

April 26, 2018

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Street New Britain, CT 06051

Regarding: Notice of Exempt Modification – Swap of (6) antennas and addition of

(9) remote radio units and (2) Surge Arrestors

Property Address: 46 Fenwood Lane, Wilton, CT (the "Property", AT&T Site # CT2143)

Applicant: AT&T Mobility ("AT&T")

Dear Ms. Bachman:

AT&T currently maintains a wireless telecommunications facility on an existing 180 foot, Lattice Tower ("tower") at the above-referenced address, latitude 41.17251111, longitude -73.4339139. AT&T's facility consists of nine (9) wireless telecommunications antennas at 163 feet. The tower is controlled and owned by the Connecticut Department of Emergency Services and Public Protection (Connecticut State Police). Assessor's information is attached hereto.

AT&T desires to modify its existing telecommunications facility by swapping six (6) antennas for newer models and adding nine (9) remote radios heads and two (2) surge arrestors. The centerline height of said antennas is and will remain at 163 feet.

Please accept this application as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72 (b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the First Selectwoman of the Town of Wilton, the Chief Building Official of the Town of Wilton, and the Zoning Enforcement Officer of the Town of Wilton. Notice is also being sent to the Connecticut Department of Emergency Services and Public Protection, the owner of the above-referenced tower.

The planned modifications to AT&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The planned modifications will not result in an increase in the height of the existing structure. AT&T's antennas and associated lines will be installed at 163 foot level of the 180 foot tower.

Phone 978-284-3906 Email: ncaplan@empiretelecomm.com

2. The proposed modifications will not involve any changes to ground-mounted equipment and, therefore will not require an extension of the site boundary.



- 3. The proposed modification will not increase the noise level at the facility by six decibel or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. An RF emissions calculation is attached.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The tower and its foundation can support AT&T's proposed modifications. (Please see attached Structural Analysis completed by AECOM dated March 29, 2018).

For the foregoing reasons AT&T respectfully requests that the proposed swap of antennas and addition of remote radio heads and surge arrestors be allowed within the exempt modifications under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Nicole Caplan Site Acquisition Specialist Empire Telecom

CC: The Honorable Lynne Vanderslice, First Selectwoman, Town of Wilton Robert Root, Chief Building Official, Town of Wilton Timothy Bunting, CAZEO, Zoning Enforcement Officer, Town of Wilton Connecticut Department of Emergency Services and Public Protection, c/o Brian Benito

Phone 978-284-3906

Email: ncaplan@empiretelecomm.com

# **46 FENWOOD LA**

Location 46 FENWOOD LA

**Mblu** 99/ / 22/ /

Acct# 006298

Owner CONNECTICUT STATE OF

**Assessment** \$275,030

**Appraisal** \$392,900

**PID** 5194

**Building Count** 1

### **Current Value**

| Appraisal                              |              |           |           |  |  |  |
|----------------------------------------|--------------|-----------|-----------|--|--|--|
| Valuation Year                         | Improvements | Land      | Total     |  |  |  |
| 2016                                   | \$79,300     | \$313,600 | \$392,900 |  |  |  |
|                                        | Assessment   |           |           |  |  |  |
| Valuation Year Improvements Land Total |              |           |           |  |  |  |
| 2016                                   | \$55,510     | \$219,520 | \$275,030 |  |  |  |

### **Owner of Record**

Owner

CONNECTICUT STATE OF

Co-Owner

Address

450 CAPITOL AVE

HARTFORD, CT 06134

Sale Price

ł

Certificate

Book & Page 0049/0403

Sale Date 01

Suic Ducc

01/01/1901

Instrument

00

\$0

### **Ownership History**

| Ownership History    |            |             |             |            |            |  |
|----------------------|------------|-------------|-------------|------------|------------|--|
| Owner                | Sale Price | Certificate | Book & Page | Instrument | Sale Date  |  |
| CONNECTICUT STATE OF | \$0        |             | 0049/0403   | 00         | 01/01/1901 |  |

### **Building Information**

# **Building 1 : Section 1**

Year Built:

1990

Living Area:

1,431

**Replacement Cost:** 

\$91,927

**Building Percent** 

83

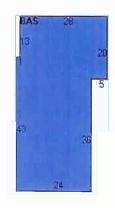
Good:

**Replacement Cost** 

Less Depreciation:

\$76,300

| Building | Attributes  |
|----------|-------------|
| Field    | Description |


| STYLE            | Commercial     |
|------------------|----------------|
| MODEL            | Commercial     |
|                  |                |
| Grade            | Average +10    |
| Occupancy        | 1              |
| Exterior Wall 1  | Clapboard      |
| Exterior Wall 2  |                |
| Roof Structure   | Gable/Hip      |
| Roof Cover       | Asphalt Shngl. |
| Interior Wall 1  | Minim/Masonry  |
| Interior Wall 2  |                |
| Interior Floor 1 | Concrete       |
| Interior Floor 2 |                |
| Heating Fuel     | Electric       |
| Heating Type     | Electr Basebrd |
| АС Туре          | Central        |
| Bldg Use         | Ex Com MDL-96  |
| Fireplace        |                |
| Elevator         |                |
| Cath Ceil        |                |
| Sauna            |                |
| 1st Floor Use:   | 211            |
| Heat/AC          | Heat A/C Split |
| Frame Type       | Wood Frame     |
| Baths/Plumbing   | Average        |
| Ceiling/Wall     | Ceiling Only   |
| Rooms/Prtns      | Average        |
| Wall Height      | 10             |
| % Comn Wall      | 0              |
|                  |                |

# **Building Photo**



(http://images.vgsi.com/photos/WiltonCTPhotos//\00\00\03/49.j

# **Building Layout**



|      | Building Sub-Areas (sq ft) |               |                |  |
|------|----------------------------|---------------|----------------|--|
| Code | Description                | Gross<br>Area | Living<br>Area |  |
| BAS  | First Floor                | 1,431         | 1,431          |  |
|      |                            | 1,431         | 1,431          |  |

# **Extra Features**

|    | ra Features <u>I</u>    | <u> Legend</u> |
|----|-------------------------|----------------|
| No | Pata for Extra Features |                |

# Land

| Land Use     |               | Land Line Valuat      |           |  |
|--------------|---------------|-----------------------|-----------|--|
| Use Code     | 211           | Size (Acres)          | 0.5       |  |
| Description  | Ex Com MDL-96 | Frontage              |           |  |
| Zone         | R-2           | Depth                 |           |  |
| Neighborhood | 4000          | <b>Assessed Value</b> | \$219,520 |  |

# **Outbuildings**

| Outbuildings <u>Le</u> |             |          |                 |          |         |        |  |  |
|------------------------|-------------|----------|-----------------|----------|---------|--------|--|--|
| Code                   | Description | Sub Code | Sub Description | Size     | Value   | Bldg # |  |  |
| FN3                    | Fence 6'    |          |                 | 300 L.F. | \$3,000 | 1      |  |  |

# **Valuation History**

| Appraisal      |              |           |           |  |  |  |  |
|----------------|--------------|-----------|-----------|--|--|--|--|
| Valuation Year | Improvements | Land      | Total     |  |  |  |  |
| 2016           | \$79,300     | \$313,600 | \$392,900 |  |  |  |  |
| 2015           | \$79,300     | \$313,600 | \$392,900 |  |  |  |  |
| 2014           | \$79,300     | \$313,600 | \$392,900 |  |  |  |  |

| Assessment     |              |           |           |  |  |  |
|----------------|--------------|-----------|-----------|--|--|--|
| Valuation Year | Improvements | Land      | Total     |  |  |  |
| 2016           | \$55,510     | \$219,520 | \$275,030 |  |  |  |
| 2015           | \$55,510     | \$219,520 | \$275,030 |  |  |  |
| 2014           | \$55,510     | \$219,520 | \$275,030 |  |  |  |

<sup>(</sup>c) 2016 Vision Government Solutions, Inc. All rights reserved.

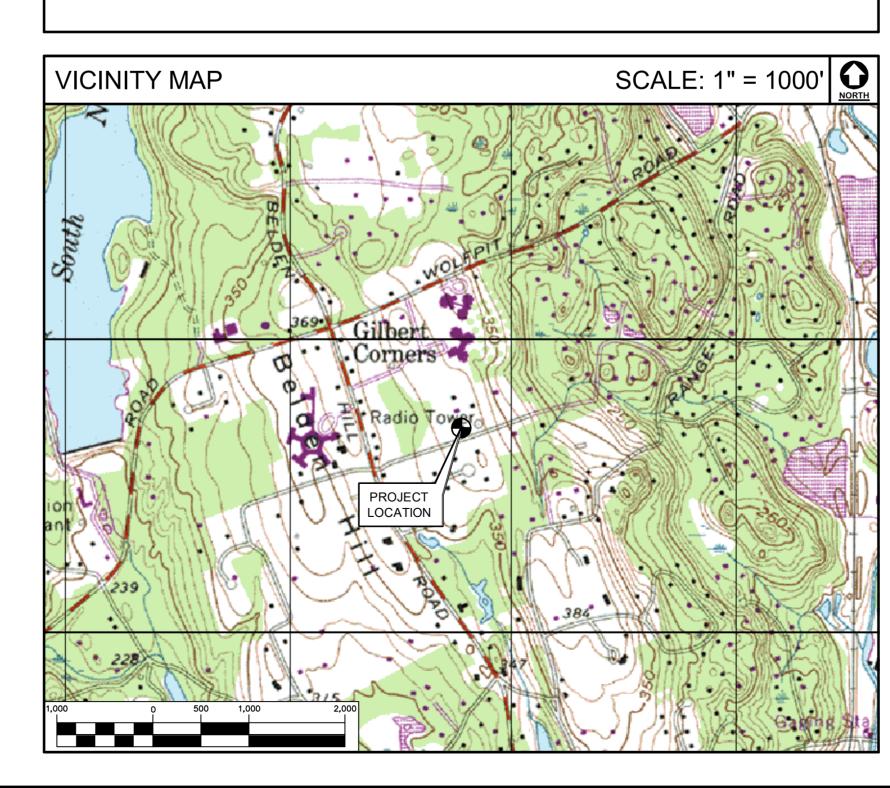
# 46 Fenwood Ln



46 Fenwood Ln Wilton, CT 06897






# WIRELESS COMMUNICATIONS FACILITY CT2143 - LTE 3C/4C-WCS/5C-AWS/6C-700 UPPER D & BWE GILBERTS CORNER 46 FENWOOD LANE WILTON, CT 06897

# **GENERAL NOTES**

- 1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2012 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2016 CONNECTICUT STATE BUILDING CODE, INCLUDING THE TIA—222 REVISION "G" STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES, 2016 CONNECTICUT FIRE SAFETY CODE AND, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- 2. THE COMPOUND, TOWER, PRIMARY GROUND RING, ELECTRICAL SERVICE TO THE METER BANK AND TELEPHONE SERVICE TO THE DEMARCATION POINT ARE PROVIDED BY SITE OWNER. AS BUILT FIELD CONDITIONS REGARDING THESE ITEMS SHALL BE CONFIRMED BY THE CONTRACTOR. SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.
- 3. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- 4. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 5. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 6. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 7. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 8. LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 9. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. MAINTAIN EXISTING BUILDING'S/PROPERTY'S OPERATIONS, COORDINATE WORK WITH BUILDING/PROPERTY OWNER.

- 10. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 11. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 12. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 13. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED" ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE AT&T CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 14. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON—SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 15. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 16. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 17. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 18. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB—CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 19. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 20. THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED PRIOR TO ANY EXCAVATION WORK. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 21. CONTRACTOR SHALL COMPLY WITH OWNERS ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.

### SITE DIRECTIONS TO: 46 FENWOOD LANE WILTON, CONNECTICUT 500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT HEAD NORTHEAST ON ENTERPRISE DR TOWARD CAPITAL BLVD 0.36 MI 0.27 MI TURN LEFT ONTO CAPITAL BLVD TURN LEFT ONTO WEST ST 0.30 MI TURN LEFT TO MERGE ONTO I-91 S TOWARD NEW HAVEN 9.59 MI MERGE ONTO CT-15 S VIA EXIT 17 TOWARD E MAIN ST. 44.27 MI TAKE THE CT-33 EXIT, EXIT 41, TOWARD WESTPORT/WILTON. 0.08 MI 0.03 MI KEEP RIGHT AT THE FORK IN THE RAMP. B. TURN LEFT ONTO CT-33/WILTON RD. CONTINUE TO FOLLOW CT-33. 2.66 MI TURN LEFT ONTO WOLFPIT RD/CT-106. 1.22 MI 10. TURN LEFT ONTO BELDEN HILL RD. 0.29 MI TAKE THE 1ST LEFT ONTO FENWOOD LN. 0.13 MI 12. 46 FENWOOD LN, WILTON, CT 06897-3829, 46 FENWOOD LN IS ON THE LEFT.



# PROJECT SUMMARY

THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO
THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING
THE FOLLOWING:

 THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO
THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING
THE FOLLOWING:

# A. <u>AT ANTENNA SECTORS</u>:

- REMOVE (6) EXISTING ANTENNAS
- REMOVE (3) EXISTING RRUS-11
- RELOCATE (3) EXISTING RRUS-11 TO POS.4
- REMOVE (3) TMA'S
- INSTALL (3) NEW RRUS-32
- INSTALL (3) NEW RRUS-32 B2
- INSTALL (3) NEW RRUS-32 B66
- INSTALL (3) NEW B14 4478
- INSTALL (6) NEW 12-PORT ANTENNAS
- INSTALL (2) NEW SURGE ARRESTORS
- B. WORK WITHTIN EXISTING AT&T EQUIPMENT SHELTER:
- INSTALL (2) ADDITIONAL XMU UNITS, (1) ADDITIONAL DUS, (1)
   IDL2 LINK AND (1) ADDITIONAL 5216+1DLE WITHIN EXISTING LTE EQUIPMENT RACK
- DECOMMISSION AND REMOVE (2) EXISTING GSM CABINETS
- INSTALL A EQUIPMENT RACK WITH (3) ERICSSON RRUS-12, WITH (6) SURGE ARRESTORS
- REMOVE (6) EXISTING DIPLEXERS

# PROJECT INFORMATION

AT&T SITE NUMBER: CT2143

AT&T SITE NAME: GILBERTS CORNER

WILTON, CT 06897

LESSEE/APPLICANT: AT&T MOBILITY
500 ENTERPRISE DRIVE, SUITE 3A
ROCKY HILL, CT 06067

46 FENWOOD LANE

AT&T PACE JOB NUMBER: 1. MRCTB026584 2. MRCTB026801 3. MRCTB026695

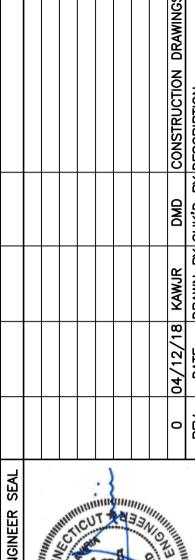
AT&T FA LOCATION CODE: 10035018

ENGINEER:

SITE ADDRESS:

BRANFORD, CT 06405

PROJECT COORDINATES: LATITUDE: 41°-10'-21.04" N
LONGITUDE: 73°-26'-02.1" W


CENTEK ENGINEERING, INC.

63-2 NORTH BRANFORD RD.

GROUND ELEVATION: ±374' AMSL

SITE COORDINATES AND GROUND ELEVATION REFERENCED FROM GOOGLE EARTH.

| SHT. NO. | DESCRIPTION                                 | REV |
|----------|---------------------------------------------|-----|
| T-1      | TITLE SHEET                                 | 0   |
|          |                                             | _   |
| N-1      | NOTES, SPECIFICATIONS AND ANTENNA SCEHDULES | 0   |
|          |                                             |     |
| C-1      | PLANS AND ELEVATION                         | 0   |
| C-2      | LTE 3C/4C/5C/6C & BWE ANTENNA LAYOUT PLANS  | 0   |
| C-3      | DETAILS                                     | 0   |
|          |                                             |     |
| E-1      | LTE SCHEMATIC DIAGRAM AND NOTES             | 0   |
| E-2      | LTE WIRING DIAGRAM                          | 0   |
| E-3      | TYPICAL ELECTRICAL DETAILS                  | 0   |
|          |                                             |     |
| P-1      | PLUMBING DIAGRAMS                           | 0   |







ntered on Solutions...
3) 488-0580
3) 488-8587 Fax
2 North Branford Road
inford, CT 06405

STS CORNUCATIONS FACILITY

TS CORNUCATIONS FACILITY

3C/4C/5C/6C + BWE

FINWOOD LANE

GILBERTS COMMUN
GILBERTS
CT2143 - LTE 3C/

DATE: 03/14/18

SCALE: AS NOTED

JOB NO. 18000.31

TITLE SHEET

**T-1** 

# NOTES AND SPECIFICATIONS

# **DESIGN BASIS:**

GOVERNING CODE: 2012 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2016 CT STATE BUILDING CODE AND AMENDMENTS.

- DESIGN CRITERIA:
- WIND LOAD: PER TIA 222 G (ANTENNA MOUNTS): 90-110 MPH (3 SECOND GUST)
- RISK CATEGORY: II (BASED ON IBC APPENDIX N)
- NOMINAL DESIGN SPEED (TOWER): 93 MPH (Vasd) (EXPOSURE C/IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10) PER 2012 INTERNATIONAL BUILDING CODE (IBC) AS MODIFIED BY THE 2016 CONNECTICUT STATE BUILDING CODE.
- SEISMIC LOAD (DOES NOT CONTROL): PER ASCE 7-10 MINIMUM DESIGN LOADS FOR BUILDING AND OTHER STRUCTURES.

# GENERAL NOTES:

- 1. ALL CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BUILDING
- DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 3. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
- 4. DIMENSIONS AND DETAILS SHALL BE CHECKED AGAINST EXISTING FIELD CONDITIONS.
- THE CONTRACTOR SHALL VERIFY AND COORDINATE THE SIZE AND LOCATION OF ALL OPENINGS, SLEEVES AND ANCHOR BOLTS AS REQUIRED BY ALL TRADES.
- 6. ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES. SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS, ELEVATIONS, ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK.
- AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.
- THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE SAFETY CODES AND REGULATIONS DURING ALL PHASES OF CONSTRUCTION. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR PROVIDING AND MAINTAINING ADEQUATE SHORING, BRACING, AND BARRICADES AS MAY BE REQUIRED FOR THE PROTECTION OF EXISTING PROPERTY, CONSTRUCTION WORKERS, AND FOR PUBLIC SAFETY.
- THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. MAINTAIN EXISTING SITE OPERATIONS, COORDINATE WORK WITH NORTHEAST UTILITIES
- 10. THE STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER FOUNDATION REMEDIATION WORK IS COMPLETE. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE STRUCTURE AND ITS COMPONENT PARTS DURING ERECTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, TEMPORARY BRACING, GUYS OR TIEDOWNS, WHICH MIGHT BE NECESSARY.
- 11. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 12. SHOP DRAWINGS, CONCRETE MIX DESIGNS, TEST REPORTS, AND OTHER SUBMITTALS PERTAINING TO STRUCTURAL WORK SHALL BE FORWARDED TO THE OWNER FOR REVIEW BEFORE FABRICATION AND/OR INSTALLATION IS MADE. SHOP DRAWINGS SHALL INCLUDE ERECTION DRAWINGS AND COMPLETE DETAILS OF CONNECTIONS AS WELL AS MANUFACTURER'S SPECIFICATION DATA WHERE APPROPRIATE. SHOP DRAWINGS SHALL BE CHECKED BY THE CONTRACTOR AND BEAR THE CHECKER'S INITIALS BEFORE BEING SUBMITTED FOR REVIEW.
- NO DRILLING WELDING OR TAPING ON EVERSOURCE OWNED EQUIPMENT.
- 14. REFER TO DRAWING T1 FOR ADDITIONAL NOTES AND REQUIREMENTS.

# STRUCTURAL STEEL

- ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)
- STRUCTURAL STEEL (W SHAPES)---ASTM A992 (FY = 50 KSI) STRUCTURAL STEEL (OTHER SHAPES) --- ASTM A36 (FY = 36 KSI)

STRUCTURAL HSS (RECTANGULAR SHAPES) --- ASTM A500 GRADE B,

- (FY = 46 KSI)
- D. STRUCTURAL HSS (ROUND SHAPES) --- ASTM A500 GRADE B,
- (FY = 42 KSI)
- PIPE---ASTM A53 (FY = 35 KSI)
- CONNECTION BOLTS---ASTM A325-N U-BOLTS---ASTM A36
- ANCHOR RODS---ASTM F 1554
- WELDING ELECTRODE --- ASTM E 70XX
- 2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR 1. DO NOT APPLY PAINT IN SNOW, RAIN, FOG OR MIST OR WHEN RELATIVE HUMIDITY APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS.
- WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
- 4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS,
- 5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.

MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.

- 6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
- 7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
- 8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
- 9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
- 10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED. DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER
- 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
- 12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
- 15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- 16. FABRICATE BEAMS WITH MILL CAMBER UP.
- 17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4 IN THE FULL HEIGHT OF THE COLUMN
- 18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
- 19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE 4 PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
- 20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

# PAINT NOTES

# PAINTING SCHEDULE:

- ANTENNA PANELS:
- SHERWIN WILLIAMS POLANE-B B. COLOR TO BE MATCHED WITH EXISTING TOWER STRUCTURE.
- 2. <u>COAXIAL CABLES:</u>
  - A. ONE COAT OF DTM BONDING PRIMER (2-5 MILS. DRY FINISH)
  - B. TWO COATS OF DTM ACRYLIC PRIMER/FINISH (2.5-5 MILS. DRY FINISH) C. COLOR TO BE FIELD MATCHED WITH EXISTING STRUCTURE.

# EXAMINATION AND PREPARATION:

SURFACE TO DRY.

- EXCEEDS 85%. DO NOT APPLY PAINT TO DAMP OR WET SURFACES.
- 2. VERIFY THAT SUBSTRATE CONDITIONS ARE READY TO RECEIVE WORK. EXAMINE SURFACE SCHEDULED TO BE FINISHED PRIOR TO COMMENCEMENT OF WORK. REPORT ANY CONDITION THAT MAY POTENTIALLY AFFECT PROPER APPLICATION.
- 3. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE 3. TEST SHOP APPLIED PRIMER FOR COMPATIBILITY WITH SUBSEQUENT COVER MATERIALS.
  - 4. PERFORM PREPARATION AND CLEANING PROCEDURE IN STRICT ACCORDANCE WITH COATING MANUFACTURER'S INSTRUCTIONS FOR EACH SUBSTRATE CONDITION.
  - CORRECT DEFECTS AND CLEAN SURFACES WHICH AFFECT WORK OF THIS SECTION. REMOVE EXISTING COATINGS THAT EXHIBIT LOOSE SURFACE DEFECTS.
  - IMPERVIOUS SURFACE: REMOVE MILDEW BY SCRUBBING WITH SOLUTION OF TRI-SODIUM PHOSPHATE AND BLEACH. RINSE WITH CLEAN WATER AND ALLOW
  - ALUMINUM SURFACE SCHEDULED FOR PAINT FINISH: REMOVE SURFACE CONTAMINATION BY STEAM OR HIGH-PRESSURE WATER. REMOVE OXIDATION WITH ACID ETCH AND SOLVENT WASHING. APPLY ETCHING PRIMER IMMEDIATELY FOLLOWING
  - FERROUS METALS: CLEAN UNGALVANIZED FERROUS METAL SURFACES THAT HAVE NOT BEEN SHOP COATED; REMOVE OIL, GREASE, DIRT, LOOSE MILL SCALE, AND OTHER FOREIGN SUBSTANCES. USE SOLVENT OR MECHANICAL CLEANING METHODS THAT COMPLY WITH THE STEEL STRUCTURES PAINTING COUNCIL'S (SSPC) RECOMMENDATIONS. TOUCH UP BARE AREAS AND SHOP APPLIED PRIME COATS THAT HAVE BEEN DAMAGED. WIRE BRUSH, CLEAN WITH SOLVENTS RECOMMENDED BY PAINT MANUFACTURER, AND TOUCH UP WITH THE SAME PRIMER AS THE SHOP COAT.
  - GALVANIZED SURFACES: CLEAN GALVANIZED SURFACES WITH NON-PETROLEUM-BASED SOLVENTS SO SURFACE IS FREE OF OIL AND SURFACE CONTAMINANTS. REMOVE PRETREATMENT FROM GALVANIZED SHEET METAL FABRICATED FROM COIL STOCK BY MECHANICAL METHODS.
  - 10. ANTENNA PANELS: REMOVE ALL OIL, DUST, GREASE, DIRT, AND OTHER FOREIGN MATERIAL TO ENSURE ADEQUATE ADHESION. PANELS MUST BE WIPED WITH METHYL ETHYL KETONE (MEK).
  - 11. COAXIAL CABLES: REMOVE ALL OIL, DUST, GREASE. DIRT, AND OTHER FOREIGN MATERIAL TO ENSURE ADEQUATE ADHESION.

# **CLEANING:**

COLLECT WASTE MATERIAL, WHICH MAY CONSTITUTE A FIRE HAZARD, PLACE IN CLOSED METAL CONTAINERS AND REMOVE DAILY FROM SITE.

# **APPLICATION:**

- APPLY PRODUCTS IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS.
- 2. DO NOT APPLY FINISHES TO SURFACES THAT ARE NOT DRY.
- 3. APPLY EACH COAT TO UNIFORM FINISH.
- APPLY EACH COAT OF PAINT SLIGHTLY DARKER THAN PRECEDING COAT UNLESS OTHERWISE APPROVED.
- 5. SAND METAL LIGHTLY BETWEEN COATS TO ACHIEVE REQUIRED FINISH.
- 6. VACUUM CLEAN SURFACES FREE OF LOOSE PARTICLES. USE TACK CLOTH JUST PRIOR TO APPLYING NEXT COAT.
- 7. ALLOW APPLIED COAT TO DRY BEFORE NEXT COAT IS APPLIED.

# COMPLETED WORK:

- 1. SAMPLES: PREPARE 24" X 24" SAMPLE AREA FOR REVIEW.
- 2. MATCH APPROVED SAMPLES FOR COLOR, TEXTURE AND COVERAGE. REMOVE REFINISH OR REPAINT WORK NOT IN COMPLIANCE WITH SPECIFIED REQUIREMENTS.

# **ANTENNA SCHEDULE** TMA/DIPLEXER/TRIPLEXER (QTY) (E/P) RRU (QTY)FEEDER

|    |          |                               |                   | (L x w x b) | W HEIGHT |      |                                                                           |                                   |                             |
|----|----------|-------------------------------|-------------------|-------------|----------|------|---------------------------------------------------------------------------|-----------------------------------|-----------------------------|
| A1 | EXISTING | UMTS 850                      | POWERWAVE 7770    | 55X11X5     | 163'     | 263° | TMA: PWAV: LGP21401 SINGLE 1900 W/850BP (2) DIPLEXER: PWAV: LGP 21901 (2) | 7/8ø COAX (2)                     | (E) RAYCAP DC6-48-60-18-8C  |
|    |          |                               |                   |             |          |      |                                                                           |                                   |                             |
| A3 | PROPOSED | LTE 700/AWS                   | KATHREIN 80010965 | 78.7X20X6.9 | 163'     | 30°  | (P) B14 4478 (1), (P) RRUS-32 B66 (1)                                     | FIBER AND DC POWER                | (P) RAYCAP DC6-48-60-0-8C ( |
| A4 | PROPOSED | LTE 850/LTE WCS/700/1900/1900 | QUINTEL QS66512-2 | 72X12X9.6   | 163'     | 30°  | (E) RRUS-11 (1), (P) RRUS-12 (1), (P) RUUS-32 B2 (1), (P) RUUS-32 B2 (1)  | 7/8ø COAX (2), FIBER AND DC POWER |                             |
|    |          |                               |                   |             |          |      |                                                                           |                                   |                             |
| B1 | EXISTING | UMTS 850                      | POWERWAVE 7770    | 55X11X5     | 163'     | 150° | TMA: PWAV: LGP21401 SINGLE 1900 W/850BP (2) DIPLEXER: PWAV: LGP 21901 (2) | 7/8ø COAX (2)                     |                             |

| В3 | PROPOSED | LTE 700/AWS                   | KATHREIN 80010965 | 78.7X20X6.9 | 163' | 150° |                                                                           | (P) B14 4478 (1), (P) RRUS-32 B66 (1)                                    | FIBER AND DC POWER                |
|----|----------|-------------------------------|-------------------|-------------|------|------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------|
| B4 | PROPOSED | LTE 850/LTE WCS/700/1900/1900 | QUINTEL QS66512-2 | 72X12X9.6   | 163' | 150° |                                                                           | (E) RRUS-11 (1), (P) RRUS-12 (1), (P) RUUS-32 B2 (1), (P) RUUS-32 B2 (1) | 7/8ø COAX (2), FIBER AND DC POWER |
|    |          |                               |                   |             |      |      |                                                                           |                                                                          |                                   |
| C1 | EXISTING | UMTS 850                      | POWERWAVE 7770    | 55X11X5     | 163' | 23*  | TMA: PWAV: LGP21401 SINGLE 1900 W/850BP (2) DIPLEXER: PWAV: LGP 21901 (2) |                                                                          | 7/8ø COAX (2)                     |
|    |          |                               |                   |             |      |      |                                                                           |                                                                          |                                   |
| C3 | PROPOSED | LTE 700/AWS                   | KATHREIN 80010965 | 78.7X20X6.9 | 163' | 270° |                                                                           | (P) B14 4478 (1), (P) RRUS-32 B66 (1)                                    | FIBER AND DC POWER                |
| C4 | PROPOSED | LTE 850/LTE WCS/700/1900/1900 | QUINTEL QS66512-2 | 72X12X9.6   | 163' | 270° |                                                                           | (E) RRUS-11 (1), (P) RRUS-12 (1), (P) RUUS-32 B2 (1), (P) RUUS-32 B2 (1) | 7/8ø COAX (2), FIBER AND DC POWER |

(E)/(P)

SECTOR

BAND

C4 | PROPOSED | LTE 850/LTE WCS/700/1900/1900 | QUINTEL QS66512-2 | 72X12X9.6 | 163' | 270°

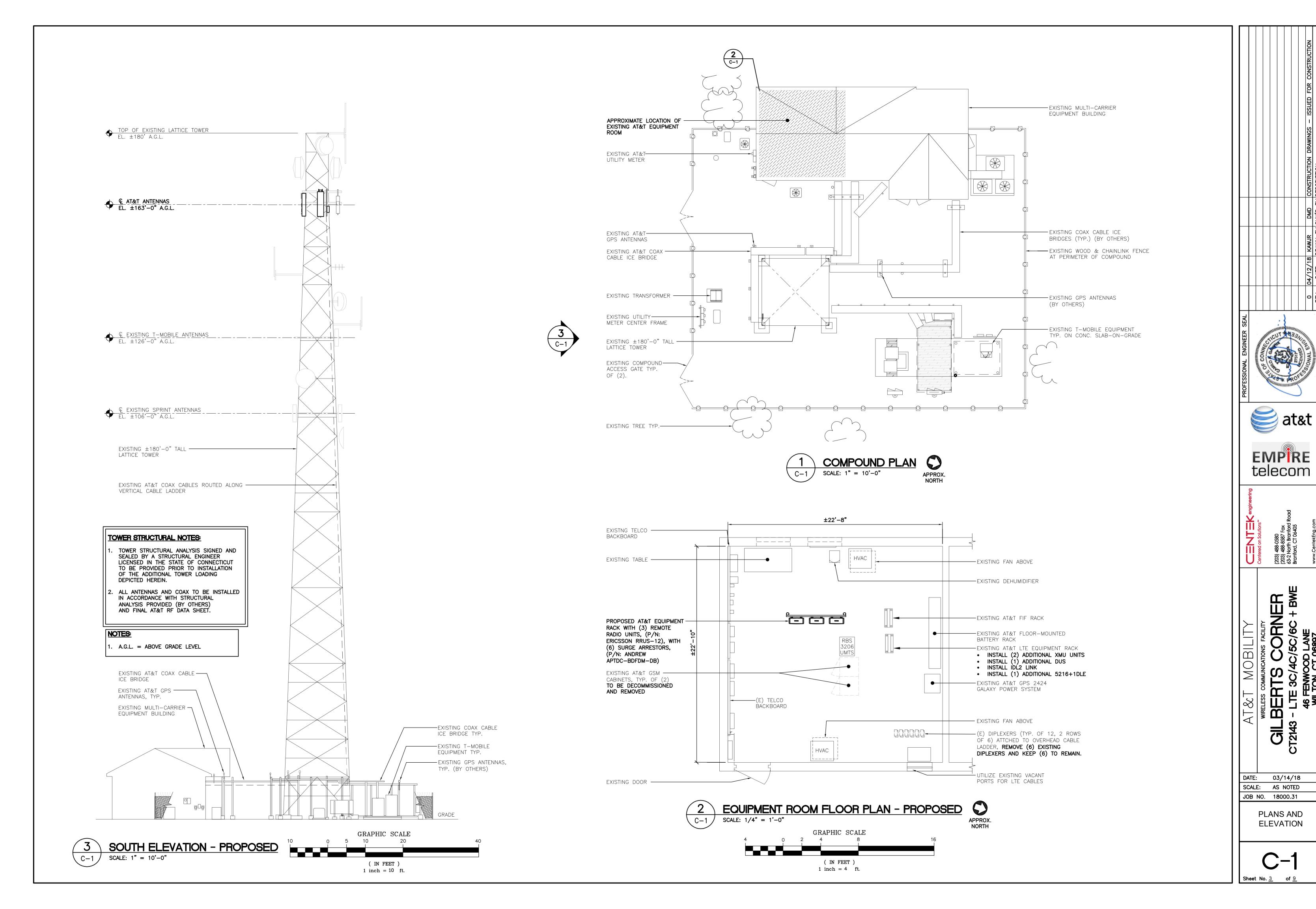
SIZE (INCHES)

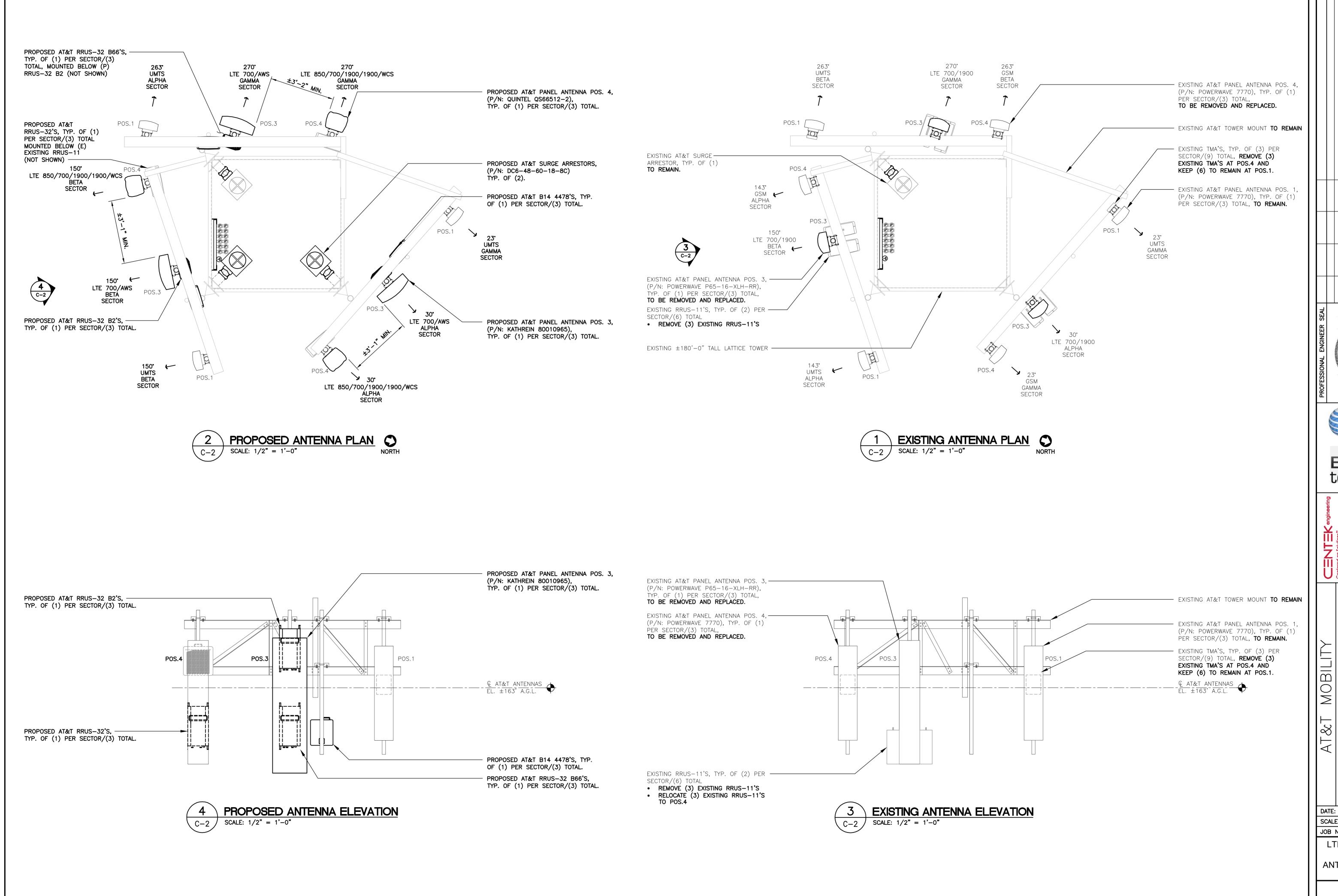
ANTENNA

**AZIMUTH** 

| (E/P) RAYCAP (QTY)                                    | RRUS-11     | 19.7 x 17 x 7.2   |
|-------------------------------------------------------|-------------|-------------------|
| NYOAD DOG 48 60 48 80 (1)                             | RRUS-12     | 20.4 x 18.5 x 7.5 |
| AYCAP DC6-48-60-18-8C (1)<br>AYCAP DC6-48-60-0-8C (2) | RRUS-32     | 27.2 × 12.1 × 7   |
|                                                       | RRUS-32 B2  | 27.2 x 12.1 x 7   |
|                                                       | RRUS-32 B66 | 27.2 × 12.1 × 7   |
|                                                       | B14-4478    | 14.9 x 13.1 x 7.3 |
|                                                       |             |                   |
|                                                       |             |                   |
|                                                       |             |                   |

SIZE (INCHES)  $(L \times W \times D)$ 





telecom

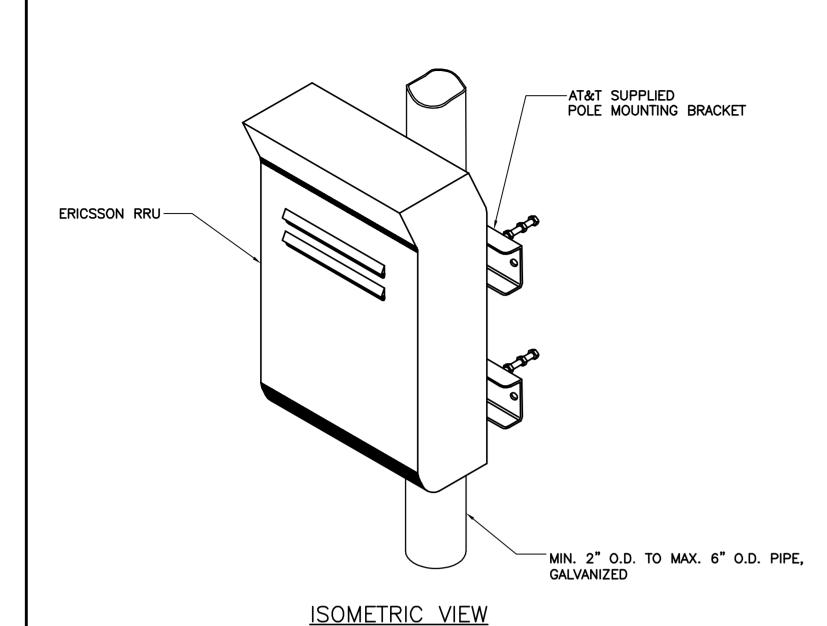
 $\overline{\mathbf{m}}$ **SEL 12** 

03/14/18 SCALE: AS NOTED JOB NO. 18000.31 NOTES. **SPECIFICATIONS** AND ANTENNA SCHEDULE

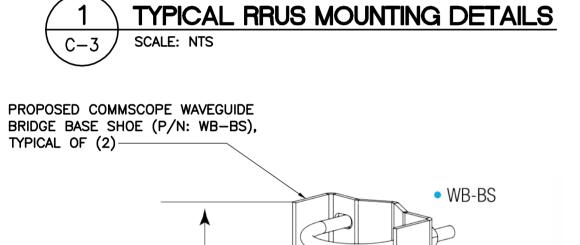







at&t **EMP**RE telecom

- LTE 3C/4C/5C/6C + BWE
46 FENWOOD LANE
WILTON, CT 06897


BERTS -- LTE 3C/4 GILI CT2143

03/14/18 SCALE: AS NOTED JOB NO. 18000.31 LTE 3C/4C/5C/6C & BWE ANTENNA LAYOUT

**PLANS** 

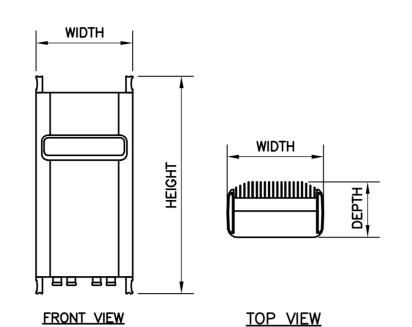


- 1. AT&T SHALL SUPPLY RRU, AND RRU POLE-MOUNTING BRACKET. CONTRACTOR SHALL SUPPLY POLE/PIPE AND INSTALL ALL MOUNTING HARDWARE INCLUDING ERICSSON RRU POLE-MOUNTING BRACKET. CONTRACTOR SHALL INSTALLS RRU AND MAKES CABLE TERMINATIONS.
- 2. NO PAINTING OF THE RRU OR SOLAR SHIELD IS ALLOWED.



(152.4 mm)

(4) PROPOSED — HILTI M10 HDA-P UNDERCUT ANCHOR (3.9" MIN. EMBED)


C-3/

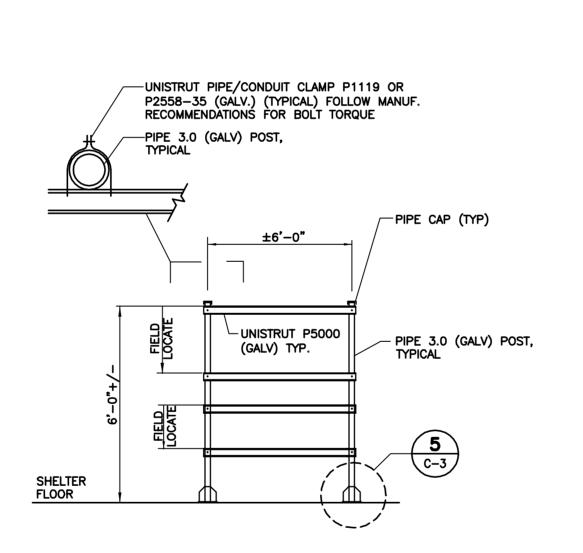
EQUIPMENT FRAME POST ATTACHMENT DETAIL SCALE: NOT TO SCALE

WIDTH FRONT VIEW **BOTTOM VIEW** 

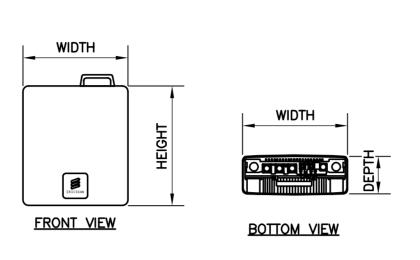
|                                  | RRU (REMOTE R             | ADIO UNIT)           |                                                    |
|----------------------------------|---------------------------|----------------------|----------------------------------------------------|
| EQUIPMENT                        | DIMENSIONS                | WEIGHT               | CLEARANCES                                         |
| MAKE: ERICSSON<br>MODEL: RRUS 12 | 20.4"L x 18.5"W x 7.5"D   | 50 LBS.              | ABOVE: 16" MIN<br>BELOW: 12" MIN<br>FRONT: 36" MIN |
| NOTES:<br>1. CONTRACTOR TO       | COORDINATE FINAL EQUIPMEN | NT MODEL SELECTION V | /ITH AT&T                                          |

CONSTRUCTION MANAGER PRIOR TO ORDERING.




| MAKE: ERICSSON MODEL: RRUS-32 B2 27.17"H x 12.05"W x 7.01"D 52.91 LBS. BELOW: 12" MIN FRONT: 36" MIN ABOVE: 16" MIN | RRU (REMOTE RADIO UNIT)          |                            |            |                 |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|------------|-----------------|--|--|--|--|--|
| MAKE: ERICSSON MODEL: RRUS-32 B2 27.17"H x 12.05"W x 7.01"D 52.91 LBS. BELOW: 12" MIN FRONT: 36" MIN ABOVE: 16" MIN | EQUIPMENT                        | DIMENSIONS                 | WEIGHT     | CLEARANCES      |  |  |  |  |  |
|                                                                                                                     |                                  | 19/1/"H 0 19/15"W 0 //11"I | 52.91 LBS. | BELOW: 12" MIN. |  |  |  |  |  |
| MODEL   RRUS_32   27.17 H x 12.05 W x 7.01 D   52.91 LBS.   BELOW: 12 MIR                                           | MAKE: ERICSSON<br>MODEL: RRUS-32 | 19/1/"H V 1905"W V /01"I   | 52.91 LBS. | BELOW: 12" MIN. |  |  |  |  |  |
| MAKE: ERICSSON 27.17"H x 12.05"W x 7.01"D 52.91 LBS. BELOW: 12" MIN                                                 |                                  | 19/1/14 5 19 NEW 5 / N1"   | 52.91 LBS. | BELOW: 12" MIN. |  |  |  |  |  |

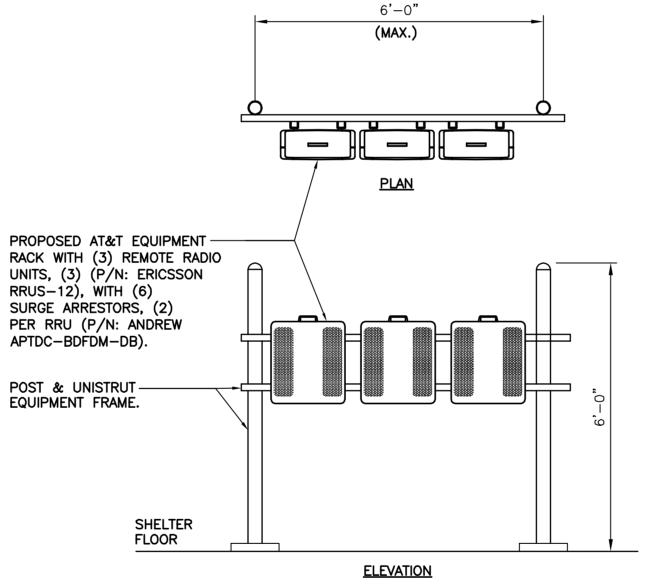
**ERICSSON REMOTE RADIO DETAILS** SCALE: 1" = 1'-0"


NOTES:

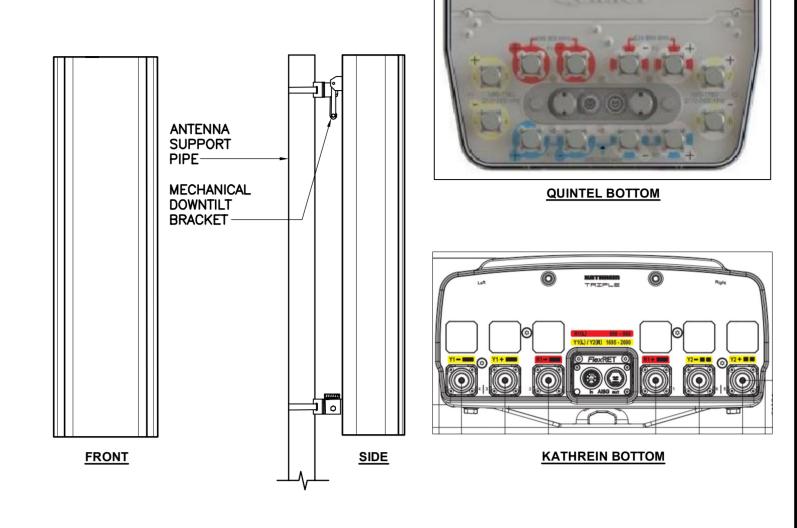
1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH AT&T CONSTRUCTION

MANAGER PRIOR TO ORDERING.



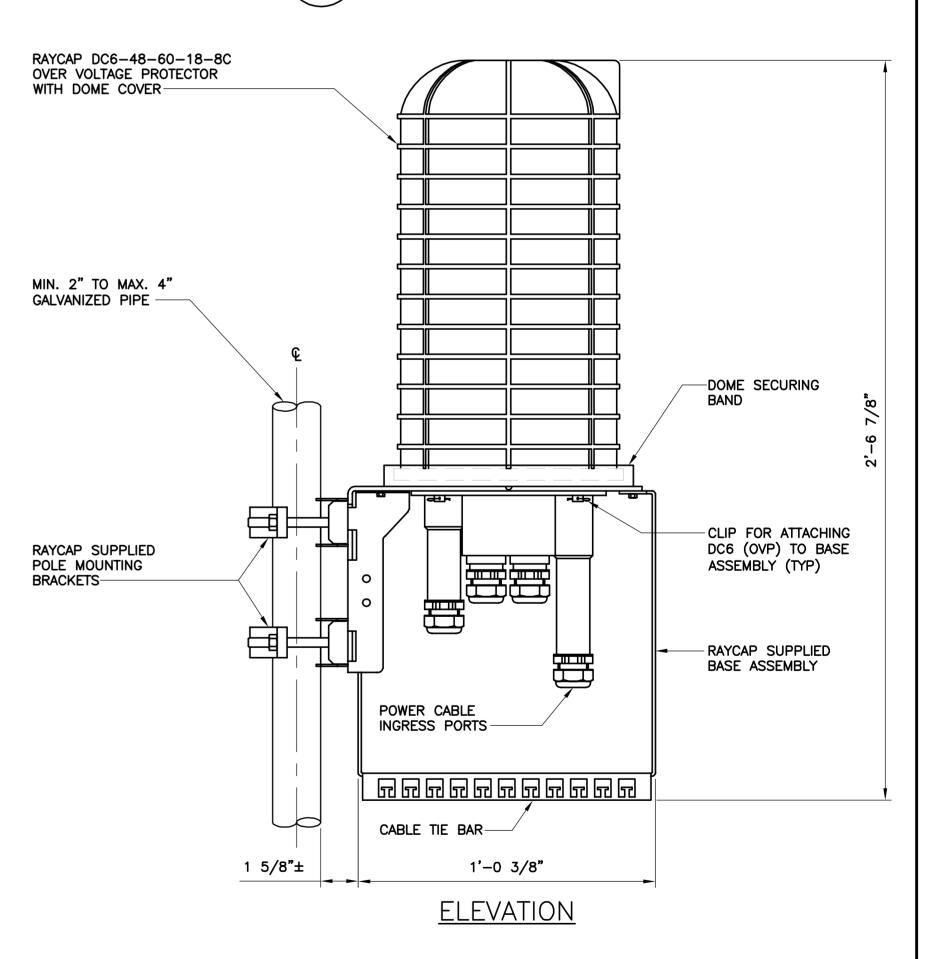






# B14 4478

| <u>B11 1170</u>                                                                                                       |                         |         |                                                       |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------|---------|-------------------------------------------------------|--|--|--|--|--|--|--|
|                                                                                                                       | RRU (REMOTE RADIO UNIT) |         |                                                       |  |  |  |  |  |  |  |
| EQUIPMENT                                                                                                             | DIMENSIONS              | WEIGHT  | CLEARANCES                                            |  |  |  |  |  |  |  |
| MAKE: ERICSSON<br>MODEL: B14 4478                                                                                     | 14.9"L x 13.1"W x 7.3"D | 60 LBS. | ABOVE: 16" MIN.<br>BELOW: 12" MIN.<br>FRONT: 36" MIN. |  |  |  |  |  |  |  |
| NOTES:  1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH AT&T CONSTRUCTION MANAGER PRIOR TO ORDERING. |                         |         |                                                       |  |  |  |  |  |  |  |

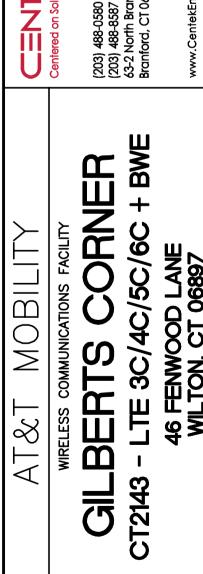









|                 | ALPHA/BETA/GAMMA ANTENNA |                       |            |  |  |  |
|-----------------|--------------------------|-----------------------|------------|--|--|--|
| EQUIPMEN        | IT                       | DIMENSIONS            | WEIGHT     |  |  |  |
| MAKE:<br>MODEL: | KATHREIN<br>80010965     | 78.7"L × 20"W × 6.9"D | 108.6 LBS. |  |  |  |
| MAKE:<br>MODEL: | QUINTEL<br>QS66512-2     | 72"L x 12"W x 9.6"D   | 111 LBS.   |  |  |  |






# NOTES:

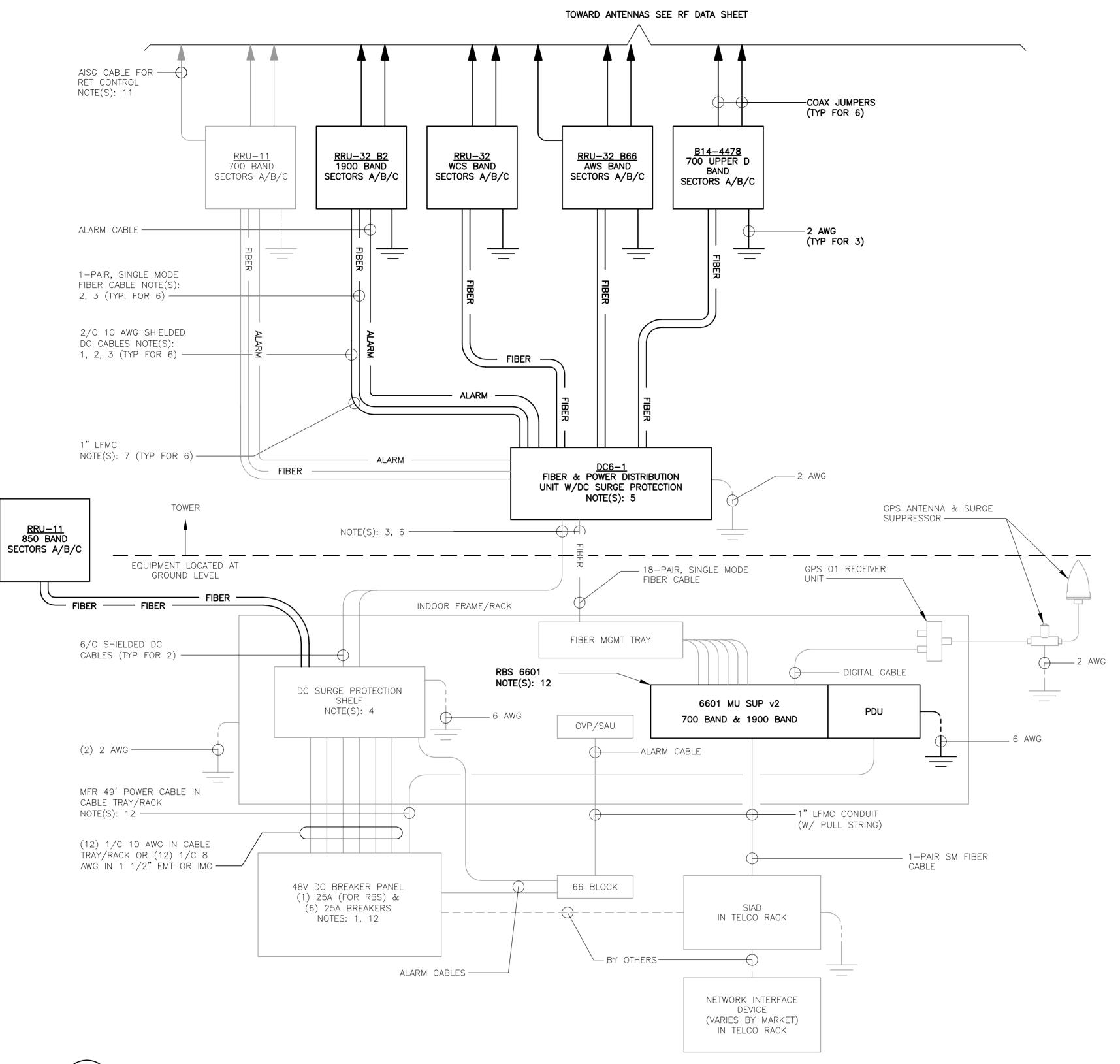
RAYCAP VIA AT&T SUPPLIES THE DC6 OVER VOLTAGE PROTECTOR AND PIPE MOUNTING BRACKETS. SUBCONTRACTOR SHALL SUPPLY THE PIPE.





03/14/18

**DETAILS** 


SCALE: AS NOTED JOB NO. 18000.31

at&t

**EMP**RE

telecom

**ERICSSON RRUS 12 DETAIL** SCALE: 1" = 1'-0"C-3



# LTE SCHEMATIC DIAGRAM NOT TO SCALE

# LTE SCHEMATIC DIAGRAM NOTES:

- BREAKERS TO BE TAGGED AND LOCKED OUT. A 20A (MIN.) OR 30A (MAX.) BREAKER FOR RRUS MAY BE SUBSTITUTED FOR THE RECOMMENDED 25A BREAKER. SIZE 12 CONDUCTORS MAY BE USED ONLY WITH 20A BREAKERS.
- LEAVE COILED AND PROTECTED UNTIL TERMINATED.
- DC AND FIBER CABLE SHALL BE ROUTED WITH THE EXISTING COAX CABLE. 4. DC SURGE PROTECTION SHELF SHALL BE RAYCAP DCx-48-60-RM.
- 5. FIBER & DC DISTRIBUTION BOX W/DC SURGE PROTECTION SHALL BE RAYCAP DC6-48-60-18-8F. 6. SUPPORT FIBER & DC POWER CABLES WITH SNAP-IN HANGERS SPACED NO GREATER THAN 3 FEET APART ON TOWER. SUPPORT
- FIBER AND DC POWER CABLES INSIDE MONOPOLE WITH CABLE HOISTING GRIPS AT 250 FT MAXIMUM INTERVALS. DRESS CABLES TO PREVENT CONTACT WITH ENTRANCE AND EXIT OPENINGS.
- CONDUIT TO BE USED ON A TOWER IF THE RRU IS MORE THAN 10' FROM THE DISTRIBUTION UNITS. MAX CABLE LENGTH IS 16
- 8. SINGLE-CONDUCTOR DC POWER CABLES SHALL BE TELCOFLEX® OR KS24194™, COPPER, UL LISTED RHH NON-HALOGEN, LOW SMOKE WITH BRAIDED COVER, TYPE TC (1/0 AND LARGER). UNLESS OTHERWISE NOTED, STRANDING SHALL BE CLASS B (TYPE III) FOR CABLES SIZES 14, 12 & 10 AWG AND CLASS I (TYPE IV) FOR SIZES 8 AWG AND LARGER. CABLES SHALL BE COLOR CODED RED FOR +24V, BLUE FOR -48V AND GRAY FOR 24V AND 48V RETURN CONDUCTORS. MULTI-CONDUCTOR DC POWER CABLES SHALL BE COPPER, CLASS B STRANDING WITH FLAME RETARDANT PVC JACKET, TYPE TC, UL LISTED FOR 90°C DRY/ 75°C WET INSTALLATION.
- 9. GROUNDING WIRES SHALL BE COPPER, GREEN THHN/THWN UL LISTED FOR 90°C DRY/75°C WET INSTALLATION. MINIMUM SIZE IS
- 6 AWG UNLESS NOTED OTHERWISE.
- 10. FIBER OPTIC CABLES SHALL BE INSTALLED IN FLEXIBLE CONDUIT AS SCOPED BY MARKET. 11. RET CONTROL FROM THE RRU IS AN OPTIONAL METHOD OF CONNECTION. REFER TO RF DATA SHEET FOR APPLICABILITY.
- 12. RBS 6601 VARIANT 2 REQUIRES A 25A BREAKER AND 10 AWG (MIN.) CONDUCTORS. REPLACE EXISTING 15A OR 20A BREAKERS AND 12 AWG CONDUCTORS WHEN UPGRADING AN EXISTING RBS 6601 VARIANT 1.

# **ELECTRICAL NOTES**

- 1. PRIOR TO START OF CONSTRUCTION CONTRACTOR SHALL COORDINATE WITH OWNER FOR ALL CONSTRUCTION STANDARDS AND SPECIFICATIONS, AND ALL MANUFACTURER DOCUMENTATION FOR ALL EQUIPMENT TO BE INSTALLED.
- 2. INSTALL ALL EQUIPMENT IN ACCORDANCE WITH LOCAL BUILDING CODE, NATIONAL ELECTRIC CODE. OWNER AND MANUFACTURER'S SPECIFICATIONS.
- 3. CONNECT ALL NEW EQUIPMENT TO EXISTING TELCO AS REQUIRED BY MANUFACTURER.
- 4. MAINTAIN ALL CLEARANCES REQUIRED BY NEC AND EQUIPMENT MANUFACTURER.
- 5. PRIOR TO INSTALLATION CONTRACTOR SHALL MEASURE EXISTING ELECTRICAL LOAD AND VERIFY EXISTING AVAILABLE CAPACITY FOR PROPOSED INSTALLATION. IF INADEQUATE CAPACITY IS AVAILABLE. CONTRACTOR SHALL COORDINATE WITH LOCAL ELECTRIC UTILITY COMPANY TO UPGRADE EXISTING ELECTRIC SERVICE.
- 6. CONTRACTOR SHALL INSPECT EXISTING GROUNDING AND LIGHTNING PROTECTION SYSTEM AND ENSURE THAT IT IS IN COMPLIANCE WITH NEC, AND SITE OWNER'S SPECIFICATIONS. THE RESULTS OF THIS INSPECTION SHALL BE PRESENTED TO OWNERS REPRESENTATIVE, AND ANY DEFICIENCIES SHALL BE CORRECTED.
- 7. ALL TRANSMISSION TOWER SITES CONTAIN AN EXTENSIVE BURIED GROUNDING SYSTEM. ALL GROUNDING WORK MUST BE COORDINATED WITH, AND APPROVED BY, THE TOWER OWNER'S SITE REPRESENTATIVE. ALL OF THE TOWER OWNER'S SPECIFICATIONS MUST BE STRICTLY FOLLOWED.
- 8. PROVIDE AND INSTALL GROUND KITS FOR ALL NEW COAXIAL CABLES AND BOND TO EXISTING OWNERS GROUNDING SYSTEM PER OWNERS SPECIFICATIONS AND NEC.
- 9. ALL CONDUCTORS SHALL BE TYPE THWN (INT. APPLICATION) AND XHHW (EXT. APPLICATION), 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER. #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT-BOLT TYPE CONNECTORS, #12 AWG SHALL BE THE MINIMUM SIZE CONDUCTOR FOR LINE VOLTAGE BRANCH CIRCUITS. REFER TO PANEL SCHEDULE FOR BRANCH CIRCUIT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION:
- 10. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR.
- 11. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
- 12. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNER'S REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
- 13. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES AS MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR SCHEDULING OF ALL INSPECTIONS AS MAY BE REQUIRED BY THE LOCAL AUTHORITY.
- 14. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE SITE AND/OR BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- 15. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
- 16. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT. CONTRACTOR SHALL WITHOUT EXTRA CHARGE, MAKE MODIFICATIONS TO THE LAYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK. CHECK ALL DRAWINGS AND VISIT JOB SITE TO VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBMITTAL OF BID.
- 17. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT GROUNDING SOURCES.
- 18. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR
- 19. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122. (MIN. #12 AWG).
- 20. CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 5 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO SECTION 16960).

# TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM

A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:

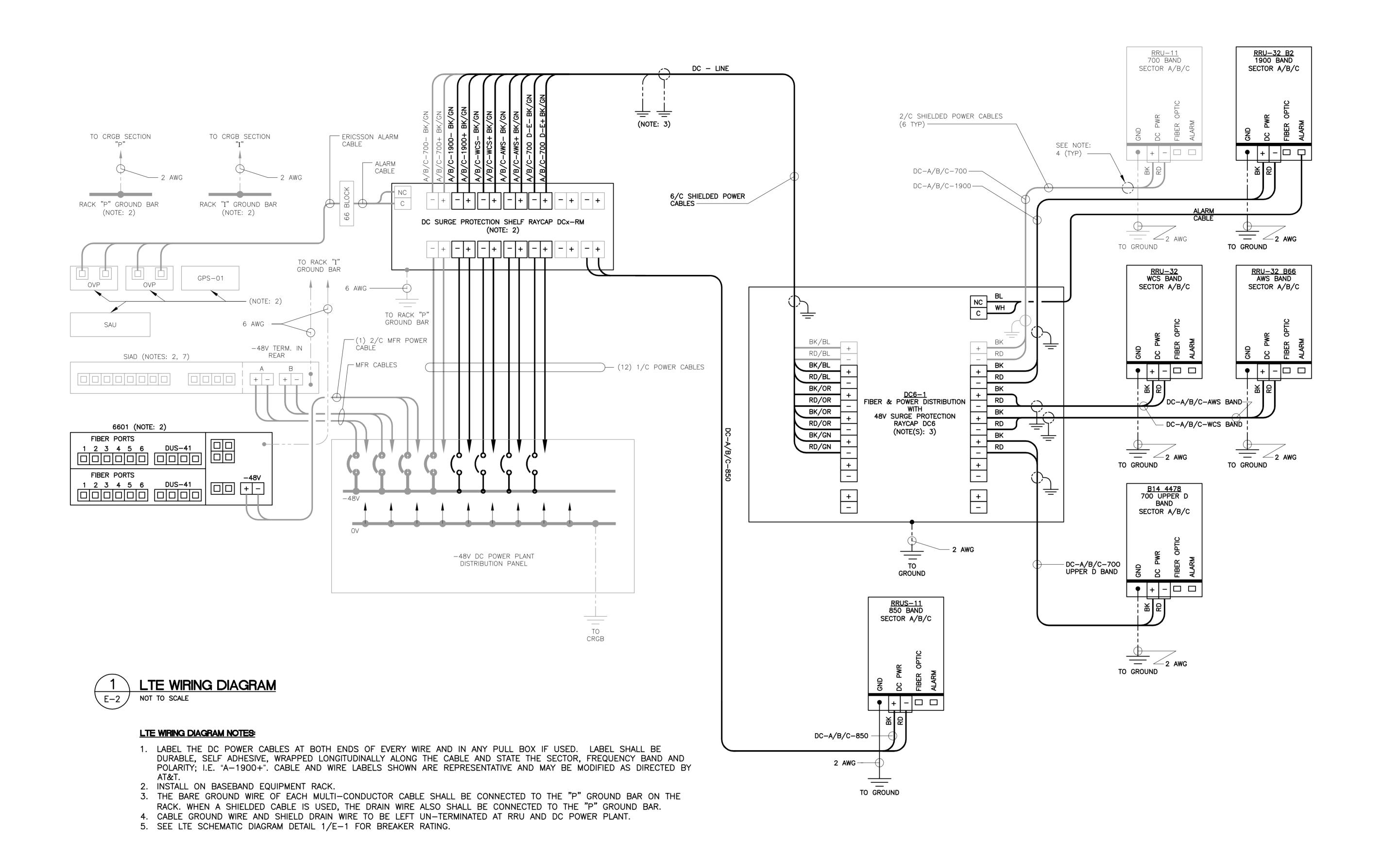
TEST 1: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM.

- THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT:
- 1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT.
- 2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER.
- 3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED.
- B. TESTING SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNERS CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION AND INCLUDED WITH THE WRITTEN
- C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER.
- D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS REQUIRING WITNESSING.

at&t



telecom


CORNER /5C/6C + BWE 

GIC 12143 03/14/18

SCALE: AS NOTED JOB NO. 18000.31

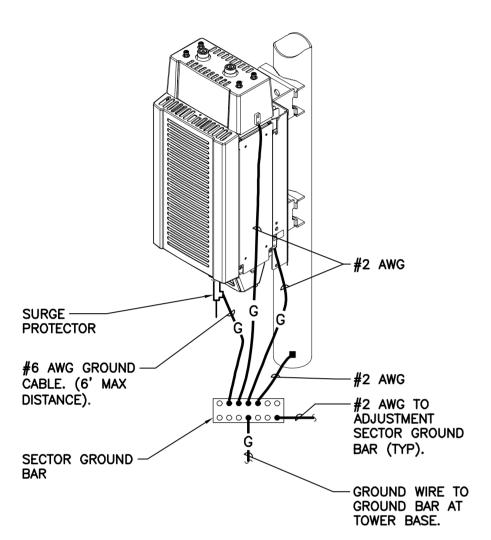
> LTE SCHEMATIC DIAGRAM **AND NOTES**





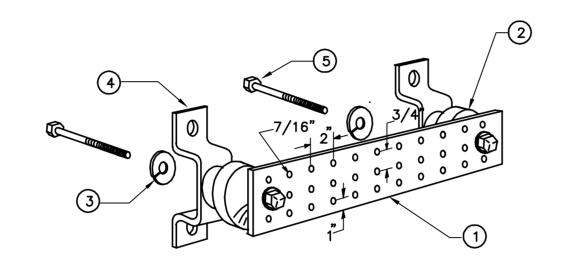
Sat&t **EMP**RE telecom

BERTS GIL CT2143


03/14/18 SCALE: AS NOTED JOB NO. 18000.31

> LTE WIRING DIAGRAM

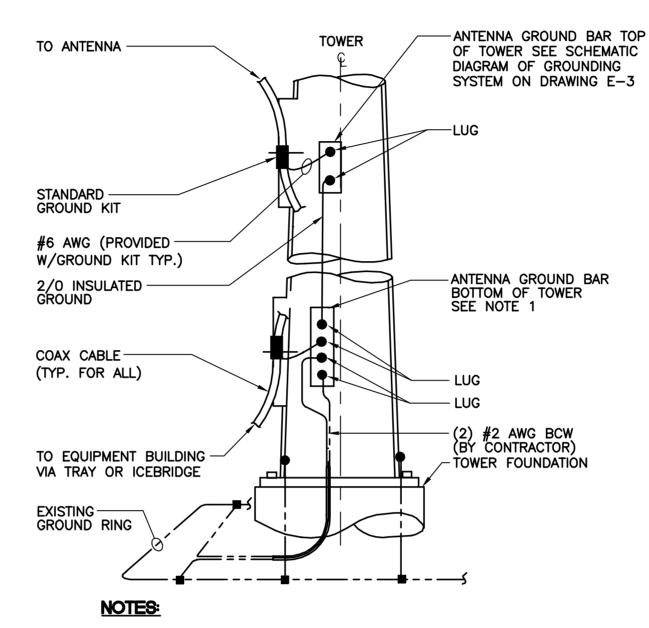
EACH RRH CABINET SHALL BE GROUNDED IN THE FOLLOWING MANNER:


1. AT TOP OF THE CABINET

2. AT RIGHT SIDE OF THE CABINET.



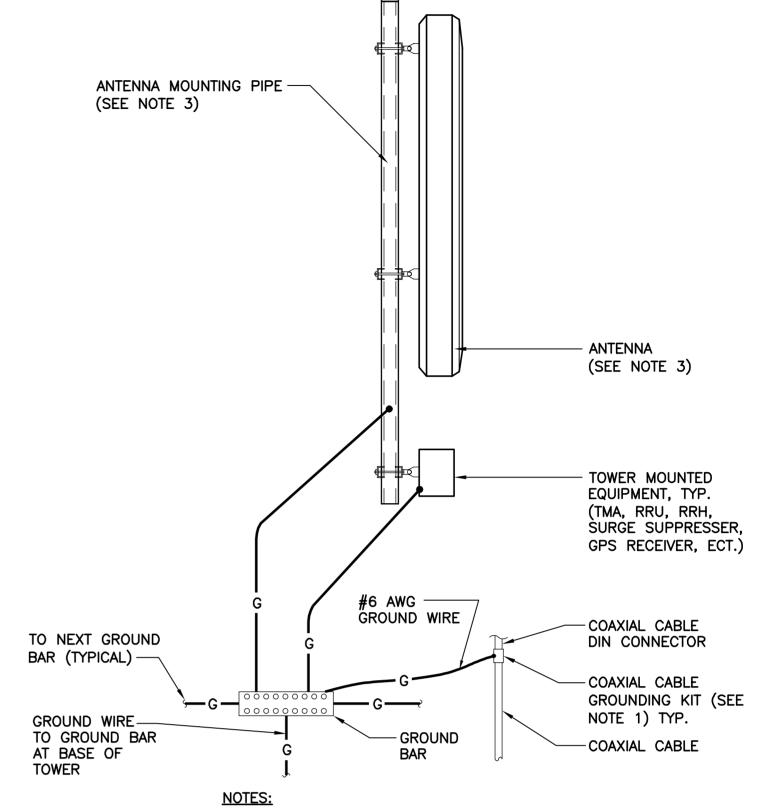
4 RRU POLE MOUNT GROUNDING


NOT TO SCALE



# **LEGEND**

- TINNED COPPER GROUND BAR, 1/4"x 4"x 20", NEWTON INSTRUMENT CO. HOLE CENTERS TO MATCH NEMA DOUBLE LUG.
- 2. INSULATORS, NEWTON INSTRUMENT CAT. NO. 2. 3061-4.
- 3. 3. 5/8" LOCK WASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8.
- WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. 4. CAT NO. A-6056.
- 5. STAINLESS STEEL SECURITY SCREWS.





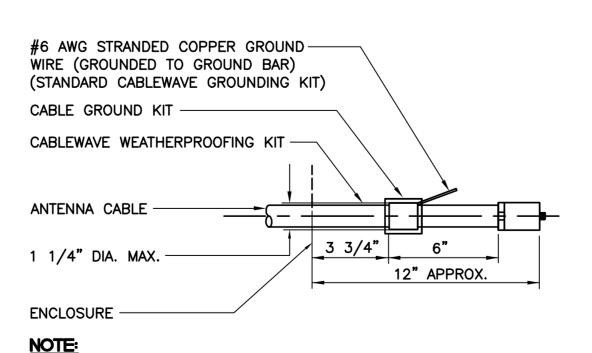

- NUMBER OF GROUND BARS MAY VARY DEPENDING ON THE TYPE OF TOWER, LOCATION AND CONNECTION ORIENTATION. PROVIDE AS REQUIRED.
- 2. A SEPARATE GROUND BAR TO BE USED FOR GPS ANTENNA IF REQUIRED.

2 ANTENNA CABLE GROUNDING - TOWER

NOT TO SCALE



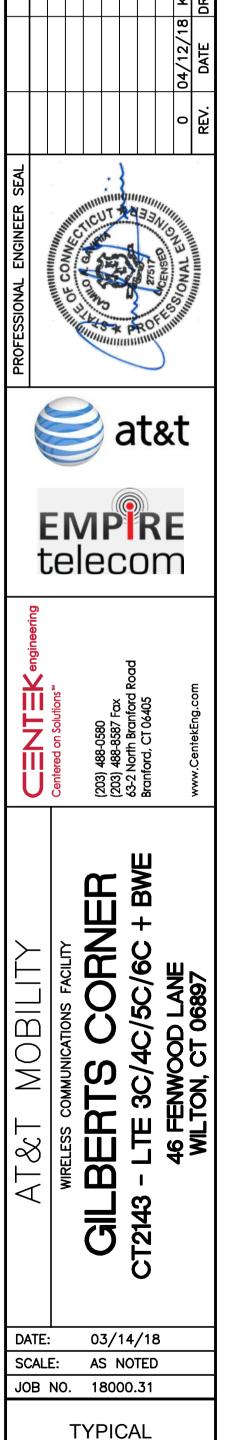
- BOND COAXIAL CABLE GROUND KITS TO EACH OWNER'S GROUND BAR ALONG ENTIRE COAX RUN FROM ANTENNA TO SHELTER.
- BOND ALL EQUIPMENT TO GROUND PER NEC AND MANUFACTURERS SPECIFICATIONS.
- DETAIL IS TYPICAL FOR ALL ANTENNA SECTORS, INCLUDING GPS ANTENNA.


1 TYPICAL ANTENNA GROUNDING DETAIL

NOT TO SCALE

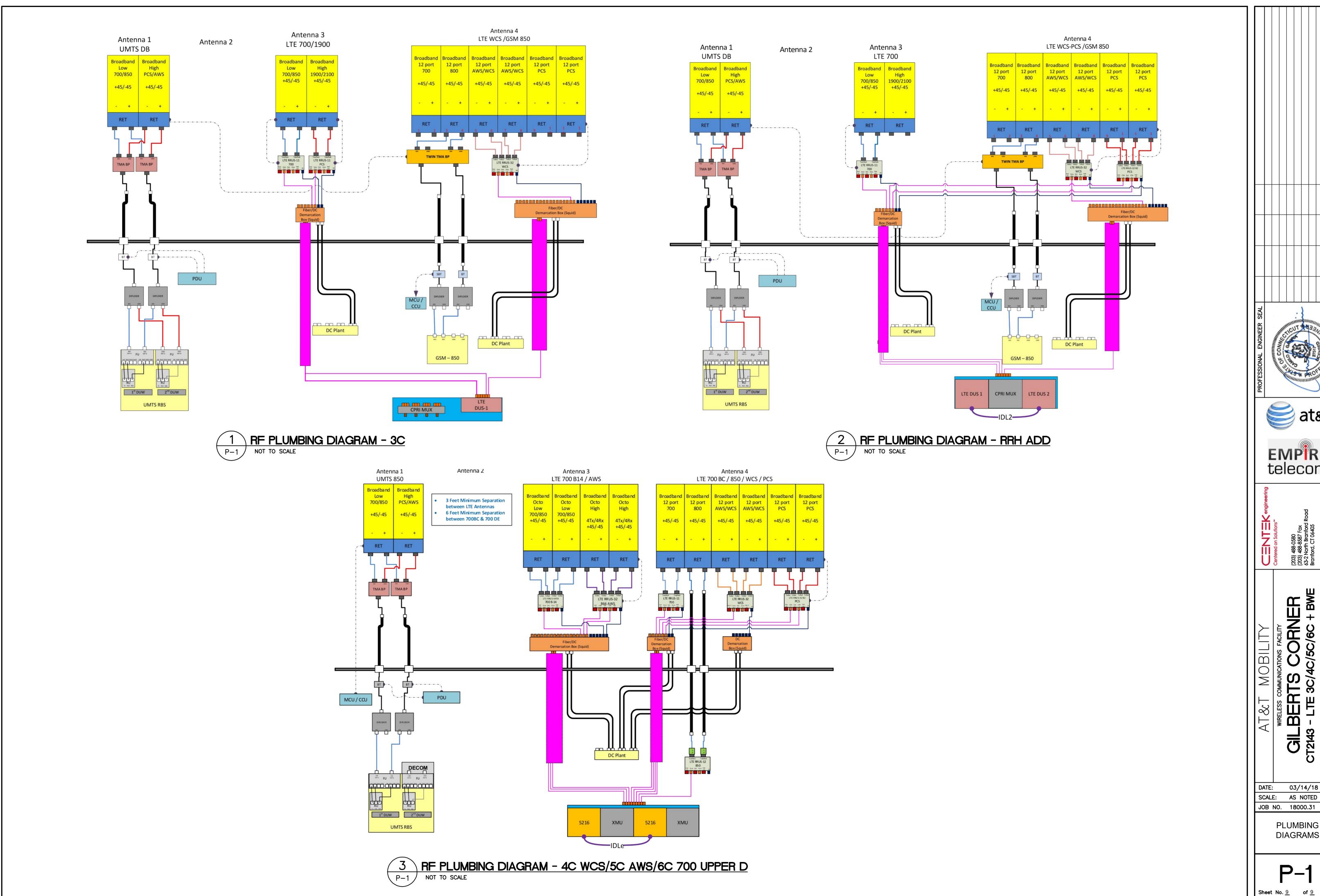
FROM ANTENNA-- CABLEWAVE WEATHERPROOFING JUMPER REQUIRED -ONLY WHEN 1 1/4"ø AND LARGER (TYP.) -CABLEWAVE GROUND KIT (TYP.) (SEE NOTE) CABLEWAVE -CONNECTOR WEATHERPROOFING KIT - ANTENNA CABLE TO ( TYP. ) CABLE TRAY (TYP.) -#6 AWG - CIGBE GROUND BAR NEWTON, SIMILAR TO FROM ANTENNA -FRAME SUPPORT MOUNTED NEAR/BELOW ANTENNA #2 SOLID TINNED - GROUND WIRE TO COPPER WIRE CIGBE/MIGB

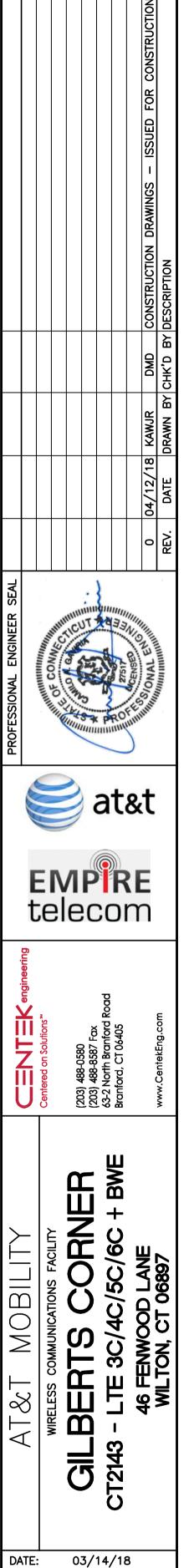
1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO CIGBE


6 CONNECTION OF GROUND WIRES TO GROUND BAR NOT TO SCALE



DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.


5 ANTENNA CABLE GROUNDING DETAIL


NOT TO SCALE



ELECTRICAL

**DETAILS** 





**PLUMBING** 

DIAGRAMS

P-1



Submitted to Empire Telecom USA, LLC 16 Esquire Road Billerica, MA 01862

Submitted by AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 March 29, 2018

# DETAILED STRUCTURAL ANALYSIS AND EVALUATION OF AN EXISTING 180' SELF SUPPORTING LATTICE TOWER AND FOUNDATION FOR PROPOSED ANTENNA ARRANGEMENT



AT&T Site Number: CT2143
AT&T Site Name: Wilton

Site Address: 46 Fenwood Lane Wilton, Connecticut

60566142 EMP-004 Revision 1

# **TABLE OF CONTENTS**

- 1. EXECUTIVE SUMMARY
- 2. INTRODUCTION
- 3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS
- 4. FINDINGS AND EVALUATION
- 5. CONCLUSIONS AND RECOMMENDATIONS
- 6. DRAWINGS AND DATA
  - SEISMIC BASE SHEAR ANALYSIS
  - TNX TOWER INPUT / OUTPUT SUMMARY
  - TNX TOWER FEEDLINE DISTRIBUTION CHART
  - TNX TOWER FEEDLINE PLAN
  - TNX TOWER DEFLECTION, TILT, AND TWIST
  - TNX TOWER DETAILED OUTPUT
  - ANCHOR BOLT EVALUATION
  - FOUNDATION ANALYSIS

### 1. EXECUTIVE SUMMARY

This report summarizes the structural analysis of the 180' self-supporting lattice tower located at 46 Fenwood Lane in Wilton, Connecticut.

The structural analysis was conducted in accordance with the 2016 Connecticut State Building Code which includes the TIA-222-G<sup>1</sup> Standard, 2012 International Building Code, the 2016 Connecticut State Building Code Amendments, the AISC<sup>2</sup> Load Resistance Factor Design (LRFD), the ASCE 7<sup>3</sup> design Code, and the Connecticut State Police Requirements which include the TIA/EIA-222-F<sup>4</sup>.

The antenna loading considered in the analysis consists of all the existing and proposed antennas, transmission lines and ancillary items as outlined in the Introduction Section of this Report.

The proposed AT&T antenna installation is listed below:

| Proposed Appurtenances                                                                                                                                                                                                                                                                                                  | Carrier            | Antenna Center Elevation |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|
| Remove: (3) Powerwave 7770 Panels (1 Removal per sector, 1 Remains per sector) (3) Powerwave P65-16-XLH-RR Panel Antennas (3) Ericsson RRUS-11 RRH Units (1 Removal per sector, 1 Remains per sector) (6) LGP21901 Diplexer Units (2 Removal per sector, 2 Remains per sector) (3) Powerwave TT19-08BP111-001 TMA units | AT&T<br>(Existing) | @ 163'                   |
| Install: (3) Quintel QS66512-2 Panel Antennas (3) Kathrein 800-10965 Panel Antennas (3) Ericsson B14 4478 RRH Radio Units (3) Ericsson RRUS-32 B66 (AWS) RRH Units (3) Ericsson RRUS-32 B2 (1900 MHz) RRH Units (3) Ericsson RRUS-32 RRH Units (3) Ericsson RRUS-32 RRH Units (1) Fiber Optic Cable (4) DC Cables       | AT&T<br>(Proposed) | @ 163'                   |

<sup>1.</sup> TIA = Telecommunications Industry Association Structural Standard for Antenna Supporting Structures and Antennas (Version G)

<sup>2.</sup> AISC = American Institute of Steel Construction (14th Edition)

<sup>3.</sup> ASCE 7 = American Society of Civil Engineers Standard 7 (2010 Edition)

<sup>4.</sup> TIA/EIA = Telecommunications Industry Association Structural Standard for Antenna Supporting Structures and Antennas (Version F)

### 1. EXECUTIVE SUMMARY - continued

The results of the structural analysis indicated that:

- 1. The existing steel tower structure IS NOT considered structurally adequate for the proposed antenna loading with the wind classification specified above.
- 2. The existing tower anchor bolts ARE considered structurally adequate for the proposed antenna loading with the classification specified above.
- The existing foundation IS considered structurally adequate for the proposed antenna loading with the load classification specified above.
- 4. The existing tower's sway (deflection) is 0.5560 degrees, and the existing tower's twist (rotation) is 0.0319 degrees. These figures combined ARE within the Connecticut State Police requirement of 0.75 degrees for twist (rotation) and sway (deflection) with the load classification specified above.

This analysis is based on:

- 1) The tower structure's theoretical capacity not including any assessment of the condition of the tower.
- Tower geometry and structural member sizes utilized in the preparation of this report obtained from the original design documents prepared by Bayar and Associates
- Previous structural analysis performed by URS Corporation, on behalf of T-Mobile. project number 36931390.00000 / NSS-017, signed and sealed March 3, 2015
- 4) Previous structural analysis and modification performed by AECOM, on behalf of T-Mobile, project number 60405835, signed and sealed May 5, 2015.
- 5) Tower Mapping and Inventory by D&K Nationwide Communications, Inc., dated March 17, 2016.
- 6) Antenna inventory provided by the Connecticut State Police via email on June 20,
- 7) Previous structural analysis and evaluation performed by AECOM, on behalf of Pyramid Network Services, LLC, project number 60509756.03 / PNS-603, signed and sealed on August 9, 2016
- Proposed update to AT&T antenna inventory provided by Contract Drawings, obtained via e-mail dated March 21, 2018.
- 9) Antenna and mount configuration as specified on the following page of this report.

This report is only valid as per the assumptions and data utilized in this report for antenna inventory, mounts and associated cables. The user of this report shall field verify the antenna, cabling and mount configurations used, as well as the physical condition of tower members, connections and foundations. Notify the engineer in writing immediately if any of the information in this report is found to be other than specified.

If you should have any questions, please contact this office at (860) 529-8882.

Sincerely,

**AECOM** 

Richard A. Sambor, P.E. Senior Structural Engineer

RAS/mcd

No. 9057

CENSED CHILINGS TO NAL ENGINEERS 180' Four Sided Lattice Self Supporting Tower Wilton, CT

# 2. INTRODUCTION

The subject tower is located at 46 Fenwood Lane in Wilton, Connecticut. The structure is a 180' four sided self-supporting lattice tower designed by Bayar and Associates.

The structural analysis was conducted in accordance with the following:

- TIA-222-G Standard for Standard for a wind velocity of range of 90 mph to 110 mph (3-second gust) and 50 mph (3-second gust) concurrent with 0.75" ice thickness, considered to increase in thickness with height
- 2012 International Building Code with 2016 Connecticut State Building Code Amendments for a wind speed of 101 mph (3-second gust)
- 2010 AISC Load Resistance Factor Design (LRFD)
- 2010 ASCE 7 Minimum Design Loads for Buildings and Other Structures for the ice thickness referenced in the TIA-222-G Standard
- Connecticut State Police Requirements for a wind velocity of 90 mph (fastest mile) and 90 mph (fastest mile) concurrent with 0.5" ice. Twist (rotation) and sway (deflection) were determined in accordance with Connecticut State Police Requirements for a wind velocity of 90 mph (fastest mile) concurrent with 0.5" ice, analyzed under the TIA/EIA-222-F design Standard.

The inventory together with the proposed AT&T antenna arrangement is summarized in the table below:

The inventory is summarized in the table below:

| Antenna Type                                                          | Carrier                                  | Mount                                | Mount<br>Elevation | Cable                          |
|-----------------------------------------------------------------------|------------------------------------------|--------------------------------------|--------------------|--------------------------------|
| (1) 10' Lightning Rod                                                 | Tower (existing)                         | Tower mounted                        | 185'               |                                |
| (1) 8'x6-5/8" Dia Omni Antenna                                        | (A31)<br>CSP-4<br>(existing)             | Shared Mount<br>(See CSP-2<br>Mount) | 185'               | (1) 7/8"                       |
| (1) 20' 4-Bay Dipole Antenna<br>(1) 20' 2-Bay Dipole Antenna          | (A29)<br>FBI-12,<br>FCP-12<br>(existing) | Shared Mount<br>(See CSP-1<br>Mount) | 185'               | (2) 7/8"                       |
| (1) Sinclair SC479-HF1LFD<br>(D00-E5764) Omni Antenna                 | (A30)<br>CSP-3<br>(existing)             | Shared Mount<br>(See CSP-2<br>Mount) | 183'               | (1) 1-5/8"<br>(existing Cable) |
| (1) Sinclair SC479-HF1LFD<br>(D00-E5764) Omni Antenna                 | (A28)<br>CSP-6<br>(existing)             | Shared Mount<br>(See CSP-1<br>Mount) | 183'               | (1) 1-5/8"<br>(existing Cable) |
| (1) Bird 432-83H-01T TTA<br>Control Box                               | (A27)<br>CSP-67<br>(existing)            | Shared Mount<br>(See CSP-1<br>Mount) | 181'               | (1) 1/2"                       |
| (1) 6' Dish with Radome                                               | (A25)<br>CSP-36<br>(existing)            | Pipe Mounted to<br>Tower             | 173'               | (1) WEP65                      |
| (1) (inverted) Sinclair SC479-<br>HF1LFD (D00I-E5764) Omni<br>Antenna | (A24)<br>CSP-65<br>(existing)            | Shared Mount<br>(See CSP-2<br>Mount) | 172'               | (1) 1-5/8"<br>(existing Cable) |

| Antenna Type                                                                                                                                                                                                       | Carrier                       | Mount                                                                                             | Mount<br>Elevation | Cable                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------|--------------------|----------------------------------------|
| (1) (inverted) Sinclair SC479-<br>HF1LFD (D00I-E5764) Omni<br>Antenna                                                                                                                                              | (A23)<br>CSP-2<br>(existing)  | 15' V-Frame<br>Mount w/ 5<br>Antenna Pipes<br>@ 180'<br>(Shared with<br>CSP-65, CSP-3<br>& CSP-4) | 172'               | (1) 1-5/8"<br>(existing Cable)         |
| (1) 6' Dish with Radome                                                                                                                                                                                            | (A22)<br>CSP-5<br>(existing)  | Pipe Mounted to<br>Tower                                                                          | 170.5'             | (1) WEP65                              |
| (1) 6' Dish with Radome                                                                                                                                                                                            | (A33)<br>CSP-59<br>(existing) | Pipe Mounted to Tower                                                                             | 170'               | (1) WEP65                              |
| (1) BA-1312 Omni Antenna                                                                                                                                                                                           | (A21)<br>CAP-25<br>(existing) | 15' V-Frame<br>Mount w/ 5<br>Antenna Pipes<br>@ 170'                                              | 170'               | (1) 7/8"                               |
| (1) (inverted) Sinclair SC479-<br>HF1LFD (D00I-E5764) Omni<br>Antenna                                                                                                                                              | (A26)<br>CSP-1<br>(existing)  | 15' V-Frame Mount w/ 5 Antenna Pipes @ 180' (Shared with CSP-67, CSP-6 & FBI/FCP-12)              | 170'               | (1) 1-5/8"<br>(existing Cable)         |
| (1) BA1010-2 Omni Antenna                                                                                                                                                                                          | (A20)<br>CSP-10<br>(existing) | Shared with<br>Above Mount                                                                        | 169'               | (1) 7/8"                               |
| (3) Ericsson B14 4478 RRH Radio Unit (3) Ericsson RRUS-32 B66 (AWS) RRH Units (3) Ericsson RRUS-32 B2 (1900 MHz) RRH Units (3) Ericsson RRUS-32 RRH Units (2) DC Squid / Surge Arrestor Units                      |                               |                                                                                                   |                    |                                        |
| (3) QS66512-2 Panel Antennas<br>(3) 800-10965 Panel Antennas<br>(3) B14 4478 RRH Units<br>(3) RRUS-32 B66 RRH Units<br>(3) RRUS-32 B2 RRH Units<br>(3) RRUS-32 RRH Units<br>(2) DC Squid / Surge Arrestor<br>Units | AT&T<br>(Proposed)            | Shared with<br>Below Mount                                                                        | 163'               | (1) Fiber Optic Cable<br>(4) DC Cables |

| Antenna Type                                                                                                             | Carrier                                 | Mount                      | Mount<br>Elevation | Cable                                                                |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------|--------------------|----------------------------------------------------------------------|
| (3) Powerwave 7770<br>(6) LGP21401 TMAs<br>(6) RRUS-11 RRU Units<br>(6) LGP21901 Diplexers<br>(1) DC6-48-Surge Protector | AT&T<br>(existing)                      | (3) T-Frames               | 163'               | (12) 1-5/8"<br>(1) 2" Flex Conduit with<br>(1) Fiber & (2) DC Cables |
| (1) Decibel DB408-B Dipole<br>Antenna                                                                                    | (A19)<br>FCP-12<br>(existing)           | (2) 6' Standoff            | 161'               | (1) 7/8"                                                             |
| (1) DB636 12' Omni Antenna                                                                                               | (A15)<br>D&K-30<br>NEU-57<br>(existing) | 8' Standoff                | 140'               | (1) 7//8"                                                            |
|                                                                                                                          | (A18)<br>D&K-33<br>(existing)           | 6' Standoff                | 139'               | N/A                                                                  |
| (1) ASP-816 3' Yagi Antenna                                                                                              | (A17)<br>D&K-32<br>WTR-28<br>(existing) | 6' Standoff                | 138'               | (1) 7/8"                                                             |
| (1) Decibel DB-222-A 12' Dipole<br>Antenna                                                                               | (A16)<br>D&K-31<br>(existing)           | 4' Standoff                | 136.5'             | (1) 7/8"                                                             |
| (1) Bird (TX/RX) 101-83B-08-T5<br>Omni Antenna                                                                           | (A14)<br>D&K-29<br>CSP-63<br>(existing) | Shared with<br>Below Mount | 134'               | (1) 1-5/8"                                                           |
| (1) Bird 432-83H-01T TTA<br>Junction Box                                                                                 | (A13)<br>D&K-28<br>CSP-66<br>(existing) | 6' Standoff                | 133'               | (1) 1/2"                                                             |
| (1) (inverted) Bird (TX/RX) 101-<br>83B-08-T5 Omni Antenna                                                               | (A12)<br>D&K-27<br>CSP-64<br>(existing) | Shared with<br>Above Mount | 132'               | (1) 1-5/8"                                                           |
| (1) Dish Antenna Ice Shield                                                                                              | (A11)<br>D&K-26<br>(existing)           | Shared with Below Mount    | 131'               | N/A                                                                  |
| (1) 6' Dish with Radome                                                                                                  | (A10)<br>D&K-25<br>CSP-35<br>(existing) | Pipe Mounted to<br>Tower   | 125'               | (1) WEP65                                                            |

| Antenna Type                                                                                                                                                                                                                                   | Carrier                                | Mount                                           | Mount<br>Elevation | Cable                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|--------------------|---------------------------------------------------------|
| (3) Ericsson AIR21 B2A B4P Panel Antennas (3) Ericsson AIR21 B4A/B12P Panel Antennas (3) (UMTS) TMA Units (3) (LTE) TMA Units (3) Antenna Mounts (3) Ericsson RRUS-11 RRH Units (3) Ericsson AIR21 B2A B4P Panel Antennas (3) (UMTS) TMA Units | T-Mobile<br>(existing)                 | (3) Antenna<br>Mounts                           | 122'               | (12) 1-1/4" Coaxial<br>Cables<br>(2) Fiber Optic Cables |
| (1) 7' Omni Antenna                                                                                                                                                                                                                            | (A8)<br>D&K-14<br>(existing)           | 10' Standoff<br>Arm                             | 121'               | (1) 7/8"                                                |
| (1) BDC806-09NE 22' Omni<br>Antenna                                                                                                                                                                                                            | (A7)<br>D&K-13<br>CSP-62<br>(existing) | 6' Standoff                                     | 107'               | (1) 1-5/8"                                              |
| (1) PD-128 12' Omni Antenna                                                                                                                                                                                                                    | (A9)<br>D&K-15<br>(existing)           | 6' Standoff                                     | 106'               | (1) 7/8"                                                |
| (1) 4' Grid Dish                                                                                                                                                                                                                               | (A6)<br>D&K-12<br>CSP-11<br>(existing) | Pipe Mounted to Tower                           | 106'               | (1) 7/8"                                                |
| (3) APXVSPP18-C<br>(3) ALU 800 MHz RRH Units<br>(3) ALU 1900 MHz RRH Units                                                                                                                                                                     | Sprint<br>(existing)                   | (3) 10' Frame w/<br>tie-back arms<br>(existing) | 105'               | (3) RFS Hybriflex Cables<br>(1-1/4" Dia.)               |
| (1) (inverted) 12' Omni Antenna                                                                                                                                                                                                                | (A4)<br>D&K-4<br>DEA-32<br>(existing)  | 10' Standoff<br>Arm                             | 91'                | (1) 7/8"                                                |
| (1) 22' 4-Bay Dipole Antenna                                                                                                                                                                                                                   | (A5)<br>D&K-11<br>USS-26<br>(existing) | 3' Standoff                                     | 86'                | (1) 7/8"                                                |
| (1) Ice Shield for Dish Mounted<br>Below                                                                                                                                                                                                       | CSP-13<br>(existing)                   | Pipe Mounted to Tower                           | 76'                | N/A                                                     |
|                                                                                                                                                                                                                                                | (A3)<br>D&K-3<br>(existing)            | Pipe Mount for<br>Dish Antenna                  | 71'                | N/A                                                     |

| Antenna Type               | Carrier                      | Mount       | Mount<br>Elevation | Cable    |
|----------------------------|------------------------------|-------------|--------------------|----------|
| (1) GPS                    | (A2) D&K-2 Sprint (existing) | 6' Standoff | 61'                | (1) 1/2" |
| (1) DB-803 3' Omni Antenna | (A1) D&K-1 CSP-68 (existing) | 3' Standoff | 50'                | (1) 1/2" |

NOTES: Antenna ID numbering of antenna and appurtenances obtained from Tower Mapping and Existing Inventory via tower climb, performed by D&K Nationwide Communications, Inc. on March 17, 2016.

