

December \_\_\_\_\_, 2016

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Street New Britain, CT 06051

Regarding: Notice of Exempt Modification – Remote Radio Head

Swap

Property Address: 23 Kelleher Court Wethersfield, CT 01609

AT&T Site: CT5122 – Wethersfield North

#### Dear Ms. Bachman:

AT&T currently maintains a wireless telecommunications facility on an existing 179-foot monopole at the above-referenced address, latitude 41.7153919 longitude -72.6905989. Said monopole is owned by the Town of Wethersfield. The existing equipment shelter measures approximately 432 square feet.

AT&T desires to modify its existing telecommunications facility by swapping three (3) remote-radio heads ("RRHs"). The centerline height of said antennas is and will remain at 140 feet. Antennas are mounted utilizing a sector frame.

Please accept this application as notification pursuant to R.C.S.A. §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j-72 (b)(2). In accordance with R.C.S.A. §16-50j-73, a copy of this letter is being sent to the Town Manager of Wethersfield, Jeff Bridges, as well as to the Town Communications Consultant who manages the monopole, John Eichner. As stated previously the Town is the landowner and monopole owner.

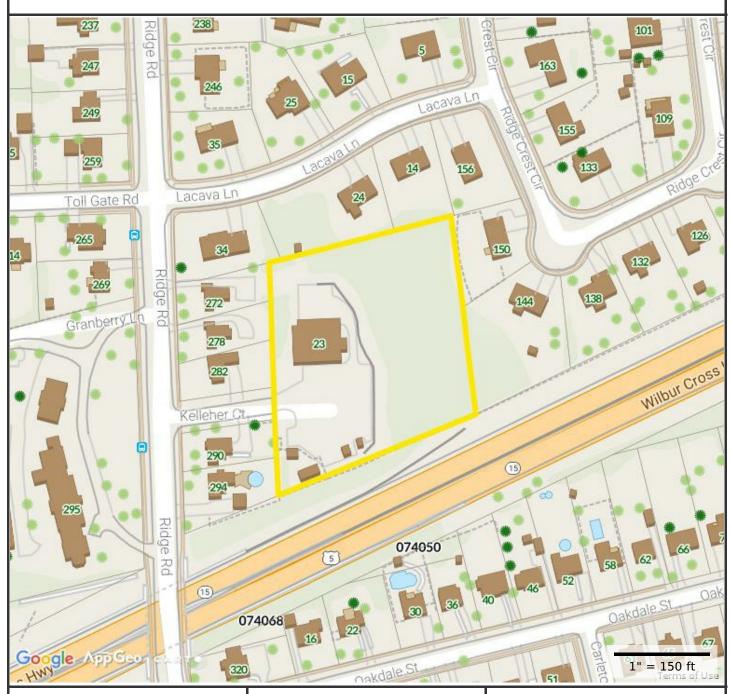
The planned modifications to AT&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72 (b)(2). Specifically:

- 1. The planned modification will not result in an increase in the height of the existing structure. The antennas to be swapped will be installed at the existing height of 140 feet on the 179 foot monopole.
- 2. The proposed modifications will not involve any changes to ground-mounted equipment, and therefore will not require an extension of the site boundary.
- 3. The proposed modification will not increase the noise level at the facility by six decibel or more, or to levels that exceed state and local criteria.

- 4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above Federal Communications Commission (FCC) safety standard. An RF emissions calculation (attached) for AT&T's modified facility is herein provided.
- 5. The proposed modifications will not case a change or alteration in the physical or environmental characteristics of the site.
- 6. The water tank and its foundation can support AT&T's proposed modifications (please see attached structural analysis completed by Destek Engineering, LLC dated November 29, 2016).

For the foregoing reasons, AT&T respectfully requests that the proposed remote radio head swap be allowed within the exempt modifications under R.C.S.A. §16-50j-72 (b)(2).

Sincerely,


Sarah Snell

Sarah Snell Site Acquisition Specialist

cc: Jeff Bridges, Town Manager of Wethersfield (Municipality, Landowner & Monopole Owner)

John Eichner, Town Communications Consultant (Manages Monopole)

#### 23 Kelleher Ct. Wethersfield



#### **Property Information**

Property 073060

Location23 KELLEHER CTOwnerWETHERSFIELD TOWN OF



# MAP FOR REFERENCE ONLY NOT A LEGAL DOCUMENT

Town of Wethersfield, CT makes no claims and no warranties, expressed or implied, concerning the validity or accuracy of the GIS data presented on this map.

Parcels updated 2/3/2016 Properties updated 8/10/2016

# PROJECT INFORMATION

SCOPE OF WORK: • REMOVE 1 RRH PER SECTOR (TOTAL OF 3)

• ADD 1 RRH PER SECTOR (TOTAL OF 3 NEW RRHs)

SITE ADDRESS: 23 KELLEHER CT

WETHERSFIELD, CT 06109

41'-42'-55.41084"N LATITUDE: 41.7153919 LONGITUDE: 72'-41'-2615604"W -72.6905989

25877 USID:

TOWN OF WETHERSFIELD TOWER OWNER:

MONOPOLE/OUTDOOR EQUIPMENT TYPE OF SITE: STRUCTURE HEIGHT: 179'-0"± (TOP OF MONOPOLE)

RAD CENTER: 140'-0"±

**CURRENT USE:** UNMANNED WIRELESS TELECOMMUNICATIONS FACILITY PROPOSED USE: UNMANNED WIRELESS TELECOMMUNICATIONS FACILITY

#### **DRAWING INDEX** REV. T-1TITLE SHEET 0 GN-1GROUNDING & GENERAL NOTES 0 SITE PLAN 0 A-10 A-2EQUIPMENT LAYOUTS A-3ANTENNA LAYOUTS & ELEVATIONS 0 A-4DETAILS ANTENNA MOUNTING DETAILS G-1GROUNDING, ONE-LINE DIAGRAM & DETAILS 0

# **APPROVALS**

THE FOLLOWING PARTIES HEREBY APPROVE AND ACCEPT THESE DOCUMENTS AND AUTHORIZE THE SUBCONTRACTOR TO PROCEED WITH THE CONSTRUCTION DESCRIBED HEREIN, ALL DOCUMENTS ARE SUBJECT TO REVIEW BY THE LOCAL BUILDING DEPARTMENT AMD MAY IMPOSE CHANGES OR SITE MODIFICATIONS.

| DISCIPLINE:           | NAME: | DATE: |
|-----------------------|-------|-------|
| SITE ACQUISITION:     |       |       |
| CONSTRUCTION MANAGER: |       |       |
| AT&T PROJECT MANAGER: |       |       |





### **SITE NUMBER: CT5122** SITE NAME: WETHERSFIELD NORTH

23 KELLEHER CT. WETHERSFIELD, CT 06109 HARTFORD COUNTY



FA CODE: 10092829 SITE NUMBER: CT5122 SITE NAME: WETHERSFIELD NORTH PROJECT: LTE BWE

# **VICINITY MAP**

FROM ROCKY HILL, HEAD SOUTHWEST ON CONCRIB LN. TURN RIGHT ONTO SOLO DR. TURN RIGHT ONTO CT 160 E. TURN LEFT ONTO GILBERT AVE. SLIGHT RIGHT ONTO MAPLE ST. TURN LEFT ONTO GRISWOLD RD. TURN LEFT ONTO PROSPECT ST. FOLLOW RIDGE RD TO KELLEHER CT. SITE WILL BE ON RIGHT.



550 COCHITUATE ROAD

FRAMINGHAM, MA 01701

# **PROJECT TEAM**

### **CLIENT REPRESENTATIVE**

EMPIRE TELECOM ADDRESS: 16 ESQUIRE ROAD BILLERICA, MA 01821

**CONTACT:** DAVID COOPER PHONE: 617-639-4908

EMAIL: dcooper@empiretelecomm.com

#### SITE ACQUISITION:

EMPIRE TELECOM COMPANY: ADDRESS: 16 ESQUIRE ROAD BILLERICA, MA 01821 CONTACT: DAVID COOPER

PHONE: 617-639-4908 EMAIL: dcooper@empiretelecomm.com

#### **ZONING:**

EMPIRE TELECOM COMPANY: ADDRESS: 16 ESQUIRE ROAD BILLERICA, MA 01821 DAVID COOPER CONTACT: PHONE: 617-639-4908

EMAIL: dcooper@empiretelecomm.com

### **ENGINEERING:**

COMPANY: COM-EX CONSULTANTS, LLC ADDRESS:

115 ROUTE 46 SUITE E39

MOUNTAIN LAKES, NJ 07046 NICHOLAS D. BARILE, P.E.

CONTACT: 862-209-4300 PHONE:

EMAIL: nbarile@comexconsultants.com

### **RF ENGINEER:**

EMAIL:

**COMPANY:** AT&T MOBILITY - NEW ENGLAND

ADDRESS: 550 COCHITUATE ROAD

SUITE 550 13 & 14 FRAMINGHAM, MA 01701 CAMERON SYME

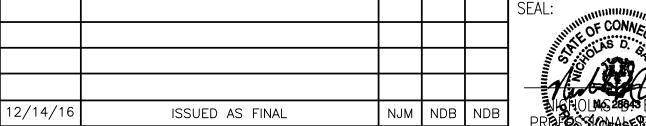
**CONTACT:** PHONE: 508-596-7146 EMAIL: cs6970@att.com

#### **CONSTRUCTION MANAGEMENT:**

EMPIRE TELECOM **COMPANY:** ADDRESS: 16 ESQUIRE ROAD BILLERICA, MA 01821 CONTACT: GRZEGORZ "GREG" DORMAN

PHONE: 484-683-1750

gdorman@empiretelecomm.com


# **GENERAL NOTES**

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY, AND COPYRIGHTED WORK OF AT&T. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

- 2. THE FACILITY IS AN UNMANNED PRIVATE AND SECURED EQUIPMENT INSTALLATION. IT IS ONLY ACCESSED BY TRAINED TECHNICIANS FOR PERIODIC ROUTINE MAINTENANCE AND THEREFORE DOES NOT REQUIRE ANY WATER OR SANITARY SEWER SERVICE. THE FACILITY IS NOT GOVERNED BY REGULATIONS REQUIRING PUBLIC ACCESS PER ADA REQUIREMENTS.
- CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE AT&T REPRESENTATIVE IN WRITING OF DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.



CONNECTICUT LAW REQUIRES TWO WORKING DAYS NOTICE PRIOR TO ANY EARTH MOVING ACTIVITIES BY CALLING 800-922-4455 OR DIAL 811



DRAWN BY: PAV

REVISIONS

DESIGNED BY: NJM

DATE

SCALE: AS SHOWN



AT&T

DRAWING TITLE:

TITLE SHEET

| JOB NUMBER | DRAWING NUMBER | REV |
|------------|----------------|-----|
| 16063-EMP  | T-1            | 0   |

### GROUNDING NOTES:

- 1. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ), THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- 2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR NEW GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS. TESTS SHALL BE PERFORMED IN ACCORDANCE WITH 25471-000-3PS-EG00-0001, DESIGN & TESTING OF FACILITY GROUNDING FOR CELL SITES.
- 4. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 5. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS: 2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 6. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 7. APPROVED ANTIOXIDANT COATINGS (I.E., CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED WITH STAINLESS STEEL HARDWARE TO THE BRIDGE AND THE TOWER GROUND BAR.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 11. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH 6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 12. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G., NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 13. ALL TOWER GROUNDING SYSTEMS SHALL COMPLY WITH THE REQUIREMENTS OF ANSI/TIA 222. FOR TOWERS BEING BUILT TO REV-G OF THE STANDARD, THE WIRE SIZE OF THE BURIED GROUND RING AND CONNECTIONS BETWEEN THE TOWER AND THE BURIED GROUND RING SHALL BE CHANGED FROM 2 AWG TO 2/0 AWG. IN ADDITION, THE MINIMUM LENGTH OF THE GROUND RODS SHALL BE INCREASED FROM EIGHT FEET (8') TO TEN FEET (10').
- 14. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE 1/2" OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID TINNED COPPER GROUND WIRE, PER NEC 250.50.

### GENERAL NOTES:

1. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR - EMPIRE TELECOM

SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION)

OWNER - AT&T MOBILITY OEM - ORIGINAL EQUIPMENT MANUFACTURER

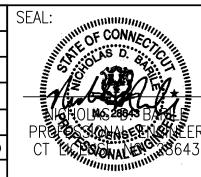
- 2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR (EMPIRE TELECOM).
- 3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 4. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.
- 5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 6. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 7. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR.
- 8. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR. ROUTING OF TRENCHING SHALL BE APPROVED BY CONTRACTOR
- 9. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 10. SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OFF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 11. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 12. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.
- 13. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS UNLESS OTHERWISE SPECIFIED. ALL CONCRETING WORK SHALL BE DONE IN ACCORDANCE WITH ACI 318 CODE REQUIREMENTS.
- 14. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED. FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fv=36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCH UP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS FRECTED USING A COMPATIBLE ZINC RICH.
- 15. CONSTRUCTION SHALL COMPLY WITH SPECIFICATION 25741-000-3APS-A00Z-00002, "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T MOBILITY SITES.'
- 16. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 17. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK MAY NEED TO BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT.
- 18. SINCE THE CELL SITE MAY BE ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE REQUIRED TO BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.

- 19. SUBCONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE NATIONAL, STATE, AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORITY HAVING JURISDICTION (AHJ) FOR THE LOCATION. THE EDITION OF THE AHJ ADOPTED CODES AND STANDARDS IN EFFECT ON THE DATE OF CONTRACT AWARD SHALL GOVERN THE DESIGN.
  - CONNECTICUT BUILDING CODE: CBC 2016 WITH LOCAL & COUNTY AMENDMENTS
  - NATIONAL ELECTRICAL CODE: NEC 2011 WITH LOCAL & COUNTY AMENDMENTS
  - FIRE/LIFE SAFETY CODE: NFPA-101 2009 WITH LOCAL & COUNTY AMENDMENTS
- 20. SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE FOLLOWING STANDARDS:
- AMERICAN CONCRETE INSTITUTE (ACI) 318, BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE
- AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC), MANUAL OF STEEL CONSTRUCTION, THIRTEENTH EDITION
- AMERICAN SOCIETY OF TESTING OF MATERIALS, ASTM
- TELECOMMUNICATIONS INDUSTRY ASSOCIATION (ANSI/TIA-222-G-1), STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWER AND ANTENNA SUPPORTING STRUCTURES:
- TIA 607, COMMERCIAL BUILDING GROUNDING AND BONDING REQUIREMENTS FOR TELECOMMUNICATIONS
- OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION. OSHA
- INSTITUTE FOR ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) 81, GUIDE FOR MEASURING EARTH RESISTIVELY, GROUND IMPEDANCE, AND EARTH SURFACE POTENTIALS OF A GROUND SYSTEM IEEE 1100 (1999) RECOMMENDED PRACTICE FOR POWERING AND GROUNDING OF ELECTRONIC EQUIPMENT
- TELCORDIA GR-1503. COAXIAL CABLE CONNECTIONS
- 21. FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS REGARDING MATERIAL, METHODS OF CONSTRUCTION, OR OTHER REQUIREMENTS, THE MOST RESTRICTIVE REQUIREMENT SHALL GOVERN. WHERE THERE IS CONFLICT BETWEEN A GENERAL REQUIREMENT AND A SPECIFIC REQUIREMENT, THE SPECIFIC REQUIREMENT SHALL GOVERN.
- 22. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA AND SUBMIT TO THE ENGINEER ANY DISCREPANCIES FROM THE DRAWINGS.



FAX: 862.209.4301



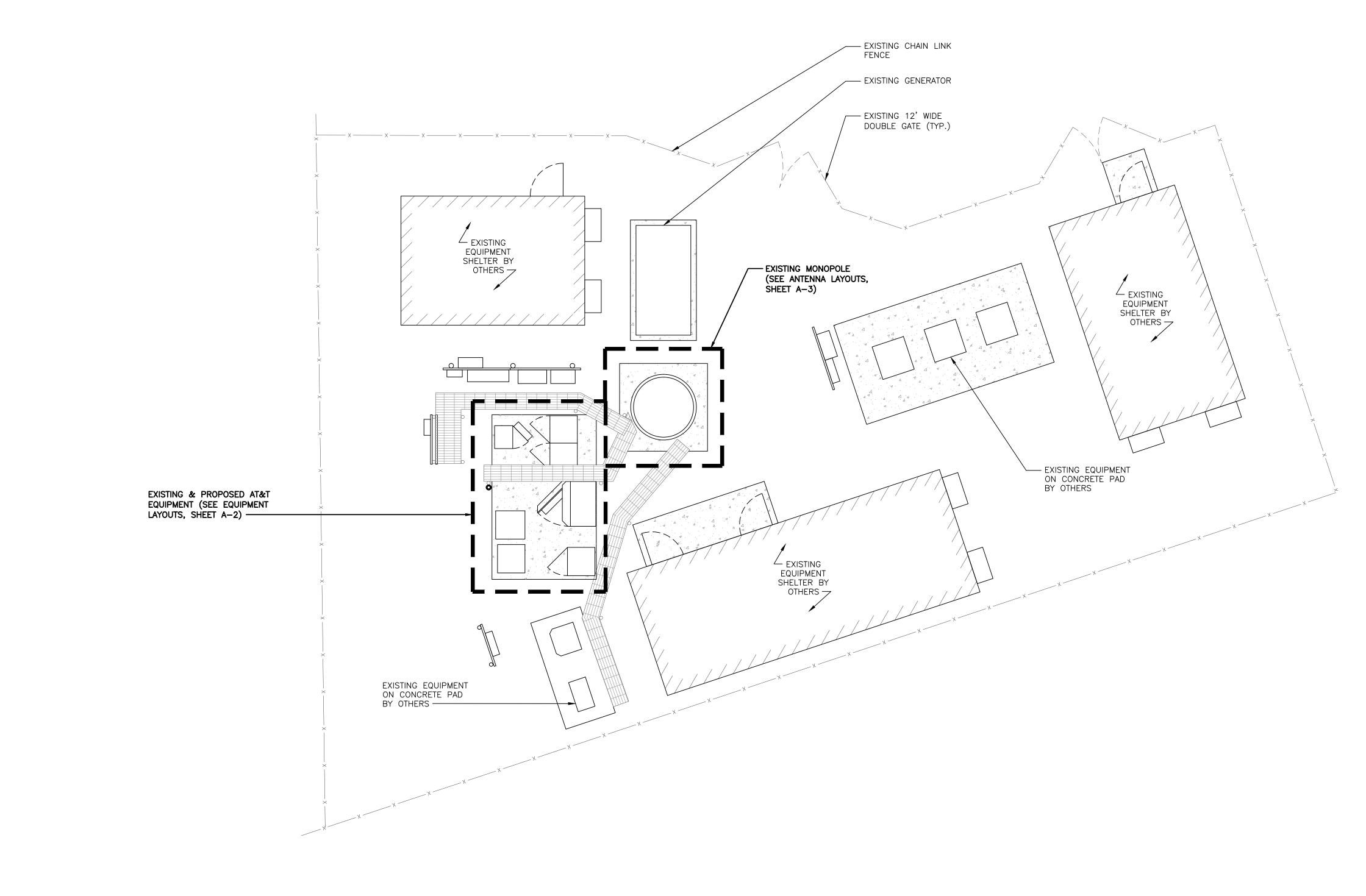

### **SITE NUMBER: CT5122** SITE NAME: WETHERSFIELD NORTH

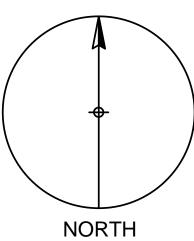
23 KELLEHER CT. WETHERSFIELD, CT 06109 HARTFORD COUNTY



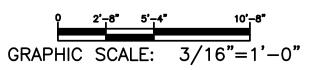
FRAMINGHAM, MA 01701

|     |             |      |                   |    |        |        |       | ا ا |
|-----|-------------|------|-------------------|----|--------|--------|-------|-----|
|     |             |      |                   |    |        |        |       |     |
|     |             |      |                   |    |        |        |       |     |
|     |             |      |                   |    |        |        |       |     |
| 0   | 12/14/16    |      | ISSUED AS FINAL N |    |        |        |       |     |
| NO. | DATE        |      | REVISIONS         |    | BY     | CHK    | APP'D |     |
| 5   | SCALE: AS S | HOMN | DESIGNED BY: NJM  | DF | rawn e | BY: PA | V     |     |
|     |             |      |                   |    |        |        |       |     |





| OF CONA   | ECTIC<br>BASS |             |   |
|-----------|---------------|-------------|---|
|           | D N           | 1 E         | _ |
| LM65 2864 | s BAH         |             |   |
| yort y    | 5000<br>EVE   | EEF<br>8643 | ? |

AT&T


DRAWING TITLE: GROUNDING & GENERAL NOTES

JOB NUMBER DRAWING NUMBER 16063-EMP GN-1









NOTE:
CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA AND SUBMIT TO THE ENGINEER ANY DISCREPANCIES FROM THE DRAWINGS.

AT&T

SITE PLAN

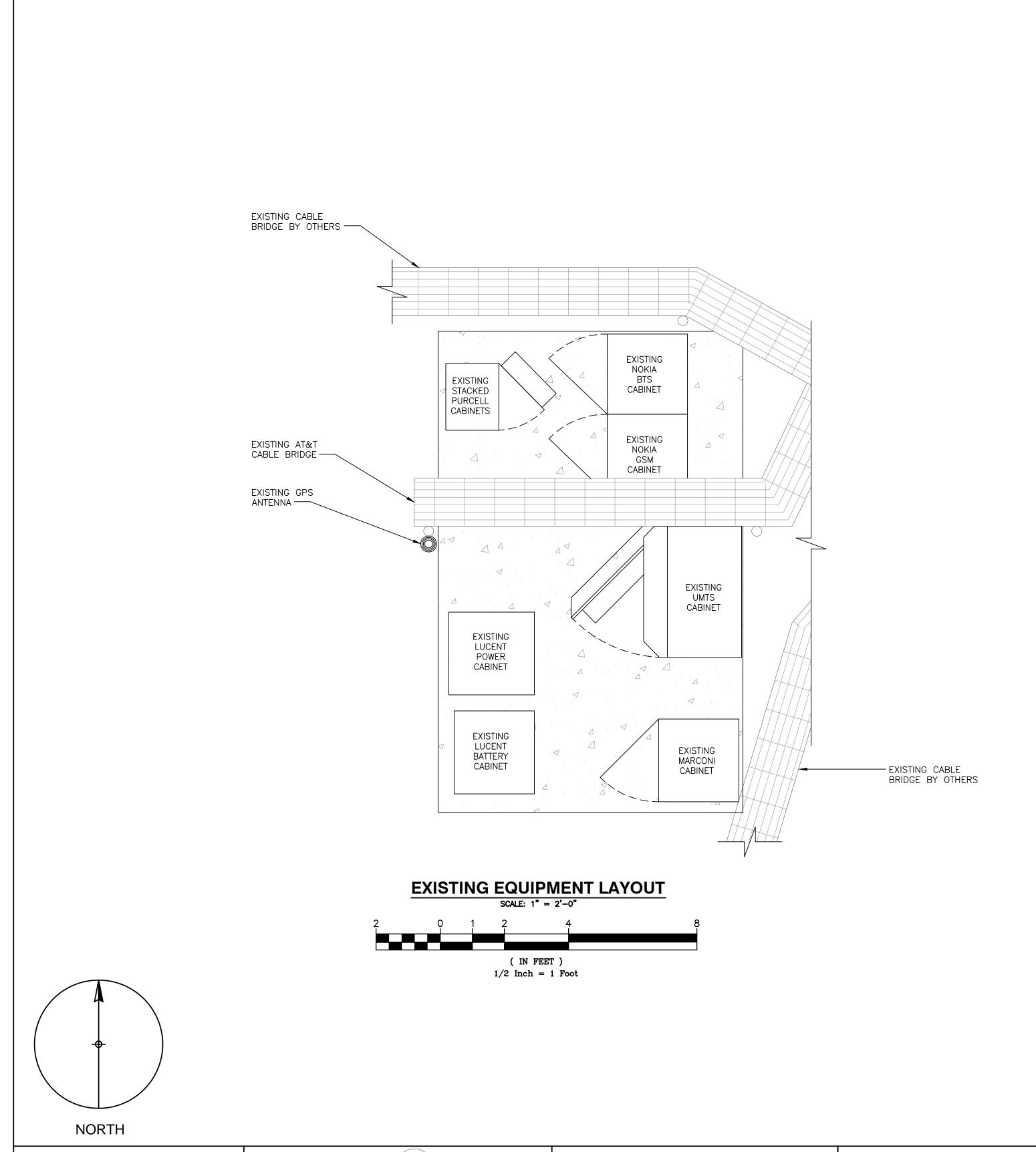


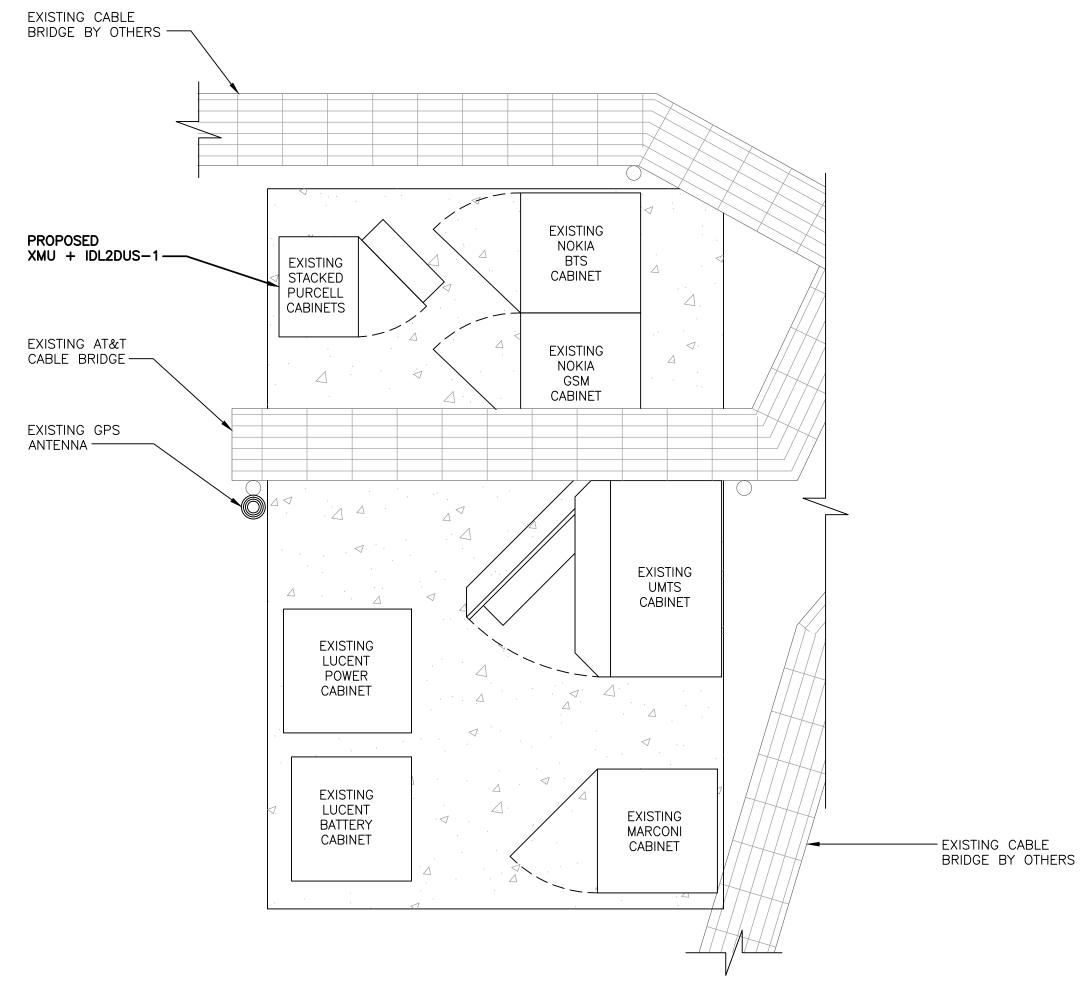


# **SITE NUMBER: CT5122** SITE NAME: WETHERSFIELD NORTH

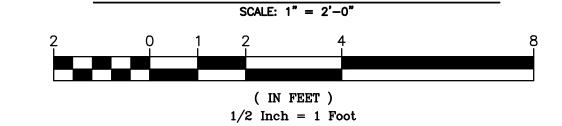
23 KELLEHER CT. WETHERSFIELD, CT 06109 HARTFORD COUNTY

