

December 19, 2016

Melanie Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: AT&T Wireless NOTICE OF EXEMPT MODIFICATION 55 King Road, Windsor Locks, CT 06078

Dear Ms. Bachman:

Enclosed please find and original and two (2) copies of a Notice of Exempt Modification including drawings and a check in the amount of six hundred twenty five (\$625.00) for the filing fee. In addition, I have included a single copy of each notification letter mailed this day to the municipality, and to the owner of both the property and the tower. Also enclosed are three (3) hard copies of the RF Report and Structural analyses of the tower.

I will submit copies of the structural analysis and the RF table to you via e mail this same day.

Please feel free to contact me with any questions or comments. Thank you for your kind cooperation in this matter.

Respectfully submitted,

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-677-0144 jandrews@empiretelecomm.com

Enclosures

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-677-0144 jandrews@empiretelecomm.com

December 16, 2016

Melanie Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

NOTICE OF EXEMPT MODIFICATION

55 King Spring Road, Windsor Locks, CT 06078

Lat: 41-56-47.42 (41.94650556) Long. 72-39-54.22 (-72.66506111)

Dear Ms. Bachman:

AT&T Wireless currently maintains six (6) antennas at the 100 foot level of an existing 100 foot tall lattice tower located at 55 King Spring Road, in Windsor Locks, CT. The tower is owned by the King Spring Tower, LLC. The property is owned by Samuel Sales. AT&T Wireless now seeks to install three (3) new RRUS-12 ("RRU") remote radio units, one (1) RRU per sector, to the 100 foot level of the tower, install new RRH mounts for the new RRUs, and to relocate three (3) existing RRUS-11 units upon the new RRH mounts, adjacent to the proposed new RRUS-12 units.

The facility was approved by the Connecticut Siting Council in EM-AT&T-165-020814 on September 6, 2002. No conditions of approval were enumerated in the Council's decision.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies section 16-50j-73 for construction that constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2). In accordance with RCSA section 16-50j-73, a copy of this letter and attachments is being sent to the Honorable Christopher J. Kervick, First Selectman of Windsor Locks, as well as Samuel Sales, the property owner and to King Spring Tower, LLC, the tower owner.

The planned modifications to the facility fall squarely within those activities expressly provided for in RCSA section 50j-72(b)(2).

1. The proposed modifications will not result in an increase in height of the existing structure.

- 2. The proposed modifications will not require an extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that will exceed state and local limits.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, AT&T Wireless respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under RCSA section 16-50j-72(b)(2).

Respectfully submitted,

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-677-0144 jandrews@empiretelecomm.com

Enclosures

cc: The Honorable Christopher J. Kervick, First Selectman of Windsor Locks Samuel Sales, as the property owner King Spring Tower, LLC, as the tower owner.

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

AT&T Existing Facility

Site ID: CT5400

Suffield South 55 King Spring Road Windsor Locks, CT 06078

December 16, 2016

EBI Project Number: 6216005035

Site Complian	ce Summary
Compliance Status:	COMPLIANT
Site total MPE% of FCC general public allowable limit:	15.62 %

December 16, 2016

AT&T Mobility – New England Attn: Cameron Syme, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT5400 - Suffield South

EBI Consulting was directed to analyze the proposed AT&T facility located at **55 King Spring Road**, **Windsor Locks**, **CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467 μ W/cm² and 567 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over this or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed AT&T Wireless antenna facility located at **55 King Spring Road, Windsor Locks, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 UMTS channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 2 GSM channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 UMTS channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 2 GSM channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 2 LTE channels (700 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 6) 2 LTE channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.

- 7) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 8) For the following calculations the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antennas used in this modeling are the Kathrein 800-10121 and the KMW AM-X-CD-14-65-00T-RET for transmission in the 700 MHz, 850 MHz and 1900 MHz (PCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 10) The antenna mounting height centerlines of the proposed antennas are **100 feet** above ground level (AGL) for **Sector A**, **100 feet** above ground level (AGL) for **Sector B** and **100 feet** above ground level (AGL) for **Sector C**.
- 11) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

AT&T Site Inventory and Power Data by Antenna

Sector:	А		Sector:	В		Sector:	С
Antenna #:	1	A	ntenna #:	1		Antenna #:	1
Make / Model:	Kathrein 800-10121	Make	/ Model:	Kathrein 800-1	10121	Make / Model:	Kathrein 800-10121
Gain:	11.45 / 14.35 dBd		Gain:	11.45 / 14.35	dBd	Gain:	11.45 / 14.35 dBd
Height (AGL):	100 feet	Heigh	nt (AGL):	100 feet		Height (AGL):	100 feet
Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequen	cy Bands	850 MHz 1900 MHz (P		Frequency Bands	850 MHz / 1900 MHz (PCS)
Channel Count	8	Chanr	nel Count	8		Channel Count	8
Total TX Power(W):	240 Watts		Total TX ower(W):	240 Watts	s	Total TX Power(W):	240 Watts
ERP (W):	4,942.88	H	ERP (W):	4,942.88		ERP (W):	4,942.88
Antenna A1 MPE%	2.53 %	Antenna B	1 MPE%	2.53 %		Antenna C1 MPE%	2.53 %
Antenna #:	2	A	ntenna #:	2		Antenna #:	2
Make / Model:	Powerwave P65-17-XLH-RR	Make	/ Model:	KMW AM-X-CD-14 00T-RET		Make / Model:	Powerwave P65-17-XLH-RR
Gain:	14.3 / 15.1 dBd		Gain:	11.85 / 14.15	dBd	Gain:	14.3 / 15.1 dBd
Height (AGL):	100 feet	Heigh	nt (AGL):	100 feet		Height (AGL):	100 feet
Frequency Bands	700 MHz / 1900 MHz (PCS)	Frequen	cy Bands	700 MHz 1900 MHz (P		Frequency Bands	700 MHz / 1900 MHz (PCS)
Channel Count	4	Chanr	nel Count	4		Channel Count	4
Total TX Power(W):	240 Watts		Total TX ower(W):	240 Watts	s	Total TX Power(W):	240 Watts
ERP (W):	7,112.97	H	ERP (W):	4,957.50		ERP (W):	7,112.97
Antenna A2 MPE%	4.39 %	Antenna B	2 MPE%	2.87 %		Antenna C2 MPE%	4.39 %
Site Co	mposite MPE%					T&T Sector A Total:	6.93 %
Carrier	MPE	%				F&T Sector B Total:	5.40 %
AT&T – Max per s	ector 6.93	%			A	F&T Sector C Total:	6.93 %
Arch	0.76	%					
Verizon Wireles	ss 7.93	%				Site Total:	15.62 %
Site Total MPE	%: 15.62	%					

AT&T _ Frequency Band / Technology Max Values per Sector (Sectors A & C)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE
AT&T 850 MHz UMTS	2	418.91	100	3.41	850 MHz	567	0.60%
AT&T 850 MHz GSM	2	418.91	100	3.41	850 MHz	567	0.60%
AT&T 1900 MHz (PCS) UMTS	2	816.81	100	6.65	1900 MHz (PCS)	1000	0.66%
AT&T 1900 MHz (PCS) GSM	2	816.81	100	6.65	1900 MHz (PCS)	1000	0.66%
AT&T 700 MHz LTE	2	1,614.92	100	13.14	700 MHz	467	2.81%
AT&T 1900 MHz (PCS) LTE	2	1,941.56	100	15.80	1900 MHz (PCS)	1000	1.58%
						Total:	6.93%

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)
Sector A:	6.93 %
Sector B:	5.40 %
Sector C:	6.93 %
AT&T Maximum Total (per sector):	6.93 %
Site Total:	15.62 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **15.62** % of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

SITE NAME: SUFFIELD SOUTH PROJECT LTE2C FA NUMBER: 10071274 SITE NUMBER: CT5400 55 KING SPRING ROAD WINDSOR LOCKS, CT 06078 HARTFORD COUNTY

VORK AND MATERI I THE CURRENT EDI ERNING AUTHORITI K NOT CONFORMI
CONNECTICUT STAT CODE (2016) & ALL SU MENDMENTS IATIONAL ELECTRIC IATIONAL FIRE PROT SSOCIATION 70 - 20 IGHTNING PROTECT MERICAN CONCRET 18

DO NOT SCALE DRAWINGS

SHEET	
T-I	TITL
GN-I	GEN
A-I	CON
A-2	ELEV
A-3	ANT
A-4	DET
A-5	RF P
G-I	GRC

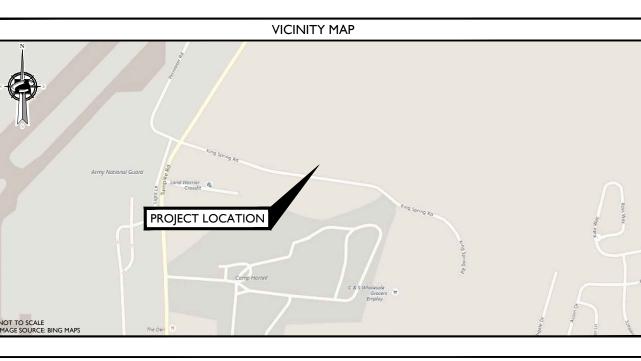
PROJECT SCOPE HEREIN BASED ON RFDS ID# 1394262, VERSION 2.0, LAST UPDATED 10/15/16 FOR LTE MULTI CARRIER SCOPE OF WORK.

(3) NEW RRH MOUNTS TO BE INSTALLED

(3) NEW RRUS-12 TO BE INSTALLED (3) EXISTING RRUS-11 TO BE RELOCATED

PROJECT TEAM

CLIENT REPRESE	ENTATIVE
COMPANY: ADDRESS:	EMPIRE TELECOM 16 ESOUIRE ROAD
CITY, STATE, ZIP:	BILLERICA, MA 01862
CONTACT:	DAVID COOPER
E-MAIL:	DCOOPER@EMPIRETELCOMM.COM
ENGINEER	
COMPANY:	MASER CONSULTING CONNECTICUT
ADDRESS:	331 NEWMAN SPRINGS ROAD, SUITE 203
CITY, STATE, ZIP:	RED BANK, NJ 07701
CONTACT:	MICHAEL CLEARY
PHONE:	(856) 717-0412 x4105
E-MAIL:	MCLEARY@MASERCONSULTING.COM


PHONE: E-MAIL: **RF ENGINEER**

COMPANY:

ADDRESS: CITY, STATE, ZIP: CONTACT: E-MAIL:

NEW CINGULAR WIRELESS PCS, LLC NEW CINGULAR WIRELE 550 COCHITUATE ROAD FRAMINGHAM, MA 01701 MD MATEEN MM093Q@ATT.COM

DRIVING DIRECTIONS

DIRECTIONS FROM AT&T OFFICE AT 550 COCHITUATE ROAD, FARMINGHAM, MA

DEPART RT-30 WEST/COCHITUATE ROAD TOWARD BURR STREET. TURN BACK ON RT-30 EAST/COCHITUATE ROAD. TAKE RAMP RIGHT FOR I-90 WEST TOWARD WORCESTER/SPRINGFIELD. AT EXIT 9, TAKE RAMP RIGHT FOR I-84 TOWARD NEW YORK CITY/HARTFORD. AT EXIT 61, TAKE RAMP RIGHT FOR I-291 WEST TOWARD WINDSOR. AT EXIT 28, TAKE RAMP RIGHT FOR I-91 NORTH TOWARD SPRINGFIELD. AT EXIT 9, TAKE RAMP RIGHT FOR CT-20 TOWARD BRADLEY INTERNATIONAL AIRPORT. TAKE RAMP RIGHT FOR CT-75 TOWARD POQUONOCK/SUFFIELD. TURN RIGHT ONTO CT-75/TURNPIKE ROAD. ARRIVE AT CT-75 / SOUTH ST ON THE RIGHT.

CODE COMPLIANCE

NALS SHALL BE PERFORMED AND INSTALLED IN ACCORDANCE DITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL TIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT ING TO THE LATEST EDITIONS OF THE FOLLOWING CODES.

- TE BUILDING CODE 2014 ECTION TION CODE 201 **FE INSTITUTE**
- AMERICAN INSTITUTE OF STEEL CONSTRUCTION 360-10
 EIA/TIA-222 REVISION G
 EIA/TIA-222 REVISION G TIA 607 FOR GROUNDING INSTITUTE FOR ELECTRICAL AND ELECTRONICS ENGINEERS 81 10. IEEE C2 LATEST EDITION 11. TELCORDIA GR-1275 12. ANSI T1.311

GENERAL CONTRACTOR NOTES

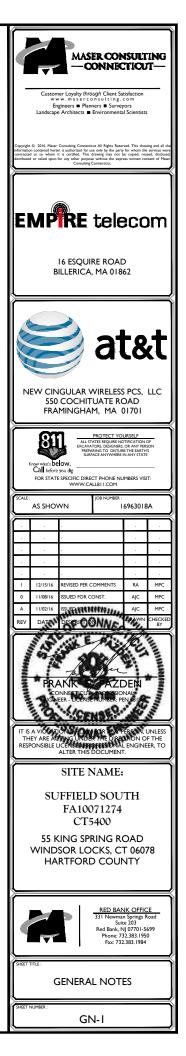
CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON TH IOB SITE AND SHALL IMMEDIATELY NOTIFY THE ARCHITECT/ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE; NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

DESCRIPTION LE SHEET NERAL NOTES MPOUND PLAN AND EQUIPMENT PLAN VATION VIEW AND ANTENNA SCHEDULE TENNA LAYOUTS TAILS LUMBING DIAGRAMS OUNDING DETAILS

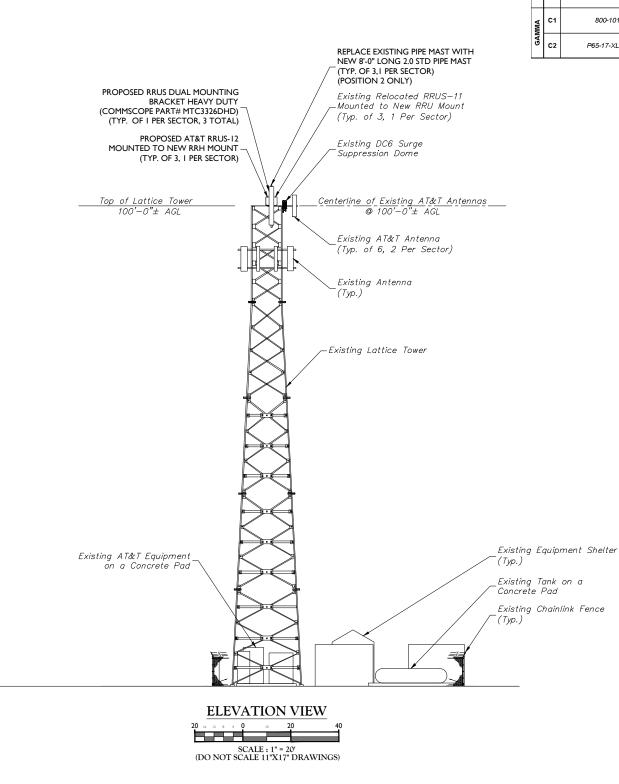
PROJECT DESCRIPTION/SCOPE OF WORK


- THIS PROJECT WILL BE COMPRISED OF:

GENERAL NOTES:

- I. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AH), THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- 2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 50 HMS OR LESS.
- 4. THE SUBCONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT.
- METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 6. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 7. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE EQUIPMENT GROUND RING WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS; 2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 8. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED. BACK TO BACK CONNECTIONS ON OPPOSITE SIDES OF THE GROUND BUS ARE PERMITTED.
- 9. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING, SHALL BE #2 AWG SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 10. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 11. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED. ALL BENDS SHALL BE MADE WITH 12" RADIUS OR LARGER.
- 12. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE
- 13. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS EXCEPT FOR GROUND BAR CONNECTION FROM MGB TO OUTSIDE EXTERIOR GROUND SHALL ALL BE CADWELD CONNECTIONS.
- 14. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 15. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED TO THE TOWER GROUND BAR.
- 16. APPROVED ANTIOXIDANT COATINGS (I.E. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 17. ALL EXTERIOR AND INTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 18. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE
- GROUND RING, IN ACCORDANCE WITH THE NEC.
 19. BOND ALL METALLIC OBJECTS WITHIN 6 FT OF MAIN GROUND WIRES WITH 1.#2 AWG TIN-PLATED COPPER GROUND CONDUCTOR
- 20. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G. NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO FACH END OF THE METAL CONDUIT.
- 21. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/4" IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #X AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC 250.50.
- 22. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:
 - CONTRACTOR EMPIRE TELECOM SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION)
 - OWNER AT&T (NEW CINGULAR WIRELESS PCS, LLC)
- 23. ALL SITE WORK SHALL BE COMPLETED AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.
- 24. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.
- 25. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK.
- 26. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 27. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 28. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 29. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR.
- 30. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 31. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 32. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY THE RESPONSIBLE ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. SUBCONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION BJ CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING & EXCAVATION.
- 33. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, AS DIRECTED BY THE RESPONSIBLE ENGINEER, AND SUBJECT TO THE APPROVAL OF THE OWNER AND/OR LOCAL UTILITIES.