"A#" refers to the antenna number used in the structural analysis program to identify tower appurtenances.

This structural analysis of the communications tower was performed by AECOM for AT&T. The purpose of this analysis was to investigate the structural integrity of the existing tower and foundation for existing and proposed antenna loads in compliance with the 2016 Connecticut State Building Code. This analysis was conducted to evaluate stress on the tower and the effect forces to the foundation of the tower resulting from existing and proposed antenna arrangements.

### 3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS

The structural analysis was done in accordance with, the TIA-222-G-Structural Standard for Antenna Towers and Antenna Supporting Structures and Antennas, the 2012 International Building Code with 2016 Connecticut State Building Code Amendments and the American Institute of Steel Construction (AISC) Manual of Steel Construction – Load Resistance Factor Design (LRFD)

The structural analysis was conducted using TNX Tower version 7.0.8.3 and used the following conditions for this tower review (following the TIA/EIA-222-G Standard):

- Structure Class 3 (Essential Communications)
  - NOTE: ASCE 7 and CT State Building Code Applied Risk Category 4 for design wind loads (see below)
- Topographic Category 3 (Tower location on top of hill rolling wind conditions considered)
  - Crest Height used for analysis: (approximate elevations listed below)
    - Tower Base Elevation = 370 feet
    - High point (2 mile Radius) = 460 feet (Ref. Huckleberry Hills)
    - Low Point (2 mile Radius) = 150 feet (Ref. Winnipauk Millpond)
    - "H" = (Avg of High/Low) Base Elevation = 65 feet
- Exposure Class C (Open Terrain with scattered obstructions)
- Load Conditions:
  - Two load conditions were evaluated as shown which were compared to design stresses according to AISC and TIA-222-G Standard.

### **Basic Wind Speed:**

- TIA-222-G:
  - Fairfield County (Wind Speed Range): V = 90 mph 110 mph (3-second gust)
     [Annex of TIA/EIA-222-G 2006]
- IBC 2012 w/ 2016 CT State Building Code Amendment:
  - (2012) IBC Section 1609.1.1 Determination of Wind Loads Exception 5
    "Designs using TIA-222" applies for determination of Design Wind Load obtained
    as "V.ult" are to be converted to "V.asd" when applying the TIA-222-G design
    Standard (under Section 1609.3) for Basic Wind Speed.
  - o (2016) CT State Building Code Amendment to the IBC Section 1609.3 wind loads are obtained from Appendix N of the State Building Code.
    - V.asd = 101 mph (3-Second Gust) Wind Design Parameter for the Town of Wilton, Connecticut for Risk Category four (IV) for essential communications (Connecticut State Police).

LOAD CONDITION 1 = 101 MPH (3-SECOND GUST) WIND LOAD (WITHOUT ICE) + TOWER DEAD LOAD LOAD Condition 2 = 50 mph (3-second gust) Wind Load (with ice) + Ice Load + Tower Dead Load

Ice thickness used for this analysis is **0.75 inch** (assumed to start at the base of the tower) and is considered to increase in thickness with height. The initial ice thickness for design is referenced in the Annex of TIA-222-G and follows the same design criteria as the ASCE 7 Standard.

The below load condition implements the design requirements of the Connecticut State Police for the tower structures deflection limits with the allowable deflection limit of the combination of the tower's sway (deflection) and twist (rotation) under the TIA-222-F design Standard. This design limit required the design combined value of sway (deflection) and twist (rotation) to be under 0.75 degrees following the TIA-222-F design Standard.

# 3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS (cont.)

Load Condition 3 = 90 mph (fastest mile) Wind Load (with ice) + Ice Load + Tower Dead Load

Seismic event consideration factors/values for design:

- S.s = 0.231 (2016 CT State Building Code Location Specific Value)
- S.1 = 0.068 (2016 CT State Building Code Location Specific Value)
- Site Classification = "D" from Geotechnical Report
- Seismic Design Category = "C" (2012 International Building Code)
- F.a = 1.6 (Obtained from TIA-222-G Table 2-12 Considering above conditions)
- F.v = 2.4 (Obtained from TIA-222-G Table 2-13 Considering above conditions)

Strength Limit State Load Combinations (TIA-222-G Section 2.3.2):

The structural analysis herein has considered the following load combinations within the analysis:

- 1. 1.2 Dead Load Tower structure + 1.0 Dead Load Guy Assemblies + 1.6 Wind load without ice
- 1.2 Dead Load Tower structure + 1.0 Dead Load Guy Assemblies + 1.0 Dead weight
  of ice due to factored ice thickness + 1.0 Concurrent wind load with factored ice
  thickness + 1.0 Load effects due to temperature
- 1.2 Dead Load Tower structure + 1.0 Dead Load Guy Assemblies + 1.0 Earthquake Load
- NOTE 1: The above **bolded** load combination is considered to create the governing design loads per the results of the analysis.
- NOTE 2: The above "Dead Load Guy Assemblies" are not considered as part of the analysis and are considered as a value of zero.
- NOTE 3: The "Load effects due to temperature" do not apply for structures that are self-sustaining (from the TIA-222-G Standard)

## 4. FINDINGS AND EVALUATION

Stresses on the tower structure were evaluated to compare with the allowable stress in accordance with AISC. The results of the analysis indicate that the existing steel tower structure has sufficient capacity to support the proposed loading without modification. The tower anchor bolts and foundation have sufficient capacity to support the proposed loading without modification.

The tower sway (deflection) is 0.5560 degrees and the tower twist (rotation) is 0.0319 degrees. These figures are within the Connecticut State Police specification of 0.75 degrees for combined deflection (sway) and rotation (twist).

### **Tower Base Reactions:**

| Description                  | Current |
|------------------------------|---------|
| Pier Compression (kips)      | 453     |
| Pier Uplift (kips)           | 415     |
| Overall Overturning (kip-ft) | 10825   |
| Overall Shear (kips)         | 116     |
| Shear per Leg (kips)         | 46      |

## **Controlling Tower Component Stress vs. Capacity Summary:**

| Component /<br>(Section No.)  | Critical<br>Component Size   | Controlling<br>Elevation | Stress<br>(% capacity) | Pass/Fail |
|-------------------------------|------------------------------|--------------------------|------------------------|-----------|
| Leg (T19)                     | L8x8x1 1/8"                  | 0' - 10'                 | 83.0                   | Pass      |
| Diagonal (T19)                | 2L2 1/2x2 1/2x1/4            | 0' – 10'                 | 110.3                  | FAIL      |
| Horizontal (T19)              | 2L2 1/2x2 1/2x1/4            | 0'-10'                   | 55.0                   | Pass      |
| Secondary Horizontal (T18)    | L3 1/2x3 1/2x1/4             | 10'-20'                  | 36.5                   | Pass      |
| Top Girt (T16)                | 2L2-1/2x2-1/2x1/4            | 30'-40'                  | 21.0                   | Pass      |
| Redund Horz 1 Bracing (T19)   | L2 1/2x2 1/2x3/16            | 0'-10'                   | 39.2                   | Pass      |
| Redund Diag 1 Bracing (T19)   | L2 1/2x2 1/2x3/16            | 0'-10'                   | 80.0                   | Pass      |
| Redund Hip 1 Bracing (T19)    | L2 1/2x2 1/2x3/16            | 0'-10'                   | 0.6                    | Pass      |
| Redund Sub Horz Bracing (T19) | L3x3x5/16                    | 0'-10'                   | 73.5                   | Pass      |
| Inner Bracing (T19)           | 2L2x2 1/2x3/16               | 0'-10'                   | 2.7                    | Pass      |
| Tower Connection Bolts        | (2) A325X 5/8" Dia.<br>Bolts | 90'                      | 73.4                   | Pass      |
| (Foundation) Anchor Bolts     | (4) 2-1/2" dia. A36<br>bolts | N/A                      | 65.6                   | Pass      |

**Foundation Summary:** 

| Component                                                      | Required                                                                      | Computed     | % Capacity | Pass/Fail |
|----------------------------------------------------------------|-------------------------------------------------------------------------------|--------------|------------|-----------|
| Anchor Rod Capacity<br>(TIA-222-G – 4.9.9)                     | Ratio < 1.0                                                                   | 0.672        | 67.2       | Pass      |
| Overturning Moment<br>Factor of Safety<br>TIA-222-G Conditions | Resist OT * (0.75) Reduction Factor (TIA- 222-G – Section 9.4.1) 18165 Kip*ft | 11931 kip*ft | 65.7       | Pass      |
| Bearing Pressure<br>(TIA-222-G<br>Conditions)                  | 5.100 ksf max                                                                 | 2.5906 ksf   | 50.8       | Pass      |

# 4. FINDINGS AND EVALUATION (cont.)

# **Maximum Deformations – Proposed Condition**

ANSI/TIA-222-G Section 2.8.2 - Limit State Deformations

- 1. A rotation of 4 degrees about the vertical axis (twist) or any horizontal axis (sway) of the structure
- 2. A horizontal displacement (in feet) of 3% of the height of the structure.

|                       | Cu               | rrent               | Allowable        |                     |
|-----------------------|------------------|---------------------|------------------|---------------------|
| Load Case Description | Sway<br>(degree) | Displacement (Feet) | Sway<br>(degree) | Displacement (Feet) |
| Service Wind Load     | 0.129            | 0.250               | 4.0              | 5.40                |

# Tower Twist & Sway at Top (Connecticut State Police Requirements - TIA-222-F):

| Description           | Current | Total  | Allowable |
|-----------------------|---------|--------|-----------|
| Tower Twist (degrees) | 0.0319  | 0.5070 | 0.750     |
| Tower Sway (degrees)  | 0.5560  | 0.5879 |           |

### 5. CONCLUSIONS

The results of the structural analysis indicated that:

- 1. The existing steel tower structure IS NOT considered structurally adequate for the proposed antenna loading with the wind classification specified above.
- 2. The existing tower anchor bolts ARE considered structurally adequate for the proposed antenna loading with the classification specified above.
- 3. The existing foundation IS considered structurally adequate for the proposed antenna loading with the load classification specified above.
- 4. The existing tower's sway (deflection) is 0.5560 degrees, and the existing tower's twist (rotation) is 0.0319 degrees. These figures combined ARE within the Connecticut State Police requirement of 0.75 degrees for twist (rotation) and sway (deflection) with the load classification specified above.

### **Limitations/Assumptions:**

This report is based on the following:

- 1) Tower inventory as listed in this report.
- 2) Tower is properly installed and maintained.
- 3) All members are as specified in the original design documents and are in good condition.
- 4) All required members are in place.
- 5) All bolts are in place and are properly tightened.
- 6) Tower is in plumb condition.
- 7) All member protective coatings are in good condition.
- 8) All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- 9) Foundations are in good condition without defects and were properly constructed to support original design loads as specified in the original design documents.

AECOM is not responsible for any modifications completed prior to or hereafter in which AECOM is not or was not directly involved. Modifications include but are not limited to:

- A. Adding antennas
- B. Removing/replacing antennas
- C. Adding coaxial cables

AECOM hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact AECOM. AECOM disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

# Ongoing and Periodic Inspection and Maintenance:

After the Contractor has successfully completed the installation and the work has been accepted, the owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The owner shall refer to TIA-222-G Section 14.2 for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. It is also recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions.

6.) DRAWINGS AND DATA

**SEISMIC BASE SHEAR ANALYSIS** 

# A=COM

# Seismic (Vs) Base Shear Implementing TIA-222-G, IBC 2012 & Connecticut State Building Code of 2016

Calculation of Seismic Base Shear Implementing TIA-222-G, IBC 2012 & & CT State Building Code 2016.

Location: Wilton, CT -Site Class "D"

$$S_{DS} = \frac{2}{3}F_AS_S$$
, where  $S_S = 0.231$  and  $F_A = 1.6$   $S_{DS} = \frac{2}{3}F_AS_S = \frac{2}{3}*1.6*0.231 = 0.246$   $S_{D1} = \frac{2}{3}F_VS_1$ , where  $S_1 = 0.068$  and  $F_V = 2.4$   $S_{D1} = \frac{2}{3}F_VS_1 = \frac{2}{3}*2.4*0.068 = 0.109$ 

TIA-222-G SECTION 2.7 EARTHQUAKE LOADS (PROCEDURES):

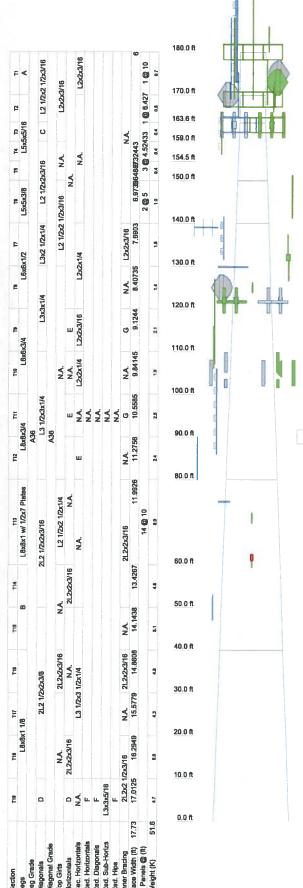
1. Importance Factor "I" (tables 2-3 TIA-222-G) = 1.5 (Structure Class 3)

ANSI/TIA-222-G 2.7.7.1 (TOTAL BASE SEISMIC SHEAR (Vs)

$$V_S = \frac{S_{DS}*W*I}{R} = \frac{0.246*71.234kips*1.5}{3.0} = 8.762 \ kips,$$
 where R = 3.0 for Lattice Tower  $V_{S.min} = \frac{0.5*S_{D1}*W*I}{R} = \frac{0.5*0.109*71.234kips*1.5}{3.0} = 1.941 \ kips$ 

1.2\*DL + 1.0~E < 1.2~DL + 1.6~W, ( 116 Kips), therefore seismic effect on structure <u>Does NOT control Design.</u>

<sup>\*</sup>By visual inspection, the above "Base Shear" value when considering the following Load Combination is less that the base shear of wind on structure.


TNX TOWER INPUT/OUTPUT SUMMARY

### **DESIGNED APPURTENANCE LOADING ELEVATION ELEVATION TYPE** Lightning Rod 2"x15" (A32) 152 - 140.5 12' Omni Antenna (A15 / DK-30) 180.0 ft SC479-HF1LDF (D00-E5764) (A28) 183 8' Side Arm Mount (A15 / DK-30) 140.5 T1 L3 1/2x3 1/2x3/8 ANT150D (A29a) 183 Yagi ASP-816 (A17 / DK-32) 139 100 10 DB222 (A29b) 183 6' Side-Arm Mount (A17 / DK-32) 139 1/2x2 1/2x3/16 SC479-HF1LDF (D00-E5764) (A30) 183 6' Side-Arm Mount (A18 / DK-33) 139 ALR8-0 (A31) BA1010 (A14 / DK-29) 137 - 132 L2x2x3/16 TMA 432-83H-01T - Future Decom. (A27) 181 DB222-A (A16 / DK-31) 136.5 170.0 ft SC479-HF1LDF (D00I-E5764) (A23) 180 - 168 4' Side Mount Standoff (A16 / DK-31) 136.5 121 1 @ 6.427 15' T-Frame Sector Mount (1) (A23,24,30,31) 180 BA1010 (A12 / DK-27) 132 - 127 SC479-HF1LDF (D001-E5764) (A24) 180 - 168 432E-83I-01T TTA Unit (A13 / DK-28) 132 SC479-HF1LDF (D001-E5764) (A26) 180 - 168 6' Side-Arm Mount (A12,13,14 / DK-27,28,29) 132 163.6 ft Dish Ice Shield (A11 / DK-26) 15' T-Frame Sector Mount (1) (A26,27,28,29) 180 6' PAD w/ Radome (A33) 175 PD128-1 (A8 / DK-14) 128 - 121 159.0 ft 3 @ 4.52433 10'6"x4" Pipe Mount (A25) 173 3" Dia 20' Omni (A7 / DK-13) 127 - 107 6' PAD w/ Radome (A25 /) 173 2'6"x4" Pipe Mount (A10 / DK-25) 125 2 170 6' PAD w/ Radome (A10 / DK-25) 125 154.5 ft 10'6"x4" Pipe Mount (A22) 170 AIR B2A/B4P (T-Mobile / DK 16-24) 122 10'6"x4" Pipe Mount (A33) 170 AIR B2A/B4P (T-Mobile / DK 16-24) 2 L2 1/2x2x3/18 6' PAD w/ Radome (A22 /) 170 (2) TMA (T-Mobile / DK 16-24) 122 150.0 ft N. BA1010-2 (A20) (2) TMA (T-Mobile / DK 16-24) 169 122 15' T-Frame Sector Mount (1) (A20) 169 (2) TMA (T-Mobile / DK 16-24) 122 T-Frame (ATT) 163 2@5 AIR21 B4AjB12P (T-Mobile / DK 16-24) 122 T-Frame (ATT) 163 AIR21 B4A|B12P (T-Mobile / DK 16-24) T-Frame (ATT) 163 AIR21 B4A|B12P (T-Mobile / DK 16-24) 122 7770.00 (AT.T) 163 RRUS-11 (T-Mobile / DK 16-24) 122 140.0 ft (2) LGP 21901 Diplexer Unit (ATT) 163 RRUS-11 (T-Mobile / DK 16-24) 1/2/2 122 Kathrein 800-10965 Panel Antenna (ATT) RRUS-11 (T-Mobile / DK 16-24) 122 L3x2 1/2x1/4 QS66512-3 Quintel Panel (ATT) 163 EUSF10-U (T-Mobile / DK 16-24) 122 RRUS-11 (ATT) 163 EUSF10-U (T-Mobile / DK 16-24) 122 Raycap DC6-48-80-18-8F DC Power Surge Protection (ATT) 163 AIR B2A/B4P (T-Mobile / DK 16-24) 122 L6x6x1/2 2x2x1/4 EUSF10-U (T-Mobile / DK 16-24) 122 130.0 ft 7770.00 (ATT) 163 8.40735 10' Standoff (A8 / DK-14) 121 (2) LGP 21901 Diplexer Unit (ATT) 163 12' Omni Antenna (A9 - DK-15) 116 - 106 Kathrein 800-10965 Panel Antenna (ATT) 6' Side-Arm Mount (A7 / DK-13) 7 QS86512-3 Quintel Panel (ATT) 163 6' Side-Arm Mount (A9 - DK-15) 106 RRUS-11 (ATT) 163 DB264-A (A5 / DK-11) 106 - 86 L3x3x1/4 7770.00 (ATT) 163 10'6"x4" Pipe Mount (A6 / DK-12 / CSP-11) 106 120.0 ft (2) LGP 21901 Diplexer Unit (ATT) 163 4' Grid Dish (A6 / DK 12 / CSP-11) 106 Kathrein 800-10985 Panel Antenna (ATT) 163 12' Wireless Frame (Sprint / DK 5-10) L2 1/2×2 1/2×1/4 L2 1/2x2x3/16 L2x2x3/16 QS66512-3 Quintel Panel (ATT) 163 1900 RRH (1900 MHz) Unit (Sprint / DK 5-10) 105 RRUS-11 (ATT) 163 800 RRH (800 MHz) Unit (Sprint / DK 5-10) 105 4478 Radio Unit (4x40W) (ATT) 163 1900 RRH (1900 MHz) Unit (Sprint / DK 5-10) 105 4478 Radio Unit (4x40W) (ATT) 163 APXVSPP18-C (Sprint / DK 5-10) Bx8x3/4 105 110.0 ft 4478 Radio Unit (4x40W) (ATT) 163 800 RRH (800 MHz) Unit (Sprint / DK 5-10) 105 RRUS-32 B66 (ATT) 163 800 RRH (800 MHz) Unit (Sprint / DK 5-10) 105 RRUS-32 B66 (ATT) 163 NA. NA. 12' Wireless Frame (Sprint / DK 5-10) 105 1.5 Ϋ́ RRUS-32 B66 (ATT) 163 1900 RRH (1900 MHz) Unit (Sprint / DK 5-10) 105 RRUS-32 B2 (ATT) 163 APXVSPP18-C (Sprint / DK 5-10) 105 163 APXVSPP18-C (Sprint / DK 5-10) 105 100.0 ft RRUS-32 B2 (ATT) 105 RRUS-32 (ATT) 163 1/2×1/4 SC479-HF1LDF (A4 / DK-4) 91 - 79 L3 1/2x3x1/4 RRUS-32 (ATT) 163 10' Standoff (A4 / DK-4) RRUS-32 (ATT) 163 4' Side Mount Standoff (A5 / DK-11) DC6-48-60-18-8C Squid / Surge Arrestor (ATT) Dish Ice Shield (A3 / DK-3) DC6-48-60-18-8C Squid / Surge Arrestor (ATT) 163 2'6"x4" Pipe Mount (A3 / DK-3) 71 90.0 ft (2) LPG21401 TMA (ATT) 163 3'4"x4" Pipe Mount (A2 / Sprint) 61 (2) LPG21401 TMA (ATT) 163 GPS (A2 / Sorint) 61 (2) LPG21401 TMA (ATT) 163 3' Stand-off (A1 / DK-1 50 DB408-B (A19) 161 DB803M-Y (A1 / DK-1) 24 1722 (2) 6' Side Mount Sta 161 2 80.0 ft SYMBOL LIST SIZE SIZE MARK Tis L8x8x1 w/ 1/2x7 Plates 1/2×1/4 **MATERIAL STRENGTH** 0 **GRADE** GRADE 14 60 2L2 1/2x2x3/16 12 **TOWER DESIGN NOTES** 1. Tower designed for Exposure C to the TIA-222-G Standard. 2. Tower designed for a 93 mph basic wind in accordance with the TIA-222-G Standard. 60.0 ft 3. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height. Deflections are based upon a 60 mph wind. 5. Tower Structure Class III. T18 T18 W/ 1/2x7 Plates 6. Topographic Category 3 with Crest Height of 65.00 ft 7. TOWER RATING: 110.3% 50.0 ft 14.1438 40.0 ft ALL REACTIONS ARE FACTORED N. MAX. CORNER REACTIONS AT BASE: DOWN: 453 K SHEAR: 46 K 30.0 ft 1/233 15.5779 UPLIFT: -415 K 13 AXIAL L8x8x1 1/8 264 K 20.0 ft 18.2949 SHEAR MOMENT N.A. 2L2x2x3/18 36 K 3392 kip-ft # TORQUE 35 kip-ft 50 mph WIND - 0.7500 in ICE 10.0 ft **AXIAL** 2L2 1/2x2 1/2x1/4 N.A. 2L2 1/2/2 1/2×1/4 86 K SHEAR MOMENT 116 K 10825 kip-ft 0.0 ft TORQUE 60 kip-ft REACTIONS - 93 mph WIND

AECOM
500 Enterprise Drive, Suite 3B
Rocky Hill, CT
Phone: 860-529-8882
FAX: 860-529-3991

ROCKY Hill, CT
Phone: 860-529-3991

Path: | Job: 180' Lattice Tower - CSP
| Project: Structural Analysis | Cilent: Empire Telecom / EMP-004 | Drawn by: MCD | App'd: Code: TIA-222-G | Date: 03/29/18 | Scale: NTS | Dwg No. E-1



SYMBOL LIST

| MARK | SIZE                       | MARK | SIZE              |  |
|------|----------------------------|------|-------------------|--|
| A    | L3 1/2x3 1/2x3/8           | E    | L2 1/2x2 1/2x1/4  |  |
| В    | L8x8x1-1/8 w/ 1/2x7 Plates | F    | L2 1/2x2 1/2x3/16 |  |
| С    | L2x2x3/16                  | G    | L2 1/2x2x3/16     |  |
| D    | 2L2 1/2x2 1/2x1/4          |      |                   |  |

**MATERIAL STRENGTH** GRADE GRADE Fu

### **TOWER DESIGN NOTES**

- 1. Tower designed for Exposure C to the TIA-222-G Standard.
- Tower designed for a 93 mph basic wind in accordance with the TIA-222-G Standard.
- Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.

- 4. Deflections are based upon a 60 mph wind.
  5. Tower Structure Class III.
  6. Topographic Category 3 with Crest Height of 65.00 ft
  7. TOWER RATING: 110.3%

ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE:

DOWN: 453 K SHEAR: 46 K

UPLIFT: -415 K SHEAR: 44 K

> AXIAL 264 K

SHEAR MOMENT 36 K 3392 kip-ft

TORQUE 35 kip-ft 50 mph WIND - 0.7500 in ICE AXIAL

86 K

SHEAR MOMENT 116 K 10825 kip-ft

TORQUE 60 kip-ft REACTIONS - 93 mph WIND

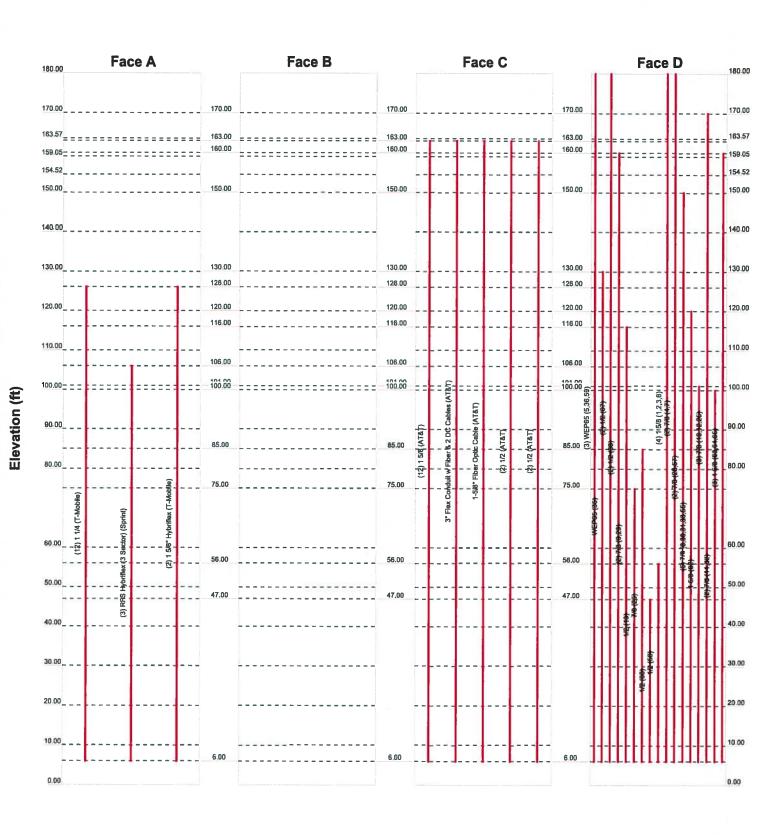
| ALL   | UIVI   |       |   |
|-------|--------|-------|---|
| prise | Drive. | Suite | 3 |

500 Enter 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

AECOM

b: 180' Lattice Tower - CSP

oject: Structural Analysis


Client: Empire Telecom / EMP-004 Drawn by: MCD App'd: Code: TIA-222-G Date: 03/29/18 Scale: N7

Dwg No. E

TNX TOWER FEEDLINE DISTRIBUTION

#### **Feed Line Distribution Chart** 0' - 180'

App Out Face \_\_ Truss Leg



bi: 180' Lattice Tower - CSP **AECOM** Project: Structural Analysis 500 Enterprise Drive, Suite 3B Client: Empire Telecom / EMP-004 Drawn by: MCD App'd: Rocky Hill, CT Code: TIA-222-G Phone: 860-529-8882 Path: FAX: 860-529-3991

Date: 03/29/18 Scale: N7

Dwg No. E

TNX TOWER FEEDLINE PLAN

#### **Feed Line Plan**

App In Face App Out Face

(3) RFS Hybriflex (3 Sector) (Sprint) (12) 1 1/4 (T-Mobile) (2) 1 5/8" Hybriflex (T-Mobile) D

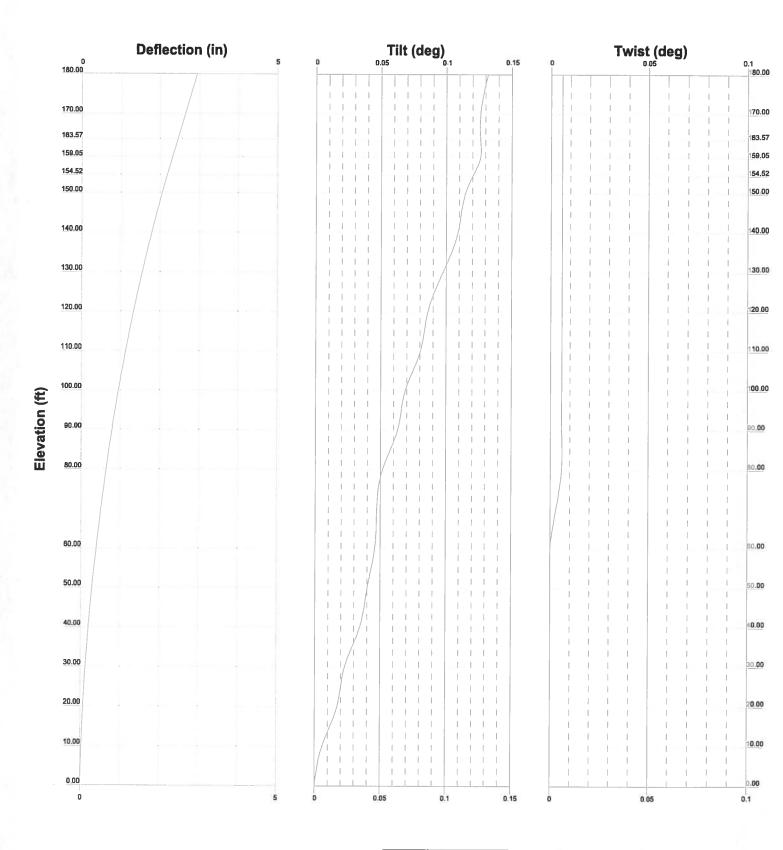
12) 1 5/8 (AT&T)

2 The Part Partie Canal AZTRC) Cables (AT&T)
(2) 1/2 (AT&T)

(8) 1-5/8" (18) 7/8" (4) 1/2" (4) WEP65

**AECOM** 

500 Enterprise Drive, Suite 3B Rocky Hill, CT


Phone: 860-529-8882 FAX: 860-529-3991

ob: 180' Lattice Tower - CSP

Project: Structural Analysis

Client: Empire Telecom / EMP-004 Drawn by: MCD App'd: Date: 03/29/18 Scale: N Dwg No. Code: TIA-222-G

TNX TOWER DEFLECTION, TILT, AND TWIST





TNX TOWER DETAILED OUTPUT

**AECOM** 

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 1 of 86           |
| Project | 1                        | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

#### **Tower Input Data**

The main tower is a 4x free standing tower with an overall height of 180.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 6.00 ft at the top and 17.73 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Basic wind speed of 93 mph.

Structure Class III.

Exposure Category C.

Topographic Category 3.

Crest Height 65.00 ft.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

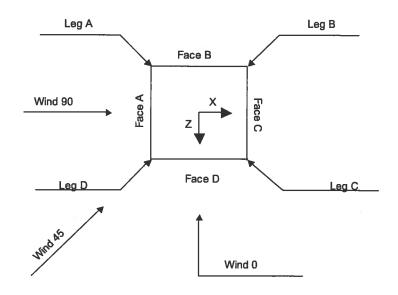
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

#### Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- Use Code Stress Ratios
- Use Code Safety Factors Guys Escalate Ice Always Use Max Kz
- Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
- Secondary Horizontal Braces Leg
- Use Diamond Inner Bracing (4 Sided)
- SR Members Have Cut Ends SR Members Are Concentric

- Distribute Leg Loads As Uniform Assume Legs Pinned
- Assume Rigid Index Plate
- Use Clear Spans For Wind Area
- Use Clear Spans For KL/r Retension Guys To Initial Tension
- Bypass Mast Stability Checks Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
- Sort Capacity Reports By Component
- Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder


- Use ASCE 10 X-Brace Ly Rules
- Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- SR Leg Bolts Resist Compression
- All Leg Panels Have Same Allowable Offset Girt At Foundation
- Consider Feed Line Torque
- Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

**AECOM** 

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 2 of 86           |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |



Square Tower

#### **Tower Section Geometry**

| Tower      | Tower         | Assembly | Description | Section | Number   | Section |
|------------|---------------|----------|-------------|---------|----------|---------|
| Section    | Elevation     | Database |             | Width   | of       | Length  |
|            |               |          |             |         | Sections |         |
|            | ft            |          |             | ft      |          | ft      |
| T1         | 180.00-170.00 |          |             | 6.00    | 1        | 10.00   |
| T2         | 170.00-163.57 |          |             | 6.00    | 1        | 6.43    |
| T3         | 163.57-159.05 |          |             | 6.00    | 1        | 4.52    |
| T4         | 159.05-154.52 |          |             | 6.32    | 1        | 4.52    |
| T5         | 154.52-150.00 |          |             | 6.65    | 1        | 4.52    |
| T6         | 150.00-140.00 |          |             | 6.97    | 1        | 10.00   |
| <b>T</b> 7 | 140.00-130.00 |          |             | 7.69    | 1        | 10.00   |
| T8         | 130.00-120.00 |          |             | 8.41    | 1        | 10.00   |
| T9         | 120.00-110.00 |          |             | 9.12    | 1        | 10.00   |
| T10        | 110.00-100.00 |          |             | 9.84    | 1        | 10.00   |
| T11        | 100.00-90.00  |          |             | 10.56   | 1        | 10.00   |
| T12        | 90.00-80.00   |          |             | 11.28   | 1        | 10.00   |
| T13        | 80.00-60.00   |          |             | 11.99   | 1        | 20.00   |
| T14        | 60.00-50.00   |          |             | 13.43   | 1        | 10.00   |
| T15        | 50.00-40.00   |          |             | 14.14   | 1        | 10.00   |
| T16        | 40.00-30.00   |          |             | 14.86   | 1        | 10.00   |
| T17        | 30.00-20.00   |          |             | 15.58   | 1        | 10.00   |
| T18        | 20.00-10.00   |          |             | 16.29   | 1        | 10.00   |
| T19        | 10.00-0.00    |          |             | 17.01   | 1        | 10.00   |

| Tower   | Tower     | Diagonal | Bracing | Has     | Has         | Top Girt | Bottom Gir |
|---------|-----------|----------|---------|---------|-------------|----------|------------|
| Section | Elevation | Spacing  | Type    | K Brace | Horizontals | Ôffset   | Offset     |
|         |           |          |         | End     |             |          |            |
|         | ft        | ft       |         | Panels  |             | in       | in         |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 3 of 86           |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Tower<br>Section | Tower<br>Elevation | Diagonal<br>Spacing | Bracing<br>Type | Has<br>K Brace | Has<br>Horizontals | Top Girt<br>Offset | Bottom Gir<br>Offset |
|------------------|--------------------|---------------------|-----------------|----------------|--------------------|--------------------|----------------------|
|                  | ft                 | ft                  |                 | End<br>Panels  |                    | in                 | in                   |
| T1               | 180.00-170.00      | 10.00               | X Brace         | No             | Yes                | 0.0000             | 0.0000               |
| T2               | 170.00-163.57      | 6.43                | X Brace         | No             | No                 | 0.0000             | 0.0000               |
| T3               | 163.57-159.05      | 4.52                | X Brace         | No             | No                 | 0.0000             | 0.0000               |
| T4               | 159.05-154.52      | 4.52                | X Brace         | No             | No                 | 0.0000             | 0.0000               |
| T5               | 154.52-150.00      | 4.52                | X Brace         | No             | No                 | 0.0000             | 0.0000               |
| T6               | 150.00-140.00      | 5.00                | X Brace         | No             | No                 | 0.0000             | 0.0000               |
| T7               | 140.00-130.00      | 10.00               | X Brace         | No             | Yes                | 0.0000             | 0.0000               |
| T8               | 130.00-120.00      | 10.00               | X Brace         | No             | Yes                | 0.0000             | 0.0000               |
| T9               | 120.00-110.00      | 10.00               | X Brace         | No             | Yes                | 0.0000             | 0.0000               |
| T10              | 110.00-100.00      | 10.00               | X Brace         | No             | Yes                | 0.0000             | 0.0000               |
| T11              | 100.00-90.00       | 10.00               | X Brace         | No             | Yes                | 0.0000             | 0.0000               |
| T12              | 90.00-80.00        | 10.00               | X Brace         | No             | Yes                | 0.0000             | 0.0000               |
| T13              | 80.00-60.00        | 10.00               | X Brace         | No             | Yes                | 0.0000             | 0.0000               |
| T14              | 60.00-50.00        | 10.00               | X Brace         | No             | Yes                | 0.0000             | 0.0000               |
| T15              | 50.00-40.00        | 10.00               | X Brace         | No             | Yes                | 0.0000             | 0.0000               |
| T16              | 40.00-30.00        | 10.00               | X Brace         | No             | Yes                | 0.0000             | 0.0000               |
| T17              | 30.00-20.00        | 10.00               | X Brace         | No             | Yes                | 0.0000             | 0.0000               |
| T18              | 20.00-10.00        | 10.00               | X Brace         | No             | Yes                | 0.0000             | 0.0000               |
| T19              | 10.00-0.00         | 10.00               | K1 Down         | No             | Yes                | 0.0000             | 0.0000               |

| Tower<br>Elevation | Leg<br>Type     | Leg<br>Size                | Leg<br>Grade | Diagonal<br>Type | Diagonal<br>Size  | Diagonal<br>Grade |
|--------------------|-----------------|----------------------------|--------------|------------------|-------------------|-------------------|
| ft                 |                 |                            |              |                  |                   |                   |
| T1 180.00-170.00   | Single Angle    | L3 1/2x3 1/2x3/8           | A36          | Single Angle     | L2 1/2x2 1/2x3/16 | A36               |
|                    |                 |                            | (36 ksi)     | 0 0              |                   | (36 ksi)          |
| T2 170.00-163.57   | Single Angle    | L5x5x5/16                  | A36          | Single Angle     | L2 1/2x2 1/2x3/16 | `A36´             |
|                    |                 |                            | (36 ksi)     |                  |                   | (36 ksi)          |
| T3 163.57-159.05   | Single Angle    | L5x5x5/16                  | A36          | Single Angle     | L2x2x3/16         | A36               |
|                    |                 |                            | (36 ksi)     |                  |                   | (36 ksi)          |
| T4 159.05-154.52   | Single Angle    | L5x5x5/16                  | A36          | Single Angle     | L2 1/2x2x3/16     | `A36´             |
|                    |                 |                            | (36 ksi)     | 0 0              |                   | (36 ksi)          |
| T5 154.52-150.00   | Single Angle    | L5x5x5/16                  | A36          | Single Angle     | L2 1/2x2x3/16     | `A36´             |
|                    |                 |                            | (36 ksi)     |                  |                   | (36 ksi)          |
| T6 150.00-140.00   | Single Angle    | L5x5x3/8                   | A36          | Single Angle     | L2 1/2x2x3/16     | `A36 ´            |
|                    |                 |                            | (36 ksi)     |                  |                   | (36 ksi)          |
| T7 140.00-130.00   | Single Angle    | L6x6x1/2                   | A36          | Single Angle     | L3x2 1/2x1/4      | `A36              |
|                    |                 |                            | (36 ksi)     |                  |                   | (36 ksi)          |
| T8 130.00-120.00   | Single Angle    | L6x6x1/2                   | A36          | Single Angle     | L3x3x1/4          | `A36 ´            |
|                    |                 |                            | (36 ksi)     |                  |                   | (36 ksi)          |
| T9 120.00-110.00   | Single Angle    | L6x6x3/4                   | A36          | Single Angle     | L3x3x1/4          | A36               |
|                    |                 |                            | (36 ksi)     |                  |                   | (36 ksi)          |
| T10                | Single Angle    | L6x6x3/4                   | A36          | Single Angle     | L3 1/2x3x1/4      | `A36 ´            |
| 110.00-100.00      |                 |                            | (36 ksi)     |                  |                   | (36 ksi)          |
| T11 100.00-90.00   | Single Angle    | L8x8x3/4                   | A36          | Single Angle     | L3 1/2x3x1/4      | `A36 ´            |
|                    |                 |                            | (36 ksi)     |                  |                   | (36 ksi)          |
| T12 90.00-80.00    | Single Angle    | L8x8x3/4                   | A36          | Single Angle     | L3 1/2x3x1/4      | `A36 ´            |
|                    |                 |                            | (36 ksi)     |                  |                   | (36 ksi)          |
| T13 80.00-60.00    | Arbitrary Shape | L8x8x1 w/ 1/2x7 Plates     | A36          | Double Angle     | 2L2 1/2x2x3/16    | A36               |
|                    |                 |                            | (36 ksi)     |                  |                   | (36 ksi)          |
| T14 60.00-50.00    | Arbitrary Shape | L8x8x1-1/8 w/ 1/2x7 Plates | A36          | Double Angle     | 2L2 1/2x2x3/16    | A36               |
|                    |                 |                            | (36 ksi)     |                  |                   | (36 ksi)          |
| T15 50.00-40.00    | Arbitrary Shape | L8x8x1-1/8 w/ 1/2x7 Plates | A36          | Double Angle     | 2L2 1/2x2x3/8     | `A36              |
|                    |                 |                            | (36 ksi)     | 3 3 F            |                   | (36 ksi)          |
| T16 40.00-30.00    | Single Angle    | L8x8x1 1/8                 | A36          | Double Angle     | 2L2 1/2x2x3/8     | `A36 ´            |
|                    |                 |                            | (36 ksi)     |                  |                   | (36 ksi)          |

#### Page Job *tnxTower* 4 of 86 180' Lattice Tower - CSP **Project** Date **AECOM** 500 Enterprise Drive, Suite 3B Structural Analysis 16:48:32 03/29/18 Rocky Hill, CT Client Designed by Phone: 860-529-8882

Empire Telecom / EMP-004

MCD

| Tower<br>Elevation<br>ft | Leg<br>Type  | Leg<br>Size | Leg<br>Grade    | Diagonal<br>Type | Diagonal<br>Size  | Diagonal<br>Grade |
|--------------------------|--------------|-------------|-----------------|------------------|-------------------|-------------------|
| Γ17 30.00-20.00          | Single Angle | L8x8x1 1/8  | A36<br>(36 ksi) | Double Angle     | 2L2 1/2x2x3/8     | A36<br>(36 ksi)   |
| Γ18 20.00-10.00          | Single Angle | L8x8x1 1/8  | A36<br>(36 ksi) | Double Angle     | 2L2 1/2x2x3/8     | A36<br>(36 ksi)   |
| T19 10.00-0.00           | Single Angle | L8x8x1 1/8  | A36<br>(36 ksi) | Double Angle     | 2L2 1/2x2 1/2x1/4 | A36<br>(36 ksi)   |

FAX: 860-529-3991

|                          | Tower Section Geometry (cont'd) |                   |                   |                     |                     |                      |  |  |  |
|--------------------------|---------------------------------|-------------------|-------------------|---------------------|---------------------|----------------------|--|--|--|
| Tower<br>Elevation<br>ft | Top Girt<br>Type                | Top Girt<br>Size  | Top Girt<br>Grade | Bottom Girt<br>Type | Bottom Girt<br>Size | Bottom Girt<br>Grade |  |  |  |
| T1 180.00-170.00         | Single Angle                    | L2x2x3/16         | A36<br>(36 ksi)   | Single Angle        |                     | A36<br>(36 ksi)      |  |  |  |
| T2 170.00-163.57         | Single Angle                    | L2x2x3/16         | A36<br>(36 ksi)   | Single Angle        |                     | A36 (36 ksi)         |  |  |  |
| T3 163.57-159.05         | Single Angle                    | L2x2x3/16         | A36<br>(36 ksi)   | Single Angle        |                     | A36 (36 ksi)         |  |  |  |
| T6 150.00-140.00         | Single Angle                    | L2 1/2x2 1/2x3/16 | A36<br>(36 ksi)   | Single Angle        |                     | A36<br>(36 ksi)      |  |  |  |
| T7 140.00-130.00         | Single Angle                    | L2 1/2x2 1/2x3/16 | A36 (36 ksi)      | Single Angle        |                     | A36 (36 ksi)         |  |  |  |
| T13 80.00-60.00          | Single Angle                    | L2 1/2x2 1/2x1/4  | A36 (36 ksi)      | Single Angle        |                     | A36<br>(36 ksi)      |  |  |  |
| T16 40.00-30.00          | Double Angle                    | 2L2x2x3/16        | A36<br>(36 ksi)   | Single Angle        |                     | A36<br>(36 kgi)      |  |  |  |

|                    | Tower Section Geometry (cont'd) |                  |                  |                             |                    |                    |                             |  |
|--------------------|---------------------------------|------------------|------------------|-----------------------------|--------------------|--------------------|-----------------------------|--|
| Tower<br>Elevation | No.<br>of<br>Mid                | Mid Girt<br>Type | Mid Girt<br>Size | Mid Girt<br>Grade           | Horizontal<br>Type | Horizontal<br>Size | Horizontal<br>Grade         |  |
| Jt                 | Girts                           | G' 1 A 1         | TO 0 0/16        |                             |                    |                    |                             |  |
| T1 180.00-170.00   | 1                               | Single Angle     | L2x2x3/16        | A36<br>(36 ksi)             | Double Angle       |                    | A36<br>(36 ksi)             |  |
| T9 120.00-110.00   | 1                               | Single Angle     | L2x2x3/16        | A36<br>(36 ksi)             | Single Angle       | L2 1/2x2 1/2x1/4   | A36                         |  |
| T11 100.00-90.00   | None                            | Single Angle     |                  | A36<br>(36 ksi)             | Single Angle       | L2 1/2x2 1/2x1/4   | (36 ksi)<br>A36<br>(36 ksi) |  |
| T14 60.00-50.00    | None                            | Single Angle     |                  | A36<br>(36 ksi)             | Double Angle       | 2L2x2x3/16         | A36<br>(36 ksi)             |  |
| T18 20.00-10.00    | None                            | Single Angle     |                  | `A36´                       | Double Angle       | 2L2x2x3/16         | `A36´                       |  |
| T19 10.00-0.00     | None                            | Single Angle     |                  | (36 ksi)<br>A36<br>(36 ksi) | Double Angle       | 2L2 1/2x2 1/2x1/4  | (36 ksi)<br>A36<br>(36 ksi) |  |

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 5 of 86           |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Tower<br>Elevation | Secondary<br>Horizontal Type | Secondary Horizontal<br>Size | Secondary<br>Horizontal<br>Grade | Inner Bracing<br>Type | Inner Bracing Size | Inner Bracing<br>Grade |
|--------------------|------------------------------|------------------------------|----------------------------------|-----------------------|--------------------|------------------------|
| ft                 |                              |                              |                                  |                       |                    |                        |
| Γ1 180.00-170.00   | Single Angle                 | L2x2x3/16                    | A36                              | Single Angle          |                    | A36                    |
|                    |                              |                              | (36 ksi)                         |                       |                    | (36 ksi)               |
| Γ7 140.00-130.00   | Equal Angle                  | L2x2x1/4                     | A36                              | Single Angle          | L2x2x3/16          | A36                    |
|                    |                              |                              | (36 ksi)                         |                       |                    | (36 ksi)               |
| r8 130.00-120.00   | Single Angle                 | L2x2x1/4                     | A36                              | Single Angle          |                    | A36                    |
|                    |                              |                              | (36 ksi)                         |                       |                    | (36 ksi)               |
| 9 120.00-110.00    | Single Angle                 | L2x2x3/16                    | A36                              | Single Angle          | L2 1/2x2x3/16      | A36                    |
|                    |                              |                              | (36 ksi)                         |                       |                    | (36 ksi)               |
| T10                | Single Angle                 | L2x2x1/4                     | A36                              | Single Angle          |                    | A36                    |
| 110.00-100.00      |                              |                              | (36 ksi)                         |                       |                    | (36 ksi)               |
| C11 100.00-90.00   | Single Angle                 |                              | A36                              | Single Angle          | L2 1/2x2x3/16      | A36                    |
|                    |                              |                              | (36 ksi)                         |                       |                    | (36 ksi)               |
| Γ12 90.00-80.00    | Single Angle                 | L2 1/2x2 1/2x1/4             | A36                              | Single Angle          |                    | A36                    |
|                    |                              |                              | (36 ksi)                         |                       |                    | (36 ksi)               |
| Т13 80.00-60.00    | Equal Angle                  |                              | A36                              | Double Angle          | 2L2x2x3/16         | A36                    |
|                    |                              |                              | (36 ksi)                         |                       |                    | (36 ksi)               |
| Γ14 60.00-50.00    | Single Angle                 |                              | A36                              | Double Angle          | 2L2x2x3/16         | A36                    |
|                    |                              |                              | (36 ksi)                         |                       |                    | (36 ksi)               |
| Γ15 50.00-40.00    | Single Angle                 | L3 1/2x3 1/2x1/4             | A36                              | Single Angle          |                    | A36                    |
|                    |                              |                              | (36 ksi)                         |                       |                    | (36 ksi)               |
| Γ16 40.00-30.00    | Single Angle                 | L3 1/2x3 1/2x1/4             | A36                              | Double Angle          | 2L2x2x3/16         | A36                    |
|                    |                              |                              | (36 ksi)                         |                       |                    | (36 ksi)               |
| Γ17 30.00-20.00    | Single Angle                 | L3 1/2x3 1/2x1/4             | A36                              | Single Angle          |                    | A36                    |
|                    |                              |                              | (36 ksi)                         |                       |                    | (36 ksi)               |
| Γ18 20.00-10.00    | Single Angle                 | L3 1/2x3 1/2x1/4             | A36                              | Double Angle          | 2L2x2 1/2x3/16     | A36                    |
|                    |                              |                              | (36 ksi)                         |                       |                    | (36 ksi)               |
| T19 10.00-0.00     | Single Angle                 |                              | A36                              | Double Angle          | 2L2x2 1/2x3/16     | A36                    |
|                    |                              |                              | (36 ksi)                         |                       |                    | (36 ksi)               |

# **Tower Section Geometry** (cont'd)

| Tower<br>Elevation | Redundant<br>Bracing<br>Grade |                | Redundant<br>Type | Redundant<br>Size | K Factor |
|--------------------|-------------------------------|----------------|-------------------|-------------------|----------|
| 7t<br>T19          | A36                           | Horizontal (1) | Single Angle      | L2 1/2x2 1/2x3/16 | 1        |
| 10.00-0.00         | (36 ksi)                      | Diagonal (1)   | Single Angle      | L2 1/2x2 1/2x3/16 | 1        |
|                    |                               | Sub-Horizontal | Single Angle      | L3x3x5/16         | 1        |
|                    |                               | Hip (1)        | Single Angle      | L2 1/2x2 1/2x3/16 | 1        |

| Tower<br>Elevation | Gusset<br>Area | Gusset<br>Thickness | Gusset Grade | Adjust. Factor | Adjust.<br>Factor | Weight Mult. | Double Angle<br>Stitch Bolt | Double Angle<br>Stitch Bolt | Double Angle<br>Stitch Bolt |
|--------------------|----------------|---------------------|--------------|----------------|-------------------|--------------|-----------------------------|-----------------------------|-----------------------------|
|                    | (per face)     |                     |              | •              | $A_r$             |              | Spacing                     | Spacing                     | Spacing                     |
| 00000              |                |                     |              |                |                   |              | Diagonals                   | Horizontals                 | Redundants                  |
| ft                 | ft²            | in                  |              |                |                   |              | in                          | in                          | in                          |
| T1                 | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
| 180.00-170.00      |                |                     | (36 ksi)     |                |                   |              |                             |                             |                             |
| T2                 | 0.00           | 0.0000              | `A36´        | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
| 170.00-163.57      |                |                     | (36 ksi)     |                |                   |              |                             |                             |                             |
|                    |                |                     |              |                |                   |              |                             |                             |                             |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 6 of 86           |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Tower<br>Elevation | Gusset<br>Area | Gusset<br>Thickness | Gusset Grade | Adjust. Factor | Adjust.<br>Factor | Weight Mult. | Double Angle<br>Stitch Bolt | Double Angle<br>Stitch Bolt | Double Angle<br>Stitch Bolt |
|--------------------|----------------|---------------------|--------------|----------------|-------------------|--------------|-----------------------------|-----------------------------|-----------------------------|
| 2.07a.ion          | (per face)     | 11110111111111      |              | Aj             | $A_r$             |              | Spacing                     | Spacing                     | Spacing                     |
| ft                 | $ft^2$         | in                  |              |                |                   |              | Diagonals<br>in             | Horizontals<br>in           | Redundants<br>in            |
| T3                 | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     |                             |
| 163.57-159.05      | 0.00           | 0.0000              | (36 ksi)     | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
| T4                 | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
| 159.05-154.52      | 0.00           | 0.0000              | (36 ksi)     | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 30.0000                     |
| T5                 | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
| 154.52-150.00      | 0.00           | 0.0000              | (36 ksi)     | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 30.0000                     |
| T6                 | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
| 150.00-140.00      | 0.00           | 0.0000              | (36 ksi)     | •              | •                 | 1.02         | 24.0000                     | 24.0000                     | 30.0000                     |
| T7                 | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
| 140.00-130.00      |                | 0.000               | (36 ksi)     | •              | •                 | 1.02         | 24.0000                     | 24.0000                     | 50.0000                     |
| Т8                 | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24,0000                     | 36.0000                     |
| 130.00-120.00      |                |                     | (36 ksi)     | -              | -                 | 1.02         | 2                           | 2                           | 50.0000                     |
| Т9                 | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
| 120.00-110.00      |                |                     | (36 ksi)     |                |                   |              |                             | 2                           | 20.000                      |
| T10                | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
| 110.00-100.00      |                |                     | (36 ksi)     |                |                   |              |                             |                             |                             |
| T11                | 0.00           | 0.0000              | `A36 ´       | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36,0000                     |
| 100.00-90.00       |                |                     | (36 ksi)     |                |                   |              |                             |                             |                             |
| T12                | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
| 90.00-80.00        |                |                     | (36 ksi)     |                |                   |              |                             |                             |                             |
| T13                | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
| 80.00-60.00        |                |                     | (36 ksi)     |                |                   |              |                             |                             |                             |
| T14                | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
| 60.00-50.00        |                |                     | (36 ksi)     |                |                   |              |                             |                             |                             |
| T15                | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
| 50.00-40.00        |                |                     | (36 ksi)     |                |                   |              |                             |                             |                             |
| T16                | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
| 40.00-30.00        |                |                     | (36 ksi)     |                |                   |              |                             |                             |                             |
| T17                | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
| 30.00-20.00        |                |                     | (36 ksi)     |                |                   |              |                             |                             |                             |
| T18                | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
| 20.00-10.00        |                |                     | (36 ksi)     |                |                   |              |                             |                             |                             |
| T19 10.00-0.00     | 0.00           | 0.0000              | A36          | 1              | 1                 | 1.02         | 24.0000                     | 24.0000                     | 36.0000                     |
|                    |                |                     | (36 ksi)     |                |                   |              |                             |                             |                             |

|                    |                     |                    |      |                     |                     | K Fac           | ctors |        |                |                |
|--------------------|---------------------|--------------------|------|---------------------|---------------------|-----------------|-------|--------|----------------|----------------|
| Tower<br>Elevation | Calc<br>K<br>Single | Calc<br>K<br>Solid | Legs | X<br>Brace<br>Diags | K<br>Brace<br>Diags | Single<br>Diags | Girts | Horiz. | Sec.<br>Horiz. | Inner<br>Brace |
| ft                 | Angles              | Rounds             |      | X<br>v              | X                   | X<br>Y          | X     | X      | X              | X              |
| T1                 | Yes                 | No                 | 1    | 1                   | 1                   | 1               |       | 1      |                |                |
| 180.00-170.00      | 1 03                | 140                | 1    | Ť                   | 1                   | 1               | 1     | 1      | 1              | 1              |
| T2                 | Yes                 | No                 | 1    | i                   | i                   | 1               | 1     | i      | 1              | 1              |
| 170.00-163.57      |                     | - 10               | -    | ī                   | i                   | i               | 1     | î      | i              | 1              |
| T3                 | Yes                 | No                 | 1    | 1                   | ī                   | 1               | ī     | î      | î              | i              |
| 163.57-159.05      |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
| T4                 | Yes                 | No                 | 1    | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
| 159.05-154.52      |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
| T5                 | Yes                 | No                 | 1    | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
| 154.52-150.00      |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
| Т6                 | Yes                 | No                 | 1    | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
| 150.00-140.00      |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 7 of 86           |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

|                    |                     |                    |      |                     | 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | K Fa            | ctors | Interest of the |                |                |
|--------------------|---------------------|--------------------|------|---------------------|-----------------------------------------|-----------------|-------|-----------------|----------------|----------------|
| Tower<br>Elevation | Calc<br>K<br>Single | Calc<br>K<br>Solid | Legs | X<br>Brace<br>Diags | K<br>Brace<br>Diags                     | Single<br>Diags | Girts | Horiz,          | Sec.<br>Horiz. | Inner<br>Brace |
|                    | Angles              | Rounds             |      | X                   | $X^{-}$                                 | X               | X     | X               | X              | X              |
| ft                 |                     |                    |      | Y                   | Y                                       | Y               | Y     | Y               | Y              | Y              |
| T7                 | Yes                 | No                 | 1    | 1                   | 1                                       | 1               | 1     | 1               | 1              | 1              |
| 140.00-130.00      |                     |                    |      | 1                   | 1                                       | 1               | 1     | 1               | 1              | 1              |
| T8                 | Yes                 | No                 | 1    | 1                   | 1                                       | 1               | 1     | 1               | 1              | 1              |
| 130.00-120.00      |                     |                    |      | 1                   | 1                                       | 1               | 1     | 1               | 1              | 1              |
| T9                 | Yes                 | No                 | 1    | 1                   | 1                                       | 1               | 1     | 1               | 1              | ī              |
| 120.00-110.00      |                     |                    |      | 1                   | 1                                       | 1               | 1     | 1               | 1              | 1              |
| T10                | Yes                 | No                 | 1    | 1                   | 1                                       | 1               | 1     | 1               | 1              | 1              |
| 110.00-100.00      |                     |                    |      | 1                   | 1                                       | 1               | 1     | 1               | 1              | 1              |
| T11                | Yes                 | No                 | 1    | 1                   | 1                                       | 1               | 1     | 1               | 1              | i              |
| 100.00-90.00       |                     |                    |      | 1                   | 1                                       | 1               | 1     | 1               | 1              | 1              |
| T12                | Yes                 | No                 | 1    | 1                   | 1                                       | 1               | 1     | 1               | 1              | 1              |
| 90.00-80.00        |                     |                    |      | 1                   | 1                                       | 1               | 1     | 1               | 1              | 1              |
| T13                | Yes                 | No                 | 1    | 1                   | 1                                       | 1               | 1     | 1               | 1              | 1              |
| 80.00-60.00        |                     |                    |      | 1                   | 1                                       | 1               | ī     | i               | î              | 1              |
| T14                | Yes                 | No                 | 1    | 1                   | 1                                       | 1               | 1     | 1               | ī              | 1              |
| 60.00-50.00        |                     |                    |      | 1                   | 1                                       | ī               | 1     | 1               | î              | 1              |
| T15                | Yes                 | No                 | 1    | 1                   | 1                                       | ī               | 1     | 1               | î              | 1              |
| 50.00-40.00        |                     |                    | _    | 1                   | 1                                       | ī               | 1     | i               | i              | 1              |
| T16                | Yes                 | No                 | 1    | 1                   | 1                                       | i               | 1     | î               | î              | 1              |
| 40.00-30.00        |                     |                    | _    | 1                   | ī                                       | ī               | 1     | i               | î              | î              |
| T17                | Yes                 | No                 | 1    | 1                   | ī                                       | î               | î     | i               | 1              | i              |
| 30.00-20.00        |                     |                    | -    | 1                   | î                                       | î               | î     | î               | î              | 1              |
| T18                | Yes                 | No                 | 1    | î                   | 1                                       | î               | 1     | 1               | 1              | 1              |
| 20.00-10.00        |                     |                    | -    | i                   | î                                       | i               | 1     | = 1             | i              | 1              |
| T19                | Yes                 | No                 | 1    | i                   | 1                                       | 1               | î     | 1               | 1              | 1              |
| 10.00-0.00         | 1 00                | 110                | 1    | 1                   | 1                                       | 1               | 1     | 1               | 1              | 1              |

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

| Tower<br>Elevation<br>ft | Leg                       | •    | Diago                     | nal  | Top G                     | irt  | Botton                       | ı Girt | Mid                          | Girt | Long Ho                      | rizontal | Short Ho                     | rizontal |
|--------------------------|---------------------------|------|---------------------------|------|---------------------------|------|------------------------------|--------|------------------------------|------|------------------------------|----------|------------------------------|----------|
|                          | Net Width<br>Deduct<br>in | Ü    | Net Width<br>Deduct<br>in | U    | Net Width<br>Deduct<br>in | U    | Net<br>Width<br>Deduct<br>in | U      | Net<br>Width<br>Deduct<br>in | U    | Net<br>Width<br>Deduct<br>in | U        | Net<br>Width<br>Deduct<br>in | U        |
| T1<br>180.00-170.00      | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75     |
| T2<br>170.00-163.57      | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75     |
| T3<br>163.57-159.05      | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75     |
| T4<br>159.05-154.52      | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75     |
| T5<br>154.52-150.00      | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75     |
| T6<br>150.00-140.00      | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75     |
| T7<br>140.00-130.00      | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75     |
| T8<br>130.00-120.00      | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75     |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 8 of 86           |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Tower<br>Elevation<br>ft              | Leg                       |      | Diago                     | nal  | Top G                     | irt  | Botton                       | n Girt | Mid                          | Girt | Long Ho                      | rizontal | Short Ho                     | prizontal |
|---------------------------------------|---------------------------|------|---------------------------|------|---------------------------|------|------------------------------|--------|------------------------------|------|------------------------------|----------|------------------------------|-----------|
|                                       | Net Width<br>Deduct<br>in | U    | Net Width<br>Deduct<br>in | U    | Net Width<br>Deduct<br>in | U    | Net<br>Width<br>Deduct<br>in | U      | Net<br>Width<br>Deduct<br>in | U    | Net<br>Width<br>Deduct<br>in | U        | Net<br>Width<br>Deduct<br>in | U         |
| Т9                                    | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75      |
| 120.00-110.00<br>T10<br>110.00-100.00 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75      |
| T11                                   | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75      |
| 100.00-90.00                          |                           |      |                           |      |                           |      |                              |        |                              |      |                              |          |                              |           |
| T12                                   | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75      |
| 90.00-80.00<br>T13<br>80.00-60.00     | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75      |
| T14                                   | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75      |
| 60.00-50.00                           |                           |      |                           |      |                           |      |                              |        |                              |      |                              |          |                              |           |
| T15                                   | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75      |
| 50.00-40.00<br>T16<br>40.00-30.00     | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75      |
| T17                                   | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75      |
| 30.00-20.00                           |                           |      |                           |      |                           | , -  |                              |        |                              | 0.75 | 5.5566                       | 0.75     | 0.0000                       | 0.75      |
| T18<br>20.00-10.00                    | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75      |
| T19 10.00-0.00                        | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75   | 0.6250                       | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75      |

| Tower         |        |        |        | Connecti | on Offsets |        |        |        |
|---------------|--------|--------|--------|----------|------------|--------|--------|--------|
| Elevation     |        | Diag   | gonal  |          |            | K-Br   | acing  |        |
|               | Vert.  | Horiz. | Vert.  | Horiz.   | Vert.      | Horiz. | Vert.  | Horiz. |
|               | Top    | Тор    | Bot.   | Bot.     | Тор        | Top    | Bot.   | Bot.   |
| ft            | in     | in     | in     | in       | in         | in     | in     | in     |
| T1            | 0.0000 | 3.0000 | 0.0000 | 3.0000   | 0.0000     | 0.0000 | 0.0000 | 0.0000 |
| 180.00-170.00 |        |        |        |          |            |        |        |        |
| T2            | 0.0000 | 3.0000 | 0.0000 | 3.0000   | 0.0000     | 0.0000 | 0.0000 | 0.0000 |
| 170.00-163.57 |        |        |        |          |            |        |        |        |
| T3            | 0.0000 | 3.0000 | 0.0000 | 3.0000   | 0.0000     | 0.0000 | 0.0000 | 0.0000 |
| 163.57-159.05 |        |        |        |          |            |        |        |        |
| T4            | 0.0000 | 3.0000 | 0.0000 | 3.0000   | 0.0000     | 0.0000 | 0.0000 | 0.0000 |
| 159.05-154.52 |        |        |        |          |            |        |        |        |
| T5            | 0.0000 | 3.0000 | 0.0000 | 3.0000   | 0.0000     | 0.0000 | 0.0000 | 0.0000 |
| 154.52-150.00 |        |        |        |          |            |        |        |        |
| T6            | 0.0000 | 3.0000 | 0.0000 | 3.0000   | 0.0000     | 0.0000 | 0.0000 | 0.0000 |
| 150.00-140.00 |        |        |        |          |            |        |        |        |
| T7            | 0.0000 | 3.0000 | 0.0000 | 3.0000   | 0.0000     | 0.0000 | 0.0000 | 0.0000 |
| 140.00-130.00 |        |        |        |          |            |        |        |        |
| T8            | 0.0000 | 3.0000 | 0.0000 | 3.0000   | 0.0000     | 0.0000 | 0.0000 | 0.0000 |
| 130.00-120.00 |        |        |        |          |            |        |        |        |
| T9            | 0.0000 | 3.0000 | 0.0000 | 3.0000   | 0.0000     | 0.0000 | 0.0000 | 0.0000 |
| 120.00-110.00 |        |        |        |          |            |        |        |        |
| T10           | 0.0000 | 3.0000 | 0.0000 | 3.0000   | 0.0000     | 0.0000 | 0.0000 | 0.0000 |
| 110.00-100.00 |        |        |        |          |            |        |        |        |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     | -                        | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 9 of 86           |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Tower              |              |               |               | Connecti       | on Offsets   |               |               |                |
|--------------------|--------------|---------------|---------------|----------------|--------------|---------------|---------------|----------------|
| Elevation          |              | Diag          | gonal         |                |              | K-Br          | acing         |                |
|                    | Vert.<br>Top | Horiz.<br>Top | Vert.<br>Bot. | Horiz.<br>Bot. | Vert.<br>Top | Horiz.<br>Top | Vert.<br>Bot. | Horiz.<br>Bot. |
| ft                 | in           | in            | in            | in             | in           | in            | in            | in             |
| T11                | 0.0000       | 3.0000        | 0.0000        | 3.0000         | 0.0000       | 0.0000        | 0.0000        | 0.0000         |
| 100.00-90.00       |              |               |               |                |              |               |               |                |
| T12                | 0.0000       | 3.0000        | 0.0000        | 3.0000         | 0.0000       | 0.0000        | 0.0000        | 0.0000         |
| 90.00-80.00        |              |               |               |                |              |               |               |                |
| T13                | 0.0000       | 3.0000        | 0.0000        | 3.0000         | 0.0000       | 0.0000        | 0.0000        | 0.0000         |
| 80.00-60.00<br>T14 | 0.0000       | 3.0000        | 0.0000        | 3.0000         | 0.0000       | 0.0000        | 0.0000        | 0.0000         |
| 60.00-50.00        | 0.0000       | 3.0000        | 0.0000        | 3.0000         | 0.0000       | 0.0000        | 0.0000        | 0.0000         |
| T15                | 0.0000       | 3.0000        | 0.0000        | 3.0000         | 0.0000       | 0.0000        | 0.0000        | 0.0000         |
| 50.00-40.00        |              | 2.0000        |               | 5.0000         | 0.0000       | 0.0000        | 0.0000        | 0.0000         |
| T16                | 0.0000       | 3.0000        | 0.0000        | 3.0000         | 0.0000       | 0.0000        | 0.0000        | 0.0000         |
| 40.00-30.00        |              |               |               |                |              |               |               |                |
| T17                | 0.0000       | 3.0000        | 0.0000        | 3.0000         | 0.0000       | 0.0000        | 0.0000        | 0.0000         |
| 30.00-20.00        |              |               |               |                |              |               |               |                |
| T18                | 0.0000       | 3.0000        | 0.0000        | 3.0000         | 0.0000       | 0.0000        | 0.0000        | 0.0000         |
| 20.00-10.00        | 0.0000       | 2 0000        |               |                |              |               |               |                |
| T19 10.00-0.00     | 0.0000       | 3.0000        | 0.0000        | 3.0000         | 0.0000       | 0.0000        | 0.0000        | 0.0000         |

| Tower<br>Elevation<br>ft | Leg<br>Connection<br>Type | Leg       |     | Diago     | nal | Top G     | irt | Bottom    | Girt | Mid G     | irt | Long Horn | zontal | Short Hor | izontal |
|--------------------------|---------------------------|-----------|-----|-----------|-----|-----------|-----|-----------|------|-----------|-----|-----------|--------|-----------|---------|
| -                        | ••                        | Bolt Size | No.  | Bolt Size | No. | Bolt Size | No.    | Bolt Size | No.     |
|                          |                           | in        |     | in        |     | in        |     | in        |      | in        |     | in        |        | in        |         |
| Tl                       | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 2   | 0.6250    | 0    | 0.6250    | 2   | 0.6250    | 0      | 0.6250    | 2       |
| 180.00-170.00            |                           | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |        | A325X     |         |
| T2                       | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 2   | 0.6250    | 0    | 0.6250    | 0   | 0.6250    | 0      | 0.6250    | 0       |
| 170.00-163.57            |                           | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |        | A325X     |         |
| T3                       | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 2   | 0.6250    | 0    | 0.6250    | 0   | 0.6250    | 0      | 0.6250    | 0       |
| 163.57-159.05            |                           | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |        | A325X     |         |
| T4                       | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 0   | 0.6250    | 0      | 0.6250    | 0       |
| 159.05-154.52            |                           | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |        | A325X     |         |
| T5                       | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 0   | 0.6250    | 0      | 0.6250    | 0       |
| 154.52-150.00            |                           | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |        | A325X     |         |
| T6                       | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 2   | 0.6250    | 0    | 0.6250    | 0   | 0.6250    | 0      | 0.6250    | 0       |
| 150.00-140.00            |                           | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |        | A325X     |         |
| <b>T</b> 7               | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 2   | 0.6250    | 0    | 0.6250    | 0   | 0.6250    | 0      | 0.6250    | 0       |
| 140.00-130.00            |                           | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |        | A325X     |         |
| T8                       | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 0   | 0.6250    | 0      | 0.6250    | 2       |
| 130.00-120.00            |                           | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |        | A325X     |         |
| T9                       | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 2   | 0.6250    | 2      | 0.6250    | 2       |
| 120.00-110.00            |                           | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |        | A325X     |         |
| T10                      | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 0   | 0.6250    | 0      | 0.6250    | 2       |
| 110.00-100.00            |                           | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |        | A325X     |         |
| T11                      | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 2   | 0.6250    | 2      | 0.6250    | 0       |
| 100.00-90.00             |                           | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |        | A325X     |         |
| T12                      | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 0   | 0.6250    | 0      | 0.6250    | 2       |
| 90.00-80.00              | _                         | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |        | A325X     |         |
| T13                      | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 2   | 0.6250    | 0    | 0.6250    | 0   | 0.6250    | 0      | 0.6250    | 0       |
| 80.00-60.00              |                           | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |        | A325X     |         |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 10 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Tower<br>Elevation<br>ft | Leg<br>Connection<br>Type | Leg       |     | Diago     | ıal | Top G     | irt | Bottom    | Girt | Mid G     | irt | Long Hore | izontal | Short Hor | izontai |
|--------------------------|---------------------------|-----------|-----|-----------|-----|-----------|-----|-----------|------|-----------|-----|-----------|---------|-----------|---------|
|                          |                           | Bolt Size | No.  | Bolt Size | No. | Bolt Size | No.     | Bolt Size | No.     |
| T14                      | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 2   | 0.6250    | 2       | 0.6250    | 0       |
| 60.00-50.00              | J                         | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     | _   | A325X     | _       | A325X     |         |
| T15                      | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 0   | 0.6250    | 0       | 0.6250    | 2       |
| 50.00-40.00              | _                         | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |         | A325X     |         |
| T16                      | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 2   | 0.0000    | 0    | 0.6250    | 0   | 0.6250    | 0       | 0.6250    | 2       |
| 40.00-30.00              |                           | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |         | A325X     |         |
| T17                      | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 0   | 0.6250    | 0       | 0.6250    | 2       |
| 30.00-20.00              |                           | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |         | A325X     |         |
| T18                      | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 2   | 0.6250    | 2       | 0.6250    | 2       |
| 20.00-10.00              |                           | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |         | A325X     |         |
| T19 10.00-0.00           | Flange                    | 0.7500    | 0   | 0.6250    | 2   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 2   | 0.6250    | 2       | 0.6250    | 0       |
|                          |                           | A325X     |     | A325X     |     | A325X     |     | A325N     |      | A325X     |     | A325X     |         | A325X     |         |

# Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description    |     | Allow  | Component      | Placement     | Face     | Lateral   | #  | #   | Clear   |          | Perimeter | Weight | 80 |
|----------------|-----|--------|----------------|---------------|----------|-----------|----|-----|---------|----------|-----------|--------|----|
|                | or  | Shield | Туре           |               | Offset   | Offset    |    | Per | Spacing | Diameter |           |        |    |
|                | Leg |        |                | ft            | in       | (Frac FW) |    | Row | in      | in       | in        | plf    |    |
| 1 1/4          | Α   | No     | Ar (CaAa)      | 126.00 - 6.00 | -6.0000  | 0.33      | 12 | 6   | 1.5500  | 1.5500   |           | 0.66   |    |
| (T-Mobile)     | _   |        |                |               |          |           |    |     |         |          |           |        |    |
| WEP65          | D   | No     | Af (CaAa)      | 180.00 - 6.00 | -12.0000 | 0.45      | 3  | 1   | 1.5836  | 1.5836   |           | 0.53   |    |
| (5,36,59)      | _   |        |                |               |          |           |    |     |         |          |           |        |    |
| WEP65          | D   | No     | Af (CaAa)      | 130.00 - 6.00 | -10.0000 | 0.37      | 1  | 1   | 1.5836  | 1.5836   |           | 0.53   |    |
| (35)           | _   |        |                |               |          |           | _  | _   |         |          |           |        |    |
| 1/2            | D   | No     | Ar (CaAa)      | 180.00 - 6.00 | -10.0000 | 0.35      | 2  | 1   | 0.5800  | 0.5800   |           | 0.25   |    |
| (67)           | -   | 2.7    | 4 (0 4 )       | 160.00 6.00   | 10.0000  | 0.05      | _  |     |         |          |           |        |    |
| 1/2            | D   | No     | Ar (CaAa)      | 160.00 - 6.00 | -10.0000 | 0.35      | 2  | 1   | 0.5800  | 0.5800   |           | 0.25   |    |
| (66)           | -   | 2.7    | 4 (0 4 )       | 11600 600     | 10.0000  |           | _  |     |         |          |           |        |    |
| 7/8            | D   | No     | Ar (CaAa)      | 116.00 - 6.00 | -10.0000 | 0.38      | 2  | 2   | 1.1100  | 1.1100   |           | 0.54   |    |
| (9,29)<br>1/2  | D   | No     | A = (Cl = A =) | 75.00 (00     | 10.0000  | 0.20      |    | Ι,  | 0.5000  | 0.5000   |           |        |    |
|                | D   | NO     | Ar (CaAa)      | 75.00 - 6.00  | -10.0000 | 0.39      | 1  | 1   | 0.5800  | 0.5800   |           | 0.25   |    |
| (13)<br>7/8    | D   | No     | A= (C= A=)     | 85.00 - 6.00  | 10 0000  | 0.20      | 1  |     | 1 1100  | 1 1100   |           | 0.54   |    |
| (26)           | ט   | NO     | Ar (CaAa)      | 83.00 - 0.00  | -10.0000 | 0.39      | 1  | 1   | 1.1100  | 1.1100   |           | 0.54   |    |
| 1/2            | D   | No     | Ar (CaAa)      | 47.00 - 6.00  | -10.0000 | 0.4       | 1  | 1   | 0.5800  | 0.5800   |           | 0.25   |    |
| (68)           | Ъ   | 140    | AI (Cana)      | 47.00 - 0.00  | -10.0000 | 0.4       | 1  | 1   | 0.5600  | 0.3600   |           | 0.25   |    |
| 1/2            | D   | No     | Ar (CaAa)      | 56.00 - 6.00  | -6.0000  | 0.49      | 1  | 1   | 0.5800  | 0.5800   |           | 0.25   |    |
| (56)           |     | 110    | ru (curu)      | 30.00 - 0.00  | -0.0000  | 0.45      | •  | 1   | 0.5600  | 0.5000   |           | 0.23   |    |
| 1 5/8          | D   | No     | Ar (CaAa)      | 180.00 - 6.00 | -12.0000 | 0.43      | 4  | 2   | 1.9800  | 1.9800   |           | 1.04   |    |
| (1,2,3,6)      | _   |        | ( ( )          | 100.00 0.00   | 12.0000  | 0.45      | 7  | _   | 1.7000  | 1.7000   |           | 1.04   |    |
| 7/8            | D   | No     | Ar (CaAa)      | 180.00 - 6.00 | -12.0000 | 0.41      | 2  | 2   | 1.1100  | 1.1100   |           | 0.54   |    |
| (4,7)          | _   |        | - ()           |               |          |           | _  | -   | 111100  |          |           | 0.51   |    |
| 7/8            | D   | No     | Ar (CaAa)      | 150.00 - 6.00 | -12.0000 | 0.4       | 2  | 2   | 1.1100  | 1.1100   |           | 0.54   |    |
| (28,57)        |     |        | , ,            |               |          |           |    |     |         |          |           |        |    |
| 7/8            | D   | No     | Ar (CaAa)      | 120.00 - 6.00 | -12.0000 | 0.39      | 5  | 5   | 1.1100  | 1.1100   |           | 0.54   |    |
| (8,30,31,33,55 |     |        | •              |               |          |           |    |     |         |          |           |        |    |
| )              |     |        |                |               |          |           |    |     |         |          |           |        |    |
| 1 5/8          | D   | No     | Ar (CaAa)      | 101.00 - 6.00 | -12.0000 | 0.4       | 1  | 1   | 1.9800  | 1.9800   |           | 1.04   |    |
| (62)           |     |        |                |               |          |           |    |     |         |          |           |        |    |
| 7/8            | D   | No     | Ar (CaAa)      | 170.00 - 6.00 | -12.0000 | 0.38      | 3  | 3   | 1.1100  | 1.1100   |           | 0.54   |    |
| (10,12,25)     |     |        |                |               |          |           |    |     |         |          |           |        |    |
| 7/8            | D   | No     | Ar (CaAa)      | 100.00 - 6.00 | -8.0000  | 0.41      | 2  | 2   | 1.1100  | 1.1100   |           | 0.54   |    |
| (11,32)        |     |        |                |               |          |           |    |     |         |          |           |        |    |
| 1 5/8          | D   | No     | Ar (CaAa)      | 160.00 - 6.00 | -10.0000 | 0.4       | 3  | 3   | 1.9800  | 1.9800   |           | 1.04   |    |
|                |     |        |                |               |          |           |    |     |         |          |           |        |    |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
| 1       | 180' Lattice Tower - CSP | 11 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Description             | Face<br>or<br>Leg | Allow<br>Shield | Component<br>Type | Placement<br>ft | Face<br>Offset<br>in | Lateral<br>Offset<br>(Frac FW) | #  | #<br>Per<br>Row | Clear<br>Spacing<br>in | Width or<br>Diameter<br>in | Perimeter<br>in | Weight<br>plf |
|-------------------------|-------------------|-----------------|-------------------|-----------------|----------------------|--------------------------------|----|-----------------|------------------------|----------------------------|-----------------|---------------|
| (63,64,65)              |                   |                 |                   |                 |                      |                                |    |                 |                        |                            |                 | - Fy          |
| 1 5/8<br>(AT&T)         | С                 | No              | Ar (CaAa)         | 163.00 - 6.00   | 2.0000               | -0.35                          | 12 | 6               | 1.9800                 | 1.9800                     |                 | 1.04          |
| 3" Flex<br>Conduit w    | С                 | No              | Ar (CaAa)         | 163.00 - 6.00   | 2.0000               | -0.28                          | 1  | 1               | 3.0000                 | 3.0000                     |                 | 3.00          |
| Fiber & 2 DC<br>Cables  |                   |                 |                   |                 |                      |                                |    |                 |                        |                            |                 |               |
| (AT&T)<br>RFS Hybriflex | Α                 | No              | Ar (CaAa)         | 106.00 - 6.00   | -6.0000              | 0.43                           | 3  | 3               | 1 0000                 | 1 0000                     |                 | 0.27          |
| (3 Sector)<br>(Sprint)  | A                 | NO              | AI (CaAa)         | 100.00 - 0.00   | -0.0000              | 0.43                           | 3  | 3               | 1.0900                 | 1.0900                     |                 | 0.37          |
| 1 5/8"                  | Α                 | No              | Ar (CaAa)         | 126.00 - 6.00   | -6.0000              | 0.27                           | 2  | 2               | 1.6250                 | 1.6250                     |                 | 0.21          |
| Hybriflex<br>(T-Mobile) |                   |                 | (,                | 12000 000       | 0.000                | 0.27                           | -  | -               | 1.0250                 | 1.0250                     |                 | 0.21          |
| 1-5/8" Fiber            | С                 | No              | Ar (CaAa)         | 163.00 - 6.00   | 2.0000               | -0.28                          | 1  | 1               | 1.9800                 | 1.9800                     |                 | 1.30          |
| Optic Cable<br>(AT&T)   |                   |                 | , ,               |                 |                      |                                |    |                 |                        |                            |                 |               |
| 1/2                     | C                 | No              | Ar (CaAa)         | 163.00 - 6.00   | 2.0000               | -0.27                          | 2  | 2               | 0.5800                 | 0.5800                     |                 | 0.25          |
| (AT&T)                  |                   |                 |                   |                 |                      |                                |    |                 |                        |                            |                 |               |
| 1/2<br>(AT&T)           | С                 | No              | Ar (CaAa)         | 163.00 - 6.00   | 2.0000               | -0.25                          | 2  | 2               | 0.5800                 | 0.5800                     |                 | 0.25          |

# Feed Line/Linear Appurtenances Section Areas

| Tower   | Tower         | Face | $A_R$ | $A_F$ | $C_A A_A$ | $C_AA_A$ | Weight |
|---------|---------------|------|-------|-------|-----------|----------|--------|
| Section | Elevation     |      |       |       | In Face   | Out Face |        |
|         | ft            |      | ft²   | ft²   | ft²       | ft²      | K      |
| TI      | 180.00-170.00 | A    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |
|         |               | В    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |
|         |               | C    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |
|         |               | D    | 0.000 | 0.000 | 19.218    | 0.000    | 0.07   |
| T2      | 170.00-163.57 | Α    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |
|         |               | В    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |
|         |               | С    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |
|         |               | D    | 0.000 | 0.000 | 14.492    | 0.000    | 0.06   |
| T3      | 163.57-159.05 | Α    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |
|         |               | В    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |
|         |               | C    | 0.000 | 0.000 | 12.273    | 0.000    | 0.07   |
|         |               | D    | 0.000 | 0.000 | 10.877    | 0.000    | 0.04   |
| T4      | 159.05-154.52 | Α    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |
|         |               | В    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |
|         |               | C    | 0.000 | 0.000 | 14.053    | 0.000    | 0.08   |
|         |               | D    | 0.000 | 0.000 | 13.414    | 0.000    | 0.06   |
| T5      | 154.52-150.00 | Α    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |
|         |               | В    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |
|         |               | С    | 0.000 | 0.000 | 14.053    | 0.000    | 0.08   |
|         |               | D    | 0.000 | 0.000 | 13.414    | 0.000    | 0.06   |
| T6      | 150.00-140.00 | Α    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |
|         |               | В    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |
|         |               | C    | 0.000 | 0.000 | 31.060    | 0.000    | 0.18   |
|         |               | D    | 0.000 | 0.000 | 31.868    | 0.000    | 0.14   |
| T7      | 140.00-130.00 | Α    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |
|         |               | В    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |
|         |               | C    | 0.000 | 0.000 | 31.060    | 0.000    | 0.18   |
|         |               | D    | 0.000 | 0.000 | 31.868    | 0.000    | 0.14   |
| T8      | 130.00-120.00 | Α    | 0.000 | 0.000 | 13.110    | 0.000    | 0.05   |
|         |               | В    | 0.000 | 0.000 | 0.000     | 0.000    | 0.00   |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 12 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | F . T / EMD 004          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Tower<br>Section | Tower<br>Elevation | Face | $A_R$ | $A_F$           | C <sub>A</sub> A <sub>A</sub><br>In Face | C <sub>A</sub> A <sub>A</sub><br>Out Face | Weight |
|------------------|--------------------|------|-------|-----------------|------------------------------------------|-------------------------------------------|--------|
|                  | ft                 |      | ft²   | ft <sup>2</sup> | ft²                                      | ft²                                       | K      |
|                  |                    | С    | 0.000 | 0.000           | 31.060                                   | 0.000                                     | 0.18   |
|                  |                    | D    | 0.000 | 0.000           | 34.507                                   | 0.000                                     | 0.14   |
| T9               | 120.00-110.00      | Α    | 0.000 | 0.000           | 21.850                                   | 0.000                                     | 0.08   |
|                  |                    | В    | 0.000 | 0.000           | 0.000                                    | 0.000                                     | 0.00   |
|                  |                    | С    | 0.000 | 0.000           | 31.060                                   | 0.000                                     | 0.18   |
|                  |                    | D    | 0.000 | 0.000           | 41.389                                   | 0.000                                     | 0.18   |
| T10              | 110.00-100.00      | Α    | 0.000 | 0.000           | 23.812                                   | 0.000                                     | 0.09   |
|                  |                    | В    | 0.000 | 0.000           | 0.000                                    | 0.000                                     | 0.00   |
|                  |                    | C    | 0.000 | 0.000           | 31.060                                   | 0.000                                     | 0.18   |
|                  |                    | D    | 0.000 | 0.000           | 42.475                                   | 0.000                                     | 0.18   |
| T11              | 100.00-90.00       | Α    | 0.000 | 0.000           | 25.120                                   | 0.000                                     | 0.09   |
|                  |                    | В    | 0.000 | 0.000           | 0.000                                    | 0.000                                     | 0.00   |
|                  |                    | C    | 0.000 | 0.000           | 31.060                                   | 0.000                                     | 0.18   |
|                  |                    | D    | 0.000 | 0.000           | 46.477                                   | 0.000                                     | 0.20   |
| T12              | 90.00-80.00        | Α    | 0.000 | 0.000           | 25.120                                   | 0.000                                     | 0.09   |
|                  |                    | В    | 0.000 | 0.000           | 0.000                                    | 0.000                                     | 0.00   |
|                  |                    | С    | 0.000 | 0.000           | 31.060                                   | 0.000                                     | 0.18   |
|                  |                    | D    | 0.000 | 0.000           | 47.032                                   | 0.000                                     | 0.20   |
| T13              | 80.00-60.00        | Α    | 0.000 | 0.000           | 50.240                                   | 0.000                                     | 0.19   |
|                  |                    | В    | 0.000 | 0.000           | 0.000                                    | 0.000                                     | 0.00   |
|                  |                    | С    | 0.000 | 0.000           | 62.120                                   | 0.000                                     | 0.36   |
|                  |                    | D    | 0.000 | 0.000           | 96.044                                   | 0.000                                     | 0.42   |
| T14              | 60.00-50.00        | Α    | 0.000 | 0.000           | 25.120                                   | 0.000                                     | 0.09   |
|                  |                    | В    | 0.000 | 0.000           | 0.000                                    | 0.000                                     | 0.00   |
|                  |                    | С    | 0.000 | 0.000           | 31.060                                   | 0.000                                     | 0.18   |
|                  |                    | D    | 0.000 | 0.000           | 48.515                                   | 0.000                                     | 0.21   |
| T15              | 50.00-40.00        | Α    | 0.000 | 0.000           | 25.120                                   | 0.000                                     | 0.09   |
|                  |                    | В    | 0.000 | 0.000           | 0.000                                    | 0.000                                     | 0.00   |
|                  |                    | С    | 0.000 | 0.000           | 31.060                                   | 0.000                                     | 0.18   |
|                  |                    | D    | 0.000 | 0.000           | 49.153                                   | 0.000                                     | 0.21   |
| T16              | 40.00-30.00        | Α    | 0.000 | 0.000           | 25.120                                   | 0.000                                     | 0.09   |
|                  |                    | В    | 0.000 | 0.000           | 0.000                                    | 0.000                                     | 0.00   |
|                  |                    | С    | 0.000 | 0.000           | 31.060                                   | 0.000                                     | 0.18   |
|                  |                    | D    | 0.000 | 0.000           | 49.327                                   | 0.000                                     | 0.21   |
| T17              | 30.00-20.00        | Α    | 0.000 | 0.000           | 25.120                                   | 0.000                                     | 0.09   |
|                  |                    | В    | 0.000 | 0.000           | 0.000                                    | 0.000                                     | 0.00   |
|                  |                    | С    | 0.000 | 0.000           | 31.060                                   | 0.000                                     | 0.18   |
|                  |                    | D    | 0.000 | 0.000           | 49.327                                   | 0.000                                     | 0.21   |
| T18              | 20.00-10.00        | Α    | 0.000 | 0.000           | 25.120                                   | 0.000                                     | 0.09   |
|                  |                    | В    | 0.000 | 0.000           | 0.000                                    | 0.000                                     | 0.00   |
|                  |                    | C    | 0.000 | 0.000           | 31.060                                   | 0.000                                     | 0.18   |
|                  |                    | D    | 0.000 | 0.000           | 49.327                                   | 0.000                                     | 0.21   |
| T19              | 10.00-0.00         | Α    | 0.000 | 0.000           | 10.048                                   | 0.000                                     | 0.04   |
|                  |                    | В    | 0.000 | 0.000           | 0.000                                    | 0.000                                     | 0.00   |
|                  |                    | C    | 0.000 | 0.000           | 12.405                                   | 0.000                                     | 0.07   |
|                  |                    | D    | 0.000 | 0.000           | 19.731                                   | 0.000                                     | 0.09   |