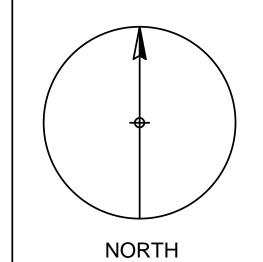



|    |    |      |      |    |    |      |                 |    |       |     |       |    |     |     |     |    |       |   |  | SE |
|----|----|------|------|----|----|------|-----------------|----|-------|-----|-------|----|-----|-----|-----|----|-------|---|--|----|
|    |    |      |      |    |    |      |                 |    |       |     |       |    |     |     |     |    |       |   |  |    |
|    |    |      |      |    |    |      |                 |    |       |     |       |    |     |     |     |    |       |   |  |    |
|    |    |      |      |    |    |      |                 |    |       |     |       |    |     |     |     |    |       |   |  | _  |
| 2, | 12 | 2/1  | 4/   | 16 |    |      | ISSUED AS FINAL |    |       |     | NJM   |    | NDB | ND  | В   |    |       |   |  |    |
|    |    | DA   | ΛTE  |    |    |      | REVISIONS       |    |       |     | BY    |    | CHK | APF | 'D  |    |       |   |  |    |
| ΑL | CA | ALE: | : AS | S  | SH | HOWN |                 | DE | SIGNE | D B | Y: No | JM |     | DR  | AWN | B, | Y: PA | V |  |    |




|           |                                 | _ |
|-----------|---------------------------------|---|
| IES FROM  | THE DRAWINGS.                   |   |
| AREA AND  | SUBMIT TO THE ENGINEER ANY      |   |
| TIND/ OIL | INSTALL THOR OF ANY WORK IN THE |   |


| WING | TITLE: |  |
|------|--------|--|
|      |        |  |


| JOB NUMBER | DRAWING NUMBER | RE |
|------------|----------------|----|
| 16063-EMP  | A-1            | 0  |





# PROPOSED EQUIPMENT LAYOUT





Complete EX
Consultants

115 ROUTE 46
SUITE E39

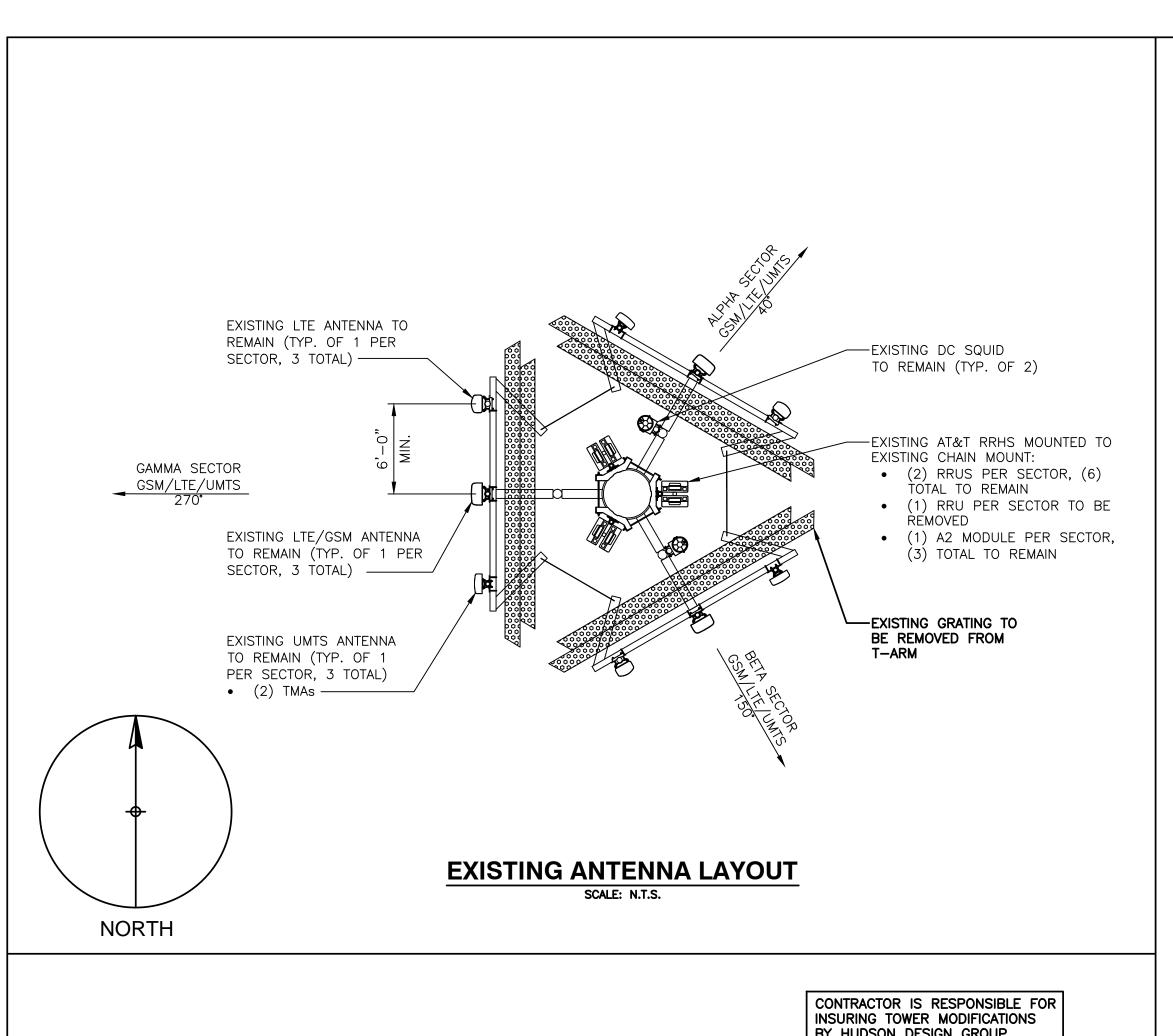
MOUNTAIN LAKES, NJ 07046
PHONE: 862.209.4300
FAX: 862.209.4301

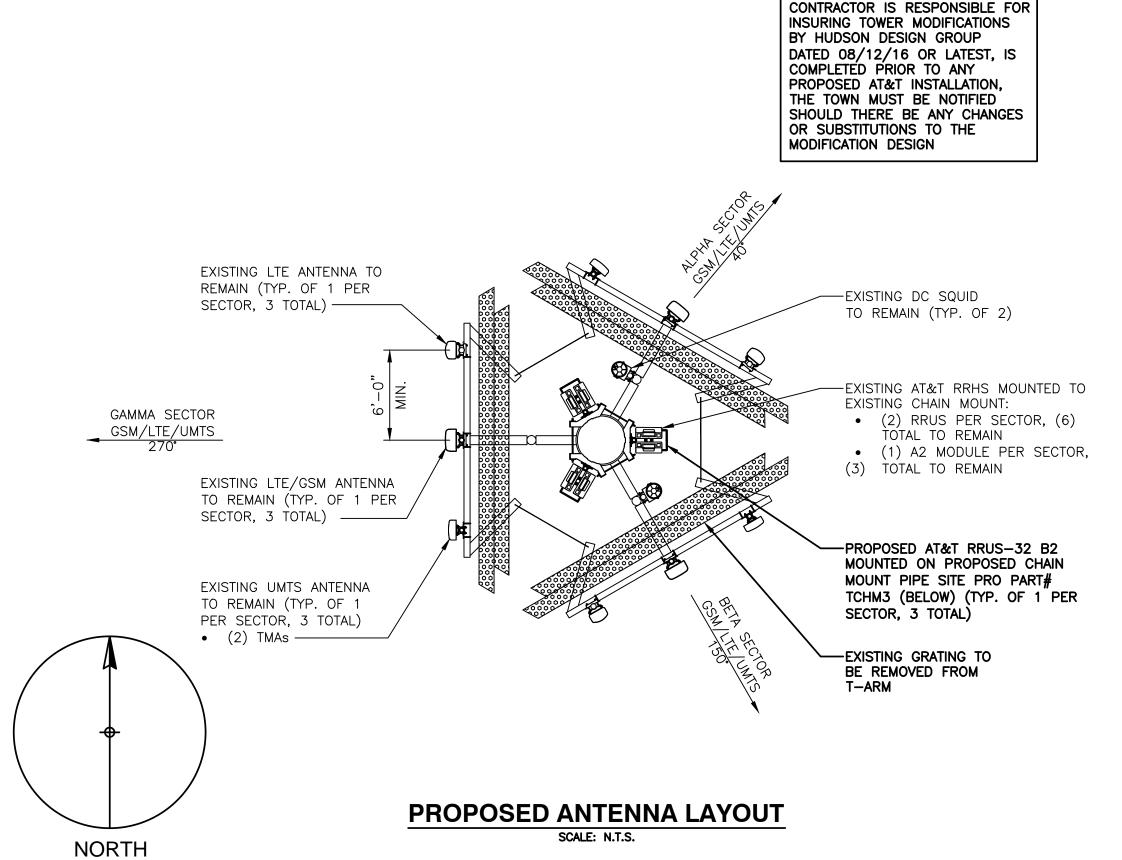


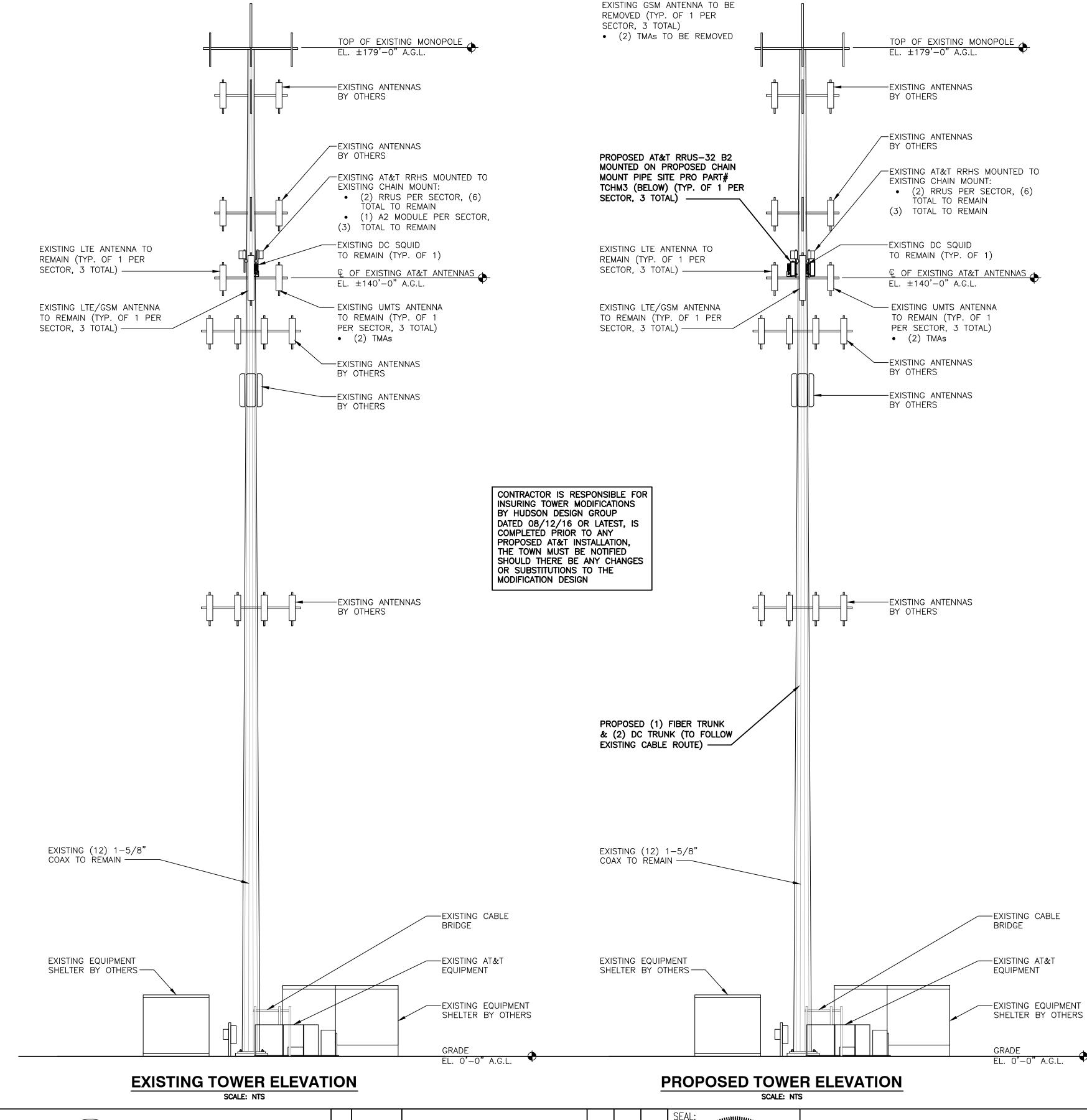
# SITE NUMBER: CT5122 SITE NAME: WETHERSFIELD NORTH

23 KELLEHER CT. WETHERSFIELD, CT 06109 HARTFORD COUNTY




|     |             |      |                  |    |        |        |       | SEAL:            |
|-----|-------------|------|------------------|----|--------|--------|-------|------------------|
|     |             |      |                  |    |        |        |       | uni              |
|     |             |      |                  |    |        |        |       | Innui,           |
|     |             |      |                  |    |        |        |       | - <del>- 1</del> |
| 0   | 12/14/16    |      | ISSUED AS FINAL  |    | NJM    | NDB    | NDB   | ANG<br>PROF      |
| NO. | DATE        |      | REVISIONS        |    | BY     | СНК    | APP'D | CT               |
| 5   | SCALE: AS S | HOWN | DESIGNED BY: NJM | DF | RAWN E | 3Y: PA | V     |                  |


| SEAL:  | annimmun.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HIII   | OF CONNECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mming. | OF CONVECTION OF |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | IOLING SERVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PROF   | PONTAPONIANA ELB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CT     | 2006 NO. 28643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3. 2., | William William                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |


DRAWING TITLE:

| AT&       | τT      |   |
|-----------|---------|---|
| EQUIPMENT | LAYOUTS | - |

| EQUIPMEN   | NT LAYOUTS     |     |
|------------|----------------|-----|
| JOB NUMBER | DRAWING NUMBER | REV |
| 16063-EMP  | A-2            | 0   |











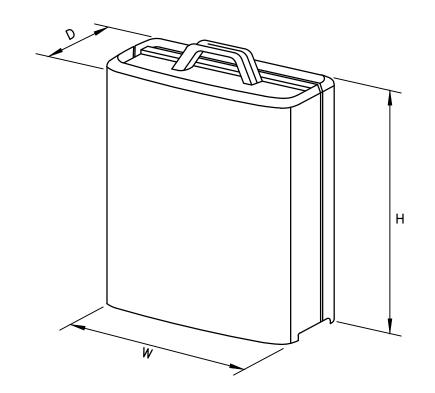
# SITE NUMBER: CT5122 SITE NAME: WETHERSFIELD NORTH

23 KELLEHER CT. WETHERSFIELD, CT 06109 HARTFORD COUNTY



|     |             |      |                  |    |        |        |       | SEA     |
|-----|-------------|------|------------------|----|--------|--------|-------|---------|
|     |             |      |                  |    |        |        |       |         |
|     |             |      |                  |    |        |        |       |         |
| 0   | 12/14/16    |      | ISSUED AS FINAL  |    | NJM    | NDB    | NDB   | —<br>РI |
| NO. | DATE        |      | REVISIONS        |    | BY     | СНК    | APP'D | (       |
| S   | SCALE: AS S | HOWN | DESIGNED BY: NJM | DF | RAWN E | 3Y: PA | V     |         |




AT&T

DRAWING TITLE:

ANTENNA LAYOUTS & ELEVATIONS

JOB NUMBER DRAWING NUMBER REV

16063—EMP A—3 0



| MODEL      | L×W×H                   | WEIGHT   |
|------------|-------------------------|----------|
| *RRUS-11   | 19.69" x 16.97" x 7.17" | 50.7 LBS |
| RRUS-32    | 29.9" x 13.3" x 9.5"    | 77 LBS   |
| RRUS-32 B2 | 27.2" x 12.1" x 7"      | 60 LBS   |

\*DENOTES EXISTING

# RRUS DETAIL SCALE: N.T.S.

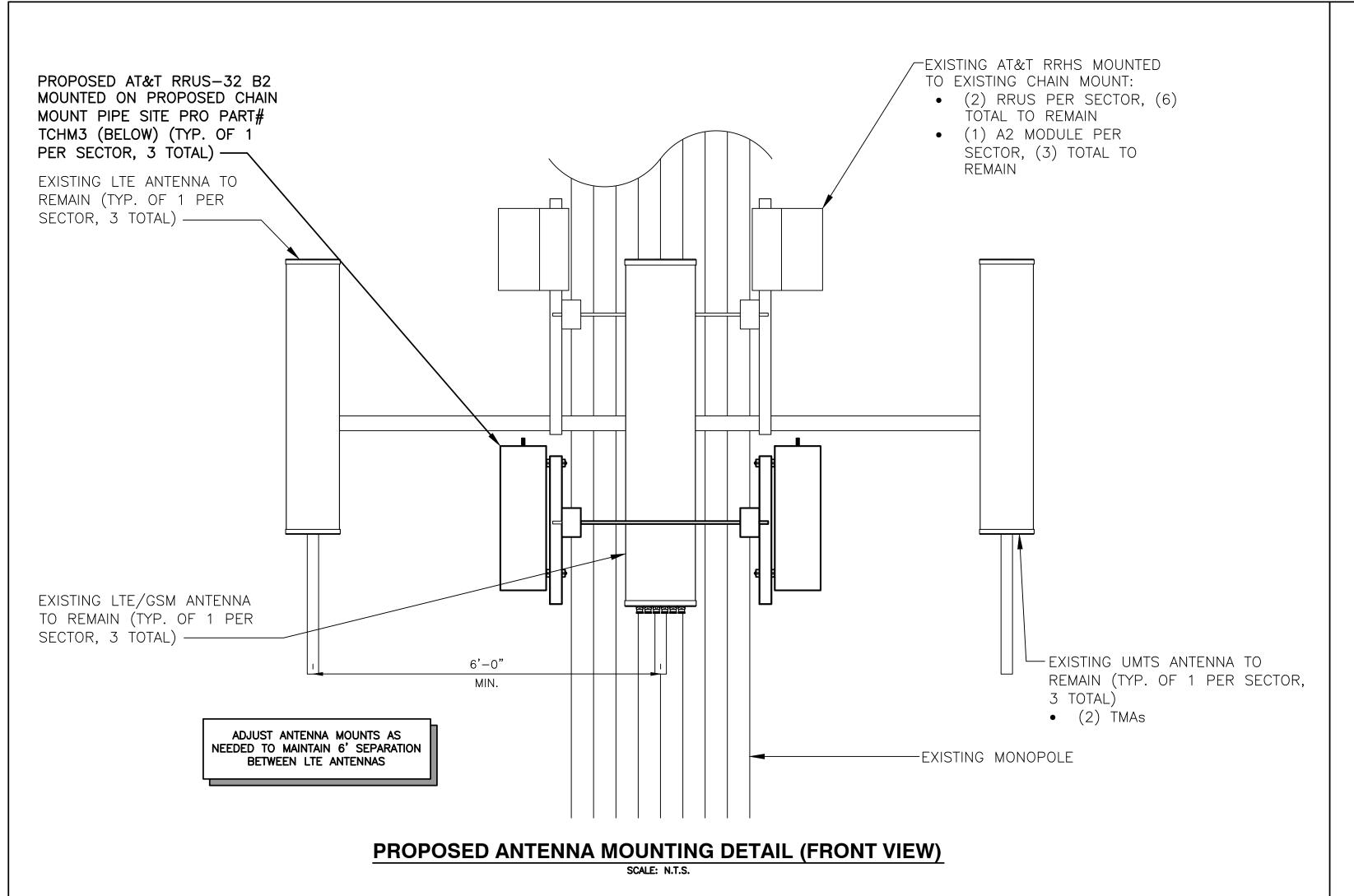


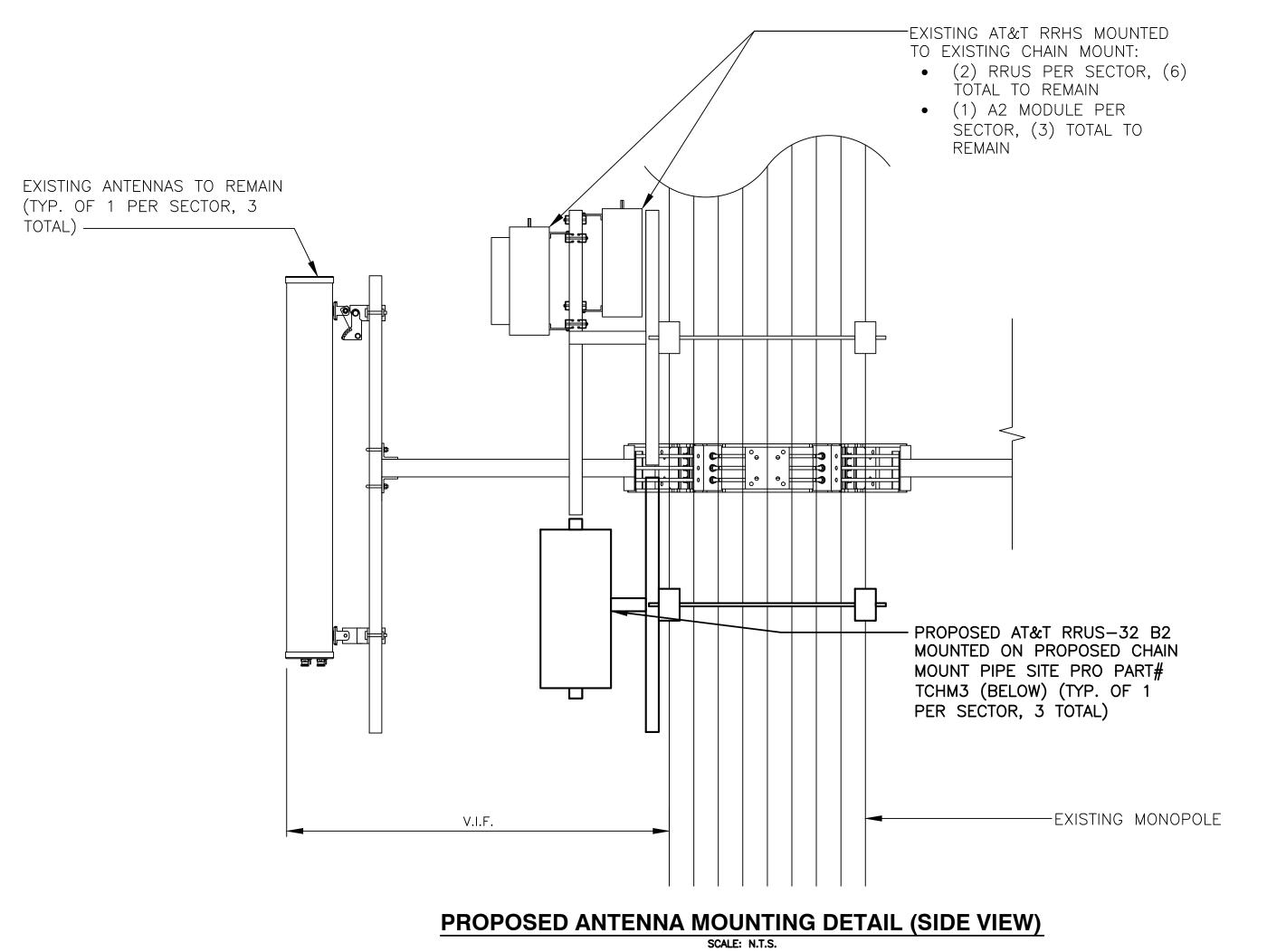


**SITE NUMBER: CT5122** SITE NAME: WETHERSFIELD NORTH

23 KELLEHER CT. WETHERSFIELD, CT 06109 HARTFORD COUNTY




|                 |          |      |                  |    |        |        |       | SE |
|-----------------|----------|------|------------------|----|--------|--------|-------|----|
|                 |          |      |                  |    |        |        |       | 1  |
|                 |          |      |                  |    |        |        |       |    |
|                 |          |      |                  |    |        |        |       | -  |
| 0               | 12/14/16 |      | ISSUED AS FINAL  |    | NJM    | NDB    | NDB   |    |
| NO.             | DATE     |      | REVISIONS        |    | BY     | СНК    | APP'D |    |
| SCALE: AS SHOWN |          | HOWN | DESIGNED BY: NJM | DF | RAWN E | BY: PA | V     |    |


|    | SEAL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | SEAL:  OF CONNECTION  OF CONNECTION |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| В  | DR <b>STOCKION VARENIONA</b> ER<br>MINITOLING 24842 RANGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 'D | CT EXCENSIVAL COLORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | Mannana .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

AT&T DRAWING TITLE:

DETAILS

JOB NUMBER DRAWING NUMBER 16063-EMP A-4





| EXISTING ANTENNA SCHEDULE                                        |    |             |                   |                  |  |  |  |  |  |
|------------------------------------------------------------------|----|-------------|-------------------|------------------|--|--|--|--|--|
| SECTOR POSITION                                                  |    | <u>MAKE</u> | <u>MODEL</u>      | SIZE (INCHES)    |  |  |  |  |  |
|                                                                  |    | ,           |                   |                  |  |  |  |  |  |
|                                                                  | A1 | POWERWAVE   | 7770              | 55"x11"x5"       |  |  |  |  |  |
| ALPHA                                                            | A2 | CCI         | TPA-65R-LCUUUU-H8 | 92.7"x14.4"x7"   |  |  |  |  |  |
| ALPHA                                                            | А3 | CCI         | HPA-65R-BUU-H8    | 92.4"x14.8"x7.4" |  |  |  |  |  |
|                                                                  | _  | _           | <del>-</del>      | _                |  |  |  |  |  |
|                                                                  | •  |             |                   |                  |  |  |  |  |  |
|                                                                  | B1 | POWERWAVE   | 7770              | 55"x11"x5"       |  |  |  |  |  |
| BETA                                                             | B2 | CCI         | TPA-65R-LCUUUU-H8 | 92.7"x14.4"x7"   |  |  |  |  |  |
| DETA                                                             | В3 | CCI         | HPA-65R-BUU-H8    | 92.4"x14.8"x7.4" |  |  |  |  |  |
|                                                                  | _  | _           | -                 | _                |  |  |  |  |  |
|                                                                  |    |             |                   |                  |  |  |  |  |  |
|                                                                  | G1 | POWERWAVE   | 7770              | 55"x11"x5"       |  |  |  |  |  |
| $\bigcirc$ $\wedge$ $\wedge$ $\wedge$ $\wedge$ $\wedge$ $\wedge$ | G2 | ANDREW      | SBNHH-1D65A       | 55"x11.9"x7.1"   |  |  |  |  |  |
| GAMMA                                                            | G3 | ANDREW      | SBNHH-1D65A       | 55"x11.9"x7.1"   |  |  |  |  |  |
|                                                                  | _  | _           | _                 | _                |  |  |  |  |  |

| FINAL ANTENNA SCHEDULE |          |             |                   |                  |  |  |  |  |  |
|------------------------|----------|-------------|-------------------|------------------|--|--|--|--|--|
| SECTOR                 | POSITION | <u>MAKE</u> | <u>MODEL</u>      | SIZE (INCHES)    |  |  |  |  |  |
|                        |          |             |                   |                  |  |  |  |  |  |
|                        | A1       | POWERWAVE   | 7770              | 55"x11"x5"       |  |  |  |  |  |
| <br>  ALPHA            | A2       | CCI         | TPA-65R-LCUUUU-H8 | 92.7"x14.4"x7"   |  |  |  |  |  |
| ALP HA                 | A3       | CCI         | HPA-65R-BUU-H8    | 92.4"x14.8"x7.4" |  |  |  |  |  |
|                        | _        | _           | -                 | _                |  |  |  |  |  |
|                        |          |             |                   |                  |  |  |  |  |  |
|                        | B1       | POWERWAVE   | 7770              | 55"x11"x5"       |  |  |  |  |  |
| BETA                   | B2       | CCI         | TPA-65R-LCUUUU-H8 | 92.7"x14.4"x7"   |  |  |  |  |  |
| DLIA                   | В3       | CCI         | HPA-65R-BUU-H8    | 92.4"x14.8"x7.4" |  |  |  |  |  |
|                        | _        | _           | _                 | _                |  |  |  |  |  |
|                        |          |             |                   |                  |  |  |  |  |  |
|                        | G1       | POWERWAVE   | 7770              | 55"x11"x5"       |  |  |  |  |  |
| GAMMA                  | G2       | ANDREW      | SBNHH-1D65A       | 55"x11.9"x7.1"   |  |  |  |  |  |
| GAIVIIVIA              | G3       | ANDREW      | SBNHH-1D65A       | 55"x11.9"x7.1"   |  |  |  |  |  |
|                        | _        | _           | _                 | _                |  |  |  |  |  |

| PROJECT OWNER IS RESPONSIBLE FOR PROVIDING A STRUCTURAL STABILITY ANALYSIS TO |
|-------------------------------------------------------------------------------|
| DETERMINE THE CAPACITY AND SUITABILITY OF THE EXISTING ANTENNA SUPPORT        |
| STRUCTURE TO SAFELY CARRY ALL ADDITIONAL LOADS IMPOSED BY THE PROPOSED        |
| EQUIPMENT AS SHOWN HEREIN. GENERAL CONTRACTOR SHALL BE RESPONSIBLE FOR        |
| INCORPORATING ANY REQUIRED STRUCTURAL MODIFICATIONS INTO THEIR SCOPE OF WORK. |

| PROPOSED RRU SCHEDULE |             |                       |                  |                      |               |  |  |  |  |  |
|-----------------------|-------------|-----------------------|------------------|----------------------|---------------|--|--|--|--|--|
| SECTOR                | <u>MAKE</u> | <u>MODEL</u>          | SIZE (INCHES)    | ADDITIONAL COMPONENT | SIZE (INCHES) |  |  |  |  |  |
|                       | 1           |                       |                  |                      |               |  |  |  |  |  |
|                       | ERICSSON    | RRUS-11 (EXISTING)    | 19.7"x16.9"x7.2" |                      |               |  |  |  |  |  |
| ALPHA                 | ERICSSON    | RRUS-32 (EXISTING)    | 29.9"x13.3"x9.5" |                      |               |  |  |  |  |  |
|                       | ERICSSON    | RRUS-32 B2 (PROPOSED) | 27.2"x12.1"x7"   |                      |               |  |  |  |  |  |
|                       |             |                       |                  |                      |               |  |  |  |  |  |
|                       | ERICSSON    | RRUS-11 (EXISTING)    | 19.7"x16.9"x7.2" |                      |               |  |  |  |  |  |
| ВЕТА                  | ERICSSON    | RRUS-32 (EXISTING)    | 19.7"x16.9"x7.2" |                      |               |  |  |  |  |  |
|                       | ERICSSON    | RRUS-32 B2 (PROPOSED) | 27.2"x12.1"x7"   |                      |               |  |  |  |  |  |
|                       |             |                       |                  |                      |               |  |  |  |  |  |
|                       | ERICSSON    | RRUS-11 (EXISTING)    | 19.7"x16.9"x7.2" |                      |               |  |  |  |  |  |
| GAMMA                 | ERICSSON    | RRUS-32 (EXISTING)    | 19.7"x16.9"x7.2" |                      |               |  |  |  |  |  |
|                       | ERICSSON    | RRUS-32 B2 (PROPOSED) | 27.2"x12.1"x7"   |                      |               |  |  |  |  |  |

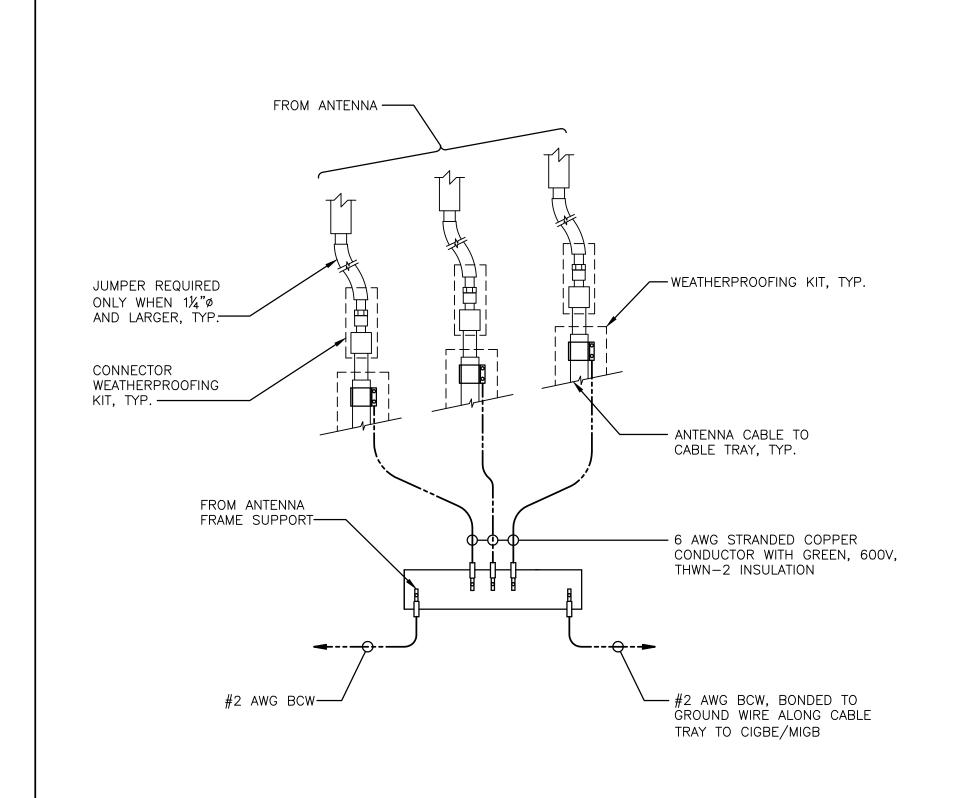
Complete 46
SUITE E39
MOUNTAIN LAKES, NJ 07046
PHONE: 862.209.4300
FAX: 862.209.4301



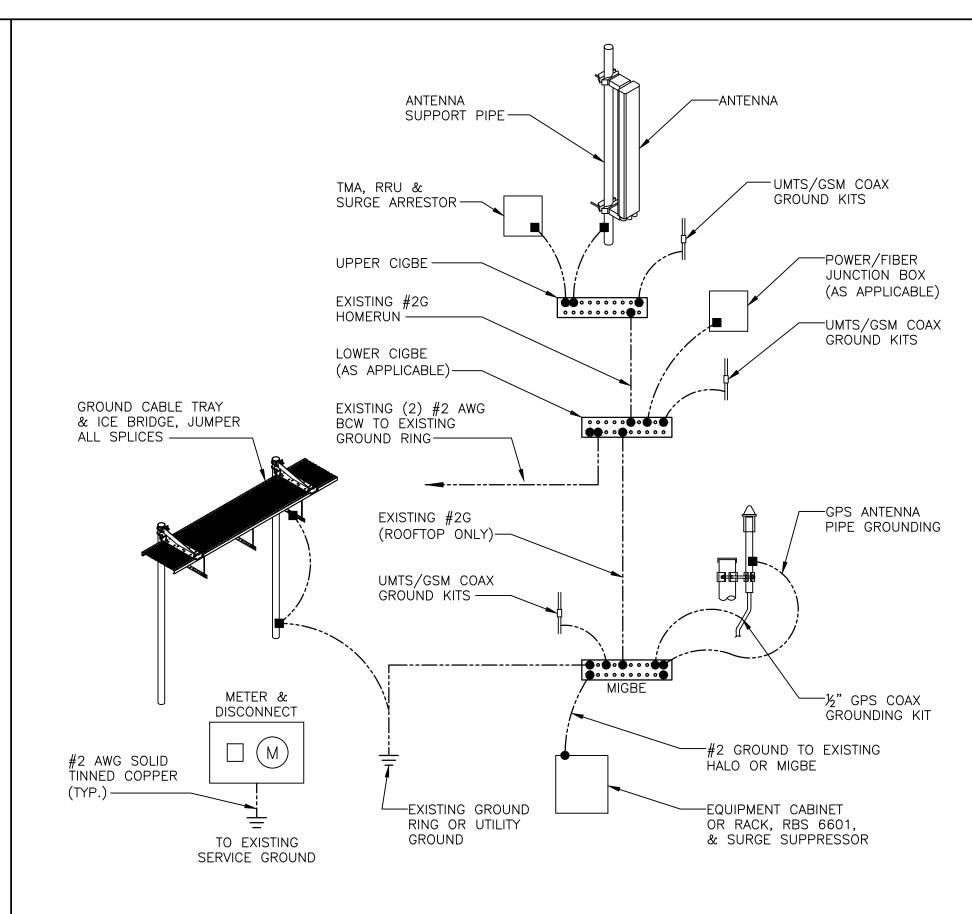
# SITE NUMBER: CT5122 SITE NAME: WETHERSFIELD NORTH

23 KELLEHER CT. WETHERSFIELD, CT 06109 HARTFORD COUNTY

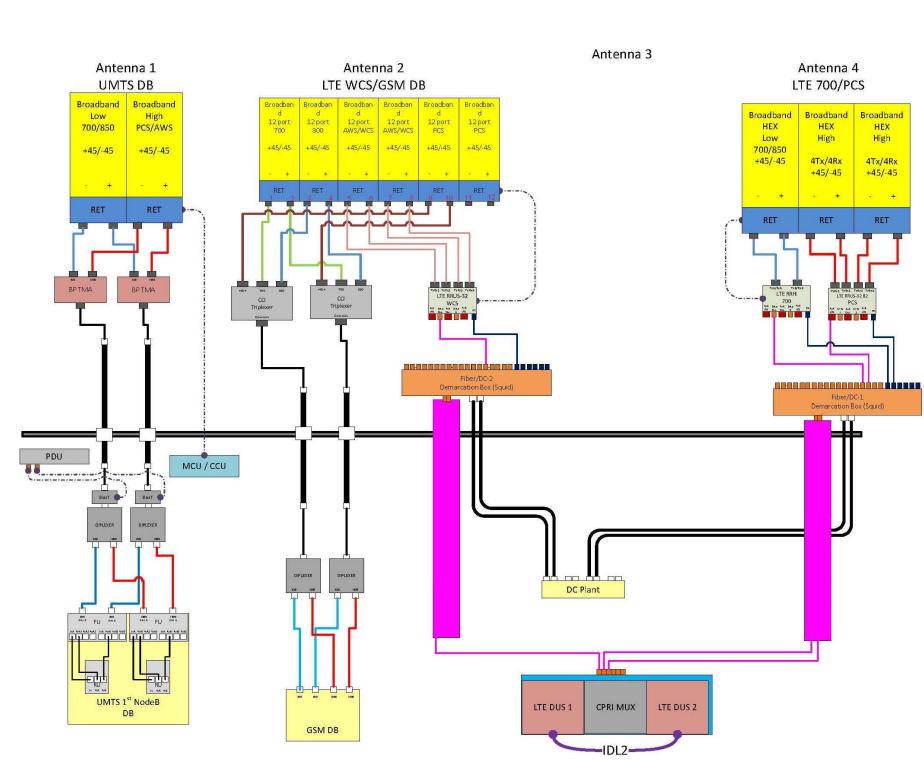



|     |             |      |                  |    |        |        |       | 0541    |
|-----|-------------|------|------------------|----|--------|--------|-------|---------|
|     |             |      |                  |    |        |        |       | SEAL:   |
|     |             |      |                  |    |        |        |       | HILL    |
|     |             |      |                  |    |        |        |       | Zinnin. |
|     |             |      |                  |    |        |        |       |         |
| 0   | 12/14/16    |      | ISSUED AS FINAL  |    | NJM    | NDB    | NDB   | PRAFO   |
| NO. | DATE        |      | REVISIONS        |    | BY     | CHK    | APP'D | CT      |
| S   | SCALE: AS S | HOWN | DESIGNED BY: NJM | DF | rawn e | BY: PA | V     |         |

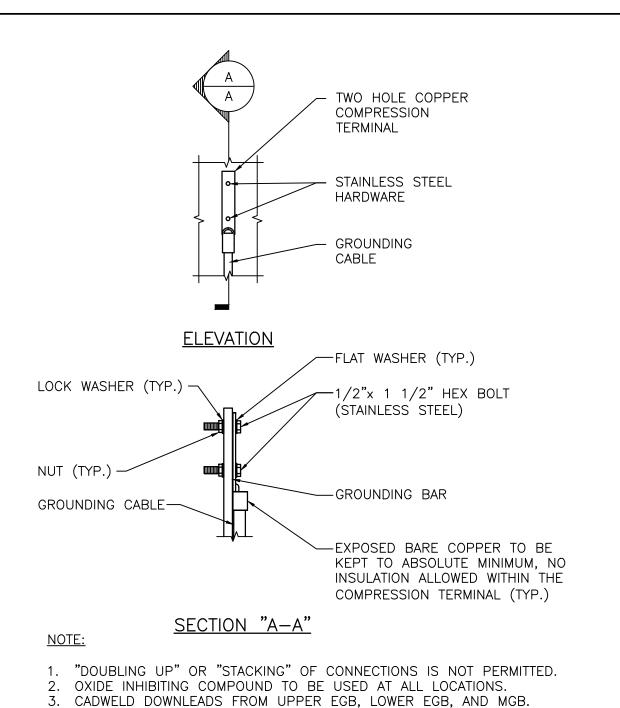



AT&T

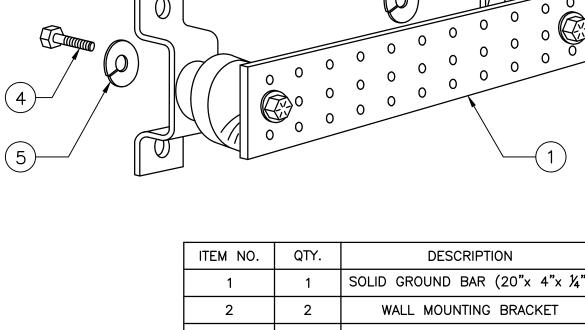
ANTENNA MOUNTING DETAILS


| JOB NUMBER | DRAWING NUMBER | REV |
|------------|----------------|-----|
| 16063-EMP  | A-5            | 0   |




**GROUND WIRE TO GROUND BAR CONNECTION DETAIL** 








TYPICAL PLUMBING DIAGRAM (SECTORS A & B)



TYPICAL GROUND BAR CONNECTION DETAIL



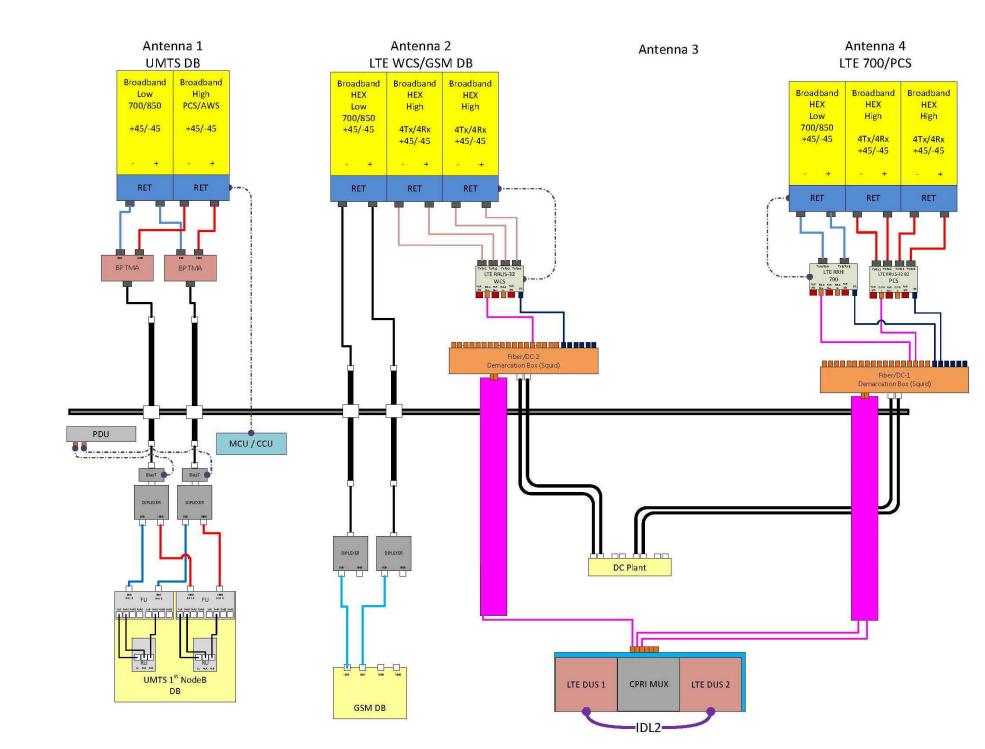
• COMMERCIAL POWER COMMON NEUTRAL/GROUND BOND (#2)

SOLID GROUND BAR (20"x 4"x 1/4") INSULATORS %"−11x1" H.H.C.S. 4 4

%" LOCK WASHER

EACH GROUND CONDUCTOR TERMINATING ON ANY GROUND BAR SHALL HAVE AN IDENTIFICATION TAG ATTACHED AT EACH END THAT WILL IDENTIFY ITS ORIGIN AND DESTINATION

### SECTION '"P" - SURGE PRODUCERS


- CABLE ENTRY PORTS (HATCH PLATES) (#2) • GENERATOR FRAMEWORK (IF AVAILABLE) (#2)
- TELCO GROUND BAR
- +24V POWER SUPPLY RETURN BAR (#2) • -48V POWER SUPPLY RETURN BAR (#2)

### RECTIFIER FRAMES

- SECTION "A" SURGE ABSORBERS • INTERIOR GROUND RING (#2)
- EXTERNAL EARTH GROUND FIELD (BURIED GROUND RING) (#2)
- METALLIC COLD WATER PIPE (IF AVAILABLE) (#2) • BUILDING STEEL (IF AVAILABLE) (#2)

**GROUND BAR DETAIL** 

SCALE: N.T.S.



TYPICAL PLUMBING DIAGRAM (SECTOR C)





## **SITE NUMBER: CT5122** SITE NAME: WETHERSFIELD NORTH

23 KELLEHER CT. WETHERSFIELD, CT 06109 HARTFORD COUNTY



|                 |          |  |                  |    |        |        |       | SEAL     |
|-----------------|----------|--|------------------|----|--------|--------|-------|----------|
|                 |          |  |                  |    |        |        |       |          |
|                 |          |  |                  |    |        |        |       |          |
|                 |          |  |                  |    |        |        |       |          |
| 0               | 12/14/16 |  | ISSUED AS FINAL  |    |        | NDB    | NDB   | PR       |
| NO.             | DATE     |  | REVISIONS        |    | BY     | CHK    | APP'D | PR<br>C1 |
| SCALE: AS SHOWN |          |  | DESIGNED BY: NJM | DF | RAWN E | BY: PA | V     |          |



|        |                                 | AT&T             |             |   |     |
|--------|---------------------------------|------------------|-------------|---|-----|
| L<br>R | DRAWING TITLE: GROUNDING, ON DE | E-LINE<br>ETAILS | DIAGRAM     | & |     |
| 3      | JOB NUMBER                      | DRA              | WING NUMBER |   | REV |
| )      | 16063-EMP                       |                  | G-1         |   | 0   |

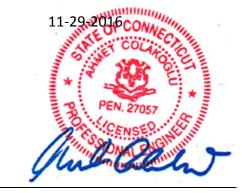
# STRUCTURAL ANALYSIS REPORT MONOPOLE







#### Prepared For:


### Com-Ex Consultants, LLC 115 Route 46 – Suite E39 Mountain Lakes, NJ 07046



#### **Structure Rating:**

Monopole: Pass (71.1%)
Foundation: Pass

Sincerely,
Destek Engineering, LLC



Ahmet Colakoglu, PE Connecticut Professional Engineer License No: 27057

**AT&T Site ID: CT5122 FA Number: 10092829** 

**Site Name: Wethersfield North** 

23 Kelleher Court Wethersfield, CT 06109

Destek Job No: 1629137 November 29, 2016

#### **CONTENTS**

- 1.0 SUBJECT AND REFERENCES
- 1.1 STRUCTURE
- 2.0 EXISTING AND PROPOSED APPURTENANCES
- 3.0 CODES AND LOADING
- 4.0 STANDARD CONDITIONS FOR ENGINEERING SERVICES ON EXISTING STRUCTURES
- 5.0 ANALYSIS AND ASSUMPTIONS
- 6.0 RESULTS AND CONCLUSION

**APPENDIX** 

A – CALCULATIONS

#### 1.0 SUBJECT AND REFERENCES

The purpose of this analysis is to evaluate the structural capacity of the existing monopole located at 23 Kelleher Court, Wethersfield, CT, 06109, for the additions and alterations proposed by AT&T.

The structural analysis is based on the following information provided to Destek Engineering, LLC (Destek):

- Structural Analysis Report prepared by Hudson Design Group, dated 08/08/2016
- Upgrade Drawings prepared by Hudson Design Group, dates 08/23/2016
- Construction Drawings prepared by Com-Ex, dated 11/02/2016.
- RFDS prepared by AT&T, dated 09/01/2016.

#### 1.1 **STRUCTURE**

The structure is a 179'-0" (18) sided monopole, which is attached to the foundation with anchor bolts and a base plate. Please refer to the software output in Appendix A, for tower geometry, member sizes, and other details.

| ELEVATION<br>(FEET) | SECTION<br>LENGTH<br>(FEET) | LAP<br>SPLICE<br>(FT) | SHAFT<br>THICKNESS<br>(IN) | TOP<br>DIAMETER<br>(IN) | BOTTOM<br>DIAMETER<br>(IN) | YIELD<br>STRENGTH<br>(KSI) |
|---------------------|-----------------------------|-----------------------|----------------------------|-------------------------|----------------------------|----------------------------|
| 179.00-141.25       | 37.75                       | 4.33                  | 0.250                      | 23.100                  | 33.249                     | 65                         |
| 141.25-92.58        | 53.00                       | 5.92                  | 0.375                      | 31.585                  | 45.834                     | 65                         |
| 92.58-45.50         | 53.00                       | 7.50                  | 0.375                      | 43.492                  | 57.742                     | 65                         |
| 45.50-0.0           | 53.00                       | -                     | 0.375                      | 54.976                  | 69.225                     | 65                         |

<sup>\*</sup>Does not include description of existing monopole modifications.