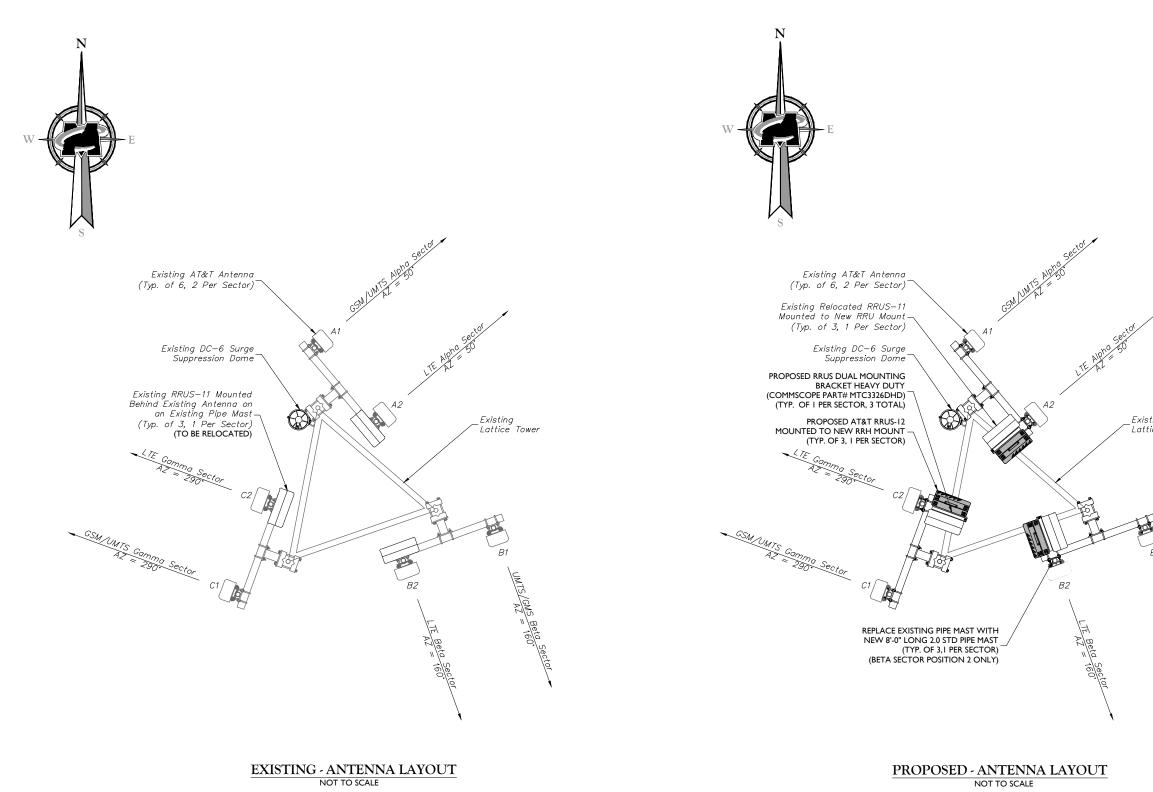
- 34. THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY SHALL BE GRADED TO A UNIFORM SLOPE AND STABILIZED TO PREVENT EROSION.
- 35. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 36. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
- 37. THE SUBGRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 38. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOWER AREAS.
- 39. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 40. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE.
- 41. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 42. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF THE CONTRACTOR.
- 43. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND TI CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR.
- 44. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.
- 45. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS
- 46. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM 3/26 (F) = 3/6 kii) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM 3/3 TYPE E (Fy = 3/6 kii). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCHUP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.
- CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T MOBILITY SITES."
- 48. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 49. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION, ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT.
- 50. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN ALERT OF DANGEROUS EXPOSURE LEVELS.



				PRC	POSED ANT	ENNA AND R	RUS CONFIG	URATION					
s	ECTOR	EXISTING ANTENNA CONFIGURATION	PROPOSED ANTENNA CONFIGURATION	TECHNOLOGY	ANTENNA STATUS	HEIGHT (in)	WIDTH (in)	DEPTH (in)	WEIGHT (lbs)	ANTENNA AZIMUTH	ANT. CL. ELEV (ft.)	RRUS/TMA CONFIGURATION	STATUS
ALPHA	A1	800-10121	800-10121	GSM/UMTS	REMAIN	54.90	10.30	5.90	51.20	50°	100'	(2) LGP 21401 TMA's	REMAIN
ALP	A2	P65-17-XLH-RR	P65-17-XLH-RR	LTE	REMAIN	96.00	12.00	6.00	70.00	50°	100'	RRUS-12 RRUS-11	NEW REMAIN
TA	В1	800-10121	800-10121	GSM/UMTS	REMAIN	54.90	10.30	5.90	51.20	160°	100'	(2) LGP 21401 TMA's	REMAIN
BE	B2	AM-X-CD-14-65-00T-RET	AM-X-CD-14-65-00T-RET	LTE	REMAIN	48.00	11.90	5.90	30.80	160°	100'	RRUS-12 RRUS-11	NEW REMAIN
GAMMA	C1	800-10121	800-10121	GSM/UMTS	REMAIN	54.90	10.30	5.90	51.20	290°	100'	(2) LGP 21401 TMA's	REMAIN
GAN	C2	P65-17-XLH-RR	P65-17-XLH-RR	LTE	REMAIN	96.00	12.00	6.00	70.00	290°	100'	RRUS-12 RRUS-11	NEW REMAIN

ANTENNA SCHEDULE

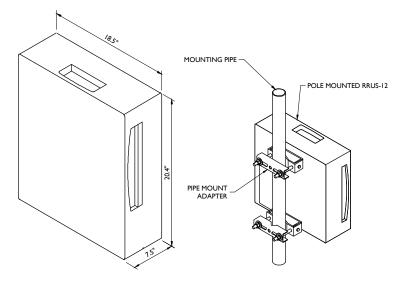
- COMPLETED.
- 3 STRUCTURAL ANALYSIS

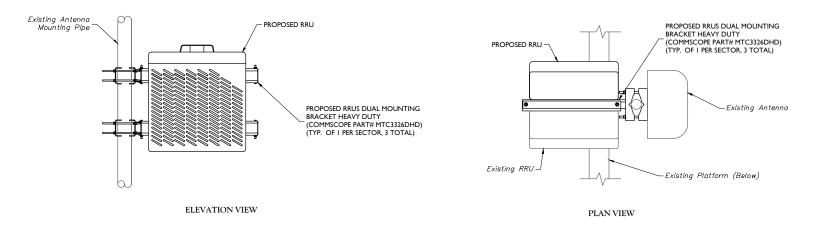


1. NO CONSTRUCTION OF THE PROPOSED LOADING SHOWN SHALL PROCEED UNTIL ADEQUACY OF THE EXISTING STRUCTURE AND FOUNDATION, INCLUDING THE PROPOSED AT&T ANTENNA MOUNTING CONFIGURATION SHOWN HEREIN, HAS BEEN

2. THE STRUCTURE ELEVATION IS SHOWN FOR INFORMATIONAL PURPOSES ONLY AND MAY NOT REFLECT AS-BUILT FIELD CONDITIONS FOR ALL EXISTING INVENTORY LOADING/ANTENNAS/APPURTANENCES ON STRUCTURE. REFER TO THE LATEST STRUCTURAL ANALYSIS FOR EXISTING STRUCTURE LOADING AND THE PROPOSED METHOD OF ATTACHMENT OF THE PROPOSED ANTENNAS/CABLES.

THE CONTRACTOR IS RESPONSIBLE TO CONFIRM THAT ANY IMPROVEMENTS AND REINFORCEMENTS REQUIRED BY THE STRUCTURAL ANALYSIS CERTIFICATION ARE PROPERLY INSTALLED PRIOR TO THE ADDITION OF ANTENNAS, CABLES, SUPPORTS AND APPURTENANCES PROPOSED ON THESE DRAWINGS OR OTHERWISE NOTED IN THE

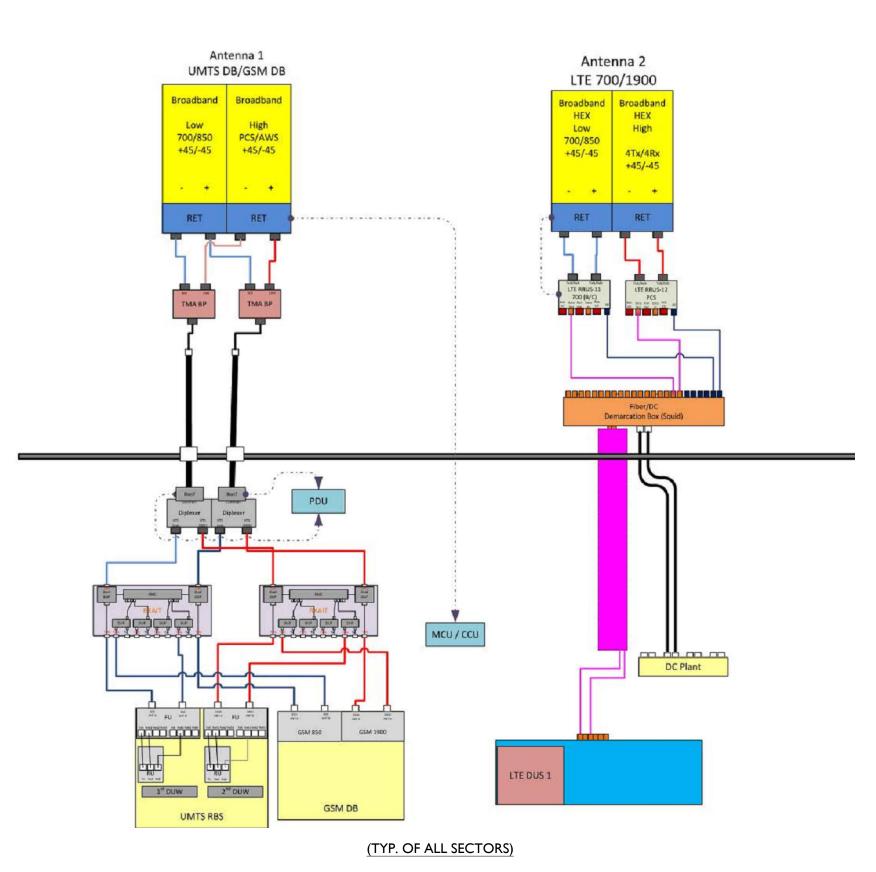



3JČ

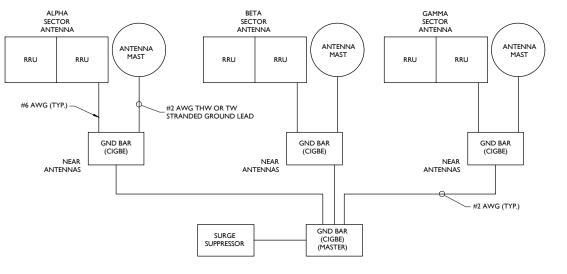
Asser consuting Constant of the second seco
Copyright © 2016. Maser Considing Connecticit All Rights Reserved. This drawing and all the information contained harm is authoritized for use only by the party for whom the services way durinbased or relied upon for any other particles whom the express written consets of Maser Consulting Connection.
BILLERICA, MA 01862
NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701
ROTECT YOURSEF
SCALE : JOB NUMBER : AS SHOWN 16963018A
I 12/15/16 REVISED PER COMMENTS RA MPC 0 11/08/16 ISSUED FOR CONST. AJC MPC
A 11/02/16 ISSUED KOLINITIM AJC MPC REV DATE DESCRIPTION CHECKED BY
THEY ARE AGING UNDER THE DIRECTION OF THE RESPONSIBLE LICENSID PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
SITE NAME: SUFFIELD SOUTH FA10071274 CT5400 55 KING SPRING ROAD WINDSOR LOCKS, CT 06078 HARTFORD COUNTY
RED BANK OFFICE 331 Newman Springs Road Suite 203 Red Bank, N07701-5699 Phone: 732.383.1950 Fax: 732.383.1984
SHEET NUMBER : A-3

RRUS-12 DIMENSIONS (H X W X D): 20.4" X 18.5" X 7.5" (INCLUDES SUNSHIELD) WEIGHT: 58 LBS

RRUS-12 DETAIL



 $\frac{RRUS\ MOUNTING\ DETAIL}{_{\text{NOT TO SCALE}}}$


RF PLUMBING DIAGRAMS

BASED ON RF ENGINEERING DESIGN ENTITLED "NEW-ENGLAND_CONNECTICUT_CTV5400_2017-LTE-Next-Carrier_LTE-2C_mm093q_2051A07A0C_10071274_26989_09-15-2016_Final-Approved_v2.00"

SCHEMATIC DIAGRAM GROUNDING SYSTEM NOT TO SCALE

NOT BE USED.

ANTENNA CABLE TO BTS EQUIPMENT

(TYP.)

NOTES:

1

CONNECTOR

WEATHERPROOFING KIT (TYP.) SEE NOTE 2

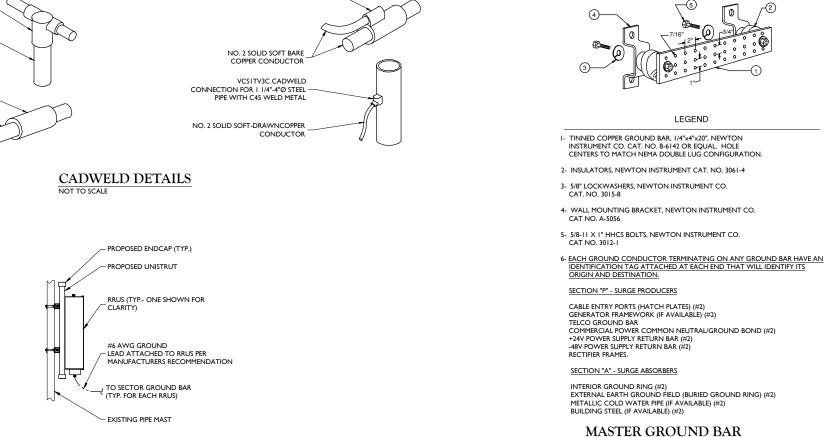
COAX JUMPER

RRH GROUNDING NOT TO SCALE

NO. 2 SOLID SOFT-DRAWN BARE

GTC-161T CADWELD CONNECTION

NO. 5810, 5/8"X10' COPPER CLAD

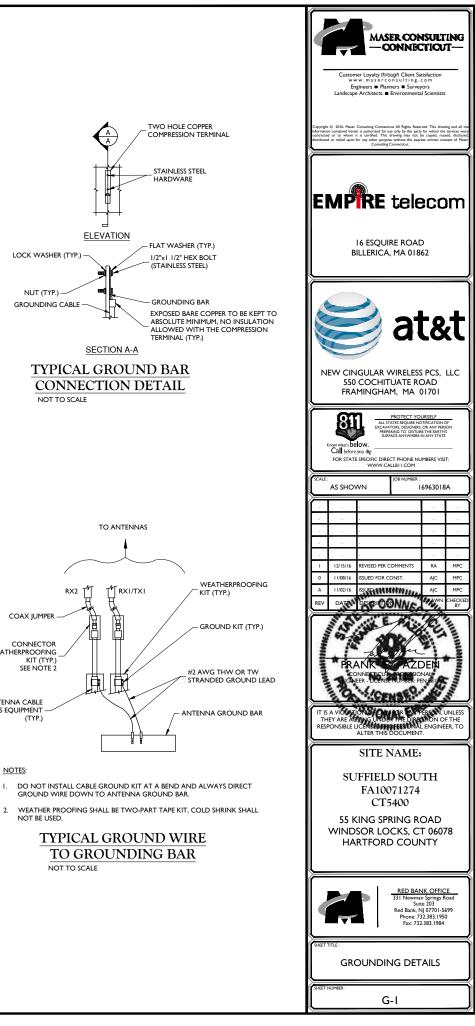

SSCIT CADWELD MOLD WITH C32 WELD METAL

NO. 2 SOLID SOFT-DRAWN BARE COPPER CONDUCTOR

COPPER CONDUCTOR

WITH C150 WELD METAL

GROUND ROD


PCCITIT CADWELD MOLD

WITH C45 WELD METAL

LOCK WASHER (TYP.)

NUT (TYP.)

NOT TO SCALE

550 Cochituate Road Framingham, MA 01701

<u>LTE 2C</u>

Antenna Mount Analysis

Site Name:	Suffield South
FA #:	10071274
Site Number:	CT5400
Site Address:	55 King Spring Road
	Windsor Locks, CT 06078
	Hartford County
Maser Project Number:	16963018A

December 2, 2016

Analysis Type	Sector Frame
Pass/Fail	Pass
Mount Utilization	65.0 %

Frank E. Pazden, P.E. Connecticut Professional Engineer PE License #28188

Objective:

The objective of this report is to determine the capacity of the existing antenna support mounts at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

Introduction:

Maser Consulting Connecticut has reviewed the following documents in completing this report:

- RFDS 1394262 provided by Empire Telecom, dated October 5, 2016 for LTE 2C scope of work.
- Construction Drawings prepared by Maser Consulting Connecticut for LTE 2C Scope of Work.
- Tower and Mount Mapping Report prepared by Tower Engineering Professionals TEP# 74312.102186 dated, November 29, 2016.

The existing **AT&T** equipment is supported on an existing antenna support mounts constructed of structural steel antenna support pipes supported by HSS tubes and pipes at a centerline of approximately 100'-0" above ground level. This report is based only upon this information, as well as the information obtained in the field.

Discrete and Linear Appurtenances:

The overall mount loading is found in the Loading Summary section of this report.

Codes, Standards and Loading:

Maser Consulting Connecticut utilized the following codes and standards:

- 2016 Connecticut State Building Code, Incorporating The 2012 IBC
- Structural Standards for Antenna Supporting Structures and Antennas ANSI/TIA-222-G
 - o Basic Wind Speed 97 mph, Ice Wind Speed 40 mph and Ice thickness 1 in
 - Exposure Category C
 - Structure Class II
 - o Topographic Category 1
- Specification for Structural Steel Buildings ANSI/AISC 360-10

Analysis Approach & Assumptions:

The analysis approach used in this structural analysis is based on the premise that if the existing antenna mounts are structurally adequate to support the existing and proposed equipment per the aforementioned codes and standards, or if the increase in the forces in the structure are deemed to be negligible or acceptable, then the proposed equipment can be installed as intended. Risa-3D, a 3D finite element modeling and analysis program, was used to determine the capacity and usage of the existing antenna support frame.

The following assumptions were utilized in this report:

- Structural Steel Pipes are constructed of A53 Grade B Steel.
- Structural Steel HSS are constructed of A500 Grade B Steel.

- It is assumed that the telecommunication equipment supports, antenna supports, and existing structure have been designed by a registered licensed professional engineer for the existing loads acting on the structure, as required by all applicable codes.
- It is assumed that information provided by the client regarding the structure itself, the antenna models, feed lines, and other relevant information is current and correct.
- It is assumed all other existing appurtenances, antennas, cables, etc. belonging to others have been
 installed and supported per code and per specifications so as not to damage any existing structural
 support members, and that any contributing loads from adjacent equipment has been taken into
 consideration for their design.
- Proposed equipment and locations should not deviate from the proposed locations noted herein and shown on the associated Maser Consulting Connecticut final Construction Drawings.

