $[(44.250 \times 73) + (8.070 \times 72) + (42.080 \times 89) + (3.000 \times 98) + (0.510 \times 71)] / 97.910$

Hydrograph Discharge Table

(Printed values >= 1 00% of Qp.)

Time (hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time (hrs	Outflow cfs)		Time ((hrs	Outflow cfs)
8.10	3.192	8.70	5.177	9.30	8.082		9.90	11.69
8.13	3.275	8.73	5.319	9.33	8.265		9.93	11.91
8.17	3.359	8.77	5.463	9.37	8.450		9.97	12.13
8.20	3.446	8.80	5.610	9.40	8.637		10.00	12.36
8.23	3.536	8.83	5.759	9.43	8.826		10.03	12.58
8.27	3.629	8.87	5.910	9.47	9.017		10.07	12.81
8.30	3.726	8.90	6.064	9.50	9.211		10.10	13.05
8.33	3.827	8.93	6.219	9.53	9.406		10.13	13.29
8.37	3.932	8.97	6.377	9.57	9.604		10.17	13.53
8.40	4.041	9.00	6.538	9.60	9.804		10.20	13.79
8.43	4.153	9.03	6.700	9.63	10.01		10.23	14.06
8.47	4.269	9.07	6.865	9.67	10.21		10.27	14.33
8.50	4.389	9.10	7.032	9.70	10.42		10.30	14.62
8.53	4.512	9.13	7.202	9.73	10.62		10.33	14.93
8.57	4.639	9.17	7.374	9.77	10.83		10.37	15.24
8.60	4.769	9.20	7.547	9.80	11.04		10.40	15.57
8.63	4.902	9.23	7.724	9.83	11.26		10.43	15.91
8.67	5.038	9.27	7.902	9.87	11.47	Ā	10.47	16.26

Time ((hrs	Outflow cfs)	Time ((hrs	Outflow cfs)	Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)
10.50	16.62	11.40	31.42	12.30	310.35	13.17	54.19
10.53	17.00	11.43	32.57	12.33	311.90	13.20	52.25
10.57	17.38	11.47	33.78	12.37	308.31	13.23	50.61
10.60	17.77	11.50	35.06	12.40	301.44	13.27	49.18
10.63	18.17	11.53	36.45	12.43	292.34	13.30	47.90
10.67	18.57	11.57	38.06	12.43	281.16	13.33	46.73
10.70	18.99	11.60	39.98	12.47	268.05	13.37	45.65
10.73	19.40	11.63	42.34	12.53	253.24	13.40	44.66
10.77	19.83	11.67	45.25	12.57	237.04	13.43	43.76
10.80	20.26	11.70	48.81	12.60	219.77	13.47	42.94
10.83	20.69	11.73	53.16	12.63	201.75	13.50	42.18
10.87	21.13	11.77	58.43	12.67	183.31	13.53	41.49
10.90	21.58	11.80	64.73	12.70	164.78	13.57	40.85
10.93	22.02	11.83	72.13	12.73	146.81	13.60	40.26
10.97	22.48	11.87	80.59	12.77	130.37	13.63	39.71
11.00	22.93	11.90	90.10	12.80	116.49	13.67	39.19
11.03	23.40	11.93	101.13	12.83	105.37	13.70	38.70
11.07	23.88	11.97	114.71	12.87	96.30	13.73	38.22
11.10	24.39	12.00	131.96	12.90	88.58	13.77	37.76
11.13	24.92	12.03	152.75	12.93	81.79	13.80	37.30
11.17	25.51	12.07	175.69	12.97	75.86	13.83	36.83
11.20	26.14	12.10	199.35	13.00	70.70	13.87	36.37
11.23	26.83	12.13	222.76	13.03	66.26	13.90	35.91
11.27	27.59	12.17	245.54	13.07	62.45	13.93	35.44
11.30	28.43	12.20	267.29	13.10	59.22	13.97	34.97
11.33	29.35	12.23	286.77	13.13	56.49	14.00	34.51
11.37	30.35	12.27	301.89			14.03	34.04

Continuos on nout nos

Time (hrs	Outflow cfs)	Time C (hrs	Outflow cfs)	Time (hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
14.07	33.58	14.97	25.44	15.87	19.27	16.77	14.67
14.10	33.12	15.00	25.21	15.90	19.04	16.80	14.57
14.13	32.67	15.03	24.99	15.93	18.81	16.83	14.46
14.17	32.23	15.07	24.76	15.97	18.58	16.87	14.36
14.20	31.80	15.10	24.53	16.00	18.35	16.90	14.26
14.23	31.39	15.13	24.31	16.03	18.12	16.93	14.16
14.27	30.99	15.17	24.08	16.07	17.89	16.97	14.06
14.30	30.62	15.20	23.85	16.10	17.66	17.00	13.96
14.33	30.26	15.23	23.63	16.13	17.44	17.03	13.86
14.37	29.92	15.27	23.40	16.17	17.23	17.07	13.76
14.40	29.60	15.30	23.17	16.20	17.02	17.10	13.66
14.43	29.29	15.33	22.94	16.23	16.81	17.13	13.56
14.47	29.00	15.37	22.71	16.27	16.62	17.17	13.46
14.50	28.72	15.40	22.49	16.30	16.44	17.20	13.36
14.53	28.45	15.43	22.26	16.33	16.27	17.23	13.26
14.57	28.20	15.47	22.03	16.37	16.11	17.27	13.16
14.60	27.95	15.50	21.80	16.40	15.95	17.30	13.06
14.63	27.71	15.53	21.57	16.43	15.81	17.33	12.95
14.67	27.47	15.57	21.34	16.47	15.67	17.37	12.85
14.70	27.24	15.60	21.11	16.50	15.54	17.40	12.75
14.73	27.02	15.63	20.88	16.53	15.42	17.43	12.65
14.77	26.79	15.67	20.65	16.57	15.30	17.47	12.55
14.80	26.57	15.70	20.42	16.60	15.19	17.50	12.45
14.83	26.34	15.73	20.19	16.63	15.08	17.53	12.35
14.87	26.12	15.77	19.96	16.67	14.97	17.57	12.25
14.90	25.89	15.80	19.73	16.70	14.87	17.60	12.15
14.93	25.67	15.83	19.50	16.73	14.77	17.63	12.04

Time (hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time (hrs	· Outflow cfs)	Time ((hrs	Outflow cfs)
17.67	11.94	18.57	9.682	19.47	8.849	20.37	8.029
17.70	11.84	18.60	9.645	19.50	8.819	20.40	7.999
17.73	11.74	18.63	9.610	19.53	8.789	20.43	7.968
17.77	11.64	18.67	9.577	19.57	8.758	20.47	7.938
17.80	11.54	18.70	9.545	19.60	8.728	20.50	7.907
17.83	11.44	18.73	9.514	19.63	8.698	20.53	7.877
17.87	11.33	18.77	9.484	19.67	8.667	20.57	7.846
17.90	11.23	18.80	9.453	19.70	8.637	20.60	7.816
17.93	11.13	18.83	9.423	19.73	8.607	20.63	7.785
17.97	11.03	18.87	9.393	19.77	8.576	20.67	7.755
18.00	10.93	18.90	9.363	19.80	8.546	20.70	7.724
18.03	10.83	18.93	9.333	19.83	8.516	20.73	7.693
18.07	10.73	18.97	9.303	19.87	8.485	20.77	7.663
18.10	10.63	19.00	9.272	19.90	8.455	20.80	7.632
18.13	10.53	19.03	9.242	19.93	8.424	20.83	7.602
18.17	10.44	19.07	9.212	19.97	8.394	20.87	7.571
18.20	10.35	19.10	9.182	20.00	8.364	20.90	7.541
18.23	10.26	19.13	9.152	20.03	8.333	20.93	7.510
18.27	10.18	19.17	9.121	20.07	8.303	20.97	7.480
18.30	10.11	19.20	9.091	20.10	8.272	21.00	7.449
18.33	10.04	19.23	9.061	20.13	8.242	21.03	7.418
18.37	9.974	19.27	9.031	20.17	8.212	21.07	7.388
18.40	9.915	19.30	9.000	20.20	8.181	21.10	7.357
18.43	9.861	19.33	8.970	20.23	8.151	21.13	7.327
18.47	9.811	19.37	8.940	20.27	8.120	21.17	7.296
18.50	9.765	19.40	8.910	20.30	8.090	21.20	7.266
18.53	9.722	19.43	8.879	20.33	8.059	21.23	7.235

Time (hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time · (hrs	Outflow cfs)	Time (hrs	Outflow cfs)
21.27	7.204	22.17	7.089	23.07	6.178	23.97	5.555
21.30	7.174	22.20	7.215	23.10	6.155	24.00	5.532
21.33	7.143	22.23	7.346	23.13	6.132	24.03	5.460
21.37	7.113	22.27	7.481	23.17	6.109	24.07	5.340
21.40	7.082	22.30	7.621	23.20	6.086	24.10	5.170
21.43	7.051	22.33	7.553	23.23	6.063	24.13	4.953
21.47	7.021	22.37	7.482	23.27	6.040	24.17	4.688
21.50	6.990	22.40	7.410	23.30	6.017	24.20	4.375
21.53	6.959	22.43	7.335	23.33	5.994	24.23	4.014
21.57	6.929	22.47	7.258	23.37	5.971	24.27	3.606
21.60	6.898	22.50	7.179	23.40	5.948	24.30	3.151
21.63	6.867	22.53	7.098	23.43	5.925	End	
21.67	6.837	22.57	7.014	23.47	5.902	one LIIU	
21.70	6.806	22.60	6.929	23.50	5.879		
21.73	6.775	22.63	6.840	23.53	5.856		
21.77	6.745	22.67	6.750	23.57	5.833		
21.80	6.714	22.70	6.657	23.60	5.809		
21.83	6.683	22.73	6.561	23.63	5.786		
21.87	6.653	22.77	6.463	23.67	5.763		
21.90	6.622	22.80	6.363	23.70	5.740		
21.93	6.591	22.83	6.340	23.73	5.717	2	
21.97	6.560	22.87	6.317	23.77	5.694		
22.00	6.530	22.90	6.294	23.80	5.671		
22.03	6.633	22.93	6.271	23.83	5.648		
22.07	6.740	22.97	6.248	23.87	5.625		
22.10	6.852	23.00	6.225	23.90	5.602		
22.13	6.968	23.03	6.202	23.93	5.578		

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Friday, 01 / 29 / 2016

Hyd. No. 2

Post Development

12.37 hrs
1,662,294 cuft
81.000*
O ft
30.4 min
Type III
484

^{*} Composite (Area/CN) = $[(26.680 \times 73) + (8.070 \times 72) + (41.470 \times 89) + (0.685 \times 98) + (20.499 \times 79) + (0.510 \times 71)] / 97.910$

Hydrograph Discharge Table

(Printed values >= 1,00% of Qp.)

Time (hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time · (hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
8.07	3.049	8.67	4.929	9.27	7.768	9.87	11.33
8.10	3.128	8.70	5.065	9.30	7.948	9.90	11.55
8.13	3.210	8.73	5.204	9.33	8.129	9.93	11.77
8.17	3.293	8.77	5.346	9.37	8.314	9.97	11.99
8.20	3.379	8.80	5.491	9.40	8.500	10.00	12.22
8.23	3.468	8.83	5.638	9.43	8.689	10.03	12.44
8.27	3.559	8.87	5.788	9.47	8.879	10.07	12.67
8.30	3.653	8.90	5.940	9.50	9.072	10.10	12.90
8.33	3.751	8.93	6.095	9.53	9.267	10.13	13.14
8.37	3.853	8.97	6.252	9.57	9.465	10.17	13.39
8.40	3.958	9.00	6.411	9.60	9.664	10.20	13.64
8.43	4.067	9.03	6.573	9.63	9.866	10.23	13.90
8.47	4.180	9.07	6.737	9.67	10.07	10.27	14.17
8.50	4.296	9.10	6.903	9.70	10.27	10.30	14.45
8.53	4.416	9.13	7.071	9.73	10.48	10.33	14.75
8.57	4.539	9.17	7.242	9.77	10.69	10.37	15.05
8.60	4.666	9.20	7.415	9.80	10.90	10.40	15.37
8.63	4.796	9.23	7.590	9.83	11.12	10.43	15.70

\$

Hydrograph Discharge Table

Time (hrs	Outflow cfs)	Time ((hrs	Outflow cfs)	Time (hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
10.47	16.04	11.37	29.66	12.27	275.59	13.13	62.95
10.50	16.39	11.40	30.65	12.30	288.98	13.17	59.64
10.53	16.75	11.43	31.72	12.33	296.88	13.20	56.82
10.57	17.12	11.47	32.85	12.37	299.07	13.23	54.43
10.60	17.50	11.50	34.04	12.40	296.91	13.27	52.41
10.63	17.89	11.53	35.34	12.40	290.91	13.30	50.71
10.67	18.28	11.57	36.83	12.43	284.79	13.33	49.27
10.70	18.69	11.60	38.59	12.47	275.78	13.37	48.03
10.73	19.10	11.63	40.72	12.53	265.02	13.40	46.91
10.77	19.52	11.67	43.30	12.57	252.73	13.43	45.88
10.80	19.95	11.70	46.43	12.57	239.18	13.47	44.93
10.83	20.38	11.73	50.22	12.63	224.60	13.50	44.04
10.87	20.82	11.77	54.75	12.67	209.25	13.53	43.23
10.90	21.26	11.80	60.15	12.70	193.39	13.57	42.47
10.93	21.71	11.83	66.51	12.73	177.27	13.60	41:77
10.97	22.16	11.87	73.89	12.77	161.17	13.63	41.12
11.00	22.62	11.90	82.26	12.80	145.35	13.67	40.51
11.03	23.08	11.93	92.02	12.83	130.34	13.70	39.94
11.07	23.56	11.97	104.01	12.87	116.81	13.73	39.40
11.10	24.06	12.00	119.14	12.90	105.41	13.77	38.89
11.13	24.59	12.03	137.31	12.93	96.19	13.80	38.40
11.17	25.15	12.07	157.40	12.97	88.60	13.83	37.92
11.20	25.75	12.10	178.26	13.00	82.09	13.87	37.45
11.23	26.41	12.13	199.12	13.03	76.31	13.90	36.98
11.27	27.12	12.17	219.67	13.07	71.23	13.93	36.51
11.30	27.89	12.20	239.60	13.10	66.79	13.97	36.04
11.33	28.74	12.23	258.57			14.00	35.57

Continuos on nout nos

Time (hrs	- Outflow cfs)	Time C (hrs	Outflow cfs)	Time (hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
14.03	35.10	14.93	26.29	15.83	20.06	16.73	15.09
14.07	34.63	14.97	26.06	15.87	19.82	16.77	14.99
14.10	34.16	15.00	25.83	15.90	19.59	16.80	14.88
14.13	33.70	15.03	25.60	15.93	19.36	16.83	14.78
14.17	33.25	15.07	25.37	15.97	19.12	16.87	14.68
14.20	32.81	15.10	25.15	16.00	18.89	16.90	14.58
14.23	32.38	15.13	24.92	16.03	18.66	16.93	14.48
14.27	31.97	15.17	24.69	16.07	18.42	16.97	14.37
14.30	31.57	15.20	24.46	16.10	18.19	17.00	14.27
14.33	31.18	15.23	24.23	16.13	17.97	17.03	14.17
14.37	30.82	15.27	24.00	16.17	17.75	17.07	14.07
14.40	30.47	15.30	23.77	16.20	17.53	17.10	13.97
14.43	30.14	15.33	23.54	16.23	17.32	17.13	13.86
14.47	29.82	15.37	23.31	16.27	17.12	17.17	13.76
14.50	29.52	15.40	23.07	16.30	16.92	17.20	13.66
14.53	29.22	15.43	22.84	16.33	16.74	17.23	13.56
14.57	28.94	15.47	22.61	16.37	16.56	17.27	13.46
14.60	28.67	15.50	22.38	16.40	16.39	17.30	13.35
14.63	28.41	15.53	22.15	16.43	16.24	17.33	13.25
14.67	28.16	15.57	21.92	16.47	16.09	17.37	13.15
14.70	27.91	15.60	21.68	16.50	15.94	17.40	13.05
14.73	27.67	15.63	21.45	16.53	15.81	17.43	12.95
14.77	27.44	15.67	21.22	16.57	15.68	17.47	12.84
14.80	27.20	15.70	20.99	16.60	15.55	17.50	12.74
14.83	26.97	15.73	20.76	16.63	15.43	17.53	12.64
14.87	26.75	15.77	20.52	16.67	15.32	17.57	12.54
14.90	26.52	15.80	20.29	16.70	15.20	17.60	12.43

Time (hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)
17.63	12.33	18.53	9.917	19.43	9.031	20.33	8.201
17.67	12.23	18.57	9.871	19.47	9.001	20.37	8.170
17.70	12.13	18.60	9.827	19.50	8.970	20.40	8.140
17.73	12.02	18.63	9.787	19.53	8.939	20.43	8.109
17.77	11.92	18.67	9.748	19.57	8.909	20.47	8.078
17.80	11.82	18.70	9.712	19.60	8.878	20.50	8.047
17.83	11.72	18.73	9.678	19.63	8.847	20.53	8.016
17.87	11.61	18.77	9.645	19.67	8.816	20.57	7.985
17.90	11.51	18.80	9.613	19.70	8.786	20.60	7.954
17.93	11.41	18.83	9.582	19.73	8.755	20.63	7.924
17.97	11.30	18.87	9.551	19.77	8.724	20.67	7.893
18.00	11.20	18.90	9.521	19.80	8.694	20.70	7.862
18.03	11.10	18.93	9.490	19.83	8.663	20.73	7.831
18.07	11.00	18.97	9.460	19.87	8.632	20.77	7.800
18.10	10.90	19.00	9.429	19.90	8.601	20.80	7.769
18.13	10.80	19.03	9.399	19.93	8.571	20.83	7.738
18.17	10.70	19.07	9.368	19.97	8.540	20.87	7.707
18.20	10.61	19.10	9.337	20.00	8.509	20.90	7.676
18.23	10.52	19.13	9.307	20.03	8.478	20.93	7.645
18.27	10.43	19.17	9.276	20.07	8.448	20.97	7.614
18.30	10.35	19.20	9.246	20.10	8.417	21.00	7.583
18.33	10.28	19.23	9.215	20.13	8.386	21.03	7.553
18.37	10.20	19.27	9.184	20.17	8.355	21.07	7.522
18.40	10.14	19.30	9.154	20.20	8.325	21.10	7.491
18.43	10.08	19.33	9.123	20.23	8.294	21.13	7.460
18.47	10.02	19.37	9.092	20.27	8.263	21.17	7.429
18.50	9.967	19.40	9.062	20.30	8.232	21.20	7.398

Time ((hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time ((hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
21.23	7.367	22.13	6.983	23.03	6.310	23.93	5.679
21.27	7.336	22.17	7.075	23.07	6.287	23.97	5.656
21.30	7.305	22.20	7.171	23.10	6.263	24.00	5.633
21.33	7.274	22.23	7.270	23.13	6.240	24.03	5.570
21.37	7.243	22.27	7.374	23.17	6.217	24.07	5.467
21.40	7.212	22.30	7.481	23.20	6.193	24.10	5.325
21.43	7.181	22.33	7.593	23.23	6.170	24.13	5.145
21.47	7.150	22.37	7.536	23.27	6.147	24.17	4.925
21.50	7.119	22.40	7.478	23.30	6.123	24.20	4.667
21.53	7.088	22.43	7.419	23.33	6.100	24.23	4.370
21.57	7.057	22.47	7.358	23.37	6.077	24.27	4.035
21.60	7.026	22.50	7.295	23.40	6.053	24.30	3.661
21.63	6.995	22.53	7.231	23.43	6.030	24.33	3.250
21.67	6.964	22.57	7.165	23.47	6.007	End	
21.70	6.932	22.60	7.097	23.50	5.983	:::::L//G	
21.73	6.901	22.63	7.027	23.53	5.960		
21.77	6.870	22.67	6.956	23.57	5.937		
21.80	6.839	22.70	6.883	23.60	5.913		
21.83	6.808	22.73	6.808	23.63	5.890		
21.87	6.777	22.77	6.731	23.67	5.866		
21.90	6.746	22.80	6.652	23.70	5.843		
21.93	6.715	22.83	6.571	23.73	5.820		
21.97	6.684	22.87	6.488	23.77	5.796		
22.00	6.653	22.90	6.403	23.80	5.773		
22.03	6.730	22.93	6.380	23.83	5.750		
22.07	6.811_	22.97	6.357	23.87	5.726		
22.10	6.895	23.00	6.333	23.90	5.703		

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Friday, 01 / 29 / 2016

Hyd. No. 1

Pre Development

Hydrograph type	= SCS Runoff	Peak discharge	= 381.94 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 2,024,122 cuft
Drainage area	= 97.910 ac	Curve number	= 81.000*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.4 min
Total precip.	= 7.95 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = $[(44.250 \times 73) + (8.070 \times 72) + (42.080 \times 89) + (3.000 \times 98) + (0.510 \times 71)] / 97.910$

Hydrograph Discharge Table

(Printed values >= 1.00% of Qp.)

Time (hrs	Outflow cfs)	Time C (hrs	Outflow cfs)		Time (hrs	Outflow cfs)	Time (hrs	e Outflow cfs)
7.67	3.858	8.27	5.697		8.87	8.721	9.47	12.72
7.70	3.950	8.30	5.825		8.90	8.922	9.50	12.97
7.73	4.042	8.33	5.959		8.93	9.125	9.53	13.22
7.77	4.136	8.37	6.099		8.97	9.331	9.57	13.47
7.80	4.230	8.40	6.244		9.00	9.540	9.60	13.72
7.83	4.325	8.43	6.393		9.03	9.752	9.63	13.97
7.87	4.421	8.47	6.548		9.07	9.965	9.67	14.23
7.90	4.518	8.50	6.708		9.10	10.18	9.70	14.49
7.93	4.617	8.53	6.872	97.11	9.13	10.40	9.73	3 14.75
7.97	4.716	8.57	7.041		9.17	10.62	9.77	15.02
8.00	4.815	8.60	7.214		9.20	10.85	9.80	15.28
8.03	4.916	8.63	7.390		9.23	11.07	9.83	3 15.55
8.07	5.019	8.67	7.571		9.27	11.30	9.87	7 15.82
8.10	5.124	8.70	7.755		9.30	11.53	9.90	16.09
8.13	5.231	8.73	7.943		9.33	11.77	9.93	3 16.36
8.17	5.342	8.77	8.133		9.37	12.00	9.97	7 16.64
8.20	5.456	8.80	8.326		9.40	12.24	10.0	00 16.92
8.23	5.574	8.83	8.522		9.43	12.48	10.0	3 17.20

ځ

- · /	N461	T: C	المراجعة	Tim	e Ou	#low	Time	Outflow
Time ((hrs	cfs)	Time C (hrs	cfs)	(hrs		cfs)	(hrs	cfs)
10.07	17.48	10.97	29.51	11.	87 1	01.83	12.73	177.37
10.10	17.77	11.00	30.07	11.	90 1	13.59	12.77	157.35
10.13	18.07	11.03	30.65	11.	93 1	27.22	12.80	140.49
10.17	18.38	11.07	31.24	11.	97 1	43.94	12.83	126.99
10.20	18.70	11.10	31.86	12.	.00 1	65.10	12.87	116.00
10.23	19.03	11.13	32.52	12.	.03 1	90.53	12.90	106.66
10.27	19.37	11.17	33.24	12.	.07 2	18.51	12.93	98.44
10.30	19.74	11.20	34.02	12.	.10 2	47.28	12.97	91.27
10.33	20.12	11.23	34.88	12.	.13 2	75.67	13.00	85.04
10.37	20.51	11.27	35.82	12.	.17 3	03.22	13.03	79.67
10.40	20.92	11.30	36.87	12.	.20 3	29.45	13.07	75.07
10.43	21.35	11.33	38.01	12.	.23 3	52.82	13.10	71.16
10.47	21.79	11.37	39.26	12	.27 3	370.79	13.13	67.87
10.50	22.24	11.40	40.60	12	.30 3	80.59	13.17	65.10
10.53	22.71	11.43	42.02	12	.33 3	81.94	13.20	62.76
10.57	23.18	11.47	43.54	12	.37 3	377.06	13.23	60.78
10.60	23.67	11.50	45.13			368.19	13.27	59.05
10.63	24.17	11.53	46.85				13.30	57.51
10.67	24.67	11.57	48.85			356.65 342.61	13.33	56.09
10.70	25.19	11.60	51.26			326.27	13.37	54.79
10.73	25.71	11.63	54.20			307.91	13.40	53.60
10.77	26.24	11.67	57.82			287.91	13.43	52.51
10.80	26.77	11.70	62.28			266.65	13.47	51.51
10.83	27.31	11.73	67.71			244.53	13.50	50.60
10.87	27.86	11.77	74.27			221.95	13.53	49.76
10.90	28.40	11.80	82.12			199.30	13.57	48.99
10.93	28.96	11.83	91.32	12		100.00	13.60	48.28

Time (hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time (hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
13.63	47.61	14.53	34.04	15.43	26.59	16.33	19.41
13.67	46.98	14.57	33.73	15.47	26.32	16.37	19.22
13.70	46.39	14.60	33.43	15.50	26.04	16.40	19.04
13.73	45.81	14.63	33.14	15.53	25.77	16.43	18.87
13.77	45.25	14.67	32.86	15.57	25.49	16.47	18.70
13.80	44.70	14.70	32.58	15.60	25.22	16.50	18.55
13.83	44.14	14.73	32.31	15.63	24.94	16.53	18.40
13.87	43.58	14.77	32.04	15.67	24.67	16.57	18.26
13.90	43.02	14.80	31.77	15.70	24.39	16.60	18.12
13.93	42.46	14.83	31.50	15.73	24.12	16.63	17.99
13.97	41.90	14.87	31.23	15.77	23.84	16.67	17.86
14.00	41.34	14.90	30.96	15.80	23.56	16.70	17.74
14.03	40.77	14.93	30.68	15.83	23.29	16.73	17.62
14.07	40.22	14.97	30.41	15.87	23.01	16.77	17.50
14.10	39.67	15.00	30.14	15.90	22.74	16.80	17.38
14.13	39.12	15.03	29.87	15.93	22.46	16.83	17.26
14.17	38.59	15.07	29.60	15.97	22.18	16.87	17.14
14.20	38.08	15.10	29.32	16.00	21.91	16.90	17.02
14.23	37.58	15.13	29.05	16.03	21.63	16.93	16.90
14.27	37.10	15.17	28.78	16.07	21.36	16.97	16.78
14.30	36.65	15.20	28.51	16.10	21.09	17.00	16.65
14.33	36.22	15.23	28.23	16.13	20.82	17.03	16.53
14.37	35.81	15.27	27.96	16.17	20.56	17.07	16.41
14.40	35.42	15.30	27.69	16.20	20.31	17.10	16.29
14.43	35.05	15.33	27.41	16.23	20.07	17.13	16.17
14.47	34.70	15.37_	27.14	16.27	19.84	17.17	16.05
14.50	34.37	15.40	26.86	16.30	19.62	17.20	15.93

Continuos on nout nos

Time (hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time ((hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
17.23	15.81	18.13	12.55	19.03	11.01	19.93	10.03
17.27	15.69	18.17	12.44	19.07	10.98	19.97	9.997
17.30	15.57	18.20	12.33	19.10	10.94	20.00	9.961
17.33	15.45	18.23	12.23	19.13	10.90	20.03	9.925
17.37	15.33	18.27	12.14	19.17	10.87	20.07	9.888
17.40	15.21	18.30	12.05	19.20	10.83	20.10	9.852
17.43	15.09	18.33	11.96	19.23	10.79	20.13	9.816
17.47	14.97	18.37	11.89	19.27	10.76	20.17	9.779
17.50	14.84	18.40	11.82	19.30	10.72	20.20	9.743
17.53	14.72	18.43	11.75	19.33	10.69	20.23	9.706
17.57	14.60	18.47	11.69	19.37	10.65	20.27	9.670
17.60	14.48	18.50	11.64	19.40	10.61	20.30	9.634
17.63	14.36	18.53	11.59	19.43	10.58	20.33	9.597
17.67	14.24	18.57	11.54	19.47	10.54	20.37	9.561
17.70	14.12	18.60	11.49	19.50	10.51	20.40	9.525
17.73	14.00	18.63	11.45	19.53	10.47	20.43	9.488
17.77	13.88	18.67	11.41	19.57	10.43	20.47	9.452
17.80	13.75	18.70	11.37	19.60	10.40	20.50	9.415
17.83	13.63	18.73	11.34	19.63	10.36	20.53	9.379
17.87	13.51	18.77	11.30	19.67	10.32	20.57	9.343
17.90	13.39	18.80	11.26	19.70	10.29	20.60	9.306
17.93	13.27	18.83	11.23	19.73	10.25	20.63	9.270
17.97	13.15	18.87	11.19	19.77	10.22	20.67	9.233
18.00	13.03	18.90	11.16	19.80	10.18	20.70	9.197
18.03	12.91	18.93	11.12	19.83	10.14	20.73	9.160
18.07	12.79	18.97	11.08	19.87	10.11	20.77	9.124
18.10	12.67	19.00	11.05	19.90	10.07	20.80	9.087

Time (hrs	Outflow cfs)	Time C (hrs	outflow cfs)		Time ((hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
20.83	9.051	21.73	8.064		22.63	8.140	23.53	6.966
20.87	9.014	21.77	8.028		22.67	8.032	23.57	6.939
20.90	8.978	21.80	7.991		22.70	7.921	23.60	6.911
20.93	8.941	21.83	7.955		22.73	7.807	23.63	6.884
20.97	8.905	21.87	7.918		22.77	7.691	23.67	6.856
21.00	8.869	21.90	7.881		22.80	7.571	23.70	6.829
21.03	8.832	21.93	7.845		22.83	7.543	23.73	6.801
21.07	8.796	21.97	7.808		22.87	7.516	23.77	6.773
21.10	8.759	22.00	7.771		22.90	7.488	23.80	6.746
21.13	8.723	22.03	7.894		22.93	7.461	23.83	6.718
21.17	8.686	22.07	8.022		22.97	7.434	23.87	6.691
21.20	8.650	22.10	8.155		23.00	7.406	23.90	6.663
21.23	8.613	22.13	8.293		23.03	7.379	23.93	6.636
21.27	8.576	22.17	8.437		23.07	7.351	23.97	6.608
21.30	8.540	22.20	8.587	(Z	23.10	7.324	24.00	6.581
21.33	8.503	22.23	8.742		23.13	7.296	24.03	6.495
21.37	8.467	22.27	8.903		23.17	7.269	24.07	6.351
21.40	8.430	22.30	9.070		23.20	7.241	24.10	6.150
21.43	8.394	22.33	8.988		23.23	7.214	24.13	5.892
21.47	8.357	22.37	8.904		23.27	7.186	24.17	5.576
21.50	8.321	22.40	8.818		23.30	7.159	24.20	5.204
21.53	8.284	22.43	8.729		23.33	7.131	24.23	4.774
21.57	8.247	22.47	8.637		23.37	7.104	24.27	4.289
21.60	8.211	22.50	8.543		23.40	7.076	End	
21.63	8.174	22.53	8.446		23.43	7.049	LIV	
21.67	8.138	22.57	8.347		23.47	7.021		
21.70	8.101	22.60	8.245		23.50	6.994		

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Friday, 01 / 29 / 2016

Hyd. No. 2

Post Development

Hydrograph type Storm frequency Time interval Drainage area Basin Slope	= SCS Runoff = 100 yrs = 2 min = 97.910 ac = 0.0 %	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length	= 366.39 cfs = 12.37 hrs = 2,049,422 cuft = 81.000* = 0 ft
		•	• •
•			
•			
Tc method	= TR55	Time of conc. (Tc)	= 30.4 min
Total precip.	= 7.95 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = $[(26.680 \times 73) + (8.070 \times 72) + (41.470 \times 89) + (0.685 \times 98) + (20.499 \times 79) + (0.510 \times 71)] / 97.910$

Hydrograph Discharge Table

(Printed values >= 1.00% of Qp.)

