

05/25/2019

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re:Notice of Exempt Modification – Antenna SwapProperty Address:83 Windham St Willimantic, CT 06226Applicant:AT&T Mobility, LLC

Dear Ms. Bachman:

On behalf of AT&T, please accept this application as notification pursuant to R.C.S.A. §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j-72(b) (2).

AT&T currently maintains a wireless telecommunications facility consisting of nine (9) wireless telecommunication antennas at an antenna center line height of 137-feet on an existing 175 –monopole tower, owned by the City of Willimantic located at 83 Windham St Willimantic, CT 06226. AT&T now intends to:

INSTALL (3) NEW RRUS-E2 WITH SURGE ARRESTORS, AT GRADE ,INSTALL (3) NEW AT&T ANTENNAS, (1) PER SECTOR, (3) NEW AT&T ANTENNAS TO REPLACE (3) EXISTING ANTENNAS, (1) PER SECTOR INSTALL (3) LOW BAND COMBINERS IN POSITION # 3, (1) PER SECTOR, INSTALL (3) LOW BAND COMBINERS, AT GRADE, INSTALL (1) NEW FIBER BOX, AT GRADE, INSTALL (12) NEW TELCO FLEX FOR PROPOSED DC TRUNKS, INSTALL (3) NEW RRUS-32, (1) PER SECTOR, (3) NEW RRUS-4415 B25 TO REPLACE (3) EXISTING RRUS, (1) PER SECTOR INSTALL (3) NEW RRUS-4478 B14, (1) PER SECTOR INSTALL (1) NEW DC-6 SURGE SUPPRESSION DOME, INSTALL (2) 6/C DC POWER CABLES, SWAP DUS WITH 5216 AND ADD 2ND 5216, ADD 2ND XMU AND IDLE, INSTALL (1) FIBER TRUNK and replace base plate stiffeners.

This facility was approved the application dated December 30, 2003 and related plans dated August 13, 2003 for Project # CT-11-506A by the Office of the State Building who issued Building Permit #09-03 for structural/ electrical work to erect telecommunications antennas and associated equipment to an existing 175 foot monopole tower.

Note: Any changes to the approved plans shall be submitted to the office of the State Building Inspector for review.

85 Range way Rd Bldg. #3 Suite 102 North Billerica | MA 01862-2105

The following is a list of subsequent decisions by the Connecticut Siting Council:

EM-AT&T-163-170511 – AT&T notice of intent to modify an existing telecommunications facility located at 83 Windham Street, Willimantic, Connecticut. Decision Extension Request and CSC Decision Completion Letter

EM-AT&T-163-160627 - AT&T notice of intent to modify an existing telecommunications facility located at 83 Windham Street, Willimantic (Windham), Connecticut. Decision. Completion Letter

EM-AT&T-163-140730 - AT&T notice of intent to modify an existing telecommunications facility located at 83 Windham Street, Windham, Connecticut. Decision. Extension Request and CSC Decision.

EM-AT&T-163-121001 – AT&T Mobility notice of intent to modify an existing telecommunications facility located at 83 Windham Street, Willimantic, Connecticut.

EM-CING-163-080514 – New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 183 Windham Center Road, Windham, Connecticut.

Please accept this letter pursuant to Regulation of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-5l0j-72(b) (2). In accordance with R.C.S.A. A copy of this letter is being sent Renee Theroux-Keech, AIA Interim Director of Facilities Management & Planning Eastern Connecticut State University 83 Windham Street, Willimantic, CT 06226 A copy of this letter is also being sent Theresa O'Brien, Director of Fiscal Affairs and Acquisitions to the same address and the Office of the Connecticut State Building Inspector, 165 Capitol Avenue, Room 265 Hartford, CT 06106.

The planned modifications to AT&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72(b) (2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower. AT&T's replacement antennas will be installed at the 137-foot level of the 175-Monopole tower.
- 2. The proposed modifications will not involve any changes to ground-mounted equipment and, therefore, will not require and extension of the site boundary.
- 3. The proposed modifications will not increase the noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety

standard. A cumulative worst-case RF emissions calculation for AT&T's modified facility is provided in the RF Emissions Compliance Report, included in <u>Tab 2</u>.

- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- The tower and its foundation can support AT&T's proposed modifications. (See Structural Analysis Report included in <u>Tab 3</u>).

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes an exempt modification under R.C.S.A. §16-50j-72(b) (2).

Sincerely,

David Barbagallo

Enclosures CC w/enclosures:

> Renee Theroux-Keech, AIA Interim Director of Facilities Management & Planning Eastern Connecticut State University Theresa O'Brien, Director of Fiscal Affairs Eastern Connecticut State University Office of the Connecticut State Building Inspector,

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.statc.ct.us Web Site: www.statc.ct.us/csc/index.btm

Stephen J. Humes LeBoeuf, Lamb, Greene & MacRae Goodwin Square 225 Asylum Street Hartford, CT 06103

RE: **TS-T-MOBILE-163-030912** - Omnipoint Communications, Inc., request for an order to approve tower sharing of an existing telecommunications facility located at Eastern Road, Willimantic, Connecticut.

Dear Attorney Humes:

At a public meeting held September 23, 2003, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility may require an explicit request to this agency pursuant to General Statutes § 16-50aa or notice pursuant to Regulations of Connecticut State Agencies Section 16-50j-73, as applicable. Such request or notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

This decision applies only to this request for tower sharing and is not applicable to any other request or construction.

The proposed shared use is to be implemented as specified in your letter dated September 12, 2003.

Thank you for your attention and cooperation.

Very truly yours,

Tourla 13. Kity (the

Pamela B. Katz, P.E. Chairman

PBK/laf

c: Honorable Michael T. Paulhus, First Selectman, Town of Windham James E. Finger, Town Planner, Town of Windham Thomas J. Regan, Esq., Brown Rudnick Berlack Israels Michele G. Briggs, Southwestern Bell Mobile Systems Sandy M. Carter, Verizon Wireless

Insiding termin mobilister illignentic de092303, doc

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.statc.ct.us Web Site: www.statc.ct.us/csc/index.btm

Stephen J. Humes LeBoeuf, Lamb, Greene & MacRae Goodwin Square 225 Asylum Street Hartford, CT 06103

RE: **TS-T-MOBILE-163-030912** - Omnipoint Communications, Inc., request for an order to approve tower sharing of an existing telecommunications facility located at Eastern Road, Willimantic, Connecticut.

Dear Attorney Humes:

At a public meeting held September 23, 2003, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility may require an explicit request to this agency pursuant to General Statutes § 16-50aa or notice pursuant to Regulations of Connecticut State Agencies Section 16-50j-73, as applicable. Such request or notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

This decision applies only to this request for tower sharing and is not applicable to any other request or construction.

The proposed shared use is to be implemented as specified in your letter dated September 12, 2003.

Thank you for your attention and cooperation.

Very truly yours,

Tourla 13. Kity (the

Pamela B. Katz, P.E. Chairman

PBK/laf

c: Honorable Michael T. Paulhus, First Selectman, Town of Windham James E. Finger, Town Planner, Town of Windham Thomas J. Regan, Esq., Brown Rudnick Berlack Israels Michele G. Briggs, Southwestern Bell Mobile Systems Sandy M. Carter, Verizon Wireless

Insiding termin mobilister illignentic de092303, doc

775344438076 📎

Delivered Friday 5/31/2019 at 11:51 am

DELIVERED Signed for by: Signature on File

GET STATUS UPDATES

OBTAIN PROOF OF DELIVERY

FROM

Smartlink LLC Dave Barbagallo 265 Lincoln St KENSINGTON, CT US 06037 860 681-7708

то

Eastern Connecticut University Renee Theroux-Keech Willimantic, CT US 06226 860 490-4662 × Ask FedEx

Delivered Tuesday 6/04/2019 at 10:18 am

DELIVERED

Signed for by: J.RODRIUGEZ

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Smartlink LLC Dave Barbagallo 265 Lincoln St KENSINGTON, CT US 06037 860 681-7708 Origin Terminal NEWINGTON, CT

то

Eastern Connecticut University Theresa O'Brien WILLIMANTIC, CT US 06226 860 490-4662 Destination Location NORWICH, CT

Shipment Facts

TRACKING NUMBER 775344459946

DELIVERY ATTEMPTS 1

TOTAL SHIPMENT WEIGHT 1 lbs / 0.45 kgs **TERMS** Shipper

SERVICE

FedEx Express Saver

DELIVERED TO

Shipping/Receiving

SPECIAL HANDLING SECTION Deliver Weekday **STANDARD TRANSIT**(?)
6/04/2019 by 4:30 pm

WEIGHT 1 lbs / 0.45 kgs

TOTAL PIECES

PACKAGING FedEx Pak

SHIP DATE7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

ACTUAL DELIVERY Tue 6/04/2019 10:18 am

OUR COMPANY

- About FedEx
- Our Portfolio
- Investor Relations
- Careers
- FedEx Blog
- Corporate Responsibility
- Newsroom
- Contact Us

MORE FROM FEDEX

FedEx Compatible Developer Resource Center FedEx Cross Border

LANGUAGE

Change Country

English

FOLLOW FEDEX

© FedEx 1995-2018

 Feedback
 I
 Site Map
 Terms of Use
 I
 Security & Privacy

1

TOTAL PIECES

TERMS Shipper

PACKAGING Package **STANDARD TRANSIT**7
5/31/2019

SHIP DATE7 7

Local Scan Time

Ask FedEx

ACTUAL DELIVERY Fri 5/31/2019 11:51 am

Travel History

Expand History 🗸

OUR COMPANY	
About FedEx	
Our Portfolio	
Investor Relations	
Careers	
FedEx Blog	
Corporate Responsibility	
Newsroom	
Contact Us	
MORE FROM FEDEX	
FedEx Compatible	
Developer Resource Center	
FedEx Cross Border	

LANGUAGE

Change Country

English

FOLLOW FEDEX

© FedEx 1995-2018

Feedback I Site Map I Terms of Use I Security & Privacy

Delivered Tuesday 6/04/2019 at 9:00 am

DELIVERED Signed for by: J.JERARD

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Smartlink LLC Dave Barbagallo 265 Lincoln St KENSINGTON, CT US 06037 860 681-7708 Origin Terminal NEWINGTON, CT

ТО

Office of the State Building Inspec Renee Theroux-Keech HARTFORD, CT US 06106 860 713-5900 Destination Location WINDSOR LOCKS, CT

Shipment Facts

TRACKING NUMBER 775344655590

DELIVERY ATTEMPTS 1

TOTAL SHIPMENT WEIGHT 1 lbs / 0.45 kgs **TERMS** Shipper

SERVICE

FedEx Express Saver

DELIVERED TO

Shipping/Receiving

SPECIAL HANDLING SECTION Deliver Weekday **STANDARD TRANSIT**(?)
6/04/2019 by 4:30 pm

WEIGHT 1 lbs / 0.45 kgs

TOTAL PIECES

PACKAGING FedEx Pak

SHIP DATE7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

ACTUAL DELIVERY Tue 6/04/2019 9:00 am

OUR COMPANY

- About FedEx
- Our Portfolio
- Investor Relations
- Careers
- FedEx Blog
- Corporate Responsibility
- Newsroom
- Contact Us

MORE FROM FEDEX

FedEx Compatible Developer Resource Center FedEx Cross Border

LANGUAGE

Change Country

English

FOLLOW FEDEX

© FedEx 1995-2018

 Feedback
 I
 Site Map
 Terms of Use
 I
 Security & Privacy

× Ask FedEx

PROJECT TEAM

CLIENT REPRESENTATIVE

COMPANY:	SMARTLINK, LLC
ADDRESS:	85 RANGEWAY ROAD, BUILDING 3, SUITE 102
CITY, STATE, ZIP:	NORTH BILLERICA, MA 01862-2105
CONTACT:	TODD OLIVER
PHONE:	(774) 369-3618
E-MAIL:	TODD.OLIVER@SMARTLINKLLC.COM
SITE ACOULSIT	

SITE ACQUISITION

COMPANY:	SMARTLINK, LLC
ADDRESS:	85 RANGEWAY ROAD, BUILDING 3, SUITE 102
CITY, STATE, ZIP:	NORTH BILLERICA, MA 01862-2105
CONTACT:	SHARON.KEEFE
PHONE:	978-930-3918
E-MAIL:	SHARON.KEEFE@SMARTLINKLLC.COM
ENGINEER COMPANY: ADDRESS: CITY, STATE, ZIP: CONTACT: PHONE: E-MAIL:	MASER CONSULTING CONNECTICUT 31 NEWMAN SPRINGS ROAD, SUITE 203 RED BANK, NJ 07701 PETROS TSOUKALAS (732) 383-1955 EXT, 4102 PTSOUKALAS@MASERCONSULTING.COM

CONSTRUCTION MANAGER

COMPANY:	SMARTLINK, LLC.
ADDRESS:	33 BOSTON POST ROAD WEST, SUITE 210
CITY, STATE, ZIP:	MARLBOROUGH, MA 01752
CONTACT:	MARK DONNELLY
PHONE:	(617) 515-2080
E-MAIL:	MARK.DONNELLY@SMARTLINKLLC.COM

APPLICANT/LESSEE	
et&t	
NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701	5
PROPERTY/TOWER OWNE	<u>:R:</u>
NAME: ADDRESS: CITY, STATE, ZIP:	EASTERN CONNECTICUT UNIVERSITY 83 WINDHAM STREET WILLIMANTIC, CT 06226
LATITUDE:	41.72058889° N
LONGITUDE:	72.21818056° W
LAT./LONG. TYPE:	NAD 83
AREA OF CONSTRUCTION:	EXISTING EQUIPMENT SHELTER AND MONOPOLE
ZONING/JURISDICTION:	CITY OF WLLIMANTIC
CURRENT USE/PROPOSED USE:	UNMANNED TELECOMMUNICATIONS FACILITY
HANDICAP REQUIREMENTS:	FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. HANDICAPPED ACCESS NOT REQUIRED.
CONSTRUCTION TYPE:	IIB
USE GROUP:	U

SITE NAME: WILLIMANTIC T6 FA NUMBER: 10035388 SITE NUMBER: CTL01051 4C - MRCTB023678 5C - MRCTB023786 6C - MRCTB023972 83 WINDHAM STREET WILLIMANTIC, CT 06226 WINDHAM COUNTY

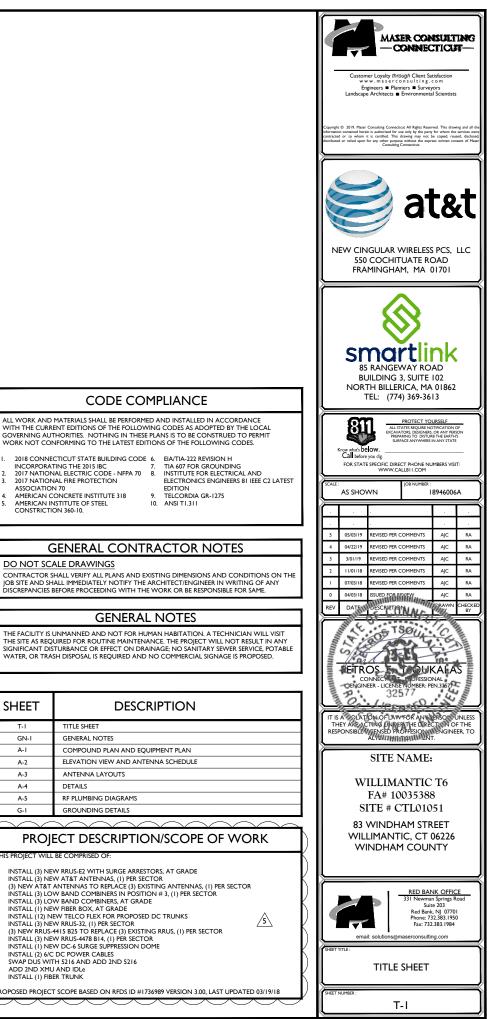
	W	L WORK AND MATERI TH THE CURRENT EDI VERNING AUTHORITI
	W	ORK NOT CONFORMIN
	١.	2018 CONNECTICUT INCORPORATING TH
	2. 3.	2017 NATIONAL ELEC 2017 NATIONAL FIRE ASSOCIATION 70
	4. 5.	AMERICAN CONCRET AMERICAN INSTITUTE CONSTRICTION 360-1
		CONSTRICTION 360-1
1		

DO NOT SCALE DRAWINGS

THE FACILITY IS UNMAN THE SITE AS REQUIRED F SIGNIFICANT DISTURBAT WATER, OR TRASH DISPI

	SHEET	
	T-1	TITLE
	GN-I	GENE
	A-I	COM
	A-2	ELEV
	A-3	ANT
	A-4	DETA
	A-5	RF PL
	G-1	GRO
	\sim	\sim
(PROJI	
(THIS PROJECT WILL	BE COM
$\left\langle \right\rangle$	 INSTALL (3) NE INSTALL (3) NE (3) NEW AT&T 	W AT&T

	 INSTALL (3) NEW AT 	8
	 (3) NEW AT&T ANTE 	Þ
N	 INSTALL (3) LOW BA 	
	 INSTALL (3) LOW BA 	Ν
(INSTALL (I) NEW FIB 	
V	 INSTALL (12) NEW TE 	
λ	 INSTALL (3) NEW RR 	
((3) NEW RRUS-4415 E 	
$\langle $	 INSTALL (3) NEW RR 	
X	 INSTALL (I) NEW DC 	-
(INSTALL (2) 6/C DC F 	Ċ
$\langle $	 SWAP DUS WITH 521 	16
X	 ADD 2ND XMU AND 	,
/	 INSTALL (I) FIBER TR 	ι
(
1	BROBOSED BROIECT SCO	


PROJECT LOCATION

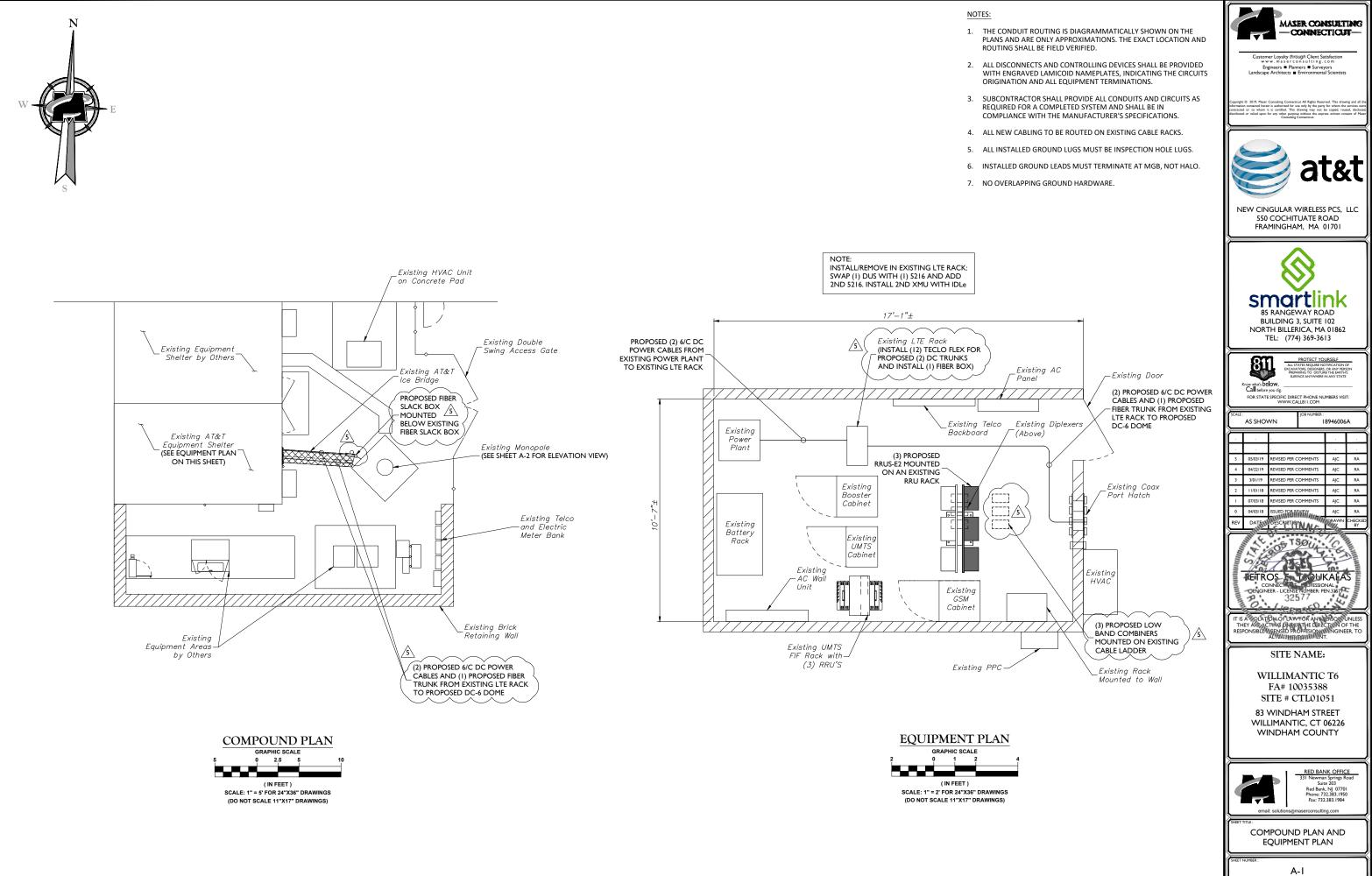
VICINITY MAP

THER PROJECTS WITHOUT THE WRITTEN AUTHORIZATION OF SMARTLINK, LLC., IT IS UNLAWFUL FOR ANY PERSON TO AMEND ANY ASPECT OF THESE DRAWINGS UNLESS THEY HAVE THE APPROVAL OF THE LICENSED PROFESSIONAL IN WRITING

NOT TO SCALE 32 IMAGE SOURCE: BING MAPS

AILS

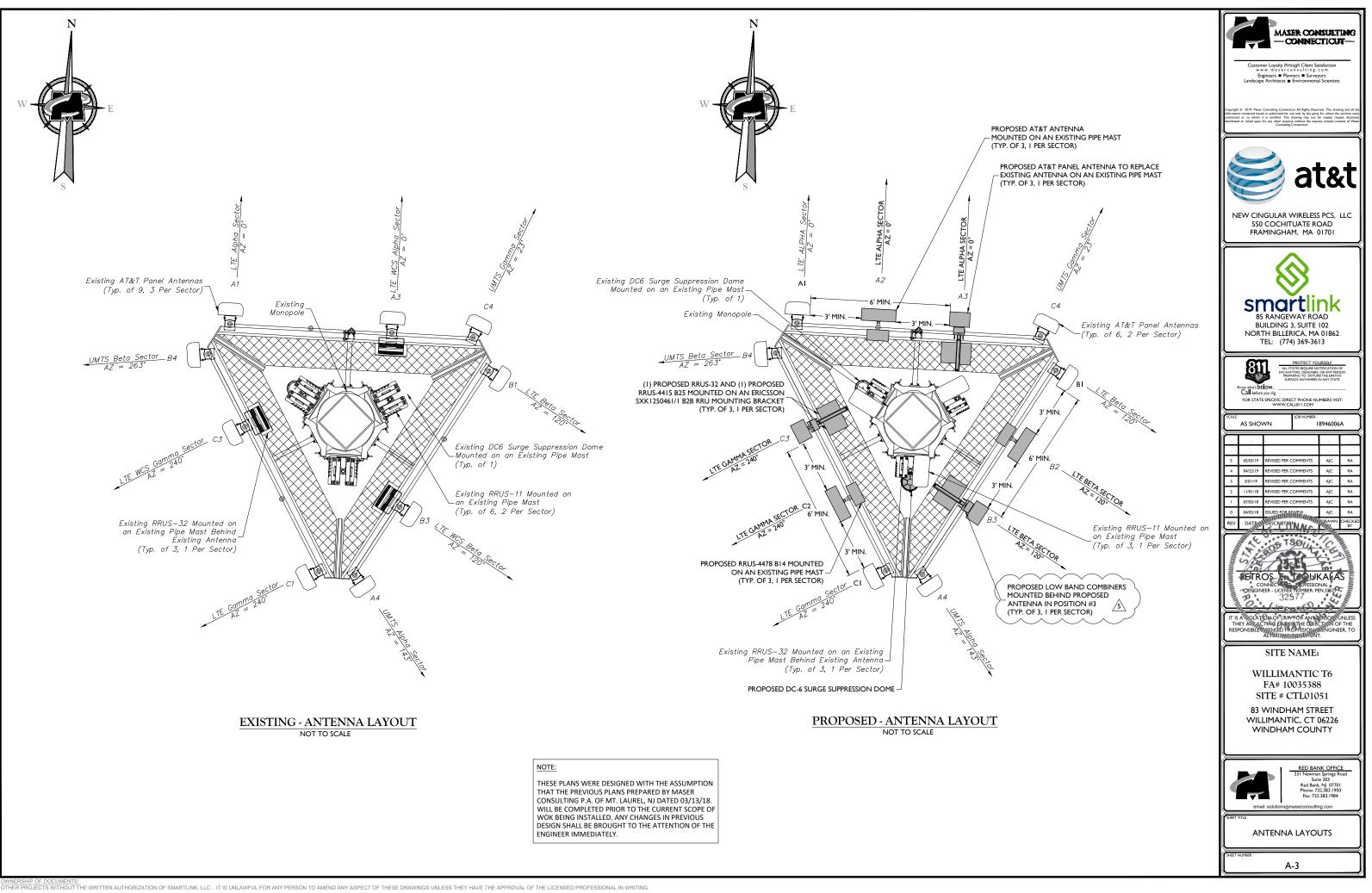
GENERAL NOTES:

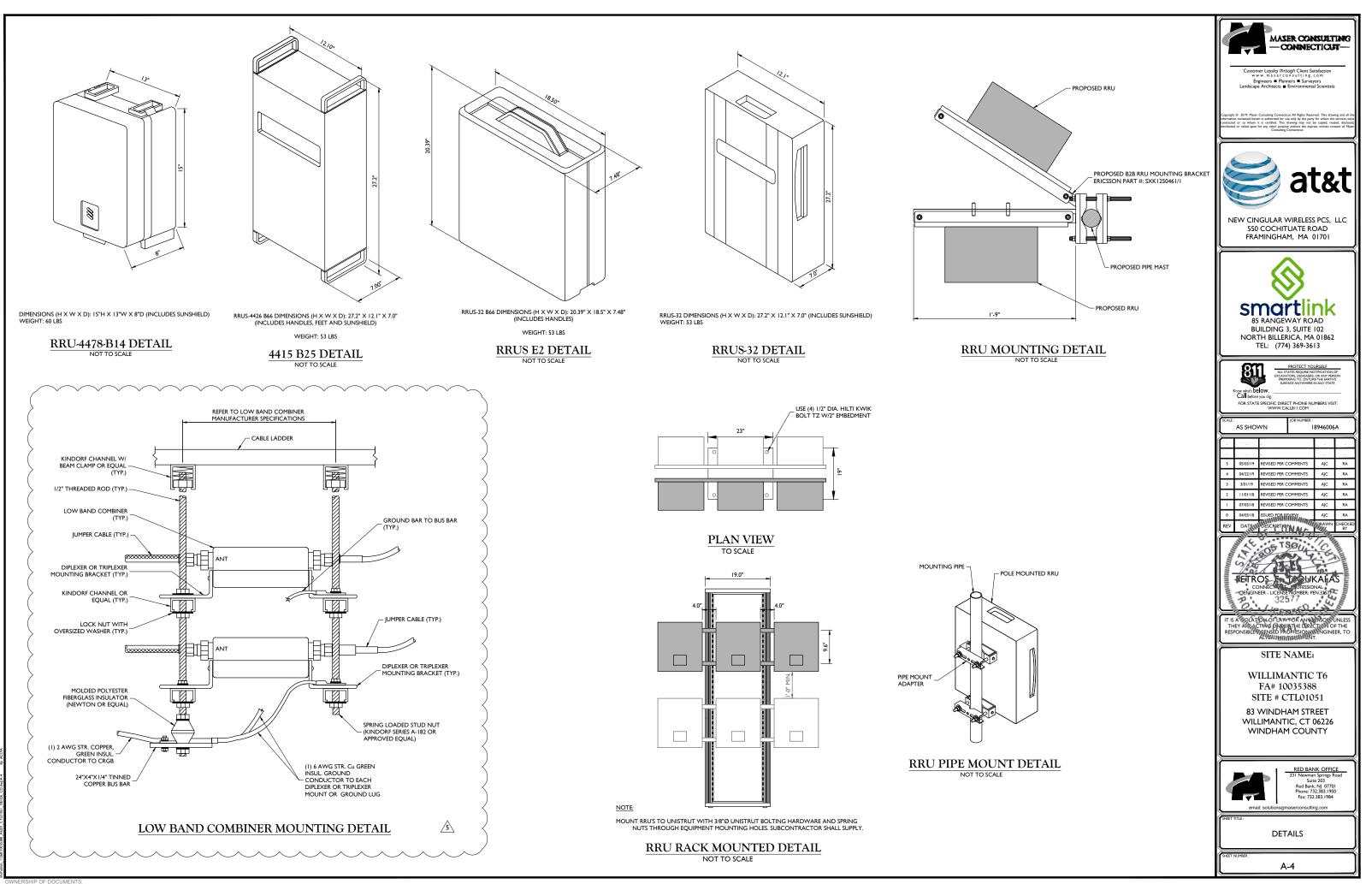

- 1. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ), THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1 100 AND 81) FOR GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 50 HMS OR LESS.
- 4. THE SUBCONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT.
- 5. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 6. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 7. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE EQUIPMENT GROUND RING WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS; 2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 8. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED. BACK TO BACK CONNECTIONS ON OPPOSITE SIDES OF THE GROUND BUS ARE PERMITTED.
- 9. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING, SHALL BE #2 AWG SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 10. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 11. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED. ALL BENDS SHALL BE MADE WITH 12" RADIUS OR LARGER.
- 12. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 13. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS EXCEPT FOR GROUND BAR CONNECTION FROM MGB TO OUTSIDE EXTERIOR GROUND SHALL ALL BE CADWELD CONNECTIONS.
- 14. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 15. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED TO THE TOWER GROUND BAR.
- 16. APPROVED ANTIOXIDANT COATINGS (I.E. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 17. ALL EXTERIOR AND INTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 18. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 19. BOND ALL METALLIC OBJECTS WITHIN 6 FT OF MAIN GROUND WIRES WITH 1-#2 AWG TIN-PLATED COPPER GROUND CONDUCTOR.
- 20. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G. NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 21. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/4" IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC 250.50.
- 22. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

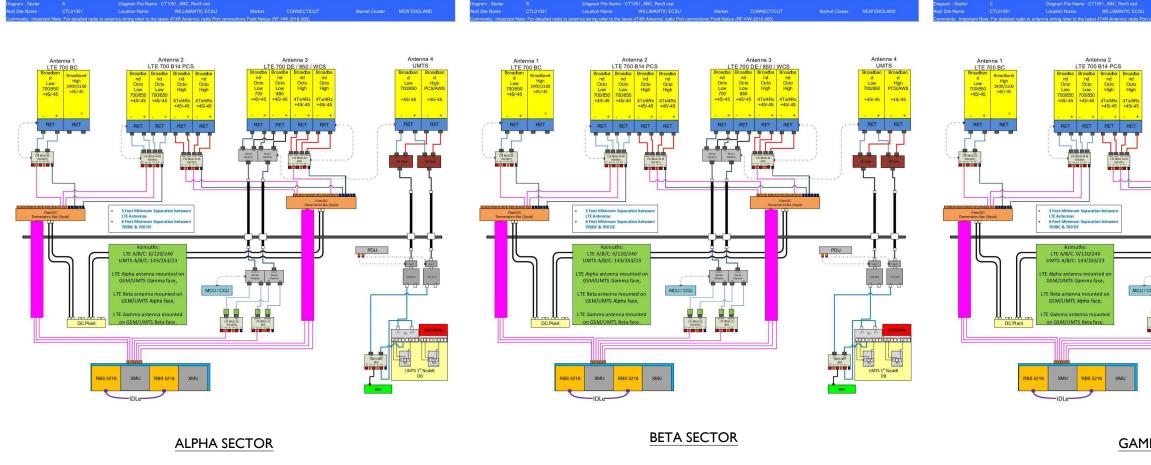

CONTRACTOR - SMARTLINK SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION) OWNER - AT&T (NEW CINGULAR WIRELESS PCS, LLC)

- 23. ALL SITE WORK SHALL BE COMPLETED AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.
- 24. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.
- 25. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK.
- 26. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

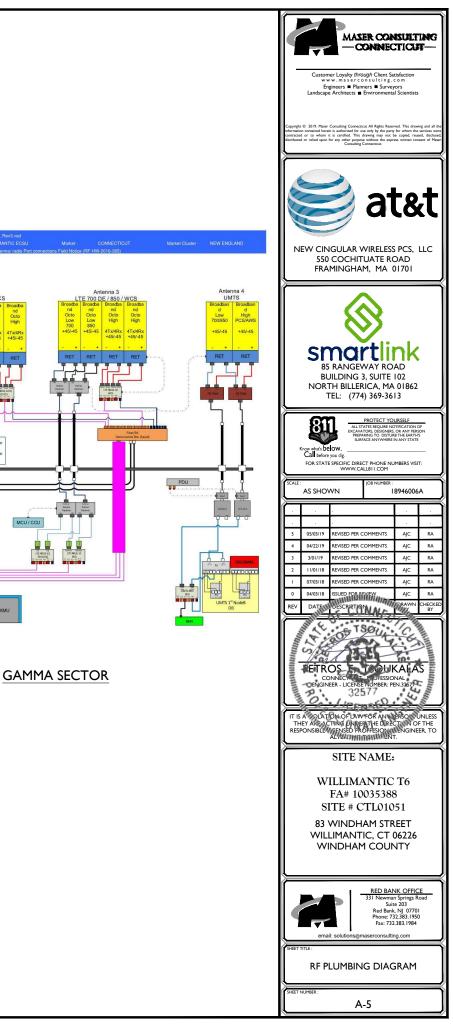
- 27. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 28. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 29. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR.
- 30. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 31. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 32. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY THE RESPONSIBLE ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. SUBCONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING & EXCAVATION.
- 33. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, AS DIRECTED BY THE RESPONSIBLE ENGINEER, AND SUBJECT TO THE APPROVAL OF THE OWNER AND/OR LOCAL UTILITIES.
- 34. THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY SHALL BE GRADED TO A UNIFORM SLOPE AND STABILIZED TO PREVENT EROSION.
- 35. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 36. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
- 37. THE SUBGRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 38. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOWER AREAS.
- 39. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 40. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE.
- 41. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 42. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF THE CONTRACTOR.
- 43. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND TI CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR.
- 44. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301
- 45. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS.
- 46. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy = 36 ksi) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM A53 TYPE E (Fy = 36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCHUP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.
- 47. CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T MOBILITY SITES."
- 48. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 49. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION, ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT.
- 50. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN ALERT OF DANGEROUS EXPOSURE LEVELS.

