

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.state.ct.us Web Site: www.state.ct.us/csc/index.htm

October 24, 2002

Christopher B. Fisher, Esq. Cuddy & Feder & Worby LLP 90 Maple Avenue White Plains, NY 10601-5196

RE: EM-AT&T-166-021001 - AT&T Wireless PCS, LLC d/b/a AT&T Wireless notice of intent to modify an existing telecommunications facility located at 347 East Street, Wolcott, Connecticut.

Dear Attorney Fisher:

At a public meeting held on October 23, 2002, the Connecticut Siting Council (Council) acknowledged your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the conditions that tower diagonals and the existing leg foundation be reinforced in accordance with the recommendations of Max Engineering and that a professional engineer certify to the Council that these reinforcements have been successfully completed.

The proposed modifications are to be implemented as specified here and in your notice received in our office on October 1, 2002. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

Thank you for your attention and cooperation.

Very truly yours.

Mortimer A. Gelsi

Chairman

MAG/laf

c: Honorable Michael A. DeNegris, Mayor, Town of Wolcott Central Naugatuck Regional Planning Agency, Town of Wolcott Robert Stanford, Crown Atlantic Company Michele G. Briggs, Southwestern Bell Mobile Systems LLC Sandy M. Carter, Verizon Wireless

CONNECTICUT

NOTICE OF INTENT TO MODIFY AN EXISTING TELECOMMUNICATIONS FACILITY AT 347 EAST STREET, WOLCOTT, CONNECTICUT

Pursuant to the Public Utility Environmental Standards Act, Connecticut General Statutes § 16-50g et. seq. ("PUESA"), and Sections 16-50j-72(b) of the Regulations of Connecticut State Agencies adopted pursuant to the PUESA, AT&T Wireless PCS, LLC d/b/a AT&T Wireless ("AT&T Wireless") hereby notifies the Connecticut Siting Council of its intent to modify an existing facility located at 347 East Street, Wolcott, Connecticut (the "East Street Facility"), owned by Crown Castle ("Crown"). AT&T Wireless and Crown have agreed to share the use of the East Street Facility, as detailed below.

The East Street Facility

The East Street Facility consists of an approximately one hundred eighty (180) foot lattice tower (the "Tower") and associated equipment currently being being the SNET/Cingular and Verizon.

AT&T Wireless' Facility

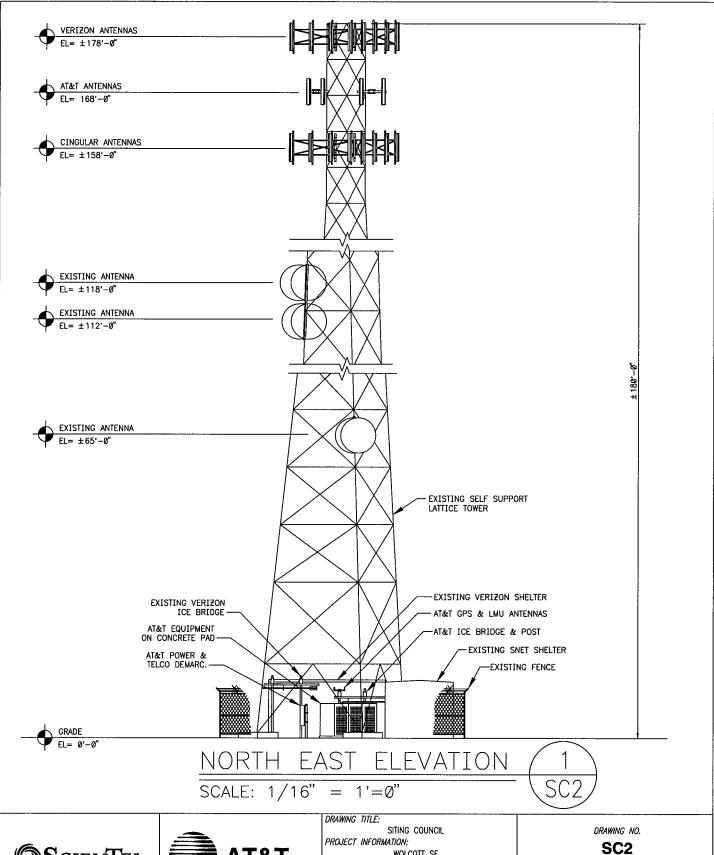
As shown on the enclosed plans prepared by ScienTel, including a site plan and tower elevation of the East Street Facility, AT&T Wireless proposes shared use of the Facility by placing antennas on the Tower and equipment cabinets at grade needed to provide personal communications services ("PCS"). AT&T Wireless will install 6 panel antennas at approximately the 168 foot level of the Tower and associated equipment cabinets (2 proposed, 2 future, each 76"H x 30" W x 30" D) located on a concrete pad within the existing fenced compound. As evidenced in the signed sealed structural report prepared by Max Engineering, LLC, annexed hereto as Exhibit A (and previously submitted by Cingular as part of a notice of exempt modification to upgrade its antenna facilities at the East Street Facility), AT&T has confirmed that the Tower, with replacement of diagonals at 40' to 80' and 160' to 167' elevations and foundation reinforcement is structurally capable of supporting the addition of AT&T Wireless' antennas. AT&T and Crown will undertake the structural modifications as part of AT&T's facility to be constructed at the site.

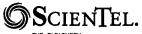
AT&T Wireless' Facility Constitutes An Exempt Modification

The proposed addition of AT&T Wireless' antennas and equipment to the East Street Facility constitutes an exempt "modification" of an existing facility as defined in Connecticut General Statutes Section 16-50i(d) and Council regulations promulgated pursuant thereto. Addition of AT&T Wireless' antennas and equipment to the Tower will not result in an increase of the Tower's height nor extend the site boundaries.

¹ The plans show SNET/Cingular antennas at 158' (existing) and it is our understanding that they will be moved to 162' (proposed) as part of a recent filing which conditions are accounted for in the structural and MPE reports submitted with this filing.

Further, there will be no increase in noise levels by six (6) decibels or more at the Tower site's boundary. As set forth in an Emissions Report prepared by Prabhakar Rughoobur, RF Engineer, annexed hereto as Exhibit B, the total radio frequency electromagnetic radiation power density at the Tower site's boundary will not be increased to or above the standard adopted by the Connecticut Department of Environmental Protection as set forth in Section 22a-162 of the Connecticut General Statutes and MPE limits established by the Federal Communications Commission. For all the foregoing reasons, addition of AT&T Wireless' facility to the East Street Facility constitutes an exempt modification which will not have a substantially adverse environmental effect.


Conclusion

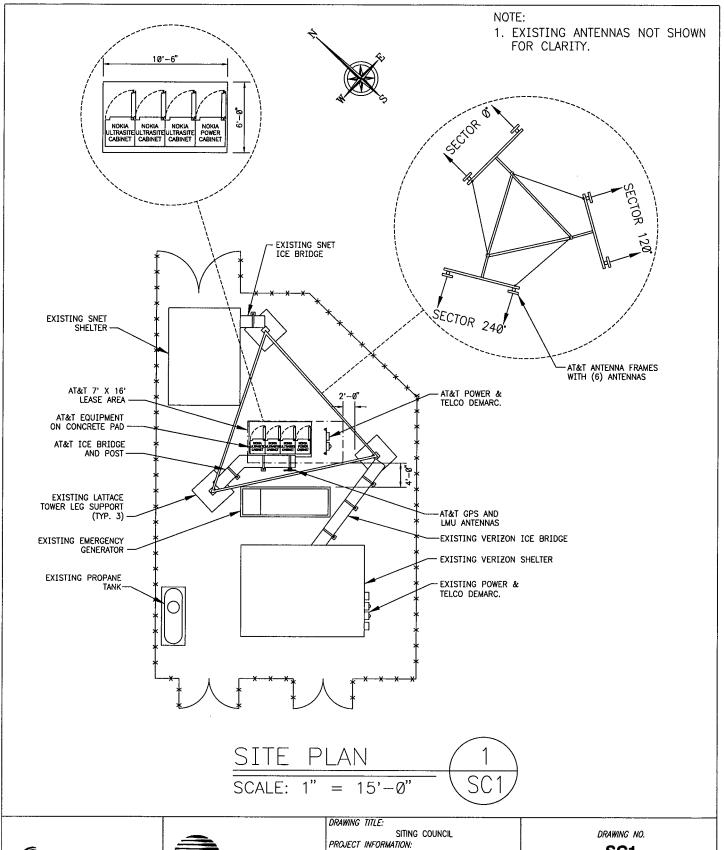

Accordingly, AT&T Wireless requests that the Connecticut Siting Council acknowledge that its proposed modification to the East Street Facility meets the Council's exemption criteria.

Respectfully Submitted,

Christopher B Fisher, Esq.
On behalf of AT&T Wireless

cc: Chair of the Town Council, Town of Wolcott RJ Wetzel, Bechtel

THE BLEACHERY
143 WEST STREET
NEW MILFORD, CT. 06776
Tel: (860) 210-3020
Fox: (860) 210-2047


AT&T WIRELESS PCS, LLC 149 EAST WATER STREET SOUTH NORWALK, CT. 06855

WOLCOTT SE CT-376 347 EAST STREET WOLCOTT, CT. 06716

TOWER OWNER:

CROWN-CASTLE 703 HEBRON AVENUE GLASTONBURY, CT. 06033

REVISION NO. DRAWN BY: CHECKED BY: KW 09/26/02 DATE ISSUED: 1/16" = 1'-6" APPROVED BY: SC SCALE: SHEET NO. 2 OF 2 A/E PROJECT NO: 17188-0013

ATAT WIRELESS PCS, LLC 149 EAST WATER STREET SOUTH NORWALK, CT. 06855

WOLCOTT SE CT-376 347 EAST STREET WOLCOTT, CT. 06716

TOWER OWNER:

CROWN-CASTLE 703 HEBRON AVENUE GLASTONBURY, CT. 06033

DIVAMING	NO
SC.	1

REVISION NO. 1	DRAWN BY: JT
DATE (SSUED: 09/26/02	CHECKED BY: KW
SCALE: 1" = 15'-0"	APPROVED BY: SC
	SHEET NO. 1 OF 2
A /E BROJECT NO: 1719	9 0013

E-mail: hak@maxengr.com Phone: (713) 776-0629 Fax: (713) 776-9599

Tower Analysis Report

Crown Castle Site Name: Wolcott

Location: New Haven County, CT

Report Prepared for Crown Castle International

Crown BU Number: 806362

Customer Name: Cingular Wireless

Structure Type: 180' Self-supporting Tower

Report Date: 06-07-2002

9000 Southwest Freeway, Suite 410 Houston, Texas 77074-1522

E-mail: hak@maxengr.com Phone: (713) 776-0629 Fax: (713) 776-9599

To: Lincoln Erhard

Crown Castle International

500 W. Cummings Park, Suite 6500

Woburn, MA 01801

Subject: 180' Rohn Self Supporting Tower at Wolcott site, 347 East Street, Wolcott, CT (BU#806362)

Dear Mr. Erhard,

Max Engineering has performed a structural analysis on the above referenced tower (Crown BU#806362) for Cingular's proposed nine antennas "change-out" with nine 1+5/8" coaxial cables at elevation 162'. The tower is analyzed in accordance with TIA/EIA-222-F, Structural Standards for Steel Antenna Towers and Antenna Supporting Structures for 85 mph basic design wind (1/2" ice case does not govern).