#### 2.0 EXISTING AND PROPOSED APPURTENANCES

AT&T is proposing the following antenna configuration on the tower:

**Existing Configuration of AT&T Appurtenances:** 

| Rad. Center<br>(ft) | Antenna & TMA                                                                                                                                                                   | Mount                | Cables*     |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|
| 142                 | (6) RRUS-11<br>(3) RRUS-A2                                                                                                                                                      | Ring Mount           |             |
| 140                 | (3) 7770.00 w/Mount Pipe (2) SBNHH-1D65A w/Mount Pipe (2) HPA-65R-BUU-H8 w/Mount Pipe (2) TPA-65R-LCUUUU-H8 w/Mount Pipe (6) LGP21401 TMAs (3) RRUS-32 (2) DC 6 (12) TPX-070821 | (3) Sector<br>Mounts | (12) 1-5/8" |

**Proposed and Final Configuration of AT&T Appurtenances:** 

| Rad. Center<br>(ft) | Antenna & TMA                                                                                                                                                                   | Mount                | Cables*                                        |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|
| 142                 | (3) RRUS-11<br>(3) RRUS-32 B2                                                                                                                                                   | Ring Mount           |                                                |
| 140                 | (3) 7770.00 w/Mount Pipe (2) SBNHH-1D65A w/Mount Pipe (2) HPA-65R-BUU-H8 w/Mount Pipe (2) TPA-65R-LCUUUU-H8 w/Mount Pipe (6) LGP21401 TMAs (3) RRUS-32 (2) DC 6 (12) TPX-070821 | (3) Sector<br>Mounts | (12) 1-5/8"<br>(2) DC Cable<br>(1) Fiber Cable |

<sup>\*</sup>All feed lines inside the shaft

**Existing Appurtenances by Others** 

| Rad. Center<br>(ft) | Antenna & TMA                                              | Mount                | Feedlines  |  |
|---------------------|------------------------------------------------------------|----------------------|------------|--|
| 188                 | (1) 10' Omni                                               | (1) Pipe<br>Mount    | (1) 1-1/4" |  |
| 186                 | (2) 6' Omni                                                | (2) Pipe<br>Mounts   | (2) 7/8"   |  |
| 185                 | (2) 4' Omni<br>4' Dipole                                   | (3) Pipe<br>Mounts   | (4) 1-5/8" |  |
| 181                 | Distribution Box                                           |                      | (2) 1/2"   |  |
| 174                 | (2) APXVSPP18-C w/Mount Pipe<br>ET-X-TU-42-15 w/Mount Pipe | (3) Sector<br>Mounts | (4) 1-1/4" |  |

|     | (3) APXV9TM14 w/Mount Pipe<br>(3) RRH 8X20-25                                                                                                                            |            |                     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|
| 170 | (3) RRH 800<br>(3) RRH 1900                                                                                                                                              | Ring Mount | -                   |
| 159 | 2' Dish                                                                                                                                                                  | Pipe Mount | 1/4"                |
| 152 | (6) AIR21 B4A/B2P w/Mount Pipe<br>(3) LNX-6515DS w/Mount Pipe                                                                                                            | (3) Sector | (18) 1-5/8"         |
| 151 | (3) RRUS – 11<br>(3) TMA                                                                                                                                                 | Mounts     | 1/4"                |
| 130 | (3) BXA-171063-12CF w/Mount Pipe<br>(3) BXA-70063-4CF w/Mount Pipe<br>(3) BXA-70063-6CF w/Mount Pipe<br>(3) MGD3-900 w/Mount Pipe<br>(3) RRH2X40 AWS<br>RXXDC-3315-PF-48 | Platform   | (18) 1-5/8"<br>1/4" |
| 126 | 2' Dish                                                                                                                                                                  | Pipe Mount | 1/4"                |

#### 3.0 CODES AND LOADING

This analysis has been performed in accordance with the 2016 Connecticut Building Code based upon an ultimate 3-second gust wind speed of 125 mph (Risk Category II) converted to a nominal 3-second gust wind speed of 97 mph per section 1609.3.1 as required for use in the TIA-222-G Standard per Exception #5 of Section 1609.1.1. The following loading criteria were used in the analysis:

- Basic wind speed of 97 mph without ice (V)
- Basic wind speed of 50 mph concurrent with the design ice thickness of 1" (V<sub>i</sub> and t<sub>i</sub>)
- Exposure Category C, Topographic Category 1

The following load combinations were used with wind blowing at  $0^{\circ}$ ,  $60^{\circ}$ , and  $90^{\circ}$ , measured from a line normal to the face of the tower:

- 1.2D + 1.6W<sub>0</sub>
- 0.9D + 1.6W<sub>o</sub>
- 1.2D + 1.0D<sub>i</sub> + 1.0W<sub>i</sub>

D: Dead load of structure and appurtenances

W<sub>o</sub>: Wind load without ice (based upon V)

W<sub>i</sub>: Concurrent wind load with factored ice thickness (based upon V<sub>i</sub>)

D<sub>i</sub>: Weight of ice due to factored ice thickness (based upon t<sub>i</sub>)

#### 4.0 STANDARD CONDITIONS FOR ENGINEERING SERVICES ON EXISTING STRUCTURES

The analysis is based on the information provided to Destek and is assumed to be current and correct. Unless otherwise noted, the structure is assumed to be in good condition, free of defects, and can achieve theoretical strength.

It is assumed that the structure has been maintained and shall be maintained during its service lifespan. The superstructure and the foundation system are assumed to be designed with proper engineering practice and fabricated, constructed and erected in accordance with the design documents. Destek will accept no liability which may arise due to any existing deficiency in design, material, fabrication, erection, construction, etc. or lack of maintenance.

The analysis does not include a qualification of the antenna mounts attached on the structure or their connections. The analysis is performed to verify the capacity of the main structural members, which is the current practice in the tower industry.

The analysis results presented in this report are only applicable for the previously mentioned existing and proposed appurtenances. Any deviation of the appurtenances and placement, etc., will require Destek to generate an additional structural analysis. Additionally, the proposed linear appurtenances should be placed per recommendations of this report.

#### 5.0 ANALYSIS AND ASSUMPTIONS

The Monopole was analyzed by utilizing tnxTower, a non-linear, three-dimensional, finite element-analysis software package, a product of Tower Numerics, Inc. Software output for this analysis is provided in Appendix A of this report.

This analysis assumes that the modifications detailed in the Structural Modification Drawings prepared by Hudson Design Group, dated 8/23/2016, have been installed.

#### 6.0 RESULTS AND CONCLUSION

The structural modifications detailed in the Structural Modification Drawings prepared by Hudson Design Group, dated 8/23/2016, have been incorporated into our analysis. After analyzing the upgraded structure, Destek has deemed the modifications to be **ineffective** due to the inadequate thickness of the reinforcement plates. The added wind area of the reinforcement has been considered in this analysis.

Based on a structural analysis per TIA-222-G, the existing reinforced monopole has **adequate** structural capacity for the proposed changes by AT&T. As a maximum, the monopole shaft between 0 feet and 45.5 feet is stressed to **71.1%** of its capacity. The anchor rods also have **adequate** structural capacity for the proposed changes by AT&T. As a maximum, the anchor rods are stressed to **75.8%** of its capacity. The existing foundation is found to have **adequate** capacity to support the proposed installation by AT&T.

Therefore, the proposed additions and alterations by AT&T can be implemented as intended with the conditions outlined in this report.

Should you have any questions about this report, please contact Ahmet Colakoglu at (770) 693-0835 or <a href="mailto:acolakoglu@destekengineering.com">acolakoglu@destekengineering.com</a>.

# APPENDIX A CALCULATIONS

| Section             | 4       | б       | 2       | -        |
|---------------------|---------|---------|---------|----------|
| Length (ft)         | 53.00   | 53.00   | 53.00   | 37.75    |
| Number of Sides     | 18      | 18      | 18      | 18       |
| Thickness (in)      | 0.3750  | 0.3750  | 0.3750  | 0.2500   |
| Socket Length (ft)  |         | 7.50    | 5.92    | 4.33     |
| Top Dia (in)        | 54.9755 | 43.4924 | 31.5849 | 23.1000  |
| Bot Dia (in)        | 69.2250 | 57.7420 | 45.8340 | 33.2490  |
| Grade               |         | A572-65 | -65     |          |
| Weight (lb) 35110.0 | 13249.9 | 10784.9 | 8228.8  | 2846.3   |
| _                   | 0.0 ft  | 45.5 ft | 92.6 ft | 179.0 ft |
|                     |         |         |         |          |

#### **DESIGNED APPURTENANCE LOADING**

| TYPE                                    | ELEVATION | TYPE                                         | ELEVATION |
|-----------------------------------------|-----------|----------------------------------------------|-----------|
| (3) 6' x 2" Mount Pipe                  | 181       | RRUS 32 B2                                   | 142       |
| (3) 6' x 2" Mount Pipe                  | 181       | RRUS 32 B2                                   | 142       |
| (3) 6' x 2" Mount Pipe                  | 181       | (2) SBNHH-1D65A w/ Mount Pipe                | 140       |
| Omni 4"x6'                              | 181       | 7770.00 w/ Mount Pipe                        | 140       |
| Omni 2"x6'                              | 181       | 7770.00 w/ Mount Pipe                        | 140       |
| Distribution Box                        | 181       | TPA-65R-LCUUUU-H8 w/ Mount Pipe              | 140       |
| Omni 3"x4'                              | 181       | RRUS 32                                      | 140       |
| Omni 3"x10'                             | 181       | RRUS 32                                      | 140       |
| Distribution Box                        | 181       | RRUS 32                                      | 140       |
| Omni 3" x 4'                            | 181       | TPA-65R-LCUUUU-H8 w/ Mount Pipe              | 140       |
| 4' Dipole                               | 181       | CCI HPA-65R-BUU-H8 with pipe                 | 140       |
| TA 702-3                                | 181       | CCI HPA-65R-BUU-H8 with pipe                 | 140       |
| ET-X-TU-42-15-37-18-iR-ST w/ Mount      | 174       | (2) LGP21401                                 | 140       |
| Pipe                                    |           | (2) LGP21401                                 | 140       |
| APXVSPP18-C w/ Mount Pipe               | 174       | (2) LGP21401                                 | 140       |
| APXVSPP18-C w/ Mount Pipe               | 174       | (2) LGP21901                                 | 140       |
| APXV9TM14 w/ Mount Pipe                 | 174       | (2) LGP21901                                 | 140       |
| APXV9TM14 w/ Mount Pipe                 | 174       | (2) LGP21901                                 | 140       |
| APXV9TM14 w/ Mount Pipe                 | 174       | LGP12104                                     | 140       |
| TA 602-3                                | 174       | (4) TPX-070821                               | 140       |
| RRH8x20-25                              | 174       | (4) TPX-070821                               | 140       |
| RRH8x20-25                              | 174       | (4) TPX-070821                               | 140       |
| RRH8x20-25                              | 174       | DC6-48-60-18-8F (Round)                      | 140       |
| RRH800MHz                               | 170       | DC6-48-60-18-8F (Round)                      | 140       |
| RRH800MHz                               | 170       | TA 602-3                                     | 140       |
| RRH800MHz                               | 170       | 7770.00 w/ Mount Pipe                        | 140       |
| RRH1900MHz                              | 170       | BXA-70080-4CF-EDIN w/ Mount Pipe             | 130       |
| RRH1900MHz                              | 170       | · ·                                          | 130       |
| RRH1900MHz                              | 170       | BXA-70080-6CF-EDIN w/ Mount Pipe             | 130       |
| Ring Mount                              | 170       | Rymsa MGD3-900<br>RRH2x40-AWS                | 130       |
| HP2-102                                 | 159       |                                              |           |
| (2) AIR 21 B4A/B2P w/ Mount Pipe        | 151       | BXA-171063-12CF-EDIN w/ Mount<br>Pipe        | 130       |
| (2) AIR 21 B4A/B2P w/ Mount Pipe        | 151       | BXA-70080-4CF-EDIN w/ Mount Pipe             | 130       |
| LNX-6515DS-VTM w/ Mount Pipe            | 151       | BXA-70080-6CF-EDIN w/ Mount Pipe             | 130       |
| LNX-6515DS-VTM w/ Mount Pipe            | 151       | Rymsa MGD3-900                               | 130       |
| <u>'</u>                                | 151       | •                                            | 130       |
| LNX-6515DS-VTM w/ Mount Pipe<br>RRUS 11 | 151       | RRH2x40-AWS<br>BXA-171063-12CF-EDIN w/ Mount | 130       |
| RRUS 11                                 | 151       | Pipe                                         | 130       |
|                                         | -         | BXA-70080-4CF-EDIN w/ Mount Pipe             | 130       |
| RRUS 11                                 | 151       | BXA-70080-6CF-EDIN w/ Mount Pipe             | 130       |
| Gen TMA                                 | 151       | Rymsa MGD3-900                               | 130       |
| Gen TMA                                 | 151       | RRH2x40-AWS                                  | 130       |
| Gen TMA                                 | 151       | RxxDC-3315-PF-48                             | 130       |
| TA 602-3                                | 151       | Pirod 13' Low Profit Platfrom                | 130       |
| (2) AIR 21 B4A/B2P w/ Mount Pipe        | 151       | BXA-171063-12CF-EDIN w/ Mount                |           |
| RRUS-11                                 | 142       | Pipe                                         | 130       |
| RRUS-11                                 | 142       | HP2-102                                      | 126       |
| RRUS-11                                 | 142       |                                              |           |

**MATERIAL STRENGTH** 

| GRADE       | Fy     | Fu     | GRADE | Fy | Fu |
|-------------|--------|--------|-------|----|----|
| <br>A572-65 | 65 ksi | 80 ksi |       |    |    |

ALL REACTION ARE FACTORE

SHEAR 13746 lb

#### **TOWER DESIGN NOTES**

- 1. Tower designed for Exposure C to the TIA-222-G Standard.
- 124494 lb 2. Tower designed for a 97 mph basic wind in accordance with the TIA-222-G Standard.
- Journal of the second of the s 3. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase

AXIAL 59749 lb

SHEAR MOMENT 4770 kip-ft 40110 lb

TORQUE 2 kip-ft

REACTIONS - 97 mph WIND

Destek Engineering, LLC **DESTEK** 1281 Kennestone Circle, Suite 100 Marietta, GA 30066 Phone: (770) 693-0835

FAX:

| ob:                            |                                      |        |                  |
|--------------------------------|--------------------------------------|--------|------------------|
| Project: CT5122                |                                      |        |                  |
| Client: Com-Ex                 | Arimet Coakogiu                      | App'd: |                  |
| Code: TIA-222-G                |                                      | Scale: |                  |
| Path:<br>Z:\Projects\2016\29 - | - Com-Ex\137 - CT5122\TNX\CT5122.eri | Dwg No | <sup>).</sup> E- |
|                                |                                      |        |                  |

| 4 / |              |
|-----|--------------|
| Thv | <b>Tower</b> |
|     | UNCI         |

Destek Engineering, LLC 1281 Kennestone Circle, Suite 100 Marietta, GA 30066

> Phone: (770) 693-0835 FAX:

| Job           | Page                       |
|---------------|----------------------------|
|               | 1 of 17                    |
| Project       | Date                       |
| CT5122        | 08:59:29 11/29/16          |
| Client Com-Ex | Designed by Ahmet Coakoglu |

#### **Tower Input Data**

There is a pole section.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Basic wind speed of 97 mph.

Structure Class II.

Exposure Category C.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

#### **Options**

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

Use Code Stress Ratios

Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

Assume Rigid Index Plate

- Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
- Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

### **Tapered Pole Section Geometry**

| Section | Elevation     | Section | Splice | Number | Top      | Bottom   | Wall      | Bend   | Pole Grade          |
|---------|---------------|---------|--------|--------|----------|----------|-----------|--------|---------------------|
|         |               | Length  | Length | of     | Diameter | Diameter | Thickness | Radius |                     |
|         | ft            | ft      | ft     | Sides  | in       | in       | in        | in     |                     |
| L1      | 179.00-141.25 | 37.75   | 4.33   | 18     | 23.1000  | 33.2490  | 0.2500    | 1.0000 | A572-65<br>(65 ksi) |
| L2      | 141.25-92.58  | 53.00   | 5.92   | 18     | 31.5849  | 45.8340  | 0.3750    | 1.5000 | A572-65<br>(65 ksi) |
| L3      | 92.58-45.50   | 53.00   | 7.50   | 18     | 43.4924  | 57.7420  | 0.3750    | 1.5000 | A572-65             |

| tnx <sub>T</sub> | 'ower |
|------------------|-------|
|                  |       |

Destek Engineering, LLC 1281 Kennestone Circle, Suite 100 Marietta, GA 30066 Phone: (770) 693-0835 FAX:

| Job     |        | Page                       |
|---------|--------|----------------------------|
|         |        | 2 of 17                    |
| Project |        | Date                       |
|         | CT5122 | 08:59:29 11/29/16          |
| Client  | Com-Ex | Designed by Ahmet Coakoglu |

| Section | Elevation<br>ft | Section<br>Length<br>ft | Splice<br>Length<br>ft | Number<br>of<br>Sides | Top<br>Diameter<br>in | Bottom<br>Diameter<br>in | Wall<br>Thickness<br>in | Bend<br>Radius<br>in | Pole Grade                      |
|---------|-----------------|-------------------------|------------------------|-----------------------|-----------------------|--------------------------|-------------------------|----------------------|---------------------------------|
| L4      | 45.50-0.00      | 53.00                   |                        | 18                    | 54.9755               | 69.2250                  | 0.3750                  | 1.5000               | (65 ksi)<br>A572-65<br>(65 ksi) |

| Tapered | l Pole F | Properties |
|---------|----------|------------|
|---------|----------|------------|

| Section | Tip Dia. | Area    | I          | r       | С       | I/C       | J               | It/Q    | w       | w/t    |
|---------|----------|---------|------------|---------|---------|-----------|-----------------|---------|---------|--------|
|         | in       | $in^2$  | in⁴        | in      | in      | $in^3$    | in <sup>4</sup> | $in^2$  | in      |        |
| L1      | 23.4564  | 18.1315 | 1196.0325  | 8.1118  | 11.7348 | 101.9219  | 2393.6388       | 9.0675  | 3.6256  | 14.502 |
|         | 33.7619  | 26.1847 | 3602.3567  | 11.7146 | 16.8905 | 213.2772  | 7209.4536       | 13.0948 | 5.4118  | 21.647 |
| L2      | 33.2542  | 37.1476 | 4571.4330  | 11.0795 | 16.0451 | 284.9110  | 9148.8811       | 18.5773 | 4.8989  | 13.064 |
|         | 46.5411  | 54.1076 | 14126.5228 | 16.1379 | 23.2837 | 606.7137  | 28271.6336      | 27.0589 | 7.4068  | 19.751 |
| L3      | 45.7795  | 51.3205 | 12054.0604 | 15.3067 | 22.0941 | 545.5773  | 24123.9819      | 25.6651 | 6.9947  | 18.652 |
|         | 58.6328  | 68.2811 | 28389.7820 | 20.3653 | 29.3329 | 967.8466  | 56816.9200      | 34.1470 | 9.5026  | 25.34  |
| L4      | 57.8712  | 64.9883 | 24477.4753 | 19.3832 | 27.9276 | 876.4625  | 48987.1587      | 32.5003 | 9.0157  | 24.042 |
|         | 70.2929  | 81.9487 | 49078.0698 | 24.4417 | 35.1663 | 1395.5995 | 98220.7178      | 40.9821 | 11.5236 | 30.73  |

| Tower          | Gusset          | Gusset    | Gusset Grade | Adjust. Factor | Adjust. | Weight Mult. | Double Angle | 0           | 0           |
|----------------|-----------------|-----------|--------------|----------------|---------|--------------|--------------|-------------|-------------|
| Elevation      | Area            | Thickness |              | $A_f$          | Factor  |              | Stitch Bolt  | Stitch Bolt | Stitch Bolt |
|                | (per face)      |           |              |                | $A_r$   |              | Spacing      | Spacing     | Spacing     |
|                |                 |           |              |                |         |              | Diagonals    | Horizontals | Redundants  |
| ft             | ft <sup>2</sup> | in        |              |                |         |              | in           | in          | in          |
| L1             |                 |           |              | 1              | 1       | 1            |              |             |             |
| 179.00-141.25  |                 |           |              |                |         |              |              |             |             |
| L2             |                 |           |              | 1              | 1       | 1            |              |             |             |
| 141.25-92.58   |                 |           |              |                |         |              |              |             |             |
| L3 92.58-45.50 |                 |           |              | 1              | 1       | 1            |              |             |             |
| L4 45.50-0.00  |                 |           |              | 1              | 1       | 1            |              |             |             |

### Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description            | Sector | Component<br>Type    | Placement     | Total<br>Number | Number<br>Per Row | Start/End<br>Position | Width or<br>Diameter | Perimeter | Weight |
|------------------------|--------|----------------------|---------------|-----------------|-------------------|-----------------------|----------------------|-----------|--------|
|                        |        | JF -                 | ft            |                 |                   |                       | in                   | in        | plf    |
| AVA6-50(1-1/4)         | В      | Surface Ar<br>(CaAa) | 6.00 - 174.00 | 1               | 1                 | 0.000                 | 1.5600               |           | 0.46   |
| AL7-50(1-5/8")         | С      | Surface Ar<br>(CaAa) | 6.00 - 151.00 | 6               | 6                 | -0.100<br>0.100       | 1.9600               |           | 0.52   |
| ATCB-B01(1/4")         | С      | Surface Ar<br>(CaAa) | 6.00 - 151.00 | 1               | 1                 | -0.125<br>-0.125      | 0.3150               |           | 0.07   |
| AL7-50(1-5/8")         | С      | Surface Ar<br>(CaAa) | 6.00 - 130.00 | 6               | 6                 | 0.100<br>0.300        | 1.9600               |           | 0.52   |
| ATCB-B01(1/4") *****   | С      | Surface Ar<br>(CaAa) | 6.00 - 130.00 | 1               | 1                 | 0.313<br>0.313        | 0.3150               |           | 0.07   |
| Step Pegs (Surface Ar) | С      | Surface Ar<br>(CaAa) | 6.00 - 179.00 | 1               | 1                 | $0.000 \\ 0.000$      | 0.8000               |           | 2.72   |
| ***                    |        |                      |               |                 |                   |                       |                      |           |        |
| 8x0.5                  | A      | Surface Af<br>(CaAa) | 30.00 - 0.00  | 1               | 1                 | $0.000 \\ 0.000$      | 8.0000               | 17.0000   | 13.61  |
| 8x0.5                  | В      | Surface Af<br>(CaAa) | 30.00 - 0.00  | 1               | 1                 | $0.000 \\ 0.000$      | 8.0000               | 17.0000   | 13.61  |

Destek Engineering, LLC 1281 Kennestone Circle, Suite 100 Marietta, GA 30066 Phone: (770) 693-0835 FAX:

| Job     |        | Page                       |
|---------|--------|----------------------------|
|         |        | 3 of 17                    |
| Project |        | Date                       |
|         | CT5122 | 08:59:29 11/29/16          |
| 18ient  | Com-Ex | Designed by Ahmet Coakoglu |

| Description | Sector | Component<br>Type | Placement    | Total<br>Number | Number<br>Per Row |       | Width or<br>Diameter | Perimeter | Weight |
|-------------|--------|-------------------|--------------|-----------------|-------------------|-------|----------------------|-----------|--------|
|             |        |                   | ft           |                 |                   |       | in                   | in        | plf    |
| 8x0.5       | С      | Surface Af        | 30.00 - 0.00 | 1               | 1                 | 0.000 | 8.0000               | 17.0000   | 13.61  |
|             |        | (CaAa)            |              |                 |                   | 0.000 |                      |           |        |

### Feed Line/Linear Appurtenances - Entered As Area

| Description                         | Face<br>or | Allow<br>Shield | Component<br>Type | Placement     | Total<br>Number |          | $C_A A_A$ | Weight |
|-------------------------------------|------------|-----------------|-------------------|---------------|-----------------|----------|-----------|--------|
|                                     | Leg        | Smeia           | Туре              | ft            | rumber          |          | ft²/ft    | plf    |
| AL7-50(1-5/8")                      | В          | No              | Inside Pole       | 6.00 - 179.00 | 4               | No Ice   | 0.00      | 0.52   |
| 1127 00(1 0/0 )                     |            | 110             | 11101440 1 010    | 0.00 177.00   | ·               | 1/2" Ice | 0.00      | 0.52   |
|                                     |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.52   |
| AVA6-50(1-1/4)                      | В          | No              | Inside Pole       | 6.00 - 179.00 | 1               | No Ice   | 0.00      | 0.46   |
| , , , , ,                           |            |                 |                   |               |                 | 1/2" Ice | 0.00      | 0.46   |
|                                     |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.46   |
| AL5-50(7/8")                        | В          | No              | Inside Pole       | 6.00 - 179.00 | 2               | No Ice   | 0.00      | 0.26   |
|                                     |            |                 |                   |               |                 | 1/2" Ice | 0.00      | 0.26   |
|                                     |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.26   |
| HJ4-50(1/2")                        | В          | No              | Inside Pole       | 6.00 - 179.00 | 2               | No Ice   | 0.00      | 0.25   |
|                                     |            |                 |                   |               |                 | 1/2" Ice | 0.00      | 0.25   |
|                                     |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.25   |
| ****                                |            |                 |                   |               |                 | 1 100    | 0.00      | 0.20   |
| AVA6-50(1-1/4)                      | В          | No              | Inside Pole       | 6.00 - 174.00 | 3               | No Ice   | 0.00      | 0.46   |
| 11/110 00(1 1/1)                    |            | 110             | 1110144 1 010     | 0.00 17 1.00  | 3               | 1/2" Ice | 0.00      | 0.46   |
|                                     |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.46   |
| ****                                |            |                 |                   |               |                 | 1 100    | 0.00      | 0.10   |
| ATCB-B01(1/4")                      | В          | No              | Inside Pole       | 6.00 - 159.00 | 1               | No Ice   | 0.00      | 0.07   |
| THEB BUILTY                         | В          | 110             | morae i ore       | 0.00 157.00   | 1               | 1/2" Ice | 0.00      | 0.07   |
|                                     |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.07   |
| ****                                |            |                 |                   |               |                 | 1 100    | 0.00      | 0.07   |
| AL7-50(1-5/8")                      | С          | No              | Inside Pole       | 6.00 - 151.00 | 12              | No Ice   | 0.00      | 0.52   |
| 1127 00(1 0/0 )                     |            | 1.0             | 1110140 1 010     | 0.00 101.00   |                 | 1/2" Ice | 0.00      | 0.52   |
|                                     |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.52   |
| ****                                |            |                 |                   |               |                 | 1 100    | 0.00      | 0.52   |
| AL7-50(1-5/8")                      | Α          | No              | Inside Pole       | 6.00 - 140.00 | 12              | No Ice   | 0.00      | 0.52   |
|                                     |            | - 10            |                   |               |                 | 1/2" Ice | 0.00      | 0.52   |
|                                     |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.52   |
| B-L98-002-XXX( 3/8")                | Α          | No              | Inside Pole       | 6.00 - 140.00 | 1               | No Ice   | 0.00      | 0.06   |
| , , , , , , , , , , , , , , , , , , |            | - 10            |                   |               |                 | 1/2" Ice | 0.00      | 0.06   |
|                                     |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.06   |
| WR-VG122ST-BRDA(                    | Α          | No              | Inside Pole       | 6.00 - 140.00 | 2               | No Ice   | 0.00      | 0.25   |
| 7/16")                              |            | 1.0             | 1110140 1 010     | 0.00 1.0.00   | -               | 1/2" Ice | 0.00      | 0.25   |
| 7710 )                              |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.25   |
| ****                                |            |                 |                   |               |                 | 1 100    | 0.00      | 0.23   |
| AL7-50(1-5/8")                      | C          | No              | Inside Pole       | 6.00 - 130.00 | 12              | No Ice   | 0.00      | 0.52   |
| 1127 30(1 370 )                     | 0          | 110             | 1.15140 1 010     | 3.00 130.00   |                 | 1/2" Ice | 0.00      | 0.52   |
|                                     |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.52   |
| ***                                 |            |                 |                   |               |                 | 1 100    | 0.00      | 0.52   |
| ATCB-B01(1/4")                      | В          | No              | Inside Pole       | 6.00 - 126.00 | 1               | No Ice   | 0.00      | 0.07   |
| 711CB-B01(1/4 )                     | ъ          | 110             | mside i die       | 3.00 - 120.00 | 1               | 1/2" Ice | 0.00      | 0.07   |
|                                     |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.07   |