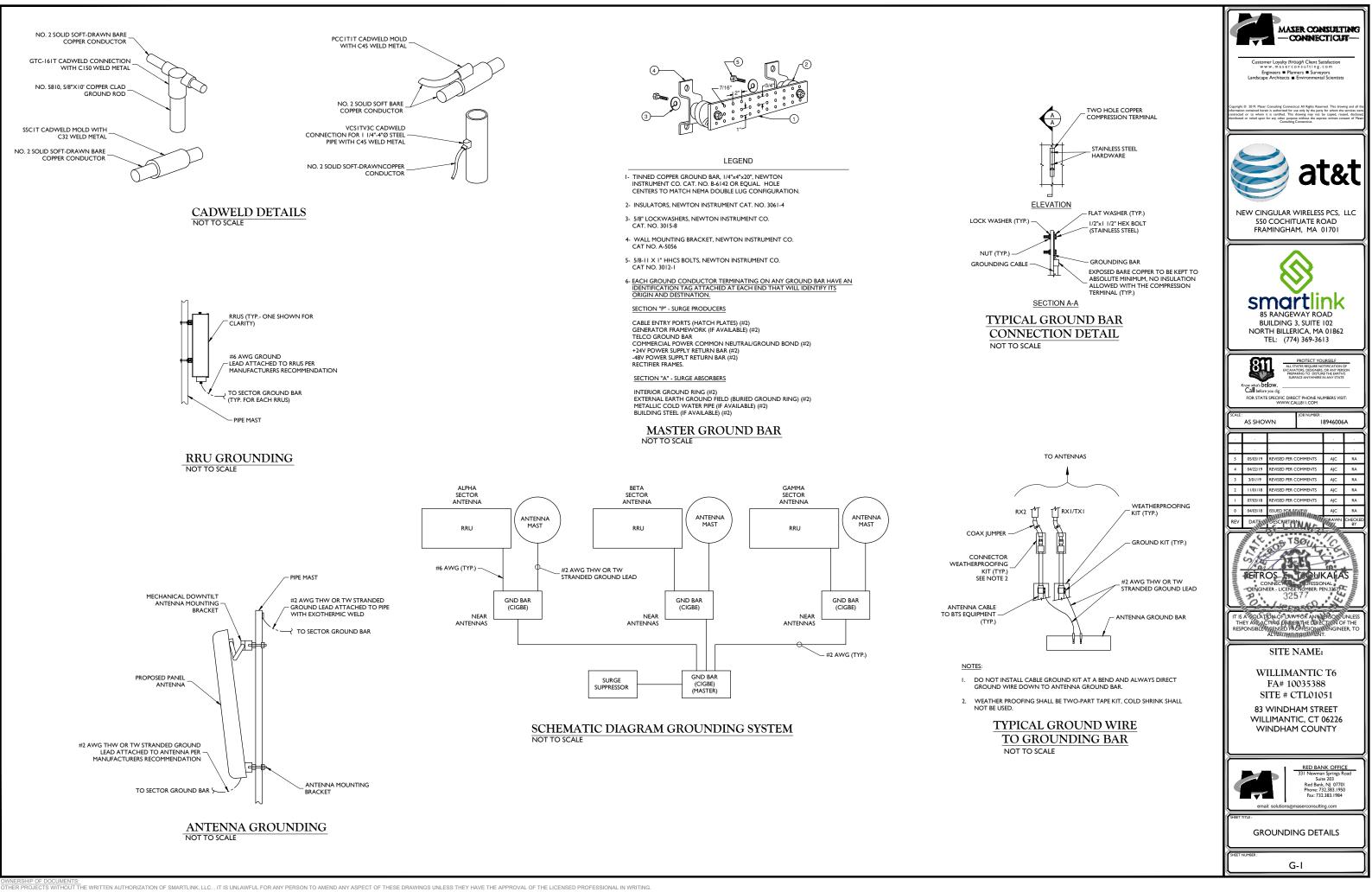


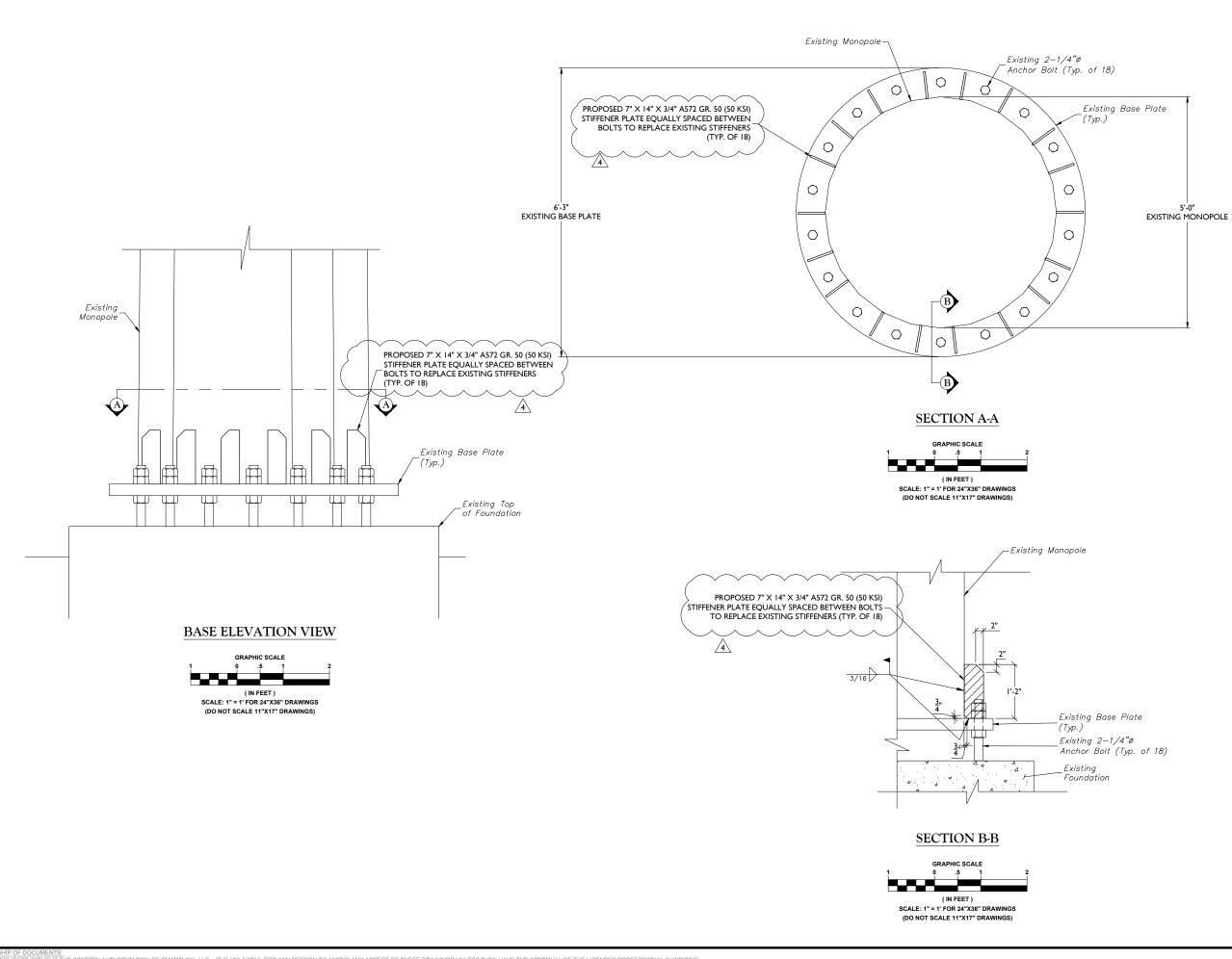



UNIVERSING OF DECOMENTS.

CIGURATION STATUS QUANTITY TYPE STATUS () RRUS 11 REMAIN 1 FIBER DC REMAIN RUS-4478 B14 NEW 1 FIBER NEW 2 DC S-12 (AT GRADE) DC 2 DC SCHUMENTARY DC DC	MASER CONSULTING — CONNECTICUT—
TE RADIO/TMA FIGURATION STATUS QUANTITY TYPE STATUS VI RUS 11 REMAIN 1 FIBER DC REMAIN 2 DC REMAIN Status 2 DC DC NEW 1 FIBER DC NEW 2 DC S-12 (AT GRADE) B0061F1V51-2 DC DC DC DC DC	
CIGURATION STATUS QUANTITY TYPE STATUS () RRUS 11 REMAIN 1 FIBER DC REMAIN RUS-4478 B14 NEW 1 FIBER NEW 2 DC S-12 (AT GRADE) DC 2 DC SCHUMENTARY DC DC	
RUS.4478 B14 NEW 1 FIBER NEW S-12 (AT GRADE) DC DC REMAIN	Customer Loyalty through Client Satisfaction
2 DC S-12 (AT GRADE) B0061F1V51-2 1V51-2 (AT GRADE)	Eustomer Loyary Unrough Client satisfaction www.maserconsulting.com Engineers Planners Surveyors Landscape Architects Environmental Scientists
B0061F1V51-2 1V51-2 (AT GRADE)	
) RRUS 32 NEW NEW 2 1-5/8° CUAX REMAIN S-E2 (AT GRADE)	Copyright © 2019. Mean: Consulting Connecticat All Rights Reserved. This drawing and all the information consumed levels is authorized for unit only by the party for where the services were distributed or relied upon for any other purpose without the express written consert. of Mean <i>Consulting Connecticat</i> .
P 13519 Diplexer GP17201 TMA 2 1-5/8" COAX REMAIN	
1) RRUS 11 REMAIN RUS-4478 B14 NEW /5	😂 at&t
S-12 (AT GRADE)	
80061-1V51-2 1V51-2 (AT GRADE) NRUS 32 RUS 4415-B25 S-E2 (AT GRADE) NEW S-E2 (AT GRADE) NEW S-E2 (AT GRADE)	NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701
2 13519 Diplexer REMAIN 2 1-5/8" COAX REMAIN GP17201 TMA	
I) RRUS 11 REMAIN	
RUS-4478 B14 NEW 5	
S-12 (AT GRADE) B0061F1V51-2 F1V51-2 (AT GRADE)) RRUS 32 S-E2 (AT GRADE) NEW NEW S-E2 (AT GRADE) NEW	Smartlink 85 RANGEWAY ROAD BUILDING 3, SUITE 102 NORTH BILLERICA MA 01962
213510 Diplexer REMAIN 2 1-5/8" COAX REMAIN GP17201 TMA	NORTH BILLERICA, MA 01862 TEL: (774) 369-3613
Antenna e (Typ.) PROPOSED ANTENNA BRACKET (TYP.) PROPOSED	Image: Strain
8" MIN. PROPOSED ANTENNA MOUNTING BRACKET	FA# 10035388 SITE # CTL01051 83 WINDHAM STREET WILLIMANTIC, CT 06226 WINDHAM COUNTY Red Bank OFFICE 331 Newman Spring Road State Spring Road Red Spring Road
NOT TO SCALE	ELEVATION VIEW, DETAILS AND ANTENNA SCHEDULE
	A-2




UMBERSHIP OF DOUMENTS... OTHER PROVIDENT THE WRITTEN AUTHORIZATION OF SMARTLINK, LLC.. IT IS UNLAWFUL FOR ANY PERSON TO AMEND ANY ASPECT OF THESE DRAWINGS UNLESS THEY HAVE THE APPROVAL OF THE LICENSED PROFESSIONAL IN WRITING.



BASED ON RF ENGINEERING DESIGN ENTITLED "NEW-ENGLAND_CONNECTICUT_CTL01051_2018-LTE-Next-Carrier_LTE_mm093q_2051A0B8T4_10035388_71313_04-20-2017_Final-Approved_v3.00", LAST UPDATED 03/19/18.

RF PLUMBING DIAGRAM

Monopole Feasibility Study

CTL01051 – Willimantic ECSU FA # 10035388

FA # 10035388 LTE 4C/5C/6C 83 Windham Street Willimantic, CT 06226 Windham County

Tower Utilization (Without Modification): 154.2% Tower Utilization (With Modification): 83.2% Foundation Utilization (Without Modification): 66.9% Tower Modification Cost Estimate: \$7,000-\$10,000

November 9, 2018

Prepared For

AT&T 550 Cochituate Road Framingham, MA 01701

Prepared By

Maser Consulting Connecticut 331 Newman Springu Poad, Suite 203 Red Konk, NJ 07701 01, 732.383.1950

MC Project No. 18946006A

Objective:

The objective of this report is to determine the capacity of the existing modified monopole at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

Introduction:

Maser Consulting Connecticut has reviewed the following documents in completing this report:

• RFDS 1736989 provided by Smartlink, dated March 19, 2018.

• Monopole Structural Analysis prepared by Maser Consulting Connecticut, Project No. 16946011A, dated December 30, 2016.

• Failing Tower Analysis prepared by Maser Consulting Connecticut, Project No. 18946006A, dated May 7, 2018

• Previous Tower Analysis report, prepared by GPD Group, Inc., Project No. 2014723.21.71313.01, dated May 14, 2014.

The proposed **AT&T** equipment is to be supported on the existing antenna support mount constructed of structural steel antenna support pipes supported by tubes at centerlines of approximately 137'-0" and 138'-0" above ground level. This report is based only upon this information.

The tower modifications per the previous referenced SA have not been installed and therefore not included in this analysis.

Discrete and Linear Appurtenances:

Maser Consulting Connecticut understands the existing and proposed **AT&T** loading to be as follows:

Quantity	Manufacturer	Antenna/ Appurtenance	Status	Sector]
3	CCI	OPA65R-BU8B	Proposed	Alpha, Beta, & Gamma	1
3	POWERWAVE	7770	Existing	Alpha, Beta, & Gamma	
3	KMW	AM-X-CD-17-65-00T-RET	Existing	Alpha, Beta, & Gamma	
3	KATHREIN	80010966	Proposed	Alpha, Beta, & Gamma	1
2	Raycap	DC6-48-60-18-8F	Existing/Proposed	Alpha & Beta	(Attached to the tower)
3	ERICSSON	RRUS 11	Existing	Alpha, Beta, & Gamma	(Attached to the tower)
3	ERICSSON	RRUS 4478 B14	Proposed	Alpha, Beta, & Gamma	1
3	ERICSSON	RRU 4415 B25	Proposed	Alpha, Beta, & Gamma	
3	ERICSSON	RRUS 32	Proposed	Alpha, Beta, & Gamma	(Attached to the tower)
3	ERICSSON	RRUS 12	Existing	Alpha, Beta, & Gamma	(At Ground Level)
3	ERICSSON	RRUS E2	Proposed	Alpha, Beta, & Gamma	(At Ground Level)
6	POWERWAVE	LGP17201	Existing	Alpha, Beta, & Gamma]
6	KAELUS	DBC0061F1V51-2 (SINGLE)	Proposed	Alpha, Beta, & Gamma	1

See the Material Take-Off sheet in Appendix A for monopole information.

Codes, Standards and Loading:

•

Maser Consulting Connecticut utilized the following codes and standards:

- 2018 Connecticut State Building Code, Incorporating the 2015 IBC
 - Structural Standards for Antenna Supporting Structures and Antennas ANSI/TIA-222-G
 - Ultimate Wind Speed 130 mph (3 Second Gust)
 - Nominal Wind Speed 101 mph (3 Second Gust)
 - Exposure Category B
 - Structural Class II
 - Topographic Category 1
 - Ice Wind 50 mph
 - o Ice Thickness 0.75"
- Specification for Structural Steel Buildings ANSI/AISC 360-10, American Institute of Steel Construction (AISC)

Analysis Approach & Assumptions:

The analysis approach used in this structural analysis is based on the premise that if the existing modified structure is structurally adequate to support the existing and proposed equipment per the aforementioned codes and standards, then the proposed equipment can be installed as intended. Tower Numerics, tnx Tower, a tower and monopole analysis and design program, designed specifically for the telecommunications industry and for all applicable codes and standards was used for this structural analysis.

The following assumptions were considered during this analysis:

- No physical deterioration has occurred in any of the structural components of the monopole.
- The monopole has the same capacity as the day it was erected.

General Site Design Assumption:

- All engineering services are performed on the basis that the information used is current and correct.
- It is assumed that the telecommunication equipment supports, antenna supports, and existing structure have been designed by a registered licensed professional engineer for the existing loads acting on the structure, as required by all applicable codes, prior to the proposed modifications listed within this report, if any.
- It is assumed that information provided by the client regarding the structure itself, the antenna models, feed lines, and other relevant information is current and correct.
- It is the responsibility of the client to ensure that the information provided to Maser Consulting Connecticut and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that the original design, material production, fabrication, and erection of the existing structure was performed in accordance with accepted industry design standards and in accordance with all applicable codes. Further, it is assumed that the existing structure and appurtenances have been properly maintained in accordance with all applicable codes and manufacturer's specifications and no structural defects and/or deterioration to the structural members has occurred.
- It is assumed all other existing appurtenances, antennas, cables, etc. belonging to others have been installed and supported per code and per specifications so as not to damage any existing structural support members, and that any contributing loads from adjacent equipment has been taken into consideration for their design.

 All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information we supply.

Site Specific Design Assumptions:

The following design parameters have been utilized in this report:

- Structural Steel HSS Tubes are constructed of A500 Grade B Steel
- Structural Steel Pipes are constructed of A53 Grade B Steel
- It is assumed that the tower foundation data and soil parameters per previous Structural Analysis Report by GPD Group, Inc., Project No. 2014723.21.71313.01, dated May 14, 2014 were accurate.

Note about the Proposed Installation:

- The proposed antennas in position 3 in all sectors shall replace the existing antennas, on the existing antenna pipe masts.
- The proposed antennas in position 2 in all sectors shall be installed on three (3) proposed 9'-0" long 2.5 STD pipe masts, which shall be attached to the main HSS members between positions 1 and 3 with a minimum distance of 3'-0" from position 3 antenna pipe.
- The proposed DC-6 shall be mounted on the existing support secured to the monopole.
- The proposed B14 and B25 RRUS shall be installed behind antennas on the existing and proposed antenna pipes, in positions 2 and 3, respectively.
- The proposed RRUS E2 shall be mounted on the existing RRU Rack at ground level.

Note about the Tower Modification:

- Remove the existing stiffener plates along the baseplate
- Install 10" long 1/2" thick stiffener plates in between each bolt on the existing base plate

Please see the final Maser Consulting Connecticut Construction Drawings for more details

Calculations:

The calculations are found in Appendix A of this report.

Conclusion:

Maser Consulting Connecticut has determined that the existing modified monopole is **ADEQUATE** to support the existing and proposed loading per the aforementioned codes and standards. It has been calculated that the maximum stress ratio is in the baseplate. The monopole, its baseplate and foundation are stressed to **76.7%**, **83.2%** and **66.9%** respectively. Therefore, the proposed **AT&T** installation can be installed as intended **once the proposed modifications are installed**.

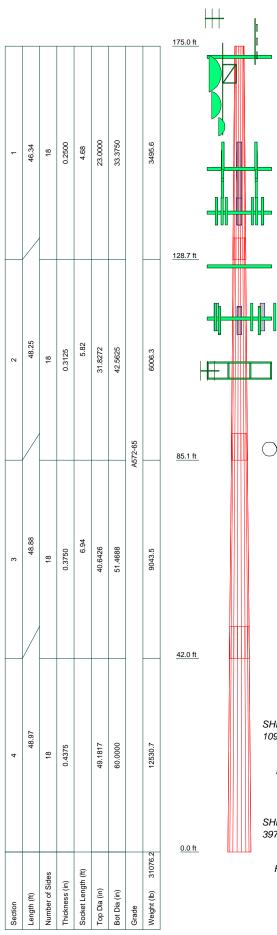
Maser Consulting Connecticut reserves the right to amend this report if additional information about the existing members is provided. The conclusions reached by Maser Consulting Connecticut in this report are only valid for the appurtenances listed in this report. Any change to the installation will require a revision to this structural analysis.

We appreciate the opportunity to be of service on this project. If you should have any questions or require any additional information, please do not hesitate to call our office.

11/9/2018 Page 5 of 4 Prepared by DX Checked by SMS

Sincerely, Maser Consulting Connecticut

Petros E. Tsoukalas, P.E. Geographic Discipline Leader


Dejilen Xu

Dejian Xu, P.E. Project Engineer

\\maserconsulting.com\\uj\Projects\2018\18946000A\18946006A\\Structural\Tower analysis\Rev 3\\Word\10035388.CTL01051.Tower analysis.Rev3.docx

APPENDIX A

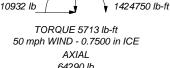
DESIGNED APPURTENANCE LOADING

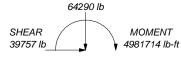
TYPE	ELEVATION	TYPE	ELEVATION
Pirod 6' Side Mount Standoff (1)	185.667	RRUS 32 (ATI)	139.2
Typical Yagi (School)	178	AM-X-CW-18-65-00T-RET (ATI)	139.2
ERIA-1 Lightning Spur (N/A)	175	OPA65R-BU8B (ATI)	139.2
8'x 1" whip antenna (School)	173.5	OPA65R-BU8B (ATI)	139.2
10" dipole antenna (School)	173	Powerwave 7770 (ATI)	139.2
PiROD 13'/14' Platform w/handrail	173	Powerwave 7770 (ATI)	139.2
(School)		Powerwave 7770 (ATI)	139.2
5'3"x4" Pipe Mount (School)	169	OPA65R-BU8B (ATI)	139.2
8' Mw with Radome (School)	169	Nudd 14' Boom (3) (ATT)	139.2
6' Grid antenna (Sprint)	162.2	RRUS 32 (ATI)	139.2
5'3"x4" Pipe Mount (Sprint)	162	RRU-4478-B14 (ATI)	139.2
4'x16" grid antenna (School)	157.5	RRU-4478-B14 (ATI)	139.2
20'x2" whip antenna (School)	155.667	RRU-4478-B14 (ATI)	139.2
MISC RRH16"X13"X10" (SPRINT)	151.2	80010966 (ATI)	139.2
MISC RRH16"X13"X10" (SPRINT)	151.2	80010966 (ATI)	139.2
MISC RRH16"X13"X10" (SPRINT)	151.2	80010966 (ATI)	139.2
Alcatel-Lucent RRH19004X45	151.2	RRUS B25 4415 (AT <u>T</u>)	139.2
(SPRINT)		RRUS B25 4415 (ATI)	139.2
Alcatel-Lucent RRH19004X45 (SPRINT)	151.2	RRUS B25 4415 (ATI)	139.2
(- /	Lucent RRH19004X45 151.2 (3) ray cap squid DC6 (ATI)		138.33
(SPRINT)	151.2	PiROD 13'/14' Platform w/handrail (n/a)	127.5
RFS Panel (SPRINT)	149.35	PiROD 13'/14' Platform w/handrail	116.2
RFS Panel (SPRINT)	149.35	(T-Mobile)	110.2
RFS Panel (SPRINT)	149.35	(2) AIR21B2AB2P (T-Mobile)	116.16
Capstan Panel CT33XC614 (SPRINT)	148.667	(2) AIR21B2AB2P (T-Mobile)	116.16
Capstan Panel CT33XC614 (SPRINT)	148.667	(2) AIR21B2AB2P (T-Mobile)	116.16
Capstan Panel CT33XC614 (SPRINT)	148.667	RRUS 11B2 (T-Mobile)	115.5
PiROD 13'/14' Platform w/handrail	148.667	RRUS 11B2 (T-mobile)	115.5
(Sprint)		RRUS 11B2 (T-Mobile)	115.5
RRU 2'2"X1'6"x7" (SPRINT)	145	LNX-6515D5-A1M (T-MOBILE)	115.33
RRU 2'2"X1'6"x7" (SPRINT)	145		115.33
RRU 2'2"X1'6"x7" (SPRINT)	145	LNX-6515D5-A1M (T-Mobile)	115.33
RRUS-11 (ATI)	140.33	PiROD 13'/14' Platform w/handrail	104.5
RRUS-11 (ATI)	140.33	(School)	
RRUS-11 (ATI)	140.33	Typical Yagi (SCHOOL)	104.5
AM-X-CW-18-65-00T-RET (ATI)	139.2	Pirod 6' Side Mount Standoff (1)	78.66
AM-X-CW-18-65-00T-RET (ATI)	139.2	Gps Antenna (SCHOOL)	78.58
RRUS 32 (ATI)	RUS 32 (ATI) 139.2		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

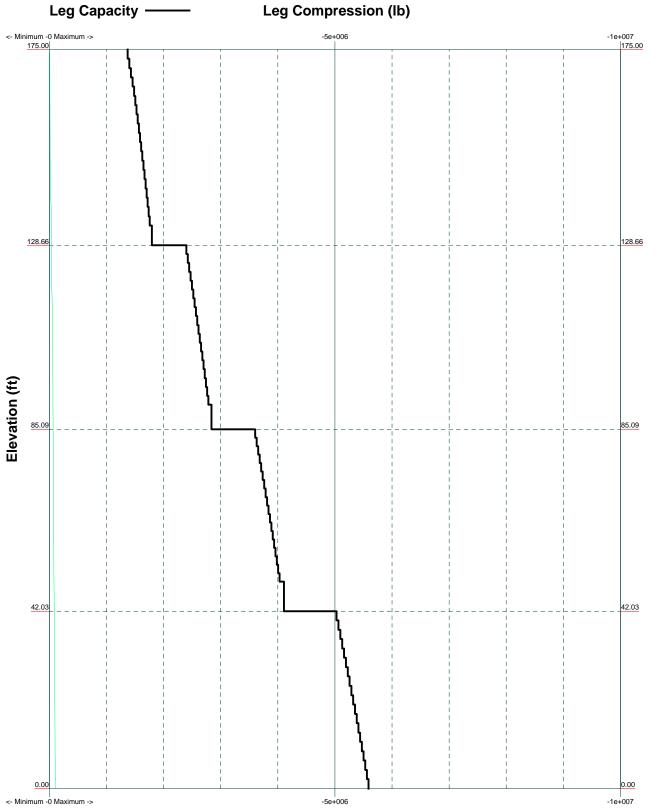
TOWER DESIGN NOTES


- 1. Tower designed for Exposure B to the TIA-222-G Standard.
- 2. Tower designed for a 101 mph basic wind in accordance with the TIA-222-G Standard.
- Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height. 3.


MOMENT

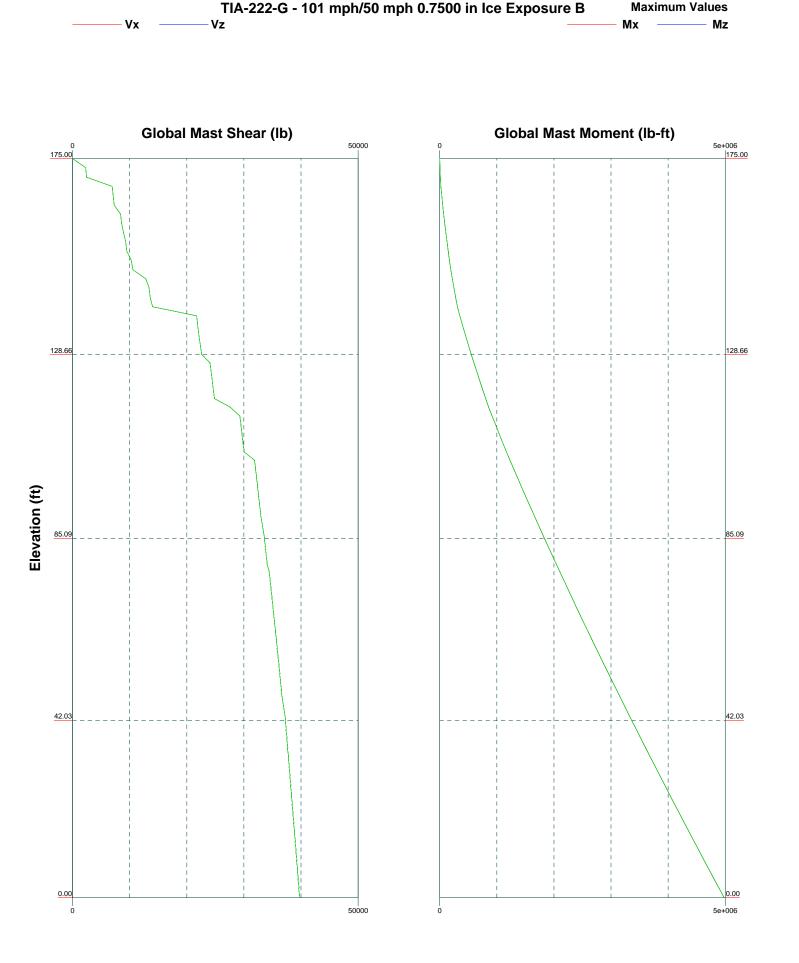
Deflections are based upon a 60 mph wind.
 Tower Structure Class II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 83.2%

ALL REACTIONS ARE FACTORED

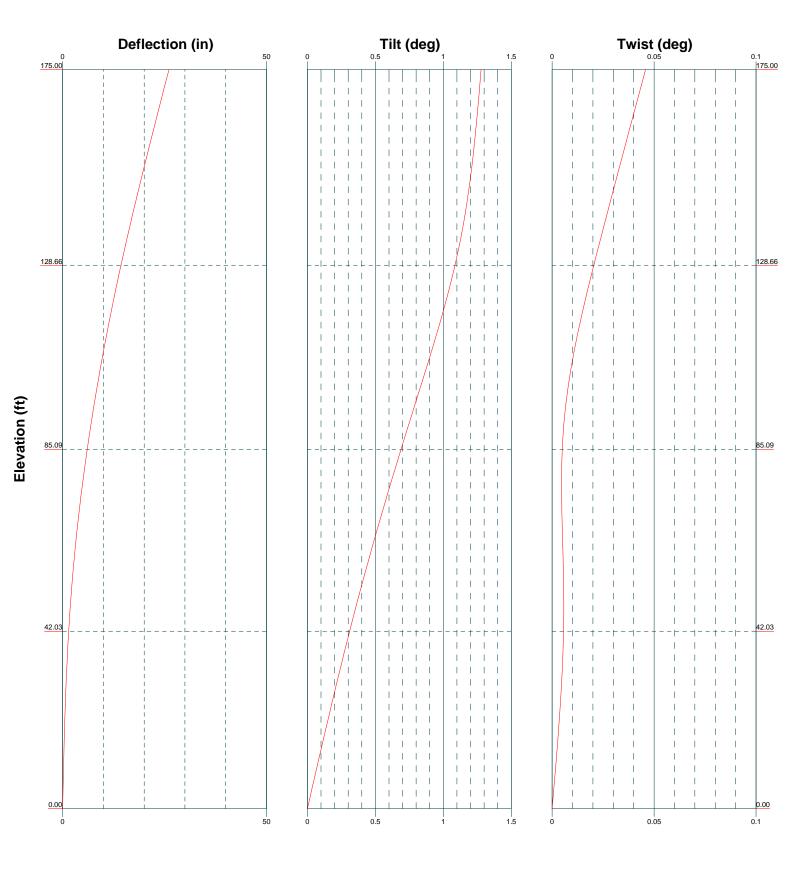

TORQUE 25037 lb-ft REACTIONS - 101 mph WIND

MASER

onsulting Engineers


Maser Consulting, P.A. 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ 08054 Phone: (856) 797-0412 FAX:

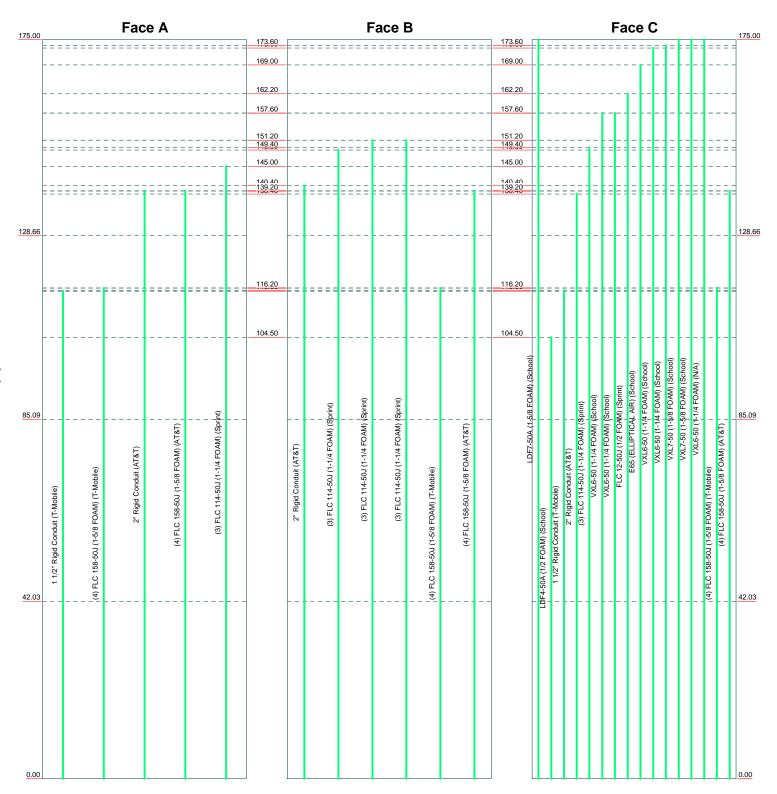
^{Job:} 18946006							
Project: CTL01051 Willimantic ECSU							
Client:	^{Drawn by:} dxu	App'd:					
Code: TIA-222-G		Scale: NTS					
Path: Vmaserconsulting.com/Vul/Projects/2018/18946000A/18	8946006A\Structural/Tower analysis\Rev_3/trx_Tower/mods	Dwg No. E-1					


TIA-222-G - 101 mph/50 mph 0.7500 in Ice Exposure B Leg Compression (Ib)

		^{Job:} 18946006		
	2000 Midlantic Drive, Suite 100	Project: CTL01051 Willima	antic ECSU	-
MASER	Mt. Laurel, NJ 08054	Client:	^{Drawn by:} dxu	App'd:
Consulting Engineers	DI (050) 707 0440	Code: TIA-222-G	Date: 11/09/18	Scale: NTS
		Path: //maserconsulting.com//u/!Projects/2018/18946000A/1	8946006A\Structural/Tower analysis\Rev 3/tnx Tower/mods	Dwg No. E-3

		^{Job:} 18946006		
	2000 Midlantic Drive, Suite 100	Project: CTL01051 Willin	mantic ECSU	
MASER	Mt. Laurel, NJ 08054	Client:	Drawn by: dxu	App'd:
Consulting Engineers	, (050) 303 0 440	^{Code:} TIA-222-G	Date: 11/09/18	Scale: NTS
	FAX:	Path: Vmaserconsulting.com/lul/Projects/2018/1894600	D0A\18946006A\Structural/Tower analysis\Rev 3itnx Towerin	Dwg No. E-4

TIA-222-G - Service - 60 mph

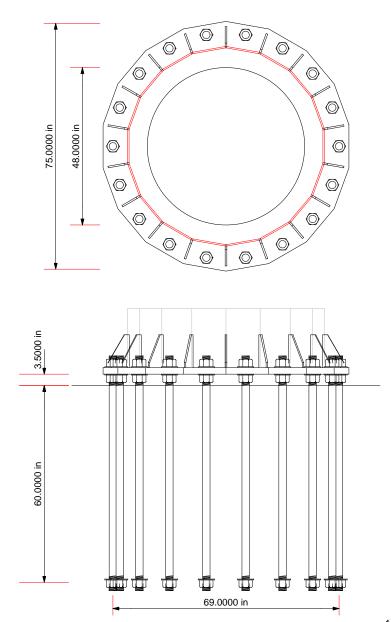


	Maser Consulting, P.A.	^{Job:} 18946006	
	2000 Midlantic Drive, Suite 100	Project: CTL01051 Willima	
MASER	Mt. Laurel, NJ 08054	Client:	Drawn by: dxu
Consulting Engineers		Code: TIA-222-G	Date: 11/09/18
	FAX:	Path: Imaserconsulting.com/lul/Projects/2018/18946000A/1	8946006A\Structural\Tower analysis\Rev 3/tr

App'd: Scale: NTS Dwg No. E-5

Feed Line Distribution Chart 0' - 175'

App In Face App Out Face Truss Leg


Maser Consulting, P.A. 2000 Midlantic Drive, Suite 10 Mt. Laurel, NJ 08054 Phone: (856) 797-0412 FAX:

	^{Job:} 18946006		
)0	Project: CTL01051 Willima	antic ECSU	
		^{Drawn by:} dxu	App'd:
	^{Code:} TIA-222-G		Scale: NTS
	Path:		Dwg No. E-7

Elevation (ft)

Round

Flat

FOUNDATION NOTES

Plate thickness is 2.0000 in.
 Plate grade is A572-60.
 Anchor bolt grade is A615-75.
 fc is 3 ksi.