Calculations:

The calculations are found in Appendix A of this report.

Conclusion:

The existing antenna mounts were analyzed for the loading in the applicable codes and standards. The mounts have been determined to be structurally **ADEQUATE** to support the proposed and existing antennas, based upon the aforementioned assumptions.

The antenna mounts have been determined to be stressed to a maximum of **65.0%** of its structural capacity with the maximum usage occurring at the main antenna mount pipe. Therefore, the proposed **AT&T** installation **CAN** be placed as intended in all sectors.

The conclusions reached by Maser Consulting Connecticut in this evaluation are only applicable for the existing structural members supporting the proposed **AT&T** telecommunications installation described herein. Further, no structural qualifications are made or implied by this document for the existing structure.

We appreciate the opportunity to be of service on this project. If you should have any questions or require any additional information, please do not hesitate to call our office.

Sincerely, Maser Consulting Connecticut

Frank Pazden, P.E. Telecommunications Department Manager

Anwesha Bera

Anwesha Bera, E.I.T. Structural Design Engineer

\\maserconsulting.com\\uj\Projects\2016\16963000A\16963018A\\Structural\Mount Analysis\\Rev 0\\Word\10071274.Suffield South.Mount Analysis.Rev 0.doc

ATT	Computed By:	AB
Suffield South	Date:	12/2/2016
16963018A	Verified By:	FEP
Antenna Mount Analysis	Page:	5

5. LOADING SUMMARY

Client:

Site Name: Project No. Title:

Quantity	Manufacterer	Antenna/ Appurtenance	Status	Sector
2	Powerwave	P65-17-XLH-RR	Existing	Alpha & Gamma
1	Commscope	SBNH-1D6565C	Existing	Beta
3	Kathrein	80010121	Existing	Alpha, Beta, & Gamma
3	Ericsson	RRUS 11	Existing	Alpha, Beta, & Gamma
3	Ericsson	RRUS 12	Proposed	Alpha, Beta, & Gamma
6	Powerwave	LGP 21401	Existing	Alpha, Beta, & Gamma

The worst case loading occurs in the Beta Sector

		use loading occurs in the	Beta Occioi	
Quantity	Manufacterer	Antenna/ Appurtenance	Status	
1	Commscope	SBNH-1D6565C	Existing	
1	Kathrein	80010121	Existing	
1	Ericsson	RRUS 11	Existing	
1	Ericsson	RRUS 12	Proposed	
2	Powerwave	LGP 21401	Existing	

Client:	ATT	Computed By:	AB
Site Name:	Suffield South	Date:	12/2/2016
Project No.	16963018A	Verified By:	FEP
Title:	Antenna Mount Analysis	Page:	7

ANALYSIS AND DESIGN

Client:	ATT	Computed By:	AB	
Site Name:	Suffield South	Date:	12/2/2016	
Project No.	16963018A	Verified By:	FEP	
Title:	Antenna Mount Analysis	Page:	8	

I. DESIGN INPUTS

Calculations for gravity and lateral loading on equipment and support mounts are determined as per the ANSI/TIA-222-G Code, Addendum 2

		<u>Reference</u>	<u>Equation</u>
Wind Load Inputs Parameters			
Antenna Centerline	z 100 ft		
Normal Wind Speed (3 sec. Gust):	V 97 mph	Ref. 1, Eqn. 16-33	
Normal Wind Speed with Ice (3 sec. gust):	V _i 40.0 mph	(Figure a5-2a, p. 233)	
Service Wind Speed:	V _s 60.0 mph	(Figure a5-2a, p. 233)	
Design Ice Thickness:	t _i 1.00 in	(Figure A1-2a, p. 233)	
Exposure Category:	с	Ref. 3, Section 2.6.5.1	
Structure Class:	11	Ref. 3, Table 2-1	
Gust Effect Factor:	G _h 0.85	Ref. 3, Section 2.6.7	
Wind Directionality Factor:	К _d 0.85	Ref. 3, Table 2-2	
Topographic Category:	1	Ref. 3, Section 2.6.6.2	
Wind Load Coefficients			
Importance Factors:			
Non-Iced:	1	Ref. 3, Table 2-3	
Iced:	l _{ice} 1	(Table 2-3, P. 39)	
Evensure Catagory Coefficients			
<u>Exposure Category Coefficients:</u> 3-s Gust-Speed Power Law Exponent:	α 9.5	Ref. 3, Table 2-4	
Nominal Height of the Atmospheric Boundary Layer:	ζ 315 Ζ_β 900 ft	Ref. 3, Table 2-4	
Min. Value for k_z :	Kz _{min} 0.85	Ref. 3, Table 2-4	
Terrain Constant:	K _e 1.00		
Velocity Pressure Exposure Coefficient:	K, 1.266	Ref. 3, Table 2-4	=2.01 $\cdot (z/z_g)^{2/\alpha}$
velocity riessure coefficient.	N ₂ 1.200	Ref. 3, Section 2.6.5.2	$-2.01^{\circ}(2/2_{g})$
Topographic Category Coefficients:			
Topographic Constant:	K _t N/A	Ref. 3, Table 2-5	
Height Attenuation Factor:	f N/A	Ref. 3, Table 2-5	
Height Reduction Factor:	K _h N/A	Ref. 3, Section 2.6.6.4	=e ^(f·z/H)
Topographic Factor:	K _{zt} 1.00	Ref.3, Section 2.6.6.4	=[1+($K_e \cdot K_t/K_h$)] ²
Ice Accumulation:			
Ice Velocity Pressure Exposure Coefficient:	K _{iz} 1.12		=(z/33) ^{0.10}
Factored Ice Thickness:	t _{iz} 2.23 in	(Section 2.6.8, p. 16)	=2.0· t_i ·I· K_{iz} · K_{zt}
Ice Density:	р _і 56.00 рсf		
Decian Wind Pressures			
<u>Design Wind Pressures:</u> Velocity Pressure:	q , 25.91 psf	Ref. 3, Section 2.6.9.6	=0.00256·K _z ·K _{zt} ·K _d ·V ² ·I
Velocity Pressure (With Ice):	$q_z 23.31 psf$ $q_{zi} 4.41 psf$	(Section 2.6.9.6, P. 25)	$= .00256 \cdot K_{z} \cdot K_{zt} \cdot K_{d} \cdot V_{i}^{2} \cdot I$ $= .00256 \cdot K_{z} \cdot K_{zt} \cdot K_{d} \cdot V_{i}^{2} \cdot I$
Velocity Pressure (With Ice).			$=.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot V_i^{2} \cdot I$ $=.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot V_i^{2} \cdot I$
	q _{zs} 9.91 pst	(Section 2.6.9.6, P. 25)	$00200 \text{ m}_z \text{ m}_{zt} \text{ m}_d \text{ v}_i \text{ f}$

Client:	ATT	Computed By:	AB
Site Name:	Suffield South	Date:	12/2/2016
Project No.	_16963018A	Verified By:	FEP
Title:	Antenna Mount Analysis	Page:	9

II. CALCULATIONS

Wind Load on Appurtenances

Dimensions and Force Coefficients

	Non-Iced Condition									Iced Condition						
	Π	Mounting Pipe	5			Equipment			Mounting Pip	e			Equipment			
Antenna/ Appurtenance	Length	Diameter	Force Coefficient	Height		Depth	Force Coefficient	Length [(in)	Diameter (in)	Coefficient	Height (in)	Width (in)	Depth (in)	Force Co	Force Coefficient	
	(in) (in)	(in)	Ca	(in)		(in)	C _{a Front}	C _{a Side}	(in)	(11)	Ca	(11)	(in)	(in)	C _{a Front}	C _{a Side}
SBNH-1D6565C	108.0	2.375	1.200	96.40	11.90	7.10	1.44	1.62	112.5	6.8	1.010	100.87	16.37	11.57	1.36	1.46
80010121	96.0	2.375	1.200	54.50	10.30	5.90	1.32	1.47	100.5	6.8	0.971	58.97	14.77	10.37	1.27	1.34
RRUS 11	0.0	0.000	0.000	19.70	17.00	7.20	1.20	1.21	0.0	0.0	0.000	24.17	21.47	11.67	1.20	1.20
RRUS 12	0.0	0.000	0.000	20.40	18.50	7.50	1.20	1.21	0.0	0.0	0.000	24.87	22.97	11.97	1.20	1.20
LGP 21401	0.0	0.000	0.000	13.80	14.40	3.70	1.20	1.25	0.0	0.0	0.000	18.27	18.87	8.17	1.20	1.20
																Í
															1	1
																Í
															<u> </u>	1

			Non-Iced	d Condition		Iced Condition				
Antenna/ Appurtenance	# of Brackets	• •		Controlling Wind Force (lbs.)	Gravity (lbs.)	Wind Force (lbs.)		Controlling Wind Force	Gravity (lbs.)	
		F _N	FT	wind Force (ibs.)		F _N	FT	(lbs.)		
SBNH-1D6565C	2	128.6	108.3	128.6	33.4	30.5	32.2	32.2	184.6	
80010121	2	65.9	57.2	65.9	30.7	18.8	19.3	19.3	94.6	
RRUS 11	1	61.5	26.3	61.5	65.0	16.2	8.8	16.2	113.8	
RRUS 12	1	69.3	28.3	69.3	73.0	17.8	9.3	17.8	125.6	
LGP 21401	1	36.5	9.8	36.5	35.0	10.8	4.7	10.8	71.1	

* ALL CALCULATED LOADS ARE PER MOUNTING BRACKET. TO GET THE TOTAL EQUIPMENT LOAD, MULTIPLY THE INDIVIDUAL LOADS BY THE NUMBER OF BRACKETS

Wind Load on Framing Members

				Non-Iced Condition Iced Conditio			ondition	on					
Member	Member Shape	Length (in)	Length (in)	Member Surface	Exposed Wind	Force Coefficient	Wind Load	Exposed Wind Height	Depth (in)	Length	Force Coefficient	Wind Load	Ice Weight
Category			Surface	Height (in) C _a	C	(plf)	(in)	(111)	(in)	Ca	(plf)	(plf)	
Pipe	Pipe 3.0	60	Round	3.50	1.03	6.59	7.97	7.97	64.47	0.82	2.05	15.65	
Pipe	Pipe 2.0	108	Round	2.38	1.20	5.23	6.84	6.84	112.47	1.01	2.16	12.58	
Square HSS	HSS 4X4	7	Square	4.00	1.20	8.81	8.47	8.47	11.47	1.20	3.17	21.54	

Client:	ATT	Computed By:	AB
Site Name:	Suffield South	Date:	12/2/2016
Project No.	16963018A	Verified By:	FEP
Title:	Antenna Mount Analysis	Page:	10

BASIC EQUATIONS

Force Coefficient:
(Square)
$$C_{\underline{f}}\text{-square}(h, w) := \begin{bmatrix} 1.2 & \text{if } \frac{h}{w} \le 2.5 & \text{`able 2-8, P. 42} \\ 1.2 + \frac{0.2}{4.5} \cdot \left(\frac{h}{w} - 2.5\right) \end{bmatrix} & \text{if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \\ \begin{bmatrix} 1.4 + \frac{0.6}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} & \text{if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ 2.0 & \text{otherwise} \end{bmatrix}$$

Force Coefficient:	$C_{f_round}(h, w) :=$	0.7 if $\frac{h}{w} \le 2.5$	Table 2-8, P. 42
(Round)		$\begin{bmatrix} 0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 2.5\right) \end{bmatrix} \text{ if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7$ $\begin{bmatrix} 0.8 + \frac{0.4}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} \text{ if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25$ 1.2 otherwise	

Terrain Exposure Constants:

Table 2-4, P. 40

$$\alpha := \begin{bmatrix} 7.0 & \text{if Exp} = "B" & Z_g := \\ 9.5 & \text{if Exp} = "C" & \\ 11.5 & \text{if Exp} = "D" & \\ \end{bmatrix} \begin{array}{c} 1200 \text{ft if Exp} = "B" & K_{zmin} := \\ 900 \text{ft if Exp} = "C" & \\ 700 \text{ft if Exp} = "C" & \\ 1.03 & \text{if Exp} = "D" & \\ \end{array}$$

	Client:	ATT	Computed By:	AB
	Site Name:	Suffield South	Date:	12/2/2016
	Project No.	16963018A	Verified By:	FEP
	Title:	Antenna Mount Analysis	Page:	11
MASER				

BASIC EQUATIONS

TING P.A.

Velocity Pressure Coefficient:

$$Kz(z) := \begin{bmatrix} K_z \leftarrow \max\left[\frac{2}{2.01} \cdot \left(\frac{z}{Z_g}\right)^{\alpha}, K_{zmin}\right] \\ K_z \leftarrow \min(K_z, 2.01) \end{bmatrix}$$

_

$$K_z := Kz(z)$$

Section 2.6.5, P. 13

ANSI/TIA-222-G Reference

 $K_{zt} := Kzt(z)$

Section 2.6.9.6, P. 25

Velocity Pressure:

 $q_{Z} := 0.00256 \cdot K_{Z} \cdot K_{Zt} \cdot K_{d} \cdot V^{2} \cdot I \cdot psf$

Client:	ATT	Computed By:	AB
Site Name:	Suffield South	Date:	12/2/2016
Project No.	16963018A	Verified By:	FEP
Title:	Antenna Mount Analysis	Page:	12

LOAD EQUATIONS

WIND LOAD

Area (Normal):
Area (Side):
Force Coefficient (Normal):
Force Coefficient (Side):
Pipe Area (Normal):
Pipe Area (Side):
Force Coefficient (Normal):
Normal Effective Projected Area:
Side Effective Projected Area:
Effective Projected Area:
Wind Force:

ICE DEAD LOAD

Largest Out-to-Out Dimension: Cross Sectional Area of Ice: Total Ice Dead Load:

ICE WIND LOAD

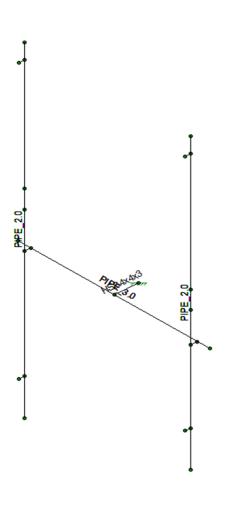
Dimensions: Area (Normal): Area (Side): Force Coefficient (Normal): Force Coefficient (Side): Pipe Area (Normal): Pipe Area (Side): Force Coefficient (Normal): Normal Effective Projected Area: Side Effective Projected Area: Effective Projected Area: Wind Force:

 $AN_{area} = H_{ant} \cdot Want$ $AT_{area} = H_{ant} \cdot Dant$ $C_{fn} = C_{fsquare}(H_{ant}, Want)$ $C_{fs} = C_{fsquare}(H_{ant}, Dant)$ $AN_p = \max[(L_p - H_{ant}) * Dp, 0]$ $AT_n = L_n \cdot Dp$ $C_{fp} = C_{fround}(Lp, Dp)$ $E_{pan} = (C_{fn} \cdot ANarea) + (Cfp \cdot ANp)$ $E_{pat} = (C_{fs} \cdot ATarea) + (Cfp \cdot ATp)$ $EPA = max(E_{pan}, Epat)$ $F_{ant} = q_z \cdot Gh \cdot EPA$

 $D_{ant} = \sqrt{D_{ant}^2 + W_{ant}^2}$ $A_{ice\ ant} = \pi \cdot tiz \cdot (Dant + tiz)$ $DL_{ice ant} = \mathbf{p_i} \cdot (Aice_{ant} \cdot Hant)$

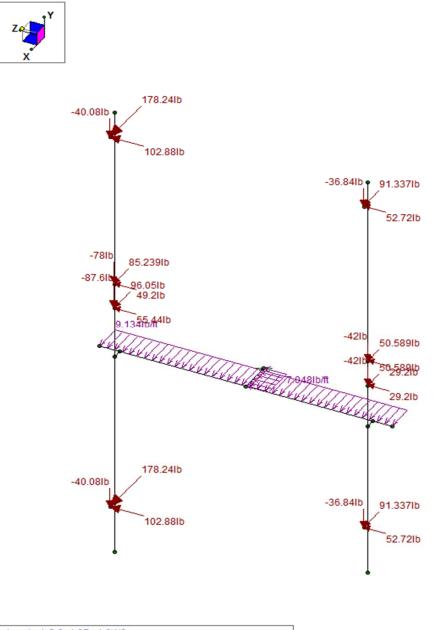
$$\begin{split} H_{i_{ant}} &= H_{ant} + 2tiz\\ W_{i_{ant}} &= W_{ant} + 2tiz\\ D_{i_{ant}} &= D_{ant} + 2tiz\\ AIN_{area} &= H_{i_{ant}} \cdot W_{i_{ant}} \end{split}$$
 $AIT_{area} = H_{i ant} \cdot D_{i ant}$ $Ci_{fn} = C_{fsquare}(H_{i ant}, W_{i ant})$ $Ci_{fs} = C_{fsquare}(H_{i ant}, D_{i ant})$ $AN_p = \max[(L_{ip} - H_{i ant}) * D_{ip}, 0]$ $AT_p = L_{ip} \cdot Dip$ $C_{fp} = C_{fround}(L_{ip}, D_{ip})$ $E_{nain} = (Ci_{fn} \cdot ANarea) + (Cfp \cdot ANp)$ $E_{pait} = (Ci_{fs} \cdot ATarea) + (Cfp \cdot ATp)$ $EPA_i = max(E_{pain}, Epait)$ $F_{i ant} = q_z \cdot Gh \cdot EPAi$

Client:	ATT	Computed By:	AB
Site Name:	Suffield South	Date:	12/2/2016
Project No.	16963018A	Verified By:	FEP
Title:	Antenna Mount Analysis	Page:	13


III. ATTACHMENTS

Client:	ATT	Computed By:	AB
Site Name:	Suffield South	Date:	12/2/2016
Project No.	16963018A	Verified By:	FEP
Title:	Antenna Mount Analysis	Page:	14

