STATEOF CONNECTICUT
CONNECTICUT SITING COUNCIL
Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

VIA ELECTRONIC MAIL

July 19, 2018
Mary Caulfield, Site Acquisition Consultant
c/o New Cingular Wireless, PCS LLC
Centerline Communications
750 West Center Street, Suite 301
West Bridgewater, MA 02379
RE: EM-CING-134-180305 - New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 64 Tolland Avenue, Stafford, Connecticut.

Dear Ms. Caulfield:
The Connecticut Siting Council (Council) is in receipt of your correspondence of July 18, 2018 submitted in response to the Council's March 16, 2018 notification of an incomplete request for exempt modification with regard to the above-referenced matter.

The submission renders the request for exempt modification complete and the Council will process the request in accordance with the Federal Communications Commission 60-day timeframe.

Thank you for your attention and cooperation.

Melanie A. Bachman
Executive Director
MAB/CMW/jmb

From: Mary Caulfield [mailto:mcaulfield@clinellc.com]
Sent: Wednesday, July 18, 2018 1:01 PM
To: Barton, Jenna Jenna.Barton@ct.gov
Cc: CSC-DL Siting Council Siting.Council@ct.gov
Subject: RE: Councils Response to Fourth Extension Request for EM-CING-134-180305-TollandAve-Stafford

Good Afternoon Jenna,
On behalf of my colleague, Adam Wolfrey, please find attached an updated submittal addressing your concerns via the letter of incompletion to modify an existing telecommunication facility located at 64 Tolland Avenue (AKA 50 Tolland Avenue), Stafford, CT.

I've enclosed the requested signed and stamped Structural Analysis Report as well as proof the filings have been mailed to the additional required parties.

As your letter states, the Capital Regional Council of Governments online geographical information system does show the property hosting the existing tower to be located at 50 Tolland Avenue; although, all prior documentation indicates the address as 64 Tolland Avenue, including a the Database of CSC-Approved Telecommunications Site and the Comprehensive List of Sites as well as an Exempt Modification Approval dated September 7, 2012 which l've included in the attached file.

In hope to clarify, l've referenced both addresses in the revised letter.

Please let me know if anything additional is needed for approval.
Thanks,
Mary

Mary Caulfield | Site Acquisition Consultant
750 West Center Street, Suite 301 | West Bridgewater, MA 02379
Cell: 978.994.0252 |Fax: 508.819.3017
mcaulfield@clinellc.com | www.centerlinecommunications.com

Mary Caulfield, Site Acquisition Consultant c/o New Cingular Wireless, PCS LLC (AT\&T) Centerline Communications, LLC
750 West Center Street, Suite 301
West Bridgewater, MA 02379
Mobile: (978) 994-0252
MCaulfield@centerlinecommunications.com

July 18, 2018

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification // Site Number: CT1185 (Name: Stafford Springs Tolland Avenue)
 64 Tolland Avenue (aka 50 Tolland Avenue), Stafford, CT 06076
 N 41.9446722222222 // W -72.3176472222222

Dear Ms. Bachman:
New Cingular Wireless, PCS, LLC ("AT\&T") currently maintains 9 total antennas at the 177foot level on the existing 180-foot Guyed Tower, located at 64 Tolland Avenue (aka 50 Tolland Ave.), Stafford Springs, CT. The tower is owned by Cordless Data Transfer, Inc. and the property owned by Terra Alta Inc. AT\&T now intends to replace three (3) of its existing antennas with three (3) new LTE (1900/2300 band) antennas for its LTE upgrade. AT\&T also intends to install six (6) new remote radios; and certain in-cabinet upgrades at the base.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies $\S 16-50 \mathrm{j}-73$, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Mary Mitta, Firs Selectman for the Town of Stafford, David Perkins, Zoning Enforcement Officer for the Town of Stafford, Terra Alta Inc, Property Owner and Cordless Data Transfer, Inc., the tower owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

Attached to accommodate this filing are construction drawings dated February 20, 2018 by Hudson Design Group LLC, a structural analysis signed and stamped dated February 20, 2018 by

Fred A. Nudd Corporation and an Emissions Analysis Report dated February 26, 2018 by Centerline Communications, LLC.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause an ineligible change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading, pursuant to the structural analysis by Fred A. Nudd Corporation, signed and stamped dated February 20, 2018.

For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

[^0]cc: Mary Mitta, First Selectman, Town of Stafford
David Perkins, Zoning Enforcement Officer, Town of Stafford
Terra Alta Inc, Property Owner
Cordless Data Transfer, Inc., Tower Owner

FRED A. NUDD CORPORATION

1743 ROUTE 104, BOX 577
ON'TARIO, NY 14519
(315) 524-2531 FAX (315) 524-4249
wuw .nuddtowers.com

Mark LeGault
Cordless Data Transfer, Inc.
600 Old Hartford Road
Colchester, CT 06415
December 29, 2017

Nudd Job Number: 117-23243.8
Site Location: Tolland Avenue (64 Tolland Avenue, Stafford, CT 06076, Tolland County)
Subject: Structural Analysis of an existing 180 ft Guyed Tower

Fred A. Nudd Corporation has completed a structural analysis of an existing 180 ft guyed tower. The tower was originally designed by Fred A. Nudd Corporation. The design loading criteria and strength design are per the ANSI/TIA-222-G standard, which is the recommended design standard per the 2012 International Building Code (Sec. 1609 \& 3108), , and the 2016 Connecticut State Building Code. Tower and foundation dimensions have been taken from drawings by Fred A. Nudd, project number 9898, dated December 29, 2003. Additional foundation dimensions and installation data was provided by Cordless Data Transfer. Design criteria per each analysis are noted on the following page. The tower is assumed to be in good, undamaged and equivalent to as new condition and has been maintained / inspected per criteria by TIA-222.

The purpose of this analysis is to determine the structure's ability to support new AT\&T equipment. The new equipment to be installed, which included antennas, coax, mounts and associated hardware are listed on the following page, along with already installed cellular equipment, in the appurtenance loading table.

Results of the analysis indicate the tower will be able to the support the design loads noted in the appurtenance loading table on the following page. Specific section design loads, capacities and stress ratios are provided on the following pages. Maximum member usage was found to be 92%. Detailed calculation of the applied forces and member capacities are provided in the following pages.

The tower base foundation and anchor design loads were analyzed considering the aforementioned foundation data and assumed soil properties. Based on this, the base foundation and anchors are adequate to support the existing and new loading.

In conclusion, the tower superstructure and substructure can support the proposed AT\&T equipment.

We trust this report satisfies your needs. Please contact us with any questions or concerns regarding this report.
Best Regards,

Fred. A. Nudd Corporation

Code Design Criteria

ANSI/TIA-222-G
Windspeed $=98 \mathrm{mph}, 3$-second gust, $\mathrm{V}_{\text {asd }} / 124 \mathrm{mph}, 3$-second gust, $\mathrm{V}_{\text {ult }}$
Exposure = B
Radial Ice = 1.0 inch
ice Windspeed $=50 \mathrm{mph}, 3$-second gust
Structure Class = II
Topographic Category = 1
$\mathrm{S}_{\mathrm{s}}<1.0$, thus seismic loading does not need to be considered

Proposed Appurtenance Loading - AT\&T

Elevation (ft) ${ }^{\text {I }}$	Antenna	Mount	Coax ${ }^{2}$
177	(1) Andrew SBNH-1D6565C (3) Powerwave 7770 (2) CCI TPA-65R-LCUUUU-H8 (1) Quintel QS46512-2 (1) KMW AM-X-CD-14-65-00T-RET (1) Powewave P65-17-XLH-RR (3) Ericsson RRUS-11 (6) Ericsson RRUS-32 (6) Powerwave LGP21401 (6) Powerwave DBC0061F1V51-2 (6) Kaelus LGP21901	(3) $12 \mathrm{ft} \mathrm{Boom} /$ Frame	(12) 1-5/8 (3) 1-5/8 Fiber (2) $3 / 8$ Fiber (4) $D C$

${ }^{1}$ Note elevation is measured from grade to center of antenna
${ }^{2}$ Additional coax is to be installed on the same tower face as the existing coax

Maximum Member Usage Results

Member	Usage (\%) $^{\mathbf{2}}$
Legs	92
Diagonals	71
Horizontals	59
Guy Wires	48
Splice Bolts	37

${ }^{1}$ Usage above 100% indicates the applied design load exceeds the member strength capacity and requires strengthening

Foundation Usage Results

Base Reaction	Capacity (kip-ft)	Analysis (kip-ft)	Usage (\%) $^{\mathbf{3}}$
Base Axial	217.8	179.8	86
Anchor Uplift	93.1	29.0	31
Anchor Shear	52.2	38.5	74

[^1]

RISATower	Job	Page					
	117-23243.8	1 of 44					
	Project	Tolland Ave., CT	Date				
Phone:							
FAX:				\quad	Client	CDT	Designed by FAN
:---	:---	:---	:---				

Tower Input Data

The main tower is a $3 x$ guyed tower with an overall height of 180.00 ft above the ground line.
The hase of the tower is set at an elevation of $0,00 \mathrm{ft}$ above the ground line.
The face width of the tower is 3.50 ft at the top and tapered at the base.
This tower is designed using the TlA-222-G standard.
The following design criteria apply:
Tower is located in Tolland County, Connecticut.
Basic wind speed of 98 mph .
Structure Class Il.
Exposure Category B.
Topographic Category 1.
Crest Height 0.00 ft .
Nominal ice thickness of 1.0000 in .
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice,
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
Weld together tower sections have flange connections..
Tension only take-up is 0.0313 in .
Pressures are calculated at each section.
Safety factor used in guy design is 1 .
Stress ratio used in tower member design is 1 .
Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
$\sqrt{ }$ Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys Escalate Ice
Always Use Max Kz
Use Special Wind Profile
$\sqrt{ }$ Include Bolts In Member Capacity
$\sqrt{ }$ Leg Bolts Are At Top Of Section
$\sqrt{ }$ Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
Add IBC .6D+W Combination

Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area
$\sqrt{ }$ Use Clear Spans For KL/r
$\sqrt{ }$ Retension Guys To Initial Tension Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt
$\sqrt{ }$ Autocalc Torque Arm Areas SR Members Have Cut Ends Sort Capacity Reports By Component
\checkmark Triangulate Diamond Inner Bracing

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules
\checkmark Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression
$\sqrt{ }$ All Leg Panels Have Same Allowable Offset Girt At Foundation
\checkmark Consider Feedline Torque Include Angle Block Shear Check Poles
Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

RISATOwer	Job	117-23243.8	$\text { Page } 2 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: $F A X:$	Client	CDT	Designed by FAN

Corner \& Starmount Guved Tower

RISATOWer	Job	Page	
	117-23243.8	3 of 44	
	Project	Tolland Ave., CT	Date Phone: FAX:

Face Gured

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width		Section Length
	f			$f t$		f
T1	180.00-160.00			3.50	1	20.00
T2	160.00-140.00			3.50	1	20.00
T3	140.00-120.00			3.50	1	20.00
T4	120.00-100.00			3.50	1	20.00
T5	100.00-80.00			3.50	1	20.00
T6	80.00-60.00			3.50	1	20.00
T7	60.00-40.00			3.50	,	20.00
T8	40.00-20.00			3.50	1	20.00
T9	20.00-5.00			3.50	1	15.00
T10	5.00-0.00			3.50	1	5.00

RISATOwer	Job	Page	
	117-23243.8	4 of 44	
	Project	Tolland Ave., CT	Date $01: 32: 09 ~ 12 / 29 / 17 ~$
	Client	CDT	Designed by FAN

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bonom Girt
Offset							

Tower Section Geometry (cont'd)

Tower Elevation fi	$\begin{aligned} & \text { Leg } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Leg } \\ & \text { Size } \end{aligned}$	Leg Grade	$\begin{gathered} \text { Diagonal } \\ \text { Type } \end{gathered}$	Diagonal Size	Diagonal Grade
T1 180.00-160.00	Pipe	P2.5x. 203	$\begin{aligned} & \text { A500M-54 } \\ & (54 \mathrm{ksi}) \end{aligned}$	Solid Round	5/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T2 160.00-140.00	Pipe	P2.5x. 203	A500M-54 (54 kisi)	Solid Round	5/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T3 140.00-120.00	Pipe	P2 5x. 203	$\begin{aligned} & \text { A500M-54 } \\ & (54 \mathrm{ksi}) \end{aligned}$	Solid Round	5/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T4 120.00-100.00	Pipe	P2.5x. 203	$\begin{aligned} & \text { A500M-54 } \\ & (54 \mathrm{ksi}) \end{aligned}$	Solid Round	5/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T5 100.00-80.00	Pipe	P2.5x. 203	$\begin{aligned} & \text { A500M-54 } \\ & (54 \mathrm{ksi}) \end{aligned}$	Solid Round	5/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T6 80,00-60.00	Pipe	P2.5x. 203	A500M-54 (54 ksi)	Solid Round	5/8	$\begin{gathered} \text { A36 } \\ \text { (36 ksi) } \end{gathered}$
T7 60,00-40.00	Pipe	P2.5x 203	A500M-54 (54 ksi)	Solid Round	5/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T8 40,00-20,00	Pipe	P2.5x. 203	$\begin{gathered} \text { A500M-54 } \\ (54 \mathrm{ksi}) \end{gathered}$	Solid Round	5/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T9 20.00-5.00	Pipe	P2.5x 203	$\begin{aligned} & \text { A500M-54 } \\ & (54 \mathrm{ksi}) \end{aligned}$	Solid Round	5/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T10 5.00-0.00	Pipe	P2.5x. 203	$\begin{gathered} \text { A500M-54 } \\ (54 \mathrm{ksi}) \end{gathered}$	Solid Round	5/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation ft	$\begin{gathered} \text { Top Girt } \\ \text { Type } \end{gathered}$	Top Givt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Botlom Girt Grade
T1 180.00-160.00	Equal Angle	L1 1/2x1 1/2×3/16	A36 (36 ksi)	Equal Angle	L1 1/2x1 1/2x ${ }^{\text {/ }}$ /6	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T2 160.00-140,00	Equal Angle	L1 1/2x1 1/2×3/16	A36 (36 ksi)	Equal Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ \text { (36 ksi) } \end{gathered}$
T3 140.00-120.00	Equal Angle	L1 1/2x1 1/2x3/16	A36 (36 ksi)	Equal Angle	L1 $1 / 2 \times 11 / 2 \times 3 / 16$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T4 120.00-100,00	Equal Angle	L1 1/2x11/2x3/16	A36 (36 ksi)	Equal Angle	L1 $1 / 2 \times 11 / 2 \times 3 / 16$	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T5 100.00-80.00	Equal Angle	L1 1/2x11/2x3/16	A36	Equal Angle	L1 $1 / 2 \times 11 / 2 \times 3 / 16$	A36

RISATower	Job	117-23243.8	$\text { Page } 5 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: FAX:	Client	CDT	Designed by FAN

Tower Elevation ft	Top Girl Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
			(316 ksi)			(36 ksi)
T6800006000	Equal Angle	L1 1/2x1 1/2×3/16	A36 (36 ksi)	Equal Angle	$1.11 / 2 \times 11 / 2 \times 3 / 16$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T76000-4000	Equal Angle	LI 1/2x11/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Equal Angle	L. $1 / 2 \times 1$ 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T8 40,00-20.00	Equal Angle	L1 1/2x1 1/2×3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} A 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T9 20.00-5.00	Equal Angle	LI 1/2x\| 1/2x3/16	$\begin{gathered} \text { A36 } \\ \text { (} 36 \mathrm{ksi} \text {) } \end{gathered}$	Equal Angle	L. $1 / 2 \times 11 / 2 \times 3 / 16$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T105,0000,00	Equal Angle	$1.11 / 2 \times 11 / 2 \times 3 / 16$	$\begin{gathered} \text { A36 } \\ \text { (} 36 \mathrm{ksi} \text {) } \end{gathered}$	Equal Angle	$1.11 / 2 \times 11 / 2 \times 3 / 16$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation ft	No of Mid Girts	$\begin{gathered} \text { Mid Girt } \\ \text { Type } \end{gathered}$	$\begin{aligned} & \hline \text { Mid Girt } \\ & \text { Size } \end{aligned}$	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade
T1 180,00-160.00	None	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2x11/2x3/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
'T2 160,00-140.00	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L) 1/2x11/2×3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T3 140.00-120.00	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T4 120 00-100.00	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T5 100.00-80.00	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T6 8000-60.00	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2x1 1/2×3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T7 60.00-40.00	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T8 40,00-20.00	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T9 20.00-5.00	None	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2×1 1/2×3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T10 5,00-0.00	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2x1 1/2×3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation ft	Gusset Area (per face) $f t^{2}$	Gusset Thichuess in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in
TI	0.00	0.0000	A36	1	1	1	36.0000	36.0000
180.00-160.00			(36 ksi)					
T2	0.00	0.0000	A36	1	1	1	36.0000	36.0000
160.00-140.00			(36 ksi)					
T3	0.00	0.0000	A36	1	1	1	36,0000	36.0000