Maser Consulting, P.A. 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ 08054 Phone: (856) 797-0412 FAX:

	^{Job:} 18946006						
0	Project: CTL01051 Willimantic ECSU						
	Client:	^{Drawn by:} dxu	App'd:				
	^{Code:} TIA-222-G	Date: 11/09/18	Scale: NTS				
	Path:		Dwg No. F-1				

tnxTower

Maser Consulting, P. 2000 Midlantic Drive, Suite Mt. Laurel, NJ 08054 Phone: (856) 797-0412 FAX:

	Job		Page
		18946006	1 of 17
<i>A</i> .	Project		Date
л. 100		CTL01051 Willimantic ECSU	16:07:26 11/09/18
	Client		Designed by
			dxu

Tower Input Data

There is a pole section.

Use Diamond Inner Bracing (4 Sided)

SR Members Have Cut Ends

SR Members Are Concentric

 $\sqrt{}$

This tower is designed using the TIA-222-G standard. The following design criteria apply:

Basic wind speed of 101 mph. Structure Class II. Exposure Category B. Topographic Category 1. Crest Height 0.00 ft. Nominal ice thickness of 0.7500 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice	V	Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension Bypass Mast Stability Checks	Calc Ignor SR I All I Offse Cons	ASCE 10 X-Brace Ly Rules culate Redundant Bracing Forces re Redundant Members in FEA Leg Bolts Resist Compression Leg Panels Have Same Allowable et Girt At Foundation sider Feed Line Torque
Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg	V	Use Azimuth Dish Coefficients Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component	Inclu Use Use	ade Angle Block Shear Check TIA-222-G Bracing Resist. Exemption TIA-222-G Tension Splice Exemption Poles ade Shear-Torsion Interaction

Always Use Sub-Critical Flow Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	175.00-128.66	46.34	4.68	18	23.0000	33.3750	0.2500	1.0000	A572-65 (65 ksi)
L2	128.66-85.09	48.25	5.82	18	31.8272	42.5625	0.3125	1.2500	A572-65 (65 ksi)
L3	85.09-42.03	48.88	6.94	18	40.6426	51.4688	0.3750	1.5000	A572-65

Triangulate Diamond Inner Bracing

Treat Feed Line Bundles As Cylinder

tnxTower	Job	18946006	Page 2 of 17
Maser Consulting, P.A. 2000 Midlantic Drive, Suite 100	Project	CTL01051 Willimantic ECSU	Date 16:07:26 11/09/18
Mt. Laurel, NJ 08054 Phone: (856) 797-0412 FAX:	Client		Designed by dxu

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L4	42.03-0.00	48.97	, , , , , , , , , , , , , , , , , , ,	18	49.1817	60.0000	0.4375	1.7500	(65 ksi) A572-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	Ι	r	С	I/C	J	It/Q	w	w/t
	in	in^2	in^4	in	in	in ³	in^4	in^2	in	
L1	23.3548	18.0521	1180.3983	8.0762	11.6840	101.0269	2362.3498	9.0278	3.6080	14.432
	33.8899	26.2847	3643.7791	11.7594	16.9545	214.9152	7292.3528	13.1448	5.4340	21.736
L2	33.3755	31.2586	3922.2382	11.1877	16.1682	242.5894	7849.6374	15.6323	5.0516	16.165
	43.2191	41.9067	9450.9297	14.9987	21.6217	437.1029	18914.2952	20.9573	6.9410	22.211
L3	42.5785	47.9285	9818.4407	14.2950	20.6464	475.5514	19649.8008	23.9688	6.4931	17.315
	52.2628	60.8144	20057.6594	18.1383	26.1462	767.1362	40141.7111	30.4130	8.3985	22.396
L4	51.4972	67.6874	20318.4713	17.3042	24.9843	813.2496	40663.6782	33.8501	7.8860	18.025
	60.9256	82.7100	37071.5875	21.1447	30.4800	1216.2594	74191.9547	41.3628	9.7900	22.377

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft^2	in					in	in	in
L1	•			1	1	1			
175.00-128.66									
L2				1	1	1			
128.66-85.09									
L3 85.09-42.03				1	1	1			
L4 42.03-0.00				1	1	1			

Monopole Base Plate Data

Base Plate Data							
Base plate is square							
Base plate is grouted							
Anchor bolt grade	A615-75						
Anchor bolt size	2.2500 in						
Number of bolts	18						
Embedment length	60.0000 in						
f _c	3 ksi						
Grout space	3.5000 in						
Base plate grade	A572-60						
Base plate thickness	2.0000 in						
Bolt circle diameter	69.0000 in						
Outer diameter	75.0000 in						
Inner diameter	48.0000 in						
Base plate type	Stiffened Plate						
Bolts per stiffener	1						
Stiffener thickness	0.5000 in						
Stiffener height	10.0000 in						

tnxTower

Job

Project

Client

Maser Consulting, P.A. 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ 08054 Phone: (856) 797-0412 FAX: CTL01051 Willimantic ECSU

18946006

Page 3 of 17 Date

16:07:26 11/09/18

Designed by dxu

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Component	Placement	Total		$C_A A_A$	Weight
1	or	Shield	Type		Number			0
	Leg		21	ft			ft²/ft	plf
LDF7-50A (1-5/8	С	No	Inside Pole	175.00 - 0.00	1	No Ice	0.00	0.82
FOAM)						1/2" Ice	0.00	0.82
(School)						1" Ice	0.00	0.82
LDF4-50A (1/2 FOAM)	С	No	Inside Pole	104.50 - 0.00	1	No Ice	0.00	0.15
(School)						1/2" Ice	0.00	0.15
						1" Ice	0.00	0.15
1 1/2" Rigid Conduit	Α	No	Inside Pole	115.40 - 0.00	1	No Ice	0.00	1.00
(T-Mobile)						1/2" Ice	0.00	1.00
						1" Ice	0.00	1.00
1 1/2" Rigid Conduit	С	No	Inside Pole	115.60 - 0.00	1	No Ice	0.00	1.00
(T-Mobile)						1/2" Ice	0.00	1.00
						1" Ice	0.00	1.00
FLC 158-50J (1-5/8	А	No	Inside Pole	116.20 - 0.00	4	No Ice	0.00	0.92
FOAM)						1/2" Ice	0.00	0.92
(T-Mobile)						1" Ice	0.00	0.92
2" Rigid Conduit	Α	No	Inside Pole	139.20 - 0.00	1	No Ice	0.00	2.80
(AT&T)						1/2" Ice	0.00	2.80
						1" Ice	0.00	2.80
FLC 158-50J (1-5/8	Α	No	Inside Pole	139.20 - 0.00	4	No Ice	0.00	0.92
FOAM)						1/2" Ice	0.00	0.92
(AT&T)						1" Ice	0.00	0.92
2" Rigid Conduit	С	No	Inside Pole	138.40 - 0.00	1	No Ice	0.00	2.80
(AT&T)						1/2" Ice	0.00	2.80
						1" Ice	0.00	2.80
2" Rigid Conduit	В	No	Inside Pole	140.40 - 0.00	1	No Ice	0.00	2.80
(AT&T)						1/2" Ice	0.00	2.80
						1" Ice	0.00	2.80
FLC 114-50J (1-1/4	А	No	Inside Pole	145.00 - 0.00	3	No Ice	0.00	0.70
FOAM)						1/2" Ice	0.00	0.70
(Sprint)						1" Ice	0.00	0.70
FLC 114-50J (1-1/4	в	No	Inside Pole	148.80 - 0.00	3	No Ice	0.00	0.70
FOAM)						1/2" Ice	0.00	0.70
(Sprint)	a			1 40 40 0 00		1" Ice	0.00	0.70
FLC 114-50J (1-1/4	С	No	Inside Pole	149.40 - 0.00	3	No Ice	0.00	0.70
FOAM)						1/2" Ice	0.00	0.70
(Sprint)				151 00 0.00		1" Ice	0.00	0.70
FLC 114-50J (1-1/4	В	No	Inside Pole	151.20 - 0.00	3	No Ice	0.00	0.70
FOAM)						1/2" Ice	0.00	0.70
(Sprint)	D	N	T 1 D 1	151.00 0.00	2	1" Ice	0.00	0.70
FLC 114-50J (1-1/4	В	No	Inside Pole	151.20 - 0.00	3	No Ice	0.00	0.70
FOAM)						1/2" Ice	0.00	0.70
(Sprint)	C	No	Incida Dala	157.60 - 0.00	1	1" Ice No Ice	0.00	0.70
VXL6-50 (1-1/4 FOAM)	С	No	Inside Pole	137.00 - 0.00	1	No Ice 1/2" Ice	0.00	0.50
(School)							0.00	0.50
VXL6-50 (1-1/4 FOAM)	C	No	Inside Pole	157.60 - 0.00	1	1" Ice No Ice	0.00	0.50
()	С	No	Inside Pole	137.00 - 0.00	1	No Ice 1/2" Ice	0.00	0.50 0.50
(School)						1/2 Ice 1" Ice	0.00	0.50
FLC 12-50J (1/2 FOAM)	С	No	Inside Pole	162.20 - 0.00	1	No Ice	$0.00 \\ 0.00$	0.50
· · · · · · · · · · · · · · · · · · ·	C	110	Inside Fole	102.20 - 0.00	1	1/2" Ice	0.00	0.17
(Sprint)						1/2 Ice 1" Ice	0.00	0.17
E65 (ELLIPTICAL AIR)	С	No	Inside Pole	169.00 - 0.00	1	No Ice	0.00	0.67
(School)	C	INO	Inside Pole	109.00 - 0.00	1	1/2" Ice	0.00	0.67
(Sellool)						1/2 Ice 1" Ice	0.00	0.67
VXL6-50 (1-1/4 FOAM)	С	No	Inside Pole	173.00 - 0.00	1	No Ice	0.00	0.67
(School)	C	110	Inside Fole	175.00 - 0.00	1	1/2" Ice	0.00	0.50
(1001)						1/2 Ice 1" Ice	0.00	0.50
VXL6-50 (1-1/4 FOAM)	C	No	Inside Pole	173.60 - 0.00	1	No Ice	0.00	0.50
VALU-JU (1-1/4 ГUAM)	С	INU	inside Pole	173.00 - 0.00	1	NO ICE	0.00	0.50

tnxTower

Maser Consulting, P.A. 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ 08054 Phone: (856) 797-0412 FAX:

	Job		Page
		18946006	4 of 17
A. 100	Project	CTL01051 Willimantic ECSU	Date 16:07:26 11/09/18
	Client		Designed by dxu

Description	Face	Allow	Component	Placement	Total		$C_A A_A$	Weight
	or Leg	Shield	Туре	ft	Number		ft²/ft	plf
(School)	Lug			Ji		1/2" Ice	0.00	0.50
(Senool)						1/2 ICC 1" ICC	0.00	0.50
VXL7-50 (1-5/8 FOAM)	С	No	Inside Pole	175.00 - 0.00	1	No Ice	0.00	0.30
(School)	C	NO	Iliside Fole	175.00 - 0.00	1	1/2" Ice	0.00	0.75
(School)								
	C		1 1 D 1	175.00 0.00	1	1" Ice	0.00	0.75
VXL7-50 (1-5/8 FOAM)	С	No	Inside Pole	175.00 - 0.00	1	No Ice	0.00	0.75
(School)						1/2" Ice	0.00	0.75
						1" Ice	0.00	0.75
VXL6-50 (1-1/4 FOAM)	С	No	Inside Pole	175.00 - 0.00	1	No Ice	0.00	0.50
(N/A)						1/2" Ice	0.00	0.50
						1" Ice	0.00	0.50
FLC 158-50J (1-5/8	В	No	Inside Pole	116.20 - 0.00	4	No Ice	0.00	0.92
FOAM)						1/2" Ice	0.00	0.92
(T-Mobile)						1" Ice	0.00	0.92
FLC 158-50J (1-5/8	С	No	Inside Pole	116.20 - 0.00	4	No Ice	0.00	0.92
FOAM)	e	110		110.20 0.00	•	1/2'' Ice	0.00	0.92
(T-Mobile)						1" Ice	0.00	0.92
FLC 158-50J (1-5/8	В	No	Inside Pole	139.20 - 0.00	4	No Ice	0.00	0.92
FOAM)	Б	140	Inside I bie	139.20 - 0.00	4	1/2" Ice	0.00	0.92
,						1/2 ICe		
(AT&T)	C		1 1 D 1	120.20 0.00			0.00	0.92
FLC 158-50J (1-5/8	С	No	Inside Pole	139.20 - 0.00	4	No Ice	0.00	0.92
FOAM)						1/2" Ice	0.00	0.92
(AT&T)						1" Ice	0.00	0.92

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	lb
L1	175.00-128.66	А	0.000	0.000	0.000	0.000	102.61
		В	0.000	0.000	0.000	0.000	208.62
		С	0.000	0.000	0.000	0.000	346.60
L2	128.66-85.09	А	0.000	0.000	0.000	0.000	518.63
		В	0.000	0.000	0.000	0.000	671.31
		С	0.000	0.000	0.000	0.000	768.34
L3	85.09-42.03	А	0.000	0.000	0.000	0.000	570.98
		В	0.000	0.000	0.000	0.000	708.77
		С	0.000	0.000	0.000	0.000	821.15
L4	42.03-0.00	А	0.000	0.000	0.000	0.000	557.32
		В	0.000	0.000	0.000	0.000	691.81
		С	0.000	0.000	0.000	0.000	801.51

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
L1	175.00-128.66	А	1.746	0.000	0.000	0.000	0.000	102.61
		В		0.000	0.000	0.000	0.000	208.62
		С		0.000	0.000	0.000	0.000	346.60
L2	128.66-85.09	А	1.686	0.000	0.000	0.000	0.000	518.63
		В		0.000	0.000	0.000	0.000	671.31
		С		0.000	0.000	0.000	0.000	768.34
L3	85.09-42.03	А	1.601	0.000	0.000	0.000	0.000	570.98
		В		0.000	0.000	0.000	0.000	708.77

Maser Consulting, P.A. 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ 08054 Phone: (856) 797-0412 FAX:

Job		Page
	18946006	5 of 17
Project	CTL01051 Willimantic ECSU	Date 16:07:26 11/09/18
Client		Designed by dxu

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
		С		0.000	0.000	0.000	0.000	821.15
L4	42.03-0.00	А	1.430	0.000	0.000	0.000	0.000	557.32
		В		0.000	0.000	0.000	0.000	691.81
		С		0.000	0.000	0.000	0.000	801.51

Tower	Feed Line
Section	Record No.

Description

Feed Line K_a K_a Segment Elev.No IceIce

Discrete Tower Loads

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weigh
	Leg	21	Lateral	5					
	, i i i i i i i i i i i i i i i i i i i		Vert						
			ft	0	ft		ft^2	ft^2	lb
			ft						
			ft						
Gps Antenna	А	From Leg	4.00	0.0000	78.58	No Ice	0.05	0.05	2.00
(SCHOOL)			0.00			1/2" Ice	0.09	0.09	2.94
			0.00			1" Ice	0.14	0.14	4.49
Typical Yagi	С	From Leg	3.50	0.0000	104.50	No Ice	3.21	3.21	35.00
(SCHOOL)			0.00			1/2" Ice	3.21	3.21	40.00
			0.00			1" Ice	3.21	3.21	52.00
LNX-6515D5-A1M	А	From Leg	3.50	0.0000	115.33	No Ice	11.82	9.56	156.22
(T-MOBILE)		-	0.00			1/2" Ice	12.53	11.02	250.42
			0.00			1" Ice	13.22	12.16	356.6
LNX-6515D5-A1M	В	From Leg	3.50	0.0000	115.33	No Ice	11.82	9.56	156.22
(T-Mobile)			0.00			1/2" Ice	12.53	11.02	250.4
			0.00			1" Ice	13.22	12.16	356.6
LNX-6515D5-A1M	С	From Leg	3.50	0.0000	115.33	No Ice	11.82	9.56	156.2
(T-Mobile)		U	0.00			1/2" Ice	12.53	11.02	250.42
· · · ·			0.00			1" Ice	13.22	12.16	356.6
RRUS 11B2	А	From Leg	3.50	0.0000	115.50	No Ice	2.89	1.57	52.30
(T-mobile)		U	0.00			1/2" Ice	3.14	1.87	76.17
· · · ·			0.00			1" Ice	3.42	2.20	103.7
RRUS 11B2	В	From Leg	3.50	0.0000	115.50	No Ice	2.89	1.57	52.30
(T-Mobile)		U	0.00			1/2" Ice	3.14	1.87	76.17
· · · ·			0.00			1" Ice	3.42	2.20	103.7
RRUS 11B2	С	From Leg	3.50	0.0000	115.50	No Ice	2.89	1.57	52.30
(T-Mobile)			0.00			1/2" Ice	3.14	1.87	76.17
			0.00			1" Ice	3.42	2.20	103.7
(2) AIR21B2AB2P	А	From Leg	4.50	0.0000	116.16	No Ice	6.70	5.71	85.55
(T-Mobile)		U	0.00			1/2" Ice	7.40	6.83	143.2
			0.00			1" Ice	7.99	7.66	207.6
(2) AIR21B2AB2P	В	From Leg	4.50	0.0000	116.16	No Ice	6.70	5.71	85.55
(T-Mobile)			0.00			1/2" Ice	7.40	6.83	143.2
()			0.00			1" Ice	7.99	7.66	207.64
(2) AIR21B2AB2P	С	From Leg	4.50	0.0000	116.16	No Ice	6.70	5.71	85.55
(T-Mobile)	-		0.00			1/2" Ice	7.40	6.83	143.22
()			0.00			1" Ice	7.99	7.66	207.6
OPA65R-BU8B	А	From Leg	4.50	0.0000	139.20	No Ice	11.22	10.56	70.00
(AT&T)			0.00	0.0000	107.20	1/2" Ice	11.84	11.98	160.54

tnxTower

Maser Consulting, P.A. 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ 08054 Phone: (856) 797-0412 FAX:

	Job		Page
		18946006	6 of 17
<i>A</i> .	Project		Date
A. 100		CTL01051 Willimantic ECSU	16:07:26 11/09/18
	Client		Designed by
			dxu

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft	o	ft		ft ²	ft^2	lb
						1" Ice	12.46	13.26	260.88
OPA65R-BU8B	В	From Leg	4.50	0.0000	139.20	No Ice	12.40	10.56	70.00
(AT&T)	2	110m Leg	0.00	0.0000	107.20	1/2" Ice	11.84	11.98	160.54
			0.00			1" Ice	12.46	13.26	260.88
OPA65R-BU8B	С	From Leg	4.50	0.0000	139.20	No Ice	11.22	10.56	70.00
(AT&T)		Ũ	0.00			1/2" Ice	11.84	11.98	160.54
			0.00			1" Ice	12.46	13.26	260.88
Powerwave 7770	А	From Leg	4.50	0.0000	139.20	No Ice	5.51	2.93	27.00
(AT&T)		-	0.00			1/2" Ice	5.87	3.27	59.63
			0.00			1" Ice	6.23	3.63	97.06
Powerwave 7770	В	From Leg	4.50	0.0000	139.20	No Ice	5.51	2.93	27.00
(AT&T)			0.00			1/2" Ice	5.87	3.27	59.63
			0.00			1" Ice	6.23	3.63	97.06
Powerwave 7770	С	From Leg	4.50	0.0000	139.20	No Ice	5.51	2.93	27.00
(AT&T)			0.00			1/2" Ice	5.87	3.27	59.63
			0.00			1" Ice	6.23	3.63	97.06
(3) ray cap squid DC6	А	From Leg	2.00	0.0000	138.33	No Ice	0.90	0.90	50.00
(AT&T)			0.00			1/2" Ice	1.06	1.06	61.25
			0.00			1" Ice	1.22	1.22	74.49
RRUS-11	А	From Leg	2.00	0.0000	140.33	No Ice	2.52	1.02	55.00
(AT&T)			0.00			1/2" Ice	2.72	1.16	74.32
	-		0.00			1" Ice	2.92	1.30	96.56
RRUS-11	В	From Leg	2.00	0.0000	140.33	No Ice	2.52	1.02	55.00
(AT&T)			0.00			1/2" Ice	2.72	1.16	74.32
DDUG 11	C	F I	0.00	0.0000	1 40 22	1" Ice	2.92	1.30	96.56
RRUS-11	С	From Leg	2.00	0.0000	140.33	No Ice	2.52	1.02	55.00
(AT&T)			0.00			1/2" Ice	2.72	1.16	74.32
AM Y CW 19 65 00T DET	•	Enom Lag	0.00	0.0000	120.20	1" Ice	2.92	1.30	96.56
AM-X-CW-18-65-00T-RET	А	From Leg	3.00 0.00	0.0000	139.20	No Ice 1/2" Ice	11.31 11.93	6.80 7.38	52.90 114.29
(AT&T)			0.00			1/2 Ice	12.55	7.98	183.26
AM-X-CW-18-65-00T-RET	В	From Leg	3.00	0.0000	139.20	No Ice	11.31	6.80	52.90
(AT&T)	Б	110iii Leg	0.00	0.0000	139.20	1/2" Ice	11.93	7.38	114.29
(AI&I)			0.00			1" Ice	12.55	7.98	183.26
AM-X-CW-18-65-00T-RET	С	From Leg	3.00	0.0000	139.20	No Ice	11.31	6.80	52.90
(AT&T)	C	110III Leg	0.00	0.0000	157.20	1/2" Ice	11.93	7.38	114.29
(mar)			0.00			1" Ice	12.55	7.98	183.26
RRUS 32	А	From Leg	2.00	0.0000	139.20	No Ice	2.72	1.67	52.90
(AT&T)	11	r toin Leg	0.00	0.0000	139.20	1/2" Ice	2.94	1.86	73.90
(1101)			0.00			1" Ice	3.17	2.05	98.09
RRUS 32	В	From Leg	2.00	0.0000	139.20	No Ice	2.72	1.67	52.90
(AT&T)			0.00			1/2" Ice	2.94	1.86	73.90
			0.00			1" Ice	3.17	2.05	98.09
RRUS 32	С	From Leg	2.00	0.0000	139.20	No Ice	2.72	1.67	52.90
(AT&T)			0.00			1/2" Ice	2.94	1.86	73.90
			0.00			1" Ice	3.17	2.05	98.09
RRU 2'2"X1'6"x7"	А	From Leg	3.00	0.0000	145.00	No Ice	4.55	1.77	50.00
(SPRINT)			0.00			1/2" Ice	4.84	1.99	76.83
			0.00			1" Ice	5.14	2.21	107.17
RRU 2'2"X1'6"x7"	В	From Leg	3.00	0.0000	145.00	No Ice	4.55	1.77	50.00
(SPRINT)			0.00			1/2" Ice	4.84	1.99	76.83
			0.00			1" Ice	5.14	2.21	107.17
RRU 2'2"X1'6"x7"	С	From Leg	3.00	0.0000	145.00	No Ice	4.55	1.77	50.00
(SPRINT)			0.00			1/2" Ice	4.84	1.99	76.83
			0.00			1" Ice	5.14	2.21	107.17
Capstan Panel CT33XC614	А	From Leg	3.00	0.0000	148.67	No Ice	7.14	4.90	71.29
(SPRINT)			0.00			1/2" Ice	7.69	5.72	126.02

tnxTowe

Maser Consulting, 2000 Midlantic Drive, St Mt. Laurel, NJ 0805 Phone: (856) 797-04 FAX:

	Job		Page
?r		18946006	7 of 17
g, P.A.	Project		Date
Suite 100		CTL01051 Willimantic ECSU	16:07:26 11/09/18
054 0412	Client		Designed by
0412			dxu

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft	0	ft		ft^2	ft^2	lb
			ft			4.1. 7		. 10	105.04
Constan Danal CT22XC614	р	Enom Lag	0.00	0.0000	149 67	1" Ice	8.22	6.43	187.36
Capstan Panel CT33XC614 (SPRINT)	В	From Leg	3.00 0.00	0.0000	148.67	No Ice 1/2" Ice	7.14 7.69	4.90 5.72	71.29 126.02
(SPRINT)			0.00			1/2 Ice	8.22	6.43	120.02
Capstan Panel CT33XC614	С	From Leg	3.00	0.0000	148.67	No Ice	7.14	4.90	71.29
(SPRINT)	C	110iii Leg	0.00	0.0000	140.07	1/2" Ice	7.69	5.72	126.02
(SI KINI)			0.00			172 Icc 1" Ice	8.22	6.43	187.36
RFS Panel	А	From Leg	3.00	0.0000	149.35	No Ice	0.93	0.70	50.00
(SPRINT)	11	110III Leg	0.00	0.0000	149.55	1/2" Ice	1.07	0.82	57.88
(SIRE(I))			0.00			1" Ice	1.07	0.95	67.63
RFS Panel	В	From Leg	3.00	0.0000	149.35	No Ice	0.93	0.70	50.00
(SPRINT)	2	110m Log	0.00	010000	11/100	1/2" Ice	1.07	0.82	57.88
()			0.00			1" Ice	1.21	0.95	67.63
RFS Panel	С	From Leg	3.00	0.0000	149.35	No Ice	0.93	0.70	50.00
(SPRINT)	-	8	0.00			1/2" Ice	1.07	0.82	57.88
			0.00			1" Ice	1.21	0.95	67.63
MISC RRH16"X13"X10"	А	From Leg	3.00	0.0000	151.20	No Ice	2.02	1.56	40.00
(SPRINT)		U	0.00			1/2" Ice	2.21	1.73	57.44
. ,			0.00			1" Ice	2.42	1.91	77.59
MISC RRH16"X13"X10"	В	From Leg	3.00	0.0000	151.20	No Ice	2.02	1.56	40.00
(SPRINT)		-	0.00			1/2" Ice	2.21	1.73	57.44
			0.00			1" Ice	2.42	1.91	77.59
MISC RRH16"X13"X10"	С	From Leg	3.00	0.0000	151.20	No Ice	2.02	1.56	40.00
(SPRINT)			0.00			1/2" Ice	2.21	1.73	57.44
			0.00			1" Ice	2.42	1.91	77.59
Alcatel-Lucent	А	From Leg	3.00	0.0000	151.20	No Ice	3.03	3.03	44.00
RRH19004X45			0.00			1/2" Ice	3.28	3.28	70.54
(SPRINT)			0.00			1" Ice	3.54	3.54	100.52
Alcatel-Lucent	В	From Leg	3.00	0.0000	151.20	No Ice	3.03	3.03	44.00
RRH19004X45			0.00			1/2" Ice	3.28	3.28	70.54
(SPRINT)	~		0.00			1" Ice	3.54	3.54	100.52
Alcatel-Lucent	С	From Leg	3.00	0.0000	151.20	No Ice	3.03	3.03	44.00
RRH19004X45			0.00			1/2" Ice	3.28	3.28	70.54
(SPRINT)	C	F I	0.00	0.0000	155 (7	1" Ice	3.54	3.54	100.52
20'x2" whip antenna	С	From Leg	3.00	0.0000	155.67	No Ice	4.00	4.00	80.00
(School)			0.00			1/2" Ice	6.03	6.03	110.77
10" dia dia antara	р	Energy Law	10.00	0.0000	172.00	1" Ice	8.07	8.07	154.12
10" dipole antenna (School)	В	From Leg	3.00 0.00	0.0000	173.00	No Ice 1/2" Ice	2.00 3.02	2.00 3.02	70.00 85.50
(301001)			3.00			1/2 ICe 1" Ice	4.07	4.07	107.47
8'x 1" whip antenna	А	From Leg	3.00	0.0000	173.50	No Ice	0.80	0.80	50.00
(School)	А	110iii Leg	0.00	0.0000	175.50	1/2" Ice	1.62	1.62	57.43
(School)			3.00			1/2 Icc 1" Ice	2.45	2.45	70.01
Typical Yagi	С	From Leg	3.00	0.0000	178.00	No Ice	3.21	3.21	35.00
(School)	C	110III Leg	0.00	0.0000	170.00	1/2" Ice	3.21	3.21	40.00
			3.00			1" Ice	3.21	3.21	52.00
ERIA-1 Lightning Spur	А	None	2100	0.0000	175.00	No Ice	2.00	2.00	50.00
(N/A)						1/2" Ice	4.00	4.00	75.00
(/						1" Ice	6.00	6.00	100.00
Nudd 14' Boom (3)	С	None		0.0000	139.20	No Ice	47.00	47.00	1600.00
(AT&T)	-	-				1/2" Ice	67.00	67.00	2050.00
						1" Ice	87.00	87.00	2500.00
PiROD 13'/14' Platform	С	None		0.0000	148.67	No Ice	31.30	31.30	1822.00
w/handrail						1/2" Ice	40.20	40.20	2452.00
(Sprint)						1" Ice	49.10	49.10	3082.00
PiROD 13'/14' Platform	С	None		0.0000	127.50	No Ice	31.30	31.30	1822.00
w/handrail						1/2" Ice	40.20	40.20	2452.00

tnxTower

Maser Consulting, P.A. 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ 08054 Phone: (856) 797-0412 FAX:

Job		Page
	18946006	8 of 17
Project		Date
	CTL01051 Willimantic ECSU	16:07:26 11/09/18
Client		Designed by
		dxu

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft ²	ft^2	lb
(n/a)			<u>J</u>			1" Ice	49.10	49.10	3082.00
PiROD 13'/14' Platform	С	None		0.0000	116.20	No Ice	31.30	31.30	1822.00
w/handrail						1/2" Ice	40.20	40.20	2452.00
(T-Mobile)						1" Ice	49.10	49.10	3082.00
PiROD 13'/14' Platform	С	None		0.0000	173.00	No Ice	31.30	31.30	1822.00
w/handrail						1/2" Ice	40.20	40.20	2452.00
(School)	~					1" Ice	49.10	49.10	3082.00
Pirod 6' Side Mount Standoff	С	None		0.0000	78.66	No Ice	4.97	4.97	70.00
(1)						1/2" Ice	6.12	6.12	130.00
	~			0.0000	101 50	1" Ice	7.27	7.27	190.00
PiROD 13'/14' Platform	С	None		0.0000	104.50	No Ice	31.30	31.30	1822.00
w/handrail						1/2" Ice	40.20	40.20	2452.00
(School)	C			0.0000	105 (7	1" Ice	49.10	49.10	3082.00
Pirod 6' Side Mount Standoff	С	None		0.0000	185.67	No Ice	4.97	4.97	70.00
(1)						1/2" Ice	6.12	6.12	130.00
51211 411 D' M	C	г т	1.50	0.0000	1 (2 00	1" Ice	7.27	7.27	190.00
5'3"x4" Pipe Mount	С	From Leg	1.50	0.0000	162.00	No Ice	1.60	1.60	57.00
(Sprint)			0.00			1/2" Ice	2.21	2.21	73.81
51211 411 Din - Marant	C	Energy Law	0.00	0.0000	160.00	1" Ice	2.54	2.54	94.43
5'3"x4" Pipe Mount	С	From Leg	1.50 0.00	0.0000	169.00	No Ice 1/2" Ice	1.60 2.21	1.60 2.21	57.00
(School)						1/2 Ice 1" Ice	2.21	2.21	73.81
DDII 4478 D14	•	From Leg	$0.00 \\ 2.00$	0.0000	139.20	No Ice	2.34 1.63		94.43 60.00
RRU-4478-B14 (AT&T)	А	FIOIII Leg	0.00	0.0000	159.20	1/2" Ice	1.03	1.00 1.13	74.78
(AI&I)			0.00			172 ICe 1" Ice	1.78	1.13	92.08
RRU-4478-B14	В	From Leg	2.00	0.0000	139.20	No Ice	1.63	1.00	60.00
(AT&T)	Б	110iii Log	0.00	0.0000	137.20	1/2" Ice	1.78	1.13	74.78
(AIGI)			0.00			1" Ice	1.95	1.13	92.08
RRU-4478-B14	С	From Leg	2.00	0.0000	139.20	No Ice	1.63	1.00	60.00
(AT&T)	e	110III Log	0.00	0.0000	139.20	1/2" Ice	1.78	1.13	74.78
(1101)			0.00			1" Ice	1.95	1.27	92.08
80010966	А	From Leg	4.50	0.0000	139.20	No Ice	17.36	9.40	158.40
(AT&T)		8	0.00			1/2" Ice	17.99	10.82	271.68
(1101)			0.00			1" Ice	18.63	12.09	395.19
80010966	В	From Leg	4.50	0.0000	139.20	No Ice	17.36	9.40	158.40
(AT&T)		8	0.00			1/2" Ice	17.99	10.82	271.68
			0.00			1" Ice	18.63	12.09	395.19
80010966	С	From Leg	4.50	0.0000	139.20	No Ice	17.36	9.40	158.40
(AT&T)			0.00			1/2" Ice	17.99	10.82	271.68
			0.00			1" Ice	18.63	12.09	395.19
RRUS B25 4415	А	From Leg	2.00	0.0000	139.20	No Ice	1.86	0.82	47.40
(AT&T)		5	0.00			1/2" Ice	2.03	0.94	61.55
			0.00			1" Ice	2.20	1.07	78.22
RRUS B25 4415	В	From Leg	2.00	0.0000	139.20	No Ice	1.86	0.82	47.40
(AT&T)		5	0.00			1/2" Ice	2.03	0.94	61.55
			0.00			1" Ice	2.20	1.07	78.22
RRUS B25 4415	С	From Leg	2.00	0.0000	139.20	No Ice	1.86	0.82	47.40
(AT&T)		5	0.00			1/2" Ice	2.03	0.94	61.55
			0.00			1" Ice	2.20	1.07	78.22

tnxTower	Job	18946006	Page 9 of 17
<i>Maser Consulting, P.A.</i> 2000 Midlantic Drive, Suite 100	Project	CTL01051 Willimantic ECSU	Date 16:07:26 11/09/18
Mt. Laurel, NJ 08054 Phone: (856) 797-0412 FAX:	Client		Designed by dxu

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft^2	lb
8' Mw with Radome	С	Paraboloid w/o	From	3.50	Worst		169.00	8.00	No Ice	50.27	500.00
(School)		Radome	Leg	0.00					1/2" Ice	51.32	763.44
				0.00					1" Ice	52.37	1026.89
6' Grid antenna	С	Grid	From	3.50	Worst		162.20	6.00	No Ice	28.27	250.00
(Sprint)			Leg	0.00					1/2" Ice	29.07	399.23
				0.00					1" Ice	29.86	548.45
4'x16" grid antenna	С	Grid	From	2.50	Worst		157.50	4.00	No Ice	5.31	70.00
(School)			Leg	0.00					1/2" Ice	5.66	99.05
			-	0.00					1" Ice	6.00	128.11

