January 22, 2019
Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification for Crown Site BU: 823530
 AT\&T Site ID: 10107966
 580 Chapel Street, Thomaston, Litchfield County, CT 06787
 Latitude: $41^{\circ} \mathbf{3 9} \mathbf{4 8 . 4 8 " /} /$ Longitude: $-73^{\circ} \mathbf{4}^{\prime} \mathbf{2 7 . 4 1 "}$

Dear Ms. Bachman:
AT\&T currently maintains (6) antennas at the 142 -foot level of the existing 175 -foot monopole at 580 Chapel Street, Thomaston, Connecticut 06787. The tower is owned by Crown Castle. The property is owned by the Town of Thomaston. AT\&T intends to replace (6) of the existing antennas with (6) new antennas, add (3) additional antennas, replace (6) existing RRHS with (12) RRHs, add (1) hybrid, and add (4) DC power cables.

The facility was approved by the Thomaston Zoning Board of Appeals on July 18, 2000 with the following conditions:

1. Conduct an annual RF inspection and submit the results to the Commission.
2. Regrade the driveway as noted in Land Tech's letter dated October 6, 2000.
3. Planmetics dated November 1, 2000, regarding items 12-15.
4. If the Town decides not to have the tower removed, then the site plan and mylar must be revised. Any undertaking regarding the Town's tower shall be done in accordance with the conditions of the signed contract.

AT\&T's proposed modification complied with all aforementioned conditions.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § $16-50 \mathrm{j}-73$, for construction that constitutes an exempt modification pursuant to R.C.S.A. § $16-50 \mathrm{j}-$ 72(b)(2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to First Selectman Edmond V. Mone, Town of Thomaston, as the property owner, and Jeremy Leifert, Land Use Administrator and Zoning Enforcement Officer for the Town of Thomaston. Crown Castle is the tower owner.

1. The proposed modifications will not result in an increase in the height of the existing tower.

Page 2
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Sprint respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § $16-$ 50j-72(b)(2). Please send approval/rejection letter to Attn: Anne Marie Zsamba.

Sincerely,
Anne Marie Zsamba, Esq.
Real Estate Specialist
3 Corporate Park Drive, Suite 101, Clifton Park, NY 12065
(201) 236-9224
annemarie.zsamba@crowncastle.com
Attachments:
Tab 1: Exhibit-A: Compound Plan and Elevation Depicting the Planned Changes
Tab 2: Exhibit-B: Structural Modification Report
Tab 3: Exhibit-C: General Power Density Table Report (RF Emissions Analysis Report)
cc: Edmond V. Mone, First Selectman
Thomaston Town Hall
158 Main Street
Thomaston, CT 06787
Jeremy Leifert
Land Use Administrator/Zoning Enforcement Officer
Thomaston Town Hall

Melanie A. Bachman
January 22, 2019
Page 3

158 Main Street
Thomaston, CT 06787
\&

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Town of Thomaston, Connecticut - Assessment Parcel Map
Parcel: 55-03-08
Address: 580 CHAPEL ST

Thomaston, CT : Commercial Property Record Card

[Back to Search Results]
Search For Properties
\square
Account T0000001 Living Units 0

Owner Information
T Mobile (lessee) Town Of Thomaston (lessor) Crown Castle
Pmb331 4017 Washington Rd
Mcmurray PA 15317

Deed Information

Book/Page:
Name

Deed Date:

Building Information
Building No: 1
Year Built: 1950
No of Units: 0
Structure Type: Phone/Electric Equipment Build
Grade: B
Identical Units: 1

Valuation	
Land:	$\$ 0$
Building:	$\$ 473,714$
Total:	$\$ 473,714$
Net Assessment:	$\$ 331,600$

Sales History

Book/Page	Date	Price	Type
Out Building Information Structure Code			
Width	Lgth/SqFt	Year	

Exterior/Interior Information

Levels Size Use Type Ext. Walls Const. Type Partitions Heating A/C Plumbing Condition Func. Utility Unadj. RCNLD 01-01 1×620 Multi-Use Storage Brick/Stone Fireproof Normal None None Normal Good Good 14850

Building Sketch

Notice

Tax Year 2015 Values

The information delivered through this on-line database is provided in the spirit of open access to government information and is intended as an enhanced service and convenience for citizens of Thomaston, CT.

The providers of this database: CLT, Big Room Studios, and Thomaston, CT assume no liability for any error or omission in the information provided here.

Currently All Values Have Not Been Finalized and Are Subject To Change.
Comments regarding this service should be directed to: Hudekfohomistone ape

Euitr sy

studios
$\%$

THOMASTON ZONING BOARD OF APPEALS TOWN MALL THOMASTON, CT 06787

CERTIFICATE OF VARIANCE

This is to certify that the Thomaston Zoning Board of Appeals held a public hearing on July 18, 2000 , at 7.45 pm In Meeting Roon 1 of the Town Hall ori an application from Voice Stream Wireless Corporation of 100 Filley St, Bloonfield, CT, The applicants sought a vatance to permit their locating a grotind mounted tover for a wireless communioations facility on the west side of Chapel Street, approxinately 1,000 feet Gistait from the intersection of Chapel Street with Prospect Siret. The proposed tower is 175 feet in height The applieants requested permission to locate the tower 201 fet from the property line. The property so owned by the Townof Thomastogand is located in anRA 40 zone.

Sec 27.4. of the Zoning Regulations of the Town of Thomston provides that: , the minimum distance trom the base of any proposed ground atounted regulated foility to any property iline roadway, habitable dwelling, business or indistrial use, public receatonal areas, on public pathway Shall be the height of the facility and mount including any antennas or other appurtenances plus fifty per cent? Thus, 2625 feet was the equired setback.

With quorum present, the Board yoted unanimously to grant the variance. The reasons were, topordehic considerations soll confitions on other parts of the site, and concens over elevation on the sites

ATIEST: JosephF Wassong, Jr.

$$
\begin{aligned}
& \text { Tomm of Thpmastan }
\end{aligned}
$$

$$
\begin{aligned}
& 158 \text { 7hain Stret }
\end{aligned}
$$

Return Receipt Requested

November 9， 2000

Volce Strean Wireless
100 Filey street
Bloorifield，CT 06002

Re：Specinl Permit Approval for a comercial
 Cellular Telecommancations tower chapel street，Thomaston；Conn．

Dear sirts：
At lts meeting on Wednesday November 1，2000，the Thomaston Plafning and zoning Compission approved your Spedial Pempt Application to construct a comimetcial cellular comminications tower on municipal property the the of Chapel street．

The applioation wap approved wth the foltowing conditions：
1．Conduct an arnual RF inspecton and subnit the results to the comm 15 sion．

2．Regrade dhe dfeway as noted in Liand Tech＇s Letter datea． October 6；2000．

3．hgreed to，the terms and condtions s roted in a RXArom Phanmetrics dated November 1，2000，Tegneding items 12－ 15.

4．If the town deeldes not to haye the tower Lemoved，then the ste plari and inylu nust be revised．Any undertaring regarang the fownt tower shall be bon in acoordance： whth the condethons of the slgned conkrect．
sincerely．

Samuel Barto
stater HeZC
tand प⿱宀㠯 o olficer／zeo

Tufun of Thomaztm
SELECTMANSOFFICE TOWN HALL

THOMASTGN, CONNECTICUT O57B7 2353421
SEETECMEN'马 MEETIMG MINURES

At a meeting of the Board of Selectmen hald on April 25 , 2000 the following business wes condicted:
The meting opened at A:00 p.m. with the Entire Board in attendance: Elso attenaing were thomas C. Cuga of In felecom, Inc., Sam Barco Town Planner and ditorney George Seabourne.
Salectman Bramer read Fair Houshtg Resolution ant a Fif Housing Policy Sutement. (Cople st Attached)

Selectman pupont made motionto edopt the Rafr tousting Resolution and לhe setr Housing policy statement seconded by Selectmat o connell and Dassed than mously by Selectman Bander.
Selectian Bramer explained that as medphents of Smal elties Finding from the Deparment of Economic and Commutty Developrent we must adopt the above to reaffurn our comitment to Fair Houeting. Lariy Wagner the Town's Grants Coondinator hes been the administrator of the Town's projects an programs and Lorraine Bobb 15 our gestonated representative and is repponsible for the enforcement and limplementation of the fale hourng Regulathons.
gam berto feported to the board of setectilen that the rodoty system in Phese fit of the thghwood Earms gubdiyis on has ben hirpected by Town Engineer bob oley, Mighay Superintendent Gervy Grohosici and by himselitand te ts thein recomendathon that it beacopted es a Lown Road.
Seleeman otennell made motion to appove phase III Bectuon of the Hughwool Farms subdivision hs a Town approved road seonded by Selecthar Dupont and pased unenmoury by Gelectman Bramer.
Selectinn prpont made motion to ada Hughwod Farms pubivisionPhese to todey S Agend seconted by Splectan oformell and pased unanimously by Selectman Bramet:

 of gredit in the gthont of 60.000 .00 seconded by Selequman pupont: and passed unamimounly by seliectian Bramiet.
Copy of Hrevocable sendyy Heter of Erearumtented
Selectman Bramer teponted that Bepresentatises fom the fater compan
 to atsuss the desthn of the Water Extenshom to uppet ntgh street.

The Board of Betectmen brimply ment ower fown Attorney kybak ${ }^{1}$
 Thomaston and Omipoint Communicaeions, Inc. regafding the Comuhtoatigns Tover on Chapel Street.
Mr. Cusa said Iooking over the guggested changes, they will be acceptote, however icems that might imolve Fegeral pegtiations would be out of their eontroi.
Selectman olconnel made motion to acoept the propsed Lease Agtement between the 7bwn of Thomaston and omitpornt commundations; Inc. with tha sugestef ehanges made by Attorney Rybak and subject to the pppeval of Ehe Inland Wethends Gommeston; planitng and Zonng Comimssion and Town Merting Approvat seconded by selectman Dupont and Fasced inatimousty by belecench Bnammer.
Selectman bupent made motion to approve glent ce elars reguest that his renennhg yaretion hme for this year days) be hepe pate his ammersary dete of July 6,200 as ne is gotng on a eruse fh May of 2001 geconded by selectman otconnex and passed tnanimousty by Seleetman Bramet.

 Br anniet

Finst Selectuan

Selectan

Torim at Thnometor 158 3 2 tuin 9 trest

Augusti 7, 2000

Volce Stream Wireless
Ioo Filley Street
Broomfleld, CT 06002
Attry Mr. Rick Frazier

Re: Special Permt Application tor a commechal Telecomunications Tower and Facility

Deaf Mr; Frazler:

At its metting on Auguet 2, 2000, the Thomaston Plaming and Zontig compission accepted your Special Perait appleation. THe public hearing is scheduled. For Wedresday, septenber 6 , 2000, 解 7:00 ph. The meeting will be held in the tiena Morton att Gallery.

The comission has scheduled an on-ste inspection for Wednescay, August 30,2000 , at 6.30 pm . In accordance with the Zoning Regulttions, Section 277 , part L, the coraission tequests that you send ploft a ste taentricathon balioon on or Just prior to the dey of inspection. My ottice wil pubAish a legal notice prior to the ratelng. The Site walk will be ppen to the public.

PTease mare sure to aaress each of the tequirements in Artche XXVII at the pibilc hearing. This ghouta insure a very thorough and informathe publid hearing.

If you have any questions, comments onsuggestansp please Eeel free to call the lana Use office at: $283-8411$.

Samel Barto
Land Use ofticer

PLeas Note The bal100n
Bhall atso be ralsed at least daysprot to the publue hearlng.

SPECIAL PERMIT APPLICATION
 Town of Thomaston, Connecticut

Date Received:

Application Jor a special permit

applicant: Voice Stareqm/Omnipoint Wireless Address

The undersigned hereby fakes appliagtion to the planning and
 provisions of Section 3. 11 - schedule A permitted Use era Article IX of the Momaston zoning Regulations.

Section, Previous application

Hes a previous Special perm Application been fluedwhthe the Comiselon tor the same premises? Yes: \qquad

Sector 2. Placement on Agenda

In order for the compselon to consheryour application, it must be received $1 n$ the planing and zoning of the (Han duse. office no later that flue (5) working day prior to the next Hegharty scheduled meting.

Section 3. PLans and Dodutentation

A11 Special permit applications unless otherwise prescribed in the Zoning Regulations or directed by the commission, must. be accompanied by the following documentation:

Tivari of Thpmasten

158 3itain Street

Auqust 7, 2000

Voice Stream Wireless
100 Filley Street
Bloonfield, CT 06002
Atti: Mr. Rtok Frazier.

Re; Special pernit Application for a commercial
Telecomminations Tower and racility

Dear Mr. Hrazier:
At its meeting on Autust 2, 2000, the Thomaston Planning and Zoning Commission accepted your special permit Application. The public hearhig is schedulea for Wednesary, September 6 , 2000, 解 $7,00 \mathrm{p}$. The meeting will be held in Ghe Lena Morton Att galiery.

The Comisston has schecuied an on-site lnspection for tednesday, August 30,2000 , at 6,30 . .m. In accordanee whth the Zoning Regulttions, Section 27.7 , Fart 1 , the Commission wequests that you send aloft, site ldentlication balloon on or Just prior to the alay of inspection. My oftce wil pubthsh a legat notice prior te the ratsing the bite walk wil be open to the pubilo.

Please make sure to addesseach of the requirements in art LCle XXVII, the publie hearing, This should insure a very thorough end informative public heasing:

Tf you neve any questons, ooments or plggedtons, pease: reel Iree to deall the Lanc Use onfice at $283-8414$.
sinoenely.

Samuel Barto IAnA Use Officer

Please Note, The bailoon Shell atso be ratsed de Heat 3 dus prior to the pubtic herring.
A. A "gtatemgnt of Use" whtch shall detail the proposed use of the site,
b. Site Plan and Lendseaping plan.
C. Archifectural and construction PIan
d. FHopd Hapard Area Data
e. Soi 1 Fosion and Setimentation control Phan
f. 11 other pertinent infonmaton and oonmentation that fay be requared by the Commpstion in onder to mae a deciston on the appliedtion.

Section 4. Application Fees

a. Standard Application Fee: $\$ 150.00$
b. Home Dccupation Permet $\$ 100.00$

Section 5. Watyer of Requirements

 or 9.3 .4 of the zonthg Regulations?

Yes \qquad - Ho: \qquad
If yes, Whease spectut

Sectan 6. Fxtenslon of Replew Petrod

Wh the appleant ronsent to apornat extenston of time in ofder foz the conidspon to take action on this pppication?
Yes: \qquad \therefore No: \qquad
It yes, piease spertiy pertod or datez \qquad

Section 7. Failure to Submit

Failure by an applicant to submit any or all of the reguired or requested docinentation inder section 3.11 or Article IX may be grounds for the comission to oonstare the applicathon as being incomplete.

Section 8 . Review by Town Erigneer

The applicant shal he mesponsible for peylng all inspection and review costs, incurped by the Town Engineer during the fevew process.

If additionat on-site inspection and review is necessary and Tequired by the Comission after the appobed ls granted and prioe to completion of the project, the applicant shall also be Tesponsible for these costs.

The costs shal be no more per hour than phat ts assessed to the Town in any given Year by the Town Enguneer.

Section 9. Public Hearkg

The Thometon Plenning and ZOMAng Comitsion will oonduct a "publie Feering" on th, application. The appileant, or thelr athoriget pgent, must be present at the hearing gnd shouta Beprepared to present information showing how the proposed use of the fite along with the builange, structures, and tachlithes whil conform to the standards as spectifed frese. Regulations.

A1 standarde as specirtid in Anticle $4 x$ ate $1 n$ adatiton 60 other reguirenients as contuned in the Regurtions. when nay be applicoble $1 n$ the District in thich the spedial penit is proposed.
section 10. Inspection of Property

Whe Comiselon is authorized by the subission of this apozention to inepect the premises.

Section 11. Additional Information

The commission may obtain additional documentation ana infornation on its own initiative but will need to rely upon data presented to it by the applicant.

Section 22. Modification of Approval.

If approval is granted by the Planing and zoning Commission, it may be subject to toonfiertions deemed necessary to conform to specific standards of the Regulations. It may ale be Subject to appropriate conditions and safeguards nefesery to conserve public health kind safety, convenience, welfare and property values in the neighborhood.

Applicants signature:
 Home Phone: 6932721
 Business Phone: 860675529

OPRTCE USE
comisshon date when application was received. \qquad
Date of mutual pubile Hearing \qquad
public Hearing was continued to: \qquad

Date of approval e \qquad Disapproval: \qquad
Was approval. iodine:
Yes: \qquad No: \qquad
If yes, give specifics: \qquad
\qquad
\qquad

		W2] ${ }^{\text {min }}$	¢
	哭		

Date: December 13, 2018
Heather Simeone
Crown Castle
3530 Toringdon Way Suite 300
Charlotte, NC 28277

Black \& Veatch Corp.
6800 W. 115th St., Suite 2292
Overland Park, KS 66211
(913) 458-8145

Structural Analysis Report	
AT\&T Mobility Co-Locate	
Carrier Site Number:	10107966
Carrier Site Name:	CTL01062
Crown Castle BU Number:	823530
Crown Castle Site Name:	CT364/Chapel St.
Crown Castle JDE Job Number:	548514
Crown Castle Work Order Number:	1669286
Crown Castle Order Number:	471611 Rev. 0
Black \& Veatch Corp. Project Number:	400087
580 Chapel Street, Thomaston, Litchfield County, CT	
Latitude $41^{\circ} 39^{\prime} 48.48^{\prime \prime}$, Longitude -73 ${ }^{\circ} \mathbf{4}^{\prime} \mathbf{2 7 . 4 1 "}$	
175 Foot - Monopole Tower	

580 Chapel Street, Thomaston, Litchfield County, CT
175 Foot - Monopole Tower

Subject:

Carrier Designation:

Crown Castle Designation:

Monopole

Engineering Firm Designation:
Site Data:

Dear Heather Simeone,
Black \& Veatch Corp. is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration
Sufficient Capacity
This analysis utilizes an ultimate 3 -second gust wind speed of 120 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Neeraj Jog

Respectfully submitted by:

TABLE OF CONTENTS

1) INTRODUCTION
2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 -Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC7
4.1) Recommendations
5) APPENDIX A
tnxTower Output
6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 175 ft Monopole tower designed by PiRod Manufactures Inc.
2) ANALYSIS CRITERIA

Building Code:	2018 IBC
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	120 mph
Exposure Category:	B
Topographic Factor:	1
lce Thickness:	1.500 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
142.0	143.0	1	cci antennas	HPA65R-BU4A w/ Mount Pipe	$\begin{gathered} 12 \\ 2 \\ 6 \end{gathered}$	$\begin{gathered} 15 / 8 \\ 3 / 8 \\ 3 / 4 \end{gathered}$
		2	cci antennas	HPA65R-BU6A w/ Mount Pipe		
		3	ericsson	RADIO 4415 B30		
		3	ericsson	RRUS 4449 B5/B12		
		3	ericsson	RRUS 4478 B14		
		3	ericsson	RRUS 8843 B2/B66A		
		2	kathrein	80010964 w/ Mount Pipe		
		4	kathrein	80010965 w/ Mount Pipe		
		3	powerwave technologies	7770.00 w/ Mount Pipe		
		6	powerwave technologies	LGP21401		
		2	raycap	DC6-48-60-18-8F		
	142.0	1	cci tower mounts	Miscellaneous [NA 507-1]		
		1	crown mounts	Platform Mount [LP 303-1]		
		1	raycap	DC6-48-60-18-8F		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Nümber of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
172.0	175.0	2	andrew	VHLP2.6	3	$\begin{gathered} 15 / 8 \\ 7 / 8 \end{gathered}$
	172.0	1	andrew	ATJB200-A01-007		
		2	andrew	ETW190VS12UB		
		1	cci tower mounts	Platform Mount [LP 701-1]		
		3	commscope	ATBT-BOTTOM-24V		
		3	commscope	LNX-6515DS-VTM w/ Mount Pipe		

Mounting Level (ft)	Center Line Elevation (ft)	$\left\lvert\, \begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered}\right.$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	ems wireless	$\underset{\substack{\text { RR90-17-02DP w/ Mount } \\ \text { Pipe }}}{ }$		
	168.0	1	bird technologies group	OA20-67-DIN		
		1	lone star electronics	LS-230C		
168.0	171.0	1	lone star electronics	LS-230C	6	7/8
	168.0	1	cci tower mounts	$\text { Side Arm Mount [SO } 701 \text { - }$		
162.0	162.0	3	alcatel lucent	800 MHz 2 X 50 W RRH WIFILTER	4	$11 / 4$
		3	alcatel lucent	PCS $1900 \mathrm{MHz} 2 \times 40 \mathrm{~W}$		
		3	alcatel lucent	TD-RRH8×20-25		
		1	cci tower mounts	Platform Mount [LP 712-1]		
		3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe		
		3	rfs celwave	APXVTM14-C-120 w/ Mount Pipe		
152.0	152.0	6	antel	LPA-80080/4CF w/ Mount Pipe	61	$\begin{aligned} & 15 / 8 \\ & 13 / 8 \end{aligned}$
		1	cci tower mounts	Sector Mount [SM 801-3]		
		6	commscope	NNHH-65B-R4 w/ Mount Pipe		
		1	raycap	RVZDC-6600-PF-48		
		3	samsung telecommunications	RFV01U-D1A		
		3	$\begin{array}{\|c\|} \hline \text { samsung } \\ \text { telecommunications } \end{array}$	RFV01U-D2A		
115.0	115.0	3	rfs celwave	$\begin{gathered} \text { APXV18-206517S-C w/ } \\ \text { Mount Pipe } \end{gathered}$	6	$15 / 8$
50.0	50.0	1	cci tower mounts	Side Arm Mount [SO 701- $1]$	1	1/2
		1	pctel	GPS-TMG-HR-26NCM		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	FDH Engineering, Inc.	3462674	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Pirod, Inc.	3464631	CCISITES
4-TOWER MANUFACTURER DRAWINGS	Pirod, Inc.	3462695	CCISITES

3.1) Analysis Method

$\operatorname{tn} \times$ Tower (version 8.0.4.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases.
Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
4) This analysis was performed under the assumption that all information provided to Black \& Veatch is current and correct. This is to include site data, appurtenance loading, tower/foundation details, and geotechnical data. The loading on the structure is based on CAD level drawings and carrier orders provided by the owner. If any of this information is not current and correct, this report should be considered obsolete and further analysis will be required.

