

2/23/2018

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Regarding: Notice of Exempt Modification – Antenna Swap

Property Address: Catoona Lane, Stamford, CT

AT&T Site: CTL02135 / FA: 10034997

Dear Ms. Bachman:

On behalf of AT&T, please accept this application as notification pursuant to R.C.S.A. §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j-72(b) (2).

AT&T currently maintains a wireless telecommunications facility on an existing self-support tower at the above-referenced address. American Towers, Inc. owns said facility. The site consists of nine (9) wireless telecommunication antennas at an antenna centerline height of 235-feet on an existing 300-foot self-support tower. AT&T now intends to retain three (3) SBNHH-1D65A panel antennas, position 1, all sectors; three (3) CCI OPA-65R-LCUU-H4 panel antennas, position 3, all sectors; three (3) Powerwave 7770 panel antennas on position 4, all sectors. AT&T plans to install three (3) new KMW EPBQ-654L8H6-L2 on position 2, all sectors (for a total of (12) panel antennas), at the 235-foot level. AT&T also intends to install three (3) RRUS-B14-4478, three (3) RRUS-4426 B66, and one additional DC/Fiber surge suppression dome on the existing antenna masts.

Please accept this letter pursuant to Regulation of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-510j-72(b) (2). In accordance with R.C.S.A., a copy of this letter is being sent to David Martin, Mayor, and James Lunney III, Zoning Officer, City of Stamford 888 Washington Boulevard, Stamford, CT 06901. A copy of this letter is also being sent to American Tower Corporation, Tower/Property Owner.

The planned modifications to AT&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72(b) (2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower. AT&T's replacement antennas will be installed at the 235-foot level of the 300-foot monopole.
- 2. The proposed modifications will not involve any changes to ground-mounted equipment and, therefore, will not require and extension of the site boundary.
- 3. The proposed modifications will not increase the noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A

cumulative worst-case RF emissions calculation for AT&T's modified facility is provided in the RF Emissions Compliance Report, included,

- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The tower and its foundation can support AT&T's proposed modifications. (See Structural Analysis Report included).

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes an exempt modification under R.C.S.A. §16-50j-72(b) (2).

Sincerely,

Ryan Lynch Real Estate Specialist | Smartlink, LLC 85 Rangeway Road, Building 3, Suite 102 North Billerica, MA 01862

Enclosures

CC w/ enclosures:

David Martin, Mayor, City of Stamford, CT, James Lunney III, Zoning Officer, City of Stamford, CT, American Tower, Inc., Tower/Property Owner.

Ryan Lynch

From: TrackingUpdates@fedex.com
Sent: Thursday, March 8, 2018 11:33 AM

To: Ryan Lynch

Subject: FedEx Shipment 771552571249 Delivered

Your package has been delivered

Tracking # 771552571249

Ship date:

Fri, 2/23/2018

Ryan Lynch Smartlink LLC

North Billerica, MA 01862

US

Delivery date:

Mon, 2/26/2018 9:46

am

ATTN: Zoning

AMERICAN TOWER

CORPORATION

10 PRESIDENTIAL WAY

WOBURN, MA 01801105399

US

Shipment Facts Our records indicate that

Our records indicate that the following package has been delivered.

Tracking number:	771552571249
Status:	Delivered: 02/26/2018 09:46 AM Signed for By: DLONG
Signed for by:	DLONG
Delivery location:	Woburn, MA
Service type:	FedEx Ground
Packaging type:	Package
Number of pieces:	1
Weight:	1.00 lb.
Standard transit:	2/26/2018

Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 10:32 AM CST on 03/08/2018.

All weights are estimated.

To track the latest status of your shipment, click on the tracking number above.

Standard transit is the date the package should be delivered by, based on the selected service, destination, and ship date. Limitations and exceptions may apply. Please see the FedEx Service Guide for terms and conditions of service, including the FedEx Money-Back Guarantee, or contact your FedEx Customer Support representative.

© 2018 Federal Express Corporation. The content of this message is protected by copyright and trademark laws under U.S. and international law. Review our <u>privacy policy</u>. All rights reserved.

Thank you for your business.

Ryan Lynch

From: TrackingUpdates@fedex.com
Sent: Thursday, March 8, 2018 11:32 AM

To: Ryan Lynch

Subject: FedEx Shipment 771552628436 Delivered

Your package has been delivered

Tracking # 771552628436

Ship date:

Fri, 2/23/2018

Ryan Lynch Smartlink LLC

North Billerica, MA 01862

US

Delivery date:

Mon, 2/26/2018 2:16

pm

ATTN: Zoning Officer James

Lunney

CITY OF STAMFORD 888 WASHINGTON BLVD STAMFORD, CT 06901290288

US

Shipment Facts

Our records indicate that the following package has been delivered.

Tracking number:	771552628436
Status:	Delivered: 02/26/2018 2:16 PM Signed for By: TTRACEY
Signed for by:	TTRACEY
Delivery location:	Stamford, CT
Service type:	FedEx Ground
Packaging type:	Package
Number of pieces:	1
Weight:	1.00 lb.
Standard transit:	2/26/2018

Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 10:32 AM CST on 03/08/2018.

All weights are estimated.

To track the latest status of your shipment, click on the tracking number above.

Standard transit is the date the package should be delivered by, based on the selected service, destination, and ship date. Limitations and exceptions may apply. Please see the FedEx Service Guide for terms and conditions of service, including the FedEx Money-Back Guarantee, or contact your FedEx Customer Support representative.

© 2018 Federal Express Corporation. The content of this message is protected by copyright and trademark laws under U.S. and international law. Review our <u>privacy policy</u>. All rights reserved.

Thank you for your business.

Ryan Lynch

From: TrackingUpdates@fedex.com
Sent: Thursday, March 8, 2018 11:33 AM

To: Ryan Lynch

Subject: FedEx Shipment 771552608412 Delivered

Your package has been delivered

Tracking # 771552608412

Ship date:

Fri, 2/23/2018

Ryan Lynch

Smartlink LLC

North Billerica, MA 01862

US

Delivery date:

Mon, 2/26/2018 2:21

pm

ATTN: Mayor David Martin CITY OF STAMFORD 888 WASHINGTON BLVD STAMFORD, CT 06901290288

US

Shipment Facts

Our records indicate that the following package has been delivered.

Tracking number:	771552608412
Status:	Delivered: 02/26/2018 2:21 PM Signed for By: MMARJORIE
Signed for by:	MMARJORIE
Delivery location:	Stamford, CT
Service type:	FedEx Ground
Packaging type:	Package
Number of pieces:	1
Weight:	1.00 lb.
Standard transit:	2/26/2018

Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 10:33 AM CST on 03/08/2018.

All weights are estimated.

To track the latest status of your shipment, click on the tracking number above.

Standard transit is the date the package should be delivered by, based on the selected service, destination, and ship date. Limitations and exceptions may apply. Please see the FedEx Service Guide for terms and conditions of service, including the FedEx Money-Back Guarantee, or contact your FedEx Customer Support representative.

© 2018 Federal Express Corporation. The content of this message is protected by copyright and trademark laws under U.S. and international law. Review our <u>privacy policy</u>. All rights reserved.

Thank you for your business.

168 CATOONA LANE

Location 168 CATOONA LANE Mblu 000/ 0370/ / /

Acct# 000-0370 Owner AMERICAN TOWERS INC

Assessment \$3,019,920 **Appraisal** \$4,314,160

PID 116 Building Count 2

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2017	\$422,560	\$3,891,600	\$4,314,160
Assessment			
Valuation Year	Improvements	Land	Total
2017	\$295,800	\$2,724,120	\$3,019,920

Owner of Record

Owner AMERICAN TOWERS INC Sale Price \$1,040,050

 Co-Owner
 Book & Page
 5456/ 339

 Address
 PO BOX 723597
 Sale Date
 02/17/2000

Ownership History

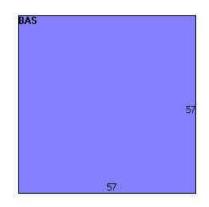
Ownership History			
Owner	Sale Price	Book & Page	Sale Date
AMERICAN TOWERS INC	\$1,040,050	5456/ 339	02/17/2000
AMERICAN T & T CO	\$0	1128/ 268	03/15/1968

Building Information

Building 1 : Section 1

Year Built: 1968 Living Area: 3,249

Building Attributes			
Field Description			
Telephone Bldg			
1			
Occupancy 1			


Exterior Wall 1	Reinforc Concr
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	T&G/Rubber
Interior Wall 1	Minimum
Interior Wall 2	
Interior Floor 1	Concrete Slab
Interior Floor 2	
Heating Fuel	Gas/LP
Heating Type	Hot Air-no Duc
AC Type	Central
Bldg Use	Industrial MDL-94
Total Rooms	
Total Bedrms	00
Total Baths	0
1st Floor Use:	300C
Heat/AC	Heat/AC Pkgs
Frame Type	Masonry
Baths/Plumbing	None
Ceiling/Wall	Ceil & Wall
Rooms/Prtns	Average
Wall Height	15
% Comn Wall	

Building Photo

 $\hline (http://images.vgsi.com/photos/StamfordCTPhotos//\00\11\89/5$

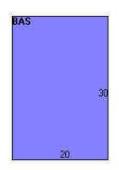
Building Layout

Building Sub-Areas (sq ft) <u>Leger</u>			<u>Legend</u>
Code	Description	Gross Area	Living Area
BAS	First Floor	3,249	3,249
		3,249	3,249

Building 2 : Section 1

Year Built: 1989 Living Area: 600

Building Attributes: Bldg 2 of 2		
Field Description		
STYLE	Telephone Bldg	
Stories:	1	
Occupancy	1	
Exterior Wall 1	Reinforc Concr	
Exterior Wall 2		
Roof Structure	Flat	
Roof Cover T&G/Rubber		


Interior Wall 1	Minimum
Interior Wall 2	
Interior Floor 1	Concrete Slab
Interior Floor 2	
Heating Fuel	Gas/LP
Heating Type	Hot Air-no Duc
AC Type	Central
Bldg Use	Industrial MDL-94
Total Rooms	
Total Bedrms	00
Total Baths	0
1st Floor Use:	300C
Heat/AC	Heat/AC Pkgs
Frame Type	FireProofSteel
Baths/Plumbing	None
Ceiling/Wall	Ceil & Wall
Rooms/Prtns	Average
Wall Height	10
% Comn Wall	

Building Photo

 $(http://images.vgsi.com/photos/StamfordCTPhotos//\00\11\89/5$

Building Layout

Building Sub-Areas (sq ft) <u>Legend</u>			<u>Legend</u>
Code	Description	Gross Area	Living Area
BAS	First Floor	600	600
		600	600

Extra Features

Extra Features	<u>Legend</u>
No Data for Extra Features	

Land

Land Use		Land Line Valua	Land Line Valuation		
Use Code	300C	Size (Acres)	3.64		
Description	Industrial MDL-94	Depth			
Zone	MZN	Assessed Value	\$2,724,120		
Neighborhood	0300	Appraised Value	\$3,891,600		

Outbuildings

	Outbuildings <u>Le</u>								
Code	Description	Description Sub Code Sub Description		Size	Value	Bldg #			
AP1	Fence Chn Lk			2400 L.F.	\$20,700	1			
LP4	Pavng Asphlt			3880 S.F	\$4,660	1			
CEL1	Cell Tower			1 SITES	\$146,250	1			
CSHD	Cell Equipment			240 S.F.	\$7,300	1			

Valuation History

Appraisal							
Valuation Year Improvements Land Tot							
2016	\$1,109,510	\$3,537,530	\$4,647,040				
2015	\$1,109,510	\$3,537,530	\$4,647,040				
2014	\$1,109,510	\$3,537,530	\$4,647,040				

Assessment							
Valuation Year Improvements Land To							
2016	\$776,670	\$2,476,270	\$3,252,940				
2015	\$776,670	\$2,476,270	\$3,252,940				
2014	\$776,670	\$2,476,270	\$3,252,940				

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

THOM SERRANI

CITY OF STAMFORD, CONNECTICUT

STAMFORD GOVERNMENT CENTER

888 WASHINGTON BOULEVARD

P.O. BOX 10152

STAMFORD, CT 06904-2152

November 30, 1988

RE: Application for Variance/Special Exception

Dear Applicant/Agent:

Attached is a copy of the Zoning Board of Appeals Certificate of Decision on your application.

This Certificate of Decision will be filed with the Town Clerk of the City of Stamford and advertised in the legal notices of the Advocate tomorrow, December 1, 1988.

Very truly yours,

Georgia A. Bacon Administrative Assistant and Clerk of the Board

Attach.

I, LEONARD DIPRETA,

zoning enforcement officer for the City of Stamford,

in compliance with Special Act No. 379 of the 1951 General Assembly, hereby certify that on

a hearing was held by the Zoning Appeals Board on the application of:

SNET CELLULAR, INC. (So. New England Telephone Company)

Appl. #109-88

for a variance of Section 10-A (Non-Conforming Uses) to permit the addition of a one-story (10 ft. high) 21' x 29' concrete equipment building behind existing building and tower which will house radio telephone equipment for cellular mobile telephone service. (Will be associated with antennas to be mounted on the tower).

Said property is located on the north side of Catoona Lane, in both the RM-l and R-5 zones, and is described as follows:

All that certain parcel of land in Stamford (Fairfield County) Connecticut lying northerly of Catoona Lane, a public way, and more particularly bounded and described as follows:

Beginning at a concrete monument on the northerly sideline of Catoona Lane, said monument marking the southwesterly corner of land of Serafino Stoni and the southeasterly corner of the parcel described herein; thence S 82° 21' 00" W along the northerly sideline of Catoona Lane a distance of 100 feet to a concrete monument; thence N 7° 49' 40" W along land of owners unknown a distance of 125.83 feet to an iron pipe, thence N 81° 20' 15" E a distance of 50.01 feet to a concrete monument; thence N 7° 49' 30" W a distance of 363.95 feet to a concrete monument; thence N 82° 07' 00" E a distance of 402.57 feet to a concrete monument, the last three courses being along land of the City of Stamford; thence S 7° 53' 00" E a distance of 362.07 feet to a concrete monument; thence S 78° 43' 40" W a distance of 6.42 feet to a point; thence S 82° 37' 25" W a distance of 15.86 feet to a point; thence S 81° 12' 10" W a distance of 19.36 feet to a concrete monument, the last four courses being along land of the grantor herein; thence S 81° 12' 10" W a distance of 19.36 feet to a point; thence S 82° 00' 10" W a distance of 130.71 feet to a concrete monument thence S 7° 49' 40" E a distance of 127.59 feet to the point of beginning and containing 3.645 acres, the last three courses being along land of said Stoni. Beginning at a concrete monument on the northerly sideline of

The parcel described above is a portion of land described in Book 527 at Page 533, a deed from Sir Douglas Alexander dated October 13, 1943 and described in Book 591 at Page 100, a deed from H.A. Bostron dated January 28, 1947

and that the land affected is owned by and located on the following streets:

NAME

LOCATION

American Telephone & Telegraph

North side of Catoona Lane

and that the following is a statement of its findings and approval or rejection. November 16, 1988

To deny this variance would deny the applicant reasonable use of

Therefore, the Board grants a variance of Section 10-A (Non-Conforming Uses) to permit the addition of a one-story (10 ft. high) 21' x 29' concrete equipment building behind existing building and tower which will house radio telephone equipment for. cellular mobile telephone service.

The applicant is allowed one year from the effective date of this decision in which to obtain a building permit.

Dated at Stamford, Connecticut, this lat day of December, 1988.

Raymond D. Sanborne Chairman; Zoning Board of Appeals

Zoning Enforcing Officer of the City of Stamford

The land hereby affected lies in block

THE LAND AFFECTED HEREBY LIES IN BLOCK 283 OF THE STAMFORD BLOCK MAP, RECEIVED FOR RECORD AT STAMFORD CN 12-1-88 AT 9:52 A

ATTEST: LOIS PONTERIANT, TOWN AND CITY CLERK

Sanborne, Chairman; Friedlander; Haygood; Granelli (4 Members Only)

PUBLIC HEARING:

October 26, 1988

BOARD MEETING: November 16, 1988

APPLICANT:

09~88

SNET CELLULAR, INC.

(So. New England Telephone Company)

North side of Catoona Lane

DECISION:

November 16, 1988

To deny this variance would deny the applicant

Therefore, the Board grants a variance of Section 10-A (Non-Conforming Uses) to permit the addition of a one-story (10 ft. high) 21' x 29' concrete equipment building behind existing building and tower which will house radio telephone equipment for mobile telephone service.

Therefore, the Board grants a variance of Section 10 ft. high 21' x 29' concrete to 30 ft. high 21' x 29' concrete to 30 ft. high 31' years morament, there is 20 ft. a concrete to 30 ft. high 31' years morament there is 57' 43' 40' w a distance of 150 ft. high 31' years with the service is 30 ft. a concrete to 30 ft. high 31' years with the service is 30 ft. a concrete to 30 ft. high 31' years with the course service is 30 ft. a concrete to 30 ft. high 31' years with the course service is 30 ft. a concrete to 30 ft. a concret

VOTE ON APPLICATION:

YES O	<u>No</u>
Kumaid Deg, lome	-
Edward Expraeliof	-
Merch fred land	
Morce Hay hot	

Structural Analysis Report

Structure

: 300 ft Self Supported AT&T TAG Tower

ATC Site Name

: Stamford (Katoona), CT

ATC Site Number

: 88018

Engineering Number

: OAA722004_C3_01

Proposed Carrier

: AT&T Mobility

Carrier Site Name

: Stamford Catoona Lane

Carrier Site Number

: CTL02135 / 10034997

Site Location

: Catoona Lane

Stamford, CT 06902-4573 41.052800,-73.563000

County

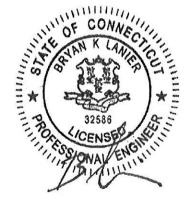
: Fairfield

Date

: January 31, 2018

Max Usage

: 95%


Result

: Pass

Prepared By:

Robert D. Barrett, E.I. Structural Engineer II Reviewed By:

Robert D. Barrett

Feb 1 2018 9:18 AM cosign

COA: PEC.0001553

Table of Contents

Introduction	1
Supporting Documents	. 1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	2-3
Equipment to be Removed	. 3
Proposed Equipment	4
Structure Usages	4
Foundations	4
Standard Conditions	. 5
Calculations	Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 300 ft self supported AT&T tag tower to reflect the change in loading by AT&T Mobility.

Supporting Documents

Tower Drawings	CSEI Analysis, ATC Eng. #73123451, dated September 28, 2005
Foundation Drawing Rose, Chulkoff, and Rose Job #C67229, dated August 9, 1967	
Geotechnical Report	Rose, Chulkoff, and Rose Job #C67229, dated August 9, 1967
Modifications	ATC Eng. #42439132, dated September 26, 2008
	ATC Eng. #44209632, dated December 2, 2009

Analysis

The tower was analyzed using Power Line Systems, Inc. tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	93 mph (3-Second Gust, V _{asd}) / 120 mph (3-Second Gust, V _{ult})
Basic Wind Speed w/ Ice:	50 mph (3-Second Gust) w/ 3/4" radial ice concurrent
Code:	ANSI/TIA-222-G / 2012 IBC / 2016 Connecticut State Building Code
Structure Class:	II.
Exposure Category:	В
Topographic Category:	1
Crest Height:	0 ft

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elevation	on¹ (ft)	0	A - I								
Mount	RAD	Qty	Antenna	Mount Type	Lines	Carrier					
	338.0	1	TX RX Systems 101-68-10-X-03N		(1) 1 1/4" Coax	Marcus Comm.					
	324.0	1	15' Omni-Grid		(1) 1 5/8" Coax	iviai cus comini.					
	320.0	1	12' Omni	Platform w/ Handrails	=	Other					
	311.0	1	Radio/ODU		(1) 7/8" Coax	Marcus Comm.					
300.0	300.0	1	4' Std. Dish		(1) //8 COAX	iviarcus comm.					
	307.0	1	Radio/ODU		(1) 1/2" Coax	Other					
	307.0	1	3' HP Dish		(1) 1/2 Coax	Other					
1	303.0	3	DragonWave Horizon Compact		(5) 7/8" Coax	Clearwire					
	303.0	3	DragonWave A-ANT-18G-2-C		(5) 7/6 COAX	Clearwire					
275.0	275.0	1	Rohde & Schwarz ADD090	Side Arm	(2) 7/8" Coax	US Dept Of Homeland Security					
270.0	270.0	1	Dielectric TLP-08M-2E	6:1.4	-	Other					
270.0	270.0	2	Til-Tek TA-2350-DAB	Side Arms	(1) 1 5/8" Coax	Sirius XM Radio					
		3	Ericsson AIR 21, 1.3 M, B2A B4P								
		3	Ericsson AIR-32 B2A/B66Aa								
268.0	268.0	268.0	268.0	268.0	3	Andrew LNX-6515DS-VTM	Sector Frames	(15) 1 5/8" Coax	T-Mobile		
		3	RFS ATMAA1412D-1A20	1	(3) 7/8" Fiber						
		3	Ericsson RRUS 11 B12								
260.0	260.0	-	%	10	(1) EW20	Sirius XM Radio					
250.0	250.0	1	Sinclair SC281-L	Side Arm	(1) 7/8" Coax	US Dept Of					
246.0	246.0	1	Sinclair SC381-HL	Side Arm	(1) 7/8" Coax	Homeland Security					
		6	CCI TPX-070821								
		6	Powerwave TT19-08BP111-001								
		2	Raycap DC2-48-60-0-9E								
	[6	Ericsson RRUS A2								
		3	Ericsson RRUS-11 800 MHz								
225.0	225.0	3	Ericsson RRUS 32	C+	(12) 1 5/8" Coax	ATOTA A LUIL					
235.0	235.0	3	Ericsson RRUS 32 B2	Sector Frames	(4) 0.74" 8 AWG 7	AT&T Mobility					
	[3	Ericsson RRUS E2 B29		(2) 0.39" Fiber Trunk						
	-	-			-		3	Ericsson RRUS-11	0		
										3	Powerwave 7770.00
	121	3	Andrew SBNHH-1D65A								
		3	CCI OPA-65R-LCUU-H4								
222.0	222.0	12	Decibel DB844H90E-XY	Sector Frames	(15) 1 5/8" Coax	Sprint Nextel					
207.0	207.0	1	Sinclair SC281-L	Side Arm	(1) 7/8" Coax	US Dept Of Homeland Security					
200.0	200.0	2	TX RX Systems 101-68-10-X-03N	Side Arms	(2) 1 1/4" Coax	Marcus Comm.					
102.0	102.0	2	Antel BCD-87010	Side Arms		Constallation					
193.0	193.0	1	30" x 30" Reflector	Leg	(3) 7/8" Coax	Spok Holdings					
175.0	175.0	1	12" x 12" Junction Box	Leg	-						
171.0	171.0	3	NextNet BTS-2500		(6) 5/16" Coax	Clearwire					
171.0 171.0		3	Argus LLPX310R	T-Arms	(2) 2" Conduit						

Existing and Reserved Equipment (Continued)

Elevation	on¹ (ft)	٥.	Automo	NAt T	Unan	Constan	
Mount	RAD	Qty	Antenna	Mount Type	Lines	Carrier	
165.0	165.0	15	RCU	Leg	(12) 1 5/8" Coax (1) 3/8" RET Control	Metro PCS	
103.0	103.0	6	Kathrein 800 10504	Log	Cable (1) 3/8" Coax	Wictiones	
		3	Alcatel-Lucent				
			ALU 800MHz External Notch Filter				
		3	RFS IBC1900HB-2				
		3	Alcatel-Lucent 800MHz RRH				
155.0	155.0	6	Alcatel-Lucent 1900MHz RRH	Sector Frames	(5) 1 1/4" Hybriflex	Sprint Nextel	
(4)		3	Alcatel-Lucent				
			TD-RRH8x20-25 w/ Solar Shield				
1		3	RFS APXVTM14-C-I20				
		3	RFS APXVSPP18-C-A20				
139.0	139.0	1	Antel BCD-87010 4°	Side Arm	(1) 7/8" Coax	Sensus USA	
135.0	135.0	1	L-com HG908U-PRO	Stand-Off	(1) 0.38" Cat 5e (1) 1/2" Coax	Senet	
130.0	130.0	1	Tycon ENC-DC	Side Arm	-		
120.0	120.0	1	Channel Master Type 120	Stand-Off	(1) 1/2" Coax	Spok Holdings	
107.0	107.0	1	TX RX Systems 101-68-10-X-03N	Side Arm	(1) 1 1/4" Coax	Marcus Comm.	
		3	Alcatel-Lucent RRH2X60-1900A-4R				
		3	Alcatel-Lucent RRH2x60 700				
		2	Alcatel-Lucent	*			
92.0	92.0	3	RRH4x45-B66 w/o Solar Shield	Sector Frames	(3) 1 1/4" Hybriflex	Verizon	
		3	RFS DB-T1-6Z-8AB-0Z		The state of the s		
		6	Andrew SBNHH-1D65B				
		6	72" x 14" Panel				
22.0	22.0	1	Til-Tek TA-2324-LHCP	Leg	(1) 7/8" Coax	Sirius XM Radio	
6.0	6.0	1	Trimble Acutime 2000		(1) 1/2" Coax	CLUTP	
6.0	6.0	1	Channel Master Type 120	Leg	(1) 1/4" Coax	Spok Holdings	

Equipment to be Removed

Elevation Mount	on¹ (ft)	Qty	Antenna	Mount Type	Lines	Carrier
225.0	225.0	3	KMW AM-X-CD-14-65-00T-RET			ATOT Markiller
235.0	235.0 235.0		Ericsson RRUS 12	받이	-	AT&T Mobility

Proposed Equipment

Elevation	on¹ (ft)	Oty	Antonna	Mount Type	Linos	Carrior
Mount	RAD	Qty	Antenna Mount Type	Lines	Carrier	
		1	Raycap DC6-48-60-18-8F	Sector Frames	/2\ 0.70" 9.A\A/C 6	ATO T Mahiliba
235.0	235.0	3	Ericsson RRUS 4426 B66			
235.0 235.0	3	Ericsson RRUS 4478 B14	Sector Frames	(2) 0.78" 8 AWG 6	AT&T Mobility	
	3 KMW EPBQ-654L8H6-L2					

¹Mount elevation is defined as height above bottom of steel structure to the bottom of mount, RAD elevation is defined as center of antenna above ground level (AGL).

Install proposed coax alongside existing AT&T Mobility coax.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Legs	76%	Pass
Diagonals	87%	Pass
Truss Diagonals	92%	Pass
Horizontals	81%	Pass
Truss Horizontals	95%	Pass
Anchor Bolts	51%	Pass

Foundations

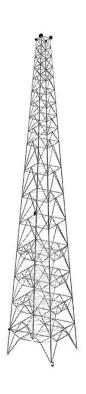
Reaction Component	Analysis Reactions	% of Usage
Uplift (Kips)	338.8	88%
Axial (Kips)	475.4	5%

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC


It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

American Tower Corp., Project: "2018.01.31 - at&t mobility - oaa722004_c3_01" Tower Version 15.00, 7:47:32 PM Wednesday, January 31, 2018 Undeformed geometry displayed

Project Name : 88018 - Stamford (Mateoma), CT
Project Notes: OAA722004 C3 OI - ARGT Mobility
Project File : nix12 - archa8018(2018.01.31 - arct mobility - oaa722004_53_01\2018.01.31 - arct mobility - o

Successfully performed nonlinear analysis

The model has 0 warnings.

New modes uses w mainings.

Member check option: AMSU/TIA 222-6-1

Connection rupture check: Not Checked

Crossing diagnoal check: Not Checked

Included angle check: None

Cimbing load check: None

Cimbing load check: None

Loads from file: n:\12 - atc\88018\2018.01.31 - att mobility - pam722004_c3_01\2018.01.31 - att mobility - pam722004_c3_01.ela

*** Analysis Results:

Maximum element usage is 94.82% for Angle "LH 3X" in load case "N -45"

Summary of Joint Support Reactions For All Load Cases:

Usag	Moment (ft-k)	Moment (ft-k)	Moment (ft-k)	Moment (ft-k)	Force (kips)	Force	Force (kips)	Force (kips)	Label	Load Case
0.0		5.44	-5.36	-0.91	50.87	-344,30	-22.10	-45.82	OP	W C
0.0			-5.07	0.57		-334.13				W C
0.0		5.63	-5.61	0.5:		208.56		-34.43		W O
0.0	-2.03	5.92	-5.91	-0.35	38.06	204.71		-35.42		W O
0.0	1.93	5.99	5.98	-0.33	38.05	201.79		35.51	0P	W 180
0.0	-2.07	5.74	5.71	0.52	37.22	201.99		34.31		W 180
0.0		5.20	5.17	0.56	49.44	-331.28				W 180
0.0	2.27	5.51	5.43	-0.91	50.40	-337.67				W 180
2.0	0.13	4.89		3.47		-475.41				W 45
3.0		5.89		4.62		-63.75		-20.11		W 45
0.00	-0.00	6.23		4-41	55.50	338.81		-39.19		W 45
0.0	-3.13	5.88	-4.60	3.67	23.34	-64.82		-11.54		W 45
0.0	-3.19	6.23		-4.87		-70.02	12.51		OP	W -45
0.0	0.01	4.93	-3.23	-3.72	66.00	-467.19				W -45
0.0	3.16	5.64	-4.37	-3.56	22.41	-62.73		-10.78		W -45
0.0	0.03	6.30	-4.61	-4.30	55.35	334.78	38.49	-39.78		W -45
0.0	2.26	5.47	0.93	5.39	51.11	-344.52	-46.11	-22.06	OP.	W 90
0.00	2.03	5.96	0.35	5.95	38.20	205.24	-35.57	13.93	0%	W 90
0.00	-2.37	5.64	-0.52	5.62	37.55	208.45		-14.89		W 90
3.0	-2.26	5.11	-0.56	5.08	49.47	-334.33				₩ 90
3.00	-2.04	6.01	0.33	-6.00	38.41	202.25	35.90	13.67	OP	W -90
0.00	-2.27	5.53	0.94	-5.45	50.53	-338.63				W -90
0.00	2,27	5.19	-0.54	-5.16	49.43	-331.32				W -90
0.00	2.08	5.72		-5.70	37.24	202.52	34.30	-14.49		W -90
0.00	-0.57	1.51	-0.16	-1.50	24.87	-198.61				W 0 Ice
0.00	0.58	1.36		1.36	24.29	-192.85				W 0 Ice
0.00	0.58	3.13	-2.81	1.39	3.85	-39.51		-2.01		W C Ice
0.00	-0.56	3.22	-2.89	-1.43	4.01	-43.73	-3.47	-2.02	07	W 0 Ice
0.00	0.55	3.30	2.98	-1.41	4.35	-48.31	-3.86	2.00	OP.	W 180 Ice
0.00	-0.59	3.25	2.93	1.40	4.16	-44.84	3.64	2.02	0%	W 180 Ice
0.00	-0.60	1.35	0.19	1.34		-188.30		19.76	OXY	W 180 Ice
0.00	0.61	1.53	0.24	-1.51	24.56	-193.25	-13.76	20.35	OY	W 180 ice
3.00	0.02	0.42	0.30	-0.29	30.24	-236.52		-21.36	CP	W 45 Ice
3.00	0.86	2.53	0.32	2.51	13.78	-118.24	4.64			W 45 Ice
0.00	-0.00	3.52	-2.48	2.49	5.00	-1.92				W 45 Ice
0.00	-0.86	2.52	-2.50	-0.31	13.80					W 45 Ice
0.00	-0.88	2.64			14.31	-123.15	-4.51	-13.59	OP	W -45 Ice
0.00	-0.01	0.40	0.36	0.17	29.83	-231.20	21.42	-20.77	0%	W -45 Ice.
0.00	0.87	2.44	-2.43	0.25	13.70				OXY	W -45 Ice
0.00	0.02	3,60	-2.55	-2.55	4.85	-6.21	3.41	-3.45	OY	W -45 Ice
0.00	0.60	1.52	1.51	0.17	24.91	-198.67	-20.53	-14.11		W 90 Ice
0.00	0.56			2.90	8 58	-42 05	-2.03	-3.49	OX	W 90 Ice
0.00	-0.58	3.14	-1.39		3.87	-39.54		3.30	OXY	W 90 Ice
0.00	-C.58		-1.35	0.07	24.28	-192.43	-19.68	14.21	OY	W 90 Ice
0.00	-0.57	3.30	1.42	-2.98	4.36	-48.20	2.06	-3.85	OP	W -90 Ice
0.00	-0.61		1.00	2.27	24.61	-193.91	20.40	-13.77	OX ·	W -90 Ice
0.00	0.60	1.34	-1.33	-0.18		-188.29				W -90 Ice
0.00	0.59	3.24	-1.40	-2.32	4.14		2.03			W -90 Ice

Summary of Joint Support Reactions For All Load Cases in Direction of Leg:

Load Case				Force In Leg Dir.	Residual Shear Perpendicular	Residual Shear Horizontal To Leg - Res.	Horizontal	Horizontal	Long.	Tran.	Vert.
				(kips)	(kips)	(kips)	(kips)		(kips)		Force
W O	0.0	12	5 1P	347,175	24.555	24.605	24,590	0.866	-45.82	-22.10	-344.30
W O	0X	1X	1 1X	336.953	23,376	23,427	23.347		-43.95		
W 0	OXY	132	L 1XY	-210.796	21,619	21,668	21,573	2,024	-34.43		208.56
W 0	CY	17	L 1Y	-206,969	22.785	22.833	22,797	-1.289	-35.42	13.91	204.71
W 180	OP	12		-204.045	23.050	23,099	~23.066	-1.227	35.51	13.67	201.79
W 180	OX	1X	L 1X	-204.224	21.896	21.945	-21.857	1.963		-14.42	201.99
W 180	OXY	TXY	1 1XY	334.109	23,663	23.715	-23,632	-1.991	44.06		-331.28
W 180	OY	11	L 1Y	340.521	24.662	24.711	-24.698	0.314			-337.67
W *45	0.9	19	1, 12	479.425	25.347	25.443	17,930				-475.41
W 45	08	1X	L 1X	64.020	22.514	22.514	16.184		-20.11		-63.75
W 45	OXY	133		-342.346	25,850	25,948	18,302		-39.19		338.81
W 45	OY	17	1 17	65,109	22,509	22,509	15.540		-11.54		-64.82
₩ -45	OP.	18	L 1P	70,306	24.011	24.011	17,125	-16.830		12.51	-70.02
W -45	OX	1X	L 1X	471,161	25,180	25,276	16.972	-18.730			-467.19
W -45	OXY	133	L IXY	63.036	21.528	21.528	14,647	-15.777		19.64	-62.73
₩ -45	0.7	17	L 17	-338,319	26,061	26.160	19,131	-17.842		38.49	334.78
W 90	3P	19	L 1P	347.404	24.825	24.875	0,810				-344.52
W 90	ax.	1X	L 1X		22,903	22,951	-1.277	22,915		-35.57	205.24
W 90	OXY	133		-210.690	21,659	21.707	2.038		-14.89		208.45
W 90	OY	17	L CY	337,162	23,416	23,468	-1.987	23,384			-334.33
W -90	OP.	12	L 1P		23,405	23,454	-1.201	-23.423	13.67	35.90	202.26
W -90	0.8	1X	L 1X	341.485	24,740	24.790	0.749	-24.778	-21.63		-338.63
W -90	OXY	137	L 1XY	334,155	23,627	23,680	-2.057	-23.590	22.49		-331.32
W -90	OY	17		-204.754	21.858	21.906	2,005	-21.815		34.30	202.52
W O Ice	CP.	19	L 1P	199,987	8.399	8.422	8.208				-198.61
W O Ice	CX.	1X	L 1X	194,203	8.116	8.139	7,303		-19.69		-192.85
W 0 Ice	OXY	187	P :XX	39,438	4,521	4.526	4.446	-0.850	-2.01	3.29	-39.51
W O Ice	OY	17	L 1Y	43,651	4.769	4.775	4.712	0.775	-2.02	-3.47	
W 180 Ice	QP.	19	L 1P	48.244	5.046	5.053	-4.975	0.775	2.00	-3.86	-43.73 -48.31
W 180 Ice	ox	1X	L 1X	44.770	4,860	4.866	-4.787	-0.874	2.02	3.64	-44.84
W 180 Tce	OXY	187	5. 1XY	189,660	8,467	8.492	-8.153	-2.374	19.76		-138.30
W 180 Ice	0.7	17	L IY	194.611	8.604	8.627	-8.428	1.839			-193.25
W 45 Ice	OP.	19	1 12	238.250	9,573	9,609	6.773				-236.52
W 45 Ice	0X	18	5 1X	118.873	6,264	6.267	5.679		-12.97		
N 45 Ice	OXY	1XY	L IXY	1.478	5.151	5.170	3.640	3.671	-12.97	-3.55	-118.24
W 45 Ice	DY	17	LIY	118,660	6,271	6.274	2,608	5.706			
W -45 Ice	OP	1P	L 1P	123.796	6.735	6.737	5.991				-118.02
W -45 Ice	οx	110	L 1X	232,912	9,639	9.675	6,508		-13.59		-123.15
% -45 Ice	OXY	188	T IXX	114.792	6.288	6.292	2,353		-20.77		-231.20
W -45 Ice	OY	17	L IY	5.762	5.375	5.396		-5.835	4.69		-114.15
W 90 Ice	OP.	10	L 17	200.049	8.465		3.834	-3.796	-3.45	3.41	-6.21
W 90 Ice	OY.	1X	L IX	43.970	4,806	8.438	1.860				-198.67
W 90 Ice	OXY	1XY	L IXY	39.473	4.806	4.812		4.750	-3.49	-2.03	-44.05
W 90 Ice	0.7	17	5 17	193.769	8,138	8.162	-0.861 -2.345	4.466	3.30	-2.03	-39.54
W -90 Ice	0P	12	5 iP	48.126	5.097	5.103		7.817			-192.43
W -90 Ice	0X	ix	5 1X				0.873	-5.028	-3.95	2.06	-48.20
	OXY	1XY		195.272	8.608	8.631	1.809	-8.440			-193.91
W -90 Ice W -90 Ice	OXY	141	L 1XY	189.656	8,446	8.470	-2.405	-8.122	14.02		-188.29
W =20 1ce	01	11	L 11	44.227	4.839	4.845	-0.872	-4.765	3.60	2.03	-44.30

Overturning Moment Summary For All Load Cases:

Load Case	Transverse Moment (ft-k)	Longitudinal Moment (ft-k)	Torsional Moment (ft-k)		Transverse Force (kips)	Longitudinal Force (kips)	
W O	322.361	-25109.159	98 204	25111,228	0.532	159.628	265.168
W 180	151.855	24672.776		24673.243	-0.033	-159,404	265.168
W 45	18751.618	-18702,300	-0.921	26483.943	113,658	118.099	265.168
W -45	-18277.571	-18613.111	151.286	26086,730	-118.183	117,781	265,168
W 90	25128.401	-307,967	-108.570	25130.288	160.146	0.411	265.168
W -90	-24718.954	-174.067	112.881	24719.566	-159,881	-0.037	265.168
W 0 Ice	229.590	-7089.188	23.550	7092,905	0.112	44.175	474.698
W 180 Ice	193.654	6633.031	-23.137	6635.858	-0.007	-44.128	474,698
W 45 Ice	5390.734	-5400.717	-0.648	7630.711	33.297	33.181	474.698
W -45 Ice	-4967.608	-5381.819	36.193	7324.008	-33.191	33.116	474.698
W 90 Ice	7072.845	-247.008	-26.262	7077.157	44.278	0.086	474.698
W -90 Ice	-6663.222	-218.788	27.086	6666.813	-44,220	-0.008	474.698

EIA Sections Information:

Section Label	Top Z (ft)					Bottom Width (ft)	Area	Adjust	Face Ar Adjust Factor	Load
291.4-300.0 282.8-291.4 272.7-282.8	291.417	282.834	8	16	10.06	11.12	90.88	1.2150	1.1220 1.2150 1.1970	1.458

Printed capacities do not include the strength factor entered for each load case.
The Group Summary reports on the member and load case that resulted in maximum usage
which may not perseately be the same as that which produce positions force.

Group Summary (Compression Portion):

Group Label		p Angl . Typ		Steel Strength			Use	Comp. Control Member		Comp. Control Load Case		Connect. Shear Capacity	Bearing Capacity	RLX	RLY	RLZ	L/r	KL/r Length Comp. Member	Curve No. No. Of Bolts Comp.
				(ksi)					(kips)		(kips)	(kips)	(kips)					(ft)	
Leg S1 Leg S2	L 8" x 8" x 1.125 L 8" x 8" x 1.125				75.84 71.49		75.84	5 1P	-417.644 -355.053	W 45 W 45	464.114	0.000	0.000	0.281	0.281	0.281	54.30 54.30	54.30 25.095 54.30 25.095	1 0
Leg S3	L 8" x 8" x 1.125	" SA	E 8X8X1.13	36.0	66.11	Comp	66.11	1 3P	-306.812	W 45	464.114	0.000	0.000	0.281	0.281	0.281	54.30	54.30 25.095	1 6
Leg S4 Leg S5	L 8" x 8" x 1 L 8" x 8" x 0.875				70.96	Comp	61.66 70.96		-256.560	74 45	416.121	0.000	0.000	0.281	0.281	0.281	54.30	54.30 25.095	. 0
Leg 36	L 8" x 8" x 0.875				58.70	Comp	58.70		-245.284	W 45	345.671	0.000	0.000	0.333	0.333		63.93 63.93	63.93 25.095 63.93 25.095	1 0
Leg S7	L 8" x 8" x 0.75		E 8X8X0.75	36.0	54.03	Comp	54.03	L 7P	-161.934	W 45	299.714	0.000	0.000	0.333	0.333	0.333	63.53	63.53 25.095	1 0
Leg S8 Leg S9	L 8" x 8" x 0,625 L 6" x 6" x 0.75				49.26		49.26		-124.010 -104.610	W 45	251.771	0.000	0.000	0.333	0.333		63.53 64.35	63.53 25.095 64.35 12.547	1 0
Leg S10	L 6" x 6" x 0.75	" SA			38.50	Comp	38.50		-84.663	W 45	219.900	0.000	0.000	0.500	0.500	0.500	64.35	64.35 12.547	1 0
Leg Sli	L 6" x 6" x 0.5625				40.32	Comp	40.32	L 11P		W 45	168.148	0.000	0.000	0.500	0.500	0.500	63.80	63.80 12.547	1 0
Leg S12 Leg S13	L 6" x 6" x 0.5625 L 6" x 6" x 0.4375				27.57		30.88 27.57	L 12P		W 45 W 45	168,148	0.000	0,000	0.500	0.500	0.500	63.80	63.80 12.547 63.26 12.547	1 0
Leg S14	L 5" x 5" x 0.4375	" SA	E 5X5X0.44	36.0	25.89	Comp	25.89	L 14P	-28.615	W 45	110.546	0.000	0.000	0.500	0.500	0.500	62.10	62.10 10.206	1 0
Leg S15 Leg S16	L 5" x 5" x 0.4375 L 5" x 5" x 0.3125				15.95	Сопр	15.95	L 15P L 16P	-17.631 -9.189	W 45 W 45	110.546	0.000	0.000	0.500	0.500	0.500	62.10 52.01	62.10 10.206	1 0
Leg S17	L 5" x 5" x 0.3125			36.0	5.62	Comp	5.62	5 179		N 45	84.920	0.000	0.000	3.500	0.500	0.500	52.01	52.01 8.616 52.01 8.616	1 0
Diag S1	B/B L3"x4"x0.3125				78.51	Comp	78.51	D 2X		W -90	61.196	0.000	3.000	0.310	0.920	0.3:0	124.62	122.84 21.786	6 0
Diag S2 Diag S3	B/B L3"x3.5"x0.25 B/B L2.5"x3.5"x0.25		3.5X3X0.25 3.5X2.5X0.25		84.54	Comp	84.54	D 4X		W -90 W -90	63.493	0.003	0.000	0.310	0.623	0.310	94.31	94.31 20.916 111.82 20.550	1 0
Diag S4	B/B L2.5"x3.5"x0.25	" DA	S 3.5X2.5XC.25	36.0	86.27	Comp	85.27	D BX	-53.574	W -90	49.384	0.000	0.000	0.333	0.667	0.333	109.94	109.94 20.204	1 0
Diag S5 Diag S6	B/B L3"x4"x0.25' B/B L3"x4"x0.25'				72.78	Comp	72.78	D 9X	-33.167 -32.519	W -90 W -90	45.574	0.000	0.000	0.333	0.667	0.333	134.71	129.05 30.178 126.76 29.346	6 0 6 0
Diag S7	B/B L3"x4"x0.25				61.70	Comp	61.70	D 13X		W =90	48.336	0.000	0.000	0.333	0.667	0.333	127.55	124.64 28.573	6 0
	B/B L3.5"x3.5"x0.25		E 3.5X3.5X0.25		64.84	Comp	64.84	D 15X		W -90	43.503	0.000	0.000	0.333	0.667	0.333	140.20	132.43 27.864	6 0
	B/B L2.5"x2.5"x0.25' B/B L2.5"x2.5"x0.25'		E 2.5X2.5X3.25 E 2.5X2.5X3.25		34.76 57.71		34.76 57.71	D 18Y		W 180 W 0	46.570	0.000	0.000	0.320	0.590	0.320	97.87 160.96	97.87 16.451 145.19 15.962	1 C
Diag Sil	B/B L2.5"x2"x0.25"	DA.	L 2.5X2X0.25	36.0	75.62	Comp	75.62	D 22P	-13.592	W 0	17.975	0.000	0.000	0.480	0.960	0.480	190.92	163.6: 15.495	6 0
Diag S12 Diag S13	B/B L2.5"x2"x0.25' B/B L2.5"x2"x0.25'				65.50 59.50		65.50 59.50	D 23P D 25P		W 90	17.669	0.000	0.000	0.500	1.000	0.500	193.21	165.03 15.054	6 C
	L 3.5" x 3.5" x 0.25		E 3.5X3.5X0.25		37.65	Comp	37.65	D 28X	-7.154	W -90	19.003	0.000	0.000	0.500	0.520	0.500	148.48	161.76 14.641 141.74 16.514	5 0
Diag 515	L 3.5" x 3.5" x 0.25"	SAI	E 3.5X3.5X0.25		21.49	Comp	21.49	D 29Y	-4.494	W 180	20.914	0.000	0.000	0.520	0.520	0.520	139.78	135.11 15.546	5 0
Diag S16 Diag S17	L 3" x 3" x 0.25" L 3" x 3" x 0.25"				16.92	Comp	16.92	D 31P D 33P	-2.885 -2.414	W O	17.044	0.000	0.000	0.520	0.520	0.520	143.77	138.16 13.640 131.69 12.836	5 0
Horiz 1	B/B L3.5"x2.5"x0.25"	DA:	3.5X2.5X0.25	36.0	81.02	Comp	81.02	H 1P	+38.420	W -90	47.419	0.000	0.000	0.480	0.480	0.480	113.39	113.39 21.458	1 0
	B/B L3.5"x2.5"x0.25" B/B L3.5"x2.5"x0.25"		3.5X2.5X0.25 3.5X2.5X0.25		55.99	Comp	55.99	H 3P		W -90 W -90	70.437	0.000	0.000	0.500	0.500	0.500	73.09 67.43	73.09 13.278	1 0
Horiz 4	B/B L3"x2.5"x0.25"			36.0	49.64 77.66	Comp	49.64 77.66	H 72		W -90	44.013	0.000	0.000	0.470	0.500	0.500	112.02	67.43 12.250 112.02 11.222	
Horiz 5	B/B L3"x2.5"x0.25"	· DAI	3X2.5XC.25	36.0	74.90	Comp	74.90	H 9P	-16.224	W -90	21.660	0.000	0.000	1.000	1,000	1.000	194.18	165.62 15.292	6 0
Horiz 6	B/B L3"x2.5"x0.25" B/B L2.5"x2.5"x0.25"		3X2.5X0.25 2.5X2.5X0.25		58.67		58.67 61.96	H 11P H 13P		W -90 W -90	25.190	0.000	0.000	1.000	1.000	1.000	174.60 190.51	153,58 13.750 163,36 12.208	6 0
Horiz 8	B/B L2.5"x2.5"x0.25"	DA:	2.5X2.5X0.25	36.0	45.80	Comp	45.80	H 16P	-11.156	W 180	24.360	0.000	0.000	1.000	1.000	1.000	166.45	148.57 10.667	6 0
	B/B L2.5"x2.5"x0.25"		2.5X2.5X0.25		36.33	Сопр	36.33	H 13P	-9.802	W 180	26.980	0.000	0.000	1.000	1.000	1.000	154.42	141.17 9.896	6 0
	B/B 12.5"x2.5"x0.25" B/B 12.5"x2.5"x0.25"		2.5X2.5X9.25 2.5X2.5X9.25		27.47		27.47	H 20Y H 22Y	-8.255 -7.348	W O	30.046	0.000	0.000	1.000	1.000	1.000	142.39	133.77 9.125 126.37 8.354	6 0
Horiz 12	B/B L2.5"x2.5"x0.25"	DAR	2.5X2.5X0.25	36.0	17.01	Comp	17.C1	H 23P	-6.277	₩ -90	36.894	0.000	0.000	1.000	1.000	1.000	118.34	118.34 7.583	1 0
Horiz 13 Horiz 14	B/B L2.5"x2.5"x0.25" L 3" x 2.5" x 0.25"		2.5X2.5X0.25 3X2.5X0.25		6.02	Comp	11.16	H 25X	-4.749 -0.531	W 90	9.254	0.000	0.000	0.500	1.000	0.500	106.31	106.31 6.813 178.83 12.371	1 0
Horiz 15	B/B L3"x2.5"x0.25"	DAI	3X2.5X0.25	36.0	1.67	Tens	0.58	H 29Y	-0.238	W O	40.911	0.000	0.000	0.500	1.000	0.500	118.06	118.06 11.117	1 0
Horiz 16 Horiz 17	L 3" x 2.5" x 0.25' C8x11.5				2.34		0.00	H 32X H 33P	-0.316	W -90	13.023	0.000	0.000	0.500	1.000	0.500	160.30	150.75 10.059	5 0
LD 1	B/B L3"x2"x0.25"				1.06 67.14			LD 1X	-19.353	N -90	28.827	0.000	0.000	0.850	0.350	1.000	172.80	160.27 9.000 136.57 12.836	5 0 6 0
LD 2	B/B L4"x3"x0.25"	DA	4X3X0.25	36.0	77.37	Comp	77.37	LD 3X	-50.749	W -90	65.590	0.000	0.000	0.823	0.820	0.820	98.68	98.68 12.836	1 0
LD 4 LD 5	B/B L2.5"x2"x0.25* B/B L2.5"x2"x0.25*			36.0	92.34	Comp	92.34	LD 7X LD 9X	-25.384 -35.003	W -45 W -90	24.372 40.657	0.000	0.000	0.870	0.870	0.870	153.35	140.51 11.516 100.25 8.187	6 0 1 0
LD 6	B/B L3"x3"x0.25"	DAS	3X3XC.25		72.64			LD 11P	-37.964	W -90	52.263	0.000	0.000	0.843	0.840	0.840	104.93	104.93 9.681	1 0
LD 7	B/B L3"x3"x0.25" B/B L2.5"x2"x0.25"				58.16			LD 13X LD 15X	-25.011 -34.518	W -45	43.005	0.000	0.000	0.865	0.865	0.865	122.12	121.30 10.941	6 0
LD 9	B/B L3"x2"x0.25"	DAI			85.54	Comp	84.23	LD 17P	-34.518	W -90	40.354	0.000	0.000	0.820	0.820	0.820	100.96	103.96 8.044 103.11 9.336	1 0
LD 10	B/B L3"x3"x0,25"	DAS	3X3X0.25	36.0	55.54	Comp	55.54	LD 19X	-25.750	W -45	46.365	0.000	0.000	0.860	0.860	0.860	115.26	115.26 10.387	1 0
LD 11	B/B L2.5"x2"x0.25" B/B L2.5"x2.5"x0.375"		2.5X2X3.25 2.5X2.5X0.38		84.01	Comp		LD 21X LD 23P	-34.512 -36.266	W -90 W -90	41.083	0.000	0.000	0.820	0.820	0.820	99.26	99.26 7.909 121.24 9.008	1 0
LH 1	B/B L2.5"x3"x0.25"			36.0	11.73	Tens	0.00	LH 2X	2.000	" -20	0.001	0.000		100.000				21077.08 21.458	6 0
LH 2	B/B L2.5"x3"x0.25"			36.0		Comp		LH 3X	-29.081	W -45	24.347	0.000	0.000	1.000	2,000	1.000	178.89	156.22 10.808	6 0
LH 3 LH 4	B/B L2.5"x3"x0.375" B/B L3.5"x3.5"x0.25"		3X2.5X0.38 3.5X3.5X0.25			Comp		LH 5X LH 7X	-27.760 -27.440	W -45	40.333	0.000	0.000	0.000	2.000	1.000	163.34	146.66 10.005 131.41 9.202	6 0
	Dummy Bracing Member			36.0		1000		BR 11XY	-1.156	W 45	0.324	0.000	0.000	1.000	1.000	1.000	2.33	2.33 19.445	1 6

Group Summary (Tension Portion)

Group Label		Angle		Steel Strength		Usage		Tension Control		Tension			Tension Connect.			No. No. Of Of	Hole
LLUCI	Desc.	* 3100	5110	Berengen	osage	rol	In		10108		Capacity					Bolts Holes	Diameter
				(ksi)			Tens.		(kips)	Case	(kips)	Capacity (kips)	Capacity (kips)	Capacity (kips)	(ft)	Tens.	(in)
Leg S1 Leg S2	L 8" x 8" x 1.125" L 8" x 8" x 1.125"	SAE			75.84		52.73		285.834	W 45 W 45	542.051 542.051	0.200	0.000		25.095	0 0.000	0.0
Leg 53	L 8" x 8" x 1.125"	SAE			66.11		39.53		214.264	W 45	542.051	0.000	0.000		25.095	0 0.000	o o
Leg S4	L 8" x 8" x 1"	SAE	8X8X1		61.66		37.00		179.811	W 45	485.999	0.000	0.000		25.095	0 0.000	0
Leg S5	L 3" x 3" x 0.875"	SAE			70.96		40.89		175.287	W 45	428.651	0.300	0.000		25.095	0.000	0
Leg S6	L 8" x 8" x 0.875"	SAE			58.70		33.40		143.158	W 45	428.651	0.000	0.000	0.000	25.095	0 0.000	0
Leg S7 Leg S8	L 8" x 8" x 0.75" L 8" x 8" x 0.625"	SAE			54.03		30.33	T SXX	82.221	W 45	370.655 311.364	0.000	0.000		25.095	0 0.000	0
Leg S9	L 6" x 6" x 0.75"	SAE			47.57		24.95	L 9XY	68.220	W 45	273.456	0.000	0.000		12.547	0 0.003	ŏ
Leg S10	L 6" x 6" x 0.75"	SAE			38.50		19.84		54.251	W 45	273.456	0.000	0.000		12.547	0.000	0
Leg S11	L 6" x 6" x 0.5625"	SAE			40.32		19.66		40.961	74 45	208.332	0.000	0.000	0.000	12.547	0.000	0
Leg S12	L 6" x 6" x 0.5625"	SAE			30.88		13.91		28.977	W 45	208.332	0.000	0.000		12.547	0.000	0
Leg S13	L 6" x 6" x C.4375"	SAE			27.57		10.70		17.546	94 45	163.944	0.000	0.000		12.547	0.000	0
Leg S14 Leg S15	L 5" x 5" x C.4375" L 5" x 5" x C.4375"	SAE			25.89	Comp	9.76	L 14XY L 15XY	13.214	W 45	135.432	0.000	3.000		10.206	0.000	0
Leg S16	L 5" x 5" x 0.3125"	SAE			10.82	Сомр	2.42	L 16XY	2.376	W 45	98,172	0.000	0.000		8.616	0.000	0
Leg Si7	L 5" x 5" x 0.3125"	SAE			5.62	Comp	0.00	L 17Y	0.300		98.172	0.000	0.000		8.616	0 0.000	0
Diag Si	B/B 13"x4"x0.3125"	DAS			78.51		31.43	D 2P	42.563	W -90	135.432	0.000	0.000		21.786	0.000	0
Diag 32	B/B L3"x3.5"x3.25"	DAS			84.54		45.05	2 4P	45.685	W -90	101.412	0.000	0.000		20.916	0.000	0
Diag S3	B/B 12.5"x3.5"x0.25"		3.5X2.5X0.25		86.84		48.92	D 6P	45.647	M -80	93.312	0.000	0.000		20.550	0 0.000	0
Diag S4 Diag S5	B/B L2.5"x3.5"x0.25" B/B L3"x4"x0.25"	DAS	3.5X2.5X0.25 4X3X0.25		86.27		48.28	D 8P D 9P	45.055	W -90	93.312	0,000	0.000		20.204	0.0.000	0
Diag 35	B/B L3"x4"x0.25"	DAS			69.19		27.35	D 11P	29.951	W -90	109.512	0.000	0.000		30.178	0 0.000	0
Diag S7	B/B L3"x4"x0.25"	DAS			61.70		25.23	D 13P	27.630	W -90	109.512	0.000	0.000		28.573	0 0.000	,
Diag S8	B/B L3.5"x3.5"x0.25"		3.5X3.5X0.25		64.84		24.42	D 15P	26.738	₩ -90	109.512	0.000	0.000		27.864	0 0,000	8
Diag S9	B/B L2.5"x2.5"x0.25"		2.5X2.5X0.25		34.76		19.55	D 18P	15.075	W 180	77.112	0.000	0.000		16.451	0.0.000	0
Diag S10	B/B L2.5"x2.5"x0.25"		2.5X2.5X0.25		57.71		17.85	D 20Y	13.761	M 0	77.112	0.000	0.000		15.962	0.000	0
Diag S11	B/B L2.5"x2"x0.25"	DAL			75.62		18.52	D 22Y	12.784	W 0	69.012	0.000	0.000		15.495	0.000	3
Diag S12 Diag S13	B/B L2.5"x2"x0.25" B/B L2.5"x2"x0.25"	DAL			65.50 59.50		15.74	D 23X	10.860	W 90 W 90	69.012 69.012	0.000	0.000		15.054	0 0.000	
	L 3.5" x 3.5" x 0.25"		3.5X3.5X0.25		37.65		10.15	D 28X	5.557	W 90	54.756	3.300	0.000		16.514	0 0,000	3
	L 3.5" x 3.5" x 0.25"		3.5X3.5X0.25		21.49	Comp	6.04	D 30XY	3.310	W 9C	54.756	0.000	0.000		15.546	0 0.000	3
Diag 516	L 3" x 3" x 0.25"	SAE	3X3X0.25	36.0	16.92	Comp		D 32XY	2.022	W 90	46.656	0.000	0.000		13.640	0.0.000	0
Diag S17	L 3" x 3" x 0.25"	SAE			12.90	Comp		D 33Y	1.620	W C	46.656	0.000	0.000		12.836	0 0.000	0
Horiz 1	B/B L3.5"x2.5"x0.25"		3.5X2.5X0.25		81.02		44.70	H 1X	41.711	W -90	93.312	0.000	0.600		21.458	0 0.000	0
Horiz 2 Horiz 3	B/B L3.5"x2.5"x0.25" B/B L3.5"x2.5"x0.25"		3.5X2.5X0.25 3.5X2.5X0.25		55.99 49.64		47.45	H 3X H 5X	44.272	W -90 W -90	93.312	0.000	0.000		13.278	0 0.000	0
Horiz 4	B/B L3"x2.5"x0.25"	DAL	3X2.5X0.25		77.66		44.08	H 7P	37.560	M 90	85.212	0.000	0.000		11.222	0 0.000	0
Horiz 5	B/B L3"x2.5"x0.25"	DAL	3X2.5X0.25		74.90		19.85	H 9P	16.912	₩ 90	85,212	0.000	0.000		15.292	0 3,000	0
Horiz 6	B/B L3"x2.5"x0.25"	DAL	3X2.5X0.25	36.0	58.67	Comp	17.74	H 11P	15.114	W 90	85.212	0.000	0.003	0.000	13.750	0.0000	0
Horiz 7	B/B L2.5"x2.5"x0.25"		2.5X2.5X0.25		61.86		16.35	H 13X	12.608	W -90	77.112	0.000	0.000		12.208	0 0.000	0.
Horiz 8	B/B 12.5"x2.5"x0.25"		2.5X2.5X0.25		45.80		14.88	H 16P	11.473	W O	77.112	0.000	0.000		10.667	0.000	0
Horiz 9 Horiz 10	B/B 12.5"x2.5"x0.25" B/B 12.5"x2.5"x0.25"		2.5X2.5X3.25 2.5X2.5X3.25		36.33		12.81	H 18P	9.880	M O	77.112 77.112	0.000	0.000	0.000		0 0.000	0
Horiz 11	B/B L2.5"x2.5"x0.25"		2.5X2.5X0.25		22.09	Соло	9.61	H 22P	7.412	WO	77.112	0.000	0.000	0.000		0 0.000	0
Horiz 12	B/B L2.5"x2.5"x0.25"		2.5X2.5X0.25		17.01	Comp	8.30	H 23P	6.401	W 90	77.112	0.000	0.000	0.000	7.583	0 3.000	0
Horiz 13	B/B L2.5"x2.5"x0.25"		2.5X2.5X0.25		11.16	Comp	7.58	H 25X	5.843	W -90	77.112	0.000	0.000	0.000		0.0000	a
Horiz 14	L 3" x 2.5" x 0.25"	SAU	3X2.5X0.25	36.0	6.02	Tens	6.02	H 28P	2.556	₩ 45	42.444	0.000	0.000		12.371	0 0.000	0
Horiz 15	B/B L3"x2.5"x0.25"	DAL	3X2.5X0.25	36.0	1.67	Tens	1.67	H 29P	1.427	M 0	85.212	0.000	5.000		11.117	0 0.000	0
Horiz 16	1 3" x 2.5" x 0.25"	SAU	3X2.5X0.25	36.0	2.34	Tens	2.34	H 31P	0.991	M 0	42.444	0.000	0.000		10.059	0 0.000	0
Horiz 17 LD 1	C8x11.5 8/8 L3"x2"x0.25"	CHN	C8x11.5 3X2X0.25	36.0	67.14	Comp	26.03	H 33P	20.071	W 90 W -45	77.112	0.000	0.000	0.000	9.000	0 0.000	0
LD 2	B/B L4"x3"x0,25"	DAL	4X3X0.25		77.37		42.81	LD 3P	46.380	W -90	109.512	0.000	0.000		12.836	0 0.000	0
LD 4	B/B L2.5"x2"x0.25"	DAL	2.5X2X0.25		92.34	Comp	32.66	LD 7P	22.538	W -90	69.012	0.000	0.000		11.516	0 0.030	ŏ
LD 5	B/B L2.5"x2"x0.25"	CAL	2.5X2X0.25	36.0	36.09	Comp	44.03	LD 9P	30.388	M - 30	69.012	0.000	0.000	0.000	8.187	0.000	0
LD 6	B/B L3"x3"x0.25"	DAE	3X3X0.25		72.64		41.90	LD 11K	39,096	W -90	93.312	0.000	0.000		9.681	0.000	0
LD 7	B/B L3"x3"x0.25"	DAE	3X3X0.25	36.0	58.16	Comp	23.64	LD 14Y	22.060	74 -45	93.312	0.000	0.000	0,000	10.941	0 0.000	0

LD B	B/B L2.5"x2"x0.25"			36.0 85.54	Comp 44.12	LD 15P	30.447	W -90	69.012	0.000	0.000	0.000 8.044	0 0.000	- 0
LD 9				36.0 84.23	Comp 49.39	LD 17X	38.085	W -90	77.112	0.000	0.000	0.000 9.336	0.000	0
LD 10	B/B L3"x3"x0.25"	DAE	3X3X0.25	36.0 55.34	Comp 23.52	LD 20Y	21.942	W -45	93.312	0.000	0.000	0.000 10.387	0.0.000	0
LD 11	B/B L2.5"x2"x0.25"	DAL	2.5X2XC.25		Comp 43.52							0.000 7.909	0.000	0
LD 12	B/B L2.5"x2.5"x0.375"	DAE	2.5X2.5X0.38	36.0 69.93	Comp 33.04	LD 23X	37.143	W -90	112,428	0.000	0.000	0.000 9.008	0.000	0
	B/B 12.5"x3"x0.25"			36.0 11.73	Tens 11.73	LH 2X	9,995	94.90	85,212	0.000	0.000	0.000 21.458	0.000	0
1.11 2	B/B L2.5"x3"x0.25"	DAG	3K2.5K0.25	36.0 94.82	Comp 29.29	LH 3P	24.956	N -90	85.212	0.000	0.000	0.000 10.808	0.000	0
LH 3	B/B L2.5"x3"x0.375"	DAS	3X2.5X0.38	36.0 68.83	Comp 19.13	LH 6Y	23.802	W -45	124.416	0.000	0.000	0,000 10,005	0.000	0
LH 4	B/B L3.5"x3.5"x0.25"	DAE	3.5K3.5K0.25	36.3 62.19	Comp 20.78	LH SY	22.762	14 -45	109.512	0.000	0.000	0.000 9.202	0.000	0
DUM 1	Dummy Bracing Member	DUM	0.1X0.1X1	36.0 0.00	0.00	BR IIX	0.953	W -45	0.324	0.000	0.030	0,000 19,445	0.0,000	0

*** Maximum Stress Summary for Each Load Case

Summary of Maximum Usages by Load Case:

Load Case	Maximum Usage %	Element Label	Element Type
W 0	92.37	LH 4P	Angle
W 180	92.79	LH 4Y	Angle
W 45	91.68	DH 3P	Angle
W -45	94.82	LH 3X	Angle
W 90	92.78	LH 3P	Angle
W -90	93.12	LH 3X	Angle
W O Ice	34.94	LH 4P	Angle
74 180 Ice	35.83	LH 4Y	Angle
W 45 Ice	38.70	L 1P	Angle
W -45 Ice	37.74	L 1X	Angle
W 90 Ide	35.11	LH 3P	Angle
W -90 Ice	35.89	LH 3X	Angle

*** Weight of structure (.bs): Weight of Angles Section DLF: Weight of Equipment: Total

147671.4

· · · End of Report

	88018		1	Engineer:	RDB	1	Windspeed		93 mph	lce	: 50 mph]			Tape		[Taper Change:	30
Name:	Stamford (Katoor	na), CT	L	Date:	01/31/18		Carri	er AT&T Mo	bility		T 6				FW @ Bas	e: 46.00	ι [FW @ Top:	
Joint Label	Symmetry Code	X Coord. (ft)	Y Coord.	Z Coord. (ft)	X Disp. Rest.	Y Disp. Rest.	Z Disp. Rest.	X Rot. Rest.	Y Rot. Rest.	Z Rot. Rest.	Sub-Brace (Y or Blank)	# Vert	Drop (ft)	Height (ft)	Туре	Spre	adsheet Versio Z-Elev. (ft)	n Last Updated: FW (ft)	11/12/201 # Sub-Brace
	XY-Symmetry	23	23		Fixed	Fixed	Fixed	Fixed	Fixed	Fixed	T(r or blank)	3	7.033	25	1	1 Count	2-ciev. (it)	46	# Sub-Brace
	XY-Symmetry	21.45833333	21.45833333		Free	Free	Free	Free	Free	Free		2	7.033	25	2	2	25	42.91666667	3
	XY-Symmetry XY-Symmetry	19.91666667 18.375	19.91666667 18.375		Free Free	Free	Free	Free	Free	Free		2	7.033	25	2	3	50	39.83333333	3
	XY-Symmetry	16.83333333	16.83333333	100		Free Free	Free Free	Free Free	Free Free	Free Free		2	7.033	25 25	2 A	4 5	75 100	36.75 33.66666667	3
	XY-Symmetry	15.29166667	15.29166667	125		Free	Free	Free	Free	Free				25	A	6	125	30.58333333	2
	XY-Symmetry	13.75	13.75	150		Free	Free	Free	Free	Free				25	A	7	150	27.5	2
	XY-Symmetry	12.20833333	12.20833333	175		Free	Free	Free	Free	Free				25	A	8	175	24.41666667	2
	XY-Symmetry XY-Symmetry	10.66666667 9.895833333	10.6666667 9.895833333	200 212.5		Free	Free Free	Free Free	Free Free	Free Free				12.5 12.5	A	9	200 212.5	21.33333333	1
	XY-Symmetry	9.125	9.125	225		Free	Free	Free	Free	Free				12.5	A	11	212.5	18.25	1
	XY-Symmetry	8.354166667	8.354166667	237.5		Free	Free	Free	Free	Free				12.5	A	12	237.5	16.70833333	1
	XY-Symmetry	7.583333333	7.583333333	250		Free	Free	Free	Free	Free				12.5	A	13	250	15.16666667	1
	XY-Symmetry	6.8125	6.8125	262.5		Free	Free	Free	Free	Free		1		10.167	Х	14	262.5	13.625	1
	XY-Symmetry XY-Symmetry	6.185535 5.55857	6.185535 5.55857	272.667 282.834		Free Free	Free Free	Free Free	Free Free	Free Free		1 1		10.167 8.583	X X	15 16	272.667 282.834	12.37107 11.11714	1
	XY-Symmetry	5.029285	5.029285	291.417		Free	Free	Free	Free	Free		- 1		8.583	×	17	291.417	10.05857	1
	XY-Symmetry	4.5	4.5	300		Free	Free	Free	Free	Free						18	300	9	
	Y-Symmetry	21.45833333	0		Free	Free	Free	Free	Free	Free									
	X-Symmetry	0	21.45833333		Free	Free	Free	Free	Free	Free									
	XY-Symmetry	19.91666667 6.638888889	6.638888889 19.91666667		Free Free	Free	Free	Free	Free	Free									
	XY-Symmetry XY-Symmetry	18.375	6.125		Free Free	Free Free	Free Free	Free Free	Free Free	Free Free									
	XY-Symmetry	6.125	18.375	75		Free	Free	Free	Free	Free									
	XY-Symmetry	16.83333333	5.611111111	100		Free	Free	Free	Free	Free									
	XY-Symmetry	5.611111111	16.83333333	100		Free	Free	Free	Free	Free									
	Y-Symmetry	15.29166667 0	15.29166667	125 125		Free	Free	Free	Free	Free									
100	X-Symmetry Y-Symmetry	13.75	15.29166667	150		Free Free	Free Free	Free Free	Free Free	Free Free									
	X-Symmetry	0	13.75	150		Free	Free	Free	Free	Free									
	Y-Symmetry	12.20833333	0	175	Free	Free	Free	Free	Free	Free									
	X-Symmetry	0	12.20833333	175		Free	Free	Free	Free	Free									
	Y-Symmetry X-Symmetry	10.66666667	10.66666667	200		Free	Free	Free	Free	Free									
	Y-Symmetry	9.895833333	10.00000007	212.5	100000	Free	Free Free	Free Free	Free Free	Free Free									
	X-Symmetry	0	9.895833333	212.5		Free	Free	Free	Free	Free									
	Y-Symmetry	9.125	0	225		Free	Free	Free	Free	Free									
	X-Symmetry	0	9.125	225 1		Free	Free	Free	Free	Free									
	Y-Symmetry X-Symmetry	8.354166667 0	0 8.354166667	237.5 1		Free Free	Free Free	Free	Free	Free									
	X-Symmetry Y-Symmetry	7.583333333	8.35416666/	250 1		Free	Free	Free Free	Free Free	Free Free									
	X-Symmetry	0	7.583333333	250 1		Free	Free	Free	Free	Free									
5	Y-Symmetry	6.8125	0	262.5 F	ree	Free	Free	Free	Free	Free									
6	X-Symmetry	0	6.8125	262.5 F	ree	Free	Free	Free	Free	Free									
	XY-Symmetry	21.892035	10.72916667	17.967	ree	Free	Free	Free	Free	Free									
	XY-Symmetry	10.72916667	21.892035	17.967	ree	Free	Free	Free	Free	Free									
	XY-Symmetry XY-Symmetry	20.35036833	10.807895 20.35036833	42.967 F		Free	Free Free	Free Free	Free Free	Free Free									
	XY-Symmetry Y-Symmetry	20.35036833	20.35036833	42.967 F		Free Free	Free Free		Free	Free									
	X-Symmetry	0	20.35036833	42.967 F		Free	Free		Free	Free									
	XY-Symmetry	18.80870167	10.00487167	67.967 F	ree	Free	Free	Free	Free	Free									
	XY-Symmetry	10.00487167	18.80870167	67.967 F		Free	Free	Free	Free	Free									
	Y-Symmetry	18.80870167	0	67.967 F		Free	Free	Free	Free	Free									
	X-Symmetry XY-Symmetry	0 17.267035	18.80870167 9.201848333	67.967 F 92.967 F			Free	100000	Free	Free									
	XY-Symmetry XY-Symmetry	9.201848333	17.267035	92.967 F			Free Free		Free	Free Free									
	Y-Symmetry	17.267035	0	92.967 F			Free		Free	Free									
	X-Symmetry	0	17.267035	92.967 F		Free	Free		Free	Free									

1: Built up Horizs. w/ A 2: Built up Horizs. w/ M A: Typical A brace X: Typical X brace

Drop: Use only for types 1 & 2 # Sections: 17

Legs

Site No.:	88018
Engineer:	RDB
Date:	01/31/2018
Carrier:	AT&T Mobility

When inputting thickness values, include all decimal places.

Tower Section #	Section Elevations (ft)	of Shape [1]	Diameter or Length (in)	Thickness ^[2]	F _Y
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.000-25.00 25.00-50.00 50.00-75.00 100.0-125.0 125.0-150.0 175.0-200.0 200.0-212.5 212.5-225.0 225.0-237.5 237.5-250.0 250.0-262.5 262.5-272.7 272.7-282.8 282.8-291.4 291.4-300.0		8 8 8 8 8 8 8 6 6 6 6 5 5 5 5	1.125 1.125 1.125 1 0.875 0.875 0.75 0.625 0.75 0.5625 0.4375 0.4375 0.4375 0.3125 0.3125	36 36 36 36 36 36 36 36 36 36 36 36 36 3

^[2] For Solid Round Leg Shapes Thickness Equals Zero.

^[3] Adjust for Bent Plate Leg Shapes.

Diagonals

 Site No.:
 88018

 Engineer:
 RDB

 Date:
 01/31/2018

 Carrier:
 AT&T Mobility

When inputting thickness values, include all decimal places.

Section Elevations (ft)	Type of Shape ^[1]	Diameter ^[2]	Web Length ^[3]	Flange Length ^[3]	Thickness (in)	F _v (ksi)	Is Diag. Tension Only? (Y/N)
07	in the second	,,	,,	17	1/	(1.5.)	(17.17
0.000-25.00	2L		3	4	0.3125	36	
			STATE OF THE STATE	The Company of the Control of the Co		36	
				and the same of th			
Automorphism of the Company of the C			-19101-01065510140000-0-1	3.5		36	
			2.5	2.5	0.25	36	
			2.5		0.25	36	
225.0-237.5	2L		2.5		0.25	36	
237.5-250.0	2L		2.5	2	0.25	36	
250.0-262.5	2L		2.5	2	0.25	36	
262.5-272.7	L		3.5	3.5	0.25	36	
272.7-282.8	L		3.5	3.5	0.25	36	
282.8-291.4	L		3	3	0.25	36	
291.4-300.0	L		3	3		36	
	(ft) 0.000-25.00 25.00-50.00 50.00-75.00 75.00-100.0 100.0-125.0 125.0-150.0 175.0-200.0 200.0-212.5 212.5-225.0 225.0-237.5 237.5-250.0 250.0-262.5 262.5-272.7 272.7-282.8 282.8-291.4	Elevations of Shape (ft) Shape 0.000-25.00 2L 25.00-50.00 2L 50.00-75.00 2L 75.00-100.0 2L 100.0-125.0 2L 150.0-175.0 2L 175.0-200.0 2L 200.0-212.5 2L 212.5-225.0 2L 225.0-237.5 2L 237.5-250.0 2L 250.0-262.5 2L 262.5-272.7 L 272.7-282.8 L 282.8-291.4 L	Elevations of Shape (in) 0.000-25.00 2L 25.00-50.00 2L 50.00-75.00 2L 75.00-100.0 2L 100.0-125.0 2L 125.0-150.0 2L 150.0-175.0 2L 200.0-212.5 2L 212.5-225.0 2L 225.0-237.5 2L 237.5-250.0 2L 250.0-262.5 2L 262.5-272.7 L 272.7-282.8 L 282.8-291.4 L	Elevations of Shape [1] Length [3] (ft) (in) (in) 0.000-25.00 2L 3 25.00-50.00 2L 3 50.00-75.00 2L 2.5 75.00-100.0 2L 3 100.0-125.0 2L 3 125.0-150.0 2L 3 150.0-175.0 2L 3.5 200.0-175.0 2L 3.5 200.0-212.5 2L 2.5 212.5-225.0 2L 2.5 225.0-237.5 2L 2.5 237.5-250.0 2L 2.5 250.0-262.5 2L 2.5 262.5-272.7 L 3.5 272.7-282.8 L 3.5 282.8-291.4 L 3	Company	Company	Continue

Notes:

^[1] Type of Diagonal Shape: **R** = Round, **L** = Single-Angle or **2L** = Double-Angle.

^[2] Applies to Pipes and Solid Round Shapes only. For Solid Round Shapes Thickness Equals Zero.

 $[\]ensuremath{^{[3]}}$ Applies to Single-Angle and Double-Angle Shapes only.

^[4] Applies to Double-Angle Shapes only.

^[5] Applies to Single-Angle Shapes only.

Horizontals

 Site No.:
 88018

 Engineer:
 RDB

 Date:
 01/31/2018

 Carrier:
 AT&T Mobility

When inputting thickness values, include all decimal places.

Tower Section #	Section Elevations	Type of Shape ^[1]	Diameter ^[2]	Web Length ^[3]	Flange Length ^[3]	Thickness	F _y	
	(ft)		(in)	(in)	(in)	(in) (in)		
1	0.000-25.00	2L		3.5	2.5	0.25	36	
2	25.00-50.00	2L		3.5	2.5	0.25	36	
3	50.00-75.00	2L		3.5	2.5	0.25	36	
4	75.00-100.0	2L		3	2.5	0.25	36	
5	100.0-125.0	2L		3	2.5	0.25	36	
6	125.0-150.0	2L		3	2.5	0.25	36	
7	150.0-175.0	2L		2.5	2.5	0.25	36	
8	175.0-200.0	2L		2.5	2.5	0.25	36	
9	200.0-212.5	2L		2.5	2.5	0.25	36	
10	212.5-225.0	2L		2.5	2.5	0.25	36	
11	225.0-237.5	2L		2.5	2.5	0.25	36	
12	237.5-250.0	2L		2.5	2.5	0.25	36	
13	250.0-262.5	2L		2.5	2.5	0.25	36	
14	262.5-272.7	L		3	2.5	0.25	36	
15	272.7-282.8	2L		3	2.5	0.25	36	
16	282.8-291.4	L		3	2.5	0.25	36	
17	291.4-300.0	С		8	11.5		36	

Notes

^[1] Type of Horizontal Shape: \mathbf{R} = Round, \mathbf{L} = Single-Angle, $\mathbf{2L}$ = Double-Angle, \mathbf{C} = Channel, \mathbf{W} = W Shape

 $[\]begin{tabular}{ll} \begin{tabular}{ll} \beg$

^[3] Applies to Single-Angle and Double-Angle Shapes only.

^[4] Applies to Double-Angle Shapes only.

^[5] Applies to Single-Angle Shapes only.

Built-up Diagonals

 Site No.:
 88018

 Engineer:
 RDB

 Date:
 01/31/2018

 Carrier:
 AT&T Mobility

When inputting thickness values, include all decimal places. Input diags. from left to center & from base section upward.

Tower Built-up Diag. #	Section Elevations (ft)	Type of Shape ^[1]	Diameter ^[2]	Web Length ^[3]	Flange Length ^[3] (in)	Thickness	F _y
1	0.000-25.00	2L		3	2	0.25	36
2	0.000-25.00	2L		4	3	0.25	36
3	25.00-50.00	2L		2.5	2	0.25	36
4	25.00-50.00	2L		2.5	2	0.25	36
5	25.00-50.00	2L		3	3	0.25	36
6	50.00-75.00	2L		3	3	0.25	36
7	50.00-75.00	2L		2.5	2	0.25	36
8	50.00-75.00	2L		3	2	0.25	36
9	75.00-100.0	2L		3	3	0.25	36
10	75.00-100.0	2L		2.5	2	0.25	36
11	75.00-100.0	2L		2.5	2.5	0.375	36

Notes:

^[1] Type of Diagonal Shape: \mathbf{R} = Round, \mathbf{L} = Single-Angle or $\mathbf{2L}$ = Double-Angle.

 $^{{}^{\}text{[2]}}\text{Applies to Pipes and Solid Round Shapes only. For Solid Round Shapes Thickness Equals Zero.}\\$

^[3] Applies to Single-Angle and Double-Angle Shapes only.

^[4] Applies to Double-Angle Shapes only.

^[5] Applies to Single-Angle Shapes only.

Built-up Horizontals

 Site No.:
 88018

 Engineer:
 RDB

 Date:
 01/31/2018

 Carrier:
 AT&T Mobility

When inputting thickness values, include all decimal places.

Tower Section #	Section Elevations (ft)	Type of Shape ^[1]	Diameter ^[2]	Web Length ^[3]	Flange Length ^[3]	Thickness	F _y	Is Horiz. Tension Only? (Y/N)
1 2 3 4	0.000-25.00 25.00-50.00 50.00-75.00 75.00-100.0	2L 2L 2L 2L		2.5 2.5 2.5 3.5	3 3 3.5	0.25 0.25 0.375 0.25	36 36 36 36	Y

Notes:

Type of Horizontal Shape: \mathbf{R} = Round, \mathbf{L} = Single-Angle or $\mathbf{2L}$ = Double-Angle.

 $^{^{[2]}}$ Applies to Pipes and Solid Round Shapes only. For Solid Round Shapes Thickness Equals Zero.

 $[\]ensuremath{^{\text{[3]}}}$ Applies to Single-Angle and Double-Angle Shapes only.

^[4] Applies to Double-Angle Shapes only.

^[5] Applies to Single-Angle Shapes only.

Site No.: 88018
Engineer: RDB
Date: 01/31/18
Carrier: AT&T Mobility

Description	From (ft)	To (ft)	Quantity	Shape	Width or Diameter (in)	Perimeter (in)	Unit Weight (lb/ft)	Part of Face Solidity Ratio (Yes/No)	Wind Loa (Yes/No)
1 Ladder	0	300	1	Flat	1.5	6.0	6	Yes	Yes
2 Short Ladder	8.3333	33.3333	2	Flat					
3 Short Ladder					1.5	6.0	6	Yes	Yes
3 Short Ladder	8.3333	33.3333	2	Flat	1.5	6.0	6	Yes	Yes
5 WG	5	300	1	Flat	1.5	6.0	6	Yes	Yes
6 WG	5	272	1	Flat	1.5	6.0	6	Yes	Yes
7 WG	5	235	1	Flat	1.5	6.0	6	Yes	Yes
8 WG	5	223	1	Flat	1.5	6.0	6	Yes	Yes
9 WG	5	160	1	Flat	1.5	6.0	6	Yes	Yes
10 Marcus Communications LLC	5	300	1	Round	1.55	4.9	0.63	Yes	Yes
11 Marcus Communications LLC	5	300	1	Round	1.98	6.2	0.82	Yes	Yes
12 Marcus Communications LLC	5	300	1	Round	1.09	3.4	0.33	Yes	Yes
13 Other	5	300	1	Round	0.63	2.0	0.15	Yes	Yes
14 Clearwire Corporation	5	300	5	Round	1.09	3.4	0.33	Yes	Yes
15 US Dept Of Homeland Security	5	275	2	Round	1.09	3.4	0.33	Yes	Yes
16 Sirius XM Radio Inc.	5	270	1	Round	1.98	6.2	0.82	Yes	Yes
17 T-Mobile	5	268	1	Flat	7.065	37.7	12.3	Yes	Yes
18 T-Mobile	5	268	3	Round	0.88	2.8	0.68	Yes	Yes
19 Sirius XM Radio Inc.	5	260	1	Round	5.02	15.8	1.85	Yes	Yes
20 US Dept Of Homeland Security	5	250	1	Round	1.09	3.4	0.33	Yes	Yes
21 US Dept Of Homeland Security	5	246	1	Round	1.09	3.4	0.33	Yes	Yes
22 AT&T Mobility	5	235	1	Flat	7.065	37.7	9.84	Yes	Yes
23 AT&T Mobility	5	235	2	Round	0.39	1.2	0.17	No	No
24 AT&T Mobility	5	235	2	Round	0.78	2.5	0.59	Yes	Yes
25 AT&T Mobility	5	235	4	Round	0.74	2.3	0.49	No	No
26 Sprint Nextel	5	222	1	Flat	7.065	37.7	12.3	Yes	Yes
27 US Dept Of Homeland Security	5	207	1	Round	1.09	3.4	0.33	Yes	Yes
28 Marcus Communications LLC	5	200	2	Round	1.55	4.9	0.63	Yes	Yes
29 Spok Holdings, Inc.	5	193	2	Round	1.09	3.4	0.33	Yes	Yes
30 Spok Holdings, Inc.	5	193	1	Round	1.09	3.4	0.33	Yes	Yes
31 Clearwire Corporation	5	171	2	Round	2.38	7.5	3.65	Yes	Yes
32 Clearwire Corporation	5	171	6	Round	0.31	1.0	0.05	Yes	Yes
33 Metro PCS Inc	5	165	1	Flat	7.065	37.7	9.84	Yes	Yes
34 Metro PCS Inc	5	165	1	Round	0.38	1.2	0.23	Yes	Yes
35 Metro PCS Inc	5	165	1	Round	0.44	1.4	0.08	Yes	Yes
36 Sprint Nextel	5	155	5	Round	1.54	4.8	1	Yes	Yes
37 Sensus USA Inc.	5	139	1	Round	1.09	3.4	0.33	Yes	Yes
38 Senet, Inc.	5	135	1	Round	0.38	1.2	0.23	Yes	Yes
39 Senet, Inc.	5	135	1	Round	0.63	2.0	0.15	Yes	Yes
40 Spok Holdings, Inc.	5	120	1	Round	0.63	2.0	0.2	Yes	Yes
41 Marcus Communications LLC	5	107	1	Round	1.55	4.9	0.6	Yes	Yes
42 Verizon Wireless	5	92	3	Round	1.54	4.8	1.0	Yes	Yes
43 Sirius XM Radio Inc.	5	22	1	Round	1.09	3.4	0.3	Yes	Yes
44 Spok Holdings, Inc.	0	6	1	Round	0.63	2.0	0.2	Yes	Yes
45 Spok Holdings, Inc.	0	6	1	Round	0.34	1.1	0.1	Yes	Yes

Exposure B
Tia Code: TIA-222-G Topo Cat: 1

 $7 k_{z max}$ 1200 $k_{z min}$ 0.9 K_{t}

2.01 0.7 Site No.: 88018
Engineer: RDB
Date: 01/31/18
Carrier: AT&T Mobility

Description	From	То	Quantity	Face #	Coax Width	Coax Shape	% Exposed	Spacing	Shape	Block Width	Block Depth	Perimeter	Unit	In Face Zone	Include in
				(1-4, A-		(Block / Flat /			(Round/Flat)				Weight		Wind Loa
	(ft)	(ft)		D)	(in)	Ind)		(in)		(# coax)	(# coax)	(in)	(lb/ft)	(Yes/No)	(Yes/No
Ladder	0	300	1	В	1.50	Flat	100		Flat	1	1	6.0	6	Yes	Yes
Short Ladder	8.3333	33.3333	2	1	1.50	Flat	100		Flat	2	1	6.0	6	Yes	Yes
Short Ladder	8,3333	33.3333	2	3	1.50	Flat	100		Flat .	2	1	6.0	6	Yes	Yes
									-					No	No
WG	5	300	1	2	1.50	Flat	100		Flat	1	1	6.0	6	Yes	Yes
WG	5	272	1	3	1,50	Flat	100		Flat	1	1	6.0	6	Yes	Yes
WG	5	235	11	1	1.50	Flat	100		Flat	1	1	6.0	6	Yes	Yes
WG	5	223	1	2	1.50	Flat	100		Flat	1	1	6.0	6	Yes	Yes
WG	5	160	1	1	1.50	Flat	100		Flat	1	1	6.0	6	Yes	Yes
Marcus Communications LLC	5	300	1	В	1.55	Ind	100		Round	1	1	4.9	0.63	Yes	Yes
Marcus Communications LLC	5	300	1	В	1.98	Ind	100		Round	1	1	6.2	0.82	Yes	Yes
Marcus Communications LLC	5	300	1	В	1.09	Ind	100		Round	1	1	3.4	0.33	Yes	Yes
Other	. 5	300	1	В	0.63	Ind	100		Round	1	1	2.0	0.15	Yes	Yes
Clearwire Corporation	5	300	5	2	1.09	Ind	100		Round	5	1	3.4	0.33	Yes	Yes
US Dept Of Homeland Security	5	275	2	2	1.09	Ind	100		Round	2	1	3.4	0.33	Yes	Yes
Sirius XM Radio Inc.	5	270	1	4	1.98	Ind	100		Round	1	1	6.2	0.82	Yes	Yes
T-Mobile	5	268	15	4	1.98	Block	33	0.5	Flat	5	3	37.7	12.3	Yes	Yes
T-Mobile	5	268	3	4	0.88	Ind	100	112	Round	3	1	2.8	0.68	Yes	Yes
Sirius XM Radio Inc.	5	260	1	4	5.02	Ind	100		Round	1	1	15.8	1.85	Yes	Yes
US Dept Of Homeland Security	5	250	1	2	1.09	Ind	100		Round	1	1	3.4	0.33	Yes	Yes
US Dept Of Homeland Security	5	246	1	2	1.09	Ind	100		Round	1	1	3.4	0.33	Yes	Yes
AT&T Mobility	5	235	12	1	1.98	Block	50	0.5	Flat	6	2	37.7	9.84	Yes	Yes
AT&T Mobility	5	235	2	1	0.39	Ind	100		Round	2	1	1.2	0.17	No	No
AT&T Mobility	5	235	2	1	0.78	Ind	100		Round	2	1	2.5	0.59	Yes	Yes
AT&T Mobility	5	235	4	1	0.74	Ind	100		Round	4	1	2.3	0.49	No	No
Sprint Nextel	5	222	15	2	1.98	Block	33	0.5	Flat	5	3	37.7	12.3	Yes	Yes
US Dept Of Homeland Security	5	207	1	2	1.09	Ind	100		Round	1	1	3.4	0.33	Yes	Yes
Marcus Communications LLC	5	200	2	В	1.55	Ind	100		Round	2	1	4.9	0.63	Yes	Yes
Spok Holdings, Inc.	- 5	193	2	В	1.09	Ind	100		Round	2	1	3.4	0.33	Yes	Yes
Spok Holdings, Inc.	5	193	1	В	1.09	Ind	100		Round	1	1	3.4	0.33	Yes	Yes
Clearwire Corporation	5	171	2	2	2.38	Ind	100		Round	2	1	7.5	3.65	Yes	Yes
Clearwire Corporation	5	171	6	2	0.31	Ind	100		Round	6	1	1.0	0.05	Yes	Yes
Metro PCS Inc	5	165	12	1	1.98	Block	50	0.5	Flat	6	2	37.7	9.84	Yes	Yes
Metro PCS Inc	5	165	1	1	0.38	Ind	100		Round	1	1	1.2	0.23	Yes	Yes
Metro PCS Inc	5	165	1	1	0.44	Ind	100		Round	1	1	1.4	0.08	Yes	Yes
Sprint Nextel	5	155	5	2	1.54	Ind	100		Round	5	1	4.8	1	Yes	Yes
Sensus USA Inc.	5	139	1	В	1.09	Ind	100		Round	1	1	3.4	0.33	Yes	Yes
Senet, Inc.	5	135	1	3	0.38	Ind	100		Round	1	1	1.2	0.23	Yes	Yes
	5	135	1	3	0.63	Ind	100								
Senet, Inc.	5	120	1	В	0.63		100		Round	1	1	2.0	0.15	Yes	Yes
Spok Holdings, Inc.	5					Ind			Round	1	1	2.0	0.15	Yes	Yes
Marcus Communications LLC	5	107 92	3	8 4	1.55	Ind	100		Round	1	1	4.9	0.63	Yes	Yes
Verizon Wireless	5				1.54	Ind	100		Round	3	1	4.8	1	Yes	Yes
Sirius XM Radio Inc.		22	1	4	1.09	Ind	100		Round	1	1	3.4	0.33	Yes	Yes
Spok Holdings, Inc.	0	6	1	В	0.63	Ind	100		Round	1	1	2.0	0.15	Yes	Yes
Spok Holdings, Inc.	0	6	1	В	0.34	Ind	100		Round	1	1	1.1	0.06	Yes	Yes
														No	No
														No	No
														No	No
					Ole De									No	No
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No

Dishes

Dish Types						
S	Standard					
R	Standard w/ Radome					
Н	High Performance					
G	Grid					

Dish	Dish Elevation	Dish Dia.	Dish Angle	Dish Type	Joint	Equipment	١
Number	(ft)	(ft)	(deg)		Orientation	Staus	
1	311	4	51.4	5	XY		•
2	307	3	0	н	Y		
3	303	2	90	н	XY		
4	303	2	180	н	×		
5	303	2	270	н	Р		
6	120	4	90	S	XY		
7	22	2	197	R	×		
8	6	4	270	s	р		
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							
24							1
25							
26							
27							
28							
29							
30							4
31							1
32							1
33							ı
34							١
35							1
36							١
37							ı
38							ı
39							I
40							ı
41							1
42							1
42							1
44							ı
							۱
45							۱
46							١
47							I
48							1
49							

Equipment Label	Attach Label	Equipment Property Set	EIA Antenna Orientation Angle
	Samuel Commence		(deg)
4" STD 1 @ 311"	17XY	4 ft STD Dish	51.4
3" HP 2 @ 307"	17Y	3 ft HP Dish	
2" HP 3 @ 303"	17XY	2 ft HP Dish	90
2' HP 4 @ 303'	17X	2 ft HP Dish	180
2" HP 5 @ 303"	17P	2 ft HP Dish	270
4' STD 6 @ 120'	5XY	4 ft STD Dish	90
2' RAD 7 @ 22'	1X	2 ft RAD Dish	197
4' STD 8 @ 6'	OP.	4 ft STD Dish	270

	Joint	Orientation
	XY	0° Y
90°		

Site No.:	88018	
Engineer:	RDB	
Date:	01/31/18	
Carrier:	AT&T Mobility	

Site #: 88018 Name: AT&T Mobility Engineer: RDB
Date: 01/31/18

Member	Group	Section	Symmetry	Origin	End	Ecc.	Rest.	Ratio	Ratio	Ratio
Label	Label	Label	Code	Joint	Joint	Code	Code	RLX	RLY	RLZ
L1	Leg S1		XY-Symmetry	0P	1P	1	4	0.28132	0.28132	0.28132
L 2	Leg S2		XY-Symmetry	1P	2P	1	4	0.28132	0.28132	0.28132
L 3	Leg S3		XY-Symmetry	2P	3P	1	4	0.28132	0.28132	0.28132
L 4	Leg S4		XY-Symmetry	3P	4P	1	4	0.28132	0.28132	0.28132
L 5	Leg S5		XY-Symmetry	4P	5P	1	4	0.333333333	0.333333333	0.333333333
L 6	Leg S6		XY-Symmetry	5P	6P	1	4	0.333333333	0.333333333	0.333333333
L 7	Leg S7		XY-Symmetry	6P	7P	1	4	0.333333333	0.333333333	0.333333333
L 8	Leg S8		XY-Symmetry	7P	8P	1	4	0.333333333	0.333333333	0.333333333
L 9	Leg S9		XY-Symmetry	8P	9P	1	4	0.5	0.5	0.5
L 10	Leg S10		XY-Symmetry	9P	10P	1	4	0.5	0.5	0.5
L 11	Leg S11		XY-Symmetry	10P	11P	1	4	0.5	0.5	0.5
L 12	Leg S12		XY-Symmetry	11P	12P	1	4	0.5	0.5	0.5
L 13	Leg S13		XY-Symmetry	12P	13P	1	4	0.5	0.5	0.5
L 14	Leg S14		XY-Symmetry	13P	14P	1	4	0.5	0.5	0.5
L 15	Leg S15		XY-Symmetry	14P	15P	1	4	0.5	0.5	0.5
L 16	Leg S16		XY-Symmetry	15P	16P	1	4	0.5	0.5	0.5
L 17	Leg S17		XY-Symmetry	16P	17P	1	4	0.5	0.5	0.5
D 1	Diag S1		XY-Symmetry	OP	H2P	1	6	0.31	0.92	0.31
D 2	Diag S1		XY-Symmetry	OP	H1P	1	6	0.31	0.92	0.31
D 3	Diag S2		XY-Symmetry	1P	H6P	1	6	0.31	0.62	0.31
D 4	Diag S2		XY-Symmetry	1P	H5P	1	6	0.31	0.62	0.31
D 5	Diag S3		XY-Symmetry	2P	H10P	1	6	0.333333333	0.666666667	0.333333333
D 6	Diag S3		XY-Symmetry	2P	Н9Р	1	6	0.333333333	0.666666667	0.333333333
D 7	Diag S4		XY-Symmetry	3P	H14P	1	6	0.333333333	0.666666667	0.333333333
D 8	Diag S4		XY-Symmetry	3P	H13P	1	6	0.333333333	0.666666667	0.333333333
D 9	Diag S5		XY-Symmetry	4P	A9P	1	6	0.333333333	0.666666667	0.333333333
D 10	Diag S5		XY-Symmetry	4P	A10P	1	6	0.333333333	0.666666667	0.333333333
D 11	Diag S6		XY-Symmetry	5P	A11P	1	6	0.333333333	0.666666667	0.333333333
D 12	Diag S6		XY-Symmetry	5P	A12P	1	6	0.333333333	0.666666667	0.333333333
D 13	Diag S7		XY-Symmetry	6P	A13P	1	6	0.333333333	0.666666667	0.333333333
D 14	Diag S7		XY-Symmetry	6P	A14P	1	6	0.333333333	0.666666667	0.333333333
D 15	Diag S8		XY-Symmetry	7P	A15P	1	6	0.333333333	0.666666667	0.333333333
D 16	Diag S8		XY-Symmetry	7P	A16P	1	6	0.333333333	0.666666667	0.333333333
D 17	Diag S9		XY-Symmetry	8P	A17P	1	6	0.32	0.59	0.32
D 18	Diag S9		XY-Symmetry	8P	A18P	1	6	0.32	0.59	0.32
	Diag S10		XY-Symmetry	9P	A19P	1	6	0.5	1	0.5
	Diag S10		XY-Symmetry	9P	A20P	1	6	0.5	1	0.5
	Diag S11		XY-Symmetry	10P	A21P	1	6	0.48	0.96	0.48
	Diag S11		XY-Symmetry	10P	A22P	1	6	0.48	0.96	0.48
	Diag S12		XY-Symmetry	11P	A23P	1	6	0.45	1	0.5
	Diag S12		XY-Symmetry	11P	A24P	1	6	0.5	1	0.5
	Diag S13		XY-Symmetry	12P	A25P	1	6	0.5	1	0.5
	Diag S13		XY-Symmetry	12P	A26P	1	6	0.5	1	0.5
	Diag S14		XY-Symmetry	13P	14Y	2	5	0.52	0.52	0.52
	Diag S14		XY-Symmetry	13P	14X	2	5	0.52	0.52	
	Diag S14		XY-Symmetry	13P 14P	14X 15Y	2		0.52	0.52	0.52
	Diag S15		XY-Symmetry XY-Symmetry	14P 14P	15Y 15X	2	5 5	0.52	0.52	0.52 0.52
	Diag S16		XY-Symmetry	15P	16Y	2	5	0.52	0.52	0.52
	Diag S16		XY-Symmetry	15P	16X	2	5	0.52	0.52	0.52
	Diag S17		XY-Symmetry	16P	17Y	2	5	0.52	0.52	0.52
D 34	Diag S17		XY-Symmetry	16P	17X	2	5	0.52	0.52	0.52
	Horiz 1		XY-Symmetry	1P	A1P	1	6	0.48	0.48	0.48
H 2	Horiz 1		XY-Symmetry	1P	A2P	1	6	0.48	0.48	0.48
H 3	Horiz 2		XY-Symmetry	2P	A3P	1	6	0.5	0.5	0.5
H 4	Horiz 2		XY-Symmetry	2P	A4P	1	6	0.5	0.5	0.5
	Horiz 3		XY-Symmetry	3P	A5P	1	6	0.5	0.5	0.5
	Horiz 3		XY-Symmetry	3P	A6P	1	6	0.5	0.5	0.5
	Horiz 4		XY-Symmetry	4P	A7P	1	6	0.47	0.94	0.47
	Horiz 4		XY-Symmetry	4P	A8P	1	6	0.47	0.94	0.47
	Horiz 5		XY-Symmetry	5P	A9P	1	6	1	1	1
	Horiz 5		XY-Symmetry	5P	A10P	1	6	1	1	1
	Horiz 6		XY-Symmetry	6P	A11P	1	6	1	1	1
			Jimmetry		*****	1	3	1	1	1

Member	Group	Section	Symmetry	Origin	End	Ecc.	Rest.	Ratio	Ratio	Ratio
Label	Label	Label	Code	Joint	Joint	Code	Code	RLX	RLY	RLZ
H 12 H 13	Horiz 6 Horiz 7		XY-Symmetry	6P	A12P	1		6 1		1
H 14	Horiz 7		XY-Symmetry	7P 7P	A13P	1		6 1		1
H 15	Horiz 8		XY-Symmetry XY-Symmetry	7P 8P	A14P A15P	1		6 1 6 1		1
H 16	Horiz 8		XY-Symmetry	8P	A15P	1		6 1		1
H 17	Horiz 9		XY-Symmetry	9P	A10P A17P	1		6 1		1
H 18	Horiz 9		XY-Symmetry	9P	A18P	1		6 1		1
H 19	Horiz 10		XY-Symmetry	10P	A19P	1		6 1		1
H 20	Horiz 10		XY-Symmetry	10P	A20P	1		5 1		1
H 21	Horiz 11		XY-Symmetry	11P	A21P	1		5 1		1
H 22	Horiz 11		XY-Symmetry	11P	A22P	1		5 1		1
H 23	Horiz 12		XY-Symmetry	12P	A23P	1		5 1		1
H 24	Horiz 12		XY-Symmetry	12P	A24P	1		5 1		1
H 25	Horiz 13		XY-Symmetry	13P	A25P	1		5 1		1
H 26	Horiz 13		XY-Symmetry	13P	A26P	1		5 1		1
H 27	Horiz 14		Y-Symmetry	14P	14X	3		5 0.5		0.5
H 28	Horiz 14		X-Symmetry	14P	14Y	3		5 0.5	1	0.5
H 29	Horiz 15		Y-Symmetry	15P	15X	1		5 0.5	1	0.5
H 30	Horiz 15		X-Symmetry	15P	15Y	1		0.5	1	0.5
H 31	Horiz 16		Y-Symmetry	16P	16X	3		5 0.5	1	0.5
H 32	Horiz 16		X-Symmetry	16P	16Y	3		0.5	1	0.5
H 33	Horiz 17		Y-Symmetry	17P	17X	3		5 1	1	1
H 34	Horiz 17		X-Symmetry	17P	17Y	3		5 1	1	1
H 37	Horiz 2		Y-Symmetry	A3P	A3X	1		5 0.5	1	0.5
H 38	Horiz 2		X-Symmetry	A4P	A4Y	1		0.5	1	0.5
H 39	Horiz 3		Y-Symmetry	A5P	A5X	1		5 0.5	1	0.5
H 40	Horiz 3		X-Symmetry	A6P	A6Y	1		0.5	1	0.5
H 41	Horiz 4		Y-Symmetry	A7P	A7X	1		0.5	1	0.5
H 42	Horiz 4		X-Symmetry	A8P	A8Y	1		0.5	1	0.5
	LH 1		Y-Symmetry	H1P	H1X	1			100	100
	LH 1		X-Symmetry	H2P	H2Y	1		5 100	100	100
	LH 2		XY-Symmetry	H5P	H7P	1		5 1	2	1
	LH 2		XY-Symmetry	H6P	H8P	1		5 1	2	1
	LH 3		XY-Symmetry	H9P	H11P	1		j 1	2	1
	LH 3 LH 4		XY-Symmetry	H10P	H12P	1		5 1	2	1
	LH 4		XY-Symmetry XY-Symmetry	H13P H14P	H15P	1			1.995	0.998
LITO	1114		A1-Symmetry	П14Р	H16P	1		0.998	1.995	0.998
LD 1	LD 1		XY-Symmetry	H1P	1P	1		0.85	0.05	0.05
	LD 1		XY-Symmetry	H2P	1P	1			0.85 0.85	0.85 0.85
	LD 2		XY-Symmetry	H1P	A1P	1			0.82	0.83
	LD 2		XY-Symmetry	H2P	A2P	1			0.82	0.82
			, 0,		,	-		0.02	0.82	0.82
LD 7	LD 4		XY-Symmetry	H5P	2P	1		0.87	0.87	0.87
	LD 4		XY-Symmetry	Н6Р	2P	1	(0.87	0.87
	LD 5		XY-Symmetry	H5P	АЗР	1	(0.8	0.8
LD 10	LD 5		XY-Symmetry	Н6Р	A4P	1	(0.8	0.8
LD 11	LD 6	į	XY-Symmetry	A3P	H7P	1	(0.84	0.84
LD 12	LD 6	1	XY-Symmetry	A4P	H8P	1	(0.84	0.84	0.84
LD 13	LD 7	1	XY-Symmetry	H9P	3P	1	(0.865	0.865	0.865
LD 14	LD 7		XY-Symmetry	H10P	3P	1	(0.865	0.865	0.865
LD 15	LD 8	1	XY-Symmetry	H9P	A5P	1	(0.82	0.82	0.82
	LD 8		XY-Symmetry	H10P	A6P	1	(0.82	0.82	0.82
	LD 9		XY-Symmetry	A5P	H11P	1	(0.82	0.82	0.82
	LD 9		XY-Symmetry	A6P	H12P	1	6		0.82	0.82
	LD 10		XY-Symmetry	H13P	4P	1	(0.86	0.86
	LD 10		XY-Symmetry	H14P	4P	1	(0.86	0.86
	LD 11		XY-Symmetry	H13P	A7P	1	(0.82	0.82
	LD 11		XY-Symmetry	H14P	A8P	1	(0.82	0.82
	LD 12		XY-Symmetry	A7P	H15P	1	6		0.85	0.85
LD 24	LD 12)	XY-Symmetry	A8P	H16P	1	(0.85	0.85	0.85
DD 1	DUM 4	72	V/V C	A 4 D	120	32	3			
BR 1	DUM 1		XY-Symmetry	A1P	A2P	1		1	1	1

Member	Group	Section	Symmetry	Origin	End	Ecc.	Rest.	Ratio	Ratio	Ratio
Label	Label	Label	Code	Joint	Joint	Code	Code	RLX	RLY	RLZ
3R 3	DUM 1		XY-Symmetry	A3P	A4P	1	4	1	1	
BR 4	DUM 1		XY-Symmetry	A3P	A4XY	1	4	1	1	
3R 5	DUM 1		XY-Symmetry	A5P	A6P	1	. 4	1	1	
BR 6	DUM 1		XY-Symmetry	A5P	A6XY	1	4	1	1	
3R 7	DUM 1		XY-Symmetry	A7P	A8P	1	4	1	1	
3R 8	DUM 1		XY-Symmetry	A7P	A8XY	1	4	1	1	
3R 9	DUM 1		XY-Symmetry	A9P	A10P	1	4	1	1	
3R 11	DUM 1		XY-Symmetry	A11P	A12P	1	4	1	1	
BR 13	DUM 1		XY-Symmetry	A13P	A14P	1	4	1	1	
BR 15	DUM 1		XY-Symmetry	A15P	A16P	1	4	1	1	
BR 17	DUM 1		XY-Symmetry	A17P	A18P	1	4	1	1.	
BR 19	DUM 1		XY-Symmetry	A19P	A20P	1	4	1	1	
BR 21	DUM 1		XY-Symmetry	A21P	A22P	1	4	1	1	
BR 23	DUM 1		XY-Symmetry	A23P	A24P	1	4	1	1	
SR 25	DUM 1		XY-Symmetry	A25P	A26P	1	4	1	1	
R 61	DUM 1		XY-Symmetry	H1P	Н2Р	1	4	1	1	
R 62	DUM 1		XY-Symmetry	H1P	H2XY	1	4	1	1	
R 64	DUM 1		XY-Symmetry	H5P	Н6Р	1	4	1	1	
R 65	DUM 1		XY-Symmetry	H5P	H6XY	1	4	1	1	
R 66	DUM 1		XY-Symmetry	H7P	H8P	1	4	1	1	
R 67	DUM 1		XY-Symmetry	Н9Р	H10P	1	4	1	1	
₹ 68	DUM 1		XY-Symmetry	Н9Р	H10XY	1	4	1	1	
R 69	DUM 1		XY-Symmetry	H11P	H12P	1	4	1	1	
R 70	DUM 1		XY-Symmetry	H13P	H14P	1	4	1	1	
R 71	DUM 1		XY-Symmetry	H13P	H14XY	1	4	1	1	
R 72	DUM 1		XY-Symmetry	H15P	H16P	1	4	1	1	

| 1.0 | 1.0

Site No.:	88018	
Engineer:	RDB	
Date:	01/31/2018	
Carrier	ATRT Mobility	

No.	Carrier	Elevation (ft)	Quantity	# of Azimuths	Manufacturer	Model	Height (in)	Width (in)	Depth (in)	Weight (lbs/ea)	Flat/Round (F/R)	Reduction	C _A A _c	Weight (k)	Ка
1		300 300	1	1 4		Platform w/ HR	0.0001	0.0001	0.0001	0.0001	F	0.000			1
2		283	1	i		Platform W/ HR	0.0001	0.0001	0.0001	0.0001	F	0.000	80.00	9.00	1
-		283	1	4		Catwalk						1.000	70.00	8.00	1
3		212.5 212.5	1	3		Access Platform	0.0001	0.0001	0.0001	0.0001	F	0.000 1.000	45.00	5.00	1
4		100	1	1		Access viacionii	0.0001	0.0001	0.0001	0.0001	F	0.000	45.00	3.00	1
5		100	1	3		Access Platform						1.000	45.00	5.00	1
2															1
6	Marcus Communications LLC	338	1	1			0.0001	0.0001	0.0001	0.0001	F	0.000			1
_	Marcus Communications LLC	338	1	1	TX RX Systems	101-68-10-X-03N						1.000	5.53	0.07	1
7	Marcus Communications LLC Marcus Communications LLC	324 324	1	1		15' Omni-Grid	0.0001	0.0001	0.0001	0.0001	F	1.000	13.41	0.08	1
8	Other	320	1	1		15 Gillin Grid	0.0001	0.0001	0.0001	0.0001	F	0.000	15,41	0.08	1
1920	Other	320	1	1		12' Omni						1.000	3.60	0.04	1
9	Marcus Communications LLC Marcus Communications LLC	311 311	1	1		- Radio/ODU	0.0001	0.0001	0.0001	0.0001	F	0.000	1.60	0.03	1
10	Other	307	1	1		radio/COO	0.0001	0.0001	0.0001	0.0001	F	0.000	1.60	0.03	1
	Other	307	1	1		Radio/ODU						0.500	1.60	0.03	1
11	Clearwire Corporation Clearwire Corporation	303 303	1	1 1	Programmer.		0.0001	0.0001	0.0001	0.0001	F	0.000			1
12	US Dept Of Homeland Security	275	1	1	DragonWave	Horizon Compact	0.0001	0.0001	0.0001	0.0001	F	0.500	0.43	0.01	1
	US Dept Of Homeland Security	275	1	1		Round Side Arm			0.0007	0.0001		1.000	5.20	0.15	1
13	US Dept Of Homeland Security	275	1	1			0.0001	0.0001	0.0001	0.0001	F	0.000			1
14	US Dept Of Homeland Security Other	275 270	1	1	Rohde & Schwarz	ADD090	0.0001	0.0001	0.0001	0.0001	F	0.000	20.76	0.09	1
-	Other	270	1	1	Dielectric	TLP-08M-2E	0.0001	0.0001	0.0001	0.0001		1.000	22.75	0.13	1
15	Other	270	1	1			0.0001	0.0001	0.0001	0.0001	F	0.000			1
16	Other Sirius XM Radio Inc.	270 270	1 1	1 1		Round Side Arm	0.000	0.000	0.0001	0.000		1.000	5.20	0.15	1
10	Sirius XM Radio Inc.	270	2	2	Til-Tek	TA-2350-DAB	0.0001	0.0001	0.0001	0.0001	F	1.000	1.34	0.02	1
17	Sirius XM Radio Inc.	270	1	1			0.0001	0.0001	0.0001	0.0001	F	0.000		0.02	1
	Sirius XM Radio Inc.	270	2	2		Round Side Arm						0.900	5.20	0.15	0.9
18	T-Mobile T-Mobile	268 268	3	3	Ericsson Ericsson	AIR 21, 1.3 M, B2A B4P AIR-32 B2A/B66Aa	56	12	8	83	F	0.710 0.710	6.51	0.13	0.8
19	T-Mobile	268	3	3	Andrew	LNX-6515DS-VTM	96.3	11.9	7.1	51.3	F	0.700	0.31	0.13	0.8
	T-Mobile	268	3	3	RFS	ATMAA1412D-1A20						0.500	1.00	0.01	0.8
20	T-Mobile T-Mobile	268 268	3	3	Ericsson	RRUS 11 B12	19.7	17	7.2	50.7	F	0.500			0.8
21	US Dept Of Homeland Security	250	1	1	Sinclair	Flat Sector Frame SCZ81-L	251	5	5	79	R	0.670 1.000	17.90	0.40	0.75
	US Dept Of Homeland Security	250	1	1		Round Side Arm						1.000	5.20	0.15	1
22	US Dept Of Homeland Security	246	1	1	Sinclair	SC381-HL	148.3	4.5	4.5	47	R	1.000			1
23	US Dept Of Homeland Security AT&T Mobility	246 235	1 3	1 3	Powerwave Aligon	Round Side Arm 7770						1.000	5.20	0.15	1
23	AT&T Mobility	235	3	3	Andrew	SBNHH-1D65A	55	11	S	35	F	0.650	5.80	0.04	0.8
24	AT&T Mobility	235	3	3	ccı	OPA-65R-LCUU-H4	48	14.8	7.4	57	F	0.660			0.8
35	AT&T Mobility	235	1	3		(42) Diplexer/TTA/BOB/RET/RRU						0.500	74.92	1.44	0.8
25	AT&T Mobility AT&T Mobility	235 235	3	3	KMW	EPBQ-654L8H6-L2 Flat Sector Frame	73	21	6.3	72.8	F	0.610	17.90	0.40	0.8
26	Sprint Nextel	222	12	3	Decibel	DB844H90E-XY	48	6.5	8	14	F	0.740	17.90	0.40	0.75
	Sprint Nextel	222	3	3		Flat Sector Frame						0.670	17.90	0.40	0.75
27	US Dept Of Homeland Security US Dept Of Homeland Security	207	1	1	Sinclair	SC281-L Round Side Arm	251	5	5	79	R	1.000	5.20	0.15	1
28	Marcus Communications LLC	200	2	2	TX RX Systems	101-68-10-X-03N	189.6	3.5	3.5	70	R	1.000	5.20	0.15	1
	Marcus Communications LLC	200	2	2		Round Side Arm						0.900	5.20	0.15	0.9
29	Spok Holdings, Inc. Spok Holdings, Inc.	193 193	2	2	Antel	BCD-87010 Round Side Arm	134	2.6	2.6	26.5	R	1.000			1
30	Spok Holdings, Inc.	193	1	1		noully side Arm	0.0001	0.0001	0.0001	0.0001	F	0.900	5.20	0.15	0.9
	Spok Holdings, Inc.	193	1	1		30" x 30" Reflector						1.000	7.50	0.03	1
31	Clearwire Corporation Clearwire Corporation	175 175	1	1		12" x 12" Junction Box	0.0001	0.0001	0.0001	0.0001	F	0.000			1
32	Clearwire Corporation	171	3	3	NextNet	12" x 12" Junction Box BTS-2500	19.3	11.3	5.1	35	F	0.500	1.20	0.01	0.8
	Clearwire Corporation	171	3	3	Argus	LLPX310R			211	33		0.630	4.29	0.03	0.8
33	Clearwire Corporation	171	1	1			0.0001	0.0001	0.0001	0.0001	F	0.000			1
34	Clearwire Corporation Sprint Nextel	171 155	3	3	RFS	Flat T-Arm APXVTM14-C-I20	56.3	12.6	63	53.0		0.670	12.90	0.25	0.75
-	Sprint Nextel	155	1	3		(18) Filter/Diplexer/RRU	30.3	12.6	6.3	52.9	F	0.660	43.83	0.78	0.8
35	Sprint Nextel	155	3	3	RFS	APXVSPP18-C-A20	72	11.8	7	57	F	0.690			0.8
36	Sprint Nextel Sensus USA Inc.	155 139	3 1	3	Antel	Flat Sector Frame BCD-87010 4*	134	2.6	2.6	20.5		0.750	17.90	0.40	0.75
30	Sensus USA Inc.	139	1	1	Alitei	Round Side Arm	134	2,6	2.6	26.5	R	1.000	5.20	0.15	1
37	Senet, Inc.	135	1	1	L-com	HG908U-PRO	63	1.5	1.5	3.8	R	1.000			1
.	Senet, Inc.	135 130	1	1		Round Side Arm						1.000	5.20	0.15	1
38	Senet, Inc. Senet, Inc.	130	1	1	Tycon	ENC-DC Stand-Off	11	8.5	3	4	F	1.000	3.50	0.09	1
39	Marcus Communications LLC	107	1	1	TX RX Systems	101-68-10-X-03N	189.6	3.5	3.5	70	R	1.000	2.50	0.08	1
. 1	Marcus Communications LLC	107	1	1		Round Side Arm						1.000	5.20	0.15	1
40	Verizon Wireless Verizon Wireless	92 92	6	3	Andrew	SBNHH-1D65B (12) RRU/B0B	72.7	11.9	7.1	50.7	F	0.690	22.07		0.8
41	Verizon Wireless	92	6	3		72" x 14" Panel	72	14	7	45	F	0.500	33.87	0.63	0.8
	Verizon Wireless	92	3	3		Flat Sector Frame						0.670	17.90	0.40	0.75
42		42 42	1 4	1 4		ice Shield	0.0001	0.0001	0.0001	0.0001	F	0.000			1
43	Spok Holdings, Inc.	6	1	1		ice shield	0.0001	0.0001	0.0001	0.0001	F	0.000	6.00	0.15	1
	Spok Holdings, Inc.	6	1	1	Trimble	Acutime 2000			2.0001			1.000	0.30	0.00	1
44															1
45															1
-															1
46															1
.,															1
47															1
48															1
															1
49															1
50															1
															1

No.	Elevation	C _A A _c	C _A A _c (Ice)	Force	Force (Ice)	Weight	Weight (Ice)	60 Azi	Force	F (Ice)	Height	Sum of Forces (No I
	(ft)	(ft ²)	(ft²)	(Ib)	(ib)	(Ib)	(Ib)	Mult.	mean	mean	Flag	60 Azi. 180 Azi.
1	300 300	0.00 80.00	0.00	0.000 2766.817	0.000 675.492	0 10800	0 14040	1.00	0.00 1521.75	0.00	1 5022222	2766.817067
2	283	0.00	0.00	0.000	0.000	0	0	1.00 1.00	0.00	371.52 0.00	1.5033333	2/00.81/06/
	283	70.00	94.50	2380.948	581.286	9600	12480	1.00	1309.52	319.71	1.5035336	2380.948376
3	212.5 212.5	0.00 45.00	0.00 60.75	0.000 1410.307	0.000 344.313	6000	0 7800	1.00	0.00 775.67	0.00 189.37	1.5035346 1.5047059	1410.307249
4	100	0.00	0.00	0.000	0.000	0	0	1.00	0.00	0.00	1.5047069	1410.307243
5	100	45.00	60.75	1137.058	277.602	6000	7800	1.00	625.38	152.68	1.5100000	1137.05799
,								1.00			1.5100010	
6	338	0.00	0.00	0.000	0.000	0	0	1.00	0.00	0.00		
7	338 324	5.53 0.00	7.47 0.00	197.886 0.000	48.312 0.000	84 0	109 0	1.00	0.00	26.57 0.00	1.5029586 1.5029596	197.8856442
	324	13.41	18.10	474.099	115.747	90	117	1.00	260.75	63.66	1.5030864	474.0988274
8	320 320	0.00 3.60	0.00 4.86	0.000 126.824	0.000 30.963	0 48	0 62	1.00	0.00 69.75	0.00 17.03	1.5030874 1.5031250	126.8239182
9	311	0.00	0.00	0.000	0.000	0	0	1.00	0.00	0.00	1.5031250	120.0259102
10	311 307	0.80	1.08	27.954	6.825	36	47	1.00	15.37	3.75	1.5032154	27.95430955
10	307	0.80	0.00 1.08	0.000 27.851	0.000 6.800	0 36	0 47	1.00 1.00	0.00 15.32	0.00 3.74	1.5032164 1.5032573	27.85110819
11	303	0.00	0.00	0.000	0.000	0	0	1.00	0.00	0.00	1.5032583	
12	303 275	0.22	0.29	7.457 0.000	1.821 0.000	13 0	17 0	1.00 1.00	4.10 0.00	1.00 0.00	1.5033003 1.5033013	7.456990624
	275	5.20	7.02	175.427	42.829	180	234	1.00	96.48	23.56	1.5033013	175.4272562
13	275 275	0.00 20,76	0.00 28.03	0.000 700.360	0.000 170.986	0 106	0 138	1.00 1.00	0.00 385.20	0.00 94.04	1.5033023 1.5036364	075 7050400
14	270	0.00	0.00	0.000	0.000	0	0	1.00	0.00	0.00	1.5036364	875.7868408
15	270 270	22.75	30.71	763.481	186.397	156	203	1.00	419.91	102.52	1.5037037	763.4811011
15	270	0.00 5.20	7.02	0.000 174.510	0.000 42.605	0 180	234	1.00	0.00 95.98	0.00 23.43	1.5037047 1.5037037	937.9910671
16	270	0.00	0.00	0.000	0.000	0	0	1.00	0.00	0.00	1.5037047	
17	270 270	2.68	3.62 0.00	89.940 0.000	21.958 0.000	36 0	47 0	1.00 1.00	49.47 0.00	12.08 0.00	1.5037037 1.5037047	1027.930819
55	270	9.36	12.64	282.706	69.020	360	468	1.00	155.49	37.96	1.5037047	1310.636964
18	268 268	10.31 13.87	12.86	345.203	77.882	299	564	1.00	189.86	42.84	1.5037047	
19	268 268	13.87	18.72 21.56	371.488 643.123	90.695 130.555	476 185	619 563	1.00 1.00	204.32 353.72	49.88 71.81	1.5037313 1.5037323	716.6914318
	268	1.50	2.03	40.186	9.811	47	61	1.00	22.10	5.40	1.5037313	1400.000689
20	268 268	3.35 35.98	4.58 48.57	112.153 903.659	27.711 220.620	183 1440	309 1872	1.00 1.00	61.68 497.01	15.24 121.34	1.5037323 1.5037313	2415.812532
21	250	10.46	13.68	343.344	81.202	95	615	1.00	188.84	44.66	1.5037323	2413.012332
22	250 246	5.20 5.56	7.02 7.49	170.715	41.678	180	234 340	1.00	93.89	22.92	1.5040000	514.0587784
22	246	5.20	7.02	181.735 169.930	44.237 41.487	56 180	234	1.00	99.95 93.46	24.33 22.82	1.5040010 1.5040650	351.6645299
23	235	8.59	10.71	277.170	62.480	126	322	1.00	152.44	34.36	1.5040660	
24	235 235	12.01 9.64	16.21 12.43	309.797 310.785	75.634 72.479	147 205	191 443	1.00	170.39 170.93	41.60 39.86	1.5042553 1.5042563	586.967591
	235	37.46	50.57	966.601	235.987	1726	2243	1.00	531.63	129.79	1.5042553	1864.353462
25	235 235	19.38 35.98	23.86 48.57	625.052 870.362	139.169 212.491	262 1440	701 1872	1.00	343.78 478.70	76.54 116.87	1.5042563 1.5042553	3359.7675
26	222	26.52	32.48	841.643	186.394	202	371	1.00	462.90	102.52	1.5042563	3339.7073
27	222 207	35.98 10.46	48.57 13.68	856.325	209.064	1440	1872	1.00	470.98	114.98	1.5045045	1697.967451
21	207	5.20	7.02	325.319 161.752	76.939 39.490	95 180	604 234	1.00	178.93 88.96	42.32 21.72	1.5045055 1.5048309	487.0716767
28	200	11.06	15.93	340.670	88.708	168	482	1.00	187.37	48.79	1.5048319	
29	200 193	9.36 5.81	12.64 9.26	259.476 177.045	63.349 51.055	360 64	468 236	1.00 1.00	142.71 97.38	34.84 28.08	1.5050000 1.5050010	600.1458282
10000	193	9.36	12.64	256.848	62.707	360	468	1.00	141.27	34.49	1.5051813	433.8935049
30	193 193	0.00 7.50	0.00 10.13	0.000 228.675	0.000 55.829	0 36	0 47	1.00 1.00	0.00 125.77	0.00 30.71	1.5051823 1.5051813	662.5687569
31	175	0.00	0.00	0.000	0.000	0	0	1.00	0.00	0.00	1.5051823	002.3087303
32	175 171	1.20 2.18	1.62 3.11	35.579 64.236	8.686 16.545	12	16 210	1.00	19.57	4.78	1.5057143	35.57875845
32	171	8.11	10.95	191.051	46.643	126 103	134	1.00	35.33 105.08	9.10 25.65	1.5057153 1.5058480	255.2867387
33	171	0.00	0.00	0.000	0.000	0	0	1.00	0.00	0.00	1.5058490	
34	171 155	25.93 10.05	35.00 12.55	572.779 287.715	139.839 65.002	900 190	1170 419	1.00	315.03 158.24	76.91 35.75	1.5058480 1.5058490	828.066216
	155	21.92	29.59	502.091	122.581	935	1216	1.00	276.15	67.42	1.5064516	789.8052239
35	155 155	13.29 40.28	15.74 54.37	380.562 865.062	81.512 211.197	205 1440	485 1872	1.00	209.31 475.78	44.83 116.16	1.5064526 1.5064516	2035.429962
36	139	2.90	4.63	80.599	23.242	32	192	1.00	44.33	12.78	1.5064526	
37	139 135	5.20 0.79	7.02 1.51	144.356 21.680	35.243 7.508	180 5	234 57	1.00	79.40 11.92	19.38 4.13	1.5071942 1.5071952	224.9547542
	135	5.20	7.02	143.157	34.950	180	234	1.00	78.74	19.22	1.5074074	164.8366753
38	130 130	0.78 2.50	1.22 3.38	21.221 68.087	5.986 16.623	5 96	31	1.00	11.67	3.29	1.5074084	
39	107	5.53	7.96	68.087 142.459	16.623 37.095	96 84	125 360	1.00	37.45 78.35	9.14 20.40	1.5076923 1.5076933	89.30768555
2000	107	5.20	7.02	133.958	32.705	180	234	1.00	73.68	17.99	1.5093458	276.4172789
40	92 92	27.07 16.94	32.02 22.86	667.887 334.271	142.855 81.609	365 756	667 983	1.00	367.34 183.85	78.57 44.89	1.5093468 1.5108696	1002.158293
41	92	29.66	35.62	731.771	158.939	324	642	1.00	402.47	87.42	1.5108706	
42	92 42	35.98 0.00	48.57 0.00	665.785 0.000	162.545 0.000	1440 0	1872	1.00 1.00	366.18 0.00	89.40 0.00	1.5108696 1.5108706	2399.71479
	42	24.00	32.40	473.302	115.552	720	936	1.00	260.32	63.55	1.5238095	473.3019375
43	6	0.00	0.00	0.000	0.000	0	0	1.00	0.00	0.00	1.5238105	
44	6	0.30	0.41	5.369	1.311 #VALUE!			1.00 1.00	2.95 #VALUE!	0.72 #VALUE!	1.6666667 1.6666677	5.369462784
								1.00	#VALUE!	#VALUE!	1.6666677	#VALUE!
45					#VALUE!			1.00	#VALUE!	#VALUE!	1.6666687 1.6666687	#VALUE!
46					#VALUE!			1.00	#VALUE!	#VALUE!	1.6666697	ALULI
47					#VALUE!			1.00	#VALUE!	#VALUE!	1.6666697	#VALUE!
77					"VALUE!			1.00	#VALUE!	#VALUE!	1.6666707	#VALUE!
48					#VALUE!			1.00	#VALUE!	#VALUE!	1.6666717	
49					#VALUE!			1.00	#VALUE!	#VALUE!	1.6666717	#VALUE!
								1.00	#VALUE!	#VALUE!	1.6666727	#VALUE!
50					#VALUE!			1.00	#VALUE! #VALUE!	#VALUE!	1.6666737 1.6666737	#VALUE!
1								2.00			2.0300737	

×

Foundation

Design Loads (Factored)

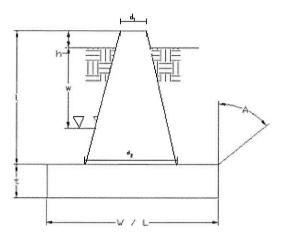
	Compression/Leg:	475.41
e 81	Uplift/Leg:	338.81
	Shear/Leg	66.90

		,0		
Face W	idth @ Top of	Pier (d ₁):	4.00	ft
Face Width	@ Bottom of	Pier (d ₂):	8.00	ft
	Total Length	of Pier (I):	8.00	ft
Height of Pede	estal Above G	round (h):	0.50	ft
1000 1	Width of	Pad (W):	18.00	ft
	Length o	of Pad (L):	18.00	ft
	Thickness of	of Pad (t):	3.00	ft
· ·	Water Table D	epth (w):	99.00	ft
Ui	nit Weight of	Concrete:	150.0	рс
Unit Weight of So	il (Above Wat	er Table):	100.0	рс
Unit Weight of So	oil (Below Wat	37.6	рс	
Fric	tion Angle of	Uplift (A):	20	۰
Ultimate Compre	ssive Bearing	Pressure:	40000	ps
	Ultimate Skir	Friction:	197	ps
Volume Pier (Total):	298.67	ft ³		
Volume Pad (Total):	972.00	ft ³		
Volume Soil (Total):	2935.41	ft ³		
Volume Pier (Buoyant):	0.00	ft ³		
Volume Pad (Buoyant):	0.00	ft ³		
Volume Soil (Buoyant):	0.00	ft ³		
Weight Pier:	44.80	k		
Weight Pad:	145.80	k		
Weight Soil:	293.54	k		
Uplift Skin Friction:	31.91	k		

Uplift Check

φs Uplift Resistance (k)	Ratio	Result
387.04	0.88	OK

Axial Check


φs Axial Resistance (k)	Ratio	Result
9720.00	0.05	OK

Anchor Bolt Check

Bolt Diameter (in)	2.25
# of Bolts	6
Steel Grade	A36
Steel Fy	36
Steel Fu	58
Detail Type	С

Usage Ratio	Result	
0.51	ОК	•

88018	
RDB	
01/31/18	
AT&T Mobility	
	RDB 01/31/18

Smartlink on behalf of AT&T Mobility, LLC Site FA – 10034997 Site ID – CT2135 (MRCTB026967-MRCTB026942) USID – 60419 Site Name – Stamford West Site Compliance Report

Catoonah Lane Stamford, CT 6902

Latitude: N41-3-07.97 Longitude: W73-33-47.30 Structure Type: Self-Support

Report generated date: March 5, 2018

Report by: Sam Cosgrove Customer Contact: Ryan Lynch

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

Sitesafe logo is a registered trademark of Site Safe, Inc. All rights reserved.

Table of Contents

1 G	GENERAL SITE SUMMARY	2
1.1	Report Summary	2
2 S	CALE MAPS OF SITE	3
3 A	NTENNA INVENTORY	5
	MISSION PREDICTIONS	
	ITE COMPLIANCE	
5.1	SITE COMPLIANCE STATEMENT	
5.2		
6 R	EVIEWER CERTIFICATION	10
APPEN	NDIX A – STATEMENT OF LIMITING CONDITIONS	11
APPEN	NDIX B - REGULATORY BACKGROUND INFORMATION	12
FCC	C Rules and Regulations	12
OSH	HA STATEMENT	13
APPEN	NDIX C - SAFETY PLAN AND PROCEDURES	14
APPEN	NDIX D – RF EMISSIONS	15
APPEN	NDIX E – ASSUMPTIONS AND DEFINITIONS	16
GEN	neral Model Assumptions	16
	OF GENERIC ANTENNAS	
Defi	'INITIONS	17
APPEN	NDIX F – REFERENCES	19

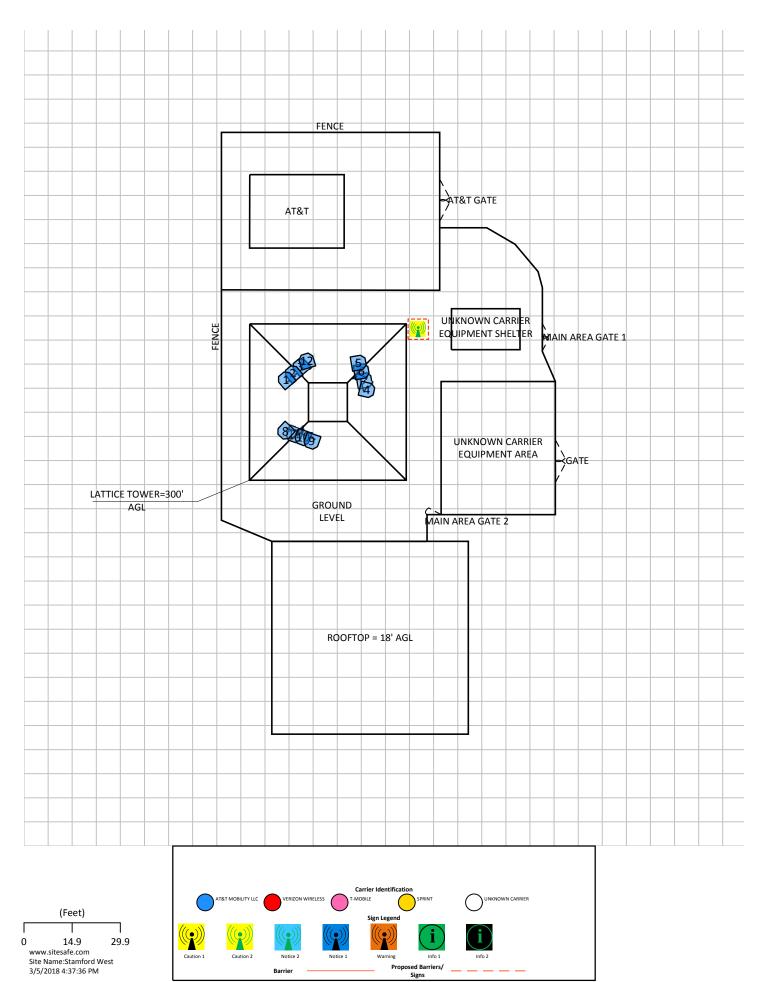
1 General Site Summary

1.1 Report Summary

AT&T Mobility, LLC	Summary
Access to Antennas Locked?	Yes
RF Sign(s) @ access point(s)	None
RF Sign(s) @ antennas	None
Barrier(s) @ sectors	None
Max cumulative simulated RFE	<1% General Public Limit
level on the Ground	
FCC & AT&T Compliant?	Will Be Compliant

The following documents were provided by the client and were utilized to create this report:

RFDS: NEW-ENGLAND_CONNECTICUT_CTL02135_2018-LTE-Next-Carrier_LTE_mh705r_2051A0EFQ7_10034997_60419_10-25-2017_Preliminary-Modification-Recommended_v1.00


2 Scale Maps of Site

The following diagrams are included:

- Site Scale Map
- RF Exposure Diagram
- Elevation View

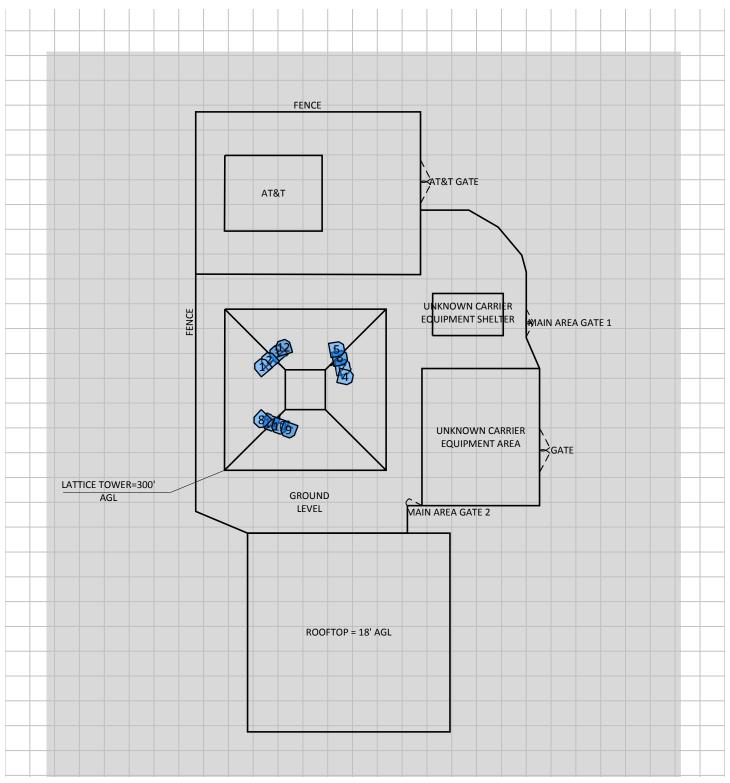
Site Scale Map For: Stamford West

3 Antenna Inventory

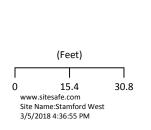
The following antenna inventory was obtained by the customer and was utilized to create the site model diagrams:

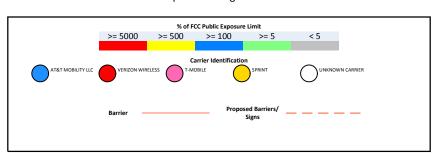
An				TX Freq	Az	Hor BW	Ant Len	Ant Gain	2G GSM	3G UMTS	4G	Total ERP			Z
ID	Operator	Antenna Make & Model	Type	(MHz)	(Deg)	(Deg)	(ft)	(dBd)	Radio(s)	Radio(s)	Radio(s)	(Watts)	X	Y	(AGL)
1	AT&T MOBILITY LLC	Andrew SBNHH-1D65A	Panel	737	0	66	4.6	11.29	0	0	1	1475.7	67.6'	145.5'	232.7'
1	AT&T MOBILITY LLC	Andrew SBNHH-1D65A	Panel	1900	0	65	4.6	14.65	0	0	1	4842.1	67.6'	145.5'	232.7'
2	AT&T MOBILITY LLC (Proposed)	KMW EPBQ-654L8H6	Panel	737	0	68	6.4	12.36	0	0	1	2951.4	69.8'	147.4'	231.8'
2	AT&T MOBILITY LLC (Proposed)	KMW EPBQ-654L8H6	Panel	2100	0	61	6.4	15.36	0	0	1	5070.3	69.8'	147.4'	231.8'
3	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	737	0	65.8	4	10.76	0	0	1	1475.7	72.2'	149.5'	233'
3	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	850	0	60	4	11.36	0	0	1	1000	72.2'	149.5'	233'
3	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	2300	0	61.1	4	14.26	0	0	1	1285.3	72.2'	149.5'	233'
4	AT&T MOBILITY LLC	Powerwave 7770	Panel	850	143	82	4.6	11.51	0	1	0	254.7	92.8'	142.3'	232.7'
5	AT&T MOBILITY LLC	Andrew SBNHH-1D65A	Panel	737	120	66	4.6	11.29	0	0	1	1475.7	90.2'	150.7'	232.7'
5	AT&T MOBILITY LLC	Andrew SBNHH-1D65A	Panel	1900	120	65	4.6	14.65	0	0	1	4842.1	90.2'	150.7'	232.7'
6	AT&T MOBILITY LLC (Proposed)	KMW EPBQ-654L8H6	Panel	737	120	68	6.4	12.36	0	0	1	2951.4	91.1'	148.1'	231.8'
6	AT&T MOBILITY LLC (Proposed)	KMW EPBQ-654L8H6	Panel	2100	120	61	6.4	15.36	0	0	1	5070.3	91.1'	148.1'	231.8'
7	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	737	120	65.8	4	10.76	0	0	1	1475.7	92'	145.3'	233'
7	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	850	120	60	4	11.36	0	0	1	1000	92'	145.3'	233'
7	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	2300	120	61.1	4	14.26	0	0	1	1285.3	92'	145.3'	233'
8	AT&T MOBILITY LLC	Powerwave 7770	Panel	850	263	82	4.6	11.51	0	1	0	254.7	67.5'	129.4'	232.7'
9	AT&T MOBILITY LLC	Andrew SBNHH-1D65A	Panel	737	240	66	4.6	11.29	0	0	1	1475.7	75.7'	126.3'	232.7'
9	AT&T MOBILITY LLC	Andrew SBNHH-1D65A	Panel	1900	240	65	4.6	14.65	0	0	1	4842.1	75.7'	126.3'	232.7'
10	AT&T MOBILITY LLC (Proposed)	KMW EPBQ-654L8H6	Panel	737	240	68	6.4	12.36	0	0	1	2951.4	72.9'	127.4'	231.8'
10	AT&T MOBILITY LLC (Proposed)	KMW EPBQ-654L8H6	Panel	2100	240	61	6.4	15.36	0	0	1	5070.3	72.9'	127.4'	231.8'
11	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	737	240	65.8	4	10.76	0	0	1	1475.7	70.2'	128.4'	233'
11	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	850	240	60	4	11.36	0	0	1	1000	70.2'	128.4'	233'
11	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	2300	240	61.1	4	14.26	0	0	1	1285.3	70.2'	128.4'	233'
12	AT&T MOBILITY LLC	Powerwave 7770	Panel	850	23	82	4.6	11.51	0	1	0	254.7	74.1'	151.3'	232.7'

NOTE: X, Y and Z indicate relative position of the bottom of the antenna to the origin location on the site, displayed in the model results diagram. Specifically, the Z reference indicates the bottom of the antenna height above the main site level unless otherwise indicated. The distance to the bottom of the antenna is calculated by subtracting half of the length of the antenna from the antenna centerline. Effective Radiated Power (ERP) is provided by the operator or based on Sitesafe experience. The values used in the modeling may be greater than are currently deployed.

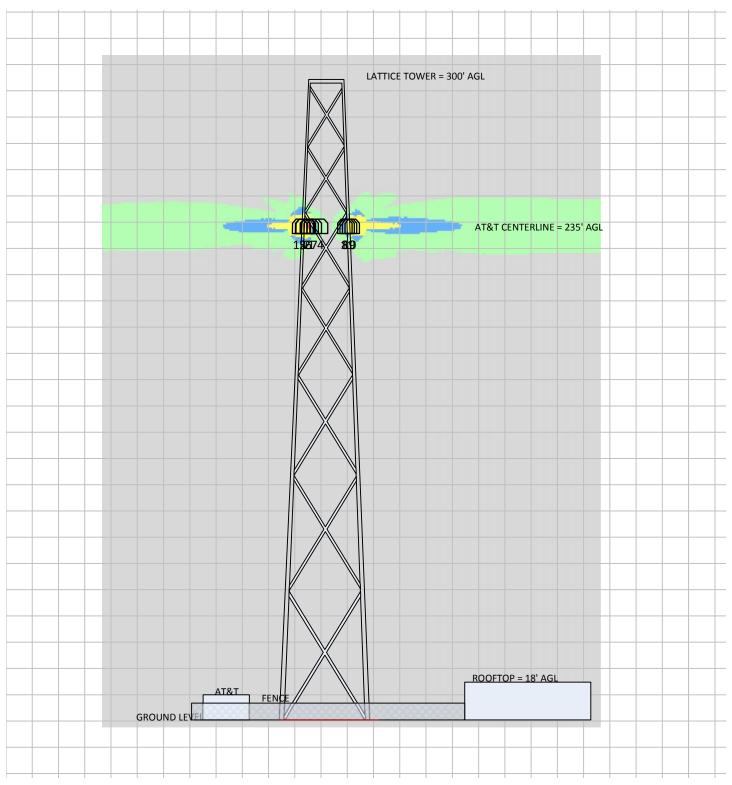

4 Emission Predictions

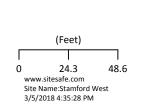
In the RF Exposure Simulations below all heights are reflected with respect to main site level. In most rooftop cases this is the height of the main rooftop and in other cases this can be ground level. Each different height area, rooftop, or platform level is labeled with its height relative to the main site level. Emissions are calculated appropriately based on the relative height and location of that area to all antennas.

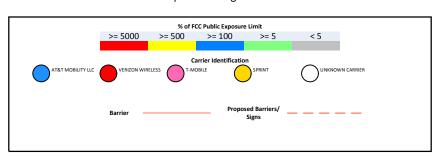

The Antenna Inventory heights are referenced to the same level.


RF Exposure Simulation For: Stamford West

% of FCC Public Exposure Limit Spatial average 0' - 6'




SitesafeTC Version:1.0.0.0 - 0.0.0.268 Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged


RF Exposure Simulation For: Stamford West Elevation View

% of FCC Public Exposure Limit Spatial average 0' - 6'

SitesafeTC Version:1.0.0.0 - 0.0.0.268 Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Single Level (0)

5 Site Compliance

5.1 Site Compliance Statement

Upon evaluation of the cumulative RF emission levels from all operators at this site, RF hazard signage and antenna locations, Sitesafe has determined that:

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

The compliance determination is based on General Public RFE levels derived from theoretical modeling, RF signage placement, proposed antenna inventory and the level of restricted access to the antennas at the site. Any deviation from the AT&T Mobility, LLC's proposed deployment plan could result in the site being rendered non-compliant.

Modeling is used for determining compliance and the percentage of MPE contribution.

5.2 Actions for Site Compliance

Based on FCC regulations, common industry practice, and our understanding of AT&T Mobility, LLC RF Safety Policy requirements, this section provides a statement of recommendations for site compliance. Recommendations have been proposed based on our understanding of existing access restrictions, signage, and an analysis of predicted RFE levels.

AT&T Mobility, LLC will be made compliant if the following changes are implemented:

Site Access Location

Yellow caution 2 sign required at the tower access.

Notes:

- This report's diagrams do not show the Access locations because the data provided did not include them.
- Data concerning all other carriers on site was unavailable and therefore not included in this report.
- Signage may already exist on site. Sitesafe is recommending as a worst case scenario

6 Reviewer Certification

The reviewer whose signature appears below hereby certifies and affirms:

That I am an employee of Sitesafe, Inc., in Arlington, Virginia, at which place the staff and I provide RF compliance services to clients in the wireless communications industry; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission (FCC) as well as the regulations of the Occupational Safety and Health Administration (OSHA), both in general and specifically as they apply to the FCC Guidelines for Human Exposure to Radio-frequency Radiation; and

That I have thoroughly reviewed this Site Compliance Report and believe it to be true and accurate to the best of my knowledge as assembled by and attested to by Sam Cosgrove.

March 5, 2018

Appendix A – Statement of Limiting Conditions

Sitesafe has provided computer generated model (s) in this Site Compliance Report to show approximate dimensions of the site, and the model is included to assist the reader of the compliance report to visualize the site area, and to provide supporting documentation for Sitesafe's recommendations.

Sitesafe may note in the Site Compliance Report any adverse physical conditions, such as needed repairs, that Sitesafe became aware of during the normal research involved in creating this report. Sitesafe will not be responsible for any such conditions that do exist or for any engineering or testing that might be required to discover whether such conditions exist. Because Sitesafe is not an expert in the field of mechanical engineering or building maintenance, the Site Compliance Report must not be considered a structural or physical engineering report.

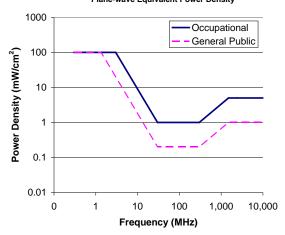
Sitesafe obtained information used in this Site Compliance Report from sources that Sitesafe considers reliable and believes them to be true and correct. Sitesafe does not assume any responsibility for the accuracy of such items that were furnished by other parties. When conflicts in information occur between data collected by Sitesafe provided by a second party and data collected by Sitesafe, the data will be used.

Appendix B – Regulatory Background Information

FCC Rules and Regulations

In 1996, the Federal Communications Commission (FCC) adopted regulations for the evaluating of the effects of RF emissions in 47 CFR § 1.1307 and 1.1310. The guideline from the FCC Office of Engineering and Technology is Bulletin 65 ("OET Bulletin 65"), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, Edition 97-01, published August 1997. Since 1996 the FCC periodically reviews these rules and regulations as per their congressional mandate.

FCC regulations define two separate tiers of exposure limits: Occupational or "Controlled environment" and General Public or "Uncontrolled environment". The General Public limits are generally five times more conservative or restrictive than the Occupational limit. These limits apply to accessible areas where workers or the general public may be exposed to Radio Frequency (RF) electromagnetic fields.


Occupational or Controlled limits apply in situations in which persons are exposed as a consequence of their employment and where those persons exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

An area is considered a Controlled environment when access is limited to these aware personnel. Typical criteria are restricted access (i.e. locked or alarmed doors, barriers, etc.) to the areas where antennas are located coupled with proper RF warning signage. A site with Controlled environments is evaluated with Occupational limits.

All other areas are considered Uncontrolled environments. If a site has no access controls or no RF warning signage it is evaluated with General Public limits.

The theoretical modeling of the RF electromagnetic fields has been performed in accordance with OET Bulletin 65. The Maximum Permissible Exposure (MPE) limits utilized in this analysis are outlined in the following diagram:

FCC Limits for Maximum Permissible Exposure (MPE) Plane-wave Equivalent Power Density

Limits for Occupational/Controlled Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f ²)*	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-			5	6
100,000				

Limits for General Population/Uncontrolled Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f ²)*	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-			1.0	30
100,000				

f = frequency in MHz

OSHA Statement

The General Duty clause of the OSHA Act (Section 5) outlines the occupational safety and health responsibilities of the employer and employee. The General Duty clause in Section 5 states:

- (a) Each employer -
 - shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees;
 - (2) shall comply with occupational safety and health standards promulgated under this Act.
- (b) Each employee shall comply with occupational safety and health standards and all rules, regulations, and orders issued pursuant to this Act which are applicable to his own actions and conduct.

OSHA has defined Radiofrequency and Microwave Radiation safety standards for workers who may enter hazardous RF areas. Regulation Standards 29 CFR § 1910.147 identify a generic Lock Out Tag Out procedure aimed to control the unexpected energization or start up of machines when maintenance or service is being performed.

^{*}Plane-wave equivalent power density

Appendix C – Safety Plan and Procedures

The following items are general safety recommendations that should be administered on a site by site basis as needed by the carrier.

<u>General Maintenance Work</u>: Any maintenance personnel required to work immediately in front of antennas and / or in areas indicated as above 100% of the Occupational MPE limits should coordinate with the wireless operators to disable transmitters during their work activities.

<u>Iraining and Qualification Verification:</u> All personnel accessing areas indicated as exceeding the General Population MPE limits should have a basic understanding of EME awareness and RF Safety procedures when working around transmitting antennas. Awareness training increases a workers understanding to potential RF exposure scenarios. Awareness can be achieved in a number of ways (e.g. videos, formal classroom lecture or internet based courses).

Physical Access Control: Access restrictions to transmitting antennas locations is the primary element in a site safety plan. Examples of access restrictions are as follows:

- Locked door or gate
- Alarmed door
- Locked ladder access
- Restrictive Barrier at antenna (e.g. Chain link with posted RF Sign)

RF Signage: Everyone should obey all posted signs at all times. RF signs play an important role in properly warning a worker prior to entering into a potential RF Exposure area.

Assume all antennas are active: Due to the nature of telecommunications transmissions, an antenna transmits intermittently. Always assume an antenna is transmitting. Never stop in front of an antenna. If you have to pass by an antenna, move through as quickly and safely as possible thereby reducing any exposure to a minimum.

<u>Maintain a 3 foot clearance from all antennas:</u> There is a direct correlation between the strength of an EME field and the distance from the transmitting antenna. The further away from an antenna, the lower the corresponding EME field is.

Site RF Emissions Diagram: Section 4 of this report contains an RF Diagram that outlines various theoretical Maximum Permissible Exposure (MPE) areas at the site. The modeling is a worst case scenario assuming a duty cycle of 100% for each transmitting antenna at full power. This analysis is based on one of two access control criteria: General Public criteria means the access to the site is uncontrolled and anyone can gain access. Occupational criteria means the access is restricted and only properly trained individuals can gain access to the antenna locations.

Appendix D - RF Emissions

The RF Emissions Simulation(s) in this report display theoretical spatially averaged percentage of the Maximum Permissible Exposure for all systems at the site unless otherwise noted. These diagrams use modeling as prescribed in OET Bulletin 65 and assumptions detailed in Appendix E.

The key at the bottom of each RF Emissions Simulation indicates percentages displayed referenced to FCC General Public Maximum Permissible Exposure (MPE) limits. Color coding on the diagram is as follows:

- Areas indicated as Gray are predicted to be below 5% of the MPE limits. Gray represents areas more than 20 times below the most conservative exposure limit.
- Green represents areas are predicted to be between 5% and 100% of the MPE limits. Green areas are accessible to anyone.
- Blue represents areas predicted to exceed the General Public MPE limits but are less than Occupational limits. Blue areas should be accessible only to RF trained workers.
- Yellow represents areas predicted to exceed Occupational MPE limits. Yellow areas should be accessible only to RF trained workers able to assess current exposure levels.
- Red represents areas predicted to have exposure more than 10 times the
 Occupational MPE limits. Red indicates that the RF levels must be reduced prior to
 access. An RF Safety Plan is required which outlines how to reduce the RF energy in
 these areas prior to access.

Appendix E – Assumptions and Definitions

General Model Assumptions

In this site compliance report, it is assumed that all antennas are operating at **full power at all times**. Software modeling was performed for all transmitting antennas located on the site. Sitesafe has further assumed a 100% duty cycle and maximum radiated power.

The modeling is based on recommendations from the FCC's OET-65 bulletin with the following variances per AT&T guidance. Reflection has not been considered in the modeling, i.e. the reflection factor is 1.0. The near / far field boundary has been set to 1.5 times the aperture height of the antenna and modeling beyond that point is the lesser of the near field cylindrical model and the far field model taking into account the gain of the antenna.

The site has been modeled with these assumptions to show the maximum RF energy density. Areas modeled with exposure greater than 100% of the General Public MPE level may not actually occur, but are shown as a prediction that could be realized. Sitesafe believes these areas to be safe for entry by occupationally trained personnel utilizing appropriate personal protective equipment (in most cases, a personal monitor).

Use of Generic Antennas

For the purposes of this report, the use of "Generic" as an antenna model, or "Unknown" for an operator means the information about a carrier, their FCC license and/or antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of equipment, antenna models, and transmit power to model the site. If more specific information can be obtained for the unknown measurement criteria, Sitesafe recommends remodeling of the site utilizing the more complete and accurate data. Information about similar facilities is used when the service is identified and associated with a particular antenna. If no information is available regarding the transmitting service associated with an unidentified antenna, using the antenna manufacturer's published data regarding the antenna's physical characteristics makes more conservative assumptions.

Where the frequency is unknown, Sitesafe uses the closest frequency in the antenna's range that corresponds to the highest Maximum Permissible Exposure (MPE), resulting in a conservative analysis.

Definitions

5% Rule – The rules adopted by the FCC specify that, in general, at multiple transmitter sites actions necessary to bring the area into compliance with the guidelines are the shared responsibility of all licensees whose transmitters produce field strengths or power density levels at the area in question in excess of 5% of the exposure limits. In other words, any wireless operator that contributes 5% or greater of the MPE limit in an area that is identified to be greater than 100% of the MPE limit is responsible taking corrective actions to bring the site into compliance.

Compliance – The determination of whether a site is safe or not with regards to Human Exposure to Radio Frequency Radiation from transmitting antennas.

Decibel (dB) – A unit for measuring power or strength of a signal.

Duty Cycle – The percent of pulse duration to the pulse period of a periodic pulse train. Also, may be a measure of the temporal transmission characteristic of an intermittently transmitting RF source such as a paging antenna by dividing average transmission duration by the average period for transmission. A duty cycle of 100% corresponds to continuous operation.

Effective (or Equivalent) Isotropic Radiated Power (EIRP) – The product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna.

Effective Radiated Power (ERP) – In a given direction, the relative gain of a transmitting antenna with respect to the maximum directivity of a half wave dipole multiplied by the net power accepted by the antenna from the connecting transmitter.

Gain (of an antenna) – The ratio of the maximum intensity in a given direction to the maximum radiation in the same direction from an isotropic radiator. Gain is a measure of the relative efficiency of a directional antennas as compared to an omni directional antenna.

General Population/Uncontrolled Environment – Defined by the FCC, as an area where exposure to RF energy may occur to persons who are **unaware** of the potential for exposure and who have no control of their exposure. General Population is also referenced as General Public.

Generic Antenna – For the purposes of this report, the use of "Generic" as an antenna model means the antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of antenna models to select a worst case scenario antenna to model the site.

Isotropic Antenna – An antenna that is completely non-directional. In other words, an antenna that radiates energy equally in all directions.

Maximum Measurement – This measurement represents the single largest measurement recorded when performing a spatial average measurement.

Maximum Permissible Exposure (MPE) – The maximum levels of RF exposure a person may be exposed to without harmful effect and with acceptable safety factor.

Occupational/Controlled Environment – Defined by the FCC, as an area where Radio Frequency Radiation (RFR) exposure may occur to persons who are **aware** of the

potential for exposure as a condition of employment or specific activity and can exercise control over their exposure.

OET Bulletin 65 – Technical guideline developed by the FCC's Office of Engineering and Technology to determine the impact of Radio Frequency radiation on Humans. The guideline was published in August 1997.

OSHA (Occupational Safety and Health Administration) – Under the Occupational Safety and Health Act of 1970, employers are responsible for providing a safe and healthy workplace for their employees. OSHA's role is to promote the safety and health of America's working men and women by setting and enforcing standards; providing training, outreach and education; establishing partnerships; and encouraging continual process improvement in workplace safety and health. For more information, visit www.osha.gov.

Radio Frequency (RF) – The frequencies of electromagnetic waves which are used for radio communications. Approximately 3 kHz to 300 GHz.

Radio Frequency Exposure (RFE) – The amount of RF power density that a person is or might be exposed to.

Spatial Average Measurement – A technique used to average a minimum of ten (10) measurements taken in a ten (10) second interval from zero (0) to six (6) feet. This measurement is intended to model the average power density an average sized human will be exposed to at a location.

Transmitter Power Output (TPO) – The radio frequency output power of a transmitter's final radio frequency stage as measured at the output terminal while connected to a load.

Appendix F - References

The following references can be followed for further information about RF Health and Safety.

Sitesafe, Inc.

http://www.sitesafe.com

FCC Radio Frequency Safety

http://www.fcc.gov/encyclopedia/radio-frequency-safety

National Council on Radiation Protection and Measurements (NCRP)

http://www.ncrponline.org

Institute of Electrical and Electronics Engineers, Inc., (IEEE)

http://www.ieee.org

American National Standards Institute (ANSI)

http://www.ansi.org

Environmental Protection Agency (EPA)

http://www.epa.gov/radtown/wireless-tech.html

National Institutes of Health (NIH)

http://www.niehs.nih.gov/health/topics/agents/emf/

Occupational Safety and Health Agency (OSHA)

http://www.osha.gov/SLTC/radiofrequencyradiation/

International Commission on Non-Ionizing Radiation Protection (ICNIRP)

http://www.icnirp.org

World Health Organization (WHO)

http://www.who.int/peh-emf/en/

National Cancer Institute

http://www.cancer.gov/cancertopics/factsheet/Risk/cellphones

American Cancer Society (ACS)

http://www.cancer.org/docroot/PED/content/PED 1 3X Cellular Phone Towers.asp?sit earea=PED

European Commission Scientific Committee on Emerging and Newly Identified Health Risks

http://ec.europa.eu/health/ph risk/committees/04 scenihr/docs/scenihr o 022.pdf

Fairfax County, Virginia Public School Survey

http://www.fcps.edu/fts/safety-security/RFEESurvey/

UK Health Protection Agency Advisory Group on Non-ionising Radiation

http://www.hpa.org.uk/webw/HPAweb&HPAwebStandard/HPAweb C/1317133826368

Norwegian Institute of Public Health

http://www.fhi.no/dokumenter/545eea7147.pdf

SITE NAME: STAMFORD WEST FA NUMBER: 10034997 SITE NUMBER: CTL02135

6C - MRCTB026942

7C - MRCTB026967

CATOONAH LANE STAMFORD, CT 06902 **FAIRFIELD COUNTY**

PROJECT TEAM

CLIENT REPRESENTATIVE

SMARTLINK, LLC 85 RANGEWAY ROAD, BUILDING 3, SUITE 102

ADDRESS: CITY, STATE, ZIP: NORTH BILLERICA, MA 01862-2105

CONTACT TODD OLIVER PHONE: (774) 369-3613

TODD.OLIVER@SMARTLINKLLC.COM

SITE ACQUISITION

COMPANY: SMARTLINK, LLC

85 RANGEWAY ROAD, BUILDING 3, SUITE 102 NORTH BILLERICA, MA 01862-2105 SHARON KEEFE

ADDRESS: CITY, STATE, ZIP: CONTACT:

PHONE: E-MAIL: (978) 930-3918 SHARON.KEEFE@SMARTLINKLLC.COM

ENGINEER COMPANY:

MASER CONSULTING CONNECTICUT

ADDRESS: 33 I NEWMAN SPRINGS ROAD, SUITE 203 CITY, STATE, ZIP:

PETROS TSOUKALAS (856) 797-0412 x4102 PTSOUKALAS@MASERCONSULTING.COM

CONSTRUCTION MANAGER

COMPANY: ADDRESS: 85 RANGEWAY ROAD, BUILDING 3, SUITE 102

CITY, STATE, ZIP: CONTACT: NORTH BILLERICA, MA 01862-2105 MARK DONNELLY

(617) 515-2080 MARK.DONNELLY@SMARTLINKLLC.COM

SITE INFORMATION

APPLICANT/LESSEE

LAT /LONG TYPE

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE RD. FRAMINGHAM, MA 01701

PROPERTY/TOWER OWNER

NAME: ADDRESS: CITY, STATE, ZIP: SITE ID#: — AMERICAN TOWER 116 HUNTINGTON AVE., 11TH FLOOR BOSTON, MA 02116

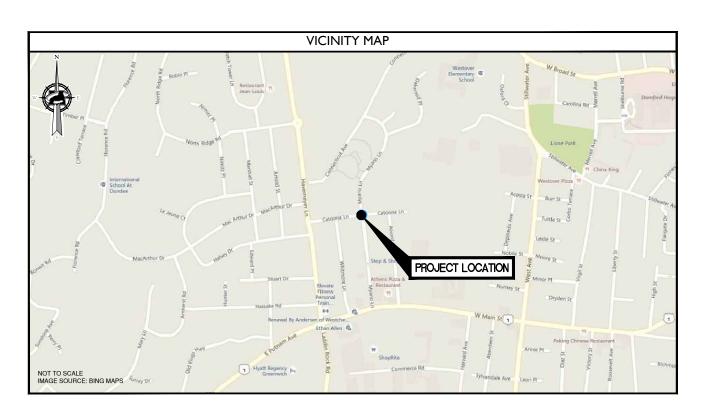
LATITUDE:

LONGITUDE: 73.5631381° W

AREA OF CONSTRUCTION: EXISTING EQUIPMENT SHELTER AND LATTICE TOWER

ZONING/JURISDICTION: CITY OF STAMFORD

CURRENT USE/PROPOSED USE: UNMANNED TELECOMMUNICATIONS FACILITY


NAD 83

HANDICAP REQUIREMENTS:

FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. HANDICAPPED ACCESS NOT REQUIRED.

CONSTRUCTION TYPE:

USE GROUP:

CODE COMPLIANCE

ALL WORK AND MATERIALS SHALL BE PERFORMED AND INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THE LATEST EDITIONS OF THE FOLLOWING CODES.

AMERICAN CONCRETE INSTITUTE 318
AMERICAN INSTITUTE OF STEEL

CONSTRUCTION 360-10

2016 CONNECTICUT STATE BUILDING CODE, INCORPORATING THE 2012 IBC
2014 NATIONAL ELECTRICAL CODE - NFPA 70
2012 NPFA 101
LIGHTNING PROTECTION CODE 2011
10. IEEE C2. LATEST EDITION TIA 607 FOR GROUNDING INSTITUTE FOR ELECTRICAL AND ELECTRONICS ENGINEERS 81

TELCORDIA GR-1275 12. ANSI T1.311

GENERAL CONTRACTOR NOTES

DO NOT SCALE DRAWINGS

CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON TH JOB SITE AND SHALL IMMEDIATELY NOTIFY THE ARCHITECT/ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE; NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

SHEET	DESCRIPTION
T-I	TITLE SHEET
GN-I	GENERAL NOTES
A-I	COMPOUND PLAN AND EQUIPMENT PLAN
A-2	ELEVATION VIEW, DETAILS AND ANTENNA SCHEDULE
A-3	ANTENNA LAYOUTS
A-4	DETAILS
A-5	DETAILS
A-6	RF PLUMBING DIAGRAMS
G-I	GROUNDING DETAILS

PROJECT DESCRIPTION/SCOPE OF WORK

- INSTALL (3) NEW AT&T ANTENNAS, (I) PER SECTOR INSTALL (3) NEW RRUS-B14 4478 INSTALL (3) NEW RRUS 4426 B66
- INSTALL (I) DC-6 SURGE SUPPRESSION DOME INSTALL (2) NEW 6/C DC CABLES

PROPOSED PROJECT SCOPE BASED ON RFDS ID# 2042909 VERSION 2.0, LAST UPDATED 01/11/2018

MASER CONSULTING
—CONNECTICUT—

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

AS SHOWN 17946131A

RE ACTION INDER THE DILLE SIBLE LICENSED PROFFESIONAL ALTER THIS DOCUMENT.

SITE NAME:

STAMFORD WEST FA# 10034997 SITE # CTL02135

CATOONAH LANE STAMFORD, CT 06902 FAIRFIELD COUNTY

TITLE SHEET

T-I

GENERAL NOTES:

- I. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ), THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE I 100 AND 81) FOR GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 50 HMS OR LESS.
- 4. THE SUBCONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT.
- METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 6. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE EQUIPMENT GROUND RING WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS; 2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 8. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED. BACK TO BACK CONNECTIONS ON OPPOSITE SIDES OF THE GROUND BUS ARE PERMITTED.
- ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING, SHALL BE #2 AWG SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 10. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS
- 11. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED. ALL BENDS SHALL BE MADE WITH 12" RADIUS OR LARGER.
- 12. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 13. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS EXCEPT FOR GROUND BAR CONNECTION FROM MGB TO OUTSIDE EXTERIOR GROUND SHALL ALL BE CADWELD CONNECTIONS.
- 14. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 15. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED TO THE TOWER GROUND RAR
- 16. APPROVED ANTIOXIDANT COATINGS (I.E. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 17. ALL EXTERIOR AND INTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 18. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- BOND ALL METALLIC OBJECTS WITHIN 6 FT OF MAIN GROUND WIRES WITH I-#2 AWG TIN-PLATED COPPER GROUND CONDUCTOR.
- 20. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G. NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 21. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/4" IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC 250.50.
- $22. \ \ \mathsf{FOR} \ \mathsf{THE} \ \mathsf{PURPOSE} \ \mathsf{OF} \ \mathsf{CONSTRUCTION} \ \mathsf{DRAWING}, \ \mathsf{THE} \ \mathsf{FOLLOWING} \ \mathsf{DEFINITIONS} \ \mathsf{SHALL} \ \mathsf{APPLY} ; \\$

CONTRACTOR - SMARTLINK
SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION)
OWNER - AT&T (NEW CINGULAR WIRELESS PCS, LLC)

- 23. ALL SITE WORK SHALL BE COMPLETED AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.
- 24. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.
- 25. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK.
- ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

- 27. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 28. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 29. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR
- 30. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER
- 31. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 32. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY THE RESPONSIBLE ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. SUBCONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING & EXCAVATION.
- 33. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, AS DIRECTED BY THE RESPONSIBLE ENGINEER, AND SUBJECT TO THE APPROVAL OF THE OWNER AND/OR LOCAL UTILITIES.
- 34. THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY SHALL BE GRADED TO A UNIFORM SLOPE AND STABILIZED TO PREVENT EROSION.
- 35. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 36. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
- 37. THE SUBGRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 38. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOWER AREAS.
- IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 40. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE.
- 41. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION
- 42. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF THE CONTRACTOR.
- 43. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND TI CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR.
- 44. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.
- 45. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS.
- 46. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy = 36 ksi) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM A53 TYPE E (Fy = 36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCHUP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.
- 47. CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T MOBILITY SITES."
- 48. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK, ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 49. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION, ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT.
- 50. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN ALERT OF DANGEROUS EXPOSURE LEVELS.

Customer Loyalty through Client Satisfaction
www.maserconsulting.com
Engineers B Planners Surveyors
Landscape Architects B Environmental Scientist

Copyright © 2018. Maser Consulting Connecticut All Rights Reserved. This drawing and the information contained herein is authorized for use only by the party for whom the servic were contracted or to whom it is certified. This drawing may not be copied, reused, disclose distributed or relied upon for any other purpose without the express written consent.

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM. MA 01701

Call before you dig.

FOR STATE SPECIFIC DIRECT PHONE

| 02/01/18 FOR CONSTRUCTION | AJC | RA | 0 01/24/18 | 0 02/24/18 | 0 0

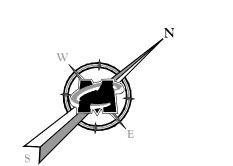
IT IS A VIOLA ON OF UN FUR ANY PER UN, UNLES.
THEY ARE ACTIVE IN INDER THE OUT ON OF THE
RESPONSIBLE LICENSED PROPESSIONAL ENGINEER, TO
ALTER THIS DOCUMENT.

SITE NAME:

STAMFORD WEST FA# 10034997 SITE # CTL02135

CATOONAH LANE STAMFORD, CT 06902 FAIRFIELD COUNTY

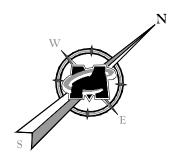
RED BANK OFFICE

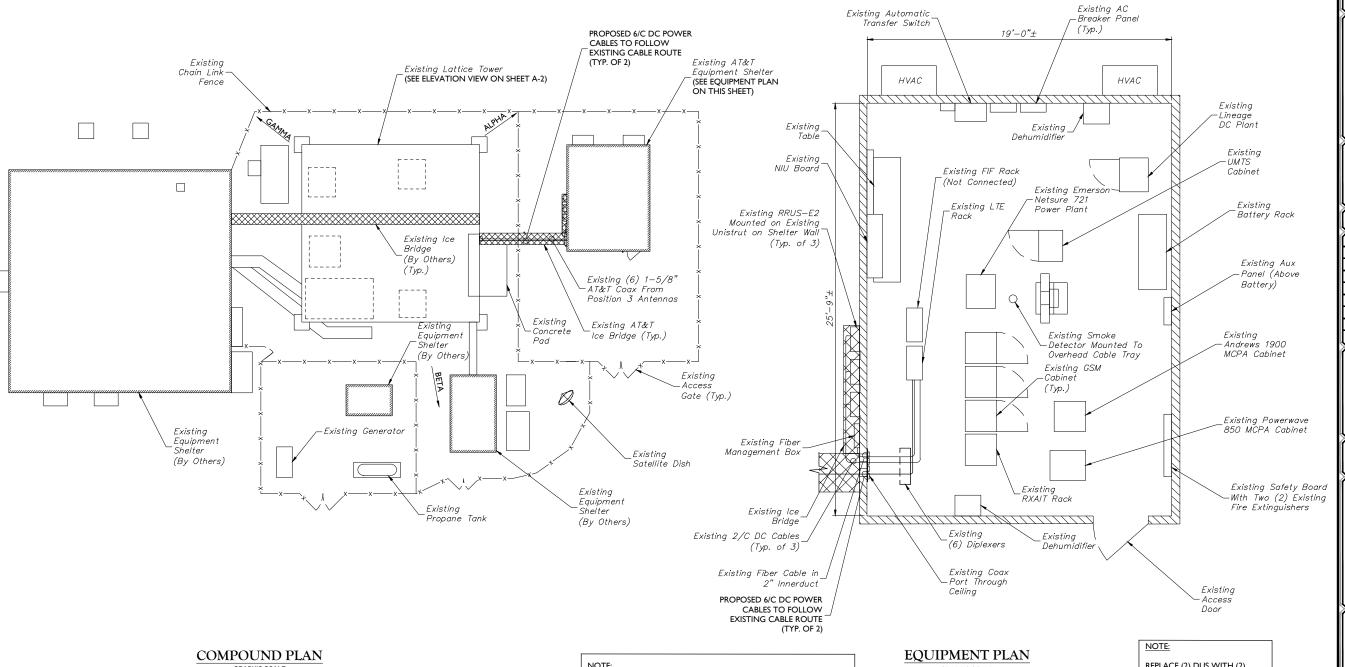

331 Newman Springs Road
Suite 203
Red Bank, NJ 07701
Phone: 732 383 1950

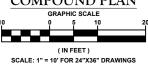
email: solution

GENERAL NOTES

R:


GN-I




NOTES:

SITE INFORMATION OBTAINED FROM THE FOLLOWING:

- A. PLAN ENTITLED "STAMFORD WEST" PREPARED BY MASER CONSULTING P.A., LAST
- B. LIMITED FIELD OBSERVATIONS BY MASER CONSULTING P.A. ON 12/01/2016.



(DO NOT SCALE 11"X17" DRAWINGS)

NOTE:

THESE PLANS WERE DESIGNED WITH THE ASSUMPTION THAT THE PREVIOUS PLANS PREPARED BY MASER CONSULTING CONNECTICUT DATED 02/28/2017, WILL BE COMPLETED PRIOR TO THE CURRENT SCOPE OF WORK BEING INSTALLED. ANY CHANGES IN PREVIOUS DESIGN SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER IMMEDIATELY.

(DO NOT SCALE 11"X17" DRAWINGS)

REPLACE (2) DUS WITH (2) 5216 AND REPLACE IDL2 WITH IDLe IN EXISTING LTE RACK

Customer Loyalty through Client Satisfaction
www.maserconsulting.com
Engineers Planners Surveyors
Landscape Architects Environmental Scientists

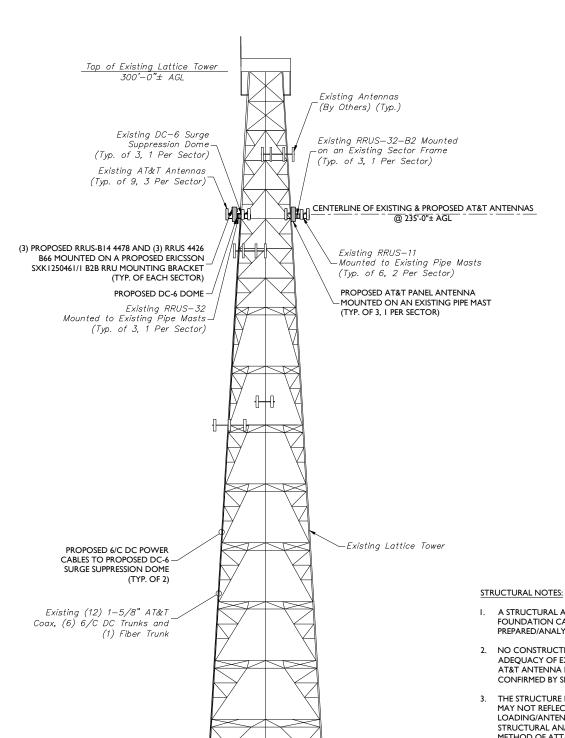
NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

AS SHOWN 17946131A

IT IS A VIOUS ON OF UM FUR ANY PER VIN, UNLESS THEY ARE ACTION OF THE RESPONSIBLE LICENSED HIGHESIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SITE NAME:

STAMFORD WEST FA# 10034997 SITE # CTL02135


CATOONAH LANE STAMFORD, CT 06902 FAIRFIELD COUNTY

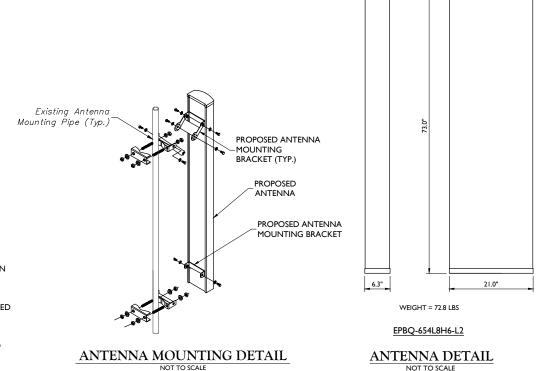
COMPOUND PLAN AND **EQUIPMENT PLAN**

A-I

3 FEET MINIMUM SEPARATION BETWEEN LTE ANTENNAS 6 FEET MINIMUM SEPARATION BETWEEN 700BC & 700 DE

ELEVATION VIEW

SCALE: 1" = 20' FOR 24"X36" DRAWINGS


(DO NOT SCALE 11"X17" DRAWINGS)

To Existing Equipment

Existing Grade @ 0' AGL

				F	ROPOSED A	NTENNA ANI	RRUS CON	FIGURATION					
s	ECTOR	EXISTING ANTENNA	PROPOSED ANTENNA	TECHNOLOGY	ANTENNA	HEIGHT	WIDTH	DEPTH	WEIGHT	ANTENNA	ANT. CL.	RRUS CONFIGURATION	STATUS
F	1	CONFIGURATION	CONFIGURATION		STATUS	(in)	(in)	(in)	(lbs)	AZIMUTH	ELEV (ft.)		
	A1	SBNHH-1D65A	SBNHH-1D65A	LTE	REMAIN	55.00	11.90	7.10	33.50	0°	235'	(1) RRUS-11 (1) RRUS-32-B2	REMAIN REMAIN
АГРНА	A2	VACANT MAST	KMW EPBQ-654L8H6-L2	LTE	NEW	73.00	21.00	6.30	72.80	0°	235'	(1) RRUS-B14 4478 (1) RRUS 4426 B66	NEW NEW
	А3	CCI OPA-65R-LCUU-H4	CCI OPA-65R-LCUU-H4	LTE	REMAIN	48.00	14.40	7.30	57.00	0°	235'	(1) RRUS-32 (1) RRUS-11 (1) RRUS-E2	REMAIN REMAIN REMAIN
	A4	Powerwave 7770	Powerwave 7770	UMTS	REMAIN	55.00	11.00	5.00	35.00	143°	235'	-	-
	B1	SBNHH-1D65A	SBNHH-1D65A	LTE	REMAIN	55.00	11.90	7.10	33.50	120°	235'	(1) RRUS-11 (1) RRUS-32-B2	REMAIN REMAIN
×	B2	VACANT MAST	KMW EPBQ-654L8H6-L2	LTE	NEW	73.00	21.00	6.30	72.80	120°	235'	(1) RRUS-B14 4478 (1) RRUS 4426 B66	NEW NEW
BETA	В3	CCI OPA-65R-LCUU-H4	CCI OPA-65R-LCUU-H4	LTE	REMAIN	48.00	14.40	7.30	57.00	120°	235'	(1) RRUS-32 (1) RRUS-11 (1) RRUS-E2	REMAIN REMAIN REMAIN
	B4	Powerwave 7770	Powerwave 7770	UMTS	REMAIN	55.00	11.00	5.00	35.00	263°	235'		-
	C1	SBNHH-1D65A	SBNHH-1D65A	LTE	REMAIN	55.00	11.90	7.10	33.50	240°	235'	(1) RRUS-11 (1) RRUS-32-B2	REMAIN REMAIN
MA	C2	VACANT MAST	KMW EPBQ-654L8H6-L2	LTE	NEW	73.00	21.00	6.30	72.80	240°	235'	(1) RRUS-B14 4478 (1) RRUS 4426 B66	NEW NEW
GAMMA	C3	CCI OPA-65R-LCUU-H4	CCI OPA-65R-LCUU-H4	LTE	REMAIN	48.00	14.40	7.30	57.00	240*	235'	(1) RRUS-32 (1) RRUS-11 (1) RRUS-E2	REMAIN REMAIN REMAIN
	C4	Powerwave 7770	Powerwave 7770	UMTS	REMAIN	55.00	11.00	5.00	35.00	23°	235'	-	-

ANTENNA SCHEDULE

Customer Loyalty through Client Satisfaction
www.maserconsulting.com
Engineers Planners Surveyors
Landscape Architects Environmental Scientists

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

SCALE	AS SHO\	ΜN	JOB NUMBER : 17946131A						
$\overline{}$					\Box				
	-								
- 1	02/01/18	FOR CONSTRU	JCTION	AJC	RA				
0	01/24/18	LULD FOR R	VIEW	MAIC	RA				
REV	HILL	DISCRIPTIO	V.	DRAV by	CHECKED BY				
, in	5:00 300 til								

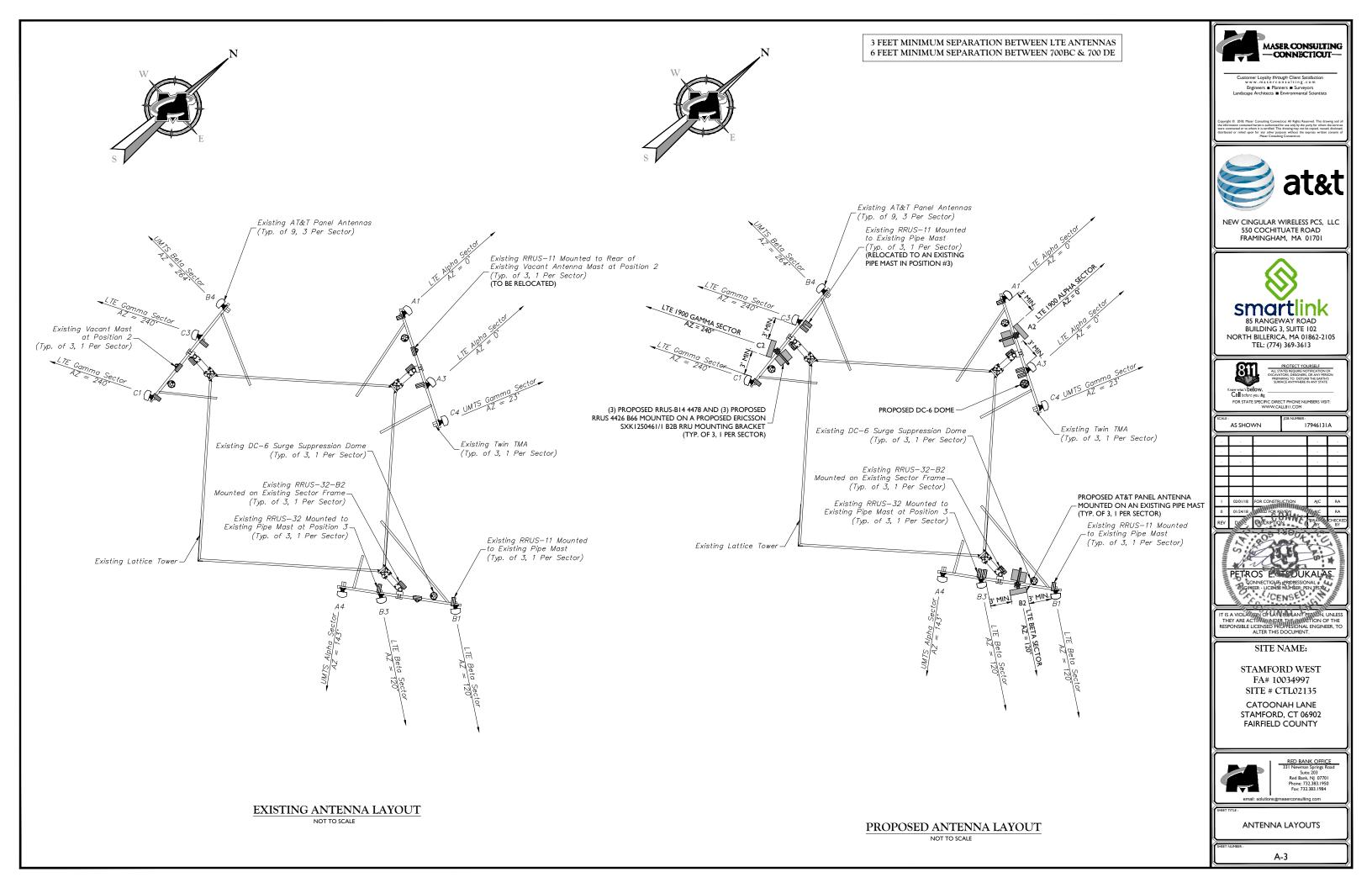
CENSEO.

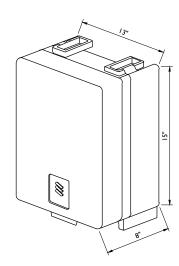
IT IS A VIOLA ON OF LAW FUR ANY PER ON, UNLESS THEY ARE ACTION INDER THE COMMON OF THE THEY ARE ACTI. IN IOER THE OUTTON OF RESPONSIBLE LICENSED PROFFESIONAL ENGINEER ALTER THIS DOCUMENT.

SITE NAME:

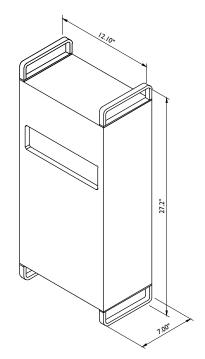
STAMFORD WEST FA# 10034997 SITE # CTL02135

CATOONAH LANE STAMFORD, CT 06902 FAIRFIELD COUNTY

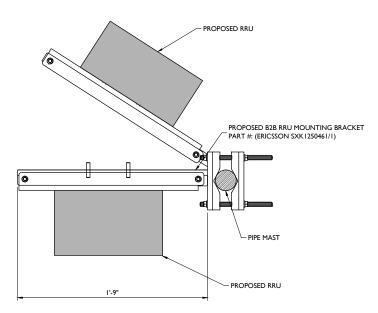



ELEVATION VIEW, DETAILS AND ANTENNA SCHEDULE

A-2


- A STRUCTURAL ANALYSIS TO DETERMINE IF THE EXISTING STRUCTURE AND FOUNDATION CAN ADEQUATELY SUPPORT THE PROPOSED LOADING HAS NOT BEEN PREPARED/ANALYZED BY MASER AND IS TO BE PERFORMED BY OTHERS.
- 2. NO CONSTRUCTION OF THE PROPOSED LOADING SHOWN SHALL PROCEED UNTIL ADEQUACY OF EXISTING STRUCTURE AND FOUNDATION, INCLUDING THE PROPOSED AT&T ANTENNA MOUNTING CONFIGURATION SHOWN HEREIN, HAS BEEN CONFIRMED BY SMARTLINK.
- 3. THE STRUCTURE ELEVATION IS SHOWN FOR INFORMATIONAL PURPOSES ONLY AND MAY NOT REFLECT AS-BUILT FIELD CONDITIONS FOR ALL EXISTING INVENTORY LOADING/ANTENNAS/APPURTANENCES ON STRUCTURE. REFER TO THE LATEST STRUCTURAL ANALYSIS FOR EXISTING STRUCTURE LOADING AND THE PROPOSED METHOD OF ATTACHMENT OF THE PROPOSED ANTENNAS/CABLES.
- THE CONTRACTOR IS RESPONSIBLE TO CONFIRM THAT ANY IMPROVEMENTS AND REINFORCEMENTS REQUIRED BY THE STRUCTURAL ANALYSIS CERTIFICATION ARE PROPERLY INSTALLED PRIOR TO THE ADDITION OF ANTENNAS, CABLES, SUPPORTS AND APPURTENANCES PROPOSED ON THESE DRAWINGS OR OTHERWISE NOTED IN THE STRUCTURAL ANALYSIS.