RISA MODEL

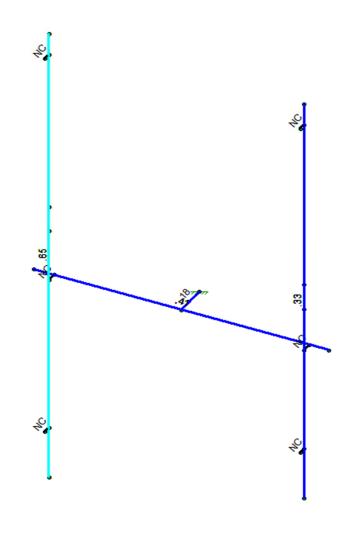


Envelope Only Solution

Client:	ATT	Computed By:	AB
Site Name:	Suffield South	Date:	12/2/2016
Project No.	16963018A	Verified By:	FEP
Title:	Antenna Mount Analysis	Page:	15

RISA WORST CASE LOADING

Loads: LC 3, 1.2D+1.6W2	
Envelope Only Solution	



Client:	ATT	Computed By:	AB
Site Name:	Suffield South	Date:	12/2/2016
Project No.	16963018A	Verified By:	FEP
Title:	Antenna Mount Analysis	Page:	16

RISA CODE CHECK

Member Code Checks Displayed Envelope Only Solution

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N1	N2			Hss member s	Beam	SquareTube	A500 Gr	Typical
2	M3	N5	N6			Horizontal mo	Beam	Pipe	A53 Gr. B	Typical
3	M6	N8	N20			RIGID	None	None	RIGID	Typical
4	M7	N9	N21			RIGID	None	None	RIGID	Typical
5	M10	N12	N16			Antenna Pipe	Beam	Pipe	A53 Gr. B	
6	M11	N13	N17			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
7	M17	N29	N37			RIGID	None	None	RIGID	Typical
8	M18	N25	N33			RIGID	None	None	RIGID	Typical
9	M19	N26	N34			RIGID	None	None	RIGID	Typical
10	M20	N30	N38			RIGID	None	None	RIGID	Typical

Joint Loads and Enforced Displacements (BLC 1 : Dead)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N33	L	Y	-33.4
2	N37	L	Y	-33.4
3	N34	L	Y	-30.7
4	N38	L	Y	-30.7
5	N48	L	Y	-65
6	N27	L	Y	-73
7	N40B	L	Y	-35
8	N41A	L	Y	-35

Joint Loads and Enforced Displacements (BLC 2 : Wx)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N33	L	Х	128.6
2	N37	L	Х	128.6
3	N34	L	Х	65.9
4	N38	L	Х	65.9
5	N48	L	Х	61.5
6	N27	L	Х	69.3
7	N40B	L	Х	36.5
8	N41A	L	Х	36.5

Joint Loads and Enforced Displacements (BLC 3 : Wz)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N33	L	Z	128.6
2	N37	L	Z	128.6
3	N34	L	Z	65.9
4	N38	L	Z	65.9
5	N48	L	Z	61.5
6	N27	L	Z	69.3
7	N40B	L	Z	36.5
8	N41A	L	Z	36.5

Joint Loads and Enforced Displacements (BLC 4 : Ice Wx)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N33	L	Х	32.2
2	N37	L	Х	32.2
3	N34	L	Х	19.3
4	N38	L	Х	19.3
5	N48	L	Х	16.2
6	N27	L	Х	17.8
7	N40B	L	Х	10.8

Joint Loads and Enforced Displacements (BLC 4 : Ice Wx) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
8	N41A	L	Х	10.8

Joint Loads and Enforced Displacements (BLC 5 : Ice Wz)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N33	L	Z	32.2
2	N37	L	Z	32.2
3	N34	L	Z	19.3
4	N38	L	Z	19.3
5	N48	L	Z	16.2
6	N27	L	Z	17.8
7	N40B	L	Z	10.8
8	N41A	L	Z	10.8

Joint Loads and Enforced Displacements (BLC 6 : Ice weight)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N33	L	Y	-184.6
2	N37	L	Y	-184.6
3	N34	L	Y	-94.6
4	N38	L	Y	-94.6
5	N48	L	Y	-113.8
6	N27	L	Y	-125.6
7	N40B	L	Y	-71.1
8	N41A	L	Y	-71.1

Member Distributed Loads (BLC 2 : Wx)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in,%]	End Location[in
1	M3	PX	6.59	6.59	0	0
2	M1	PX	8.81	8.81	0	0

Member Distributed Loads (BLC 3 : Wz)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in,%]	End Location[in
1	M3	PZ	6.59	6.59	0	0
2	M1	PZ	8.81	8.81	0	0

Member Distributed Loads (BLC 4 : Ice Wx)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in,%]	End Location[in
1	M3	PX	2.05	2.05	0	0
2	M1	PX	3.17	3.17	0	0

Member Distributed Loads (BLC 5 : Ice Wz)

_		Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in,%]	End Location[in
	1	M3	PZ	2.05	2.05	0	0
	2	M1	PZ	3.17	3.17	0	0

<u>Member Distributed Loads (BLC 6 : Ice weight)</u>

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[in,%]	End Location[in
1	M3	Y	-15.65	-15.65	0	0
2	M1	Y	-21.54	-21.54	0	0
3	M10	Y	-12.58	-12.58	0	0
4	M11	Y	-12.58	-12.58	0	0

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(Plat
1	Dead	DĽ		-1.05	-	8				
2	Wx	WL				8		2		
3	Wz	WL				8		2		
4	Ice Wx	WL				8		2		
5	Ice Wz	None				8		2		
6	Ice weight	None				8		4		

Load Combinations

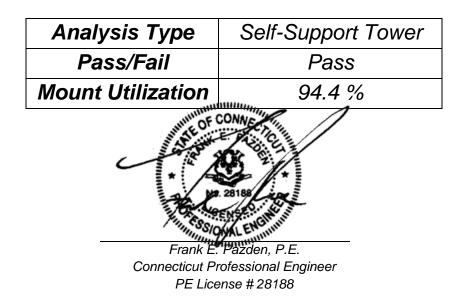
	Description	Sol	.PD	.SR	BLC	Fact	BLC	Fact.	.BLC	Fact.	BLC	Fact	BLC	Fact	.BLC	Fact	BLC	Fact	BLC	Fact
1	1.4D	Yes	Y		1	1.4														
2	1.2D+1.6W1	Yes	Y		1	1.2	2	1.6	3											
3	1.2D+1.6W2	Yes	Y		1	1.2	2	1.386	3	.8										
4	1.2D+1.6W3	Yes	Y		1	1.2	2	.8	3	1.386										
5	1.2D+1.6W4	Yes	Y		1	1.2	2		3	1.6										
6	1.2D+1.6W5	Yes	Y		1	1.2	2	8	3	1.386										
7	1.2D+1.6W6	Yes	Y		1	1.2	2	-1.3	3	.8										
8	1.2D+1.6W7	Yes	Y		1	1.2	2	-1.6	3											
9	1.2D+1.6W8	Yes	Y		1	1.2	2	-1.3	3	8										
10	1.2D+1.6W9	Yes	Y		1	1.2	2	8	3	-1.3										
11	1.2D+1.6W10	Yes	Y		1	1.2	2		3	-1.6										
12	1.2D+1.6W11	Yes	Y		1	1.2	2	.8	3	-1.3										
13	1.2D+1.6W12	Yes	Y		1	1.2	2	1.386	3	8										
14	1.2D+1.0 lce	Yes	Y		1	1.2	6	1												
15	1.2D+1.0ICE+1.0W1ICE	Yes	Y		1	1.2	6	1	4	1	5									
16	1.2D+1.0ICE+1.0W2ICE	Yes	Y		1	1.2	6	1	4	.866	5	.5								
17	1.2D+1.0ICE+1.0W3ICE	Yes	Y		1	1.2	6	1	4	.5	5	.866								
18	1.2D+1.0ICE+1.0W4ICE	Yes	Y		1	1.2	6	1	4		5	1								
19	1.2D+1.0ICE+1.0W5ICE	Yes	Y		1	1.2	6	1	4	5	5	.866								
20	1.2D+1.0ICE+1.0W6ICE	Yes	Y		1	1.2	6	1	4	866	5	.5								
21	1.2D+1.0ICE+1.0W7ICE	Yes	Y		1	1.2	6	1	4	-1	5									
22	1.2D+1.0ICE+1.0W8ICE	Yes	Y		1	1.2	6	1	4	866	5	5								
23	1.2D+1.0ICE+1.0W9ICE	Yes	Y		1	1.2	6	1	4	5	5	866								
24	1.2D+1.0ICE+1.0W10ICE	Yes	Y		1	1.2	6	1	4		5	-1								
25	1.2D+1.0ICE+1.0W11ICE	Yes	Y		1	1.2	6	1	4	.5	5	866								
26	1.2D+1.0ICE+1.0W12ICE	Yes	Y		1	1.2	6	1	4	.866	5	5								

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N1	max	1001.133	8	1773.29	17	956.689	11	.792	11	1.001	6	1.566	15
2		min	-1001.128	2	528.612	10	-956.684	5	-1.19	5	-1.005	12	588	8
3	Totals:	max	1001.133	8	1773.29	17	956.689	11						
4		min	-1001.128	2	528.612	10	-956.684	5						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Check	Lo	LC	She	Lo		phi*P	.phi*P	.phi*M	phi*M	Eqn
1	M10	PIPE 2.0	.650	59	3	.059	48	5	1214	32130	1.872	1.872	H1-1b
2	M3	PIPE 3.0	.411	30	18	.163	30	2	5703	65205	5.749	5.749	H1-1b
3	M11	PIPE 2.0	.334	60	2	.031	60	11	1491	32130	1.872	1.872	H1-1b
4	M1	HSS4x4x3	.179	0	13	.154	0	y 18	31066	106812	12.662	12.662	<mark>H1-1</mark> t


550 Cochituate Road Framingham, MA 01701

<u>LTE 2C</u> <u>Revision 0</u>

Self-Support Tower Feasibility Study

Site Name:Suffield SouthFA #:10071274Site Number:CT5400Site Address:55 King Spring RoadWindsor Locks, CT 06078Hartford CountyMaser Project Number:16963018A

December 2, 2016

Objective:

The objective of this report is to determine the capacity of the existing 100' self-support tower structure at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

Introduction:

Maser Consulting Connecticut has reviewed the following documents in completing this report:

- RFDS 1394262 provided by Empire Telecom, dated October 5, 2016 for LTE 2C scope of work.
- Construction Drawings prepared by Maser Consulting Connecticut for LTE 2C Scope of Work.
- Tower and Mount Mapping Report prepared by Tower Engineering Professionals TEP# 74312.102186 dated, November 29, 2016.
- Previous Structural Analysis prepared by Tectonic Engineering Consultants P.C., dated July 12, 2002.
- Previous Structural Analysis prepared by Malouf Engineering Intl, Inc., dated November 29, 2007.

The existing **AT&T** equipment is supported on an existing 100' self-support tower structure. The primary tower structure is constructed of pipe legs, and angle diagonals and horizontals. The existing **AT&T** equipment is supported on an existing antenna support mounts constructed of structural steel antenna support pipes supported by HSS tubes and pipes at a centerline of approximately 100'-0" above ground level. This report is based only upon this information, as well as the information obtained in the field.

Discrete and Linear Appurtenances:

The overall antenna loading is found in the Appendix A of this report.

Codes, Standards and Loading:

Maser Consulting Connecticut utilized the following codes and standards:

- 2016 Connecticut State Building Code, Incorporating The 2012 IBC
- Structural Standards for Antenna Supporting Structures and Antennas ANSI/TIA-222-G
 - o Basic Wind Speed 97 mph, Ice Wind Speed 40 mph and Ice thickness 1 in
 - Exposure Category C
 - o Structure Class II
 - o Topographic Category 1

Analysis Approach & Assumptions:

The analysis approach used in this structural analysis is based on the premise that if the existing self-support structure is structurally adequate to support the existing and proposed equipment per the aforementioned codes and standards, or if the increase in the forces in the structure are deemed to be negligible or acceptable, then the proposed equipment can be installed as intended. Tower Numerics, tnx Tower, a tower analysis and design program, designed specifically for the telecommunications industry and for all applicable codes and standards was used for this structural analysis.

The following assumptions were utilized in this report:

- Structural Steel Legs are constructed of A572-50 Grade Steel.
- Structural Steel Diagonals and Horizontal members are constructed of A36 Grade.
- Structural Bolts are assumed to be A325N grade.
- Tower is installed to plumb and is maintained properly without any structural deficiencies or deteriorations to the original design.
- It is assumed that the telecommunication equipment supports, antenna supports, and existing structure have been designed by a registered licensed professional engineer for the existing loads acting on the structure, as required by all applicable codes, prior to the proposed modifications listed within this report.
- It is assumed that information provided by the client regarding the structure itself, the antenna models, feed lines, and other relevant information is current and correct.
- It is assumed all other existing appurtenances, antennas, cables, etc. belonging to others have been installed and supported per code and per specifications so as not to damage any existing structural support members, and that any contributing loads from adjacent equipment has been taken into consideration for their design.
- Proposed equipment and locations should not deviate from the proposed locations noted herein and shown on the associated Maser Consulting Connecticut final Construction Drawings.
- It should be noted that due to a lack of information Maser Consulting Connecticut did not perform an analysis on the foundation. If information is provided then this report can be amended.

Calculations:

The calculations are found in Appendix A of this report.

Conclusion:

The existing self-support tower was analyzed for the loading in the applicable codes and standards. The tower has been determined to be structurally **ADEQUATE** to support the proposed and existing antennas, based upon the aforementioned assumptions.

The self-support tower has been determined to be stressed to a maximum of **94.4%** of its structural capacity with the maximum usage occurring at the tower legs located between the elevations 20'-40'. Therefore, the proposed **AT&T** installation **CAN** be placed as intended in all sectors.

Prior to the installation of the proposed equipment, the contractor shall verify that all bolted connections are properly fastened from the original installation. Additionally, the contractor shall inspect all existing hardware and verify that it is in its original condition and free of rust and deterioration. If any deficiencies are noted the contractor shall notify the engineer of the conditions prior to installation of any equipment for additional evaluation.

12/2/2016 Page 4 of 4 Prepared by AB Checked by FEP

It should be noted that due to a lack of information Maser Consulting Connecticut did not perform an analysis on the foundation. If information is provided then this report can be amended. The conclusions reached by Maser Consulting Connecticut in this evaluation are only applicable for the existing structural members supporting the proposed **AT&T** telecommunications installation described herein. Further, no structural qualifications are made or implied by this document for the existing structure.

We appreciate the opportunity to be of service on this project. If you should have any questions or require any additional information, please do not hesitate to call our office.

Sincerely, Maser Consulting Connecticut

LI

Anwesha Bera

Frank Pazden, P.E. Telecommunications Department Manager

Anwesha Bera, E.I.T. Structural Design Engineer

\maserconsulting.com\uj\Projects\2016\16963000A\16963018A\Structural\Tower Analysis\Rev 0\Word\10071274.Suffield South.Tower Analysis.Rev 0.doc

APPENDIX A

11	P2.4"x0.165		L1 1/2×1 1/2×1/8		L2x2x1/8		6.52083	5 @ 3.92917	548.1		5' Sector Frame T-arm 800-10121 2 800-10121 800-10121 965-17-XLH-RR P65-17-XLH-RR
						N.A.	6.52083			<u>80.0 ft</u>	SBNH-1D6565C RRUS11 B12 RRUS11 B12 RRUS11 B12 RRUS-12 RRUS-12 RRUS-12 RRUS-12
F	P2.9x0.214"		L2x2x1/8					5 @ 4	791.8		(2) LGP21401 GRADE Fy A572-50 50 ksi
							8.5651			<u>60.0 ft</u>	 Tower designed for Exp. Tower designed for a 97 Tower is also designed for in thickness with height. Deflections are based u
T2	ROHN 2.5 X-STR	A572-50		A36					1701.0		 5. Tower Structure Class II 6. Topographic Category 1 7. Weld together tower sec 8. Connections use galvan TIA/EIA-222 and AISC 5 9. Tower members are "ho Standards. 10. Welds are fabricated w 11. TOWER RATING: 95%
			L3x3x1/4		N.A.		10.6094	-		<u>40.0 ft</u>	
	ROHN 3 STD					L2x2x3/16		9 @ 6.66667	1893.1		ALL REACTIONS ARE FACTORED MAX. CORNER F DOWN: 11240 DOWN: 11240 DOWN: 11240
							536	-		<u>20.0 ft</u>	SHEAR: 1349 UPLIFT: -9942 SHEAR: 1204 AXIAL
	-STR		2x3/16				12.6536				62815 lb SHEAR 4794 lb
	ROHN 3 X-STR		L2 1/2x2 1/2x3/16						1756.8		TORQUE 1 kip-ft 40 mph WIND - 1.0000 AXIAL 12613 lb
							14.6979		6690.8	<u>0.0 ft</u>	SHEAR 22429 lb TORQUE 1 kip-ft
				Diagonal Grade		Sec. Horizontals	Face Width (ft) 14.69	# Panels @ (ft)	665		REACTIONS - 97 mph

ESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
5' Sector Frame T-arm	100	(2) LGP21401	100
5' Sector Frame T-arm	100	(2) LGP21401	100
5' Sector Frame T-arm	100	DC6-48-06-18-8F	100
800-10121	100	BXA-171063-12BF-EDIN-X	90
800-10121	100	BXA-171063-12BF-EDIN-X	90
800-10121	100	BXA-171063-12BF-EDIN-X	90
P65-17-XLH-RR	100	(2) E15V95P08	90
P65-17-XLH-RR	100	(2) E15V95P08	90
SBNH-1D6565C	100	(2) E15V95P08	90
RRUS11 B12	100	14'-6" Sector Frame (3)	90
RRUS11 B12	100	(2) LPA-70063-8CF-EDIN-X	90
RRUS11 B12	100	(2) LPA-70063-8CF-EDIN-X	90
RRUS-12	100	(2) LPA-70063-8CF-EDIN-X	90
RRUS-12	100	BXA-70040-6CF-EDIN-X	90
RRUS-12	100	BXA-70040-6CF-EDIN-X	90
(2) LGP21401	100	BXA-70040-6CF-EDIN-X	90

MATERIAL STRENGTH

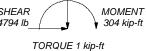
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

posure C to the TIA-222-G Standard.