This analysis may be affected if any assumptions are not valid or have been made in error. Black \& Veatch Corp. should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) (Monopole Tower)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	$P(K)$	SFPR allow (K)	$\%$ Capacity	Pass/Fail
L1	175-164.25	Pole	TP26x22x0.25	1	-4.15	1512.93	4.3	Pass
L2	$\begin{gathered} 164.25- \\ 129.67 \end{gathered}$	Pole	TP34.0625x24.4135x0.3125	2	-17.94	2472.98	30.9	Pass
L3	129.67-96	Pole	TP41.75×32.452x0.375	3	-26.07	3620.12	42.9	Pass
L4	96-63.17	Pole	TP49.0625x39.8421×0.375	4	-35.67	4051.65	54.2	Pass
L5	63.17-31.17	Pole	TP56.125x46.9602×0.375	5	-46.67	4409.30	62.1	Pass
L6	31.17-0	Pole	TP62.9375×53.8475×0.375	6	-60.95	4763.53	69.3	Pass
							Summary	
						Pole (L6)	69.3	Pass
						Rating =	69.3	Pass

Table 5 - Tower Component Stresses vs. Capacity (Monopole Tower) - LC7

Notes	Component	Elevation (ft)	\% Capacity	Pass /Fail
1	Anchor Rods	0	62.6	Pass
1,2	Base Plate	0	-	Pass
1	Base Foundation	0	66.6	Pass
1	Base Foundation Soil Interaction	0	65.4	Pass

Notes:

1) See additional documentation in "Appendix C-Additional Calculations" for calculations supporting the \% capacity consumed. Rating per TIA-222-H Section 15.5.
2) Base and flange plate design methodology of the manufacturer has been reviewed and found to be an acceptable means of designing to resist the full capacity of the bolts and shaft.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration: No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

MATERIAL STRENGTH

MATERIAL STRENGTH					
GRADE	Fy	Fu	GRADE	Fy	Fu
A 472.65	65 ksi	30 ksi			

TOWER DESIGN NOTES

1. Tower is located in Litchfield County, Connecticut
2. Tower designed for Exposure B to the TIA-222-H Standard.
3. Tower designed for a 120 mph basic wind in accordance with the TIA-222-H Standard.
4. Tower is also designed for a 50 mph basic wind with 1.27 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Risk Category II.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TIA-222-H Annex S.
9. TOWER RATING: 69.3%

Client: Crown Castle	Drawn by: Josh Riley	App'd:
Code: TliA-222-H	Date: $12 / 13 / 18$	Scale: NT ;
		${ }_{\text {di }}$ wig No. E -

Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:

1) Tower is located in Litchfield County, Connecticut.
2) Tower base elevation above sea level: 543.00 ft .
3) Basic wind speed of 120 mph .
4) Risk Category II.
5) Exposure Category B.
6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
7) Topographic Category: 1.
8) Crest Height 0.00 ft .
9) . Nominal ice thickness of 1.2750 in.
10) Ice thickness is considered to increase with height.
11) Ice density of 56 pcf.
12) A wind speed of 50 mph is used in combination with ice.
13) Temperature drop of $50^{\circ} \mathrm{F}$.
14) Deflections calculated using a wind speed of 60 mph .
15) TIA-222-H Annex S..
16) A non-linear (P-delta) analysis was used.
17) Pressures are calculated at each section.
18) Stress ratio used in pole design is 1.05 .
19) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Consider Moments - Legs	Distribute Leg Loads As Uniform	Use ASCE $10 \times$-Brace Ly Rules
Consider Moments - Horizontals	Assume Legs Pinned	Calculate Redundant Bracing Forces
Consider Moments - Diagonals	\checkmark Assume Rigid Index Plate	Ignore Redundant Members in FEA
Use Moment Magnification	$\sqrt{ }$ Use Clear Spans For Wind Area	SR Leg Bolts Resist Compression
Use Code Stress Ratios	Use Clear Spans For KL/r	All Leg Panels Have Same Allowable
Use Code Safety Factors - Guys	Retension Guys To Initial Tension	Offset Girt At Foundation
Escalate lce	\checkmark Bypass Mast Stability Checks	$\sqrt{ }$ Consider Feed Line Torque
Always Use Max Kz	\checkmark Use Azimuth Dish Coefficients	Include Angle Block Shear Check
Use Special Wind Profile	$\sqrt{ } \sqrt{\text { Project Wind Area of Appurt. }}$	Use TIA-222-H Bracing Resist. Exemption
Include Bolts In Member Capacity	Autocalc Torque Arm Areas	Use TIA-222-H Tension Splice Exemption
Leg Bolts Are At Top Of Section	Add IBC. $6 \mathrm{D}+\mathrm{W}$ Combination	
Secondary Horizontal Braces Leg	Sort Capacity Reports By Component	$\sqrt{ }$ Include Shear-Torsion Interaction
Use Diamond Inner Bracing (4 Sided)	Triangulate Diamond Inner Bracing	Always Use Sub-Critical Flow
SR Members Have Cut Ends	Treat Feed Line Bundles As Cylinder	Use Top Mounted Sockets
SR Members Are Concentric	Ignore KL/ry For 60 Deg. Angle Legs	Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	175.00-164.25	10.75	2.92	18	22.0000	26.0000	0.2500	1.0000	$\begin{gathered} \hline \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L. 2	164.25-129.67	37.50	3.83	18	24.4135	34.0625	0.3125	1.2500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$

175 Ft Monopole Tower Structural Analysis
Project Number 400087, Order 471611, Revision 0

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	$\begin{gathered} \text { Top } \\ \text { Diameter } \\ \text { in } \end{gathered}$	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L3	129.67-96.00	37.50	4.67	18	32.4520	41.7500	0.3750	1.5000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L4	96.00-63.17	37.50	5.50	18	39.8421	49.0625	0.3750	1.5000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L5	63.17-31.17	37.50	6.25	18	46.9602	56.1250	0.3750	1.5000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L6	31.17-0.00	37.42		18	53.8475	62.9375	0.3750	1.5000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$

Tapered Pole Properties

Section	Tip Dia. in	Area $i n^{2}$	1	$\begin{gathered} r \\ \text { in } \end{gathered}$	$\begin{aligned} & C \\ & \text { in } \end{aligned}$	$\begin{aligned} & 1 / C \\ & i n^{3} \end{aligned}$	$\underset{i n^{4}}{J}$	$\begin{gathered} \hline i t / Q \\ i n^{2} \\ \hline \end{gathered}$	$\begin{aligned} & w \\ & \text { in } \end{aligned}$	w/t
L1	22.3008	17.2586	1031.4832	7.7212	11.1760	92.2945	2064.3237	8.6310	3.4320	13.728
	26.3625	20.4326	1711.6544	9.1412	13.2080	129.5922	3425.5610	10.2183	4.1360	16.544
L2	25.5048	23.9052	1754.2801	8.5559	12.4021	141.4508	3510.8685	11.9549	3.7468	11.99
	34.5398	33.4758	4817.4335	11.9812	17.3038	278.4040	9641.2058	16.7411	5.4450	17.424
L3	33.8591	38.1797	4963.1505	11.3873	16.4856	301.0593	9932.8316	19.0935	5.0516	13.471
	42.3362	49.2466	$\begin{gathered} 10650.982 \\ 2 \end{gathered}$	14.6881	21.2090	502.1916	$\begin{gathered} 21315.979 \\ 3 \end{gathered}$	24.6280	6.6880	17.835
L4	41.5648	46.9757	9244.4482	14.0108	20.2398	456.7464	$\begin{gathered} 18501.060 \\ 4 \end{gathered}$	23.4923	6.3522	16.939
	49.7615	57.9503	$\begin{gathered} 17355.137 \\ 8 \end{gathered}$	17.2841	24.9238	696.3293	$\begin{gathered} 34733.111 \\ 9 \end{gathered}$	28.9807	7.9750	21.267
L5	48.9917	55.4480	$\begin{gathered} 15202.631 \\ 8 \end{gathered}$	16.5377	23.8558	637.2728	$\begin{gathered} 30425.267 \\ 7 \end{gathered}$	27.7293	7.6050	20.28
	56.9330	66.3564	$\begin{gathered} 26056.150 \\ 6 \end{gathered}$	19.7913	28.5115	913.8821	$\begin{gathered} 52146.586 \\ 5 \end{gathered}$	33.1845	9.2180	24.581
L6	56.1620	-63.6457	$\begin{gathered} 22991.526 \\ 9 \end{gathered}$	18.9827	27.3545	840.5012	$\begin{gathered} 46013.306 \\ 6 \end{gathered}$	31.8289	8.8172	23.512
	63.8506	74.4650	$\begin{gathered} 36822.894 \\ 6 \\ \hline \end{gathered}$	22.2097	31.9722	1151.7142	$\begin{gathered} 73694.241 \\ 7 \\ \hline \end{gathered}$	37.2396	10.4170	27.779

Tower Elevation \qquad ft	Gusset Area (per face) \qquad f^{2}	Gusset Thickness in	Gusset GradeAdjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	$\begin{gathered} \text { Double Angle } \\ \text { Stitch Bolt } \\ \text { Spacing } \\ \text { Diagonals } \\ \text { in } \\ \hline \end{gathered}$	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
$\begin{gathered} \hline \text { L1 } 175.00- \\ 164.25 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L2 164.25- } \\ \quad 129.67 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L3 } 129.67- \\ 96.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L4 96.00- } \\ 63.17 \end{gathered}$			1	1	1			
${ }_{31.17}^{\text {L5 } 63.17-}$			1	1	1			
L6 31.17-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number	Number Per Row	Start/En d Position	Width or Diamete r in	Perimete r in	Weight plf
Safety Line 3/8	A	No	Surface Ar (CaAa)	$\begin{gathered} 175.00- \\ 8.00 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	0.0000		0.22
$\begin{gathered} \text { HB158-1-08U8-S8J18(} \\ \left.1-5 / 8^{\prime \prime}\right) \end{gathered}$	A	No	Surface Af (CaAa)	$\begin{gathered} 152.00- \\ 8.00 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.060 \end{aligned}$	0.0000	3.9600	1.30

Description	Sector	Exclude From Torque Calculation	$\begin{gathered} \hline \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number	Number Per Row	Start/En d Position	Width or Diamete r in	Perimete r in	Weight plf
LDF7-50A(1-5/8)	C	No	$\begin{aligned} & \text { Surface Af } \\ & \text { (CaAa) } \end{aligned}$	$\begin{gathered} 115.00- \\ 8.00 \end{gathered}$	6	6	$\begin{gathered} -0.050 \\ 0.183 \end{gathered}$	0.0000	3.9600	0.82
LDF4-50A(1/2)	C	No	Surface Af (CaAa)	$\begin{gathered} 50.00- \\ 8.00 \end{gathered}$	1	1	$\begin{aligned} & -0.150 \\ & -0.090 \end{aligned}$	0.0000	1.2500	0.15

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	$\begin{gathered} \hline \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement $f t$	Total Number		$\begin{aligned} & C_{A} A_{A} \\ & {f t^{2} / f t}^{2} \end{aligned}$	Weight $p l f$				
***	Calculation												
AVA5-50(7/8")	A	No	No	Inside Pole	172.00-8.00	3	No Ice	0.00	0.30				
							1/2" Ice	0.00	0.30				
							1" Ice	0.00	0.30				
							2" Ice	0.00	0.30				
LDF7-50A(1-5/8')	A	No	No	Inside Pole	172.00-8.00	12	No lce	0.00	0.82				
							1/2" Ice	0.00	0.82				
							1" Ice	0.00	0.82				
							2" Ice	0.00	0.82				

LDF5-50A(7/8')					B	No	No	Inside Pole	168.00-8.00	6	No Ice	0.00	0.33
	1/2" Ice	0.00	0.33										
	1 1' Ice	0.00	0.33										
	2 Ice	0.00											

$\begin{aligned} & \text { HB114-1-08U4- } \\ & \text { M5J(1-1/4") } \end{aligned}$	C	No	No	Inside Pole	162.00-8.00	3	No Ice	0.00	1.08				
							1/2" Ice	0.00	1.08				
							1 " Ice	0.00	1.08				
							2" Ice	0.00	1.08				
$\begin{gathered} \text { HB114-21U3M12- } \\ \text { XXXF(1-1/4) } \end{gathered}$	C	No	No	Inside Pole	162.00-8.00	1	No lce	0.00	1.22				
							1/2" Ice	0.00	1.22				
							1" Ice	0.00	1.22				
							2" Ice	0.00	1.22				

LDF7-50A(1-5/8")	A	No	No	Inside Pole	152.00-8.00	6	No Ice	0.00	0.82				
							1/2" lce	0.00	0.82				
							1" Ice	0.00	0.82				
							2" Ice	0.00	0.82				

2" innerduct conduit	B	No	No	Inside Pole	142.00-8.00	2		0.00					
							$1 / 2^{\prime \prime} \text { Ice }$	0.00	0.20				
							1" Ice	0.00	0.20				
							2" Ice	0.00	0.20				
AVA7-50(1-5/8)	B	No	No	Inside Pole	142.00-8.00	12	No lce	0.00	0.70				
							1/2" Ice	0.00	0.70				
							1 ' Ice	0.00	0.70				
							2" Ice	0.00	0.70				
WR-VG86STBRD(3/4)	B	No	No	Inside Pole	142.00-8.00	6		0.00	0.58				
							1/2" Ice	0.00	0.58				
							1 ' Ice	0.00	0.58				
							2" Ice	0.00	0.58				
$\begin{aligned} & \text { FB-L98-002-XXX(} \\ & \left.3 / 8^{\prime \prime}\right) \end{aligned}$	B	No	No	Inside Pole	142.00-8.00	1	No lce	0.00	0.06				
							1/2" Ice	0.00	0.06				
							$1{ }^{\prime \prime}$ Ice	0.00	0.06				
							2" Ice	0.00	0.06				
$\begin{gathered} \text { FB-L.98B-034- } \\ \text { XXX(3/8") } \end{gathered}$	B	No	No	Inside Pole	142.00-8.00	1	No lce	0.00	0.06				
							1/2" Ice	0.00	0.06				
							1" Ice	0.00	0.06				
							2"Ice	0.00	0.06				

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower Sectio \\
\(n\)
\end{tabular} \& Tower Elevation ft \& Face \& \(A_{R}\)
\(f t^{2}\) \& \(A_{F}\)

$f t^{2}$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\ln \mathrm{Face} \\
\mathrm{ft}^{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
f t^{2}
\end{gathered}
$$
\] \& Weight

K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{175.00-164.25} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.09

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{12} \& \multirow[t]{3}{*}{164.25-129.67} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.52

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.22

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.14

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{129.67-96.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.58

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.49

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.24

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{$96.00-63.17$} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.56

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.47

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.31

\hline \multirow[t]{3}{*}{L5} \& \multirow[t]{3}{*}{63.17-31.17} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.55

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.46

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.30

\hline \multirow[t]{3}{*}{L6} \& \multirow[t]{3}{*}{31.17-0.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.40

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.33

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.22

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower Sectio \\
\(n\)
\end{tabular} \& Tower Elevation ft \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg } \\
\hline
\end{gathered}
\] \& ice
Thickness
in \& \(A_{R}\)

$f t^{2}$ \& A_{F}

t^{2} \& \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2}
\end{gathered}
$$ \& Weight

K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{175.00-164.25} \& A \& \multirow[t]{3}{*}{1.502} \& 0.000 \& 0.000 \& 3.229 \& 0.000 \& 0.12

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.01

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{164.25-129.67} \& A \& \multirow[t]{3}{*}{1.480} \& 0.000 \& 0.000 \& 17.092 \& 0.000 \& 0.74

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.22

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.14

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{129.67-96.00} \& A \& \multirow[t]{3}{*}{1.441} \& 0.000 \& 0.000 \& 19.928 \& 0.000 \& 0.85

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.49

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.35

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{$96.00-63.17$} \& A \& \multirow[t]{3}{*}{1.392} \& 0.000 \& 0.000 \& 18.926 \& 0.000 \& 0.82

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.47

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.48

\hline \multirow[t]{3}{*}{L5} \& \multirow[t]{3}{*}{63.17-31.17} \& A \& \multirow[t]{3}{*}{1.321} \& 0.000 \& 0.000 \& 17.816 \& 0.000 \& 0.79

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.46

\hline \& \& C \& \& 0.000 \& 0.000 \& 5.242 \& 0.000 \& 0.53

\hline \multirow[t]{3}{*}{16} \& \multirow[t]{3}{*}{31.17-0.00} \& A \& \multirow[t]{3}{*}{1.180} \& 0.000 \& 0.000 \& 12.246 \& 0.000 \& 0.55

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.33

\hline \& \& C \& \& 0.000 \& 0.000 \& 6.123 \& 0.000 \& 0.40

\hline
\end{tabular}

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$	$C P_{Z}$ Ice
	f	in	in	in	in
	in				
L1	$175.00-164.25$	0.0000	0.0000	-1.0288	-0.5940
L2	$164.25-129.67$	0.0000	0.0000	-1.6935	-1.0942
L3	$129.67-96.00$	0.0000	0.0000	-1.9374	-1.2834
L4	$96.00-63.17$	0.0000	0.0000	-1.9075	-1.2636
L5	$63.17-31.17$	0.0000	0.0000	-1.5357	-0.6195
L6	$31.17-0.00$	0.0000	0.0000	-0.9741	-0.1633

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{\mathrm{a}} \\ \text { No lce } \end{gathered}$	$\begin{aligned} & K_{g} \\ & k e \end{aligned}$
L. 1	1	Safety Line 3/8	$\begin{array}{r} 164.25- \\ 175.00 \end{array}$	1.0000	1.0000
L1	12	HB158-1-08U8-S8J18($1-$ $\left.5 / 88^{\prime \prime}\right)$	$\begin{array}{r} 164.25- \\ 152.00 \end{array}$	1.0000	1.0000
L2	1	Safety Line 3/8	$\begin{array}{r} 129.67- \\ 164.25 \end{array}$	1.0000	1.0000
L2	12	HB158-1-08U8-S8J18(1-	$\begin{array}{r} 129.67- \\ 152.00 \end{array}$	1.0000	1.0000
L2	20	LDF7-50A(1-5/8)	129.67 -	1.0000	1.0000
L3	1	Safety Line 3/8	115.00 $96.00-$	1.0000	1.0000
			129.67		
L3	12	HB158-1-08U8-S8J18(1-	$\begin{aligned} & 96.00- \\ & 129.67 \end{aligned}$	1.0000	1.0000
L3	20	LDF7-50A(1-5/8)	$96.00-$	1.0000	1.0000
			115.00		
14	1	Safety Line 3/8	$\begin{array}{r} 63.17- \\ 96.00 \end{array}$	1.0000	1.0000
L4	12	HB158-1-08U8-S8J18($1-$	63.17 -	1.0000	1.0000
		LDF7-50A $(1-5 / 8)$	96.00		
L4	20	LDF7-50A(1-5/8)	$\begin{array}{r} 63.17-1 \\ 96.00 \end{array}$	1.0000	1.0000
L4	22	LDF4-50A(1/2)	$63.17-$	1.0000	1.0000
			50.00		
L5	1	Safety Line 3/8	$\begin{array}{r} 31.17 \\ 63.17 \end{array}$	1.0000	1.0000
L5	12	HB158-1-08U8-S8J18($1-$	$31.17-$	1.0000	1.0000
		$\left.5 / 8^{\prime \prime}\right)$	63.17		
L5	20	LDF7-50A(1-5/8)	$\begin{array}{r} 31.17 \\ 63.17 \end{array}$	1.0000	1.0000
L5	22	LDF4-50A(1/2)	$31.17-$	1.0000	1.0000

Discrete Tower Loads

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustmen t -	Placement		$C_{A} A_{A}$ Front f^{2}	$C_{A} A_{A}$ Side f^{2}	Weight
Lightning Rod 5/8"x6'	C	From Leg	0.00	0.0000	175.00	No Ice	0.38	0.38	0.01
			0.00			1/2'	0.99	0.99	0.01
			3.00			Ice	1.62	1.62	0.02
						$\begin{aligned} & \text { 1" lce } \\ & 2 " \text { lce } \end{aligned}$	2.46	2.46	0.05

Platform Mount [LP 701-1]	C	None		0.0000	172.00	No Ice	59.15	59.15	2.75
						1/2"	71.12	71.12	3.42
						Ice	83.09	83.09	4.10
						1 Ice	107.03	107.03	5.45
						2" Ice			
$4^{\prime} \times 2$ " Mount Pipe	A	From Face	4.00	0.0000	172.00	No lce	0.87	0.87	0.01
			3.50			1/2"	1.11	1.11	0.02
			0.00			Ice	1.36	1.36	0.03

175 Ft Monopole Tower Structural Analysis	December 13,2018
Project Number 400087, Orcler 471611. Revision 0	CCI BU No 823530
Page 14	

175 Ft Monopole Tower Structural Analysis
December 13, 2018
Project Number 400087, Order 471611, Revision 0

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& $$
\begin{aligned}
& \text { Face } \\
& \text { or } \\
& \text { Leg }
\end{aligned}
$$ \& Offset Type \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustmen t \& Placement

ft \& \& | $C_{\lambda} A_{A}$ Front |
| :--- |
| $f t^{2}$ | \& $C_{A} A_{A}$ side $4 t^{2}$ \& Weight

K

\hline \multirow{5}{*}{TD-RRH8×20-25} \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Face} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{162.00} \& $$
\begin{aligned}
& \hline \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 5.10 \& 2.30 \& 0.20

\hline \& \& \& 3.00 \& \& \& No lce \& 4.05 \& 1.53 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 4.30 \& 1.71 \& 0.10

\hline \& \& \& 0.00 \& \& \& Ice \& 4.56 \& 1.90 \& 0.13

\hline \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Face} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{162.00} \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 5.10 \& 2.30 \& 0.20

\hline \multirow[t]{5}{*}{800MHz 2X50W RRH WIFILTER} \& \& \& 0.50 \& \& \& No Ice \& 2.06 \& 1.93 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.24 \& 2.11 \& 0.09

\hline \& \& \& 0.00 \& \& \& Ice \& 2.43 \& 2.29 \& 0.11

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{162.00} \& $1^{\prime \prime}$ Ice \& 2.83 \& 2.68 \& 0.17

\hline \& \& \& \& \& \& 2" lce \& \& \&

\hline \multirow[t]{5}{*}{$800 \mathrm{MHz} 2 \times 50 \mathrm{~W}$ RRH WIFILTER} \& \& \& 0.50 \& \& \& No lce \& 2.06 \& 1.93 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.24 \& 2.11 \& 0.09

\hline \& \& \& 0.00 \& \& \& Ice \& 2.43 \& 2.29 \& 0.11

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{162.00} \& 1" Ice \& 2.83 \& 2.68 \& 0.17

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{$$
800 \mathrm{MHz} 2 \times 50 \mathrm{~W} \text { RRH }
$$ W/FILTER} \& \& \& 0.50 \& \& \& Nolce \& 2.06 \& 1.93 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.24 \& 2.11 \& 0.09

\hline \& \& \& 0.00 \& \& \& Ice \& 2.43 \& 2.29 \& 0.11

\hline \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{162.00} \& 1" Ice \& 2.83 \& 2.68 \& 0.17

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{PCS 1900MHz 2x40W} \& \& \& 0.50 \& \& \& No Ice \& 2.35 \& 1.28 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.55 \& 1.43 \& 0.06

\hline \& \& \& 0.00 \& \& \& Ice \& 2.75 \& 1.60 \& 0.08

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{162.00} \& 1 " lce \& 3.18 \& 1.95 \& 0.14

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{PCS $1900 \mathrm{MHz} 2 \times 40 \mathrm{~W}$} \& \& \& 0.50 \& \& \& No lce \& 2.35 \& 1.28 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2' \& 2.55 \& 1.43 \& 0.06

\hline \& \& \& 0.00 \& \& \& Ice \& 2.75 \& 1.60 \& 0.08

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{162.00} \& 1" Ice \& 3.18 \& 1.95 \& 0.14

\hline \& \& \& \& \& \& 2 Ice \& \& \&

\hline \multirow[t]{4}{*}{PCS 1900MHz 2x40W} \& \& \& 0.50 \& \& \& Nolce \& 2.35 \& 1.28 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.55 \& 1.43 \& 0.06

\hline \& \& \& 0.00 \& \& \& Ice \& 2.75 \& 1.60 \& 0.08

\hline \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Face} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{162.00} \& | 1" Ice |
| :--- |
| 2" Ice | \& 3.18 \& 1.95 \& . 0.14

\hline \multirow[t]{4}{*}{6'x2" Mount Pipe} \& \& \& 3.00 \& \& \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.92 \& 1.92 \& 0.03

\hline \& \& \& 0.00 \& \& \& Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{162.00} \& 1" Ice \& 3.06 \& 3.06 \& 0.09

\hline \multirow{4}{*}{6'x2" Mount Pipe} \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& \& \& \& No Ice \& \& 1.43 \&

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.92 \& 1.92 \& 0.03

\hline \& \& \& 0.00 \& \& \& Ice \& 2.29 \& 2.29 \& 0.05

\hline \multirow{5}{*}{6'x2' Mount Pipe} \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{162.00} \& 1" lce \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 2" lce \& \& \&

\hline \& \& \& 3.00 \& \& \& No lce \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2' \& 1.92 \& 1.92 \& 0.03

\hline \& \& \& 0.00 \& \& \& Ice \& 2.29 \& 2.29 \& 0.05

\hline \multirow{5}{*}{4'x2' Mount Pipe} \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{162.00} \& 1" Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 0.50 \& \& \& No lce \& 0.87 \& 0.87 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.11 \& 1.11 \& 0.02

\hline \& \& \& 0.00 \& \& \& Ice \& 1.36 \& 1.36 \& 0.03

\hline \multirow{5}{*}{4'x2' Mount Pipe} \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{162.00} \& $1{ }^{\prime \prime}$ Ice \& 1.90 \& 1.90 \& 0.06

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 0.50 \& \& \& No lce \& 0.87 \& 0.87 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.11 \& 1.11 \& 0.02

\hline \& \& \& 0.00 \& \& \& Ice \& 1.36 \& 1.36 \& 0.03

\hline \multirow{6}{*}{4'x2" Mount Pipe} \& \multirow{6}{*}{C} \& \multirow{6}{*}{From Face} \& \& \multirow{6}{*}{0.0000} \& \multirow{6}{*}{162.00} \& $1{ }^{1 \prime}$ Ice \& 1.90 \& 1.90 \& 0.06

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 0.50 \& \& \& No Ice \& 0.87 \& 0.87 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.11 \& 1.11 \& 0.02

\hline \& \& \& 0.00 \& \& \& Ice \& 1.36 \& 1.36 \& 0.03

\hline \& \& \& \& \& \& 1 Ice \& 1.90 \& 1.90 \& 0.06

\hline
\end{tabular}

175 Ft Monopole Tower Structural Analysis Project Number 400087, Order 471611, Revision 0								December 13. 2 CCI BU No 823	
Description	$\begin{gathered} \hline \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustmen t	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{4} A_{A}$ Side t^{2}	Weight K
** 2" lce									
Sector Mount [SM 801-3]	C	None		0.0000	152.00	No lce	20.40	20.40	0.88
						$1 / 2$ "	26.30	26.30	1.25
						Ice	32.20	32.20	1.63
						$\begin{aligned} & \text { 1" Ice } \\ & \text { 2" Ice } \end{aligned}$	44.00	44.00	2.39
NNHH-65B-R4 w/ Mount Pipe	A	From Leg	3.00	0.0000	152.00	No lce	12.51	7.41	0.10
			-6.00			1/2"	13.11	8.60	0.19
			0.00			Ice	13.67	9.50	0.29
						1" Ice	14.82	11.33	0.52
						2" Ice			
NNHH-65B-R4 w/ Mount Pipe	A	From Leg	3.00	0.0000	152.00	No lce	12.51	7.41	0.10
			-2.00			$1 / 2^{\prime \prime}$	13.11	8.60	0.19
			0.00			Ice	13.67	9.50	0.29
						1" Ice	14.82	11.33	0.52
						2" Ice			
LPA-80080/4CF w/ Mount Pipe	A	From Leg	3.00	0.0000	152.00	No Ice	2.86	6.57	0.03
			2.00			1/2"	3.22	7.19	0.08
			0.00			Ice	3.59	7.84	0.13
						1" Ice	4.34	9.17	0.25
						2" Ice			
LPA-80080/4CF w/ Mount Pipe	A	From Leg	3.00	0.0000	152.00	No Ice	2.86	6.57	0.03
			6.00			1/2"	3.22	7.19	0.08
			0.00			Ice	3.59	7.84	0.13
						1" Ice	4.34	9.17	0.25
						2" Ice			
NNHH-65B-R4 w/ Mount Pipe	B	From Leg	3.00	0.0000	152.00	No Ice	12.51	7.41	0.10
			-6.00			1/2"	13.11	8.60	0.19
			0.00			Ice	13.67	9.50	0.29
						1" Ice	14.82	11.33	0.52
						2"Ice			
NNHH-65B-R4 w/ Mount Pipe	B	From Leg		0.0000	152.00	No lce	12.51	7.41	0.10
			-2.00			$1 / 2^{\prime \prime}$	13.11	8.60	0.19
			0.00			Ice	13.67	9.50	0.29
						1" Ice	14.82	11.33	0.52
						2" Ice			
LPA-80080/4CF w/ Mount Pipe.	B	From Leg	3.00	0.0000	152.00	No Ice	2.86	6.57	0.03
			2.00			1/2"	3.22	7.19	0.08
			0.00			Ice	3.59	7.84	0.13
						1" Ice	4.34	9.17	0.25
						$2^{\prime \prime} \text { lce }$			
LPA-80080/4CF w/ Mount Pipe	B	From Leg	3.00	0.0000	152.00	No lce	2.86	6.57	0.03
			6.00			1/2"	3.22	7.19	0.08
			0.00			Ice	3.59	7.84	0.13
						1" Ice	4.34	9.17	0.25
						2" Ice			
LPA-80080/4CF w/ Mount Pipe	C	From Leg	3.00	0.0000	152.00	No lce	2.86	6.57	0.03
			-6.00			1/2"	3.22	7.19	0.08
			0.00			Ice	3.59	7.84	0.13
						1" Ice	4.34	9.17	0.25
						2"Ice			
LPA-80080/4CF w/ Mount Pipe	c	From Leg		0.0000	152.00		2.86	6.57	0.03
			-2.00			$1 / 2^{\prime \prime}$	3.22	7.19	0.08
			0.00			Ice	3.59	7.84	0.13
						1" Ice	4.34	9.17	0.25
						2 'lce			
NNHH-65B-R4 w/ Mount Pipe	C	From Leg		0.0000	152.00		12.51	7.41	0.10
			2.00			1/2'	13.11	8.60	0.19
			0.00			Ice	13.67	9.50	0.29
						1" Ice	14.82	11.33	0.52
						2" Ice			
NNHH-65B-R4 w/ Mount Pipe	c	From Leg	3.00	0.0000	152.00	No lce	12.51	7.41	0.10
			6.00			1/2"	13.11	8.60	0.19
			0.00			Ice	13.67	9.50	0.29
						1 ' Ice	14.82	11.33	0.52

175 Ft Monopole Tower Structural Analysis
Project Number 400087, Order 471611, Revision 0

175 Ft Monopole Tower Structural Analysis
Project Number 400087, Order 471611, Revision 0
Page 18

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& $$
\begin{aligned}
& \text { Face } \\
& \text { or } \\
& \text { Leg }
\end{aligned}
$$ \& Offset Type \& Offsets:
Horz
Lateral
Vert
ft
ft
tt \& Azimuth Adjustmen t \& Placement \& \& $\mathrm{C}_{4} A_{A}$ Front
$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side
$$
f t^{2}
$$ \& Weight

K

\hline \multirow{5}{*}{6'x2" Mount Pipe} \& \multirow{4}{*}{B} \& \multirow{4}{*}{From Face} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{142.00} \& \multirow[t]{2}{*}{$2 "$ Ice
No lce} \& \& \&

\hline \& \& \& 3.00 \& \& \& \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 4.00 \& \& \& 1/2" \& 1.92 \& 1.92 \& 0.03

\hline \& \& \& 1.00 \& \& \& Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{142.00} \& 1 ' Ice \& 3.06 \& 3.06 \& 0.09

\hline \multirow{4}{*}{6'x2' Mount Pipe} \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \& \& \& 3.00 \& \& \& No lce \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 4.00 \& \& \& 1/2" \& 1.92 \& 1.92 \& 0.03

\hline \& \& \& 1.00 \& \& \& Ice \& 2.29 \& 2.29 \& 0.05

\hline \multirow{5}{*}{5'x2" Mount Pipe} \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{142.00} \& 1" Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \& \& \& 3.00 \& \& \& No Ice \& 1.19 \& 1.19 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ \& 1.50 \& 1.50 \& 0.03

\hline \& \& \& 1.00 \& \& \& Ice \& 1.81 \& 1.81 \& 0.04

\hline \multirow{5}{*}{5'x2" Mount Pipe} \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{142.00} \& $1^{\prime \prime}$ Ice \& 2.46 \& 2.46 \& 0.08

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& \& \&

\hline \& \& \& 3.00 \& \& \& No Ice \& 1.19 \& 1.19 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.50 \& 1.50 \& 0.03

\hline \& \& \& 1.00 \& \& \& Ice \& 1.81 \& 1.81 \& 0.04

\hline \multirow{6}{*}{5'x2" Mount Pipe} \& \multirow{6}{*}{C} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{142.00} \& 1 'Ice \& 2.46 \& 2.46 \& 0.08

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 3.00 \& \& \& No Ice \& 1.19 \& 1.19 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.50 \& 1.50 \& 0.03

\hline \& \& \& 1.00 \& \& \& Ice \& 1.81 \& 1.81 \& 0.04

\hline \& \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{6}{*}{142.00} \& $1{ }^{\prime \prime}$ Ice \& 2.46 \& 2.46 \& 0.08

\hline \& \multirow{5}{*}{A} \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{7770.00 w/ Mount Pipe} \& \& \& 3.00 \& \& \& No Ice \& 5.75 \& 4.25 \& 0.06

\hline \& \& \& -6.00 \& \& \& 1/2' \& 6.18 \& 5.01 \& 0.10

\hline \& \& \& 1.00 \& \& \& Ice \& 6.61 \& 5.71 \& 0.16

\hline \& \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \& 1" Ice \& 7.49 \& 7.16 \& 0.29

\hline \& \multirow{4}{*}{B} \& \& \& \& \multirow{5}{*}{142.00} \& 2" Ice \& \& \&

\hline \multirow[t]{4}{*}{7770.00 w/ Mount Pipe} \& \& \& \& \& \& No lce \& 5.75 \& 4.25 \& 0.06

\hline \& \& \& -6.00 \& \& \& 1/2" \& 6.18 \& 5.01 \& 0.10

\hline \& \& \& 1.00 \& \& \& Ice \& 6.61 \& 5.71 \& 0.16

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \& 1" Ice \& 7.49 \& 7.16 \& 0.29

\hline \multirow{5}{*}{7770.00 w/ Mount Pipe} \& \& \& \& \& \multirow{4}{*}{142.00} \& 2" Ice \& \& \&

\hline \& \& \& 3.00 \& \& \& No lce \& 5.75 \& 4.25 \& 0.06

\hline \& \& \& -6.00 \& \& \& 1/2" \& 6.18 \& 5.01 \& 0.10

\hline \& \& \& 1.00 \& \& \& Ice \& 6.61 \& 5.71 \& 0.16

\hline \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{142.00} \& $1^{\prime \prime}$ Ice \& 7.49 \& 7.16 \& 0.29

\hline \multirow{5}{*}{HPA65R-BU6A w/ Mount Pipe} \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 3.00 \& \& \& No lce \& 8.09 \& 7.19 \& 0.07

\hline \& \& \& -2.00 \& \& \& 1/2" \& 8.64 \& 8.36 \& 0.14

\hline \& \& \& 1.00 \& \& \& Ice \& 9.16 \& 9.24 \& 0.21

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{6}{*}{142.00} \& 1" lce \& 10.22 \& 11.05 \& 0.39

\hline \multirow{4}{*}{HPA65R-BU4A w/ Mount Pipe} \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 3.00 \& \& \& No lce \& 5.20 \& 4.66 \& 0.05

\hline \& \& \& -2.00 \& \& \& 1/2" \& 5.58 \& 5.27 \& 0.10

\hline \& \& \& 1.00 \& \& \& Ice \& 5.97 \& 5.89 \& 0.15

\hline \multirow{5}{*}{HPA65R-BU6A w/ Mount Pipe} \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \& 1 'Ice \& 6.79 \& 7.18 \& 0.28

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& \& \& \multirow[t]{4}{*}{142.00} \& No lce \& 8.09 \& 7.19 \&

\hline \& \& \& -2.00 \& \& \& 1/2" \& 8.64 \& 8.36 \& 0.14

\hline \& \& \& 1.00 \& \& \& Ice \& 9.16 \& 9.24 \& 0.21

\hline \multirow{5}{*}{80010965 w/ Mount Pipe} \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \& $1{ }^{\prime \prime}$ Ice \& 10.22 \& 11.05 \& 0.39

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& \& \&

\hline \& \& \& 3.00 \& \& \multirow[t]{3}{*}{142.00} \& No lce \& 14.05 \& 7.63 \& 0.13

\hline \& \& \& 2.00 \& \& \& 1/2" \& 14.69 \& 8.90 \& 0.22

\hline \& \& \& 1.00 \& \& \& Ice \& 15.30 \& 9.96 \& 0.33

\hline \multirow{7}{*}{80010964 w/ Mount Pipe} \& \multirow{7}{*}{B} \& \multirow{7}{*}{From Leg} \& \& \multirow{7}{*}{0.0000} \& \multirow{7}{*}{142.00} \& 1 Ice \& 16.53 \& 11.92 \& 0.57

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \& \& \& 3.00 \& \& \& No Ice \& 10.23 \& 5.51 \& 0.11

\hline \& \& \& 2.00 \& \& \& 1/2" \& 10.74 \& 6.37 \& 0.18

\hline \& \& \& 1.00 \& \& \& Ice \& 11.24 \& 7.12 \& 0.26

\hline \& \& \& \& \& \& 1" Ice \& 12.25 \& 8.64 \& 0.45

\hline \& \& \& \& \& \& 2" lce \& \& \&

\hline
\end{tabular}

tnxTower Report - version 8.0.4.0

175 Ft Monopole Tower Structural Analysis
Project Number 400087, Order 471611, Revision 0

December 13, 2018
CCI BU NO 823530
Page 19

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Offset Type \& Offsets: Horz Lateral Vert ft ft \(f t\) \& Azimuth Adjustmen \(t\) \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) Front \\
\(4 t^{2}\)
\end{tabular} \& \(C_{4} A_{A}\) Side
\[
f t^{2}
\] \& Weight

K

\hline \multirow[t]{4}{*}{80010965 w/ Mount Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 3.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{142.00} \& No Ice \& 14.05 \& 7.63 \& 0.13

\hline \& \& \& 2.00 \& \& \& 1/2" \& 14.69 \& 8.90 \& 0.22

\hline \& \& \& \multirow[t]{2}{*}{1.00} \& \& \& Ice \& 15.30 \& 9.96 \& 0.33

\hline \& \& \& \& \& \& $$
\begin{aligned}
& 1^{\prime \prime} \text { Ice } \\
& 2^{\prime \prime} \text { Ice }
\end{aligned}
$$ \& 16.53 \& 11.92 \& 0.57

\hline \multirow[t]{5}{*}{80010965 w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 3.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{142.00} \& No lce \& 14.05 \& 7.63 \& 0.13

\hline \& \& \& 6.00 \& \& \& 1/2" \& 14.69 \& 8.90 \& 0.22

\hline \& \& \& \multirow[t]{3}{*}{1.00} \& \& \& Ice \& 15.30 \& 9.96 \& 0.33

\hline \& \& \& \& \& \& 1 ' Ice \& 16.53 \& 11.92 \& 0.57

\hline \& \& \& \& \& \& 2" lce \& \& \&

\hline \multirow[t]{5}{*}{80010964 w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 3.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{142.00} \& No lce \& 10.23 \& 5.51 \& 0.11

\hline \& \& \& 6.00 \& \& \& 1/2" \& 10.74 \& 6.37 \& 0.18

\hline \& \& \& \multirow[t]{3}{*}{1.00} \& \& \& Ice \& 11.24 \& 7.12 \& 0.26

\hline \& \& \& \& \& \& 1 Ice \& 12.25 \& 8.64 \& 0.45

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{80010965 w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 3.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{142.00} \& No Ice \& 14.05 \& 7.63 \& 0.13

\hline \& \& \& 6.00 \& \& \& 1/2" \& 14.69 \& 8.90 \& 0.22

\hline \& \& \& \multirow[t]{3}{*}{1.00} \& \& \& Ice \& 15.30 \& 9.96 \& 0.33

\hline \& \& \& \& \& \& 1 " Ice \& 16.53 \& 11.92 \& 0.57

\hline \& \& \& \& \& \& 2 ' Ice \& \& \&

\hline \multirow[t]{5}{*}{RADIO 4415 B30} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& $$
3.00
$$ \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{142.00} \& No lce \& 1.64 \& 0.64 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.80 \& 0.75 \& 0.05

\hline \& \& \& \multirow[t]{3}{*}{1.00} \& \& \& Ice \& 1.97 \& 0.87 \& 0.07

\hline \& \& \& \& \& \& 1" Ice \& 2.33 \& 1.13 \& 0.11

\hline \& \& \& \& \& \& $$
2^{\prime \prime} \text { Ice }
$$ \& \& \&

\hline \multirow[t]{5}{*}{RADIO 4415 B30} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 3.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{142.00} \& No Ice \& 1.64 \& 0.64 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2' \& 1.80 \& 0.75 \& 0.05

\hline \& \& \& \multirow[t]{3}{*}{1.00} \& \& \& Ice \& 1.97 \& 0.87 \& 0.07

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.33 \& 1.13 \& 0.11

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{RADIO 4415 B30} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 3.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{142.00} \& No lce \& 1.64 \& 0.64 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.80 \& 0.75 \& 0.05

\hline \& \& \& \multirow[t]{3}{*}{1.00} \& \& \& Ice \& 1.97 \& 0.87 \& 0.07

\hline \& \& \& \& \& \& 1 " Ice \& 2.33 \& 1.13 \& 0.11

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{RRUS 4449 B5/B12} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 3.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{142.00} \& No Ice \& 1.97 \& 1.41 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.14 \& 1.56 \& 0.09

\hline \& \& \& 1.00 \& \& \& Ice \& 2.33 \& 1.73 \& 0.11

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 2.72 \& 2.07 \& 0.16

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{RRUS 4449 B5/B12} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{142.00} \& No lce \& 1.97 \& 1.41 \&

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.14 \& 1.56 \& 0.09

\hline \& \& \& 1.00 \& \& \& Ice \& 2.33 \& 1.73 \& 0.11

\hline \& \& \& \& \& \& 1" lce \& 2.72 \& 2.07 \& 0.16

\hline \& \& \& \& \& \& 2" lce \& \& \&

\hline \multirow[t]{5}{*}{RRUS $4449 \mathrm{~B} 5 / \mathrm{B} 12$} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{142.00} \& No Ice \& 1.97 \& 1.41 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.14 \& 1.56 \& 0.09

\hline \& \& \& 1.00 \& \& \& Ice \& 2.33 \& 1.73 \& 0.11

\hline \& \& \& \& \& \& 1" Ice \& 2.72 \& 2.07 \& 0.16

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{RRUS 4478 B14} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 3.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{142.00} \& No Ice \& 1.84 \& 1.06 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.01 \& 1.20 \& 0.08

\hline \& \& \& 1.00 \& \& \& Ice \& 2.19 \& 1.34 \& 0.09

\hline \& \& \& \& \& \& 1" Ice \& 2.57 \& 1.66 \& 0.14

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{RRUS 4478 B14} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 3.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{142.00} \& No lce \& 1.84 \& 1.06 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.01 \& 1.20 \& 0.08

\hline \& \& \& 1.00 \& \& \& Ice \& 2.19 \& 1.34 \& 0.09

\hline \& \& \& \& \& \& 1" Ice \& 2.57 \& 1.66 \& 0.14

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& \& \&

\hline \multirow[t]{5}{*}{RRUS 4478 B14} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 3.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{142.00} \& No Ice \& 1.84 \& 1.06 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.01 \& 1.20 \& 0.08

\hline \& \& \& 1.00 \& \& \& Ice \& 2.19 \& 1.34 \& 0.09

\hline \& \& \& \& \& \& 1" Ice \& 2.57 \& 1.66 \& 0.14

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline RRUS 8843 B2/B66A \& A \& From Leg \& 3.00 \& 0.0000 \& 142.00 \& No lce \& 1.64 \& 1.35 \& 0.07

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face. } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Offset Type \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert ft ft
\end{tabular} \& \[
\begin{gathered}
\text { Azimuth } \\
\text { Adjustmen } \\
t
\end{gathered}
\] \& Placement

ft \& \& | $C_{A} A_{4}$ Front |
| :--- |
| t^{2} | \& \[

$$
\begin{aligned}
& C_{4} A_{A} \\
& \text { Side } \\
& \pi^{2}
\end{aligned}
$$
\] \& Weight

K

\hline \multirow{7}{*}{RRUS 8843 B2/B66A} \& \multirow{7}{*}{B} \& \multirow{6}{*}{From Leg} \& 0.00 \& \& \& 1/2" \& 1.80 \& 1.50 \& 0.09

\hline \& \& \& 1.00 \& \& \& Ice \& 1.97 \& 1.65 \& 0.11

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 2.32 \& 1.99 \& 0.16

\hline \& \& \& 3.00 \& 0.0000 \& 142.00 \& No lce \& 1.64 \& 1.35 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ \& 1.80 \& 1.50 \& 0.09

\hline \& \& \& 1.00 \& \& \& Ice \& 1.97 \& 1.65 \& 0.11

\hline \& \& \multirow{5}{*}{From Leg} \& \& \& \& 1" Ice \& 2.32 \& 1.99 \& 0.16

\hline \multirow{5}{*}{RRUS 8843 B2/B66A} \& \multirow{5}{*}{c} \& \& \& \& \& $2{ }^{\text {" lce }}$ \& \& \&

\hline \& \& \& 3.00 \& 0.0000 \& 142.00 \& No lce \& 1.64 \& 1.35 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.80 \& 1.50 \& 0.09

\hline \& \& \& 1.00 \& \& \& Ice \& 1.97 \& 1.65 \& 0.11

\hline \& \& \multirow{5}{*}{From Face} \& \& \& \& 1 1" Ice \& 2.32 \& 1.99 \& 0.16

\hline \multirow[t]{5}{*}{(2) LGP21401} \& \multirow[t]{4}{*}{A} \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 3.00 \& 0.0000 \& 142.00 \& No Ice \& 1.10 \& 0.35 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.24 \& 0.44 \& 0.02

\hline \& \& \& 1.00 \& \& \& ice \& 1.38 \& 0.54 \& 0.03

\hline \& \multirow{4}{*}{B} \& \multirow{4}{*}{From Face} \& \& \& \& $$
\begin{aligned}
& \text { 1"Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 1.69 \& 0.77 \& 0.05

\hline \multirow[t]{4}{*}{(2) LGP21401} \& \& \& 3.00 \& 0.0000 \& 142.00 \& No Ice \& \& 0.35 \& 0.01

\hline \& \& \& 0.00 \& \& \& $$
1 / 2^{\prime \prime}
$$ \& 1.24 \& 0.44 \& 0.02

\hline \& \& \& 1.00 \& \& \& lee \& 1.38 \& 0.54 \& 0.03

\hline \& \multirow{6}{*}{C} \& \multirow{5}{*}{From Face} \& \& \& \& 1" Ice \& 1.69 \& 0.77 \& 0.05

\hline \multirow{5}{*}{(2) LGP21401} \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 3.00 \& 0.0000 \& 142.00 \& No lce \& 1.10 \& 0.35 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.24 \& 0.44 \& 0.02

\hline \& \& \& 1.00 \& \& \& Ice \& 1.38 \& 0.54 \& 0.03

\hline \& \& \multirow{5}{*}{From Leg} \& \& \& \& 1" Ice \& 1.69 \& 0.77 \& 0.05

\hline \multirow{5}{*}{DC6-48-60-18-8F} \& \multirow{5}{*}{A} \& \& \& \& \& 2"Ice \& \& \&

\hline \& \& \& 1.00 \& 0.0000 \& 142.00 \& No Ice \& 0.92 \& 0.92 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.46 \& 1.46 \& 0.04

\hline \& \& \& 1.00 \& \& \& Ice \& 1.64 \& 1.64 \& 0.06

\hline \& \& \multirow{6}{*}{From Leg} \& \& \& \& 1" Ice \& 2.04 \& 2.04 \& 0.11

\hline \multirow{5}{*}{DC6-48-60-18-8F} \& \multirow{5}{*}{B} \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 1.00 \& 0.0000 \& 142.00 \& No Ice \& 0.92 \& 0.92 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.46 \& 1.46 \& 0.04

\hline \& \& \& \& \& \& Ice \& 1.64 \& 1.64 \& 0.06

\hline \& \& \& \& \& \& 1" Ice \& 2.04 \& 2.04 \& 0.11

\hline \multirow{6}{*}{DC6-48-60-18-8F} \& \multirow{6}{*}{c} \& \multirow{6}{*}{From Face} \& \& \& \& 2 " Ice \& \& \&

\hline \& \& \& 1.00 \& 0.0000 \& 142.00 \& No lce \& 0.92 \& 0.92 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.46 \& 1.46 \& 0.04

\hline \& \& \& 0.00 \& \& \& Ice \& 1.64 \& 1.64 \& 0.06

\hline \& \& \& \& \& \& 1 1'Ice \& 2.04 \& 2.04 , \& 0.11

\hline \& \& \& \& \& \& 2"Ice \& \& \&

\hline \multirow[t]{5}{*}{APXV18-206517S-C wl Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Face} \& \& \& \& \& \& \&

\hline \& \& \& $$
\begin{aligned}
& 1.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 115.00 \& \[

$$
\begin{aligned}
& \text { No lce } \\
& 1 /)^{\prime \prime}
\end{aligned}
$$
\] \& 5.40

5.96 \& 4.70
5.86 \& 0.05
0.10

\hline \& \& \& 0.00 \& \& \& Ice \& 6.48 \& 6.73 \& 0.15

\hline \& \& \& \& \& \& 1" Ice \& 7.55 \& 8.51 \& 0.28

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{APXV18-206517S-C w $/$
Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Face} \& 1.00 \& 0.0000 \& 115.00 \& No Ice \& 5.40 \& 4.70 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 5.96 \& 5.86 \& 0.10

\hline \& \& \& 0.00 \& \& \& Ice \& 6.48 \& 6.73 \& 0.15

\hline \& \& \& \& \& \& 1" Ice \& 7.55 \& 8.51 \& 0.28

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{APXV18-206517S-C w $/$
Mount Pipe} \& \multirow[t]{5}{*}{c} \& \multirow[t]{5}{*}{From Face} \& 1.00 \& 0.0000 \& 115.00 \& No Ice \& 5.40 \& 4.70 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 5.96 \& 5.86 \& 0.10

\hline \& \& \& 0.00 \& \& \& lce \& 6.48 \& 6.73 \& 0.15

\hline \& \& \& \& \& \& 1" Ice \& 7.55 \& 8.51 \& 0.28

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{Side Arm Mount [SO 7011]} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Face} \& 0.50 \& 0.0000 \& 50.00 \& Nolce \& 0.85 \& 1.67 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.14 \& 2.34 \& 0.08

\hline \& \& \& 0.00 \& \& \& Ice \& 1.43 \& 3.01 \& 0.09

\hline \& \& \& \& \& \& 1 " Ice \& 2.01 \& 4.35 \& 0.12

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline
\end{tabular}

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustmen t	Placement $f t$		$C_{\lambda} A_{\mu}$ Front π^{2}	$C_{A} A_{A}$ Side $f t^{2}$	Weight K
GPS-TMG-HR-26NCM	A	From Face	$\begin{aligned} & 3.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	50.00	$\begin{gathered} \hline \text { No Ice } \\ 1 / 2^{\prime \prime} \\ \text { lce } \\ 1^{\prime \prime} \text { Ice } \\ 2^{\prime \prime} \text { Ice } \end{gathered}$	$\begin{aligned} & 0.13 \\ & 0.18 \\ & 0.24 \\ & 0.37 \end{aligned}$	$\begin{aligned} & \hline 0.13 \\ & 0.18 \\ & 0.24 \\ & 0.37 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.01 \\ & 0.01 \end{aligned}$

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead +1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No lce
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No lce
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No lce
10	1.2 Dead +1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No lce
12	1.2 Dead+1.0 Wind 150 deg - No lce
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead +1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead +1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead +1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead +1.0 Wind 270 deg - No lce
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No lce
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg +1.0 Ice +1.0 Temp
28	1.2 Dead +1.0 Wind 30 deg +1.0 Ice +1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp

tnxTower Report - version 8.0.4.0

Comb. No.	Description
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind $120 \mathrm{deg}+1.0 \mathrm{lce}+1.0$ Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0 \mathrm{Ice}+1.0$ Temp
34	1.2 Dead +1.0 Wind $210 \mathrm{deg}+1.0$ lce +1.0 Temp
35.	1.2 Dead+1.0 Wind $240 \mathrm{deg}+1.0 \mathrm{Ice}+1.0$ Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind $330 \mathrm{deg}+1.0 \mathrm{lce}+1.0$ Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead + Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

$\begin{gathered} \text { Sectio } \\ n \\ \text { No. } \\ \hline \end{gathered}$	Elevation ft	Component Type	Condition	Gov. Load Comb	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	175-164.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-9.02	-1.14	-4.63
			Max. Mx	8	-4.16	-29.56	-1.85
			Max. My	14	-4.19	-1.21	-28.14
			Max. Vy	8	5.94	-29.56	-1.85
			Max. Vx	14	5.64	-1.21	-28.14
			Max. Torque	7			-5.10
L2	$\begin{gathered} 164.25- \\ 129.67 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-38.88	1.04	-0.68
			Max. Mx	8	-17.95	-496.92	-6.97
			Max. My	2	-18.00	9.78	485.21
			Max. Vy	8	21.44	-496.92	-6.97
			Max. Vx	14	21.17	-7.80	-484.67
			Max. Torque	7			-4.78
L. 3	129.67-96	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-50.13	1.51	-0.73
			Max. Mx	8	-26.07	-1254.55	-12.11
			Max. My	2	-26.11	16.41	1233.65
			Max. Vy	8	24.76	-1254.55	-12.11
			Max. Vx	14	24.49	-13.79	-1233.49
			Max. Torque	16			-1.16
14	96-63.17	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-62.66	2.09	-1.07
			Max. Mx	8	-35.67	-2092.13	-17.27
			Max. My	14	-35.70	-19.55	-2062.74
			Max. Vy	8	27.52	-2092.13	-17.27
			Max. Vx	14	27.25	-19.55	-2062.74
			Max. Torque	16			-1.16
L5	$\begin{gathered} 63.17- \\ 31.17 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-76.87	2.99	-1.44
			Max. Mx	8	-46.67	-2992.41	-22.07
			Max. My	14	-46.68	-24.74	-2955.33
			Max. Vy	8	30.00	-2992.41	-22.07
			Max. Vx	14	29.75	-24.74	-2955.33
			Max. Torque	16			-1.30
L6	31.17-0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-94.81	3.56	-2.09
			Max. Mx	8	-60.95	-4162.50	-27.47
			Max. My	14	-60.95	-30.76	-4116.65

tnxTower Report - version 8.0.4.0

175 Ft Monopole Tower Structural Analysis

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
			Max. Vy	8	32.47	-4162.50	-27.47
			Max. Vx	14	32.23	-30.76	-4116.65
			Max. Torque	16			-1.30

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	$\underset{K}{\text { Horizontal, } X}$	Horizontal, Z K
Pole	Max. Vert	36	94.81	8.93	0.00
	Max. H_{x}	20	60.96	32.30	0.11
	Max. $\mathrm{Hz}^{\text {I }}$	2	60.96	0.17	32.20
	Max. M_{x}	2	4114.57	0.17	32.20
	Max. M_{z}	8	4162.50	-32.45	-0.13
	Max. Torsion	6	1.08	-28.12	15.91
	Min. Vert	5	45.72	-16.20	27.79
	Min. H_{x}	9	45.72	-32.45	-0.13
	Min. Hz_{z}	15	45.72	-0.16	-32.20
	Min. M_{x}	14	-4116.65	-0.16	-32.20
	Min. $\mathrm{M}_{\mathbf{z}}$	20	-4139.71	32.30	0.11
	Min. Torsion	16	-1.30	16.17	-27.79

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear ${ }_{x}$ K	Shear $_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ff	Torque kip-ft
Dead Only	50.80	0.00	0.00	0.54	1.26	0.00
1.2 Dead+1.0 Wind 0 deg -	60.96	-0.17	-32.20	-4114.57	35.82	-1.06
No Ice						
0.9 Dead+1.0 Wind 0 deg -	45.72	-0.17	-32.20	-4063.05	34.87	-1.04
No lce						
1.2 Dead+1.0 Wind 30 deg -	60.96	16.20	-27.79	-3543.66	-2074.87	-0.59
No Ice						
0.9 Dead+1.0 Wind 30 deg -	45.72	16.20	-27.79	-3499.36	-2049.17	-0.56
No lce						
1.2 Dead+1.0 Wind 60 deg -	60.96	28.12	-15.91	-2019.93	-3607.06	-1.08
No lce						
0.9 Dead+1.0 Wind 60 deg -	45.72	28.12	-15.91	-1994.81	-3562.05	-1.06
No Ice						
1.2 Dead+1.0 Wind 90 deg -	60.96	32.45	0.13	27.47	-4162.50	-0.99
No lce						
0.9 Dead+1.0 Wind 90 deg -	45.72	32.45	0.13	26.89	-4110.49	-0.98
No lce						
1.2 Dead+1.0 Wind 120 deg	60.96	28.18	16.17	2074:31	-3620.06	-0.46
- No Ice						
0.9 Dead+1.0 Wind 120 deg	45.72	28.18	16.17	2048.05	-3574.85	-0.45
- No lce						
1.2 Dead+1.0 Wind 150 deg	60.96	16.45	27.89	3566.54	-2124.39	0.06
- No lce						
0.9 Dead+1.0 Wind 150 deg	45.72	16.45	27.89	3521.58	-2097.94	0.05
- No lce						
1.2 Dead+1.0 Wind 180 deg	60.96	0.16	32.20	4116.65	-30.76	0.43
- No lce						
0.9 Dead+1.0 Wind 180 deg	45.72	0.16	32.20	4064.77	-30.69	0.41
- No lce						
1.2 Dead+1.0 Wind 210 deg	60.96	-16.17	27.79	3546.44	2072.38	1.30
- No lce						
0.9 Dead+1.0 Wind 210 deg	45.72	-16.17	27.79	3501.78	2045.92	1.28
- No lce						
1.2 Dead+1.0 Wind 240 deg	60.96	-27.99	15.93	2024.61	3587.15	1.28
- No Ice						
0.9 Dead+1.0 Wind 240 deg	45.72	-27.99	15.93	1999.11	3541.63	1.25
tnxTower Report - version	. 4.0					

Load Combination	Vertical K	Shear ${ }_{x}$ K	Shear ${ }_{z}$	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
- No Ice						
1.2 Dead+1.0 Wind 270 deg - No.lce	60.96	-32.30	-0.11	-22.41	4139.71	1.05
0.9 Dead +1.0 Wind 270 deg - No lce	45.72	-32.30	-0.11	-22.22	4087.24	1.04
1.2 Dead+1.0 Wind 300 deg - No Ice	60.96	-28.04	-16.13	-2064.61	3598.18	0.52
0.9 Dead +1.0 Wind 300 deg - No lce	45.72	-28.04	-16.13	-2038.81	3552.48	0.51
1.2 Dead+1.0 Wind 330 deg - No Ice	60.96	-16.33	-27.87	-3561.42	2105.66	-0.25
0.9 Dead+1.0 Wind 330 deg - No Ice	45.72	-16.33	-27.87	-3516.85	2078.68	-0.24
1.2 Dead+1.0 Ice+1.0 Temp	94.81	-0.00	0.00	2.09	3.56	0.00
1.2 Dead +1.0 Wind 0 deg+1.0 Ice+1.0 Temp	94.81	-0.02	-8.91	-1158.34	7.78	-0.20
1.2 Dead+1.0 Wind 30 deg+1.0 Ice 1.0 Temp	94.81	4.49	-7.71	-1000.38	-583.60	0.02
1.2 Dead+1.0 Wind 60 deg+1.0 Ice +1.0 Temp	94.81	7.78	-4.43	-573.09	-1012.83	0.00
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	94.81	8.96	0.01	4.56	-1167.52	0.04
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	94.81	7.77	4.46	583.04	-1012.19	0.11
1.2 Dead+1.0 Wind 150 deg+1.0 Ice +1.0 Temp	94.81	4.51	7.71	1006.10	-588.28	0.12
1.2 Dead +1.0 Wind 180 deg+1.0 Ice +1.0 Temp	94.81	0.01	8.91	1163.02	0.38	0.07
1.2 Dead+1.0 Wind 210 deg+1.0 Ice +1.0 Temp	94.81	-4.49	7.71	1005.21	590.14	0.13
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	94.81	-7.75	4.44	578.32	1015.62	0.04
1.2 Dead+1.0 Wind 270 deg+1.0 Ice +1.0 Temp	94.81	-8.93	-0.00	0.76	1169.68	-0.02
1.2 Dead+1.0 Wind 300 deg+1.0 Ice +1.0 Temp	94.81	-7.74	-4.45	-576.71	1014.55	-0.09
1.2 Dead+1.0 Wind 330 deg+1.0 Ice +1.0 Temp	94.81	-4.49	-7.71	-1000.76	591.32	-0.15
Dead+Wind 0 deg - Service	50.80	-0.04	-7.20	-913.23	8.92	-0.24
Dead+Wind 30 deg - Service	50.80	3.62	-6.22	-786.46	-459.74	-0.13
Dead+Wind 60 deg - Service	50.80	6.29	-3.56	-448.14	-799.96	-0.24
Dead+Wind 90 deg - Service	50.80	7.26	0.03	6.49	-923.32	-0.22
Dead+Wind 120 deg -	50.80	6.30	3.62	461.01	-802.87	-0.10
Service						
Dead+Wind 150 deg Service	50.80	3.68	6.24	792.36	-470.73	0.01
Dead+Wind 180 deg Service	50.80	0.04	7.20	914.50	-5.85	0.09
Dead+Wind 210 deg Service	50.80	-3.62	6.22	787.88	461.14	0.29
Dead+Wind 240 deg Service	50.80	-6.26	3.56	449.97	797.49	0.28
Dead+Wind 270 deg Service	50.80	-7.23	-0.02	-4.57	920.20	0.24
Dead+Wind 300 deg Service	50.80	-6.27	-3.61	-458.05	799.95	0.12
Dead+Wind 330 deg Service	50.80	-3.65	-6.23	-790.42	468.53	-0.06

Solution Summary

	Sum of Applied Forces			Sum of Reactions			
Load	$P X$	$P Y$	$P Z$	$P X$	$P Y$	$P Z$	\% Error
Comb.	K	K	K	K	K	K	
1	0.00	-50.80	0.00	0.00	50.80	0.00	0.000%
2	-0.17	-60.96	-32.20	0.17	60.96	32.20	0.000%
3	-0.17	-45.72	-32.20	0.17	45.72	32.20	0.000%

tnxTower Report - version 8.0.4.0

	Sum of Applied Forces						

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00011704
3	Yes	5	0.00000001	0.00005461
4	Yes	6	0.00000001	0.00013601
5	Yes	6	0.00000001	0.00004637
6	Yes	6	0.00000001	0.00013695
7	Yes	6	0.0000001	0.00004667
8	Yes	5	0.00000001	0.00007307
9	Yes	4	0.00000001	0.00080607
10	Yes	6	0.0000001	0.00014044
11	Yes	6	0.00000001	0.00004760
12	Yes	6	0.00000001	0.00014107
13	Yes	6	0.00000001	0.00004783
14	Yes	5	0.00000001	0.00006454

tnxTower Report - version 8.0.4.0

175 Ft Monopole Tower Structural Analysis
Project Number 400087, Order 471611, Revision 0

15				
16	Yes	4	0.00000001	0.00070781
17	Yes	6	0.00000001	0.00013772
18	Yes	6	0.00000001	0.0000495
19	Yes	6	0.00000001	0.00013364
20	Yes	6	0.00000001	0.00004552
21	Yes	5	0.00000001	0.00010054
22	Yes	5	0.00000001	0.0000434
23	Yes	6	0.00000001	0.00013945
24	Yes	6	0.00000001	0.00004737
25	Yes	6	0.00000001	0.00014021
26	Yes	6	0.00000001	0.00004760
27	Yes	4	0.00000001	0.00000712
28	Yes	5	0.00000001	0.00086892
29	Yes	6	0.00000001	0.00012380
30	Yes	6	0.00000001	0.0001367
31	Yes	5	0.00000001	0.00087801
32	Yes	6	0.00000001	0.00012549
33	Yes	6	0.00000001	0.00012502
34	Yes	5	0.00000001	0.00087338
35	Yes	6	0.00000001	0.00012517
36	Yes	6	0.00000001	0.00012513
37	Yes	5	0.00000001	0.0008984
38	Yes	6	0.00000001	0.00012445
39	Yes	6	0.00000001	0.00012493
40	Yes	4	0.00000001	0.00013975
41	Yes	4	0.00000001	0.00057560
42	Yes	4	0.00000001	0.00058873
43	Yes	4	0.00000001	0.00013990
44	Yes	4	0.00000001	0.00059644
45	Yes	4	0.00000001	0.0005999
46	Yes	4	0.00000001	0.00012865
47	Yes	4	0.00000001	0.00059997
48	Yes	4	0.00000001	0.00055819
49	Yes	4	0.0000001	0.00014305
50	Yes	4	0.00000001	0.00059920
	Yes	4	0.00000001	0.00060314

Maximum Tower Deflections - Service Wind

| Section
 No. | Elevation | Horz.
 Deflection
 in | Gov.
 Load
 Comb. | Tilt | o |
| :---: | :---: | :---: | :---: | :---: | :---: | | ftist | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | ft | $175-164.25$ | 23.236 | 43 |
| L1 | $167.17-129.67$ | 21.395 | 43 | 1.1238 |
| L2 | $133.5-96$ | 13.857 | 43 | 0.1199 |
| L3 | $100.67-63.17$ | 7.840 | 43 | 0.9826 |
| L4 | $68.67-31.17$ | 3.616 | 43 | 0.7479 |
| L5 | $37.42-0$ | 1.084 | 43 | 0.4966 |
| L6 | | | 0.2615 | 0.0019 |

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature ft
175.00	VHLP2.6	43	23.236	1.1238	0.0031	71097
172.00	Platform Mount [LP 701-1]	43	22.530	1.1231	0.0026	71097
168.00	Side Arm Mount [SO 701-1]	43	21.589	1.1208	0.0020	50895
162.00	Platform Mount [LP 712-1]	43	20.187	1.1114	0.0012	27766
152.00	Sector Mount [SM 801-3]	43	17.887	1.0798	0.0006	15860
142.00	Platform Mount [LP 303-1]	43	15.663	1.0322	0.0007	11100
115.00	APXV18-206517S-C w/ Mount Pipe	43	10.266	0.8564	0.0008	7876
50.00	Side Arm Mount [SO 701-1]	43	1.899	0.3540	0.0002	6798

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
	ft	$175-164.25$	104.826	10	5.0777
L1	$167.17-129.67$	96.525	10	5.0610	0.0134
L2	$133.5-96$	62.518	10	4.4404	0.0077
L3	$100.67-63.17$	35.372	10	3.3780	0.0038
L4	$68.67-31.17$	16.312	10	2.2415	0.0022
L5	$37.42-0$	4.886	10	1.1795	0.0012
L6				0.0006	

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature ft
175.00	VHLP2.6	10	104.826	5.0777	0.0134	16675
172.00	Platform Mount [LP 701-1]	10	101.642	5.0747	0.0111	16675
168.00	Side Arm Mount [SO 701-1]	10	97.403	5.0646	0.0083	11898
162.00	Platform Mount [LP 712-1]	10	91.078	5.0225	0.0051	6366
152.00	Sector Mount [SM 801-3]	10	80.704	4.8801	0.0024	3579
142.00	Platform Mount [LP 303-1]	10	70.670	4.6650	0.0027	2487
115.00	APXV18-206517S-C w/ Mount Pipe	10	46.317	3.8690	0.0036	1757
50.00	Side Arm Mount [SO 701-1]	10	8.564	1.5975	0.0008	1508

Compression Checks,

Pole Design Data									
Section No.	Elevation	Size	L	L_{u}	K/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
	\#		f	ft		$i n^{2}$	K	K	ϕP_{n}
L1	$\frac{175-164.25}{(1)}$	TP26x22x0.25	10.75	0.00	0.0	$\begin{gathered} 19.570 \\ 5 \end{gathered}$	-4.15	1440.89	0.003
L2	164.25 -	TP34.0625 $\times 24.4135 \times 0.31$	37.50	0.00	0.0	32.498	-17.94	2355.22	0.008
L3	$\begin{gathered} 129.67(2) \\ 129.67-96 \\ \hline(3) \end{gathered}$	TP41.75×32.452x0.375	37.50	0.00	0.0	$\begin{array}{r} 47.868 \\ 4 \end{array}$	-26.07	3447.73	0.008
L4	96-63.17 (4)	$\begin{gathered} \mathrm{TP} 49.0625 \times 39.8421 \times 0.37 \\ 5 \end{gathered}$	37.50	0.00	0.0	$\begin{gathered} 56.340 \\ 7 \end{gathered}$	-35.67	3858.71	0.009
L5	$63.17-31.17$ (5)	TP56.125x46.9602x0.375	37.50	0.00	0.0	$\underset{4}{64.538}$	-46.67	4199.33	0.011
L6	31.17-0 (6)	TP62.9375×53.8475×0.37	37.42	0.00	0.0	$\begin{gathered} 74.465 \\ 0 \end{gathered}$	-60.95	4536.70	0.013

Pole Bending Design Data

Section No	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	$\begin{aligned} & \text { Ratio } \\ & M_{u x} \\ & \hline \end{aligned}$	$M_{u y}$	$\phi M_{n y}$	$\begin{aligned} & \hline \text { Ratio } \\ & M_{u y} \\ & \hline \end{aligned}$
	$f t$		kip-ft	kip-ft	$\phi M_{n x}$	kip-ft	kip-ft	${ }_{\text {¢ }} M_{n \gamma}$
L1	175-164.25	TP26x22x0.25	30.40	729.12	0.042	0.00	729.12	0.000
12	(1)	TP34.0625×24.4135×0.31	499.51	1584.18	0.315	0.00	1584.18	0.000

tnxTower Report - version 8.0.4.0

Section No.	Elevation ft	Size	$M_{u x}$ kip-ft	$\phi M_{n x}$	Ratio $M_{\Delta x}$	$M_{a y}$ kip-ft	$\phi M_{n y}$ kip-ft	Ratio $M_{u y}$
t					${ }_{\phi} M_{n x}$			$\phi M_{n v}$
	129.67 (2)	25						
L3	129.67-96	TP41.75×32.452×0.375	1258.93	2847.12	0.442	0.00	2847.12	0.000
	(3) ${ }_{06-63.17}$				0.559	0.00	3755.71	0.000
L4	96-63.17(4)	TP49.0625×39.8421×0.37 5	2098.34	3755.71	0.559	0.00	3755.71	0.000
L5	63.17-31.17	TP56.125x46.9602×0.375	3000.32	4686.62	0.640	0.00	4686.62	0.000
L6	(5) $31.17-0(6)$	TP62.9375×53.8475×0.37 5	4172.24	5847.24	0.714	0.00	5847.24	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	Ratio V_{u}	Actual T_{u}	ϕT_{n}	Ratio T_{u}
	$f t$		K	K	ϕV_{n}	kip-ft	kip-ft	ϕT_{n}
L1	$175-164.25$ (1)	TP26x22x0.25	6.01	343.46	0.017	2.79	726.88	0.004
L2	$\begin{gathered} 164.25- \\ 129.67(2) \end{gathered}$	$\begin{gathered} \text { TP34.0625×24.4135x0.31 } \\ 25 \end{gathered}$	21.50	570.35	0.038	0.46	1605.45	0.000
L3	$\begin{gathered} 129.67-96 \\ \text { (3) } \end{gathered}$	TP41.75×32.452x0.375	24.82	840.09	0.030	0.46	2903.88	0.000
L4	96-63.17(4)	$\begin{gathered} \text { TP49.0625×39.8421×0.37 } \\ 5 \end{gathered}$	27.58	988.78	0.028	0.46	4034.18	0.000
L5	$63.17-31.17$ (5)	TP56.125×46.9602×0.375	30.04	1132.65	0.027	0.46	5304.28	0.000
L6	31.17-0 (6)	$\begin{gathered} \text { TP62.9375×53.8475×0.37 } \\ 5 \end{gathered}$	32.52	1306.86	0.025	0.46	7074.59	0.000

Section No.	Elevation	Ratio P_{u}	Ratio $M_{u x}$	Ratio $M_{u y}$	$\begin{gathered} \text { Ratio } \\ . V_{u} \\ \hline \end{gathered}$	Ratio T_{u}	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
	f	ϕP_{n}	$\phi M_{n X}$	$\phi M_{n v}$	ϕV_{n}	ϕT_{n}			
L1	$175-164.25$ (1)	0.003	0.042	0.000	0.017	0.004	0.045	1.050	4.8 .2
L2	$\begin{gathered} 164.25- \\ 129.67(2) \end{gathered}$	0.008	0.315	0.000	0.038	0.000	0.324	1.050	4.8 .2
L3	$129.67-96$ (3)	0.008	0.442	0.000	0.030	0.000	0.451	1.050	4.8 .2
L4	96-63.17 (4)	0.009	0.559	0.000	0.028	0.000	0.569	1.050	4.8 .2
L5	$63.17-31.17$ (5)	0.011	0.640	0.000	0.027	0.000	0.652	1.050 1.050	4.8 .2
L6	31.17-0 (6)	0.013	0.714	0.000	0.025	0.000	0.728	1.050	4.8 .2

Section Capacity Table

Section No.	$\begin{aligned} & \text { Elevation } \\ & \hline \end{aligned}$ f	Component Type	Size	Critical Element	$\begin{aligned} & \hline P \\ & K \\ & \hline \end{aligned}$	$\begin{gathered} \emptyset P_{\text {alow }} \\ K \\ \hline \end{gathered}$	$\begin{gathered} \% \\ \text { Capacity } \end{gathered}$	$\begin{gathered} \hline \text { Pass } \\ \text { Fail } \\ \hline \end{gathered}$
L1	175-164.25	Pole	TP26x22×0.25		-4.15	1512.93	4.3	Pass
L2	164.25-129.67	Pole	TP34.0625 24.4135×0.3125	2	-17.94	2472.98	30.9	Pass
L3	129.67-96	Pole	TP41.75 3 32.452×0.375	3	-26.07	3620.12	42.9	Pass
L4	96-63.17	Pole	TP49.0625 39.8421×0.375	4	-35.67	4051.65	54.2	Pass
L5	63.17-31.17	Pole	TP $56.125 \times 46.9602 \times 0.375$	5	-46.67	4409.30	62.1	Pass
L6	31.17-0	Pole	TP62.9375×53.8475 $\times 0.375$	6	-60.95	4763.53	69.3	Pass
							Summary	
						Pole (L6)	69.3	Pass

tnxTower Report - version 8.0.4.0

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Monopole Base Plate Connection

Site Info	
BU \#	823530
Site Name	864/Chapel St. Monop
Order \#	471611 Rev. 0

Analysis Considerations	
TiA-222 Revision	H
Grout Considered:	No
I_{ar} (in)	0

Applied Loads		
Moment (kip-ft)		
Axial Force (kips)		
Shear Force (kips)		4172.24

Connection Properties

Analysis Results

Anchor Rod Data
(45) 1-1/4" $ø$ bolts (Other N; Fy=105 ksi, Fu=150 ksi) on 68" BC

Base Plate Data
$71^{\prime \prime}$ OD $\times 1.5^{\prime \prime}$ Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Stiffener Data
(45) 12 " $\mathrm{H} \times$ 4"W $^{\text {" }}$ "T, Notch: $0.5^{"}$
plate: $F y=50 \mathrm{ksi}$; weld: $\mathrm{Fy}=70 \mathrm{ksi}$
horiz. weld: $0.5^{\prime \prime}$ fillet
vert. weld: 0.25 " fillet

Pole Data

$62.9375^{\prime \prime} \times 0.375^{\prime \prime} 18$-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Anchor Rod Summary	(units of kips, kip-in)	
Pu _c $=66.79$	¢Pn_c = 101.75	Stress Rating
$\mathrm{Vu}=0.72$	$\phi \mathrm{Vn}=30.52$	62.6\%
$\mathrm{Mu}=\mathrm{n} / \mathrm{a}$	$\phi \mathrm{Mn}=\mathrm{n} / \mathrm{a}$	Pass
Base Plate Summary		
Max Stress (ksi):	-	
Allowable Stress (ksi):	-	
Stress Rating:	Pirod OK	
Stiffener Summary		
Horizontal Weld:	Pirod OK	
Vertical Weld:	Pirod OK	
Plate Flexure+Shear:	Pirod OK	
Plate Tension+Shear:	Pirod OK	
Plate Compression:	Pirod OK	
Pole Summary		
Punching Shear:	Pirod OK	

Pier and Pad Foundation

BU \# : 823530
Site Name: CT364/Chapel St.
App. Number: 471611 Rev. 0

TIA-222 Revision
Tower Type

Superstructure Analysis Reactions

Compression, $\mathbf{P}_{\text {comp }}:$	61	kips
Base Shear, Vu_comp:	32	kips
Moment, $\mathrm{M}_{\mathrm{u}}:$	4172	ft-kips
Tower Height, $\mathrm{H}:$	$\mathbf{1 7 5}$	ft
BP Dist. Above Fdn, bp $_{\text {dist }}:$	2.5	in

Pier Propertios		
Pier Shape:	Circular	
Pier Diameter, dpier:	7.5	ft
Ext. Above Grade, E:	0.5	ft
Pier Rebar Size, Sc:	9	
Pier Rebar Quantity, mc:	36	
Pier Tie/Spiral Size, St:	4	
Pier Tie/Spiral Quantity, mt:	10	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc peier^{2}	3	in

Pad Properties

Pad Propertios		
Depth, D:	8	ft
Pad Width, W:	22.5	ft
Pad Thickness, T :	2.8	ft
Pad Rebar Size (Bottom), Sp:	9	
Pad Rebar Quantity (Bottom), mp:	23	
Pad Clear Cover, $\mathrm{cc}_{\text {pad }}$:	3	in

Material Properties		
Rebar Grade, Fy:		60000
psi		
Concrete Compressive Strength, F'c:	3000	psi
Dry Concrete Density, $\delta \mathbf{c}:$	150	pcf

Soil Properties

Soil Properties		
Total Soil Unit Weight, $\gamma:$	121	pcf
Ultimate Gross Bearing, Qult:	30.000	ksf
Cohesion, Cu:	0.000	ksf
Friction Angle, $\varphi:$	37	degrees
SPT Blow Count, N blows:	30	
Base Friction, $\mu:$	0.45	
Neglected Depth, $\mathrm{N}:$	3.30	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	12	ft

Top \& Bot. Pad Rein. Different?:	
Block Foundation?:	

Foundation Analysis Checks				
	Capacity	Demand	Rating ${ }^{*}$	Check
Lateral (Sliding) (kips)	353.71	32.00	8.6%	Pass
Bearing Pressure (ksf)	22.50	3.56	15.8%	Pass
Overturning (kip*f)	6802.20	4450.67	65.4%	Pass
Pier Flexure (Comp.) (kip*f)	6225.42	4354.40	66.6%	Pass
Pier Compression (kip)	21089.12	106.33	0.5%	Pass
Pad Flexure (kip*ft)	2888.25	1859.18	61.3%	Pass
Pad Shear - 1-way (kips)	641.26	333.27	49.5%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.000	0.0%	Pass
Flexural 2-way (Comp) (kip*it)	4012.99	2612.64	62.0%	Pass

*Rating per TIA-222-H Section
15.5

Soil Rating
65.4\%

Structural Rating*:
66.6%

ASCE 7 Hazards Report

Address:
No Address at This Location

Standard: ASCE/SE1 7-10
Risk Category: II
Soil Class: D-Stiff Soil

Elevation: 0 ft (NAVD 88)
Latitude: 41.663467
Longitude: -73.074281

Date Accessed:

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is in a hurricane-prone region as defined in ASCE/SEl 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class:
Results:

$\mathrm{S}_{\mathrm{S}}:$	0.186	$\mathrm{~S}_{\mathrm{DS}}:$	0.199
$\mathrm{~S}_{1}:$	0.064	$\mathrm{~S}_{\mathrm{D} 1}:$	0.103
$\mathrm{~F}_{\mathrm{a}}:$	1.600	$\mathrm{~T}_{\mathrm{L}}:$	6.000
$\mathrm{~F}_{\mathrm{V}}:$	2.400	$\mathrm{PGA}:$	0.096
$\mathrm{~S}_{\mathrm{MS}}:$	0.298	$\mathrm{PGA}_{\mathrm{M}}:$	0.153
$\mathrm{~S}_{\mathrm{M} 1}:$	0.155	$\mathrm{~F}_{\text {PGA }}:$	1.600
		$\mathrm{I}_{\mathrm{e}}:$	1

Seismic Design Category

B

Data Accessed:
Date Source:

Tue Dec 112018
USGS Seismic Design Maps based on ASCE/SEl 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CMIL ENGINEEAS

Ice

Results:

Ice Thickness: $\quad 0.75 \mathrm{in}$.

Concurrent Temperature: 5 F

Gust Speed:
Data Source:
Date Accessed:

50 mph
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Tue Dec 112018

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 50 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

[^0]
RF EMISSIONS COMPLIANCE REPORT

Crown Castle on behalf of AT\&T Mobility, LLC
Crown Castle Site Name: CT364/Chapel St. Monopole
Crown Castle Site ID: 823530
AT\&T Mobility, LLC FA \#: 10107966
580 Chapel Street
Thomaston, CT
1/14/2019

Report Status:

AT\&T Mobility, LLC Is Compliant

Klaus Bender
Registered Professional Engineer (Electrical)

Prepared By:

Sitesafe, LLC

Engineering Statement in Re :

Electromagnetic Energy Analysis
Crown Castle
Thomaston, CT
My signature on the cover of this document indicates:
That I am registered as a Professional Engineer in the jurisdiction indicated; and
That I have extensive professional experience in the wireless communications engineering industry; and

That I am an employee of Sitesafe, LLC in Vienna, Virginia; and
That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission ("the FCC" and "the FCC Rules") both in general and specifically as they apply to the FCC's Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; and

That the technical information serving as the basis for this report was supplied by Crown Castle (See attached Site Summary and Carrier documents), and that AT\&T Mobility, LLC's installations involve communications equipment, antennas and associated technical equipment at a location referred to as the "CT364/Chapel St. Monopole" ("the site"); and

That AT\&T Mobility, LLC proposes to operate at the site with transmit antennas listed in the carrier summary and with a maximum effective radiated power as specified by AT\&T Mobility, LLC and shown on the worksheet, and that worst-case 100% duty cycle have been assumed; and

That in addition to the emitters specified in the worksheet, there are additional collocated point-to-point microwave facilities on this structure and, the antennas used are highly directional oriented at angles at or just below the horizontal and, that the energy present at ground level is typically so low as to be considered insignificant and have not been included in this analysis; and

That this analysis has been performed with the assumption that the ground immediately surrounding the tower is primarily flat or falling; and

That at this time, the FCC requires that certain licensees address specific levels of radiofrequency energy to which workers or members of the public might possibly be exposed (at $\S 1.1307$ (b) of the FCC Rules); and

That such consideration of possible exposure of humans to radio-frequency radiation must utilize the standards set by the FCC, which is the Federal Agency having jurisdiction over communications facilities; and

That the FCC rules define two tiers of permissible exposure guidelines: 1) "uncontrolled environments," defined as situations in which persons may not be aware of (the "general public"), or may not be able to control their exposure to a transmission facility; and (2) "controlled environments," which defines situations in which persons are aware of their potential for exposure (industry personnel); and

That this statement specifically addresses the uncontrolled environment (which is more conservative than the controlled environment) and the limit set forth in the FCC rules for
licensees of AT\&T Mobility, LLC's operating frequency as shown on the attached antenna worksheet; and

That when applying the uncontrolled environment standards, the predicted Maximum Power Density at two meters above ground level from the proposed AT \&T Mobility, LLC operation is no more than 1.967% of the maximum in any accessible area on the ground and

That it is understood per FCC Guidelines and OET65 Appendix A, that regardless of the existent radio-frequency environment, only those licenses whose contributions exceed five percent of the exposure limit pertinent to their operation(s) bear any responsibility for bringing any noncompliant area(s) into compliance; and

That when applying the uncontrolled environment standards, the cumulative predicted energy density from the proposed operation is no more than 3.834% of the maximum in any accessible area up to two meters above the ground per OET-65; and

That the calculations provided in this report are based on data provided by the client and antenna pattern data supplied by the antenna manufacturer, in accordance with FCC guidelines listed in OET-65. Horizontal and vertical antenna patterns are combined for modeling purposes to accurately reflect the energy two meters above ground level where on-axis energy refers to maximum energy two meters above the ground along the azimuth of the antenna and where area energy refers to the maximum energy anywhere two meters above the ground regardless of the antenna azimuth, accounting for cumulative energy from multiple antennas for the carrier and frequency range indicated; and

That the Occupational Safety and Health Administration has policies in place which address worker safety in and around communications sites, thus individual companies will be responsible for their employees' training regarding Radio Frequency Safety.

In summary, it is stated here that the proposed operation at the site would not result in exposure of the Public to excessive levels of radio-frequency energy as defined in the FCC Rules and Regulations, specifically 47 CFR 1.1307 and that AT\&T Mobility, LLC's proposed operation is completely compliant.

Finally, it is stated that access to the tower should be restricted to communication industry professionals, and approved contractor personnel trained in radio-frequency safety; and that the instant analysis addresses exposure levels at two meters above ground level and does not address exposure levels on the tower, or in the immediate proximity of the antennas.

Crown Castle CT364/Chapel St. Monopole Site Summary

Carrier Area MaxImum Percentage MPE

AT\&T Mobility, LLC	0.164%
AT\&T Mobility, LLC (Proposed)	0.377%
AT\&T Mobility, LLC (Proposed)	0.302%
AT\&T Mobility, LLC (Proposed)	0.307%
AT\&T Mobility, LLC (Proposed)	0.198%
AT\&T Mobility, LLC (Proposed)	0.273%
AT\&T Mobility, LLC (Proposed)	0.346%
Crown Castle (Decommissioned)	0%
Sprint	0.408%
Sprint	0.057%
Sprint	0.231%
T-Mobile	0.146%
T-Mobile	0.101%
Thomaston CT, Town of	0.013%
Verizon Wireless	0.364%
Verizon Wireless	0.178%
Verizon Wireless	0.249%
Verizon Wireless	0.119%

Composite Site MPE:
3.834 \%

AT\&T Mobility, LLC CT364/Chapel St. Monopole
 Carrier Summary

Frequency:	850	MHz
Maximum Permissible Exposure (MPE):	566.67	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Maximum power density at ground level:	0.93145	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Highest percentage of Maximum Permissible Exposure:	0.16437	$\%$

Antenna Make	Model	Helght (feet)	Orientation (degrees true)	ERP (Watts)	On Axis		Area	
					Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge} \mathbf{2}$)	Percent of MPE	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\mathrm{A}} \mathbf{2}$)	Percent of MPE
Powerwave	7770	143	30	1094	0.515497	0.09097	0.796846	0.14062
Powerwave	7770	143	150	1094	0.51484	0.090854	0.796846	0.14062
Powerwave	7770	143	270	1094	0.51484	0.090854	0.796846	0.14062

AT\&T Mobility, LLC (Proposed)
 CT364/Chapel St. Monopole
 Carrier Summary

Frequency:				2100	MHz			
Maximum Permissible Exposure (MPE):				1000	$\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$			
Maximum power density at ground level:				3.7736	$\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$			
Highest percentage of Maximum Permissible Exposure:				0.37736		;		
					On Axis		Area	
Antenna Make	Model	Helght (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge}{ }^{\text {2 }}$)	$\begin{gathered} \text { Percent of } \\ \text { MPE } \end{gathered}$	Max Power Density ($\mathrm{HW} / \mathrm{cm}^{\wedge}$ 2)	Percent of MPE
Kathrein-Scala	800-10965	143	30	7114	1.507398	0.15074	3.605002	0.3605
Kathrein-Scala	800-10964	143	150	5274	1.145413	0.114541	2.672426	0.267243
Kathrein-Scala	800-10965	143	270	7114	1.545119	0.154512	3.605002	0.3605

AT\&T Mobility, LLC (Proposed)
 CT364/Chapel St. Monopole
 Carrier Summary

Frequency:				1900	MHz			
Maximum Permiss	posure (MP			1000	$\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$			
Maximum power d	at ground le			3.01505	$\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$			
Highest percentag	ximum Per	Expos	ure:	0.30151	\%			
					On		Ar	
Antenna Make	Model	$\begin{gathered} \text { Height } \\ \text { (feet) } \end{gathered}$	Orientation (degrees true)	$\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$	Max Power Density ($\mathrm{HW} / \mathrm{cm}^{\wedge}$ 2)	Percent of MPE	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\mathrm{A}} 2$)	Percent of MPE
Kathrein-Scala	800-10965	143	30	6168	1.297139	0.129714	2.792729	0.279273
Kathrein-Scala	800-10964	143	150	5154	1.092579	0.109258	2.342057	0.234206
Kathrein-Scala	800-10965	143	270	6168	1.297139	0.129714	2.792729	0.279273

AT\&T Mobility, LLC (Proposed)
 CT364/Chapel St. Monopole
 Carrier Summary

Frequency:	763	MHz
Maximum Permissible Exposure (MPE):	508.67	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Maximum power density at ground level:	1.56169	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Highest percentage of Maximum Permissible Exposure:	0.30702	$\%$

Antenna Make	Model	Helght (feet)	Orientation (degrees true)	On Axis			Area	
				$\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$	Max Power Density ($\mathrm{\mu W} / \mathrm{cm}^{\wedge}$ 2)	Percent of MPE	Max Power Density ($\mathrm{\mu W} / \mathrm{cm}^{\wedge}$ 2)	Percent of MPE
Kathrein-Scala	800-10965	143	30	2959	1.14122	0.224355	1.454571	0.285958
Kathrein-Scala	800-10964	143	150	2209	0.872606	0.171548	1.204042	0.236705
Kathrein-Scala	800-10965	143	270	2959	1.14122	0.224355	1.454571	0.285958

AT\&T Mobility, LLC (Proposed)
 CT364/Chapel St. Monopole
 Carrier Summary

Frequency:	2300	MHz
Maximum Permissible Exposure (MPE):	1000	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Maximum power density at ground level:	1.9767	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Highest percentage of Maximum Permlssible Exposure:	0.19767	$\%$

Antenna Make	Model	Height (feet)	Orientation (degrees true)	$\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$	On Axis		Area	
					Max Power Density ($\mathrm{HW} / \mathrm{cm}^{\wedge} 2$)	$\begin{gathered} \text { Percent of } \\ \text { MPE } \end{gathered}$	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2)	Percent of MPE
Kathrein-Scala	800-10965	143	30	3954	1.005296	0.10053	1.871767	0.187177
Kathrein-Scala	800-10964	143	150	3516	0.80801	0.080801	1.788592	0.178859
Kathrein-Scala	800-10965	143	270	3954	1.003718	0.100372	1.871767	0.187177

AT\&T Mobility, LLC (Proposed) CT364/Chapel St. Monopole Carrier Summary

Frequency:	850	MHz
Maximum Permissible Exposure (MPE):	566.67	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Maximum power density at ground level:	1.54879	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Highest percentage of Maximum Permissible Exposure:	0.27332	$\%$

Antenna Make	Model				On Axis		Area	
		Height (feet)	Orientation (degrees true)	$\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge}{ }^{2}$)	Percent of MPE	Max Power Density ($\mathrm{HW} / \mathrm{cm}^{\wedge}$)	$\begin{gathered} \text { Percent of } \\ \text { MPE } \end{gathered}$
Kathrein-Scala	800-10965	143	30	3607	1.066637	0.18823	1.112151	0.196262
Kathrein-Scala	800-10964	143	150	2631	0.747523	0.131916	0.914984	0.161468
Kathrein-Scala	800-10965	143	270	3607	1.066637	0.18823	1.112151	0.196262

AT\&T Mobility, LLC (Proposed)

CT364/Chapel St. Monopole

Carrier Summary

Frequency:				737	MHz			
Maximum Permissible Exposure (MPE):				491.33	$\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$			
Maximum power density at ground level:				1.70012	$\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$			
Highest percentage of Maximum Permissible Exposure:				0.34602	\%			
					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\mathrm{A}} \mathbf{2}$)	Percent of MPE	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2)	Percent of MPE
CCI Antennas	HPA65R-BU6A	143	30	2819	1.069303	0.217633	1.094544	0.22277
CCI Antennas	HPA65R-BU4A	143	150	1946	1.631718	0.3321	1.688769	0.343711
CCI Antennas	HPA65R-BU6A	143	270	2819	1.069303	0.217633	1.094544	0.22277

Crown Castle (Decommissioned)
 CT364/Chapel St. Monopole
 Carrier Summary

Frequency:				1900	MHz			
MaxImum Perm	ible Exposure (MPE)			1000	$\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$			
Maximum powe	ensity at ground lev			0	$\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$			
Highest percen	e of Maximum Perm	le Expo	ure:	0	\%			
					On A		Are	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	$\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \\ & \hline \end{aligned}$	Max Power Density ($\mathrm{WW}^{\mathrm{W}} / \mathrm{cm}^{\wedge}$)	Percent of MPE	Max Power Density ($\mathrm{H} / \mathrm{W} / \mathrm{cm}^{\wedge}$)	Percent of MPE
RFS	APXV18-206517S	115	30	0	0	0	0	0
RFS	APXV18-206517S	115	150	0	0	0	0	0
RFS	APXV18-206517S	115	270	0	0	0	0	0

Sprint
 CT364/Chapel St. Monopole
 Carrier Summary

Frequency:	1900	MHz
Maximum Permissible Exposure (MPE):	1000	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge}{ }^{\wedge}$
Maximum power density at ground level:	4.08206	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Highest percentage of Maximum Permissible Exposure:	0.40821	$\%$

Antenna Make	Model	Height (feet)	Orientation (degrees true)	On Axis			Area	
				ERP (Watts)	Max Power Density ($\mu \mathbf{W} / \mathrm{cm}^{\wedge} 2$)	Percent of MPE	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$)	Percent of MPE
RFS	APXVSPP18-C-A20	162	340	3804	0.706127	0.070613	1.290771	0.129077
RFS	APXVSPP18-C-A20	162	340	3804	0.706127	0.070613	1.290771	0.129077
RFS	APXVSPP18-C-A20	162	90	3804	0.702969	0.070297	1.290771	0.129077
RFS	APXVSPP18-C-A20	162	90	3804	0.702969	0.070297	1.290771	0.129077
RFS	APXVSPP18-C-A20	162	200	3804	0.702969	0.070297	1.290771	0.129077
RFS	APXVSPP18-C-A20	162	200	3804	0.702969	0.070297	1.290771	0.129077

Sprint
 CT364/Chapel St. Monopole
 Carrier Summary

Frequency:	862	MHz
Maximum Permissible Exposure (MPE):	574.67	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Maximum power density at ground level:	0.33004	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Highest percentage of Maximum Permlssible Exposure:	0.05743	$\%$

Antenna Make	Model	Height (feet)	Orientation (degrees true)	$\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$	On Axis		Area	
					Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge}{ }^{2}$)	Percent of MPE	Max Power Density ($\mathrm{HW} / \mathrm{cm}^{\wedge} 2$)	Percent of MPE
RFS	APXVSPP18-C-A20	162	340	1084	0.293205	0.051022	0.298318	0.051912
RFS	APXVSPP18-C-A20	162	90	1084	0.292323	0.050868	0.298318	0.051912
RFS	APXVSPP18-C-A20	162	200	1084	0.292323	0.050868	0.298318	0.051912

Sprint
 CT364/Chapel St. Monopole
 Carrier Summary

Frequency:	2500	MHz
Maximum Permissible Exposure (MPE):	1000	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Maximum power density at ground level:	2.31194	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Highest percentage of MaxImum Permissible Exposure:	0.23119	$\%$

Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density ($\mathrm{\mu W} / \mathrm{cm}^{\wedge}$ 2)	Percent of MPE	Max Power Density ($\mathrm{HW} / \mathrm{cm}^{\wedge}$ 2)	Percent of MPE
RFS	APXVTM14-C-120	162	340	6168	0.840008	0.084001	1.600068	0.160007
RFS	APXVTM14-C-120	162	90	6168	0.840008	0.084001	1.600069	0.160007
RFS	APXVTM14-C-120	162	200	6168	0.839501	0.08395	1.600068	0.160007

T-Mobile
 CT364/Chapel St. Monopole
 Carrier Summary

Frequency:	700	MHz
Maximum Permissible Exposure (MPE):	466.67	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Maximum power density at ground level:	0.68235	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Highest percentage of Maximum Permissible Exposure:	0.14622	$\%$

Antenna Make		Height (feet)	Orientation (degrees true)		On Axis		Area	
	Model			ERP (Watts)	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge} \mathbf{2}$)	Percent of MPE	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$)	Percent of MPE
ANDREW	LNX-6515DS-VTM	172	10	2109	0.381151	0.081675	0.386046	0.082724
ANDREW	LNX-6515DS-VTM	172	190	2109	0.381151	0.081675	0.386046	0.082724
ANDREW	LNX-6515DS-VTM	172	280	2109	0.381151	0.081675	0.386046	0.082724

T-Mobile
 CT364/Chapel St. Monopole

Carrier Summary

Frequency:				1900	MHz			
Maximum Permiss	e Exposure (MPE):			1000	$\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$			
Maximum power	sity at ground leve			1.00986	$\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$			
Highest percentag	of Maximum Permis	e Expos		0.10099	\%			
					On		Ar	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2)	Percent of MPE	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$)	Percent of MPE
EMS	RR90-17-02DPL2	172	10	1653	0.391076	0.039108	0.582585	0.058259
EMS	RR90-17-02DPL2	172	190	1653	0.391076	0.039108	0.582585	0.058259
EMS	RR90-17-02DPL2	172	280	1653	0.391076	0.039108	0.582585	0.058259

Thomaston CT, Town of CT364/Chapel St. Monopole
 Carrier Summary

Frequency:				450	MHz			
Maximum Permissible Exposure (MPE):				300	$\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$			
Maximum power density at ground level:				0.03804	$\mu \mathrm{W} / \mathrm{cm}^{\text {A }} 2$			
Highest percentage of Maximum Permissible Exposure:				0.01268	\%			
					On Axis		Area	
Antenna Make	Model	Helght (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$)	Percent of MPE	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2)	Percent of MPE
Lonestar	LS-230-C	168	0	100	0.038045	0.012682	0.038045	0.012682

Verizon Wireless
 CT364/Chapel St. Monopole
 Carrier Summary

Frequency:	850	MHz
Maximum Permissible Exposure (MPE):	566.67	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Maximum power density at ground level:	2.06222	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Highest percentage of Maximum Permissible Exposure:	0.36392	$\%$

Antenna Make	Model				On Axis		Area	
		Height (feet)	Orientation (degrees true)	$\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$	Max Power Density ($\mathrm{\mu W} / \mathrm{cm}^{\wedge}$ 2)	$\begin{aligned} & \text { Percent of } \\ & \text { MPE } \end{aligned}$	Max Power Density ($\mathrm{HW} / \mathrm{cm}^{\wedge}$ 2)	Percent of MPE
Antel	LPA-80080-4CF	152	120	1423	0.630999	0.111353	0.65529	0.115639
Antel	LPA-80080-4CF	152	120	1423	0.630999	0.111353	0.65529	0.115639
Antef	LPA-80080-4CF	152	240	1423	0.630487	0.111262	0.65529	0.115639
Ante!	LPA-80080-4CF	152	240	1423	0.630487	0.111262	0.65529	0.115639
Antei	LPA-80080-4CF	152	290	1423	0.630487	0.111262	0.65529	0.115639
Antel	LPA-80080-4CF	152	290	1423	0.630487	0.111262	0.65529	0.115639

Verizon Wireless CT364/Chapel St. Monopole Carrier Summary

Frequency:	1900	MHz
Maximum Permisslble Exposure (MPE):	1000	$\mathrm{WW} / \mathrm{cm}^{\wedge} 2$
Maximum power density at ground level:	1.78338	$\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
Highest percentage of Maximum Permissible Exposure:	0.17834	$\%$

Antenna Make	Model	Height (feet)	Orientation (degrees true)	$\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$	On Axis		Area	
					Max Power Density ($\mathrm{\mu W} / \mathrm{cm}^{\wedge}$)	Percent of MPE	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2)	$\begin{gathered} \text { Percent of } \\ \text { MPE } \end{gathered}$
Commscope	NNHH-65B-R4	152	40	3848	0.713997	0.0714	1.476289	0.147629
Commscope	NNHH-65B-R4	152	190	3848	0.712141	0.071214	1.476289	0.147629
Commscope	NNHH-65B-R4	152	290	3848	0.713997	0.0714	1.476289	0.147629

Verizon Wireless
 CT364/Chapel St. Monopole
 Carrier Summary

Frequency:				2100	MHz			
Maximum Permiss	xposure (MPE):			1000	$\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$			
Maximum power d	at ground leve			2.49366	$\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$			
Highest percentag	Aaximum Permis	Exposu		0.24937	\%			
					On	xis	Ar	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	$\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2)	$\begin{gathered} \text { Percent of } \\ \text { MPE } \end{gathered}$	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$)	Percent of MPE
Commscope	NNHH-65B-R4	152	40	3591	1.298947	0.129895	2.34258	0.234258
Commscope	NNHH-65B-R4	152	190	3591	1.336585	0.133658	2.34258	0.234258
Commscope	NNHH-65B-R4	152	290	3591	1.298947	0.129895	2.34258	0.234258

Verizon Wireless
 CT364/Chapel St. Monopole Carrier Summary

Frequency:				751	MHz			
Maximum Permiss	Exposure (MPE):			500.67	$\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$			
Maximum power d	at ground leve			0.59403	$\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$			
Highest percentag	Maximum Permis	Exposu		0.11865	\%			
					On	Axis	Ar	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2)	$\begin{gathered} \text { Percent of } \\ \text { MPE } \end{gathered}$	Max Power Density ($\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2)	$\begin{gathered} \text { Percent of } \\ \text { MPE } \end{gathered}$
Commscope	NNHH-65B-R4	152	40	560	0.18481	0.036913	0.22437	0.044814
Commscope	NNHH-65B-R4	152	40	560	0.18481	0.036913	0.22437	0.044814
Commscope	NNHH-65B-R4	152	190	560	0.185282	0.037007	0.224371	0.044814
Commscope	NNHH-65B-R4	152	190	560	0.185282	0.037007	0.224371	0.044814
Commscope	NNHH-65B-R4	152	290	560	0.18481	0.036913	0.224371	0.044814
Commscope	NNHH-65B-R4	152	290	560	0.18481	0.036913	0.224371	0.044814

```
Charles McGuirt
Crown Castle 3 Corporate Dr., St 101
Clifton Park, NY 12065
```

Subject:	Mount Analysis Report	
Carrier Designation:	AT\&T Mobility Co-Locate Carrier Site Number: Carrier Site Name:	$\begin{aligned} & 10107966 \\ & \text { CTL01062 } \end{aligned}$
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Order Number:	823530 CT364/Chapel St. 548514 471611 Rev. 0
Engineering Firm Designation:	Infinigy Report Designation:	400087
Site Data:	580 Chapel Street, Thomaston, Litchfield County, CT, 06787 Latitude $41^{\circ} 39^{\prime} 48.48^{\prime \prime}$ Longitude -73 4^{\prime} '27.41"	
Structure Information:	Tower Height \& Type: Mount Elevation: Mount Type:	175 ft Monopole 142 ft 14 ft Platform
Dear Charles McGuirt,		

Infinigy is pleased to submit this "Mount Analysis Report" to determine the structural integrity of AT\&T's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform

Sufficient

The analysis has been performed in accordance with the 2015 International Building Code/ 2018 Connecticut Building Code and TIA-222-H Standard based upon an ultimate 3 -second gust wind speed of 120 mph . Exposure Category B with Risk Category II was/were used in this analysis.

Mount analysis prepared by: Ishan Patel, Respectfully Submitted by:

Joe Johnston, P.E.
VP Structural Engineering

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
3) ANALYSIS PROCEDURE

Table 2 - Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity
Table 4 - Tieback End Reactions
4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models
6) APPENDIX B

Software Input Calculations
7) APPENDIX C

Software Analysis Output
8) APPENDIX D

Additional Calculations

1) INTRODUCTION

This mount is a existing Commscope MC-PK14L. This Mount is installed at 142 ft . elevation on 3 sectors of the 175 ft monopole.

2) ANALYSIS CRITERIA

Building Code:	2015 IBC
TIA-222 Revision:	TIA-222-H
Risk Category:	II
UItimate Wind Speed:	120 mph
Exposure Category:	C
Ice Thickness:	1.28 in
Wind Speed with Ice:	50 mph
Man Live Load at End-Points:	250 lb

Table 1 - Final Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Antennas } \end{aligned}$	Antenna Manufacturer	Mount Type
142.0	142.0	1	CCI HPA65R-BU4A	Platform
		2	CCI HPA65R-BU6A	
		2	Kathrein 80010964	
		4	Kathrein 80010965	
		3	PWave 7770	
		3	Ericsson RRUS-4415 B30	
		3	Ericsson RRUS-4449 B5/B12	
		3	Ericsson RRUS 4478 B14	
		3	Ericsson RRUS 8843 B2/B66A	
		6	PNA ${ }^{\text {ave LGP21401 }}$	
		3	Raycap DC6-48-60-18-8F	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

3.1) Analysis Method

RISA-3D (Version 17.0.2), a commercially available analysis software package, was used to create a threedimensional model of the antenna mounting system and calculate member stresses for various loading cases.

3.2) Assumptions

1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
4) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)
HSS (Rectangular)	ASTM A53 (GR 35)
Pipe	ASTM A53 (GR 35)
Connection Bolts	ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Infinigy should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform)

Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the \% capacity consumed.
2) All sectors are typical

4.1) Recommendations

The Sector Frame Mount has sufficient capacity to support the proposed loading. No modifications are required at this time.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

Envelope Only Solution

Infinigy	8	Existing Configuration
IP		Dec 26, 2018 at 4:25 PM
$600-003$		$823530 . \mathrm{r3d}$

Envelope Only Solution

Infinigy	823530	Existing Configuration
IP		Dec 26, 2018 at 4:25 PM
600-003		823530.r3d

Loads: BLC 1, Self Weight
Envelope Only Solution

Infinigy		Existing Configuration
IP	823530	Dec 26, 2018 at 4:24 PM
$600-003$		823530.r3d

Loads: BLC 2, Wind Load AZI 000
Envelope Only Solution

Infinigy	823530	Existing Configuration
IP		Dec 26, 2018 at 4:24 PM
600-003		823530.r3d

Loads: BLC 6, Wind + Ice Load AZI 090
Envelope Only Solution

Infinigy	823530	Existing Configuration
IP		Dec 26, 2018 at 4:24 PM
600-003		823530.r3d

APPENDIX B

Rooftop Inputs:
Rooftop Wind Speed-Up?: NO N What

Site Information Inputs:	
Adopted Building Code:	2015 BC
Structure Load Standard:	W1422-H5
Antenna Load Standard:	
Structure Risk Category:	
	紋
Structure Type:	Mount Mintoim
Number of Sectors:	25k
Structure Shape 1:	Round

Wind Loading Inputs:	
	mph \{ultimate 3-second gust)
	ft
	degrees

Wind with No Ice		
q_{2} (psf)	Gh	F_{ST} (psf)
37.51	1.00	45.01

Wind with Ice			
q_{2} (psf)	Gh	F_{sI} (psf)	
6.51	1.00	16.42	

	Ice Loading Inputs:	
Is Ice Loading Needed?:		
Ice Wind Velocity:		mph [ultimate 3-second gust)
Base Ice Thickness:	1818	

Input Appurtenance Information and Load Placements:

Appurtenance Name	Elevation (ft)	Total Quantity	Kа	Front Shape	Side Shape	$\begin{gathered} \mathrm{q}_{\mathrm{z}} \\ \{\mathrm{psf}\} \end{gathered}$	$\begin{aligned} & \text { EPA } \\ & \left(\mathrm{ft}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{Fz} \\ \text { (lbs) } \end{gathered}$	$\begin{gathered} \mathrm{Fx} \\ (\mathrm{lbs}) \end{gathered}$	$\begin{gathered} \mathrm{F} 2_{2}(60) \\ (\mathrm{lbs}) \end{gathered}$	$\begin{gathered} \text { Fx(} 30\rangle \\ (\mathrm{lbs}) \end{gathered}$
			1.00	Flat	Flat	37.51	4.96	185.97	130.15	144.10	172.02
			1.00	Flat	Flat	37.51	7.85	294.48	208.12	229.71	272.89
			1.00	Flat	Fiat	37.51	10.00	375.01	153.95	209.21	319.74
			1.00	Flat	Flat	37.51	13.81	518.17	218.81	293.65	443.33
			1.00	Flat	Flat	37.51	5.51	206.63	109.84	134.04	182.43
			1.00	Flat	Flat	37.51	1.64	61.63	23.98	33.39	52.22
			1.00	Flat	Flat	37.51	1.97	73.80	52.82	58.07	68.56
			1.00	Flat	Flat	37.51	1.84	69.11	39.71	47.06	61.76
			1.00	Flat	Flat	37.51	1.64	61.48	50.77	53.45	58.80
	23x ${ }^{3}$		1.00	Flat	Flat	37.51	1.10	41.41	13.02	20.12	34.31
			1.00	Round	Round	37.51	1.21	45.45	45.45	45.45	45.45

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

\qquad
Model Name

Member Primary Data

	Label	1 Joint	3 Joint	K Joint	Rotate(deg)	Section/Shap	Type	Design List	Material	Design Rules
1	M1	N1	N2			HSS 4"x4"x1/4"	Beam	None	A53 Gr.B	Typical
2	M2	N74A	N4			RIGID	None:	None	RIGID	Typical
3	M8	N19	N18			3" STD Pipe	Beam	None	A53 Gr.B	Typical
4	M11	N28	N76			HSS 4"x4"x1/4"	Beam	None	A53 Gr.B	Typical
5	M18	N40	N43		270	L2"x2"x ${ }^{\text {/ }} 16$	Beam	None	A36 Gr. 36	Typical
6	M29	N79	N78			2.375"OD. PI...	Beam	None	A53 Gr.B	Typical
7	M14	N56	N55			3" STD Pipe	Beam	None	A53 Gr.B	Typical
8.	M18A	N64	N63			2.375\%O.D. Plik	Beam	None	A53 Gri ${ }^{\text {a }}$	Typical
9	M19	N67	N66			3" STD Pipe	Beam	None	A53 Gr.B	Typical
10	M23	N75	N74			2.375 OD. P\%.	Beam	None	A53 Gr.B	Typical
11	MP6	N54	N49			2.375" O.D. Pi...	Beam	None	A53 Gr.B	Typical
12	MP5	N50	N55A			2.375" O.D.P..	Beam	None	A53 Gr. ${ }^{\text {a }}$	Typical
13	MP4	N51	N56A			2.375" O.D. Pi...	Beam	None	A53 Gr.B	Typical
14	MP2	N53	N58			2,375 O:D Plico	Beam	None	A53 Gr.B	Typical
15	MP1	N52	N57			2.375" O.D. PI...	Beam	None	A53 Gr.B	Tupical
16	M20	N41	N42			L2" $\times 2$ 1 $\times 3 / 16$	Beam	None	A36 Gr. 36	Tivpical
17	M17A	N59	N60			HSS 4"x4"x1/4"	Beam	None	A53 Gr.B	Typical
18.	M18C	N9	N75A			RIGID	None	None	RIGID	Typleal
19	M19B	N77	N31			HSS 4"x4"x1/4"	Beam	None	A53 Gr, B	Typical
20	M20A	N64A	N67A		270	$12^{\prime \prime} \times 2 \times 3 / 16$	Beam	None	A36.Cr36	Typical
21	M21	N65	N66A			L2" $\times 2$ "×3/16	Beam	None	A36 Gr. 36	Typical
22	M22	N7OA	N71A	\%		HSS $4^{4 \times 4} \times 4^{4} \times 1 / 4{ }^{\text {a }}$	Beam.	None	A53 GrB	Typloal
23	M23A	N79A	N72			RIGID	None	None	RIGID	Typical
24	M24.	N74B	N80			HSS 4 $4 \times 4 \times 4 \times 1 / 4{ }^{10}$	Beam.	None	A53 GHB	Typlical
25	M25	N75B	N78A		270		Beam	None	A36 Gr. 36	Typical
26.	M26	N76A	N77A			L2"x2'x3/16	Beam,	None	A36 Grib	Typlal
27	MP3	N77B	N78B			2.375 ${ }^{\prime \prime}$ O.D. Pl...	Beam	None	A53 Gr.B	Tvpical
28.	MP/2	N85	N80A			2375 O.D.Plis	Beam,	None	A53 Girb	Typical
29	MP11	N81	N86			2.375" O.D. Pl...	Beam	None	A53 Gr.B	Typical
30	MP10	N82	N87.			2.375 ODD. ${ }^{\text {a }}$	Beam.	None	A53 Gr.B	Typical
31	MP8	N84	N89			2.375" O.D. Pi...	Beam	None	A53 Gr.B	Typical
32	MP7.	N83	N88.			2,375\%0. ${ }^{\text {a }}$ /	Beam	None	A53 Gr. B	Typleal
33	MP9	N90	N91			2.375" O.D. Pi...	Beam	None	A53 Gr.B	Tvpical
34	MP18	N98	N93	\%43	, \%	2,375. O,D.PI.,	Beam	None	A53 Cr.B	Tyical
35	MP17	N94	N99			2.375" O.D. Pl...	Beam	None	A53 $\mathrm{Gr} . \mathrm{B}$	Typical
36	MP16.	N95	N100			2375 ODM	Beam.	None	A53 GrB	Typleal
37	MP14	N97	N102			2.375" O.D. Pl...	Beam	None	A53 Gr.B	Typical
38.	MP13	N96	N101			2375\% OD. PIt	Beam	None	A53 Grib	Typical
39	MP15	N103	N104			2.375" O.D. Pl...	Beam	None	A53 Gr.B	Typical

Material Takeoff

Material		Size	Pieces	Length[in]	Weight[K]
1	General				
2.		T, , <, , , \%	4.3. ${ }^{\text {a }}$, 32.4	W\% 0
3	Total General		3	32.4	0
4		N,	,	, M, 32.4,	, ,
5	Hot Rolled Steel				
6.	A36 Gr 36	$\xrightarrow{\square} 2 \times 2 \times 3$	W 6	+, 303.1	- $\quad 0$
7	A53 Gr.B	HSS4X4X4	6	370.7	. 4
8.	A53 GrB	\cdots PIPE 2.0	21.,	1800	. 5
9	A53 Gr.B	PIPE 3.0	3	504	. 3
10	Total HR Steel	, 4, ${ }^{\text {a }}$,	\% 36	- 2977.8	1.2

Dec 26, 2018
\qquad

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	dArea(Me...	Surface(...
1	Self Weight	DL		-1			42		4	
2	Wind Load AZI 000	WLZ					42		1	
3	Wind Load AZI 090	WLX					42		1	
4	Ice Weight	OL1					42	39	4	
5	Wind + Ice Load AZI 000	OL2					42		1	
6	Wind + Ice Load AZ1 090	OL3					42		1	
7	Service Live 1	LL				9				
8.	BLC 1 Transient Area Loads	None		\%				45		
9	BLC 2 Transient Area Loads	None						38		
10	BLC 3 Transient Area Loads.	None						33	\%	
11	BLC 4 Transient Area Loads	None						45		
12	BLC 5 Transient Area Loads	None						38		
13	BLC 6 Transient Area Loads	None						33		

Load Combinations

Description		Solve	PDelta		BLC	Factor	BLC	Factor	BLC	Factor	BLC	Fa.				
1	1.4D	Yes	Y		DL	1.4										
2	$1.2 \mathrm{D}+1 \mathrm{WAZ} 000$	Yes	Y		DL	1.2	WLZ	1								
3	1.2D + 1W AZI 030	Yes	Y		DL	1.2	WLZ	. 866	WLX	5						
4	$1.20+1$ WAZ 060	Yes	Y		DL	1.2	WL2	5	WLX	866						
5	1.2D + 1W AZI 090	Yes	Y		DL	1.2			WLX	1						
6	$1.20+1 W A Z 120$	Yes	Y		DL.	1.2	WLZ	4.5	WLX	866						
7	1.2D+1WAZI 150	Yes	Y		DL	1.2	WLZ	-. 866	WLX	. 5						
8	$120+1 W$ AZ1 180	Yes	Y		DL.	1.2	WLZ	1.								
9	1.2D + 1W AZI 210	Yes	Y		DL	1.2	WLZ	-. 866	WLX	-. 5						
10	$1.20+1 W A Z 240$	Yes	Y		DL.	12	WLZ	-5	WLX	-866						
11	1.2D + 1WAZI 270	Yes	Y		DL	1.2			WLX	-1						
12	1.20 + 1WAz300	Yes	\bigcirc		DL	1.2	WLZ	5	WLX	-866						
13	1.2D + 1WAZI 330	Yes	Y		DL	1.2	WLZ	. 866	WLX	-. 5						
14	0.90 + 1W AZ 000	Yes.	\% Y		DL.	9	WLZ	1	,							
15	0.9D + 1WAZI 030	Yes	Y		DL.	. 9	WLZ	. 866	WLX	5						
16	$0.90+1 W$ AZ 1060	Yes.	Y		DL	9	WLZ	. 5.	WEX	866						
17	0.9D + 1W AZI 090	Yes	Y		DL	. 9			WLX	1						
18.	0.90 + 1W AZ 120	Yes	Y		DL	9	WLZ	4.5	WEX	866						
19	$0.9 D+1$ W AZI 150	Yes	Y		DL	. 9	WLZ	-. 866	WLX	. 5						
20	$0.90+1$ W AZI 180	Yes	Y		DL	9	WLZ	1			\%					
21	0.9D + 1W AZI 210	Yes	Y		DL	. 9	WLZ	-. 866	WLX	-. 5						
22.	$0: 9 \mathrm{D}$ + 1 W AZ1 240	Yes	Y		DLI.	. 9	WLZ	45	WLX	-866.						
23	0.9D + 1W AZI 270	Yes	Y		DL	. 9			WLX	-1						
24	$0.90+1$ W Az1 300	Yes	${ }^{*} \mathrm{Y}$		DL.	9	WLZ	5	WEx	-866.		S				
25	$0.90+1$ W AZI 330	Yes	Y		DL	. 9	WLZ	. 866	WLX	-. 5						
26.	1.20 +1.0D1,	Yes.	Y		DL	1.2	OL	$1{ }^{1}$,							
27	1.2D + 1.0Di + 1.0Wi AZI ...	Yes	Y		DL	1.2	OL1	1	OL2	1						
28.	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wl}$ Azl.	Yes	V, \mathbf{Y}		DL.	1.2	OL1	1	OL2	866	OL3	5				
29	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} \mathrm{AZI} \ldots$	Yes	Y		DL	1.2	OL1	1	OL2	. 5	OL3.	. 866				
30.	$12 \mathrm{~L}+10 \mathrm{Dl}+10 \mathrm{WlAZl}$	Yes	Y		DL	1.2	OL1	1			OL3	1				
31	1.2D + 1.0Di + 1.0Wi AZI ...	Yes	Y		DL	1.2	OL1	1	OL2	-. 5	OL3.	. 866				
32	$112 \mathrm{t}+10 \mathrm{Di}+10 \mathrm{WVAZI}$.	Yes	Y		DL	1.2	0 L 1	1.	OL2	-866	OL3	5.				
33	1.2D + 1.0Di + 1.0Wi AZI ...	Yes	Y		DL	1.2	OL. 1	1	OL2	-1						
34.	12,20 + 10Di + 100 WVAZI.	Yes	Y		DL.	1.2	0 L 1	1	OL2	-866	013	-. 5				
35	1.2D + 1.0Di + 1.0Wi AZI ...	Yes	Y		DL	1.2	OL1	1	OL2	-. 5	OL3	-.8...				
36	$1.2 \mathrm{D}+10 \mathrm{Di}+1$ OWIAZI.	Yes	Y		DL.	1.2	OL1	1.		,	OL3	-1.				
37	1.2D + 1.0Di + 1.0Wi AZI ...	Yes	Y		DL	1.2	OL-1	1	OL2	. 5	OL3	-.8...				
38	120 +10Di + 10 OVI AZI..	Yes	Y		DL	1.2	014	1.	012	866	013	-. 5				,

Infinigy
IP
600-003
823530

Dec 26, 2018
4:27 PM
Checked By:

Load Combinations (Continued)

Descriotion	Solve	PDelta			BL	Factor BLC	Factor	C	Fa.			
39 1. $1.2 \mathrm{D}+1.5 \mathrm{~L}+1.0 \mathrm{WL}$ (30.	Yes	Y	DL	1.2	LL	1.5 WLZ	. 063					
$401.2 \mathrm{~L}+1.5 \mathrm{~L}+1.0 \mathrm{WL}$ ($30 \ldots$	Yes	Y	DL	1.2	LL	1.5 WLZ	054	WLX.	. 031			
$411.2 \mathrm{D}+1.5 \mathrm{~L}+1.0 \mathrm{WL}$ (30.	Yes	Y	DL	1.2	LL	1.5 WLZ	031	WLX.	. 054			
42 1.2D + 1.5L + 1.0WL (30 ...	Yes	Y	DL	1.2	LL	1.5		WLX.	. 063			
$431.2 \mathrm{D}+1.5 \mathrm{~L}+1.0 \mathrm{WL}$ (30...	Yes	Y	DL	1.2	LL	1.5 WLZ	-. 031	WLX.	. 054			
44-1.2D + 1.5L + 1.0WL (30...	Yes	Y	DL	1.2	LL	1.5 WLZ	-. 054	WLX.	. 031			
$451.2 \mathrm{D}+1.5 \mathrm{~L}+1.0 \mathrm{WL}$ (30...	Yes	Y	DL	1.2	LL	1.5 WLZ	-. 063					
46. 1.2D + 1.5L + 1.0WL ($30 \ldots$	Yes	Y	DL	1.2	LL	1.5 WLZ	-054	WLX	-0..			
47 1.2D + 1.5L + 1.0WL (30...	Yes	Y	DL	1.2	LL	1.5 WLZ	-. 031	WLX	-0..			
$48 \quad 1.2 \mathrm{D}+1.5 \mathrm{~L}+1.0 \mathrm{WL}$ (30...	Yes	Y	DL	1.2	LL	1.5		WLX				
49. 1.2D + 1.5L + 1.0WL (30 ...	Yes	Y	DL	1.2	LL	1.5 WLZ	. 031	WLX				
50 1.2D +1.5L + 1.0WL ($30 \ldots$	Yes	Y	DL	1.2	LL	1.5 WLZ	. 054	WLX:	-0...			

Envelope Joint Reactions

	Joint		[lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [llb-ft]	LC	MY		MZ [lb-ft]	LC
1	N70A	max	1446.088	17	2832.986	27	2334.686	14	4774.746	27.	1487.173	22	1619.4	23
2		min	-1447.012	23	-313.351	20	-2534.16	8	-1413.46	20	-1492.765	4	-1681,626	5
3	N59	max	2598.387	5	4238.75	35	2144.874	2	1634.804	14	2055.583	19	6684,343	36
4		min	-2423.055	23	43.235	16	-2044.382	20	- 4057.065	33	-2063.127	13	-1082.716	17
5	N1	max	1857.793	17	3187.877	31	1846.815	13	1391.727	25	853,403	15	1395.027	23
6		min	-2032.471	11	-208.92	24	-1747.961	19	-3532,392	32	-864.788	9	-4528.297	30
7	N5	max	0	50	0	50	0	50	0	50	0	50	0	50
8		min	0	1	0	1	0	1	0	1.	0	1	0	1
9	Totals:	max	5877.406	5	9302.463	29	6186.187	14						
10		min	-5877.406	23	2955.775	22	-6186.187	8.						\cdots

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	Shear.	oc[in]					phi*Mn y..p	phi*Mn z...co		
1	MP1	PIPE 2.0	. 841	63	8	123	63		8	20866.7.	32130	1871.625	1871.625		-1-1b
2	MP2	PIPE 2.0	725	63	8	111	63		8.	20866.7...	32130.	1871.625	1871:625		H1-1b
3	MP3	PIPE 2.0	. 670	63	2	. 048	63		2	20866.7...	32130	1871.625	1871.6252		H1-1b
4	MP4	PIPE 2.0	. 666	63	2	111	63		2.	20866.7..	32130.	1871625	18716252		Hi-1b
5	M17A	HSS4X4X4	. 647	0	34	. 278	0	z	13	101755...	106155	12311.25	12311.25	1	H1-1b
6	MP6	PIPE 20	610	9	8	147	9		8	20866.7.	32130	1871.625	1871.625		H4-16
7	MP5	PIPE 2.0	. 570	63	8	. 154	63		8	20866.7...	32130	1871.625	1871.625		H1-1b
8	MP10	PIPE 2.0	544	63	5	065	63		5	20866.7.	32130	1871,625	1871.625		H1-1b
9	MP12	PIPE 2.0	475	9	6	. 103	9		12	20866.7...	32130	1871.625	1871.625		H1-1b
10	MP9	PIPE 2.0	474	63	5	075	63		11	20866.7.	32130	1871,625	1871.625	1.	H1-1b
11	M1	HSS4X4X4	. 464	0	32	. 242	0	z	9	101755....	106155	12311.25	12311.25	1	H1-1b
12	M8.	PIPE 3.0	.453	162.75	2	550	162.75		8.	59302:8.	65205.	5748.75	5748.75	1	H3-6.
13	MP11	PIPE 2.0	. 449	63	12	. 107	63		12	20866.7..	32130	1871.625	1871.6251		H1-1b
14	M22	HSS4X4X4	441	0	3.	214	0	2	5	101755..	106155	1231125	1231125	1	H1-1b
15	MP8	PIPE 2.0	. 429	63	11	. 110	63		11	20866.7..	32130	1871.625	1871.625 2		-1-1b
16	MP7	PIPE 2.0	420	63.	12	092	63		12	208667.	32130.	1871.625	1871,625		H1-1b
17	MP16	PIPE 2.0	. 388	63	10	. 051	63		4	20866.7.	32130	1871.625	1871.625		H1-1b
18	MP15	PIPE 2.0	. 375	63	6	061	63		6.	20866.7.	32130.	1871.625	1871.625	2.	H1-1b
19	M14	PIPE 3.0	. 346	5.25	7	. 364	5.25		12	59302.8.	65205	5748.75	5748.75		H3-6
20	MP13	PIPE 2.0	340	63	10	060	63		5.	20866.7.	32130	1871.625	1871.625		H1-16
21	MP17	PIPE 2.0	. 340	63	5	. 092	63		4	20866.7..	32130	1871.625	1871.625		H1-1b
22	M19B	HSS $4 \times 4 \times 4$	337	30.657	36	193	61.314	z	13	103885...	106155	12311.25	12311.25	1.	H1-1b
23	MP18	PIPE 2.0	336	9	4	. 081	9		4	20866.7...	32130	1871.625	1871.625		H1-1b
24	MP14	PIPE 2.0	306	63	4	. 061	63.		5	208667.	32130	1871.625	1871.625	1	$\mathrm{H} 1-1 \mathrm{~b}$
25	M11	HSS4X4X4	287	30.657	32	. 203	3.832	z	2	103885....	106155	12311.25	12311.25	1	H1-1b
26	M18A	PIPE 2.0	256	56	10	119	54:25		5	25978.8...	32130	1871.625	1871.625	1	H1-16

\qquad

Envelope AISC 14th(360-10): LRFD Steel Code Checks (Continued)

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design	A [in2	Iyy [in4] Izz [in4]		$\frac{J[\operatorname{in} 4]}{100}$
1	HSS 4"x4"x1/4"	HSS4X4X4	Beam	None	A53 Gr.B	Typical	3.37	7.8	7.8	
2	$3^{\prime \prime}$ STD Pjpe	PIPE. 3.0	Beam	None	A53 GriB	Typical	2.07	2.85	2.85	5.69
3	L2'x2"x3/16	$12 \times 2 \times 3$	Beam	None	A36 Gr. 36	Typical	. 722	. 271	271	009
4	2375" ODP ${ }^{\text {P/m }}$	PIPE 20	Beam	None	A53 Grib	Typical	1.02	627	. 627	1.25
5	L2.5X2.5X3	L2.5×2.5×3	Beam	None	A36 Gr. 36	Typical	. 901	. 535	. 535	011

Joint Boundary Conditions

Joint Label		$\mathrm{X}[\mathrm{k} / \mathrm{in}]$	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N5	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	- N_{1} -	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N59	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
4	N70A	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Member Advanced Data

	Label	1 Release.	J Release	1 Offsetiin]	J Offset[in]	T/C Only	Physical	Defl Rat....	Analysis.	Inactive	Seismic..
1	M1						Yes				None
2	M2	-	,	\cdots	\%	3, +3.	Yes	** NA**	. ${ }^{2}$	\%	None
3	M8						Yes				None
4	M11	BenPIN	BenPIN	\cdots	\cdots	W,	Yes	\% \quad,	\%	,	None.
5	M18						Yes				None
6	M29		\%...*	,	줏․․․	\cdots	Yes	4v,	, ${ }^{\text {a }}$		None
7	M14						Yes				None
8	M18A	,	H\% \% ${ }^{\text {a }}$	\%	-	\% \% ${ }^{\text {a }}$,	Yes	-	,		None
9	M19						Yes				None
10	M23.	,	$3 \times$	\cdots		$\stackrel{ }{4}$	Yes	,	-	\% ,	None.
11	MP6						Yes				None
12.	MP5	, \% ${ }^{2}$,		W,	1,	2, \%	Yes	4,	4,	, , , + ,	None.
13	MP4						Yes				None
14	MP2	, $\square^{\text {a }}$,	1, ${ }^{1}$	\%, \%	\%.	\% ${ }^{\text {a }}$	Yes	, ${ }^{+}$,	a		None.
15	MP1						Yes				None
16	M20	5, ${ }^{\text {a }}$	\% ${ }^{\text {a }}$,		\% \quad.	Yes		*		None
17	M17A						Yes				None
18	M18C.	4\%		-		\%	Yes.	**NA **			None.
19	M19B	BenPIN	BenPIN				Yes				None
20	M20A	, ${ }^{\text {a }}$,	Qr.as	,	, ${ }^{\text {a }}$	\cdots	Yes	2.	, \%		None.
21	M21						Yes				None
22	N22.	\%\%	W, \% ${ }^{\text {a }}$. 9	$\bigcirc \times$,	Yes.	\cdots	-	$\cdots \times$	None
23	M23A						Yes	** NA **			None
24.	M24	BenPIN	BenPIN	\% ${ }^{2}$	\cdots	\%	Yes	1, \% ${ }^{\text {a }}$, \%	- ${ }^{2}$,	None

Dec 26, 2018
4:27 PM
Checked By: \qquad

Member Advanced Data (Continued)

	Label	1 Release	J Release	1 Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat.	Analysis ...	Inactive	Seismic.
25	M25						Yes				None
26	M26						Yes				None
27	MP3						Yes				None
28	MP12						Yes				None
29	MP11						Yes				None
30	MP10	\%					Yes			\cdots	None
31	MP8						Yes				None
32	MP7	*	\cdots				Yes	…	\square	,	None
33	MP9			.			Yes				None
34	MP18					\ldots	Yes		\%	?	None
35	MP17						Yes				None
36	MP16	\%	,				Yes	,			None
37	MP14						Yes				None
38	MP13	\%	\%	\%			Yes	\bigcirc	\%	\cdots	None
39	MP15				,		Yes				None

Hot Rolled Steel Properties

Label		E[ksi]	G [ksi]	Nu	Therm (11E...Density[k/ft... Yieldipsi]			Ry	Fu[psi]	Rt
1	A992	29000	11154	. 3	. 65	49	50000	1.1	65000	1.1
2	A36 Gr. 36	29000	11164	1.3	. 65	49	36000	1.5	58000	1.2
3	A572 Gr. 50	29000	11154	. 3	. 65	49	50000	1.1	65000	1.1
4	A500 Gri R R D	29000	11154	. 3	. 65	. 527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	29000	11154	. 3	. 65	. 527	46000	1.4	58000	1.3
6.	A53 Gr.B	29000	11154	- 3	. 65	- 4.49	35000	1.6	60000	1.2
7	A1085	29000	11154	. 3	65	. 49	50000	1.4	65000	1.3

Joint Loads and Enforced Displacements (BLC 7 : Service Live 1)

Joint Label		L.D.M	Direction	Magnitude[(lb, lb-ff), (in, rad). (lb* ${ }^{\wedge} s^{\wedge} 2 .$.
1	N19	L	Y	-250
2	, ${ }^{\text {a }}$ N18,	, L , ,		, -250 .
3	N55	L	Y	-250
4	M, N56.	L,	, Y,	2020, \% , ,
5	N66	L	Y	-250
6	, ${ }^{\text {a }}$, 67 .	\}.L L	, ${ }^{\text {a }}$ Y	-250,
7	N126A	L	Y	-250
8	N, N128A , ,	L	, , Y,	, 250
9	N130	L	Y	-250

Member Point Loads (BLC 1 : Self Weight)

	Member Label	Direction	Magnitude [lb, 1 lb -ft]	Location[in.\%]
1	MP1	Y	-14.35	24
2	, M, MP3,	Y	\% - -20.95	\cdots, 0
3	MP5	Y	-41.9	13
4.	, MP4	,	, 4, 48.8	M, \% 0
5.	MP2	Y	-17.5	17
6.	MP4	Y	\% ${ }^{42.9}$, \% 26 , , \%
7	MP4	Y	-71	26
8.	MP5 , , ,	, , , Y Y	-59.9	26
9	MP1	Y	-72	26
10	M MP2,	- Y ,	-28.2	26
11	MP3	Y	-32.8	26
12	MP1. .	V, Y Y ,	4, 14.35	72

Dec 26, 2018
4:27 PM
Checked By: \qquad

Member Point Loads (BLC 1 : Self Weight) (Continued)

Member Label		Direction	Magnitude[lb. lb -ft]	Location[in.\%]
13	MP3	Y	-20.95	72
14	MP5	Y	-41.9	72
15	MP4	Y	-48.8	72
16	MP2	Y	-17.5	72
17	MP9	Y	-20.95	0
18	MP11	Y	-41.9	13
19	MP10	Y	-48.8	0
20	MP8	Y	\% 17.5	17
21	MP10	Y	-42.9	26
22	MP10	Y	-71	26
23	MP11	Y	-59.9	26
24	MP7	Y	-72	26
25	MP8	Y	-28.2	26
26.	MP9	\% Y	-32.8	26 26
27	MP9	Y	-20.95	72
28.	MP11	Y	\% 41.9	+72
29	MP10	Y	-48.8	72
30	MP8 , , ${ }^{\text {a }}$	\bigcirc	-17.5	\% 72 ,
31	MP16	Y	-48.8	0
32	, M MP14	Y ,	- $\quad 17.5$	S", 17\%,
33	MP16	Y	-42.9	26
34	M, MP16, ,	Y $\mathrm{Y}^{\text {a }}$		26 .
35	MP17	Y	-59.9	26
36	, MP13 \%	\bigcirc	\% 42.	- 26
37	MP14	Y	-28.2	26
38	, MP15, , ,	Y	-32.8	26
39	MP16	Y	-48.8	72
40	W, MP14 ${ }^{\text {a }}$,	- $\mathrm{Y}^{\text {a }}$	3,	\% 72 ,
41	MP2	Y	-48.8	0
42	\%- , MP2,	Y	, 48.8\%	

Member Point Loads (BLC 2 : Wind Load AZI 000)

	Member Label	Direction	Magnitude [lb, lb -ft]	Location[in.\%]
1	MP1	Z	-92.99	24
2	4, MP3,	, , \%	-147.24	O, 0, \%
3	MP5	Z	-187.5	13
4	, MP4 , ,	, Z	, -259.08	$\cdots \quad 0$.
5	MP2	Z	-103.31	17
6	W, MP4 ,		, x. -64.63	, 26.
7	MP4	Z	-73.8	26
8	, MP5, - ,	Z	, \% - $69.11{ }^{\text {a }}$,	, 26.
9	MP1	Z	-61.48	26
10.	, M MR2 \%		T, \% $\quad .82 .82$, \% 26 ,
11	MP3	Z	-45.45	26
12	, MP1 ,	, Z	- $\times \mathbf{- 9 2 . 9 9}$	\% 72 \%
13	MP3	Z	-147.24	72
14	, MP5 , M,	, \%, \%	, -187.5...	\%- 72 ,
15	MP4	Z	-259.08	72
16	, MP2	, \% ${ }^{\text {2, }}$,	TY, 4103.31	\% 72,
17	MP9	Z	-114.85	0
18.	Ma, MP11,	, \% Z	.2. -104.61.	\% 13
19	MP10	Z	-109.41	0
20	, ${ }^{\text {a }}$ MP8	\%, Z,	, - $\mathrm{M}^{27.02 .2}$	17.
21	MP10	Z	-33.39	26
22.	MP10,	, Z	, -58.07, , ,	, 26, \%
23	MP11	Z	-47.06	26

\qquad

Member Point Loads (BLC 2 : Wind Load AZI 000) (Continued)

Member Point Loads (BLC 3; Wind Load AZI 090)

Member Label		Direction	Magnitude [lb, 1 lb -ft]	Location[in.\%]
1	MP1	X	-65.07	24
2	- MP3	X	-104.06	0
3	MP5	X	-76.97	13
4	MP4	- ${ }^{\text {x }}$	-109.41	0
5	MP2	X	-54.92	17
6	MP4	X	- 23.98	26
7	MP4	X	-52.82	26
8	\% MP5 , , \%	- ${ }^{\text {P }}$, +39,7.1	26
9	MP1	X	-50.77	26
10	, M MP2, ,	X ,	, \% 26.04	+ 26
11	MP3	X	-45.45	26
12	, , MP9. ${ }^{\text {a }}$,	, $\mathrm{X}^{\text {a }}$,	, 6 - 65.07	W, ${ }^{2}$
13	MP3	X	-104.06	72
14	, MP5 , , , ,	\cdots	, प $\quad-76.97$.	1\% +772
15	MP4	X	-109.41	72
16	, \%, MP2 ,	, \quad X	-54.92 ,	$\cdots 72$
17	MP9	X	-136.45	0
18	N, MP11.	X	, -159,87, , ,	- 13
19	MP10	X	-259.08	0
20	, , MP8., , \%	, \boldsymbol{X},	, -91.22,	, , 17. ${ }^{\text {a }}$, , ,
21	MP10	X	-52.22	26
22	, , MP10, , , ,	X	-68.56 , ,	, \% 26.
23	MP11	X	-61.76	26
24	, \% M MP7.	X	$\cdots 58.8$, 26.
25	MP8	X	-68.63	26
26.	MP'9	X	, 45.45	4, \% 26
27	MP9	X	-136.45	72
28	, MP11	W, X,	- 1159.87	, 72
29	MP10	X	-259.08	72
30	, MP8	X,	, \% 91.22.	$\square \quad 72$
31	MP16	X	-259.08	0
32	, MP14, , ,	X	. 91.22	- 17
33	MP16	X	-52.22	26
34	MP16., , ,	L, X	\% - 68.56 ,	26. \quad,

Dec 26, 2018
4:27 PM
Checked By:

Member Point Loads (BLC 3 : Wind Load AZI 090) (Continued)

Member Point Loads (BLC 4 : Ice Weight)

	Member Label	Direction	Magnitude[lb, lb -fi]	Location[in.\%]
1	MP1	Y	-58.72	24
2	MP3.	Y	-83.41	0
3	MP5	Y	-95.44	13
4	MP4	Y	-123.67	0
5	MP2	Y	-55.4	17
6	MP4	Y	-42.82	26
7	MP4	Y	-63.21	26
8	MP5	- Y	- -54.86	- 26
9	MP1	Y	-60.22	26
10	MP2	Y	$\square \quad-53.8$	26.
11	MP3	Y	-73.51	26
12	, \% MP1, \%,	\%, \mathbf{Y},	-58.72	72
13	MP3	Y	-83.41	72
14	MP5 , \%	\bigcirc	$\square \quad-95.44$	4, 72
15	MP4	Y	-123.67	72
16	MP2	Y , ,	$\cdots \quad 55.4$	72
17	MP9	Y	-83.41	0
18	\%, MP11, , ,	, Y	9. 95.44 ,	$\square 13$
19	MP10	Y	-123.67	0
20	- , MP8	, Y ,	, \quad-55.4......	W, \% 17.
21	MP10	Y	-42.82	26
22	, MP10,	M, Y, Y,		, 26
23	MP11	Y	-54.86	26
24	, MP7, $\mathrm{Ma}^{\text {ar }}$, \mathbf{Y},	, -60.22 ,	, 26.
25	MP8	Y	-53.8	26
26	, MP9. \quad,		+, -73.51 ,	, 26 ,
27	MP9	Y	-83.41	72
28	, \% MP11	, Y, Y ,	, 9.9544	$\bigcirc \quad 72$
29	MP10	Y	-123.67	72
30.	* M M ${ }^{\text {a }}$, Y Y ,	, \quad 55.4, \%	, 72,
31	MP16	Y	-123.67	0
32	M, MP14.4. , , ,	, <, Y	\% - 5 55.4 \%	12 17 \%
33	MP16	Y	-42.82	26
34	M MP16, , , , ,	, \boldsymbol{Y}		, 26
35	MP17	Y	-54.86	26
36.	, , MP13. \quad,	\square	-60.22	\% $\quad 26$
37	MP14	Y	-53.8	26
38	M MP15	M Y	, 73.51 , ${ }^{\text {a }}$	W, 26
39	MP16	Y	-123.67	72
40	\% MP14, \% ${ }^{\text {a }}$,	Y	\%\% - 55.4	- 72
41	MP2	Y	-123.67	0
42	, M M ${ }^{\text {a }}$,	Y	- $\quad 123.67$	$\square 72$

Member Point Loads (BLC 5: Wind + Ice Load AZI 000)

Member Point Loads (BLC. 5 : Wind + Ice Load AZI 000). (Continued)

Member Point Loads (BLC 6 : Wind + Ice Load AZI 090)

	Member Label	Direction	Magnitude [lb. $\mathrm{lb}-\mathrm{ft}]$	Location[in.\%]
1	MP1	X	-15.86	24
2	\%\% MP3	X	-24.77	0
3	MP5	X	-18.9	13
4	MP4	X	-26.27	0
5	MP2	X	-14.71	17
6	MP4	X	778	26
7	MP4	X	-14.04	26
8	MP5	X	- 11.26	26 $\times \quad 26$
9	MP1	X	-13.44	26
10	MP2	X	-10.72	26
11	MP3	X	-15.12	26

\qquad

Member Point Loads.(BLC 6: Wind + Ice Load AZI 090) (Continued)

	Member Label	Direction	Magnitude[ll. lb -ftl	Location ${ }^{\text {in. \% }}$ \%
12	MP1	X	-15.86	72
13	MP3	X	-24.77	72
14	MP5	X	-18.9	72
15	MP4	X	-26.27	72
16	MP2	X	-14.71	72
17	MP9	X	-30.38	0
18	MP11	X	-33.89	13
19	MP10	X	-52.87	0
20	MP8	X	-21,15	17
21	MP10	X	-13.72	26
22	MP10	X	-17.23	26
23	MP11	X	-15.78	26
24	MP7	X	-15.11	26
25	MP8	X	-19.87	26
26	MP9	X	-23.22	26
27	MP9	X	-30.38	72
28	MP11	X	-33.89	72
29	MP10	X	-52.87	72
30	MP8	X	-21,15	$\bigcirc 72$
31	MP16	X	-52.87	0
32	MP14,	X	-21.15	17
33	MP16	X	-13.72	26
34	MP16	X	-17.23	26
35	MP17	X	-15.78	26
36	MP13	X	-15.11	26
37	MP14	X	-19,87	26
38	MP15	X	-23.22	26
39	MP16	X	-52.87	72
40	MP14,	X	, <-21.15	72
41	MP2	X	-26.27	0
42	MP2	X,	-26.27	72

Member Distributed Loads (BLC 4 : Ice Weight)

	Member Label	Direction	Start Magnitude[lb/ft.F.psf]	End Magnitude[lb/f.	Start Location[in.\%]	End Location[in.\%]
1	M1	Y	-12.628	-12.628	0	\%100
2	M2	Y	-3.412	-3.412	0 .	\%100
3	M8	Y	-9.013	-9.013	0	\%100
4	M11.	Y	-12.628	-12.628	0	$\% 100$
5	M18	Y	-8.02	-8.02	0	\%100
6.	M29	¢ Y	-7.023	-7.023	0	$\% 100$
7	M14	Y	-9.013	-9.013	0	\%100
8.	M18A	Q Y	-7.023	- 4.023	\bigcirc	\% $\% 100$
9	M19	Y	-9.013	-9.013	0	\%100
10	M23	Y Y	- $\quad 7.023$	-7.023	0	$\% 100$
11	MP6	Y	-7.023	-7.023	0	\%100
12	MP5	Y,	-7.023	7.023	0	\% \%100
13	MP4	Y	-7.023	-7.023	0	\%100
14.	MP2	Y	-7.023	-7.023	0	\%100
15	MP1	Y	-7.023	-7.023	0	\%100
16	M20	Y	-8.02	-8.02	0	$\% 100$
17	M17A	Y	-12.628	-12.628	0	\%100
18	M18C	Y	-3.412	-3.412	0	\%100
19	M19B	Y	-12.628	-12.628	0	\%100
20	M20A	Y	-8.02	-8.02	- 0	\%100
21	M21	Y	-8.02	-8.02	0	\%100

Company
Designer
Job Number
Infinigy
Dec 26, 2018

Model Name
\qquad

Member Distributed Loads (BLC 4 : Ice Weight) (Continued)

Member Distributed Loads (BLC 8: BLC 1 Transient Area Loads)

Company
Designer Job Number

Infinigy
Dec 26, 2018
4:27 PM
Checked By
\qquad
\qquad

Member Distributed Loads (BLC 8: BLC 1 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[Ib/ft.F.psfl	End Maanitude[ll/f.	Start Locationfin. \%	End Location[in.\%I
36	M25	Y	-. 786	-3.239	0	10.104
37	M25	Y	-3.239	-4.227	10.104	20.208
38	M25	Y	-4.227	-6.191	20.208	30.312
39	M25	Y	-6.191	-8.579	30.312	40.416
40	M25	Y	-8.579	-8.951	40.416	50.52
41	M26	Y	-. 785	-3.242	0	10.104
42	M26	Y	-3.242	-4.231	10.104	20.208
43	M26	Y	-4.231	-6.195	20.208	30.312
44.	M26	Y	-6.195	-8.581	30.312	40.416
45	M26	Y	-8.581	-8.945	40.416	50.52

Member Distributed Loads (BLC 9 : BLC 2 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft.F.psf]	End Magnitude[lb/f.	Start Location[in,	End Locationfin.\%]
1	M1	Z	-12.993	-12.993	0	62.25
2	M2	Z	0	0	0	10,794
3	M8	Z	-13.128	-13.128	0	168
4	M11	\% Z	-7.502	-7.502	0	61.314
5	M18	Z	-7.502	-7.502	0	50.52
6	M29	Z	- -8.908	- 8.8 .908	0	168
7	M14	Z	-6,564	-6.564	0	168
8	M18A	Z	-4,454	- 4.454	0	168
9	M19	Z	-6.564	-6.564	0	168
10	M23	Z	-4.454	-4,454	0	168
11	MP6	Z	-8.908	-8.908	0	72
12	MP5	\% Z	-8,908	-8.908	0	72
13	MP4	Z	-8.908	-8.908	0	72
14	MP2	Z	-8.908	-8.908	0	- 72
15	MP1	Z	-8.908	-8.908	0	72
16	M20	2	-3,751 \%	-3.751	0	50.52
17	M17A	Z	-12.993	-12.993	0	62.25
18	M18C	2	0 -	- 0	$\bigcirc 0$	10.794
19	M19B	Z	-7.502	-7.502	0	61.314
20	M20A	Z	-3.751	-3.751	- 0	\% 50.52
21	M21	Z	-7.502	-7.502	0	50.52
22	M23A	Z	0	0.	0	10.794
23	M24	Z	-15.003	-15.003	0	61.314
24	M ${ }^{\text {M25 }}$	Z	-3.751	-3.751	0	50.52
25	M26	Z	-3.751	-3.751	0	50.52
26.	MP3	Z	-8.908	- 8.8 .908	0 .	72
27	MP12	Z	-8.908	-8.908	0	72
28	MP11,	2	-8.908	- 8.8 .908	0 ,	-72
29	MP10	Z	-8.908	-8.908	0	72
30	MP8	2	-8.908.	- -8.908	0 -	72,
31	MP7	Z	-8.908	-8.908	0	72
32	MP9	Z	-8.908	-8.908	0	72
33	MP18	Z	-8.908	-8.908	0	72
34	MP17	Z	-8.908	-8.908	0	. 72
35	MP16	Z	-8.908	-8.908	0	72
36.	MP14	2	-8.908	-8.908	0	72
37	MP13	Z	-8.908	-8.908	0	72
38	MP15	- Z	-8.908	-8.908	0	- 72

Member Distributed Loads (BLC 10 : BLC 3 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft.F.psf]	End Magnitudelib/f..	Start Location[in, \%]	End Location[in. \%]
1	M1	X	-7.502	-7.502	0	62.25
2	M2	X	0	0	0	10.794 -

Company
Designer
Job Number
Model Name

Infinigy
IP
600-003
823530

Dec 26, 2018
4:27 PM
Checked By:
\qquad

Member Distributed Loads (BLC 10: BLC 3 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[li/ff.F.psf]	End Magnitudelliff.	Start Location[in. \%	End Location[in.\%]
3	M11	X	-12.993	-12.993	0	61.314
4	M14	X	-11.369	-11.369	0	168
5	M18A	X	-7.715	-7.715	0	168
6	M19	X	-11.369	-11.369	0	168
7	M23	X	-7.715	-7.715	0	168
8	MP6	X	-8.908	-8.908	0	72
9	MP5	X	-8.908	-8.908	0	72
10	MP4	X	-8.908	-8.908	0	72
11	MP2	X	-8.908	-8.908	0	72
12	MP1	X	-8.908	-8.908	0	72
13	M20	X	-6.497	-6.497	0	50.52
14.	M17A	X	-7.502	-7.502	0	62.25
15	M18C	X	0	0	0	10.794
16	M19B	X	-12.993	-12993	\%	61.314
17	M20A	X	-6.497	-6.497	0	50.52
18	M22	X	-15.003	-15.003	0	62.25
19	M25	X	-6,497	-6.497	0	50.52
20	M26	X	-6.497	- 6.497	0	50.52
21	MP3	X	-8.908	-8.908	0	72
22	MP12	, X .	-8.908	8.908	- 0	72 ,
23	MP11	X	-8,908	-8.908	0	72
24	MP10	X	-8.908	-8.908	0	- 72
25	MP8	X	-8.908	-8.908	0	72
26	MP7.	X	-8.908	-8.908	$0 \times$	\% 72
27	MP9	X	-8.908	-8.908	0	72
28.	MP18,	X	- \quad-8,908	-8.908	0	+ 72
29	MP17	X	-8.908	-8.908	0	72
30	MP16	X	-8.908 ,	-8,908	0	72,
31	MP14	X	-8.908	-8.908	0	72
32	MP13	, X,	. 8.8 .908	- 8,908	0	$\begin{array}{r}72 \\ \hline 72\end{array}$
33	MP15	X	-8.908	-8.908	0	72

Member Distributed Loads (BLC 11 : BLC 4 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft.E.psf]	End Magnitude [lb/f...	n[in,\%]	nd Location[in.\%]
1	M1	Y	-. 03	-5.011	12.45	22.41
2	M1 ,	, Y	-5.011	-7,7,59	22.41	32.37
3	M1	Y	-7.594	-3.658	32.37	42.33
4	M1	\% Y	-3.658	4,82	42.33	52.29
5	M1	Y	-1.82	-1.216	52.29	62.25
6	M18.	, ${ }^{\top}$	-282	-1.163	0	10104
7	M18	Y	-1.163	-1.518	10.104	20.208
8.	M118	- Y	-1.518	- 2.223	20.208	30.312
9	M18	Y	-2.223	-3.08	30.312	40.416
10	M18	, Y	W, $\quad .3 .08$, 3.214	40,416	50.52
11	M20	Y	-. 282	-1.164	0	10.104
12	M20.	, Y	-1164	-1.519	10.104	20.208
13	M20	Y	-1.519	-2.224	20.208	30.312
14	M20	Y	, \% - - 2.224	-3.081	30.312	40.416
15	M20	Y	-3.081	-3.211	40.416	50.52
16.	M17A	\% Y	1.806	- 97706	12.45	22.41
17	M17A	Y	-9.706	-13.298	22.41	32.37
18	M17A.	\% Y	, -13.298	4.916	- 32.37	42.33
19	M17A	Y	-7.916	-4.296	42.33	52.29
20.	M17A	- Y	- $\quad 4.4296$	- 2.124	52.29	62.25
21	M20A	Y	-. 789	-2.404	0	10.104
22	M20A	Y	-2.404	-3.341	10.104	20.208

\qquad

Member Distributed Loads (BLC 11 : BLC 4 Transient Area Loads) (Continued).

	Member Label	Direction	Start Magnitude[lb/ft.F.psf]	End Magnitude[Ib/f.	Start Location[in.\%]	End Location[in, \%]
23	M20A	Y	-3.341	- 4.66	20.208	30.312
24	M20A	Y	-4.66	-6.272	30.312	40.416
25	M20A	Y	-6.272	-7.121	40.416	50.52
26	M21	Y	-. 269	-1.836	0	10.104
27	M21	Y	-1.836	-2.808	10.104	20.208
28	M21	Y	-2.808	4.23	20.208	30.312
29	M21	Y	-4.23	-6	30.312	40.416
30	M21	Y	-6	-7.032	40.416	50.52
31	M22	Y	-. 03	-5.011	12.45	22.41
32	M22	Y	-5.011	-7.594	22.41	32.37
33	M22	Y	-7.594	-3.658	32.37	42.33
34	M22	Y	-3.658	-1.82	42.33	52.29
35	M22	Y	-1.82	-1.216	52.29	62.25
36	M25	Y	. 282	-1.163	0	10.104
37	M25	Y	-1.163	-1.518	10.104	20.208
38	M25	Y	-1.518	-2,223	20.208	30.312
39	M25	Y	-2.223	-3.08	30.312	40.416
40	M25	Y	-3.08	- 3.214	40.416	50.52
41	M26	Y	-. 282	-1.164	0	10.104
42	M26	Y	-1.164	-1.519	10,104	20.208
43	M26	Y	-1.519	-2.224	20.208	30.312
44	M26	Y	-2.224	-3.081	30.312	40.416
45	M26	Y	-3.081	-3.211	40.416	50.52

Member Distributed Loads (BLC 12: BLC 5 Transient Area Loads)

	Member Label	Direction	Start Magnitude[Ib/ft,F.psf]	End Magnitude[Ib/f.	Start Location[in. \%]	nd Location[in. \%]
1	M1	Z	-4.74	-4.74	0	62.25
2	M2	2	0	स, 0	0	10.794
3	M8	Z	-4.789	-4.789	0	168
4	M14	Z	-2.737	-2.737	0	61,314
5	M18	Z	-2.737	-2.737	0	50.52
6	- M29	Z	-3.25	-3,25.	0	168 .
7	M14	Z	-2.395	-2.395	0	168
8	M18A.	Z	-1.625	4.625	0	168 ,
9	M19	Z	-2.395	-2.395	0	168
10	M23	Z	-1,625	-1.625	- 0	168
11	MP6	Z	-3.25	-3.25	0	72
12	MP5	Z	-3.25	-3.25	0	72.
13	MP4	$\mathbf{Z}^{\text {i }}$	-3.25	-3.25	0	72
14	MP2	Z	-3.25	-3.25	0	- 72
15	MP1	Z	-3.25	-3.25	0	72
16	M20	, Z	-1.368	1.368.	- 0	50.52
17	M17A	Z	-4.74	-4.74	0	62.25
18	M18C	Z	, 0	, 0,	0	10.794
19	M19B	Z	-2.737	-2.737	0	61.314
20	M20A	Z	-1.368	-1.368	0	50.52
21	M21	Z	-2.737	-2.737	0	50.52
22	M23A	Z	0	0	0	10.794
23	M24	Z	-5.473	-5.473	0	61.314
24	M25	Z	-1.368	-1.368	0	50.52
25	M26	Z	-1.368	-1.368	0	50.52
26	MP3	Z	-3.25	-3.25	0	72
27	MP12	Z	-3.25	-3.25	0	72
28	MP11	Z	-3.25	-3.25	- 0	72
29	MP10	Z	-3.25	-3.25	0	72
30	M MP8	Z	-3.25	-3.25	0	72

\qquad

Member Distributed Loads (BLC 12 : BLC 5 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft. F.psi]	End Magnitude[lib/f...	Start Location[in.\%]	End Location[in. \%]
31	MP7	Z	-3.25	-3.25	0	72
32	MP9	Z	-3.25	-3.25	0	72
33	MP18	Z	-3.25	-3.25	0	72
34	MP17	Z	-3.25	-3.25	0	72
35	MP16	Z	-3.25	-3.25	0	72
36	MP14	Z	-3.25	-3.25	0	72
37	MP13	Z	-3.25	-3.25	0	72
38	MP15	Z	-3.25	-3.25	0	72

Member Distributed Loads (BLC 13 : BLC 6 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft.F.psf]	End Magnitude[lb/f.	Start Location[in.\%	End Location[in.\%]
1	M1	X	-2.737	-2.737	0	62.25
2	M2	X	0	0	0	10.794
3	M11	X	-4.74	-4.74	0	61.314
4	M14	X	-4.148	-4.1.48	0	168
5	M18A	X	-2.814	-2.814	0	168
6	M19	X	-4,148	-4.148	0	168
7	M23	X	-2.814	-2.814	0	168
8	MP6	X	-3.25	-3,25	0	- 72
9	MP5	X	-3.25	-3.25	0	72
10	MP4	X	-3.25	-3.25	0	72
11	MP2	X	-3.25	-3.25	0	72
12	MP1	X	-3.25	-3.25	0	72
13	M20	X	-2.37	-2.37	0	50.52
14	M17A	X	-2.737	-2.737	0	62.25
15	M18C	X	0	0	0	10,794
16	M19B	X	-4.74	-4.74	0	61.314
17	M20A	X	-2.37	-2.37	0	50.52
18	M22	Y X	-5.473. ${ }^{\text {a }}$	-5.473	0	62.25
19	M25	X	-2.37	-2.37	0	50.52
20	M26	X	-2.37 . .	-2.37.	$\bigcirc 0$	50.52 ,
21	MP3	X	-3.25	-3.25	0	72
22	MP12	X	-3.25	-3.25	0	72
23	MP11	X	-3.25	-3.25	0	72
24	MP10	X	-3.25	-3.25	0	- 72
25	MP8	X	-3.25	-3.25	0	72
26	MP7	- X	-3.25	-3.25	\bigcirc	\% 72
27	MP9	X	-3.25	-3.25	0	72
28	MP18	X	-3.25	-3.25	0	. 72
29	MP17	X	-3.25	-3.25	0	72
30	MP16	X	-3.25	- -3.25	\bigcirc	$\bigcirc 72$
31	MP14	X	-3.25	-3.25	0	72
32	MP13	X	- -3.25	-3.25	\% 0	72.
33	MP15	X	-3.25	-3.25	0	72

APPENDIX D

ADDITIONAL CALCUATIONS

Date:	$12 / 26 / 2018$
Client	Crown Castle
Carrier	AT\&T
Engineer:	$\mid P$
Site:	823530
Job\#:	$600-003$

Code:	LRFD	
Axial:	4238.70	
Shear:	lbs	
	2334.68	lbs

Bolt Capacity (1/2" A307 Bolt)									
	Ult Load / Bolt						Factored Load ($\phi=0.75$)	\# of Bolts	Factor Joint Capacity
Axial (Ib)	8226.7	6170.0	2	12340					
	Shear(Ib)	5133.3	3850.0	2					

Interaction Check	
$\mathrm{T} / \phi \mathrm{T}_{\mathrm{n}}$	34.3%
$\mathrm{~V} / \phi \vee \mathrm{n}$	
≤ 1.0	30.3%
	21.0%
	OK

[^0]: The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be cónstrued as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

 ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

 In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