Force Totals

Case		Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Ζ	Moments, M_x	Moments, M_z	
	lb	lb	lb	lb-ft	lb-ft	lb-ft
Leg Weight	31076.18					
Bracing Weight	0.00					
Fotal Member Self-Weight	31076.18			1730.58	3736.87	
Fotal Weight	53575.37			1730.58	3736.87	
Wind 0 deg - No Ice		0.00	-24848.41	-2964489.70	3736.87	-13796.84
Wind 30 deg - No Ice		12424.20	-21519.35	-2567091.53	-1479373.27	-8025.45
Wind 60 deg - No Ice		21519.35	-12424.20	-1481379.56	-2565085.24	-103.64
Wind 90 deg - No Ice		24848.41	0.00	1730.58	-2962483.40	7845.94
Wind 120 deg - No Ice		21519.35	12424.20	1484840.72	-2565085.24	13693.20
Wind 150 deg - No Ice		12424.20	21519.35	2570552.70	-1479373.27	15871.39
Wind 180 deg - No Ice		0.00	24848.41	2967950.86	3736.87	13796.84
Wind 210 deg - No Ice		-12424.20	21519.35	2570552.70	1486847.01	8025.45
Wind 240 deg - No Ice		-21519.35	12424.20	1484840.72	2572558.99	103.64
Wind 270 deg - No Ice		-24848.41	0.00	1730.58	2969957.15	-7845.94
Wind 300 deg - No Ice		-21519.35	-12424.20	-1481379.56	2572558.99	-13693.20
Wind 330 deg - No Ice		-12424.20	-21519.35	-2567091.53	1486847.01	-15871.39
Member Ice	14886.25					
Fotal Weight Ice	92481.20			5300.83	10574.18	
Wind 0 deg - Ice		0.00	-10932.60	-1273490.90	10574.18	-4955.49
Wind 30 deg - Ice		5466.30	-9467.91	-1102165.30	-628821.68	-2879.25
Wind 60 deg - Ice		9467.91	-5466.30	-634095.04	-1096891.94	-31.52
Wind 90 deg - Ice		10932.60	0.00	5300.83	-1268217.55	2824.66
Wind 120 deg - Ice		9467.91	5466.30	644696.70	-1096891.94	4923.97
Wind 150 deg - Ice		5466.30	9467.91	1112766.96	-628821.68	5703.91
Wind 180 deg - Ice		0.00	10932.60	1284092.56	10574.18	4955.49
Wind 210 deg - Ice		-5466.30	9467.91	1112766.96	649970.05	2879.25
Wind 240 deg - Ice		-9467.91	5466.30	644696.70	1118040.31	31.52
Wind 270 deg - Ice		-10932.60	0.00	5300.83	1289365.92	-2824.66
Wind 300 deg - Ice		-9467.91	-5466.30	-634095.04	1118040.31	-4923.97
Wind 330 deg - Ice		-5466.30	-9467.91	-1102165.30	649970.05	-5703.91
Fotal Weight	53575.37	5 100.50	7107.51	1730.58	3736.87	5705.91
Wind 0 deg - Service	00010.01	0.00	-7846.10	-934878.73	3736.87	-4356.47
Wind 30 deg - Service		3923.05	-6794.92	-809396.88	-464567.78	-2534.10
Wind 60 deg - Service		6794.92	-3923.05	-466574.08	-807390.59	-2534.10
Wind 90 deg - Service		7846.10	0.00	1730.58	-932872.44	2477.42
Wind 90 deg - Service		6794.92	3923.05	470035.24	-807390.59	4323.75
Wind 120 deg - Service		3923.05	6794.92	812858.04	-464567.78	5011.53
Wind 150 deg - Service		0.00	7846.10	938339.90	3736.87	4356.47
Wind 180 deg - Service		-3923.05	6794.92	812858.04	472041.53	

tnxT (

Maser Cons 2000 Midlantic Mt. Laurel, Phone: (856 FA

·	Job		Page
<i>`ower</i>		18946006	10 of 17
s ulting, P.A. CDrive, Suite 100	Project	CTL01051 Willimantic ECSU	Date 16:07:26 11/09/18
el, NJ 08054 56) 797-0412 AX:	Client		Designed by dxu

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	· ·
		X	Ζ	Moments, M_x	Moments, M_z	
	lb	lb	lb	lb-ft	lb-ft	lb-ft
Wind 240 deg - Service		-6794.92	3923.05	470035.24	814864.34	32.72
Wind 270 deg - Service		-7846.10	0.00	1730.58	940346.19	-2477.42
Wind 300 deg - Service		-6794.92	-3923.05	-466574.08	814864.34	-4323.75
Wind 330 deg - Service		-3923.05	-6794.92	-809396.88	472041.53	-5011.53

Load Combinations

_

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead + 1.0 Wind 0 deg + 1.0 Ice + 1.0 Temp
28	1.2 Dead + 1.0 Wind 30 deg + 1.0 Ice + 1.0 Temp
29	1.2 Dead + 1.0 Wind 50 deg + 1.0 Ice + 1.0 Temp 1.2 Dead + 1.0 Wind 60 deg + 1.0 Ice + 1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead + 1.0 Wind 20 deg + 1.0 Ice + 1.0 Temp 1.2 Dead + 1.0 Wind 120 deg + 1.0 Ice + 1.0 Temp
32	1.2 Dead + 1.0 Wind 120 deg + 1.0 Ice + 1.0 Temp 1.2 Dead + 1.0 Wind 150 deg + 1.0 Ice + 1.0 Temp
33	1.2 Dead + 1.0 Wind 150 deg + 1.0 Ice + 1.0 Temp 1.2 Dead + 1.0 Wind 180 deg + 1.0 Ice + 1.0 Temp
34	1.2 Dead + 1.0 Wind 100 deg + 1.0 Ice + 1.0 Temp 1.2 Dead + 1.0 Wind 210 deg + 1.0 Ice + 1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead + 1.0 Wind 270 deg + 1.0 Ice + 1.0 Temp 1.2 Dead + 1.0 Wind 270 deg + 1.0 Ice + 1.0 Temp
37	1.2 Dead + 1.0 Wind 270 deg + 1.0 remp 1.2 Dead + 1.0 Wind 300 deg + 1.0 Ice + 1.0 Temp
38	1.2 Dead + 1.0 Wind 300 deg + 1.0 Ice + 1.0 Temp 1.2 Dead + 1.0 Wind 330 deg + 1.0 Ice + 1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
40	Dead+Wind 50 deg - Service
41	Dead+Wind 00 deg - Service
43	Dead+Wind 120 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 180 deg - Service
45	Dead+Wind 210 deg - Service
40	Dead+Wind 240 deg - Service
+/	Dead + while 2+0 deg - belvice

Ma 2000

tnxTower	Job 18946006	Page 11 of 17
<i>Maser Consulting, P.A.</i> 00 Midlantic Drive, Suite 100	Project CTL01051 Willimantic ECSU	Date 16:07:26 11/09/18
Mt. Laurel, NJ 08054 Phone: (856) 797-0412 FAX:	Client	Designed by dxu

Comb.	Description
No.	
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial lb	Major Axis Moment lb-ft	Minor Axis Moment lb-ft
L1	175 - 128.66	Pole	Max Tension	1	0.00	0.00	0.00
21	175 120.00	1 010	Max. Compression	26	-32514.96	11666.05	-5861.60
			Max. Mx	20	-13108.43	449111.16	-1188.50
			Max. My	14	-13111.53	2910.06	-446767.53
			Max. Vy	20	-22112.51	449111.16	-1188.50
			Max. Vx	14	22110.85	2910.06	-446767.53
			Max. Torque	12			-24772.78
L2	128.66 - 85.09	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-62324.50	12886.44	-6494.04
			Max. Mx	20	-29899.13	1642030.69	-1864.78
			Max. My	14	-29901.02	4126.36	-1639540.4 4
			Max. Vy	20	-32958.94	1642030.69	-1864.78
			Max. Vx	14	32957.43	4126.36	-1639540.4 4
			Max. Torque	13			-25186.31
L3	85.09 - 42.03	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-79658.06	13445.20	-6724.35
			Max. Mx	20	-43489.80	3105958.90	-2101.38
			Max. My	14	-43490.58	4587.76	-3103414. 6
			Max. Vy	20	-36606.32	3105958.90	-2101.38
			Max. Vx	14	36605.64	4587.76	-3103414. 6
			Max. Torque	13			-25141.01
L4	42.03 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-104831.35	13480.61	-6741.66
			Max. Mx	20	-64260.86	4981154.26	-2114.78
			Max. My	14	-64260.90	4621.58	-4978605.1 1
			Max. Vy	20	-39804.56	4981154.26	-2114.78
			Max. Vx	14	39804.92	4621.58	-4978605.2 1
			Max. Torque	13			-25060.97

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	lb	lb	lb
		Comb.			
Pole	Max. Vert	26	104831.35	-0.65	0.33
	Max. H _x	21	48217.81	39757.05	-0.01
	Max. Hz	3	48217.82	0.01	39757.30
	Max. M _x	2	4974086.38	0.01	39757.21
	Max. Mz	8	4971418.66	-39756.82	-0.01
	Max. Torsion	25	25036.60	19878.70	34430.91

Mase 2000 M Mi Pho

tnxTower	Job		Page
na i uwer		18946006	12 of 17
ser Consulting, P.A. Midlantic Drive, Suite 100	Project	CTL01051 Willimantic ECSU	Date 16:07:26 11/09/18
Mt. Laurel, NJ 08054 Phone: (856) 797-0412 FAX:	Client		Designed by dxu

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	lb	lb	lb
		Comb.			
	Min. Vert	21	48217.81	39757.05	-0.01
	Min. H _x	9	48217.81	-39757.05	-0.01
	Min. Hz	15	48217.82	0.01	-39757.30
	Min. M _x	14	-4978605.22	0.01	-39757.21
	Min. Mz	20	-4981154.26	39756.82	-0.01
	Min. Torsion	13	-25036.89	-19878.65	-34430.84

Tower Mast Reaction Summary

Load	Vertical	<i>Shear</i> _x	$Shear_z$	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	lb	lb	lb	lb-ft	lb-ft	lb-ft
Dead Only	53575.37	1.40	-0.67	1730.26	3737.06	-0.12
1.2 Dead+1.6 Wind 0 deg - No	64290.43	-0.01	-39757.21	-4974086.38	4617.73	-21744.41
lce						
0.9 Dead+1.6 Wind 0 deg - No	48217.82	-0.01	-39757.30	-4912484.10	3381.97	-21753.22
lce						
1.2 Dead+1.6 Wind 30 deg - No	64290.44	19878.68	-34430.88	-4307331.03	-2483440.84	-12630.11
lce						
0.9 Dead+1.6 Wind 30 deg - No	48217.82	19878.65	-34430.84	-4254062.94	-2453595.69	-12640.12
lce						
1.2 Dead+1.6 Wind 60 deg - No	64290.44	34430.88	-19878.68	-2485927.58	-4304792.60	-130.4
ice						
0.9 Dead+1.6 Wind 60 deg - No	48217.82	34430.84	-19878.66	-2455417.58	-4252203.50	-139.20
ice 8						
1.2 Dead+1.6 Wind 90 deg - No	64290.40	39756.82	0.01	2113.11	-4971418.66	12404.54
ice	0.250110	0,700102	0101	2110111	1971110100	1210110
0.9 Dead+1.6 Wind 90 deg - No	48217.81	39757.05	0.01	1547.21	-4910537.05	12399.1
ice	10217.01	37737.03	0.01	1517.21	1910557.05	12377.1
1.2 Dead+1.6 Wind 120 deg -	64290.44	34430.88	19878.68	2490225.16	-4304920.81	21614.3
No Ice	04270.44	54450.00	17070.00	2470225.10	-4304920.01	21014.5
0.9 Dead+1.6 Wind 120 deg -	48217.83	34430.91	19878.70	2458570.17	-4252308.23	21614.2
No Ice	40217.05	54450.91	19878.70	2436370.17	-4232308.23	21014.2
1.2 Dead+1.6 Wind 150 deg -	64290.44	19878.68	34430.88	4311776.00	-2483569.63	25031.3
e	04290.44	190/0.00	54450.88	4511770.00	-2485509.05	25051.5
No Ice	49217.92	10070 65	24420.94	1257216.24	2452699 76	25026.9
).9 Dead+1.6 Wind 150 deg -	48217.82	19878.65	34430.84	4257316.24	-2453688.76	25036.8
No Ice	(1200.12	0.01	00757.01	1050 605 00	1616 70	01741.1
1.2 Dead+1.6 Wind 180 deg -	64290.43	-0.01	39757.21	4978605.22	4616.72	21741.1
No Ice	10015.00	0.01	00555.00	101 5500 00	2201.12	
).9 Dead+1.6 Wind 180 deg -	48217.82	-0.01	39757.30	4915790.98	3381.42	21750.8
No Ice						
.2 Dead+1.6 Wind 210 deg -	64290.44	-19878.68	34430.88	4311993.50	2492927.97	12626.5
No Ice						
0.9 Dead+1.6 Wind 210 deg -	48217.83	-19878.70	34430.91	4257485.99	2460549.23	12637.5
No Ice						
1.2 Dead+1.6 Wind 240 deg -	64290.44	-34430.88	19878.68	2490442.07	4314530.99	130.0
No Ice						
).9 Dead+1.6 Wind 240 deg -	48217.82	-34430.84	19878.66	2458721.59	4259333.05	138.9
No Ice						
.2 Dead+1.6 Wind 270 deg -	64290.40	-39756.82	0.01	2112.00	4981154.26	-12401.2
No Ice						
0.9 Dead+1.6 Wind 270 deg -	48217.81	-39757.05	0.01	1546.61	4917664.83	-12396.7
No Ice						
.2 Dead+1.6 Wind 300 deg -	64290.44	-34430.88	-19878.68	-2486145.90	4314402.87	-21610.6
No Ice		2.100100				_1010.0
0.9 Dead+1.6 Wind 300 deg -	48217.82	-34430.84	-19878.65	-2455575.74	4259240.22	-21611.5
No Ice	10217.02	51150.04	17070.05	2100010.14	1207210.22	21011.5

tnxTower

Maser Consulting, P.A. 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ 08054 Phone: (856) 797-0412 FAX:

18946006 13 of 17 Project Date	
Project Date	
A. CTL01051 Willimantic ECSU 16:07:26 11/0	0/18
Client Designed by	5/10
2 dxu	

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	lb	lb	lb	lb-ft	lb-ft	lb-ft
1.2 Dead+1.6 Wind 330 deg -	64290.44	-19878.68	-34430.88	-4307548.73	2492800.41	-25031.01
No Ice						
0.9 Dead+1.6 Wind 330 deg -	48217.83	-19878.70	-34430.91	-4254232.76	2460456.52	-25036.60
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	104831.35	0.65	-0.33	6741.66	13480.61	-0.94
1.2 Dead+1.0 Wind 0 deg+1.0	104831.33	0.02	-10931.37	-1402376.24	13717.42	-4954.00
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	104831.33	5465.70	-9466.85	-1213563.49	-690893.34	-2868.01
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	104831.33	9466.86	-5465.69	-697750.24	-1206700.12	-13.57
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	104831.33	10931.38	-0.01	6858.90	-1395504.44	2844.29
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	104831.34	9467.46	5466.03	711554.06	-1206845.58	4939.55
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	104831.33	5465.70	9466.82	1227307.46	-690910.52	5710.80
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	104831.33	0.02	10931.34	1416128.34	13715.69	4951.59
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	104831.34	-5466.02	9467.44	1227466.42	718436.17	2865.56
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	104831.34	-9467.44	5466.03	711579.04	1234329.24	11.68
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	104831.33	-10931.33	-0.01	6857.08	1422997.81	-2845.55
deg+1.0 Ice+1.0 Temp	101001.00	044404			100/100 05	10.10 55
1.2 Dead+1.0 Wind 300	104831.33	-9466.81	-5465.69	-697777.97	1234179.27	-4940.77
deg+1.0 Ice+1.0 Temp	104021.24	5466.00	0467.45	1010701 10	710401 76	5710 (0)
1.2 Dead+1.0 Wind 330	104831.34	-5466.02	-9467.45	-1213721.10	718421.76	-5712.60
deg+1.0 Ice+1.0 Temp	E2575 26	0.00	7945 45	072545 44	4020.24	1255 26
Dead+Wind 0 deg - Service	53575.36	0.00	-7845.45	-973545.44	4039.24	-4355.26
Dead+Wind 30 deg - Service	53575.35 53575.35	3922.27 6793.56	-6793.56 -3922.27	-842741.53 -485765.39	-483599.46 -840574.13	-2530.26 -27.26
Dead+Wind 60 deg - Service Dead+Wind 90 deg - Service	53575.36	6793.36 7845.46	-3922.27 -0.00	-485765.39 1872.42	-840574.13 -971375.38	-27.26 2483.01
Dead+Wind 90 deg - Service Dead+Wind 120 deg - Service		7845.46 6793.56	-0.00 3922.26	489511.77	-9/13/5.38 -840577.77	4327.90
	53575.35	6793.36 3922.27	5922.26 6793.55			4327.90
Dead+Wind 150 deg - Service Dead+Wind 180 deg - Service	53575.35 53575.36	3922.27	6793.55 7845.45	846491.98 977299.13	-483603.15 4039.11	5013.05 4354.92
Dead+Wind 180 deg - Service	53575.35	-3922.25	7845.45 6793.54	977299.13 846497.98	4039.11 491683.57	4354.92 2529.91
Dead+Wind 210 deg - Service	53575.36	-3922.25 -6794.35	6793.54 3922.72	489587.96	491683.57 848787.26	2529.91 27.01
Dead+Wind 240 deg - Service	53575.36	-0794.33	-0.00	1872.27	979468.99	-2483.15
Dead+Wind 270 deg - Service	53575.35	-6793.54	-3922.26	-485771.58	848661.70	-4328.02
Dead+Wind 300 deg - Service	53575.36	-3922.72	-6794.36	-842868.16	491750.39	-5013.27
Dead Firling 550 deg - Service	55515.50	-3744.14	-0774.30	-0+2000.10	+71750.59	-3013.27

Solution Summary

	Sui	n of Applied Force.	\$		Sum of Reaction	s	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
1	0.00	-53575.37	0.00	-1.40	53575.37	0.67	0.003%
2	0.00	-64290.44	-39757.45	0.01	64290.43	39757.21	0.000%
3	0.00	-48217.83	-39757.45	0.01	48217.82	39757.30	0.000%
4	19878.73	-64290.44	-34430.96	-19878.68	64290.44	34430.88	0.000%
5	19878.73	-48217.83	-34430.96	-19878.65	48217.82	34430.84	0.000%
6	34430.96	-64290.44	-19878.73	-34430.88	64290.44	19878.68	0.000%
7	34430.96	-48217.83	-19878.73	-34430.84	48217.82	19878.66	0.000%
8	39757.45	-64290.44	0.00	-39756.82	64290.40	-0.01	0.001%
9	39757.45	-48217.83	0.00	-39757.05	48217.81	-0.01	0.001%
10	34430.96	-64290.44	19878.73	-34430.88	64290.44	-19878.68	0.000%
11	34430.96	-48217.83	19878.73	-34430.91	48217.83	-19878.70	0.000%

tnxTower

Job

Maser Consulting, 1 2000 Midlantic Drive, Suit Mt. Laurel, NJ 08054 Phone: (856) 797-041 FAX:

<i>P.A.</i>	Project
<i>uite 100</i>	CTL01051 Willimantic ECSU
54 412	Client

18946006

	Sui	m of Applied Forces			Sum of Reaction	S	
Load	PX	PY	PZ	PX	Ρ̈́Υ	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
12	19878.73	-64290.44	34430.96	-19878.68	64290.44	-34430.88	0.000%
13	19878.73	-48217.83	34430.96	-19878.65	48217.82	-34430.84	0.000%
14	0.00	-64290.44	39757.45	0.01	64290.43	-39757.21	0.000%
15	0.00	-48217.83	39757.45	0.01	48217.82	-39757.30	0.000%
16	-19878.73	-64290.44	34430.96	19878.68	64290.44	-34430.88	0.000%
17	-19878.73	-48217.83	34430.96	19878.70	48217.83	-34430.91	0.000%
18	-34430.96	-64290.44	19878.73	34430.88	64290.44	-19878.68	0.000%
19	-34430.96	-48217.83	19878.73	34430.84	48217.82	-19878.66	0.000%
20	-39757.45	-64290.44	0.00	39756.82	64290.40	-0.01	0.001%
21	-39757.45	-48217.83	0.00	39757.05	48217.81	-0.01	0.001%
22	-34430.96	-64290.44	-19878.73	34430.88	64290.44	19878.68	0.000%
23	-34430.96	-48217.83	-19878.73	34430.84	48217.82	19878.65	0.000%
24	-19878.73	-64290.44	-34430.96	19878.68	64290.44	34430.88	0.000%
25	-19878.73	-48217.83	-34430.96	19878.70	48217.83	34430.91	0.000%
26	0.00	-104831.36	0.00	-0.65	104831.35	0.33	0.001%
27	0.00	-104831.36	-10932.60	-0.02	104831.33	10931.37	0.001%
28	5466.30	-104831.36	-9467.91	-5465.70	104831.33	9466.85	0.001%
29	9467.91	-104831.36	-5466.30	-9466.86	104831.33	5465.69	0.001%
30	10932.60	-104831.36	0.00	-10931.38	104831.33	0.01	0.001%
31	9467.91	-104831.36	5466.30	-9467.46	104831.34	-5466.03	0.001%
32	5466.30	-104831.36	9467.91	-5465.70	104831.33	-9466.82	0.001%
33	0.00	-104831.36	10932.60	-0.02	104831.33	-10931.34	0.001%
34	-5466.30	-104831.36	9467.91	5466.02	104831.34	-9467.44	0.001%
35	-9467.91	-104831.36	5466.30	9467.44	104831.34	-5466.03	0.001%
36	-10932.60	-104831.36	0.00	10931.33	104831.33	0.01	0.001%
37	-9467.91	-104831.36	-5466.30	9466.81	104831.33	5465.69	0.001%
38	-5466.30	-104831.36	-9467.91	5466.02	104831.34	9467.45	0.001%
39	0.00	-53575.37	-7846.10	-0.00	53575.36	7845.45	0.001%
40	3923.05	-53575.37	-6794.92	-3922.27	53575.35	6793.56	0.003%
41	6794.92	-53575.37	-3923.05	-6793.56	53575.35	3922.27	0.003%
42	7846.10	-53575.37	0.00	-7845.46	53575.36	0.00	0.001%
43	6794.92	-53575.37	3923.05	-6793.56	53575.35	-3922.26	0.003%
44	3923.05	-53575.37	6794.92	-3922.27	53575.35	-6793.55	0.003%
45	0.00	-53575.37	7846.10	-0.00	53575.36	-7845.45	0.001%
46	-3923.05	-53575.37	6794.92	3922.25	53575.35	-6793.54	0.003%
47	-6794.92	-53575.37	3923.05	6794.35	53575.36	-3922.72	0.001%
48	-7846.10	-53575.37	0.00	7845.44	53575.36	0.00	0.001%
49	-6794.92	-53575.37	-3923.05	6793.54	53575.35	3922.26	0.003%
50	-3923.05	-53575.37	-6794.92	3922.72	53575.36	6794.36	0.001%

		Non-Li	near Conve	rgence Results	
Load	Converged?	Number	Displacement	Force	
Combination		of Cycles	Tolerance	Tolerance	
1	Yes	6	0.00000001	0.00001369	
2	Yes	17	0.00000001	0.00008691	
3	Yes	17	0.00000001	0.00006490	
4	Yes	18	0.00000001	0.00007398	
5	Yes	17	0.00000001	0.00013212	
6	Yes	18	0.00000001	0.00008197	
7	Yes	17	0.00000001	0.00014669	
8	Yes	16	0.00000001	0.00012056	
9	Yes	16	0.00000001	0.00009229	
10	Yes	18	0.00000001	0.00010523	
11	Yes	18	0.00000001	0.00007485	
12	Yes	18	0.00000001	0.00007224	

Page 14 of 17

Date

16:07:26 11/09/18

dxu

Designed by

t 70.70 ¹	Towar	Job			Page
INX.	Tower		18	946006	15 of 17
Maser Ci	onsulting, P.A.	Project			Date
	tic Drive, Suite 100		CTL01051	Willimantic ECSU	16:07:26 11/09/18
	urel, NJ 08054	Client			Designed by
	(856) 797-0412 FAX:				dxu
_					
13	Yes	17	0.00000001	0.00012973	
14	Yes	17	0.00000001	0.00008704	
15	Yes	17	0.00000001	0.00006497	
16	Yes	18	0.00000001	0.00009533	
17	Yes	18	0.00000001	0.00006729	
18	Yes	18	0.00000001	0.00008295	
19	Yes	17	0.00000001	0.00014791	
20	Yes	16	0.00000001	0.00012094	
21	Yes	16	0.00000001	0.00009249	
22	Yes	18	0.00000001	0.00007256	
23	Yes	17	0.00000001	0.00012979	
24	Yes	18	0.00000001	0.00010995	
25	Yes	18	0.00000001	0.00007828	
26	Yes	11	0.00000001	0.00002468	
27	Yes	15	0.00011719	0.00011905	
28	Yes	15	0.00011694	0.00013704	
29	Yes	15	0.00011691	0.00013969	
30	Yes	15	0.00011714	0.00010466	
31	Yes	16	0.00000001	0.00007925	
32	Yes	15	0.00011703	0.00014687	
33	Yes	15	0.00011729	0.00012170	
34	Yes	16	0.00000001	0.00007733	
35	Yes	16	0.00000001	0.00007174	
36	Yes	15	0.00011733	0.00010927	
37	Yes	15	0.00011708	0.00014766	
38	Yes	16	0.00000001	0.00008382	
39	Yes	14	0.00000001	0.00005736	
40	Yes	13	0.00014992	0.00005407	
41	Yes	13	0.00014991	0.00004547	
42	Yes	14	0.00000001	0.00003673	
43	Yes	13	0.00014993	0.00014287	
44	Yes	13	0.00014997	0.00011039	
45	Yes	14	0.00000001	0.00005787	
46	Yes	13	0.00015000	0.00010101	
47	Yes	14	0.00000001	0.00002165	
48	Yes	14	0.00000001	0.00003743	
49	Yes	13	0.00014999	0.00009445	
50	Yes	14	0.00000001	0.00007570	

Base Plate Design Data

Plate	Number	Anchor Bolt	Actual	Actual	Actual	Actual	Controlling	Ratio
Thickness	of Anchor Bolts	Size	Allowable Ratio Bolt	Allowable Ratio Bolt	Allowable Ratio Plate	Allowable Ratio Stiffener	Condition	
in		in	Tension lb	Compression lb	Stress ksi	Stress ksi		
2.0000	18	2.2500	186035.02 223654.40 0.83	193175.11 371266.30 0.52	32.529 54.000 0.60	44.118 54.000 0.82	Bolt T	0.83

Compression Checks

Maser Consulting, P.A. 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ 08054 Phone: (856) 797-0412 FAX:

	Job		Page
		18946006	16 of 17
4.	Project		Date
1. 100		CTL01051 Willimantic ECSU	16:07:26 11/09/18
	Client		Designed by
			dxu

Pole Design Data

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
L1	175 - 128.66 (1)	TP33.375x23x0.25	46.34	0.00	0.0	25.4533	-13107.80	1757100.00	0.007
L2	128.66 - 85.09 (2)	TP42.5625x31.8272x0.3125	48.25	0.00	0.0	40.6223	-29898.70	2783470.00	0.011
L3	85.09 - 42.03 (3)	TP51.4688x40.6426x0.375	48.88	0.00	0.0	58.9849	-43489.60	4029650.00	0.011
L4	42.03 - 0 (4)	TP60x49.1817x0.4375	48.97	0.00	0.0	82.7100	-64260.90	5588970.00	0.011

Pole Bending Design Data

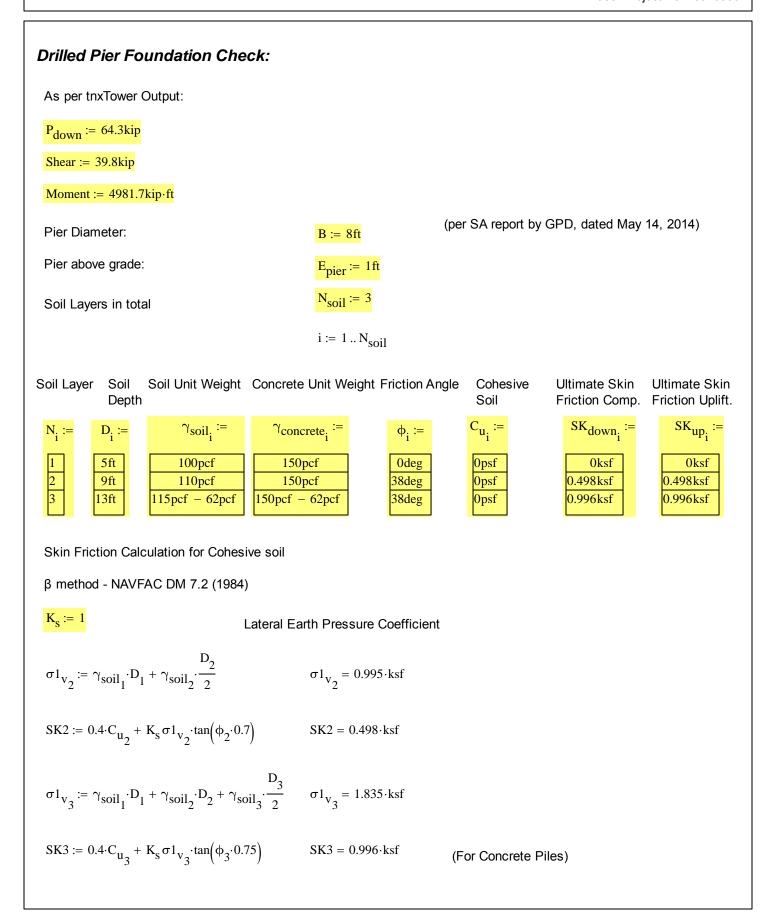
Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
	ft		lb-ft	lb-ft	ϕM_{nx}	lb-ft	lb-ft	ϕM_{nv}
L1	175 - 128.66 (1)	TP33.375x23x0.25	449549.17	1159083.33	0.388	0.00	1159083.33	0.000
L2	128.66 - 85.09 (2)	TP42.5625x31.8272x0.3125	1642533.33	2344691.67	0.701	0.00	2344691.67	0.000
L3	85.09 - 42.03 (3)	TP51.4688x40.6426x0.375	3106483.33	4107600.00	0.756	0.00	4107600.00	0.000
L4	42.03 - 0 (4)	TP60x49.1817x0.4375	4981716.67	6848866.67	0.727	0.00	6848866.67	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{μ}	ϕV_n	Ratio V_u	Actual T_{μ}	ϕT_n	Ratio T _u
	ft		lb	lb	ϕV_n	lb-ft	lb-ft	ϕT_n
L1	175 - 128.66 (1)	TP33.375x23x0.25	22115.90	878552.00	0.025	120.97	2321000.00	0.000
L2	128.66 - 85.09 (2)	TP42.5625x31.8272x0.3125	32962.00	1391740.00	0.024	120.54	4695116.67	0.000
L3	85.09 - 42.03 (3)	TP51.4688x40.6426x0.375	36607.50	2014830.00	0.018	130.17	8225250.00	0.000
L4	42.03 - 0 (4)	TP60x49.1817x0.4375	39805.10	2794480.00	0.014	130.00	13714500.00	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{nv}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	175 - 128.66 (1)	0.007	0.388	0.000	0.025	0.000	0.396	1.000	4.8.2 🗸
L2	128.66 - 85.09 (2)	0.011	0.701	0.000	0.024	0.000	0.712	1.000	4.8.2 🖌


turTowar	Job	Page
tnxTower	18946006	17 of 17
Maser Consulting, P.A. 2000 Midlantic Drive, Suite 100	Project CTL01051 Willimantic E	Date CSU 16:07:26 11/09/18
Mt. Laurel, NJ 08054 Phone: (856) 797-0412 FAX:	Client	Designed by dxu

Section No.	Elevation	Ratio P_u	Ratio M _{ux}	Ratio M _{uy}	$Ratio V_u$	Ratio T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L3	85.09 - 42.03 (3)	0.011	0.756	0.000	0.018	0.000	0.767	1.000	4.8.2 🖌
L4	42.03 - 0 (4)	0.011	0.727	0.000	0.014	0.000	0.739	1.000	4.8.2 🗸

Section Capacity Table

Section	Elevation	Component	Size	Critical	Р	ϕP_{allow}	%	Pass
No.	ft	Type		Element	lb	lb	Capacity	Fail
L1	175 - 128.66	Pole	TP33.375x23x0.25	1	-13107.80	1757100.00	39.6	Pass
L2	128.66 - 85.09	Pole	TP42.5625x31.8272x0.3125	2	-29898.70	2783470.00	71.2	Pass
L3	85.09 - 42.03	Pole	TP51.4688x40.6426x0.375	3	-43489.60	4029650.00	76.7	Pass
L4	42.03 - 0	Pole	TP60x49.1817x0.4375	4	-64260.90	5588970.00	73.9	Pass
							Summary	
						Pole (L3)	76.7	Pass
						Base Plate	83.2	Pass
						RATING =	83.2	Pass

Program Version 7.0.5.1 - 2/1/2016 File://maserconsulting.com/luj/Projects/2018/18946000A/18946006A/Structural/Tower analysis/Rev 3/tnx Tower/mods.eri

Down Load Check:

 $\phi_b \coloneqq 0.75$

 $\phi_{s} := 0.75$

(Section 9.4.1, TIA-222-G) (Section 9.4.1, TIA-222-G)

Ultimate Skin Friction due to Download:

 $SK_{total_down} \coloneqq \sum_{i=1}^{N_{soil}} \left[\left(\phi_s \cdot SK_{down} \right)_i \cdot \pi \cdot B \cdot D_i \right] = 328.548 \cdot kip$

 $P_{dcap} := SK_{total_down}$

Down Load Check:

Check := $|"OK" \text{ if } P_{dcap} \ge P_{down} = "OK"$ "NOT GOOD" otherwise

Check = "OK"

Usage:

Usage := $\frac{P_{down}}{P_{dcap}}$

Usage = $19.6 \cdot \%$

Pier Embedment Check:

Check of embedded length of the foundation

Defining variables,

- D_{pier} ≔ B = 8 ft Shaft Diameter
 - Embedded length of the Shaft, L_e

 $\phi := 38 \text{deg}$

 $L_e := 27 ft$

Angle of Internal Friction

$$K_{p} := \tan\left(45 \text{deg} + \frac{\Phi}{2}\right)^{2} = 4.204$$

$$\gamma_{\text{soil}} \coloneqq \frac{\sum_{i=1}^{N_{\text{soil}}} \left(D_i \cdot \gamma_{\text{soil}} \right)}{\sum_{i=1}^{N_{\text{soil}}} \left(D_i \right)} = 80.704 \, \text{pcf}$$

Average unit weight of soil

$$V_F :=$$
Shear = 39.8 kip

$$M_F := Moment = 4.982 \times 10^3 \text{ kip} \cdot \text{ft}$$

$$H := \frac{Moment}{Shear}$$
 Equation: C13.6.1.1-2, AASHTO for Broms Methods

Assume Embedment Depth

$$L_{f} := 27f$$

(required min. embedment)

$$R_{0} := \operatorname{root}\left[\left(L_{f}^{3} - \frac{2 \cdot V_{F} \cdot L_{f}}{K_{p} \cdot \gamma_{soil} \cdot D_{pier}} - \frac{2 \cdot M_{F}}{K_{p} \cdot \gamma_{soil} \cdot D_{pier}}\right), L_{f}\right] \quad (C13.6.1.1-7)$$

$$R_{0} = 16.06 \text{ ft}$$

Check
$$L_e > R_0$$

"Fail" if $L_e > R_0$
"Fail" if $L_e < R_0$
Check_{length} = "Pass"
Ratio_{embed} := $\frac{R_0}{L_e} = 59.5 \cdot \%$

Pier Reinforcement Check:

Rebar Size:	#11
Rebar Diameter:	d _b := 1.41in
Rebar Area:	$A_b := 1.56 \cdot in^2$
Number of Rebar Required:	n _{rebar} := 27
Cover thickness:	cc := 3in

Max. Applied Moment per L-Pile output:

Pile-head		Max Shear	Max Moment
Deflection		in Pile	in Pile
inches		lbs	in-lbs
0.7765	-0.00608	-405145.	6.30E+07