Time ((hrs	Outflow cfs)	Time C (hrs	Outflow cfs)	Time (hrs	Outflow cfs)	Time C (hrs	Outflow cfs)
7.63	3.697	8.23	5.497	8.83	8.374	9.43	12.32
7.67	3.788	8.27	5.617	8.87	8.571	9.47	12.56
7.70	3.879	8.30	5.741	8.90	8.771	9.50	12.81
7.73	3.971	8.33	5.871	8.93	8.974	9.53	13.06
7.77	4.065	8.37	6.006	8.97	9.179	9.57	13.31
7.80	4.159	8.40	6.146	9.00	9.387	9.60	13.56
7.83	4.254	8.43	6.291	9.03	9.597	9.63	13.81
7.87	4.350	8.47	6.441	9.07	9.810	9.67	14.07
7.90	4.447	8.50	6.595	9.10	10.03	9.70	14.33
7.93	4.545	8.53	6.755	9.13	10.24	9.73	14.59
7.97	4.644	8.57	6.919	9.17	10.46	9.77	14.85
8.00	4.744	8.60	7.087	9.20	10.69	9.80	15.12
8.03	4.845	8.63	7.259	9.23	10.91	9.83	15.39
8.07	4.948	8.67	7.436	9.27	11.14	9.87	15.66
8.10	5.052	8.70	7.616	9.30	11.37	9.90	15.93
8.13	5.159	8.73	7.801	9.33	11.61	9.93	16.21
8.17	5.268	8.77	7.988	9.37	11.84	9.97	16.48
8.20	5.381	8.80	8.179	9.40	12.08	10.00	16.76

Time (hrs	Outflow cfs)	Time ((hrs	Outflow cfs)		Time ((hrs	Outflow cfs)	Time (hrs	Outflow cfs)
10.03	17.04	10.93	28.59		11.83	84.33	12.70	234.45
10.07	17.33	10.97	29.15		11.87	93.50	12.73	214.71
10.10	17.62	11.00	29.71		11.90	103.87	12.77	195.02
10.13	17.91	11.03	30.28		11.93	115.94	12.80	175.70
10.17	18.22	11.07	30.87		11.97	130.71	12.83	157.39
10.20	18.53	11.10	31.48		12.00	149.30	12.87	140.92
10.23	18.86	11.13	32.13		12.03	171.55	12.90	127.07
10.27	19.19	11.17	32.82		12.07	196.09	12.93	115.88
10.30	19.54	11.20	33.57		12.10	221.50	12.97	106.69
10.33	19.91	11.23	34.38		12.13	246.84	13.00	98.80
10.37	20.29	11.27	35.26		12.17	271.74	13.03	91.82
10.40	20.69	11.30	36.22	72	12.20	295.82	13.07	85.67
10.43	21.10	11.33	37.27		12.23	318.68	13.10	80.31
10.47	21.52	11.37	38.42		12.27	339.09	13.13	75.67
10.50	21.96	11.40	39.66	17	12.30	355.00	13.17	71.67
10.53	22.41	11.43	40.98		12.33	364.19	13.20	68.26
10.57	22.88	11.47	42.39		12.37	366.39	13.23	65.38
10.60	23.35	11.50	43.88		12.40	363.31	13.27	62.94
10.63	23.84	11.53	45.49		12.43	356.73	13.30	60.89
10.67	24.33	11.57	47.34		12.47	347.69	13.33	59.16
10.70	24.84	11.60	49.54		12.50	336.33	13.37	57.66
10.73	25.35	11.63	52.19		12.53	322.86	13.40	56.31
10.77	25.88	11.67	55.41		12.57	307.59	13.43	55.06
10.80	26.41	11.70	59.32		12.60	290.81	13.47	53.91
10.83	26.94	11.73	64.04		12.63	272.82	13.50	52.84
10.87	27.49	11.77	69.70		12.67	253.93	13.53	51.86
10.90	28.04	11.80	76.42		· - · • ·		13.57	50.94

Time (hrs	Outflow cfs)	Time C (hrs	outflow cfs)		me rs	Outflow cfs)	Time (hrs	Outflow cfs)
13.60	50.10	14.50	35.32	•	15.40	27.57	16.30	20.20
13.63	49.31	14.53	34.97		15.43	27.29	16.33	19.98
13.67	48.58	14.57	34.63		15.47	27.01	16.37	19.77
13.70	47.89	14.60	34.30		15.50	26.74	16.40	19.57
13.73	47.24	14.63	33.99		15.53	26.46	16.43	19.38
13.77	46.62	14.67	33.68		15.57	26.18	16.47	19.20
13.80	46.02	14.70	33.39	,	15.60	25.90	16.50	19.03
13.83	45.44	14.73	33.10	,	15.63	25.62	16.53	18.86
13.87	44.88	14.77	32.81	,	15.67	25.35	16.57	18.71
13.90	44.31	14.80	32.53		15.70	25.07	16.60	18.56
13.93	43.74	14.83	32.26		15.73	24.79	16.63	18.41
13.97	43.18	14.87	31.98		15.77	24.51	16.67	18.27
14.00	42.61	14.90	31.71		15.80	24.23	16.70	18.14
14.03	42.04	14.93	31.43		15.83	23.95	16.73	18.01
14.07	41.48	14.97	31.16		15.87	23.67	16.77	17.88
14.10	40.92	15.00	30.88		15.90	23.39	16.80	17.76
14.13	40.36	15.03	30.61		15.93	23.11	16.83	17.63
14.17	39.82	15.07	30.33		15.97	22.83	16.87	17.51
14.20	39.29	15.10	30.06		16.00	22.55	16.90	17.39
14.23	38.77	15.13	29.78		16.03	22.27	16.93	17.27
14.27	38.27	15.17	29.51		16.07	22.00	16.97	17.15
14.30	37.79	15.20	29.23		16.10	21.72	17.00	17.03
14.33	37.33	15.23	28.95		16.13	21.45	17.03	16.90
14.37	36.89	15.27	28.68		16.17	21.18	17.07	16.78
14.40	36.47	15.30	28.40		16.20	20.92	17.10	16.66
14.43	36.07	15.33	28.12		16.23	20.67	17.13	16.54
14.47	35.69	15.37	27.85		16.27	20.43	17.17	16.42

Time (hrs	Outflow cfs)	Time C (hrs	outflow cfs)	Time ((hrs	Outflow cfs)		Time ((hrs	Outflow cfs)
17.20	16.29	18.10	12.99	19.00	11.23		19.90	10.24
17.23	16.17	18.13	12.87	19.03	11.20		19.93	10.21
17.27	16.05	18.17	12.76	19.07	11.16		19.97	10.17
17.30	15.93	18.20	12.65	19.10	11.12		20.00	10.13
17.33	15.80	18.23	12.54	19.13	11.09		20.03	10.10
17.37	15.68	18.27	12.44	19.17	11.05		20.07	10.06
17.40	15.56	18.30	12.34	19.20	11.02		20.10	10.02
17.43	15.44	18.33	12.25	19.23	10.98	(ii)	20.13	9.987
17.47	15.32	18.37	12.16	19.27	10.94		20.17	9.951
17.50	15.19	18.40	12.08	19.30	10.91		20.20	9.914
17.53	15.07	18.43	12.01	19.33	10.87		20.23	9.877
17.57	14.95	18.47	11.94	19.37	10.83		20.27	9.840
17.60	14.83	18.50	11.88	19.40	10.80		20.30	9.803
17.63	14.70	18.53	11.82	19.43	10.76		20.33	9.766
17.67	14.58	18.57	11.76	19.47	10.72		20.37	9.730
17.70	14.46	18.60	11.71	19.50	10.69		20.40	9.693
17.73	14.34	18.63	11.66	19.53	10.65		20.43	9.656
17.77	14.21	18.67	11.62	19.57	10.61		20.47	9.619
17.80	14.09	18.70	11.57	19.60	10.58		20.50	9.582
17.83	13.97	18.73	11.53	19.63	10.54		20.53	9.545
17.87	13.84	18.77	11.49	19.67	10.50		20.57	9.508
17.90	13.72	18.80	11.45	19.70	10.47		20.60	9.472
17.93	13.60	18.83	11.42	19.73	10.43		20.63	9.435
17.97	13.48	18.87	11.38	19.77	10.39		20.67	9.398
18.00	13.35	18.90	11.34	19.80	10.36		20.70	9.361
18.03	13.23	18.93	11.31	19.83	10.32		20.73	9.324
18.07	13.11	18.97	11.27	19.87	10.28		20.77	9.287

Time (hrs	Outflow cfs)	Time C (hrs	Outflow cfs)	Time (hrs	Outflow cfs)	Tim (hrs		Outflow cfs)
20.80	9.250	21.70	8.252	22.6	0 8.445	23	.50	7.118
20.83	9.213	21.73	8.215	22.6	3 8.362	23	.53	7.090
20.87	9.176	21.77	8.178	22.6	7 8.277	23	.57	7.063
20.90	9.139	21.80	8.141	22.7	0 8.190	23	.60	7.035
20.93	9.102	21.83	8.103	22.7	3 8.101	23	.63	7.007
20.97	9.066	21.87	8.066	22.7	7 8.009	23	.67	6.979
21.00	9.029	21.90	8.029	22.8	0 7.915	23	.70	6.951
21.03	8.992	21.93	7.992	22.8	3 7.819	23	.73	6.923
21.07	8.955	21.97	7.955	22.8	7 7.720	23	.77	6.895
21.10	8.918	22.00	7.918	22.9	0 7.619	23	.80	6.867
21.13	8.881	22.03	8.010	22.9	3 7.591	23	.83	6.840
21.17	8.844	22.07	8.106	22.9	7 7.564	23	.87	6.812
21.20	8.807	22.10	8.206	23.0	0 7.536	23	.90	6.784
21.23	8.770	22.13	8.311	23.0	3 7.508	23	.93	6.756
21.27	8.733	22.17	8.420	23.0	7.480	23	.97	6.728
21.30	8.696	22.20	8.534	23.1	0 7.452	24	.00	6.700
21.33	8.659	22.23	8.652	23.1	3 7.425	24	.03	6.625
21.37	8.622	22.27	8.775	23.1	7 7.397	24	.07	6.503
21.40	8.585	22.30	8.903	23.2	0 7.369	24	.10	6.335
21.43	8.548	22.33	9.036	23.2	3 7.341	24	.13	6.120
21.47	8.511	22.37	8.969	23.2	7.313	24	.17	5.858
21.50	8.474	22.40	8.900	23.3	7.285	24	.20	5.551
21.53	8.437	22.43	8.829	23.3	3 7.258	24	.23	5.198
21.57	8.400	22.47	8.756	23.3	7.230	24	.27	4.799
21.60	8.363	22.50	8.681	23.4	7.202	24	.30	4.355
21.63	8.326	22.53	8.605	23.4	3 7.174	24	.33	3.866
21.67	8.289	22.57	8.526	23.4	7.146	7274	End	

ATTACHMENT 5

Carbon Debt Analysis

SolarCity Corporation
Proposed 3.9 Megawatt Solar Facility
Old Forge Road
Rocky Hill, CT

SolarCity Corporation performed an analysis to determine whether the proposed solar array installation ("Project") at the referenced site ("Subject Property") has the ability to produce a net improvement in carbon reduction compared to the loss of approximately nine (9) acres of early successional woodland. This analysis accounts for the loss of the trees and the carbon associated with both the manufacture of the solar panels and the installation activities.

The Project requires the removal of 225 trees primarily consisting of autumn olive and similar small diameter species (less than 6" diameter at breast height). The results of this analysis demonstrate that the Project would begin to have a measurable net improvement in carbon reduction in less than three years. Consider the accounting of "carbon debt" in the following table - which includes the energy used and CO2 released during the manufacturing and installation of the solar arrays, as well as the existing and future carbon reduction derived from the trees to be displaced by the solar array¹ - and the subsequent payback analysis².

¹ The calculations used in determining amount of energy used and CO2e created in manufacture and installation of solar array uses industry standard data sourced from: The Environmental Protection Agency (EPA) CO2 emissions calculator; Franklin Life Cycle Analysis Database; NREL US Life Cycle Inventory; Aluminum Association Life Cycle Inventory; Ecoinvent Life Cycle Inventory; Annual Energy Review, EIA; DOE Life Cycle Inventory.

² Tree CO2E calcs are based off volumetric equations by McClure, J. and Cost, N. (2010) and the component ratio method by Health et al. 2009. This estimation method is adopted by US Forest Service Forest Inventory Analysis (FIA) program and California's pre-compliance market (AB 32), is peer-reviewed and widely considered to be the standard methodology for calculating carbon sequestration. USDA/Forestry Service/ Northern Research Station: "Measurement guidelines for the sequestration of forest carbon." Pearson, Timothy R.H. Brown, Sandra L. Birdsey, Richard A. 2007.

Carbon Debt &Payback of Solar Array (Original Case)	Energy (GJ) used in Production	CO ² e (Metric Tons)		
PV Modules	34524	5959		
Racking	862	367		
Module Interconnection	65	6		
Junction Boxes	63	16		
Conduits and Fittings	404	79		
Wire and Grounding Devices	948	136		
Inverters and Transformers	1629	215		
Grid Connections	157	19		
Office Facilities Concrete	111	.32		
Concrete	81	38		
Trees Removed (Current Stock2)	0	225		
Trees (Future Lost Carbon Reduction - 20 Years)	0	520		
Total CO²e to Payback		7613		
Annual PV Production Benefits (- CO ² e)	5725	3149		
Carbon Payback of Solar Array (Yrs)		2.4		

System Size (W)	3,903,020
System Size (MW)	3.9
Acres Cleared (Estimated)	9.0

ATTACHMENT 6

Decommissioning Plan

SolarCity Corporation Old Forge Road Solar Facility Rocky Hill, CT

This Decommissioning Plan ("Plan") establishes the approach to conduct decommissioning activities for the permanent closure of the solar panels and appurtenant equipment at the Old Forge Road site ("Project" or "Facility") at the end of its useful life or the permanent cessation of its operation, whichever comes first. The Plan also describes the approach for removal and/or abandonment of facilities and equipment associated with the Facility and describes anticipated land-restoration activities.

As background, the Power Purchase Agreement ("PPA") for the Facility requires that no later than ninety (90) days after its expiration, all tangible property comprising the Facility must be removed from the site. The PPA also requires that the site be returned to its original condition, excepting ordinary wear and tear, including the removal of mounting and/or support structures for the solar modules.

DECOMMISSIONING ACTIVITIES

In accordance with the PPA, decommissioning will involve removal and disposal or recycling of all Project components. All recyclable materials will be transported to the appropriate nearby recycling facilities. Any non-recyclable materials will be properly disposed of at a nearby landfill. Ninety-five percent (95%) or greater of the Facility's components will be recyclable.

Decommissioning Preparation

Site decommissioning and equipment removal can take up to six (6) months to complete for a project of this size. Therefore, access roads, fencing and electrical power will temporarily remain in place for use by the decommissioning and site restoration workers until it is no longer needed. Demolition debris will be placed in temporary on-site storage areas pending final transportation and disposal/recycling according to the procedures listed below.

Photovoltaic (PV) Equipment Removal and Recycling

During decommissioning, all Facility components that will not be used by the site owner will be removed from the site. Equipment removal will include any and all pad-mounted cabinets, wiring, solar modules, solar module racking, inverters, and panel boards. Pounded post foundations will be pulled up and removed. Any resulting holes will be backfilled with locally imported soil to match existing site soil conditions. The concrete transformer and interconnection equipment pads will be broken up and removed.

The demolition debris and removed equipment may be cut or dismantled in to pieces that can be safely lifted or carried with the on-site equipment being used. The majority of glass, steel and aluminum will be processed for transportation and delivery to the licensed off-site recycling

center. The solar modules will be transported to and recycled at the nearest facility that will accept them. Minimal non-recyclable materials are anticipated; these will be properly disposed of a the nearest qualified disposal facility.

Internal Power Collection System

The DC and AC power collection system will be dismantled and removed. All conduit and cabling that is removed will be recycled.

Access Roads

The existing onsite access driveway will remain in place to accomplish decommissioning at the end of the Facility's life.

Security Fence

The existing eight (8) foot high chain link perimeter security fence will remain in place and will not be removed during the decommissioning process.

Interconnection Line

The overhead interconnection cabling that connects the Facility to the Eversource distribution network will remain in place during decommissioning activities to provide electrics service onsite during decommissioning. At the time of decommissioning, if the Town determines that this electric service line will be beneficial for the future use of the site, the line may remain after decommissioning. If the line is not used, it will be removed pursuant to Eversource guidelines and transported offsite to the nearest recycling facility.

SITE RECLAMATION

After the Project is completely decommissioned, and all Project equipment has been removed from the site, additional activities will be performed to return the property back to its preconstruction conditions, excepting ordinary wear and tear.

Any site restoration or monitoring activities completed on the site will comply with applicable regulations and requirements.

Restoration Process

The decommissioning process will remove Project-related structures and infrastructure as described in the previous sections. Following decommissioning, site reclamation activities will occur. Reclamation will restore landform features, vegetative cover, and hydrologic function after the closure of the facility. The process will involve (where needed) the replacement of topsoil and vegetation, as well as modification of site topography where necessary to bring the site back to substantially pre-construction conditions compatible with the adjacent surroundings.

Any excavated areas remain after removal of equipment pads or access road base material, will be backfilled and compacted with locally imported soil to match existing onsite soils, and hydro seeded with a seed mix to match existing onsite groundcover. Any other areas of lower than average ground surface level will receive similar treatment.

If any soils are compacted at levels that would affect successful re-vegetation, they will be decompacted. The method of de-compaction will depend on how compacted the soil has become over the life of the Project. Following de-compaction, re-contouring of the site will be conducted, if necessary, to return the site to approximately match the pre-construction surface conditions and the surrounding area conditions. Original site drainage characteristics will be restored if they have not been maintained. It is unlikely that a significant amount of earthwork will be required, because the Project construction plan calls for minimal disturbance of the site during Project construction. Grading activities will be limited to areas as shown on the design plans that require re-contouring. Efforts will be made to disturb as little of the natural drainages and existing natural vegetation that remain post-decommissioning as possible.

Any remaining bare earth areas will be hydro seeded with a seed mix to match existing onsite groundcover. Site restoration activities are anticipated to be limited, because the preconstruction conditions of the site are not planned to be significantly altered during Project construction. Also, any other activities that become necessary will be performed to return the site to a pre-construction condition.

Monitoring Activities

The site will be monitored by SolarCity after site restoration activities are complete to confirm that any earthwork and re-vegetation were performed correctly. The site will be periodically inspected (at least quarterly) to check for any eroded earthwork or failed vegetation. Any deficiencies will be promptly corrected. This monitoring will continue for a period of one year, or until the site is re-developed for another future purpose, whichever comes first.

ATTACHMENT 7

Robinson + Cole

[SAMPLE PUBLIC OFFICIALS LETTER]

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts

March 23, 2016

Via Certificate of Mailing

«Name_and_Address»

Re: SolarCity Corporation – Petition for Declaratory Ruling for the Construction and Operation of a Solar Photovoltaic Electric Generating Facility Off Old Forge Road in Rocky Hill, Connecticut

Dear «Salutation»:

This firm represents SolarCity Corporation ("SolarCity"). Pursuant to the requirements of Connecticut General Statutes § 16-50½(b), and Section 16-50½-40 of the Regulations of Connecticut State Agencies, enclosed is a copy of the above-referenced Petition for Declaratory Ruling. SolarCity intends to construct and operate a 3.9 MW solar photovoltaic electric generating facility on a portion of a 61.38-acre parcel off Old Forge Road in Rocky Hill. The property is owned by the Town of Rocky Hill. The SolarCity Petition will be filed with the Connecticut Siting Council on March 24, 2016.

If you have any questions regarding this Petition please contact me or the Siting Council directly at (860) 827-2935.

Sincerely,

Kenneth C. Baldwin

KCB/kmd Enclosure

14614114-v1

CERTIFICATION OF SERVICE

I hereby certify that on this 23rd day of March, 2016, copies of the Petition and attachments were sent first class mail, postage prepaid and via Certificate of Mailing, to the following:

STATE OFFICIALS:

The Honorable George Jepsen Attorney General Office of the Attorney General 55 Elm Street Hartford, CT 06106

Rob Klee, Commissioner Department of Energy and Environmental Protection 79 Elm Street Hartford, CT 06106

Raul Pino, M.D., M.P.H., Commissioner Department of Public Health 410 Capitol Avenue P.O. Box 340308, MS 13COM Hartford, CT 06134-0308

Karl J. Wagener, Executive Director Council on Environmental Quality 79 Elm Street P.O. Box 5066 Hartford, CT 06106

Steven K. Reviczky, Commissioner Department of Agriculture 165 Capital Avenue Hartford, CT 06106

Arthur House, Chairman Public Utilities Regulatory Authority 10 Franklin Square New Britain, CT 06051

Benjamin Barnes, Secretary Office of Policy and Management 450 Capitol Avenue Hartford, CT 06106 Catherine Smith, Commissioner Department of Economic and Community Development 505 Hudson Street Hartford, CT 06106

James P. Redeker, Commissioner Department of Transportation 2800 Berlin Turnpike Newington, CT 06111

Dora B. Schriro, Commissioner
Department of Emergency Services and Public Protection
Emergency Management and Homeland Security Division
1111 Country Club Road
Middletown, CT 06457

Jonathan A. Harris, Commissioner Department of Consumer Protection 115 Capitol Avenue Hartford, CT 06106

Melody A. Currey, Commissioner Department of Administrative Services 165 Capitol Avenue Hartford, CT 06106

Scott D. Jackson, Commissioner Department of Labor 200 Folley Brook Boulevard Wethersfield, CT 06109

ROCKY HILL TOWN OFFICIALS:

Guy Scaife, Town Manager Town of Rocky Hill 761 Old Main Street Rocky Hill, CT 06067

Claudia Baio, Mayor Town of Rocky Hill 761 Old Main Street Rocky Hill, CT 06067 Philip Sylvestro, Chairman Planning and Zoning Commission Town of Rocky Hill 761 Old Main Street Rocky Hill, CT 06067

Kim Ricci Zoning Enforcement Officer, Town Planner Town of Rocky Hill 761 Old Main Street Rocky Hill, CT 06067

Edward Charamut, Chairman Open Space & Conservation Inland Wetlands Commission Town of Rocky Hill 761 Old Main Street Rocky Hill, CT 06067

CROMWELL TOWN OFFICIALS:

Anthony J. Salvatore, Town Manager Town of Cromwell 41 West Street Cromwell, CT 06416

Enzo Faienza, Mayor Town of Cromwell 41 West Street Cromwell, CT 06416

Alice Kelly, Chairman
Planning and Zoning Commission
Town of Cromwell
41 West Street
Cromwell, CT 06416

Stuart Popper, Director Planning and Development Town of Cromwell 41 West Street Cromwell, CT 06416

Joseph Corlis, Chair
Inland Wetland and Watercourses Agency
Town of Cromwell
41 West Street
Cromwell, CT 06416

Scott Lamberson, Chairman Conservation Commission Town of Cromwell 41 West Street Cromwell, CT 06416

STATE LEGISLATORS:

The Honorable Christie Carpino Representative – 32nd District Legislative Office Building, Room 4200 Hartford, CT 06106

The Honorable Antonio Guerrera Representative – 29th District Legislative Office Building, Room 2301 Hartford, CT 06106

The Honorable Paul Doyle Senator – 9th District Legislative Office Building, Room 3900 Hartford, CT 06106

REGIONAL COUNCIL OF GOVERNMENTS:

Capital Region Council of Governments 241 Main Street, 4th Floor Hartford, CT 06106 Attn: Lyle Wray

Kenneth C. Baldwin, Esq. Robinson & Cole LLP

280 Trumbull Street Hartford, CT 06103

Telephone: (860) 275-8200

Attorneys for SolarCity Corporation

	@
S	Щ
7E	\approx
Z	8
2	SE
0	7
Ţ	
⋛	S
\supset	2
10	-
71	
1 16	

Name and Address of Sender	TOTAL NO.	TOTAL NO.	Affix Stamp Here			
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	sted by Sender per (name of receiving e.	S Received at Post Office	Postmart with Data of Boraint Peraint Post of Peraint Paraint	neopost W	GE \$003.049	03 03 03 03 03 03
USPS Tracking Number Firm-specific Identifier	Name, Street, City, S	Address (Name, Street, City, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
	The Honorable George Jepsen Attorney General Office of the Attorney General 55 Elm Street Hartford, CT 06106					
a	Rob Klee, Commissioner Department of Energy and Environmental Protection 79 Elm Street Hartford, CT 06106					2
	Raul Pino, M.D., M.P.H., Commissioner Department of Public Health (10 Capitol, Avenue 10 D. Box 340308. MS 13COM Hartford, CT 06134-0308					
	Karl J. Wagener, Executive Director Council on Environmental Quality 79 Em Street P.O. Box 5066 Harrford, CT 06106					
1.0	Steven K. Reviczky, Commissioner Department of Agriculture 165 Capital Avenue Hartford, CT 06106					
·	Arthur House, Chairman Public Utilities Regulatory Authority 10 Franklin Square New Britain, CT 06051					
0111 000 FL 0011 1001 1100 111 1000 1 1 000						

Name and Address of Sender

iss of Sender	TOTAL NO. of Pieces Listed by Sender	TOTAL NO. of Pieces Received at Post Office	Affly Stamn Here Pos.			
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	9	٩		neopost ²⁷ 03/23/2016 US POSTA	© \$003.04º	ō † (
	Postmaster, per (name of receiving employee)	employee)			ZIP 06103 041L12203380	03 3380
USPS Tracking Number Firm-specific Identifier	Add (Name, Street, City, S	ess The and ZIP Code TH	Postage	Fee	Special Handling	Parcel Airlift
	Benjamin Bames, Secretary Office of Policy and Management 4 50 Capitol Avenue Hartford, CT 06106		7			
>	Catherine Smith, Commissioner Department of Economic and Community Development 505 Hudson Street Hartford, CT 06106					
ia (ia	James P. Redeker, Commissioner Department of Transportation 2800 Berlin Tumpike Newington, CT 06111					
	Dora B. Schriro, Conmissioner Department of Emergency Services and Public Protection Emergency Management and Homeland Security Division HIII Country Clib Road Middletown, CT 06457	Division				
*	Jonathan A. Harris, Commissioner Department of Consumer Protection 115 Capitol Avenue Hartford, CT 06106					
	Melody A. Currey, Commissioner Department of Administrative Services 165 Capitol Avenue Hartford, CT 06106	vices				
SE 5777 3665 May 2016 BON 7520 17 000 5540						

	Name and Address of Sender
--	----------------------------

f Sender	TOTAL NO. TOTAL NO. of Pieces Listed by Sender of Pieces Received at Post Office	Affix Stamp Here	of Receipt.		
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	O OSIUS		neopost ^{#/} 03/23/2016 US POSTAG	neopost ^M 03/23/2016 US POSTAGE \$003_04.0	01
	Postmaster, per (name of receiving employee)	MAZI		ZIP 06103 041L12203380	80
USPS Tracking Number Firm-specific Identifier	Address (Name, Street, City, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airliff
	Scott D. Jackson, Commissioner Department of Labor -200 Folley Brook Boulevard Wethersfield, CT 06109				
g.	Guy Scaife, Town Manager Town of Rocky Hill 761 Old Main Street Rocky Hill, CT 06067				
	Claudia Baio, Mayor Town of Rocky Hill 7 fol Old Main Street Rocky Hill, CT 06067		-		>
	Philip Sylvestro, Chairman Planning and Zoning Commission Town of Rocky Hill 761 Old Main Street - Rocky Hill, CT 06067				
	Kim Ricci Zoning Enforcement Officer, Town Planner Town of Rocky Hill 761 Old Main Street Rocky Hill, CT 06067				
	Edward Charamut, Chairman Open Space & Conservation Inland Wetlands Commission Town of Rocky Hill 761 Old Main Street				*
DO Exem 2665 May 20015 BON 7500 47 000 5540					

PS Form **3665**, May 2015 PSN 7530-17-000-5549

UNITED STATES	POSTAL SERVICE®

South Address of Cooper	ON INTOTAL	TOTAL NO	Affiv Stamp Hara			
•;	of Pieces Listed by Sender	of Pieces Received at Post Office	Postmark with Date of Receipt.	f Receipt.		
Rebinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	9	STATE OF US		neopast ²⁴ 03/23/2016 US POSTA	neopast ²⁴ 03/23/2016 US POSTAGE \$003.04 ²	0.4
	Postmaster, per (name of receiving employee)		ALLI		ZIP 06108 041L12203830	108 13530
USPS Tracking Number Firm-specific Identifier	Ad (Name, Street, City,	Address Street, City, State, and ZIP Code "")	Postage	Fee	Special Handling	Parcel Airlift
	Anthony J. Salvatore, Town Manager Town of Cromwell 1 West Street Cromwell, CT 06416	150				
)4 4	Enzo Faienza, Mayor Town of Cromwell 41 West Street Cromwell, CT 06416					
	Alice Kelly, Chairman Planning and Zoning Commission Town of Conwell 14 Wes Street Cromwell, CT 06416				1	
E#	Stuari Poppur, Director Planning and Development Town of Cronwell +1 West Street Cronwell, CT 06+16				=	
	Joseph Cortis, Chair Infland Weltand and Watercourses Agency Town of Cromwell 14 West Street Cromwell, CT 06416					
5	Sout Lamberson, Cluiman Conservation Commission Town of Comwell 4 I West Streat Cromwell, CT 06416					
PS Form 3665 May 2015 PSN 7530-17-000-5549						

UNITED STATES	POSTAL SERVICE®
Å	1

Parcel Airlift US POSTAGE \$003.04º Special Handling 03/23/2016 neopost Fee Affix Stamp Here Postmark with Date of Receipt. Postage TOTAL NO. of Pieces Received at Post OfficeTM Address (Name, Street, City, State, and ZIP Code™) Postmaster, per (name of receiving employee) Capital Region Council of Governments 241 Main Street, 4th Floor Hartford, CT 06106 Attn: Lyle Wray The Honorable Paul Doyle Senator – 9th District Legislative Office Building, Room 3900 Hartford, CT 06106 The Honorable Christie Carpino Representative – 32nd District Legislative Office Building, Room 4200 Hartford, CT 06106 The Honorable Antonio Guerrera Representative – 29th District I.egislative Office Building, Room 2301 Hartford, CT 06106 TOTAL NO. of Pieces Listed by Sender Kenneth C. Baldwin, Esq. USPS® Tracking Number Firm-specific Identifier Robinson & Cole LLP 280 Trumbull Street 06103 Name and Address of Sender Hartford, CT

ATTACHMENT 8

Robinson + Cole

[SAMPLE ABUTTERS LETTER]

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts

March 23, 2016

Via Certificate of Mailing

«Name and Address»

Re: SolarCity Corporation – Petition for Declaratory Ruling for the Construction and Operation of a Solar Photovoltaic Electric Generating Facility Off Old Forge Road in Rocky Hill, Connecticut

Dear «Salutation»:

This firm represents SolarCity Corporation ("SolarCity"). Pursuant to the requirements of Connecticut General Statutes § 16-50 \underline{l} (b), and Section 16-50 \underline{j} -40 of the Regulations of Connecticut State Agencies, enclosed is a copy of the above-referenced Petition for Declaratory. SolarCity intends to construct and operate a 3.9 MW solar photovoltaic electric generating facility on a portion of a 61.38-acre parcel off Old Forge Road in Rocky Hill. The property is owned by the Town of Rocky Hill. The SolarCity Petition will be filed with the Connecticut Siting Council on March 24, 2016. You are receiving this notice because you are listed as an owner of property that abuts the parcel on which the proposed solar generating facility is proposed to be located.