# Feed Line/Linear Appurtenances Section Areas - With Ice

| Tower<br>Elevation | Face<br>or                       | Ice<br>Thickness                                                                                                                                              | $A_R$                                                                                                                                                                                     | $A_F$                                                                                                                                                                                                                                                                                           | C <sub>A</sub> A <sub>A</sub><br>In Face                                                                                                                                                                                                                                                                                                                                                        | C <sub>A</sub> A <sub>A</sub><br>Out Face              | Weight                                                 |
|--------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| ft                 | Leg                              | in                                                                                                                                                            | $ft^2$                                                                                                                                                                                    | ft²                                                                                                                                                                                                                                                                                             | ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                 | ft <sup>2</sup>                                        | K                                                      |
| 180.00-170.00      | Α                                | 2.219                                                                                                                                                         | 0.000                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                                                  | 0.00                                                   |
|                    | В                                |                                                                                                                                                               | 0.000                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                                                  | 0.00                                                   |
|                    | С                                |                                                                                                                                                               | 0.000                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                                                  | 0.00                                                   |
|                    | D                                |                                                                                                                                                               | 0.000                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                           | 55.411                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                  | 1.05                                                   |
| 170.00-163.57      | Α                                | 2.210                                                                                                                                                         | 0.000                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                                                  | 0.00                                                   |
|                    | В                                |                                                                                                                                                               | 0.000                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                                                  | 0.00                                                   |
|                    | Elevation<br>ft<br>180.00-170.00 | Elevation         or           ft         Leg           180.00-170.00         A           B         C           D         D           170.00-163.57         A | Elevation         or Leg         Thickness in           180.00-170.00         A         2.219           B         C           D         D           170.00-163.57         A         2.210 | Elevation         or Leg         Thickness in         ft²           180.00-170.00         A         2.219         0.000           B         0.000         0.000           C         0.000         0.000           D         0.000           170.00-163.57         A         2.210         0.000 | Elevation         or Leg         Thickness in         ft²         ft²           180.00-170.00         A         2.219         0.000         0.000           B         0.000         0.000         0.000           C         0.000         0.000         0.000           D         0.000         0.000         0.000           170.00-163.57         A         2.210         0.000         0.000 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 13 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Tower<br>Section | Tower<br>Elevation | Face<br>or | Ice<br>Thickness | $A_R$ | $A_F$ | $C_A A_A$ In Face | $C_A A_A$ Out Face | Weigh        |
|------------------|--------------------|------------|------------------|-------|-------|-------------------|--------------------|--------------|
|                  | ft                 | Leg        | in               | ft²   | ft²   | ft²               | ft²                | K            |
|                  |                    | C          |                  | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | D          |                  | 0.000 | 0.000 | 44.685            | 0.000              | 0.79         |
| T3               | 163.57-159.05      | Α          | 2.203            | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | В          |                  | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | C          |                  | 0.000 | 0.000 | 27.175            | 0.000              | 0.59         |
|                  |                    | D          |                  | 0.000 | 0.000 | 34.210            | 0.000              | 0.60         |
| T4               | 159.05-154.52      | Α          | 2.198            | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | В          |                  | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | С          |                  | 0.000 | 0.000 | 31.081            | 0.000              | 0.68         |
|                  |                    | D          |                  | 0.000 | 0.000 | 44.683            | 0.000              | 0.77         |
| T5               | 154.52-150.00      | Α          | 2.192            | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | В          |                  | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | C          |                  | 0.000 | 0.000 | 31.045            | 0.000              | 0.68         |
|                  |                    | D          |                  | 0.000 | 0.000 | 44.623            | 0.000              | 0.76         |
| T6               | 150.00-140.00      | Α          | 2.183            | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | В          |                  | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | С          |                  | 0.000 | 0.000 | 68.493            | 0.000              | 1.49         |
|                  |                    | D          |                  | 0.000 | 0.000 | 110.224           | 0.000              | 1.82         |
| T7               | 140.00-130.00      | Α          | 2.171            | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | В          |                  | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | С          |                  | 0.000 | 0.000 | 68.318            | 0.000              | 1.48         |
|                  |                    | D          |                  | 0.000 | 0.000 | 109.886           | 0.000              | 1.81         |
| T8               | 130.00-120.00      | A          | 2.159            | 0.000 | 0.000 | 25.590            | 0.000              | 0.53         |
|                  |                    | В          |                  | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | Č          |                  | 0.000 | 0.000 | 68.145            | 0.000              | 1.47         |
|                  |                    | D          |                  | 0.000 | 0.000 | 116.507           | 0.000              | 1.92         |
| T9               | 120.00-110.00      | Ā          | 2.147            | 0.000 | 0.000 | 42.571            | 0.000              | 0.88         |
|                  | 120.00-110.00      | В          | 2.147            | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | č          |                  | 0.000 | 0.000 | 67.975            | 0.000              | 1.47         |
|                  |                    | D          |                  | 0.000 | 0.000 | 142.255           | 0.000              | 2.27         |
| T10              | 110.00-100.00      | A          | 2.136            | 0.000 | 0.000 | 50.821            | 0.000              |              |
| 110              | 110.00-100.00      | В          | 2.150            | 0.000 | 0.000 | 0.000             | 0.000              | 0.98<br>0.00 |
|                  |                    | Č          |                  | 0.000 | 0.000 | 67.814            | 0.000              |              |
|                  |                    | D          |                  | 0.000 | 0.000 | 147.142           | 0.000              | 1.46         |
| T11              | 100.00-90.00       | A          | 2.126            | 0.000 | 0.000 | 56.268            | 0.000              | 2.32         |
| 111              | 100.00-90.00       | В          | 2.120            | 0.000 | 0.000 |                   |                    | 1.05         |
|                  |                    | Č          |                  |       |       | 0.000             | 0.000              | 0.00         |
|                  |                    | D          |                  | 0.000 | 0.000 | 67.666            | 0.000              | 1.46         |
| T12              | 90.00-80.00        | A          | 2 117            | 0.000 | 0.000 | 163.978           | 0.000              | 2.55         |
| 112              | 30.00-00.00        | В          | 2.117            | 0.000 | 0.000 | 56.178            | 0.000              | 1.04         |
|                  |                    | Č          |                  | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | D          |                  | 0.000 | 0.000 | 67.540            | 0.000              | 1.45         |
| T12              | 90.00.60.00        |            | 2 100            | 0.000 | 0.000 | 166.280           | 0.000              | 2.58         |
| T13              | 80.00-60.00        | A          | 2.108            | 0.000 | 0.000 | 112.175           | 0.000              | 2.08         |
|                  |                    | В          |                  | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | C          |                  | 0.000 | 0.000 | 134.823           | 0.000              | 2.89         |
| T1.4             | (0.00.50.00        | D          | 2.107            | 0.000 | 0.000 | 344.308           | 0.000              | 5.33         |
| T14              | 60.00-50.00        | A          | 2.106            | 0.000 | 0.000 | 56.072            | 0.000              | 1.04         |
|                  |                    | В          |                  | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | C          |                  | 0.000 | 0.000 | 67.390            | 0.000              | 1.44         |
| mic              | 60.00 40.00        | D          |                  | 0.000 | 0.000 | 176.158           | 0.000              | 2.73         |
| T15              | 50.00-40.00        | A          | 2.110            | 0.000 | 0.000 | 56.114            | 0.000              | 1.04         |
|                  |                    | В          |                  | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | С          |                  | 0.000 | 0.000 | 67.450            | 0.000              | 1.45         |
|                  | 40.00              | D          |                  | 0.000 | 0.000 | 181.637           | 0.000              | 2.81         |
| T16              | 40.00-30.00        | Α          | 2.118            | 0.000 | 0.000 | 56.196            | 0.000              | 1.04         |
|                  |                    | В          |                  | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | С          |                  | 0.000 | 0.000 | 67.565            | 0.000              | 1.45         |
|                  |                    | D          |                  | 0.000 | 0.000 | 183.479           | 0.000              | 2.85         |
| T17              | 30.00-20.00        | Α          | 2.127            | 0.000 | 0.000 | 56.280            | 0.000              | 1.05         |
|                  |                    | В          |                  | 0.000 | 0.000 | 0.000             | 0.000              | 0.00         |
|                  |                    | С          |                  | 0.000 | 0.000 | 67.683            |                    |              |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 14 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | Empire Telecom / EMP-004 | Designed by MCD   |

| Tower<br>Section | Tower<br>Elevation | Face<br>or | Ice<br>Thickness | $A_R$ | $A_F$ | C <sub>A</sub> A <sub>A</sub><br>In Face | C <sub>A</sub> A <sub>A</sub><br>Out Face | Weight |
|------------------|--------------------|------------|------------------|-------|-------|------------------------------------------|-------------------------------------------|--------|
|                  | ft                 | Leg        | in               | ft²   | ft²   | ft²                                      | ft²                                       | K      |
|                  |                    | D          |                  | 0.000 | 0.000 | 183.891                                  | 0.000                                     | 2.86   |
| T18              | 20.00-10.00        | Α          | 2.120            | 0.000 | 0.000 | 56.214                                   | 0.000                                     | 1.04   |
|                  |                    | В          |                  | 0.000 | 0.000 | 0.000                                    | 0.000                                     | 0.00   |
|                  |                    | С          |                  | 0.000 | 0.000 | 67.591                                   | 0.000                                     | 1.45   |
|                  |                    | D          |                  | 0.000 | 0.000 | 183.569                                  | 0.000                                     | 2.85   |
| T19              | 10.00-0.00         | Α          | 2.018            | 0.000 | 0.000 | 22.072                                   | 0.000                                     | 0.40   |
|                  |                    | В          |                  | 0.000 | 0.000 | 0.000                                    | 0.000                                     | 0.00   |
|                  |                    | С          |                  | 0.000 | 0.000 | 26.453                                   | 0.000                                     | 0.56   |
|                  |                    | D          |                  | 0.000 | 0.000 | 71.392                                   | 0.000                                     | 1.07   |

#### **Feed Line Center of Pressure**

| Section | Elevation     | $CP_X$   | CP <sub>2</sub> | $CP_X$   | CPz     |
|---------|---------------|----------|-----------------|----------|---------|
|         |               |          |                 | Ice      | Ice     |
|         | ft            | in       | in              | in       | in      |
| T1      | 180.00-170.00 | -7.5212  | 6.1936          | -10.2507 | 8.8161  |
| T2      | 170.00-163.57 | -7.4744  | 6.1873          | -9.8544  | 8.4800  |
| T3      | 163.57-159.05 | 2.8319   | -0.1297         | -2.8016  | 4.0737  |
| T4      | 159.05-154.52 | 2.5731   | 0.5340          | -3.0433  | 4.9770  |
| T5      | 154.52-150.00 | 2.6133   | 0.6763          | -3.0548  | 5.2260  |
| T6      | 150.00-140.00 | 2.0429   | 1.3458          | -3.5512  | 5.8439  |
| T7      | 140.00-130.00 | 2.0090   | 1.6119          | -3.6071  | 6.3290  |
| T8      | 130.00-120.00 | -2.3906  | -0.1994         | -6.6300  | 6.0480  |
| T9      | 120.00-110.00 | -6.1524  | -0.0352         | -9.2109  | 6.6586  |
| T10     | 110.00-100.00 | -7.3823  | -0.1123         | -10.2152 | 6.6911  |
| T11     | 100.00-90.00  | -8.4975  | 0.7154          | -11.4345 | 7.5338  |
| T12     | 90.00-80.00   | -9.0954  | 1.0509          | -12.3577 | 8.4398  |
| T13     | 80.00-60.00   | -13.0678 | 2.0998          | -15.2640 | 11.0476 |
| T14     | 60.00-50.00   | -13.9302 | 2.6345          | -16.7123 | 12.5063 |
| T15     | 50.00-40.00   | -14.1332 | 3.0122          | -17.9049 | 13.8067 |
| T16     | 40.00-30.00   | -11.8633 | 2.6726          | -17.4141 | 13.6332 |
| T17     | 30.00-20.00   | -12.7867 | 2.9771          | -18.6134 | 14.7018 |
| T18     | 20.00-10.00   | -12.6936 | 3.0423          | -18.6584 | 14.8312 |
| T19     | 10.00-0.00    | -6.5128  | 1.4638          | -11.5873 | 9.1394  |

## **Shielding Factor Ka**

| Tower   | Feed Line  | Description | Feed Line     | Ka     | Ka     |
|---------|------------|-------------|---------------|--------|--------|
| Section | Record No. |             | Segment Elev. | No Ice | Ice    |
| T1      | 2          | WEP65       | 170.00 -      | 0.6000 | 0.5020 |
|         |            |             | 180.00        |        |        |
| T1      | 4          | 1/2         | 170.00 -      | 1.0000 | 1.0000 |
|         |            |             | 180.00        |        |        |
| Ti      | 11         | 1 5/8       | 170.00 -      | 0.6000 | 0.5020 |
|         |            |             | 180.00        |        |        |
| T1      | 12         | 7/8         | 170.00 -      | 0.6000 | 0.5020 |
|         |            |             | 180.00        |        |        |
| T2      | 2          | WEP65       | 163.57 -      | 0.6000 | 0.4598 |
|         |            |             | 170.00        |        |        |
| T2      | 4          | 1/2         | 163.57 -      | 1.0000 | 1.0000 |
| I       |            |             | 170.00        |        |        |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 15 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Tower   | Feed Line  | Description                           | Feed Line          | Ka     | Ka     |
|---------|------------|---------------------------------------|--------------------|--------|--------|
| Section | Record No. |                                       | Segment Elev.      | No Ice | Ice    |
| T2      | 11         | 1 5/8                                 | 163.57 -           | 0.6000 | 0.4598 |
| T2      | 12:        | 7/8                                   | 170.00<br>163.57 - | 0.6000 | 0.4598 |
| 12      | 12         | 770                                   | 170.00             | 0.0000 | 0.4396 |
| T2      | 16         | 7/8                                   | 163.57 -           | 0.6000 | 0.4598 |
| Ta      |            | WED CO                                | 170.00             | 0.6000 |        |
| Т3      | 2          | WEP65                                 | 159.05 -<br>163.57 | 0.6000 | 0.4170 |
| Т3      | 4          | 1/2                                   | 159.05 -           | 1.0000 | 1.0000 |
|         |            |                                       | 163.57             | 1.31   |        |
| T3      | 5          | 1/2                                   | 159.05 -<br>160.00 | 1.0000 | 1.0000 |
| T3      | 11         | 1 5/8                                 | 159.05 -           | 0.6000 | 0.4170 |
|         |            |                                       | 163.57             |        |        |
| T3      | 12         | 7/8                                   | 159.05 -           | 0.6000 | 0.4170 |
| T3      | 16         | 7/8                                   | 163.57<br>159.05 - | 0.6000 | 0.4170 |
|         |            | 7.0                                   | 163.57             | 0.0000 | 0.1170 |
| T3      | 18         | 1 5/8                                 | 159.05 -           | 0.6000 | 0.4170 |
| Т3      | 19         | 1 5/8                                 | 160.00<br>159.05 - | 0.6000 | 0.4170 |
| 15      | 17         | - 70                                  | 163.00             | 0.0000 | 0.4170 |
| T3      | 20         | 3" Flex Conduit w Fiber & 2           | 159.05 -           | 0.6000 | 0.4170 |
| Т3      | 23         | DC Cables<br>1-5/8" Fiber Optic Cable | 163.00<br>159.05 - | 0.6000 | 0.4170 |
| 1.5     | 23         | 1-5/8 Fibel Optic Cable               | 163.00             | 0.0000 | 0.4170 |
| T3      | 24         | 1/2                                   | 159.05 -           | 0.6000 | 0.4170 |
| T3      | 25         | 1/2                                   | 163.00             | 0.0000 | 0.4170 |
| 13      | 23         | 1/2                                   | 159.05 -<br>163.00 | 0.6000 | 0.4170 |
| T4      | 2          | WEP65                                 | 154.52 -           | 0.6000 | 0.5093 |
| T.4     |            | 1/0                                   | 159.05             | 1 0000 | 1 0000 |
| T4      | 4          | 1/2                                   | 154.52 -<br>159.05 | 1.0000 | 1.0000 |
| T4      | 5          | 1/2                                   | 154.52 -           | 1.0000 | 1.0000 |
| T.4     | 11         | 1.50                                  | 159.05             | 0.6000 |        |
| T4      | 11         | 1 5/8                                 | 154.52 -<br>159.05 | 0.6000 | 0.5093 |
| T4      | 12         | 7/8                                   | 154.52 -           | 0.6000 | 0.5093 |
|         |            | 2.1                                   | 159.05             |        |        |
| T4      | 16         | 7/8                                   | 154.52 -<br>159.05 | 0.6000 | 0.5093 |
| T4      | 18         | 1 5/8                                 | 154.52 -           | 0.6000 | 0.5093 |
|         |            |                                       | 159.05             |        |        |
| T4      | 19         | 1 5/8                                 | 154.52 -<br>159.05 | 0.6000 | 0.5093 |
| Т4      | 20         | 3" Flex Conduit w Fiber & 2           | 154.52 -           | 0.6000 | 0.5093 |
|         |            | DC Cables                             | 159.05             |        |        |
| T4      | 23         | 1-5/8" Fiber Optic Cable              | 154.52 -           | 0.6000 | 0.5093 |
| T4      | 24         | 1/2                                   | 159.05<br>154.52 - | 0.6000 | 0.5093 |
|         |            | • • •                                 | 159.05             |        |        |
| T4      | 25         | 1/2                                   | 154.52 -           | 0.6000 | 0.5093 |
| T5      | 2          | WEP65                                 | 159.05<br>150.00 - | 0.6000 | 0.5224 |
|         |            | WE105                                 | 154.52             | 0.0000 |        |
| T5      | 4          | 1/2                                   | 150.00 -           | 1.0000 | 1.0000 |
| T5      | 5          | 1/2                                   | 154.52<br>150.00 - | 1.0000 | 1.0000 |
| i       | 1          | 1/2                                   | 154.52             | 1.0000 | 1.0000 |
| T5      | 11         | 1 5/8                                 | 150.00 -           | 0.6000 | 0.5224 |
| I       | 1          |                                       | 154.52             |        |        |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 16 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Tower   | Feed Line  | Description                              | Feed Line          | Ka     | K <sub>a</sub> |
|---------|------------|------------------------------------------|--------------------|--------|----------------|
| Section | Record No. | Description                              | Segment Elev.      | No Ice | Ice            |
| T5      | 12         | 7/8                                      | 150.00 -           | 0.6000 | 0.5224         |
| Т5      | 10         | a la                                     | 154.52             | 0.6000 | 0.500          |
| 12      | 16         | 7/8                                      | 150.00 -<br>154.52 | 0.6000 | 0.5224         |
| T5      | 18         | 1 5/8                                    | 150.00 -           | 0.6000 | 0.5224         |
|         |            |                                          | 154.52             |        |                |
| T5      | 19         | 1 5/8                                    | 150.00 -<br>154.52 | 0.6000 | 0.5224         |
| T5      | 20         | 3" Flex Conduit w Fiber & 2              | 150.00 -           | 0.6000 | 0.5224         |
|         |            | DC Cables                                | 154.52             |        |                |
| T5      | 23         | 1-5/8" Fiber Optic Cable                 | 150.00 -<br>154.52 | 0.6000 | 0.5224         |
| T5      | 24         | 1/2                                      | 150.00 -           | 0.6000 | 0.5224         |
| 77.6    | 26         | 1 10                                     | 154.52             | 0.6000 |                |
| T5      | 25         | 1/2                                      | 150.00 -<br>154.52 | 0.6000 | 0.5224         |
| Т6      | 2          | WEP65                                    | 140.00 -           | 0.6000 | 0.5110         |
| T/      | 4          | 1.0                                      | 150.00             | 1 0000 | 1 0000         |
| Т6      | 4          | 1/2                                      | 140.00 -<br>150.00 | 1.0000 | 1.0000         |
| Т6      | 5          | 1/2                                      | 140.00 -           | 1.0000 | 1.0000         |
| 77.6    |            | 1.50                                     | 150.00             | 0.4000 |                |
| Т6      | 11         | 1 5/8                                    | 140.00 -<br>150.00 | 0.6000 | 0.5110         |
| Т6      | 12         | 7/8                                      | 140.00 -           | 0.6000 | 0.5110         |
| Т6      | 1.2        | 7.0                                      | 150.00             | 0.6000 | 0.5110         |
| 10      | 13         | 7/8                                      | 140.00 -<br>150.00 | 0.6000 | 0.5110         |
| Т6      | 16         | 7/8                                      | 140.00 -           | 0.6000 | 0.5110         |
| Т6      | 18         | 1.5/0                                    | 150.00             | 0.6000 | 0.6110         |
| 10      | 10         | 1 5/8                                    | 140.00 -<br>150.00 | 0.6000 | 0.5110         |
| Т6      | 19         | 1 5/8                                    | 140.00 -           | 0.6000 | 0.5110         |
| Т6      | 20         | 3" Flex Conduit w Fiber & 2              | 150.00<br>140.00 - | 0.6000 | 0.5110         |
| 10      | 20         | DC Cables                                | 150.00             | 0.0000 | 0.5110         |
| T6      | 23         | 1-5/8" Fiber Optic Cable                 | 140.00 -           | 0.6000 | 0.5110         |
| Т6      | 24         | 1/2                                      | 150.00<br>140.00 - | 0.6000 | 0.5110         |
| "       | 27         | 1/2                                      | 150.00             | 0.0000 | 0.5110         |
| Т6      | 25         | 1/2                                      | 140.00 -           | 0.6000 | 0.5110         |
| T7      | 2          | WEP65                                    | 150.00<br>130.00 - | 0.6000 | 0.5314         |
|         |            |                                          | 140.00             | 0.0000 | 0.5514         |
| T7      | 4          | 1/2                                      | 130.00 -           | 1.0000 | 1.0000         |
| T7      | 5          | 1/2                                      | 140.00<br>130.00 - | 1.0000 | 1.0000         |
|         |            |                                          | 140.00             |        |                |
| 17      | 11         | 1 5/8                                    | 130.00 -           | 0.6000 | 0.5314         |
| T7      | 12         | 7/8                                      | 140.00<br>130.00 - | 0.6000 | 0.5314         |
|         |            |                                          | 140.00             |        |                |
| T7      | 13         | 7/8                                      | 130.00 -           | 0.6000 | 0.5314         |
| T7      | 16         | 7/8                                      | 140.00<br>130.00 - | 0.6000 | 0.5314         |
|         |            |                                          | 140.00             |        |                |
| T7      | 18         | 1 5/8                                    | 130.00 -<br>140.00 | 0.6000 | 0.5314         |
| T7      | 19         | 1 5/8                                    | 130.00 -           | 0.6000 | 0.5314         |
|         |            | - 11                                     | 140.00             |        |                |
| T7      | 20         | 3" Flex Conduit w Fiber & 2<br>DC Cables | 130.00 -<br>140.00 | 0.6000 | 0.5314         |
|         | ı          | DC Cables                                | 140.00]            | ı      | ı              |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 17 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| T7 23 1-5/8" Fiber Optic Cable 130.00 - 0.6000 0.5314 T7 24 1/2 130.00 - 0.6000 0.5314 140.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tower         | Feed Line  | Description                 | Feed Line     | $K_a$   | Ka      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|-----------------------------|---------------|---------|---------|
| T7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Section       | Record No. | 1.6/01.72                   | Segment Elev. | No Ice  | Ice     |
| T7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17            | 23         | 1-5/8" Fiber Optic Cable    |               | 0.6000  | 0.5314  |
| T7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T7            | 24         | 1/2                         |               | 0.6000  | 0.5314  |
| T8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |            | 71.7                        |               | 0.0000  | 0.5514  |
| T8         1         1 1/4         120.00 - 126.00         0.6000         0.6000           T8         2         WEP65         120.00 - 130.00         0.6000         0.6000           T8         3         WEP65         120.00 - 130.00         0.6000         0.6000           T8         4         1/2         120.00 - 10000         1.0000         1.0000           T8         5         1/2         120.00 - 0.6000         0.6000         0.6000           T8         11         1.5/8         120.00 - 0.6000         0.6000         0.6000           T8         12         7/8         120.00 - 0.6000         0.6000         0.6000           T8         13         7/8         120.00 - 0.6000         0.6000         0.6000           T8         16         7/8         120.00 - 0.6000         0.6000         0.6000           T8         18         1.5/8         120.00 - 0.6000         0.6000         0.6000           T8         19         1.5/8         120.00 - 0.6000         0.6000         0.6000           T8         20         3"Flex Conduit w Fiber & 2 DC Cables         120.00 - 0.6000         0.6000         0.6000           T8         21         1.5/8" Fiber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T7            | 25         | 1/2                         |               | 0.6000  | 0.5314  |
| T8 2 WEP65 120.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | то            | ,          | 1 174                       |               | 0.000   | 0.6000  |
| T8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10            | 1          | 1 1/4                       |               | 0.6000  | 0.6000  |
| T8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Т8            | 2          | WEP65                       |               | 0.6000  | 0.6000  |
| T8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |            |                             |               | 1       |         |
| T8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T8            | 3          | WEP65                       |               | 0.6000  | 0.6000  |
| T8 5 1/2 120.00 - 1.0000 1.0000 1.0000 T8 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TR            | 4          | 1/2                         |               | 1 0000  | 1 0000  |
| T8         5         1/2         120,00 - 10,000         1,0000         1,0000         1,0000         1,0000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,6000         0,5746         120,000         0,6000         0,5746         120,000         0,6000         0,5746         120,000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | ]          | 1/2                         |               | 1.0000  | 1.0000  |
| T8         11         1 5/8         120,00 - 130,00         0.6000         0.6000           T8         12         7/8         120,00 - 0.6000         0.6000         0.6000           T8         13         7/8         120,00 - 0.6000         0.6000         0.6000           T8         16         7/8         120,00 - 0.6000         0.6000         0.6000           T8         18         1 5/8         120,00 - 0.6000         0.6000         0.6000           T8         19         1 5/8         120,00 - 0.6000         0.6000         0.6000           T8         20         3" Flex Conduit w Fiber & 2         120,00 - 0.6000         0.6000         0.6000           T8         22         1 5/8" Hybriflex         120,00 - 0.6000         0.6000         0.6000           T8         23         1-5/8" Fiber Optic Cable         120,00 - 0.6000         0.6000         0.6000           T8         24         1/2         120,00 - 0.6000         0.6000         0.6000           T8         25         1/2         120,00 - 0.6000         0.6000         0.5746           T9         1         1/4         110,00 - 0.6000         0.5746         120,00         0.6000         0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Т8            | 5          | 1/2                         |               | 1.0000  | 1.0000  |
| T8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | то            | .,[        | 1.70                        |               |         |         |
| T8         12         7/8         120.00 - 130.00         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.5746         120.00         0.6000         0.5746         120.00         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000 <td>18</td> <td>11</td> <td>1 5/8</td> <td></td> <td>0.6000</td> <td>0.6000</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18            | 11         | 1 5/8                       |               | 0.6000  | 0.6000  |
| T8         13         7/8         130,00 120,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 13 | Т8            | 12         | 7/8                         |               | 0.6000  | 0.6000  |
| T8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |            |                             |               | 0.0000  | 0.0000  |
| T8         16         7/8         120.00 - 130.00         0.6000         0.6000           T8         18         15/8         120.00 - 130.00         0.6000         0.6000           T8         19         15/8         120.00 - 130.00         0.6000         0.6000           T8         20         3" Flex Conduit w Fiber & 2 120.00 - 126.00         130.00         0.6000         0.6000           T8         22         15/8" Hybriflex         120.00 - 126.00         0.6000         0.6000           T8         23         1-5/8" Fiber Optic Cable         120.00 - 130.00         0.6000         0.6000           T8         24         1/2         120.00 - 130.00         0.6000         0.6000           T8         25         1/2         120.00 - 0.6000         0.6000         0.5746           T9         1         11/4         110.00 - 0.6000         0.5746           T9         3         WEP65         110.00 - 0.6000         0.5746           T9         4         1/2         110.00 - 0.6000         0.5746           T9         5         1/2         110.00 - 0.6000         0.5746           T9         11         15/8         110.00 - 0.6000         0.5746      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T8            | 13         | 7/8                         |               | 0.6000  | 0.6000  |
| T8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ΤΩ            | 16         | 7/0                         |               | 0.6000  | 0.6000  |
| T8         18         1 5/8         120.00 - 130.00         0.6000         0.6000           T8         19         1 5/8         120.00 - 130.00         0.6000         0.6000           T8         20         3" Flex Conduit w Fiber & 2   120.00 - 120.00 - 0.6000         0.6000         0.6000           T8         22         1 5/8" Hybriflex         120.00 - 0.6000         0.6000         0.6000           T8         23         1-5/8" Fiber Optic Cable         120.00 - 0.6000         0.6000         0.6000           T8         24         1/2         120.00 - 0.6000         0.6000         0.6000           T8         25         1/2         120.00 - 0.6000         0.6000         0.5746           T9         1         1 1/4         110.00 - 0.6000         0.5746           T9         3         WEP65         110.00 - 0.6000         0.5746           T9         4         1/2         110.00 - 0.6000         0.5746           T9         5         1/2         110.00 - 0.6000         0.5746           T9         6         7/8         110.00 - 0.6000         0.5746           T9         13         7/8         110.00 - 0.6000         0.5746           T9 <td< td=""><td>10</td><td>10</td><td>//0</td><td></td><td>0.6000</td><td>0.0000</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10            | 10         | //0                         |               | 0.6000  | 0.0000  |
| T8         19         1 5/8         120.00 - 130.00         0.6000         0.6000           T8         20         3" Flex Conduit w Fiber & 2 DC Cables 130.00         120.00 - 130.00         0.6000         0.6000           T8         22         1 5/8" Hybriflex 120.00 - 126.00         0.6000         0.6000         0.6000           T8         23         1-5/8" Fiber Optic Cable 120.00 - 130.00         0.6000         0.6000         0.6000           T8         24         1/2         120.00 - 0.6000         0.6000         0.6000           T8         25         1/2         120.00 - 0.6000         0.6000         0.5746           T9         1         1 1/4         110.00 - 0.6000         0.5746           T9         3         WEP65         110.00 - 0.6000         0.5746           T9         4         1/2         110.00 - 0.6000         0.5746           T9         5         1/2         110.00 - 1.0000         1.0000           T9         6         7/8         110.00 - 0.6000         0.5746           T9         12         7/8         110.00 - 0.6000         0.5746           T9         13         7/8         110.00 - 0.6000         0.5746           120.00 </td <td>Т8</td> <td>18</td> <td>1 5/8</td> <td></td> <td>0.6000</td> <td>0.6000</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Т8            | 18         | 1 5/8                       |               | 0.6000  | 0.6000  |
| T8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |            |                             |               |         |         |
| T8         20         3" Flex Conduit w Fiber & 2 DC Cables         130,00 130,00 120,00 120,00 120,00 120,00 120,00 120,00 120,00 120,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130,00 130 | 1.8           | 19         | 1 5/8                       |               | 0.6000  | 0.6000  |
| T8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T8            | 20         | 3" Flex Conduit w Fiber & 2 |               | 0.6000  | 0.6000  |
| T8         22         1 5/8" Hybriflex         120.00 - 126.00         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.5746         0.6000         0.5746         0.6000         0.5746         0.6000         0.5746         0.6000         0.5746         0.6000         0.5746         0.6000         0.5746         0.6000         0.5746         0.6000         0.5746         0.6000         0.5746         0.6000         0.5746         0.6000         0.5746         0.6000         0.5746         0.5000         0.5746         0.5000         0.5746         0.5000         0.5746         0.5000         0.5746         0.5000         0.5746         0.5000         0.5746         0.5000         0.5746         0.5000         0.5746         0.5000         0.5746         0.5000         0.5746         0.5000         0.5746         0.5000         0.5746         0.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |            |                             |               | 0.0000  | 0.0000  |
| T8         23         1-5/8" Fiber Optic Cable         120.00 - 130.00         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.5746         120.00         0.6000         0.5746         120.00         0.6000         0.5746         120.00         0.6000         0.5746         120.00         0.6000         0.5746         120.00         0.6000         0.5746         120.00         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         0.5746         120.00         0.5746         120.00         0.5746         120.00         0.5746         120.00         0.5746         120.00         0.5746         120.00         0.5746         120.00         0.5746         120.00         0.5746         120.00         0.5746         120.00         0.5746         120.00         0.5746         120.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Т8            | 22         | 1 5/8" Hybriflex            |               | 0.6000  | 0.6000  |
| T8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | то            | 22         | 1 5/01 Ethan Ondin Calla    |               | 0.6000  | 0.6000  |
| T8         24         1/2         120.00 - 130.00         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.6000         0.5746         130.00         0.6000         0.5746         120.00         0.5746         120.00         0.5746         120.00         0.5746         120.00         0.5746         120.00         0.5746         120.00         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000         1.0000 <td>10</td> <td>23</td> <td>1-3/6 Fiber Optic Cable</td> <td></td> <td>0.60001</td> <td>0.6000</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10            | 23         | 1-3/6 Fiber Optic Cable     |               | 0.60001 | 0.6000  |
| T8         25         1/2         130.00 - 130.00 - 130.00 - 130.00         0.6000 - 0.6000 - 0.6000 - 0.6000 - 0.5746           T9         1         1 1/4 - 110.00 - 120.00 - 120.00         0.6000 - 0.5746           T9         2         WEP65 - 110.00 - 120.00 - 120.00         0.5746           T9         3         WEP65 - 110.00 - 120.00 - 120.00         1.0000 - 120.00           T9         4         1/2 - 110.00 - 120.00 - 120.00         1.0000 - 120.00           T9         5         1/2 - 110.00 - 120.00 - 120.00         0.5746           T9         11 - 15/8 - 110.00 - 0.6000 - 0.5746         0.6000 - 0.5746           T9         12 - 7/8 - 110.00 - 0.6000 - 0.5746         0.5746           T9         13 - 7/8 - 110.00 - 0.6000 - 0.5746         0.5746           T9         14 - 7/8 - 110.00 - 0.6000 - 0.5746         0.5746           T9         16 - 7/8 - 110.00 - 0.6000 - 0.5746         0.5746           T9         18 - 15/8 - 110.00 - 0.6000 - 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Т8            | 24         | 1/2                         |               | 0.6000  | 0.6000  |
| T9 1 1 1 1/4 110.00 - 0.6000 0.5746 T9 2 WEP65 110.00 - 0.6000 0.5746 T9 3 WEP65 110.00 - 0.6000 0.5746 T9 4 1/2 110.00 - 1.0000 1.0000 T9 5 1/2 110.00 - 1.0000 1.0000 T9 6 7/8 110.00 - 0.6000 0.5746 T9 11 1 15/8 110.00 - 0.6000 0.5746 T9 12 7/8 110.00 - 0.6000 0.5746 T9 13 7/8 110.00 - 0.6000 0.5746 T9 14 7/8 110.00 - 0.6000 0.5746 T9 15 14 7/8 110.00 - 0.6000 0.5746 T9 16 7/8 110.00 - 0.6000 0.5746 T9 17 18 10.00 - 0.6000 0.5746 T9 18 10.00 - 0.6000 0.5746 T9 19 10 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |            |                             |               |         |         |
| T9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18            | 25         | 1/2                         |               | 0.6000  | 0.6000  |
| T9 2 WEP65 110.00 - 0.6000 0.5746  T9 3 WEP65 110.00 - 0.6000 0.5746  T9 4 1/2 110.00 - 1.0000 1.0000  T9 5 1/2 110.00 - 1.0000 1.0000  T9 6 7/8 110.00 - 0.6000 0.5746  T9 11 1 5/8 110.00 - 0.6000 0.5746  T9 12 7/8 110.00 - 0.6000 0.5746  T9 13 7/8 110.00 - 0.6000 0.5746  T9 14 7/8 110.00 - 0.6000 0.5746  T9 15 7/8 110.00 - 0.6000 0.5746  T9 17 18 10.00 - 0.6000 0.5746  T9 18 10.00 - 0.6000 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Т9            | 1          | 1 1/4                       | 1             | 0.6000  | 0.5746  |
| T9 3 WEP65 110.00 - 0.6000 0.5746 T9 4 1/2 110.00 - 1.0000 1.0000 T9 5 1/2 110.00 - 1.0000 1.0000 T9 6 7/8 110.00 - 0.6000 0.5746 T9 11 1 5/8 110.00 - 0.6000 0.5746 T9 12 7/8 110.00 - 0.6000 0.5746 T9 13 7/8 110.00 - 0.6000 0.5746 T9 14 7/8 110.00 - 0.6000 0.5746 T9 15 7/8 110.00 - 0.6000 0.5746 T9 16 7/8 110.00 - 0.6000 0.5746 T9 17 18 10.00 - 0.6000 0.5746 T9 18 10.00 - 0.6000 0.5746 T9 19 10 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |            |                             |               | 0.0000  | 0.5740  |
| T9 3 WEP65 110.00 - 0.6000 0.5746  T9 4 1/2 110.00 - 1.0000 1.0000  T9 5 1/2 110.00 - 1.0000 1.0000  T9 6 7/8 110.00 - 0.6000 0.5746  T9 11 1 5/8 110.00 - 0.6000 0.5746  T9 12 7/8 110.00 - 0.6000 0.5746  T9 13 7/8 110.00 - 0.6000 0.5746  T9 14 7/8 110.00 - 0.6000 0.5746  T9 15 7/8 110.00 - 0.6000 0.5746  T9 16 7/8 110.00 - 0.6000 0.5746  T9 17 18 110.00 - 0.6000 0.5746  T9 18 110.00 - 0.6000 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T9            | 2          | WEP65                       | 110.00 -      | 0.6000  | 0.5746  |
| T9 4 1/2 110.00 1.0000 1.0000 T9 5 1/2 110.00 1.0000 1.0000 T9 6 7/8 110.00 0.6000 0.5746 T9 11 1 5/8 110.00 0.6000 0.5746 T9 12 7/8 110.00 0.6000 0.5746 T9 13 7/8 110.00 0.6000 0.5746 T9 14 7/8 110.00 0.6000 0.5746 T9 16 7/8 110.00 0.6000 0.5746 T9 17 18 110.00 0.6000 0.5746 T9 18 15/8 110.00 0.6000 0.5746 T9 16 7/8 110.00 0.6000 0.5746 T9 17 16 7/8 110.00 0.6000 0.5746 T9 18 15/8 110.00 0.6000 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | то            | اد         | MEDCE                       |               | 0.000   | 0.5745  |
| T9     4     1/2     110.00 - 1.0000     1.0000     1.0000       T9     5     1/2     110.00 - 1.0000     1.0000     1.0000       T9     6     7/8     110.00 - 0.6000     0.5746       11     15/8     110.00 - 0.6000     0.5746       T9     12     7/8     110.00 - 0.6000     0.5746       T9     13     7/8     110.00 - 0.6000     0.5746       T9     14     7/8     110.00 - 0.6000     0.5746       T9     16     7/8     110.00 - 0.6000     0.5746       T9     18     15/8     110.00 - 0.6000     0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19            | اد         | WEP65                       |               | 0.6000  | 0.5746  |
| T9 5 1/2 110.00 1.0000 1.0000 1.0000 T9 6 7/8 110.00 - 0.6000 0.5746 116.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Т9            | 4          | 1/2                         |               | 1.0000  | 1.0000  |
| T9 6 7/8 110.00 - 0.6000 0.5746 T9 11 1 5/8 110.00 - 0.6000 0.5746 T9 12 7/8 110.00 - 0.6000 0.5746 T9 13 7/8 110.00 - 0.6000 0.5746 T9 14 7/8 110.00 - 0.6000 0.5746 T9 16 7/8 110.00 - 0.6000 0.5746 T9 16 7/8 110.00 - 0.6000 0.5746 T9 179 18 15/8 110.00 - 0.6000 0.5746 T9 18 15/8 110.00 - 0.6000 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _             |            |                             | 120.00        |         | - 1     |
| T9     6     7/8     110.00 - 116.00     0.6000     0.5746       T9     11     15/8     110.00 - 0.6000     0.5746       T9     12     7/8     110.00 - 0.6000     0.5746       T9     13     7/8     110.00 - 0.6000     0.5746       T9     14     7/8     110.00 - 0.6000     0.5746       T9     16     7/8     110.00 - 0.6000     0.5746       T9     18     15/8     110.00 - 0.6000     0.5746       120.00     0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T9            | 5          | 1/2                         |               | 1.0000  | 1.0000  |
| T9 11 1 5/8 110.00 - 0.6000 0.5746  T9 12 7/8 110.00 - 0.6000 0.5746  T9 13 7/8 110.00 - 0.6000 0.5746  T9 14 7/8 110.00 - 0.6000 0.5746  T9 16 7/8 110.00 - 0.6000 0.5746  T9 16 7/8 110.00 - 0.6000 0.5746  T9 18 15/8 110.00 - 0.6000 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sub>T9</sub> | 6          | 7/9                         |               | 0 6000  | 0.5746  |
| T9 11 1 5/8 110.00 - 0.6000 0.5746  T9 12 7/8 110.00 - 0.6000 0.5746  T9 13 7/8 110.00 - 0.6000 0.5746  T9 14 7/8 110.00 - 0.6000 0.5746  T9 16 7/8 110.00 - 0.6000 0.5746  T9 18 15/8 110.00 - 0.6000 0.5746  T9 18 15/8 110.00 - 0.6000 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . ]           | ď          | 776                         |               | 0.0000  | 0.5740  |
| T9 12 7/8 110.00 0.6000 0.5746  T9 13 7/8 110.00 0.6000 0.5746  T9 14 7/8 110.00 0.6000 0.5746  T9 16 7/8 110.00 0.6000 0.5746  T9 18 15/8 110.00 0.6000 0.5746  T9 18 15/8 110.00 0.6000 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Т9            | 11         | 1 5/8                       | 110.00 -      | 0.6000  | 0.5746  |
| T9 13 7/8 110.00 - 0.6000 0.5746  T9 14 7/8 110.00 - 0.6000 0.5746  120.00  T9 16 7/8 110.00 - 0.6000 0.5746  120.00  T9 18 15/8 110.00 - 0.6000 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70            | ,,         | نقاش                        |               | 0.5005  | - 1     |
| T9 13 7/8 110.00 - 0.6000 0.5746 T9 14 7/8 110.00 - 0.6000 0.5746 T9 16 7/8 110.00 - 0.6000 0.5746 T9 18 15/8 110.00 - 0.6000 0.5746 T9 18 15/8 110.00 - 0.6000 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19            | 12         | 7/8                         |               | 0.6000  | 0.5746  |
| T9 14 7/8 110.00 - 0.6000 0.5746 T9 16 7/8 110.00 - 0.6000 0.5746 T9 18 15/8 110.00 - 0.6000 0.5746 T9 18 15/8 110.00 - 0.6000 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Т9            | 13         | 7/8                         |               | 0.6000  | 0.5746  |
| T9 16 7/8 110.00 0.5746<br>T9 18 1 5/8 110.00 - 0.6000 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            | ,,,,                        |               |         | 5.57.40 |
| T9 16 7/8 110.00 - 0.6000 0.5746<br>T9 18 1 5/8 110.00 - 0.6000 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Т9            | 14         | 7/8                         |               | 0.6000  | 0.5746  |
| T9 18 1 5/8 110.00 - 0.6000 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | то            | 16         | 7/0                         |               | 0.6000  | 0.5746  |
| T9 18 1 5/8 110.00 - 0.6000 0.5746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19            | 16         | //8                         |               | 0.0000  | 0.5 /46 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T9            | 18         | 1 5/8                       |               | 0.6000  | 0.5746  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |            | ***                         |               |         |         |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 18 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| T                | E-dr.                   | D                           | P 77.                            | 7.0                      | **                    |
|------------------|-------------------------|-----------------------------|----------------------------------|--------------------------|-----------------------|
| Tower<br>Section | Feed Line<br>Record No. | Description                 | Feed Line<br>Segment Elev.       | K <sub>a</sub><br>No Ice | K <sub>a</sub><br>Ice |
| Т9               | 19                      | 1 5/8                       |                                  | 0.6000                   | 0.5746                |
| Т9               | 20                      | 3" Flex Conduit w Fiber & 2 | 120.00                           | 0.6000                   | 0,5746                |
| 19               | 20                      | DC Cables                   |                                  | 0.6000                   | 0.5/46                |
| Т9               | 22                      | 1 5/8" Hybriflex            | 110.00 -                         | 0.6000                   | 0.5746                |
| Т9               | 23                      | 1-5/8" Fiber Optic Cable    | 120.00<br>110.00 -               | 0.6000                   | 0.5746                |
| 19               | 23                      | 1-5/6 Fiber Oplic Cable     | 120.00                           | 0.0000                   | 0.5740                |
| T9               | 24                      | 1/2                         |                                  | 0.6000                   | 0.5746                |
| Т9               | 25                      | 1/2                         | 120.00<br>110.00 -               | 0.6000                   | 0.5746                |
| =                |                         |                             | 120.00                           |                          | 0.5740                |
| T10              | 1                       | 1 1/4                       |                                  | 0.6000                   | 0.6000                |
| T10              | 2                       | WEP65                       | 110.00<br>100.00 -               | 0.6000                   | 0.6000                |
|                  |                         |                             | 110.00                           |                          |                       |
| T10              | 3                       | WEP65                       | 100.00 -<br>110.00               | 0.6000                   | 0.6000                |
| T10              | 4                       | 1/2                         |                                  | 1.0000                   | 1.0000                |
|                  |                         |                             | 110.00                           |                          |                       |
| T10              | 5                       | 1/2                         | 100.00 -<br>110.00               | 1.0000                   | 1.0000                |
| T10              | 6                       | 7/8                         |                                  | 0.6000                   | 0.6000                |
| Т10              | 11                      | 1.6/0                       | 110.00                           | 0.000                    | 0.6000                |
| 110              | 11                      | 1 5/8                       | 100.00 -<br>110.00               | 0.6000                   | 0.6000                |
| T10              | 12                      | 7/8                         | 100.00 -                         | 0.6000                   | 0.6000                |
| Т10              | 13                      | 7/8                         | 110.00<br>100.00 -               | 0.6000                   | 0.6000                |
|                  |                         | 770                         | 110.00                           | 0.0000                   | 0.0000                |
| T10              | 14                      | 7/8                         |                                  | 0.6000                   | 0.6000                |
| T10              | 15                      | 1 5/8                       | 110.00<br>100.00 -               | 0.6000                   | 0.6000                |
|                  |                         |                             | 101.00                           |                          |                       |
| T10              | 16                      | 7/8                         | 100.00 -<br>110.00               | 0.6000                   | 0.6000                |
| T10              | 18                      | 1 5/8                       | 100.00 -                         | 0.6000                   | 0.6000                |
|                  |                         | 4.40                        | 110.00                           |                          |                       |
| T10              | 19                      | 1 5/8                       | 100.00 -<br>110.00               | 0.6000                   | 0.6000                |
| T10              | 20                      | 3" Flex Conduit w Fiber & 2 | 100.00 -                         | 0.6000                   | 0.6000                |
| T10              | 21                      | DC Cables                   | 110.00                           | 0.6000                   | 0.6000                |
| 1101             | 21                      | RFS Hybriflex (3 Sector)    | 100.00 -<br>106.00               | 0.6000                   | 0.6000                |
| T10              | 22                      | 1 5/8" Hybriflex            | 100.00 -                         | 0.6000                   | 0.6000                |
| T10              | 23                      | 1-5/8" Fiber Optic Cable    | 110.00                           | 0.6000                   | 0.6000                |
| '''              |                         | 1-5/0 Tibel Opile Cable     | 100.00 -<br>110.00               | 0.0000                   | 0.0000                |
| T10              | 24                      | 1/2                         | 100.00 -                         | 0.6000                   | 0.6000                |
| T10              | 25                      | 1/2                         | 110.00<br>100.00 -               | 0.6000                   | 0.6000                |
|                  |                         |                             | 110.00                           |                          |                       |
| T11<br>T11       | 1<br>2                  |                             | 90.00 - 100.00<br>90.00 - 100.00 | 0.6000                   | 0.6000                |
| T11              | 3                       |                             | 90.00 - 100.00                   | 0.6000                   | 0.6000<br>0.6000      |
| T11              | 4                       |                             | 90.00 - 100.00                   | 1.0000                   | 1.0000                |
| T11              | .5                      |                             | 90.00 - 100.00                   | 1.0000                   | 1.0000                |
| TII              | 6                       |                             | 90.00 - 100.00                   | 0.6000                   | 0.6000                |
| T11              | 11                      |                             | 90.00 - 100.00                   | 0.6000                   | 0.6000                |
| T11<br>T11       | 12<br>13                |                             | 90.00 - 100.00<br>90.00 - 100.00 | 0.6000<br>0.6000         | 0.6000<br>0.6000      |
| Tii              | 14                      |                             | 90.00 - 100.00                   | 0.6000                   | 0.6000                |
| •                | '                       |                             |                                  | - 1                      |                       |

| Job     |                          | Page                      |
|---------|--------------------------|---------------------------|
|         | 180' Lattice Tower - CSP | 19 of 86                  |
| Project | Structural Analysis      | Date<br>16:48:32 03/29/18 |
| Client  | Empire Telecom / EMP-004 | Designed by MCD           |

| T 1                                    | 71. 77.              | D 1.1                                                                                           |                                                                                   |                                      |                                                |
|----------------------------------------|----------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|
| Tower                                  | Feed Line            | Description                                                                                     | Feed Line                                                                         | K <sub>a</sub>                       | Ka                                             |
| Section                                | Record No.           | 1.5/0                                                                                           | Segment Elev.                                                                     | No Ice                               | Ice                                            |
| T11<br>T11                             | 15                   | 1 5/8                                                                                           |                                                                                   | 0.6000                               | 0.6000                                         |
| T11                                    | 16<br>17             | //8                                                                                             | 90.00 - 100.00                                                                    | 0.6000                               | 0.6000                                         |
|                                        |                      | 1,5/0                                                                                           | 90.00 - 100.00                                                                    | 0.6000                               | 0.6000                                         |
| T11                                    | 18                   |                                                                                                 | 90.00 - 100.00                                                                    | 0.6000                               | 0.6000                                         |
| T11                                    | 19                   |                                                                                                 | 90.00 - 100.00                                                                    | 0.6000                               | 0.6000                                         |
| T11                                    | 20                   |                                                                                                 | 90.00 - 100.00                                                                    | 0.6000                               | 0.6000                                         |
|                                        |                      | DC Cables                                                                                       |                                                                                   |                                      |                                                |
| T11                                    | 21                   | RFS Hybriflex (3 Sector)                                                                        |                                                                                   | 0.6000                               | 0.6000                                         |
| T11                                    | 22                   | 1 5/8" Hybriflex                                                                                |                                                                                   | 0.6000                               | 0.6000                                         |
| T11                                    | 23                   | 1-5/8" Fiber Optic Cable                                                                        |                                                                                   | 0.6000                               | 0.6000                                         |
| T11                                    | 24                   | 1/2                                                                                             |                                                                                   | 0.6000                               | 0.6000                                         |
| T11                                    | 25                   |                                                                                                 | 90.00 - 100.00                                                                    | 0.6000                               | 0.6000                                         |
| T12                                    | 1                    | 1 1/4                                                                                           | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 2                    | WEP65                                                                                           | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 3                    | WEP65                                                                                           | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 4                    | 1/2                                                                                             | 80.00 - 90.00                                                                     | 1.0000                               | 1.0000                                         |
| T12                                    | 5                    | 1/2                                                                                             | 80.00 - 90.00                                                                     | 1.0000                               | 1.0000                                         |
| T12                                    | 6                    | 7/8                                                                                             | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 8                    | 7/8                                                                                             | 80.00 - 85.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 11                   | 1 5/8                                                                                           | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 12                   | 7/8                                                                                             | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 13                   | 7/8                                                                                             | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 14                   | 7/8                                                                                             | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 15                   | 1 5/8                                                                                           | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 16                   | 7/8                                                                                             | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 17                   | 7/8                                                                                             | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 18                   | 1 5/8                                                                                           | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 19                   | 1 5/8                                                                                           | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 20                   | 3" Flex Conduit w Fiber & 2                                                                     | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
|                                        |                      | DC Cables                                                                                       |                                                                                   |                                      |                                                |
| T12                                    | 21                   | RFS Hybriflex (3 Sector)                                                                        | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 22                   | 1 5/8" Hybriflex                                                                                | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 23                   | 1-5/8" Fiber Optic Cable                                                                        | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 24                   | 1/2                                                                                             | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T12                                    | 25                   | 1/2                                                                                             | 80.00 - 90.00                                                                     | 0.6000                               | 0.6000                                         |
| T13                                    | 1                    | 1 1/4                                                                                           | 60.00 - 80.00                                                                     | 0.6000                               | 0.6000                                         |
| T13                                    | 2                    | WEP65                                                                                           | 60.00 - 80.00                                                                     | 0.6000                               | 0.6000                                         |
| T13                                    | 3                    | WEP65                                                                                           | 60.00 - 80.00                                                                     | 0.6000                               | 0.6000                                         |
| T13                                    | 4                    | 1/2                                                                                             | 60.00 - 80.00                                                                     | 1.0000                               | 1.0000                                         |
| T13                                    | 5                    | 1/2                                                                                             | 60.00 - 80.00                                                                     | 1.0000                               | 1.0000                                         |
| T13                                    | 6                    | 7/8                                                                                             | 60.00 - 80.00                                                                     | 0.6000                               | 0.6000                                         |
| T13                                    | 7                    | 1/2                                                                                             | 60.00 - 75.00                                                                     | 0.6000                               | 0.6000                                         |
| T13                                    | 8                    | 7/8                                                                                             | 60.00 - 80.00                                                                     | 0.6000                               | 0.6000                                         |
| T13                                    | 11                   | 1 5/8                                                                                           | 60.00 - 80.00                                                                     | 0.6000                               | 0.6000                                         |
| T13                                    | 12                   | 7/8                                                                                             | 60.00 - 80.00                                                                     | 0.6000                               | 0.6000                                         |
| T13                                    | 13                   | 7/8                                                                                             | 60.00 - 80.00                                                                     | 0.6000                               | 0.6000                                         |
| T13                                    | 14                   | 7/8                                                                                             | 60.00 - 80.00                                                                     | 0.6000                               | 0.6000                                         |
| T13                                    | 15                   | 1 5/8                                                                                           | 60.00 - 80.00                                                                     | 0.6000                               | 0.6000                                         |
| T13                                    | 16                   | 7/8                                                                                             | 60.00 - 80.00                                                                     | 0.6000                               | 0.6000                                         |
| T13                                    | 17                   | 7/8                                                                                             | 60.00 - 80.00                                                                     | 0.6000                               | 0.6000                                         |
| T13                                    | 18                   | 1 5/8                                                                                           | 60.00 - 80.00                                                                     | 0.6000                               | 0.6000                                         |
| T13                                    | 19                   | 1 5/8                                                                                           | 60.00 - 80.00                                                                     | 0.6000                               | 0.6000                                         |
|                                        | 20                   | 3" Flex Conduit w Fiber & 2                                                                     | 60.00 - 80.00                                                                     | 0.6000                               |                                                |
| Т13[                                   | 20                   | DC Cables                                                                                       | 00.00 - 80.00                                                                     | 0.0000                               | 0.6000                                         |
| T13                                    |                      |                                                                                                 |                                                                                   | - 1                                  | 0.6000                                         |
|                                        | 21                   |                                                                                                 | 60.00 00.00                                                                       | 0.0000                               |                                                |
| T13                                    | 21                   | RFS Hybriflex (3 Sector)                                                                        | 60.00 - 80.00                                                                     | 0.6000                               |                                                |
| T13                                    | 22                   | RFS Hybriflex (3 Sector)<br>1 5/8" Hybriflex                                                    | 60.00 - 80.00                                                                     | 0.6000                               |                                                |
| T13<br>T13<br>T13                      | 22<br>23             | RFS Hybriflex (3 Sector)<br>1 5/8" Hybriflex<br>1-5/8" Fiber Optic Cable                        | 60.00 - 80.00<br>60.00 - 80.00                                                    | 0.6000<br>0.6000                     | 0.6000<br>0.6000                               |
| T13<br>T13<br>T13<br>T13               | 22<br>23<br>24       | RFS Hybriflex (3 Sector)<br>1 5/8" Hybriflex<br>1-5/8" Fiber Optic Cable<br>1/2                 | 60.00 - 80.00<br>60.00 - 80.00<br>60.00 - 80.00                                   | 0.6000<br>0.6000<br>0.6000           | 0.6000<br>0.6000<br>0.6000                     |
| T13<br>T13<br>T13<br>T13<br>T13        | 22<br>23<br>24<br>25 | RFS Hybriflex (3 Sector)<br>1 5/8" Hybriflex<br>1-5/8" Fiber Optic Cable<br>1/2<br>1/2          | 60.00 - 80.00<br>60.00 - 80.00<br>60.00 - 80.00<br>60.00 - 80.00                  | 0.6000<br>0.6000<br>0.6000<br>0.6000 | 0.6000<br>0.6000<br>0.6000<br>0.6000           |
| T13<br>T13<br>T13<br>T13<br>T13<br>T14 | 22<br>23<br>24<br>25 | RFS Hybriflex (3 Sector)<br>1 5/8" Hybriflex<br>1-5/8" Fiber Optic Cable<br>1/2<br>1/2<br>1 1/4 | 60.00 - 80.00<br>60.00 - 80.00<br>60.00 - 80.00<br>60.00 - 80.00<br>50.00 - 60.00 | 0.6000<br>0.6000<br>0.6000<br>0.6000 | 0.6000<br>0.6000<br>0.6000<br>0.6000<br>0.6000 |
| T13<br>T13<br>T13<br>T13<br>T13        | 22<br>23<br>24<br>25 | RFS Hybriflex (3 Sector)<br>1 5/8" Hybriflex<br>1-5/8" Fiber Optic Cable<br>1/2<br>1/2          | 60.00 - 80.00<br>60.00 - 80.00<br>60.00 - 80.00<br>60.00 - 80.00                  | 0.6000<br>0.6000<br>0.6000<br>0.6000 | 0.6000<br>0.6000<br>0.6000<br>0.6000           |

**AECOM** 500 Enterprise Drive, Suite 3B

Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 20 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| To               | Food to .  | Donat d                     | 77 271        | 77     |        |
|------------------|------------|-----------------------------|---------------|--------|--------|
| Tower<br>Section | Feed Line  | Description                 | Feed Line     | Ka     | Ka     |
|                  | Record No. |                             | Segment Elev. | No Ice | Ice    |
| T14              | 4          | 1/2                         | 50.00 - 60.00 | 1.0000 | 1.0000 |
| T14              | 5          | 1/2                         | 50.00 - 60.00 | 1.0000 | 1.0000 |
| T14              | 6          | 7/8                         | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T14              | 7          | 1/2                         | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T14              | 8          | 7/8                         | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T14              | 10         | 1/2                         | 50.00 - 56.00 | 0.6000 | 0.6000 |
| T14              | 11         | 1 5/8                       | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T14              | 12         | 7/8                         | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T14              | 13         | 7/8                         | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T14              | 14         | 7/8                         | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T14              | 15         | 1 5/8                       | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T14              | 16         | 7/8                         | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T14              | 17         | 7/8                         | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T14              | 18         | 1 5/8                       | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T14              | 19         | 1 5/8                       | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T14              | 20         | 3" Flex Conduit w Fiber & 2 | 50.00 - 60.00 | 0.6000 | 0.6000 |
|                  |            | DC Cables                   |               | +      |        |
| T14              | 21         | RFS Hybriflex (3 Sector)    | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T14              | 22         | 1 5/8" Hybriflex            | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T14              | 23         | 1-5/8" Fiber Optic Cable    | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T14              | 24         | 1/2                         | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T14              | 25         | 1/2                         | 50.00 - 60.00 | 0.6000 | 0.6000 |
| T15              | 1          | 1 1/4                       | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 2          | WEP65                       | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 3          | WEP65                       | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 4          | 1/2                         | 40.00 - 50.00 | 1.0000 | 1.0000 |
| T15              | 5          | 1/2                         | 40.00 - 50.00 | 1.0000 | 1.0000 |
| T15              | 6          | 7/8                         | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 7          | 1/2                         | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 8          | 7/8                         | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 9]         | 1/2                         | 40.00 - 47.00 | 0.6000 | 0.6000 |
| T15              | 10         | 1/2                         | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 11         | 1 5/8                       | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 12         | 7/8                         | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 13         | 7/8                         | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 14         | 7/8                         | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 15         | 1 5/8                       | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 16         | 7/8                         | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 17         | 7/8                         | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 18         | 1 5/8                       | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 19         | 1 5/8                       | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 20         | 3" Flex Conduit w Fiber & 2 | 40.00 - 50.00 | 0.6000 | 0.6000 |
| 1                | I          | DC Cables                   |               | 911    |        |
| T15              | 21         | RFS Hybriflex (3 Sector)    | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 22         | 1 5/8" Hybriflex            | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 23         | 1-5/8" Fiber Optic Cable    | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 24         | 1/2                         | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T15              | 25         | 1/2                         | 40.00 - 50.00 | 0.6000 | 0.6000 |
| T16              | 1          | 1 1/4                       | 30.00 - 40.00 | 0.6000 | 0.6000 |
| T16              | 2          | WEP65                       | 30.00 - 40.00 | 0.6000 | 0.6000 |
| T16              | 3          | WEP65                       | 30.00 - 40.00 | 0.6000 | 0.6000 |
| T16              | 4          | 1/2                         | 30.00 - 40.00 | 1.0000 | 1.0000 |
| T16              | 5          | 1/2                         | 30.00 - 40.00 | 1.0000 | 1.0000 |
| T16              | 6          | 7/8                         | 30.00 - 40.00 | 0.6000 | 0.6000 |
| T16              | 7          | 1/2                         | 30.00 - 40.00 | 0.6000 | 0.6000 |
| T16              | 8          | 7/8                         | 30.00 - 40.00 | 0.6000 | 0.6000 |
| T16              | 9          | 1/2                         | 30.00 - 40.00 | 0.6000 | 0.6000 |
| T16              | 10         | 1/2                         | 30.00 - 40.00 | 0.6000 | 0.6000 |
| T16              | 11         | 1 5/8                       | 30.00 - 40.00 | 0.6000 | 0.6000 |
| T16              | 12         | 7/8                         | 30.00 - 40.00 | 0.6000 | 0.6000 |
| T16              | 13         | 7/8                         | 30.00 - 40.00 | 0.6000 | 0.6000 |
| T16              | 14         | 7/8                         | 30.00 - 40.00 | 0.6000 | 0.6000 |
|                  | = -1       | .,                          |               |        | 2.2000 |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 21 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | English Talls (FMD 004   | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section   Second No.   Segment Eller   Segment Eller   No.   Segment Eller   Segment E | <del>,</del> |           |                          | r             |        |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|--------------------------|---------------|--------|--------|
| T16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tower        | Feed Line | Description              | Feed Line     | Ka     |        |
| T16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           | 4.470                    |               |        |        |
| T16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110          | 20        |                          | 30.00 - 40.00 | 0.6000 | 0.6000 |
| T16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 2.1       |                          | 20.00 40.00   | 0.6000 | 0.5000 |
| T16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           | •                        |               |        |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T17 T17 T17 T17 T17 T17 T18 T17 T19 T17 T19 T17 T19 T17 T19 T19 T19 T17 T19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |           | l -                      |               |        |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 2         |                          |               |        |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 5         |                          |               | - 1    |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               | - 1    |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T17         16         7/8         20.00 - 30.00         0.6000         0.6000           T17         17         7/8         20.00 - 30.00         0.6000         0.6000           T17         18         1 5/8         20.00 - 30.00         0.6000         0.6000           T17         19         1 5/8         20.00 - 30.00         0.6000         0.6000           T17         20         3" Flex Conduit w Fiber & 2 DC Cables         20.00 - 30.00         0.6000         0.6000           T17         21         RFS Hybriflex (3 Sector)         20.00 - 30.00         0.6000         0.6000           T17         22         1 5/8" Fiber Optic Cable         20.00 - 30.00         0.6000         0.6000           T17         24         1/2         20.00 - 30.00         0.6000         0.6000           T18         1         1 1/4         10.00 - 20.00         0.6000         0.6000           T18         1         1 1/4         10.00 - 20.00         0.6000         0.6000           T18         3         WEP65         10.00 - 20.00         0.6000         0.6000           T18         4         1/2         10.00 - 20.00         0.6000         0.6000           T18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |           |                          |               |        |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T17         18         1 5/8         20.00 - 30.00         0.6000         0.6000           T17         19         1 5/8         20.00 - 30.00         0.6000         0.6000           T17         20         3" Flex Conduit w Fiber & 2 DC Cables         20.00 - 30.00         0.6000         0.6000           T17         21         RFS Hybriflex (3 Sector)         20.00 - 30.00         0.6000         0.6000           T17         22         1 5/8" Hybriflex         20.00 - 30.00         0.6000         0.6000           T17         23         1 - 5/8" Fiber Optic Cable         20.00 - 30.00         0.6000         0.6000           T17         24         1/2         20.00 - 30.00         0.6000         0.6000           T18         1         1 1/4         10.00 - 20.00         0.6000         0.6000           T18         1         1 1/4         10.00 - 20.00         0.6000         0.6000           T18         3         WEP65         10.00 - 20.00         0.6000         0.6000           T18         4         1/2         10.00 - 20.00         0.6000         0.6000           T18         7         1/2         10.00 - 20.00         0.6000         0.6000           T18 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |           |                          |               |        |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| DC Cables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |           |                          |               |        |        |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          | 20.00 50.00   | 0.0000 | 0.0000 |
| T17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T17          | 21        |                          | 20.00 - 30.00 | 0.6000 | 0.6000 |
| T17         23         1-5/8" Fiber Optic Cable         20.00 - 30.00         0.6000         0.6000           T17         24         1/2         20.00 - 30.00         0.6000         0.6000           T18         1         1/4         10.00 - 20.00         0.6000         0.6000           T18         2         WEP65         10.00 - 20.00         0.6000         0.6000           T18         3         WEP65         10.00 - 20.00         0.6000         0.6000           T18         4         1/2         10.00 - 20.00         1.0000         1.0000           T18         5         1/2         10.00 - 20.00         1.0000         1.0000           T18         6         7/8         10.00 - 20.00         1.0000         1.0000           T18         7         1/2         10.00 - 20.00         0.6000         0.6000           T18         8         7/8         10.00 - 20.00         0.6000         0.6000           T18         9         1/2         10.00 - 20.00         0.6000         0.6000           T18         11         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         12         7/8         10.00 - 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                          |               |        |        |
| T17         24         1/2         20.00 - 30.00         0.6000         0.6000           T18         1         1/4         10.00 - 20.00         0.6000         0.6000           T18         1         1/4         10.00 - 20.00         0.6000         0.6000           T18         2         WEP65         10.00 - 20.00         0.6000         0.6000           T18         3         WEP65         10.00 - 20.00         0.6000         0.6000           T18         4         1/2         10.00 - 20.00         1.0000         1.0000           T18         5         1/2         10.00 - 20.00         1.0000         1.0000           T18         6         7/8         10.00 - 20.00         0.6000         0.6000           T18         7         1/2         10.00 - 20.00         0.6000         0.6000           T18         8         7/8         10.00 - 20.00         0.6000         0.6000           T18         9         1/2         10.00 - 20.00         0.6000         0.6000           T18         11         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         12         7/8         10.00 - 20.00         0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T17          |           |                          |               |        |        |
| T17         25         1/2         20.00 - 30.00         0.6000         0.6000           T18         1         1/4         10.00 - 20.00         0.6000         0.6000           T18         2         WEP65         10.00 - 20.00         0.6000         0.6000           T18         3         WEP65         10.00 - 20.00         0.6000         0.6000           T18         4         1/2         10.00 - 20.00         1.0000         1.0000           T18         5         1/2         10.00 - 20.00         1.0000         1.0000           T18         6         7/8         10.00 - 20.00         0.6000         0.6000           T18         7         1/2         10.00 - 20.00         0.6000         0.6000           T18         8         7/8         10.00 - 20.00         0.6000         0.6000           T18         9         1/2         10.00 - 20.00         0.6000         0.6000           T18         11         15/8         10.00 - 20.00         0.6000         0.6000           T18         12         7/8         10.00 - 20.00         0.6000         0.6000           T18         13         7/8         10.00 - 20.00         0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |           | •                        |               | 1      |        |
| T18         1         1 1/4         10.00 - 20.00         0.6000         0.6000           T18         2         WEP65         10.00 - 20.00         0.6000         0.6000           T18         3         WEP65         10.00 - 20.00         0.6000         0.6000           T18         4         1/2         10.00 - 20.00         1.0000         1.0000           T18         5         1/2         10.00 - 20.00         0.6000         1.0000           T18         6         7/8         10.00 - 20.00         0.6000         0.6000           T18         7         1/2         10.00 - 20.00         0.6000         0.6000           T18         8         7/8         10.00 - 20.00         0.6000         0.6000           T18         9         1/2         10.00 - 20.00         0.6000         0.6000           T18         10         1/2         10.00 - 20.00         0.6000         0.6000           T18         11         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         13         7/8         10.00 - 20.00         0.6000         0.6000           T18         14         7/8         10.00 - 20.00         0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T17          | 25        | 1/2                      |               |        |        |
| T18         2         WEP65         10.00 - 20.00         0.6000         0.6000           T18         3         WEP65         10.00 - 20.00         0.6000         0.6000           T18         4         1/2         10.00 - 20.00         1.0000         1.0000           T18         5         1/2         10.00 - 20.00         1.0000         1.0000           T18         6         7/8         10.00 - 20.00         0.6000         0.6000           T18         7         1/2         10.00 - 20.00         0.6000         0.6000           T18         8         7/8         10.00 - 20.00         0.6000         0.6000           T18         9         1/2         10.00 - 20.00         0.6000         0.6000           T18         10         1/2         10.00 - 20.00         0.6000         0.6000           T18         11         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         12         7/8         10.00 - 20.00         0.6000         0.6000           T18         14         7/8         10.00 - 20.00         0.6000         0.6000           T18         15         15/8         10.00 - 20.00         0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T18          | 1         |                          |               |        |        |
| T18         3         WEP65         10.00 - 20.00         0.6000         0.6000           T18         4         1/2         10.00 - 20.00         1.0000         1.0000           T18         5         1/2         10.00 - 20.00         1.0000         1.0000           T18         6         7/8         10.00 - 20.00         0.6000         0.6000           T18         7         1/2         10.00 - 20.00         0.6000         0.6000           T18         8         7/8         10.00 - 20.00         0.6000         0.6000           T18         9         1/2         10.00 - 20.00         0.6000         0.6000           T18         10         1/2         10.00 - 20.00         0.6000         0.6000           T18         11         15/8         10.00 - 20.00         0.6000         0.6000           T18         12         7/8         10.00 - 20.00         0.6000         0.6000           T18         13         7/8         10.00 - 20.00         0.6000         0.6000           T18         14         7/8         10.00 - 20.00         0.6000         0.6000           T18         15         15/8         10.00 - 20.00         0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T18          | 2         | WEP65                    | 10.00 - 20.00 |        | 0.6000 |
| T18         4         1/2         10.00 - 20.00         1.0000         1.0000           T18         5         1/2         10.00 - 20.00         1.0000         1.0000           T18         6         7/8         10.00 - 20.00         0.6000         0.6000           T18         7         1/2         10.00 - 20.00         0.6000         0.6000           T18         8         7/8         10.00 - 20.00         0.6000         0.6000           T18         9         1/2         10.00 - 20.00         0.6000         0.6000           T18         10         1/2         10.00 - 20.00         0.6000         0.6000           T18         11         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         12         7/8         10.00 - 20.00         0.6000         0.6000           T18         13         7/8         10.00 - 20.00         0.6000         0.6000           T18         14         7/8         10.00 - 20.00         0.6000         0.6000           T18         15         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         17         7/8         10.00 - 20.00         0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T18          | 3         | WEP65                    |               |        |        |
| T18         5         1/2         10.00 - 20.00         1.0000         1.0000           T18         6         7/8         10.00 - 20.00         0.6000         0.6000           T18         7         1/2         10.00 - 20.00         0.6000         0.6000           T18         8         7/8         10.00 - 20.00         0.6000         0.6000           T18         9         1/2         10.00 - 20.00         0.6000         0.6000           T18         10         1/2         10.00 - 20.00         0.6000         0.6000           T18         11         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         12         7/8         10.00 - 20.00         0.6000         0.6000           T18         13         7/8         10.00 - 20.00         0.6000         0.6000           T18         14         7/8         10.00 - 20.00         0.6000         0.6000           T18         15         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         17         7/8         10.00 - 20.00         0.6000         0.6000           T18         18         1 5/8         10.00 - 20.00         0.6000 <td>T18</td> <td>4</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T18          | 4         |                          |               |        |        |
| T18         6         7/8         10.00 - 20.00         0.6000         0.6000           T18         7         1/2         10.00 - 20.00         0.6000         0.6000           T18         8         7/8         10.00 - 20.00         0.6000         0.6000           T18         9         1/2         10.00 - 20.00         0.6000         0.6000           T18         10         1/2         10.00 - 20.00         0.6000         0.6000           T18         11         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         12         7/8         10.00 - 20.00         0.6000         0.6000           T18         13         7/8         10.00 - 20.00         0.6000         0.6000           T18         14         7/8         10.00 - 20.00         0.6000         0.6000           T18         15         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         17         7/8         10.00 - 20.00         0.6000         0.6000           T18         18         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         19         1 5/8         10.00 - 20.00         0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T18          | 5         | 1/2                      |               |        |        |
| T18         7         1/2         10.00 - 20.00         0.6000         0.6000           T18         8         7/8         10.00 - 20.00         0.6000         0.6000           T18         9         1/2         10.00 - 20.00         0.6000         0.6000           T18         10         1/2         10.00 - 20.00         0.6000         0.6000           T18         11         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         12         7/8         10.00 - 20.00         0.6000         0.6000           T18         13         7/8         10.00 - 20.00         0.6000         0.6000           T18         14         7/8         10.00 - 20.00         0.6000         0.6000           T18         15         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         17         7/8         10.00 - 20.00         0.6000         0.6000           T18         18         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         19         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         21         RFS Hybriflex (3 Sector)         10.00 - 20.00 </td <td>T18</td> <td>6</td> <td>7/8</td> <td></td> <td>0.6000</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T18          | 6         | 7/8                      |               | 0.6000 |        |
| T18         8         7/8         10.00 - 20.00         0.6000         0.6000           T18         9         1/2         10.00 - 20.00         0.6000         0.6000           T18         10         1/2         10.00 - 20.00         0.6000         0.6000           T18         11         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         12         7/8         10.00 - 20.00         0.6000         0.6000           T18         13         7/8         10.00 - 20.00         0.6000         0.6000           T18         14         7/8         10.00 - 20.00         0.6000         0.6000           T18         15         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         16         7/8         10.00 - 20.00         0.6000         0.6000           T18         17         7/8         10.00 - 20.00         0.6000         0.6000           T18         18         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         19         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         21         RFS Hybriflex (3 Sector)         10.00 - 20.00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |           | 1/2                      |               |        |        |
| T18         9         1/2         10.00 - 20.00         0.6000         0.6000           T18         10         1/2         10.00 - 20.00         0.6000         0.6000           T18         11         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         12         7/8         10.00 - 20.00         0.6000         0.6000           T18         13         7/8         10.00 - 20.00         0.6000         0.6000           T18         14         7/8         10.00 - 20.00         0.6000         0.6000           T18         15         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         16         7/8         10.00 - 20.00         0.6000         0.6000           T18         17         7/8         10.00 - 20.00         0.6000         0.6000           T18         18         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         19         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         20         3" Flex Conduit w Fiber & 2         10.00 - 20.00         0.6000         0.6000           DC Cables         T         15/8         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |           | 7/8                      |               |        |        |
| T18         10         1/2         10.00 - 20.00         0.6000         0.6000           T18         11         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         12         7/8         10.00 - 20.00         0.6000         0.6000           T18         13         7/8         10.00 - 20.00         0.6000         0.6000           T18         14         7/8         10.00 - 20.00         0.6000         0.6000           T18         15         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         16         7/8         10.00 - 20.00         0.6000         0.6000           T18         17         7/8         10.00 - 20.00         0.6000         0.6000           T18         18         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         19         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         20         3" Flex Conduit w Fiber & 2         10.00 - 20.00         0.6000         0.6000           T18         21         RFS Hybriflex (3 Sector)         10.00 - 20.00         0.6000         0.6000           T18         22         1 5/8" Hy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |           | 1/2                      |               |        |        |
| T18         12         7/8         10.00 - 20.00         0.6000         0.6000           T18         13         7/8         10.00 - 20.00         0.6000         0.6000           T18         14         7/8         10.00 - 20.00         0.6000         0.6000           T18         15         15/8         10.00 - 20.00         0.6000         0.6000           T18         16         7/8         10.00 - 20.00         0.6000         0.6000           T18         17         7/8         10.00 - 20.00         0.6000         0.6000           T18         18         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         19         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         20         3" Flex Conduit w Fiber & 2         10.00 - 20.00         0.6000         0.6000           T18         21         RFS Hybriflex (3 Sector)         10.00 - 20.00         0.6000         0.6000           T18         22         1 5/8" Hybriflex         10.00 - 20.00         0.6000         0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 10        | 1/2                      |               |        |        |
| T18         12         7/8         10.00 - 20.00         0.6000         0.6000           T18         13         7/8         10.00 - 20.00         0.6000         0.6000           T18         14         7/8         10.00 - 20.00         0.6000         0.6000           T18         15         1.5/8         10.00 - 20.00         0.6000         0.6000           T18         16         7/8         10.00 - 20.00         0.6000         0.6000           T18         17         7/8         10.00 - 20.00         0.6000         0.6000           T18         18         1.5/8         10.00 - 20.00         0.6000         0.6000           T18         19         1.5/8         10.00 - 20.00         0.6000         0.6000           T18         20         3" Flex Conduit w Fiber & 2         10.00 - 20.00         0.6000         0.6000           T18         21         RFS Hybriflex (3 Sector)         10.00 - 20.00         0.6000         0.6000           T18         22         1.5/8" Hybriflex         10.00 - 20.00         0.6000         0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |           | 1 5/8                    | 10.00 - 20.00 | 0.6000 | 0.6000 |
| T18         13         7/8         10.00 - 20.00         0.6000         0.6000           T18         14         7/8         10.00 - 20.00         0.6000         0.6000           T18         15         15/8         10.00 - 20.00         0.6000         0.6000           T18         16         7/8         10.00 - 20.00         0.6000         0.6000           T18         17         7/8         10.00 - 20.00         0.6000         0.6000           T18         18         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         19         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         20         3" Flex Conduit w Fiber & 2         10.00 - 20.00         0.6000         0.6000           T18         21         RFS Hybriflex (3 Sector)         10.00 - 20.00         0.6000         0.6000           T18         22         1 5/8" Hybriflex         10.00 - 20.00         0.6000         0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T18          |           | 7/8                      |               | ,      |        |
| T18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          | 10.00 - 20.00 | 0.6000 |        |
| T18         16         7/8         10.00 - 20.00         0.6000         0.6000           T18         17         7/8         10.00 - 20.00         0.6000         0.6000           T18         18         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         19         1 5/8         10.00 - 20.00         0.6000         0.6000           T18         20         3" Flex Conduit w Fiber & 2         10.00 - 20.00         0.6000         0.6000           DC Cables         DC Cables         10.00 - 20.00         0.6000         0.6000           T18         21         RFS Hybriflex (3 Sector)         10.00 - 20.00         0.6000         0.6000           T18         22         1 5/8" Hybriflex         10.00 - 20.00         0.6000         0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |           |                          | 10.00 - 20.00 | 0.6000 | 0.6000 |
| T18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| T18     18     1 5/8     10.00 - 20.00     0.6000     0.6000     0.6000       T18     19     1 5/8     10.00 - 20.00     0.6000     0.6000     0.6000       T18     20     3" Flex Conduit w Fiber & 2 DC Cables     10.00 - 20.00     0.6000     0.6000       T18     21     RFS Hybriflex (3 Sector)     10.00 - 20.00     0.6000     0.6000       T18     22     1 5/8" Hybriflex     10.00 - 20.00     0.6000     0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |           |                          |               | 0.6000 |        |
| T18 19 15/8 10.00 - 20.00 0.6000 0.6000 0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                          |               |        | 0.6000 |
| T18 20 3" Flex Conduit w Fiber & 2 10.00 - 20.00 0.6000 0.6000 DC Cables T18 21 RFS Hybriflex (3 Sector) 10.00 - 20.00 0.6000 0.6000 T18 22 15/8" Hybriflex 10.00 - 20.00 0.6000 0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |           | 5.50                     |               | 0.6000 | 0.6000 |
| T18 21 RFS Hybriflex (3 Sector) 10.00 - 20.00 0.6000 0.6000<br>T18 22 1 5/8" Hybriflex 10.00 - 20.00 0.6000 0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |           |                          | - 1           | 0.6000 | 0.6000 |
| T18 21 RFS Hybriflex (3 Sector) 10.00 - 20.00 0.6000 0.6000<br>T18 22 1 5/8" Hybriflex 10.00 - 20.00 0.6000 0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T18          | 20        |                          | 10.00 - 20.00 | 0.6000 | 0.6000 |
| T18 22 1 5/8" Hybriflex 10.00 - 20.00 0.6000 0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [            | I         |                          |               |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |           |                          |               | 0.6000 |        |
| T18  23  1-5/8" Fiber Optic Cable   10.00 - 20.00   0.6000   0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                          |               |        |        |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T18          | 23        | 1-5/8" Fiber Optic Cable | 10.00 - 20.00 | 0.6000 | 0.6000 |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page               |
|---------|--------------------------|--------------------|
|         | 180' Lattice Tower - CSP | 22 of 86           |
| Project |                          | Date               |
|         | Structural Analysis      | 16:48:32 03/29/18  |
| Client  | Empire Telecom / EMP-004 | Designed by<br>MCD |

| Tower   | Feed Line  | Description                 | Feed Line     | $K_a$  | Ka     |
|---------|------------|-----------------------------|---------------|--------|--------|
| Section | Record No. |                             | Segment Elev. | No Ice | Ice    |
| T18     | 24         | 1/2                         | 10.00 - 20.00 | 0.6000 | 0.6000 |
| T18     | 25         | 1/2                         | 10.00 - 20.00 | 0.6000 | 0.6000 |
| T19     | 1          | 1 1/4                       | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 2          | WEP65                       | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 3          | WEP65                       | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 4          | 1/2                         | 6.00 - 10.00  | 1.0000 | 1.0000 |
| T19     | 5          | 1/2                         | 6.00 - 10.00  | 1.0000 | 1.0000 |
| T19     | 6          | 7/8                         | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 7          | 1/2                         | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 8          | 7/8                         | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 9          | 1/2                         | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 10         | 1/2                         | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 11         | 1 5/8                       | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 12         | 7/8                         | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 13         | 7/8                         | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 14         | 7/8                         | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 15         | 1 5/8                       | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 16         | 7/8                         | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 17         | 7/8                         | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 18         | 1 5/8                       | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 19         | 1 5/8                       | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 20         | 3" Flex Conduit w Fiber & 2 | 6.00 - 10.00  | 1.0000 | 0.6000 |
|         |            | DC Cables                   |               |        |        |
| T19     | 21         | RFS Hybriflex (3 Sector)    | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 22         | 1 5/8" Hybriflex            | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 23         | 1-5/8" Fiber Optic Cable    | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 24         | 1/2                         | 6.00 - 10.00  | 0.6000 | 0.6000 |
| T19     | 25         | 1/2                         | 6.00 - 10.00  | 0.6000 | 0.6000 |

#### **Discrete Tower Loads**

| Description        | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |          | C <sub>A</sub> A <sub>A</sub><br>Front | C₄A₄<br>Side | Weigh |
|--------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|----------|----------------------------------------|--------------|-------|
|                    |                   |                | Vert<br>ft<br>ft<br>ft      | 0                     | ft        | ft²      |                                        | ft²          | K     |
| DB803M-Y           | Α                 | From Leg       | 3.00                        | 0.0000                | 50.00     | No Ice   | 0.50                                   | 0.50         | 0.00  |
| (A1 / D&K-1)       |                   | _              | 0.00                        |                       |           | 1/2" Ice | 0.68                                   | 0.68         | 0.01  |
|                    |                   |                | 0.00                        |                       |           | 1" Ice   | 0.87                                   | 0.87         | 0.02  |
| 3' Stand-off       | Α                 | None           |                             | 0.0000                | 50.00     | No Ice   | 1.00                                   | 2.00         | 0.05  |
| (A1 / D&K-1)       |                   |                |                             |                       |           | 1/2" Ice | 1.20                                   | 2.70         | 0.07  |
|                    |                   |                |                             |                       |           | 1" Ice   | 1.40                                   | 3.40         | 0.10  |
| GPS                | В                 | From Face      | 4.00                        | 0.0000                | 61.00     | No Ice   | 1.00                                   | 1.00         | 0.01  |
| (A2 / Sprint)      |                   |                | 0.00                        |                       |           | 1/2" Ice | 1.50                                   | 1.50         | 0.01  |
|                    |                   |                | 0.00                        |                       |           | 1" Ice   | 2.00                                   | 2.00         | 0.02  |
| 3'4"x4" Pipe Mount | В                 | None           |                             | 0.0000                | 61.00     | No Ice   | 0.91                                   | 0.91         | 0.04  |
| (A2 / Sprint)      |                   |                |                             |                       |           | 1/2" Ice | 1.27                                   | 1.27         | 0.05  |
|                    |                   |                |                             |                       |           | 1" Ice   | 1.49                                   | 1.49         | 0.06  |
| 2'6"x4" Pipe Mount | Α                 | None           |                             | 0.0000                | 71.00     | No Ice   | 0.66                                   | 0.66         | 0.03  |
| (A3 / D&K-3)       |                   |                |                             |                       |           | 1/2" Ice | 0.91                                   | 0.91         | 0.04  |
|                    |                   |                |                             |                       |           | 1" Ice   | 1.09                                   | 1.09         | 0.05  |
| Dish Ice Shield    | Α                 | From Leg       | 0.50                        | 0.0000                | 75.00     | No Ice   | 4.00                                   | 4.00         | 0.20  |
| (A3 / D&K-3)       |                   |                | 0.00                        |                       |           | 1/2" Ice | 5.07                                   | 5.07         | 0.25  |

| Job     |                          | Page              |  |  |
|---------|--------------------------|-------------------|--|--|
|         | 180' Lattice Tower - CSP | 23 of 86          |  |  |
| Project |                          | Date              |  |  |
|         | Structural Analysis      | 16:48:32 03/29/18 |  |  |
| Client  |                          | Designed by       |  |  |
|         | Empire Telecom / EMP-004 | MCD               |  |  |