 $M_{applied} := 63000000 lbf \cdot in = 5.25 \times 10^3 \cdot kip \cdot ft$

Moment Capacity of Pier:

Load	Axial Thrust	Nominal Mom. Cap.	Max. Comp.
No.	kips	in-kip	Strain
1	64.290	104604.278	0.00300000

 $M_{cap.n} := 104604.278 \text{kip} \cdot \text{in} = 8717 \cdot \text{kip} \cdot \text{ft}$

(per L-Plie Output)

 $\phi_{s_Bending} \coloneqq 0.9$

 $M_{cap} := \phi_{s_Bending} M_{cap.n} = 7845.3 \cdot kip \cdot ft$

Reinforcement Check: Check := $|"OK" \text{ if } M_{cap} \ge M_{applied} = "OK"$ "NOT GOOD" otherwise

Check = "OK"

Usage:

Usage := $\frac{M_{applied}}{M_{cap}}$

Usage = $66.9 \cdot \%$

Maser Consulting Connecticut 331 Newman Springs Road, Suite 203 Red Bank, NJ 07701

Structural Analysis CTL01051 - Wilimantic ECSU

LPile for Windows, Version 2016-09.009
Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2016 by Ensoft, Inc. All Rights Reserved
This copy of LPile is being used by:
Maser Consulting Mt. Laurel, NJ
Serial Number of Security Device: 239146273
This copy of LPile is licensed for exclusive use by:
Maser Consulting P.A., Red Bank,
Use of this program by any entity other than Maser Consulting P.A., Red Bank, is a violation of the software license agreement.
Files Used for Analysis
Path to file locations: \\maserconsulting.com\luj\Projects\2018\18946000A\18946006A\Structural\Tower analysis\Rev 3\L-Pile\
Path to file locations:
Path to file locations: \\maserconsulting.com\luj\Projects\2018\18946000A\18946006A\Structural\Tower analysis\Rev 3\L-Pile\ Name of input data file:
Path to file locations: \\maserconsulting.com\luj\Projects\2018\18946000A\18946006A\Structural\Tower analysis\Rev 3\L-Pile\ Name of input data file: Pier Check.lp9d Name of output report file:
Path to file locations: \\maserconsulting.com\luj\Projects\2018\18946000A\18946006A\Structural\Tower analysis\Rev 3\L-Pile\ Name of input data file: Pier Check.lp9d Name of output report file: Pier Check.lp9o Name of plot output file:
Path to file locations: \\maserconsulting.com\luj\Projects\2018\18946000A\18946006A\Structural\Tower analysis\Rev 3\L-Pile\ Name of input data file: Pier Check.lp9d Name of output report file: Pier Check.lp9o Name of plot output file: Pier Check.lp9p Name of runtime message file: Pier Check.lp9r
Path to file locations: \\maserconsulting.com\luj\Projects\2018\18946000A\18946006A\Structural\Tower analysis\Rev 3\L-Pile\ Name of input data file: Pier Check.lp9d Name of output report file: Pier Check.lp9o Name of plot output file: Pier Check.lp9p Name of runtime message file:

Maser Consulting Connecticut 331 Newman Springs Road, Suite 203 Red Bank, NJ 07701

Structural Analysis CTL01051 - Wilimantic ECSU

500

1.0000E-05 in 100.0000 in

100

1

Problem Title

Project Name: CTL01051 - Wilimantic ECSU Job Number: 18946006A Client: STEALTH CONCEALMENT SOLUTIONS Engineer: DX Description:

Program Options and Settings

Computational Options:

- Use unfactored loads in computations (conventional analysis)
- Engineering Units Used for Data Input and Computations:
- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed
- Deflection tolerance for convergence
- Maximum allowable deflection
- Number of pile increments

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Use of p-y modification factors for p-y curves not selected
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined		=
Total length of pile	=	28.000 ft

Depth of ground surface below top of pile 1.0000 ft = Pile diameters used for p-y curve computations are defined using 2 points. p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows. Depth Below Pile Pile Head Point Diameter No. feet inches 1 0.000 96.0000 2 28.000 96.0000 Input Structural Properties for Pile Sections: Pile Section No. 1: Section 1 is a round drilled shaft, bored pile, or CIDH pile Length of section = 28.000000 ft Shaft Diameter = 96.000000 in Shear capacity of section = 0.0000 lbs Ground Slope and Pile Batter Angles Ground Slope Angle 0.000 degrees = 0.000 radians = **Pile Batter Angle** 0.000 degrees 0.000 radians Soil and Rock Layering Information The soil profile is modelled using 3 layers Layer 1 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer 1.000000 ft = Distance from top of pile to bottom of layer 6.000000 ft = Effective unit weight at top of layer = 100.00000 pcf Effective unit weight at bottom of layer = 100.00000 pcf Friction angle at top of layer = 1.000000 deg. Friction angle at bottom of layer 1.000000 deg. = Subgrade k at top of layer = 0.0000 pci 0.0000 pci Subgrade k at bottom of layer =

NOTE: Default values for subgrade k will be computed for this layer. Layer 2 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer 6.000000 ft Distance from top of pile to bottom of layer = 15.000000 ft Effective unit weight at top of layer = 110.00000 pcf Effective unit weight at bottom of layer = 110.00000 pcf Friction angle at top of layer 38.000000 deg. = Friction angle at bottom of layer = 38.000000 deg. Subgrade k at top of layer = 0.0000 pci Subgrade k at bottom of layer = 0.0000 pci NOTE: Default values for subgrade k will be computed for this layer. Layer 3 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer 15.000000 ft = Distance from top of pile to bottom of layer = 28.000000 ft Effective unit weight at top of layer = 53.00000 pcf Effective unit weight at bottom of layer = 53.00000 pcf Friction angle at top of layer = 38.00000 deg. Friction angle at bottom of layer = 38.00000 deg. Subgrade k at top of layer = 0.0000 pci Subgrade k at bottom of layer = 0.0000 pci NOTE: Default values for subgrade k will be computed for this layer. (Depth of the lowest soil layer extends 0.000 ft below the pile tip) Summary of Input Soil Properties Layer Soil Type Effective Angle of Layer Layer Depth Unit Wt. Friction Name kpy Num. (p-y Curve Type) ft deg. pcf pci 1 Sand 1.0000 100.0000 1.0000 default (Reese, et al.) 6.0000 100.0000 1.0000 default 2 6.0000 default Sand 110.0000 38.0000 15.0000 110.0000 38.0000 default (Reese, et al.) 3 Sand 15.0000 53.0000 38.0000 default (Reese, et al.) 28.0000 53.0000 38.0000 default Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Pile-head Loading and Pile-head Fixity Conditions
Number of loads specified = 1
Load Condition Axial Thrust Compute Top y No. Type 1 2 Force, Ibs vs. Pile Length
1 1 V = 39757. Ibs M = 59780568. in-Ibs 64290. No
 V = shear force applied normal to pile axis M = bending moment applied to pile head y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles.
Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness
Axial thrust force values were determined from pile-head loading conditions
Number of Pile Sections Analyzed = 1
Pile Section No. 1:
Dimensions and Properties of Drilled Shaft (Bored Pile):
Length of Section=28.00000 ftShaft Diameter=96.000000 inConcrete Cover Thickness=3.000000 inNumber of Reinforcing Bars=27 barsYield Stress of Reinforcing Bars=60000. psiModulus of Elasticity of Reinforcing Bars=29000000. psiGross Area of Shaft=7238. sq. in.Total Area of Reinforcing Steel=42.120000 sq. in.Area Ratio of Steel Reinforcement=0.58 percentEdge-to-Edge Bar Spacing=8.874671 inMaximum Concrete Aggregate Size=11.83Offset of Center of Rebar Cage from Center of Pile=0.0000 in
Axial Structural Capacities:

Maser Consulting Connecticut 331 Newman Springs Road, Suite 203 Red Bank, NJ 07701

Structural Analysis CTL01051 - Wilimantic ECSU

Nom. Axial Structural Capacity = 0.85 Fc Ac + Fy As= 20877.279 kipsTensile Load for Cracking of Concrete= -2746.791 kipsNominal Axial Tensile Capacity= -2527.200 kips

Reinforcing Bar Dimensions and Positions Used in Computations:

Bar	Bar Diam.	Bar Area	Х	Y
Number	Number inches sq. in.		inches	inches
1	1.410000	1.560000	44.295000	0.00000
2	1.410000	1.560000	43.101023	10.215130
3	1.410000	1.560000	39.583458	19.879560
4	1.410000	1.560000	33.931939	28.472277
5	1.410000	1.560000	26.451140	35.530047
6	1.410000	1.560000	17.544353	40.672382
7	1.410000	1.560000	7.691746	43.622059
8	1.410000	1.560000	-2.575525	44.220060
9	1.410000	1.560000	-12.703949	42.434145
10	1.410000	1.560000	-22.147500	38.360595
11	1.410000	1.560000	-30.397073	32.219015
12	1.410000	1.560000	-37.007933	24.340500
13	1.410000	1.560000	-41.623685	15.149782
14	1.410000	1.560000	-43.995493	5.142336
15	1.410000	1.560000	-43.995493	-5.142336
16	1.410000	1.560000	-41.623685	-15.149782
17	1.410000	1.560000	-37.007933	-24.340500
18	1.410000	1.560000	-30.397073	-32.219015
19	1.410000	1.560000	-22.147500	-38.360595
20	1.410000	1.560000	-12.703949	-42.434145
21	1.410000	1.560000	-2.575525	-44.220060
22	1.410000	1.560000	7.691746	-43.622059
23	1.410000	1.560000	17.544353	-40.672382
24	1.410000	1.560000	26.451140	-35.530047
25	1.410000	1.560000	33.931939	-28.472277
26	1.410000	1.560000	39.583458	-19.879560
27	1.410000	1.560000	43.101023	-10.215130

NOTE: The positions of the above rebars were computed by LPile

Minimum spacing between any two bars not equal to zero = 8.875 inches between bars 18 and 19.

Ratio of bar spacing to maximum aggregate size = 11.83

Concrete Properties:

Compressive Strength of Concrete	= 3000. psi
Modulus of Elasticity of Concrete	= 3122019. psi
Modulus of Rupture of Concrete	= -410.791918 psi
Compression Strain at Peak Stress	= 0.001634
Tensile Strain at Fracture of Concrete	= -0.0001160

Maser Consulting Connecticut
331 Newman Springs Road, Suite 203
Red Bank, NJ 07701

Maximum Coarse Aggregate Size

0.750000 in

=

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number Axial Thrust Force kips

64.290

1

Definitions of Run Messages and Notes:

C = concrete in section has cracked in tension.

- Y = stress in reinforcing steel has reached yield stress.
- T = ACI 318 criteria for tension-controlled section met, tensile strain in reinforcement exceeds 0.005 while simultaneously compressive strain in concrete more than 0.003. See ACI 318, Section 10.3.4.
- Z = depth of tensile zone in concrete section is less than 10 percent of section depth.

Bending Stiffness (EI) = Computed Bending Moment / Curvature. Position of neutral axis is measured from edge of compression side of pile. Compressive stresses and strains are positive in sign. Tensile stresses and strains are negative in sign.

Bending Depth to Max Comp Max Steel Run Bending Bending Max Tens Max Conc Curvature Moment Stiffness N Axis Strain Strain Stress Stress Msg rad/in. in-kip kip-in2 in in/in in/in ksi ksi 3.12500E-07 5097. 1.63117E+10 55.4678351 0.00001733 -0.00001267 0.0627831 0.4983273 51.7478090 6.25000E-07 10166. 1.62659E+10 0.00003234 -0.00002766 0.1165362 0.9292290 9.37500E-07 15205. 1.62192E+10 50.5079074 0.00004735 -0.00004265 0.1697933 1.3601337 0.00000125 20215. 49.8880167 0.00006236 -0.00005764 0.2225542 1.61722E+10 1.7910406 0.00000156 25196. 1.61251E+10 49.5161274 0.00007737 -0.00007263 0.2748189 2.2219495 0.00000188 30146. 1.60780E+10 49.2682387 0.00009238 -0.00008762 0.3265874 2.6528605 0.00000219 35068. 1.60309E+10 49.0912069 0.0001074 -0.0001026 0.3778597 3.0837734 0.00000250 35068. 1.40270E+10 24.7884784 0.00006197 -0.0001780 0.2190584 -5.1280353 C 0.00000281 35068. 1.24685E+10 24.3596216 0.00006851 -0.0002015 0.2416105 -5.8040184 C 0.00000313 35068. 1.12216E+10 24.0063135 0.00007502 -0.0002250 0.2639587 -6.4809278 C 0.0000344 35068. 1.02015E+10 23.7184420 0.00008153 -0.0002485 0.2862303 -7.1577178 C 0.00000375 35068. 9351354162. 23.4777140 0.00008804 -0.0002720 0.3084001 -7.8345986 C 0.00000406 35068. 8632019226. 23.2670124 0.00009452 -0.0002955 0.3303803 -8.5123051 C 0.00000438 35068. 8015446424. 23.0873825 0.0001010 -0.0003190 0.3522850 -9.1898883 C 35068. 7481083329. 0.0001075 -0.0003425 0.00000469 22.9326132 0.3741141 -9.8673479 C 0.00000500 35068. 7013515621. 22.7980458 0.0001140 -0.0003660 0.3958676 -10.5446833 C 0.00000531 35068. 6600955879. 22.6801181 0.0001205 -0.0003895 0.4175451 -11.2218943 C 0.00000563 35068. 6234236108. 22.5760593 0.0001270 -0.0004130 0.4391467 -11.8989803 C 35068. 22.4797984 -0.0004365 0.4605943 0.00000594 5906118418. 0.0001335 -12.5766097 C 0.0000625 35068. 5610812497. 22.3931464 0.0001400 -0.0004600 0.4819513 -13.2542422 C 0.5032332 -13.9317442 C 0.00000656 35068. 5343630949. 22.3154324 0.0001464 -0.0004836

Axial Thrust Force = 64.290 kips

Maser Consulting Connecticut
331 Newman Springs Road, Suite 203
Red Bank, NJ 07701

Structural Analysis CTL01051 - Wilimantic ECSU

0.0000688	35068.	5100738634.	22.2454401	0.0001529	-0.0005071	0.5244398	-14.6091154 C
0.00000719	35068.	4878967389.	22.1821645	0.0001594	-0.0005306	0.5455710	-15.2863551 C
0.0000750	35068.	4675677081.	22.1247681	0.0001659	-0.0005541	0.5666268	-15.9634629 C
0.0000781	35068.	4488649998.	22.0725477	0.0001724	-0.0005776	0.5876068	-16.6404384 C
0.00000813	35068.	4316009613.	22.0249080	0.0001790	-0.0006010	0.6085110	-17.3172810 C
0.00000844	35068.	4156157405.	21.9813421	0.0001855	-0.0006245	0.6293393	-17.9939903 C
0.0000875	35068.	4007723212.	21.9414153	0.0001920	-0.0006480	0.6500915	-18.6705658 C
0.00000906	35068.	3869525860.	21.9047531	0.0001985	-0.0006715	0.6707674	-19.3470071 C
0.0000938	35068.	3740541665.	21.8710308	0.0002050	-0.0006950	0.6913669	-20.0233135 C
0.0000969	35068.	3619879030.	21.8399658	0.0002116	-0.0007184	0.7118900	-20.6994846 C
0.00001000	35068.	3506757811.	21.8113106	0.0002181	-0.0007419	0.7323363	-21.3755199 C
0.00001031	35068.	3400492422.	21.7848478	0.0002247	-0.0007653	0.7527058	-22.0514189 C
0.00001063	35068.	3300477939.	21.7603856	0.0002312	-0.0007888	0.7729983	-22.7271812 C
0.00001094	35068.	3206178570.	21.7377542	0.0002378	-0.0008122	0.7932138	-23.4028061 C
0.00001125	35068.	3117118054.	21.7168026	0.0002443	-0.0008357	0.8133519	-24.0782931 C
0.00001156	35068.	3032871620.	21.6973961	0.0002509	-0.0008591	0.8334127	-24.7536418 C
0.00001188	35068.	2953059209.	21.6794143	0.0002574	-0.0008826	0.8533958	-25.4288520 C
0.00001219	35068.	2877339742.	21.6627490	0.0002640	-0.0009060	0.8733013	-26.1039224 C
0.00001281	35068.	2736981706.	21.6329885	0.0002772	-0.0009528	0.9128785	-27.4536427 C
0.00001344	35387.	2633460184.	21.6074438	0.0002904	-0.0009996	0.9521429	-28.8027992 C
0.00001406	36934.	2626437495.	21.5847750	0.0003035	-0.0010465	0.9910601	-30.1517089 C
0.00001469	38480.	2619907901.	21.5650766	0.0003167	-0.0010933	1.0296495	-31.5001751 C
0.00001531	40024.	2613811294.	21.5483517	0.0003300	-0.0011400	1.0679262	-32.8480350 C
0.00001594	41567.	2608095938.	21.5342614	0.0003432	-0.0011868	1.1058890	-34.1952839 C
0.00001656	43108.	2602718246.	21.5225181	0.0003565	-0.0012335	1.1435366	-35.5419158 C
0.00001719	44647.	2597640596.	21.5128760	0.0003698	-0.0012802	1.1808676	-36.8879260 C
0.00001781	46185.	2592830766.	21.5051242	0.0003831	-0.0013269	1.2178807	-38.2333094 C
0.00001844	47721.	2588260896.	21.4990805	0.0003964	-0.0013736	1.2545744	-39.5780604 C
0.00001906	49256.	2583906768.	21.4945866	0.0004097	-0.0014203	1.2909473	-40.9221738 C
0.00001969	50789.	2579747234.	21.4915046	0.0004231	-0.0014669	1.3269982	-42.2656441 C
0.00002031	52320.	2575763739.	21.4897136	0.0004365	-0.0015135	1.3627254	-43.6084655 C
0.00002094	53850.	2571939935.	21.4891075	0.0004499	-0.0015601	1.3981275	-44.9506325 C
0.00002156	55378.	2568261360.	21.4895923	0.0004634	-0.0016066	1.4332032	-46.2921393 C
0.00002219	56905.	2564715176.	21.4910850	0.0004768	-0.0016532	1.4679509	-47.6329799 C
0.00002281	58429.	2561289940.	21.4935118	0.0004903	-0.0016997	1.5023691	-48.9731485 C
0.00002344	59953.	2557975426.	21.4968068	0.0005038	-0.0017462	1.5364562	-50.3126391 C
0.00002406	61474.	2554762457.	21.5009113	0.0005174	-0.0017926		-51.6514454 C
0.00002469	62994.	2551642782.	21.5057723	0.0005309	-0.0018391	1.6036312	-52.9895612 C
0.00002531	64512.	2548608954.	21.5113427	0.0005445	-0.0018855	1.6367159	-54.3269801 C
0.00002594	66028.	2545654236.	21.5175796	0.0005581	-0.0019319	1.6694633	-55.6636957 C
0.00002656	67542.	2542772518.	21.5244446	0.0005717	-0.0019783	1.7018717	-56.9997015 C
0.00002719	69055.	2539958243.	21.5319027	0.0005854	-0.0020246	1.7339395	-58.3349907 C
0.00002781	70566.	2537206346.	21.5399225	0.0005991	-0.0020709	1.7656650	-59.6695566 C
0.00002844	72075.	2534512199.	21.5484753	0.0006128	-0.0021172	1.7970465	-60.000000 CY
0.00002906	73583.	2531871563.	21.5575349	0.0006265	-0.0021635	1.8280823	-60.0000000 CY
0.00002969	74956.	2524823688.	21.5538774	0.0006399	-0.0022101	1.8578827	-60.0000000 CY
0.00003031	76125.	2511337778.	21.5310571	0.0006527	-0.0022573	1.8859894	-60.000000 CY
0.00003094	77173.	2494464771.	21.4978221	0.0006651	-0.0023049	1.9129706	-60.0000000 CY
0.00003156	78130.	2475397705.	21.4576073	0.0006773	-0.0023527	1.9390492	-60.0000000 CY
0.00003219	79010.	2454673678.	21.4118427	0.0006892	-0.0024008	1.9643172	-60.000000 CY
0.00003281	79827.	2432828717.	21.3621443	0.0007009	-0.0024491	1.9888835	-60.000000 CY
0.00003344	80603.	2410552709.	21.3106320	0.0007126	-0.0024974	2.0128963	-60.000000 CY
0.00003406	81306.	2386965755.	21.2542212	0.0007240	-0.0025460	2.0361391	-60.000000 CY
0.00003469	81997.	2363890746.	21.1991606	0.0007353	-0.0025947	2.0590563	-60.000000 CY
0.00003531	82642.	2340316847.	21.1417760	0.0007466	-0.0026434	2.0813911	-60.000000 CY

Maser Consulting Connecticut
Maser Consulting Connecticut 331 Newman Springs Road, Suite 203
Red Bank, NJ 07701

Structural Analysis CTL01051 - Wilimantic ECSU

0.00003594	83230.	2315964874.	21.0810210	0.0007576	-0.0026924	2.1030704	-60.000000 CY	
0.00003656	83813.	2292332191.	21.0223585	0.0007686	-0.0027414	2.1244919	-60.000000 CY	
0.00003719	84381.	2269082170.	20.9645188	0.0007796	-0.0027904	2.1455708	-60.000000 CY	
0.00003969	86333.	2175323492.	20.7236343	0.0008225	-0.0029875	2.2252639	-60.000000 CY	
0.00004219	87954.	2084834017.	20.4736549	0.0008637	-0.0031863	2.2982381	-60.0000000 CY	
0.00004469	89361.	1999695619.	20.2288131	0.0009040	-0.0033860	2.3658816	-60.0000000 CY	
0.00004719	90604.	1920076640.	19.9969600	0.0009436	-0.0035864	2.4291186	-60.0000000 CY	
0.00004969	91651.	1844544233.	19.7710104	0.0009824	-0.0037876	2.4877213	-60.0000000 CY	
0.00005219	92617.	1774704888.	19.5536342	0.0010205	-0.0039895	2.5421726	-60.0000000 CY	
0.00005469	93458.	1708942297.	19.3387252	0.0010576	-0.0041924	2.5922772	-60.0000000 CY	
0.00005719	94196.	1647146039.	19.1338681	0.0010942	-0.0043958	2.6388423	-60.0000000 CY	
0.00005969	94928.	1590416765.	18.9484968	0.0011310	-0.0045990	2.6827506	-60.0000000 CY	
0.00006219	95542.	1536359438.	18.7665368	0.0011670	-0.0048030	2.7230169	-60.0000000 CY	
0.00006469	96088.	1485421644.	18.5833660	0.0012021	-0.0050079	2.7595251	-60.0000000 CY	
0.00006719	96627.	1438163438.	18.4122015	0.0012371	-0.0052129	2.7933491	-60.0000000 CY	
0.00006969	97132.	1393821518.	18.2513536	0.0012719	-0.0054181	2.8244892	-60.0000000 CY	
0.00007219	97553.	1351387373.	18.0926881	0.0013061	-0.0056239	2.8525615	-60.0000000 CY	
0.00007469	97949.	1311448087.	17.9435019	0.0013402	-0.0058298	2.8781258	-60.0000000 CY	
0.00007719	98341.	1274052250.	17.8058006	0.0013744	-0.0060356	2.9013516	-60.0000000 CY	
0.00007969	98721.	1238852707.	17.6702436	0.0014081	-0.0062419	2.9218177	-60.0000000 CY	
0.00008219	99073.	1205452959.	17.5371997	0.0014413	-0.0064487	2.9396620	-60.0000000 CY	
0.00008469	99347.	1173098846.	17.4020156	0.0014737	-0.0066563	2.9548172	-60.0000000 CY	
0.00008719	99616.	1142544122.	17.2757789	0.0015062	-0.0068638	2.9678240	-60.0000000 CY	
0.00008969	99881.	1113660024.	17.1580645	0.0015389	-0.0070711	2.9786695	-60.0000000 CY	
0.00009219	100144.	1086312248.	17.0482332	0.0015716	-0.0072784	2.9873266		
0.00009469	100404.	1060375896.	16.9456449	0.0016045	-0.0074855	2.9937657		
0.00009719	100660.	1035726162.	16.8495261	0.0016376	-0.0076924	2.9979555		
0.00009969	100872.	1011878066.	16.7484820	0.0016696	-0.0079004	2.9998436		
0.0001022	101055.	988917168.	16.6448450	0.0017009	-0.0081091	2.9962016	-60.0000000 CY	
0.0001047	101224.	966914801.	16.5453197	0.0017321	-0.0083179	2.9969343	-60.0000000 CY	
0.0001072	101391.	945920185.	16.4516142	0.0017634	-0.0085266	2.9993251	-60.0000000 CY	
0.0001097	101556.	925862482.	16.3634153	0.0017949	-0.0087351	2.9993034	-60.0000000 CY	
0.0001122	101717.	906671163.	16.2806907	0.0018265	-0.0089435	2.9934816	-60.000000 CY	
0.0001147	101877.	888301769.	16.2025740	0.0018582	-0.0091518	2.9971243	-60.0000000 CY	
0.0001172	102035.	870701408.	16.1287861	0.0018901	-0.0093599	2.9993132	-60.0000000 CY	
0.0001197	102192.	853820945.	16.0591022	0.0019221	-0.0095679	2.9997372	-60.0000000 CY	
0.0001222	102330.	837482344.	15.9907939	0.0019539	-0.0097761	2.9943779	-60.0000000 CY	
0.0001247	102450.	821650910.	15.9227068	0.0019854	-0.0099846	2.9949314	-60.0000000 CY	
0.0001272	102567.	806422549.	15.8578164	0.0020169	-0.0101931	2.9978243	-60.0000000 CY	
0.0001297	102665.	791634019.	15.7872144	0.0020474	-0.0104026	2.9994606	-60.0000000 CY	
0.0001322	102760.	777381479.	15.7175793	0.0020777	-0.0106123	3.0000000	-60.0000000 CY	
0.0001347	102853.	763642024.	15.6517988	0.0021081	-0.0108219	2.9954317	-60.0000000 CY	
0.0001372	102945.	750398157.	15.5889712	0.0021386	-0.0110314	2.9913737	60.0000000 CY	
0.0001522	103481.	679958419.	15.2669663	0.0023234	-0.0122866	2.9932632	60.0000000 CY	
0.0001672	103906.	621494616.	15.0003914	0.0025079	-0.0135421	2.9999201	60.0000000 CY	
0.0001822	104211.	572000868.	14.7539985	0.0026880	-0.0148020	2.9923641	60.0000000 CY	
0.0001972	104462.	529761742.	14.5485556	0.0028688	-0.0160612	2.9990061	60.000000 CY	
0.0002122	104663.	493257241.	14.3944512	0.0030543	-0.0173157	2.9871322	60.0000000 CYT	
0.0002272	104808.	461328850.	14.2701992	0.0032420	-0.0185680	2.9991623	60.0000000 CYT	
0.0002422	104871.	433016772.	14.1635961	0.0034302	-0.0198198	2.9890042	60.0000000 CYT	
0.0002572	104920.	407951979.	14.0783204	0.0036208	-0.0210692	2.9860383	60.000000 CYT	
0.0002722	104959.	385614269.	14.0096592	0.0038133	-0.0223167	2.9980774	60.0000000 CYT	

Sum	mary of Res	ults for No	minal (Unfa	ctored)	Momer	t Capacity for Section 1		
	Moment values interpolated at maximum compressive strain = 0.003 or maximum developed moment if pile fails at smaller strains.							
Load No.	Axial kips	Thrust	Nominal M in-kip	-	ap. N train	Лах. Comp.		
1	64.2	90	104604.278	3	0.0030	0000		
	nat the value ed by a stren					ove are not		
			-			pends on whether 5) or spirals (0.70).		
factor		ultimate m	oment capa	icity aco	cording	e strength reduction to ACI 318, Section ng followed.		
bendin	•	compute			•	s and corresponding actor values used for		
Axial Load No.	Resist. Factor for Moment	Nominal Moment (in-kips	Ult. (Fac Cap Ax. Ti kips	hrust	(Fac) Momer kips	Bend. Stiff. t Cap at Ult Mom kip-in^2		
1	0.65	104604.	41.78850	0 0	67993.	2.5419E+09		
1	0.70	104604.	45.00300	0	73223.	2.5325E+09		
1	0.75	104604.	48.21750	0	78453.	2.4678E+09		
	Layering Co	prrection E	quivalent De	epths o	f Soil &	Rock Layers		
- Layer No.	Layer Top Below	ivalent Depth Sa Below Grnd Surf Above	Layer	Rock o is Belo	or Inte	0 F1 egral Integral Layer for Layer Ibs		
1 2 3		0.00 5.0000 14.0000		o No No	0.00 2213 11919			
fo	r Layer n. La	ivering con	ection equi	valent o	depths a	the F0 and F1 integrals are computed only		

for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays,

non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head	=	39757.0 lbs
Applied moment at pile head	=	59780568.0 in-lbs
Axial thrust load on pile head	=	64290.0 lbs

Bending Soil Res. Soil Spr. Distrib. Depth Deflect. Bending Shear Slope Total Х S Es*h Lat. Load Moment Force Stress Stiffness У р inches feet in-lbs lbs radians psi* in-lb² lb/inch lb/inch lb/inch

							_		
0.00	0.7765	5.98E+07	39757.	-0.00608	0.00	2.56E+12	0.00	0.00	0.00
0.2800	0.7562	5.99E+07	39757.	-0.00600	0.00	2.56E+12	0.00	0.00	0.00
0.5600	0.7362	6.01E+07	39757.	-0.00592	0.00	2.56E+12	0.00	0.00	0.00
0.8400	0.7164	6.02E+07	39757.	-0.00584	0.00	2.56E+12	0.00	0.00	0.00
1.1200	0.6969	6.03E+07	39756.	-0.00576	0.00	2.56E+12	-0.3706	1.7866	0.00
1.4000	0.6777	6.05E+07	39754.	-0.00568	0.00	2.56E+12	-1.2012	5.9552	0.00
1.6800	0.6588	6.06E+07	39748.	-0.00560	0.00	2.56E+12	-1.9848	10.1238	0.00
1.9600	0.6401	6.07E+07	39740.	-0.00552	0.00	2.56E+12	-2.7226	14.2924	0.00
2.2400	0.6216	6.09E+07	39730.	-0.00544	0.00	2.56E+12	-3.4154	18.4611	0.00
2.5200	0.6035	6.10E+07	39718.	-0.00536	0.00	2.56E+12	-4.0644	22.6297	0.00
2.8000	0.5856	6.11E+07	39703.	-0.00528	0.00	2.56E+12	-4.6704	26.7983	0.00
3.0800	0.5680	6.13E+07	39686.	-0.00520	0.00	2.56E+12	-5.2345	30.9670	0.00
3.3600	0.5506	6.14E+07	39668.	-0.00512	0.00	2.55E+12	-5.7577	35.1356	0.00
3.6400	0.5335	6.15E+07	39648.	-0.00504	0.00	2.55E+12	-6.2411	39.3042	0.00
3.9200	0.5167	6.17E+07	39626.	-0.00496	0.00	2.55E+12	-6.6856	43.4728	0.00
4.2000	0.5002	6.18E+07	39603.	-0.00488	0.00	2.55E+12	-7.0922	47.6415	0.00
4.4800	0.4839	6.19E+07	39578.	-0.00480	0.00	2.55E+12	-7.4621	51.8101	0.00
4.7600	0.4679	6.21E+07	39553.	-0.00472	0.00	2.55E+12	-7.7962	55.9787	0.00
5.0400	0.4522	6.22E+07	39526.	-0.00464	0.00	2.55E+12	-8.0955	60.1473	0.00
5.3200	0.4368	6.23E+07	39498.	-0.00455	0.00	2.55E+12	-8.3610	64.3160	0.00
5.6000	0.4216	6.25E+07	39470.	-0.00447	0.00	2.55E+12	-8.5939	68.4846	0.00
5.8800	0.4068	6.26E+07	39441.	-0.00439	0.00	2.55E+12	-8.7952	72.6532	0.00
6.1600	0.3921	6.27E+07	35058.	-0.00431	0.00	2.55E+12	-2600.	22275.	0.00
6.4400	0.3778	6.28E+07	26077.	-0.00422	0.00	2.55E+12	-2747.	24427.	0.00
6.7200	0.3638	6.29E+07	16606.	-0.00414	0.00	2.55E+12	-2891.	26699.	0.00
7.0000	0.3500	6.30E+07	6658.	-0.00406	0.00	2.55E+12	-3031.	29096.	0.00
7.2800	0.3365	6.30E+07	-3754.	-0.00398	0.00	2.55E+12	-3167.	31623.	0.00
7.5600	0.3233	6.29E+07	-14617.	-0.00389	0.00	2.55E+12	-3299.	34287.	0.00
7.8400	0.3103	6.29E+07	-25915.	-0.00381	0.00	2.55E+12	-3426.	37095.	0.00
8.1200	0.2977	6.28E+07	-37632.	-0.00373	0.00	2.55E+12	-3549.	40054.	0.00
8.4000	0.2853	6.26E+07	-49752.	-0.00364	0.00	2.55E+12	-3666.	43172.	0.00
8.6800	0.2732	6.24E+07	-62257.	-0.00356	0.00	2.55E+12	-3777.	46458.	0.00
8.9600	0.2614	6.22E+07	-75126.	-0.00348	0.00	2.55E+12	-3883.	49919.	0.00
9.2400	0.2498	6.19E+07	-88348.	-0.00340	0.00	2.55E+12	-3987.	53633.	0.00
9.5200	0.2385	6.16E+07	-101912.	-0.00332	0.00	2.55E+12	-4087.	57569.	0.00

Maser Consu 331 Newman Red Bank, NJ	Springs Ro		3		uctural Ai 51 - Wilim	nalysis antic ECSU			Pi	Page 21 2018 4:39 PM er Check.xmcd
									Maser Project N	No. 18946006A
9.8000	0.2275	6.12E+07	-115800.	-0.00324	0.00	2.56E+12	-4180.	61730.	0.00	
10.0800	0.2168	6.08E+07	-129990.	-0.00316	0.00	2.56E+12	-4267.	66133.	0.00	
10.3600	0.2063	6.04E+07	-144461.	-0.00308	0.00	2.56E+12	-4347.	70793.	0.00	
10.6400	0.1961	5.99E+07	-159189.	-0.00300	0.00	2.56E+12	-4420.	75730.	0.00	
10.9200	0.1862	5.93E+07	-174150.	-0.00292	0.00	2.56E+12	-4486.	80964.	0.00	
11.2000	0.1765	5.87E+07	-189287.	-0.00284	0.00	2.56E+12	-4524.	86131.	0.00	
11.4800	0.1671	5.80E+07	-204280.	-0.00277	0.00	2.56E+12	-4400.	88495.	0.00	
11.7600	0.1579	5.73E+07	-218846.	-0.00269	0.00	2.56E+12	-4270.	90860.	0.00	
12.0400	0.1490	5.66E+07	-232964.	-0.00261	0.00	2.57E+12	-4134.	93224.	0.00	
12.3200	0.1403	5.58E+07	-246616.	-0.00254	0.00	2.57E+12	-3992.	95589.	0.00	
12.6000	0.1319	5.49E+07	-259783.	-0.00247	0.00	2.57E+12	-3846.	97953.	0.00	
12.8800	0.1237	5.40E+07	-272451.	-0.00240	0.00	2.57E+12	-3694.	100317.	0.00	
13.1600	0.1158	5.31E+07	-284602.	-0.00233	0.00	2.57E+12	-3539.	102682.	0.00	
13.4400 13.7200	0.1081 0.1006	5.21E+07 5.11E+07	-296225. -307306.	-0.00226 -0.00219	0.00 0.00	2.58E+12 2.58E+12	-3379. -3216.	105046. 107410.	0.00 0.00	
13.7200	0.09336	5.00E+07			0.00		-3216. -3050.	107410.		
14.0000	0.09330	4.89E+07		-0.00213	0.00	2.58E+12 2.58E+12	-3050. -2881.	112139.		
14.2000	0.07951	4.78E+07		-0.00200	0.00	2.59E+12	-2710.	114504.		
14.8400	0.07290	4.67E+07		-0.00200	0.00	2.59E+12	-2535.	116868.		
15.1200	0.06649	4.55E+07			0.00	2.59E+12	-2359.	119232.		
15.4000	0.06028	4.43E+07		-0.00182	0.00	2.60E+12	-2181.	121597.		
15.6800	0.05426	4.31E+07		-0.00176	0.00	2.60E+12	-2002.	123961.		
15.9600	0.04843	4.18E+07	-375304.	-0.00171	0.00	2.61E+12	-1821.	126325.	0.00	
16.2400	0.04277	4.06E+07	-381115.	-0.00166	0.00	2.61E+12	-1638.	128690.	0.00	
16.5200	0.03730	3.93E+07	-386312.	-0.00160	0.00	2.62E+12	-1455.	131054.	0.00	
16.8000	0.03199	3.80E+07		-0.00155	0.00	2.62E+12	-1270.	133419.		
17.0800	0.02685	3.66E+07		-0.00151	0.00	2.63E+12	-1085.	135783.		
17.3600	0.02187	3.53E+07		-0.00146	0.00	2.68E+12				
17.6400	0.01703	3.40E+07		-0.00144	0.00	1.60E+13				
17.9200 18.2000	0.01222 0.00743	3.26E+07 3.13E+07		-0.00143 -0.00142	0.00 0.00	1.61E+13	-321.0784			
18.2000	0.00743	2.99E+07		-0.00142	0.00	1.61E+13				
18.7600		2.85E+07			0.00	1.61E+13	93.1183	149969		
19.0400	-0.00203				0.00	1.61E+13				
19.3200		2.58E+07			0.00	1.61E+13				
19.6000		2.45E+07			0.00	1.61E+13				
19.8800		2.31E+07			0.00	1.61E+13				
20.1600		2.18E+07			0.00	1.62E+13	1230.	161791.		
20.4400					0.00	1.62E+13	1474.	164156.		
20.7200	-0.03481	1.92E+07	-384309.	-0.00137	0.00	1.62E+13	1725.	166520.	0.00	
21.0000			-378083.		0.00	1.62E+13	1981.	168884.		
21.2800			-370985.		0.00	1.62E+13	2244.	171249.		
21.5600					0.00	1.62E+13	2512.	173613.		
21.8400			-354097.		0.00	1.62E+13	2786.	175977.		
22.1200			-344267.		0.00	1.62E+13	3066.	178342.		
22.4000			-333486.		0.00	1.62E+13	3351. 2642	180706.		
22.6800 22.9600			-321735. -308994.		0.00 0.00	1.63E+13 1.63E+13	3643. 3941.	183071. 185435.	0.00 0.00	
22.9600			-308994. -295241.		0.00	1.63E+13 1.63E+13	3941. 4245.	187799.	0.00	
23.2400			-295241. -280458.		0.00	1.63E+13	4245. 4555.	190164.	0.00	
23.8000			-264623.		0.00	1.63E+13	4333. 4871.	192528.	0.00	
24.0800				-0.00134	0.00	1.63E+13	4935.	185214.	0.00	
24.3600				-0.00134	0.00	1.63E+13	4984.	178062.	0.00	
24.6400			-214668.			1.63E+13	5027.	171385.	0.00	
24.9200	-0.1031	3711147.	-197714.	-0.00134	0.00	1.63E+13	5065.	165124.	0.00	

Maser Consulting Connecticut 331 Newman Springs Road, Suite 203 Red Bank, NJ 07701

Structural Analysis CTL01051 - Wilimantic ECSU

									Maser Pro	ject No. 18946	00
25.2000	-0.1076	3075711.	-180604.	-0.00134	0.00	1.63E+13	3 5119	. 159904.	0.00		
25.4800	-0.1121		-163302.								
25.7600		1978898.	-145806.								
26.0400	-0.1211	1518833.	-128125.								
26.3200	-0.1256	1118480.	-110268.		0.00						
26.6000	-0.1301	778409.	-92247.	-0.00134	0.00	1.63E+13			0.00		
26.8800	-0.1346	499158.	-74071.	-0.00134	0.00	1.63E+13			0.00		
27.1600	-0.1391	281233.	-55748.	-0.00134	0.00	1.63E+13			0.00		
27.4400	-0.1436	125109.		-0.00134	0.00	1.63E+13			0.00		
27.7200	-0.1481	31228.				1.63E+13	5550.	125921.	0.00		
28.0000	-0.1526	0.00	0.00 -0			.63E+13	5583.	61475.	0.00		
are compu stresses i polated fro	uted only f n concrete om the out	or elastic s e and steel tput for nor	ections or . Stresses llinear ben	nly and do n	not equal e and ste ties relati	el may be ir					
Output Sum	nmary for	Load Case	No. 1:								
Maximum b Maximum s Depth of ma Depth of ma Number of i Number of a	hear force aximum be aximum sl iterations	e = ending mor hear force =	= -405 nent = = 18.7 216	76000000 fe	0 feet bel	ow pile hea pile head	d				
Su	mmary of	Pile-head F	Responses	for Conver	 ntional Ar 	alyses					
Definitions	of Pile-he	ad Loading	Condition	S:							
Load Type 2 Load Type 2 Load Type 2 Load Type 4 Load Type 5	2: Load 1 3: Load 1 4: Load 1	= Shear, V, = Shear, V, = Top Defle	lbs, and l lbs, and l ection, y, ir	_oad 2 = SI _oad 2 = Ro nches, and	ope, S, n ot. Stiffne Load 2 =	adians ess, R, in-Ib Moment, N	/l, in-Ibs				
Load Load Case Type No. 1 I					Deflectio	nead Max S on Rotation ans Ibs					
1 V, Ib	39757. N	/, in-lb 5.	.98E+07	64290.	0.7765	-0.00608	-405145.	6.30E+07			
Maximum p Maximum p						8276 deg.					

Summary of Warning Messages

The following warning was reported 3888 times

**** Warning ****

An unreasonable value was input for friction angle has been specified for a soil layer defined uisng the sand criteria. The input value is either smaller than 20 degrees or higher than 48 degrees. The input data should be checked for correctness.

The analysis ended normally.

Antenna Mount Analysis

FOR

CT1051 – Willimantic ECSU

FA # 10035388 83 Windham Street Willimantic, CT 06226 Windham County

Mount Utilization: 58.0%*

*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

March 1, 2019

Prepared For

AT&T 550 Cochituate Road Framingham, MA 01701

Prepared By

Maser Consulting Connecticut 331 Newman Springs Road, Suite 203 Reutionk, NJ 07701 00073/ 383.1950 Petros E. Tsoukaics, P.E. Geographic Discipline Leader Connection (Licenson No. 32557

MC Project No. 18946006A

S

finB www.maserconsulting.com

Objective:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

Introduction:

Maser Consulting Connecticut has reviewed the following documents in completing this report:

Document Type	Remarks	Source
Previous Mount Analysis	Maser Consulting Connecticut Project #: 18946006A Dated April 9, 2018	Maser Consulting Connecticut
Radio Frequency Data Sheet (RFDS)	RFDS ID: 1736989 Dated March 19, 2018	Smartlink, LLC

Codes, Standards and Loading:

Jurisdictional adopted codes and standards:

- 2018 Connecticut State Building Code, Incorporating the 2015 International Building Code Maser Consulting Connecticut utilized the following codes and standards:
 - Structural Standards for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures ANSI/TIA-222-H
 - Ultimate Wind Speed 120 mph (3-Second Gust)
 - Exposure Category B
 - Risk Category II
 - Topographic Factor, K_{zt} 1.0
 - Mean Base Elevation (AMSL) 354.1'
 - Ice Wind Speed 50 mph (3-Second Gust)
 - Design Ice Thickness 1"
 - o Maintenance Wind Speed 30 mph
 - Maintenance Live Load 250 lbs. at the worst-case location on the mount
 - Maintenance Live Load 500 lbs. at the worst-case antenna location

The following equipment has been considered for the analysis of the antenna mount(s):

Quantit y	Manufacturer	Antenna/ Appurtenance	Status	Sector
3	CCI	OPA65R-BU8B	Proposed	Alpha, Beta, & Gamma
3	POWERWAVE	7770	Existing	Alpha, Beta, & Gamma
3	KMW	AM-X-CD-17-65-00T- RET	Existing	Alpha, Beta, & Gamma
3	KATHREIN	80010966	Proposed	Alpha, Beta, & Gamma
2	Raycap	DC6-48-60-18-8F	Existing/Proposed	Alpha & Beta
3	ERICSSON	RRUS 11	Existing	Alpha, Beta, & Gamma
3	ERICSSON	RRUS 4478 B14	Proposed	Alpha, Beta, & Gamma
3	ERICSSON	RRU 4415 B25	Proposed	Alpha, Beta, & Gamma
3	ERICSSON	RRUS 32	Proposed	Alpha, Beta, & Gamma
3	ERICSSON	RRUS 12	Existing	Alpha, Beta, & Gamma
3	ERICSSON	RRUS E2	Proposed	Alpha, Beta, & Gamma
6	POWERWAVE	LGP 17205	Existing	Alpha, Beta, & Gamma
6	KAELUS	DBC0061F1V51-2 (SINGLE)	Proposed	Alpha, Beta, & Gamma

Analysis Approach:

The antenna mount in all sectors has been modeled in RISA-3D (V17), a comprehensive structural analysis program. The program performs design checks of structures under user specified loads. The user specified loads have been calculated separately based on the requirements of the above referenced codes and standards. The program performs an analysis based on the applicable steel code to determine the adequacy of the members and produces the reactions at the connection points of the mounts to the existing structure.

The scope of this assessment does not include analysis of the supporting tower structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent engineer.

Assumptions:

General Site Design Assumptions:

- 1. All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct.
- 2. The mounting frames were properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 3. The connection from the tower to the mount is in good condition and has been analyzed and found sufficient assuming it will achieve its theoretical strength.
- 4. Due to site specific analysis parameters, it is assumed that wind forces will control over seismic forces and as such, seismic forces have not been considered in this analysis.
- 5. It is the responsibility of the client to ensure that the information provided to Maser Consulting Connecticut and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that the original design, material production, fabrication, and erection of the existing structure was performed in accordance with accepted industry design standards and in accordance with all applicable codes. Further, it is assumed that the existing structure and appurtenances have been properly maintained in accordance with all applicable codes and manufacturer's specifications and no structural defects and/or deterioration to the structural members has occurred.
- 6. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 7. The existing equipment loading has been applied at locations determined from the supplied documentation and field observations. Should the existing equipment configuration differ from what is utilized in this analysis, the results of this analysis are invalid.
- 8. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.

Site Specific Assumptions and Design Parameters:

- 1. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:
 - Angle, Plate
 HSS (Rectangular)
 Pipe
 Bolts
 ASTM A36 (Gr. 36)
 ASTM 500 (Gr. B-46)
 ASTM A53 (Gr. B-35)
 ASTM A325
- 2. All proposed equipment locations are to be as depicted in the rendered diagram in Appendix A of this report. Any changes made to the proposed equipment locations will render this report invalid.

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut

Calculations:

Selected calculations and analysis output can be found in Appendix A of this report.

Analysis Results and Conclusion:

Component	Utilization %	Pass/Fail
Face Horizontals	26.0	Pass
Standoff Horizontals	58.0	Pass
Antenna Pipe	37.1	Pass
Antenna Pipe 2	38.9	Pass
Support Rail	30.1	Pass
Support Rail Angle	18.2	Pass
Mount Connection	33.8	Pass

Structure Rating – (Controlling Utilization of all Components)

58.0%

Recommendation:

The existing mounting frame is sufficient for the final loading configuration once the below changes are made:

• Install handrail kit (Site Pro 1 Part #: HRK-12 or EOR approved equivalent) [mount modification sketch and specification sheet attached].

The conclusions reached by Maser Consulting Connecticut in this evaluation are only applicable for the structural members supporting the **AT&T** telecommunications installation described herein. Further, no structural qualifications are made or implied by this document for the existing structure. The mount was checked up to, and including, the bolts that fasten it to the mount collar. However, no structural qualifications are made or implied by this document for the mount collar.

Maser Consulting Connecticut reserves the right to amend this report if additional information regarding the members is provided. The conclusions reached by Maser Consulting Connecticut in this report are only valid for the appurtenances listed in this report. Any change to the installation will require a revision to this structural analysis.

We appreciate the opportunity to be of service on this project. If you should have any questions or require any additional information, please do not hesitate to call our office.

Sincerely, Maser Consulting Connecticut

Petros E. Tsoukalas, P.E. Geographic Discipline Leader

Anthony Bassett Engineer

\\\ujfas01\Projects\2018\18946000A\18946006A\Structural\Mount Analysis\Rev 1\Word\ Antenna Mount Analysis - H Code – Connecticut.docx

Disclaimer of Warranties:

The engineering services rendered by Maser Consulting Connecticut in connection with this structural analysis are limited to a computer analysis of the mounting frame structure and theoretical capacity of its main structural members. No allowance has been made for any damaged, bent, missing, loose, or rusted members or connections.

Maser Consulting Connecticut will accept no liability which may arise due to any deficiency in design, material, fabrication, erection, construction, or lack of maintenance. Maser Consulting Connecticut has not performed a site visit of the mounting frame to verify member sizes or equipment loading. Contractor should inspect the condition of the existing structure, mounting frames and connections and notify Maser Consulting Connecticut of any discrepancies or deficiencies before proceeding with installation.

The attached sketch is a schematic representation of the analyzed mounting frames. The contractor shall be responsible for field verifying the existing conditions, proper fit, and clearances in the field. Any mention of structural modifications are reasonable estimates and should not be used as a construction document. Construction documents depicting the required modification are obtainable from Maser Consulting Connecticut, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as part of our work. We recommend that material of suitable size and strength be purchased from a reputable manufacturer.

Maser Consulting Connecticut makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of the mounting frames. Maser Consulting Connecticut will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report.

APPENDIX A

ATT	Computed By:	AB
CT1051	Date:	3/1/2019
18946006A	Verified By:	PET
Antenna Mount Analysis	Page:	1

Version 2.2

LOADING SUMMARY

Client: Site Name:

Title:

Quantity	Manufacturer	Antenna/ Appurtenance	Status	Sector
3	CCI	OPA65R-BU8B	Proposed	Alpha, Beta, & Gamma
3	POWERWAVE	7770	Existing	Alpha, Beta, & Gamma
3	KMW	AM-X-CD-17-65-00T-RET	Existing	Alpha, Beta, & Gamma
3	KATHREIN	80010966	Proposed	Alpha, Beta, & Gamma
2	Raycap	DC6-48-60-18-8F	isting/Propos	Alpha & Beta
3	ERICSSON	RRUS 11	Existing	Alpha, Beta, & Gamma
3	ERICSSON	RRUS 4478 B14	Proposed	Alpha, Beta, & Gamma
3	ERICSSON	RRU 4415 B25	Proposed	Alpha, Beta, & Gamma
3	ERICSSON	RRUS 32	Proposed	Alpha, Beta, & Gamma
3	ERICSSON	RRUS 12	Existing	Alpha, Beta, & Gamma
3	ERICSSON	RRUS E2	Proposed	Alpha, Beta, & Gamma
6	POWERWAVE	LGP 17205	Existing	Alpha, Beta, & Gamma
6	KAELUS	DBC0061F1V51-2 (SINGLE)	Proposed	Alpha, Beta, & Gamma

Client:	ATT	Computed By:	AB	
Site Name:	CT1051	Date:	3/1/2019	
Project No.	18946006A	Verified By:	PET	
Title:	Antenna Mount Analysis	Page:	2	

I. DESIGN INPUTS

Calculations for gravity and lateral loading on equipment and support mounts are determined as per the ANSI/TIA-222-H Code

Wind Load Inputs Parameters		<u>Reference</u>	<u>Equation</u>
wind Loud inputs Parameters			
Antenna Centerline	z 138 ft		
Ultimate Wind Speed	V _u 120 mph		
Normal Wind Speed with Ice (3 sec. Gust):	V _i 50 mph	Figure B9, p. 238	
Maintenace Wind Speed:	V _s 30 mph	Section 2.8.3	
Design Ice Thickness	t _i <i>1.0</i> in	Figure B9, p. 238	
Surface Roughness:	В	Section 2.6.5.1.1	
Exposure Category:	В	Section 2.6.5.1.2	
Risk Category:	11	Table 2-1	
Rooftop Wind Speed-Up Factor	K _s 1.0	Section 2.6.7	
Ground Elevation:	354.1 ft		
Ground Elevation Factor:	K _e 0.98726	Table 2-6	
Gust Effect Factor:	G _h 1.00	Section 2.6.9	
Wind Directionality Factor:	K _d 0.95	Table 2-2	
Topographic Category:	1	Section 2.6.6.2	
Shielding Factor	K _a 0.9	Section 16.6	
Wind Load Coefficients			
Importance Factors:			
Iced:	l _{ice} 1	Table 2-3	
Exposure Category Coefficients:			
3-s Gust-Speed Power Law Exponent:	α 7.0	Table 2-4	
Nominal Height of the Atmospheric Boundary Layer:	Z g 1200 ft	Table 2-4	
Min. Value for k _z :	Kz _{min} 0.70	Table 2-4	
Terrain Constant:	K _e 0.90	Table 2-4	
Velocity Pressure Exposure Coefficient:	K _z 1.083	Section 2.6.5.2	=2.01 $\cdot (z/z_g)^{2/a'}$
Topographic Category Coefficients:	11		
Topographic Constant:	K _t N/A	Table 2-5	
Height Attenuation Factor:	f N/A	Table 2-5	=e ^(f-z/H)
Height Reduction Factor:	K _h N/A	Section 2.6.6.2.1	
Topographic Factor:	K _{zt} 1.00	Section 2.6.6.2	$= [1 + (K_c \cdot K_t / K_h)]^2$
Ice Accumulation:			
Ice Velocity Pressure Exposure Coefficient:	K _{iz} 1.15		$=(z/33)^{0.10}$
Factored Ice Thickness:	t _{iz} 1.15 in	Section 2.6.10	$= t_i \cdot I \cdot K_{iz} \cdot (K_{zt})^{0.35}$
Ice Density:	ρ _i 56.00 pcf		
Design Wind Pressures:			
Velocity Pressure:	q _z 33.72 psf	Section 2.6.11.6	$=0.00256 \cdot K_z \cdot K_{zt \cdot K_s \cdot K_e} \cdot K_d \cdot K_a \cdot V^2$
Velocity Pressure (With Ice):	q _{zi} 5.85 psf	Section 2.6.11.6	=0.00256·K _z ·K _{zt·Ks·Ke} ·K _d ·K _a ·V _i ²
Velocity Pressure (Maintenance):	q _{zm} 2.11 psf	Section 2.6.11.6	=0.00256·K _z ·K _{zt·Ks·Ke} ·K _d ·K _a ·V _m ²

Client:	ATT	Computed By:	AB
Site Name:	CT1051	Date:	3/1/2019
Project No.	18946006A	Verified By:	PET
Title:	Antenna Mount Analysis	Page:	3

II. CALCULATIONS

• Wind Load on Appurtenances

Dimensions and Force Coefficients

	Non-Iced Condition									Iced Condition						
	N	lounting Pipe	9			Equipment			I	Mounting Pip	e			Equipment		
Antenna/ Appurtenance	Length	Diameter	Force Coefficient	Height (in)	Width (in)	Depth (in)	Force Co	efficient	Length (in)	Diameter (in)	Force Coefficient	Height (in)	Width (in)	Depth (in)	Force Co	oefficient
	(in) (in)	Ca	(11)	(11)	(11)	(m) C _{a Front}	C _{a Side}	(11)	(11)	Ca	(11)	(in)	(111)	C _{a Front}	C _{a Side}	
OPA65R-BU8B	108.0	2.375	1.200	95.90	11.70	8.40	1.44	1.55	110.3	4.7	1.168	98.21	14.01	10.71	1.40	1.47
7770	108.0	2.375	1.200	55.00	11.00	5.00	1.31	1.53	110.3	4.7	1.168	57.31	13.31	7.31	1.28	1.43
AM-X-CD-17-65-00T-RET	108.0	2.375	1.200	96.00	11.80	6.00	1.44	1.70	110.3	4.7	1.168	98.31	14.11	8.31	1.40	1.56
80010966	108.0	2.375	1.200	96.00	20.00	6.90	1.30	1.63	110.3	4.7	1.168	98.31	22.31	9.21	1.28	1.52
RRUS 4478 B14	0.0	0.000	0.000	18.10	13.40	8.30	1.20	1.20	0.0	0.0	0.000	20.41	15.71	10.61	1.20	1.20
RRU 4415 B25	0.0	0.000	0.000	15.00	13.20	5.40	1.20	1.21	0.0	0.0	0.000	17.31	15.51	7.71	1.20	1.20
LGP 17205	0.0	0.000	0.000	14.40	13.90	3.70	1.20	1.26	0.0	0.0	0.000	16.71	16.21	6.01	1.20	1.21
DBC0061F1V51-2 (SINGLE)	0.0	0.000	0.000	8.00	6.20	3.20	1.20	1.20	0.0	0.0	0.000	10.31	8.51	5.51	1.20	1.20

		No	on-Iced Cond	ition		ced Conditio	Maintenance Condition		
Antenna/ Appurtenance	# of Brackets	Wind Force (lbs.)		Gravity (lbs.)	Wind Force (lbs.)		Gravity (lbs.)	Wind Force (lbs.)	
		F _N	F _T		F _N	F _T		F _N	F _T
OPA65R-BU8B	2	193.2	181.9	40.8	40.5	43.7	89.7	12.1	11.4
7770	2	110.5	85.4	17.5	25.9	24.4	44.6	6.9	5.3
AM-X-CD-17-65-00T-RET	2	194.7	150.6	37.3	40.8	38.2	83.1	12.2	9.4
80010966	2	296.7	162.4	62.9	58.6	40.3	128.8	18.5	10.2
RRUS 4478 B14	1	68.1	42.2	59.4	15.6	10.6	40.6	4.3	2.6
RRU 4415 B25	1	55.6	23.0	44.0	13.1	6.5	31.3	3.5	1.4
LGP 17205	1	56.2	15.7	41.0	13.2	4.9	30.5	3.5	1.0
DBC0061F1V51-2 (SINGLE)	1	13.9	7.2	9.5	4.3	2.8	9.8	0.9	0.4

* ALL CALCULATED LOADS ARE PER MOUNTING BRACKET. TO GET THE TOTAL EQUIPMENT LOAD, MULTIPLY THE INDIVIDUAL LOADS BY THE NUMBER OF BRACKETS

• Wind Load on Framing Members

Non-Iced Condition						on	Iced Condition						Maintenance Condition
Member Category	Member	Length (in)		Exposed Wind Height	Force Coefficient	Wind Load	Exposed Wind	Depth (in)	Length	Force Coefficient	Wind Load (plf)	Ice Weight	Wind Load (plf)
Sha	Snape	Shape Shape	Surface	(in)	C _a (plf)	(pir)	Height (in)		(in)	C _a (pii)	(plf)		
Pipe	Pipe 2.0	108	Round	2.38	1.20	8.01	4.68	4.68	110.31	1.20	2.74	4.97	0.50
Pipe	Pipe 2.5	108	Round	2.88	1.20	9.69	5.18	5.18	110.31	1.20	3.03	5.68	0.61
Square HSS	HSS 4x4x1/4	168	HSS	4.00	1.25	14.05	6.31	6.31	170.31	1.25	3.85	9.60	0.88
Square HSS	HSS 4x4x1/4	92	HSS	4.00	1.21	13.61	6.31	6.31	94.31	1.21	3.73	9.60	0.85
Pipe	Pipe 2.0	150	Round	2.38	1.20	8.01	4.68	4.68	152.31	1.20	2.74	4.97	0.50
Equal Angle	L2.5x2.5	15	Square	2.50	1.36	9.52	4.81	4.81	17.31	1.36	3.18	6.61	0.60
												Grating	10.73

	Client:	ATT	Computed By:	AB
	Site Name:	CT1051	Date:	3/1/2019
	Project No.	18946006A	Verified By:	PET
	Title:	Antenna Mount Analysis	Page:	4
ASER				

BASIC EQUATIONS

ANSI/TIA-222-H Reference

Force Coefficient:
(Square)
$$C_{\underline{f}} \text{square}(h, w) := \begin{bmatrix} 1.2 & \text{if } \frac{h}{w} \le 2.5 & \text{able 2-9} \\ 1.2 + \frac{0.2}{4.5} \cdot \left(\frac{h}{w} - 2.5\right) \end{bmatrix} & \text{if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \\ \begin{bmatrix} 1.4 + \frac{0.6}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} & \text{if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ 2.0 & \text{otherwise} \end{bmatrix}$$

Force Coefficient:
(Round)
$$C_{\underline{f}_{round}}(h, w) := \begin{bmatrix} 0.7 & \text{if } \frac{h}{w} \le 2.5 & \text{Table 2-9} \\ 0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 2.5\right) \end{bmatrix} & \text{if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \\ \begin{bmatrix} 0.8 + \frac{0.4}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} & \text{if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ 1.2 & \text{otherwise} \end{bmatrix}$$

 Terrain Exposure Constants:
 Table 2-5

 $\alpha :=$ 7.0 if Exp = "B"
 $Z_g :=$ 1200ft if Exp = "B"
 $K_{zmin} :=$ 0.70 if Exp = "B"

 9.5 if Exp = "C"
 900ft if Exp = "C"
 0.85 if Exp = "C"
 0.85 if Exp = "C"
 1.03 if Exp = "D"

MASER
CONSULTING P.A.

Client:	ATT	Computed By:	AB
Site Name:	CT1051	Date:	3/1/2019
Project No.	18946006A	Verified By:	PET
Title:	Antenna Mount Analysis	Page:	5

BASIC EQUATIONS

Velocity Pressure Coefficient:

$Kz(z) := \begin{bmatrix} K_z \leftarrow \max\left[2.01 \cdot \left(\frac{z}{Z_g}\right)^{\alpha}, K_{zmin}\right] \\ K_z \leftarrow \min(K_z, 2.01) \end{bmatrix}$

Section 2.6.5.6

 $K_z := Kz(z)$

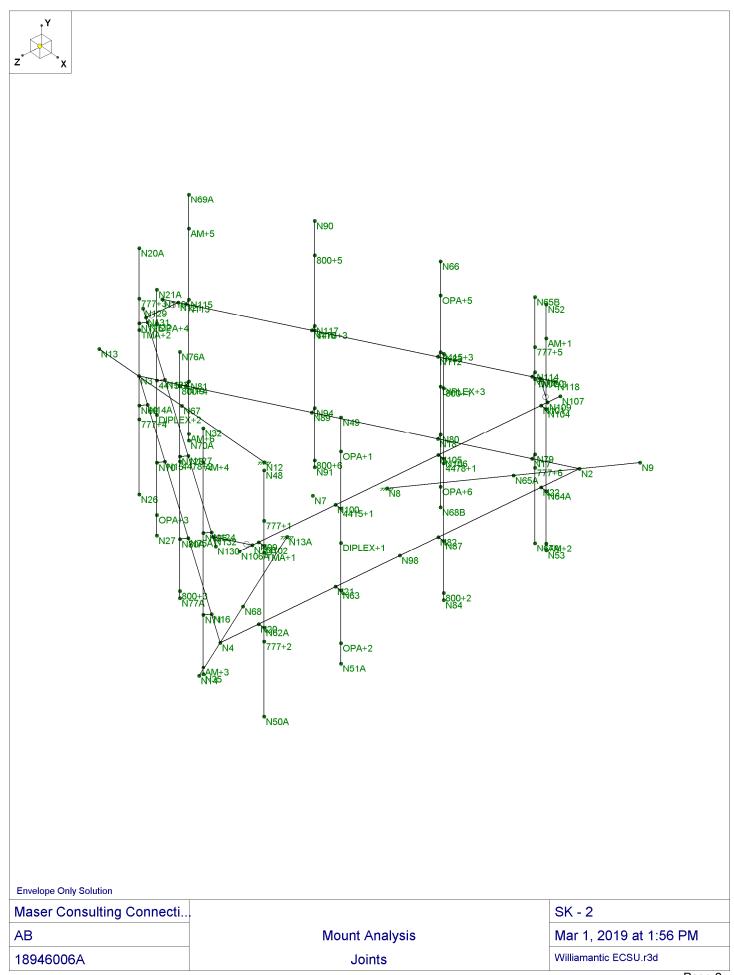
$$\begin{aligned} \text{Kzt}(z) &:= \text{K}_{zt} \leftarrow \left| \begin{array}{c} 1.0 \quad \text{if Topo} = "1" \\ \text{otherwise} \end{array} \right| & \text{K}_{e} \leftarrow \left| \begin{array}{c} 0.90 \quad \text{if Exp} = "B" \\ 1.00 \quad \text{if Exp} = "C" \\ 1.10 \quad \text{if Exp} = "D" \end{array} \right| & \text{K}_{t} \leftarrow \left| \begin{array}{c} 0.43 \quad \text{if Topo} = "2" \\ 0.53 \quad \text{if Topo} = "3" \\ 0.72 \quad \text{if Topo} = "4" \end{array} \right| & \text{f} \leftarrow \left| \begin{array}{c} 1.25 \quad \text{if Topo} = "2" \\ 2.00 \quad \text{if Topo} = "3" \\ 1.50 \quad \text{if Topo} = "3" \\ 1.50 \quad \text{if Topo} = "4" \end{array} \right| & \text{K}_{h} \leftarrow e^{\left(\frac{\text{f} \cdot z}{\text{CH}} \right)} \\ & \left(1 + \frac{\text{K}_{e} \cdot \text{K}_{t}}{\text{K}_{h}} \right)^{2} \end{aligned}$$

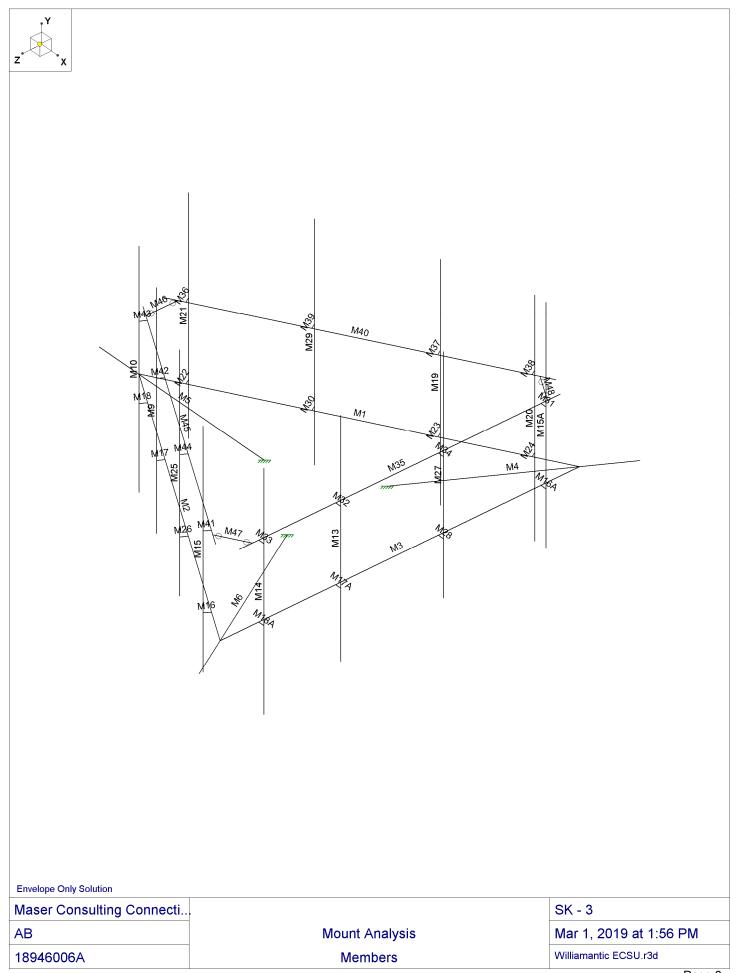
 $K_{zt} := Kzt(z)$

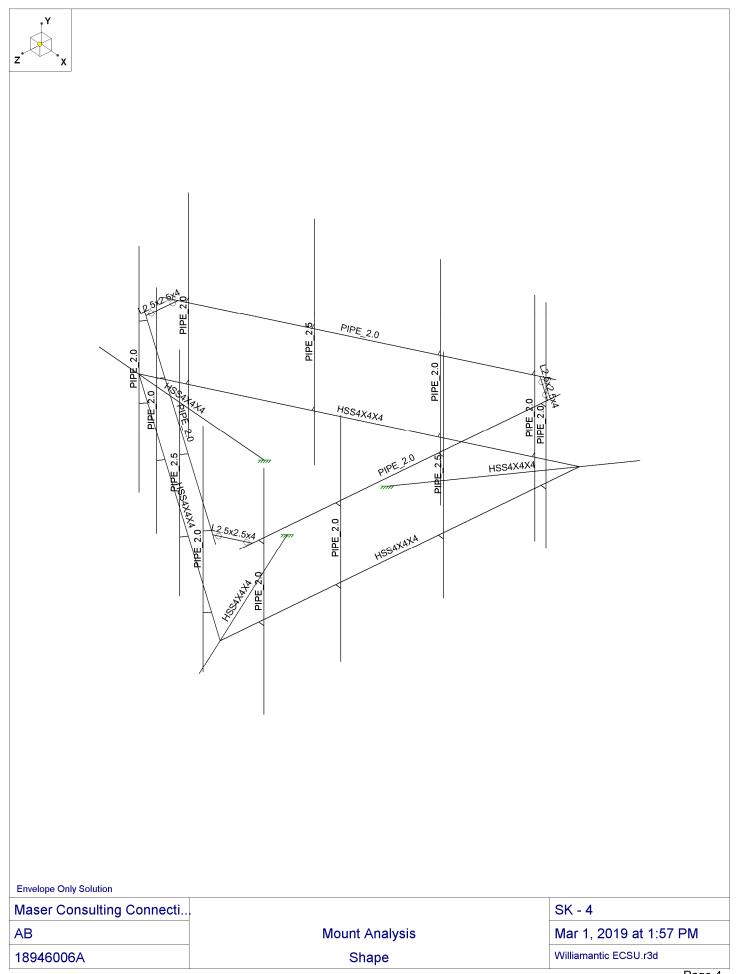
 $q_z := 0.00256 \cdot K_z \cdot K_{zt} \cdot K_s \cdot K_e \cdot K_d \cdot V^2 \cdot psf$ Section 2.6.9.6 Velocity Pressure:

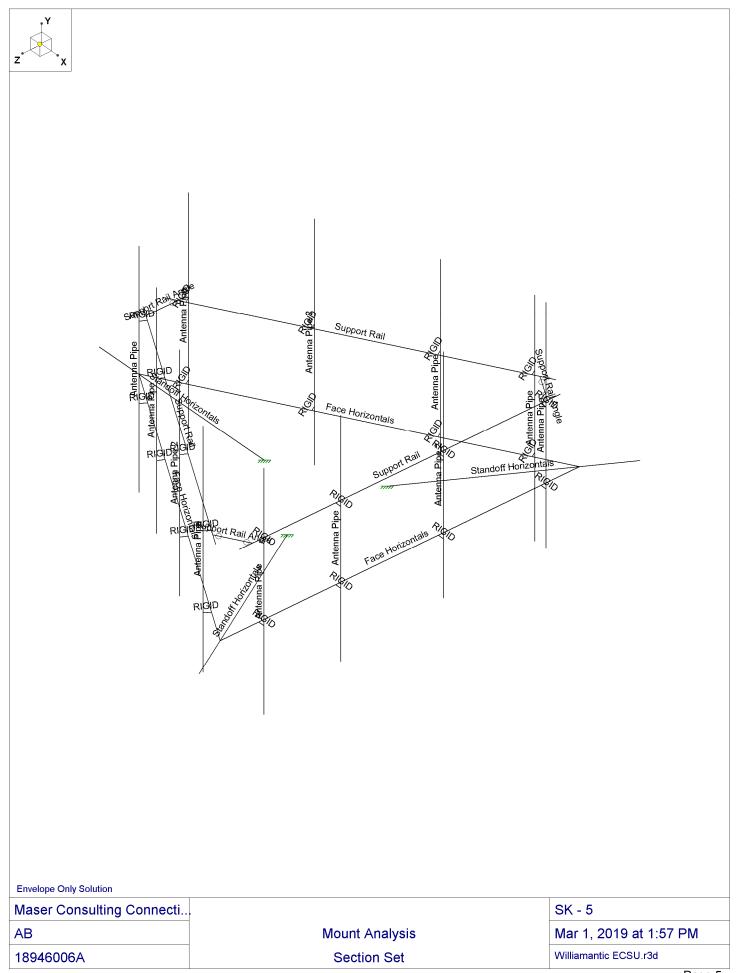
ANSI/TIA-222-H Reference

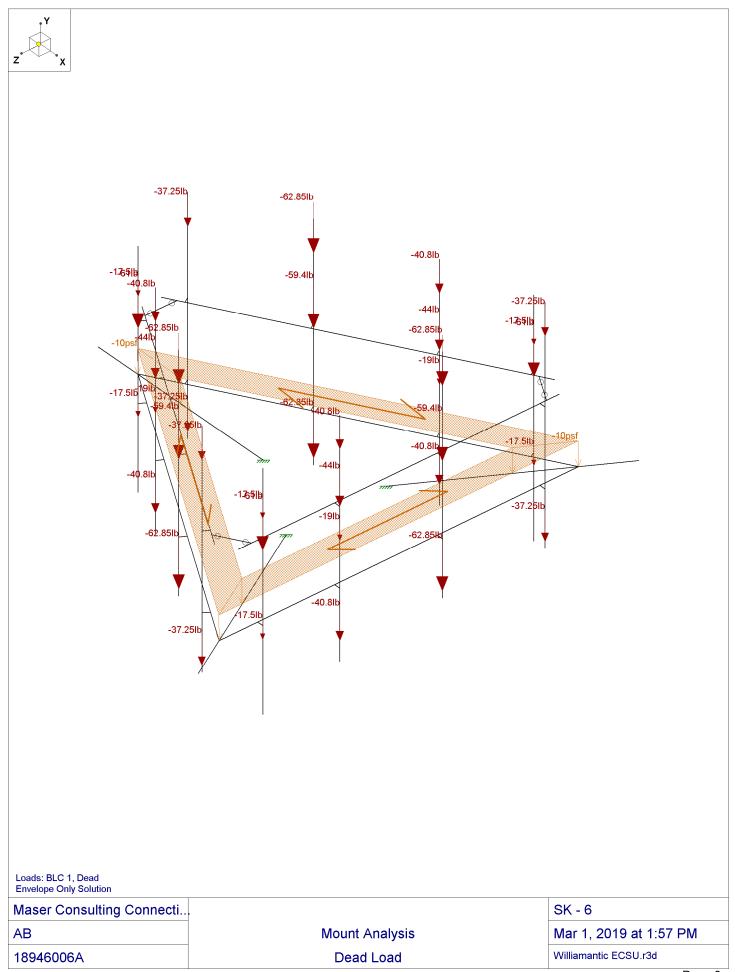
Client:	ATT	Computed By:	AB
Site Name:	CT1051	Date:	3/1/2019
Project No.	18946006A	Verified By:	PET
Title:	Antenna Mount Analysis	Page:	6

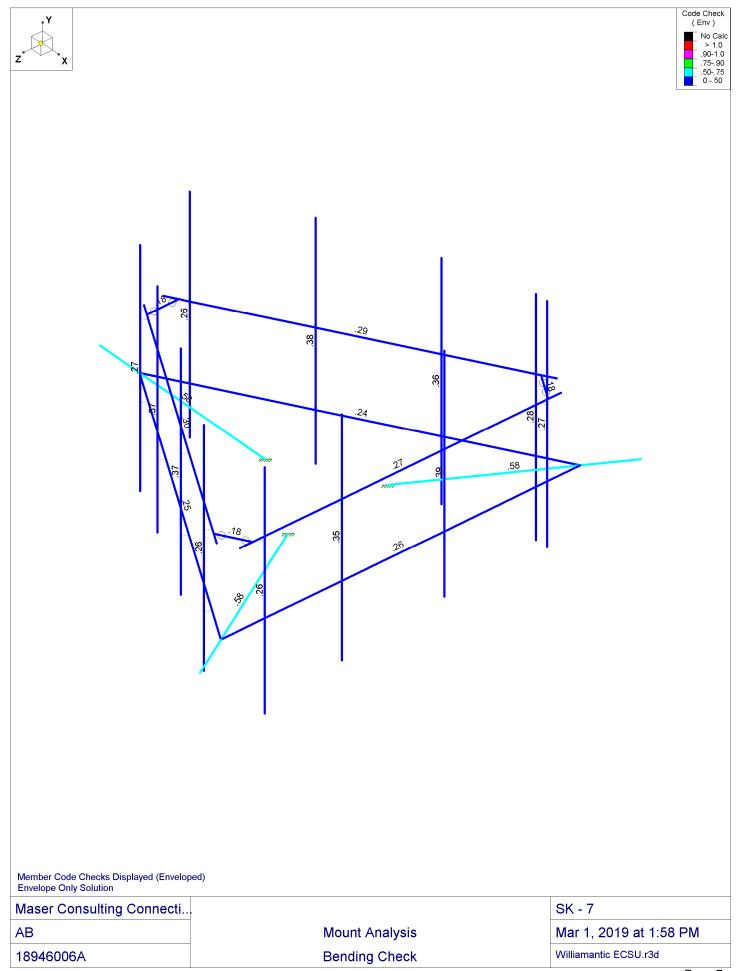

LOAD EQUATIONS


WIND LOAD


Area (Normal):
Area (Side):
Force Coefficient (Normal):
Force Coefficient (Side):
Pipe Area (Normal):
Pipe Area (Side):
Force Coefficient (Normal):
Normal Effective Projected Area:
Side Effective Projected Area:
Effective Projected Area:
Wind Force:


 $AN_{area} = H_{ant} \cdot Want$ $AT_{area} = H_{ant} \cdot Dant$ $C_{fn} = C_{fsquare}(H_{ant}, Want)$ $C_{fs} = C_{fsquare}(H_{ant}, Dant)$ $AN_p = \max[(L_p - H_{ant}) * Dp, 0]$ $AT_p = L_p \cdot Dp$ $C_{fp} = C_{fround}(Lp, Dp)$ $E_{pan} = (C_{fn} \cdot ANarea) + (Cfp \cdot ANp)$ $E_{pat} = (C_{fs} \cdot ATarea) + (Cfp \cdot ATp)$ $EPA = max(E_{pan}, Epat)$ $F_{ant} = q_z \cdot Gh \cdot EPA$

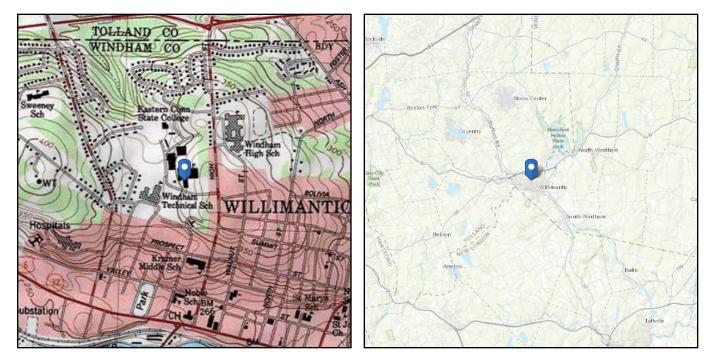

		PROPOSED B0010966 RRUS 4478 B14 PROPOSED DPA65RBU8B RU 4415 B25 DIPLEXER
Envelope Only Solution Maser Consulting Connecti		SK - 1
AB	-	
AB 18946006A	Mount Analysis Rendered Model	Mar 1, 2019 at 1:51 PM Williamantic ECSU.r3d



Mount to Monopole Ring Mount Kit Connection Check:					
Applied Tension:	Rx := 2835.0·lbf	From Risa 3D LRFD Loading			
Applied Shear:	Ry := 2797.3lbf	From Risa 3D LRFD Loading			
Applied Shear:	$Rz := 682.9 \cdot lbf$	From Risa 3D LRFD Loading			
Applied Torque:	$Mx := 683.9 \cdot lbf \cdot ft$	From Risa 3D LRFD Loading			
Applied Moment:	My := 1606.142lbf · ft	From Risa 3D LRFD Loading			
Applied Moment:	$Mz := 9228.4 \cdot lbf \cdot ft$	From Risa 3D LRFD Loading			
Number of Bolts:	n := 4	Per Mapping			
Bolts Vertical Spacing:	S ₁ := 9in	Per Mapping			
Bolts Horizontal Spacing:	$S_2 := 3in$	Per Mapping			
Applied Tension at Bolt:	$P_{a.t} \coloneqq \frac{Rx}{n} + \frac{2My}{n \cdot S_2} + \frac{2Mz}{n \cdot S_1} =$				
Applied Shear at Bolt:	$P_{a.v} := \frac{\sqrt{Ry^2 + Rz^2}}{n} + \frac{21}{n\sqrt{S_1^2}}$				
Bolt Type Used:	A325N	\$2			
Nominal Tensile Stress, Fnt:	$F_{n.t} := 90ksi$	AISC, Table J3-2, P. 16.1-104			
Nominal Shear Stress, Fnv:	$F_{n.v} := 54ksi$	AISC, Table J3-2, P. 16.1-104			
Nominal Bolt Diameter:	$d_{b} := \frac{3}{4} in$	Per Mapping			
Gross Area of the Bolt:	$A_{b.g} \coloneqq 0.442 \text{in}^2$	AISC, Table 7-18, P. 7-83			
Net Area of the Bolt:	$A_{b.n} \coloneqq 0.334 \text{in}^2$	AISC, Table 7-18, P. 7-83			
Strength Reduction Factor, ¢:	φ := 0.75				
Applied Tensile Stress:	$F_{a.t} := \frac{P_{a.t}}{A_{b.g}} = 22.8 \cdot ksi$				
Applied Shear Stress:	$F_{a.v} := \frac{P_{a.v}}{A_{b.g}} = 2.6 \cdot ksi$				
Combined Tension And Shear Check					
Nominal Tensile Stress, Fnt	$F_{n.t} = 90 \cdot ksi$				
Nominal Shear Stress, Fnv	$F_{n.v} = 54 \cdot ksi$				

Maser Consulting P.A. 2000 Midlantic Drive Suite 100 Mt. Laurel, NJ 08054

Nominal Tensile Reduced Fntr	$F_{n.t.r} \coloneqq 1.3 \cdot F_{n.t} - \frac{F_{n.t}}{\phi \cdot F_{n.v}} \cdot \frac{P_{a.v}}{A_{b.g}} = 111.2 \cdot ksi$	AISC Eq. J3-3a, P. 16.1-109
	$F_{n.t.r} := \begin{bmatrix} F_{n.t.r} & \text{if } F_{n.t.r} \le F_{n.t} &= 90 \cdot \text{ksi} \\ F_{n.t} & \text{otherwise} \end{bmatrix}$	
Nominal Shear Reduced Fntv	$F_{n.v.r} := 1.3 \cdot F_{n.v} - \frac{F_{n.v}}{\phi \cdot F_{n.t}} \cdot \frac{P_{a.t}}{A_{b.g}} = 52 \cdot ksi$	AISC Eq. J3-3a, P. 16.1-109
	$F_{n.v.r} := \begin{bmatrix} F_{n.v.r} & \text{if } F_{n.v.r} \le F_{n.v} &= 52 \cdot \text{ksi} \\ F_{n.v} & \text{otherwise} \end{bmatrix}$	
Avalaible Tensile Stress:	$F_{n.t} := \begin{cases} F_{n.t} & \text{if } \frac{F_{a.t}}{F_{n.t}} \le 30\% &= 90 \text{ ksi} \\ F_{n.t,r} & \text{otherwise} \end{cases}$	
	F _{n.t.r} otherwise	
Bolt Nominal Tensile Strength	$R_{n.t} := F_{n.t} \cdot A_{b.g} = 39.8 \cdot kip$	
Tension Check	Check := $ 'OK'' \text{ if } \phi \cdot R_{n,t} \ge P_{a,t}$ "NOT GOOD" otherwise	
	Check = "OK"	
Tension Ratio	Ratio _t := $\frac{P_{a,t}}{\phi \cdot R_{n,t}}$ Ratio _t = 33.8.%	
Avalaible Shear Stress:	$F_{n.v} := \begin{cases} F_{n.v} & \text{if } \frac{F_{a.v}}{F_{n.v}} \le 30\% &= 54 \cdot \text{ksi} \\ F_{n.v.r} & \text{otherwise} \end{cases}$	
	11. V.1	
Bolt Nominal Shear Strength	$R_{n.v} := F_{n.v} \cdot A_{b.g} = 23.9 \cdot kip$	
Shear Check	Check := $ 'OK'' \text{ if } \phi \cdot R_{n,v} \ge P_{a,v}$ "NOT GOOD" otherwise	
	Check = "OK"	
Shear Ratio	$Ratio_{v} := \frac{P_{a.v}}{\phi \cdot R_{n.v}} = 6.4.\%$	


Location

ASCE 7 Hazards Report

Standard: No Address at This Soil Class:

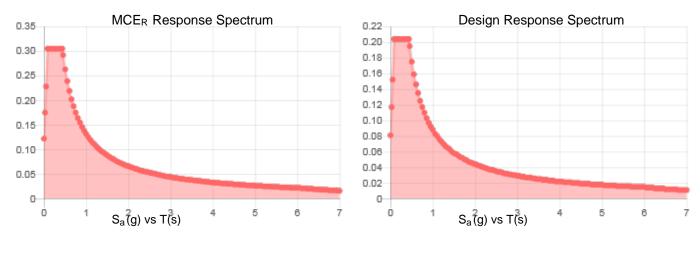
ASCE/SEI 7-16 **Risk Category:** II D - Default (see Section 11.4.3)

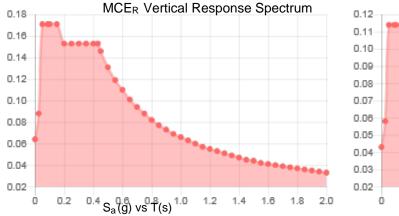
Elevation: 354.08 ft (NAVD 88) 41.720589 Latitude: Longitude: -72.21818

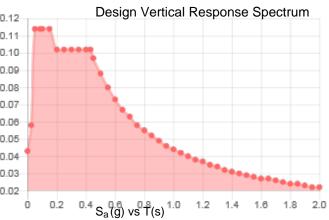
Wind

Results:

Wind Speed:	120 Vmph
10-year MRI	75 Vmph
25-year MRI	84 Vmph
50-year MRI	93 Vmph
100-year MRI	99 Vmph
Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4
Date Accessed:	Fri Mar 01 2019


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class: Results:	D - Default (see Section 11.4.3)			
S _s :	0.191	S _{D1} :	0.088	
S ₁ :	0.055	Τ _L :	6	
F _a :	1.6	PGA :	0.104	
F _v :	2.4	PGA M:	0.165	
S _{MS} :	0.305	F _{PGA} :	1.593	
S _{M1} :	0.131	l _e :	1	
S _{DS} :	0.204	C _v :	0.7	
Seismic Design Category	В			

Data Accessed: Date Source:

Fri Mar 01 2019

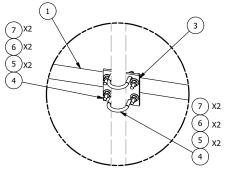
USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

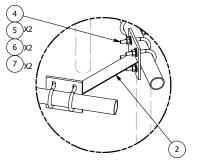
Results:

Ice Thickness:	1.00 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed:	Fri Mar 01 2019

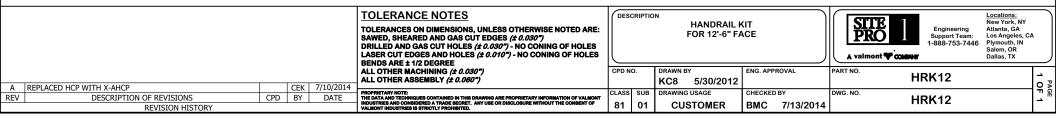
Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

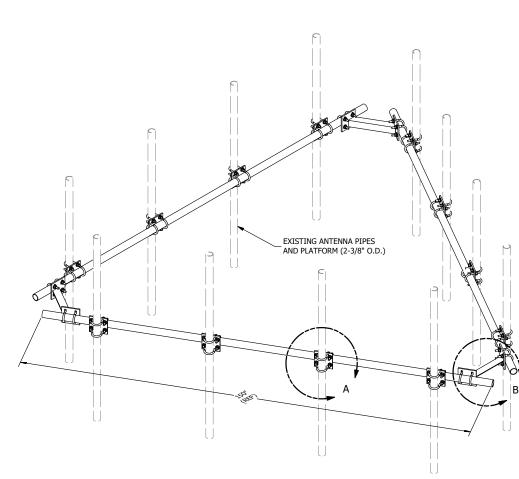

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.


ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.


PARTS LIST						
ITEM QTY PART NO. PART DESCRIPTION LENGTH			LENGTH	UNIT WT.	NET WT.	
1	3	P2150	2-3/8" O.D. X 150" SCH 40 GALVANIZED PIPE	150 in	45.77	137.31
2	3	X-AHCP	ANGLE HANDRAIL CORNER PLATE		12.92	38.76
3 12 SCX1 CROSSOVER PLATE 2-3/8" X 2-3/8" 6 in				6 in	3.71	44.50
4 60 X-UB1212 1/2" X 2-1/2" X 4-1/2" X 2" U-BOLT (HDG.)				0.63	37.51	
5	120	G12FW	1/2" HDG USS FLATWASHER	3/32 in	0.03	4.09
6	120	G12LW	1/2" HDG LOCKWASHER	1/8 in	0.01	1.67
7	120	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	8.60
					TOTAL WT. #	272.43



DETAIL A

DETAIL B

8618 Westwood Center Drive, Suite 315, Vienna, VA 22182 703.276.1100 • 703.276.1169 fax info@sitesafe.com • www.sitesafe.com

Smartlink on behalf of AT&T Mobility, LLC Site FA – 10035388 Site ID – CT1051 (MRCTB023786-MRCTB023678-MRCTB023972) USID – 71313 Site Name – WILLIMANTIC T6 83 WINDHAM STREET WILLIMANTIC, CT 06226

Latitude: N41-43-14.12 Longitude: W72-13-05.45 Structure Type: Monopole

R

SITESAFE

Report generated date: May 15, 2019 Report by: Yasir Alqadhili Customer Contact: David Barbagallo

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

Sitesafe logo is a registered trademark of Site Safe, LLC. All rights reserved.

Table of Contents

1	1 GENERAL SITE SUMMARY	3
	 1.1 Report Summary 1.2 Fall Arrest Anchor Point Summary 1.3 Signage Summary 	3
2	2 SCALE MAPS OF SITE	5
3	3 ANTENNA INVENTORY	7
4	4 EMISSION PREDICTIONS	9
5	5 SITE COMPLIANCE	12
	5.1Site Compliance Statement5.2Actions for Site Compliance	
6	6 REVIEWER CERTIFICATION	13
A	APPENDIX A – STATEMENT OF LIMITING CONDITIONS	14
A	APPENDIX B – REGULATORY BACKGROUND INFORMATION	15
	FCC Rules and Regulations	
		10
A	APPENDIX C – SAFETY PLAN AND PROCEDURES	
		17
A	APPENDIX C – SAFETY PLAN AND PROCEDURES	17 18
A	APPENDIX C – SAFETY PLAN AND PROCEDURES APPENDIX D – RF EMISSIONS	17 18 19 19
A	APPENDIX C – SAFETY PLAN AND PROCEDURES APPENDIX D – RF EMISSIONS APPENDIX E – ASSUMPTIONS AND DEFINITIONS General Model Assumptions	17 18 19 19 19

1 General Site Summary

1.1 Report Summary

AT&T Mobility, LLC	Summary
Max Cumulative Simulated RFE Level at	9,095.7% General Public Limit in front of AT&T
antenna level	Mobility, LLC's Gamma Sector Antenna 11
Max Cumulative Simulated RFE Level on the	<1% General Public Limit
Ground	
Compliant per FCC Rules and Regulations?	Will Be Compliant
Compliant per AT&T Mobility, LLC's Policy?	No

The following documents were provided by the client and were utilized to create this report:

RFDS: NEW-ENGLAND_CONNECTICUT_CTL01051_2018-LTE-Next-Carrier_LTE_mm093q_2051A0B8T4_10035388_71313_04-20-2017_Final-Approved_v3.00

CD's: 10035388_AE201_CTL01051_190503_REV 5_CD (005)

RF Powers Used: AT&T Mobility, LLC Approved Default Power.

1.2 Fall Arrest Anchor Point Summary

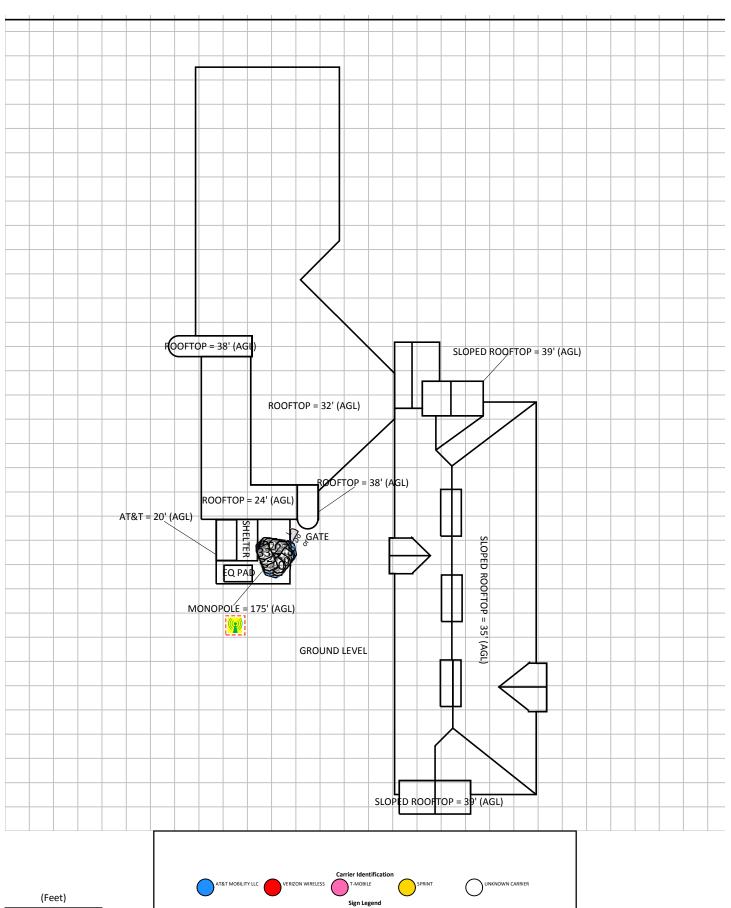
Fall Arrest Anchor & Parapet Info	Parapet Available (Y/N)	Parapet Height (inches)	Fall Arrest Anchor Available (Y/N)
Roof Safety Info	Ν	N/A	Ν

1.3 Signage Summary

a. Pre-Site Visit AT&T Signage (Existing Signage) 1 AT&T T 10 1 Signage Locations Caution Information 1 Information 2 Notice Notice 2 Caution 2 Warning Warning 2 Barriers Access Point(s) Alpha Beta Gamma Delta Epsilon

Note: No Previous site visit by SiteSafe.

	b. Proposed A	AT&T Signage							
AT&T Signage Locations	Information 1	Information 2	Notice	Notice 2	Caution	Caution 2	Warning	Warning 2	Barriers
A = = = = = =			NUICE	NOTICE 2	COULON	1	warning	wurning z	Damers
Access						I			
Point(s)									
Alpha									
Beta									
Gamma									
Delta									
Epsilon									


Note: Caution 2B at tower acces.

2 Scale Maps of Site

The following diagrams are included:

- Site Scale Map
-)) |
- RF Exposure Diagram AT&T Mobility, LLC Contribution Elevation View

Warning

ĺ

NOC/Info

Proposed Barriers/

Signs

Info 2

9

Notice

٦

49.5

 (\mathbf{p})

Caution

Caution+Info

Notice+Info

Barrier

Т

24.8

Site Name:WILLIMANTIC T6

www.sitesafe.com

5/15/2019 1:01:27 PM

0

RFED

RSP

RSP

l

General

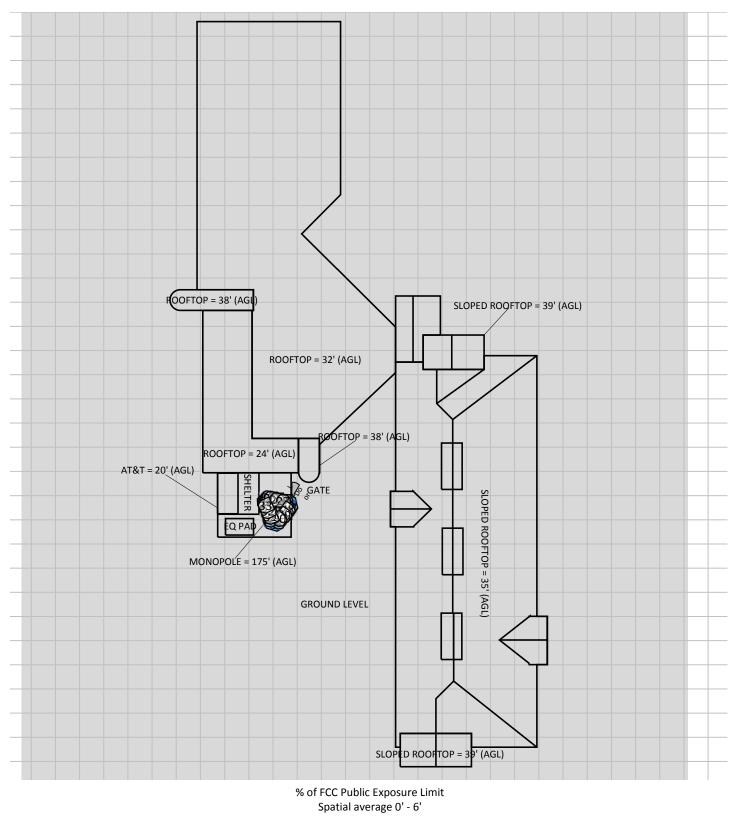
3 Antenna Inventory

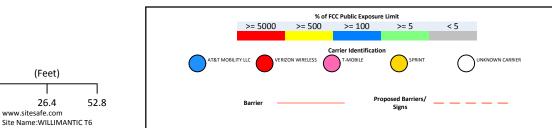
The following antenna inventory was obtained by the customer and was utilized to create the site model diagrams:

Ant ID	Operator	Antenna Make & Model	Туре	TX Freq (MHz)	Technology	Az (Deg)	Hor BW (Deg)	Ant Len (ft)	Power	Power Type	Power Unit	Misc Loss	TX Count	Total ERP (Watts)	Ant Gain (dBd)	Z (AGL)	MDT	EDT
1	AT&T MOBILITY LLC	KMW AM-X-CD-17-65-00T	Panel	737	LTE	0	68	8	160	TPO	Watt	0	1	4678.6	14.66	134'	0°	3°
2	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10966	Panel	1900	LTE	0	66	8	160	TPO	Watt	0	1	6153.5	15.85	134'	0°	3°
2	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10966	Panel	763	LTE	0	67.9	8	160	TPO	Watt	0	1	3623.4	13.55	134'	0°	3°
3	AT&T MOBILITY LLC (Proposed)	Cci OPA65R-BU8B	Panel	722	LTE	0	64	8	160	TPO	Watt	0	1	3163.2	12.96	134'	0°	3°
3	AT&T MOBILITY LLC (Proposed)	Cci OPA65R-BU8B	Panel	850	LTE	0	67.2	8	160	TPO	Watt	0	1	3020.8	12.76	134'	0°	3°
3	AT&T MOBILITY LLC (Proposed)	Cci OPA65R-BU8B	Panel	2300	LTE	0	56.9	8	100	TPO	Watt	0	1	2666.9	14.26	134'	0°	3°
4	AT&T MOBILITY LLC	Powerwave 7770	Panel	850	UMTS	143	82	4.6	40	TPO	Watt	0	1	566.3	11.51	134.7'	0°	0°
5	AT&T MOBILITY LLC	KMW AM-X-CD-17-65-00T	Panel	737	LTE	120	68	8	160	TPO	Watt	0	1	4678.6	14.66	134'	0°	۱°
6	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10966	Panel	763	LTE	120	67.9	8	160	TPO	Watt	0	1	3623.4	13.55	134'	0°	10°
6	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10966	Panel	1900	LTE	120	66	8	160	TPO	Watt	0	1	6153.5	15.85	134'	0°	3°
7	AT&T MOBILITY LLC (Proposed)	Cci OPA65R-BU8B	Panel	722	LTE	120	64	8	160	TPO	Watt	0	1	3163.2	12.96	134'	0°	2°
7	AT&T MOBILITY LLC (Proposed)	Cci OPA65R-BU8B	Panel	850	LTE	120	67.2	8	160	TPO	Watt	0	1	3020.8	12.76	134'	0°	2°
7	AT&T MOBILITY LLC (Proposed)	Cci OPA65R-BU8B	Panel	2300	LTE	120	56.9	8	100	TPO	Watt	0	1	2666.9	14.26	134'	0°	2°
8	AT&T MOBILITY LLC	Powerwave 7770	Panel	850	UMTS	263	82	4.6	40	TPO	Watt	0	1	566.3	11.51	134.7'	0°	4°
9	AT&T MOBILITY LLC	KMW AM-X-CD-17-65-00T	Panel	737	LTE	240	68	8	160	TPO	Watt	0	1	4678.6	14.66	134'	0°	۱°
10	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10966	Panel	763	LTE	240	67.9	8	160	TPO	Watt	0	1	3623.4	13.55	134'	0°	2°
10	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10966	Panel	1900	LTE	240	66	8	160	TPO	Watt	0	1	6153.5	15.85	134'	0°	3°
11	AT&T MOBILITY LLC (Proposed)	Cci OPA65R-BU8B	Panel	722	LTE	240	64	8	160	TPO	Watt	0	1	3163.2	12.96	134'	0°	2°
11	AT&T MOBILITY LLC (Proposed)	Cci OPA65R-BU8B	Panel	850	LTE	240	67.2	8	160	TPO	Watt	0	1	3020.8	12.76	134'	0°	2°
11	AT&T MOBILITY LLC (Proposed)	Cci OPA65R-BU8B	Panel	2300	LTE	240	56.9	8	100	TPO	Watt	0	1	2666.9	14.26	134'	0°	2°
12	AT&T MOBILITY LLC	Powerwave 7770	Panel	850	UMTS	23	82	4.6	40	TPO	Watt	0	1	566.3	11.51	134.7'	0°	0°
13	UNKNOWN CARRIER	Generic	Panel	850		0	65	4.6	60	TPO	Watt	0	0	1135.4	12.77	145.7'	0°	0°
14	UNKNOWN CARRIER	Generic	Panel	1900		0	65	4.6	60	TPO	Watt	0	0	2094.8	15.43	145.7'	0°	0°
15	UNKNOWN CARRIER	Generic	Panel	2100		0	65	4.6	60	TPO	Watt	0	0	2000.6	15.23	145.7'	0°	0°
16	UNKNOWN CARRIER	Generic	Panel	751		0	65	4.6	60	TPO	Watt	0	0	982.1	12.14	145.7'	0°	0°
17	UNKNOWN CARRIER	Generic	Panel	850		120	65	4.6	60	TPO	Watt	0	0	1135.4	12.77	145.7'	0°	0°
18	UNKNOWN CARRIER	Generic	Panel	1900		120	65	4.6	60	TPO	Watt	0	0	2094.8	15.43	145.7'	0°	0°
19	UNKNOWN CARRIER	Generic	Panel	2100		120	65	4.6	60	TPO	Watt	0	0	2000.6	15.23	145.7'	0°	0°
20	UNKNOWN CARRIER	Generic	Panel	751		120	65	4.6	60	TPO	Watt	0	0	982.1	12.14	145.7'	0°	0°
21	UNKNOWN CARRIER	Generic	Panel	850		240	65	4.6	60	TPO	Watt	0	0	1135.4	12.77	145.7'	0°	0°
22	UNKNOWN CARRIER	Generic	Panel	1900		240	65	4.6	60	TPO	Watt	0	0	2094.8	15.43	145.7'	0°	0°
23	UNKNOWN CARRIER	Generic	Panel	2100		240	65	4.6	60	TPO	Watt	0	0	2000.6	15.23	145.7'	0°	0°

				TX Freq		Az	Hor BW	Ant Len		Power	Power	Misc	тх	Total ERP	Ant Gain	z		
Ant ID	Operator	Antenna Make & Model	Туре	(MHz)	Technology	(Deg)	(Deg)	(ft)	Power	Туре	Unit	Loss	Count	(Watts)	(dBd)	(AGL)	MDT	EDT
24	UNKNOWN CARRIER	Generic	Panel	751		240	65	4.6	60	TPO	Watt	0	0	982.1	12.14	145.7'	0°	0°
25	UNKNOWN CARRIER	Generic	Panel	1900		0	65	4.6	60	TPO	Watt	0	0	2094.8	15.43	125.7'	0°	0°
26	UNKNOWN CARRIER	Generic	Panel	2100		0	65	4.6	60	TPO	Watt	0	0	2000.6	15.23	125.7'	0°	0°
27	UNKNOWN CARRIER	Generic	Panel	1900		0	65	4.6	60	TPO	Watt	0	0	2094.8	15.43	125.7'	0°	0°
28	UNKNOWN CARRIER	Generic	Panel	1900		120	65	4.6	60	TPO	Watt	0	0	2094.8	15.43	125.7'	0°	0°
29	UNKNOWN CARRIER	Generic	Panel	2100		120	65	4.6	60	TPO	Watt	0	0	2000.6	15.23	125.7'	0°	0°
30	UNKNOWN CARRIER	Generic	Panel	1900		120	65	4.6	60	TPO	Watt	0	0	2094.8	15.43	125.7'	0°	0°
31	UNKNOWN CARRIER	Generic	Panel	1900		240	65	4.6	60	TPO	Watt	0	0	2094.8	15.43	125.7'	0°	0°
32	UNKNOWN CARRIER	Generic	Panel	2100		240	65	4.6	60	TPO	Watt	0	0	2000.6	15.23	125.7'	0°	0°
33	UNKNOWN CARRIER	Generic	Panel	1900		240	65	4.6	60	TPO	Watt	0	0	2094.8	15.43	125.7'	0°	0°
34	UNKNOWN CARRIER	Generic	Omni	150		0	360	12.5	100	ERP	Watt	0	0	100	2.87	175.8'	0°	0°

Note: The Z reference indicates the bottom of the antenna height above the main site level unless otherwise indicated. Effective Radiated Power (ERP) is provided by the operator or based on Sitesafe experience. The values used in the modeling may be greater than are currently deployed. For other operators at this site the use of "Generic" as an antenna model or "Unknown" for a wireless operator means the information with regard to operator, their FCC license and/or antenna information was not available nor could it be secured while on site. Other operator's equipment, antenna models and powers used for modeling are based on obtained information or Sitesafe experience.