If you have any questions regarding this Petition please contact me or the Siting Council directly at (860) 827-2935.

Sincerely,

Kenneth C. Baldwin

Kung gmu-

Attachment

14603658-v1

SOLARCITY CORPORATION

ABUTTERS' CERTIFICATE OF MAILING MAP 18/LOT 93

OLD FORGE ROAD ROCKY HILL, CONNECTICUT

I hereby certify that on this 23rd day of March, 2016, copies of the Petition and attachments were sent first class mail, postage prepaid and via Certificate of Mailing, to those abutting landowners listed below.

Kenneth C. Baldwin

ROCKY HILL

	Map/Lot	Property Address	Owner and Mailing Address
1,	18/86	299 Dividend Road	Harold O. Johndrow, Jr. 14 Chimney Crest Lane Bristol, CT 06010
2.	18/94	28 Belamose Avenue	NOCARP LLC P.O. Box 656 Rocky Hill, CT 06067
3	18/88	60 Belamose Avenue	Belamose Business Park c/o Semac Electrical Contractor P.O. Box 638 New Britain, CT 06050-0638
4.	* 18/89	R005 Belamose Avenue	Town of Rocky Hill 761 Old Main Street Rocky Hill, CT 06067 Attn: Town Manager
5,	18/90	R006 Belamose Avenue	Gardner Nurseries Inc. 460 Brook Street Rocky Hill, CT 06067

	Map/Lot	Property Address	Owner and Mailing Address
6.	18/91	R007Z Belamose Avenue	John Russo, Tr. 321 West Service Road Hartford, CT 06120
7.	18/92	R006 Pleasant Valley Road	John Russo, Tr. 321 West Service Road Hartford, CT 06120
8.	17/157	L002 Pleasant Valley Road	Town of Rocky Hill 761 Old Main Street Rocky Hill, CT 06067
9.	18/97	114 Old Forge Road	Trustees of The Sheet Metal Workers Local No. 40 Pension Fund 100 Old Forge Road Rocky Hill, CT 06067
10.	18/83	89 Old Forge Road	Chemedray LLC c/o Development Assocs. P.O. Box 528 Agawam, MA 01001-0528
11.	18/84	280 Dividend Road	McKesson Corporation c/o Ryan LLC 2800 Post Oak Boulevard, Suite 4200 Houston, TX 77056
12.	18/96	16 Old Forge Road	Sixteen Old Forge LLC c/o Paul Uccello 101 Hammermill Road, Suite D Rocky Hill, CT 06067
13.	14/398	L003Z Belamose Avenue (Railroad)	Gareth D. Bye, Director of Legal Affairs Office of the Secretary State of Connecticut Office of Policy and Management 450 Capitol Avenue Hartford, CT 06106

CROMWELL

	Map/Block/Lot	Property Address	Owner and Mailing Address
1.	60/51/77	674 Main Street	Connecticut Light & Power P.O. Box 270 Hartford, CT 06106 Attn: Sal Giuliano, Corporate Property Management
2,	53/63/17	Wall Street (Railroad)	Gareth D. Bye, Director of Legal Affairs Office of the Secretary State of Connecticut Office of Policy and Management 450 Capitol Avenue Hartford, CT 06106
3.	69/50/44B	Meadow Road	Cromwell Fire District – Water Division 1 West Street Cromwell, CT 06416

Legend

Town of Rocky Hill Property (+/-61.4 acres)

X=X= Proposed Fenced Facility (+/-19 acres)

Existing Treeline/Clearing Limit
Project Area - Limit of Proposed Work (+/-24 acres)

→ CTDEEP Watercourse

CTDEEP Waterbody

Abutting Property Map/Lot: 1976 Approximate Assessor Parcel Boundary (CTDEEP)

(___) Municipal Boundary

Abutters Map

Proposed Solar PV Facility Town of Rocky Hill Old Forge Road Rocky Hill, Connecticut

ITED STATES	STAL SERVICE®	
TIND I	POST	

04 <u>0</u> 6103 5203380	Parcel Airlift						
8/2016 8/2016 POSTAGE \$003.042 WILL 203380	Special Handling						
Receipt.	Fee						
Affix Stamp Here Postmark with Date of Receipt. STREET OSTOG STREET DS OSTOG OST	Postage						
of Pieces Received at Post Office	and ZIP Code™)						
isted by Sender	Address (Name, Street, City, State, and ZIP Code™)	Belamose Business Park c/o Semac Electrical Contractor P.O. Box 638 New Britain. CT 06050-0638	Chemedray LLC c/o Development Assocs. P.O. Box 528 Agawam. MA 01001-0528	Connecticut Light & Power P.O. Box 270 Harfford, CT 06106 Atm: Sal Giuliano, Corporate Property Management	Cromwell Fire District – Water Division 1 West Street Cromwell. CT 06416	Gardner Nurseries Inc. 460 Brook Street Rocky Hill, CT 06067	Garcul D. Bye, Director of Legal Affairs Office of the Secretary State of Connection Office of Policy and Management 150 Capitol Avenue Hartford, CT 06:106
Name and Address of Sender Kenneth G. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	USPS Tracking Number Firm-specific Identifier						

PS Form **3665**, May 2015 PSN 7530-17-000-5549

UNITED STATES	POSTAL SERVICE®	Name and Address of Sender
		Name ar

Affix Stamp Here Postmark with Date of Receipt. 03/23/2016 03/23/2016 US POSTAGE \$0003.04 06/09 20 20 20 20 20 20 20 20 20 20 20 20 20 2	Postage Fee Special Handling Parcel Airliff						
TOTAL NO. of Pieces Listed by Sender of Post Office of Postmaster, per (name of receiving 6mployee)	Address (Name, Street, City, State, and ZIP Code™)	Harold O. Johndrow, Jr. 14 Chimney Crest Lane Bristol, CT 06010	John Russo, Tr. 321 West Service Road Hartford, CT 06120	McKesson Corporation c/o Ryan LLC 2800 Post Oak Boulevard, Suite 4200 Houston, TX 77056	NOCARP LLC P.O. Box 656 Rocky Hill, CT 06067	Sixteen Old Forge LLC c/o Paul Uccello 101 Hammermill Road, Suite D Rocky Hill. CT 06067	Town of Rocky Hill 761 Old Main Street Rocky Hill, CT 06067 Attn: Town Manager
Name and Address of Sender Renneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	USPS Tracking Number Firm-specific Identifier						

PS Form **3665**, May 2015 PSN 7530-17-000-5549

NOSTAL SERVICE®

Certificate of Mailing — Firm (Domestic)

Parcel Airlift ZIP 06103 041L12203380 neopost²/ 08/23/2016 US POSTAGE \$003.04² Special Handling Fee Affix Stamp Here Postmark with Date of Receipt. SAN STREET Postage TOTAL NO. of Pieces Received at Post Office Address (Name, Street, City, State, and ZIP CodeTM) Postmaster, per (name of receiving employee) Trustees of The Sheet Metal Workers Local No. 40 Pension Fund 100 Old Forge Road Rocky Hill, CT 06067 TOTAL NO. of Pieces Listed by Sender Esq. **USPS Tracking Number** Firm-specific Identifier Kenneth C. Baldwin, Robinson & Cole LLP 280 Trumbull Street 06103 Name and Address of Sender Hartford, CT

ENVIRONMENTAL ASSESSMENT

SOLAR FACILITY INSTALLATION OLD FORGE ROAD ROCKY HILL, CONNECTICUT HARTFORD COUNTY

Prepared for: SolarCity Corporation

Prepared by:

All-Points Technology Corporation, P.C. 3 Saddlebrook Drive Killingworth, CT 06419

March 2016

Table of Contents

PROJECT INTRODUCTION	
EXISTING CONDITIONS	3
Project Location	3
SITE ACCESS	3
WETLANDS AND WATERCOURSES	3
VERNAL POOLS	5
VEGETATION AND WILDLIFE	6
RARE SPECIES	g
BIG SAND TIGER BEETLE HABITAT ASSESSMENT	
Breeding Bird Inventory	11
Water Quality	14
SCENIC AREAS	15
HISTORIC AND ARCHAEOLOGICAL RESOURCES	15
GEOLOGY AND SOILS	16
FLOODPLAIN AREAS	16
RECREATIONAL AREAS	16
Noise	17
LIGHTING	17
OTHER SURROUNDING FEATURES	17
FFECTS ON THE ENVIRONMENT	20
PROPOSED PROJECT DEVELOPMENT	20
Public Health and Safety	22
LOCAL, STATE AND FEDERAL LAND USE PLANS	22
EXISTING AND FUTURE DEVELOPMENT	23
ROADS	23
WETLANDS	23
VEGETATION AND WILDLIFE	25
BIRD HABITAT IMPACT ANALYSIS	26
RARE SPECIES	28
WATER QUALITY	29
Air Quality	30
SCENIC AREAS	30
HISTORIC AND ARCHAEOLOGICAL RESOURCES	30
GEOLOGY AND SOILS	31
FLOODPLAIN AREAS	31
RECREATIONAL AREAS	31
Noise	31
LIGHTING	32
OTHER SURROUNDING FEATURES	32
VISIBILITY	32
ONCLUSION	34

Figures

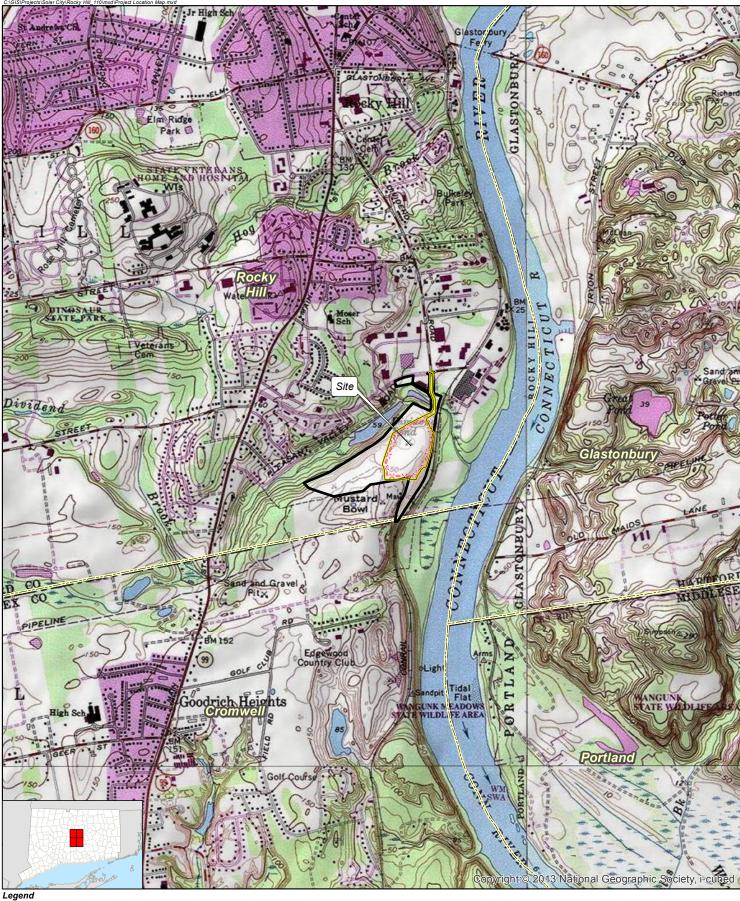
Figure No.		
FIGURE 1 PROJEC	T LOCATION MAP	2
FIGURE 2 EXISTIN	G CONDITIONS MAP	4
		7
		19
FIGURE 5 PROPOS	SED CONDITIONS MAP	21
FIGURE 6 FACILIT	Y SETTING MAP	33
	Tables	
Table No.	Title	
TABLE 1: NON-R	ESTDENTIAL FEATURES WITHIN TWO MILES O	ne the Site 18

Appendices

APPENDIX A INLAND WETLAND & WATERCOURSE REPORT AND PHOTO-DOCUMENTATION APPENDIX B CTDEEP NDDB MAPPING APPENDIX C BREEDING BIRD INVENTORY TABLE APPENDIX D STATE HISTORIC PRESERVATION OFFICE SUBMISSION APPENDIX E CONSTRUCTION SCHEDULE APPENDIX F CONSTRUCTION WORK HOURS/DAYS LETTER APPENDIX G BIG SAND TIGER BEETLE PROTECTION PLAN APPENDIX H AQUIFER PROTECTION PLAN APPENDIX I NOISE EVALUATION REPORT

Project Introduction

All-Points Technology Corporation, P.C. ("APT") prepared this Environmental Assessment ("EA") on behalf of SolarCity Corporation ("SolarCity") for the proposed installation of an approximately 3.9 megawatt ("MW") solar-based electric generating facility the ("Project") in the Town of Rocky Hill, Connecticut (the "Town").


This EA has been completed to support SolarCity's submission of a petition for declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for the construction, maintenance, and operation of the Project.

The Project would be located south of Old Forge Road in Rocky Hill, Connecticut ("Site"). The municipally-owned Site consists of approximately 61.38 undeveloped acres, a portion of which is used by the Town for materials storage.

The Site is situated generally south of the intersection of Old Forge Road and Dividend Road, southeast of Town-owned open space (the "Dividend Pond Open Space Property"), west of an active rail line and the Connecticut River, and north of the municipal border with Cromwell. The immediate Site vicinity is characterized as a mix of residential and commercial development to the north and west, and undeveloped land to the east and south.

Upon its completion, the proposed solar array ("facility") would occupy approximately 19 acres of the Site. The facility would be comprised of approximately 9,460 – 275 watt and 4,488 – 290 watt Trina Solar TSM-PD14 modules, three (3) Advanced Energy AE 500TX 500 kW inverters, and three (3) transformers. The facility would use a post-driven RBI Solar Inc. racking system. To facilitate development of the facility, a total of approximately 24 acres require some level of disturbance ("Project Area").

Figure 1, Project Location Map, depicts the location of the Site and surrounding area.

Site Boundary

Project Area - Limit of Proposed Work (+/-24 acres) Proposed Fenced Facility (+/-19 acres)

Municipal Boundary

Map Notes:
Base Map Source: USGS 7.5 Minute Topographic Quadrangle Maps,
Glastonbury (1992), Harford South (1992), Middle Haddam (1984),
and Middletown (1992), CT
Site located on the Hartford South Quadrangle
Map Scale: 1:24,000
Map Date: February 2016

Figure 1 **Project Location Map**

Proposed Solar PV Facility Town of Rocky Hill Old Forge Road Rocky Hill, Connecticut

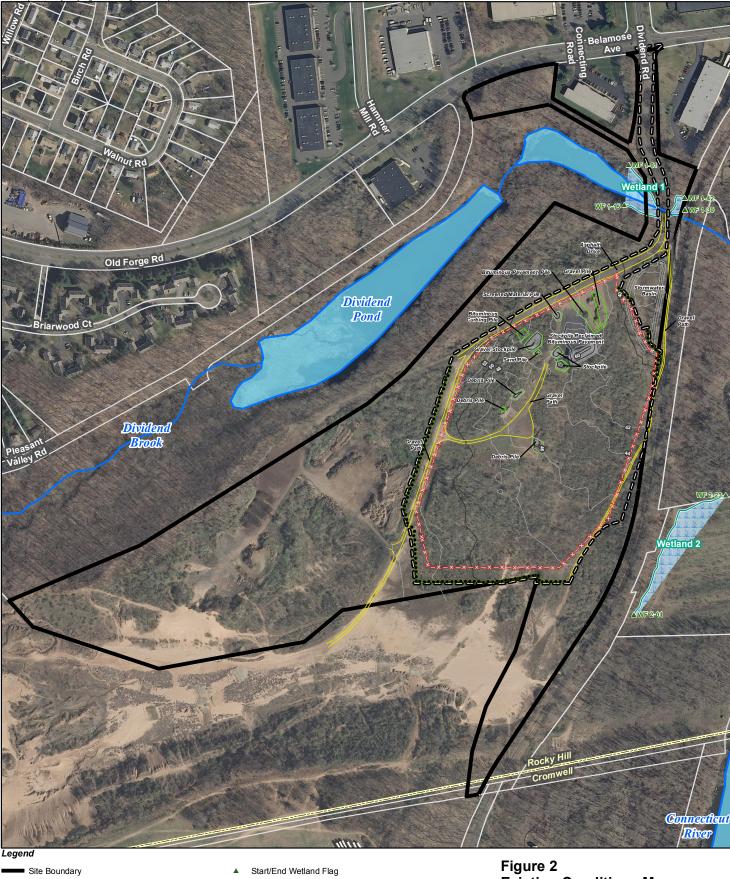
Existing Conditions

The purpose of this section is to describe current conditions of the Site. A detailed discussion of the proposed Project's effects on the environment is provided in following sections of this document.

Project Location

The Site consists of a single, Town-owned parcel located south of Old Forge Road, encompassing a total of approximately 61.38 acres. The Site is undeveloped and portions are heavily disturbed by historic clearing and excavation activities. Several areas are currently used by the Town's Department of Public Works ("DPW") for materials storage, including asphalt millings, street sweepings, sand, top soil, leaves, brush and mulch.

The Project Area consists of approximately 24-acres of undeveloped, lightly wooded land, a portion of which is currently used by the Town for materials storage. Upon completion, the facility will occupy approximately 19 acres.


Site Access

Access to the Site is over an existing, gated drive originating at the intersection of Old Forge Road and Dividend Road in its northern portion. The existing access drive extends south into the Site where it connects to a system of interior dirt roads.

Figure 2, *Existing Conditions Map*, depicts current conditions on the Site, its access, abutting properties, and several features discussed herein.

Wetlands and Watercourses

Matthew Gustafson, a Connecticut registered Soil Scientist with APT, conducted an inspection of the Site on September 3, 2015 to determine the presence and extent of wetland resources proximate to the proposed Project Area. Two (2) wetland areas were delineated on the Site. A copy of the APT *Inland Wetland & Watercourse Report* prepared by Mr. Gustafson and *Photo-Documentation* of existing resources at the Site are included as Appendix A. The wetland resources are summarized below and depicted on Figure 2.

Existing Access Drive

Existing Materials Pile

10' Contour Line

2' Contour Line

X=X= Proposed Fenced Facility (+/-19 acres)

**** Existing Treeline/Clearing Limit

Project Area - Limit of Proposed Work (+/-24 acres)

Map Notes:
Base Map Source: 2012 Aerial Photograph (CTECO)
Map Scale: 1 inch = 400 feet
Map Date: February 2016

Delineated Wetland Boundary

Wetland Area

CTDEEP Watercourse CTDEEP Waterbody

Approximate Assessor Parcel Boundary (CTDEEP)

Municipal Boundary

Existing Conditions Map

Proposed Solar PV Facility Town of Rocky Hill Old Forge Road Rocky Hill, Connecticut

Wetland 1 consists of an open water resource ("Dividend Pond") located on the adjacent Dividend Pond Open Space Property and a perennial watercourse ("Dividend Brook"). This brook outlets from Dividend Pond, flowing eastward beneath the existing gravel access road through a large reinforced concrete pipe culvert, and, under an existing railroad line off the Site. It eventually enters the Connecticut River approximately 800 feet west of the Project Area. The margins of Wetland 1 are entirely forested with sparse scrub/shrub and emergent vegetation present. Banks to the resource are steeply sloping with little to no bordering vegetated wetland areas.

Wetland 2 consists of the semi-active floodplain associated with several backwater wetland areas that border the Connecticut River. The western edge of the delineated resource consists of steeply sloping embankments. The northern edge is more moderately sloped with a broader transition zone from wetlands to uplands. The primary vegetation/ habitat class associated with Wetland 2 is open field with edge forested areas and transitional scrub/shrub ecotones separating the two. Observed soil profiles reveal these areas flood irregularly and are consistent with moderately well drained and well drained floodplain soils.

Vernal Pools

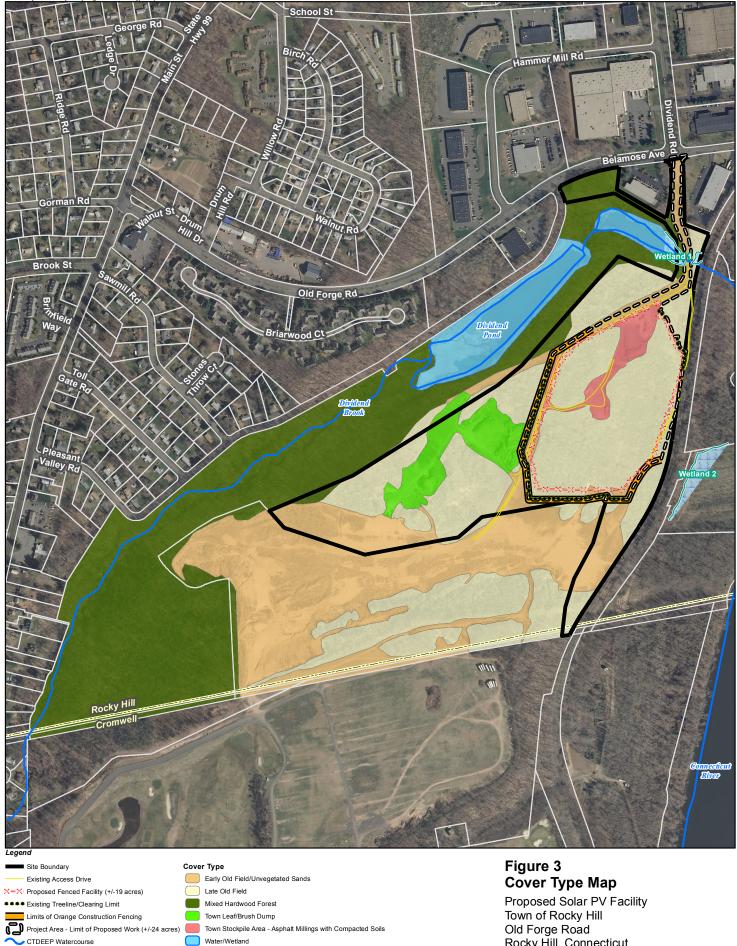
Calhoun and Klemens (2002) provides the following operational definition of vernal pools:

Vernal pools are seasonal bodies of water that attain maximum depths in the spring or fall, and lack permanent surface water connections with other wetlands or water bodies. Pools fill with snowmelt or runoff in the spring, although some may be fed primarily by groundwater sources. The duration of surface flooding, known as hydroperiod, varies depending upon the pool and the year; vernal pool hydroperiods range along a continuum from less than 30 days to more than one year. Pools are generally small in size (<2 acres), with the extent of vegetation varying widely. They lack established fish populations, usually as a result of periodic drying, and support communities dominated by animals adapted to living in temporary, fishless pools. In the region, they provide essential breeding habitat for one or more wildlife species including Ambystomid salamanders (Ambystoma spp., called "mole salamanders" because they live in burrows), wood frogs (Rana sylvatica), and fairy shrimp (Eubranchipus spp.).

Vernal pool physical characteristics can vary widely while still providing habitat for indicator species. "Classic" vernal pools are natural depressions in a wooded upland with no hydrologic connection to other wetland systems. Often, vernal pools are depressions or impoundments

within larger wetland systems. These vernal pool habitats are commonly referred to as "cryptic" vernal pools.

A vernal pool habitat survey was performed in parallel with other wetland and biological surveys. Areas within 750 feet of the Site were inspected for the potential of supporting vernal pool breeding habitat. No areas potentially supporting vernal pool habitat are located within 750 feet of the Site. No vernal pool habitat was identified in either of the wetland areas (Wetlands 1 and 2) at the Site.


Vegetation and Wildlife

The Project Area is located primarily within an area of Late Old Field habitat with limited areas currently used by Town of Rocky Hill DPW as "Town Stockpile Areas". The entirety of the Site was historically a sand/gravel quarry resulting in the mosaic of habitats. Additional habitat types are located in the vicinity of the Project Area including Early Old Field/Unvegetated Sands, Mixed Hardwood Forest, Town Leaf/Brush Dump, and Open Water/Wetland Areas. These vegetative communities are depicted on Figure 3, *Cover Type Map* and described below.

Mixed Hardwood Forest: This habitat type comprises the relatively small northern edges of the Site that extends off-Site to the north and west. These forested areas are dominated by complexes of sugar maple (*Acer saccharum*), red oak (*Quercus rubra*), and white ash (*Fraxinus americana*). The forest is characterized as even aged with a mix of open and closed canopy areas. Edge/open canopy forested areas consist of greater understory growth dominated by autumn olive (*Elaeagnus umbellata*), mugwort (*Artemisia vulgaris*), and various other invasive plant species. Richer forested areas are characterized by a more closed canopy with an understory dominated by spicebush (*Lindera benzoin*).

Since this small forest block has been fragmented (mostly consisting of 'edge' forest with limited 'core' forest habitat present located to the far west), habitat favored by larger wildlife species is not ideal. Generalist wildlife species that are tolerant of human disturbance would be expected such as raccoon (*Procyon lotor*), striped skunk (*Mephitis mephitis*), grey squirrel (*Sciurus carolinensis*), Virginia opossum (*Didelphus virginiana*), and eastern chipmunk (*Tamias striatus*).

¹ Consistent with the extent of the *Critical Terrestrial Habitat* (750 feet) conservation zone surrounding vernal pools as established by Calhoun and Klemens.

Delineated Wetland Boundary Wetland Area Approximate Assessor Parcel Boundary (CTDEEP) Map Notes: Base Map Source: 2012 Aerial Photograph (CTECO) Map Scale:1 inch = 625 feet Map Date: February 2016

Municipal Boundary

Rocky Hill, Connecticut

Larger species such as coyote (*Canis latrans*), grey fox (*Urocyon cinereoargunteus*), white tailed deer (*Odocoileus virginianus*) and fisher (*Martes pennant*) also potentially take advantage of this habitat.

Early Old Field/Unvegetated Sands: This habitat type comprises the second largest area within the Site but is primarily located beyond the limits of the Project Area. The Early Old Field/Unvegetated Sands habitat type consists of large expanses of open sand escarpments in complex with herbaceous and scrub/shrub 'islands' or sparse intermixed vegetation. Any vegetation present in this habitat block is stunted as a result of the sandy substrate and infertile soils. Limited vegetation consists of mugwort, autumn olive, trembling aspen (seedling/sapling), solidago (goldenrods), and various other grasses/sedges/forbs. This habitat type is considered a rare habitat type in Connecticut. Discussion of the wildlife habitat value of this habitat type is discussed further in the Big Sand Tiger Beetle Habitat Assessment and Habitat Types and Their Importance to Birds sections.

Late Old Field Habitat: This represents the largest habitat type on the Site and within the Project Area. Late Old Field habitat is segmented by other habitat types as a result of current uses of the Site. This habitat type consists of a complex of early successional trees with a dense understory dominated by patches of both scrub/shrub and herbaceous growth. The tree stratum is dominated by trembling aspen (Populus trembloides) with individual black willow (Salix nigra) trees present. The scrub/shrub stratum is dominated by autumn olive, Bebb willow (Salix bebbiana), staghorn sumac (Rhus typhina). The herbaceous stratum is dominated by mugwort, rough horsetail (Equisetum hyemale), and solidago species. The dominance of the three strata varies across this habitat type resulting in complex vertical structure. This complex vertical structure, in combination with the early successional habitat type (an uncommon habitat type in Connecticut) is favored by many wildlife species. However, the dominance of invasive species somewhat diminishes the habitat value of these areas. Discussion of the wildlife value of this habitat type is discussed further in the Habitat Types and Their Importance to Birds section.

Open Water/Wetland: This habitat type comprises a small percentage of the Site and is associated with both the Connecticut River floodplain located to the east and Dividend Pond/Dividend Brook located to the north/northwest. Edges of Dividend Pond/Dividend Brook are primarily forested with little to no bordering vegetated wetland areas. This wetland

resource drains west to east eventually out-letting into the Connecticut River. An existing access road crossing provides entrance to the Project Area off Dividend Road. The Connecticut River floodplain area delineated as Wetland 2 is isolated from the Project Area by a railroad line that runs north to south bordering the eastern edge of the Project Area. Dominant vegetation is consistent with the information provided in the *Inland Wetland & Watercourse Report* (Appendix A).

Town Stockpile Areas: This habitat type is isolated to northern and central areas of the Project Area. The stockpile areas consist of material storage piles of asphalt millings underlain by compacted soils. Additional areas of this habitat type consist of a paved access drive that serves the DPW. These areas are largely devoid of vegetation making them generally unsuitable for wildlife use.

Town Leaf/Brush Dump: This habitat type comprises areas to the west of the Project Area and consists of large leaf and brush storage piles. This habitat type is largely devoid of mature vegetation and, due to the storage of brush and leaves, has limited value to wildlife (mostly small mammals and birds) for cover and foraging.