| From Leg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Description                | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement       |                    | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weigh |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------------|--------------------|----------------------------------------|---------------------------------------|-------|
| SC479-HFILDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                   |                | ft                          | o                     | ft              |                    | ft²                                    | ft²                                   | K     |
| (A4 / D&K-4)  10 / Standoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                   |                |                             |                       |                 | 1" Ice             | 6.14                                   | 6.14                                  | 0.30  |
| 10 Standoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | Α                 | From Leg       |                             | 0.0000                | 79.00 - 91.00   | No Ice             | 4.84                                   | 4.84                                  | 0.03  |
| 10   Standoff   A   None   0.0000   91.00   No lec   17.00   17.00   0.55     (A4 / D&K.+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (A4 / D&K-4)               |                   |                |                             |                       |                 |                    |                                        |                                       | 0.07  |
| March   Marc   |                            |                   |                | 0.00                        |                       |                 |                    |                                        |                                       | 0.11  |
| DB264-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | Α                 | None           |                             | 0.0000                | 91.00           |                    |                                        |                                       | 0.55  |
| DB264-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (A4 / D&K-4)               |                   |                |                             |                       |                 |                    |                                        |                                       |       |
| (A5 / D&K-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DD264 A                    | A .               | From I on      | 4.00                        | 0.0000                | 10000 0000      |                    |                                        |                                       |       |
| 4* Side Mount Standoff (A5 / D&K-11)  4* Side Mount Standoff (A5 / D&K-11)  10*6"x4" Pipe Mount (C None 0.0000 106.00 No Ice 2.72 2.72 0.00 106.00 No Ice 4.91 4.91 0.05 17" Ice 4.91 4.91 0.05 17" Ice 5.62 5.62 0.15 17" Ice 5.62 5.62 5.62 0.15 17" Ice 5.62 5.62 5.62 0.15 17" Ice 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | A                 | From Leg       |                             | 0.0000                | 100.00 - 80.00  |                    |                                        |                                       |       |
| 4" Side Mount Standoff (A None (A5 / D&K-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (AD / D&K-11)              |                   |                |                             |                       |                 |                    |                                        |                                       |       |
| (AS / D&K-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4' Side Mount Standoff     | Δ                 | None           | 0.00                        | 0.000                 | 86.00           |                    |                                        |                                       |       |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | А                 | None           |                             | 0.0000                | 80.00           |                    |                                        |                                       |       |
| 10°6'*4" Pipe Mount   C   None   0.0000   106.00   No Ice   3.50   3.50   0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ID / Duit II)             |                   |                |                             |                       |                 |                    |                                        |                                       |       |
| A6 / D&K-12 / CSP-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10'6"x4" Pipe Mount        | С                 | None           |                             | 0.000                 | 106 00          |                    |                                        |                                       |       |
| 3" Dia 20' Omni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | _                 | - 1 - 1 - 1    |                             | 0.0000                | 100.00          |                    |                                        |                                       |       |
| 3" Dia 20' Omni (A7 / D&K-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                          |                   |                |                             |                       |                 |                    |                                        |                                       |       |
| (A7 / D&K-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3" Dia 20' Omni            | D                 | From Leg       | 6.00                        | 0.0000                | 127.00 - 107.00 |                    |                                        |                                       |       |
| 6' Side-Arm Mount (A7 / D&K-13)  PD128-1 C From Leg 10.00 0.0000 128.00 - 121.00 No Ice 10.60 10.60 0.14 (A8 / D&K-14)  10' Standoff C None 0.000 121.00 No Ice 1.00 17.00 0.05 (A8 / D&K-14)  10' Standoff C None 0.000 121.00 No Ice 1.00 17.00 0.55 (A8 / D&K-14)  11' Ice 2.00 2.00 2.00 0.28 (A8 / D&K-14)  10' Standoff C None 0.000 121.00 No Ice 1.00 17.00 0.55 (A8 / D&K-14)  10' Standoff C None 0.000 121.00 No Ice 1.00 17.00 0.55 (A8 / D&K-14)  10' Standoff C None 0.000 121.00 No Ice 1.00 17.00 0.55 (A8 / D&K-14)  10' Standoff C None 0.000 121.00 No Ice 1.00 17.00 0.55 (A8 / D&K-14)  11' Ice 27.00 27.00 0.95 (A9 - D&K-15)  12' Omni Antenna D From Leg 6.00 0.0000 116.00 - 106.00 No Ice 5.06 5.06 0.02 (A9 - D&K-15)  12' Comni Antenna D None 0.000 106.00 No Ice 5.06 5.06 0.03 (A9 - D&K-15)  12' Ice 15.40 15.40 0.01 17' Ice 8.04 8.04 0.11 (A9 - D&K-15)  12' Ice 15.40 15.40 0.21 17' Ice 12.66 5.24 0.51 17' Ice 16.41 6.81 0.61 17' I | (A7 / D&K-13)              |                   | Ü              |                             |                       |                 |                    |                                        |                                       | 0.10  |
| (A7 / D&K-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                   |                |                             |                       |                 |                    |                                        |                                       | 0.14  |
| PD128-1 C From Leg 10.00 0.0000 128.00 - 121.00 No Ice 1.00 1.00 0.001 (A8 / D&K-14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6' Side-Arm Mount          | D                 | None           |                             | 0.0000                | 107.00          | No Ice             |                                        |                                       | 0.14  |
| PD128-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (A7 / D&K-13)              |                   |                |                             |                       |                 | 1/2" Ice           | 15.40                                  | 15.40                                 | 0.21  |
| (A8 / D&K-14)  (A8 / D&K-14)  (A8 / D&K-14)  (A8 / D&K-14)  (C None  (A8 / D&K-14)  (A8 / D&K-14)  (A8 / D&K-14)  (A8 / D&K-14)  (C None  (A8 / D&K-14)  (A9 - D&K-15)  (C None  (A9 - D&K-15)  (A9 - D&K-15  (A9 - D&K-15 |                            |                   |                |                             |                       |                 | 1" Ice             |                                        |                                       | 0.28  |
| 10   Standoff   C   None     0.000   121.00   No ice   17.00   17.00   0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | C                 | From Leg       |                             | 0.0000                | 128.00 - 121.00 | No Ice             |                                        | 1.00                                  | 0.01  |
| 10" Standoff (A8 / D&K-14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (A8 / D&K-14)              |                   |                |                             |                       |                 |                    |                                        |                                       | 0.02  |
| 1/2"   Ice   22.00   22.00   0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | _                 |                | 0.00                        |                       |                 |                    |                                        |                                       | 0.02  |
| 12   Omni Antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | С                 | None           |                             | 0.0000                | 121.00          |                    |                                        |                                       | 0.55  |
| 12' Omni Antenna (A9 - D&K-15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (A8 / D&K-14)              |                   |                |                             |                       |                 |                    |                                        |                                       |       |
| (A9 - D&K-15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 121.0                      |                   |                |                             | 0.0000                | 11.00 10.00     |                    |                                        |                                       |       |
| 6' Side-Arm Mount D None 0.000 106.00 No Ice 10.60 10.60 0.14 (A9 - D&K-15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | D                 | From Leg       |                             | 0.0000                | 116.00 - 106.00 |                    |                                        |                                       |       |
| 6' Side-Arm Mount (A9 - D&K-15)  EUSF10-U A From Leg 0.50 0.0000 122.00 No Ice 10.60 15.40 0.21 1" Ice 20.20 20.20 0.28 0.000 17.2" Ice 12.66 5.24 0.51 0.60 17.2" Ice 12.66 5.24 0.51 0.00 0.00 0.00 17.2" Ice 12.66 5.24 0.51 0.00 0.00 0.00 17.2" Ice 12.66 5.24 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                            | (A9 - D&K-15)              |                   |                |                             |                       |                 |                    |                                        |                                       |       |
| (A9 - D&K-15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6' Side-Arm Mount          | D                 | None           | 0.00                        | 0.0000                | 106.00          |                    |                                        |                                       |       |
| EUSF10-U A From Leg 0.50 0.0000 122.00 No Ice 8.91 3.67 0.41    T-Mobile / D&K 16-24) 0.00 122.00 No Ice 8.91 3.67 0.41    EUSF10-U D From Leg 0.50 0.0000 122.00 No Ice 8.91 3.67 0.41    T-Mobile / D&K 16-24) 0.00 122.00 No Ice 8.91 3.67 0.41    EUSF10-U D From Leg 0.50 0.0000 122.00 No Ice 8.91 3.67 0.41    T-Mobile / D&K 16-24) 0.00 11/2" Ice 12.66 5.24 0.51    EUSF10-U B From Leg 0.50 0.0000 122.00 No Ice 8.91 3.67 0.41    T-Mobile / D&K 16-24) 0.00 122.00 No Ice 8.91 3.67 0.41    T-Mobile / D&K 16-24) 0.00 122.00 No Ice 8.91 3.67 0.41    T-Mobile / D&K 16-24) 0.00 122.00 No Ice 8.91 3.67 0.41    AIR B2A/B4P A From Leg 1.00 0.0000 122.00 No Ice 6.42 4.22 0.08    T-Mobile / D&K 16-24) 1/2" Ice 6.86 4.64 0.12    T-Mobile / D&K 16-24) 1/2" Ice 6.86 4.64 0.12    T-Mobile / D&K 16-24) 2.00 1/2" Ice 6.86 4.64 0.12    T-Mobile / D&K 16-24) 2.00    T-Mobile / D&K 16-24) 2.00    T-Mobile / D&K 16-24) 3.00 0.0000 122.00 No Ice 6.42 4.22 0.08    T-Mobile / D&K 16-24) 3.00 0.0000 122.00 No Ice 6.42 4.22 0.08    T-Mobile / D&K 16-24) 3.00 0.0000 122.00 No Ice 6.42 4.22 0.08    T-Mobile / D&K 16-24) 3.00 0.0000 122.00 No Ice 6.42 4.22 0.08    T-Mobile / D&K 16-24) 3.00 0.0000 122.00 No Ice 6.42 4.22 0.08    T-Mobile / D&K 16-24) 3.00 0.0000 122.00 No Ice 6.42 4.22 0.08    T-Mobile / D&K 16-24) 3.00 0.0000 122.00 No Ice 6.42 4.22 0.08    T-Mobile / D&K 16-24) 3.00 0.0000 122.00 No Ice 1.00 1.00 0.01    T-Mobile / D&K 16-24) 3.00 0.000 122.00 No Ice 1.00 1.00 0.01    T-Mobile / D&K 16-24) 3.00 0.000 122.00 No Ice 1.00 1.00 0.01    T-Mobile / D&K 16-24) 3.00 0.000 122.00 No Ice 1.00 1.00 0.01    T-Mobile / D&K 16-24) 3.00 0.000 122.00 No Ice 1.00 1.00 0.01    T-Mobile / D&K 16-24) 3.00 0.000 122.00 No Ice 1.00 1.00 0.01    T-Mobile / D&K 16-24) 3.00 0.000 122.00 No Ice 1.00 1.00 0.01    T-Mobile / D&K 16-24) 3.00 0.000 122.00 No Ice 1.00 1.00 0.01    T-Mobile / D&K 16-24) 3.00 0.000 122.00 No Ice 1.00 1.00 0.01    T-Mobile / D&K 16-24) 3.00 0.000 122.00 No Ice 1.00 1.00 0.01    T-Mobile / D&K 16-24) 3.00 0.000 0.0000 122.00  |                            | D                 | None           |                             | 0.0000                | 100.00          |                    |                                        |                                       |       |
| EUSF10-U A From Leg 0.50 0.0000 122.00 No Ice 8.91 3.67 0.41 (T-Mobile / D&K 16-24) 0.00 172" Ice 12.66 5.24 0.51 0.00 172" Ice 16.41 6.81 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (AS - DER-13)              |                   |                |                             |                       |                 |                    |                                        |                                       |       |
| T-Mobile   D&K 16-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EUSF10-U                   | Δ                 | From Leg       | 0.50                        | 0.0000                | 122.00          |                    |                                        |                                       |       |
| EUSF10-U D From Leg 0.50 0.0000 122.00 No Ice 8.91 3.67 0.41   T-Mobile / D&K 16-24) 0.00 17" Ice 12.66 5.24 0.51   EUSF10-U B From Leg 0.50 0.0000 122.00 No Ice 8.91 3.67 0.41   T-Mobile / D&K 16-24) 0.00 17" Ice 16.41 6.81 0.61   EUSF10-U B From Leg 0.50 0.0000 122.00 No Ice 8.91 3.67 0.41   T-Mobile / D&K 16-24) 0.00 17" Ice 12.66 5.24 0.51   0.00 17" Ice 12.66 5.24 0.51   1.00 0.00 17" Ice 6.86 4.64 0.12   0.00 17" Ice 6.86 4.64 0.12   1.00 0.00 17" Ice 6.86 4.64 0.12   0.00 17" Ice 6.86 4.64  |                            | 11                | 110m Log       |                             | 0.0000                | 122.00          |                    |                                        |                                       |       |
| EUSF10-U D From Leg 0.50 0.0000 122.00 No Ice 8.91 3.67 0.41 T-Mobile / D&K 16-24) 0.00 1/2" Ice 12.66 5.24 0.51  EUSF10-U B From Leg 0.50 0.0000 122.00 No Ice 8.91 3.67 0.41  T-Mobile / D&K 16-24) 0.00 1/2" Ice 12.66 5.24 0.51  EUSF10-U B From Leg 0.50 0.0000 122.00 No Ice 8.91 3.67 0.41  T-Mobile / D&K 16-24) 0.00 1/2" Ice 12.66 5.24 0.51  AIR B2A/B4P A From Leg 1.00 0.0000 122.00 No Ice 6.42 4.22 0.08  T-Mobile / D&K 16-24) 1/2" Ice 6.86 4.64 0.12  0.00 1" Ice 7.30 5.06 0.17  AIR B2A/B4P B From Leg 1.00 0.0000 122.00 No Ice 6.42 4.22 0.08  T-Mobile / D&K 16-24) 2.00 1/2" Ice 6.86 4.64 0.12  T-Mobile / D&K 16-24) 1/2" Ice 6.86 4.64 0.12  0.00 1" Ice 7.30 5.06 0.17  AIR B2A/B4P D From Leg 1.00 0.0000 122.00 No Ice 6.42 4.22 0.08  T-Mobile / D&K 16-24) 2.00 1/2" Ice 6.86 4.64 0.12  0.00 1" Ice 7.30 5.06 0.17  AIR B2A/B4P D From Leg 1.00 0.0000 122.00 No Ice 6.42 4.22 0.08  T-Mobile / D&K 16-24) 2.00 1/2" Ice 6.86 4.64 0.12  0.00 1" Ice 7.30 5.06 0.17  (2) TMA A From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01  T-Mobile / D&K 16-24) 0.00 1/2" Ice 1.50 1.50 0.02  0.00 1" Ice 2.00 2.00 0.03  (2) TMA B From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (- 11100110 - 20212 10 21) |                   |                |                             |                       |                 |                    |                                        |                                       |       |
| T-Mobile   D&K 16-24   0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EUSF10-U                   | D                 | From Leg       |                             | 0.0000                | 122.00          |                    |                                        |                                       |       |
| EUSF10-U B From Leg 0.50 0.0000 122.00 No Ice 8.91 3.67 0.41 (T-Mobile / D&K 16-24) 0.00 1/2" Ice 12.66 5.24 0.51 0.00 1/2" Ice 16.41 6.81 0.61 0.61 0.00 1/2" Ice 16.41 6.81 0.61 0.61 0.00 1/2" Ice 16.41 6.81 0.61 0.61 0.00 1/2" Ice 6.86 4.64 0.12 0.00 1/2" Ice 6.86 0.17 0.00 1/2" Ic |                            |                   |                |                             |                       |                 |                    |                                        |                                       |       |
| EUSF10-U B From Leg 0.50 0.0000 122.00 No Ice 8.91 3.67 0.41   T-Mobile / D&K 16-24) 0.00 1/2" Ice 12.66 5.24 0.51   0.00 1" Ice 16.41 6.81 0.61   AIR B2A/B4P A From Leg 1.00 0.0000 122.00 No Ice 6.42 4.22 0.08   T-Mobile / D&K 16-24) -2.00 1/2" Ice 6.86 4.64 0.12   0.00 1" Ice 7.30 5.06 0.17   AIR B2A/B4P B From Leg 1.00 0.0000 122.00 No Ice 6.42 4.22 0.08   T-Mobile / D&K 16-24) -2.00 1/2" Ice 6.86 4.64 0.12   0.00 1" Ice 7.30 5.06 0.17   AIR B2A/B4P D From Leg 1.00 0.0000 122.00 No Ice 6.42 4.22 0.08   T-Mobile / D&K 16-24) -2.00 1/2" Ice 6.86 4.64 0.12   0.00 1" Ice 7.30 5.06 0.17   AIR B2A/B4P D From Leg 1.00 0.0000 122.00 No Ice 6.42 4.22 0.08   T-Mobile / D&K 16-24) -2.00 1/2" Ice 6.86 4.64 0.12   0.00 1" Ice 7.30 5.06 0.17   (2) TMA A From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01   T-Mobile / D&K 16-24) 0.00 1/2" Ice 1.50 1.50 0.02   0.00 1" Ice 2.00 2.00 0.03   (2) TMA B From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01   0.00 1" Ice 2.00 2.00 0.03   (2) TMA B From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                          |                   |                |                             |                       |                 |                    |                                        |                                       |       |
| T-Mobile   D&K 16-24   0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EUSF10-U                   | В                 | From Leg       | 0.50                        | 0.0000                | 122.00          |                    |                                        |                                       |       |
| AIR B2A/B4P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T-Mobile / D&K 16-24)      |                   |                | 0.00                        |                       |                 |                    |                                        |                                       | 0.51  |
| T-Mobile / D&K 16-24)  AIR B2A/B4P  B  From Leg  1.00  0.000  1" Ice  7.30  1.00  1" Ice  7.30  5.06  0.17  AIR B2A/B4P  B  From Leg  1.00  0.000  1" Ice  7.30  5.06  0.17  AIR B2A/B4P  D  From Leg  1.00  0.000  1" Ice  7.30  5.06  0.17  AIR B2A/B4P  D  From Leg  1.00  0.0000  1" Ice  7.30  5.06  0.17  AIR B2A/B4P  D  From Leg  1.00  0.0000  1" Ice  7.30  5.06  0.17  AIR B2A/B4P  D  From Leg  1.00  0.0000  1" Ice  7.30  5.06  0.17  (2) TMA  A  From Leg  1.00  0.0000  1" Ice  7.30  5.06  0.17  (2) TMA  A  From Leg  1.00  0.0000  1" Ice  1.00  1/2" Ice  1/2" |                            |                   |                | 0.00                        |                       |                 | 1" Ice             |                                        | 6.81                                  | 0.61  |
| AIR B2A/B4P B From Leg 1.00 0.0000 122.00 No Ice 6.42 4.22 0.08 (T-Mobile / D&K 16-24) -2.00 1/2" Ice 6.86 4.64 0.12 0.00 1" Ice 7.30 5.06 0.17   AIR B2A/B4P D From Leg 1.00 0.0000 122.00 No Ice 6.42 4.22 0.08 (T-Mobile / D&K 16-24) -2.00 1/2" Ice 6.86 4.64 0.12 0.00 1/2" Ice 7.30 5.06 0.17 0.00 1/2" Ice  |                            | Α                 | From Leg       | 1.00                        | 0.0000                | 122.00          | No Ice             | 6.42                                   | 4.22                                  | 0.08  |
| AIR B2A/B4P B From Leg 1.00 0.0000 122.00 No Ice 6.42 4.22 0.08  T-Mobile / D&K 16-24) -2.00 1/2" Ice 6.86 4.64 0.12  0.00 1" Ice 7.30 5.06 0.17  AIR B2A/B4P D From Leg 1.00 0.0000 122.00 No Ice 6.42 4.22 0.08  T-Mobile / D&K 16-24) -2.00 1/2" Ice 6.86 4.64 0.12  0.00 1" Ice 7.30 5.06 0.17  0.00 1" Ice 7.30 5.06 0.17  (2) TMA A From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01  T-Mobile / D&K 16-24) 0.00 1/2" Ice 1.50 1.50 0.02  0.00 1" Ice 2.00 2.00 0.03  (2) TMA B From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T-Mobile / D&K 16-24)      |                   |                |                             |                       |                 | 1/2" Ice           | 6.86                                   | 4.64                                  | 0.12  |
| T-Mobile / D&K 16-24)  -2.00  0.00  11" Ice  7.30  5.06  0.17  AIR B2A/B4P  D From Leg  1.00  0.000  122.00  No Ice  6.42  4.22  0.08  T-Mobile / D&K 16-24)  -2.00  1/2" Ice  6.86  4.64  0.12  0.00  1" Ice  7.30  5.06  0.17  1/2" Ice  6.86  4.64  0.12  0.00  1" Ice  7.30  5.06  0.17  (2) TMA  A From Leg  1.00  0.000  1" Ice  7.30  1/2" Ice  1.00  1/2" Ice  1 |                            |                   |                |                             |                       |                 | 1" Ice             | 7.30                                   |                                       | 0.17  |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | В                 | From Leg       |                             | 0.0000                | 122.00          |                    |                                        |                                       | 0.08  |
| AIR B2A/B4P D From Leg 1.00 0.0000 122.00 No Ice 6.42 4.22 0.08 T-Mobile / D&K 16-24) -2.00 1/2" Ice 6.86 4.64 0.12 0.00 1" Ice 7.30 5.06 0.17 (2) TMA A From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01 T-Mobile / D&K 16-24) 0.00 1/2" Ice 1.50 1.50 0.02 0.00 1" Ice 2.00 2.00 0.03 (2) TMA B From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T-Mobile / D&K 16-24)      |                   |                |                             |                       |                 |                    |                                        |                                       | 0.12  |
| T-Mobile / D&K 16-24)  -2.00  0.00  1/2" Ice 6.86 4.64 0.12  0.00  1" Ice 7.30 5.06 0.17  (2) TMA  A From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01  T-Mobile / D&K 16-24)  0.00  1/2" Ice 1.50 1.50 0.02  0.00  1" Ice 2.00 2.00 0.03  (2) TMA  B From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATD DO A TO AT             | -                 |                |                             |                       |                 |                    |                                        |                                       | 0.17  |
| 0.00 1" Ice 7.30 5.06 0.17 (2) TMA A From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01 T-Mobile / D&K 16-24) 0.00 1/2" Ice 1.50 1.50 0.02 0.00 1" Ice 2.00 2.00 0.03 (2) TMA B From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | מ                 | From Leg       |                             | 0.0000                | 122.00          |                    |                                        |                                       | 0.08  |
| (2) TMA A From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01 T-Mobile / D&K 16-24) 0.00 1/2" Ice 1.50 1.50 0.02 0.00 1" Ice 2.00 2.00 0.03 (2) TMA B From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-Mobile / D&K 16-24)      |                   |                |                             |                       |                 |                    |                                        |                                       | 0.12  |
| T-Mobile / D&K 16-24) 0.00 1/2" Ice 1.50 1.50 0.02 0.00 1" Ice 2.00 2.00 0.03 (2) TMA B From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1) Th # A                 | A                 | Enom I         |                             | 0.0000                | 100.00          |                    |                                        |                                       |       |
| 0.00 1" Ice 2.00 2.00 0.03 (2) TMA B From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | Α                 | rrom Leg       |                             | 0.0000                | 122.00          |                    |                                        |                                       |       |
| (2) TMA B From Leg 1.00 0.0000 122.00 No Ice 1.00 1.00 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-1VLODITE / D&K 10-24)    |                   |                |                             |                       |                 |                    |                                        |                                       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2) TM A                   | Œ                 | From I ac      |                             | 0.0000                | 122.00          |                    |                                        |                                       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (T-Mobile / D&K 16-24)     | a                 | riom reg       | 0.00                        | 0.0000                | 122.00          | No Ice<br>1/2" Ice | 1.00                                   | 1.00                                  | 0.01  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                   |                |                             |                       |                 |                    |                                        |                                       |       |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 24 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Description                                    | Face<br>or | Offset<br>Type | Offsets:<br>Horz | Azimuth<br>Adjustment | Placement       |                    | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight       |
|------------------------------------------------|------------|----------------|------------------|-----------------------|-----------------|--------------------|----------------------------------------|---------------------------------------|--------------|
|                                                | Leg        |                | Lateral<br>Vert  | ·                     |                 |                    |                                        |                                       |              |
|                                                |            |                | ft<br>ft         | 0                     | ft              |                    | ft²                                    | ft²                                   | K            |
|                                                |            |                | ft               |                       |                 |                    |                                        |                                       |              |
|                                                |            |                | 0.00             |                       |                 | 1" Ice             | 2.00                                   | 2.00                                  | 0.03         |
| (2) TMA                                        | D          | From Leg       | 1.00             | 0.0000                | 122.00          | No Ice             | 1.00                                   | 1.00                                  | 0.01         |
| (T-Mobile / D&K 16-24)                         |            |                | 0.00             |                       |                 | 1/2" Ice           | 1.50                                   | 1.50                                  | 0.02         |
| A TO 2 TO        |            |                | 0.00             |                       |                 | 1" Ice             | 2.00                                   | 2.00                                  | 0.03         |
| AIR21 B4A B12P                                 | Α          | From Leg       | 1.00             | 0.0000                | 122.00          | No Ice             | 11.54                                  | 11.20                                 | 0.17         |
| (T-Mobile / D&K 16-24)                         |            |                | 2.00<br>0.00     |                       |                 | 1/2" Ice<br>1" Ice | 12.16<br>OTE                           | 12.63<br>13.73                        | 0.27<br>0.38 |
| AIR21 B4A B12P                                 | В          | From Leg       | 1.00             | 0.0000                | 122.00          | No Ice             | 11.54                                  | 11.20                                 | 0.38         |
| (T-Mobile / D&K 16-24)                         |            | 110111 1205    | 2.00             | 0.0000                | 122.00          | 1/2" Ice           | 12.16                                  | 12.63                                 | 0.27         |
| (,                                             |            |                | 0.00             |                       |                 | 1" Ice             | 12.79                                  | 13.73                                 | 0.38         |
| AIR21 B4A B12P                                 | D          | From Leg       | 1.00             | 0.0000                | 122.00          | No Ice             | 11.54                                  | 11.20                                 | 0.17         |
| (T-Mobile / D&K 16-24)                         |            |                | 2.00             |                       |                 | 1/2" Ice           | 12.16                                  | 12.63                                 | 0.27         |
|                                                |            |                | 0.00             |                       |                 | 1" Ice             | 12.79                                  | 13.73                                 | 0.38         |
| RRUS-11                                        | Α          | From Leg       | 1.00             | 0.0000                | 122.00          | No Ice             | 2.57                                   | 1.07                                  | 0.05         |
| (T-Mobile / D&K 16-24)                         |            |                | 2.00             |                       |                 | 1/2" Ice           | 2.76                                   | 1.21                                  | 0.07         |
| RRUS-11                                        | В          | From Leg       | 0.00<br>1.00     | 0.0000                | 122.00          | 1" Ice             | 2.97                                   | 1.36                                  | 0.09         |
| (T-Mobile / D&K 16-24)                         | Ь          | rioni Leg      | 2.00             | 0.0000                | 122.00          | No Ice<br>1/2" Ice | 2.57<br>2.76                           | 1.07<br>1.21                          | 0.05<br>0.07 |
| (1-Modile / Dack 10-24)                        |            |                | 0.00             |                       |                 | 1" Ice             | 2.97                                   | 1.36                                  | 0.07         |
| RRUS-11                                        | D          | From Leg       | 1.00             | 0.0000                | 122.00          | No Ice             | 2.57                                   | 1.07                                  | 0.05         |
| (T-Mobile / D&K 16-24)                         |            |                | 2.00             |                       |                 | 1/2" Ice           | 2.76                                   | 1.21                                  | 0.07         |
| · ·                                            |            |                | 0.00             |                       |                 | 1" Ice             | 2.97                                   | 1.36                                  | 0.09         |
| 2'6"x4" Pipe Mount                             | Α          | None           |                  | 0.0000                | 125.00          | No Ice             | 0.65                                   | 0.65                                  | 0.03         |
| (A10 / D&K-25)                                 |            |                |                  |                       |                 | 1/2" Ice           | 0.91                                   | 0.91                                  | 0.04         |
| D: 1 T   01: 11                                |            | _              |                  |                       |                 | 1" Ice             | 1.09                                   | 1.09                                  | 0.05         |
| Dish Ice Shield                                | Α          | From Leg       | 0.50             | 0.0000                | 130.00          | No Ice             | 4.00                                   | 4.00                                  | 0.20         |
| (A11 / D&K-26)                                 |            |                | 0.00<br>0.00     |                       |                 | 1/2" Ice           | 5.07                                   | 5.07                                  | 0.25         |
| BA1010                                         | С          | From Leg       | 6.00             | 0.0000                | 127.00 - 132.00 | 1" Ice<br>No Ice   | 6.14<br>1.55                           | 6.14<br>1.55                          | 0.30<br>0.01 |
| (A12 / D&K-27)                                 | C          | Tiom Log       | 0.00             | 0.0000                | 127.00 - 132.00 | 1/2" Ice           | 2.29                                   | 2.29                                  | 0.01         |
| (==== =================================        |            |                | 0.00             |                       |                 | 1" Ice             | 3.03                                   | 3.03                                  | 0.02         |
| BA1010                                         | С          | From Leg       | 6.00             | 0.0000                | 137.00 - 132.00 | No Ice             | 1.55                                   | 1.55                                  | 0.01         |
| (A14 / D&K-29)                                 |            |                | 0.00             |                       |                 | 1/2" Ice           | 2.29                                   | 2.29                                  | 0.01         |
|                                                |            |                | 0.00             |                       |                 | 1" Ice             | 3.03                                   | 3.03                                  | 0.02         |
| 432E-83I-01T TTA Unit                          | С          | From Leg       | 6.00             | 0.0000                | 132.00          | No Ice             | 2.85                                   | 0.97                                  | 0.03         |
| (A13 / D&K-28)                                 |            |                | 0.00             |                       |                 | 1/2" Ice           | 3.06                                   | 1.11                                  | 0.04         |
| 6! Cida Ama Maunt                              |            | Mana           | 0.00             | 0.0000                | 122.00          | 1" Ice             | 3.28                                   | 1.26                                  | 0.07         |
| 6' Side-Arm Mount<br>A12,13,14 / D&K-27,28,29) | С          | None           |                  | 0.0000                | 132.00          | No Ice<br>1/2" Ice | 10.60<br>15.40                         | 10.60                                 | 0.14         |
| 112,13,147 Dack-27,28,29)                      |            |                |                  |                       |                 | 1" Ice             | 20.20                                  | 15.40<br>20.20                        | 0.21<br>0.28 |
| 12' Omni Antenna                               | С          | From Leg       | 8.00             | 0.0000                | 152.00 - 140.50 |                    | 5.06                                   | 5.06                                  | 0.23         |
| (A15 / D&K-30)                                 | _          |                | 0.00             | 0.000                 | 10.00           | 1/2" Ice           | 6.54                                   | 6.54                                  | 0.07         |
| · ·                                            |            |                | 0.00             |                       |                 | 1" Ice             | 8.04                                   | 8.04                                  | 0.11         |
| 8' Side Arm Mount                              | С          | None           |                  | 0.0000                | 140.50          | No Ice             | 17.20                                  | 17.20                                 | 0.33         |
| (A15 / D&K-30)                                 |            |                |                  |                       |                 | 1/2" Ice           | 24.50                                  | 24.50                                 | 0.45         |
|                                                |            | _              |                  |                       |                 | 1" Ice             | 31.80                                  | 31.80                                 | 0.57         |
| DB222-A                                        | Α          | From Leg       | 4.00             | 0.0000                | 136.50          | No Ice             | 1.60                                   | 1.60                                  | 0.02         |
| (A16 / D&K-31)                                 |            |                | 0.00             |                       |                 | 1/2" Ice           | 2.88                                   | 2.88                                  | 0.02         |
| 4' Side Mount Standoff                         | Α          | None           | 0.00             | 0.0000                | 126.50          | 1" Ice             | 4.16                                   | 4.16                                  | 0.03         |
| (A16 / D&K-31)                                 | A          | NUNE           |                  | 0.0000                | 136.50          | No Ice<br>1/2" Ice | 2.72<br>4.91                           | 2.72<br>4.91                          | 0.05<br>0.09 |
| (IIIO, DOIL-31)                                |            |                |                  |                       |                 | 1" Ice             | 7.10                                   | 7.10                                  | 0.09         |
| Yagi ASP-816                                   | Α          | From Leg       | 6.00             | 0.0000                | 139.00          | No Ice             | 0.79                                   | 0.02                                  | 0.13         |
| (A17 / D&K-32)                                 | =          |                | 0.00             |                       |                 | 1/2" Ice           | 1.04                                   | 0.04                                  | 0.01         |
| ,                                              |            |                | 0.00             |                       |                 | 1" Ice             | 1.29                                   | 0.07                                  | 0.02         |
| 6' Side-Arm Mount                              | Α          | None           |                  | 0.0000                | 139.00          | No Ice             | 10.60                                  | 10.60                                 | 0.14         |
| (A17 / D&K-32)                                 |            |                |                  |                       |                 | 1/2" Ice           | 15.40                                  | 15.40                                 | 0.21         |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 25 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Description                                         | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustment | Placement       |                              | $C_AA_A$<br>Front       | C₁A₁<br>Side   | Weigh        |
|-----------------------------------------------------|-------------------|----------------|-------------------------------------|-----------------------|-----------------|------------------------------|-------------------------|----------------|--------------|
|                                                     |                   |                | ft<br>ft<br>ft                      | ۰                     | ft              |                              | ft²                     | ft²            | K            |
|                                                     |                   |                |                                     |                       |                 | 1" Ice                       | 20.20                   | 20.20          | 0.28         |
| 6' Side-Arm Mount<br>(A18 / D&K-33)                 | D                 | None           |                                     | 0.0000                | 139.00          | No Ice<br>1/2" Ice<br>1" Ice | 10.60<br>15.40<br>20.20 | 10.60<br>15.40 | 0.14         |
| *** Following Are D&K NOT Inventoried Appurtenances |                   |                |                                     |                       |                 | 1 ICE                        | 20.20                   | 20.20          | 0.28         |
| DB408-B                                             | D                 | From Leg       | 6.00                                | 0.0000                | 161.00          | No Ice                       | 1.65                    | 1.65           | 0.02         |
| (A19)                                               |                   | Trom Lug       | 0.00                                | 0.0000                | 101.00          | 1/2" Ice                     | 2.61                    | 2.61           | 0.02         |
| ()                                                  |                   |                | 0.00                                |                       |                 | 1" Ice                       | 3.60                    | 3.60           | 0.05         |
| (2) 6' Side Mount Standoff                          | D                 | None           |                                     | 0.0000                | 161.00          | No Ice                       | 1.40                    | 0.13           | 0.01         |
| (A19)                                               |                   |                |                                     |                       |                 | 1/2" Ice                     | 1.56                    | 0.21           | 0.02         |
| DA1010 2                                            | -                 |                | 0.50                                | 0.0000                | 160.00          | 1" Ice                       | 1.73                    | 0.30           | 0.02         |
| BA1010-2<br>(A20)                                   | С                 | From Leg       | 2.50                                | 0.0000                | 169.00          | No Ice                       | 1.39                    | 1.39           | 0.02         |
| (A20)                                               |                   |                | 0.00<br>0.00                        |                       |                 | 1/2" Ice<br>1" Ice           | 1.74<br>2.12            | 1.74<br>2.12   | 0.03<br>0.05 |
| 5' T-Frame Sector Mount (1)                         | С                 | None           | 0.00                                | 0.0000                | 169.00          | No Ice                       | 15.00                   | 15.00          | 0.50         |
| (A20)                                               |                   | 110110         |                                     | 0.0000                | 105.00          | 1/2" Ice                     | 20.60                   | 20.60          | 0.65         |
| ,                                                   |                   |                |                                     |                       |                 | 1" Ice                       | 26.20                   | 26.20          | 0.80         |
| DB586-Y                                             | C                 | From Leg       | 3.00                                | 0.0000                | 170.00          | No Ice                       | 1.01                    | 1.01           | 0.01         |
| (A21)                                               |                   |                | 0.00                                |                       |                 | 1/2" Ice                     | 1.28                    | 1.28           | 0.02         |
|                                                     |                   |                | 0.00                                |                       |                 | 1" Ice                       | 1.56                    | 1.56           | 0.03         |
| 10'6"x4" Pipe Mount                                 | Α                 | From Leg       | 0.50                                | 0.0000                | 170.00          | No Ice                       | 3.39                    | 3.39           | 0.11         |
| (A22)                                               |                   |                | 0.00                                |                       |                 | 1/2" Ice                     | 5.62                    | 5.62           | 0.15         |
| SC479-HF1LDF                                        | D                 | From Leg       | 0.00<br>2.00                        | 0.0000                | 168.00 - 180.00 | 1" Ice<br>No Ice             | 6.25<br>5.06            | 6.25<br>5.06   | 0.19         |
| (D00I-E5764)                                        | D                 | From Leg       | 0.00                                | 0.0000                | 108.00 - 180.00 | 1/2" Ice                     | 6.54                    | 6.54           | 0.03<br>0.07 |
| (A23)                                               |                   |                | 0.00                                |                       |                 | 1" Ice                       | 8.04                    | 8.04           | 0.11         |
| 5' T-Frame Sector Mount (1)                         | D                 | From Face      | 2.00                                | 0.0000                | 180.00          | No Ice                       | 15.00                   | 15.00          | 0.50         |
| (A23,24,30,31)                                      |                   |                | 0.00                                |                       |                 | 1/2" Ice                     | 20.60                   | 20.60          | 0.65         |
|                                                     |                   |                | 0.00                                |                       |                 | 1" Ice                       | 26.20                   | 26.20          | 0.80         |
| SC479-HF1LDF                                        | D                 | From Face      | 2.00                                | 0.0000                | 168.00 - 180.00 | No Ice                       | 5.06                    | 5.06           | 0.03         |
| (D00I-E5764)                                        |                   |                | 0.00                                |                       |                 | 1/2" Ice                     | 6.54                    | 6.54           | 0.07         |
| (A24)                                               |                   |                | 0.00                                | 0.0000                | 172.00          | 1" Ice                       | 8.04                    | 8.04           | 0.11         |
| 10'6"x4" Pipe Mount                                 | С                 | From Leg       | 0.50                                | 0.0000                | 173.00          | No Ice                       | 3.38                    | 3.38           | 0.11         |
| (A25)                                               |                   |                | 0.00<br>0.00                        |                       |                 | 1/2" Ice                     | 5.62                    | 5.62           | 0.15         |
| SC479-HF1LDF                                        | Α                 | From Leg       | 3.00                                | 0.0000                | 168.00 - 180.00 | 1" Ice<br>No Ice             | 6.25<br>5.06            | 6.25<br>5.06   | 0.19<br>0.03 |
| (D00I-E5764)                                        | A                 | Trom Exg       | 0.00                                | 0.0000                | 108.00 - 180.00 | 1/2" Ice                     | 6.54                    | 6.54           | 0.03         |
| (A26)                                               |                   |                | 0.00                                |                       |                 | 1" Ice                       | 8.04                    | 8.04           | 0.11         |
| 5' T-Frame Sector Mount (1)                         | В                 | From Face      | 2.00                                | 0.0000                | 180.00          | No Ice                       | 15.00                   | 15.00          | 0.50         |
| (A26,27,28,29)                                      |                   |                | 0.00                                |                       |                 | 1/2" Ice                     | 20.60                   | 20.60          | 0.65         |
|                                                     |                   |                | 0.00                                |                       |                 | 1" Ice                       | 26.20                   | 26.20          | 0.80         |
| TMA 432-83H-01T - Future                            | Α                 | From Leg       | 2.00                                | 0.0000                | 181.00          | No Ice                       | 1.63                    | 0.95           | 0.03         |
| Decom.                                              |                   |                | 0.00                                |                       |                 | 1/2" Ice                     | 1.81                    | 1.09           | 0.04         |
| (A27)                                               | Α.                | From I on      | 0.00                                | 0.0000                | 192.00          | 1" Ice                       | 1.99                    | 1.24           | 0.05         |
| SC479-HF1LDF<br>(D00-E5764)                         | Α                 | From Leg       | 3.00<br>0.00                        | 0.0000                | 183.00          | No Ice<br>1/2" Ice           | 5.06<br>6.54            | 5.06<br>6.54   | 0.03         |
| (A28)                                               |                   |                | 0.00                                |                       |                 | 1" Ice                       | 8.04                    | 8.04           | 0.07<br>0.11 |
| ANT150D                                             | Α                 | From Leg       | 1.00                                | 0.0000                | 183.00          | No Ice                       | 6.56                    | 2.02           | 0.11         |
| (A29a)                                              |                   |                | 0.00                                | 0.000                 |                 | 1/2" Ice                     | 6.95                    | 2.90           | 0.12         |
| , ,                                                 |                   |                | 0.00                                |                       |                 | 1" Ice                       | 7.34                    | 3.79           | 0.17         |
| DB222                                               | Α                 | From Leg       | 1.50                                | 0.0000                | 183.00          | No Ice                       | 1.60                    | 1.60           | 0.02         |
| (A29b)                                              |                   |                | 0.00                                |                       |                 | 1/2" Ice                     | 2.88                    | 2.88           | 0.02         |
|                                                     |                   |                | 0.00                                |                       |                 | 1" Ice                       | 4.16                    | 4.16           | 0.03         |
| SC479-HF1LDF                                        | D                 | From Leg       | 2.00                                | 0.0000                | 183.00          | No Ice                       | 5.06                    | 5.06           | 0.03         |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 26 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Description                                    | Face<br>or | Offset<br>Type | Offsets:<br>Horz | Azimuth<br>Adjustment | Placement |                    | $C_A A_A$<br>Front | C₄A₄<br>Side   | Weight       |
|------------------------------------------------|------------|----------------|------------------|-----------------------|-----------|--------------------|--------------------|----------------|--------------|
|                                                | Leg        | ••             | Lateral<br>Vert  | •                     |           |                    |                    |                |              |
|                                                |            |                | ft               | 0                     | ft        |                    | ft²                | $ft^2$         | K            |
|                                                |            |                | ft<br>ft         |                       |           |                    |                    |                |              |
| (A30)                                          |            |                | 0.00             |                       |           | 1" Ice             | 8.04               | 8.04           | 0.11         |
| ALR8-0                                         | C          | From Leg       | 1.00             | 0.0000                | 183.00    | No Ice             | 3.99               | 3.99           | 0.05         |
| (A31)                                          |            |                | 0.00             |                       |           | 1/2" Ice           | 8.21               | 8.21           | 0.11         |
|                                                | _          |                | 0.00             |                       |           | 1" Ice             | 8.94               | 8.94           | 0.17         |
| Lightning Rod 2"x15"                           | С          | None           |                  | 0.0000                | 185.00    | No Ice             | 3.00               | 3.00           | 0.08         |
| (A32)                                          |            |                |                  |                       |           | 1/2" Ice           | 4.53               | 4.53           | 0.10         |
| 10161h.411 Di 14                               |            | F I            | 0.50             | 0.0000                | 150.00    | 1" Ice             | 6.07               | 6.07           | 0.14         |
| 10'6"x4" Pipe Mount                            | Α          | From Leg       | 0.50             | 0.0000                | 170.00    | No Ice             | 3.39               | 3.39           | 0.11         |
| (A33)                                          |            |                | 0.00             |                       |           | 1/2" Ice           | 5.62               | 5.62           | 0.15         |
| 12' Wireless Frame                             | Α          | From Loc       | 0.00<br>1.00     | 0.0000                | 106.00    | 1" Ice             | 6.25               | 6.25           | 0.19         |
| (Sprint / D&K 5-10)                            | А          | From Leg       | 0.00             | 0.0000                | 105.00    | No Ice<br>1/2" Ice | 11.07              | 11.07          | 0.24         |
| (Sprint / D&K 3-10)                            |            |                | 0.00             |                       |           | 1" Ice             | 15.53<br>19.99     | 15.53<br>19.99 | 0.35         |
| 12' Wireless Frame                             | В          | From Leg       | 1.00             | 0.0000                | 105.00    | No Ice             | 19.99              | 11.07          | 0.45<br>0.24 |
| (Sprint / D&K 5-10)                            | В          | Trom Leg       | 0.00             | 0.0000                | 105.00    | 1/2" Ice           | 15.53              | 15.53          | 0.24         |
| (optimity socies 10)                           |            |                | 0.00             |                       |           | 1" Ice             | 19.99              | 19.99          | 0.33         |
| 12' Wireless Frame                             | С          | From Leg       | 1.00             | 0.0000                | 105.00    | No Ice             | 11.07              | 11.07          | 0.43         |
| (Sprint / D&K 5-10)                            | _          |                | 0.00             | 0.0000                | 105.00    | 1/2" Ice           | 15.53              | 15.53          | 0.24         |
| (                                              |            |                | 0.00             |                       |           | 1" Ice             | 19.99              | 19.99          | 0.45         |
| APXVSPP18-C                                    | Α          | From Leg       | 1.50             | 0.0000                | 105.00    | No Ice             | 8.26               | 5.28           | 0.06         |
| (Sprint / D&K 5-10)                            |            |                | -5.00            |                       |           | 1/2" Ice           | 8.81               | 5.74           | 0.11         |
| ,                                              |            |                | 0.00             |                       |           | 1" Ice             | 9.36               | 6.20           | 0.16         |
| APXVSPP18-C                                    | В          | From Leg       | 1.50             | 0.0000                | 105.00    | No Ice             | 8.26               | 5.28           | 0.06         |
| (Sprint / D&K 5-10)                            |            | •              | -5.00            |                       |           | 1/2" Ice           | 8.81               | 5.74           | 0.11         |
|                                                |            |                | 0.00             |                       |           | 1" Ice             | 9.36               | 6.20           | 0.16         |
| APXVSPP18-C                                    | C          | From Leg       | 1.50             | 0.0000                | 105.00    | No Ice             | 8.26               | 5.28           | 0.06         |
| (Sprint / D&K 5-10)                            |            |                | -5.00            |                       |           | 1/2" Ice           | 8.81               | 5.74           | 0.11         |
|                                                |            |                | 0.00             |                       |           | 1" Ice             | 9.36               | 6.20           | 0.16         |
| 800 RRH (800 MHz) Unit                         | Α          | From Leg       | 1.50             | 0.0000                | 105.00    | No Ice             | 6.34               | 5.58           | 0.06         |
| (Sprint / D&K 5-10)                            |            |                | 0.00             |                       |           | 1/2" Ice           | 6.72               | 5.94           | 0.11         |
|                                                | _          |                | 2.50             |                       |           | 1" Ice             | 7.10               | 6.31           | 0.16         |
| 800 RRH (800 MHz) Unit                         | В          | From Leg       | 1.50             | 0.0000                | 105.00    | No Ice             | 6.34               | 5.58           | 0.06         |
| (Sprint / D&K 5-10)                            |            |                | 0.00             |                       |           | 1/2" Ice           | 6.72               | 5.94           | 0.11         |
| 900 P.D.H. (900 P.M.) 11 %                     | -          | Б .            | 2.50             | 0.0000                | 10000     | 1" Ice             | 7.10               | 6.31           | 0.16         |
| 800 RRH (800 MHz) Unit                         | С          | From Leg       | 1.50             | 0.0000                | 105.00    | No Ice             | 6.34               | 5.58           | 0.06         |
| (Sprint / D&K 5-10)                            |            |                | 0.00             |                       |           | 1/2" Ice           | 6.72               | 5.94           | 0.11         |
| 000 PPH (1000 MH=) H=:4                        | A          | From I or      | 2.50             | 0.0000                | 105.00    | I" Ice             | 7.10               | 6.31           | 0.16         |
| 900 RRH (1900 MHz) Unit<br>(Sprint / D&K 5-10) | Α          | From Leg       | 1.50<br>0.00     | 0.0000                | 105.00    | No Ice             | 2.58               | 2.54           | 0.06         |
| (Sprint / D&K 3-10)                            |            |                | -2.50            |                       |           | 1/2" Ice<br>1" Ice | 2.79               | 2.75<br>2.97   | 0.09         |
| 900 RRH (1900 MHz) Unit                        | В          | From Leg       | 1.50             | 0.0000                | 105.00    | No Ice             | 3.01               |                | 0.12         |
| (Sprint / D&K 5-10)                            | Ь          | Prom Leg       | 0.00             | 0.0000                | 105.00    | 1/2" Ice           | 2.58<br>2.79       | 2.54<br>2.75   | 0.06<br>0.09 |
| (opinit, book 5 10)                            |            |                | -2.50            |                       |           | I" Ice             | 3.01               | 2.73           | 0.09         |
| 900 RRH (1900 MHz) Unit                        | С          | From Leg       | 1.50             | 0.0000                | 105.00    | No Ice             | 2.58               | 2.54           | 0.12         |
| (Sprint / D&K 5-10)                            | ·          | riom Log       | 0.00             | 0.0000                | 105.00    | 1/2" Ice           | 2.79               | 2.75           | 0.00         |
| (-F)                                           |            |                | -2.50            |                       |           | 1" Ice             | 3.01               | 2.97           | 0.03         |
| *** Empire EMP-004<br>Proposed Inventory       |            |                | 2.50             |                       |           | 1 100              | 5.01               | 2.51           | 0.12         |
| T-Frame                                        | Α          | From Leg       | 0.50             | 0.0000                | 163.00    | No Ice             | 10.20              | 10.20          | 0.40         |
| (AT&T)                                         |            | _              | 0.00             |                       |           | 1/2" Ice           | 16.20              | 16.20          | 0.60         |
| ,                                              |            |                | 0.00             |                       |           | 1" Ice             | 22.20              | 22.20          | 0.80         |
| T-Frame                                        | В          | From Leg       | 0.50             | 0.0000                | 163.00    | No Ice             | 10.20              | 10.20          | 0.40         |
| (AT&T)                                         |            |                | 0.00             |                       |           | 1/2" Ice           | 16.20              | 16.20          | 0.60         |
|                                                |            |                | 0.00             |                       |           | 1" Ice             | 22.20              | 22.20          | 0.80         |
| T-Frame                                        | C          | From Leg       | 0.50             | 0.0000                | 163.00    | No Ice             | 10.20              | 10.20          | 0.40         |
| (AT&T)                                         |            |                | 0.00             |                       |           | 1/2" Ice           | 16.20              | 16.20          | 0.60         |
|                                                |            |                | 0.00             |                       |           | I" Ice             | 22.20              | 22.20          | 0.80         |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 27 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | Envis T.I. (EUD 004      | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Description                 | Face<br>or | Offset<br>Type | Offsets:<br>Horz | Azimuth<br>Adjustment | Placement | 14.5               | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weight       |
|-----------------------------|------------|----------------|------------------|-----------------------|-----------|--------------------|--------------------|-------------------|--------------|
|                             | Leg        |                | Lateral          |                       |           |                    |                    |                   |              |
|                             |            |                | Vert<br>ft       | 0                     | ft        |                    | ft²                | ft²               | K            |
|                             |            |                | ft<br>ft         |                       | ,.        |                    | J.                 | Ji                | A            |
| 7770.00                     | Α          | From Leg       | 2.00             | 0.0000                | 163.00    | No Ice             | 5.53               | 4.01              | 0.05         |
| (AT&T)                      |            |                | 4.00             |                       |           | 1/2" Ice           | 5.89               | 4.64              | 0.10         |
| (2) I CD 21001 D' 1         |            |                | 0.00             |                       |           | 1" Ice             | 6.26               | 5.28              | 0.15         |
| (2) LGP 21901 Diplexer Unit | Α          | From Leg       | 2.00             | 0.0000                | 163.00    | No Ice             | 0.23               | 0.12              | 0.01         |
| (AT&T)                      |            |                | 4.00<br>0.00     |                       |           | 1/2" Ice           | 0.30               | 0.17              | 0.01         |
| Kathrein 800-10965 Panel    | Α          | From Leg       | 2.00             | 0.0000                | 163.00    | 1" Ice<br>No Ice   | 0.38<br>13.81      | 0.22              | 0.01         |
| Antenna                     | **         | Trom Log       | -4.00            | 0.0000                | 103.00    | 1/2" Ice           | 14.35              | 5.83<br>6.32      | 0.11<br>0.19 |
| (AT&T)                      |            |                | 0.00             |                       |           | 1" Ice             | 14.89              | 6.82              | 0.19         |
| QS66512-3 Quintel Panel     | Α          | From Leg       | 2.00             | 0.0000                | 163.00    | No Ice             | 8.13               | 8.22              | 0.13         |
| (AT&T)                      |            | Ū              | 0.00             |                       |           | 1/2" Ice           | 8.59               | 9.19              | 0.20         |
|                             |            |                | 0.00             |                       |           | 1" Ice             | 9.05               | 10.02             | 0.28         |
| RRUS-11                     | Α          | From Leg       | 2.00             | 0.0000                | 163.00    | No Ice             | 2.57               | 1.07              | 0.05         |
| (AT&T)                      |            |                | 0.00             |                       |           | 1/2" Ice           | 2.76               | 1.21              | 0.07         |
| D DGC 40 40 40 40           |            |                | 0.00             |                       |           | 1" Ice             | 2.97               | 1.36              | 0.09         |
| Raycap DC6-48-60-18-8F      | Α          | From Leg       | 2.00             | 0.0000                | 163.00    | No Ice             | 1.27               | 1.27              | 0.05         |
| DC Power Surge Protection   |            |                | 0.00             |                       |           | 1/2" Ice           | 1.46               | 1.46              | 0.07         |
| (AT&T)<br>7770.00           | В          | Enome I am     | 0.00             | 0.0000                | 1.62.00   | 1" Ice             | 1.66               | 1.66              | 0.08         |
| (AT&T)                      | ь          | From Leg       | 2.00<br>4.00     | 0.0000                | 163.00    | No Ice             | 5.53               | 4.01              | 0.05         |
| (Al&I)                      |            |                | 0.00             |                       |           | 1/2" Ice<br>1" Ice | 5.89               | 4.64              | 0.10         |
| (2) LGP 21901 Diplexer Unit | В          | From Leg       | 2.00             | 0.0000                | 163.00    | No Ice             | 6.26<br>0.23       | 5.28<br>0.12      | 0.15         |
| (AT&T)                      | -          | rioin Dog      | 4.00             | 0.0000                | 105.00    | 1/2" Ice           | 0.23               | 0.12              | 0.01         |
| ()                          |            |                | 0.00             |                       |           | 1" Ice             | 0.38               | 0.17              | 0.01<br>0.01 |
| Kathrein 800-10965 Panel    | В          | From Leg       | 2.00             | 0.0000                | 163.00    | No Ice             | 13.81              | 5.83              | 0.01         |
| Antenna                     |            |                | -4.00            | 0.0000                | 105.00    | 1/2" Ice           | 14.35              | 6.32              | 0.11         |
| (AT&T)                      |            |                | 0.00             |                       |           | 1" Ice             | 14.89              | 6.82              | 0.27         |
| QS66512-3 Quintel Panel     | В          | From Leg       | 2.00             | 0.0000                | 163.00    | No Ice             | 8.13               | 8.22              | 0.13         |
| (AT&T)                      |            | _              | 0.00             |                       |           | 1/2" Ice           | 8.59               | 9.19              | 0.20         |
|                             |            |                | 0.00             |                       |           | 1" Ice             | 9.05               | 10.02             | 0.28         |
| RRUS-11                     | В          | From Leg       | 2.00             | 0.0000                | 163.00    | No Ice             | 2.57               | 1.07              | 0.05         |
| (AT&T)                      |            |                | 0.00             |                       |           | 1/2" Ice           | 2.76               | 1.21              | 0.07         |
| 5550.00                     | _          |                | 0.00             |                       |           | 1" Ice             | 2.97               | 1.36              | 0.09         |
| 7770.00                     | С          | From Leg       | 2.00             | 0.0000                | 163.00    | No Ice             | 5.53               | 4.01              | 0.05         |
| (AT&T)                      |            |                | 4.00             |                       |           | 1/2" Ice           | 5.89               | 4.64              | 0.10         |
| (2) LGP 21901 Diplexer Unit | С          | Enom I am      | 0.00             | 0.0000                | 162.00    | 1" Ice             | 6.26               | 5.28              | 0.15         |
| (AT&T)                      | C          | From Leg       | 2.00             | 0.0000                | 163.00    | No Ice             | 0.23               | 0.12              | 0.01         |
| (AI&I)                      |            |                | 4.00<br>0.00     |                       |           | 1/2" Ice           | 0.30               | 0.17              | 0.01         |
| Kathrein 800-10965 Panel    | С          | From Leg       | 2.00             | 0.0000                | 163.00    | 1" Ice<br>No Ice   | 0.38<br>13.81      | 0.22<br>5.83      | 0.01         |
| Antenna                     | v          | 110m Log       | -4.00            | 0.0000                | 103.00    | 1/2" Ice           | 14.35              |                   | 0.11         |
| (AT&T)                      |            |                | 0.00             |                       |           | 1" Ice             | 14.89              | 6.32<br>6.82      | 0.19<br>0.27 |
| QS66512-3 Quintel Panel     | С          | From Leg       | 2.00             | 0.0000                | 163.00    | No Ice             | 8.13               | 8.22              | 0.27         |
| (AT&T)                      |            | Ü              | 0.00             |                       |           | 1/2" Ice           | 8.59               | 9.19              | 0.20         |
|                             |            |                | 0.00             |                       |           | 1" Ice             | 9.05               | 10.02             | 0.28         |
| RRUS-11                     | С          | From Leg       | 2.00             | 0.0000                | 163.00    | No Ice             | 2.57               | 1.07              | 0.05         |
| (AT&T)                      |            | _              | 0.00             |                       |           | 1/2" Ice           | 2.76               | 1.21              | 0.07         |
|                             |            |                | 0.00             |                       |           | 1" Ice             | 2.97               | 1.36              | 0.09         |
| 4478 Radio Unit (4x40W)     | Α          | From Leg       | 2.00             | 0.0000                | 163.00    | No Ice             | 1.08               | 1.08              | 0.06         |
| (AT&T)                      |            |                | 0.00             |                       |           | 1/2" Ice           | 1.21               | 1.21              | 0.07         |
| 4470 D - 41 TY 1: / 1 10000 | _          |                | 0.00             |                       |           | 1" Ice             | 1.35               | 1.35              | 0.09         |
| 4478 Radio Unit (4x40W)     | В          | From Leg       | 2.00             | 0.0000                | 163.00    | No Ice             | 1.08               | 1.08              | 0.06         |
| (AT&T)                      |            |                | 0.00             |                       |           | 1/2" Ice           | 1.21               | 1.21              | 0.07         |
| 4479 Dadia Heit (4-:4011)   | C          | Ename V        | 0.00             | 0.0000                | 1.62.00   | 1" Ice             | 1.35               | 1.35              | 0.09         |
| 4478 Radio Unit (4x40W)     | С          | From Leg       | 2.00             | 0.0000                | 163.00    | No Ice             | 1.08               | 1.08              | 0.06         |
| (AT&T)                      |            |                | 0.00             |                       |           | 1/2" Ice           | 1.21               | 1.21              | 0.07         |
|                             |            |                | 0.00             |                       |           | 1" Ice             | 1.35               | 1.35              | 0.09         |

| Job     |                             | Page              |
|---------|-----------------------------|-------------------|
|         | 180' Lattice Tower - CSP    | 28 of 86          |
| Project |                             | Date              |
| _       | Structural Analysis         | 16:48:32 03/29/18 |
| Client  | Francisco Tologom / FMD 004 | Designed by       |
|         | Empire Telecom / EMP-004    | MCD               |

| RRUS-32 B66                           | Leg |            | Lateral<br>Vert |        |         |                    |              |              |              |
|---------------------------------------|-----|------------|-----------------|--------|---------|--------------------|--------------|--------------|--------------|
|                                       |     |            |                 |        |         |                    |              |              |              |
|                                       |     |            |                 | 0      |         |                    | c?           | c2           | **           |
|                                       |     |            | ft              | •      | ft      |                    | ft²          | ft²          | K            |
|                                       |     |            | ft<br>ft        |        |         |                    |              |              |              |
|                                       | Α   | From Leg   | 2.00            | 0.0000 | 163.00  | No Ice             | 3.88         | 2.76         | 0.08         |
| (AT&T)                                | Λ   | From Leg   | 0.00            | 0.0000 | 103.00  | 1/2" Ice           | 3.00<br>4.14 | 2.76         | 0.08         |
| (Al&I)                                |     |            | 0.00            |        |         | 1" Ice             | 4.14         | 3.22         | 0.11         |
| RRUS-32 B66                           | В   | From Leg   | 2.00            | 0.0000 | 163.00  | No Ice             | 3.88         | 2.76         | 0.13         |
| (AT&T)                                | D   | riom Leg   | 0.00            | 0.0000 | 103.00  | 1/2" Ice           | 3.86<br>4.14 | 2.76         | 0.08         |
| (AI&I)                                |     |            | 0.00            |        |         | 1" Ice             | 4.41         | 3.22         | 0.11         |
| RRUS-32 B66                           | С   | From Leg   | 2.00            | 0.0000 | 163.00  | No Ice             | 3.88         | 2.76         | 0.13         |
| (AT&T)                                | C   | Prom Leg   | 0.00            | 0.0000 | 103.00  | 1/2" Ice           | 3.00<br>4.14 | 2.76         | 0.08         |
| (AI&I)                                |     |            | 0.00            |        |         | 1" Ice             | 4.14         | 3.22         | 0.11         |
| RRUS-32 B2                            | Α   | From Leg   | 2.00            | 0.0000 | 163.00  | No Ice             | 3.88         | 2.76         | 0.13         |
| (AT&T)                                | Α   | Prom Leg   | 0.00            | 0.0000 | 103.00  | 1/2" Ice           | 3.86<br>4.14 |              |              |
| (AI&I)                                |     |            | 0.00            |        |         | 1" Ice             | 4.14         | 2.98         | 0.11         |
| RRUS-32 B2                            | В   | From Leg   | 2.00            | 0.0000 | 163.00  | No Ice             | 3.88         | 3.22<br>2.76 | 0.15<br>0.08 |
| (AT&T)                                | В   | Fioni Leg  | 0.00            | 0.0000 | 103.00  | 1/2" Ice           | 4.14         | 2.76         | 0.08         |
| (AI&I)                                |     |            | 0.00            |        |         | 1" Ice             | 4.14         | 3.22         |              |
| RRUS-32 B2                            | С   | From Leg   | 2.00            | 0.0000 | 163.00  | No Ice             | 3.88         | 2.76         | 0.15         |
| (AT&T)                                | C   | Fiblii Leg | 0.00            | 0.0000 | 103.00  | 1/2" Ice           | 3.88<br>4.14 |              | 0.08         |
| (AI&I)                                |     |            | 0.00            |        |         |                    |              | 2.98         | 0.11         |
| RRUS-32                               | Α   | From Loc   | 2.00            | 0.0000 | 162.00  | 1" Ice             | 4.41         | 3.22         | 0.15         |
| (AT&T)                                | Α   | From Leg   | 0.00            | 0.0000 | 163.00  | No Ice             | 3.33         | 2.36         | 0.08         |
| (AI&I)                                |     |            | 0.00            |        |         | 1/2" Ice           | 3.55         | 2.56         | 0.11         |
| RRUS-32                               | В   | From Leg   | 2.00            | 0.0000 | 163.00  | 1" Ice<br>No Ice   | 3.78         | 2.76         | 0.15         |
| (AT&T)                                | ь   | rioni Leg  | 0.00            | 0.0000 | 103.00  | 1/2" Ice           | 3.33         | 2.36         | 0.08         |
| (AI&I)                                |     |            | 0.00            |        |         |                    | 3.55         | 2.56         | 0.11         |
| RRUS-32                               | С   | From I am  | 2.00            | 0.0000 | 1.62.00 | 1" Ice             | 3.78         | 2.76         | 0.15         |
| (AT&T)                                | C   | From Leg   |                 | 0.0000 | 163.00  | No Ice             | 3.33         | 2.36         | 0.08         |
| (AI&I)                                |     |            | 0.00            |        |         | 1/2" Ice           | 3.55         | 2.56         | 0.11         |
| DC6-48-60-18-8C Squid /               | В   | Enom I on  | 0.00<br>2.00    | 0.0000 | 162.00  | 1" Ice             | 3.78         | 2.76         | 0.15         |
| Surge Arrestor                        | D   | From Leg   | 0.00            | 0.0000 | 163.00  | No Ice<br>1/2" Ice | 1.14         | 1.14         | 0.03         |
| (AT&T)                                |     |            |                 |        |         |                    | 1.79         | 1.79         | 0.05         |
| DC6-48-60-18-8C Squid                 | С   | Enom Lon   | 0.00<br>2.00    | 0.0000 | 162.00  | 1" Ice             | 2.00         | 2.00         | 0.07         |
| Surge Arrestor                        | C   | From Leg   | 0.00            | 0.0000 | 163.00  | No Ice             | 1.14         | 1.14         | 0.03         |
| _                                     |     |            |                 |        |         | 1/2" Ice           | 1.79         | 1.79         | 0.05         |
| (AT&T)<br>(2) LPG21401 TMA            | Α   | From Face  | 0.00            | 0.0000 | 1.62.00 | 1" Ice             | 2.00         | 2.00         | 0.07         |
| (AT&T)                                | A   | rrom race  | 2.00<br>4.00    | 0.0000 | 163.00  | No Ice             | 0.95         | 0.37         | 0.02         |
| (Al&I)                                |     |            |                 |        |         | 1/2" Ice           | 1.09         | 0.48         | 0.02         |
| (2) I DC21401 TMA                     | В   | F F        | 0.00            | 0.0000 | 1.62.00 | 1" Ice             | 1.24         | 0.60         | 0.03         |
| (2) LPG21401 TMA                      | D   | From Face  | 2.00            | 0.0000 | 163.00  | No Ice             | 0.95         | 0.37         | 0.02         |
| (AT&T)                                |     |            | 4.00            |        |         | 1/2" Ice           | 1.09         | 0.48         | 0.02         |
| (2) I BG21401 TM 4                    | С   | From For-  | 0.00            | 0.0000 | 162.00  | 1" Ice             | 1.24         | 0.60         | 0.03         |
| (2) LPG21401 TMA                      | Ü   | From Face  | 2.00            | 0.0000 | 163.00  | No Ice             | 0.95         | 0.37         | 0.02         |
| (AT&T)                                |     |            | 4.00            |        |         | 1/2" Ice           | 1.09         | 0.48         | 0.02         |
| *** Empire EMD 004                    |     |            | 0.00            |        |         | 1" Ice             | 1.24         | 0.60         | 0.03         |
| *** Empire EMP-004 Proposed Inventory |     |            |                 |        |         |                    |              |              |              |

#### Job Page tnxTower 29 of 86 180' Lattice Tower - CSP **Project AECOM** Structural Analysis 16:48:32 03/29/18 500 Enterprise Drive, Suite 3B Rocky Hill, CT Client Designed by Phone: 860-529-8882 FAX: 860-529-3991 Empire Telecom / EMP-004 MCD

| Description      | Face<br>or<br>Leg | Dish<br>Type | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustment | 3 dB<br>Beam<br>Width | Elevation | Outside<br>Diameter |          | Aperture<br>Area | Weight |
|------------------|-------------------|--------------|----------------|-------------------------------------|-----------------------|-----------------------|-----------|---------------------|----------|------------------|--------|
|                  |                   |              |                | ft                                  | ٥                     | ٥                     | ft        | ft                  |          | ft²              | K      |
| 4' Grid Dish     | С                 | Grid         | From           | 1.00                                | Worst                 |                       | 106.00    | 4.00                | No Ice   | 12.57            | 0.06   |
| (A6 / D&K 12 /   |                   |              | Leg            | 0.00                                |                       |                       |           |                     | 1/2" Ice | 13.10            | 0.11   |
| CSP-11)          |                   |              |                | 0.00                                |                       |                       |           |                     | 1" Ice   | 13.62            | 0.17   |
| 6' PAD w/ Radome | Α                 | Paraboloid   | From           | 0.50                                | Worst                 |                       | 125.00    | 6.00                | No Ice   | 28.27            | 0.24   |
| (A10 / D&K-25)   |                   | w/Radome     | Leg            | 0.00                                |                       |                       |           |                     | 1/2" Ice | 29.07            | 0.29   |
|                  |                   |              |                | 0.00                                |                       |                       |           |                     | 1" Ice   | 29.87            | 0.34   |
| 6' PAD w/ Radome | В                 | Paraboloid   | From           | 1.00                                | Worst                 |                       | 175.00    | 6.00                | No Ice   | 28.27            | 0.24   |
| (A33)            |                   | w/Radome     | Leg            | 0.00                                |                       |                       |           |                     | 1/2" Ice | 29.07            | 0.29   |
|                  |                   |              |                | 0.00                                |                       |                       |           |                     | 1" Ice   | 29.87            | 0.34   |
| 6' PAD w/ Radome | Α                 | Paraboloid   | From           | 0.50                                | Worst                 |                       | 170.00    | 6.00                | No Ice   | 28.27            | 0.24   |
| (A22 /)          |                   | w/Radome     | Leg            | 0.00                                |                       |                       |           |                     | 1/2" Ice | 29.07            | 0.29   |
|                  |                   |              |                | 0.00                                |                       |                       |           |                     | 1" Ice   | 29.87            | 0.34   |
| 6' PAD w/ Radome | С                 | Paraboloid   | From           | 0.50                                | Worst                 |                       | 173.00    | 6.00                | No Ice   | 28.27            | 0.24   |
| (A25 /)          |                   | w/Radome     | Leg            | 0.00                                |                       |                       |           |                     | 1/2" Ice | 29.07            | 0.29   |
|                  |                   |              | _              | 0.00                                |                       |                       |           |                     | 1" Ice   | 29.87            | 0.34   |

#### 222-G Verification Constants

| Constant                               | Value |
|----------------------------------------|-------|
| Wind Importance Factor Without Ice     | 1.15  |
| Wind Importance Factor With Ice Factor | 1     |
| Ice Importance Factor                  | 1.25  |
| K <sub>d</sub>                         | 0.85  |
| $Z_{g}$                                | 900   |
| <u> </u>                               | 9.5   |
| $K_{\rm zmin}$                         | 0.85  |
| K <sub>€</sub>                         | 1     |
| K,                                     | 0.53  |
| f                                      | 2     |

## 222-G Section Verification ArRr By Element

| Section       | Elem. | Size | С | C     | F | е  | е     | $A_r$           | A,              | $A_rR_r$ | $A_rR_r$ |
|---------------|-------|------|---|-------|---|----|-------|-----------------|-----------------|----------|----------|
| Elevation     | Num.  |      |   | w/Ice | а |    | w/Ice |                 | w/Ice           |          | w/Ice    |
|               |       |      |   |       | С |    |       |                 | .               |          |          |
| ft            |       |      |   |       | е |    |       | ft <sup>2</sup> | ft <sup>2</sup> | ft²      | ft²      |
| Tl            |       |      |   |       | Α |    | Sum:  | 0.000           | 0.000           | 0.000    | 0.000    |
| 180.00-170.00 |       |      |   |       | В |    |       | 0.000           | 0.000           | 0.000    | 0.000    |
|               | 1 1   |      |   |       | C |    |       | 0.000           | 0.000           | 0.000    | 0.000    |
|               |       |      |   |       | D |    |       | 0.000           | 0.000           | 0.000    | 0.000    |
| T2            |       |      |   |       | Α |    | Sum:  | 0.000           | 0.000           | 0.000    | 0.000    |
| 170.00-163.57 |       |      |   |       | В |    |       | 0.000           | 0.000           | 0.000    | 0.000    |
|               |       |      |   |       | C |    |       | 0.000           | 0.000           | 0.000    | 0.000    |
|               |       |      |   |       | D |    |       | 0.000           | 0.000           | 0.000    | 0.000    |
| T3            |       |      |   |       | Α |    | Sum:  | 0.000           | 0.000           | 0.000    | 0.000    |
| 163.57-159.05 |       |      |   |       | В |    |       | 0.000           | 0.000           | 0.000    | 0.000    |
|               |       |      |   |       | C |    | 1     | 0.000           | 0.000           | 0.000    | 0.000    |
|               |       |      |   | l     | D |    |       | 0.000           | 0.000           | 0.000    | 0.000    |
| T4            |       |      |   |       | Α | li | Sum:  | 0.000           | 0.000           | 0.000    | 0.000    |
| 159.05-154.52 |       |      |   |       | В |    |       | 0.000           | 0.000           | 0.000    | 0.000    |
|               |       |      |   |       | С |    |       | 0.000           | 0.000           | 0.000    | 0.000    |
|               |       |      |   |       | D |    |       | 0.000           | 0.000           | 0.000    | 0.000    |
| T5            |       |      |   |       | Α |    | Sum:  | 0.000           | 0.000           | 0.000    | 0.000    |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 30 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Gard.            | El    | G:                            |        |        | -      | -                                                | _       | , - 1          |                |                |                |
|------------------|-------|-------------------------------|--------|--------|--------|--------------------------------------------------|---------|----------------|----------------|----------------|----------------|
| Section          | Elem. | Size                          | C      | C      | F      | e                                                | e       | A,             | A <sub>r</sub> | A,R,           | A,R,           |
| Elevation        | Num.  | 1                             |        | w/Ice  | а      |                                                  | w/Ice   |                | w/Ice          |                | w/Ice          |
| . ۵              |       |                               |        |        | C      |                                                  |         | ft²            | ft²            | ft²            | c2             |
| ft 154.52-150.00 |       |                               | -      |        | e      | <del>                                     </del> |         | 7-             |                |                | ft²            |
| 134.32-130.00    |       |                               |        |        | В      |                                                  |         | 0.000          | 0.000          | 0.000          | 0.000          |
|                  |       |                               |        |        | C<br>D | 1                                                |         | 0.000          | 0.000          | 0.000          | 0.000          |
| Т6               |       |                               |        |        |        |                                                  | S       | 0.000<br>0.000 | 0.000          | 0.000          | 0.000          |
| 150.00-140.00    |       |                               |        |        | A<br>B | l                                                | Sum:    |                | 0.000          | 0.000          | 0.000          |
| 150.00-140.00    |       |                               |        |        | Ĉ      |                                                  |         | 0.000<br>0.000 | 0.000          | 0.000          | 0.000          |
|                  |       |                               |        |        | D      |                                                  |         | 0.000          | 0.000<br>0.000 | 0.000          | 0.000          |
| T7               |       |                               |        |        | A      |                                                  | Sum:    | 0.000          | 0.000          | 0.000          | 0.000          |
| 140.00-130.00    |       |                               | l      |        | В      | 1 1                                              | Sum.    | 0.000          | 0.000          | 0.000<br>0.000 | 0.000<br>0.000 |
| 1                |       | ļ                             |        |        | c      |                                                  |         | 0.000          | 0.000          | 0.000          | 0.000          |
|                  |       | 1                             |        |        | D      |                                                  |         | 0.000          | 0.000          | 0.000          | 0.000          |
| Т8               |       |                               |        |        | Ā      |                                                  | Sum:    | 0.000          | 0.000          | 0.000          | 0.000          |
| 130.00-120.00    |       |                               |        |        | В      |                                                  | - Juiii | 0.000          | 0.000          | 0.000          | 0.000          |
|                  |       |                               |        |        | Č      |                                                  |         | 0.000          | 0.000          | 0.000          | 0.000          |
| ]                |       |                               |        |        | Ď      |                                                  |         | 0.000          | 0.000          | 0.000          | 0.000          |
| T9               |       |                               |        |        | Ā      |                                                  | Sum:    | 0.000          | 0.000          | 0.000          | 0.000          |
| 120.00-110.00    |       |                               | ľ      |        | В      |                                                  | J       | 0.000          | 0.000          | 0.000          | 0.000          |
|                  |       |                               |        |        | c      |                                                  |         | 0.000          | 0.000          | 0.000          | 0.000          |
|                  |       |                               |        |        | D      | 1                                                |         | 0.000          | 0.000          | 0.000          | 0.000          |
| T10              |       |                               |        |        | Α      |                                                  | Sum:    | 0.000          | 0.000          | 0.000          | 0.000          |
| 110.00-100.00    |       |                               |        |        | В      |                                                  |         | 0.000          | 0.000          | 0.000          | 0.000          |
| 1                |       |                               |        |        | С      |                                                  |         | 0.000          | 0.000          | 0.000          | 0.000          |
| 1                |       |                               |        |        | D      |                                                  |         | 0.000          | 0.000          | 0.000          | 0.000          |
| T11              |       |                               |        | •      | Α      |                                                  | Sum:    | 0.000          | 0.000          | 0.000          | 0.000          |
| 100.00-90.00     |       |                               |        |        | В      |                                                  |         | 0.000          | 0.000          | 0.000          | 0.000          |
| l                |       |                               |        |        | С      |                                                  |         | 0.000          | 0.000          | 0.000          | 0.000          |
|                  |       |                               |        |        | D      |                                                  |         | 0.000          | 0.000          | 0.000          | 0.000          |
| T12 90.00-80.00  |       |                               |        |        | Α      |                                                  | Sum:    | 0.000          | 0.000          | 0.000          | 0.000          |
|                  |       |                               |        |        | В      |                                                  |         | 0.000          | 0.000          | 0.000          | 0.000          |
|                  |       |                               |        |        | С      |                                                  |         | 0.000          | 0.000          | 0.000          | 0.000          |
|                  |       |                               |        |        | D      |                                                  | -       | 0.000          | 0.000          | 0.000          | 0.000          |
| T13 80.00-60.00  | 220   | L8x8x1 w/ 1/2x7<br>Plates     | 81.252 | 54.203 | D      | 0.167                                            | 0.311   | 14.185         | 21.219         | 6.062          | 12.785         |
|                  | 220   | 1                             | 81.252 | 54.203 | Α      | 0.167                                            | 0.311   | 14.185         | 21.219         | 6.062          | 12.785         |
|                  | 221   | L8x8x1 w/ 1/2x7<br>Plates     | 81.252 | 54.203 | D      | 0.167                                            | 0.311   | 14.185         | 21.219         | 6.062          | 12.785         |
|                  | 221   | L8x8x1 w/ 1/2x7<br>Plates     | 81.252 | 54.203 | С      | 0.167                                            | 0.311   | 14.185         | 21.219         | 6.062          | 12.785         |
|                  | 222   | 1                             | 81.252 | 54.203 | С      | 0.167                                            | 0.311   | 14.185         | 21.219         | 6.062          | 12.785         |
|                  | 222   | L8x8x1 w/ 1/2x7               | 81.252 | 54.203 | В      | 0.167                                            | 0.311   | 14.185         | 21.219         | 6.062          | 12.785         |
|                  | 223   |                               | 81.252 | 54.203 | В      | 0.167                                            | 0.311   | 14.185         | 21.219         | 6.062          | 12.785         |
|                  | 223   | Plates L8x8x1 w/ 1/2x7 Plates | 81.252 | 54.203 | Α      | 0.167                                            | 0.311   | 14.185         | 21.219         | 6.062          | 12.785         |
|                  |       | 114103                        |        |        | Α      |                                                  | Sum:    | 28.370         | 42.439         | 12.125         | 25.569         |
|                  |       |                               |        |        | В      |                                                  | 50111.  | 28.370         | 42.439         | 12.125         | 25.569         |
|                  |       |                               |        |        | Č      |                                                  |         | 28.370         | 42.439         | 12.125         | 25.569         |
|                  |       |                               |        |        | D      |                                                  |         | 28.370         | 42.439         | 12.125         | 25.569         |
| T14 60.00-50.00  | 249   | L8x8x1-1/8 w/ 1/2x7           | 81.907 | 54.631 | D      | 0.163                                            | 0.318   | 7.092          | 10.607         | 3.018          | 6.414          |
|                  |       | Plates                        |        | 54.631 |        | - 1                                              |         |                |                |                |                |
|                  |       | L8x8x1-1/8 w/ 1/2x7<br>Plates |        |        | A      | 0.163                                            | 0.318   | 7.092          | 10.607         | 3.018          | 6.414          |
|                  |       | L8x8x1-1/8 w/ 1/2x7<br>Plates |        |        | D      | 0.163                                            | 0.318   | 7.092          | 10.607         | 3.018          | 6.414          |
|                  |       | L8x8x1-1/8 w/ 1/2x7<br>Plates |        |        | С      | 0.163                                            | 0.318   | 7.092          | 10.607         | 3.018          | 6.414          |
|                  | 251   | L8x8x1-1/8 w/ 1/2x7           | 81.907 | 54.631 | c      | 0.163                                            | 0.318   | 7.092          | 10.607         | 3.018          | 6.414          |

| Job     |                             | Page              |
|---------|-----------------------------|-------------------|
| 300     | 180' Lattice Tower - CSP    | 31 of 86          |
| Project |                             | Date              |
|         | Structural Analysis         | 16:48:32 03/29/18 |
| Client  | Facility Tallaces / FMR 004 | Designed by       |
|         | Empire Telecom / EMP-004    | MCD               |

| Section<br>Elevation | Elem.<br>Num. | Size                                    | С      | C<br>w/Ice | F<br>a | е     | e<br>w/Ice | $A_r$            | A,<br>w/Ice      | A,R,           | A,R,<br>w/Ice    |
|----------------------|---------------|-----------------------------------------|--------|------------|--------|-------|------------|------------------|------------------|----------------|------------------|
| ft                   |               |                                         |        |            | c<br>e |       |            | ft²              | ft²              | ft²            | ft²              |
|                      | 251           | Plates<br>L8x8x1-1/8 w/ 1/2x7           | 81.907 | 54.631     | В      | 0.163 | 0.318      | 7.092            | 10.607           | 3.018          | 6.414            |
|                      | 252           | Plates<br>L8x8x1-1/8 w/ 1/2x7<br>Plates | 81.907 | 54.631     | В      | 0.163 | 0.318      | 7.092            | 10.607           | 3.018          | 6.414            |
|                      | 252           | L8x8x1-1/8 w/ 1/2x7<br>Plates           | 81.907 | 54.631     | - A    | 0.163 | 0.318      | 7.092            | 10.607           | 3.018          | 6.414            |
|                      |               |                                         |        |            | A<br>B |       | Sum:       | 14.185<br>14.185 | 21.214<br>21.214 | 6.035<br>6.035 | 12.829<br>12.829 |
|                      |               |                                         |        | K          | С      |       |            | 14.185           | 21.214           | 6.035          | 12.829           |
|                      |               |                                         |        |            | D      |       | _          | 14.185           | 21.214           | 6.035          | 12.829           |
| T15 50.00-40.00      | 270           | L8x8x1-1/8 w/ 1/2x7<br>Plates           | 82.764 | 55.229     | D      | 0.17  | 0.322      | 7.092            | 10.614           | 3.042          | 6.435            |
|                      | 270           | L8x8x1-1/8 w/ 1/2x7<br>Plates           | 82.764 | 55.229     | A      | 0.17  | 0.322      | 7.092            | 10.614           | 3.042          | 6.435            |
| =                    | 271           | L8x8x1-1/8 w/ 1/2x7<br>Plates           | 82.764 | 55.229     | D      | 0.17  | 0.322      | 7.092            | 10.614           | 3.042          | 6.435            |
|                      | 271           | L8x8x1-1/8 w/ 1/2x7<br>Plates           | 82.764 | 55.229     | С      | 0.17  | 0.322      | 7.092            | 10.614           | 3.042          | 6.435            |
|                      | 272           | L8x8x1-1/8 w/ 1/2x7<br>Plates           | 82.764 | 55.229     | С      | 0.17  | 0.322      | 7.092            | 10.614           | 3.042          | 6.435            |
|                      | 272           | L8x8x1-1/8 w/ 1/2x7<br>Plates           | 82.764 | 55.229     | В      | 0.17  | 0.322      | 7.092            | 10.614           | 3.042          | 6.435            |
|                      | 273           | L8x8x1-1/8 w/ 1/2x7<br>Plates           | 82.764 | 55.229     | В      | 0.17  | 0.322      | 7.092            | 10.614           | 3.042          | 6.435            |
|                      | 273           | L8x8x1-1/8 w/ 1/2x7<br>Plates           | 82.764 | 55.229     | A      | 0.17  | 0.322      | 7.092            | 10.614           | 3.042          | 6.435            |
|                      |               | 1 10103                                 |        |            | Α      |       | Sum:       | 14.185           | 21.228           | 6.084          | 12.869           |
|                      |               |                                         |        |            | В      |       |            | 14.185           | 21.228           | 6.084          | 12.869           |
|                      |               |                                         |        |            | С      |       |            | 14.185           | 21.228           | 6.084          | 12.869           |
| L                    |               |                                         |        |            | D      |       |            | 14.185           | 21.228           | 6.084          | 12.869           |
| T16 40.00-30.00      | V             |                                         |        |            | A      |       | Sum:       | 0.000            | 0.000            | 0.000          | 0.000            |
|                      |               |                                         |        |            | В      |       |            | 0.000            | 0.000            | 0.000          | 0.000            |
|                      |               |                                         |        |            | C<br>D |       |            | 0.000            | 0.000            | 0.000          | 0.000            |
| T17 30.00-20.00      |               |                                         |        |            |        |       | C          | 0.000<br>0.000   | 0.000            | 0.000<br>0.000 | 0.000            |
| 117 30.00-20.00      |               |                                         |        |            | A<br>B | 1     | Sum:       | 0.000            | 0.000<br>0.000   | 0.000          | 0.000<br>0.000   |
|                      |               |                                         |        |            | c      |       |            | 0.000            | 0.000            | 0.000          | 0.000            |
|                      |               |                                         |        |            | Ď      |       |            | 0.000            | 0.000            | 0.000          | 0.000            |
| T18 20.00-10.00      |               |                                         |        |            | Ā      |       | Sum:       | 0.000            | 0.000            | 0.000          | 0.000            |
|                      |               |                                         |        |            | В      |       | Juill.     | 0.000            | 0.000            | 0.000          | 0.000            |
|                      |               |                                         |        |            | č      |       |            | 0.000            | 0.000            | 0.000          | 0.000            |
|                      | l             |                                         |        |            | Ď      |       |            | 0.000            | 0.000            | 0.000          | 0.000            |
| T19 10.00-0.00       |               | J                                       |        | - 1        | Α      |       | Sum:       | 0.000            | 0.000            | 0.000          | 0.000            |
| ]                    |               |                                         |        | ı          | В      |       |            | 0.000            | 0.000            | 0.000          | 0.000            |
|                      |               |                                         |        |            | С      |       |            | 0.000            | 0.000            | 0.000          | 0.000            |
| ]                    |               |                                         |        |            | D      |       |            | 0.000            | 0.000            | 0.000          | 0.000            |
|                      |               |                                         |        |            |        |       |            |                  |                  |                |                  |

| Job     | 180' Lattice Tower - CSP | Page 32 of 86             |
|---------|--------------------------|---------------------------|
| Project | Structural Analysis      | Date<br>16:48:32 03/29/18 |
| Client  | Empire Telecom / EMP-004 | Designed by MCD           |

| Section<br>Elevation | Zwind  | Z <sub>ice</sub> | K <sub>z</sub> | K <sub>h</sub> | Kzt   | tz | $q_z$ | F      | е              | A,R,           |
|----------------------|--------|------------------|----------------|----------------|-------|----|-------|--------|----------------|----------------|
| Zievanon             |        |                  | -              |                |       |    |       | a<br>c |                |                |
| ft                   | ft     | ft               |                |                |       | in | psf   | e      |                | ft²            |
| T1 180.00-170.00     | 175.00 |                  | 1.424          | 218.026        | 1.005 |    | 31    | Α      | 0.203          | 0.000          |
|                      |        |                  |                |                |       |    |       | В      | 0.203          | 0.000          |
|                      |        |                  |                |                |       |    |       | C      | 0.203          | 0.000          |
| T2 170 00 162 67     | 16670  |                  | 1 41           | 160 227        | 1.006 |    |       | D      | 0.203          | 0.000          |
| T2 170.00-163.57     | 166.79 |                  | 1.41           | 169.337        | 1.006 |    | 31    | A      | 0.246          | 0.000          |
|                      |        |                  |                |                |       |    |       | B<br>C | 0.246<br>0.246 | 0.000          |
|                      |        |                  |                |                |       |    |       | D      | 0.246          | 0.000<br>0.000 |
| T3 163.57-159.05     | 161.31 |                  | 1.4            | 143.081        | 1.007 |    | 31    | A      | 0.246          | 0.000          |
| 15 105.57 155.05     | 101.51 |                  | 1.7            | 145.001        | 1.007 |    | ] "   | В      | 0.246          | 0.000          |
|                      |        |                  |                |                |       |    |       | Č      | 0.246          | 0.000          |
|                      |        |                  |                |                |       |    |       | Ď      | 0.246          | 0.000          |
| T4 159.05-154.52     | 156.79 |                  | 1.391          | 124.487        | 1.009 |    | 30    | Ā      | 0.227          | 0.000          |
|                      |        |                  |                |                |       |    |       | В      | 0.227          | 0.000          |
| l I                  |        |                  |                |                |       |    |       | С      | 0.227          | 0.000          |
| i l                  |        |                  |                |                |       |    | 1     | D      | 0.227          | 0.000          |
| T5 154.52-150.00     | 152.26 |                  | 1.383          | 108.309        | 1.01  |    | 30    | Α      | 0.22           | 0.000          |
| 1                    |        |                  |                |                |       |    |       | В      | 0.22           | 0.000          |
| 1                    |        |                  |                |                |       |    |       | С      | 0.22           | 0.000          |
| Tr. 150 00 140 00    |        |                  |                |                |       |    |       | D      | 0.22           | 0.000          |
| T6 150.00-140.00     | 145.00 |                  | 1.369          | 86.621         | 1.012 |    | 30    | A      | 0.222          | 0.000          |
| 1                    |        |                  | 1              |                |       |    |       | В      | 0.222          | 0.000          |
|                      |        |                  |                |                |       |    |       | C      | 0.222          | 0.000          |
| T7 140.00-130.00     | 135.00 |                  | 1.348          | 62 670         | 1.017 |    | 20    | D      | 0.222          | 0.000          |
| 17 140.00-130.00     | 133.00 |                  | 1.346          | 63.678         | 1.017 |    | 30    | A<br>B | 0.229<br>0.229 | 0.000<br>0.000 |
| 1                    |        |                  |                |                |       |    |       | C      | 0.229          | 0.000          |
| 1                    |        |                  |                |                |       |    |       | D      | 0.229          | 0.000          |
| T8 130.00-120.00     | 125.00 |                  | 1.326          | 46.813         | 1.023 |    | 29    | A      | 0.198          | 0.000          |
| 10.000               |        |                  | 1.520          | 10.515         | 1.025 |    |       | В      | 0.198          | 0.000          |
| 1 1                  |        |                  |                |                |       |    |       | Č      | 0.198          | 0.000          |
|                      |        |                  |                |                |       |    |       | D      | 0.198          | 0.000          |
| T9 120.00-110.00     | 115.00 |                  | 1.303          | 34.414         | 1.031 |    | 29    | Α      | 0.205          | 0.000          |
| 1                    | -      |                  |                |                |       |    |       | В      | 0.205          | 0.000          |
|                      |        |                  |                |                |       |    |       | C      | 0.205          | 0.000          |
|                      |        |                  |                |                |       |    |       | D      | 0.205          | 0.000          |
| T10 110.00-100.00    | 105.00 |                  | 1.279          | 25.299         | 1.042 |    | 29    | Α      | 0.188          | 0.000          |
|                      |        |                  |                |                |       |    |       | В      | 0.188          | 0.000          |
|                      |        |                  |                |                |       |    |       | С      | 0.188          | 0.000          |
| T11 100 00 00 00     | 05.00  |                  |                | 10 500         |       |    |       | D      | 0.188          | 0.000          |
| T11 100.00-90.00     | 95.00  |                  | 1.252          | 18.598         | 1.058 |    | 29    | A      | 0.211          | 0.000          |
| Į l                  |        |                  |                |                |       |    |       | В      | 0.211          | 0.000          |
| 4                    |        |                  |                |                |       |    |       | C<br>D | 0.211<br>0.211 | 0.000<br>0.000 |
| T12 90.00-80.00      | 85.00  |                  | 1.223          | 13.672         | 1.079 |    | 29    | A      | 0.211          | 0.000          |
| 112 50.00-00.00      | 85.00  |                  | 1.223          | 13.072         | 1.079 |    | 29    | В      | 0.203          | 0.000          |
|                      |        |                  |                |                |       |    |       | C      | 0.203          | 0.000          |
|                      | 1      |                  |                | i              |       |    |       | Ď      | 0.203          | 0.000          |
| T13 80.00-60.00      | 70.00  |                  | 1.174          | 8.618          | 1.127 |    | 29    | Ā      | 0.167          | 12.125         |
|                      |        |                  | ,              |                |       |    |       | В      | 0.167          | 12.125         |
|                      |        |                  |                |                |       |    |       | c      | 0.167          | 12.125         |
|                      |        |                  |                |                |       |    |       | D      | 0.167          | 12.125         |
| T14 60.00-50.00      | 55.00  |                  | 1.116          | 5.432          | 1.205 |    | 29    | Α      | 0.163          | 6.035          |
|                      |        |                  |                |                |       |    |       | В      | 0.163          | 6.035          |
|                      |        |                  |                |                | 1     |    |       | С      | 0.163          | 6.035          |
|                      |        |                  |                |                |       |    |       | D      | 0.163          | 6.035          |
| T15 50.00-40.00      | 45.00  |                  | 1.07           | 3.993          | 1.283 |    | 30    | A      | 0.17           | 6.084          |
|                      | ľ      |                  |                |                |       |    |       | В      | 0.17           | 6.084          |
| [                    |        |                  |                |                | -     |    |       | C      | 0.17           | 6.084          |
| ı l                  | - 1    | ا                |                | - 1            |       |    |       | D      | 0.17           | 6.084          |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 33 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>Elevation | Zwind | Zice | K <sub>z</sub> | Kh    | Kzt   | tz | $q_z$ | F<br>a | е     | $A_rR_r$ |
|----------------------|-------|------|----------------|-------|-------|----|-------|--------|-------|----------|
|                      |       |      |                |       |       |    |       | c      |       |          |
| ft                   | ft    | ft   |                |       |       | in | psf   | е      |       | ft²      |
| T16 40.00-30.00      | 35.00 |      | 1.015          | 2.936 | 1.394 |    | 31    | A      | 0.175 | 0.000    |
| ŀ                    |       |      |                |       |       |    |       | В      | 0.175 | 0.000    |
|                      |       |      |                |       |       |    |       | C      | 0.175 | 0.000    |
|                      |       |      |                |       |       |    |       | D      | 0.175 | 0.000    |
| T17 30.00-20.00      | 25.00 |      | 0.945          | 2.158 | 1.551 |    | 32    | Α      | 0.156 | 0.000    |
|                      |       |      |                |       |       |    |       | В      | 0.156 | 0.000    |
| l i                  |       |      | 1 1            |       |       |    | 1 1   | С      | 0.156 | 0.000    |
| 1                    |       |      |                |       |       |    |       | D      | 0.156 | 0.000    |
| T18 20.00-10.00      | 15.00 |      | 0.85           | 1.587 | 1.78  |    | 33    | Α      | 0.167 | 0.000    |
|                      |       |      |                | l     |       |    |       | В      | 0.167 | 0.000    |
|                      |       |      |                |       | i     |    |       | С      | 0.167 | 0.000    |
|                      | - 1   |      |                |       |       |    |       | D      | 0.167 | 0.000    |
| T19 10.00-0.00       | 5.00  |      | 0.85           | 1.166 | 2.115 |    | 39    | Α      | 0.16  | 0.000    |
| 1 1                  | ĺ     |      | 1 1            |       |       | '  |       | В      | 0.16  | 0.000    |
| !                    |       |      |                |       |       |    |       | С      | 0.16  | 0.000    |
|                      |       |      |                |       |       |    |       | D      | 0.16  | 0.000    |

# 222-G Section Verification Tables - Ice

| Section<br>Elevation | Z <sub>wind</sub> | Z <sub>ice</sub> | K <sub>z</sub> | K <sub>h</sub> | Kzt   | tz     | $q_z$    | F<br>a | е              | $A_rR_r$         |
|----------------------|-------------------|------------------|----------------|----------------|-------|--------|----------|--------|----------------|------------------|
|                      |                   |                  |                |                |       |        |          | с      |                |                  |
| ft                   | ft                | ft               |                |                |       | in     | psf      | е      |                | ft²              |
| T1 180.00-170.00     | 175.00            | 175.00           | 1.424          | 218.026        | 1.005 | 2.2192 | 8        | Α      | 0.498          | 13.721           |
|                      |                   |                  |                |                |       |        |          | В      | 0.498          | 13.721           |
|                      | 1                 |                  |                |                |       |        |          | С      | 0.498          | 13.721           |
|                      |                   | 1                |                |                |       |        |          | D      | 0.498          | 13.721           |
| T2 170.00-163.57     | 166.79            | 166.79           | 1.41           | 169.337        | 1.006 | 2.2096 | 8        | Α      | 0.54           | 9.244            |
| ľ                    |                   |                  |                |                |       |        |          | В      | 0.54           | 9.244            |
|                      |                   |                  |                |                |       |        |          | С      | 0.54           | 9.244            |
|                      |                   |                  |                |                |       |        |          | D      | 0.54           | 9.244            |
| T3 163.57-159.05     | 161.31            | 161.31           | 1.4            | 143.081        | 1.007 | 2.2031 | 8        | A      | 0.583          | 7.845            |
|                      |                   |                  |                |                |       |        |          | В      | 0.583          | 7.845            |
|                      | i                 |                  |                |                |       |        |          | C      | 0.583          | 7.845            |
| ma 160 05 154 60     | 10000             | 1.5.50           |                |                |       |        |          | D      | 0.583          | 7.845            |
| T4 159.05-154.52     | 156.79            | 156.79           | 1.391          | 124.487        | 1.009 | 2.1977 | 8        | A      | 0.491          | 5.996            |
|                      |                   |                  |                |                |       |        |          | В      | 0.491          | 5.996            |
|                      |                   |                  | -              |                |       |        |          | C      | 0.491          | 5.996            |
| T5 154.52-150.00     | 162.26            | 152.26           | 1 202          | 100 200        | 1.01  | 2 1022 |          | D      | 0.491          | 5.996            |
| 15 154.52-150.00     | 152.26            | 152.26           | 1.383          | 108.309        | 1.01  | 2.1923 | 8        | A      | 0.478          | 6.049            |
|                      | - 1               |                  |                |                |       |        |          | В      | 0.478          | 6.049            |
|                      |                   |                  |                |                |       |        |          | C      | 0.478          | 6.049            |
| T6 150.00-140.00     | 145.00            | 145.00           | 1.369          | 86.621         | 1.012 | 2 1024 |          | D      | 0.478          | 6.049            |
| 10 130.00-140.00     | 143.00            | 143.00           | 1.309          | 80.021         | 1.012 | 2.1834 | 8        | A      | 0.489          | 14.941           |
|                      |                   |                  |                |                |       |        |          | B<br>C | 0.489          | 14.941           |
|                      |                   |                  |                |                |       |        |          | D      | 0.489<br>0.489 | 14.941           |
| T7 140.00-130.00     | 135.00            | 135.00           | 1.348          | 63.678         | 1.017 | 2.1712 | 7        | A      | 0.469          | 14.941<br>14.491 |
| 17140.00-130.00      | 133.00            | 133.00           | 1.340          | 03.076         | 1.017 | 2.1/12 |          | B      | 0.469          | 14.491           |
|                      |                   |                  |                |                |       |        |          | C D    | 0.469          | 14.491           |
| l i                  | - 1               |                  |                |                |       |        |          | D      | 0.469          | 14.491           |
| T8 130.00-120.00     | 125.00            | 125.00           | 1.326          | 46.813         | 1.023 | 2.1591 | 7        | A      | 0.409          | 12.396           |
| 10 150:00-120:00     | 125.00            | 125.00           | 1.520          | 70.013         | 1.025 | 2.1391 |          | В      | 0.398          | 12.396           |
|                      | -                 |                  |                |                |       |        |          | C      | 0.398          | 12.396           |
|                      | -                 |                  |                |                |       |        |          | D      | 0.398          | 12.396           |
| T9 120.00-110.00     | 115.00            | 115.00           | 1.303          | 34.414         | 1.031 | 2.1472 | 7        | A      | 0.338          | 14.951           |
|                      | 115.00            | 115.00           | 2.505          | 5 12 1         | 1.051 | 2.17/2 | <u> </u> | В      | 0.425          | 14.951           |
| , ,                  | '                 | 1                | '              |                |       |        | ı        |        | 0.723          | 17.331           |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 34 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | Francis Talana (FMD 004  | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

|     | Section<br>Elevation | Z <sub>wind</sub> | Z <sub>ice</sub> | Kz    | Kh     | Kzt   | tz     | $q_z$ | F<br>a | е     | A <sub>r</sub> R <sub>r</sub> |
|-----|----------------------|-------------------|------------------|-------|--------|-------|--------|-------|--------|-------|-------------------------------|
| 1   |                      |                   |                  |       |        |       |        |       | c      |       |                               |
|     | ft                   | ft                | ft               |       |        |       | in     | psf   | e      |       | ft²                           |
|     |                      |                   |                  |       |        |       |        |       | С      | 0.425 | 14.951                        |
|     |                      |                   |                  |       |        |       |        |       | D      | 0.425 | 14.951                        |
|     | T10 110.00-100.00    | 105.00            | 105.00           | 1.279 | 25.299 | 1.042 | 2.1359 | 7     | A      | 0.371 | 12.795                        |
| ı   |                      |                   |                  |       |        |       |        | 1     | В      | 0.371 | 12.795                        |
|     |                      |                   |                  |       |        |       |        |       | С      | 0.371 | 12.795                        |
| 1   |                      |                   |                  |       |        |       |        |       | D      | 0.371 | 12.795                        |
|     | T11 100.00-90.00     | 95.00             | 95.00            | 1.252 | 18.598 | 1.058 | 2.1255 | 7     | A      | 0.384 | 13.152                        |
| 1   |                      |                   |                  |       |        |       |        |       | В      | 0.384 | 13.152                        |
|     |                      |                   |                  |       |        |       |        |       | С      | 0.384 | 13.152                        |
|     |                      |                   |                  |       |        |       |        |       | D      | 0.384 | 13.152                        |
|     | T12 90.00-80.00      | 85.00             | 85.00            | 1.223 | 13.672 | 1.079 | 2.1167 | 7     | Α      | 0.371 | 13.413                        |
|     |                      |                   | l i              |       |        |       |        |       | В      | 0.371 | 13.413                        |
|     |                      |                   | }                |       |        |       |        |       | С      | 0.371 | 13.413                        |
|     |                      |                   |                  |       |        |       |        |       | D      | 0.371 | 13.413                        |
| ı   | T13 80.00-60.00      | 70.00             | 70.00            | 1.174 | 8.618  | 1.127 | 2.1077 | 7     | Α      | 0.311 | 41.332                        |
| l . |                      |                   |                  |       |        |       |        |       | В      | 0.311 | 41.332                        |
|     |                      |                   |                  |       |        |       |        |       | С      | 0.311 | 41.332                        |
|     |                      |                   |                  |       |        |       |        |       | D      | 0.311 | 41.332                        |
|     | T14 60.00-50.00      | 55.00             | 55.00            | 1.116 | 5.432  | 1.205 | 2.1061 | 7     | Α      | 0.318 | 22.589                        |
|     |                      |                   |                  |       |        |       |        |       | В      | 0.318 | 22.589                        |
| ı   |                      |                   |                  |       |        |       |        |       | С      | 0.318 | 22.589                        |
| 1   |                      |                   |                  |       |        |       |        |       | D      | 0.318 | 22.589                        |
|     | T15 50.00-40.00      | 45.00             | 45.00            | 1.07  | 3.993  | 1.283 | 2.1104 | 7     | A      | 0.322 | 23.148                        |
|     |                      |                   |                  |       |        |       |        |       | В      | 0.322 | 23.148                        |
| l   |                      |                   |                  |       |        |       |        |       | С      | 0.322 | 23.148                        |
| l   |                      |                   |                  |       |        |       |        |       | D      | 0.322 | 23.148                        |
| l   | T16 40.00-30.00      | 35.00             | 35.00            | 1.015 | 2.936  | 1.394 | 2.1184 | 8     | Α      | 0.358 | 18.428                        |
|     |                      |                   |                  |       |        |       |        |       | В      | 0.358 | 18.428                        |
| l   |                      |                   |                  |       |        |       |        |       | С      | 0.358 | 18.428                        |
|     |                      |                   |                  |       |        |       |        |       | D      | 0.358 | 18.428                        |
| l   | T17 30.00-20.00      | 25.00             | 25.00            | 0.945 | 2.158  | 1.551 | 2.1267 | 8     | Α      | 0.306 | 15.347                        |
| ľ   |                      |                   |                  |       |        |       |        |       | В      | 0.306 | 15.347                        |
| l   |                      |                   |                  |       |        |       |        |       | С      | 0.306 | 15.347                        |
| l   |                      |                   |                  |       |        |       |        |       | D      | 0.306 | 15.347                        |
| l   | T18 20.00-10.00      | 15.00             | 15.00            | 0.85  | 1.587  | 1.78  | 2.1202 | - 8   | Α      | 0.346 | 19.465                        |
|     |                      |                   |                  |       |        |       |        |       | В      | 0.346 | 19.465                        |
|     |                      |                   |                  |       |        |       |        |       | С      | 0.346 | 19.465                        |
|     |                      |                   |                  |       |        |       |        |       | D      | 0.346 | 19.465                        |
|     | T19 10.00-0.00       | 5.00              | 5.00             | 0.85  | 1.166  | 2.115 | 2.0180 | 10    | Α      | 0.325 | 19.744                        |
|     | 1                    |                   |                  |       |        |       |        |       | В      | 0.325 | 19.744                        |
|     |                      |                   | ¥0               |       |        |       |        |       | C      | 0.325 | 19.744                        |
|     |                      |                   | 50               | 1     |        |       |        |       | D      | 0.325 | 19.744                        |

