

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-286-4007 jandrews@empiretelecomm.com

April 18, 2018

Melanie Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

NOTICE OF EXEMPT MODIFICATION

1030 NEW BRITAIN AVENUE, WEST HARTFORD, CT 06110

Lat: 41-43-52.69 (41.73130278) Long. 72-43-25.82 (-72.72383889)

Dear Ms. Bachman:

AT&T Wireless currently maintains 9 antennas at the 180-foot level of an existing 185-foot lattice tower located at 1030 New Britain Avenue, in West Hartford, CT. The tower is owned by the Ten Thirty Tower Company, LLC. The property is owned by the Ten Thirty Tower Company, LLC. AT&T Wireless now seeks to install 3 additional antennas at the 180-foot level of the tower, as well as replace 3 existing Remote Radio Units ("RRU") with 3 new RRUS-32 B2 RRUs; install 3 new RRUS-B14 4478 RRUs; install 3 new RRUS-32 B66 RRUs; replace existing GSM line components with low band combiners; and install a single new surge suppressor, all at the 180-foot level of the tower. In addition, the applicant seeks to install 2 new DC power cables along the existing cable route on the side of the tower. AT&T also intends to install 3 new RRUS-E2 and 3 new RRU-12 units at grade on the existing mounting pipes. Five (5) equipment cabinets are currently on grade, 1 cabinet will be decommissioned. AT&T will replace 2 DUS with two (2) 5216 units and replace the IDL2 with an IDLE and add a second XMU within one of the existing at-grade cabinets.

The facility was approved by the Connecticut Siting Council in EM-CING-155-160503 on May 23, 2016. Six conditions were enumerated in the Council's decision: 1) Any deviation from the modification as specified in the Notice and supporting documentation shall render the acknowledgement invalid; 2) Any material changes to the modification as proposed shall require the filing of a new Notice with the Council; 3) Within 45 days after the completion of construction the Council shall be notified in writing that the construction has been completed; 4) Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by AT&T shall be removed within 60 days of the date the antenna ceased to function; 5)

10130 Donleigh Drive Columbia, MD 21046 443-677-0144

the validity of the action shall expire one year from the date of the letter; and 6) the applicant may file a request an extension of time beyond the one year deadline provided that such a request is submitted to the Council not less than 60 days prior to the expiration.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies section 16-50j-73 for construction that constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2). In accordance with RCSA section 16-50j-73, a copy of this letter and attachments is being sent to the Honorable Shari Cantor, Mayor of West Hartford; Todd Dumais, the Town Planner; as well as to the Ten Thirty Tower Company, LLC, the tower owner, and to the Ten Thirty Tower Company, LLC, the property owner.

The planned modifications to the facility fall squarely within those activities expressly provided for in RCSA section 50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in height of the existing structure.
- 2. The proposed modifications will not require an extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that will exceed state and local limits.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, AT&T Wireless respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under RCSA section 16-50j-72(b)(2).

Respectfully submitted,

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-286-4007 jandrews@empiretelecomm.com

Enclosures

cc: Honorable Shari Cantor, Mayor of West Hartford Todd Dumais, West Hartford Town Planner Ten Thirty Company, LLC, the tower owner and property owner.

April 18, 2018

Ten Thirty Tower Company, LLC, by Hirschfield Management, Inc. 1030 New Britain Ave. West Hartford, CT 06110 ATTN: Ian Ormesher

RE: AT&T Wireless Modifications to Telecommunication Facility – 1030 NEW BRITAIN AVENUE, WEST HARTFORD, CT 06110

Dear Mr. Ormesher:

In order to accommodate technological changes, implement the Uniform Mobile Telecommunications System and enhance system performance in the State of Connecticut, AT&T Wireless ("AT&T") will be changing its equipment configuration at the above referenced telecommunications facility. AT&T Wireless currently maintains 9 antennas at the 180-foot level of an existing 185-foot lattice tower located at 1030 New Britain Avenue, in West Hartford, CT. The tower is owned by the Ten Thirty Company, LLC. The property is owned by the Ten Thirty Company, LLC.

AT&T Wireless now seeks to install 3 additional antennas at the 180-foot level of the tower, as well as replace 3 existing Remote Radio Units ("RRU") with 3 new RRUS-32 B2 RRUs; install 3 new RRUS-B14 4478 RRUs; install 3 new RRUS-32 B66 RRUs; replace existing GSM line components with low band combiners; and install a single new surge suppressor, all at the 180-foot level of the tower. In addition, the applicant seeks to install 2 new DC power cables along the existing cable route on the side of the tower. AT&T also intends to install 3 new RRUS-E2 and 3 new RRU-12 units at grade on the existing mounting pipes. Five (5) equipment cabinets are currently on grade, 1 cabinet will be decommissioned. AT&T will replace 2 DUS with 2 5216 units and replace the IDL2 with an IDLE and add a second XMU within one of the existing at-grade cabinets.

This letter is intended to serve as the required notice to the tower owner and the property owner. As required by the Regulations of Connecticut State Agencies ("RCSA") section 16-50j-73, the Connecticut Siting Council ("CSC") has been notified of the proposed changes and will review AT&T's proposal. Please accept this letter as notification under RCSA section 16-50j-73 of construction which constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2).

10130 Donleigh Drive Columbia, MD 21046 443-677-0144

The enclosed letter and documents to the CSC fully describes AT&T's proposal for the above referenced site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-286-4006 or contact Melanie Bachman, Acting Executive Director of the CSC at 860-872-2935.

Respectfully submitted,

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-677-0144 jandrews@empiretelecomm.com

Enclosures

cc: Melanie Bachman, Connecticut Siting Council

April 18, 2018

Todd Dumais Town Hall, 50 South Main Street, Room 214 West Hartford, CT 06107

RE: AT&T Wireless Modifications to Telecommunication Facility – 1030 NEW BRITAIN AVENUE, WEST HARTFORD, CT 06110

Dear Mr. Dumais:

In order to accommodate technological changes, implement the Uniform Mobile Telecommunications System and enhance system performance in the State of Connecticut, AT&T Wireless ("AT&T") will be changing its equipment configuration at the above referenced telecommunications facility. AT&T Wireless currently maintains 9 antennas at the 180-foot level of an existing 185-foot lattice tower located at 1030 New Britain Avenue, in West Hartford, CT. The tower is owned by the Ten Thirty Company, LLC. The property is owned by the Ten Thirty Company, LLC.

AT&T Wireless now seeks to install 3 additional antennas at the 180-foot level of the tower, as well as replace 3 existing Remote Radio Units ("RRU") with 3 new RRUS-32 B2 RRUs; install 3 new RRUS-B14 4478 RRUs; install 3 new RRUS-32 B66 RRUs; replace existing GSM line components with low band combiners; and install a single new surge suppressor, all at the 180-foot level of the tower. In addition, the applicant seeks to install 2 new DC power cables along the existing cable route on the side of the tower. AT&T also intends to install 3 new RRUS-E2 and 3 new RRU-12 units at grade on the existing mounting pipes. Five (5) equipment cabinets are currently on grade, 1 cabinet will be decommissioned. AT&T will replace 2 DUS with 2 5216 units and replace the IDL2 with an IDLE and add a second XMU within one of the existing at-grade cabinets.

This letter is intended to serve as notice to the chief of planning for the municipality. As required by the Regulations of Connecticut State Agencies ("RCSA") section 16-50j-73, the Connecticut Siting Council ("CSC") has been notified of the proposed changes and will review AT&T's proposal. Please accept this letter as notification under RCSA section 16-50j-73 of construction which constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2).

The enclosed letter and documents to the CSC fully describes AT&T's proposal for the above referenced site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-677-0144 or contact Melanie Bachman, Acting Executive Director of the CSC at 860-872-2935.

Respectfully submitted,

Jack Andrews

Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-677-0144 jandrews@empiretelecomm.com

Enclosures

cc: Melanie Bachman, Connecticut Siting Council

10130 Donleigh Drive Columbia, MD 21046 443-677-0144

April 18, 2018

The Honorable Shari Cantor Town Hall, 50 South Main Street West Hartford, CT 06107

RE: AT&T Wireless Modifications to Telecommunication Facility – 1030 NEW BRITAIN AVENUE, WEST HARTFORD, CT 06110

Dear Mayor Cantor:

In order to accommodate technological changes, implement the Uniform Mobile Telecommunications System and enhance system performance in the State of Connecticut, AT&T Wireless ("AT&T") will be changing its equipment configuration at the above referenced telecommunications facility. AT&T Wireless currently maintains 9 antennas at the 180-foot level of an existing 185-foot lattice tower located at 1030 New Britain Avenue, in West Hartford, CT. The tower is owned by the Ten Thirty Company, LLC. The property is owned by the Ten Thirty Company, LLC.

AT&T Wireless now seeks to install 3 additional antennas at the 180-foot level of the tower, as well as replace 3 existing Remote Radio Units ("RRU") with 3 new RRUS-32 B2 RRUs; install 3 new RRUS-B14 4478 RRUs; install 3 new RRUS-32 B66 RRUs; replace existing GSM line components with low band combiners; and install a single new surge suppressor, all at the 180-foot level of the tower. In addition, the applicant seeks to install 2 new DC power cables along the existing cable route on the side of the tower. AT&T also intends to install 3 new RRUS-E2 and 3 new RRU-12 units at grade on the existing mounting pipes. Five (5) equipment cabinets are currently on grade, 1 cabinet will be decommissioned. AT&T will replace 2 DUS with 2 5216 units and replace the IDL2 with an IDLE and add a second XMU within one of the existing at-grade cabinets.

This letter is intended to serve as the required notice to the chief elected official of the municipality. As required by the Regulations of Connecticut State Agencies ("RCSA") section 16-50j-73, the Connecticut Siting Council ("CSC") has been notified of the proposed changes and will review AT&T's proposal. Please accept this letter as notification under RCSA section 16-50j-73 of construction which constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2).

The enclosed letter and documents to the CSC fully describes AT&T's proposal for the above referenced site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-677-0144 or contact Melanie Bachman, Acting Executive Director of the CSC at 860-872-2935.

Respectfully submitted,

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-677-0144 jandrews@empiretelecomm.com

Enclosures

cc: Melanie Bachman, Connecticut Siting Council

10130 Donleigh Drive Columbia, MD 21046 443-677-0144

Radio Frequency Emissions Analysis Report

AT&T Existing Facility

Site ID: CT5259 FA: 10071358

Hartford - Elmwood 1030 New Britain Avenue West Hartford, CT 06110

February 1, 2018

Centerline Communications Project Number: 950006-092

Site Complian	ce Summary
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	7.00 %

February 1, 2018

AT&T Mobility – New England Attn: John Benedetto, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT5259 - Hartford - Elmwood

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT&T facility located at **1030 New Britain Avenue, West Hartford, CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467 μ W/cm² and 567 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over this or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT&T Wireless antenna facility located at **1030 New Britain Avenue, West Hartford, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
UMTS – Antenna 1	850 MHz	1	30
LTE – Antenna 2	700 MHz	2	60
LTE – Antenna 2	850 MHz	2	30
LTE – Antenna 2	2300 MHz (WCS)	4	30
LTE – Antenna 3	700 MHz (Band 14)	4	40
LTE – Antenna 3	2100 MHz (AWS)	4	30
LTE – Antenna 4	700 MHz	2	60
LTE – Antenna 4	1900 MHz (PCS)	4	80

Table 1: Channel Data Table (per sector)

The following antennas listed in *Table 2* were used in the modeling for transmission in the 700 MHz, 850 MHz, 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

			Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
А	1	Powerwave 7770	180
А	2	CCI OPA-65R-LCUU-H6	180
А	3	Kathrein 800-10965	180
А	4	CCI OPA-65R-LCUU-H6	180
В	1	Powerwave 7770	180
В	2	CCI OPA-65R-LCUU-H6	180
В	3	Kathrein 800-10965	180
В	4	CCI OPA-65R-LCUU-H6	180
С	1	Powerwave 7770	180
С	2	CCI OPA-65R-LCUU-H6	180
С	3	Kathrein 800-10965	180
С	4	CCI OPA-65R-LCUU-H6	180

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT&T configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna	Antenna Make /		Antenna Gain	Channel	Total TX		
ID	Model	Frequency Bands	(dBd)	Count	Power (W)	ERP (W)	MPE %
Antenna	Powerwave						
A1	7770	850 MHz	11.4	1	30	414.12	0.09
	CCI	700 MHz /					
Antenna	OPA-65R-LCUU-	850 MHz /	11.65 / 12.45 /				
A2	H6	2300 MHz (WCS)	15.45	8	300	7,018.39	1.17
Antenna	Kathrein	700 MHz /					
A3	800-10965	2100 MHz (AWS)	12.65 / 16.15	8	280	7,890.41	1.34
	CCI						
Antenna	OPA-65R-LCUU-	700 MHz /					
A4	H6	1900 MHz (PCS)	11.65 / 14.85	6	440	11,530.36	1.61
			_	-	Sector A Com	posite MPE%	4.20
Antenna	Powerwave						
B1	7770	850 MHz	11.4	1	30	414.12	0.09
	CCI	700 MHz /					
Antenna	OPA-65R-LCUU-	850 MHz /	11.65 / 12.45 /				
B2	H6	2300 MHz (WCS)	15.45	8	300	7,018.39	1.17
Antenna	Kathrein	700 MHz /					
B3	800-10965	2100 MHz (AWS)	12.65 / 16.15	8	280	7,890.41	1.34
	CCI						
Antenna	OPA-65R-LCUU-	700 MHz /					
B4	H6	1900 MHz (PCS)	11.65 / 14.85	6	440	11,530.36	1.61
					Sector B Com	posite MPE%	4.20
Antenna	Powerwave						
C1	7770	850 MHz	11.4	1	30	414.12	0.09
	CCI	700 MHz /					
Antenna	OPA-65R-LCUU-	850 MHz /	11.65 / 12.45 /				
C2	H6	2300 MHz (WCS)	15.45	8	300	7,018.39	1.17
Antenna	Kathrein	700 MHz /					
C3	800-10965	2100 MHz (AWS)	12.65 / 16.15	8	280	7,890.41	1.34
	CCI						
Antenna	OPA-65R-LCUU-	700 MHz /					
C4	H6	1900 MHz (PCS)	11.65 / 14.85	6	440	11,530.36	1.61
					Sector C Com	posite MPE%	4.20

Table 3: AT&T Emissions Levels

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each AT&T Sector as well as the composite MPE value for the site.

Site Composite MPE%		
Carrier	MPE%	
AT&T – Max Sector Value	4.20 %	
T-Mobile	2.45 %	
Clearwire	0.08 %	
Nextel	0.27 %	
Site Total MPE %:	7.00 %	

Table 4: All Carrier MPE Contributions

AT&T Sector A Total:	4.20 %
AT&T Sector B Total:	4.20 %
AT&T Sector C Total:	4.20 %
Site Total:	7.00 %

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT&T sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

AT&T _ Frequency Band / Technology (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE
AT&T 850 MHz UMTS	1	414.12	180	0.49	850 MHz	567	0.09%
AT&T 700 MHz LTE	2	877.31	180	2.08	700 MHz	467	0.45%
AT&T 850 MHz LTE	2	527.38	180	1.25	850 MHz	567	0.22%
AT&T 2300 MHz (WCS) LTE	4	1,052.26	180	5.00	2300 MHz (WCS)	1000	0.50%
AT&T 700 MHz LTE	4	736.31	180	3.50	700 MHz	467	0.75%
AT&T 2100 MHz (AWS) LTE	4	1,236.29	180	5.87	2100 MHz (AWS)	1000	0.59%
AT&T 700 MHz LTE	2	877.31	180	2.08	700 MHz	467	0.45%
AT&T 1900 MHz (PCS) LTE	4	2,443.94	180	11.61	1900 MHz (PCS)	1000	1.16%
						Total:	4.20%

Table 6: AT&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)
Sector A:	4.20 %
Sector B:	4.20 %
Sector C:	4.20 %
AT&T Maximum Total	4 20 %
(per sector):	4.20 %
Site Total:	7.00 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **7.00** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan RF Engineering Director Centerline Communications, LLC 95 Ryan Drive, Suite 1 Raynham, MA 02767

	at&t
--	------

SITE NAME: WEST HARTFORD-ELMWOOD PROJECT: LTE - 4C/5C/6C/7C/RETROFIT FA NUMBER: 10071358 SITE NUMBER: CTL05259 **1030 NEW BRITAIN AVENUE** WEST HARTFORD, CT 06110 HARTFORD COUNTY FIRSTNET

DRIVING DIRECTIONS

RECTIONS FROM AT&T OFFICE AT 550 COCHITUATE ROAD. FRAMING

DEPART RT-30 WEST/COCHITUATE ROAD TOWARD BURR STREET. TURN BACK ON RT-30 EAST/COCHITUATE ROAD. TAKE RAMP RIGHT FOR I-90 WEST TOWARD SPRINGFIELD/WORCESTER. AT EXIT 9, TAKE RAMP RIGHT FOR I-84 TOWARD HARTFORD/NEW YORK CITY. AT EXIT 45, TAKE RAMP LEFT AND FOLLOW SIGNS FOR FLATBUSH AVENUE. TURN RIGHT ONTO FLATBUSH AVENUE. TURN LEFT ONTO NEW PARK AVENUE TURN LEFT ONTO OAKWOOD AVENUE.

PROJECT TEAM

CLIENT REPRESE	INTATIVE	
COMPANY:		
CITY, STATE, ZIP:	BILLERICA,	MA 01862
E-MAIL:	DAVID CO DCOOPER	OPEK @EMPIRETELCOMM.COM
ENGINEER		
COMPANY:	MASER CO	NSULTING CONNECTICUT
ADDRESS: CITY, STATE, ZIP:	331 NEWM RED BANK,	AN SPRINGS ROAD, SUITE 203 , NJ 07701
CONTACT: PHONE:	MICHAEL C (856) 717-0-	CLEARY 412 x4105
E-MAIL:	MCLEARY@	MASERCONSULTING.COM
RF ENGINEER		
COMPANY: ADDRESS:	NEW CING	GULAR WIRELESS PCS, LLC
CITY, STATE, ZIP:	FRAMINGH	IAM, MA 01701
E-MAIL:	MH705R@A	ATT.COM
	JILLI	NORMATION
APPLICANT/LESSE	E	
et&t		
NEW CINGULAR WIRE 550 COCHITUATE RD.	LESS PCS, LLO	c
FRAMINGHAM, MA 017	01	
TOWER OWNER	<u>:</u>	
NAME:		TEN THIRTY TOWER COMPANY, LLC
CITY, STATE, ZIP:		WEST HARTFORD, CT 06110
LATITUDE:		41.7360919° N
LONGITUDE:		72.7204989° W
LAT./LONG. TYPE:		NAD 83
AREA OF CONSTRUCT	ION:	EXISTING OUTDOOR EQUIPMENT AND LATTICE TOWER
ZONING/JURISDICTION:		CITY OF WEST HARTFORD
CURRENT USE/PROPOSED USE:		UNMANNED TELECOMMUNICATIONS FACILITY
HANDICAP REQUIREM	ents:	FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. HANDICAPPED ACCESS NOT REQUIRED.
CONSTRUCTION TYPE	E	IIB
USE GROUP:		U

2016 CONNECTICUT STATE BUILDING CODE, INCORPORATING THE 2012 IBC 2014 NATIONAL ELECTRICAL CODE-NFPA 70 2012 NFPA 101 LIGHTNING PROTECTION CODE 2011 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 360-10

DO NOT SCALE DRAWINGS

SHEET	DESCRIPTION
T-1	TITLE SHEET
GN-I	GENERAL NOTES
A-I	COMPOUND AND EQUIPMENT PLAN
A-2	ELEVATION VIEW, DETAILS AND ANTENNA SCHEDULE
A-3	ANTENNA LAYOUTS
A-4	DETAILS
A-5	DETAILS
A-6	DETAILS
A-7	RF PLUMBING DIAGRAMS
G-1	GROUNDING DETAILS

	PROJECT
TH	IS PROJECT WILL BE CO
•	INSTALL (3) NEW AT&
•	INSTALL (3) NEW RRU
•	INSTALL (3) NEW RRU
•	(3) NEW RRUS-32 B2 T
•	INSTALL (3) NEW RRU
•	INSTALL (3) NEW RRU
•	INSTALL (I) NEW DC-6
•	INSTALL (2) 6/C DC CA
•	REMOVE EXISTING RX.
•	REPLACE EXISTING GS
•	REPLACE (2) DUS WITH
•	REPLACE IDL2 WITH IE

CODE COMPLIANCE

ALL WORK AND MATERIALS SHALL BE PERFORMED AND INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THE LATEST EDITIONS OF THE FOLLOWING CODES.

EIA/TIA-222 REVISION G TIA 607 FOR GROUNDING INSTITUTE FOR ELECTRICAL AND ELECTRONICS ENGINEERS 81 10. IEEE C2 LATEST EDITION 11. TELCORDIA GR-1275 12. ANSI T1.311

GENERAL CONTRACTOR NOTES

CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON TH JOB SITE AND SHALL IMMEDIATELY NOTIFY THE ARCHITECT/ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE, NO SANITARY SEVER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

DESCRIPTION/SCOPE OF WORK

MPRISED OF

8T ANTENNAS, (I) PER SECTOR JS-E2 WITH SURGE ARRESTORS, AT GRADE JS-12 WITH SURGE ARRESTORS, AT GRADE TO REPLACE (3) EXISTING RRUS12+A2, (I) PER SECTOR S-B14 4478. (1) PER SECTOR S-32 B66, (1) PER SECTOR 6 SURGE SUPPRESSION DOME 1 LINE COMPONENTS WITH LOW BAND COMBINERS H (2) 5216 DLe AND ADD 2ND XMU

GENERAL NOTES:

- 1. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ), THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- 2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 50 HMS OR LESS.
- 4. THE SUBCONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT.
- 5. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 6. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 7. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE EQUIPMENT GROUND RING WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS; 2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 8. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED. BACK TO BACK CONNECTIONS ON OPPOSITE SIDES OF THE GROUND BUS ARE PERMITTED.
- 9. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING, SHALL BE #2 AWG SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 10. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED. ALL BENDS SHALL BE MADE WITH 12" RADIUS OR LARGER.
- 12. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 13. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS EXCEPT FOR GROUND BAR CONNECTION FROM MGB TO OUTSIDE EXTERIOR GROUND SHALL ALL BE CADWELD CONNECTIONS.
- 14. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 15. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED TO THE TOWER GROUND BAR.
- 16. APPROVED ANTIOXIDANT COATINGS (I.E. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 17. ALL EXTERIOR AND INTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 19. BOND ALL METALLIC OBJECTS WITHIN 6 FT OF MAIN GROUND WIRES WITH 1-#2 AWG TIN-PLATED COPPER GROUND CONDUCTOR.
- 20. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G. NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 21. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/4" IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC 250.50.
- 22. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR - EMPIRE TELECOM
 - SUBCONTRACTOR GENERAL CONTRACTOR (CONSTRUCTION) OWNER - AT&T (NEW CINGULAR WIRELESS PCS, LLC)
- 23. ALL SITE WORK SHALL BE COMPLETED AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.
- 24. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.
- 25. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK.
- 26. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

- 27. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 28. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 29. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR.
- 30. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 31. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 32. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY THE RESPONSIBLE ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. SUBCONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING & EXCAVATION.
- 33. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, AS DIRECTED BY THE RESPONSIBLE ENGINEER, AND SUBJECT TO THE APPROVAL OF THE OWNER AND/OR LOCAL UTILITIES.
- 34. THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY SHALL BE GRADED TO A UNIFORM SLOPE AND STABILIZED TO PREVENT EROSION.
- 35. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 36. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
- 37. THE SUBGRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 38. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOWER AREAS.
- 39. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 40. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE.
- 41. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 42. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF THE CONTRACTOR.
- 43. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND TI CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR.
- 44. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301
- 45. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS.
- 46. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy = 36 ksi) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM A53 TYPE E (Fy = 36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCHUP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.
- 47. CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T MOBILITY SITES."
- 48. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 49. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION, ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT.
- 50. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN ALERT OF DANGEROUS EXPOSURE LEVELS.

RRUS/TMA CONFIGURATION	STATUS	FEEDER #	FEEDER TYPE	FEEDER STATUS
(2) LGP21401	-	2	1-5/8"COAX	REMAIN
(1) RRUS-32 RRUS-E2 (AT GRADE) RRUS-12 (AT GRADE)	REMAIN NEW NEW	2 1 2	1-5/8" COAX FIBER DC	REMAIN NEW NEW
1) RRUS-B14 4478 (1) RRUS-32 B66	NEW NEW		FIBER DC	REMAIN
(1) RRUS-11 (1)RRUS-32 B2	REMAIN NEW		FIBER DC	REMAIN
(2) LGP 21401	-	2	1-5/8"COAX	REMAIN
(1) RRUS-32 RRUS-E2 (AT GRADE) RRUS-12 (AT GRADE)	REMAIN NEW NEW	2 1 2	1-5/8" COAX FIBER DC	REMAIN
1) RRUS-B14 4478 (1) RRUS-32 B66	NEW NEW		FIBER DC	REMAIN
(1) RRUS-11 (1)RRUS-32 B2	REMAIN NEW		FIBER DC	REMAIN
(2) LGP21401	-	2	1-5/8"COAX	REMAIN
(1) RRUS-32 RRUS-E2 (AT GRADE) RRUS-12 (AT GRADE)	REMAIN NEW NEW	2 1 2	1-5/8" COAX FIBER DC	REMAIN
1) RRUS-B14 4478 (1) RRUS-32 B66	NEW NEW		FIBER DC	REMAIN
(1) RRUS-11 (1)RRUS-32 B2	REMAIN NEW		FIBER DC	REMAIN

17					
	Custorr	PM. eer Loyalty	ASER CON CONNER		TNG T—
Copyrigh informati contracti distribute	En Landscape c © 2018. Maser on contained herei of or to whom i d or relied upon	Consulting Co n is authorized t is certified. for any other p Cons	Planners Surve s Environment nnecticut All Rights Ress l for use only by the part This drawing may noc surpose without the exp uting Connecticut.	yors al Scientists rived. This draw y for whom the be copied, reu ress written co	ing and all the services were sed, disclosed, issent of Maser
			a	t8	t
N	EW CIN 550 FRA	IGULA COCH MINGH	R WIRELES HITUATE R HAM, MA	S PCS, OAD 01701	LLC
E	MP	I 6 ESQ	E tele DUIRE ROAI CA, MA OIB	CCC	m
	Rnow what's De Call before FOR STATE	you dig.	PROTECT YC NLL STATES REQUIRE N CAVATORS, DEISGINER SURFACE ANYWHERE DIRECT PHONE NI V.CALL81 I.COM	URSELF DTIFICATION 1 5, OR ANY PER RB THE EARTH IN ANY STATE	OF SON 'S
SCALE	AS SHO	WN	JOB NUMBER :	7963019	A
\sim					
F		-		·	L ·
	02/28/18	FOR CON	ISTRUCTION	AJC	PET
2	02/13/18	REVISED P	PER COMMENTS	AJC	PET
I REV	01/23/18 DATE	DESCRIPTION	DR REVIEW	AJC DRAWN	RA CHECKED
F	annum a	OF C	ONNE	Uning.	
	Mark C.	.05	TSOUL	-0	ALL IN COLUMN
AUDININININI NIN		OS PNNECTI EER - Li	- FOU Service P 2577	Kink A NAL EN.32577	AND
IT IS TH RES	VIOLAT IE: REAC PONSOLE	ON OFL TING UN IGENSED ALTER D	ACARICE INY IDER THE DIRP PROFFESIONA H. DOCUMEN	PERSON, CODN L'ENIC VE	ILESS THE EER, TO
v	VEST H S 1030 N WEST HA	SITE FA#: TTE # EV B HART RTFO	E NAME FORD-EL 10071358 : CTL052 RITAIN A FORD, C RD COU	: 59 VENU T 061 NTY	OD IE IO
L					
			RED BAI 331 Newma Sui Red Bank, N Phone: 7 Fax: 73	NK OFFIC an Springs F te 203 JJ 07701-5 32.383.195 2.383.1984	CE Road 699 0
SHEET	TITLE :	D	ETAILS		
SHEET	NUMBER :		A-4		
	_	_			

NOTES:

- I. INSTALL VERTICAL UNISTRUT CHANNELS AS REQUIRED TO ALIGN FRAME WITH EQUIPMENT MOUNTING HOLES. FASTEN UNISTRUT CHANNELS TOGETHER WITH 3/8" UNISTRUT BOLTING HARDWARE AND SPRING NUTS.
- 2. MOUNT RRU'S TO UNISTRUT PER MANUFACTURER'S SPECIFICATIONS.
- 3. MOUNT FRAME AS CLOSE TO PLATFORM AS POSSIBLE.
- 4. NO PAINTING OF THE RRUS IS ALLOWED.
- RRUS DETAIL TO UNISTRUT FRAME DETAIL

NOTES:

RAYCAP VIA AT&T SUPPLIES THE DC6 OVER VOLTAGE PROTECTOR AND PIPE MOUNTING BRACKETS. SUBCONTRACTOR SHALL SUPPLY THE PIPE.

RAYCAP DC6-48-60-18-8F & DC6-48-60-0-8F DC POWER OVER VOLTAGE PROTECTOR (OVP) POLE MOUNT BASE ASSEMBLY NOT TO SCALE

DC6 SURGE SUPPRESSION DOME DETAIL

NOT TO SCALE

	Asser Consulting Constant Loyalty through Client Satisfaction www.maser.consulting.com Engineers # Braneyors Landscape Architects = Environmental Scientists
	Gyorge 0. 2018 Paier Consisting Growattick AR lights Reared. The drawing and all the interface of the standard light of the arrow of the standard with the provide of the standard light of the constant of the co
-	NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701
	EMPRE telecom
3082"	ROTICT YOURSE ALISTATE BEGINA HOTINGATION OF THATE BEGINA HOTINGATION OF DEMAND TO BELINA THE ARTHS NOT THE SECOND OF Call before you dg: FOR STATE SPECIFIC DIRECT PHONE NUMBERS VIST: WWW.CALLBI.COM SCALE: AS SHOWN
	. .
	REV DATE DESCRIPTION OF CKED BY PY PY PETROS L. PSOUKACAS CONNECTION FOR SIGNAL ENGINEER HOME WITH FOR SIGNAL ENGINEER HOME WITH FOR SIGNAL ENGINEER HOME WITH FOR SIGNAL
	SITE NAME: WEST HARTFORD-ELMWOOD
	FA#:10071358 SITE #: CTL05259 1030 NEW BRITAIN AVENUE WEST HARTFORD, CT 06110 HARTFORD COUNTY
	RED BANK OFFICE 331 Newman Springs Road Suite 203 Red Bank, NJ (7701-569) Phone: 732.383.1950 Fax: 732.383.1984
	DETAILS

RF PLUMBING DIAGRAMS

BASED ON: "NEW-ENGLAND_CONNECTICUT_CTL05259_2018-LTE-Next-Carrier_LTE_dr701e_2051A0ACHR_10071358_25914_04-21-2017_Final-RF-Approval_v1.00" Last Updated: 10/09/2017.

D			
D			
1	ľ	1	
	ł	7	

an	Broadban
	d
,	High
24	(ingri
Rx	4Tx/4Rx
15	+45/-45
+	- +
78	RET

10						
-	Custom ww En Landscape	er Loyalt (w. mas gineers = a Archited	ASER - CON y through I erconsu Planners tts = Envir	Client Sa I ting.c Survey onmenta	ISULT TICU tisfaction : o m fors I Scientists	1 NG T
Copyright informatio contracte distributed	: © 2018. Maser on contained herei d or to whom i d or relied upon t	Consulting C in is authorize t is certified for any other Cor	onnecticut All of for use only . This drawing purpose witho isulting Connec	Rights Reser by the party may not b sut the expri ticut.	ved. This draw for whom the e copied, reu ass written cor	ing and all the services were sed, disclosed, isent of Maser
Z	EW CIN 550	IGULA			PCS, DAD	t.
E	MP	16 ESC ILLERI	E to		9000	m
, ,	Row what's De Call before FOR STATE	you dig. SPECIFIC WW	PRO ALL STATES R KCAVATORS, PREPARING ' SURFACE AI DIRECT PH W.CALL811	EQUIRE NO DESIGNERS, TO DISTUR NYWHERE I HONE NU	URSELF OR ANY PERS B THE EARTH N ANY STATE MBERS VISI	DF S T:
SCALE :	AS SHO	ŴŇ	јов	NUMBER :	7963019	A
╞						
·						
<u>·</u>					•	•
·						
0	02/28/18	FOR COI		DN IENTS	AJC AIC	PET PET
1	01/23/18	ISSUED F	OR REVIEW	/	AJC	RA
REV	DATE	DESIGN	nummin v	HILL	DRAWN BY	CHECKED BY
ANNANANANANANANANANANANANANANANANANANA	PETO ENGIN		3257		KINLA NAL N.32597	ANNIHARIAN ANNIHARIANA
IT IS TH RESP	VIOLAT IEI REAC PONSILE	ION OF TING U ICENSEE ALTER I	DEANS NOER TH DROFFE	E DIRFC SICNA UMENT	ERSON, U DON ENVIONE	ILESS F THE ER, TO
[SIT	E NA	ME:		
W	VEST H S 1030 N WEST HA	IART FA# IITE # IEW I HAR RTFC	FORI :1007 #: CTI BRITA TFOR DRD C	D-ELN 1358 .0525 IN A D, C COUN	MWO 59 VENU T 061 NTY	OD IE IO
\geq						
4			<u>R</u> 331 Rec F	ED BAN Newmar Suit I Bank, N Phone: 73 Fax: 732	IK OFFIC 1 Springs P e 203 J 07701-5 12.383.1954 .383.1984	<u>E</u> load 699 0
SHEET	RF PL	.UMB	ING E	DIAG	RAMS	
SHEET	NUMBER :		Δ 7			
ſ			A-1			

Report Date:	March 27, 2018
Client:	Hirschfeld Communications LLC 1030 New Britain Avenue West Hartford, CT 06110 Attn: Ian Ormesher (703) 447-1350 iormesher@hirschfeldcos.com
Structure: Site Name: Site Reference #: City, County, State:	Existing 185-ft Self Support WestHartford_DEXTERST CT001 West Hartford, Hartford County, CT

41.736092, -72.720499

PJF Project: A64118-0001.001.8700

Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the tower stress level.

Analysis Criteria:

Latitude, Longitude:

Reference Standard:	2016 Connecticut State Building Code with the ANSI/TIA-222-G-2005 Standard, "Structural Standard for Antenna Supporting Structures and Antennas", with ANSI/TIA- 222-G-1-2007 and ANSI/TIA-222-G-2-2009 Addenda per Exception #5 of Section 1609.1.1.
Ultimate Wind Speed:	122 mph 3-second gust wind speed without ice
Nominal Wind Speed:	95 mph 3-second gust wind speed without ice
Ice Wind Speed:	50 mph 3-second gust wind speed with 1" ice
Service Wind Speed:	60.0 mph (Serviceability) without ice
IBC Site Criteria:	Risk Category II, Topographic Category 1, Exposure Category C

Proposed Appurtenance Loads:

The structure was analyzed with the addition of the proposed appurtenance loads shown in Table 1 combined with the existing and reserved loads shown in Table 2 of this report.

Summary of Analysis Results:

Existing Structure:	93.7%	Pass
Existing Foundation:	33.1%	Pass

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and Hirschfeld Communications LLC. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully Submitted by: Paul J. Ford and Company

ozn

Jonathan Sommer, El Structural Designer jsonmer@pjfweb.com

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable InformationTable 2 - Existing and Reserved Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 - Tower Components vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 180 ft Self Support tower designed by PiRod in June of 1998. The tower was originally designed for a wind speed of 80 mph per EIA/TIA-222-F.

2) ANALYSIS CRITERIA

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 122 mph converted to a nominal 3-second gust wind speed of 95 mph per Section 1609.3 and Appendix N as required for use in the ANSI/TIA-222-G-2005 Standard, "Structural Standard for Antenna Supporting Structures and Antennas", with ANSI/TIA-222-G-1-2007 and ANSI/TIA-222-G-2-2009 Addenda per Exception #5 of Section 1609.1.1. Risk Category II, Exposure Category C and Topographic Category 1.0 with a maximum Topographic Factor, Kzt, of 1 were used in this analysis.

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note	
		3	ericsson	RRUS 32 B2				
180.0 1	400.0	3	ericsson	RRUS 32 B66		2/4		
	180.0	3 ericsson R	RRUS 4478 B14		3/4	-		
		3	kathrein	80010965 w/ Mount Pipe				
		1	raycap	DC6-48-60-18-8F				

 Table 1 - Proposed Antenna and Cable Information

Table 2	- Existing	and Reserv	ved Antenna	and Cabl	e Information
	- LAISting	and iteserv	eu Antenna		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		6 cci antennas OPA-65R-LCUU-H6 w/ Mount Pipe					
		3	ericsson	RRUS 11		1-5/8 1/2 3/4	
		3	ericsson	RRUS 12	- 12 2 2		1
		3	ericsson	RRUS 32			
		3	ericsson	RRUS A2 MODULE			
180.0	180.0	180.0 1	miscl	GPS			
		3	powerwave technologies	7770.00 w/ Mount Pipe			
		6	powerwave technologies	LGP21401			
		2	raycap	DC6-48-60-18-8F			
		1	tower mounts	Platform Mount [LP 405-1]			
		6	powerwave technologies	LGP21901	-	-	2
		-	-	-	2	1/2	3

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		3	commscope	LNX-6515DS-A1M w/ Mount Pipe			
		3	ericsson	AIR 21 B2A/B4P w/ Mount Pipe			
165.0	165.0	3	ericsson	AIR 32 B4A/B2P w/ Mount Pipe	6 2	1-5/8 Fiber	1
		3	ericsson	KRY 112 71			
		3	ericsson	RRUS 11 B12			
		1	tower mounts	Sector Mount [SM 402-3]			

Notes:

1) Existing Equipment

2) Reserved Equipment

3) Equipment To Be Removed

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks
Manufacturer Drawings	PiROD Inc., 203949-B, 6/10/1998
Geotechnical Report	PiROD Inc., 6/5/1998
Pile Driving Report	Simeon Beer, 7/13/1998
Construction Drawings	AT&T, 2/13/2018

3.1) Analysis Method

tnxTower (version 7.0.5.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) The existing base plate grout was considered in this analysis. Grout must be maintained and inspected periodically, and must be replaced if damaged or cracked.
- 5) Feedlines are stacked as shown in Appendix B of this report.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Fable 4 - Section	Capacity	(Summary)
--------------------------	----------	-----------

~	Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
	T1	180 - 170	Leg	1 1/2" solid	3	-18.97	54.43	34.9	Pass

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
T2	170 - 150	Leg	2" solid	39	71.92	106.69	67.4	Pass
Т3	150 - 130	Leg	2 1/4" solid	101	-132.48	148.69	89.1	Pass
T4	130 - 120	Leg	Pirod 105216 (12x1.25)	165	-133.47	142.49	93.7	Pass
T5	120 - 100	Leg	Pirod 105217 (12x1.5)	175	-160.20	214.86	74.6	Pass
Т6	100 - 80	Leg	Pirod 105217 (12x1.5)	190	-182.81	214.86	85.1	Pass
T7	80 - 60	Leg	Pirod 105218 (12x1.75)	205	-206.10	300.68	68.5	Pass
Т8	60 - 40	Leg	Pirod 105218 (12x1.75)	220	-229.38	300.68	76.3	Pass
Т9	40 - 20	Leg	Pirod 105219 (12x2)	235	-253.59	399.87	63.4	Pass
T10	20 - 0	Leg	Pirod 105219 (12x2)	250	-276.44	399.87	69.1	Pass
T1	180 - 170	Diagonal	3/4" solid	15	-3.34	6.09	54.9	Pass
T2	170 - 150	Diagonal	7/8" solid	50	-5.48	9.34	58.8	Pass
Т3	150 - 130	Diagonal	1" solid	164	-6.22	15.16	41.1	Pass
T4	130 - 120	Diagonal	L 2.5 x 2.5 x 3/16	172	-7.02	13.56	51.7 61.4 (b)	Pass
T5	120 - 100	Diagonal	L 2.5 x 2.5 x 3/16	188	-4.73	11.92	39.7 42.1 (b)	Pass
Т6	100 - 80	Diagonal	L 2.5 x 2.5 x 3/16	196	-4.60	8.66	53.1	Pass
T7	80 - 60	Diagonal	L 3 x 3 x 3/16	210	-5.01	12.12	41.3	Pass
Т8	60 - 40	Diagonal	L 3 x 3 x 3/16	225	-5.51	9.79	56.3	Pass
Т9	40 - 20	Diagonal	L 3 x 3 x 5/16	240	-6.14	12.87	47.7	Pass
T10	20 - 0	Diagonal	L 3 x 3 x 5/16	255	-7.37	10.64	69.3	Pass
T1	180 - 170	Horizontal	7/8" solid	30	-0.55	6.14	9.0	Pass
T2	170 - 150	Horizontal	7/8" solid	59	-1.04	5.22	19.9	Pass
Т3	150 - 130	Horizontal	7/8" solid	158	-1.84	4.79	38.5	Pass
T1	180 - 170	Top Girt	7/8" solid	6	-1.75	6.14	28.5	Pass
T2	170 - 150	Top Girt	7/8" solid	42	-1.92	6.22	30.8	Pass
Т3	150 - 130	Top Girt	1" solid	105	-2.08	8.40	24.8	Pass
T1	180 - 170	Bottom Girt	7/8" solid	7	-1.49	6.14	24.3	Pass
T2	170 - 150	Bottom Girt	7/8" solid	43	-2.58	4.94	52.2	Pass
Т3	150 - 130	Bottom Girt	1" solid	107	-2.72	6.83	39.9	Pass
							Summary	
						Leg (T4)	93.7	Pass
						Diagonal (T10)	69.3	Pass
						Horizontal (T3)	38.5	Pass
						Top Girt (T2)	30.8	Pass
				<u> </u>		Bottom Girt (T2)	52.2	Pass
						Bolt Checks	65.5	Pass
						RATING =	93.7	Pass

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	42.2	Pass
1	Base Foundation Structural	0	9.1	Pass
1	Base Foundation Soil Interaction	0	33.1	Pass
	Soil Interaction			

Table 5 - Tower Component Stresses vs. Capacity

Structure Rating (max from all components) =	93.1%
--	-------

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundations have sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 180.00 ft above the ground line. The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 4.00 ft at the top and 18.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

- 1) Tower is located in Hartford County, Connecticut.
- 2) ASCE 7-10 Wind Data is used (wind speeds converted to nominal values).
- 3) Basic wind speed of 95.0 mph.
- 4) Structure Class II.
- 5) Exposure Category C.
- 6) Topographic Category 1.
- 7) Crest Height 0.00 ft.
- 8) Nominal ice thickness of 1.00 in.
- 9) Ice thickness is considered to increase with height.
- 10) Ice density of 56 pcf.
- 11) A wind speed of 50.0 mph is used in combination with ice.
- 12) Deflections calculated using a wind speed of 60.0 mph.
- 13) A non-linear (P-delta) analysis was used.
- 14) Pressures are calculated at each section.
- 15) Stress ratio used in tower member design is 1.
- 16) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile
- √ Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section

- ✓ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
- √ SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate

- √ Use Clear Spans For Wind Area
 √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
 Bypass Mast Stability Checks
- $\sqrt{\text{Use Azimuth Dish Coefficients}}$

Autocalc Torque Arm Areas

Add IBC .6D+W Combination √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

- Use ASCE 10 X-Brace Ly Rules
- ✓ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- ✓ SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
- $\sqrt{}$ Consider Feed Line Torque
- ✓ Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption

Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length
	ft			ft		ft
T1	180.00-170.00		106778 (48)	4.00	1	10.00
T2	170.00-150.00		100246 (48/54)	4.00	1	20.00
Т3	150.00-130.00		119703 (54/60)	4.50	1	20.00
T4	130.00-120.00		U06 105218 [L2.5 x 3/16]	5.00	1	10.00
T5	120.00-100.00		U08 105217 [L2.5 x 3/16]	6.00	1	20.00
T6	100.00-80.00		U10 105217 [L2.5 x 3/16]	8.00	1	20.00
Τ7	80.00-60.00		U12 105218 [L3 x 3/16]	10.00	1	20.00
Т8	60.00-40.00		U14 105218 L3 x 3/16	12.00	1	20.00
Т9	40.00-20.00		U16 105219 [L3 x 5/16]	14.00	1	20.00
T10	20.00-0.00		U18 105219 L3 x 5/16	16.00	1	20.00

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	180.00-170.00	2.25	X Brace	No	Steps	6.00	6.00
T2	170.00-150.00	2.36	X Brace	No	Steps	6.80	6.80
Т3	150.00-130.00	2.36	X Brace	No	Steps	6.80	6.80
T4	130.00-120.00	10.00	X Brace	No	No	0.00	0.00
T5	120.00-100.00	10.00	X Brace	No	No	0.00	0.00
T6	100.00-80.00	10.00	X Brace	No	No	0.00	0.00
Τ7	80.00-60.00	10.00	X Brace	No	No	0.00	0.00
T8	60.00-40.00	10.00	X Brace	No	No	0.00	0.00
Т9	40.00-20.00	10.00	X Brace	No	No	0.00	0.00
T10	20.00-0.00	10.00	X Brace	No	No	0.00	0.00
Tower Section Geometry (cont'd)

Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 180.00- 170.00	Solid Round	1 1/2" solid	A572-50 (50 ksi)	Solid Round	3/4" solid	A572-50 (50 ksi)
T2 170.00- 150.00	Solid Round	2" solid	A572-50 (50 ksi)	Solid Round	7/8" solid	A572-50 (50 ksi)
T3 150.00- 130.00	Solid Round	2 1/4" solid	A572-50 (50 ksi)	Solid Round	1" solid	A572-50 (50 ksi)
T4 130.00- 120.00	Truss Leg	Pirod 105216 (12x1.25)	À572-50 (50 ksi)	Single Angle	L 2.5 x 2.5 x 3/16	`A36 (36 ksi)
T5 120.00- 100.00	Truss Leg	Pirod 105217 (12x1.5)	À572-50 (50 ksi)	Single Angle	L 2.5 x 2.5 x 3/16	À36 (36 ksi)
T6 100.00- 80.00	Truss Leg	Pirod 105217 (12x1.5)	À572-50 (50 ksi)	Single Angle	L 2.5 x 2.5 x 3/16	À36 (36 ksi)
T7 80.00-60.00	Truss Leg	Pirod 105218 (12x1.75)	À572-50 (50 ksi)	Single Angle	L 3 x 3 x 3/16	`A36 (36 ksi)
T8 60.00-40.00	Truss Leg	Pirod 105218 (12x1.75)	À572-50 (50 ksi)	Single Angle	L 3 x 3 x 3/16	`A36 ́ (36 ksi)
T9 40.00-20.00	Truss Leg	Pirod 105219 (12x2)	A572-50 (50 ksi)	Single Angle	L 3 x 3 x 5/16	A36 (36 ksi)
T10 20.00-0.00	Truss Leg	Pirod 105219 (12x2)	A572-50 (50 ksi)	Single Angle	L 3 x 3 x 5/16	(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 180.00-	Solid Round	7/8" solid	A572-50	Solid Round	7/8" solid	A572-50
170.00			(50 ksi)			(50 ksi)
T2 170.00-	Solid Round	7/8" solid	A572-50	Solid Round	7/8" solid	A572-50
150.00			(50 ksi)			(50 ksi)
T3 150.00-	Solid Round	1" solid	A572-50	Solid Round	1" solid	A572-50
130.00			(50 ksi)			(50 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	No. of Mid	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade
ft	Girts						
T1 180.00-	None	Solid Round		A572-50	Solid Round	7/8" solid	A572-50
170.00				(50 ksi)			(50 ksi)
T2 170.00-	None	Solid Round		A36	Solid Round	7/8" solid	A572-50
150.00				(36 ksi)			(50 ksi)
T3 150.00-	None	Solid Round		À572-50	Solid Round	7/8" solid	A572-50
130.00				(50 ksi)			(50 ksi)

Tower Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A _f	Factor	C	Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				Ar		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft ²	in					in	in	in
T1 180.00-	0.00	0.00	A36	1	1	1.02	Mid-Pt	Mid-Pt	Mid-Pt
170.00			(36 ksi)						
T2 170.00-	0.00	0.00	A36 ´	1	1	1.03	Mid-Pt	Mid-Pt	Mid-Pt
150.00			(36 ksi)						

tnxTower Report - version 7.0.5.1

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		Af	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A _r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft²	in					in	in	in
T3 150.00-	0.00	0.00	A36	1	1	1.03	Mid-Pt	Mid-Pt	Mid-Pt
130.00			(36 ksi)						
T4 130.00-	0.00	0.50	A36	1	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
120.00			(36 ksi)						
T5 120.00-	0.00	0.50	A36	1	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
100.00			(36 ksi)						
T6 100.00-	0.00	0.50	A36	1	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
80.00			(36 ksi)						
T7 80.00-	0.00	0.50	A36	1	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
60.00			(36 ksi)						
T8 60.00-	0.00	0.50	A36	1	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
40.00			(36 ksi)						
T9 40.00-	0.00	0.50	A36	1	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
20.00			(36 ksi)						
T10 20.00-	0.00	0.75	A36	1	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
0.00			(36 ksi)						

Tower Section Geometry (cont'd)

						K Fa	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T1 180.00-	No	Yes	1	1	1	1	1	1	0.7	1
170.00				1	1	1	1	1	0.7	1
T2 170.00-	No	Yes	1	1	1	1	1	1	0.7	1
150.00				1	1	1	1	1	0.7	1
T3 150.00-	No	Yes	1	1	1	1	1	1	0.7	1
130.00				1	1	1	1	1	0.7	1
T4 130.00-	Yes	No	1	1	1	1	1	1	1	1
120.00				1	1	1	1	1	1	1
T5 120.00-	Yes	No	1	1	1	1	1	1	1	1
100.00				1	1	1	1	1	1	1
T6 100.00-	Yes	No	1	1	1	1	1	1	1	1
80.00				1	1	1	1	1	1	1
T7 80.00-	Yes	No	1	1	1	1	1	1	1	1
60.00				1	1	1	1	1	1	1
T8 60.00-	Yes	No	1	1	1	1	1	1	1	1
40.00				1	1	1	1	1	1	1
T9 40.00-	Yes	No	1	1	1	1	1	1	1	1
20.00				1	1	1	1	1	1	1
T10 20.00-	Yes	No	1	1	1	1	1	1	1	1
0.00			-	1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-ofplane direction applied to the overall length.

Tower Section Geometry (cont'd)

			Truss-Leg	K Factors		
	Truss-	Legs Used As Leg M	embers	Truss-l	Legs Used As Inner N	lembers
Tower Elevation ft	Leg Panels	X Brace Diagonals	Z Brace Diagonals	Leg Panels	X Brace Diagonals	Z Brace Diagonals
T4 130.00- 120.00	1	0.5	0.85	1	0.5	0.85
T5 120.00- 100.00	1	0.5	0.85	1	0.5	0.85
T6 100.00- 80.00	1	0.5	0.85	1	0.5	0.85
T7 80.00- 60.00	1	0.5	0.85	1	0.5	0.85
T8 60.00- 40.00	1	0.5	0.85	1	0.5	0.85
T9 40.00- 20.00	1	0.5	0.85	1	0.5	0.85
T10 20.00- 0.00	1	0.5	0.85	1	0.5	0.85

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diago	onal	Top G	Sirt	Bottor	n Girt	Mid	Girt	Long Ho	rizontal	Short Ho	orizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 180.00- 170.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1
T2 170.00- 150.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1
T3 150.00- 130.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1
T4 130.00- 120.00	0.00	1	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T5 120.00- 100.00	0.00	1	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T6 100.00- 80 00	0.00	1	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T7 80.00- 60 00	0.00	1	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T8 60.00- 40.00	0.00	1	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T9 40.00- 20 00	0.00	1	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T10 20.00- 0.00	0.00	1	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75

				Т	ower	Sec	ction (Geo	ometry	1 (C	onťd)					
-	Tower Elevation ft	Leg Connection Type	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori.	zontal	Shor Horizor	t ntal
			<i>Bolt Size</i> in	No.	Bolt Size in	No.	<i>Bolt Size</i> in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.
-	T1 180.00- 170.00	Sleeve DS	0.63 A325N	5	0.00 A325N	0	0.00 A325N	0	0.00 A325N	0	0.63 A325N	0	0.00 A325N	0	0.63 A325N	0

Tower	Leg	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Shor	t
Elevation	Connection													Horizor	ntal
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T2 170.00-	Sleeve DS	0.75	5	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0
150.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3 150.00-	Flange	1.00	6	0.00	0	0.00	0	0.00	0	0.50	0	0.00	0	0.50	0
130.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4 130.00-	Flange	1.00	6	1.00	1	0.00	0	0.00	0	1.00	0	1.00	0	1.00	0
120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5 120.00-	Flange	1.00	6	1.00	1	0.00	0	0.00	0	1.00	0	1.00	0	1.00	0
100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 100.00-	Flange	1.00	6	1.00	1	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0
80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7 80.00-	Flange	1.00	6	1.00	1	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0
60.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 60.00-	Flange	1.00	6	1.00	1	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0
40.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T9 40.00-	Flange	1.25	6	1.25	1	0.00	0	0.00	0	1.25	0	1.25	0	1.25	0
20.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T10 20.00-	Flange	1.25	0	1.25	1	0.00	0	0.00	0	1.00	0	1.00	0	1.00	0
0.00		F1554-		A325N		A325N		A325N		A325N		A325N		A325N	
		105													

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimete r in	Weight plf
LDF7-50A (1 5/8" foam)	A	No	Ar (CaAa)	180.00 - 8.00	0.00	0.2	12	6	1.00 0.50	1.98		0.92
FSJ4- 50B(1/2'')	A	No	Ar (CaAa)	180.00 - 8.00	0.00	0.2	2	2	2.00 0.50	0.52		0.14
9776(3/4") ***	A	No	Ar (CaAa)	180.00 - 8.00	0.00	0.2	4	4	2.00 0.50	0.73		0.31
T-Brackets (Af)	С	No	Ar (CaAa)	165.00 - 8.00	0.00	-0.45	1	1	1.00	1.00		8.40
LDF7-50A (1 5/8" foam)	С	No	Ar (CaAa)	165.00 - 8.00	0.00	-0.45	8	6	1.00 0.50	1.98		0.92
LDF7-50A (1 5/8" foam)	С	No	Ar (CaAa)	165.00 - 8.00	0.00	-0.45	2	2	1.00 0.50	1.98		0.92

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	$C_A A_A$ Side	Weight
			Vert ft ft	٥	ft		ft²	ft²	К
			ft						
'latform Mount [LP 405-1]	С	None		0.000	180.00	No Ice 1/2"	20.80 28.10	20.80 28.10	1.80 2.07
						lce 1" lce	35.40	35.40	2.33
7770.00 w/ Mount Pipe	А	From Leg	4.00 0.00	0.000	180.00	No Ice 1/2"	5.75 6.18	4.25 5.01	0.06 0.10
			0.00			lce 1" lce	6.61	5.71	0.16
7770.00 w/ Mount Pipe	В	From Leg	4.00	0.000	180.00	No Ice	5.75	4.25	0.06

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	К
			0.00 0.00			1/2" Ice 1" Ice	6.18 6.61	5.01 5.71	0.10 0.16
7770.00 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice 1" Ico	5.75 6.18 6.61	4.25 5.01 5.71	0.06 0.10 0.16
(2) OPA-65R-LCUU-H6 w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice 1" Ice	9.90 10.47 11.01	7.18 8.36 9.26	0.10 0.18 0.26
(2) OPA-65R-LCUU-H6 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice 1" Ice	9.90 10.47 11.01	7.18 8.36 9.26	0.10 0.18 0.26
(2) OPA-65R-LCUU-H6 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice 1" Ice	9.90 10.47 11.01	7.18 8.36 9.26	0.10 0.18 0.26
(2) LGP21401	A	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice 1" Ice	1.10 1.24 1.38	0.35 0.44 0.54	0.01 0.02 0.03
(2) LGP21401	В	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice 1" Ice	1.10 1.24 1.38	0.35 0.44 0.54	0.01 0.02 0.03
(2) LGP21401	С	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	1.10 1.24 1.38	0.35 0.44 0.54	0.01 0.02 0.03
RRUS 32	A	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	2.86 3.08 3.32	1.78 1.97 2.17	0.06 0.08 0.10
RRUS 32	В	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	2.86 3.08 3.32	1.78 1.97 2.17	0.06 0.08 0.10
RRUS 32	С	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	2.86 3.08 3.32	1.78 1.97 2.17	0.06 0.08 0.10
RRUS 11	A	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	2.79 3.00 3.21	1.19 1.34 1.50	0.05 0.07 0.10
RRUS 11	В	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	2.79 3.00 3.21	1.19 1.34 1.50	0.05 0.07 0.10
RRUS 11	С	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	2.79 3.00 3.21	1.19 1.34 1.50	0.05 0.07 0.10
DC6-48-60-18-8F	A	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	0.92 1.46 1.64	0.92 1.46 1.64	0.02 0.04 0.06
DC6-48-60-18-8F	В	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	0.92 1.46 1.64	0.92 1.46 1.64	0.02 0.04 0.06
RRUS 12	А	From Leg	4.00 0.00	0.000	180.00	1" Ice No Ice	3.15 3.36	1.29 1.44	0.06 0.08

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	К
			0.00			1/2" Ice 1" Ice	3.59	1.60	0.11
RRUS 12	В	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	3.15 3.36 3.59	1.29 1.44 1.60	0.06 0.08 0.11
RRUS 12	С	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	3.15 3.36 3.59	1.29 1.44 1.60	0.06 0.08 0.11
RRUS A2 MODULE	A	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	1.60 1.76 1.92	0.38 0.47 0.57	0.02 0.03 0.04
RRUS A2 MODULE	В	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	1.60 1.76 1.92	0.38 0.47 0.57	0.02 0.03 0.04
RRUS A2 MODULE	С	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	1.60 1.76 1.92	0.38 0.47 0.57	0.02 0.03 0.04
GPS	С	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	0.13 0.24 0.31	0.13 0.24 0.31	0.02 0.02 0.02
80010965 w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	14.05 14.69 15.30	7.63 8.90 9.96	0.13 0.22 0.33
80010965 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	14.05 14.69 15.30	7.63 8.90 9.96	0.13 0.22 0.33
80010965 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	14.05 14.69 15.30	7.63 8.90 9.96	0.13 0.22 0.33
DC6-48-60-18-8F	С	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	0.92 1.46 1.64	0.92 1.46 1.64	0.02 0.04 0.06
RRUS 4478 B14	A	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	1.84 2.01 2.19	1.06 1.20 1.34	0.06 0.08 0.09
RRUS 4478 B14	В	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	1.84 2.01 2.19	1.06 1.20 1.34	0.06 0.08 0.09
RRUS 4478 B14	С	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	1.84 2.01 2.19	1.06 1.20 1.34	0.06 0.08 0.09
RRUS 32 B66	A	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	2.74 2.96 3.19	1.67 1.86 2.05	0.05 0.07 0.10
RRUS 32 B66	В	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	2.74 2.96 3.19	1.67 1.86 2.05	0.05 0.07 0.10
RRUS 32 B66	С	From Leg	4.00 0.00	0.000	180.00	1" Ice No Ice	2.74 2.96	1.67 1.86	0.05 0.07

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			vert ft ft ft	۰	ft		ft²	ft²	К
			0.00			1/2" Ice	3.19	2.05	0.10
RRUS 32 B2	A	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	2.73 2.95 3.18	1.67 1.86 2.05	0.05 0.07 0.10
RRUS 32 B2	В	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice 1" Ice	2.73 2.95 3.18	1.67 1.86 2.05	0.05 0.07 0.10
RRUS 32 B2	С	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice 1" Ice	2.73 2.95 3.18	1.67 1.86 2.05	0.05 0.07 0.10
(2) LGP21901	A	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice 1" Ice	0.23 0.29 0.36	0.16 0.21 0.28	0.01 0.01 0.01
(2) LGP21901	В	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice	0.23 0.29 0.36	0.16 0.21 0.28	0.01 0.01 0.01
(2) LGP21901	С	From Leg	4.00 0.00 0.00	0.000	180.00	No Ice 1/2" Ice 1" Ice	0.23 0.29 0.36	0.16 0.21 0.28	0.01 0.01 0.01
*** Sector Mount [SM 402-3]	С	From Leg	0.00 0.00 0.00	0.000	165.00	No Ice 1/2" Ice 1" Ice	18.91 26.78 34.65	18.91 26.78 34.65	0.85 1.23 1.62
AIR 21 B2A/B4P w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.000	165.00	No Ice 1/2" Ice 1" Ice	6.16 6.60 7.03	5.55 6.30 7.00	0.10 0.16 0.22
AIR 21 B2A/B4P w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.000	165.00	No Ice 1/2" Ice 1" Ice	6.16 6.60 7.03	5.55 6.30 7.00	0.10 0.16 0.22
AIR 21 B2A/B4P w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.000	165.00	No Ice 1/2" Ice 1" Ice	6.16 6.60 7.03	5.55 6.30 7.00	0.10 0.16 0.22
LNX-6515DS-A1M w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.000	165.00	No Ice 1/2" Ice 1" Ice	11.68 12.40 13.14	9.84 11.37 12.91	0.08 0.17 0.27
LNX-6515DS-A1M w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.000	165.00	No Ice 1/2" Ice 1" Ice	11.68 12.40 13.14	9.84 11.37 12.91	0.08 0.17 0.27
LNX-6515DS-A1M w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.000	165.00	No Ice 1/2" Ice 1" Ice	11.68 12.40 13.14	9.84 11.37 12.91	0.08 0.17 0.27
AIR 32 B4A/B2P w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.000	165.00	No Ice 1/2" Ice 1" Ice	7.09 7.56 8.02	6.37 7.23 7.97	0.13 0.19 0.26
AIR 32 B4A/B2P w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.000	165.00	No Ice 1/2" Ice 1" Ice	7.09 7.56 8.02	6.37 7.23 7.97	0.13 0.19 0.26

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	К
AIR 32 B4A/B2P w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.000	165.00	No Ice 1/2" Ice 1" Ice	7.09 7.56 8.02	6.37 7.23 7.97	0.13 0.19 0.26
KRY 112 71	A	From Leg	4.00 0.00 0.00	0.000	165.00	No Ice 1/2" Ice 1" Ice	0.58 0.69 0.80	0.40 0.49 0.59	0.01 0.02 0.03
KRY 112 71	В	From Leg	4.00 0.00 0.00	0.000	165.00	No Ice 1/2" Ice 1" Ice	0.58 0.69 0.80	0.40 0.49 0.59	0.01 0.02 0.03
KRY 112 71	С	From Leg	4.00 0.00 0.00	0.000	165.00	No Ice 1/2" Ice 1" Ice	0.58 0.69 0.80	0.40 0.49 0.59	0.01 0.02 0.03
RRUS 11 B12	A	From Leg	4.00 0.00 0.00	0.000	165.00	No Ice 1/2" Ice 1" Ice	2.83 3.04 3.26	1.18 1.33 1.48	0.05 0.07 0.10
RRUS 11 B12	В	From Leg	4.00 0.00 0.00	0.000	165.00	No Ice 1/2" Ice 1" Ice	2.83 3.04 3.26	1.18 1.33 1.48	0.05 0.07 0.10
RRUS 11 B12	С	From Leg	4.00 0.00 0.00	0.000	165.00	No Ice 1/2" Ice 1" Ice	2.83 3.04 3.26	1.18 1.33 1.48	0.05 0.07 0.10

			Truss-	Leg Pı	operti	es	
Section Designation	Area	Area Ice	Self Weight	lce Weight	Equiv. Diamete	Equiv. Diamete	Leg Area
	in²	in²	К	К	in	lce in	in²
Pirod 105216 (12x1.25)	2176.93	6534.58	0.60	2.48	7.56	22.69	3.68
Pirod 105217 (12x1.5)	2303.92	6585.93	0.71	2.51	8.00	22.87	5.30
Pirod 105217 (12x1.5)	2303.92	6554.05	0.71	2.49	8.00	22.76	5.30
Pirod 105218 (12x1.75)	2432.86	6587.02	0.85	2.51	8.45	22.87	7.22
Pirod 105218 (12x1.75)	2432.86	6536.27	0.85	2.47	8.45	22.70	7.22
Pirod 105219 (12x2)	2608.79	6534.42	1.22	2.45	9.06	22.69	9.42
Pirod 105219 (12x2)	2608.79	6387.80	1.22	2.28	9.06	22.18	9.42

Load Combinations

Comb. No.

Description

- 1
- Dead Only 1.2 Dead+1.6 Wind 0 deg No Ice 0.9 Dead+1.6 Wind 0 deg No Ice 2
- 3

Comb.	Description
No.	
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1 2 Dead+1 0 Ice
27	12 Dead+10 Wind 0 deg+10 lce
28	1 2 Dead+1 0 Wind 30 deg+1 0 Ice
29	1 2 Dead+1 0 Wind 60 deg+1 0 Ice
30	12 Dead+10 Wind 90 deg+10 loc
31	1 2 Dead+1 0 Wind 120 deg+1 0 Ice
32	1 2 Dead+1 0 Wind 150 deg+1 0 Ice
33	1 2 Dead+1 0 Wind 180 deg+1 0 Ice
34	12 Dead+10 Wind 210 deg+10 loc
35	12 Dead+10 Wind 240 deg+10 loe
36	12 Dead+10 Wind 270 deg+10 loe
37	12 Dead+10 Wind 300 deg+10 loe
38	12 Dead+10 Wind 330 dea+10 loe
30	Dead+Wind O dea - Service
40	Dead Wind 9 deg - Service
40	Dead Wind 60 deg - Service
41	Dead Wind Ou dea Service
4Z 10	Dead+Wind 50 deg - Selvice
43	Dead+Wind 120 deg - Service
44	Deadtwind 150 deg - Selvice
40	Dead+wind Tou deg - Service
40	Deadtwind 210 deg - Service
47	Dead+wind 240 deg - Service
48	Dead+wind 2/0 deg - Service
49	Deag+wing 300 deg - Service
<u> </u>	

	Maximum Reactions							
Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K			
Leg C	Max. Vert	18	282.35	22.92	-13.20			
Ū.	Max. H _x	18	282.35	22.92	-13.20			
	Max. H _z	7	-250.94	-20.47	11.81			
	Min. Vert	7	-250.94	-20.47	11.81			
	Min. H _x	7	-250.94	-20.47	11.81			
	Min. H _z	18	282.35	22.92	-13.20			
_eg B	Max. Vert	10	283.27	-22.88	-13.31			
-	Max. H _x	23	-250.26	20.41	11.88			
	Max. H _z	23	-250.26	20.41	11.88			
	Min. Vert	23	-250.26	20.41	11.88			
	Min. H _x	10	283.27	-22.88	-13.31			
	Min. H _z	10	283.27	-22.88	-13.31			
_eg A	Max. Vert	2	282.48	0.11	26.46			
-	Max. H _x	21	11.11	0.76	0.90			

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
	Max. H _z	2	282.48	0.11	26.46
	Min. Vert	15	-250.84	-0.09	-23.63
	Min. H _x	11	-122.43	-0.76	-11.75
	Min. H _z	15	-250.84	-0.09	-23.63

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	٥	0
T1	180 - 170	7.97	46	0.482	0.018
T2	170 - 150	6.91	44	0.470	0.017
Т3	150 - 130	4.98	44	0.413	0.010
T4	130 - 120	3.38	44	0.320	0.003
T5	120 - 100	2.76	44	0.264	0.001
T6	100 - 80	1.79	44	0.196	0.001
T7	80 - 60	1.08	42	0.135	0.001
Т8	60 - 40	0.59	42	0.094	0.001
Т9	40 - 20	0.26	42	0.055	0.001
T10	20 - 0	0.07	43	0.027	0.000

Critical Deflections and Radius of Curvature - Service	Wind
--	------

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	٥	ft
180.00	Platform Mount [LP 405-1]	46	7.97	0.482	0.018	35068
165.00	Sector Mount [SM 402-3]	44	6.40	0.460	0.016	16953

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	٥	0
T1	180 - 170	31.93	16	1.926	0.074
T2	170 - 150	27.69	12	1.878	0.071
Т3	150 - 130	19.94	12	1.652	0.039
T4	130 - 120	13.54	12	1.281	0.015
T5	120 - 100	11.05	12	1.059	0.009
T6	100 - 80	7.16	12	0.784	0.004
T7	80 - 60	4.32	8	0.541	0.005
Т8	60 - 40	2.34	8	0.376	0.004
Т9	40 - 20	1.02	8	0.222	0.003
T10	20 - 0	0.28	10	0.109	0.001

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	٥	ft
180.00	Platform Mount [LP 405-1]	16	31.93	1.926	0.074	8823
165.00	Sector Mount [SM 402-3]	12	25.64	1.838	0.065	4281

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load per	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	Bolt K	K	Allowable		
T1	180	Leg	A325N	0.63	5	4.36	24.85	0.175	1	Bolt DS
T2	170	Leg	A325N	0.75	5	15.67	35.78	0.438	1	Bolt DS
Т3	150	Leg	A325N	1.00	6	21.37	53.01	0.403	1	Bolt Tension
T4	130	Leg	A325N	1.00	6	21.06	53.01	0.397	1	Bolt Tension
		Diagonal	A325N	1.00	1	6.55	10.66	0.614	1	Member Block Shear
T5	120	Leg	A325N	1.00	6	25.00	53.01	0.472	1	Bolt Tension
		Diagonal	A325N	1.00	1	4.49	10.66	0.421	1	Member Block Shear
T6	100	Leg	A325N	1.00	6	28.22	53.01	0.532	1	Bolt Tension
		Diagonal	A325N	1.00	1	4.06	10.66	0.381	1	Member Block Shear
T7	80	Leg	A325N	1.00	6	31.48	53.01	0.594	1	Bolt Tension
		Diagonal	A325N	1.00	1	4.64	11.68	0.397	1	Member Block Shear
T8	60	Leg	A325N	1.00	6	34.73	53.01	0.655	1	Bolt Tension
		Diagonal	A325N	1.00	1	5.11	11.68	0.437	1	Member Block Shear
Т9	40	Leg	A325N	1.25	6	37.96	82.83	0.458	1	Bolt Tension
		Diagonal	A325N	1.25	1	5.80	20.30	0.285	1	Member Block Shear
T10	20	Diagonal	A325N	1.25	1	6.67	20.30	0.328	1	Member Block Shear

Bolt Design Data

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	ĸ	ϕP_n
T1	180 - 170	1 1/2" solid	10.00	2.25	72.0 K=1.00	1.77	-18.97	54.43	0.349 ¹
T2	170 - 150	2" solid	20.00	2.36	56.6 K=1.00	3.14	-73.80	111.84	0.660 ¹
Т3	150 - 130	2 1/4" solid	20.00	2.36	50.3 K=1.00	3.98	-132.48	148.69	0.891 ¹
T4	130 - 120	Pirod 105216 (12x1.25)	10.02	10.02	45.4 K=1.00	3.68	-133.47	142.49	0.937 ¹
T5	120 - 100	Pirod 105217 (12x1.5)	20.03	10.02	37.8 K=1.00	5.30	-160.20	214.86	0.746 ¹
Т6	100 - 80	Pirod 105217 (12x1.5)	20.03	10.02	37.8 K=1.00	5.30	-182.81	214.86	0.851 ¹
Τ7	80 - 60	Pirod 105218 (12x1.75)	20.03	10.02	32.4 K=1.00	7.22	-206.10	300.68	0.685 ¹
Т8	60 - 40	Pirod 105218 (12x1.75)	20.03	10.02	32.4 K=1.00	7.22	-229.38	300.68	0.763 ¹
Т9	40 - 20	Pirod 105219 (12x2)	20.03	10.02	28.4 K=1.00	9.42	-253.59	399.87	0.634 ¹
T10	20 - 0	Pirod 105219 (12x2)	20.03	10.02	28.4 K=1.00	9.42	-276.44	399.87	0.691 ¹

¹ P_u / ϕP_n controls

		I russ-Leg Diagonal Data										
Section No.	Elevation ft	Diagonal Size	L _d ft	Kl/r	¢P _n K	A in²	V _u K	φV _n K	Stress Ratio			
T4	130 - 120	0.5	1.48	121.0	165.67	0.20	1.11	3.29	0.337			
T5	120 - 100	0.5	1.47	120.0	238.57	0.20	0.88	3.34	0.265			
T6	100 - 80	0.5	1.47	120.0	238.57	0.20	0.25	3.34	0.076			
T7	80 - 60	0.5	1.46	119.0	324.71	0.20	0.21	3.38	0.062			
T8	60 - 40	0.5	1.46	119.0	324.71	0.20	0.25	3.38	0.073			
Т9	40 - 20	0.625	1.45	94.4	424.12	0.31	0.25	6.96	0.037			
T10	20 - 0	0.625	1.45	94.4	424.12	0.31	0.93	6.96	0.135			

. .

.

. .

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L _u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
T1	180 - 170	3/4" solid	4.59	2.22	128.0 K=0.90	0.44	-3.34	6.09	0.549 ¹
T2	170 - 150	7/8" solid	5.04	2.44	120.6 K=0.90	0.60	-5.48	9.34	0.588 ¹
Т3	150 - 130	1" solid	5.12	2.47	107.6 K=0.91	0.79	-6.22	15.16	0.411 ¹
T4	130 - 120	L 2.5 x 2.5 x 3/16	11.42	4.98	120.8 K=1.00	0.90	-7.02	13.56	0.517 ¹
T5	120 - 100	L 2.5 x 2.5 x 3/16	11.93	5.38	130.5 K=1.00	0.90	-4.73	11.92	0.397 ¹
Т6	100 - 80	L 2.5 x 2.5 x 3/16	13.80	6.33	153.4 K=1.00	0.90	-4.60	8.66	0.531 ¹
Τ7	80 - 60	L 3 x 3 x 3/16	15.24	7.08	142.5 K=1.00	1.09	-5.01	12.12	0.413 ¹
Т8	60 - 40	L 3 x 3 x 3/16	16.80	7.88	158.6 K=1.00	1.09	-5.51	9.79	0.563 ¹
Т9	40 - 20	L 3 x 3 x 5/16	18.45	8.68	176.8 K=1.00	1.78	-6.14	12.87	0.477 ¹
T10	20 - 0	L 3 x 3 x 5/16	20.16	9.54	194.4 K=1.00	1.78	-7.37	10.64	0.693 ¹

¹ P_u / ϕP_n controls

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	Lu	Kl/r	А	Pu	φ Ρ _n	Ratio P _u
	ft		ft	ft		in²	ĸ	K	ϕP_n
T1	180 - 170	7/8" solid	4.00	3.88	148.8 K=0.70	0.60	-0.55	6.14	0.090 ¹
T2	170 - 150	7/8" solid	4.37	4.20	161.3 K=0.70	0.60	-1.04	5.22	0.199 ¹
Т3	150 - 130	7/8" solid	4.57	4.39	168.4 K=0.70	0.60	-1.84	4.79	0.385 ¹

¹ P_u / ϕP_n controls

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L _u	Kl/r	А	P _u	φ P _n	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
T1	180 - 170	7/8" solid	4.00	3.88	148.8 K=0.70	0.60	-1.75	6.14	0.285 ¹
T2	170 - 150	7/8" solid	4.01	3.85	147.7 K=0.70	0.60	-1.92	6.22	0.308 ¹
Т3	150 - 130	1" solid	4.51	4.33	145.4 K=0.70	0.79	-2.08	8.40	0.248 ¹

¹ P_u / ϕP_n controls

		Bottom G	irt Desi	gn Da	ata (Co	mpre	ssion)		
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	φ P _n	Ratio P _u
	ft		ft	ft		in²	ĸ	K	ϕP_n
T1	180 - 170	7/8" solid	4.00	3.88	148.8 K=0.70	0.60	-1.49	6.14	0.243 ¹
T2	170 - 150	7/8" solid	4.49	4.32	165.9 K=0.70	0.60	-2.58	4.94	0.522 ¹
Т3	150 - 130	1" solid	4.99	4.80	161.2 K=0.70	0.79	-2.72	6.83	0.399 ¹

¹ P_u / ϕP_n controls

Tension Checks

Leg Design Data (Tension)

Section No.	Elevation	Size	L	L _u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	К	ĸ	ϕP_n
T1	180 - 170	1 1/2" solid	10.00	0.50	16.0	1.77	18.59	79.52	0.234 ¹
T2	170 - 150	2" solid	20.00	0.57	13.6	2.19	71.92	106.69	0.674 ¹ #
Т3	150 - 130	2 1/4" solid	20.00	0.57	12.1	3.98	128.22	178.92	0.717 ¹
T4	130 - 120	Pirod 105216 (12x1.25)	10.02	10.02	45.4	3.68	126.33	165.67	0.763 ¹
T5	120 - 100	Pirod 105217 (12x1.5)	20.03	10.02	37.8	5.30	149.98	238.57	0.629 ¹
T6	100 - 80	Pirod 105217 (12x1.5)	20.03	10.02	37.8	5.30	169.34	238.57	0.710 ¹
T7	80 - 60	Pirod 105218 (12x1.75)	20.03	10.02	32.4	7.22	188.90	324.71	0.582 ¹
Т8	60 - 40	Pirod 105218 (12x1.75)	20.03	10.02	32.4	7.22	208.41	324.71	0.642 ¹
Т9	40 - 20	Pirod 105219 (12x2)	20.03	10.02	28.4	9.42	227.74	424.12	0.537 ¹
T10	20 - 0	Pirod 105219 (12x2)	20.03	10.02	28.4	9.42	245.69	424.12	0.579 ¹

¹ P_u / ϕP_n controls

Based on net area of leg in section below

		Tru	ıss-Le	g Diag	jonal D)ata				
Section No.	Elevation ft	Diagonal Size	L _d ft	Kl/r	¢P _n K	A in²	V _u K	¢Vn K	Stress Ratio	
T4	130 - 120	0.5	1.48	121.0	165.67	0.20	1.11	3.29	0.337	
tnxTower	Report - versio	n 7.0.5.1								

180 Ft Self Support Tower Structural Analysis Project Number 64116-0002.002.8700

Section No.	Elevation ft	Diagonal Size	L _d ft	Kl/r	φ Ρ _n Κ	A in ²	V _u K	φV _n K	Stress Ratio
	120 - 100	0.5	1.47	120.0	238.57	0.20	0.88	3.34	0.265
Т6	100 - 80	0.5	1.47	120.0	238.57	0.20	0.25	3.34	0.076
T7	80 - 60	0.5	1.46	119.0	324.71	0.20	0.21	3.38	0.062
Т8	60 - 40	0.5	1.46	119.0	324.71	0.20	0.25	3.38	0.073
Т9	40 - 20	0.625	1.45	94.4	424.12	0.31	0.25	6.96	0.037
T10	20 - 0	0.625	1.45	94.4	424.12	0.31	0.93	6.96	0.135

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	ĸ	ĸ	ϕP_n
T1	180 - 170	3/4" solid	4.59	2.22	142.3	0.44	3.36	19.88	0.169 ¹
T2	170 - 150	7/8" solid	5.04	2.44	134.0	0.60	5.61	27.06	0.207 ¹
Т3	150 - 130	1" solid	5.12	2.47	118.7	0.79	5.92	35.34	0.168 ¹
T4	130 - 120	L 2.5 x 2.5 x 3/16	11.42	4.98	80.0	0.52	6.55	22.55	0.290 ¹
T5	120 - 100	L 2.5 x 2.5 x 3/16	11.93	5.38	86.2	0.52	4.49	22.55	0.199 ¹
T6	100 - 80	L 2.5 x 2.5 x 3/16	13.80	6.33	100.7	0.52	4.06	22.55	0.180 ¹
T7	80 - 60	L 3 x 3 x 3/16	15.24	7.08	93.1	0.66	4.64	28.67	0.162 ¹
T8	60 - 40	L 3 x 3 x 3/16	16.80	7.88	103.4	0.66	5.11	28.67	0.178 ¹
Т9	40 - 20	L 3 x 3 x 5/16	18.45	8.68	116.3	1.01	5.80	44.05	0.132 ¹
T10	20 - 0	L 3 x 3 x 5/16	20.16	9.54	127.6	1.01	6.67	44.05	0.151 ¹

¹ P_u / ϕP_n controls

	Horizontal Design Data (Tension)									
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φ P _n	Ratio Pu	
	ft		ft	ft		in²	ĸ	ĸ	ϕP_n	
T1 T2 T3	180 - 170 170 - 150 150 - 130	7/8" solid 7/8" solid 7/8" solid	4.00 4.37 4.57	3.88 4.20 4.39	212.6 230.5 240.6	0.60 0.60 0.60	0.73 1.24 2.06	27.06 27.06 27.06	0.027 ¹ 0.046 ¹ 0.076 ¹	

¹ P_u / ϕP_n controls

	Top Girt Design Data (Tension)								
Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	φPn	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
T1	180 - 170	7/8" solid	4.00	3.88	212.6	0.60	1.74	27.06	0.064 1
T2	170 - 150	7/8" solid	4.01	3.85	211.1	0.60	1.98	27.06	0.073 ¹
Т3	150 - 130	1" solid	4.51	4.33	207.7	0.79	2.28	35.34	0.064 ¹

¹ P_u / ϕP_n controls

Bottom Girt Design Data (Tension)

Section No.	Elevation	Size	L	L _u	Kl/r	A	Pu	φ P _n	Ratio Pu
	ft		ft	ft		in²	К	ĸ	ϕP_n
T1	180 - 170	7/8" solid	4.00	3.88	212.6	0.60	1.50	27.06	0.055 ¹
T2	170 - 150	7/8" solid	4.49	4.32	236.9	0.60	2.50	27.06	0.092 ¹
Т3	150 - 130	1" solid	4.99	4.80	230.3	0.79	2.99	35.34	0.085 ¹

¹ P_u / ϕP_n controls

Section Capacity Table

Section	Elevation ft	Component Type	Size	Critical Element	Р К	ØP _{allow} K	% Capacity	Pass Fail
	180 - 170		1 1/2" solid	3	_18.07	54.43	3/ 0	Dase
T2	170 - 150	Leg	2" solid	39	71 92	106 69	67.4	Pass
T2	150 - 130	Leg	2 1/4" solid	101	-132 48	148 69	89.1	Pass
Т3 Т4	130 - 130	Leg	Pirod $105216 (12x1.25)$	165	-132.40	140.03	93.7	Pass
T5	120 - 120	Leg	Pirod 105217 (12x1.23)	175	-160.20	214 86	74.6	Pass
T6	100 - 80	Leg	Pirod 105217 (12x1.5)	190	-182.81	214.00	85.1	Pass
T7	80 - 60	Leg	Pirod 105218 (12x1.3)	205	-206 10	300.68	68.5	Pass
T8	60 - 40	Leg	Pirod 105218 (12x1.75)	220	-229.38	300.68	76.3	Pass
T9	40 - 20	Leg	Pirod 105219 (12x2)	235	-253 59	399.87	63.4	Pass
T10	20 - 0	Leg	Pirod 105219 (12x2)	250	-276 44	399.87	69.1	Pass
T1	180 - 170	Diagonal	3/4" solid	15	-3.34	6.09	54.9	Pass
T2	170 - 150	Diagonal	7/8" solid	50	-5.48	9.34	58.8	Pass
T3	150 - 130	Diagonal	1" solid	164	-6.22	15 16	41.1	Pass
T4	130 - 120	Diagonal	$1.25 \times 25 \times 3/16$	172	-7.02	13.56	51.7	Pass
		Diagoniai		=		10.00	61.4 (b)	
Т5	120 - 100	Diagonal	L 2 5 x 2 5 x 3/16	188	-4 73	11 92	39.7	Pass
	.20 .00	Diagoniai					42.1 (b)	
Т6	100 - 80	Diagonal	L 2.5 x 2.5 x 3/16	196	-4.60	8.66	53.1	Pass
T7	80 - 60	Diagonal	L 3 x 3 x 3/16	210	-5.01	12.12	41.3	Pass
T8	60 - 40	Diagonal	$L 3 \times 3 \times 3/16$	225	-5.51	9.79	56.3	Pass
T9	40 - 20	Diagonal	L 3 x 3 x 5/16	240	-6.14	12.87	47.7	Pass
T10	20 - 0	Diagonal	L 3 x 3 x 5/16	255	-7.37	10.64	69.3	Pass
T1	180 - 170	Horizontal	7/8" solid	30	-0.55	6.14	9.0	Pass
T2	170 - 150	Horizontal	7/8" solid	59	-1.04	5.22	19.9	Pass
Т3	150 - 130	Horizontal	7/8" solid	158	-1.84	4.79	38.5	Pass
T1	180 - 170	Top Girt	7/8" solid	6	-1.75	6.14	28.5	Pass
T2	170 - 150	Top Girt	7/8" solid	42	-1.92	6.22	30.8	Pass
T3	150 - 130	Top Girt	1" solid	105	-2.08	8.40	24.8	Pass
T1	180 - 170	Bottom Girt	7/8" solid	7	-1.49	6.14	24.3	Pass
T2	170 - 150	Bottom Girt	7/8" solid	43	-2.58	4.94	52.2	Pass
Т3	150 - 130	Bottom Girt	1" solid	107	-2.72	6.83	39.9	Pass
							Summary	
						Leg (T4)	93.7	Pass
						Diagonal	69.3	Pass
						(T10)		
						Horizontal (T3)	38.5	Pass
						Top Girt	30.8	Pass
						Bottom Girt	52.2	Pass
						(⊺∠) Bolt	65.5	Pass
						Checks RATING =	93.7	Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Platform Mount [LP 405-1]	180	RRUS 4478 B14	180
7770.00 w/ Mount Pipe	180	RRUS 4478 B14	180
7770.00 w/ Mount Pipe	180	RRUS 4478 B14	180
7770.00 w/ Mount Pipe	180	RRUS 32 B66	180
(2) OPA-65R-LCUU-H6 w/ Mount Pipe	180	RRUS 32 B66	180
(2) OPA-65R-LCUU-H6 w/ Mount Pipe	180	RRUS 32 B66	180
(2) OPA-65R-LCUU-H6 w/ Mount Pipe	180	RRUS 32 B2	180
(2) LGP21401	180	RRUS 32 B2	180
(2) LGP21401	180	RRUS 32 B2	180
(2) LGP21401	180	(2) LGP21901	180
RRUS 32	180	(2) LGP21901	180
RRUS 32	180	(2) LGP21901	180
RRUS 32	180	Sector Mount [SM 402-3]	165
RRUS 11	180	AIR 21 B2A/B4P w/ Mount Pipe	165
RRUS 11	180	AIR 21 B2A/B4P w/ Mount Pipe	165
RRUS 11	180	AIR 21 B2A/B4P w/ Mount Pipe	165
DC6-48-60-18-8F	180	LNX-6515DS-A1M w/ Mount Pipe	165
DC6-48-60-18-8F	180	LNX-6515DS-A1M w/ Mount Pipe	165
RRUS 12	180	LNX-6515DS-A1M w/ Mount Pipe	165
RRUS 12	180	AIR 32 B4A/B2P w/ Mount Pipe	165
RRUS 12	180	AIR 32 B4A/B2P w/ Mount Pipe	165
RRUS A2 MODULE	180	AIR 32 B4A/B2P w/ Mount Pipe	165
RRUS A2 MODULE	180	KRY 112 71	165
RRUS A2 MODULE	180	KRY 112 71	165
GPS	180	KRY 112 71	165
80010965 w/ Mount Pipe	180	RRUS 11 B12	165
80010965 w/ Mount Pipe	180	RRUS 11 B12	165
80010965 w/ Mount Pipe	180	RRUS 11 B12	165
DC6-48-60-18-8F	180		

SYMBOL LIST MARK

SIZE

SIZE MARK Pirod 105216 (12x1.25) А

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

1. Tower is located in Hartford County, Connecticut.

Tower designed for Exposure C to the TIA-222-G Standard.
 Tower designed for a 95.0 mph basic wind in accordance with the TIA-222-G Standard.

 Tower is also designed for a 50.0 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.

Deflections are based upon a 60.0 mph wind.
 Tower Structure Class II.

Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 93.7%

ALL REACTIONS ARE FACTORED

 \triangle

MAX. CORNER REACTIONS AT BASE: DOWN: 283 K SHEAR: 26 K

UPLIFT: -251 K SHEAR: 24 K

REACTIONS - 95.0 mph WIND

PAUL J. FORD & COMPANY 250 E Broad St, Ste 600 • Columbus, OH 43215 Phone 614.221.6679 www.pauljford.com

Page	1	of	1
By	JRS	Date	3/26/2018
Projec	t# 🤅	64118-000 ⁻	1

Self-Support Tower Anchor Rod Capacity - TIA-G

Loads				
Uplift :	251 kips		1.00	Maximum Ratio
Shear :	24 kips			_
Existing Anchor I	Rods			
Anchor Rod Con	dition (n) :	0.55		
Anchor Rod ø :		1 1/4	in	
Anchor Rod Qua	ntity :	6		
Anchor Rod Grad	de :	A687		
F _y :		105	ksi	
F _u :		150	ksi	
Threads per Inch	l	7		
Total Net Tensile	Area	5.81	in ²	
φ:		0.8		
Total Anchor Roo	d Capacity ϕR_{nt} :	697.76	kip	

0.422

Concrete SECTION A-A Detail Type (a) $\mathcal{R}^{c} o.90$ $\mathcal{R}^{c} o.90$ $\mathcal{R}^{c} o.70$ $\mathcal{R}^{c} o.70$ $\mathcal{R}^{c} o.70$ $\mathcal{R}^{c} o.70$

Anchor Rod Ratio :

PAUL J. FORD & COMPANY 250 E Broad St, Ste 600 • Columbus, OH 43215 Phone 614.221.6679 www.pauljford.com

Page		1	of	1
Ву		JRS	Date	3/26/2018
Projec	:t #		64118-000	1

I	West Hartford Fou	Indation Analysis
Uplift (kips): Compression (kips):	251 283	
Concrete Weight (kcf): Mat Length/Width (ft): Mat Depth (ft):	0.15 13.5 4	
Mat Weight (kips): Mat Bearing Area (ft ²):	<u> 109.4</u> <u> 182.3</u>	15' - 7- 1/16"
Pile Quantity Pile Diameter (in): Pile Length (ft): Depth to Ignore (ft):	8 10 50 8	C/L OF TOWER LEG AND BOLT PATTERN. (TYP)
Total Pile Surface Area (ft ²):	879.6	FOR ANCHOR STEEL IDENTIFICATION AND PLACEMENT INFORMATION, SEE PAGE 8 OF THIS DRAWING. SEE DETAIL C, PAGE 7.
Ultimate Bearing Pressure (ksf): Ultimate Skin Friction (ksf): Ø _{soil} :	12 1 0.75	EINISH 24" (+3"/-3") GRADE 7 # 9 HORIZONTAL BARS - SEE (A) ON PAGE 7. 14 PIECES EACH WAY, EQUALLY SPACED. (ONE GRID AT TOP OF PAD & ONE AT BOTTOM) # 4 REBAR - SEE (B) ON PAGE 7. 10" DIAMETER PIPE PILE WITH END CAP. 25 STANDEES PER PIER.
Mat Bearing Capacity (kips): Skin Friction Capcity (kips):	<u> 1640.3</u> <u> 659.7</u>	VIEW A-A
Total Uplift Load (kips): Total Compression Load (kips):	<u>251.0</u> 414.2	Uplift Capacity (kips):758.1Compression Capacity (kips):2300.0
		Uplift Usage Capacity: <u>33.1%</u> Compression Usage Capacity: 18.0%

STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING STRUCTURES BY PAUL J. FORD AND COMPANY

- 1) Paul J. Ford and Company has not performed a site visit to verify the tower member sizes or the antenna/coax loading. If the existing conditions are not as represented on these drawings, we should be contacted immediately to evaluate the significance of the deviation.
- 2) No allowance was made for any damaged, missing, or rusted members. The analysis of this tower assumes that no physical deterioration has occurred in any of the structural components of the tower and that all the tower members have the same load carrying capacity as the day the tower was erected.
- 3) It is not possible to have all the detailed information to perform a thorough analysis of every structural subcomponent of an existing tower. The structural analysis by Paul J. Ford and Company verifies the adequacy of the main structural members of the tower. Paul J. Ford and Company provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc.
- 4) This tower has been analyzed according to the minimum design wind loads recommended by the Telecommunications Industry Association Standard ANSI/TIA-222-G. If the owner or local or state agencies require a higher design wind load, Paul J. Ford and Company should be made aware of this requirement.
- 5) The attached sketches are a schematic representation of the tower that we have analyzed. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions and for the proper fit and clearance in the field.
- 6) Miscellaneous items such as antenna mounts etc. have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Platform Mount Analysis

FOR

CT5259 – West Hartford-Elmwood

FA # 10071358 LTE – 4C/5C/6C/7C/Retrofit 1030 New Britain Avenue West Hartford, CT 06110 Hartford County

Mount Utilization: 92.9%

April 5, 2018

Prepared For

AT&T 550 Cochituate Road Framingham, MA 01701

Prepared By

Maser Consulting Connecticut 331 Newman Springs Road, Suite 203 Red Bank, NJ 07701

T: 732.383.1950

Petros E. Tsoukalas, P.E. Geographic Discipline Leader Connecticut License No. 32557

MC Project No. 17963019A

ш

www.maserconsulting.com

Objective:

The objective of this report is to determine the capacity of the existing platform mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

Introduction:

Maser Consulting Connecticut has reviewed the following documents in completing this report:

- RFDS 1737849 provided by Empire Telecom, dated October 9, 2017.
- Mount Structural Analysis Report prepared by Destek Engineering, dated August 19, 2015.
- As-Built Construction Drawings provided by Empire Telecom, dated October 10, 2016.

The proposed **AT&T** equipment is to be supported on the existing platform mount constructed of structural steel antenna support pipes supported by pipes and tubes at a centerline of approximately 180'-0" above ground level. This report is based only upon this information.

Codes, Standards and Loading:

Maser Consulting Connecticut utilized the following codes and standards:

- 2016 Connecticut State Building Code
- Structural Standards for Antenna Supporting Structures and Antennas ANSI/TIA-222-G
 - Ultimate Wind Speed 125 mph (3 Second Gust)
 - Nominal Wind Speed 97 mph (3 Second Gust)
 - Exposure Category B
 - Structural Class II
 - Topographic Category 1
 - o Ice Wind 50 mph
 - o Ice Thickness 1"
- Specification for Structural Steel Buildings ANSI/AISC 360-10, American Institute of Steel Construction (AISC)

Loading used in this analysis is found in **Appendix A** of this report.

Analysis Approach & Assumptions:

The analysis approach used in this structural analysis is based on the premise that if the existing platform mount is structurally adequate to support the proposed equipment per the aforementioned codes and standards, or if the increase in the forces in the structure is deemed to be negligible or acceptable, then the proposed equipment can be installed as intended.

The existing platform mount has been modeled in RISA-3D, a comprehensive structural analysis program. The program performs design checks of structures under user specified loads. The user specified loads have been calculated separately based on the requirements of the above referenced codes. The program performs an analysis based on the steel code to determine the adequacy of the members, and produces the reactions at the connection points of the mounts to the existing structure. Additional calculations were then prepared to analyze the mount connection points with the proposed loading conditions.

General Site Design Assumption:

- All engineering services are performed on the basis that the information used is current and correct.
- It is assumed that the telecommunication equipment supports, antenna supports, and existing structure have been designed by a registered licensed professional engineer for the existing loads acting on the structure, as required by all applicable codes, prior to the proposed modifications listed within this report, if any.
- It is assumed that information provided by the client regarding the structure itself, the antenna models, feed lines, and other relevant information is current and correct.
- It is the responsibility of the client to ensure that the information provided to Maser Consulting Connecticut and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that the original design, material production, fabrication, and erection of the existing structure was performed in accordance with accepted industry design standards and in accordance with all applicable codes. Further, it is assumed that the existing structure and appurtenances have been properly maintained in accordance with all applicable codes and manufacturer's specifications and no structural defects and/or deterioration to the structural members has occurred.
- It is assumed all other existing appurtenances, antennas, cables, etc. belonging to others have been installed and supported per code and per specifications so as not to damage any existing structural support members, and that any contributing loads from adjacent equipment has been taken into consideration for their design.
- All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information we supply.

Site Specific Design Assumptions:

The following design parameters have been utilized in this report:

- Structural Steel HSS Tubes are constructed of A500 Grade B Steel
- The existing antenna pipes are 7'-0" long 2.0 STD pipes, constructed of A53 Grade B Steel

Note about the Proposed Installation:

- The proposed antennas shall be installed on existing antenna pipes in position 3 in all sectors.
- The proposed RRUS-32 B2 shall replace the existing RRUS-12+RRUS-A2, on the existing antenna pipe masts.
- The proposed RRUS-32 shall be installed on the existing antenna pipe masts, behind the antenna in position 2 in all sectors.
- The proposed RRUS-B14 4478 and RRUS-32 B66 shall be installed on proposed Ericsson SXK1250461/1 B2B RRU Mounting Brackets, which shall be attached to the existing antenna pipe masts in position 3 in all sectors.
- The proposed DC-6 shall be installed on a proposed 3'-0" long 2.0 STD pipe, which shall be attached to the existing bottom horizontals via crossover plates.

Please refer to the Final Construction Drawings for more details.

4/5/2018 Page 4 of 4 Prepared by CB Checked by PET

Calculations:

The calculations are found in Appendix A of this report.

Conclusion:

Maser Consulting Connecticut has determined the existing platform mount has **ADEQUATE** structural capacity to support the proposed loading. The existing platform mount has been determined to be stressed to a maximum of **92.9%** of its structural capacity with the maximum usage occurring at the antenna support pipes. Therefore, the proposed **AT&T** installation **CAN** be installed as intended.

The conclusions reached by Maser Consulting Connecticut in this evaluation are only applicable for the existing and proposed structural members supporting the proposed **AT&T** telecommunications installation described herein. Further, no structural qualifications are made or implied by this document for the existing structure.

Maser Consulting Connecticut reserves the right to amend this report if additional information about the existing members is provided. The conclusions reached by Maser Consulting Connecticut in this report are only valid for the appurtenances listed in this report. Any change to the installation will require a revision to this structural analysis.

We appreciate the opportunity to be of service on this project. If you should have any questions or require any additional information, please do not hesitate to call our office.

Sincerely,

Maser Consulting Connecticut

Petros E. Tsoukalas, P.E. Geographic Discipline Leader

Twee Basa

Clara Basanti Project Engineer

R:\Projects\2017\17963000A\17963019A\Structural\Platform Mount Analysis\Rev 0\Word\Antenna Mount Analysis - Maser Consulting Connecticut.docx

APPENDIX A

Client:	ATT	Computed By:	CB
Site Name:	CT05259 - West Hartford-Elmwood	Date:	4/5/2018
Project No.	17963019A	Verified By:	SMS
Title:	Antenna Mount Analysis	Page:	2

ANALYSIS AND DESIGN

ATT	Computed By:	СВ
CT05259 - West Hartford-Elmwood	Date:	4/5/2018
17963019A	Verified By:	SMS
Antenna Mount Analysis	Page:	1

Version 3.3

1. LOADING SUMMARY

Quantity	Manufacturer	Antenna/ Appurtenance	Status	Sector	
3	POWERWAVE	7770	Existing	Alpha, Beta, & Gamma	
6	CCI	OPA-65R-LCUU-H6	Existing	Alpha, Beta, & Gamma	
3	KATHREIN	80010965	Proposed	Alpha, Beta, & Gamma	
3	RAYCAP	DC6-48-60-18-8F	Existing/Proposed	Alpha, Beta, & Gamma	
6	POWERWAVE	LGP 21401 TMA	Existing	Alpha, Beta, & Gamma	
3	ERICSSON	RRUS 32	Existing	Alpha, Beta, & Gamma	
3	ERICSSON	RRUS 11	Existing	Alpha, Beta, & Gamma	
3	ERICSSON	RRUS 4478 B14	Proposed	Alpha, Beta, & Gamma	
3	ERICSSON	RRUS 32 B66	Proposed	Alpha, Beta, & Gamma	
3	ERICSSON	RRUS 32 B2	Proposed	Alpha, Beta, & Gamma	
3	ERICSSON	RRUS E2 B29	Proposed	Alpha, Beta, & Gamma	(At ground level)
3	ERICSSON	RRUS 12	Proposed	Alpha, Beta, & Gamma	(At ground level)
6	KAELUS	DBC0061F1V51-2 Diplexer	Proposed	Alpha, Beta, & Gamma]

Client:	ATT	Computed By:	СВ
Site Name:	CT05259 - West Hartford-Elmwood	Date:	4/5/2018
Project No.	17963019A	Verified By:	SMS
Title:	Antenna Mount Analysis	Page:	3

I. DESIGN INPUTS

Calculations for gravity and lateral loading on equipment and support mounts are determined as per the ANSI/TIA-222-G Code, Addendum 2

		<u>Reference</u>	<u>Equation</u>
Wind Load Inputs Parameters			
Antenna Centerline	z 180 ft		
Ultimate Wind Speed	V _u 125 mph		
Nominal Wind Speed (3 sec. Gust):	v 97 mph	Ref. 1, Eqn. 16-33	
Nominal Wind Speed with Ice (3 sec. gust):	Vi 50.0 mph	(Figure a5-2a, p. 233)	
Service Wind Speed:	V _s 60.0 mph	(Figure a5-2a, p. 233)	
Design Ice Thickness:	t _i 1.00 in	(Figure A1-2a, p. 233)	
Exposure Category:	В	Ref. 3, Section 2.6.5.1	
Structure Class:	Ш	Ref. 3, Table 2-1	
Gust Effect Factor:	G _h 0.85	Ref. 3, Section 2.6.7	
Wind Directionality Factor:	K _d 0.85	Ref. 3, Table 2-2	
Topographic Category:	1	Ref. 3, Section 2.6.6.2	
Wind Load Coefficients			
Importance Factors:			
Non-Iced:	1 1	Ref. 3, Table 2-3	
Iced:	l _{ice} 1	(Table 2-3, P. 39)	
Exposure Category Coefficients:			
3-s Gust-Speed Power Law Exponent:	α 7.0	Ref. 3, Table 2-4	
Nominal Height of the Atmospheric Boundary Layer:	Z _g 1200 ft	Ref. 3, Table 2-4	
Min. Value for k _z :	Kz _{min} 0.70	Ref. 3, Table 2-4	
Terrain Constant:	K _e 0.90	Ref. 3, Table 2-4	
Velocity Pressure Exposure Coefficient:	K _z 1.169	Ref. 3, Section 2.6.5.2	=2.01 $\cdot (z/z_g)^{2/\alpha}$
Topographic Category Coefficients:			
Topographic Constant:	K _t N/A	Ref. 3, Table 2-5	
Height Attenuation Factor:	f N/A	Ref. 3, Table 2-5	
Height Reduction Factor:	K _h N/A	Ref. 3, Section 2.6.6.4	=e ^(f·z/H)
Topographic Factor:	K _{zt} 1.00	Ref.3, Section 2.6.6.4	=[1+($K_e \cdot K_t/K_h$)] ²
Ice Accumulation:			
Ice Velocity Pressure Exposure Coefficient:	K. 1.18		$=(7/33)^{0.10}$
Factored Ice Thickness:	t _i 237 in	(Section 268 p. 16)	$= 2 0 \cdot t \cdot 1 \cdot K \cdot K$
Ice Density:	ρ _i 56.00 pcf	(Section 2.0.0, p. 10)	$-2.0 t_1 T R_{12} R_{2t}$
	r [,]		
Design Wind Pressures:			
Velocity Pressure:	q z 23.85 psf	Ref. 3, Section 2.6.9.6	$= 0.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot V^2 \cdot I$
Velocity Pressure (With Ice):	q _{zi} 6.36 psf	(Section 2.6.9.6, P. 25)	$=.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot V_i^2 \cdot I$
Velocity Pressure (Service):	q _{zs} 9.16 psf	(Section 2.6.9.6, P. 25)	$=.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot V_i^2 \cdot I$

Client:	ATT	Computed By:	CB
Site Name:	CT05259 - West Hartford-Elmwood	Date:	4/5/2018
Project No.	17963019A	Verified By:	SMS
Title:	Antenna Mount Analysis	Page:	4

II. CALCULATIONS

• Wind Load on Appurtenances

Dimensions and Force Coefficients

				Non-Iced C	ondition				Iced Condition							
	r	Mounting Pipe	9			Equipment			Mounting Pipe					Equipment		
Antenna/ Appurtenance	Length	Diameter	Force Coefficient	Height	Width	Depth	Force Co	oefficient	Length	Diameter	Force Coefficient	Height	Width	Depth	Force Co	oefficient
	(11)	(11)	Ca	(11)	(11)	(11)	C _{a Front}	C _{a Side}	(11)	(in) (in)	Ca	(in)	(11)	(11)	C _{a Front}	C _{a Side}
7770	84.0	2.375	1.200	55.00	11.00	5.00	1.31	1.53	88.7	7.1	0.922	59.74	15.74	9.74	1.26	1.36
OPA-65R-LCUU-H6	84.0	2.375	1.200	72.30	14.40	7.30	1.31	1.50	88.7	7.1	0.922	77.04	19.14	12.04	1.27	1.37
80010965	84.0	2.375	1.200	78.70	20.00	6.90	1.26	1.55	88.7	7.1	0.922	83.44	24.74	11.64	1.24	1.41
DC6-48-60-18-8F	36.0	2.375	0.981	31.40	10.20	10.20	0.71	0.71	40.7	7.1	0.772	36.14	14.94	14.94	0.70	0.70
LGP 21401 TMA	0.0	0.000	0.000	13.80	14.40	3.70	1.20	1.25	0.0	0.0	0.000	18.54	19.14	8.44	1.20	1.20
RRUS 32	0.0	0.000	0.000	27.20	12.00	7.00	1.20	1.26	0.0	0.0	0.000	31.94	16.74	11.74	1.20	1.21
RRUS 11	0.0	0.000	0.000	19.70	2.60	7.20	1.42	1.21	0.0	0.0	0.000	24.44	7.34	11.94	1.24	1.20
RRUS 4478 B14	0.0	0.000	0.000	18.10	13.40	8.30	1.20	1.20	0.0	0.0	0.000	22.84	18.14	13.04	1.20	1.20
RRUS 32 B66	0.0	0.000	0.000	27.20	12.00	7.00	1.20	1.26	0.0	0.0	0.000	31.94	16.74	11.74	1.20	1.21
RRUS 32 B2	0.0	0.000	0.000	27.20	12.00	7.00	1.20	1.26	0.0	0.0	0.000	31.94	16.74	11.74	1.20	1.21
DBC0061F1V51-2 Diplexer	0.0	0.000	0.000	8.00	6.20	3.20	1.20	1.20	0.0	0.0	0.000	12.74	10.94	7.94	1.20	1.20

			Non-Ice	d Condition			Iced Co	ondition		
Antenna/ Appurtenance	# of Brackets	Wind Force (lbs.)		Controlling Wind Force (lbs.)	Gravity (lbs.)	Wind Force (lbs.)		Controlling Wind Force	Gravity (lbs.)	
		F _N	F _T	wind Force (ibs.)		F _N	F _T	(lbs.)		
7770	2	61.6	46.5	61.6	17.5	26.8	25.8	26.8	104.2	
OPA-65R-LCUU-H6	2	98.5	72.4	98.5	20.3	37.0	34.8	37.0	172.1	
80010965	2	141.1	76.0	141.1	54.3	48.8	36.5	48.8	236.8	
DC6-48-60-18-8F	1	33.6	43.9	43.9	26.2	15.4	22.6	22.6	109.6	
LGP 21401 TMA	1	33.6	9.0	33.6	30.0	16.0	7.0	16.0	77.1	
RRUS 32	1	55.1	33.8	55.1	52.9	24.1	17.0	24.1	125.3	(Partially shielded by antenna)
RRUS 11	1	10.2	24.2	24.2	55.7	8.3	13.1	13.1	59.1	(Partially shielded by antenna)
RRUS 4478 B14	2	20.5	12.7	20.5	29.7	9.3	6.7	9.3	50.0	(Partially shielded by antenna)
RRUS 32 B66	2	27.6	16.9	27.6	25.4	12.0	8.5	12.0	62.7	(Partially shielded by antenna)
RRUS 32 B2	2	27.6	16.9	27.6	26.5	12.0	8.5	12.0	62.7	(Partially shielded by antenna)
DBC0061F1V51-2 Diplexer	1	8.4	4.3	8.4	9.5	6.3	4.6	6.3	28.7]

* ALL CALCULATED LOADS ARE PER MOUNTING BRACKET. TO GET THE TOTAL EQUIPMENT LOAD, MULTIPLY THE INDIVIDUAL LOADS BY THE NUMBER OF BRACKETS

• Wind Load on Framing Members

				Nor	-Iced Conditi	on			Iced Co	ondition		
Member	Member	Length (in)	Member	Exposed Wind	Force Coefficient	Wind Load	Exposed Wind Height	Depth	Length	Force Coefficient	Wind Load	Ice Weight
Category	Snape		Surface	Height (in)	Ca	(pir)	(in)	(in)	(in) (in) C _a	Ca	(pir)	(pir)
Pipe	Pipe 3.5	192	Round	4.00	1.20	8.11	8.74	8.74	196.74	1.14	4.50	18.44
Pipe	Pipe 2.0	84	Round	2.38	1.20	4.81	7.11	7.11	88.74	0.92	2.95	13.74
Pipe	Pipe 2.0	192	Round	2.38	1.20	4.81	7.11	7.11	196.74	1.20	3.85	13.74
Pipe	Pipe 2.0	72	Round	2.38	1.20	4.81	7.11	7.11	76.74	0.88	2.83	13.74
Pipe	Pipe 2.0	36	Round	2.38	0.98	3.94	7.11	7.11	40.74	0.77	2.47	13.74
Square HSS	HSS 5x5	56.5	Square	5.00	1.54	13.03	9.74	9.74	61.24	1.37	6.00	27.33
											Grating	24.45

	Client:	ATT	Computed By:	СВ
	Site Name:	CT05259 - West Hartford-Elmwood	Date:	4/5/2018
	Project No.	17963019A	Verified By:	SMS
	Title:	Antenna Mount Analysis	Page:	5
MASER				

BASIC EQUATIONS

Importance Factor:

ANSI/TIA-222-G Reference

Force Coefficient:
(Square)
$$C_{f_square}(h, w) := \begin{bmatrix} 1.2 & \text{if } \frac{h}{w} \le 2.5 & \text{`able 2-8, P. 42} \\ 1.2 + \frac{0.2}{4.5} \cdot \left(\frac{h}{w} - 2.5\right) \end{bmatrix} & \text{if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \\ \left[1.4 + \frac{0.6}{18} \cdot \left(\frac{h}{w} - 7\right) \right] & \text{if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ 2.0 & \text{otherwise} \end{bmatrix}$$

I:= 1.0 if Class = "II" 1.15 if Class = "III"

Force Coefficient:	$C_{f_round}(h, w) :=$	0.7 if $\frac{h}{w} \le 2.5$	Table 2-8, P. 42
(Round)		$\begin{bmatrix} 0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 2.5\right) \end{bmatrix} \text{ if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7$ $\begin{bmatrix} 0.8 + \frac{0.4}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} \text{ if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25$ 1.2 otherwise	

Terrain Exposure Constants:

Table 2-4, P. 40

$$\alpha := \begin{bmatrix} 7.0 & \text{if Exp} = "B" & Z_g := \\ 9.5 & \text{if Exp} = "C" & \\ 11.5 & \text{if Exp} = "D" & \\ \end{bmatrix} 1200 \text{ft if Exp} = "B" & K_{zmin} := \\ 900 \text{ft if Exp} = "C" & \\ 700 \text{ft if Exp} = "C" & \\ 1.03 & \text{if Exp} = "D" & \\ \end{bmatrix} 0.70 & \text{if Exp} = "B" & \\ 0.85 & \text{if Exp} = "C" & \\ 1.03 & \text{if Exp} = "D" & \\ \end{bmatrix}$$

Client:	ATT	Computed By:	СВ
Site Name:	CT05259 - West Hartford-Elmwood	Date:	4/5/2018
Project No.	17963019A	Verified By:	SMS
Title:	Antenna Mount Analysis	Page:	6

BASIC EQUATIONS

Velocity Pressure Coefficient:

$K_{z}(z) := \begin{bmatrix} K_{z} \leftarrow \max\left[2.01 \cdot \left(\frac{z}{Z_{g}}\right)^{\alpha}, K_{zmin}\right] \\ K_{z} \leftarrow \min(K_{z}, 2.01) \end{bmatrix}$

$$K_z := Kz(z)$$

Section 2.6.5, P. 13

ANSI/TIA-222-G Reference

 $K_{zt} := Kzt(z)$

Section 2.6.9.6, P. 25

Velocity Pressure:

 $q_z := 0.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot V^2 \cdot I \cdot psf$

Client:	ATT	Computed By:	СВ
Site Name:	CT05259 - West Hartford-Elmwood	Date:	4/5/2018
Project No.	17963019A	Verified By:	SMS
Title:	Antenna Mount Analysis	Page:	7

LOAD EQUATIONS

WIND LOAD

Area (Normal):
Area (Side):
Force Coefficient (Normal):
Force Coefficient (Side):
Pipe Area (Normal):
Pipe Area (Side):
Force Coefficient (Normal):
Normal Effective Projected Area:
Side Effective Projected Area:
Effective Projected Area:
Wind Force:

ICE DEAD LOAD

Largest Out-to-Out Dimension: Cross Sectional Area of Ice: Total Ice Dead Load:

ICE WIND LOAD

Dimensions: Area (Normal): Area (Side): Force Coefficient (Normal): Force Coefficient (Side): Pipe Area (Normal): Pipe Area (Side): Force Coefficient (Normal): Normal Effective Projected Area: Side Effective Projected Area: Effective Projected Area: Wind Force:

 $AN_{area} = H_{ant} \cdot Want$ $AT_{area} = H_{ant} \cdot Dant$ $C_{fn} = C_{fsquare}(H_{ant}, Want)$ $C_{fs} = C_{fsquare}(H_{ant}, Dant)$ $AN_p = \max[(L_p - H_{ant}) * Dp, 0]$ $AT_n = L_n \cdot Dp$ $C_{fp} = C_{fround}(Lp, Dp)$ $E_{pan} = (C_{fn} \cdot ANarea) + (Cfp \cdot ANp)$ $E_{pat} = (C_{fs} \cdot ATarea) + (Cfp \cdot ATp)$ $EPA = max(E_{pan}, Epat)$ $F_{ant} = q_z \cdot Gh \cdot EPA$

 $D_{ant} = \sqrt{D_{ant}^2 + W_{ant}^2}$ $A_{ice\ ant} = \pi \cdot tiz \cdot (Dant + tiz)$ $DL_{ice_{ant}} = \mathbf{p}_{i} \cdot (Aice_{ant} \cdot Hant)$

 $H_{i_{ant}} = H_{ant} + 2tiz$ $W_{i_{ant}} = W_{ant} + 2tiz$ $W_{i_{ant}}^{ant} = W_{ant} + 2tiz$ $D_{i_{ant}} = D_{ant} + 2tiz$ $AIN_{area} = H_{i_{ant}} \cdot W_{i_{ant}}$ $AIT_{area} = H_{i ant} \cdot D_{i ant}$ $Ci_{fn} = C_{fsquare}(H_{i ant}, W_{i ant})$ $Ci_{fs} = C_{fsquare}(H_{iant}, D_{iant})$ $AN_p = \max[(L_{ip} - H_{i ant}) * D_{ip}, 0]$ $AT_p = L_{ip} \cdot Dip$ $C_{fp} = C_{fround}(L_{ip}, D_{ip})$ $E_{pain} = (Ci_{fn} \cdot ANarea) + (Cfp \cdot ANp)$ $E_{pait} = (Ci_{fs} \cdot ATarea) + (Cfp \cdot ATp)$ $EPA_i = max(E_{pain}, Epait)$ $F_{i ant} = q_z \cdot Gh \cdot EPAi$

Client:	ATT	Computed By:	CB
Site Name:	CT05259 - West Hartford-Elmwood	Date:	4/5/2018
Project No.	17963019A	Verified By:	SMS
Title:	Antenna Mount Analysis	Page:	8

III. ATTACHMENTS

Client:	ATT	Computed By:	СВ
Site Name:	CT05259 - West Hartford-Elmwood	Date:	4/5/2018
Project No.	17963019A	Verified By:	SMS
Title:	Antenna Mount Analysis	Page:	9

RISA MODEL

Client:	ATT	Computed By:	СВ
Site Name:	CT05259 - West Hartford-Elmwood	Date:	4/5/2018
Project No.	17963019A	Verified By:	SMS
Title:	Antenna Mount Analysis	Page:	10

RISA WORST CASE LOADING

Loads: LC 26, 1.2D+1.0ICE+1.0W12ICE Envelope Only Solution

Client:	ATT	Computed By:	СВ
Site Name:	CT05259 - West Hartford-Elmwood	Date:	4/5/2018
Project No.	17963019A	Verified By:	SMS
Title:	Antenna Mount Analysis	Page:	11

RISA CODE CHECK

Member Primary Data

	Label	l Joint	J Joint	K Joint	Rotate (deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N8	N2			Pipe 3.5	Beam	Pipe	A53 Gr.B	Typical
2	M2	N7	N6			Pipe 3.5	Beam	Pipe	A53 Gr.B	Typical
3	M3	N5	N1			Pipe 3.5	Beam	Pipe	A53 Gr.B	Typical
4	M4	N1	N2			RIGID	None	None	RIGID	Typical
5	M6	N5	N6			RIGID	None	None	RIGID	Typical
6	M7	N7	N8			RIGID	None	None	RIGID	Typical
7	M8	N9	N10			RIGID	None	None	RIGID	Typical
8	M9	N11	N12			RIGID	None	None	RIGID	Typical
9	M10	N13	N14			RIGID	None	None	RIGID	Typical
10	M11	N15	N16			RIGID	None	None	RIGID	Typical
11	M12	N17	N18			RIGID	None	None	RIGID	Typical
12	M13	N19	N20			RIGID	None	None	RIGID	Typical
13	M14	N21	N22			RIGID	None	None	RIGID	Typical
14	M15	N23	N24			RIGID	None	None	RIGID	Typical
15	M16	N25	N26			RIGID	None	None	RIGID	Typical
16	M17	N27	N28			RIGID	None	None	RIGID	Typical
17	M18	N29	N30			RIGID	None	None	RIGID	Typical
18	M19	N31	N32			RIGID	None	None	RIGID	Typical
19	M20	N33	N34			Pipe 2.0	Beam	Pipe	A53 Gr.B	Typical
20	M21	N35	N36			Pipe 2.0	Beam	Pipe	A53 Gr.B	Typical
21	M22	N37	N38			Pipe 2.0	Beam	Pipe	A53 Gr B	Typical
22	M23	N39	N40			RIGID	None	None	RIGID	Typical
23	M24	N41	N42			RIGID	None	None	RIGID	Typical
24	M25	N43	N44			RIGID	None	None	RIGID	Typical
25	M26	N45	N46			RIGID	None	None	RIGID	Typical
26	M27	N47	N48			RIGID	None	None	RIGID	Typical
27	M28	N49	N50			RIGID	None	None	RIGID	Typical
28	M29	N51	N52			RIGID	None	None	RIGID	Typical
29	M30	N53	N54			RIGID	None	None	RIGID	Typical
30	M31	N55	N56			RIGID	None	None	RIGID	Typical
31	M32	N57	N58			RIGID	None	None	RIGID	Typical
32	M33	N59	N60			RIGID	None	None	RIGID	Typical
33	M34	N61	N62			RIGID	None	None	RIGID	Typical
34	M35	N63	N64			RIGID	None	None	RIGID	Typical
35	M36	N65	N66			RIGID	None	None	RIGID	Typical
36	M37	N67	N68			RIGID	None	None	RIGID	Typical
37	M38	N69	N70			Pipe 2.0	Beam	Pine	A53 Gr B	Typical
38	M39	N71	N72			Pipe 2.0	Beam	Pipe	A53 Gr B	Typical
39	M40	N73	N74			Pipe 2.0	Beam	Pine	A53 Gr B	Typical
40	M41	N75	N76			Pipe 2.0	Beam	Pine	A53 Gr B	Typical
41	M42	N77	N78			Pipe 2.0	Beam	Pine	A53 Gr B	Typical
42	M43	N79	N80			Pipe 2.0	Beam	Pine	A53 Gr B	Typical
43	M44	N81	N82			Pipe 2.0	Beam	Pine	A53 Gr B	Typical
44	M45	N83	N84			Pipe 2.0	Beam	Pine	A53 Gr B	Typical
45	M46	N85	N86			Pipe 2.0	Beam	Pine	A53 Gr B	Typical
46	M47	N87	N88			Pipe 2.0	Beam	Pine	A53 Gr B	Typical
47	M48	N89	NIQO			Pipe 2.0	Beam	Pine	453 Gr B	Typical
48	MAQ	NQ1	NQ2			Pipe 2.0	Beam	Pine	453 Gr B	Typical
40	M50	NQ3	NQ/			RICID	None	None	RIGID	Typical
50	M51	N95	NQA			RIGID	None	None	RIGID	Typical
51	M52	N07	NOS			RIGID	None	None	RIGID	Typical
	IVIJZ	1007	1130			NGD				ιγρισαι

RISA-3D Version 12.0.2 [\...\...\...\...\...\Platform Mount Analysis\Rev 0\Risa\Platform.r3d] Page 1

Member Primary Data (Continued)

	Label	l Joint	J Joint	K Joint	Rotate (deg)	Section/Shape	Туре	Design List	Material	Design Rules
52	M53	N99	N100			Pipe 2.0	Beam	Pipe	A53 Gr.B	Typical
53	M54	N101	N102			Pipe 2.0	Beam	Pipe	A53 Gr.B	Typical
54	M55	N103	N104			Pipe 2.0	Beam	Pipe	A53 Gr.B	Typical
55	M56	N105	N106			RIGID	None	None	RIGID	Typical
56	M57	N107	N108			Pipe 2.0	Beam	Pipe	A53 Gr.B	Typical
57	M58	N109	N110			RIGID	None	None	RIGID	Typical
58	M59	N111	N112			Pipe 2.0	Beam	Pipe	A53 Gr.B	Typical
59	M60	N113	N114			RIGID	None	None	RIGID	Typical
60	M61	N115	N116			Pipe 2.0	Beam	Pipe	A53 Gr.B	Typical
61	M62	N117	N118			HSS5x5x5	Beam	SquareTube	A500 Gr.B	Typical
62	M63	N119	N120			HSS5x5x5	Beam	SquareTube	A500 Gr.B	Typical
63	M64	N121	N122			HSS5x5x5	Beam	SquareTube	A500 Gr.B	Typical
64	M65	N123	N124			RIGID	None	None	RIGID	Typical
65	M66	N125	N126			RIGID	None	None	RIGID	Typical
66	M67	N127	N128			RIGID	None	None	RIGID	Typical
67	M68	N129	N130			RIGID	None	None	RIGID	Typical
68	M69	N131	N132			RIGID	None	None	RIGID	Typical
69	M70	N133	N134			RIGID	None	None	RIGID	Typical
70	M71	N135	N136			RIGID	None	None	RIGID	Typical
71	M72	N137	N138			RIGID	None	None	RIGID	Typical
72	M73	N139	N140			RIGID	None	None	RIGID	Typical
73	M74	N141	N142			RIGID	None	None	RIGID	Typical
74	M75	N143	N144			RIGID	None	None	RIGID	Typical
75	M76	N145	N146			RIGID	None	None	RIGID	Typical
76	M77	N147	N148			RIGID	None	None	RIGID	Typical
77	M78	N149	N150			RIGID	None	None	RIGID	Typical
78	M79	N151	N152			RIGID	None	None	RIGID	Typical
79	M80	N153	N154			RIGID	None	None	RIGID	Typical
80	M81	N155	N156			RIGID	None	None	RIGID	Typical
81	M82	N157	N158			RIGID	None	None	RIGID	Typical
82	M83	N159	N160			RIGID	None	None	RIGID	Typical
83	M84	N161	N162			RIGID	None	None	RIGID	Typical
84	M85	N163	N164			RIGID	None	None	RIGID	Typical

Joint Loads and Enforced Displacements (BLC 1 : Dead)

	Joint Label	L, D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N194	L	Y	-17.5
2	N195	L	Y	-17.5
3	N196	L	Y	-17.5
4	N197	L	Y	-17.5
5	N198	L	Y	-17.5
6	N199	L	Y	-17.5
7	N132	L	Y	-26.2
8	N142	L	Y	-26.2
9	N164	L	Y	-26.2
10	N200	L	Y	-30
11	N201	L	Y	-30
12	N202	L	Y	-30
13	N176A	L	Y	-20.3
14	N178	L	Y	-20.3

Joint Loads and Enforced Displacements (BLC 1 : Dead) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
15	N179	L	Y	-20.3
16	N181	L	Y	-20.3
17	N182	L	Y	-20.3
18	N184	L	Y	-20.3
19	N185	L	Y	-20.3
20	N187	L	Y	-20.3
21	N188	L	Y	-20.3
22	N190	L	Y	-20.3
23	N191	L	Y	-20.3
24	N193	L	Y	-20.3
25	N177	L	Y	-54.3
26	N180	L	Y	-54.3
27	N183	L	Y	-54.3
28	N186	L	Y	-54.3
29	N189	L	Y	-54.3
30	N192	L	Y	-54.3
31	N134	L	Y	-52.9
32	N144	L	Y	-52.9
33	N156	L	Y	-52.9
34	N128	L	Y	-55.7
35	N138	L	Y	-55.7
36	N152	L	Y	-55.7
37	N124	L	Y	-55.1
38	N126	L	Y	-55.1
39	N148	L	Y	-55.1
40	N150	L	Y	-55.1
41	N160	L	Y	-55.1
42	N162	L	Y	-55.1
43	N130	L	Y	-52.9
44	N140	L	Y	-52.9
45	N154	L	Y	-52.9
46	N136	L	Y	-19
47	N146	L	Y	-19
48	N158	L	Y	-19

Joint Loads and Enforced Displacements (BLC 2 : Wx)

	Joint Label	L, D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N195	L	Х	46.515
2	N196	L	Х	46.515
3	N198	L	Х	46.515
4	N199	L	Х	46.515
5	N132	L	Х	43.995
6	N142	L	Х	43.995
7	N164	L	Х	43.995
8	N201	L	Х	33.6
9	N202	L	Х	33.6
10	N179	L	Х	72.45
11	N181	L	Х	72.45
12	N182	L	Х	72.45
13	N184	L	Х	72.45
14	N188	Ĺ	Х	72.45

Joint Loads and Enforced Displacements (BLC 2 : Wx) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
15	N190	L	Х	72.45
16	N191	L	Х	72.45
17	N193	L	Х	72.45
18	N176A	L	Х	98.49
19	N178	L	Х	98.49
20	N185	L	Х	98.49
21	N187	L	Х	98.49
22	N180	L	Х	76.02
23	N183	L	Х	76.02
24	N189	L	Х	76.02
25	N192	L	Х	76.02
26	N177	L	Х	141.12
27	N186	L	Х	141.12
28	N144	L	Х	33.81
29	N156	L	Х	33.81
30	N138	L	Х	24.15
31	N152	L	Х	24.15
32	N128	L	Х	10.185
33	N148	L	Х	27.615
34	N150	L	Х	27.615
35	N160	L	Х	27.615
36	N162	L	Х	27.615
37	N124	L	Х	29.61
38	N126	L	Х	29.61
39	N140	L	Х	33.81
40	N154	L	Х	33.81
41	N146	L	Х	8.4
42	N158	L	Х	8.4

Joint Loads and Enforced Displacements (BLC 3 : Wz)

	Joint Label	L, D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N195	L	Z	61.635
2	N196	L	Z	61.635
3	N198	L	Z	61.635
4	N199	L	Z	61.635
5	N132	L	Z	43.995
6	N142	L	Z	43.995
7	N164	L	Z	43.995
8	N200	L	Z	33.6
9	N179	L	Z	98.49
10	N181	L	Z	98.49
11	N182	L	Z	98.49
12	N184	L	Z	98.49
13	N188	L	Z	98.49
14	N190	L	Z	98.49
15	N191	L	Z	98.49
16	N193	L	Z	98.49
17	N176A	L	Z	72.45
18	N178	L	Z	72.45
19	N185	L	Z	72.45
20	N187	Ĺ	Z	72.45

Joint Loads and Enforced Displacements (BLC 3 : Wz) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
21	N180	L	Z	141.12
22	N183	L	Z	141.12
23	N189	L	Z	141.12
24	N192	L	Z	141.12
25	N177	L	Z	76.02
26	N186	L	Z	76.02
27	N134	L	Z	33.81
28	N138	L	Z	10.185
29	N152	L	Z	10.185
30	N128	L	Z	24.15
31	N148	L	Z	29.61
32	N150	L	Z	29.61
33	N160	L	Z	29.61
34	N162	L	Z	29.61
35	N124	L	Z	27.615
36	N126	L	Z	27.615
37	N130	L	Z	33.81
38	N136	L	Z	8.4

Joint Loads and Enforced Displacements (BLC 4 : Wx Ice)

	Joint Label	L, D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N195	L	X	25.8
2	N196	L	X	25.8
3	N198	L	Х	25.8
4	N199	L	Х	25.8
5	N132	L	Х	22.6
6	N142	L	Х	22.6
7	N164	L	Х	22.6
8	N201	L	Х	24.1
9	N202	L	Х	24.1
10	N179	L	X	34.8
11	N181	L	Х	34.8
12	N182	L	Х	34.8
13	N184	L	Х	34.8
14	N188	L	Х	34.8
15	N190	L	Х	34.8
16	N191	L	Х	34.8
17	N193	L	Х	34.8
18	N176A	L	Х	37
19	N178	L	Х	37
20	N185	L	Х	37
21	N187	L	Х	37
22	N180	L	Х	36.5
23	N183	L	Х	36.5
24	N189	L	Х	36.5
25	N192	L	Х	36.5
26	N177	L	X	48.8
27	N186	L	X	48.8
28	N144	L	Х	17
29	N156	L	Х	17
30	N138	L	X	13.1

Joint Loads and Enforced Displacements (BLC 4 : Wx Ice) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
31	N152	L	Х	13.1
32	N128	L	Х	8.3
33	N148	L	Х	12
34	N150	L	Х	12
35	N160	L	Х	12
36	N162	L	Х	12
37	N124	L	Х	15.2
38	N126	L	Х	15.2
39	N140	L	Х	17
40	N154	L	Х	17
41	N146	L	Х	12
42	N158	L	Х	12

Joint Loads and Enforced Displacements (BLC 5 : Wz Ice)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	N195	L	Z	26.8
3N198LZ26.84N199LZ22.65N132LZ22.66N142LZ22.67N164LZ22.68N200LZ24.19N179LZ3710N181LZ3711N182LZ3712N184LZ3713N188LZ3714N190LZ3715N191LZ3716N193LZ34.817N176ALZ34.820N187LZ34.821N180LZ48.822N183LZ48.823N189LZ48.824N192LZ48.825N177LZ36.526N186LZ8.329N152LZ8.329N152LZ8.329N152LZ8.330N128LZ15.232N150LZ15.2	2	N196	L	Z	26.8
4N199LZ26.85N132LZ22.66N142LZ22.67N164LZ22.68N200LZ24.19N179LZ3710N181LZ3711N182LZ3712N184LZ3713N188LZ3714N190LZ3715N191LZ3716N193LZ34.819N185LZ34.820N187LZ34.821N180LZ48.822N183LZ48.823N189LZ48.824N192LZ48.825N177LZ36.526N186LZ8.329N152LZ8.329N152LZ8.330N128LZ13.131N148LZ15.232N150LZ15.2	3	N198	L	Z	26.8
5 N132 L Z 22.6 6 N142 L Z 22.6 7 N164 L Z 22.6 8 N200 L Z 24.1 9 N179 L Z 37 10 N181 L Z 37 11 N182 L Z 37 12 N184 L Z 37 13 N188 L Z 37 14 N190 L Z 37 15 N191 L Z 37 16 N193 L Z 37 17 N176A L Z 34.8 18 N178 L Z 34.8 20 N187 L Z 34.8 21 N180 L Z 48.8 22 N183 L Z 48.8 23 N189 L Z 48.8 24 N192 <t< td=""><td>4</td><td>N199</td><td>L</td><td>Z</td><td>26.8</td></t<>	4	N199	L	Z	26.8
6 N142 L Z 22.6 7 N164 L Z 22.6 8 N200 L Z 24.1 9 N179 L Z 37 10 N181 L Z 37 11 N182 L Z 37 12 N184 L Z 37 13 N188 L Z 37 14 N190 L Z 37 15 N191 L Z 37 16 N193 L Z 37 17 N176A L Z 34.8 19 N185 L Z 34.8 20 N187 L Z 34.8 21 N180 L Z 48.8 22 N183 L Z 48.8 23 N189 L Z 48.8 <	5	N132	L	Z	22.6
7N164LZ22.68N200LZ24.19N179LZ3710N181LZ3711N182LZ3712N184LZ3713N188LZ3714N190LZ3715N191LZ3716N193LZ3717N176ALZ34.818N178LZ34.820N187LZ34.821N180LZ48.822N183LZ48.823N189LZ48.824N192LZ36.526N186LZ36.527N134LZ8.329N152LZ8.330N128LZ15.232N150LZ15.2	6	N142	L	Z	22.6
8 N200 L Z 24.1 9 N179 L Z 37 10 N181 L Z 37 11 N182 L Z 37 12 N184 L Z 37 13 N188 L Z 37 14 N190 L Z 37 15 N191 L Z 37 16 N193 L Z 37 17 N176A L Z 34.8 18 N178 L Z 34.8 20 N187 L Z 34.8 21 N180 L Z 48.8 22 N183 L Z 48.8 23 N189 L Z 48.8 24 N192 L Z 48.8 25 N177 L Z 36.5	7	N164	L	Z	22.6
9N179LZ 37 10N181LZ 37 11N182LZ 37 12N184LZ 37 13N188LZ 37 14N190LZ 37 15N191LZ 37 16N193LZ 37 17N176ALZ 34.8 18N178LZ 34.8 19N185LZ 34.8 20N187LZ 34.8 21N180LZ 48.8 22N183LZ 48.8 23N189LZ 48.8 24N192LZ 36.5 26N186LZ 36.5 27N134LZ 8.3 29N152LZ 8.3 30N128LZ 13.1 31N148LZ 15.2 32N150LZ 15.2	8	N200	L	Z	24.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	N179	L	Z	37
11N182LZ 37 12N184LZ 37 13N188LZ 37 14N190LZ 37 15N191LZ 37 16N193LZ 37 17N176ALZ 34.8 18N178LZ 34.8 19N185LZ 34.8 20N187LZ 34.8 21N180LZ 48.8 22N183LZ 48.8 23N189LZ 48.8 24N192LZ 48.8 25N177LZ 36.5 26N186LZ 36.5 27N134LZ 8.3 29N152LZ 8.3 30N128LZ 13.1 31N148LZ 15.2	10	N181	L	Z	37
12N184LZ 37 13N188LZ 37 14N190LZ 37 15N191LZ 37 16N193LZ 37 17N176ALZ 34.8 18N178LZ 34.8 19N185LZ 34.8 20N187LZ 34.8 21N180LZ 48.8 22N183LZ 48.8 23N189LZ 48.8 24N192LZ 36.5 26N186LZ 36.5 27N134LZ 8.3 29N152LZ 8.3 30N128LZ 13.1 31N148LZ 15.2 32N150LZ 15.2	11	N182	L	Z	37
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	N184	L	Z	37
14N190LZ 37 15N191LZ 37 16N193LZ 37 17N176ALZ 34.8 18N178LZ 34.8 19N185LZ 34.8 20N187LZ 34.8 21N180LZ 48.8 22N183LZ 48.8 23N189LZ 48.8 24N192LZ 48.8 25N177LZ 36.5 26N186LZ 36.5 27N134LZ 8.3 29N152LZ 8.3 30N128LZ 13.1 31N148LZ 15.2	13	N188	L	Z	37
15N191LZ 37 16N193LZ 37 17N176ALZ 34.8 18N178LZ 34.8 19N185LZ 34.8 20N187LZ 34.8 21N180LZ 48.8 22N183LZ 48.8 23N189LZ 48.8 24N192LZ 48.8 25N177LZ 36.5 26N186LZ 36.5 27N134LZ 8.3 29N152LZ 8.3 30N128LZ 13.1 31N148LZ 15.2	14	N190	L	Z	37
16N193LZ 37 17N176ALZ 34.8 18N178LZ 34.8 19N185LZ 34.8 20N187LZ 34.8 21N180LZ 48.8 22N183LZ 48.8 23N189LZ 48.8 24N192LZ 48.8 25N177LZ 36.5 26N186LZ 36.5 27N134LZ 8.3 29N152LZ 8.3 30N128LZ 13.1 31N148LZ 15.2	15	N191	L	Z	37
17N176ALZ 34.8 18N178LZ 34.8 19N185LZ 34.8 20N187LZ 34.8 21N180LZ 48.8 22N183LZ 48.8 23N189LZ 48.8 24N192LZ 48.8 25N177LZ 36.5 26N186LZ 36.5 27N134LZ 8.3 29N152LZ 8.3 30N128LZ 13.1 31N148LZ 15.2	16	N193	L	Z	37
18 N178 L Z 34.8 19 N185 L Z 34.8 20 N187 L Z 34.8 21 N180 L Z 48.8 22 N183 L Z 48.8 23 N189 L Z 48.8 24 N192 L Z 48.8 25 N177 L Z 36.5 26 N186 L Z 36.5 27 N134 L Z 8.3 29 N152 L Z 8.3 29 N152 L Z 8.3 30 N128 L Z 13.1 31 N148 L Z 15.2 32 N150 L Z 15.2	17	N176A	L	Z	34.8
19 N185 L Z 34.8 20 N187 L Z 34.8 21 N180 L Z 48.8 22 N183 L Z 48.8 23 N189 L Z 48.8 24 N192 L Z 48.8 25 N177 L Z 36.5 26 N186 L Z 36.5 27 N134 L Z 36.5 27 N134 L Z 8.3 29 N152 L Z 8.3 30 N128 L Z 13.1 31 N148 L Z 15.2 32 N150 L Z 15.2	18	N178	L	Z	34.8
20 N187 L Z 34.8 21 N180 L Z 48.8 22 N183 L Z 48.8 23 N189 L Z 48.8 24 N192 L Z 48.8 25 N177 L Z 36.5 26 N186 L Z 36.5 27 N134 L Z 36.5 29 N152 L Z 8.3 30 N128 L Z 13.1 31 N148 L Z 15.2 32 N150 L Z 15.2	19	N185	L	Z	34.8
21 N180 L Z 48.8 22 N183 L Z 48.8 23 N189 L Z 48.8 24 N192 L Z 48.8 25 N177 L Z 36.5 26 N186 L Z 36.5 27 N134 L Z 36.5 29 N152 L Z 8.3 30 N128 L Z 13.1 31 N148 L Z 15.2	20	N187	L	Z	34.8
22 N183 L Z 48.8 23 N189 L Z 48.8 24 N192 L Z 48.8 25 N177 L Z 36.5 26 N186 L Z 36.5 27 N134 L Z 17 28 N138 L Z 8.3 29 N152 L Z 8.3 30 N128 L Z 13.1 31 N148 L Z 15.2	21	N180	L	Z	48.8
23 N189 L Z 48.8 24 N192 L Z 48.8 25 N177 L Z 36.5 26 N186 L Z 36.5 27 N134 L Z 17 28 N138 L Z 8.3 29 N152 L Z 8.3 30 N128 L Z 13.1 31 N148 L Z 15.2 32 N150 L Z 15.2	22	N183	L	Z	48.8
24 N192 L Z 48.8 25 N177 L Z 36.5 26 N186 L Z 36.5 27 N134 L Z 17 28 N138 L Z 8.3 29 N152 L Z 8.3 30 N128 L Z 13.1 31 N148 L Z 15.2 32 N150 L Z 15.2	23	N189	L	Z	48.8
25 N177 L Z 36.5 26 N186 L Z 36.5 27 N134 L Z 17 28 N138 L Z 8.3 29 N152 L Z 8.3 30 N128 L Z 13.1 31 N148 L Z 15.2 32 N150 L Z 15.2	24	N192	L	Z	48.8
26 N186 L Z 36.5 27 N134 L Z 17 28 N138 L Z 8.3 29 N152 L Z 8.3 30 N128 L Z 13.1 31 N148 L Z 15.2 32 N150 L Z 15.2	25	N177	L	Z	36.5
27 N134 L Z 17 28 N138 L Z 8.3 29 N152 L Z 8.3 30 N128 L Z 13.1 31 N148 L Z 15.2 32 N150 L Z 15.2	26	N186	L	Z	36.5
28 N138 L Z 8.3 29 N152 L Z 8.3 30 N128 L Z 13.1 31 N148 L Z 15.2 32 N150 L Z 15.2	27	N134	L	Z	17
29 N152 L Z 8.3 30 N128 L Z 13.1 31 N148 L Z 15.2 32 N150 L Z 15.2	28	N138	L	Z	8.3
30 N128 L Z 13.1 31 N148 L Z 15.2 32 N150 L Z 15.2	29	N152	L	Z	8.3
31 N148 L Z 15.2 32 N150 L Z 15.2	30	N128	L	Z	13.1
32 N150 L Z 15.2	31	N148	L	Z	15.2
	32	N150	L	Z	15.2
33 N160 L Z 15.2	33	N160	L	Z	15.2
34 N162 L Z 15.2	34	N162	L	Z	15.2
35 N124 L Z 12	35	N124	L	Z	12
36 N126 L Z 12	36	N126	L	Z	12

Joint Loads and Enforced Displacements (BLC 5 : Wz Ice) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
37	N130	L	Z	17
38	N136	L	Z	12

Joint Loads and Enforced Displacements (BLC 6 : Ice Weight)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N194	L	Y	-104.2
2	N195	L	Y	-104.2
3	N196	L	Y	-104.2
4	N197	L	Y	-104.2
5	N198	L	Y	-104.2
6	N199	L	Y	-104.2
7	N132	L	Y	-109.6
8	N142	L	Y	-109.6
9	N164	L	Y	-109.6
10	N200	L	Y	-77.1
11	N201	L	Y	-77.1
12	N202	L	Y	-77.1
13	N176A	L	Y	-172.1
14	N178	L	Y	-172.1
15	N179	L	Y	-172.1
16	N181	L	Y	-172.1
17	N182	L	Y	-172.1
18	N184	L	Y	-172.1
19	N185	L	Y	-172.1
20	N187	L	Y	-172.1
21	N188	L	Y	-172.1
22	N190	L	Y	-172.1
23	N191	L	Y	-172.1
24	N193	L	Y	-172.1
25	N177	L	Y	-236.8
26	N180	L	Y	-236.8
27	N183	L	Y	-236.8
28	N186	L	Y	-236.8
29	N189	L	Y	-236.8
30	N192	L	Y	-236.8
31	N134	L	Y	-125.3
32	N144	L	Y	-125.3
33	N156	L	Y	-125.3
34	N128	L	Y	-59.1
35	N138	L	Y	-59.1
36	N152	L	Y	-59.1
37	N124	L	Y	-112.7
38	N126	L	Y	-112.7
39	N148	L	Y	-112.7
40	N150	L	Y	-112.7
41	N160	L	Y	-112.7
42	N162	L	Y	-112.7
43	N130	L	Y	-125.3
44	N140	L	Y	-125.3
45	N154	L	Y	-125.3
46	N136	L	Y	-57.5

Joint Loads and Enforced Displacements (BLC 6 : Ice Weight) (Continued)

	Joint Label	L, D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
47	N146	L	Y	-57.5
48	N158	L	Y	-57.5

Member Point Loads

Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]				
No Data to Print							

Member Distributed Loads (BLC 2 : Wx)

	Member Label	Direction	Start Magnitude[lb	. End Magnitude[lb/ft,F]	Start Location[in,%]	End Location[in,%]
1	M1	PX	8.11	8.11	0	0
2	M2	PX	8.11	8.11	0	0
3	M3	PX	8.11	8.11	0	0
4	M20	PX	4.81	4.81	0	0
5	M21	PX	4.81	4.81	0	0
6	M22	PX	4.81	4.81	0	0
7	M57	PX	4.81	4.81	0	0
8	M59	PX	4.81	4.81	0	0
9	M61	PX	4.81	4.81	0	0

Member Distributed Loads (BLC 3 : Wz)

	Member Label	Direction	Start Magnitude[lb	. End Magnitude[lb/ft,F]	Start Location[in,%]	End Location[in,%]
1	M1	PZ	8.11	8.11	0	0
2	M2	PZ	8.11	8.11	0	0
3	M3	PZ	8.11	8.11	0	0
4	M20	PZ	4.81	4.81	0	0
5	M21	PZ	4.81	4.81	0	0
6	M22	PZ	4.81	4.81	0	0
7	M57	PZ	4.81	4.81	0	0
8	M59	PZ	4.81	4.81	0	0
9	M61	PZ	4.81	4.81	0	0

Member Distributed Loads (BLC 4 : Wx Ice)

	Member Label	Direction	Start Magnitude[lb	. End Magnitude[lb/ft,F]	Start Location[in,%]	End Location[in,%]
1	M1	PX	4.5	4.5	0	0
2	M2	PX	4.5	4.5	0	0
3	M3	PX	4.5	4.5	0	0
4	M20	PX	3.9	3.9	0	0
5	M21	PX	3.9	3.9	0	0
6	M22	PX	3.9	3.9	0	0
7	M57	PX	2.8	2.8	0	0
8	M59	PX	2.8	2.8	0	0
9	M61	PX	2.8	2.8	0	0

Member Distributed Loads (BLC 5 : Wz Ice)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F]	Start Location[in,%]	End Location[in,%]
1	M1	PZ	4.5	4.5	0	0
2	M2	PZ	4.5	4.5	0	0

Member Distributed Loads (BLC 5 : Wz Ice) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F]	Start Location[in,%]	End Location[in,%]
3	M3	PZ	4.5	4.5	0	0
4	M20	PZ	3.9	3.9	0	0
5	M21	PZ	3.9	3.9	0	0
6	M22	PZ	3.9	3.9	0	0
7	M57	PZ	2.8	2.8	0	0
8	M59	PZ	2.8	2.8	0	0
9	M61	PZ	2.8	2.8	0	0

Member Distributed Loads (BLC 6 : Ice Weight)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F]	Start Location[in,%]	End Location[in,%]
1	M1	Y	-18.4	-18.4	72	120
2	M2	Y	-18.4	-18.4	72	120
3	M3	Y	-18.4	-18.4	72	120
4	M62	Y	-27.3	-27.3	0	0
5	M63	Y	-27.3	-27.3	0	0
6	M64	Y	-27.3	-27.3	0	0
7	M20	Y	-13.7	-13.7	0	0
8	M21	Y	-13.7	-13.7	0	0
9	M22	Y	-13.7	-13.7	0	0
10	M38	Y	-13.7	-13.7	0	0
11	M39	Y	-13.7	-13.7	0	0
12	M40	Y	-13.7	-13.7	0	0
13	M41	Y	-13.7	-13.7	0	0
14	M42	Y	-13.7	-13.7	0	0
15	M43	Y	-13.7	-13.7	0	0
16	M44	Y	-13.7	-13.7	0	0
17	M45	Y	-13.7	-13.7	0	0
18	M46	Y	-13.7	-13.7	0	0
19	M47	Y	-13.7	-13.7	0	0
20	M48	Y	-13.7	-13.7	0	0
21	M49	Y	-13.7	-13.7	0	0
22	M53	Y	-13.7	-13.7	0	0
23	M54	Y	-13.7	-13.7	0	0
24	M55	Y	-13.7	-13.7	0	0
25	M57	Y	-13.7	-13.7	0	0
26	M59	Y	-13.7	-13.7	0	0
27	M61	Y	-13.7	-13.7	0	0

Member Distributed Loads (BLC 7 : BLC 1 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb	. End Magnitude[lb/ft,F]	Start Location[in,%]	End Location[in,%]
1	M1	Y	2	-8.208	115.2	130.56
2	M1	Y	-8.208	-18.686	130.56	145.92
3	M1	Y	-18.686	-28.024	145.92	161.28
4	M1	Y	-28.024	-32.891	161.28	176.64
5	M1	Y	-32.891	-34.826	176.64	192
6	M4	Y	-28.933	-29.003	0	2.451
7	M4	Y	-29.003	-29.595	2.451	4.901
8	M4	Y	-29.595	-21.217	4.901	7.352
9	M4	Y	-21.217	-19.413	7.352	9.802
10	M4	Y	-19.413	-33.676	9.802	12.253
11	M62	Y	-41.991	-35.478	0	7.91

Member Distributed Loads (BLC 7 : BLC 1 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F]	Start Location[in,%]	End Location[in,%]
12	M62	Y	-35.478	-26.827	7.91	15.82
13	M62	Y	-26.827	-15.951	15.82	23.73
14	M62	Y	-15.951	-5.736	23.73	31.64
15	M62	Y	-5.736	.205	31.64	39.55
16	M2	Y	304	-8.235	115.2	130.56
17	M2	Y	-8.235	-19.006	130.56	145.92
18	M2	Y	-19.006	-28.731	145.92	161.28
19	M2	Y	-28.731	-32.579	161.28	176.64
20	M2	Y	-32.579	-32.168	176.64	192
21	M6	Y	-27.946	-26.935	0	2.451
22	M6	Y	-26.935	-25.991	2.451	4.901
23	M6	Y	-25.991	-24.672	4.901	7.352
24	M6	Y	-24.672	-25.388	7.352	9.802
25	M6	Y	-25.388	-28.582	9.802	12.253
26	M1	Y	-32.168	-32.579	0	15.36
27	M1	Y	-32.579	-28.731	15.36	30.72
28	M1	Y	-28.731	-19.006	30.72	46.08
29	M1	Y	-19.006	-8.235	46.08	61.44
30	M1	Y	-8.235	304	61.44	76.8
31	M7	Y	-27.945	-26.935	0	2.451
32	M7	Y	-26.935	-25.991	2.451	4.901
33	M7	Y	-25.991	-24.672	4.901	7.352
34	M7	Y	-24.672	-25.388	7.352	9.802
35	M7	Y	-25.388	-28.582	9.802	12.253
36	M64	Y	-21.851	-17.837	0	7.91
37	M64	Y	-17.837	-13.095	7.91	15.82
38	M64	Y	-13.095	-7.989	15.82	23.73
39	M64	Y	-7.989	-3.072	23.73	31.64
40	M64	Y	-3.072	.135	31.64	39.55

Member Distributed Loads (BLC 8 : BLC 6 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F]	Start Location[in,%]	End Location[in,%]
1	M3	Y	744	-20.176	115.2	130.56
2	M3	Y	-20.176	-46.565	130.56	145.92
3	M3	Y	-46.565	-70.391	145.92	161.28
4	M3	Y	-70.391	-79.818	161.28	176.64
5	M3	Y	-79.818	-78.811	176.64	192
6	M4	Y	-70.027	-62.201	0	2.451
7	M4	Y	-62.201	-60.447	2.451	4.901
8	M4	Y	-60.447	-63.679	4.901	7.352
9	M4	Y	-63.679	-65.99	7.352	9.802
10	M4	Y	-65.99	-68.467	9.802	12.253
11	M63	Y	-92.453	-75.961	0	7.91
12	M63	Y	-75.961	-54.297	7.91	15.82
13	M63	Y	-54.297	-30.112	15.82	23.73
14	M63	Y	-30.112	-10.15	23.73	31.64
15	M63	Y	-10.15	.663	31.64	39.55
16	M3	Y	-85.324	-80.582	0	15.36
17	M3	Y	-80.582	-68.659	15.36	30.72
18	M3	Y	-68.659	-45.781	30.72	46.08
19	M3	Y	-45.781	-20.11	46.08	61.44

Member Distributed Loads (BLC 8 : BLC 6 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb	. End Magnitude[lb/ft,F]	Start Location[in,%]	End Location[in,%]
20	M3	Y	-20.11	49	61.44	76.8
21	M6	Y	-82.507	-47.563	0	2.451
22	M6	Y	-47.563	-51.981	2.451	4.901
23	M6	Y	-51.981	-72.508	4.901	7.352
24	M6	Y	-72.508	-71.058	7.352	9.802
25	M6	Y	-71.058	-70.886	9.802	12.253
26	M64	Y	-49.343	-43.221	0	7.91
27	M64	Y	-43.221	-33.644	7.91	15.82
28	M64	Y	-33.644	-19.508	15.82	23.73
29	M64	Y	-19.508	-6.526	23.73	31.64
30	M64	Y	-6.526	.172	31.64	39.55
31	M2	Y	-79.434	-78.426	0	15.36
32	M2	Y	-78.426	-66.893	15.36	30.72
33	M2	Y	-66.893	-42.919	30.72	46.08
34	M2	Y	-42.919	-18.323	46.08	61.44
35	M2	Y	-18.323	561	61.44	76.8
36	M7	Y	-91.082	-62.031	0	2.451
37	M7	Y	-62.031	-57.837	2.451	4.901
38	M7	Y	-57.837	-64.32	4.901	7.352
39	M7	Y	-64.32	-68.416	7.352	9.802
40	M7	Y	-68.416	-84.304	9.802	12.253

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Mem	.Surface(Pl
1	Dead	DL		-1.05		48			3	
2	Wx	WL				42		9		
3	Wz	WL				38		9		
4	Wx Ice	WL				42		9		
5	Wz Ice	WL				38		9		
6	Ice Weight	OL1				48		27	3	
7	BLC 1 Transient Area L	None						40		
8	BLC 6 Transient Area L	None						40		

Load Combinations

	Description	So	. PDelta	S	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
1	1.4D	Yes	Y		1	1.4														
2	1.2D+1.6W1	Yes	Y		1	1.2	2	1.6	3											
3	1.2D+1.6W2	Yes	Y		1	1.2	2	1.3	3	.8										
4	1.2D+1.6W3	Yes	Y		1	1.2	2	.8	3	1.3										
5	1.2D+1.6W4	Yes	Y		1	1.2	2		3	1.6										
6	1.2D+1.6W5	Yes	Y		1	1.2	2	8	3	1.3										
7	1.2D+1.6W6	Yes	Y		1	1.2	2	-1.3	. 3	.8										
8	1.2D+1.6W7	Yes	Y		1	1.2	2	-1.6	3											
9	1.2D+1.6W8	Yes	Y		1	1.2	2	-1.3	. 3	8										
10	1.2D+1.6W9	Yes	Y		1	1.2	2	8	3	-1.3										
11	1.2D+1.6W10	Yes	Y		1	1.2	2		3	-1.6										
12	1.2D+1.6W11	Yes	Y		1	1.2	2	.8	3	-1.3										
13	1.2D+1.6W12	Yes	Y		1	1.2	2	1.3	3	8										
14	1.2D+1.0 lce	Yes	Y		1	1.2	6	1												

Checked By: SMS

Load Combinations (Continued)

	Description	So	PDelta	S	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLCI	Fac	BLC	Fac	BLC	Fac
15	1.2D+1.0ICE+1.0W1ICE	Yes	Y		1	1.2	6	1	4	1	5									
16	1.2D+1.0ICE+1.0W2ICE	Yes	Y		1	1.2	6	1	4	.866	5	.5								
17	1.2D+1.0ICE+1.0W3ICE	Yes	Y		1	1.2	6	1	4	.5	5	.866								
18	1.2D+1.0ICE+1.0W4ICE	Yes	Y		1	1.2	6	1	4		5	1								
19	1.2D+1.0ICE+1.0W5ICE	Yes	Y		1	1.2	6	1	4	5	5	.866								
20	1.2D+1.0ICE+1.0W6ICE	Yes	Y		1	1.2	6	1	4	866	5	.5								
21	1.2D+1.0ICE+1.0W7ICE	Yes	Y		1	1.2	6	1	4	-1	5									
22	1.2D+1.0ICE+1.0W8ICE	Yes	Y		1	1.2	6	1	4	866	5	5								
23	1.2D+1.0ICE+1.0W9ICE	Yes	Y		1	1.2	6	1	4	5	5	866								
24	1.2D+1.0ICE+1.0W10ICE	Yes	Y		1	1.2	6	1	4		5	-1								
25	1.2D+1.0ICE+1.0W11ICE	Yes	Y		1	1.2	6	1	4	.5	5	866								
26	1.2D+1.0ICE+1.0W12ICE	Yes	Y		1	1.2	6	1	4	.866	5	5								

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N118	max	1491.532	7	5147.043	17	1675.732	11	-2594.454	10	6108.23	7	10891.094	16
2		min	-1440.813	13	997.25	10	-1586.973	5	-19181.701	17	-6108.62	13	1292.728	9
3	N120	max	1277.026	8	5084.028	21	1526.143	11	877.026	11	5126.496	11	-3361.67	2
4		min	-1381.544	2	1047.118	2	-1524.754	5	-720.052	5	-5125.249	5	-21633.63	21
5	N122	max	1768.308	8	5111.151	25	1510.556	11	18754.051	25	7192.648	3	11145.099	26
6		min	-1715.569	2	1010.036	6	-1600.709	5	2630.071	6	-7192.139	9	1501.093	7
7	Totals:	max	4520.367	8	14950.718	23	4712.431	11						
8		min	-4520.388	2	4315.275	4	-4712.436	5						

Envelope AISC 13th(360-05): LRFD Steel Code Checks

	Member	Shape	Code Check	Lo	LC	Shear Check	Lo	LC	phi*Pphi*Pphi* phi* Eqn
1	M48	PIPE_2.0	.929	53	26	.186	37	16	178532130 18711871H1
2	M44	PIPE_2.0	.908	53	.22	.184	37	24	178532130 18711871H1
3	M40	PIPE_2.0	.907	53	.18	.184	37	20	178532130 18711871H1
4	M43	PIPE_2.0	.860	53	16	.179	34	26	178532130 18711871H1
5	M45	PIPE_2.0	.858	53	21	.102	18	26	178532130 18711871H1
6	M41	PIPE_2.0	.857	53	.17	.102	34	20	178532130 18711871H1
7	M49	PIPE_2.0	.857	53	-25	.106	18	18	178532130 18711871H1
8	M46	PIPE_2.0	.852	53	21	.105	18	17	178532130 18711871H1
9	M38	PIPE_2.0	.852	53	-24	.105	36	23	178532130 18711871H1
10	M42	PIPE_2.0	.850	53	.17	.106	36	26	178532130 18711871H1
11	M47	PIPE_2.0	.847	53	.20	.179	18	18	178532130 18711871H1
12	M39	PIPE_2.0	.830	53	.24	.178	34	22	178532130 18711871H1
13	M3	PIPE_3.5	.798	96	18	.258	96	23	276978750 79537953H1
14	M2	PIPE_3.5	.788	96	26	.254	96	19	276978750 79537953H1
15	M1	PIPE_3.5	.777	96	22	.254	96	15	276978750 79537953H1
16	M62	HSS5x5x5	.739	56.5	19	.102	56.5 y	20	2051217731602 31602 H1
17	M64	HSS5x5x5	.736	56.5	15	.101	56.5 y	15	2051217731602 31602 H1
18	M63	HSS5x5x5	.717	56.5	19	.098	56.5 y	23	2051217731602 31602 H1
19	M22	PIPE_2.0	.682	180	26	.377	180	22	384232130 18711871 H3-6
20	M21	PIPE_2.0	.669	66	15	.372	180	18	384232130 18711871H1
21	M20	PIPE_2.0	.663	66	19	.371	10	26	384232130 18711871H1
22	M53	PIPE_2.0	.053	12	15	.028	12	5	288432130 18711871H1
23	M54	PIPE_2.0	.053	12	23	.028	12	7	288432130 18711871H1

RISA-3D Version 12.0.2 [\...\...\...\...\...\...\Platform Mount Analysis\Rev 0\Risa\Platform.r3d] Page 12

Envelope AISC 13th(360-05): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Lo	LC	Shear Check	Lo	LC	phi*P	phi*P		phi*	Eqn
24	M55	PIPE_2.0	.051	12	19	.028	12	9	2884	32130	1871	.1871	H1
25	M61	PIPE_2.0	.030	45	- 6	.003	45	6	2086	.32130	1871	.1871	H1
26	M59	PIPE_2.0	.030	45	.10	.003	45	10	2086	32130	1871	.1871	H1
27	M57	PIPE_2.0	.030	45	.13	.003	45	13	2086	.32130	1871	.1871	H1