7 mph basic wind in accordance with the TIA-222-G Standard.

for a 40 mph basic wind with 1.00 in ice. Ice is considered to increase ıt.

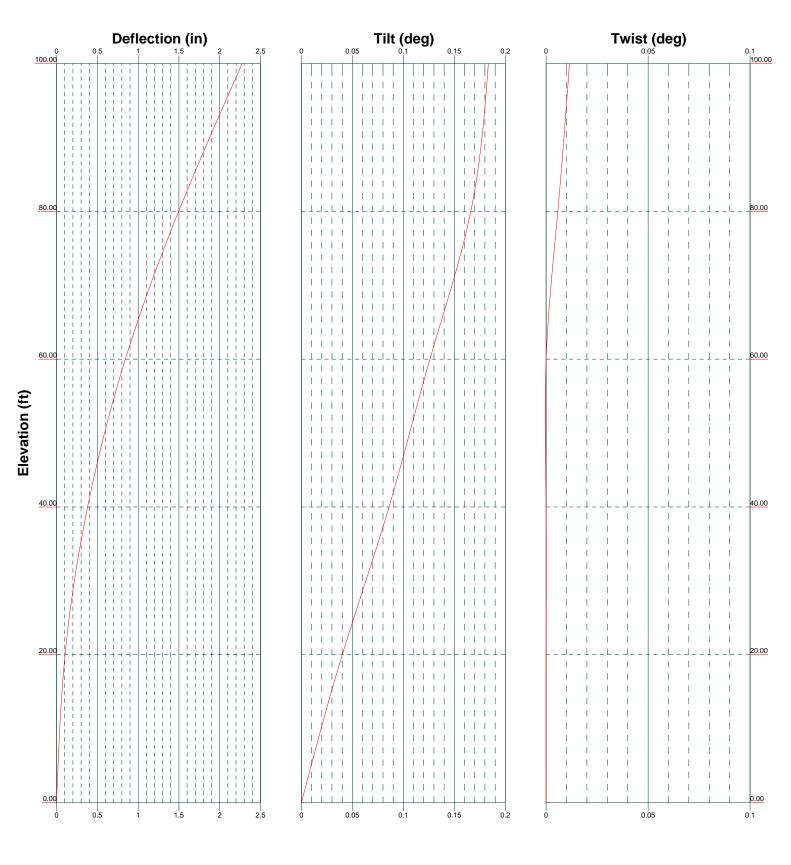

upon a 60 mph wind. II.

- 1 with Crest Height of 0.00 ft ections have flange connections. anized A325 bolts, nuts and locking devices. Installation per Specifications.
- not dipped" galvanized in accordance with ASTM A123 and ASTM A153
- with ER-70S-6 electrodes.

IS D

REACTIONS AT BASE: 452 lb 98 lb

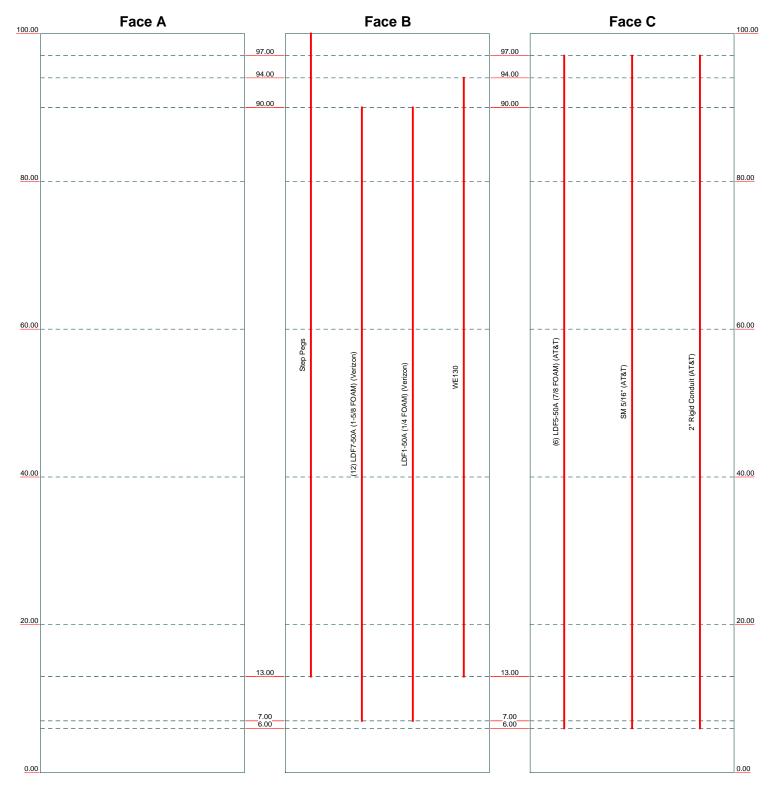
428 lb 46 lb


0 in ICE

MOMENT 1378 kip-ft

ft h WIND

		^{Job:} 16963018A		
	2000 Midlantic Drive Suite 100	Project: Suffield South		
	Mount Laurel, NJ	Client: AT&T	Drawn by: ABera	App'd:
Consulting Engineers		^{Code:} TIA-222-G	Date: 12/02/16	Scale: NTS
gg		Path: \maserconsulting.com/lul/Projects/2016/1696300	- DA\16963018A\Structural\Tower Analysis\Rev 0\TNX\Tower	Dwg No. E-1


TIA-222-G - Service - 60 mph

		^{Job:} 16963018A		
	2000 Midlantic Drive Suite 100	Project: Suffield South		
	Mount Laurel, NJ	Client: AT&T	Drawn by: ABera	App'd:
Consulting Engineers		^{Code:} TIA-222-G	Date: 12/02/16	Scale: NTS
2 Engineere		Path: Vmaserconsulting.com/luj/Projects/2016/1696300	00A\16963018A\Structural\Tower Analysis\Rev 0\TNX\Tower	Dwg No. E-5

Feed Line Distribution Chart 0' - 100'

Flat _____ App In Face _____ App Out Face _____ Truss Leg

		^{Job:} 16963018A		
	2000 Midlantic Drive Suite 100	Project: Suffield South		
	Mount Laurel, NJ	Client: AT&T	Drawn by: ABera	App'd:
Consulting Engineers		^{Code:} TIA-222-G	Date: 12/02/16	Scale: NTS
	FAX: 856.722.1120	Path: \\maserconsulting.com/lul\Projects\2016\16963000	A\16963018A\Structural\Tower Analysis\Rev 0\TNX\Tower	Dwg No. E-7

Elevation (ft)

Round

	Job		Page
tnxTower		16963018A	1 of 22
Maser Consulting P.A. 2000 Midlantic Drive Suite 100	Project	Suffield South	Date 16:41:24 12/02/16
Mount Laurel, NJ Phone: 856.797.0412 FAX: 856.722.1120	Client	AT&T	Designed by ABera

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 100.00 ft above the ground line.

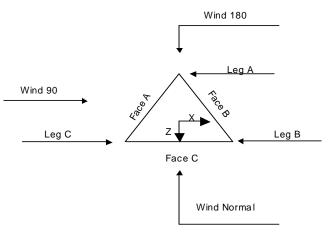
The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 6.52 ft at the top and 14.70 ft at the base.

There is a 3 sided latticed pole with a face width of 6.52 ft.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:


Basic wind speed of 97 mph. Structure Class II. Exposure Category C. Topographic Category 1. Crest Height 0.00 ft. Nominal ice thickness of 1.0000 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 40 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. Weld together tower sections have flange connections.. Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications.. Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards... Welds are fabricated with ER-70S-6 electrodes.. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in latticed pole member design is 1. Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - LegsDistribute Leg Loads As UniformConsider Moments - HorizontalsAssume Legs PinnedConsider Moments - DiagonalsAssume Rigid Index PlateUse Moment Magnification√V Use Code Stress Ratios√Use Code Safety Factors - GuysRetension Guys To Initial TensionEscalate IceBypass Mast Stability ChecksAlways Use Max KzUse Azimuth Dish CoefficientsUse Special Wind Profile√Include Bolts In Member CapacityAdd IBC .6D+W CombinationV Se Condary Horizontal Braces LegSort Capacity Reports By ComponentUse Diamond Inner Bracing (4 Sided)Triangulate Diamond Inner BracingSR Members Are Concentric√	Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets
---	---

tnxTower	Job	16963018A	Page 2 of 22
Maser Consulting P.A. 2000 Midlantic Drive Suite 100	Project	Suffield South	Date 16:41:24 12/02/16
Mount Laurel, NJ Phone: 856.797.0412 FAX: 856.722.1120	Client	AT&T	Designed by ABera

<u>Triangular Tower</u>

3 Sided Latticed Pole Section Geometry							
Tower	Tower	Assembly	Description	Section	Number	Section	
Section	Elevation	Database	*	Width	of	Length	
					Sections	0	
	ft			ft		ft	
L1	100.00-80.00			6.52	1	20.00	

	3 Sided Latticed Pole Section Geometry (cont'd)								
Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt		
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset		
				End					
	ft	ft		Panels		in	in		
L1	100.00-80.00	3.93	X Brace	No	No	3.2500	1.0000		

3 Sided Latticed Pole Section Geometry (cont'd)							
Tower Elevation	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade	
<u>ft</u> L1 100.00-80.00	Pipe	P2.4"x0.165"	A572-50 (50 ksi)	Single Angle	L1 1/2x1 1/2x1/8	A36 (36 ksi)	

	Job		Page
tnxTower		16963018A	3 of 22
Magon Congulting P A	Project		Date
Maser Consulting P.A. 2000 Midlantic Drive Suite 100		Suffield South	16:41:24 12/02/16
Mount Laurel, NJ	Client		Designed by
Phone: 856.797.0412 FAX: 856.722.1120		AT&T	ABera

3 Sided Latticed Pole Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
L1 100.00-80.00	Single Angle	L2x2x1/8	A36	Flat Bar		A36
			(36 ksi)			(36 ksi)

3 Sided Latticed Pole Section Geometry (cont'd)

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
L1	0.00	0.3750	A36	1	1	1	36.0000	36.0000	36.0000
100.00-80.00			(36 ksi)						

3 Sided Latticed Pole Section Geometry (cont'd)

	K Factors ¹									
Tower	Calc	Calc	Legs	X	Κ	Single	Girts	Horiz.	Sec.	Inner
Elevation	Κ	Κ		Brace	Brace	Diags			Horiz.	Brace
	Single	Solid		Diags	Diags					
	Angles	Rounds		X	X	X	X	X	X	X
ft	Ū.			Y	Y	Y	Y	Y	Y	Y
L1	Yes	Yes	1	1	1	1	1	1	1	1
00.00-80.00				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

3 Sided Latticed Pole Section Geometry (cont'd)

				rt	Bottom	GIN	Mid (JIT	Long Ho	rizontai	Short Ho	rizontal
	Net Width Deduct	IJ	Net Width Deduct in	U	Net Width Deduct	U	Net Width Deduct	U	Net Width Deduct	U	Net Width Deduct	U
) 1	0.0000 0.	75	0.0000	0.75	in 0.0000	0.75	in 0.0000	0.75	in 0.0000	0.75	in 0.0000	0.75
<i>c</i>	dth U , ct	ct Deduct in	ct Deduct in	ct Deduct Deduct in in	ct Deduct Deduct in in	ct Deduct Deduct Width in in Deduct in	ct Deduct Deduct Width in in Deduct in	ct Deduct Deduct Width Width in in Deduct Deduct Deduct in in in	ct Deduct Deduct Width Width in in Deduct Deduct Deduct in in in	ct Deduct Deduct Width Width Width in in Deduct Deduct Deduct Deduct Deduct in in in in	ct Deduct Deduct Width Width Width in in Deduct Deduct Deduct Deduct in in in	ct Deduct Deduct Width Width Width Width Width in in Deduct Deduct Deduct Deduct Deduct Deduct in in in

3 Sided Latticed Pole Section Geometry (cont'd)

	Job		Page
tnxTower		16963018A	4 of 22
Maser Consulting P.A. 2000 Midlantic Drive Suite 100	Project	Suffield South	Date 16:41:24 12/02/16
Mount Laurel, NJ Phone: 856.797.0412 FAX: 856.722.1120	Client	AT&T	Designed by ABera

Tower	Leg	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izontal
Elevation	Connection														
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
L1	Flange	0.6250	4	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00-80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	

	Tower Section Geometry									
Tower	Tower	Assembly	Description	Section	Number	Section				
Section	Elevation	Database		Width	of	Length				
					Sections					
	ft			ft		ft				
T1	80.00-60.00			6.52	1	20.00				
T2	60.00-40.00			8.57	1	20.00				
T3	40.00-20.00			10.61	1	20.00				
T4	20.00-0.00			12.65	1	20.00				

Tower Section Geometry (cont'd)									
Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt		
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset		
				End					
	ft	ft		Panels		in	in		
T1	80.00-60.00	4.00	X Brace	No	No	0.0000	0.0000		
T2	60.00-40.00	6.67	X Brace	No	Yes	0.0000	0.0000		
T3	40.00-20.00	6.67	X Brace	No	Yes	0.0000	0.0000		
T4	20.00-0.00	6.67	X Brace	No	Yes	0.0000	0.0000		

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Туре	Size	Grade	Type	Size	Grade
T1 80.00-60.00	Pipe	P2.9x0.214"	A572-50 (50 ksi)	Single Angle	L2x2x1/8	A36 (36 ksi)
T2 60.00-40.00	Pipe	ROHN 2.5 X-STR	A572-50 (50 ksi)	Single Angle	L3x3x1/4	A36 (36 ksi)
T3 40.00-20.00	Pipe	ROHN 3 STD	A572-50 (50 ksi)	Single Angle	L3x3x1/4	A36 (36 ksi)
T4 20.00-0.00	Pipe	ROHN 3 X-STR	A572-50 (50 ksi)	Single Angle	L2 1/2x2 1/2x3/16	A36 (36 ksi)

Tower Section Geometry (cont'd)

	Job		Page
tnxTower		16963018A	5 of 22
Maser Consulting P.A. 2000 Midlantic Drive Suite 100	Project	Suffield South	Date 16:41:24 12/02/16
Mount Laurel, NJ Phone: 856.797.0412 FAX: 856.722.1120	Client	AT&T	Designed by ABera

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft						
T2 60.00-40.00	Single Angle	L2x2x3/16	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T3 40.00-20.00	Single Angle	L2x2x3/16	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T4 20.00-0.00	Single Angle	L2x2x3/16	A36	Solid Round		À572-50
			(36 ksi)			(50 ksi)

Tower Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
T1 80.00-60.00	0.00	0.3750	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T2 60.00-40.00	0.00	0.3750	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T3 40.00-20.00	0.00	0.3750	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T4 20.00-0.00	0.00	0.3750	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						

Tower Section Geometry (cont'd)

						K Fa	ctors ¹			
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner
Elevation	K	Κ	-	Brace	Brace	Diags			Horiz.	Brace
	Single	Solid		Diags	Diags	-				
	Angles	Rounds		X	X	X	X	X	X	X
ft	-			Y	Y	Y	Y	Y	Y	Y
T1	Yes	Yes	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
T2	Yes	Yes	1	1	1	1	1	1	1	1
60.00-40.00				1	1	1	1	1	1	1
Т3	Yes	Yes	1	1	1	1	1	1	1	1
40.00-20.00				1	1	1	1	1	1	1
Г4 20.00-0.00	Yes	Yes	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

	Job		Page
tnxTower		16963018A	6 of 22
Mason Consulting P A	Project		Date
<i>Maser Consulting P.A.</i> 2000 Midlantic Drive Suite 100		Suffield South	16:41:24 12/02/16
Mount Laurel, NJ	Client		Designed by
Phone: 856.797.0412 FAX: 856.722.1120		AT&T	ABera

Tower	Leg		Diagor	Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		rizontal
Elevation ft														
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1 80.00-60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 60.00-40.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 40.00-20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 20.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower	Leg	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izontal
Elevation ft	Connection Type														
Ji	Type	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1 80.00-60.00	Flange	0.6250	4	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
	-	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2 60.00-40.00	Flange	0.7500	4	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	1
	-	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3 40.00-20.00	Flange	0.8750	4	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	1
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4 20.00-0.00	Flange	0.8750	4	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	1
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg			ft	in	(Frac FW)		Row	in	in	in	plf
Step Pegs	В	No	Ar (CaAa)	100.00 - 13.00	1.0000	0.5	1	1	0.2500	7.0000		1.50
LDF7-50A	в	No	Ar (CaAa)	90.00 - 7.00	1.0000	-0.25	12	12	1.9800	1.9800		0.82
(1-5/8 FOAM)												
(Verizon)												
LDF1-50A	в	No	Ar (CaAa)	90.00 - 7.00	1.0000	-0.25	1	1	0.3500	0.3500		0.06
(1/4 FOAM)												
(Verizon)												
WE130	В	No	Ar (CaAa)	94.00 - 13.00	-2.0000	0.45	1	1	0.8601	0.8601		0.25
LDF5-50A	С	No	Ar (CaAa)	97.00 - 6.00	1.0000	0.4	6	6	1.0900	1.0900		0.33
(7/8 FOAM)												
(AT&T)												
SM 5/16"	С	No	Ar (CaAa)	97.00 - 6.00	1.0000	0.25	1	1	0.3125	0.3125		0.25
(AT&T)												
2" Rigid	С	No	Ar (CaAa)	97.00 - 6.00	1.0000	0.2	1	1	2.0000	2.0000		2.80
Conduit												
(AT&T)												

<i>tnxTower</i>	Јо в 16963018А	
Maser Consulting P.A. 2000 Midlantic Drive Suite 100	Project Suffield South	

Client

Mount Laurel, NJ

Phone: 856.797.0412 FAX: 856.722.1120 Page 7 of 22 Date 16:41:24 12/02/16 Designed by ABera

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	_
	ft		ft^2	ft^2	ft^2	ft^2	lb
L1	100.00-80.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	32.430	0.000	132.50
		С	0.000	0.000	15.049	0.000	85.51
T1	80.00-60.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	57.247	0.000	233.00
		С	0.000	0.000	17.705	0.000	100.60
T2	60.00-40.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	57.511	0.000	233.00
		С	0.000	0.000	17.705	0.000	100.60
Т3	40.00-20.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	57.929	0.000	233.00
		С	0.000	0.000	17.705	0.000	100.60
T4	20.00-0.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	34.923	0.000	140.95
		С	0.000	0.000	12.394	0.000	70.42