RISATOwer	Job	117-23243.8	$\text { Page } 6 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: FAX:	Client	CDT	Designed by FAN

Tower Elevation $f t$	```Gusset Area (per face) fr```	Gusset Thickness in	Gussel Grade	$\begin{gathered} \text { Adjust, Factor } \\ A_{f} \end{gathered}$	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizomals in
14000.12000			(36 ksi)					
T4 $12000-100.00$	0,00	0.0000	$\begin{gathered} A 36 \\ (36, \mathrm{ksi}) \end{gathered}$	1	1	1	360000	36.0000
T5	0,00	0.0000	A36	1	1	1	360000	36.0000
$10000-8000$			(36 ksi)					
T6 80,00-6000	000	00000	$\begin{gathered} A 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	360000	36.0000
T7 60,00-40,00	0,00	0,0000	$\begin{gathered} A 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	360000
T8 40,00-20,00	0.00	0.0000	$\begin{gathered} A 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	360000	36,0000
T9 20,00-5.00	0,00	0,0000	$\begin{gathered} A 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36,0000
T10500-000	0.00	0,0000	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	360000

Tower Section Geometry (cont'd)

			K Faciors							
Tower	Calc	Calc	Legs	X		Single	Girls	Horiz.	Sec,	Inner
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace
	Single	Solid		Diags	Diags					
	Angles	Rounds		X	X	X	X	X	X	X
fi				Y						
T1	No	Yes	1	1	1	1	0.65	0.65	1	1
180,00-160.00				1	1	1	0.65	0.65	1	1
T2	No	Yes	1	1	1	1	0.65	0.65	1	1
160.00-140.00				1	1	1	0.65	0.65	1	1
T3	No	Yes	1	1	1	I	0.65	0.65	1	1
140,00-120.00				1	1	1	0.65	0.65	1	1
T4	No	Yes	1	1	1	1	0.65	0.65	1	1
120.00-100.00				1	1	1	0.65	0.65	1	1
T5	No	Yes	1	1	1	1	0.65	0.65	1	1
100.00-80.00				1	1	1	0.65	0.65	1	1
T6	No	Yes	1	1	1	1	0.65	0.65	1	1
80,00-60.00				1	1	1	0.65	0.65	1	1
T7	No	Yes	1	1	1	1	0.65	0.65	1	1
60,00-40.00				1	1	1	0.65	0.65	1	1
T8	No	Yes	1	1	1	1	0.65	0.65	1	1
40,00-20.00				1	1	1	0.65	0.65	1	1
T9 2000-5.00	No	Yes	1	1	1	1	0,65	0.65	1	1
				1	1	1	0.65	0.65	1	1
T10 5.00-0.00	No	Yes	1	1	1	1	0.65	0.65	1	1
				1	1	1	0.65	065	1	1

${ }^{7}$ Note: K factors are applied to member segment lengths. K-braces withont inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

RISATower	Job	117-23243.8	$\text { Page } 7 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: FAX:	Client	CDT	Designed by FAN

Tower Elevation $f i$	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Nel Width Deduct in		Net Width Deduct in		Net Width Deduct in		Ne Width Deduct in	U	$\begin{gathered} \text { Net } \\ \text { Width } \\ \text { Deduct } \\ \text { in } \end{gathered}$	U	Net Width Deduct in	U	Net Width Deduct in	U
$\begin{gathered} T 1 \\ 18000-160.00 \end{gathered}$	0.0000	1	0.0000	1	00000	1	00000	1	00000	073	00000	1	0.0000	0.75
$\begin{gathered} T 2 \\ 16000-14000 \end{gathered}$	0.0000	1	00000	1	0.0000	1	0.0000	1	0.0000	073	00000	1	0.0000	073
$14000-12000$	00000	1	00000	1	000000	1	00000	1	00000	075	0.0000	1	00000	075
$\begin{gathered} \mathrm{T4} \\ 120.00-100,00 \end{gathered}$	00000	1	00000	1	00000	1	00000	1	00000	075	0.0000	1	00000	075
$\begin{gathered} 75 \\ 100,00-80,00 \end{gathered}$	0.0000	1	0.0000	1	00000	1	00000	1	0.0000	0.75	0,0000	1	0,0000	0.75
T6 80,00-60.00	0.0000	1	00000	1	0.0000	1	0.0000	1	00000	0.75	0.0000	1	00000	0.75
T760,00-40.00	0.0000	1	0.0000	1	0.0000	1	00000	1	0.0000	075	0,0000	1	00000	0.75
T8 40.00-20.00	0.0000	1	0,0000	1	0,0000	1	0.0000	1	0.0000	0.75	0,0000	1	0.0000	0.75
T9 20.00-5.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	00000	0.75	0.0000	1	0.0000	0.75
T10 5.00-0.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0,0000	1	0.0000	0.75

Tower Section Geometry (cont'd)

Tower Elevation fi	Leg Comnection Type	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girl		Long Horizontal		Short Horizontal	
		Bolt Size in	No.	Boll Size in	No,	Boll Size in	No.	Bolt Size in	No.						
TI	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
180.00-160.00		A325N													
T2	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
160.00-140.00		A325N													
T3	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	06250	0	0.6250	0	0.6250	0
140,00-120.00		A325N													
T4	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00-100.00		A325N		A325N		A325N		A325N		A 325 N		A325N		A325N	
T5	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00-80.00		A325N													
T6 80.00-60.00	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N													
T7 60.00-40.00	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N													
T8 40.00-20.00	Flange	0.7500	4	0.6250	0	0,6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N													
T9 20.00-5.00	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N													
T10 5,00-0.00	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A 325 N											

Guy Data

RISATower	Job	117-23243.8	$\text { Page } 8 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: $F A X$:	Client	CDT	Designed by FAN

Guy Elevation	Guy Grade	Guy Size	Initial Tension	$\%$	Guy Modulus	Guy Weight	L	Anchor Radius	Anchor Azimuth Adj.	Anchor Elevation	End Fitting
Efficiency											

Guy Data(cont'd)

Guy Elevation ft	Mownt Type	Torque-Arm Spread f	Torque-Arm Leg Angle σ	Torque-Arm Style	Torque-Arm Grade	Torque-Arm Type	Torque-Arm Size
170	Torque Arm	7.00	30.0000	Dog Ear	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	$\begin{gathered} \mathrm{L} 2 \times 2 \times 5 / 16 \\ \mathrm{~L} 3 \times 3 \times 1 / 4 \end{gathered}$
116.417	Torque Arm	7.00	30.0000	Dog Ear	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	$\begin{aligned} & L 2 \times 2 \times 5 / 16 \\ & L 3 \times 3 \times 1 / 4 \end{aligned}$
60.375	Corner						

Guy Data (cont'd)

Guy Elevation $f t$	Diagonal Grade	Diagonal Type	Upper Diagonal Size	Lower Diagonal Size	Is Sirap.	Pull-Off Grade	Pull-Off Type	Pull-OffSize
170.00	A572-50 $(50 \mathrm{ksi})$	Solid Round			No	A36 $(36 \mathrm{ksi})$	Equal Angle	L1 $1 / 2 \times 11 / 2 \times 3 / 16$
116.42	A572-50 $(50 \mathrm{ksi})$	Solid Round			No	A36 $(36 \mathrm{ksi})$ 60.38	A572-50 $(50 \mathrm{ksi})$	Solid Round

Guy Data (cont'd)

Guy Elevation fi	Cable Weight A lb	Cable Weight B lb	Cable Weight C $1 b$	Cable Weight D lb	Tower Intercept A ft	Tower Intercept B ft	Tower Intercept C f	Tower Intercept D fi
170	180.38	180.38	180.38		3.12	3.12	3.12	
					$3.0 \mathrm{sec} / \mathrm{pulse}$	$3.0 \mathrm{sec} / \mathrm{pulse}$	$30 \mathrm{sec} / \mathrm{pulse}$	
116.417	123.58	123.58	123.58		2.15	2.15	2.15	
					$2.5 \mathrm{sec} /$ pulse	$2.5 \mathrm{sec} / \mathrm{pulse}$	$2.5 \mathrm{sec} / \mathrm{pulse}$	
60.375	104.01	104.01	104.01		1.53	1.53	1.53	
					$2.1 \mathrm{sec} / \mathrm{pulse}$	2.1 sec/pulse	2.1 sec/pulse	

RISATower	Job	117-23243.8	$\text { Page } 9 \text { of } 44$
	Project	Tolland Ave., CT	Date 01:32:09 12/29/17
Phone: FAX:	Client	CDT	Designed by FAN

Guy Data (cont'd)

G71) Elevation fi	Calc K Single Angles	Calc K Solid Rounds	Torque Arm		Pull Off		Diagonal	
			K_{x}	K_{y}	K_{x}	K_{y}	K_{x}	K_{y}
170	No	No	1	1	0.65	065	1	1
116.417	No	No	1	1	0.65	065	1	1
60.375	No	No			0.65	06.5	,	1

Guy Data (cont'd)

Gty Elevation ft	Torque-Arm				Pull Off				Diagonal			
	Bolt Size in	Number	Net Widll Dedict in	U	Bolt Size in	Number	Net Width Deduct in	U	Bolt Size in	Number	Net Width Deduct in	U
170	0.7500	2	0.0000	1	0.0000	0	0.0000	1	0.6250	0	0.0000	1
	A325N				A325N				A325N			
116.417	0.7500	2	0.0000	1	0.0000	0	0.0000	1	06250	0	0,0000	1
	A325N				A325N				A325N			
60.375	06250	0	0.0000	0.75	0.0000	0	0.0000	1	0.6250	0	0.0000	1
	A325N				A325N				A325N			

Guy Pressures

Guy Elevation n	Guy Location	z	q_{z}	q_{z} Ice	Ice Thickness
170	A	$f t$	85.00	$p s f$	psf

Guy-Mast Forces (Excluding Wind) - No Ice

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top Bottom $l b$	F_{x}	F_{ν}	$F=$	M_{x}	M_{y}	M_{z}
ft		-		$l b$	$l b$	$1 b$	$16-f t$	$l b-f t$	$16-f t$
170	A	49.9259	6498.03	-101.28	5009.66	-4137.32	-10123.16	1468527	-17533.82
			6360.00						
	A	49.9259	6498.03	101,28	5009,66	-4137.32	-10123.16	-14685.27	17533.82

RISATOwer	Job	117-23243.8	$\text { Page } 10 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: FAX:	Client	CDT	Designed by FAN

Guy Elevation	Guy Location	$\begin{aligned} & \text { Chord } \\ & \text { Angle } \end{aligned}$	Guy Tension Top Bottom $l b$	F_{x}	F_{p}	F_{z}	M_{x}	M_{y}	M_{z}
f		-		$1 b$	$l b$	$1 b$	$l b-f t$	$1 b-f i$	$1 b-f t$
			636000						
	B	49.9259	6498.07	369366	300966	198093	20246.31	1468527	000
			6360.00						
	B	49.9259	6498.03	353239	\$009 66	213637	-10123 16	.1468527	-17533.82
			636000						
	C	49.9259	649803	-3532 39	\$000 66	2156.37	. 10123.16	1468527	1753382
			636000						
	C	49.9259	6498.03	-3633.66	5009,66	1980.95	2024631	-14685 27	0,00
			636000						
			Sum:	0,00	30057.98	0.00	-0.00	0,00	000
116.417	A	39.1448	5328.01	-100.37	3400.60	-4100.44	-6871.68	14554.35	-11902.11
			5250.00						
	A	391448	5328.01	10037	340060	-4100.44	-6871.68	-14554.35	1190211
			5250.00						
	B	39.1448	5328.01	360127	3400.60	1963.29	1374337	14554.35	0.00
			5250.00						
	B	39.1448	5328.01	3500.89	3400.60	2137.14	-6871.68	-14554.35	-11902.11
			5250.00						
	C	391448	532801	-3500.89	3400.60	2137.14	-6871.68	14554.35	11902.11
			5250.00						
	C	39.1448	5328.01	-3601.27	340060	1963.29	13743.37	-14554.35	0.00
			5250.00						
			Sum:	0.00	20403.61	0.00	-0.00	0.00	0.00
60.375	A	22.8926	5290.46	0.00	2102.12	-4854.90	-4247.81	0.00	0.00
			5250.00						
	B	22.8926	529046	4204.47	2102.12	2427.45	2123.90	0.00	-3678.71
			525000						
	C	22.8926	5290.46	-4204.47	2102.12	2427.45	2123.90	-0.00	3678.71
			5250.00						
			Sum:	0.00	6306.36	0.00	0.00	0.00	0.00

Guy-Mast Forces (Excluding Wind) - Ice

Griy Elevation	Guy Location	Chord Angle	$\begin{gathered} \text { Guy Tension } \\ \text { Top } \\ \text { Bottom } \\ l b \end{gathered}$	F_{x}	F_{v}	$F=$	$M_{\text {x }}$	M_{ν}	M_{-}
$f i$		-		$1 b$	$l b$	$1 b$	$l b-f t$	$l b-f t$	$1 b-f t$
170	A	49.9259	11340.86	-166.93	9060.16	-6819.14	-18308.10	2420430	-31710.56
			9916.02						
	A	49.9259	11340.86	166.93	9060.16	-6819.14	-18308.10	-24204.30	3171056
			9916.02						
	B	49.9259	11340.86	5989.01	9060.16	3265.01	36616.20	24204.30	0.00
			9916.02						
	B	49.9259	11340.86	5822.09	9060.16	3554.13	-18308. 10	-24204.30	-31710.56
			9916.02						
	C	49.9259	11340.86	-5822.09	9060.16	3554.13	-18308.10	24204.30	31710.56
			9916.02						
	C	49.9259	11340.86	-5989.01	9060,16	3265.01	36616.20	-24204.30	0.00
			9916.02						
			Sum:	0.00	54360.96	0.00	-0.00	0.00	0.00
116.417	A	39.1448	9479.64	-171.09	6401.99	-6989.19	-12936.67	24807.90	-22406.97
			8596.54						
	A	39.1448	9479.64	171.09	6401.99	-6989.19	-12936.67	-24807.90	22406.97

RISATower	Job	117-23243.8	$\text { Page } 11 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: FAX:	Client	CDT	Designed by FAN

Guy Elevation	Guy Location	$\begin{aligned} & \text { Chord } \\ & \text { Angle } \end{aligned}$	Guy Tension Top Bottom $l b$	F_{x}	F_{F}	F_{z}	M_{x}	M_{y}	M_{\sim}
f		-		$l b$	$1 b$	$l b$	$l b-f t$	$t b-f t$	$l b-f t$
	D	39.1448	$\begin{aligned} & 859654 \\ & 9479.64 \\ & 859694 \end{aligned}$	6138.36	6401.99	334643	2587334	24807.90	000
	B	39.1448	$\begin{aligned} & 9479,64 \\ & 859654 \end{aligned}$	3967.27	6401.99	3642.76	-12936.67	. 248007.90	-22406.97
	C	39.1448	$\begin{aligned} & 9479.64 \\ & 8596.54 \end{aligned}$	-3967.27	6401.99	3642.76	-12936.67	24807.90	2240697
	C	39.1448	$\begin{aligned} & 947964 \\ & 859654 \end{aligned}$	-6138.36	6401.99	334643	25873.34	. 24807.90	0.00
			Sum:	0.00	38411.94	0.00	-0.00	0.00	0.00
60.375	A	22.8926	$\begin{aligned} & 8903.54 \\ & 849369 \end{aligned}$	0.00	3912.05	-8000.28	-7905.18	0.00	000
	B	22.8926	$\begin{aligned} & 890554 \\ & 8493.69 \end{aligned}$	6928.45	3912.05	4000. 14	3952.59	0.00	-6846 09
	C	22.8926	$\begin{aligned} & 8905.54 \\ & 8493.69 \end{aligned}$	-6928.45	3912.05	4000.14	395259	-0.00	6846.09
			Sum:	0.00	11736.15	-0,00	0.00	0.00	0.00