#### 222-G Section Verification Tables - Service

| Section<br>Elevation | $Z_{wind}$ | $z_{ice}$ | K <sub>z</sub> | Kh      | Kzt   | t <sub>z</sub> | $q_z$ | F<br>a | е              | A,R,  |
|----------------------|------------|-----------|----------------|---------|-------|----------------|-------|--------|----------------|-------|
| ft                   | ft         | ft        |                |         |       | in             | psf   | c<br>e |                | fi²   |
| T1 180.00-170.00     | 175.00     |           | 1.424          | 218.026 | 1.005 |                | 11    | A      | 0.203          | 0.000 |
|                      |            |           |                |         |       |                |       | В      | 0.203          | 0.000 |
|                      |            |           |                |         |       |                |       | C<br>D | 0.203          | 0.000 |
| T2 170.00-163.57     | 166.79     |           | 1.41           | 169,337 | 1.006 |                | 11    | A A    | 0.203<br>0.246 | 0.000 |
|                      |            |           |                | 103.557 | 1.000 |                |       | В      | 0.246          | 0.000 |
|                      |            |           |                |         |       |                | 1     | C      | 0.246          | 0.000 |
|                      | Į.         |           |                |         |       |                |       | D      | 0.246          | 0.000 |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 35 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section           | Zwind        | Zice | K <sub>z</sub> | Kh      | Kzt   | $t_z$ | $q_z$         | F             | е              | $A_rR_r$              |
|-------------------|--------------|------|----------------|---------|-------|-------|---------------|---------------|----------------|-----------------------|
| Elevation         |              |      |                | "       | -     |       | -             | а             |                | ,,                    |
|                   |              |      |                |         |       |       |               | С             |                | e2                    |
| T3 163.57-159.05  | ft<br>161.31 | ft   | 1.4            | 143.081 | 1.007 | in    | <i>psf</i> 11 | <u>е</u><br>А | 0.246          | ft <sup>2</sup> 0.000 |
| 15 105.57-159.05  | 101.51       |      | 1.4            | 143.061 | 1.007 |       | 11            | В             | 0.246          | 0.000                 |
|                   |              | ,    |                |         |       |       |               | Č             | 0.246          | 0.000                 |
|                   |              |      |                |         |       |       |               | D             | 0.246          | 0.000                 |
| T4 159.05-154.52  | 156.79       |      | 1.391          | 124.487 | 1.009 |       | 11            | Α             | 0.227          | 0.000                 |
|                   |              |      |                |         |       |       |               | В             | 0.227          | 0.000                 |
|                   |              |      |                |         |       |       |               | C<br>D        | 0.227          | 0.000                 |
| T5 154.52-150.00  | 152.26       |      | 1.383          | 108.309 | 1.01  |       | 11            | A             | 0.227<br>0.22  | 0.000<br>0.000        |
| 10 10 100100      | 102.20       |      | 1.505          | 100.507 | 1.01  |       | ''            | В             | 0.22           | 0.000                 |
|                   |              |      |                |         |       |       |               | C             | 0.22           | 0.000                 |
|                   |              |      |                |         |       |       |               | D             | 0.22           | 0.000                 |
| T6 150.00-140.00  | 145.00       |      | 1.369          | 86.621  | 1.012 |       | 11            | A             | 0.222          | 0.000                 |
|                   |              |      |                |         |       |       |               | В             | 0.222          | 0.000                 |
|                   |              |      |                |         |       |       |               | C<br>D        | 0.222<br>0.222 | 0.000<br>0.000        |
| T7 140.00-130.00  | 135.00       |      | 1.348          | 63.678  | 1.017 |       | 11            | A             | 0.229          | 0.000                 |
|                   |              |      |                |         |       |       |               | В             | 0.229          | 0.000                 |
|                   |              |      |                |         |       |       |               | C             | 0.229          | 0.000                 |
| FD 120 00 100 00  | 10.5.00      |      |                |         |       |       |               | D             | 0.229          | 0.000                 |
| T8 130.00-120.00  | 125.00       |      | 1.326          | 46.813  | 1.023 |       | 11            | A             | 0.198          | 0.000                 |
|                   |              |      |                |         |       |       |               | B<br>C        | 0.198<br>0.198 | 0.000<br>0.000        |
|                   |              |      |                |         |       |       |               | D             | 0.198          | 0.000                 |
| T9 120.00-110.00  | 115.00       |      | 1.303          | 34.414  | 1.031 |       | 11            | Ā             | 0.205          | 0.000                 |
|                   |              |      |                |         |       |       |               | В             | 0.205          | 0.000                 |
|                   |              |      |                |         |       |       |               | C             | 0.205          | 0.000                 |
| T10 110.00-100.00 | 105.00       |      | 1.279          | 25.299  | 1.042 |       | 10            | D             | 0.205          | 0.000                 |
| 110 110.00-100.00 | 103.00       |      | 1.279          | 23.299  | 1.042 |       | 10            | A<br>B        | 0.188<br>0.188 | 0.000<br>0.000        |
|                   |              |      |                |         |       |       |               | Č             | 0.188          | 0.000                 |
|                   |              |      | ]              |         |       |       |               | D             | 0.188          | 0.000                 |
| T11 100.00-90.00  | 95.00        |      | 1.252          | 18.598  | 1.058 |       | 10            | Α             | 0.211          | 0.000                 |
|                   |              |      |                |         |       |       |               | В             | 0.211          | 0.000                 |
|                   |              |      |                | Ī       |       |       |               | C<br>D        | 0.211          | 0.000                 |
| T12 90.00-80.00   | 85.00        |      | 1.223          | 13.672  | 1.079 |       | 10            | A             | 0.211<br>0.203 | 0.000<br>0.000        |
| 11170100 00100    |              |      |                | 15.072  | 1.075 |       |               | В             | 0.203          | 0.000                 |
|                   |              |      |                |         |       |       |               | C             | 0.203          | 0.000                 |
|                   |              |      |                |         |       |       |               | D             | 0.203          | 0.000                 |
| T13 80.00-60.00   | 70.00        |      | 1.174          | 8.618   | 1.127 |       | 10            | A             | 0.167          | 12.125                |
|                   |              |      |                |         | j     |       |               | B<br>C        | 0.167          | 12.125                |
|                   |              |      |                |         | İ     |       |               | D             | 0.167<br>0.167 | 12.125<br>12.125      |
| T14 60.00-50.00   | 55.00        |      | 1.116          | 5.432   | 1.205 |       | 11            | A             | 0.163          | 6.035                 |
|                   |              |      |                |         |       |       |               | В             | 0.163          | 6.035                 |
|                   |              |      | ά .            |         |       |       |               | C             | 0.163          | 6.035                 |
| T1 5 50 00 40 00  | 45.00        |      |                | 2 002   |       |       |               | D             | 0.163          | 6.035                 |
| T15 50.00-40.00   | 45.00        |      | 1.07           | 3.993   | 1.283 |       | 11            | A             | 0.17           | 6.084                 |
|                   |              |      |                |         |       |       |               | B<br>C        | 0.17<br>0.17   | 6.084<br>6.084        |
|                   |              |      |                |         |       |       | -             | D             | 0.17           | 6.084                 |
| T16 40.00-30.00   | 35.00        |      | 1.015          | 2.936   | 1.394 |       | 11            | Ā             | 0.175          | 0.000                 |
|                   | 1            |      |                |         |       |       |               | В             | 0.175          | 0.000                 |
|                   |              |      |                |         |       |       |               | C             | 0.175          | 0.000                 |
| T17 30.00-20.00   | 25.00        |      | 0.945          | 2.158   | 1.551 |       | ,,            | D             | 0.175          | 0.000                 |
| 117 30.00-20.00   | 23.00        |      | 0.743          | 2.136   | 1.331 |       | 11            | A<br>B        | 0.156<br>0.156 | 0.000<br>0.000        |
|                   |              |      |                |         | [     | l     | - 1           | C             | 0.156          | 0.000                 |
|                   |              |      | 1              |         |       | - 1   |               | Ď             | 0.156          | 0.000                 |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 36 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>Elevation | Zwind | Z <sub>ice</sub> | Kz   | Kh    | Kzt   | $t_z$ | $q_z$ | F<br>a | е              | $A_rR_r$       |
|----------------------|-------|------------------|------|-------|-------|-------|-------|--------|----------------|----------------|
| ft                   | ft    | ft               |      |       |       | in    | psf   | c<br>e |                | €2             |
| T18 20.00-10.00      | 15.00 | <u></u>          | 0.85 | 1.587 | 1.78  |       | 12    | A      | 0.167          | 0.000          |
| Ì                    |       |                  |      |       |       |       |       | B<br>C | 0.167<br>0.167 | 0.000<br>0.000 |
| T19 10.00-0.00       | 5.00  |                  | 0.85 | 1.166 | 2.115 |       | 14    | D<br>A | 0.167<br>0.16  | 0.000<br>0.000 |
| 119 10.00-0.00       | 5.00  |                  | 0.85 | 1.100 | 2.113 |       | 17    | В      | 0.16           | 0.000          |
|                      |       |                  |      |       |       |       |       | C<br>D | 0.16<br>0.16   | 0.000<br>0.000 |

#### **Tower Pressures - No Ice**

 $G_H = 0.850$ 

| C. at         |              | 20    |       |         | 177    | 1 4             |                |           |                |                 | - A .          |
|---------------|--------------|-------|-------|---------|--------|-----------------|----------------|-----------|----------------|-----------------|----------------|
| Section       | Z            | Kz    | $q_z$ | $A_G$   | F      | $A_F$           | $A_R$          | $A_{leg}$ | Leg            | $C_A A_A$       | $C_A A_A$      |
| Elevation     |              |       |       |         | а      |                 |                |           | %              | In              | Out            |
| ا م           |              |       |       | ft²     | C      | 62              | ft²            | ft²       |                | Face            | Face           |
| ft T1         | ft<br>175.00 | 1.424 | psf   |         | e      | ft <sup>2</sup> |                |           | 46.70          | ft²             | ft²            |
| 180.00-170.00 | 1/5.00       | 1.424 | 31    | 61.674  | A      | 12.491          | 0.000          | 5.833     | 46.70          | 0.000           | 0.000          |
| 180.00-170.00 |              |       |       |         | В      | 12.491          | 0.000          |           | 46.70          | 0.000           | 0.000          |
|               |              |       |       |         | C      | 12.491          | 0.000          |           | 46.70          | 0.000           | 0.000          |
| T2            | 166.79       | 1.41  | 31    | 40.022  | _      | 12.491<br>9.832 | 0.000<br>0.000 | 5 3 5 6   | 46.70          | 19.218          | 0.000          |
| 170.00-163.57 | 100.79       | 1.41  | 31    | 40.022  | A<br>B |                 |                | 5.356     | 54.47          | 0.000           | 0.000          |
| 170.00-103.37 |              |       |       |         | C      | 9.832           | 0.000          |           | 54.47          | 0.000           | 0.000          |
|               |              |       |       |         | D      | 9.832           | 0.000          |           | 54.47          | 0.000           | 0.000          |
| Т3            | 161.31       | 1.4   | 31    | 28.908  | _      | 9.832           | 0.000          | 2 776     | 54.47          | 14.492          | 0.000          |
| 163.57-159.05 | 101.31       | 1.4   | 21    | 28.908  | A      | 7.122           | 0.000          | 3.775     | 53.00          | 0.000           | 0.000          |
| 103.57-139.03 |              |       |       |         | B      | 7.122<br>7.122  | 0.000<br>0.000 |           | 53.00          | 0.000           | 0.000          |
|               |              |       |       |         | D      |                 |                |           | 53.00          | 12.273          | 0.000          |
| T4            | 156.79       | 1.391 | 30    | 30.376  | _      | 7.122<br>6.903  | 0.000<br>0.000 | 2 776     | 53.00          | 10.877          | 0.000          |
| 159.05-154.52 | 130.79       | 1.391 | 30    | 30.370  | A<br>B |                 | 0.000          | 3.775     | 54.69          | 0.000           | 0.000          |
| 139.03-134.32 |              |       |       |         | C      | 6.903           |                |           | 54.69          | 0.000           | 0.000          |
|               |              |       |       |         | D      | 6.903<br>6.903  | 0.000          |           | 54.69          | 14.053          | 0.000<br>0.000 |
| T5            | 152.26       | 1.383 | 30    | 31.844  |        |                 |                | 2 776     | 54.69          | 13.414          |                |
| 154.52-150.00 | 132.20       | 1.363 | 30    | 31.644  | A<br>B | 7.011<br>7.011  | 0.000<br>0.000 | 3.775     | 53.84          | 0.000           | 0.000          |
| 134.32-130.00 |              |       |       |         | C      | 7.011           | 0.000          |           | 53.84          | 0.000           | 0.000          |
| 1             |              |       |       |         | D      | 7.011           | 0.000          |           | 53.84          | 14.053          | 0.000          |
| т6            | 145.00       | 1.369 | 30    | 75.634  | _      | 16.767          | 0.000          | 8.344     | 53.84<br>49.76 | 13.414          | 0.000          |
| 150.00-140.00 | 145.00       | 1.505 | 30    | 75.034  | A<br>B | 16.767          | 0.000          | 6.344     | 49.76          | 0.000           | 0.000          |
| 130.00-140.00 |              |       |       |         | C      | 16.767          | 0.000          |           | 49.76          | 0.000<br>31.060 | 0.000          |
|               |              |       |       |         | D      | 16.767          | 0.000          |           |                |                 | 0.000          |
| T7            | 135.00       | 1.348 | 30    | 83.296  | A      | 19.051          | 0.000          | 10.013    | 49.76<br>52.56 | 31.868<br>0.000 | 0.000<br>0.000 |
| 140.00-130.00 | 155.00       | 1.570 | 30    | 03.290  | В      | 19.051          | 0.000          | 10.013    | 52.56          | 0.000           | 0.000          |
| 140.00-150.00 |              |       |       |         | Č      | 19.051          | 0.000          |           | 52.56          | 31.060          | 0.000          |
|               |              |       |       |         | Ď      | 19.051          | 0.000          |           | 52.56          | 31.868          | 0.000          |
| т8            | 125.00       | 1.326 | 29    | 90,466  | A      | 17.878          | 0.000          | 10.013    | 56.01          | 13.110          | 0.000          |
| 130.00-120.00 | 125.00       | 1.520 | 23    | 70.400  | B      | 17.878          | 0.000          | 10.013    | 56.01          | 0.000           | 0.000          |
| 150.00-120.00 |              |       |       |         | Č      | 17.878          | 0.000          |           | 56.01          | 31.060          | 0.000          |
|               |              |       |       |         | Ď      | 17.878          | 0.000          |           | 56.01          | 34.507          | 0.000          |
| T9            | 115.00       | 1.303 | 29    | 97,774  | A      | 20.028          | 0.000          | 10.013    | 49.99          | 21.850          | 0.000          |
| 120.00-110.00 | 115.00       | 1.505 | 23    | 31.114  | B      | 20.028          | 0.000          | 10.013    | 49.99          | 0.000           | 0.000          |
| 120.00-110.00 |              |       |       |         | C      | 20.028          | 0.000          |           | 49.99          | 31.060          | 0.000          |
|               | i            |       |       |         | D      | 20.028          | 0.000          |           | 49.99          | 41.389          | 0.000          |
| T10           | 105.00       | 1.279 | 29    | 104.945 | A      | 19.757          | 0.000          | 10.013    | 50.68          | 23.812          | 0.000          |
| 110.00-100.00 | 105.00       | 1.2/7 | 23    | 107.743 | В      | 19.757          | 0.000          | 10.013    | 50.68          | 0.000           | 0.000          |
| 110.00-100.00 |              | 1     |       |         | C      |                 |                | 1         |                |                 |                |
|               | I            | 1     |       |         | U      | 19.757          | 0.000          | ı         | 50.68          | 31.060          | 0.000          |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 37 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section        | Z     | Kz    | $q_z$ | $A_G$   | F | $A_F$  | $A_R$  | $A_{leg}$ | Leg   | $C_A A_A$ | $C_A A_A$ |
|----------------|-------|-------|-------|---------|---|--------|--------|-----------|-------|-----------|-----------|
| Elevation      |       |       |       |         | а |        |        |           | %     | In        | Out       |
| _              | _     |       |       |         | С |        |        |           |       | Face      | Face      |
| ft             | ft    |       | psf   | ft²     | е | ft²    | ft²    | ft²       |       | ft²       | ft²       |
|                |       |       |       |         | D | 19.757 | 0.000  |           | 50.68 | 42.475    | 0.000     |
| T11            | 95.00 | 1.252 | 29    | 112.984 | Α | 23.872 | 0.000  | 13.350    | 55.93 | 25.120    | 0.000     |
| 100.00-90.00   |       |       |       |         | В | 23.872 | 0.000  |           | 55.93 | 0.000     | 0.000     |
| 1              |       |       |       |         | С | 23.872 | 0.000  | 5.0       | 55.93 | 31.060    | 0.000     |
|                |       | i     |       |         | D | 23.872 | 0.000  |           | 55.93 | 46.477    | 0.000     |
| T12            | 85.00 | 1.223 | 29    | 120.155 | A | 24.365 | 0.000  | 13.350    | 54.79 | 25.120    | 0.000     |
| 90.00-80.00    |       |       |       |         | В | 24.365 | 0.000  |           | 54.79 | 0.000     | 0.000     |
|                |       |       |       |         | С | 24.365 | 0.000  |           | 54.79 | 31.060    | 0.000     |
|                |       |       |       |         | D | 24.365 | 0.000  |           | 54.79 | 47.032    | 0.000     |
| T13            | 70.00 | 1.174 | 29    | 263.233 | Α | 15.516 | 28.370 | 28.370    | 64.64 | 50.240    | 0.000     |
| 80.00-60.00    |       |       |       |         | В | 15.516 | 28.370 |           | 64.64 | 0.000     | 0.000     |
| Į              |       |       |       |         | С | 15.516 | 28.370 |           | 64.64 | 62.120    | 0.000     |
| 1              |       | l     |       |         | D | 15.516 | 28.370 |           | 64.64 | 96.044    | 0.000     |
| T14            | 55.00 | 1.116 | 29    | 142.444 | Α | 9.050  | 14.185 | 14.185    | 61.05 | 25.120    | 0.000     |
| 60.00-50.00    |       |       |       |         | В | 9.050  | 14.185 |           | 61.05 | 0.000     | 0.000     |
|                |       |       |       |         | C | 9.050  | 14.185 |           | 61.05 | 31.060    | 0.000     |
|                |       |       |       |         | D | 9.050  | 14.185 |           | 61.05 | 48.515    | 0.000     |
| T15            | 45.00 | 1.07  | 30    | 149.614 | Α | 11.192 | 14.185 | 14.185    | 55.90 | 25.120    | 0.000     |
| 50.00-40.00    |       |       |       |         | В | 11.192 | 14.185 |           | 55.90 | 0.000     | 0.000     |
|                |       | ]     |       |         | С | 11.192 | 14.185 |           | 55.90 | 31.060    | 0.000     |
|                | ı     | l     |       |         | D | 11.192 | 14.185 |           | 55.90 | 49.153    | 0.000     |
| T16            | 35.00 | 1.015 | 31    | 156.196 | Α | 27.367 | 0.000  | 13.350    | 48.78 | 25.120    | 0.000     |
| 40.00-30.00    |       |       |       |         | В | 27.367 | 0.000  |           | 48.78 | 0.000     | 0.000     |
|                |       |       |       |         | C | 27.367 | 0.000  |           | 48.78 | 31.060    | 0.000     |
|                |       |       |       |         | D | 27.367 | 0.000  |           | 48.78 | 49.327    | 0.000     |
| T17            | 25.00 | 0.945 | 32    | 163.366 | Α | 25.467 | 0.000  | 13.350    | 52.42 | 25.120    | 0.000     |
| 30.00-20.00    |       |       |       |         | В | 25.467 | 0.000  |           | 52.42 | 0.000     | 0.000     |
|                |       |       |       |         | C | 25.467 | 0.000  |           | 52.42 | 31.060    | 0.000     |
|                |       | - 1   |       |         | D | 25.467 | 0.000  |           | 52.42 | 49.327    | 0.000     |
| T18            | 15.00 | 0.85  | 33    | 170.539 | Α | 28.533 | 0.000  | 13.350    | 46.79 | 25.120    | 0.000     |
| 20.00-10.00    | į.    | ŀ     |       |         | В | 28.533 | 0.000  |           | 46.79 | 0.000     | 0.000     |
|                | ĺ     | ĺ     | - 1   |         | С | 28.533 | 0.000  |           | 46.79 | 31.060    | 0.000     |
|                |       |       | - 1   |         | D | 28.533 | 0.000  |           | 46.79 | 49.327    | 0.000     |
| T19 10.00-0.00 | 5.00  | 0.85  | 39    | 177.715 | Α | 28.435 | 0.000  | 13.350    | 46.95 | 10.048    | 0.00      |
|                |       |       |       |         | В | 28.435 | 0.000  |           | 46.95 | 0.000     | 0.000     |
|                |       | J     |       |         | С | 28.435 | 0.000  |           | 46.95 | 12.405    | 0.000     |
|                |       | - 1   |       |         | D | 28.435 | 0.000  |           | 46.95 | 19.731    | 0.000     |

# **Tower Pressure - With Ice**

 $G_H = 0.850$ 

| Section<br>Elevation | z      | Kz     | $q_z$ | tz     | $A_G$            | F<br>a | $A_F$  | $A_R$            | Aleg   | Leg<br>% | $C_A A_A$ In | $C_A A_A$ Out |
|----------------------|--------|--------|-------|--------|------------------|--------|--------|------------------|--------|----------|--------------|---------------|
| .                    | e l    |        | nef   | in     | g <sub>2</sub> 2 | c      | 62     | g <sub>2</sub> 2 | - £2   |          | Face         | Face          |
|                      | Jt     | 1 10 1 | psf   |        |                  | e      | Jt     | Jı               | Jt     | 10.01    | Jt           | Jt            |
| T1                   | 175.00 | 1.424  | 8     | 2.2192 | 65.373           | A      | 12.491 | 20.062           | 13.231 | 40.64    | 0.000        | 0.000         |
| 180.00-170.00        | 1      | 1      |       |        |                  | В      | 12.491 | 20.062           |        | 40.64    | 0.000        | 0.000         |
|                      | ļ      |        |       |        |                  | C      | 12.491 | 20.062           |        | 40.64    | 0.000        | 0.000         |
|                      | ŀ      |        |       |        |                  | D      | 12.491 | 20.062           |        | 40.64    | 55.411       | 0.000         |
| T2                   | 166.79 | 1.41   | 8     | 2.2096 | 42.389           | A      | 9.832  | 13.066           | 10.090 | 44.06    | 0.000        | 0.000         |
| 170.00-163.57        |        |        | 1     |        |                  | В      | 9.832  | 13.066           |        | 44.06    | 0.000        | 0.000         |
|                      |        |        |       | 1      |                  | C      | 9.832  | 13.066           |        | 44.06    | 0.000        | 0.000         |
|                      |        |        |       | - 1    |                  | D      | 9.832  | 13.066           |        | 44.06    | 44.685       | 0.000         |
| T3                   | 161.31 | 1.4    | 8     | 2.2031 | 30.571           | Α      | 7.122  | 10.701           | 7.102  | 39.85    | 0.000        | 0.000         |
| 163.57-159.05        | ı      |        |       |        |                  | В      | 7.122  | 10.701           |        | 39.85    | 0.000        | 0.000         |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 38 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section                                      | z      | Kz    | $q_z$ | tz     | $A_G$   | F      | $A_F$            | $A_R$            | Aleg            | Leg            | $C_AA_A$          | $C_AA_A$       |
|----------------------------------------------|--------|-------|-------|--------|---------|--------|------------------|------------------|-----------------|----------------|-------------------|----------------|
| Elevation                                    |        |       |       |        |         | a<br>c |                  |                  |                 | %              | In<br>Face        | Out            |
| ft                                           | ft     |       | psf   | in     | ft²     | e      | ft <sup>2</sup>  | ft²              | ft <sup>2</sup> |                | ft <sup>2</sup>   | Face<br>ft²    |
|                                              |        |       |       |        |         | С      | 7.122            | 10.701           |                 | 39.85          | 27.175            | 0.000          |
|                                              | 156 70 | 1 201 | ا     | 2 1077 | 22.024  | D      | 7.122            | 10.701           |                 | 39.85          | 34.210            | 0.000          |
| T4<br>159.05-154.52                          | 156.79 | 1.391 | 8     | 2.1977 | 32.034  | A<br>B | 6.903<br>6.903   | 8.817<br>8.817   |                 | 45.13<br>45.13 | 0.000<br>0.000    | 0.000<br>0.000 |
| 133.03 134.32                                |        |       |       |        |         | C      | 6.903            | 8.817            |                 | 45.13          | 31.081            | 0.000          |
| 1                                            |        |       |       |        |         | D      | 6.903            | 8.817            |                 | 45.13          | 44.683            | 0.000          |
| T5                                           | 152.26 | 1.383 | 8     | 2.1923 | 33.498  | Α      | 7.011            | 8.986            |                 | 44.29          | 0.000             | 0.000          |
| 154.52-150.00                                |        |       |       |        |         | В      | 7.011            | 8.986            |                 | 44.29          | 0.000             | 0.000          |
|                                              |        |       |       |        |         | C<br>D | 7.011<br>7.011   | 8.986<br>8.986   |                 | 44.29<br>44.29 | 31.045<br>44.623  | 0.000<br>0.000 |
| Т6                                           | 145.00 | 1.369 | 8     | 2.1834 | 79.275  | A      | 16.767           | 22.001           | 15.632          | 40.32          | 0.000             | 0.000          |
| 150.00-140.00                                |        |       | - 1   |        |         | В      | 16.767           | 22.001           | 151022          | 40.32          | 0.000             | 0.000          |
|                                              |        | i     |       |        |         | С      | 16.767           | 22.001           |                 | 40.32          | 68.493            | 0.000          |
|                                              | 105.00 |       | _     |        |         | D      | 16.767           | 22.001           |                 | 40.32          | 110.224           | 0.000          |
| T7<br>140.00-130.00                          | 135.00 | 1.348 | 7     | 2.1712 | 86.917  | A<br>B | 19.051<br>19.051 | 21.676<br>21.676 | 17.260          | 42.38<br>42.38 | 0.000<br>0.000    | 0.000          |
| 140.00-130.00                                |        |       | ı     |        |         | C      | 19.051           | 21.676           |                 | 42.38          | 68.318            | 0.000<br>0.000 |
|                                              |        |       |       |        |         | D      | 19.051           | 21.676           |                 | 42.38          | 109.886           | 0.000          |
| Т8                                           | 125.00 | 1.326 | 7     | 2.1591 | 94.067  | Α      | 17.878           | 19.516           | 17.219          | 46.05          | 25.590            | 0.000          |
| 130.00-120.00                                | i      |       |       |        |         | В      | 17.878           | 19.516           |                 | 46.05          | 0.000             | 0.000          |
|                                              |        |       |       |        |         | С      | 17.878           | 19.516           |                 | 46.05          | 68.145            | 0.000          |
| Т9                                           | 115.00 | 1.303 | 7     | 2.1472 | 101.355 | D      | 17.878<br>20.028 | 19.516<br>23.087 | 17.179          | 46.05<br>39.85 | 116.507           | 0.000          |
| 120.00-110.00                                | 113.00 | 1.303 | - 1   | 2.14/2 | 101.333 | A<br>B | 20.028           | 23.087           | 17.179          | 39.85          | 42.571<br>0.000   | 0.000<br>0.000 |
|                                              |        |       |       |        |         | Č      | 20.028           | 23.087           |                 | 39.85          | 67.975            | 0.000          |
|                                              |        |       | ŀ     |        |         | D      | 20.028           | 23.087           |                 | 39.85          | 142.255           | 0.000          |
| T10                                          | 105.00 | 1.279 | 7     | 2.1359 | 108.507 | Α      | 19.757           | 20.499           | 17.142          | 42.58          | 50.821            | 0.000          |
| 110.00-100.00                                |        |       | - 1   |        |         | В      | 19.757           | 20.499           |                 | 42.58          | 0.000             | 0.000          |
|                                              |        |       | - 1   |        |         | C<br>D | 19.757<br>19.757 | 20.499<br>20.499 |                 | 42.58<br>42.58 | 67.814<br>147.142 | 0.000<br>0.000 |
| T11                                          | 95.00  | 1.252 | 7     | 2.1255 | 116.529 | A      | 23.872           | 20.499           | 20.445          | 45.67          | 56.268            | 0.000          |
| 100.00-90.00                                 |        |       | - 1   |        |         | В      | 23.872           | 20.891           |                 | 45.67          | 0.000             | 0.000          |
|                                              |        |       | - 1   | ŀ      |         | С      | 23.872           | 20.891           |                 | 45.67          | 67.666            | 0.000          |
| T12 00 00 00 00                              | 05.00  | 1 222 | اء    | 2      | 100 (05 | D      | 23.872           | 20.891           |                 | 45.67          | 163.978           | 0.000          |
| T12 90.00-80.00                              | 85.00  | 1.223 | 7     | 2.1167 | 123.685 | A<br>B | 24.365<br>24.365 | 21.492<br>21.492 | 20.415          | 44.52          | 56.178            | 0.000          |
|                                              |        |       |       |        |         | C      | 24.365           | 21.492           |                 | 44.52<br>44.52 | 0.000<br>67.540   | 0.000<br>0.000 |
|                                              |        |       |       |        |         | D      | 24.365           | 21.492           |                 | 44.52          | 166.280           | 0.000          |
| T13 80.00-60.00                              | 70.00  | 1.174 | 7     | 2.1077 | 270.263 | Α      | 15.516           | 68.601           | 42.439          | 50.45          | 112.175           | 0.000          |
|                                              |        |       |       | 1      |         | В      | 15.516           | 68.601           | _               | 50.45          | 0.000             | 0.000          |
|                                              |        | - 1   |       |        |         | C      | 15.516           | 68.601           |                 | 50.45          | 134.823           | 0.000          |
| T14 60.00-50.00                              | 55.00  | 1.116 | 7     | 2.1061 | 145.956 | D<br>A | 15.516<br>9.050  | 68.601<br>37.355 | 21.214          | 50.45<br>45.72 | 344.308<br>56.072 | 0.000<br>0.000 |
| 11.00.00-50.00                               | 55.00  | 1.110 | 1     | 2.1001 | 142.550 | В      | 9.050            | 37.355           | 21.214          | 45.72          | 0.000             | 0.000          |
|                                              |        |       |       |        |         | c      | 9.050            | 37.355           |                 | 45.72          | 67.390            | 0.000          |
| <u>                                     </u> | _ [    |       |       | _      |         | D      | 9.050            | 37.355           |                 | 45.72          | 176.158           | 0.000          |
| T15 50.00-40.00                              | 45.00  | 1.07  | 7     | 2.1104 | 153.134 | A      | 11.192           | 38.184           | 21.228          | 42.99          | 56.114            | 0.000          |
|                                              |        |       |       |        |         | В      | 11.192           | 38.184           |                 | 42.99          | 0.000             | 0.000          |
|                                              |        |       |       | ļ      |         | C<br>D | 11.192<br>11.192 | 38.184<br>38.184 |                 | 42.99<br>42.99 | 67.450<br>181.637 | 0.000<br>0.000 |
| T16 40.00-30.00                              | 35.00  | 1.015 | 8     | 2.1184 | 159.729 | A      | 27.367           | 29.771           | 20.421          | 35.74          | 56.196            | 0.000          |
|                                              |        |       |       | 1      | = [     | В      | 27.367           | 29.771           |                 | 35.74          | 0.000             | 0.000          |
|                                              |        |       | - 1   |        | ļ       | C      | 27.367           | 29.771           |                 | 35.74          | 67.565            | 0.000          |
| T17 20 00 20 00                              | 25.00  | 0.045 |       | 2.1265 | 166 013 | D      | 27.367           | 29.771           | 20.440          | 35.74          | 183.479           | 0.000          |
| T17 30.00-20.00                              | 25.00  | 0.945 | 8     | 2.1267 | 166.913 | A<br>B | 25.467<br>25.467 | 25.548<br>25.548 | 20.449          | 40.08<br>40.08 | 56.280<br>0.000   | 0.000<br>0.000 |
|                                              | - !    |       |       |        |         | Č      | 25.467           | 25.548           |                 | 40.08          | 67.683            | 0.000          |
|                                              | }      | ļ     |       |        |         | D      | 25.467           | 25.548           |                 | 40.08          | 183.891           | 0.000          |
| T18 20.00-10.00                              | 15.00  | 0.85  | 8     | 2.1202 | 174.075 | Α      | 28.533           | 31.675           | 20.427          | 33.93          | 56.214            | 0.000          |
|                                              |        | - 1   |       | I      | 1       | В      | 28.533           | 31.675           |                 | 33.93          | 0.000             | 0.000          |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 39 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>Elevation | z    | Kz   | $q_z$ | tz     | $A_G$   | F<br>a      | $A_F$                                                    | $A_R$                                                    | $A_{leg}$ | Leg<br>%                                           | C <sub>A</sub> A <sub>A</sub><br>In                      | C <sub>A</sub> A <sub>A</sub><br>Out      |
|----------------------|------|------|-------|--------|---------|-------------|----------------------------------------------------------|----------------------------------------------------------|-----------|----------------------------------------------------|----------------------------------------------------------|-------------------------------------------|
| ft                   | ft   |      | psf   | in     | ft²     | c<br>e      | ft²                                                      | ft²                                                      | ft²       | 1.                                                 | Face<br>ft <sup>2</sup>                                  | Face<br>ft²                               |
| T19 10.00-0.00       | 5.00 | 0.85 | 10    | 2.0180 | 181.080 | C D A B C D | 28.533<br>28.533<br>28.435<br>28.435<br>28.435<br>28.435 | 31.675<br>31.675<br>30.492<br>30.492<br>30.492<br>30.492 | 20.086    | 33.93<br>33.93<br>34.09<br>34.09<br>34.09<br>34.09 | 67.591<br>183.569<br>22.072<br>0.000<br>26.453<br>71.392 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000 |

#### **Tower Pressure - Service**

 $G_H = 0.850$ 

| Section       | z      | Kz     | $q_z$ | $A_G$           | F | $A_F$  | $A_R$           | $A_{leg}$ | Leg   | $C_A A_A$       | $C_A A_A$ |
|---------------|--------|--------|-------|-----------------|---|--------|-----------------|-----------|-------|-----------------|-----------|
| Elevation     |        |        |       |                 | a |        |                 |           | %     | _In             | Out       |
|               | 6      |        | _     | ٠,              | C | ,,     | 27              | .,        |       | Face            | Face      |
| ft            | ft     | 4 40 4 | psf   | ft <sup>2</sup> | е | ft²    | ft <sup>2</sup> | ft²       |       | ft <sup>2</sup> | ft²       |
| T1            | 175.00 | 1.424  | 11    | 61.674          | A | 12.491 | 0.000           | 5.833     | 46.70 | 0.000           | 0.000     |
| 180.00-170.00 |        |        |       |                 | В | 12.491 | 0.000           |           | 46.70 | 0.000           | 0.000     |
|               |        |        |       |                 | C | 12.491 | 0.000           |           | 46.70 | 0.000           | 0.000     |
|               |        |        |       |                 | D | 12.491 | 0.000           |           | 46.70 | 19.218          | 0.000     |
| T2            | 166.79 | 1.41   | 11    | 40.022          | A | 9.832  | 0.000           | 5.356     | 54.47 | 0.000           | 0.000     |
| 170.00-163.57 |        |        |       |                 | В | 9.832  | 0.000           |           | 54.47 | 0.000           | 0.000     |
|               |        |        |       |                 | C | 9.832  | 0.000           |           | 54.47 | 0.000           | 0.000     |
|               |        |        |       |                 | D | 9.832  | 0.000           |           | 54.47 | 14.492          | 0.000     |
| T3            | 161.31 | 1.4    | 11    | 28.908          | A | 7.122  | 0.000           | 3.775     | 53.00 | 0.000           | 0.000     |
| 163.57-159.05 |        |        |       |                 | В | 7.122  | 0.000           |           | 53.00 | 0.000           | 0.000     |
|               |        |        |       |                 | C | 7.122  | 0.000           |           | 53.00 | 12.273          | 0.000     |
|               |        |        |       | l               | D | 7.122  | 0.000           |           | 53.00 | 10.877          | 0.000     |
| T4            | 156.79 | 1.391  | 11    | 30.376          | A | 6.903  | 0.000           | 3.775     | 54.69 | 0.000           | 0.000     |
| 159.05-154.52 |        |        |       |                 | В | 6.903  | 0.000           |           | 54.69 | 0.000           | 0.000     |
| }             |        |        |       |                 | С | 6.903  | 0.000           |           | 54.69 | 14.053          | 0.000     |
|               |        |        |       |                 | D | 6.903  | 0.000           |           | 54.69 | 13.414          | 0.000     |
| T5            | 152.26 | 1.383  | 11    | 31.844          | Α | 7.011  | 0.000           | 3.775     | 53.84 | 0.000           | 0.000     |
| 154.52-150.00 |        |        |       |                 | В | 7.011  | 0.000           |           | 53.84 | 0.000           | 0.000     |
|               |        |        |       |                 | С | 7.011  | 0.000           |           | 53.84 | 14.053          | 0.000     |
|               |        |        |       |                 | D | 7.011  | 0.000           |           | 53.84 | 13.414          | 0.000     |
| T6            | 145.00 | 1.369  | 11    | 75.634          | Α | 16.767 | 0.000           | 8.344     | 49.76 | 0.000           | 0.000     |
| 150.00-140.00 |        |        |       |                 | В | 16.767 | 0.000           |           | 49.76 | 0.000           | 0.000     |
|               |        |        |       |                 | С | 16.767 | 0.000           |           | 49.76 | 31.060          | 0.000     |
|               |        |        |       |                 | D | 16.767 | 0.000           |           | 49.76 | 31.868          | 0.000     |
| T7            | 135.00 | 1.348  | 11    | 83.296          | A | 19.051 | 0.000           | 10.013    | 52.56 | 0.000           | 0.000     |
| 140.00-130.00 |        |        |       |                 | В | 19.051 | 0.000           |           | 52.56 | 0.000           | 0.000     |
|               |        |        |       |                 | C | 19.051 | 0.000           |           | 52.56 | 31.060          | 0.000     |
|               |        |        |       | 1               | D | 19.051 | 0.000           |           | 52.56 | 31.868          | 0.000     |
| T8            | 125.00 | 1.326  | 11    | 90.466          | Α | 17.878 | 0.000           | 10.013    | 56.01 | 13.110          | 0.000     |
| 130.00-120.00 |        |        |       |                 | В | 17.878 | 0.000           |           | 56.01 | 0.000           | 0.000     |
|               |        |        |       |                 | С | 17.878 | 0.000           |           | 56.01 | 31.060          | 0.000     |
|               |        |        |       |                 | D | 17.878 | 0.000           |           | 56.01 | 34.507          | 0.000     |
| T9            | 115.00 | 1.303  | 11    | 97.774          | Α | 20.028 | 0.000           | 10.013    | 49.99 | 21.850          | 0.000     |
| 120.00-110.00 |        |        |       |                 | В | 20.028 | 0.000           |           | 49.99 | 0.000           | 0.000     |
|               |        |        |       |                 | С | 20.028 | 0.000           |           | 49.99 | 31.060          | 0.000     |
| _             | 1      |        |       |                 | D | 20.028 | 0.000           |           | 49.99 | 41.389          | 0.000     |
| T10           | 105.00 | 1.279  | 10    | 104.945         | Α | 19.757 | 0.000           | 10.013    | 50.68 | 23.812          | 0.000     |
| 110.00-100.00 |        |        |       |                 | В | 19.757 | 0.000           |           | 50.68 | 0.000           | 0.000     |
|               |        |        |       |                 | С | 19.757 | 0.000           |           | 50.68 | 31.060          | 0.000     |
|               |        |        |       |                 | D | 19.757 | 0.000           |           | 50.68 | 42.475          | 0.000     |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
| -       | 180' Lattice Tower - CSP | 40 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | Empire Telecom / EMP-004 | Designed by MCD   |

| Section        | Z     | Kz    | qz  | $A_G$   | F   | $A_F$           | $A_R$           | $A_{leg}$ | Leg   | $C_A A_A$ | $C_A A_A$       |
|----------------|-------|-------|-----|---------|-----|-----------------|-----------------|-----------|-------|-----------|-----------------|
| Elevation      |       | -     | l   |         | a   |                 |                 |           | %     | In        | Out             |
|                | _     |       |     | .       | C   |                 |                 |           |       | Face      | Face            |
| ft             | ft    |       | psf | ft²     | е   | ft <sup>2</sup> | ft <sup>2</sup> | ft²       |       | ft²       | ft <sup>2</sup> |
| T11            | 95.00 | 1.252 | 10  | 112.984 | Α   | 23.872          | 0.000           | 13.350    | 55.93 | 25.120    | 0.000           |
| 100.00-90.00   | 1     |       |     |         | В   | 23.872          | 0.000           |           | 55.93 | 0.000     | 0.000           |
| ľ              |       |       |     |         | C   | 23.872          | 0.000           |           | 55.93 | 31.060    | 0.000           |
|                |       | 1     |     |         | D   | 23.872          | 0.000           |           | 55.93 | 46.477    | 0.000           |
| T12            | 85.00 | 1.223 | 10  | 120.155 | A   | 24.365          | 0.000           | 13.350    | 54.79 | 25.120    | 0.000           |
| 90.00-80.00    | 1     |       |     |         | В   | 24.365          | 0.000           |           | 54.79 | 0.000     | 0.000           |
|                |       |       |     |         | C   | 24.365          | 0.000           |           | 54.79 | 31.060    | 0.000           |
|                |       |       |     |         | D   | 24.365          | 0.000           |           | 54.79 | 47.032    | 0.000           |
| T13            | 70.00 | 1.174 | 10  | 263.233 | Α   | 15.516          | 28.370          | 28.370    | 64.64 | 50.240    | 0.000           |
| 80.00-60.00    |       |       |     |         | В   | 15.516          | 28.370          |           | 64.64 | 0.000     | 0.000           |
|                |       |       |     |         | C   | 15.516          | 28.370          |           | 64.64 | 62.120    | 0.000           |
|                |       |       |     |         | D   | 15.516          | 28.370          |           | 64.64 | 96.044    | 0.000           |
| T14            | 55.00 | 1.116 | 11  | 142.444 | Α   | 9.050           | 14.185          | 14.185    | 61.05 | 25.120    | 0.000           |
| 60.00-50.00    |       |       |     |         | В   | 9.050           | 14.185          |           | 61.05 | 0.000     | 0.000           |
|                |       | ·     |     |         | С   | 9.050           | 14.185          |           | 61.05 | 31.060    | 0.000           |
|                | 1     |       |     |         | D   | 9.050           | 14.185          |           | 61.05 | 48.515    | 0.000           |
| T15            | 45.00 | 1.07  | 11  | 149.614 | Α   | 11.192          | 14.185          | 14.185    | 55.90 | 25.120    | 0.000           |
| 50.00-40.00    |       |       |     |         | В   | 11.192          | 14.185          |           | 55.90 | 0.000     | 0.000           |
|                |       |       |     |         | C   | 11.192          | 14.185          | .         | 55.90 | 31.060    | 0.000           |
|                |       |       |     |         | D   | 11.192          | 14.185          |           | 55.90 | 49.153    | 0.000           |
| T16            | 35.00 | 1.015 | 11  | 156.196 | A   | 27.367          | 0.000           | 13.350    | 48.78 | 25.120    | 0.000           |
| 40.00-30.00    |       |       |     |         | В   | 27.367          | 0.000           |           | 48.78 | 0.000     | 0.000           |
|                |       |       |     |         | С   | 27.367          | 0.000           |           | 48.78 | 31.060    | 0.000           |
|                |       |       |     |         | D   | 27.367          | 0.000           |           | 48.78 | 49.327    | 0.000           |
| T17            | 25.00 | 0.945 | 11  | 163.366 | Α   | 25.467          | 0.000           | 13.350    | 52.42 | 25.120    | 0.000           |
| 30.00-20.00    |       |       |     |         | В   | 25.467          | 0.000           |           | 52.42 | 0.000     | 0.000           |
|                |       |       |     |         | C   | 25.467          | 0.000           |           | 52.42 | 31.060    | 0.000           |
|                | = 1   |       |     |         | D   | 25.467          | 0.000           |           | 52.42 | 49.327    | 0.000           |
| T18            | 15.00 | 0.85  | 12  | 170.539 | A ] | 28.533          | 0.000           | 13.350    | 46.79 | 25.120    | 0.000           |
| 20.00-10.00    |       |       |     |         | В   | 28.533          | 0.000           |           | 46.79 | 0.000     | 0.000           |
|                |       |       |     |         | C   | 28.533          | 0.000           | - 1       | 46.79 | 31.060    | 0.000           |
| <b></b>        |       | J     | 1   |         | D   | 28.533          | 0.000           | ŀ         | 46.79 | 49.327    | 0.000           |
| T19 10.00-0.00 | 5.00  | 0.85  | 14  | 177.715 | A   | 28.435          | 0.000           | 13.350    | 46.95 | 10.048    | 0.000           |
|                |       | ľ     |     |         | В   | 28.435          | 0.000           |           | 46.95 | 0.000     | 0.000           |
|                |       |       |     |         | C   | 28.435          | 0.000           | - 1       | 46.95 | 12.405    | 0.000           |
|                |       |       |     |         | D   | 28.435          | 0.000           |           | 46.95 | 19.731    | 0.000           |

#### **Tower Forces - No Ice - Wind Normal To Face**

| Section       | Add      | Self   | F | е        | $C_F$ | $q_z$ | $D_F$ | $D_R$ | $A_E$  | F    | w      | Ctrl. |
|---------------|----------|--------|---|----------|-------|-------|-------|-------|--------|------|--------|-------|
| Elevation     | Weight   | Weight | a |          |       |       |       |       |        |      |        | Face  |
|               |          |        | С |          |       | psf   |       |       |        |      |        |       |
| ft            | <u>K</u> | K      | е | <u> </u> |       |       |       |       | ft²    | K    | plf    | 1     |
| T1            | 0.07     | 0.75   | Α | 0.203    | 2.969 | 31    | 1     | 1     | 12.491 | 1.29 | 129.20 | D     |
| 180.00-170.00 |          |        | В | 0.203    | 2.969 |       | 1     | 1     | 12.491 |      |        | _     |
|               |          |        | С | 0.203    | 2.969 | i     | 1     | 1     | 12.491 |      |        |       |
|               |          |        | D | 0.203    | 2.969 |       | 1     | 1     | 12.491 |      |        |       |
| T2            | 0.06     | 0.54   | A | 0.246    | 2.792 | 31    | 1     | 1     | 9.832  | 0.95 | 147.96 | D     |
| 170.00-163.57 |          |        | В | 0.246    | 2.792 |       | 1     | 1     | 9.832  |      | ١ ,    |       |
|               |          |        | С | 0.246    | 2.792 |       | 1     | 1     | 9.832  |      |        |       |
|               |          |        | D | 0.246    | 2.792 |       | 1     | 1     | 9.832  |      |        | i     |
| T3            | 0.11     | 0.39   | Α | 0.246    | 2.789 | 31    | 1     | 1     | 7.122  | 0.88 | 194.99 | D     |
| 163.57-159.05 |          |        | В | 0.246    | 2.789 | - 1   | 1     | 1     | 7.122  |      |        |       |
|               |          |        | С | 0.246    | 2.789 | - 1   | 1     | 1     | 7.122  |      |        |       |
|               |          |        | D | 0.246    | 2.789 |       | 1     | 1     | 7.122  |      |        |       |
| T4            | 0.14     | 0.36   | Α | 0.227    | 2.866 | 30    | 1     | 1     | 6.903  | 0.95 | 209.29 | D     |
| 159.05-154.52 | ŀ        |        | В | 0.227    | 2.866 | - 1   | 1     | 1     | 6.903  |      |        |       |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 41 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>Elevation | Add<br>Weight | Self<br>Weight | F<br>a | е              | $C_F$          | q <sub>z</sub> | $D_F$  | $D_R$ | $A_E$            | F     | w      | Ctrl.<br>Face |
|----------------------|---------------|----------------|--------|----------------|----------------|----------------|--------|-------|------------------|-------|--------|---------------|
| ft                   | K             | K              | c<br>e |                |                | psf            |        |       | ft²              | K     | plf    |               |
|                      |               |                | С      | 0.227          | 2.866          |                | 1      | 1     | 6.903            |       |        |               |
|                      |               |                | D      | 0.227          | 2.866          |                | 1      | 1     | 6.903            |       |        |               |
| T5                   | 0.14          | 0.37           | A      | 0.22           | 2.895          | 30             | 1      | 1     | 7.011            | 0.96  | 211.19 | D             |
| 154.52-150.00        |               |                | В      | 0.22           | 2.895          |                | 1      | 1     | 7.011            |       |        |               |
|                      |               |                | C      | 0.22           | 2.895          |                | 1      | 1     | 7.011            |       |        |               |
| т6                   | 0.31          | 0.97           | A      | 0.22<br>0.222  | 2.895<br>2.889 | 30             | 1<br>1 | 1     | 7.011<br>16.767  | 2 22  | 222.04 | _             |
| 150.00-140.00        | 0.51          | 0.57           | В      | 0.222          | 2.889          | 30             | 1      | 1     | 16.767           | 2.22  | 222.04 | D             |
| 150.00-140.00        |               |                | c      | 0.222          | 2.889          |                | 1      | 1     | 16.767           |       |        |               |
|                      |               |                | Ď      | 0.222          | 2.889          |                | i      | i     | 16.767           |       |        |               |
| T7                   | 0.31          | 1.53           | A      | 0.229          | 2.86           | 30             | 1      | 1     | 19.051           | 2.35  | 234.93 | D             |
| 140.00-130.00        |               |                | В      | 0.229          | 2.86           |                | 1      | 1     | 19.051           |       |        |               |
|                      |               |                | С      | 0.229          | 2.86           |                | 1      | 1     | 19.051           |       |        |               |
|                      |               |                | D      | 0.229          | 2.86           |                | 1      | 1     | 19.051           |       |        |               |
| Т8                   | 0.37          | 1.43           | Α      | 0.198          | 2.99           | 29             | 1      | 1     | 17.878           | 2.54  | 253.56 | D             |
| 130.00-120.00        | - 1           |                | В      | 0.198          | 2.99           |                | 1      | 1     | 17.878           |       |        |               |
|                      | 1             |                | С      | 0.198          | 2.99           |                | 1      | 1     | 17.878           |       |        |               |
|                      |               |                | D      | 0.198          | 2.99           |                | 1      | 1     | 17.878           |       |        |               |
| T9                   | 0.44          | 2.05           | A      | 0.205          | 2.959          | 29             | 1      | 1     | 20.028           | 2.89  | 288.70 | D             |
| 120.00-110.00        | - 1           |                | В      | 0.205          | 2.959          |                | 1      | 1     | 20.028           |       |        |               |
|                      | - 1           |                | C      | 0.205<br>0.205 | 2.959<br>2.959 |                | 1 1    | 1     | 20.028           |       |        |               |
| т10                  | 0.45          | 1.91           | A      | 0.203          | 3.031          | 29             | 1 1    | 1     | 20.028<br>19.757 | 2.92  | 202.22 | D             |
| 110.00-100.00        | 0.43          | 1.71           | B      | 0.188          | 3.031          | 29             | 1 1    | 1     | 19.757           | 2.92  | 292.32 | ע             |
| 110.00-100.00        |               |                | C      | 0.188          | 3.031          |                | i      | 1     | 19.757           |       |        |               |
|                      | ľ             |                | D      | 0.188          | 3.031          |                | i      | 1     | 19.757           |       |        |               |
| T11                  | 0.47          | 2.50           | Ā      | 0.211          | 2.932          | 29             | î      | i     | 23.872           | 3.23  | 322.87 | D             |
| 100.00-90.00         |               |                | В      | 0.211          | 2.932          |                | i      | i     | 23.872           | 3.23  | 322.07 | _             |
|                      |               |                | С      | 0.211          | 2.932          |                | 1      | 1     | 23.872           |       |        |               |
| -                    |               |                | D      | 0.211          | 2.932          |                | 1      | 1     | 23.872           |       |        |               |
| T12                  | 0.48          | 2.43           | A      | 0.203          | 2.968          | 29             | 1      | 1     | 24.365           | 3.28  | 328.18 | D             |
| 90.00-80.00          |               |                | В      | 0.203          | 2.968          |                | 1      | 1     | 24.365           |       |        |               |
|                      |               |                | C      | 0.203          | 2.968          | ŀ              | 1      | 1     | 24.365           |       |        |               |
| m10                  | 201           | = 0.1          | D      | 0.203          | 2.968          |                | 1      | 1     | 24.365           |       |        |               |
| T13                  | 0.96          | 7.96           | A      | 0.167          | 3.128          | 29             | 1      | 1     | 27.641           | 5.19  | 259.61 | D             |
| 80.00-60.00          | 1             |                | B<br>C | 0.167          | 3.128          |                | 1      | 1     | 27.641           |       |        |               |
|                      |               |                | D      | 0.167<br>0.167 | 3.128<br>3.128 |                | 1<br>I | 1     | 27.641           |       |        |               |
| T14                  | 0.48          | 4.57           | A      | 0.167          | 3.144          | 29             | 1      | 1     | 27.641<br>15.085 | 2.75  | 274.95 | D             |
| 60.00-50.00          | 0.46          | 7.57           | B      | 0.163          | 3.144          | 23             | 1      | 1     | 15.085           | 2./3  | 274.93 | ע             |
| 55.55                |               |                | č      | 0.163          | 3.144          | ŀ              | î      | i     | 15.085           |       | -      |               |
|                      |               |                | Ď      | 0.163          | 3.144          |                | il     | î     | 15.085           |       | Ì      |               |
| T15                  | 0.49          | 5.12           | Α      | 0.17           | 3.114          | 30             | il     | 1     | 17.276           | 2.98  | 297.79 | D             |
| 50.00-40.00          |               |                | В      | 0.17           | 3.114          |                | 1      | 1     | 17.276           |       |        | _             |
|                      |               |                | C      | 0.17           | 3.114          | i              | 1      | 1     | 17.276           |       |        |               |
|                      |               |                | D      | 0.17           | 3.114          |                | 1      | 1     | 17.276           |       |        |               |
| T16                  | 0.49          | 4.78           | A      | 0.175          | 3.089          | 31             | 1      | 1     | 27.367           | 3.87  | 387.03 | D             |
| 40.00-30.00          |               |                | В      | 0.175          | 3.089          |                | 1      | 1     | 27.367           |       |        |               |
|                      |               |                | C      | 0.175          | 3.089          |                | 1      | 1     | 27.367           |       |        |               |
| 771.7                | 0.40          | 4.05           | D      | 0.175          | 3.089          |                | 1      | 1     | 27.367           |       |        | _             |
| T17                  | 0.49          | 4.27           | A      | 0.156          | 3.177          | 32             | 1      | 1     | 25.467           | 3.92  | 391.62 | D             |
| 30.00-20.00          |               |                | В      | 0.156          | 3.177          | - 1            | 1      | 1     | 25.467           |       |        |               |
|                      |               |                | CD     | 0.156          | 3.177          |                | 1      | 1     | 25.467           |       |        |               |
| Т18                  | 0.49          | 5.02           | A      | 0.156<br>0.167 | 3.177<br>3.125 | 33             | 1      | 1     | 25.467           | 427   | 426.00 | г.            |
| 20.00-10.00          | U.47          | 3.02           | B      | 0.167          | 3.125          | 33             | 1 1    | 1 1   | 28.533           | 4.27  | 426.90 | D             |
| 20.00-10.00          |               |                | c      | 0.167          | 3.125          |                | 1 1    | 1     | 28.533           | I     |        |               |
|                      |               |                | D      | 0.167          | 3.125          |                | 1 1    | 1     | 28.533<br>28.533 | I     |        |               |
| T19                  | 0.19          | 4.70           | A      | 0.16           | 3.123          | 39             | 1      | i     | 28.435           | 3.84  | 383.58 | D             |
| 10.00-0.00           |               |                | В      | 0.16           | 3.158          |                | i      | i     | 28.435           | ۳-۵،۰ | 00.00  | D             |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 42 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section     | Add    | Self   | F      | е    | $C_F$ | $q_z$ | $D_F$ | $D_R$ | $A_E$   | F     | w   | Ctrl. |
|-------------|--------|--------|--------|------|-------|-------|-------|-------|---------|-------|-----|-------|
| Elevation   | Weight | Weight | a<br>c |      |       | psf   |       |       |         |       |     | Face  |
| ft          | K      | K      | e      |      |       | Paj   |       | _     | ft²     | K     | plf |       |
|             |        |        | С      | 0.16 | 3.158 |       | 1     | 1     | 28.435  |       |     |       |
|             |        |        | D      | 0.16 | 3.158 |       | 1     | 1     | 28.435  |       |     |       |
| Sum Weight: | 6.93   | 51.64  |        |      |       |       |       | OTM   | 3966.91 | 51.26 |     | ł     |
|             |        |        |        |      |       |       |       |       | kip-ft  |       |     |       |

# **Tower Forces - No Ice - Wind 45 To Face**

| Section<br>Elevation | Add<br>Weight | Self<br>Weight | F      | е              | $C_F$          | $q_z$ | $D_F$         | $D_R$          | $A_E$          | F    | w       | Ctrl. |
|----------------------|---------------|----------------|--------|----------------|----------------|-------|---------------|----------------|----------------|------|---------|-------|
| Elevation            | weigni        | weigni         | c      |                |                | nof . |               |                |                |      |         | Face  |
| ft                   | K             | K              | e      |                |                | psf   |               |                | ft²            | K    | plf     |       |
| T1                   | 0.07          | 0.75           | Α      | 0.203          | 2.969          | 31    | 1.152         | 1.152          | 14.389         | 1.44 | 144.03  | D     |
| 180.00-170.00        |               |                | В      | 0.203          | 2.969          |       | 1.152         | 1.152          | 14.389         |      |         |       |
| -                    |               |                | C      | 0.203          | 2.969          |       | 1.152         | 1.152          | 14.389         |      |         |       |
|                      |               |                | D      | 0.203          | 2.969          |       | 1.152         | 1.152          | 14.389         |      |         |       |
| T2                   | 0.06          | 0.54           | A      | 0.246          | 2.792          | 31    | 1.184         | 1.184          | 11.643         | 1.08 | 168.49  | D     |
| 170.00-163.57        |               |                | В      | 0.246          | 2.792          |       | 1.184         | 1.184          | 11.643         |      |         |       |
|                      |               |                | С      | 0.246          | 2.792          |       | 1.184         | 1.184          | 11.643         |      |         |       |
|                      |               | 0.00           | D      | 0.246          | 2.792          |       | 1.184         | 1.184          | 11.643         |      |         |       |
| T3                   | 0.11          | 0.39           | A      | 0.246          | 2.789          | 31    | 1.185         | 1.185          | 8.438          | 0.98 | 216.04  | D     |
| 163.57-159.05        |               |                | В      | 0.246          | 2.789          |       | 1.185         | 1.185          | 8.438          |      |         |       |
|                      |               |                | C      | 0.246          | 2.789          |       | 1.185         | 1.185          | 8.438          |      |         |       |
| T4                   | 0.14          | 0.26           | D      | 0.246          | 2.789          | 30    | 1.185         | 1.185          | 8.438          | 1.02 | 222.52  |       |
| 159.05-154.52        | 0.14          | 0.36           | A      | 0.227          | 2.866          | 30    | 1.17          | 1.17           | 8.079          | 1.03 | 228.52  | D     |
| 139.03-134.32        |               |                | B<br>C | 0.227<br>0.227 | 2.866<br>2.866 |       | 1.17          | 1.17           | 8.079          |      |         |       |
|                      | i             |                | D      |                |                |       | 1.17          | 1.17           | 8.079          |      |         | -     |
| T5                   | 0.14          | 0.37           |        | 0.227<br>0.22  | 2.866<br>2.895 | 30    | 1.17<br>1.165 | 1.17           | 8.079          | 104  | 220.22  |       |
| 154.52-150.00        | 0.14          | 0.37           | A<br>B | 0.22           | 2.895          | 30    | 1.165         | 1.165<br>1.165 | 8.169<br>8.169 | 1.04 | 230.22  | D     |
| 134.32-130.00        |               |                | Ĉ      | 0.22           | 2.895          |       | 1.165         | 1.165          |                |      |         |       |
|                      |               |                | D      | 0.22           | 2.895          |       | 1.165         | 1.165          | 8.169<br>8.169 |      |         |       |
| T6                   | 0.31          | 0.97           | A      | 0.222          | 2.889          | 30    | 1.165         | 1.165          | 19.555         | 2.43 | 242.56  | D     |
| 150.00-140.00        | 0.51          | 0.97           | В      | 0.222          | 2.889          | 30    | 1.166         | 1.166          | 19.555         | 2.43 | 242.50  | ען    |
| 130.00-140.00        | 1             |                | C      | 0.222          | 2.889          |       | 1.166         | 1.166          | 19.555         |      |         |       |
|                      | 1             |                | D      | 0.222          | 2.889          |       | 1.166         | 1.166          | 19.555         |      |         |       |
| т7                   | 0.31          | 1.53           | A      | 0.222          | 2.86           | 30    | 1.172         | 1.172          | 22.319         | 2.58 | 258.50  | D     |
| 140.00-130.00        | 0.51          | 1.55           | В      | 0.229          | 2.86           | 30    | 1.172         | 1.172          | 22.319         | 2.36 | 236.30  | ט     |
| 110.00 150.00        | - 1           |                | C      | 0.229          | 2.86           |       | 1.172         | 1.172          | 22.319         |      |         |       |
|                      | - 1           |                | D      | 0.229          | 2.86           |       | 1.172         | 1.172          | 22.319         |      |         |       |
| т8                   | 0.37          | 1.43           | A      | 0.198          | 2.99           | 29    | 1.148         | 1.172          | 20.527         | 2.73 | 273.34  | D     |
| 130.00-120.00        | 0.57          | 1.45           | В      | 0.198          | 2.99           |       | 1.148         | 1.148          | 20.527         | 2.73 | 213.34  | D     |
|                      | 1             |                | C      | 0.198          | 2.99           |       | 1.148         | 1.148          | 20.527         |      |         |       |
|                      | - 1           |                | D      | 0.198          | 2.99           | 1     | 1.148         | 1.148          | 20.527         |      |         |       |
| Т9                   | 0.44          | 2.05           | Ā      | 0.205          | 2.959          | 29    | 1.154         | 1.154          | 23.105         | 3.11 | 311.21  | D     |
| 120.00-110.00        |               |                | В      | 0.205          | 2.959          |       | 1.154         | 1.154          | 23.105         | 5.11 | 511.21  |       |
|                      | İ             |                | c      | 0.205          | 2.959          |       | 1.154         | 1.154          | 23.105         |      |         |       |
|                      |               |                | Ď      | 0.205          | 2.959          | - 1   | 1.154         | 1.154          | 23.105         |      |         |       |
| T10                  | 0.45          | 1.91           | Ā      | 0.188          | 3.031          | 29    | 1.141         | 1.141          | 22.546         | 3.13 | 313.05  | D     |
| 110.00-100.00        |               |                | В      | 0.188          | 3.031          |       | 1.141         | 1.141          | 22.546         | 5.15 | 515.05  |       |
|                      | I             |                | c      | 0.188          | 3.031          |       | 1.141         | 1.141          | 22.546         | İ    |         |       |
| i                    | ļ             |                | D      | 0.188          | 3.031          | - 1   | 1.141         | 1.141          | 22.546         |      |         |       |
| T11                  | 0.47          | 2.50           | Ā      | 0.211          | 2.932          | 29    | 1.158         | 1.158          | 27.655         | 3.50 | 349.89  | D     |
| 100.00-90.00         |               | =.50           | В      | 0.211          | 2.932          |       | 1.158         | 1.158          | 27.655         | 2.50 | 2 .5.05 | _     |
|                      | l             |                | c      | 0.211          |                | - 1   | 1.158         |                |                |      |         |       |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page                      |
|---------|--------------------------|---------------------------|
|         | 180' Lattice Tower - CSP | 43 of 86                  |
| Project | Structural Analysis      | Date<br>16:48:32 03/29/18 |
| Client  | Empire Telecom / EMP-004 | Designed by MCD           |

| Section     | Add    | Self   | F | e     | $C_F$ | $q_z$ | $D_F$ | $D_R$ | $A_E$   | F     | w      | Ctrl. |
|-------------|--------|--------|---|-------|-------|-------|-------|-------|---------|-------|--------|-------|
| Elevation   | Weight | Weight | а | }     |       |       |       |       |         | _     |        | Face  |
| _           |        |        | С |       |       | psf   |       |       |         |       |        | -     |
| ft          | K      | K      | е |       |       |       |       |       | ft²     | K     | plf    |       |
|             |        |        | D | 0.211 | 2.932 |       | 1.158 | 1.158 | 27.655  |       |        |       |
| T12         | 0.48   | 2.43   | Α | 0.203 | 2.968 | 29    | 1.152 | 1.152 | 28.071  | 3.55  | 354.88 | D     |
| 90.00-80.00 |        |        | В | 0.203 | 2.968 |       | 1.152 | 1.152 | 28.071  |       |        |       |
|             |        |        | C | 0.203 | 2.968 |       | 1.152 | 1.152 | 28.071  |       |        |       |
|             |        |        | D | 0.203 | 2.968 |       | 1.152 | 1.152 | 28.071  |       |        |       |
| T13         | 0.96   | 7.96   | Α | 0.167 | 3.128 | 29    | 1.125 | 1.125 | 31.097  | 5.46  | 272.77 | D     |
| 80.00-60.00 |        |        | В | 0.167 | 3.128 |       | 1.125 | 1.125 | 31.097  |       |        |       |
| =           |        |        | C | 0.167 | 3.128 |       | 1.125 | 1.125 | 31.097  |       |        |       |
|             |        |        | D | 0.167 | 3.128 |       | 1.125 | 1.125 | 31.097  |       |        |       |
| T14         | 0.48   | 4.57   | Α | 0.163 | 3.144 | 29    | 1.122 | 1.122 | 16.931  | 2.89  | 289.30 | D     |
| 60.00-50.00 |        |        | В | 0.163 | 3.144 |       | 1.122 | 1.122 | 16.931  |       |        |       |
|             |        |        | С | 0.163 | 3.144 |       | 1.122 | 1.122 | 16.931  |       |        |       |
|             |        |        | D | 0.163 | 3.144 |       | 1.122 | 1.122 | 16.931  |       |        |       |
| T15         | 0.49   | 5.12   | Α | 0.17  | 3.114 | 30    | 1.127 | 1.127 | 19.474  | 3.15  | 315.07 | D     |
| 50.00-40.00 |        |        | В | 0.17  | 3.114 |       | 1.127 | 1.127 | 19.474  |       |        |       |
|             |        |        | C | 0.17  | 3.114 |       | 1.127 | 1.127 | 19.474  |       |        |       |
|             |        |        | D | 0.17  | 3.114 |       | 1.127 | 1.127 | 19.474  |       |        |       |
| T16         | 0.49   | 4.78   | Α | 0.175 | 3.089 | 31    | 1.131 | 1.131 | 30.964  | 4.16  | 415.93 | D     |
| 40.00-30.00 |        |        | В | 0.175 | 3.089 |       | 1.131 | 1.131 | 30.964  |       |        |       |
| i           |        |        | С | 0.175 | 3.089 |       | 1.131 | 1.131 | 30.964  |       |        |       |
|             |        |        | D | 0.175 | 3.089 |       | 1.131 | 1.131 | 30.964  |       |        |       |
| T17         | 0.49   | 4.27   | Α | 0.156 | 3.177 | 32    | 1.117 | 1.117 | 28.444  | 4.17  | 417.15 | D     |
| 30.00-20.00 |        |        | В | 0.156 | 3.177 |       | 1.117 | 1.117 | 28.444  |       |        |       |
|             |        |        | C | 0.156 | 3.177 |       | 1.117 | 1.117 | 28.444  |       |        |       |
|             |        |        | D | 0.156 | 3.177 |       | 1.117 | 1.117 | 28.444  |       |        |       |
| T18         | 0.49   | 5.02   | Α | 0.167 | 3.125 | 33    | 1.125 | 1.125 | 32.114  | 4.58  | 458.03 | D     |
| 20.00-10.00 |        |        | В | 0.167 | 3.125 |       | 1.125 | 1.125 | 32.114  |       |        | _     |
|             |        |        | С | 0.167 | 3.125 |       | 1.125 | 1.125 | 32,114  |       |        |       |
|             |        |        | D | 0.167 | 3.125 |       | 1.125 | 1.125 | 32.114  |       |        |       |
| T19         | 0.19   | 4.70   | Α | 0.16  | 3.158 | 39    | 1.12  | 1.12  | 31.847  | 4.19  | 419.23 | D     |
| 10.00-0.00  | İ      |        | В | 0.16  | 3.158 |       | 1.12  | 1.12  | 31.847  |       |        | _     |
|             |        |        | С | 0.16  | 3.158 |       | 1.12  | 1.12  | 31.847  |       |        |       |
|             |        |        | D | 0.16  | 3.158 |       | 1.12  | 1.12  | 31.847  |       |        |       |
| Sum Weight: | 6.93   | 51.64  |   |       |       |       |       | OTM   | 4296.34 | 55.21 |        |       |
| ١           |        |        |   |       |       | i     |       |       | kip-ft  |       |        |       |

#### **Tower Forces - With Ice - Wind Normal To Face**

| Section       | Add    | Self   | F | е     | $C_F$ | $q_z$ | $D_F$ | $D_R$ | AE              | F    | w     | Ctrl. |
|---------------|--------|--------|---|-------|-------|-------|-------|-------|-----------------|------|-------|-------|
| Elevation     | Weight | Weight | а |       |       |       |       |       |                 |      |       | Face  |
| -             |        |        | c |       |       | psf   |       |       |                 |      | 1     |       |
| ft            | K      | K      | e |       |       |       |       |       | ft <sup>2</sup> | K    | plf   |       |
| T1            | 1.05   | 3.61   | Α | 0.498 | 2.054 | 8     | 1     | 1     | 26.212          | 0.57 | 57.30 | D     |
| 180.00-170.00 |        |        | В | 0.498 | 2.054 |       | 1     | 1     | 26.212          |      |       |       |
|               |        |        | С | 0.498 | 2.054 |       | 1     | 1     | 26.212          |      |       |       |
|               |        |        | D | 0.498 | 2.054 |       | 1     | 1     | 26.212          |      |       |       |
| T2            | 0.79   | 2.56   | Α | 0.54  | 1.98  | 8     | 1     | 1     | 19.076          | 0.41 | 63.03 | D     |
| 170.00-163.57 |        |        | В | 0.54  | 1.98  |       | 1     | 1     | 19.076          |      |       |       |
|               |        |        | C | 0.54  | 1.98  |       | 1     | 1     | 19.076          |      |       |       |
|               |        |        | D | 0.54  | 1.98  |       | 1     | 1     | 19.076          |      |       |       |
| T3            | 1.19   | 1.96   | Α | 0.583 | 1.92  | 8     | 1     | 1     | 14.967          | 0.37 | 82.85 | D     |
| 163.57-159.05 |        |        | В | 0.583 | 1.92  |       | 1     | 1     | 14.967          | =    |       |       |
|               |        |        | C | 0.583 | 1.92  |       | 1     | 1     | 14.967          |      |       |       |
|               |        |        | D | 0.583 | 1.92  |       | 1     | 1     | 14.967          |      |       |       |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 44 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | Empire Telecom / EMP-004 | Designed by MCD   |

| Section       | Add                               | Self   | F      | е              | $C_F$          | $q_z$ | $\overline{D_F}$ | $D_R$ | $A_E$            | F     | w      | Ctrl. |
|---------------|-----------------------------------|--------|--------|----------------|----------------|-------|------------------|-------|------------------|-------|--------|-------|
| Elevation     | Weight                            | Weight | a<br>c |                |                | psf   |                  |       |                  |       |        | Face  |
| ft            | K                                 | K      | e      |                |                | Psj   |                  |       | ft²              | K     | plf    |       |
| T4            | 1.44                              | 1.68   | Α      | 0.491          | 2.068          | 8     | 1                | 1     | 12.898           | 0.44* | 96.47  | D     |
| 159.05-154.52 | 1                                 |        | В      | 0.491          | 2.068          |       | 1                | 1     | 12.898           |       |        |       |
|               |                                   |        | C      | 0.491          | 2.068          |       | 1                | 1     | 12.898           |       |        |       |
| T5            | 1 44                              | 1.71   | D      | 0.491          | 2.068          |       | 1                | 1     | 12.898           | 0.45  | 100.00 | _     |
| 154.52-150.00 | 1.44                              | 1.71   | A<br>B | 0.478          | 2.095          | 8     | 1                | 1     | 13.060           | 0.45* | 100.39 | D     |
| 134.32-130.00 |                                   | i      | C      | 0.478          | 2.095          |       | 1                | 1     | 13.060           |       |        |       |
|               |                                   |        | D      | 0.478<br>0.478 | 2.095<br>2.095 |       | 1                | 1 1   | 13.060           |       |        |       |
| т6            | 3.31                              | 4.33   | A      | 0.478          | 2.093          | 8     | 1 1              | 1 1   | 31.709           | 1.07* | 106.65 | D     |
| 150.00-140.00 | 3.51                              | 4.55   | В      | 0.489          | 2.071          | °     | 1                | 1     | 31.709           | 1.07  | 100.03 | ע     |
| 130.00-140.00 |                                   |        | C      | 0.489          | 2.071          |       | i                | il    | 31.709           |       |        |       |
|               |                                   |        | Ď      | 0.489          | 2.071          |       | î                | il    | 31.709           |       |        |       |
| T7            | 3.29                              | 5.56   | Ā      | 0.469          | 2.114          | 7     | i                | il    | 33.542           | 1.11  | 110.77 | D     |
| 140.00-130.00 |                                   | 5.55   | В      | 0.469          | 2.114          |       | i                | il    | 33.542           |       | 110.77 | , D   |
|               |                                   |        | С      | 0.469          | 2.114          |       | i                | i     | 33.542           |       |        |       |
|               |                                   |        | D      | 0.469          | 2.114          |       | 1                | 1     | 33.542           |       |        |       |
| Т8            | 3.92                              | 4.77   | Α      | 0.398          | 2.287          | 7     | 1                | 1     | 30,273           | 1.24° | 123.92 | D     |
| 130.00-120.00 |                                   |        | В      | 0.398          | 2.287          |       | 1                | 1     | 30.273           |       |        | _     |
|               |                                   |        | С      | 0.398          | 2.287          |       | 1                | 1     | 30.273           |       |        |       |
|               |                                   |        | D      | 0.398          | 2.287          |       | 1                | 1     | 30.273           | -     |        |       |
| T9            | 4.61                              | 6.50   | A      | 0.425          | 2.214          | 7     | 1                | 1     | 34.979           | 1.32° | 132.26 | D     |
| 120.00-110.00 | 1                                 |        | В      | 0.425          | 2.214          |       | 1                | 1     | 34.979           |       |        |       |
|               |                                   |        | C      | 0.425          | 2.214          | - 1   | 1                | 1     | 34.979           |       |        |       |
|               | l                                 |        | D      | 0.425          | 2.214          |       | 1                | 1     | 34.979           |       |        |       |
| T10           | 4.76                              | 5.51   | A      | 0.371          | 2.362          | 7     | 1                | 1     | 32.552           | 1.40° | 140.43 | D     |
| 110.00-100.00 | - 1                               |        | В      | 0.371          | 2.362          | - 1   | 1                | 1     | 32.552           |       |        |       |
|               | - 1                               |        | С      | 0.371          | 2.362          |       | 1                | 1,    | 32.552           |       |        |       |
|               |                                   |        | D      | 0.371          | 2.362          | _ [   | 1                | 1     | 32.552           |       |        |       |
| T11           | 5.05                              | 7.10   | A      | 0.384          | 2.324          | 7     | 1                | 1     | 37.023           | 1.50° | 149.86 | D     |
| 100.00-90.00  | ŀ                                 |        | В      | 0.384          | 2.324          |       | 1                | 1     | 37.023           |       |        |       |
|               |                                   |        | C      | 0.384          | 2.324          | - 1   | 1                | 1     | 37.023           |       |        |       |
| T12           | 5.00                              | 6.50   | D      | 0.384          | 2.324          | اء    | 1                | 1     | 37.023           |       | 4      | _     |
| 90.00-80.00   | 5.08                              | 6.58   | A      | 0.371          | 2.362          | 7     | 1                | 1     | 37.778           | 1.59° | 158.50 | D     |
| 90.00-80.00   |                                   |        | B<br>C | 0.371          | 2.362          |       | 1                | 1     | 37.778           |       |        |       |
|               | i                                 |        | D      | 0.371<br>0.371 | 2.362          |       | 1                | 1 1   | 37.778<br>37.778 | - 1   |        |       |
| Т13           | 10.30                             | 16.24  | A      | 0.371          | 2.551          | 7     | 1 1              | i     | 56.848           | 3.15  | 157.55 | D     |
| 80.00-60.00   | 10.50                             | 10,24  | B      | 0.311          | 2.551          | ′     | 1                | i     | 56.848           | 3.13  | 157.55 | ע     |
| 00.00-00.00   |                                   |        | č      | 0.311          | 2.551          |       | 1                | 1     | 56.848           | 1.    |        |       |
|               |                                   |        | Ď      | 0.311          | 2.551          |       | í                | 1     | 56.848           |       |        |       |
| T14           | 5.21                              | 9.77   | Ā      | 0.318          | 2.529          | 7     | il               | il    | 31.639           | 1.66  | 166.23 | D     |
| 60.00-50.00   |                                   | 2      | В      | 0.318          | 2.529          | ´     | î                | î     | 31.639           | 1.00  | 100.23 | D     |
|               |                                   |        | c      | 0.318          | 2.529          |       | i                | î     | 31.639           |       |        |       |
| Ī             |                                   |        | D      | 0.318          | 2.529          |       | il               | 1     | 31.639           |       |        |       |
| T15           | 5.30                              | 9.81   | A      | 0.322          | 2.513          | 7     | 1                | ī     | 34.339           | 1.76  | 175.86 | D     |
| 50.00-40.00   |                                   |        | В      | 0.322          | 2.513          | 1     | ī                | 1     | 34.339           | ,     | 175.50 |       |
|               |                                   |        | c      | 0.322          | 2.513          |       | 1                | 1     | 34.339           |       |        |       |
|               | - 1                               |        | D      | 0.322          | 2.513          |       | i                | 1     | 34.339           | - 1   | - 1    |       |
| T16           | 5.34                              | 11.75  | Α      | 0.358          | 2.401          | 8     | 1                | 1     | 45.795           | 1.97  | 197.46 | D     |
| 40.00-30.00   |                                   |        | В      | 0.358          | 2.401          |       | 1                | 1     | 45.795           |       |        | _     |
|               |                                   |        | c      | 0.358          | 2.401          |       | 1                | 1     | 45.795           |       |        |       |
|               |                                   |        | D      | 0.358          | 2.401          |       | 1                | 1     | 45.795           |       |        |       |
| T17           | 5.36                              | 9.57   | Α      | 0.306          | 2.57           | 8     | 1                | 1     | 40.814           | 2.02  | 201.62 | D     |
| 30.00-20.00   | 00   B   0.306   2.57   1   1   4 | 40.814 |        |                |                |       |                  |       |                  |       |        |       |
|               |                                   | Į      | C      | 0.306          | 2.57           |       | 1                | 1     | 40.814           | i     | l      |       |
|               |                                   | ľ      | D      | 0.306          | 2.57           |       | 1                | 1     | 40.814           |       |        |       |
| T18           | 5.35                              | 12.46  | Α      | 0.346          | 2.438          | 8     | 1                | 1     | 47.999           | 2.16  | 216.23 | D     |
| 20.00-10.00   |                                   |        | В      | 0.346          | 2.438          | 1     | 1                | 1     | 47.999           |       |        |       |
|               |                                   | - 1    | С      | 0.346          | 2.438          | ľ     | 1                | 1     | 47.999           |       |        |       |
|               | - 1                               | - 1    | D      | 0.346          | 2.438          |       | 1                | 1     | 47.999           | - 1   | - 1    |       |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 45 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | F : T ! /FIAD 004        | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section     | Add    | Self   | F | е     | $C_F$              | $q_z$ | $D_F$ | $D_R$ | $A_E$   | F     | w      | Ctrl. |
|-------------|--------|--------|---|-------|--------------------|-------|-------|-------|---------|-------|--------|-------|
| Elevation   | Weight | Weight | a |       |                    |       |       |       |         |       |        | Face  |
|             |        |        | c |       |                    | psf   |       |       |         |       |        |       |
| ft          | K      | K      | е |       |                    |       |       |       | ft²     | K     | plf    |       |
| T19         | 2.03   | 12.06  | Α | 0.325 | 2.504              | 10    | 1     | 1     | 48.179  | 1.63  | 162.57 | D     |
| 10.00-0.00  |        |        | В | 0.325 | 2.504              |       | 1     | 1     | 48.179  |       |        |       |
|             |        |        | С | 0.325 | 2.504              |       | 1     | 1     | 48.179  |       |        |       |
|             |        |        | D | 0.325 | 2.504              |       | 1     | 1     | 48.179  |       |        |       |
| Sum Weight: | 74.83  | 133.52 |   |       | *2.1A <sub>e</sub> |       |       | OTM   | 1952.83 | 25.82 |        |       |
|             |        |        |   |       | limit              |       |       |       | kip-ft  |       |        |       |

#### **Tower Forces - With Ice - Wind 45 To Face**

| Section       | Add    | Self   | F      | е     | $C_F$ | $q_z$    | $D_F$ | $D_R$ | $A_E$  | F     | w      | Ctrl. |
|---------------|--------|--------|--------|-------|-------|----------|-------|-------|--------|-------|--------|-------|
| Elevation     | Weight | Weight | а      |       | 1     |          |       |       |        |       | 1      | Face  |
| ft            | K      | K      | c<br>e |       |       | psf      |       |       | ft²    | K     | plf    |       |
| T1            | 1.05   | 3.61   | Α      | 0.498 | 2.054 | 8        | 1.2   | 1.2   | 31.454 | 0.64  | 64.42  | D     |
| 180.00-170.00 |        |        | В      | 0.498 | 2.054 |          | 1.2   | 1.2   | 31.454 |       |        | _     |
|               |        |        | С      | 0.498 | 2.054 |          | 1.2   | 1.2   | 31.454 |       |        |       |
|               |        |        | D      | 0.498 | 2.054 |          | 1.2   | 1.2   | 31.454 |       |        |       |
| T2            | 0.79   | 2.56   | Α      | 0.54  | 1.98  | 8        | 1.2   | 1.2   | 22.892 | 0.45  | 70.73  | D     |
| 170.00-163.57 |        |        | В      | 0.54  | 1.98  |          | 1.2   | 1.2   | 22.892 |       |        | _     |
|               |        |        | С      | 0.54  | 1.98  |          | 1.2   | 1.2   | 22.892 |       |        |       |
|               |        |        | D      | 0.54  | 1.98  |          | 1.2   | 1.2   | 22.892 |       |        |       |
| T3            | 1.19   | 1.96   | Α      | 0.583 | 1.92  | 8        | 1.2   | 1.2   | 17.961 | 0.41  | 91.13  | D     |
| 163.57-159.05 |        |        | В      | 0.583 | 1.92  |          | 1.2   | 1.2   | 17.961 |       |        | _     |
|               |        |        | С      | 0.583 | 1.92  |          | 1.2   | 1.2   | 17.961 |       |        |       |
|               |        |        | D      | 0.583 | 1.92  |          | 1.2   | 1.2   | 17.961 |       |        |       |
| T4            | 1.44   | 1.68   | Α      | 0.491 | 2.068 | 8        | 1.2   | 1.2   | 15.478 | 0.44* | 96.47  | D     |
| 159.05-154.52 |        |        | В      | 0.491 | 2.068 |          | 1.2   | 1.2   | 15.478 |       |        | _     |
|               |        |        | С      | 0.491 | 2.068 |          | 1.2   | 1.2   | 15.478 | ľ     | =      |       |
|               |        |        | D      | 0.491 | 2.068 |          | 1.2   | 1.2   | 15.478 |       |        |       |
| T5            | 1.44   | 1.71   | Α      | 0.478 | 2.095 | 8        | 1.2   | 1.2   | 15.672 | 0.45° | 100.39 | D     |
| 154.52-150.00 |        |        | В      | 0.478 | 2.095 |          | 1.2   | 1.2   | 15.672 |       |        | _     |
|               |        |        | С      | 0.478 | 2.095 |          | 1.2   | 1.2   | 15.672 |       |        |       |
| ľ             | 1      | į      | D      | 0.478 | 2.095 |          | 1.2   | 1.2   | 15.672 |       |        |       |
| Т6            | 3.31   | 4.33   | Α      | 0.489 | 2.071 | 8        | 1.2   | 1.2   | 38.050 | 1.07* | 106.65 | D     |
| 150.00-140.00 | I      |        | В      | 0.489 | 2.071 |          | 1.2   | 1.2   | 38.050 |       |        | _     |
|               |        |        | С      | 0.489 | 2.071 |          | 1.2   | 1.2   | 38.050 |       |        |       |
|               | - 1    |        | D      | 0.489 | 2.071 | i        | 1.2   | 1.2   | 38.050 |       |        |       |
| T7            | 3.29   | 5.56   | Α      | 0.469 | 2.114 | 7        | 1.2   | 1.2   | 40.251 | 1.16* | 115.69 | D     |
| 140.00-130.00 | i      |        | В      | 0.469 | 2.114 |          | 1.2   | 1.2   | 40.251 |       |        | _     |
|               | - 1    |        | С      | 0.469 | 2.114 |          | 1.2   | 1.2   | 40.251 |       |        |       |
|               |        |        | D      | 0.469 | 2.114 |          | 1.2   | 1.2   | 40.251 | 1     |        |       |
| T8            | 3.92   | 4.77   | Α      | 0.398 | 2.287 | 7        | 1.2   | 1.2   | 36.328 | 1.24° | 123.92 | D     |
| 130.00-120.00 |        |        | В      | 0.398 | 2.287 | 1        | 1.2   | 1.2   | 36.328 |       |        | _     |
|               |        |        | С      | 0.398 | 2.287 | - 1      | 1.2   | 1.2   | 36.328 |       |        |       |
| i             |        |        | D      | 0.398 | 2.287 |          | 1.2   | 1.2   | 36.328 |       |        |       |
| Т9            | 4.61   | 6.50   | A      | 0.425 | 2.214 | 7        | 1.2   | 1.2   | 41.975 | 1.32* | 132.26 | D     |
| 120.00-110.00 | - 1    | 1      | В      | 0.425 | 2.214 |          | 1.2   | 1.2   | 41.975 |       |        | _     |
| ŀ             | ı      |        | С      | 0.425 | 2.214 |          | 1.2   | 1.2   | 41.975 |       |        |       |
|               | I      | l      | D      | 0.425 | 2.214 |          | 1.2   | 1.2   | 41.975 |       |        |       |
| T10           | 4.76   | 5.51   | Α      | 0.371 | 2.362 | 7        | 1.2   | 1.2   | 39.062 | 1.40* | 140.43 | D     |
| 110.00-100.00 |        |        | В      | 0.371 | 2.362 | <u> </u> | 1.2   | 1.2   | 39.062 |       | 1.0.73 |       |
|               | I      |        | c      | 0.371 | 2.362 | - 1      | 1.2   | 1.2   | 39.062 |       |        |       |
|               | - 1    |        | D      | 0.371 | 2.362 |          | 1.2   | 1.2   | 39.062 |       |        |       |
| T11           | 5.05   | 7.10   |        | 0.384 | 2.324 | 7        | 1.2   | 1.2   | 44.428 | 1.50* | 149.86 | D     |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 46 of 86          |
| Project | -                        | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | F : T : /FI/D 00/        | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section      | Add    | Self   | F | е     | $C_F$              | $q_z$ | $D_F$ | $D_R$ | $A_{E}$ | F     | w      | Ctrl. |
|--------------|--------|--------|---|-------|--------------------|-------|-------|-------|---------|-------|--------|-------|
| Elevation    | Weight | Weight | a |       |                    | -     |       |       |         |       |        | Face  |
|              | -      |        | c |       |                    | psf   |       |       |         |       |        |       |
| ft           | K      | K      | е |       |                    |       |       |       | ft²     | K     | plf    |       |
| 100.00-90.00 |        |        | В | 0.384 | 2.324              |       | 1.2   | 1.2   | 44.428  |       |        |       |
|              |        |        | С | 0.384 | 2.324              |       | 1.2   | 1.2   | 44.428  |       |        |       |
|              |        |        | D | 0.384 | 2.324              |       | 1.2   | 1.2   | 44.428  |       |        |       |
| T12          | 5.08   | 6.58   | Α | 0.371 | 2.362              | 7     | 1.2   | 1.2   | 45.334  | 1.59* | 158.50 | D     |
| 90.00-80.00  |        |        | В | 0.371 | 2.362              |       | 1.2   | 1.2   | 45.334  |       |        |       |
|              |        |        | C | 0.371 | 2.362              |       | 1.2   | 1.2   | 45.334  |       |        |       |
|              |        |        | D | 0.371 | 2.362              |       | 1.2   | 1.2   | 45.334  |       |        |       |
| T13          | 10.30  | 16.24  | Α | 0.311 | 2.551              | 7     | 1.2   | 1.2   | 68.218  | 3.33  | 166.42 | D     |
| 80.00-60.00  |        |        | В | 0.311 | 2.551              |       | 1.2   | 1.2   | 68.218  |       |        | i     |
|              |        |        | C | 0.311 | 2.551              |       | 1.2   | 1.2   | 68.218  |       |        |       |
|              |        |        | D | 0.311 | 2.551              |       | 1.2   | 1.2   | 68.218  |       |        | 1     |
| T14          | 5.21   | 9.77   | A | 0.318 | 2.529              | 7     | 1.2   | 1.2   | 37.967  | 1.76  | 176.17 | D     |
| 60.00-50.00  |        |        | В | 0.318 | 2.529              |       | 1.2   | 1.2   | 37.967  |       |        |       |
|              |        |        | C | 0.318 | 2.529              |       | 1.2   | 1.2   | 37.967  |       |        |       |
|              |        |        | D | 0.318 | 2.529              |       | 1.2   | 1.2   | 37.967  |       |        |       |
| T15          | 5.30   | 9.81   | Α | 0.322 | 2.513              | 7     | 1.2   | 1.2   | 41.207  | 1.87  | 186.82 | D     |
| 50.00-40.00  | - 1    |        | В | 0.322 | 2.513              |       | 1.2   | 1.2   | 41.207  |       |        |       |
|              |        |        | С | 0.322 | 2.513              | i     | 1.2   | 1.2   | 41.207  |       |        |       |
|              |        |        | D | 0.322 | 2.513              |       | 1.2   | 1.2   | 41.207  |       |        |       |
| T16          | 5.34   | 11.75  | Α | 0.358 | 2.401              | 8     | 1.2   | 1.2   | 54.954  | 2.12  | 211.84 | D     |
| 40.00-30.00  |        |        | В | 0.358 | 2.401              |       | 1.2   | 1.2   | 54.954  |       |        |       |
|              |        |        | C | 0.358 | 2.401              |       | 1.2   | 1.2   | 54.954  |       |        |       |
| ,            |        |        | D | 0.358 | 2.401              |       | 1.2   | 1.2   | 54.954  |       | ,      |       |
| T17          | 5.36   | 9.57   | A | 0.306 | 2.57               | 8     | 1.2   | 1.2   | 48.976  | 2.16  | 215.85 | D     |
| 30.00-20.00  |        |        | В | 0.306 | 2.57               |       | 1.2   | 1.2   | 48.976  |       |        |       |
|              |        |        | С | 0.306 | 2.57               |       | 1.2   | 1.2   | 48.976  |       |        |       |
|              |        |        | D | 0.306 | 2.57               |       | 1.2   | 1.2   | 48.976  |       |        |       |
| T18          | 5.35   | 12.46  | Α | 0.346 | 2.438              | 8     | 1.2   | 1.2   | 57.598  | 2.33  | 232.60 | D     |
| 20.00-10.00  | - 1    |        | В | 0.346 | 2.438              |       | 1.2   | 1.2   | 57.598  |       |        |       |
|              |        |        | С | 0.346 | 2.438              |       | 1.2   | 1.2   | 57.598  |       |        |       |
| _            |        |        | D | 0.346 | 2.438              |       | 1.2   | 1.2   | 57.598  | ı     |        |       |
| T19          | 2.03   | 12.06  | Α | 0.325 | 2.504              | 10    | 1.2   | 1.2   | 57.815  | 1.83  | 182.63 | D     |
| 10.00-0.00   |        |        | В | 0.325 | 2.504              |       | 1.2   | 1.2   | 57.815  |       |        |       |
|              |        |        | С | 0.325 | 2.504              |       | 1.2   | 1.2   | 57.815  |       |        |       |
|              |        |        | D | 0.325 | 2.504              |       | 1.2   | 1.2   | 57.815  |       |        |       |
| Sum Weight:  | 74.83  | 133.52 |   |       | *2.1A <sub>g</sub> |       |       | OTM   | 2021.12 | 27.06 |        |       |
|              |        |        |   |       | limit              |       |       |       | kip-ft  |       |        |       |

#### **Tower Forces - Service - Wind Normal To Face**

| Section       | Add    | Self   | F  | е     | $C_F$ | $q_z$ | $D_F$ | $D_R$ | AE              | F    | w     | Ctrl. |
|---------------|--------|--------|----|-------|-------|-------|-------|-------|-----------------|------|-------|-------|
| Elevation     | Weight | Weight | а  |       |       | l i   |       |       |                 |      |       | Face  |
|               |        |        | c  |       |       | psf   |       |       |                 | İ    |       |       |
| ft            | K      | K      | _e |       |       |       |       |       | ft <sup>2</sup> | K    | plf   |       |
| Ti            | 0.07   | 0.75   | Α  | 0.203 | 2.969 | 11    | 1     | 1     | 12.491          | 0.47 | 46.76 | D     |
| 180.00-170.00 |        |        | В  | 0.203 | 2.969 |       | 1     | 1     | 12.491          |      |       |       |
|               |        |        | C  | 0.203 | 2.969 |       | 1     | 1     | 12.491          |      |       |       |
|               |        |        | D  | 0.203 | 2.969 |       | 1     | 1     | 12.491          |      |       |       |
| T2            | 0.06   | 0.54   | Α  | 0.246 | 2.792 | 11    | 1     | 1     | 9.832           | 0.34 | 53.55 | D     |
| 170.00-163.57 |        |        | В  | 0.246 | 2.792 |       | 1     | 1     | 9.832           |      |       |       |
|               |        |        | C  | 0.246 | 2.792 |       | 1     | 1     | 9.832           |      |       |       |
| l             |        |        | D  | 0.246 | 2.792 |       | 1     | 1     | 9.832           |      |       |       |
| T3            | 0.11   | 0.39   | A  | 0.246 | 2.789 | 11    | 1     | 1     | 7.122           | 0.32 | 70.58 | D     |
| 163.57-159.05 |        |        | В  | 0.246 | 2.789 |       | 1     | 1     | 7.122           |      |       |       |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 47 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>Elevation | Add<br>Weight | Self<br>Weight | F<br>a | e              | $C_F$          | $q_z$ | $\overline{D_F}$ | $D_R$  | $A_E$            | F    | w      | Ctrl.<br>Face |
|----------------------|---------------|----------------|--------|----------------|----------------|-------|------------------|--------|------------------|------|--------|---------------|
| ft                   | K             | K              | c<br>e |                |                | psf   |                  |        | ft²              | K    | plf    |               |
|                      |               |                | С      | 0.246          | 2.789          |       | 1                | 1      | 7.122            |      |        |               |
|                      |               |                | D      | 0.246          | 2.789          |       | 1                | 1      | 7.122            |      |        |               |
| T4                   | 0.14          | 0.36           | Α      | 0.227          | 2.866          | 11    | 1                | 1      | 6.903            | 0.34 | 75.75  | D             |
| 159.05-154.52        |               |                | В      | 0.227          | 2.866          |       | 1                | 1      | 6.903            | -    |        | l             |
|                      |               |                | С      | 0.227          | 2.866          |       | 1                | 1      | 6.903            |      |        | l             |
|                      |               |                | D      | 0.227          | 2.866          |       | 1                | 1      | 6.903            |      |        | Ī             |
| T5                   | 0.14          | 0.37           | A      | 0.22           | 2.895          | 11    | 1                | 1      | 7.011            | 0.35 | 76.44  | D             |
| 154.52-150.00        |               |                | В      | 0.22           | 2.895          |       | 1                | 1      | 7.011            |      |        |               |
|                      | - 1           |                | C      | 0.22           | 2.895          |       | 1                | 1      | 7.011            |      |        |               |
| m.                   |               | 0.05           | D      | 0.22           | 2.895          |       | 1                | 1      | 7.011            |      |        |               |
| T6                   | 0.31          | 0.97           | A      | 0.222          | 2.889          | 11    | 1                | 1      | 16.767           | 0.80 | 80.36  | D             |
| 150.00-140.00        |               |                | В      | 0.222          | 2.889          |       | 1                | 1      | 16.767           |      |        |               |
| ĺ                    |               |                | C      | 0.222          | 2.889          |       | 1                | 1      | 16.767           |      |        | 1             |
| T7                   | 0.31          | 1.62           | D      | 0.222          | 2.889          | ١,,   | 1                | 1      | 16.767           |      | 0.5.00 |               |
| 140.00-130.00        | 0.31          | 1.53           | A<br>B | 0.229          | 2.86           | 11    | 1                | 1      | 19.051           | 0.85 | 85.03  | D             |
| 140.00-130.00        | i             |                | C      | 0.229<br>0.229 | 2.86<br>2.86   |       | 1 1              | 1      | 19.051           |      |        |               |
| 1                    |               |                | D      | 0.229          | 2.86           |       | 1                | 1<br>1 | 19.051<br>19.051 |      |        |               |
| т8                   | 0.37          | 1.43           | A      | 0.229          | 2.99           | 11    | 1                | 1      | 17.878           | 0.92 | 91.78  | D             |
| 130.00-120.00        | 0.57          | 1.43           | B      | 0.198          | 2.99           | ''    | î                | 1      | 17.878           | 0.92 | 91.76  | ען            |
| 130.00 120.00        | - 1           |                | c      | 0.198          | 2.99           |       | 1                | i      | 17.878           |      |        |               |
|                      | .             |                | D      | 0.198          | 2.99           |       | 1                | il     | 17.878           |      |        |               |
| Т9                   | 0.44          | 2.05           | Ā      | 0.205          | 2.959          | 11    | î                | î l    | 20.028           | 1.04 | 104.49 | D             |
| 120.00-110.00        |               | 2.05           | В      | 0.205          | 2.959          | * 1   | 1                | i l    | 20.028           | 1.04 | 104.45 |               |
|                      |               |                | c      | 0.205          | 2.959          |       | i                | i l    | 20.028           |      |        |               |
| İ                    |               |                | D      | 0.205          | 2.959          |       | ī                | ī      | 20.028           |      |        |               |
| T10                  | 0.45          | 1.91           | Α      | 0.188          | 3.031          | 10    | 1                | 1      | 19.757           | 1.06 | 105.80 | D             |
| 110.00-100.00        |               |                | В      | 0.188          | 3.031          |       | 1                | 1      | 19.757           |      |        | _             |
|                      |               |                | С      | 0.188          | 3.031          |       | 1                | 1      | 19.757           |      |        |               |
|                      |               |                | D      | 0.188          | 3.031          |       | 1                | 1      | 19.757           |      |        |               |
| TI1                  | 0.47          | 2.50           | A      | 0.211          | 2.932          | 10    | 1                | 1      | 23.872           | 1.17 | 116.86 | D             |
| 100.00-90.00         | 1             |                | В      | 0.211          | 2.932          |       | 1                | 1      | 23.872           |      |        |               |
|                      |               |                | C      | 0.211          | 2.932          |       | 1                | 1      | 23.872           |      |        |               |
|                      | ľ             |                | D      | 0.211          | 2.932          |       | 1                | 1      | 23.872           |      |        |               |
| T12                  | 0.48          | 2.43           | A      | 0.203          | 2.968          | 10    | 1                | 1      | 24.365           | 1.19 | 118.78 | D             |
| 90.00-80.00          |               |                | В      | 0.203          | 2.968          |       | 1                | 1      | 24.365           | - 1  |        |               |
|                      | 1             |                | С      | 0.203          | 2.968          |       | 1                | 1      | 24.365           | 1    |        |               |
|                      |               |                | D      | 0.203          | 2.968          |       | 1                | 1      | 24.365           | - 1  |        |               |
| T13                  | 0.96          | 7.96           | A      | 0.167          | 3.128          | 10    | 1                | 1      | 27.641           | 1.88 | 93.97  | D             |
| 80.00-60.00          |               |                | В      | 0.167          | 3.128          |       | 1                | 1      | 27.641           |      |        |               |
|                      |               |                | č      | 0.167          | 3.128          | i     | 1                | 1      | 27.641           | _    |        |               |
| T14                  | 0.48          | 4.57           | D      | 0.167          | 3.128          | l     | 1                | 1      | 27.641           |      | 00.50  | _             |
| 60.00-50.00          | 0.48          | 4.57           | A      | 0.163          | 3.144          | 11    | 1                | 1      | 15.085           | 1.00 | 99.52  | D             |
| 00.00-30.00          |               |                | В      | 0.163          | 3.144          |       | 1                | 1      | 15.085           |      |        |               |
|                      |               |                | CD     | 0.163<br>0.163 | 3.144<br>3.144 |       | 1                | 1      | 15.085           | ŀ    |        |               |
| T15                  | 0.49          | 5.12           | A      | 0.103          | 3.114          | 11    | 1 1              | 1      | 15.085           | 1.00 | 107.70 | -             |
| 50.00-40.00          | 0.49          | 3.12           | В      | 0.17           | 3.114          | 11    | 1                | 1      | 17.276           | 1.08 | 107.78 | D             |
| 50.00 40.00          |               |                | c      | 0.17           | 3.114          |       | i l              | 1      | 17.276<br>17.276 |      |        |               |
|                      |               |                | Ď      | 0.17           | 3.114          | ĺ     | il               | 1      | 17.276           |      |        |               |
| T16                  | 0.49          | 4.78           | A      | 0.175          | 3.089          | 11    | i                | 1      | 27.367           | 1.40 | 140.08 | D             |
| 40.00-30.00          | 0.45          | 7.76           | В      | 0.175          | 3.089          | **    | il               | 1      | 27.367           | 1.40 | 140.06 | ע             |
| 10.00-50.00          | I             |                | c      | 0.175          | 3.089          |       | 1                | 1 1    | 27.367           | I    |        |               |
|                      | 1             |                | Ď      | 0.175          | 3.089          |       | i                | 1      | 27.367           | ŀ    |        |               |
| T17                  | 0.49          | 4.27           | A      | 0.175          | 3.177          | 11    | 1                | 1      | 25.467           | 1.42 | 141.74 | D             |
| 30.00-20.00          | 0.77          | 7.21           | В      | 0.156          | 3.177          | **    | 1                | 1      | 25.467           | 1.42 | 171./4 | ע             |
| 50.00-20.00          |               |                | č      | 0.156          | 3.177          |       | i                | il     | 25.467           | I    |        |               |
|                      | 1             |                | Ď      | 0.156          | 3.177          |       | i                | i      | 25.467           | I    |        |               |
| T18                  | 0.49          | 5.02           | Ā      | 0.150          | 3.125          | 12    | 1                | 1      | 28.533           | 1.55 | 154.51 | D             |
|                      | U.T.          | 2.02           | B      | 0.107          | 3.125          | 14    | 1                | i      | 28.533           | 1.33 | 174.71 | ט             |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 48 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | _ / _ / _ / _ /          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section     | Add    | Self   | F | е     | $C_F$ | $q_z$ | $D_F$ | $D_R$ | $A_E$           | F     | w      | Ctrl. |
|-------------|--------|--------|---|-------|-------|-------|-------|-------|-----------------|-------|--------|-------|
| Elevation   | Weight | Weight | а |       |       |       |       |       |                 |       |        | Face  |
|             |        |        | c |       |       | psf   |       |       |                 |       |        |       |
| ft          | K      | K      | е |       |       |       |       |       | ft <sup>2</sup> | K     | plf    |       |
|             |        |        | С | 0.167 | 3.125 |       | 1     | 1     | 28.533          |       |        |       |
|             |        |        | D | 0.167 | 3.125 |       | 1     | 1     | 28.533          |       |        |       |
| T19         | 0.19   | 4.70   | Α | 0.16  | 3.158 | 14    | 1     | 1     | 28.435          | 1.39  | 138.83 | D     |
| 10.00-0.00  |        |        | В | 0.16  | 3.158 |       | 1     | 1     | 28.435          |       |        |       |
|             |        |        | C | 0.16  | 3.158 |       | 1     | 1     | 28.435          |       |        |       |
|             |        |        | D | 0.16  | 3.158 |       | 1     | 1     | 28.435          |       |        |       |
| Sum Weight: | 6.93   | 51.64  |   |       |       |       |       | OTM   | 1435.79         | 18.55 |        | 1     |
|             |        |        |   |       |       |       |       |       | kip-ft          |       |        |       |