Feed Line/Linear Appurtenances Section Areas - With Ice

AT&T

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
L1	100.00-80.00	А	2.211	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	97.975	0.000	1881.49
		С		0.000	0.000	55.757	0.000	912.74
T1	80.00-60.00	А	2.156	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	167.914	0.000	3092.71
		С		0.000	0.000	64.810	0.000	1042.38
T2	60.00-40.00	А	2.085	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	166.660	0.000	2997.03
		С		0.000	0.000	63.789	0.000	1002.17
Т3	40.00-20.00	А	1.981	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	164.836	0.000	2859.57
		С		0.000	0.000	62.306	0.000	944.99
T4	20.00-0.00	А	1.775	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	95.817	0.000	1526.45
		С		0.000	0.000	41.558	0.000	585.31

		Fe	ed Line	Center o	f Pressure)
Section	Elevation	CP_X	CP_Z	CP_X	CP_Z	
				Ice	Ice	
	ft	in	in	in	in	
L1	100.00-80.00	1.3921	-0.2473	0.9212	-0.1010	
T1	80.00-60.00	1.6879	-1.8321	1.3008	-1.4475	
T2	60.00-40.00	1.9452	-2.0746	1.5327	-1.7893	
Т3	40.00-20.00	2.2638	-2.2930	1.7459	-2.1424	
T4	20.00-0.00	1.1384	-2.6376	0.7972	-2.5189	

Maser 2000 Mi N Pho FA

T	Job	Page
nxTower	16963018A	8 of 22
er Consulting P.A.	Project Suffield South	Date 16:41:24 12/02/16
Midlantic Drive Suite 100 Mount Laurel, NJ Phone: 856.797.0412 FAX: 856.722.1120	Client AT&T	Designed by ABera

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
L1	1	Step Pegs	80.00 - 100.00	1.0000	0.5589
L1	2	LDF7-50A (1-5/8 FOAM)	80.00 - 90.00	0.6000	0.5589
L1	3	LDF1-50A (1/4 FOAM)	80.00 - 90.00	0.6000	0.5589
L1	4	WE130	80.00 - 94.00	0.6000	0.5589
L1	5	LDF5-50A (7/8 FOAM)	80.00 - 97.00	0.6000	0.5589
L1	6	SM 5/16"	80.00 - 97.00	0.6000	0.5589
L1	7	2" Rigid Conduit		0.6000	0.5589
T1	1	Step Pegs	60.00 - 80.00	1.0000	0.5850
T1	2	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.5850
T1	3	LDF1-50A (1/4 FOAM)	60.00 - 80.00	0.6000	0.5850
T1	4	WE130	60.00 - 80.00	0.6000	0.5850
T1	5	LDF5-50A (7/8 FOAM)	60.00 - 80.00	0.6000	0.5850
T1	6	SM 5/16"	60.00 - 80.00	0.6000	0.5850
T1	7	2" Rigid Conduit	60.00 - 80.00	0.6000	0.5850
T2	1	Step Pegs	40.00 - 60.00	1.0000	0.6000
T2	2	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T2	3	LDF1-50A (1/4 FOAM)	40.00 - 60.00	0.6000	0.6000
T2	4	WE130	40.00 - 60.00	0.6000	0.6000
T2	5	LDF5-50A (7/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T2	6	SM 5/16"	40.00 - 60.00	0.6000	0.6000
T2	7	2" Rigid Conduit	40.00 - 60.00	0.6000	0.6000
Т3	1	Step Pegs	20.00 - 40.00	1.0000	0.6000
Т3	2	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6000	0.6000
Т3	3	LDF1-50A (1/4 FOAM)	20.00 - 40.00	0.6000	0.6000
Т3	4	WE130	20.00 - 40.00	0.6000	0.6000
Т3	5	LDF5-50A (7/8 FOAM)	20.00 - 40.00	0.6000	0.6000
Т3	6	SM 5/16"	20.00 - 40.00	0.6000	0.6000
Т3	7	2" Rigid Conduit	20.00 - 40.00	0.6000	0.6000
T4	1	Step Pegs	13.00 - 20.00	1.0000	0.6000
T4	2	LDF7-50A (1-5/8 FOAM)	7.00 - 20.00	0.6000	0.6000
T4	3	LDF1-50A (1/4 FOAM)	7.00 - 20.00	0.6000	0.6000
T4	4	WE130	13.00 - 20.00	0.6000	0.6000
T4	5	LDF5-50A (7/8 FOAM)		0.6000	0.6000
T4	6	SM 5/16"	6.00 - 20.00	0.6000	0.6000
T4	7	2" Rigid Conduit	6.00 - 20.00	0.6000	0.6000

Discrete Tower Loads									
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft ft	o	ft		ft^2	ft ²	lb
2) LPA-70063-8CF-EDIN-X	А	From Leg	4.00 0.00 0.00	0.0000	90.00	No Ice 1/2" Ice 1" Ice	13.65 14.25 14.85	12.13 12.73 13.33	14.60 111.92 217.41
2) LPA-70063-8CF-EDIN-X	В	From Leg	4.00 0.00 0.00	0.0000	90.00	No Ice 1/2" Ice 1" Ice	13.65 14.25 14.85	12.13 12.73 13.33	14.60 111.92 217.41
2) LPA-70063-8CF-EDIN-X	С	From Leg	4.00	0.0000	90.00	No Ice	13.65	12.13	14.60

4	Job		Page
tnxTower		16963018A	9 of 22
Maser Consulting P.A.	Project		Date
2000 Midlantic Drive Suite 100		Suffield South	16:41:24 12/02/16
Mount Laurel, NJ	Client		Designed by
Phone: 856.797.0412 FAX: 856.722.1120		AT&T	ABera

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral						
			Vert ft	0	ft		ft^2	ft^2	lb
			ft		Ji		ji	Ji	lb
			$\frac{ft}{0.00}$			1/2" Ice	14.25	12.73	111.92
			0.00			172 Ice 1" Ice	14.25	13.33	217.41
BXA-70040-6CF-EDIN-X	А	From Leg	4.00	0.0000	90.00	No Ice	14.41	5.72	38.00
			0.00		,	1/2" Ice	14.92	6.17	120.76
			0.00			1" Ice	15.44	6.63	210.38
BXA-70040-6CF-EDIN-X	В	From Leg	4.00	0.0000	90.00	No Ice	14.41	5.72	38.00
			0.00			1/2" Ice	14.92	6.17	120.76
			0.00			1" Ice	15.44	6.63	210.38
BXA-70040-6CF-EDIN-X	С	From Leg	4.00	0.0000	90.00	No Ice	14.41	5.72	38.00
			0.00			1/2" Ice	14.92	6.17	120.76
			0.00	0.0000	00.00	1" Ice	15.44	6.63	210.38
BXA-171063-12BF-EDIN-X	А	From Leg	4.00	0.0000	90.00	No Ice	4.80	3.63	12.80
			0.00 0.00			1/2" Ice 1" Ice	5.25 5.71	4.06 4.51	40.29
BXA-171063-12BF-EDIN-X	В	From Leg	4.00	0.0000	90.00	No Ice	4.80	3.63	73.33 12.80
BAA-1/1005-12BI-EDIN-A	Б	FIOII Leg	0.00	0.0000	90.00	1/2" Ice	5.25	4.06	40.29
			0.00			1/2 Icc 1" Ice	5.71	4.51	73.33
BXA-171063-12BF-EDIN-X	С	From Leg	4.00	0.0000	90.00	No Ice	4.80	3.63	12.80
	C	r toin Leg	0.00	0.0000	90.00	1/2" Ice	5.25	4.06	40.29
			0.00			1" Ice	5.71	4.51	73.33
(2) E15V95P08	А	From Leg	4.00	0.0000	90.00	No Ice	0.39	0.11	4.40
()			0.00			1/2" Ice	0.46	0.17	7.14
			0.00			1" Ice	0.55	0.23	11.06
(2) E15V95P08	В	From Leg	4.00	0.0000	90.00	No Ice	0.39	0.11	4.40
		-	0.00			1/2" Ice	0.46	0.17	7.14
			0.00			1" Ice	0.55	0.23	11.06
(2) E15V95P08	С	From Leg	4.00	0.0000	90.00	No Ice	0.39	0.11	4.40
			0.00			1/2" Ice	0.46	0.17	7.14
	~		0.00			1" Ice	0.55	0.23	11.06
14'-6" Sector Frame (3)	С	From Leg	0.00	0.0000	90.00	No Ice	38.60	38.60	1060.00
			0.00			1/2" Ice	57.40	57.40	1650.00
51 Sector France Terms		Enore Las	0.00	0.0000	100.00	1" Ice	76.20	76.20	2240.00
5' Sector Frame T-arm	А	From Leg	0.00 0.00	0.0000	100.00	No Ice 1/2" Ice	2.72 4.91	2.72 4.91	50.00 89.00
			0.00			172 Ice	7.10	7.10	128.00
5' Sector Frame T-arm	В	From Leg	0.00	0.0000	100.00	No Ice	2.72	2.72	50.00
5 Sector France Frank	Б	I Iom Leg	0.00	0.0000	100.00	1/2" Ice	4.91	4.91	89.00
			0.00			1" Ice	7.10	7.10	128.00
5' Sector Frame T-arm	С	From Leg	0.00	0.0000	100.00	No Ice	2.72	2.72	50.00
		U	0.00			1/2" Ice	4.91	4.91	89.00
			0.00			1" Ice	7.10	7.10	128.00
800-10121	Α	From Leg	0.50	0.0000	100.00	No Ice	5.16	3.29	46.30
			0.00			1/2" Ice	5.51	3.64	79.21
			0.00			1" Ice	5.87	3.99	116.89
800-10121	В	From Leg	0.50	0.0000	100.00	No Ice	5.16	3.29	46.30
			0.00			1/2" Ice	5.51	3.64	79.21
	~		0.00			1" Ice	5.87	3.99	116.89
800-10121	С	From Leg	0.50	0.0000	100.00	No Ice	5.16	3.29	46.30
			0.00			1/2" Ice	5.51	3.64	79.21
D65 17 VIII DD	•	Eron I	0.00	0.0000	100.00	1" Ice	5.87	3.99	116.89
P65-17-XLH-RR	А	From Leg	0.50 0.00	0.0000	100.00	No Ice 1/2" Ice	11.47	6.80 7.38	70.00 132.06
			0.00			1/2" Ice 1" Ice	12.08 12.71	7.38 7.98	201.70
P65-17-XLH-RR	С	From Leg	0.00	0.0000	100.00	No Ice	12.71	6.80	70.00
1 0.J-1 / -AL11-IAA	C	I TOILI LOG	0.00	0.0000	100.00	1/2" Ice	12.08		132.06
			0.00			172 Ice	12.08	7.38 7.98	201.70

tnxTower	Job	16963018A	Page 10 of 22
Maser Consulting P.A. 2000 Midlantic Drive Suite 100	Project	Suffield South	Date 16:41:24 12/02/16
Mount Laurel, NJ Phone: 856.797.0412 FAX: 856.722.1120	Client	AT&T	Designed by ABera

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
			Vert ft ft ft	o	ft		ft^2	ft ²	lb
			0.00			1/2" Ice	12.06	8.29	131.97
			0.00			1" Ice	12.69	8.89	205.5
RRUS11 B12	А	From Leg	0.50	0.0000	100.00	No Ice	2.83	1.18	50.70
			0.00			1/2" Ice	3.04	1.33	71.57
			0.00			1" Ice	3.26	1.48	95.49
RRUS11 B12	В	From Leg	0.50	0.0000	100.00	No Ice	2.83	1.18	50.70
			0.00			1/2" Ice	3.04	1.33	71.57
			0.00			1" Ice	3.26	1.48	95.49
RRUS11 B12	С	From Leg	0.50	0.0000	100.00	No Ice	2.83	1.18	50.70
		U	0.00			1/2" Ice	3.04	1.33	71.57
			0.00			1" Ice	3.26	1.48	95.49
RRUS-12	А	From Leg	0.50	0.0000	100.00	No Ice	3.15	1.29	58.00
			0.00			1/2" Ice	3.36	1.44	81.22
			0.00			1" Ice	3.59	1.60	107.6
RRUS-12	В	From Leg	0.50	0.0000	100.00	No Ice	3.15	1.29	58.00
			0.00			1/2" Ice	3.36	1.44	81.22
			0.00			1" Ice	3.59	1.60	107.6
RRUS-12	С	From Leg	0.50	0.0000	100.00	No Ice	3.15	1.29	58.00
		8	0.00			1/2" Ice	3.36	1.44	81.22
			0.00			1" Ice	3.59	1.60	107.6
(2) LGP21401	А	From Leg	0.50	0.0000	100.00	No Ice	1.66	0.44	35.00
(2) 20121 101		110111208	0.00	0.0000	100.00	1/2" Ice	1.82	0.54	45.89
			0.00			1" Ice	1.98	0.65	59.04
(2) LGP21401	В	From Leg	0.50	0.0000	100.00	No Ice	1.66	0.44	35.00
(_) _ 0 _ 0 _ 0 _ 0 _ 0		8	0.00			1/2" Ice	1.82	0.54	45.89
			0.00			1" Ice	1.98	0.65	59.04
(2) LGP21401	С	From Leg	0.50	0.0000	100.00	No Ice	1.66	0.44	35.00
() = = = = = = = = = = = = = = = = = =	-		0.00			1/2" Ice	1.82	0.54	45.89
			0.00			1" Ice	1.98	0.65	59.04
DC6-48-06-18-8F	В	From Leg	0.00	0.0000	100.00	No Ice	1.20	1.20	32.00
			0.00			1/2" Ice	1.88	1.88	53.81
			0.00			1" Ice	2.09	2.09	78.48

Load Combinations

Comb.		Description	
No.			
1	Dead Only		
2	1.2 Dead+1.6 Wind 0 deg - No Ice		
3	0.9 Dead+1.6 Wind 0 deg - No Ice		
4	1.2 Dead+1.6 Wind 30 deg - No Ice		
5	0.9 Dead+1.6 Wind 30 deg - No Ice		
6	1.2 Dead+1.6 Wind 60 deg - No Ice		
7	0.9 Dead+1.6 Wind 60 deg - No Ice		
8	1.2 Dead+1.6 Wind 90 deg - No Ice		
9	0.9 Dead+1.6 Wind 90 deg - No Ice		
10	1.2 Dead+1.6 Wind 120 deg - No Ice		
11	0.9 Dead+1.6 Wind 120 deg - No Ice		
12	1.2 Dead+1.6 Wind 150 deg - No Ice		
13	0.9 Dead+1.6 Wind 150 deg - No Ice		
14	1.2 Dead+1.6 Wind 180 deg - No Ice		

tnxTower

Maser Consulting P.A. 2000 Midlantic Drive Suite 100 Mount Laurel, NJ Phone: 856.797.0412 FAX: 856.722.1120

Job		Page
	16963018A	11 of 22
Project		Date
	Suffield South	16:41:24 12/02/16
Client	AT&T	Designed by ABera

Comb.	Description
No.	
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42 43	Dead+Wind 90 deg - Service
43 44	Dead+Wind 120 deg - Service
44 45	Dead+Wind 150 deg - Service
45 46	Dead+Wind 180 deg - Service Dead+Wind 210 deg - Service
46 47	Dead+Wind 240 deg - Service
47	Dead+Wind 240 deg - Service
48 49	Dead+Wind 200 deg - Service
	6
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	•			Comb.	lb	kip-ft	kip-ft
L1	100 - 80	Latticed Pole Leg	Max Tension	15	18011.86	0.00	-0.01
		-	Max. Compression	18	-21022.87	0.34	-0.20
			Max. Mx	8	3597.65	1.06	-0.04
			Max. My	2	1908.74	0.04	-1.18
			Max. Vy	10	4065.89	-0.35	-0.17
			Max. Vx	2	-4541.88	-0.02	0.39
		Latticed Pole Diagonal	Max Tension	20	3499.83	0.00	0.00
		C	Max. Compression	20	-3516.49	0.00	0.00
			Max. Mx	34	192.06	0.03	-0.00
			Max. My	22	-3174.61	0.00	0.00
			Max. Vy	34	-28.07	0.03	-0.00
			Max. Vx	22	1.11	0.00	0.00
		Latticed Pole Top Girt	Max Tension	2	549.56	0.00	0.00
			Max. Compression	7	-534.55	0.00	0.00
			Max. Mx	26	2.49	-0.08	0.00

tnxTower

Job

Project

Client

Maser Consulting P.A. 2000 Midlantic Drive Suite 100 Mount Laurel, NJ Phone: 856.797.0412 FAX: 856.722.1120

	Page
16963018A	12 of 22
	Date
Suffield South	16:41:24 12/02/16
	Designed by
AT&T	ABera