Guy-Mast Forces (Excluding Wind) - Service

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top Bottom $l b$	F_{x}	F_{y}	$F=$	M_{x}	M_{y}	M_{z}
$f t$		-		$l b$	16	$1 b$	$1 b-f t$	$l b-f t$	$1 b-f t$
170	A	49.9259	$\begin{aligned} & 6498.03 \\ & 6360.00 \end{aligned}$	-101.28	5009.66	-4137.32	-10123.16	14685.27	-17533.82
	A	49.9259	$\begin{aligned} & 6498.03 \\ & 6360.00 \end{aligned}$	10128	5009.66	-4137.32	-10123.16	-14685.27	17533.82
	B	49.9259	$\begin{aligned} & 6498.03 \\ & 6360.00 \end{aligned}$	3633.66	5009.66	1980.95	20246.31	14685.27	0.00
	B	49.9259	$\begin{aligned} & 6498.03 \\ & 6360.00 \end{aligned}$	3532.39	5009.66	2156.37	-10123.16	-14685.27	-17533.82
	C	49.9259	$\begin{aligned} & 6498.03 \\ & 6360.00 \end{aligned}$	-3532.39	5009.66	2156.37	-10123,16	14685.27	17533.82
	C	49.9259	$\begin{aligned} & 6498.03 \\ & 6360.00 \end{aligned}$	-3633.66	5009.66	1980.95	20246.31	-14685.27	0.00
			Sum:	0.00	30057.98	0.00	-0.00	0.00	0.00
116.417	A	39.1448	$\begin{aligned} & 5328.01 \\ & 5250.00 \end{aligned}$	-100.37	3400.60	-4100.44	-6871.68	14554.35	-11902.11
	A	39.1448	$\begin{aligned} & 5328.01 \\ & 5250.00 \end{aligned}$	100.37	3400.60	-4100.44	-6871.68	-14554.35	11902.11
	B	39.1448	$\begin{aligned} & 5328.01 \\ & 5250.00 \end{aligned}$	3601.27	3400.60	1963.29	13743.37	14554.35	0.00
	B	39.1448	$\begin{aligned} & 5328.01 \\ & 5250.00 \end{aligned}$	3500.89	3400.60	2137.14	-6871.68	-14554.35	-11902.11
	C	39.1448	$\begin{aligned} & 532801 \\ & 5250000 \end{aligned}$	-3500.89	3400.60	2137.14	-6871.68	14554.35	11902.11
	C	39.1448	$\begin{aligned} & 5328.01 \\ & 5250.00 \end{aligned}$	-3601.27	3400.60	1963.29	13743.37	-14554.35	0.00
			Sum:	0,00	20403.61	0.00	-0.00	0.00	0.00
60.375	A	22.8926	$\begin{aligned} & 5290.46 \\ & 5250.00 \end{aligned}$	0.00	2102.12	-4854.90	-4247.81	000	0.00
	B	22.8926	5290.46	4204.47	2102.12	2427,45	2123.90	0.00	-3678.71

RISATower	Job	117-23243.8	$\text { Page } 12 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: FAX:	Cllent	CDT	Designed by FAN

Guy Elevation	Guy Location	Chord Angle	$\begin{gathered} \text { Guy Tension } \\ \text { Top } \\ \text { Bottom } \\ l b \end{gathered}$	F_{x}	F_{v}	$F=$	M_{x}	M_{v}	M_{\sim}
$f t$		-		$l b$	$1 b$	lb	$1 b-f t$	$1 b-f t$	$l b-f t$
			\$25000						
	C	22.8926	\$290.46	-4304.47	2102.12	3427.43	2123,90	20,00	3678.71
			\$250.00						
			Sum:	0.00	630636	0.00	0.00	0.00	0.00

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement $f t$	Total Number	Number Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
$\begin{gathered} 15 / 8 \\ \text { (AT\&T) } \end{gathered}$	C	No	Ar (CaAa)	178,00-0.00	12	12	1.9800	1.9800		1.04
1 \$/8 Fiber (AT\&T)	C	No	$\operatorname{Ar}(\mathrm{CaAa})$	178,00 $=0,00$	3	3	1.9800	1.9800		1.04
Safety Line 3/8	A	No	Ar (CaAa)	$180.00=0.00$	1	1	03750	0.3750		0.22
Fiber (AT\&T)	C	No	$\operatorname{Ar}(\mathrm{CaAa})$	$178.00=0.00$	2	2	03750	0.3750		0.22
$\begin{gathered} \text { DC } \\ \text { (AT\&T) } \end{gathered}$	C	No	Ar (CaAa)	178.00-0.00	4	4	0.5800	0.5800		0.25

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation ft \& Face \& A_{R}

$f t^{2}$ \& A_{F}

$j t^{2}$ \& | $C_{A} A_{A}$ |
| :--- |
| In Face |
| $f_{1}{ }^{2}$ | \& $C_{4} A_{A}$ Out Face $f t^{2}$ \& Weight

$l b$

\hline \multirow[t]{3}{*}{T1} \& \multirow[t]{3}{*}{180.00-160.00} \& A \& 0.000 \& 0.000 \& 0.750 \& 0.000 \& 4.40

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 58.986 \& 0.000 \& 306.72

\hline \multirow[t]{3}{*}{T2} \& \multirow[t]{3}{*}{160.00-140,00} \& A \& 0.000 \& 0.000 \& 0.750 \& 0.000 \& 4.40

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 65.540 \& 0.000 \& 340.80

\hline \multirow[t]{3}{*}{T3} \& \multirow[t]{3}{*}{140.00-120.00} \& A \& 0.000 \& 0.000 \& 0.750 \& 0.000 \& 4.40

\hline \& \& B \& 0.000 \& 0.000 \& 0000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 65.540 \& 0.000 \& 340.80

\hline \multirow[t]{3}{*}{T4} \& \multirow[t]{3}{*}{120,00-100,00} \& A \& 0.000 \& 0.000 \& 0.750 \& 0.000 \& 4.40

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0000 \& 65.540 \& 0.000 \& 340.80

\hline \multirow[t]{3}{*}{T5} \& \multirow[t]{3}{*}{100.00-80.00} \& A \& 0.000 \& 0.000 \& 0.750 \& 0.000 \& 4.40

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 65.540 \& 0.000 \& 340.80

\hline \multirow[t]{3}{*}{T6} \& \multirow[t]{3}{*}{80.00-60.00} \& A \& 0.000 \& 0.000 \& 0.750 \& 0.000 \& 4.40

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 000

\hline \& \& C \& 0.000 \& 0.000 \& 65.540 \& 0,000 \& 340.80

\hline \multirow[t]{3}{*}{T7} \& \multirow[t]{3}{*}{60,00-40.00} \& A \& 0.000 \& 0,000 \& 0.750 \& 0,000 \& 4.40

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 65.540 \& 0.000 \& 340.80

\hline \multirow[t]{3}{*}{T8} \& \multirow[t]{3}{*}{40.00-20.00} \& A \& 0.000 \& 0.000 \& 0.750 \& 0.000 \& 4.40

\hline \& \& B \& 0,000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 65.540 \& 0.000 \& 340.80

\hline \multirow[t]{2}{*}{T9} \& \multirow[t]{2}{*}{20.00-5.00} \& A \& 0.000 \& 0.000 \& 0.563 \& 0.000 \& 3.30

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline
\end{tabular}

RISATower	Job	117-23243.8	$\text { Page } \quad \text { 13 of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: FAX:	Client	CDT	Designed by FAN

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Tower Section \& \begin{tabular}{l}
Tower \\
Elevation \(f t\)
\end{tabular} \& Face \& \(A_{R}\)
\(f^{2}\) \& \(A_{F}\)

$f r^{2}$ \& $$
\begin{gathered}
C_{4} A_{A} \\
\text { In Face }
\end{gathered}
$$

$$
f t^{2}
$$ \& \[

$$
\begin{gathered}
\text { C. }_{4} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2}
\end{gathered}
$$
\] \& Weight

lb

\hline \multirow{4}{*}{T10} \& \multirow{4}{*}{\$.000000} \& C \& 0000 \& 0000 \& 49.133 \& 0.000 \& 25s 60

\hline \& \& A \& 0000 \& 0000 \& 018 \& 0.000 \& 110

\hline \& \& B \& 0.000 \& 0000 \& 00000 \& 0.000 \& 0.00

\hline \& \& C \& 0.0000 \& 0,000 \& 16.385 \& 0.000 \& 85.30

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation $f i$ \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Ice
Thickness
in \& A_{R}

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $$
\begin{aligned}
& C_{A} A_{A} \\
& \text { In Face }
\end{aligned}
$$

$$
f t^{2}
$$ \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2}
\end{gathered}
$$
\] \& Weight

lb

\hline \multirow[t]{3}{*}{TI} \& \multirow[t]{3}{*}{$18000-160.00$} \& A \& \multirow[t]{3}{*}{2.356} \& 0,000 \& 0.000 \& 10.175 \& 0.000 \& 161.65

\hline \& \& B \& \& 0.000 \& 0000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 190.704 \& 0.000 \& 3330.61

\hline \multirow[t]{3}{*}{T2} \& \multirow[t]{3}{*}{160.00-140.00} \& A \& \multirow[t]{3}{*}{2.327} \& 0.000 \& 0.000 \& 10.058 \& 0,000 \& 158.03

\hline \& \& B \& \& 0,000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 211.126 \& 0.000 \& 3658.35

\hline \multirow[t]{3}{*}{T3} \& \multirow[t]{3}{*}{$140.00-120.00$} \& A \& \multirow[t]{3}{*}{2.294} \& 0.000 \& 0.000 \& 9.926 \& 0.000 \& 153.99

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 210.262 \& 0.000 \& 3610.79

\hline \multirow[t]{3}{*}{T4} \& \multirow[t]{3}{*}{120.00-100.00} \& A \& \multirow[t]{3}{*}{2.256} \& 0.000 \& 0.000 \& 9.774 \& 0.000 \& 149.42

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 209.269 \& 0.000 \& 3556.40

\hline \multirow[t]{3}{*}{T5} \& \multirow[t]{3}{*}{100.00-80.00} \& A \& \multirow[t]{3}{*}{2.211} \& 0.000 \& 0.000 \& 9.594 \& 0.000 \& 144.12

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 208.099 \& 0.000 \& 3492.61

\hline \multirow[t]{3}{*}{T6} \& \multirow[t]{3}{*}{80.00-60.00} \& A \& \multirow[t]{3}{*}{2.156} \& 0.000 \& 0.000 \& 9.375 \& 0.000 \& 137.76

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 206.667 \& 0.000 \& 3415.04

\hline \multirow[t]{3}{*}{T7} \& \multirow[t]{3}{*}{60.00-40.00} \& A \& \multirow[t]{3}{*}{2.085} \& 0.000 \& 0.000 \& 9.089 \& 0.000 \& 129.71

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 204.808 \& 0.000 \& 331507

\hline \multirow[t]{3}{*}{T8} \& \multirow[t]{3}{*}{40.00-20.00} \& A \& \multirow[t]{3}{*}{1.981} \& 0.000 \& 0.000 \& 8.674 \& 0.000 \& 11845

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 202.107 \& 0.000 \& 3171.37

\hline \multirow[t]{3}{*}{T9} \& \multirow[t]{3}{*}{20.00-5.00} \& A \& \multirow[t]{3}{*}{1.815} \& 0.000 \& 0.000 \& 6.007 \& 0.000 \& 76.14

\hline \& \& B \& \& 0.000 \& 0000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 148.349 \& 0.000 \& 2209.43

\hline \multirow[t]{3}{*}{T10} \& \multirow[t]{3}{*}{$5.00-0.00$} \& A \& \multirow[t]{3}{*}{1.545} \& 0.000 \& 0.000 \& 1.733 \& 0.000 \& 19.22

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 47.708 \& 0.000 \& 647.77

\hline
\end{tabular}

Feed Line Center of Pressure

\begin{tabular}{|c|c|c|c|c|c|}
\hline Section \& Elevation

$f t$ \& $C P_{N}$
in \& $C P_{Z}$

in \& $$
\begin{gathered}
C P_{x} \\
I c e \\
\text { in }
\end{gathered}
$$ \& \[

$$
\begin{gathered}
C P_{Z} \\
\text { Ice } \\
\text { in }
\end{gathered}
$$
\]

\hline T1 \& 180.00-160.00 \& -0.0254 \& 2.4288 \& -0.0752 \& 1.0915

\hline T2 \& 160.00-140.00 \& -0.0234 \& 2.4928 \& -0.0716 \& 1.1732

\hline T3 \& 140.00-120.00 \& -0.0234 \& 2.4928 \& -0.0719 \& 1.1947

\hline T4 \& 120.00-100.00 \& -0.0234 \& 2.4928 \& -0.0722 \& 1.2192

\hline T5 \& 100.00-80.00 \& -0.0234 \& 2.4928 \& -0.0725 \& 1.2480

\hline T6 \& 80.00-60.00 \& -0.0234 \& 2.4928 \& -0.0728 \& 1.2831

\hline T7 \& 60.00-40.00 \& -0.0234 \& 2.4928 \& -0.0730 \& 1.3283

\hline T8 \& 40,00-20,00 \& -0.0234 \& 24928 \& -0.0730 \& 1.3936

\hline
\end{tabular}

RISATower	Job	117-23243.8	$\text { Page } 14 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: FAX:	Client	CDT	Designed by FAN

Section	Elevation	$C P_{x}$ in	$C P_{7}$ in	$\begin{gathered} C P_{x} \\ I c e \\ \text { in } \end{gathered}$	$\begin{gathered} C P_{Z} \\ \text { Ice } \\ \text { in } \end{gathered}$
T9	20000.300	${ }^{-0.0235}$	2.3044	-00744	13408
T10	\$,000.00	-0.0231	24768	,00161	03868

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{u} \\ \text { No Ice } \\ \hline \end{gathered}$	$\begin{aligned} & K_{a} \\ & \text { Ice } \\ & \hline \end{aligned}$
TI	1	$15 / 8$	$\begin{array}{r} 160.00= \\ 178.00 \end{array}$	0.6000	0.2654
T1	2	$15 / 8$ Fiber	160.00 178.00	0.6000	0.2654
TI	3	Safety Line 3/8	160.00 180.00	0.6000	0.2654
T1	4	Fiber	160.00 178.00	0.6000	0.2654
T1	5	DC	160.00 178.00	0.6000	0.2654
T2	1	$15 / 8$	140.00 160.00	0.6000	0.2713
T2	2	$15 / 8$ Fiber	$140.00-$ 160.00	0.6000	0.2713
T2	3	Safety Line 3/8	140.00 160.00	0.6000	0.2713
T2	4	Fiber	$140.00-$ 160.00	0.6000	0.2713
T2	5	DC	$140.00-$ 160.00	0.6000	0.2713
T3	1	$15 / 8$	$120.00-$ 140.00	0.6000	0.2781
T3	2	$15 / 8$ Fiber	$120.00-$ 140.00	0.6000	0.2781
T3	3	Safety Line 3/8	$120.00-$ 140.00	0.6000	0.2781
T3	4	Fiber	120.00-	0.6000	0.2781
T3	5	DC	120.00-	0.6000	02781
T4	1	$15 / 8$	$100.00-$ 120.00	0.6000	0.2859
T4	2	$15 / 8$ Fiber	$100.00-12000$	0.6000	0.2859
T4	3	Safety Line 3/8	$100.00-$ 120.00	0.6000	0.2859
T4	4	Fiber	$100.00-$ 120.00	0.6000	0.2859
T4	5	DC	$100.00-$ 12000	0.6000	0.2859
T5	1	15/8	80,00-100.00	0.6000	0.2952
T5	2	$15 / 8$ Fiber	80.00-100.00	0.6000	0.2952
T5	3	Safety Line 3/8	$80.00-100.00$	0.6000	0.2952
T5	4	Fiber	80.00-100.00	0.6000	0.2952
T5	5	DC	80.00-100.00	0.6000	0.2952
T6	1	$15 / 8$	60.00-80.00	0.6000	0.3065
T6	2	15/8 Fiber	60,00-80,00	0.6000	0.3065
T6	3	Safety Line 3/8	60.00-80.00	0.6000	0.3065

RISATower	Job	117-23243.8	$\text { Page } 15 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone; FAX:	Client	CDT	Designed by FAN

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
T6	4	Fiber	$6000=80.00$	060000	0.3063
T6	3	DC	$6000-8000$	060000	03063
T7	1	1 5/2	$4000=6000$	06000	03214
T7	2	$13 / 2$ Fiber	$4000-6000$	060000	03214
T7	3	Safety Line 3/8:	$40.00-6000$	06000	03214
T7	4	Fiber	$4000-6000$	060000	03214
T7	\$	DC	40.00-60.00	06000	0.3214
T8	1	$13 / 8$	2000.4000	0.6000	0.3431
T8	2	$15 / 8$ Fiber	$2000-4000$	06000	03431
T8	3	Satey Line 3/8,	2000-4000	06000	03431
T8	4	Fiber	$20.00-40.00$	06.000	0.3431
T8	5	DC	20.00-40.00	0.6000	03431
T9	1	$15 / 8$	$5.00-20.00$	0.6000	0.3992
T9	2	15/8 Fibor	\$.00-20.00	0.6000	0.3992
T9	3	Safoty Line 3/8	500-20.00	06000	0.3992
T9	4	Fiber	500-20.00	06000	0.3992
T9	5	DC	5,00-2000	0.6000	0.3992
T10	1	$15 / 8$	0,00-5,00	0.6000	0.0344
T10	2	$15 / 8$ Fiber	0.00-5.00	0.6000	0.0344
T10	3	Safety Line 3/8	0,00-5,00	0,6000	0.0344
T10	4	Fiber	0.00-5.00	06000	0.0344
T10	5	DC	000-5.00	0.6000	0.0344

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert \(f t\) \(f t\) \(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{1}$ Front |
| :--- |
| $f t^{2}$ | \& CA A_{A}

Side

$f l^{2}$ \& Weight

$l b$

\hline \multirow[t]{3}{*}{Sector Frame Mount (AT\&T)} \& A \& From Leg \& 1.50 \& 0.0000 \& 177.00 \& No Ice \& 18.00 \& 9.00 \& 465.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 22.00 \& 11.00 \& 600.00

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 23.20 \& 23.20 \& 735.00

\hline \multirow[t]{3}{*}{Sector Frame Mount (AT\&T)} \& B \& From Leg \& 1.50 \& 0.0000 \& 177.00 \& No Ice \& 18.00 \& 9.00 \& 465.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 22.00 \& 11.00 \& 600.00

\hline \& \& \& 0.00 \& \& \& 1 Ice \& 23.20 \& 23.20 \& 735,00

\hline \multirow[t]{3}{*}{Sector Frame Mount (AT\&T)} \& C \& From Leg \& 1.50 \& 0.0000 \& 177.00 \& No lce \& 18.00 \& 9.00 \& 465.00

\hline \& \& \& 0.00 \& \& \& 1/2' Ice \& 22.00 \& 11.00 \& 600.00

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 23.20 \& 23.20 \& 735.00

\hline \multirow[t]{3}{*}{Lightning Rod} \& C \& None \& \& 0.0000 \& 180.00 \& No Ice \& 1.00 \& 1.00 \& 40.00

\hline \& \& \& \& \& \& 1/2" Ice \& 2.02 \& 2.02 \& 49.26

\hline \& \& \& \& \& \& 1" Jce \& 3.05 \& 3.05 \& 64,89

\hline \multirow[t]{3}{*}{| Powerwave 7770 |
| :--- |
| (AT\&T) |} \& A \& From Leg \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 5.51 \& 2.93 \& 35.00

\hline \& \& \& 0.00 \& \& \& 1/2' Ice \& 6.21 \& 3.64 \& 105.10

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 6.93 \& 4.33 \& 195.10

\hline \multirow[t]{3}{*}{Powerwave 7770 (AT\&T)} \& B \& From Leg \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 5.51 \& 2.93 \& 35.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.21 \& 3.64 \& 105.10

\hline \& \& \& 0.00 \& \& \& 1" Jce \& 6.93 \& 4,33 \& 195.10

\hline \multirow[t]{3}{*}{| Powerwave 7770 |
| :--- |
| (AT\&T) |} \& C \& From Leg \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 5.51 \& 2,93 \& 35.00

\hline \& \& \& 0.00 \& \& \& 1/2'Ice \& 6.21 \& 3.64 \& 105,10

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 6.93 \& 4.33 \& 195.10

\hline \multirow[t]{2}{*}{| KMW AM-X-CD-14-65-00T |
| :--- |
| (AT\&T) |} \& A \& From Leg \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 4.99 \& 2.83 \& 36.40

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 5.62 \& 3.44 \& 104.80

\hline
\end{tabular}

RISATOWer	Job	Page	
	Project	117-23243.8	16 of 44
Phone: FAX:	Tolland Ave., CT	Date 01:32:09 12/29/17	
	Client	CDT	FAN

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
ff \\
\(f\) \\
\(f t\)
\end{tabular} \& Azimuth Adjustment \& Placement \& \& \(C_{A} A_{A}\) Front \(f r^{2}\) \& \(C_{i} A_{A}\) Side \(f t^{2}\) \& Weight

$l b$

\hline \& \& \& 0.00 \& \& \& 1 "lce \& 6.27 \& 4.05 \& 191.70

\hline \multirow[t]{3}{*}{Powerwave P65-17-XLH:RR (AT\&T)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Lig} \& 3.00 \& 0,0000 \& 177.00 \& No lce \& 11.47 \& 680 \& 62.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.60 \& 812 \& 19370

\hline \& \& \& 0.00 \& \& \& 1 lce \& 13.90 \& 935 \& 35630

\hline \multirow[t]{3}{*}{Commscope SBNH-1D6S6SC (AT\&T)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 00000 \& 177.00 \& No lce \& 11.45 \& 7.70 \& \$1.80

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 12.67 \& 8.99 \& 191.20

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ lce \& 13.89 \& 10.22 \& 362.10

\hline \multirow[t]{3}{*}{| Ericsson RRUSII |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 177.00 \& No.lce \& 2.78 \& 1.19 \& 55.00

\hline \& \& \& 0,00 \& \& \& $1 / 2{ }^{\text {" }}$ Ice \& 3.16 \& 1.47 \& 99.60

\hline \& \& \& 000 \& \& \& 1 Ice \& 3.57 \& 1.79 \& 157.10

\hline \multirow[t]{3}{*}{Ericsson RRUSI। (AT\&T)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 177.00 \& No lce \& 2.78 \& 1.19 \& 55.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.16 \& 1.47 \& 9960

\hline \& \& \& 0.00 \& \& \& 1 Ice \& 3.57 \& 1.79 \& 157.10

\hline \multirow[t]{3}{*}{| Ericsson RRUSII |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 2.78 \& 1.19 \& 55.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.16 \& 1.47 \& 99.60

\hline \& \& \& 0.00 \& \& \& 1 Ice \& 3.57 \& 1.79 \& 157.10

\hline \multirow[t]{3}{*}{(2) Ericsson RRUS32 (AT\&T)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 177.00 \& No lce \& 2.69 \& 1.57 \& 60.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.09 \& 1.93 \& 103.90

\hline \& \& \& 0.00 \& \& \& $1{ }^{\text {" Ice }}$ \& 3.52 \& 2.31 \& 161.20

\hline \multirow[t]{3}{*}{(2) Ericsson RRUS32 (AT\&T)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 2.69 \& 1.57 \& 60.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.09 \& 1.93 \& 103.90

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.52 \& 2.31 \& 161.20

\hline \multirow[t]{3}{*}{(2) Ericsson RRUS32 (AT\&T)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 2.69 \& 1.57 \& 60.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.09 \& 1.93 \& 103.90

\hline \& \& \& 0.00 \& \& \& 1 Ice \& 3.52 \& 2,31 \& 161.20

\hline \multirow[t]{3}{*}{(2) Kaelus LGP21901 (AT\&T)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 0.23 \& 0.11 \& 10.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.35 \& 0.20 \& 15.90

\hline \& \& \& 0.00 \& \& \& 1 'lce \& 0.52 \& 0.33 \& 26.90

\hline \multirow[t]{3}{*}{(2) Kaelus LGP21901 (AT\&T)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 0.23 \& 0.11 \& 10.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.35 \& 020 \& 15.90

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 0.52 \& 0.33 \& 26.90

\hline \multirow[t]{3}{*}{(2) Kaelus LGP21901 (AT\&T)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 0.23 \& 0.11 \& 10.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.35 \& 0.20 \& 15.90

\hline \& \& \& 0.00 \& \& \& 1" lce \& 0.52 \& 0.33 \& 26.90

\hline \multirow[t]{3}{*}{(2) Powerwave LGP21401 (AT\&T)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 1.67 \& 0.47 \& 31.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.96 \& 0.67 \& 55.30

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.30 \& 0.90 \& 89.40

\hline \multirow[t]{3}{*}{(2) Powerwave LGP21401 (AT\&T)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 1.67 \& 0.47 \& 31.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.96 \& 0.67 \& 55.30

\hline \& \& \& 0.00 \& \& \& 1 Ice \& 2.30 \& 0.90 \& 89.40

\hline \multirow[t]{3}{*}{(2) Powerwave LGP21401 (AT\&T)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 1.67 \& 0.47 \& 31.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.96 \& 0.67 \& 55.30

\hline \& \& \& 0.00 \& \& \& 1 Ice \& 2.30 \& 0,90 \& 89.40

\hline \multirow[t]{3}{*}{CCI TPA-65R-LCUUUU-H8 (AT\&T)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 13.80 \& 882 \& 81.60

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 14.51 \& 1008 \& 248.40

\hline \& \& \& 0,00 \& \& \& 1" Ice \& 15.73 \& 11.30 \& 447.70

\hline \multirow[t]{3}{*}{| CCI TPA-65R-LCUUUU-H8 |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 13.80 \& 8.82 \& 81.60

\hline \& \& \& 0,00 \& \& \& 1/2" Ice \& 14.51 \& 10.08 \& 248.40

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 15.73 \& 11.30 \& 447.70

\hline \multirow[t]{3}{*}{| Quintel QS46512-2 |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 5.55 \& 5.08 \& 75.00

\hline \& \& \& 0,00 \& \& \& 1/2" Ice \& 6.22 \& 5.75 \& 170.20

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 6.92 \& 6.43 \& 28630

\hline (2) Powerwave \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0,0000 \& 177.00 \& No Ice \& 0.41 \& 0.43 \& 25.40

\hline DBC0061F1V51-2 \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.57 \& 0.59 \& 37.50

\hline (AT\&T) \& \& \& 0.00 \& \& \& 1" Ice \& 0.77 \& 0,79 \& 56.60

\hline (2) Powerwave \& B \& From Leg \& 3.00 \& 0.0000 \& 177.00 \& No Ice \& 0.41 \& 0.43 \& 25.40

\hline DBC0061F1V51-2 \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.57 \& 0.59 \& 37.50

\hline
\end{tabular}

RISATOwer	Job	Page	
	Project	$117-23243.8$	17 of 44
	Tolland Ave., CT	Date	
	Client	CDT	Designed by FAN

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Verı \\
fi \\
\(f i\) \\
fi
\end{tabular} \& Azimuh Adjustment \& Placement \& \& \& C.t \(A_{t}\)
Side

$t t^{2}$ \& Weight

lb

\hline (AT\&T) \& \& \& 000 \& \& \& 1 19e \& 0.77 \& 079 \& 3660

\hline (2) Powerwave \& C \& Fram Les \& 300 \& 00000 \& 177.00 \& No lee \& 0.41 \& 0.43 \& 25.40

\hline DBC0061FIVSI-2 \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.57 \& 039 \& 37.50

\hline (AT\&T) \& \& \& 000 \& \& \& 1 lce \& 077 \& 079 \& 3660

\hline
\end{tabular}

Tower Pressures - No Ice

$$
G_{H}=0.850
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
fi
\end{tabular} \& 2
\(n\) \& \(K_{z}\) \& \(q=\)
\(p s!\) \& \(A_{i}\)

$i i^{2}$ \& F
a
c
e \& A_{F}

$f t^{2}$ \& A_{R}

$f i f^{2}$ \& $A_{\text {leg }}$

$f i^{2}$ \& \[
$$
\begin{gathered}
\operatorname{Leg} \\
\%
\end{gathered}
$$

\] \& | C. A_{4} |
| :--- |
| /II |
| Face |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Ollt |
| Face |
| $f i^{2}$ |

\hline T1 \& \multirow[t]{3}{*}{170.00} \& \multirow[t]{3}{*}{1.15} \& \multirow[t]{3}{*}{24} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 0.750 \& 0.000

\hline 180.00-160.00 \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 0,000 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 58.986 \& 0.000

\hline T2 \& \multirow[t]{3}{*}{150.00} \& \multirow[t]{3}{*}{1.11} \& \multirow[t]{3}{*}{23} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 0.750 \& 0.000

\hline 160.00-140.00 \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 65.540 \& 0.000

\hline T3 \& \multirow[t]{3}{*}{130.00} \& \multirow[t]{3}{*}{1.065} \& \multirow[t]{3}{*}{22} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12,348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 0.750 \& 0.000

\hline 140.00-120.00 \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 65.540 \& 0.000

\hline T4 \& \multirow[t]{3}{*}{110.00} \& \multirow[t]{3}{*}{1.016} \& \multirow[t]{3}{*}{21} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12,348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 0.750 \& 0.000

\hline 120,00-100,00 \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 65.540 \& 0.000

\hline T5 \& \multirow[t]{3}{*}{90.00} \& \multirow[t]{3}{*}{0.959} \& \multirow[t]{3}{*}{20} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 0.750 \& 0.000

\hline 100.00-80.00 \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 65.540 \& 0.000

\hline \multirow[t]{3}{*}{T6 80.00-60.00} \& \multirow[t]{3}{*}{70.00} \& \multirow[t]{3}{*}{0.892} \& \multirow[t]{3}{*}{19} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 0.750 \& 0,000

\hline \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12,348 \& \& 63.05 \& 65.540 \& 0,000

\hline \multirow[t]{3}{*}{T7 60.00-40.00} \& \multirow[t]{3}{*}{50,00} \& \multirow[t]{3}{*}{0.811} \& \multirow[t]{3}{*}{17} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12,348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 0.750 \& 0.000

\hline \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 65.540 \& 0.000

\hline \multirow[t]{3}{*}{T8 40,00-20,00} \& \multirow[t]{3}{*}{30,00} \& \multirow[t]{3}{*}{0.701} \& \multirow[t]{3}{*}{15} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 0.750 \& 0,000

\hline \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0,000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 65.540 \& 0.000

\hline \multirow[t]{3}{*}{T9 20.00-5.00} \& \multirow[t]{3}{*}{1250} \& \multirow[t]{3}{*}{0.7} \& \multirow[t]{3}{*}{15} \& \multirow[t]{3}{*}{56.094} \& A \& 2.038 \& 9.126 \& \multirow[t]{3}{*}{7.188} \& 64.38 \& 0.563 \& 0.000

\hline \& \& \& \& \& B \& 2.038 \& 9.126 \& \& 64.38 \& 0,000 \& 0.000

\hline \& \& \& \& \& C \& 2.038 \& 9.126 \& \& 64,38 \& 49.155 \& 0.000

\hline T10 5.00-0.00 \& \multirow[t]{3}{*}{2.50} \& \multirow[t]{3}{*}{0.7} \& \multirow[t]{3}{*}{15} \& \multirow[t]{3}{*}{10.019} \& A \& 0.785 \& 3.127 \& \multirow[t]{3}{*}{2.584} \& 66.05 \& 0.188 \& 0.000

\hline \& \& \& \& \& B \& 0,785 \& 3.127 \& \& 66.05 \& 0.000 \& 0,000

\hline \& \& \& \& \& C \& 0.785 \& 3.127 \& \& 66.05 \& 16.385 \& 0.000

\hline
\end{tabular}

Tower Pressure - With Ice

RISATower	Job	117-232438	${ }^{\text {Page }} 18$ of 44
	Project		Date
		Tolland Ave., CT	01:32:09 12/29/17
	Client	CDT	$\begin{array}{\|r\|} \hline \text { Designed by } \\ \text { FAN } \\ \hline \end{array}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation
\(\qquad\) \\
fi
\end{tabular} \& \(z\)
\(f t\) \& \(K_{Z}\) \& \(q_{z}\)
\(p s f\) \& \(t_{Z}\)
in \& \(A_{G}\)

${f f^{2}}^{2}$ \& F
a
c
e \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{\text {leg }}$

$f t^{2}$ \& $$
\begin{gathered}
\text { Leg } \\
\%
\end{gathered}
$$ \& $C_{A} A_{A}$ In Face $f_{t}{ }^{2}$ \& $C_{A} A_{A}$ Out Face f^{2}

\hline T1 \& \multirow[t]{3}{*}{17000} \& \multirow[t]{3}{*}{1.13} \& \multirow[t]{3}{*}{6} \& \multirow[t]{3}{*}{23367} \& \multirow[t]{3}{*}{82.646} \& A \& 2853 \& 57862 \& \multirow[t]{3}{*}{25292} \& \& 10173 \& \multirow[t]{2}{*}{0000}

\hline 180.00-160.00 \& \& \& \& \& \& \multirow[t]{2}{*}{A
B

C} \& $$
\begin{aligned}
& \hline 2853 \\
& 2853
\end{aligned}
$$ \& 57862 \& \& \[

41.66
\] \& 0.000 \&

\hline \& \& \& \& \& \& \& $$
2853
$$ \& \$7862 \& \& 41.66 \& 190704 \& 0000

\hline T 2 \& \multirow[t]{3}{*}{15000} \& \multirow[t]{3}{*}{1.11} \& \multirow[t]{3}{*}{6} \& \multirow[t]{3}{*}{23270} \& \multirow[t]{3}{*}{22 348} \& A \& 2853 \& 57.296 \& \multirow[t]{2}{*}{25.096} \& 41.72 \& 10058 \& 0000

\hline $16000-14000$ \& \& \& \& \& \& B \& 2853 \& \$7296 \& \& 41.72 \& 0000 \& 0000

\hline \& \& \& \& \& \& C \& 2853 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \$ 7.296 \\
& \$ 6.658
\end{aligned}
$$} \& \multirow{3}{*}{24.876} \& 41.72 \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
211.126 \\
9926
\end{array}
$$
\]} \& 0000

\hline T3 \& \multirow[t]{3}{*}{13000} \& \multirow[t]{3}{*}{1.063} \& \multirow[t]{3}{*}{6} \& \multirow[t]{3}{*}{3.2939} \& \multirow[t]{3}{*}{22.438} \& A \& 2853 \& \& \& 41.80 \& \& \multirow[t]{2}{*}{0,000
0,000}

\hline 140.00-12000 \& \& \& \& \& \& \multirow[t]{2}{*}{B} \& 2853 \& 56.658
56.658 \& \& 41.80 \& 0000 \&

\hline \& \& \& \& \& \& \& 2.853 \& 56.658 \& \multirow{3}{*}{24.623} \& 41.80 \& \multirow[t]{2}{*}{$$
\begin{array}{r}
210262 \\
9.774
\end{array}
$$} \& \multirow[t]{2}{*}{0,000

0,000}

\hline T4 \& \multirow[t]{3}{*}{110.000} \& \multirow[t]{3}{*}{1.016} \& \multirow[t]{3}{*}{6} \& \multirow[t]{3}{*}{22559} \& \multirow[t]{3}{*}{82.311} \& A \& 2853 \& 55.923 \& \& 41.89 \& \&

\hline 120,00-100,00 \& \& \& \& \& \& B \& 2.853 \& 55.923 \& \& 41.89 \& 0.000 \& 0,000

\hline \& \& \& \& \& \& C \& 2.853 \& 55.923 \& \& 41.89 \& \multirow[t]{2}{*}{$$
\begin{array}{r}
209.269 \\
9.594
\end{array}
$$} \& 0,000

\hline T5 100.00-80.00 \& \multirow[t]{3}{*}{90.00} \& \multirow[t]{3}{*}{0.959} \& \multirow[t]{3}{*}{5} \& \multirow[t]{3}{*}{22111} \& \multirow[t]{3}{*}{82.162} \& \& 2.853 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 55058 \\
& 55.058
\end{aligned}
$$} \& \multirow[t]{2}{*}{24.324} \& 42.00 \& \& 0,000

\hline \& \& \& \& \& \& A \& 2.853 \& \& \& 42.00 \& $$
\begin{aligned}
& 9594 \\
& 0.000
\end{aligned}
$$ \& 0.000

\hline \& \& \& \& \& \& C \& 2.853 \& 55.058 \& \multirow{3}{*}{23.958} \& \multirow[t]{2}{*}{42.00
42.14} \& 208.099 \& \multirow[t]{2}{*}{0.000
0.000}

\hline T6 $80.00-60.00$ \& \multirow[t]{3}{*}{70.00} \& \multirow[t]{3}{*}{0.892} \& \multirow[t]{2}{*}{5} \& \multirow[t]{3}{*}{2.1562} \& \multirow[t]{3}{*}{81.979} \& A \& 2853 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 53.998 \\
& 53.998
\end{aligned}
$$} \& \& \& 9.375 \&

\hline \& \& \& \& \& \& B \& 2.853 \& \& \& 42.14 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 2.853 \& $$
\begin{aligned}
& 53.998 \\
& 53.998
\end{aligned}
$$ \& \& 42.14 \& 206.667 \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 0.000 \\
& 0.000
\end{aligned}
$$
\]}

\hline T7 60.00-40.00 \& \multirow[t]{3}{*}{50.00} \& \multirow[t]{3}{*}{0.811} \& \multirow[t]{2}{*}{4} \& \multirow[t]{2}{*}{2.0849} \& \multirow[t]{2}{*}{81.741} \& A \& 2853 \& 52.620 \& \multirow[t]{2}{*}{23.482} \& 42.33 \& 9.089 \&

\hline \& \& \& \& \& \& B \& 2.853 \& 52.620 \& \& 42.33 \& 0.000 \& $$
\begin{aligned}
& 0.000 \\
& 0.000
\end{aligned}
$$

\hline \& \& \& \& \multirow{4}{*}{1.9810} \& \multirow{3}{*}{81.395} \& C \& 2.853 \& 52.620 \& \& 42.33 \& 204.808 \& 0.000

\hline T8 40.00-20.00 \& \multirow[t]{3}{*}{30.00} \& \multirow[t]{3}{*}{0.701} \& \multirow[t]{2}{*}{4} \& \& \& \multirow[t]{2}{*}{A} \& 2.853 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 50.614 \\
& 50.614
\end{aligned}
$$} \& \multirow[t]{2}{*}{22.790} \& \multirow[t]{2}{*}{42.62

42.62} \& 8.674 \& 0.000

\hline \& \& \& \& \& \& \& 2.853 \& \& \& \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 2.853 \& 50.614 \& \& 42.62 \& 202.107 \& \multirow[t]{2}{*}{0.000}

\hline T9 20.00-5.00 \& \multirow[t]{3}{*}{12.50} \& \multirow[t]{3}{*}{0.7} \& \multirow[t]{2}{*}{4} \& \multirow[t]{3}{*}{1.8150} \& \multirow[t]{2}{*}{60.631} \& \multirow[t]{2}{*}{A} \& 2.038 \& \multirow[t]{2}{*}{34.390

34.390} \& 16.262 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 44.64 \\
& 44.64
\end{aligned}
$$} \& 6.007 \&

\hline \& \& \& \& \& \& \& 2.038 \& \& \multirow{5}{*}{5.362} \& \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 2.038 \& \multirow[t]{4}{*}{$$
\begin{aligned}
& 34.390 \\
& 10.207 \\
& 10.207 \\
& 10.207
\end{aligned}
$$} \& \& \[

$$
\begin{aligned}
& 44.64 \\
& 44.64
\end{aligned}
$$
\] \& 148.349 \& 0.000

\hline T10 5.00-0.00 \& \multirow[t]{3}{*}{2.50} \& \multirow[t]{3}{*}{0.7} \& \multirow[t]{3}{*}{4} \& \multirow[t]{3}{*}{1.5452} \& \multirow[t]{3}{*}{11.383} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \mathbf{A} \\
& \mathbf{B} \\
& \mathbf{C}
\end{aligned}
$$} \& 0.785 \& \& \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 48.78 \\
& 48.78 \\
& 48.78
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 1.733 \\
& 0.000
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 0.000 \\
& 0.000
\end{aligned}
$$
\]}

\hline \& \& \& \& \& \& \& 0.785 \& \& \& \& \&

\hline \& \& \& \& \& \& \& 0.785 \& \& \& \& 47.708 \& $$
\begin{aligned}
& 0.000 \\
& 0.000
\end{aligned}
$$

\hline
\end{tabular}

Tower Pressure - Service

$$
G_{H}=0.850
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
ft
\end{tabular} \& \(z\)
\(f t\) \& \(K_{Z}\) \& \(q_{z}\)
psf \& \(A_{G}\)

$f t^{2}$ \& F
a
c
e \& A_{F}

$f t^{2}$ \& A_{R}

f^{2} \& $A_{\text {leg }}$

n^{2} \& \[
$$
\begin{gathered}
\text { Leg } \\
\%
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{.4} A_{A} \\
I n \\
\text { Face } \\
f^{\prime}
\end{gathered}
$$

\] \& | $C_{4} A_{A}$ |
| :--- |
| Out |
| Face |
| f^{2} |

\hline T1 \& \multirow[t]{3}{*}{170.00} \& \multirow[t]{3}{*}{1.15} \& \multirow[t]{3}{*}{9} \& \multirow[t]{3}{*}{74.792} \& A \& 2853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 0.750 \& 0.000

\hline 180.00-160.00 \& \& \& \& \& B \& 2853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 2853 \& 12.348 \& \& 63.05 \& 58.986 \& 0.000

\hline T2 \& \multirow[t]{3}{*}{150.00} \& \multirow[t]{3}{*}{1.11} \& \multirow[t]{3}{*}{9} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 0.750 \& 0.000

\hline 160.00-140.00 \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 65.540 \& 0.000

\hline T3 \& \multirow[t]{3}{*}{130.00} \& \multirow[t]{3}{*}{1.065} \& \multirow[t]{3}{*}{8} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 0.750 \& 0.000

\hline 140.00-120.00 \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 2853 \& 12.348 \& \& 63.05 \& 65.540 \& 0.000

\hline T4 \& \multirow[t]{3}{*}{110.00} \& \multirow[t]{3}{*}{1.016} \& \multirow[t]{3}{*}{8} \& \multirow[t]{3}{*}{74.792} \& A \& 2853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 0.750 \& 0.000

\hline 120.00-100.00 \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 65.540 \& 0.000

\hline T5 \& \multirow[t]{3}{*}{90.00} \& \multirow[t]{3}{*}{0.959} \& \multirow[t]{3}{*}{8} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 0.750 \& 0.000

\hline 100.00-80.00 \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 65.540 \& 0,000

\hline
\end{tabular}

RISATower	Job	117-232438	${ }^{\text {Page }} 19$ of 44
	Project		Date
		Tolland Ave., CT	01:32:09 12/29/17
Phone: FAX:	Client	CDT	$\begin{array}{r} \text { Designed by } \\ \text { FAN } \end{array}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation
\\
ft
\end{tabular} \& \(z\)
\(f t\) \& \(K_{Z}\) \& \(q_{z}\)
\(p s f\) \& \(A_{G}\)

$f t^{2}$ \& F
a
c
e \& A_{F}

$f i^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& \[
$$
\begin{gathered}
\mathrm{Leg} \\
\%
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\text { C. } \cdot A_{4} \\
\text { In } \\
\text { Face } \\
f^{2}
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline \multirow[t]{3}{*}{T6800060000} \& \multirow[t]{3}{*}{7000} \& \multirow[t]{3}{*}{0897} \& \multirow[t]{3}{*}{7} \& \multirow[t]{3}{*}{74.792} \& A \& 28.53 \& 12.348 \& \multirow[t]{3}{*}{9387} \& 6305 \& 0.750 \& 0000

\hline \& \& \& \& \& B \& 2853 \& 12348 \& \& 6303 \& 0000 \& 0000

\hline \& \& \& \& \& C \& 2853 \& 12.348 \& \& 63.03 \& 63540 \& 0000

\hline \multirow[t]{3}{*}{T76000-4000} \& \multirow[t]{3}{*}{\$0.00} \& \multirow[t]{3}{*}{08.81} \& \multirow[t]{3}{*}{6} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9387} \& 6705 \& 0.750 \& 0.000

\hline \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.03 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 2853 \& 12.348 \& \& 63.05 \& 65340 \& 0.000

\hline \multirow[t]{3}{*}{T8,4000.2000} \& \multirow[t]{3}{*}{3000} \& \multirow[t]{3}{*}{0701} \& \multirow[t]{3}{*}{5} \& \multirow[t]{3}{*}{74.792} \& A \& 2853 \& 12.348 \& \multirow[t]{3}{*}{9,383} \& 6305 \& 0750 \& 0.000

\hline \& \& \& \& \& B \& 2853 \& 12348 \& \& 6705 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 65.540 \& 0.000

\hline \multirow[t]{3}{*}{T9 20.00-5,00} \& \multirow[t]{3}{*}{12.50} \& \multirow[t]{3}{*}{0.7} \& \multirow[t]{3}{*}{5} \& \multirow[t]{3}{*}{\$6.094} \& A \& 2.038 \& 9.126 \& \multirow[t]{3}{*}{7.188} \& 64.38 \& 0.363 \& 0,000

\hline \& \& \& \& \& B \& 2.038 \& 9.126 \& \& 64.38 \& 0.000 \& 0,000

\hline \& \& \& \& \& C \& 2.038 \& 9,126 \& \& 64.38 \& 49.153 \& 0,000

\hline \multirow[t]{3}{*}{T10 500-0.00} \& \multirow[t]{3}{*}{2.50} \& \multirow[t]{3}{*}{07} \& \multirow[t]{3}{*}{5} \& \multirow[t]{3}{*}{10.019} \& A \& 0.785 \& 3.127 \& \multirow[t]{3}{*}{2.584} \& 66.05 \& 0.188 \& 0.000

\hline \& \& \& \& \& B \& 0.785 \& 3.127 \& \& 66.05 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.785 \& 3.127 \& \& 66.05 \& 16.385 \& 0.000

\hline
\end{tabular}

Tower Forces - No Ice - Wind Normal To Face

RISATOwer	Job	Page	
	117-23243.8	20 of 44	
	Project	Tolland Ave., CT	Date
	Client	CDT	Designed by FAN

Tower Forces - No Ice - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\[
f t
\] \& \begin{tabular}{l}
Add Weight \\
lb
\end{tabular} \& \begin{tabular}{l}
Self Weight \\
lb
\end{tabular} \& F
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q=\) \\
psf
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w
plf \& Ctrl. Face

\hline T1 \& \multirow[t]{3}{*}{311.12} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
638.24 \\
\text { TA } 214.38
\end{array}
$$} \& A \& 0.203 \& 2.585 \& 24 \& 0.8 \& \& 9.388 \& 1227.71 \& 61.39 \& \multirow[t]{2}{*}{C}

\hline \multirow[t]{2}{*}{180,000160,00} \& \& \& B \& 0.203 \& 2.385 \& \& 0,8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \multirow{4}{*}{23} \& 0.8 \& 1 \& 9.388 \& \multirow{4}{*}{1262.09} \& \multirow{4}{*}{63.10} \& \multirow{4}{*}{C}

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 2 \\
16000-140.00
\end{array}
$$} \& \multirow[t]{3}{*}{34520} \& \multirow[t]{3}{*}{658,24} \& A \& 0.203 \& 2585 \& \& 08 \& 1 \& 9383 \& \& \&

\hline \& \& \& B \& 0.203 \& 2585 \& \& 0,8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 08 \& 1 \& 9,383 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 3 \\
140,00-120,00
\end{array}
$$} \& \multirow[t]{3}{*}{34520} \& \multirow[t]{3}{*}{658.24} \& A \& 0203 \& 2.585 \& \multirow[t]{3}{*}{22} \& 08 \& 1 \& 9.383 \& \multirow[t]{3}{*}{1211.53} \& \multirow[t]{3}{*}{60,58} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T4 \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
658.24 \\
\text { TA } 214.38
\end{array}
$$} \& A \& 0,203 \& 2.585 \& \multirow[t]{3}{*}{21} \& 0.8 \& 1 \& 9,383 \& \multirow[t]{3}{*}{1155,06} \& \multirow[t]{3}{*}{\$7.75} \& \multirow[t]{3}{*}{C}

\hline $120,00-100.00$ \& \& \& B \& 0203 \& 2.585 \& \& 08 \& 1 \& 9,383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 08 \& 1 \& 9.383 \& \& \&

\hline TS \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{20} \& 0.8 \& 1 \& 9.383 \& \multirow[t]{3}{*}{1090.70} \& \multirow[t]{3}{*}{54.53} \& \multirow[t]{3}{*}{C}

\hline 100.00-80.00 \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T6 \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{19} \& 0.8 \& 1 \& 9.383 \& \multirow[t]{3}{*}{1015.13} \& \multirow[t]{3}{*}{50.76} \& \multirow[t]{3}{*}{C}

\hline 80,00-60.00 \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 08 \& 1 \& 9.383 \& \& \&

\hline T7 \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{17} \& 08 \& 1 \& 9.383 \& \multirow[t]{3}{*}{922.08} \& \multirow[t]{3}{*}{46.10} \& \multirow[t]{3}{*}{C}

\hline 60.00-40.00 \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T8 \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{15} \& 0.8 \& 1 \& 9.383 \& \multirow[t]{3}{*}{796.86} \& \multirow[t]{3}{*}{39.84} \& \multirow[t]{3}{*}{C}

\hline 40.00-20.00 \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \multirow[t]{3}{*}{T9 20.00-5.00} \& \multirow[t]{3}{*}{258.90} \& \multirow[t]{3}{*}{480.27} \& A \& 0.199 \& 2.599 \& \multirow[t]{3}{*}{15} \& 0.8 \& 1 \& 6.871 \& \multirow[t]{3}{*}{593.01} \& \multirow[t]{3}{*}{39.53} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 0.199 \& 2.599 \& \& 0.8 \& 1 \& 6.871 \& \& \&

\hline \& \& \& C \& 0.199 \& 2.599 \& \& 0.8 \& 1 \& 6.871 \& \& \&

\hline T10 5.00-0.00 \& \multirow[t]{3}{*}{86.30} \& \multirow[t]{3}{*}{167.93} \& A \& 0.39 \& 2.083 \& \multirow[t]{4}{*}{15} \& 0.8 \& 1 \& 2.605 \& \multirow[t]{3}{*}{191.12} \& \multirow[t]{4}{*}{38.22} \& \multirow[t]{4}{*}{C}

\hline \& \& \& B \& 0.39 \& 2.083 \& \& 0.8 \& 1 \& 2.605 \& \& \&

\hline \& \& \& C \& 0.39 \& 2.083 \& \& 0.8 \& 1 \& 2.605 \& \& \&

\hline Sum Weight: \& 3072.72 \& 6342.91 \& \& \& \& \& \& \& \& 9465.28 \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
fi
\end{tabular} \& \begin{tabular}{l}
Add \\
Weight \\
lb
\end{tabular} \& Self Weight lb \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

n^{2} \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline T1 \& \multirow[t]{3}{*}{311.12} \& 658.24 \& A \& 0.203 \& 2.585 \& 24 \& 0.85 \& 1 \& 9.526 \& 1235.24 \& 61.76 \& C

\hline \multirow[t]{2}{*}{180.00-160.00} \& \& \multirow[t]{2}{*}{TA 214.38} \& B \& 0203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0203 \& 2.585 \& \& 085 \& 1 \& 9.526 \& \& \&

\hline T2 \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& 23 \& 085 \& 1 \& 9.526 \& 1269.36 \& 63.47 \& C

\hline \multirow[t]{2}{*}{160.00-140.00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline T3 \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& 22 \& 0.85 \& 1 \& 9.526 \& 1218.50 \& 60.93 \& C

\hline \multirow[t]{2}{*}{140,00-120,00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline T4 \& \multirow[t]{3}{*}{345.20} \& 658.24 \& A \& 0.203 \& 2.585 \& 21 \& 0.85 \& 1 \& 9.526 \& 1161.71 \& 58.09 \& C

\hline 120.00-100.00 \& \& \multirow[t]{2}{*}{TA 214.38} \& B \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline
\end{tabular}

RISATower	Job	117-23243.8	${ }^{\text {Page }} 21$ of 44
	Project		Date
		Tolland Ave., CT	01:32:09 12/29/17
${ }_{\text {Phone }}^{\text {FAX: }}$	Client	CDT	Designed by FAN

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
ft
\end{tabular} \& \begin{tabular}{l}
Add Weight \\
lb
\end{tabular} \& Self Weight \(1 b\) \& F
\(a\)
\(c\)
\(e\) \& \(e\) \& \(\bar{C}_{F}\) \& \begin{tabular}{l}
\(q=\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$1 b$ \& w
$p l f$ \& Ctrl. Face

\hline T5 \& \multirow[t]{3}{*}{34930} \& \multirow[t]{3}{*}{638.24} \& A \& 0203 \& 2388 \& \multirow[t]{3}{*}{20} \& 088 \& 1 \& 9.926 \& \multirow[t]{3}{*}{1096988} \& \multirow[t]{3}{*}{54.85} \& \multirow[t]{3}{*}{C}

\hline \multirow[t]{2}{*}{1000008000} \& \& \& B \& 0203 \& 2385 \& \& 085 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0203 \& 2385 \& \& 0.23 \& 1 \& 9.326 \& \& \&

\hline \multirow[t]{3}{*}{800006000} \& \multirow[t]{3}{*}{34320} \& \multirow[t]{3}{*}{638.24} \& A \& 0.203 \& 2385 \& \multirow[t]{3}{*}{19} \& 085 \& 1 \& 9.376 \& \multirow[t]{3}{*}{1020.97} \& \multirow[t]{3}{*}{\$1,03} \& \multirow[t]{3}{*}{C}

\hline \& \& \& H \& 0203 \& 2.58 \& \& 0.25 \& 1 \& 9.326 \& \& \&

\hline \& \& \& C \& 0.203 \& 2385 \& \& 085 \& 1 \& 9326 \& \& \&

\hline T7 \& \multirow[t]{3}{*}{345,20} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2385 \& \multirow[t]{3}{*}{17} \& 025 \& 1 \& 9,526 \& \multirow[t]{3}{*}{927.39} \& \multirow[t]{3}{*}{46.37} \& \multirow[t]{3}{*}{C}

\hline \multirow[t]{2}{*}{6000-4000} \& \& \& B \& 0.203 \& 2585 \& \& 025 \& 1 \& 9526 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.326 \& \& \&

\hline T8 \& \multirow[t]{3}{*}{343.20} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{15} \& 0.85 \& 1 \& 9.526 \& \multirow[t]{3}{*}{801.45} \& \multirow[t]{3}{*}{40.07} \& \multirow[t]{3}{*}{C}

\hline \multirow[t]{2}{*}{40.00-20.00} \& \& \& B \& 0203 \& 2.585 \& \& 0.85 \& 1 \& 9.326 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.385 \& \& 085 \& 1 \& 9.526 \& \& \&

\hline \multirow[t]{3}{*}{T9 20.00-500} \& \multirow[t]{3}{*}{258.90} \& \multirow[t]{3}{*}{480.27} \& A \& 0.199 \& 2.599 \& \multirow[t]{3}{*}{15} \& 085 \& 1 \& 6.973 \& \multirow[t]{3}{*}{59631} \& \multirow[t]{3}{*}{39.75} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 0.199 \& 2599 \& \& 085 \& 1 \& 6.973 \& \& \&

\hline \& \& \& C \& 0.199 \& 2.599 \& \& 085 \& 1 \& 6.973 \& \& \&

\hline T10 500-0,00 \& \multirow[t]{3}{*}{86.30} \& \multirow[t]{3}{*}{167.93} \& A \& 0.39 \& 2.083 \& \multirow[t]{4}{*}{15} \& 0.85 \& 1 \& 2.644 \& \multirow[t]{3}{*}{192.14} \& \multirow[t]{4}{*}{38.43} \& \multirow[t]{4}{*}{C}

\hline \& \& \& B \& 0.39 \& 2.083 \& \& 085 \& 1 \& 2.644 \& \& \&

\hline \& \& \& C \& 0.39 \& 2.083 \& \& 0.85 \& 1 \& 2.644 \& \& \&

\hline Sum Weight: \& 3072.72 \& 6342.91 \& \& \& \& \& \& \& \& 9520.05 \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind Normal To Face

RISATower	Job	$117-232438$	${ }^{\text {Page }} 22$ of 44
	Project		
	Project	Tolland Ave., CT	Date ${ }_{\text {Date }}$ 01:32:09 12/29/17
Plone:	Client	CDT	$\begin{array}{r} \text { Designed by } \\ \text { FAN } \\ \hline \end{array}$

Section Elevation ff	Add Weight lb	Self Weight lb	$\begin{aligned} & \hline F \\ & a \\ & c \\ & e \end{aligned}$	e	C_{F}	$\begin{gathered} q= \\ p s f f \end{gathered}$	D_{F}	D_{R}	$\overline{A_{E}}$ $f t^{2}$	\bar{F} $l b$	w plf	Ctrl. Face
Sum Weight:	31653.94	33886.77	B \mathbf{C}	$\begin{aligned} & 0.966 \\ & 0966 \end{aligned}$	$\begin{array}{r} 2.032 \\ 2032 \\ 2.1 A_{6} \\ \text { limit } \end{array}$		1	1	$\begin{aligned} & 10.992 \\ & 10.992 \end{aligned}$	3722.94		

Tower Forces - With Ice - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
it
\end{tabular} \& \[
\begin{gathered}
\hline \text { Add } \\
\text { Weight } \\
\text { lb }
\end{gathered}
\] \& Self Weight lb \& \[
\begin{aligned}
\& \hline F \\
\& a \\
\& c \\
\& e \\
\& e
\end{aligned}
\] \& \(e\) \& \(C_{F}\) \& \(q_{z}\) \(p s f\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

f^{2} \& F
$l b$ \& w
$p l f$ \& Cirl. Face

\hline TI \& \multirow[t]{3}{*}{3492.26} \& 3976.13 \& \& A 0.735 \& 1.782 \& 6 \& 0.8 \& 1 \& 50,663 \& 76358 \& 38.18 \& \multirow[t]{2}{*}{C}

\hline \multirow[t]{2}{*}{180.00-160.00} \& \& TA \& B \& 0.735 \& 1.782 \& \& 08 \& 1 \& 50.663 \& \& \&

\hline \& \& 1038.49 \& C \& 0,735 \& 1.782 \& \& 0.8 \& 1 \& 50.663 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} \\
160.00-140.00
\end{array}
$$} \& \multirow[t]{3}{*}{3816.38} \& \multirow[t]{3}{*}{3909.50} \& A \& 0.729 \& 1.781 \& 6 \& 08 \& 1 \& 49.938 \& 764.15 \& 38.21 \& C

\hline \& \& \& B \& 0,729 \& 1.781 \& \& 08 \& 1 \& 49.938 \& \& \&

\hline \& \& \& C \& 0.729 \& 1.781 \& \& 08 \& 1 \& 49.938 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 3 \\
140.00-120.00
\end{array}
$$} \& \multirow[t]{3}{*}{3764.79} \& \multirow[t]{3}{*}{3835.10} \& A \& 0.722 \& 1.779 \& 6 \& 08 \& 1 \& 49.127 \& 732.06 \& 36.60 \& C

\hline \& \& \& B \& 0.722 \& 1.779 \& \& 08 \& 1 \& 49.127 \& \& \&

\hline \& \& \& C \& 0.722 \& 1.779 \& \& 08 \& 1 \& 49.127 \& \& \&

\hline T4 \& \multirow[t]{3}{*}{3705.82} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
3750.58 \\
\text { TA } 989.70
\end{array}
$$} \& A \& 0.714 \& 1.778 \& 6 \& 08 \& 1 \& 48.204 \& 696.44 \& 34.82 \& C

\hline \multirow[t]{2}{*}{120.00-100.00} \& \& \& B \& 0.714 \& 1.778 \& \& 08 \& 1 \& 48.204 \& \& \&

\hline \& \& \& C \& 0.714 \& 1.778 \& \& 08 \& 1 \& 48.204 \& \& \&

\hline T5 \& \multirow[t]{3}{*}{3636.73} \& \multirow[t]{3}{*}{3652.29} \& A \& 0.705 \& 1.776 \& 5 \& 08 \& 1 \& 47.128 \& 656.12 \& 32.81 \& C

\hline \multirow[t]{2}{*}{100.00-80.00} \& \& \& B \& 0.705 \& 1.776 \& \& 0.8 \& 1 \& 47.128 \& \& \&

\hline \& \& \& C \& 0.705 \& 1.776 \& \& 0.8 \& 1 \& 47.128 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} \\
80.00-60.00
\end{array}
$$} \& \multirow[t]{3}{*}{3552.80} \& \multirow[t]{3}{*}{3533.98} \& A \& 0.693 \& 1.776 \& \multirow[t]{3}{*}{5} \& 0.8 \& 1 \& 45.829 \& \multirow[t]{3}{*}{609.14} \& \multirow[t]{3}{*}{30.46} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 0.693 \& 1.776 \& \& 08 \& 1 \& 45.829 \& \& \&

\hline \& \& \& C \& 0.693 \& 1.776 \& \& 08 \& 1 \& 45.829 \& \& \&

\hline T7 \& \multirow[t]{3}{*}{3444.79} \& \multirow[t]{3}{*}{338350} \& A \& 0.679 \& 1.776 \& \multirow[t]{3}{*}{4} \& 0.8 \& 1 \& 44.170 \& \multirow[t]{3}{*}{551.78} \& \multirow[t]{3}{*}{27.59} \& \multirow[t]{3}{*}{C}

\hline \multirow[t]{2}{*}{60.00-40.00} \& \& \& B \& 0.679 \& 1.776 \& \& 0.8 \& 1 \& 44.170 \& \& \&

\hline \& \& \& C \& 0.679 \& 1.776 \& \& 0.8 \& 1 \& 44.170 \& \& \&

\hline T8 \& \multirow[t]{3}{*}{3289.82} \& \multirow[t]{3}{*}{3171.29} \& A \& 0.657 \& 1.78 \& \multirow[t]{3}{*}{4} \& 0.8 \& 1 \& 41.817 \& \multirow[t]{3}{*}{475.39} \& \multirow[t]{3}{*}{23.77} \& \multirow[t]{3}{*}{C}

\hline 40.00-20.00 \& \& \& B \& 0.657 \& 1.78 \& \& 0.8 \& 1 \& 41.817 \& \& \&

\hline \& \& \& C \& 0.657 \& 1.78 \& \& 0.8 \& 1 \& 41.817 \& \& \&

\hline \multirow[t]{3}{*}{T9 20.00-5.00} \& \multirow[t]{3}{*}{2285,57} \& \multirow[t]{3}{*}{2054.98} \& A \& 0.601 \& 1.803 \& \multirow[t]{3}{*}{4} \& 08 \& 1 \& 27.226 \& \multirow[t]{3}{*}{358.38} \& \multirow[t]{3}{*}{23.89} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 0.601 \& 1.803 \& \& 0.8 \& 1 \& 27.226 \& \& \&

\hline \& \& \& C \& 0.601 \& 1.803 \& \& 0.8 \& 1 \& 27.226 \& \& \&

\hline \multirow[t]{3}{*}{T10 5.00-0.00} \& \multirow[t]{3}{*}{666,99} \& \multirow[t]{3}{*}{591.24} \& A \& 0.966 \& 2.032 \& \multirow[t]{4}{*}{4} \& 0.8 \& 1 \& 10.835 \& \multirow[t]{3}{*}{76.76} \& \multirow[t]{4}{*}{15.35} \& \multirow[t]{4}{*}{C}

\hline \& \& \& B \& 0.966 \& 2.032 \& \& 08 \& 1 \& 10.835 \& \& \&

\hline \& \& \& C \& 0.966 \& 2.032 \& \& 08 \& 1 \& 10.835 \& \& \&

\hline Sum Weight: \& 31655,94 \& 33886.77 \& \& \& \& \& \& \& \& 5683.79 \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind 90 To Face

Section Elevation n	$\begin{gathered} \text { Add } \\ \text { Weight } \\ l b \end{gathered}$	Self Weight lb	F a c e	e	C_{F}	q $p s f$	D_{F}	D_{R}	A_{E} $f t^{2}$	F $l b$	plf	Ctrl. Face

RISATower	Job	117-23243.8	${ }^{\text {Page }} 23$ of 44
	Project		Date
		Tolland Ave., CT	01:32:09 12/29/17
Phone:	Client	CDT	Designed by FAN

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
fi
\end{tabular} \& \[
\begin{gathered}
\hline \text { Add } \\
\text { Weight } \\
l b
\end{gathered}
\] \& Self Weight lb \& \[
\begin{aligned}
\& \hline F \\
\& a \\
\& c \\
\& e
\end{aligned}
\] \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q=\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(\bar{D}_{R}\) \& \(A_{E}\)

f^{2} \& F
$1 b$ \& w
$p l f$ \& Cirl. Face

\hline T1 \& 3492.26 \& 397613 \& A \& 0733 \& 1.782 \& 6 \& 085 \& 1 \& 30.806 \& 764.93 \& 3823 \& C

\hline 18000016000 \& \& TA \& B \& 0.733 \& 1.782 \& \& 085 \& 1 \& 30806 \& \& \&

\hline \& \& 1038.49 \& C \& 0733 \& 1.782 \& \& 0.85 \& 1 \& 30.806 \& \& \&

\hline T2 \& 381638 \& 3909.50 \& A \& 0729 \& 1.781 \& 6 \& 0.83 \& 1 \& 30081 \& $76 \$ 43$ \& 38.27 \& C

\hline $16000-14000$ \& \& \& B \& 0729 \& 1.781 \& \& 0.85 \& 1 \& 30081 \& \& \&

\hline \& \& \& C \& 0729 \& 1.781 \& \& 085 \& 1 \& 30081 \& \& \&

\hline T3 \& 3764,79 \& 383510 \& A \& 0722 \& 1.779 \& 6 \& 083 \& 1 \& 49270 \& 73331 \& 3667 \& C

\hline $14000-12000$ \& \& \& B \& 0722 \& 1.779 \& \& 085 \& 1 \& 49.270 \& \& \&

\hline \& \& \& C \& 0.722 \& 1.779 \& \& 085 \& 1 \& 49.270 \& \& \&

\hline T4 \& 3705,82 \& 3750.58 \& A \& 0.714 \& 1.778 \& 6 \& 0.85 \& 1 \& 48.347 \& 697.63 \& 34.88 \& C

\hline 120.00-100.00 \& \& TA 989.70 \& B \& 0.714 \& 1.778 \& \& 0.85 \& 1 \& 48,347 \& \& \&

\hline \& \& \& C \& 0.714 \& 1.778 \& \& 085 \& 1 \& 48,347 \& \& \&

\hline T5 \& 3636.73 \& 3652.29 \& A \& 0.705 \& 1.776 \& \$ \& 085 \& 1 \& 47.271 \& 65723 \& 32.86 \& C

\hline 100,00-80,00 \& \& \& B \& 0.705 \& 1.776 \& \& 0.85 \& 1 \& 47.271 \& \& \&

\hline \& \& \& C \& 0.705 \& 1.776 \& \& 08.5 \& 1 \& 47.271 \& \& \&

\hline T6 \& 3552.80 \& 3533.98 \& A \& 0.693 \& 1.776 \& 5 \& 085 \& 1 \& 45.972 \& 610.18 \& 30,51 \& C

\hline $80.00-60,00$ \& \& \& B \& 0.693 \& 1.776 \& \& 0.85 \& 1 \& 45.972 \& \& \&

\hline \& \& \& C \& 0.693 \& 1.776 \& \& 0.85 \& 1 \& 45,972 \& \& \&

\hline T7 \& 3444.79 \& 3383.50 \& A \& 0.679 \& 1.776 \& 4 \& 0.85 \& 1 \& 44.313 \& 55273 \& 27.64 \& C

\hline 60,00-40.00 \& \& \& B \& 0.679 \& 1.776 \& \& 0.85 \& 1 \& 44.313 \& \& \&

\hline \& \& \& C \& 0.679 \& 1.776 \& \& 0.85 \& 1 \& 44.313 \& \& \&

\hline T8 \& 3289.82 \& 3171.29 \& A \& 0.657 \& 1.78 \& 4 \& 0.85 \& 1 \& 41.959 \& 476.21 \& 23.81 \& C

\hline 40.00-20.00 \& \& \& B \& 0.657 \& 1.78 \& \& 0.85 \& 1 \& 41.959 \& \& \&