# **Tower Forces - Service - Wind 45 To Face**

| Section       | Add    | Self   | F      | е     | $C_F$ | $q_z$ | $D_F$ | $D_R$ | $A_E$  | F    | w      | Ctrl. |
|---------------|--------|--------|--------|-------|-------|-------|-------|-------|--------|------|--------|-------|
| Elevation     | Weight | Weight | а      |       |       | _     |       | 1     |        |      |        | Face  |
| ft            | K      | K      | c<br>e |       |       | psf   |       |       | ft²    | K    | plf    |       |
| T1            | 0.07   | 0.75   | Α      | 0.203 | 2.969 | 11    | 1.152 | 1.152 | 14.389 | 0.52 | 52.13  | D     |
| 180.00-170.00 |        |        | В      | 0.203 | 2.969 |       | 1.152 | 1.152 | 14.389 |      |        |       |
|               |        | ,      | С      | 0.203 | 2.969 |       | 1.152 | 1.152 | 14.389 |      |        |       |
|               |        |        | D      | 0.203 | 2.969 |       | 1.152 | 1.152 | 14.389 |      |        |       |
| T2            | 0.06   | 0.54   | Α      | 0.246 | 2.792 | 11    | 1.184 | 1.184 | 11.643 | 0.39 | 60.98  | D     |
| 170.00-163.57 |        |        | В      | 0.246 | 2.792 |       | 1.184 | 1.184 | 11.643 |      |        |       |
|               |        |        | C      | 0.246 | 2.792 |       | 1.184 | 1.184 | 11.643 |      |        |       |
|               |        |        | D      | 0.246 | 2.792 |       | 1.184 | 1.184 | 11.643 |      |        |       |
| T3            | 0.11   | 0.39   | A      | 0.246 | 2.789 | 11    | 1.185 | 1.185 | 8.438  | 0.35 | 78.19  | D     |
| 163.57-159.05 |        |        | В      | 0.246 | 2.789 |       | 1.185 | 1.185 | 8.438  |      |        |       |
| ]             |        |        | С      | 0.246 | 2.789 |       | 1.185 | 1.185 | 8.438  |      |        |       |
|               |        |        | D      | 0.246 | 2.789 |       | 1.185 | 1.185 | 8.438  |      |        |       |
| T4            | 0.14   | 0.36   | Α      | 0.227 | 2.866 | 11    | 1.17  | 1.17  | 8.079  | 0.37 | 82.71  | D     |
| 159.05-154.52 |        |        | В      | 0.227 | 2.866 |       | 1.17  | 1.17  | 8.079  |      |        |       |
|               |        |        | С      | 0.227 | 2.866 |       | 1.17  | 1.17  | 8.079  |      |        |       |
|               | 1      |        | D      | 0.227 | 2.866 |       | 1.17  | 1.17  | 8.079  |      |        |       |
| T5            | 0.14   | 0.37   | A      | 0.22  | 2.895 | 11    | 1.165 | 1.165 | 8.169  | 0.38 | 83.33  | D     |
| 154.52-150.00 | - 1    |        | В      | 0.22  | 2.895 |       | 1.165 | 1.165 | 8.169  |      |        |       |
|               |        |        | C      | 0.22  | 2.895 |       | 1.165 | 1.165 | 8.169  |      |        |       |
| [             |        |        | D      | 0.22  | 2.895 |       | 1.165 | 1.165 | 8.169  |      |        |       |
| T6            | 0.31   | 0.97   | A      | 0.222 | 2.889 | 11    | 1.166 | 1.166 | 19.555 | 0.88 | 87.79  | D     |
| 150.00-140.00 | 1      |        | В      | 0.222 | 2.889 |       | 1.166 | 1.166 | 19.555 |      |        |       |
|               |        |        | С      | 0.222 | 2.889 |       | 1.166 | 1.166 | 19.555 |      |        |       |
|               | !      |        | D      | 0.222 | 2.889 |       | 1.166 | 1.166 | 19.555 |      |        |       |
| T7            | 0.31   | 1.53   | A      | 0.229 | 2.86  | 11    | 1.172 | 1.172 | 22.319 | 0.94 | 93.56  | D     |
| 140.00-130.00 |        |        | В      | 0.229 | 2.86  |       | 1.172 | 1.172 | 22.319 |      |        | l     |
| l             |        |        | С      | 0.229 | 2.86  |       | 1.172 | 1.172 | 22.319 |      |        | 1     |
|               |        |        | D      | 0.229 | 2.86  |       | 1.172 | 1.172 | 22.319 |      |        |       |
| T8            | 0.37   | 1.43   | A      | 0.198 | 2.99  | 11    | 1.148 | 1.148 | 20.527 | 0.99 | 98.93  | D     |
| 130.00-120.00 | - 1    |        | В      | 0.198 | 2.99  |       | 1.148 | 1.148 | 20.527 |      |        |       |
| 1 1           | - 1    |        | С      | 0.198 | 2.99  |       | 1.148 | 1.148 | 20.527 |      |        |       |
|               |        |        | D      | 0.198 | 2.99  |       | 1.148 | 1.148 | 20.527 |      |        |       |
| T9            | 0.44   | 2.05   | A      | 0.205 | 2.959 | 11    | 1.154 | 1.154 | 23.105 | 1.13 | 112.64 | D     |
| 120.00-110.00 | I      |        | В      | 0.205 | 2.959 |       | 1.154 | 1.154 | 23.105 |      |        | l     |
|               | I      | l      | C      | 0.205 | 2.959 |       | 1.154 | 1.154 | 23.105 |      |        |       |
|               |        |        | D      | 0.205 | 2.959 |       | 1.154 | 1.154 | 23.105 |      |        |       |
| T10           | 0.45   | 1.91   | A      | 0.188 | 3.031 | 10    | 1.141 | 1.141 | 22.546 | 1.13 | 113.31 | D     |
| 110.00-100.00 | ı      | ļ      | В      | 0.188 | 3.031 | - 1   | 1.141 | 1.141 | 22.546 | I    |        |       |
| 1             | ı      | 1      | C      | 0.188 | 3.031 | l     | 1.141 | 1.141 | 22.546 |      |        |       |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 49 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>Elevation | Add<br>Weight | Self<br>Weight | F<br>a | е     | $C_F$ | $q_z$ | $D_F$ | $D_R$ | $A_E$   | F     | w      | Ctrl. |
|----------------------|---------------|----------------|--------|-------|-------|-------|-------|-------|---------|-------|--------|-------|
|                      |               |                | c      |       |       | psf   |       |       |         |       |        | 1 440 |
| ft                   | K             | K              | e      |       |       | Poj   |       |       | ft²     | K     | plf    |       |
|                      |               |                | D      | 0.188 | 3.031 |       | 1.141 | 1.141 | 22.546  |       |        |       |
| T11                  | 0.47          | 2.50           | Α      | 0.211 | 2.932 | 10    | 1.158 | 1.158 | 27.655  | 1.27  | 126.64 | D     |
| 100.00-90.00         |               |                | В      | 0.211 | 2.932 |       | 1.158 | 1.158 | 27.655  |       |        |       |
|                      |               |                | C      | 0.211 | 2.932 |       | 1.158 | 1.158 | 27.655  |       |        |       |
|                      |               |                | D      | 0.211 | 2.932 |       | 1.158 | 1.158 | 27.655  |       |        |       |
| T12                  | 0.48          | 2.43           | Α      | 0.203 | 2.968 | 10    | 1.152 | 1.152 | 28.071  | 1.28  | 128.45 | D     |
| 90.00-80.00          |               |                | В      | 0.203 | 2.968 |       | 1.152 | 1.152 | 28.071  |       |        | _     |
|                      |               |                | l c    | 0.203 | 2.968 |       | 1.152 | 1.152 | 28.071  |       |        |       |
|                      |               |                | D      | 0.203 | 2.968 |       | 1.152 | 1.152 | 28.071  |       |        |       |
| T13                  | 0.96          | 7.96           | Α      | 0.167 | 3.128 | 10    | 1.125 | 1.125 | 31.097  | 1.97  | 98.73  | D     |
| 80.00-60.00          |               |                | В      | 0.167 | 3.128 |       | 1.125 | 1.125 | 31.097  |       |        |       |
|                      |               |                | С      | 0.167 | 3.128 |       | 1.125 | 1.125 | 31.097  |       |        | 1     |
|                      |               |                | D      | 0.167 | 3.128 |       | 1.125 | 1.125 | 31.097  |       |        | l     |
| T14                  | 0.48          | 4.57           | Α      | 0.163 | 3.144 | 11    | 1.122 | 1.122 | 16.931  | 1.05  | 104.71 | D     |
| 60.00-50.00          |               |                | В      | 0.163 | 3.144 |       | 1.122 | 1.122 | 16.931  |       |        | _     |
|                      |               |                | c      | 0.163 | 3.144 |       | 1.122 | 1.122 | 16.931  |       |        |       |
|                      |               |                | D      | 0.163 | 3.144 |       | 1.122 | 1.122 | 16.931  |       |        |       |
| T15                  | 0.49          | 5.12           | lΑ     | 0.17  | 3.114 | 11    | 1.127 | 1.127 | 19.474  | 1.14  | 114.04 | D     |
| 50.00-40.00          |               |                | В      | 0.17  | 3.114 |       | 1.127 | 1.127 | 19.474  |       |        | -     |
|                      |               |                | lс     | 0.17  | 3.114 |       | 1.127 | 1,127 | 19.474  |       |        |       |
|                      |               |                | D      | 0.17  | 3.114 |       | 1.127 | 1.127 | 19,474  |       |        | i     |
| T16                  | 0.49          | 4.78           | l A    | 0.175 | 3.089 | 11    | 1.131 | 1.131 | 30.964  | 1.51  | 150.54 | מ     |
| 40.00-30.00          |               |                | В      | 0.175 | 3.089 |       | 1.131 | 1.131 | 30.964  |       | 10010  |       |
|                      |               |                | l c    | 0.175 | 3.089 |       | 1.131 | 1.131 | 30.964  |       |        |       |
|                      |               |                | D      | 0.175 | 3.089 |       | 1.131 | 1.131 | 30.964  |       |        |       |
| T17                  | 0.49          | 4.27           | Α      | 0.156 | 3.177 | 11    | 1.117 | 1.117 | 28.444  | 1.51  | 150.98 | D     |
| 30.00-20.00          |               |                | В      | 0.156 | 3.177 |       | 1.117 | 1.117 | 28.444  |       | 100,50 | ~     |
|                      |               |                | c      | 0.156 | 3.177 |       | 1.117 | 1.117 | 28.444  |       |        |       |
|                      |               |                | D      | 0.156 | 3.177 |       | 1.117 | 1.117 | 28.444  |       |        |       |
| T18                  | 0.49          | 5.02           | Ā      | 0.167 | 3.125 | 12    | 1.125 | 1.125 | 32.114  | 1.66  | 165.78 | D     |
| 20.00-10.00          |               |                | В      | 0.167 | 3.125 | "     | 1.125 | 1.125 | 32.114  | 1.00  | 105.75 | -     |
|                      | 1             |                | c      | 0.167 | 3.125 |       | 1.125 | 1.125 | 32.114  |       |        |       |
|                      |               |                | Ď      | 0.167 | 3.125 |       | 1.125 | 1.125 | 32.114  | -     |        | 1     |
| T19                  | 0.19          | 4.70           | Ā      | 0.16  | 3.158 | 14    | 1.12  | 1.12  | 31.847  | 1.52  | 151.74 | D     |
| 10.00-0.00           |               | , 0            | В      | 0.16  | 3.158 |       | 1.12  | 1.12  | 31.847  | 1.52  | 151.77 |       |
| 75.55                |               |                | c      | 0.16  | 3.158 |       | 1.12  | 1.12  | 31.847  |       |        |       |
| 1                    | I             |                | מ      | 0.16  | 3.158 |       | 1.12  | 1.12  | 31.847  |       |        |       |
| Sum Weight:          | 6.93          | 51.64          |        | 5.10  | 3.138 |       | 1.12  | OTM   | 1555.03 | 19.98 |        |       |
|                      | 0.55          | 21.04          |        |       |       |       |       | 01111 | kip-ft  | 17.70 |        |       |

#### **Force Totals**

| Load<br>Case             | Vertical<br>Forces<br>K | Sum of<br>Forces<br>X | Sum of<br>Forces<br>Z | Sum of Overturning Moments, Mx | Sum of Overturning Moments, Mz | Sum of Torques                        |
|--------------------------|-------------------------|-----------------------|-----------------------|--------------------------------|--------------------------------|---------------------------------------|
| Leg Weight               | 30.80                   | Λ                     | K                     | kip-ft                         | kip-ft                         | kip-ft                                |
| Bracing Weight           | 20.84                   |                       |                       |                                | material and the               | 6 57 70 1                             |
| Total Member Self-Weight | 51.64                   |                       | Call Bring III        | -15.33                         | 5.17                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| Total Weight             | 71.92                   |                       |                       | -15.33                         | 5.17                           |                                       |
| Wind 0 deg - No Ice      |                         | -0.22                 | -68.24                | -6396.94                       | 43.49                          |                                       |
| Wind 30 deg - No Ice     | BILL BOURS              | 35.92                 | -62.41                | -5808.10                       | -3319.65                       |                                       |
| Wind 45 deg - No Ice     |                         | 50.91                 | -50.89                | -4733.66                       | -4716.67                       | -32.81                                |
| Wind 60 deg - No Ice     |                         | 62.43                 | -35.90                | -3337.66                       | -5791.90                       | -25.75                                |

**AECOM** 

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 50 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Load                   | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sum of         | Sum of             | Sum of                  | Sum of      | Sum of Torques   |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|-------------------------|-------------|------------------|
| Case                   | Forces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Forces         | Forces             | Overturning             | Overturning | Jam. 0, 10. 4.05 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X              | Z                  | Moments, M <sub>x</sub> | Moments, Mz |                  |
| 11.00                  | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K              | K                  | kip-ft                  | kip-ft      | kip-ft           |
| Wind 90 deg - No Ice   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68.27          | 0.22               | 22.99                   | -6381.41    | -7.57            |
| Wind 120 deg - No Ice  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62.65          | 36.29              | 3373.38                 | -5830.23    | 13.69            |
| Wind 135 deg - No Ice  | 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51.22          | 51.20              | 4757.19                 | -4770.86    | 22.97            |
| Wind 150 deg - No Ice  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.30          | 62.63              | 5815.77                 | -3386.02    | 30.68            |
| Wind 180 deg - No Ice  | STATE OF THE PARTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.22           | 68.24              | 6366.28                 | -33.16      | 36.99            |
| Wind 210 deg - No Ice  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -35.92         | 62.41              | 5777.44                 | 3329.98     | 37.64            |
| Wind 225 deg - No Ice  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -50.91         | 50.89              | 4703.00                 | 4727.00     | 32.81            |
| Wind 240 deg - No Ice  | The Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the P | -62.43         | 35.90              | 3307.00                 | 5802.23     | 25.75            |
| Wind 270 deg - No Ice  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -68.27         | -0.22              | -53.65                  | 6391.74     | 7.57             |
| Wind 300 deg - No Ice  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -62.65         | -36.29             | -3404.04                | 5840.56     | -13.69           |
| Wind 315 deg - No Ice  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -51.22         | -51.20             | -4787.86                | 4781.20     | -22.97           |
| Wind 330 deg - No Ice  | Description of the last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -36.30         | -62.63             | -5846.43                | 3396.36     | -30.68           |
| Member Ice             | 81.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                    |                         |             | 50.00            |
| Total Weight Ice       | 249.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The Control of |                    | 20.60                   | 124.61      |                  |
| Wind 0 deg - Ice       | KUI EDIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.03          | -34.64             | -3169.59                | 130.16      | -28.63           |
| Wind 30 deg - Ice      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.92          | -31.06             | -2798.54                | -1500.58    | -17.49           |
| Wind 45 deg - Ice      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.36          | -25.35             | -2279.57                | -2176.62    | -9.12            |
| Wind 60 deg - Ice      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.07          | -17.92             | -1603.83                | -2695.84    | -0.12            |
| Wind 90 deg - Ice      | A. K. B. LINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34.65          | 0.03               | 26.14                   | -3067.08    | 16.06            |
| Wind 120 deg - Ice     | 1 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31.09          | 17.96              | 1654.64                 | -2701.38    | 30.04            |
| Wind 135 deg - Ice     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.40          | 25.39              | 2328.60                 | -2184.46    | 33.54            |
| Wind 150 deg - Ice     | Chy Birth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.97          | 31.09              | 2845.29                 | -1510.18    | 34.75            |
| Wind 180 deg - Ice     | 32.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03           | 34.64              | 3210.78                 | 119.07      | 28.63            |
| Wind 210 deg - Ice     | 00 Pa 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -17.92         | 31.06              | 2839.74                 | 1749.80     | 17.49            |
| Wind 225 deg - Ice     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -25.36         | 25.35              | 2320.76                 | 2425.84     | 9.12             |
| Wind 240 deg - Ice     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -31.07         | 17.92              | 1645.03                 | 2945.06     | 0.12             |
| Wind 270 deg - Ice     | State of Fair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -34.65         | -0.03              | 15.05                   | 3316.30     | -16.06           |
| Wind 300 deg - Ice     | THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P | -31.09         | -17.96             | -1613.44                | 2950.61     | -30.04           |
| Wind 315 deg - Ice     | CHARLES TO STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY O | -25.40         | -25.39             | -2287.41                | 2433.68     | -33.54           |
| Wind 330 deg - Ice     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -17.97         | -31.09             | -2804.09                | 1759.40     | -34.75           |
| Total Weight           | 71.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | SANSON DESIGNATION | -15.33                  | 5.17        |                  |
| Wind 0 deg - Service   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.08          | -24.70             | -2324.77                | 14.93       | -13.39           |
| Wind 30 deg - Service  | STATE OF THE PARTY OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.00          | -22.59             | -2111.64                | -1202.33    | -13.62           |
| Wind 45 deg - Service  | Control of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.43          | -18.42             | -1722.75                | -1707.97    | -11.88           |
| Wind 60 deg - Service  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.60          | -13.00             | -1217.48                | -2097.14    | -9.32            |
| Wind 90 deg - Service  | BOYE STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.71          | 0.08               | -1.12                   | -2310.51    | -2.74            |
| Wind 120 deg - Service | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.68          | 13.13              | 1211.52                 | -2111.01    | 4.96             |
| Wind 135 deg - Service |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.54          | 18.53              | 1712.38                 | -1727.58    | 8.31             |
| Wind 150 deg - Service |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.14          | 22.67              | 2095.52                 | -1226.35    | 11.10            |
| Wind 180 deg - Service |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.08           | 24.70              | 2294.78                 | -12.81      | 13.39            |
| Wind 210 deg - Service | CONTRACTOR OF STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -13.00         | 22.59              | 2081.65                 | 1204.45     | 13.62            |
| Wind 225 deg - Service |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -18.43         | 18.42              | 1692.77                 | 1710.09     | 11.88            |
| Wind 240 deg - Service |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -22.60         | 13.00              | 1187.50                 | 2099.26     | 9.32             |
| Wind 270 deg - Service | MAGNET B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -24.71         | -0.08              | -28.86                  | 2312.63     | 2.74             |
| Wind 300 deg - Service |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -22.68         | -13.13             | -1241.51                | 2113.13     | -4.96            |
| Wind 315 deg - Service | The later to the later                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -18.54         | -18.53             | -1742.37                | 1729.71     | -8.31            |
| Wind 330 deg - Service |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -13.14         | -22.67             | -2125.51                | 1228.47     | -11.10           |

#### **Load Combinations**

| Comb. |           | Description |  |
|-------|-----------|-------------|--|
| No.   |           | -           |  |
| 1     | Dead Only |             |  |

1 Dead only
2 1.2 Dead+1.6 Wind 0 deg - No Ice
3 0.9 Dead+1.6 Wind 0 deg - No Ice
4 1.2 Dead+1.6 Wind 30 deg - No Ice

**AECOM** 

| Job     |                          | Page                      |
|---------|--------------------------|---------------------------|
|         | 180' Lattice Tower - CSP | 51 of 86                  |
| Project | Structural Analysis      | Date<br>16:48:32 03/29/18 |
| Client  | Empire Telecom / EMP-004 | Designed by MCD           |

| Comb.        |                                                                          | Description |
|--------------|--------------------------------------------------------------------------|-------------|
| <i>No.</i> 5 | 0.0 Dond+1.6 Wind 20 don No Inc                                          |             |
| 6            | 0.9 Dead+1.6 Wind 30 deg - No Ice                                        |             |
| 7            | 1.2 Dead+1.6 Wind 45 deg - No Ice<br>0.9 Dead+1.6 Wind 45 deg - No Ice   |             |
| 8            | 1.2 Dead+1.6 Wind 60 deg - No Ice                                        |             |
| 9            | 0.9 Dead+1.6 Wind 60 deg - No Ice                                        |             |
| 10           | 1.2 Dead+1.6 Wind 90 deg - No Ice                                        |             |
| 11           | 0.9 Dead+1.6 Wind 90 deg - No Ice                                        |             |
| 12           | 1.2 Dead+1.6 Wind 120 deg - No Ice                                       |             |
| 13           | 0.9 Dead+1.6 Wind 120 deg - No Ice                                       |             |
| 14           | 1.2 Dead+1.6 Wind 135 deg - No Ice                                       |             |
| 15           | 0.9 Dead+1.6 Wind 135 deg - No Ice                                       |             |
| 16           | 1.2 Dead+1.6 Wind 150 deg - No Ice                                       |             |
| 17           | 0.9 Dead+1.6 Wind 150 deg - No Ice                                       |             |
| 18           | 1.2 Dead+1.6 Wind 180 deg - No Ice                                       |             |
| 19           | 0.9 Dead+1.6 Wind 180 deg - No Ice                                       |             |
| 20           | 1.2 Dead+1.6 Wind 210 deg - No Ice                                       |             |
| 21           | 0.9 Dead+1.6 Wind 210 deg - No Ice                                       |             |
| 22           | 1.2 Dead+1.6 Wind 225 deg - No Ice                                       |             |
| 23           | 0.9 Dead+1.6 Wind 225 deg - No Ice                                       |             |
| 24           | 1.2 Dead+1.6 Wind 240 deg - No Ice                                       |             |
| 25           | 0.9 Dead+1.6 Wind 240 deg - No Ice                                       |             |
| 26           | 1.2 Dead+1.6 Wind 270 deg - No Ice                                       |             |
| 27           | 0.9 Dead+1.6 Wind 270 deg - No Ice                                       |             |
| 28<br>29     | 1.2 Dead+1.6 Wind 300 deg - No Ice                                       |             |
| 30           | 0.9 Dead+1.6 Wind 300 deg - No Ice<br>1.2 Dead+1.6 Wind 315 deg - No Ice |             |
| 31           | 0.9 Dead+1.6 Wind 315 deg - No Ice                                       |             |
| 32           | 1.2 Dead+1.6 Wind 330 deg - No Ice                                       |             |
| 33           | 0.9 Dead+1.6 Wind 330 deg - No Ice                                       |             |
| 34           | 1.2 Dead+1.0 Ice+1.0 Temp                                                |             |
| 35           | 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp                                 |             |
| 36           | 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp                                |             |
| 37           | 1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp                                |             |
| 38           | 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp                                |             |
| 39           | 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp                                |             |
| 40           | 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp                               |             |
| 41           | 1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp                               |             |
| 42           | 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp                               |             |
| 43           | 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp                               |             |
| 44           | 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp                               |             |
| 45           | 1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp                               |             |
| 46           | 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp                               |             |
| 47           | 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp                               |             |
| 48<br>49     | 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp                               |             |
| 50           | 1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp                               |             |
| 51           | 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp                               |             |
| 52           | Dead+Wind 0 deg - Service Dead+Wind 30 deg - Service                     |             |
| 53           | Dead+Wind 45 deg - Service                                               |             |
| 54           | Dead+Wind 60 deg - Service                                               |             |
| 55           | Dead+Wind 90 deg - Service                                               |             |
| 56           | Dead+Wind 120 deg - Service                                              |             |
| 57           | Dead+Wind 135 deg - Service                                              |             |
| 58           | Dead+Wind 150 deg - Service                                              |             |
| 59           | Dead+Wind 180 deg - Service                                              |             |
| 60           | Dead+Wind 210 deg - Service                                              |             |
| 61           | Dead+Wind 225 deg - Service                                              |             |
| 62           | Dead+Wind 240 deg - Service                                              |             |
| 63           | Dead+Wind 270 deg - Service                                              |             |
| 64           | Dead+Wind 300 deg - Service                                              |             |
| 65           | Dead+Wind 315 deg - Service                                              |             |
| 66           | Dead+Wind 330 deg - Service                                              |             |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                               | Page              |  |  |
|---------|-------------------------------|-------------------|--|--|
|         | 180' Lattice Tower - CSP      | 52 of 86          |  |  |
| Project |                               | Date              |  |  |
|         | Structural Analysis           | 16:48:32 03/29/18 |  |  |
| Client  | Empire Telecom / EMP-004      | Designed by       |  |  |
|         | Limpire relection / Livir-004 | I MCD             |  |  |

#### **Maximum Member Forces**

| Section<br>No. | Elevation<br>ft      | Component<br>Type       | Condition                | Gov.<br>Load | Axial         | Major Axis<br>Moment | Minor Axis<br>Moment |
|----------------|----------------------|-------------------------|--------------------------|--------------|---------------|----------------------|----------------------|
|                | <b>J</b> -           | -)F-                    |                          | Comb.        | K             | kip-ft               | kip-ft               |
| T1             | 180 - 170            | Leg                     | Max Tension              | 31           | 1.83          | 0.19                 | 0.08                 |
|                |                      | 208                     | Max. Compression         | 45           | -2.94         | -0.08                | -0.12                |
|                |                      |                         | Max. Mx                  | 8            | -1.27         | -0.67                | 0.47                 |
|                |                      |                         | Max. My                  | 26           | -1.84         | 0.17                 | -0.66                |
|                |                      |                         | Max. Vy                  | 18           | -0.68         | 0.37                 | -0.00                |
|                |                      |                         | Max. Vx                  | 2            | -0.68         | -0.11                | 0.37                 |
|                |                      | Diagonal                | Max Tension              | 3            | 2.84          | -0.11                | -0.00                |
|                |                      | B                       | Max. Compression         | 18           | -3.00         | 0.00                 | 0.00                 |
|                |                      |                         | Max. Mx                  | 47           | 0.23          | 0.04                 | 0.00                 |
|                |                      |                         | Max. My                  | 8            | -0.71         | -0.00                |                      |
|                |                      |                         | Max. Vy                  | 47           | -0.71         | 0.04                 | 0.00                 |
|                |                      |                         | Max. Vx                  | 8            |               |                      | 0.00                 |
|                |                      | Secondary<br>Horizontal | Max Tension              | 3            | -0.00<br>0.77 | 0.00<br>0.00         | 0.00<br>0.00         |
|                |                      |                         | Max. Compression         | 18           | -0.78         | 0.04                 | 0.00                 |
|                |                      |                         | Max. Mx                  | 2            | -0.44         | 0.04                 | -0.00                |
|                |                      |                         | Max. My                  | 23           | -0.55         | 0.04                 | 0.00                 |
|                |                      |                         | Max. Vy                  | 35           | -0.04         | 0.03                 | -0.00                |
|                |                      |                         | Max. Vx                  | 23           | -0.00         | 0.03                 | 0.00                 |
|                |                      | Top Girt                | Max Tension              | 47           | 0.25          | 0.00                 | 0.00                 |
|                |                      | TOP CIT                 | Max. Compression         | 3            | -0.11         | 0.00                 | 0.00                 |
|                |                      |                         | Max. Mx                  | 34           | 0.17          | -0.07                | 0.00                 |
|                |                      |                         | Max. My                  | 10           | 0.17          | 0.00                 |                      |
|                |                      |                         | Max. Vy                  | 34           | 0.04          |                      | 0.00                 |
|                |                      |                         | Max. Vx                  | 10           | -0.00         | 0.00                 | 0.00                 |
| T2             | 170 - 163.573        | Leg                     | Max Tension              | 15           | 8.58          | 0.00                 | 0.00                 |
|                | 170 - 103,575        | Leg                     |                          | 30           |               | -0.55                | -0.47                |
|                |                      |                         | Max. Compression Max. Mx | 12           | -10.29        | -0.76                | -0.82                |
|                |                      |                         |                          | 32           | 7.48          | 0.90                 | 0.62                 |
|                |                      |                         | Max. My                  |              | -9.98         | -0.61                | -0.91                |
|                |                      |                         | Max. Vy<br>Max. Vx       | 2            | 0.54          | -0.75                | 0.09                 |
|                |                      | Diagonal                |                          | 4            | -0.55         | -0.45                | 0.73                 |
|                |                      | Diagonal                | Max Tension              | 5            | 3.53          | 0.00                 | 0.00                 |
|                |                      |                         | Max. Compression         | 20           | -3.72         | 0.00                 | 0.00                 |
|                |                      |                         | Max. Mx                  | 46           | 0.18          | 0.03                 | 0.00                 |
|                |                      |                         | Max. My                  | 6            | -3.00         | -0.00                | 0.00                 |
|                |                      |                         | Max. Vy                  | 46           | -0.03         | 0.03                 | 0.00                 |
|                |                      | T C'-1                  | Max. Vx                  | 35           | -0.00         | 0.00                 | 0.00                 |
|                |                      | Top Girt                | Max Tension              | 47           | 0.83          | 0.00                 | 0.00                 |
|                |                      |                         | Max. Compression         | 3            | -0.46         | 0.00                 | 0.00                 |
|                |                      |                         | Max. Mx                  | 34           | 0.58          | -0.07                | 0.00                 |
|                |                      |                         | Max. My                  | 10           | 0.10          | 0.00                 | 0.00                 |
|                |                      |                         | Max. Vy                  | 34           | -0.05         | 0.00                 | 0.00                 |
| ma.            | 1.62.672             | •                       | Max. Vx                  | 10           | -0.00         | 0.00                 | 0.00                 |
| T3             | 163.573 -<br>159.049 | Leg                     | Max Tension              | 31           | 16.62         | -0.24                | -0.29                |
|                |                      |                         | Max. Compression         | 6            | -20.20        | -0.73                | -0.78                |
|                |                      |                         | Max. Mx                  | 10           | 9.54          | -1.32                | -0.07                |
|                |                      |                         | Max. My                  | 26           | 8.37          | -0.11                | -1.34                |
|                |                      |                         | Max. Vy                  | 10           | 1.35          | -0.55                | 0.20                 |
|                |                      |                         | Max. Vx                  | 26           | 1.38          | 0.22                 | -0.56                |
|                |                      | Diagonal                | Max Tension              | 27           | 4.76          | 0.00                 | 0.00                 |
|                |                      |                         | Max. Compression         | 26           | -4.91         | 0.00                 | 0.00                 |
|                |                      |                         | Max. Mx                  | 50           | 0.78          | 0.02                 | -0.00                |
|                |                      |                         | Max. My                  | 37           | -1.18         | 0.02                 | 0.01                 |
|                |                      |                         | Max. Vy                  | 36           | 0.03          |                      |                      |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 53 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>No. | Elevation<br>ft      | Component<br>Type | Condition        | Gov.<br>Load | Axial  | Major Axis<br>Moment | Minor Axis<br>Moment |
|----------------|----------------------|-------------------|------------------|--------------|--------|----------------------|----------------------|
|                |                      |                   |                  | Comb.        | K      | kip-ft               | kip-ft               |
|                |                      |                   | Max. Vx          | 48           | 0.00   | 0.00                 | 0.00                 |
|                |                      | Top Girt          | Max Tension      | 26           | 0.54   | 0.00                 | 0.00                 |
|                |                      |                   | Max. Compression | 27           | -0.46  | 0.00                 | 0.00                 |
|                |                      |                   | Max. Mx          | 34           | 0.34   | -0.07                | 0.00                 |
|                |                      |                   | Max. My          | 43           | 0.28   | 0.00                 | 0.00                 |
|                |                      |                   | Max. Vy          | 34           | -0.05  | 0.00                 | 0.00                 |
| 2251370        |                      |                   | Max. Vx          | 43           | -0.00  | 0.00                 | 0.00                 |
| T4             | 159.049 -<br>154.524 | Leg               | Max Tension      | 31           | 24.90  | -0.34                | -0.35                |
|                |                      |                   | Max. Compression | 30           | -29.52 | -0.51                | -0.42                |
|                |                      |                   | Max. Mx          | 16           | 3.13   | 1.02                 | -0.77                |
|                |                      |                   | Max. My          | 28           | 3.17   | -0.78                | 1.03                 |
|                |                      |                   | Max. Vy          | 26           | 0.36   | -0.94                | 0.31                 |
|                |                      |                   | Max. Vx          | 12           | 0.36   | 0.79                 | -1.02                |
|                |                      | Diagonal          | Max Tension      | 26           | 5.37   | 0.00                 | 0.00                 |
|                |                      |                   | Max. Compression | 27           | -5.27  | 0.00                 | 0.00                 |
|                |                      |                   | Max. Mx          | 37           | 1.45   | 0.04                 | -0.00                |
|                |                      |                   | Max. My          | 49           | -0.81  | 0.03                 | -0.01                |
|                |                      |                   | Max. Vy          | 38           | -0.04  | 0.04                 | -0.00                |
|                |                      |                   | Max. Vx          | 48           | 0.00   | 0.00                 | 0.00                 |
| T5             | 154.524 - 150        | Leg               | Max Tension      | 31           | 32.88  | -0.46                | -0.58                |
|                |                      |                   | Max. Compression | 30           | -37.54 | -0.82                | -0.69                |
|                |                      |                   | Max. Mx          | 28           | -36.37 | -0.89                | -0.57                |
|                |                      |                   | Max. My          | 16           | -36.04 | -0.57                | -0.89                |
|                |                      |                   | Max. Vy          | 28           | 0.40   | -0.89                | -0.57                |
|                |                      |                   | Max. Vx          | 16           | 0.41   | -0.57                | -0.89                |
|                |                      | Diagonal          | Max Tension      | 27           | 5.32   | 0.00                 | 0.00                 |
|                |                      | -                 | Max. Compression | 26           | -5.46  | 0.00                 | 0.00                 |
|                |                      |                   | Max. Mx          | 36           | 0.35   | 0.05                 | -0.01                |
|                |                      |                   | Max. My          | 38           | 1.05   | 0.04                 | 0.01                 |
|                |                      |                   | Max. Vy          | 36           | -0.04  | 0.05                 | -0.01                |
|                |                      |                   | Max. Vx          | 38           | -0.00  | 0.00                 | 0.00                 |
| T6             | 150 - 140            | Leg               | Max Tension      | 31           | 51.44  | -0.55                | -0.64                |
|                |                      | _                 | Max. Compression | 30           | -56.81 | -0.98                | -0.83                |
|                |                      |                   | Max. Mx          | 33           | -13.77 | -1.28                | 1.00                 |
|                |                      |                   | Max. My          | 28           | 7.31   | -0.99                | 1.28                 |
|                |                      |                   | Max. Vy          | 18           | -0.60  | 1.27                 | -0.09                |
|                |                      |                   | Max. Vx          | 2            | -0.60  | -0.05                | 1.26                 |
|                |                      | Diagonal          | Max Tension      | 26           | 5.78   | 0.00                 | 0.00                 |
|                |                      | _                 | Max. Compression | 26           | -5.83  | 0.00                 | 0.00                 |
|                |                      |                   | Max. Mx          | 36           | 0.69   | 0.06                 | -0.01                |
|                |                      |                   | Max. My          | 10           | -5.56  | -0.01                | 0.01                 |
|                |                      |                   | Max. Vy          | 36           | -0.04  | 0.06                 | -0.01                |
|                |                      |                   | Max. Vx          | 50           | 0.00   | 0.00                 | 0.00                 |
|                |                      | Top Girt          | Max Tension      | 2            | 0.61   | 0.00                 | 0.00                 |
|                |                      | -                 | Max. Compression | 3            | -0.54  | 0.00                 | 0.00                 |
|                |                      |                   | Max. Mx          | 34           | 0.20   | -0.12                | 0.00                 |
|                |                      |                   | Max. My          | 50           | 0.16   | 0.00                 | 0.00                 |
|                |                      |                   | Max. Vy          | 34           | 0.07   | 0.00                 | 0.00                 |
|                |                      |                   | Max. Vx          | 50           | -0.00  | 0.00                 | 0.00                 |
| T7             | 140 - 130            | Leg               | Max Tension      | 31           | 65.63  | -0.84                | -0.97                |
|                |                      |                   | Max. Compression | 30           | -72.00 | -0.47                | -0.32                |
|                |                      |                   | Max. Mx          | 14           | -4.65  | 3.83                 | -3.67                |
|                |                      |                   | Max. My          | 30           | -4.52  | -3.69                | 3.85                 |
|                |                      |                   | Max. Vy          | 14           | -0.98  | 3.83                 | -3.67                |
|                |                      |                   | Max. Vx          | 30           | -0.98  | -3.69                | 3.85                 |
|                |                      | Diagonal          | Max Tension      | 19           | 8.94   | 0.03                 | 0.02                 |
|                |                      |                   | Max. Compression | 18           | -9.13  | 0.00                 | 0.02                 |
|                |                      |                   | Max. Mx          | 32           | 4.76   | 0.09                 | 0.00                 |
|                |                      |                   | Max. My          | 16           | -8.74  | -0.04                | 0.01                 |
|                |                      |                   | Max. Vy          | 38           | 0.05   | 0.07                 | -0.01                |
|                |                      |                   | 1410V. A A       | 20           | U.UJ   | 0.07                 | -0.01                |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 54 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>No. | Elevation<br>ft | Component<br>Type       | Condition              | Gov.<br>Load | Axial<br>K        | Major Axis<br>Moment | Minor Axis<br>Moment |
|----------------|-----------------|-------------------------|------------------------|--------------|-------------------|----------------------|----------------------|
|                |                 |                         | Max. Vx                |              |                   | kip-ft               | kip-ft               |
|                |                 | Secondary               | Max Tension            | 30           | 0.01<br>1.08      | 0.00<br>0.00         | 0.00                 |
|                |                 | Horizontal              | Max 1 chision          | 30           | 1.06              | 0.00                 | 0.00                 |
|                |                 | Horizontai              | Max. Compression       | 30           | -1.08             | -0.03                | -0.01                |
|                |                 |                         | Max. Mx                | 32           | -0.50             | 0.05                 | 0.03                 |
|                |                 |                         | Max. My                | 32           | -0.50             | 0.05                 | 0.03                 |
|                |                 |                         | Max. Vy                | 48           | -0.04             | 0.04                 | 0.01                 |
|                |                 |                         | Max. Vx                | 32           | 0.01              | 0.00                 | 0.00                 |
|                |                 | Top Girt                | Max Tension            | 10           | 0.45              | 0.00                 | 0.00                 |
|                |                 |                         | Max. Compression       | 10           | -0.51             | -0.06                | 0.00                 |
|                |                 |                         | Max. Mx                | 35           | -0.04             | -0.43                | 0.01                 |
|                |                 |                         | Max. My                | 35           | -0.04             | -0.43                | 0.02                 |
|                |                 |                         | Max. Vy                | 35           | -0.15             | 0.00                 | 0.00                 |
|                |                 |                         | Max. Vx                | 35           | -0.01             | 0.00                 | 0.00                 |
|                |                 | Inner Bracing           | Max Tension            | 22           | 0.07              | 0.00                 | 0.00                 |
|                |                 |                         | Max. Compression       | 22           | -0.07             | 0.00                 | 0.00                 |
|                |                 |                         | Max. Mx                | 34           | 0.00              | -0.12                | 0.00                 |
|                |                 |                         | Max. My                | 47           | 0.00              | 0.00                 | 0.00                 |
|                |                 |                         | Max. Vy                | 34           | 0.06              | 0.00                 | 0.00                 |
| 22/25          |                 |                         | Max. Vx                | 47           | -0.00             | 0.00                 | 0.00                 |
| T8             | 130 - 120       | Leg                     | Max Tension            | 31           | 85.48             | -1.93                | -2.05                |
|                |                 |                         | Max. Compression       | 30           | -94.58            | -1.19                | -1.10                |
|                |                 |                         | Max. Mx                | 32           | -89.57            | 2.42                 | 1.77                 |
|                |                 |                         | Max. My                | 12           | -89.58            | 1.77                 | 2.43                 |
|                |                 |                         | Max. Vy                | 8            | -1.26             | 2.33                 | -1.63                |
|                |                 |                         | Max. Vx                | 20           | -1.26             | -1.61                | 2.32                 |
|                |                 | Diagonal                | Max Tension            | 11           | 10.80             | 0.04                 | -0.01                |
|                |                 |                         | Max. Compression       | 26           | -11.03            | 0.00                 | 0.00                 |
|                |                 |                         | Max. Mx                | 32           | 4.21              | 0.14                 | 0.03                 |
|                |                 |                         | Max. My                | 11           | -9.06             | -0.04                | 0.05                 |
|                |                 |                         | Max. Vy                | 36           | -0.07             | 0.13                 | -0.03                |
|                |                 |                         | Max. Vx                | 10           | -0.01             | -0.03                | 0.05                 |
|                |                 | Secondary<br>Horizontal | Max Tension            | 30           | 1.42              | 0.00                 | 0.00                 |
|                |                 |                         | Max. Compression       | 30           | -1.42             | 0.00                 | -0.02                |
|                |                 |                         | Max. Mx                | 48           | 0.19              | 0.06                 | 0.01                 |
|                |                 |                         | Max. My                | 13           | -1.33             | -0.01                | -0.02                |
|                |                 |                         | Max. Vy                | 48           | 0.05              | 0.06                 | 0.01                 |
| T9             | 120 - 110       | Leg                     | Max. Vx<br>Max Tension | 32<br>31     | -0.01             | -0.00                | -0.02                |
| 19             | 120 - 110       | Leg                     | Max. Compression       | 30           | 109.70<br>-120.27 | -1.79                | -1.93                |
|                |                 |                         | Max. Mx                | 6            | -6.68             | -0.50<br>4.55        | -0.47                |
|                |                 |                         | Max. My                | 28           | 22.00             | -4.05                | -4.35<br>4.57        |
|                |                 |                         | Max. Vy                | 30           | -1.10             | 4.48                 | -4.31                |
|                |                 |                         | Max. Vx                | 14           | -1.10             | -4.30                | 4.47                 |
|                |                 | Diagonal                | Max Tension            | 10           | 11.75             | 0.00                 | 0.00                 |
|                |                 | 2.050                   | Max. Compression       | 26           | -11.87            | 0.00                 | 0.00                 |
|                |                 |                         | Max. Mx                | 28           | 7.01              | 0.09                 | -0.01                |
|                |                 |                         | Max. My                | 26           | -11.84            | -0.01                | -0.05                |
|                |                 |                         | Max. Vy                | 48           | 0.07              | 0.09                 | 0.01                 |
|                |                 |                         | Max. Vx                | 26           | -0.01             | 0.00                 | 0.00                 |
|                |                 | Horizontal              | Max Tension            | 27           | 0.77              | 0.00                 | 0.00                 |
|                |                 |                         | Max. Compression       | 3            | -0.91             | -0.11                | 0.00                 |
|                |                 |                         | Max. Mx                | 43           | -0.25             | -0.65                | 0.02                 |
|                |                 |                         | Max. My                | 35           | -0.24             | -0.65                | 0.02                 |
|                |                 |                         | Max. Vy                | 43           | -0.19             | 0.00                 | 0.00                 |
|                |                 |                         | Max. Vx                | 35           | -0.01             | 0.00                 | 0.00                 |
|                |                 | Secondary<br>Horizontal | Max Tension            | 30           | 1.81              | 0.00                 | 0.00                 |
|                |                 |                         | Max. Compression       | 30           | -1.81             | -0.01                | -0.01                |
|                |                 |                         |                        | -            |                   |                      |                      |

| Job     |                           | Page              |
|---------|---------------------------|-------------------|
|         | 180' Lattice Tower - CSP  | 55 of 86          |
| Project |                           | Date              |
|         | Structural Analysis       | 16:48:32 03/29/18 |
| Client  | Francis Talanas / FMD 004 | Designed by       |
|         | Empire Telecom / EMP-004  | MCD               |

| Section<br>No. | Elevation<br>ft | Component<br>Type       | Condition        | Gov.<br>Load | Axial         | Major Axis<br>Moment | Minor Axi<br>Moment |
|----------------|-----------------|-------------------------|------------------|--------------|---------------|----------------------|---------------------|
|                |                 |                         |                  | Comb.        | K             | kip-ft               | kip-ft              |
|                |                 |                         | Max. My          | 32           | -0.59         | 0.03                 | 0.02                |
|                |                 |                         | Max. Vy          | 42           | 0.05          | 0.05                 | 0.01                |
|                |                 |                         | Max. Vx          | 32           | 0.00          | 0.00                 | 0.00                |
|                |                 | Inner Bracing           | Max Tension      | 14           | 0.08          | 0.00                 | 0.00                |
|                |                 |                         | Max. Compression | 14           | -0.08         | 0.00                 | 0.00                |
|                |                 |                         | Max. Mx          | 34           | 0.00          | -0.18                | 0.00                |
|                |                 |                         | Max. My          | 47           | 0.00          | 0.00                 | 0.00                |
|                |                 |                         | Max. Vy          | 34           | 0.08          | 0.00                 | 0.00                |
| TT10           | 110 100         |                         | Max. Vx          | 47           | -0.00         | 0.00                 | 0.00                |
| T10            | 110 - 100       | Leg                     | Max Tension      | 31           | 134.18        | -2.39                | -2.44               |
|                |                 |                         | Max. Compression | 30           | -146.57       | -1.71                | -1.59               |
|                |                 |                         | Max. Mx          | 24           | -136.36       | 2.94                 | 2.11                |
|                |                 |                         | Max. My          | 12           | -139.53       | 2.19                 | 2.94                |
|                |                 |                         | Max. Vy          | 14           | 1.03          | -1.13                | -1.01               |
|                |                 |                         | Max. Vx          | 30           | 1.03          | -1.02                | -1.15               |
|                |                 | Diagonal                | Max Tension      | 11           | 14.16         | 0.06                 | -0.01               |
|                |                 |                         | Max. Compression | 26           | -14.41        | 0.00                 | 0.00                |
|                |                 |                         | Max. Mx          | 50           | 1.06          | 0.18                 | 0.03                |
|                |                 |                         | Max. My          | 11           | -11.63        | -0.05                | 0.04                |
|                |                 |                         | Max. Vy          | 50           | -0.08         | 0.18                 | 0.03                |
|                |                 |                         | Max. Vx          | 35           | -0.01         | 0.00                 | 0.00                |
|                |                 | Secondary<br>Horizontal | Max Tension      | 30           | 2.20          | 0.00                 | 0.00                |
|                |                 |                         | Max. Compression | 30           | -2.20         | 0.01                 | -0.02               |
|                |                 |                         | Max. Mx          | 48           | 0.24          | 0.07                 | 0.01                |
|                |                 |                         | Max. My          | 5            | -2.05         | -0.00                | -0.02               |
|                |                 |                         | Max. Vy          | 48           | 0.06          | 0.07                 | 0.01                |
|                |                 |                         | Max. Vx          | 49           | 0.00          | 0.00                 | 0.00                |
| T11            | 100 - 90        | Leg                     | Max Tension      | 31           | 162.10        | -1.94                | -2.01               |
|                |                 |                         | Max. Compression | 30           | -176.54       | -1.23                | -1.31               |
|                |                 |                         | Max. Mx          | 8            | 34.39         | 6.31                 | -5.35               |
|                |                 |                         | Max. My          | 28           | 33.40         | -5.33                | 6.29                |
|                |                 |                         | Max. Vy          | 8            | -1.31         | 6.31                 | -5.35               |
|                |                 |                         | Max. Vx          | 20           | -1.32         | -5.30                | 6.26                |
|                |                 | Diagonal                | Max Tension      | 10           | 13.75         | 0.00                 | 0.00                |
|                |                 | J                       | Max. Compression | 26           | -13.84        | 0.00                 | 0.00                |
|                |                 |                         | Max. Mx          | 28           | 7.85          | 0.13                 | 0.00                |
|                |                 |                         | Max. My          | 26           | -13.81        | -0.02                | -0.05               |
|                |                 |                         | Max. Vy          | 48           | 0.08          | 0.12                 | 0.02                |
|                |                 |                         | Max. Vx          | 26           | 0.01          | 0.00                 | 0.00                |
|                |                 | Horizontal              | Max Tension      | 2            | 1.50          | 0.00                 | 0.00                |
|                |                 |                         | Max. Compression | 3            | -1.59         | -0.15                | 0.01                |
|                |                 |                         | Max. Mx          | 35           | -0.16         | -0.15                | 0.01                |
|                |                 |                         | Max. My          | 35           | -0.15         | -0.86                | 0.03                |
|                |                 |                         | Max. Vy          | 35           | -0.22         | 0.00                 | 0.00                |
|                |                 |                         | Max. Vx          | 35           | -0.22         | 0.00                 | 0.00                |
|                |                 | Inner Bracing           | Max Tension      | 30           | 0.09          | 0.00                 | 0.00                |
|                |                 |                         | Max. Compression | 30           | -0.09         | 0.00                 | 0.00                |
|                |                 |                         | Max. Mx          | 34           | 0.00          | -0.24                |                     |
|                |                 |                         | Max. My          | 47           |               |                      | 0.00                |
|                |                 |                         | Max. Vy          | 34           | 0.00<br>-0.09 | 0.00<br>0.00         | 0.00                |
|                |                 |                         | Max. Vx          |              |               |                      | 0.00                |
| Γ12            | 90 - 80         | Leg                     | Max Tension      | 47           | 0.00          | 0.00                 | 0.00                |
| 14             | 7U - 0U         | rcg                     |                  | 31           | 189.20        | -1.88                | -2.02               |
|                |                 |                         | Max. Compression | 30           | -205.17       | -1.11                | -1.04               |
|                |                 |                         | Max. Mx          | 26           | -137.22       | 3.25                 | -0.21               |
|                |                 |                         | Max. My          | 10           | -140.02       | -0.15                | 3.22                |
|                |                 |                         | Max. Vy          | 24           | 1.07          | -1.93                | -1.74               |
|                |                 | D:                      | Max. Vx          | 4            | 1.07          | -1.78                | -1.91               |
|                |                 | Diagonal                | Max Tension      | 11           | 15.36         | 0.06                 | -0.00               |
|                |                 |                         | Max. Compression | 26           | -15.69        | 0.00                 | 0.00                |
|                |                 |                         | Max. Mx          | 50           | 1.33          | 0.20                 | 0.03                |

| Job     |                           | Page              |
|---------|---------------------------|-------------------|
|         | 180' Lattice Tower - CSP  | 56 of 86          |
| Project |                           | Date              |
|         | Structural Analysis       | 16:48:32 03/29/18 |
| Client  | Empire Telescom / EMD 004 | Designed by       |
|         | Empire Telecom / EMP-004  | MCD               |

| Section<br>No. | Elevation<br>ft | Component<br>Type       | Condition          | Gov.<br>Load | Axial         | Major Axis<br>Moment | Minor Axis<br>Moment |
|----------------|-----------------|-------------------------|--------------------|--------------|---------------|----------------------|----------------------|
|                |                 |                         |                    | Comb.        | K             | kip-ft               | kip-ft               |
|                |                 |                         | Max. My            | 27           | -14.12        | -0.04                | -0.04                |
|                |                 |                         | Max. Vy            | 50           | -0.09         | 0.20                 | 0.03                 |
|                |                 |                         | Max. Vx            | 48           | -0.01         | 0.00                 | 0.00                 |
|                |                 | Secondary<br>Horizontal | Max Tension        | 30           | 3.08          | 0.00                 | 0.00                 |
|                |                 |                         | Max. Compression   | 30           | -3.08         | 0.02                 | -0.02                |
|                |                 |                         | Max. Mx            | 48           | 0.25          | 0.11                 | 0.02                 |
|                |                 |                         | Max. My            | 5            | -2.88         | 0.00                 | -0.02                |
|                |                 |                         | Max. Vy            | 48           | 0.08          | 0.11                 | 0.02                 |
| 2200           |                 |                         | Max. Vx            | 42           | -0.01         | 0.00                 | 0.00                 |
| T13            | 80 - 60         | Leg                     | Max Tension        | 31           | 245.24        | 1.78                 | 0.16                 |
|                |                 |                         | Max. Compression   | 30           | -265.36       | 6.45                 | -0.07                |
|                |                 |                         | Max. Mx            | 49           | -115.71       | 7.63                 | -0.85                |
|                |                 |                         | Max. My            | 6            | -11.46        | -0.71                | 6.23                 |
|                |                 |                         | Max. Vy            | 37           | -1.27         | 7.63                 | 0.99                 |
|                |                 |                         | Max. Vx            | 6            | -1.16         | -0.71                | 6.23                 |
|                |                 | Diagonal                | Max Tension        | 19           | 15.42         | 0.00                 | 0.00                 |
|                |                 |                         | Max. Compression   | 10           | -15.88        | 0.00                 | 0.00                 |
|                |                 |                         | Max. Mx            | 48           | 2.51          | -0.19                | 0.04                 |
|                |                 |                         | Max. My            | 42           | 0.65          | -0.17                | 0.04                 |
|                |                 |                         | Max. Vy            | 48           | -0.10         | -0.19                | 0.04                 |
|                |                 | m . c: .                | Max. Vx            | 42           | 0.01          | 0.00                 | 0.00                 |
|                |                 | Top Girt                | Max Tension        | 35           | 1.52          | 0.00                 | 0.00                 |
|                |                 |                         | Max. Compression   | 27           | -0.93         | -0.20                | 0.01                 |
|                |                 |                         | Max. Mx            | 35<br>35     | 1.07          | -1.18                | 0.04                 |
|                |                 |                         | Max. My            | 35           | 1.07<br>-0.25 | -1.18                | 0.04                 |
|                |                 |                         | Max. Vy<br>Max. Vx | 35           | -0.23         | 0.00<br>0.00         | 0.00<br>0.00         |
|                |                 | Inner Bracing           | Max Tension        | 30           | 0.12          | 0.00                 | 0.00                 |
|                |                 | mmer Bracing            | Max. Compression   | 30           | -0.12         | 0.00                 | 0.00                 |
|                |                 |                         | Max. Mx            | 34           | 0.00          | 0.39                 | 0.00                 |
|                |                 |                         | Max. My            | 47           | 0.00          | 0.00                 | -0.00                |
|                |                 |                         | Max. Vy            | 34           | 0.13          | 0.00                 | 0.00                 |
|                |                 |                         | Max, Vx            | 47           | -0.00         | 0.00                 | 0.00                 |
| T14            | 60 - 50         | Leg                     | Max Tension        | 31           | 270.42        | -0.22                | -0.13                |
|                |                 | •                       | Max. Compression   | 30           | -293.77       | 0.56                 | 0.32                 |
|                |                 |                         | Max, Mx            | 41           | 36.92         | -8.15                | 0.86                 |
|                |                 |                         | Max. My            | 7            | -10.57        | -0.89                | 8.63                 |
|                |                 |                         | Max. Vy            | 37           | 1.47          | -8.15                | -0.97                |
|                |                 |                         | Max. Vx            | 7            | -1.46         | -0.89                | 8.63                 |
|                |                 | Diagonal                | Max Tension        | 18           | 15.53         | 0.00                 | 0.00                 |
|                |                 |                         | Max. Compression   | 18           | -15.62        | 0.00                 | 0.00                 |
|                |                 |                         | Max. Mx            | 49           | 2.86          | -0.17                | -0.03                |
|                |                 |                         | Max. My            | 48           | -5.04         | -0.15                | -0.04                |
|                |                 |                         | Max. Vy            | 49           | -0.10         | -0.17                | -0.03                |
|                |                 |                         | Max. Vx            | 48           | -0.01         | 0.00                 | 0.00                 |
|                |                 | Horizontal              | Max Tension        | 35           | 3.89          | 0.00                 | 0.00                 |
|                |                 |                         | Max. Compression   | 27           | -1.61         | 0.32                 | -0.02                |
|                |                 |                         | Max. Mx            | 35           | 3.21          | 1.12                 | -0.05                |
|                |                 |                         | Max. My            | 35           | 3.22          | 1.12                 | -0.05                |
|                |                 |                         | Max. Vy            | 35           | -0.24         | 0.00                 | 0.00                 |
|                |                 | I D                     | Max. Vx            | 35           | -0.01         | 0.00                 | 0.00                 |
|                |                 | Inner Bracing           | Max Tension        | 30           | 0.14          | 0.00                 | 0.00                 |
|                |                 |                         | Max. Compression   | 31           | -0.14         | 0.00                 | 0.00                 |
|                |                 |                         | Max. Mx            | 34           | 0.00          | 0.49                 | 0.00                 |
|                |                 |                         | Max. My            | 49           | 0.01          | 0.00                 | 0.00                 |
|                |                 |                         | Max. Vy            | 34           | -0.15         | 0.00                 | 0.00                 |
|                | 50 - 40         | Leg                     | Max. Vx            | 49           | -0.00         | 0.00                 | 0.00                 |
| T15            |                 | 1.20                    | Max Tension        | 31           | 296.31        | 1.92                 | 0.25                 |
| T15            | 50 - 40         | 205                     | Max. Compression   | 30           | -321.27       | 2.12                 | -0.16                |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 57 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | F : T   /FI/D 004        | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>No. | Elevation<br>ft | Component<br>Type       | Condition         | Gov.<br>Load | Axial   | Major Axis<br>Moment | Minor Axis<br>Moment |
|----------------|-----------------|-------------------------|-------------------|--------------|---------|----------------------|----------------------|
|                | •               |                         |                   | Comb.        | K       | kip-ft               | kip-ft               |
|                |                 |                         | Max. My           | 20           | 63.98   | 0.55                 | -4.69                |
|                |                 |                         | Max. Vy           | 30           | -2.16   | 6.13                 | 0.01                 |
|                |                 |                         | Max. Vx           | 32           | -1.20   | 0.57                 | 4.67                 |
|                |                 | Diagonal                | Max Tension       | 19           | 16.33   | -0.09                | -0.01                |
|                |                 | ū                       | Max. Compression  | 18           | -17.51  | 0.00                 | 0.00                 |
|                |                 |                         | Max. Mx           | 44           | 0.34    | -0.30                | -0.03                |
|                |                 |                         | Max. Mv           | 48           | 1.77    | -0.29                | -0.03                |
|                |                 |                         | Max. Vy           | 44           | -0.15   | -0.30                | -0.03                |
|                |                 |                         | Max. Vx           | 48           | 0.01    | 0.00                 | 0.00                 |
|                |                 | Secondary               | Max Tension       | 30           | 4.82    | 0.00                 | 0.00                 |
|                |                 | Horizontal              |                   |              |         |                      |                      |
|                |                 |                         | Max. Compression  | 30           | -4.82   | 0.05                 | 0.00                 |
|                |                 |                         | Max. Mx           | 40           | 0.73    | 0.23                 | 0.05                 |
|                |                 |                         | Max. My           | 36           | -0.13   | 0.23                 | 0.06                 |
|                |                 |                         | Max. Vy           | 40           | 0.12    | 0.23                 | 0.05                 |
|                |                 | _                       | Max. Vx           | 42           | -0.01   | 0.00                 | 0.00                 |
| T16            | 40 - 30         | Leg                     | Max Tension       | 31           | 320.18  | -2.65                | -2.15                |
|                |                 |                         | Max. Compression  | 30           | -349.24 | 1.56                 | 1.07                 |
|                |                 |                         | Max. Mx           | 6            | -17.07  | 7.23                 | -6.06                |
|                |                 |                         | Max, My           | 16           | -100.54 | -5.78                | 7.23                 |
|                |                 |                         | Max. Vy           | 4            | -1.67   | 7.23                 | -5.74                |
|                |                 |                         | Max. Vx           | 16           | -1.68   | -5.78                | 7.23                 |
|                |                 | Diagonal                | Max Tension       | 5            | 17.00   | -0.13                | -0.01                |
|                |                 | _                       | Max. Compression  | 20           | -17.38  | 0.00                 | 0.00                 |
|                |                 |                         | Max. Mx           | 48           | 1.37    | -0.24                | -0.03                |
|                |                 |                         | Max. My           | 40           | -7.88   | -0.19                | 0.04                 |
|                |                 |                         | Max. Vy           | 48           | -0.14   | -0.24                | -0.03                |
|                |                 |                         | Max. Vx           | 40           | 0.01    | 0.00                 | 0.00                 |
|                |                 | Secondary<br>Horizontal | Max Tension       | 30           | 5.24    | 0.00                 | 0.00                 |
|                |                 | 110111011011            | Max. Compression  | 30           | -5.24   | 0.01                 | 0.00                 |
|                |                 |                         | Max. Mx           | 42           | -0.39   | 0.14                 | 0.06                 |
|                |                 |                         | Max. My           | 45           | -0.69   | 0.12                 | 0.06                 |
|                |                 |                         | Max. Vy           | 42           | 0.11    | 0.14                 | 0.06                 |
|                |                 |                         | Max. Vx           | 49           | -0.01   | 0.00                 | 0.00                 |
|                |                 | Top Girt                | Max Tension       | 35           | 5.19    | 0.00                 | 0.00                 |
|                |                 | Top Gift                | Max. Compression  | 27           | -1.70   | 0.43                 |                      |
|                |                 |                         | Max. Mx           | 35           | 4.52    | 1.10                 | -0.03                |
|                |                 |                         |                   | 43           | 4.52    |                      | -0.05                |
|                |                 |                         | Max. My           |              |         | 1.10                 | -0.05                |
|                |                 |                         | Max. Vy           | 35           | -0.23   | 0.00                 | 0.00                 |
|                |                 | Inna Danina             | Max. Vx           | 43           | -0.01   | 0.00                 | 0.00                 |
|                |                 | Inner Bracing           | Max Tension       | 31           | 0.19    | 0.00                 | 0.00                 |
|                |                 |                         | Max. Compression  | 31           | -0.19   | 0.00                 | 0.00                 |
|                |                 |                         | Max. Mx           | 34           | 0.00    | 0.60                 | 0.00                 |
|                |                 |                         | Max. My           | 49           | 0.02    | 0.00                 | 0.00                 |
|                |                 |                         | Max. Vy           | 34           | -0.16   | 0.00                 | 0.00                 |
| mia            | 20 22           | •                       | Max. Vx           | 49           | -0.00   | 0.00                 | 0.00                 |
| T17            | 30 - 20         | Leg                     | Max Tension       | 31           | 348.47  | -3.58                | -3.97                |
|                |                 |                         | Max. Compression  | 30           | -379.69 | 0.02                 | 0.15                 |
|                |                 |                         | Max. Mx           | 18           | -259.49 | 5.99                 | 1.07                 |
|                |                 |                         | Max. My           | 2            | -257.36 | 0.99                 | 6.03                 |
|                |                 |                         | Max. Vy           | 16           | 1.98    | -3.40                | -3.06                |
|                |                 |                         | Max. Vx           | 4            | 1.98    | -3.02                | -3.37                |
|                |                 | Diagonal                | Max Tension       | 19           | 17.91   | -0.12                | -0.00                |
|                |                 | -                       | Max. Compression  | 18           | -18.52  | 0.00                 | 0.00                 |
|                |                 |                         | Max. Mx           | 49           | 3.84    | -0.35                | -0.04                |
|                |                 |                         | Max. My           | 49           | 3.84    | -0.35                | -0.04                |
|                |                 |                         | Max. Vy           | 45           | -0.16   | -0.34                | -0.03                |
|                |                 |                         | Max. Vx           | 48           | 0.01    | 0.00                 | 0.00                 |
|                |                 | Secondary               | Max Tension       | 30           | 5.70    | 0.00                 | 0.00                 |
|                |                 |                         | ATAMES A VIIIIUII |              | 2.10    | 0.00                 | 0.00                 |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 58 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | F : T !                  | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>No. | Elevation<br>ft | Component<br>Type        | Condition              | Gov.<br>Load | Axial          | Major Axis<br>Moment | Minor Axis<br>Moment |
|----------------|-----------------|--------------------------|------------------------|--------------|----------------|----------------------|----------------------|
|                |                 |                          |                        | Comb.        | K              | kip-ft               | kip-ft               |
|                |                 |                          | Max. Compression       | 30           | -5.70          | 0.07                 | -0.01                |
|                |                 |                          | Max. Mx                | 40           | 0.91           | 0.27                 | 0.05                 |
|                |                 |                          | Max. My                | 44           | -0.20          | 0.26                 | 0.05                 |
|                |                 |                          | Max. Vy                | 40           | 0.13           | 0.27                 | 0.05                 |
|                |                 |                          | Max. Vx                | 50           | -0.01          | 0.00                 | 0.00                 |
| T18            | 20 - 10         | Leg                      | Max Tension            | 31           | 372.70         | -3.90                | -3.29                |
|                |                 | •                        | Max. Compression       | 30           | -403.85        | 1.00                 | 0.83                 |
|                |                 |                          | Max. Mx                | 32           | 355.88         | -4.39                | -2.97                |
|                |                 |                          | Max. My                | 20           | 350.20         | -2.91                | -4.39                |
|                |                 |                          | Max. Vy                | 30           | -1.56          | 2.87                 | 2.65                 |
|                |                 |                          | Max. Vx                | 22           | -1.54          | 2.60                 | 2.84                 |
|                |                 | Diagonal                 | Max Tension            | 5            | 19.66          | -0.13                | 0.00                 |
|                |                 | _                        | Max. Compression       | 8            | -22.27         | 0.00                 | 0.00                 |
|                |                 |                          | Max. Mx                | 49           | -1.76          | -0.30                | -0.05                |
|                |                 |                          | Max. My                | 43           | -9.24          | -0.28                | 0.07                 |
|                |                 |                          | Max. Vy                | 49           | -0.16          | -0.30                | -0.05                |
|                |                 |                          | Max. Vx                | 43           | -0.01          | 0.00                 | 0.00                 |
|                |                 | Horizontal               | Max Tension            | 44           | 7.93           | 0.00                 | 0.00                 |
|                |                 |                          | Max. Compression       | 27           | -1.68          | 0.60                 | -0.04                |
|                |                 |                          | Max. Mx                | 43           | 6.72           | 0.96                 | -0.04                |
|                |                 |                          | Max. My                | 43           | 6.72           | 0.96                 | -0.05                |
|                |                 |                          | Max. Vy                | 43           | -0.21          | 0.00                 | 0.00                 |
|                |                 |                          | Max. Vx                | 43           | -0.01          | 0.00                 | 0.00                 |
|                |                 | Secondary<br>Horizontal  | Max Tension            | 30           | 6.06           | 0.00                 | 0.00                 |
|                |                 |                          | Max. Compression       | 30           | -6.06          | 0.04                 | 0.01                 |
|                |                 |                          | Max. Mx                | 50           | -0.45          | 0.20                 | 0.09                 |
|                |                 |                          | Max. My                | 42           | 1.32           | 0.19                 | 0.09                 |
|                |                 |                          | Max. Vy                | 50           | -0.13          | 0.20                 | 0.09                 |
|                |                 |                          | Max. Vx                | 42           | 0.02           | 0.00                 | 0.00                 |
|                |                 | Inner Bracing            | Max Tension            | 33           | 0.05           | 0.00                 | 0.00                 |
|                |                 | 8                        | Max. Compression       | 33           | -0.03          | 0.00                 | 0.00                 |
|                |                 |                          | Max. Mx                | 34           | 0.00           | 0.75                 | 0.00                 |
|                |                 |                          | Max. My                | 49           | 0.01           | 0.00                 | 0.00                 |
|                |                 |                          | Max. Vy                | 34           | -0.18          | 0.00                 | 0.00                 |
|                |                 |                          | Max. Vx                | 49           | -0.00          | 0.00                 | 0.00                 |
| T19            | 10 - 0          | Leg                      | Max Tension            | 31           | 379.88         | -2.66                | -2.76                |
|                |                 |                          | Max. Compression       | 30           | -415.36        | 0.00                 | -0.00                |
|                |                 |                          | Max. Mx                | 16           | -399.86        | 4.00                 | 2.72                 |
|                |                 |                          | Max. My                | 4            | -396.37        | 2.65                 | 4.03                 |
|                |                 |                          | Max. Vy                | 32           | 1.42           | -2.86                | -2.20                |
|                |                 |                          | Max. Vx                | 20           | 1.41           | -2.10                | -2.86                |
|                |                 | Diagonal                 | Max Tension            | 5            | 28.15          | -0.04                | -0.02                |
|                |                 |                          | Max. Compression       | 20           | -29.19         | 0.00                 | 0.00                 |
|                |                 |                          | Max. Mx                | 48           | 2.95           | -0.08                | -0.03                |
|                |                 |                          | Max. My                | 43           | -9.02          | -0.07                | 0.05                 |
|                |                 |                          | Max. Vy                | 48           | -0.07          | -0.08                | -0.03                |
|                |                 |                          | Max. Vx                | 43           | 0.01           | 0.00                 | 0.00                 |
|                |                 | Horizontal               | Max Tension            | 20           | 21.07          | 0.00                 | 0.00                 |
|                |                 | Homzomai                 | Max. Compression       | 5            |                |                      |                      |
|                |                 |                          | Max. Mx                | 47           | -18.77         | -0.04<br>-0.25       | 0.02                 |
|                |                 |                          | Max. My                |              | 6.28           |                      | -0.02                |
|                |                 |                          |                        | 10           | -4.25<br>0.15  | -0.14                | -0.04                |
|                |                 |                          | Max. Vy                | 47           | 0.15           | -0.25                | -0.02                |
|                |                 | Redund Horz 1<br>Bracing | Max. Vx<br>Max Tension | 10<br>30     | -0.01<br>6.23  | 0.00<br>0.00         | 0.00<br>0.00         |
|                |                 | Practing                 | Max. Compression       | 30           | -6.23          | 0.00                 | 0.00                 |
|                |                 |                          | Max. Mx                | 40           |                |                      | 0.00                 |
|                |                 |                          |                        |              | 2.70           | -0.04                | 0.00                 |
|                |                 |                          | Max. My                | 42           | 0.35           | 0.00                 | 0.00                 |
|                |                 |                          | Max. Vy<br>Max. Vx     | 40<br>42     | -0.04<br>-0.00 | 0.00<br>0.00         | 0.00<br>0.00         |
|                |                 |                          |                        |              |                |                      |                      |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 59 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>No. | Elevation<br>ft | Component<br>Type          | Condition        | Gov.<br>Load<br>Comb. | Axial<br>K | Major Axis<br>Moment<br>kip-ft | Minor Axi<br>Moment<br>kip-ft |
|----------------|-----------------|----------------------------|------------------|-----------------------|------------|--------------------------------|-------------------------------|
|                |                 | Redund Diag 1<br>Bracing   | Max Tension      | 3                     | 7.47       | 0.00                           | 0.00                          |
|                |                 | Ü                          | Max. Compression | 2                     | -7.90      | 0.00                           | 0.00                          |
|                |                 |                            | Max. Mx          | 40                    | 2.05       | -0.06                          | 0.00                          |
|                |                 |                            | Max. My          | 42                    | 4.81       | 0.00                           | 0.00                          |
|                |                 |                            | Max. Vy          | 40                    | -0.04      | 0.00                           | 0.00                          |
|                |                 |                            | Max. Vx          | 42                    | -0.00      | 0.00                           | 0.00                          |
|                |                 | Redund Hip 1<br>Bracing    | Max Tension      | 1                     | 0.00       | 0.00                           | 0.00                          |
|                |                 | J                          | Max. Compression | 30                    | -0.03      | 0.00                           | 0.00                          |
|                |                 |                            | Max. Mx          | 34                    | -0.01      | -0.08                          | 0.00                          |
|                |                 |                            | Max. Vy          | 34                    | -0.05      | 0.00                           | 0.00                          |
|                |                 | Redund Sub Horz<br>Bracing | Max Tension      | 3                     | 8.33       | 0.00                           | 0.00                          |
|                |                 | _                          | Max. Compression | 26                    | -9.07      | 0.00                           | 0.00                          |
|                |                 |                            | Max. Mx          | 34                    | 3.74       | -0.22                          | 0.00                          |
|                |                 |                            | Max. My          | 34                    | 3.74       | 0.00                           | 0.01                          |
|                |                 |                            | Max. Vy          | 34                    | 0.10       | 0.00                           | 0.00                          |
|                |                 |                            | Max. Vx          | 34                    | -0.00      | 0.00                           | 0.00                          |
|                |                 | Inner Bracing              | Max Tension      | 30                    | 0.17       | 0.00                           | 0.00                          |
|                |                 |                            | Max. Compression | 30                    | -0.17      | 0.00                           | 0.00                          |
|                |                 |                            | Max. Mx          | 34                    | -0.01      | 0.78                           | 0.00                          |
|                |                 |                            | Max. My          | 47                    | -0.01      | 0.00                           | -0.00                         |
|                |                 |                            | Max. Vy          | 34                    | 0.18       | 0.00                           | 0.00                          |
|                |                 |                            | Max. Vx          | 47                    | -0.00      | 0.00                           | 0.00                          |

#### **Maximum Reactions**

| Location | Condition           | Gov.  | Vertical | Horizontal, X | Horizontal, 2 |
|----------|---------------------|-------|----------|---------------|---------------|
|          |                     | Load  | K        | K             | K             |
|          |                     | Comb. |          |               |               |
| Leg D    | Max. Vert           | 22    | 447.09   | 31.52         | -33.03        |
|          | Max. H <sub>x</sub> | 24    | 432.64   | 32.98         | -29.48        |
|          | Max. H <sub>z</sub> | 5     | -395.64  | -26.48        | 33.07         |
|          | Min. Vert           | 7     | -410.24  | -30.14        | 31.60         |
|          | Min. H <sub>x</sub> | 9     | -395.72  | -31.67        | 27.87         |
|          | Min. Hz             | 20    | 432.55   | 28.02         | -34.43        |
| Leg C    | Max. Vert           | 14    | 451.63   | -33.01        | -32.02        |
|          | Max. H <sub>x</sub> | 29    | -400.74  | 32.82         | 27.24         |
|          | Max. H <sub>z</sub> | 33    | -400.65  | 28.28         | 31.77         |
|          | Min. Vert           | 31    | -415.41  | 31.68         | 30.60         |
|          | Min. H <sub>x</sub> | 12    | 437.02   | -34.10        | -28.82        |
|          | Min. H <sub>z</sub> | 16    | 436.93   | -29.79        | -33.14        |
| Leg B    | Max. Vert           | 6     | 447.78   | -33.04        | 31.54         |
| -        | Max. H <sub>x</sub> | 25    | -395.21  | 32.81         | -26.72        |
|          | Max. H <sub>z</sub> | 4     | 433.24   | -29.76        | 32.74         |
|          | Min. Vert           | 23    | -409.72  | 31.60         | -30.11        |
|          | Min. H <sub>x</sub> | 8     | 433.33   | -34.18        | 28.31         |
|          | Min. H <sub>z</sub> | 21    | -395.12  | 28.15         | -31.36        |
| Leg A    | Max, Vert           | 30    | 453.01   | 32.05         | 33.06         |
|          | Max. H <sub>x</sub> | 28    | 438.41   | 33.55         | 29.45         |
|          | Max. H <sub>z</sub> | 32    | 438.32   | 28.48         | 34.52         |
|          | Min. Vert           | 15    | -414.37  | -30.59        | -31.63        |
|          | Min. H <sub>x</sub> | 13    | -399.69  | -32.16        | -27.85        |
|          | Min. Hz             | 17    | -399.60  | -26.84        | -33.16        |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     | -                        | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 60 of 86          |
| Project |                          | Date              |
| _       | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

# **Tower Mast Reaction Summary**

| Dead Only 1.2 Dead+1.6 Wind 0 deg - No Ice 0.9 Dead+1.6 Wind 0 deg - No Ice 1.2 Dead+1.6 Wind 30 deg - No | 71.92<br>86.30<br>64.73 | 0.00<br>-0.35 | 0.00    | Moment, M <sub>x</sub> kip-ft -15.34 | Moment, M <sub>z</sub><br>kip-ft | kip-ft |
|-----------------------------------------------------------------------------------------------------------|-------------------------|---------------|---------|--------------------------------------|----------------------------------|--------|
| 1.2 Dead+1.6 Wind 0 deg - No<br>Ice<br>0.9 Dead+1.6 Wind 0 deg - No<br>Ice                                | 86.30                   |               |         | -15 34                               |                                  |        |
| Ice<br>0.9 Dead+1.6 Wind 0 deg - No<br>Ice                                                                |                         | -0.35         | 100.10  |                                      | 5.17                             | 0.00   |
| 0.9 Dead+1.6 Wind 0 deg - No<br>lice                                                                      | 64.73                   |               | -109.19 | -10234.13                            | 67.80                            | -59.19 |
| Ice                                                                                                       |                         | -0.35         | -109.19 | -10223.31                            | 66.20                            | -59.19 |
| 1.2 Dead+1.6 Wind 30 deg - No                                                                             |                         | 0.00          | 103.13  | 10223.51                             | 00.20                            | -37.17 |
|                                                                                                           | 86.30                   | 57.47         | -99.85  | -9291.01                             | -5315.63                         | -60.29 |
| ice                                                                                                       | 64.72                   | 57.47         | 00.05   | 0000 ==                              |                                  |        |
| 0.9 Dead+1.6 Wind 30 deg - No<br>ice                                                                      | 64.73                   | 57.47         | -99.85  | -9280.77                             | -5313.97                         | -60.27 |
| 1.2 Dead+1.6 Wind 45 deg - No                                                                             | 86.30                   | 81.46         | -81.42  | -7571.13                             | -7551.91                         | -52.60 |
| ice                                                                                                       |                         |               |         |                                      |                                  |        |
| 0.9 Dead+1.6 Wind 45 deg - No                                                                             | 64.73                   | 81.46         | -81.43  | -7561.93                             | -7548.89                         | -52.58 |
| ice<br>1.2 Dead+1.6 Wind 60 deg - No                                                                      | 86.30                   | 99.90         | -57.45  | -5336.53                             | 0272 11                          | 41.22  |
| ce                                                                                                        | 60.50                   | 33.30         | -57.45  | -5550.55                             | -9273.11                         | -41.33 |
| 0.9 Dead+1.6 Wind 60 deg - No                                                                             | 64.73                   | 99.90         | -57.45  | -5328.69                             | -9269.05                         | -41.30 |
| ce                                                                                                        | 0.4.00                  |               |         |                                      |                                  |        |
| 1.2 Dead+1.6 Wind 90 deg - No                                                                             | 86.30                   | 109.24        | 0.35    | 42.96                                | -10217.42                        | -12.25 |
| 0.9 Dead+1.6 Wind 90 deg - No                                                                             | 64.73                   | 109.24        | 0.35    | 47.55                                | -10212.77                        | -12.21 |
| ce                                                                                                        |                         | 103.21        | 0.55    | ***.55                               | 10212.77                         | -12.21 |
| .2 Dead+1.6 Wind 120 deg -                                                                                | 86.30                   | 100.25        | 58.06   | 5406.00                              | -9334.68                         | 21.80  |
| No Ice                                                                                                    | 6472                    | 100.25        | 50.00   | 5407.24                              | 0000.55                          |        |
| 0.9 Dead+1.6 Wind 120 deg -<br>No Ice                                                                     | 64.73                   | 100.25        | 58.06   | 5407.34                              | -9330.57                         | 21.83  |
| 1.2 Dead+1.6 Wind 135 deg -                                                                               | 86.30                   | 81.96         | 81.92   | 7621.08                              | -7638.97                         | 36.65  |
| No Ice                                                                                                    |                         |               |         |                                      |                                  |        |
| 0.9 Dead+1.6 Wind 135 deg -<br>No Ice                                                                     | 64.73                   | 81.96         | 81.92   | 7621.08                              | -7635.88                         | 36.68  |
| 1.2 Dead+1.6 Wind 150 deg -                                                                               | 86.30                   | 58.08         | 100.21  | 9315.53                              | -5422.23                         | 49.02  |
| No Ice                                                                                                    | 50.50                   | 50.00         | 100.21  | 7515.55                              | -3422.23                         | 45.02  |
| 0.9 Dead+1.6 Wind 150 deg -                                                                               | 64.73                   | 58.08         | 100.21  | 9314.51                              | -5420.49                         | 49.03  |
| No Ice                                                                                                    | 96.20                   | 0.15          | 100.10  | 1010510                              |                                  |        |
| .2 Dead+1.6 Wind 180 deg -<br>No Ice                                                                      | 86.30                   | 0.35          | 109.19  | 10197.19                             | -55.22                           | 59.18  |
| 0.9 Dead+1.6 Wind 180 deg -                                                                               | 64.73                   | 0.35          | 109.19  | 10195.63                             | -56.73                           | 59.18  |
| No Ice                                                                                                    |                         |               |         |                                      |                                  |        |
| .2 Dead+1.6 Wind 210 deg -                                                                                | 86.30                   | -57.47        | 99.85   | 9253.94                              | 5328.25                          | 60.30  |
| No Ice<br>1.9 Dead+1.6 Wind 210 deg -                                                                     | 64.73                   | -57.47        | 99.85   | 9252.97                              | 5222 40                          | 60.28  |
| No Ice                                                                                                    | 04.75                   | -37.47        | 33.63   | 9232.91                              | 5323.48                          | 00.28  |
| .2 Dead+1.6 Wind 225 deg -                                                                                | 86.30                   | -81.46        | 81.42   | 7534.01                              | 7564.49                          | 52.60  |
| No Ice                                                                                                    |                         |               |         |                                      |                                  |        |
| 0.9 Dead+1.6 Wind 225 deg -<br>No Ice                                                                     | 64.73                   | -81.46        | 81.43   | 7534.08                              | 7558.37                          | 52.57  |
| .2 Dead+1.6 Wind 240 deg -                                                                                | 86.30                   | -99.90        | 57.45   | 5299.38                              | 9285.63                          | 41.32  |
| No Ice                                                                                                    | 33.33                   | 22.20         | 37.43   | 3277.56                              | 7205.05                          | 71.J2  |
| .9 Dead+1.6 Wind 240 deg -                                                                                | 64.73                   | -99.90        | 57.45   | 5300.80                              | 9278.47                          | 41.29  |
| √o Ice<br>.2 Dead+1.6 Wind 270 deg -                                                                      | 06.20                   | 100.24        | 0.35    | 00.05                                | 10000.00                         |        |
| .2 Dead+1.6 Wind 270 deg -                                                                                | 86.30                   | -109.24       | -0.35   | -80.07                               | 10229.82                         | 12.26  |
| 9.9 Dead+1.6 Wind 270 deg -                                                                               | 64.73                   | -109.24       | -0.35   | -75.38                               | 10222.07                         | 12.22  |
| No Ice                                                                                                    |                         |               |         |                                      |                                  |        |
| .2 Dead+1.6 Wind 300 deg -                                                                                | 86.30                   | -100.25       | -58.06  | -5442.99                             | 9347.07                          | -21.78 |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 61 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Load<br>Combination                                        | Vertical       | $Shear_x$     | Shearz         | Overturning<br>Moment, M <sub>x</sub> | Overturning<br>Moment, Mz | Torque         |
|------------------------------------------------------------|----------------|---------------|----------------|---------------------------------------|---------------------------|----------------|
|                                                            | K              | K             | K              | kip-ft                                | kip-ft                    | kip-ft         |
| 0.9 Dead+1.6 Wind 300 deg -                                | 64.73          | -100.25       | -58.06         | -5435.06                              | 9339.85                   | -21.81         |
| No Ice                                                     |                |               |                |                                       |                           |                |
| 1.2 Dead+1.6 Wind 315 deg -                                | 86.30          | -81.96        | -81.92         | -7658.01                              | 7651.38                   | -36.65         |
| No Ice                                                     |                |               |                |                                       |                           |                |
| 0.9 Dead+1.6 Wind 315 deg -                                | 64.73          | -81.96        | -81.92         | -7648.75                              | 7645.20                   | -36.67         |
| No Ice                                                     | 26.20          | 50.00         | 100.01         |                                       |                           |                |
| 1.2 Dead+1.6 Wind 330 deg -                                | 86.30          | -58.08        | -100.21        | -9352.43                              | 5434.71                   | -49.02         |
| No Ice<br>0.9 Dead+1.6 Wind 330 deg -                      | 64.73          | -58.08        | -100.21        | 0242.16                               | £420.07                   | 40.04          |
| No Ice                                                     | 04.73          | -50.06        | -100.21        | -9342.15                              | 5429.87                   | -49.04         |
| 1.2 Dead+1.0 Ice+1.0 Temp                                  | 264,23         | -0.00         | 0.00           | 17.34                                 | 126.36                    | 0.01           |
| 1.2 Dead+1.0 Wind 0 deg+1.0                                | 264.23         | -0.03         | -34.64         | -3191.69                              | 131.98                    | -28.72         |
| Ice+1.0 Temp                                               |                |               |                |                                       |                           |                |
| 1.2 Dead+1.0 Wind 30 deg+1.0                               | 264.23         | 17.92         | -31.06         | -2817.94                              | -1508.11                  | -17.58         |
| Ice+1.0 Temp                                               |                |               |                |                                       |                           |                |
| 1.2 Dead+1.0 Wind 45 deg+1.0                               | 264.23         | 25.36         | -25.35         | -2295.98                              | -2188.04                  | -9.20          |
| Ice+1.0 Temp                                               |                |               |                |                                       |                           |                |
| 1.2 Dead+1.0 Wind 60 deg+1.0                               | 264.23         | 31.07         | -17.92         | -1616.37                              | -2710.24                  | -0.19          |
| Ice+1.0 Temp                                               |                |               |                |                                       |                           |                |
| 1.2 Dead+1.0 Wind 90 deg+1.0                               | 264.23         | 34.65         | 0.03           | 22.97                                 | -3084.20                  | 16.04          |
| Ice+1.0 Temp                                               | 264.22         | 21.00         | 17.00          | 1660 70                               | 0716.04                   | 20.05          |
| 1.2 Dead+1.0 Wind 120<br>deg+1.0 Ice+1.0 Temp              | 264.23         | 31.09         | 17.96          | 1660.79                               | -2715.84                  | 30.07          |
| 1.2 Dead+1.0 Wind 135                                      | 264.23         | 25.40         | 25.39          | 2338.59                               | -2196.00                  | 22.50          |
| deg+1.0 Ice+1.0 Temp                                       | 204.23         | 25.40         | 25.59          | 2336.33                               | -2190.00                  | 33.59          |
| 1.2 Dead+1.0 Wind 150                                      | 264.23         | 17.97         | 31.09          | 2858.26                               | -1517.82                  | 34.84          |
| deg+1.0 Ice+1.0 Temp                                       | 201125         | 17.57         | 51.07          | 2030.20                               | -1517.02                  | 54.04          |
| 1.2 Dead+1.0 Wind 180                                      | 264.23         | 0.03          | 34.64          | 3226.39                               | 120.76                    | 28.74          |
| deg+1.0 Ice+1.0 Temp                                       |                |               |                |                                       |                           |                |
| 1.2 Dead+1.0 Wind 210                                      | 264.23         | -17.92        | 31.06          | 2852.63                               | 1760.84                   | 17.61          |
| deg+1.0 Ice+1.0 Temp                                       |                |               |                |                                       |                           |                |
| 1.2 Dead+1.0 Wind 225                                      | 264.23         | -25.36        | 25.35          | 2330.67                               | 2440.76                   | 9.23           |
| deg+1.0 Ice+1.0 Temp                                       |                |               |                |                                       |                           |                |
| 1.2 Dead+1.0 Wind 240                                      | 264.23         | -31.07        | 17.92          | 1651.06                               | 2962.95                   | 0.22           |
| deg+1.0 Ice+1.0 Temp                                       | 264.22         | 24.65         | 0.02           | 11.74                                 | 2226.01                   | 16.01          |
| 1.2 Dead+1.0 Wind 270<br>deg+1.0 Ice+1.0 Temp              | 264,23         | -34.65        | -0.03          | 11.74                                 | 3336.91                   | -16.01         |
| 1.2 Dead+1.0 Wind 300                                      | 264.23         | -31.09        | -17.96         | -1626.08                              | 2968.57                   | -30.04         |
| deg+1.0 Ice+1.0 Temp                                       | 204.23         | -51.09        | -17.90         | -1020.08                              | 2706.37                   | -30.04         |
| 1.2 Dead+1.0 Wind 315                                      | 264.23         | -25.40        | -25.39         | -2303.91                              | 2448.69                   | -33.58         |
| deg+1.0 Ice+1.0 Temp                                       |                |               |                |                                       | 21.0.05                   | 33.50          |
| 1.2 Dead+1.0 Wind 330                                      | 264.23         | -17.97        | -31.09         | -2823.55                              | 1770.56                   | -34.81         |
| deg+1.0 Ice+1.0 Temp                                       |                |               |                |                                       |                           |                |
| Dead+Wind 0 deg - Service                                  | 71.92          | -0.08         | -24.70         | -2325.40                              | 19.08                     | -13.39         |
| Dead+Wind 30 deg - Service                                 | 71.92          | 13.00         | -22.59         | -2112.13                              | -1198.25                  | -13.64         |
| Dead+Wind 45 deg - Service                                 | 71.92          | 18.43         | -18.42         | -1723.21                              | -1703.93                  | -11.90         |
| Dead+Wind 60 deg - Service                                 | 71.92          | 22.60         | -13.00         | -1217.91                              | -2093.13                  | -9.34          |
| Dead+Wind 90 deg - Service                                 | 71.92          | 24.71         | 0.08           | -1.48                                 | -2306.64                  | -2.77          |
| Dead+Wind 120 deg - Service                                | 71.92          | 22.68         | 13.13          | 1211.23                               | -2107.04                  | 4.94           |
| Dead+Wind 135 deg - Service<br>Dead+Wind 150 deg - Service | 71.92          | 18.54         | 18.53          | 1712.11                               | -1723.60                  | 8.29           |
| Dead+Wind 180 deg - Service                                | 71.92<br>71.92 | 13.14<br>0.08 | 22.67<br>24.70 | 2095.26                               | -1222.34                  | 11.09          |
| Dead+Wind 210 deg - Service                                | 71.92          | -13.00        | 22.59          | 2294.63<br>2081.35                    | -8.74<br>1208.60          | 13.39<br>13.64 |
| Dead+Wind 216 deg - Service                                | 71.92          | -18.43        | 18.42          | 1692.44                               | 1714.27                   | 11.90          |
| Dead+Wind 240 deg - Service                                | 71.92          | -22.60        | 13.00          | 1187.14                               | 2103.47                   | 9.35           |
| Dead+Wind 270 deg - Service                                | 71.92          | -24.71        | -0.08          | -29.29                                | 2316.98                   | 2.76           |
| Dead+Wind 300 deg - Service                                | 71.92          | -22.68        | -13.13         | -1242.00                              | 2117.37                   | -4.93          |
| Dead+Wind 315 deg - Service                                | 71.92          | -18.54        | -18.53         | -1742.88                              | 1733.93                   | -8.29          |
| Dead+Wind 330 deg - Service                                | 71.92          | -13.14        | -22.67         | -2126.03                              | 1232.68                   | -11.09         |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 62 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | F : T   1514D 004        | Designed by       |
| 1       | Empire Telecom / EMP-004 | MCD               |