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Type		Load	11	Moment	Moment
				Comb.	lb	kip-ft	kip-ft
			Max. My	12	7.51	0.00	0.00
			Max. Vy Max. Vx	26 12	-50.83 -0.00	0.00 0.00	0.00 0.00
T1	80 - 60	Leg	Max Tension	12	38593.99	-0.09	0.00
11	00 - 00	105	Max. Compression	18	-42903.97	0.00	-0.00
			Max. Mx	18	-23415.18	0.40	0.00
			Max. My	24	-2198.07	-0.01	0.21
			Max. Vy	18	140.48	0.40	0.00
			Max. Vx	20	82.44	-0.01	-0.21
		Diagonal	Max Tension	8	3070.11	0.00	0.00
		•	Max. Compression	8	-3097.44	0.00	0.00
			Max. Mx	35	531.40	0.04	-0.00
			Max. My	38	-401.18	0.04	0.01
			Max. Vy	33	40.71	0.04	-0.01
			Max. Vx	38	-2.28	0.00	0.00
T2	60 - 40	Leg	Max Tension	15	57600.63	0.18	0.00
			Max. Compression	18	-64061.72	-0.30	-0.00
			Max. Mx	18	-64035.53	0.39	-0.00
			Max. My	20	-2093.46	-0.02	-0.28
			Max. Vy May Vy	18 20	217.66	0.39	-0.00
		Diagonal	Max. Vx Max Tension	20 5	127.62	-0.02 0.08	-0.28 0.00
		Diagonai	Max. Compression	3 4	3826.62 -4010.57	0.08	0.00
			Max. Compression Max. Mx	35	630.85	0.00	-0.01
			Max. My	37	-836.13	0.05	0.02
			Max. Vy	35	-72.83	0.12	-0.01
			Max. Vx	37	4.61	0.00	0.00
		Secondary	Max Tension	20	259.07	0.01	-0.00
		Horizontal					
			Max. Compression	21	-297.44	0.01	0.01
			Max. Mx	31	71.10	0.05	0.00
			Max. My	14	-148.32	0.01	0.01
			Max. Vy	33	48.51	0.05	0.00
			Max. Vx	38	-1.94	0.00	0.00
T3	40 - 20	Leg	Max Tension	15	77475.09	0.33	0.00
			Max. Compression	18	-86915.78	-0.49	-0.00
			Max. Mx	18	-86889.58	0.67	-0.00
			Max. My Max. Vy	20 18	-3097.33	-0.04	-0.35
			Max. Vy Max. Vx	20	357.71 -168.77	0.67 -0.02	-0.00 -0.35
		Diagonal	Max Tension	20 5	4277.73	0.02	-0.33
		Diagonai	Max. Compression	4	-4445.09	0.00	0.00
			Max. Mx	27	682.24	0.17	-0.02
			Max. My	28	-1567.47	0.12	0.02
			Max. Vy	27	-87.25	0.17	-0.02
			Max. Vx	37	4.88	0.00	0.00
		Secondary	Max Tension	20	423.22	0.01	-0.00
		Horizontal					
			Max. Compression	21	-468.05	0.01	0.01
			Max. Mx	35	99.89	0.08	0.00
			Max. My	14	-330.65	0.01	0.01
			Max. Vy	35	57.15	0.08	0.00
	.	_	Max. Vx	38	-2.05	0.00	0.00
T4	20 - 0	Leg	Max Tension	15	96347.06	0.35	-0.00
			Max. Compression	18	-108782.25	0.00	-0.00
			Max. Mx	18	-101789.64	0.63	0.00
			Max. My	20	-3664.97	-0.05	-0.53
			Max. Vy May Vy	18	-354.34	0.61	-0.00
		Diagonal	Max. Vx Max Tension	20 5	210.85 4441.90	-0.05 0.04	-0.53 -0.00
		Diagonal	Max. Compression	5 4	-4650.31	0.04	-0.00
			max. Compression	4	-+030.31	0.00	0.00

tran	Job		Page
tnxTower		16963018A	13 of 22
Magon Consulting P A	Project		Date
Maser Consulting P.A. 2000 Midlantic Drive Suite 100		Suffield South	16:41:24 12/02/16
Mount Laurel, NJ Phone: 856.797.0412 FAX: 856.722.1120	Client	AT&T	Designed by ABera

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Туре		Load		Moment	Moment
				Comb.	lb	kip-ft	kip-ft
			Max. Mx	37	133.35	0.12	-0.01
			Max. My	28	-1743.03	0.11	0.02
			Max. Vy	37	68.84	0.12	-0.01
			Max. Vx	28	3.78	0.00	0.00
		Secondary	Max Tension	20	394.40	0.01	-0.00
		Horizontal					
			Max. Compression	21	-432.06	0.02	0.00
			Max. Mx	38	-39.52	0.09	0.01
			Max. My	37	-20.51	0.09	0.01
			Max. Vy	38	-56.56	0.09	0.01
			Max. Vx	38	-2.64	0.00	0.00

			Maxim	um Reactio	ons
Location	Condition	Gov. Load Comb.	Vertical lb	Horizontal, X lb	Horizontal, Z lb
Leg C	Max. Vert	18	112452.31	11672.96	-6778.11
-0	Max. H _x	18	112452.31	11672.96	-6778.11
	Max. H _z	5	-86649.56	-8736.36	6046.44
	Min. Vert	7	-99175.73	-10413.87	6045.07
	Min. H _x	7	-99175.73	-10413.87	6045.07
	Min. Hz	18	112452.31	11672.96	-6778.11
Leg B	Max. Vert	10	111847.72	-11671.92	-6738.20
C	Max. H _x	23	-99361.48	10425.83	6011.60
	Max. Hz	23	-99361.48	10425.83	6011.60
	Min. Vert	23	-99361.48	10425.83	6011.60
	Min. H _x	10	111847.72	-11671.92	-6738.20
	Min. Hz	10	111847.72	-11671.92	-6738.20
Leg A	Max. Vert	2	112115.49	-34.07	13491.82
•	Max. H _x	21	3009.25	1687.26	221.63
	Max. Hz	2	112115.49	-34.07	13491.82
	Min. Vert	15	-99428.28	34.92	-12045.81
	Min. H _x	8	4217.90	-1695.02	327.72
	Min. Hz	15	-99428.28	34.92	-12045.81

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	$Shear_z$	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Dead Only	10510.45	-0.00	0.00	0.78	2.76	-0.00
1.2 Dead+1.6 Wind 0 deg - No Ice	12612.54	11.20	-22429.44	-1373.58	2.21	-0.76
0.9 Dead+1.6 Wind 0 deg - No Ice	9459.40	11.20	-22429.43	-1372.86	1.38	-0.75
1.2 Dead+1.6 Wind 30 deg - No Ice	12612.54	10643.07	-18434.32	-1145.45	-658.54	-0.97
0.9 Dead+1.6 Wind 30 deg - No Ice	9459.40	10643.06	-18434.32	-1144.88	-658.91	-0.96
1.2 Dead+1.6 Wind 60 deg - No Ice	12612.54	18091.21	-10457.90	-653.00	-1127.10	-0.72
0.9 Dead+1.6 Wind 60 deg - No	9459.40	18091.21	-10457.90	-652.78	-1127.14	-0.72

tnxTower

Maser Consulting P.A. 2000 Midlantic Drive Suite 100 Mount Laurel, NJ Phone: 856.797.0412 FAX: 856.722.1120

Job		Page
	16963018A	14 of 22
Project		Date
	Suffield South	16:41:24 12/02/16
Client	AT&T	Designed by ABera

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Ice 1.2 Dead+1.6 Wind 90 deg - No Ice	12612.89	21266.88	-11.42	-0.17	-1318.47	-0.33
0.9 Dead+1.6 Wind 90 deg - No Ice	9459.40	21266.72	-11.20	-0.41	-1318.38	-0.34
1.2 Dead+1.6 Wind 120 deg - No Ice	12612.54	19407.65	11205.01	687.24	-1185.36	-0.07
0.9 Dead+1.6 Wind 120 deg - No Ice	9459.40	19407.65	11205.01	686.52	-1185.36	-0.09
1.2 Dead+1.6 Wind 150 deg - No Ice	12612.88	10623.56	18423.36	1146.22	-656.59	0.63
0.9 Dead+1.6 Wind 150 deg - No Ice	9459.40	10623.66	18423.12	1145.18	-656.96	0.62
1.2 Dead+1.6 Wind 180 deg - No Ice	12612.54	-11.20	20896.40	1306.89	4.45	0.98
0.9 Dead+1.6 Wind 180 deg - No Ice	9459.40	-11.20	20896.40	1305.73	3.62	0.97
1.2 Dead+1.6 Wind 210 deg - No Ice	12612.54	-10643.06	18434.33	1147.33	665.19	0.97
0.9 Dead+1.6 Wind 210 deg - No Ice	9459.40	-10643.06	18434.32	1146.29	663.90	0.96
1.2 Dead+1.6 Wind 240 deg - No Ice	12612.54	-19418.86	11224.42	689.17	1193.13	0.83
0.9 Dead+1.6 Wind 240 deg - No Ice	9459.40	-19418.86	11224.42	688.46	1191.46	0.83
1.2 Dead+1.6 Wind 270 deg - No Ice	12612.89	-21266.88	10.99	2.07	1325.11	0.33
0.9 Dead+1.6 Wind 270 deg - No Ice	9459.40	-21266.72	11.20	1.83	1323.35	0.34
1.2 Dead+1.6 Wind 300 deg - No Ice	12612.54	-18080.00	-10438.49	-651.05	1132.62	-0.25
0.9 Dead+1.6 Wind 300 deg - No Ice	9459.40	-18080.00	-10438.49	-650.83	1130.99	-0.24
1.2 Dead+1.6 Wind 330 deg - No Ice	12612.88	-10623.91	-18423.16	-1144.32	663.25	-0.63
0.9 Dead+1.6 Wind 330 deg - No Ice	9459.40	-10623.66	-18423.12	-1143.75	661.96	-0.62
1.2 Dead+1.0 Ice+1.0 Temp	62815.42	-0.00	0.00	-7.44	0.06	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	62815.42	1.22	-4793.56	-304.00	-0.03	-0.67
Ice+1.0 Temp 1.2 Dead+1.0 Wind 30 deg+1.0	62815.42	2350.38	-4070.98	-260.76	-146.16	-0.50
Ice+1.0 Temp 1.2 Dead+1.0 Wind 60 deg+1.0	62815.42	4042.77	-2335.50	-153.08	-251.91	-0.18
Ice+1.0 Temp 1.2 Dead+1.0 Wind 90 deg+1.0	62815.42	4698.65	-1.22	-7.57	-292.20	0.18
Ice+1.0 Temp 1.2 Dead+1.0 Wind 120	62815.42	4149.52	2395.72	140.73	-256.55	0.48
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	62815.42	2348.27	4069.76	245.75	-145.95	0.68
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180	62815.42	-1.22	4668.89	283.62	0.21	0.68
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210	62815.42	-2350.38	4070.98	245.87	146.34	0.50
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240	62815.42	-4150.73	2397.83	140.94	256.85	0.19
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270	62815.42	-4698.65	1.22	-7.32	292.38	-0.18
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300	62815.42	-4041.55	-2333.39	-152.87	251.97	-0.50
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330	62815.42	-2348.27	-4069.76	-260.64	146.13	-0.68

	Job		Page
tnxTower		16963018A	15 of 22
Maser Consulting P.A.	Project		Date
2000 Midlantic Drive Suite 100		Suffield South	16:41:24 12/02/16
Mount Laurel, NJ	Client		Designed by
Phone: 856.797.0412 FAX: 856.722.1120		AT&T	ABera

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	lb	lb	lb	kip-ft	kip-ft	kip-ft
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	10510.45	2.68	-5363.61	-327.76	2.50	-0.18
Dead+Wind 30 deg - Service	10510.45	2545.10	-4408.25	-273.23	-155.43	-0.23
Dead+Wind 60 deg - Service	10510.45	4326.20	-2500.83	-155.52	-267.43	-0.17
Dead+Wind 90 deg - Service	10510.45	5085.57	-2.68	0.52	-313.17	-0.08
Dead+Wind 120 deg - Service	10510.45	4641.01	2679.49	164.83	-281.36	-0.02
Dead+Wind 150 deg - Service	10510.45	2540.46	4405.57	274.53	-154.97	0.15
Dead+Wind 180 deg - Service	10510.45	-2.68	4997.01	312.94	3.03	0.23
Dead+Wind 210 deg - Service	10510.45	-2545.10	4408.25	274.79	160.96	0.23
Dead+Wind 240 deg - Service	10510.45	-4643.68	2684.13	165.29	287.16	0.20
Dead+Wind 270 deg - Service	10510.45	-5085.57	2.68	1.05	318.71	0.08
Dead+Wind 300 deg - Service	10510.45	-4323.52	-2496.19	-155.06	272.69	-0.06
Dead+Wind 330 deg - Service	10510.45	-2540.46	-4405.57	-272.96	160.50	-0.15

Solution Summary

		n of Applied Force.			Sum of Reaction		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
1	-0.00	-10510.45	0.00	0.00	10510.45	-0.00	0.000%
2	11.20	-12612.54	-22429.43	-11.20	12612.54	22429.44	0.000%
3	11.20	-9459.40	-22429.43	-11.20	9459.40	22429.43	0.000%
4	10643.06	-12612.54	-18434.32	-10643.07	12612.54	18434.32	0.000%
5	10643.06	-9459.40	-18434.32	-10643.06	9459.40	18434.32	0.000%
6	18091.21	-12612.54	-10457.90	-18091.21	12612.54	10457.90	0.000%
7	18091.21	-9459.40	-10457.90	-18091.21	9459.40	10457.90	0.000%
8	21266.72	-12612.54	-11.20	-21266.88	12612.89	11.42	0.002%
9	21266.72	-9459.40	-11.20	-21266.72	9459.40	11.20	0.000%
10	19407.65	-12612.54	11205.01	-19407.65	12612.54	-11205.01	0.000%
11	19407.65	-9459.40	11205.01	-19407.65	9459.40	-11205.01	0.000%
12	10623.66	-12612.54	18423.12	-10623.56	12612.88	-18423.36	0.002%
13	10623.66	-9459.40	18423.12	-10623.66	9459.40	-18423.12	0.000%
14	-11.20	-12612.54	20896.40	11.20	12612.54	-20896.40	0.000%
15	-11.20	-9459.40	20896.40	11.20	9459.40	-20896.40	0.000%
16	-10643.06	-12612.54	18434.32	10643.06	12612.54	-18434.33	0.000%
17	-10643.06	-9459.40	18434.32	10643.06	9459.40	-18434.32	0.000%
18	-19418.86	-12612.54	11224.42	19418.86	12612.54	-11224.42	0.000%
19	-19418.86	-9459.40	11224.42	19418.86	9459.40	-11224.42	0.000%
20	-21266.72	-12612.54	11.20	21266.88	12612.89	-10.99	0.002%
21	-21266.72	-9459.40	11.20	21266.72	9459.40	-11.20	0.000%
22	-18080.00	-12612.54	-10438.49	18080.00	12612.54	10438.49	0.000%
23	-18080.00	-9459.40	-10438.49	18080.00	9459.40	10438.49	0.000%
24	-10623.66	-12612.54	-18423.12	10623.91	12612.88	18423.16	0.002%
25	-10623.66	-9459.40	-18423.12	10623.66	9459.40	18423.12	0.000%
26	-0.00	-62815.42	0.00	0.00	62815.42	-0.00	0.000%
27	1.22	-62815.42	-4793.56	-1.22	62815.42	4793.56	0.000%
28	2350.38	-62815.42	-4070.98	-2350.38	62815.42	4070.98	0.000%
29	4042.77	-62815.42	-2335.50	-4042.77	62815.42	2335.50	0.000%
30	4698.65	-62815.42	-1.22	-4698.65	62815.42	1.22	0.000%
31	4149.52	-62815.42	2395.72	-4149.52	62815.42	-2395.72	0.000%
32	2348.27	-62815.42	4069.76	-2348.27	62815.42	-4069.76	0.000%
33	-1.22	-62815.42	4668.89	1.22	62815.42	-4668.89	0.000%
34	-2350.38	-62815.42	4070.98	2350.38	62815.42	-4070.98	0.000%
35	-4150.74	-62815.42	2397.83	4150.73	62815.42	-2397.83	0.000%
36	-4698.65	-62815.42	1.22	4698.65	62815.42	-1.22	0.000%
37	-4041.55	-62815.42	-2333.39	4041.55	62815.42	2333.39	0.000%
38	-2348.27	-62815.42	-4069.76	2348.27	62815.42	4069.76	0.000%
39	2.68	-10510.45	-5363.61	-2.68	10510.45	5363.61	0.000%

	Job		Page
tnxTower		16963018A	16 of 22
Magar Consulting DA	Project		Date
Maser Consulting P.A. 2000 Midlantic Drive Suite 100		Suffield South	16:41:24 12/02/16
Mount Laurel, NJ	Client		Designed by
Phone: 856.797.0412 FAX: 856.722.1120		AT&T	ABera

	Sui	m of Applied Forces	7		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
40	2545.10	-10510.45	-4408.25	-2545.10	10510.45	4408.25	0.000%
41	4326.20	-10510.45	-2500.83	-4326.20	10510.45	2500.83	0.000%
42	5085.57	-10510.45	-2.68	-5085.57	10510.45	2.68	0.000%
43	4641.01	-10510.45	2679.49	-4641.01	10510.45	-2679.49	0.000%
44	2540.46	-10510.45	4405.57	-2540.46	10510.45	-4405.57	0.000%
45	-2.68	-10510.45	4997.01	2.68	10510.45	-4997.01	0.000%
46	-2545.10	-10510.45	4408.25	2545.10	10510.45	-4408.25	0.000%
47	-4643.68	-10510.45	2684.13	4643.68	10510.45	-2684.13	0.000%
48	-5085.57	-10510.45	2.68	5085.57	10510.45	-2.68	0.000%
49	-4323.52	-10510.45	-2496.19	4323.52	10510.45	2496.19	0.000%
50	-2540.46	-10510.45	-4405.57	2540.46	10510.45	4405.57	0.000%

Non-Linear Convergence Results							
				_			
ged?	Number	Displacement	Force	-			

Load	<i>C</i> 19	Number	D: 1	
Load Combination	Converged?		Displacement	Force
	**	of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00000001
3	Yes	4	0.00000001	0.00000001
4	Yes	4	0.00000001	0.00000001
5	Yes	4	0.00000001	0.00000001
6	Yes	4	0.00000001	0.00000194
7	Yes	4	0.00000001	0.00000180
8	Yes	4	0.00000001	0.00000215
9	Yes	4	0.00000001	0.0000001
10	Yes	4	0.00000001	0.00000001
11	Yes	4	0.00000001	0.00000001
12	Yes	4	0.00000001	0.00000213
13	Yes	4	0.00000001	0.00000001
14	Yes	4	0.00000001	0.00000197
15	Yes	4	0.00000001	0.00000183
16	Yes	4	0.00000001	0.00000001
17	Yes	4	0.00000001	0.00000001
18	Yes	4	0.00000001	0.00000001
19	Yes	4	0.00000001	0.00000001
20	Yes	4	0.00000001	0.00000216
21	Yes	4	0.00000001	0.00000001
22	Yes	4	0.00000001	0.00000197
23	Yes	4	0.00000001	0.00000183
24	Yes	4	0.00000001	0.00000213
25	Yes	4	0.00000001	0.00000001
26	Yes	4	0.00000001	0.00000001
27	Yes	4	0.00000001	0.00000668
28	Yes	4	0.00000001	0.00000653
29	Yes	4	0.00000001	0.00000650
30	Yes	4	0.00000001	0.00000648
31	Yes	4	0.00000001	0.00000662
32	Yes	4	0.00000001	0.00000680
33	Yes	4	0.00000001	0.00000699
34	Yes	4	0.00000001	0.00000702
35	Yes	4	0.00000001	0.00000704
36	Yes	4	0.00000001	0.00000705
37	Yes	4	0.00000001	0.00000706
38	Yes	4	0.00000001	0.00000689
39	Yes	4	0.00000001	0.00000001
40	Yes	4	0.00000001	0.00000001