\hline \& \& \& C \& 0.657 \& 1.78 \& \& 0.85 \& 1 \& 41.959 \& \& \&

\hline T9 20.00-5.00 \& 2285.57 \& 2054.98 \& A \& 0.601 \& 1.803 \& 4 \& 0.85 \& 1 \& 27.328 \& 358.97 \& 23.93 \& C

\hline \& \& \& B \& 0.601 \& 1.803 \& \& 0.85 \& 1 \& 27.328 \& \& \&

\hline \& \& \& C \& 0.601 \& 1.803 \& \& 0.85 \& 1 \& 27.328 \& \& \&

\hline T10 5.00-0.00 \& 666.99 \& 591.24 \& A \& 0.966 \& 2.032 \& 4 \& 0.85 \& 1 \& 10.874 \& 77.02 \& 15.40 \& C

\hline \& \& \& B \& 0.966 \& 2.032 \& \& 0.85 \& 1 \& 10.874 \& \& \&

\hline \& \& \& C \& 0.966 \& 2.032 \& \& 0.85 \& 1 \& 10.874 \& \& \&

\hline Sum Weight: \& 31655.94 \& 33886.77 \& \& \& \& \& \& \& \& 5693.68 \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
fi
\end{tabular} \& Add Weight lb \& Self Weight lb \& \(F\)
\(a\)
\(c\)
\(e\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q=\) \\
psf
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

n^{2} \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline T1 \& \multirow[t]{3}{*}{311.12} \& 658,24 \& A \& 0.203 \& 2.585 \& 9 \& 1 \& 1 \& 9.953 \& 471.49 \& 23.57 \& C

\hline \multirow[t]{2}{*}{18000-160.00} \& \& \multirow[t]{2}{*}{TA 214.38} \& B \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline T2 \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658.24} \& A \& 0203 \& 2.585 \& 9 \& 1 \& 1 \& 9.953 \& 483.98 \& 24.20 \& C

\hline \multirow[t]{2}{*}{160.00-140.00} \& \& \& B \& 0203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline T3 \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658,24} \& A \& 0.203 \& 2.585 \& 8 \& 1 \& 1 \& 9.953 \& 464.59 \& 23.23 \& C

\hline \multirow[t]{2}{*}{140.00-120.00} \& \& \& B \& 0.203 \& 2585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline T4 \& \multirow[t]{3}{*}{345.20} \& 658.24 \& A \& 0.203 \& 2.585 \& 8 \& 1 \& 1 \& 9.953 \& 442.94 \& 22.15 \& C

\hline \multirow[t]{2}{*}{120.00-100.00} \& \& \multirow[t]{2}{*}{TA 214.38} \& B \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0.203 \& 2585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline T5 \& \multirow[t]{3}{*}{345.20} \& 658.24 \& A \& 0.203 \& 2.585 \& 8 \& 1 \& 1 \& 9.953 \& 418.26 \& 20.91 \& C

\hline \multirow[t]{2}{*}{100,00-80.00} \& \& \& B \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9953 \& \& \&

\hline T6 \& 345.20 \& 65824 \& A \& 0.203 \& 2.585 \& 7 \& 1 \& 1 \& 9.953 \& 389.28 \& 19.46 \& C

\hline
\end{tabular}

RISATower	Job	117232438	${ }^{\text {Page }} 24$ of 44
		17-23243.8	
	Project	Tolland Ave., CT	Date ${ }_{\text {Date }}$ 01:32:09 12/29/17
	Client	CDT	$\begin{array}{r} \text { Designed by } \\ \text { FAN } \end{array}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
ft
\end{tabular} \& Add Weight lb \& Self Weight lb \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q=\) \\
\(p s i\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f f^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline 800076000 \& \& \& B \& 0803 \& 2388 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0203 \& 2385 \& \& 1 \& 1 \& 9933 \& \& \&

\hline T7 \& 343.20 \& 658.24 \& A \& 0203 \& 2385 \& 6 \& 1 \& 1 \& 9.933 \& 33360 \& 17.68 \& C

\hline $60.00-4000$ \& \& \& B \& 0.203 \& 2385 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.385 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline T8 \& 34520 \& 658.24 \& A \& 0203 \& 2585 \& \$ \& 1 \& 1 \& 9.953 \& 30558 \& 15,28 \& C

\hline $4000-2000$ \& \& \& B \& 0203 \& 2.385 \& \& 1 \& 1 \& 9.933 \& \& \&

\hline \& \& \& C \& 0.203 \& 2585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline T9 20.00-500 \& 258.90 \& 48027 \& A \& 0.199 \& 2.599 \& 5 \& 1 \& 1 \& 7.279 \& 227.22 \& 15.15 \& C

\hline \& \& \& B \& 0.199 \& 2.399 \& \& 1 \& 1 \& 7.279 \& \& \&

\hline \& \& \& C \& 0.199 \& 2,399 \& \& 1 \& 1 \& 7.279 \& \& \&

\hline T10 5.00-0.00 \& 86.30 \& 167.93 \& A \& 0.39 \& 2083 \& 5 \& 1 \& 1 \& 2.762 \& 73.16 \& 14.63 \& C

\hline \& \& \& B \& 0.39 \& 2.083 \& \& 1 \& 1 \& 2762 \& \& \&

\hline \& \& \& C \& 039 \& 2.083 \& \& 1 \& 1 \& 2762 \& \& \&

\hline Sum Weight: \& 307272 \& 6342.91 \& \& \& \& \& \& \& \& 3630,12 \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
fi
\end{tabular} \& Add Weight \(1 b\) \& Self Weight lb \& \[
\begin{aligned}
\& \hline F \\
\& a \\
\& c \\
\& e \\
\& \hline
\end{aligned}
\] \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\[
q=
\] \\
\(p s f\)
\end{tabular} \& \(D_{\text {F }}\) \& \(D_{R}\) \& \(A_{E}\)

$f f^{2}$ \& F
lb \& w

p / f \& | Corl. |
| :--- |
| Face |

\hline TI \& \multirow[t]{3}{*}{311.12} \& 658.24 \& A \& 0.203 \& 2.585 \& \multirow[t]{4}{*}{9
9} \& 0.8 \& 1 \& 9.383 \& 46020 \& 23.01 \& \multirow[t]{2}{*}{C}

\hline \multirow[t]{2}{*}{180.00-160.00} \& \& \multirow[t]{2}{*}{TA 214.38} \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \multirow{4}{*}{473.09} \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 2 \\
160,00-140.00
\end{array}
$$} \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \multirow[t]{3}{*}{23.65} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 0.203 \& 2.585 \& \multirow{2}{*}{9} \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9383 \& \& \&

\hline T3 \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{65824} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{8} \& 0.8 \& 1 \& 9,383 \& \multirow[t]{3}{*}{454.13} \& \multirow[t]{3}{*}{22.71} \& \multirow[t]{3}{*}{C}

\hline \multirow[t]{2}{*}{140,00-120,00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T4 \& \multirow[t]{3}{*}{345.20} \& 658.24 \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{8} \& 0.8 \& 1 \& 9.383 \& \multirow[t]{3}{*}{432.97} \& \multirow[t]{3}{*}{21.65} \& \multirow[t]{3}{*}{C}

\hline \multirow[t]{2}{*}{120.00-100.00} \& \& \multirow[t]{2}{*}{TA 214.38} \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 5 \\
100.00-80.00
\end{array}
$$} \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658.24} \& A \& 0203 \& 2.585 \& \multirow[t]{3}{*}{8} \& 0.8 \& 1 \& 9.383 \& \multirow[t]{3}{*}{408.84} \& \multirow[t]{3}{*}{20.44} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T6 \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{7} \& 0.8 \& 1 \& 9.383 \& \multirow[t]{3}{*}{380.51} \& \multirow[t]{3}{*}{19.03} \& \multirow[t]{3}{*}{C}

\hline 80.00-60.00 \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T7 \& \multirow[t]{3}{*}{34520} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{6} \& 08 \& 1 \& 9.383 \& \multirow[t]{3}{*}{345.64} \& \multirow[t]{3}{*}{17.28} \& \multirow[t]{3}{*}{C}

\hline 60,00-40.00 \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T8 \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{5} \& 0.8 \& 1 \& 9.383 \& \multirow[t]{3}{*}{298.70} \& \multirow[t]{3}{*}{14.93} \& \multirow[t]{3}{*}{C}

\hline 40.00-20.00 \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \multirow[t]{3}{*}{T9 20.00-5.00} \& \multirow[t]{3}{*}{258.90} \& \multirow[t]{3}{*}{48027} \& A \& 0.199 \& 2.599 \& \multirow[t]{3}{*}{5} \& 0.8 \& 1 \& 6.871 \& \multirow[t]{3}{*}{222.29} \& \multirow[t]{3}{*}{14.82} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 0.199 \& 2.599 \& \& 0.8 \& 1 \& 6.871 \& \& \&

\hline \& \& \& C \& 0.199 \& 2.599 \& \& 0.8 \& 1 \& 6871 \& \& \&

\hline T10 5.00-0.00 \& \multirow[t]{3}{*}{86.30} \& \multirow[t]{3}{*}{- 167.93} \& A \& 0.39 \& 2.083 \& \multirow[t]{4}{*}{5} \& 0.8 \& 1 \& 2.605 \& \multirow[t]{3}{*}{71,64} \& \multirow[t]{4}{*}{14.33} \& \multirow[t]{4}{*}{C}

\hline \& \& \& B \& 0.39 \& 2.083 \& \& 0.8 \& 1 \& 2.605 \& \& \&

\hline \& \& \& C \& 0.39 \& 2.083 \& \& 08 \& 1 \& 2.605 \& \& \&

\hline Sum Weight: \& 307272 \& \multicolumn{2}{|l|}{6342.91} \& \& \& \& \& \& \& 3548.00 \& \&

\hline
\end{tabular}

RISATOwer	Job	117-23243.8	$\text { Page } 25 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{aligned} & \hline \text { Date } \\ & \text { 01:32:09 12/29/17 } \end{aligned}$
Phone: FAX:	Client	CDT	Designed by FAN

Tower Forces - Service - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\[
f
\] \& \begin{tabular}{l}
Add Weight \\
\(l b\)
\end{tabular} \& Self Weight lb \& \[
\begin{aligned}
\& F \\
\& a \\
\& c \\
\& e \\
\& \hline
\end{aligned}
\] \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q=\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f f^{2}$ \& F
$1 b$ \& w
$p l f$ \& Cirl. Face

\hline T1 \& \multirow[t]{3}{*}{311.12} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
658.24 \\
\text { TA } 214.38
\end{array}
$$} \& \& A 0203 \& 2385 \& 9 \& 085 \& 1 \& 9.526 \& 46302 \& 23.15 \& \multirow[t]{2}{*}{C}

\hline \multirow[t]{2}{*}{$18000-16000$} \& \& \& B \& 0.203 \& 2588 \& \& 085 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0203 \& 2385 \& \& 085 \& 1 \& 9526 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
T 2 \\
160.00-140.00
\end{array}
$$} \& \multirow[t]{3}{*}{34520} \& \multirow[t]{3}{*}{658.24} \& A \& 0203 \& 2.385 \& 9 \& 085 \& 1 \& 9526 \& 47581 \& 23.79 \& C

\hline \& \& \& B \& 0203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0203 \& 2.585 \& \& 0.85 \& 1 \& 9526 \& \& \&

\hline \multirow[t]{3}{*}{$$
140,00-120,00
$$} \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658.24} \& A \& 0203 \& 2.585 \& 8 \& 0.85 \& 1 \& 9.526 \& 456.75 \& 22.84 \& C

\hline \& \& \& B \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline T4 \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658.24
TA 214.38} \& A \& 0.203 \& 2.585 \& 8 \& 0.85 \& 1 \& 9.526 \& 435.46 \& 21.77 \& C

\hline \multirow[t]{2}{*}{120,00-100.00} \& \& \& B \& 0.203 \& 2585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline T5 \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& 8 \& 0.85 \& 1 \& 9.526 \& 411.20 \& 20.56 \& C

\hline \multirow[t]{2}{*}{100,00-80.00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \multirow[t]{3}{*}{80000-60,00 ${ }^{\text {T6 }}$} \& \multirow[t]{3}{*}{34520} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& 7 \& 0.85 \& 1 \& 9.526 \& 38271 \& 19.14 \& C

\hline \& \& \& B \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \multirow[t]{3}{*}{T7
$60.00-40.00$} \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& 6 \& 0.85 \& 1 \& 9.526 \& 347.63 \& 17.38 \& C

\hline \& \& \& B \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \multirow[t]{3}{*}{T8
$40.00-20.00$} \& \multirow[t]{3}{*}{345.20} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{5} \& 0.85 \& 1 \& 9.526 \& 300.42 \& 15.02 \& C

\hline \& \& \& B \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \multirow[t]{3}{*}{T9 20.00-5.00} \& \multirow[t]{3}{*}{258.90} \& \multirow[t]{3}{*}{480.27} \& A \& 0.199 \& 2.599 \& \multirow[t]{3}{*}{5} \& 0.85 \& 1 \& 6.973 \& 223.52 \& 14.90 \& C

\hline \& \& \& B \& 0.199 \& 2.599 \& \& 0.85 \& 1 \& 6.973 \& \& \&

\hline \& \& \& C \& 0.199 \& 2.599 \& \& 0.85 \& 1 \& 6.973 \& \& \&

\hline \multirow[t]{3}{*}{T10 5.00-0.00} \& \multirow[t]{3}{*}{86.30} \& \multirow[t]{3}{*}{167.93} \& A \& 0.39 \& 2.083 \& \multirow[t]{4}{*}{5} \& 0.85 \& 1 \& 2.644 \& 72.02 \& 14.40 \& C

\hline \& \& \& B \& 0.39 \& 2.083 \& \& 0.85 \& 1 \& 2.644 \& \& \&

\hline \& \& \& C \& 0.39 \& 2083 \& \& 0.85 \& 1 \& 2644 \& \& \&

\hline Sum Weight: \& 3072.72 \& 6342.91 \& \& \& \& \& \& \& \& 3568, 53 \& \&

\hline
\end{tabular}

Discrete Appurtenance Pressures - No Ice $G_{H}=0.850$

Description	Aiming Azimuth	Weight $1 b$	$\text { Offset } x_{x}$	Offset=	z $f i$	K_{z}	$q_{=}$ $p s f$	$\begin{gathered} C_{A} A_{C} \\ \text { Frout } \\ \hat{f t}^{2} \\ \hline \end{gathered}$	$\begin{gathered} C_{A} A_{C} \\ \text { Side } \\ {f t^{2}}^{2} \end{gathered}$
Torque Arm Face C	180.0000	0.00	0.00	2.53	170.89	1.152	24	3.54	5,32
Torque Arm Face B	60.0000	0.00	2.19	-1.26	170.89	1.152	24	354	5.32
Torque Arm Face A	300.0000	0.00	-2.19	-1.26	170.89	1.152	24	3.54	5.32
Torque Arm Face C	180.0000	0.00	0.00	2.53	117.30	1.034	22	3.54	5.32
Torque Arm Face B	60.0000	0.00	2.19	-1.26	117.30	1.034	22	3.54	5.32
Torque Arm Face A	300.0000	0.00	-2.19	-1.26	117.30	1.034	22	3.54	5.32
Sector Frame Mount	0.0000	465.00	0.00	-3.52	177.00	1.163	24	18.00	9.00
Sector Frame Mount	120.0000	465.00	3.05	1.76	177.00	1.163	24	18.00	9.00
Sector Frame Mount	240.0000	465.00	-3.05	1.76	177.00	1.163	24	18.00	9.00
Lightning Rod	0.0000	40.00	0.00	0.00	180.00	1.169	24	1.00	1.00
Powerwave 7770	0.0000	35.00	0.00	-5.02	177.00	1.163	24	5.51	2.93

$\boldsymbol{R I S A T O w e r}$	Job	Page	
	117-23243.8	26 of 44	
	Tolland Ave., CT	Date	
	Client	CDT	Designed by FAN