# **Solution Summary**

|       | Su      | m of Applied Force: | 5       | 1920    | าร     |         |                  |
|-------|---------|---------------------|---------|---------|--------|---------|------------------|
| Load  | PX      | PY                  | PZ      | PX      | PY     | PZ      | % Erro           |
| Comb. | K       | K                   | K       | K       | K      | K       |                  |
| 1     | 0.00    | -71.92              | 0.00    | -0.00   | 71.92  | 0.00    | 0.000%           |
| 2     | -0.35   | -86.30              | -109.19 | 0.35    | 86.30  | 109.19  | 0.000%           |
| 3     | -0.35   | -64.73              | -109.19 | 0.35    | 64.73  | 109.19  | 0.000%           |
| 4     | 57.47   | -86.30              | -99.85  | -57.47  | 86.30  | 99.85   | 0.000%           |
| 5     | 57.47   | -64.73              | -99.85  | -57.47  | 64.73  | 99.85   | 0.000%           |
| 6     | 81.46   | -86.30              | -81.42  | -81.46  | 86.30  | 81.42   | 0.001%           |
| 7     | 81.46   | -64.73              | -81.42  | -81.46  | 64.73  | 81.43   | 0.000%           |
| 8     | 99.90   | -86.30              | -57.45  | -99.90  | 86.30  | 57.45   | 0.000%           |
| 9     | 99.90   | -64.73              | -57.45  | -99.90  | 64.73  | 57.45   | 0.000%           |
| 10    | 109.24  | -86.30              | 0.35    | -109.24 | 86.30  | -0.35   | 0.000%           |
| 11    | 109.24  | -64.73              | 0.35    | -109.24 | 64.73  | -0.35   | 0.000%           |
| 12    | 100.25  | -86.30              | 58.06   | -100.25 | 86.30  | -58.06  | 0.000%           |
| 13    | 100.25  | -64.73              | 58.06   | -100.25 | 64.73  | -58.06  | 0.000%           |
| 14    | 81.96   | -86.30              | 81.92   | -81.96  | 86.30  | -81.92  | 0.0007           |
| 15    | 81.96   | -64.73              | 81.92   | -81.96  | 64.73  | -81.92  | 0.000%           |
| 16    | 58.08   | -86.30              | 100.21  | -58.08  | 86.30  | -100.21 | 0.000%           |
| 17    | 58.08   | -64.73              | 100.21  | -58.08  | 64.73  | -100.21 |                  |
| 18    |         |                     |         |         |        |         | 0.000%           |
|       | 0.35    | -86.30              | 109.19  | -0.35   | 86.30  | -109.19 | 0.000%           |
| 19    | 0.35    | -64.73              | 109.19  | -0.35   | 64.73  | -109.19 | 0.000%           |
| 20    | -57.47  | -86.30              | 99.85   | 57.47   | 86.30  | -99.85  | 0.000%           |
| 21    | -57.47  | -64.73              | 99.85   | 57.47   | 64.73  | -99.85  | 0.000%           |
| 22    | -81.46  | -86.30              | 81.42   | 81.46   | 86.30  | -81.42  | 0.001%           |
| 23    | -81.46  | -64.73              | 81.42   | 81.46   | 64.73  | -81.43  | 0.000%           |
| 24    | -99.90  | -86.30              | 57.45   | 99.90   | 86.30  | -57.45  | 0.000%           |
| 25    | -99.90  | -64.73              | 57.45   | 99.90   | 64.73  | -57.45  | 0.000%           |
| 26    | -109.24 | -86.30              | -0.35   | 109.24  | 86.30  | 0.35    | 0.000%           |
| 27    | -109.24 | -64.73              | -0.35   | 109.24  | 64.73  | 0.35    | 0.000%           |
| 28    | -100.25 | -86.30              | -58.06  | 100.25  | 86.30  | 58.06   | 0.000%           |
| 29    | -100.25 | -64.73              | -58.06  | 100.25  | 64.73  | 58.06   | 0.000%           |
| 30    | -81.96  | -86.30              | -81.92  | 81.96   | 86.30  | 81.92   | 0.000%           |
| 31    | -81.96  | -64.73              | -81.92  | 81.96   | 64.73  | 81.92   | 0.000%           |
| 32    | -58.08  | -86.30              | -100.21 | 58.08   | 86.30  | 100.21  | 0.000%           |
| 33    | -58.08  | -64.73              | -100.21 | 58.08   | 64.73  | 100.21  | 0.000%           |
| 34    | 0.00    | -264.23             | 0.00    | 0.00    | 264.23 | -0.00   | 0.000%           |
| 35    | -0.03   | -264.23             | -34.64  | 0.03    | 264.23 | 34.64   | 0.000%           |
| 36    | 17.92   | -264.23             | -31.06  | -17.92  | 264.23 | 31.06   | 0.000%           |
| 37    | 25.36   | -264.23             | -25.35  | -25.36  | 264.23 | 25.35   | 0.000%           |
| 38    | 31.07   | -264.23             | -17.92  | -31.07  | 264.23 | 17.92   | 0.000%           |
| 39    | 34.65   | -264.23             | 0.03    | -34.65  | 264.23 | -0.03   | 0.000%           |
| 40    | 31.09   | -264.23             | 17.96   | -31.09  | 264.23 | -17.96  | 0.000%           |
| 41    | 25.40   | -264.23             | 25.39   | -25.40  | 264.23 | -25.39  | 0.000%           |
| 42    | 17.97   | -264.23             | 31.09   | -17.97  | 264.23 | -31.09  | 0.000%           |
| 43    | 0.03    | -264.23             | 34.64   | -0.03   | 264.23 | -34.64  | 0.000%           |
| 44    | -17.92  | -264.23             | 31.06   | 17.92   | 264.23 | -31.06  |                  |
| 45    | -25.36  | -264.23             | 25.35   | 25.36   | 264.23 | -25.35  | 0.000%<br>0.000% |
| 46    |         |                     |         |         |        |         |                  |
|       | -31.07  | -264.23             | 17.92   | 31.07   | 264.23 | -17.92  | 0.000%           |
| 47    | -34.65  | -264.23             | -0.03   | 34.65   | 264.23 | 0.03    | 0.000%           |
| 48    | -31.09  | -264.23             | -17.96  | 31.09   | 264.23 | 17.96   | 0.000%           |
| 49    | -25.40  | -264.23             | -25.39  | 25.40   | 264.23 | 25.39   | 0.000%           |
| 50    | -17.97  | -264.23             | -31.09  | 17.97   | 264.23 | 31.09   | 0.000%           |
| 51    | -0.08   | -71.92              | -24.70  | 0.08    | 71.92  | 24.70   | 0.000%           |
| 52    | 13.00   | -71.92              | -22.59  | -13.00  | 71.92  | 22.59   | 0.000%           |
| 53    | 18.43   | -71.92              | -18.42  | -18.43  | 71.92  | 18.42   | 0.000%           |
| 54    | 22.60   | -71.92              | -13.00  | -22.60  | 71.92  | 13.00   | 0.000%           |
| 55    | 24.71   | -71.92              | 0.08    | -24.71  | 71.92  | -0.08   | 0.000%           |
| 56    | 22.68   | -71.92              | 13.13   | -22.68  | 71.92  | -13.13  | 0.000%           |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page                      |
|---------|--------------------------|---------------------------|
|         | 180' Lattice Tower - CSP | 63 of 86                  |
| Project | Structural Analysis      | Date<br>16:48:32 03/29/18 |
| Client  | Empire Telecom / EMP-004 | Designed by MCD           |

|       | Sur    | n of Applied Force. | S      |        | Sum of Reaction | 'S'    |         |
|-------|--------|---------------------|--------|--------|-----------------|--------|---------|
| Load  | PX     | PY                  | PZ     | PX     | PY              | PZ     | % Error |
| Comb. | K      | K                   | K      | K      | K               | K      |         |
| 57    | 18.54  | -71.92              | 18.53  | -18.54 | 71.92           | -18.53 | 0.001%  |
| 58    | 13.14  | -71.92              | 22.67  | -13.14 | 71.92           | -22.67 | 0.000%  |
| 59    | 0.08   | -71.92              | 24.70  | -0.08  | 71.92           | -24.70 | 0.000%  |
| 60    | -13.00 | -71.92              | 22.59  | 13.00  | 71.92           | -22.59 | 0.001%  |
| 61    | -18.43 | -71.92              | 18.42  | 18.43  | 71.92           | -18.42 | 0.000%  |
| 62    | -22.60 | -71.92              | 13.00  | 22.60  | 71.92           | -13.00 | 0.000%  |
| 63    | -24.71 | -71.92              | -0.08  | 24.71  | 71.92           | 0.08   | 0.001%  |
| 64    | -22.68 | -71.92              | -13.13 | 22.68  | 71.92           | 13.13  | 0.000%  |
| 65    | -18.54 | -71.92              | -18.53 | 18.54  | 71.92           | 18.53  | 0.000%  |
| 66    | -13.14 | -71.92              | -22.67 | 13.14  | 71.92           | 22.67  | 0.000%  |

# Non-Linear Convergence Results

| - |             |            |           |              |            |
|---|-------------|------------|-----------|--------------|------------|
|   | Load        | Converged? | Number    | Displacement | Force      |
|   | Combination | _          | of Cycles | Tolerance    | Tolerance  |
|   | 1           | Yes        | 4         | 0.00000001   | 0.00076264 |
|   | 2           | Yes        | 8         | 0.00091004   | 0.00029665 |
|   | 3           | Yes        | 10        | 0.00086413   | 0.00020835 |
|   | 4           | Yes        | 6         | 0.00094341   | 0.00035440 |
|   | 5           | Yes        | 7         | 0.00092076   | 0.00025378 |
|   | 6           | Yes        | 5         | 0.00097176   | 0.00040071 |
|   | 7           | Yes        | 6         | 0.00062528   | 0.00020632 |
|   | 8           | Yes        | 7         | 0.00088132   | 0.00023950 |
|   | 9           | Yes        | 7         | 0.00099887   | 0.00020413 |
|   | 10          | Yes        | 10        | 0.00081559   | 0.00019132 |
|   | 11          | Yes        | 11        | 0.00087756   | 0.00015050 |
|   | 12          | Yes        | 7         | 0.00090781   | 0.00024498 |
|   | 13          | Yes        | 8         | 0.00075887   | 0.00015362 |
|   | 14          | Yes        | 5         | 0.00099677   | 0.00040655 |
|   | 15          | Yes        | 6         | 0.00064768   | 0.00021129 |
|   | 16          | Yes        | 6         | 0.00094624   | 0.00035518 |
|   | 17          | Yes        | 7         | 0.00092977   | 0.00025565 |
|   | 18          | Yes        | 8         | 0.00089233   | 0.00029192 |
|   | 19          | Yes        | 10        | 0.00084671   | 0.00020474 |
|   | 20          | Yes        | 6         | 0.00092963   | 0.00035050 |
|   | 21          | Yes        | 7         | 0.00090726   | 0.00025084 |
|   | 22          | Yes        | 5         | 0.00097278   | 0.00040000 |
|   | 23          | Yes        | 6         | 0.00062370   | 0.00020529 |
|   | 24          | Yes        | 7         | 0.00089206   | 0.00024150 |
|   | 25          | Yes        | 8         | 0.00073964   | 0.00015030 |
|   | 26          | Yes        | 10        | 0.00082432   | 0.00019289 |
|   | 27          | Yes        | 11        | 0.00088554   | 0.00015158 |
|   | 28          | Yes        | 7         | 0.00091109   | 0.00024557 |
|   | 29          | Yes        | 8         | 0.00076153   | 0.00015403 |
|   | 30          | Yes        | 6         | 0.00058536   | 0.00023899 |
|   | 31          | Yes        | 6         | 0.00065336   | 0.00021295 |
|   | 32          | Yes        | 6         | 0.00096105   | 0.00035913 |
|   | 33          | Yes        | 7         | 0.00094442   | 0.00025868 |
|   | 34          | Yes        | 7         | 0.0000001    | 0.00056552 |
|   | 35          | Yes        | 7         | 0.00034516   | 0.00043255 |
|   | 36          | Yes        | 7         | 0.00032947   | 0.00041868 |
|   | 37          | Yes        | 6         | 0.00076048   | 0.00098540 |
|   | 38          | Yes        | 6         | 0.00073933   | 0.00096555 |
|   | 39          | Yes        | 6         | 0.00073158   | 0.00095611 |
|   | 40          | Yes        | 6         | 0.00074449   | 0.00096709 |
|   | 41          | Yes        | 6         | 0.00076648   | 0.00098811 |
|   |             |            |           |              |            |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 64 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| 42 | Yes | 7 | 0.00033454 | 0.00042097 |
|----|-----|---|------------|------------|
| 43 | Yes | 7 | 0.00035233 | 0.00043607 |
| 44 | Yes | 6 | 0.00078542 | 0.00099192 |
| 45 | Yes | 6 | 0.00075578 | 0.00096451 |
| 46 | Yes | 6 | 0.00073111 | 0.00093957 |
| 47 | Yes | 6 | 0.00071565 | 0.00092324 |
| 48 | Yes | 6 | 0.00072225 | 0.00093454 |
| 49 | Yes | 6 | 0.00074325 | 0.00095762 |
| 50 | Yes | 6 | 0.00077022 | 0.00098395 |
| 51 | Yes | 4 | 0.0000001  | 0.00040235 |
| 52 | Yes | 4 | 0.0000001  | 0.00036908 |
| 53 | Yes | 4 | 0.0000001  | 0.00033856 |
| 54 | Yes | 4 | 0.0000001  | 0.00031368 |
| 55 | Yes | 4 | 0.0000001  | 0.00029822 |
| 56 | Yes | 4 | 0.0000001  | 0.00031296 |
| 57 | Yes | 4 | 0.0000001  | 0.00033756 |
| 58 | Yes | 4 | 0.0000001  | 0.00036822 |
| 59 | Yes | 4 | 0.0000001  | 0.00040404 |
| 60 | Yes | 4 | 0.0000001  | 0.00036908 |
| 61 | Yes | 4 | 0.0000001  | 0.00033787 |
| 62 | Yes | 4 | 0.0000001  | 0.00031274 |
| 63 | Yes | 4 | 0.0000001  | 0.00029757 |
| 64 | Yes | 4 | 0.0000001  | 0.00031261 |
| 65 | Yes | 4 | 0.0000001  | 0.00033696 |
| 66 | Yes | 4 | 0.0000001  | 0.00036720 |

#### **Maximum Tower Deflections - Service Wind**

| Section     | Elevation         | Horz.      | Gov.  | Tilt   | Twist  |
|-------------|-------------------|------------|-------|--------|--------|
| <i>No</i> . |                   | Deflection | Load  |        |        |
|             | ft                | in         | Comb. | 0      | 0      |
| T1          | 180 - 170         | 2.944      | 66    | 0.1297 | 0.0081 |
| T2          | 170 - 163.573     | 2.643      | 66    | 0.1288 | 0.0080 |
| T3          | 163.573 - 159.049 | 2.451      | 66    | 0.1267 | 0.0078 |
| T4          | 159.049 - 154.524 | 2.316      | 66    | 0.1246 | 0.0072 |
| T5          | 154.524 - 150     | 2.184      | 66    | 0.1213 | 0.0068 |
| T6          | 150 - 140         | 2.056      | 66    | 0.1171 | 0.0064 |
| T7          | 140 - 130         | 1.791      | 66    | 0.1066 | 0.0061 |
| T8          | 130 - 120         | 1.549      | 66    | 0.0979 | 0.0061 |
| T9          | 120 - 110         | 1.329      | 66    | 0.0880 | 0.0060 |
| T10         | 110 - 100         | 1.129      | 65    | 0.0793 | 0.0054 |
| T11         | 100 - 90          | 0.948      | 65    | 0.0700 | 0.0049 |
| T12         | 90 - 80           | 0.787      | 65    | 0.0618 | 0.0045 |
| T13         | 80 - 60           | 0.642      | 65    | 0.0533 | 0.0040 |
| T14         | 60 - 50           | 0.394      | 65    | 0.0436 | 0.0027 |
| T15         | 50 - 40           | 0.286      | 65    | 0.0386 | 0.0021 |
| T16         | 40 - 30           | 0.198      | 65    | 0.0333 | 0.0018 |
| T17         | 30 - 20           | 0.124      | 65    | 0.0251 | 0.0014 |
| T18         | 20 - 10           | 0.067      | 65    | 0.0168 | 0.0011 |
| T19         | 10 - 0            | 0.027      | 58    | 0.0083 | 0.0007 |

#### Critical Deflections and Radius of Curvature - Service Wind

| Elevation | Appurtenance | Gov.<br>Load | Deflection | Tilt | Twist | Radius of<br>Curvature |
|-----------|--------------|--------------|------------|------|-------|------------------------|
| ft        |              | Comb.        | in         | ٥    | 0     | ft                     |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 65 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Elevation | Appurtenance                    | Gov.<br>Load  | Deflection | Tilt   | Twist  | Radius of       |
|-----------|---------------------------------|---------------|------------|--------|--------|-----------------|
| ft        |                                 | Loaa<br>Comb. | in         | ۰      | ٥      | Curvature<br>ft |
| 185.00    | Lightning Rod 2"x15'            | 66            | 2.944      | 0.1297 | 0.0081 | 715171          |
| 183.00    | SC479-HF1LDF (D00-E5764)        | 66            | 2.944      | 0.1297 | 0.0081 | 715171          |
| 181.00    | TMA 432-83H-01T - Future Decom. | 66            | 2.944      | 0.1297 | 0.0081 | 715171          |
| 180.00    | SC479-HF1LDF (D00I-E5764)       | 66            | 2.944      | 0.1297 | 0.0081 | 715171          |
| 175.00    | 6' PAD w/ Radome                | 66            | 2.794      | 0.1295 | 0.0080 | 715171          |
| 174.00    | SC479-HF1LDF (D00I-E5764)       | 66            | 2.764      | 0.1295 | 0.0080 | 598978          |
| 173.00    | 6' PAD w/ Radome                | 66            | 2.733      | 0.1294 | 0.0080 | 528991          |
| 170.00    | 6' PAD w/ Radome                | 66            | 2.643      | 0.1288 | 0.0080 | 558923          |
| 169.00    | BA1010-2                        | 66            | 2.613      | 0.1286 | 0.0080 | 721932          |
| 168.00    | SC479-HF1LDF (D00I-E5764)       | 66            | 2.583      | 0.1283 | 0.0080 | Inf             |
| 163.00    | T-Frame                         | 66            | 2.434      | 0.1265 | 0.0077 | 266391          |
| 161.00    | DB408-B                         | 66            | 2.374      | 0.1256 | 0.0075 | 110328          |
| 152.00    | 12' Omni Antenna                | 66            | 2.112      | 0.1190 | 0.0066 | 55043           |
| 146.25    | 12' Omni Antenna                | 66            | 1.954      | 0.1131 | 0.0063 | 50748           |
| 140.50    | 12' Omni Antenna                | 66            | 1.804      | 0.1071 | 0.0061 | 49984           |
| 139.00    | Yagi ASP-816                    | 66            | 1.766      | 0.1057 | 0.0060 | 50273           |
| 137.00    | BA1010                          | 66            | 1.716      | 0.1039 | 0.0060 | 51149           |
| 136.50    | DB222-A                         | 66            | 1.704      | 0.1035 | 0.0060 | 51431           |
| 134.50    | BA1010                          | 66            | 1.655      | 0.1018 | 0.0061 | 52689           |
| 132.00    | BA1010                          | 66            | 1.596      | 0.0997 | 0.0061 | 54332           |
| 130.00    | Dish Ice Shield                 | 66            | 1.549      | 0.0979 | 0.0061 | 55581           |
| 129.50    | BA1010                          | 66            | 1.538      | 0.0974 | 0.0061 | 55872           |
| 128.00    | PD128-1                         | 66            | 1.503      | 0.0960 | 0.0061 | 56691           |
| 127.00    | 3" Dia 20' Omni                 | 66            | 1.481      | 0.0950 | 0.0061 | 57204           |
| 125.00    | 6' PAD w/ Radome                | 66            | 1.436      | 0.0930 | 0.0061 | 58197           |
| 124.50    | PD128-1                         | 66            | 1.425      | 0.0924 | 0.0061 | 58447           |
| 122.00    | 3" Dia 20' Omni                 | 66            | 1.371      | 0.0899 | 0.0061 | 59652           |
| 121.00    | PD128-1                         | 66            | 1.350      | 0.0889 | 0.0060 | 60072           |
| 117.00    | 3" Dia 20' Omni                 | 66            | 1.267      | 0.0853 | 0.0058 | 61069           |
| 116.00    | 12' Omni Antenna                | 66            | 1.246      | 0.0844 | 0.0058 | 61190           |
| 112.00    | 3" Dia 20' Omni                 | 65            | 1.167      | 0.0811 | 0.0055 | 61533           |
| 111.00    | 12' Omni Antenna                | 65            | 1.148      | 0.0802 | 0.0054 | 61549           |
| 107.00    | 3" Dia 20' Omni                 | 65            | 1.072      | 0.0766 | 0.0052 | 61054           |
| 106.00    | 4' Grid Dish                    | 65            | 1.054      | 0.0756 | 0.0052 | 60832           |
| 105.00    | 12' Wireless Frame              | 65            | 1.036      | 0.0747 | 0.0051 | 60598           |
| 101.00    | DB264-A                         | 65            | 0.965      | 0.0709 | 0.0050 | 60337           |
| 96.00     | DB264-A                         | 65            | 0.881      | 0.0667 | 0.0048 | 65179           |
| 91.00     | SC479-HF1LDF                    | 65            | 0.802      | 0.0627 | 0.0045 | 73147           |
| 86.00     | DB264-A                         | 65            | 0.727      | 0.0583 | 0.0043 | 75339           |
| 85.00     | SC479-HF1LDF                    | 65            | 0.713      | 0.0574 | 0.0042 | 75154           |
| 79.00     | SC479-HF1LDF                    | 65            | 0.629      | 0.0526 | 0.0039 | 77648           |
| 75.00     | Dish Ice Shield                 | 65            | 0.576      | 0.0501 | 0.0037 | 87584           |
| 71.00     | 2'6"x4" Pipe Mount              | 65            | 0.525      | 0.0482 | 0.0034 | 102404          |
| 61.00     | GPS                             | 65            | 0.406      | 0.0440 | 0.0028 | 154383          |
| 50.00     | DB803M-Y                        | 65            | 0.286      | 0.0386 | 0.0021 | 53849           |

# **Maximum Tower Deflections - Design Wind**

|     | Section | Elevation         | Horz.      | Gov. | Tilt   | Twist  |
|-----|---------|-------------------|------------|------|--------|--------|
| No. |         |                   | Deflection | Load |        |        |
|     | ft      | in                | Comb.      | 0    | 0      |        |
| į.  | T1      | 180 - 170         | 12.904     | 30   | 0.5648 | 0.0359 |
|     | T2      | 170 - 163.573     | 11.593     | 30   | 0.5609 | 0.0354 |
|     | T3      | 163.573 - 159.049 | 10.755     | 30   | 0.5519 | 0.0346 |
|     | T4      | 159.049 - 154.524 | 10.165     | 30   | 0.5436 | 0.0317 |
|     | T5      | 154.524 - 150     | 9.589      | 30   | 0.5296 | 0.0300 |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 66 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section | Elevation | Horz.      | Gov.  | Tilt   | Twist  |
|---------|-----------|------------|-------|--------|--------|
| No.     |           | Deflection | Load  |        |        |
|         | ft        | in         | Comb. | 0      | 0      |
| T6      | 150 - 140 | 9.031      | 30    | 0.5117 | 0.0286 |
| T7      | 140 - 130 | 7.869      | 30    | 0.4663 | 0.0269 |
| T8      | 130 - 120 | 6.809      | 30    | 0.4284 | 0.0271 |
| Т9      | 120 - 110 | 5.845      | 30    | 0.3850 | 0.0265 |
| T10     | 110 - 100 | 4.967      | 30    | 0.3477 | 0.0238 |
| T11     | 100 - 90  | 4.174      | 30    | 0.3071 | 0.0218 |
| T12     | 90 - 80   | 3.465      | 30    | 0.2715 | 0.0199 |
| T13     | 80 - 60   | 2.829      | 30    | 0.2342 | 0.0175 |
| T14     | 60 - 50   | 1.738      | 30    | 0.1915 | 0.0121 |
| T15     | 50 - 40   | 1.262      | 30    | 0.1696 | 0.0094 |
| T16     | 40 - 30   | 0.873      | 30    | 0.1463 | 0.0079 |
| T17     | 30 - 20   | 0.546      | 30    | 0.1105 | 0.0064 |
| T18     | 20 - 10   | 0.294      | 30    | 0.0739 | 0.0048 |
| T19     | 10 - 0    | 0.119      | 14    | 0.0363 | 0.0032 |

# Critical Deflections and Radius of Curvature - Design Wind

| Elevation | Appurtenance                    | Gov.<br>Load | Deflection | Tilt   | Twist  | Radius of<br>Curvature |
|-----------|---------------------------------|--------------|------------|--------|--------|------------------------|
| ft        |                                 | Comb.        | in         | 0      | o      | ft                     |
| 185.00    | Lightning Rod 2"x15'            | 30           | 12.904     | 0.5648 | 0.0359 | 169104                 |
| 183.00    | SC479-HF1LDF (D00-E5764)        | 30           | 12.904     | 0.5648 | 0.0359 | 169104                 |
| 181.00    | TMA 432-83H-01T - Future Decom. | 30           | 12.904     | 0.5648 | 0.0359 | 169104                 |
| 180.00    | SC479-HF1LDF (D00I-E5764)       | 30           | 12.904     | 0.5648 | 0.0359 | 169104                 |
| 175.00    | 6' PAD w/ Radome                | 30           | 12.247     | 0.5641 | 0.0355 | 169104                 |
| 174.00    | SC479-HF1LDF (D00I-E5764)       | 30           | 12.116     | 0.5637 | 0.0354 | 141654                 |
| 173.00    | 6' PAD w/ Radome                | 30           | 11.985     | 0.5632 | 0.0354 | 125235                 |
| 170.00    | 6' PAD w/ Radome                | 30           | 11.593     | 0.5609 | 0.0354 | 138219                 |
| 169.00    | BA1010-2                        | 30           | 11.463     | 0.5598 | 0.0354 | 192337                 |
| 168.00    | SC479-HF1LDF (D00I-E5764)       | 30           | 11.332     | 0.5586 | 0.0354 | 252929                 |
| 163.00    | T-Frame                         | 30           | 10.680     | 0.5510 | 0.0343 | 88407                  |
| 161.00    | DB408-B                         | 30           | 10.418     | 0.5476 | 0.0330 | 29338                  |
| 152.00    | 12' Omni Antenna                | 30           | 9.275      | 0.5200 | 0.0292 | 13121                  |
| 146.25    | 12' Omni Antenna                | 30           | 8.583      | 0.4947 | 0.0277 | 11806                  |
| 140.50    | 12' Omni Antenna                | 30           | 7.924      | 0.4684 | 0.0269 | 11449                  |
| 139.00    | Yagi ASP-816                    | 30           | 7.758      | 0.4622 | 0.0268 | 11504                  |
| 137.00    | BA1010                          | 30           | 7.540      | 0.4545 | 0.0267 | 11699                  |
| 136.50    | DB222-A                         | 30           | 7.486      | 0.4526 | 0.0268 | 11764                  |
| 134.50    | BA1010                          | 30           | 7.274      | 0.4453 | 0.0269 | 12053                  |
| 132.00    | BA1010                          | 30           | 7.013      | 0.4361 | 0.0270 | 12434                  |
| 130.00    | Dish Ice Shield                 | 30           | 6.809      | 0.4284 | 0.0271 | 12731                  |
| 129.50    | BA1010                          | 30           | 6.759      | 0.4263 | 0.0271 | 12802                  |
| 128.00    | PD128-1                         | 30           | 6.609      | 0.4200 | 0.0271 | 13006                  |
| 127.00    | 3" Dia 20' Omni                 | 30           | 6.511      | 0.4156 | 0.0271 | 13137                  |
| 125.00    | 6' PAD w/ Radome                | 30           | 6.316      | 0.4067 | 0.0271 | 13398                  |
| 124.50    | PD128-1                         | 30           | 6.268      | 0.4045 | 0.0270 | 13463                  |
| 122.00    | 3" Dia 20' Omni                 | 30           | 6.031      | 0.3934 | 0.0268 | 13780                  |
| 121.00    | PD128-1                         | 30           | 5.937      | 0.3892 | 0.0267 | 13888                  |
| 117.00    | 3" Dia 20' Omni                 | 30           | 5.573      | 0.3734 | 0.0258 | 14118                  |
| 116.00    | 12' Omni Antenna                | 30           | 5.484      | 0.3697 | 0.0255 | 14137                  |
| 112.00    | 3" Dia 20' Omni                 | 30           | 5.136      | 0.3552 | 0.0244 | 14176                  |
| 111.00    | 12' Omni Antenna                | 30           | 5.051      | 0.3515 | 0.0241 | 14172                  |
| 107.00    | 3" Dia 20' Omni                 | 30           | 4.720      | 0.3356 | 0.0231 | 14039                  |
| 106.00    | 4' Grid Dish                    | 30           | 4.639      | 0.3315 | 0.0229 | 13986                  |
| 105.00    | 12' Wireless Frame              | 30           | 4.560      | 0.3273 | 0.0227 | 13930                  |
| 101.00    | DB264-A                         | 30           | 4.249      | 0.3110 | 0.0220 | 13863                  |
| 96.00     | DB264-A                         | 30           | 3.881      | 0.2926 | 0.0211 | 14965                  |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 67 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| T71       |                    |       |            |        |        |           |
|-----------|--------------------|-------|------------|--------|--------|-----------|
| Elevation | Appurtenance       | Gov.  | Deflection | Tilt   | Twist  | Radius of |
|           |                    | Load  |            |        |        | Curvature |
| ft        |                    | Comb. | in         | 0      | •      | ft        |
| 91.00     | SC479-HF1LDF       | 30    | 3.533      | 0.2751 | 0.0201 | 16777     |
| 86.00     | DB264-A            | 30    | 3.202      | 0.2561 | 0.0190 | 17250     |
| 85.00     | SC479-HF1LDF       | 30    | 3.138      | 0.2522 | 0.0187 | 17202     |
| 79.00     | SC479-HF1LDF       | 30    | 2.769      | 0.2311 | 0.0173 | 17745     |
| 75.00     | Dish Ice Shield    | 30    | 2.536      | 0.2203 | 0.0162 | 20019     |
| 71.00     | 2'6"x4" Pipe Mount | 30    | 2.313      | 0.2117 | 0.0152 | 23418     |
| 61.00     | GPS                | 30    | 1.789      | 0.1934 | 0.0124 | 35325     |
| 50.00     | DB803M-Y           | 30    | 1.262      | 0.1696 | 0.0094 | 12200     |

| Bolt | Design | Data |
|------|--------|------|
|      |        |      |

| Section | Elevation | Component               | Bolt  | Bolt Size | Number      | Maximum   | Allowable | Ratio   |     | Criteria              |
|---------|-----------|-------------------------|-------|-----------|-------------|-----------|-----------|---------|-----|-----------------------|
| No.     | ft        | Туре                    | Grade | ž.,       | Of<br>Bolts | Load per  | Load      | Load    |     |                       |
|         | Ji        |                         |       | in        | Boils       | Bolt<br>K | K         | Allowal | ole |                       |
| T1      | 180       | Diagonal                | A325X | 0.6250    | 2           | 1.42      | 7.19      | 0.198   | 1   | Member Block<br>Shear |
|         |           | Secondary<br>Horizontal | A325X | 0.6250    | 2           | 0.39      | 6.17      | 0.063   | 1   | Member Block<br>Shear |
|         |           | Top Girt                | A325X | 0.6250    | 2           | 0.12      | 6.17      | 0.020   | 1   | Member Block<br>Shear |
| T2      | 170       | Diagonal                | A325X | 0.6250    | 2           | 1.76      | 7.19      | 0.246   | 1   | Member Block<br>Shear |
|         |           | Top Girt                | A325X | 0.6250    | 2           | 0.42      | 6.17      | 0.068   | 1   | Member Block<br>Shear |
| Т3      | 163.573   | Diagonal                | A325X | 0.6250    | 2           | 2.38      | 6.17      | 0.386   | 1   | Member Block<br>Shear |
|         |           | Top Girt                | A325X | 0.6250    | 2           | 0.27      | 6.17      | 0.043   | 1   | Member Block<br>Shear |
| T4      | 159.049   | Diagonal                | A325X | 0.6250    | 2           | 2.68      | 7.19      | 0.373   | 1   | Member Block<br>Shear |
| T5      | 154.524   | Diagonal                | A325X | 0.6250    | 2           | 2.66      | 7.19      | 0.370   | 1   | Member Block<br>Shear |
| Т6      | 150       | Diagonal                | A325X | 0.6250    | 2           | 2.89      | 7.19      | 0.402   | 1   | Member Block<br>Shear |
|         |           | Top Girt                | A325X | 0.6250    | 2           | 0.30      | 7.19      | 0.042   | 1   | Member Block<br>Shear |
| T7      | 140       | Diagonal                | A325X | 0.6250    | 2           | 4.47      | 10.26     | 0.436   | 1   | Member Block<br>Shear |
|         |           | Top Girt                | A325X | 0.6250    | 2           | 0.23      | 7.19      | 0.031   | 1   | Member Block<br>Shear |
| T8      | 130       | Diagonal                | A325X | 0.6250    | 2           | 5.40      | 10.26     | 0.526   | 1   | Member Block<br>Shear |
|         |           | Secondary<br>Horizontal | A325X | 0.6250    | 2           | 0.71      | 8.22      | 0.086   | 1   | Member Block<br>Shear |
| Т9      | 120       | Diagonal                | A325X | 0.6250    | 2           | 5.87      | 10.26     | 0.572   | 1   | Member Block<br>Shear |
|         |           | Horizontal              | A325X | 0.6250    | 2           | 0.38      | 9.58      | 0.040   | 1   | Member Block<br>Shear |
|         |           | Secondary<br>Horizontal | A325X | 0.6250    | 2           | 0.90      | 6.17      | 0.146   | 1   | Member Block<br>Shear |
| T10     | 110       | Diagonal                | A325X | 0.6250    | 2           | 7.08      | 11.62     | 0.609   | 1   | Member Block<br>Shear |
|         |           | Secondary<br>Horizontal | A325X | 0.6250    | 2           | 1.10      | 8.22      | 0.134   | 1   | Member Block<br>Shear |
| T11     | 100       | Diagonal                | A325X | 0.6250    | 2           | 6.87      | 11.62     | 0.591   | 1   | Member Block          |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 68 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | F : 7 !                  | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>No. | Elevation | Component<br>Type       | Bolt<br>Grade | Bolt Size | Number<br>Of | Maximum<br>Load per | Allowable<br>Load | Ratio<br>Load | Allowable<br>Ratio | Criteria                       |
|----------------|-----------|-------------------------|---------------|-----------|--------------|---------------------|-------------------|---------------|--------------------|--------------------------------|
|                | ft        |                         |               | in        | Bolts        | Bolt<br>K           | K                 | Allowab       | le                 |                                |
|                |           | Horizontal              | A325X         | 0.6250    | 2            | 0.75                | 9.58              | 0.078         | 1                  | Shear<br>Member Block<br>Shear |
| T12            | 90        | Diagonal                | A325X         | 0.6250    | 2            | 7.68                | 11.62             | 0.661         | 1                  | Member Block<br>Shear          |
|                |           | Secondary<br>Horizontal | A325X         | 0.6250    | 2            | 1.54                | 9.58              | 0.161         | 1                  | Member Block<br>Shear          |
| T13            | 80        | Diagonal                | A325X         | 0.6250    | 2            | 7.71                | 14.38             | 0.536         | 1                  | Member Block<br>Shear          |
|                |           | Top Girt                | A325X         | 0.6250    | 2            | 0.76                | 9.58              | 0.079         | 1                  | Member Block<br>Shear          |
| T14            | 60        | Diagonal                | A325X         | 0.6250    | 2            | 7.76                | 14.38             | 0.540         | 1                  | Member Block<br>Shear          |
|                |           | Horizontal              | A325X         | 0.6250    | 2            | 1.94                | 12.34             | 0.158         | 1                  | Member Block<br>Shear          |
| T15            | 50        | Diagonal                | A325X         | 0.6250    | 2            | 8.75                | 30.37             | 0.288         | 1                  | <b>Bolt Shear</b>              |
|                |           | Secondary<br>Horizontal | A325X         | 0.6250    | 2            | 2.41                | 11.62             | 0.207         | 1                  | Member Block<br>Shear          |
| T16            | 40        | Diagonal                | A325X         | 0.6250    | 2            | 8.50                | 28.75             | 0.296         | 1                  | Member Block<br>Shear          |
|                |           | Secondary<br>Horizontal | A325X         | 0.6250    | 2            | 2.62                | 11.62             | 0.226         | 1                  | Member Block<br>Shear          |
|                |           | Top Girt                | A325X         | 0.6250    | 2            | 2.59                | 12.34             | 0.210         | 1                  | Member Block<br>Shear          |
| T17            | 30        | Diagonal                | A325X         | 0.6250    | 2            | 8.96                | 28.75             | 0.312         | 1                  | Member Block<br>Shear          |
|                |           | Secondary<br>Horizontal | A325X         | 0.6250    | 2            | 2.85                | 11.62             | 0.245         | 1                  | Member Block<br>Shear          |
| T18            | 20        | Diagonal                | A325X         | 0.6250    | 2            | 11.14               | 30.37             | 0.367         | 1                  | Bolt Shear                     |
|                |           | Horizontal              | A325X         | 0.6250    | 2            | 3.97                | 12.34             | 0.321         | 1                  | Member Block<br>Shear          |
|                |           | Secondary<br>Horizontal | A325X         | 0.6250    | 2            | 3.03                | 11.62             | 0.261         | 1                  | Member Block<br>Shear          |
| T19            | 10        | Diagonal                | A325X         | 0.6250    | 2            | 14.08               | 19.17             | 0.734         | 1                  | Member Block<br>Shear          |
|                |           | Horizontal              | A325X         | 0.6250    | 2            | 10.53               | 19.17             | 0.550         | 1                  | Member Block<br>Shear          |

# **Compression Checks**

## Leg Design Data (Compression)

| Section<br>No. | Elevation     | Size             | L     | $L_u$ | Kl/r   | A               | $P_u$  | фР"   | Ratio                  |
|----------------|---------------|------------------|-------|-------|--------|-----------------|--------|-------|------------------------|
| 110.           | ft            |                  | ft    | ft    |        | in <sup>2</sup> | K      | K     | $\frac{P_u}{\phi P_n}$ |
| T1             | 180 - 170     | L3 1/2x3 1/2x3/8 | 10.00 | 5.00  | 87.3   | 2,4800          | -2.94  | 53.78 | 0.055                  |
|                |               |                  | 10.00 | 5.00  | K=1.00 | 2.7000          | -2.54  | 33.76 | 0.055                  |
| T2             | 170 - 163.573 | L5x5x5/16        | 6.43  | 6.43  | 77.6   | 3.0300          | -10.29 | 69.83 | 0.147 1                |
|                |               |                  |       |       | K=1.00 |                 |        |       | ~                      |
| T3             | 163.573 -     | L5x5x5/16        | 4.53  | 4.53  | 54.7   | 3.0300          | -20.20 | 81.46 | 0.248 1                |
|                |               |                  |       |       |        |                 |        |       |                        |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 69 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | F . T                    | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>No. | Elevation            | Size                       | L     | $L_{u}$ | Kl/r           | A       | $P_u$   | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|----------------------|----------------------------|-------|---------|----------------|---------|---------|------------|-------------------------|
| 2,0.           | ft                   |                            | ft    | ft      |                | $in^2$  | K       | K          | $\frac{1}{\phi P_n}$    |
|                | 159.049              |                            |       |         | K=1.00         |         |         |            | V                       |
| T4             | 159.049 -<br>154.524 | L5x5x5/16                  | 4.53  | 4.53    | 54.7<br>K=1.00 | 3.0300  | -29.52  | 81.46      | 0.362 1                 |
| T5             | 154.524 - 150        | L5x5x5/16                  | 4.53  | 4.53    | 54.7<br>K=1.00 | 3.0300  | -37.54  | 81.46      | 0.461                   |
| Т6             | 150 - 140            | L5x5x3/8                   | 10.01 | 5.01    | 60.7<br>K=1.00 | 3.6100  | -56.81  | 96.35      | 0.590 1                 |
| T7             | 140 - 130            | L6x6x1/2                   | 10.01 | 5.23    | 53.2<br>K=1.00 | 5.7500  | -72.00  | 160.53     | 0.449 1                 |
| Т8             | 130 - 120            | L6x6x1/2                   | 10.01 | 5.21    | 53.0<br>K=1.00 | 5.7500  | -94.58  | 160.69     | 0.589 1                 |
| Т9             | 120 - 110            | L6x6x3/4                   | 10.01 | 5.20    | 53.3<br>K=1.00 | 8.4400  | -120.28 | 235.48     | 0.511                   |
| T10            | 110 - 100            | L6x6x3/4                   | 10.01 | 5.18    | 53.2<br>K=1.00 | 8.4400  | -146.57 | 235.66     | 0.622 1                 |
| T11            | 100 - 90             | L8x8x3/4                   | 10.01 | 10.01   | 76.0<br>K=1.00 | 11.4000 | -176.54 | 272.41     | 0.648 1                 |
| T12            | 90 - 80              | L8x8x3/4                   | 10.01 | 5.16    | 39.2<br>K=1.00 | 11.4000 | -205.17 | 340.66     | 0.602 1                 |
| T13            | 80 - 60              | L8x8x1 w/ 1/2x7 Plates     | 20.03 | 10.01   | 48.3<br>K=1.00 | 22.0000 | -265.36 | 630.40     | 0.421 1                 |
| T14            | 60 - 50              | L8x8x1-1/8 w/ 1/2x7 Plates | 10.01 | 10.01   | 48.6<br>K=1.00 | 23.7340 | -293.77 | 679.24     | 0.433 1                 |
| T15            | 50 - 40              | L8x8x1-1/8 w/ 1/2x7 Plates | 10.01 | 5.13    | 24.9<br>K=1.00 | 23.7340 | -321.27 | 744.33     | 0.432 1                 |
| T16            | 40 - 30              | L8x8x1 1/8                 | 10.01 | 5.12    | 39.4<br>K=1.00 | 16.7000 | -349.24 | 498.58     | 0.700 1                 |
| T17            | 30 - 20              | L8x8x1 1/8                 | 10.01 | 5.12    | 39.4<br>K=1.00 | 16.7000 | -379.69 | 498.67     | 0.761 1                 |
| T18            | 20 - 10              | L8x8x1 1/8                 | 10.01 | 5.11    | 39.3<br>K=1.00 | 16.7000 | -403.85 | 498.74     | 0.810 1                 |
| T19            | 10 - 0               | L8x8x1 1/8                 | 10.01 | 5.01    | 38.5<br>K=1.00 | 16.7000 | -415.36 | 500.44     | 0.830 1                 |

 $<sup>^{1}</sup> P_{u} / \phi P_{n}$  controls

| <b>Diagonal Design Data</b> | (Compression) |
|-----------------------------|---------------|
|-----------------------------|---------------|

| Section<br>No. | Elevation            | Size              | L     | $L_u$ | Kl/r            | A      | $P_u$ | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|----------------------|-------------------|-------|-------|-----------------|--------|-------|------------|-------------------------|
|                | ft                   |                   | ft    | ft    |                 | $in^2$ | K     | K          | $\phi P_n$              |
| T1             | 180 - 170            | L2 1/2x2 1/2x3/16 | 11.41 | 5.51  | 130.4<br>K=0.98 | 0.9020 | -3.00 | 11.95      | 0.252                   |
| T2             | 170 - 163.573        | L2 1/2x2 1/2x3/16 | 8.46  | 4.03  | 103.3<br>K=1.06 | 0.9020 | -3.72 | 16.66      | 0.223 1                 |
| T3             | 163.573 -<br>159.049 | L2x2x3/16         | 7.25  | 3.52  | 110.5<br>K=1.03 | 0.7150 | -4.91 | 12.19      | 0.403 1                 |
| T4             | 159.049 -<br>154.524 | L2 1/2x2x3/16     | 7.51  | 3.65  | 106.9<br>K=1.04 | 0.8090 | -5.27 | 14.36      | 0.367 1                 |

| Job     | ···                      | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 70 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | Free Talance (FMD 004    | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>No. | Elevation     | Size                  | L     | $L_u$ | Kl/r            | A      | $P_u$  | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|---------------|-----------------------|-------|-------|-----------------|--------|--------|------------|-------------------------|
|                | ft            |                       | ft    | ft    |                 | in²    | K      | K          | ΦP <sub>n</sub>         |
| T5             | 154.524 - 150 | L2 1/2x2x3/16         | 7.77  | 3.78  | 109.6<br>K=1.03 | 0.8090 | -5.46  | 13.92      | 0.392 1                 |
| Т6             | 150 - 140     | L2 1/2x2x3/16         | 8.61  | 4.21  | 118.8<br>K=1.00 | 0.8090 | -5.83  | 12.47      | 0.467 1                 |
| T7             | 140 - 130     | L3x2 1/2x1/4          | 12.53 | 6.35  | 138.5<br>K=0.96 | 1.3100 | -9.13  | 15.42      | 0.592 1                 |
| T8             | 130 - 120     | L3x3x1/4              | 12.98 | 6.56  | 129.9<br>K=0.98 | 1.4400 | -11.03 | 19.20      | 0.574 1                 |
| Т9             | 120 - 110     | L3x3x1/4              | 13.45 | 6.78  | 133.3<br>K=0.97 | 1.4400 | -11.87 | 18.30      | 0.649 1                 |
| T10            | 110 - 100     | L3 1/2x3x1/4          | 13.94 | 7.02  | 130.3<br>K=0.98 | 1.5600 | -14.41 | 20.69      | 0.696 1                 |
| T11            | 100 - 90      | L3 1/2x3x1/4          | 14.44 | 7.26  | 133.8<br>K=0.97 | 1.5600 | -13.84 | 19.68      | 0.703 1                 |
| T12            | 90 - 80       | L3 1/2x3x1/4          | 14.97 | 7.52  | 137.5<br>K=0.96 | 1.5600 | -15.69 | 18.63      | 0.842 1                 |
| T13            | 80 - 60       | 2L2 1/2x2x3/16        | 16.07 | 8.06  | 122.4<br>K=1.00 | 1.6200 | -15.88 | 23.87      | 0.665 1                 |
| T14            | 60 - 50       | 2L2 1/2x2x3/16        | 16.63 | 8.33  | 126.6<br>K=1.00 | 1.6200 | -15.62 | 22.57      | 0.692 1                 |
| T15            | 50 - 40       | 2L2 1/2x2x3/8         | 17.21 | 8.62  | 131.2<br>K=0.97 | 3.0900 | -17.51 | 40.44      | 0.433 1                 |
| T16            | 40 - 30       | 2L2 1/2x2x3/8         | 17.80 | 8.91  | 134.7<br>K=0.97 | 3.0900 | -17.38 | 38.48      | 0.452 1                 |
| T17            | 30 - 20       | 2L2 1/2x2x3/8         | 18.40 | 9.21  | 138.2<br>K=0.96 | 3.0900 | -18.52 | 36.54      | 0.507 1                 |
| T18            | 20 - 10       | 2L2 1/2x2x3/8         | 19.00 | 9.51  | 141.8<br>K=0.95 | 3.0900 | -22.27 | 34.72      | 0.642 1                 |
| T19            | 10 - 0        | 2L2 1/2x2 1/2x1/4     | 13.37 | 12.47 | 142.5<br>K=1.00 | 2.3800 | -29.19 | 26.47      | 1.103 <sup>1</sup>      |
|                |               | 4.8.1 (1.10 CR) - 386 |       |       |                 |        |        |            |                         |

 $<sup>^{1}</sup>P_{u}/\phi P_{n}$  controls

| <b>Horizontal Design Data</b> | (Compression) |
|-------------------------------|---------------|
|-------------------------------|---------------|

| Section<br>No. | Elevation | Size              | L     | $L_u$ | Kl/r            | A               | $P_u$  | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|-------------------|-------|-------|-----------------|-----------------|--------|------------|-------------------------|
|                | ft        |                   | ft    | ft    |                 | in <sup>2</sup> | K      | K          | φ <i>P</i> <sub>n</sub> |
| Т9             | 120 - 110 | L2 1/2x2 1/2x1/4  | 9.12  | 4.11  | 110.3<br>K=1.10 | 1.1900          | -0.91  | 20.33      | 0.045                   |
| T11            | 100 - 90  | L2 1/2x2 1/2x1/4  | 10.56 | 4.83  | 119.0<br>K=1.01 | 1.1900          | -1.59  | 18.29      | 0.087 1                 |
| T14            | 60 - 50   | 2L2x2x3/16        | 13.43 | 6.16  | 119.8<br>K=1.00 | 1.4300          | -1.61  | 21.76      | 0.074 1                 |
| T18            | 20 - 10   | 2L2x2x3/16        | 16.29 | 7.62  | 141.5<br>K=0.96 | 1.4300          | -1.68  | 16.14      | 0.104 1                 |
| <b>T</b> 19    | 10 - 0    | 2L2 1/2x2 1/2x1/4 | 17.01 | 7.97  | 123.4<br>K=0.99 | 2.3800          | -18.77 | 34.58      | 0.543 1                 |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 71 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

 $<sup>^{1}</sup> P_{u} / \phi P_{n}$  controls

| Secondary Horizontal Design Data | (Compression) |
|----------------------------------|---------------|
|----------------------------------|---------------|

| Section<br>No. | Elevation | Size             | L     | $L_{u}$ | Kl/r            | A               | $P_u$ | $\phi P_n$ | Ratio<br>Pu |
|----------------|-----------|------------------|-------|---------|-----------------|-----------------|-------|------------|-------------|
|                | ft        |                  | ft    | ft      |                 | in <sup>2</sup> | K     | K          | $\phi P_n$  |
| TI             | 180 - 170 | L2x2x3/16        | 6.00  | 5.31    | 111.7<br>K=1.08 | 0.7150          | -0.78 | 12.02      | 0.065       |
| T7             | 140 - 130 | L2x2x1/4         | 8.03  | 7.53    | 137.5<br>K=0.93 | 0.9380          | -1.08 | 11.21      | 0.096       |
| Т8             | 130 - 120 | L2x2x1/4         | 8.75  | 7.86    | 141.4<br>K=0.91 | 0.9380          | -1.42 | 10.60      | 0.134       |
| Т9             | 120 - 110 | L2x2x3/16        | 9.47  | 8.57    | 148.7<br>K=0.89 | 0.7150          | -1.81 | 7.30       | 0.247       |
| T10            | 110 - 100 | L2x2x1/4         | 10.19 | 9.29    | 158.8<br>K=0.87 | 0.9380          | -2.20 | 8.40       | 0.262       |
| T12            | 90 - 80   | L2 1/2x2 1/2x1/4 | 11.62 | 10.56   | 147.5<br>K=0.90 | 1.1900          | -3.08 | 12.35      | 0.249       |
| T15            | 50 - 40   | L3 1/2x3 1/2x1/4 | 14.49 | 13.39   | 136.9<br>K=0.93 | 1.6900          | -4.82 | 20.39      | 0.237       |
| T16            | 40 - 30   | L3 1/2x3 1/2x1/4 | 15.21 | 14.15   | 142.0<br>K=0.91 | 1.6900          | -5.24 | 18.94      | 0.277       |
| T17            | 30 - 20   | L3 1/2x3 1/2x1/4 | 15.93 | 14.87   | 146.9<br>K=0.90 | 1.6900          | -5.70 | 17.70      | 0.322       |
| T18            | 20 - 10   | L3 1/2x3 1/2x1/4 | 16.65 | 15.58   | 151.7<br>K=0.88 | 1.6900          | -6.06 | 16.59      | 0.365       |

 $<sup>^{1}</sup>$   $P_{u}$  /  $\phi P_{n}$  controls

| Top | Girt | Design | Data | (Comp | ression) |  |
|-----|------|--------|------|-------|----------|--|

| Section<br>No. | Elevation            | Size              | L     | $L_{\scriptscriptstyle\sf u}$ | Kl/r            | A               | $P_u$ | φP <sub>n</sub> | Ratio<br>Pu |
|----------------|----------------------|-------------------|-------|-------------------------------|-----------------|-----------------|-------|-----------------|-------------|
|                | ft                   |                   | ft    | ft                            |                 | in <sup>2</sup> | K     | K               | $\phi P_n$  |
| T1             | 180 - 170            | L2x2x3/16         | 6.00  | 5.31                          | 145.7<br>K=0.90 | 0.7150          | -0.11 | 7.61            | 0.014       |
| T2             | 170 - 163.573        | L2x2x3/16         | 6.00  | 5.31                          | 145.7<br>K=0.90 | 0.7150          | -0.46 | 7.61            | 0.061       |
| Т3             | 163.573 -<br>159.049 | L2x2x3/16         | 6.00  | 5.19                          | 143.4<br>K=0.91 | 0.7150          | -0.46 | 7.86            | 0.059 1     |
| Т6             | 150 - 140            | L2 1/2x2 1/2x3/16 | 6.97  | 6.16                          | 138.1<br>K=0.92 | 0.9020          | -0.54 | 10.69           | 0.050 1     |
| T7             | 140 - 130            | L2 1/2x2 1/2x3/16 | 7.69  | 3.44                          | 101.7<br>K=1.22 | 0.9020          | -0.51 | 16.96           | 0.030 1     |
| T13            | 80 - 60              | L2 1/2x2 1/2x1/4  | 11.99 | 5.47                          | 130.4<br>K=0.98 | 1.1900          | -0.93 | 15.76           | 0.059 1     |
| T16            | 40 - 30              | 2L2x2x3/16        | 14.86 | 6.88                          | 130.5<br>K=0.98 | 1.4300          | -1.70 | 18.89           | 0.090       |

**AECOM** 

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 72 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section | Elevation | Size | L  | $L_u$ | Kl/r | A   | $P_u$ | φ <i>P</i> ,, | Ratio      |
|---------|-----------|------|----|-------|------|-----|-------|---------------|------------|
| No.     |           |      |    |       |      |     |       |               | $P_u$      |
|         | ft        |      | ft | ft    |      | in' | K     | K             | $\phi P_n$ |

 $<sup>^{1}</sup>P_{u}/\phi P_{n}$  controls

# Redundant Horizontal (1) Design Data (Compression)

| Section<br>No. | Elevation | Size              | L    | $L_{u}$ | Kl/r            | A      | $P_u$ | $\phi P_n$ | Ratio<br>P., |
|----------------|-----------|-------------------|------|---------|-----------------|--------|-------|------------|--------------|
|                | ft        |                   | ft   | ft      |                 | $in^2$ | K     | K          | φ <i>P</i> . |
| T19            | 10 - 0    | L2 1/2x2 1/2x3/16 | 4.25 | 3.92    | 107.5<br>K=1.13 | 0.9020 | -6.23 | 15.90      | 0.392 1      |

 $<sup>^{1}</sup> P_{u} / \phi P_{n}$  controls

## Redundant Diagonal (1) Design Data (Compression)

| Section<br>No. | Elevation | Size              | L    | $L_{\scriptscriptstyle\sf H}$ | Kl/r            | A      | $P_u$ | $\phi P_n$ | Ratio<br>P., |
|----------------|-----------|-------------------|------|-------------------------------|-----------------|--------|-------|------------|--------------|
|                | ft        |                   | ft   | ft                            |                 | $in^2$ | K     | K          | $\Phi P_n$   |
| T19            | 10 - 0    | L2 1/2x2 1/2x3/16 | 6.45 | 5.92                          | 143.6<br>K=1.00 | 0.9020 | -7.90 | 9.88       | 0.800 1      |

 $<sup>^{1}</sup> P_{u} / \phi P_{n}$  controls

## Redundant Hip (1) Design Data (Compression)

| Section<br>No. | Elevation | Size              | L    | $L_u$ | Kl/r            | A               | $P_u$ | $\phi P_n$ | Ratio                  |
|----------------|-----------|-------------------|------|-------|-----------------|-----------------|-------|------------|------------------------|
|                | ft        |                   | ft   | ft    |                 | in <sup>2</sup> | K     | <i>K</i>   | $\frac{P_u}{\phi P_n}$ |
| T19            | 10 - 0    | L2 1/2x2 1/2x3/16 | 6.01 | 6.01  | 145.8<br>K=1.00 | 0.9020          | -0.03 | 9.58       | 0.003 1                |

 $<sup>^{1}</sup>P_{u}/\phi P_{n}$  controls

## Redundant Sub-Horizontal Design Data (Compression)

| Section<br>No. | Elevation | Size      | L    | $L_u$ | Kl/r            | A               | $P_u$ | φ <i>P</i> " | Ratio<br>P.,    |
|----------------|-----------|-----------|------|-------|-----------------|-----------------|-------|--------------|-----------------|
|                | ft        |           | ft   | ft    |                 | in <sup>2</sup> | K     | K            | φP <sub>n</sub> |
| T19            | 10 - 0    | L3x3x5/16 | 8.86 | 8.86  | 180.6<br>K=1.00 | 1.7800          | -9.07 | 12.33        | 0.735           |

**AECOM** 

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 73 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

 $<sup>^{1}</sup>P_{u}/\phi P_{n}$  controls

| Section<br>No. | Elevation | Size          | L     | $L_u$ | Kl/r            | A               | $P_u$ | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|---------------|-------|-------|-----------------|-----------------|-------|------------|-------------------------|
|                | ft        |               | ft    | ft    |                 | in <sup>2</sup> | K     | K          | φP,                     |
| T7             | 140 - 130 | L2x2x3/16     | 5.44  | 5.44  | 165.6<br>K=1.00 | 0.7150          | -0.07 | 5.89       | 0.011 1                 |
| T9             | 120 - 110 | L2 1/2x2x3/16 | 6.45  | 6.45  | 181.3<br>K=1.00 | 0.8090          | -0.08 | 5.56       | 0.014                   |
| T11            | 100 - 90  | L2 1/2x2x3/16 | 7.47  | 7.47  | 209.8<br>K=1.00 | 0.8090          | -0.09 | 4.15       | 0.022 1                 |
| T13            | 80 - 60   | 2L2x2x3/16    | 8.48  | 8.48  | 164.9<br>K=1.00 | 1.4300          | -0.12 | 11.88      | 0.010 1                 |
| T14            | 60 - 50   | 2L2x2x3/16    | 9.49  | 9.49  | 184.6<br>K=1.00 | 1.4300          | -0.14 | 9.47       | 0.015 1                 |
| T16            | 40 - 30   | 2L2x2x3/16    | 10.51 | 10.51 | 204.4           | 1.4300          | -0.19 | 7.73       | 0.024                   |

11.52

12.03

11.52

12.03

2L2x2 1/2x3/16

2L2x2 1/2x3/16

Inner Bracing Design Data (Compression)

20 - 10

10 - 0

T18

T19

## **Tension Checks**

K=1.00

230.4

K=1.00

240.6

K=1.00

1.6200

1.6200

-0.03

-0.17

0.005 1

0.027

6.89

6.32

|                |                      | Leg Design Data (Tension) |       |       |      |                 |       |            |                         |  |  |  |  |
|----------------|----------------------|---------------------------|-------|-------|------|-----------------|-------|------------|-------------------------|--|--|--|--|
| Section<br>No. | Elevation            | Size                      | L     | $L_u$ | Kl/r | A               | Pu    | $\phi P_n$ | Ratio<br>P <sub>u</sub> |  |  |  |  |
|                | ft                   |                           | ft    | ft    |      | in <sup>2</sup> | K     | K          | $\phi P_n$              |  |  |  |  |
| TI             | 180 - 170            | L3 1/2x3 1/2x3/8          | 10.00 | 5.00  | 56.1 | 2.4800          | 1.82  | 80.35      | 0.023                   |  |  |  |  |
| T2             | 170 - 163.573        | L5x5x5/16                 | 6.43  | 6.43  | 49.1 | 3.0300          | 8.58  | 98.17      | 0.087                   |  |  |  |  |
| Т3             | 163.573 -<br>159.049 | L5x5x5/16                 | 4.53  | 4.53  | 34.6 | 3.0300          | 16.62 | 98.17      | 0.169 1                 |  |  |  |  |
| T4             | 159.049 -<br>154.524 | L5x5x5/16                 | 4.53  | 4.53  | 34.6 | 3.0300          | 24.90 | 98.17      | 0.254 1                 |  |  |  |  |
| T5             | 154.524 - 150        | L5x5x5/16                 | 4.53  | 4.53  | 34.6 | 3.0300          | 32.88 | 98.17      | 0.335 1                 |  |  |  |  |
| Т6             | 150 - 140            | L5x5x3/8                  | 10.01 | 5.01  | 38.5 | 3.6100          | 51.44 | 116.96     | 0.440 1                 |  |  |  |  |
| T7             | 140 - 130            | L6x6x1/2                  | 10.01 | 5.23  | 33.7 | 5.7500          | 65.63 | 186.30     | 0.352 1                 |  |  |  |  |
| Т8             | 130 - 120            | L6x6x1/2                  | 10.01 | 5.21  | 33.6 | 5.7500          | 85.48 | 186.30     | 0.459 1                 |  |  |  |  |

 $<sup>^{1}</sup> P_{u} / \phi P_{n}$  controls

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 74 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>No. | Elevation | Size                       | L     | $L_{\scriptscriptstyle M}$ | Kl/r | A               | $P_u$  | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|----------------------------|-------|----------------------------|------|-----------------|--------|------------|-------------------------|
|                | ft        |                            | ft    | ft                         |      | in <sup>2</sup> | K      | K          | $\phi P_n$              |
| Т9             | 120 - 110 | L6x6x3/4                   | 10.01 | 5.20                       | 34.1 | 8.4400          | 109.70 | 273.46     | 0.401                   |
| T10            | 110 - 100 | L6x6x3/4                   | 10.01 | 5.18                       | 34.0 | 8.4400          | 134.18 | 273.46     | 0.491 1                 |
| T11            | 100 - 90  | L8x8x3/4                   | 10.01 | 10.01                      | 48.6 | 11.4000         | 162.10 | 369.36     | 0.439 1                 |
| T12            | 90 - 80   | L8x8x3/4                   | 10.01 | 5.16                       | 25.1 | 11.4000         | 189.20 | 369.36     | 0.512 '                 |
| T13            | 80 - 60   | L8x8x1 w/ 1/2x7 Plates     | 20.03 | 10.01                      | 48.3 | 22.0000         | 245.24 | 712.80     | 0.344 1                 |
| T14            | 60 - 50   | L8x8x1-1/8 w/ 1/2x7 Plates | 10.01 | 10.01                      | 48.6 | 23.7340         | 270.42 | 768.98     | 0.352 1                 |
| T15            | 50 - 40   | L8x8x1-1/8 w/ 1/2x7 Plates | 10.01 | 5.13                       | 24.9 | 23.7340         | 296.31 | 768.98     | 0.385 1                 |
| T16            | 40 - 30   | L8x8x1 1/8                 | 10.01 | 5.12                       | 25.4 | 16.7000         | 320.18 | 541.08     | 0.592 1                 |
| T17            | 30 - 20   | L8x8x1 1/8                 | 10.01 | 5.12                       | 25.4 | 16.7000         | 348.47 | 541.08     | 0.644 1                 |
| T18            | 20 - 10   | L8x8x1 1/8                 | 10.01 | 5.11                       | 25.4 | 16.7000         | 372.70 | 541.08     | 0.689 1                 |
| T19            | 10 - 0    | L8x8x1 1/8                 | 10.01 | 5.01                       | 24.8 | 16.7000         | 379.88 | 541.08     | 0.702 1                 |

 $<sup>^{1}</sup> P_{u} / \phi P_{n}$  controls

| Diagonal | <b>Design Data</b> | (Tension) |
|----------|--------------------|-----------|
|          |                    |           |

| Section<br>No. | Elevation            | Size              | L     | $L_u$ | Kl/r  | A               | $P_u$ | фР"   | Ratio<br>P <sub>u</sub> |
|----------------|----------------------|-------------------|-------|-------|-------|-----------------|-------|-------|-------------------------|
|                | ft                   |                   | ft    | ft    |       | in <sup>2</sup> | K     | K     | $\phi P_n$              |
| T1             | 180 - 170            | L2 1/2x2 1/2x3/16 | 11.41 | 5.51  | 88.0  | 0.5710          | 2.84  | 24.84 | 0.114                   |
| T2             | 170 - 163.573        | L2 1/2x2 1/2x3/16 | 8.46  | 4.03  | 65.2  | 0.5710          | 3.53  | 24.84 | 0.142                   |
| Т3             | 163.573 -<br>159.049 | L2x2x3/16         | 7.25  | 3.52  | 72.4  | 0.4308          | 4.76  | 18.74 | 0.254                   |
| T4             | 159.049 -<br>154.524 | L2 1/2x2x3/16     | 7.51  | 3.65  | 77.0  | 0.5013          | 5.37  | 21.81 | 0.246                   |
| T5             | 154.524 - 150        | L2 1/2x2x3/16     | 7.77  | 3.78  | 79.6  | 0.5013          | 5.32  | 21.81 | 0.244                   |
| Т6             | 150 - 140            | L2 1/2x2x3/16     | 8.61  | 4.21  | 88.2  | 0.5013          | 5.78  | 21.81 | 0.265                   |
| <b>T</b> 7     | 140 - 130            | L3x2 1/2x1/4      | 12.53 | 6.35  | 104.5 | 0.8419          | 8.94  | 36.62 | 0.244                   |
| Т8             | 130 - 120            | L3x3x1/4          | 12.98 | 6.56  | 87.2  | 0.9394          | 10.80 | 40.86 | 0.264 1                 |
| T9             | 120 - 110            | L3x3x1/4          | 13.45 | 6.78  | 90.0  | 0.9394          | 11.75 | 40.86 | 0.287 1                 |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 75 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  | Empire Telegon / EMD 004 | Designed by       |
|         | Empire Telecom / EMP-004 | l MCD             |

| Section<br>No. | Elevation | Size                  | L     | $L_{u}$         | Kl/r  | A      | $P_u$                | фР"   | Ratio<br>P <sub>u</sub> |
|----------------|-----------|-----------------------|-------|-----------------|-------|--------|----------------------|-------|-------------------------|
|                | ft ft ft  | ft                    |       | in <sup>2</sup> | K     | K      | $\frac{1}{\Phi P_n}$ |       |                         |
| T10            | 110 - 100 | L3 1/2x3x1/4          | 13.94 | 7.02            | 94.8  | 1.0294 | 14.16                | 44.78 | 0.316                   |
| T11            | 100 - 90  | L3 1/2x3x1/4          | 14.44 | 7.26            | 98.1  | 1.0294 | 13.75                | 44.78 | 0.307 1                 |
| T12            | 90 - 80   | L3 1/2x3x1/4          | 14.97 | 7.52            | 101.4 | 1.0294 | 15.36                | 44.78 | 0.343 1                 |
| T13            | 80 - 60   | 2L2 1/2x2x3/16        | 16.07 | 8.06            | 125.4 | 1.0041 | 15.42                | 43.68 | 0.353 1                 |
| T14            | 60 - 50   | 2L2 1/2x2x3/16        | 16.63 | 8.33            | 129.6 | 1.0041 | 15.53                | 43.68 | 0.356                   |
| T15            | 50 - 40   | 2L2 1/2x2x3/8         | 17.21 | 8.62            | 137.8 | 1.8956 | 16.33                | 82.46 | 0.198 1                 |
| T16            | 40 - 30   | 2L2 1/2x2x3/8         | 17.80 | 8.91            | 142.3 | 1.8956 | 17.00                | 82.46 | 0.206                   |
| T17            | 30 - 20   | 2L2 1/2x2x3/8         | 18.40 | 9.21            | 147.0 | 1.8956 | 17.91                | 82.46 | 0.217 1                 |
| T18            | 20 - 10   | 2L2 1/2x2x3/8         | 19.00 | 9.51            | 151.6 | 1.8956 | 19.66                | 82.46 | 0.238                   |
| T19            | 10 - 0    | 2L2 1/2x2 1/2x1/4     | 13.37 | 12.47           | 147.0 | 1.5037 | 28.15                | 65.41 | 0.430 1                 |
|                |           | 4.8.1 (1.10 CR) - 386 |       |                 |       |        |                      |       |                         |

 $<sup>^{1}</sup> P_{u} / \phi P_{n}$  controls

|     | <b>Horizontal Des</b> | sign Data | (Tension) |
|-----|-----------------------|-----------|-----------|
| · · |                       |           |           |

| Section<br>No. | Elevation | Size              | L     | $L_{u}$ | Kl/r  | A               | $P_u$ | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|-------------------|-------|---------|-------|-----------------|-------|------------|-------------------------|
|                | ft        |                   | ft    | ft      |       | in <sup>2</sup> | K     | K          | $\phi P_n$              |
| Т9             | 120 - 110 | L2 1/2x2 1/2x1/4  | 9.12  | 4.11    | 67.3  | 0.7519          | 0.77  | 32.71      | 0.023 1                 |
| <b>T</b> 11    | 100 - 90  | L2 1/2x2 1/2x1/4  | 10.56 | 4.83    | 78.5  | 0.7519          | 1.50  | 32.71      | 0.046 1                 |
| T14            | 60 - 50   | 2L2x2x3/16        | 13.43 | 6.16    | 123.7 | 0.8616          | 3.89  | 37.48      | 0.104 1                 |
| T18            | 20 - 10   | 2L2x2x3/16        | 16.29 | 7.62    | 152.0 | 0.8616          | 7.93  | 37.48      | 0.212 1                 |
| T19            | 10 - 0    | 2L2 1/2x2 1/2x1/4 | 17.01 | 7.97    | 127.5 | 1.5037          | 21.07 | 65.41      | 0.322 1                 |

 $<sup>^{1}</sup> P_{u} / \phi P_{n}$  controls

| Section | Elevation | Size | L  | $L_u$ | Kl/r | A   | $P_u$ | $\phi P_n$ | Ratio |
|---------|-----------|------|----|-------|------|-----|-------|------------|-------|
| No.     |           |      |    |       |      | . 2 |       |            | $P_u$ |
|         | Jt        |      | ft | ft    |      | in* | K     | K          | ΦP.   |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 76 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>No. | Elevation | Size             | L     | $L_u$ | Kl/r  | A      | $P_u$ | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|------------------|-------|-------|-------|--------|-------|------------|-------------------------|
|                | ft        |                  | ft    | ft    |       | in²    | K     | K          | $\frac{-1}{\phi P_n}$   |
| Tl             | 180 - 170 | L2x2x3/16        | 6.00  | 5.31  | 111.0 | 0.4308 | 0.77  | 18.74      | 0.041 1                 |
| T7             | 140 - 130 | L2x2x1/4         | 8.03  | 7.53  | 148.4 | 0.9380 | 1.08  | 30.39      | 0.036                   |
| Т8             | 130 - 120 | L2x2x1/4         | 8.75  | 7.86  | 162.6 | 0.5629 | 1.42  | 24.49      | 0.058 1                 |
| Т9             | 120 - 110 | L2x2x3/16        | 9.47  | 8.57  | 174.4 | 0.4308 | 1.81  | 18.74      | 0.096 <sup>1</sup>      |
| T10            | 110 - 100 | L2x2x1/4         | 10.19 | 9.29  | 190.9 | 0.5629 | 2.20  | 24.49      | 0.090 1                 |
| T12            | 90 - 80   | L2 1/2x2 1/2x1/4 | 11.62 | 10.56 | 171.0 | 0.7519 | 3.08  | 32.71      | 0.094 1                 |
| T15            | 50 - 40   | L3 1/2x3 1/2x1/4 | 14.49 | 13.39 | 151.8 | 1.1269 | 4.82  | 49.02      | 0.098 1                 |
| T16            | 40 - 30   | L3 1/2x3 1/2x1/4 | 15.21 | 14.15 | 160.1 | 1.1269 | 5.24  | 49.02      | 0.107 1                 |
| T17            | 30 - 20   | L3 1/2x3 1/2x1/4 | 15.93 | 14.87 | 168.0 | 1.1269 | 5.70  | 49.02      | 0.116 1                 |
| T18            | 20 - 10   | L3 1/2x3 1/2x1/4 | 16.65 | 15.58 | 175.9 | 1.1269 | 6.06  | 49.02      | 0.124 1                 |

<sup>&</sup>lt;sup>1</sup>  $P_u$  /  $\phi P_n$  controls

| Top Girt Design Data (Tension) |
|--------------------------------|
|--------------------------------|

| Section | Elevation            | Size              | L     | Lu   | Kl/r  | A      | P <sub>u</sub> | $\phi P_n$ | Ratio      |
|---------|----------------------|-------------------|-------|------|-------|--------|----------------|------------|------------|
| No.     | Lievanon             | Bize              | L     | Lu   | XIII  | А      | J u            | $\Psi F_n$ | $P_{\mu}$  |
|         | ft                   |                   | ft    | ft   |       | in²    | K              | K          | $\phi P_n$ |
| T1      | 180 - 170            | L2x2x3/16         | 6.00  | 5.31 | 111.0 | 0.4308 | 0.25           | 18.74      | 0.013      |
| T2      | 170 - 163.573        | L2x2x3/16         | 6.00  | 5.31 | 111.0 | 0.4308 | 0.83           | 18.74      | 0.044 1    |
| Т3      | 163.573 -<br>159.049 | L2x2x3/16         | 6.00  | 5.19 | 108.6 | 0.4308 | 0.54           | 18.74      | 0.029 1    |
| T6      | 150 - 140            | L2 1/2x2 1/2x3/16 | 6.97  | 6.16 | 101.1 | 0.5710 | 0.61           | 24.84      | 0.024 1    |
| T7      | 140 - 130            | L2 1/2x2 1/2x3/16 | 7.69  | 3.44 | 56.1  | 0.5710 | 0.45           | 24.84      | 0.018 1    |
| T13     | 80 - 60              | L2 1/2x2 1/2x1/4  | 11.99 | 5.47 | 88.4  | 0.7519 | 1.52           | 32.71      | 0.047 1    |
| T16     | 40 - 30              | 2L2x2x3/16        | 14.86 | 6.88 | 137.6 | 0.8616 | 5.19           | 37.48      | 0.138 1    |

 $<sup>^{1}</sup>$   $P_{u}$  /  $\phi P_{n}$  controls

# Redundant Horizontal (1) Design Data (Tension)

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 77 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>No. | Elevation | Size              | L    | $L_{u}$ | Kl/r | A               | $P_u$ | фР"   | Ratio<br>P., |
|----------------|-----------|-------------------|------|---------|------|-----------------|-------|-------|--------------|
|                | ft        |                   | ft   | ft      |      | in <sup>2</sup> | K     | K     | $\phi P_n$   |
| T19            | 10 - 0    | L2 1/2x2 1/2x3/16 | 4.25 | 3.92    | 60.5 | 0.9020          | 6.23  | 29.22 | 0.213        |

 $<sup>^{1}</sup>P_{u}/\phi P_{n}$  controls

|                | Redundant Diagonal (1) Design Data (Tension) |                   |      |      |      |                 |      |       |                    |  |
|----------------|----------------------------------------------|-------------------|------|------|------|-----------------|------|-------|--------------------|--|
| Section<br>No. | Elevation                                    | Size              | L    | Lu   | Kl/r | A               | Pu   | фР"   | Ratio<br>P         |  |
|                | ft                                           |                   | ft   | ft   |      | in <sup>2</sup> | K    | K     | $\frac{P_n}{\Phi}$ |  |
| T19            | 10 - 0                                       | L2 1/2x2 1/2x3/16 | 6.45 | 5.92 | 91.4 | 0.9020          | 7.47 | 29.22 | 0.256 1            |  |

 $<sup>^{1}</sup>P_{\mu}/\phi P_{n}$  controls

| Redundant Sub-Horizontal Design Data (Tension) |           |           |      |       |       |        |       |       |                 |
|------------------------------------------------|-----------|-----------|------|-------|-------|--------|-------|-------|-----------------|
| Section<br>No.                                 | Elevation | Size      | L    | $L_u$ | Kl/r  | A      | $P_u$ | фР"   | Ratio<br>P.,    |
|                                                | ft        |           | ft   | ft    |       | $in^2$ | K     | K     | ΦP <sub>n</sub> |
| T19                                            | 10 - 0    | L3x3x5/16 | 8.86 | 8.86  | 115.4 | 1.7800 | 8.33  | 57.67 | 0.144           |

 $<sup>^{1}</sup>P_{u}/\phi P_{n}$  controls

|                | Inner Bracing Design Data (Tension) |                |       |         |       |        |      |                 |                         |  |  |  |
|----------------|-------------------------------------|----------------|-------|---------|-------|--------|------|-----------------|-------------------------|--|--|--|
| Section<br>No. | Elevation                           | Size           | L     | $L_{u}$ | Kl/r  | A      | Pu   | φP <sub>n</sub> | Ratio<br>P <sub>u</sub> |  |  |  |
|                | ft                                  |                | ft    | ft      |       | in²    | K    | K               | $\phi P_n$              |  |  |  |
| T7             | 140 - 130                           | L2x2x3/16      | 5.44  | 5.44    | 105.8 | 0.7150 | 0.07 | 23.17           | 0.003 1                 |  |  |  |
| Т9             | 120 - 110                           | L2 1/2x2x3/16  | 6.45  | 6.45    | 129.1 | 0.8090 | 0.08 | 26.21           | 0.003 1                 |  |  |  |
| T11            | 100 - 90                            | L2 1/2x2x3/16  | 7.47  | 7.47    | 149.4 | 0.8090 | 0.09 | 26.21           | 0.004 1                 |  |  |  |
| T13            | 80 - 60                             | 2L2x2x3/16     | 8.48  | 8.48    | 164.9 | 1.4300 | 0.12 | 46.33           | 0.003 1                 |  |  |  |
| T14            | 60 - 50                             | 2L2x2x3/16     | 9.49  | 9.49    | 184.6 | 1.4300 | 0.14 | 46.33           | 0.003 1                 |  |  |  |
| T16            | 40 - 30                             | 2L2x2x3/16     | 10.51 | 10.51   | 204.4 | 1.4300 | 0.19 | 46.33           | 0.004 1                 |  |  |  |
| T18            | 20 - 10                             | 2L2x2 1/2x3/16 | 11.52 | 11.52   | 230.4 | 1.6200 | 0.05 | 52.49           | 0.001 1                 |  |  |  |

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 78 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>No. | Elevation | Size           | L     | $L_u$ | Kl/r  | A            | $P_u$ | фР"   | Ratio<br>P.,       |
|----------------|-----------|----------------|-------|-------|-------|--------------|-------|-------|--------------------|
|                | ft        |                | ft    | ft    |       | $in^2$       | K     | K     | $\frac{P_n}{\Phi}$ |
|                |           |                |       |       |       |              |       |       | 1                  |
| T19            | 10 - 0    | 2L2x2 1/2x3/16 | 12.03 | 12.03 | 240.6 | 240.6 1.6200 | 0.17  | 52.49 | 0.003              |
|                |           |                |       |       |       |              |       |       | -                  |