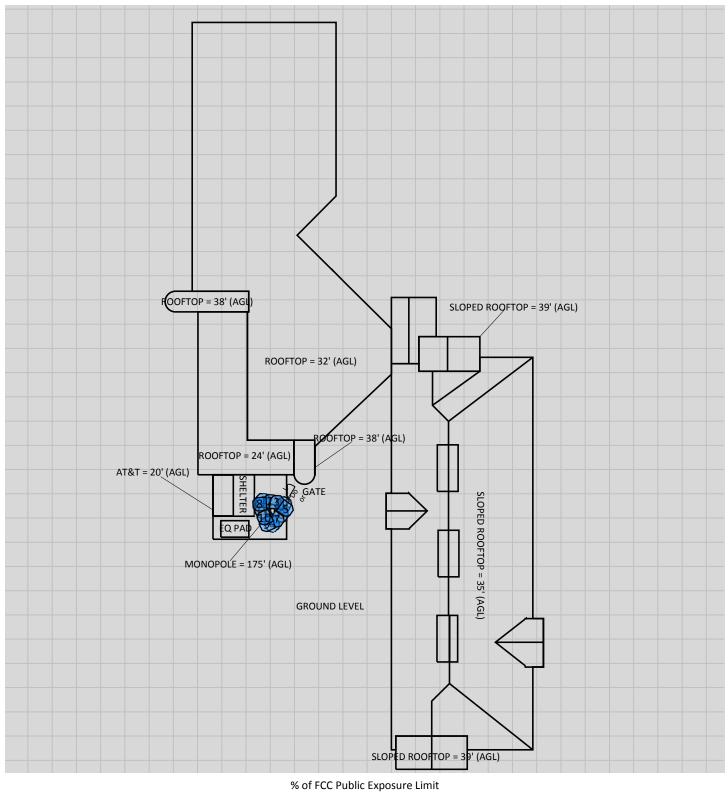

4 Emission Predictions

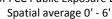

In the RF Exposure Simulations below all heights are reflected with respect to main site level. In most rooftop cases this is the height of the main rooftop and in other cases this can be ground level. Each different height area, rooftop, or platform level is labeled with its height relative to the main site level. Emissions are calculated appropriately based on the relative height and location of that area to all antennas. The total analyzed elevations in the below RF Exposure Simulations are listed below.

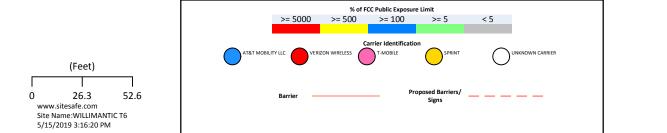
GROUND LEVEL = 0'
 AT&T = 7'
 BUILDING = 21'
 BUILDING = 32'
 BUILDING = 35'
 BUILDING = 38'

The Antenna Inventory heights are referenced to the same level.

RF Exposure Simulation For: WILLIMANTIC T6 Composite View

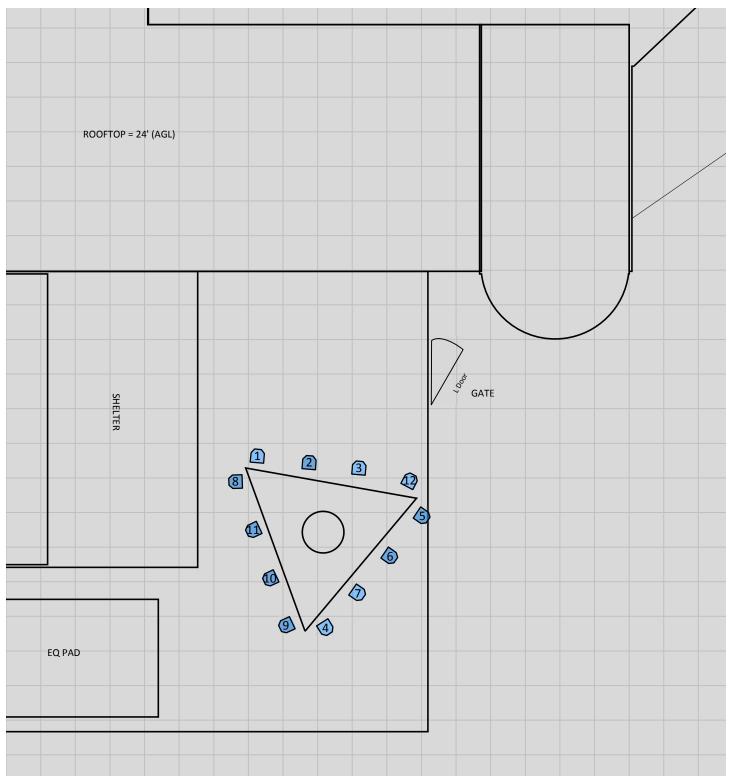

Т

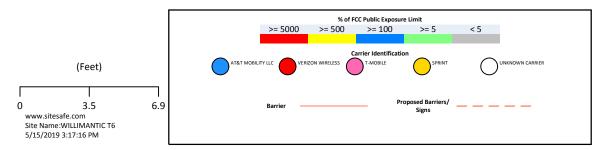

5/15/2019 12:52:24 PM


0

Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

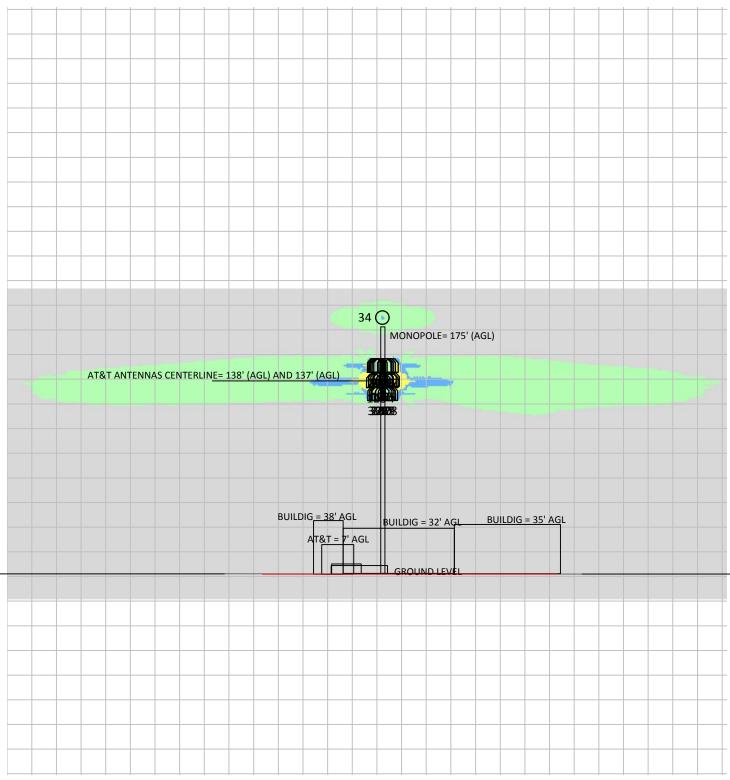
RF Exposure Simulation For: WILLIMANTIC T6 AT&T Mobility, LLC Contribution



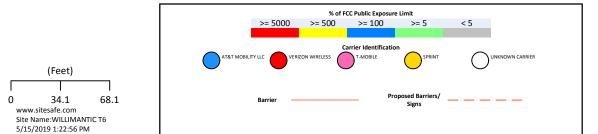


Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

RF Exposure Simulation For: WILLIMANTIC T6 Detailed View

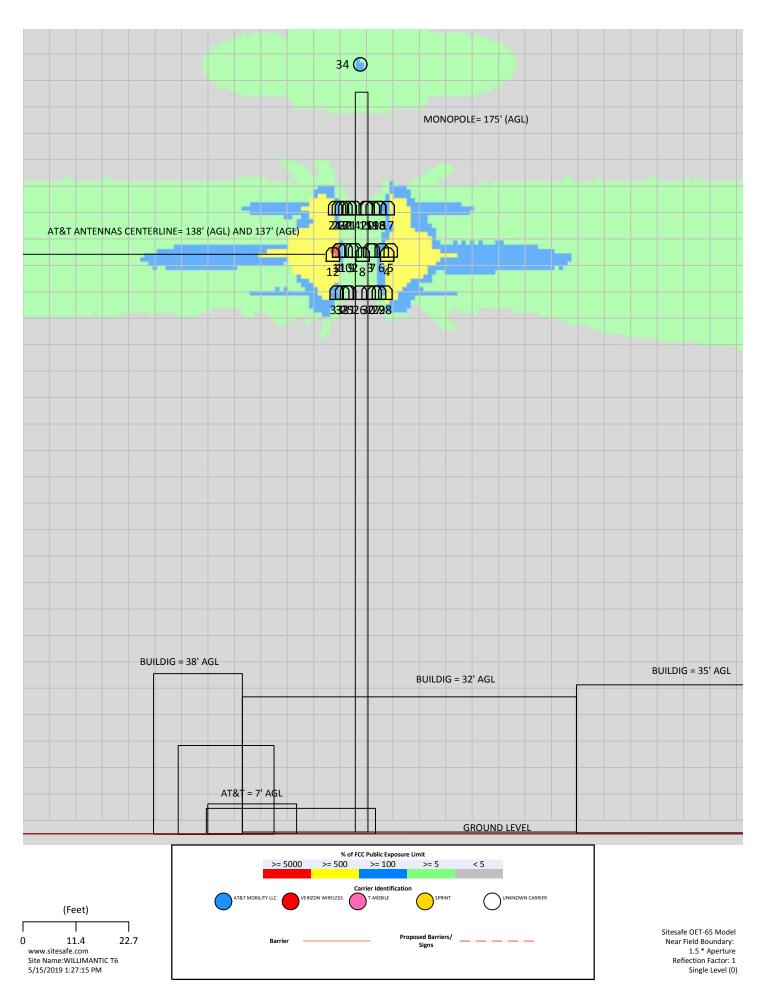


% of FCC Public Exposure Limit Spatial average 0' - 6'



Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

RF Exposure Simulation For: WILLIMANTIC T6 Elevation View - North



% of FCC Public Exposure Limit Spatial average 0' - 6'

Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Single Level (0)

RF Exposure Simulation For: WILLIMANTIC T6 Detailed View

Î

5 Site Compliance

5.1 Site Compliance Statement

Upon evaluation of the cumulative RF emission levels from all operators at this site, RF hazard signage and antenna locations, Sitesafe has determined that:

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

The compliance determination is based on General Public RFE levels derived from theoretical modeling, RF signage placement, proposed antenna inventory and the level of restricted access to the antennas at the site. Any deviation from the AT&T Mobility, LLC's proposed deployment plan could result in the site being rendered non-compliant.

Modeling is used for determining compliance and the percentage of MPE contribution.

5.2 Actions for Site Compliance

Based on FCC regulations, common industry practice, and our understanding of AT&T Mobility, LLC RF Safety Policy requirements, this section provides a statement of recommendations for site compliance. Recommendations have been proposed based on our understanding of existing access restrictions, signage, and an analysis of predicted RFE levels.

AT&T Mobility, LLC will be made compliant if the following changes are implemented:

Monopole Access Location

(1) Yellow Caution 2B sign(s) required at Monopole access ladder.

6 **Reviewer Certification**

The reviewer whose signature appears below hereby certifies and affirms:

That I am an employee of Site Safe, LLC, in Vienna, Virginia, at which place the staff and I provide RF compliance services to clients in the wireless communications industry; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission (FCC) as well as the regulations of the Occupational Safety and Health Administration (OSHA), both in general and specifically as they apply to the FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields; and

That I have thoroughly reviewed this Site Compliance Report and believe it to be true and accurate to the best of my knowledge as assembled by and attested to by Yasir Alqadhili.

<u>May 15, 2019</u>

Appendix A – Statement of Limiting Conditions

Sitesafe has provided computer generated model(s) in this Site Compliance Report to show approximate dimensions of the site, and the model is included to assist the reader of the compliance report to visualize the site area, and to provide supporting documentation for Sitesafe's recommendations.

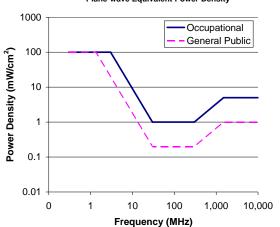
Sitesafe may note in the Site Compliance Report any adverse physical conditions, such as needed repairs, that Sitesafe became aware of during the normal research involved in creating this report. Sitesafe will not be responsible for any such conditions that do exist or for any engineering or testing that might be required to discover whether such conditions exist. Because Sitesafe is not an expert in the field of mechanical engineering or building maintenance, the Site Compliance Report must not be considered a structural or physical engineering report.

Sitesafe obtained information used in this Site Compliance Report from sources that Sitesafe considers reliable and believes them to be true and correct. Sitesafe does not assume any responsibility for the accuracy of such items that were furnished by other parties. When conflicts in information occur between data collected by Sitesafe provided by a second party and data collected by Sitesafe, the data will be used.

Appendix B – Regulatory Background Information

FCC Rules and Regulations

In 1996, the Federal Communications Commission (FCC) adopted regulations for the evaluating of the effects of RF emissions in 47 CFR § 1.1307 and 1.1310. The guideline from the FCC Office of Engineering and Technology is Bulletin 65 ("OET Bulletin 65"), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, Edition 97-01, published August 1997. Since 1996 the FCC periodically reviews these rules and regulations as per their congressional mandate.


FCC regulations define two separate tiers of exposure limits: Occupational or "Controlled environment" and General Public or "Uncontrolled environment". The General Public limits are generally five times more conservative or restrictive than the Occupational limit. These limits apply to accessible areas where workers or the general public may be exposed to Radio Frequency (RF) electromagnetic fields.

Occupational or Controlled limits apply in situations in which persons are exposed as a consequence of their employment and where those persons exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

An area is considered a Controlled environment when access is limited to these aware personnel. Typical criteria are restricted access (i.e. locked or alarmed doors, barriers, etc.) to the areas where antennas are located coupled with proper RF warning signage. A site with Controlled environments is evaluated with Occupational limits.

All other areas are considered Uncontrolled environments. If a site has no access controls or no RF warning signage it is evaluated with General Public limits.

The theoretical modeling of the RF electromagnetic fields has been performed in accordance with OET Bulletin 65. The Maximum Permissible Exposure (MPE) limits utilized in this analysis are outlined in the following diagram:

FCC Limits for Maximum Permissible Exposure (MPE) Plane-wave Equivalent Power Density

Limits for Occupational/Controlled Exposure (MPE)

Frequency	Electric	Magnetic	Power	Averaging Time E ² ,
Range	Field	Field	Density (S)	H ² or S (minutes)
(MHz)	Strength (E)	Strength	(mW/cm²)	
	(V/m)	(H) (A/m)		
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f²)*	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-			5	6
100,000				

Limits for General Population/Uncontrolled Exposure (MPE)

Frequency	Electric	Magnetic	Power	Averaging Time E ² ,
Range	Field	Field	Density (S)	H ² or S (minutes)
(MHz)	Strength (E)	Strength	(mW/cm²)	
	(V/m)	(H) (A/m)		
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f²)*	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-			1.0	30
100,000				
f = frequency in MHz		*Plane-wave equivalent power density		

OSHA Statement

The General Duty clause of the OSHA Act (Section 5) outlines the occupational safety and health responsibilities of the employer and employee. The General Duty clause in Section 5 states:

(a) Each employer –

- shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees;
- (2) shall comply with occupational safety and health standards promulgated under this Act.
- (b) Each employee shall comply with occupational safety and health standards and all rules, regulations, and orders issued pursuant to this Act which are applicable to his own actions and conduct.

OSHA has defined Radiofrequency and Microwave Radiation safety standards for workers who may enter hazardous RF areas. Regulation Standards 29 CFR § 1910.147 identify a generic Lockout/Tagout procedure aimed to control the unexpected energization or startup of machines when maintenance or service is being performed.

Appendix C – Safety Plan and Procedures

The following items are general safety recommendations that should be administered on a site by site basis as needed by the carrier.

<u>General Maintenance Work</u>: Any maintenance personnel required to work immediately in front of antennas and / or in areas indicated as above 100% of the Occupational MPE limits should coordinate with the wireless operators to disable transmitters during their work activities.

Training and Qualification Verification: All personnel accessing areas indicated as exceeding the General Population MPE limits should have a basic understanding of EME awareness and RF Safety procedures when working around transmitting antennas. Awareness training increases a worker's understanding to potential RF exposure scenarios. Awareness can be achieved in a number of ways (e.g. videos, formal classroom lecture or internet-based courses).

Physical Access Control: Access restrictions to transmitting antennas locations is the primary element in a site safety plan. Examples of access restrictions are as follows:

- Locked door or gate
- Alarmed door
- Locked ladder access
- Restrictive Barrier at antenna (e.g. Chain link with posted RF Sign)

<u>RF Signage</u>: Everyone should obey all posted signs at all times. RF signs play an important role in properly warning a worker prior to entering into a potential RF Exposure area.

Assume all antennas are active: Due to the nature of telecommunications transmissions, an antenna transmits intermittently. Always assume an antenna is transmitting. Never stop in front of an antenna. If you have to pass by an antenna, move through as quickly and safely as possible thereby reducing any exposure to a minimum.

<u>Maintain a 3 foot clearance from all antennas:</u> There is a direct correlation between the strength of an EME field and the distance from the transmitting antenna. The further away from an antenna, the lower the corresponding EME field is.

Site RF Emissions Diagram: Section 4 of this report contains an RF Diagram that outlines various theoretical Maximum Permissible Exposure (MPE) areas at the site. The modeling is a worst-case scenario assuming a duty cycle of 100% for each transmitting antenna at full power. This analysis is based on one of two access control criteria: General Public criteria means the access to the site is uncontrolled and anyone can gain access. Occupational criteria means the access to the antenna locations.

Appendix D – RF Emissions

The RF Emissions Simulation(s) in this report display theoretical spatially averaged percentage of the Maximum Permissible Exposure for all systems at the site unless otherwise noted. These diagrams use modeling as prescribed in OET Bulletin 65 and assumptions detailed in Appendix E.

The key at the bottom of each RF Emissions Simulation indicates percentages displayed referenced to FCC General Public Maximum Permissible Exposure (MPE) limits. Color coding on the diagram is as follows:

-) Areas indicated as Gray are predicted to be below 5% of the MPE limits. Gray represents areas more than 20 times below the most conservative exposure limit. Gray areas are accessible to anyone.
-) Green represents areas are predicted to be between 5% and 100% of the MPE limits. Green areas are accessible to anyone.
-) Blue represents areas predicted to exceed the General Public MPE limits but are less than Occupational limits. Blue areas should be accessible only to RF trained workers.
- J Yellow represents areas predicted to exceed Occupational MPE limits. Yellow areas should be accessible only to RF trained workers able to assess current exposure levels.
-) Red represents areas predicted to have exposure more than 10 times the Occupational MPE limits. **Red indicates that the RF levels must be reduced prior to access.** An RF Safety Plan is required which outlines how to reduce the RF energy in these areas prior to access.

If trained occupational personnel require access to areas that are delineated as above 100% of the limit, Sitesafe recommends that they utilize the proper personal protection equipment (RF monitors), coordinate with the carriers to reduce or shutdown power, or make real-time power density measurements with the appropriate power density meter to determine real-time MPE levels. This will allow the personnel to ensure that their work area is within exposure limits.

Appendix E – Assumptions and Definitions

General Model Assumptions

In this site compliance report, it is assumed that all antennas are operating at **full power at all times**. Software modeling was performed for all transmitting antennas located on the site. Sitesafe has further assumed a 100% duty cycle and maximum radiated power.

The modeling is based on recommendations from the FCC's OET-65 bulletin with the following variances per AT&T guidance. Reflection has not been considered in the modeling, i.e. the reflection factor is 1.0. The near / far field boundary has been set to 1.5 times the aperture height of the antenna and modeling beyond that point is the lesser of the near field cylindrical model and the far field model taking into account the gain of the antenna.

The site has been modeled with these assumptions to show the maximum RF energy density. Areas modeled with exposure greater than 100% of the General Public MPE level may not actually occur but are shown as a prediction that could be realized. Sitesafe believes these areas to be safe for entry by occupationally trained personnel utilizing appropriate personal protective equipment (in most cases, a personal monitor).

Use of Generic Antennas

For the purposes of this report, the use of "Generic" as an antenna model, or "Unknown" for an operator means the information about a carrier, their FCC license and/or antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of equipment, antenna models, and transmit power to model the site. If more specific information can be obtained for the unknown measurement criteria, Sitesafe recommends remodeling of the site utilizing the more complete and accurate data. Information about similar facilities is used when the service is identified and associated with a particular antenna. If no information is available regarding the transmitting service associated with an unidentified antenna, using the antenna manufacturer's published data regarding the antenna's physical characteristics makes more conservative assumptions.

Where the frequency is unknown, Sitesafe uses the closest frequency in the antenna's range that corresponds to the highest Maximum Permissible Exposure (MPE), resulting in a conservative analysis.

Appendix F – Definitions

5% Rule – The rules adopted by the FCC specify that, in general, at multiple transmitter sites actions necessary to bring the area into compliance with the guidelines are the shared responsibility of all licensees whose transmitters produce field strengths or power density levels at the area in question in excess of 5% of the exposure limits. In other words, any wireless operator that contributes 5% or greater of the MPE limit in an area that is identified to be greater than 100% of the MPE limit is responsible for taking corrective actions to bring the site into compliance.

Compliance – The determination of whether a site complies with FCC standards with regards to Human Exposure to Radio Frequency Electromagnetic Fields from transmitting antennas.

Decibel (dB) – A unit for measuring power or strength of a signal.

Duty Cycle – The percent of pulse duration to the pulse period of a periodic pulse train. Also, may be a measure of the temporal transmission characteristic of an intermittently transmitting RF source such as a paging antenna by dividing average transmission duration by the average period for transmission. A duty cycle of 100% corresponds to continuous operation.

Effective (or Equivalent) Isotropic Radiated Power (EIRP) – The product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna.

Effective Radiated Power (ERP) – The product of the power supplied to the antenna and the antenna gain in a given direction relative to a half-wave dipole antenna.

Gain (of an antenna) – The ratio of the maximum power in a given direction to the maximum power in the same direction from an isotropic radiator. Gain is a measure of the relative efficiency of a directional antenna as compared to an omnidirectional antenna.

General Population/Uncontrolled Environment – Defined by the FCC as an area where RF exposure may occur to persons who are **unaware** of the potential for exposure and who have no control over their exposure. General Population is also referenced as General Public.

Generic Antenna – For the purposes of this report, the use of "Generic" as an antenna model means the antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use its industry specific knowledge of antenna models to select a worst-case scenario antenna to model the site.

Isotropic Antenna – An antenna that is completely non-directional. In other words, an antenna that radiates energy equally in all directions.

Maximum Measurement – This measurement represents the single largest measurement recorded when performing a spatial average measurement.

Maximum Permissible Exposure (MPE) – The rms and peak electric and magnetic field strength, their squares, or the plane-wave equivalent power densities associated with these fields to which a person may be exposed without harmful effect and with acceptable safety factor.

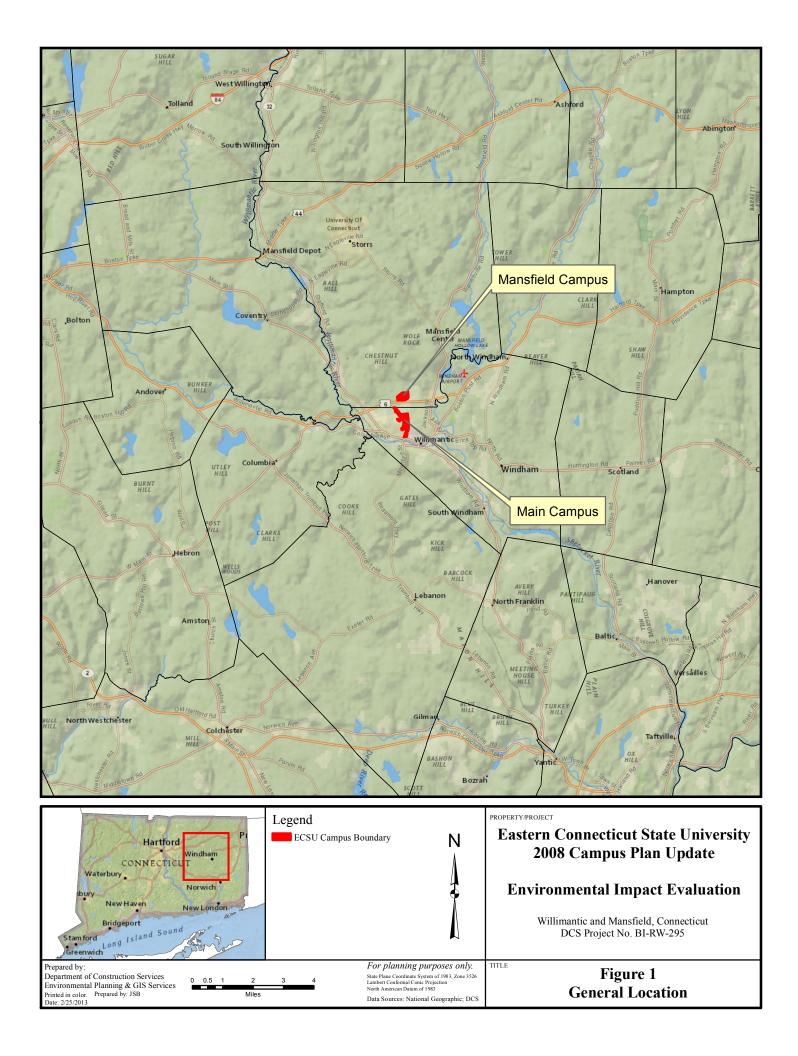
Occupational/Controlled Environment – Defined by the FCC as an area where RF exposure may occur to persons who are **aware** of the potential for exposure as a condition of employment or specific activity and can exercise control over their exposure.

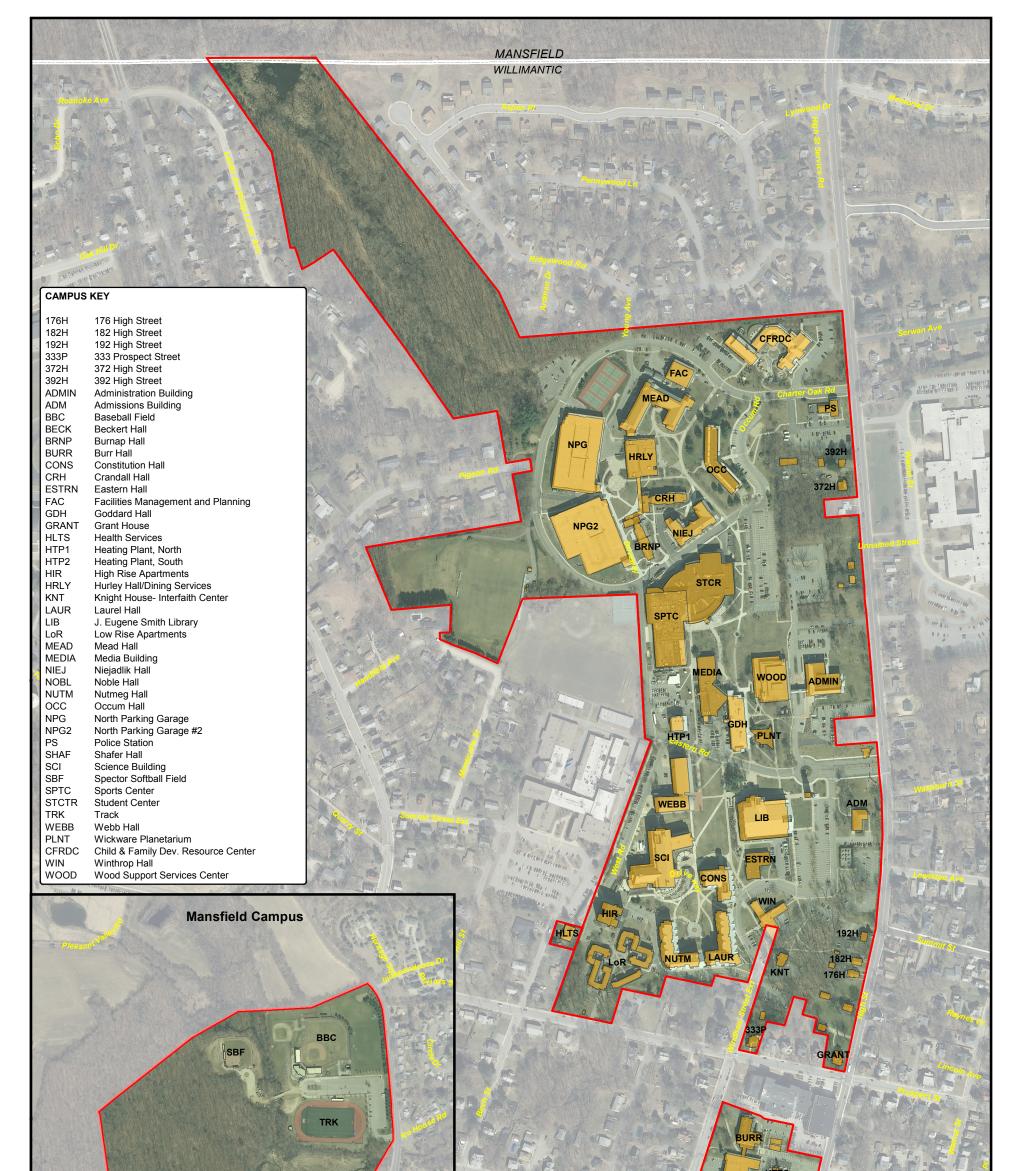
OET Bulletin 65 – Technical guideline developed by the FCC's Office of Engineering and Technology to determine the impact of RF exposure on humans. The guideline was published in August 1997.

OSHA (Occupational Safety and Health Administration) – Under the Occupational Safety and Health Act of 1970, employers are responsible for providing a safe and healthy workplace for their employees. OSHA's role is to promote the safety and health of America's working men and women by setting and enforcing standards; providing training, outreach and education; establishing partnerships; and encouraging continual process improvement in workplace safety and health. For more information, visit www.osha.gov.

Radio Frequency Exposure or Electromagnetic Fields – Electromagnetic waves that are propagated from antennas through space.

Spatial Average Measurement – A technique used to average a minimum of ten (10) measurements taken in a ten (10) second interval from zero (0) to six (6) feet. This measurement is intended to model the average energy a 6-foot tall human body will absorb while present in an electromagnetic field of energy.


Transmitter Power Output (TPO) – The radio frequency output power of a transmitter's final radio frequency stage as measured at the output terminal while connected to a load.



Appendix G – References

The following references can be followed for further information about RF Health and Safety.

Site Safe, LLC http://www.sitesafe.com FCC Radio Frequency Safety http://www.fcc.gov/encyclopedia/radio-frequency-safety National Council on Radiation Protection and Measurements (NCRP) http://www.ncrponline.org Institute of Electrical and Electronics Engineers, Inc., (IEEE) http://www.ieee.org American National Standards Institute (ANSI) http://www.ansi.org Environmental Protection Agency (EPA) http://www.epa.gov/radtown/wireless-tech.html National Institutes of Health (NIH) http://www.niehs.nih.gov/health/topics/agents/emf/ Occupational Safety and Health Agency (OSHA) http://www.osha.gov/SLTC/radiofrequencyradiation/ International Commission on Non-Ionizing Radiation Protection (ICNIRP) http://www.icnirp.org World Health Organization (WHO) http://www.who.int/peh-emf/en/ National Cancer Institute http://www.cancer.gov/cancertopics/factsheet/Risk/cellphones American Cancer Society (ACS) http://www.cancer.org/docroot/PED/content/PED 1 3X Cellular Phone Towers.asp?sit earea=PED European Commission Scientific Committee on Emerging and Newly Identified Health Risks http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr o 022.pdf Fairfax County, Virginia Public School Survey http://www.fcps.edu/fts/safety-security/RFEESurvey/ UK Health Protection Agency Advisory Group on Non-Ionizing Radiation http://www.hpa.org.uk/webw/HPAweb&HPAwebStandard/HPAweb C/1317133826368 Norwegian Institute of Public Health http://www.fhi.no/dokumenter/545eea7147.pdf

Comme Comme	Legend ECSU Campus Bounda Existing Buildings	ry A	PROPERTY/PROJECT Eastern Connecticut State University 2008 Campus Plan Update Environmental Impact Evaluation Willimantic and Mansfield, Connecticut DCS Project No. BI-RW-295
Prepared by: Department of Construction Services Environmental Planning & GIS Services Printed in color. Prepared by: JSB Date: 2/25/2013	500 750 1,000 State Plane Lambert Con Feet	nning purposes only. oordnate System of 1983, Zone 3526 formal Conie Projekt can Datum of 1983 sess: 2012 aerial (CLEAR); DESPP (TeleAtlas); DCS	Figure 2 Existing Site Conditions

CAMPUS KEY

176H 176 High Street 182H 182 High Street 192H 192 High Street 333 Prospect Street 333P 372H 372 High Street 392 High Street 392H ADMIN Administration Building ADM Admissions Building BBC Baseball Field BECK Beckert Hall BURR Burr Hall Constitution Hall CONS Crandall Hall CRH GDH Goddard Hall GRANT Grant House HTP2 Heating Plant, South LAUR Laurel Hall LIB J. Eugene Smith Library Mead Hall MEAD Media Building MEDIA Niejadlik Hall NIEJ Noble Hall NOBL NUTM Nutmeg Hall Occum Hall 000 NPG North Parking Garage NPG2 North Parking Garage #2 PS Police Station SHAF Shafer Hall SCI Science Building Spector Softball Field SBF Student Center STCTR TRK Track WEBB Webb Hall PLNT Wickware Planetarium CFRDC Child & Family Dev. Resource Center WOOD Wood Support Services Center

MASTER PLAN PROJECTS

ACAD BRNP ESTRN FAC FAIC HIR HLTS	New Academic Building Burnap Hall (Demolish) Eastern Hall (Demolish) Facilities Management and Planning (w/ Addition) New Fine Arts Instructional Center High Rise Apartments (Demolish) Health Services (Demolish)		
HRLY	Hurley Hall/Dining Services (w/ Addition)		
HTP1	Heating Plant, North (w/Addition)		
KNT	Knight House- Interfaith Center (Demolish)		
LoR	Low Rise Apartments (Demolish)		
PDK	Knight Parking Deck		
PDS	South Parking Deck		
PDS	South Parking Deck		
RES1	New Residence Hall 1		
RES2	New Residence Hall 2		
RES3	New Residence Hall 3		
SPTC	Sports Center (w/ Addition)		
SWC	New Student Wellness Center		
TECH	Academic Technology Building		
WIN	Winthrop Hall (Demolish)		

Mansfield Campus

The FAIC site configuration has been modified during design. See Figure 4.

192H

82H

6H

GRANT

			NOBL CONSTRUCTION
Correnty Contents Calination Cali	Legend Campus Master Plan Existing Buildings	N Buildings	PROPERTY/PROJECT Eastern Connecticut State University 2008 Campus Plan Update Environmental Impact Evaluation Willimantic and Mansfield, Connecticut DCS Project No. BI-RW-295
Prepared by: Department of Construction Services Environmental Planning & GIS Services Printed in color. Prepared by: JSB Date: 225/2013	Not to scale	For planning purposes only. State Plane Coordinate System of 1983, Zone 3526 Lambert Conformal Conic Projection North American Dalam of 1983 Data Sources: SMMA (2008)	Figure 3 Campus Master Plan

NPG

NPG2

ST0

Prospect Street

333P