

December 17, 2019

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re:	Notice of Exempt Modification – Antenna and RRU Add
Property Address:	1210 Highland Ave, Torrington, CT 06790
Applicant:	AT&T Mobility, LLC

Dear Ms. Bachman:

On behalf of AT&T, please accept this application as notification pursuant to R.C.S.A. §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16- 50j-72(b) (2).

AT&T currently maintains a wireless telecommunications facility consisting of nine (9) wireless telecommunication antennas at an antenna center line height of 243-feet on an existing 160-foot monopole, owned by SBA at 8051 Congress Ave, Boca Raton, FL 33487. AT&T now intends to remove three (3) 4' Kathrein 7770 Panel Antennas, each currently installed in position [4] all sectors, and swap these for two (2) 6' DMP65R-BU6DA Panel Antennas, each to be installed in position [4], In Alpha and Gamma, and one (1) 4' CCI DMP65R-BU6DA, in position [4] in Beta. We will also be adding three (3) 6' KMW EPBQ-654L8H6-L2 Panel Antennas in position [3] all sectors. In addition, AT&T intends to add one (1) RRUS-32, one (1) RRUS-4478 B14 in position [3], all sectors, one (1) RRUS-4449 B5/B12 and one (1) RRUS-8843 B2/B66A in position [4] all sectors, for a total of twelve (12) new RRUs. AT&T is also proposing to add (2) Raycap Squid, as well as one (1) fiber line and (4) DC Power Cables to their equipment configuration. All the changes will take place on a new antenna mount.

Attached is a summary of the planned modifications including power density calculations reflecting the change in AT&T's operations at the site. Also included is documentation of the structural sufficiency of the tower to accommodate the revised antenna configuration.

Please accept this letter pursuant to Regulation of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-5l0j-72(b) (2). In accordance with R.C.S.A., a copy of this letter is being sent to Brett Zuraitis – Chief Building Official, City of Torrington, CT at 140 Main Street, Torrington, CT 06790 and Elinor Carbone – Mayor, City of Torrington, CT at 140 Main Street, Torrington, CT 06790. A copy of this letter is being sent to the property owner, SBA Properties Inc.at TAX DEPT 023034, 8051 Congress Ave, Boca Raton, FL 33487 and to the tower company, SBA at 8051 Congress Ave, Boca Raton, FL 33487.

The following is a list of subsequent decisions by the Connecticut Siting Council:

- <u>EM-CING-143-050914</u> New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 1210 Highland Avenue, Torrington, Connecticut.
- <u>EM-CING-143-130122</u> New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 1210 Highland Avenue, Torrington, Connecticut.
- <u>EM-AT&T-143-140730</u> AT&T notice of intent to modify an existing telecommunications facility located at 1210 Highland Avenue, Torrington, Connecticut.

The planned modifications to AT&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72(b) (2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower. AT&T's replacement antennas will be installed at the 243-foot level of the 260-foot Guyed tower.
- 2. The proposed modifications will not involve any changes to ground-mounted equipment and, therefore, will

not require and extension of the site boundary.

- 3. The proposed modifications will not increase the noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative worst-case RF emissions calculation for AT&T's modified facility is provided in the RF Emissions Compliance Report, included in <u>Tab 2</u>.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The tower and its foundation can support AT&T's proposed modifications. (See Structural Analysis Report included in <u>Tab 3</u>).

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes an exempt modification under R.C.S.A. §16-50j-72(b) (2).

Sincerely,

Kristina Cottone

CC w/enclosures: Brett Zuraitis – Chief Building Official, City of Torrington, CT Elinor Carbone – Mayor, City of Torrington, CT SBA Properties Inc. – Property Owners SBA– Tower Company

12/16/19

Memo: No Initial Zoning Decision Found

Upon consulting with the Building Inspector's Secretary for the City of Torrington, it was determined that no initial zoning decision for this tower could be found. Her phone number is (860) 489-2244.

Kristina Cottone Real Estate Specialist | Smartlink, LLC 85 Rangeway Road, Building 3, Suite 102 North Billerica, MA 01862

Interactive Mapping

GIS

CITY OF TORRINGTON CONNECTICUT

GIS & Real Property Information

> City Offices 140 Main Street Torrington, CT 06790 ph 860 489-2228

Property Search

Name: ex. Smith

House No: 1210

Street: HIGHLAND AVE

Unique Parcel Id: ex.90201

Information Updates

GIS Parcels Updated September 2018

Property Info Data Updated Nightly

Current Parcel Count 12,720 +/-

torrington mapxpress net/portal.asp

Detailed Parcel Information

GIS data Download

GIS ID 217/003/013/002

Map Gallery

Parcel ID 217/003/013/002

Unique ID 4278

Owner SBA PROPERTIES INC

Location 1210 HIGHLAND AVE

MAILING ADDRESS TAX DEPT 02303A BOCA RATON FL 33487

Quick Links:

eQuality Property Card Assessor Tax Map FEMA Panels

Scroll Down For Complete Property Detail

PARCEL VALUATIONS

Ammunicand Malue

Assessed Value

w

Copyright 2017 City of Torrington, Connecticut. All rights reserved. All information is intended for your general knowledge only and is not a substitute for contacting the City of Torrington office or other departments listed at this web site. You should promptly consult the specific office or department with any questions. Use of this web site and any information you find through it is subject to the Disclaimer.

Designed and hosted by New England GeoSystems

Interactive Mapping

CITY OF TORRINGTON CONNECTICUT

GIS & Real Property Information

City Offices 140 Main Street Torrington, CT 06790 ph 860 489-2228

Property Search

PARCEL VALUATIONS

GIS data Download

Map Gallery

Name: ex. Smith	Buildings Land	Appraised Value 62096 92508	Assessed Value 43470 64760
1210	TOTAL:	557109	389980
Street: HIGHLAND AVE	PROPERTY INFOR	RMATION	
Unique Parcel Id: ex.90201	Total Acres		6.16
GO	GIS Acres Land Use		Warehouse
Information Updates	Zoning Census Tract		R60
GIS Parcels Updated September 2018	Neighborhood Lot Description		3
Property Info Data Updated Nightly	Lot Utilities		
Current Parcel Count 12,720 +/-	SALE INFORMATI	ON	
	Sale Date		7/14/2000

Copyright 2017 City of Torrington, Connecticut. All rights reserved. All information is intended for your general knowledge only and is not a substitute for contacting the City of Torrington office or other departments listed at this web site. You should promptly consult the specific office or department with any questions. Use of this web site and any information you find through it is subject to the Disclaimer. Designed and hosted by New England GeoSystems

torrington.mapxpress.net/portal.asp

Advanced Search

Contact

CITY OF TORRINGTON CONNECTICUT

GIS & Real Property Information

City Offices 140 Main Street Torrington, CT 06790 ph 860 489-2228

. S Propert

SALE INFORMATION

GIS data Download

Map Gallery

Property Search		
Name: ex. Smith	Sale Date	7/14/2000
	Sale Price	0
	Book / Page	0725/0929
House No: 1210		
Street:	BUILDING AREA	
HIGHLAND AVE	Building Gross - sqft	0
Unique Parcel Id: ex.90201	Living Area - sqft	1484
GO	CONSTRUCTION DETAILS	
	Building Style	
Information Updates	Building Condition	Average
	Number of Rooms	0
GIS Parcels Updated	Number of Bedrooms	0
September 2018	Number of Bathrooms	0
Property Info Data Updated	Stories	1
Nightly	Roof Structure	
Current Parcel Count	Primary Exterior Wall Type	Pre-Cast Concrete
12,720 +/-	Heating/Cooling Type	
	AC_Type	
	Heating Fuel	

Copyright 2017 City of Torrington, Connecticut. All rights reserved. All information is intended for your general knowledge only and is not a substitute for contacting the City of Torrington office or other departments listed at this web site.

You should promptly consult the specific office or department with any questions. Use of this web site and any information you find through it is subject to the Disclaimer. Designed and hosted by New England GeoSystems

Interactive Mapping

CITY OF TORRINGTON CONNECTICUT

GIS & Real Property Information

City Offices 140 Main Street Torrington, CT 06790 ph 860 489-2228

Property Search Name: ex. Smith

CONSTRUCTION DETAILS

GIS data Download

	Building Style	
	Building Condition	Average
House No:	Number of Rooms	0
1210	Number of Bedrooms	0
Street:	Number of Bathrooms	0
HIGHLAND AVE	Stories	1
	Roof Structure	
Unique Parcel Id: ex.90201	Primary Exterior Wall Type	Pre-Cast Concrete
	Heating/Cooling Type	
60	AC_Type	
GO	Heating Fuel	
	Roof Structure	
Information Updates	Primary Exterior Wall Type	Concrete Block
	Heating/Cooling Type	
GIS Parcels Updated	AC_Type	
September 2018	Heating Fuel	
Property Info Data Updated	Roof Structure	
Nightly	Primary Exterior Wall Type	Concrete Block
Current Parcel Count	Heating/Cooling Type	Electric Baseboard
12,720 +/-	AC_Type	Central
	Heating Fuel	Heat Pump

Copyright 2017 City of Torrington, Connecticut. All rights reserved. All information is intended for your general knowledge only and is not a substitute for contacting the City of Torrington office or other departments listed at this web site. You should promptly consult the specific office or department with any questions. Use of this web site and any information you find through it is subject to the Disclaimer. Designed and hosted by New England GeoSystems

Interactive Mapping

Map Gallery

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2014.

Information on the Property Records for the Municipality of Torrington was last updated on 8/9/2019.

Parcel Information

Location:	1210 HIGHLAND AVE UNIT 2	Property Use:	Industrial	Primary Use:	Warehouse
Unique ID:	4278	Map Block Lot:	217/003/013/002	Acres:	6.16
490 Acres:	0.00	Zone:	R60	Volume / Page:	0725/0929
Developers Map / Lot:		Census:	3108-2N		

Value Information

	Appraised Value	Assessed Value
Land	92,508	64,760
Buildings	62,096	43,470
Detached Outbuildings	402,505	281,750
Total	557,109	389,980

Owner's Data	
SBA PROPERTIES INC	
TAX DEPT 02303A	
805 CONGRESS AVE	
BOCA RATON FL 33487	

Building 1

Category:	Industrial	Use:	Warehouse	GLA:	1,484
Stories:	1.00	Construction:	Masonry and Wood Frame	Year Built:	1991

Heating:	Electric Baseboard	Fuel:	Heat Pump	Cooling Percent:	100
Siding:	Concrete Block	Roof Material:	Asphalt	Beds/Units:	0

Special Features

Attached Components

Building 2

	20	
1	15 WH-	16

Category:	Industrial	Use:	Warehouse	GLA:	320
Stories:	1.00	Construction:	Masonry and Wood Frame	Year Built:	1960
Heating:		Fuel:		Cooling Percent:	0
Siding:	Concrete Block	Roof Material:	Asphalt	Beds/Units:	0

Special Features

Attached Components

Building 3

18	
15 IND - LGT-	10
	3

Category:	Industrial	Use:	Light Industrial	GLA:	180
Stories:	1.00	Construction:	Masonry and Wood Frame	Year Built:	2000
Heating:		Fuel:		Cooling Percent:	0

Siding:	Pre-Cast Concrete	Roof Material:	Asphalt	Beds/Units:	0

Special Features

Attached Components

Detached Outbuildings

Туре:	Year Built:	Length:	Width:	Area:
Metal Radio Tower	1991	0.00	0.00	241
Metal Radio Tower	1991	0.00	0.00	261
Metal Radio Tower	1991	0.00	0.00	102

Owner History - Sales

Owner Name	Volume	Page	Sale Date	Deed Type	Valid Sale	Sale Price
SBA PROPERTIES INC	0725	0929	07/14/2000		No	\$0
SBA TOWERS INC	0715	1038	02/03/2000		Yes	\$185,000
GERBI HUGO S - TRUSTEE	0616	0026	05/16/1995		No	\$0

Building Permits

Permit Number	Permit Type	Date Opened	Date Closed	Permit Status	Reason
14-1959	Building	10/02/2014		Closed	ADD 1 REMOTE RADIO UNIT=PP
14-702	Building	04/23/2014		Needs Visit	CABINET/8 KW GENERATOR/ANTENNA
13-5031	Certificate of Completion	06/05/2013		Closed	CERT OF COMPL- 9 ANTENNAS

Permit Number	Permit Type	Date Opened	Date Closed	Permit Status	Reason
13-4676	Commercial	04/24/2013		Closed	REPLC N ANTENNAS ON TWR
13-4008	Building	03/20/2013		Closed	REINFORCE EXISTING 260FT STEEL TOWER STRUCTURE
13-3796	Building	03/05/2013		Closed	3 NEW ANTENNA/SUPPORT EQUIP/ NEW CABINET
08-2294	Commercial	11/07/2008		Closed	REINFORCE TOWER FOND
05-543CO	Certificate of Occupancy	02/22/2006			CO PERMIT #05-543
05-543	Commercial	11/02/2005			ATTACH ANTENNAE
02-493	Commercial	12/18/2002			NEW ANTENNAS
02-206	Commercial	06/03/2002			ADD 2 ANTENNAS
00-334	Commercial	09/25/2000			TELECOMM SHELTER FOR EQUIP

Information Published With Permission From The Assessor

Tower Engineering Solutions Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Post-Mod Structural Analysis Report

Existing 260 ft Pirod Guyed Tower Customer Name: SBA Communications Corp Customer Site Number: CT02303-A-3 Customer Site Name: Torrington 2 CT Carrier Name: AT&T (App#: 92475-3) Carrier Site ID / Name: CT1253 / Torrington Highland Avenue Site Location: 1210 Highland Ave Torrington, Connecticut Litchfield County Latitude: 41.802597 Longitude: -73.164664

Analysis Result:

Max Structural Usage: 97.2% [Pass] Max Foundation Usage: 82.4% [Pass] Additional Usage Caused by New Mount/Mount Modification: N/A

Report Prepared By : Tawfeeq Alajaj

(«н») ES

Tower Engineering Solutions Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Post-Mod Structural Analysis Report

Existing 260 ft Pirod Guyed Tower Customer Name: SBA Communications Corp Customer Site Number: CT02303-A-3 Customer Site Name: Torrington 2 CT Carrier Name: AT&T (App#: 92475-3) Carrier Site ID / Name: CT1253 / Torrington Highland Avenue Site Location: 1210 Highland Ave Torrington, Connecticut Litchfield County Latitude: 41.802597 Longitude: -73.164664

<u>Analysis Result:</u> Max Structural Usage: 97.2% [Pass] Max Foundation Usage: 82.4% [Pass] Additional Usage Caused by New Mount/Mount Modification: N/A

Report Prepared By: Tawfeeq Alajaj

Introduction

The purpose of this report is to summarize the analysis results on the 260 ft Pirod Guyed Tower to support theproposed antennas and transmission lines in addition to those currently installed. Any existing modification isted under Sources of Information was assumed completed and was included in this analysis.

The proposed modification by TES listed under Sources of Information was considered completed and wasincluded in this analysis.

JUULTES OF ILLUITHALIC	
Tower Drawings	All-point Technology Cororation, P.C, Job # CT122160, Dated 01/21/02
Foundation Drawing	All-point Technology Cororation, P.C, Job # CT122160, Dated 01/21/02
Geotechnical Report	FDH Engineering, Inc. (Project No. 12-08779E G1) Geotechnical Evaluation of
	Subsurface Conditions, Dated 10/08/12
Modification Drawings	FDH Engineering, Inc. (Project No. 05-0827E) Modification Drawings for a 260'
	Guyed Tower, Dated 08/29/05
Proposed Modification	TES Job # 73511

Sources of Information

Analysis Criteria

The rigorous analysis was performed in accordance with the requirements and stipulations of the ANSI/TIA/EIA 222-G. In accordance with this standard, the structure was analyzed using **TESTowers**, a proprietary analysis software. The program considers the structure as an elastic 3-D model with second-order effects and temperature effects incorporated in the analysis. The analysis was performed using multiple wind directions.

Wind Speed Used in the Analysis:	Ultimate Design Wind Speed V _{ult} = 116.0 mph (3-Sec. Gust)/ Nominal Design Wind Speed V _{asd} = 93.0 mph (3-Sec. Gust)
Basic Wind Speed with Ice:	50 mph (3-Sec. Gust) with 3/4" radial ice concurrent
Operational Wind Speed:	60 mph + 0" Radial ice
Standard/Codes:	ANSI/TIA/EIA 222-G / 2015 IBC / 2018 Connecticut State
	Building Code
Exposure Category:	C
Structure Class:	II
Topographic Category:	1
Crest Height:	0 ft

This structural analysis is based upon the tower being classified as a Structure Class II; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

Existing Antennas, Mounts and Transmission Lines

The table below summarizes the antennas, mounts and transmission lines that were considered in the analysis as existing on the tower.

Items	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner
1	202.0	1	4" x 20' (8 Element) Dipole		(1) 7/8"	
2	282.0	1	3" x 20' (16 Element) Dipole	(2) Standoff $(9')$ at $262'$	(1) 1 1/4"	Puilding 1
3	275.0	1	2" x 15' Omni	(5) Stanuon (6) at 205	(1) 7/8"	Dulluling T
4	257.0	1	2"x 18' Omnis		(1) 7/8"	
5	266.0	1	TWR 38" x 18"Ø Light	Direct Mount	(1) 0.59"	SBA
6	253.0	1	24" x 24" x 10" Box	Direct Mount	(1) 1/2"	Building 1
-		1	Kathrein 80010764V01 Panel			
-		1	14" x 14" x 3" TMA			
-		2	58" x 11" x 4" Panel			
-	243.0	2	KMW 68" x 12" x 6" Panel			
-		2	14" x 14" x 3" TMA			
-		4	58" x 11" x 4" Panel	(3) T-Frames	(12) 1 5/8" (1) 2, 1 (4" Flav	AT&T
-		1	Raycap DC6-48-60-18-8F Squid		(1) 2- 1/4 Fiex	
-		2	Powerwave 18" x 10" x 2-1/2" TMA			
-	242 5	1	Ericsson 17" x 16" x 6" Radio			
-	242.5	4	Powerwave 18" x 10" x 2-1/2" TMA			
-		2	Ericsson 17" x 16" x 6" Radio			
25	233.0	1	2' Ø x 18' Omni	(1) Standoff (36")	(1) 1 5/8"	Building 1
26	<u>эээ г</u>	1	2' x 8' Omni		(1) 1 1/4"	
27	222.5	1	3" x15' Omni		(1) 7/8"	Duilding 1
28	210.0	1	3" x15' Omni	(3) Standoff (8') at 218.5'	(1) 1 1/4"	Building T
29	210.0	1	3" x15' Omni		(1) 7/8"	
30	222.5	1	2' Ø x 18' Omni		(1) 1 1/4"	Unknown
31	201.0	6	RFS 6" x 4" x 1" TMAs			
วา		2	Amphenal BXA-171063-8BF-EDIN-X -			
52		5	Panel			
33	200.0	3	Amphenal BXA-70063-6CF-EDIN-^ - Panel	(3) 10' T-Frames	(12) 1 5/8"	ITRON
34		3	Amphenal BXA-80063-6CF-EDIN-5 -			
			Panel		(
35	180.0	4	Bay Broadcast antenna	(1) Standoff (41")	(1) 1 5/8"	Unknown
36	178.0	1	8'x1" Omni	() = = ()	(1) 1 1/4"	
37	177.0	1	Andrew 10' x 2" Ø Omni	(1) Standoff (2')	(1) 7/8"	
38	173.0	1	21" x 4" x 7" Box	Direct Mount	(-, -, -	Building 1
39	166.5	1	Andrew 14' x 3" Ø Omni	(1) Standoff (14")	(1) 7/8"	
40	118.0	3	3' x 2' Bay Broadcast antenna	(1) Standoff 20"	(1) 1 5/8"	Unknown
41	83.8	1	3' x 2' Bay Broadcast antenna	(1) Standoff 20"	(1) 7/8"	WAPJ

Proposed Carrier's Final Configuration of Antennas, Mounts and Transmission Lines

Information pertaining to the proposed carrier's final configuration of antennas and transmission lines was provided by SBA Communications Corp. The proposed antennas and lines are listed below.

ltems	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner
7		3	Powerwave - 7770 - Panel			
8		2	KMW - AM-X-CD-16-65-00T-RET - Panel			
9		1	Kathrein - 800 10764 - Panel			
10		3	KMW - EPBQ-654L8H6-L2 - Panel			
11		2	CCI - DMP65R-BU6DA - Panel			
12		1	CCI - DMP65R-BU4DA - Panel	(2) T. Frama	(12) 1 5/8"	
13	245.0	12	Powerwave LGP21401 TMA - TMA/TTA	(3) I-Frame	3" Conduit*	AT&T
14		3	Ericsson RRUS 4478 B14			
15		3	Ericsson RRUS 32 B30			
16		3	Ericsson RRUS 4449 B5/B12			
17		3	Ericsson RRUS 8843 B2 B66A			
18		3	Raycap DC6-48-60-18-8F - OVP			
19		3	Andrew ABT-DFDM-ADBH			

Conduit 1: Holds (1) 7/16" existing Fiber Cable + (2) existing 3/4" DC Cables Conduit 2: Holds (1) Proposed 7/16" Fiber Cable + (2) proposed 3/4" DC Cable

Conduit 3: Holds (2) proposed 3/4" DC Cable

See the attached coax layout for the line placement considered in the analysis.

Analysis Results

The results of the structural analysis, performed for the wind and ice loading and antenna equipment as defined above, are summarized as the following:

Tower Component	Legs	Diagonals	Horizontals	Guy Wires
Max. Usage:	97.2%	94.1%	75.9%	87.4%
Pass/Fail	Pass	Pass	Pass	Pass

Foundations

	Base R	eactions	Inner Anchors		
Reactions (kips)	Axial	Shear	Uplift	Shear	
Analysis Reactions	184.4	1.9	43.8	55.7	

The foundation has been investigated using the supplied documents and soils report and was found adequate. Therefore, no modification to the foundation will be required.

Operational Condition (Rigidity):

Operational characteristics of the tower are found to be within the limits prescribed by ANSI/TIA/EIA 222-G for the installed antennas. The maximum twist/sway at the elevation of the proposed equipment is 0.2407 degrees under the operational wind speed as specified in the Analysis Criteria.

Conclusions

Based on the analysis results, the structure and its foundation will be adequate to safely support the existing and proposed equipment and meet the minimum requirements per the design ANSI/TIA/EIA 222-G standards under a basic wind speed of 93 mph no ice and 50 mph with 3/4" radial ice after the following proposed modification is successfully completed.

- Proposed modification design drawing by **TES** Job # 73511

Pre-Mod Installation Determination

We have also checked this tower to determine if the proposed AT&T equipment loading can be installed prior to the completion of the required modifications. We ran a reduced wind loading case as required by TIA-322 considering a construction period of no more than 6 months.

The tower and foundations passed, so the Carrier can proceed and install their proposed loading prior to the mods completion. Please be aware that this approval is being provided and is based on the method outlined in TIA-322. This approval is not a blanket approval and there is still a risk that the tower will experience a wind event that cannot be predicted by TIA-322 or our Engineers. In the event of an unforeseen wind event, Tower Engineering Solutions will not be liable nor responsible for damage to the tower or the Carriers equipment. Additionally, the tower cannot go beyond the 6 month construction period without the modifications being completed. If the modifications cannot be completed within 6 months from the completed installation of the Carrier's proposed equipment, TES must be notified immediately for further review.

Standard Conditions

- 1. This analysis was performed based on the information supplied to **(TES) Tower Engineering Solutions, LLC.** Verification of the information provided was not included in the Scope of Work for **TES**. The accuracy of the analysis is dependent on the accuracy of the information provided.
- 2. The structural analysis was performance based upon the evidence available at the time of this report. All information provided by the client is considered to be accurate.
- 3. The analyses will be performed based on the codes as specified by the client or based on the best knowledge of the engineering staff of **TES**. In the absence of information to the contrary, all work will be performed in accordance with the latest relevant revision of ANSI/TIA-222. If wind speed and/or ice loads are different from the minimum values recommended by the EIA/TIA-222 standard or other codes, **TES** should be notified in writing and the applicable minimum values provided by the client.
- 4. The configuration of the existing mounts, antennas, coax and other appurtenances were supplied by the customer for the current structural analysis. **TES** has not visited the tower site to verify the adequacy of the information provided. If there is any discrepancy found in the report regarding the existing conditions, **TES** should be notified immediately to evaluate the effect of the discrepancy on the analysis results.
- 5. The client will assume responsibility for rework associated with the differences in initially provided information, including tower and foundation information, existing and/or proposed equipment and transmission lines.
- 6. If a feasibility analysis was performed, final acceptance of changed conditions shall be based upon a rigorous structural analysis.

Structure: CT02303-A-3-SBA

Site Name:	Torrington 2 CT			Code: EIA/TIA-22	2-G	10/17/2019	(((Ħ)))
Туре:	Guyed	Base Shape:	Triangle	Basic WS:	93.00		
Height:	260.00 (ft)	Base Width:	0.00	Basic Ice WS:	50.00		
Base Elev:	0.00 (ft)	Top Width:	3.00	Operational WS:	60.00	Page: 1	Tower Engineering Solutions

		S	Section Properties				Y		
Sect	Leg Merr	nbers	Diagonal Members	Horizontal Members					
1	MOD 1.5"SR+2x2	2x.375L	SOL 5/8" SOLID	SOL 3/4" SOLID			1		
2-5	SOL 1 3/4" SOLI	D	SOL 5/8" SOLID	SOL 3/4" SOLID					
6	SOL 1 3/4" SOLI	D	SOL 5/8" SOLID	PLT 3" x 1/2"		260.00	D.		
7-9	SOL 1 3/4" SOLI	D	SOL 5/8" SOLID	SOL 3/4" SOLID			8		
10-15	SOL 1 1/2" SOLI	D	SOL 9/16" SOLID	SOL 3/4" SOLID	\$22	1 3	mim		
16	SOL 1 1/2" SOLI	D	SOL 9/16" SOLID	CHN C3 x 6		240.00			
17-20	SOL 1 1/2" SOLI	D	SOL 9/16" SOLID	SOL 3/4" SOLID			×.		
21	SOL 1 1/2" SOLI	D	SOL 9/16" SOLID	CHN C3 x 6	S19				
22-23	SOL 1 1/2" SOLI	D	SOL 9/16" SOLID	SOL 3/4" SOLID		220.00			
		Disc	crete Appurtenance	s		220.00			
Attac	ch Force				S18		E E		
Elev ((ft) Elev (ft)	Qty	Description		647	1	milin 🖁		
260.	00 263.00	1	2" x 15' Omni		317	102 50			
260.	00 263.00	1	3" x 20' (16 Element) Dipole	9	S15	132.30			
260.	00 260.00	1	38" x 18"Ø Light			400.00			
260.	00 262.00	1	4" x 20' (8 Element) Dipole			180.00	S E	1	
260.	00 260.00	3	Stand-Off		\$13			\	
257.	00 253.00	1	2"x 18' Omnis					1	
253.	00 253.00	1	24" x 24" x 10" Box			160.00	8 \ E		
245.	00 245.00	3	T- Frame					e \	
245.	00 245.00	3	7770		512			E	
245.	00 245.00	2	AM-X-CD-16-65-00T-RET			140.00		$\langle \rangle$	
245.	00 245.00	1	800 10764			1.0.162		())	
245.	00 245.00	3	EPBQ-654L8H6-L2		S11			$\langle \rangle \rangle$	
245.	00 245.00	2	DMP65R-BU6DA					///	
245.	00 245.00	1	DMP65R-BU4DA			120.00		$\langle \rangle \rangle$	
245.	00 245.00	12	Powerwave LGP21401 IM/	4	\$10		S Q))))	
245.	00 245.00	3	Ericsson RRUS 4478 B14				8		
245.	00 245.00	3	Elicsson RRUS 32 B30	10		100.00		111 4	
240.	00 245.00	3	Elicsson PPLIS 9942 P2 P	12	-		×.	/ ///	8
245.	00 245.00	3	Paycap DC6 49 60 19 95	JOA	23		X	/ //	\
245	00 245.00	3	Andrew ABT-DEDM-ADBH			80.00	8	/ //	\
240.	00 243.00	1	3' Standoff		S8			/ /	11
200.	00 232.00	1	2' Ø x 18' Omni						11
218	50 222.50	1	2" x 18' Omni		36	00.00	1		111
218	50 218.50	3	Stand-Off			60.00	S Star	8	///
218.	50 210.00	1	3" x15' Omni		S4			200	////
218.	50 222.50	1	3" x15' Omni				8	100	////
218.	50 210.00	1	3" x15' Omni			40.00	N N	//	/ ///
218.	50 222.50	1	2' x 8' Omni				200	//	////
201.	00 201.00	6	RFS 6" x 4" x 1" TMAs		53		×		////
200.	00 200.00	3	Amphenal BXA-171063-8B	F-EDIN-X		20.00	8		
200.	00 200.00	3	Amphenal BXA-70063-6CF	-EDIN-^	\$2		100		
200.	00 200.00	3	Amphenal BXA-80063-6CF	-EDIN-5	32		88		
200.	00 200.00	3	10' T-Frames			5.00			
180.	00 180.00	1	Standoff (41")		D	ownload 1	184.44 k		R: 200.00 X
180.	00 180.00	4	Bay Broadcast antenna			Hot	iz 1.87 k		Uplift 43.79
178.	00 178.00	1	8'x1" Omni						Horiz 55.65
177.	00 177.00	1	Andrew 10' x 2" Omni		7/				
177.	00 177.00	1	Standoff (2')						
173.	00 173.00	1	21" x 4" x 7" Box						

Structure: CT02303-A-3-SBA

Site Name:	Torrington 2 CT			Code: EIA/TIA-222	2-G	10/17/2019	(((H)))
Туре:	Guyed	Base Shape:	Triangle	Basic WS:	93.00		
Height:	260.00 (ft)	Base Width:	0.00	Basic Ice WS:	50.00		
Base Elev:	0.00 (ft)	Top Width:	3.00	Operational WS:	60.00	Page: 2	Tower Engineering Solutions

166.50	166.50	1	Andrew 14' x 3" Omni							
166.50	166.50	1	Standoff (17")							
118.00	118.00	1	Standoff 20"							
118.00	118.00	3	Bay Broadcast antenna							
85.00	85.00	1	Standoff 20"							
83.80	83.80	1	Bay Broadcast Antenna							
Linear Appurtenances										
		Lin	ear Appurtenances							
Elev	Elev	Lin	ear Appurtenances							
Elev From (ft)	Elev To (ft)	Lin Qty	ear Appurtenances							
Elev From (ft) 0.00	Elev To (ft) 260.00	Lin Qty 1	ear Appurtenances Description 1 1/4"							
Elev From (ft) 0.00 0.00	Elev To (ft) 260.00 260.00	Lin Qty 1	Description 1 1/4" 7/8"							
Elev From (ft) 0.00 0.00 0.00	Elev To (ft) 260.00 260.00 260.00	Lin Qty 1 1 1	ear Appurtenances Description 1 1/4" 7/8" 7/8"							

0.00	260.00	1	7/8"
0.00	260.00	1	7/8"
0.00	260.00	1	Safety Climb
0.00	253.00	1	1/2"
0.00	245.00	12	1 5/8" Coax
0.00	243.00	3	3" Conduit
0.00	233.00	1	1 5/8"
0.00	222.50	1	1-1/4"
0.00	222.50	1	1-1/4"
0.00	210.00	1	1-1/4"
0.00	210.00	1	7/8"
0.00	200.00	6	1 5/8"
0.00	200.00	6	1 5/8"
0.00	180.00	1	1 5/8"
0.00	178.00	1	1 1/4"
0.00	177.00	1	7/8"
0.00	166.50	1	7/8"
0.00	118.00	1	1 5/8"
0.00	83.80	1	7/8"

Max Guy Wire 87.43% @ 239.333 ft - 5/8 EHS

Structure: CT02303-A-3-SBA															
Site Name:	Site Name: Torrington 2 CT Code: EIA/TIA-222-G 10/17/2019 ((111))														
Туре:	Guyed	Base Shape:	Triangle	Basic WS:	93.00										
Height:	260.00 (ft)	Base Width:	0.00	Basic Ice WS:	50.00		IES								
Base Elev:	0.00 (ft)	Top Width:	3.00	Operational WS:	60.00	Page: 3	Tower Engineering Solutions								

Anchor Drops with Guy Radius - Structure: CT02303-A-3-SBA														
Site Name:	Torrington 2 CT			Code: EIA/TIA-22	2-G	10/17/2019	((H))							
Туре:	Guyed	Base Shape:	Triangle	Basic WS:	93.00									
Height:	260.00 (ft)	Base Width:	0.00	Basic Ice WS:	50.00		IES							
Base Elev:	0.00 (ft)	Top Width:	3.00	Operational WS:	60.00	Page: 4	Tower Engineering Solutions							

Loading Summary													
Structure:	CT02303-A-3-SB	A		Code:	EIA/TIA-222-G	10/17/2019	44.000.N						
Site Name:	Torrington 2 CT			Exposure:	С		((HI))						
Height:	260.00 (ft)			Crest Height:	0.00		EC						
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil								
Gh:	0.85	Topography:	1	Struct Class:	II	Page: 6	Tower Engineering Solutions						

Discrete Appurtenances Properties

		No Ice Ice										
Attach												Vert
Elev	Description	•	Weight	CaAa	Weight	CaAa	Len	Width	Depth	Ka	Orientation	Ecc
260.00	2" x 15' Omni	<u>Qty</u>	<u>(10)</u> 40.00	<u>(ST)</u> 4 500	(ID) 159 55	<u>(SI)</u> 10 145	(In) 180.000	<u>(In)</u> 3.000	<u>(in)</u>	1.00	1 00	3 000
260.00	3" x 20' (16 Element) Dipole	1	60.00	7 520	293.82	20.053	240 000	3 000	3 000	1.00	1.00	3 000
260.00	38" x 18"Ø Light	1	5.00	6.000	27.08	28.084	72 000	1 000	1 000	1.00	1.00	0.000
260.00	4" x 20' (8 Element) Dipole	1	60.00	7 520	293.82	20.004	240.000	3,000	3,000	1.00	1.00	2 000
260.00	Stand-Off	3	400.00	10.000	694 45	19 202	0.000	0.000	0.000	0.75	0.75	0.000
257.00	2"x 18' Omnis	1	55.00	5 400	198 16	12 150	216,000	3,000	3,000	1.00	1.00	-4 000
253.00	24" x 24" x 10" Box	1	20.00	5 600	141.31	7 352	24 000	24 000	10,000	1.00	1.00	0.000
245.00	T- Frame	3	500.00	17 500	1232.81	36 736	0.000	0.000	0.000	0.75	0.75	0.000
245.00	7770	3	35.00	5 500	178.51	6 622	55,000	11 000	5 000	0.80	0.73	0.000
245.00	AM-X-CD-16-65-00T-RET	2	48.50	8 020	218.85	10.953	72 000	11.800	5 900	0.80	0.75	0.000
245.00	800 10764	1	40.80	5 880	174 66	8 129	55 200	11.800	6.000	0.80	1.00	0.000
245.00	EPBO-6541 8H6-1 2	י 3	72.80	13 240	396.68	14 666	73 000	21 000	6 300	0.80	0.69	0.000
245.00	DMP65R-BLI6DA	2	63 30	12 710	367.26	14.000	71 200	20.700	7 700	0.80	0.03	0.000
245.00	DMP65R-BU4DA	1	34.00	6.080	249.63	9 569	48 000	20.700	7 700	0.80	1.00	0.000
245.00	Powerwave I GP21401 TMA	12	14 10	1 290	40.34	2 167	14 400	9 200	2 600	0.80	1.00	0.000
245.00	Friesson RRUS 4478 B14	3	59.40	1.200	102.03	2.107	15,000	13 200	7 300	0.00	0.67	0.000
245.00	Ericsson RRUS 32 B30	3	53.40	2 740	146.49	3 508	27 200	12 100	7.000	0.00	0.67	0.000
245.00	Ericsson REUS 4449 B5/B12	3	71.00	1 970	127.04	2 545	17 900	13 200	9 400	0.80	0.67	0.000
245.00	Ericsson RRUS 8843 B2 B66A	3	72.00	1.640	121.04	2.040	14 900	13 200	10 900	0.80	0.67	0.000
245.00	Baycan DC6-48-60-18-8E	3	31.80	0.920	96 70	1 380	24 000	11 000	11 000	0.00	1.00	0.000
245.00	Andrew ABT-DEDM-ADBH	3	1 10	0.520	3 44	0.252	3 200	1 700	1 600	0.00	1.00	0.000
233.00	3' Standoff	1	40.00	2 630	123 70	8 850	0.000	0.000	0.000	1.00	1.00	0.000
223.00	2' Ø x 18' Omni	1	55.00	5.400	196.69	12 080	216,000	3,000	3,000	1.00	1.00	9,000
218 50	2" x 18' Omni	1	55.00	5.400	195.03	12.000	216.000	3,000	3,000	1.00	1.00	4 000
218.50	Stand-Off	3	350.00	10 000	801 / 8	23 668	0.000	0.000	0.000	0.75	0.75	0.000
218.50	3" x15' Omni	1	40.00	4 500	157.25	10.036	180.000	3,000	3,000	1.00	1.00	-8 500
218.50	3" x15' Omni	1	40.00	4.500	157.25	10.030	180.000	3,000	3.000	1.00	1.00	1 000
218.50	3" x15' Omni	1	40.00	4.500	157.25	10.030	180.000	3,000	3.000	1.00	1.00	-8 500
210.50	2' x 8' Omni	1	25.00	2 400	00.01	5 247	06.000	3.000	3.000	1.00	1.00	4 000
210.00		6	25.00	2.400	27.49	0.652	90.000 6.000	4.000	1,000	0.90	0.67	4.000
201.00	Amphenal BXA-171063-8BE-EDIN-X	3	10.50	2 940	27.40	3,836	48 500	6 100	1.000	0.80	0.84	0.000
200.00		3	17.00	2.940	107.25	8 860	71 000	11 200	5 200	0.00	0.04	0.000
200.00		2	17.00	7.570	197.25	0.009	71.000	11.200	5.200	0.00	0.73	0.000
200.00	10' T-Frames	3	450.00	15 500	811.88	23 513	0.000	0.000	0.000	0.00	0.75	0.000
180.00	Standoff (41")	1	40.00	3 200	121 20	10 554	0.000	0.000	0.000	1.00	1.00	0.000
180.00	Bay Broadcast antenna	1	40.00	1 080	121.29	2 604	13 000	10.000	0.000	1.00	1.00	0.000
178.00	8'v1" Omni	-+	25.00	2 400	86.80	5 187	96.000	3 000	3,000	1.00	1.00	0.000
177.00	Apdrew 10' x 2" Omni	1	25.00	2.400	102.03	6 652	120.000	3.000	3.000	1.00	1.00	0.000
177.00	Standoff (2')	1	25.00	2 200	121.20	7 256	0.000	0.000	0.000	1.00	1.00	0.000
173.00	21" x 4" x 7" Box	1	40.00	2.200	71 70	1 884	21 000	7.000	4 000	1.00	1.00	0.000
166 50	Andrew 14' x 3" Omni	1	40.00	4 200	1/7 22	0.265	168.000	3.000	3.000	1.00	1.00	0.000
166 50	Standoff (17")	1	40.00	2 200	101 20	7 256	0.000	0.000	0.000	1.00	1.00	0.000
112.00	Standoff 20"	1	40.00	2.200	147.00	7.040	0.000	0.000	0.000	1.00	1.00	0.000
118.00	Bay Broadcast antonno	2	40.00	2.200	117.03	17 501	348.000	36,000	2 500	1.00	1.00	0.000
85.00	Standoff 20"	3 1	40.00	2 200	403.39	6.044	0.000	0.000	2.000	1.00	1.00	0.000
82 90	Bay Broadcast Antonna	1	40.00	2.200	2/2 60	20 / 20	228.000	12 000	12 000	1.00	1.00	0.000
03.00		00	0.040.00	1.200	243.00	20.439	220.000	12.000	12.000	1.00	1.00	0.000
	lotals:	99	9,018.80		24,867.11				Number	от Арр	urtenances :	46

Loading Summary													
Structure:	CT02303-A-3-SE	BA		Code:	EIA/TIA-222-G	10/17/2019							
Site Name:	Torrington 2 CT			Exposure:	С	de un so							
Height:	260.00 (ft)			Crest Height:	0.00		l .						
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil)						
Gh:	0.85	Topography:	1	Struct Class:	11	Page: 7 Tower Engineering So	lutions						

Linear Appurtenances Properties

Elev.				M/	Pct	Spread	D	Cluster	Out	0		
10 (ft)	Description	Qty	(in)	(lb/ft)	in Block	On Faces	Arrangement	Dia (in)	or Zone	Spacing (in)	Orientation Factor	Ka Override
260.00	1 1/4"	1	1.55	0.66	100.00	3	Individual NR		Ν	1.00	1.00	
260.00	7/8"	1	1.11	0.52	100.00	3	Individual IR		Ν	1.00	1.00	
260.00	7/8"	1	1.11	0.52	100.00	1	Individual NR		Ν	1.00	1.00	
260.00	7/8"	1	1.11	0.52	100.00	1	Individual NR		Ν	1.00	1.00	
260.00	Safety Climb	1	0.38	0.27	100.00	3	Individual NR		Ν	1.00	1.00	
253.00	1/2"	1	0.65	0.16	100.00	3	Individual NR		Ν	1.00	1.00	
245.00	1 5/8" Coax	12	1.98	1.04	33.30	1	Block		Y	0.50	1.00	
243.00	3" Conduit	3	3.00	1.78	100.00	1	Individual IR		Ν	1.00	1.00	
233.00	1 5/8"	1	1.98	1.04	100.00	3	Individual NR		Ν	1.00	1.00	
222.50	1-1/4"	1	1.25	0.95	100.00	2	Individual NR		Ν	1.00	1.00	
222.50	1-1/4"	1	1.25	0.95	100.00	3	Individual NR		Ν	1.00	1.00	
210.00	1-1/4"	1	1.25	0.95	100.00	1	Individual IR		Ν	1.00	1.00	
210.00	7/8"	1	1.11	0.52	100.00	3	Individual NR		Ν	1.00	1.00	
200.00	1 5/8"	6	1.98	1.04	100.00	1	Individual IR		Ν	0.50	1.00	
200.00	1 5/8"	6	1.98	1.04	50.00	2	Block		Ν	0.50	1.00	
180.00	1 5/8"	1	1.98	1.04	100.00	3	Individual NR		Ν	1.00	1.00	
178.00	1 1/4"	1	1.55	0.66	100.00	2	Individual NR		Ν	1.00	1.00	
177.00	7/8"	1	1.11	0.52	100.00	3	Individual NR		Ν	1.00	1.00	
166.50	7/8"	1	1.11	0.52	100.00	1	Individual NR		Ν	1.00	1.00	
118.00	1 5/8"	1	1.98	1.04	100.00	2	Individual NR		Ν	1.00	1.00	
83.80	7/8"	1	1.11	0.52	100.00	3	Individual NR		Ν	1.00	1.00	
	Elev. To (ft) 260.00 260.00 260.00 260.00 260.00 260.00 260.00 260.00 260.00 260.00 245.00 245.00 245.00 245.00 245.00 200.00 200.00 180.00 177.00 166.50 118.00	Elev. To Description 260.00 1 1/4" 260.00 7/8" 260.00 7/8" 260.00 7/8" 260.00 7/8" 260.00 Safety Climb 253.00 1/2" 245.00 1 5/8" Coax 243.00 3" Conduit 233.00 1 5/8" 222.50 1-1/4" 210.00 1 5/8" 200.00 1 5/8" 200.00 1 5/8" 200.00 1 5/8" 200.00 1 5/8" 200.00 1 5/8" 200.00 1 5/8" 178.00 1 1/4" 177.00 7/8" 166.50 7/8" 118.00 1 5/8" 118.00 1 5/8" 118.00 1 5/8" 118.00 1 5/8"	Elev. To Description Qty 260.00 1 1/4" 1 260.00 7/8" 1 260.00 7/8" 1 260.00 7/8" 1 260.00 7/8" 1 260.00 7/8" 1 260.00 7/8" 1 260.00 7/8" 1 260.00 Safety Climb 1 260.00 Safety Climb 1 260.00 15/8" Coax 12 243.00 3" Conduit 3 233.00 1 5/8" 1 222.50 1-1/4" 1 210.00 1-1/4" 1 210.00 1 5/8" 6 200.00 1 5/8" 1 200.00 1 5/8" 1 178.00 1 1/4" 1 178.00 1 5/8" 1 178.00 1 1/4" 1 177.00 7/8" 1 178.00 1 5/8"<	Elev. To Width Qty 260.00 1 1/4" 1 1.55 260.00 7/8" 1 1.11 260.00 7/8" 1 1.11 260.00 7/8" 1 1.11 260.00 7/8" 1 1.11 260.00 7/8" 1 1.11 260.00 7/8" 1 1.11 260.00 7/8" 1 1.11 260.00 Safety Climb 1 0.38 253.00 1/2" 1 0.65 245.00 1 5/8" Coax 12 1.98 243.00 3" Conduit 3 3.00 233.00 1 5/8" Coax 1 1.98 222.50 1-1/4" 1 1.25 210.00 1-1/4" 1 1.25 210.00 15/8" 6 1.98 200.00 15/8" 1 1.98 180.00 15/8" 1 1.11 166.5	Elev. To Width (in) Weight (ib/t) 260.00 1 1/4" 1 1.55 0.66 260.00 7/8" 1 1.11 0.52 260.00 7/8" 1 1.11 0.52 260.00 7/8" 1 1.11 0.52 260.00 7/8" 1 1.11 0.52 260.00 7/8" 1 1.11 0.52 260.00 Safety Climb 1 0.65 0.16 245.00 1/2" 1 0.65 0.16 245.00 15/8" Coax 12 1.98 1.04 243.00 3" Conduit 3 3.00 1.78 233.00 15/8" 1 1.98 1.04 222.50 1-1/4" 1 1.25 0.95 210.00 15/8" 6 1.98 1.04 200.01 15/8" 6 1.98 1.04 200.01 15/8" 1 1.95 0.66	Elev. To Pet Midth (in) Pet Meight (in) Pet In Block 260.00 1 1/4" 1 1.55 0.66 100.00 260.00 1 /4" 1 1.55 0.66 100.00 260.00 7/8" 1 1.11 0.52 100.00 260.00 7/8" 1 1.11 0.52 100.00 260.00 7/8" 1 1.11 0.52 100.00 260.00 7/8" 1 1.11 0.52 100.00 260.00 Safety Climb 1 0.38 0.27 100.00 253.00 1/2" 1 0.65 0.16 100.00 245.00 15/8" Coax 12 1.98 1.04 33.00 243.00 3"Conduit 3 3.00 1.78 100.00 222.50 1-1/4" 1 1.25 0.95 100.00 222.50 1-1/4" 1 1.25 0.95 100.00 210.00 15/8" <td>Elev. To Pct In Spread On Pace 260.00 1 1/4" 1 1.55 0.66 100.00 3 260.00 7/8" 1 1.11 0.52 100.00 3 260.00 7/8" 1 1.11 0.52 100.00 3 260.00 7/8" 1 1.11 0.52 100.00 3 260.00 7/8" 1 1.11 0.52 100.00 3 260.00 7/8" 1 1.11 0.52 100.00 3 260.00 Safety Climb 1 0.18 0.27 100.00 3 253.00 1/2" 10 0.65 0.16 10.00 3 245.00 15/8" Coax 12 1.98 1.04 30.00 1 243.00 3" Conduit 3 3.00 1.78 10.00 3 222.50 1-1/4" 1 1.25 0.95 10.00 3 20.000</td> <td>Elev. To (ft)DescriptionQtyWidth (in)Weight (ib/ft)BlockSpreat (noBundling (no)260.0011/4"11.550.66100.003Individual NR260.007/8"11.110.52100.003Individual NR260.007/8"11.110.52100.003Individual NR260.007/8"11.110.52100.001Individual NR260.007/8"11.110.52100.003Individual NR260.007/8"11.110.52100.003Individual NR260.007/8"10.380.27100.003Individual NR260.00Safety Climb10.380.27100.003Individual NR260.00Safety Climb10.650.16100.003Individual NR253.001/2"10.650.16100.003Individual NR243.003" Conduit33.001.78100.003Individual NR233.001 5/8"11.250.95100.002Individual NR222.501-1/4"11.250.95100.003Individual NR222.501-1/4"11.250.95100.003Individual NR210.0015/8"61.981.04100.003Individual NR210.001</td> <td>Elev. To (tt)PectorSpread (no)Spread (no)Cluster (no)260.001 /14"11.550.66100.003Individual NR260.007/8"11.110.52100.003Individual NR260.007/8"11.110.52100.003Individual NR260.007/8"11.110.52100.003Individual NR260.007/8"11.110.52100.003Individual NR260.007/8"10.65100.003Individual NR260.00Safety Climb10.65100.003Individual NR260.00Safety Climb10.65100.003Individual NR260.00Safety Climb10.65100.003Individual NR260.00Safety Climb10.65100.003Individual NR260.00Safety Climb10.65100.003Individual NR263.001/2"10.65100.003Individual NR243.003"Conduit11.250.95100.003Individual NR243.003"Conduit11.250.95100.003Individual NR222.501-1/4"11.250.95100.003Individual NR201.001.5/8"61.981.04100.003Individual NR201.001.5</td> <td>Elev. To DescriptionWidth ChyWeight (ib)Pact IncSpread On SpreadCluster DiaOut Of DiaOut Of DiaOut Of DiaOut Of DiaOut DiaOut Of DiaOut Dia<td>Elev. To (ft)DescriptionQt Width (in)Weigh (in)Spread noSpread On Bundling FaceCluste On ArrangemOut Dia ArrangemOut of Space (in)Out of Space (in)260.0011/4"11.550.6610.003Individual NRN1.00260.007/8"11.110.52100.003Individual NRN1.00260.007/8"11.110.52100.001Individual NRN1.00260.007/8"11.110.52100.003Individual NRN1.00260.007/8"10.141.052100.003Individual NRN1.00260.00Safety Climb10.650.16100.003Individual NRN1.00253.001/2"10.6510.16100.003Individual NRN1.00243.003"Conduit33.001.78100.003Individual NRN1.00223.0015/8"11.920.95100.003Individual NRN1.00222.501-1/4"11.250.95100.003Individual NRN1.00222.501-1/4"11.110.52100.003Individual NRN1.00200.0015/8"61.981.04100.003Individual NRN<!--</td--><td>Elev. ToPet WidtSpreadCluster OnOut BandlingOut SpaceSpreadCluster OnOut SpaceSpreadCluster OnOut SpaceSpreadOut SpaceSpreadOut SpaceSpreadOut SpaceSpreadOut SpaceSpreadOut SpaceSpread<!--</td--></td></td></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></td>	Elev. To Pct In Spread On Pace 260.00 1 1/4" 1 1.55 0.66 100.00 3 260.00 7/8" 1 1.11 0.52 100.00 3 260.00 7/8" 1 1.11 0.52 100.00 3 260.00 7/8" 1 1.11 0.52 100.00 3 260.00 7/8" 1 1.11 0.52 100.00 3 260.00 7/8" 1 1.11 0.52 100.00 3 260.00 Safety Climb 1 0.18 0.27 100.00 3 253.00 1/2" 10 0.65 0.16 10.00 3 245.00 15/8" Coax 12 1.98 1.04 30.00 1 243.00 3" Conduit 3 3.00 1.78 10.00 3 222.50 1-1/4" 1 1.25 0.95 10.00 3 20.000	Elev. To (ft)DescriptionQtyWidth (in)Weight (ib/ft)BlockSpreat (noBundling (no)260.0011/4"11.550.66100.003Individual NR260.007/8"11.110.52100.003Individual NR260.007/8"11.110.52100.003Individual NR260.007/8"11.110.52100.001Individual NR260.007/8"11.110.52100.003Individual NR260.007/8"11.110.52100.003Individual NR260.007/8"10.380.27100.003Individual NR260.00Safety Climb10.380.27100.003Individual NR260.00Safety Climb10.650.16100.003Individual NR253.001/2"10.650.16100.003Individual NR243.003" Conduit33.001.78100.003Individual NR233.001 5/8"11.250.95100.002Individual NR222.501-1/4"11.250.95100.003Individual NR222.501-1/4"11.250.95100.003Individual NR210.0015/8"61.981.04100.003Individual NR210.001	Elev. To (tt)PectorSpread (no)Spread (no)Cluster (no)260.001 /14"11.550.66100.003Individual NR260.007/8"11.110.52100.003Individual NR260.007/8"11.110.52100.003Individual NR260.007/8"11.110.52100.003Individual NR260.007/8"11.110.52100.003Individual NR260.007/8"10.65100.003Individual NR260.00Safety Climb10.65100.003Individual NR260.00Safety Climb10.65100.003Individual NR260.00Safety Climb10.65100.003Individual NR260.00Safety Climb10.65100.003Individual NR260.00Safety Climb10.65100.003Individual NR263.001/2"10.65100.003Individual NR243.003"Conduit11.250.95100.003Individual NR243.003"Conduit11.250.95100.003Individual NR222.501-1/4"11.250.95100.003Individual NR201.001.5/8"61.981.04100.003Individual NR201.001.5	Elev. To DescriptionWidth ChyWeight (ib)Pact IncSpread On SpreadCluster DiaOut Of DiaOut Of DiaOut Of DiaOut Of DiaOut DiaOut Of DiaOut 	Elev. To (ft)DescriptionQt Width (in)Weigh (in)Spread noSpread On Bundling FaceCluste On ArrangemOut Dia ArrangemOut of Space (in)Out of Space (in)260.0011/4"11.550.6610.003Individual NRN1.00260.007/8"11.110.52100.003Individual NRN1.00260.007/8"11.110.52100.001Individual NRN1.00260.007/8"11.110.52100.003Individual NRN1.00260.007/8"10.141.052100.003Individual NRN1.00260.00Safety Climb10.650.16100.003Individual NRN1.00253.001/2"10.6510.16100.003Individual NRN1.00243.003"Conduit33.001.78100.003Individual NRN1.00223.0015/8"11.920.95100.003Individual NRN1.00222.501-1/4"11.250.95100.003Individual NRN1.00222.501-1/4"11.110.52100.003Individual NRN1.00200.0015/8"61.981.04100.003Individual NRN </td <td>Elev. ToPet WidtSpreadCluster OnOut BandlingOut SpaceSpreadCluster OnOut SpaceSpreadCluster OnOut SpaceSpreadOut SpaceSpreadOut SpaceSpreadOut SpaceSpreadOut SpaceSpreadOut SpaceSpread<!--</td--></td>	Elev. ToPet WidtSpreadCluster OnOut BandlingOut SpaceSpreadCluster OnOut SpaceSpreadCluster OnOut SpaceSpreadOut SpaceSpreadOut SpaceSpreadOut SpaceSpreadOut SpaceSpreadOut SpaceSpread </td

	Section Forces																	
Stru	cture:	СТ	02303	-A-3-SE	BA				C	Code:		EIA/	/TIA-22	2-G	10/1	7/2019	4	
Site	Name	: Tor	ringto	n 2 CT					E	Expos	ure:	С				YA	(((井)))	
Heid	tht.	260	00 (f	t)					C	Crest	Height	- 0.00)				-	D
Dee	,	0.0	0.00 (f+)	•)							locou	. 0.00	, Stiff Sa					1.5
Bas	e Elev:	0.0			_	_					1455.	D	5011 50	201	2		Tower Engi	neering Solutions
Gh:		0.8	5		Торо	graph	ıy:	1	5	Struct	Class	: 11			F	age: 8	10wei Liigi	icering Solutions
Loa	d Case	: 1.2	2D + 1	.6W No	ormal W	/ind							1.2D	+ 1.6W	93 mph	Wind a	t Normal	To Face
		Wind	Load Fa	actor:	1.60										Wind Ir	nnortan	e Factor	1 00
		Dead	Load Fa	actor:	1.20											nportant		1.00
	Ice	Dead	Load Fa	actor:	0.00										Ice Ir	nportano	e Factor:	1.00
			Total	Total	Ice								lce					
. .	Wind		Flat	Round	Round					lce	Eff	Linear	Linear	Total		Struct	Linear	Total
Sect Sea	Height (ft)	qz (psf)	Area (saft)	Area (saft)	Area (saft)	Sol Ratio	Cf	Df	Dr	Thick (in)	Area (sɑft)	Area (saft)	Area (saft)	Weight (lb)	Weight Ice (lb)	Force (lb)	Force (lb)	Force (lb)
1	2.5	16.00	0.000	3.75	0.00	0.42	2.02	1.00	1.00	0.00	2.50	24.51	0.00	524.8	0.0	109.82	395.31	406.11
2	12.5	16.00	0.000	7.02	0.00	0.15	2.78	1.00	1.00	0.00	4.06	73.53	0.00	1,397.6	0.0	244.90	1231.91	1,476.82
3	30.0	18.49	0.000	9.24	0.00	0.15	2.78	1.00	1.00	0.00	5.32	98.04	0.00	1,850.5	0.0	372.13	1898.11	2,270.25
4	50.0	20.59	0.000	9.24	0.00	0.15	2.78	1.00	1.00	0.00	5.32	98.04	0.00	1,850.5	0.0	414.38	2113.62	2,528.01
5	62.8	21.60	0.000	2.97	0.00	0.17	2.71	1.00	1.00	0.00	1.72	27.78	0.00	557.8	0.0	137.36	628.40	765.77
6	66.3	21.84	0.000	0.54	0.00	0.14	2.80	1.00	1.00	0.00	0.31	5.92	0.00	138.0	0.0	26.05	135.46	161.52
7	68.5	21.99	0.750	1.36	0.00	0.21	2.56	1.00	1.00	0.00	1.54	15.52	0.00	339.6	0.0	118.10	357.58	475.68
8	75.0	22.42	0.000	4.96	0.00	0.16	2.74	1.00	1.00	0.00	2.87	48.81	0.00	954.2	0.0	239.83	1146.22	1,386.05
9	90.0	23.30	0.000	9.24	0.00	0.15	2.78	1.00	1.00	0.00	5.32	96.54	0.00	1,840.4	0.0	468.97	2357.86	2,826.83
10	110.0	24.30	0.000	8.12	0.00	0.13	2.85	1.00	1.00	0.00	4.65	95.86	0.00	1,635.7	0.0	437.78	2443.39	2,881.16
11	130.0	25.17	0.000	8.16	0.00	0.13	2.84	1.00	1.00	0.00	4.67	92.89	0.00	1,619.1	0.0	454.83	2457.64	2,912.47
12	150.0	25.94	0.000	8.12	0.00	0.13	2.85	1.00	1.00	0.00	4.65	92.89	0.00	1,613.3	0.0	467.32	2532.81	3,000.12
13	170.0	26.63	0.000	8.12	0.00	0.13	2.85	1.00	1.00	0.00	4.65	91.11	0.00	1,601.4	0.0	479.79	2553.89	3,033.69
14	185.0	27.11	0.000	4.24	0.00	0.14	2.83	1.00	1.00	0.00	2.43	41.65	0.00	790.0	0.0	253.58	1196.36	1,449.94
15	191.3	27.30	0.000	1.23	0.00	0.16	2.74	1.00	1.00	0.00	0.71	10.41	0.00	218.9	0.0	/1.8/	301.19	373.06
16	195.0	27.41	0.383	2.46	0.00	0.18	2.66	1.00	1.00	0.00	1.80	20.83	0.00	502.6	0.0	178.52	604.85	783.36
17	198.8	27.03	0.000	1.41	0.00	0.18	2.00	1.00	1.00	0.00	0.82	10.41	0.00	230.1	0.0	61.34	303.04	384.98
10	210.0	21.00	0.000	0.12	0.00	0.13	2.00	1.00	1.00	0.00	4.00	49.98	0.00	1,230.3	0.0	511.02	1210.00	1,971.30
20	230.0	20.00	0.000	1 16	0.00	0.15	2.00	1.00	1.00	0.00	4.05	43.21	0.00	1,103.0	0.0	72 /0	156.05	228.45
20	243.8	28.73	0.000	0 08	0.00	0.15	2.70	1.00	1.00	0.00	1 3/	3.57	0.00	256.1	0.0	131 96	114 18	246 14
22	247.5	28.83	0.000	2 10	0.00	0.22	2.52	1.00	1.00	0.00	1 21	246	0.00	185 4	0.0	133.82	69.45	203 27
23	255.0	29.01	0.000	4.24	0.00	0.14	2.83	1.00	1.00	0.00	2.43	4.54	0.00	372.0	0.0	271.30	129.00	400.31
	_00.0	20.01	0.000		0.00	01	1.00			0.00	20			21,032.7	0.0	5		31,986.52

Section Forces																		
Str	ucture:	СТ	02303	-A-3-SE	3A				(Code:		EIA/	TIA-22	2-G	10/1	7/2019	4	
Site	Name	: Tor	ringto	n 2 CT					E	Expos	ure:	С				YA	(((井))	
Hei	aht:	260) 00 (f	t)					(Crest	Heiaht	: 0.00					т	DT
Por			00 (ft)	-)						Sito C		ייייייייייייייייייייייייייייייייייייי	Stiff Sc	,il				1.5
Dat	Sase Elev. $0.000(n)$ She Ca									ass.								
Gn:	Gh: 0.85 Topography: 1 Struct Cl									Class	: 11			P	age: 9			
Loa	d Case	: 1.2	2D + 1	.6W 60	° Wind								1.2	D + 1.6V	V 93 mph	Wind a	at 60° Fr	om Face
		Wind I	Load Fa	actor:	1.60										Wind Ir	nportano	e Factor:	1.00
		Dead I	Load Fa	actor:	1.20											npontant		1.00
	Ice	Dead I	Load Fa	actor:	0.00										Ice Ir	nportano	e Factor:	1.00
			Total	Total	lce								lce					
-	Wind		Flat	Round	Round					Ice	Eff	Linear	Linear	Total		Struct	Linear	Total
Sec	Height (ft)	qz (psf)	Area (sɑft)	Area (sɑft)	Area (sɑft)	Sol Ratio	Cf	Df	Dr	Thick (in)	Area (sɑft)	Area (sɑft)	Area (sɑft)	Weight (lb)	Weight Ice (lb)	Force (lb)	Force (lb)	Force (lb)
1	2.5	16.00	0.000	3.75	0.00	0.42	2.02	0.80	1.00	0.00	2.50	24.51	0.00	524.8	0.0	109.82	395.31	505.13
2	12.5	16.00	0.000	7.02	0.00	0.15	2.78	0.80	1.00	0.00	4.06	73.53	0.00	1,397.6	0.0	244.90	1231.91	1,476.82
3	30.0	18.49	0.000	9.24	0.00	0.15	2.78	0.80	1.00	0.00	5.32	98.04	0.00	1,850.5	0.0	372.13	1898.11	2,270.25
4	50.0	20.59	0.000	9.24	0.00	0.15	2.78	0.80	1.00	0.00	5.32	98.04	0.00	1,850.5	0.0	414.38	2113.62	2,528.01
5	62.8	21.60	0.000	2.97	0.00	0.17	2.71	0.80	1.00	0.00	1.72	27.78	0.00	557.8	0.0	137.36	628.40	765.77
6	66.3	21.84	0.000	0.54	0.00	0.14	2.80	0.80	1.00	0.00	0.31	5.92	0.00	138.0	0.0	26.05	135.46	161.52
7	68.5	21.99	0.750	1.36	0.00	0.21	2.56	0.80	1.00	0.00	1.39	15.52	0.00	339.6	0.0	106.64	357.58	464.22
8	75.0	22.42	0.000	4.96	0.00	0.16	2.74	0.80	1.00	0.00	2.87	48.81	0.00	954.2	0.0	239.83	1146.22	1,386.05
9	90.0	23.30	0.000	9.24	0.00	0.15	2.78	0.80	1.00	0.00	5.32	96.54	0.00	1,840.4	0.0	468.97	2357.86	2,826.83
10	110.0	24.30	0.000	8.12	0.00	0.13	2.85	0.80	1.00	0.00	4.65	95.86	0.00	1,635.7	0.0	437.78	2443.39	2,881.16
11	130.0	25.17	0.000	8.16	0.00	0.13	2.84	0.80	1.00	0.00	4.67	92.89	0.00	1,619.1	0.0	454.83	2457.64	2,912.47
12	150.0	25.94	0.000	8.12	0.00	0.13	2.85	0.80	1.00	0.00	4.65	92.89	0.00	1,613.3	0.0	467.32	2532.81	3,000.12
13	170.0	26.63	0.000	8.12	0.00	0.13	2.85	0.80	1.00	0.00	4.65	91.11	0.00	1,601.4	0.0	479.79	2553.89	3,033.69
14	185.0	27.11	0.000	4.24	0.00	0.14	2.83	0.80	1.00	0.00	2.43	41.65	0.00	790.0	0.0	253.58	1196.36	1,449.94
15	191.3	27.30	0.000	1.23	0.00	0.16	2.74	0.80	1.00	0.00	0.71	10.41	0.00	218.9	0.0	71.87	301.19	373.06
16	195.0	27.41	0.383	2.46	0.00	0.18	2.66	0.80	1.00	0.00	1.72	20.83	0.00	502.6	0.0	170.92	604.85	775.77
17	198.8	27.53	0.000	1.41	0.00	0.18	2.66	0.80	1.00	0.00	0.82	10.41	0.00	235.1	0.0	81.34	303.64	384.98
18	210.0	27.85	0.000	8.12	0.00	0.13	2.85	0.80	1.00	0.00	4.65	49.98	0.00	1,230.3	0.0	501.62	1469.68	1,971.30
19	230.0	28.38	0.000	8.12	0.00	0.13	2.85	0.80	1.00	0.00	4.65	43.21	0.00	1,163.8	0.0	511.24	1310.00	1,821.25
20	241.3	20.07	0.000	1.10	0.00	0.15	2.70	0.80	1.00	0.00	0.67	5.07	0.00	100.0	0.0	110.90	11110.001	228.45
21	243.0	20.13	0.707	0.98	0.00	0.22	2.52	0.80	1.00	0.00	1.19	3.57	0.00	200.1	0.0	122 00	60 AF	231.05
22	247.0	20.03	0.000	2.10	0.00	0.13	2.03	0.00	1.00		1.21 2.43	2.40 4.54	0.00	372.0	0.0	271 20	120 00	203.27
23	200.0	20.01	0.000	4.24	0.00	0.14	2.00	0.00	1.00	0.00	2.43	4.04	0.00	21,032.7	0.0	<u></u>	123.00	32,051.37

Section Forces																		
Stru	cture:	СТ	02303	-A-3-SE	3A				(Code:		EIA/	TIA-22	2-G	10/1	7/2019		
Site	Name	: Tor	ringto	n 2 CT					E	Expos	ure:	С				YA	(((井)))	
Heid	iht.	260	00 (f	t)					0	Crest	Height	- 0.00				1	-	DC
Dee			00 (ft)	-)							lace	. 0.00	Stiff Sc	.ii				1.5
Das	Base Elev: 0.000 (ii) Sile C									1455.	D	Sun Sc	/11	4		Tower Engi	neering Solutions	
Gh:	ih: 0.85 Topography: 1 Struct Clas									Class	: 11			Pa	age: 10	To not Engl	atornig sonanons	
Loa	d Case	: 1.2	2D + 1	.6W 90	° Wind								1.2	D + 1.6V	V 93 mph	Wind a	at 90° Fr	om Face
		Wind I	Load Fa	actor:	1.60										Wind Ir	nportano	e Factor:	1.00
		Dead I	Load Fa	actor:	1.20											nportant		1.00
	lce	Dead I	Load Fa	actor:	0.00										Ice Ir	nportano	ce Factor:	1.00
			Total	Total	lce								lce					
-	Wind		Flat	Round	Round					Ice	Eff	Linear	Linear	Total		Struct	Linear	Total
Sect Sec	Height (ft)	qz (nsf)	Area (soft)	Area (soft)	Area (saft)	Sol Ratio	Cf	Df	Dr	Thick (in)	Area (soft)	Area (soft)	Area (saft)	Weight (Ib)	Weight Ice (lb)	Force (lb)	Force (lb)	Force (lb)
1	2.5	16.00	0.000	3.75	0.00	0.42	2.02	0.85	1.00	0.00	2.50	24.51	0.00	524.8	0.0	109.82	395.31	505.13
2	12.5	16.00	0.000	7.02	0.00	0.15	2.78	0.85	1.00	0.00	4.06	73.53	0.00	1.397.6	0.0	244.90	1231.91	1.476.82
3	30.0	18.49	0.000	9.24	0.00	0.15	2.78	0.85	1.00	0.00	5.32	98.04	0.00	1,850.5	0.0	372.13	1898.11	2,270.25
4	50.0	20.59	0.000	9.24	0.00	0.15	2.78	0.85	1.00	0.00	5.32	98.04	0.00	1,850.5	0.0	414.38	2113.62	2,528.01
5	62.8	21.60	0.000	2.97	0.00	0.17	2.71	0.85	1.00	0.00	1.72	27.78	0.00	557.8	0.0	137.36	628.40	765.77
6	66.3	21.84	0.000	0.54	0.00	0.14	2.80	0.85	1.00	0.00	0.31	5.92	0.00	138.0	0.0	26.05	135.46	161.52
7	68.5	21.99	0.750	1.36	0.00	0.21	2.56	0.85	1.00	0.00	1.43	15.52	0.00	339.6	0.0	109.50	357.58	467.08
8	75.0	22.42	0.000	4.96	0.00	0.16	2.74	0.85	1.00	0.00	2.87	48.81	0.00	954.2	0.0	239.83	1146.22	1,386.05
9	90.0	23.30	0.000	9.24	0.00	0.15	2.78	0.85	1.00	0.00	5.32	96.54	0.00	1,840.4	0.0	468.97	2357.86	2,826.83
10	110.0	24.30	0.000	8.12	0.00	0.13	2.85	0.85	1.00	0.00	4.65	95.86	0.00	1,635.7	0.0	437.78	2443.39	2,881.16
11	130.0	25.17	0.000	8.16	0.00	0.13	2.84	0.85	1.00	0.00	4.67	92.89	0.00	1,619.1	0.0	454.83	2457.64	2,912.47
12	150.0	25.94	0.000	8.12	0.00	0.13	2.85	0.85	1.00	0.00	4.65	92.89	0.00	1,613.3	0.0	467.32	2532.81	3,000.12
13	170.0	26.63	0.000	8.12	0.00	0.13	2.85	0.85	1.00	0.00	4.65	91.11	0.00	1,601.4	0.0	479.79	2553.89	3,033.69
14	185.0	27.11	0.000	4.24	0.00	0.14	2.83	0.85	1.00	0.00	2.43	41.65	0.00	790.0	0.0	253.58	1196.36	1,449.94
15	191.3	27.30	0.000	1.23	0.00	0.16	2.74	0.85	1.00	0.00	0.71	10.41	0.00	218.9	0.0	71.87	301.19	373.06
16	195.0	27.41	0.383	2.46	0.00	0.18	2.66	0.85	1.00	0.00	1.74	20.83	0.00	502.6	0.0	172.82	604.85	777.67
17	198.8	27.53	0.000	1.41	0.00	0.18	2.66	0.85	1.00	0.00	0.82	10.41	0.00	235.1	0.0	81.34	303.64	384.98
18	210.0	27.85	0.000	8.12	0.00	0.13	2.85	0.85	1.00	0.00	4.65	49.98	0.00	1,230.3	0.0	501.62	1469.68	1,971.30
19	230.0	28.38	0.000	8.12	0.00	0.13	2.85	0.85	1.00	0.00	4.65	43.21	0.00	1,163.8	0.0	511.24	1310.00	1,821.25
20	241.3	28.67	0.000	1.16	0.00	0.15	2.78	0.85	1.00	0.00	0.67	5.07	0.00	155.5	0.0	72.40	156.05	228.45
21	243.8	28.73	0.767	0.98	0.00	0.22	2.52	0.85	1.00	0.00	1.23	3.57	0.00	256.1	0.0	120.64	114.18	234.82
22	247.5	28.83	0.000	2.10	0.00	0.13	2.83	0.85	1.00	0.00	1.21	2.46	0.00	185.4	0.0	133.82	69.45	203.27
23	255.0	29.01	0.000	4.24	0.00	0.14	2.83	0.85	1.00	0.00	2.43	4.54	0.00	3/2.0	0.0	2/1.30	129.00	400.31
														21,032.7	0.0	J		ა∠,∪ວ9.91

Section Forces Structure: CT02303-A-3-SBA Code: FIA/TIA-222-G 10/17/2019																		
Str	ucture:	СТС)2303	-A-3-SE	3A				C	ode:		EIA/	/TIA-22	2-G	10/1	7/2019	4	
Sit	e Name:	: Tor	ringto	n 2 CT					E	xpos	ure:	С				YA	((#))	
Hei	aht:	260).00 (f	t)					C	Crest	Heiaht	t: 0.00)			1,	ΙIT	DT
Ra		0.0	00 (ft)	-)					Site Class: D - Stiff Soil									
Dd	Chi 0.95 Tenegraphy 1										·	Tower Engi	peering Solutions					
Gh	Gh: 0.85 Topography: 1									struct	Class	: 11			Pa	age: 11	To not Elign	leering bolations
Loa	ad Case	: 1.2	2D + 1	.0Di + 1	1.0Wi N	lorma	l Win	d			1.2	2D + 1.	0Di + '	1.0Wi 50	mph Wir	nd at No	ormal Fr	om Face
		Wind L	_oad Fa	actor:	1.00										Wind Ir	nnortano	e Factor	1 00
		Dead L	_oad Fa	actor:	1.20										Willia II	nportant		1.00
	Ice	Dead L	_oad Fa	actor:	1.00										Ice Ir	nportano	e Factor:	1.00
			Total	Total	Ice								Ice					
	Wind Flat Round Round Ice Ice Ice Ice												Total		Struct	Linear	Total	
Sec	t Height	qz (psf)	Area	Area	Area	Sol Patio	Cf	Df	Dr	Thick	Area	Area	Area	Weight	Weight	Force	Force	Force
1	2.5	(psi)	0.000	(3411)	(Sqit)	0.01	1.04	1.00	1.00	1 1 6	(3411)	29.45	10.21	1 450 7	025.0	67.00	24.22	(0)
2	2.0	4.62	0.000	9.00	0.24 18.61	0.91	1.94	1.00	1.00	1.10	0.09	28.43	19.31	1,450.7	3268.6	131.85	21.22	520.62
- 3	30.0	5.34	0.000	35.68	26.45	0.53	1.00	1.00	1.00	1.30	25.05	125.35	84 19	6 703 8	4853.3	212 62	599.35	811 97
4	50.0	5.95	0.000	37.07	27.84	0.54	1.85	1.00	1.00	1.56	26.41	126.39	88.61	7.043.7	5193.2	247.02	657.38	904.40
5	62.8	6.24	0.000	12.56	9.59	0.65	1.78	1.00	1.00	1.60	9.79	35.95	25.69	2,154.6	1596.8	92.56	152.00	244.57
6	66.3	6.31	0.000	2.22	1.68	0.54	1.85	1.00	1.00	1.61	1.58	7.67	5.50	513.0	374.9	15.71	43.19	58.90
7	68.5	6.36	0.750	5.41	4.05	0.57	1.83	1.00	1.00	1.61	4.69	20.12	14.48	1,276.3	936.7	46.23	106.56	152.78
8	75.0	6.48	0.000	21.05	16.09	0.62	1.79	1.00	1.00	1.63	15.97	63.36	45.94	3,771.0	2816.8	157.78	304.34	462.12
9	90.0	6.73	0.000	38.76	29.52	0.57	1.83	1.00	1.00	1.66	28.12	126.15	89.49	7,370.2	5529.8	294.33	710.77	1,005.10
10	110.0	7.02	0.000	38.23	30.12	0.56	1.83	1.00	1.00	1.69	27.60	125.92	89.67	7,226.3	5590.6	302.10	750.37	1,052.47
11	130.0	7.28	0.000	38.78	30.63	0.57	1.83	1.00	1.00	1.72	28.16	123.33	86.02	7,201.1	5581.9	318.14	744.74	1,062.88
12	150.0	7.50	0.000	39.18	31.07	0.57	1.82	1.00	1.00	1.75	28.58	123.66	87.26	7,303.2	5689.9	332.00	763.66	1,095.66
13	170.0	7.70	0.000	39.57	31.46	0.58	1.82	1.00	1.00	1.77	28.99	122.17	82.91	7,273.2	5671.8	344.98	755.58	1,100.56
14	185.0	7.84	0.000	20.99	16.75	0.61	1.80	1.00	1.00	1.78	15.84	57.29	32.67	3,487.4	2697.4	189.52	314.04	503.56
15	191.3	7.89	0.000	5.05	3.82	0.59	1.81	1.00	1.00	1.79	3.73	14.33	8.20	929.4	710.5	45.30	84.03	129.33
16	195.0	7.92	0.383	11.00	8.55	0.67	1.78	1.00	1.00	1.79	9.06	28.67	16.42	2,014.8	1512.2	108.51	137.81	246.32
17	198.8	7.96	0.000	6.14	4.73	0.72	1.78	1.00	1.00	1.80	5.07	14.34	8.23	999.6	764.5	60.97	58.52	119.49
18	210.0	8.05	0.000	40.25	32.13	0.59	1.81	1.00	1.00	1.80	29.69	65.34	60.16	5,350.9	4120.6	368.19	464.15	832.34
19	230.0	8.20	0.000	40.55	32.42	0.59	1.81	1.00	1.00	1.82	30.01	58.68	41.89	4,886.9	3/23.1	378.73	383.46	762.19
20	241.3	8.29	0.000	5.98	4.82	0.70	1.78	1.00	1.00	1.83	4.86	7.01	4.58	648.3	492.7	60.76	33.31	94.07
21	243.8	8.31	0.767	0.72	5.74	0.87	1.89	1.00	1.00	1.83	7.12	4.57	4.58	820.9	564.8	94.96	10.71	105.67
22	247.5	0.33 8 3 2	0.000	21.54	0.00	0.02	1.79	1.00	1.00	1.03	0.03 16.45	2.40	9.17	1 555 0	1183.0	200 79	66.24	276.02
20	200.0	0.50	0.000	21.04	17.50	0.03	1.13	1.00	1.00	1.04	10.45	4.04	10.20	85.434.7	64402 (00.24	11.769.95

Section Forces Structure: CT02303-A-3-SBA Code: EIA/TIA-222-G 10/17/2010																		
Stru	cture:	СТ)2303	-A-3-SE	3A				C	code:		EIA/	TIA-22	2-G	10/1	7/2019	4	
Site	Name:	Tor	ringto	n 2 CT					E	xpos	ure:	С				YA	((#))	
Heid	aht:	260).00 (f	t)					C	Crest	Heiaht	t: 0.00				1,	llт	DT
Pag	, o Elov <i>u</i>	0.0	00 (ft)	-)					- -	Sito C	lace							
Das											ass.		Sun Su	711	4		Tower Engi	neering Solutions
Gh:		0.8	5		Торо	grapr	iy:	1	<u> </u>	struct	Class	: 11			Pa	ige: 12	To not Elign	leering beranons
Loa	d Case	: 1.2	2D + 1	.0Di + ′	1.0Wi 6	0° Wi	nd					1.2D ·	+ 1.0D)i + 1.0W	/i 50 mph	Wind a	at 60° Fr	om Face
		Wind I	Load Fa	actor:	1.00										Wind Ir	nportano	e Factor:	1.00
		Dead I	Load Fa	actor:	1.20													
	lce	Dead I	_oad Fa	actor:	1.00										Ice Ir	nportano	e Factor:	1.00
			Total	Total	Ice								Ice					
	Wind		Flat	Round	Round					lce	Eff	Linear	Linear	Total		Struct	Linear	Total
Sect Sea	Height (ft)	qz (psf)	Area (saft)	Area (saft)	Area (sɑft)	Sol Ratio	Cf	Df	Dr	Inick (in)	Area (saft)	Area (saft)	Area (saft)	Weight (lb)	Weight Ice (lb)	Force (lb)	Force (lb)	Force (lb)
1	2.5	4.62	0.000	9.00	5.24	0.91	1.94	0.80	1.00	1.16	8.89	28.45	19.31	1.450.7	925.9	67.90	21.22	89.12
2	12.5	4.62	0.000	25.63	18.61	0.51	1.89	0.80	1.00	1.36	17.73	92.77	57.85	4,666.2	3268.6	131.85	388.77	520.62
3	30.0	5.34	0.000	35.68	26.45	0.53	1.87	0.80	1.00	1.49	25.05	125.35	84.19	6,703.8	4853.3	212.62	599.35	811.97
4	50.0	5.95	0.000	37.07	27.84	0.54	1.85	0.80	1.00	1.56	26.41	126.39	88.61	7,043.7	5193.2	247.02	657.38	904.40
5	62.8	6.24	0.000	12.56	9.59	0.65	1.78	0.80	1.00	1.60	9.79	35.95	25.69	2,154.6	1596.8	92.56	152.00	244.57
6	66.3	6.31	0.000	2.22	1.68	0.54	1.85	0.80	1.00	1.61	1.58	7.67	5.50	513.0	374.9	15.71	43.19	58.90
7	68.5	6.36	0.750	5.41	4.05	0.57	1.83	0.80	1.00	1.61	4.54	20.12	14.48	1,276.3	936.7	44.75	106.56	151.30
8	75.0	6.48	0.000	21.05	16.09	0.62	1.79	0.80	1.00	1.63	15.97	63.36	45.94	3,771.0	2816.8	157.78	304.34	462.12
9	90.0	6.73	0.000	38.76	29.52	0.57	1.83	0.80	1.00	1.66	28.12	126.15	89.49	7,370.2	5529.8	294.33	710.77	1,005.10
10	110.0	7.02	0.000	38.23	30.12	0.56	1.83	0.80	1.00	1.69	27.60	125.92	89.67	7,226.3	5590.6	302.10	750.37	1,052.47
11	130.0	7.28	0.000	38.78	30.63	0.57	1.83	0.80	1.00	1.72	28.16	123.33	86.02	7,201.1	5581.9	318.14	744.74	1,062.88
12	150.0	7.50	0.000	39.18	31.07	0.57	1.82	0.80	1.00	1.75	28.58	123.66	87.26	7,303.2	5689.9	332.00	763.66	1,095.66
13	170.0	7.70	0.000	39.57	31.40	0.58	1.02	0.80	1.00	1.77	20.99	57.20	02.91	2 4 97 4	2607.4	344.98	700.00	1,100.50
14	100.0	7.04	0.000	20.99	2 92	0.61	1.00	0.00	1.00	1.70	2 72	1/ 22	9 20	3,407.4	2097.4	169.02	94.02	120.22
15	191.5	7.09	0.000	11 00	3.02 8.55	0.59	1.01	0.80	1.00	1.79	8.08	28.67	16.42	2 014 8	1512.2	107 59	137.81	245.40
17	198.8	7.96	0.000	6 14	4 73	0.72	1.78	0.80	1.00	1.75	5.07	14 34	8.23	999.6	764.5	60.97	58 52	119 49
18	210.0	8.05	0.000	40.25	32.13	0.59	1.70	0.80	1.00	1.80	29.69	65.34	60.16	5 350 9	4120.6	368 19	464 15	832.34
19	230.0	8.20	0.000	40.55	32.42	0.59	1.81	0.80	1.00	1.82	30.01	58.68	41.89	4.886.9	3723.1	378.73	383.46	762.19
20	241.3	8.29	0.000	5.98	4.82	0.70	1.78	0.80	1.00	1.83	4.86	7.01	4.58	648.3	492.7	60.76	33.31	94.07
21	243.8	8.31	0.767	6.72	5.74	0.87	1.89	0.80	1.00	1.83	6.97	4.57	4.58	820.9	564.8	92.92	10.71	103.63
22	247.5	8.33	0.000	10.60	8.50	0.62	1.79	0.80	1.00	1.83	8.03	2.46	9.17	787.5	602.0	102.04	37.77	139.80
23	255.0	8.38	0.000	21.54	17.30	0.63	1.79	0.80	1.00	1.84	16.45	4.54	16.26	1,555.9	1183.9	209.78	66.24	276.02
														85,434.7	64402.0)	-	11,765.50

Section Forces																		
Stru	cture:	СТ)2303	-A-3-SE	3A				C	code:		EIA/	TIA-22	2-G	10/1	7/2019	4	
Site	Name:	Tor	ringto	n 2 CT					E	xpos	ure:	С				YA	((#))	
Heid	aht:	260).00 (f	t)					C	Crest	Heiaht	t: 0.00					llт	DT
Pag	, o Elov <i>u</i>	0.0	00 (ft)	-)					- -	Sito C	lace		sil					
Das											ass.		Sun Su	711	4		Tower Engi	neering Solutions
Gh:		0.8	5		Торо	grapr	iy:	1	2	struct	Class	: 11			Pa	age: 13	ron er Engn	leering beranons
Loa	d Case	: 1.2	2D + 1	.0Di + 1	1.0Wi 9	0° Wi	nd					1.2D ·	+ 1.0D)i + 1.0W	/i 50 mph	Wind a	at 90° Fr	om Face
		Wind I	Load Fa	actor:	1.00										Wind Ir	nportano	e Factor:	1.00
		Dead I	Load Fa	actor:	1.20											•		
	Ice	Dead I	_oad Fa	actor:	1.00										Ice Ir	nportano	e Factor:	1.00
			Total	Total	Ice								Ice					
•	Wind		Flat	Round	Round	<u> </u>				Ice	Eff	Linear	Linear	Total		Struct	Linear	Total
Sect Sea	Height (ft)	qz (psf)	Area (sɑft)	Area (sɑft)	Area (sɑft)	Soi Ratio	Cf	Df	Dr	(in)	Area (sɑft)	Area (sɑft)	Area (sɑft)	(lb)	weight Ice (lb)	Force (lb)	Force (lb)	Force (lb)
1	2.5	4.62	0.000	9.00	5.24	0.91	1.94	0.85	1.00	1.16	8.89	28.45	19.31	1.450.7	925.9	67.90	21.22	89.12
2	12.5	4.62	0.000	25.63	18.61	0.51	1.89	0.85	1.00	1.36	17.73	92.77	57.85	4,666.2	3268.6	131.85	388.77	520.62
3	30.0	5.34	0.000	35.68	26.45	0.53	1.87	0.85	1.00	1.49	25.05	125.35	84.19	6,703.8	4853.3	212.62	599.35	811.97
4	50.0	5.95	0.000	37.07	27.84	0.54	1.85	0.85	1.00	1.56	26.41	126.39	88.61	7,043.7	5193.2	247.02	657.38	904.40
5	62.8	6.24	0.000	12.56	9.59	0.65	1.78	0.85	1.00	1.60	9.79	35.95	25.69	2,154.6	1596.8	92.56	152.00	244.57
6	66.3	6.31	0.000	2.22	1.68	0.54	1.85	0.85	1.00	1.61	1.58	7.67	5.50	513.0	374.9	15.71	43.19	58.90
7	68.5	6.36	0.750	5.41	4.05	0.57	1.83	0.85	1.00	1.61	4.57	20.12	14.48	1,276.3	936.7	45.12	106.56	151.67
8	75.0	6.48	0.000	21.05	16.09	0.62	1.79	0.85	1.00	1.63	15.97	63.36	45.94	3,771.0	2816.8	157.78	304.34	462.12
9	90.0	6.73	0.000	38.76	29.52	0.57	1.83	0.85	1.00	1.66	28.12	126.15	89.49	7,370.2	5529.8	294.33	710.77	1,005.10
10	110.0	7.02	0.000	38.23	30.12	0.56	1.83	0.85	1.00	1.69	27.60	125.92	89.67	7,226.3	5590.6	302.10	750.37	1,052.47
11	130.0	7.28	0.000	38.78	30.63	0.57	1.83	0.85	1.00	1.72	28.16	123.33	86.02	7,201.1	5581.9	318.14	744.74	1,062.88
12	150.0	7.50	0.000	39.18	31.07	0.57	1.82	0.85	1.00	1.75	28.58	123.66	87.26	7,303.2	5689.9	332.00	763.66	1,095.66
13	170.0	7.70	0.000	39.57	31.46	0.58	1.82	0.85	1.00	1.77	28.99	122.17	82.91	7,273.2	5671.8	344.98	755.58	1,100.56
14	185.0	7.84	0.000	20.99	16.75	0.61	1.80	0.85	1.00	1.78	15.84	57.29	32.67	3,487.4	2697.4	189.52	314.04	503.56
15	191.3	7.89	0.000	5.05	3.82	0.59	1.81	0.85	1.00	1.79	3.73	14.33	8.20	929.4	/10.5	45.30	84.03	129.33
16	195.0	7.92	0.383	11.00	8.55	0.67	1.78	0.85	1.00	1.79	9.00	28.67	16.42	2,014.8	1512.2	107.82	137.81	245.63
10	198.8	7.90	0.000	0.14	4.73	0.72	1.70	0.85	1.00	1.00	20.60	14.34	0.23	999.0 5 250.0	104.5	269.10	20.02	022.24
10	210.0	8 20	0.000	40.25	32.13	0.59	1.01	0.00	1.00	1.00	29.09	58 68	/1 80	1 886 0	3723 1	378 73	383.46	762 10
20	230.0	8 20	0.000	5 02	4 82	0.59	1 78	0.05	1.00	1.02	4 86	7 01	4 5 8	6/18 2	102 T	60.76	333.40	02.19
21	243.8	8 31	0 767	6.72	5 74	0.70	1.89	0.85	1.00	1.83	7.01	4 57	4 58	820 Q	564.8	93.43	10 71	104 14
22	247.5	8.33	0.000	10.60	8.50	0.62	1.79	0.85	1.00	1.83	8.03	2 46	9 17	787.5	602 0	102 04	37 77	139.80
23	255.0	8.38	0.000	21.54	17.30	0.63	1.79	0.85	1.00	1.84	16.45	4.54	16.26	1,555.9	1183.9	209.78	66.24	276.02
-														85,434.7	64402.0	5		11,766.61

	Force/Stress Compression Summary Structure: CT02303-A-3-SBA Code: EIA/TIA-222-G 10/17/2019														
St	ructure:	CT02303-A-3-SB	4		Code:	EIA	/TIA-	222-	G	1	0/17/2	019			
Sit	te Name:	Torrington 2 CT			Exposure:	С					YA		((井))		
He	eiaht:	260.00 (ft)		Crest Height	t: 0.0										
Ba	so Flov:	0.000 (ft)		Site Class:	D.	Stiff	Soil			-			1.5		
		0.000 (11)	Towowenhow	4	Che Class.		Oun	001			Deer		Tower Engi	eering Solutions	
Gr	n:	0.85	Topograpny:	1	Struct Class	: 11					Page	9:14	rower bligh	itering solutions	
				L	EG MEMBERS										
	_					_			~ 0/		_	Mem			
Sect	Top Elev	Member	Force (kips)	Lo	oad Case	Len (ft)	X	racing Y	g % Z	KL/R	Fy (ksi)	Cap (kips)	Leg Use %	Controls	
1	5 MOD	- 1.5"SR+2x2x.375L	-66.67	1.2D + 1.0D	i + 1.0Wi 60° Wind	1.76	100	100	100	41.28	50.00	124.16	53.7	Member X	
2	20 SOL -	1 3/4" SOLID	-64.85	1.2D + 1.0D	i + 1.0Wi 60° Wind	2.39	100	100	100	65.52	50.00	79.08	82.0	Member X	
3	40 SOL -	1 3/4" SOLID	-64.63	1.2D + 1.0D	i + 1.0Wi 60° Wind	2.33	100	100	100	64.00	50.00	80.23	80.6	Member X	
4	60 SOL -	1 3/4" SOLID	-59.85	1.2D + 1.0D	i + 1.0Wi Normal	2.33	100	100	100	64.00	50.00	80.23	74.6	Member X	
5	65.66 SOL -	1 3/4" SOLID	-67.43	1.2D + 1.6W	/ Normal Wind	2.50	100	100	100	68.57	50.00	76.75	87.9	Member X	
6	66.87 SOL -	1 3/4" SOLID	-67.42	1.2D + 1.6W	/ Normal Wind	1.21	100	100	100	33.13	50.00	99.89	67.5	Member X	
7	70.04 SOL -	1 3/4" SOLID	-64.53	1.2D + 1.6W	/ Normal Wind	3.17	50	50	50	43.43	50.00	94.29	68.4	Member X	
8	80 SOL -	1 3/4" SOLID	-68.62	1.2D + 1.6W	/ Normal Wind	2.32	100	100	100	63.71	50.00	80.44	85.3	Member X	
9	100 SOL -	1 3/4" SOLID	-51.52	1.2D + 1.0D	i + 1.0Wi Normal	2.33	100	100	100	64.00	50.00	80.23	64.2	Member X	
10	120 SOL -	1 1/2" SOLID	-51.42	1.2D + 1.0D	i + 1.0Wi 60° Wind	2.33	100	100	100	74.66	50.00	52.90	97.2	Member X	
11	140 SOL -	1 1/2" SOLID	-47.70	1.2D + 1.0D	i + 1.0Wi 60° Wind	2.33	100	100	100	74.66	50.00	52.90	90.2	Member X	
12	160 SOL -	1 1/2" SOLID	-37.28	1.2D + 1.0D	i + 1.0Wi 60° Wind	2.33	100	100	100	74.66	50.00	52.90	70.5	Member X	
13	180 SOL -	1 1/2" SOLID	-37.64	1.2D + 1.0D	i + 1.0Wi 60° Wind	2.33	100	100	100	74.66	50.00	52.90	71.2	Member X	
14	190 SOL -	1 1/2" SOLID	-35.34	1.2D + 1.0D	i + 1.0Wi Normal	2.33	100	100	100	74.66	50.00	52.90	66.8	Member X	
15	192.5 SOL -	1 1/2" SOLID	-41.07	1.2D + 1.6W	/ Normal Wind	2.50	50	50	50	40.00	50.00	70.74	58.1	Member X	
16	197.5 SOL -	1 1/2" SOLID	-48.58	1.2D + 1.6W	/ Normal Wind	2.50	50	50	50	40.00	50.00	70.74	68.7	Member X	
17	200 SOL -	1 1/2" SOLID	-47.68	1.2D + 1.6W	/ Normal Wind	2.50	65	65	65	52.00	50.00	65.25	73.1	Member X	
18	220 SOL -	1 1/2" SOLID	-39.47	1.2D + 1.6W	/ Normal Wind	2.33	100	100	100	74.66	50.00	52.90	74.6	Member X	
19	240 SOL -	1 1/2" SOLID	-33.11	1.2D + 1.6W	/ Normal Wind	2.33	100	100	100	74.66	50.00	52.90	62.6	Member X	
20	242.5 SOL -	1 1/2" SOLID	-32.59	1.2D + 1.6W	/ Normal Wind	2.50	100	100	100	80.00	50.00	49.80	65.4	Member X	
21	245 SOL -	1 1/2" SOLID	-23.45	1.2D + 1.6W	/ Normal Wind	2.50	100	100	100	80.00	50.00	49.80	47.1	Member X	
22	250 SOL -	1 1/2" SOLID	-13.71	1.2D + 1.6W	/ Normal Wind	2.17	100	100	100	69.33	50.00	55.96	24.5	Member X	
23	260 SOL -	1 1/2" SOLID	-7.93	1.2D + 1.6W	/ Normal Wind	2.33	100	100	100	74.66	50.00	52.90	15.0	Member X	

MEMBEDC

	-		_				_			_	Mem			Shear	Bear		
0 4	Тор	Manahan	Force		Len	Br	acing	1%		Fy	Cap	Num	Num	Cap	Cap	Use	C
Sect	Elev	wemper	(KIPS)	Load Case	(11)	<u>×</u>	ľ	2	KL/R	(KSI)	(kips)	Boits	Holes	(kips)	(KIPS)	%	Controis
1	5										0.00	0	0				
2	20	SOL - 3/4" SOLID	-0.14	1.2D + 1.6W 60° Wind	3.00	100	100	100	134.40	50.00	5.53	0	0			3	Member X
3	40	SOL - 3/4" SOLID	-0.37	1.2D + 1.6W Normal Wind	3.00	100	100	100	134.40	50.00	5.53	0	0			7	Member X
4	60	SOL - 3/4" SOLID	-1.32	1.2D + 1.6W Normal Wind	3.00	100	100	100	134.40	50.00	5.53	0	0			24	Member X
5	65.6	SOL - 3/4" SOLID	-4.19	1.2D + 1.6W 90° Wind	3.00	100	100	100	134.40	50.00	5.53	0	0			76	Member X
6	66.8	PLT - 3" x 1/2"	-0.01	1.2D + 1.6W 90° Wind	1.50	100	100	100	87.50	36.00	32.48	0	0			0	Member Y
7	70.0										0.00	0	0				
8	80	SOL - 3/4" SOLID	-3.67	1.2D + 1.6W Normal Wind	3.00	100	100	100	134.40	36.00	5.53	0	0			66	Member X
9	100	SOL - 3/4" SOLID	-1.62	1.2D + 1.6W Normal Wind	3.00	100	100	100	134.40	50.00	5.53	0	0			29	Member X
10	120	SOL - 3/4" SOLID	-0.54	1.2D + 1.6W Normal Wind	3.00	100	100	100	134.40	50.00	5.53	0	0			10	Member X
11	140	SOL - 3/4" SOLID	-0.68	1.2D + 1.6W 60° Wind	3.00	100	100	100	134.40	50.00	5.53	0	0			12	Member X
12	160	SOL - 3/4" SOLID	-1.19	1.2D + 1.6W Normal Wind	3.00	100	100	100	134.40	50.00	5.53	0	0			22	Member X
13	180	SOL - 3/4" SOLID	-0.80	1.2D + 1.6W Normal Wind	3.00	100	100	100	134.40	50.00	5.53	0	0			15	Member X
14	190	SOL - 3/4" SOLID	-1.32	1.2D + 1.6W Normal Wind	3.00	100	100	100	134.40	50.00	5.53	0	0			24	Member X
15	192.										0.00	0	0				
16	197.	CHN - C3 x 6	-3.37	1.2D + 1.6W Normal Wind	3.00	100	100	100	87.17	36.00	38.22	0	0			9	Member Y
17	200	SOL - 3/4" SOLID	-2.24	1.2D + 1.6W Normal Wind	3.00	100	100	100	134.40	50.00	5.53	0	0			40	Member X
18	220	SOL - 3/4" SOLID	-0.65	1.2D + 1.6W Normal Wind	3.00	100	100	100	134.40	50.00	5.53	0	0			12	Member X
19	240	SOL - 3/4" SOLID	-0.15	1.2D + 1.6W 90° Wind	3.00	100	100	100	134.40	50.00	5.53	0	0			3	Member X
20	242.	SOL - 3/4" SOLID	-3.01	1.2D + 1.6W 60° Wind	3.00	100	100	100	134.40	50.00	5.53	0	0			54	Member X
21	245	CHN - C3 x 6	-5.70	1.2D + 1.6W 90° Wind	3.00	100	100	100	87.17	36.00	38.22	0	0			15	Member Y
22	250	SOL - 3/4" SOLID	-0.68	1.2D + 1.6W 60° Wind	3.00	100	100	100	134.40	50.00	5.53	0	0			12	Member X
23	260	SOL - 3/4" SOLID	-0.71	1.2D + 1.6W 90° Wind	3.00	100	100	100	134.40	50.00	5.53	0	0			13	Member X
Force/Stress Compression Summary																	
----------------------------------	-----------------	---------------	---------------	----------------	--------------------------------------	--	--	--	--								
Structure:	CT02303-A-3-SE	A	Code:	EIA/TIA-222-G	10/17/2019												
Site Name:	Torrington 2 CT		Exposure:	С	🔊 decinot												
Height:	260.00 (ft)		Crest Height:	0.00													
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil													
Gh:	0.85	Topography: 1	Struct Class:		Page: 15 Tower Engineering Solutions												

Sect	Top Elev	Member	Force (kips)	Load Case	Len (ft)	Bi X	racing Y	ן % Z	KL/R	Fy (ksi)	Mem Cap (kips)	Num Bolts	Num Holes	Shear Cap (kips)	Bear Cap (kips)	Use %	Controls
1	5	SOL - 5/8" SOLID	-3.05	1.2D + 1.0Di + 1.0Wi Normal	2.26	50	50	50	78.26	50.00	8.82	0	0			35	Member X
2	20	SOL - 5/8" SOLID	-0.80	1.2D + 1.6W 90° Wind	3.83	50	50	50	132.75	50.00	3.93	0	0			20	Member X
3	40	SOL - 5/8" SOLID	-1.30	1.2D + 1.6W 90° Wind	3.80	50	50	50	131.56	50.00	4.00	0	0			32	Member X
4	60	SOL - 5/8" SOLID	-2.88	1.2D + 1.6W 90° Wind	3.80	50	50	50	131.56	50.00	4.00	0	0			72	Member X
5	65.6	SOL - 5/8" SOLID	-0.68	1.2D + 1.6W Normal Wind	3.91	50	50	50	135.18	50.00	3.79	0	0				T-Only
6	66.8	SOL - 5/8" SOLID	-0.02	1.2D + 1.6W 90° Wind	1.93	100	100	100	103.70	50.00	6.29	0	0			0	Member X
7	70.0	SOL - 5/8" SOLID	-2.20	1.2D + 1.6W Normal Wind	4.36	50	50	50	151.00	50.00	3.04	0	0				T-Only
8	80	SOL - 5/8" SOLID	-0.73	1.2D + 1.6W Normal Wind	3.79	50	50	50	131.33	50.00	4.02	0	0				T-Only
9	100	SOL - 5/8" SOLID	-3.77	1.2D + 1.6W Normal Wind	3.80	50	50	50	131.56	50.00	4.00	0	0			94	Member X
10	120	SOL - 9/16" SOLID	-1.60	1.2D + 1.6W Normal Wind	3.80	50	50	50	145.97	50.00	2.63	0	0			61	Member X
11	140	SOL - 9/16" SOLID	-1.91	1.2D + 1.6W 90° Wind	3.80	50	50	50	145.97	50.00	2.63	0	0			73	Member X
12	160	SOL - 9/16" SOLID	-2.46	1.2D + 1.6W Normal Wind	3.80	50	50	50	145.97	50.00	2.63	0	0			94	Member X
13	180	SOL - 9/16" SOLID	-1.80	1.2D + 1.6W Normal Wind	3.80	50	50	50	145.97	50.00	2.63	0	0			68	Member X
14	190	SOL - 9/16" SOLID	-1.96	1.2D + 1.6W Normal Wind	3.80	50	50	50	145.97	50.00	2.63	0	0			75	Member X
15	192.	SOL - 9/16" SOLID	-1.13	1.2D + 1.6W Normal Wind	3.91	50	50	50	149.98	50.00	2.50	0	0				T-Only
16	197.	SOL - 9/16" SOLID	-0.56	1.2D + 1.6W Normal Wind	3.91	50	50	50	149.98	50.00	2.50	0	0				T-Only
17	200	SOL - 9/16" SOLID	-0.99	1.2D + 1.6W 60° Wind	3.91	50	50	50	149.98	50.00	2.50	0	0				T-Only
18	220	SOL - 9/16" SOLID	-1.45	1.2D + 1.6W Normal Wind	3.80	50	50	50	145.97	50.00	2.63	0	0			55	Member X
19	240	SOL - 9/16" SOLID	-1.16	1.2D + 1.6W 60° Wind	3.80	50	50	50	145.97	50.00	2.63	0	0			44	Member X
20	242.	SOL - 9/16" SOLID	-0.63	1.2D + 1.6W 60° Wind	3.91	50	50	50	149.98	50.00	2.50	0	0				T-Only
21	245	SOL - 9/16" SOLID	-0.68	1.2D + 1.6W 60° Wind	3.91	50	50	50	149.98	50.00	2.50	0	0				T-Only
22	250	SOL - 9/16" SOLID	-1.51	1.2D + 1.6W 90° Wind	3.70	50	50	50	142.12	50.00	2.78	0	0			54	Member X
23	260	SOL - 9/16" SOLID	-1.56	1.2D + 1.6W 90° Wind	3.80	50	50	50	145.97	50.00	2.63	0	0			59	Member X

	Force/Stress Tension Summary									
Str Sit He	ucture: e Name: ight:	CT02303-A-3-SB/ Torrington 2 CT 260.00 (ft)	Ą	Code: Exposure: Crest Height:	EIA/TIA-222-G C 0.00	10/17/	/2019	(((111))) T	22	
Ba	se Elev:	0.000 (ft)		Site Class:	D - Stiff Soil	Z				
Gh	:	0.85	Topography: 1	Struct Class:		Ρας	ge: 16	Tower Engin	neering Solutions	
				LEG MEMBERS						
Sect	Top Elev	Member	Force (kips)	Load	Case	Fy (ksi)	Mem Cap (kips)	Leg Use %	Controls	
1	5					0	0.00			
2	20					0	0.00			
3	40 60					0	0.00			
5	65 667					0	0.00			
6	66.875					0	0.00			
7	70.042	SOL - 1 3/4" SOLID	6.49	1.2D + 1.6W 60° Wind		50	108.24	6.0	Member	
8	80	SOL - 1 3/4" SOLID	8.43	1.2D + 1.6W 60° Wind		50	108.24	7.8	Member	
9	100					0	0.00			
10	120					0	0.00			
11	140					0	0.00			
12	160					0	0.00			
13	180					0	0.00			
14	190					0	0.00			
15	192.5					0	0.00			
16	197.5	SOL - 1 1/2" SOLID	8.79	1.2D + 1.6W 60° Wind		50	79.52	11.1	Member	
17	200	SOL - 1 1/2" SOLID	14.88	1.2D + 1.6W 60° Wind		50	79.52	18.7	Member	
18	220	SOL - 1 1/2" SOLID	12.45	1.2D + 1.6W 60° Wind		50	79.52	15.7	Member	
19	240	SOL - 1 1/2" SOLID	27.44	1.2D + 1.6W 60° Wind		50	79.52	34.5	Mombor	
20	242.0	SOL - 1 1/2 SOLID	10.37	1 2D + 1.6W 60° Wind		50	79.52	23.1 14.2	Member	
∠ I 22	240	SOL - 1 1/2 SOLID	11.33	1 2D + 1.6W 60° Wind		50	79.52	14.3	Member	
23	260	SOL - 1 1/2" SOLID	7 35	1.2D + 1.6W 60° Wind		50	79.52	9.2	Member	

LIODIZONITAL	MEMDEDC
HURIZUNIAI	

						Mem			Shear	Bear	B.S.		
	Тор		Force	•	Fy	Сар	Num	Num	Сар	Сар	Сар	Use	
Sect	Elev	Member	(kips)	Load Case	(ksi)	(kips)	Bolts	Holes	(kips)	(kips)	(kips)	%	Controls
1	5	SOL - 3/4" SOLID	6.27	1.2D + 1.0Di + 1.0Wi No	50	19.88	0	0				31.5	Member
2	20	SOL - 3/4" SOLID	6.27	1.2D + 1.0Di + 1.0Wi No	50	19.88	0	0				31.5	Member
3	40	SOL - 3/4" SOLID	0.60	1.2D + 1.6W 60° Wind	50	19.88	0	0				3.0	Member
4	60	SOL - 3/4" SOLID	1.46	1.2D + 1.6W 60° Wind	50	19.88	0	0				7.3	Member
5	65.667	SOL - 3/4" SOLID	3.14	1.2D + 1.0Di + 1.0Wi 60	50	19.88	0	0				15.8	Member
6	66.875	PLT - 3" x 1/2"	0.05	1.2D + 1.6W Normal Wi	36	48.60	0	0				0.1	Member
7	70.042	SOL - 3/4" SOLID			36	0.00	0	0					
8	80	SOL - 3/4" SOLID	2.66	1.2D + 1.0Di + 1.0Wi 60	36	14.31	0	0				18.5	Member
9	100	SOL - 3/4" SOLID	1.66	1.2D + 1.6W 60° Wind	50	19.88	0	0				8.3	Member
10	120	SOL - 3/4" SOLID	0.65	1.2D + 1.6W 60° Wind	50	19.88	0	0				3.3	Member
11	140	SOL - 3/4" SOLID	0.78	1.2D + 1.6W Normal Wi	50	19.88	0	0				3.9	Member
12	160	SOL - 3/4" SOLID	1.31	1.2D + 1.6W 60° Wind	50	19.88	0	0				6.6	Member
13	180	SOL - 3/4" SOLID	0.89	1.2D + 1.6W 60° Wind	50	19.88	0	0				4.5	Member
14	190	SOL - 3/4" SOLID	1.15	1.2D + 1.6W Normal Wi	50	19.88	0	0				5.8	Member
15	192.5	SOL - 3/4" SOLID			50	0.00	0	0					
16	197.5	CHN - C3 x 6	2.24	1.2D + 1.6W 60° Wind	36	57.02	0	0				3.9	Member
17	200	SOL - 3/4" SOLID	0.92	1.2D + 1.6W Normal Wi	50	19.88	0	0				4.6	Member
18	220	SOL - 3/4" SOLID	0.70	1.2D + 1.6W 60° Wind	50	19.88	0	0				3.5	Member
19	240	SOL - 3/4" SOLID	0.24	1.2D + 1.6W Normal Wi	50	19.88	0	0				1.2	Member
20	242.5	SOL - 3/4" SOLID	1.79	1.2D + 1.6W 60° Wind	50	19.88	0	0				9.0	Member
21	245	CHN - C3 x 6	0.78	1.2D + 1.6W Normal Wi	36	57.02	0	0				1.4	Member
22	250	SOL - 3/4" SOLID	0.73	1.2D + 1.6W Normal Wi	50	19.88	0	0				3.7	Member
23	260	SOL - 3/4" SOLID	0.77	1.2D + 1.6W 60° Wind	50	19.88	0	0				3.9	Member

			F	orce/Stre	ess Te	ensio	on Su	mma	iry					
Str	ucture:	CT02303-A-3-SBA	4		Code	e:	E	EIA/TIA	-222-0	3	10/17/	/2019	4	
Sit	e Name [.]	Torrington 2 CT			Fxnd	osure	. ((((井)))	
	aht.	260.00 (#)			Cros		~~~ ``					1	` `	
пе	ight:	260.00 (11)			Cres	пе	gnt: C	0.00					- I F	
Ba	se Elev:	0.000 (ft)			Site	Clas	s: [D - Stif	f Soil		Z			\Box
Gh	:	0.85	Topograph	y: 1	Stru	ct Cla	ass:	I			Pag	je: 17	Tower Engi	neering Solutions
	DIAGONAL MEMBERS													
Sect	Top Elev	Member	Force (kips)	Load C	ase	Fy (ksi)	Mem Cap (kips)	Num Bolts	Num Holes	Shear Cap (kips)	Bear Cap (kips)	B.S. Cap (kips)	Use %	Controls
1	5	SOL - 5/8" SOLID	0.00			50	0.00	0	0					
2	20	SOL - 5/8" SOLID	0.88	1.2D + 1.6W 9	0° Wind	50	13.81	0	0				6.4	Member
3	40	SOL - 5/8" SOLID	0.87	1.2D + 1.6W 9	0° Wind	50	13.81	0	0				6.3	Member
4	60	SOL - 5/8" SOLID	2.53	1.2D + 1.6W 9	0° Wind	50	13.81	0	0				18.4	Member
5	65.667	SOL - 5/8" SOLID	5.68	1.2D + 1.6W 9	0° Wind	50	13.81	0	0				41.2	Member
6	66.875	SOL - 5/8" SOLID	0.08	1.2D + 1.0Di +	1.0Wi 90	50	13.81	0	0				0.6	Member
7	70.042	SOL - 5/8" SOLID	0.00	1.2D + 1.0Di +	1.0Wi Nc	50	13.81	0	0					Member
8	80	SOL - 5/8" SOLID	7.32	1.2D + 1.6W 9	0° Wind	50	13.81	0	0				53.0	Member
9	100	SOL - 5/8" SOLID	3.23	1.2D + 1.6W 9	0° Wind	50	13.81	0	0				23.4	Member
10	120	SOL - 9/16" SOLID	1.11	1.2D + 1.6W 9	0° Wind	50	11.18	0	0				9.9	Member
11	140	SOL - 9/16" SOLID	1.95	1.2D + 1.6W 9	0° Wind	50	11.18	0	0				17.4	Member
12	160	SOL - 9/16" SOLID	2.31	1.2D + 1.6W 6	0° Wind	50	11.18	0	0				20.6	Member
13	180	SOL - 9/16" SOLID	1.43	1.2D + 1.6W 6	0° Wind	50	11.18	0	0				12.8	Member
14	190	SOL - 9/16" SOLID	2.21	1.2D + 1.6W N	ormal Wi	50	11.18	0	0				19.8	Member
15	192.5	SOL - 9/16" SOLID	3.76	1.2D + 1.6W N	ormal Wi	50	11.18	0	0				33.6	Member
16	197.5	SOL - 9/16" SOLID	3.48	1.2D + 1.6W 9	0° Wind	50	11.18	0	0				31.1	Member
17	200	SOL - 9/16" SOLID	4.85	1.2D + 1.6W 9	0° Wind	50	11.18	0	0				43.4	Member
18	220	SOL - 9/16" SOLID	1.25	1.2D + 1.6W 6	0° Wind	50	11.18	0	0				11.2	Member
19	240	SOL - 9/16" SOLID	0.94	1.2D + 1.6W 6	0° Wind	50	11.18	0	0				8.4	Member
20	242.5	SUL - 9/16" SOLID	8.23	1.2D + 1.6W 9)° Wind	50	11.18	0	0				73.6	Member
21	245	SOL - 9/16" SOLID	6.48	1.2D + 1.6W 9	0° Wind	50	11.18	0	0				57.9	Member
22	250	SOL - 9/16" SOLID	1.58	1.2D + 1.6W 9	0° Wind	50	11.18	0	0				14.1	Member
23	260	SOL - 9/16" SOLID	1.47	1.2D + 1.6W 6	J° Wind	50	11.18	0	0				13.1	Member

			Sı	upport F	orces Su	mmary			
Structure: Site Name:	CT02303-A-3-SBA Torrington 2 CT	A		C Ex	ode: xposure:	EIA/TIA C	-222-G	10/17/2019 *	(« # »)
Height:	260.00 (ft)			C	rest Heigh	t: 0.00		X	I EC
Base Elev:	0.000 (ft)			Si	ite Class:	D - Stiff	Soil	Z	
Gh:	0.85	Topograp	hy:	1 S f	truct Class	s: II		Page: 18	Tower Engineering Solutions
Load Case	9	No	ode	FX (kips)	FY (kips)	FZ (kips)	(-) = Uplift	(+) = Down	
1.2D + 1.6W Nor	rmal Wind		1	0.00	110.47	-1.15			
			A1	0.00	-1.30	1.26			
			A1D A1a	-40.22	-37.30	-24.80			
1.2D + 1.6W 60°	Wind		1	-1.62	89.69	-0.95			
			A1	-1.05	-6.63	8.70			
			A1a	7.00	-42.50	-27.28			
1.2D + 1.6W 90°	· · · · · · · · · · · · · · · · · · ·		1	1.46	103.45	-0.30			
			A1	-1.48	-23.11	29.14			
			A1b	-48.58	-43.79	-27.16			
			A1a	1.98	-2.32	-1.69			
1.2D + 1.0Di + 1	.0Wi Normal Wind		1	0.00	184.44	-0.17			
			A1	0.00	-8.29	16.39			
			A1b	-30.75	-22.99	-19.38			
			A1a	30.75	-23.01	-19.38			
1.2D + 1.0Di + 1	.0Wi 60° Wind		1	-0.18	183.70	-0.11			
			A1	-1.38	-13.22	22.59			
			A1b	-36.83	-27.98	-21.27			
			A1a	18.87	-13.23	-12.48			
1.2D + 1.0Di + 1	.0Wi 90° Wind		1	-0.21	183.87	0.00			
			A1	-1.74	-18.02	29.35			
			A1b	-35.74	-26.55	-19.87			
			A1a	15.17	-9.59	-9.49			
Max Reac	tions (kips)	Base	And	hor 1					
Ve	ertical	184.44		43.79					
Horiz	zontal	1.87		55.65					

	Cable Forces Summary										
Structure:	CT02303-A-3-SB	Α		Code:	EIA/TIA-222-G	10/17/2019	4				
Site Name:	Torrington 2 CT			Exposure:	С		(((#)))				
Height: 2	260.00 (ft)			Crest Height:	0.00						
Base Elev: (0.000 (ft)			Site Class:	D - Stiff Soil		IES				
Gh:	0.85	Topography:	1	Struct Class:	II	Page: 19	Tower Engineering Solutions				
					Allow	Applied					
Load Case	Elevation (ft)	Cable	Node 1	Node 2	Tension (kins)	Tension (kins)	Use %				
1.2D + 1.6W Norma	al 70.04	1/2 EHS	A1	T1	16.02	0.31	2				
			A1b	T1b	16.02	7.01	44				
			A1a	T1a	16.02	7.20	45				
			A1a	T1	16.02	6.90	43				
			A1b	T1a	16.02	7.12	44				
	400.00		A1	11b 70	16.02	0.31	2				
	139.33		A1 A1a	70	16.02	0.14	1				
			Ala Alh	70a 70b	16.02	11.01	69				
	195.00	7/16 EHS	A1	T3	12.48	0.42	3				
			A1b	T3b	12.48	8.92	71				
			A1a	ТЗа	12.48	8.93	72				
			A1a	T3	12.48	8.84	71				
			A1b	T3a	12.48	8.83	71				
		- /2 - 1 / 2	A1	T3b	12.48	0.42	3				
	239.33	5/8 EHS	A1	119	25.44	0.82	3				
			A1a A1b	119a 110b	20.44	19.08	75 75				
1.2D + 1.6W 60° W	/ind 70.04	1/2 FHS	A1	T195	16.02	1.82	11				
			A1b	T1b	16.02	8.42	53				
			A1a	T1a	16.02	1.75	11				
			A1a	T1	16.02	1.80	11				
			A1b	T1a	16.02	8.40	52				
			A1	T1b	16.02	1.76	11				
	139.33		A1	70	16.02	1.69	11				
			A1a A1b	70a 70b	16.02	1.07	10				
	195.00	7/16 FHS	A1	T3	12.48	1.82	15				
	100.00	I, IO EIIO	A1b	T3b	12.48	9.97	80				
			A1a	T3a	12.48	1.73	14				
			A1a	Т3	12.48	1.79	14				
			A1b	ТЗа	12.48	9.87	79				
			A1	T3b	12.48	1.71	14				
	239.33	5/8 EHS	A1	119	25.44	2.99	12				
			A1a	119a	25.44	3.03	12				
	/ind 70.04	1/2 EHS	A1D A1	T190	20.44	21.31	84 28				
1.20 + 1.000 50 00	/ind 70.04	1/2 LI10	A1b	T1b	16.02	8.38	20 52				
			A1a	T1a	16.02	0.49	3				
			A1a	T1	16.02	0.54	3				
			A1b	T1a	16.02	8.20	51				
			A1	T1b	16.02	4.58	29				
	139.33		A1	70	16.02	6.49	41				
			A1a	70a	16.02	0.51	3				
	105.00	7/16 EUO	A1b	001 Ta	10.02	13.30	83 46				
	195.00	// 10 EHS	Α1 Δ1h	is Tah	12.40 12.48	5.74 10.36	40 83				
			A1a	T3a	12.48	0.66	5				
			A1a	T3	12.48	0.71	6				
			A1b	T3a	12.48	10.29	82				
			A1	T3b	12.48	5.62	45				
	239.33	5/8 EHS	A1	119	25.44	11.64	46				
			A1a	119a	25.44	1.22	5				

1.2D + 1.6W 90° Wind	239.33	5/8 EHS	A1b	119b	25.44	22.24	87
1.2D + 1.0Di + 1.0Wi	70.04	1/2 EHS	A1	T1	16.02	4.42	28
			A1b	T1b	16.02	7.16	45
			A1a	T1a	16.02	7.17	45
			A1a	T1	16.02	7.10	44
			A1b	T1a	16.02	7.14	45
			A1	T1b	16.02	4.40	27
	139.33		A1	70	16.02	3.79	24
			A1a	70a	16.02	8.17	51
			A1b	70b	16.02	8.18	51
	195.00	7/16 EHS	A1	ТЗ	12.48	3.31	26
			A1b	T3b	12.48	7.28	58
			A1a	T3a	12.48	7.21	58
			A1a	T3	12.48	7.26	58
			A1b	T3a	12.48	7.18	58
			A1	T3b	12.18	3 29	26
	230 33	5/8 EHS	Δ1	110	25.44	4.00	16
	200.00	5/0 EI 10	Δ1a	1109	25.44	11 49	45
			A16	1196	25.44	11.45	45
	70.04	1/2 EUS	A10 A1	T190	25.44	5.21	40
1.2D + 1.0DI + 1.0WI	70.04	1/2 EH3	A1 A1b	11 T1b	16.02	J.Z I 7 95	33
			Alb	T1D	16.02	7.00	49
			Ala		16.02	5.19	32
			Ala	11 T4 -	16.02	5.20	32
			A1b	I1a	16.02	7.85	49
	(A1	I1b	16.02	5.19	32
	139.33		A1	70	16.02	5.01	31
			A1a	70a	16.02	4.98	31
			A1b	70b	16.02	9.74	61
	195.00	7/16 EHS	A1	T3	12.48	4.76	38
			A1b	T3b	12.48	8.37	67
			A1a	T3a	12.48	4.63	37
			A1a	T3	12.48	4.74	38
			A1b	ТЗа	12.48	8.34	67
			A1	T3b	12.48	4.61	37
	239.33	5/8 EHS	A1	119	25.44	6.49	26
			A1a	119a	25.44	6.53	26
			A1b	119b	25.44	14.30	56
1.2D + 1.0Di + 1.0Wi	70.04	1/2 EHS	A1	T1	16.02	6.17	39
			A1b	T1b	16.02	7.70	48
			A1a	T1a	16.02	4.59	29
			A1a	T1	16.02	4.57	29
			A1b	T1a	16.02	7.67	48
			A1	T1b	16.02	6.16	38
	139.33		A1	70	16.02	6.51	41
			A1a	70a	16.02	4.04	25
			A1b	70b	16.02	9.32	58
	195 00	7/16 EHS	A1	T3	12.48	6.08	49
	100.00	III III EIIO	A1b	T3h	12.48	8.07	65
			A12	.00 T32	12.40	3 63	20
			A12	T3	12.40	3.62	29
			Δ1h	13 T3o	12.40	3.00 8 A2	29
				Tak	12.40	5.03	47
	220.22		A1	130	12.40	0.91	47
	239.33	5/8 EHS	A1	119	20.44	0.00	35
			AId	119a	20.44	4.70	18
			A1D	119b	25.44	13.46	53

	Analysis Summary										
Structure:	CT02303-A-3-SB	A		Code:	EIA/TIA-222-G	10/17/2019					
Site Name:	Torrington 2 CT			Exposure:	С		der Hannb				
Height:	260.00 (ft)			Crest Height:	0.00		EC				
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil						
Gh:	0.85	Topography:	1	Struct Class:	II	Page: 21	Tower Engineering Solutions				

Max Reactions

Base:	184.44 (Vertical)	1.87 (Horizontal)
Anchor 1:	43.79 (Vertical)	55.65 (Horizontal)

Max Usages

Max Leg: 97.2% (1.2D + 1.0Di + 1.0Wi 60° Wind - Sect 10) Max Diag: 94.1% (1.2D + 1.6W Normal Wind - Sect 9) Max Horiz: 75.9% (1.2D + 1.6W 90° Wind - Sect 5) Max Cable: 87.4% (1.2D + 1.6W 90° Wind) - Elev: 239 ft

Max Deflection, Twist and Sway

Load Case	Elevation (ft)	Deflection (ft)	Twist (deg)	Sway (deg)	
1.2D + 1.0Di + 1.0Wi 50 mph Wind at 60° From Face	83.00	0.2605	0.0060	0.1949	_
	85.33	0.2727	0.0069	0.3024	
	117.00	0.4142	0.0279	0.2392	
	165.33	0.5435	0.0406	0.1149	
	172.33	0.5554	0.0407	0.0902	
	177.00	0.5617	0.0404	0.1553	
	180.00	0.5574	0.0405	0.4042	
	200.00	0.5788	0.0443	0.2665	
	200.67	0.5821	0.0455	0.2663	
	219.33	0.6436	0.0827	0.3611	
	223.00	0.6573	0.0840	0.2985	
	232.33	0.6958	0.0554	0.2572	
	245.00	0.7654	0.0246	0.3502	
	253.00	0.8214	0.0519	0.3063	
	257.67	0.8503	0.0121	0.4731	
	260.00	0.8650	0.0752	0.3692	_
1.2D + 1.0Di + 1.0Wi 50 mph Wind at 90° From Face	83.00	0.2642	0.0037	0.1916	
	85.33	0.2761	0.0046	0.3015	
	117.00	0.4158	0.0241	0.2292	
	165.33	0.5162	0.0603	0.0833	
	172.33	0.5228	0.0681	0.0647	
	177.00	0.5258	0.0728	0.1228	
	180.00	0.5171	0.0749	0.4810	
	200.00	0.5307	0.0923	0.2599	
	200.67	0.5339	0.0925	0.2588	
	219.33	0.5918	0.0983	0.4373	
	223.00	0.6070	0.0898	0.0980	
	232.33	0.6451	0.0931	0.2585	
	245.00	0.7144	0.0982	0.3506	
	253.00	0.7699	0.0987	0.3107	
	257.67	0.7949	0.0991	0.5433	
	260.00	0.8132	0.0989	0.1251	_

1.2D + 1.0Di + 1.0Wi 50 mph Wind at Normal From Face	83.00	0.2856	0.0380	0.1931
·	85.33	0.2972	0.0403	0.3098
	117.00	0.4416	0.0914	0.2274
	165.33	0.5050	0.0873	0.0241
	172.33	0.5094	0.0737	0.0102
	177.00	0.5094	0.0650	0.1014
	180.00	0.5026	0.0585	0.6344
	200.00	0.5027	0.0390	0.2495
	200.67	0.5058	0.0387	0.2572
	219.33	0.5644	0.0313	0.2765
	223.00	0.5766	0.0280	0.5573
	232.33	0.6186	0.0250	0.2745
	245.00	0.6951	0.0222	0.3790
	253.00	0.0551	0.0222	0.3284
	257.67	0.7867	0.0224	0.1978
	260.00	0.8028	0.027	0.7437
		0.0020		
1.2D + 1.6W 93 mph Wind at 60° From Face	83.00	0.5171	0.0145	0.4245
	85.33	0.5414	0.0168	0.6306
	117.00	0.8423	0.0629	0.4916
	165.33	1.1444	0.0943	0.3056
	172.33	1.1765	0.0945	0.2474
	177.00	1.1945	0.0933	0.3682
	180.00	1.1895	0.0930	0.7145
	200.00	1.2584	0.1142	0.6560
	200.67	1.2665	0.1235	0.6581
	219.33	1.4231	0.3879	0.8398
	223.00	1.4556	0.4009	0.7295
	232.33	1.5508	0.2320	0.6286
	245.00	1.7299	0.0442	0.8698
	253.00	1.8617	0.1839	0.7550
	257.67	1.9307	-0.0267	1.1451
	260.00	1.9664	0.2998	0.8594
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00	0.6804	-0.0489	0.6043
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00 85.33	0.6804 0.7125	-0.0489 -0.0508	0.6043 0.8369
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00 85.33 117.00	0.6804 0.7125 1.1468	-0.0489 -0.0508 -0.0832	0.6043 0.8369 0.7574
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00 85.33 117.00 165.33	0.6804 0.7125 1.1468 1.6595	-0.0489 -0.0508 -0.0832 -0.0405	0.6043 0.8369 0.7574 0.5657
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00 85.33 117.00 165.33 172.33	0.6804 0.7125 1.1468 1.6595 1.7229	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228	0.6043 0.8369 0.7574 0.5657 0.5074
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00 85.33 117.00 165.33 172.33 177.00	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67 219.33	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67 219.33 223.00	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67 219.33 223.00 232.33	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67 219.33 223.00 232.33 245.00	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67 219.33 223.00 232.33 245.00 253.00	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67 219.33 223.00 232.33 245.00 253.00 257.67	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67 219.33 223.00 232.33 245.00 253.00 253.00 257.67 260.00	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109
1.2D + 1.6W 93 mph Wind at 90° From Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67 219.33 223.00 232.33 245.00 253.00 253.00 257.67 260.00 83.00	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753 0.7822	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204 -0.1058	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109 0.6710
1.2D + 1.6W 93 mph Wind at 90° From Face 1.2D + 1.6W 93 mph Wind at Normal To Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67 219.33 223.00 232.33 245.00 253.00 257.67 260.00 83.00 85.33	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753 0.7822 0.8170	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204 0.1058 0.1115	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109 0.6710 0.9213
1.2D + 1.6W 93 mph Wind at 90° From Face 1.2D + 1.6W 93 mph Wind at Normal To Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67 219.33 223.00 232.33 245.00 253.00 257.67 260.00 83.00 85.33 117.00	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753 0.7822 0.8170 1.3019	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204 -0.2204 0.1058 0.1115 0.2299	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109 0.6710 0.9213 0.8520
1.2D + 1.6W 93 mph Wind at 90° From Face 1.2D + 1.6W 93 mph Wind at Normal To Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67 219.33 223.00 232.33 245.00 253.00 257.67 260.00 83.00 85.33 117.00 165.33	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753 0.7822 0.8170 1.3019 1.8713	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204 -0.2204 -0.1058 0.1115 0.2299 0.2000	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109 0.6710 0.9213 0.8520 0.6418
1.2D + 1.6W 93 mph Wind at 90° From Face 1.2D + 1.6W 93 mph Wind at Normal To Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67 219.33 223.00 232.33 245.00 253.00 257.67 260.00 83.00 85.33 117.00 165.33 172.33	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753 0.7822 0.8170 1.3019 1.8713 1.9510	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204 -0.2204 0.1058 0.1115 0.2299 0.2000 0.1644	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109 0.6710 0.9213 0.8520 0.6418 0.5934
1.2D + 1.6W 93 mph Wind at 90° From Face 1.2D + 1.6W 93 mph Wind at Normal To Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67 219.33 223.00 232.33 245.00 253.00 257.67 260.00 83.00 85.33 117.00 165.33 172.33 177.00	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753 0.7822 0.8170 1.3019 1.8713 1.9510 1.9973	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204 -0.2204 -0.1058 0.1115 0.2299 0.2000 0.1644 0.1409	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109 0.6710 0.9213 0.8520 0.6418 0.5934 0.7565
1.2D + 1.6W 93 mph Wind at 90° From Face 1.2D + 1.6W 93 mph Wind at Normal To Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67 219.33 223.00 232.33 245.00 253.00 257.67 260.00 83.00 85.33 117.00 165.33 172.33 177.00 180.00	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753 0.7822 0.8170 1.3019 1.8713 1.9510 1.9973 2.0134	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204 0.1058 0.1115 0.2299 0.2000 0.1644 0.1409 0.1246	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109 0.6710 0.9213 0.8520 0.6418 0.5934 0.7565 0.6349
1.2D + 1.6W 93 mph Wind at 90° From Face 1.2D + 1.6W 93 mph Wind at Normal To Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67 219.33 223.00 232.33 245.00 257.67 260.00 83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753 0.7822 0.8170 1.3019 1.8713 1.9510 1.9973 2.0134 2.2076	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204 0.1058 0.1115 0.2299 0.2000 0.1644 0.1246 0.0635	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109 0.6710 0.9213 0.8520 0.6418 0.5934 0.7565 0.6349 1.1871
1.2D + 1.6W 93 mph Wind at 90° From Face 1.2D + 1.6W 93 mph Wind at Normal To Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.07 219.33 223.00 232.33 245.00 257.67 260.00 83.00 85.33 117.00 165.33 172.33 177.00 180.00 20	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753 0.7822 0.8170 1.3019 1.8713 1.9510 1.9973 2.0134 2.2076 2.2212	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204 0.1058 0.1115 0.2299 0.2000 0.1644 0.1246 0.0635 0.0632	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109 0.6710 0.9213 0.8520 0.6418 0.5934 0.7565 0.6349 1.1871 1.1778
1.2D + 1.6W 93 mph Wind at 90° From Face 1.2D + 1.6W 93 mph Wind at Normal To Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.07 219.33 223.00 232.33 245.00 257.67 260.00 83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.07 219.33	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753 0.7822 0.8170 1.3019 1.8713 1.9510 1.9973 2.0134 2.2076 2.2212 2.5223	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204 0.1058 0.1115 0.2299 0.2000 0.1644 0.1409 0.1246 0.0635 0.0632 0.0607	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109 0.6710 0.9213 0.8520 0.6418 0.5934 0.7565 0.6349 1.1871 1.1778 1.0667
1.2D + 1.6W 93 mph Wind at 90° From Face 1.2D + 1.6W 93 mph Wind at Normal To Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.07 219.33 223.00 232.33 245.00 253.00 257.67 260.00 83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.67 219.33 223.00	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753 0.7822 0.8170 1.3019 1.8713 1.9510 1.9973 2.0134 2.2076 2.2212 2.5223 2.5788	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204 0.1058 0.1115 0.2299 0.2000 0.1644 0.1409 0.1246 0.0635 0.0632 0.0607 0.0576	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109 0.6710 0.9213 0.8520 0.6418 0.5934 0.7565 0.6349 1.1871 1.1778 1.0667 1.8418
1.2D + 1.6W 93 mph Wind at 90° From Face 1.2D + 1.6W 93 mph Wind at Normal To Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.07 219.33 223.00 232.33 245.00 253.00 257.67 260.00 83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.67 219.33 223.00 200.67 219.33 223.00 200.00 200.67 219.33 223.00 200.00 20	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753 0.7822 0.8170 1.3019 1.8713 1.9510 1.9973 2.0134 2.2076 2.2212 2.5223 2.5788 2.7524	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204 0.1058 0.1115 0.2299 0.2000 0.1644 0.1409 0.1246 0.0635 0.0632 0.0607 0.0576 0.0555	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109 0.6710 0.9213 0.8520 0.6418 0.5934 0.7565 0.6349 1.1871 1.1778 1.0667 1.8418 1.015
1.2D + 1.6W 93 mph Wind at 90° From Face 1.2D + 1.6W 93 mph Wind at Normal To Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.07 219.33 223.00 232.33 245.00 257.67 260.00 83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.67 219.33 223.00 232.33 245.00	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753 0.7822 0.8170 1.3019 1.8713 1.9510 1.9973 2.0134 2.2076 2.2212 2.5223 2.5788 2.7534 3.0449	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204 0.1058 0.1115 0.2299 0.2000 0.1644 0.1409 0.1246 0.0635 0.0632 0.0607 0.0576 0.0565 0.0622	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109 0.6710 0.9213 0.8520 0.6418 0.5934 0.7565 0.6349 1.1871 1.1778 1.0667 1.8418 1.1015 1.3834
1.2D + 1.6W 93 mph Wind at 90° From Face 1.2D + 1.6W 93 mph Wind at Normal To Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.00 200.67 219.33 223.00 232.33 245.00 257.67 260.00 83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.67 219.33 223.00 232.33 177.00 180.00 200.00 200.67 219.33 223.00 232.33 245.00 252.00 25	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753 0.7822 0.8170 1.3019 1.8713 1.9510 1.9973 2.0134 2.2076 2.2212 2.5223 2.5788 2.7534 3.0449 3.2492	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204 0.1058 0.1115 0.2299 0.2000 0.1644 0.1409 0.1246 0.0635 0.0632 0.0607 0.0576 0.0565 0.0622 0.0627	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109 0.6710 0.9213 0.8520 0.6418 0.5934 0.7565 0.6349 1.1871 1.1778 1.0667 1.8418 1.1015 1.3834 1.2477
1.2D + 1.6W 93 mph Wind at 90° From Face 1.2D + 1.6W 93 mph Wind at Normal To Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.07 219.33 223.00 232.33 245.00 253.00 257.67 260.00 83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.67 219.33 223.00 232.33 245.00 253.00 253.00 253.00 253.00	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753 0.7822 0.8170 1.3019 1.8713 1.9510 1.9973 2.0134 2.2076 2.2212 2.5223 2.5788 2.7534 3.0449 3.2482 2.3507	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204 0.1058 0.1115 0.2299 0.2000 0.1644 0.1409 0.1246 0.0635 0.0632 0.0607 0.0565 0.0622 0.0637 0.0572	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109 0.6710 0.9213 0.8520 0.6418 0.5934 0.7565 0.6349 1.1871 1.1778 1.0667 1.8418 1.1015 1.3834 1.2477 0.9008
1.2D + 1.6W 93 mph Wind at 90° From Face 1.2D + 1.6W 93 mph Wind at Normal To Face	83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.07 219.33 223.00 232.33 245.00 253.00 257.67 260.00 83.00 85.33 117.00 165.33 172.33 177.00 180.00 200.67 219.33 223.00 230.00 200.67 219.33 223.00 200.67 219.33 223.00 200.67 219.33 223.00 200.67 219.33 223.00 200.67 219.33 223.00 200.67 219.33 223.00 200.67 219.33 223.00 200.67 219.33 223.00 200.67 219.33 223.00 200.67 219.33 223.00 200.67 219.33 223.00 200.67 219.33 223.00 200.67 200.00 200.67 200.00 200.00 200.00 200.67 200.00 200.00 200.67 200.00 200.00 200.67 200.00 200.00 200.67 200.00 200.00 200.00 200.67 219.33 219.00 257.67 260.00 200.00	0.6804 0.7125 1.1468 1.6595 1.7229 1.7623 1.7748 1.9383 1.9503 2.2056 2.2611 2.4071 2.6577 2.8325 2.9280 2.9753 0.7822 0.8170 1.3019 1.8713 1.9510 1.9973 2.0134 2.2076 2.2212 2.5223 2.5788 2.7534 3.0449 3.2482 3.3597 3.4161	-0.0489 -0.0508 -0.0832 -0.0405 -0.0228 -0.0114 0.0062 0.0374 0.0377 -0.1913 -0.2088 -0.1469 -0.1299 -0.1794 -0.0946 -0.2204 0.1058 0.1115 0.2299 0.2000 0.1644 0.1409 0.1246 0.0635 0.0632 0.0637 0.0565 0.0622 0.0637 0.0533 0.0533 0.0554	0.6043 0.8369 0.7574 0.5657 0.5074 0.6420 0.5945 1.0262 1.0164 1.3329 0.2556 0.9467 1.1818 1.0814 1.6253 0.7109 0.6710 0.9213 0.8520 0.6418 0.5934 0.7565 0.6349 1.1871 1.1778 1.0667 1.8418 1.1015 1.3834 1.2477 0.9008 2.1052

(((H)))		Guy	yed T	ow	er l	Base De	sign		Dat	te (2010
		Customor Namo:	SPA Co		iaatia		EIA/TIA Stand	ord		2019 22-C
		Site Name:	SBA CO	mmur	licatio		Structure Heir	aru:	26	22-0
		Site Name.	CT0230	3 4 3	SBA		Engineer Nam	упі (гі.). vo:	τ ΔI	oiai
Tower Engineering Solution	ons	Engr Number	87835	J-A-J-	-SDA		Engineer Logi	in ID·	1. A	ajaj
		Lingi. Number.	07000				Lingineer Logi	III ID.		
Foundation Info Obtained from:	D	Prawings/Calculations					2.5			
Structure Type:		Guyed Tower								
Analysis or Design?		Analysis			0.50)				
Base Reactions (Factored):					1	\overline{N}		\prec		
Axial Load (Kips):	184.4	Shear Force (Kips):	1.9						#	4
Uplift Force (Kips):	0.0	Moment (Kips-ft):				99.0				
Foundation Geometries:					4.0	$-\sqrt{2}$		6	#	7
		Mods required -Yes/No ?:	No					6	#	7
Diameter of Pier (ft.):	2.5	Depth of Base BG (ft.):	4.0							1
Pier Height A. G. (ft.):	0.50	Thickness of Pad (ft):	1.00						_	1.00
Length of Pad (ft.):	6	Width of Pad (ft.):	6							-
					_		6.0		×	t
Final Length of pad (ft)	6.0	Final width of pad (ft):	6.0		\uparrow					0.0
Material Properties and Reabr Info:								2.5		
Concrete Strength (psi):	4500	Steel Elastic Modulus:	29000	KSI						
Vertical Bahar Size #	60		60		6.0					0.0
Vertical Rebar Size #:	0	Tie / Stirrup Size #:	4		0.0		6.00			vv
Qty. of vertical Rebars:	4	The Spacing (In):	6.0 7							
Concrete Cover (in):	2	Lipit Weight of Concrete:	150.0	ncf		4 #	0			
Rebar at the bottom of the concrete	nad:	onit weight of concrete.	150.0	per						
Oty of Rehar in Pad (I).	6	Oty of Rebar in Pad (W)	6		⊻	0.0				
	0		Ū				6.0	L	\longleftrightarrow	•
						I C				ا
Soil Design Parameters:										
Soil Unit Weight (pcf):	125.0	Soil Buoyant Weight:	50.0	Pcf						
Water Table B.G.S. (ft):	99.0	Unit Weight of Water:	62.4	pcf	Ang	le from Top of Pa	id:	30		
Ultimate Bearing Pressure (psf):	30000	Ultimate Skin Friction:	0	Psf	Ang	le from Bottm of	Pad:	25		
					Ang	le from Bottm of	Pad:	25		
Foundation Analysis and Design:	Linlift Str	ength Reduction Factor:	0.75	Com	nressio	on Strength Reduc	tion Factor:	0.6		
Total Dry Soil Volume (cu. Et):	Opint Str		93.27	Total	Dry Sc	nil Weight (Kins)		11 66		
Total Buoyant Soil Volume (cu. F	t.):		0.00	Total	Buova	ant Soil Weight (K	ips):	0.00		
Total Effective Soil Weight (Kips)	:		11.66	Weig	ht fror	n the Concrete Bl	ock at Top (K):	0.00		
Total Dry Concrete Volume (cu.	Ft.):		53.18	Total	Dry Co	oncrete Weight (I	(ips):	7.98		
Total Buoyant Concrete Volume	(cu. Ft.):		0.00	Total	Buoya	ant Concrete Wei	ght (Kips):	0.00		
Total Effective Concrete Weight	(Kips):		7.98	Total	Vertic	al Load on Base (Kips):	204.08	Load/	
Check Soil Capacities:									Capacity Ratio	
Calculated Maxium Net Soil Pressure	e under the	e base (psf):	5335.4	<	Allo	wable Factored S	oil Bearing (psf):	18000	0.30	OK!
Calculated Foundation Allowable Axa	all Capacit	y (Kips):	648.0	>	Des	ign Factored Axia	i Load (Kips):	186	0.29	OK!

Check the ca	apacities of Reinforceing Concrete:						
Strength red	uction factor (Flexure and axial tension):	0.90	Streng	th reduction factor (Shear):	0.75		
Strength red	uction factor (Axial compresion):	0.65	Wind I	Load Factor on Concrete Design:	1.00		
						Load/ Canacity	
(1) Concrete	e Pier:					Ratio	
	Vertical Steel Rebar Area (sq. in./each):	0.44		Tie / Stirrup Area (sq. in./each):	0.20		
	Calculated Moment Capacity (Mn,Kips-Ft):	92.1	>	Design Factored Moment (Mu, Kips-Ft	6.6	0.07	OK!
	Calculated Shear Capacity (Kips):	167.1	>	Design Factored Shear (Kips):	1.9	0.01	OK!
	Calculated Tension Capacity (Tn, Kips):	95.0	>	Design Factored Tension (Tu Kips):	0.0	0.00	OK!
	Calculated Compression Capacity (Pn, Kips):	1402.4	>	Design Factored Axial Load (Pu Kips):	184.4	0.13	OK!
	Moment & Axial Strength Combination(Pu/Pn+Mu/Mn):	0.20	OK!				
	Pier Reinforcement Ratio:	0.002					
(2).Concrete	e Pad:						
	One-Way Design Shear Capacity (L-Dir. Kips);	62.0	>	One-Way Factored Shear (L-Dir Kips):	32.1	0.52	OK!
	One-Way Design Shear Capacity (W-Dir. Kips):	62.0	>	One-Way Factored Shear (W-Dir Kips)	32.1	0.52	OK!
	Two-Way Design Shear Capacity (Kips):	208.8	>	Two-Way Factored Shear (Kips):	143.5	0.69	OK!
	Lower Steel Pad Reinforcement Ratio (L-Direct.):	0.0058	OK!	Lower Steel Pad Reinf. Ratio (W-Direc	0.0058		OK!
	Lower Steel Pad Moment Capacity (L-Direction. Kips-ft):	132.2	>	Moment at Bottom (L-Direct. K-Ft):	47.5	0.36	OK!
	Lower Steel Pad Moment Capacity (W-Dir. Kips-ft):	132.2	>	Moment at Bottom (W-Dir. Kips-Ft):	47.5	0.36	OK!

87835

Page 2/2

Date:

10/17/2019

TES Engr. Number:

								Dete
(((円)))		Guy An	chor /	Analys	sis an	d Design	2	Date 13755
		Customer Name:	SBA Comn	n unication	s Corp	EIA/TIA Standard:	EÅ-	222-G
		Site Name:	0			Structure Height (Ft.):		260
		Site Nmber:	СТ02303-	4-3- SBA		Engineer Name:	T.	Alaj aj
Tower Engineering Solutions		Engr. Number:	87835			Engineer Login ID:		
Foundation Info Obtained from:	Dr	awings/Calc ulations	Number	of Anchors:	1 Set			
Soil Design Parameters:								
Soil nit Weight (pcf):	127.0	Soil uoant Weight:	6.6	cf	Cohesion	of Soils (psf):		
Water TableS . (ft):	99.0	nit W eight of Water:	62.	pcf	Internal A	ngle of Friction (°)		
lti mate lateral ressure (psf):	3000	Itimate Sin Fr iction:	200	sf	Coefficien	t of Shear Friction:		0.30
Conical Failure Angle from Top:	30	Failure Angle from ottm	20					
Material Properties:								
Concrete Strength (psi):	3000	ni t Weight of Concrete:	150.0	psf	Horiontal	Rebar Y ield (psi):		60000
Shear Strength Reduction Factor:	0.75				Fleure Str	eng th Reduction Factor:		0.9
A. Inner Anchors:								
Radius (ft.):	200							
1. Design Reactions (Factored):								
plift (ips:)	3.8	Shear (ips)	55.7		Angle of f	orce resultant (Ø):		38.2
2. Foundation Geometries:								
loc ase Dept h S. (ft):	8.0	loc with/without toe	0		Water Tal	ble below grade (ft):		99.00
Length of Anchor loc (L ft .):	10.0	Width of Anchor loc:	5.5	ft.	Thicness o	of Anchor loc (ft.) :		2.5
Concrete loc top of Anchor	0							
(1). Inner Anchors: Radius ft.):	200	/	1		, Co	ncrete Block ΔW x ΔL x ΔT		
H (ft.): 8.0 Hw(ft.):	99.0							
L (ft.): 10.0 W (ft.):	5.5		1 la	I			\uparrow	ΔT
T (ft.): 2.5 Angle (Ø)	38.2						<u> </u>	
S (ft): 13.75	•		ľ //	$\langle \rangle$			\uparrow	
I op bars: 3 #	6							
From Dars: 3 #	5 00				c			
Contete volume Cu. u.//Each.	5.09	Ни	,		5			
		1100	,	\rightarrow	$\langle \rangle$	Top ars		
			Angle	(Ø)				
			5		_/ /			Н
					• (*			
			V	\bigtriangledown				
			1	—				

Front ars _

•

<

W

 \mathbf{v}

3. Foundation Ana lysis and Design:

Total Dry Soil Volume (cu. Ft.):	610.18	Total Dry Soil Weight (Kips):	90.01	
Total Buoyant Soil Volume (cu. Ft.):	0.00	Total Buoyant Soil Weight (Kips):	0.00	
Total Effective Soil Weight (Kips):	77.49	Weight of the Concrete Block at Top (Kips):	0.00	
Total Dry Concrete Volume (cu. Ft.):	137.50	Total Dry Concrete Weight (Kip):	20.63	
Total Buoyant Concrete Volume (cu. Ft.):	0.00	Total Buoyant Concrete Weight (Kips):	0.00	
Total Effective Concrete Weight (Kips):	20.63	Weight Reduction Factor:	0.9	
Uplift Strength Reduction Factor on Soil:	0.75	Shear Strength Reduction Factor on Soil:	0.75	
4. Check Soil and Foundat ion Capacities:				
Nominal Factored Uplift Resistance:	82.44	Kips > Design Uplift Force (Kips):	43.8	OK!
Ultimate Shear Friction Resistance at base:	9.59	Kips Ultimate Resistance Pressure:	3000.0	Psf
Factored Shear Resistance:	67.57	Kips > Design Shear Force (Kips):	55.7	OK!
5. Design Concrete Block:				
Rebar Size (#):	6	Wind Load Factor on Concrete Design:	1.00	
Qty. of the Rebar at top of the block:	3	Qty. of the Rebar in the front of the block:	3	
Area of Single Rebar (sq. in.):	0.44	Factor for concrete compression zone:	0.85	
One Way Shear due to Shear Force (Kips):	27.8	One Way Shear Capacity for shear (kips):	152.8	OK!
One Way Shear due to Uplift (Kips):	21.9	One Way Shear Capacity for uplift (kips):	141.0	OK!
Moment due to Shear Load (Kips-ft):	69.6	Flexural Capacity for Shear Load (Kips-ft):	368.2	OK!
Moment due to uplift Load (Kips-ft):	54.7	Flexural Capacity for uplift Load (Kips-ft):	154.4	OK!
Ratio of Design Moment/Moment capacity:	0.35			
Max. Ratio of Shear Force/Shear capacity:	0.18	OK!		

PER	THE	INTERN	ATIONAL	BUILDIN	IG C	ODE	THIS	2
۱.	CONST	RUCTION	TYPE V-	B (TABLE	601)		
<u> </u>	000115		ID MION	OF OTION .				

MODIFICATION AND DESIGN **DRAWINGS FOR AN EXISTING** 260' PIROD GUYED TOWER

PROPOSED CARRIER: AT&T

SITE: CT02303-A-3-SBA / TORRINGTON 2 CT

COORDINATES (LATITUDE: 41.8026°, LONGITUDE: -73.16466°)

CONSTRUCTION CLASS

TES HAS DETERMINED THIS AS A CLASS IV CONSTRUCTION PROJECT PER ANSI/ASSP A10.48

STRUCTURE IS CLASSIFIED AS: 2. GROUP U OCCUPANCY (SECTION 312.1 UNOCCUPIED TOWER SITE) **Tower Engineering Solutions** 1320 GREENWAY DRIVE, SUITE 600 IRVING, TX 75038 PHONE: (972) 483-0607 SB 5900 BROKEN SOUND PARKWAY, NW BOCA RATON, FL 33487 (800)-487-SITE TES JOB NO: 73511 CUSTOMER SITE NO: CT02303-A-3-SBA CUSTOMER SITE NAME: TORRINGTON 2 CT 1210 HIGHLAND AVE TORRINGTON, CT 06790 Exp.01/31/2020 munnin OF CONNECTION No. 2386 SSIONAL ENG MILLIONAL C. 07/24/2019 DRAWN BY: RR CHECKED BY: LC/AD RFV. DESCRIPTION BY DATE FIRST ISSUE RR 06/19/19 PLEASE NOTE THIS SET OF DRAWINGS IS FOR INSTALLATION AND ∕∩ REVISED RR 07/24/19 ASSEMBLY ONLY. FABRICATION DETAIL DRAWINGS ARE NOT PROVIDED AND MUST BE COMPLETED BY THE STEEL FABRICATOR SELECTED. TES CAN PROVIDE THE FABRICATION DETAIL DRAWINGS FOR AN ADDITIONAL FEE. SHEET TITLE: TITLE SHEET This drawing/document is the property of Tower Engineering Solutions, LLC. Information contained herein is considered confidential ir REV nature and is to be used only for the specific site that it was intended for. Reproduction, transmission, publication or disclosure by any method is prohibited 1 except by express written permission from 0 Tower Engineering Solutions, LLC. Without exception, the information on this 1 drawing/document remains the property of RACE (6 BAYS) 0 Tower Engineering Solutions, LLC. (BRACE (1 BAY) 1 SHEET NUMBER: REV #: –X BRACE (2 BAYS) 1 | — ´

SHEET	SHEET TITLE
T-1	TITLE SHEET
BOM	BILL OF MATERIALS
GN-1	GENERAL NOTES
A-1	TOWER PROFILE
A-2	36FWGT (1 3/4" LEG), HORIZONTAL ASSEMBLY-X BF
A-3	36FWGT (1 3/4" LEG), ANGLE HORIZONTAL ASSEMBLY-
A-4	36FWGT (1 1/2" LEG), MID-PANEL HORIZONTAL ASSEMBLY
HC-1	STANDARD GUY HARDWARE CHART
TC-1	GUY TENSION CHART

NOTE:

1. THE MODIFICATION DRAWINGS ARE BASED ON THE TES PROJECT NO. 64398, DATED 04/08/19.

{	BILL OF MATERIALS (PAGE 1 OF 1)							
QUANTITY	QUANTITY	PART NUMBER	DESCRIPTION	LENGTH	SHEET LIST	PIECE WEIGHT	WEIGHT (lb)	
			MATERIAL & HARDWARE					
1	1	320104	7/16" EHS GUY STRAND (IN FT.) (VALMONT OR EQUIVALENT)	1796 FT.	HC-1	716.6	716.6	GALVANIZED
<u></u>								
<u>ــــــــــــــــــــــــــــــــــــ</u>								
J						-		
6	6	1032117	TURNBUCKLE 3/4" X 18" (JAW & EYE) (CROSBY OR EQUIVALENT)	-	HC-1	7	42	GALVANIZED
<u>}</u>								
10	40	0.0.05005			110.4			
12	12	GC-65265	DEAD-END SLEEVE, //16" (PREFORMED OR EQUIVALENT)	-	HC-1	-		GALVANIZED
	0	GC-05200	DEAD-END SLEEVE, 1/2 (PREFORMED OR EQUIVALENT)	-		-		
\'	1	60-00200		-	110-1			
12	12	1037693	EXTRA HEAVY WIRE ROPE THIMBLE, FOR 7/16" GUY WIRE (CROSBY OR EQUIVALENT)	-	HC-1	0.35	4.2	GALVANIZED
6	6	1037719	EXTRA HEAVY WIRE ROPE THIMBLE, FOR 1/2" or 9/16" GUY WIRES (CROSBY OR EQUIVALENT)	-	HC-1	0.51	3.1	
1	1	1037755	EXTRA HEAVY WIRE ROPE THIMBLE, FOR 5/8" GUY WIRE (CROSBY OR EQUIVALENT)	-	HC-1	0.76	0.8	
12	12	1018455	G-209 SCREW PIN SHACKLE, 1/2" (CROSBY OR EQUIVALENT)	-	HC-1	0.72	8.7	GALVANIZED
	6	1018473	G-209 SCREW PIN SHACKLE, 5/8" (CROSBY OR EQUIVALENT)	-	HC-1	1.37	8.3	
<u> </u>	1	1010491	G-209 SCREW PIN SHACKLE, 3/4 (CROSBY OR EQUIVALENT)	-	HC-1	2.35	2.4	
}								
12	12	BG-2148	BIG-GRIP DEAD-END 7/16" EHS (PREFORMED OR EQUIVALENT)	-	HC-1	1.88	22.6	GALVANIZED
6	6	BG-2115	BIG-GRIP DEAD-END 1/2" EHS (PREFORMED OR EQUIVALENT)	-	HC-1	3.15	18.9	
1	1	BG-2111	BIG-GRIP DEAD-END 5/8" EHS (PREFORMED OR EQUIVALENT)	-	HC-1	6.5	6.5	
<u>ــــــــــــــــــــــــــــــــــــ</u>						_		
30	20		FOR ADDITIONAL MEMBERS AND HARDWARE, PLEASE ENTER INFO BELOW:			0.00	207	
75	79	MS02-500-200-300	RUBOLT 1/2" X 2" LW X 3" LL A 36 OR FOLLIV		Δ-2 Δ-4 RBC-1	9.90	43.5	(2) HHN & IKW-FA GAI VANIZED
6	6	AL-1	L 1 3/4" X 1 3/4" X 3/16" X 3'-0" A36		A-3. F-2	6.54	39.3	GALVANIZED (FINAL CUT LENGT
3	3	BR-1	WELDMENT BRACKET		A-3, F-2	14.86	44.6	GALVANIZED
3	3	CP-1	PL 3/8" X 5 1/4" X 6 3/4" A36		A-3, F-2	3.64	11	GALVANIZED
12	13		BOLT 5/8" X 1 3/4" A325 W/HHN & LW		A-3	0.36	4.7	GALVANIZED
9	10	MS02-500-250-400	RU-BOLT 1/2" X 2 1/2" I.W X 4" I.L A36 OR EQUIV.		A-4, RBC-1	0.70	7	(2) HHN & LKW-EA GALVANIZED
9	10	SP375-300CC	SPACER PL 3/8" X 2" X 4 1/2" A36		A-4, GT-SHIM	1.00	10	GALVANIZED
3	4	SP250-300CC	SPACER PL 1/4" X 2" X 4 1/2" A36		A-4, GT-SHIM	0.70	2.8	GALVANIZED
	4	SP500-300CC	SPACER PL 1/2" X 2" X 4 1/2" A36		A-4, GI-SHIM	1.30	5.2	
6	6	5P250-250CC	CARLE SUPPORT BRACKET			0.60	1.0	GALVANIZED
	1		LANCO /HENRY 287 WHITE ACRYLIC ELASTOMERIC COATING AND SEALER OR EQUIV (GALLON)		A-1			
6	6		FLAT WASHER FOR 1/2" DIA BOLT					
1								
						-		
~								
Ž							_	
2			NOTE: ALL MATERIALS REQUIRED FOR FOUNDATION MODIFICATIONS THAT ARE NOT LISTED IN					
			THE BILL OF MATERIALS WILL BE PROVIDED BY CONTRACTOR. REFERENCE MODIFICATION SHEETS.				1	
			NOTE: ALL MATERIALS, WHICH WEREN'T LISTED IN THIS SHEET, ARE ASSUMED TO BE PROVIDED BY TH	E CONTRACTOR.				
			NOTE: ALL F SHEETS ARE NOT INCLUDED IN THIS DRAWING PACKET.					
	+							
ž					TOT		1 307	
(101/		- 1,30/	L

}	
NOTES	
	Tower Engineering Solutions
	1320 GREENWAY DRIVE, SUITE 600
	IRVING, TX 75038 PHONE: (972) 483–0607
	SBA 🤍
	5900 BROKEN SOUND PARKWAY, NW
	(800)-487-SITE
	TES JOB NO:
	CUSTOMER SITE NO:
	CT02303-A-3-SBA
	TORRINGTON 2 CT
	1210 HIGHLAND AVE TORRINGTON, CT 06790
······································	
	DRAWN BY: RR CHECKED BY: LC/AD
	REV. DESCRIPTION BY DATE
	AR 00/13/13 1 REVISED RR 07/24/19
	\bigtriangleup
	SHEET TITLE:
	BILL OF MATERIALS
	This drawing/document is the property of Tower Engineering Solutions, LLC. Information
	contained herein is considered confidential in nature and is to be used only for the
	specific site that it was intended for. Reproduction, transmission, publication or disclosure by any method is prohibited
	except by express written permission from Tower Engineering Solutions, LLC Without
	exception, the information on this drawing/document remains the property of
	Tower Engineering Solutions, LLC.
PAGE 1 OF 1	
	·

GENERAL NOTES

- 1. ALL WORK SHALL COMPLY WITH THE ANSI/TIA-222-G, ANSI/ASSP A10.48, 2018 CONNECTICUT STATE BUILDING CODE AND ANY OTHER GOVERNING BUILDING CODES AND OSHA SAFETY REGULATIONS.
- 2. ALL WORK INDICATED ON THE DRAWINGS SHALL BE PERFORMED BY QUALIFIED CONTRACTORS EXPERIENCED IN TELECOMMUNICATIONS TOWER, POLE AND FOUNDATION CONSTRUCTION.
- 3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE DESIGN AND FABRICATION OF ALL MISCELLANEOUS PARTS (SUCH AS SHIMS), TEMPORARY SUPPORTS, AND GUYINGS, ETC., PER ANSI/ASSP A10.48, TO COMPLETE THE ASSEMBLY AS SHOWN IN THE DRAWINGS.
- 4. CONTRACTOR SHALL PROCEED WITH THE INSTALLATION WORK CAREFULLY SO THE WORK WILL NOT DAMAGE ANY EXISTING CABLE, EQUIPMENT OR THE STRUCTURE.
- 5. THE USE OF GAS TORCH OR WELDER, ARE NOT ALLOWED ON ANY TOWER STRUCTURE WITHOUT THE CONSENT OF THE TOWER OWNER.
- 6. GENERALLY THE CONTRACTOR IS RESPONSIBLE TO CONDUCT AN ONSITE VISIT SURVEY OF THE JOB SITE AFTER AWARD, AND REPORT ANY ISSUES WITH THE SITE TO **TES** BEFORE PROCEEDING CONSTRUCTION.

FABRICATION

- 1. ALL STEEL SHALL MEET OR EXCEED THE MINIMUM STRENGTH AS SPECIFIED IN THE DRAWINGS. IF YIELD STRENGTH WAS NOT NOTED IN THE DRAWINGS, CONTRACTORS SHALL CONTACT TES FOR DIRECTION.
- 2. ALL FIELD CUT EDGES SHALL BE GROUND SMOOTH. ALL FIELD CUT AND DRILLED SURFACES SHALL BE REPAIRED WITH A MINIMUM OF TWO COATS OF ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURER'S RECOMMENDATIONS.

WELDING

- 1. ALL WELDING SHALL BE PERFORMED BY AWS CERTIFIED WELDERS AND IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1.1. ALL ELECTRODES TO BE LOW HYDROGEN, MATCHING FILLER METAL, PER AWS D1.1, UNO. (E70XX UNLESS NOTED OTHERWISE).
- 2. PRIOR TO FIELD WELDING GALVANIZED MATERIAL, CONTRACTOR SHALL GRIND OFF GALVANIZING APPROX. 0.5" BEYOND THE PROPOSED FIELD WELD SURFACES.
- 3. ALL WELDS SHALL BE INSPECTED VISUALLY. A MINIMUM OF 25% OF WELDS SHALL BE INSPECTED WITH DYE PENETRANT OR MAGNETIC PARTICLE TO MEET THE ACCEPTANCE CRITERIA OF AWS D1.1. 100% OF WELDS SHALL BE INSPECTED IF DEFECTS ARE FOUND.
- 4. WELD INSPECTIONS SHALL BE PERFORMED BY AN AWS CERTIFIED WELD INSPECTOR.
- 5. AFTER INSPECTION, ALL FIELD WELDED SURFACES SHALL BE REPAIRED WITH A MINIMUM OF TWO COATS OF ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURER'S RECOMMENDATIONS.

BOLTED ASSEMBLIES AND TIGHTENING OF CONNECTIONS

- 1. ALL HIGH STRENGTH BOLTS SHALL CONFORM TO THE PROVISIONS OF THE SPECIFICATIONS FOR STRUCTURAL JOINTS USING A325 OR A490 BOLTS AS APPROVED BY THE RCSC.
- 2. FLANGE BOLTS SHALL BE TIGHTENED BY THE AISC "TURN-OF-THE-NUT" METHOD. THE FOLLOWING TABLE SHOULD BE USED FOR THE "TURN-OF-THE-NUT" TIGHTENING.
- 3. SPLICE BOLTS AND ALL OTHER BOLTS IN BEARING TYPE CONNECTIONS SHALL BE TIGHTENED TO A SNUG-TIGHT CONDITION.
- 4. THE SNUG-TIGHT CONDITION IS DEFINED AS THE TIGHTNESS ATTAINED BY EITHER A FEW IMPACTS OF AN IMPACT WRENCH OR THE FULL EFFORT OF AN IRONWORKER WITH AN ORDINARY SPUD WRENCH TO BRING THE CONNECTED PLIES INTO FIRM CONTACT.
- 5. HB HOLLO-BOLT SHALL BE INSTALLED PER ICC ESR-3330 INSTRUCTIONS.

VERIFICATION AND INSPECTION

1. IF APPLICABLE, VERIFICATION INSPECTION TO BE PERFORMED SHALL BE IN ACCORDANCE TO IBC-2015 SECTION 1705 - FOR STEEL CONSTRUCTION & TABLE 1705.3 FOR CONCRETE CONSTRUCTION.

POST INSTALLED EPOXY INJECTED ANCHOR BOLTS:

1. CONCRETE MUST BE A MINIMUM OF 28 DAYS OLD.

- 2. FOLLOW MANUFACTURER'S REQUIREMENTS FOR CURE TIME VS. AMBIENT TEMPERATURE.
- 3. DRILL HOLE TO REQUIRED DIAMETER AND DEPTH. ALL WATER, DIRT, OIL, DEBRIS, GREASE OR DUST MUST BE REMOVED FROM EACH CORE HOLE. FOLLOW MANUFACTURER'S RECOMMENDATION FOR CORRECT TYPE OF CORE BIT. AVOID DAMAGING EXISTING REINFORCING STEEL OR OTHER EMBEDDED ITEMS. NOTIFY TES ENGINEERING IF VOIDS IN THE CONCRETE, REINFORCING STEEL OR OTHER EMBEDDED ITEMS ARE ENCOUNTERED. STOP CORING IMMEDIATELY IF THIS OCCURS.
- 4. A HOLE ROUGHENING DEVICE FROM EITHER HILTI OR ALLFASTENERS SHALL BE USED WITH ALL HOLES. FOLLOW ALL MANUFACTURER'S RECOMMENDED CORING AND INSTALLATION INSTRUCTIONS.
- 5. AFTER CORING AND ROUGHENING, FLUSH EACH HOLE WITH RUNNING WATER TO REMOVE ANY SLURRY OR DEBRIS. REMOVE ALL WATER FROM THE HOLE BY MECHANICAL PUMPING.
- 6. BRUSH EACH HOLE WITH AN APPROPRIATE SIZED NYLON BRUSH AND FLUSH WITH RUNNING WATER A SECOND TIME. REMOVE ALL WATER FROM THE HOLE.
- 7. AFTER THE SECOND WATER FLUSH BRUSH THE HOLE AGAIN WITH THE APPROPRIATE SIZED NYLON BRUSH.
- 8. BLOW EACH HOLE WITH COMPRESSED AIR TWO TIMES MINIMUM.
- 9. CONFIRM THAT EACH HOLE IS PROPERLY ROUGHED AND DRY.
- 10. NO EPOXY INJECTION SHALL TAKE PLACE IN RAINY CONDITIONS.
- 11. EPOXY SHOULD BE VISIBLE AT THE TOP OF THE CORE HOLE AFTER INSTALLATION.
- 12. CONTRACTOR TO SUPPLY ONE PHOTO OF EACH ROUGHED AND CLEANED HOLE IN CLOSEOUT PHOTO PACKAGE.

TABLE 8.2 NUT ROTATION FROM SNUG-TIGHT CONDITION FOR TURN-OF-NUT PRETENSIONING^{a,b}

	DISPOSITION OF OUTER FACE OF BOLTED PARTS					
BOLT LENGTH ^C	BOTH FACES NORMAL TO BOLT AXIS	ONE FACE NORMAL TO BOLT AXIS, OTHER SLOPED NOT MORE THAN 1:20 ^d	BOTH FACES SLO NOT MORE THAN FROM NORMAL TO AXIS d			
NOT MORE THAN 4d _b	1/3 TURN	1/2 TURN	2/3 TURN			
MORE THAN 4d _b BUT NOT MORE THAN 8d _b	1/2 TURN	2/3 TURN	5/6 TURN			
MORE THAN 8db BUT NOT MORE THAN 12db	2/3 TURN	5/6 TURN	1 TURN			

^o NUT ROTATION IS RELATIVE TO BOLT REGARDLESS OF THE ELEMENT (NUT OR BEING TURNED. FOR REQUIRED NUT ROTATIONS OF 1/2 TURN AND LESS, THI TOLERANCE IS PLUS OR MINUS 30 DEGREES; FOR REQUIRED NUT ROTATIONS 2/3 TURN AND MORE, THE TOLERANCE IS PLUS OR MINUS 45 DEGREES.

 $^{\rm b}$ applicable only to joints in which all material within the grip is str

^C WHEN THE BOLT LENGTH EXCEEDS 12d_b, THE REQUIRED NUT ROTATION SHAL DETERMINED BY ACTUAL TESTING IN A SUITABLE TENSION CALIBRATOR THAT SIMULATES THE CONDITIONS OF SOLIDLY FITTING STEEL.

^d BEVELED WASHER NOT USED.

SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A325 OR A490 BOLTS, JUNE RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS

INSTALLATION TORQUE REQUIRED FOR HOLLO BOLTS AND AJAX BOLTS:

- 1. HB12 HOLLO BOLT: 59 FT-LBS
- 2. HB16 HOLLO BOLT: 140 FT-LBS
- 3. HB20 HOLLO BOLT: 221 FT-LBS
- 4. M20 AJAX BOLT: 280 FT-LBS.

FIELD HOT WORK PLAN NOTES:

FOLLOWING GUIDELINES SHALL BE COMPLIED WITH:

- 1. CONTRACTOR'S RESPONSIBILITY TO COMPLETE A HOT WORK PLAN IF AWARDED SPECIFICATIONS GUIDELINES FOR WELDING, CUTTING & SPARK PRODUCING WO
- 2. HAVE A FIRE PLAN APPROVED BY THE CUSTOMER AND THEIR SAFETY MANAGEN
- 3. CONTRACTOR MUST OBTAIN THE CONTACT INFO OF THE LOCAL FIRE DEPARTME ADDRESS OF THE TOWER SITE BEFORE CONSTRUCTION.
- 4. CONTRACTOR SHALL MAKE SURE THAT CELL PHONE COVERAGE IS AVAILABLE IN CELL COVERAGE IS NOT AVAILABLE, AN IMMEDIATE AVAILABLE MEANS OF DIREC THE FIRE DEPARTMENT SHALL BE DETERMINED PRIOR TO CONSTRUCTION START
- ALL CONSTRUCTION SHALL BE PERFORMED UNDER WIND SPEED LESS THAN 10 LEVEL. IF WIND SPEED INCREASE, CONTRACTOR MUST DETERMINE IF CONSTRUC DISCONTINUED.
- 6. FIRE SUPPRESSION EQUIPMENT MUST BE MADE AVAILABLE ON SITE AND READY
- 7. CONTRACTOR SHALL ASSIGN A FIRE WATCHER TO PERFORM FIRE-FIGHTING DUT
- ALL WELDERS SHALL BE AWS OR STATE CERTIFIED. THEY MUST ALSO BE EXPE GALVANIZED MATERIALS.
- 9. IF IT IS POSSIBLE, ALL EXISTING COAX NEAR WELDING AREA SHALL BE TEMPOF FROM THE WELDING AREA BEFORE WELDING THE PLATES.
- 10. PLEASE REPORT ANY FIELD ISSUE TO TES @ 972-483-0607.

LOPED N 1:20 D BOLT			
١			
١			
R BOLT) HE S OF			
STEEL. All Be			
E 30, 2004			
<u>S</u> :			
D PER CUST DRK. EMENT DEPT IENT AND TH	OMER IE 911		
IN THE TOW	ER SITE. IF ICATION WITH		
RT. 10 MPH ON JCTION SHAL	THE GROUND L BE		
DY TO USE. UTIES. PERIENCED I	N WELDING O	N	
ORARILY MO	VED AWAY	•	

Tower Engineering Solutions 1320 GREENWAY DRIVE, SUITE 600 IRVING, TX 75038 PHONE: (972) 483–0607
SBA 🔊
5900 BROKEN SOUND PARKWAY, NW BOCA RATON, FL 33487 (800)-487-SITE
TES JOB NO: 7.3511
CUSTOMER SITE NO:
CUSTOMER SITE NAME:
TORRINGTON 2 CT 1210 highland ave
TORRINGTON, CT 06790
DRAWN BY: RR CHECKED BY: LC/AD
REV. DESCRIPTION BY DATE
$\bigwedge^{\bigtriangleup}$
△
SHEET TITLE:
GENERAL NOTES
This drawing/document is the property of Tower Engineering Solutions, LLC. Information contained herein is considered confidential in nature and is to be used only for the specific site that it was intended for. Reproduction, transmission, publication or disclosure by any method is prohibited except by express written permission from Tower Engineering Solutions, LLC. Without exception, the information on this drawing/document remains the property of Tower Engineering Solutions, LLC.
SHEET NUMBER: REV #:

rriaht 2019 Tower Engineering Solutions

SECTION A-A

<u>NOTES</u>:

1. SEE SHEET A-1 FOR LOCATION OF REQUIRED SECTION MODIFIC

- 2. TEMPORARILY RELOCATE ANY EXISTING COAX ATTACHED TO THE ANY OTHER MEMBERS WHERE OBSTRUCTION WITH THE PROPOSE MAY OCCUR.
- 3. MID PANEL HORIZONTAL ASSEMBLY CAN BE INSTALLED INSIDE THE TOWER LEG.
- 4. THIS MODIFICATION FOR 5/8" DIAGONALS ONLY.

ITEM NO.	QTY.	PART NO.	DESCRIPTIO
1	24	36FW175L-HR1	1" DIA. SOLID ROD A36 WELDME
2	48	MS02-500-200-300	RU-BOLT 1/2" X 2" I.W X 3" I.L A36

(2) (TYP)

	((())) HES Tower Engineering Solutions 1320 GREENWAY DRIVE, SUITE 600 IRVING, TX 75038 PHONE: (972) 483–0607
	SBA ()) 5900 BROKEN SOUND PARKWAY, NW BOCA RATON, FL 33487 (800)-487-SITE
	tes job no: 73511
	CUSTOMER SITE NO: CTO2303-A-3-SBA CUSTOMER SITE NAME: TORRINGTON 2 CT 1210 HIGHLAND AVE TORRINGTON, CT 06790
(2) (TYP)	DRAWN BY: RR CHECKED BY: LC/AD
	REV. DESCRIPTION BY DATE
CTION MODIFICATIONS.	SHEET TITLE: 36FWCT (1 3/1" FC)
ACHED TO THE LEGS AND/OR THE PROPOSED MODIFICATION	HORIZONTAL ASSEMBLY-X BRACE (6 BAYS)
ALLED INSIDE OR OUTSIDE OF	This drawing/document is the property of Tower Engineering Solutions, LLC. Information contained herein is considered confidential in nature and is to be used only for the specific site that it was intended for. Reproduction, transmission, publication or disclosure by any method is prohibited except by express written permission from Tower Engineering Solutions, LLC. Without exception, the information on this drawing/document remains the property of Tower Engineering Solutions, LLC.
DESCRIPTIONS	SHEET NUMBER: REV #:
A36 WELDMENT	A-2 0
I.W X 3" I.L A36 OR EQUIV.	

}		
~		
$\left\{ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $		
	Towar Engineering So	Intiona
	1 OWER Engineering So	iutions
	IRVING, TX 75038	- 000
	PHONE: (972) 483-060	
	CDA	\cdot
	JDA	<i>י</i>))
	5900 BROKEN SOUND PARK	WAY, NW
	(800)-487-SITE	-07
	73511	
(TYP) {	CUSTOMER SITE NO:	
	CT02303-A-3-SE	3A
(TYP)	TORRINGTON 2 C	т
<u>-A</u>	1210 HIGHLAND AVE	
	TORRINGTON, CT 06790	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	DRAWN BY: RR CHECKED B	Y: LC/AD
	REV. DESCRIPTION BY	DATE
	<u>ZUL FIRST ISSUE</u>	06/19/19
	$\bigwedge$ REVISED RR	_ 0//24/19
	$\overline{\bigtriangleup}$	
	SHEET TITLE:	
	36FWGT (1 1/2" L	EG).
	ANGLE HORIZONTA	AL //
	ASSEMBLY_Y RRACE (	1 RAY)
	AJJENIDET A DIACE (	
	This drawing/document is the pro Tower Engineering Solutions, LLC.	perty of Information
	contained herein is considered cor nature and is to be used only for	nfidential in the
$\begin{array}{c} \\ \\ \end{array}$	specific site that it was intended Reproduction transmission publics	for. tion or
	disclosure by any method is prohi	bited
DESCRIPTIONS	Tower Engineering Solutions, LLC.	Without
	exception, the information on this drawing/document remains the pro	operty of
A 3/16" X 3'-U" A36 RACKET	Tower Engineering Solutions, LLC.	
X 6 3/4" A36	SHEEL NUMBER:	REV #:
(2" I.W X 3" I.L A36 OR EQUIV	A-3	1
/4" A325 W/HHN & LW	2	





# **GUY STRAND HARDWARE CHART**

			GUY STRAND INFORMATION							JAW & EYE TURNBUCKLE (CROSBY OR EQUIVALENT, 1 REQ'D PER GUY)				DEAD END GRIP		DEAD END SLEEVE (2 REQ'D PER GUY)		THIMBLE (2 REQ'D PER GUY)		SCRI (CROS			
GUY STRAND SIZE	GUY ELEV. (FT)	GUY ANCHOR RADIUS (FT)	GUY ANCH- OR DROP (+/- FT)	NUMBER OF GUY WIRES	REUSE EXISTING GUY WIRES (YES/NO)	NEW GUY WIRE CUT LENGTH (FT)	TOTAL LENGTH (FT)	ULTIMA- TE LOAD (KIPS)	ALLOWA BLE LOAD (KIPS)	SIZE	ULTIM- ATE LOAD (KIPS)	ALLOWA BLE LOAD (KIPS)	PIN DIA.	QTY REQ'D	SIZE	COLOR	QTY REQ'D	SIZE	QTY REQ'D	SIZE	QTY REQ'D	SIZE	U L (
1/2" EHS	70	200	0	6	YES	N/A	N/A	N/A	N/A						1/2"	BLUE	3	1/2"	3	1/2"	3	5/8"	
1/2" EHS	140	200	0	3	YES																		
7/16" EHS	195	200	0	6	NO	299	1,796	20.8	12.5	3/4 X 18	26.0	15.6	5/8"	6	7/16"	GREEN	12	7/16"	12	7/16"	12	1/2"	
5/8" EHS	240	200	0	3	YES	N/A	N/A	N/A	N/A						5/8"	BLACK	1	5/8"	1	5/8"	1	3/4"	

				_					
	SAFETY WI THROUGH BODIES, ET	RE MUST F ALL TURNE YES AND J,	PASS UCKLE AW ENDS.		((I) III IIIIIIIIIIIIIIIIIIIIIIIIIIIIII				
					DRAWN BY: RR CHECKED BY: LC/AD				
					REV. DESCRIPTION BY DATE				
					ZUS FIRST ISSUE         RR         06/19/19           1         REVISED         RR         07/24/19				
			E T)						
OSBI BOL	ו דאב UK ו א מיס ו'ס מיים (2 RFO) ווייס אייט אייט אייט אייט אייט אייט אייט א		1)		$\bigwedge^{\square}$				
		,							
ULTIM- ATE LOAD (KIPS)	ALLOWA BLE LOAD (KIPS)	PIN DIA.	QTY REQ'D	STANDARD GUY HARDWARE CHART					
39	23.4	3/4"	3		This drawing/document is the property of Tower Engineering Solutions, LLC. Information				
			-		contained herein is considered confidential in nature and is to be used only for the specific site that it was intended for				
24	14.4	5/8"	12		Reproduction, transmission, publication or disclosure by any method is prohibited				
57	34.2	7/8"	1		except by express written permission from Tower Engineering Solutions, LLC. Without				
					exception, the information on this drawing/document remains the property of				
					Tower Engineering Solutions, LLC.				
					HC-1				

GUY STRAND INFORMATION					GUY STRAND TENSION CALCULATED UNDER DIFFERENT TEMPERATURES																						
GUY WIRE SIZE	GUY ELEV.	GUY ANCHOR RADIUS	GUY ANCH- OR DROP	guy Wire Length	Guy Initial	Tension Due To Temp	0° F	5° F	10° F	15° F	20° F	25° F	30° F	35° F	40° F	45° F	50° F	55° F	60° F	65° F	70° F	75° F	80° F	85° F	90° F	95° F	100° F
	(FT)	(FT)	(+/- FT)	(FT)	Tension (%)	(Lbs/Deg )	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS	LBS
1/2" EHS	70	200	0	212	10	25.22	4203	4077	3951	3825	3699	3573	3447	3321	3194	3068	2942	2816	2,690.0	2564	2438	2312	2186	2060	1933	1807	1681
1/2" EHS	140	200	0	244	10	25.22	4203	4077	3951	3825	3699	3573	3447	3321	3194	3068	2942	2816	2,690.0	2564	2438	2312	2186	2060	1933	1807	1681
7/16" EHS	195	200	0	279	10	19.63	3258	3160	3062	2963	2865	2767	2669	2571	2473	2374	2276	2178	2,080.0	1982	1884	1786	1687	1589	1491	1393	1295
5/8" EHS	240	200	0	312	10	39.39	6603	6406	6210	6013	5816	5619	5422	5225	5028	4831	4634	4437	4,240.0	4043	3846	3649	3452	3255	3058	2861	2664

# **GUY STRAND TENSION CHART**

_		
	(((H))) ES	lutions
	1320 GREENWAY DRIVE, SUIT IRVING, TX 75038 PHONE: (972) 483–060	E 600 7
	SBA	»))
	5900 BROKEN SOUND PAR BOCA RATON, FL 334 (800)–487–SITE	<way, nw<br="">187</way,>
	TES JOB NO:	
	CUSTOMER SITE NO:	
	CT02303-A-3-SE	BA
	TORRINGTON 2 C	T
	1210 HIGHLAND AVE TORRINGTON CT 06790	,
	DRAWN BY: RR CHECKED E	BY: LC/AD
	REV. DESCRIPTION BY	DATE 06/19/19 07/24/19
	<u></u>	
	GUY TENSION CI	HART
	This drawing/document is the pro Tower Engineering Solutions, LLC. contained herein is considered con nature and is to be used only fo specific site that it was intended Reproduction, transmission, publicd disclosure by any method is proh except by express written permiss Tower Engineering Solutions, LLC. exception, the information on this drawing/document remains the pr Tower Engineering Solutions, LLC.	perty of Information nfidential in r the for. tition or ibited ion from Without operty of
	SHEET NUMBER:	REV #:
	TC-1	1



# Mount Modification Report

# CTL01253

FA #: 10071282 1210 Highland Avenue Torrington, CT 06790 Litchfield County Lat/Long: 41.8026169, -73.1633961

# Modified Mount Utilization: 88.5%*

*Sufficient upon completion of the modifications listed in the 'Recommendations' section of this report.

# December 5, 2019

Prepared For

# AT&T 550 Cochituate Road Framingham, MA 01701

Prepared By



MC Project No. 18946009A





### **Objective:**

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

### Introduction:

Maser Consulting Connecticut has reviewed the following documents in completing this report:

Document Type	Remarks	Source
Mount Mapping Report	Tower Engineering Professionals #:	Maser Consulting
	25696.174174	Connecticut
	Dated October 24, 2017	
Radio Frequency Data Sheet (RFDS)	RFDS ID: 3377580 Version 3.00	Smartlink, LLC
	Dated November 14, 2019	
Mount Analysis	Maser Consulting	Maser Consulting
	Project #: 18946009A,	Connecticut
	Dated November 26, 2019	
Crossover Plate	Site Pro 1 Part #: SCX1-L	Site Pro 1
Sector Frame Reinforcement Kit	Site Pro 1 Part #: SFR-K-L	Site Pro 1
Sector Frame Stiff Arm Kit	Site Pro 1 part #: STK-U	Site Pro 1

# Codes, Standards and Loading:

Jurisdictional adopted codes and standards:

- 2018 Connecticut State Building Code, Incorporating the 2015 IBC
- Maser Consulting Connecticut utilized the following codes and standards:
  - Structural Standards for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures ANSI/TIA-222-H
    - Ultimate Wind Speed 115 mph (3-Second Gust)
    - Exposure Category C
    - Risk Category II
    - Topographic Factor, K_{zt} 1.0
    - Mean Base Elevation (AMSL) 1224.81'
    - Ice Wind Speed 50 mph (3-Second Gust)
    - Design Ice Thickness 1.00"
    - Maintenance Wind Speed 30 mph
      - Maintenance Live Load 250 lbs. at the worst-case location on the mount
      - Maintenance Live Load 500 lbs. at the worst-case antenna location



Quantity	Manufacturer	Antenna/ Appurtenance	Status	Sector
3	POWERWAVE	7770	Existing	Alpha, Beta, & Gamma
3	KMW	EPBQ-654L8H6-L2	Proposed	Alpha, Beta, & Gamma
2	CCI	DMP65R-BU6DA	Proposed	Alpha & Gamma
2	KMW	AM-X-CD-16-65-00T-RET	Existing	Alpha & Gamma
1	KATHREIN	80010764	Existing	Beta
1	CCI	DMP65R-BU4DA	Proposed	Beta
3	ERICSSON	RRUS E2 B29	Proposed	Alpha, Beta, & Gamma
3	ERICSSON	RRUS 4478 B14	Proposed	Alpha, Beta, & Gamma
3	ERICSSON	RRUS 32 B30	Proposed	Alpha, Beta, & Gamma
3	ERICSSON	RRUS 4449 B5/B12	Proposed	Alpha, Beta, & Gamma
3	ERICSSON	RRUS 8843 B2/B66A	Proposed	Alpha, Beta, & Gamma
3	RAYCAP	DC6-48-60-18-8C	Proposed	Alpha & Gamma
6	POWERWAVE	LGP 21401	Existing	Alpha, Beta, & Gamma

The following equipment has been considered for the analysis of the antenna mounts:

# Analysis Approach:

The antenna mount has been modeled in RISA-3D (V17), a comprehensive structural analysis program. The program performs design checks of structures under user specified loads. The user specified loads have been calculated separately based on the requirements of the above referenced codes and standards. The program performs an analysis based on the applicable steel code to determine the adequacy of the members and produces the reactions at the connection points of the mounts to the existing structure.

The scope of this assessment does not include analysis of the supporting tower structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent engineer.



### **Assumptions:**

### **General Site Design Assumptions:**

- 1. All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct.
- 2. The mounting frames were properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 3. The connection from the tower to the mount is in good condition and has been analyzed and found sufficient assuming it will achieve its theoretical strength.
- 4. It is the responsibility of the client to ensure that the information provided to Maser Consulting Connecticut and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that the original design, material production, fabrication, and erection of the existing structure was performed in accordance with accepted industry design standards and in accordance with all applicable codes. Further, it is assumed that the existing structure and appurtenances have been properly maintained in accordance with all applicable codes and manufacturer's specifications and no structural defects and/or deterioration to the structural members has occurred.
- 5. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 6. The existing equipment loading has been applied at locations determined from the supplied documentation and field observations. Should the existing equipment configuration differ from what is utilized in this analysis, the results of this analysis are invalid.
- 7. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.

### Site Specific Assumptions and Design Parameters:

- 1. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:
  - Solid Round, Angle, Plate
  - o Pipe

0

• Threaded Rod

Bolts

ASTM A36 (Gr. 36) ASTM A53 (Gr. B-35) F1554 (Gr. 36) ASTM A325

- 2. All proposed equipment locations are to be as depicted in the rendered diagram in Appendix A of this report. Any changes made to the proposed equipment locations will render this report invalid.
- 3. Due to site specific analysis parameters, it is assumed that wind forces will control over seismic forces and as such, seismic forces have not been considered in this analysis.

# Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut

#### **Calculations:**

Selected calculations and analysis output can be found in Appendix A of this report.



77.5%

Utilization %	Pass/Fail
36.2	Pass
69.1	Pass
44.0	Pass
24.4	Pass
71.4	Pass
38.0	Pass
77.5	Pass
55.5	Pass
54.5	Pass
77.1	Pass
51.5	Pass
11.0	Pass
11.6	Pass
	36.2 69.1 44.0 24.4 71.4 38.0 77.5 55.5 54.5 77.1 51.5 11.0 11.6

### Analysis Results and Conclusion:

Structure Rating – (Controlling Utilization of all Components)

#### Recommendation:

In order for the results of this analysis to be considered valid, the modifications listed below and shown in Appendix B shall be complete on all sectors

- Install two (2) tieback (Site Pro 1 Part#: STK-U or EOR approved equivalent) on existing face vertical braces. Connect other end to adjacent tower leg. [Tie-back location sketch and specification sheet attached]
- Install one (1) sector frame reinforcement kit (Site Pro 1 Part #: SFR-K-L or EOR approved equivalent) to new 150" long P2.0 X-STR face horizontals. Connect new horizontals to existing mount pipes with crossover plates (Site Pro 1 Part #: SCX1-K or EOR approved equivalent) (typical per sector) [mount modification sketch and specification sheets attached].

The conclusions reached by Maser Consulting Connecticut in this evaluation are only applicable for the structural members supporting the AT&T telecommunications installation described herein. Further, no structural qualifications are made or implied by this document for the existing structure. The mount was checked up to, and including, the bolts that fasten it to the mount attachment. However, no structural qualifications are made or implied by this document for the mount attachment.

Maser Consulting Connecticut reserves the right to amend this report if additional information regarding the members is provided. The conclusions reached by Maser Consulting Connecticut in this report are only valid for the appurtenances listed in this report. Any change to the installation will require a revision to this structural analysis.



12/05/2019 Page 6 of 6 Prepared by GHW Checked by DX

We appreciate the opportunity to be of service on this project. If you should have any questions or require any additional information, please do not hesitate to call our office.

Sincerely, Maser Consulting Connecticut

Xυ eiten 1

Dejian Xu,/P.E. Technical Specialist

Grant Walters Senior Engineer

\maserconsulting.com\BWE\AllOffices\MtLaurel\Projects\2018\18946000A\18946009A\Structural\Mount Modifications\for Current Mod 2019\Word\Antenna Mount Analysis - H Code final.docx



#### **Disclaimer of Warranties:**

The engineering services rendered by Maser Consulting Connecticut in connection with this structural analysis are limited to a computer analysis of the mounting frame structure and theoretical capacity of its main structural members. No allowance has been made for any damaged, bent, missing, loose, or rusted members or connections.

Maser Consulting Connecticut will accept no liability which may arise due to any deficiency in design, material, fabrication, erection, construction, or lack of maintenance. Maser Consulting Connecticut has not performed a site visit of the mounting frame to verify member sizes or equipment loading. Contractor should inspect the condition of the existing structure, mounting frames and connections and notify Maser Consulting Connecticut of any discrepancies or deficiencies before proceeding with installation.

The attached sketch is a schematic representation of the analyzed mounting frames. The contractor shall be responsible for field verifying the existing conditions, proper fit, and clearances in the field.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as part of our work. We recommend that material of suitable size and strength be purchased from a reputable manufacturer.

Maser Consulting Connecticut makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of the mounting frames. Maser Consulting Connecticut will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report.



# **APPENDIX A**



AT&T	Date:	12/5/2019
CTL01253		
18946009A		
Antenna Mount Analysis	Page:	1
		Version 3.3

# I. LOADING SUMMARY

Client:

Site Name:

Project No. Title:

Quantity	Manufacturer	Antenna/ Appurtenance	Status	Sector	
3	POWERWAVE	7770	Existing	Alpha, Beta, & Gamma	
3	KMW	EPBQ-654L8H6-L2	Proposed	Alpha, Beta, & Gamma	
2	CCI	DMP65R-BU6DA	Proposed	Alpha & Gamma	
2	KMW	AM-X-CD-16-65-00T-RET	Existing	Alpha & Gamma	
1	KATHREIN	80010764	Existing	Beta	
1	CCI	DMP65R-BU4DA	Proposed	Beta	
3	ERICSSON	RRUS E2 B29	Proposed	Alpha, Beta, & Gamma	(Ground Mounted)
3	ERICSSON	RRUS 4478 B14	Proposed	Alpha, Beta, & Gamma	
3	ERICSSON	RRUS 32 B30	Proposed	Alpha, Beta, & Gamma	
3	ERICSSON	RRU 4449 B5 + B12	Proposed	Alpha, Beta, & Gamma	
3	ERICSSON	RRUS 8843 B2 B66A	Proposed	Alpha, Beta, & Gamma	
3	RAYCAP	DC6-48-60-18-8C	Proposed	Alpha & Gamma	
6	POWERWAVE	LGP 21401	Existing	Alpha, Beta, & Gamma	

#### Analysis completed for Alpha Sector

Quantity	Manufacturer	Antenna/ Appurtenance	Status
1	POWERWAVE	7770	Existing
1	KMW	EPBQ-654L8H6-L2	Proposed
1	CCI	DMP65R-BU6DA	Proposed
1	KMW	AM-X-CD-16-65-00T-RET	Existing
1	ERICSSON	RRUS E2 B29	Proposed
1	ERICSSON	RRUS 4478 B14	Proposed
1	ERICSSON	RRUS 32 B30	Proposed
1	ERICSSON	RRU 4449 B5 + B12	Proposed
1	ERICSSON	RRUS 8843 B2 B66A	Proposed
2	RAYCAP	DC6-48-60-18-8C	Proposed
2	POWERWAVE	LGP 21401	Existing



Client: Site Name: Project No. Title:

2 Version 3.3

12/5/2019

# **II. DESIGN CRITERIA**

<u>Basic Site Criteria:</u>			
TIA Standard:		TIA-222-H	
Antenna Centerline:	z	245	ft
Supporting Structure Type:		Guyed Tower	
Risk Category:		11	
Basic Wind Speed (3 sec. Gust, 700-Year MR	l): V	115	mph
Basic Wind Speed with ice (3 sec. Gust):	Vi	50	mph
Maintenance Wind Speed:	V _m	30	mph
Design Ice Thickness (500-Year MRI):	t _i	1.0	in
Exposure Category:		с	
Topographic Category:		1	
Topographic Factor:	K _{zt}	1.00	
Ground Elevation (AMSL):		1224.81	ft
Ground Elevation Factor:	K _e	0.96	
Shielding Factor:	K _a	0.90	
Gust Effect Factor:	G _h	1.00	
Wind Directionality Factor:	K _d	0.95	
Velocity Pressure Coefficient:	Kz	1.53	
Importance Factor _{Wind, no ice} :	I _{wind}	1.00	
Importance Factor _{Wind, with ice} :	I _{wind w/ice}	1.00	
Importance Factor _{Ice} :	l _{ice}	1.00	
Ice Velocity Pressure Exposure Coefficient:	K _{iz}	1.22	

#### Wind and Ice Design Criteria:

Velocity Pressure:	qz	42.32	psf
Velocity Pressure (With Ice):	q _{zi}	8.00	psf
Velocity Pressure (Maintenance):	q _{zm}	2.88	psf
Factored Ice Thickness:	t _{iz}	1.22	in



#### Client: AT&T Site Name: CTL01253

Project No. 18946009A Title: Antenna Mount Analysis Date: 12/5/2019

Page: 3 Version 3.3

**III. CALCULATIONS** 

Load on Appurtenances

				Non-I	ced Conditio	Iced Condition																				
	Mount	ing Pipe				Equipment				Mount	ing Pipe			Equipment												
Antenna/ Appurtenance	Length	Diameter	Shape Type	Height	Width	Depth	Weight (lbs)	Force Co	orce Coefficient L		rce Coefficient		Force Coefficient		Force Coefficient		Force Coefficient		Force Coefficient		Diameter	Height	Width	Depth	Force Co	oefficient
	(11)	(11)		(11)	(11)	(111)		C _{a Front}	C _{a Side}	(111)	(11)	(11)	(11)	(11)	C _{a Front}	C _{a Side}										
7770	72.0	2.375	Rect	55.00	11.00	5.00	35.00	1.31	1.53	74.4	4.8	57.44	13.44	7.44	1.28	1.42										
EPBQ-654L8H6-L2	96.0	2.375	Rect	73.00	21.00	6.30	82.20	1.24	24 1.55		4.8	75.44	23.44	8.74	1.23	1.45										
DMP65R-BU6DA	96.0	2.375	Rect	71.20	20.70	7.70	79.40	1.24	1.47	98.4	4.8	73.64	23.14	10.14	1.23	1.41										
AM-X-CD-16-65-00T-RET	72.0	2.375	Rect	72.00	11.80	5.90	63.50	1.36	1.57	74.4	4.8	74.44	14.24	8.34	1.32	1.46										
RRUS 4478 B14	0.0	0.000	Rect	18.10	13.40	8.30	59.40	1.20	1.20	0.0	0.0	20.54	15.84	10.74	1.20	1.20										
RRUS 32 B30	0.0	0.000	Rect	27.20	12.00	7.00	52.90	1.20	1.26	0.0	0.0	29.64	14.44	9.44	1.20	1.23										
RRU 4449 B5 + B12	0.0	0.000	Rect	14.96	13.19	10.43	73.00	1.20	1.20	0.0	0.0	17.40	15.63	12.87	1.20	1.20										
RRUS 8843 B2 B66A	0.0	0.000	Rect	14.90	13.20	10.90	77.00	1.20	1.20	0.0	0.0	17.34	15.64	13.34	1.20	1.20										
DC6-48-60-18-8C	0.0	0.000	Round	31.40	10.20	10.20	26.20	0.71	0.71	0.0	0.0	33.84	12.64	12.64	0.70	0.70										
LGP 21401	0.0	0.000	Rect	13.80	14.40	3.70	30.00	1.20	1.25	0.0	0.0	16.24	16.84	6.14	1.20	1.21										

					No	n-Iced Condit	tion	1	ced Conditio	n	Maintenand	e Condition	Seismic C	Condition
Antenna/ Appurtenance	# of Brackets	Turned 90°?	% Shield Front	% Shield Side	Wind Force (lbs.)		Gravity (lbs.)	Wind Fo	rce (lbs.)	Gravity (lbs.)	Wind Fo	rce (lbs.)	Vertical (lbs.)	Horizontal (lbs.)
					F _N	FT	]	F _N	FT		F _N	FT	Ev	E _H
7770	2	No	0%	0%	123.7	92.1	17.5	30.2	28.9	47.5	8.4	6.3	0.0	0.0
EPBQ-654L8H6-L2	2	No	0%	0%	289.7	145.1	41.1	64.2	42.5	108.6	19.7	9.9	0.0	0.0
DMP65R-BU6DA	2	Yes	0%	0%	159.0	279.3	39.7	45.0	62.2	106.8	10.8	19.0	0.0	0.0
AM-X-CD-16-65-00T-RET	2	Yes	0%	0%	128.4	169.8	31.8	37.2	38.9	66.8	8.7 11.6		0.0	0.0
RRUS 4478 B14	1	Yes	0%	100%	53.0	0.0	59.4	15.1	0.0	43.4	3.6	0.0	0.0	0.0
RRUS 32 B30	1	Yes	0%	0%	70.6	115.1	52.9	19.5	28.5	55.7	4.8	7.8	0.0	0.0
RRU 4449 B5 + B12	1	Yes	0%	0%	55.0	69.6	73.0	15.3	18.1	39.1	3.7	4.7	0.0	0.0
RRUS 8843 B2 B66A	1	Yes	0%	0%	57.3	69.4	77.0	15.8	18.1	39.6	3.9	4.7	0.0	0.0
DC6-48-60-18-8C	1	No	0%	0%	67.1	67.1	26.2	16.7	17.1	48.1	4.6	4.6	0.0	0.0
LGP 21401	1	No	100%	0%	0.0	18.8	30.0	0.0	0.0 7.1		0.0	1.3	0.0	0.0

* ALL CALCULATED LOADS ARE PER MOUNTING BRACKET. TO GET THE TOTAL EQUIPMENT LOAD, MULTIPLY THE INDIVIDUAL LOADS BY THE NUMBER OF BRACKETS

<ul> <li>Load on Framing</li> </ul>	Members			No									
					No	n-Iced Condit	ion			Iced Conditio	n		Maintenance Condition
RISA Section Set	RISA Shape	Member	AISC Member Label	Member Surface	Exposed Wind	Force Coefficient	Wind Load	Exposed Wind	D _c (in)	Force Coefficient	Wind Load	Ice Weight	Wind Load (plf)
		8,			Height (in)	Ca	(P)	Height (in)		Ca	(F**)	(1-1-)	
Antenna Pipe	PIPE_2.0	Pipe	Pipe 2.0	Round	0.00	1.20	0.00	2.44	2.38	1.20	0.00	5.37	0.00
Empty Pipe	PIPE_2.0	Pipe	Pipe 2.0	Round	2.38	1.20	10.05	4.82	2.38	1.20	3.86	5.37	0.68
Face Horizontal	L3X3X6	Equal Angle	L3x3	Square	3.00	2.00	21.16	5.44	4.24	2.00	7.26	8.16	1.44
Standoff Vertical	PIPE_2.0	Pipe	Pipe 2.0	Round	2.38	1.20	10.05	4.82	2.38	1.20	3.86	5.37	0.68
Face Vertical Brace	PIPE_2.0	Pipe	Pipe 2.0	Round	2.38	1.20	10.05	4.82	2.38	1.20	3.86	5.37	0.68
Standoff Diagonal	3/4"	Solid Round Bar	0.75	Round	0.75	1.20	3.17	3.19	0.75	1.20	2.56	2.94	0.22
Standoff Horizontal	L3X3X6	Equal Angle	L3x3	Square	3.00	2.00	21.16	5.44	4.24	2.00	7.26	8.16	1.44
Proposed Tie Back	PIPE_2.0	Pipe	Pipe 2.0	Round	2.38	1.20	10.05	4.82	2.38	1.20	3.86	5.37	0.68
Plate Member	PL5x.25	Solid Flat Bar	5x.25	Square	5.00	2.00	35.27	7.44	5.01	2.00	9.93	9.30	2.40
Tower Connection Plate	PL7x3/8	Solid Flat Bar	7x.375	Square	7.00	2.00	49.38	9.44	7.01	2.00	12.59	12.29	3.36
Mod Face	PIPE_2.0X	Pipe	Pipe 2.0	Round	2.38	1.20	10.05	4.82	2.38	1.20	3.86	5.37	0.68
SFRK	L2.5x2.5x3	Equal Angle	L2.5x2.5	Square	2.50	2.00	17.63	4.94	3.54	2.00	6.59	7.10	1.20
Tieback	PIPE_2.0	Pipe	Pipe 2.0	Round	2.38	1.20	10.05	4.82	2.38	1.20	3.86	5.37	0.68



# Client: AT&T Site Name: CTL01253 Project No. 18946009A Title: Antenna Mount Analysis

Date: 12/5/2019

4 Page: ____

Version 3.3

IV. RISA INPUT

#### Joint Load Input Data

Note         Note        Note        Note        No	Joint Louis input	Dulu	Non-Seed Condition. Wind Force Ibs.) Ired Condition. Wind Force Ibs.) Maintenance Condition. Wind Force Ibs.)																																					
Name         Name       Name        Name        Nam	1		Relative	Global Azi	muth	Wind Force	c (105.)				Global Attmuth Global Attmuth																													
UD10         UD10         UD         UD10         UD         UD        UD        UD        UD        UD        UD         UD         UD         UD        UD         UD        UD        UD        UD        UD        UD        UD        UD	Loaded Joints by Name	Associated Appurtenance	Azimuth	0	30	60	90	90	120	150	180	210	240	270	300	330	0	30	60	90 120 150 180 210 240 270 300 330 0 30 60 90 120 150 180 210 240 270 30								300	330											
UND         UND        UND        UND        UND        UND        UND        UND        UND        UND        UND        UND        UND        UND        UND        UND       UND        UND       UND	TMA+2	LGP 21401	0	0.0	4.7	14.1	18.8	18.8	14.1	4.7	0.0	4.7	14.1	18.8	14.1	4.7	0.0	1.8	5.3	7.1	5.3	1.8	0.0	1.8	5.3	7.1	5.3	1.8	0.0	0.3	1.0	1.3	1.0	0.3	0.0	0.3	1.0	1.3	1.0	0.3
Bit All	TMA+1	LGP 21401	0	0.0	4.7	14.1	18.8	18.8	14.1	4.7	0.0	4.7	14.1	18.8	14.1	4.7	0.0	1.8	5.3	7.1	5.3	1.8	0.0	1.8	5.3	7.1	5.3	1.8	0.0	0.3	1.0	1.3	1.0	0.3	0.0	0.3	1.0	1.3	1.0	0.3
Impo         Impo        Impo        Impo        Im	RRUS-32B30	RRUS 32 B30	0	70.6	81.7	104.0	115.1	115.1	104.0	81.7	70.6	81.7	104.0	115.1	104.0	81.7	19.5	21.8	26.3	28.5	26.3	21.8	19.5	21.8	26.3	28.5	26.3	21.8	4.8	5.6	7.1	7.8	7.1	5.6	4.8	5.6	7.1	7.8	7.1	5.6
Important         Important        Important        Important        I	EPBQ+2	EPBQ-654L8H6-L2	0	289.7	253.6	181.3	145.1	145.1	181.3	253.6	289.7	253.6	181.3	145.1	181.3	253.6	64.2	58.8	47.9	42.5	47.9	58.8	64.2	58.8	47.9	42.5	47.9	58.8	19.7	17.3	12.3	9.9	12.3	17.3	19.7	17.3	12.3	9.9	12.3	17.3
More       More      More       More      <	EPBQ+1	EPBQ-654L8H6-L2	0	289.7	253.6	181.3	145.1	145.1	181.3	253.6	289.7	253.6	181.3	145.1	181.3	253.6	64.2	58.8	47.9	42.5	47.9	58.8	64.2	58.8	47.9	42.5	47.9	58.8	19.7	17.3	12.3	9.9	12.3	17.3	19.7	17.3	12.3	9.9	12.3	17.3
Import Mark         Import Mark        Import Mark        Import Mark       <	DMP+2	DMP65R-BU6DA	0	159.0	189.1	249.3	279.3	279.3	249.3	189.1	159.0	189.1	249.3	279.3	249.3	189.1	45.0	49.3	57.9	62.2	57.9	49.3	45.0	49.3	57.9	62.2	57.9	49.3	10.8	12.9	17.0	19.0	17.0	12.9	10.8	12.9	17.0	19.0	17.0	12.9
Subset         Subse        Subse        Subse	DMP+1	DMP65R-BU6DA	0	159.0	189.1	249.3	279.3	279.3	249.3	189.1	159.0	189.1	249.3	279.3	249.3	189.1	45.0	49.3	57.9	62.2	57.9	49.3	45.0	49.3	57.9	62.2	57.9	49.3	10.8	12.9	17.0	19.0	17.0	12.9	10.8	12.9	17.0	19.0	17.0	12.9
Dist         Dist <th< th=""><th>DC6+2</th><th>DC6-48-60-18-8C</th><th>0</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>16.7</th><th>16.8</th><th>17.0</th><th>17.1</th><th>17.0</th><th>16.8</th><th>16.7</th><th>16.8</th><th>17.0</th><th>17.1</th><th>17.0</th><th>16.8</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th></th<>	DC6+2	DC6-48-60-18-8C	0	67.1	67.1	67.1	67.1	67.1	67.1	67.1	67.1	67.1	67.1	67.1	67.1	67.1	16.7	16.8	17.0	17.1	17.0	16.8	16.7	16.8	17.0	17.1	17.0	16.8	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6
MACD 56 000       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G <th< th=""><th>DC6+1</th><th>DC6-48-60-18-8C</th><th>0</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>67.1</th><th>16.7</th><th>16.8</th><th>17.0</th><th>17.1</th><th>17.0</th><th>16.8</th><th>16.7</th><th>16.8</th><th>17.0</th><th>17.1</th><th>17.0</th><th>16.8</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th><th>4.6</th></th<>	DC6+1	DC6-48-60-18-8C	0	67.1	67.1	67.1	67.1	67.1	67.1	67.1	67.1	67.1	67.1	67.1	67.1	67.1	16.7	16.8	17.0	17.1	17.0	16.8	16.7	16.8	17.0	17.1	17.0	16.8	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6
MAD     MAD     Vi      Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi     Vi<	AMX-2	AM-X-CD-16-65-00T-RET	0	128.4	138.7	159.4	169.8	169.8	159.4	138.7	128.4	138.7	159.4	169.8	159.4	138.7	37.2	37.6	38.5	38.9	38.5	37.6	37.2	37.6	38.5	38.9	38.5	37.6	8.7	9.4	10.9	11.6	10.9	9.4	8.7	9.4	10.9	11.6	10.9	9.4
matchess     match	AMX-1	AM-X-CD-16-65-00T-RET	0	128.4	138.7	159.4	169.8	169.8	159.4	138.7	128.4	138.7	159.4	169.8	159.4	138.7	37.2	37.6	38.5	38.9	38.5	37.6	37.2	37.6	38.5	38.9	38.5	37.6	8.7	9.4	10.9	11.6	10.9	9.4	8.7	9.4	10.9	11.6	10.9	9.4
mm     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b	8843	RRUS 8843 B2 B66A	0	57.3	60.3	66.3	69.4	69.4	66.3	60.3	57.3	60.3	66.3	69.4	66.3	60.3	15.8	16.4	17.5	18.1	17.5	16.4	15.8	16.4	17.5	18.1	17.5	16.4	3.9	4.1	4.5	4.7	4.5	4.1	3.9	4.1	4.5	4.7	4.5	4.1
1000     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100 </th <th>7770-2</th> <th>7770</th> <th>0</th> <th>123.7</th> <th>115.8</th> <th>100.0</th> <th>92.1</th> <th>92.1</th> <th>100.0</th> <th>115.8</th> <th>123.7</th> <th>115.8</th> <th>100.0</th> <th>92.1</th> <th>100.0</th> <th>115.8</th> <th>30.2</th> <th>29.8</th> <th>29.2</th> <th>28.9</th> <th>29.2</th> <th>29.8</th> <th>30.2</th> <th>29.8</th> <th>29.2</th> <th>28.9</th> <th>29.2</th> <th>29.8</th> <th>8.4</th> <th>7.9</th> <th>6.8</th> <th>6.3</th> <th>6.8</th> <th>7.9</th> <th>8.4</th> <th>7.9</th> <th>6.8</th> <th>6.3</th> <th>6.8</th> <th>7.9</th>	7770-2	7770	0	123.7	115.8	100.0	92.1	92.1	100.0	115.8	123.7	115.8	100.0	92.1	100.0	115.8	30.2	29.8	29.2	28.9	29.2	29.8	30.2	29.8	29.2	28.9	29.2	29.8	8.4	7.9	6.8	6.3	6.8	7.9	8.4	7.9	6.8	6.3	6.8	7.9
900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900      900	7770-1	7770	0	123.7	115.8	100.0	92.1	92.1	100.0	115.8	123.7	115.8	100.0	92.1	100.0	115.8	30.2	29.8	29.2	28.9	29.2	29.8	30.2	29.8	29.2	28.9	29.2	29.8	8.4	7.9	6.8	6.3	6.8	7.9	8.4	7.9	6.8	6.3	6.8	7.9
100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       1	4478B14	RRUS 4478 B14	0	53.0	39.7	13.2	0.0	0.0	13.2	39.7	53.0	39.7	13.2	0.0	13.2	39.7	15.1	11.3	3.8	0.0	3.8	11.3	15.1	11.3	3.8	0.0	3.8	11.3	3.6	2.7	0.9	0.0	0.9	2.7	3.6	2.7	0.9	0.0	0.9	2.7
	4449	RRU 4449 B5 + B12	0	55.0	58.7	66.0	69.6	69.6	66.0	58.7	55.0	58.7	66.0	69.6	66.0	58.7	15.3	16.0	17.4	18.1	17.4	16.0	15.3	16.0	17.4	18.1	17.4	16.0	3.7	4.0	4.5	4.7	4.5	4.0	3.7	4.0	4.5	4.7	4.5	4.0
																																				_				
																																			-		+ +			
			_	<u> </u>	1	1		-		+	1	1	1												1	1				+ +	-			+	+	1	+ +	$\rightarrow$		$\rightarrow$
				I	1	1	1			1	1	1	1												1	1								1	+	+	+ +			$\rightarrow$
																																								-
																																								_
																																						-		
																																				-				
																																			-	-				
Image: Mode of the state o																																			-	-		+		
Image: serie seri																																								$\rightarrow$
Image: Proper to the state of the state																																								-
																																								_
Image         Image <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>																																								
							_																													-				
Image: Proper biase       Image: Propero biase       Image: Propero bias																																			-		+ +			
Image: Note of the state o																																								
				I	1	1	1			1	1	1	1												1	1				+ +				1	+	+	+ +			$\rightarrow$
Image: Proper bial       Image: Pr				1	1	1	1			1	1	1	1												1	1	1		-					1	1	1	1 1	$\rightarrow$		$\rightarrow$
No         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N				1	1	1	1					1													1						1		1	1	1	1	1 1	$\rightarrow$	1	-
N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N				1	1	1	1				1	1	1												1	1														
Image: Proper biase of the state of the																																								
N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N																																								
Image: State of the state																																								
							_																													-				
										-	1																													$\rightarrow$
				<u> </u>	I							I									-				I									+	+	+	+ +	$\rightarrow$		
										+																				+ +				+	+	1	+ +	$\rightarrow$		$\rightarrow$
				I	1	1	1			1	1	1	1												1	1								1	+	+	+ +			
				1	1	1	1			1	1	1													1									+	+	1	+ +	$\rightarrow$		
						1	1				1																							1	1	1	1 1			-
				1	1	1	1					1													1						1		1	1	1	1	1 1	$\rightarrow$	1	$\neg$
																																								<u> </u>
					I	1	1					1	I												1	I				I T	Т		-	1 -	1 -	1	I T	Т	Ē	I

Note: Azimuths determined with the mount face parallel with z-axis in model as 0 degrees and sequential orientations clockwise in 30 degree increments.



		Code Check (Env) 90-10 90-10 75-90 0-50
Envelope Only Solution Maser Consulting Connect		
GHW 18946009A	Mount Analysis	Dec 5, 2019 at 9:46 AM mount - LOADED.r3d
		Shear Check (Erv) 90-10 - 75-90 - 50-75 0-50
-------------------------------------------------------	----------------	-------------------------------------------------------------
Member Shear Checks Displayed (Envelope Only Solution	opped)	
Maser Consulting Connect.		
GHW 18946009A	Mount Analysis	Dec 5, 2019 at 9:46 AM mount - LOADED.r3d

Maser Consulting Connect GHW 18946009A	Mount Analysis	Dec 5, 2019 at 9:46 AM mount - LOADED.r3d

Member Length (in) Displayed Envelope Only Solution		
Maser Consulting Connect		
GHW 18946009A	Mount Analysis	Dec 5, 2019 at 9:47 AM mount - LOADED.r3d





### Member Primary Data

Ξ

1         M1         N96         N98         90         Piete Member         Bar         BAR         A36 c7.36         Typical           3         M3         N17         N20         RiGiD         None         None         RiGiD         Typical           4         M4         N15         N19         RiGiD         None         None         RiGiD         Typical           5         M5         N22         N18         RiGiD         None         None         RiGiD         Typical           6         M6         N21         N18         RigiD         None         None         RigiD         None         RigiD         None         None         RigiD         None		Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
2         M2         N97         N99         90         Plate Member         Beam         BAR         BAS         Child         Typical           4         M4         N15         N19         RiGID         None         None         RiGID         Typical           5         M5         N22         N18         RiGID         None         None         RiGID         Typical           6         M6         N21         N16         RiGID         None         None         RiGID         Typical           10         M10         N16         N1         180         Face Horzontal         Beam         Single Angle         A36 or.36         Typical           11         M11         N25         RiGID         None         None         RiGID         Typical           13         M13         N24         N31         RiGID         None         RiGID         Typical           14         M14         N26         N32         RiGID         None         RiGID         T	1	M1	N96	N98		90	Plate Member	Beam	BAR	A36 Gr.36	Typical
3         M3         N17         N20         RIGID         None         None         RIGID         Typical           6         M6         N22         N18         RIGID         None         None         RIGID         Typical           6         M6         N21         N16         RIGID         None         None         RIGID         Typical           7         M7         N4         N17         180         Face Horizontal         Beam         Single Angle A36         A36         Typical           9         M9         N15         N3         180         Face Horizontal         Beam         Single Angle A36         A36         Typical           10         M10         N16         N1         180         Face Horizontal         Beam         Single Angle A36         A36         Typical           11         M11         N24         N31         RIGID         None         None         RIGID         Typical           13         M13         N24         N31         RIGID         None         None         RIGID         Typical           14         M14         N26         N32         RIGID         None         None         RIGID         Typi	2	M2	N97	N99		90	Plate Member	Beam	BAR	A36 Gr.36	Typical
4         M4         N15         N19         RGD         None         RIGD         None         RIGD         Typical           6         M6         N21         N16         RIGD         None         NIGID         Typical           7         M7         N4         N17         180         Face Horizontal         Beam         Single Angle A35         Gr.36         Typical           9         M9         N15         N3         180         Face Horizontal         Beam         Single Angle A35         Gr.36         Typical           10         M10         N16         N1         180         Face Horizontal         Beam         Single Angle A35         Gr.36         Typical           11         M11         N22         N2         RIGID         None         None         RIGID         Typical           12         M12         N30         N25         RIGID         None         None         RIGID         Typical           13         M13         N24         N31         RIGID         None         RIGID         Typical           14         M14         N26         N32         RIGID         None         RIGID         Typical           1	3	<u>M3</u>	N17	N20			RIGID	None	None	RIGID	Typical
5         M5         N22         N18         RGD         None         RIGD         None         RIGD         Typical           7         M7         N4         N17         180         Face Horizontal         Beam         Single Angle A35 Gr.36         Typical           9         M9         N15         N3         180         Face Horizontal         Beam         Single Angle A35 Gr.36         Typical           10         M10         N16         N1         180         Face Horizontal         Beam         Single Angle A35 Gr.36         Typical           11         M11         N29         N23         RIGD         None         None         RIGD         Typical           12         M13         N24         N31         RIGD         None         None         RIGD         Typical           14         M14         N26         N32         RIGD         None         None         RIGD         Typical           15         M15         N6         N5         Face Vertical         Column         Pipe         A53 Gr. B         Typical           16         M16         N10         N9         Face Vertical         Column         Pipe         A53 Gr. B         Typical	4	M4	N15	N19			RIGID	None	None	RIGID	Typical
6         M6         N21         N16         RGD         None         RGD         None         RGD         Typical           7         M7         N4         N17         180         Face Horizontal Beam         Single Angle A36 Gr.36         Typical           9         M9         N15         N3         180         Face Horizontal         Beam         Single Angle A36 Gr.36         Typical           10         M10         N16         N1         180         Face Horizontal         Beam         Single Angle A36 Gr.36         Typical           11         M12         N30         N25         RIGID         None         None         RIGID         Typical           13         M13         N24         N31         RIGID         None         None         RIGID         Typical           14         M14         N26         N32         Face Varical         Column         Pipe         A53 Gr.B         Typical           15         M16         N10         N3         Face Varical         Column         Pipe         A53 Gr.B         Typical           16         M16         N10         N45         Empty Pipe         Column         Pipe         A53 Gr.B         Typical	5	M5	N22	N18			RIGID	None	None	RIGID	Typical
7         M7         N4         N17         180         Face Horizontal Beam         Single Angle         A36         Typical           9         M9         N15         N3         180         Face Horizontal         Beam         Single Angle         A36         Cr36         Typical           10         M10         N16         N1         180         Face Horizontal         Beam         Single Angle         A36         Cr36         Typical           11         M11         N29         N23         RiGID         None         None         RiGID         Typical           12         M13         N24         N31         RiGID         None         None         RiGID         Typical           14         M14         N26         N32         RiGID         None         None         RiGID         Typical           15         M15         N6         N5         Face Vertical         Column         Pipe         A53         Gr. B         Typical           16         M16         N10         N9         Face Vertical         Column         Pipe         A53         Gr. B         Typical           17         M17         N12         N11         Face Vertical<	6	M6	N21	N16			RIGID	None	None	RIGID	Typical
8         M8         N2         N18         180         Face Horizontal Beam         Single Angle A36 Gr.36         Typical           10         M10         N16         N1         180         Face Horizontal Beam         Single Angle A36 Gr.36         Typical           11         M11         N29         N23         RIGID         None         None         RIGID         Typical           12         M12         N30         N25         RIGID         None         None         RIGID         Typical           13         M13         N24         N31         RIGID         None         None         RIGID         Typical           14         M14         N26         N32         RIGID         None         RIGID         Typical           15         M15         N6         N5         Face Vertical         Column         Pipe         A53 Gr.8         Typical           16         M16         N10         N9         Face Vertical         Column         Pipe         A53 Gr.8         Typical           17         M17         N14         Pipe         Column         Pipe         A53 Gr.8         Typical           20         M56         N50         N46	7	M7	N4	N17		180	Face Horizontal	Beam	Single Angle	A36 Gr.36	Typical
9         M9         N15         N3         180         Face Horizontal Beam Single Angle Angle Aste Gr38         Typical           11         M11         N29         N23         RIGID         None         RIGID         Ypical           12         M12         N33         N24         RIGID         None         RIGID         None         RIGID         Typical           14         M14         N26         N32         RIGID         None         RIGID         Typical           15         M15         N6         N5         Face Vertical         Column         Pipe         A53 Gr. B         Typical           16         M16         N10         N9         Face Vertical         Column         Pipe         A53 Gr. B         Typical           17         M17         N12         N11         Face Vertical         Column         Pipe         A53 Gr. B         Typical           18         M18         N8         N7         Face Vertical         Column         Pipe         A53 Gr. B         Typical           20         M56         N50         N46         Empty Pipe Column         Pipe         A53 Gr. B         Typical           21         M21         N51	8	<u>M8</u>	N2	N18		180	Face Horizontal	Beam	Single Angle	A36 Gr.36	Typical
10         N16         N1         180         Pace Horizontal         Beam         Single Angle         Atk Grigb         Typical           11         M11         N29         N23         RIGID         None         None         RIGID         Typical           12         M12         N30         N25         RIGID         None         None         RIGID         Typical           13         M13         N24         N31         RIGID         None         None         RIGID         Typical           14         M14         N26         N32         RIGID         None         RIGID         Typical           15         M15         N6         N5         Face Vertical         Column         Pipe         A53 Gr. B         Typical           16         M18         N8         N7         Face Vertical         Column         Pipe         A53 Gr. B         Typical           19         M19         N445         Empty Pipe         Column         Pipe         A53 Gr. B         Typical           20         M56         N50         N46         Empty Pipe         Column         Pipe         A53 Gr. B         Typical           21         M21         N51<	9	<u>M9</u>	N15	<u>N3</u>		180	Face Horizontal	Beam	Single Angle	A36 Gr.36	Typical
11         M11         N29         N23         RIGID         None         None         RIGID         Typical           12         M13         N24         N31         RIGID         None         None         RIGID         Typical           14         M14         N26         N32         RIGID         None         None         RIGID         Typical           15         M16         N10         N9         Face Vertical         Column         Pipe         A53 Gr. B         Typical           16         M16         N10         N9         Face Vertical         Column         Pipe         A53 Gr. B         Typical           17         M17         N12         N11         Face Vertical         Column         Pipe         A53 Gr. B         Typical           18         M18         N8         N7         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           20         M56         N50         N46         Empty Pipe         Column         Pipe         A53 Gr. B         Typical           21         M21         N51         N47         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical <tr< td=""><td>10</td><td>M10</td><td>N16</td><td>N1</td><td></td><td>180</td><td>Face Horizontal</td><td>Beam</td><td>Single Angle</td><td>A36 Gr.36</td><td>Typical</td></tr<>	10	M10	N16	N1		180	Face Horizontal	Beam	Single Angle	A36 Gr.36	Typical
12         M30         N25         RIGID         None         None         RIGID         Typical           13         M13         N24         N31         RIGID         None         None         RIGID         Typical           14         M14         N26         N32         RIGID         None         None         RIGID         Typical           15         M15         N6         N5         Face Vertical         Column         Pipe         A53 Gr. B         Typical           16         M16         N10         N9         Face Vertical         Column         Pipe         A53 Gr. B         Typical           17         M17         N12         N14         Face Vertical         Column         Pipe         A53 Gr. B         Typical           18         M18         N8         N7         Face Vertical         Column         Pipe         A53 Gr. B         Typical           20         M56         N50         N46         Empty Pipe         Column         Pipe         A53 Gr. B         Typical           21         M21         N51         N47         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           22 </td <td>11</td> <td><u>M11</u></td> <td>N29</td> <td>N23</td> <td></td> <td></td> <td>RIGID</td> <td>None</td> <td>None</td> <td>RIGID</td> <td>Typical</td>	11	<u>M11</u>	N29	N23			RIGID	None	None	RIGID	Typical
13         M13         N24         N31         RIGID         None         None         RIGID         Typical           14         M14         N26         N32         RIGID         None         None         RIGID         Typical           15         M15         N6         N5         Face Vertical         Column         Pipe         A53 Gr. B         Typical           16         M10         N9         Face Vertical         Column         Pipe         A53 Gr. B         Typical           17         M17         N12         N11         Face Vertical         Column         Pipe         A53 Gr. B         Typical           18         M18         N8         N7         Face Vertical         Column         Pipe         A53 Gr. B         Typical           20         M56         N50         N46         Empty Pipe         Column         Pipe         A53 Gr. B         Typical           23         M23         N30A         N38         RIGID         None         None         RIGID         Typical           24         M24         N29A         N37         RIGID         None         None         RIGID         Typical           25	12	M12	N30	N25			RIGID	None	None	RIGID	Typical
14         M14         N26         N32         R(GID         None         R(GID         Lypical           15         M15         N6         N5         Face Vertical         Column         Pipe         A53 Gr. B         Typical           16         M16         N10         N9         Face Vertical         Column         Pipe         A53 Gr. B         Typical           17         M17         N12         N11         Face Vertical         Column         Pipe         A53 Gr. B         Typical           19         M19         N49         N45         Empty Pipe         Column         Pipe         A53 Gr. B         Typical           20         M56         N50         N46         Empty Pipe         Column         Pipe         A53 Gr. B         Typical           21         M21         N51         N47         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           22         M22         N52         N48         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           23         M23         N30A         N37         R(GID         None         None         R(GID         Typical           24 </td <td>13</td> <td><u>M13</u></td> <td>N24</td> <td><u>N31</u></td> <td></td> <td></td> <td>RIGID</td> <td>None</td> <td>None</td> <td>RIGID</td> <td>Typical</td>	13	<u>M13</u>	N24	<u>N31</u>			RIGID	None	None	RIGID	Typical
15         M15         N6         N5         Prace Vertical         Column         Pipe         A53 Gr. B         Typical           17         M17         N12         N11         Face Vertical         Column         Pipe         A53 Gr. B         Typical           18         M18         N8         N7         Face Vertical         Column         Pipe         A53 Gr. B         Typical           19         M19         N49         N45         Empty Pipe         Column         Pipe         A53 Gr. B         Typical           20         M56         N50         N46         Empty Pipe         Column         Pipe         A53 Gr. B         Typical           21         M21         N51         N47         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           23         M30         N30A         N38         RIGID         None         RIGID         Typical           24         M24         N29A         N37         RIGID         None         None         RIGID         Typical           25         M25         N34         N42         RIGID         None         None         RIGID         Typical           26	14	<u>M14</u>	N26	N32			RIGID	None	None	RIGID	Typical
116         M16         N10         N9         Frace Vertical         Column         Pipe         A53 Gr. B         Typical           18         M18         N8         N7         Frace Vertical         Column         Pipe         A53 Gr. B         Typical           19         M19         N49         N45         Empty Pipe         Column         Pipe         A53 Gr. B         Typical           20         M56         N50         N46         Empty Pipe         Column         Pipe         A53 Gr. B         Typical           21         M21         N51         N47         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           22         M22         N52         N48         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           23         M23         N30A         N38         RIGID         None         None         RIGID         Typical           24         M24         N29A         N31         N39         RIGID         None         None         RIGID         Typical           25         M29         N33         N41         RIGID         None         None         RIGID         Typical	15	<u>M15</u>	<u>N6</u>	<u>N5</u>			Face Vertical	Column	Pipe	<u>A53 Gr. B</u>	Typical
17         M17         N12         N11         Face Vertical Column         Pipe         A53 Gr. B         Typical           18         M18         N8         N7         Face VerticalColumn         Pipe         A53 Gr. B         Typical           20         M56         N50         N46         Empty Pipe         Column         Pipe         A53 Gr. B         Typical           21         M21         N51         N47         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           22         M22         N52         N48         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           23         M23         N30A         N38         RIGID         None         None         RIGID         Typical           24         M24         N29A         N37         RIGID         None         None         RIGID         Typical           25         M25         N31A         N39         RIGID         None         None         RIGID         Typical           26         M28         N33         N41         RIGID         None         None         RIGID         Typical           27         M27	16	M16	N10	N9			Face Vertical	Column	Pipe	A53 Gr. B	Typical
18         M18         N8         N7         Face ventcal         Column         Pipe         A53 Gr. B         Typical           19         M19         N49         N45         Empty Pipe         Column         Pipe         A53 Gr. B         Typical           20         M56         N50         N46         Empty Pipe         Column         Pipe         A53 Gr. B         Typical           21         M21         N51         N47         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           23         M23         N30A         N38         RIGID         None         None         None         RIGID         Typical           24         M24         N29A         N37         RIGID         None         None         RIGID         Typical           25         M25         N31A         N42         RIGID         None         None         RIGID         Typical           26         M26         N32A         N40         RIGID         None         None         RIGID         Typical           27         M27         N34         N42         RIGID         None         None         RIGID         Typical	17	<u>M17</u>	N12	<u>N11</u>			Face Vertical	<u>Column</u>	Pipe	A53 Gr. B	Typical
19         M19         N49         N45         Empty Pipe Column         Pipe         A53 Gr. B         Typical           20         M56         N50         N46         Empty Pipe Column         Pipe         A53 Gr. B         Typical           21         M21         N51         N47         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           22         M22         N52         N48         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           23         M23         N30A         N38         RIGID         None         None         None         RIGD         Typical           24         M24         N29A         N37         RIGID         None         None         RIGD         Typical           25         M25         N31A         N39         RIGID         None         None         RIGD         Typical           26         M26         N32         N41         RIGID         None         None         RIGD         Typical           28         M28         N33         M41         RIGID         None         None         RIGID         Typical           30         M30	18	<u>M18</u>	<u>N8</u>	<u>N/</u>			Face Vertical	Column	Pipe	A53 Gr. B	I ypical
20         M56         N50         N46         Empty Pipe         Column         Pipe         A53 Gr. B         Typical           21         M21         N51         N47         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           23         M23         N30A         N38         RIGID         None         None         RIGID         Typical           24         M24         N29A         N37         RIGID         None         None         RIGID         Typical           25         M25         N31A         N39         RIGID         None         None         RIGID         Typical           26         M26         N32A         N40         RIGID         None         None         RIGID         Typical           29         M29         N35         N43         RIGID         None         None         RIGID         Typical           30         M30         N36         N44         RIGID         None         None         RIGID         Typical           31         M31         N55         N53         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           33         M33	19	<u>M19</u>	N49	N45			Empty Pipe	Column	Pipe	A53 Gr. B	I ypical
21         M21         N51         N47         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           23         M23         N30A         N38         RIGID         None         None         RIGID         Typical           24         M24         N29A         N37         RIGID         None         None         RIGID         Typical           25         M25         N31A         N39         RIGID         None         None         RIGID         Typical           26         M26         N32A         N40         RIGID         None         None         RIGID         Typical           27         M27         N34         N42         RIGID         None         None         RIGID         Typical           28         M28         N33         N41         RIGID         None         None         RIGID         Typical           30         M30         N36         N44         RIGID         None         None         RIGID         Typical           31         M31         N55         N53         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           33         M33 <td< td=""><td>20</td><td><u>M56</u></td><td>N50</td><td>N46</td><td></td><td></td><td>Empty Pipe</td><td>Column</td><td>Pipe</td><td>A53 Gr. B</td><td>Typical</td></td<>	20	<u>M56</u>	N50	N46			Empty Pipe	Column	Pipe	A53 Gr. B	Typical
22         M22         N52         N48         Antenna Pipe         Column         Pipe         A53 Gr. B         Lypical           23         M23         N30A         N38         RIGID         None         None         RIGID         Typical           24         M24         N29A         N37         RIGID         None         None         RIGID         Typical           25         M25         N31A         N39         RIGID         None         None         RIGID         Typical           26         M26         N32A         N40         RIGID         None         None         RIGID         Typical           27         M27         N34         N42         RIGID         None         None         RIGID         Typical           28         M28         N33         N41         RIGID         None         None         RIGID         Typical           30         M30         N36         N44         RIGID         None         None         RIGID         Typical           31         M31         N55         N53         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           32         M32 <td< td=""><td>21</td><td><u>M21</u></td><td>N51</td><td><u>N47</u></td><td></td><td></td><td>Antenna Pipe</td><td>Column</td><td>Pipe</td><td>A53 Gr. B</td><td>I ypical</td></td<>	21	<u>M21</u>	N51	<u>N47</u>			Antenna Pipe	Column	Pipe	A53 Gr. B	I ypical
23         M24         N30A         N38         RIGID         None         None         RIGID         Jypical           24         M24         N29A         N37         RIGID         None         None         RIGID         Typical           25         M25         N31A         N39         RIGID         None         None         RIGID         Typical           26         M26         N32A         N40         RIGID         None         None         RIGID         Typical           27         M27         N34         N42         RIGID         None         None         RIGID         Typical           28         M28         N33         N41         RIGID         None         None         RIGID         Typical           30         M30         N36         N44         RIGID         None         None         RIGID         Typical           31         M31         N55         N53         Antenna Pipe         Column         Pipe         A53 Gr. B         Typical           33         M33         N57         N61         RIGID         None         RIGID         Typical           34         M34         N58         N62	22	<u>M22</u>	N52	N48			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
24M24N29AN37RIGIDNoneNoneRIGIDTypical25M25N31AN39RIGIDNoneNoneRIGIDTypical26M26N32AN40RIGIDNoneNoneRIGIDTypical27M27N34N42RIGIDNoneNoneRIGIDTypical28M28N33N41RIGIDNoneNoneRIGIDTypical29M29N35N43RIGIDNoneNoneRIGIDTypical30M30N36N44RIGIDNoneNoneRIGIDTypical31M31N55N53Antenna PipeColumnPipeA53 Gr. BTypical32M32N56N54Antenna PipeColumnPipeA53 Gr. BTypical34M34N58N62RIGIDNoneNoneRIGIDTypical35M35N59N63RIGIDNoneNoneRIGIDTypical36M36N60N64RIGIDNoneNoneRIGIDTypical37M37N65N67180Standoff HorizBeamSingle Angle A36 Gr.36Typical38M38N66N68180Standoff Vertical ColumnPipeA53 Gr. BTypical39M39N72N71Standoff Vertical ColumnPipeA53 Gr. BTypical41M41N71N70Stan	23	M23	N30A	N38			RIGID	None	None	RIGID	Typical
25M25N31AN39RIGIDNoneNoneRIGIDTypical26M26N32AN40RIGIDNoneNoneNoneRIGIDTypical27M27N34N42RIGIDNoneNoneNoneRIGIDTypical28M28N33N41RIGIDNoneNoneNoneRIGIDTypical29M29N35N43RIGIDNoneNoneRIGIDTypical30M30N36N44RIGIDNoneNoneRIGIDTypical31M31N55N53Antenna PipeColumnPipeA53 Gr. BTypical32M32N56N54Antenna PipeColumnPipeA53 Gr. BTypical33M33N57N61RIGIDNoneNoneRIGIDTypical34M34N58N62RIGIDNoneNoneRIGIDTypical35M35N59N63RIGIDNoneNoneRIGIDTypical36M36N60N64RIGIDNoneNoneRIGIDTypical37M37N65N67180Standoff HorizBeamSingle Angle A36 Gr.36Typical38M38N66N68180Standoff Vertical ColumnPipeA53 Gr. BTypical40M40N70N69Standoff Vertical ColumnPipeA53 Gr. BTypical41M4	24	<u>M24</u>	N29A	N37			RIGID	None	None	RIGID	Typical
26M26N32AN40RigidNoneNoneNoneRigidTypical27M27N34N42RigidNoneNoneNoneRigidTypical28M28N33N41RigidNoneNoneNoneRigidTypical30M30N36N44RigidNoneNoneNoneRigidTypical31M31N55N53Antenna PipeColumnPipeA53 Gr. BTypical32M32N56N54Antenna PipeColumnPipeA53 Gr. BTypical33M33N57N61RigidNoneNoneRigidTypical34M34N58N62RigidNoneNoneRigidTypical35M35N59N63RigidNoneNoneRigidTypical36M36N60N64RigidNoneNoneRigidA36 Gr.36Typical37M37N65N67180Standoff HorizBeamSingle Angle A36 Gr.36Typical38M38N66N68180Standoff Vertical ColumnPipeA53 Gr. BTypical40M40N70N69Standoff Vertical ColumnPipeA53 Gr. BTypical41M41N71N73RigidNoneNoneRigidTypical42M42N76N73RigidNoneNoneRigidTypical<	25	M25	N31A	N39			RIGID	None	None	RIGID	Typical
27M27N34N42RigidNoneNoneRigidTypical28M28N33N41RigidNoneNoneNoneRigidTypical29M29N35N43RigidNoneNoneNoneRigidTypical30M30N36N44RigidNoneNoneNoneRigidTypical31M31N55N53Antenna PipeColumnPipeA53 Gr. BTypical32M32N56N54Antenna PipeColumnPipeA53 Gr. BTypical33M33N57N61RigidNoneNoneNoneRigidTypical34M34N58N62RigidNoneNoneNoneRigidTypical35M35N59N63RigidNoneNoneNoneRigidTypical36M36N60N64RigidNoneNoneRigidA36 Gr.36Typical37M37N65N67180Standoff HorizBeamSingle Angle A36 Gr.36Typical39M39N72N71Standoff Vertical ColumnPipeA53 Gr. BTypical40M40N70N69Standoff Vertical ColumnPipeA53 Gr. BTypical41M41N71N70Standoff Vertical ColumnPipeA53 Gr. BTypical43M43N76N74RigidNoneNone <td< td=""><td>26</td><td>M26</td><td>N32A</td><td>N40</td><td></td><td></td><td>RIGID</td><td>None</td><td>None</td><td>RIGID</td><td>Typical</td></td<>	26	M26	N32A	N40			RIGID	None	None	RIGID	Typical
28M28N33N41RIGIDNoneNoneRIGIDNoneRIGIDTypical30M30N36N44RIGIDNoneNoneNoneRIGIDTypical31M31N55N53Antenna PipeColumnPipeA53 Gr. BTypical32M32N56N54Antenna PipeColumnPipeA53 Gr. BTypical33M33N57N61RIGIDNoneNoneRIGIDTypical34M34N58N62RIGIDNoneNoneRIGIDTypical35M35N59N63RIGIDNoneNoneRIGIDTypical36M36N60N64RIGIDNoneNoneRIGIDTypical37M37N65N67180Standoff HorizBeamSingle AngleA36 Gr.36Typical39M39N72N71Standoff Vertical ColumnPipeA53 Gr. BTypical40M40N70N69Standoff Vertical ColumnPipeA53 Gr. BTypical41M41N71N70Standoff Vertical ColumnPipeA53 Gr. BTypical42M42N75N73RIGIDNoneNoneRIGIDTypical43M43N76N74RIGIDNoneNoneRIGIDTypical44M44N10N6890Tower ConnecBeamBARA36 Gr.36Typical </td <td>27</td> <td><u>M27</u></td> <td>N34</td> <td>N42</td> <td></td> <td></td> <td>RIGID</td> <td>None</td> <td>None</td> <td>RIGID</td> <td>Typical</td>	27	<u>M27</u>	N34	N42			RIGID	None	None	RIGID	Typical
29M29N33N43RiGiDNoneRiGiDTypical30M30N36N44RiGiDNoneNoneRiGiDTypical31M31N55N53Antenna PipeColumnPipeA53 Gr. BTypical32M32N56N54Antenna PipeColumnPipeA53 Gr. BTypical33M33N57N61RiGIDNoneNoneRiGIDTypical34M34N58N62RiGIDNoneNoneRiGIDTypical35M35N59N63RiGIDNoneNoneNoneRiGIDTypical36M36N60N64RiGIDNoneNoneRiGIDTypical37M37N65N67180Standoff HorizBeamSingle AngleA36 Gr.36Typical39M39N72N71Standoff Vertical ColumnPipeA53 Gr. BTypical40M40N70N69Standoff Vertical ColumnPipeA53 Gr. BTypical41M41N71N70Standoff Vertical ColumnPipeA53 Gr. 36Typical42M42N75N73RiGIDNoneNoneRiGIDTypical43M43N76N74RiGIDNoneNoneRiGIDTypical44M44N81N79RiGIDNoneNoneRiGIDTypical45M45N100N67 <td< td=""><td>28</td><td><u>IVI28</u></td><td>N33</td><td>N41</td><td></td><td></td><td>RIGID</td><td>None</td><td>None</td><td>RIGID</td><td>Typical</td></td<>	28	<u>IVI28</u>	N33	N41			RIGID	None	None	RIGID	Typical
30M30N36N44KieldNoneNoneRichTypical31M31N55N53Antenna PipeColumnPipeA53 Gr. BTypical32M32N56N54Antenna PipeColumnPipeA53 Gr. BTypical33M33N57N61RIGIDNoneNoneRIGIDTypical34M34N58N62RIGIDNoneNoneRIGIDTypical35M35N59N63RIGIDNoneNoneRIGIDTypical36M36N60N64RIGIDNoneNoneRIGIDTypical37M37N65N67180Standoff HorizBeamSingle Angle A36 Gr.36Typical39M38N66N68180Standoff HorizBeamSingle Angle A36 Gr.36Typical39M39N72N71Standoff Vertical ColumnPipeA53 Gr. BTypical40M40N70N69Standoff Vertical ColumnPipeA53 Gr. BTypical41M41N71N70Standoff DiagoBeamBARA36 Gr.36Typical42M42N75N73RIGIDNoneNoneRIGIDTypical43M43N70N6790Towr ConnecBeamBARA36 Gr.36Typical44M44N81N79RIGIDNoneNoneRIGIDTypical4	29	<u>M29</u>	N35	N43			RIGID	None	None	RIGID	Typical
31M31N35N35Antenna PipeColumnPipeA35 Gr. BTypical32M32N56N54Antenna PipeColumnPipeA53 Gr. BTypical33M33N57N61RIGIDNoneNoneRIGIDTypical34M34N58N62RIGIDNoneNoneRIGIDTypical35M35N59N63RIGIDNoneNoneNoneRIGIDTypical36M36N60N64RIGIDNoneNoneRIGIDTypical37M37N65N67180Standoff HorizBeamSingle Angle A36 Gr.36Typical38M38N66N68180Standoff Vertical ColumnPipeA53 Gr. BTypical39M39N72N71Standoff Vertical ColumnPipeA53 Gr. BTypical40M40N70N69Standoff Vertical ColumnPipeA53 Gr. BTypical41M41N71N70Standoff Vertical ColumnPipeA53 Gr. BTypical43M43N76N74RIGIDNoneNoneRIGIDTypical44M44N81N79RIGIDNoneNoneRIGIDTypical45M45N100N6790Tower ConnecBeamBARA36 Gr.36Typical46M46N101N6890Tower ConnecBeamBARA36 Gr.36	30	<u>IVI3U</u>	IN30	N52			Antenna Pine	Column	Dine		Typical
32M32N34N34N34Pipted33M33NS7N61RIGIDNoneNoneRIGIDTypical34M34N58N62RIGIDNoneNoneRIGIDTypical35M35N59N63RIGIDNoneNoneRIGIDTypical36M36N60N64RIGIDNoneNoneRIGIDTypical37M37N65N67180Standoff HorizBeamSingle Angle A36 Gr.36Typical38M38N66N68180Standoff HorizBeamSingle Angle A36 Gr.36Typical39M39N72N71Standoff Vertical ColumnPipeA53 Gr. BTypical40M40N70N69Standoff Vertical ColumnPipeA53 Gr. BTypical41M41N71N70Standoff Vertical ColumnPipeA53 Gr. BTypical42M42N75N73RIGIDNoneNoneNoneRIGIDTypical43M43N76N74RIGIDNoneNoneRIGIDTypical44M44N81N79RIGIDNoneNoneRIGIDTypical45M45N100N6790Tower ConnecBeamBARA36 Gr.36Typical46M46N101N6890Tower ConnecBeamBARA36 Gr.36Typical47M47N104 <t< td=""><td>20</td><td>IVI3 I</td><td>NEC</td><td>N53</td><td></td><td></td><td>Antenna Pipe</td><td>Column</td><td>Pipe</td><td>ASS GL B</td><td>Typical</td></t<>	20	IVI3 I	NEC	N53			Antenna Pipe	Column	Pipe	ASS GL B	Typical
34M33N37N01RIGIDN01eN01eRIGIDN01eRIGIDTypical34M34N58N62RIGIDNoneNoneRIGIDTypical35M35N59N63RIGIDNoneNoneRIGIDTypical36M36N60N64RIGIDNoneNoneRIGIDTypical37M37N65N67180Standoff HorizBeamSingle Angle A36 Gr.36Typical38M38N66N68180Standoff Vertical ColumnPipeA53 Gr. BTypical39M39N72N71Standoff Vertical ColumnPipeA53 Gr. BTypical40M40N70N69Standoff Vertical ColumnPipeA53 Gr. BTypical41M41N71N70Standoff DiagoBeamBARA36 Gr.36Typical42M42N75N73RIGIDNoneNoneRIGIDTypical43M43N76N74RIGIDNoneNoneRIGIDTypical44M44N81N79RIGIDNoneNoneRIGIDTypical45M45N100N6790Tower ConnecBeamBARA36 Gr.36Typical46M46N101N6890Tower ConnecBeamBARA36 Gr.36Typical47M47N104N108RIGIDNoneNoneRIGIDT	32	<u>IVI32</u>	N57	NG1				None	Nono		Typical
34M34N35N62N161N161N017N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161N161 <td>24</td> <td>N33</td> <td>N59</td> <td>N62</td> <td></td> <td></td> <td>PICID</td> <td>None</td> <td>None</td> <td>RIGID</td> <td>Typical</td>	24	N33	N59	N62			PICID	None	None	RIGID	Typical
35M35N35N35N35N35N35N35N35N35N35N35N35N35N35N35N35N35N35N35N35N35N35N35N35N36N36N36N36N36N36N36N36N36N36N36N36N36N36N36N36N37N37N37N36N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N38N36N30N30N30N30N30N30N30N30N30N30N30N30N30N30N30N30N30N30N30N30N30N30N30N30N30N30N30N30N30N30	34	 M25	N50	N62			PICID	None	None	PICID	Typical
37M37N65N67180Standoff HorizBeamSingle AngleA36 Gr.36Typical38M38N66N68180Standoff HorizBeamSingle AngleA36 Gr.36Typical39M39N72N71Standoff Vertical ColumnPipeA53 Gr. BTypical40M40N70N69Standoff Vertical ColumnPipeA53 Gr. BTypical41M41N71N70Standoff Vertical ColumnPipeA53 Gr. BTypical42M42N75N73RIGIDNoneNoneRIGIDTypical43M43N76N74RIGIDNoneNoneRIGIDTypical44M44N81N79RIGIDNoneNoneRIGIDTypical45M45N100N6790Tower ConnecBeamBARA36 Gr.36Typical47M47N104N108RIGIDNoneNoneRIGIDTypical48M48N105N109RIGIDNoneNoneRIGIDTypical49M49N106N110RIGIDNoneNoneRIGIDTypical50M50N107N111RIGIDNoneNoneRIGIDTypical51M51N103N102Mod FaceBeamSingle Angle A36 Gr.36Typical53M53N116N113180SFRKBeamSingle Angle A36 Gr.36Typi	36	M36	N60	N64			RIGID	None	None	RIGID	Typical
37No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3No3	37	M37	N65	N67		180	Standoff Horiz	Beam		A36 Gr 36	Typical
39M39N72N71Standoff Vertical ColumnPipeA53 Gr. BTypical40M40N70N69Standoff Vertical ColumnPipeA53 Gr. BTypical41M41N71N70Standoff Viertical ColumnPipeA53 Gr. BTypical42M42N75N73RIGIDNoneNoneRIGIDTypical43M43N76N74RIGIDNoneNoneRIGIDTypical44M44N81N79RIGIDNoneNoneRIGIDTypical45M45N100N6790Tower ConnecBeamBARA36 Gr.36Typical46M46N101N6890Tower ConnecBeamBARA36 Gr.36Typical47M47N104N108RIGIDNoneNoneRIGIDTypical48M48N105N109RIGIDNoneNoneRIGIDTypical49M49N106N110RIGIDNoneNoneRIGIDTypical50M50N107N111RIGIDNoneNoneRIGIDTypical51M51N103N102Mod FaceBeamSingle AngleA36 Gr.36Typical52M52N115N11390SFRKBeamSingle AngleA36 Gr.36Typical55M55N118N112180SFRKBeamSingle AngleA36 Gr.36Typical	38	M38	N66	N68		180	Standoff Horiz	Beam	Single Angle	A36 Gr 36	Typical
30M12N12N11Bit and off Vertical ColumnPipeA53 Gr. BTypical40M40N70N69Standoff Vertical ColumnPipeA53 Gr. BTypical41M41N71N70Standoff DiagoBeamBARA36 Gr. 36Typical42M42N75N73RIGIDNoneNoneNoneRIGIDTypical43M43N76N74RIGIDNoneNoneRIGIDTypical44M44N81N79RIGIDNoneNoneRIGIDTypical45M45N100N6790Tower ConnecBeamBARA36 Gr.36Typical46M46N101N6890Tower ConnecBeamBARA36 Gr.36Typical47M47N104N108RIGIDNoneNoneRIGIDTypical48M48N105N109RIGIDNoneNoneRIGIDTypical49M49N106N110RIGIDNoneNoneRIGIDTypical50M50N107N111RIGIDNoneNoneRIGIDTypical51M51N103N102Mod FaceBeamSingle Angle A36 Gr.36Typical52M52N115N113180SFRKBeamSingle Angle A36 Gr.36Typical55M55N118N112180SFRKBeamSingle Angle A36 Gr.36Typical	30	M30	N72	N71		100	Standoff Vertical	Column	Dingle Angle Ding	453 Gr B	Typical
40MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0MH0	40	M40	N70	N69			Standoff Vertical	Column	Pine	453 Gr. B	Typical
41M11M10Billing Billing Bil	40	M41	N71	N70			Standoff Diago	Beam	BAR	A36 Gr.36	Typical
43M43N76N74RIGIDNoneNoneRIGIDTypical44M44N81N79RIGIDNoneNoneRIGIDTypical45M45N100N6790Tower ConnecBeamBARA36 Gr.36Typical46M46N101N6890Tower ConnecBeamBARA36 Gr.36Typical47M47N104N108RIGIDNoneNoneRIGIDTypical48M48N105N109RIGIDNoneNoneRIGIDTypical49M49N106N110RIGIDNoneNoneRIGIDTypical50M50N107N111RIGIDNoneNoneRIGIDTypical51M51N103N102Mod FaceBeamSingle AngleA36 Gr.36Typical52M52N115N11390SFRKBeamSingle AngleA36 Gr.36Typical53M53N116N113180SFRKBeamSingle AngleA36 Gr.36Typical54M54N117N11290SFRKBeamSingle AngleA36 Gr.36Typical55M55N118N112180SFRKBeamSingle AngleA36 Gr.36Typical	42	M42	N75	N73			RIGID	None	None	RIGID	Typical
44M44N81N79RIGIDNoneNoneRIGIDTypical45M45N100N6790Tower ConnecBeamBARA36 Gr.36Typical46M46N101N6890Tower ConnecBeamBARA36 Gr.36Typical47M47N104N108RIGIDNoneNoneRIGIDTypical48M48N105N109RIGIDNoneNoneRIGIDTypical49M49N106N110RIGIDNoneNoneRIGIDTypical50M50N107N111RIGIDNoneNoneRIGIDTypical51M51N103N102Mod FaceBeamPipeA53 Gr. BTypical52M52N115N11390SFRKBeamSingle AngleA36 Gr.36Typical53M53N116N113180SFRKBeamSingle AngleA36 Gr.36Typical54M54N117N11290SFRKBeamSingle AngleA36 Gr.36Typical55M55N118N112180SFRKBeamSingle AngleA36 Gr.36Typical	43	M43	N76	N74			RIGID	None	None	RIGID	Typical
45M45N100N6790Tower ConnecBeamBARA36 Gr.36Typical46M46N101N6890Tower ConnecBeamBARA36 Gr.36Typical47M47N104N10890Tower ConnecBeamBARA36 Gr.36Typical48M48N105N109RIGIDNoneNoneRIGIDTypical49M49N106N110RIGIDNoneNoneRIGIDTypical50M50N107N111RIGIDNoneNoneRIGIDTypical51M51N103N102Mod FaceBeamPipeA53 Gr. BTypical52M52N115N11390SFRKBeamSingle AngleA36 Gr.36Typical53M53N116N113180SFRKBeamSingle AngleA36 Gr.36Typical54M54N117N11290SFRKBeamSingle AngleA36 Gr.36Typical55M55N118N112180SFRKBeamSingle AngleA36 Gr.36Typical	44	M44	N81	N79			RIGID	None	None	RIGID	Typical
46M46N101N6890Tower ConnecBeamBARA36 Gr.36Typical47M47N104N108RIGIDNoneNoneRIGIDTypical48M48N105N109RIGIDNoneNoneRIGIDTypical49M49N106N110RIGIDNoneNoneRIGIDTypical50M50N107N111RIGIDNoneNoneRIGIDTypical51M51N103N102Mod FaceBeamPipeA53 Gr. BTypical52M52N115N11390SFRKBeamSingle AngleA36 Gr.36Typical53M53N116N113180SFRKBeamSingle AngleA36 Gr.36Typical54M54N117N11290SFRKBeamSingle AngleA36 Gr.36Typical55M55N118N112180SFRKBeamSingle AngleA36 Gr.36Typical	45	M45	N100	N67		90	Tower Connec	Beam	BAR	A36 Gr.36	Typical
47M47N104N108RIGIDNoneNoneRIGIDTypical48M48N105N109RIGIDNoneNoneRIGIDTypical49M49N106N110RIGIDNoneNoneRIGIDTypical50M50N107N111RIGIDNoneNoneRIGIDTypical51M51N103N102Mod FaceBeamPipeA53 Gr. BTypical52M52N115N11390SFRKBeamSingle AngleA36 Gr.36Typical53M53N116N113180SFRKBeamSingle AngleA36 Gr.36Typical54M54N117N11290SFRKBeamSingle AngleA36 Gr.36Typical55M55N118N112180SFRKBeamSingle AngleA36 Gr.36Typical	46	M46	N101	N68		90	Tower Connec.	Beam	BAR	A36 Gr.36	Typical
48M48N105N109RIGIDNoneNoneRIGIDTypical49M49N106N110RIGIDNoneNoneRIGIDTypical50M50N107N111RIGIDNoneNoneRIGIDTypical51M51N103N102Mod FaceBeamPipeA53 Gr. BTypical52M52N115N11390SFRKBeamSingle AngleA36 Gr.36Typical53M53N116N113180SFRKBeamSingle AngleA36 Gr.36Typical54M54N117N11290SFRKBeamSingle AngleA36 Gr.36Typical55M55N118N112180SFRKBeamSingle AngleA36 Gr.36Typical	47	M47	N104	N108			RIGID	None	None	RIGID	Typical
49M49N106N110RIGIDNoneNoneRIGIDTypical50M50N107N111RIGIDNoneNoneRIGIDTypical51M51N103N102Mod FaceBeamPipeA53 Gr. BTypical52M52N115N11390SFRKBeamSingle AngleA36 Gr.36Typical53M53N116N113180SFRKBeamSingle AngleA36 Gr.36Typical54M54N117N11290SFRKBeamSingle AngleA36 Gr.36Typical55M55N118N112180SFRKBeamSingle AngleA36 Gr.36Typical	48	M48	N105	N109			RIGID	None	None	RIGID	Typical
50M50N107N111RIGIDNoneNoneRIGIDTypical51M51N103N102Mod FaceBeamPipeA53 Gr. BTypical52M52N115N11390SFRKBeamSingle AngleA36 Gr.36Typical53M53N116N113180SFRKBeamSingle AngleA36 Gr.36Typical54M54N117N11290SFRKBeamSingle AngleA36 Gr.36Typical55M55N118N112180SFRKBeamSingle AngleA36 Gr.36Typical	49	M49	N106	N110			RIGID	None	None	RIGID	Typical
51M51N103N102Mod FaceBeamPipeA53 Gr. BTypical52M52N115N11390SFRKBeamSingle AngleA36 Gr.36Typical53M53N116N113180SFRKBeamSingle AngleA36 Gr.36Typical54M54N117N11290SFRKBeamSingle AngleA36 Gr.36Typical55M55N118N112180SFRKBeamSingle AngleA36 Gr.36Typical	50	M50	N107	N111			RIGID	None	None	RIGID	Typical
52M52N115N11390SFRKBeamSingle AngleA36 Gr.36Typical53M53N116N113180SFRKBeamSingle AngleA36 Gr.36Typical54M54N117N11290SFRKBeamSingle AngleA36 Gr.36Typical55M55N118N112180SFRKBeamSingle AngleA36 Gr.36Typical	51	M51	N103	N102			Mod Face	Beam	Pipe	A53 Gr B	Typical
53M53N116N113180SFRKBeamSingle AngleA36 Gr.36Typical54M54N117N11290SFRKBeamSingle AngleA36 Gr.36Typical55M55N118N112180SFRKBeamSingle AngleA36 Gr.36Typical	52	M52	N115	N113		90	SFRK	Beam	Single Angle	A36 Gr.36	Typical
54         M54         N117         N112         90         SFRK         Beam         Single Angle         A36 Gr.36         Typical           55         M55         N118         N112         180         SFRK         Beam         Single Angle         A36 Gr.36         Typical	53	M53	N116	N113		180	SFRK	Beam	Single Angle	A36 Gr.36	Typical
55 M55 N118 N112 180 SFRK Beam Single Angle A36 Gr.36 Typical	54	M54	N117	N112		90	SFRK	Beam	Single Angle	A36 Gr.36	Typical
	55	M55	N118	N112		180	SFRK	Beam	Single Anale	A36 Gr.36	Typical
56 M56A N119 N120 Tieback Beam Pipe A53 Gr. B Typical	56	M56A	N119	N120			Tieback	Beam	Pipe	A53 Gr. B	Typical



### Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
57	M57	N121	N122			Tieback	Beam	Pipe	A53 Gr. B	Typical

### Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Dead	DĹ		-1.05		16				
2	0	WL				32		114		
3	30	WL				32		114		
4	60	WL				32		114		
5	90	WL				32		114		
6	120	WL				32		114		
7	150	WL				32		114		
8	180	WL				32		114		
9	210	WL				32		114		
10	240	WL				32		114		
11	270	WL				32		114		
12	300	WL				32		114		
13	330	WL				32		114		
14	lce	None				16		57		
15	Olce	None				32		114		
16	30lce	None				32		114		
17	60lce	None				32		114		
18	90lce	None				32		114		
19	120lce	None				32		114		
20	150lce	None				32		114		
21	180lce	None				32		114		
22	210lce	None				32		114		
23	240lce	None				32		114		
24	270lce	None				32		114		
25	300lce	None				32		114		
26	330lce	None				32		114		
27	OM	None				32		114		
28	30M	None				32		114		
29	60M	None				32		114		
30	90M	None				32		114		
31	120M	None				32		114		
32	150M	None				32		114		
33	180M	None				32		114		
34	210M	None				32		114		
35	240M	None				32		114		
36	270M	None				32		114		
37	300M	None				32		114		
38	330M	None				32		114		
39	LM	None				1				
40	LV	None				1				
41	E V	ELY				16				
42	E Hx	ELX				16				
43	<u> </u>	ELZ				16				

### Load Combinations

	Description	So	P	S	BLCI	Fac	BLC	Fac.	BLC	Fac	BLC	Fac.	BLC	Fac										
1	1.4D	Yes	Υ		1	1.4																		
2	1.2D+1.0W1	Yes	Υ		1	1.2	2	1																
3	1.2D+1.0W2	Yes	Υ		1	1.2	3	1																
4	1.2D+1.0W3	Yes	Υ		1	1.2	4	1																

### Load Combinations (Continued)

	Description	So.	P	<u>S</u>	BLC	Fac.	BLC	Fac.	BLC	Fac.	BLC	Fac	<u>BLC</u>	Fac										
5	1.2D+1.0W4	Yes	Y		1	1.2	5	1																
6	1.2D+1.0W5	Yes	Y		1	1.2	6	1																
7	1.2D+1.0W6	Yes	Y		1	1.2	1	1																
8	1.2D+1.0W/	Yes	Y		1	1.2	8	1																
9	1.2D+1.0W8	Yes	Y		1	1.2	9	1															<u> </u>	
10	1.2D+1.0W9	Yes	Y		1	1.2	10	1																
11	1.2D+1.0W10	Yes	Y		1	1.2	11	1																
12	1.2D+1.0W11	Yes	Y		1	1.2	12	1																
13	1.2D+1.0W12	Yes	Y		1	1.2	13	1																
14	0.9D+1.0W1	Yes	Y		1	.9	2	1																
15	0.9D+1.0VV2	Vee	Y			.9	3	1	_															
10	0.9D+1.0VV3	Yes	Y		1	.9	4	1																
17	0.9D+1.0VV4	Vec	Y		1	.9	5	1																
10		Voc	Ĭ		1	.9	0	1																
19	0.9D+1.000	Voc	Y		1	.9	0	1																
20	0.9D + 1.0W7	Voc	Ĭ		1	.9	0	1																
21	0.9D + 1.0000	Ves	Ĭ		1	.9	10	1															<u> </u>	
22	0.9D + 1.0009	Yee	T V	-	1	.9	11	1	-										-					
23	0.90+1.00010	Yes	V		1	.9	12	1																
25	0.9D+1.0W11	Yes	V		1	. <i>3</i> Q	13	1																
26	1 2D+1 0 lce	Yes	Y		1	12	14	1																
27	1.2D+1.0ICE+1.0W1I.	.Yes	Ý		1	12	14	1	15	1														
28	1.2D+1.0ICE+1.0W2I.	.Yes	Ý		1	1.2	14	1	16	1														
29	1.2D+1.0ICE+1.0W3I.	.Yes	Ý		1	1.2	14	1	17	1														
30	1.2D+1.0ICE+1.0W4I.	.Yes	Υ		1	1.2	14	1	18	1														
31	1.2D+1.0ICE+1.0W5I.	.Yes	Υ		1	1.2	14	1	19	1														
32	1.2D+1.0ICE+1.0W6I.	.Yes	Υ		1	1.2	14	1	20	1														
33	1.2D+1.0ICE+1.0W7I.	.Yes	Υ		1	1.2	14	1	21	1														
34	1.2D+1.0ICE+1.0W8I.	.Yes	Υ		1	1.2	14	1	22	1														
35	1.2D+1.0ICE+1.0W9I.	.Yes	Υ		1	1.2	14	1	23	1														
36	1.2D+1.0ICE+1.0W1	.Yes	Υ		1	1.2	14	1	24	1														
37	1.2D+1.0ICE+1.0W1	.Yes	Y		1	1.2	14	1	25	1													$\vdash$	
38	1.2D+1.0ICE+1.0W1	.Yes	Y		1	1.2	14	1	26	1														
39	1.2D+1.5LM1+1.0W1.	.Yes	Y		1	1.2	39	1.5	27	1														
40	1.2D+1.5LM1+1.0W2.	.Yes	Y		1	1.2	39	1.5	28	1														
41	1.2D+1.5LM1+1.0W3.	Yes	Y		1	1.2	39	1.5	29	1														
42	1.2D+1.5LW1+1.0W4.		Y		1	1.2	39	1.5	30	1														
43	1 2D+1 5LM1+1 0W5.	Voc	Ĭ		1	1.2	39	1.5	22	1														
44	1 2D+1 5I M1+1 0\/7	Y_00	V		1	1.2	30	1.5	32	1													$ \rightarrow$	
45	1 2D+1 5I M1+1 0W/8	Yee	V		1	1.2	30	1.5	31	1														
/17	1.2D+1.5I M1+1.0W0.	Yes	V		1	1.2	30	1.5	34	1														
47	1.2D+1.5I M1+1.0W1	Yes	V		1	1.2	30	1.5	36	1														
49	1.2D+1.5LM1+1.0W1	Yes	Y		1	1.2	30	1.5	37	1														
50	1.2D+1.5LM1+1.0W1.	Yes	Y		1	1.2	39	1.5	38	1														
51																								
52	1.2D+1.5LV	Yes	Y		1	1.2	40	1.5																
53																								
54	1.2D + Ev + Ehx	Yes	Υ		1	1.2	41	1	42	1	43													
55	1.2D + Ev + Ehz	Yes	Υ		1	1.2	41	1	42		43	1												
56	1.2D + Ev - Ehx	Yes	Υ		1	1.2	41	1	42	-1	43													
57	1.2D + Ev - Ehz	Yes	Υ		1	1.2	41	1	42		43	-1												
58	0.9D - Ev + Ehx	Yes	Y		1	.9	41	-1	42	1	43													
59	0.9D - Ev + Ehz	Yes	Υ		1	.9	41	-1	42		43	1												
60	0.9D - Ev - Ehx	Yes	Υ		1	.9	41	-1	42	-1	43													
61	0.9D - Ev - Ehz	Yes	Υ		1	.9	41	-1	42		43	-1												



### Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N100	max	2329.138	28	185.94	11	117.615	17	Ô	61	Ô	61	Ō	61
2		min	-435.071	21	-191.923	5	-201.631	11	0	1	0	1	0	1
3	N101	max	580.307	24	448.665	11	453.728	17	0	61	0	61	0	61
4		min	-890.728	6	-372.755	17	-442.302	11	0	1	0	1	0	1
5	N112	max	-679.473	24	3541.84	30	157.994	23	0	61	0	61	0	61
6		min	-4804.023	30	516.919	23	-2116.534	42	0	1	0	1	0	1
7	N113	max	3683.605	28	54.901	35	3441.868	5	0	61	0	61	0	61
8		min	-375.524	21	8.089	41	-2453.218	23	0	1	0	1	0	1
9	N120	max	714.857	16	40.299	35	47.251	9	0	61	0	61	0	61
10		min	-785.832	10	13.254	15	-45.675	15	0	1	0	1	0	1
11	N122	max	1593.745	24	42.173	31	130.266	24	0	61	0	61	0	61
12		min	-1674.292	6	11.615	25	-117.766	7	0	1	0	1	0	1
13	Totals:	max	3137.907	14	3534.956	36	2821.06	5						
14		min	-3137.925	8	1185.654	17	-2821.047	23						

### Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Che	.Loc[in]	LC	Shear	.Loc[in]	Dir	LC	phi*Pnc [	phi*Pnt [l	.phi*Mn y	<u>phi*Mn z</u>	.Cb	<u>Eqn</u>
1	M1	PL5x.25	.342	4.125	40	.408	6.875	V	28	12154.454	40500	210.938	4218.75	1 <u>H</u>	1-1b
2	M2	PL5x.25	.555	5.5	11	.470	1.146	y_	11	12154.454	40500	210.938	4218.75	1H	1-1b
3	M7	L3X3X6	.440	50.617	38	.263	62.888	z	39	29355.168	68364	2307.398	5203.624	1 <u>F</u>	12-1
4	M8	L3X3X6	.413	11.504	6	.424	71.324	z	11	29355.168	68364	2307.398	5322.329	2 H	12-1
5	M9	L3X3X6	.310	3.068	27	.352	2.301	z	28	29355.168	68364	2307.398	5322.329	1 ŀ	12-1
6	M10	L3X3X6	.305	62.121	11	.333	2.301	z	12	29355.168	68364	2307.398	5266.547	1 F	H2-1
7	M15	PIPE 2.0	.714	14.501	6	.377	14.501		6	28557.514	32130	1871.625	1871.625	1 ŀ	13-6
8	M16	PIPE 2.0	.432	37.625	11	.328	0		12	28557.514	32130	1871.625	1871.625	2 ŀ	13-6
9	M17	PIPE 2.0	.166	0	5	.259	0		5	28557.514	32130	1871.625	1871.625	2 ŀ	13-6
10	M18	PIPE 2.0	.347	23.124	11	.265	37.625		11	28557.514	32130	1871.625	1871.625	1 F	13-6
11	M19	PIPE_2.0	.459	53.25	48	.357	4.5		5	20866.733	32130	1871.625	1871.625	1H	1-1b
12	M56	PIPE 2.0	.691	53.25	5	.475	4.5		11	20866.733	32130	1871.625	1871.625	3	13-6
13	M21	PIPE_2.0	.290	53.25	6	.362	42		12	20866.733	32130	1871.625	1871.625	2 H	13-6
14	M22	PIPE 2.0	.292	53.25	12	.203	4.5		11	20866.733	32130	1871.625	1871.625	4H	1-1b
15	M31	PIPE 2.0	.083	78	5	.124	78		5	14916.096	32130	1871.625	1871.625	1H	1-1b
16	M32	PIPE 2.0	.096	78	2	.186	78		11	14916.096	32130	1871.625	1871.625	1H	1-1b
17	M37	L3X3X6	.177	32.083	5	.091	0	z	5	53267.045	68364	2307.398	5322.329	1 ŀ	<del>1</del> 2-1
18	M38	L3X3X6	.775	0	12	.086	7.5	y	23	53267.045	68364	2307.398	5322.329	1 F	H2-1
19	M39	PIPE 2.0	.244	0	11	.059	36.375		5	28778.307	32130	1871.625	1871.625	2H	1-1b
20	M40	PIPE 2.0	.116	0	11	.141	36.375		12	28778.307	32130	1871.625	1871.625	2H	1-1b
21	M41	3/4"	.380	22.385	5	.033	43.856		12	3723.091	14313.866	178.929	178.929	1H	1-1a
22	M45	PL7x3/8	.222	9.25	11	.006	0	y	11	57908.737	85050	664.454	12403.125	і1 <mark>.</mark> Н	1-1b
23	M46	PL7x3/8	.545	9.25	11	.014	0	ý	11	57908.737	85050	664.454	12403.125	<u>і1Н</u>	1-1b
24	M51	PIPE 2.0X	.771	35.938	30	.460	35.938		5	8303.532	44100	2530.5	2530.5	1H	1-1b
25	M52	L2.5x2.5x3	.515	70.089	4	.030	72.35	y	12	9033.963	29192.4	872.574	1905.098	2 ŀ	12-1
26	M53	L2.5x2.5x3	.278	35.421	37	.023	72.35	z	4	9033.963	29192.4	872.574	1522.799	1 ト	-12-1
27	M54	L2.5x2.5x3	.227	33.795	29	.020	72.097	v	6	9097.59	29192.4	872.574	1523.18	1 F	12-1
28	M55	L2.5x2.5x3	.147	33.795	37	.016	0	z	4	9097.59	29192.4	872.574	1523.056	1 ト	12-1
29	M56A	PIPE 2.0	.072	48.833	5	.005	0		11	14520.819	32130	1871.625	1871.625	1H	1-1b
30	M57	PIPE 2.0	.110	97.666	24	.005	0		11	14520.819	32130	1871.625	1871.625	1H	1-1b*



Version 2.5

# I. Mount-to-Tower Connection Check

### <u>RISA Model Data</u>

Nodes (labeled per RISA)	Orientation (per graphic of typical platform)
N100	0
N101	0

### Tower Connection Bolt Checks

Any moment resistance?: Bolt Quantity per Reaction: d_x (in) (*Delta X of typ. bolt config. sketch*) : d_y (in) (*Delta Y of typ. bolt config. sketch*) : Bolt Type: Bolt Diameter (in): Required Tensile Strength (kips): Required Shear Strength (kips): Tensile Strength / bolt (kips): Shear Strength / bolt (kips): Tensile Capacity Overall:

Shear Capacity Overall:

-
no
2
A307
0.625
2.3
0.6
10.0
6.0
11.6%*
5.2%

*Note: Tension reduction not required if tension or shear capacity < 30%



# APPENDIX B

	PROJECT NO: 18946009A		
A ASER CONSULTING	PROJECT MANAGER: N. OBER	SITE #: CTL01253	FA #: 10071282
MASER CONSULTING	DESIGNED: G. WALTERS	SITE NAME: TORRINGTON HIGHLAND AVENUE	DRAWING NO:
CONNECTICUT	CHECKED: D. XU	MODIFICATION NOTES	SK-001

#### GENERAL NOTES

- 1. THESE MODIFICATIONS HAVE BEEN DESIGNED IN ACCORDANCE WITH THE GOVERNING PROVISIONS OF THE TELECOMMUNICATIONS INDUSTRY STANDARD ANSI/TIA-222-H. MATERIALS AND SERVICES PROVIDED BY THE CONTRACTOR SHALL CONFORM TO THE ABOVE MENTIONED CODES.
- 2. CONTRACTOR SHALL TAKE ALL PRECAUTIONS NECESSARY TO PREVENT DAMAGE TO EXISTING STRUCTURES. ANY DAMAGE TO EXISTING STRUCTURES AS A RESULT OF THE CONTRACTOR'S WORK OR FROM DAMAGE DUE TO OTHER CAUSES SHALL BE REPAIRED AT THE CONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER.
- 3. CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND EXISTING CONDITIONS BEFORE BEGINNING WORK AND ORDERING MATERIAL. ANY DISCREPANCIES BETWEEN FIELD CONDITIONS AND THE CONTRACT DOCUMENTS SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE ENGINEER. IF THE CONTRACTOR DISCOVERS ANY EXISTING CONDITIONS THAT ARE NOT REPRESENTED ON THESE DRAWINGS, OR ANY CONDITIONS THAT WOULD INTERFERE WITH THE INSTALLATION OF THE MODIFICATIONS, NOTIFY THE ENGINEER IMMEDIATELY.
- 4. IT IS ASSUMED THAT ANY STRUCTURAL MODIFICATION WORK SPECIFIED ON THESE PLANS WILL BE ACCOMPLISHED BY KNOWLEDGEABLE WORKMEN WITH TOWER CONSTRUCTION EXPERIENCE.
- 5. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION METHODS, MEANS, TECHNIQUES, SEQUENCES, AND PROCEDURES.
- 6. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PROGRAMS IN ACCORDANCE WITH APPLICABLE SAFETY CODES.
- 7. WORK SHALL ONLY BE PERFORMED DURING CALM DRY DAYS (WINDS LESS THAN 30-MPH). THE STRUCTURE SHOWN ON THE DRAWINGS IS STRUCTURALLY SOUND ONLY IN THE COMPLETED FORM. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE STRENGTH AND STABILITY OF THE STRUCTURE DURING ERECTION. CONTRACTOR SHALL PROVIDE TEMPORARY SUPPORT, SHORING, BRACING AND ANY OTHER STRUCTURAL SYSTEMS AS REQUIRED TO RESIST ALL FORCES THAT MAY OCCUR DURING HANDLING AND ERECTION UNTIL THE STRUCTURAL SYSTEMS REQUIRED DURING CONSTRUCTION SHALL REMAIN THE CONTRACTOR'S PROPERTY AFTER THEIR USE.
- 8. THE MOUNT UNDER NO CIRCUMSTANCES SHOULD BE USED AS A TIE OFF POINT.
- 9. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN AND SHALL MEET ANSI/TIA-322, ANSI A10.48 (LATEST EDITIONS), OSHA, AND GENERAL INDUSTRY STANDARDS. ALL RIGGING PLANS SHALL ADHERE TO ANSI/TIA-322, ANSI A10.48 (LATEST EDITION) INLCUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION.

#### DESIGN LOADS

WIND LOADS

- a. BASIC WIND SPEED (ULTIMATE 3 SECOND GUST), V =115 MPH
- ICE LOADS
  - a. ICE WIND SPEED (3 SECOND GUST), V = 50 MPH
- b. ICE THICKNESS, t = 1.00 IN

#### STRUCTURAL STEEL

- 1. DESIGN, DETAILING, FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING PUBLICATIONS EXCEPT AS SPECIFICALLY INDICATED IN THE CONTRACT DOCUMENTS.
  - a. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) MANUAL OF STEEL CONSTRUCTION (15TH EDITION)
  - b. SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A325 OR A490 BOLTS
  - c. AISC CODE OF STANDARD PRACTICE

#### STRUCTURAL STEEL (CONTINUED)

2. STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING UNLESS OTHERWISE SHOWN:

CHANNELS, ANGLES, PLATES, ETC.	ASTM A36 (GR 36)
STEEL PIPE	ASTM A53 (GR 35)
BOLTS	ASTM A325
NUTS	ASTM A563
LOCK WASHERS	LOCKING STRUCTURAL GRADE

- 3. DRILL NO HOLES IN ANY NEW OR EXISTING STRUCTURAL STEEL MEMBERS OTHER THAN THOSE SHOWN ON STRUCTURAL DRAWINGS WITHOUT THE APPROVAL OF THE ENGINEER OF RECORD.
- 4. ALL BOLT HOLES SHALL BE STANDARD SIZE U.N.O.
- 5. GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.
- 6. ALL NEW STEEL SHALL BE HOT BE DIPPED GALVANIZED FOR FULL WEATHER PROTECTION. IN ADDITION ALL NEW STEEL SHALL BE PAINTED TO MATCH EXISTING STEEL. CONTRACTOR SHALL OBTAIN WRITTEN PERMISSION TO PROTECT STEEL BY ANY OTHER MEANS.
- 7. ALL EXISTING PAINTED/GALVANIZED SURFACES DAMAGED DURING REHAB INCLUDING AREAS UNDER STIFFENER PLATES SHALL BE WIRE BRUSHED CLEAN, REPAIRED BY COLD GALVANIZING BRUSH APPLIED PAINT (ZRC OR EQUAL), AND REPAINTED TO MATCH THE EXISTING FINISH (IF APPLICABLE).
- ALL BOLT ASSEMBLES FOR STRUCTURAL MEMBERS REPRESENTED IN THIS DRAWING REQUIRE LOCKING DEVICES TO BE INSTALLED IN ACCORDANCE WITH TIA-222-H SECTION 4.9.2 REQUIREMENTS.



	BC	OLT SCHEDULE (IN.)		
BOLT DIAMETER	STANDARD HOLE	SHORT SLOT	MIN. EDGE DISTANCE	SPACING
1/2	9/16	9/16 x 11/16	7/8	1 1/2
5/8	11/16	11/16 x 7/8	1 1/8	1 7/8
3/4	13/16	13/16 x 1	1 1/4	2 1/4
7/8	15/16	15/16 x 1 1/8	1 1/2	2 5/8
1	1 1/16	1 1/16 x 1 5/16	1 3/4	3

WORKABLE GAGES (IN.) LEG GAGE 4 2 1/2										
LEG	GAGE									
4	2 1/2									
3 1/2	2									
3	1 3/4									
2 1/2	1 3/8									
2	1 1/8									



#### TYP. BOLT ASSEMBLY

### NOTES:

- 1. ALL DIMENSIONS REPRESENTED IN THE ABOVE TABLES ARE AISC MINIMUM REQUIREMENTS. CONTRACTOR SHALL VERIFY EXISTING CONDITIONS IN FIELD AND NOTIFY ENGINEER IF DISTANCES ARE LESS THAN THOSE PROVIDED.
- 2. THE DIMENSIONS PROVIDED ARE MINIMUM REQUIREMENTS. ACTUAL DIMENSIONS OF PROPOSED MEMBERS WITHIN THESE DRAWINGS MAY VARY FROM THE AISC MINIMUM REQUIREMENTS.
- SHORT SLOT HOLES SHALL ONLY BE USED WHEN DEPICTED IN THE DRAWINGS.
- 4. MATCH EXISTING GAGES WHEN APPLICABLE, UNLESS MINIMUM EDGE DISTANCES ARE COMPROMISED.





			PARTS LIST		_	
ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
1	1	SCX1	CROSSOVER PLATE 2-3/8" X 2-3/8"		3.71	3.71
2	4	X-UB1212	1/2" X 2-1/2" X 4-1/2" X 2" U-BOLT (HDG.)		0.63	2.50
3	8	G12FW	1/2" HDG USS FLATWASHER		0.03	0.27
4	8	G12LW	1/2" HDG LOCKWASHER		0.01	0.11
5	8	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	0.57
					TOTAL WT. #	7.16



					TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.0307) DRILED AND GAS CUT HOLES (± 0.0307) - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.0107) - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESC	RIPTIO	N CROSSOVER PL	ATE	STTE 1	Engineering Support Team: 1-888-753-7446	Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX	
					ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD NO	).	DRAWN BY CEK 6/30/2011	ENG. APPROVAL	PART NO.	SCX1-K		- P
Α	ADDED MISSING U-BOLT AND HRDWE		KC8	7/5/2012	· ·								S S
REV	DESCRIPTION OF REVISIONS	CPD	BY	DATE	PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT	CLASS	SUB	DRAWING USAGE	CHECKED BY	DWG. NO.			" #
	REVISION HISTORY				INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRICTLY PROHIBITED.	81	01	CUSTOMER	CEK 8/23/2012		SCX1-K	-	_



TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESCRI	PTION	SECTOR FRAI STIFF ARM K	ME IT		STITE DE SU SU A valmont V COMMAN	Engineering upport Team: 388-753-7446	Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX	
ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD NO. 4647	7	DRAWN BY KC8 8/16/2012	ENG. APPROVAL	PA	ART NO. STK	-U		<u>_</u>
PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT MOUSTHES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRES IS STRUCTLY PROHIBITED.	CLASS S	ыов с 02	DRAWING USAGE CUSTOMER	СНЕСКЕД ВУ СЕК 2/18/2013	D١	WG. NO. STK	-U		т е́е́

				PARTSLIST			
	ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
	1	8	X-STU	STIFF ARM CHANNEL BRACKET	8 1/2 in	1.37	10.98
8	2	4	X-254924	DIAGONAL ANGLE - SITE PRO 1	72 in	19.71	78.83
	3	2	CFS	LOWER GATE FOOT WELDMENT		12.72	25.45
	4	2	GBB	GATE BACKING BAR	11 1/2 in	4.53	9.06
	5	4	SHCM-T	CHAIN MOUNT TIGHTENER BRACKET	3 in	1.86	7.43
	6	8	G12R-15	1/2" x 15" THREADED ROD (HDG.)		0.84	6.69
	6	8	G12R-12	1/2" x 12" THREADED ROD (HDG.)		0.67	5.35
	7	2	G12R-6	1/2" x 6" GALV. THREADED ROD		0.33	0.67
	8	8	G12065	1/2" x 6-1/2" HDG HEX BOLT GR5 FULL THREAD	5 1/2 in	0.41	3.28
	9	8	G12112	1/2" x 1-1/2" HDG HEX BOLT GR5	1/2 in	0.15	1.18
	10	32	G12FW	1/2" HDG USS FLATWASHER	3/32 in	0.03	1.09
	11	36	G12LW	1/2" HDG LOCKWASHER	1/8 in	0.01	0.50
	12	40	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	2.87
						TOTAL WT. #	153.37
CONTRACT PRAME REINFORCING KIT ATTACHES TO EITHER EXISTING SECTOR FRAME REINFORCING KIT ATTACHES TO EITHER EXISTING SECTOR FRAME REINFORCING KIT ATTACHES TO EITHER EXISTING MEMBER (STOWN SOLD SEPARATELY). I PPURCHASING OPTIONAL HORIZONTAL ROUND MEMBER, CORRESPONDING CROSSOVER PLATE KITS WILL NEED TO BE PURCHASED, OME PER EXISTING ANTENNA MOUNTING PIP.			5 DET	AIL A (1) X2 (12) X2 (12) X2 (1) (10) X2 (10)	DE	TAIL B	

					TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESC	RIPTIO	SECTOR FRA	ме іт кіт		STTE II Support Team: 1-888-753-7446	Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX	
					ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.080")		). 20		ENG. APPROVAL	PART			-
Α	CHANGED MAX. DIA. FOR HANDRAIL CONNECTION	5563	BC	10/25/2017	ALE OTTIER AGGEMBET (1 0.000 )	550	55	CER 4/25/2014			JFR-N-L		<u>o</u> 7
REV	DESCRIPTION OF REVISIONS	CPD	BY	DATE	PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT	CLASS	SUB	DRAWING USAGE	CHECKED BY	DWG.	NO.		100
	REVISION HISTORY				INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRICTLY PROHIBITED.	81	01	CUSTOMER	BMC 7/23/2014		SFR-K-L		<u> </u>



					TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESC	RIPTIO	N SECTOR FRAI REINFORCEMEN	МЕ ІТ КІТ		Engineering Support Team: 1-888-753-7446	Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX	, ,
		5562	P.C.	10/25/2017	ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD NO	o. 63	DRAWN BY CEK 4/25/2014	ENG. APPROVAL	PAF	RT NO. SFR-K-L		2 0
REV	DESCRIPTION OF REVISIONS	CPD	BY	DATE	PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT	CLASS	SUB	DRAWING USAGE	CHECKED BY	DW	G. NO.		F
	REVISION HISTORY				INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRICTLY PROHIBITED.	81	01	CUSTOMER	BMC 7/23/2014		SFR-K-L		1~



					TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESC	RIPTIO	N SECTOR FRAN REINFORCEMEN	NE T KIT		STTE 1 s 1-	Engineering Support Team: -888-753-7446	Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX	4
					ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD NC	o. 63	DRAWN BY CFK 4/25/2014	ENG. APPROVAL	PA	RT NO.	-K-I		ω
A	CHANGED MAX. DIA. FOR HANDRAIL CONNECTION	5563	BC	10/25/2017							0111			18
REV	DESCRIPTION OF REVISIONS	CPD	BY	DATE	PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT	CLASS	SUB	DRAWING USAGE	CHECKED BY		VG. NO.			1
	REVISION HISTORY				INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRICTLY PROHIBITED.	81	01	CUSTOMER	BMC 7/23/2014		SFR-	-K-L		۳

Ā

SITESAFE

8618 Westwood Center Drive, Suite 315, Vienna, VA 22182 703.276.1100 • 703.276.1169 fax info@sitesafe.com • www.sitesafe.com



Smartlink on behalf of AT&T Mobility, LLC Site FA – 10071282 Site ID – CT1253 (MRCTB032165-MRCTB018441-MRCTB032153-MRCTB032164-MRCTB032163) USID – 82710 Site Name – Torrington Highland Avenue

1210 Highland Avenue Torrington, CT 06790

R

Latitude: N41-48-09.42 Longitude: W73-9-48.23 Structure Type: Self-Support

Report generated date: August 22, 2018 Report by: Leo Romero Customer Contact: Haleluya Haile

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

Sitesafe logo is a registered trademark of Site Safe, LLC. All rights reserved.



# Table of Contents

1	GENERAL SITE SUMMARY	. 2
	1.1 REPORT SUMMARY 1.2 SIGNAGE SUMMARY	.2
2	SCALE MAPS OF SITE	. 3
3	ANTENNA INVENTORY	. 5
4	EMISSION PREDICTIONS	. 7
5	SITE COMPLIANCE	11
	<ul> <li>5.1 SITE COMPLIANCE STATEMENT</li></ul>	11 11
6	REVIEWER CERTIFICATION	12
A	PPENDIX A - STATEMENT OF LIMITING CONDITIONS	13
A	PPENDIX B – REGULATORY BACKGROUND INFORMATION	14
	FCC Rules and Regulations	14 15
A	PPENDIX C – SAFETY PLAN AND PROCEDURES	16
A	PPENDIX D – RF EMISSIONS	17
A	PPENDIX E – ASSUMPTIONS AND DEFINITIONS	18
	General Model Assumptions Use of Generic Antennas	18 18
	Definitions	19



### 1 General Site Summary

### 1.1 Report Summary

AT&T Mobility, LLC	Summary	
Access to Antennas Locked?	Yes	
Max Cumulative Simulated RFE	<1% General Public Limit	
FCC & AT&T Compliant?	Will Be Compliant	
Optional AT&T Mitigation Items?	No	

# The following documents were provided by the client and were utilized to create this report:

**RFDS:** CTV1253_2018-LTE-Next-Carrier_LTE_sp656b_2051A0GQJM_10071282_82710_04-24-2018_Final-Approved_v2.00

CD's: 10071282_AE201_180712_CTL01253_CD_Rev 1_4C-5C-6C-7C-5G NR UPGRADE

RF Powers Used: RFDS ERP Values

### 1.2 Signage Summary

AT&T Signage Locations		INFORMATION		HENSE	CAUTION	CALITION			M M
	Information 1	Information 2	Notice	Notice 2	Caution	Caution 2	Warning	Warning 2	Barriers
Access Point(s)	[#]	[#]	[#]	[#]	[#]	[#]	[#]	[#]	
Alpha	[#]	[#]	[#]	[#]	[#]	[#]	[#]	[#]	
Beta	[#]	[#]	[#]	[#]	[#]	[#]	[#]	[#]	
Gamma	[#]	[#]	[#]	[#]	[#]	[#]	[#]	[#]	

### **1.3 Fall Arrest Anchor Point Summary**

Fall Arrest Anchor & Parapet Info	Parapet Available (Y/N)	Parapet Height (inches)	Fall Arrest Anchor Available (Y/N)
Roof Safety Info	N	N/A	N



#### Scale Maps of Site 2

The following diagrams are included:

- Site Scale Map
- RF Exposure Diagram .
- AT&T Mobility, LLC Contribution •
- RF Exposure Diagram Elevation View •

Site Scale Map For: Torrington Highland Avenue





Î



# 3 Antenna Inventory

The following antenna inventory was obtained by the customer and was utilized to create the site model diagrams:

Ant ID	Operator	Antenna Make & Model	Туре	TX Freq (MHz)	Az (Deg)	Hor BW (Deg)	Ant Len (ft)	Ant Gain (dBd)	3G UMTS Radio(s)	4G Radio(s)	Total ERP (Watts)	x	Y	Z (AGL)
1	AT&T MOBILITY LLC	Powerwave 7770	Panel	850	30	82	4.6	11.51	1	0	250.6	62.4'	87'	242.7'
2	AT&T MOBILITY LLC	Kmw AM-X-CD-16-65-00T	Panel	737	30	65	6	13.36	0	1	1475.7	64'	85.3'	242'
3	AT&T MOBILITY LLC (Proposed)	Kmw EPBQ-654L8H6	Panel	763	30	68	6.4	12.36	0	1	2951.4	65.5'	83.9'	241.8'
3	AT&T MOBILITY LLC (Proposed)	Kmw EPBQ-654L8H6	Panel	850	30	64	6.4	12.46	0	1	500	65.5'	83.9'	241.8'
3	AT&T MOBILITY LLC (Proposed)	Kmw EPBQ-654L8H6	Panel	5G 850	30	64	6.4	12.46	0	1	500	65.5'	83.9'	241.8'
3	AT&T MOBILITY LLC (Proposed)	Kmw EPBQ-654L8H6	Panel	2100	30	61	6.4	15.36	0	1	5070.3	65.5'	83.9'	241.8'
3	AT&T MOBILITY LLC (Proposed)	Kmw EPBQ-654L8H6	Panel	2300	30	57	6.4	15.66	0	1	1285.3	65.5'	83.9'	241.8'
4	AT&T MOBILITY LLC (Proposed)	Cci Antennas HPA-65R-BUU-H6	Panel	737	30	66.2	6	11.68	0	1	1475.7	67'	82.4'	242'
4	AT&T MOBILITY LLC (Proposed)	Cci Antennas HPA-65R-BUU-H6	Panel	1900	30	61.1	6	14.53	0	1	3664.4	67'	82.4'	242'
5	AT&T MOBILITY LLC	Powerwave 7770	Panel	850	150	82	4.6	11.51	1	0	250.6	66.3'	76.1'	242.7'
6	AT&T MOBILITY LLC	Kathrein-Scala 800-10764	Panel	737	150	68	4.6	12.14	0	1	1475.7	64.4'	74.9'	242.7'
7	AT&T MOBILITY LLC (Proposed)	Kmw EPBQ-654L8H6	Panel	763	150	68	6.4	12.36	0	1	2951.4	62.5'	73.6'	241.8'
7	AT&T MOBILITY LLC (Proposed)	Kmw EPBQ-654L8H6	Panel	850	150	64	6.4	12.46	0	1	500	62.5'	73.6'	241.8'
7	AT&T MOBILITY LLC (Proposed)	Kmw EPBQ-654L8H6	Panel	5G 850	150	64	6.4	12.46	0	1	500	62.5'	73.6'	241.8'
7	AT&T MOBILITY LLC (Proposed)	Kmw EPBQ-654L8H6	Panel	2100	150	61	6.4	15.36	0	I	5070.3	62.5'	73.6'	241.8'
7	AT&T MOBILITY LLC (Proposed)	Kmw EPBQ-654L8H6	Panel	2300	150	57	6.4	15.66	0	l	1285.3	62.5'	73.6'	241.8'
8	AT&T MOBILITY LLC (Proposed)	Andrew SBNHH-1D65A	Panel	737	150	66	4.6	11.29	0	I	1475.7	60.7'	72.5'	242.7'
8	AT&T MOBILITY LLC (Proposed)	Andrew SBNHH-1D65A	Panel	1900	150	65	4.6	14.65	0	1	3664.4	60.7'	72.5'	242.7'
9	AT&T MOBILITY LLC	Powerwave 7770	Panel	850	270	82	4.6	11.51	1	0	250.6	53.9'	76.5'	242.7'
10	AT&T MOBILITY LLC	Kmw AM-X-CD-16-65-00T	Panel	737	270	65	6	13.36	0	Ĩ	1475.7	53.9'	79'	242'
11	AT&T MOBILITY LLC (Proposed)	Kmw EPBQ-654L8H6	Panel	763	270	68	6.4	12.36	0	1	2951.4	53.9'	81'	241.8'

8618 Westwood Center Drive • Suite 315 • Vienna, VA 22182 • info@sitesafe.com • 703.276.1100 AT&T Proprietary (Internal use only). Not for use or disclosure outside the AT&T companies, except under written agreement. ©2016 AT&T Intellectual property. All rights reserved Page 5



Ant ID	Operator	Antenna Make & Model	Туре	TX Freq (MHz)	Az (Deg)	Hor BW (Deg)	Ant Len (ft)	Ant Gain (dBd)	3G UMTS Radio(s)	4G Radio(s)	Total ERP (Watts)	x	Y	Z (AGL)
11	AT&T MOBILITY LLC (Proposed)	Kmw EPBQ-654L8H6	Panel	850	270	64	6.4	12.46	0	1	500	53.9'	81'	241.8'
11	AT&T MOBILITY LLC (Proposed)	Kmw EPBQ-654L8H6	Panel	5G 850	270	64	6.4	12.46	0	1	500	53.9'	81'	241.8'
11	AT&T MOBILITY LLC (Proposed)	Kmw EPBQ-654L8H6	Panel	2100	270	61	6.4	15.36	0	1	5070.3	53.9'	81'	241.8'
11	AT&T MOBILITY LLC (Proposed)	Kmw EPBQ-654L8H6	Panel	2300	270	57	6.4	15.66	0	1	1285.3	53.9'	81'	241.8'
12	AT&T MOBILITY LLC (Proposed)	Cci Antennas HPA-65R-BUU-H6	Panel	737	270	66.2	6	11.68	0	1	1475.7	53.9'	83.1'	242'
12	AT&T MOBILITY LLC (Proposed)	Cci Antennas HPA-65R-BUU-H6	Panel	1900	270	61.1	6	14.53	0	1	3664.4	53.9'	83.1'	242'
13	UNKNOWN CARRIER	Generic Panel	Panel	850	0	65	4.6	12.77	-	-	1135.4	56.9'	83.4'	202.7'
14	UNKNOWN CARRIER	Generic Panel	Panel	1900	0	65	4.6	15.43	12	12	2094.8	61.4'	83.4'	202.7'
15	UNKNOWN CARRIER	Generic Panel	Panel	850	120	65	4.6	12.77	-	-	1135.4	63.9'	81.5'	202.7'
16	UNKNOWN CARRIER	Generic Panel	Panel	1900	120	65	4.6	15.43	2	12	2094.8	64.2'	76.9'	202.7'
17	UNKNOWN CARRIER	Generic Panel	Panel	850	240	65	4.6	12.77		-	1135.4	59.8'	75.8'	202.7'
18	UNKNOWN CARRIER	Generic Panel	Panel	1900	240	65	4.6	15.43	-	-	2094.8	57.3'	77.8'	202.7

NOTE: X, Y and Z indicate relative position of the bottom of the antenna to the origin location on the site, displayed in the model results diagram. Specifically, the Z reference indicates the bottom of the antenna height above the ground level (AGL). The distance to the bottom of the antenna is calculated by subtracting half of the length of the antenna from the antenna centerline. Effective Radiated Power (ERP) is provided by the operator or based on Sitesafe experience. The values used in the modeling may be greater than are currently deployed. For other operators at this site the use of "Generic" as an antenna model or "Unknown" for a wireless operator means the information with regard to operator, their FCC license and/or antenna information was not available nor could it be secured while on site. Other operator's equipment, antenna models and powers used for modeling are based on obtained information or Sitesafe experience.

8618 Westwood Center Drive • Suite 315 • Vienna, VA 22182 • info@sitesafe.com • 703.276.1100

AT&T Proprietary (Internal use only). Not for use or disclosure outside the AT&T companies, except under written agreement. ©2016 AT&T Intellectual property. All rights reserved Page 6



# 4 Emission Predictions

In the RF Exposure Simulations below all heights are reflected with respect to main site level. In most rooftop cases this is the height of the main rooftop and in other cases this can be ground level. Each different height area, rooftop, or platform level is labeled with its height relative to the main site level. Emissions are calculated appropriately based on the relative height and location of that area to all antennas. The total analyzed elevations in the below RF Exposure Simulations are listed below.

- Ground Level = 0'
- Building ~20'

The Antenna Inventory heights are referenced to the same level.



% of FCC Public Exposure Limit Spatial average 0' - 6'



Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

Î

RF Exposure Simulation For: Torrington Highland Avenue AT&T Mobility, LLC Contribution



% of FCC Public Exposure Limit Spatial average 0' - 6'



Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

Î

# RF Exposure Simulation For: Torrington Highland Avenue Elevation View



% of FCC Public Exposure Limit



Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Single Level (0)



### 5 Site Compliance

### 5.1 Site Compliance Statement

Upon evaluation of the cumulative RF emission levels from all operators at this site, RF hazard signage and antenna locations, Sitesafe has determined that:

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

The compliance determination is based on General Public RFE levels derived from theoretical modeling, RF signage placement, proposed antenna inventory and the level of restricted access to the antennas at the site. Any deviation from the AT&T Mobility, LLC's proposed deployment plan could result in the site being rendered non-compliant.

Modeling is used for determining compliance and the percentage of MPE contribution.

### 5.2 Actions for Site Compliance

Based on FCC regulations, common industry practice, and our understanding of AT&T Mobility, LLC RF Safety Policy requirements, this section provides a statement of recommendations for site compliance. Recommendations have been proposed based on our understanding of existing access restrictions, signage, and an analysis of predicted RFE levels.

AT&T Mobility, LLC will be made compliant if the following changes are implemented:

### **Site Access Location**

Install a Caution 2B sign.

### Notes:

Signage may already be in place. Sitesafe does not have record of any existing signage because there were no previous visits or data supplied regarding them. All remediation is based on a worst-case scenario.



### 6 Reviewer Certification

The reviewer whose signature appears below hereby certifies and affirms:

That I am an employee of Sitesafe, LLC., in Vienna, Virginia, at which place the staff and I provide RF compliance services to clients in the wireless communications industry; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission (FCC) as well as the regulations of the Occupational Safety and Health Administration (OSHA), both in general and specifically as they apply to the FCC Guidelines for Human Exposure to Radio-frequency Radiation; and

That I have thoroughly reviewed this Site Compliance Report and believe it to be true and accurate to the best of my knowledge as assembled by and attested to by Leo Romero.

### August 22, 2018



## Appendix A - Statement of Limiting Conditions

Sitesafe has provided computer generated model(s) in this Site Compliance Report to show approximate dimensions of the site, and the model is included to assist the reader of the compliance report to visualize the site area, and to provide supporting documentation for Sitesafe's recommendations.

Sitesafe may note in the Site Compliance Report any adverse physical conditions, such as needed repairs, that Sitesafe became aware of during the normal research involved in creating this report. Sitesafe will not be responsible for any such conditions that do exist or for any engineering or testing that might be required to discover whether such conditions exist. Because Sitesafe is not an expert in the field of mechanical engineering or building maintenance, the Site Compliance Report must not be considered a structural or physical engineering report.

Sitesafe obtained information used in this Site Compliance Report from sources that Sitesafe considers reliable and believes them to be true and correct. Sitesafe does not assume any responsibility for the accuracy of such items that were furnished by other parties. When conflicts in information occur between data collected by Sitesafe provided by a second party and data collected by Sitesafe, the data will be used.



# Appendix B – Regulatory Background Information

# FCC Rules and Regulations

In 1996, the Federal Communications Commission (FCC) adopted regulations for the evaluating of the effects of RF emissions in 47 CFR § 1.1307 and 1.1310. The guideline from the FCC Office of Engineering and Technology is Bulletin 65 ("OET Bulletin 65"), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, Edition 97-01, published August 1997. Since 1996 the FCC periodically reviews these rules and regulations as per their congressional mandate.

FCC regulations define two separate tiers of exposure limits: Occupational or "Controlled environment" and General Public or "Uncontrolled environment". The General Public limits are generally five times more conservative or restrictive than the Occupational limit. These limits apply to accessible areas where workers or the general public may be exposed to Radio Frequency (RF) electromagnetic fields.

Occupational or Controlled limits apply in situations in which persons are exposed as a consequence of their employment and where those persons exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

An area is considered a Controlled environment when access is limited to these aware personnel. Typical criteria are restricted access (i.e. locked or alarmed doors, barriers, etc.) to the areas where antennas are located coupled with proper RF warning signage. A site with Controlled environments is evaluated with Occupational limits.

All other areas are considered Uncontrolled environments. If a site has no access controls or no RF warning signage it is evaluated with General Public limits.

The theoretical modeling of the RF electromagnetic fields has been performed in accordance with OET Bulletin 65. The Maximum Permissible Exposure (MPE) limits utilized in this analysis are outlined in the following diagram:



# FCC Limits for Maximum Permissible Exposure (MPE)



### Limits for Occupational/Controlled Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time  E ²,  H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f ² )*	6
30-300	61.4	0.163	1.0	6
300-1500	077	1777	f/300	6
1500-	1799 J	855	5	6
100.000				

### Limits for General Population/Uncontrolled Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time  E  ² ,  H  ² or S (minutes)				
0.3-1.34	614	1.63	(100)*	30				
1.34-30	824/f	2.19/f	(180/f ² )*	30				
30-300	27.5	0.073	0.2	30				
300-1500	5775	1777	f/1500	30				
1500-	<del></del>		1.0	30				
100,000								
f = freq	uency in MHz	*Plane-	wave equivale	ent power density				

### **OSHA Statement**

The General Duty clause of the OSHA Act (Section 5) outlines the occupational safety and health responsibilities of the employer and employee. The General Duty clause in Section 5 states:

(a) Each employer -

- shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees;
- (2) shall comply with occupational safety and health standards promulgated under this Act.
- (b) Each employee shall comply with occupational safety and health standards and all rules, regulations, and orders issued pursuant to this Act which are applicable to his own actions and conduct.

OSHA has defined Radiofrequency and Microwave Radiation safety standards for workers who may enter hazardous RF areas. Regulation Standards 29 CFR § 1910.147 identify a generic Lock Out Tag Out procedure aimed to control the unexpected energization or start up of machines when maintenance or service is being performed.



### Appendix C - Safety Plan and Procedures

The following items are general safety recommendations that should be administered on a site by site basis as needed by the carrier.

<u>General Maintenance Work</u>: Any maintenance personnel required to work immediately in front of antennas and / or in areas indicated as above 100% of the Occupational MPE limits should coordinate with the wireless operators to disable transmitters during their work activities.

Training and Qualification Verification: All personnel accessing areas indicated as exceeding the General Population MPE limits should have a basic understanding of EME awareness and RF Safety procedures when working around transmitting antennas. Awareness training increases a workers understanding to potential RF exposure scenarios. Awareness can be achieved in a number of ways (e.g. videos, formal classroom lecture or internet based courses).

**Physical Access Control:** Access restrictions to transmitting antennas locations is the primary element in a site safety plan. Examples of access restrictions are as follows:

- Locked door or gate
- Alarmed door
- Locked ladder access
- Restrictive Barrier at antenna (e.g. Chain link with posted RF Sign)

**<u>RF Signage:</u>** Everyone should obey all posted signs at all times. RF signs play an important role in properly warning a worker prior to entering into a potential RF Exposure area.

Assume all antennas are active: Due to the nature of telecommunications transmissions, an antenna transmits intermittently. Always assume an antenna is transmitting. Never stop in front of an antenna. If you have to pass by an antenna, move through as quickly and safely as possible thereby reducing any exposure to a minimum.

<u>Maintain a 3 foot clearance from all antennas</u>: There is a direct correlation between the strength of an EME field and the distance from the transmitting antenna. The further away from an antenna, the lower the corresponding EME field is.

<u>Site RF Emissions Diagram</u>: Section 4 of this report contains an RF Diagram that outlines various theoretical Maximum Permissible Exposure (MPE) areas at the site. The modeling is a worst case scenario assuming a duty cycle of 100% for each transmitting antenna at full power. This analysis is based on one of two access control criteria: General Public criteria means the access to the site is uncontrolled and anyone can gain access. Occupational criteria means the access is restricted and only properly trained individuals can gain access to the antenna locations.



## Appendix D – RF Emissions

The RF Emissions Simulation(s) in this report display theoretical spatially averaged percentage of the Maximum Permissible Exposure for all systems at the site unless otherwise noted. These diagrams use modeling as prescribed in OET Bulletin 65 and assumptions detailed in Appendix E.

The key at the bottom of each RF Emissions Simulation indicates percentages displayed referenced to FCC General Public Maximum Permissible Exposure (MPE) limits. Color coding on the diagram is as follows:

- Areas indicated as Gray are predicted to be below 5% of the MPE limits. Gray represents areas more than 20 times below the most conservative exposure limit.
- Green represents areas are predicted to be between 5% and 100% of the MPE limits. Green areas are accessible to anyone.
- Blue represents areas predicted to exceed the General Public MPE limits but are less than Occupational limits. Blue areas should be accessible only to RF trained workers.
- Yellow represents areas predicted to exceed Occupational MPE limits. Yellow areas should be accessible only to RF trained workers able to assess current exposure levels.
- Red represents areas predicted to have exposure more than 10 times the Occupational MPE limits. Red indicates that the RF levels must be reduced prior to access. An RF Safety Plan is required which outlines how to reduce the RF energy in these areas prior to access.


# Appendix E – Assumptions and Definitions

# **General Model Assumptions**

In this site compliance report, it is assumed that all antennas are operating at **full power at all times**. Software modeling was performed for all transmitting antennas located on the site. Sitesafe has further assumed a 100% duty cycle and maximum radiated power.

The modeling is based on recommendations from the FCC's OET-65 bulletin with the following variances per AT&T guidance. Reflection has not been considered in the modeling, i.e. the reflection factor is 1.0. The near / far field boundary has been set to 1.5 times the aperture height of the antenna and modeling beyond that point is the lesser of the near field cylindrical model and the far field model taking into account the gain of the antenna.

The site has been modeled with these assumptions to show the maximum RF energy density. Areas modeled with exposure greater than 100% of the General Public MPE level may not actually occur, but are shown as a prediction that could be realized. Sitesafe believes these areas to be safe for entry by occupationally trained personnel utilizing appropriate personal protective equipment (in most cases, a personal monitor).

# **Use of Generic Antennas**

For the purposes of this report, the use of "Generic" as an antenna model, or "Unknown" for an operator means the information about a carrier, their FCC license and/or antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of equipment, antenna models, and transmit power to model the site. If more specific information can be obtained for the unknown measurement criteria, Sitesafe recommends remodeling of the site utilizing the more complete and accurate data. Information about similar facilities is used when the service is identified and associated with a particular antenna. If no information is available regarding the transmitting service associated with an unidentified antenna, using the antenna manufacturer's published data regarding the antenna's physical characteristics makes more conservative assumptions.

Where the frequency is unknown, Sitesafe uses the closest frequency in the antenna's range that corresponds to the highest Maximum Permissible Exposure (MPE), resulting in a conservative analysis.



# Definitions

**5% Rule** – The rules adopted by the FCC specify that, in general, at multiple transmitter sites actions necessary to bring the area into compliance with the guidelines are the shared responsibility of all licensees whose transmitters produce field strengths or power density levels at the area in question in excess of 5% of the exposure limits. In other words, any wireless operator that contributes 5% or greater of the MPE limit in an area that is identified to be greater than 100% of the MPE limit is responsible taking corrective actions to bring the site into compliance.

**Compliance** – The determination of whether a site is safe or not with regards to Human Exposure to Radio Frequency Radiation from transmitting antennas.

Decibel (dB) – A unit for measuring power or strength of a signal.

**Duty Cycle** – The percent of pulse duration to the pulse period of a periodic pulse train. Also, may be a measure of the temporal transmission characteristic of an intermittently transmitting RF source such as a paging antenna by dividing average transmission duration by the average period for transmission. A duty cycle of 100% corresponds to continuous operation.

*Effective (or Equivalent) Isotropic Radiated Power (EIRP)* – The product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna.

**Effective Radiated Power (ERP)** – In a given direction, the relative gain of a transmitting antenna with respect to the maximum directivity of a half wave dipole multiplied by the net power accepted by the antenna from the connecting transmitter.

**Gain (of an antenna)** – The ratio of the maximum intensity in a given direction to the maximum radiation in the same direction from an isotropic radiator. Gain is a measure of the relative efficiency of a directional antennas as compared to an omni directional antenna.

**General Population/Uncontrolled Environment** – Defined by the FCC, as an area where exposure to RF energy may occur to persons who are **unaware** of the potential for exposure and who have no control of their exposure. General Population is also referenced as General Public.

**Generic Antenna** – For the purposes of this report, the use of "Generic" as an antenna model means the antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of antenna models to select a worst case scenario antenna to model the site.

*Isotropic Antenna* – An antenna that is completely non-directional. In other words, an antenna that radiates energy equally in all directions.

Maximum Measurement – This measurement represents the single largest measurement recorded when performing a spatial average measurement.

Maximum Permissible Exposure (MPE) – The maximum levels of RF exposure a person may be exposed to without harmful effect and with acceptable safety factor.

**Occupational/Controlled Environment** – Defined by the FCC, as an area where Radio Frequency Radiation (RFR) exposure may occur to persons who are **aware** of the



potential for exposure as a condition of employment or specific activity and can exercise control over their exposure.

**OET Bulletin 65** – Technical guideline developed by the FCC's Office of Engineering and Technology to determine the impact of Radio Frequency radiation on Humans. The guideline was published in August 1997.

**OSHA (Occupational Safety and Health Administration)** – Under the Occupational Safety and Health Act of 1970, employers are responsible for providing a safe and healthy workplace for their employees. OSHA's role is to promote the safety and health of America's working men and women by setting and enforcing standards; providing training, outreach and education; establishing partnerships; and encouraging continual process improvement in workplace safety and health. For more information, visit www.osha.gov.

**Radio Frequency (RF)** – The frequencies of electromagnetic waves which are used for radio communications. Approximately 3 kHz to 300 GHz.

**Radio Frequency Exposure (RFE)** – The amount of RF power density that a person is or might be exposed to.

**Spatial Average Measurement** – A technique used to average a minimum of ten (10) measurements taken in a ten (10) second interval from zero (0) to six (6) feet. This measurement is intended to model the average power density an average sized human will be exposed to at a location.

**Transmitter Power Output (TPO)** – The radio frequency output power of a transmitter's final radio frequency stage as measured at the output terminal while connected to a load.



# Appendix F - References

The following references can be followed for further information about RF Health and Safety.

Sitesafe, LLC. http://www.sitesafe.com FCC Radio Frequency Safety http://www.fcc.gov/encyclopedia/radio-frequency-safety National Council on Radiation Protection and Measurements (NCRP) http://www.ncrponline.org Institute of Electrical and Electronics Engineers, Inc., (IEEE) http://www.ieee.org American National Standards Institute (ANSI) http://www.ansi.org Environmental Protection Agency (EPA) http://www.epa.gov/radtown/wireless-tech.html National Institutes of Health (NIH) http://www.niehs.nih.gov/health/topics/agents/emf/ Occupational Safety and Health Agency (OSHA) http://www.osha.gov/SLTC/radiofrequencyradiation/ International Commission on Non-Ionizing Radiation Protection (ICNIRP) http://www.icnirp.org World Health Organization (WHO) http://www.who.int/peh-emf/en/ National Cancer Institute http://www.cancer.gov/cancertopics/factsheet/Risk/cellphones American Cancer Society (ACS) http://www.cancer.org/docroot/PED/content/PED 1 3X Cellular Phone Towers.asp?sit earea=PED European Commission Scientific Committee on Emerging and Newly Identified Health Risks http://ec.europa.eu/health/ph risk/committees/04 scenihr/docs/scenihr o 022.pdf Fairfax County, Virginia Public School Survey http://www.fcps.edu/fts/safety-security/RFEESurvey/ UK Health Protection Agency Advisory Group on Non-ionising Radiation http://www.hpa.org.uk/webw/HPAweb&HPAwebStandard/HPAweb_C/1317133826368 Norwegian Institute of Public Health http://www.fhi.no/dokumenter/545eea7147.pdf

From:	TrackingUpdates@fedex.com
Sent:	Tuesday, December 17, 2019 2:47 PM
То:	Kristina Cottone
Subject:	FedEx Shipment 776927308092 Delivered

Your package       Tracking # 7769273	e has been deliver	ed
Ship date: Tue, 12/10/2019 Kristina Cottone Smartlink LLC NORTH BILLERICA, MA 018 US	862 Belivered	Delivery date: Tue, 12/17/2019 2:45 pm ATTN: Elinor Carbone ATTN: ELINOR CARBONE 140 MAIN ST TORRINGTON, CT 06790520140 US
Shipment Facts Our records indicate that the	following package has been delivered.	
Tracking number: Status:	776927308092 Delivered: 12/17/2019 2:45 PM Signed for By: Signature on File	
Door Tag number: Reference:	DT745647479725 CTL01253- Torrington	
Signed for by:	Signature on File	
Service type: Packaging type:	FedEx Ground Package	
Number of pieces:	1 1.00 lb	
Standard transit:	12/11/2019	

Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 1:46 PM CST on 12/17/2019.

All weights are estimated.

From:	TrackingUpdates@fedex.com
Sent:	Tuesday, December 17, 2019 2:47 PM
То:	Kristina Cottone
Subject:	FedEx Shipment 776927271275 Delivered

YOUR PACK       Tracking # 776	age has been delive	ered
Ship date: Tue, 12/10/2019 Kristina Cottone Smartlink LLC NORTH BILLERICA, US	MA 01862	Delivery date: Tue, 12/17/2019 2:45 pm ATTN: Brett Zuraitis CITY OF TORRINGTON 140 MAIN ST TORRINGTON, CT 06790520140 US
Shipment Fact Our records indicate t	<b>S</b> hat the following package has been deliver	ed.
Tracking number:	776927271275	
Status:	Delivered: 12/17/2019 2:45 PM Signed for By: Signature on File	
Door Tag number:	DT745647479725	
Reference:	CTL01253- Torrington	
Signed for by:	Signature on File	
Service type:	FedEx Ground	
Packaging type:	Package	
Number of pieces:	1	
Weight:	1.00 lb.	
Standard transit:	12/11/2019	

Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 1:46 PM CST on 12/17/2019.

All weights are estimated.

From:	TrackingUpdates@fedex.com
Sent:	Friday, December 13, 2019 3:07 PM
То:	Kristina Cottone
Subject:	FedEx Shipment 776927343028 Delivered



Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 2:06 PM CST on 12/13/2019.

All weights are estimated.

To track the latest status of your shipment, click on the tracking number above.

From:	TrackingUpdates@fedex.com
Sent:	Friday, December 13, 2019 3:06 PM
То:	Kristina Cottone
Subject:	FedEx Shipment 776927357355 Delivered



Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 2:06 PM CST on 12/13/2019.

All weights are estimated.

To track the latest status of your shipment, click on the tracking number above.

# **PROJECT NOTES**

SITE INFORMATION OBTAINED FROM THE FOLLOWING

- PLAN ENTITLED "TORRINGTON HIGHLAND AVE" PREPARED BY FULLERTON ENGINEERING-DESIGN OF SCHAUMBURG, IL LAST REVISED 05/03/2017.
- LIMITED FIELD OBSERVATION BY MASER CONSULTING ON 05/16/2018
- THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE CODES, ORDINANCES, LAWS AND REGULATIONS OF ALL MUNICIPALITIES. UTILITY COMPANIES OR OTHER PUBLIC/GOVERNING AUTHORITIES.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS THAT MAY BE REQUIRED BY ANY FEDERAL, STATE, COUNTY OR MUNICIPAL AUTHORITIES
- THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER, IN WRITING, OF ANY CONFLICTS, ERRORS OR OMISSIONS PRIOR TO THE SUBMISSION OF BIDS OR PERFORMANCE OF WORK
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING ALL EXISTING SITE IMPROVEMENTS PRIOR TO COMMENCING CONSTRUCTION. THE CONTRACTOR SHALL REPAIR ANY DAMAGE AS A RESULT OF CONSTRUCTION OF THIS FACILITY AT THE CONTRACTOR'S EXPENSE TO THE SATISFACTION OF
- THE SCOPE OF WORK FOR THIS PROJECT SHALL INCLUDE PROVIDING ALL MATERIALS, EQUIPMENT AND LABOR REQUIRED TO COMPLETE THIS PROJECT. ALL EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS
- THE CONTRACTOR SHALL VISIT THE PROJECT SITE PRIOR TO SUBMITTING THE BID TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS AND CONSTRUCTION DRAWINGS.
- THE CONTRACTOR SHALL VERIEVALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THESE DRAWINGS MUST BE VERIFIED. THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION
- SINCE THE CELL SITE MAY BE ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER PERSONAL RF EXPOSURE MONITORS ARE REQUIRED TO BE WORN TO ALERT OF ANY POTENTIALLY DANGEROUS EXPOSURE LEVELS.
- 10. THE PROPOSED FACILITY WILL CAUSE AN INSIGNIFICANT OR "DE-MINIMUS" INCREASE IN STORM WATER RUNOFF, THEREFORE, NO DRAINAGE STRUCTURES ARE PROPOSED.
- NO NOISE, SMOKE, DUST OR ODOR WILL RESULT FROM THIS FACILITY AS TO CAUSE A NUISANCE
- 2 THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION (NO HANDICAP ACCESS IS REQUIRED).
- 13. THE FACILITY DOES NOT REQUIRE POTABLE WATER OR SANITARY SERVICE
- CONTRACTOR SHALL VERIFY ANTENNA ELEVATION AND AZIMUTHS WITH RF ENGINEERING PRIOR TO INSTALLATION.
- THE TOWER, MOUNTS AND ANTENNAS SHALL BE DESIGNED TO MEET EIA/TIA-222-G AS PER IBC REQUIREMENTS.
- ALL STRUCTURAL ELEMENTS SHALL BE HOT DIPPED GALVANIZED STEEL.
- CONTRACTOR MUST FIELD LOCATE ALL EXISTING UNDERGROUND UTILITIES PRIOR TO ANY EXCAVATION.
- CONSTRUCTION SHALL NOT COMMENCE UNTIL COMPLETION OF A PASSING STRUCTURAL ANALYSIS CERTIFIED BY A LICENSED PROFESSIONAL ENGINEER. THE STRUCTURAL ANALYSIS IS TO BE PERFORMED BY OTHERS.

### COPYRIGHT © 2018 MASER CONSULTING CONNECTICUT ALL RIGHTS RESERVED

3

THIS DRAWING AND ALL THE INFORMATION CONTAINED HEREIN IS AUTHORIZED FOR USE ONLY BY THE PARTY FOR WHOM THE WORK WAS CONTRACTED OR TO WHOM IT IS CERTIFIED. THIS DRAWING MAY NOT BE COPIED, REUSED, DISCLOSED, DISTRIBUTED OR RELIED UPON FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN CONSENT OF MASER CONSULTING CONNECTICUT

# at&t

SITE NAME: TORRINGTON HIGHLAND AVE FA NUMBER: 10071282 SITE NUMBER: CTL01253 4C - MRCTB032165 5C - MRCTB018441 6C - MRCTB032164 7C - MRCTB032163 5G NR UPGRADE - MRCTB032153 **1210 HIGHLAND AVENUE** TORRINGTON, CT 06790 LITCHFIELD COUNTY

VICINITY MAP	PROJECT INFORMATION	PRO
	SITE INFORMATION	S
	LATITUDE: 41.8026169° N LONGITUDE: 73.1633961° W JURISDICTION: LITCHFIELD COUNTY APPLICANT/LESSEE COMPANY: NEW CINGULAR WIRELESS PCS, LLC ADDRESS: 550 COCHITUATE ROAD CITY, STATE, ZIP: FRAMINGHAM, MA 01701 TOWER OWNER TOWER: 8051 CONGRESS AVENUE CITY, STATE, ZIP: BOCA RATON, FL 33487 CLIENT REPRESENTATIVE COMPANY: SMARTLINK, LLC ADDRESS: 85 RANGEWAY ROAD, BUILDING 3, STE. 102 CITY, STATE, ZIP: NORTH BILLERICA, MA 01862 CONTACT: TODD OLIVER E-MAIL: TODD.OLIVER@SMARTLINKLLC.COM	<ul> <li>INSTALL (3)</li> <li>REMOVE (3)</li> <li>INSTALL (6)</li> <li>REMOVE (3)</li> <li>INSTALL (2)</li> <li>INSTALL (2)</li> <li>INSTALL (1)</li> <li>INSTALL (2)</li> <li>INSTALL (3)</li> <li>PRO I (PART</li> <li>DECOMMISS</li> <li>DECOMMISS</li> <li>INSTALL NEV</li> <li>PROPOSED PROJI</li> <li>VERSION 3.0, LAS</li> </ul>
CODE COMPLIANCE	ADDRESS: 85 RANGEWAY ROAD, BUILDING 3, STE. 102 CITY, STATE, ZIP: NORTH BILLERICA, MA 01862 CONTACT: SHARON KEEFE E MAIL: SHARON KEEFE	T-I TITLE SH GN-I GENERA
ALL WORK AND MATERIALS SHALL BE PERFORMED AND INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF         THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE         CONSTRUED TO PERMIT WORK NOT CONFORMING TO THE LATEST EDITIONS OF THE FOLLOWING CODES.         1. 2015 INTERNATIONAL BUILDING CODE       8. INSTITUTE FOR ELECTRICAL AND ELECTRONICS ENGINEERS 81 IEEE C2 LATEST EDITION         2. 2014 NATIONAL ELECTRICAL CODE - NFPA 70       9. TELCORDIA GR-1275         3. NFPA 1 FIRE CODE, 2015 EDITION       10. ANSI T1.311         4. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 360-10       11. PROPOSED USE: UNMANNED TELECOM FACILITY 360-10         5. AMERICAN CONCRETE INSTITUTE       12. HANDICAP REQUIREMENTS: FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. HANDICAPPED ACCESS NOT REQUIRED.         6. TIA-222-G       13. CONSTRUCTION TYPE: IIB         7. TIA 607 FOR GROUNDING       14. USE GROUP: U	CONSTRUCTION MANAGER         COMPANY:       SMARTLINK, LLC         ADDRESS:       85 RANGEWAY ROAD, BUILDING 3, STE. 102         CITY, STATE, ZIP:       NORTH BILLERICA, MA 01862         CONTACT:       MARK.DONELLY         E-MAIL:       MARK.DONELLY@SMARTLINKLLC.COM         ENGINEER       2000 MIDLANTIC DRIVE, SUITE 100         CITY, STATE, ZIP:       MASER CONSULTING P.A.         ADDRESS:       2000 MIDLANTIC DRIVE, SUITE 100         CITY, STATE, ZIP:       MT. LAUREL, NJ 08054         CONTACT:       NATHANIEL OBER         PHONE:       (856) 797-0412         E-MAIL:       NOBER@MASERCONSULTING.COM	C-1 CONTO C-2 EQUIPM C-3 ANTENN A-1 CONSTF A-2 CONSTF A-3 CONSTF A-4 CONSTF A-4 CONSTF A-5 RF PLUM G-1 GROUN S-1 MODIFIC



### **GENERAL NOTES:**

- THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ), THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 50 HMS OR LESS.
- 4. THE SUBCONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT.
- METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 6. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 7. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE EQUIPMENT GROUND RING WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS; 2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 8. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED. BACK TO BACK CONNECTIONS ON OPPOSITE SIDES OF THE GROUND BUS ARE PERMITTED.
- 9. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING, SHALL BE #2 AWG SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 10. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 11. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED. ALL BENDS SHALL BE MADE WITH 12" RADIUS OR LARGER.
- 12. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 13. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS EXCEPT FOR GROUND BAR CONNECTION FROM MGB TO OUTSIDE EXTERIOR GROUND SHALL ALL BE CADWELD CONNECTIONS.
- 14. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 15. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED TO THE TOWER GROUND BAR.
- 16. APPROVED ANTIOXIDANT COATINGS (I.E. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 17. ALL EXTERIOR AND INTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 18. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 19. BOND ALL METALLIC OBJECTS WITHIN 6 FT OF MAIN GROUND WIRES WITH 1-#2 AWG TIN-PLATED COPPER GROUND CONDUCTOR.
- 20. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN TI IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G. NON-METALLIC CONDUIT POHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 21. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/4" IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC 250.50.
- 22. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:
  - CONTRACTOR SMARTLINK SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION) OWNER - AT&T (NEW CINGULAR WIRELESS PCS, LLC)
- 23. ALL SITE WORK SHALL BE COMPLETED AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.
- 24. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY
- 25. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK.
- 26. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 27. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

- 28. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 29. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR.
- 30. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 31. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 32. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY THE RESPONSIBLE ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. SUBCONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING & EXCAVATION.
- 33. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, AS DIRECTED BY THE RESPONSIBLE ENGINEER, AND SUBJECT TO THE APPROVAL OF THE OWNER AND/OR LOCAL UTILITIES.
- 34. THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY SHALL BE GRADED TO A UNIFORM SLOPE AND STABILIZED TO PREVENT EROSION.
- 35. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 36. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
- 37. THE SUBGRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 38. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOWER AREAS.
- 39. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 40. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE.
- 41. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 42. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF THE CONTRACTOR.
- 43. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR.
- 44. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.
- 45. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS.
- 46. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy = 36 ksi) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM A53 TYPE E (Fy = 36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCHUP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.
- 47. CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T MOBILITY SITES."
- 48. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 49. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION, ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT.
- 50. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN ALERT OF DANGEROUS EXPOSURE LEVELS.









### STRUCTURAL NOTES:

- A MOUNT MODIFICATION REPORT PREPARED BY MASER CONSULTING P.A., DATED 12/05/19 HAS BEEN PREPARED TO CHECK THE STRUCTURAL CAPACITY OF THE EXISTING ANTENNA MOUNT TO SUPPORT THE PROPOSED ANTENNA AND EOUIPMENT CONFIGURATION AS DEPICTED WITHIN THESE CONSTRUCTION DRAWINGS. BASED ON THE CONCLUSIONS OF THIS REPORT, THE ANTENNA MOUNT HAS BEEN DETERMINED TO HAVE SUFFICIENT CAPACITY. THE CONTRACTOR IS RESPONSIBLE TO CONFIRM THAT ANY IMPROVEMENTS AND REINFORCEMENTS REQUIRED BY THE STRUCTURAL ANALYSIS CERTIFICATION ARE PROPERLY INSTALLED PRIOR TO THE ADDITION OF ANTENNAS, CABLES, SUPPORTS AND APPURTENANCES PROPOSED ON THESE DRAWINGS OR OTHERWISE NOTED IN THE STRUCTURAL ANALYSIS.
- 2. MASER CONSULTING P.A. HAS NOT BEEN CONTRACTED TO PERFORM A STRUCTURAL ANALYSIS ON THIS TOWER AND THEREFORE ASSUMES NO RESPONSIBILITY FOR THE STRUCTURAL CAPACITY AS REQUIRED UNDER THE MOST CURRENT LOCAL, STATE AND FEDERAL CODES. A STRUCTURAL ANALYSIS OF THE TOWER AND TOWER FOUNDATION MUST BE PREPARED BY AN APPROPRIATE LICENSED STRUCTURAL ENGINEER CERTIFYING THAT THE EXISTING TOWER AND ANY REQUIRED IMPROVEMENTS AND REINFORCEMENTS HAVE SUFFICIENT CAPACITY TO SUPPORT ALL EXISTING AND PROPOSED ANTENNAS, SUPPORTS, CABLES AND APPURTENANCES COMPLIES WITH THE MOST CURRENT LOCAL, STATE AND FEDERAL CODES.





### EXISTING ANTENNA LAYOUT NOT TO SCALE

# PROPOSED ANTENNA LAYOUT

NOT TO SCALE

	ANTENNA SCHEDULE															
SE	CTOR	EXISTING ANTENNA	PROPOSED ANTENNA	TECHNOLOGY	ANTENNA STATUS	HEIGHT (in)	WIDTH (in)	DEPTH (in)	WEIGHT (lbs)	ANTENNA AZIMUTH (DEG.)	ANT. CL. ELEV. (ft.)	REMOTE RADIO/TMA CONFIGURATION	OUANTITY	ANSMISSI	ON CABLI	E STATU
or 1	1	POWERWAVE 7770	POWERWAVE 7770	UMTS	EXISTING	55.00	11.00	5.00	35.00	30	245	(2) LGP 21901 DIPLEXER (EXISTING) (2) LGP 21401 TMA (EXISTING)	2	290'	I 5/8" COA>	× existing
	2	KMW AM-X-CD-16-65-00T-RET	KMW AM-X-CD-16-65-00T-RET	LTE	EXISTING	72.00	11.80	5.80	60.50	30	245	(I) RRUS-E2 B29 (AT GRADE) (2) APTDC-BDFDM (PROPSOED)	1/2	290'	FIBER/DC	EXISTING
Sect	3	-	KMW EPBQ-654L8H6-L2	LTE	PROPOSED	73.00	21.00	6.30	82.20	30	245	(I) RRUS B14 4478 (PROPOSED) (I) RRUS-E2 B30 (PROPOSED) (2) DBCT108FIV92-I (PROPOSED)	1/4	-	FIBER/DC	PROPOS
	4	POWERWAVE 7770	CCI DMP65R-BU6DA	UMTS	PROPOSED	71.20	20.70	7.70	79.40	30	245	(I) RRUS 4449 B5/B12 (PROPOSED) (I) 8843 B2/B66A (PROPOSED) (I) DBCT108FIV92-I (EXISTING RELOCATED)	2	290'	I 5/8" COA>	< existing
tor 2	5	POWERWAVE 7770	POWERWAVE 7770	UMTS	EXISTING	55.00	11.00	5.00	35.00	150	245	(2) LGP 21901 DIPLEXER (EXISTING) (2) LGP 21401 TMA (EXISTING)	2	290'	5/8" COA>	× existing
	6	KA THREIN 800   0764	KA THREIN 800   0764	LTE	EXISTING	55.20	11.80	6.00	45.20	150	245	(1) RRUS-E2 B29 (AT GRADE) (2) APTDC-BDFDM (PROPSOED)		-	·	-
Sec	7	-	KMW EPBQ-654L8H6-L2	LTE	PROPOSED	73.00	21.00	6.30	82.20	150	245	(1) RRUS B14 4478 (PROPOSED) (1) RRUS-E2 B30 (PROPOSED)				-
	8	POWERWAVE 7770	CCI DMP65R-BU4DA	UMTS	PROPOSED	48.00	20.70	7.70	67.90	150	245	(I) RRUS 4449 B5/B12 (PROPOSED) (I) 8843 B2/B66A (PROPOSED)	2	290'	5/8" COA>	< existing
	9	POWERWAVE 7770	POWERWAVE 7770	UMTS	EXISTING	55.00	11.00	5.00	35.00	270	245	(2) LGP 21901 DIPLEXER (EXISTING) (2) LGP 21401 TMA (EXISTING)		-		-
tor 3	10	KMW AM-X-CD-16-65-00T-RET	KMW AM-X-CD-16-65-00T-RET	LTE	EXISTING	72.00	11.80	5.80	60.50	270	245	(1) RRUS-E2 B29 (AT GRADE) (2) APTDC-BDFDM (PROPSOED)		•	· .	-
Sec	11	-	KMW EPBQ-654L8H6-L2	LTE	PROPOSED	73.00	21.00	6.30	82.20	270	245	(I) RRUS BI4 4478 (PROPOSED) (I) RRUS-E2 B30 (PROPOSED)		-		-
	12	POWERWAVE 7770	CCI DMP65R-BU6DA	UMTS	PROPOSED	71.20	20.70	7.70	79.40	270	245	(1) RRUS 4449 B5/B12 (PROPOSED) (1) 8843 B2/B66A (PROPOSED)	2	290'	5/8" COA>	× e×isting









RRU RACK MOUNTED DETAIL





# **Technical Specifications (System)**

SYSTEM FEATURES				
System Voltage, Nominal	-48 VDC (-42.0 VDC to -58.0 VDC range)			
Output Voltage, Secondary	+24 VDC (+24.0 VDC to +28.0 VDC range)			
Input Voltage	Single Phase: 208/240/277 VAC (277 VAC for 3500 W rectifiers only) Three Phase: 208 VAC or 277/480 VAC (277/480 VAC for 3500 W rectifiers only)			
Control	Microprocessor (NCU)			
RATED OUTPUT	CAPACITY			
Bay, Rectifier/ Converter	2500 amps (48VDC) and 520 amps (24VDC)			
Bay, Distribution	2000 amps (48 VDC) and 520 amps (24 VDC)			
Rectifier	3500 W (R48-3500e3 or R48-3500) or 2000 W (R48-2000e3)			
Shelf	438 amps (3500W rectifiers) or 250 amps (2000W rectifiers)			
Distribution Panel	600 amps			
PHYSICAL CHA	RACTERISTICS			
Framework Type	Rail-mount (can be mounted in an enclosure or relay rack)			
Mounting Width	23 inches			
Mounting Depth	20 inches, 9 inch front projection			
Access	Front access for installation, operation and maintenance			

ENVIRONMENTAL		
Operating Temperature	-40 °F to 104 °F (-40 °C to 40 °C) continuous operation	
Storage	-40 °F to 185 °F (-40 °C to 85 °C)	
Humidity	0% to 95% relative humidity, non-condensing	
Ventilation	Rectifiers and converters are fan-cooled front to rear	
EMI/RFI Suppression	Conforms to FCC rules Part 15, Subpart B, Class B and EN55022 Class B, radiated and conducted	
Safety Compliance	UL Listed 1801, cUL, NEBS Level 3	

# **Ordering Information**

PART NUMBER	DESCRIPTION
582127000	NetSure [™] 7100 DC power system
1M830DNA	NCU controller
1R483500E3	3500 W eSure rectifier, 1RU height
588705400	Power shelf for 1RU 3500W rectifiers
1R483500E	3500 W eSure™ rectifier, 3RU height
588705000	Power shelf for 3 RU 3500 W rectifiers
1R482000E3	2000 W eSure rectifier, 1RU height
1C48241500	1500 W -48 VDC to +24 VDC converter
588705300	Power shelf for 1 RU (2000 W) rectifiers and converters

# SYSTEM ELEMENTS



-48 VDC NetSure 7100

- 1. AC Connection Panel (both sides)
- 2. DC Distribution Cabinet
- **3.** NetSure Control Unit
- 4. Rectifiers/Converters
- 5. Relay Rack or Enclosure

 98
 98
 96

 94
 95%
 96%

 92
 95%
 96%

 90
 88
 10
 20
 30
 40
 50
 60
 70
 80
 90
 Load%

R48-2000e3 Efficiency Curve at 250 VAC Nominal

### VertivCo.com | Vertiv Headquarters, 1050 Dearborn Drive, Columbus, OH, 43085, USA

© 2017 Vertiv Co. All rights reserved. Vertiv and the Vertiv logo are trademarks or registered trademarks of Vertiv Co. All other names and logos referred to are trade names, trademarks or registered trademarks of their respective owners. While every precaution has been taken to ensure accuracy and completeness herein, Vertiv Co. assumes no responsibility, and disclaims all liability, for damages resulting from use of this information or for any errors or omissions. Specifications are subject to change without notice.







BETA SECTOR

GAMMA SECTOR

B Feet Minimum Separation between LTE Antennas

6 Feet Minimum Separation between 700BC & 700 DE

-

W Zest DUW ITS 1st NodeB DB 3206

ALPHA SECTOR

BASED ON: RF ENGINEERING DESIGN ENTITLED "NEW-ENGLAND_CONNECTICUT_CT1253_2018-LTE-Multi-Carrier_LTE_mh705r_2051A0GQJM_10071282_82710_08-27-2019_Final-Approved_v3.00" LAST REVISED 11/14/19

## **RF PLUMBING DIAGRAMS**









### NOTES:

1) MOUNT MEMBERS NOT SHOWN FOR CLARITY U.N.O.

2) EXIST. RADIO AND/OR TME POSITIONS SHALL BE ADJUSTED VERTICALLY AS NEEDED IN ORDER TO ACHIEVE INSTALLATION OF HORIZONTAL AS SHOWN. EOR SHALL BE NOTIFIED IF EQUIPMENT NEEDS TO BE RELOCATED TO ANOTHER MOUNT PIPE.

3) CONNECT NEW PIPE HORIZONTAL TO EXISTING MOUNT PIPES WITH CROSSOVER PLATES (SITE PRO 1 PART #: SCX1-K OR EOR APPROVED EQUIVALENT).

4) CONNECT OTHER END OF TIEBACK TO ADJACENT TOWER LEG.

### NOTES:

,Y zl.x

1) MOUNT MEMBERS NOT SHOWN FOR CLARITY U.N.O. TO BE RELOCATED TO ANOTHER MOUNT PIPE. 1 PART #: SCX1-K OR EOR APPROVED EQUIVALENT). 4) CONNECT OTHER END OF TIEBACK TO ADJACENT TOWER LEG.

MOUNT MODIFICATION DETAIL-1 NOT TO SCALE