Rare Species

The Connecticut Department of Energy and Environmental Protection ("CTDEEP") Natural Diversity Data Base ("NDDB") program performs hundreds of environmental reviews each year to determine the impact of proposed development projects on state listed species and to help landowners conserve the state's biodiversity. State agencies are required to ensure that any activity authorized, funded or performed by a state agency does not threaten the continued existence of endangered or threatened species. Maps have been developed to serve as a prescreening tool to help applicants determine if there is a potential impact to state listed species.

The NDDB maps represent approximate locations of endangered, threatened and special concern species and significant natural communities in Connecticut. The locations of species and natural communities depicted on the maps are based on data collected over the years by CTDEEP staff, scientists, conservation groups, and landowners. In some cases an occurrence represents a location derived from literature, museum records and/or specimens. These data are compiled and maintained in the NDDB. The general locations of species and communities are symbolized as shaded (or cross-hatched) areas on the maps. Exact locations have been

masked to protect sensitive species from collection and disturbance and to protect landowner's rights whenever species occur on private property.

APT reviewed the most recent CTDEEP NDDB mapping (August 2015) to determine if any such species or habitats occur within the vicinity of the Site. Based on the NDDB mapping, the southwestern portion of the Site is located within a shaded area. In addition, additional shaded areas are depicted immediately east of the Site. See Appendix B, *CTDEEP NDDB Mapping*. On September 5, 2015, APT submitted a review request to the CTDEEP NDDB with respect to this Project to determine what, if any, Threatened, Endangered, or Special Concern species or critical habitats exist at the Site. The CTDEEP responded via email on October 13, 2015 that State Special Concern Species *Cicindela formosa generosa* (Big Sand Tiger Beetle) is known to occur in the general area of the Site.²

The Big Sand Tiger Beetle ("tiger beetle") is a dry-habitat species that is found on yellow-to-white shifting sand with sparse vegetation. The species is found in short grass and weeds near the edges of sand dunes; in old, seldom-used road cuts, sand pits and seashores; and in pine barrens (Leonard and Bell, 1999). The species has a two-year life cycle and is active from spring through fall. They can be found from late April through July, rarely in August, and again in late August through September (Leonard and Bell, 1999).

While published information varies, it is generally accepted that adults die in early fall while larvae become inactive and overwinter in their burrows. Larval burrows are found in sand substrates that are loose, deep and well drained. *C. Formosa* larvae dig a small pit at the mouth of the burrow that serves as a pitfall for prey. The larval tunnel runs horizontally from the pit and then extends downward deep into the substrate. Sand about the pit and tunnel entrance is cemented by the larvae, which helps prevent the pit from collapsing.

Big Sand Tiger Beetle Habitat Assessment

Due to the timing of the Project initiation and resultant CTDEEP correspondence, it was not possible to directly survey the Site for the physical presence of the tiger beetle. Therefore, a habitat-based survey was conducted using the known habitat requirements as summarized by

_

² CTDFFP NDDB #201505939

Leonard and Bell (1999). Assessments of the Site and immediately surrounding environs were conducted to identify areas that contained loose and shifting sparsely vegetated sandy soils.

The Site is part of a larger contiguous habitat matrix that includes three separate parcels: (1) the Site; (2) the Dividend Pond Open Space Property to the northwest; and, (3) a privately owned parcel to the south. Collectively, these three (3) parcels were formerly used as a sand and gravel borrow pit. The habitat which developed after abandonment of the mining operations includes environments that are optimal for tiger beetle. However, the habitats within the Project Area represent unsuitable or, at best, highly marginal habitat for tiger beetle.

The lack of optimal tiger beetle habitat within the Project Area is a result of both the current Town activities as well as natural vegetative succession. The Project Area includes land presently used by the Rocky Hill DPW to store asphalt millings as well as sand and topsoil. This area is actively used and includes a stockpile area with access drives entering from the north and west. The stockpile area and access drives have been graded, compacted and coated with asphalt millings. These areas encompass approximately two (2) acres of the total Project Area and do not constitute suitable habitat for tiger beetle due to the soil surface conditions. The remainder of the Project Area consists of Late Old Field habitat which is beginning to transition to immature woodland. The woody stem density is high throughout most of the Project Area, consisting predominately of mature autumn olive shrubs. Where woody vegetation is absent, a dense cover of common mugwort blankets the ground. As a result, the Project Area contains no appreciable unvegetated or sparsely vegetated loose sands.

Conversely, areas within the adjoining parcel to the south contain optimal tiger beetle habitat in the form of large expanses of loose, shifting unvegetated sands. Succession in these areas has been stunted to a large degree by four-wheel drive activity.

Breeding Bird Inventory

Eric Davison of Davison Environmental, LLC conducted a breeding bird assessment of the Site on behalf of APT, Inc. This assessment focuses on species considered to be of high

conservation priority in Connecticut as designated in the 2015 Connecticut Wildlife Action Plan³ ("WAP"). The WAP was created to establish a framework for proactively conserving Connecticut's fish and wildlife, including their habitats. The WAP identifies Species of Greatest Conservation Need ("GCN species") that fall into three categories in descending order of significance from "most important" to "very important" and finally "important".

GCN species are those species that are considered of high conservation priority based on the consideration of such factors as: population trends and overall abundance; conservation threats associated with the species or its habitat; negative trends associated with the species' primary habitat; and the State's responsibility in the species overall conservation (i.e., the relative importance of Connecticut to the conservation of the species compared to other states in the species' range).

A total of 335 birds are found in Connecticut, over 170 of which nest in the State. There are a total of 95 GCN bird species in Connecticut, with 22 listed in the "most important" category, 38 are "very important" and 35 are "important".

The *Breeding Bird Inventory Table* provided in Appendix C includes a list of birds that potentially breed on the Site based on the presence of suitable habitat. This list was generated from a database that was developed by reviewing information on the habitat utilization of Connecticut's breeding birds. The primary resource for habitat utilization data was Bevier (Ed., 1994), with A. Poole (1995) and DeGraaf and Yamasaki (2001) utilized as secondary resources. The initial inventory, generated solely based on the presence of suitable habitat, was refined by considering such factors as bio-geographical distribution, the presence or absence of critical habitat features and minimum patch size requirements. The inventory is subdivided by habitat type. A species is listed under the habitat(s) which occupy the species typical home range. However, given that habitats are generally connected by transitional ecotones, a species should be considered to be potentially present within the ecotones associated with their primary habitat(s).

³ The Wildlife Action Plan, formerly Connecticut's Comprehensive Wildlife Conservation Strategy (2005) is currently in draft form on the CT DEEP website at: http://www.ct.gov/deep/cwp/view.asp?a=2723&g=329520&deepNav_GID=1719#Review

Note that the inventory includes birds observed during habitat assessment work conducted on October 27, 2015. All birds seen or heard were noted as observed in the inventory table. Due to timing of field investigations, species observed were restricted to a small number of migratory and winter resident species.

Habitat Types and Their Importance to Birds

The Project Area is part of a larger contiguous habitat matrix that includes the Dividend Pond Open Space Property and the fallow quarry property to the south. When considering this contiguous habit as a whole, a significant and high value early-successional habitat unit is present for shrubland birds.

A single habitat type - Late Old Field - dominates the 24-acre Project Area. Approximately three (3) of these acres is occupied by the active Town Stockpile Areas and approximately three (3) acres by Early/Old Field/Unvegetated Sands (existing roadways). These areas do not represent breeding or feeding habitat for birds of any kind. Therefore, the functional Old Field habitat present within the Project Area totals approximately 18 acres.

When evaluating the Project Area alone, several factors limit its value for birds. The late successional stage of the habitat has resulted in the development of a dense monoculture of autumn olive. As a result, both plant species diversity and vegetative structural diversity of this habitat is low and therefore less likely to support a wide array of Old Field habitat specialists. As succession continues to progress, the Project Area will no longer be as suitable for those shrubland birds that may now use this habitat. Despite the Project Area's degraded state and late successional stage, it is still capable of supporting several habitat specialists such as the field sparrow (*Spizella pusilla*) or blue-winged warbler (*Vermivora pinus*).

Due to the habitat homogeneity of the Project Area, the list of birds potentially breeding on the Site is small and restricted to species that utilize late old field habitat. A total of 20 birds are identified in the *Breeding Bird Inventory Table (Appendix C)*. This includes 10 GCN species (50%): three (3) "important" species; five (5) "very important" species; and, two (2) "most important" species. These species are all shrubland or non-forested habitat specialists classified as GCN species due to long-term regional population declines associated with habitat loss.

The inventory includes one state-listed species as potentially utilizing the Project Area; the brown thrasher⁴. Brown thrasher inhabit thickets, brushy hillsides and woodland edges in suburban and rural areas (Bevier, 1994). Maturation of forest and other factors causing loss of early successional habitat are driving the decline in this species. The Old Field represents suitable breeding habitat for thrasher.

Due to the timing of our field investigations during the fall migration, several species were observed feeding within the Project Area that are not expected to breed⁵; these include the white-throated sparrow (*Zonotrichia albicollis*), tufted titmouse (*Baeolophus bicolor*), black capped chickadee (*Poecile atricapillus*) and a flock of house finch (*Carpodacus mexicanus*) observed diligently feeding on autumn olive berries.

Water Quality

Groundwater underlying the Site is classified by the CTDEEP as "GA". This classification indicates groundwater within the area is presumed to be suitable for human consumption without treatment. Designated uses in GA-classified areas include existing private and potential public or private supplies of drinking water and base flow for hydraulically-connected surface water bodies.

The majority of the Site and Project Area are located in the Gardiner Expansion Aquifer Protection Area No. 67. This level A Final Aquifer Protection Area ("APA") is anticipated to be reclassified as GAA groundwater areas during future CTDEEP reclassifications. Level A APAs represent land area that is contributing ground water to active public water supply wells or well fields that serve more than 1,000 people and are set in sand and gravel aquifers. No water supply wells are located on the Site. It appears that four (4) water supply wells are located southwest of the Site on nearby property in Cromwell, over 1,000 feet from the southern extent of the Project Area.

⁴ Brown thrasher was not included in the CTDEEP's correspondence regarding listed species potentially at the Site.

⁵ These species generally prefer other habitat types for nesting and breeding and were likely using the Site as a stopover during migration.

Based upon CTDEEP mapping, the Site is located in Major Drainage Basin 4 (Connecticut River), Subregional Drainage Basin 4000 (Connecticut River), Local Drainage Basin 4000-31 (Dividend Pond).

The nearest surface water body is Dividend Pond, located adjacent to the western and northern boundaries of the Site. Dividend Pond is classified by the CTDEEP as a Class A surface water body. Designated uses for Class A surface water bodies include habitat for fish and other aquatic life and wildlife; potential drinking water supplies; recreation; and water supply for industry and agriculture.

Scenic Areas

No State or locally-designated scenic roads or other scenic areas are located proximate to the Site.

Historic and Archaeological Resources

APT reviewed relevant historic and archaeological information to determine whether the Site holds potential cultural resource significance. No historical resources on or eligible for listing on the National register of Historic Places exist at or in close proximity to the Site. The nearest historic resource is located one mile away (see Table 1, *Non-Residential Features within Two Miles of the Site*).

There are reported archaeological sites⁶ in the general area, all related to activities associated with the area's contributions to the industrial revolution in the 17th and 18th centuries. Collectively, these comprise the Dividend Brook Industrial Archaeological District, which encompasses the Dividend Pond Open Space Property. Some areas may extend onto the western side of the Site⁷; however, the Site has been historically mined for sand and gravel and it is unlikely that intact native soils are present today.

APT submitted Project and Site historic/cultural information to the State Historic Preservation Office ("SHPO") for agency review and comment. Based on this information, it is evident that

⁶ Archaeological Preserves are State Register districts developed from archaeological data.

⁷ These "reported sites" consist of locations that have been buffered so as not reveal the specific locations of potentially sensitive artifacts/human remains.

the Project Area has been thoroughly disturbed and no longer possesses the potential to yield intact archaeological deposits.

A copy of the *SHPO Submission* is included in Appendix D. The SHPO has not responded at the time of this report.

Geology and Soils

Soils encompassing the Site and surrounding area are comprised of deposits of sand and gravel overlying sand, sand and gravel overlying sand overlying fines, and sand overlying fines. Soils located on the Site are identified as Penwood-Manchester-Hartford soils. Bedrock geology beneath the Site is identified as Hampden Basalt and Portland Arkose. Hampden Basalt is described as a greenish gray to black (weathers bright orange to brown), fine to medium grained, grading from basalt near contacts to fine grained gabbro in the interior, composed of pyroxene and plagioclase with accessory opaques and locally olivine or devitrified glass. Portland Arkose is described as a reddish brown to maroon micaceous arkose and siltstone and red to black fissile silty shale.

Floodplain Areas

APT reviewed the United States Federal Emergency Management Agency ("FEMA") Flood Insurance Rate Map ("FIRM") for the Site. A FIRM is the official map of a community on which FEMA has delineated both the special hazard areas and risk premium zones applicable to the community. The area of the Site is mapped on FIRM PANEL #09003 C0519 F, dated September 26, 2008. Based upon the reviewed FIRM Map, the proposed Project Area is designated as Zone X, which is defined as an area of minimal flooding.

Recreational Areas

The nearest recreational area to the Site is the Town's adjacent Dividend Pond Open Space parcel. Additional recreation areas are located in the Town but not proximate to the Site (see Table 1, *Non-Residential Features within Two Miles of the Site*).

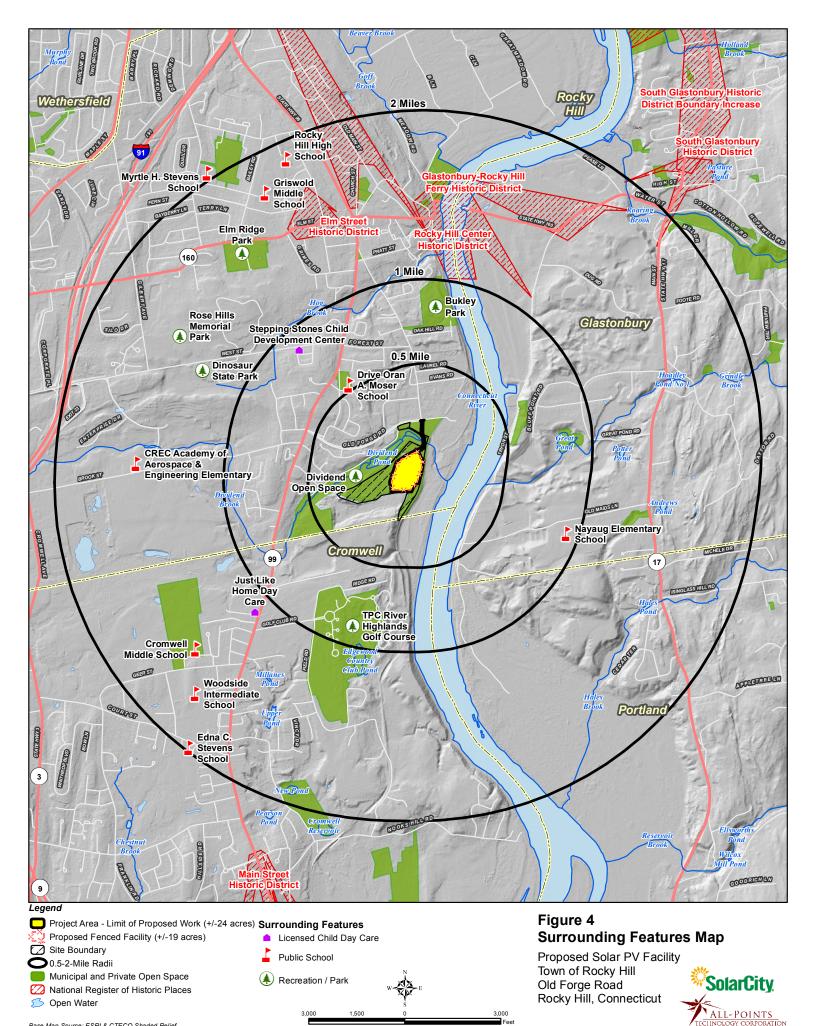
Noise

A Noise Evaluation Study was prepared for the Project by HMB Acoustics LLC of Avon, Connecticut⁸. Based on sound measurements obtained at the Site and adjacent locations, the average levels range from 25 to 30 dBA⁹.

Lighting

No lighting exists at the Site today.

Other Surrounding Features


The locations of non-residential development and other resources within two miles of the Site are listed in Table 1 and depicted on Figure 4, *Surrounding Features Map*.

⁸ The HMB report is provided in Appendix I. See also the Noise discussion in Effects on Environment section of this document.

⁹ Sound measurements obtained on July 11, 2015 by HMB Acoustics LLC, of Avon, Connecticut.

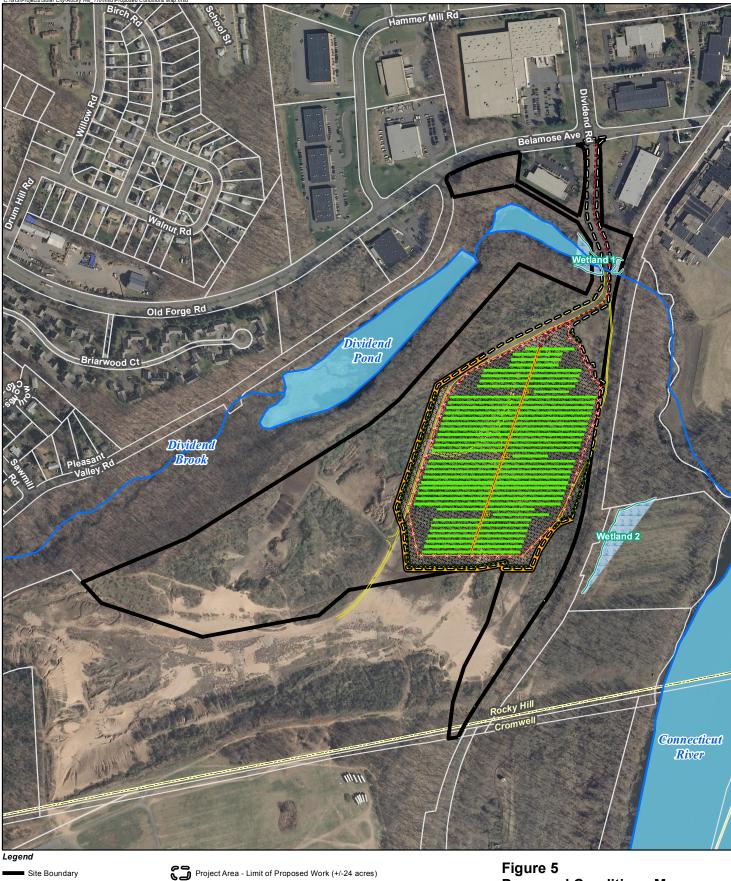
Table 1: Non-Residential Features within Two Miles of the Site

Туре	Name Address		Town	Distance to Site	
	Bulkley Park	Oak Hill Road-Michelle Drive	Rocky Hill	0.84 N	
	Dinosaur State Park	400 West Street	Rocky Hill	1.28 NW	
Recreational/Parks	Dividend Pond Open Space	Pleasant Valley Road	Rocky Hill	0.24 W	
	Elm Ridge Park	376 Elm Street	Rocky Hill	1.54 NW	
	Rose Hills Memorial Park	580 Elm Street	Rocky Hill	1.49 NW	
	TPC River Highlands Golf Course	One Golf Club Road	Cromwell	0.90 S	
Youth Camps	None	within 2 miles of the Site			
Hospitals	None	within 2 miles of the Site			
•	Just Like Home Day Care	659 Main Street	Cromwell	1.14 SW	
Child Day Cares	Stepping Stones Child Development Center	196 West Street	Rocky Hill	0.88 NW	
Community Center	None within 2 miles of the Site				
Senior Facilities	None within 2 miles of the Site				
	CREC Academy of Aerospace & Engineering Elementary	525 Brook Street	Rocky Hill	1.53 W	
	Cromwell Middle School	6 Mann Memorial Drive	Cromwell	1.54 SW	
	Drive Oran A. Moser School	10 School Street	Rocky Hill	0.53 NW	
	Edna C. Stevens School 25 Court Street		Cromwell	2.0 SW	
Schools	Griswold Middle School 144 Bailey Road		Rocky Hill	1.76 NW	
	Myrtle H. Stevens School	322 Orchard Street	Rocky Hill	2.04 NW	
	Nayaug Elementary School	222 Old Maids Lane	Glastonbury	0.92 SE	
	Rocky Hill High School	50 Chapin Avenue	Rocky Hill	1.90 NW	
	West Hill School	95 Cronin Drive	Rocky Hill	2.77 NW	
	Woodside Intermediate School	30 Woodside Road	Cromwell	1.73 SW	
National Register	Elm Street Historic District			1.37 NW	
	Glastonbury-Rocky Hill Ferry Historic District			1.0 N	
of Historic Places	Rocky Hill Center Historic District		Rocky Hill	1.30 N	
	South Glastonbury Historic District		Glastonbury	1.82 NE	

Base Map Source: ESRI & CTECO Shaded Relief Map Date: February 2016

Effects on the Environment

The purpose of this section is to analyze and discuss the Project's potential effects on the environment and demonstrate that the proposed development will have no significant adverse effect on the surrounding environment.


Proposed Project Development

The Project will include an approximate 24-acre development on the Site. The solar array will be developed in the northern portion of the Site, which is primarily a mix of cleared land and early old field habitat, consisting of early successional trees¹⁰ with a dense understory of scrub/shrub and herbaceous growth. New soil disturbances will be minimized to facilitate the installation of the solar arrays and associated equipment. The Project Area includes relatively level grades such that the development can be generally accomplished without significant cuts and/or fills.

The Project Area consists of previously disturbed land. A total of ±18 acres of early successional trees and associated dense understory will be cleared to accommodate the Project. The facility would be comprised of approximately 9,460 – 275 watt and 4,488 – 290 watt Trina Solar TSM-PD14 modules, three (3) Advanced Energy AE 500TX 500 kW inverters, and three (3) transformers. The facility would use a post-driven RBI Solar Inc. tracking system. Electrical connections would extend primarily overhead out to Old Forge Road. Once construction is complete, approximately 21 acres will be seeded for the establishment of permanent cover (turf).

Figure 5, *Proposed Conditions Map*, depicts the proposed Project layout.

 $^{^{10}}$ No trees within the Project Area have a diameter at breast height exceeding six (6) inches.

Existing Access Drive

X=X= Proposed Fenced Facility (+/-19 acres)

Proposed Overhead Wire

Proposed Underground Trench

Existing Treeline/Clearing Limit

Proposed Solar Module Proposed Electrical

Map Notes: Base Map Source: 2012 Aerial Photograph (CTECO) Map Scale:1 inch = 500 feet Map Date: February 2016

Disturbed Area to be Seeded for Turf Establishment (+/-21 acres)

Limits of Orange Construction Fencing

CTDEEP Watercourse

CTDEEP Waterbody

Delineated Wetland Boundary

Wetland Area

Approximate Assessor Parcel Boundary (CTDEEP)

Municipal Boundary

Proposed Conditions Map

Proposed Solar PV Facility Town of Rocky Hill Old Forge Road Rocky Hill, Connecticut

Public Health and Safety

The Project would be designed to applicable industry, State, and local codes and standards and would not pose a safety concern or create undue hazard to the general public. The facility would not consume any raw materials, would not produce any by-products and would be unstaffed during normal operating conditions. The individual modules of the facility will be secured behind a new 8-foot tall chain link fence enclosure. The Site's entrance is gated, limiting access to authorized personnel.

Overall, the Project will meet or exceed all health and safety requirements applicable to electric power generation. Each employee working on Site will:

- Receive required general and Site specific health and safety training;
- Comply with all health and safety controls as directed by local and state requirements;
- Understand and employ the Site health and safety plan while on the Site;
- Know the location of local emergency care facilities, travel times, ingress and egress routes; and
- Report all unsafe conditions to the construction manager.

Construction equipment will be required to access the Site during normal working hours. Please refer to the *Construction Schedule* and *Construction Work Hours/Days Letter* provided in Appendix E and Appendix F, respectively. After construction is complete and the facility (unstaffed) is operable, traffic at the Site will be minimal. Four times per year the site will be mowed. Maintenance of the electrical equipment will occur once per year. Any equipment that breaks down will be repaired on an as needed basis. Annual maintenance will typically be two technicians for a day. The solar modules are designed to absorb incoming solar radiation and minimize reflectivity, such that only a small percentage of incidental light will be reflected off the panels. This incidental light is significantly less reflective than common building materials, such as steel, or the surface of smooth water. The panels will be tilted up toward the southern sky at a fixed angle of 30 degrees, further reducing reflectivity.

Local, State and Federal Land Use Plans

The Project is consistent with local, State, and Federal land use plans, including the 2014-2024 Capital Region Council of Government ("CRCOG") Plan of Conservation and Development which outlines the need for "taking measures to drastically reduce greenhouse gas emissions". CRCOG

states that the second largest producer of greenhouse gas emissions in the State is electric power generation. This Project will support CRCOG's policy by developing a renewable energy resource while not having a substantial adverse environmental effect.

Existing and Future Development

SolarCity and the Town of Rocky Hill have partnered together to redevelop the Site into a 3.9 MW DC Solar facility. SolarCity and Rocky Hill have entered into a power purchase agreement (PPA) whereby Rocky Hill will purchase the output of the facility and take advantage of either the net metering or virtual net metering program to offset its electric consumption at one or more town facilities. Additionally, the Project would benefit the community by improving electrical service for existing and future municipal development through enhanced capacity.

Roads

The existing access drive off Old Forge Road will be used. During construction, interior roads on both the east and west sides of the Project Area would be used to access multiple locations. Once construction is complete, permanent access to the facility will extend along the Project's west side. Two (2), sixteen (16) foot wide access gates will be installed along the west side of the fenced Project Area. The only upgrades required for the access road will be establishing a gravel apron at each gate location.

Wetlands

No wetlands or watercourses will be directly impacted by the Project. The existing access road, which currently crosses Wetland 1 via culvert, will not require upgrading. The closest potential construction activity to this wetland could occur within approximately 160 feet (to the south) if placement of new support poles is required¹¹ (for the overhead utility routing). All clearing and grading limits for the facility's infrastructure (solar arrays and associated equipment) would maintain a setback of approximately ±370 feet to the south of Wetland 1.

All the Project-related activities are remote from Wetland 2 by a railroad track that extends in a north to south direction, separating the Project Area from this wetland resource area which is

¹¹ Specific pole locations have not been determined to date.

approximately ±260 feet to the east. Due to the separating distance and intervening railroad infrastructure, no impacts are anticipated to Wetland 2.

The Connecticut River, located farther east of Wetland 2 (and ± 850 feet east of the Project Area and ± 800 feet east of the proposed limit of clearing) is not located in proximity to any proposed development areas. As such, no direct impacts are expected to occur to the Connecticut River.

Potential short term temporary impacts associated with the Project's construction activities will be minimized by the proposed sedimentation and erosion controls, which would be designed, installed and maintained during construction activities in accordance with the 2002 *Connecticut Guidelines for Soil Erosion and Sediment Control*. Potential long term secondary impacts to wetland resources possibly associated with the operation of this facility are minimized by the fact the development will be unstaffed (generating negligible traffic) and minimizes the creation of impervious surfaces by using an existing gravel access drive and treating the majority of the surface around the solar installation with native grass/vegetation. Based on a review of the Project plans, engineering documents, and the Stormwater Management Report (please see Attachment 4 of the Petition), the stormwater generated by the proposed development will be properly handled and treated in accordance with the 2004 *Connecticut Stormwater Quality Manual*. Due to implementation of these management techniques, the proposed Project development will not result in an adverse impact to wetland resources.

Vernal Pools

No vernal pool habitat was identified on or near (within 750 feet) the Site. All open water areas associated with Wetland 1 consist of permanent waterbodies with known fish populations and perennial stream inlets and outlets. Wetland 2 is an upland floodplain area that does not contain any potential for vernal pool habitat. As no vernal pool habitat exists within or near the Project Area, no impacts to vernal pool resources will result from the proposed Project.

Vegetation and Wildlife

The proposed Project will consist of approximately 24 acres of development, the majority of which is located within a mix of cleared land and early old field habitat, consisting of early successional trees with a dense understory of scrub/shrub and herbaceous growth. The solar arrays and gravel and grass surfaces associated with the construction of the Project will alter the habitat types present on the Site. Impacts to adjacent habitat types will be minimized through proper erosion and sedimentation controls. It is not anticipated that habitat types adjacent to the Project Area will be subjected to significant impacts. Provided below is an analysis of impact to the Site habitats.

Town Stockpile Areas: This habitat type exists in the northern extent of the Project Area. Of this habitat type, approximately three (3) acres will be directly impacted by the Project. As this area consists of entirely disturbed surfaces devoid of vegetation, little to no habitat value exists today. Therefore, habitat loss in these areas will not significantly affect wildlife populations utilizing the Site and will not result in significant negative impacts.

Late Old Field: Late Old Field habitat exists throughout the Project Area and the Site. Of this habitat type, approximately 18 acres will be removed as part of the Project. This habitat type is associated with transitioning early successional habitat. As a result of historic activities and current uses, similar habitat occurs to the west, north, and south of the Project Area. Late Old Field habitat within the Project Area will be eliminated, resulting in some habitat fragmentation. However, based on the small size of this block relative to the surrounding habitat that is to remain, development of the Project will not significantly impact Late Old Field habitat type in the surrounding area.

Early Old Field/Unvegetated Sands: The Early Old Field/Unvegetated Sands habitat type exists on the northern and western peripheries of the Project Area, all associated with the edges of an existing gravel access road. Totaling approximately three (3) acres in size, little of this habitat type will be removed as part of the proposed Project. It is expected that the use of this access road for construction and continued future use by the Town will result in some impacts to the habitat however, it will likely be minimal. These areas are compromised today by truck traffic. Once constructed and operative, primary access to the Project will be from the west. As the Project Area does not substantially encroach within this habitat type, it is not

anticipated that any significant impacts will result from the Project. Any potential impacts to this habitat type will be mitigated by the fact that the Project will result in additional edge Early Old Field/Unvegetated Sands habitat type through the removal of the Late Old Field habitat type.

Bird Habitat Impact Analysis

Habitat loss and fragmentation continue to be the greatest threat to Connecticut's birds. Therefore, when analyzing the impact of a particular project on birds and bird habitat, it is critical to assess both the total habitat to be lost as well as whether or not that habitat loss results in habitat fragmentation.

Habitat loss is an unavoidable consequence of land development. When assessing the impact of habitat loss, the total area of habitat lost must be quantified. This loss should be evaluated against the overall "patch size" of the habitat being affected in order to determine whether or not that habitat patch is large enough to support rare area-sensitive species both pre- and post-development. If the habitat patch size is currently small or fragmented and therefore suitable only for more common generalist species, the impacts of habitat loss can be insignificant. Conversely, if the habitat loss will result in the degradation of the entire patch size, the impacts of habitat loss can be significant.