### Feed Line/Linear Appurtenances Section Areas

Destek Engineering, LLC 1281 Kennestone Circle, Suite 100 Marietta, GA 30066 Phone: (770) 693-0835 FAX:

| Job     |        | Page                       |
|---------|--------|----------------------------|
|         |        | 4 of 17                    |
| Project |        | Date                       |
|         | CT5122 | 08:59:29 11/29/16          |
| Client  | Com-Ex | Designed by Ahmet Coakoglu |

| Tower   | Tower         | Face | $A_R$  | $A_F$           | $C_A A_A$ | $C_A A_A$ | Weight  |
|---------|---------------|------|--------|-----------------|-----------|-----------|---------|
| Section | Elevation     |      |        |                 | In Face   | Out Face  |         |
|         | ft            |      | $ft^2$ | ft <sup>2</sup> | $ft^2$    | $ft^2$    | lb      |
| L1      | 179.00-141.25 | A    | 0.000  | 0.000           | 0.000     | 0.000     | 0.00    |
|         |               | В    | 0.000  | 0.000           | 5.109     | 0.000     | 195.98  |
|         |               | C    | 0.000  | 0.000           | 14.793    | 0.000     | 194.67  |
| L2      | 141.25-92.58  | Α    | 0.000  | 0.000           | 0.000     | 0.000     | 322.67  |
|         |               | В    | 0.000  | 0.000           | 7.593     | 0.000     | 268.97  |
|         |               | C    | 0.000  | 0.000           | 107.847   | 0.000     | 944.64  |
| L3      | 92.58-45.50   | Α    | 0.000  | 0.000           | 0.000     | 0.000     | 320.36  |
|         |               | В    | 0.000  | 0.000           | 7.344     | 0.000     | 261.29  |
|         |               | C    | 0.000  | 0.000           | 117.465   | 0.000     | 1016.46 |
| L4      | 45.50-0.00    | A    | 0.000  | 0.000           | 40.000    | 0.000     | 677.08  |
|         |               | В    | 0.000  | 0.000           | 46.162    | 0.000     | 627.52  |
|         |               | C    | 0.000  | 0.000           | 138.553   | 0.000     | 1261.11 |

### Feed Line/Linear Appurtenances Section Areas - With Ice

| Tower   | Tower         | Face | Ice       | $A_R$  | $A_F$  | $C_A A_A$       | $C_A A_A$ | Weight  |
|---------|---------------|------|-----------|--------|--------|-----------------|-----------|---------|
| Section | Elevation     | or   | Thickness |        |        | In Face         | Out Face  |         |
|         | ft            | Leg  | in        | $ft^2$ | $ft^2$ | ft <sup>2</sup> | $ft^2$    | lb      |
| L1      | 179.00-141.25 | A    | 2.341     | 0.000  | 0.000  | 0.000           | 0.000     | 0.00    |
|         |               | В    |           | 0.000  | 0.000  | 20.441          | 0.000     | 561.31  |
|         |               | C    |           | 0.000  | 0.000  | 45.602          | 0.000     | 917.27  |
| L2      | 141.25-92.58  | Α    | 2.268     | 0.000  | 0.000  | 0.000           | 0.000     | 322.67  |
|         |               | В    |           | 0.000  | 0.000  | 30.377          | 0.000     | 811.89  |
|         |               | C    |           | 0.000  | 0.000  | 246.623         | 0.000     | 4768.37 |
| L3      | 92.58-45.50   | A    | 2.152     | 0.000  | 0.000  | 0.000           | 0.000     | 320.36  |
|         |               | В    |           | 0.000  | 0.000  | 28.696          | 0.000     | 760.52  |
|         |               | C    |           | 0.000  | 0.000  | 262.581         | 0.000     | 4971.42 |
| L4      | 45.50-0.00    | A    | 1.929     | 0.000  | 0.000  | 52.909          | 0.000     | 1308.23 |
|         |               | В    |           | 0.000  | 0.000  | 76.068          | 0.000     | 1644.05 |
|         |               | C    |           | 0.000  | 0.000  | 268.172         | 0.000     | 4986.90 |

### **Feed Line Center of Pressure**

| Se | ction | Elevation     | $CP_X$  | $CP_Z$ | $CP_X$  | $CP_Z$ |
|----|-------|---------------|---------|--------|---------|--------|
|    |       |               |         |        | Ice     | Ice    |
|    |       | ft            | in      | in     | in      | in     |
| ]  | L1    | 179.00-141.25 | 0.1559  | 0.4641 | 0.4046  | 0.7826 |
| ]  | L2    | 141.25-92.58  | -0.2302 | 1.8838 | -0.1138 | 2.1539 |
| ]  | L3    | 92.58-45.50   | -0.3382 | 2.1963 | -0.2496 | 2.6306 |
| I  | L4    | 45.50-0.00    | -0.2407 | 1.5640 | -0.2074 | 2.1396 |

### **Shielding Factor Ka**

| Ī | Tower   | Feed Line  | Description    | Feed Line     | $K_a$  | $K_a$  |
|---|---------|------------|----------------|---------------|--------|--------|
| ı | Section | Record No. |                | Segment Elev. | No Ice | Ice    |
| ſ | L1      | 7          | AVA6-50(1-1/4) | 141.25 -      | 1.0000 | 1.0000 |
| ı |         |            |                | 174.00        |        |        |
| ı | L1      | 12         | AL7-50(1-5/8") | 141.25 -      | 1.0000 | 1.0000 |

| 4    | 7   |      |      |
|------|-----|------|------|
| tnx1 |     | 1120 | 17/2 |
|      | W I |      | 4    |

Destek Engineering, LLC 1281 Kennestone Circle, Suite 100 Marietta, GA 30066 Phone: (770) 693-0835 FAX:

| Job    |        | Page                       |
|--------|--------|----------------------------|
|        |        | 5 of 17                    |
| Proje  | et     | Date                       |
|        | CT5122 | 08:59:29 11/29/16          |
| Client | Com-Ex | Designed by Ahmet Coakoglu |

| Tower   | Feed Line  | Description            | Feed Line      | $K_a$  | $K_a$  |
|---------|------------|------------------------|----------------|--------|--------|
| Section | Record No. |                        | Segment Elev.  | No Ice | Ice    |
|         |            |                        | 151.00         |        |        |
| L1      | 13         | ATCB-B01(1/4")         | 141.25 -       | 1.0000 | 1.0000 |
|         |            |                        | 151.00         |        |        |
| L1      | 27         | Step Pegs (Surface Ar) | 141.25 -       | 1.0000 | 1.0000 |
|         |            |                        | 179.00         |        |        |
| L1      | 22         | AL7-50(1-5/8")         | 141.25 -       | 1.0000 | 1.0000 |
|         |            |                        | 130.00         |        |        |
| L1      | 23         | ATCB-B01(1/4")         | 141.25 -       | 1.0000 | 1.0000 |
|         |            |                        | 130.00         |        |        |
| L2      | 7          | AVA6-50(1-1/4)         | 92.58 - 141.25 | 1.0000 | 1.0000 |
| L2      | 12         | AL7-50(1-5/8")         | 92.58 - 141.25 | 1.0000 | 1.0000 |
| L2      | 13         | ATCB-B01(1/4")         | 92.58 - 141.25 | 1.0000 | 1.0000 |
| L2      | 22         | AL7-50(1-5/8")         | 92.58 - 130.00 | 1.0000 | 1.0000 |
| L2      | 23         | ATCB-B01(1/4")         | 92.58 - 130.00 | 1.0000 | 1.0000 |
| L2      | 27         | Step Pegs (Surface Ar) | 92.58 - 141.25 | 1.0000 | 1.0000 |
| L3      | 7          | AVA6-50(1-1/4)         | 45.50 - 92.58  | 1.0000 | 1.0000 |
| L3      | 12         | AL7-50(1-5/8")         | 45.50 - 92.58  | 1.0000 | 1.0000 |
| L3      | 13         | ATCB-B01(1/4")         | 45.50 - 92.58  | 1.0000 | 1.0000 |
| L3      | 22         | AL7-50(1-5/8")         |                | 1.0000 | 1.0000 |
| L3      | 23         | ATCB-B01(1/4")         |                | 1.0000 | 1.0000 |
| L3      | 27         | Step Pegs (Surface Ar) | 45.50 - 92.58  | 1.0000 | 1.0000 |
| L3      | 29         | 8x0.5                  | 45.50 - 30.00  | 1.0000 | 1.0000 |
| L3      | 30         | 8x0.5                  | 45.50 - 30.00  | 1.0000 | 1.0000 |
| L3      | 31         | 8x0.5                  | 45.50 - 30.00  | 1.0000 | 1.0000 |

### **Discrete Tower Loads**

| Description            | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                              | $C_A A_A$<br>Front   | $C_AA_A$<br>Side     | Weight                  |
|------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|------------------------------|----------------------|----------------------|-------------------------|
|                        |                   |                | Vert<br>ft<br>ft<br>ft      | 0                     | ft        |                              | ft²                  | ft²                  | lb                      |
| (3) 6' x 2" Mount Pipe | A                 | From Face      | 2.00<br>0.00<br>0.00        | 0.0000                | 181.00    | No Ice<br>1/2" Ice<br>1" Ice | 1.43<br>1.92<br>2.29 | 1.43<br>1.92<br>2.29 | 22.00<br>32.83<br>47.71 |
| (3) 6' x 2" Mount Pipe | В                 | From Face      | 2.00<br>0.00<br>0.00        | 0.0000                | 181.00    | No Ice<br>1/2" Ice<br>1" Ice | 1.43<br>1.92<br>2.29 | 1.43<br>1.92<br>2.29 | 22.00<br>32.83<br>47.71 |
| (3) 6' x 2" Mount Pipe | С                 | From Face      | 2.00<br>0.00<br>0.00        | 0.0000                | 181.00    | No Ice<br>1/2" Ice<br>1" Ice | 1.43<br>1.92<br>2.29 | 1.43<br>1.92<br>2.29 | 22.00<br>32.83<br>47.71 |
| Omni 4"x6'             | A                 | From Face      | 2.00<br>0.00<br>5.00        | 0.0000                | 181.00    | No Ice<br>1/2" Ice<br>1" Ice | 2.09<br>2.46<br>2.83 | 2.09<br>2.46<br>2.83 | 20.00<br>37.13<br>54.26 |
| Omni 2"x6'             | Α                 | From Face      | 2.00<br>0.00<br>5.00        | 0.0000                | 181.00    | No Ice<br>1/2" Ice<br>1" Ice | 1.20<br>1.80<br>2.40 | 1.20<br>1.80<br>2.40 | 25.00<br>34.39<br>43.78 |
| Distribution Box       | Α                 | From Face      | 2.00<br>0.00<br>0.00        | 0.0000                | 181.00    | No Ice<br>1/2" Ice<br>1" Ice | 2.33<br>2.55<br>2.77 | 1.36<br>1.54<br>1.50 | 10.00<br>26.33<br>42.66 |
| Omni 3"x4'             | В                 | From Face      | 2.00<br>0.00<br>4.00        | 0.0000                | 181.00    | No Ice<br>1/2" Ice<br>1" Ice | 1.00<br>1.25<br>1.50 | 1.00<br>1.25<br>5.06 | 15.00<br>23.96<br>32.92 |

| Job           | Page                       |
|---------------|----------------------------|
|               | 6 of 17                    |
| Project       | Date                       |
| CT5122        | 08:59:29 11/29/16          |
| Client Com-Ex | Designed by Ahmet Coakoglu |

| Description               | Face<br>or | Offset<br>Type | Offsets:<br>Horz | Azimuth<br>Adjustment | Placement |                    | $C_AA_A$<br>Front | $C_A A_A$<br>Side | Weight           |
|---------------------------|------------|----------------|------------------|-----------------------|-----------|--------------------|-------------------|-------------------|------------------|
|                           | Leg        |                | Lateral<br>Vert  |                       |           |                    |                   |                   |                  |
|                           |            |                | ft<br>ft         | 0                     | ft        |                    | ft <sup>2</sup>   | ft²               | lb               |
| O: 2"10!                  | D          | F F            | ft               | 0.0000                | 101.00    | N- I               | 2.00              | 2.00              | 20.00            |
| Omni 3"x10'               | В          | From Face      | 2.00<br>0.00     | 0.0000                | 181.00    | No Ice<br>1/2" Ice | 3.00<br>4.03      | 3.00<br>4.03      | 20.00<br>41.79   |
|                           |            |                | 7.00             |                       |           | 1" Ice             | 5.06              | 1.72              | 63.58            |
| Distribution Box          | В          | From Face      | 2.00             | 0.0000                | 181.00    | No Ice             | 2.33              | 1.36              | 10.00            |
| Bisure union Ben          | 2          | 1101111400     | 0.00             | 0.000                 | 101.00    | 1/2" Ice           | 2.55              | 1.54              | 26.33            |
|                           |            |                | 0.00             |                       |           | 1" Ice             | 2.77              | 1.50              | 42.66            |
| Omni 3" x 4'              | C          | From Face      | 2.00             | 0.0000                | 181.00    | No Ice             | 1.00              | 1.00              | 15.00            |
|                           |            |                | 0.00             |                       |           | 1/2" Ice           | 1.25              | 1.25              | 23.96            |
|                           |            |                | 4.00             |                       |           | 1" Ice             | 1.50              | 2.18              | 32.92            |
| 4' Dipole                 | C          | From Face      | 2.00             | 0.0000                | 181.00    | No Ice             | 1.64              | 1.64              | 15.00            |
|                           |            |                | 0.00             |                       |           | 1/2" Ice           | 1.91              | 1.91              | 32.13            |
| T. 702.2                  |            | <b>N</b> .T    | 2.00             | 0.0000                | 101.00    | 1" Ice             | 2.18              | 2.18              | 49.26            |
| TA 702-3                  | A          | None           |                  | 0.0000                | 181.00    | No Ice<br>1/2" Ice | 5.64              | 5.64              | 339.00           |
|                           |            |                |                  |                       |           | 1/2" Ice<br>1" Ice | 6.55<br>7.46      | 6.55<br>7.46      | 429.00<br>519.00 |
| ****                      |            |                |                  |                       |           | 1 100              | 7.40              | 7.40              | 319.00           |
| ET-X-TU-42-15-37-18-iR-ST | Α          | From Face      | 3.00             | 0.0000                | 174.00    | No Ice             | 8.68              | 4.50              | 68.25            |
| w/ Mount Pipe             | А          | 1 Iom I acc    | 0.00             | 0.0000                | 174.00    | 1/2" Ice           | 9.18              | 5.17              | 127.30           |
| w/ Would Tipe             |            |                | 0.00             |                       |           | 1" Ice             | 9.68              | 5.84              | 192.77           |
| APXVSPP18-C w/ Mount      | В          | From Face      | 3.00             | 0.0000                | 174.00    | No Ice             | 8.26              | 6.95              | 82.55            |
| Pipe                      |            |                | 0.00             |                       |           | 1/2" Ice           | 8.82              | 8.13              | 150.56           |
| r                         |            |                | 0.00             |                       |           | 1" Ice             | 9.35              | 9.02              | 226.53           |
| APXVSPP18-C w/ Mount      | C          | From Face      | 3.00             | 0.0000                | 174.00    | No Ice             | 8.26              | 6.95              | 82.55            |
| Pipe                      |            |                | 0.00             |                       |           | 1/2" Ice           | 8.82              | 8.13              | 150.56           |
|                           |            |                | 0.00             |                       |           | 1" Ice             | 9.35              | 9.02              | 226.53           |
| APXV9TM14 w/ Mount Pipe   | Α          | From Face      | 3.00             | 0.0000                | 174.00    | No Ice             | 7.21              | 5.03              | 91.90            |
|                           |            |                | 0.00             |                       |           | 1/2" Ice           | 7.77              | 5.89              | 147.31           |
|                           |            |                | 0.00             |                       |           | 1" Ice             | 8.33              | 6.75              | 202.72           |
| APXV9TM14 w/ Mount Pipe   | В          | From Face      | 3.00             | 0.0000                | 174.00    | No Ice             | 7.21              | 5.03              | 91.90            |
|                           |            |                | 0.00             |                       |           | 1/2" Ice           | 7.77              | 5.89              | 147.31           |
| ADVIOTM14/ Mt Dis-        | C          | From Face      | 0.00             | 0.0000                | 174.00    | 1" Ice             | 8.33              | 6.75              | 202.72           |
| APXV9TM14 w/ Mount Pipe   | С          | From Face      | 3.00<br>0.00     | 0.0000                | 174.00    | No Ice<br>1/2" Ice | 7.21<br>7.77      | 5.03<br>5.89      | 91.90<br>147.31  |
|                           |            |                | 0.00             |                       |           | 1" Ice             | 8.33              | 5.89<br>6.75      | 202.72           |
| TA 602-3                  | С          | None           | 0.00             | 0.0000                | 174.00    | No Ice             | 11.59             | 11.59             | 774.00           |
| 1A 002-3                  | C          | None           |                  | 0.0000                | 174.00    | 1/2" Ice           | 15.44             | 15.44             | 990.00           |
|                           |            |                |                  |                       |           | 1" Ice             | 19.29             | 19.29             | 1206.00          |
| ***                       |            |                |                  |                       |           |                    |                   |                   |                  |
| RRH1900MHz                | Α          | From Face      | 1.50             | 0.0000                | 170.00    | No Ice             | 2.60              | 3.72              | 59.13            |
|                           |            |                | 0.00             |                       |           | 1/2" Ice           | 2.84              | 4.10              | 97.16            |
| DD111000101               | -          |                | 0.00             | 0.0000                | 150.00    | 1" Ice             | 3.09              | 4.50              | 139.81           |
| RRH1900MHz                | В          | From Face      | 1.50             | 0.0000                | 170.00    | No Ice             | 2.60              | 3.72              | 59.13            |
|                           |            |                | 0.00             |                       |           | 1/2" Ice           | 2.84              | 4.10              | 97.16            |
| DDII1000MII.              | C          | From Face      | 0.00             | 0.0000                | 170.00    | 1" Ice<br>No Ice   | 3.09              | 4.50              | 139.81<br>59.13  |
| RRH1900MHz                | С          | rioiii race    | 1.50<br>0.00     | 0.0000                | 1/0.00    | 1/2" Ice           | 2.60<br>2.84      | 3.72<br>4.10      | 97.16            |
|                           |            |                | 0.00             |                       |           | 1" Ice             | 3.09              | 4.10              | 139.81           |
| RRH800MHz                 | Α          | From Face      | 1.50             | 0.0000                | 170.00    | No Ice             | 2.24              | 2.41              | 49.43            |
| KKITOOOMITZ               | 71         | i ioni i acc   | 0.00             | 0.0000                | 170.00    | 1/2" Ice           | 2.49              | 2.75              | 78.53            |
|                           |            |                | 0.00             |                       |           | 1" Ice             | 2.74              | 3.11              | 111.69           |
| RRH800MHz                 | В          | From Face      | 1.50             | 0.0000                | 170.00    | No Ice             | 2.24              | 2.41              | 49.43            |
|                           | -          |                | 0.00             |                       |           | 1/2" Ice           | 2.49              | 2.75              | 78.53            |
|                           |            |                | 0.00             |                       |           | 1" Ice             | 2.74              | 3.11              | 111.69           |
| RRH800MHz                 | C          | From Face      | 1.50             | 0.0000                | 170.00    | No Ice             | 2.24              | 2.41              | 49.43            |
|                           |            |                | 0.00             |                       |           | 1/2" Ice           | 2.49              | 2.75              | 78.53            |
|                           |            |                | 0.00             |                       |           | 1" Ice             | 2.74              | 3.11              | 111.69           |
| RRH8x20-25                |            | From Face      | 1.50             | 0.0000                | 174.00    | No Ice             | 4.72              | 1.70              | 70.00            |

| Job           | Page                       |
|---------------|----------------------------|
|               | 7 of 17                    |
| Project       | Date                       |
| CT5122        | 08:59:29 11/29/16          |
| Client Com-Ex | Designed by Ahmet Coakoglu |

| Description           | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                    | $C_AA_A$<br>Front | $C_AA_A$<br>Side | Weigl          |
|-----------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|--------------------|-------------------|------------------|----------------|
|                       | Leg               |                | Vert<br>ft                  | 0                     | ft        |                    | ft²               | ft²              | lb             |
|                       |                   |                | ft<br>ft                    |                       | J.        |                    | Ji                | Ji               |                |
|                       |                   |                | 0.00                        |                       |           | 1/2" Ice           | 5.01              | 1.92             | 97.14          |
|                       |                   |                | 0.00                        |                       |           | 1" Ice             | 5.30              | 2.14             | 124.2          |
| RRH8x20-25            | В                 | From Face      | 1.50                        | 0.0000                | 174.00    | No Ice             | 4.72              | 1.70             | 70.00          |
|                       |                   |                | 0.00                        |                       |           | 1/2" Ice           | 5.01              | 1.92             | 97.14          |
|                       |                   |                | 0.00                        |                       |           | 1" Ice             | 5.30              | 2.14             | 124.2          |
| RRH8x20-25            | C                 | From Face      | 1.50                        | 0.0000                | 174.00    | No Ice             | 4.72              | 1.70             | 70.0           |
|                       |                   |                | 0.00                        |                       |           | 1/2" Ice           | 5.01              | 1.92             | 97.1           |
| D: 14                 |                   |                | 0.00                        | 0.000                 | 170.00    | 1" Ice             | 5.30              | 2.14             | 124.2          |
| Ring Mount            | C                 | None           |                             | 0.0000                | 170.00    | No Ice             | 1.40              | 1.40             | 90.0           |
|                       |                   |                |                             |                       |           | 1/2" Ice           | 2.40              | 2.40             | 130.0          |
| ****                  |                   |                |                             |                       |           | 1" Ice             | 3.40              | 3.40             | 170.0          |
| (2) AIR 21 B4A/B2P w/ | A                 | From Face      | 3.00                        | 0.0000                | 151.00    | No Ice             | 6.16              | 5.55             | 103.3          |
| Mount Pipe            | 11                | r roin r acc   | 0.00                        | 0.0000                | 151.00    | 1/2" Ice           | 6.60              | 6.30             | 159.1          |
| ount 1 ipe            |                   |                | 1.00                        |                       |           | 1" Ice             | 7.03              | 7.00             | 221.6          |
| (2) AIR 21 B4A/B2P w/ | В                 | From Face      | 3.00                        | 0.0000                | 151.00    | No Ice             | 6.16              | 5.55             | 103.3          |
| Mount Pipe            |                   |                | 0.00                        |                       |           | 1/2" Ice           | 6.60              | 6.30             | 159.1          |
| •                     |                   |                | 1.00                        |                       |           | 1" Ice             | 7.03              | 7.00             | 221.6          |
| (2) AIR 21 B4A/B2P w/ | C                 | From Face      | 3.00                        | 0.0000                | 151.00    | No Ice             | 6.16              | 5.55             | 103.3          |
| Mount Pipe            |                   |                | 0.00                        |                       |           | 1/2" Ice           | 6.60              | 6.30             | 159.1          |
|                       |                   |                | 1.00                        |                       |           | 1" Ice             | 7.03              | 7.00             | 221.6          |
| LNX-6515DS-VTM w/     | Α                 | From Face      | 3.00                        | 0.0000                | 151.00    | No Ice             | 11.65             | 9.84             | 83.2           |
| Mount Pipe            |                   |                | 0.00                        |                       |           | 1/2" Ice           | 12.37             | 11.37            | 172.7          |
|                       |                   |                | 1.00                        |                       |           | 1" Ice             | 13.10             | 12.92            | 272.2          |
| LNX-6515DS-VTM w/     | В                 | From Face      | 3.00                        | 0.0000                | 151.00    | No Ice             | 11.65             | 9.84             | 83.2           |
| Mount Pipe            |                   |                | 0.00                        |                       |           | 1/2" Ice           | 12.37             | 11.37            | 172.7          |
| LNIX CELEDO ATEM      | 0                 | г г            | 1.00                        | 0.0000                | 151.00    | 1" Ice             | 13.10             | 12.92            | 272.2          |
| LNX-6515DS-VTM w/     | С                 | From Face      | 3.00                        | 0.0000                | 151.00    | No Ice<br>1/2" Ice | 11.65             | 9.84             | 83.2           |
| Mount Pipe            |                   |                | 0.00<br>1.00                |                       |           | 1" Ice             | 12.37<br>13.10    | 11.37<br>12.92   | 172.7<br>272.2 |
| RRUS 11               | A                 | From Face      | 2.00                        | 0.0000                | 151.00    | No Ice             | 2.78              | 1.19             | 50.70          |
| KKOS II               | А                 | 1 Ioiii I acc  | 0.00                        | 0.0000                | 131.00    | 1/2" Ice           | 2.76              | 1.33             | 71.5           |
|                       |                   |                | 0.00                        |                       |           | 1" Ice             | 3.21              | 1.49             | 95.3           |
| RRUS 11               | В                 | From Face      | 2.00                        | 0.0000                | 151.00    | No Ice             | 2.78              | 1.19             | 50.7           |
|                       |                   |                | 0.00                        |                       |           | 1/2" Ice           | 2.99              | 1.33             | 71.5           |
|                       |                   |                | 0.00                        |                       |           | 1" Ice             | 3.21              | 1.49             | 95.3           |
| RRUS 11               | C                 | From Face      | 2.00                        | 0.0000                | 151.00    | No Ice             | 2.78              | 1.19             | 50.7           |
|                       |                   |                | 0.00                        |                       |           | 1/2" Ice           | 2.99              | 1.33             | 71.5           |
|                       |                   |                | 0.00                        |                       |           | 1" Ice             | 3.21              | 1.49             | 95.3           |
| Gen TMA               | A                 | From Face      | 2.00                        | 0.0000                | 151.00    | No Ice             | 0.68              | 0.45             | 13.2           |
|                       |                   |                | 0.00                        |                       |           | 1/2" Ice           | 0.80              | 0.56             | 18.3           |
| G                     |                   |                | 0.00                        | 0.0000                | 151.00    | 1" Ice             | 0.92              | 0.67             | 23.5           |
| Gen TMA               | В                 | From Face      | 2.00                        | 0.0000                | 151.00    | No Ice             | 0.68              | 0.45             | 13.2           |
|                       |                   |                | 0.00                        |                       |           | 1/2" Ice           | 0.80              | 0.56             | 18.3           |
| Gen TMA               | C                 | From Face      | 0.00<br>2.00                | 0.0000                | 151.00    | 1" Ice<br>No Ice   | 0.92<br>0.68      | 0.67<br>0.45     | 23.5<br>13.2   |
| Gell TMA              | C                 | rioiii race    | 0.00                        | 0.0000                | 131.00    | 1/2" Ice           | 0.80              | 0.43             | 18.3           |
|                       |                   |                | 0.00                        |                       |           | 1" Ice             | 0.80              | 0.50             | 23.50          |
| TA 602-3              | C                 | None           | 0.00                        | 0.0000                | 151.00    | No Ice             | 11.59             | 11.59            | 774.0          |
| 1110020               |                   | 1.0110         |                             | 0.0000                | 121.00    | 1/2" Ice           | 15.44             | 15.44            | 990.0          |
|                       |                   |                |                             |                       |           | 1" Ice             | 19.29             | 19.29            | 1206.          |
| ****                  |                   |                |                             |                       |           |                    | -                 |                  |                |
| 7770.00 w/ Mount Pipe | A                 | From Face      | 3.00                        | 0.0000                | 140.00    | No Ice             | 5.75              | 4.25             | 55.3           |
| •                     |                   |                | 0.00                        |                       |           | 1/2" Ice           | 6.18              | 5.01             | 102.8          |
|                       |                   |                | 0.00                        |                       |           | 1" Ice             | 6.61              | 5.71             | 156.6          |
| 7770.00 w/ Mount Pipe | В                 | From Face      | 3.00                        | 0.0000                | 140.00    | No Ice             | 5.75              | 4.25             | 55.3           |
|                       |                   |                | 0.00                        |                       |           | 1/2" Ice           | 6.18              | 5.01             | 102.8          |

