

July 6, 2017

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Street New Britain, CT 06051

Regarding:	Notice of Exempt Modification – Addition of Three
	Remote Radio Heads ("RRUs")
Property Address:	56 Ruops Road (aka 5 Barbara Road) Tolland, CT 06084
AT&T Site:	CT1037

Dear Ms. Bachman:

AT&T currently maintains a wireless telecommunications facility on an existing 155-foot monopole at the above-referenced address, latitude 41.873300, longitude -72.338300. Said monopole is owned by American Tower Corporation. The existing equipment shelter is 22.8' by 24.8', totaling 565.44 square feet.

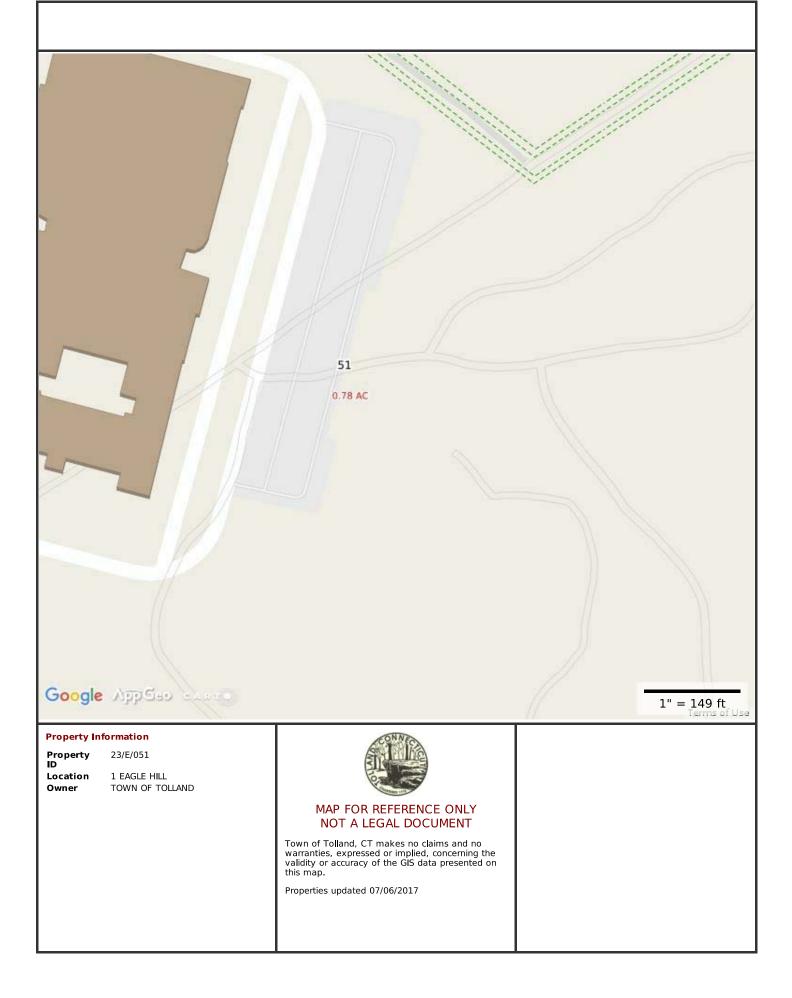
AT&T desires to modify its existing telecommunications facility by adding three (3) Remote Radio Heads ("RRUs") with A2 modules attached. The centerline height of said antennas is and will remain at 149 feet. Antennas are mounted utilizing a platform with handrails

Please accept this application as notification pursuant to R.C.S.A. §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j-72 (b)(2). In accordance with R.C.S.A. §16-50j-73, a copy of this letter is being sent to the Town Manager of Tolland, Steven R. Werbner, and to the Director of Planning and Development, Heidi Samokar, AICP. A copy of this letter is also being sent to the tower and property owner American Tower Corporation.

The planned modifications to AT&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72 (b)(2). Specifically:

- 1. The planned modification will not result in an increase in the height of the existing structure. The antennas to be swapped will be installed at the existing height of 149 feet on the 155-foot monopole.
- 2. The proposed modifications will not involve any changes to ground-mounted equipment, and therefore will not require an extension of the site boundary.
- 3. The proposed modification will not increase the noise level at the facility by six decibel or more, or to levels that exceed state and local criteria.

- 4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above Federal Communications Commission (FCC) safety standard. An RF emissions calculation (attached) for AT&T's modified facility is herein provided.
- 5. The proposed modifications will not case a change or alteration in the physical or environmental characteristics of the site.
- 6. The self-support tower and its foundation can support AT&T's proposed modifications (please see attached structural analysis completed by American Tower dated June 30, 2017).


For the foregoing reasons, AT&T respectfully requests that the proposed diplexer swap be allowed within the exempt modifications under R.C.S.A. §16-50j-72 (b)(2).

Sincerely,

Sarah Snell

Sarah Snell Site Acquisition Specialist

cc: Steven R. Webner, Town Manager (municipality) Heidi Samokar, AICP, Director of Planning & Development American Tower Corporation (landowner & tower owner)

56 RUOPS ROAD

Location	56 RUOPS ROAD	Mblu	23/ E/ 51/ /
Acct#	5384	Owner	TOWN OF TOLLAND
Assessment	\$985,200	Appraisal	\$1,407,400
PID	3892	Building Count	1

Current Value

Appraisal					
Valuation Year Improvements Land Total					
2014	\$124,100	4,100 \$1,283,300		\$1,407,400	
	Assessment				
Valuation Year	Improvements		Land	Total	
2014	\$86	i,900	\$898,30	0 \$985,200	

Owner of Record

Owner	TOWN OF TOLLAND	Sale Price	\$0
Co-Owner	C/O SPECTRASITE COMMUNICATIONS	Certificate	
Address	PO BOX 723597	Book & Page	819/ 81
	ATLANTA, GA 31139	Sale Date	04/24/2003
		Instrument	15

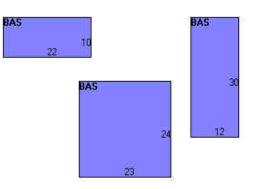
Ownership History

Ownership History					
Owner Sale Price Certificate Book & Page Instrument Sale Date					
TOWN OF TOLLAND	\$0		819/ 81	15	04/24/2003

Building Information

Building 1 : Section 1

\$118,800 Iding Attributes
\$118,800
85
\$139,802
1,132
1989


STYLE	Communications Bld
MODEL	Ind/Comm
Grade	Average
Stories:	1
Occupancy	1
Ext Wall 1	Poly-Steel/Con
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	Tar & Gravel
Interior Wall 1	Minim/Masonry
Interior Wall 2	
Interior Floor 1	Concr-Finished
Interior Floor 2	
Heating Fuel	Electric
Heating Type	Hot Air-no Duc
АС Туре	Heat Pump
Bldg Use	Industrial
Total Rooms	
Total Bedrms	
Total Baths	
Solar	
1st Floor Use:	300
Heat/AC	Heat/AC Pkg
Frame Type	Masonry
Baths/Plumbing	None
Ceiling/Wall	None
Rooms/Prtns	Light
Wall Height	8
% Comn Wall	

Building Photo

(http://images.vgsi.com/photos/TollandCTPhotos//\00\00\63/46.

Building Layout

	<u>Legend</u>		
Code	Description	Gross Area	Living Area
BAS	Main Floor	1,132	1,132
		1,132	1,132

▶

•

Extra Features

	Extra Features	Legend
	No Data for Extra Features	
-		
Land		
Land Use	Land Line Valuation	

Use Code	300	Size (Acres)	0.78	
Description	Industrial	Frontage	2973	
Zone	RDD	Depth		

Neighborhood350CAlt Land ApprNoCategoryVolume

Outbuildings

	Outbuildings <u>Leger</u>					<u>Legend</u>
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
FN	FENCE	CL8	8' Chain Link	380 L.F.	\$5,300	1

Valuation History

Appraisal					
Valuation Year Improvements Land Total					
2015	\$124,100	\$1,283,300	\$1,407,400		
2014	\$124,100	\$1,283,300	\$1,407,400		
2013	\$107,300	\$487,400	\$594,700		

Assessment						
Valuation Year Improvements Land Total						
2015	\$86,900	\$898,300	\$985,200			
2014	\$86,900	\$898,300	\$985,200			
2013	\$75,100	\$341,200	\$416,300			

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

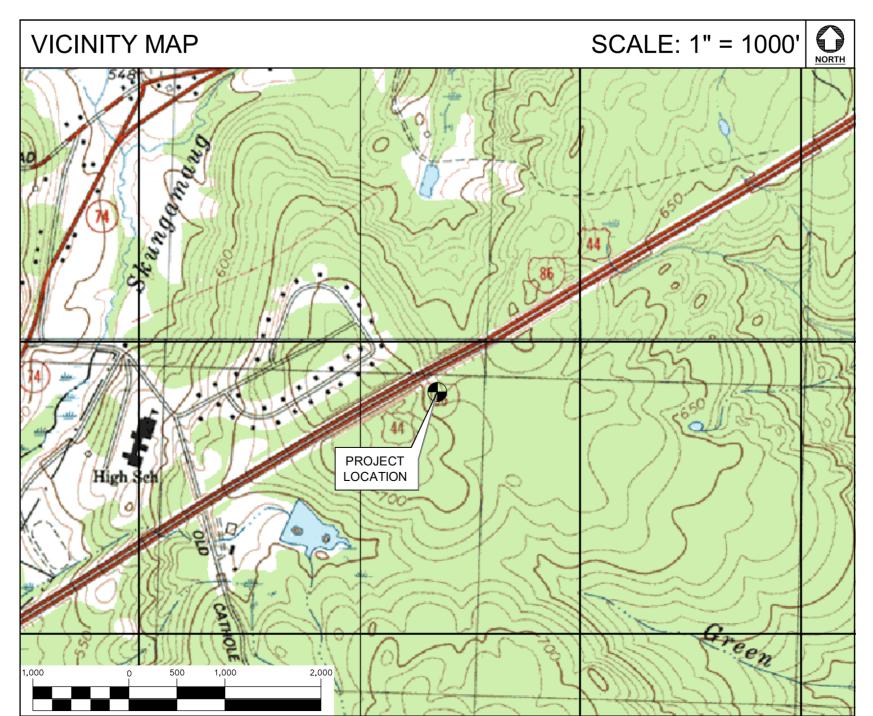
GENERAL NOTES

- 1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2012 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2016 CONNECTICUT STATE BUILDING CODE, INCLUDING THE TIA-222 REVISION "G" STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES, 2016 CONNECTICUT FIRE SAFETY CODE AND, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- 2. THE COMPOUND, TOWER, PRIMARY GROUND RING, ELECTRICAL SERVICE TO THE METER BANK AND TELEPHONE SERVICE TO THE DEMARCATION POINT ARE PROVIDED BY SITE OWNER. AS BUILT FIELD CONDITIONS REGARDING THESE ITEMS SHALL BE CONFIRMED BY THE CONTRACTOR. SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.
- 3. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- 4. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 5. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 6. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 7. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 8. LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 9. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. MAINTAIN EXISTING BUILDING'S/PROPERTY'S OPERATIONS, COORDINATE WORK WITH BUILDING/PROPERTY OWNER.

- 10. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 11. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 12. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 13. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED" ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE AT&T CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 14. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 15. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 16. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 17. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 18. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 20. THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED PRIOR TO ANY EXCAVATION WORK. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 21. CONTRACTOR SHALL COMPLY WITH OWNERS ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES THE CONTRACTOR.

WIRELESS COMMUNICATIONS FACILITY CT1037 - LTE 2C **TOLLAND EAST CENTRAL** AMERICAN TOWER CO. SITE NO.: 302495 5 BARBARA ROAD TOLLAND, CT 06084

19. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE


INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY

SITE DIRECTIONS

FROM: 500 ENIERPRISE DRIVE ROCKY HILL, CONNECTICUT

TO: DEARDAND, CON 5 BARBARA R

- HEAD NORTHEAST ON ENTERPRISE DR TOWARD CAPITAL BLVD TURN LEFT ONTO CAPITAL BLVD
- TURN LEFT ONTO WEST ST
- . TURN LEFT TO MERGE ONTO I-91 N TOWARD HARTFORD
- MERGE ONTO CT-15 N/WILBUR CROSS HWY N VIA EXIT 29 TOWARD I-84 E/E HARTFORD/BOSTON.
- CT-15 N/WILBUR CROSS HWY N BECOMES I-84 E/US-6 E/WILBUR CROSS HWY N.
- KEEP LEFT TO TAKE I-84 E/WILBUR CROSS HWY N TOWARD BOSTON.
- 3. TAKE THE CT-195 EXIT, EXIT 68, TOWARD TOLLAND/MANSFIELD. TURN RIGHT ONTO MERROW RD/CT-195.
- 0. TAKE THE 1ST LEFT ONTO RHODES RD.
- 1. RHODES RD BECOMES ANTHONY RD.
- 12. TURN LEFT ONTO KATE LN. 13. TAKE THE 2ND LEFT ONTO RYAN RD.
- 14. TAKE THE 2ND RIGHT ONTO BARBARA RD.
- 15. 5 BARBARA RD IS ON THE LEFT

OAD	CUT
	MI MI MI MI MI MI MI MI

- 1. THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING:
- A. INSTALL (3) NEW RRUS-12 BEHIND EXISTING POSITION 3 ANTENNAS
- B. REMOVE AND REPLACE EXISTING DUL-DUS UPGRADE AND
- INSTALL NEW 5216 UNIT. C. DECOMMISSION EXISTING GSM CABINET

PROJECT INFORMATION

AT&T SITE NUMBER:	CT1037
AT&T SITE NAME:	TOLLAND EAST CENTRAL
SITE ADDRESS:	AMERICAN TOWER CO. SITE NO.: 302495 5 BARBARA ROAD TOLLAND, CT 06084
LESSEE/APPLICANT:	AT&T MOBILITY 500 Enterprise Drive, suite 3a Rocky Hill, ct 06067
ENGINEER:	CENTEK ENGINEERING, INC. 63—2 NORTH BRANFORD RD. BRANFORD, CT 06405
PROJECT COORDINATES:	LATITUDE: 41°-52'-23.96"N LONGITUDE: 72°-20'-17.89"W GROUND ELEVATION: ±693'AMSL
	COORDINATES AND GROUND ELEVATION REFERENCED FROM FAA 1—A PREPARED FOR AT&T MOBILTY BY EBI CONSULTING DATED JUNE 1, 2012

SHEET INDEX				
SHT. NO.	DESCRIPTION	REV.		
T-1	TITLE SHEET	А		
N-1	NOTES, SPECIFICATIONS AND DETAILS	А		
C-1	PLANS AND ELEVATION	А		
C-2	LTE 2C EQUIPMENT DETAILS	А		
E-1	LTE SCHEMATIC DIAGRAM AND NOTES	А		
E-2	LTE WIRING DIAGRAM	А		
E-3	TYPICAL ELECTRICAL DETAILS	А		
E-3	TYPICAL ELECTRICAL DETAILS	A		

NEER SEAL				A 06/15/17 KAWJR CAG PRELIMINARY CDs - ISSUED FOR CLIENT REVIEW	REV. DATE DRAWN BY CHK'D BY DESCRIPTION
PROFESSIONAL ENGINEER SEA		1P	PR		
	Centered on Solutions ^{**}	(203) 488-0580 (2013) 488-8580	63-2 North Branford Road Branford, CT 06405		www.CentekEng.com
AT&T MOBILITY	WIRELESS COMMUNICATIONS FACILITY	LAND EASI CENIHAL	CT1037 - LTE 2C		10LLAND, 01 00004
DATE: SCALI JOB	E:	AS 170	06/1 NOTEI 04.25)	

NOTES AND SPECIFICATIONS

DESIGN BASIS:

GOVERNING CODE: 2012 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2016 CT STATE BUILDING CODE AND AMENDMENTS.

- 1. DESIGN CRITERIA:
- WIND LOAD: PER TIA 222 G (ANTENNA MOUNTS): 95–105 MPH (3 SECOND GUST)
- RISK CATEGORY: II (BASED ON IBC TABLE 1604.5) •
- NOMINAL DESIGN SPEED (OTHER STRUCTURE): 97 MPH (Vasd) (EXPOSURE • B/IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10) PER 2012 INTERNATIONAL BUILDING CODE (IBC) AS MODIFIED BY THE 2016 CONNECTICUT STATE BUILDING CODE.
- SEISMIC LOAD (DOES NOT CONTROL): PER ASCE 7-10 MINIMUM DESIGN LOADS FOR • BUILDING AND OTHER STRUCTURES.

GENERAL NOTES

- 1. ALL CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BUILDING CODE.
- 2. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 3. BEFORE BEGINNING THE WORK. THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
- 4. DIMENSIONS AND DETAILS SHALL BE CHECKED AGAINST EXISTING FIELD CONDITIONS.
- 5. THE CONTRACTOR SHALL VERIFY AND COORDINATE THE SIZE AND LOCATION OF ALL OPENINGS, SLEEVES AND ANCHOR BOLTS AS REQUIRED BY ALL TRADES.
- 6. ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS, ELEVATIONS, ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK.
- 7. AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.
- 8. THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE SAFETY CODES AND REGULATIONS DURING ALL PHASES OF CONSTRUCTION. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR PROVIDING AND MAINTAINING ADEQUATE SHORING, BRACING, AND BARRICADES AS MAY BE REQUIRED FOR THE PROTECTION OF EXISTING PROPERTY, CONSTRUCTION WORKERS, AND FOR PUBLIC SAFETY.
- 9. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. MAINTAIN EXISTING SITE OPERATIONS, COORDINATE WORK WITH NORTHEAST UTILITIES
- 10. THE STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER FOUNDATION REMEDIATION WORK IS COMPLETE. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE STRUCTURE AND ITS COMPONENT PARTS DURING ERECTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, TEMPORARY BRACING, GUYS OR TIEDOWNS, WHICH MIGHT BE NECESSARY.
- 11. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 12. SHOP DRAWINGS, CONCRETE MIX DESIGNS, TEST REPORTS, AND OTHER SUBMITTALS PERTAINING TO STRUCTURAL WORK SHALL BE FORWARDED TO THE OWNER FOR REVIEW BEFORE FABRICATION AND/OR INSTALLATION IS MADE. SHOP DRAWINGS SHALL INCLUDE ERECTION DRAWINGS AND COMPLETE DETAILS OF CONNECTIONS AS WELL AS MANUFACTURER'S SPECIFICATION DATA WHERE APPROPRIATE. SHOP DRAWINGS SHALL BE CHECKED BY THE CONTRACTOR AND BEAR THE CHECKER'S INITIALS BEFORE BEING SUBMITTED FOR REVIEW.
- 13. NO DRILLING WELDING OR TAPING ON EVERSOURCE OWNED EQUIPMENT.
- 14. REFER TO DRAWING T1 FOR ADDITIONAL NOTES AND REQUIREMENTS.

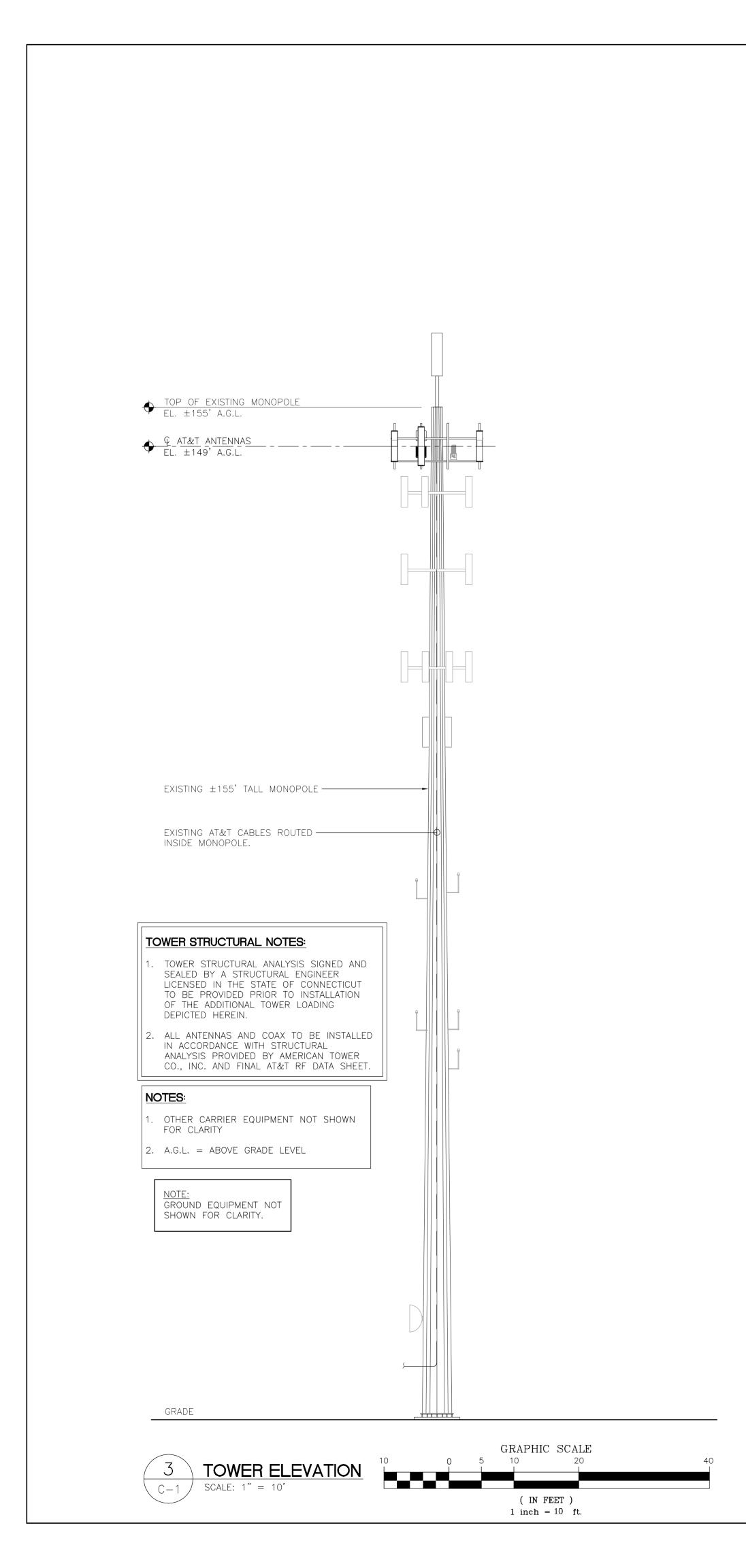
STRUCTURAL STEEL

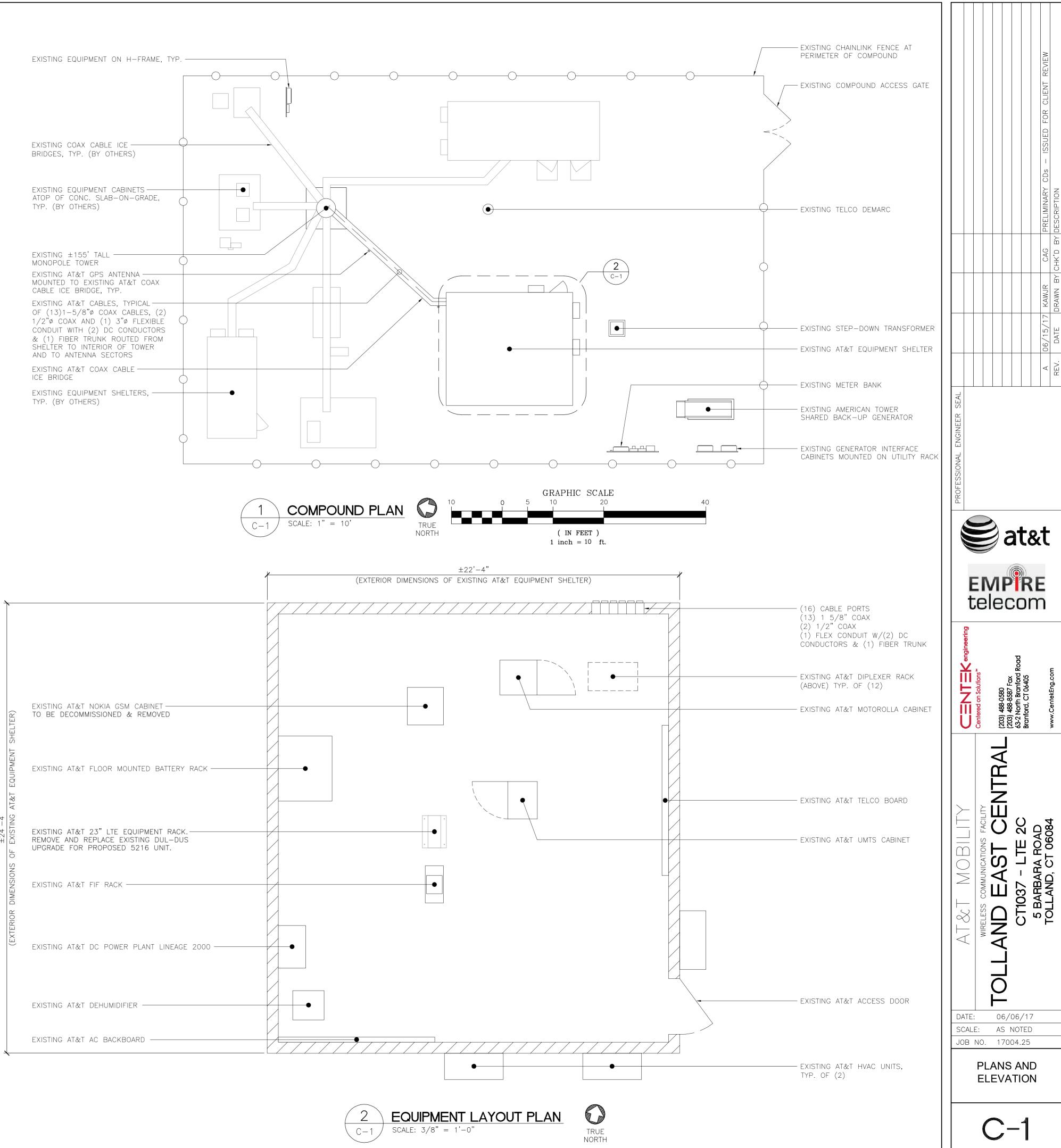
- 1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)
- A. STRUCTURAL STEEL (W SHAPES) -- ASTM A992 (FY = 50 KSI) R
- C. STRUCTURAL HSS (RECTANGULAR SHAPES) -- ASTM A500 GRADE B, (FY = 46 KSI)
- D. STRUCTURAL HSS (ROUND SHAPES)---ASTM A500 GRADE B, (FY = 42 KSI)
- PIPE---ASTM A53 (FY = 35 KSI) CONNECTION BOLTS---ASTM A325-N
- G. U-BOLTS---ASTM A36
- H. ANCHOR RODS---ASTM F 1554 I. WELDING ELECTRODE---ASTM E 70XX
- 2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR 1. DO NOT APPLY PAINT IN SNOW, RAIN, FOG OR MIST OR WHEN RELATIVE HUMIDITY EXCEEDS 85%. DO NOT APPLY PAINT TO DAMP OR WET SURFACES. APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THF FNGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: 2. VERIFY THAT SUBSTRATE CONDITIONS ARE READY TO RECEIVE WORK. EXAMINE SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SURFACE SCHEDULED TO BE FINISHED PRIOR TO COMMENCEMENT OF WORK. REPORT SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ANY CONDITION THAT MAY POTENTIALLY AFFECT PROPER APPLICATION. ELEVATIONS AND DETAILS.
- 3. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE 3. TEST SHOP APPLIED PRIMER FOR COMPATIBILITY WITH SUBSEQUENT COVER MATERIALS. WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
- 4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
- DELIVERY TO SITE.
- 6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
- 7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
- 8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
- 9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE"
- 10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED. DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
- 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES. 12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS
- SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
- 15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO 1. COLLECT WASTE MATERIAL, WHICH MAY CONSTITUTE A FIRE HAZARD, PLACE IN TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- 16. FABRICATE BEAMS WITH MILL CAMBER UP.
- 17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1. APPLY PRODUCTS IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS. 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
- 18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK. 3. APPLY EACH COAT TO UNIFORM FINISH.
- PERFORMED BY AN INDEPENDENT TESTING LABORATORY. 20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE 5. SAND METAL LIGHTLY BETWEEN COATS TO ACHIEVE REQUIRED FINISH.
- ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

STRUCTURAL STEEL (OTHER SHAPES) -- ASTM A36 (FY = 36 KSI)

PAINT NOTES

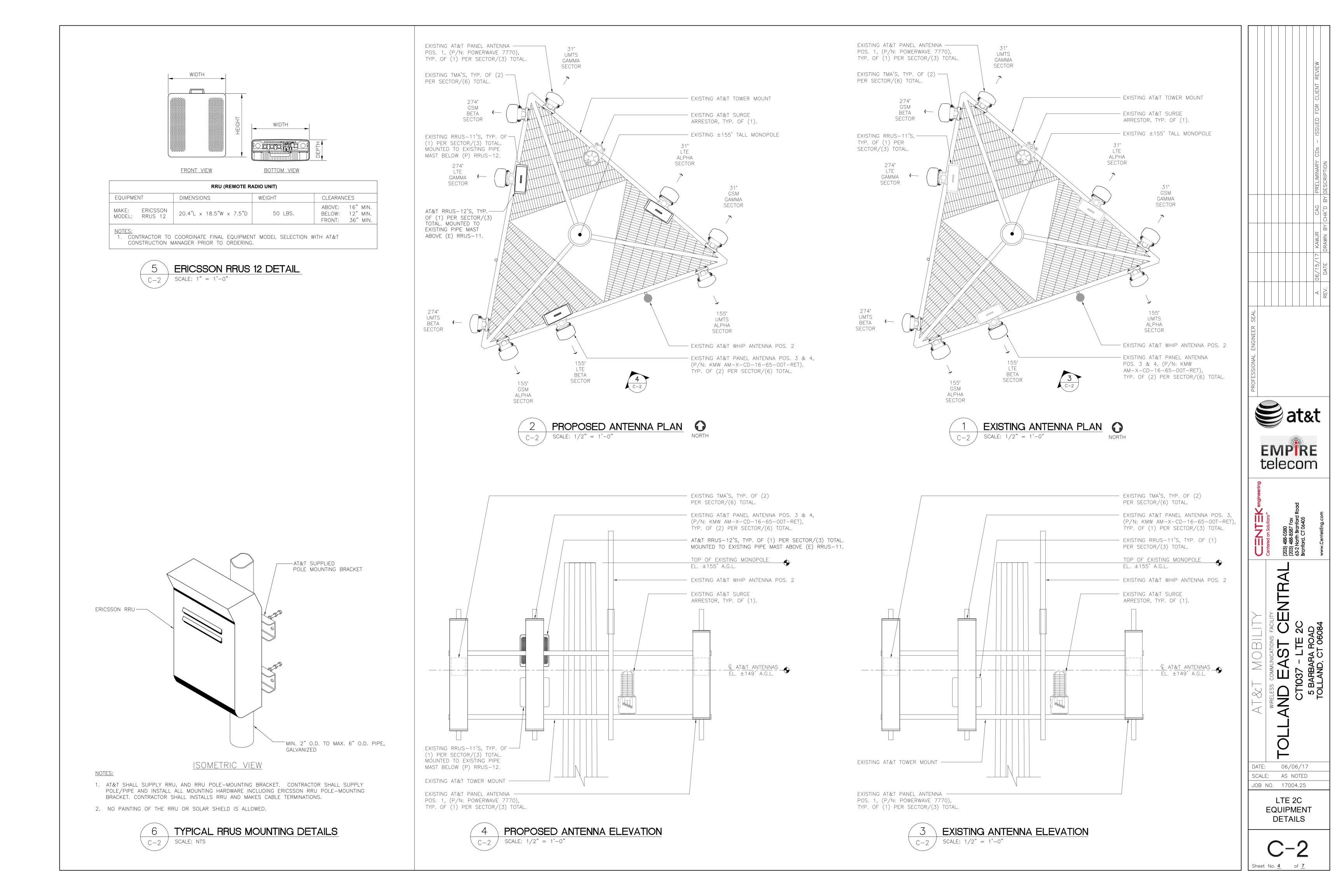
PAINTING SCHEDULE:

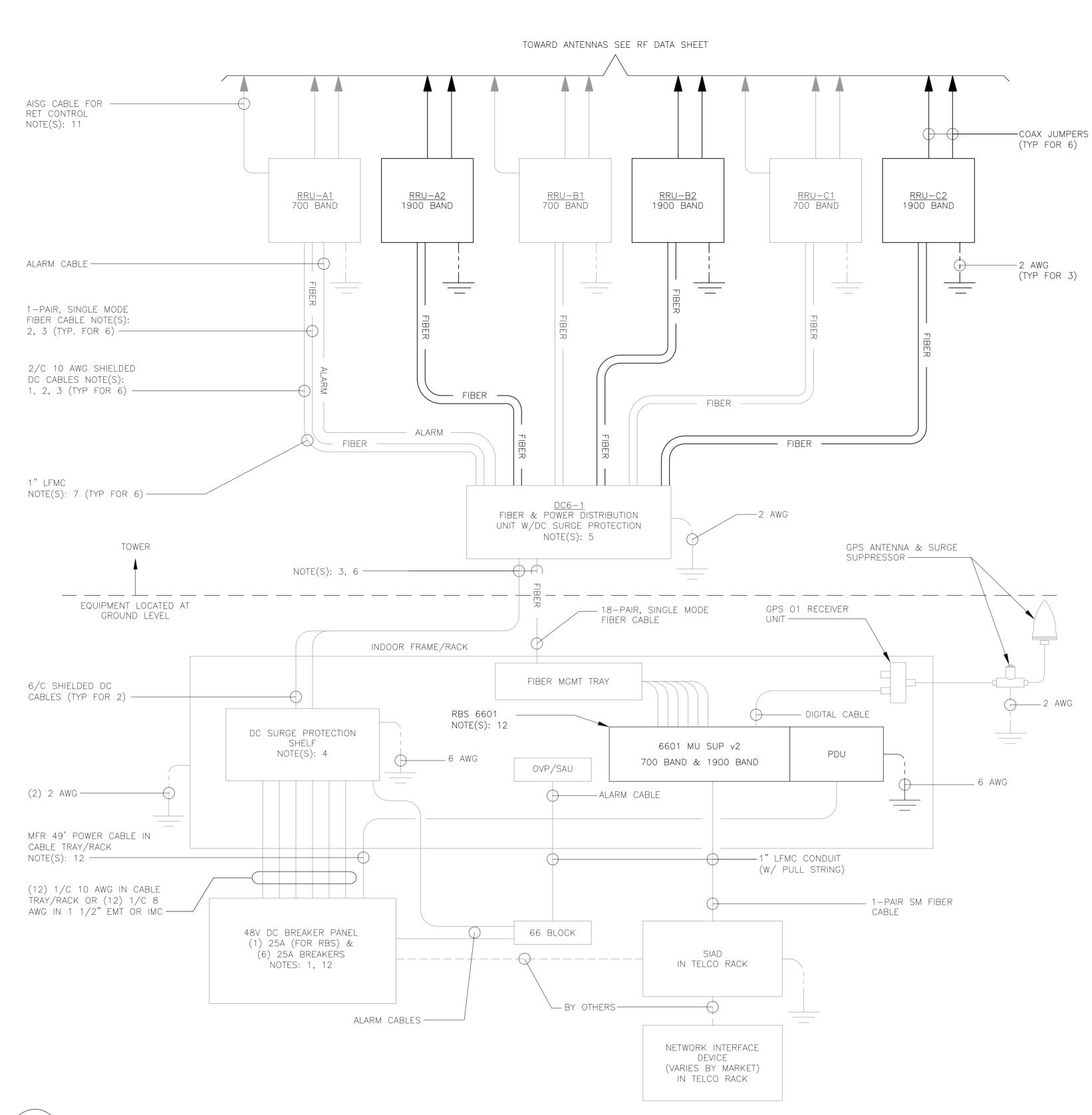

2. <u>COAXIAL CABLES:</u>


- 1. ANTENNA PANELS:
 - A. SHERWIN WILLIAMS POLANE-B B. COLOR TO BE MATCHED WITH EXISTING TOWER STRUCTURE.
- A. ONE COAT OF DTM BONDING PRIMER (2-5 MILS. DRY FINISH) B. TWO COATS OF DTM ACRYLIC PRIMER/FINISH (2.5-5 MILS. DRY FINISH)
- C. COLOR TO BE FIELD MATCHED WITH EXISTING STRUCTURE. EXAMINATION AND PREPARATION:
- 4. PERFORM PREPARATION AND CLEANING PROCEDURE IN STRICT ACCORDANCE WITH COATING MANUFACTURER'S INSTRUCTIONS FOR EACH SUBSTRATE CONDITION.
- 5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR 5. CORRECT DEFECTS AND CLEAN SURFACES WHICH AFFECT WORK OF THIS SECTION. REMOVE EXISTING COATINGS THAT EXHIBIT LOOSE SURFACE DEFECTS.
 - 6. IMPERVIOUS SURFACE: REMOVE MILDEW BY SCRUBBING WITH SOLUTION OF TRI-SODIUM PHOSPHATE AND BLEACH. RINSE WITH CLEAN WATER AND ALLOW SURFACE TO DRY.
 - 7. ALUMINUM SURFACE SCHEDULED FOR PAINT FINISH: REMOVE SURFACE CONTAMINATION BY STEAM OR HIGH-PRESSURE WATER. REMOVE OXIDATION WITH ACID ETCH AND SOLVENT WASHING. APPLY ETCHING PRIMER IMMEDIATELY FOLLOWING CLEANING.
 - 8. FERROUS METALS: CLEAN UNGALVANIZED FERROUS METAL SURFACES THAT HAVE NOT BEEN SHOP COATED; REMOVE OIL, GREASE, DIRT, LOOSE MILL SCALE, AND OTHER FOREIGN SUBSTANCES. USE SOLVENT OR MECHANICAL CLEANING METHODS THAT COMPLY WITH THE STEEL STRUCTURES PAINTING COUNCIL'S (SSPC) RECOMMENDATIONS. TOUCH UP BARE AREAS AND SHOP APPLIED PRIME COATS THAT HAVE BEEN DAMAGED. WIRE BRUSH, CLEAN WITH SOLVENTS RECOMMENDED BY PAINT MANUFACTURER, AND TOUCH UP WITH THE SAME PRIMER AS THE SHOP COAT.
 - 9. GALVANIZED SURFACES: CLEAN GALVANIZED SURFACES WITH NON-PETROLEUM-BASED SOLVENTS SO SURFACE IS FREE OF OIL AND SURFACE CONTAMINANTS. REMOVE PRETREATMENT FROM GALVANIZED SHEET METAL FABRICATED FROM COIL STOCK BY MECHANICAL METHODS.
 - 10. ANTENNA PANELS: REMOVE ALL OIL, DUST, GREASE, DIRT, AND OTHER FOREIGN MATERIAL TO ENSURE ADEQUATE ADHESION. PANELS MUST BE WIPED WITH METHYL ETHYL KETONE (MEK).
 - 11. COAXIAL CABLES: REMOVE ALL OIL, DUST, GREASE. DIRT, AND OTHER FOREIGN MATERIAL TO ENSURE ADEQUATE ADHESION.

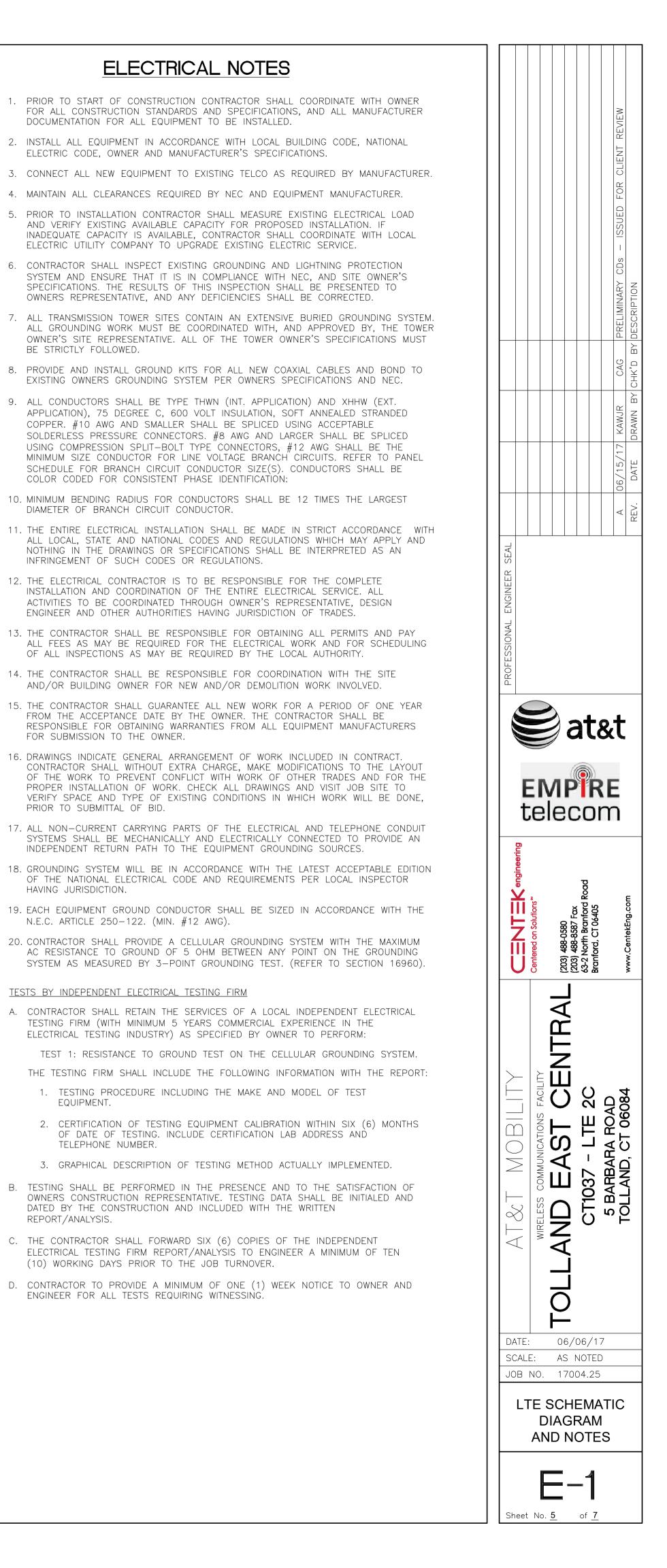
CLEANING:

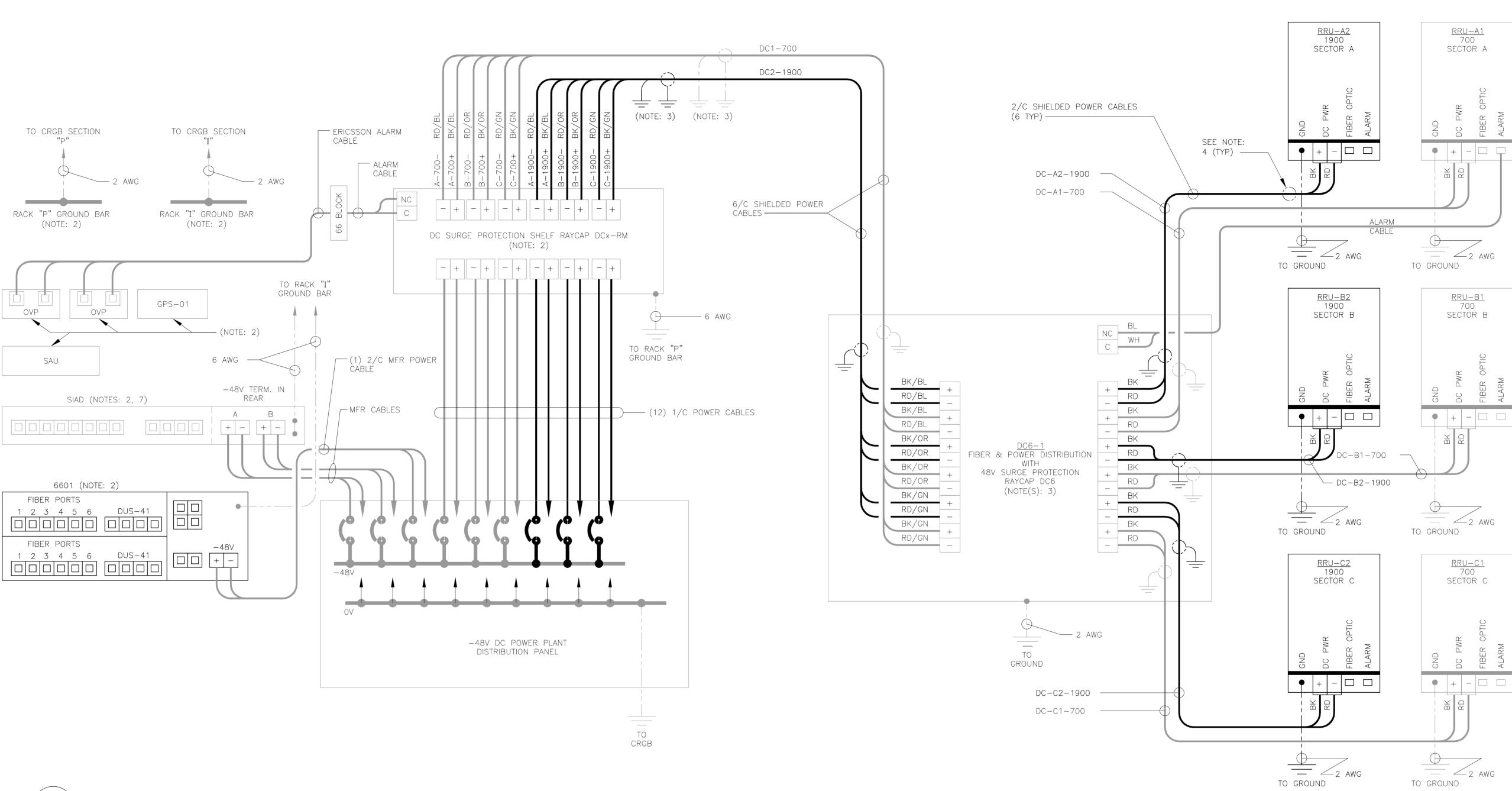
- CLOSED METAL CONTAINERS AND REMOVE DAILY FROM SITE.
- APPLICATION:
- 2. DO NOT APPLY FINISHES TO SURFACES THAT ARE NOT DRY.
- 19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE 4. APPLY EACH COAT OF PAINT SLIGHTLY DARKER THAN PRECEDING COAT UNLESS OTHERWISE APPROVED.


 - 6. VACUUM CLEAN SURFACES FREE OF LOOSE PARTICLES. USE TACK CLOTH JUST PRIOR TO APPLYING NEXT COAT.
 - 7. ALLOW APPLIED COAT TO DRY BEFORE NEXT COAT IS APPLIED.
 - COMPLETED WORK:
 - 1. SAMPLES: PREPARE 24" X 24" SAMPLE AREA FOR REVIEW.
 - 2. MATCH APPROVED SAMPLES FOR COLOR, TEXTURE AND COVERAGE. REMOVE REFINISH OR REPAINT WORK NOT IN COMPLIANCE WITH SPECIFIED REQUIREMENTS.



Sheet No. 3 of 7




LTE SCHEMATIC DIAGRAM NOT TO SCALE

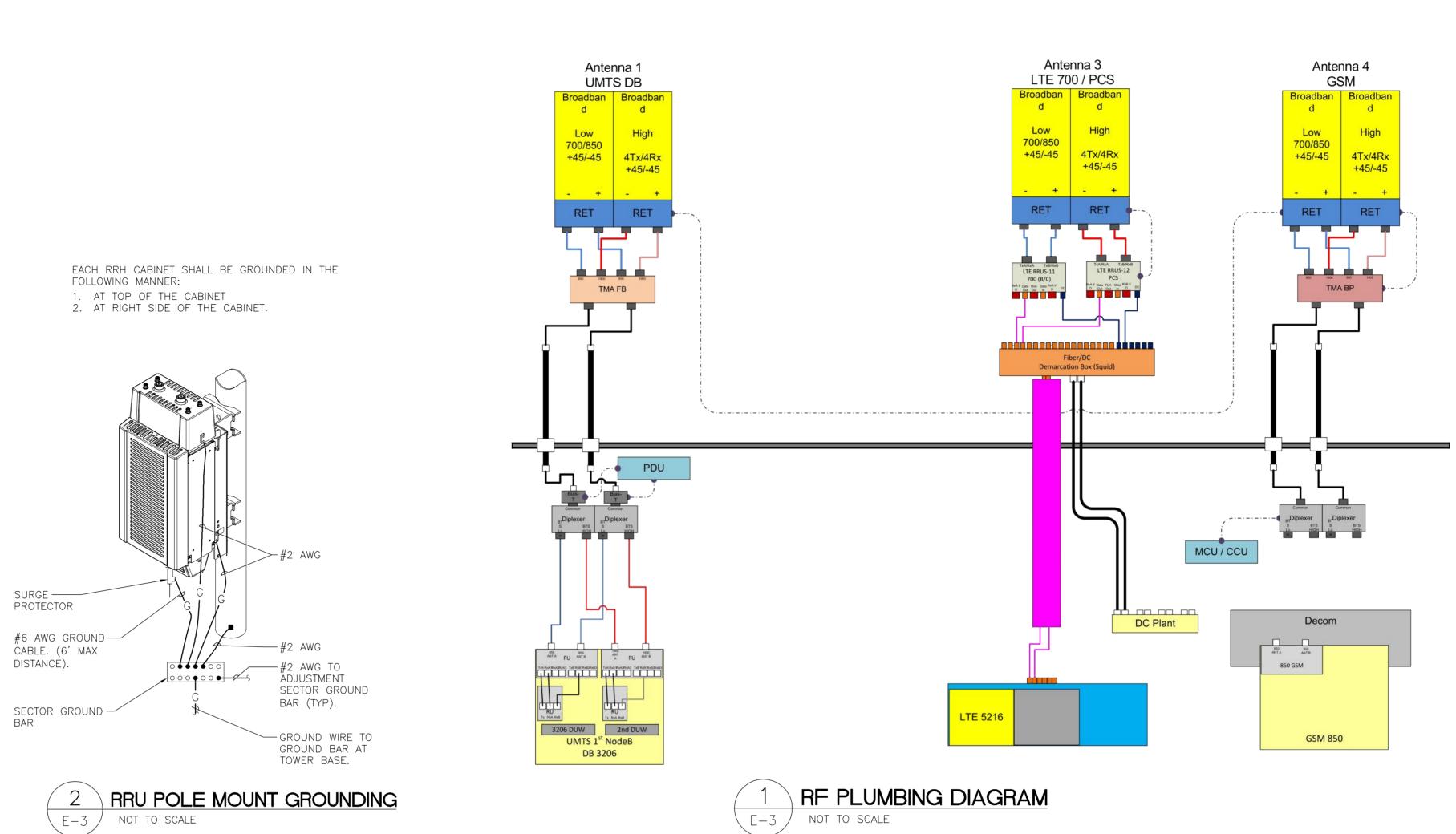
LTE SCHEMATIC DIAGRAM NOTES:

E-1 /

- 1. BREAKERS TO BE TAGGED AND LOCKED OUT. A 20A (MIN.) OR 30A (MAX.) BREAKER FOR RRUS MAY BE SUBSTITUTED FOR THE RECOMMENDED 25A BREAKER. SIZE 12 CONDUCTORS MAY BE USED ONLY WITH 20A BREAKERS.
- 2. LEAVE COILED AND PROTECTED UNTIL TERMINATED. 3. DC AND FIBER CABLE SHALL BE ROUTED WITH THE EXISTING COAX CABLE.
- 4. DC SURGE PROTECTION SHELF SHALL BE RAYCAP DCx-48-60-RM.
- 5. FIBER & DC DISTRIBUTION BOX W/DC SURGE PROTECTION SHALL BE RAYCAP DC6-48-60-18-8F. 6. SUPPORT FIBER & DC POWER CABLES WITH SNAP-IN HANGERS SPACED NO GREATER THAN 3 FEET APART ON TOWER. SUPPORT
- FIBER AND DC POWER CABLES INSIDE MONOPOLE WITH CABLE HOISTING GRIPS AT 250 FT MAXIMUM INTERVALS. DRESS CABLES TO PREVENT CONTACT WITH ENTRANCE AND EXIT OPENINGS. 7. CONDUIT TO BE USED ON A TOWER IF THE RRU IS MORE THAN 10' FROM THE DISTRIBUTION UNITS. MAX CABLE LENGTH IS 16
- 8. SINGLE-CONDUCTOR DC POWER CABLES SHALL BE TELCOFLEX[®] OR KS24194[™], COPPER, UL LISTED RHH NON-HALOGEN, LOW SMOKE WITH BRAIDED COVER, TYPE TC (1/0 AND LARGER). UNLESS OTHERWISE NOTED, STRANDING SHALL BE CLASS B (TYPE III) FOR CABLES SIZES 14, 12 & 10 AWG AND CLASS I (TYPE IV) FOR SIZES 8 AWG AND LARGER. CABLES SHALL BE COLOR CODED RED FOR +24V, BLUE FOR -48V AND GRAY FOR 24V AND 48V RETURN CONDUCTORS. MULTI-CONDUCTOR DC POWER CABLES SHALL BE COPPER, CLASS B STRANDING WITH FLAME RETARDANT PVC JACKET, TYPE TC, UL LISTED FOR 90°C DRY/ 75°C WET INSTALLATION.
- 9. GROUNDING WIRES SHALL BE COPPER, GREEN THHN/THWN UL LISTED FOR 90°C DRY/75°C WET INSTALLATION. MINIMUM SIZE IS 6 AWG UNLESS NOTED OTHERWISE. 10. FIBER OPTIC CABLES SHALL BE INSTALLED IN FLEXIBLE CONDUIT AS SCOPED BY MARKET.
- 11. RET CONTROL FROM THE RRU IS AN OPTIONAL METHOD OF CONNECTION. REFER TO RF DATA SHEET FOR APPLICABILITY.
- 12. RBS 6601 VARIANT 2 REQUIRES A 25A BREAKER AND 10 AWG (MIN.) CONDUCTORS. REPLACE EXISTING 15A OR 20A BREAKERS AND 12 AWG CONDUCTORS WHEN UPGRADING AN EXISTING RBS 6601 VARIANT 1.

LTE WIRING DIAGRAM

NOT TO SCALE


LTE WIRING DIAGRAM NOTES:

- 1. LABEL THE DC POWER CABLES AT BOTH ENDS OF EVERY WIRE AND IN ANY PULL BOX IF USED. LABEL SHALL BE DURABLE, SELF ADHESIVE, WRAPPED LONGITUDINALLY ALONG THE CABLE AND STATE THE SECTOR, FREQUENCY BAND AND POLARITY; I.E. "A-1900+". CABLE AND WIRE LABELS SHOWN ARE REPRESENTATIVE AND MAY BE MODIFIED AS DIRECTED BY AT&T.
- 2. INSTALL ON BASEBAND EQUIPMENT RACK.
- 3. THE BARE GROUND WIRE OF EACH MULTI-CONDUCTOR CABLE SHALL BE CONNECTED TO THE "P" GROUND BAR ON THE RACK. WHEN A SHIELDED CABLE IS USED, THE DRAIN WIRE ALSO SHALL BE CONNECTED TO THE "P" GROUND BAR.
- 5. SEE LTE SCHEMATIC DIAGRAM DETAIL 1/E-1 FOR BREAKER RATING.

4. CABLE GROUND WIRE AND SHIELD DRAIN WIRE TO BE LEFT UN-TERMINATED AT RRU AND DC POWER PLANT.

AMERICAN TOWER®

CORPORATION

Structural Analysis Report

Structure	: 155 ft N	Ionopole	
ATC Site Name	: Tolland	ст, ст	
ATC Site Number	: 302495		
Engineering Number	: OAA705	5198_C3_01	
Proposed Carrier	: AT&T M	lobility	
Carrier Site Name	: Tolland	East Central	
Carrier Site Number	: CT1037		
Site Location		s Road CT 06084-3116 00,-72.338300	
County	Tolland		
Date	June 29,	2017	
Max Usage	80%		
Result	Pass		

Prepared By: Robert D. Barrett, E.I. Structural Engineer I

Reviewed By:

Jun 30 2017 11:26 AM cosign COA: PEC.0001553

A.T. Engineering Service, PLLC - 3500 Regency Parkway, Suite 100 - Cary, NC 27518 - 919-468-0112 Office - 919-466-5414 Fax - www.americantower.com

Table of Contents

Introduction	1
Supporting Documents	1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	2
Equipment to be Removed	2
Proposed Equipment	2
Structure Usages	3
Foundations	3
Deflection, Twist, and Sway	3
Standard Conditions	4
Calculations Atta	ched

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 155 ft monopole to reflect the change in loading by AT&T Mobility.

Supporting Documents

Tower Drawings	EEI Drawing #GS50842 Rev 1, dated June 24, 1998	
Foundation Drawing	EEI Drawing #F3503-150.N, dated March 2, 1998	
Geotechnical Report	ASR Project #12-06077, dated December 1, 2006	
Modifications	Spectrasite Drawing #CT-0031-M1, dated November 15, 2004	

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	97 mph (3-Second Gust, V _{asd}) / 125 mph (3-Second Gust, V _{ult})
Basic Wind Speed w/ Ice: 50 mph (3-Second Gust) w/ 1" radial ice concurrent	
Code:	ANSI/TIA-222-G / 2012 IBC / 2016 Connecticut State Building Code
Structure Class:	
Exposure Category:	В
Topographic Category:	1
Crest Height:	Oft
Spectral Response:	$S_{S} = 0.17, S_{1} = 0.06$
Site Class:	D - Stiff Soil

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elevati	on¹(ft)				1	
Mount	RAD	Qty	Antenna	Mount Type	Lines	Carrier
155.0 164.	164.0	3	EMS RR90-17-02DP			
155.0	159.0	6	Ericsson KRY 112 71/x	Canister	(6) 1 5/8" Coax	T-Mobile
	152.0	1	7' Omni		(1) 1 1/4" Coax	Spok Holdings
		1	Andrew ABT-DMDF-ADBH	-	(-)	AT&T Mobility
		3	Powerwave 7020.00 Dual Band RET			
149.0		6	Kathrein 782-10250	Disc. das in	(12) 1 1/4" Coax	
145.0	149.0	6	CCI DTMABP7819VG12A	Platform w/ Handrails	(2) 0.78" 8 AWG 6 (1) 3" Conduit	
		3	Ericsson RRUS 11 (Band 12)			
		3	Powerwave 7770.00			
		6	KMW AM-X-CD-16-65-00T-RET			
	143.0	3	Alcatel-Lucent RRH2X60-AWS	Platform w/ Handrails	(15) 1 5/8" Coax (1) 1 5/8" Hybriflex	Verizon
		6	Swedcom ALP 9212-N			
143.0		1	RFS DB-T1-6Z-8AB-0Z			
		6	Andrew HBXX-6516DS-A2M			
		3	Andrew LNX-6513DS-A1M			
133.0	133.0	5	Decibel 980H65T2E-M			
155.0	133.0	4	Decibel DB980H90A-KL	Platform w/ Handrails	(9) 1 5/8" Coax	Sprint Nextel
123.0	123.0	12	Decibel DB844H90E-A	Platform w/ Handrails	(12) 1 1/4" Coax	opiniertexter
	107.0	3	Commscope LNX-6515DS-VTM		(6) 1 1/4" Coax	
105.0	105.0	3	Kathrein Smart Bias Tee	Flush	-	Metro PCS
83.0	83.0	1	GPS	Stand-Off	(1) 1/2" Coax	T-Mobile
63.0	63.0	2	GPS	Stand-Offs	(2) 1/2" Coax	
52.0	52.0	1	2" x 4" GPS	Stand-Off	(1) 1/2" Coax	Sprint Nextel
17.0	17.0	1	4' Std. Dish	Flush	(1) 0.27" RG-6/U	Spok Holdings

Equipment to be Removed

- 1 11 11 1				
Qty	Antenna	Mount Type	Lines	Carrier
-	-	-	(1) 0 39" Cable	AT&T Mobility

Proposed Equipment

Elevatio	on¹ (ft)	<u>~</u> .	A			
Mount	RAD	Qty	Antenna	Mount Type	Lines	Carrier
149.0	149.0	1	Raycap DC6-48-60-18-8F		(1) 0.39" Fiber Trunk	
145.0	149.0	3	Ericsson RRUS-12 800 MHz	Platform w/ Handrails	(1) 3/8" RET Control Cable	AT&T Mobility

¹Mount elevation is defined as height above bottom of steel structure to the bottom of mount, RAD elevation is defined as center of antenna above ground level (AGL).

Install proposed coax inside the pole shaft.

Eng. Number OAA705198_C3_01 June 29, 2017 Page 3

.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Anchor Bolts	72%	Pass
Shaft	80%	Pass
Base Plate	53%	Pass
Flanges	20%	Pass

Foundations

Reaction Component	Analysis Reactions	% of Usage
Moment (Kips-Ft)	3,611.6	77%
Axial (Kips)	93.6	5%
Shear (Kips)	33.2	55%

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

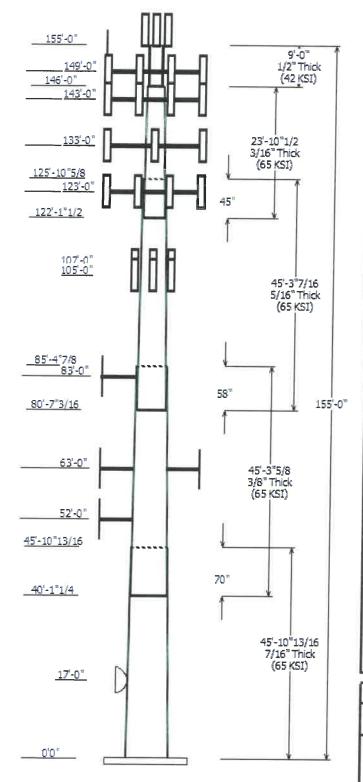
Deflection and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Sway (Rotation) (°)
149.0	Raycap DC6-48-60-18-8F		2.442	
149.0	Ericsson RRUS-12 800 MHz	AT&T Mobility	2.449	1.790
17.0	4' Std. Dish	Spok Holdings	0.028	0.190

*Deflection and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-G

Standard Conditions

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessary limited, to:

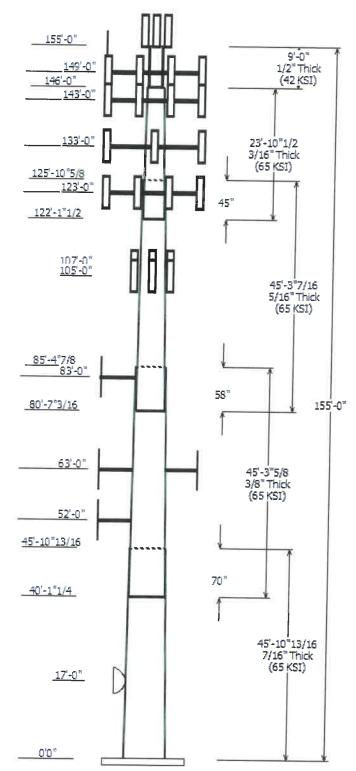

- -- Information supplied by the client regarding the structure itself, antenna, mounts and feed line loading on the structure and its components, or other relevant information.
- -- Information from drawings in the possession of American Tower Corporation, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and that their capacity has not significantly changed from the "as new" condition.

Unless explicitly agreed by both the client and American Tower Corporation, all services will be performed in accordance with the current revision of ANSI/TIA -222. The design basic wind speed will be determined based on the minimum basic wind speed as prescribed in ANSI/TIA-222. Although every effort is taken to ensure that the loading considered is adequate to meet the requirements of all applicable regulatory entities, we can provide no assurance to meet any other local and state codes or requirements. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

© 2007 - 2017 by ATC IP LLC. All rights reserved.

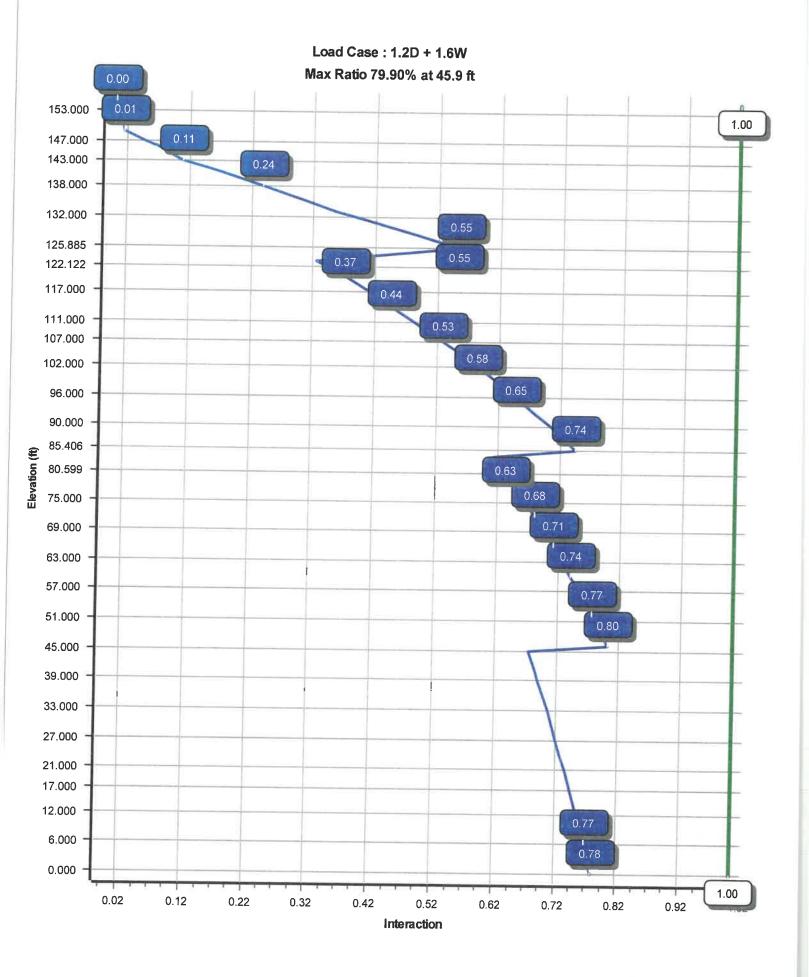


Job Information							
Pole :	302495	Code: ANSI/TIA-222-G					
Description :	Description : EEI 155' Monopole - Model verified 4/25/12						
Client :	AT&T Mobility	Struct Class : II					
Location :	Tolland CT, CT						
Shape :	12 Sides	Exposure : B					
Height :	155.00 (ft)	Торо: 1					
Base Elev (ft):	0.00						
Taper:	0.21061(in/ft)						

			Secti	ions P	roperties			
Shaft Section	Length (ft)		eter (in) ss Flats Bottom	Thick (in)	Joint Type	Overlap Length (in)	Taper (in/ft)	Steel Grade (ksi)
1	45.898	40.33	50.00	0.438		0.000	0.210600) 65
2	45.302	32.76	42.30	0.375	Slip Joint	69.531	0.210600	65
3	45.286	24.86	34.40	0.313	Slip Joint	57.688	0.210600	65
4	23.878	21.00	26.02	0.188	Slip Joint	45.156	0.210600) 65
5	9.000	16.00	16.00	0.500	Butt Joint	0.000	0.000000) 42

		Disc	crete Appurtenance
Attach	Force		
Elev (ft)	Elev (ft)	Qty	Description
155.000	155.000	1	Canister
155.000	159.000	6	Ericsson KRY 112 71/x
155.000	164.000	3	EMS RR90-17-02DP
149.000	149.000	3	Ericsson RRUS-12 800 MHz
149.000	149.000	1	Raycap DC6-48-60-18-8F
149.000	152.000	1	7' Omni
149.000	149.000	3	Powerwave Allgon 7770.00
149.000	149.000	1	Flat Platform w/ Handrails
149.000	149.000	3	Powerwave Allgon 7020.00
149.000	149.000	6	KMW AM-X-CD-16-65-00T-RET
149.000	149.000	3	Ericsson RRUS 11 (Band 12)
149.000	149.000	6	CCI DTMABP7819VG12A
149.000	149.000	6	Kathrein Scala 782-10250
149.000	149.000	1	Andrew ABT-DMDF-ADBH
143.000	143.000	1	Flat Platform w/ Handrails
143.000	143.000	3	Andrew LNX-6513DS-A1M
143.000	143.000	6	Andrew HBXX-6516DS-A2M
143.000	143.000	1	RFS DB-T1-6Z-8AB-0Z
143.000	143.000	6	Swedcom ALP 9212-N
143.000	143.000	3	Alcatel-Lucent RRH2X60-AWS
133.000	133.000	1	Flat Platform w/ Handrails
133.000	133.000	4	Decibel DB980H90A-KL
133.000	133.000	5	Decibel 980H65T2E-M
123.000	123.000	12	Decibel DB844H90E-A
123.000	123.000	1	Flat Platform w/ Handrails
107.000	107.000	3	Commscope LNX-6515DS-VTM
105.000	105.000	3	Kathrein Smart Bias Tee
83.000	83.000	1	Stand-Off
83.000	83.000	1	GPS
63.000	63.000	2	Stand-Off
63.000	63.000	2	GPS
52.000	52.000	1	Stand-Off
52.000	52.000	1	2" x 4" GPS
17.000	17.000	1	4 Std. Dish

Exposed	
To Wind	
Yes	
No	
Yes	
	Yes No



0.000	52.000	1/2" Coax	Yes	
0.000	63.000	1/2" Coax	Yes	
0.000	83.000	1/2" Coax	Yes	
0.000	107.0	1 1/4" Coax	Yes	
0.000	123.0	1 1/4" Coax	No	
0.000	133.0	1 5/8" Coax	No	
0.000	143.0	1 5/8" Coax	Yes	
0.000	143.0	1 5/8" Coax	No	
0.000	143.0	1 5/8" Hybriflex	Yes	
0.000	149.0	0.39" Fiber Trunk	No	
0.000	149.0	0.78" 8 AWG 6	No	
0.000	149.0	1 1/4" Coax	No	
0.000	149.0	1 1/4" Coax	Yes	
0.000	149.0	1 1/4" Coax	No	
0.000	149.0	3" Conduit	No	
0.000	149.0	3/8" RET Control	No	

Load Cases					
1.2D + 1.6W	97 mph with No Ice				
0.9D + 1.6W	97 mph with No Ice (Reduced DL)				
1.2D + 1.0Di + 1.0Wi	50 mph with 1.00 in Radial Ice				
(1.2 + 0.2Sds) * DL + E	Seismic Equivalent Lateral Forces Method				
(1.2 + 0.2Sds) * DL + E	Seismic Equivalent Modal Analysis Method				
(0.9 - 0.2Sds) * DL + E	Seismic (Reduced DL) Equivalent Lateral				
(0.9 - 0.2Sds) * DL + E	Seismic (Reduced DL) Equivalent Modal				
1.0D + 1.0W	Serviceability 60 mph				

Reactions					
Load Case	Moment (kip-ft)	Shear (kip)	Axial (kip)		
1.2D + 1.6W	3611.64	33.13	50.46		
0.9D + 1.6W	3530.40	32.91	37.83		
1.2D + 1.0Di + 1.0Wi	995.61	8.12	93.58		
(1.2 + 0.2Sds) * DL + E ELFM	216.24	1.64	50.99		
(1.2 + 0.2Sds) * DL + E EMAM	303.42	2.46	50.99		
(0.9 - 0.2Sds) * DL + E ELFM	211.90	1.64	35.55		
(0.9 - 0.2Sds) * DL + E EMAM	296.96	2.46	35.55		
1.0D + 1.0W	850.51	7.87	42.08		

	Dish Deflection	ons	
Load Case	Attach Elev (ft)	Deflection (in)	Rotation (deg)
1.0D + 1.0W	17.00	0.336	0.190

Site Number: 302495		Code: ANSI/TIA-222-G	© 2007 - 2017 by ATC IP LLC. All rights reserve				
	I CT, CT	Engineering Number: OAA705198_C3_01	6/29/2017 5:56:05 PM				
Customer: AT&T M	lobility						
		Analysis Parameters					
Location:							
	Tolland County, CT	Height (ft):	155				
Code:	ANSI/TIA-222-G	Base Diameter (in):	50.00				
Shape:	12 Sides. Sect 5: Round	d Top Diameter (in):	16.00				
Pole Type:	Custom	Taper (in/ft) :	0.211				
Pole Manfacturer:	EEI	Rotation (deg) :	0.00				
		Ice & Wind Parameters					
Structure Class:	H	Design Wind Speed Without Ice	: 97 mph				
Exposure Category:	В	Design Wind Speed With Ice:	50 mph				
opographic Category:	1	Operational Wind Speed:	60 mph				
Crest Height:	0.0 ft	Design Ice Thickness:	1.00 in				
		Seismic Parameters					
Analysis Method:	Equivalent Modal Analy	sis & Equivalent Lateral Force Methods					
ite Class:	D - Stiff Soil						
eriod Based on Rayleigl	n Method (sec):	2.79					
_ (sec): 6		p: 1.3	C _s : 0.030				
s: 0.175		S ₁ : 0.063	C _s Max: 0.030				
a: 1.600		F _v : 2.400	C _s Min: 0.030				
		v	- S mm. 0.000				

Load Cases

1.2D + 1.6W
0.9D + 1.6W
1.2D + 1.0Di + 1.0Wi
(1.2 + 0.2Sds) * DL + E ELFM
(1.2 + 0.2Sds) * DL + E EMAM
(0.9 - 0.2Sds) * DL + E ELFM
(0.9 - 0.2Sds) * DL + E EMAM
1.0D + 1.0W

97 mph with No Ice 97 mph with No Ice (Reduced DL) 50 mph with 1.00 in Radial Ice Seismic Equivalent Lateral Forces Method Seismic Equivalent Modal Analysis Method Seismic (Reduced DL) Equivalent Lateral Forces Method Seismic (Reduced DL) Equivalent Modal Analysis Method Serviceability 60 mph

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Shaft Section Properties Bottom Тор Slip Sect Length Thick Fy Joint Joint Info (ft) (in) (ksi) Type Len (in) Weight Dia Elev (lb) (in) (ft) Area lх W/t D/t Dia Elev Area lx. W/t D/t Taper (in 2) (in4) Ratio Ratio (in) (ft) (in²) (in 4) Ratio Ratio (in/ft) 1-12 45.898 0.4375 65 69.82 21891.7 27.94 114.29 0.00 9,841 50.00 0.00 40.33 45.90 56.20 11418.1 22.02 92.19 0.210616 2-12 45.302 0.3750 65 69.53 6,917 42.30 Slip 40.10 50.63 11360.5 27.55 112.81 32.76 85.41 39.11 5235.8 20.73 87.37 0.210616 3-12 45.286 0.3125 65 Slip 57.69 4,546 34.40 80.60 34.30 5087.0 26.82 110.08 24.86 125.89 24.70 1900.2 18.64 79.56 0.210616 4-12 23.878 0.1875 65 Slip 45.16 1,144 26.02 122.12 15.60 1329.8 34.52 138.82 21.00 146.00 12.57 694.7 27.33 112.00 0.210616 5-R 9.000 0.5000 42 Butt 0.00 746 16.00 146.00 24.35 731.7 0.00 32.00 16.00 155.00 24.35 731.7 0.00 32.00 0.000000 Shaft Weight 23,194

Code: ANSI/TIA-222-G

Engineering Number: OAA705198_C3_01

Discrete Appurtenance Properties

Attach Elev (ft)	Description	Qty	Weight (lb)	– No Ic EPAa (sf)	e – Orientation Factor	Weight (lb)	lce EPAa (sf)	Orientation Factor	Distance From Face (ft)	Vert Ecc (ft)
155.00	Canister	1	500.00	9.800	1.00	897.56	13.175	5 1.00	0.000	0.000
155.00	EMS RR90-17-02DP	3	13.50	4.360	0.01	158.35	5.725		0.000	9.000
155.00	Ericsson KRY 112 71/x	6	13.20	0.730	0.01	53.56	1.162		0.000	4.000
149.00	7' Omni	1	25.00	2.100	1.00	168.52	4.247	1.00	0.000	3.000
149.00	Andrew ABT-DMDF-ADBH	1	1.10	0.050	0.50	10.90	0.202	2 0.50	0.000	0.000
149.00		6	19.20	0.970	0.50	70.27	1.569		0.000	0.000
149.00		3	50.00	2.570	0.67	167.31	3.464	0.67	0.000	0.000
149.00		3	60.00	2.700	0.67	186.41	3.625		0.000	0.000
149.00		1	2000.00		1.00	3,896.23	70.382		0.000	0.000
149.00	Kathrein Scala 782-10250	6	6.40	0.520	0.50	36.64	0.913		0.000	0.000
149.00	KMW AM-X-CD-16-65-00T-	6	48.50	8.020	0.67	316.98	9.782		0.000	0.000
149.00	Powerwave Allgon 7020.00	3	2.20	0.400	0.50	27.26	0.742		0.000	0.000
149.00	Powerwave Allgon 7770.00	3	35.00	5.510	0.65	228.78	6.949		0.000	0.000
149.00	Raycap DC6-48-60-18-8F	1	31.80	1.280	1.00	165.01	3.096		0.000	0.000
143.00		3	44.00	1.880	0.50	140.77	2.677		0.000	0.000
143.00	Andrew HBXX-6516DS-A2M	6	30.60	5.420	0.67	234.87	6.805		0.000	0.000
143.00	Andrew LNX-6513DS-A1M	3	31.10	5.850	0.69	254.04	7.301		0.000	0.000
143.00	Flat Platform w/ Handrails	1	2000.00		1.00	3,888.40	70.267		0.000	0.000
143.00	RFS DB-T1-6Z-8AB-0Z	1	44.00	4.800	0.67	245.88	5.984		0.000	0.000
143.00	Swedcom ALP 9212-N	6	26.70	4.520	0.90	235.40	12.625		0.000	0.000
133.00	Decibel 980H65T2E-M	5	8.50	3.800	0.67	140.91	5.207		0.000	0.000
133.00	Decibel DB980H90A-KL	4	8.50	3.800	0.67	140.91	5.207	0.67	0.000	0.000
133.00	Flat Platform w/ Handrails	1	2000.00		1.00	3,875.37	70.075		0.000	0.000
123.00	Decibel DB844H90E-A	12	10.00	3.800	0.72	165.62	5.011	0.72	0.000	0.000
123.00	Flat Platform w/ Handrails	1	2000.00		1.00	3,860.80	69.860		0.000	0.000
107.00	Commscope LNX-6515DS-	3	50.30		0.84	407.80	13.597	0.84	0.000	0.000
105.00	Kathrein Smart Bias Tee	3	3.31	0.090	0.50	14.35	0.314	0.50	0.000	0.000
83.00	GPS Stand Off	1	10.00	1.000	1.00	62.74	1.066	1.00	0.000	0.000
83.00	Stand-Off	1	75.00	2.500	1.00	140.72	4.691	1.00	0.000	0.000
63.00	GPS Stored Off	2	10.00	1.000	1.00	60.64	1.048	1.00	0.000	0.000
63.00	Stand-Off	2	75.00	2.500	0.90	138.85	4.628	0.90	0.000	0.000
52.00	2" x 4" GPS	1	5.00	0.040	1.00	14.61	0.246	1.00	0.000	0.000
52.00	Stand-Off	1	75.00	2.500	1.00	137.73	4.591	1.00	0.000	0.000
17.00	4' Std. Dish	1	188.00	20.910	1.00	523.75	24.022	1.00	0.000	0.000
	Totals	102 1	1057.23		31,984	1.36		Number	of Loadings	: 34

Linear Appurtenance Properties

Elev From (ft)	Elev To (ft)	Qty Description	Coax Diameter (in)	Coax Weight (Ib/ft)	Flat	Projected Width (in)	Exposed To Wind	Carrier
0.00	155.00	6 1 5/8" Coax	1.98	0.82	Ν	0.00	N	T-Mobile
0.00	149.00	1 0.39" Fiber Trunk	0.39	0.06	Ν	0.00	N	AT&T Mobility

 $\ensuremath{\textcircled{}^\circ}$ 2007 - 2017 by ATC IP LLC. All rights reserved.

6/29/2017 5:56:05 PM

	mber: 3				C	ode: ANSI/T	IA-222-G	© 2007 - 2017 by ATC IP LLC. All rights reserved.
Site Na	me: 1	olland CT, CT	Er	gineering	g Nun	nber:OAA70	5198_C3_0	1 6/29/2017 5:56:05 PM
Custon	ner: A	AT&T Mobility						
0.00	149.00	2 0.78" 8 AWG 6	0.78	0.59	N	0.00	N	AT&T Mobility
0.00	149.00	9 1 1/4" Coax	1.55	0.63	N	0.00	N	AT&T Mobility
0.00	149.00	3 1 1/4" Coax	1.55	0.63	N	1.55	Y	AT&T Mobility
0.00	149.00	1 1 1/4" Coax	1.55	0.63	N	0.00	N	Spok Holdings, Inc.
0.00	149.00	1 3" Conduit	3.50	7.58	Ν	0.00	N	AT&T Mobility
0.00	149.00	1 3/8" RET Control Cable	0.38	0.23	Ν	0.00	N	AT&T Mobility
120.00	149.00	1 Climbing Ladder	2.00	6.90	Ν	2.00	Y	
0.00	143.00	3 1 5/8" Coax	1.98	0.82	N	1.98	Y	Verizon Wireless
0.00	143.00	12 1 5/8" Coax	1.98	0.82	N	0.00	N	Verizon Wireless
0.00	143.00	1 1 5/8" Hybriflex	1.98	1.30	Ν	0.00	Y	Verizon Wireless
0.00	133.00	9 1 5/8" Coax	1.98	0.82	N	0.00	N	Sprint Nextel
0.00	123.00	12 1 1/4" Coax	1.55	0.63	N	0.00	N	Sprint Nextel
0.00	107.00	6 1 1/4" Coax	1.55	0.63	Ν	0.00	Y	Metro PCS Inc
0.00	83.00	1 1/2" Coax	0.63	0.15	Ν	0.00	Y	T-Mobile
0.00	63.00	2 1/2" Coax	0.63	0.15	N	0.00	Ŷ	Sprint Nextel
0.00	52.00	1 1/2" Coax	0.63	0.15	Ν	0.00	Ŷ	Sprint Nextel
0.00	17.00	1 0.27" RG-6/U	0.27	0.04	N	0.00	Y	Spok Holdings, Inc.

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:05 PM

Segment Properties	(Max Len : 3.f	t)						
Seg Top	Flat							
Elev (ft) Description	Thick Dia	Area	IX (ind)	W/t	D/t F'y S	Z	Weight	
	(in) (in)	(in²)	(in⁴)	Ratio	Ratio (ksi) (in ³)	(in ³)	(lb)	
0.00 3.00	0.4375 50.000	69.821	21,891.7	27.94		0.0	0.0	
6.00			21,065.1 20,259.5	27.56 27.17	112.84 74.7 824.3 111.40 75.1 803.1	0.0 0.0	708.2 699.1	
9.00			19,474.8	26.78	109.95 75.5 782.1	0.0	690.0	
12.00	0.4375 47.473	66.261	18,710.5	26.40	108.51 75.9 761.4	0.0	681.0	
15.00			17,966.6	26.01	107.06 76.3 741.0	0.0	671.9	
17.00 18.00	0.4375 46.420 0.4375 46.209	64.777	17,481.7 17,242.6	25.75 25.62	106.10 76.6 727.5	0.0	442.9	
21.00			16,538.3	25.02	105.62 76.8 720.9 104.18 77.2 701.0	0.0 0.0	219.9 653.7	
24.00	0.4375 44.945	62.700	15,853.5	24.85	102.73 77.6 681.4	0.0	644.6	
27.00	0.4375 44.313	61.810	15,187.9	24.46	101.29 78.0 662.1	0.0	635.5	
30.00 33.00			14,541.1	24.07	99.84 78.5 643.1	0.0	626.4	
36.00			13,913.0 13,303.2	23.69 23.30	98.40 78.9 624.3 96.95 79.3 605.9	0.0 0.0	617.3 608.3	
39.00			12,711.5	22.91	95.51 79.7 587.7	0.0	599.2	
40.10 Bot - Section 2	0.4375 41.553	57.922	12,498.3	22.77	94.98 79.9 581.1	0.0	218.2	
42.00 45.00	0.4375 41.154	57.360	12,137.7	22.53	94.07 80.1 569.8	0.0	696.9	
45.90 Top - Section 1			11,581.3 10,397.1	22.14 26.68	92.62 80.6 552.1 109.55 75.6 488.9	0.0	1,089.0	
48.00			10,061.7	26.36	109.37 76.0 478.3	0.0	322.9 349.6	
51.00	0.3750 40.009	47.858	9,595.4	25.91	106.69 76.5 463.3	0.0	492.4	
52.00		47.603	9,443.2	25.76	106.13 76.6 458.4	0.0	162.4	
54.00 57.00	0.3750 39.377 0.3750 38.745	47.095 46.332	9,143.7 8,706.5	25.46 25.00	105.00 77.0 448.6 103.32 77.4 434.1	0.0	322.2	
60.00		45.569	8,283.4	24.55	101.63 77.9 419.9	0.0 0.0	476.9 469.1	
63.00	0.3750 37.481	44.806	7,874.3	24.10	99.95 78.4 405.9	0.0	461.3	
66.00		44.043	7,478.8	23.65	98.26 78.9 392.1	0.0	453.5	
69.00 72.00		43.280	7,096.9	23.20	96.58 79.4 378.5	0.0	445.7	
75.00		42.517 41.754	6,728.1 6,372.4	22.75 22.30	94.89 79.9 365.3 93.21 80.4 352.2	0.0 0.0	437.9 430.1	
78.00	0.3750 34.322	40.991	6,029.4	21.84	91.53 80.9 339.4	0.0	422.3	
80.60 Bot - Section 3		40.330	5,742.4	21.45	90.07 81.3 328.5	0.0	359.6	
81.00 83.00		40.228	5,699.0	21.39	89.84 81.4 326.8	0.0	101.7	
84.00	0.3750 33.269 3	39.719 39.465	5,485.5 5,380.8	21.09 20.94	88.72 81.7 318.5 88.16 81.9 314.4	0.0 0.0	503.5 249.3	
85.41 Top - Section 2	0.3125 33.387 3	33.281	4,647.0	25.95	106.84 76.4 268.9	0.0	348.0	
87.00	0.3125 33.051 3	32.943	4,507.0	25.66	105.76 76.7 263.4	0.0	179.6	,
90.00 93.00		32.308	4,251.0	25.12	103.74 77.3 253.3	0.0	333.1	,
96.00		31.672 31.036	4,004.9 3,768.6	24.58 24.03	101.72 77.9 243.4 99.70 78.5 233.7	0.0 0.0	326.6 320.1	
99.00		30.400	3,541.7	23.49	97.68 79.1 224.2	0.0	313.6	
102.0	0.3125 29.892 2	29.765	3,324.1	22.95	95.65 79.7 214.8	0.0	307.1	
105.0 107.0	0.3125 29.260 2 0.3125 28.839 2	29.129 28.705	3,115.6	22.41	93.63 80.3 205.7	0.0	300.6	
108.0		28.493	2,981.5 2,916.0	22.05 21.87	92.28 80.7 199.7 91.61 80.9 196.8	0.0 0.0	196.8 97.3	
111.0	0.3125 27.997 2	27.857	2,725.1	21.33	89.59 81.5 188.0	0.0	287.6	
114.0		27.221	2,542.7	20.78	87.57 81.9 179.5	0.0	281.1	
117.0 120.0		26.586 25.950	2,368.7 2,202.8	20.24 19.70	85.55 81.9 171.2	0.0	274.6	
122.1 Bot - Section 4		5.500	2,090.2	19.32	83.52 81.9 163.0 82.09 81.9 157.4	0.0 0.0	268.1 185.8	
123.0	0.3125 25.469 2	5.314	2,044.8	19.16	81.50 81.9 155.1	0.0	122.3	
125.8 Top - Section 3		5.123	1,211.2	33.38	134.59 68.3 92.7	0.0	395.8	
126.0 129.0		5.109 4.727	1,207.7 1,118.5	33.35 32.45	134.47 68.3 92.5	0.0	5.9	
132.0		4.346	1,033.8	32.45	131.10 69.3 87.9 127.73 70.3 83.4	0.0 0.0	152.3 148.4	
133.0	0.1875 23.738 1	4.219	1,006.6	31.24	126.60 70.6 81.9	0.0	48.6	
135.0		3.964	953.5		124.36 71.3 79.0	0.0	95.9	
138.0	0.1875 22.685 1	3.583	877.5	29.74	120.99 72.3 74.7	0.0	140.6	

Site Number: 302495 Site Name: Tolland CT Customer: AT&T Mobi		Engir	neering N		ANSI/TIA-222- OAA705198_C		- 2017 by A ⁻	TC IP LLC. All rights reserved. 6/29/2017 5:56:05 PM
141.0 143.0 144.0 146.0 Top - Section 4 146.0 Bot - Section 5 147.0 149.0 150.0 153.0 155.0	$\begin{array}{cccc} 0.1875 & 22.053 \\ 0.1875 & 21.632 \\ 0.1875 & 21.421 \\ 0.1875 & 21.000 \\ 0.5000 & 16.000 \\ 0.5000 & 16.000 \\ 0.5000 & 16.000 \\ 0.5000 & 16.000 \\ 0.5000 & 16.000 \\ 0.5000 & 16.000 \\ 0.5000 & 16.000 \\ \end{array}$	13.201 12.947 12.820 12.566 24.347 24.347 24.347 24.347 24.347 24.347 24.347	805.6 759.9 737.8 694.7 731.7 731.7 731.7 731.7 731.7 731.7 731.7	28.84 28.23 27.93 27.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00	117.62 73.3 115.37 73.9 114.25 74.2 112.00 74.9 32.00 42.0 32.00 42.0 32.00 42.0 32.00 42.0 32.00 42.0 32.00 42.0 32.00 42.0	70.6 0.0 67.9 0.0 66.5 0.0 63.9 0.0 91.5 120.2 91.5 120.2 91.5 120.2 91.5 120.2 91.5 120.2 91.5 120.2 91.5 120.2 91.5 120.2 91.5 120.2 91.5 120.2 91.5 120.2 91.5 120.2 91.5 120.2	136.7 89.0 43.8 86.4 165.7 82.8 248.5 165.7 3,194.0	

Site Name: Tolland CT, CT

AT&T Mobility Customer:

Code: ANSI/TIA-222-G Engineering Number: OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:05 PM

Load Case: 1.2D + 1.6W

Gust Response Factor :1.10 Dead Load Factor :1.20

Wind Load Factor : 1.60

97 mph with No Ice

29 Iterations

Wind Importance Factor :1.00

Applied Segment Forces Summary

		Shaft	Forces		Discret	e Forces		Linear F	orces	Sum of Forces				
Seg			Dead			Moment	Dead		Dead		Dead	Torsion	Moment	
Elev	1	Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ	
(ft)	Description	(lb)	(lb)	(ib)	(lb-ft)	(lb-ft)	(Ib)	(lb)	(lb)	(lb)	(lb)	(lb-ft)	(lb)	
0.00		181.3	0.0					0.0	0.0	181.3	0.0	0.0	0.0	
3.00		360.2	849.9					0.0	198.4	360.2	1,048.3	0.0	0.0	
6.00		355.6	839.0					0.0	198.4	355.6	1,037.4	0.0	0.0	
9.00		351.0	828.0					0.0	198.4	351.0	1,026.5	0.0	0.0	
12.00		346.4	817.1					0.0	198.4	346.4	1,015.6	0.0	0.0	
15.00		285.5	806.2					0.0	198.4	285.5	1,004.7	0.0	0.0	
17.00	Appertunance(s)	169.7	531.4	589.5	0.0	0.0	225.6	0.0	132.3	759.2	889.3	0.0	0.0	
18.00		223.8	263.9					0.0	66.1	223.8	330.0	0.0	0.0	
21.00 24.00		332.6	784.4					0.0	198.3	332.6	982.7	0.0	0.0	
24.00		327.9	773.5					0.0	198.3	327.9	971.8	0.0	0.0	
30.00		323.3 321.1	762.6					0.0	198.3	323.3	960.9	0.0	0.0	
33.00		321.1 323.0	751.7 740.8					0.0	198.3	321.1	950.0	0.0	0.0	
36.00		326.2	740.8					0.0	198.3	323.0	939.1	0.0	0.0	
39.00		224.4	719.0					0.0	198.3	326.2	928.2	0.0	0.0	
40.10	Bot - Section 2	166.9	261.9					0.0 0.0	198.3 73.0	224.4	917.3	0.0	0.0	
42.00		275.1	836.3					0.0	125.3	166.9 275.1	334.9	0.0	0.0	
45.00		219.6	1,306.8					0.0	125.5	219.6	961.6 1,505.1	0.0 0.0	0.0 0.0	
45.90	Top - Section 1	169.5	387.4					0.0	59.4	169.5	446.8	0.0	0.0	
48.00		288.7	419.5					0.0	138.9	288.7	558.4	0.0	0.0	
51.00		226.6	590.9					0.0	198.3	226.6	789.2	0.0	0.0	
52.00	Appertunance(s)	170.1	194.9	83.9	0.0	0.0	96.0	0.0	66.1	253.9	357.0	0.0	0.0	
54.00		283.4	386.7					0.0	131.8	283.4	518.5	0.0	0.0	
57.00		339.8	572.2					0.0	197.7	339.8	770.0	0.0	0.0	
60.00		339.2	562.9					0.0	197.7	339.2	760.6	0.0	0.0	
63.00	Appertunance(s)	338.3	553.5	211.0	0.0	0.0	204.0	0.0	197.7	549.3	955.3	0.0	0.0	
66.00		337.1	544.2					0.0	196.7	337.1	740.9	0.0	0.0	
69.00		335.5	534.9					0.0	196.7	335.5	731.5	0.0	0.0	
72.00		333.7	525.5					0.0	196.7	333.7	722.2	0.0	0.0	
75.00 78.00		331.6 307.4	516.2					0.0	196.7	331.6	712.8	0.0	0.0	
80.60	Bot - Section 3	307.4 164.5	506.8					0.0	196.7	307.4	703.5	0.0	0.0	
81.00	Dot - Section 3	104.5	431.5 122.1					0.0	170.4	164.5	601.9	0.0	0.0	
83.00	Appertunance(s)	166.8	604.1	132.1	0.0	0.0	100.0	0.0	26.3	133.6	148.3	0.0	0.0	
84.00		133.6	299.2	132.1	0.0	0.0	102.0	0.0 0.0	131.1 65.4	298.9	837.3	0.0	0.0	
85.41	Top - Section 2	165.9	417.6					0.0	91.9	133.6 165.9	364.6 509.5	0.0 0.0	0.0	
87.00		252.7	215.5					0.0	104.2	252.7	309.5 319.7	0.0	0.0 0.0	
90.00		329.1	399.7					0.0	196.1	329.1	595.8	0.0	0.0	
93.00		327.7	391.9					0.0	196.1	323.1	588.0	0.0	0.0	
96.00		326.2	384.1					0.0	196.1	326.2	580.2	0.0	0.0	
99.00		324.5	376.3					0.0	196.1	324.5	572.4	0.0	0.0	
102.00		322.7	368.5					0.0	196.1	322.7	564.6	0.0	0.0	
105.00	Appertunance(s)	267.6	360.7	5.4	0.0	0.0	11.9	0.0	196.1	273.0	568.8	0.0	0.0	
107.00	Appertunance(s)	159.9	236.2	1,170.8	0.0	0.0	181.1	0.0	130.8	1,330.7	548.0	0.0	0.0	
108.00		212.0	116.8					0.0	60.8	212.0	177.6	0.0	0.0	
111.00		316.5	345.1					0.0	182.5	316.5	527.7	0.0	0.0	
114.00		314.2	337.4					0.0	182.5	314.2	519.9	0.0	0.0	
117.00		311.8	329.6					0.0	182.5	311.8	512.1	0.0	0.0	

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:10 PM

1.02	d Casou 1 ap . 1 (23.47													
	d Case: 1.2D + 1.6	VV		97	mph wi	th No Ic	e		29 Iterations						
[Response Factor : Dead Load Factor : Wind Load Factor :	1.20								Wind	l Importar	nce Factor	- 1.00		
120.00 122.12 123.00 125.89	Bot - Section 4 Appertunance(s) Top - Section 3	274.8 169.2 211.3 168.0	321.8 222.9 146.8 475.0	2,830.1	0.0	0.0	2,544.0	0.0 61.2 25.4 83.9	182.5 146.7 60.7 173.3	274.8 230.4 3,066.8 251.9	504.3 369.6 2,751.4 648.3	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		
126.00 129.00 132.00 133.00	Appertunance(s)	171.3 326.8 215.1 158.6	7.1 182.7 178.1 58.3	2,572.8	0.0	0.0	2,491.8	3.3 87.8 88.4 29.6	6.9 180.1 180.1 60.0	174.6 414.6 303.5 2,761.0	14.0 362.9 358.2 2,610.2	0.0 0.0 0.0	0.0 0.0 0.0		
135.00 138.00 141.00		260.8 307.4 251.5	115.1 168.7 164.1	2,072.0	0.0	0.0	2,431.0	59.4 89.6 90.1	102.4 153.6 153.6	2,761.0 320.2 397.0 341.7	2,610.2 217.5 322.3 317.6	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		
143.00 144.00	Appertunance(s)	147.7 144.2	106.8 52.6	3,996.3	0.0	0.0	3,135.7	60.4 0.0	102.4 34.9	4,204.4 144.2	3,344.9 87.5	0.0 0.0	0.0 0.0		
146.00 147.00	Top - Section 4	131.5 106.7	103.7 99.4					0.0 21.7	69.7 34.9	131.5 128.4	173.4 134.3	0.0 0.0	0.0 0.0		
149.00 150.00	Appertunance(s)	89.1 71.6	198.8 99.4	3,990.9	0.0	282.6	3,532.9	43.5 0.0	69.7 5.9	4,123.4 71.6	3,801.5 105.3	0.0 0.0	0.0 0.0		
153.00 155.00	Appertunance(s)	89.8 36.0	298.3 198.8	450.1	0.0	61.9	743.6	0.0 0.0	17.7 11.8	89.8 486.1	316.0 954.3	0.0 0.0	0.0 0.0		
								Tot	als:	33,252.1	50,499.7	0.00	0.00		

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:10 PM

Load Case: 1.2D + 1.6W

97 mph with No Ice

29 Iterations Wind Importance Factor 1.00

Gust Response Factor :1.10 Dead Load Factor :1.20 Wind Load Factor :1.60

Calculated Forces

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)		phi Pn kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00 3.00 6.00	-50.46 -49.33 -48.21	-33.13 -32.89 -32.65	0.00 0.00 0.00	-3,611.64 -3,512.25 -3,413.57	0.00 0.00 0.00	3,611.64 3,512.25 3,413.57	4,6	31.78	2,315.89	9,536.02 9,346.21 9,156.81	4,615.74	0.00 0.05 0.18	0.00 -0.14 -0.28	0.778 0.772 0.766
9.00	-47.11	-32.41	0.00	-3,315.62	0.00	3,315.62	4,50	53.18	2,281.59	8,967.87	4,428.89	0.40	-0.42	0.759
12.00 15.00	-46.02 -44.95	-32.17 -31.97	0.00	-3,218.39 -3.121.87	0.00 0.00	3,218.39 3,121.87			•	8,779.43		0.71	-0.56	0.753
17.00	-44.03	-31.26	0.00	-3,121.87	0.00	3,057.93				8,591.56		1.11 1.43	-0.71 -0.81	0.746 0.741
18.00	-43.65	-31.10	0.00	-3,026.68	0.00	3,026.68	4,45	55.19	2,227.60	8,404.31	4,150.57	1.60	-0.86	0.739
21.00	-42.59 -41.55	-30.86	0.00	-2,933.37	0.00	2,933.37				8,217.72		2.19	-1.00	0.733
24.00 27.00	-41.55	-30.63 -30.39	0.00 0.00	-2,840.78 -2,748.90	0.00 0.00	2,840.78 2,748.90				8,031.86 7,846.78		2.87 3.64	-1.15 -1.30	0.726 0.719
30.00	-39.49	-30.15	0.00	-2,657.73	0.00	2,657.73	4,30)1.75	2,150.88	7,662.53	3,784.23	4.51	-1.45	0.712
33.00 36.00	-38.48 -37.48	-29.91 -29.66	0.00	-2,567.28	0.00	2,567.28				7,479.16		5.47	-1.61	0.704
39.00	-36.52	-29.00	0.00	-2,388.59	0.00 0.00	2,477.56 2,388.59				7,296.73		6.53 7.69	-1.76 -1.92	0.697 0.689
40.10	-36.15	-29.34	0.00	-2,356.05	0.00	2,356.05				7,048.76		8.14	-1.98	0.686
42.00 45.00	-35.13 -33.58	-29.11 -28.90	0.00 0.00	-2,300.43 -2,213.09	0.00 0.00	2,300.43 2,213.09				6,934.89		8.95	-2.08	0.680
45.90	-33.10	-28.76	0.00	-2,187.13	0.00	2,213.09				6,755.59 5,614.65		10.31 10.73	-2.24 -2.29	0.672 0.799
48.00	-32.48	-28.53	0.00	-2,126.69	0.00	2,126.69				5,517.72		11.76	-2.40	0.791
51.00 52.00	-31.65 -31.26	-28.33 -28.11	0.00	-2,041.11	0.00	2,041.11				5,379.77		13.33	-2.58	0.778
52.00	-30.68	-20.11	0.00 0.00	-2,012.78 -1,956,56	0.00 0.00	2,012.78 1,956.56				5,333.90 5,242.36		13.87 15.00	-2.64 -2.75	0.774 0.765
57.00	-29.84	-27.60	0.00	-1,872.90	0.00	1,872.90				5,105.54		16.79	-2.93	0.752
60.00	-29.01	-27.31	0.00	-1,790.10	0.00	1,790.10				4,969.37		18.69	-3.11	0.739
63.00 66.00	-28.01 -27.20	-26.80 -26.51	0.00 0.00	-1,708.16	0.00 0.00	1,708.16 1,627.77				4,833.91 2		20.70 22.83	-3.29 -3.47	0.725 0.710
69.00	-26.41	-26.21	0.00	-1,548.25	0.00	1,548.25				4,565.29		25.07	-3.66	0.696
72.00	-25.63	-25.91	0.00	-1,469.63	0.00	1,469.63				4,432.24		27.43	-3.84	0.680
75.00 78.00	-24.86 -24.11	-25.61 -25.32	0.00 0.00	-1,391.90 -1,315.07	0.00 0.00	1,391.90 1,315.07				4,300.11 2 4,168.95 2		29.89 32.48	-4.02 -4.20	0.664 0.647
80.60	-23.48	-25.15	0.00	-1,249.26	0.00	1,249.26				4,056.14		34.80	-4.36	0.632
81.00	-23.31	-25.04	0.00	-1,239.18	0.00	1,239.18			-	4,038.81		35.17	-4.38	0.629
83.00 84.00	-22.46 -22.07	-24.71 -24.58	0.00 0.00	-1,189.10 -1,164.39	0.00 0.00	1,189.10 1,164.39				3,952.64 ⁻ 3,910.94 ⁻		37.03 37.98	-4.50 -4.56	0.617 0.611
85.41	-21.54	-24.40	0.00	-1,129.84	0.00	1,129.84				3,120.34	•	39.34	-4.65	0.743
87.00	-21.18	-24.18	0.00	-1,090.94	0.00	1,090.94				3,069.59		40.90	-4.75	0.729
90.00 93.00	-20.53 -19.89	-23.87 -23.56	0.00 0.00	-1,018.40 -946.78	0.00 0.00	1,018.40 946.78				2,974.43 2,879.80 1		43.95 47.11	-4.95 -5.14	0.703 0.675
96.00	-19.27	-23.25	0.00	-876.09	0.00	876.09				2,785.75 1		50.40	-5.34	0.646
99.00	-18.65	-22.94	0.00	-806.34	0.00	806.34				2,692.34 1		53.81	-5.53	0.616
102.00 105.00	-18.05 -17.46	-22.62 -22.33	0.00 0.00	-737.54 -669.69	0.00 0.00	737.54 669.69				2,599.61 1 2,507.63 1		57.34 60.98	-5.71 -5.89	0.583 0.550
107.00	-17.02	-20.98	0.00	-625.02	0.00	625.02	2,08	4.00	1,042.00	2,446.74 1	,208.36	63.48	-6.01	0.526
108.00	-16.82	-20.78	0.00	-604.05	0.00	604.05				2,416.44 1		64.74	-6.07	0.515
111.00 114.00	-16.27 -15.73	-20.46 -20.13	0.00 0.00	-541.70 -480.33	0.00 0.00	541.70 480.33				2,326.10 1 2,232.66 1		68.60 72.57	-6.24 -6.40	0.480 0.444
117.00	-15.21	-19.80	0.00	-419.93	0.00	419.93	1,95			2,129.00 1		76.63	-6.55	0.408
120.00	-14.70	-19.50	0.00	-360.53	0.00	360.53	1,91			2,027.81 1		80.78	-6.69	0.368
122.12 123.00	-14.34 -11.95	-19.25 -15.89	0.00 0.00	-319.14 -302.25	0.00 0.00	319.14 302.25	1,87 1,86		939.80 932.94		966.84 952.70	83.77 85.02	-6.78 -6.82	0.338 0.324
							.,			.,		30101	5.02	~. V L /

Site Name: Tolland CT, CT

AT&T Mobility Customer:

Code: ANSI/TIA-222-G Engineering Number: OAA705198_C3_01

 $\ensuremath{\textcircled{}^{\circ}}$ 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:10 PM

Load Case:	1.2D + 1.6	W		97	mph with N			29 Iter	ations			
	e Factor :1 Factor :1 d Factor :1	.20							Wind In	nportance		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-15.42 -14.99 -14.66 -11.60 -11.27 -10.84 -10.47 -5.86 -5.71 -5.56 -5.56	$\begin{array}{c} 0.00\\$	-256.40 -254.62 -208.37 -163.41 -148.75 -125.55 -91.75 -59.22 -38.28 -32.41 -20.99 -20.99 -15.43 -4.32 -3.50 -1.28 -0.06	$\begin{array}{c} 0.00\\$	$\begin{array}{c} 256.40\\ 254.62\\ 208.37\\ 163.41\\ 148.75\\ 125.55\\ 91.75\\ 59.22\\ 38.28\\ 32.41\\ 20.99\\ 20.99\\ 15.43\\ 4.32\\ 3.50\\ 1.28\\ 0.06\\ \end{array}$	929.68 929.29 918.88 907.79 903.95 896.03 883.59 870.48 861.36 856.69 847.12 920.33 920.33 920.33 920.33 920.33	$\begin{array}{r} 464.84\\ 464.65\\ 459.44\\ 453.90\\ 451.97\\ 448.02\\ 441.80\\ 435.24\\ 430.68\\ 428.34\\ 423.56\\ 460.16\\ 460.16\\ 460.16\\ 460.16\\ 460.16\\ 460.16\end{array}$	961.73 960.40 925.49 890.46 878.77 855.37 820.26 785.20 761.88 750.24 757.46 575.46 575.46 575.46 575.46 575.46	474.96 474.31 457.06 433.99 422.43 405.10 387.78 376.27 370.52 378.52 378.52 378.52 378.52 378.52 378.52 378.52	89.17 89.33 93.73 98.23 99.75 102.81 107.46 112.16 115.32 116.90 120.07 120.07 121.66 124.84 126.43 131.20 134.39	-6.93 -6.94 -7.10 -7.24 -7.29 -7.36 -7.46 -7.53 -7.57 -7.58 -7.60 -7.60 -7.61 -7.62 -7.62 -7.62 -7.62 -7.62	0.553 0.550 0.469 0.384 0.353 0.307 0.236 0.162 0.108 0.093 0.064 0.061 0.046 0.013 0.011 0.004 0.000

Tolland CT, CT Site Name:

AT&T Mobility Customer:

Code: ANSI/TIA-222-G Engineering Number: OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:10 PM

Load Case: 0.9D + 1.6W

97 mph with No Ice (Reduced DL)

28 Iterations

Gust Response Factor :1.10

Dead Load Factor :0.90 Wind Load Factor : 1.60

Wind Importance Factor :1.00

Applied Segment Forces Summary

		Shaft Forces Discrete Force				Forces		Linear F	orces	Sum of Forces			
Seg		2	Dead		Torsion	Moment	Dead		Dead	-	Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(lb)	(Ib)	(lb-ft)	(lb-ft)	(lb)	(lb)	(lb)	(lb)	(lb)	(lb-ft)	(Ib)
0.00		181.3	0.0					0.0	0.0	181.3	0.0	0.0	0.0
3.00		360.2	637.4					0.0	148.8	360.2	786.2	0.0	0.0
6.00		355.6	629.2					0.0	148.8	355.6	778.0	0.0	0.0
9.00		351.0	621.0					0.0	148.8	351.0	769.9	0.0	0.0
12.00		346.4	612.9					0.0	148.8	346.4	761.7	0.0	0.0
15.00		285.5	604.7					0.0	148.8	285.5	753.5	0.0	0.0
17.00	Appertunance(s)	169.7	398.6	589.5	0.0	0.0	169.2	0.0	99.2	759.2	667.0	0.0	0.0
18.00	•••	223.8	197.9					0.0	49.6	223.8	247.5	0.0	0.0
21.00		332.6	588.3					0.0	148.7	332.6	737.0	0.0	0.0
24.00		327.9	580.1					0.0	148.7	327.9	728.9	0.0	0.0
27.00		323.3	572.0					0.0	148.7	323.3	720.7	0.0	0.0
30.00		321.1	563.8					0.0	148.7	321.1	712.5	0.0	0.0
33.00		323.0	555.6					0.0	148.7	323.0	704.3	0.0	0.0
36.00		326.2	547.4					0.0	148.7	326.2	696.2	0.0	0.0
39.00		224.4	539.3					0.0	148.7	224.4	688.0	0.0	0.0
40.10	Bot - Section 2	166.9	196.4					0.0	54.7	166.9	251.2	0.0	0.0
42.00		275.1	627.2					0.0	94.0	275.1	721.2	0.0	0.0
45.00	To a Cookiers 1	219.6	980.1					0.0	148.7	219.6	1,128.8	0.0	0.0
45.90	Top - Section 1	169.5	290.6					0.0	44.5	169.5	335.1	0.0	0.0
48.00		288.7	314.6					0.0	104.2	288.7	418.8	0.0	0.0
51.00		226.6	443.2	~~ ~				0.0	148.7	226.6	591.9	0.0	0.0
52.00	Appertunance(s)	170.1	146.2	83.9	0.0	0.0	72.0	0.0	49.6	253.9	267.7	0.0 0.0	0.0 0.0
54.00		283.4	290.0					0.0	98.9	283.4	388.9	0.0	
57.00		339.8	429.2					0.0	148.3	339.8	577.5 570.5	0.0	0.0 0.0
60.00	Apportunanco(c)	339.2	422.2	211.0	0.0	0.0	152.0	0.0	148.3	339.2	570.5 716.5	0.0	
63.00 66.00	Appertunance(s)	338.3 337.1	415.2 408.1	211.0	0.0	0.0	153.0	0.0 0.0	148.3 147.5	549.3 337.1	555.6	0.0	0.0 0.0
		335.5	408.1					0.0	147.5	335.5	548.6	0.0	0.0
69.00 72.00		333.7	394.1					0.0	147.5	333.7	541.6	0.0	0.0
75.00		333.7	394.1					0.0	147.5	331.6	534.6	0.0	0.0
78.00		307.4	380.1					0.0	147.5	307.4	527.6	0.0	0.0
80.60	Bot - Section 3	164.4	323.6					0.0	127.8	164.4	451.4	0.0	0.0
81.00		132.9	91.5					0.0	19.7	132.9	111.3	0.0	0.0
83.00	Appertunance(s)	165.7	453.1	132.1	0.0	0.0	76.5	0.0	98.3	297.8	627.9	0.0	0.0
84.00	pp	132.3	224.4		0.0	0.0		0.0	49.0	132.3	273.4	0.0	0.0
85.41	Top - Section 2	164.3	313.2					0.0	69.0	164.3	382.1	0.0	0.0
87.00		249.9	161.6					0.0	78.1	249.9	239.8	0.0	0.0
90.00		324.0	299.7					0.0	147.1	324.0	446.8	0.0	0.0
93.00		320.7	293.9					0.0	147.1	320.7	441.0	0.0	0.0
96.00		317.2	288.1					0.0	147.1	317.2	435.2	0.0	0.0
99.00		313.5	282.2					0.0	147.1	313.5	429.3	0.0	0.0
102.00		309.6	276.4					0.0	147.1	309.6	423.5	0.0	0.0
105.00	Appertunance(s)	255.3	270.5	5.4	0.0	0.0	8.9	0.0	147.1	260.7	426.6	0.0	0.0
107.00	Appertunance(s)	151.8	177.1	1,170.8	0.0	0.0	135.8	0.0	98.1	1,322.6	411.0	0.0	0.0
108.00		200.0	87.6					0.0	45.6	200.0	133.2	0.0	0.0
111.00		297.1	258.9					0.0	136.9	297.1	395.7	0.0	0.0
114.00		292.6	253.0					0.0	136.9	292.6	389.9	0.0	0.0
117.00		288.0	247.2					0.0	136.9	288.0	384.1	0.0	0.0

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Code: ANSI/TIA-222-G

Engineering Number: OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:15 PM

Loa	d Case: 0.9D + 1.6	5W		07	mph wi	th No. Is	Doduce			_			
				97 mph with No Ice (Reduced DL)								28 Iter	rations
	t Response Factor :						Wind Importance Factor :1.00						
	Dead Load Factor :										•		
	Wind Load Factor :	1.60											
120.00		262.3	241.3			_							
122.12	Bot - Section 4	169.2	167.2					0.0	136.9	262.3	378.2	0.0	0.0
123.00	Appertunance(s)	211.3	110.1	2,830.1	0.0	0.0	1,908.0	61.2 25.4	110.0 45.5	230.4 3,066.8	277.2	0.0	0.0
125.89	Top - Section 3	168.0	356.2	-,	0.0	0.0	1,000.0	83.9	129.9	251.9	2,063.6	0.0	0.0
126.00		171.3	5.3					3.3	5.2	174.6	486.2	0.0	0.0
129.00		326.8	137.1					87.8	5.2 135.1	_	10.5	0.0	0.0
132.00		215.1	133.6					88.4	135.1	414.6 303.5	272.2	0.0	0.0
133.00	Appertunance(s)	158.6	43.7	2,572.8	0.0	0.0	1,868.8	29.6	45.0		268.7	0.0	0.0
135.00		260.8	86.3	_,	010	0.0	1,000.0	29.0 59.4		2,761.0	1,957.6	0.0	0.0
138.00		307.4	126.5					59.4 89.6	76.8 115.2	320.2 397.0	163.1	0.0	0.0
141.00		251.5	123.0					90.1	115.2	397.0 341.7	241.7 238.2	0.0	0.0
143.00	Appertunance(s)	140.5	80.1	3,996.3	0.0	0.0	2,351.8	60.4	76.8			0.0	0.0
144.00		122.0	39.5	-,	0.0	0.0	2,001.0	0.0	26.2	4,197.1	2,508.7	0.0	0.0
146.00	Top - Section 4	116.5	77.7							122.0	65.6	0.0	0.0
147.00		106.7	74.6					0.0	52.3	116.5	130.1	0.0	0.0
149.00	Appertunance(s)	89.1	149.1	3,990.9	0.0	282.6	2,649.7	21.7	26.2	128.4	100.7	0.0	0.0
150.00		71.6	74.6	0,000.0	0.0	202.0	2,049.7	43.5	52.3	4,123.4	2,851.1	0.0	0.0
153.00		89.8	223.7					0.0	4.4	71.6	79.0	0.0	0.0
155.00	Appertunance(s)	36.0	149.1	450.1	0.0	61.0	<i></i>	0.0	13.3	89.8	237.0	0.0	0.0
		30.0	173.1	400.1	0.0	61.9	557.7	0.0	8.9	486.1	715.7	0.0	0.0
							Tot	als:	33,045.3	37,874.7	0.00	0.00	

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

97 mph with No Ice (Reduced DL)

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:15 PM

Wind Importance Factor 1.00

28 Iterations

Load Case: 0.9D + 1.6W

Gust Response Factor :1.10 Dead Load Factor :0.90

Wind Load Factor : 1.60

Calculated Forces

Seg Elev (ft)		Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
Elev	 FY (-) (kips) -37.83 -36.97 -36.12 -35.27 -34.43 -33.62 -32.92 -32.63 -31.82 -31.02 -30.23 -29.45 -28.68 -27.91 	FX (-)	MY (ft-kips) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	MZ	MX (ft-kips) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Moment	Pn (kips) 4,665.07 4,631.78 4,597.82 4,563.18 4,527.86 4,491.86 4,467.49 4,455.19 4,417.85 4,379.82 4,341.13 4,301.75 4,261.70 4,220.97 4,179.57 4,164.16 4,137.49 4,094.73 3,345.43 3,324.15 3,293.20 3,282.73 3,261.57 3,229.26 3,196.28 3,162.62 3,128.28 3,093.27 3,057.58 3,021.22 2,984.18 2,951.54 2,920.94 2,908.96	Vn (kips) 2,332.54 2,315.89 2,298.91 2,281.59 2,263.93 2,245.93 2,245.93 2,227.60 2,208.92 2,189.91 2,170.56 2,150.88 2,130.85 2,110.49 2,089.78 2,099.78 2,099.78 2,099.78 2,099.78 2,099.78 2,099.78 2,099.78 2,099.78 2,099.78 2,099.78 2,099.78 2,099.78 2,099.78 2,099.78 2,099.78 2,099.77 2,	Tn	Mn (ft-kips) 4,709.48 4,615.74 4,622.21 4,428.89 4,335.83 4,243.05 4,181.36 4,150.57 4,058.43 3,966.64 3,875.23 3,784.23 3,603.68 3,603.58 3,784.23 3,603.58 3,603.58 3,772.86 2,724.99 2,656.86 2,634.21 5,589.00 5,521.44 4,454.19 3,87.28 3,20.75 2,54.62 1,254.62 1,254.62 1,254.62 1,254.62 1,254.62 1,254.62 1,254.62 1,254.62 1,254.62 1,254.62 1,254.62 1,254.62 1,254.62 1,254.62 1,254.62 1,254.62 1,254.62 1,254.61 9,952.06 931.47	Deflect	(deg) 0.00 -0.14 -0.27 -0.41 -0.55 -0.69 -0.79 -0.84 -0.98 -1.12 -1.27 -1.42 -1.57 -1.72 -1.72 -1.87 -1.72 -1.87 -1.93 -2.03 -2.18 -2.23 -2.34 -2.51 -2.57 -2.68 -3.03 -3.21 -3.38 -3.56 -3.73 -3.91 -4.08 -4.24 -4.26 -4.38 -4.44	0.758 0.752 0.745 0.739 0.725 0.721 0.725 0.721 0.705 0.698 0.691 0.683 0.665 0.668 0.665 0.665 0.665 0.659 0.651 0.774 0.766 0.753 0.749 0.749 0.741 0.728 0.715 0.712 0.672 0.672 0.642 0.657 0.642 0.608 0.659 0.610 0.608 0.596 0.590
87.00 90.00 93.00 96.00 99.00 102.00 105.00 107.00 108.00 111.00 114.00 114.00 120.00 122.12 123.00	-15.49 -14.99 -14.50 -14.02 -13.55 -13.09 -12.64 -12.34 -12.19 -11.77 -11.36 -10.96 -10.58 -10.31	-23.46 -23.15 -22.84 -22.53 -22.22 -21.91 -21.64 -20.30 -20.11 -19.81 -19.51 -19.21 -18.92 -18.68 -15.40		-1,056.67 -986.30 -916.87 -848.36 -780.77 -714.11 -648.38 -605.09 -584.79 -524.45 -465.02 -406.49 -348.87 -308.71 -292.32		1,056.67 986.30 916.87 848.36 780.77 714.11 648.38 605.09 584.79 524.45 465.02 406.49 348.87 308.71 292.32	2,274.94 ⁻ 2,248.22 ⁻ 2,192.74 ⁻ 2,163.98 ⁻ 2,134.56 ⁻ 2,084.00 ⁻ 2,073.67 ⁻ 2,042.21 ⁻ 2,006.48 ⁻ 1,959.62 1,912.75	1,137.47 : 1,124.11 : 1,096.37 : 1,081.99 : 1,067.28 : 1,052.22 : 1,052.22 : 1,047.00 : 1,052.22 : 2,052.22 : 2,052.22 : 2,052.22 : 2,052.23 : 2,052.24 : 2,052.24 : 2,979.81 : 2,956.38 : 2,939.80 : 1,939.80 : 2,939.80 :	3,069.59 1, 2,974.43 1, 2,879.80 1, 2,785.75 1, 2,692.34 1, 2,599.61 1, 2,507.63 1, 2,446.74 1, 2,326.10 1, 2,232.66 1, 2,129.00 1, 2,027.81 1, .957.71	515.95 468.96 422.23 375.78 329.64 283.85 238.42 208.36 193.39 148.77 102.63 051.43 001.46 966.84	39.82 42.78 45.86 49.06 52.37 55.80 59.34 61.76 62.98 66.73 70.59 74.53 78.56 81.47	-4.61 -4.81 -5.00 -5.19 -5.37 -5.55 -5.72 -5.84 -5.90 -6.06 -6.21 -6.36 -6.50 -6.59	0.718 0.704 0.679 0.652 0.523 0.594 0.563 0.507 0.496 0.463 0.428 0.393 0.354 0.325 0.312

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:15 PM

1	_	_						_				_	
Load (Case: 0	.9D + 1.6\	N		97	mph with N	o Ice (Reduce	28 Iterations					
Gust Re	esponse	Factor :1	.10							Wind In	portance	e Factor	:1.00
Dea	d Load	Factor :0	.90										
Wind Load Factor :1.60													
125.89	-8.12	-15.10	0.00	-247.88	0.00	247.88	929.68	464.84	961.73	474.96	86.70	-6.73	0.532
126.00	-8.11	-14.94	0.00	-246.15	0.00	246.15	929.29	464.65	960.40	474.31	86.87	-6.73	0.529
129.00	-7.85	-14.52	0.00	-201.32	0.00	201.32	918.88	459.44	925.49	457.06	91.14	-6.89	0.450
132.00	-7.60	-14.20	0.00	-157.77	0.00	157.77	907.79	453.90	890.46	439.76	95.51	-7.03	0.368
133.00	-5.99	-11.22	0.00	-143.58	0.00	143.58	903.95	451.97	878.77	433.99	96.98	-7.07	0.338
135.00	-5.85	-10.89	0.00	-121.14	0.00	121.14	896.03	448.02	855.37	422.43	99.95	-7.15	0.294
138.00	-5.64	-10.48	0.00	-88.46	0.00	88.46	883.59	441.80	820.26	405.10	104.46	-7.24	0.225
141.00	-5.44	-10.11	0.00	-57.03	0.00	57.03	870.48	435.24	785.20	387.78	109.03	-7.31	0.154
143.00	-3.49	-5.63	0.00	-36.81	0.00	36.81	861.36	430.68	761.88	376.27	112.09	-7.34	0.102
144.00	-3.44	-5.50	0.00	-31.18	0.00	31.18	856.69	428.34	750.24	370.52	113.62	-7.36	0.088
146.00	-3.32	-5.37	0.00	-20.18	0.00	20.18	847.12	423.56	727.02	359.05	116.70	-7.38	0.060
146.00	-3.32	-5.37	0.00	-20.18	0.00	20.18	920.33	460.16	575.46	378.52	116.70	-7.38	0.057
147.00	-3.24	-5.23	0.00	-14.81	0.00	14.81	920.33	460.16	575.46	378.52	118.24	-7.38	0.043
149.00	-0.94	-0.77	0.00	-4.07	0.00	4.07	920.33	460.16	575.46	378.52	121.33	-7.39	0.012
150.00	-0.87	-0.69	0.00	-3.29	0.00	3.29	920.33	460.16	575.46	378.52	122.87	-7.39	0.010
153.00	-0.65	-0.57	0.00	-1.21	0.00	1.21	920.33	460.16	575.46	378.52	127.51	-7.39	0.004
155.00	0.00	-0.49	0.00	-0.06	0.00	0.06	920.33	460.16	575.46	378.52	130.59	-7.40	0.000

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:16 PM

Load Case:1.2D + 1.0Di + 1.0Wi50 mph with 1.00 in Radial Ice28 IterationsGust Response Factor :1.10Ice Dead Load Factor 1.00Wind Importance Factor 1.00Dead Load Factor :1.20Wind Load Factor :1.00Ice Importance Factor :1.00

Applied Segment Forces Summary

		Shaft	Forces		Discret	e Forces		Linear F	orces	Sum of Forces				
Seg			Dead		Torsion	Moment	Dead		Dead		Dead		Moment	
Elev	1	Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ	
(ft)	Description	(lb)	(Ib)	(Ib)	(lb-ft)	(lb-ft)	(Ib)	(lb)	(lb)	(lb)	(lb)	(lb-ft)	(lb)	
0.00		38.2	0.0					0.0	0.0	38.2	0.0	0.0	0.0	
3.00		76.1	1,139.9					0.0	355.9	76.1	1,495.7	0.0		
6.00		75.6	1,159.6					0.0	381.2	75.6	1,540.9	0.0	0.0	
9.00		74.9	1,161.9					0.0	394.6	74.9	1,556.5	0.0	0.0	
12.00		74.1	1,158.4					0.0	404.1	74.1	1,562.5	0.0	0.0	
15.00		61.2	1,152.0					0.0	411.5	61.2	1,563.5	0.0	0.0	
17.00	Appertunance(s)	36.4	764.0	112.5	0.0) 0.0	472.4	0.0	277.8	148.9	1,514.2	0.0	0.0	
18.00		48.1	380.8					0.0	135.1	48.1	515.8	0.0	0.0	
21.00		71.6	1,134.3					0.0	408.4	71.6	1,542.7	0.0	0.0	
24.00		70.8	1,123.9					0.0	412.6	70.8	1,536.5	0.0	0.0	
27.00		69.9	1,112.8					0.0	416.4	69.9	1,529.2	0.0	0.0	
30.00 33.00		69.6	1,101.1					0.0	419.8	69.6	1,521.0	0.0	0.0	
36.00		70.1	1,089.0					0.0	423.0	70.1	1,512.0	0.0	0.0	
		71.0	1,076.5					0.0	425.9	71.0	1,502.4	0.0	0.0	
39.00 40.10	Bot - Section 2	48.9 36.4	1,063.6 388.8					0.0	428.6	48.9	1,492.2	0.0	0.0	
40.10	Dot - Occion 2	50.4 60.0	1,056.7					0.0	158.4	36.4	547.2	0.0	0.0	
42.00		47.9	1,652.7					0.0 0.0	272.7	60.0	1,329.4	0.0	0.0	
45.90	Top - Section 1	37.1	491.0						433.5 130.3	47.9	2,086.2	0.0	0.0	
48.00	100 00000011	63.2	660.2					0.0		37.1	621.3	0.0	0.0	
51.00		49.7	931.3					0.0	305.5	63.2	965.7	0.0	0.0	
52.00	Appertunance(s)	37.3	308.3	26.5	0.0	0.0	168.3	0.0 0.0	437.8 146.4	49.7 63.9	1,369.1 623.0	0.0 0.0	0.0 0.0	
54.00	ripportantinoo(o)	62.3	611.8	20.0	0.0	0.0	100.5	0.0	280.2	62.3	892.0	0.0	0.0	
57.00		74.9	906.4					0.0	421.8	74.9	1,328.1	0.0	0.0	
60.00		74.9	893.7					0.0	423.4	74.9	1,317.1	0.0	0.0	
63.00	Appertunance(s)	74.8	880.8	55.6	0.0	0.0	433.0	0.0	425.0	130.4	1,738.8	0.0	0.0	
66.00		74.7	867.9	0010	0.0	0.0	400.0	0.0	402.2	74.7	1,270.1	0.0	0.0	
69.00		74.5	854.8					0.0	403.5	74.5	1,258.3	0.0	0.0	
72.00		74.3	841.6					0.0	404.7	74.3	1,246.3	0.0	0.0	
75.00		74.0	828.3					0.0	405.9	74.0	1,234.2	0.0	0.0	
78.00		68.8	815.0					0.0	407.0	68.8	1,222.0	0.0	0.0	
80.60	Bot - Section 3	36.8	695.5					0.0	353.5	36.8	1,049.0	0.0	0.0	
81.00		29.8	163.5					0.0	54.6	29.8	218.1	0.0	0.0	
83.00	Appertunance(s)	37.1	808.7	36.1	0.0	0.0	220.5	0.0	272.7	73.2	1,301.8	0.0	0.0	
84.00		29.7	401.1					0.0	129.4	29.7	530.4	0.0	0.0	
85.41	Top - Section 2	36.9	559.8					0.0	182.1	36.9	741.9	0.0	0.0	
87.00		56.3	375.5					0.0	206.6	56.3	582.1	0.0	0.0	
90.00		73.1	696.3					0.0	389.5	73.1	1,085.8	0.0	0.0	
93.00		72.5	684.1					0.0	390.4	72.5	1,074.5	0.0	0.0	
96.00		71.9	671.9					0.0	391.2	71.9	1,063.1	0.0	0.0	
99.00		71.3	659.6					0.0	392.0	71.3	1,051.6	0.0	0.0	
102.00	Appertunance(s)	70.6	647.2			~ ~	45.0	0.0	392.8	70.6	1,040.0	0.0	0.0	
105.00 107.00	Appertunance(s)	58.4	634.8	3.2	0.0	0.0	45.0	0.0	393.6	61.5	1,073.4	0.0	0.0	
107.00	when mingine (2)	34.8 46.0	416.9	230.9	0.0	0.0	1,253.6	0.0	262.8	265.7	1,933.2	0.0	0.0	
111.00		46.U 68.4	206.7 609.8					0.0	103.3	46.0	310.0	0.0	0.0	
114.00		67.6	609.8 597.2					0.0	310.3	68.4	920.1	0.0	0.0	
117.00		66.8	597.2 584.6					0.0	310.8	67.6	908.0	0.0	0.0	
117.00		00.0	004.0					0.0	311.2	66.8	895.8	0.0	0.0	

Site Name: Tolland CT, CT

Customer: A

r: AT&T Mobility

Code: ANSI/TIA-222-G

Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:20 PM

Loa	d Case: 1.2D + 1.0Di +	- 1.0Wi	50 mph with 1.00 in Radial Ice									28 lte	rations		
1 C	Response Factor :1.10 Dead Load Factor :1.20 Wind Load Factor :1.00		Ice Dead Load Factor 1.00							Wind Importance Factor 1.00 Ice Importance Factor :1.00					
120.00 122.12 123.00 125.89 126.00	Bot - Section 4 Appertunance(s) Top - Section 3	56.4 32.9 41.1 32.7 33.5	571.9 397.5 219.5 709.4 16.4	717.6	0.0	0.0	5,822.2	0.0 34.9 14.5 47.9 1.9	311.7 260.0 107.6 328.0 13.0	56.4 67.8 773.2 80.6 35.4	657.5 6,149.3	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0		
129.00 132.00 133.00 135.00 138.00 141.00	Appertunance(s)	64.0 42.3 31.3 51.6 61.1	421.3 411.6 135.7 267.4 392.1	671.3	0.0	0.0	5,108.9	50.3 50.7 17.0 34.1 51.5	341.6 342.1 114.1 210.8 316.6	114.3 93.0 719.6 85.7 112.6	762.9 753.7 5,358.7 478.2 708.6	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0		
143.00 144.00 146.00	Appertunance(s) Top - Section 4	50.2 29.8 29.4	382.2 250.0 123.7	1,165.9	0.0	0.0	7,942.3	51.9 34.8 0.0	317.1 211.7 60.9	102.1 1,230.5 29.4	699.3 8,404.0 184.6	0.0 0.0 0.0	0.0 0.0 0.0		
147.00 149.00 150.00	Appertunance(s)	27.2 22.9 22.9 30.7	243.4 151.4 302.8 151.5	991.1	0.0	94.9	8,752.1	0.0 12.7 25.5 0.0	121.9 61.0 122.0 5.9	27.2 35.6 1,039.6 30.7	365.3 212.3 9,177.0 157.4	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		
153.00 155.00	Appertunance(s)	38.5 15.5	454.7 303.3	100.5	0.0	13.9	1,567.9	0.0 0.0 Tot	17.7 11.8 als:	38.5 116.0 8,122.43	472.4 1,883.0	0.0 0.0 0.00	0.0 0.0 0.00		

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:20 PM

Load Case: 1.2D + 1.0Di + 1.0Wi

50 mph with 1.00 in Radial Ice

Ice Dead Load Factor 1.00

28 Iterations Wind Importance Factor 1.00

Ice Importance Factor :1.00

Gust Response Factor :1.10 Dead Load Factor :1.20 Wind Load Factor :1.00

Calculated Forces

Seg Elev	Pu FY (-)	Vu FX (-)	Tu MY	Mu MZ	Mu MX	Resultant Moment	phi Pn	phi Vn	phi Tn	phi Mn	Total Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
0.00	-93.58 -92.08 -90.54	-8.12 -8.10	0.00	-995.61 -971.27	0.00	995.61 971.27	4,631.78	2,315.89	9,536.02 9,346.21	4,615.74	0.00 0.01	0.00 -0.04	0.231 0.230
6.00 9.00	-90.54	-8.09 -8.07	0.00 0.00	-946.97 -922.71	0.00 0.00	946.97 922.71			9,156.81 8,967.87		0.05 0.11	-0.08 -0.12	0.229 0.228
12.00 15.00	-87.41 -85.84	-8.05	0.00	-898.50	0.00	898.50			8,779.43		0.20	-0.16	0.227
17.00	-85.84	-8.04 -7.91	0.00 0.00	-874.35 -858.27	0.00 0.00	874.35 858.27			8,591.56 8,466.65		0.31 0.40	-0.20 -0.22	0.225 0.224
18.00	-83.80	-7.90	0.00	-850.36	0.00	850.36			8,404.31		0.44	-0.24	0.224
21.00 24.00	-82.26 -80.71	-7.89	0.00	-826.65	0.00	826.65			8,217.72		0.61	-0.28	0.222
24.00	-79.18	-7.87 -7.85	0.00 0.00	-802.99 -779.39	0.00 0.00	802.99 779.39			8,031.86 7,846.78		0.80 1.01	-0.32 -0.36	0.221 0.219
30.00	-77.65	-7.83	0.00	-755.86	0.00	755.86	4,301.75	2,150.88	7,662.53	3,784.23	1.26	-0.41	0.218
33.00 36.00	-76.13 -74.63	-7.80 -7.78	0.00 0.00	-732.38 -708.97	0.00	732.38 708.97			7,479.16		1.53	-0.45	0.216
39.00	-73.13	-7.75	0.00	-685.64	0.00 0.00	685.64			7,296.73	•	1.82 2.15	-0.50 -0.54	0.214 0.213
40.10	-72.58	-7.74	0.00	-677.08	0.00	677.08	4,164.16	2,082.08	7,048.76	3,481.12	2.28	-0.56	0.212
42.00 45.00	-71.25 -69.16	-7.71 -7.68	0.00 0.00	-662.41 -639.27	0.00 0.00	662.41 639.27			6,934.89 6,755.59		2.50 2.89	-0.59 -0.63	0.211
45.90	-68.53	-7.66	0.00	-632.37	0.00	632.37			5,614.65		3.01	-0.65	0.209 0.249
48.00	-67.56	-7.64	0.00	-616.26	0.00	616.26	3,324.15	1,662.07	5,517.72	2,724.99	3.30	-0.68	0.246
51.00 52.00	-66.19 -65.57	-7.61 -7.57	0.00 0.00	-593.34 -585.73	0.00 0.00	593.34 585.73			5,379.77 2 5,333.90 2		3.74 3.90	-0.73	0.243
54.00	-64.67	-7.55	0.00	-570.59	0.00	570.59			5,242.36		4.22	-0.75 -0.78	0.242 0.240
57.00	-63.33	-7.51	0.00	-547.95	0.00	547.95	3,229.26	1,614.63	5,105.54	2,521.44	4.73	-0.83	0.237
60.00 63.00	-62.01 -60.27	-7.47 -7.37	0.00 0.00	-525.43 -503.01	0.00 0.00	525.43 503.01			4,969.37	•	5.27	-0.89	0.234
66.00	-58.99	-7.33	0.00	-480.90	0.00	480.90			4,833.91 2 4,699.19 2		5.84 6.45	-0.94 -0.99	0.230 0.226
69.00	-57.73	-7.29	0.00	-458.91	0.00	458.91	3,093.27	1,546.64	4,565.29 2	2,254.62	7.09	-1.05	0.222
72.00 75.00	-56.48 -55.24	-7.24 -7.20	0.00 0.00	-437.05 -415.33	0.00 0.00	437.05 415.33			4,432.24 2		7.76	-1.10	0.218
78.00	-54.01	-7.15	0.00	-393.74	0.00	393.74	2,984.18	1,492.09	4,300.11 2 4,168.95 2	2,058.89	8.47 9.22	-1.15 -1.21	0.214 0.209
80.60	-52.96	-7.12	0.00	-375.16	0.00	375.16	2,951.54	1,475.77	4,056.14 2	2,003.18	9.89	-1.26	0.205
81.00 83.00	-52.74 -51.44	-7.10 -7.02	0.00 0.00	-372.31 -358.10	0.00 0.00	372.31 358.10			4,038.81 1 3,952.64 1		9.99 10.53	-1.26 -1.30	0.205 0.201
84.00	-50.91	-7.00	0.00	-351.08	0.00	351.08			3,910.94 1		10.33	-1.32	0.199
85.41 87.00	-50.16 -49.57	-6.97	0.00	-341.24	0.00	341.24			3,120.34 1		11.20	-1.34	0.243
87.00 90.00	-49.57 -48.48	-6.94 -6.89	0.00 0.00	-330.13 -309.31	0.00 0.00	330.13 309.31			3,069.59 1 2,974.43 1		11.65 12.53	-1.37 -1.43	0.240 0.232
93.00	-47.40	-6.84	0.00	-288.63	0.00	288.63	2,220.81	1,110.41	2,879.80 1	,422.23	13.45	-1.49	0.224
96.00 99.00	-46.34 -45.28	-6.79 -6.73	0.00	-268.11	0.00	268.11			2,785.75 1		14.41	-1.55	0.216
102.00	-45.28	-6.68	0.00 0.00	-247.75 -227.55	0.00 0.00	247.75 227.55			2,692.34 1 2,599.61 1	•	15.41 16.44	-1.61 -1.67	0.207 0.198
105.00	-43.16	-6.62	0.00	-207.52	0.00	207.52	2,104.45	1,052.22	2,507.63 1	,238.42	17.50	-1.72	0.188
107.00 108.00	-41.23 -40.92	-6.31 -6.28	0.00 0.00	-194.28 -187.97	0.00 0.00	194.28 187.97			2,446.74 1 2,416.44 1		18.24 18.61	-1.76 -1.78	0.181 0.177
111.00	-40.00	-6.22	0.00	-169.12	0.00	169.12			2,326.10 1		19.74	-1.83	0.167
114.00	-39.09	-6.16	0.00	-150.45	0.00	150.45	2,006.48	1,003.24	2,232.66 1	,102.63	20.91	-1.88	0.156
117.00 120.00	-38.19 -37.30	-6.09 -6.03	0.00 0.00	-131.98 -113.70	0.00 0.00	131.98 113.70	1,959.62 1,912.75		2,129.00 1 2,027.81 1		22.11 23.33	-1.93 -1.97	0.145 0.133
122.12	-36.65	-5.95	0.00	-100.90	0.00	100.90	1,879.60	939.80		966.84	24.22	-2.00	0.133
123.00	-30.53	-4.98	0.00	-95.68	0.00	95.68	1,865.89	932.94	1,929.08	952.70	24.59	-2.01	0.117

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:21 PM

Load Ca	ase: 1.	2D + 1.0	Di + 1.0Wi		50 (mph with 1.00	in Radial I	Ce				28 Iter	ations
	Load	Factor :1 Factor :1 Factor :1	.20	i 50 mph with 1.00 in Radial Ice Ice Dead Load Factor :1.00						Wind Im Ice Im			
126.00 - 129.00 - 132.00 - 133.00 - 135.00 - 138.00 - 141.00 - 144.00 - 146.00 - 146.00 - 149.00 - 145.00 - 145.00 - 145.00 - 145.00 - 145.00 - 145.00 - 145.00 - 145.00 - 145.00 - 145.00 - 145.00 - 150.00 - 153.00 -	29.49 29.46 28.70 27.95 22.62 22.14 21.44 20.74 12.39 12.21 11.84 11.84 11.84 11.84 11.84 11.63 -2.50 -2.35 -1.88 0.00	-4.87 -4.85 -4.73 -4.62 -3.71 -3.62 -3.49 -3.36 -1.81 -1.77 -1.73 -1.73 -1.73 -1.69 -0.28 -0.25 -0.19 -0.12	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-81.32 -80.76 -66.22 -52.04 -47.41 -40.00 -29.15 -18.69 -11.96 -10.16 -6.62 -6.62 -4.89 -1.42 -1.14 -0.39 -0.01	$\begin{array}{c} 0.00\\$	81.32 80.76 66.22 52.04 47.41 40.00 29.15 18.69 11.96 10.16 6.62 6.62 4.89 1.42 1.14 0.39 0.01	929.68 929.29 918.88 907.79 903.95 896.03 883.59 870.48 861.36 856.69 847.12 920.33 920.33 920.33 920.33 920.33	$\begin{array}{r} 464.84\\ 464.65\\ 459.44\\ 453.90\\ 451.97\\ 448.02\\ 441.80\\ 435.24\\ 430.68\\ 428.34\\ 423.56\\ 460.16\\ 460.16\\ 460.16\\ 460.16\\ 460.16\\ 460.16\end{array}$	961.73 960.40 925.49 890.46 878.77 855.37 820.26 761.88 750.24 727.02 575.46 575.46 575.46 575.46 575.46	474.96 474.31 457.06 439.76 433.99 422.43 405.10 387.78 376.27 370.52 359.05 378.52 378.52 378.52 378.52 378.52 378.52 378.52 378.52	25.81 25.86 27.17 28.51 28.96 29.87 31.25 32.66 33.60 34.07 35.02 35.49 36.44 36.91 38.34 39.29	-2.05 -2.05 -2.10 -2.15 -2.16 -2.19 -2.22 -2.24 -2.25 -2.26 -2.26 -2.26 -2.27 -2.27 -2.27 -2.27 -2.27 -2.27	0.203 0.202 0.176 0.149 0.134 0.096 0.072 0.046 0.042 0.032 0.030 0.026 0.006 0.003 0.006 0.003 0.000

Site Number: 302495 Site Name: Tolland CT, CT Customer: AT&T Mobility	Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01	© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:21 PM
Load Case: 1.0D + 1.0W	Serviceability 60 mph	27 Iterations
Gust Response Factor :1.10 Dead Load Factor :1.00 Wind Load Factor :1.00		Wind Importance Factor 1.00

Applied Segment Forces Summary

		Shoft	Farras		-								
Se	a	Shart	Forces	-		e Forces		Linear	Forces		Sum o	f Forces	
Ele			Dead		Torsion	Moment	Dead		Dead		Dead	Torsion	Moment
		Wind FX		Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft) Description	(lb)	(lb)	(lb)	(lb-ft)	(lb-ft)	(lb)	(lb)	(lb)	(lb)	(lb)	(lb-ft)	(lb)
0.0		43.3	0.0					0.0	0.0	12.0			
3.0		86.1	708.2					0.0	165.4	43.3	0.0	0.0	0.0
6.0		85.0	699.1					0.0	165.4	86.1 85.0	873.6 864.5	0.0	0.0
9.0		83.9	690.0					0.0	165.4	83.9	855.4	0.0 0.0	0.0
12.0		82.8	681.0					0.0	165.4	82.8	846.3	0.0	0.0
15.0 17.0		68.3	671.9					0.0	165.4	68.3	837.2	0.0	0.0 0.0
18.00		40.6	442.9	141.0	0.0	0.0	188.0	0.0	110.2	181.6	741.1	0.0	0.0
21.00		53.5	219.9					0.0	55.1	53.5	275.0	0.0	0.0
24.00		79.5	653.7					0.0	165.2	79.5	818.9	0.0	0.0
27.00		78.4 77.3	644.6					0.0	165.2	78.4	809.8	0.0	0.0
30.00		76.8	635.5					0.0	165.2	77.3	800.8	0.0	0.0
33.00		70.0	626.4 617.3					0.0	165.2	76.8	791.7	0.0	0.0
36.00		78.0	608.3					0.0	165.2	77.2	782.6	0.0	0.0
39.00		53.7	599.2					0.0	165.2	78.0	773.5	0.0	0.0
40.10		39.9	218.2					0.0	165.2	53.7	764.4	0.0	0.0
42.00)	65.8	696.9					0.0	60.8	39.9	279.1	0.0	0.0
45.00		52.5	1,089.0					0.0	104.4	65.8	801.3	0.0	0.0
45.90		40.5	322.9					0.0	165.2	52.5	1,254.3	0.0	0.0
48.00	1	69.0	349.6					0.0	49.5	40.5	372.3	0.0	0.0
51.00		54.2	492.4					0.0	115.8	69.0	465.4	0.0	0.0
52.00	Appertunance(s)	40.7	162.4	20.1	0.0	0.0	80.0	0.0 0.0	165.2 55.1	54.2	657.7	0.0	0.0
54.00		67.8	322.2			0.0	00.0	0.0	109.9	60.7 67.8	297.5 432.1	0.0	0.0
57.00		81.3	476.9					0.0	164.8	81.3	432.1 641.7	0.0	0.0
60.00	Ammad ()	81.1	469.1					0.0	164.8	81.1	633.9	0.0 0.0	0.0
63.00	Appertunance(s)	80.9	461.3	50.5	0.0	0.0	170.0	0.0	164.8	131.4	796.1	0.0	0.0
66.00 69.00		80.6	453.5				-	0.0	163.9	80.6	617.4	0.0	0.0 0.0
72.00		80.2	445.7					0.0	163.9	80.2	609.6	0.0	0.0
75.00		79.8	437.9					0.0	163.9	79.8	601.8	0.0	0.0
78.00		79.3 73.5	430.1 422.3					0.0	163.9	79.3	594.0	0.0	0.0
80.60	Bot - Section 3	39.3	422.3 359.6					0.0	163.9	73.5	586.2	0.0	0.0
81.00		31.8	101.7					0.0	142.0	39.3	501.6	0.0	0.0
83.00	Appertunance(s)	39.6	503.5	31.6	0.0			0.0	21.9	31.8	123.6	0.0	0.0
84.00		31.6	249.3	31.0	0.0	0.0	85.0	0.0	109.3	71.2	697.7	0.0	0.0
85.41	Top - Section 2	39.3	348.0					0.0	54.5	31.6	303.8	0.0	0.0
87.00		59.8	179.6					0.0 0.0	76.6	39.3	424.6	0.0	0.0
90.00		77.5	333.1					0.0	86.8	59.8	266.4	0.0	0.0
93.00		76.7	326.6					0.0	163.4 163.4	77.5	496.5	0.0	0.0
96.00		75.9	320.1					0.0	163.4	76.7 75.9	490.0	0.0	0.0
99.00		75.0	313.6					0.0	163.4	75.0	483.5	0.0	0.0
102.00		74.0	307.1					0.0	163.4	75.0	477.0 470.5	0.0	0.0
105.00	Appertunance(s)	61.0	300.6	1.3	0.0	0.0	9.9	0.0	163.4	62.3	470.5 474.0	0.0 0.0	0.0
107.00 108.00	Appertunance(s)	36.3	196.8	280.0	0.0	0.0	150.9	0.0	109.0	316.3	474.0		0.0
111.00		47.8	97.3				-	0.0	50.7	47.8	148.0	0.0 0.0	0.0 0.0
114.00		71.0	287.6					0.0	152.1	71.0	439.7	0.0	0.0
117.00		70.0	281.1					0.0	152.1	70.0	433.2	0.0	0.0
117.00		68.9	274.6					0.0	152.1	68.9	426.7	0.0	0.0
										-		0.0	0.0

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:26 PM

Loa	d Case: 1.0D + 1.0V	N		Se	rviceabi	lity 60 i	mph					27 Iter	ations
	t Response Factor :1 Dead Load Factor :1. Wind Load Factor :1.	.00								Wind	Importan	ice Factor	
120.00 122.12 123.00 125.89 126.00 129.00	Bot - Section 4	62.7 40.5 50.5 40.2 41.0	268.1 185.8 122.3 395.8 5.9	676.8	0.0	0.0	2,120.0	0.0 14.6 6.1 20.1 0.8	152.1 122.2 50.5 144.4 5.7	62.7 55.1 733.4 60.2 41.8	420.2 308.0 2,292.8 540.2 11.6	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
132.00 133.00 135.00 138.00 141.00	Appertunance(s)	78.1 51.4 37.9 62.4 73.5	152.3 148.4 48.6 95.9 140.6	615.2	0.0	0.0	2,076.5	21.0 21.1 7.1 14.2 21.4	150.1 150.1 50.0 85.3 128.0	99.1 72.6 660.3 76.6 94.9	302.4 298.5 2,175.1 181.2 268.6	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
143.00 144.00 146.00	Appertunance(s) Top - Section 4	60.1 33.6 29.2 27.9	136.7 89.0 43.8 86.4	955.6	0.0	0.0	2,613.1	21.6 14.4 0.0	128.0 85.3 29.1	81.7 1,003.7 29.2	264.7 2,787.4 72.9	0.0 0.0 0.0	0.0 0.0 0.0
147.00 149.00 150.00 153.00	Appertunance(s)	25.5 21.3 17.1	82.8 165.7 82.8	954.3	0.0	67.6	2,944.1	0.0 5.2 10.4 0.0	58.1 29.1 58.1 4.9	27.9 30.7 986.0 17.1	144.5 111.9 3,167.9 87.8	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
155.00	Appertunance(s)	21.5 8.6	248.5 165.7	107.6	0.0	14.8	619.7	0.0 0.0	14.8 9.8	21.5 116.2	263.3 795.2	0.0 0.0	0.0 0.0

Totals:

7,902.23 42,083.0

0.00

0.00

Site Name: Tolland CT, CT

AT&T Mobility Customer:

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

Serviceability 60 mph

 $\ensuremath{\textcircled{\sc 0}}$ 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:26 PM

Wind Importance Factor 1.00

27 Iterations

Load Case: 1.0D + 1.0W

Gust Response Factor :1.10 Dead Load Factor :1.00 Wind Load Factor : 1.00

Calculated Forces

0.00 - 42.08 - 7.87 0.00 - 850.51 0.00 826.90 0.00 826.90 0.00 826.90 46817.02 332.44 9.38.02 4.705.48 0.00 - 0.00 0.190 0.00 0.00 0.0190 0.00 0.00 0	Seg Elev (ft)		Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.00	-41.20	-7.81	0.00	-826.90	0.00	826.90	4,631.78	2,315.89	9,346.21	4,615.74	0.01	-0.03	0.188
	9.00	-39.47	-7.68											
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18.00	-36.76						4,455.19	2,227.60	8,404.31	4,161.30			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								4,417.85	2,208.92	8,217.72	4,058.43			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						0.00	603.25	4,261.70	2,130.85	7,479.16	3,693.68			
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$		+ +												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42.00	-30.11	-6.86	0.00	-540.34	0.00	540.34							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								3,282.73	1,641.36	5,333.90 2	2,634.21	3.26	-0.62	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							401.01							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75.00	-22.10	-6.01	0.00	-326.79	0.00	326.79							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								2,984.18	1,492.09	4,168.95 2	2,058.89			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-20.18	-5.79											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												8.93		0.148
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
93.00 -18.19 -5.52 0.00 -222.45 0.00 222.45 2,220.81 1,110.41 2,879.80 1,422.23 11.08 -1.21 0.165 96.00 -17.70 -5.45 0.00 -205.88 0.00 205.88 2,192.74 1,096.37 2,785.75 1,375.78 11.85 -1.25 0.158 99.00 -17.22 -5.38 0.00 -189.53 0.00 189.53 2,163.98 1,081.99 2,692.34 1,329.64 12.66 -1.30 0.151 102.00 -16.75 -5.31 0.00 -173.39 0.00 173.39 2,134.56 1,067.28 2,599.61 1,283.85 13.49 -1.34 0.143 105.00 -16.28 -5.24 0.00 -157.47 0.00 157.47 2,104.45 1,052.22 2,507.63 1,238.42 14.34 -1.38 0.135 107.00 -15.68 -4.88 0.00 -146.98 2,001 142.06 2,073.67 1,036.83 2,416.44 1,193.39 15.23 -1.41 0.127 111.00 -15.23 -4.81	90.00	-18.68												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												11.08	-1.21	0.165
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
108.00 -15.68 -4.88 0.00 -142.06 0.00 142.06 2,073.67 1,036.83 2,416.44 1,193.39 15.23 -1.43 0.127 111.00 -15.23 -4.81 0.00 -127.43 0.00 127.43 2,042.21 1,021.11 2,326.10 1,148.77 16.14 -1.47 0.118 114.00 -14.80 -4.73 0.00 -113.02 0.00 113.02 2,006.48 1,003.24 2,232.66 1,102.63 17.07 -1.50 0.110 117.00 -14.37 -4.66 0.00 -98.82 0.00 98.82 1,959.62 979.81 2,129.00 1,051.43 18.03 -1.54 0.101 120.00 -13.95 -4.59 0.00 -84.83 0.00 84.83 1,912.75 956.38 2,027.81 1,001.46 19.01 -1.57 0.092 122.12 -13.64 -4.53 0.00 -75.08 0.00 75.08 1,879.60 939.80 1,957.71 966.84 19.71 -1.59 0.085								2,104.45	1,052.22	2,507.63 1	,238.42	14.34		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
114.00 -14.80 -4.73 0.00 -113.02 0.00 113.02 2,006.48 1,003.24 2,232.66 1,102.63 17.07 -1.50 0.110 117.00 -14.37 -4.66 0.00 -98.82 0.00 98.82 1,959.62 979.81 2,129.00 1,051.43 18.03 -1.54 0.101 120.00 -13.95 -4.59 0.00 -84.83 0.00 84.83 1,912.75 956.38 2,027.81 1,001.46 19.01 -1.57 0.092 122.12 -13.64 -4.53 0.00 -75.08 0.00 75.08 1,879.60 939.80 1,957.71 966.84 19.71 -1.59 0.085														
120.00 -13.95 -4.59 0.00 -84.83 0.00 84.83 1,912.75 956.38 2,027.81 1,001.46 19.01 -1.57 0.092 122.12 -13.64 -4.53 0.00 -75.08 0.00 75.08 1,879.60 939.80 1,957.71 966.84 19.71 -1.59 0.085						0.00	113.02	2,006.48	1,003.24	2,232.66 1	,102.63			
122.12 -13.64 -4.53 0.00 -75.08 0.00 75.08 1,879.60 939.80 1,957.71 966.84 19.71 -1.59 0.085														
											-			
	123.00	-11.37	-3.74	0.00	-71.10									

Page: 20

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:26 PM

Load Case:	1.0D + 1.0	W		Ser	viceability 6	0 mph					27 Iter	ations
Gust Respons Dead Load Wind Load	Factor :1	.00							Wind Im	portance	e Factor	:1.00
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-3.63 -3.53	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-60.30 -59.88 -48.99 -38.41 -34.96 -29.50 -21.55 -13.90 -8.98 -7.61 -4.93 -3.62 -1.00 -0.81 -0.30 -0.01	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	60.30 59.88 48.99 38.41 34.96 29.50 21.55 13.90 8.98 7.61 4.93 3.62 1.00 0.81 0.30 0.01	929.68 929.29 918.88 907.79 903.95 896.03 883.59 870.48 861.36 856.69 847.12 920.33 920.33 920.33 920.33 920.33	464.84 464.65 459.44 453.90 451.97 448.02 441.80 435.24 430.68 428.34 423.56 460.16 460.16 460.16	961.73 960.40 925.49 890.46 878.77 855.37 820.26 785.20 761.88 750.24 727.02 575.46 575.46 575.46 575.46 575.46	474.96 474.31 457.06 439.76 433.99 422.43 405.10 387.78 376.27 370.52 378.52 378.52 378.52 378.52 378.52 378.52 378.52	20.98 21.02 22.06 23.12 23.47 24.20 25.29 26.40 27.14 27.51 28.26 28.26 28.64 29.39 29.76 30.89 31.64	-1.63 -1.67 -1.70 -1.71 -1.73 -1.75 -1.77 -1.78 -1.78 -1.79 -1.79 -1.79 -1.79 -1.79 -1.79 -1.79	0.139 0.138 0.119 0.099 0.090 0.079 0.062 0.044 0.029 0.026 0.019 0.018 0.014 0.004 0.003 0.002 0.000

Site Number: 302495 Site Name: Tolland CT, CT Customer: AT&T Mobility

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:26 PM

es Method Analysis
apters 11, 12, 15)
0.17
0.06
6
1.00
1.60
2.40
1.50
0.19
0.10
0.03
0.03
0.03
2.79
1.30
2.00
42.08 k
1.64 k

Load Case (1.2 + 0.2Sds) * DL + E ELFM

Seismic Equivalent Lateral Forces Method

Segment	Height Above Base (ft)	Weight (Ib)	W _z (lb-ft)	C _{vx}	Horizontal Force (Ib)	Vertical Force
66	154.00	176				(lb)
65	151.50		4,163	0.011	18	217
64	149.50	263	6,043	0.016	26	326
63	148.00	88	1,962	0.005	8	109
62	146.50	224	4,902	0.013	21	277
61	145.00	112	2,402	0.006	10	138
60		145	3,038	0.008	13	179
59	143.50	73	1,501	0.004	6	90
58	142.00	174	3,515	0.009	15	216
57	139.50 136.50	265	5,151	0.014	22	328
56		269	5,004	0.013	22	332
55	134.00	181	3,254	0.009	14	224
55	132.50	99	1,732	0.005	7	122
53	130.50	299	5,084	0.013	22	369
52	127.50	302	4,916	0.013	21	374
52	125.94	12	184	0.000	1	14
50	124.44	540	8,366	0.022	36	668
49	122.56	173	2,596	0.007	11	214
49 48	121.06	308	4,515	0.012	20	381
	118.50	420	5,901	0.016	26	520
47	115.50	427	5,693	0.015	25	528
46	112.50	433	5,483	0.014	24	536
45	109.50	440	5,272	0.014	23	544
44	107.50	148	1,711	0.005	7	183

Site Number: 302495		C	ode: ANSI/TIA-2	22-G	© 2007 - 2017 by ATC IP LLC. A	ll rights reserve
Site Name: Tolland CT, CT		Engineering Nur	mber:OAA705198	8_C3_01	6/29/201	17 5:56:26 PN
Customer: AT&T Mobility						
43	106.00	306	3,435	0.009	15	378
42	103.50	464	4,971	0.013	21	574
41 40	100.50	471	4,752	0.013	21	582
39	97.50	477	4,535	0.012	20	590
38	94.50 91.50	484	4,318	0.011	19	598
37	88.50	490 496	4,102	0.011	18	606
36	86.20	266	3,889	0.010 0.005	17	614
35	84.70	425	1,980 3,046	0.003	9 13	330
34	83.50	304	2,118	0.006	9	525 376
33	82.00	613	4,120	0.011	18	758
32	80.80	124	807	0.002	3	153
31	79.30	502	3,154	0.008	14	621
30	76.50	586	3,431	0.009	15	725
29 28	73.50	594	3,209	0.008	14	735
28	70.50 67.50	602	2,991	0.008	13	745
26	64.50	610 617	2,777	0.007	12	754
25	61.50	626	2,568	0.007	11	764
24	58.50	634	2,368	0.006	10	775
23	55.50	642	2,169 1,976	0.006 0.005	9 9	784
22	53.00	432	1,978	0.003	5	794
21	51.50	217	577	0.002	2	535 269
20	49.50	658	1,611	0.004	7	814
19	46.95	465	1,026	0.003	4	576
18	45.45	372	769	0.002	3	461
17 16	43.50	1,254	2,373	0.006	10	1,552
15	41.05	801	1,350	0.004	6	992
13	39.55 37.50	279	437	0.001	2	345
13	34.50	764 774	1,075	0.003 0.002	5	946
12	31.50	783	921 777	0.002	4	957
11	28.50	792	643	0.002	3 3	968
10	25.50	801	521	0.002	2	980 991
9	22.50	810	410	0.001	2	1,002
8	19.50	819	311	0.001	_ 1	1,013
7	17.50	275	84	0.000	0	340
6 5	16.00	553	142	0.000	1	684
5 4	13.50 10.50	837	153	0.000	1	1,036
3	7.50	846 855	93	0.000	0	1,047
2	4.50	864	48	0.000	0	1,058
1	1.50	874	18 2	0.000 0.000	0	1,070
Ericsson KRY 112 71/	155.00	79	1,903	0.005	0 8	1,081 98
EMS RR90-17-02DP	155.00	41	973	0.003	4	50
Canister	155.00	500	12,013	0.032	52	619
Andrew ABT-DMDF-ADBH	149.00	1	24	0.000	0	1
Powerwave Allgon 702	149.00	7	147	0.000	1	8
Kathrein Scala 782-1 CCI DTMABP7819VG12A	149.00	38	853	0.002	4	48
Raycap DC6-48-60-18-	149.00 149.00	115	2,558	0.007	11	143
/' Omni	149.00	32 25	706	0.002	3	39
Ericsson RRUS 11 (Ba	149.00	150	555 3,330	0.001 0.009	2	31
Fricsson RRUS-12 800	149.00	180	3,996	0.009	14 17	186 223
owerwave Allgon 777	149.00	105	2,331	0.006	10	223 130
XMW AM-X-CD-16-65-00	149.00	291	6,460	0.000	28	360
Flat Platform w/ Han	149.00	2,000	44,402	0.117	192	2,475
Alcatel-Lucent RRH2X	143.00	132	2,699	0.007	12	163
Swedcom ALP 9212-N	143.00	160	3,276	0.009	14	198
RFS DB-T1-6Z-8AB-0Z	143.00	44	900	0.002	4	54
Andrew HBXX-6516DS-A	143.00	184	3,754	0.010	16	227
Andrew LNX-6513DS-A1 Flat Platform w/ Han	143.00	93	1,908	0.005	8	115
	143.00	2,000	40,898	0.108	177	2,475

Site Number:	302495		(Code: ANSI/TIA-2	22-G © 2007	7 - 2017 by ATC IP LLC. A	Il rights record
Site Name:	Tolland CT, CT			mber:OAA70519			17 5:56:26 PN
Customer:	AT&T Mobility		J		0_00_01	0/29/20	17 5:50:20 PN
Decibel DB9		133.00	34	601	0.002	<u>^</u>	
Flat Platform		133.00	2,000	35,378	0.093	3 153	42 2,475
Decibel DB8	44H90E-A	123.00	120	1,815	0.005	8	148
Flat Platform		123.00	2,000	30,258	0.080	131	2,475
Kathrein Sm	ENX-6515DS	107.00	151	1,728	0.005	7	187
GPS	all Dids	105.00 83.00	10	109	0.000	0	12
Stand-Off		83.00	10 75	69	0.000	0	12
GPS		63.00	20	517	0.001	2	93
Stand-Off		63.00	150	79 595	0.000 0.002	0 3	25
2" x 4" GPS		52.00	5	14	0.000	о 0	186 6
Stand-Off		52.00	75	203	0.001	1	93
4' Std. Dish		17.00	188	54	0.000	0	233
			42,083	379,518	1.000	1,641	52,071
<u>_oad Case ((</u>	0.9 - 0.2Sds) * DL	+ E ELFM	Seismic (Redu	ced DL) Equiva	lent Lateral F	orces Method	
		Height					
		Above Base	Weight	Wz		Horizontal	Vertical
Segm	ent	(ft)	(lb)	(lb-ft)	C _{vx}	Force (Ib)	Force (lb)
66		154.00	176		0.011		
65		151.50	263	4,163 6,043	0.016	18	151
64		149.50	88	1,962	0.005	26 8	227 76
63		148.00	224	4,902	0.013	21	193
62 61		146.50	112	2,402	0.006	10	97
60		145.00 143.50	145	3,038	0.008	13	125
59		142.00	73 174	1,501	0.004	6	63
58		139.50	265	3,515 5,151	0.009 0.014	15	150
57		136.50	269	5,004	0.013	22 22	228 232
56		134.00	181	3,254	0.009	14	156
55 54		132.50	99	1,732	0.005	7	85
53		130.50 127.50	299	5,084	0.013	22	258
52		125.94	302 12	4,916	0.013	21	261
51		124.44	540	184 8,366	0.000 0.022	1	10
50		122.56	173	2,596	0.002	36 11	466
49		121.06	308	4,515	0.012	20	149 266
48 47		118.50	420	5,901	0.016	26	363
46		115.50	427	5,693	0.015	25	368
45		112.50 109.50	433 440	5,483	0.014	24	374
44		107.50	148	5,272	0.014 0.005	23	379
43		106.00	306	1,711 3,435	0.009	7 15	128
42		103.50	464	4,971	0.013	21	264 400
41		100.50	471	4,752	0.013	21	400
40 39		97.50	477	4,535	0.012	20	412
38		94.50 91.50	484	4,318	0.011	19	417
37		88.50	490 496	4,102	0.011	18	423
36		86.20	266	3,889 1,980	0.010 0.005	17 9	428
35		84.70	425	3,046	0.003	9 13	230 366
34		83.50	304	2,118	0.006	9	366 262
33 32		82.00	613	4,120	0.011	18	529
32 31		80.80 79.30	124	807	0.002	3	107
30		79.30 76.50	502 586	3,154	0.008	14	433
		73.50	586 594	3,431	0.009	15	506
29				3,209	0.008	14	512
29 28		70.50	602	2 001	0.008	40	
		70.50 67.50 64.50	602 610	2,991 2,777	0.008 0.007	13 12	519 526

Site Number: 302495		C	ode: ANSI/TIA-22	2-G © 2007	- 2017 by ATC IP LLC. All	rights reserved.
Site Name: Tolland CT, CT		Engineering Nur	nber:0AA705198	_C3_01	6/29/201	7 5:56:26 PM
Customer: AT&T Mobility						
25	61.50	626	2,368	0.006	10	540
24	58.50	634	2,169	0.006	9	547
23	55.50	642	1,976	0.005	9	554
22	53.00	432	1,214	0.003	5	373
21	51.50	217	577	0.002	2	188
20 19	49.50 46.95	658 465	1,611	0.004 0.003	7 4	567 401
18	45.45	372	1,026 769	0.003	4 3	321
17	43.50	1,254	2,373	0.002	10	1,082
16	41.05	801	1,350	0.004	6	691
15	39.55	279	437	0.001	2	241
14	37.50	764	1,075	0.003	5	659
13	34.50	774	921	0.002	4	667
12	31.50	783	777	0.002	3	675
11	28.50	792	643	0.002	3	683
10 9	25.50 22.50	801 810	521 410	0.001 0.001	2 2	691 699
8	19.50	819	311	0.001	1	706
7	17.50	275	84	0.000	Ó	237
6	16.00	553	142	0.000	1	477
5	13.50	837	153	0.000	1	722
4	10.50	846	93	0.000	0	730
3	7.50	855	48	0.000	0	738
2	4.50	864	18	0.000	0	746
1 Friessen KDV 112 71/	1.50	874	2	0.000	0	754
Ericsson KRY 112 71/ EMS RR90-17-02DP	155.00 155.00	79 41	1,903	0.005 0.003	8 4	68 35
Canister	155.00	500	973 12,013	0.032	52	431
Andrew ABT-DMDF-ADBH	149.00	1	24	0.000	0	1
Powerwave Allgon 702	149.00	7	147	0.000	1	6
Kathrein Scala 782-1	149.00	38	853	0.002	4	33
CCI DTMABP7819VG12A	149.00	115	2,558	0.007	11	99
Raycap DC6-48-60-18-	149.00	32	706	0.002	3	27
7' Omni Eriaasan DDUS 11 (Da	149.00	25	555	0.001	2	22
Ericsson RRUS 11 (Ba	149.00	150 180	3,330	0.009	14 17	129 155
Ericsson RRUS-12 800 Powerwave Allgon 777	149.00 149.00	105	3,996 2,331	0.011 0.006	10	91
KMW AM-X-CD-16-65-00	149.00	291	6,460	0.017	28	251
Flat Platform w/ Han	149.00	2,000	44,402	0.117	192	1,725
Alcatel-Lucent RRH2X	143.00	132	2,699	0.007	12	114
Swedcom ALP 9212-N	143.00	160	3,276	0.009	14	138
RFS DB-T1-6Z-8AB-0Z	143.00	44	900	0.002	4	38
Andrew HBXX-6516DS-A	143.00	184	3,754	0.010	16	158
Andrew LNX-6513DS-A1 Flat Platform w/ Han	143.00 143.00	93 2,000	1,908	0.005 0.108	8 177	80 1,725
Decibel 980H65T2E-M	133.00	43	40,898 752	0.002	3	37
Decibel DB980H90A-KL	133.00	34	601	0.002	3	29
Flat Platform w/ Han	133.00	2,000	35,378	0.093	153	1,725
Decibel DB844H90E-A	123.00	120	1,815	0.005	8	104
Flat Platform w/ Han	123.00	2,000	30,258	0.080	131	1,725
Commscope LNX-6515DS	107.00	151	1,728	0.005	7	130
Kathrein Smart Bias	105.00	10	109	0.000	0	9
GPS Stand-Off	83.00 83.00	10 75	69	0.000 0.001	0 2	9 65
GPS	63.00	75 20	517 79	0.000	2	65 17
Stand-Off	63.00	150	79 595	0.002	3	129
2" x 4" GPS	52.00	5	14	0.000	0	4
Stand-Off	52.00	75	203	0.001	1	65
4' Std. Dish	17.00	188	54	0.000	0	162
		42,083	379,518	1.000	1,641	36,304

Site Number	: 302495	Code: ANSI/TIA-222-G	© 2007 - 2017 by ATC IP LLC. All rights reserved.
Site Name:	Tolland CT, CT	Engineering Number:OAA705198_C3_01	6/29/2017 5:56:26 PM
Customer:	AT&T Mobility		

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:26 PM

Load Case (1.2 + 0.2Sds) * DL + E ELFM

Seismic Equivalent Lateral Forces Method

Calculated Forces

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00 3.00 6.00	-50.99 -49.92 -48.86	-1.64 -1.65 -1.66	0.00 0.00 0.00	-216.24 -211.31 -206.36	0.00	216.24 211.31	4,631.78	2,315.89	9,536.02 9,346.21	4,709.48 4,615.74	0.00	0.00	0.057 0.057
9.00	-47.81	-1.66	0.00	-200.30	0.00 0.00	206.36 201.39	4,597.82 4.563.18	2.298.91	9,156.81 8,967.87	4,522.21	0.01 0.02	-0.02 -0.03	0.056 0.056
12.00	-46.78	-1.67	0.00	-196.40	0.00	196.40	4,527.86	2,263.93	8,779.43	4,335.83	0.04	-0.03	0.056
15.00 17.00	-46.09 -45.52	-1.67 -1.68	0.00 0.00	-191.39 -188.05	0.00 0.00	191.39 188.05	4,491.86	2,245.93	8,591.56 8,466.65	4,243.05	0.07	-0.04	0.055
18.00	-44.51	-1.68	0.00	-186.37	0.00	186.37	4,455.19	2,227.60	8,404.31	4,150.57	0.09 0.10	-0.05 -0.05	0.055 0.055
21.00 24.00	-43.50 -42.51	-1.68 -1.69	0.00	-181.33	0.00	181.33	4,417.85	2,208.92	8,217.72	4,058.43	0.13	-0.06	0.055
27.00	-41.53	-1.69	0.00 0.00	-176.28 -171.22	0.00 0.00	176.28 171.22	4,379.82	2,189.91	8,031.86	3,966.64	0.17 0.22	-0.07 -0.08	0.054 0.054
30.00	-40.56	-1.69	0.00	-166.15	0.00	166.15	4,301.75	2,150.88	7,662.53	3,784.23	0.27	-0.09	0.053
33.00 36.00	-39.61 -38.66	-1.69 -1.69	0.00 0.00	-161.08 -156.00	0.00 0.00	161.08 156.00	4,261.70	2,130.85	7,479.16	3,693.68	0.33	-0.10	0.053
39.00	-38.32	-1.69	0.00	-150.92	0.00	150.92	4,220.97	2.089.78	7,296.73	3,603.58	0.40 0.47	-0.11 -0.12	0.052 0.052
40.10 42.00	-37.32 -35.77	-1.69 -1.68	0.00	-149.05	0.00	149.05	4,164.16	2,082.08	7,048.76	3,481.12	0.50	-0.12	0.052
42.00	-35.77	-1.68	0.00 0.00	-145.85 -140.80	0.00 0.00	145.85 140.80	4,137.49	2,068.74	6,934.89 6,755.59	3,424.88	0.55 0.63	-0.13 -0.14	0.051 0.051
45.90	-34.74	-1.68	0.00	-139.29	0.00	139.29	3,345.43	1,672.72	5,614.65	2,772.86	0.66	-0.14	0.061
48.00 51.00	-33.92 -33.65	-1.68 -1.68	0.00 0.00	-135.76 -130.74	0.00 0.00	135.76 130.74	3,324.15	1,662.07	5,517.72 2	2,724.99	0.72	-0.15	0.060
52.00	-33.02	-1.67	0.00	-129.06	0.00	129.06	3,293.20	1.641.36	5,379.77 2 5,333.90 2	2,634.21	0.82 0.85	-0.16 -0.16	0.059 0.059
54.00 57.00	-32.22 -31.44	-1.67	0.00	-125.72	0.00	125.72	3,261.57	1,630.78	5,242.36 2	2,589.00	0.92	-0.17	0.058
60.00	-31.44	-1.66 -1.65	0.00 0.00	-120.72 -115.74	0.00 0.00	120.72 115.74	3,229.26	1,614.63	5,105.54 2 4,969.37 2	2,521.44	1.03	-0.18	0.058
63.00	-29.69	-1.64	0.00	-110.77	0.00	110.77	3,162.62	1,581.31	4,833.91 2	2,387.28	1.15 1.28	-0.19 -0.21	0.057 0.056
66.00 69.00	-28.94 -28.19	-1.63 -1.62	0.00 0.00	-105.85	0.00	105.85	3,128.28	1,564.14	4,699.19 2	2,320.75	1.41	-0.22	0.055
72.00	-27.45	-1.61	0.00	-100.94 -96.07	0.00 0.00	100.94 96.07	3,093.27	1,546.64	4,565.29 2 4,432.24 2	2,254.62	1.55 1.70	-0.23 -0.24	0.054 0.053
75.00	-26.73	-1.60	0.00	-91.23	0.00	91.23	3,021.22	1,510.61	4,300.11 2	2,123.66	1.86	-0.24	0.053
78.00 80.60	-26.11 -25.96	-1.59 -1.59	0.00 0.00	-86.43 -82.30	0.00 0.00	86.43 82.30	2,984.18				2.02	-0.27	0.051
81.00	-25.20	-1.57	0.00	-81.67	0.00	81.67	2,951.54 2,946.46	1,473.23	4,036.14 2 4.038.81 1	.994.61	2.17 2.19	-0.28 -0.28	0.050 0.049
83.00 84.00	-24.72 -24.19	-1.56 -1.54	0.00	-78.53	0.00	78.53	2,920.94	1,460.47	3,952.64 1	,952.06	2.31	-0.29	0.049
85.41	-23.86	-1.54	0.00 0.00	-76.97 -74.80	0.00 0.00	76.97 74.80	2,908.96 2,288.86	1,454.48 1 144 43	3,910.94 1 3 120 34 1	,931.47	2.37 2.46	-0.29	0.048
87.00	-23.25	-1.52	0.00	-72.36	0.00	72.36	2,274.94	1,137.47	3,069.59 1	,515.95	2.40	-0.30 -0.30	0.059 0.058
90.00 93.00	-22.64 -22.04	-1.50 -1.49	0.00 0.00	-67.80 -63.29	0.00 0.00	67.80 63.29	2,248.22 ⁻ 2,220.81 ⁻	1,124.11	2,974.43 1	,468.96	2.75	-0.31	0.056
96.00	-21.45	-1.47	0.00	-58.83	0.00	58.83	2,192.74	1,096.37	2,785.75 1	,422.23 ,375.78	2.95 3.16	-0.33 -0.34	0.054 0.053
99.00 102.00	-20.87 -20.29	-1.45 -1.43	0.00	-54.42	0.00	54.42	2,163.98 1	1,081.99 2	2,692.34 1	,329.64	3.38	-0.35	0.051
102.00	-20.29	-1.43	0.00 0.00	-50.07 -45.79	0.00 0.00	50.07 45.79	2,134.56 1 2,104.45 1				3.61 3.84	-0.37 -0.38	0.049 0.046
107.00	-19.53	-1.40	0.00	-42.96	0.00	42.96	2,084.00 1	1,042.00 2	2,446.74 1	,208.36	4.00		0.040
108.00 111.00	-18.99 -18.45	-1.38 -1.35	0.00 0.00	-41.56 -37.44	0.00 0.00	41.56 37.44	2,073.67 1 2,042.21 1	1,036.83 2	2,416.44 1	,193.39	4.08	-0.39	0.044
114.00	-17.93	-1.33	0.00	-33.38	0.00	33.38	2,042.21	1.003.24 2	2,326.10 1,	148.77	4.33 4.59		0.042 0.039
117.00	-17.41	-1.30	0.00	-29.41	0.00	29.41	1,959.62	979.81 2	2,129.00 1,	.051.43	4.85		0.037
120.00 122.12	-17.02 -16.81	-1.28 -1.27	0.00 0.00	-25.50 -22.79	0.00 0.00	25.50 22.79	1,912.75 1,879.60	956.38 2 939.80 1	2,027.81 1,		5.12		0.034
123.00	-13.52	-1.07	0.00	-21.67	0.00	21.67	1,865.89	932.94 1		966.84 952.70	5.32 5.40	-0.44 -0.44	0.033 0.030
	-13.51 -13.13	-1.07 -1.05	0.00 0.00	-18.59 -18.46	0.00 0.00	18.59 18.46	929.68	464.84	961.73	474.96	5.67	-0.45	0.054
129.00	-12.76	-1.03	0.00	-15.32	0.00	15.32	929.29 918.88	464.65 459.44		474.31 457.06	5.68 5.97		0.053 0.047
	-12.64	-1.02	0.00	-12.25	0.00	12.25	907.79	453.90	890.46	439.76	6.26	-0.47	0.042
133.00	-9.85	-0.82	0.00	-11.23	0.00	11.23	903.95	451.97	878.77	433.99	6.36	-0.48	0.037

Site Num Site Name Custome	e: Toll	495 and CT, (&T Mobili			Engine		e: ANSI/TIA-2 er:OAA70519		© 2007 - 2	017 by ATC		All rights ()17 5:56	
	_												
135.00	-9.52	-0.80	0.00	-9.58	0.00	9.58	896.03	448.02	855.37	422.43	6.56	-0.48	0.033
138.00	-9.19	-0.78	0.00	-7.19	0.00	7.19	883.59	441.80	820.26	405.10	6.87	-0.49	0.028
141.00	-8.97	-0.76	0.00	-4.86	0.00	4.86	870.48	435.24	785.20	387.78	7.18	-0.50	0.023
143.00	-5.65	-0.49	0.00	-3.34	0.00	3.34	861.36	430.68	761.88	376.27	7.39	-0.50	0.015
144.00	-5.47	-0.48	0.00	-2.85	0.00	2.85	856.69	428.34	750.24	370.52	7.49	-0.50	0.014
146.00	-5.33	-0.47	0.00	-1.89	0.00	1.89	847.12	423.56	727.02	359.05	7.70	-0.50	0.012
146.00	-5.33	-0.47	0.00	-1.8 9	0.00	1.89	920.33	460.16	575.46	378.52	7.70	-0.50	0.011
147.00	-5.06	-0.44	0.00	-1.42	0.00	1.42	920.33	460.16	575.46	378.52	7.81	-0.50	0.009
149.00	-1.31	-0.12	0.00	-0.53	0.00	0.53	920.33	460.16	575.46	378.52	8.02	-0.50	0.003
150.00	-0.98	-0.09	0.00	-0.41	0.00	0.41	920.33	460.16	575.46	378.52	8.12	-0.50	0.002
153.00	-0.77	-0.07	0.00	-0.14	0.00	0.14	920.33	460.16	575.46	378.52	8.44	-0.50	0.001
155.00	0.00	-0.06	0.00	0.00	0.00	0.00	920.33	460.16	575.46	378.52	8.65	-0.50	0.000

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Code: ANSI/TIA-222-G

Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:26 PM

Load Case (0.9 - 0.2Sds) * DL + E ELFM Seismic (Reduced DL) Equivalent Lateral Forces Method

Calculated Forces

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00 3.00 6.00 9.00 12.00	-35.55 -34.80 -34.07 -33.34 -32.61	-1.64 -1.65 -1.65 -1.66 -1.66	0.00 0.00 0.00 0.00 0.00	-211.90 -206.98 -202.04 -197.08 -192.11	0.00 0.00 0.00 0.00 0.00	211.90 206.98 202.04 197.08 192.11	4,631.78 4,597.82 4,563.18	2,315.89 2,298.91 2,281.59	9,536.02 9,346.21 9,156.81 8,967.87	4,615.74 4,522.21 4,428.89	0.00 0.00 0.01 0.02	0.00 -0.01 -0.02 -0.02	0.053 0.052 0.052 0.052
15.00 17.00 18.00	-32.14 -31.74 -31.03	-1.66 -1.66 -1.67	0.00 0.00 0.00	-187.14 -183.81 -182.15	0.00 0.00 0.00 0.00	187.14 183.81 182.15	4,491.86 4,467.49	2,245.93 2,233.75	8,779.43 8,591.56 8,466.65 8,404.31	4,243.05 4,181.36	0.04 0.07 0.08 0.09	-0.03 -0.04 -0.05 -0.05	0.052 0.051 0.051 0.051
21.00 24.00 27.00	-30.33 -29.64 -28.96	-1.67 -1.67 -1.67	0.00 0.00 0.00	-177.15 -172.15 -167.14	0.00 0.00 0.00	177.15 172.15 167.14	4,417.85 4,379.82 4,341.13	2,208.92 2,189.91 2,170.56	8,217.72 8,031.86 7,846.78	4,058.43 3,966.64 3,875.23	0.13 0.17 0.22	-0.05 -0.06 -0.07 -0.08	0.051 0.050 0.050
30.00 33.00 36.00 39.00	-28.28 -27.61 -26.95 -26.71	-1.67 -1.67 -1.67	0.00 0.00 0.00	-162.13 -157.12 -152.11	0.00 0.00 0.00	162.13 157.12 152.11	4,301.75 4,261.70 4,220.97	2,150.88 2,130.85 2,110.49	7,662.53 7,479.16 7,296.73	3,784.23 3,693.68 3,603.58	0.27 0.33 0.39	-0.09 -0.10 -0.11	0.049 0.049 0.049
40.10 42.00 45.00	-26.02 -24.94 -24.62	-1.67 -1.66 -1.66 -1.65	0.00 0.00 0.00 0.00	-147.10 -145.26 -142.10 -137.14	0.00 0.00 0.00 0.00	147.10 145.26 142.10 137.14	4,164.16 4,137.49	2,082.08 2,068.74	7,115.28 7,048.76 6,934.89 6,755.59	3,481.12 3,424.88	0.46 0.49 0.54	-0.12 -0.12 -0.13	0.048 0.048 0.048
48.00 51.00	-24.22 -23.65 -23.46	-1.65 -1.65 -1.65	0.00 0.00 0.00	-135.65 -132.18 -127.24	0.00 0.00 0.00	135.65 132.18 127.24	3,345.43 3,324.15	1,672.72 1,662.07	5,614.65 5,517.72 5,379.77	2,772.86	0.62 0.64 0.71 0.80	-0.14 -0.14 -0.15 -0.16	0.047 0.056 0.056 0.055
54.00 57.00	-23.02 -22.47 -21.92 -21.38	-1.64 -1.63 -1.63 -1.62	0.00 0.00 0.00	-125.60 -122.31 -117.41	0.00 0.00 0.00	125.60 122.31 117.41	3,282.73 3,261.57 3,229.26	1,641.36 1,630.78 1,614.63	5,333.90 2 5,242.36 2 5,105.54 2	2,634.21 2,589.00 2,521.44	0.83 0.90 1.01	-0.16 -0.17 -0.18	0.055 0.054 0.053
63.00 66.00	-20.70 -20.17 -19.65	-1.61 -1.60 -1.59	0.00 0.00 0.00 0.00	-112.53 -107.67 -102.84 -98.05	0.00 0.00 0.00 0.00	112.53 107.67 102.84 98.05	3,162.62 3,128.28	1,581.31 1,564.14	4,969.37 2 4,833.91 2 4,699.19 2 4,565.29 2	2,387.28 2,320.75	1.13 1.25 1.38 1.52	-0.19 -0.20 -0.21 -0.22	0.053 0.052 0.051
75.00 78.00	-19.14 -18.63 -18.20	-1.58 -1.56 -1.55	0.00 0.00 0.00	-93.29 -88.56 -83.88	0.00 0.00 0.00	93.29 88.56 83.88	3,057.58 3,021.22 2,984.18	1,528.79 1,510.61 1,492.09	4,432.24 2 4,300.11 2 4,168.95 2	2,188.92 2,123.66 2,058.89	1.66 1.81 1.97	-0.22 -0.24 -0.25 -0.26	0.050 0.049 0.048 0.047
81.00 83.00	-18.09 -17.57 -17.23 -16.86	-1.55 -1.53 -1.52 -1.50	0.00 0.00 0.00	-79.85 -79.23 -76.17	0.00 0.00 0.00	79.85 79.23 76.17	2,951.54 2,946.46 2,920.94	1,475.77 1,473.23 1,460.47	4,056.14 2 4,038.81 1 3,952.64 1	,003.18 ,994.61 ,952.06	2.12 2.14 2.25	-0.27 -0.27 -0.28	0.046 0.046 0.045
85.41 87.00	-16.63 -16.21 -15.78	-1.50 -1.50 -1.48 -1.46	0.00 0.00 0.00 0.00	-74.65 -72.54 -70.15 -65.72	0.00 0.00 0.00 0.00	74.65 72.54 70.15 65.72	2,908.96 2,288.86 2,274.94 2,248.22	l,144.43 ; l,137.47 ;	3,120.34 1 3,069.59 1	,541.02 ,515.95	2.31 2.40 2.49	-0.28 -0.29 -0.29	0.044 0.054 0.053
93.00 96.00 99.00	-15.36 -14.95 -14.55	-1.45 -1.43 -1.41	0.00 0.00 0.00	-61.33 -56.99 -52.71	0.00 0.00 0.00	61.33 56.99 52.71	2,220.81 1 2,192.74 1 2,163.98 1	1,110.41 1,096.37	2,879.80 1 2,785.75 1	,422.23 ,375.78	2.68 2.88 3.08 3.30	-0.31 -0.32 -0.33 -0.34	0.052 0.050 0.048 0.046
105.00 - 107.00 -	-14.15 -13.87 -13.62 -13.24	-1.39 -1.37 -1.36 -1.33	0.00 0.00 0.00 0.00	-48.49 -44.33 -41.59 -40.23	0.00 0.00 0.00 0.00	48.49 44.33 41.59 40.23	2,134.56 1 2,104.45 1 2,084.00 1	,067.28 2 ,052.22 2 ,042.00 2	2,599.61 1 2,507.63 1, 2,446.74 1	,283.85 ,238.42 ,208.36	3.52 3.75 3.90	-0.36 -0.37 -0.38	0.044 0.042 0.041
111.00 - 114.00 - 117.00 -	12.86 12.50 12.13	-1.31 -1.28 -1.26	0.00 0.00 0.00	-36.23 -32.31 -28.45	0.00 0.00 0.00 0.00	40.23 36.23 32.31 28.45	2,073.67 1 2,042.21 1 2,006.48 1 1,959.62	,021.11 2,003.24 2	2,326.10 1, 2,232.66 1,	.148.77 102.63	3.98 4.22 4.47 4.73	-0.39 -0.40	0.040 0.038 0.036 0.033
	11.87 11.72 -9.42 -9.41	-1.24 -1.23 -1.04	0.00 0.00 0.00	-24.68 -22.05 -20.97	0.00 0.00 0.00	24.68 22.05 20.97	1,912.75 1,879.60 1,865.89	956.38 2 939.80 1 932.94 1	2,027.81 1, ,957.71 ,929.08	001.46 966.84 952.70	4.99 5.18 5.26	-0.42 -0.43 -0.43	0.031 0.029 0.027
126.00 129.00	-9.41 -9.15 -8.90 -8.81	-1.04 -1.01 -0.99 -0.98	0.00 0.00 0.00 0.00	-17.98 -17.86 -14.82 -11.85	0.00 0.00 0.00 0.00	17.98 17.86 14.82 11.85	918.88	464.84 464.65 459.44 453.90	960.40 925.49	474.96 474.31 457.06	5.52 5.53 5.81	-0.44 -0.45	0.048 0.048 0.042
	-6.86	-0.80	0.00	-10.86	0.00	10.86		453.90 451.97		439.76 433.99	6.10 6.20		0.037 0.033

Page: 29

Site Numbe Site Name: Customer:	Toli	495 and CT, (T Mobilit			Enginee		e: ANSI/TIA-; er:OAA70519	0		017 by ATC		All rights 017 5:56	
138.00 141.00 143.00 144.00 146.00 146.00 147.00 149.00 150.00 153.00	-6.63 -6.40 -6.25 -3.94 -3.81 -3.72 -3.72 -3.53 -0.91 -0.69 -0.53 0.00	-0.77 -0.75 -0.73 -0.48 -0.46 -0.45 -0.45 -0.45 -0.43 -0.12 -0.09 -0.07 -0.06	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-9.27 -6.95 -4.70 -3.23 -2.76 -1.83 -1.83 -1.83 -1.38 -0.52 -0.40 -0.14 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.27 6.95 4.70 3.23 2.76 1.83 1.83 1.83 1.38 0.52 0.40 0.14 0.00	896.03 883.59 870.48 861.36 856.69 847.12 920.33 920.33 920.33 920.33 920.33 920.33	448.02 441.80 435.24 430.68 428.34 423.56 460.16 460.16 460.16 460.16 460.16	855.37 820.26 785.20 761.88 750.24 727.02 575.46 575.46 575.46 575.46 575.46 575.46	422.43 405.10 387.78 376.27 370.52 359.05 378.52 378.52 378.52 378.52 378.52 378.52 378.52 378.52	6.39 6.69 7.19 7.30 7.50 7.50 7.60 7.81 7.91 8.22 8.42	-0.47 -0.48 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49	0.029 0.024 0.019 0.013 0.012 0.009 0.009 0.007 0.002 0.002 0.002 0.001 0.000

Site Number: 302495 Site Name: Tolland CT, CT Customer: AT&T Mobility

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:26 PM

Equivalent Modal Forces Analysis

(Based on ASCE7-10 Chapters 11, 12 & 15 and ANSI/TIA-G, section 2.7)

Spectral Response Acceleration for Short Period (S $_{\rm s}$):	0.17	
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.06	
Importance Factor (I _E):	1.00	
Site Coefficient F _a :	1.60	
Site Coefficient F v	2.40	
Response Modification Coefficient (R):	1.50	
Design Spectral Response Acceleration at Short Period (S	0.19	
Desing Spectral Response Acceleration at 1.0 Second Period (S d1):	0.10	
Period Based on Rayleigh Method (sec):	2.79	
Redundancy Factor (p):	1.30	

Load Case (1.2 + 0.2Sds) * DL + E EMAM

Seismic Equivalent Modal Analysis Method

Segment	Height Above Base (ft)	Weight (Ib)	а	b	с	Saz	Horizontal Force (lb)	Vertical Force (Ib)
66	154.00	176	1.866	1.854	1.094	0.000		
65	151.50	263	1.806	1.564	0.987	0.338	51	217
64	149.50	88	1.758	1.356	0.987	0.301 0.273	69	326
63	148.00	224	1.723	1.212	0.851		21	109
62	146.50	112	1.688	1.079	0.797	0.253	49	277
61	145.00	145	1.654			0.233	23	138
60	143.50	73	1.620	0.955 0.842	0.746 0.697	0.215	27	179
59	142.00	174	1.586	0.842	0.652	0.196	12	90
58	139.50	265				0.179	27	216
57	136.50	269	1.531 1.466	0.580	0.580	0.151	35	328
56	134.00	181		0.420	0.503	0.121	28	332
55	132.50	99	1.413 1.381	0.308 0.249	0.445	0.097	15	224
54	130.50	299	1.387		0.413	0.084	7	122
53	127.50	302	1.340	0.179	0.372	0.067	17	369
52	125.94	12	1.279	0.092	0.318	0.044	11	374
51	124.44	540	1.246	0.055	0.292 0.269	0.033	0	14
50	122.56	173	1.218	0.023 -0.012	0.269	0.023	11	668
49	121.06	308				0.011	2	214
48	118.50	420	1.153	-0.035	0.221	0.003	1	381
47	115.50	420	1.105 1.049	-0.067	0.190	-0.010	-4	520
46	112.50	433		-0.094	0.157	-0.023	-9	528
45	109.50	433	0.996	-0.111	0.129	-0.034	-13	536
44	105.50	148	0.943 0.909	-0.120	0.105	-0.042	-16	544
43	106.00	306	0.884	-0.122	0.091	-0.046	-6	183
12	103.50	464	0.884	-0.121	0.081	-0.048	-13	378
41	100.50	471	0.795	-0.118	0.067	-0.050	-20	574
40	97.50	477		-0.111	0.052	-0.051	-21	582
39	94.50	477 484	0.748	-0.100	0.040	-0.049	-20	590
8	91.50	484	0.703 0.659	-0.088	0.030	-0.044	-18	598
37	88.50	490	0.616	-0.074	0.023	-0.037	-16	606
6	86.20	266		-0.059	0.016	-0.029	-12	614
5	84.70	∠00 425	0.585	-0.047	0.013	-0.021	-5	330
14	83.50		0.564	-0.040	0.011	-0.016	-6	525
33	82.00	304 613	0.548	-0.034	0.010	-0.012	-3 -3	376
*	02.00	013	0.529	-0.027	800.0	-0.006	-3	758

Page: 31

Site Number: 30)2495				Code: /	ANSI/TIA-2	222-G © 200	7 - 2017 by ATC IP I	LC. All rights reser
Site Name: To	olland CT	, CT		Engineering	Number:0	DAA70519	8_C3_01	6/	29/2017 5:56:26 I
Customer: A	T&T Mobi	lity							
32		80.80	124	0.514	-0.021	0.008	-0.002	0	153
31		79.30	502	0.495	-0.014	0.007	0.004	2	621
30		76.50	586	0.460	-0.002	0.006	0.014	7	725
29 28		73.50 70.50	594 602	0.425	0.010	0.006 0.007	0.023	12	735
27		67.50	610	0.391 0.358	0.021 0.030	0.007	0.032 0.038	16 20	745 754
26		64.50	617	0.338	0.030	0.000	0.044	20	764
25		61.50	626	0.298	0.046	0.012	0.048	26	775
24		58.50	634	0.269	0.052	0.015	0.050	28	784
23		55.50	642	0.242	0.057	0.018	0.052	29	794
22		53.00	432	0.221	0.060	0.021	0.053	20	535
21		51.50	217	0.209	0.062	0.022	0.053	10	269
20		49.50	658	0.193	0.064	0.024	0.053	30	814
19		46.95	465	0.173	0.066	0.027	0.053	21	576
18		45.45	372	0.162	0.067	0.028	0.053	17	461
17 16		43.50	1,254	0.149	0.068	0.030	0.053	57	1,552
15		41.05 39.55	801 279	0.133 0.123	0.069 0.070	0.033 0.034	0.052 0.052	36 13	992 345
14		35.55	764	0.123	0.070	0.034	0.052	34	946
13		34.50	704	0.094	0.070	0.038	0.052	34	940
12		31.50	783	0.034	0.071	0.040	0.050	34	968
11		28.50	792	0.064	0.072	0.041	0.049	34	980
10		25.50	801	0.051	0.071	0.042	0.049	34	991
9		22.50	810	0.040	0.070	0.042	0.048	33	1,002
8		19.50	819	0.030	0.068	0.041	0.046	33	1,013
7		17.50	275	0.024	0.066	0.039	0.045	11	340
6		16.00	553	0.020	0.064	0.038	0.044	21	684
5		13.50	837	0.014	0.060	0.035	0.042	30	1,036
4		10.50	846	0.009	0.053	0.030	0.038	28	1,047
3 2		7.50	855	0.004	0.043	0.024	0.032	24	1,058
2 1		4.50	864	0.002	0.029	0.016 0.006	0.024	18	1,070
Ericsson KRY 1	12 71/	1.50	874 79	0.000 1.890	0.011	1.140	0.010	8	1,081
EMS RR90-17-02		155.00 155.00	79 41	1.890	1.980 1.980	1.140	0.353 0.353	24 12	98 50
Canister	LDF	155.00	500	1.890	1.980	1.140	0.353	153	619
Andrew ABT-DN	IDF-	149.00	1	1.747	1.306	0.888	0.266	0	1
Powerwave Allg		149.00	7	1.747	1.306	0.888	0.266	2	8
Kathrein Scala 7		149.00	38	1.747	1.306	0.888	0.266	9	48
CCI DTMABP781	19VG12A	149.00	115	1.747	1.306	0.888	0.266	27	143
Raycap DC6-48-	60-18-	149.00	32	1.747	1.306	0.888	0.266	7	39
7' Omni		149.00	25	1.747	1.306	0.888	0.266	6	31
Ericsson RRUS		149.00	150	1.747	1.306	0.888	0.266	35	186
Ericsson RRUS-		149.00	180	1.747	1.306	0.888	0.266	42	223
Powerwave Allge KMW AM-X-CD-1		149.00 149.00	105 291	1.747	1.306	0.888 0.888	0.266	24 67	130
Flat Platform w/		149.00	2,000	1.747 1.747	1.306 1.306	0.888	0.266 0.266	461	360 2,475
Alcatel-Lucent R		143.00	132	1.609	0.806	0.682	0.191	22	163
Swedcom ALP 9		143.00	160	1.609	0.806	0.682	0.191	26	198
RFS DB-T1-6Z-8		143.00	44	1.609	0.806	0.682	0.191		54
Andrew HBXX-6	516DS-A	143.00	184	1.609	0.806	0.682	0.191	30	227
Andrew LNX-651	3DS-A1	143.00	93	1.609	0.806	0.682	0.191	15	115
Flat Platform w/		143.00	2,000	1.609	0.806	0.682	0.191	330	2,475
Decibel 980H65T		133.00	43	1.392	0.268	0.423	0.088	3	53
Decibel DB980H9		133.00	34	1.392	0.268	0.423	0.088	3	42
lat Platform w/ I		133.00	2,000	1.392	0.268	0.423	0.088	153	2,475
Decibel DB844H		123.00	120	1.190	-0.004	0.248	0.014	1	148
Flat Platform w/ I Commscope LN>		123.00 107.00	2,000 151	1.190 0.901	-0.004 -0.122	0.248 0.088	0.014 -0.047	24	2,475
Commiscope LNZ Kathrein Smart E		107.00	10	0.867	-0.122	0.088	-0.047 -0.049	-6 0	187 12
GPS		83.00	10	0.542	-0.032	0.009	-0.049	0	12
Stand-Off		83.00	75	0.542	-0.032	0.009	-0.010	-1	93
GPS		63.00	20	0.342	0.032	0.000	0.046	-1	25
Stand-Off		63.00	150	0.312	0.042	0.011	0.046	6	186
2" x 4" GPS		52.00	5	0.213	0.061	0.022	0.053	õ	6

Site Name: Customer:	302495 Tolland CT, CT AT&T Mobility	Code: ANSI/TIA-222-G © 2007 - 2017 by ATC IP LLC Engineering Number:OAA705198_C3_01 6/29									
Stand-Off 4' Std. Dish	52.00 17.00	75 188	0.213 0.023	0.061 0.065	0.022 0.039	0.053 0.045	3 7	93 233			
		42,083	90.082	37.594	31.520	8.959	2,461	52,071			
Load Case	(0.9 - 0.2Sds) * DL +	E EMAM	Seismic (Re	educed D) L) Equival	ent Modal	Analysis Method				
	Height										
	Above Base	Weight					Horizontal	Vertical			
Segment	(ft)	(ib)	а	b	с	Saz	Force (Ib)	Force (Ib)			
					4.004						
66 65	154.00 151.50	176 263	1.866 1.806	1.854 1.564	1.094 0.987	0.338 0.301	51 69	151 227			
64	149.50	203	1.758	1.356	0.987	0.301	21	76			
63	148.00	224	1.723	1.212	0.851	0.253	49	193			
62	146.50	112	1.688	1.079	0.797	0.233	23	97			
61	145.00	145	1.654	0.955	0.746	0.215	27	125			
60	143.50	73	1.620	0.842	0.697	0.196	12	63			
59	142.00	174	1.586	0.737	0.652	0.179	27	150			
58 57	139.50	265	1.531	0.580	0.580	0.151	35	228			
56	136.50 134.00	269 181	1.466 1.413	0.420 0.308	0.503 0.445	0.121 0.097	28 15	232 156			
55	132.50	99	1.381	0.249	0.413	0.084	7	85			
54	130.50	299	1.340	0.179	0.372	0.067	17	258			
53	127.50	302	1.279	0.092	0.318	0.044	11	261			
52	125.94	12	1.248	0.055	0.292	0.033	0	10			
51	124.44	540	1.218	0.023	0.269	0.023	11	466			
50 49	122.56 121.06	173	1.182	-0.012	0.241 0.221	0.011	2	149			
49 48	118.50	308 420	1.153 1.105	-0.035 -0.067	0.190	0.003 -0.010	1 -4	266			
47	115.50	420	1.049	-0.094	0.157	-0.010	-4 -9	363 368			
46	112.50	433	0.996	-0.111	0.129	-0.034	-13	374			
45	109.50	440	0.943	-0.120	0.105	-0.042	-16	379			
44	107.50	148	0.909	-0.122	0.091	-0.046	-6	128			
43	106.00	306	0.884	-0.121	0.081	-0.048	-13	264			
42	103.50	464	0.843	-0.118	0.067	-0.050	-20	400			
41 40	100.50 97.50	471 477	0.795 0.748	-0.111 -0.100	0.052 0.040	-0.051	-21	406			
39	94.50	477 484	0.748	-0.100	0.040	-0.049 -0.044	-20 -18	412 417			
38	91.50	490	0.659	-0.074	0.023	-0.044	-16	417			
37	88.50	496	0.616	-0.059	0.016	-0.029	-12	428			
36	86.20	266	0.585	-0.047	0.013	-0.021	-5	230			
35	84.70	425	0.564	-0.040	0.011	-0.016	-6	366			
34	83.50	304	0.548	-0.034	0.010	-0.012	-3	262			
33 32	82.00 80.80	613 124	0.529 0.514	-0.027	0.008 0.008	-0.006	-3	529			
31	79.30	502	0.495	-0.021 -0.014	0.007	-0.002 0.004	0	107 433			
30	76.50	586	0.460	-0.002	0.006	0.014	2 7	506			
29	73.50	594	0.425	0.010	0.006	0.023	12	512			
28	70.50	602	0.391	0.021	0.007	0.032	16	519			
27	67.50	610	0.358	0.030	0.008	0.038	20	526			
26	64.50	617	0.327	0.039	0.010	0.044	23	533			
25 24	61.50 58.50	626 634	0.298 0.269	0.046 0.052	0.012 0.015	0.048 0.050	26	540			
23	55.50	642	0.269	0.052	0.015	0.050	28 29	547 554			
22	53.00	432	0.221	0.060	0.021	0.053	20	373			
21	51.50	217	0.209	0.062	0.022	0.053	10	188			
20	49.50	658	0.193	0.064	0.024	0.053	30	567			
19	46.95	465	0.173	0.066	0.027	0.053	21	401			
18	45.45	372	0.162	0.067	0.028	0.053	17	321			
17	43.50	1,254	0.149	0.068	0.030	0.053	57	1,082			

Site Number: 302495				Code:	ANSI/TIA-2	22-G © 20	07 - 2017 by ATC IP L	LC. All rights reserve
Site Name: Tolland CT	, CT		Engineering	Number:	OAA705198			29/2017 5:56:26 PN
Customer: AT&T Mob	ility							
15	39.55	279	0.123	0.070	0.034	0.052	13	241
14	37.50	764	0.111	0.070	0.036	0.052	34	659
13 12	34.50	774	0.094	0.071	0.038	0.051	34	667
12	31.50	783	0.078	0.072	0.040	0.050	34	675
10	28.50 25.50	792	0.064	0.072	0.041	0.049	34	683
9	25.50	801 810	0.051 0.040	0.071	0.042	0.049	34	691
8	19.50	819	0.040	0.070	0.042 0.041	0.048	33	699
7	17.50	275	0.030	0.068 0.066	0.041	0.046	33	706
6	16.00	553	0.024	0.066	0.039	0.045 0.044	11	237
5	13.50	837	0.014	0.060	0.035	0.044	21 30	477
4	10.50	846	0.009	0.053	0.030	0.038	28	722 730
3	7.50	855	0.004	0.043	0.024	0.032	24	738
2	4.50	864	0.002	0.029	0.016	0.024	18	736
1	1.50	874	0.000	0.011	0.006	0.010	8	740
Ericsson KRY 112 71/	155.00	79	1.890	1.980	1.140	0.353	24	68
EMS RR90-17-02DP	155.00	41	1.890	1.980	1.140	0.353	12	35
Canister	155.00	500	1.890	1.980	1.140	0.353	153	431
Andrew ABT-DMDF-	149.00	1	1.747	1.306	0.888	0.266	0	1
Powerwave Allgon 702 Kathrein Scala 782-1	149.00	7	1.747	1.306	0.888	0.266	2	6
CCI DTMABP7819VG12A	149.00 149.00	38	1.747	1.306	0.888	0.266	9	33
Raycap DC6-48-60-18-	149.00	115	1.747	1.306	0.888	0.266	27	99
7' Omni	149.00	32 25	1.747 1.747	1.306	0.888 0.888	0.266	7	27
Ericsson RRUS 11 (Ba	149.00	150	1.747	1.306 1.306	0.888	0.266	6	22
Ericsson RRUS-12 800	149.00	180	1.747	1.306	0.888	0.266 0.266	35	129
Powerwave Allgon 777	149.00	105	1.747	1.306	0.888	0.266	42 24	155
KMW AM-X-CD-16-65-00	149.00	291	1.747	1.306	0.888	0.266	24 67	91
Flat Platform w/ Han	149.00	2,000	1,747	1.306	0.888	0.266	461	251
Alcatel-Lucent RRH2X	143.00	132	1.609	0.806	0.682	0.191	22	1,725 114
Swedcom ALP 9212-N	143.00	160	1.609	0.806	0.682	0.191	26	138
RFS DB-T1-6Z-8AB-0Z	143.00	44	1.609	0.806	0.682	0.191	7	38
Andrew HBXX-6516DS-A	143.00	184	1.609	0.806	0.682	0.191	30	158
Andrew LNX-6513DS-A1	143.00	93	1.609	0.806	0.682	0.191	15	80
Flat Platform w/ Han Decibel 980H65T2E-M	143.00	2,000	1.609	0.806	0.682	0.191	330	1,725
Decibel DB980H90A-KL	133.00 133.00	43 34	1.392	0.268	0.423	0.088	3	37
Flat Platform w/ Han	133.00	2,000	1.392 1.392	0.268	0.423 0.423	0.088	3	29
Decibel DB844H90E-A	123.00	120	1.392	0.268 -0.004	0.423	0.088	153	1,725
Flat Platform w/ Han	123.00	2,000	1.190	-0.004	0.248	0.014 0.014	1	104
Commscope LNX-	107.00	151	0.901	-0.122	0.088	-0.047	24 -6	1,725
Kathrein Smart Bias	105.00	10	0.867	-0.121	0.075	-0.049		130
GPS	83.00	10	0.542	-0.032	0.009	-0.010	0 0	9
Stand-Off	83.00	75	0.542	-0.032	0.009	-0.010	-1	9 65
GPS	63.00	20	0.312	0.042	0.011	0.046	1	17
Stand-Off	63.00	150	0.312	0.042	0.011	0.046	6	129
2" x 4" GPS	52.00	5	0.213	0.061	0.022	0.053	Õ	4
Stand-Off	52.00	75	0.213	0.061	0.022	0.053	3	65
4' Std. Dish	17.00	188	0.023	0.065	0.039	0.045	7	162
		42,083	90.082	37.594	31.520	8.959	2,461	36,304

,

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:26 PM

Load Case (1.2 + 0.2Sds) * DL + E EMAM Seismic Equivalent Modal Analysis Method

Calculated Forces

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)		t Rotatior (deg)	_
107.00 -19.32 -2.05 0.00 -78.90 0.00 78.90 2,084.00 1,042.00 2,446.74 1,208.36 5.77 -0.59 0.075 108.00 -18.98 -2.07 0.00 -76.85 0.00 76.85 2,073.67 1,036.83 2,416.44 1,193.39 5.90 -0.59 0.074 111.00 -18.44 -2.08 0.00 -70.65 0.00 70.65 2,042.21 1,021.11 2,326.10 1,148.77 6.28 -0.62 0.071 114.00 -17.91 -2.09 0.00 -64.42 0.00 64.42 2,006.48 1,003.24 2,323.65 1,103.63 6.28 -0.62 0.071	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Elev (ft) 0.00 3.00 6.00 9.00 12.00 15.00 17.00 18.00 24.00 27.00 30.00 33.00 36.00 39.00 40.10 42.00 45.00 45.00 45.00 51.00 52.00 57.00 60.00 63.00 66.00 69.00 72.00 75.00 78.00 80.60 81.00 83.00 81.00 83.00 81.00 83.00 81.00 83.00 81.00 83.00 81.00 83.00 81.00 83.00 81.00 83.00 81.00 83.00 81.00 83.00 81.00 83.00 80.00 99.00 102.00 102.00	FY (-) (kips) -50.99 -49.92 -48.86 -47.81 -46.78 -46.78 -45.52 -44.51 -43.50 -42.51 -41.53 -40.56 -39.60 -38.66 -38.31 -37.32 -35.77 -35.31 -34.73 -35.37 -35.31 -34.73 -33.65 -26.72 -26.72 -26.72 -26.10 -25.95 -25.19 -24.71 -24.18 -23.85 -23.24 -20.63 -22.03 -21.44 -20.66 -29.95 -25.19 -24.71 -24.18 -23.85 -23.24 -20.32 -21.44 -20.86 -20.28 -21.44 -20.86 -20.28 -21.44 -20.86 -20.98 -21.44 -20.86 -20.98 -21.44 -20.86 -20.98 -21.44 -20.86 -20.28 -21.44 -20.86 -20.28 -21.44 -20.86 -20.28 -21.44 -20.86 -20.28 -21.44 -20.86 -20.28 -21.44 -20.86 -20.28 -21.44 -20.86 -20.28 -19.89 -21.44 -20.86 -20.28 -19.89 -21.44 -20.86 -20.28 -21.44 -20.86 -20.28 -21.44 -20.86 -20.28 -21.44 -20.86 -20.28 -21.44 -20.86 -20.28 -21.44 -20.86 -20.28 -21.44 -20.86 -20.28 -21.44 -20.86 -20.28 -21.44	FX (-) (kips) -2.46 -2.45 -2.44 -2.42 -2.40 -2.38 -2.37 -2.34 -2.32 -2.29 -2.26 -2.24 -2.21 -2.18 -2.18 -2.14 -2.09 -2.07 -2.06 -2.03 -2.03 -2.03 -2.03 -2.03 -2.03 -2.03 -2.03 -2.03 -2.03 -1.98 -1.96 -1.94 -1.91 -1.88 -1.88 -1.88 -1.88 -1.88 -1.88 -1.88 -1.88 -1.88 -1.88 -1.88 -1.88 -1.88 -1.88 -1.88 -1.88 -1.88 -1.88 -1.89 -1.90 -1.91 -1.93 -1.95 -1.98 -2.02 -2.04	MY (ft-kips) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	MZ (ft-kips) -303.42 -296.05 -288.70 -281.39 -274.14 -266.95 -262.19 -259.82 -252.79 -245.85 -238.98 -232.18 -225.47 -218.84 -212.29 -209.88 -205.82 -199.56 -197.70 -193.38 -187.29 -185.26 -181.26 -175.32 -169.45 -175.32 -169.45 -157.90 -152.22 -146.56 -140.94 -157.90 -152.22 -146.56 -140.94 -157.90 -152.22 -146.56 -140.94 -155.93 -124.04 -125.93 -124.04 -125.93 -124.04 -125.93 -124.04 -125.93 -124.04 -125.93 -124.04 -125.93 -124.04 -125.93 -124.04 -125.93 -124.04 -125.93 -126.83 -100.97 -95.04 -89.04 -82.98	MX (ft-kips) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Moment (ft-kips) 303.42 296.05 288.70 281.39 274.14 266.95 262.19 259.82 252.79 245.85 238.98 232.18 225.47 218.84 212.29 209.88 205.82 199.56 197.70 193.38 187.29 185.26 181.26 197.70 193.38 187.29 185.26 181.26 175.32 169.45 163.64 157.90 152.22 146.56 140.94 135.32 130.44 129.69 125.93 124.04 125.93 124.04 125.93 124.04 125.93 124.04 125.93 124.04 125.93 124.04 125.93 124.04 125.93 124.04 125.93 124.04 125.93 124.04 125.93 124.04 125.93 124.04 125.93 124.04 125.93 124.04 125.93 124.04 125.93 124.04 125.93 124.04 125.93 124.04 125.93 124.04 125.93 126.95 10.97 95.04 89.04	Pn (kips) 4,665.07 4,631.78 4,597.82 4,563.18 4,527.86 4,491.86 4,455.19 4,455.19 4,47.85 4,379.82 4,341.13 4,301.75 4,261.70 4,220.97 4,179.57 4,164.16 4,137.49 4,094.73 3,345.43 3,324.15 3,293.20 3,282.73 3,261.57 3,229.26 3,162.82 3,162.82 3,162.82 3,162.82 3,162.82 3,162.82 3,128.28 3,093.27 1,2951.54 1,2951.54 1,2920.94 1,2951.54 1,2946.46 1,2920.94 1,2951.54 1,2946.46 1,2920.94 1,2948.20 1,248.22 1,248.23 1,248.24 1,248.22 1,248.24 1,	Vn (kips) 2,332.54 2,315.89 2,298.91 2,281.59 2,263.93 2,245.93 2,245.93 2,227.60 2,208.92 2,189.91 2,170.56 2,150.88 2,130.85 2,110.49 2,089.78 2,089.78 2,089.78 2,089.78 2,089.78 2,089.78 2,047.37 1,672.72 1,662.07 1,646.60 1,641.36 1,641.36 1,644.37 1,558.131 4,558.79 4,475.77 4,473.23 4,460.47 3,124.48 3,137.47 3,124.48 3,137.47 3,124.48 3,137.47 3,124.48 3,137.47 3,124.48 3,137.47 3,124.48 3,144.43 3,137.47 3,124.48 3,144.43 3,137.47 2,096.37 2 0,067.28 2,063.93 2,067.28	Tn (ft-kips) 9,536.02 9,346.21 9,356.81 8,967.87 8,779.43 8,591.56 8,466.65 8,404.31 8,217.72 8,031.86 3,7,846.78 7,846.78 7,7662.53 7,762.53 7,479.16 3,7,479.16 3,7,479.16 3,7,479.16 3,7,479.16 3,7,479.16 3,7,479.16 3,7,479.16 3,7,479.16 3,7,479.16 3,7,479.16 3,7,479.16 3,7,479.16 3,7,479.16 3,7,479.16 3,7,479.16 3,7,479.16 3,7,479.16 3,7,479.17 2,242.36 2,5,333.90 2,242.36 2,5,333.90 2,242.36 2,5,333.90 2,242.36 2,5,333.90 2,242.36 2,5,333.90 2,242.36 2,5,333.90 2,242.36 2,242.36 2,3,33.91 2,4,39.57 2,3,00.11 2,9,038.81 1,9,52.64 1,9,056.14 2,038.81 1,9,056.14 2,038.81 1,9,056.14 2,038.81 1,9,056.14 2,038.81 1,9,056.14 2,038.81 1,9,056.14 2,038.81 1,9,056.14 2,038.81 1,9,056.14 2,038.81 1,9,056.14 2,038.81 1,9,059.14 2,038.81 1,9,056.14 2,038.81 1,9,059.14 2,038.81 1,039.14 2,038.81 1,039.14 2,038.81 1,039.14 2,038	Mn (ft-kips) 4,709.48 4,615.74 4,615.74 4,622.21 4,428.89 4,335.83 4,243.05 4,181.36 4,150.57 4,058.43 3,764.23 3,663.68 3,784.23 3,663.68 3,772.86 5,723.66 3,634.21 5,589.00 5,521.44 4,454.19 3,87.28 3,20.75 2,54.62 1,88.92 1,23.66 0,58.89 0,521.44 4,54.19 3,87.28 3,20.75 2,54.62 1,88.92 1,23.66 0,58.89 0,03.18 9,94.61 9,52.06 9,31.47 5,41.02 5,15.95 4,68.96 4,22.23 3,75.78 3,29.44 2,83.85	Deflect (in) 0.00 0.00 0.01 0.03 0.06 0.09 0.12 0.14 0.19 0.24 0.31 0.38 0.47 0.56 0.66 0.70 0.77 0.88 0.92 1.01 1.15 1.62 1.79 1.45 1.62 1.79 1.45 1.62 1.79 1.45 1.62 1.79 1.45 1.62 1.79 1.98 2.18 2.39 2.62 2.85 3.06 3.10 3.27 3.35 3.48 3.63 3.91 4.52 4.84 5.18	(deg) 0 0.00 0 -0.01 -0.02 -0.04 -0.05 -0.06 -0.07 -0.09 -0.10 -0.11 -0.12 -0.14 -0.15 -0.17 -0.18 -0.19 -0.20 -0.21 -0.23 -0.24 -0.23 -0.24 -0.23 -0.24 -0.26 -0.27 -0.29 -0.31 -0.33 -0.34 -0.38 -0.38 -0.40 -0.38 -0.40 -0.38 -0.40 -0.38 -0.44 -0.42 -0.44 -0.45 -0.44 -0.45 -0.53 -0.55 -0.55 -0.55 -0.50 -0.50 -0.50 -0.55 -0.50 -0.50 -0.50 -0.50 -0.07 -0.09 -0.10 -0.11 -0.12 -0.14 -0.15 -0.20 -0.21 -0.23 -0.24 -0.26 -0.38 -0.38 -0.40 -0.36 -0.38 -0.44 -0.42 -0.44 -0.45 -0.50 -0.50 -0.50 -0.50 -0.55 -0.55 -0.50 -0.50 -0.55	Ratio 0.075 0.075 0.074 0.074 0.074 0.073 0.073 0.073 0.073 0.072 0.072 0.072 0.071 0.071 0.070 0.070 0.070 0.069 0.068 0.082 0.081 0.080 0.079 0.078 0.077 0.076 0.075 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.073 0.075 0.088 0.087 0.088 0.087 0.081 0.081 0.081 0.081 0.089 0.081 0.079 0.079 0.074 0.073 0.089 0.087 0.085 0.081 0.081 0.079 0.081 0.081 0.079 0.081
177.00 -17.39 -2.09 0.00 -58.15 0.00 58.15 1,959.62 979.81 2,129.00 1,051.43 7.08 -0.66 0.064	122.12 -16.80 -2.09 0.00 -51.87 0.00 51.87 1,912.75 956.38 2,027.81 1,001.46 7.50 -0.68 0.061 122.12 -16.80 -2.09 0.00 -47.43 0.00 47.43 1,879.60 939.80 1,957.71 966.84 7.80 -0.69 0.058 123.00 -13.50 -2.02 0.00 -45.60 0.00 45.60 1,865.89 932.94 1,929.08 952.70 7.93 -0.70 0.055 125.89 -13.49 -2.02 0.00 -39.77 0.00 39.77 929.68 464.84 961.73 474.96 8.36 -0.71 0.098 126.00 -13.11 -2.01 0.00 -39.54 0.00 39.54 929.28 464.65 960.40 474.96 8.36 -0.71 0.098	107.00 108.00 111.00 114.00 117.00	-19.52 -18.98 -18.44 -17.91 -17.39	-2.05 -2.07 -2.08 -2.09 -2.09	0.00 0.00 0.00 0.00 0.00 0.00	-82.98 -78.90 -76.85 -70.65 -64.42 -58.15	0.00 0.00 0.00 0.00 0.00 0.00	82.98 78.90 76.85 70.65 64.42 58.15	2,104.45 1, 2,084.00 1, 2,073.67 1, 2,042.21 1, 2,006.48 1,	,052.22 2 .042.00 2 .036.83 2 .021.11 2 .003.24 2	,507.63 1,; ,446.74 1,; ,416.44 1, ,326.10 1,; 232.66 1,;	238.42 208.36 193.39 148.77 102.63	5.53 5.77 5.90 6.28 6.67	-0.57 -0.59 -0.59 -0.62 -0.64	0.076 0.075 0.074 0.071 0.067
111.00 -18.44 -2.08 0.00 -70.65 0.00 70.65 2,0/3.67 1,036.83 2,416.44 1,193.39 5.90 -0.59 0.074 111.00 -18.44 -2.08 0.00 -70.65 0.00 70.65 2,042.21 1,021.11 2,326.10 1,148.77 6.28 -0.62 0.071 114.00 -17.91 -2.09 0.00 -64.42 0.00 64.42 2.006.48 1.003.24 2.323.65 1.103.63 6.67 0.021	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90.00 93.00 96.00 99.00 102.00 105.00 107.00	-22.63 -22.03 -21.44 -20.86 -20.28 -19.89 -19.52	-1.93 -1.95 -1.98 -2.00 -2.02 -2.04 -2.05	0.00 0.00 0.00 0.00 0.00 0.00 0.00	-112.63 -106.83 -100.97 -95.04 -89.04 -82.98 -78.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00	112.63 106.83 100.97 95.04 89.04 82.98 78.90	2,274.94 1 2,248.22 1 2,220.81 1 2,192.74 1 2,163.98 1 2,134.56 1 2,104.45 1 2,084.00 1	,137.47 3 ,124.11 2 ,110.41 2 ,096.37 2 ,081.99 2 ,067.28 2 ,052.22 2 ,042.00 2	,069.59 1, ,974.43 1, ,879.80 1, ,785.75 1, ,692.34 1, ,599.61 1, ,507.63 1, ,446.74 1,	515.95 468.96 422.23 375.78 329.64 283.85 238.42 208.36	3.63 3.91 4.21 4.52 4.84 5.18 5.53	-0.44 -0.46 -0.48 -0.51 -0.53 -0.55 -0.57	0.088 0.087 0.085 0.083 0.081 0.079 0.076