When assessing whether or not a project will increase habitat fragmentation, it is critical to determine if the project decreases core (i.e., interior) habitat. This depends upon where the development occurs, within the interior or along the edge of the habitat patch. Projects located within the interior of a habitat patch will more adversely affect core habitat and result in higher increases in edge habitat than projects sited on the periphery of the habitat patch. Reduction of core habitat and the increase of edge habitat are critical factors negatively affecting the distribution of some area-sensitive species.

In this specific instance, the term "habitat matrix" (or "block") is used to discuss the relatively contiguous and undeveloped area that includes the Site and surrounding land. In addition to the Site, this habitat matrix includes the Dividend Pond Open Space Property to the west/northwest and the property to the south. This habitat matrix is primarily composed of Mixed Hardwood Forest areas to the north/northwest and a mix of Early Old Field/Unvegetated Sands and Late Old Field habitats to the south and southwest. These areas are generally

fragmented by the presence of existing paved roads to the west (Pleasant Valley Road), north (Old Forge Road/Belamose Avenue) and south (an unnamed drive immediately beyond the Cromwell town line), as well as the railroad tracks to the east of the Site, thus limiting the size of this habitat block.

The Project Area occupies the northeast corner of a habitat matrix that lies across three separate parcels. Although considered relatively contiguous in nature for purposes of this discussion, the matrix has experienced some level of fragmentation over time. For instance, the active road network and Town Stockpile Areas have resulted in varying degrees of disturbance, from loss of habitat to routine traffic and equipment use. Although development of the Project will result in some loss of patch size within the Late Old Field habitat, it would not result in significant reduction of the core habitat block. Associated edge effects resulting from the proposed development will penetrate into the remaining Late Old Field habitat. Edge effects include human activity and associated noise which can deter birds from using the remaining habitat that lies immediately adjacent to the new development¹². Such affects are favored by some species.

The overall contiguous habitat matrix totals 179 acres. This habitat matrix will be reduced by approximately 24 acres (an approximate 13% reduction) as a result of development of the proposed Project. This will directly affect a portion of the late old field patch (approximately 18 of 52 acres, or $\pm 35\%$). Post-development, the remaining late old field habitat patches located elsewhere within the habitat matrix will still be large enough to support area-sensitive shrubland habitat specialists such as the field sparrow or brown thrasher, as most shrubland specialists have a minimum patch size requirement of less than or equal to 25 acres.

When considering the entire contiguous habitat matrix, siting the development within the proposed Project Area represents the least environmentally damaging alternative. This conclusion is based on several factors, most notably: (1) the Project will not result in fragmentation of the overall habitat matrix; and, (2) portions of the Project Area are currently in use by the Rocky Hill DPW and do not represent suitable habitat for target species.

¹² While the edge effect is both species-dependent and land-use dependent, it generally affects avian use up to 300 feet from development.

Rare Species

The Project will not result in disturbances to habitat anticipated to be used by the tiger beetle. Although no appreciable habitat suitable for tiger beetle exists within the Project Area, areas within the southwest corner of the Site and the adjoining parcel to the south contain optimal tiger beetle habitat in the form of loose, shifting unvegetated sands. Due to the potential presence of tiger beetle populations proximate to the Project Area, SolarCity is committed to implementing proactive protection measures during construction. The plan would consist of installing physical barriers to restrict access to those nearby locations with suitable habitat, conducting contractor awareness training and inspections of protective measures by a qualified environmental specialist. SolarCity has provided its proposed Big Sand Tiger Beetle Protection Plan to the CTDEEP for review and acceptance. SolarCity will provide the Council with a copy of the CTDEEP's response letter upon receipt.

A copy of the proposed Big Sand Tiger Beetle Protection Plan is provided in Appendix G.

One federally listed¹³ threatened species, northern long-eared bat (*Myotis septentrionalis*) may occur within the vicinity of the Site. The range of northern long-eared bat ("NLEB") encompasses the entire State of Connecticut. Suitable NLEB roost habitat includes trees (live, dying, dead, or snag) with a diameter at breast height ("DBH") of three (3) inches or greater. The proposed activity will result in the clearing of trees greater than three inches DBH. As a result, SolarCity evaluated the proposed activity's compliance with Section 10 of the Endangered Species Act ("ESA") through initial consultation with the U.S. Fish and Wildlife Service's ("USFWS") Information, Planning, and Conservation System ("IPaC").¹⁴

To determine whether the planned activity complies with Section 10 of the ESA, SolarCity assessed the Project using the USFWS's *Key to the Northern Long-Eared Bat 4(d) Rule for Non-Federal Activities Key* ("USFWS Key"; January 13, 2016), as detailed below.

Will your activity purposefully take (see Definitions below) northern long-eared bats? For example, are you removing bats from a human structure or capturing bats for research?
 Response: No, the proposed activity does not include purposefully taking northern long-eared bats.

¹³ Listing under the federal Endangered Species Act.

¹⁴ IPaC Consultation Tracking Number: 05E1NE00-2016-SLI-1095; dated March 15, 2016.

2. Is your activity located outside the White-nose Syndrome Zone?

Response: No, the proposed activity is located inside the white-nose syndrome zone.

3. Will your activity take place within a cave or mine where northern long-eared bats hibernate (i.e., hibernaculum) or could it alter the entrance or the environment (physical or other alteration) of a hibernaculum?

Response: No, the proposed activity will not take place within a northern long-eared bat hibernaculum or alter its entrance or environment.

4. Will your action involve tree removal¹⁵?

Response: Yes.

5. Is your activity the removal of hazardous trees for protection of human life or property?

Response: No, the proposed activity is not removing hazardous trees.

6. Will your tree removal activities include one or both of the following: 1) removing a northern long-eared bat known occupied maternity roost tree or any trees within 150 feet of a known occupied maternity roost tree from June 1 through July 31; or 2) removing any trees within 0.25 miles of a northern long-eared bat hibernaculum at any time of year?

Response: No. There are currently no known NLEB maternity roost trees in Connecticut. 16 The nearest NLEB habitat resource to the proposed activity is located in North Branford ± 18 miles to the southwest.

In accordance with the USFWS Key for NLEB, the Project would not result in an adverse effect or incidental take¹⁷ to NLEB and does not require a permit from USFWS.

Water Quality

The facility will be unstaffed and no potable water uses or sanitary discharges are planned. No liquid fuels are associated with the operations of the Project. Once operative, the stormwater generated by the proposed development will be properly handled and treated in accordance with the 2004 *Connecticut Stormwater Quality Manual*. Therefore, upon its completion the

¹⁵ "Tree removal" is defined in the 4(d) rule as cutting down, harvesting, destroying, trimming, or manipulating in any other way the trees, saplings, snags, or any other form of woody vegetation likely to be used by northern long-eared bats.

Northern long-eared bat areas of concern in Connecticut to assist with Federal Endangered Species Act Compliance map (February 1, 2016)

¹⁷ "Incidental take" is defined by the Endangered Species Act as take that is "incidental to, and not the purpose of, the carrying out of an otherwise lawful activity." For example, harvesting trees can kill bats that are roosting in the trees, but the purpose of the activity is not to kill bats.

Project would have no adverse environmental effect on wetlands, watercourses or other water resources.

The Site is located within the Gardiner Expansion APA. Water supply production wells are located on nearby property in Cromwell. The nearest well is located over 1,000 feet from the southern extent of the Project Area. To safeguard this resource from potential impacts during construction, SolarCity is committed to implementing protective measures in the form of an Aquifer Protection Plan. This Plan will include monitoring of established sedimentation and erosion controls that will be installed and maintained in accordance with the 2002 *Connecticut Guidelines for Soil Erosion and Sediment Control*. SolarCity will also apply for a *General Permit for the Discharge of Stormwater and Dewatering Wastewaters from Construction Activities* from CTDEEP. Therefore, with the incorporation of adequate protective measures, stormwater runoff from the Project development will not result in an adverse impact to water quality associated with the APA. A copy of the proposed *Aquifer Protection Plan* is provided in Appendix H.

Air Quality

No emission sources are associated with the operations of the Project. Therefore, no impacts to air quality are anticipated as part of the proposed Project.

Scenic Areas

No state designated scenic areas would be physically or visually impacted by development of the solar Project.

Historic and Archaeological Resources

APT consulted with the SHPO for concurrence that no historic or archaeological resources would be affected by the Project. Based on the results of APT's research, the Project Area has been thoroughly disturbed and no longer possesses any potential to yield intact archaeological deposits. In addition, the Project would not result in any impacts to the viewshed of the Dividend Brook Industrial Archaeological District.

The SHPO is currently reviewing the Project. Once received, a copy of the SHPO determination letter will be provided to the Council.

Geology and Soils

No adverse effects are anticipated on natural resources occurring at and/or nearby the Site. Once vegetative clearing activities are completed, minimal grading is required for construction of the Project.

Floodplain Areas

The Site is located entirely outside of the 100-year and 500-year floodplains. Therefore, no special design elements are necessary with respect to flooding concerns. In addition, no impacts to floodplains are associated with the proposed Project.

Recreational Areas

No recreational areas would be impacted by the Project.

Noise

The only equipment proposed for the Project that would generate noise consists of the fans associated with the inverters. The Noise Evaluation Study prepared by HMB Acoustics LLC of Avon, Connecticut, determined that after the Project is constructed and in service, the combined noise levels will comply with CTDEEP criteria for Commercial Emitters to both Commercial and Residential Receiver Zones.

After the Project is constructed and in service, the highest noise levels at adjacent properties are anticipated to be 30 dBA, which is well below the most conservative criteria of 45 dBA for nighttime and 55 dBA for daytime, as established by the State of Connecticut Noise Control regulations (CGS 22a/22a-69-1 through 7). The inverters are inactive at night. During those times the inverters are operative, noise levels at nearby property lines and/or residences would not change and continue to be well below applicable criteria (estimated at 25 to 30 dBA based on existing background noise measurements obtained in July 2015).

Please refer to the *Noise Evaluation Report* provided in Appendix I.

Lighting

No lighting is planned for the facility.

Other Surrounding Features

No adverse effects are anticipated to the facilities identified in *Figure 4*, primarily because of their sufficient distances from the Project.

Visibility

Covering approximately 19 acres in total, the fenced facility will consist of a total of 13,948 non-reflective solar panels. The fence will rise to a height of eight (8) feet above grade ("AG"). The solar panels and appurtenances will not exceed this height. Once installed, the top of the solar panels would extend to a height of approximately six (± 6) feet AG. The tallest equipment within the facility (inverters) would be approximately seven (± 7) feet high. New utility poles are required for interconnection with the existing distribution system on Old Forge Road. However, the Project is set back sufficiently from abutting properties and public roads, and is benefited by intervening vegetation, such that the facility component will not be visible from locations off the Site.

Figure 6, *Facility Setting Map*, depicts the lack of nearby receptor locations with direct views towards the Project Area.

Legend

×=×= Proposed Fenced Facility

•••• Proposed Overhead Wire

---- Proposed Solar Module

Approximate Assessor Parcel Boundary (CTDEEP)

Municipal Boundary

Figure 6 Facility Setting Map

Proposed Solar PV Facility Town of Rocky Hill Old Forge Road Rocky Hill, Connecticut

Conclusion

As demonstrated in this EA, the Project will comply with CTDEEP air and water quality standards. Further, it will not have an undue adverse effect on the existing environment and ecology, nor would it affect the scenic, historic and recreational resources in the vicinity. Protective measures would be employed to safeguard potential populations of tiger beetle proximate to the Project Area during construction activities. Once operative the facility will be unstaffed and generate minimal traffic. The Project design minimizes the creation of impervious surfaces and stormwater generated by the proposed development will be handled and treated in a manner consistent with the 2004 *Connecticut Stormwater Manual*.

APPENDIX A Inland Wetland & Watercourse Report and

Photo-Documentation

WETLAND INSPECTION

September 14, 2015	APT Project No.: CT478110
Prepared For:	SolarCity 100 N. 18 th Street Suite 1900 Philadelphia, PA 19103 Attn: Nichole Seidell
Project Name:	Solar City Rocky Hill
Site Address:	Old Forge Road Rocky Hill, Connecticut
Date(s) of Investigation:	9/3/2015
Field Conditions:	Weather: sunny, mid 80's Soil Moisture: dry
Wetland/Watercourse Delin	eation Methodology*: ⊠Connecticut Inland Wetlands and Watercourses □Connecticut Tidal Wetlands □U.S. Army Corps of Engineers
The wetlands inspection was	performed by [†] :
Matthew Gustafson, Register	red Soil Scientist
Enclosures: Wetland Delinea	tion Field Forms & Wetland Inspection Map
This report is provided as a briej	summary of findings from APT's wetland investigation of the referenced Study Area that

* Wetlands and watercourses were delineated in accordance with applicable local, state and federal statutes, regulations and guidance.

activities and surveyed location of identified wetland and watercourse resources.

consists of proposed development activities and areas generally within 100 feet.‡ If applicable, APT is available to provide a more comprehensive wetland impact analysis upon receipt of site plans depicting the proposed development

[†] All established wetlands boundary lines are subject to change until officially adopted by local, state, or federal regulatory agencies.

[‡] APT has relied upon the accuracy of information provided by by Brightfields Development, LLC regarding the proposed subject property for defining the study area within which wetlands and/or watercourses are to be identified.

Attachments

- Wetland Delineation Field Forms
- Wetland Inspection Map

Wetland Delineation Field Form

		-			
Wetland I.D.:	Wetland 1				
Flag #'s:	WF 1-01 to 1-15 and 1-30 to 1-42				
Flag Location Method:	Site Sketch	\boxtimes	GPS	(sub-meter) located ⊠	
WETLAND HYI	OROLOGY:				
NONTIDAL ⊠					
Intermittently Flo	oded 🗆	Artificially Flooded □		Permanently Flooded ⊠	
Semipermanently	Flooded	Seasonally Flooded □		Temporarily Flooded □	
Permanently Satur	rated \square	Seasonally Saturated – seepag	ge 🗆	Seasonally Saturated - perched	
Comments: None					
TIDAL □					
Subtidal		Regularly Flooded		Irregularly Flooded □	
Irregularly Flooded □					
Comments: None					
WETLAND TYP	PE:				
	_,				
Estuarine \square	SYSTEM: Estuarine □ Riverine □ Palustrine □				
Lacustrine Lacustrine		Marine □		r diustillie 🖂	
Comments: None					
Comments: 140ne					
CLASS:					
Emergent ⊠		Scrub-shrub ⊠]	Forested ⊠	
Open Water ⊠		Disturbed □	1	Wet Meadow □	
Comments: Prima	rily forested o	edges with core open water area	ıs.		
WATERCOURS	E TYPE:				
Perennial ⊠	-	Intermittent	7	Γidal □	
Watercourse Nam	e: Dividend F	ond and outlet perennial strean	1		
S 5				11 01 1	

Comments: Dividend Pond and the associated perennial stream outlet generally flows west to east under

the existing gravel access through a large reinforced concrete pipe culvert.

Wetland Delineation Field Form (Cont.)

SPECIAL AQUATIC HABITAT	SPECIAL	AQUA	TIC I	HABI	TAT
-------------------------	----------------	-------------	-------	------	-----

Vernal Pool Yes □ No ⊠ Potential □	Other
Vernal Pool Habitat Type: None	
Comments: None	

SOILS:

Are field identified soils consistent with NRCS mapped soils?	Yes ⊠	No □
If no, describe field identified soils		

DOMINANT PLANTS:

Red Maple (Acer rubrum)	Silky Dogwood (Cornus amomum)
Poison Ivy (Toxicodendron radicans)	Specked Alder (Alnus rugosa)
American Elm (Ulmus americana)	Jewelweed (Impatiens capensis)
Autumn Olive* (Elaeagnus umbellate)	Mugwort* (Artemisia vulgaris)
Fox Grape (Vitis labrusca)	

^{*} denotes Connecticut Invasive Species Council invasive plant species

GENERAL COMMENTS:

Wetland 1 consists of an open water resource identified as Dividend Pond and a perennial watercourse that outlets from the pond, flowing east eventually into the Connecticut River located approximately 800 feet west of the proposed Rocky Hill Solar PV Facility. An existing gravel access road crosses the watercourse through a large reinforced concrete pipe culvert. Wetland 1 eventually drains east under an existing railroad line and off the subject property. The margins of Wetland 1 are entirely forested with sparse scrub/shrub and emergent vegetation present. Banks to the resource are steeply sloping with little to no bordering vegetated wetland areas.

Based on APT's understanding of the Rocky Hill Solar PV Facility proposed by SolarCity, no direct impact to wetlands or watercourses would result from the development. The northeastern end of the proposed Facility would be located ± 160 feet south of Wetland 1 at the existing wetland and watercourse crossing. The northwestern corner of the proposed Facility would be located ± 260 feet southeast of Dividend Pond. Depending upon proposed improvements to the existing access road and utilities, work may occur in close proximity to wetlands located either side of this existing wetland and watercourse crossing. APT is available to provide a detailed evaluation of possible wetland and watercourse impacts associated with the proposed Rocky Hill Solar PV Facility.

Wetland Delineation Field Form

Wetland I.D.:	Wetland 2			
Flag #'s:	WF 2-01 to 2-23			
Flag Location Method:	Site Sketch	\boxtimes	GPS	(sub-meter) located ⊠
WETLAND HYI	DROLOGY:			
NONTIDAL ⊠				
Intermittently Flo	oded 🗆	Artificially Flooded □		Permanently Flooded □
Semipermanently	Flooded	Seasonally Flooded		Temporarily Flooded ⊠
Permanently Satu	rated \square	Seasonally Saturated – see	epage 🗆	Seasonally Saturated - perched
Comments: Flood	lplain associat	ed with the Connecticut Riv	ver.	
_				
TIDAL				
		Regularly Flooded		Irregularly Flooded □
Irregularly Flooded □				
Comments: None				
WETLAND TYP	DF.			
WEILANDIII	. 12.			
SYSTEM:				
Estuarine		Riverine □]	Palustrine ⊠
Lacustrine □		Marine □		
Comments: None				
CLASS:				
Emergent □		Scrub-shrub ⊠]	Forested 🗵
Open Water		Disturbed	1	Wet Meadow ⊠
•	eated extents	of wetland primarily consis	t of an ope	n field with edge forested areas.
WATERCOURS			*	<u> </u>
Perennial ⊠	<u> </u>	Intermittent	7	Γidal □
Watercourse Nam	ne: Connecticu	ıt River	L	
			ut River wa	as delineated, not the banks of the
		-		

river.

Wetland Delineation Field Form (Cont.)

Vernal Pool Yes □ No ⊠ Potential □	Other	
Vernal Pool Habitat Type: None		
Comments: None		

SOILS:

Are field identified soils consistent with NRCS mapped soils?	Yes ⊠	No 🗆
If no, describe field identified soils		

DOMINANT PLANTS:

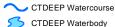
Sensitive Fern (Onoclea sensibilis)	Spicebush (Lindera benzoin)
Silky Dogwood (Cornus amomum)	Poison Ivy (Toxicodendron radicans)
Purple Loosestrife* (Lythrum salicaria)	Autumn Olive* (Elaeagnus umbellate)
Weeping Willow (Salix babylonica)	Mugwort* (Artemisia vulgaris)
Staghorn Sumac (Rhus typhina)	

^{*} denotes Connecticut Invasive Species Council invasive plant species

GENERAL COMMENTS:

Wetland 2 consists of the semi-active floodplain associated with several associated backwater wetland areas that border on the Connecticut River. The western edge of the delineated resource consists of steeply sloping embankments. The northern edge is more moderately sloped with a broader transition zone from wetlands to uplands. The primary vegetation class associated with Wetland 2 is open field with edge forested areas and transitional scrub/shrub ecotones separating the two. Observed soil profiles reveals these areas flood irregularly and are consistent with moderately well drained and well drained floodplain soils.

Based on APT's understanding of the Rocky Hill Solar PV Facility proposed by SolarCity, no direct impact to wetlands or watercourses would result from the development. The southeastern corner of the proposed Facility would be located ± 225 feet west of Wetland 2. APT is available to provide a detailed evaluation of possible wetland and watercourse impacts associated with the proposed Rocky Hill Solar PV Facility.


Legend

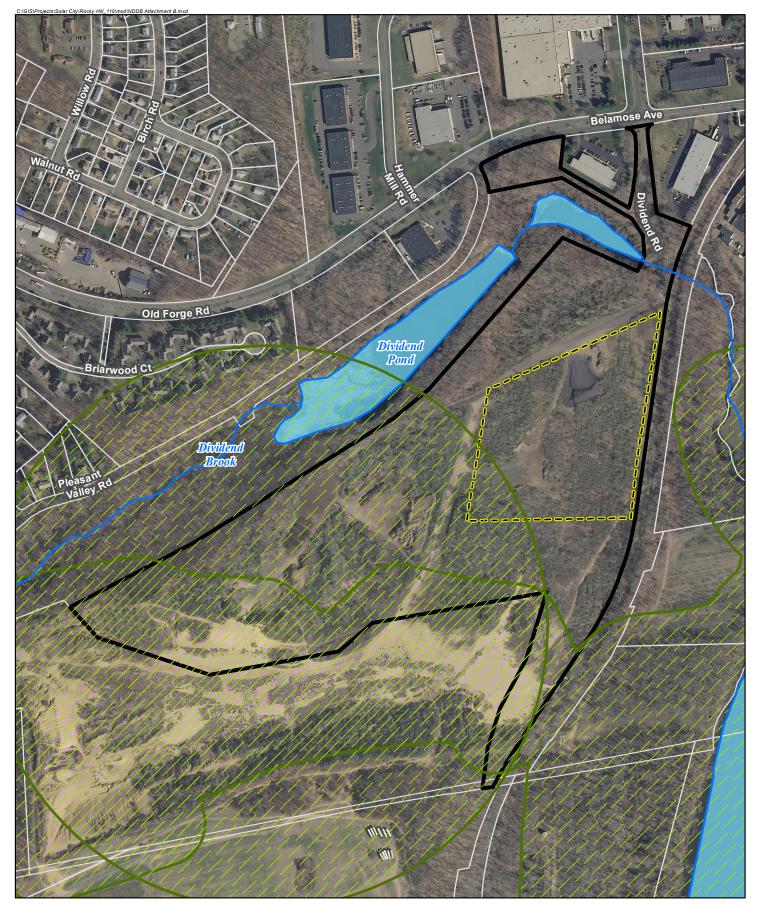
Approximate Project Area (+/-16 acres)

Subject Property

Approximate Assessor Parcel Boundary (CTDEEP)

CTDEEP Waterbody

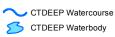
Map Notes: Base Map Source: 2012 Aerial Photograph (CTECO) Map Scale:1 inch = 500 feet Map Date: September 2015



Wetland Inspection Map

Proposed Solar PV Facility Town of Rocky Hill Old Forge Road Rocky Hill, Connecticut

APPENDIX B CTDEEP NDDB Mapping



Legend

Project Area (+/-14 acres)

Natural Diversity Database (NDDB; Sept. 2015)

Appendix B Site Map

Proposed Solar PV Facility Town of Rocky Hill Old Forge Road Rocky Hill, Connecticut Lat: 41.64342847 Long: -72.633249

APPENDIX C Breeding Bird Inventory Table

Breeding Bird Inventory Table

Common Name	Scientific Name	Observed	Status	Habitat Type
American Redstart	Setophaga ruticilla			OF
American Robin	Turdus migratorius	ОВ		OF
Blue-Jay	Cyanocitta cristata	ОВ		OF
Blue-winged Warbler	Vermivora pinus		MI	OF
Brown Thrasher	Toxostoma rufum		SC, VI	OF
Cedar Waxwing	Bombycilla cedrorum	ОВ		OF
Chestnut-sided Warbler	Dendroica pensylvanica		VI	OF
Common Yellowthroat	Geothlypis trichas			OF
Eastern Kingbird	Tyrannus tyrannus		I	OF
Eastern Towhee	Pipilo erythrophthalmus		VI	OF
Field Sparrow	Spizella pusilla		VI	OF
Gray Catbird	Dumetella carolinensis			OF
Indigo Bunting	Passerina cyanea		VI	OF
Mourning Dove	Zenaida macroura	ОВ		OF
Northern Cardinal	Cardinalis cardinalis			OF
Northern Oriole	Icterus galbula		I	OF
Prairie Warbler	Dendroica discolor		MI	OF
Rose-breasted Grosbeak	Pheucticus Iudovicianus		I	OF
Song Sparrow	Melospiza Melodia			OF
White-eyed Vireo	Vireo griseus			OF

KEY
OB – species was observed on the site on 10/27/15 (migrant and winter residents only) WAP Conservation Status: IM – Important; VI – Very Important; MI – Most Important SC – State-listed species of special concern Habitat Types (observed and potential use): OF – old field

APPENDIX D State Historic Preservation Office Submission

State Historic Preservation Office

One Constitution Plaza | Hartford, CT 06103 | 860.256.2800 | Cultureandtourism.org

PROJECT REVIEW COVER FORM

1.	This information relates to a previously submitted project.	You do not need to complete the re you have been previously issued a Number. Please attach information submit.	SHPO Project
	SHPO Project Number	Sublint.	
	Project Address		
2.	This is a new Project. If you have checked this box, it is necessary to complete ALL entries on this form.		
Project	Name Proposed Solar Facility Installation		_
Project	Location 13 Old Forge Road		_
City or	Town Rocky Hill Include street number, street name, and or Route Number. If no street address exists	-	
County	In addition to the village or hamlet name (if appropriate), the <u>municipality</u> must be in Hartford County If the undertaking includes multiple addresses, please attach a list to this form.	cluded here.	
Date of	Construction (for existing structures) N/A - Undeveloped land		
	ECT DESCRIPTION SUMMARY (include full description in attachment): ty Corporation proposes the construction of a solar powered electrical generation insta	llation consisting of	
	oltaic (PV) module technology. The Site parcel is approximately 61.4 acres located a		cky Hill, CT.
	oposed project area would encompass approximately 24 acres of undeveloped, lig		
	y used by the Town for materials storage. Upon completion, the facility will occupy approximately action of Old Forms Read and Dividend	·	
	an existing, gated drive originating at the intersection of Old Forge Road and Dividend drive extends south into the Site where it connects to a system of interior dirt roads.	-	_
	closed Project Location Map and Site Figures. A Preliminary Archeological Assess	•	-
LLC is	enclosed.		
TYPE	OF REVIEW REQUESTED		
a.	Does this undertaking involve funding or permit approval from a State or Federal Age	ncy?	
	X Yes No	State	Federal
	Name/Contact Type of Permit/Approval ng Council Petition that NO Certificate of Env	×	
	Compatibility and Public Need is required.		
b. Have	you consulted the SHPO and UCONN Dodd Center files to determine the presence	Yes	No
	nce of previously identified cultural resources within or adjacent to the project area?	×	
If yes: Was the	e project site wholly or partially located within an identified archeologically sensitive are	ea?	X
	e project site involve or is it substantially contiguous to a property listed or recommendent the CT State or National Registers of Historic Places?	ed for	×
	e project involve the rehabilitation, renovation, relocation, demolition or addition to any g or structure that is 50 years old or older?		

State Historic Preservation Office

One Constitution Plaza | Hartford, CT 06103 | 860.256.2800 | Cultureandtourism.org

PROJECT REVIEW COVER FORM

The Historic Preservation Review Process in Connecticut Cultural Resource Review under the National Historic Preservation Act – Section 106 http://www.achp.gov/106summary.html involves providing technical guidance and professional advice on the potential impact of publicly funded, assisted, licensed or permitted projects on the state's historic, architectural and archaeological resources. This responsibility of the State Historic Preservation Office (SHPO) is discharged in two steps: (1) identification of significant historic, architectural and archaeological resources; and (2) advisory assistance to promote compatibility between new development and preservation of the state's cultural heritage.

Project review is conducted in two stages. First, the SHPO assesses affected properties to determine whether or not they are listed or eligible for listing in the Connecticut State or National Registers of Historic Places. If so, it is deemed "historic" and worthy of protection and the second stage of review is undertaken. The project is reviewed to evaluate its impact on the properties significant materials and character. Where adverse effects are identified, alternatives are explored to avoid, or reduce project impacts; where this is unsuccessful, mitigation measures are developed and formal agreement documents are prepared stipulating these measures. For more information and guidance, please see our website at: http://www.cultureandtourism.org/cct/cwp/view.asp?a=3933&q=293820

ALL PROJECTS SUBMITTED FOR REVIEW MUST INCLUDE THE FOLLOWING MATERIALS*:

	×	PROJECT DESCRIPTION Please attach a full description of the work that will be undertaken as a result of this project.
Þ	ortion	as of environmental statements or project applications may be included. The project boundary of the project should be clearly
d	efined	! **
ſ	×	PROJECT MAP This should include the precise location of the project – preferably a clear color image showing the nearest
sī	treets	or roadways as well as all portions of the project. Tax maps, Sanborn maps and USGS quadrangle maps are all acceptable, but

Bing and Google Earth are also accepted if the information provided is clear and well labeled. The project boundary should be clearly

defined on the map and affected legal parcels should be identified.

PHOTOGRAPHS Clear, current images of the property should be submitted. Black and white photocopies will not be accepted. Include images of the areas where the proposed work will take place. May require: exterior elevations, detailed photos of elements to be repaired/replaced (windows, doors, porches, etc.) All photos should be clearly labeled.