| Job           | Page                       |
|---------------|----------------------------|
|               | 8 of 17                    |
| Project       | Date                       |
| CT5122        | 08:59:29 11/29/16          |
| Client Com-Ex | Designed by Ahmet Coakoglu |

| Description             | Face<br>or | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                    | $C_AA_A$<br>Front | $C_AA_A$<br>Side | Weight           |
|-------------------------|------------|----------------|-----------------------------|-----------------------|-----------|--------------------|-------------------|------------------|------------------|
|                         | Leg        |                | Vert<br>ft                  | 0                     | ft        |                    | ft²               | ft²              | lb               |
|                         |            |                | ft<br>ft                    |                       |           |                    |                   |                  |                  |
|                         |            |                | 0.00                        |                       |           | 1" Ice             | 6.61              | 5.71             | 156.64           |
| 7770.00 w/ Mount Pipe   | C          | From Face      | 3.00                        | 0.0000                | 140.00    | No Ice             | 5.75              | 4.25             | 55.38            |
|                         |            |                | 0.00<br>0.00                |                       |           | 1/2" Ice<br>1" Ice | 6.18<br>6.61      | 5.01<br>5.71     | 102.81<br>156.64 |
| TPA-65R-LCUUUU-H8 w/    | A          | From Face      | 3.00                        | 0.0000                | 140.00    | No Ice             | 13.54             | 10.96            | 114.45           |
| Mount Pipe              |            | 110111111100   | 0.00                        | 0.0000                | 1.0.00    | 1/2" Ice           | 14.24             | 12.49            | 217.61           |
| •                       |            |                | 0.00                        |                       |           | 1" Ice             | 14.95             | 14.04            | 330.97           |
| TPA-65R-LCUUUU-H8 w/    | В          | From Face      | 3.00                        | 0.0000                | 140.00    | No Ice             | 13.54             | 10.96            | 114.45           |
| Mount Pipe              |            |                | 0.00                        |                       |           | 1/2" Ice           | 14.24             | 12.49            | 217.61           |
| CCI HPA-65R-BUU-H8 with | A          | From Face      | 0.00<br>3.00                | 0.0000                | 140.00    | 1" Ice<br>No Ice   | 14.95<br>13.28    | 14.04<br>9.65    | 330.97<br>122.85 |
| pipe                    | А          | 110m racc      | 0.00                        | 0.0000                | 140.00    | 1/2" Ice           | 14.00             | 11.15            | 220.33           |
| pipe                    |            |                | 0.00                        |                       |           | 1" Ice             | 14.73             | 12.68            | 327.71           |
| CCI HPA-65R-BUU-H8 with | В          | From Face      | 3.00                        | 0.0000                | 140.00    | No Ice             | 13.28             | 9.65             | 122.85           |
| pipe                    |            |                | 0.00                        |                       |           | 1/2" Ice           | 14.00             | 11.15            | 220.33           |
|                         | ~          |                | 0.00                        |                       |           | 1" Ice             | 14.73             | 12.68            | 327.71           |
| (2) SBNHH-1D65A w/      | C          | From Face      | 3.00                        | 0.0000                | 140.00    | No Ice             | 5.95              | 5.19             | 61.30            |
| Mount Pipe              |            |                | 0.00<br>0.00                |                       |           | 1/2" Ice<br>1" Ice | 6.39<br>6.82      | 5.96             | 114.32<br>173.89 |
| RRUS-11                 | Α          | From Face      | 1.00                        | 0.0000                | 142.00    | No Ice             | 2.78              | 6.66<br>1.19     | 47.62            |
| KKOS II                 | 71         | 1 Ioili 1 acc  | 0.00                        | 0.0000                | 142.00    | 1/2" Ice           | 2.99              | 1.33             | 68.42            |
|                         |            |                | 0.00                        |                       |           | 1" Ice             | 3.21              | 1.49             | 92.25            |
| RRUS-11                 | В          | From Face      | 1.00                        | 0.0000                | 142.00    | No Ice             | 2.78              | 1.19             | 47.62            |
|                         |            |                | 0.00                        |                       |           | 1/2" Ice           | 2.99              | 1.33             | 68.42            |
| DDIIG 11                | 0          | Б Б            | 0.00                        | 0.0000                | 1.42.00   | 1" Ice             | 3.21              | 1.49             | 92.25            |
| RRUS-11                 | C          | From Face      | 1.00                        | 0.0000                | 142.00    | No Ice             | 2.78              | 1.19             | 47.62            |
|                         |            |                | $0.00 \\ 0.00$              |                       |           | 1/2" Ice<br>1" Ice | 2.99<br>3.21      | 1.33<br>1.49     | 68.42<br>92.25   |
| RRUS 32                 | Α          | From Face      | 1.00                        | 0.0000                | 140.00    | No Ice             | 2.86              | 1.78             | 55.12            |
|                         |            |                | 0.00                        |                       |           | 1/2" Ice           | 3.08              | 1.97             | 77.39            |
|                         |            |                | 0.00                        |                       |           | 1" Ice             | 3.32              | 2.17             | 102.93           |
| RRUS 32                 | В          | From Face      | 1.00                        | 0.0000                | 140.00    | No Ice             | 2.86              | 1.78             | 55.12            |
|                         |            |                | 0.00                        |                       |           | 1/2" Ice           | 3.08              | 1.97             | 77.39            |
| RRUS 32                 | С          | From Face      | 0.00                        | 0.0000                | 140.00    | 1" Ice<br>No Ice   | 3.32<br>2.86      | 2.17             | 102.93           |
| KKUS 32                 | C          | rioiii race    | 1.00<br>0.00                | 0.0000                | 140.00    | 1/2" Ice           | 3.08              | 1.78<br>1.97     | 55.12<br>77.39   |
|                         |            |                | 0.00                        |                       |           | 1" Ice             | 3.32              | 2.17             | 102.93           |
| RRUS 32 B2              | Α          | From Face      | 1.00                        | 0.0000                | 142.00    | No Ice             | 2.73              | 1.67             | 52.90            |
|                         |            |                | 0.00                        |                       |           | 1/2" Ice           | 2.95              | 1.86             | 73.96            |
|                         | _          |                | 0.00                        |                       |           | 1" Ice             | 3.18              | 2.05             | 98.21            |
| RRUS 32 B2              | В          | From Face      | 1.00                        | 0.0000                | 142.00    | No Ice             | 2.73              | 1.67             | 52.90            |
|                         |            |                | $0.00 \\ 0.00$              |                       |           | 1/2" Ice<br>1" Ice | 2.95<br>3.18      | 1.86<br>2.05     | 73.96<br>98.21   |
| RRUS 32 B2              | C          | From Face      | 1.00                        | 0.0000                | 142.00    | No Ice             | 2.73              | 1.67             | 52.90            |
| RR65 32 B2              | C          | 1 Tolli 1 dec  | 0.00                        | 0.0000                | 142.00    | 1/2" Ice           | 2.95              | 1.86             | 73.96            |
|                         |            |                | 0.00                        |                       |           | 1" Ice             | 3.18              | 2.05             | 98.21            |
| (2) LGP21401            | Α          | From Face      | 2.00                        | 0.0000                | 140.00    | No Ice             | 1.10              | 0.21             | 14.10            |
|                         |            |                | 0.00                        |                       |           | 1/2" Ice           | 1.24              | 0.27             | 21.26            |
| (2) I CD21401           | ъ          | г г            | 0.00                        | 0.0000                | 140.00    | 1" Ice             | 1.38              | 0.35             | 30.32            |
| (2) LGP21401            | В          | From Face      | 2.00<br>0.00                | 0.0000                | 140.00    | No Ice<br>1/2" Ice | 1.10              | 0.21             | 14.10            |
|                         |            |                | 0.00                        |                       |           | 1/2" Ice<br>1" Ice | 1.24<br>1.38      | 0.27<br>0.35     | 21.26<br>30.32   |
| (2) LGP21401            | С          | From Face      | 2.00                        | 0.0000                | 140.00    | No Ice             | 1.10              | 0.33             | 14.10            |
| (-)                     | -          |                | 0.00                        |                       |           | 1/2" Ice           | 1.24              | 0.27             | 21.26            |
|                         |            |                | 0.00                        |                       |           | 1" Ice             | 1.38              | 0.35             | 30.32            |
| (2) LGP21901            | Α          | From Face      | 2.00                        | 0.0000                | 140.00    | No Ice             | 0.23              | 0.16             | 5.50             |
|                         |            |                | 0.00                        |                       |           | 1/2" Ice           | 0.29              | 0.21             | 7.92             |

| Job           | Page                       |
|---------------|----------------------------|
|               | 9 of 17                    |
| Project       | Date                       |
| CT5122        | 08:59:29 11/29/16          |
| Client Com-Ex | Designed by Ahmet Coakoglu |

| Description             | Face<br>or | Offset<br>Type | Offsets:<br>Horz      | Azimuth<br>Adjustment | Placement |                    | $C_AA_A$ Front | $C_A A_A$<br>Side | Weight            |
|-------------------------|------------|----------------|-----------------------|-----------------------|-----------|--------------------|----------------|-------------------|-------------------|
|                         | Leg        |                | Lateral<br>Vert<br>ft | 0                     | ft        |                    | ft²            | $ft^2$            | lb                |
|                         |            |                | ft<br>ft              |                       | J         |                    | Je             | Je                |                   |
|                         |            |                | 0.00                  |                       |           | 1" Ice             | 0.36           | 0.28              | 11.41             |
| (2) LGP21901            | В          | From Face      | 2.00                  | 0.0000                | 140.00    | No Ice             | 0.23           | 0.16              | 5.50              |
|                         |            |                | 0.00                  |                       |           | 1/2" Ice           | 0.29           | 0.21              | 7.92              |
| (2) LGP21901            | С          | From Face      | 0.00<br>2.00          | 0.0000                | 140.00    | 1" Ice<br>No Ice   | 0.36<br>0.23   | 0.28<br>0.16      | 11.41<br>5.50     |
| (2) LGF21901            | C          | rioiii race    | 0.00                  | 0.0000                | 140.00    | 1/2" Ice           | 0.23           | 0.10              | 7.92              |
|                         |            |                | 0.00                  |                       |           | 1" Ice             | 0.36           | 0.28              | 11.41             |
| LGP12104                | A          | From Face      | 2.00                  | 0.0000                | 140.00    | No Ice             | 0.44           | 0.02              | 1.80              |
|                         |            |                | 0.00                  |                       |           | 1/2" Ice           | 0.57           | 0.05              | 5.00              |
| (0) =====               |            |                | 0.00                  |                       |           | 1" Ice             | 0.70           | 0.08              | 9.88              |
| (4) TPX-070821          | Α          | From Face      | 2.00                  | 0.0000                | 140.00    | No Ice             | 0.47           | 0.10              | 10.00             |
|                         |            |                | 0.00                  |                       |           | 1/2" Ice<br>1" Ice | 0.56<br>0.65   | 0.15<br>0.20      | 13.45<br>18.22    |
| (4) TPX-070821          | В          | From Face      | 2.00                  | 0.0000                | 140.00    | No Ice             | 0.63           | 0.20              | 10.00             |
| (1) 1111 070021         | Б          | 1 Tolli 1 ucc  | 0.00                  | 0.0000                | 110.00    | 1/2" Ice           | 0.56           | 0.15              | 13.45             |
|                         |            |                | 0.00                  |                       |           | 1" Ice             | 0.65           | 0.20              | 18.22             |
| (4) TPX-070821          | C          | From Face      | 2.00                  | 0.0000                | 140.00    | No Ice             | 0.47           | 0.10              | 10.00             |
|                         |            |                | 0.00                  |                       |           | 1/2" Ice           | 0.56           | 0.15              | 13.45             |
| DG( 40 (0 10 0F (D )    |            |                | 0.00                  | 0.0000                | 1.40.00   | 1" Ice             | 0.65           | 0.20              | 18.22             |
| DC6-48-60-18-8F (Round) | Α          | From Face      | 1.00                  | 0.0000                | 140.00    | No Ice             | 0.79           | 0.79              | 18.90             |
|                         |            |                | 0.00<br>0.00          |                       |           | 1/2" Ice<br>1" Ice | 1.27<br>1.45   | 1.27<br>1.45      | 34.02<br>51.47    |
| DC6-48-60-18-8F (Round) | A          | From Face      | 1.00                  | 0.0000                | 140.00    | No Ice             | 0.79           | 0.79              | 18.90             |
| Dec 40 00 10 of (Round) | 71         | 1 Tolli 1 dec  | 0.00                  | 0.0000                | 140.00    | 1/2" Ice           | 1.27           | 1.27              | 34.02             |
|                         |            |                | 0.00                  |                       |           | 1" Ice             | 1.45           | 1.45              | 51.47             |
| TA 602-3                | C          | None           |                       | 0.0000                | 140.00    | No Ice             | 11.59          | 11.59             | 774.00            |
|                         |            |                |                       |                       |           | 1/2" Ice<br>1" Ice | 15.44<br>19.29 | 15.44<br>19.29    | 990.00<br>1206.00 |
| ****                    |            |                |                       |                       |           | 1 100              | 19.29          | 19.29             | 1200.00           |
| ***                     |            |                |                       |                       |           |                    |                |                   |                   |
| BXA-171063-12CF-EDIN w/ | Α          | From Face      | 3.00                  | 0.0000                | 130.00    | No Ice             | 5.04           | 5.30              | 38.50             |
| Mount Pipe              |            |                | 0.00<br>0.00          |                       |           | 1/2" Ice<br>1" Ice | 5.59<br>6.11   | 6.47<br>7.36      | 84.59<br>138.12   |
| BXA-70080-4CF-EDIN w/   | Α          | From Face      | 3.00                  | 0.0000                | 130.00    | No Ice             | 5.41           | 3.70              | 28.25             |
| Mount Pipe              | 71         | 1 Ioili 1 acc  | 0.00                  | 0.0000                | 150.00    | 1/2" Ice           | 5.86           | 4.32              | 70.71             |
|                         |            |                | 0.00                  |                       |           | 1" Ice             | 6.31           | 4.94              | 113.17            |
| BXA-70080-6CF-EDIN w/   | Α          | From Face      | 3.00                  | 0.0000                | 130.00    | No Ice             | 7.99           | 5.82              | 42.55             |
| Mount Pipe              |            |                | 0.00                  |                       |           | 1/2" Ice           | 8.64           | 6.99              | 103.53            |
|                         |            |                | 0.00                  |                       |           | 1" Ice             | 9.29           | 8.16              | 164.51            |
| Rymsa MGD3-900          | Α          | From Face      | 3.00                  | 0.0000                | 130.00    | No Ice             | 5.37           | 3.60              | 22.00             |
|                         |            |                | 0.00                  |                       |           | 1/2" Ice<br>1" Ice | 5.83<br>6.29   | 4.04<br>4.48      | 51.69<br>81.38    |
| RRH2x40-AWS             | Α          | From Face      | 2.00                  | 0.0000                | 130.00    | No Ice             | 2.16           | 1.42              | 44.00             |
| Iddi2x to 11 WS         | 71         | 1 Tolli 1 ucc  | 0.00                  | 0.0000                | 150.00    | 1/2" Ice           | 2.36           | 1.59              | 61.40             |
|                         |            |                | 0.00                  |                       |           | 1" Ice             | 2.57           | 1.77              | 81.69             |
| BXA-171063-12CF-EDIN w/ | В          | From Face      | 3.00                  | 0.0000                | 130.00    | No Ice             | 5.04           | 5.30              | 38.50             |
| Mount Pipe              |            |                | 0.00                  |                       |           | 1/2" Ice           | 5.59           | 6.47              | 84.59             |
| DVA 40000 100 5007      | Б.         |                | 0.00                  | 0.0000                | 120.00    | 1" Ice             | 6.11           | 7.36              | 138.12            |
| BXA-70080-4CF-EDIN w/   | В          | From Face      | 3.00                  | 0.0000                | 130.00    | No Ice             | 5.41           | 3.70              | 28.25             |
| Mount Pipe              |            |                | 0.00<br>0.00          |                       |           | 1/2" Ice<br>1" Ice | 5.86<br>6.31   | 4.32<br>4.94      | 70.71<br>113.17   |
| BXA-70080-6CF-EDIN w/   | В          | From Face      | 3.00                  | 0.0000                | 130.00    | No Ice             | 7.99           | 5.82              | 42.55             |
| Mount Pipe              | 2          | 1.01111 1 400  | 0.00                  | 0.0000                | 150.00    | 1/2" Ice           | 8.64           | 6.99              | 103.53            |
|                         |            |                | 0.00                  |                       |           | 1" Ice             | 9.29           | 8.16              | 164.51            |
| Rymsa MGD3-900          | В          | From Face      | 3.00                  | 0.0000                | 130.00    | No Ice             | 5.37           | 3.60              | 22.00             |
|                         |            |                | 0.00                  |                       |           | 1/2" Ice           | 5.83           | 4.04              | 51.69             |
|                         |            |                | 0.00                  |                       |           | 1" Ice             | 6.29           | 4.48              | 81.38             |

Destek Engineering, LLC 1281 Kennestone Circle, Suite 100 Marietta, GA 30066 Phone: (770) 693-0835 FAX:

| Job     |        | Page                       |
|---------|--------|----------------------------|
|         |        | 10 of 17                   |
| Project |        | Date                       |
|         | CT5122 | 08:59:29 11/29/16          |
| Client  | Com-Ex | Designed by Ahmet Coakoglu |

| Description                   | Face<br>or | Offset<br>Type | Offsets:<br>Horz      | Azimuth<br>Adjustment | Placement |          | $C_AA_A$<br>Front | $C_A A_A$<br>Side | Weight  |
|-------------------------------|------------|----------------|-----------------------|-----------------------|-----------|----------|-------------------|-------------------|---------|
|                               | Leg        |                | Lateral<br>Vert<br>ft | 0                     | ft        |          | ft²               | ft²               | lb      |
|                               |            |                | ft<br>ft              |                       | Ji        |          | Ji                | Ji                | ib      |
| RRH2x40-AWS                   | В          | From Face      | 2.00                  | 0.0000                | 130.00    | No Ice   | 2.16              | 1.42              | 44.00   |
|                               |            |                | 0.00                  |                       |           | 1/2" Ice | 2.36              | 1.59              | 61.40   |
|                               |            |                | 0.00                  |                       |           | 1" Ice   | 2.57              | 1.77              | 81.69   |
| 3XA-171063-12CF-EDIN w/       | C          | From Face      | 3.00                  | 0.0000                | 130.00    | No Ice   | 5.04              | 5.30              | 38.50   |
| Mount Pipe                    |            |                | 0.00                  |                       |           | 1/2" Ice | 5.59              | 6.47              | 84.59   |
| 1                             |            |                | 0.00                  |                       |           | 1" Ice   | 6.11              | 7.36              | 138.12  |
| BXA-70080-4CF-EDIN w/         | C          | From Face      | 3.00                  | 0.0000                | 130.00    | No Ice   | 5.41              | 3.70              | 28.25   |
| Mount Pipe                    |            |                | 0.00                  |                       |           | 1/2" Ice | 5.86              | 4.32              | 70.71   |
| 1                             |            |                | 0.00                  |                       |           | 1" Ice   | 6.31              | 4.94              | 113.17  |
| BXA-70080-6CF-EDIN w/         | C          | From Face      | 3.00                  | 0.0000                | 130.00    | No Ice   | 7.99              | 5.82              | 42.55   |
| Mount Pipe                    |            |                | 0.00                  |                       |           | 1/2" Ice | 8.64              | 6.99              | 103.53  |
| 1                             |            |                | 0.00                  |                       |           | 1" Ice   | 9.29              | 8.16              | 164.51  |
| Rymsa MGD3-900                | C          | From Face      | 3.00                  | 0.0000                | 130.00    | No Ice   | 5.37              | 3.60              | 22.00   |
| 3                             |            |                | 0.00                  |                       |           | 1/2" Ice | 5.83              | 4.04              | 51.69   |
|                               |            |                | 0.00                  |                       |           | 1" Ice   | 6.29              | 4.48              | 81.38   |
| RRH2x40-AWS                   | C          | From Face      | 2.00                  | 0.0000                | 130.00    | No Ice   | 2.16              | 1.42              | 44.00   |
|                               |            |                | 0.00                  |                       |           | 1/2" Ice | 2.36              | 1.59              | 61.40   |
|                               |            |                | 0.00                  |                       |           | 1" Ice   | 2.57              | 1.77              | 81.69   |
| RxxDC-3315-PF-48              | C          | From Face      | 2.00                  | 0.0000                | 130.00    | No Ice   | 3.49              | 2.19              | 21.40   |
|                               |            |                | 0.00                  |                       |           | 1/2" Ice | 3.73              | 2.39              | 50.67   |
|                               |            |                | 0.00                  |                       |           | 1" Ice   | 3.98              | 2.61              | 83.51   |
| Pirod 13' Low Profit Platfrom | C          | None           |                       | 0.0000                | 130.00    | No Ice   | 15.70             | 15.70             | 1300.00 |
|                               |            |                |                       |                       |           | 1/2" Ice | 20.10             | 20.10             | 1765.00 |
|                               |            |                |                       |                       |           | 1" Ice   | 24.50             | 24.50             | 2230.00 |

| Dishes      |                   |               |                |                             |                       |                       |           |                     |          |                  |        |
|-------------|-------------------|---------------|----------------|-----------------------------|-----------------------|-----------------------|-----------|---------------------|----------|------------------|--------|
| Description | Face<br>or<br>Leg | Dish<br>Type  | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | 3 dB<br>Beam<br>Width | Elevation | Outside<br>Diameter |          | Aperture<br>Area | Weight |
|             |                   |               |                | Vert<br>ft                  | 0                     | 0                     | ft        | ft                  |          | $ft^2$           | lb     |
| HP2-102     | С                 | Paraboloid    | From           | 1.50                        | 0.0000                |                       | 159.00    | 2.00                | No Ice   | 3.14             | 25.00  |
|             |                   | w/Shroud (HP) | Face           | 0.00                        |                       |                       |           |                     | 1/2" Ice | 3.41             | 42.49  |
|             |                   | ` /           |                | 0.00                        |                       |                       |           |                     | 1" Ice   | 3.68             | 59.98  |
| HP2-102     | Α                 | Paraboloid    | From           | 1.50                        | 0.0000                |                       | 126.00    | 2.00                | No Ice   | 3.14             | 25.00  |
|             |                   | w/Shroud (HP) | Face           | 0.00                        |                       |                       |           |                     | 1/2" Ice | 3.41             | 42.49  |
|             |                   | ` /           |                | 0.00                        |                       |                       |           |                     | 1" Ice   | 3.68             | 59.98  |

### **Load Combinations**

| Comb. |                                   | Description |
|-------|-----------------------------------|-------------|
| No.   |                                   | -           |
| 1     | Dead Only                         |             |
| 2     | 1.2 Dead+1.6 Wind 0 deg - No Ice  |             |
| 3     | 0.9 Dead+1.6 Wind 0 deg - No Ice  |             |
| 4     | 1.2 Dead+1.6 Wind 30 deg - No Ice |             |
| 5     | 0.9 Dead+1.6 Wind 30 deg - No Ice |             |

**Destek Engineering, LLC** 1281 Kennestone Circle, Suite 100

Marietta, GA 30066 Phone: (770) 693-0835 FAX:

| Job     |        | Page                       |
|---------|--------|----------------------------|
|         |        | 11 of 17                   |
| Project |        | Date                       |
|         | CT5122 | 08:59:29 11/29/16          |
| Client  | Com-Ex | Designed by Ahmet Coakoglu |

| Comb.    | Description                                                              |
|----------|--------------------------------------------------------------------------|
| No.      | IAB LITAW IAA L N. I                                                     |
| 6        | 1.2 Dead+1.6 Wind 60 deg - No Ice                                        |
| 7        | 0.9 Dead+1.6 Wind 60 deg - No Ice                                        |
| 8        | 1.2 Dead+1.6 Wind 90 deg - No Ice                                        |
| 9        | 0.9 Dead+1.6 Wind 90 deg - No Ice                                        |
| 10       | 1.2 Dead+1.6 Wind 120 deg - No Ice                                       |
| 11       | 0.9 Dead+1.6 Wind 120 deg - No Ice                                       |
| 12<br>13 | 1.2 Dead+1.6 Wind 150 deg - No Ice                                       |
| 13<br>14 | 0.9 Dead+1.6 Wind 150 deg - No Ice                                       |
| 15       | 1.2 Dead+1.6 Wind 180 deg - No Ice<br>0.9 Dead+1.6 Wind 180 deg - No Ice |
| 16       | 1.2 Dead+1.6 Wind 210 deg - No Ice                                       |
| 17       | 0.9 Dead+1.6 Wind 210 deg - No Ice                                       |
| 18       | 1.2 Dead+1.6 Wind 240 deg - No Ice                                       |
| 19       | 0.9 Dead+1.6 Wind 240 deg - No Ice                                       |
| 20       | 1.2 Dead+1.6 Wind 270 deg - No Ice                                       |
| 21       | 0.9 Dead+1.6 Wind 270 deg - No Ice                                       |
| 22       | 1.2 Dead+1.6 Wind 300 deg - No Ice                                       |
| 23       | 0.9 Dead+1.6 Wind 300 deg - No Ice                                       |
| 24       | 1.2 Dead+1.6 Wind 330 deg - No Ice                                       |
| 25       | 0.9 Dead+1.6 Wind 330 deg - No Ice                                       |
| 26       | 1.2 Dead+1.0 Ice+1.0 Temp                                                |
| 27       | 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp                                 |
| 28       | 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp                                |
| 29       | 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp                                |
| 30       | 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp                                |
| 31       | 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp                               |
| 32       | 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp                               |
| 33       | 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp                               |
| 34       | 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp                               |
| 35       | 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp                               |
| 36       | 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp                               |
| 37       | 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp                               |
| 38       | 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp                               |
| 39       | Dead+Wind 0 deg - Service                                                |
| 40       | Dead+Wind 30 deg - Service                                               |
| 41       | Dead+Wind 60 deg - Service                                               |
| 42       | Dead+Wind 90 deg - Service                                               |
| 43       | Dead+Wind 120 deg - Service                                              |
| 44       | Dead+Wind 150 deg - Service                                              |
| 45<br>46 | Dead+Wind 180 deg - Service                                              |
| 46<br>47 | Dead+Wind 210 deg - Service                                              |
| 47<br>49 | Dead+Wind 240 deg - Service                                              |
| 48<br>49 | Dead+Wind 270 deg - Service<br>Dead+Wind 300 deg - Service               |
| 50       | Dead+Wind 300 deg - Service  Dead+Wind 330 deg - Service                 |
| 30       | Dead - Wind 330 deg - Service                                            |

### **Maximum Member Forces**

| Section | Elevation      | Component | Condition        | Gov.  | Axial     | Major Axis | Minor Axis |
|---------|----------------|-----------|------------------|-------|-----------|------------|------------|
| No.     | ft             | Туре      |                  | Load  |           | Moment     | Moment     |
|         |                |           |                  | Comb. | lb        | kip-ft     | kip-ft     |
| L1      | 179 - 141.25   | Pole      | Max Tension      | 1     | 0.00      | 0.00       | 0.00       |
|         |                |           | Max. Compression | 26    | -24386.32 | -0.68      | -1.04      |
|         |                |           | Max. Mx          | 8     | -7796.21  | -256.75    | -2.12      |
|         |                |           | Max. My          | 2     | -7804.94  | 1.65       | 254.07     |
|         |                |           | Max. Vy          | 8     | 13218.63  | -256.75    | -2.12      |
|         |                |           | Max. Vx          | 2     | -13204.60 | 1.65       | 254.07     |
|         |                |           | Max. Torque      | 12    |           |            | 0.52       |
| L2      | 141.25 - 92.58 | Pole      | Max Tension      | 1     | 0.00      | 0.00       | 0.00       |

Destek Engineering, LLC 1281 Kennestone Circle, Suite 100 Marietta, GA 30066 Phone: (770) 693-0835 FAX:

| Job            | <b>Page</b> 12 of 17       |
|----------------|----------------------------|
| Project CT5122 | Date 08:59:29 11/29/16     |
| Client Com-Ex  | Designed by Ahmet Coakoglu |

| Section<br>No. | Elevation<br>ft | Component<br>Type | Condition        | Gov.<br>Load<br>Comb. | Axial<br>lb | Major Axis<br>Moment<br>kip-ft | Minor Axi.<br>Moment<br>kip-ft |
|----------------|-----------------|-------------------|------------------|-----------------------|-------------|--------------------------------|--------------------------------|
|                |                 |                   | Max. Compression | 26                    | -62352.31   | 0.42                           | -4.90                          |
|                |                 |                   | Max. Mx          | 8                     | -23007.48   | -1365.13                       | -8.34                          |
|                |                 |                   | Max. My          | 2                     | -23031.89   | 6.92                           | 1352.64                        |
|                |                 |                   | Max. Vy          | 8                     | 28399.27    | -1365.13                       | -8.34                          |
|                |                 |                   | Max. Vx          | 2                     | -28149.77   | 6.92                           | 1352.64                        |
|                |                 |                   | Max. Torque      | 23                    |             |                                | -1.91                          |
| L3             | 92.58 - 45.5    | Pole              | Max Tension      | 1                     | 0.00        | 0.00                           | 0.00                           |
|                |                 |                   | Max. Compression | 26                    | -87798.27   | 1.10                           | -13.73                         |
|                |                 |                   | Max. Mx          | 8                     | -37526.98   | -2788.68                       | -16.53                         |
|                |                 |                   | Max. My          | 2                     | -37540.85   | 13.25                          | 2763.95                        |
|                |                 |                   | Max. Vy          | 8                     | 34149.31    | -2788.68                       | -16.53                         |
|                |                 |                   | Max. Vx          | 2                     | -33901.34   | 13.25                          | 2763.95                        |
|                |                 |                   | Max. Torque      | 21                    |             |                                | -1.66                          |
| L4             | 45.5 - 0        | Pole              | Max Tension      | 1                     | 0.00        | 0.00                           | 0.00                           |
|                |                 |                   | Max. Compression | 26                    | -124493.94  | 1.93                           | -23.68                         |
|                |                 |                   | Max. Mx          | 8                     | -59725.86   | -4765.20                       | -26.00                         |
|                |                 |                   | Max. My          | 2                     | -59726.19   | 20.50                          | 4726.37                        |
|                |                 |                   | Max. Vy          | 8                     | 40123.60    | -4765.20                       | -26.00                         |
|                |                 |                   | Max. Vx          | 2                     | -39883.65   | 20.50                          | 4726.37                        |
|                |                 |                   | Max. Torque      | 21                    |             |                                | -1.65                          |

### **Maximum Reactions**

| Location | Condition           | Gov.  | Vertical  | Horizontal, X | Horizontal, Z |
|----------|---------------------|-------|-----------|---------------|---------------|
|          |                     | Load  | lb        | lb            | lb            |
|          |                     | Comb. |           |               |               |
| Pole     | Max. Vert           | 36    | 124493.94 | 13735.87      | 24.45         |
|          | $Max. H_x$          | 20    | 59749.19  | 40046.99      | 100.30        |
|          | Max. H <sub>z</sub> | 2     | 59749.19  | 131.47        | 39849.20      |
|          | $Max. M_x$          | 2     | 4726.37   | 131.47        | 39849.20      |
|          | Max. Mz             | 8     | 4765.20   | -40088.86     | -151.71       |
|          | Max. Torsion        | 9     | 1.65      | -40088.85     | -151.71       |
|          | Min. Vert           | 17    | 44811.89  | 19934.67      | -34428.98     |
|          | Min. H <sub>x</sub> | 8     | 59749.19  | -40088.86     | -151.71       |
|          | Min. H <sub>z</sub> | 14    | 59749.19  | -171.49       | -39815.23     |
|          | Min. M <sub>x</sub> | 14    | -4725.73  | -171.49       | -39815.23     |
|          | Min. M <sub>z</sub> | 20    | -4760.64  | 40046.99      | 100.30        |
|          | Min. Torsion        | 21    | -1.65     | 40046.98      | 100.30        |

### **Tower Mast Reaction Summary**

| Load<br>Combination                 | Vertical | Shear <sub>x</sub> | $Shear_z$ | Overturning<br>Moment, M <sub>x</sub> | Overturning<br>Moment, M <sub>z</sub> | Torque |
|-------------------------------------|----------|--------------------|-----------|---------------------------------------|---------------------------------------|--------|
|                                     | lb       | lb                 | lb        | kip-ft                                | kip-ft                                | kip-ft |
| Dead Only                           | 49790.99 | 0.00               | 0.00      | 2.14                                  | 0.35                                  | 0.00   |
| 1.2 Dead+1.6 Wind 0 deg - No<br>Ice | 59749.19 | -131.47            | -39849.20 | -4726.37                              | 20.50                                 | 0.10   |
| 0.9 Dead+1.6 Wind 0 deg - No<br>Ice | 44811.89 | -131.47            | -39849.19 | -4689.30                              | 20.21                                 | 0.10   |
| 1.2 Dead+1.6 Wind 30 deg - No Ice   | 59749.19 | 19913.18           | -34492.17 | -4089.67                              | -2362.32                              | -0.88  |
| 0.9 Dead+1.6 Wind 30 deg - No       | 44811.89 | 19913.18           | -34492.17 | -4057.69                              | -2343.57                              | -0.89  |

| J | ob            | Page                       |
|---|---------------|----------------------------|
|   |               | 13 of 17                   |
| F | Project       | Date                       |
|   | CT5122        | 08:59:29 11/29/16          |
| ( | Client Com-Ex | Designed by Ahmet Coakoglu |

| Load<br>Combination                                                   | Vertical               | Shear <sub>x</sub> | Shear <sub>z</sub> | Overturning Moment, $M_x$ | Overturning<br>Moment, M <sub>z</sub> | Torque        |
|-----------------------------------------------------------------------|------------------------|--------------------|--------------------|---------------------------|---------------------------------------|---------------|
| 12D 1:16W: 1601                                                       | <u>lb</u>              | <u>lb</u>          | <u>lb</u>          | kip-ft                    | kip-ft                                | kip-ft        |
| 1.2 Dead+1.6 Wind 60 deg - No Ice                                     | 59749.19               | 34653.61           | -19836.30          | -2349.73                  | -4115.85                              | -1.46         |
| 0.9 Dead+1.6 Wind 60 deg - No Ice                                     | 44811.89               | 34653.61           | -19836.30          | -2331.63                  | -4083.10                              | -1.46         |
| 1.2 Dead+1.6 Wind 90 deg - No Ice                                     | 59749.19               | 40088.86           | 151.71             | 26.00                     | -4765.20                              | -1.65         |
| 0.9 Dead+1.6 Wind 90 deg - No Ice                                     | 44811.89               | 40088.85           | 151.71             | 25.13                     | -4727.25                              | -1.65         |
| 1.2 Dead+1.6 Wind 120 deg -<br>No Ice                                 | 59749.19               | 34745.99           | 20039.13           | 2385.07                   | -4131.21                              | -1.56         |
| 0.9 Dead+1.6 Wind 120 deg -<br>No Ice                                 | 44811.89               | 34745.99           | 20039.13           | 2365.36                   | -4098.33                              | -1.56         |
| 1.2 Dead+1.6 Wind 150 deg -<br>No Ice                                 | 59749.19               | 20134.97           | 34547.84           | 4103.57                   | -2395.90                              | -1.03         |
| 0.9 Dead+1.6 Wind 150 deg -<br>No Ice                                 | 44811.89               | 20134.97           | 34547.84           | 4070.16                   | -2376.87                              | -1.04         |
| 1.2 Dead+1.6 Wind 180 deg -                                           | 59749.19               | 171.49             | 39815.23           | 4725.73                   | -24.82                                | -0.16         |
| No Ice<br>0.9 Dead+1.6 Wind 180 deg -                                 | 44811.89               | 171.49             | 39815.23           | 4687.37                   | -24.72                                | -0.16         |
| No Ice<br>1.2 Dead+1.6 Wind 210 deg -                                 | 59749.19               | -19934.67          | 34428.98           | 4085.20                   | 2365.61                               | 0.88          |
| No Ice<br>0.9 Dead+1.6 Wind 210 deg -                                 | 44811.89               | -19934.67          | 34428.98           | 4051.95                   | 2346.63                               | 0.88          |
| No Ice<br>1.2 Dead+1.6 Wind 240 deg -                                 | 59749.19               | -34637.82          | 19824.87           | 2352.09                   | 4115.10                               | 1.46          |
| No Ice<br>0.9 Dead+1.6 Wind 240 deg -                                 | 44811.89               | -34637.82          | 19824.87           | 2332.68                   | 4082.13                               | 1.46          |
| No Ice<br>1.2 Dead+1.6 Wind 270 deg -                                 | 59749.19               | -40046.99          | -100.30            | -12.70                    | 4760.64                               | 1.65          |
| No Ice<br>0.9 Dead+1.6 Wind 270 deg -<br>No Ice                       | 44811.89               | -40046.98          | -100.30            | -13.24                    | 4722.51                               | 1.65          |
| 1.2 Dead+1.6 Wind 300 deg -<br>No Ice                                 | 59749.19               | -34697.77          | -20059.81          | -2383.91                  | 4125.41                               | 1.62          |
| 0.9 Dead+1.6 Wind 300 deg -<br>No Ice                                 | 44811.89               | -34697.77          | -20059.81          | -2365.51                  | 4092.35                               | 1.62          |
| 1.2 Dead+1.6 Wind 330 deg -<br>No Ice                                 | 59749.19               | -20113.28          | -34562.79          | -4101.79                  | 2394.33                               | 1.04          |
| 0.9 Dead+1.6 Wind 330 deg -<br>No Ice                                 | 44811.89               | -20113.28          | -34562.79          | -4069.69                  | 2375.08                               | 1.04          |
| 1.2 Dead+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 0 deg+1.0              | 124493.94<br>124493.94 | -0.00<br>-31.70    | 0.01<br>-12507.88  | 23.68<br>-1516.58         | 1.93<br>6.98                          | -0.00<br>0.05 |
| Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 30 deg+1.0                          | 124493.94              | 6236.69            | -10827.31          | -1309.37                  | -765.88                               | -0.23         |
| Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 60 deg+1.0                          | 124493.94              | 10841.23           | -6232.49           | -743.30                   | -1333.93                              | -0.41         |
| Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 90 deg+1.0                          | 124493.94              | 13745.56           | 36.41              | 29.73                     | -1663.95                              | -0.48         |
| Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 120                                 | 124493.94              | 10863.90           | 6281.57            | 798.63                    | -1337.84                              | -0.46         |
| deg+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 150                         | 124493.94              | 6290.20            | 10841.41           | 1359.37                   | -774.31                               | -0.31         |
| deg+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 180                         | 124493.94              | 40.96              | 12499.96           | 1562.88                   | -4.35                                 | -0.06         |
| deg+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 210                         | 124493.94              | -6241.64           | 10812.63           | 1354.73                   | 770.34                                | 0.23          |
| deg+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 240                         | 124493.94              | -10837.60          | 6229.78            | 790.33                    | 1337.42                               | 0.41          |
| deg+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 270<br>deg+1.0 Ice+1.0 Temp | 124493.94              | -13735.87          | -24.45             | 20.01                     | 1666.52                               | 0.47          |

Destek Engineering, LLC 1281 Kennestone Circle, Suite 100 Marietta, GA 30066 Phone: (770) 693-0835 FAX:

| Job     |        | Page                       |
|---------|--------|----------------------------|
|         |        | 14 of 17                   |
| Project |        | Date                       |
|         | CT5122 | 08:59:29 11/29/16          |
| Client  | Com-Ex | Designed by Ahmet Coakoglu |

| Load                        | Vertical  | $Shear_x$ | $Shear_z$ | Overturning   | Overturning   | Torque |
|-----------------------------|-----------|-----------|-----------|---------------|---------------|--------|
| Combination                 |           |           |           | Moment, $M_x$ | Moment, $M_z$ |        |
|                             | lb        | lb        | lb        | kip-ft        | kip-ft        | kip-ft |
| 1.2 Dead+1.0 Wind 300       | 124493.94 | -10852.73 | -6286.42  | -751.88       | 1340.09       | 0.47   |
| deg+1.0 Ice+1.0 Temp        |           |           |           |               |               |        |
| 1.2 Dead+1.0 Wind 330       | 124493.94 | -6285.20  | -10844.93 | -1312.48      | 777.61        | 0.31   |
| deg+1.0 Ice+1.0 Temp        |           |           |           |               |               |        |
| Dead+Wind 0 deg - Service   | 49790.99  | -28.13    | -8526.17  | -1005.01      | 4.63          | 0.02   |
| Dead+Wind 30 deg - Service  | 49790.99  | 4260.64   | -7379.98  | -869.41       | -502.87       | -0.19  |
| Dead+Wind 60 deg - Service  | 49790.99  | 7414.52   | -4244.19  | -498.83       | -876.34       | -0.31  |
| Dead+Wind 90 deg - Service  | 49790.99  | 8577.45   | 32.46     | 7.16          | -1014.65      | -0.35  |
| Dead+Wind 120 deg - Service | 49790.99  | 7434.28   | 4287.59   | 509.61        | -879.63       | -0.34  |
| Dead+Wind 150 deg - Service | 49790.99  | 4308.10   | 7391.89   | 875.63        | -510.02       | -0.22  |
| Dead+Wind 180 deg - Service | 49790.99  | 36.69     | 8518.90   | 1008.13       | -5.02         | -0.04  |
| Dead+Wind 210 deg - Service | 49790.99  | -4265.24  | 7366.46   | 871.71        | 504.10        | 0.19   |
| Dead+Wind 240 deg - Service | 49790.99  | -7411.14  | 4241.75   | 502.59        | 876.72        | 0.31   |
| Dead+Wind 270 deg - Service | 49790.99  | -8568.49  | -21.46    | -1.08         | 1014.22       | 0.36   |
| Dead+Wind 300 deg - Service | 49790.99  | -7423.97  | -4292.02  | -506.11       | 878.92        | 0.35   |
| Dead+Wind 330 deg - Service | 49790.99  | -4303.46  | -7395.09  | -872.00       | 510.22        | 0.22   |

### **Solution Summary**

|       | Sui       | m of Applied Forces | 5         |           | Sum of Reaction | !S        |         |
|-------|-----------|---------------------|-----------|-----------|-----------------|-----------|---------|
| Load  | PX        | PY                  | PZ        | PX        | PY              | PZ        | % Error |
| Comb. | lb        | lb                  | lb        | lb        | lb              | lb        |         |
| 1     | 0.00      | -49790.99           | 0.00      | 0.00      | 49790.99        | 0.00      | 0.000%  |
| 2     | -131.47   | -59749.19           | -39849.19 | 131.47    | 59749.19        | 39849.20  | 0.000%  |
| 3     | -131.47   | -44811.89           | -39849.19 | 131.47    | 44811.89        | 39849.19  | 0.000%  |
| 4     | 19913.18  | -59749.19           | -34492.17 | -19913.18 | 59749.19        | 34492.17  | 0.000%  |
| 5     | 19913.18  | -44811.89           | -34492.17 | -19913.18 | 44811.89        | 34492.17  | 0.000%  |
| 6     | 34653.61  | -59749.19           | -19836.30 | -34653.61 | 59749.19        | 19836.30  | 0.000%  |
| 7     | 34653.61  | -44811.89           | -19836.30 | -34653.61 | 44811.89        | 19836.30  | 0.000%  |
| 8     | 40088.85  | -59749.19           | 151.71    | -40088.86 | 59749.19        | -151.71   | 0.000%  |
| 9     | 40088.85  | -44811.89           | 151.71    | -40088.85 | 44811.89        | -151.71   | 0.000%  |
| 10    | 34745.99  | -59749.19           | 20039.13  | -34745.99 | 59749.19        | -20039.13 | 0.000%  |
| 11    | 34745.99  | -44811.89           | 20039.13  | -34745.99 | 44811.89        | -20039.13 | 0.000%  |
| 12    | 20134.97  | -59749.19           | 34547.84  | -20134.97 | 59749.19        | -34547.84 | 0.000%  |
| 13    | 20134.97  | -44811.89           | 34547.84  | -20134.97 | 44811.89        | -34547.84 | 0.000%  |
| 14    | 171.49    | -59749.19           | 39815.22  | -171.49   | 59749.19        | -39815.23 | 0.000%  |
| 15    | 171.49    | -44811.89           | 39815.22  | -171.49   | 44811.89        | -39815.23 | 0.000%  |
| 16    | -19934.67 | -59749.19           | 34428.98  | 19934.67  | 59749.19        | -34428.98 | 0.000%  |
| 17    | -19934.67 | -44811.89           | 34428.98  | 19934.67  | 44811.89        | -34428.98 | 0.000%  |
| 18    | -34637.82 | -59749.19           | 19824.87  | 34637.82  | 59749.19        | -19824.87 | 0.000%  |
| 19    | -34637.82 | -44811.89           | 19824.87  | 34637.82  | 44811.89        | -19824.87 | 0.000%  |
| 20    | -40046.98 | -59749.19           | -100.30   | 40046.99  | 59749.19        | 100.30    | 0.000%  |
| 21    | -40046.98 | -44811.89           | -100.30   | 40046.98  | 44811.89        | 100.30    | 0.000%  |
| 22    | -34697.77 | -59749.19           | -20059.81 | 34697.77  | 59749.19        | 20059.81  | 0.000%  |
| 23    | -34697.77 | -44811.89           | -20059.81 | 34697.77  | 44811.89        | 20059.81  | 0.000%  |
| 24    | -20113.28 | -59749.19           | -34562.79 | 20113.28  | 59749.19        | 34562.79  | 0.000%  |
| 25    | -20113.28 | -44811.89           | -34562.79 | 20113.28  | 44811.89        | 34562.79  | 0.000%  |
| 26    | 0.00      | -124493.94          | 0.00      | 0.00      | 124493.94       | -0.01     | 0.000%  |
| 27    | -31.70    | -124493.94          | -12507.77 | 31.70     | 124493.94       | 12507.88  | 0.000%  |
| 28    | 6236.63   | -124493.94          | -10827.22 | -6236.69  | 124493.94       | 10827.31  | 0.000%  |
| 29    | 10841.14  | -124493.94          | -6232.44  | -10841.23 | 124493.94       | 6232.49   | 0.000%  |
| 30    | 13745.45  | -124493.94          | 36.41     | -13745.56 | 124493.94       | -36.41    | 0.000%  |
| 31    | 10863.81  | -124493.94          | 6281.51   | -10863.90 | 124493.94       | -6281.57  | 0.000%  |
| 32    | 6290.15   | -124493.94          | 10841.31  | -6290.20  | 124493.94       | -10841.41 | 0.000%  |
| 33    | 40.96     | -124493.94          | 12499.85  | -40.96    | 124493.94       | -12499.96 | 0.000%  |
| 34    | -6241.59  | -124493.94          | 10812.53  | 6241.64   | 124493.94       | -10812.63 | 0.000%  |
| 35    | -10837.50 | -124493.94          | 6229.73   | 10837.60  | 124493.94       | -6229.78  | 0.000%  |
| 36    | -13735.76 | -124493.94          | -24.46    | 13735.87  | 124493.94       | 24.45     | 0.000%  |
|       |           |                     |           |           |                 |           |         |

| tnx <sub>T</sub> | <i>ower</i> |
|------------------|-------------|
|                  |             |

Destek Engineering, LLC 1281 Kennestone Circle, Suite 100 Marietta, GA 30066 Phone: (770) 693-0835 FAX:

| , | Job           | Page                       |
|---|---------------|----------------------------|
|   |               | 15 of 17                   |
|   | Project       | Date                       |
|   | CT5122        | 08:59:29 11/29/16          |
|   | Client Com-Ex | Designed by Ahmet Coakoglu |

|       | Sui       | m of Applied Forces | ï         |          | Sum of Reaction. | S        |         |
|-------|-----------|---------------------|-----------|----------|------------------|----------|---------|
| Load  | PX        | PY                  | PZ        | PX       | PY               | PZ       | % Error |
| Comb. | lb        | lb                  | lb        | lb       | lb               | lb       |         |
| 37    | -10852.63 | -124493.94          | -6286.36  | 10852.73 | 124493.94        | 6286.42  | 0.000%  |
| 38    | -6285.14  | -124493.94          | -10844.84 | 6285.20  | 124493.94        | 10844.93 | 0.000%  |
| 39    | -28.13    | -49790.99           | -8526.17  | 28.13    | 49790.99         | 8526.17  | 0.000%  |
| 40    | 4260.64   | -49790.99           | -7379.97  | -4260.64 | 49790.99         | 7379.98  | 0.000%  |
| 41    | 7414.52   | -49790.99           | -4244.19  | -7414.52 | 49790.99         | 4244.19  | 0.000%  |
| 42    | 8577.45   | -49790.99           | 32.46     | -8577.45 | 49790.99         | -32.46   | 0.000%  |
| 43    | 7434.28   | -49790.99           | 4287.59   | -7434.28 | 49790.99         | -4287.59 | 0.000%  |
| 44    | 4308.10   | -49790.99           | 7391.89   | -4308.10 | 49790.99         | -7391.89 | 0.000%  |
| 45    | 36.69     | -49790.99           | 8518.90   | -36.69   | 49790.99         | -8518.90 | 0.000%  |
| 46    | -4265.24  | -49790.99           | 7366.46   | 4265.24  | 49790.99         | -7366.46 | 0.000%  |
| 47    | -7411.14  | -49790.99           | 4241.75   | 7411.14  | 49790.99         | -4241.75 | 0.000%  |
| 48    | -8568.49  | -49790.99           | -21.46    | 8568.49  | 49790.99         | 21.46    | 0.000%  |
| 49    | -7423.96  | -49790.99           | -4292.02  | 7423.97  | 49790.99         | 4292.02  | 0.000%  |
| 50    | -4303.46  | -49790.99           | -7395.08  | 4303.46  | 49790.99         | 7395.09  | 0.000%  |

### **Non-Linear Convergence Results**

| Load        | Converged? | Number    | Displacement | Force      |
|-------------|------------|-----------|--------------|------------|
| Combination |            | of Cycles | Tolerance    | Tolerance  |
| 1           | Yes        | 4         | 0.00000001   | 0.00000001 |
| 2           | Yes        | 4         | 0.00000001   | 0.00012253 |
| 3           | Yes        | 4         | 0.00000001   | 0.00005886 |
| 4           | Yes        | 5         | 0.00000001   | 0.00026889 |
| 5           | Yes        | 5         | 0.00000001   | 0.00012052 |
| 6           | Yes        | 5         | 0.00000001   | 0.00027846 |
| 7           | Yes        | 5         | 0.00000001   | 0.00012506 |
| 8           | Yes        | 4         | 0.00000001   | 0.00024645 |
| 9           | Yes        | 4         | 0.00000001   | 0.00015216 |
| 10          | Yes        | 5         | 0.00000001   | 0.00027210 |
| 11          | Yes        | 5         | 0.00000001   | 0.00012141 |
| 12          | Yes        | 5         | 0.00000001   | 0.00028169 |
| 13          | Yes        | 5         | 0.00000001   | 0.00012624 |
| 14          | Yes        | 4         | 0.00000001   | 0.00019861 |
| 15          | Yes        | 4         | 0.00000001   | 0.00011551 |
| 16          | Yes        | 5         | 0.00000001   | 0.00027461 |
| 17          | Yes        | 5         | 0.00000001   | 0.00012330 |
| 18          | Yes        | 5         | 0.00000001   | 0.00026743 |
| 19          | Yes        | 5         | 0.00000001   | 0.00011964 |
| 20          | Yes        | 4         | 0.00000001   | 0.00039657 |
| 21          | Yes        | 4         | 0.00000001   | 0.00024992 |
| 22          | Yes        | 5         | 0.00000001   | 0.00028500 |
| 23          | Yes        | 5         | 0.00000001   | 0.00012775 |
| 24          | Yes        | 5         | 0.00000001   | 0.00027260 |
| 25          | Yes        | 5         | 0.00000001   | 0.00012184 |
| 26          | Yes        | 4         | 0.00000001   | 0.00004180 |
| 27          | Yes        | 5         | 0.00000001   | 0.00030272 |
| 28          | Yes        | 5<br>5    | 0.00000001   | 0.00038217 |
| 29          | Yes        | 5         | 0.00000001   | 0.00038462 |
| 30          | Yes        | 5         | 0.00000001   | 0.00032479 |
| 31          | Yes        | 5         | 0.00000001   | 0.00039676 |
| 32          | Yes        | 5         | 0.00000001   | 0.00039820 |
| 33          | Yes        | 5         | 0.00000001   | 0.00031070 |
| 34          | Yes        | 5         | 0.00000001   | 0.00039466 |
| 35          | Yes        | 5         | 0.00000001   | 0.00039399 |
| 36          | Yes        | 5<br>5    | 0.00000001   | 0.00032510 |
| 37          | Yes        | 5         | 0.00000001   | 0.00038914 |
|             |            |           |              |            |