4	T	Job			Page
<i>INX</i>	Tower		169	963018A	17 of 22
	Maser Consulting P.A. Project		Suff	ield South	Date 16:41:24 12/02/16
2000 Midlantic Drive Suite 100 Mount Laurel, NJ Phone: 856.797.0412 FAX: 856.722.1120		Client		AT&T	Designed by ABera
41	Yes	4	0.00000001	0.00000001	
42	Yes	4	0.00000001	0.00000001	
43 44	Yes Yes	4	0.00000001 0.00000001	0.00000001 0.00000001	
45	Yes	4	0.00000001	0.00000001	
46	Yes	4	0.00000001	0.00000001	
47	Yes	4	0.00000001	0.00000001	
48	Yes	4	0.00000001	0.00000001	
49	Yes	4	0.00000001	0.00000001	
50	Yes	4	0.00000001	0.00000001	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	100 - 80	2.275	47	0.1845	0.0129
T1	80 - 60	1.496	47	0.1667	0.0077
T2	60 - 40	0.843	47	0.1283	0.0016
Т3	40 - 20	0.380	47	0.0866	0.0008
T4	20 - 0	0.104	47	0.0382	0.0003

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
100.00	5' Sector Frame T-arm	47	2.275	0.1845	0.0129	138166
90.00	(2) LPA-70063-8CF-EDIN-X	47	1.877	0.1776	0.0105	69083

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	100 - 80	9.338	18	0.7458	0.0543
T1	80 - 60	6.175	18	0.6805	0.0321
T2	60 - 40	3.492	18	0.5288	0.0068
Т3	40 - 20	1.577	18	0.3586	0.0032
T4	20 - 0	0.433	18	0.1588	0.0015

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
100.00	5' Sector Frame T-arm	18	9.338	0.7458	0.0543	37807

	Job		Page
tnxTower		16963018A	18 of 22
Maser Consulting P.A.	Project		Date
2000 Midlantic Drive Suite 100		Suffield South	16:41:24 12/02/16
Mount Laurel, NJ Phone: 856.797.0412 FAX: 856.722.1120	Client	AT&T	Designed by ABera

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
90.00	(2) LPA-70063-8CF-EDIN-X	18	7.725	0.7216	0.0441	18903

				E	Bolt D	esign l	Data			
Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt lb	Allowable Load lb	Ratio Load Allowable	Allowable Ratio	Criteria
L1	100	Latticed Pole Leg Latticed Pole	A325N A325N	0.6250 0.5000	4	4502.96 3499.83	20708.70 4132.50	0.217 🖌	1	Bolt Tension Member Bearing
		Diagonal Latticed Pole Top Girt	A325N	0.5000	1	549.56	4132.50	0.133 🗸	1	Member Bearing
T1	80	Leg	A325N	0.6250	4	9648.50	20708.70	0.466 🖌	1	Bolt Tension
		Diagonal	A325N	0.5000	1	3070.11	4132.50	0.743 🖌	1	Member Bearing
T2	60	Leg	A325N	0.7500	4	14385.30	29820.60	0.482	1	Bolt Tension
		Diagonal	A325N	0.5000	1	4010.57	7952.16	0.504	1	Bolt Shear
		Secondary Horizontal	A325N	0.6250	1	259.07	7830.00	0.033	1	Member Bearing
T3	40	Leg	A325N	0.8750	4	19349.60	40589.10	0.477 🖌	1	Bolt Tension
		Diagonal	A325N	0.5000	1	4445.09	7952.16	0.559 🖌	1	Bolt Shear
		Secondary Horizontal	A325N	0.6250	1	423.22	7830.00	0.054	1	Member Bearing
T4	20	Leg	A325N	0.8750	4	24068.10	40589.10	0.593 🖌	1	Bolt Tension
		Diagonal	A325N	0.5000	1	4441.90	6198.75	0.717 🖌	1	Member Bearing
		Secondary Horizontal	A325N	0.6250	1	394.40	7830.00	0.050	1	Member Bearing

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	Α	Mast Stability	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	Index	lb	lb	ϕP_n
L1	100 - 80	P2.4"x0.165"	20.00	3.93	59.5 K=1.00	1.1585	1.00	-17933.40	40241.90	0.446 1
T1	80 - 60	P2.9x0.214"	20.03	4.01	50.5 K=1.00	1.8058	1.00	-42904.00	67450.70	0.636 ¹
T2	60 - 40	ROHN 2.5 X-STR	20.03	3.45	44.8 K=1.00	2.2535	1.00	-64061.70	87567.00	0.732 1
Т3	40 - 20	ROHN 3 STD	20.03	3.43	35.4 K=1.00	2.2285	1.00	-86915.80	91506.00	0.950 ¹

	Job		Page
tnxTower		16963018A	19 of 22
Magan Congulting BA	Project		Date
<i>Maser Consulting P.A.</i> 2000 Midlantic Drive Suite 100		Suffield South	16:41:24 12/02/16
Mount Laurel, NJ	Client		Designed by
Phone: 856.797.0412 FAX: 856.722.1120		AT&T	ABera

Section No.	Elevation	Size	L	L_u	Kl/r	Α	Mast Stability	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	Index	lb	lb	$\frac{1}{\phi P_n}$
T4	20 - 0	ROHN 3 X-STR	20.03	3.42	36.1 K=1.00	3.0159	1.00	-108782.00	123382.00	0.882 1

¹ $P_u / \phi P_n$ controls

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	ϕP_n
L1	100 - 80	L1 1/2x1 1/2x1/8	7.61	3.59	145.3 K=1.00	0.3594	-3516.49	3847.02	0.914 1
T1	80 - 60	L2x2x1/8	9.27	4.51	136.1 K=1.00	0.4844	-3097.44	5905.11	0.525 1
T2	60 - 40	L3x3x1/4	12.24	6.08	123.2 K=1.00	1.4400	-4010.57	20980.80	0.191 1
Т3	40 - 20	L3x3x1/4	14.00	6.93	140.4 K=1.00	1.4400	-4445.09	16508.10	0.269 1
T4	20 - 0	L2 1/2x2 1/2x3/16	15.83	7.84	190.0 K=1.00	0.9020	-4650.31	5643.59	0.824 1

¹ $P_u / \phi P_n$ controls

Secondary Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T2	60 - 40	L2x2x3/16	10.26	9.78	190.2 K=1.00	0.7150	-297.44	4466.19	0.067 1
Т3	40 - 20	L2x2x3/16	12.30	11.77	229.0 K=1.00	0.7150	-468.05	3081.31	0.152 1
T4	20 - 0	L2x2x3/16	13.67	13.14	255.5 K=1.00	0.7150	-432.06	2474.72	0.175 1
		KL/R > 250 (C) - 149							

¹ $P_u / \phi P_n$ controls

Top Girt Design Data (Compression)

	Job		Page
tnxTower		16963018A	20 of 22
Maser Consulting P.A.	Project		Date
2000 Midlantic Drive Suite 100		Suffield South	16:41:24 12/02/16
Mount Laurel, NJ	Client		Designed by
Phone: 856.797.0412 FAX: 856.722.1120		AT&T	ABera

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
L1	100 - 80	L2x2x1/8	6.52	6.11	184.5 K=1.00	0.4844	-534.55	3214.31	0.166 1

¹ P_u / ϕP_n controls

Tension Checks

Leg Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
L1	100 - 80	P2.4"x0.165"	20.00	0.08	1.3	1.1585	18011.90	52134.30	0.345
T1	80 - 60	P2.9x0.214"	20.03	4.01	50.5	1.8058	38594.00	81261.00	0.475
T2	60 - 40	ROHN 2.5 X-STR	20.03	3.23	41.9	2.2535	57600.60	101409.00	0.568
Т3	40 - 20	ROHN 3 STD	20.03	3.25	33.5	2.2285	77475.10	100281.00	0.773
T4	20 - 0	ROHN 3 X-STR	20.03	3.26	34.4	3.0159	96347.10	135717.00	0.710 1

¹ $P_u / \phi P_n$ controls

	Diagonal Design Data (Tension)										
Section No.	Elevation	Size	L	L_u	Kl/r	Α	P _u	ϕP_n	Ratio P _u		
	ft		ft	ft		in^2	lb	lb	ϕP_n		
L1	100 - 80	L1 1/2x1 1/2x1/8	7.61	3.59	95.2	0.2109	3499.83	9175.78	0.381 1		
T1	80 - 60	L2x2x1/8	8.90	4.33	84.9	0.3047	3070.11	13253.90	0.232 1		
T2	60 - 40	L3x3x1/4	12.24	6.08	79.8	0.9628	3826.62	41882.30	0.091 1		
Т3	40 - 20	L3x3x1/4	14.00	6.93	90.7	0.9628	4277.73	41882.30	0.102 ¹		
T4	20 - 0	L2 1/2x2 1/2x3/16	15.83	7.84	122.5	0.5886	4441.90	25604.50	0.173 1		

¹ $P_u / \phi P_n$ controls

tnxTower

Maser Consulting P.A. 2000 Midlantic Drive Suite 100 Mount Laurel, NJ Phone: 856.797.0412 FAX: 856.722.1120

Job		Page
	16963018A	21 of 22
Project		Date
	Suffield South	16:41:24 12/02/16
Client	AT&T	Designed by ABera

Secondary Horizontal Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T2	60 - 40	L2x2x3/16	10.26	9.78	194.8	0.4308	259.07	18739.00	0.014 1
Т3	40 - 20	L2x2x3/16	12.30	11.77	233.6	0.4308	423.22	18739.00	0.023 1
T4	20 - 0	L2x2x3/16	13.67	13.14	260.1	0.4308	394.40	18739.00	0.021

¹ $P_u / \phi P_n$ controls

Top Girt Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
L1	100 - 80	L2x2x1/8	6.52	6.11	121.1	0.3047	549.56	13253.90	0.041 1

¹ P_u / ϕP_n controls

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${}^{\phi P_{allow}}_{lb}$	% Capacity	Pass Fail
L1	100 - 80	Latticed Pole Leg	P2.4"x0.165"	1	-17933.40	40241.90	44.6	Pass
		Latticed Pole Diagonal	L1 1/2x1 1/2x1/8	7	-3516.49	3847.02	91.4	Pass
		Latticed Pole Top Girt	L2x2x1/8	5	-534.55	3214.31	16.6	Pass
T1	80 - 60	Leg	P2.9x0.214"	37	-42904.00	67450.70	63.6	Pass
		Diagonal	L2x2x1/8	41	-3097.44	5905.11	52.5	Pass
T2	60 - 40	Leg	ROHN 2.5 X-STR	70	-64061.70	87567.00	73.2	Pass
		Diagonal	L3x3x1/4	77	-4010.57	20980.80	19.1	Pass
		Secondary Horizontal	L2x2x3/16	80	-297.44	4466.19	6.7	Pass
Т3	40 - 20	Leg	ROHN 3 STD	100	-86915.80	91506.00	95.0	Pass
		Diagonal	L3x3x1/4	107	-4445.09	16508.10	26.9	Pass
		Secondary Horizontal	L2x2x3/16	110	-468.05	3081.31	15.2	Pass
T4	20 - 0	Leg	ROHN 3 X-STR	130	-108782.00	123382.00	88.2	Pass
		Diagonal	L2 1/2x2 1/2x3/16	137	-4650.31	5643.59	82.4	Pass
		Secondary Horizontal	L2x2x3/16	149	-432.06	2474.72	17.5	Pass
		-					Summary	
						Latticed Pole Leg (L1)	44.6	Pass
						Latticed Pole Diagonal	91.4	Pass

Job		Page
	16963018A	22 of 22
Project		Date
	Suffield South	16:41:24 12/02/16
Client		Designed by
	AT&T	ABera
	Project	16963018A Project Suffield South Client

Section	Elevation	Component	Size	Critical	Р	ϕP_{allow}	%	Pass
No.	ft	Type		Element	lb	lb	Capacity	Fail
						(L1)		
						Latticed	16.6	Pass
						Pole Top		
						Girt (L1)		
						Leg (T3)	95.0	Pass
						Diagonal	82.4	Pass
						(T4)		
						Secondary	17.5	Pass
						Horizontal		
						(T4)		
						Bolt Checks	84.7	Pass
						RATING =	95.0	Pass

Program Version 7.0.5.1 - 2/1/2016 File://maserconsulting.com/luj/Projects/2016/16963000A/16963018A/Structural/Tower Analysis/Rev 0/TNX/Tower.eri

December 19, 2016

Samuel Sales 7 Woodland Hollow Windsor Locks, CT 06096

RE: AT&T Wireless Modifications to Telecommunication Facility – 55 King Spring Road, Windsor Locks, CT 06078

Dear Mr. Sales:

In order to accommodate technological changes, implement the Uniform Mobile Telecommunications System and enhance system performance in the State of Connecticut, AT&T Wireless ("AT&T") will be changing its equipment configuration at the above referenced telecommunications facility. AT&T Wireless currently maintains six (6) antennas at the 100 foot level of an existing 100 foot tall lattice tower located at 55 King Spring Road, in Windsor locks, CT. The tower is owned by the King Spring Tower, LLC. The property is owned by Samuel Sales.

AT&T Wireless now seeks to install three (3) new RRUS-12 ("RRU") remote radio units, one (1) RRU per sector, to the 100 foot level of the tower, install new RRH mounts for the new RRUs, and to relocate three (3) existing RRUS-11 units upon the new RRH mounts, adjacent to the proposed new RRUS-12 units.

This letter is intended to serve as the required notice to the property owner. As required by the Regulations of Connecticut State Agencies ("RCSA") section 16-50j-73, the Connecticut Siting Council ("CSC") has been notified of the proposed changes and will review AT&T's proposal. Please accept this letter as notification under RCSA section 16-50j-73 of construction which constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2).

The enclosed letter to the CSC fully describes AT&T's proposal for the above referenced site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-677-0144 or contact Melanie Bachman, Acting Executive Director of the CSC at 860-872-2935.

Respectfully submitted,

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-677-0144 jandrews@empiretelecomm.com

Enclosures

cc: Melanie Bachman, Connecticut Siting Council

December 19, 2016

The Honorable Christopher J. Kervick, First Selectman of Windsor Locks 50 Church Street Windsor Locks, CT 06096

RE: AT&T Wireless Modifications to Telecommunication Facility – 55 King Spring Road, Windsor Locks, CT 06078

Dear Selectman Kervick:

In order to accommodate technological changes, implement the Uniform Mobile Telecommunications System and enhance system performance in the State of Connecticut, AT&T Wireless ("AT&T") will be changing its equipment configuration at the above referenced telecommunications facility. AT&T Wireless currently maintains six (6) antennas at the 100 foot level of an existing 100 foot tall lattice tower located at 55 King Spring Road, in Windsor Locks, CT. The tower is owned by the King Spring Tower, LLC. The property is owned by Samuel Sales.

AT&T Wireless now seeks to install three (3) new RRUS-12 ("RRU") remote radio units, one (1) RRU per sector, to the 100 foot level of the tower, install new RRH mounts for the new RRUs, and to relocate three (3) existing RRUS-11 units upon the new RRH mounts, adjacent to the proposed new RRUS-12 units.

This letter is intended to serve as the required notice to the municipality. As required by the Regulations of Connecticut State Agencies ("RCSA") section 16-50j-73, the Connecticut Siting Council ("CSC") has been notified of the proposed changes and will review AT&T's proposal. Please accept this letter as notification under RCSA section 16-50j-73 of construction which constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2).

The enclosed letter to the CSC fully describes AT&T's proposal for the above referenced site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-677-0144 or contact Melanie Bachman, Acting Executive Director of the CSC at 860-872-2935.

Respectfully submitted,

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-677-0144 jandrews@empiretelecomm.com

Enclosures

cc: Melanie Bachman, Connecticut Siting Council

December 19, 2016

King Spring Tower, LLC 7 Woodland Hollow Windsor Locks, CT 06096

RE: AT&T Wireless Modifications to Telecommunication Facility – 55 King Spring Road, Windsor Locks, CT 06078

To Whom It May Concern:

In order to accommodate technological changes, implement the Uniform Mobile Telecommunications System and enhance system performance in the State of Connecticut, AT&T Wireless ("AT&T") will be changing its equipment configuration at the above referenced telecommunications facility. AT&T Wireless currently maintains six (6) antennas at the 100 foot level of an existing 100 foot tall lattice tower located at 55 King Spring Road, in Windsor Locks, CT. The tower is owned by the King Spring Tower, LLC. The property is owned by Samuel Sales.

AT&T Wireless now seeks to install three (3) new RRUS-12 ("RRU") remote radio units, one (1) RRU per sector, to the 100 foot level of the tower, install new RRH mounts for the new RRUs, and to relocate three (3) existing RRUS-11 units upon the new RRH mounts, adjacent to the proposed new RRUS-12 units.

This letter is intended to serve as the required notice to the tower owner. As required by the Regulations of Connecticut State Agencies ("RCSA") section 16-50j-73, the Connecticut Siting Council ("CSC") has been notified of the proposed changes and will review AT&T's proposal. Please accept this letter as notification under RCSA section 16-50j-73 of construction which constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2).

The enclosed letter to the CSC fully describes AT&T's proposal for the above referenced site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-677-0144 or contact Melanie Bachman, Acting Executive Director of the CSC at 860-872-2935.

Respectfully submitted,

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-677-0144 jandrews@empiretelecomm.com

Enclosures

cc: Melanie Bachman, Connecticut Siting Council