For Existing Structures	Yes	N/A	Comments	
Property Card	X			
For New Construction	Yes	N/A	Comments	
Project plans or limits of construction (if available)	X			
If project is located in a Historic District include renderings or elevation drawings		\boxtimes		
of the proposed structure				
Soils Maps http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm	\times		Refer to Arch Ass	essment
Historic Maps http://magic.lib.uconn.edu/	\boxtimes		Refer to Arch Ass	essment
For non-building-related projects (dams, culverts, bridge repair, etc)	Yes	N/S	Comments	
Property Card				
Soils Map (see above)				
Historic Maps (see above)				
SHPO USEONLY	Above	Date	Below	Date
Indicate date of Review and Initials of Reviewer				

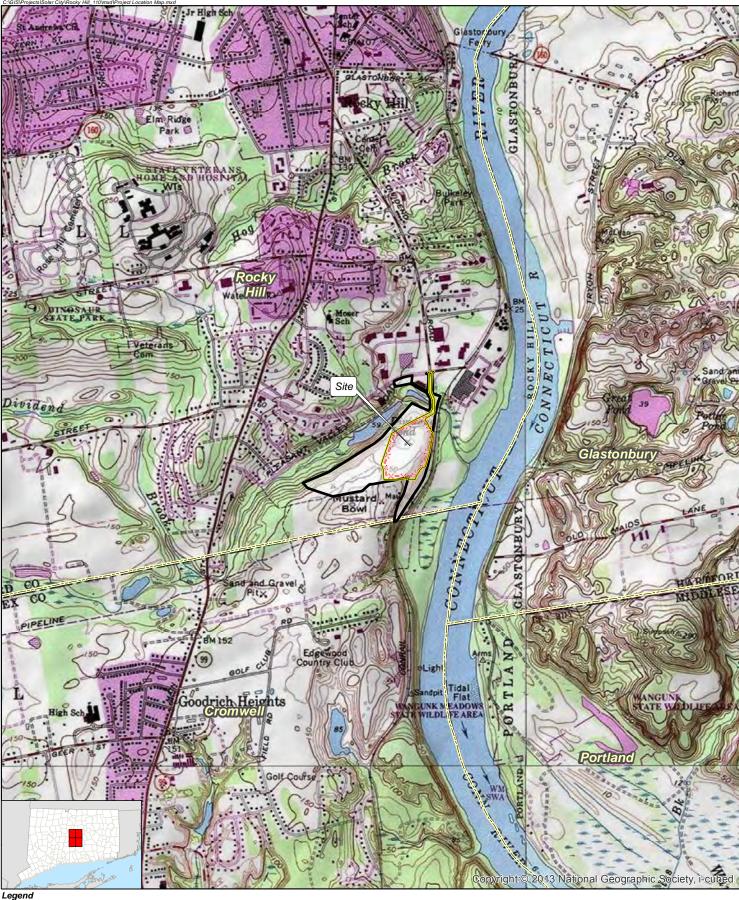
PROJECT CONTACT

Name Nicole Castro	TitleProject Manager
Firm/AgencyAll-Points Technology Corporation, P.	C.
Address 3 Saddlebrook Drive	
CityKillingworth	StateCT Zip06419
Phone 860-663-1697 x213 Cell860-558-503	7 Fax 860-663-0935
Email ncastro@allpointstech.com	

^{*}Note that he SHPO's ability to complete a timely project review depends largely on the quality of the materials submitted.

^{**} Please be sure to include the project name and location on each page of your submission.

State Historic Preservation Office

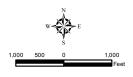

One Constitution Plaza | Hartford, CT 06103 | 860.256.2800 | Cultureandtourism.org

PROJECT REVIEW COVER FORM

SHPO USE ONLY

Based on our review of the information provided to the State Historic Preservation Office, it is our op that:	inion		
No historic properties will be affected by this project. No further review is requested.			
This project will cause no adverse effects to the following historic properties. No further revie requested:	w is		
This project will cause no adverse effects to the following historic properties, <u>conditional</u> upon stipulations included in the attached letter:	ı the		
Additional information is required to complete our review of this project. Please see the attach with our requests and recommendations.	ed letter		
This project will adversely affect historic properties as it is currently designed or proposed. Please see the attached letter for further details and guidance.			
Catherine Labadia Date State Historic Preservation Offier	_		

Project Location Map


Legend

Site Boundary

Project Area - Limit of Proposed Work (+/-24 acres) Proposed Fenced Facility (+/-19 acres)

Municipal Boundary

Map Notes:
Base Map Source: USGS 7.5 Minute Topographic Quadrangle Maps,
Glastonbury (1992), Harford South (1992), Middle Haddam (1984),
and Middleburn (1992), CT
Site located on the Hartford South Quadrangle
Map Scale: 1.24,000
Map Date: February 2016

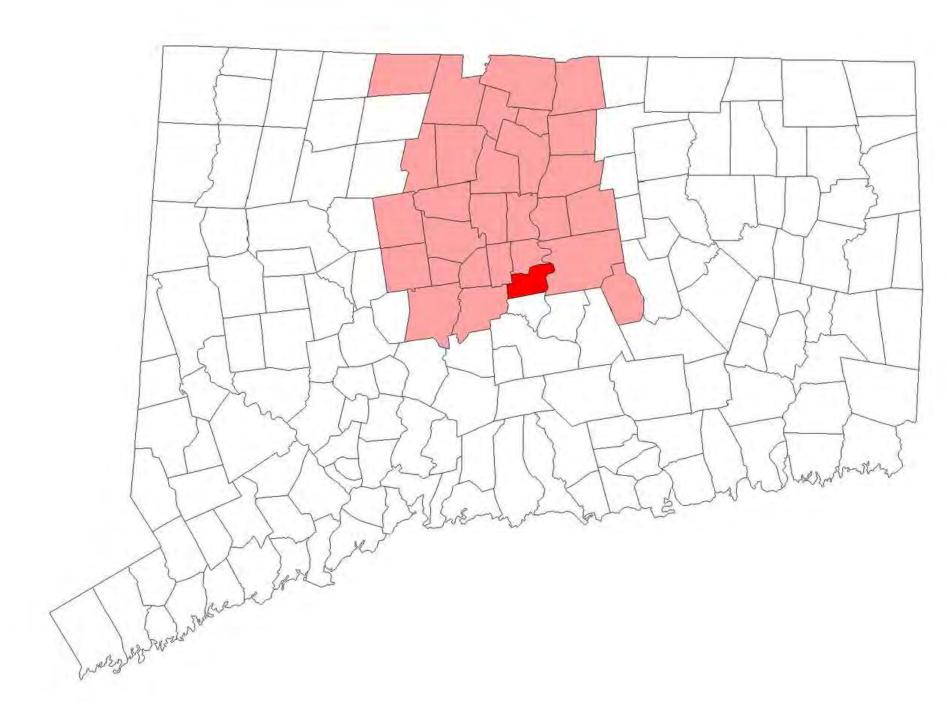
Project Location Map

Proposed Solar PV Facility Town of Rocky Hill Old Forge Road Rocky Hill, Connecticut

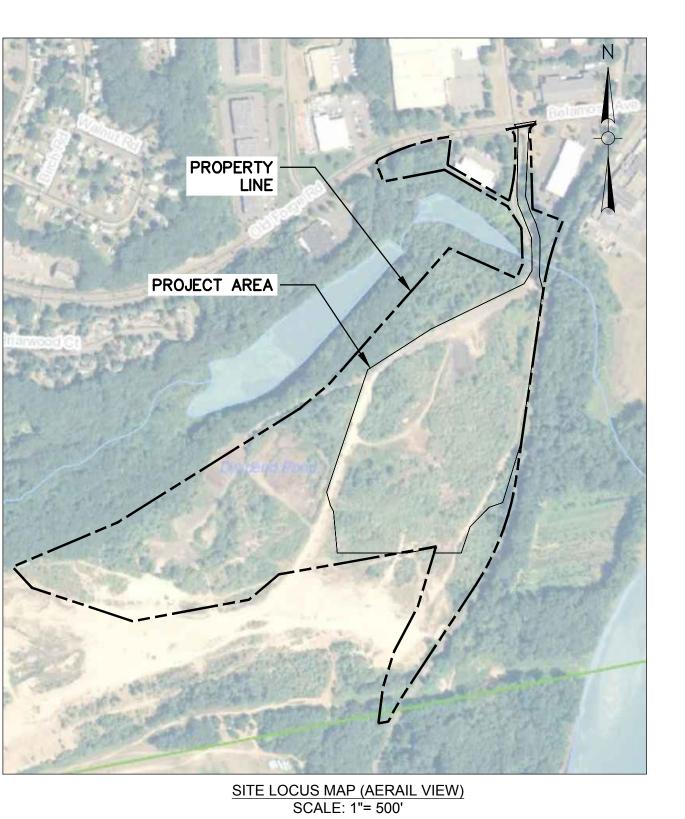
Project Description

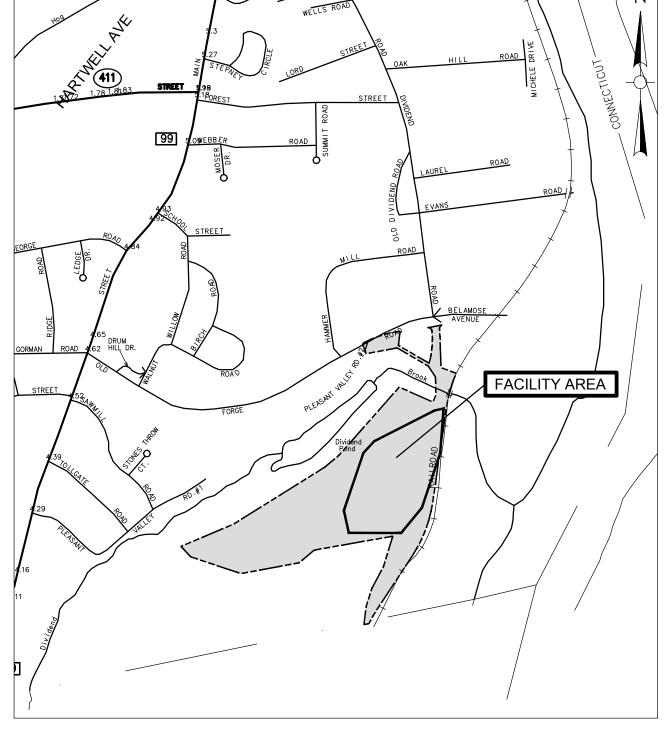
The Site consists of a single, Town-owned parcel located at 13 Old Forge Road, encompassing a total of approximately 61.4 acres. The Site is undeveloped and portions heavily disturbed by historic clearing and excavation activities. Several areas are currently used by the Town's Department of Public Works ("DPW") for materials storage, including asphalt millings, street sweepings, sand, top soil, leaves, brush and mulch.

The Project Area consists of approximately 24-acres of undeveloped, lightly wooded land, a portion of which is currently used by the Town for materials storage. Upon completion, the facility will occupy approximately 19 acres. Access to the Site is over an existing, gated drive originating at the intersection of Old Forge Road and Dividend Road in its northern portion. The existing access drive extends south into the Site where it connects to a system of interior dirt roads.


The Project will include an approximate 24-acre development on the Site. The solar array will be developed in the northern portion of the Site, which is primarily a mix of cleared land and early old field habitat, consisting of early successional trees with a dense understory of scrub/shrub and herbaceous growth. New soil disturbances will be minimized to facilitate the installation of the solar arrays and associated equipment. The Project Area includes relatively level grades such that the development can be generally accomplished without significant cuts and/or fills.

The Project Area consists of previously disturbed land. A total of ± 18 acres of early successional trees and associated dense understory will be cleared to accommodate the Project. The facility would be comprised of approximately 9,460-275 watt and 4,488-290 watt Trina Solar TSM-PD14 modules, three (3) Advanced Energy AE 500TX 500 kw inverters, and three (3) transformers. The facility would use a post-driven RBI Solar Inc. tracking system. Electrical connections would extend primarily overhead out to Old Forge Road. Once construction is complete, approximately 21 acres will be seeded for the establishment of permanent cover (turf).


Site Figures and Property Card


ROCKY HILL, CONNECTICUT SOLAR PHOTOVOLTAIC (PV) PROJECT

13 OLD FORGE ROAD ROCKY HILL, CONNECTICUT 06067

CONNECTICUT MUNICIPAL MAP SCALE: N.T.S.

SITE LOCATION MAP SCALE: 1"=1000'

PROJECT DIRECTORY				
DEVELOPER(S): SOLAR CITY, INC. 1376 LEAD HILL BLVD. ROSEVILLE, CA 95661	RACKING SYSTEM DESIGNER: RBI SOLAR 5513 VINE STREET CINCINNATI, OH 45217			
CONTACT: JOSHUA TROGLIN (650) 332-0412	CONTACT: LOUIS "PAT" HUDEPOHL 513-618-2183			
HOST: TOWN OF ROCKY HILL 13 OLD FORGE ROAD ROCKY HILL, CONNECTICUT 06067	UTILITY: EVERSOURCE			
ENGINEER: WESTON & SAMPSON ENGINEERS, INC. 273 DIVIDEND ROAD ROCKY HILL, CONNECTICUT 06067 CONTACT: JOHN FIGURELLI (860) 513-1473				
ELECTRICAL ENGINEER: PLUMP ENGINEERING, INC 914 E KATELLA AVENUE ANAHEIM, CA 92805				
CONTACT: ANN D'ALESSANDRO (518) 796-1030				

DRAWING INDEX - WESTON & SAMPSON				
SHEET SHEET TITLE				
T-1 COVER SHEET				
G-1 ABBREVIATIONS, NOTES, AND LEGEND				
D-1	DETAILS			
C-1	EXISTING CONDITIONS			
C-2	LAYOUT PLAN			
C-3 EROSION & SEDIMENTATION CONTROL PLAN				

DRAWING INDEX - SOLAR CITY BLOCK 1 (JB: 0602328-00)				
SHEET	SHEET TITLE			
PV-1	COVER SHEET			
PV-2	SITE PLAN			
PV-3	ARRAY PLAN			
PV-4	ACCESS PLAN			
PV-5	STRUCTURAL DETAILS & INVERTER PADS			
PV-6	PV EQUIPMENT PLAN & ELEVATION			
PV-7	EQUIPMENT DETAILS			
PV-8	ELECTRICAL SYMBOLS & NOTES			
PV-9	LINE DIAGRAM			
PV-10	MONITORING LINE DIAGRAM			
PV-11	WARNING LABELS			

DRAWING INDEX - SOLAR CITY BLOCK 2 (JB: 0602329-00)				
SHEET SHEET TITLE				
PV-1	COVER SHEET			
PV-2	SITE PLAN			
PV-3	ARRAY PLAN			
PV-4	ACCESS PLAN			
PV-5	STRUCTURAL DETAILS & INVERTER PADS			
PV-6	PV EQUIPMENT PLAN & ELEVATION			
PV-7	EQUIPMENT DETAILS			
PV-8	ELECTRICAL SYMBOLS & NOTES			
PV-9	LINE DIAGRAM			
PV-10	MONITORING LINE DIAGRAM			
PV-11	WARNING LABELS			

DRAWING INDEX - SOLAR CITY BLOCK 3 (JB: 0602330-00)			
SHEET SHEET TITLE			
PV-1	COVER SHEET		
PV-2	SITE PLAN		
PV-3	ARRAY PLAN		
PV-4	ACCESS PLAN		
PV-5	STRUCTURAL DETAILS & INVERTER PADS		
PV-6	PV EQUIPMENT PLAN & ELEVATION		
PV-7	EQUIPMENT DETAILS		
PV-8	ELECTRICAL SYMBOLS & NOTES		
PV-9	LINE DIAGRAM		
PV-10	MONITORING LINE DIAGRAM		
PV-11	WARNING LABELS		

	DRAWING INDEX - RBI SOLAR
SHEET	SHEET TITLE
G-001	COVER SHEET
G-002	GENERAL NOTES/ MODULE SPECIFICATION SHEETS
S-101	COMPONENT LAYOUT 1
S-102	COMPONENT LAYOUT 2
S-103	COMPONENT LAYOUT 3
S-201	ADDITIONAL POST SECTIONS & ELEVATIONS
S-301	RACK SECTION & BAY PLAN VIEWS
S-501	DETAILS

	SOLAR PHOTOVOLTAIC (PV) SYSTEM DESCRIPTION				
SYSTEM MOUNTING PLANE I.D. 1		MOUNTING PLANE I.D. 2	MOUNTING PLANE I.D. 3		
SYSTEM SIZE	1,300,750 kW	1,300,750 kW	1,301,520 kW		
MODULE	(4,730) TRINA SOLAR TSM-PD14 (275W)	(4,730) TRINA SOLAR TSM-PD14 (275W)	(4,488) TRINA SOLAR TSM-PD14 (290W)		
TILT ANGLE	30 DEGREES	30 DEGREES	30 DEGREES		
AZIMUTH	170 DEGREES	170 DEGREES	170 DEGREES		
RACKING	RBI RACKING	RBI RACKING	RBI RACKING		

ROCKY HILL SOLAR PROJECT

13 OLD FORGE ROAD ROCKY HILL, CT 06067

(550) 638-1028 www.solarcity.com

	Re	visions:		
	Rev	Date	Description	

PERMIT PLANS

JOB NO. 2150769

Date:	03.04.20
Scale:	AS SHO
Drawn By:	LEC
Reviewed By:	JSP
Checked By:	JSP
Approved By:	RGT

Drawing Title: COVER SHEET

Sheet Number:

DECORIDATION	EV/IOTIVIC	DD 0.5.5.5
DESCRIPTION CATCH BASIN	EXISTING	PROPOS
HYDRANT	III	
UTILITY POLE	~	
	O.	•
POLE-MOUNTED LIGHT FIXTURE	\$	
EDGE OF PAVEMENT		
EDGE OF UNPAVED ROAD		
LIMIT OF WORK		
OVERHEAD WIRE (ELECTRICAL)	——— G ———	
ELECTRICAL CONDUIT (SUBGRADE)	— Е —	—— Е –
RAILROAD	+++++	
STONE WALL	000000000	
RETAINING WALL		
FENCE		
INDIVIDUAL DECIDUOUS TREE	₩	\Box
INDIVIDUAL EVERGREEN TREE	*	*
EDGE OF WOODS/ CLEARING	Luuu	$\sim\sim$
DEBRIS / SOIL PILE / RUBBLE		
ELECTRIC METER		
SURVEY MARKER		
PROPERTY BOUNDARY		
MOUNTING PLANE LIMIT		
SPOT ELEVATIONS	x ⁴⁶	× ⁴⁶
CONTOUR LINES	46	
RESOURCE FLAG	⋈ TOB/BVW	
GUY WIRE	O -	
EROSION CONTROL MATTING		
RIP RAP	33222222	
SIGN	-	
BENCH MARK	•	
SEDIMENT/EROSION CONTROLS	·	•••
ROCK OUTCROP		
SEWER MANHOLE	S	•
MANHOLE (MH) FOR UNDERDRAIN SYSTEM	©	
DRAIN MANHOLE (DMH)	0	
UTILITY MANHOLE	0	
GROUND-MOUNTED SOLAR PV MODULES (ELECTRICALLY CONNECTED)		
OVERHEAD WIRE	OH	
BORDERED VEGETATED WETLAND BUFFER		
WETLAND FLAG	▲ WF	
IRON PIN	A VVF	

ABBREVIATIONS

±	MORE OR LESS

TYP TYPICAL

ACCMP ASPHALT COATED

CORRUGATED METAL PIPE

AC ALTERNATING CURRENT

DC DIRECT CURRENT

RCP REINFORCED CONCRETE PIPE

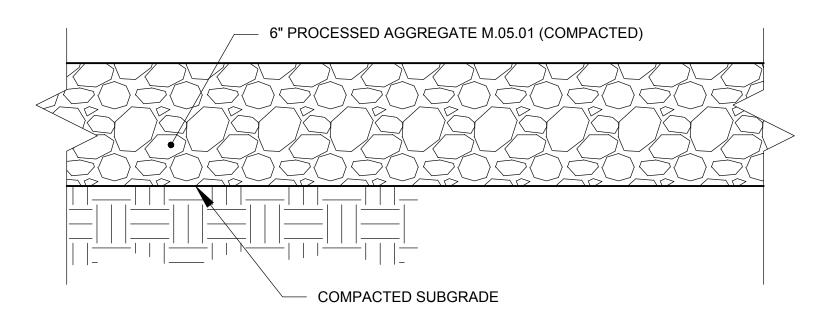
INV INVERT

FEU FLARED END UNIT

V/ WITH

WF #1 WETLAND FLAG

REC RECOVERED


CT CONNECTICUT

DEEP DEPARTMENT OF ENERGY AND ENVIRONMENTAL PROTECTION

NOW OR FORMERLY

CONSTRUCTION NOTES:

- 1. THE CONTRACTOR SHALL CALL BEFORE YOU DIG (CBYD) AT 811 OR 1-800-922-4455 AT LEAST 72 HOURS, SATURDAYS, SUNDAYS, AND HOLIDAYS EXCLUDED, PRIOR TO EXCAVATING AT ANY LOCATION. A COPY OF THE CALL BEFORE YOU DIG PROJECT REFERENCE NUMBER(S) SHALL BE GIVEN TO THE OWNER PRIOR TO EXCAVATION.
- 2. LOCATIONS OF EXISTING PIPES, CONDUITS, UTILITIES, FOUNDATIONS AND OTHER UNDERGROUND OBJECTS ARE NOT WARRANTED TO BE CORRECT AND THE CONTRACTOR SHALL HAVE NO CLAIM ON THAT ACCOUNT SHOULD THEY BE OTHER THAN SHOWN.
- 3. STONE WALLS, FENCES, CURBS, ETC. SHALL BE REMOVED AND REPLACED AS NECESSARY TO PERFORM THE WORK. UNLESS OTHERWISE INDICATED, ALL SUCH WORK SHALL BE INCIDENTAL TO CONSTRUCTION OF THE PROJECT.
- 4. ALL AREAS DISTURBED BY THE CONTRACTOR BEYOND PAYMENT LIMITS SHALL BE RESTORED AT NO ADDITIONAL COST TO THE OWNER.

GRAVEL DRIVEWAY

SCALE: N.T.S.

Project:

ROCKY HILL
SOLAR PROJECT

13 OLD FORGE ROAD ROCKY HILL, CT 06067

3055 Clearview Way San Mateo, CA 94402 (550) 638-1028 www.solarcity.com

Re	visions:	
Rev	Date	Description

PERMIT PLANS

JOB NO. 2150769

Date: 03.04.2016

Scale: AS SHOWN

Drawn By: LEC

Reviewed By: JSP

Checked By: JSP

Drawing Title:

ABBREVIATIONS, NOTES, LEGEND, AND DETAILS

Sheet Number:

G-1

GENERAL NOTES

ALL EROSION AND SEDIMENT CONTROL MEASURES SHALL BE PERFORMED IN ACCORDANCE WITH THE "CONNECTICUT GUIDELINES FOR SOIL EROSION AND SEDIMENT CONTROL" (MAY 2002). THE CONTRACTOR SHALL OWN AND MAINTAIN A COPY OF THE GUIDELINES ON-SITE DURING CONSTRUCTION.

ALL DISTURBED AREAS SHALL BE KEPT TO A MINIMUM. FINAL GRADING AND RESTORATION SHALL BE ACCOMPLISHED AS SOON AS PRACTICAL.

EROSION AND SEDIMENT CONTROL STRUCTURES SHALL BE INSTALLED PRIOR TO SITE WORK. IF IT IS NOT POSSIBLE TO DO SO, THE ENGINEER SHALL BE NOTIFIED IN ORDER TO MAINTAIN THE INTEGRITY OF DESIGN.

ALL CONTROL STRUCTURES SHALL BE MAINTAINED THROUGHOUT CONSTRUCTION AND REMOVED WHEN STABILIZATION HAS BEEN ATTAINED. IF THE PROPOSED CONTROL MEASURES ARE NOT SATISFACTORY, ADDITIONAL CONTROL MEASURES SHALL BE TAKEN.

ALL RUNOFF FROM THE DISTURBED AREA SHALL BE CONTROLLED AND FILTERED. NON-WOVEN SYNTHETIC FIBER FILTER FABRIC, STRAW BALES OR SILT SOCKS SHALL BE USED IN THE AREAS SHOWN ON THE SITE PLAN AND INSTALLED AS SHOWN ON THIS PLAN.

A CT DEEP GENERAL PERMIT FOR THE DISCHARGE OF STORMWATER AND DEWATERING WASTEWATERS FROM CONSTRUCTION ACTIVITIES WILL BE REQUIRED FOR THE PROPOSED PROJECT. THE CONTRACTOR SHALL BE RESPONSIBLE FOR IMPLEMENTATION AND COMPLIANCE WITH THE APPROVED STORMWATER POLLUTION CONTROL PLAN (SWPCP).

THE CONTRACTOR MUST OBTAIN COPIES OF THE ZONING, WETLANDS AND CTDEP STORMWATER PERMITS PRIOR TO THE START OF WORK.

THE CONTRACTOR SHALL BE RESPONSIBLE FOR IMPLEMENTATION OF SEDIMENT AND EROSION CONTROL MEASURES. THIS RESPONSIBILITY INCLUDES THE ACQUISITION OF MATERIALS, INSTALLATION, AND MAINTENANCE OF EROSION AND SEDIMENT STRUCTURES, THE COMMUNICATION AND DETAILED EXPLANATION TO ALL PEOPLE INVOLVED IN THE SITE WORK OF THE REQUIREMENTS AND OBJECTIVE OF THE EROSION AND SEDIMENT CONTROL MEASURES.

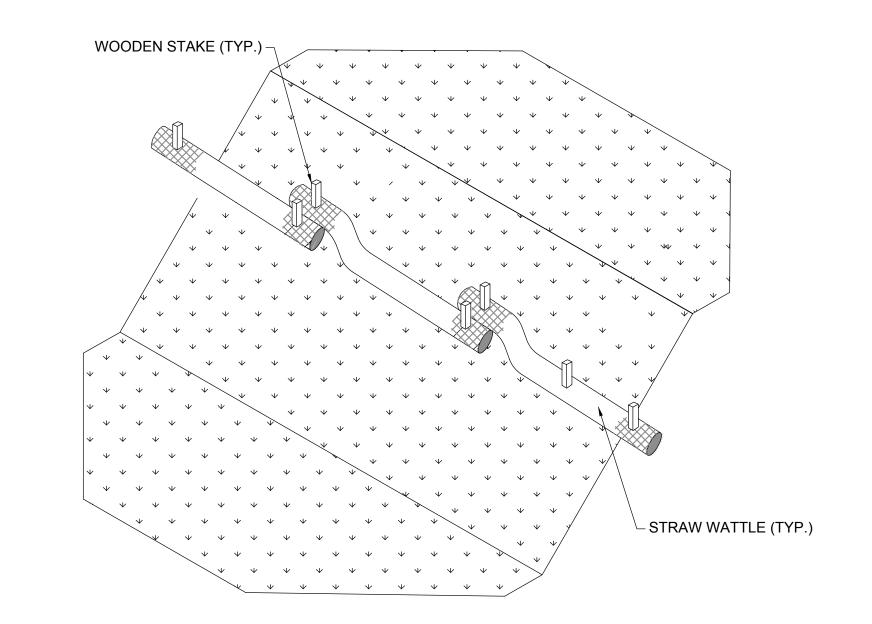
TWO (2) WEEKS PRIOR TO THE START OF WORK THE CONTRACTOR SHALL PROVIDE THE NAME AND PHONE NUMBER OF THE INDIVIDUAL RESPONSIBLE FOR IMPLEMENTATION OF THIS PLAN.

IN THE EVENT THE APPLICANT IS NOT OWNER OF THE PROPERTY, THE CURRENT OWNER SHALL HAVE ALL THE RESPONSIBILITIES LISTED IN THIS PARAGRAPH AND SHALL SUBMIT A WORKING PHONE NUMBER FOR CONTACT AT TIME OF APPLICATION FOR PERMITS. ANY CHANGE IN ENGINEER SHALL BE NOTED AT THIS TIME.

THE ENGINEER, WESTON & SAMPSON ENGINEERS, INC. (860-513-1473) #273 DIVIDEND ROAD, ROCKY HILL, CT, 06067 SHALL BE NOTIFIED OF ANY PROPOSED ALTERATION TO THE EROSION AND SEDIMENT CONTROL PLAN, PRIOR TO ALTERING, IN ORDER TO ENSURE THE FEASIBILITY OF THE ADDITION, SUBTRACTION, OR CHANGE IN THE PLAN.

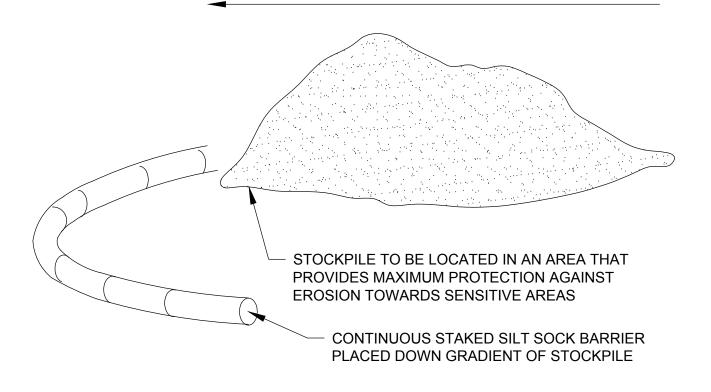
SEEDING WITHIN GROUND MOUNTED ARRAY AREA

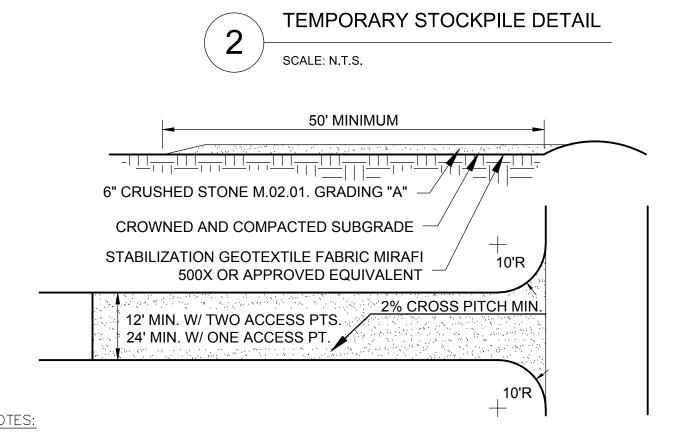
NEW ENGLAND SEMI-SHADE GRASS AND FORBS MIX - THE NEW ENGLAND SEMI-SHADE GRASS AND FORB MIX CONTAINS A BROAD SPECTRUM OF NATIVE GRASSES AND FORBS THAT WILL TOLERATE SEMI-SHADE AND EDGE CONDITIONS. ALWAYS APPLY ON CLEAN BARE SOIL. THE MIX MAY BE APPLIED BY HYDRO-SEEDING, BY MECHANICAL SPREADER, OR ON SMALL SITES IT CAN BE SPREAD BY HAND. LIGHTLY RAKE, OR ROLL TO ENSURE PROPER SEED TO SOIL CONTACT. BEST RESULTS ARE OBTAINED WITH A SPRING SEEDING. LATE SPRING AND EARLY SUMMER SEEDING WILL BENEFIT WITH A LIGHT MULCHING OF WEED-FREE STRAW TO CONSERVE MOISTURE. IF CONDITIONS ARE DRIER THAN USUAL, WATERING WILL BE REQUIRED. LATE FALL AND WINTER DORMANT SEEDING REQUIRE AN INCREASE IN THE SEEDING RATE. FERTILIZER OR LIMING IS PROHIBITED, UNLESS PRIOR APPROVAL BY THE LOCAL CONSERVATION COMMISSION IS OBTAINED. PREPARATION OF A CLEAN WEED FREE SEED BED IS NECESSARY FOR OPTIMAL RESULTS. APPLICATION RATE 30 POUNDS PER ACRE.