Site Num Site Nam Custome					Engine		e: ANSI/TIA-; er:OAA70519			2017 by AT(All rights 017 5:56	
$\begin{array}{c} 135.00\\ 138.00\\ 141.00\\ 143.00\\ 144.00\\ 146.00\\ 146.00\\ 146.00\\ 147.00\\ 149.00\\ 150.00\\ 153.00\\ 155.00\\ \end{array}$	-9.50 -9.17 -8.96 -5.64 -5.46 -5.32 -5.32 -5.05 -1.31 -0.98 -0.76 0.00	-1.74 -1.71 -1.68 -1.19 -1.16 -1.14 -1.14 -1.14 -0.33 -0.26 -0.20 -0.19	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-22.02 -16.79 -11.66 -8.30 -7.12 -4.80 -4.80 -3.66 -1.49 -1.17 -0.40 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	22.02 16.79 11.66 8.30 7.12 4.80 4.80 3.66 1.49 1.17 0.40 0.00	896.03 883.59 870.48 861.36 856.69 847.12 920.33 920.33 920.33 920.33 920.33	448.02 441.80 435.24 430.68 428.34 423.56 460.16 460.16 460.16 460.16 460.16	855.37 820.26 785.20 761.88 750.24 727.02 575.46 575.46 575.46 575.46 575.46 575.46	422.43 405.10 387.78 376.27 370.52 359.05 378.52 378.52 378.52 378.52 378.52 378.52 378.52 378.52	9.79 10.29 10.80 11.14 11.31 11.66 11.66 11.83 12.18 12.36 12.88 13.23	-0.78 -0.80 -0.82 -0.83 -0.83 -0.83 -0.83 -0.83 -0.83 -0.83 -0.83 -0.83 -0.83 -0.83	0.063 0.052 0.040 0.029 0.026 0.020 0.018 0.015 0.005 0.004 0.002 0.000

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:27 PM

Load Case (0.9 - 0.2Sds) * DL + E EMAM Seismic (Reduced DL) Equivalent Modal Analysis Method

Calculated Forces

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi phi phi phi Total Pn Vn Tn Mn Deflect Ro (kips) (kips) (ft-kips) (in) (d	otation deg) Ratio
0.00 3.00 6.00	-35.55 -34.80 -34.07	-2.46 -2.44 -2.43	0.00 0.00 0.00	-296.96 -289.59 -282.26	0.00 0.00 0.00	296.96 289.59 282.26	4,631.78 2,315.89 9,346.21 4,615.74 0.00 -	0.00 0.071
9.00	-33.33	-2.41	0.00	-274.97	0.00	274.97		0.02 0.070 0.03 0.069
12.00 15.00	-32.61 -32.13	-2.38 -2.37	0.00 0.00	-267.75 -260.61	0.00 0.00	267.75 260.61	the second se	0.05 0.069
17.00	-31.73	-2.35	0.00	-255.88	0.00	255.88	4,467.49 2,233.75 8,466.65 4,181.36 0.12 -	0.06 0.069 0.07 0.068
18.00 21.00	-31.03 -30.33	-2.32 -2.29	0.00 0.00	-253.53 -246.56	0.00 0.00	253.53 246.56		0.07 0.068
24.00	-29.64	-2.27	0.00	-239.68	0.00	239.68		0.08 0.068 0.10 0.067
27.00 30.00	-28.95 -28.28	-2.24 -2.21	0.00 0.00	-232.88 -226.17	0.00 0.00	232.88 226.17	4,341.13 2,170.56 7,846.78 3,875.23 0.30 -	0.11 0.067
33.00	-27.61	-2.18	0.00	-219.54	0.00	219.54		0.12 0.066 0.13 0.066
36.00 39.00	-26.95 -26.71	-2.15 -2.14	0.00	-213.01	0.00	213.01	4,220.97 2,110.49 7,296.73 3,603.58 0.54 -	0.15 0.065
40.10	-26.02	-2.14	0.00 0.00	-206.56 -204.19	0.00 0.00	206.56 204.19		0.16 0.065 0.17 0.065
42.00 45.00	-24.94 -24.61	-2.05 -2.04	0.00	-200.20 -194.05	0.00	200.20	4,137.49 2,068.74 6,934.89 3,424.88 0.75	0.18 0.064
45.90	-24.01	-2.04	0.00 0.00	-194.05	0.00 0.00	194.05 192.22		0.19 0.064 0.19 0.077
48.00	-23.65	-1.99	0.00	-187.99	0.00	187.99	3,324.15 1,662.07 5,517.72 2,724.99 0.98 -(0.20 0.076
51.00 52.00	-23.46 -23.02	-1.98 -1.96	0.00 0.00	-182.02 -180.04	0.00 0.00	182.02 180.04		0.22 0.076 0.22 0.075
54.00	-22.46	-1.93	0.00	-176.12	0.00	176.12	3,261.57 1,630.78 5,242.36 2,589.00 1.26 -0	0.24 0.075
57.00 60.00	-21.91 -21.37	-1.91 -1.89	0.00 0.00	-170.32 -164.58	0.00 0.00	170.32 164.58		0.25 0.074 0.27 0.074
63.00	-20.69	-1.86	0.00	-158.92	0.00	158.92	3,162.62 1,581.31 4,833.91 2,387.28 1.75 -0	0.28 0.073
66.00 69.00	-20.17 -19.65	-1.84 -1.83	0.00 0.00	-153.34 -147.80	0.00 0.00	153.34 147.80		0.30 0.073 0.32 0.072
72.00	-19.14	-1.82	0.00	-142.31	0.00	142.31	3,057.58 1,528.79 4,432.24 2,188.92 2.33 -0	0.34 0.072
75.00 78.00	-18.63 -18.20	-1.82 -1.82	0.00 0.00	-136.84 -131.39	0.00 0.00	136.84 131.39	3,021.22 1,510.61 4,300.11 2,123.66 2.55 -0	0.35 0.071 0.37 0.070
80.60	-18.09	-1.82	0.00	-126.66	0.00	126.66		0.39 0.069
81.00 83.00	-17.56 -17.22	-1.82 -1.83	0.00 0.00	-125.93 -122.29	0.00 0.00	125.93 122.29		0.39 0.069
84.00	-16.86	-1.83	0.00	-120.46	0.00	122.29		0.40 0.069 0.41 0.068
85.41 87.00	-16.63 -16.20	-1.84 -1.85	0.00 0.00	-117.88	0.00	117.88	2,288.86 1,144.43 3,120.34 1,541.02 3.39 -0	0.42 0.084
90.00	-15,78	-1.85	0.00	-114.95 -109.39	0.00 0.00	114.95 109.39).43 0.083).45 0.081
93.00 96.00	-15.36 -14.95	-1.89 -1.91	0.00 0.00	-103.78 -98.10	0.00 0.00	103.78 98.10	2,220.81 1,110.41 2,879.80 1,422.23 4.10 -0	0.47 0.080
99.00	-14.54	-1.94	0.00	-92.36	0.00	92.36).49 0.078).51 0.076
102.00 105.00	-14.14 -13.86	-1.96 -1.97	0.00 0.00	-86.55 -80.67	0.00 0.00	86.55 80.67	2,134.56 1,067.28 2,599.61 1,283.85 5.04 -0	0.53 0.074
107.00	-13.61	-1.99	0.00	-76.73	0.00	76.73	2,084.00 1,042.00 2,446.74 1,208.36 5.62 -0).56 0.072).57 0.070
108.00 111.00	-13.23 -12.85	-2.00 -2.01	0.00 0.00	-74.74 -68.74	0.00	74.74	2,073.67 1,036.83 2,416.44 1,193.39 5.74 -0	0.069
114.00	-12.85	-2.01	0.00	-62.70	0.00 0.00	68.74 62.70		0.60 0.066 0.62 0.063
117.00	-12.12	-2.03	0.00	-56.62	0.00	56.62	1,959.62 979.81 2,129.00 1,051.43 6.89 -0	0.64 0.060
120.00 122.12	-11.85 -11.70	-2.03 -2.03	0.00 0.00	-50.54 -46.24	0.00 0.00	50.54 46.24		0.66 0.057 0.67 0.054
123.00	-9.41	-1.96	0.00	-44.46	0.00	44.46	1,865.89 932.94 1,929.08 952.70 7.72 -0	.68 0.052
125.89 126.00	-9.40 -9.14	-1.96 -1.95	0.00 0.00	-38.80 -38.57	0.00 0.00	38.80 38.57		0.69 0.092 0.69 0.091
129.00	-8.88	-1.94	0.00	-32.71	0.00	32.71	918.88 459.44 925.49 457.06 8.60 -0.	.72 0.081
132.00 133.00	-8.79 -6.85	-1.93 -1.73	0.00 0.00	-26.91 -24.98	0.00 0.00	26.91 24.98		.74 0.071 .75 0.065

Site Number: 302495 Site Name: Tolland CT, CT				Code: ANSI/TIA-222-G Engineering Number:OAA705198 C3 01				© 2007 - 2	017 by ATC		All rights 017 5:56		
Customer	: AT8	T Mobili	ty										
$\begin{array}{c} 135.00\\ 138.00\\ 141.00\\ 143.00\\ 144.00\\ 146.00\\ 146.00\\ 146.00\\ 147.00\\ 149.00\\ 150.00\\ 153.00\\ 155.00\end{array}$	-6.62 -6.39 -6.24 -3.93 -3.80 -3.71 -3.71 -3.51 -0.91 -0.68 -0.53 0.00	-1.70 -1.67 -1.64 -1.13 -1.11 -1.11 -1.06 -0.32 -0.25 -0.20 -0.19	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-21.51 -16.40 -11.41 -8.13 -6.97 -4.70 -4.70 -3.59 -1.47 -1.15 -0.39 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	21.51 16.40 11.41 8.13 6.97 4.70 4.70 3.59 1.47 1.15 0.39 0.00	896.03 883.59 870.48 861.36 856.69 847.12 920.33 920.33 920.33 920.33 920.33 920.33	448.02 441.80 435.24 430.68 428.34 423.56 460.16 460.16 460.16 460.16 460.16	855.37 820.26 785.20 761.88 750.24 727.02 575.46 575.46 575.46 575.46 575.46 575.46	422.43 405.10 387.78 376.27 370.52 359.05 378.52 378.52 378.52 378.52 378.52 378.52 378.52	9.53 10.02 10.51 10.84 11.01 11.35 11.35 11.52 11.86 12.03 12.54 12.88	-0.76 -0.78 -0.79 -0.80 -0.80 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	0.058 0.048 0.037 0.026 0.023 0.017 0.016 0.013 0.005 0.004 0.002 0.000

Site Name: Tolland CT, CT

Customer: AT&T Mobility

Code: ANSI/TIA-222-G Engineering Number:OAA705198_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved. 6/29/2017 5:56:27 PM

Analysis Summary

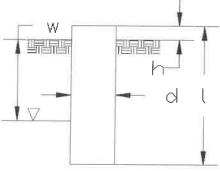
	Reactions					Max Usage		
Load Case	Shear FX (kips)	Shear FZ	Axial FY	Moment MX	Moment MY	Moment MZ		Interaction
	(KIDS)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft)	Ratio
1.2D + 1.6W	33.13	0.00	50.46	0.00	0.00	3611.64	45.90	0.80
0.9D + 1.6W	32.91	0.00	37.83	0.00	0.00	3530.40	45.90	0.77
1.2D + 1.0Di + 1.0Wi	8.12	0.00	93.58	0.00	0.00	995.61	45.90	0.25
(1.2 + 0.2Sds) * DL + E ELFM	1.64	0.00	50.99	0.00	0.00	216.24	45.90	0.06
(1.2 + 0.2Sds) * DL + E EMAM	2.46	0.00	50.99	0.00	0.00	303.42	125.89	0.10
(0.9 - 0.2Sds) * DL + E ELFM	1.64	0.00	35.55	0.00	0.00	211.90	45.90	0.06
(0.9 - 0.2Sds) * DL + E EMAM	2.46	0.00	35.55	0.00	0.00	296.96	125.89	0.09
1.0D + 1.0W	7.87	0.00	42.08	0.00	0.00	850.51	45.90	0.19

et	Plate Type Pole Diameter	Baseplate 50 in	Code Rev. G Date 6/29/2017 Engineer RDB
Base/Flange Plate	Pole Thickness	0.4375 in	Site # 302495
l e	Plate Diameter	65 in	Moment 3611.6 k-ft Carrier AT&T Mobility
	Plate Thickness	2 in	Axial 50.5 k
5	Plate Fy	60 ksi	
Bas	Weld Length	0.3125 in	
1	The second and s	996.01 k-in	
	Applied	525.06 k-in	
	#	8 Show	
μ	Thickness	0.75 in	
ner	Length	5 in	
Stiffeners	Height	12 in	0100
Sti	Chamfer	0.5 in	0 0 0
	Offset Angle	0 °	
_	Fy	36 ksi	
_			
	#	16	
- 1	Bolt Circle	59 in	
	(R)adial / (S)quare	R	↓ (o-f
	Diamatan		
	Diameter	2.25 in	
	Hole Diameter	2.75 in	
	Туре	A615 Gr 75	
	Fy Fu	75 ksi	
	∳₅ Resistance	100 ksi	
		259.82 k	0 0 0
÷	Applied	186.69 k	
	#	0	
			Plate Stress Ratio:
I			0.53 (Pass)
			Bolt Stress Ratio:
+	#		0.72 (Pass)
1	#	0	
1			

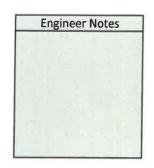
 \updownarrow

ate	Plate Type Pole Diameter Pole Thickness	Flange @ 146.0 ft 16 in 0.5 in	Code Rev. G Date 6/29/2017 Engineer RDB
Base/Flange Plate	Plate Diameter Plate Thickness	28.5 in	Site # 302495 Moment 21.0 k-ft Carrier AT&T Mobility
/Flan	Plate Fy	1 in 60 ksi	Axial 4.6 k
Base	Weld Length ϕ_s Resistance	0.3125 in	Required Flange Thickness:
	Applied	56.55 k-in 11.49 k-in	0.45 in OK
(0)	#	0	
Stiffeners			
Sti			
	# Bolt Circle	12 25.75 in	
	(R)adial / (S)quare	R	\$ +0
0	Diameter	1 in	
Bolts	Hole Diameter	1.125 in	
	Туре Fy	A325 92 ksi	
	Fu ∮ _s Resistance	120 ksi 54.52 k	• • •
- 11	Applied	2.87 k	
•	#	0	
Keintorcement			Plate Stress Ratio:
			0.20 (Pass)
			Bolt Stress Ratio:
4	#	0	0.05 (Pass)
	"	U	
1			

\$


Site Name:	Tolland CT, CT
Site Number:	302495
Engineer:	RDB
Engineering Number:	OAA705198_C3_01
Date:	06/29/17

Design Base Loads (Factored) - Analysis per TIA-222-G Standards


Analyze or Design a Foundation?	Analy	ze					
Foundation Mapped:	N						
Moment (M):		3611.6 k-ft					
Shear/Leg (V):		33.1 k					
Axial Load (P):		50.5 k					
Uplift/Leg (U):		0.0 k					
Tower Type (GT / SST / MP):	MP						
Diameter of Caisson (d):							
Caisson Embedment (L-h):							
Caisson Height Above Ground (h):							
Depth Below Ground Surface to Water 1	Table (w):						
Unit Weight of Concrete:							
Unit Weight of Water:							
Tension Skin Friction/Compression Skin Friction:							
Pullout Angle:							

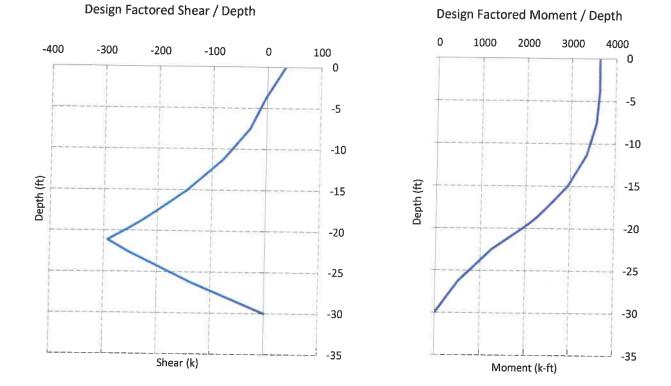
Soil Mechanical Properties

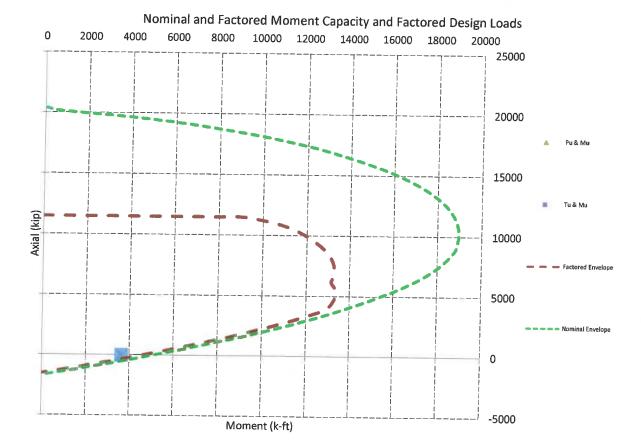
Program Last Updated:	5/13/2014
American Tower Corporation	

7.0	ft
30.0	ft
0.5	ft
3.0	ft
150.0	pcf
62.4	pcf
0.75	
30.0	degrees

Dept	th (ft)	γ_{soil}	Cohesion	ф	Ultimate Skin	Ultimate Bearing
Тор	Bottom	(pcf)	(psf)	(degree)	Friction (psf)	Pressure (psf)
0.0	3.0	105	0	0	0	0
3.0	5.0	127	0	37	0	0
5.0	10.0	133	0	40	832	0
10.0	31.0	137	0	40	1668	34021

Volume of Concrete:	1173.8 ft ³ = 43.5 yd ³
Weight of Concrete (Buoyancy Effect Considered):	111.2 k
Average Soil Unit Weight:	76.3 pcf
Skin Friction Resistance:	825.1 k
Compressive Bearing Resistance:	1309.3 k
Pullout Weight (Minus Concrete Weight):	1155.1 k
Nominal Uplift Capacity per Leg ($\phi_s T_n$):	547.5 k
Nominal Compressive Capacity per Leg ($\phi_s P_n$):	1600.8 k
P _u :	74.8 k
$T_u/\phi_s T_n$:	0.00 Result: OK
$P_u/\phi_s P_n$:	0.05 Result: OK
Total Lateral Resistance:	2862.3 k
Inflection Point (Below Ground Surface):	21.1 ft
Design Overturning Moment At Inflection Point (M _D):	4327.7 k-ft
Nominal Moment Capacity ($\phi_s M_n$):	12424.5 k-ft
$M_D/\phi_s M_n$:	0.35 Result: OK
φ _s :	0.75


Caisson Strength Capacity


Concrete Compressive Strength (f'c): Vertical Steel Rebar Size #: Vertical Steel Rebar Area: # of Vertical Steel Rebars: Vertical Steel Rebar Yield Strength (F_v): Horizontal Tie / Stirrup Size #: Horizontal Tie / Stirrup Area: Design Horizontal Tie / Stirrup Spacing: Horizontal Tie / Stirrup Steel Yield Strength (F_v): **Rebar Cage Diameter:** Strength Bending/Tension Reduction Factor (ϕ_B): Strength Shear Reduction Factor (ϕ_v) : Strength Compression Reduction Factor (ϕ_v) : Steel Elastic Modulus: Design Moment (M_u): Nominal Moment Capacity $(\phi_B M_n)$: $M_u/\phi_B M_n$: Design Shear (V_u): Nominal Shear Capacity $(\phi_V V_n)$: $V_u/\phi_V V_n$: Design Tension (T_u): Nominal Tension Capacity $(\phi_T T_n)$: $T_u/\phi_T T_n$: Design Compression (P_u): Nominal Compression Capacity $(\phi_P P_n)$: $P_u/\phi_P P_n$: Bending Reinforcement Ratio:

 $M_u/\phi_B M_n + T_u/\phi_T T_n$:

4000 psi 11 1.56 in² 18 60 ksi 5 0.31 in² 12.0 in 60 ksi 76.0 in 0.90 ACI318-05 - 9.3.2.1 0.75 ACI318-05 - 9.3.2.3 0.65 ACI318-05 - 9.3.2.2 29000 ksi 3635.8 k-ft 4700.7 k-ft - ACI318-005 - 10.2 0.77 Result: OK 292.5 k 528.1 k - ACI318-05 - 11.3.1.1 or 11.5.7.2 0.55 Result: OK 0.0 k 1516.3 k - ACI318-05 - 10.2 0.00 Result: OK 74.8 k 9748.2 k - ACI318-05 - 10.3.6.2 0.01 Result: OK 0.005 ACI318-05 - 10.8.4 & 10.9.1

0.77 Result: OK

Radio Frequency Emissions Analysis Report

AT&T Existing Facility

Site ID: CT1073

Tolland East Central 5 Barbara Road Tolland, CT 6084

July 6, 2017

Centerline Communications Project Number: 950006-062

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	8.50 %			

July 6, 2017

AT&T Mobility – New England Attn: John Benedetto, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT1073 – Tolland East Central

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT&T facility located at **5 Barbara Road, Tolland, CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467 μ W/cm² and 567 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over this or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT&T Wireless antenna facility located at **5 Barbara Road, Tolland, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
UMTS	850 MHz	2	30
UMTS	1900 MHz (PCS)	2	30
LTE	700 MHz	2	60
LTE	1900 MHz (PCS)	2	60
GSM	850 MHz	2	30
GSM	1900 MHz (PCS)	2	30

Table 1: Channel Data Table

The following antennas listed in *Table 2* were used in the modeling for transmission in the 700 MHz, 850 MHz and 1900 MHz (PCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

			Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
А	1	Powerwave 7770	149
А	2	KMW AM-X-CD-16-65-00T-RET	149
А	3	KMW AM-X-CD-16-65-00T-RET	149
В	1	Powerwave 7770	149
В	2	KMW AM-X-CD-16-65-00T-RET	149
В	3	KMW AM-X-CD-16-65-00T-RET	149
С	1	Powerwave 7770	149
С	2	KMW AM-X-CD-16-65-00T-RET	149
С	3	KMW AM-X-CD-16-65-00T-RET	149

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT&T configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

					Total TX		
Antenna			Antenna Gain	Channel	Power		
ID	Antenna Make / Model	Frequency Bands	(dBd)	Count	(W)	ERP (W)	MPE %
Antenna		850 MHz /					
A1	Powerwave 7770	1900 MHz (PCS)	11.4 / 13.4	4	120	2,140.89	0.49
	KMW						
Antenna	AM-X-CD-16-65-00T-	700 MHz /					
A2	RET	1900 MHz (PCS)	13.35 / 15.25	4	240	6,614.85	1.68
	KMW						
Antenna	AM-X-CD-16-65-00T-	850 MHz /					
A3	RET	1900 MHz (PCS)	13.85 / 15.25	4	120	3,465.76	0.80
				Sec	tor A Comp	osite MPE%	2.98
Antenna		850 MHz /					
B1	Powerwave 7770	1900 MHz (PCS)	11.4 / 13.4	4	120	2,140.89	0.49
	KMW						
Antenna	AM-X-CD-16-65-00T-	700 MHz /					
B2	RET	1900 MHz (PCS)	13.35 / 15.25	4	240	6,614.85	1.68
	KMW						
Antenna	AM-X-CD-16-65-00T-	850 MHz /					
B3	RET	1900 MHz (PCS)	13.85 / 15.25	4	120	3,465.76	0.80
Sector B Composite MPE%					2.98		
Antenna		850 MHz /					
C1	Powerwave 7770	1900 MHz (PCS)	11.4 / 13.4	4	120	2,140.89	0.49
	KMW						
Antenna	AM-X-CD-16-65-00T-	700 MHz /					
C2	RET	1900 MHz (PCS)	13.35 / 15.25	4	240	6,614.85	1.68
	KMW						
Antenna	AM-X-CD-16-65-00T-	850 MHz /					
C3	RET	1900 MHz (PCS)	13.85 / 15.25	4	120	3,465.76	0.80
Sector C Composite MPE%					2.98		

Table 3: AT&T Emissions Levels

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each AT&T Sector as well as the composite MPE value for the site.

Site Composite MPE%				
Carrier	MPE%			
AT&T – Max Sector Value	2.98 %			
T-Mobile / Voicestream	1.90 %			
Verizon Wireless	2.83 %			
Sprint	0.35 %			
Nextel	0.44 %			
Site Total MPE %:	8.50 %			

Table 4: All Carrier MPE Contributions

AT&T Sector A Total:	2.98 %
AT&T Sector B Total:	2.98 %
AT&T Sector C Total:	2.98 %
Site Total:	8.50 %

Table 5: Site MPE Summary

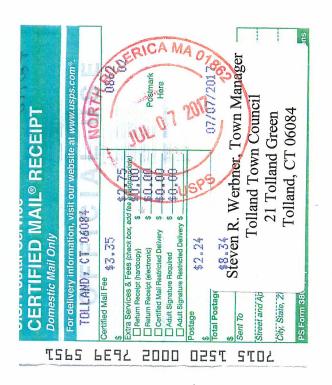
FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT&T sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

AT&T _ Frequency Band / Technology (All Sectors)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE
AT&T 850 MHz UMTS	2	414.12	149	1.46	850 MHz	567	0.26%
AT&T 1900 MHz (PCS) UMTS	2	656.33	149	2.31	1900 MHz (PCS)	1000	0.23%
AT&T 700 MHz LTE	2	1,297.63	149	4.56	700 MHz	467	0.98%
AT&T 1900 MHz (PCS) LTE	2	2,009.79	149	7.07	1900 MHz (PCS)	1000	0.71%
AT&T 850 MHz GSM	2	727.98	149	2.56	850 MHz	567	0.45%
AT&T 1900 MHz (PCS) GSM	2	1,004.90	149	3.53	1900 MHz (PCS)	1000	0.35%
						Total:	2.98%

Table 6: AT&T Maximum Sector MPE Power Values

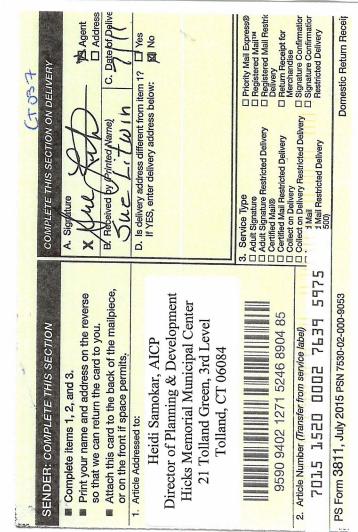
Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

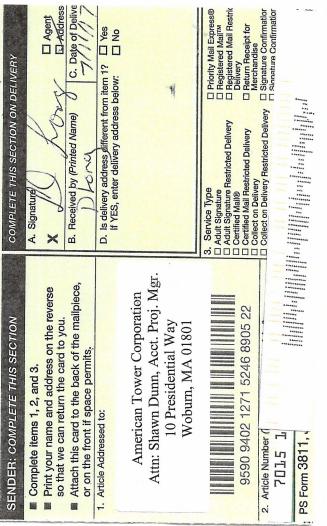

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)
Sector A:	2.98 %
Sector B:	2.98 %
Sector C:	2.98 %
AT&T Maximum Total (per sector):	2.98 %
Site Total:	8.50 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **8.50** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.


FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan RF Engineering Director Centerline Communications, LLC 95 Ryan Drive, Suite 1 Raynham, MA 02767



PLOT IN