DIMENSIONS (H X W X D): 15"H X 13"W X 8"D (INCLUDES SUNSHIELD) WEIGHT: 60 LBS


RRU-4478-B14 DETAIL NOT TO SCALE

RRUS-4426 B66 DIMENSIONS (H \times W \times D): 27.2" \times 12.1" \times 7.0" (INCLUDES HANDLES, FEET AND SUNSHIELD)

WEIGHT: 53 LBS

4426 B66 DETAIL NOT TO SCALE

 $\underset{\text{NOT TO SCALE}}{\underline{RRH \ MOUNTING \ DETAIL}}$

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

Know what's **below.**Call before you dig.
FOR STATE SPECIFIC DIRECT PHONE NUMBERS VI

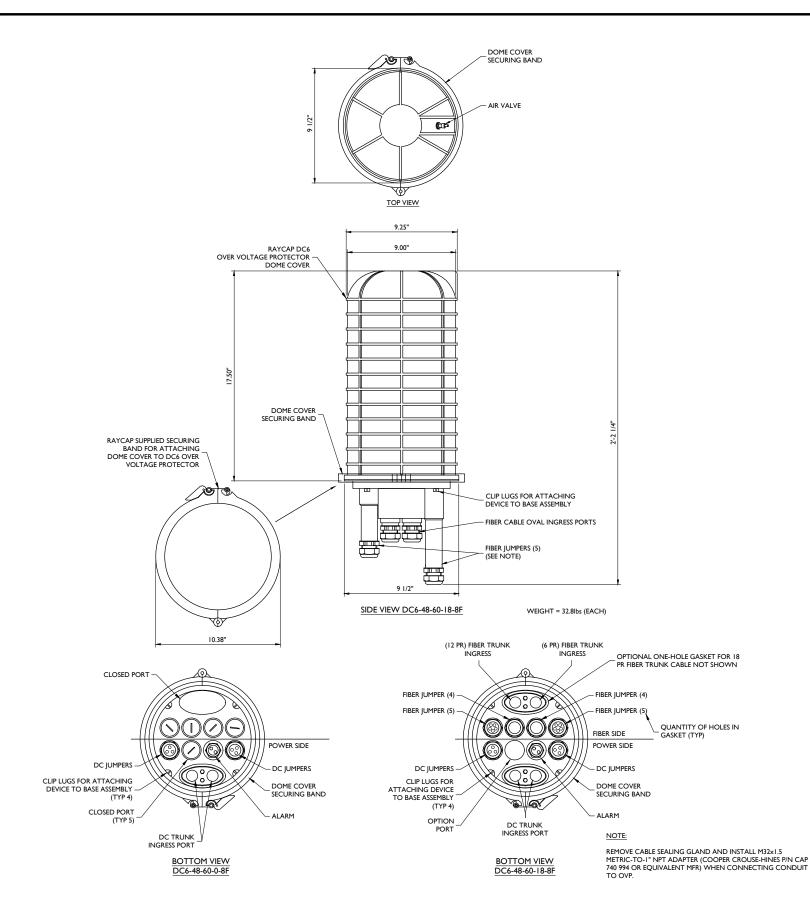
IT IS A VIOLAL ON OF WARPANY PER ON, UNLESS THEY ARE ACTIVITY OF THE OWNER TO FEE RESPONSIBLE LICENSED PAYERSONAL ENGINEER, TO ALTER THIS DOCUMENT.

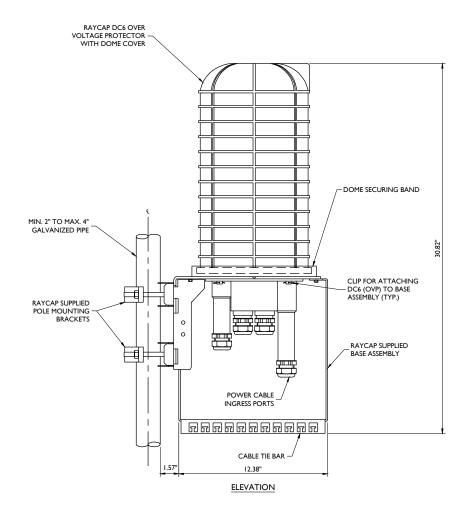
SITE NAME:

STAMFORD WEST FA# 10034997 SITE # CTL02135

CATOONAH LANE STAMFORD, CT 06902 FAIRFIELD COUNTY

RED BANK OFFICE


331 Newman Springs Road
Suite 203


Suite 203 Red Bank, NJ 07701 Phone: 732.383.1950 Fax: 732.383.1984

oman. solutions

DETAILS

A-4

RAYCAP VIA AT&T SUPPLIES THE DC6 OVER VOLTAGE PROTECTOR AND PIPE MOUNTING BRACKETS. SUBCONTRACTOR SHALL SUPPLY THE PIPE.

RAYCAP DC6-48-60-18-8F & DC6-48-60-0-8F DC POWER OVER VOLTAGE PROTECTOR (OVP) POLE MOUNT BASE ASSEMBLY

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

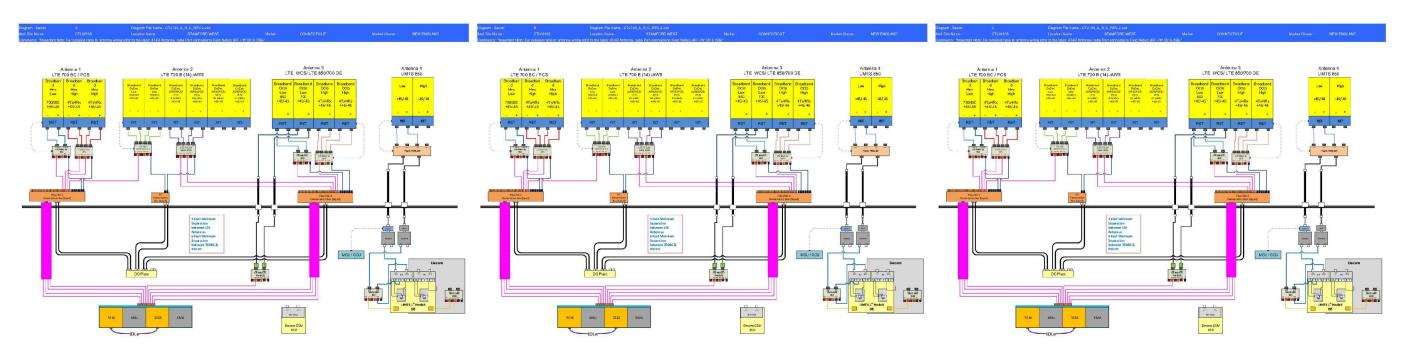
17946131A

CENSEO.

IT IS A VIOLATION OF LAW FURIANY PER UNI, UNLESS
THEY ARE ACTIVITY INDER THE ANALYSIS OF THE A THEY ARE ACTIVATION OF THE PART OF THE PROPERTY OF THE RESPONSIBLE LICENSED PROFESSIONAL ENGINEER, ALTER THIS DOCUMENT.

SITE NAME:

STAMFORD WEST FA# 10034997 SITE # CTL02135


CATOONAH LANE STAMFORD, CT 06902 FAIRFIELD COUNTY

DETAILS

A-5

DC6 SURGE SUPPRESSION DOME DETAIL

BETA SECTOR

RF PLUMBING DIAGRAMS

BASED ON: RF ENGINEERING DESIGN ENTITLED "NEW-ENGLAND_CONNECTICUT_CTL02135_2018-LTE-Next-Carrier_LTE_mh705r_2051A0...", LAST UPDATED 01/11/2018

ALPHA SECTOR

Customer Loyalty through Client Satisfaction
www.maserconsulting.com
Engineers = Planners = Surveyors
Landscape Architects = Environmental Scientists

Copyright © 2018. Maser Consulting Connecticut All Rights Reserved. This drawing and the information contained herein is authorized for use only by the party for whom the servi were contracted or to whom it is certified. This drawing may not be copied, reused closed distributed or relied upon for any other purpose without the express written consent

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

Know what's below.

□all before you dig. FOR STATE SPECIFIC DIRECT PHONE NUMBERS VISIT

SCALE :	AS SHO\	MΝ	JOB NUMBER : 17946131A				
-	02/01/18	FOR CONSTRU		AJC	RA		
0	01/24/18	LLU FOR R	VIEW ALL	1400	RA		
REV	HILLIA	DISCRIPTIO	TAIAE (DRAV DY	CHECKEL BY		

IT IS A VIOLATION OF LAMPINE THE NAME OF THE RESPONSIBLE LICENSED HIGH PROPERTY TO ALTER THIS DOCUMENT.

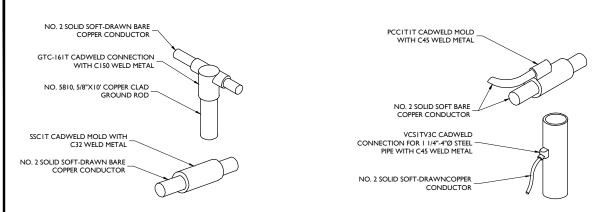
SITE NAME:

STAMFORD WEST FA# 10034997 SITE # CTL02135

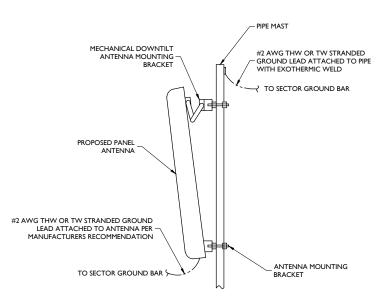
CATOONAH LANE STAMFORD, CT 06902 FAIRFIELD COUNTY

GAMMA SECTOR

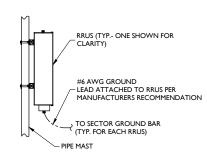
RED BANK OFFICE 331 Newman Springs Road Suite 203

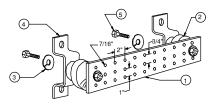

Suite 203 Red Bank, NJ 07701 Phone: 732.383.1950 Fax: 732.383.1984

TITLE:


RF PLUMBING DIAGRAMS

R:


A-6

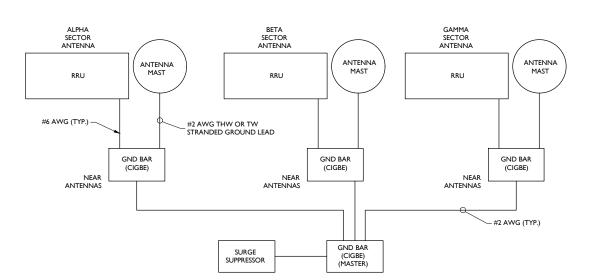

CADWELD DETAILS

ANTENNA GROUNDING NOT TO SCALE

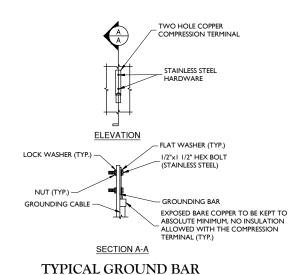
RRU GROUNDING NOT TO SCALE

LEGEND

- I- TINNED COPPER GROUND BAR, 1/4"x4"x20", NEWTON INSTRUMENT CO. CAT. NO. B-6142 OR EQUAL. HOLE CENTERS TO MATCH NEMA DOUBLE LUG CONFIGURATION.
- 2- INSULATORS, NEWTON INSTRUMENT CAT, NO. 3061-4
- 3- 5/8" LOCKWASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8
- 4- WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. CAT NO. A-5056
- 5- 5/8-11 X I" HHCS BOLTS, NEWTON INSTRUMENT CO. CAT NO. 3012-1
- 6- EACH GROUND CONDUCTOR TERMINATING ON ANY GROUND BAR HAVE AN IDENTIFICATION TAG ATTACHED AT EACH END THAT WILL IDENTIFY ITS ORIGIN AND DESTINATION.

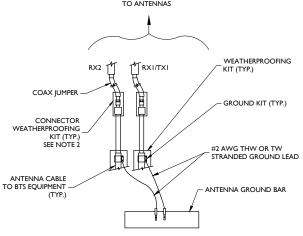

SECTION "P" - SURGE PRODUCERS

CABLE ENTRY PORTS (HATCH PLATES) (#2)
GENERATOR FRAMEWORK (IF AVAILABLE) (#2) TELCO GROUND BAR COMMERCIAL POWER COMMON NEUTRAL/GROUND BOND (#2) +24V POWER SUPPLY RETURN BAR (#2) -48V POWER SUPPLY RETURN BAR (#2)


SECTION "A" - SURGE ABSORBERS

INTERIOR GROUND RING (#2)
EXTERNAL EARTH GROUND FIELD (BURIED GROUND RING) (#2) METALLIC COLD WATER PIPE (IF AVAILABLE) (#2) BUILDING STEEL (IF AVAILABLE) (#2)

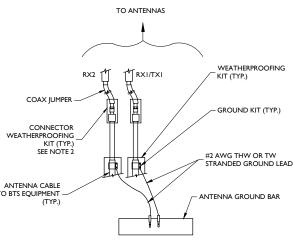
MASTER GROUND BAR



SCHEMATIC DIAGRAM GROUNDING SYSTEM

CONNECTION DETAIL

NOT TO SCALE



- DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO ANTENNA GROUND BAR.
- 2. WEATHER PROOFING SHALL BE TWO-PART TAPE KIT, COLD SHRINK SHALL

TYPICAL GROUND WIRE TO GROUNDING BAR

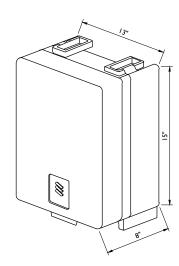
NOT TO SCALE

STAMFORD WEST FA# 10034997 SITE # CTL02135

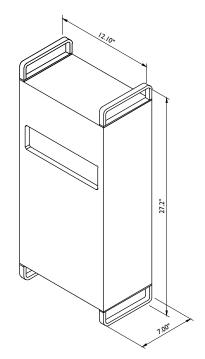
CENSEO.

IT IS A VIOLAU ON OF LAW FUR ANY PER ON, UNLESS

SITE NAME:

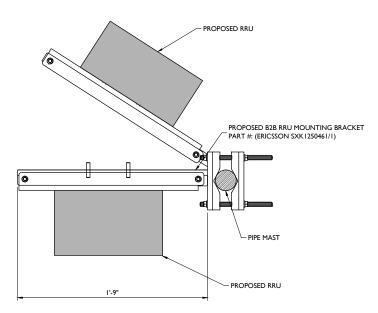

ARE ACTION IN THE THE THE TIME THOU OF T ISIBLE LICENSED PROFFESIONAL ENGINEER ALTER THIS DOCUMENT.

CATOONAH LANE STAMFORD, CT 06902 FAIRFIELD COUNTY


GROUNDING DETAILS

G-I

DIMENSIONS (H X W X D): 15"H X 13"W X 8"D (INCLUDES SUNSHIELD) WEIGHT: 60 LBS


RRU-4478-B14 DETAIL NOT TO SCALE

RRUS-4426 B66 DIMENSIONS (H \times W \times D): 27.2" \times 12.1" \times 7.0" (INCLUDES HANDLES, FEET AND SUNSHIELD)

WEIGHT: 53 LBS

4426 B66 DETAIL NOT TO SCALE

 $\underset{\text{NOT TO SCALE}}{\underline{RRH \ MOUNTING \ DETAIL}}$

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

Know what's **below.**Call before you dig.
FOR STATE SPECIFIC DIRECT PHONE NUMBERS VI

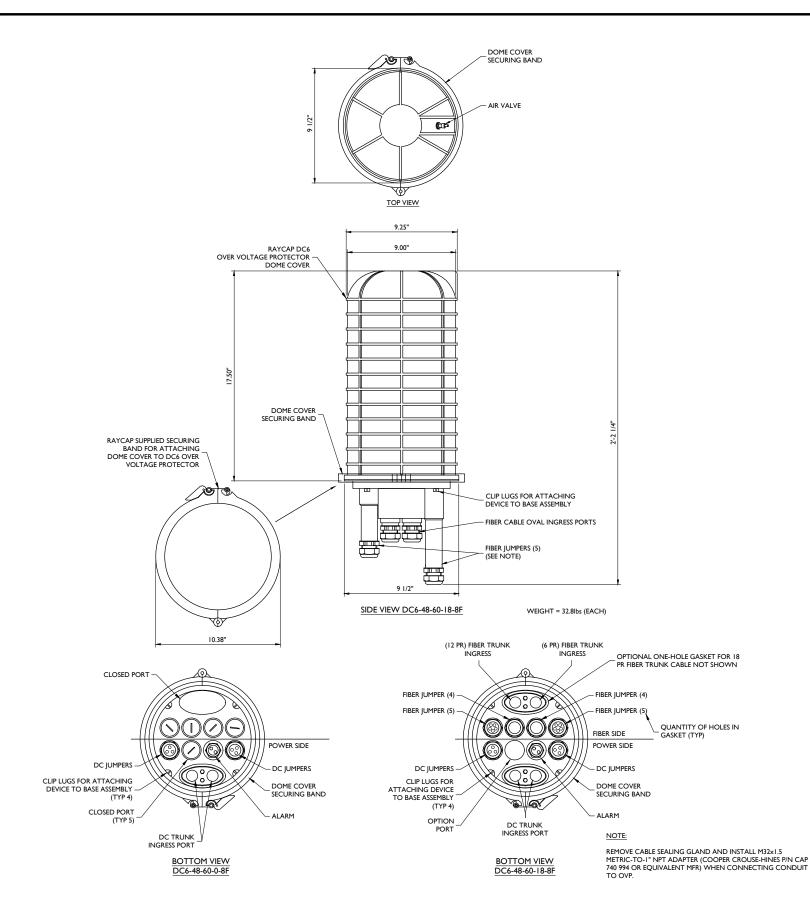
IT IS A VIOLAL ON OF WARPANY PER ON, UNLESS THEY ARE ACTIVITY OF THE OWNER TO FEE RESPONSIBLE LICENSED PAYERSONAL ENGINEER, TO ALTER THIS DOCUMENT.

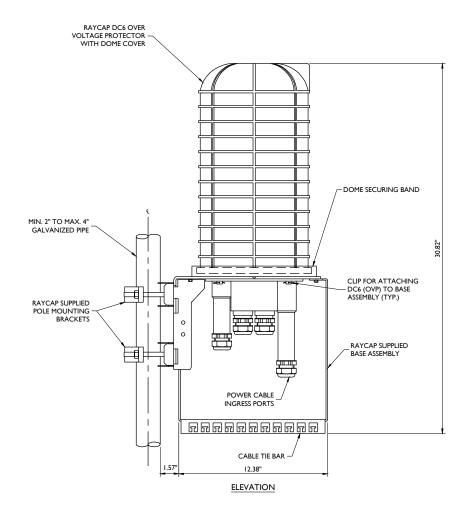
SITE NAME:

STAMFORD WEST FA# 10034997 SITE # CTL02135

CATOONAH LANE STAMFORD, CT 06902 FAIRFIELD COUNTY

RED BANK OFFICE


331 Newman Springs Road
Suite 203


Suite 203 Red Bank, NJ 07701 Phone: 732.383.1950 Fax: 732.383.1984

oman. solutions

DETAILS

A-4

RAYCAP VIA AT&T SUPPLIES THE DC6 OVER VOLTAGE PROTECTOR AND PIPE MOUNTING BRACKETS. SUBCONTRACTOR SHALL SUPPLY THE PIPE.

RAYCAP DC6-48-60-18-8F & DC6-48-60-0-8F DC POWER OVER VOLTAGE PROTECTOR (OVP) POLE MOUNT BASE ASSEMBLY

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

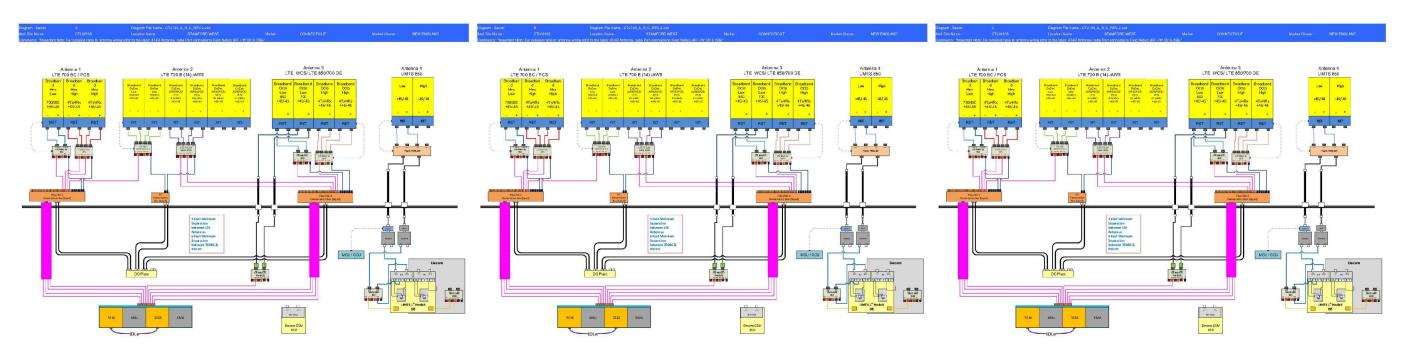
17946131A

CENSEO.

IT IS A VIOLATION OF LAW FURIANY PER UNI, UNLESS
THEY ARE ACTIVITY INDER THE ANALYSIS OF THE A THEY ARE ACTIVATION OF THE PART OF THE PROPERTY OF THE RESPONSIBLE LICENSED PROFESSIONAL ENGINEER, ALTER THIS DOCUMENT.

SITE NAME:

STAMFORD WEST FA# 10034997 SITE # CTL02135


CATOONAH LANE STAMFORD, CT 06902 FAIRFIELD COUNTY

DETAILS

A-5

DC6 SURGE SUPPRESSION DOME DETAIL

BETA SECTOR

RF PLUMBING DIAGRAMS

BASED ON: RF ENGINEERING DESIGN ENTITLED "NEW-ENGLAND_CONNECTICUT_CTL02135_2018-LTE-Next-Carrier_LTE_mh705r_2051A0...", LAST UPDATED 01/11/2018

ALPHA SECTOR

Customer Loyalty through Client Satisfaction
www.maserconsulting.com
Engineers = Planners = Surveyors
Landscape Architects = Environmental Scientists

Copyright © 2018. Maser Consulting Connecticut All Rights Reserved. This drawing and the information contained herein is authorized for use only by the party for whom the servi were contracted or to whom it is certified. This drawing may not be copied, reused closed distributed or relied upon for any other purpose without the express written consent

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

Know what's below.

□all before you dig. FOR STATE SPECIFIC DIRECT PHONE NUMBERS VISIT

SCALE :	AS SHO\	MΝ	JOB NUMBER : 17946131A				
-	02/01/18	FOR CONSTRU		AJC	RA		
0	01/24/18	LLU FOR R	VIEW ALL	1400	RA		
REV	HILLIA	DISCRIPTIO	TAIAE (DRAV DY	CHECKEL BY		

IT IS A VIOLATION OF LAMPINE THE NAME OF THE RESPONSIBLE LICENSED HIGH PROPERTY TO ALTER THIS DOCUMENT.

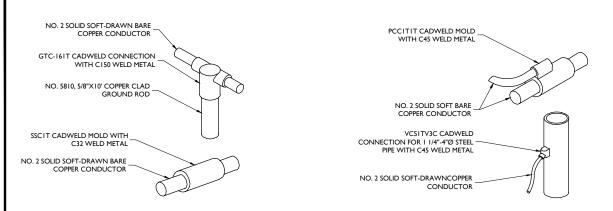
SITE NAME:

STAMFORD WEST FA# 10034997 SITE # CTL02135

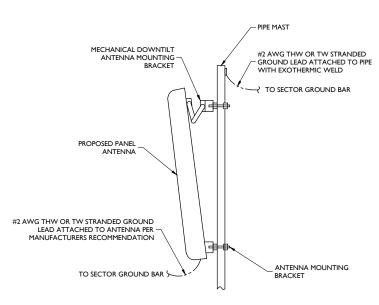
CATOONAH LANE STAMFORD, CT 06902 FAIRFIELD COUNTY

GAMMA SECTOR

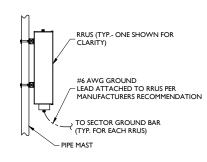
RED BANK OFFICE 331 Newman Springs Road Suite 203

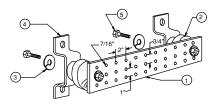

Suite 203 Red Bank, NJ 07701 Phone: 732.383.1950 Fax: 732.383.1984

TITLE:


RF PLUMBING DIAGRAMS

R:


A-6

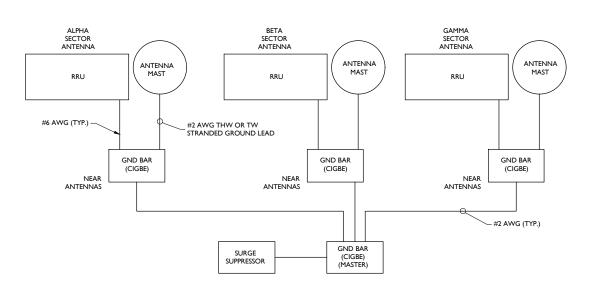

CADWELD DETAILS

ANTENNA GROUNDING NOT TO SCALE

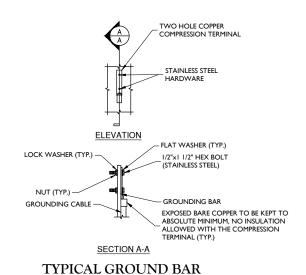
RRU GROUNDING NOT TO SCALE

LEGEND

- I- TINNED COPPER GROUND BAR, 1/4"x4"x20", NEWTON INSTRUMENT CO. CAT. NO. B-6142 OR EQUAL. HOLE CENTERS TO MATCH NEMA DOUBLE LUG CONFIGURATION.
- 2- INSULATORS, NEWTON INSTRUMENT CAT, NO. 3061-4
- 3- 5/8" LOCKWASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8
- 4- WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. CAT NO. A-5056
- 5- 5/8-11 X I" HHCS BOLTS, NEWTON INSTRUMENT CO. CAT NO. 3012-1
- 6- EACH GROUND CONDUCTOR TERMINATING ON ANY GROUND BAR HAVE AN IDENTIFICATION TAG ATTACHED AT EACH END THAT WILL IDENTIFY ITS ORIGIN AND DESTINATION.

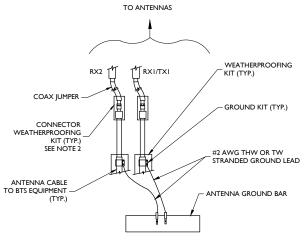

SECTION "P" - SURGE PRODUCERS

CABLE ENTRY PORTS (HATCH PLATES) (#2)
GENERATOR FRAMEWORK (IF AVAILABLE) (#2) TELCO GROUND BAR COMMERCIAL POWER COMMON NEUTRAL/GROUND BOND (#2) +24V POWER SUPPLY RETURN BAR (#2) -48V POWER SUPPLY RETURN BAR (#2)


SECTION "A" - SURGE ABSORBERS

INTERIOR GROUND RING (#2)
EXTERNAL EARTH GROUND FIELD (BURIED GROUND RING) (#2) METALLIC COLD WATER PIPE (IF AVAILABLE) (#2) BUILDING STEEL (IF AVAILABLE) (#2)

MASTER GROUND BAR



SCHEMATIC DIAGRAM GROUNDING SYSTEM

CONNECTION DETAIL

NOT TO SCALE

- DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO ANTENNA GROUND BAR.
- 2. WEATHER PROOFING SHALL BE TWO-PART TAPE KIT, COLD SHRINK SHALL

TYPICAL GROUND WIRE TO GROUNDING BAR

NOT TO SCALE

STAMFORD WEST FA# 10034997 SITE # CTL02135

CENSEO.

IT IS A VIOLAU ON OF LAW FUR ANY PER ON, UNLESS

SITE NAME:

ARE ACTION IN THE THE THE TIME THOU OF T ISIBLE LICENSED PROFFESIONAL ENGINEER ALTER THIS DOCUMENT.

CATOONAH LANE STAMFORD, CT 06902 FAIRFIELD COUNTY

GROUNDING DETAILS

G-I