MAINTENANCE

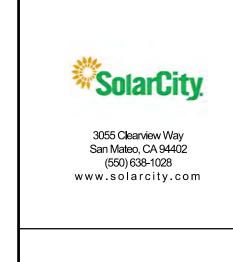
MAINTENANCE OF SEEDED AREAS SHALL BE THE SOLE RESPONSIBILITY OF CONTRACTOR AS DESCRIBED BELOW:

- A. CONTRACTOR SHALL MAINTAIN THE ENTIRE SEEDED AREAS UNTIL FINAL ACCEPTANCE AT THE COMPLETION OF THE PROJECT OR FOR 90 DAY, WHICHEVER IS LONGER. MAINTENANCE SHALL INCLUDE WATERING AS SPECIFIED, WEEDING, REMOVAL OF STONES WHICH MAY APPEAR AND REGULAR CUTTINGS OF THE GRASS NO CLOSER THAN 10 DAYS APART. THE FIRST CUTTING SHALL BE ACCOMPLISHED WHEN THE GRASS IS FROM 2-1/2 TO 3 INCHES HIGH. WEEKLY WATERING SHALL PROVIDE THE SEEDED AREAS WITH THE EQUIVALENT OF 1 INCH OF RAINFALL PER WEEK. IF THE SEEDED AREAS ARE WATERED BY NORMAL RAINFALL OR THE NORMAL WATERING IS INADEQUATE DUE TO WEATHER, THE CONTRACTOR MAY AT HIS/HER DISCRETION ELIMINATE OR INCREASE RESPECTIVELY, THE WATERING DURING A GIVEN WEEK. HOWEVER, SUCH ACTION BY CONTRACTOR SHALL IN NO WAY WAIVE CONTRACTOR'S RESPONSIBILITY FOR THE GROWTH AND HEALTH OF THE GRASS UNTIL FINAL ACCEPTANCE. CONTRACTOR SHALL FURNISH ALL TEMPORARY PIPE AND CONNECTIONS FOR SPRINKLING. CONTRACTOR SHALL FURNISH ALL REQUIRED WATER AT NO EXPENSE TO THE OWNER. GARDEN HOSE AND HAND SPRINKLING SHALL BE PERMITTED ONLY IN SPECIAL INSTANCES BY THE OWNER'S REPRESENTATIVE.
- B. ALL BARE SPOTS, WHICH BECOME APPARENT AS THE GRASS GERMINATES, SHALL BE RESEEDED BY CONTRACTOR AT ITS OWN EXPENSE AS MANY TIMES AS NECESSARY TO SECURE A GOOD GROWTH AND THE ENTIRE AREA SHALL BE MAINTAINED AND CUT UNTIL ALL WORK HAS BEEN COMPLETED AND FINAL ACCEPTANCE HAS OCCURRED.
- C. CONTRACTOR SHALL TAKE WHATEVER MEASURES ARE NECESSARY TO PROTECT THE GRASS WHILE IT IS GERMINATING. THESE MEASURES SHALL INCLUDE FURNISHING OF WARNING SIGNS, BARRIERS, TEMPORARY FENCE OR ANY OTHER NECESSARY MEASURES OF PROTECTION.
- D. CONTRACTOR SHALL FURNISH, PROTECT, AND MAINTAIN ALL TEMPORARY BARRIERS UNTIL FINAL ACCEPTANCE OF THE SEEDED AREAS BY THE OWNER AND SHALL REMOVE THEM UPON SUCH FINAL ACCEPTANCE, THE BARRIERS SHALL REMAIN THE PROPERTY OF CONTRACTOR AT ALL TIMES.


TEMPORARY EROSION CONTROL MEASURES:


- 1. EROSION CONTROL MEASURES SHALL BE IMPLEMENTED AS INDICATED ON THESE PLANS OR AS REQUIRED BY THE ON-SITE ENGINEER.
- 2. THE SMALLEST PRACTICAL AREA OF LAND SHALL BE EXPOSED AT ANY ONE TIME.
- 3. EROSION/SEDIMENT CONTROL MEASURES SHALL BE INSTALLED AS SHOWN ON PLANS. EROSION CONTROL BARRIERS ARE TO BE MAINTAINED AND CLEANED UNTIL ALL AREAS HAVE BEEN ADEQUATELY STABILIZED.
- 4. THE TEMPORARY AND PERMANENT STORMWATER CONTROLS SHALL BE PERIODICALLY CLEANED OF SEDIMENT, OR AS REQUIRED BY THE ENGINEER. THE SEDIMENT WILL BE REMOVED TO A SECURE LOCATION SO AS TO PREVENT SILTATION OF NATURAL WATER WAYS.
- 5. SILT SOCK FILLED WITH COMPOST MUST BE A MINIMUM TUBE DIAMETER OF 12 INCHES (300mm) FOR SLOPES UP TO 50 FEET (15.24m) IN LENGTH WITH A SLOPE RATIO OF 3H:1V OR STEEPER. LONGER SLOPES OF 3H:1V MAY REQUIRE LARGER TUBE DIAMETER OR ADDITIONAL COURSING OF FILTER TUBES TO CREATE A FILTER BERM. SILT SOCK TO BE MADE OF BIODEGRADABLE BURLAP. SILT SOCK TO BE SEDIMENT FILTERMITT OR APPROVED EQUAL. OTHER REFER TO MANUFACTURER'S RECOMMENDATIONS FOR INSTALLATION INSTRUCTIONS.
- 6. INSTALL SOCK ALONG CONTOURS AND PERPENDICULAR TO SHEET OR CONCENTRATED FLOW.
- 7. CONFIGURE SOCKS AROUND EXISTING SITE FEATURES TO MINIMIZE SITE DISTURBANCE AND MAXIMIZE CAPTURE AREA OF STORMWATER RUN-OFF.
- 8. DISTURBED AREAS SHALL BE SEEDED IMMEDIATELY OR AS SOON AS PRACTICABLE.
- 9. EROSION CONTROL MEASURES SHALL BE REMOVED WHEN DISTURBED AREA IS STABILIZED. DISTURBED AREA RESULTING FROM THE MEASURE REMOVAL OPERATION SHALL BE SEEDED IN ACCORDANCE WITH THE SPECIFICATIONS.
- 10. A CHECK LIST (PROVIDED BY THE ENGINEER) SHALL BE FILLED OUT BY THE CONTRACTOR EVERY WEEK OR AFTER EACH RAINFALL EVENT OF 1/2" OR GREATER AS NOTED ABOVE.
- 11. STRIP AND STOCKPILE TOPSOIL WITHIN THE LIMITS OF THE PROPOSED DEVELOPMENT. PROTECT STOCKPILE PERIMETER WITH EROSION CONTROLS. LOCATE STOCKPILES WHERE INDICATED ON PLANS. TREE STUMPS SHALL EITHER BE REMOVED OR CHIPPED IN PLACE.
- 12. CUT TREES WITHIN THE DEFINED CLEARING LIMITS AND REMOVE CUT WOOD. CHIP BRUSH AND SLASH, STOCKPILE CHIPS FOR USE ONSITE OR REMOVE OFF-SITE.

LONG AXIS OF STOCKPILE TO BE PERPENDICULAR TO CONTOUR


- 1. STABILIZATION FABRIC SHALL BE PLACED OVER THE ENTIRE ENTRANCE AREA PRIOR TO PLACING OF STONE. OVERLAP FABRIC PER MANUFACTURER'S SPECIFICATIONS.
- 2. ALL SURFACE WATER FLOWING OR DIVERTED TOWARDS THE CONSTRUCTION ENTRANCE SHALL BE PIPED BENEATH THE ENTRANCE ROAD.
- 3. WHEN EQUIPMENT WASHING IS REQUIRED IT SHALL BE DONE ON A SEPARATE AREA ADJACENT TO THE ENTRANCE ROAD AND STABILIZED WITH STONE. EQUIPMENT WASHING WILL BE REQUIRED IF ROAD RECEIVES SIGNIFICANT SOILS OR DEBRIS ACCORDING TO JUDGMENT BY OWNER OR OWNER'S REPRESENTATIVE.
- 4. KEEP ROADS CLEAR OF STONES, MUD, AND OTHER CONSTRUCTION DEBRIS. CLEAN PAVEMENT AS ACCUMULATIONS WARRANT AND AS ORDERED BY ENGINEER.
- 5. REMOVE SILT ACCUMULATIONS ROUTINELY AND DISPOSE OF PROPERLY SUCH THAT WATER QUALITY IS NOT IMPAIRED. DO NOT INTRODUCE SILT INTO DRAINAGE SYSTEM OR TOPSOIL/RESTORATION AREAS.

13 OLD FORGE ROAD ROCKY HILL, CT 06067

273 Dividend Road Rocky Hill, Connecticut (860) 513-1483 (800) Sampson www.westonandsampson.com

Re	visions:	
Rev	Date	Description
Se	al:	•

PERMIT PLANS
JOB NO. 2150769

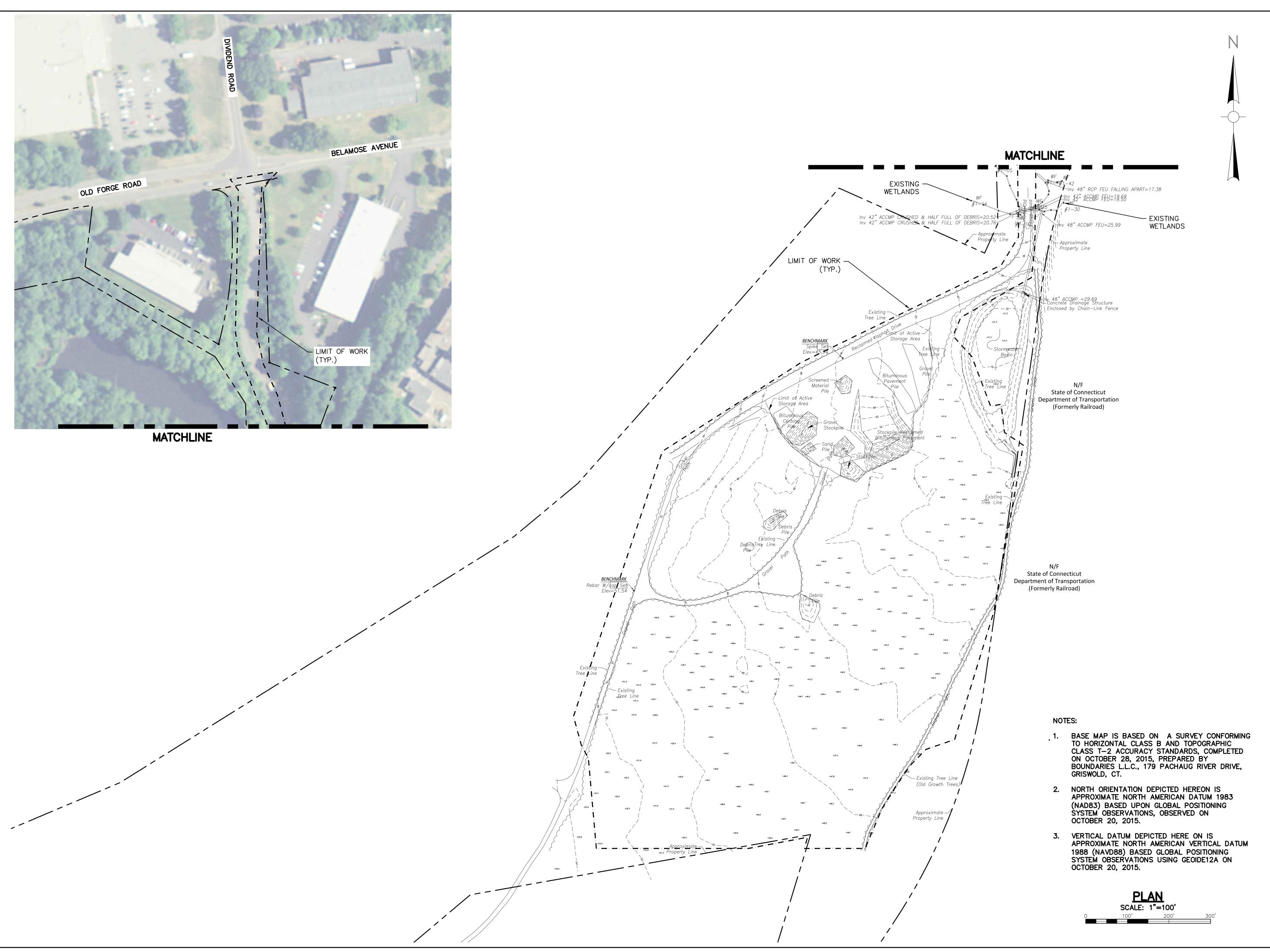
03.04.2016

Scale: AS SHOWN

Drawn By: LEC

Reviewed By: JSP

Checked By: JSP


Approved By: DCH

Drawing Title:

DETAILS

Sheet Number:

D-1

ROCKY HILL SOLAR PROJECT

13 OLD FORGE ROAD ROCKY HILL, CT 06067

> 3055 Clearview Way San Mateo, CA 94402 (550) 638-1028 www.solarcity.com

Veston&Sampson

273 Dividend Road Rocky Hill, Connecticut (860) 513-1483 (800) Sampson www.westonandsampson.com

Cincinnati, OH 45217 (513) 618-2183

Revisions:

Rev Date Description

PERMIT PLANS

JOB NO. 2150769

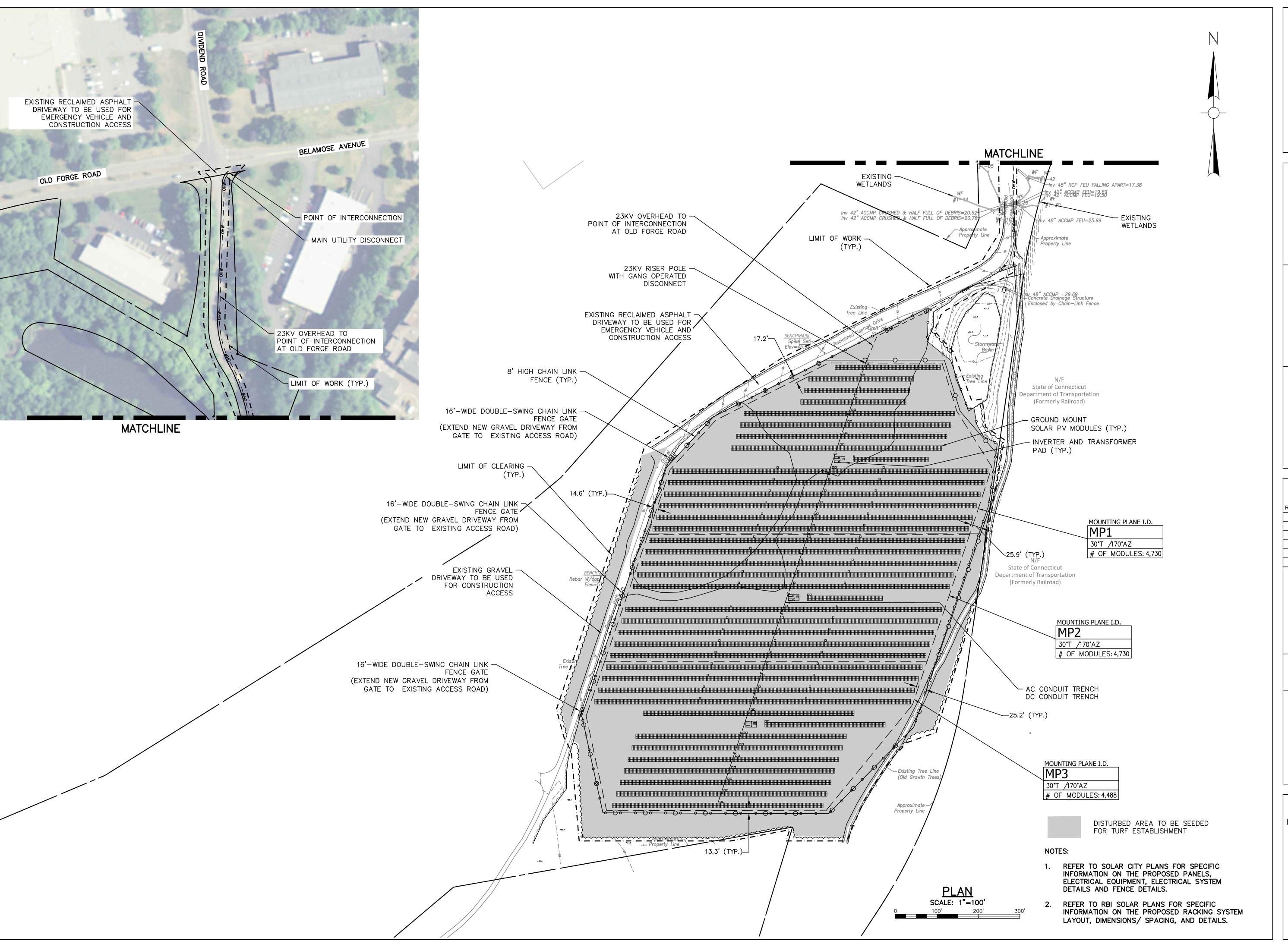
Date: 03.04.2016

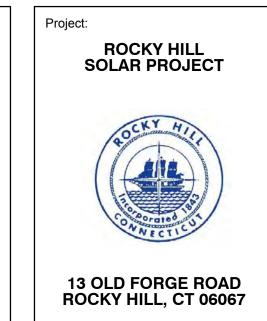
Scale: 1"=100'

Drawn By: LEC

Reviewed By: LEC

Checked By: JSP


Approved By: RGT


Drawing Title:

EXISTING CONDITIONS

Sheet Number:

C-1

3055 Clearview Way San Mateo, CA 94402 (550) 638-1028 www.solarcity.com

273 Dividend Road Rocky Hill, Connecticut

Rev Date Description

Seal:

PERMIT PLANS

JOB NO. 2150769

Date: 03.04.2016

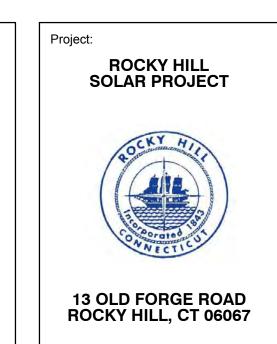
Scale: 1"=100'

Drawn By: LEC

Reviewed By: LEC

Checked By: JSP

Approved By: RGT


Drawing Title:

LAYOUT PLAN

Sheet Number:

C-2

3055 Clearview Way San Mateo, CA 94402 (550) 638-1028 www.solarcity.com

Peston&son

273 Dividend Road Rocky Hill, Connecticut (860) 513-1483 (800) Sampson www.westonandsampson.com

Rev Date Description

Seal:

PERMIT PLANS

JOB NO. 2150769

Date: 03.04.2016

Scale: 1"=100'

Drawn By: LEC

Reviewed By: LEC

Checked By: JSP

Approved By: RGT

Drawing Title:

SEDIMENTATION AND EROSION CONTROL PLAN

Sheet Number:

C-3

Site Boundary

Existing Access Drive

Existing Materials Pile

10' Contour Line

2' Contour Line

X=X= Proposed Fenced Facility (+/-19 acres)

**** Existing Treeline/Clearing Limit

Map Notes: Base Map Source: 2012 Aerial Photograph (CTECO) Map Scale:1 Inch = 400 feet Map Date: February 2016

Project Area - Limit of Proposed Work (+/-24 acres)

Start/End Wetland Flag


Delineated Wetland Boundary

Wetland Area

CTDEEP Watercourse

CTDEEP Waterbody

Approximate Assessor Parcel Boundary (CTDEEP)

Existing Conditions Map

Proposed Solar PV Facility Town of Rocky Hill Old Forge Road Rocky Hill, Connecticut

Site Boundary

Existing Access Drive

X=X= Proposed Fenced Facility (+/-19 acres)

Proposed Overhead Wire

Proposed Underground Trench

Existing Treeline/Clearing Limit

Proposed Solar Module Proposed Electrical

Map Notes: Base Map Source: 2012 Aerial Photograph (CTECO) Map Scale:1 inch = 500 feet Map Date: February 2016

Disturbed Area to be Seeded for Turf Establishment (+/-21 acres)

Limits of Orange Construction Fencing

CTDEEP Watercourse

CTDEEP Waterbody

Delineated Wetland Boundary

Wetland Area

Approximate Assessor Parcel Boundary (CTDEEP) Municipal Boundary

Proposed Conditions Map

Proposed Solar PV Facility Town of Rocky Hill Old Forge Road Rocky Hill, Connecticut

Town of Rocky Hill Property Summary Report

R013 OLD FORGE ROAD

PARCEL ID: 18-093 ACCOUNT NUMBER: 007408

LOCATION: R013 OLD FORGE ROAD

OWNER NAME: ROCKY HILL TOWN OF

18-093-001 11/04/2012

OWNER OF RECORD

ROCKY HILL TOWN OF

761 OLD MAIN STREET

ROCKY HILL, CT 06067-1517

LI	VING AREA:	null	ZONING:	OP	ACREAGE:	61.38	ĺ
----	------------	------	---------	----	----------	-------	---

SALES HISTORY									
OWNER	BOOK / PAGE	SALE DATE	SALE PRICE						
ROCKY HILL TOWN OF	283/ 207	30-Aug-1994	\$0.00						

CURRENT PARCEL VALUE									
TOTAL:	\$129,640.00	IMPROVEMENTS:	\$0.00	LAND:	\$129,640.00				

ASSESSING HISTORY								
FISCAL YEAR	TOTAL VALUE	IMPROVEMENT VALUE	LAND VALUE					
2014	\$129,640.00	\$0.00	\$129,640.00					
2013	\$129,640.00	\$0.00	\$129,640.00					
2012	\$1,760,430.00	\$0.00	\$1,760,430.00					
2011	\$1,760,430.00	\$0.00	\$1,760,430.00					
2010	\$1,760,430.00	\$0.00	\$1,760,430.00					
2009	\$1,760,430.00	\$0.00	\$1,760,430.00					
2008	\$490,000.00	\$0.00	\$490,000.00					
2007	\$306,250.00	\$0.00	\$306,250.00					
2006	\$306,250.00	\$0.00	\$306,250.00					

Preliminary Archeological Assessment with Historic Maps, Soil Map, and Site Photographs

INTEGRATED HISTORIC PRESERVATION PLANNING

February 23, 2016

Ms. Nicole Castro All-Points Technology Corporation 3 Saddlebrook Drive Killingworth, Connecticut 06419

RE: Preliminary Archeological Assessment of a Proposed Solar Power Generation Facility Located Along Old Forge Road in Rocky Hill, Connecticut

Ms. Castro:

Heritage Consultants, LLC, is pleased to have this opportunity to provide All-Points Technology Corporation with the following preliminary archeological assessment of a proposed solar power generation facility located along Old Forge Road in Rocky Hill, Connecticut (Figure 1). The facility will contain a single large solar array with panels extending from ca., 6.5 ft above the ground surface. The current project entailed completion of an existing conditions cultural resources summary based on the examination of GIS data obtained from the Connecticut State Historic Preservation Office, as well as historical data, aerial photographs, and topographic quadrangles maintained by Heritage Consultants, LLC. This investigation is based upon project location information provided to Heritage Consultants, LLC by All-Points Technology Corporation. The objectives of this study were to gather and present data regarding previously identified cultural resources situated within 1.6 km (1 mi) of the proposed solar power generation facility and to investigate the Area of Potential Effect (APE) in terms of its natural and historical characteristics so that the need for completing additional cultural resources investigations could be evaluated.

Figures 2 and 3 show that although there was a developed road network and a rail line in the project region by the mid to late nineteenth century, the area encompassing the proposed solar power generation consisted largely an outlying parcel of land. However, there were two mills adjacent to the western border of the APE. They included the Bulkeley Corn Mill and the Billings Manufacturing Company. Both were powered by large mill ponds that are located adjacent to the western corner of the proposed project parcel. This interpretation is confirmed by Figure 4, an aerial image dating from 1934, which shows that the proposed solar array areas was situated within a forested area situated adjacent to two mill ponds. Figure 5, which is an aerial image taken in 1951, documents that no large scale changes had occurred in immediate vicinity of the proposed solar power generation facility as of the middle of the twentieth century; the area remained largely forested and undeveloped. Figure 6, an aerial image captured in 1962, shows large scale changes to the proposed project area, including massive sand and gravel operation that disturbed the northern third of the APE. Figure 7, an aerial image taken just eight years later in 1970, shows that the sand and gravel operation had been expanded throughout most of the proposed project area, resulting in massive disturbance of the soils therein. The subsequent aerial image, Figure 8, was taken in 1997, and it demonstrates that the entirety of the APE has been impacted by the removal of sand and gravel. This final aerial image show the APE in 2014, by which time some areas had been covered in scrub brush and was being used by the town for dumping construction debris and brush (Figure 9). The Nicole Castro February 23, 2016 Page 2

level of disturbance described above is confirmed by soil mapping of the APE, which shows that the vast majority of the area consists of Udorthent soils (Figure 10). These soils result from grading, smoothing, cutting, and filling operations. They retain no potential to yield intact archaeological deposits.

A review of previously recorded cultural resources on file with the Connecticut State Historic Preservation Office revealed that while no National Register of Historic Places properties have been identified within 1.6 km (1 mi) of the proposed solar power generation facility, the Dividend Brook Industrial Archaeological District is situated to the west of the APE (Figures 11 and 12). This district contains Sites 119-13, 119-14, 119-16, and 119-17. As mentioned above, these sites and landscape features include the Bulkeley Corn Mill and the Billings Manufacturing Company building; they also consist of a large stone dam that holds back the mill pond for these facilities, as well as an adjacent raceway and a second mill pond to the north. All of these items are significant from an archaeological perspective; however, the border of the Dividend Brook Industrial Archaeological District as it has been reproduced from the official State of Connecticut Site form in Figure 12 is in error. Figure 12 shows the district as overlapping with the APE. This overlap should be changed to follow the western and northwestern border of the proposed project area since the area it now encompasses in the northeast has been disturbed and contains no historic features.

A pedestrian survey of the proposed project parcel was completed on February 23, 2016 (Photos 1 through 10). The results of this effort confirmed the disturbed nature of the APE. The pedestrian survey also was conducted to assess the views from the APE toward the archaeological district and vice versa in order to determine whether or not the proposed project would have a visual impact on the Dividend Brook Industrial Archaeological District. As seen in Photo 2 the features associated with the Dividend Brook Industrial Archaeological District are not visible from the proposed project area due to the presence of a dense treeline, which will remain in place after construction of the solar facility. In addition, the APE could not be seen from the above ground features associated with the Dividend Brook Industrial Archaeological District due to the presence of the above-referenced treeline, as well as the lower topography in the vicinity of the historic building locations.

In sum, the proposed project area has been thoroughly disturbed and no longer possesses any potential to yield intact archaeological deposits. In addition, the proposed construction project will not result in any impacts to the viewshed of the Dividend Brook Industrial Archaeological District. As a result, it is the professional opinion of Heritage Consultants, LLC that no additional archaeological investigation of the APE is required prior to construction. If you have any questions regarding this Technical Memorandum, or if we may be of additional assistance with this or any other projects you may have, please do not hesitate to call us at 860-667-3001 or email me dgeorge@heritage-consultants.com. We are at your service.

Sincerely,

David R. George, M.A., R.P.A Heritage Consultants, LLC

Deul R. Hurge

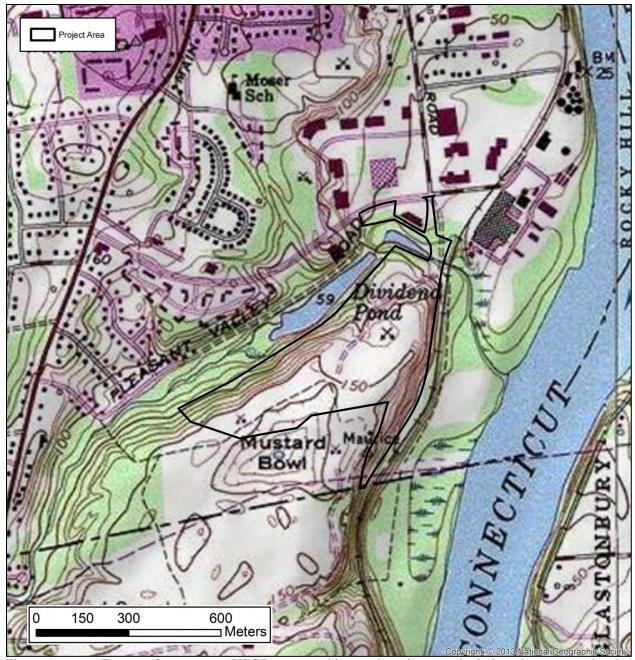


Figure 1. Excerpt from recent USGS topographic quadrangle map depicting the proposed solar system in Rocky Hill, Connecticut.

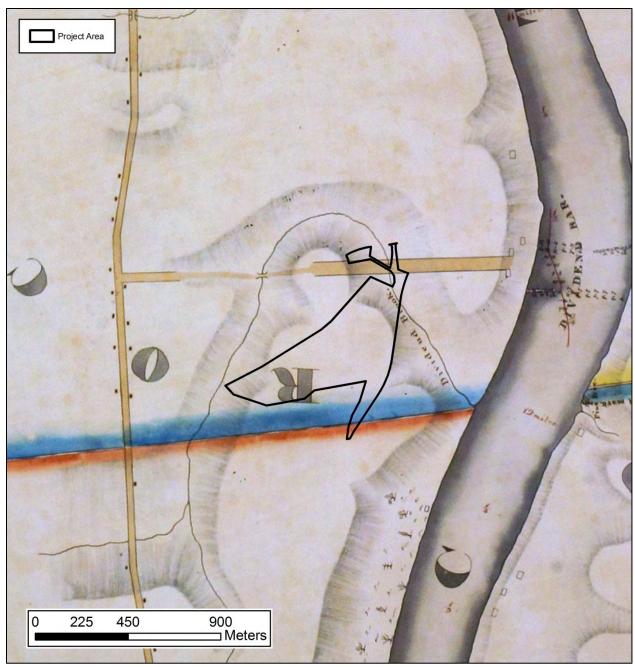


Figure 2. Excerpt from a 1846 historic map depicting the proposed solar system in Rocky Hill, Connecticut.

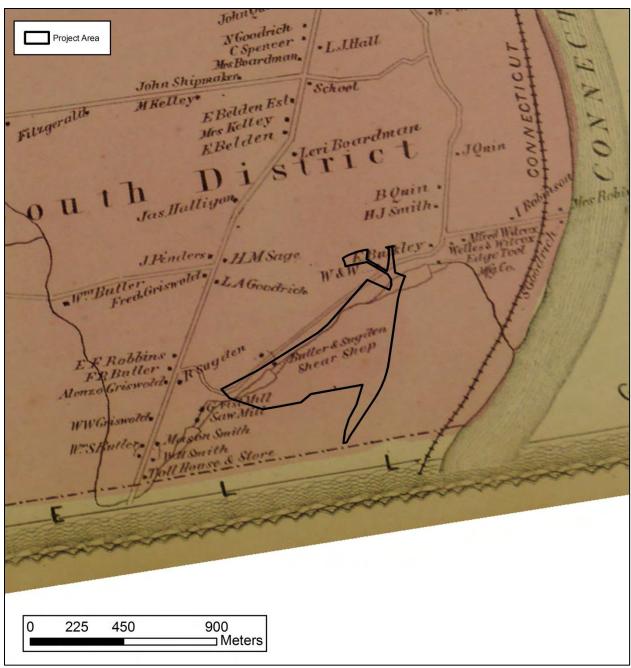


Figure 3. Excerpt from an 1869 historic map depicting the proposed solar system in Rocky Hill, Connecticut.