Our analysis report (dated 6-07-2002) indicates that provided that the following actions are done, the existing tower foundation and the tower upper-structure will be structurally adequate.

- 1. Replace existing main diagonals at elevations 40' to 80' by (nominal) 3" standard pipe. Replace diagonals between elevations 160' to 167' by (nominal) 1.5" XS or 2" standard pipe Use new 5/8" diameter (or larger) A325 bolts for deg-to diagonal connections. Do not re-use existing bolts.
- 2. Reinforce each existing leg foundation by additional concrete dowelled into the existing pier. (To increase dead weights against potential uplift). See Attachment A4 of the report for further details.

We appreciate this opportunity to provide you with our services. If you have any questions or comments, please do not hesitate to call me. OF CONNECTION

Sincerely Yours,

Hak-Fong Ma, Ph.D., PE (President, Max Engineering LEG)

Date: 06-07-2002

TABLE OF CONTENTS

Section	Brief Descriptions	# of Pages
	Table of Contents	1
1	Introduction	1
2	Analysis Criteria	1
3	Tower Loading Information	2
4	Assumptions Made	1
5	Results	2
6	Conclusions & Recommendation	s 1
7	P.E. Signature and Seal	1
8	Attachments	
A1	Crown Tower Elevation Sketch	1
A2	Application Engineering Sheets	2
A3	Analysis Outputs	5
A4	Foundation Check	6

Section 1 Introduction

The purpose of this report is to investigate the structural adequacy of an existing 180' self-supporting tower at Wolcott, CT site (BU#806362, address: 347 East Street, Wolcott, CT), to support Cingular Wireless's (9) proposed antennas change-out at elevation 162', in addition to the existing or previously proposed (AT&T) antennas. The computer inputs and outputs for the critical load cases are listed in Section 8.

The manufacturer of the existing 180' self-supporting tower is Rohn. Information on this tower was obtained from the drawings of Rohn provided by Crown Castle, and this was used as design input.

The new proposed antennas and the existing ones are listed in the "Tower Loading Information" section (Section 3). The main forces considered in the analysis of the tower are those resulting from wind. Per EIA/TIA-222-F, the basic wind speed in New Haven County, NH is 85 mph. The results are summarized in Section 5.

The finite element program used in this analysis is licensed from and developed by Guymast Inc./Weisman Consultants Inc. located in Downsview, Ontario, Canada. It is a specialized computer program developed to facilitate speedy modeling and analysis.

Section 2 Analysis Criteria

- Wind and ice conditions: 85 mph wind with 0" ice case and 73.6 mph wind simultaneously with ½" ice case.
- Source codes governing the analysis: ANSI/TIA/EIA-222-F-1996

Section 3 Tower Loading Information

A) Original Tower Design Loadings (Criteria: EIA Rev unknown)

Rad Center Elevation	Antenna Description and Count	Feedline Size, Count, and Location	Mount Type	Note
180'	(4) PD10017 antennas	Not Clearly stated	(3) Side arms	
170'	(3) PD1132D antennas	Not Clearly stated	(3) Side arms	
160'	(2) 6' diameter Std dishes	Not Clearly stated	On tower legs	
	WAII.			

B) Existing or Previously Proposed Tower Loadings

Level	Antenna Description, and Count, (Azimuth)	Feedline Size Count & Location	Mount Type	Carrier	Note(s)
178'	(12) Allgon 7130.16.05 antennas (27,147,267); (52"x11.4")	(12) 1+5/8"	(3) T-arms	BAM	
158'	(12) DB846H80 antenna (23,143,263) (72"x6.6"x8.25")	(12) 1+5/8"	(3) T-arms	SNET	1
118'	(1) Andrew 8' diameter HP dish; (200)	(1) EW52	On tower leg C	BAM	
112'	(1) Andrew 8' diameter HP dish, (200)	(1) EW52	On tower leg C	BAM	
65'	(1) Andrew 10' diameter HP dish; (100)	(1) EW52	On tower leg B	BAM	
168'	(6) EMS RR-90-17-02 antennas (56"x8"), (0,140,270)	(12) 1+ 5/8"	(3) T-arms	AT&T Wireless	2

Note 1: Changed out to 162' level as shown on next table.

Note 2: Previously proposed antennas

C) Proposed & Future Loading

Level	Antenna Description, and Count, Azimuth (Note 1)	Feedline size & count	Mount Type & (Carrier)	Note
162'	(9) CCS DU04-8670 antennas (48"x14"), (24,140,261) + (6) TMAs (13"x9" each)	(9) 1+ 5/8"	(3) T-arms (Cingular, replaced SNET)	
162'	(1) Omni (9"x1")	(1) ½"	(Cingular)	2

- 1. Azimuth is based on best estimate only. The impact of this estimate on results is considered minimal as wind forces in different directions are considered.
- 2. Conservative to assume at 162' elevation for analysis purpose.

Section 4 Assumptions made

- 1. The tower is constructed in accordance with the drawings from the tower manufacturer (Rohn) and the tower has not been deteriorated.
- 2. Coaxial cables (feed lines) are neatly attached to the tower faces and they are considered as structural members in calculating wind forces in accordance with TIA/EIA-222-F formulas.
- 3. Material yield stresses assumed are stated in Section 6. The welds between the diagonals and the gusset plates are stronger than the connection bolts.
- 4. The original foundation design (5'x5' concrete block with rock anchors) is sufficient to support the original uplift load of 185 k. Reinforcements of the foundation will take on the forces exceeding the original design value.

Section 5 Results

The existing 185' self-supporting tower is analyzed with the existing antennas and the new proposed antennas, for the governing design wind load of 85 mph without ice per TIA/EIA-222-F criteria. (1/2" ice case with 73.6 mph) The results show that except for diagonals between elevations 40' to 100', the existing tower upper structure is structurally adequate to support the proposed antennas. However, existing foundation adequacy is established based on recommended reinforcements and calculations performed in Attachment A4.

The actual and allowable stress of the key tower members are tabulated as follows:

Tower Legs: Assumed Steel Yield Stress = 50 ksi, bolts = A325 or better

Section Elevation	A) Max Member force K	B) Allowable Force K	Stress Ratio A/B	Size
0' - 20'	246.0	337.6	0.73	8.75"OD,3/8" t
20' - 40'	229.6	264.1	0.87	6" XS
40' - 60'	197.4	264.1	0.75	6" XS
60' - 80'	164.8	212.0	0.78	6" EHS
80' - 100'	132.7	177.6	0.75	5" XS
100' - 120'	99.8	177.6	0.56	5" XS
120' - 140'	73.6	139.1	0.53	4" XS
140' - 160'	41.5	84.0	0.49	3" XS
160' - 180'	9.4	41.0	0.23	2.5" STD

Buckling of leg members govern the leg capacity. Capacity is calculated based on conservative slenderness ratio.

Yield stresses (50 ksi) of leg members are based on materials typically used by (Rohn) tower. This remains as a key assumption.

<u>Diagonals</u>: Assumed Steel Yield Stress = 36 ksi, bolts = A325 or better

Section Elevation	A) Member Force K	B) Allowable Force K	Stress Ratio A/B	Note
0' - 20'	18.82	25.60	0.74	Bolt governs
20' - 40'	13.00	17.27	0.75	Brace governs
40' - 60'	12.49	11.93	1.05	Brace governs
60' - 80'	11.89	11.23	1.06	Brace governs
80' - 100'	11.58	12.66	0.91	Brace governs
100' - 120'	11.67	14.39	0.81	Brace governs
120' - 140'	8.73	11.54	0.76	Brace governs
140' - 160'	8.88	13.27	0.67	Brace governs
160' - 167'	7.45	7.21	1.03	Brace governs
167'-180'	4.04	7.21	0.56	Brace governs

Horizontals: Assumed Steel Materials = A36; Bolt Materials = A325

Section Elevation	A) Connection Force K	B) Allowable Force K	Stress Ratio A/B	Note
20'	10.78	24.7	0.44	Bolt governs
30' ,40'	10.22	14.8	0.69	Member governs
50', 60'	9.50	17.0	0.56	Bolt governs
70', 80'	8.52	17.0	0.50	Bolt governs
90', 100'	7.75	13.6	0.57	Member governs
110', 120'	8.31	17.0	0.49	Bolt governs
120'-140'	5.89	17.0	0.35	Bolt governs
140'- 160'	5.43	14.3	0.38	Member governs
160'-180'	5.05	16.7	0.30	Member governs

Forces at the internal braces, sub-diagonals and sub-horizontals are small and are acceptable.

Comparison of Foundation Forces

Item	a) Calculated Force k (ft-k)	b) Original Design Force k (ft-k)	Comparison Ratio (a/b)	Note
Max. Leg Uplift	235.1 k	185 k	1.27	
Max. Leg Compression	274.3 k	225 k	1.22	

Uplift is the controlling force for the foundation design. See Section 8, Attachment A4 for reinforcements suggested to assure adequacy.

Section 6 Conclusions

The existing 180' self-supporting tower was analyzed with existing antennas and new proposed antennas, for a basic wind speed of 85 mph per TIA/EIA-222-F criteria. The analysis shows that the existing tower is structurally <u>inadequate</u> to support the Cingular change-out and previous AT&T Wireless's proposed antennas at elevation 168'unless the following actions are done.

Diagonals between elevations 40' to 80' are to be replaced by (nominal) 3" standard pipe, whereas diagonals between elevations 160' to 167' are to be replaced by (nominal) 1.5" XS (or nominal 2" standard) pipe.

The existing foundation adequacy is assured based on the assumption that the original foundation design is capable to resist the original design load (185 k uplift). The additional reinforcements recommended are demonstrated to be sufficient to resist any additional loads beyond the original designed value (see Attachment A4 calculations).