 $<sup>^{1}</sup>$   $P_{u}$  /  $\phi P_{n}$  controls

# **Section Capacity Table**

| Section    | Elevation            | Component | Size             | Critical   | P       | øP <sub>allow</sub> | %        | Pass |
|------------|----------------------|-----------|------------------|------------|---------|---------------------|----------|------|
| No.        | ft                   | Туре      |                  | Element    | K       | K                   | Capacity | Fail |
| Ti         | 180 - 170            | Leg       | L3 1/2x3 1/2x3/8 | 1          | -2.94   | 53.78               | 5.5      | Pass |
|            |                      | Leg       | L3 1/2x3 1/2x3/8 | 2          | -2.81   | 53.78               | 5.2      | Pass |
|            |                      | Leg       | L3 1/2x3 1/2x3/8 | 3          | -2.59   | 53.78               | 4.8      | Pass |
|            |                      | Leg       | L3 1/2x3 1/2x3/8 | 4          | -2.61   | 53.78               | 4.9      | Pass |
| T2         | 170 - 163.573        | Leg       | L5x5x5/16        | 21         | -9.71   | 69.83               | 13.9     | Pass |
|            |                      | Leg       | L5x5x5/16        | 22         | -9.99   | 69.83               | 14.3     | Pass |
|            |                      | Leg       | L5x5x5/16        | 23         | -9.80   | 69.83               | 14.0     | Pass |
| 92400      |                      | Leg       | L5x5x5/16        | 24         | -10.29  | 69.83               | 14.7     | Pass |
| T3         | 163.573 -<br>159.049 | Leg       | L5x5x5/16        | 37         | -18.38  | 81.46               | 22.6     | Pass |
|            |                      | Leg       | L5x5x5/16        | 38         | -19.75  | 81.46               | 24.2     | Pass |
|            |                      | Leg       | L5x5x5/16        | 39         | -20.20  | 81.46               | 24.8     | Pass |
|            |                      | Leg       | L5x5x5/16        | 40         | -20.15  | 81.46               | 24.7     | Pass |
|            | 159.049 -<br>154.524 | Leg       | L5x5x5/16        | 53         | -27.38  | 81.46               | 33.6     | Pass |
|            |                      | Leg       | L5x5x5/16        | 54         | -29.14  | 81.46               | 35.8     | Pass |
|            |                      | Leg       | L5x5x5/16        | 55         | -29.21  | 81.46               | 35.9     | Pass |
|            |                      | Leg       | L5x5x5/16        | 56         | -29.52  | 81.46               | 36.2     | Pass |
| T5         | 154.524 - 150        | Leg       | L5x5x5/16        | 65         | -35.15  | 81.46               | 43.2     | Pass |
|            |                      | Leg       | L5x5x5/16        | 66         | -37.23  | 81.46               | 45.7     | Pass |
|            |                      | Leg       | L5x5x5/16        | 67         | -36.91  | 81.46               | 45.3     | Pass |
|            |                      | Leg       | L5x5x5/16        | 68         | -37.54  | 81.46               | 46.1     | Pass |
| T6         | 150 - 140            | Leg       | L5x5x3/8         | <b>7</b> 7 | -53.89  | 96.35               | 55.9     | Pass |
|            |                      | Leg       | L5x5x3/8         | 78         | -56.63  | 96.35               | 58.8     | Pass |
|            |                      | Leg       | L5x5x3/8         | 79         | -55.59  | 96.35               | 57.7     | Pass |
| 25366/740  |                      | Leg       | L5x5x3/8         | 80         | -56.81  | 96.35               | 59.0     | Pass |
| <b>T</b> 7 | 140 - 130            | Leg       | L6x6x1/2         | 101        | -68.78  | 160.53              | 42.8     | Pass |
|            |                      | Leg       | L6x6x1/2         | 102        | -71.91  | 160.53              | 44.8     | Pass |
|            |                      | Leg       | L6x6x1/2         | 103        | -70.39  | 160.53              | 43.8     | Pass |
|            |                      | Leg       | L6x6x1/2         | 104        | -72.00  | 160.53              | 44.9     | Pass |
| T8         | 130 - 120            | Leg       | L6x6x1/2         | 126        | -90.15  | 160.69              | 56.1     | Pass |
|            |                      | Leg       | L6x6x1/2         | 127        | -93.05  | 160.69              | 57.9     | Pass |
|            |                      | Leg       | L6x6x1/2         | 128        | -91.68  | 160.69              | 57.1     | Pass |
|            | 100 110              | Leg       | L6x6x1/2         | 129        | -94.58  | 160.69              | 58.9     | Pass |
| T9         | 120 - 110            | Leg       | L6x6x3/4         | 142        | -115.72 | 235.48              | 49.1     | Pass |
|            |                      | Leg       | L6x6x3/4         | 143        | -118.81 | 235.48              | 50.5     | Pass |
|            |                      | Leg       | L6x6x3/4         | 144        | -117.01 | 235.48              | 49.7     | Pass |
| m          | 440 400              | Leg       | L6x6x3/4         | 145        | -120.28 | 235.48              | 51.1     | Pass |
| T10        | 110 - 100            | Leg       | L6x6x3/4         | 167        | -141.62 | 235.66              | 60.1     | Pass |
|            |                      | Leg       | L6x6x3/4         | 168        | -145.16 | 235.66              | 61.6     | Pass |
|            |                      | Leg       | L6x6x3/4         | 169        | -143.37 | 235.66              | 60.8     | Pass |
| m          | ***                  | Leg       | L6x6x3/4         | 170        | -146.57 | 235.66              | 62.2     | Pass |
| T11        | 100 - 90             | Leg       | L8x8x3/4         | 183        | -171.45 | 272.41              | 62.9     | Pass |
|            |                      | Leg       | L8x8x3/4         | 184        | -175.15 | 272.41              | 64.3     | Pass |
|            |                      | Leg       | L8x8x3/4         | 185        | -173.05 | 272.41              | 63.5     | Pass |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 79 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>No. | Elevation<br>ft | Component<br>Type | Size                                   | Critical<br>Element | P<br>K             | øP <sub>allow</sub><br>K | %<br>Capacity | Pass<br>Fail |
|----------------|-----------------|-------------------|----------------------------------------|---------------------|--------------------|--------------------------|---------------|--------------|
| IVO.           | ٠,٠             |                   | TO D 2/4                               |                     |                    |                          |               |              |
| T12            | 90 - 80         | Leg               | L8x8x3/4                               | 186<br>204          | -176.54            | 272.41                   | 64.8          | Pass         |
| 112            | 90 - 80         | Leg<br>Leg        | L8x8x3/4<br>L8x8x3/4                   | 204                 | -199.91            | 340.66                   | 58.7          | Pass         |
|                |                 |                   | L8x8x3/4                               | 206                 | -203.74<br>-201.38 | 340.66<br>340.66         | 59.8<br>59.1  | Pass         |
|                |                 | Leg<br>Leg        | L8x8x3/4                               | 207                 | -201.38            | 340.66                   | 60.2          | Pass<br>Pass |
| T13            | 80 - 60         | Leg               | L8x8x1 w/ 1/2x7 Plates                 | 220                 | -203.17            | 630.40                   | 41.2          | Pass         |
| 113            | 00 - 00         | Leg               | L8x8x1 w/ 1/2x7 Plates                 | 221                 | -263.75            | 630.40                   | 41.8          | Pass         |
|                |                 | Leg               | L8x8x1 w/ 1/2x7 Plates                 | 222                 | -261.01            | 630.40                   | 41.4          | Pass         |
|                |                 | Leg               | L8x8x1 w/ 1/2x7 Plates                 | 223                 | -265.36            | 630.40                   | 42.1          | Pass         |
| T14            | 60 - 50         | Leg               | L8x8x1-1/8 w/ 1/2x7 Plates             | 249                 | -288.13            | 679.24                   | 42.4          | Pass         |
|                | 00 50           | Leg               | L8x8x1-1/8 w/ 1/2x7 Plates             | 250                 | -292.21            | 679.24                   | 43.0          | Pass         |
|                |                 | Leg               | L8x8x1-1/8 w/ 1/2x7 Plates             | 251                 | -289.26            | 679.24                   | 42.6          | Pass         |
|                |                 | Leg               | L8x8x1-1/8 w/ 1/2x7 Plates             | 252                 | -293.77            | 679.24                   | 43.3          | Pass         |
| T15            | 50 - 40         | Leg               | L8x8x1-1/8 w/ 1/2x7 Plates             | 270                 | -315.55            | 744.33                   | 42.4          | Pass         |
| ***            | 50 10           | Leg               | L8x8x1-1/8 w/ 1/2x7 Plates             | 271                 | -319.72            | 744.33                   | 43.0          | Pass         |
|                |                 | Leg               | L8x8x1-1/8 w/ 1/2x7 Plates             | 272                 | -316.58            | 744.33                   | 42.5          | Pass         |
|                |                 | Leg               | L8x8x1-1/8 w/ 1/2x7 Plates             | 273                 | -310.38            | 744.33                   | 43.2          | Pass         |
| T16            | 40 - 30         | Leg               | L8x8x1 1/8                             | 286                 | -343.51            | 498.58                   | 68.9          | Pass         |
| 110            | 40 - 30         | Leg               | L8x8x1 1/8                             | 287                 | -343.31<br>-347.76 | 498.58                   | 69.7          | Pass         |
|                |                 | Leg               | L8x8x1 1/8                             | 288                 | -344.44            | 498.58                   | 69.1          |              |
|                |                 | Leg               | L8x8x1 1/8                             | 289                 | -349.24            | 498.58                   | 70.0          | Pass<br>Pass |
| T17            | 30 - 20         | Leg               | L8x8x1 1/8                             | 311                 | -373.79            | 498.67                   | 75.0          |              |
| 117            | 30 - 20         | Leg               | L8x8x1 1/8                             | 312                 | -378.14            | 498.67                   | 75.8          | Pass         |
|                |                 | Leg               | L8x8x1 1/8                             | 312                 | -374.64            |                          | 75.8<br>75.1  | Pass         |
|                |                 | Leg               | L8x8x1 1/8                             | 314                 | -374.64            | 498.67<br>498.67         | 76.1          | Pass<br>Pass |
| T18            | 20 - 10         | Leg               | L8x8x1 1/8                             | 327                 | -379.09<br>-397.95 | 498.07                   | 76.1<br>79.8  |              |
| 110            | 20 - 10         | Leg               | L8x8x1 1/8                             | 327                 | -397.93<br>-402.31 | 498.74                   | 80.7          | Pass         |
|                |                 |                   | L8x8x1 1/8                             | 329                 | -402.31            |                          |               | Pass         |
|                |                 | Leg<br>Leg        | L8x8x1 1/8                             | 330                 | -403.85            | 498.74<br>498.74         | 79.9          | Pass         |
| T19            | 10 - 0          | -                 | L8x8x1 1/8                             | 352                 | -403.83<br>-409.61 |                          | 81.0          | Pass         |
| 119            | 10 - 0          | Leg<br>Leg        | L8x8x1 1/8                             | 353                 | -409.61<br>-413.97 | 500.44                   | 81.9          | Pass         |
|                |                 | Leg               | L8x8x1 1/8                             | 354                 | -413.97<br>-410.32 | 500.44                   | 82.7<br>82.0  | Pass         |
|                |                 | Leg               | L8x8x1 1/8                             | 355                 | -410.32<br>-415.36 | 500.44                   |               | Pass         |
| T1             | 180 - 170       | Diagonal          | L2 1/2x2 1/2x3/16                      | 9                   | -413.36            | 500.44<br>11.95          | 83.0<br>23.5  | Pass         |
| 11             | 160 - 170       | Diagonal          | L2 1/2x2 1/2x3/16                      | 10                  |                    |                          |               | Pass         |
|                |                 | Diagonal          | L2 1/2x2 1/2x3/16<br>L2 1/2x2 1/2x3/16 | 11                  | -2.84<br>-3.00     | 11.95                    | 23.8<br>25.2  | Pass         |
|                |                 | Diagonal          | L2 1/2x2 1/2x3/16                      | 12                  | -2.98              | 11.95                    | 24.9          | Pass         |
|                |                 | Diagonal          | L2 1/2x2 1/2x3/16                      | 13                  | -2.96<br>-2.90     | 11.95                    |               | Pass         |
|                |                 | Diagonal          |                                        | 14                  |                    | 11.95                    | 24.3          | Pass         |
|                |                 | Diagonal          | L2 1/2x2 1/2x3/16                      | 15                  | -2.93              | 11.95                    | 24.5          | Pass         |
|                |                 | Diagonal          | L2 1/2x2 1/2x3/16<br>L2 1/2x2 1/2x3/16 |                     | -2.76              | 11.95                    | 23.1          | Pass         |
| T2             | 170 - 163.573   | Diagonal          | L2 1/2x2 1/2x3/16                      | 16<br>29            | -2.74              | 11.95                    | 22.9          | Pass         |
| I.L            | 170 - 105.575   | Diagonal          | LZ 1/2XZ 1/2X3/10                      | 29                  | -3.45              | 16.66                    | 20.7          | Pass         |
|                |                 | Diagonal          | L2 1/2x2 1/2x3/16                      | 30                  | 2 61               | 16.66                    | 23.0 (b)      | Dana         |
|                |                 | Diagonai          | L.2 1/2X2 1/2X3/10                     | 30                  | -3.61              | 16.66                    | 21.7          | Pass         |
|                |                 | Diagonal          | L2 1/2x2 1/2x3/16                      | 31                  | -3.55              | 16.66                    | 24.1 (b)      | D            |
|                |                 | Diagonal          | LZ 1/ZXZ 1/ZX3/10                      | 31                  | -3.33              | 10.00                    | 21.3          | Pass         |
|                |                 | Diagonal          | L2 1/2x2 1/2x3/16                      | 22                  | 2.42               | 16.66                    | 23.4 (b)      | D            |
|                |                 | Diagonai          | L2 1/2X2 1/2X3/10                      | 32                  | -3.43              | 16.66                    | 20.6          | Pass         |
|                |                 | Diagonal          | I 2 1/2+2 1/2+2/16                     | 22                  | 2 71               | 16.66                    | 22.7 (b)      | D            |
|                |                 | Diagonai          | L2 1/2x2 1/2x3/16                      | 33                  | -3.71              | 16.66                    | 22.2          | Pass         |
|                |                 | Diagonal          | T 2 1/22 1/22/16                       | 2.4                 | 2.60               | 1000                     | 24.3 (b)      |              |
|                |                 | Diagonal          | L2 1/2x2 1/2x3/16                      | 34                  | -3.68              | 16.66                    | 22.1          | Pass         |
|                |                 | Di1               | 12 1/2-2 1/2-2/16                      | 25                  | 2.71               | 1000                     | 24.2 (b)      | -            |
|                |                 | Diagonal          | L2 1/2x2 1/2x3/16                      | 35                  | -3.71              | 16.66                    | 22.2          | Pass         |
|                |                 | D: 1              | 1010.010.00                            | 41                  | 2.55               |                          | 24.5 (b)      |              |
|                |                 | Diagonal          | L2 1/2x2 1/2x3/16                      | 36                  | -3.72              | 16.66                    | 22.3          | Pass         |
| Tra            | 162 672         | D: 1              | 10-0-044                               | 4-                  |                    | 10.10                    | 24.6 (b)      | _            |
| T3             | 163.573 -       | Diagonal          | L2x2x3/16                              | 45                  | -4.11              | 12.19                    | 33.7          | Pass         |
|                | 159.049         | Dir. 1            | 10.0.044                               | 4-                  | 4.00               | 10.10                    |               | _            |
|                |                 | Diagonal          | L2x2x3/16                              | 46                  | -4.09              | 12.19                    | 33.6          | Pass         |
|                |                 | Diagonal          | L2x2x3/16                              | 47                  | -4.65              | 12.19                    | 38.2          | Pass         |
|                |                 |                   |                                        |                     |                    |                          |               |              |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 80 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section    | Elevation     | Component            | Size                           | Critical<br>Element | P<br>K           | øP <sub>allow</sub> | %                | Pass         |
|------------|---------------|----------------------|--------------------------------|---------------------|------------------|---------------------|------------------|--------------|
| No.        | ft            | Туре                 |                                |                     |                  | K                   | Capacity         | Fail         |
|            |               | Diagonal             | L2x2x3/16                      | 48                  | -4.59            | 12.19               | 37.6             | Pass         |
|            |               | Diagonal             | L2x2x3/16                      | 49                  | -4.87            | 12.19               | 39.9             | Pass         |
|            |               | Diagonal<br>Diagonal | L2x2x3/16<br>L2x2x3/16         | 50<br>51            | -4.91<br>-4.33   | 12.19<br>12.19      | 40.3<br>35.5     | Pass         |
|            |               | Diagonal             | L2x2x3/16                      | 52                  | -4.36            | 12.19               | 35.8             | Pass<br>Pass |
| T4         | 159.049 -     | Diagonal             | L2 1/2x2x3/16                  | 57                  | -4.48            | 14.36               | 31.2             | Pass         |
|            | 154.524       | Diagonal             | 25 1/2/2/2/10                  | 5,                  | 1.10             | 14.50               | 31.2 (b)         | 1 433        |
|            | 15 11521      | Diagonal             | L2 1/2x2x3/16                  | 58                  | -4.45            | 14.36               | 31.0             | Pass         |
|            |               | •                    |                                |                     |                  |                     | 31.4 (b)         |              |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 59                  | -5.03            | 14.36               | 35.0             | Pass         |
|            |               |                      |                                |                     |                  |                     | 35.2 (b)         |              |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 60                  | -5.00            | 14.36               | 34.8             | Pass         |
|            |               | 70.                  | 701000116                      |                     |                  |                     | 35.6 (b)         | _            |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 61                  | -5.26            | 14.36               | 36.6             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 62                  | -5.27            | 1426                | 37.3 (b)         | D            |
|            |               | Diagonai             | LZ 1/2X2X3/10                  | 02                  | -3.27            | 14.36               | 36.7<br>37.0 (b) | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 63                  | -4.66            | 14.36               | 32.5             | Pass         |
|            |               | Diagonai             | EE I/EXEXS/10                  | 05                  | -4.00            | 14.50               | 33.0 (b)         | 1 633        |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 64                  | -4.71            | 14.36               | 32.8             | Pass         |
| T5         | 154.524 - 150 | Diagonal             | L2 1/2x2x3/16                  | 69                  | -4.69            | 13.92               | 33.7             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 70                  | -4.68            | 13.92               | 33.6             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 71                  | -5.25            | 13.92               | 37.7             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 72                  | -5.20            | 13.92               | 37.3             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 73                  | -5.41            | 13.92               | 38.9             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 74                  | -5.46            | 13.92               | 39.2             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 75                  | -4.86            | 13.92               | 34.9             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 76                  | -4.88            | 13.92               | 35.1             | Pass         |
| T6         | 150 - 140     | Diagonal             | L2 1/2x2x3/16                  | 85                  | -5.31            | 12.47               | 42.6             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 86                  | -5.29            | 12.47               | 42.4             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 87                  | -5.80<br>5.76    | 12.47               | 46.5             | Pass         |
|            |               | Diagonal<br>Diagonal | L2 1/2x2x3/16<br>L2 1/2x2x3/16 | 88<br>89            | -5.76<br>-5.80   | 12.47<br>12.47      | 46.2<br>46.5     | Pass<br>Pass |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 90                  | -5.83            | 12.47               | 46.7             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 91                  | -5.30            | 12.47               | 42.5             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 92                  | -5.32            | 12.47               | 42.7             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 93                  | -4.96            | 12.95               | 38.3             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 94                  | -4.93            | 12.95               | 38.1             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 95                  | -5.50            | 12.95               | 42.5             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 96                  | -5.45            | 12.95               | 42.1             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 97                  | -5.59            | 12.95               | 43.2             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 98                  | -5.62            | 12.95               | 43.4             | Pass         |
|            |               | Diagonal             | L2 1/2x2x3/16                  | 99                  | -5.03            | 12.95               | 38.9             | Pass         |
| and .      | 140 120       | Diagonal             | L2 1/2x2x3/16                  | 100                 | -5.08            | 12.95               | 39.2             | Pass         |
| <b>T</b> 7 | 140 - 130     | Diagonal             | L3x2 1/2x1/4                   | 114                 | -8.46            | 15.42               | 54.9             | Pass         |
|            |               | Diagonal             | L3x2 1/2x1/4                   | 115                 | -8.45            | 15.42               | 54.8             | Pass         |
|            |               | Diagonal<br>Diagonal | L3x2 1/2x1/4<br>L3x2 1/2x1/4   | 116<br>117          | -9.13<br>-9.06   | 15.42               | 59.2             | Pass         |
|            |               | Diagonal             | L3x2 1/2x1/4<br>L3x2 1/2x1/4   | 117                 | -9.00<br>-9.00   | 15.42<br>15.42      | 58.7<br>58.4     | Pass<br>Pass |
|            |               | Diagonal             | L3x2 1/2x1/4<br>L3x2 1/2x1/4   | 119                 | -9.06            | 15.42               | 58.8             | Pass         |
|            |               | Diagonal             | L3x2 1/2x1/4                   | 120                 | -8.35            | 15.42               | 54.2             | Pass         |
|            |               | Diagonal             | L3x2 1/2x1/4                   | 121                 | -8.38            | 15.42               | 54.3             | Pass         |
| T8         | 130 - 120     | Diagonal             | L3x3x1/4                       | 130                 | -10.05           | 19.20               | 52.4             | Pass         |
|            |               | Diagonal             | L3x3x1/4                       | 131                 | -10.07           | 19.20               | 52.5             | Pass         |
|            |               | Diagonal             | L3x3x1/4                       | 132                 | -10.63           | 19.20               | 55.4             | Pass         |
|            |               | Diagonal             | L3x3x1/4                       | 133                 | -10.53           | 19.20               | 54.9             | Pass         |
|            |               | Diagonal             | L3x3x1/4                       | 134                 | -10.98           | 19.20               | 57.2             | Pass         |
|            |               | Diagonal             | L3x3x1/4                       | 135                 | -11.03           | 19.20               | 57.4             | Pass         |
|            |               | Diagonal             | L3x3x1/4                       | 136                 | -10.44           | 19.20               | 54.4             | Pass         |
|            |               | _                    |                                |                     |                  |                     |                  |              |
| Т9         | 120 - 110     | Diagonal<br>Diagonal | L3x3x1/4<br>L3x3x1/4           | 137<br>155          | -10.47<br>-10.82 | 19.20<br>18.30      | 54.5<br>59.1     | Pass         |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 81 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>No. | Elevation<br>ft | Component<br>Type    | Size                             | Critical<br>Element | P<br>K           | øP <sub>allow</sub><br>K | %<br>Capacity | Pass<br>Fail |
|----------------|-----------------|----------------------|----------------------------------|---------------------|------------------|--------------------------|---------------|--------------|
| 110.           |                 | Diagonal             | L3x3x1/4                         | 156                 | -10.86           | 18.30                    | 59.3          | Pass         |
|                |                 | Diagonal             | L3x3x1/4                         | 157                 | -11.21           | 18.30                    | 61.3          | Pass         |
|                |                 | Diagonal             | L3x3x1/4                         | 158                 | -11.10           | 18.30                    | 60.7          | Pass         |
|                |                 | Diagonal             | L3x3x1/4                         | 159                 | -11.84           | 18.30                    | 64.7          | Pass         |
|                |                 | Diagonal             | L3x3x1/4                         | 160                 | -11.87           | 18.30                    | 64.9          | Pass         |
|                |                 | Diagonal             | L3x3x1/4                         | 161                 | -11.50           | 18.30                    | 62.9          | Pass         |
|                |                 | Diagonal             | L3x3x1/4                         | 162                 | -11.54           | 18.30                    | 63.0          | Pass         |
| T10            | 110 - 100       | Diagonal             | L3 1/2x3x1/4                     | 171                 | -13.28           | 20.69                    | 64.2          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 172                 | -13.29           | 20.69                    | 64.2          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 173                 | -13.75           | 20.69                    | 66.5          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 174                 | -13.66           | 20.69                    | 66.0          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 175                 | -14.38           | 20.69                    | 69.5          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 176                 | -14.41           | 20.69                    | 69.6          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 177                 | -13.92           | 20.69                    | 67.3          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 178                 | -13.97           | 20.69                    | 67.5          | Pass         |
| T11            | 100 - 90        | Diagonal             | L3 1/2x3x1/4                     | 196                 | -12.75           | 19.68                    | 64.8          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 1 <b>9</b> 7        | -12.76           | 19.68                    | 64.9          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 198                 | -13.17           | 19.68                    | 67.0          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 199                 | -13.08           | 19.68                    | 66.5          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 200                 | -13.81           | 19.68                    | 70.2          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 201                 | -13.84           | 19.68                    | 70.3          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 202                 | -13.45           | 19.68                    | 68.4          | Pass         |
| mia            | 00 00           | Diagonal             | L3 1/2x3x1/4                     | 203                 | -13.50           | 19.68                    | 68.6          | Pass         |
| T12            | 90 - 80         | Diagonal             | L3 1/2x3x1/4                     | 208                 | -14.62           | 18.63                    | 78.5          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 209                 | -14.64           | 18.63                    | 78.6          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 210                 | -14.82           | 18.63                    | 79.5          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 211                 | -14.74           | 18.63                    | 79.1          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 212                 | -15.67           | 18.63                    | 84.1          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 213                 | -15.69           | 18.63                    | 84.2          | Pass         |
|                |                 | Diagonal             | L3 1/2x3x1/4                     | 214                 | -15.43           | 18.63                    | 82.8          | Pass         |
| T13            | 80 - 60         | Diagonal             | L3 1/2x3x1/4                     | 215                 | -15.48           | 18.63                    | 83.1          | Pass         |
| 113            | 80 - 00         | Diagonal<br>Diagonal | 2L2 1/2x2x3/16                   | 233<br>234          | -14.94           | 23.87                    | 62.6          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16<br>2L2 1/2x2x3/16 | 234                 | -14.95           | 23.87                    | 62.6          | Pass         |
|                |                 | Diagonal             |                                  |                     | -14.77           | 23.87                    | 61.9          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16<br>2L2 1/2x2x3/16 | 236<br>237          | -14.71<br>-15.88 | 23.87                    | 61.6          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16<br>2L2 1/2x2x3/16 | 238                 | -15.87           | 23.87<br>23.87           | 66.5<br>66.5  | Pass<br>Pass |
|                |                 | Diagonal             | 2L2 1/2x2x3/16<br>2L2 1/2x2x3/16 | 239                 | -15.78           | 23.87                    | 66.1          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16<br>2L2 1/2x2x3/16 | 240                 | -15.84           | 23.87                    | 66.4          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16                   | 241                 | -13.91           | 25.15                    | 55.3          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16                   | 242                 | -13.92           | 25.15                    | 55.4          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16                   | 243                 | -14.04           | 25.15                    | 55.8          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16                   | 244                 | -13.96           | 25.15                    | 55.5          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16                   | 245                 | -14.93           | 25.15                    | 59.4          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16                   | 246                 | -14.94           | 25.15                    | 59.4          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16                   | 247                 | -14.87           | 25.15                    | 59.1          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16                   | 248                 | -14.92           | 25.15                    | 59.3          | Pass         |
| T14            | 60 - 50         | Diagonal             | 2L2 1/2x2x3/16                   | 262                 | -14.59           | 22.57                    | 64.6          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16                   | 263                 | -14.62           | 22.57                    | 64.7          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16                   | 264                 | -14.46           | 22.57                    | 64.0          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16                   | 265                 | -14.38           | 22.57                    | 63.7          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16                   | 266                 | -15.43           | 22.57                    | 68.4          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16                   | 267                 | -15.44           | 22.57                    | 68.4          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16                   | 268                 | -15.58           | 22.57                    | 69.0          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/16                   | 269                 | -15.62           | 22.57                    | 69.2          | Pass         |
| T15            | 50 - 40         | Diagonal             | 2L2 1/2x2x3/8                    | 274                 | -16.56           | 40.44                    | 41.0          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/8                    | 275                 | -16.59           | 40.44                    | 41.0          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/8                    | 276                 | -16.14           | 40.44                    | 39.9          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/8                    | 277                 | -16.07           | 40.44                    | 39.7          | Pass         |
|                |                 | Diagonal             | 2L2 1/2x2x3/8                    | 278                 | =17.32           | 40.44                    | 42.8          | Pass         |
|                |                 | Diagonal             |                                  | 279                 | -17.33           | 40.44                    | 42.9          | Pass         |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 82 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section   | Elevation | Component                | Size                                 | Critical   | P<br>K           | øP <sub>allow</sub> | %<br>C====it:    | Pass         |
|-----------|-----------|--------------------------|--------------------------------------|------------|------------------|---------------------|------------------|--------------|
| <i>No</i> | ft        | Туре                     |                                      | Element    |                  | K                   | Capacity         | Fail         |
|           |           | Diagonal                 | 2L2 1/2x2x3/8                        | 280        | -17.47           | 40.44               | 43.2             | Pass         |
| T16       | 40 - 30   | Diagonal                 | 2L2 1/2x2x3/8                        | 281<br>299 | -17.51           | 40.44               | 43.3             | Pass         |
| 110       | 40 - 30   | Diagonal<br>Diagonal     | 2L2 1/2x2x3/8<br>2L2 1/2x2x3/8       | 300        | -16.24<br>-16.77 | 38.48<br>38.48      | 42.2<br>43.6     | Pass<br>Pass |
|           |           | Diagonal                 | 2L2 1/2x2x3/8                        | 301        | -16.04           | 38.48               | 41.7             | Pass         |
|           |           | Diagonal                 | 2L2 1/2x2x3/8                        | 302        | -15.70           | 38.48               | 40.8             | Pass         |
|           |           | Diagonal                 | 2L2 1/2x2x3/8                        | 303        | -17.25           | 38.48               | 44.8             | Pass         |
|           |           | Diagonal                 | 2L2 1/2x2x3/8                        | 304        | -16.94           | 38.48               | 44.0             | Pass         |
|           |           | Diagonal                 | 2L2 1/2x2x3/8                        | 305        | -17.27           | 38.48               | 44.9             | Pass         |
| m1 =      | 20. 20    | Diagonal                 | 2L2 1/2x2x3/8                        | 306        | -17.38           | 38.48               | 45.2             | Pass         |
| T17       | 30 - 20   | Diagonal                 | 2L2 1/2x2x3/8                        | 315        | -17.50           | 36.54               | 47.9             | Pass         |
|           |           | Diagonal<br>Diagonal     | 2L2 1/2x2x3/8<br>2L2 1/2x2x3/8       | 316<br>317 | -17.52<br>-16.86 | 36.54<br>36.54      | 47.9<br>46.1     | Pass<br>Pass |
|           |           | Diagonal                 | 2L2 1/2x2x3/8                        | 318        | -16.81           | 36.54               | 46.0             | Pass         |
|           |           | Diagonal                 | 2L2 1/2x2x3/8                        | 319        | -18.07           | 36.54               | 49.4             | Pass         |
|           |           | Diagonal                 | 2L2 1/2x2x3/8                        | 320        | -18.06           | 36.54               | 49.4             | Pass         |
|           |           | Diagonal                 | 2L2 1/2x2x3/8                        | 321        | -18.48           | 36.54               | 50.6             | Pass         |
|           |           | Diagonal                 | 2L2 1/2x2x3/8                        | 322        | -18.52           | 36.54               | 50.7             | Pass         |
| T18       | 20 - 10   | Diagonal                 | 2L2 1/2x2x3/8                        | 340        | -20.85           | 34.72               | 60.1             | Pass         |
|           |           | Diagonal                 | 2L2 1/2x2x3/8                        | 341        | -21.95           | 34.72               | 63.2             | Pass         |
|           |           | Diagonal<br>Diagonal     | 2L2 1/2x2x3/8<br>2L2 1/2x2x3/8       | 342<br>343 | -20.56<br>-20.20 | 34.72<br>34.72      | 59.2<br>58.2     | Pass<br>Pass |
|           |           | Diagonal                 | 2L2 1/2x2x3/8                        | 344        | -20.20           | 34.72               | 64.2             | Pass         |
|           |           | Diagonal                 | 2L2 1/2x2x3/8                        | 345        | -21.35           | 34.72               | 61.5             | Pass         |
|           |           | Diagonal                 | 2L2 1/2x2x3/8                        | 346        | -22.03           | 34.72               | 63.4             | Pass         |
|           |           | Diagonal                 | 2L2 1/2x2x3/8                        | 347        | -22.20           | 34.72               | 64.0             | Pass         |
| T19       | 10 - 0    | Diagonal                 | 2L2 1/2x2 1/2x1/4                    | 357        | -27.01           | 26.47               | 102.0            | Fail 🗶       |
|           |           | Diagonal                 | 2L2 1/2x2 1/2x1/4                    | 360        | -28.47           | 26.47               | 107.5            | Fail 🔏       |
|           |           | Diagonal                 | 2L2 1/2x2 1/2x1/4                    | 365        | -27.03           | 26.47               | 102.1            | Fail 🗶       |
|           |           | Diagonal                 | 2L2 1/2x2 1/2x1/4                    | 368        | -26.61           | 26.47               | 100.5            | Fail 🗶       |
|           |           | Diagonal                 | 2L2 1/2x2 1/2x1/4                    | 374        | -28.79           | 26.47               | 108.8            | Fail 🗶       |
|           |           | Diagonal                 | 2L2 1/2x2 1/2x1/4                    | 377        | -27.59           | 26.47               | 104.2            | Fail 🗶       |
|           |           | Diagonal                 | 2L2 1/2x2 1/2x1/4                    | 383        | -29.02           | 26.47               | 109.6            | Fail 🗶       |
|           | 400 440   | Diagonal                 | 2L2 1/2x2 1/2x1/4                    | 386        | -29.19           | 26.47               | 110.3            | Fail 🗶       |
| T9        | 120 - 110 | Horizontal               | L2 1/2x2 1/2x1/4                     | 146        | -0.91            | 20.33               | 4.5              | Pass         |
|           |           | Horizontal<br>Horizontal | L2 1/2x2 1/2x1/4<br>L2 1/2x2 1/2x1/4 | 147<br>148 | -0.91<br>-0.90   | 20.33<br>20.33      | 4.5<br>4.4       | Pass         |
|           |           | Horizontal               | L2 1/2x2 1/2x1/4<br>L2 1/2x2 1/2x1/4 | 149        | -0.90            | 20.33               | 4.4              | Pass<br>Pass |
| T11       | 100 - 90  | Horizontal               | L2 1/2x2 1/2x1/4                     | 187        | -1.59            | 18.29               | 8.7              | Pass         |
|           |           | Horizontal               | L2 1/2x2 1/2x1/4                     | 188        | -1.59            | 18.29               | 8.7              | Pass         |
|           |           | Horizontal               | L2 1/2x2 1/2x1/4                     | 189        | -1.58            | 18.29               | 8.6              | Pass         |
| m         | 60 60     | Horizontal               | L2 1/2x2 1/2x1/4                     | 190        | -1.59            | 18.29               | 8.7              | Pass         |
| T14       | 60 - 50   | Horizontal               | 2L2x2x3/16                           | 253        | 3.88             | 37.48               | 10.3             | Pass         |
|           |           | Horizontal               | 2L2x2x3/16                           | 254        | -1.61            | 21.76               | 15.7 (b)         | Dage         |
|           |           | Horizontal               | ZLZXZXJ/10                           | 234        | -1.01            | 21.70               | 7.4<br>11.2 (b)  | Pass         |
|           |           | Horizontal               | 2L2x2x3/16                           | 255        | 3.89             | 37.48               | 10.4             | Pass         |
|           |           | ** ' . 1                 | 07.0 0.011.6                         |            |                  |                     | 15.8 (b)         | _            |
|           |           | Horizontal               | 2L2x2x3/16                           | 256        | 2.80             | 37.48               | 7.5<br>11.3 (b)  | Pass         |
| T18       | 20 - 10   | Horizontal               | 2L2x2x3/16                           | 331        | 7.93             | 37.48               | 21.2             | Pass         |
|           |           |                          |                                      |            |                  |                     | 32.1 (b)         |              |
|           |           | Horizontal               | 2L2x2x3/16                           | 332        | 6.08             | 37.48               | 16.2             | Pass         |
|           |           | II-it-1                  | 27.22/16                             | 222        | 7.03             | 27.40               | 24.6 (b)         |              |
|           |           | Horizontal               | 2L2x2x3/16                           | 333        | 7.93             | 37.48               | 21.2<br>32.1 (b) | Pass         |
|           |           | Horizontal               | 2L2x2x3/16                           | 334        | 6.14             | 37.48               | 32.1 (b)<br>16.4 | Pass         |
|           |           |                          |                                      |            |                  | 2.110               | 24.9 (b)         |              |
| T19       | 10 - 0    | Horizontal               | 2L2 1/2x2 1/2x1/4                    | 356        | -18.06           | 34.58               | 52.2             | Pass         |
|           |           |                          |                                      |            |                  |                     |                  |              |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 83 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section | Elevation<br>ft | Component<br>Type    | Size                                 | Critical<br>Element | P<br>K | øP <sub>allow</sub><br>K | %<br>Capacity | Pass<br>Fail |
|---------|-----------------|----------------------|--------------------------------------|---------------------|--------|--------------------------|---------------|--------------|
| No.     | J,              | rype                 |                                      | Diement             | n n    |                          |               | rull         |
|         |                 |                      |                                      |                     |        |                          | 54.4 (b)      |              |
|         |                 | Horizontal           | 2L2 1/2x2 1/2x1/4                    | 364                 | -17.36 | 34.58                    | 50.2          | Pass         |
|         |                 |                      |                                      |                     |        |                          | 51.1 (b)      |              |
|         |                 | Horizontal           | 2L2 1/2x2 1/2x1/4                    | 373                 | -18.22 | 34.58                    | 52.7          | Pass         |
|         |                 |                      |                                      |                     |        |                          | 54.9 (b)      |              |
|         |                 | Horizontal           | 2L2 1/2x2 1/2x1/4                    | 382                 | -18.77 | 34.58                    | 54.3          | Pass         |
|         |                 |                      |                                      |                     |        |                          | 55.0 (b)      |              |
| T1      | 180 - 170       | Secondary Horizontal | L2x2x3/16                            | 17                  | -0.62  | 12.02                    | 5.2           | Pass         |
|         |                 | Secondary Horizontal | L2x2x3/16                            | 18                  | -0.78  | 12.02                    | 6.5           | Pass         |
|         |                 | Secondary Horizontal | L2x2x3/16                            | 19                  | -0.64  | 12.02                    | 5.3           | Pass         |
|         |                 | Secondary Horizontal | L2x2x3/16                            | 20                  | -0.44  | 12.02                    | 3.7           | Pass         |
| T7      | 140 - 130       | Secondary Horizontal | L2x2x1/4                             | 122                 | -1.08  | 11.21                    | 9.6           | Pass         |
|         |                 | Secondary Horizontal | L2x2x1/4                             | 123                 | -1.08  | 11.21                    | 9.6           | Pass         |
|         |                 | Secondary Horizontal | L2x2x1/4                             | 124                 | -1.08  | 11.21                    | 9.6           | Pass         |
|         |                 | Secondary Horizontal | L2x2x1/4                             | 125                 | -1.08  | 11.21                    | 9.6           | Pass         |
| T8      | 130 - 120       | Secondary Horizontal | L2x2x1/4<br>L2x2x1/4                 | 138                 | -1.40  |                          |               |              |
| 10      | 130 - 120       |                      |                                      |                     |        | 10.60                    | 13.2          | Pass         |
|         |                 | Secondary Horizontal | L2x2x1/4                             | 139                 | -1.40  | 10.60                    | 13.2          | Pass         |
|         |                 | Secondary Horizontal | L2x2x1/4                             | 140                 | -1.42  | 10.60                    | 13.4          | Pass         |
| TO.     | 100 110         | Secondary Horizontal | L2x2x1/4                             | 141                 | -1.42  | 10.60                    | 13.4          | Pass         |
| T9      | 120 - 110       | Secondary Horizontal | L2x2x3/16                            | 163                 | -1.78  | 7.30                     | 24.4          | Pass         |
|         |                 | Secondary Horizontal | L2x2x3/16                            | 164                 | -1.78  | 7.30                     | 24.4          | Pass         |
|         |                 | Secondary Horizontal | L2x2x3/16                            | 165                 | -1.81  | 7.30                     | 24.7          | Pass         |
|         |                 | Secondary Horizontal | L2x2x3/16                            | 166                 | -1.81  | 7.30                     | 24.7          | Pass         |
| T10     | 110 - 100       | Secondary Horizontal | L2x2x1/4                             | 179                 | -2.18  | 8.40                     | 25.9          | Pass         |
|         |                 | Secondary Horizontal | L2x2x1/4                             | 180                 | -2.18  | 8.40                     | 25.9          | Pass         |
|         |                 | Secondary Horizontal | L2x2x1/4                             | 181                 | -2.20  | 8.40                     | 26.2          | Pass         |
|         |                 | Secondary Horizontal | L2x2x1/4                             | 182                 | -2.20  | 8.40                     | 26.2          | Pass         |
| T12     | 90 - 80         | Secondary Horizontal | L2 1/2x2 1/2x1/4                     | 216                 | -3.06  | 12.35                    | 24.8          | Pass         |
|         | 70 00           | Secondary Horizontal | L2 1/2x2 1/2x1/4                     | 217                 | -3.06  | 12.35                    | 24.8          | Pass         |
|         |                 | Secondary Horizontal | L2 1/2x2 1/2x1/4                     | 218                 | -3.08  | 12.35                    | 24.9          |              |
|         |                 | Secondary Horizontal |                                      | 219                 | -3.08  |                          |               | Pass         |
| T15     | 50 40           | •                    | L2 1/2x2 1/2x1/4                     |                     |        | 12.35                    | 24.9          | Pass         |
| 115     | 50 - 40         | Secondary Horizontal | L3 1/2x3 1/2x1/4                     | 282                 | -4.80  | 20.39                    | 23.5          | Pass         |
|         |                 | Secondary Horizontal | L3 1/2x3 1/2x1/4                     | 283                 | -4.80  | 20.39                    | 23.5          | Pass         |
|         |                 | Secondary Horizontal | L3 1/2x3 1/2x1/4                     | 284                 | -4.82  | 20.39                    | 23.7          | Pass         |
|         |                 | Secondary Horizontal | L3 1/2x3 1/2x1/4                     | 285                 | -4.82  | 20.39                    | 23.7          | Pass         |
| T16     | 40 - 30         | Secondary Horizontal | L3 1/2x3 1/2x1/4                     | 307                 | -5.22  | 18.94                    | 27.6          | Pass         |
|         |                 | Secondary Horizontal | L3 1/2x3 1/2x1/4                     | 308                 | -5.22  | 18.94                    | 27.6          | Pass         |
|         |                 | Secondary Horizontal | L3 1/2x3 1/2x1/4                     | 309                 | -5.24  | 18.94                    | 27.7          | Pass         |
|         |                 | Secondary Horizontal | L3 1/2x3 1/2x1/4                     | 310                 | -5.24  | 18.94                    | 27.7          | Pass         |
| T17     | 30 - 20         | Secondary Horizontal | L3 1/2x3 1/2x1/4                     | 323                 | -5.68  | 17.70                    | 32.1          | Pass         |
|         |                 | Secondary Horizontal | L3 1/2x3 1/2x1/4                     | 324                 | -5.68  | 17.70                    | 32.1          | Pass         |
|         |                 | Secondary Horizontal | L3 1/2x3 1/2x1/4                     | 325                 | -5.70  | 17.70                    | 32.2          | Pass         |
|         |                 | Secondary Horizontal | L3 1/2x3 1/2x1/4                     | 326                 | -5.70  | 17.70                    | 32.2          | Pass         |
| T18     | 20 - 10         | Secondary Horizontal | L3 1/2x3 1/2x1/4                     | 348                 | -6.04  | 16.59                    | 36.4          | Pass         |
| 110     | 20 - 10         | Secondary Horizontal | L3 1/2x3 1/2x1/4<br>L3 1/2x3 1/2x1/4 | 349                 | -6.04  | 16.59                    | 36.4          |              |
|         |                 |                      |                                      |                     |        |                          |               | Pass         |
|         |                 | Secondary Horizontal | L3 1/2x3 1/2x1/4                     | 350                 | -6.06  | 16.59                    | 36.5          | Pass         |
| me      | 100 100         | Secondary Horizontal | L3 1/2x3 1/2x1/4                     | 351                 | -6.06  | 16.59                    | 36.5          | Pass         |
| TI      | 180 - 170       | Top Girt             | L2x2x3/16                            | 5                   | -0.11  | 7.61                     | 1.4           | Pass         |
|         |                 |                      |                                      |                     |        |                          | 1.8 (b)       |              |
|         |                 | Top Girt             | L2x2x3/16                            | 6                   | -0.11  | 7.61                     | 1.4           | Pass         |
|         |                 |                      |                                      |                     |        |                          | 1.5 (b)       |              |
|         |                 | Top Girt             | L2x2x3/16                            | 7                   | -0.10  | 7.61                     | 1.4           | Pass         |
|         |                 |                      |                                      |                     |        |                          | 1.7 (b)       |              |
|         |                 | Top Girt             | L2x2x3/16                            | 8                   | -0.11  | 7.61                     | 1.4           | Pass         |
|         |                 | •                    | -                                    | _                   |        |                          | 2.0 (b)       |              |
| T2      | 170 - 163.573   | Top Girt             | L2x2x3/16                            | 25                  | -0.46  | 7.61                     | 6.1           | Pass         |
|         | 1.0 100.013     | . op dat             |                                      | 23                  | 5.40   | 7.01                     | 6.3 (b)       | 1 022        |
|         |                 | Top Girt             | L2x2x3/16                            | 26                  | -0.46  | 7.61                     |               | Page         |
|         |                 | -                    |                                      |                     |        |                          | 6.0           | Pass         |
|         |                 | Top Girt             | L2x2x3/16                            | 27                  | -0.45  | 7.61                     | 5.9           | Pass         |
|         |                 | m . C1               | ***                                  |                     |        |                          | 6.1 (b)       | _            |
|         |                 | Top Girt             | L2x2x3/16                            | 28                  | -0.45  | 7.61                     | 6.0           | Pass         |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 84 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section | Elevation            | Component<br>Type                   | Size                                   | Critical<br>Element | P<br>K         | øP <sub>allow</sub> | %                       | Pass         |
|---------|----------------------|-------------------------------------|----------------------------------------|---------------------|----------------|---------------------|-------------------------|--------------|
| No.     | ft                   | Туре                                |                                        | Liement             |                | K                   | Capacity                | Fail         |
| Т3      | 163.573 -<br>159.049 | Top Girt                            | L2x2x3/16                              | 41                  | -0.46          | 7.86                | 6.8 (b)<br>5.8          | Pass         |
|         | 133.043              | Top Girt                            | L2x2x3/16                              | 42                  | -0.46          | 7.86                | 5.9                     | Pass         |
|         |                      | Top Girt                            | L2x2x3/16                              | 43                  | -0.45          | 7.86                | 5.8                     | Pass         |
|         |                      | Top Girt                            | L2x2x3/16                              | 44                  | -0.45          | 7.86                | 5.7                     | Pass         |
| T6      | 150 - 140            | Top Girt                            | L2 1/2x2 1/2x3/16                      | 81                  | -0.54          | 10.69               | 5.0                     | Pass         |
|         |                      | Top Girt                            | L2 1/2x2 1/2x3/16                      | 82                  | -0.52          | 10.69               | 4.9                     | Pass         |
|         |                      | Top Girt                            | L2 1/2x2 1/2x3/16                      | 83                  | -0.52          | 10.69               | 4.8                     | Pass         |
|         |                      | Top Girt                            | L2 1/2x2 1/2x3/16                      | 84                  | -0.53          | 10.69               | 5.0                     | Pass         |
| T7      | 140 - 130            | Top Girt                            | L2 1/2x2 1/2x3/16                      | 105                 | -0.50          | 16.96               | 2.9<br>3.0 (b)          | Pass         |
|         |                      | Top Girt                            | L2 1/2x2 1/2x3/16                      | 106                 | -0.49          | 16.96               | 2.9<br>3.1 (b)          | Pass         |
|         |                      | Top Girt                            | L2 1/2x2 1/2x3/16                      | 107                 | -0.49          | 16.96               | 2.9<br>3.1 (b)          | Pass         |
|         |                      | Top Girt                            | L2 1/2x2 1/2x3/16                      | 108                 | -0.51          | 16.96               | 3.0                     | Pass         |
| T13     | 80 - 60              | Top Girt                            | L2 1/2x2 1/2x1/4                       | 224                 | -0.90          | 15.76               | 5.7<br>7.9 (b)          | Pass         |
|         |                      | Top Girt                            | L2 1/2x2 1/2x1/4                       | 225                 | -0.93          | 15.76               | 5.9                     | Pass         |
|         |                      | Top Girt                            | L2 1/2x2 1/2x1/4                       | 226                 | -0.89          | 15.76               | 5.7<br>7.9 (b)          | Pass         |
| m1.c    | 40 20                | Top Girt                            | L2 1/2x2 1/2x1/4                       | 227                 | -0.93          | 15.76               | 5.9                     | Pass         |
| T16     | 40 - 30              | Top Girt  Top Girt                  | 2L2x2x3/16                             | 290                 | 5.18           | 37.48               | 13.8<br>21.0 (b)        | Pass         |
|         |                      | Top Girt                            | 2L2x2x3/16<br>2L2x2x3/16               | 291<br>292          | 3.65<br>5.19   | 37.48<br>37.48      | 9.7<br>14.8 (b)         | Pass         |
|         |                      | Top Girt                            | 2L2x2x3/16<br>2L2x2x3/16               | 292                 | 3.67           | 37.48               | 13.8<br>21.0 (b)<br>9.8 | Pass<br>Pass |
| T19     | 10 - 0               | Redund Horz 1                       | L2 1/2x2 1/2x3/16                      | 358                 | -6.15          | 15.90               | 14.9 (b)<br>38.7        | Pass         |
|         |                      | Bracing<br>Redund Horz 1            | L2 1/2x2 1/2x3/16                      | 361                 | -6.21          | 15.90               | 39.1                    | Pass         |
|         |                      | Bracing Redund Horz 1               | L2 1/2x2 1/2x3/16                      | 366                 | -6.21          | 15.90               | 39.1                    | Pass         |
|         |                      | Bracing<br>Redund Horz 1<br>Bracing | L2 1/2x2 1/2x3/16                      | 369                 | -6.16          | 15.90               | 38.7                    | Pass         |
|         |                      | Redund Horz 1 Bracing               | L2 1/2x2 1/2x3/16                      | 375                 | -6.16          | 15.90               | 38.7                    | Pass         |
|         |                      | Redund Horz 1<br>Bracing            | L2 1/2x2 1/2x3/16                      | 378                 | -6.23          | 15.90               | 39.2                    | Pass         |
|         |                      | Redund Horz 1 Bracing               | L2 1/2x2 1/2x3/16                      | 384                 | -6.23          | 15.90               | 39.2                    | Pass         |
| T19     | 10 - 0               | Redund Horz 1 Bracing Redund Diog 1 | L2 1/2x2 1/2x3/16                      | 387                 | -6.15          | 15.90               | 38.7                    | Pass         |
| 119     | 10-0                 | Redund Diag 1 Bracing Redund Diag 1 | L2 1/2x2 1/2x3/16<br>L2 1/2x2 1/2x3/16 | 359<br>362          | -7.86<br>-7.78 | 9.88<br>9.88        | 79.6<br>78.8            | Pass         |
|         |                      | Bracing Redund Diag 1               | L2 1/2x2 1/2x3/16                      | 367                 | -7.78          | 9.88                | 79.5                    | Pass<br>Pass |
|         |                      | Bracing Redund Diag 1               | L2 1/2x2 1/2x3/16                      | 370                 | -7.87          | 9.88                | 79.7                    | Pass         |
|         |                      | Bracing<br>Redund Diag 1            | L2 1/2x2 1/2x3/16                      | 376                 | -7.80          | 9.88                | 78.9                    | Pass         |
|         |                      | Bracing<br>Redund Diag 1            | L2 1/2x2 1/2x3/16                      | 379                 | -7.90          | 9.88                | 80.0                    | Pass         |
|         |                      | Bracing<br>Redund Diag 1<br>Bracing | L2 1/2x2 1/2x3/16                      | 385                 | -7.89          | 9.88                | 79.9                    | Pass         |

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 85 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| Section<br>No. | Elevation<br>ft | Component<br>Type                  | Size                             | Critical<br>Element | P<br>K         | øP <sub>allow</sub><br>K | %<br>Capacity | Pass<br>Fail |
|----------------|-----------------|------------------------------------|----------------------------------|---------------------|----------------|--------------------------|---------------|--------------|
|                |                 | Redund Diag 1                      | L2 1/2x2 1/2x3/16                | 388                 | -7.85          | 9.88                     | 79.5          | Pass         |
| T19            | 10 - 0          | Bracing<br>Redund Hip 1            | L2 1/2x2 1/2x3/16                | 372                 | -0.03          | 9.58                     | 0.6           | Pass         |
|                |                 | Bracing Redund Hip 1               | L2 1/2x2 1/2x3/16                | 381                 | -0.02          | 9.58                     | 0.6           | Pass         |
|                |                 | Bracing<br>Redund Hip 1<br>Bracing | L2 1/2x2 1/2x3/16                | 390                 | -0.02          | 9.58                     | 0.6           | Pass         |
|                |                 | Redund Hip 1 Bracing               | L2 1/2x2 1/2x3/16                | 391                 | -0.02          | 9.58                     | 0.6           | Pass         |
| T19            | 10 - 0          | Redund Sub Horz<br>Bracing         | L3x3x5/16                        | 363                 | -8.97          | 12.33                    | 72.7          | Pass         |
|                |                 | Redund Sub Horz Bracing            | L3x3x5/16                        | 371                 | -9.05          | 12.33                    | 73.4          | Pass         |
|                |                 | Redund Sub Horz<br>Bracing         | L3x3x5/16                        | 380                 | -9.00          | 12.33                    | 73.0          | Pass         |
|                |                 | Redund Sub Horz<br>Bracing         | L3x3x5/16                        | 389                 | -9.07          | 12.33                    | 73.5          | Pass         |
| T7             | 140 - 130       | Inner Bracing                      | L2x2x3/16                        | 109                 | -0.07          | 5.89                     | 1.1           | Pass         |
|                |                 | Inner Bracing                      | L2x2x3/16                        | 110                 | -0.06          | 5.89                     | 1.1           | Pass         |
|                |                 | Inner Bracing                      | L2x2x3/16                        | 111                 | -0.07          | 5.89                     | 1.1           | Pass         |
|                |                 | Inner Bracing Inner Bracing        | L2x2x3/16<br>L2x2x3/16           | 112<br>113          | -0.06<br>-0.01 | 5.89<br>2.94             | 1.1<br>0.9    | Pass<br>Pass |
| T9             | 120 - 110       | Inner Bracing                      | L2 1/2x2x3/16                    | 150                 | -0.01          | 5.56                     | 1.4           | Pass         |
| 3              |                 | Inner Bracing                      | L2 1/2x2x3/16                    | 151                 | -0.08          | 5.56                     | 1.4           | Pas          |
|                |                 | Inner Bracing                      | L2 1/2x2x3/16                    | 152                 | -0.08          | 5.56                     | 1.4           | Pas          |
|                |                 | Inner Bracing                      | L2 1/2x2x3/16                    | 153                 | -0.08          | 5.56                     | 1.4           | Pas          |
|                |                 | Inner Bracing                      | L2 1/2x2x3/16                    | 154                 | -0.00          | 2.78                     | 1.1           | Pas          |
| T11            | 100 - 90        | Inner Bracing                      | L2 1/2x2x3/16                    | 191                 | -0.09          | 4.15                     | 2.1           | Pas          |
|                |                 | Inner Bracing                      | L2 1/2x2x3/16                    | 192                 | -0.09          | 4.15                     | 2.2           | Pas          |
|                |                 | Inner Bracing                      | L2 1/2x2x3/16                    | 193                 | -0.09          | 4.15                     | 2.1           | Pas          |
|                |                 | Inner Bracing Inner Bracing        | L2 1/2x2x3/16<br>L2 1/2x2x3/16   | 194<br>195          | -0.09<br>-0.00 | 4.15<br>2.08             | 2.2<br>1.2    | Pas          |
| Т13            | 80 - 60         | Inner Bracing                      | 2L2x2x3/16                       | 228                 | -0.12          | 11.88                    | 1.0           | Pas<br>Pas   |
|                | 00 00           | Inner Bracing                      | 2L2x2x3/16                       | 229                 | -0.12          | 11.88                    | 1.0           | Pas          |
|                |                 | Inner Bracing                      | 2L2x2x3/16                       | 230                 | -0.12          | 11.88                    | 1.0           | Pas          |
|                |                 | Inner Bracing                      | 2L2x2x3/16                       | 231                 | -0.12          | 11.88                    | 1.0           | Pas          |
|                |                 | Inner Bracing                      | 2L2x2x3/16                       | 232                 | -0.01          | 5.94                     | 0.9           | Pass         |
| T14            | 60 - 50         | Inner Bracing                      | 2L2x2x3/16                       | 257                 | -0.13          | 9.47                     | 1.4           | Pas          |
|                |                 | Inner Bracing                      | 2L2x2x3/16                       | 258                 | -0.14          | 9.47                     | 1.5           | Pas          |
|                |                 | Inner Bracing                      | 2L2x2x3/16                       | 259                 | -0.13          | 9.47                     | 1.4           | Pas          |
|                |                 | Inner Bracing Inner Bracing        | 2L2x2x3/16                       | 260                 | -0.14<br>0.00  | 9.47                     | 1.5           | Pas          |
| Г16            | 40 - 30         | Inner Bracing                      | 2L2x2x3/16<br>2L2x2x3/16         | 261<br>294          | -0.18          | 46.33<br>7.73            | 1.0<br>2.3    | Pas:<br>Pas: |
| 110            | 40 - 30         | Inner Bracing                      | 2L2x2x3/16<br>2L2x2x3/16         | 295                 | -0.19          | 7.73                     | 2.4           | Pas          |
|                |                 | Inner Bracing                      | 2L2x2x3/16                       | 296                 | -0.18          | 7.73                     | 2.3           | Pas          |
|                |                 | Inner Bracing                      | 2L2x2x3/16                       | 297                 | -0.18          | 7.73                     | 2.4           | Pas          |
|                |                 | Inner Bracing                      | 2L2x2x3/16                       | 298                 | -0.02          | 3.87                     | 1.1           | Pass         |
| Г18            | 20 - 10         | Inner Bracing                      | 2L2x2 1/2x3/16                   | 335                 | -0.03          | 6.89                     | 0.7           | Pass         |
|                |                 | Inner Bracing                      | 2L2x2 1/2x3/16                   | 336                 | -0.03          | 03 6.89 (                | 0.7           | Pas          |
|                |                 | Inner Bracing                      | 2L2x2 1/2x3/16                   | 337                 | -0.03          | 6.89                     | 0.7           | Pass         |
|                |                 | Inner Bracing                      | 2L2x2 1/2x3/16                   | 338                 | -0.03          | 6.89                     | 0.7           | Pas          |
| TIO            | 10 0            | Inner Bracing                      | 2L2x2 1/2x3/16                   | 339                 | 0.01           | 52.49                    | 1.0           | Pass         |
| T19            | 10 - 0          | Inner Bracing                      | 2L2x2 1/2x3/16                   | 392                 | -0.16          | 6.32                     | 2.5           | Pass         |
|                |                 | Inner Bracing Inner Bracing        | 2L2x2 1/2x3/16<br>2L2x2 1/2x3/16 | 393<br>394          | -0.17<br>-0.16 | 6.32<br>6.32             | 2.6<br>2.5    | Pass         |
|                |                 | Inner Bracing                      | 2L2x2 1/2x3/16<br>2L2x2 1/2x3/16 | 394<br>395          | -0.16<br>-0.17 | 6.32                     | 2.5           | Pass<br>Pass |
|                |                 | Inner Bracing                      | 2L2x2 1/2x3/16<br>2L2x2 1/2x3/16 | 396                 | -0.17<br>-0.01 | 3.16                     | 1.0           | Pass         |
|                |                 | and Diacing                        | acone I/ENJ/IV                   | 370                 | -0.01          | 3.10                     | Summary       | 1 033        |
|                |                 |                                    |                                  |                     |                | Leg (T19)                | 83.0          | Pass         |
|                |                 |                                    |                                  |                     |                | Diagonal                 | 110.3         | Fail )       |

**AECOM** 

| Job     |                          | Page              |
|---------|--------------------------|-------------------|
|         | 180' Lattice Tower - CSP | 86 of 86          |
| Project |                          | Date              |
|         | Structural Analysis      | 16:48:32 03/29/18 |
| Client  |                          | Designed by       |
|         | Empire Telecom / EMP-004 | MCD               |

| No. | ft | Туре |  | (T19)<br>Horizontal<br>(T19) | Capacity 55.0 | Fail<br>Pass |
|-----|----|------|--|------------------------------|---------------|--------------|
|     |    |      |  | Horizontal                   | 55.0          | Pass         |
|     |    |      |  |                              |               |              |
|     |    |      |  | (117)                        |               |              |
|     |    |      |  | Secondary                    | 36.5          | Pass         |
|     |    |      |  | Horizontal                   |               |              |
|     |    |      |  | (T18)                        |               |              |
|     |    |      |  | Top Girt                     | 21.0          | Pass         |
|     |    |      |  | (T16)                        |               |              |
|     |    |      |  | Redund                       | 39.2          | Pass         |
|     |    |      |  | Horz 1                       |               |              |
|     |    |      |  | Bracing                      |               |              |
|     |    |      |  | (T19)                        |               |              |
|     |    |      |  | Redund                       | 80.0          | Pass         |
|     |    |      |  | Diag 1                       |               |              |
|     |    |      |  | Bracing                      |               |              |
|     |    |      |  | (T19)                        |               | _            |
|     |    |      |  | Redund Hip                   | 0.6           | Pass         |
|     |    |      |  | 1 Bracing                    |               |              |
|     |    |      |  | (T19)                        | 72.6          |              |
|     |    |      |  | Redund Sub                   | 73.5          | Pass         |
|     |    |      |  | Horz                         |               |              |
|     |    |      |  | Bracing                      |               |              |
|     |    |      |  | (T19)<br>Inner               | 2.7           | Pass         |
|     |    |      |  | Bracing                      | 2.7           | 1 455        |
|     |    |      |  | (T19)                        |               |              |
|     |    |      |  | Bolt Checks                  | 73.4          | Pass         |
|     |    |      |  | RATING =                     | 110.3         | Fail A       |

Program Version 7.0.8.5 - 9/29/2017 File:P:/Projects/Telcom/StructuralsByLocation/Connecticut/WiltonCSP#31/15a\_Inventory Update to EMP-004/TIA-G/180' Lattice Wilton CSP.eri

**ANCHOR BOLT EVALUATION** 

# A=COM Job 180' Self Supporting Lattice Tower - Wilton, CT Project No. EMP-004 Sheet 1 of 4 Description Anchor Bolt Analysis (TIA-222-G) Computed by MCD Date 03/29/18

Checked by

Date

## **ANCHOR BOLT ANALYSIS**

## **Input Data**

#### **Tower Reactions:**

**Evaluation Report** 

Uplift: Uplift:= 415 kips user input

Shear: Shear := 46 kips user input

Compression: Compression := 453 kips user input

## **Anchor Bolt Data:**

Use ASTM A36 Use ASTM A36 per page 4.1 of structural analysis dated November 23, 1993

Number of Anchor Bolts = N N:= 4 user input

Bolt Ultimate Strength:  $F_u := 58 \text{ ksi}$  user input

Bolt Yield Strength: Fy := 36 ksi user input

Bolt Modulus: E:= 29000 ksi user input

Thickness of Anchor Bolts D:= 2.5in user input

Threads per Inch: n := 4 user input

Coefficient of Friction:  $\mu := 0.55$  user input (for baseplate with grout ASCE 10-15)

Length from top of pier to

Lar:= 2.5in

user input (assumed single level nut to plate pt.)

bottom of leveling nut:

Bolt Modulus: E;= 29000 ksi user input

180' Self Supporting Lattice Tower - Wilton, CT

Project No. EMP-004 Computed by

Page Sheet 2 of 4

Date

Description Anchor Bolt Analysis (TIA-222-G)

Checked by

MCD

Date

## **Anchor Bolt Section Properties:**

**Evaluation Report** 

Gross Area of Bolt:

$$A_g := \frac{\pi}{4} \cdot D^2$$

$$A_g = 4.91 \cdot in^2$$

Net Area of Bolt:

$$A_n := \frac{\pi}{4} \cdot \left( D - \frac{0.9743 \cdot in}{n} \right)^2$$

$$A_n = 4 \cdot in^2$$

Net Diameter:

$$D_n \! := D - \frac{0.9743 \hspace{1pt} in}{n}$$

$$D_n = 2.26 \cdot in$$

Radius of Gyration of Bolt:

$$r := \frac{D_n}{4}$$

Plastic Section Modulus of Bolt:

$$Z_{\mathbf{x}} := \frac{D_{\mathbf{n}}^{3}}{6}$$

$$Z_x = 1.91 \cdot \text{in}^3$$

## Forces:

**Tension Force:** 

$$T_u := \frac{Uplift}{N}$$

$$T_u = 103.75 \cdot kip$$

$$T_{ub} := T_u$$

Resistance Factor for Flexure (ANSI/TIA-222-G 4.7):

$$\phi_f := 0.9$$

Resistance Factor for Anchor Bolt (ANSI/TIA-222-G 4.5.4.2):

$$\phi_b := 0.80$$

Resistance Factor for Tension (ANSI/TIA-222-G 4.9.6.1):

$$\phi_t := 0.75$$

Shear Force:

$$V_u := \frac{Shear}{N}$$

$$V_n = 11.5 \cdot \text{kip}$$

$$V_{ub} := V_u$$

Resistance Factor for Shear (ANSI/TIA-222-G 4.9.6.3):

$$\phi_{v} := 0.75$$

## **A=**COM

180' Self Supporting Lattice Tower - Wilton, CT

Project No. EMP-004 Page Sheet 3 of 4 Date

Description Anchor Bolt Analysis (TIA-222-G) **Evaluation Report** 

Computed by MCD Checked by

03/29/18 Date

#### ANSI/TIA-222-G 4.7.1 Flexural Members:

#### Nominal Flexure Strength, Mn:

$$M_n := Fy Z_x$$

$$M_n = 5.74 \text{ ft} \cdot \text{kip}$$

$$\phi_f M_n = 5.17 \cdot \text{ft} \cdot \text{kip}$$

#### Applied Moment due to Shear (worst case lever arm), Mu:

$$M_u := L_{ar} \cdot V_u$$

$$M_n = 2.4 \text{ ft} \cdot \text{kip}$$

#### Flexure Check:

$$\label{eq:flexureCheck} FlexureCheck := if \! \left( M_u \leq \varphi_f \: M_n, "OK" \:, "NO \: GOOD" \: \right)$$

$$\frac{M_u}{\varphi_f \, M_n} = 46.34 \, \%$$

## ANSI/TIA-222-G 4.9.6.1 Tensile Strength:

#### Design Tensile Strength, Rnt:

$$R_{nt} := F_{u} \cdot A_n$$

$$R_{nt} = 231.93 \cdot \text{ft·kip}$$

$$\phi_{t} R_{nt} = 173.95 \cdot \text{ft-kip}$$

#### **Tension Check:**

TensionCheck := 
$$if(T_u \le \phi_f : R_{nf}, "OK", "NO GOOD")$$

$$\frac{T_u}{\Phi_t R_{nt}} = 59.64 \%$$

## ANSI/TIA-222-G 4.9.6.3 Design Shear Strength:

#### Design Shear Strength, Rnv:

$$R_{nv} := 0.45 \cdot F_{u'} A_g$$

$$R_{nv} = 128.12 \cdot \text{ft} \cdot \text{kip}$$

$$\phi_{v} \cdot R_{nv} = 96.09 \cdot \text{ft} \cdot \text{kip}$$

#### Shear Check:

$$ShearCheck := if \Big( V_u \leq \varphi_{v} \cdot R_{nv}, \text{"OK"} \text{ , "NO GOOD"} \Big)$$

$$\frac{V_u}{\phi_v \cdot R_{nv}} = 11.97 \cdot \%$$

A=COM

180' Self Supporting Lattice Tower - Wilton, CT

Project No. EMP-004

Description Anchor Bolt Analysis (TIA-222-G)

Computed by MCD

**Evaluation Report** 

Checked by

#### ANSI/TIA-222-G 4.9.6.4 Combined Shear and Tension:

$$\left[\frac{V_{ub}}{\left(\varphi_{v} R_{nv}\right)}\right]^{2} + \left[\frac{T_{ub}}{\left(\varphi_{t} R_{nt}\right)}\right]^{2} \leq 1$$

$$\left[\frac{V_{ub}}{\left(\varphi_{v}\cdot R_{nv}\right)^{1}}\right]^{2} + \left[\frac{T_{ub}}{\left(\varphi_{t}\cdot R_{nt}\right)^{1}}\right]^{2} = 0.37$$

#### Combined Shear and Tension Check:

$$Shear And Tension Check := if \left[ \left[ \frac{V_{ub}}{\left( \varphi_{v} \cdot R_{nv} \right)} \right]^{2} + \left[ \frac{T_{ub}}{\left( \varphi_{t} \cdot R_{nt} \right)} \right]^{2} \leq 1, "OK", "NO \ GOOD" \right]$$

ShearAndTensionCheck = "OK"

## ANSI/TIA-222-G 4.9.9 Anchor Rods (Capacity):

$$\frac{\left[T_{u} + \left(\frac{V_{u}}{\eta}\right)\right]}{\phi_{b} \cdot P_{-}} \leq 1$$

 $\eta := 0.55$ 

user input from ANSI/TIA-222-G 4.9.9

$$\frac{\left[T_{u} + \left(\frac{V_{u}}{\eta}\right)\right]}{\Phi_{h} \cdot F_{u} \cdot A_{n}} = 0.672$$

#### Capacity Check:

$$CapacityCheck := if \left[ \frac{T_u + \left( \frac{V_u}{\eta} \right)}{\phi_b \cdot F_u \cdot A_n} \le 1, "OK", "NO GOOD" \right]$$

CapacityCheck = "OK"

**FOUNDATION ANALYSIS** 

Job 180' Self-Supporting Lattice Tower - Wilton, CT Project No.

**EMP-004** MCD

Page Sheet 1 of 10

**Description Foundation Analysis** 

Computed by

Date 03/29/18

**Evaluation Report** 

Checked by

Date

## **FOOTING WITH FOUR CONCRETE PIERS**

#### **INPUT DATA**

#### **TOWER FORCES:**

Shear at Base of Tower

#### **FOOTING DIMENSIONS:**

Moment Caused by Tower M<sub>t</sub> := 10825 · kip · ft

 $S_t := 116 \text{kip}$ 

Max Compressive Force  $C_{+} := 453 \text{kip}$ 

Max Uplift  $U_t := 415 \text{kip}$ 

Max Pier Shear  $S_n := 46kip$ **Height of Tower**  $H_{+} := 180 \cdot ft$ 

Width of Tower at Base  $W_t := 17.729 \cdot ft$ 

Weight of Tower  $WT_t := 1 \cdot kip$ 

Width of Footing  $W_f := 37 \cdot ft + 0ft$ 

Overall Depth of Footing  $D_{f} := 9.5 ft$ 

Length of Pier  $L_{p} := 6.5 \cdot ft - 0ft$ 

Extension of Pier Above Grade  $L_{pag} := 1.0 \text{ ft}$ 

Square Dimension of Pier

Thickness of Footing  $T_f := 3.0 \, ft + 0 ft$ 

Reinforement Cover: Cvr := 3inFtg. Edge To Pier CL:  $X_{+} := 8.635 ft$ 

NOTE: Weight of Tower is incorporated into the other loads listed above and is therefore set equal to one for programming.

## **MATERIAL PROPERTIES:**

Compressive Strength of Concrete

fc:= 3000 psi fy:= 60000 psi Unit Weight of Soil Unit Weight of Concrete

 $\gamma_s := 100 \cdot pcf$ 

Internal Friction Angle of Soil

Yield Strength of Steel Reinforcement

 $\phi_s := 30 \text{ deg}$ 

Depth to Neglect

 $\gamma_c := 150 \cdot pcf$  $n := 1.5 \cdot ft$ 

**Allowable Bearing Capacity** 

 $q_s := 3400 \cdot psf$ 

Cohesion of Clay Type Soil

 $c := 0 \cdot ksf$ 

 $d_n := 4.0 \, ft$ 

**Ultimate Bearing Capacity** 

 $R_s := 2 \cdot q_s$ 

Note: Use 0 for Sandy Soil

Coefficient of Lateral Soil Pressure

$$K_{\mathbf{p}} := \frac{1 + \sin(\phi_{\mathbf{s}})}{1 - \sin(\phi_{\mathbf{s}})}$$

 $K_p = 3$ 

What is Position of Center of Tower with respect to Center of Pad?

1=Offset 2=Not Offset

 $Pos_{tower} := 2$ 

## PIER REINFORCEMENT:

**Bar Size** 

BSpier := 9

**Bar Diameter** 

 $d_{bpier} := 1.128 \cdot in$ 

**Number of Bars** 

NBpier:= 24

Bar Area

 $A_{bnier} := 1.00 \cdot in^2$ 

## PAD REINFORCEMENT:

**Bar Size** 

 $BS_{pad} := 9$ 

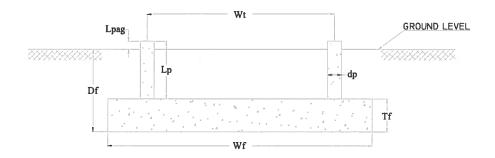
**Bar Diameter** 

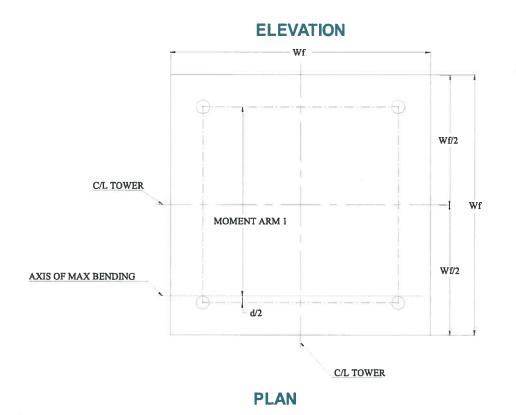
d<sub>bpad</sub> := 1.128 in

Number of Bars

 $NB_{pad} := 42$ 

**Bar Area** 


 $A_{bpad} := 1.00 \cdot in^2$ 


Job 180' Self-Supporting Lattice Tower - Wilton, CT Project No. EMP-004 Sheet 2 of 10

Description Foundation Analysis Computed by MCD Date 03/29/18

Evaluation Report Checked by Date

**Typical Footing Plan and Elevation:** 





Job 180' Self-Supporting Lattice Tower - Wilton, CT Project No. EMP-004 Sheet 3 of 10

Description Foundation Analysis Computed by MCD Date 03/29/18

Evaluation Report Checked by Date

#### STABILITY OF FOOTING

NOTE: Reduction factor is implemented as 0.75 for pull-out/uplift of foundation. Reduction factor shall be applied to Overtuming Moment in this case

#### **Passive Pressure:**

 $\begin{array}{lll} \text{Pressure at Neglect:} & P_{pn} \coloneqq K_p \cdot \gamma_s \cdot n + c \cdot 2 \cdot \sqrt{K_p} & P_{pn} = 0.45 \cdot ksf \\ \text{Pressure at Footing Top:} & P_{pt} \coloneqq K_p \cdot \gamma_s \cdot \left(D_f - T_f\right) + c \cdot 2 \cdot \sqrt{K_p} & P_{pt} = 1.95 \cdot ksf \\ \text{Pressure at Top:} & P_{top} \coloneqq if \left[n < \left(D_f - T_f\right), P_{pt}, P_{pn}\right] & P_{top} = 1.95 \cdot ksf \\ \text{Pressure at Bottom:} & P_{bot} \coloneqq K_p \cdot \gamma_s \cdot D_f + c \cdot 2 \cdot \sqrt{K_p} & P_{bot} = 2.85 \cdot ksf \\ \end{array}$ 

Average Pressure:  $P_{ave} := \frac{P_{top} + P_{bot}}{2}$   $P_{ave} = 2.4 \text{ ksf}$ 

#### Soil Shear:

Effective Soil Depth:  $T_{pp} := if [n < (D_f - T_f), T_f, (D_f - n)]$   $T_{pp} = 3 \cdot ft$ 

Area of Resistance:  $A_{pp} := W_f T_{pp}$   $A_{pp} = 111 \cdot ft^2$ 

Shear Resistance:  $S_u := P_{ave} \cdot A_{pp}$   $S_u = 266.4 \text{ kip}$ 

#### Stabilizing Dead Load:

Weight of  $WT_c := (W_f^2 \cdot T_f) \cdot \gamma_c$   $WT_c = 616.05 \cdot \text{kip}$  Concrete Pad:

Weight of Soil: Depth :=  $D_f - n - T_f$  if  $n < (D_f - T_f)$  Depth = 5·ft above Footing:

 $WT_{s1} := W_f^2 \cdot Depth \cdot \gamma_s$   $WT_{s1} = 684.5 \cdot kip$ 

Weight of Soil WT<sub>s2</sub> :=  $\left| \frac{\left( D_f - n \right)^2 \cdot \tan(\phi_s)}{2} \cdot W_f \right| \cdot \gamma_s$  WT<sub>s2</sub> = 68.3583 · kip

Distance to center of Tower Leg from Edge  $X_{t1} := \frac{W_f}{2} - \frac{W_t}{2}$   $X_{t2} := \frac{W_f}{2} - \frac{W_t}{2}$   $X_{t2} := if(Pos_{tower} = 1, X_{t1}, X_{t2})$  of Footing:

Additional Offset of Footing:  $X_{off1} := \frac{W_f}{2} - \left(\frac{W_f \cdot \cos(30 \cdot \deg)}{3} + X_t\right)$   $X_{off1} = 3.7466 \cdot \text{ft}$   $X_{off2} := X_{off1}$ 

 $X_{\text{off}} := if \left( \text{Pos}_{\text{tower}} = 1, X_{\text{off1}}, X_{\text{off2}} \right)$   $X_{\text{off}} = 3.7466 \cdot \text{ft}$ 

# Stability Analysis: $M_r := \left(WT_c \cdot 0.9 + WT_{s1} \cdot 0.9\right) \cdot \frac{W_f}{2} + WT_t \cdot \left(\frac{W_f}{2} - X_{off}\right) \dots \qquad M_r = 24220.5214 \cdot \text{kip} \cdot \text{ft}$ $T_{nn} \cdot \left(\frac{W_f}{2} - X_{off}\right) \cdot \frac{W_f}{2} + WT_t \cdot \left(\frac{W_f}{2} - X_{off}\right) \cdot \frac{W_f}{2} + WT_t \cdot \frac{W_f}{2} - \frac{W_f}{2} + WT_t \cdot \frac{W_f}{2} - \frac{W_f}{2} + WT_t \cdot \frac{W_f}{2} - \frac{W_f}{2} + WT_t \cdot \frac{W_f}{2} - \frac{W_f}{2} + WT_t \cdot \frac{W_f}{2} - \frac{W_f}{2} + WT_t \cdot \frac{W_f}{2} - \frac{W_f}{2} + WT_t \cdot \frac{W_f}{2} - \frac{W_f}{2} + WT_t \cdot \frac{W_f}{2} - \frac{W_f}{2} + WT_t \cdot \frac{W_f}{2} - \frac{W_f}{2} + WT_t \cdot \frac{W_f}{2} - \frac{W_f}{2} + WT_t \cdot \frac{W_f}{2} - \frac{W_f}{2} + WT_t \cdot \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} + WT_t \cdot \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac{W_f}{2} - \frac$

Resisting Moment:  $+0.9S_{u} \cdot \frac{T_{pp}}{3} + 0.9 \cdot WT_{s2} \cdot \left(W_{f} + \frac{T_{pp} \cdot \tan(\varphi_{s})}{3}\right)$ 

## **OT**:= 0.75 **ANSI/TIA-222-G REDUCTION FACTOR**

Overturn Ratio (%): Ratio<sub>Stability</sub>:=  $\frac{M_{ot}}{M_r \cdot \phi_{OT}}$  Ratio<sub>Stability</sub> = 65.68-% Stability Check = "Okay"

Page Project No. Job 180' Self-Supporting Lattice Tower - Wilton, CT Foundation Analysis Computed by MCD Date 03/29/18 Description Checked by \_\_\_\_\_ **Evaluation Report** Date

#### **BEARING PRESSURES**

#### **Loading Eccentricity:**

**Total Axial Load:** 

 $LOAD_{tot} := (WT_c + WT_{s1} + WT_t) \cdot 1.2$ 

 $LOAD_{tot} = 1561.86 \cdot kip$ 

**Total Moment:** 

 $\mathbf{M}_{ot} := \mathbf{M}_t + \mathbf{S}_t \cdot \left( \mathbf{L}_p + \mathbf{T}_f \right) + \mathbf{W} \mathbf{T}_t$ 

 $M_{ot} = 11928 \cdot \text{kip} \cdot \text{ft}$ 

**Eccentricity:** 

 $e = \frac{M_{ot}}{LOAD_{tot}}$ 

 $e = 7.637 \cdot ft$ 

Dist. From Ftg. CL to Kern Edge:  $X_k := \frac{w_f}{6}$ 

 $X_k = 6.1667 \cdot ft$ 

#### **Calculate Soil Pressures:**

#### **Maximum Contact Pressure:**

$$P_{\text{max}} := \begin{bmatrix} \frac{\text{LOAD}_{\text{tot}}}{W_{\text{f}}^{2}} \cdot \left(1 + \frac{6 \cdot e}{W_{\text{f}}}\right) & \text{if } e \leq X_{k} \\ \\ \frac{2 \cdot \text{LOAD}_{\text{tot}}}{3 \cdot W_{\text{f}} \left(\frac{W_{\text{f}}}{2} - e\right)} & \text{otherwise} \end{bmatrix}$$

 $P_{\text{max}} = 2.5906 \cdot \text{ksf}$ 

#### Minimum Contact Pressure:

$$P_{\min} := \begin{bmatrix} \frac{\text{LOAD}_{tot}}{W_f^2} \cdot \left(1 - \frac{6 \cdot e}{W_f}\right) & \text{if } e \leq X_k \\ 0 \text{ksf otherwise} \end{bmatrix}$$

 $P_{\min} = 0 \cdot ksf$ 

#### Length of Applied Pressure:

$$X_p := \begin{bmatrix} W_f & \text{if } e \leq X_k \\ \\ 3 \cdot \left( \frac{W_f}{2} - e \right) & \text{otherwise} \end{bmatrix}$$

 $X_{D} = 32.5889 \cdot ft$ 

#### Pressure Slope:

$$\mathbf{m}_{\mathbf{p}} := \frac{\mathbf{P}_{\mathbf{max}} - \mathbf{P}_{\mathbf{min}}}{\mathbf{X}_{\mathbf{p}}}$$

 $m_p = 0.0795 \cdot ksf$ 

**Revised Maximum:** 

$$q_{max} := P_{max}$$

$$q_{\text{max}} = 2.5906 \cdot \text{ksf}$$

PressureCheck:= if(q<sub>max</sub> < 0.75·R<sub>s</sub>, "Okay", "No Good")

PressureCheck = "Okay"

$$\frac{q_{\text{max}}}{0.75 \cdot R_{s}} = 0.508$$

Job

Sheet 5 of 10 180' Self-Supporting Lattice Tower - Wilton, CT Project No. Computed by\_\_\_\_\_

**Description Foundation Analysis** 

Date 03/29/18

Page

**Evaluation Report** 

Checked by Date

## **Concrete Bearing Capacity (ACI 10.14):**

$$\phi_c := 0.65$$

$$P_b := \phi_c \cdot 0.85 \cdot fc \cdot \frac{d_p^2 \cdot \pi}{4}$$

 $P_h = 2999.3413 \cdot kip$ 

BearingCheck:= if( $P_b > C_t$ , "Okay", "No Good")

BearingCheck = "Okay"

#### SHEAR STRENGTH OF CONCRETE

## Beam (One-Way) Shear Action (ACI 11.2.1.1):

"d" Distance:

$$d := T_f - Cvr - .5 \cdot in$$

 $d = 32.5 \cdot in$ 

**Factored Pressure** at "d" Distance:

$$P_{d} := \left[ P_{max} - \left( X_{t} - \frac{d_{p}}{2} - d \right) m_{p} \right]$$

 $P_d = 2.1989 \cdot ksf$ 

**Factored Pressure** 

at Edge:

$$P_{edge} := P_{max}$$

 $P_{edge} = 2.5906 \cdot ksf$ 

Average Pressure:

$$P_{\text{exe}} = \frac{P_{d} + P_{edge}}{2}$$

 $P_{ave} = 2.3948 \cdot ksf$ 

Capacity Reduction Factor:

(ACI 9.3.2.3)

**Applied Shear Force:** 

$$V_{req} := \frac{P_{ave} \cdot (X_t - 0.5 \cdot d_p - d) \cdot W_f}{\phi_c}$$

 $V_{req} = 582.1044 \cdot kip$ 

Available Shear: (ACI 11.3.1.1)

$$V_{Avail} := 2 \cdot \sqrt{f c psi} \cdot W_f d$$

 $V_{Avail} = 1580.7273 \cdot ki_I$ 

**Check Capacity:** 

BeamShearCheck:= 
$$if(V_{req} < V_{Avail}, "Okay", "No Good")$$

BeamShearCheck = "Okay"

Job

180' Self-Supporting Lattice Tower - Wilton, CT

Project No.

**EMP-004** 

Page Sheet 6 of 10

**Description Foundation Analysis** 

Computed by

MCD

Date 03/29/18

**Evaluation Report** 

Checked by

Date

## Punching (Two-Way) Shear Action (ACI 11.11.1.2):

$$b_0 := 4(d_p + d)$$

$$b_0 = 26.8333 \cdot ft$$

## Capacity Reduction Factor:

(ACI 9.3.2.3)

$$C_t = 453 \cdot kip$$

**Factored Maximum Punching Shear Force** 

$$FL := \frac{C_t}{\phi_c}$$

 $FL = 532.9412 \cdot kip$ 

**Check Capacity:** 

$$\label{eq:punchingShearCheck} \mbox{PunchingShearCheck} := \mbox{if} \Big( \mbox{$V_{req} < V_{Avail}$, "Okay", "No Good"} \Big)$$

#### **BENDING**

#### **Maximim Bending Moment:**

Distance From Edge of FTG  $X_b := \frac{W_f}{2} - e - \frac{d_p}{2}$ To Face of Pier:

$$X_b := \frac{w_f}{2} - e - \frac{d_p}{2}$$

$$X_{b} = 8.863 \cdot ft$$

## **Moment Due To Overturning:**

**Factored Pressure** at "d" Distance:

$$P_{face} := 1 \cdot (P_{max} - X_b \cdot m_p)$$

$$P_{face} = 1.8861 \cdot ksf$$

**Factored Pressure** 

Podes = 1.Pmax at Edge:

$$P_{\text{edge}} = 2.5906 \cdot \text{ksf}$$

Moment Due To Rectangular Loading:

$$M_1 := (P_{face} \cdot X_b \cdot W_f) \cdot (\frac{1}{2} \cdot X_b)$$

$$M_1 = 2740.8384 \cdot \text{kip} \cdot \text{ft}$$

Moment Due to Triangular Loading:

$$\mathbf{M}_2 := \left[\frac{1}{2} \cdot \mathbf{X}_b \cdot \left(\mathbf{P}_{edge} - \mathbf{P}_{face}\right)\right] \cdot \left(\frac{2}{3} \cdot \mathbf{X}_b\right)$$

$$M_2 = 18.4479 \cdot \text{kip} \cdot \text{ft}$$

Sum Moments:

$$M_1 = M_1 + M_2$$

$$M_{ot} = 2759.2862 \cdot \text{kip} \cdot \text{ft}$$

|             |                                                 |             |         | Page of       |
|-------------|-------------------------------------------------|-------------|---------|---------------|
| Job         | 180' Self-Supporting Lattice Tower - Wilton, CT | Project No. | EMP-004 | Sheet 7 of 10 |
| Description | Foundation Analysis                             | Computed by | MCD     | Date 03/29/18 |
|             | Evaluation Report                               | Checked by  |         | Date          |

#### **Moment Due To Uplift:**

Pier Forces: 
$$M_{nT} := 1 \cdot \left[ U_{t'} \left( W_f - 2 \cdot X_b - \frac{d}{2} - d \right) + S_{t'} \left( D_f + L_{pag} \right) \right] \qquad M_{nT} = 7530.8125 \cdot \text{kip} \cdot \text{ft}$$

$$\text{Concrete Resistance:} \qquad \qquad M_{nS} := \frac{1}{2} \cdot \left( W_f - X_b - d_p \right)^2 \cdot \left( T_{f'} W_f \right) \cdot \gamma_s \qquad \qquad M_{nS} = 3233.4139 \cdot \text{kip} \cdot \text{ft}$$

Soil Resistance: 
$$M_{nC} := \frac{1}{2} \cdot \left( W_f - X_b - d_p \right)^2 \cdot \left( T_f \cdot W_f \right) \cdot \gamma_c$$
 
$$M_{nC} = 4850.1208 \cdot \text{kip} \cdot \text{ft}$$

Sum Moments 
$$M_{uplift} := M_{nT} - M_{nS} - M_{nC}$$
  $M_{uplift} = -552.7222 \cdot kips \cdot ft$ 

Select Controlling Moment: 
$$M_u := \begin{bmatrix} M_{ot} & \text{if } M_{ot} \ge M_{uplift} \\ M_{uplift} & \text{otherwise} \end{bmatrix}$$
  $M_u = 2759.2862 \cdot \text{kips} \cdot \text{ft}$ 

Strength Reduction Factor: 
$$\phi_m := .90$$
 (ACI 9.3.2.2)

Design Moment: 
$$M_n := \frac{M_u}{\varphi_m}$$
 
$$M_n = 3065.8736 \cdot kips \cdot ft$$

#### **Size Reinforcing Steel:**

Effective Width: 
$$b_{eff} := W_f$$
 
$$b_{eff} = 444 \cdot in$$
 Stress Block: 
$$a := d \cdot \left(1 - \sqrt{1 - 2.3529 \cdot \frac{M_n}{fc \, b_{eff} \, d^2}}\right)$$
 
$$a = 1.0157 \cdot in$$

Steel Req'd For Bending: 
$$A_{s} := \frac{M_{n}}{fy\left(d - \frac{a}{2}\right)}$$

$$A_{s} = 19.1664 \cdot in^{2}$$

Reinforcement Ratio: 
$$\rho := \frac{A_S}{b_{eff} d}$$
 
$$\rho = 0.0013$$

Steel Req'd For Temperature and Shrinkage: 
$$\rho_{sh} := \mathrm{if}(\mathrm{fy} \geq 60000 \cdot \mathrm{psi}, 0.0018, 0.0020)$$
 
$$(ACI 7.12.2.1b)$$
 
$$\rho_{sh} = 0.0018$$

As:= if(
$$\rho \ge \rho_{sh}$$
, A<sub>s</sub>,  $\rho_{sh}$  b<sub>eff</sub> d)

As = 25.974 in<sup>2</sup>

$$As_{prov} := A_{bpad} \cdot NB_{pad}$$
 
$$As_{prov} = 42 \cdot in^{2}$$



Page Project No. Sheet 8 of 10 180' Self-Supporting Lattice Tower - Wilton, CT Job Computed by MCD Description Foundation Analysis Date 03/29/18 Checked by **Evaluation Report** Date

#### **DEVELOPMENT LENGTH OF PAD REINFORCEMENT**

#### **TENSION (ACI 12.2.3)**

**Bar Spacing:** 

$$\mathbf{B_{sPad}} := \frac{\mathbf{W_{f} - 2 \cdot Cvr - NB_{pad} \cdot d_{bpad}}}{\mathbf{NB_{pad} - 1}}$$

 $B_{sPad} = 9.5274 \text{ in}$ 

**Development Length Factors:** 

**Reinforcement Location Factor** 

 $\alpha := 1.0$ 

**Coating Factor** 

 $\beta := 1.0$ 

Concrete strength Factor

 $\lambda := 1.0$ 

Reinforcement Size Factor

 $\gamma := 1.0$ 

Spacing or Cover Dimension:

$$c := if \left( Cvr < \frac{B_{sPad}}{2}, Cvr, \frac{B_{sPad}}{2} \right)$$

 $c = 3 \cdot in$ 

Transverse Reinforcement Index: As allowed by ACI 12.2.4

$$L_{dbt} := \frac{3}{40} \cdot \frac{fy}{\sqrt{f \circ psi}} \cdot \frac{\alpha \cdot \beta \cdot \gamma \cdot \lambda}{\frac{c + k_{tr}}{d_{bpad}}} \cdot d_{bpad}$$

 $L_{dbt} = 34.8457 \cdot in$ 

 $L_{dbmin} := 12 \cdot in$ 

Minimum Development Length:

(ACI 12.2.1)

 $L_{dbtCheck} := if(L_{dbt} \ge L_{dbmin}, "Use L.dbt", "Use L.dbmin") L_{dbtCheck} = "Use L.dbt"$ 

Available Length in Pad:

$$L_{\text{Pad}} := \frac{W_{\text{f}}}{2} - \frac{W_{\text{t}}}{2} - \text{Cvr}$$

 $L_{Pad} = 112.626 \cdot in$ 

LpadTension :=  $if(L_{Pad} > L_{dbt}, "Okay", "No Good")$ 

LpadTension = "Okay"

#### REINFORCEMENT IN PIER

Pier Area:

$$A_{\mathbf{p}} := \frac{\pi \cdot d_{\mathbf{p}}^2}{4}$$

$$A_p = 1809.5574 \cdot in^2$$

(ACI 10.8.4 and 10.9.1)

$$A_{smin} := 0.01 \cdot 0.5 \cdot A_{p}$$

$$A_{smin} = 9.0478 \cdot in^2$$

$$A_{sprov} := NBpier A_{bpier}$$

$$A_{sprov} = 24 in^2$$

$$SteelAreaCheck := if(A_{SDROV} > A_{Smin}, "Okay", "No Good") SteelAreaCheck = "Okay"$$

NOTE: Anchor Bolts are not accounted for in reinforcement calculation and will provide additional reinforcement to satisfy minimum requirement of steel.

Job

180' Self-Supporting Lattice Tower - Wilton, CT

Project No. EMP-004

Page

**Description Foundation Analysis** 

Computed by MCD

Sheet 9 of 10 Date 03/29/18

**Evaluation Report** 

Checked by

Date

Bar Spacing In Pier:

$$B_{sPier} := \frac{d_{p} \cdot \pi}{NBnier} - d_{bpier}$$

 $B_{sPier} = 5.1552 \cdot in$ 

Diameter of Reinforcement Cage:

$$Diam_{cage} := d_p - 2 \cdot Cvr$$

$$Diam_{cage} = 42 \cdot in$$

Maximum Moment in Pier:

$$M_p := (S_p \cdot L_p) \cdot 1$$

$$M_p = 3588 \cdot \text{kips} \cdot \text{in}$$

Pier Check evaluated from outside program and results are listed below;

(defined variables)

$$(f_c \ f_v \ cl \ Spiral) = (3 \ 60 \ 4 \ 0)$$

The required input is column diameter in inches, number of reinforcing bars, bar size number, factored axial load in kips and moment in kip inches:

$$(D \underset{\sim}{N} \underset{\sim}{n} P_{u} M_{xu}) := (48 \ 24 \ 9 \ 543.6 \ 10857.6)$$

Clears any previous output:

$$\left( \Phi P_n \quad \Phi M_{xn} \quad f_{sp} \quad \rho \right) := (0 \quad 0 \quad 0 \quad 0)$$

$$\left( \Phi_{\text{Man}}^{\text{P}}, \Phi_{\text{Man}}^{\text{M}}, f_{\text{Sp}}, \rho \right) := \left. \Phi_{\text{I}}^{\text{I}} \left( D, N, n, P_{\text{U}}, M_{\text{XU}} \right)^{T} \right.$$

The Output is given as useable axial load in kips, moment capacity in kip inches, splicing stress in ksi, and reinforcement ratio:

$$\left( \Phi P_n \ \Phi M_{xn} \ f_{sp} \ \rho \right) = (1349.3431 \ 26951.1182 \ -60 \ 0.0133)$$

Column size and reinforcement may be changed to match capacity to the applied load.

 $AxialLoadCheck := if \Big( \varphi P_n \geq P_u, "Okay", "No Good" \Big)$ 

AxialLoadCheck = "Okay"

BendingCheck :=  $if(\phi M_{xn} \ge M_{xu}, "Okay", "No Good")$ 

BendingCheck = "Okay"

## **AECOM**

Page of Sheet 10 of 10 Job 180' Self-Supporting Lattice Tower - Wilton, CT Project No. **EMP-004** Date 03/29/18 **Description Foundation Analysis** Computed by MCD **Evaluation Report** Checked by Date

### **DEVELOPMENT LENGTH OF PIER REINFORCEMENT**

### **TENSION (ACI 12.2.3)**

Spacing and Cover:

 $Cvr = 3 \cdot in$ 

 $B_{sPier} = 5.1552 \cdot in$ 

Factors for development:

Reinforcement Location Factor

 $\alpha := 1.0$ 

**Coating Factor** 

 $\beta := 1.0$ 

Concrete strength Factor

 $\lambda := 1.0$ 

Reinforcement Size Factor

 $\chi = 1.0$ 

Spacing or Cover Dimension: 
$$c = if \left( Cvr < \frac{B_sPier}{2}, Cvr, \frac{B_sPier}{2} \right) c = 2.5776 in$$

Transverse Reinforcement:

As allowed by ACI 12.2.4

 $L_{dbt} := \frac{3}{40} \cdot \frac{fy}{\sqrt{f c psi}} \cdot \frac{o \cdot \beta \cdot \gamma \cdot \lambda}{c + k_{tr}} \cdot d_{bpier}$ 

 $L_{dbt} = 40.5561 \cdot in$ 

Minimum Development Length: (ACI 12.2.1)

Laborio = 12 in

Labt Check:= if (Ldbt ≥ Ldbmin, "Use L.dbt", "Use L.dbmin")

L<sub>dbtCheck</sub> = "Use L.dbt"

COMPRESSION: (ACI 12.3.2)

$$L_{dbc1} := \frac{.02 \cdot d_{bpier} \cdot fy}{\sqrt{f \circ psi}}$$

 $L_{dbc1} = 24.7132 \cdot in$ 

$$L_{\text{obstain}} = 0.0003 \cdot \frac{\text{in}^2}{\text{lb}} \cdot \left( d_{\text{bpier}} \cdot \text{fy} \right)$$

 $L_{dbmin} = 20.304 in$ 

$$L_{dbc} := if(L_{dbc1} \ge L_{dbmin}, L_{dbc1}, L_{dbmin})$$

 $L_{dbc} = 24.7132 \cdot in$ 

Available Length in Pier:

 $L_{pier} := L_p - 3 \cdot in$ 

 $L_{pier} = 75 \cdot in$ 

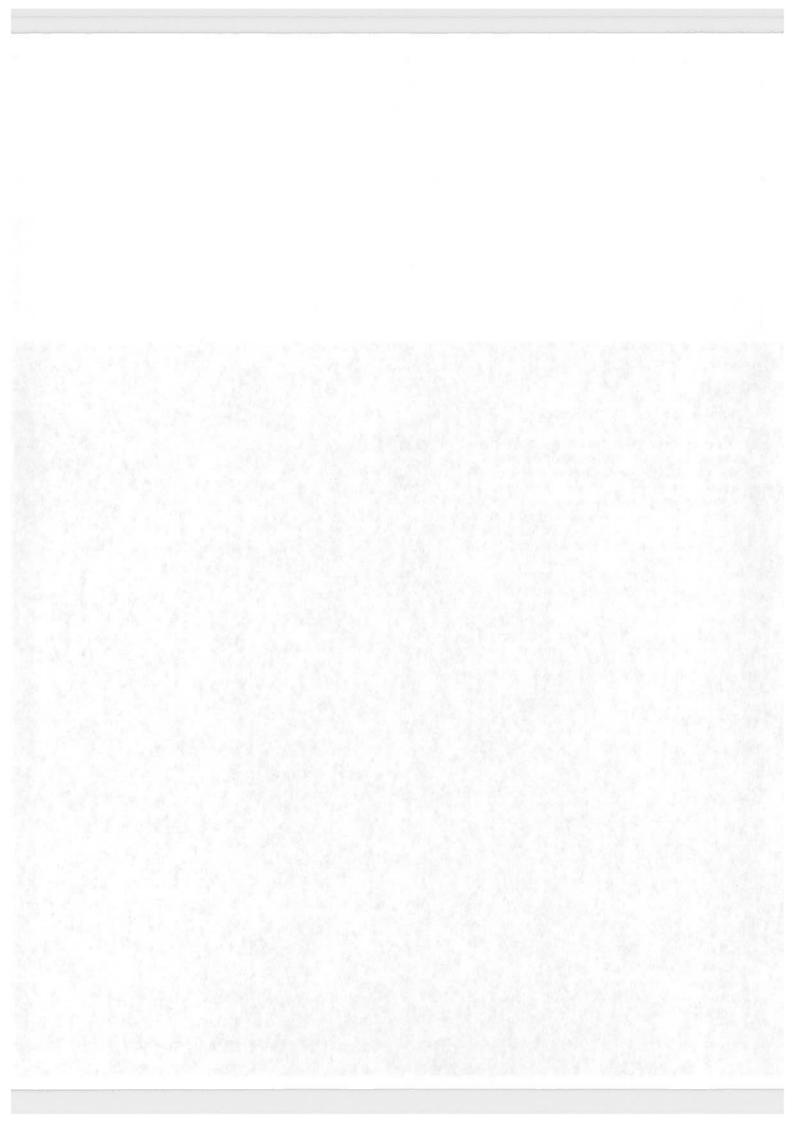
Available Length in Pad:

 $L_{\text{pad}} := T_{f} - 3 \cdot \text{in}$ 

 $L_{pad} = 33 \cdot in$ 

Available Length:

 $L_{total} := L_{pad} + L_{pier}$ 


 $L_{total} = 108 \cdot in$ 

L<sub>tension</sub> := if(L<sub>total</sub> > L<sub>dbt</sub>, "Okay", "No Good")

 $L_{tension} = "Okay"$ 

L<sub>compression</sub> := if(L<sub>total</sub> > L<sub>dbc</sub>, "Okay", "No Good")

L<sub>compression</sub> = "Okay"





# Radio Frequency Emissions Analysis Report

AT&T Existing Facility

**Site ID: CT2143** 

FA#: 10035018 USID: 5775

Gilberts Corner 46 Fenwood Lane Wilton, CT 06897

**April 19, 2018** 

**Centerline Communications Project Number: 950006-114** 

| Site Compliance Summary                                    |           |  |
|------------------------------------------------------------|-----------|--|
| Compliance Status:                                         | COMPLIANT |  |
| Site total MPE% of FCC general population allowable limit: | 15.90 %   |  |



April 19, 2018

AT&T Mobility – New England Attn: John Benedetto, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT2143 – Gilberts Corner

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT&T facility located at **46 Fenwood Lane, Wilton, CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ( $\mu$ W/cm2). The number of  $\mu$ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ( $\mu$ W/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467  $\mu$ W/cm² and 567  $\mu$ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000  $\mu$ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.



Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.



#### **CALCULATIONS**

Calculations were performed for the proposed AT&T Wireless antenna facility located at **46 Fenwood Lane, Wilton, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

| Technology | Frequency Band    | Channel Count | Transmit Power per<br>Channel (W) |
|------------|-------------------|---------------|-----------------------------------|
| UMTS       | 850 MHz           | 2             | 30                                |
| LTE        | 700 MHz (Band 14) | 4             | 40                                |
| LTE        | 2100 MHz (AWS)    | 4             | 30                                |
| LTE        | 850 MHz           | 2             | 40                                |
| LTE        | 700 MHz           | 2             | 40                                |
| LTE        | 2300 MHz (WCS)    | 4             | 30                                |
| LTE        | 1900 MHz (PCS)    | 4             | 40                                |

Table 1: Channel Data Table



The following antennas listed in *Table 2* were used in the modeling for transmission in the 700 MHz, 850 MHz, 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

|        |         |                      | Antenna    |
|--------|---------|----------------------|------------|
|        | Antenna |                      | Centerline |
| Sector | Number  | Antenna Make / Model | (ft)       |
| A      | 1       | Powerwave 7770       | 163        |
| A      | 2       | Kathrein 800-10965   | 163        |
| A      | 3       | Quintel QS66512-2    | 163        |
| В      | 1       | Powerwave 7770       | 163        |
| В      | 2       | Kathrein 800-10965   | 163        |
| В      | 3       | Quintel QS66512-2    | 163        |
| С      | 1       | Powerwave 7770       | 163        |
| С      | 2       | Kathrein 800-10965   | 163        |
| C      | 3       | Quintel QS66512-2    | 163        |

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.



## **RESULTS**

Per the calculations completed for the proposed AT&T configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

|         | A          |                  |                 |         |              |                                         |        |
|---------|------------|------------------|-----------------|---------|--------------|-----------------------------------------|--------|
| A       | Antenna    |                  |                 | CI I    | T 4 1 T X    |                                         |        |
| Antenna | Make /     | Б Б 1            | Antenna Gain    | Channel | Total TX     | EDD (W)                                 | MDE 0/ |
| ID      | Model      | Frequency Bands  | (dBd)           | Count   | Power (W)    | ERP (W)                                 | MPE %  |
| Antenna | Powerwave  |                  |                 |         |              |                                         |        |
| A1      | 7770       | 850 MHz          | 11.4            | 2       | 60           | 828.23                                  | 0.21   |
| Antenna | Kathrein   | 700 MHz /        |                 |         |              |                                         |        |
| A2      | 800-10965  | 2100 MHz (AWS)   | 12.65 / 15.95   | 8       | 280          | 7,667.84                                | 1.61   |
|         |            | 850 MHz /        |                 |         |              |                                         |        |
|         |            | 700 MHz /        |                 |         |              |                                         |        |
| Antenna | Quintel    | 2300 MHz (WCS) / | 11.35 / 10.85 / |         |              |                                         |        |
| A3      | QS66512-2  | 1900 MHz (PCS)   | 14.85 / 13.85   | 12      | 440          | 9,613.10                                | 1.69   |
|         |            |                  |                 |         | Sector A Com | posite MPE%                             | 3.51   |
| Antenna | Powerwave  |                  |                 |         |              |                                         |        |
| B1      | 7770       | 850 MHz          | 11.4            | 2       | 60           | 828.23                                  | 0.21   |
| Antenna | Kathrein   | 700 MHz /        |                 |         |              |                                         |        |
| B2      | 800-10965  | 2100 MHz (AWS)   | 12.65 / 15.95   | 8       | 280          | 7,667.84                                | 1.61   |
|         |            | 850 MHz /        |                 |         |              | ,                                       |        |
|         |            | 700 MHz /        |                 |         |              |                                         |        |
| Antenna | Ouintel    | 2300 MHz (WCS) / | 11.35 / 10.85 / |         |              |                                         |        |
| В3      | OS66512-2  | 1900 MHz (PCS)   | 14.85 / 13.85   | 12      | 440          | 9,613,10                                | 1.69   |
|         |            |                  |                 |         | Sector B Com | posite MPE%                             | 3,51   |
| Antenna | Powerwave  |                  |                 |         |              |                                         |        |
| C1      | 7770       | 850 MHz          | 11.4            | 2       | 60           | 828.23                                  | 0.21   |
| Antenna | Kathrein   | 700 MHz /        |                 |         |              | 020120                                  |        |
| C2      | 800-10965  | 2100 MHz (AWS)   | 12.65 / 15.95   | 8       | 280          | 7,667.84                                | 1.61   |
| 32      | 222 207 00 | 850 MHz /        | 10170           |         |              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1.01   |
|         |            | 700 MHz /        |                 |         |              |                                         |        |
| Antenna | Quintel    | 2300 MHz (WCS) / | 11.35 / 10.85 / |         |              |                                         |        |
| C3      | OS66512-2  | 1900 MHz (PCS)   | 14.85 / 13.85   | 12      | 440          | 9.613.10                                | 1.69   |
|         |            |                  |                 |         | Sector C Com | - 4                                     | 3,51   |
|         |            |                  |                 |         | Sector C Com | posite WII E/0                          | 3.31   |

Table 3: AT&T Emissions Levels



The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each AT&T Sector as well as the composite MPE value for the site.

| Site Composite MPE%     |         |  |  |  |
|-------------------------|---------|--|--|--|
| Carrier                 | MPE%    |  |  |  |
| AT&T – Max Sector Value | 3.51 %  |  |  |  |
| CL&P                    | 0.21 %  |  |  |  |
| Sprint                  | 1.49 %  |  |  |  |
| T-Mobile                | 3.22 %  |  |  |  |
| State Police            | 3.61 %  |  |  |  |
| NEU                     | 0.49 %  |  |  |  |
| WPD                     | 0.23 %  |  |  |  |
| DEA                     | 1.28 %  |  |  |  |
| WTR                     | 0.11 %  |  |  |  |
| USS                     | 1.15 %  |  |  |  |
| FCP                     | 0.27 %  |  |  |  |
| DHS                     | 0.32 %  |  |  |  |
| DOE                     | 0.01 %  |  |  |  |
| Site Total MPE %:       | 15.90 % |  |  |  |

Table 4: All Carrier MPE Contributions

| AT&T Sector A Total: | 3.51 %  |
|----------------------|---------|
| AT&T Sector B Total: | 3.51 %  |
| AT&T Sector C Total: | 3.51 %  |
|                      |         |
| Site Total:          | 15.90 % |

Table 5: Site MPE Summary



FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table* 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT&T sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

| AT&T _ Frequency Band / Technology<br>Max Power Values<br>(Per Sector) | #<br>Channels | Watts ERP<br>(Per Channel) | Height (feet) | Total Power Density (µW/cm²) | Frequency<br>(MHz) | Allowable<br>MPE<br>(µW/cm²) | Calculated<br>% MPE |
|------------------------------------------------------------------------|---------------|----------------------------|---------------|------------------------------|--------------------|------------------------------|---------------------|
| AT&T 850 MHz UMTS (Antenna 1)                                          | 2             | 414.12                     | 163           | 1.21                         | 850 MHz            | 567                          | 0.21%               |
| AT&T 700 MHz LTE (Antenna 2)                                           | 4             | 736.31                     | 163           | 4.30                         | 700 MHz            | 467                          | 0.92%               |
| AT&T 2100 MHz (AWS) LTE (Antenna 2)                                    | 4             | 1,180.65                   | 163           | 6.89                         | 2100 MHz (AWS)     | 1000                         | 0.69%               |
| AT&T 850 MHz LTE (Antenna 3)                                           | 2             | 545.83                     | 163           | 1.59                         | 850 MHz            | 567                          | 0.28%               |
| AT&T 700 MHz LTE (Antenna 3)                                           | 2             | 486.47                     | 163           | 1.42                         | 700 MHz            | 467                          | 0.30%               |
| AT&T 2300 MHz (WCS) LTE (Antenna 3)                                    | 4             | 916.48                     | 163           | 5.35                         | 2300 MHz (WCS)     | 1000                         | 0.53%               |
| AT&T 1900 MHz (PCS) LTE (Antenna 3)                                    | 4             | 970.64                     | 163           | 5.66                         | 1900 MHz (PCS)     | 1000                         | 0.57%               |
|                                                                        |               |                            |               |                              |                    | Total:                       | 3.51%               |

Table 6: AT&T Maximum Sector MPE Power Values



### **Summary**

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

| AT&T Sector             | Power Density Value (%) |
|-------------------------|-------------------------|
| Sector A:               | 3.51 %                  |
| Sector B:               | 3.51 %                  |
| Sector C:               | 3.51 %                  |
| AT&T Maximum Total      | 3.51 %                  |
| (per sector):           | 3.31 %                  |
|                         |                         |
| Site Total:             | 15.90 %                 |
|                         |                         |
| Site Compliance Status: | COMPLIANT               |

The anticipated composite MPE value for this site assuming all carriers present is **15.90** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

**Centerline Communications, LLC** 

95 Ryan Drive, Suite 1 Raynham, MA 02767

| 9590 9402 1864 6104 9435 52  2. Article Number ( <i>Transfer from service label</i> )  701L 3010 000 7829 1377  PS Form 3811, July 2015 PSN 7530-02-000-9053  SENDER: COMPLETE THIS SECTION  Complete items 1, 2, and 3.  Print your name and address on the reverse so that we can return the card to you.  Attach this card to the back of the mailpiece, or on the front if space permits.  Article Addressed to:  D. Is de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Iail Restricted Delivery       □ Return Receipt for Merchandise         Delivery       □ Signature Confirmation™                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ■ Complete items 1, 2, and 3.  ■ Print your name and address on the reverse so that we can return the card to you.  ■ Attach this card to the back of the mailpiece, or on the front if space permits.  1. Article Addressed to:  Robert Rost, Chab Building Official  Town of Wilton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| wilton, CT 06897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ture    Agent   Addressee     Addressee     Addressee     Addressee     Addressee     Addressee     Addressee     Addressee     Addressee     Addressee     Addressee     Addressee     Addressee     Addressee     Addressee     Addressee     Addressee     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Agent     Ag |
| 9590 9402 1864 6104 9435 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7016 3010 0000 7829 1353 Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insured National Control of the Insur | Delivery Delivery Restricted Delivery    Signature Confirmation   Signature Confirmation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| SENDER: COMPLETE THIS SECTION  Complete items 1, 2, and 3.  Print your name and address on the reverse so that we can return the card to you.  Attach this card to the back of the mailpiece, or on the front if space permits.  Article Addressed to:  The Homanie Lynne Vandarshu Fight Selections, Town of Wilton Wilton Town Hall  238 Ambury Read  Wilton, CT 0689 7 | A. Signature  X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9590 9402 1864 6104 9435 07  2. Article Number (Transfer from service label) 7016 3010 0000 7829 1346                                                                                                                                                                                                                                                                     | 3. Service Type ☐ Priority Mall Express®☐ Adult Signature Restricted Delivery☐ Certified Mail®☐ ☐ Registered Mail Restricted Delivery☐ Collect on Delivery☐ Collect on Delivery☐ Collect on Delivery☐ Restricted Delivery☐ Collect on Delivery☐ Restricted Delivery☐ Insured Mail☐ Restricted Delivery☐ Signature Confirmation Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Signature Confirmation Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Registered Mail Restricted Delivery☐ Registered Mail Restricted Delivery☐ Registered Mail Restricted Delivery☐ Registered Mail Restricted Delivery☐ Registered Mail Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restricted Delivery☐ Restri |
| PS Form 3811, July 2015 PSN 7530-02-000-9053                                                                                                                                                                                                                                                                                                                              | Domestic Return Receipt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SENDER: COMPLETE THIS SECTION  Complete items 1, 2, and 3.  Print your name and address on the reverse so that we can return the card to you.  Attach this card to the back of the mailpiece, or on the front if space permits.  Article Addressed to:  Twothy Buntay, CAZED  Zonng Entercement officer  Town of Wilton  R38 Danbury, Road  Wilton, CT 06897              | A. Signature  A. Signature  A. Signature  Addressee  B. Received by (Printed Name)  C. Date of Delivery  D. Is delivery address different from item 1? Yes  If YES, enter delivery address below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9590 9402 1864 6104 9435 45  2. Article Number (Transfer from service label) 7016 3010 0000 7829 1360 -                                                                                                                                                                                                                                                                   | 3. Service Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PS Form 3811, July 2015 PSN 7530-02-000-9053                                                                                                                                                                                                                                                                                                                              | (over \$500)  Domestic Return Receipt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |