July 23, 2014
Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Re:	Notice of Exempt Modification Proposal to Add Three (3) Remote Radio Heads
Property Address:	1210 Highland Avenue, Torrington, CT 06790 (the "Property")
Applicant:	New Cingular Wireless PCS, LLC ("AT\&T")

Dear Ms. Bachman:
AT\&T currently maintains a wireless telecommunications facility on an existing 260 -foot Self Support tower location on the Property, owned by SBA Properties, Inc. (the "Tower"). AT\&T's facility consists of nine (9) wireless telecommunication antennas at a height of 242-feet.

The Connecticut Siting Council (the "Council) approved AT\&T's use of the tower in the following prior decisions; EM-AT\&T-064-143-148-020225, EM-AT\&T-"UNIVERSAL"-030221, EM-CING-143-050914 and EM-CING-143-050914. In its decision dated February 8, 2013, (the "Decision"), the Council approved AT\&T to install six (6) Remote Radio Heads ("RRUs"), but AT\&T installed only three (3) RRUs. AT\&T now intends to install the remaining RRUs to complete the installation. This exempt modification application is necessary because the Decision is over one year old. Please refer to Tab 1 for further specifications of the RRUs.

Please accept this application as notification pursuant to R.C.S.A. §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j72(b)(2). In accordance with R.C.S.A. §16-50j-73, a copy of this letter is being sent to the Mayor of Torrington, CT. A copy of this letter is also being sent to SBA Properties, Inc..

The planned modifications to AT\&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the Tower. AT\&T's new RRUs will be installed at the 242 -foot level of the 260 -foot Self Support.

smartlink

2. The proposed modifications will not involve any changes to ground-mounted equipment and, therefore, will not require and extension of the site boundary.
3. The proposed modifications will not increase the noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A RF emissions calculation for AT\&T's modified facility was provided in the application which led to the - Decision. See Tab 2 attached.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The Tower and its foundation can support AT\&T's proposed modifications. (See Structural Analysis Report included in Tab 3).

For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes an exempt modification under R.C.S.A. §16-50j-72(b)(2).

Adam F. Braillard

cc:
SBA Properties, Inc
5900 Broken Sound Parkway NW 2nd Floor
Boca Raton FL 33487-2797

Town of Torrington
140 Main Street,
Torrington, CT 06790

TAB 1

general notes

12. CoNTractor shml Levie preanss in Clen conomon.

 SITE WORK GENERAL NOTES:
. THE CONTRACTOR SHRLL CONTRACT UTIUTY LOCATNG SERNCES PFAOR TO THE START OF CONSTRUCTON
.

CONCRETE AND REINFORCING STEEL NOTES:

 sthuctural stee notes:

.

7. AL STRUCTVRA STEI WORK SHAL BE DONE IN AC
SOIL COMPACTON NOTES FOR SLAB ON GRADE:

COMPACTION EQUIPMENT:

CRND OPERALED DOVES

2. coorgmanon of work

ELECTHICAL INSTALLATION NOTES:

7. Raceway and caile tray stal be lsted or laeald for bectrical use in accoronnce wth nem,

 smartlink

DRAWN EY:

RENEWED QY: BSH CHECKED ET: GHN PROUECT NUMEER: 50083024 JOB NUMEER: \quad 50083034 STE ADORESS:

1210 HIGHLAND AVE, ORRINGTON, CT 0679

SHEET TME
GENERAL NOTES

EXISTING ANTENNA SCHEDULE			
sector	make	moded	SIIE (INCHES)
APPA:			
日etas	$\begin{aligned} & \text { POMERMAVE } \\ & \text { KOHRTRENE } \\ & \text { POWRWAVE } \end{aligned}$	$\begin{aligned} & 7700 \\ & \hline 800 \\ & 770 \end{aligned}$	
саммя:			$\begin{aligned} & 55 \times 11 \times 5.2 \times 7.87 \\ & 555 \times 11 \times .67 .87 \end{aligned}$
PROPOSED ANTENNA SCHEDULE			
sector	make	moder	SIIE-(NCHES)
ALPH:	$\begin{gathered} \text { Powerwave } \\ \text { Ropwerwave } \\ \text { Pot } \end{gathered}$	7770 AM-X-CD-16-65-00T-RET 7770	
日eta		$\begin{aligned} & 7770 \\ & 8007 \\ & 770704 \end{aligned}$	$\begin{aligned} & 55 \times 11 \times 5 \\ & 55.2 \times 11.8 \times 6.0 \\ & 55 \times 1 \times 5 \end{aligned}$
самм:			
EXISTING RRUS SCHEDULE			
sector	Make	modal	SIIE (1)CHIS)
apha:	ERCSSon	RRUS-11	19.78×17.087. 2
BEA:	ERICSSON	RRUS-11	19.7x17.0x.7. 2
camme	ERICSSON	RRUS-11	19.7x17.0x7.2
PROPOSED RRUS SCHEDULE			
sector	make	Hopes	SIIE (IMCHES)
ALPPA:	ERRCsson	${ }_{\text {RRUSS }}^{\text {RRS }}$ 11	${ }^{19,79 \times 17.70 \times 7.7} 1$
betas	ERRCSS50N	${ }_{\text {RRUS }}^{\text {RRS }}$ R11	${ }_{19}^{19.7 \times 1777.077 .07 .2}$
Ganme	ERRCSSON	$\underset{\substack{\text { RRUSS-11 } \\ \text { RRUS-11 }}}{ }$	${ }_{19}^{99.7 \times 1 \times 777.0 \times 7.2}$

ноाEs:

2. mount equirmen per manficivier's recommevantons
3. CONRRM RECOURED EQUIFUEN WTH LITES RTDS

RRU \& A2 MODULE 1

TAB 2

Control Number	Site	Carrier	\#Channels	ERP/Ch
EM-Marcus-143-020214	Torrington-1210 Highland Avenue	Marcus	1	100
EM-VER-143-121204	Torrington - 1210 Highland Avenue	Verizon PCS	11	211
EM-VER-143-121204	Torrington - 1210 Highland Avenue	Verizon cellular	9	231
EM-VER-143-121204	Torrington-1210 Highland Avenue	Verizon AWS	1	1750
EM-VER-143-121204	Torrington-1210 Highland Avenue	Verizon LTE	1	768
EM-CING-143-130122	Torrington - 1210 Highland Avenue	AT\&T UMTS	2	565
EM-CING-143-130122	Torrington - 1210 Highland Avenue	AT\&T UMTS	2	875
EM-CING-143-130122	Torrington - 1210 Highland Avenue	AT\&T GSM	1	283
EM-CING-143-130122	Torrington - 1210 Highland Avenue	AT\&T GSM	4	525
EM-CING-143-130122	Torrington - 1210 Highland Avenue	AT\&T LTE	1	1615

:ions

Ant Ht	Power Den	MHz	S	\%MPE	Site Total
100	0.0036	5800	1.0000	25.50\%	Results of field measurements AT\&T took of s
200	0.0209	1970	1.0000	2.09\%	
200	0.0187	869	0.5793	3.23\%	
200	0.0157	2145	1.0000	1.57\%	
200	0.0069	698	0.4653	1.48\%	
245	0.0068	880	0.5867	1.15\%	
245	0.0105	1900	1.0000	1.05\%	
245	0.0017	880	0.5867	0.29\%	
245	0.0126	1900	1.0000	1.26\%	
245	0.0097	734	0.4893	1.98\%	39.60\%

ite on 2/8/2002

TAB 3

Structural Analysis for

 SBA Network Services, Inc.
260' Guyed Tower

SBA Site Name: Torrington 2

SBA Site ID: CT02303-A
AT\&T Site ID: CT1253
AT\&T Site Name: Torrington Highland Avenue
FDH Project Number 12-08779E S1 (R1)
Analysis Results

Tower Components	$\mathbf{1 1 1 . 6 \%}$	Insufficient
Foundation	68.1%	Sufficient

Prepared By:

Daniel Chang, El
Project Engineer

Reviewed By:

Christopher M Murphy, PE
President
CT PE License No. 25842

FDH Engineering, Inc.
6521 Meridian Drive
Raleigh, NC 27616
(919) 755-1012
info@fdh-inc.com

October 12, 2012

TABLE OF CONTENTS

EXECUTIVE SUMMARY 3
Conclusions 3
Recommendations 3
APPURTENANCE LISTING 4
RESULTS 8
GENERAL COMMENTS 11
LIMITATIONS 11
APPENDIX 12

EXECUTIVE SUMMARY

At the request of SBA Network Services, Inc., FDH Engineering, Inc. performed a structural analysis of the existing guyed tower located in Torrington, CT to determine whether the tower is structurally adequate to support both the existing and proposed loads pursuant to the Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, TIA/EIA-$222-F$ and 2005 Connecticut Building Code. Information pertaining to the existing/proposed antenna loading, current tower geometry, the member sizes, and foundation dimensions was obtained from:
] PiRod, Inc. (File No. A-107657) original design drawings dated September 23, 1996

- All-Points Technology Corporation, P.C. (Project No. CT122160) structural analysis report dated January 21, 2002
- FDH Engineering, Inc. (Project No. 05-0827E) Modification Drawings for a 260 ' Guyed Tower dated August 29, 2005
- FDH, Inc. (Job No. 12-07062T T1) TIA Inspection Report dated July 25, 2012
- FDH Engineering, Inc. (Project No. 12-08779E G1) Geotechnical Evaluation of Subsurface Conditions dated October 8, 2012
- SBA Network Services, Inc.

The basic design wind speed per the TIA/EIA-222-F standards and 2005 Connecticut Building Code is 80 mph without ice and 28 mph with 1 " radial ice. Ice is considered to increase in thickness with height.

Conclusions

With the existing and proposed antennas from AT\&T in place at 245 ft , the tower does not meet the requirements of the TIA/EIA-222-F standards and 2005 Connecticut Building Code. However, provided the foundations were constructed per the original design drawings (see PiRod File No. A-107657) and based on the given soil parameters (see FDH Project No. 1208779E G1), the foundations should have the necessary capacity to support both the proposed and existing loading. For a more detailed description of the analysis of the tower, see the Results section of this report.

Our structural analysis has been performed assuming all information provided to FDH Engineering, Inc. is accurate (i.e., the steel data, tower layout, existing antenna loading, and proposed antenna loading) and that the tower has been properly erected and maintained per the original design drawings.

Recommendations

To ensure the requirements of the TIA/EIA-222-F standards and 2005 Connecticut Building Code are met with the existing and proposed loading in place, we have the following recommendations:

1. Coax lines must be installed as shown in Figure 1.
2. The existing TMAs and diplexers should be installed directly behind the proposed and existing panel antennas.
3. Reinforcement of the tower legs is required to support the existing and proposed loading. See the Results section of this report for locations.
4. Reinforcement of the tower diagonals is required to support the existing and proposed loading. See the Results section of this report for locations.

We would anticipate the construction cost for a turnkey design/build modification project of this nature to range in price from approximately $\$ 10,000$ to $\$ 20,000$ (which should include the engineering design fees, inspection fees, and construction fees).

APPURTENANCE LISTING

The proposed and existing antennas with their corresponding cables/coax lines are shown in Table 1. If the actual layout determined in the field deviates from the layout, FDH Engineering, Inc. should be contacted to perform a revised analysis.

Table 1 - Appurtenance Loading

Existing Loading:

Antenna Elevation (t)	Description	Coax and Lines	Coax No.	Carrier	Mount Elevation (ft)	Mount Type
264	(1) Antel 11.5' $\times 2.5$ " omni	(1) 1-5/8"	39	---	258	(3) 10' Standoffs
269.5	(1) Telewave $21{ }^{\prime} \times 2.5$ " omni	(1) 1-5/8"	38	---		
268.5	(1) $21{ }^{\prime} \times 2.4{ }^{\prime \prime} \mathrm{mmi}$					
259	(1) $4^{\prime \prime} \times 13.75$ " $\times 3$ " TMA					
251	(1) $14^{\prime} \times 2.5{ }^{\prime \prime}$ omni (inverted)	(1) $7 / 8$ "	28	---		
266.5	(1) Radio Labs SRL480 omni	(1) $7 / 8 "$ (1) $1 / 2^{\prime \prime}$	29,32	---		
255	(1) 24 " $\times 20$ " $\times 11^{\prime \prime}$ TMA				255	Direct
245	(6) Powerwave 7770 w/ Mount Pipe (6) Powerwave LGP13519 TMAs (12) Powerwave LGP21401 TMAs	(12) 1-5/8"	15-26	AT\&T	242.5	(3) 12.5' T-Frames
228.5	(1) $14^{\prime} \times 2.4$ " omni	(1) 1-5/8"	27	---	221.5	(1) 4.5' Standoff
226	(1) 11.5 ' $\times 2.4$ " omni	(1) 1-1/4"	44	---	226	(1) 13.5 ' $\times 2.4$ " Pipe Mount
225.5	(1) Celwave 458-2 Omni	(1) 1-1/4"	37	---	218	(3) 10' Standoffs
224.5	(1) $11.5^{\prime} \times 2.4$ " omni	---	---	---		
223	(1) Antel BCD 8706 NE omni	(1) 1-1/4"	47	Page Net		
222.5	(1) $7.5^{\prime} \times 2.4$ " omni	(1) 1-1/4"	30	---		
212	(1) Decibel 11.5' \times 3" omni (inverted)	(1) 1-1/4"	46	---		
211.5	(1) Decibel 11' $\times 3$ " omni (inverted)	(1) $1-1 / 4^{\prime \prime}$ (1) $7 / 8 "$	11-12	---		
211	(1) Decibel 11' $\times 3$ " omni (inverted)	(2) 1-1/4"	9-10	Metro Comm		
209.5	(1) Decibel 14' ${ }^{\prime \prime}$ " omni (inverted)	(1) $7 / 8$ "	31	---		
203	(1) Decibel 731DG85V1EXM (2) 14 " $x 9$ " $\times 2.5$ " TMAs	---	---	---	203	(1) 63 " $\times 2.4$ " Pipe Mount
202	(2) Clear Comm 7.5" $\times 4$ " $\times 4$ " TMAs					
199	(3) Antel BXA-80063/4CF w/ Mount Pipe (3) Antel BXA-185063/8CF w/ Mount Pipe	(12) 1-5/8"	$\begin{gathered} \hline 3-8, \\ 48-53 \\ \hline \end{gathered}$	Verizon	198	(3) 10' T-Frames
183	(1) Andrew 11.5' x 3" omni	(1) $7 / 8$ "	45	---	177.5	(1) 48" Standoff
184	(1) Andrew PG1N0F-0090-310 omni	(1) $7 / 8{ }^{\prime \prime}$	36	---	178.5	(1) 27" Standoff
174.5	(1) 6.5 " 20.5 " $\times 4.5$ " TMA				174.5	Direct
180	(1) Radio Labs SRL 6139 dipole	(1) 7/8"	41	---	175.5	(1) 36 " Standoff
179.5	(1) 8' ${ }^{\text {c }}$ " omni	(1) 1-1/4"	40			
174	(1) Scala 9 Element Yagi (27" $\times 7$ ")	---	---	---		
174.5	(1) $22^{\prime \prime} \times .75$ " GPS	(1) $1 / 2$ "	1	---	173.5	(1) 17" Standoff
173	(1) $13.5{ }^{\prime} \times 1.8$ " omni	(1) $7 / 8$ "	14	---	167	(1) 72 " Standoff
163.5	(1) Andrew 11'2" $\times 3$ " omni	(1) 1-1/4"	43	---	158.5	(1) 15" Standoff
166.5	(1) 8' ${ }^{1 \prime}$ 1" omni	(1) $7 / 8$ "	42	Torrington PD	162.5	(1) 18 " Standoff
147	(1) $11.5^{\prime} \times 2.4$ " omni	(1) $7 / 8$ "	35	American Mess	141.5	(1) 32 " Standoff
118.5	(1) Shivley $20{ }^{\prime} \times 2.5{ }^{\prime} 3$ Bay FM	(1) 1-5/8"	13	WZBC 97.3	118.5	(4) $16^{\prime \prime}$ Standoffs
84.5	(1) Shivley 4' x 2.5' 1-Bay FM	(1) $7 / 8$ "	33	WAPJ 89.8	83.5	(1) 20 " Standoff
66.5	(1) 12.5 " 9 9" TMA	(1) $1 / 2$ "	34	Marcus Comm.	66.5	Direct
64.5	(1) Radiowaves SP2-2.4NS Dish				64.5	Direct

Proposed Loading:

Antenna Elevation (ft)	Description	Coax and Lines	Coax No.	Carrier	Mount Elevation (ft)	Mount Type
245	(6) Powerwave 7770 w/ Mount Pipe (2) KMW AM-X-CD-16-65-00T-RET w/ Mount Pipe (1) Kathrein 80010764 w/ Mount Pipe (12) Powerwave LGP21401 TMAs (6) Ericsson RRUS-11 RRUs (1) Andrew ABT-DF-DMADBH Surge Arrestor (1) Raycap DC6-48-60-18-8F Surge Arrestor	(12) 1-5/8" (1) $7 / 16$ " Fiber Cable ${ }^{1}$ (2) $3 / 4$ " DC Power ${ }^{1}$	$\begin{gathered} 15-26, \\ 54 \end{gathered}$	AT\&T	242.5	(3) 12.5' T-Frames

Figure 1-Coax Layout

RESULTS

The following yield strength of steel for individual members was used for analysis:
Table 2 - Material Strength

Member Type	Yield Strength
Legs	50 ksi
Bracing	$50 \mathrm{ksi} \& 36 \mathrm{ksi}$

Table 3 displays the summary of the ratio (as a percentage) of force in the member to their capacities. Values greater than 100% indicate locations where the maximum force in the member exceeds its capacity. Table 4 displays the maximum foundation reactions.

If the assumptions outlined in this report differ from actual field conditions, FDH Engineering, Inc. should be contacted to perform a revised analysis. Furthermore, as no information pertaining to the allowable twist and sway requirements for the existing or proposed appurtenances was provided, deflection and rotation were not taken into consideration when performing this analysis.

See the Appendix for detailed modeling information
Table 3 - Summary of Working Percentage of Structural Components

Section No.	Elevation ft	Component Type	Size	\% Capacity*	Pass
T1	260-257	Leg	$11 / 2$	5.6	Pass
		Diagonal	9/16	18.9	Pass
		Top Girt	3/4	0.8	Pass
T2	257-254.667	Leg	$11 / 2$	8.6	Pass
		Diagonal	9/16	47.8	Pass
T3	254.667-252.333	Leg	$11 / 2$	13.0	Pass
		Diagonal	9/16	46.7	Pass
T4	252.333-250	Leg	$11 / 2$	17.0	Pass
		Diagonal	9/16	50.4	Pass
T5	250-247.667	Leg	$11 / 2$	21.8	Pass
		Diagonal	9/16	47.6	Pass
		Top Girt	3/4	3.0	Pass
T6	247.667-245.333	Leg	$11 / 2$	26.2	Pass
		Diagonal	9/16	60.0	Pass
T7	245.333-243	Leg	$11 / 2$	41.3	Pass
		Diagonal	9/16	78.3	Pass
		Top Girt	C3x6	12.3	Pass
T8	243-240	Leg	11/2	56.0	Pass
		Diagonal	9/16	106.6	Fail
		Top Girt	C3x6	24.0	Pass
		Bottom Girt	3/4	87.9	Pass
T9	240-220	Leg	11/2	55.8	Pass
		Diagonal	9/16	56.2	Pass
		Top Girt	3/4	39.3	Pass
		Bottom Girt	3/4	2.8	Pass

Section No.	Elevation ft	Component Type	Size	\% Capacity*	Pass Fail
		Mid Girt	3/4	1.2	Pass
		Guy A@239.333	5/8	79.7	Pass
		Guy B@239.333	5/8	79.5	Pass
		Guy C@239.333	5/8	79.5	Pass
T10	220-200	Leg	11/2	80.2	Pass
		Diagonal	9/16	84.2	Pass
		Top Girt	3/4	1.9	Pass
		Bottom Girt	3/4	23.7	Pass
		Mid Girt	3/4	3.5	Pass
T11	200-197	Leg	$11 / 2$	94.7	Pass
		Diagonal	9/16	81.7	Pass
		Top Girt	3/4	71.2	Pass
T12	197-194.667	Leg	$11 / 2$	111.6	Fail
		Diagonal	9/16	68.5	Pass
		Top Girt	C3x6	28.3	Pass
T13	194.667-192.333	Leg	$11 / 2$	110.5	Fail
		Diagonal	9/16	68.5	Pass
		Top Girt	C3x6	21.9	Pass
		Guy A@194.667	1/2	73.0	Pass
		Guy B@194.667	1/2	72.0	Pass
		Guy C@194.667	1/2	73.2	Pass
		Torque Arm Top@194.667	L3 3 3x1/2	8.9	Pass
		Torque Arm Bottom@194.667	L3×3x1/2	12.4	Pass
T14	192.333-190	Leg	$11 / 2$	97.4	Pass
		Diagonal	9/16	74.3	Pass
		Top Girt	C3x6	24.0	Pass
T15	190-187.667	Leg	$11 / 2$	81.6	Pass
		Diagonal	9/16	86.2	Pass
		Top Girt	3/4	64.3	Pass
T16	187.667-185.333	Leg	$11 / 2$	74.6	Pass
		Diagonal	9/16	71.4	Pass
T17	185.333-183	Leg	$11 / 2$	67.7	Pass
		Diagonal	9/16	65.1	Pass
T18	183-180	Leg	11/2	66.3	Pass
		Diagonal	9/16	91.2	Pass
		Bottom Girt	3/4	17.6	Pass
T19	180-160	Leg	$11 / 2$	72.4	Pass
		Diagonal	9/16	93.7	Pass
		Top Girt	3/4	19.5	Pass
		Bottom Girt	3/4	0.7	Pass
		Mid Girt	3/4	1.1	Pass
T20	160-140	Leg	$11 / 2$	77.7	Pass
		Diagonal	9/16	66.9	Pass
		Top Girt	3/4	1.5	Pass
		Bottom Girt	3/4	15.1	Pass
		Mid Girt	3/4	1.1	Pass
T21	140-120	Leg	11/2	91.8	Pass
		Diagonal	9/16	72.4	Pass

Section No.	Elevation ft	Component Type	Size	\% Capacity*	Pass Fail
		Top Girt	3/4	27.0	Pass
		Bottom Girt	3/4	10.4	Pass
		Mid Girt	3/4	2.4	Pass
		Guy A@139.333	1/2	76.5	Pass
		Guy B@139.333	1/2	76.4	Pass
		Guy C@139.333	1/2	76.6	Pass
T22	120-100	Leg	$11 / 2$	96.9	Pass
		Diagonal	9/16	58.6	Pass
		Top Girt	3/4	6.9	Pass
		Bottom Girt	3/4	8.1	Pass
		Mid Girt	3/4	1.3	Pass
T23	100-80	Leg	$13 / 4$	68.6	Pass
		Diagonal	5/8	88.8	Pass
		Top Girt	3/4	10.2	Pass
		Bottom Girt	3/4	23.4	Pass
		Mid Girt	3/4	2.0	Pass
T24	80-60	Leg	$13 / 4$	83.6	Pass
		Diagonal	5/8	91.5	Pass
		Top Girt	3/4	26.4	Pass
		Bottom Girt	3/4	21.8	Pass
		Mid Girt	3/4	47.5	Pass
		Guy A@70	1/2	56.8	Pass
		Guy B@70	1/2	55.6	Pass
		Guy C@70	1/2	56.8	Pass
		Torque Arm Top@70	L3x3x1/2	6.9	Pass
		Torque Arm Bottom@70	L3x3x1/2	7.3	Pass
T25	60-40	Leg	$13 / 4$	82.4	Pass
		Diagonal	5/8	64.4	Pass
		Top Girt	3/4	18.4	Pass
		Bottom Girt	3/4	7.0	Pass
		Mid Girt	3/4	2.3	Pass
T26	40-20	Leg	$13 / 4$	85.5	Pass
		Diagonal	5/8	27.6	Pass
		Top Girt	3/4	5.8	Pass
		Bottom Girt	3/4	1.5	Pass
		Mid Girt	3/4	2.4	Pass
T27	20-5.33334	Leg	$13 / 4$	87.6	Pass
		Diagonal	5/8	24.2	Pass
		Top Girt	3/4	3.5	Pass
		Mid Girt	3/4	5.2	Pass
T28	5.33334-0	Leg	13/4	89.4	Pass
		Diagonal	5/8	12.6	Pass
		Top Girt	3/4	63.3	Pass

* Capacities include 1/3 allowable stress increase for wind per TIA/EIA-222-F.

Table 4 - Maximum Base Reactions

	Current Analysis* (TIA/EIA-222-F)		Original Design $(T I A / E I A-222-F) ~$	
Reaction	Horizontal	Vertical	Horizontal	Vertical
Tower Base	2 k	142 k	4 k	87 k
Anchor	47 k	36 k	52 k	38 k

*Foundation adequate based on independent analysis.

GENERAL COMMENTS

This engineering analysis is based upon the theoretical capacity of the structure. It is not a condition assessment of the tower and its foundation. It is the responsibility of SBA Network Services, Inc. to verify that the tower modeled and analyzed is the correct structure (with accurate antenna loading information) modeled. If there are substantial modifications to be made or the assumptions made in this analysis are not accurate, FDH Engineering, Inc. should be notified immediately to perform a revised analysis.

LIMITATIONS

All opinions and conclusions are considered accurate to a reasonable degree of engineering certainty based upon the evidence available at the time of this report. All opinions and conclusions are subject to revision based upon receipt of new or additional/updated information. All services are provided exercising a level of care and diligence equivalent to the standard and care of our profession. No other warranty or guarantee, expressed or implied, is offered. Our services are confidential in nature and we will not release this report to any other party without the client's consent. The use of this engineering work is limited to the express purpose for which it was commissioned and it may not be reused, copied, or distributed for any other purpose without the written consent of FDH Engineering, Inc.

APPENDIX