Destek Engineering, LLC 1281 Kennestone Circle, Suite 100 Marietta, GA 30066 Phone: (770) 693-0835 FAX:

| _ |         |        |                            |
|---|---------|--------|----------------------------|
|   | Job     |        | Page                       |
|   |         |        | 16 of 17                   |
|   | Project |        | Date                       |
|   |         | CT5122 | 08:59:29 11/29/16          |
|   | Client  | Com-Ex | Designed by Ahmet Coakoglu |

| 38 | Yes | 5 | 0.00000001 | 0.00038586 |
|----|-----|---|------------|------------|
| 39 | Yes | 4 | 0.0000001  | 0.00002032 |
| 40 | Yes | 4 | 0.00000001 | 0.00009512 |
| 41 | Yes | 4 | 0.00000001 | 0.00010609 |
| 42 | Yes | 4 | 0.0000001  | 0.00002579 |
| 43 | Yes | 4 | 0.00000001 | 0.00009544 |
| 44 | Yes | 4 | 0.0000001  | 0.00010694 |
| 45 | Yes | 4 | 0.00000001 | 0.00002075 |
| 46 | Yes | 4 | 0.0000001  | 0.00010238 |
| 47 | Yes | 4 | 0.00000001 | 0.00009382 |
| 48 | Yes | 4 | 0.00000001 | 0.00002697 |
| 49 | Yes | 4 | 0.00000001 | 0.00011034 |
| 50 | Yes | 4 | 0.00000001 | 0.00009609 |

### **Compression Checks**

| Section<br>No. | Pole Design Data      |                        |       |       |      |         |           |            |                         |
|----------------|-----------------------|------------------------|-------|-------|------|---------|-----------|------------|-------------------------|
|                | Elevation             | Size                   | L     | $L_u$ | Kl/r | A       | $P_u$     | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|                | ft                    |                        | ft    | ft    |      | $in^2$  | lb        | lb         | $\phi P_n$              |
| L1             | 179 - 141.25<br>(1)   | TP33.249x23.1x0.25     | 37.75 | 0.00  | 0.0  | 25.2610 | -7792.39  | 1748390.00 | 0.004                   |
| L2             | 141.25 - 92.58<br>(2) | TP45.834x31.5849x0.375 | 53.00 | 0.00  | 0.0  | 52.2132 | -23004.70 | 3714610.00 | 0.006                   |
| L3             | 92.58 - 45.5 (3)      | TP57.742x43.4924x0.375 | 53.00 | 0.00  | 0.0  | 65.8810 | -37525.40 | 4311140.00 | 0.009                   |
| L4             | 45.5 - 0 (4)          | TP69.225x54.9755x0.375 | 53.00 | 0.00  | 0.0  | 81.9487 | -59725.80 | 4812990.00 | 0.012                   |

| Section<br>No. | Elevation           | Size                   | $M_{ux}$ | $\phi M_{nx}$ | $Ratio$ $M_{ux}$ | $M_{uy}$ | $\phi M_{ny}$ | Ratio<br>M                   |
|----------------|---------------------|------------------------|----------|---------------|------------------|----------|---------------|------------------------------|
|                | ft                  |                        | kip-ft   | kip-ft        | $\phi M_{nx}$    | kip-ft   | kip-ft        | $\frac{M_{uy}}{\phi M_{ny}}$ |
| L1             | 179 - 141.25<br>(1) | TP33.249x23.1x0.25     | 257.56   | 1144.56       | 0.225            | 0.00     | 1144.56       | 0.000                        |
| L2             | 141.25 - 92.58      | TP45.834x31.5849x0.375 | 1366.82  | 3348.51       | 0.408            | 0.00     | 3348.51       | 0.000                        |
| L3             | 92.58 - 45.5 (3)    | TP57.742x43.4924x0.375 | 2791.93  | 4912.18       | 0.568            | 0.00     | 4912.18       | 0.000                        |
| L4             | 45.5 - 0 (4)        | TP69.225x54.9755x0.375 | 4770.27  | 6830.50       | 0.698            | 0.00     | 6830.50       | 0.000                        |

|                | Pole Shear Design Data       |                        |                          |                        |                          |                       |            |                          |  |
|----------------|------------------------------|------------------------|--------------------------|------------------------|--------------------------|-----------------------|------------|--------------------------|--|
| Section<br>No. | Elevation                    | Size                   | Actual<br>V <sub>u</sub> | $\phi V_n$             | $Ratio$ $V_u$            | Actual T <sub>u</sub> | $\phi T_n$ | Ratio<br>T <sub>u</sub>  |  |
| L1             | 179 - 141.25                 | TP33.249x23.1x0.25     | <i>lb</i><br>13257.90    | <i>lb</i><br>874196.00 | $\frac{\phi V_n}{0.015}$ | 0.17                  | 2291.92    | $\frac{\phi T_n}{0.000}$ |  |
| L2             | (1)<br>141.25 - 92.58<br>(2) | TP45.834x31.5849x0.375 | 28422.50                 | 1857310.00             | 0.015                    | 1.56                  | 6705.20    | 0.000                    |  |

# tnxTower

Destek Engineering, LLC 1281 Kennestone Circle, Suite 100 Marietta, GA 30066 Phone: (770) 693-0835 FAX:

| Job           | Page                       |
|---------------|----------------------------|
|               | 17 of 17                   |
| Project       | Date                       |
| CT5122        | 08:59:29 11/29/16          |
| Client Com-Ex | Designed by Ahmet Coakoglu |

| Section | Elevation        | Size                   | Actual   | $\phi V_n$ | Ratio      | Actual | $\phi T_n$ | Ratio      |
|---------|------------------|------------------------|----------|------------|------------|--------|------------|------------|
| No.     |                  |                        | $V_u$    |            | $V_u$      | $T_u$  |            | $T_u$      |
|         | ft               |                        | lb       | lb         | $\phi V_n$ | kip-ft | kip-ft     | $\phi T_n$ |
| L3      | 92.58 - 45.5 (3) | TP57.742x43.4924x0.375 | 34171.90 | 2155570.00 | 0.016      | 1.56   | 9836.33    | 0.000      |
| L4      | 45.5 - 0 (4)     | TP69.225x54.9755x0.375 | 40145.30 | 2406490.00 | 0.017      | 1.56   | 13677.67   | 0.000      |
|         |                  |                        |          |            |            |        |            |            |

|                |                       |                         | •              | 0.0                      | .010011       | <del>,,, , , , , , , , , , , , , , , , , , </del> | ign Da          |                  |          |
|----------------|-----------------------|-------------------------|----------------|--------------------------|---------------|---------------------------------------------------|-----------------|------------------|----------|
| Section<br>No. | Elevation             | Ratio<br>P <sub>u</sub> | Ratio $M_{ux}$ | Ratio<br>M <sub>uy</sub> | $Ratio$ $V_u$ | $Ratio$ $T_u$                                     | Comb.<br>Stress | Allow.<br>Stress | Criteria |
|                | ft                    | $\phi P_n$              | $\phi M_{nx}$  | $\phi M_{ny}$            | $\phi V_n$    | $\phi T_n$                                        | Ratio           | Ratio            |          |
| L1             | 179 - 141.25<br>(1)   | 0.004                   | 0.225          | 0.000                    | 0.015         | 0.000                                             | 0.230           | 1.000            | 4.8.2    |
| L2             | 141.25 - 92.58<br>(2) | 0.006                   | 0.408          | 0.000                    | 0.015         | 0.000                                             | 0.415           | 1.000            | 4.8.2    |
| L3             | 92.58 - 45.5 (3)      | 0.009                   | 0.568          | 0.000                    | 0.016         | 0.000                                             | 0.577           | 1.000            | 4.8.2    |
| L4             | 45.5 - 0 (4)          | 0.012                   | 0.698          | 0.000                    | 0.017         | 0.000                                             | 0.711           | 1.000            | 4.8.2    |

| Section Capacity Table |                 |                   |                        |                     |           |                           |               |              |
|------------------------|-----------------|-------------------|------------------------|---------------------|-----------|---------------------------|---------------|--------------|
| Section<br>No.         | Elevation<br>ft | Component<br>Type | Size                   | Critical<br>Element | P<br>lb   | øP <sub>allow</sub><br>lb | %<br>Capacity | Pass<br>Fail |
| L1                     | 179 - 141.25    | Pole              | TP33.249x23.1x0.25     | 1                   | -7792.39  | 1748390.00                | 23.0          | Pass         |
| L2                     | 141.25 - 92.58  | Pole              | TP45.834x31.5849x0.375 | 2                   | -23004.70 | 3714610.00                | 41.5          | Pass         |
| L3                     | 92.58 - 45.5    | Pole              | TP57.742x43.4924x0.375 | 3                   | -37525.40 | 4311140.00                | 57.7          | Pass         |
| L4                     | 45.5 - 0        | Pole              | TP69.225x54.9755x0.375 | 4                   | -59725.80 | 4812990.00                | 71.1          | Pass         |
|                        |                 |                   |                        |                     |           |                           | Summary       |              |
|                        |                 |                   |                        |                     |           | Pole (L4)                 | 71.1          | Pass         |
|                        |                 |                   |                        |                     |           | RATING =                  | 71.1          | Pass         |

## Square, Stiffened / Unstiffened Base Plate, Any Rod Material - Rev. F /G

Assumptions: 1) Rod groups at corners. Total # rods divisible by 4. Maximum total # of rods = 48 (12 per Corner).

2) Rod Spacing = Straight Center-to-Center distance between any (2) adjacent rods (same corner)

3) Clear space between bottom of leveling nut and top of concrete not exceeding (1)\*(Rod Diameter)

#### Site Data

BU#: Site Name: CT 5122 App #:

| Anchor Rod Data |        |                  |  |  |  |  |
|-----------------|--------|------------------|--|--|--|--|
| Eta Factor, η   | 0.5    | TIA G (Fig. 4-4) |  |  |  |  |
| Qty:            | 16     |                  |  |  |  |  |
| Diam:           | 2.25   | in               |  |  |  |  |
| Rod Material:   | A615-J |                  |  |  |  |  |
| Yield, Fy:      | 75     | ksi              |  |  |  |  |
| Strength, Fu:   | 100    | ksi              |  |  |  |  |
| Bolt Circle:    | 76     | in               |  |  |  |  |
| Anchor Spacing: | 6      | in               |  |  |  |  |

| Base Reactions       |      |         |  |  |  |  |
|----------------------|------|---------|--|--|--|--|
| TIA Revision:        | G    |         |  |  |  |  |
| Factored Moment, Mu: |      | ft-kips |  |  |  |  |
| Factored Axial, Pu:  | 59.7 | kips    |  |  |  |  |
| Factored Shear, Vu:  | 40.1 | kips    |  |  |  |  |

#### **Anchor Rod Results**

TIA G --> Max Rod (Cu+  $Vu/\eta$ ): 197.0 Kips Axial Design Strength, Φ\*Fu\*Anet: 260.0 Kips Anchor Rod Stress Ratio: 75.8% Pass

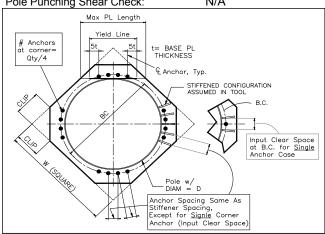
| Plate Data     |      |     |  |  |  |
|----------------|------|-----|--|--|--|
| W=Side:        | 82   | in  |  |  |  |
| Thick:         | 2.25 | in  |  |  |  |
| Grade:         | 60   | ksi |  |  |  |
| Clip Distance: | 16   | in  |  |  |  |

| Base Plate Results                | Flexural Check |
|-----------------------------------|----------------|
| Base Plate Stress:                | 41.5 ksi       |
| PL Design Bending Strength, Φ*Fy: | 54.0 ksi       |
| Base Plate Stress Ratio:          | 76.9% Pass     |

| PL Ref. Data     |
|------------------|
| Yield Line (in): |
| 40.35            |
| Max PL Length:   |
| 46.74            |

#### N/A - Unstiffened

#### Stiffener Results


Horizontal Weld: N/A Vertical Weld: N/A Plate Flex+Shear, fb/Fb+(fv/Fv)^2: N/A N/A Plate Tension+Shear, ft/Ft+(fv/Fv)^2: Plate Comp. (AISC Bracket): N/A

#### **Pole Results**

Pole Punching Shear Check: N/A

| Stiffener Da    | Stiffener Data (Welding at both sides) |             |  |  |  |  |  |
|-----------------|----------------------------------------|-------------|--|--|--|--|--|
| Configuration:  | Unstiffened                            |             |  |  |  |  |  |
| Weld Type:      |                                        | **          |  |  |  |  |  |
| Groove Depth:   |                                        | in **       |  |  |  |  |  |
| Groove Angle:   |                                        | degrees     |  |  |  |  |  |
| Fillet H. Weld: |                                        | < Disregard |  |  |  |  |  |
| Fillet V. Weld: |                                        | in          |  |  |  |  |  |
| Width:          |                                        | in          |  |  |  |  |  |
| Height:         |                                        | in          |  |  |  |  |  |
| Thick:          |                                        | in          |  |  |  |  |  |
| Notch:          |                                        | in          |  |  |  |  |  |
| Grade:          |                                        | ksi         |  |  |  |  |  |
| Weld str.:      |                                        | ksi         |  |  |  |  |  |

| Pole Data   |        |              |  |  |  |  |
|-------------|--------|--------------|--|--|--|--|
| Diam:       | 69.225 | in           |  |  |  |  |
| Thick:      | 0.375  | in           |  |  |  |  |
| Grade:      | 65     | ksi          |  |  |  |  |
| # of Sides: | 18     | "0" IF Round |  |  |  |  |



<sup>\*\*</sup> Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

## **Monopole Pier and Pad Foundation**

**BU # :** - **Site Name:** CT 5122

App. Number: -

TIA-222 Revision: G

|                    | _    |         |  |  |  |
|--------------------|------|---------|--|--|--|
| Design Reactions   |      |         |  |  |  |
| Shear, S:          | 40.1 | kips    |  |  |  |
| Moment, M:         | 4770 | ft-kips |  |  |  |
| Tower Height, H:   | 179  | ft      |  |  |  |
| Tower Weight, Wt:  | 59.7 | kips    |  |  |  |
| Base Diameter, BD: | 5.77 | ft      |  |  |  |

| Foundation Dimensions |      |     |  |  |
|-----------------------|------|-----|--|--|
| Depth, <b>D</b> :     | 6.5  | ft  |  |  |
| Pad Width, W:         | 30   | ft  |  |  |
| Neglected Depth, N:   | 3.33 | ft  |  |  |
| Thickness, T:         | 2.50 | ft  |  |  |
| Pier Diameter, Pd:    | 8.50 | ft  |  |  |
| Ext. Above Grade, E:  | 0.50 | ft  |  |  |
| BP Dist. Above Pier:  | 3    | in. |  |  |
| Clear Cover, Cc:      | 3.0  | in  |  |  |

| Soil Properties                |       |     |  |  |  |
|--------------------------------|-------|-----|--|--|--|
| Soil Unit Weight, γ: 0.100 kcf |       |     |  |  |  |
| Ult. Bearing Capacity, Bc:     | 6.0   | ksf |  |  |  |
| Angle of Friction, Φ:          | 30    | deg |  |  |  |
| Cohesion, Co:                  | 0.000 | ksf |  |  |  |
| Passive Pressure, <b>Pp</b> :  | 0.000 | ksf |  |  |  |
| Base Friction, µ:              | 0.40  |     |  |  |  |

| Material Properties       |       |     |  |  |
|---------------------------|-------|-----|--|--|
| Rebar Yield Strength, Fy: | 60000 | psi |  |  |
| Concrete Strength, F'c:   | 3000  | psi |  |  |
| Concrete Unit Weight, δc: | 0.150 | kcf |  |  |
| Seismic Zone, z:          | 1     |     |  |  |

| Rebar Properties             |    |    |  |  |
|------------------------------|----|----|--|--|
| Pier Rebar Size, <b>Sp</b> : | 9  |    |  |  |
| Pier Rebar Quanity, mp:      | 41 | 41 |  |  |
| Pad Rebar Size, Spad:        | 9  |    |  |  |
| Pad Rebar Quanity, mpad:     | 33 | 13 |  |  |
| Pier Tie Size, St:           | 4  | 3  |  |  |
| Tie Quanity, mt:             | 14 | 5  |  |  |

| Design Checks               |                           |                   |       |  |  |
|-----------------------------|---------------------------|-------------------|-------|--|--|
|                             | Capacity/<br>Availability | Demand/<br>Limits | Check |  |  |
| Req'd Pier Diam.(ft)        | 8.5                       | 7.77              | OK    |  |  |
| Overturning (ft-kips)       | 8865.97                   | 4770.00           | 53.8% |  |  |
| Shear Capacity (kips)       | 249.32                    | 40.10             | 16.1% |  |  |
| Bearing (ksf)               | 4.50                      | 1.85              | 41.1% |  |  |
| Pad Shear - 1-way (kips)    | 781.90                    | 445.99            | 57.0% |  |  |
| Pad Shear - 2-way (kips)    | 1752.73                   | 119.28            | 6.8%  |  |  |
| Pad Moment Capacity (k-ft)  | 3765.60                   | 1621.90           | 43.1% |  |  |
| Pier Moment Capacity (k-ft) | 9815.92                   | 4950.45           | 50.4% |  |  |

Effective Date: 9/9/2010



# Radio Frequency Emissions Analysis Report

**AT&T** Existing Facility

Site ID: CT5122

Wethersfield North 23 Kelleher Court Hartford, CT 06109

**December 20, 2016** 

**Centerline Communications Project Number: 950006-004** 

| Site Compliance Summary                                    |           |  |  |
|------------------------------------------------------------|-----------|--|--|
| Compliance Status:                                         | COMPLIANT |  |  |
| Site total MPE% of FCC general population allowable limit: | 10.23 %   |  |  |



December 20, 2016

AT&T Mobility – New England Attn: John Benedetto, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT5122 – Wethersfield North

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT&T facility located at **23 Kelleher Court, Hartford, CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ( $\mu$ W/cm2). The number of  $\mu$ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ( $\mu$ W/cm<sup>2</sup>). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467  $\mu$ W/cm<sup>2</sup> and 567  $\mu$ W/cm<sup>2</sup> respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000  $\mu$ W/cm<sup>2</sup>. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.



Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.



### **CALCULATIONS**

Calculations were performed for the proposed AT&T Wireless antenna facility located at **23 Kelleher Court, Hartford, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

| Technology | Frequency Band | Channel Count | Transmit Power per<br>Channel (W) |
|------------|----------------|---------------|-----------------------------------|
| UMTS       | 850 MHz        | 2             | 30                                |
| UMTS       | 1900 MHz (PCS) | 2             | 30                                |
| GSM        | 850 MHz        | 2             | 30                                |
| LTE        | 2300 MHz (WCS) | 2             | 60                                |
| GSM        | 1900 MHz (PCS) | 2             | 30                                |
| LTE        | 700 MHz        | 2             | 60                                |
| LTE        | 1900 MHz (PCS) | 2             | 60                                |

Table 1: Channel Data Table



The following antennas listed in *Table 2* were used in the modeling for transmission in the 700 MHz, 850 MHz, 1900 MHz (PCS) and 2300 MHz (WCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

|        |         |                       | Antenna    |
|--------|---------|-----------------------|------------|
|        | Antenna |                       | Centerline |
| Sector | Number  | Antenna Make / Model  | (ft)       |
| A      | 1       | Powerwave 7770        | 140        |
| A      | 2       | CCI TPA-65R-LCUUUU-H8 | 140        |
| A      | 3       | CCI HPA-65R-BUU-H8    | 140        |
| В      | 1       | Powerwave 7770        | 140        |
| В      | 2       | CCI TPA-65R-LCUUUU-H8 | 140        |
| В      | 3       | CCI HPA-65R-BUU-H8    | 140        |
| C      | 1       | Powerwave 7770        | 140        |
| C      | 2       | Commscope SBNHH-1D65A | 140        |
| C      | 3       | Commscope SBNHH-1D65A | 140        |

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.



## **RESULTS**

Per the calculations completed for the proposed AT&T configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

| Antenna | Antenna Make /          |                  | Antenna     | Channel | Total TX     |             |       |
|---------|-------------------------|------------------|-------------|---------|--------------|-------------|-------|
| ID      | Model                   | Frequency Bands  | Gain (dBd)  | Count   | Power (W)    | ERP(W)      | MPE % |
| Antenna |                         | 850 MHz /        |             |         |              |             |       |
| A1      | Powerwave 7770          | 1900 MHz (PCS)   | 11.4 / 13.4 | 4       | 120          | 2,140.89    | 0.56  |
|         | CCI                     | 850 MHz /        | 13.45 /     |         |              |             |       |
| Antenna | TPA-65R-                | 2300 MHz (WCS) / | 14.45 /     |         |              |             |       |
| A2      | LCUUUU-H8               | 1900 MHz (PCS)   | 13.75       | 6       | 240          | 6,094.03    | 1.42  |
|         | CCI                     |                  |             |         |              |             |       |
| Antenna | HPA-65R-BUU-            | 700 MHz /        | 13.15 /     |         |              |             |       |
| A3      | Н8                      | 1900 MHz (PCS)   | 14.95       | 4       | 240          | 6,229.75    | 1.81  |
|         |                         |                  |             |         | Sector A Com | posite MPE% | 3.79  |
| Antenna |                         | 850 MHz /        |             |         |              |             |       |
| B1      | Powerwave 7770          | 1900 MHz (PCS)   | 11.4 / 13.4 | 4       | 120          | 2,140.89    | 0.56  |
|         | CCI                     | 850 MHz /        | 13.45 /     |         |              |             |       |
| Antenna | TPA-65R-                | 2300 MHz (WCS) / | 14.45 /     |         |              |             |       |
| B2      | LCUUUU-H8               | 1900 MHz (PCS)   | 13.75       | 6       | 240          | 6,094.03    | 1.42  |
| Antenna | CCI HPA-65R-            | 700 MHz /        | 13.15 /     |         |              |             |       |
| В3      | BUU-H8                  | 1900 MHz (PCS)   | 14.95       | 4       | 240          | 6,229.75    | 1.81  |
|         |                         |                  |             |         | Sector B Com | posite MPE% | 3.79  |
| Antenna |                         | 850 MHz /        |             |         |              |             |       |
| C1      | Powerwave 7770          | 1900 MHz (PCS)   | 11.4 / 13.4 | 4       | 120          | 2,140.89    | 0.56  |
|         |                         | 850 MHz /        | 10.65 /     |         |              |             |       |
| Antenna | Commscope               | 2300 MHz (WCS) / | 15.85 /     |         |              |             |       |
| C2      | SBNHH-1D65A             | 1900 MHz (PCS)   | 14.55       | 6       | 240          | 7,022.58    | 1.51  |
| Antenna | Commscope               | 700 MHz /        | 10.85 /     |         |              |             |       |
| C3      | SBNHH-1D65A             | 1900 MHz (PCS)   | 14.55       | 4       | 240          | 4,880.65    | 1.31  |
|         | Sector C Composite MPE% |                  |             |         |              |             |       |

Table 3: AT&T Emissions Levels



The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, the sectors with the largest calculated MPE% are sectors A & B. *Table 5* below shows a summary for each AT&T Sector as well as the composite MPE value for the site.

| Site Composite MPE%     |         |  |  |  |
|-------------------------|---------|--|--|--|
| Carrier                 | MPE%    |  |  |  |
| AT&T – Max Sector Value | 3.79 %  |  |  |  |
| Town of Wethersfield    | 0.17 %  |  |  |  |
| Clearwire               | 0.07 %  |  |  |  |
| Verizon                 | 2.89 %  |  |  |  |
| Sprint                  | 1.27 %  |  |  |  |
| Nextel                  | 1.65 %  |  |  |  |
| T-Mobile                | 0.39 %  |  |  |  |
| Site Total MPE %:       | 10.23 % |  |  |  |

Table 4: All Carrier MPE Contributions

| AT&T Sector A Total: | 3.79 %  |
|----------------------|---------|
| AT&T Sector B Total: | 3.79 %  |
| AT&T Sector C Total: | 3.38 %  |
|                      |         |
| Site Total:          | 10.23 % |

Table 5: Site MPE Summary



Per FCC OET 65, carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT&T sector(s). For this site, the sectors with the largest calculated MPE% are sectors A & B.

| AT&T _ Frequency Band /<br>Technology | #<br>Channels | Watts ERP<br>(Per Channel) | Height<br>(feet) | Total Power Density (µW/cm²) | Frequency (MHz) | Allowable<br>MPE<br>(µW/cm²) | Calculated<br>% MPE |
|---------------------------------------|---------------|----------------------------|------------------|------------------------------|-----------------|------------------------------|---------------------|
| AT&T 850 MHz UMTS                     | 2             | 414.12                     | 140              | 1.66                         | 850 MHz         | 567                          | 0.29%               |
| AT&T 1900 MHz (PCS) UMTS              | 2             | 656.33                     | 140              | 2.63                         | 1900 MHz (PCS)  | 1000                         | 0.26%               |
| AT&T 850 MHz GSM                      | 2             | 663.93                     | 140              | 2.66                         | 850 MHz         | 567                          | 0.47%               |
| AT&T 2300 MHz (WCS) LTE               | 2             | 1,671.67                   | 140              | 6.69                         | 2300 MHz (WCS)  | 1000                         | 0.67%               |
| AT&T 1900 MHz (PCS) GSM               | 2             | 711.41                     | 140              | 2.85                         | 1900 MHz (PCS)  | 1000                         | 0.28%               |
| AT&T 700 MHz LTE                      | 2             | 1,239.23                   | 140              | 4.96                         | 700 MHz         | 467                          | 1.06%               |
| AT&T 1900 MHz (PCS) LTE               | 2             | 1,875.65                   | 140              | 7.51                         | 1900 MHz (PCS)  | 1000                         | 0.75%               |
|                                       |               |                            |                  |                              |                 | Total:                       | 3.79%               |

Table 6: AT&T Maximum Sector MPE Power Values



## **Summary**

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

| AT&T Sector             | Power Density Value (%) |
|-------------------------|-------------------------|
| Sector A:               | 3.79 %                  |
| Sector B:               | 3.79 %                  |
| Sector C:               | 3.38 %                  |
| AT&T Maximum Total      | 3.79 %                  |
| (per sector):           |                         |
|                         |                         |
| Site Total:             | 10.23 %                 |
|                         |                         |
| Site Compliance Status: | COMPLIANT               |

The anticipated composite MPE value for this site assuming all carriers present is 10.23 % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

**Centerline Communications, LLC** 

95 Ryan Drive, Suite 1 Raynham, MA 02767