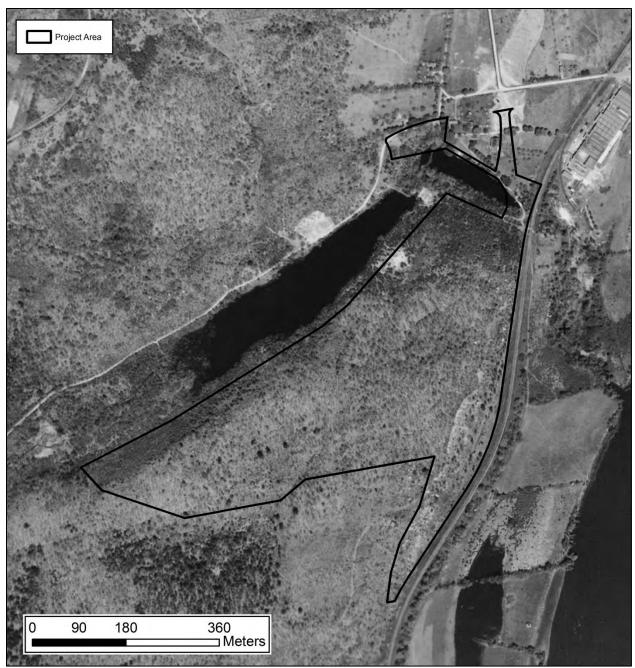


Figure 4. Excerpt from a 1934 aerial image depicting the proposed solar system in Rocky Hill, Connecticut.

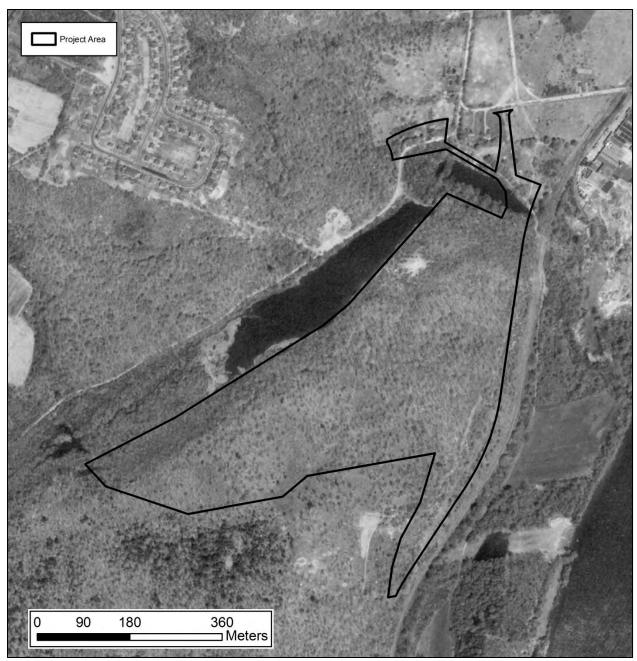


Figure 5. Excerpt from a 1951 aerial image depicting the proposed solar system in Rocky Hill, Connecticut.

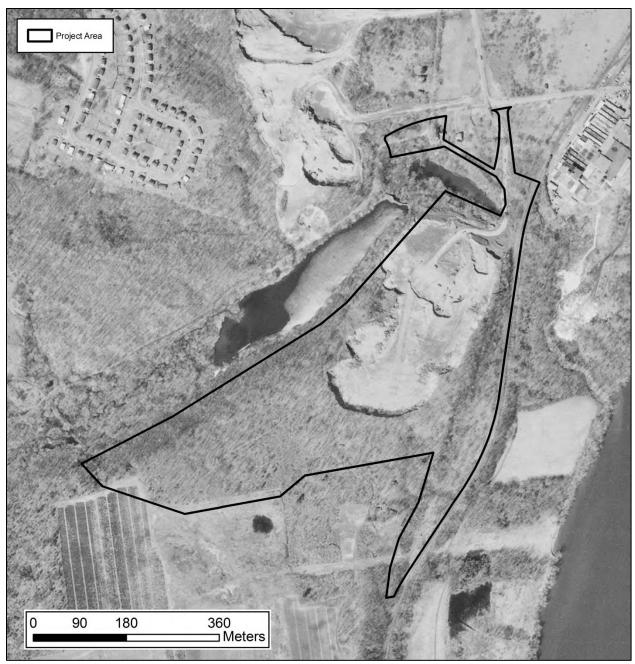


Figure 6. Excerpt from a 1962 aerial image depicting the proposed solar system in Rocky Hill, Connecticut.

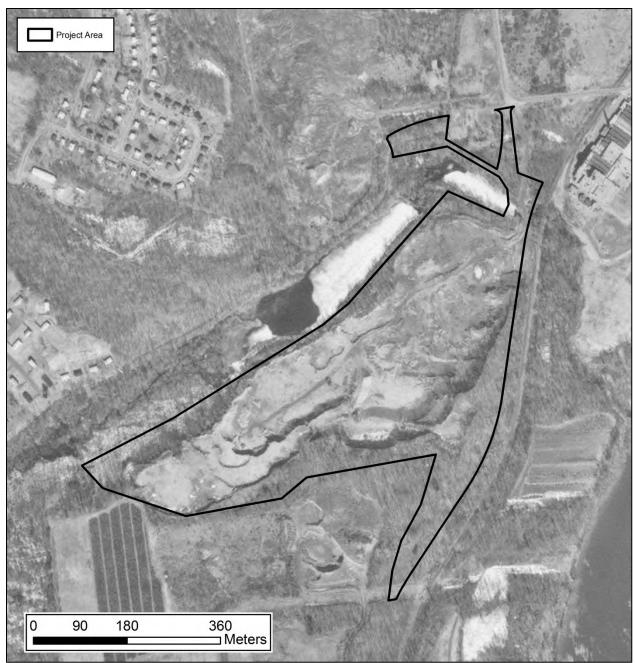


Figure 7. Excerpt from a 1970 aerial image depicting the proposed solar system in Rocky Hill, Connecticut.

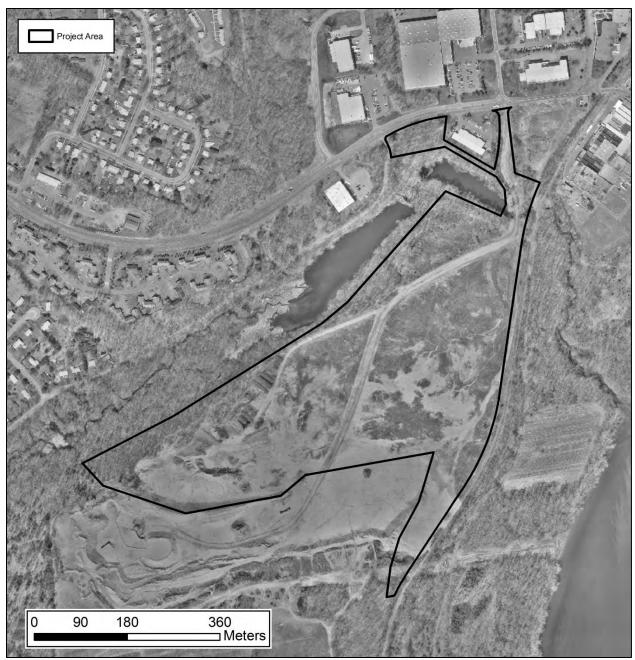


Figure 8. Excerpt from a 1997 aerial image depicting the proposed solar system in Rocky Hill, Connecticut.

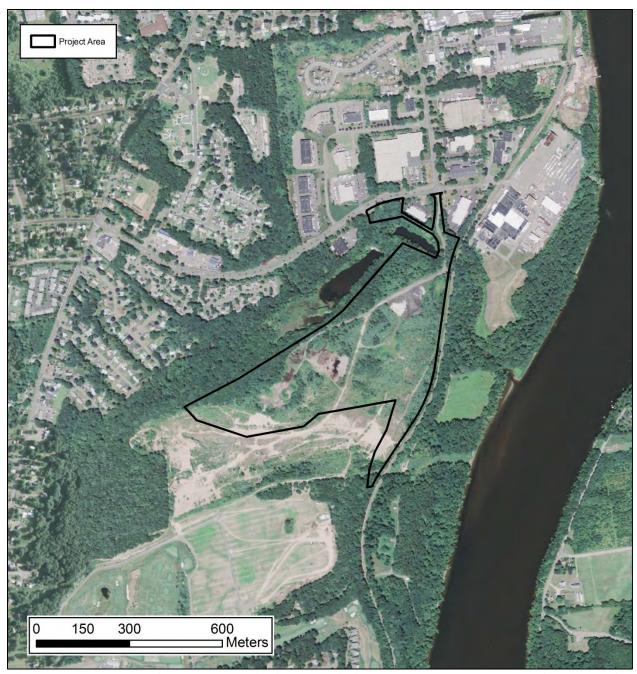


Figure 9. Excerpt from a 2014 aerial image depicting the proposed solar system in Rocky Hill, Connecticut.

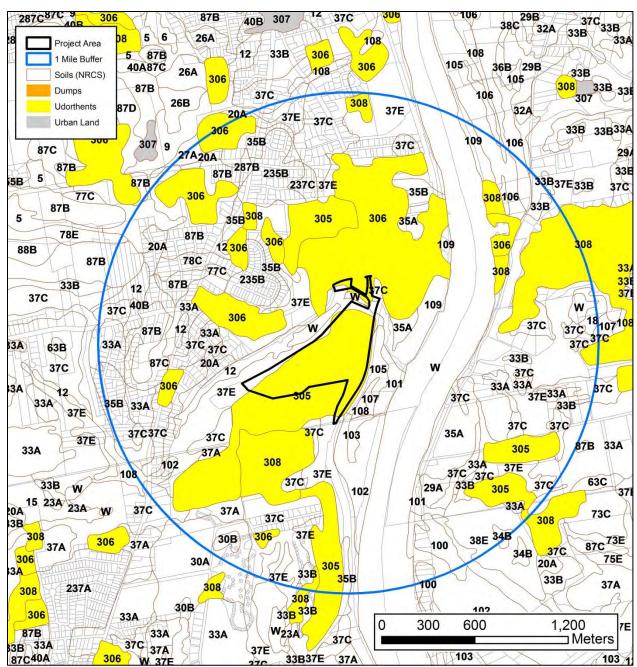


Figure 10. Digital map depicting the various soil types situated throughout the area of the proposed solar system in Rocky Hill, Connecticut (note soil code 305 consists of Udorthent soils associated with areas that have been substantially mined and disturbed).

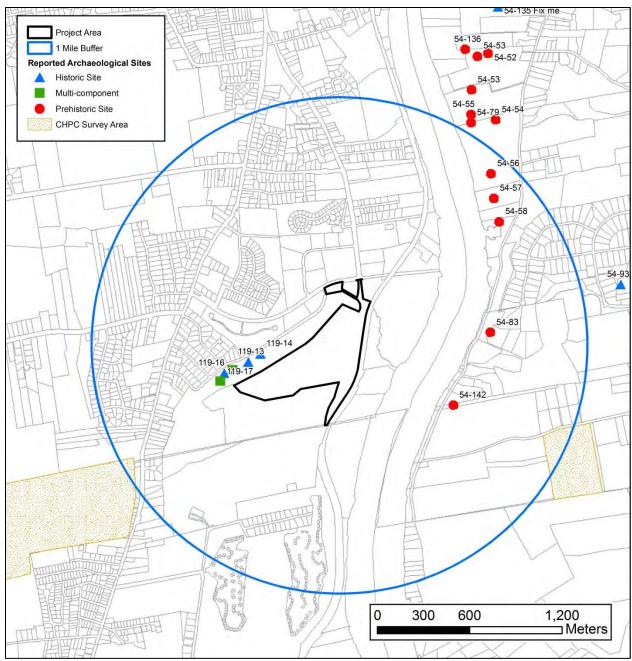


Figure 11. Digital map depicting the locations of previously recorded archaeological sites in the vicinity of the proposed solar system in Rocky Hill, Connecticut.

Figure 12. Digital map depicting the locations of previously National Register of Historic Places properties in the vicinity of the proposed solar system in Rocky Hill, Connecticut.

Figure 13. Aerial view of the proposed project area depicting the location and direction of each the following photographs.

Photo 1. Overview photo of the proposed tower location facing southwest.

Photo 2. Overview photo of the Dividend Brook Industrial Archaeological District facing southwest from the proposed project area.

Photo 3. Overview photo of the north central portion of the proposed project area location facing south.

Photo 4. Overview photo of the south central portion of the proposed project area facing south.

Photo 5. Overview photo of the southeastern portion of the proposed project area facing southeast.

Photo 6. Overview photo of the east central portion of the proposed project area facing east.

Photo 7. Overview photo of the north central portion of the proposed project area facing southeast facing north.

Photo 8. Overview photo from the proposed tower location facing east.

Photo 9. Overview photo of the Dividend Brook Industrial Archaeological District facing southeast toward the proposed project area (note that the project area is not visible from the district).

Photo 10. Overview photo of the eastern portion of the Dividend Brook Industrial Archaeological District facing southeast toward the proposed project area (note that the project area is not visible from the district).

APPENDIX E Construction Schedule

Construction Schedule for Rocky Hill Solar Array

	Prerequisites to												
Activity	Construction	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Siting Council Approval	X												
Rocky Hill Building/Electrical Permits	Х												
State Permits	X												
Remove Brush and Trees		Χ	Χ										
Establish Erosion Control			Χ	Χ									
Site Grading			Χ	Х	Χ	Х	Χ						
Install Racking and Solar Panels					Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	
Install Utility Equipment									Χ	Χ	Х		
Install Perimeter Fence										Χ	Х	Х	
Local Inspections													Х

APPENDIX F Construction Work Hours/Days Letter

3/17/2016

Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Solar Application, RO13, Rocky Hill, CT 06051

Work Hours at Site

To Whom It May Concern:

The following work schedule will be maintained during the construction of the Rocky Hill solar arrays:

Working hours will be 7am-7pm, 6 days a week, Monday thru Saturday.

Best regards,

Kevin Angers Project Manager SolarCity

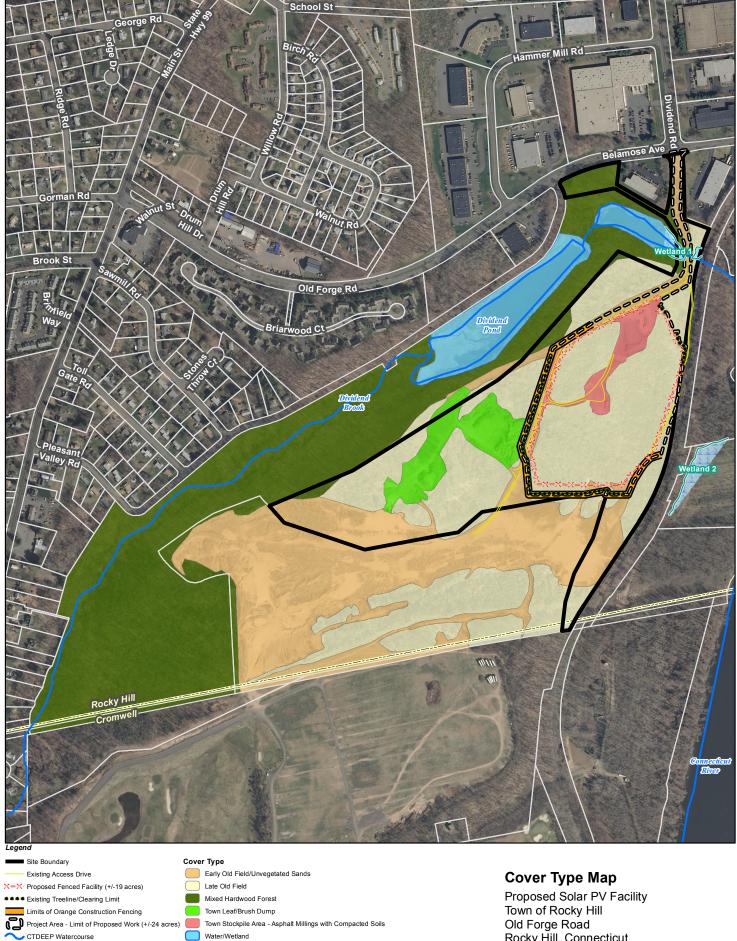
APPENDIX G Big Sand Tiger Beetle Protection Plan

BIG SAND TIGER BEETLE PROTECTION PLAN

Due to the Project Area's proximity to optimal tiger beetle habitat (i.e., unvegetated sands), a comprehensive protection plan is proposed to avoid unintentional impact to this species during construction of the proposed facility. The Big Sand Tiger Beetle Protection Plan consists of various types of protection measures including protection of nearby "Early Old Field/Unvegetated Sands" habitat areas with installation of a restrictive barrier along the southern and western peripheries of the Project Areas, and implementation of contractor awareness training and environmental monitoring measures.

It is of the utmost importance that the Contractor complies with the Big Sand Tiger Beetle Protection Plan requirements for the implementation of protective measures and the education of its employees and subcontractors performing work within the Project Area. This protection program shall be implemented regardless of the time of year construction activities occur. All-Points Technology Corporation, P.C. ("APT") will serve as the Project Environmental Monitor for this project to ensure that the Big Sand Tiger Beetle Protection Plan is implemented properly. The Contractor shall contact Matthew Gustafson, Environmental Scientist at APT, at least five (5) business days prior to the pre-construction meeting. Mr. Gustafson can be reached by telephone at (860) 663-1697 ext. 202 or via email at mgustafson@allpointstech.com.

1. Early Old Field/Unvegetated Sands Protection Measures


a. The limits of the Project Area shall be isolated from the majority of the Early Old Field/Unvegetated Sands located to the south and west through installation of orange construction fencing (limits depicted on Proposed Conditions Map provided in Attachment 1). The Contractor shall install orange construction fencing around the identified portion of the Project Area to isolate construction activities from potential encroachment into Early Old Field/Unvegetated Sands habitats throughout the duration of the construction project. APT will inspect the orange fencing installation prior to any construction activities or equipment mobilization to the Project Area. This isolation fencing shall be inspected daily by the Contractor to ensure that it is maintained in good condition. The Contractor shall repair any within 24 damaged fencing hours. No work, stockpiling/staging materials/vehicles/equipment, transport of vehicles, or work of any kind shall occur west or south of the orange construction fencing isolation barrier limits.

2. Contractor Awareness Training

- a. Prior to work on site and initial deployment/mobilization of equipment and materials, the Contractor shall attend an educational session at the pre-construction meeting with the Project Environmental Monitor. This orientation and educational session will consist of information on the Big Sand Tiger Beetle (*Cicindela Formosa generosa*) and the associated Early Old Field/Unvegetated Sands habitat areas and the need to follow protective measures as described herein.
- b. The Contractor will be provided cell phone and email contacts for APT Environmental Monitoring staff to immediately report any encounters with Big Sand Tiger Beetle. Poster materials (example provided in Attachment 2) will be provided by APT to the Contractor for posting on the job site to maintain worker awareness, along with any visitors, to the sensitive environmental nature of the job site.

3. Monitoring and Reporting

- a. Any observations of tiger beetles by the Contractor shall be immediately reported to APT.
- b. APT will provide periodic inspections of the isolation fencing throughout the duration of construction activities.
- c. Daily Compliance Monitoring Reports (brief narrative and applicable photos) will be prepared for any inspections performed by APT and submitted to SolarCity for compliance verification. Any observations of tiger beetles will be included in the reports.
- d. Following completion of the construction project, APT will provide a Compliance Monitoring Summary Report to SolarCity documenting the monitoring and maintenance of the barrier fence and erosion control measures and any turtle observations. SolarCity will provide a copy of the Compliance Monitoring Summary Report to the Connecticut Siting Council for compliance verification.
- e. Any observations of Big Sand Tiger Beetle will be reported to CTDEEP by APT, with photo-documentation (if possible) and with specific information on the location and disposition of the insect.

Municipal Boundary

Approximate Assessor Parcel Boundary (CTDEEP)

Delineated Wetland Boundary

Wetland Area

Rocky Hill, Connecticut

CAUTION

BIG SAND TIGER BEETLE ARE KNOWN TO INHABIT THIS AREA

Identification: Big Sand Tiger Beetle (*Cicindela Formosa generosa*) or "tiger beetle" is an invertebrate with usually shiny metallic bronze, blue, green, purple or orange body ranging from 10 - 21 mm. They are generally fast runners with long legs and long antennae that arise from the top of the head. Most are diurnal (daytime), sun loving species found in blowouts dunes, and other fin sparely vegetated sands. This sandy habitat is located on the southern and western peripheries of the Project Area, and extends outside the Project Area to the south and southwest.

What to do if you find a tiger beetle: Tiger beetles are protected by Connecticut's threatened and endangered species legislation and <u>cannot</u> be injured, killed, or retained as a specimen. If you find a tiger turtle, work shall be suspended in that area of the project. The tiger beetle should not be moved or disturbed in any manner as it is possible its burrow is close by (with the additional likelihood of other tiger beetle burrows in close proximity). The Project Environmental Monitor (listed below) should be immediately contacted, who will help assist in how to properly proceed.

Who to contact: Please report any observations of tiger beetle immediately to Matt Gustafson of All-Points Technology Corp., P.C. at (860) 617-0613.

APPENDIX H Aquifer Protection Plan

ENVIRONMENTAL NOTES

Gardiner Expansion APA No. 67 Aquifer Protection Area

The 3.9 megawatt ("MG") solar based electric generating facility ("Project") proposed by SolarCity at 13 Old Forge Road in Rocky Hill, Connecticut is located within the Gardiner Expansion Aquifer Protection Area No. 67 ("APA").

The following precautions, protective measures, monitoring and notifications to protect this important resource shall be implemented during construction of the facility.

Contractor Environmental Awareness Training & Notification

The Rocky Hill Aquifer Protection Agency will be noticed at least 48 hours in advance of a preconstruction meeting with an invitation to attend. During the Project's pre-construction meeting, the contractor will be made aware of the special protective precautions noted above that are required due to the Project's location in the APA.

Prior to work on site, the Contractor shall attend an environmental awareness training session at the pre-construction meeting with All-Points Technology Corporation, P.C. ("APT"). This orientation and educational session will consist of an introductory meeting with APT stressing the environmentally sensitive nature of the Project due to its location within the APA. Caution poster materials will be provided by APT and displayed on the job site to maintain worker awareness as the project progresses.

Best Management Practices for Water Quality

The SolarCity construction Project will follow an approved soil erosion and sedimentation control plan designed in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control. The installed erosion devices will be inspected periodically throughout the construction period, with a focus on after significant rainfall events (e.g., greater than one quarter inch over a 24-hour period) to ensure that proper precautions are taken to avoid the release of sediment into nearby resource areas. In addition to the site contractor being responsible for the proper installation and daily inspection of erosion and sedimentation ("E&S") controls, staff from APT will periodically inspect E&S controls and document their conditions and recommend any actions necessary to bring the controls back into compliance. The E&S controls and inspection protocols will protect water quality within the APT. A summary report of APT's compliance monitoring inspections will be submitted to the Connecticut Siting Council following completion of construction. Any incidents of significant release of sediment will be immediately reported to the Connecticut Siting Council. In addition, Town of Rocky Hill staff will be allowed access to the Project during construction for periodic field inspections should they desire.

E&S control items subject to inspection include, but are not limited to the following:

- Construction Entrance Pad
- Sediment/ Detention Basins
- Catch Basin Silt Socks
- Seeding & Mulching
- Drainage Swale Check Dams
- Sediment Traps
- Temporary Soil Stockpile Areas
- Silt Fencing/Straw Bales/Straw Wattles/Compost Filter Socks
- Drainage Swales
- Other Site-Specific Erosion Control Devices

Petroleum/Hazardous Materials Storage and Spill Prevention Plan

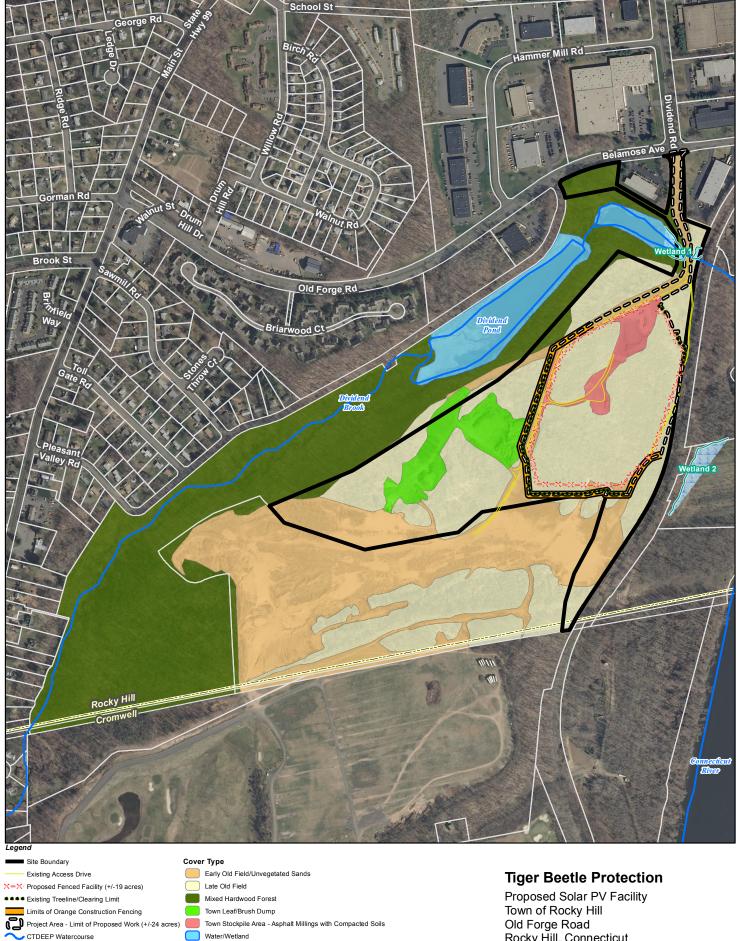
Certain precautions are necessary to store petroleum and hazardous materials, refuel and contain and properly clean up any inadvertent fuel or petroleum (i.e., oil, hydraulic fluid, etc.) spill due to the Project's location in an APA. A spill containment kit consisting of a sufficient supply of absorbent pads and absorbent material will be maintained by the site contractor at the construction site throughout the duration of the Project. In addition, a waste drum will be kept on site to contain any used absorbent pads/material for proper disposal off site.

The following, but not limited to, restrictions, protective measures and procedures, will be adhered to by the contractor.

Petroleum and Hazardous Materials Storage and Refueling

- Servicing of machinery shall be completed outside of the APA.
- Refueling of vehicles or machinery shall occur a minimum of 100 feet from wetlands or watercourses and shall take place on an impervious pad with secondary containment designed to contain fuels.
- Fuel and other hazardous materials shall not be stored within the APA.
- Any fuel or hazardous materials that must be kept within the APA during working hours shall be stored on an impervious surface utilizing secondary containment.

Initial Spill Response


- Stop operations and shut off equipment.
- Remove any sources of spark or flame.
- Contain the source of the spill.
- Determine the approximate volume of the spill.
- Identify the location of natural flow paths to prevent the release of the spill to sensitive nearby waterways or wetlands.
- Ensure that fellow workers are notified of the spill.

Clean Up & Containment

- Obtain spill response materials from the on-site spill response kit.
- Place absorbent materials directly on the release area.
- Limit the spread of the spill by placing absorbent materials around the perimeter of the spill.
- Isolate and eliminate the spill source.
- Contact the Rocky Hill Aquifer Protection Agency (Planning and Zoning Commission), immediately at (860) 258-2761, along with other appropriate local, state and/or federal agencies, as necessary.
- Contact a disposal company to properly dispose of contaminated materials.

Reporting

- Complete an incident report.
- Submit a completed incident report to the Rocky Hill Aquifer Protection Agency, Connecticut Siting Council and other appropriate local, state and/or federal agencies, as necessary.

Municipal Boundary

Approximate Assessor Parcel Boundary (CTDEEP)

Delineated Wetland Boundary

Wetland Area

Old Forge Road Rocky Hill, Connecticut

APPENDIX I

Noise Evaluation Report

Noise Evaluation Study

Proposed Solar Farm Facility Solar City Corporation Old Forge Road Rocky Hill, CT 06067

January 28, 2016

Prepared For:
All-Points Technology Corporation
3 Saddlebrook Drive
Killingworth, CT 06419

Prepared By: Allan Smardin HMB Acoustics LLC 3 Cherry Tree Lane Avon, CT 06001

Introduction

I have reviewed site plans and specifications for equipment that is being proposed for the Solar Farm. The Solar Farm is to be located on Old Forge Road, Rocky Hill, CT. The site location is mixed Residential and Commercial. On July 11, 2015 existing background noise measurements were taken near the proposed site and in adjacent areas. The average levels were 25-30 dBA.

The purpose of this noise evaluation is to determine whether the proposed equipment will comply with the State of CT Noise Regulations. This report and the noise regulations utilize a dBA scale. This scale is used because it closely approximates the response characteristic of the human ear to loudness, and is the scale most commonly used in the measurement of community noise.

Noise Regulations

The State of CT has enacted regulations which limit the amount of noise which may be transferred from one property to another. In pertinent part, the Regulations provide as follows:

Daytime hours - The hours between 7 a.m. and 10 p.m. local time.

Nighttime hours - The hours between 10 p.m. and 7 a.m. local time.

The allowable noise level from a Class "B" Commercial Noise Zone Emitter to a Class "A" Residential Zone Receptor's property line is 55 dBA (daytime) and 45 dBA (nighttime).

(Sec. 22a-69-1.1 (h&n)).

The allowable noise level from a Class "B" Commercial Zone Emitter to a Class "B" Commercial Zone Receptor is 62 dBA (day / night).

(Sec. 22a-69-3.5 (b)).

Noise Evaluation

The noise levels listed in TABLE 1 take into account the effect of acoustical shielding provided by other structures on the property. The noise levels have been projected to the nearest property lines in the directions listed.

TABLE 1

<u>Direction</u>	dBA Level	
North	25	Residential (Belamose Avenue)
	30	Commercial (Belamose Avenue)
South	29	Rocky Hill / Cromwell Town Line
East	26	Wetlands & The CT River
West	21	Residential (Pleasant Valley Road)

Noise Evaluation Results

The noise level data in TABLE 1 demonstrates that the noise levels meet the conditions for compliance as set forth in the State of CT Noise Regulations at Residential and Commercial property line noise zones.