Section 7 P.E. Signature and Seal

(Site: Wilcott, BU# 806362)

This report is prepared by or under the supervision of: Hak-Fong Ma, PE Registered & Licensed Professional Engineer

License Number: 22402

Section 8 Attachments

- A1. Crown Tower Elevation Sketch
- A2. Application Engineering Data Sheets
- A3. Analysis Outputs
- A4. Foundation Check

ATTACHMENT AI FOR PART TOWER HEIGHT 178

178

178 FT ACL ANTENNA LEVEL BAM (12) ALF 7/30.16 (EXIST)

PREVIOUSLY 27/147/267

168' ATLT PROPOSED ANJENNAS 162 TO FI AGL ANTENNA LEVEL SNET/ (9) C.S.S. DU 04-86/4 (6) AMPLIFIER.

(214) (CHAGULAR) [24/140/26]

(CHANGE CUT!) AZ~

118 FT AGL ANTENNA LEVEL BAM & F HP (200°)

REF. DWG. 806362-118.dwg

112 FT AGL ANTENNA LEVEL -112 FT AGL ANTENNA LEVEL BAM 8 9 HP (200')
112 NOTE: TOWER COADING INFORMATION UNAVAILABLE DUE TO INSUFFICIENT DATA. 65° 65 FT AGL ANTENNA LEVEL BAM 10' \$ HP (100°) DELETE 57 FT AGL ANTENNA LEVEL DELETE 7 CNOT INCLUDED IN ANALYSIS)

CROWN CASTLE USA

Engineering Application

		Cro	wn Castle Use (Only	
	JDE	Application No.		Application Date	
Customer No. JDE Job No. Revision Revision Date Bil Number			0	5/1/02	806362
Do Hamber	Customer No.	JDE Job No.	Revision	Revision Date	BU Number

PLEASE RETURN APPLICATION TO:

Crown Castle Atlantic

500 West Cummings Park

Suite 3400

Woburn, MA 01801 ATTN: Sales & Marketing Tara Rand

E-Mail

Tara.Rand@CrownCastle.com

Phone 781 729-4001 781 729-3511 Fax

Make Fee(s) Payable to Crown Communications, Inc.

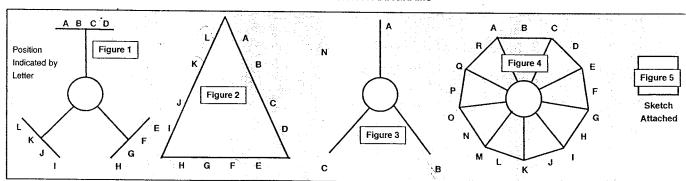
Application Fee: \$1500 Unless specified in an MLA

Date of Application April 25, 2002 Desired Install Date TBD Reason for Application

Antenna Swap

CUSTOMER / COMPANY INFORMATION

SITE INFORMATION


Company	y Cingular Wireless			Customer Sit	te Name	Wolcott		
Address	500 Enterprise Dri	ve ,3rd Flo	or	Customer Site	Number	1060		
City	Rocky Hill			Crown Castle	e Name	NHV 108 9431	33	
State	СТ	Post Co	de 06067-3900	Crown Castle	Number	806362	······································	
Primary	Contact Elaine Fede	erico(Wirele	ess Facilities, Inc)	Address	347 E	ast Street		
Phone	508-330-0285	E-Mail	elaine.federico@wfinet.com	City	Wolco	ott		
RF Cont	act Aaron Brod	bar		State	CT		Post Code	
Phone	860-513-7860	E-Mail	Aaron.D.Brodbar@cingular.com	County	New F	Haven	Site Status	
Const. C	Contact Tom Fentor	1		Latitude	N 41 3	33 34.05	 Longitude	W 72 56 50.72
Phone	860-513-7601	E-Mail	Thomas.F.Fenton@cingular.com	Site Type	Self S	Support	Structure Height	182.6

ANTENNA INFORMATION

	Loca Fig	etion Pos	Center Line Elevation	Manufacturer	Model	Туре	Technology	1	erational Fr	4	MHz celve Stop	Use	Mount Orientation	Azimuth (Mag N)	Mech Tilt
11	2	В	162	CSS	DU04-8670	Panel	TDMA Sector	880.0000	894.0000	835.0000	849.0000	Tx/Rx	Mid-Point	140	
2		С	162	CSS	DU04-8670	Panel	GSM Sector	880.0000	894.0000	835.0000	849.0000	Tx/Rx	Mid-Point		
3		D	162	CSS	DU04-8670	Panel	GSM Sector	1930.0000	1935.0000	1850.0000	1855.0000	Tx/Rx	Mid-Point		
4															
5	2	F	162	CSS	DU04-8670	Panel	TDMA Sector	880.0000	894.0000	835.0000	849.0000	Tx/Rx	Mid-Point	261	0
6		G	162	CSS	DU04-8670	Panel	GSM Sector	880.0000	894.0000	835.0000	849.0000	Tx/Rx	Mid-Point		
7		Н	162	CSS	DU04-8670	Panel	GSM Sector	1930.0000	1935.0000	1850.0000	1855.0000	Tx/Rx	Mid-Point	-	
8										1	1				
9	2	J	162	CSS	DU04-8670	Panel	TDMA Sector	880.0000	894.0000	835.0000	849.0000	Tx/Rx	Mid-Point	24	0
10		К	162	CSS	DU04-8670	Panel	GSM Sector	880.0000	894.0000	835.0000	849.0000	Tx/Rx	Mid-Point		
11		L	162	CSS	DU04-8670	Panel	GSM Sector	1930.0000	1935.0000	1850.0000	1855.0000	Tx/Rx	Mid-Point		
12				Kathrein	738449	Omni	TDMA Omni			870.0000	960.0000	Rx	Upright		
13							GSM Omni			1710.0000	1880.0000	Rx			
14												2.4			
15												:		11	
16															
17											<u> </u>				
18											İ				
19											T				
20									†						

All frequencies must be specific and actual operating frequencies. Crown Castle must be notified if they are modified.

ANTENNA LOCATION DIAGRAMS

HORING THE PARTY OF THE PARTY O

richinasa.

ſ	·····	Antenna Pa	rametera			INIVA, FECUL				ATION	I lobbete :	8		· · · · · · · · · · · · · · · · · · ·	
		1	1	1		1		nformation	•		Lightning Suppressor	Tow	er Mo	unted A	mplifier
[1	Height	Width	Depth	Weight	Qty	Manufacturer	Model / OD	Conn. Type	Color Code	Length	Type	Qty	Туре	Elev. 1	Elev. 2
2	48	14	9	20.3	1	Andrews	LDF6-50A	Alpha	Red			2	Α	162	
3	48	14	9	20.3	1	Andrews	LDF6-50A	Alpha	Red			<u> </u>			
4	48	14	9	20.3	1	Andrews Andrews	LDF6-50A LDF6-50A	Alpha	Red	4 25'		 	<u> </u>		
5	48	14	9	20.3	1	Andrews	LDF6-50A	Beta Beta	Yellow Yellow	8.8		2	Α	162	ļ
6	48	14	9	20.3	1	Andrews	LDF6-50A	Beta	Yellow			 -			
7	48	14	9	20.3	1	Andrews	LDF6-50A	Gamma	Orange			2	A	100	
8	48	14	9	20.3	1	Andrews	LDF6-50A	Gamma	Orange			<u> </u>	<u> </u>	162	
9	48	14	9	20.3	1	Andrews	LDF6-50A	Gamma	Orange			 			
10	9		1	1	1	I/2" Cable									
11						·									
12															
13	·····														
14															
15 16					ļ										
17					ļ		ļ								
18															
19					<u> </u>										
20							<u> </u>								
		CE CTATIC	N FOUR	i	L	L	<u> </u>			ll		<u> </u>	لــــا		L
		SE STATIC	N EQUIPM	/IEN I		L	IGHTNING	SUPPRES	SOR		MOUNT	ING S	SYSTE	EM(s)	
Man	ufacturer					T	ype A		В		Figure				
Mod	el Number					Manufacturer				Manufa		•			
Outp	utput (Watts) Model Number							Model Number							
Conf	nector Type														
						·			·	l	·				
	TRANSM	ITTER INTE	ERMOD PR	ROTECT	ION	TOV	WER MOUN	ITED AMPI	-IFIER		LAND / BI	JILDI	NG/F	OWER	
Banc	dpass Manufac	cturer				Tı	ype A		В	Building	g / Shelter Size	12'x it	2º A*		
Banc	dpass Filter Mo	odel				Manufacturer	ADC	;	_) / Shelter Type	12 × 11			
Band	dpass Filter Ra	ange				Model Number				•	Required VAC:				_
Dupl	exor Manufact	lurer				Gain (dB)	12			·	d Power				Amps
Duple	exor Model		-			Dimensions	13.05°x9.17	*v5 98*		·			nerator I		
Duple	exor Tx/Rx Iso	viation				Weight	25-2			· I	g / Shelter Floor Sp				
						rreignt	25-2			Pad Siz	re	Lea	sed Siz	e	
				su	PPLE	MENTAL CO	MMENTS /	ADDITION	AI INFOR	MATION					
Eviet	ina Fauinmon	1:(0) ALD 110 1:	1.1111-1-1-04												
		oax: Andrews 1		.5 IUS/ 52 M	-0.3 W	11.4*D Frequency	Hange: 806-89	6 MHz							
	-	s are Duel Band		M. GSM)					. 1						
					e: 870-	960-MHz/ 1710-188	80 MHz (M/.250	n/Haiaht: 216 -	neof Diamenton	00					
This a	antenna need:	s to be at least :	15' below our p	latform- De	pendin	g on available spac	ce on the tower	must clear tree	tine	20 mm					
Ampl	lifier is two per	face, total num	ber 6 amplifier	s.	•	у		must olear tree	s mile.						
1/2" (Coax for LMU	Antenna- Lengt	h and Height T	BD by Loca	ation A	/ailable.									
								_							
(1) AI	DC Diplexer(8	ibs)mounted to	the 3rd (center	antenna)=	Total 3	Diplexers		•							
															
	I CER	TIFY THE INF	ORMATION	ABOVE IS	сом	PLETE AND AC	CURATE							mo	n/day/year
								Applicant Na	me						Date
	RF Mat	rix Separation	Waiver Attac	ched (Crov	vn Cas	tle)		1 PUSTON 10 MARIE	Cro	wn Caetla	Regional Appro	nua!	4 mgg		
Γ		ral PE Stamp				•		2 6 6 K		casue	riegional Appre	vadi :	4 1 1 1 1	- 4	
Ī	_	zation to Proce													
F	_	ral Analysis Pa			,		A	ot Essiss							
占	_	ent Specificati			ad		ASS	set Engineer						mo	n/day/yea
F	_	ent Specificat													
F	7			ny Supplie		dank.	Ass	set Manager					_	mo	n/day/year
	ا القاتات	opy To Be For	warueu By		mor	/day/year			N		Name				Date

This application is subject to engineering approval and may also be subject to local zoning or construction approval, that may also require landlord consent.

MAST - Latticed Tower Analysis (Unguyed) (c)1997 Guymast Inc. 416-736-7453

Processed under license at:

on: 5 jun 2002 at: 19:01:22

ATTACHMENT A3

Wolcott-180'SST. Analysis FOR Crown, CT-BU#806362, 85 mph basic

MAST GEOMETRY (ft)

Max Engineering LLC

PANEL TYPE	NO.OF LEGS	ELEV.AT BOTTOM	ELEV.AT TOP	F.WAT BOTTOM	F.WAT TOP	TYPICAL PANEL HEIGHT
а а а	3 3 3 3	160.00 120.00 20.00 0.00	180.00 160.00 120.00 20.00	8.50 12.71 25.17 27.67	8.50 8.50 12.71 25.17	6.67 6.67 10.00 20.00

MEMBER PROPERTIES

MEMBER	BOTTOM	TOP	X-SECTN	RADIUS	ELASTIC	THERMAL
TYPE	ELEV	ELEV	AREA	OF GYRAT	MODULUS	FXPANSN
	ft	ft	in.sq	in	ksi	/deg
LE	160.00	180.00	1.704	0.000	29000.	0.0000000
LE	140.00	160.00	3.016	0.000	29000.	0.0000000
$_{ m LE}$	120.00	140.00	4.407	0.000	29000.	0.0000000
$_{ m LE}$	80.00	120.00	6.112	0.000	29000.	0.0000000
$_{ m LE}$	60.00	80.00	5.581	0.000	29000.	0.0000000
LE	20.00	60.00	8.405	0.000	29000.	0.0000000
$_{ m LE}$	0.00	20.00	12.763	0.000	29000.	0.0000000
DI	160.00	180.00	0.799	0.000	29000.	0.0000000
DI	120.00	160.00	1.075	0.000	29000.	0.0000000
DI	60.00	120.00	1.704	0.000	29000.	0.0000000
DI	40.00	60.00	2.254	0.000	29000.	0.0000000
DI	0.00	40.00	2.228	0.000	29000.	0.0000000
НО	140.00	180.00	0.799	0.000	29000.	0.0000000
HO	80.00	140.00	1.075	0.000	29000.	0.0000000
НО	20.00	80.00	1.704	0.000	29000.	0.0000000
НО	0.00	20.00	2.228	0.000	29000.	0.0000000
BR	100.00	180.00	0.484	0.000	29000.	0.0000000
BR	80.00	100.00	0.902	0.000	29000.	0.0000000
BR	60.00	80.00	1.090	0.000	29000.	0.0000000
BR	20.00	60.00	1.687	0.000	29000.	
BR	0.00	20.00	2.228	0.000		0.0000000
2.0	0.00	20.00	2.220	0.000	29000.	0.0000000

Tower 85 mph wind at azimuth 0 deg., 0" ice

MAST LOADING

==========

LOAD TYPE	ELEV	APPLYLO RADIUS	ADAT AZI	LOAD AZI	FORCES	S DOWN	MOMI	ENTS TORSNAL
	ft	ft			kip	kip	ft-kip	ft-kip
C	178.0	0.00	314.7	0.0	2.10	1.33	0.00	5.43
С	168.0	0.00	314.7	0.0	2.15	1.33	0.00	4.94
С	162.0	0.02	10.0	0.0	2.05	1.33	0.00	4.87
D	180.0	0.00	122.0	0.0	0.13	0.09	0.00	0.02
D	173.3	0.00	122.0	0.0	0.13	0.09	0.00	0.02
D	173.3	0.00	171.0	0.0	0.16	0.11	0.02	0.01
D	166.7	0.00	171.0	0.0	0.16	0.11	0.02	0.01
D	166.7	0.00	195.0	0.0	0.23	0.15	0.03	-0.05
D	160.0	0.00	195.0	0.0	0.23	0.15	0.03	-0.05
D	160.0	0.00	242.0	0.0	0.26	0.18	0.03	-0.16
D	153.3	0.00	242.0	0.0	0.26	0.18	0.03	-0.16
D	153.3	0.00	241.0	0.0	0.26	0.18	0.03	-0.17
D	146.7	0.00	241.0	0.0	0.26	0.18	0.03	-0.17
D	146.7	0.00	240.0	0.0	0.26	0.18	0.03	-0.17
D	140.0	0.00	240.0	0.0	0.26	0.18	0.03	-0.17

: D	140.0	0.00	239.0	0.0	0.07	0.00		
D	133.3	0.00	239.0	0.0 0.0	0.27 0.27	0.20 0.20	0.03 0.03	-0.18 -0.18
D	133.3	0.00	239.0	0.0	0.27	0.20	0.03	-0.18
D D	126.7 126.7	0.00	239.0 238.0	0.0 0.0	0.27 0.27	0.20	0.03	-0.18
D	120.0	0.00	238.0	0.0	0.27	0.21 0.21	0.04 0.04	-0.19 -0.19
D	120.0	0.00	237.0	0.0	0.27	0.23	0.03	-0.16
D D	110.0 110.0	0.00	237.0 235.0	0.0 0.0	0.27 0.27	0.23	0.03	-0.16
D	100.0	0.00	235.0	0.0	0.27	0.23 0.23	0.03 0.03	-0.13 -0.13
D	100.0	0.00	234.0	0.0	0.28	0.24	0.03	-0.13
D D	90.0 90.0	0.00	234.0 233.0	0.0	0.28	0.24	0.03	-0.13
D	80.0	0.00	233.0	0.0	0.28 0.28	0.25 0.25	0.03 0.03	-0.13 -0.13
D	80.0	0.00	232.0	0.0	0.29	0.26	0.04	-0.13
D D	70.0 70.0	0.00	232.0 229.0	0.0	0.29	0.26	0.04	-0.13
D	60.0	0.00	229.0	0.0	0.29 0.29	0.27 0.27	0.03 0.03	-0.11 -0.11
D	60.0	0.00	226.0	0.0	0.29	0.34	0.03	-0.09
D D	50.0 50.0	0.00	226.0 226.0	0.0	0.29 0.28	0.34	0.03	-0.09
D	40.0	0.00	226.0	0.0	0.28	0.34 0.34	0.03 0.03	-0.09 -0.09
D	40.0	0.00	225.0	0.0	0.27	0.35	0.04	-0.08
D D	30.0 30.0	0.00	225.0 225.0	0.0 0.0	0.27 0.27	0.35	0.04	-0.08
D	20.0	0.00	225.0	0.0	0.27	0.36 0.36	0.04 0.04	-0.09 -0.09
D	20.0	0.00	205.0	0.0	0.18	0.34	0.02	-0.01
D	0.0	0.00	205.0	0.0	0.18	0.34	0.02	-0.01
	NA LOADING	;						
=====	=====							
	ANTENNA.		ATTA	CHMENT		ANTENN	IA FORCES.	
TYPE	ELEV ft	AZI	RAD	AZI	AXIAL	SHEAR	GRAVITY	TORSION
	I C		ft		kip	kip	kip	ft-kip
STD	178.0	267.0	8.0	250.0	-0.07	0.20	0.11	0.33
STD STD	178.0 178.0	27.0 147.0	8.0 8.0	10.0 130.0	0.82 -0.36	0.01 -0.23	0.11	0.09
STD	168.0	270.0	8.0	250.0	0.00	0.08	0.11 0.06	-0.29 0.08
STD	168.0	0.0	8.0	0.0	0.32	0.00	0.06	0.00
STD STD	168.0 162.0	140.0 263.0	8.0 8.0	130.0 250.0	-0.11 -0.14	-0.10 0.20	0.06	-0.08
STD	162.0	23.0	8.0	10.0	0.76	0.20	0.11 0.11	0.29 0.08
STD	162.0	143.0	8.0	130.0	-0.30	-0.22	0.11	-0.28
HP HP	118.0 112.0	200.0	8.0 8.5	240.0 240.0	-1.43 -1.41	0.12 0.12	0.45	0.41
HP	65.0	100.0	11.6	120.0	-1.41 -0.69	-1.07	0.45 0.54	0.41 -2.07

SUPPRESS PRINTING

LOADS INPUT		THIS LO MEMBER FORCES	ADING FOUNDN LOADS	ALL	DISPL		FOUNDN LOADS
no	yes	yes	yes	no	no	no	no

------MAST - Latticed Tower Analysis (Unguyed) (c)1997 Guymast Inc. 416-736-7453

Processed under license at:

Max Engineering LLC on: 5 jun 2002 at: 19:01:22

Wolcott-180'SST. Analysis FOR Crown, CT-BU#806362, 85 mph basic

```
Tower 85 mph wind at azimuth 0 deg., 0" ice
Tower 85 mph wind at azimuth 30 deg.,0" ice
Tower 85 mph wind at azimuth 60 deg.,0" ice
Tower 85 mph wind at azimuth 90 deg.,0" ice
Tower 85 mph wind at azimuth 120 deg.,0" ice
Tower 85 mph wind at azimuth 150 deg.,0" ice
```

```
Tower 85 mph wind at azimuth 180 deg.,0" ice
Tower 85 mph wind at azimuth 210 deg.,0" ice
Tower 85 mph wind at azimuth 240 deg.,0" ice
Tower 85 mph wind at azimuth 270 deg.,0" ice
Tower 85 mph wind at azimuth 300 deg.,0" ice
Tower 85 mph wind at azimuth 330 deg.,0" ice
Tower 73.6 mph wind at azimuth 0 deg., 0.5" ice
Tower 73.6 mph wind at azimuth 30 deg.,0.5" ice
Tower 73.6 mph wind at azimuth 60 deg.,0.5" ice
Tower 73.6 mph wind at azimuth 90 deg.,0.5" ice
Tower 73.6 mph wind at azimuth 120 deg.,0.5" ice
Tower 73.6 mph wind at azimuth 150 deg.,0.5" ice
Tower 73.6 mph wind at azimuth 180 deg.,0.5" ice
Tower 73.6 mph wind at azimuth 210 deg., 0.5" ice
Tower 73.6 mph wind at azimuth 240 deg.,0.5" ice
Tower 73.6 mph wind at azimuth 270 deg.,0.5" ice
Tower 73.6 mph wind at azimuth 300 deg.,0.5" ice
Tower 73.6 mph wind at azimuth 330 deg.,0.5" ice
```

MAST - Latticed Tower Analysis (Unguyed) (c)1997 Guymast Inc. 416-736-7453 Processed under license at:

Max Engineering LLC on: 5 jun 2002 at: 19:01:22

MAXIMUM MAST DISPLACEMENTS:

-----DEFLECTIONS (ft)-----ELEV --TILTS (DEG) ---TWIST ft NORTH EAST DOWN NORTH EAST DEG 180.0 1.009 G -0.998 D 0.016 P 0.561 G -0.561 D 0.251 D -0.931 D -0.864 D 0.561 G -0.561 D 0.557 G -0.556 D 173.3 0.942 G 0.016 P 0.242 D 166.7 0.875 G 0.015 P 0.227 D -0.796 D 160.0 0.807 G 0.015 P 0.545 G -0.544 D 0.197 D 153.3 0.741 G -0.730 D 0.014 P 0.533 G -0.531 D 0.168 D 0.677 G 146.7 -0.666 D 0.013 P 0.514 G -0.511 D 0.144 D 140.0 0.616 G -0.605 D 0.013 P 0.488 G -0.485 D 0.122 D 0.557 G 133.3 -0.547 D 0.012 P 0.467 G -0.464 D 0.104 D 126.7 0.501 G -0.492 D 0.012 P 0.443 G -0.439 D 0.088 D 120.0 0.449 G -0.439 D 0.011 P 0.416 G -0.412 D 0.074 D 110.0 0.376 G -0.368 D 0.010 P 0.385 G -0.380 D 0.059 P 100.0 0.308 G -0.301 D 0.009 P 0.351 G -0.345 D 0.047 P 90.0 0.247 G -0.242 D 0.313 G 0.008 P -0.308 D 0.038 P 0.192 G 80.0 -0.188 D 0.274 G 0.008 P -0.268 D 0.029 P 70.0 0.146 G -0.144 D 0.006 P 0.227 G -0.223 D 0.026 H 60.0 0.108 G -0.106 D 0.005 P 0.180 G -0.176 D 0.022 H 50.0 0.076 G -0.075 D 0.004 P 0.147 G -0.144 D 0.018 H 40.0 0.050 G -0.050 D 0.004 P 0.114 G -0.112 D 0.014 H 30.0 $0.030 \, \mathrm{G}$ -0.030 D 0.003 P 0.080 G -0.078 D 0.010 H 20.0 0.015 G -0.015 D 0.002 P 0.045 G -0.044 D 0.007 H 0.0 0.000 A 0.000 A 0.000 A 0.000 A 0.000 A 0.000 A

MAXIMUM ANTENNA ROTATIONS:

ELEV ft	ANT AZI	ANT TYPE	ROLL	-BEAM DEFLEC' YAW	TIONS (DEG) PITCH	TOTAL
178.0	267.0	STD	0.559 G	0.248 D	0.560 D	0.586 A

•							
178.0	27.0	STD	0.542	С	0.247 D	0.576 L	0.562 I
178.0	147.0	STD	0.558	K	0.249 D	0.568 н	0.600 E
168.0	270.0	STD	0.558	G	0.230 D	0.557 D	0.576 A
168.0	0.0	STD	0.557	D	0.230 D	-0.558 G	0.603 D
168.0	140.0	STD	-0.547	E	0.232 D	0.557 н	0.586 E
162.0	263.0	STD	0.542	G	0.206 D	0.544 D	0.561 A
162.0	23.0	STD	-0.528	Ι	0.205 D	0.560 L	0.544 D
162.0	143.0	STD	0.542	K	0.208 D	0.552 н	0.571 E
118.0	200.0	HP	0.391	Ι	0.070 D	-0.411 L	0.392 I
112.0	200.0	HP	0.374	Ι	0.061 P	-0.391 L	0.374 I
65.0	100.0	HP	-0.201	G	0.024 H	-0.196 D	0.201 G

MAXIMUM TENSION IN MAST MEMBERS (kip)

ELEV LEGS DIAG HORIZ BRACE ft 180.0 1.16 A 0.00 I 0.00 A 2.24 A 173.3 2.28 E 0.00 C 1.60 I 4.04 E 166.7 4.24 E 0.00 J 5.65 E 7.45 E 160.0 5.24 E 0.00 D 14.14 E 8.88 E 153.3 5.35 E 0.00 U 24.29 E 8.73 E 146.7 5.53 E 0.00 C 34.24 E 8.65 E 140.0 5.73 E 0.00 G 44.03 E 8.63 E 133.3 5.95 E 0.00 B 53.69 E 8.67 E 126.7 6.18 E 0.00 0 63.30 E 8.73 E 120.0 7.06 A 0.00 A 72.77 E 10.52 A 110.0 8.01 A 0.00 M 86.39 E 11.67 G 100.0 7.39 A 0.00 H 100.66 A 11.53 H 90.0 7.64 H 0.00 B 114.95 A 11.58 H 80.0 8.02 H 0.00 F 128.89 A 11.72 H 70.0 8.40 H 0.00 L 142.58 A 11.89 н 60.0 9.22 I 0.00 I 156.31 A 12.22 F 50.0 9.32 F 0.00 F 170.07 A 12.49 F 40.0 9.73 F 0.00 G 183.62 A 12.75 F 30.0 10.12 F 0.00 C 196.94 A 13.00 F 20.0 10.63 F 0.00 Q 209.53 A 18.82 F

MAXIMUM COMPRESSION IN MAST MEMBERS (kip)

ELEV ft	LEGS	DIAG	HORIZ	BRACE
180.0			-1.42 D	0.00 I
173.3	-3.73 0	-4.04 E	-2.09 K	0.00 F
166.7	 -9.44 W	-7.45 E	~4.03 K	0.00 D
160.0	-19.55 K	-8.88 E	-5.05 K	0.00 J
153.3	-30.62 K	-8.73 E	-5.06 E	0.00 0
146.7	-41.50 K	-8.65 E	-5.23 E	0.00 I
140.0	-52.27 K	-8.63 E	-5.43 E	0.00 A

0.00 A

0.00 A

133.			-5.64 E	0.00 н
126.	-62.97 K	-8.67 E	-5.89 K	0.00 L
	-73.62 K	-8.73 E		
120.0		-10.52 A	-7.33 G	0.00 G
110.0)		-8.31 G	0.00 т
100.0		-11.67 G	-7.54 G	0.00 A
00.4	-116.20 G	-11.53 н		
90.0	-132.71 G	-11.58 н	-7.75 G	0.00 H
80.0		11 70	-8.09 H	0.00 A
70.0	-148.87 G	-11.72 н	-8.52 D	0.00 F
60.0	-164.80 G	-11.89 н		
00.0	-180.98 G	-12.22 F	-9.50 D	0.00 D
50.0) -197.40 G	12 40 5	-9.42 F	0.00 X
40.0		-12.49 F	-9.82 F	0.00 C
30.0	-213.62 G	-12.75 F	10 22 8	0 00 *
50.0	-229.62 G	-13.00 F	-10.22 F	0.00 I
20.0) -245.96 G	-18.82 F	-10.78 F	0.00 A
0.0		-10.02 F	0.00 A	0.00 A

MAXIMUM INDIVIDUAL FOUNDATION LOADS: (kip)

	TOTAL			
NORTH	EAST	DOWN	UPLIFT	SHEAR
35.47 G	-30.52 C	274.25 G	-235.13 A	35.47 G

MAXIMUM TOTAL LOADS ON FOUNDATION : (kip & kip-ft)

HORIZONTAL			DOWN		-OVERTURNING	TORSION	
NORTH	EAST	TOTAL		NORTH	EAST	TOTAL	
	6	30.4				@ 30.2	
60.0	-59.4	60.6	89.1	6158.3	-6057.3	6235.9	27.5
G	D	Н	P	G	D	H	Н

ORIGINAL DATA FILE :

e:\Structural_Design\Self_Support\Wolcott2\wolcott2.usm

A4 Design Sheet / of 6

Client <u>CROWN CASTLE</u>	Job No. 508 Dec 6/6/07
Site Name/# WolcoTT, Bu# 806362	Computed By
Structure FOUNDATION CHECK	Reference

- BASED ON INFORMATION PROVIDED BY CROWN CASTLE, THE EXISTING
TOWER LEG FOUNDATION IS SUPPORTED BY SEPARATE 5'X5' SQUARE
PIER ROCK ANCHORED TO THE LEDGE. (6' BELOW GRADE)

	NAL DESIGN PRCES (PERLEU)	MAX. CALWLATED LEG FORCES (PER LEG)	RATIO (NEW ORIGINAL)
COMPRESSION	225K	275 ^K	122
UPLIFT	185K	236K	/1 2 7
SHEAR	30 K	36 K	1,20

SINCE THE UNDERLYING GROUND (~ 6' RELOW GRADE LEVEL)

IS ROCK, IT IS OBIOUS THAT BEARING PRESSURE IS NOT A

PROBLEM. THE MAIN CONCERN IS UNCERTAINTY IN THE

EXIJING FOUNDATION'S RESISTANCE TO UPLIFT.

- ADDITIONAL CONCRETE AS SHOWN ON PAGES 4-6
- THE PURPOSE IS TO INCREASED THE SELF-WT OF THE FOUNDATION TO RESIST ADDITIONAL UPLIFT FORCE (BEYOND THE ORIGINAL DESIGN VALUE OF 185K

(i.e. 236-185 = 51K; SAY DESIGN FOR 56K ADDITIONAL UPLIFT RESISTANCE)

ADDITIONAL CONCRETE VOLUME ~ (12.5 - 52) X 6 = 787.5 FT2

CONSERVATIVELY ASSUME GROUND WATER CLOSE TO GRADE; UNIT INT

8 = 0.09 KCF (0.15-0.06)

8 = 0.15 KCF (WITHOUT WATER'S BUOYANCE EFFECTS)

A4 Design Sheet 2 of 6

Client <u>CROWN CASTLE</u> Site Name/# <u>WOLCOTT</u> , BU# 806362	Job No So ₽	Date _	6/6/02
Structure	Reference	<u></u>	
WT. OF NEW CONC = 787.5 x 0.09	= 70.9	(P	er Leci)
PER TIA/EIA- 222-F, USE SAFETY	FAGOR = 1,25	. <u></u>	
" APDITIONAL RESISTANCE TO UPLIFT	$\frac{1}{1} = \frac{70.19}{1.25} = 50$	6.7K > 5	6 (NEEDED)
CHECK DOWEL (#8, HILTI HIT	- C-100 , 18" EM	IBED)	
MIN # OF REBARS ~ 24	•		
$\frac{30.9 \text{ k}}{24} = 2.95^{\text{k}} (5AY 3^{\text{k}}) < 6$	1,79x (0.4x 60) ~ try	191	CAISC AppRo
I Approach) 1.40+1.7L		* ************************************	
14x70,9= 99,3K	11 1 0 ALENE	······································	· · · · · · · · · · · · · · · · · · ·

(Ae

14x70.9= 99.3K

F Not ROWGHENED

Vn = Aufy u=18 (24x0.79) x60 x 0.6 = 580 K

Mu~ 993 Kx 2' = 2383 K-11

ФMn= 019+ Arfy d (1-0,59 (fr.) ~ 019x (24x.) 9) x60x60" x 0,95 ~ 58359 K-11

 $\frac{99.3}{580} + \frac{2383}{58759} = 0.17 + 0.04 \approx 0.21 < 1.0 0.K.$

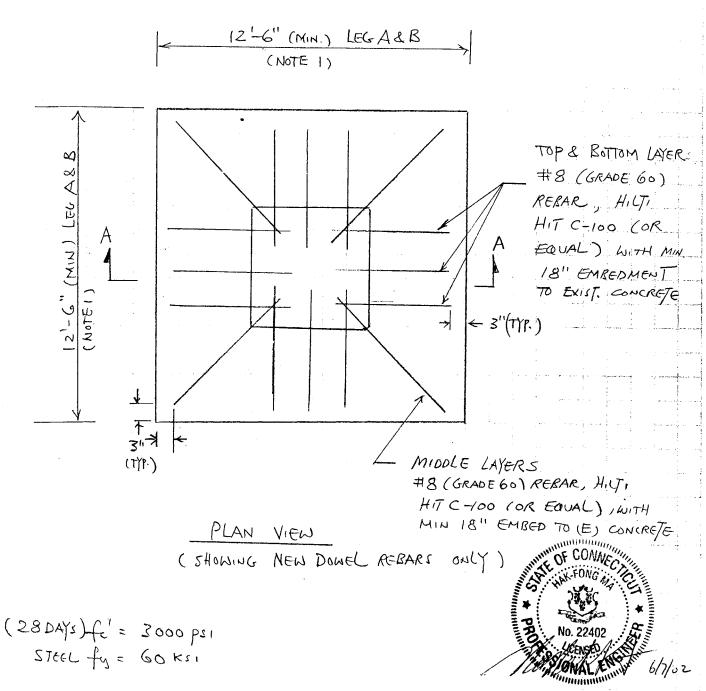
4.3.5

HIT C-100 Injection Technique

A4. P.3 oF 6)

INTO

HIT C-100 Ultimate Bond Strength & Steel Strength for Rebar in Concrete ≥ 2300 psi (15.9 MPa)


Nominal	Embedment Ult. Bond Emb Depth Strength Y in. (mm) Ib (kN)	nbedment Ult. Bond	Embedment to Develop	Embedment to Develop	Grade 60 Rebar²		
Rebar Size in.		Yield Strength ^{1,2} in. (mm)	eld Strength 1.2 in. (mm) in. (mm)		Tensile Strength Ib (kN)		
	13/4	3400					
	(45)	(15.1)			į		
#3	31/2	6800	3 ¹/₂	51/4	6600	9900	
	(89)	(30.3)	(89)	(133)	(29.4)	(44.0)	
	51/4	10200			:		
	(133)	(45.4)					
	21/8	4300					
	(54)	(19.)					
#4	41/4	10000	5	71/4	12000	18000	
	(108)	(44.5)	(127)	(184)	(53.4)	(80.0)	
	6³/s	15700	• •				
	(162)	(69.8)					
	21/2	6000					
	(64)	(26.7)					
#5	5	14000	61/2	93/8	18600	27900	
	(127)	(62.3)	(165)	(238)	(82.7)	(124.1)	
	71/2	22000					
	(184)	(97.9)					
	33/8	9000					
	(86)	(40.0)					
#6	6 ⁵ /8	20,000	85/8	13	26400	39600	
	(168)	(89.0)	(219)	(330)	(117.4)	(176.2)	
	10	31000					
	(254)	(137.9)					
	33/8	10000					
	(86)	(44.5)					
#7	65/8	22000	101/2	15¹/₂	36000	54000	
	(168)	(97.9)	(266)	(394)	(160.1)	(240.2)	
	10	34000					
	(254)	(151.2)					
	41/8	17000					
(")	(105)	(75.6)					
(#8)	81/4	35000	111/2	171/4	47400	71100	
	(210)	(155.7)	(292)	(438)	(210.8)	(316.3)	
$\overline{}$	123/8	53000					
	(314)	(235.8)					
	5	22000					
"^	(127)	(97.9)	100	00	canno	00000	
#9	10	45000	131/4	20	60000	90000	
	(254)	(200.2)	(336).	(508)	(266.9)	(400.3)	
	15	68000					
	(381)	(302.5)					
	6	30000					
114.0	(152)	(133.5)	451	90	76000	114000	
#10	12	60000	151/4	23	76200	114300	
	(305)	(266.9)	(387)	(584)	(339.0)	(508.4)	
	18	90000					
	(457)	(400.3)			` `		

^{1.} Embedment depth required to attain an average ultimate bond strength which equals the nominal strength of a Grade 60 rebar.

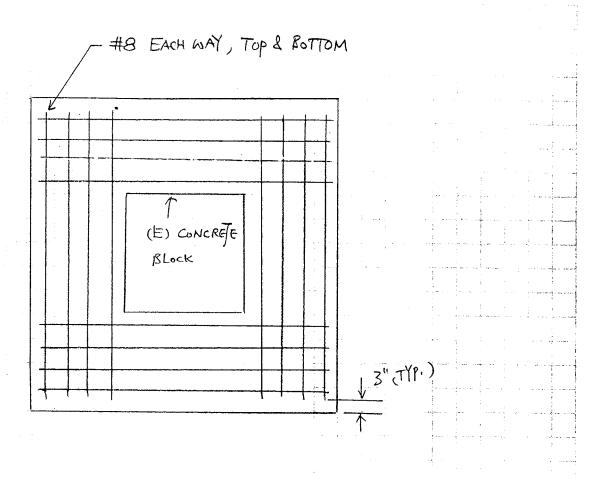
^{2.} Steel strength based on nominal cross-sectional area of rebar.

A4 Design Sheet 4 of 6

Client <u>CROWN</u> CASTLE	Job No. 508 Date 6/7/02
Site Name/# WoLCoTT , Ru# 806 362	Computed By
Structure	Reference

NOTE 1: MAY FIELD ADJUST DIMENSIONS TO ACCOMMODATE SPACE RESTRIFTIONS

PROVIDED CENTER OF NEW FOUNDATION & CENTER OF ORIGINAL PIER


AND TOTAL CONCRETE VOLUME (INCLUDING OLD GNORETE) IS NOT

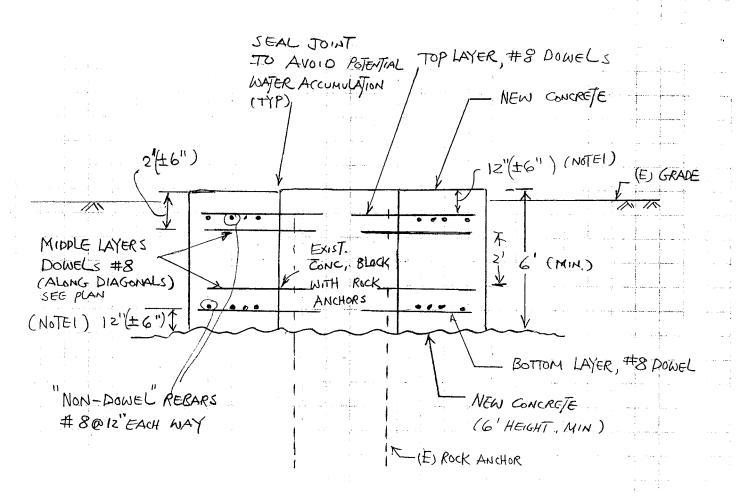
LESS THAN 937 FT3 EACH LEG

		, ; , ,	•
San			

At Design Sheet 5 of 6

Client CROWN CASTLE	Job No508 Date6/7/02
Site Name/# WoLCoTT, Bu# 806362	Computed By
Structure	Reference

PLAN VIEW


(SHOWING NON-DOWEL REBARS ONLY)

اللنا	
HAI	
'##'	
M	

A4 Design Sheet 6 of 6

Client CROWN CASTLE	Job No. 50 P Date 6/6/02
Site Name/# Wolcott, Bu# 806362	Computed By
Structure	Reference

ELEVATION (SECTION A-A)

NOTE 1 - AVOID INTERFERENCES WITH EXISTING CONCRETE RESARS OR/ AND BOYS.

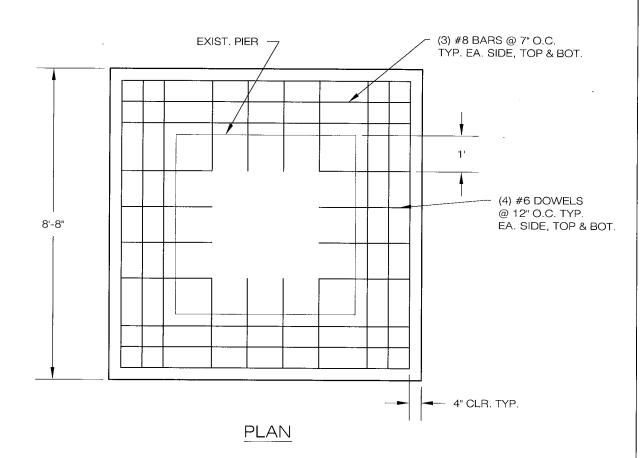
NOTE 2 : ROUGHEN EXISTING CONCRETE BLOCK SURFACE IN ACCORDANCE
WITH ACI COPE & FULLY INSPECT DOWELS BEFORE POURING
NEW CONCRETE.

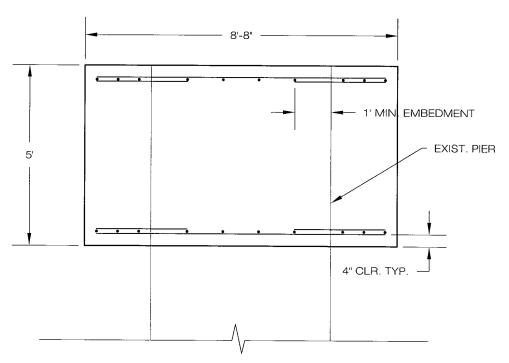
All-Points Technology Corp., P.C.

150 OLD WESTSIDE ROAD NORTH CONWAY, NH 03860 PHONE/FAX: (603) 356-5214 MOBILE: (603) 496-5853 www.allpointstech.com

FOUNDATION PLAN

SHEET: 1 OF 2


SCALE: AS NOTED DRAWN BY: REA


DATE: 15 AUG 02 APT JOB #CT105680

500 West Cummings Park Suite 3400 Woburn, MA 01801

CROWN CASTLE BU #806362

180' ROHN SSMW TOWER WOLCOTT, CONNECTICUT

ELEVATION

All-Points Technology Corp., P.C.

150 OLD WESTSIDE ROAD NORTH CONWAY, NH 03860 PHONE/FAX: (603) 356-5214 MOBILE: (603) 496-5853 www.allpointstech.com

NOTES & REBAR SCHEDULE

SHEET: 2 OF 2

 SCALE: NTS
 DESIGNED BY: REA

 DATE: 15 AUG 02
 APT JOB #CT105680

500 West Cummings Park Suite 3400 Woburn, MA 01801 CROWN CASTLE BU #806362

180' ROHN SSMW TOWER WOLCOTT, CONNECTICUT

NOTES

 This foundation reinforcement based on reactions by Max Engineering LLC, dated June 7, 2002 as follows: Compression: 275 kips
 Tension: 236 kips

Total Shear: 36 kips

2. Foundation modifications assume existing rock anchors are capable of supporting original base reactions. Design assumes groundwater table is below bottom of reinforcement blocks.

3. Reinforcing steel shall consist of ASTM A615 deformed bars.

- 4. Concrete shall have a compressive strength of 4000 psi at 28 days, air entrainment of 6 to 8%, and maximum slump of 5".
- 5. All work shall be performed in accordance with applicable local, state and federal codes and safety regulations.

6. Concrete work shall comply with ACI 318, latest revision.

- 7. Procedures for protection of excavations, existing structures, and utilities shall be established prior to foundation installation.
- 8. Reinforcing bars and cages shall be braced to retain proper dimensions during handling and placement of concrete.

9. Concrete shall be placed against undisturbed soil.

- 10. Dowels shall be installed using epoxy or non-shrink cementitious grout.
- 11. Joint between new and existing concrete shall be sealed to prevent water infiltration.

REINFORCING SCHEDULE:

Qty	<u>Bar</u>	<u>Size</u>	Length
24	Straight	#8	8'
32	Dowels	#6	2'-6"

Quantities shown are per pier.

RF Exposure Analysis for Proposed AT&T Wireless Antenna Facility

SITE-ID: 913-008-376

September 26, 2002

Prepared by AT&T Wireless Services, Inc. Prabhakar Kumar Rughoobur RF Engineer

Table of Contents

1.	INTRODUCTION3
2.	SITE DATA3
3.	RF EXPOSURE PREDICTION3
4.	FCC GUIDELINES FOR EVALUATING THE ENVIRONMENTAL EFFECTS OF RF RADIATION 4
5.	COMPARISON WITH STANDARDS4
6.	CONCLUSION5
7.	FCC LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE5
8.	EXHIBIT A6
9.	EXHIBIT B7
10.	FOR FURTHER INFORMATION8
11.	REFERENCES8

1. Introduction

This report constitutes an RF exposure analysis for the proposed AT&T Wireless antenna facility to be located at 347 East Street, Wolcott, CT 06716. This analysis uses site-specific engineering data to determine the predicted levels of radio frequency (RF) electromagnetic energy in the vicinity of the proposed facility and compares those levels with the Maximum Permissible Exposure (MPE) limits established by the Federal Communications Commission.

2. Site Data

Site Name: Wolcott SE	
Number of simultaneously operating channels	12
Type of antenna	Allgon 7250.03
Power per channel (Watts ERP)	250.0 Watts
Height of antenna (feet AGL)	168 feet
Antenna Aperture Length	5.1 feet

3. RF Exposure Prediction

The following equations established by the FCC, in conjunction with the site data, were used to determine the levels of RF electromagnetic energy present in the vicinity of the proposed facility¹:

$$PowerDensity = \frac{0.64 * N * EIRP(\theta)}{\pi * R^2} (mw/cm^2)$$
 Eq. 1-Far-field

Where, N= Number of channels, R= distance in cm from the RC (Radiation Center) of antenna, and $EIRP(\theta) =$ The isotropic power expressed in milliwatts in the direction of prediction point.

$$PowerDensity = \frac{P_{in} / ch * N * 10^{3}}{2 * \pi * R * h * \alpha / 360} (mw/cm^{2})$$
 Eq. 2-Near-field

Where P_{in}/ch = Input power to antenna terminals in watts/ch, R = distance to center of radiation, h = aperture height in meters, α = 3 dB band-width of horizontal pattern.

¹ RF exposure is measured and predicted in terms of power density in units of milliwatts (mW), a thousandth of a watt, or microwatts (μ W), a millionth of a watt, per square centimeter (cm²). Data comparing predictive analysis with on site measurements has demonstrated that power density can be effectively predicted at given locations in the vicinity of a wireless antenna facility.

4. FCC Guidelines for Evaluating the Environmental Effects of RF Radiation

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by a Second Memorandum Opinion and Order. These new rules represent a consensus of the federal agencies responsible for the protection of public health and the environment, including the Environmental Protection Agency (EPA), the Food and Drug Administration (FDA), the National Institute for Occupational Health and Safety (NIOSH), and the Occupational Safety and Health Administration (OSHA).

Under the laws that govern the delivery of wireless communications services in the United States, as amended by the Telecommunications Act of 1996, the FCC has exclusive jurisdiction over RF emissions from personal wireless antenna facilities, which include cellular, PCS, messaging and aviation sites. ² Pursuant to its authority under federal law, the FCC has established rules to regulate the safety of emissions from these facilities.

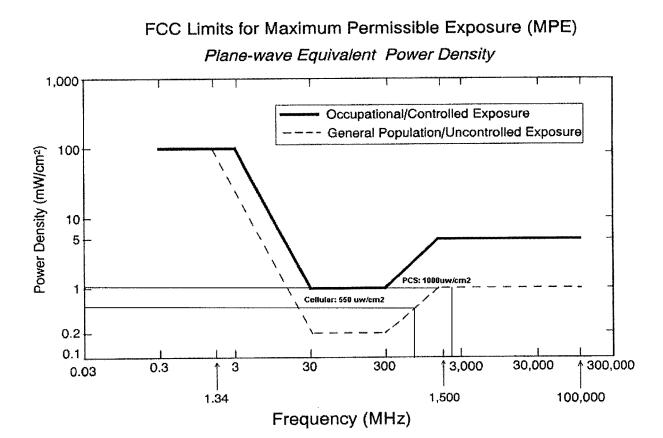
5. Comparison with Standards

Exhibit A shows the levels of RF electromagnetic energy as one moves away from the antenna facility. As shown in Exhibit A, the maximum power density is 0.000466 mW/cm^2 which occurs at 1300 feet from the antenna facility. The chart in Exhibit A also shows that the power density is less than 0.000052 mW/cm^2 at a distance of 4 feet. Table 1 below shows the Maximum Permissible Exposure (MPE) limits established by the FCC. There are different MPE limits for public/uncontrolled and occupational/controlled environments.

Frequency	Public/Uncontrolled	Occupational/controlled	Maximum power density at Accessible location
Cellular	.580 mW/cm ²	2.9 mW/cm ²	
PCS	1 mW/cm ²	5.0 mW/cm ²	0.000466 mW/cm ²

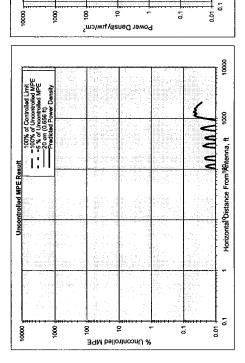
Table 1: Maximum Permissible Exposure limits for RF radiation

The maximum power density from AT&T's proposed system at the proposed facility represents only 0.05 % of the public MPE limit for PCS frequencies. Since there are other transmitters at this site operating at different frequencies, the proper method for evaluating compliance with exposure limits is to find the percentage of MPE for each service, then sum the percentages to reach a total % of MPE for the site. (OET 65, pp 35-37)


From the last filing done by Cingular Wireless at the Connecticut Siting Council for their antenna modification at this site, it is seen that the MPE from their planned operation will be 6.3 % of MPE at their frequency of operation. Adding the energy from the proposed AT&T, Verizon and Cingular systems brings the total exposure to 7.34 % of MPE for uncontrolled (general public) exposure. Exhibit B shows the cumulative MPE from AT&T's proposed and Verizon's existing systems.

² 47 U.S. C. Section 332 (c) (7)(B)(iv) states that "[n]o State or local government or instrumentality thereof may regulate the placement, construction, and modification of personal wireless service facilities on the basis of the environmental effects of radio frequency emissions to the extent that such facilities comply with the Commission's regulations concerning such emissions."

6. Conclusion


This analysis show that the maximum power density in accessible areas at this location will be 7.34 % of MPE, a level of RF energy that is well below the Maximum Permissible Exposure limit established by the FCC.

7. FCC Limits for Maximum Permissible Exposure

AT&T Wireless Services, Inc.

8. Exhibit A

Antenna System One

Number of Antenna Systems: Meets FCC Controlled Limits for The Antennas Systems.

1000

1000

10 100 Horizontal Distance from Antenna, ft

Antenna System One

Meets FCC Uncontrolled Limits for The Antenna Systems.

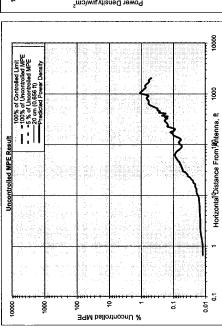
Meets 5% of FCC Uncontrolled Limits for The Antenna Systems.

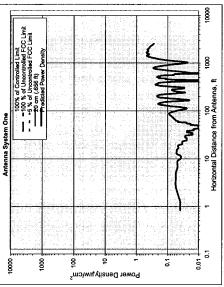
No Further Analysis Required.

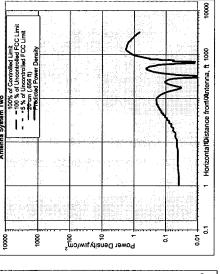
mW/cm² % of limit	nit feet
Maximum Power Density = 0.000466 0.05	1300.00
2,146.33 times lower than the MPE limit for uncontrolled environment	ı
Composite Power (ERP) = 3,000.00	Watts

Site ID: 913-008-376
Site Name: Wolcott SE
Site Location: Into of SR-322 & Meriden-Waterbury Tripke
Wolcott, CT 06716

Performed By: Prabhakar Kumar Rughoobur


Date: 9/24/02


12 250.00 5.86 168.00 5.00 0.00 0.00 Aligen 7250.03 16.30 Value 1945.00 3.00 0.00 5.11 65.00 160.45 degrees degrees feet Watts Watts feet units MHz B # of Channels
Max ERPICh
Max PANTCh Into Ant.
(Center of Redaitor)
Calculation Point
(above ground or not surface)
Antierna Model No.
Max Ant Gain
Down tit Miscellaneous Att.
Height of aperture
Ant HBW
Distance to Ant_{bottom} WOS?


Ant System ONE Owner: AT&T Sector: 3 Azimuth: 100/220/350

9/24/2002

9. Exhibit B

Antenna System One

	nuits	Value
Frequency	MHz	1945.00
# of Channels	#	12
Max ERP/Ch	Watts	250.00
Max Pwr/Ch Into Ant.	Watts	5.86
(Center of Radiator)	feet	168.00
Calculation Point	feet	5.00
(above ground or		0.00
roof surface)		0.00
Antenna Model No.		Allgon 7250.03
Max Ant Gain	qBd	16.30
Down tilt	degrees	3.00
Miscellaneous Att.	ВB	00:00
Height of aperture	feet	5.11
Ant HBW	degrees	65.00
Distance to Ant _{bottom}	feet	160.45
WOS	Y/N2	-

c	AT&T	Sector: 3 Azimuth: 100/220/350
YWY	Ant System ONE Owner: AT&T	Azimuth: 1
WOS?	Ant Sy	

Performed By: Prabhakar Kumar Rughoobur

Date: 9/24/02

Site ID: 913-008-376
Site Name: Wolcott SE
Site Location: Inth of SR-322 & Meriden-Waterbury Tripke
Wolcott, CT 06716

1000.00

Power Density
mW/cm² | % of limit

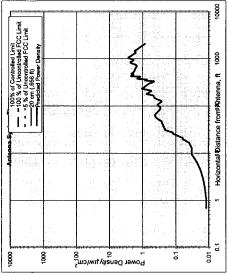
Meets 5% of FCC Uncontrolled Limits for The Antenna Systems.

No Further Analysis Required.

Meets FCC Uncontrolled Limits for The Antenna Systems.

Number of Antenna Systems: Meets FCC Controlled Limits for The Antennas Systems.

Maximum Power Density = 0.009230 1.04
96.45 times lower than the MPE limit for uncontrolled environment
Composite Power (ERP) = 16,228,500.00

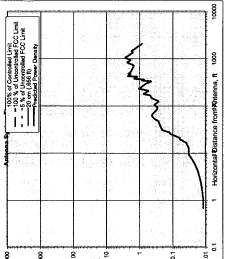

JW0
System
Antenna

MHz Watts Watts Watts Watts Watts Geet feet Gegrees degrees feet feet				2000
## Watts Watts Watts Watts Watts Get		Frequency	MHz	880.00
Watts Watts Watts Feet Feet Feet Ged Gegrees Gegrees Gegrees Feet Feet Feet Feet Feet Feet Feet		# of Channels	#	30
Watts feet feet degrees degrees feet feet		Max ERP/Ch	Watts	250.00
feet feet feet dBd degrees feet feet	May	Pwr/Ch Into Ant.	Watts	15.77
degrees dB feet degrees	၁	enter of Radiator)	feet	178.00
dBd degrees dB feet degrees		Calculation Point	feet	5.00
dBd degrees dB feet degrees feet		(above ground or		00'0
dBd degrees dB feet degrees		roof surface)		00'0
dBd degrees dB feet degrees	ď	ntenna Model No.	,	Aligon 7130.16.05
degrees dB feet degrees		Max Ant Gain	dBd	12.00
dect feet		Down tilt	degrees	3.00
feet degrees feet	_	Aiscellaneous Att.	dB	00:0
degrees feet		leight of aperture	feet	4.33
feet		Ant HBW	degrees	00'56
	۵	stance to Ant _{bottom}	feet	170.84
		WOS?	YNY	u

Ant System TWO Owner: Verizon (Cellular Service) Sector: 3 Azimuth 27/147/267

Cingular Wireless MPE: 6.3

The combined % MPE with Cingualr and remaining systems 7.336778014


Power Density µw/cm²

Power Density two/cm² 8 5 –

1000

100% of Controlled Limit
- 100 % of Uncontrolled FCC Limit
- - 5% of Uncontrolled FCC Limit
- 0 on (.656 ft)
- redicted Power Density

1000

Antenna System Three

# of Channels Max Pun/Ch Into Ant. (Center of Radiator) Calculation Point (above ground or roof surface) Antenna Model No. Max Ant Gain Down titt	wints MHz # # Watts Watts feet feet feet dBd dBd dBgrees	Value 6404 79 2 2 2 5129000.00 386.14 65.00 5.00 0.00 0.00 UHX10-59 41 10 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Height of aperture	feet degrees	1.10
Distance to Ant _{bottom}	feet	55.00
COCIA	2002	1

Ant System Three Owner: Verizon (MW Dish 1) Sector: 1 Azimuth 100

Antenna System Four

Agina	MHz 6226.89	# 2	Watts 2512000.00	Watts 537.06	feet 112.00	feet 5.00	0:00	0.00	0HX6-59	dBd 36.70	degrees 0.00	dB 0.00	feet 6.00	degrees 1.80	feet 104.00	
	Frequency	# of Channels	Max ERP/Ch	Max Pwr/Ch Into Ant.	(Center of Radiator)	Calculation Point	(above ground or	roof surface)	Antenna Model No.	Max Ant Gain	Down tilt	Miscellaneous Att.	Height of aperture	Ant HBW	Distance to Antbottom	0000

Ant System Four Owner: Verizon (MW Dish2) Sector: 1 Azimuth: 200

Antenna System Five

Horizontal Distance from Metenna, ft 1000

6.

10000

1 Horizontal Distance from Whtenna, ft 1000

1 2

0.0

0.01

5.

# Frequency MHz 6404.79 # 6/ Channels # 2 2 Max ERPICh wats 46600.00 Max Pwilch Info Art wats 100.06 (Center of Radiator) feet 118.00 (Center of Radiator) feet 5.00 (above ground of chove ground or surface) 0.00 Antenna Model No. 0.00 Miscellaneous Art degrees 0.00 Height of apenture feet 6.00 Height of apenture feet 1.80 Obistance to Ant _{Authorn} feet 1.80 Obistance to Authorn 1.80 Obistance to Aut		units	Vatue
Watts	Frequency	MHz	6404.79
Watts Watts Watts Feet Feet Feet GBG GBGrees GBB Feet Feet Feet ANY Watts	# of Channels	#	2
Watts feet feet dBd dBgrees dB feet dBrees feet AB feet feet feet	Max ERP/Ch	Watts	468000.00
feet feet degrees degrees degrees feet v/V/V	Max Pwr/Ch Into Ant.	Watts	100.06
ded degrees de feet degrees feet V/V	(Center of Radiator)	feet	118.00
dBd degrees dB feet degrees feet degrees	Calculation Point	feet	5.00
dBd degrees degrees degrees degrees degrees	(above ground or		00:0
dBd degrees dB feet degrees feet dANY	roof surface)		00'0
dBd degrees dB feet degrees feet	Antenna Model No.		0HX6-59
degrees dB feet degrees feet Y/N?	Max Ant Gain	dBd	36.70
dB feet degrees feet V/N?	Down tilt	degrees	0.00
feet degrees feet Y/N?	Miscellaneous Att.	ф	0.00
degrees feet Y/N?	Height of aperture	feet	6.00
feet Y/N?	Ant HBW	degrees	1.80
	Distance to Ant _{bottom}	feet	110.00
	SOW	Y/N?	c

Ant System Five Owner: Verizon (MW Dish3) Sector: 1 Azimuth: 200

10. For Further Information

Additional information about the environmental impact of RF energy from personal wireless antenna facilities can be obtained from the Federal Communications Commission:

Dr. Robert Cleveland Federal Communications Commission Office of Engineering and Technology Washington, DC 20554

RF Safety Program: 202-418-2464 Internet address: rfsafety@fcc.gov

RF Safety Web Site: www.fcc.gov/oet/rfsafety

11. References

- [1] The Communications Act of 1934, as amended by the Telecommunications Act of 1996, 47 U.S.C. Section 332 (c)(7)(B)(iv).
- [2] Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Notice of Proposed Rulemaking, ET Docket 93-62, 8 FCC Rcd 2849 (1993).
- [3] Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Report and Order, ET Docket 93-62, FCC 96-326, adopted August 1, 1996. 61 Federal Register 41006 (1996).
- [4] Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Second Memorandum Opinion and Order, ET Docket 93-62, adopted August 25, 1997.
- [5] Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields, OET Bulletin 65, August, 1997.

CINGULAR WIRELESS Antenna Modification

Site Address:

347 East Street, Wolcott

exempt modification

Tower Owner/Manager:

Crown Atlantic Company LLC

Antenna configuration

Antenna center line – current 158', proposed 162'

Current and/or approved: 12 DB846H80 or comparable

Planned:

9 CSS DUO4-8670 or comparable

6 tower mount amplifiers

1 LMU (at 25')

Power Density:

Calculations for Cingular's current operations at the site indicate a radio frequency electromagnetic radiation power density, measured at the tower base, of approximately 4.7% of the standard adopted by the FCC. As depicted in the second table below, the total radio frequency electromagnetic radiation power density for Cingular's planned operations would be approximately 6.3%, or an additional 1.6% of the standard.

Cingular Current

Сопрану	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	Percent of Limit
SNET	158	880 - 894	19	100	0.0274	0.5867	4.7

Cingular Planned

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	Percent of Limit
SNET TDMA	162	880 - 894	16	100	0.0219	0.5867	3.7
SNET GSM	162	880 - 894	2	296	0.0081	0.5867	1.4
SNET GSM	162	1930 - 1935	2	427	0.0117	1.0000	1.2
	The state of the s						7.XA117
37.37	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	HE PRODUCED AND A SECOND					6.3%

Structural information: Please see attached. Modifications are to be made by AT&T Wireless, per AT&T Wireless agreement with Crown, and will be reflected in a filing to be made by AT&T Wireless.