Description	Aiming Azimush -	$\begin{gathered} \hline \text { Weight } \\ 16 \\ \hline \end{gathered}$	Offset. fi	Offset= ft	2 $f t$	K_{5}	$\begin{aligned} & q_{=} \\ & p s f \end{aligned}$	$\begin{aligned} & C_{4} A_{A} \\ & \text { Front } \\ & f^{2} \end{aligned}$	$\begin{aligned} & C_{4 A} A_{C} \\ & \text { Side } \\ & f^{2} \end{aligned}$
Powerwave 7770	1200000	3300	433	231	177.00	1169	34	53.3	2.93
Powerwave 7770	240.0000	33.00	-4.35	231	17700	1163	24	\$31	293
KMW	0.0000	36.40	000	. 0.02	171.00	1.163	24	4.98	283
AM-X-CD-14-65-00T									6.80
Powerwave P65.17-XLH-RR	1200000	62.00	433	231	177.00	1.163	24	11.47	6.80
Commscope	2400000	\$1.80	-4.3.3	231	17700	1.163	24	11.45	770
SBNH-1D6365C									
Ericssan RRUS11	00000	\$5.00	0.00	502	177,00	1.163	24	278	1.19
Ericssan RRUSII	1200000	\$5,00	4.35	2351	177,00	1.163	24	278	1.19
Ericssan RRUSII	240,0000	35.00	-4.35	2.51	177.00	1.163	24	278	1.19
Ericsson RRUS32	0.0000	120,00	0,00	-5.02	177,00	1.163	24	5.38	3.14
Ericsson RRUS32	120.0000	120.00	4.35	251	177,00	1.163	24	5.38	3.14
Ericsson RRUS32	240.0000	120.00	4.35	2.51	177.00	1.163	24	538	3.14
Kaelus LGP21901	0.0000	20.00	0,00	-5.02	177.00	1.163	24	046	0.22
Kaelus LGP21901	120.0000	20.00	4.35	2.51	177.00	1.163	24	0.46	0.22
Kaelus LGP21901	240.0000	20,00	-4.35	2.51	177.00	1.163	24	0.46	0.22
Powerwave LGP21401	0.0000	62.00	0.00	-5.02	177.00	1.163	24	3.34	0.94
Powerwave LGP21401	120.0000	6200	4.35	2.51	177.00	1.163	24	3.34	0.94
Powerwave LGP21401	240,0000	62.00	-4.35	2.51	177.00	1.163	24	3.34	0.94
CCI	0.0000	81.60	0.00	-5.02	177.00	1.163	24	13.80	8.82
CCl	120.0000	81.60	4.35	2.51	177.00	1.163	24	13.80	8.82
Quintel QS46512-2	240.0000	75.00	-4.35	2.51	177.00	1.163	24	5.55	5.08
Powerwave	0.0000	50.80	0.00	-5.02	177.00	1.163	24	0.82	0.86
Powerwave	120.0000	50.80	4.35	2.51	177.00	1.163	24	0.82	0.86
Powerwave	240.0000	50.80	-4.35	2.51	177.00	1.163	24	0.82	0.86
	$\begin{array}{r} \text { Sum } \\ \text { Weight: } \end{array}$	2851.80							

Discrete Appurtenance Pressures - With Ice $G_{H}=0.850$

Description	Aiming Azimuth -	Weight $1 b$	$\begin{gathered} \text { Off }_{5} \mathrm{set}_{x} \\ \mathrm{ft} \\ \hline \end{gathered}$	Offset:	z $f 1$	K	$\begin{gathered} q= \\ p s f \end{gathered}$	$C_{. A} A_{C}$ Front $f t^{2}$	$C+A_{C}$ Side $f t^{2}$	t ili
Torque Arm Face C	180.0000	0.00	0.00	2.53	170.89	1.152	6	6.77	9.91	2.3563
Torque Arm Face B	60.0000	0.00	2.19	-1.26	170.89	1.152	6	6.77	9.91	23563
Torque Arm Face A	300.0000	0.00	-2.19	-1.26	170.89	1.152	6	6.77	9.91	2.3563
Torque Arm Face C	180.0000	0.00	0.00	2.53	117.30	1.034	6	6.63	9.72	22559
Torque Arm Face B	60.0000	0.00	2.19	-1.26	117.30	1.034	6	6.63	9.72	2.2559
Torque Arm Face A	300.0000	0.00	-2.19	-1.26	117.30	1.034	6	6.63	9.72	2.2559
Sector Frame Mount	0.0000	1103.76	0.00	-3.52	177.00	1.163	6	36,31	36.31	2.3658
Sector Frame Mount	120.0000	1103.76	3.05	1.76	177.00	1.163	6	36.31	36.31	2.3658
Sector Frame Mount	240.0000	1103.76	-3.05	1.76	177.00	1.163	6	36.31	36.31	2.3658
Lightning Rod	0.0000	150.05	0.00	0.00	180.00	1.169	6	5.62	5.62	2.3698
Powerwave 7770	0.0000	366.68	0.00	-5.02	177.00	1.163	6	8.82	6.29	23658
Powerwave 7770	120.0000	366.68	4.35	2.51	177.00	1.163	6	8.82	6.29	2.3658
Powerwave 7770	240.0000	36668	-4.35	2.51	177.00	1.163	6	8.82	6.29	23658
KMW	0,0000	366.68	0.00	-5.02	177.00	1.163	6	8.82	6.29	23658
AM-X-CD-14-65-00T Powerwave	120.0000	366.68	4.35	2.51	17700	1.163	6	8.82	6.29	2.3658
Powerwave P65-17-XLH-RR	120.0000	366.68	4.35	2.51	177,00	1.163	6	8.82	6,29	2.3658
Commscope SBNH-ID6565C	240.0000	366.68	-4.35	2.51	177.00	1.163	6	17.22	6.29	2.3658

RISATower	Job	117-23243.8	$\text { Page } 27 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{aligned} & \text { Date } \\ & \text { 01:32:09 12/29/17 } \end{aligned}$
Phone: FAX:	Client	CDT	Designed by FAN

Description	Aiming Azimuth	Weight lb	Olfsetx fi	Offset ft	2 f	K	$q=$ $p s f$	${ }^{C} . A_{C}$ Fron' $f t^{2}$	$C_{A} A_{C}$ Side $f t^{2}$	t in
Ericssan RRUSII	00000	36668	0.00	-5.02	177.00	1.163	6	888	629	2.3658
Ericssan RRUS!	1200000	366688	4.33	2.31	177,00	1.163	6	882	6.29	23638
Ericssan RRUSII	240.0000	36668	433	2.31	177.00	1.163	6	882	6.29	23638
Ericgran RRUS32	0.0000	733.37	0.00	5.02	177.00	1.163	6	17.64	12.38	2.3638
Ericsson RRUS32	120.0000	733,37	435	2.31	177.00	1.163	6	17.64	12.38	2.3638
Ericssan RRUS32	240.0000	733,37	-4.35	2.31	177,00	1.163	6	17.64	12,38	2.3638
Kaelus LGP21901	0.0000	73337	0.00	-5, 02	177.00	1.163	6	17.64	12.38	23658
Kaelus LGP21901	1200000	73337	4.35	231	177.00	1.163	6	17.64	123 2	2,3638
Kaelus LGP21901	2400000	73337	4.35	2.51	177.00	1.163	6	17.64	12.58	2.3658
Powerwave LGP21401	0.0000	733.37	0.00	-5.02	177.00	1.163	6	17.64	12.38	2,3658
Powerwave LGP21401	120.0000	733,37	4.35	2.31	177,00	1.163	6	17.64	12.58	2.3658
Powerwave LGP21401	240.0000	733.37	-4.35	2.31	177,00	1.163	6	17.64	12.58	2,3658
CCI	0.0000	366,68	0,00	-5.02	177,00	1.163	6	8.82	6.29	2.3658
TPA-65R-LCUUUU-H8 CCl	1200000	366,68	4,35	2.51	177.00	1.163	6	8.82	6.29	2.3658
Quintel QS46S12-2	240.0000	366,68	-4.35	2.51	177.00	1.163	6	8.82	6.29	2.3658
Powerwave	0.0000	733.37	0.00	-5.02	177.00	1.163	6	17,64	12.58	2.3658
Powerwave	120.0000	733.37	4.35	2.51	177.00	1.163	6	17.64	12.58	2.3658
Powerwave	2400000	733.37	-4.35	2.51	177,00	1,163	6	17,64	12.58	2,3658
	Sum Weight:	16661.95								

Discrete Appurtenance Pressures - Service $\quad G_{H}=0.850$

Description	Aiming Azimuth -	Weight $l b$	Offset ft	Offset: fl	z $f t$	K	$q=$ psf	$C_{A} A_{C}$ Front f^{2}	$C_{A} A_{C}$ Side n^{2}
Torque Arm Face C	180.0000	0.00	0.00	2.53	170.89	1.152	9	3.54	5.32
Torque Arm Face B	60.0000	0.00	2.19	-126	170.89	1.152	9	3.54	5.32
Torque Arm Face A	300.0000	0.00	-2.19	-1.26	170.89	1.152	9	3.54	5.32
Torque Arm Face C	180.0000	0.00	0.00	2.53	117.30	1.034	8	3.54	5.32
Torque Arm Face B	60.0000	0.00	2.19	-1.26	117.30	1.034	8	3.54	5.32
Torque Arm Face A	300.0000	0.00	-2.19	-1.26	117.30	1.034	8	3.54	532
Sector Frame Mount	0.0000	465.00	0.00	-3.52	177.00	1.163	9	18.00	9.00
Sector Frame Mount	120.0000	465.00	3.05	1.76	177.00	1.163	9	18.00	9.00
Sector Frame Mount	240.0000	465.00	-3.05	1.76	177.00	1.163	9	18.00	9.00
Lightning Rod	0.0000	40.00	0.00	0.00	180.00	1.169	9	1.00	1.00
Powerwave 7770	0.0000	35.00	0.00	-5.02	177.00	1.163	9	5.51	2.93
Powerwave 7770	120.0000	35.00	4.35	2.51	177.00	1.163	9	5.51	2.93
Powerwave 7770	240.0000	35.00	-4.35	2.51	177.00	1.163	9	5.51	2.93
KMW	0.0000	36.40	0.00	-5.02	177.00	1.163	9	4.99	283
AM-X-CD-14-65-00T									
Powerwave	120.0000	62.00	4.35	2.51	177.00	1.163	9	11.47	6.80
P65-17-XLH-RR									
Commscope	240,0000	51.80	-4,35	2.51	177.00	1.163	9	11.45	7.70
SBNH-1D6565C									
Ericsson RRUS11	0.0000	55.00	0.00	-5.02	177.00	1.163	9	2.78	1.19
Ericsson RRUS11	120.0000	55.00	4.35	2.51	177.00	1.163	9	2.78	1.19
Ericsson RRUS11	240.0000	55.00	-4.35	2.51	177.00	1.163	9	278	1.19
Ericsson RRUS32	0.0000	120.00	0.00	-5.02	177.00	1.163	9	5.38	3.14
Ericsson RRUS32	120.0000	120.00	4.35	2.51	177.00	1.163	9	5.38	3.14
Ericsson RRUS32	240.0000	120.00	-4.35	2.51	177.00	1.163	9	5.38	3.14
Kaelus LGP21901	0.0000	20.00	0.00	-5.02	177.00	1.163	9	0.46	0.22
Kaclus LGP21901	1200000	20.00	4.35	2.51	177.00	1.163	9	0.46	0.22

RISATOwer	Job	117-23243.8	$\text { Page } 28 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: FAX:	Crient	CDT	Designed by FAN

Description	Aiming Azimuth -	$\begin{gathered} \hline \text { Weight } \\ l b \end{gathered}$	Offset $_{x}$ ft	$\begin{gathered} \text { Offset! } \\ \text { fit } \end{gathered}$	f	K_{z}	q_{z} psf	$\begin{aligned} & \mathrm{C}_{\mathrm{H} A_{C}} \\ & \text { Front } \\ & {f t^{2}}^{2} \end{aligned}$	$\begin{aligned} & C_{A} A_{C} \\ & \text { Side } \\ & {f t^{2}}^{2} \end{aligned}$
Kadus Lopz1501	240.0000	2000	4.38	2.31	177.00	1.163	9	0.46	0.22
Powerwave LGP21401	0.00000	62.00	0.00	-502	177.00	1.163	9	3.34	0.94
Powerwave LCP21401	120.00000	62.00	4.38	2.51	17700	1.163	9	3.34	0.94
Powerwave LCP21401	240.00000	62.00	-4,38	2.31	177,00	1.163	9	3.34	0.94
CCl	0.0000	81,60	0.00	-302	177.00	1.163	9	13.80	8.82
TPA-GSR-LCUUUU-H8 CCl	120.0000	81.60	4.35	231	177.00	1.103	9	13.80	882
TPA-6sR-LCUUUU-H8									
Quintel QS46S12-2	240.0000	75.00	-4.39	2.51	177,00	1.163	9	5.55	5.08 0.86
Powerwave	0.0000	50.80	0.00	-502	177.00	1.163	9	0.82	0.86
Powerwave	120.0000	30.80	4.35	2.51	177,00	1.163	9	0.82	0.86
Powerwave	240.0000	50.80	-4 35	2.51	177,00	1.163	9	0.82	0.86
	$\begin{array}{r} \text { Sum } \\ \text { Weight: } \end{array}$	2851,80							

Force Totals (Does not include forces on guys)

Load Case	Vertical Forces lb	Sim of Forces X $l b$	Sum of Forces Z $l b$	Sum of Torques $l b-f t$
Leg Weight	3138.04			
Bracing Weight	3204.87			
Total Member Self-Weight	6342.91			
Guy Weight	2135.83			
Total Weight	14403.26			
Wind 0 deg - No Ice		-38.87	-12370.04	185.02
Wind 30 deg - No Ice		6067.51	-10551.04	1252.02
Wind 60 deg - No Ice		10690.40	-6151.36	2012.51
Wind 90 deg - No Ice		12202.35	38.87	2183.01
Wind 120 deg - No Ice		10729.27	6218.69	1827.49
Wind 150 deg - No Ice	-	6134.84	10589.91	930.99
Wind 180 deg - No Ice		38.87	12370.04	-185.02
Wind 210 deg - No lce		-6067.51	10551.04	-1252.02
Wind 240 deg - No Ice		-10690.40	6151.36	-2012.51
Wind 270 deg - No Ice		-12202.35	-38.87	-2183.01
Wind 300 deg - No Ice		-10729.27	-6218.69	-1827.49
Wind 330 deg - No Ice		-6134.84	-10589.91	-930.99
Member Ice	27543.86			
Guy Ice	20618.60			
Total Weight Ice	104959.08			
Wind 0 deg - Ice		15.65	-7622.87	-34.40
Wind 30 deg - Ice		3819.40	-6584.09	263.84
Wind 60 deg - Ice		6625.08	-3824.99	493.73
Wind 90 deg - Ice		7611.69	-15.65	586.95
Wind 120 deg - Ice		6609.42	3797.88	528.12
Wind 150 deg - Ice		3792.29	6568.44	323.11
Wind 180 deg - Ice		-15.65	7622.87	34.40
Wind 210 deg - Ice		-3819.40	6584.09	-263.84
Wind 240 deg - Ice		-6625.08	3824.99	-493.73
Wind 270 deg - Ice		-7611.69	15.65	-586.95
Wind 300 deg - Ice		-6609.42	-3797.88	-528.12
Wind 330 deg - Ice		-3792.29	-6568.44	-323.11
Total Weight	14403.26			
Wind 0 deg - Service		-14.57	-4636.83	69.35

RISATOWer	Job	117-23243.8	$\text { Page } 29 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: FAX:	Client	CDT	Designed by FAN

Load Case	Vertical Forces $l b$	Sum of Forces X lb	Sum of Forces Z $l b$	Sum of Torques $l b-f t$
Wind 30 deg - Service		2274.37	-3954.99	469.31
Wind 60 deg - Service		4007.23	-2305.80	754.38
Wind 90 dei - Service		4573.97	14.57	818.29
Wind 120 deg - Service		4021,80	2331.04	685.02
Wind 150 deg - Service		2299.61	3969.56	348.97
Wind 180 dog - Service		14.57	4636.83	-69,35
Wind 210 dog - Service		-2274.37	3954.99	46931
Wind 240 dog - Service		-4007.23	2305.80	-734.38
Wind $\mathbf{3 7 0}$ deg - Service		-4573.97	-14.57	-818.29
Wind 300 dog - Service		-4021.80	-2331.04	-685.02
Wind 330 deg - Service		-2299.61	-3969.56	-348.97

Load Combinations

Comb.	
No.	Descriplion
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice+1.0 Guy
3	1.2 Dead+1.6 Wind 30 deg - No Ice+1.0 Guy
4	1.2 Dead+1.6 Wind 60 deg - No Ice+1.0 Guy
5	1.2 Dead+1.6 Wind 90 deg - No Ice+1.0 Guy
6	1.2 Dead+1.6 Wind 120 deg - No Ice+1.0 Guy
7	1.2 Dead+1.6 Wind 150 deg - No Ice+1.0 Guy
8	1.2 Dead+1.6 Wind 180 deg - No Ice+1.0 Guy
9	1.2 Dead+1.6 Wind 210 deg - No Ice+1.0 Guy
10	1.2 Dead+1.6 Wind 240 deg - No Ice+1.0 Guy
11	1.2 Dead+1.6 Wind 270 deg - No Ice+1.0 Guy
12	1.2 Dead+1.6 Wind 300 deg - No Ice+1.0 Guy
13	1.2 Dead+1.6 Wind 330 deg - No Ice+1.0 Guy
14	1.2 Dead+1.0 Ice+1.0 Temp+Guy
15	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp+1.0 Guy
16	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp+1.0 Guy
17	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp+1.0 Guy
18	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp+1.0 Guy
19	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp+1.0 Guy
20	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp+1.0 Guy
21	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp+1.0 Guy
22	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp+1.0 Guy
23	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp+1.0 Guy
24	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy
25	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp+1.0 Guy
26	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp+1.0 Guy
27	Dead+Wind 0 deg - Service+Guy
28	Dead+Wind 30 deg - Service+Guy
29	Dead+Wind 60 deg - Service+Guy
30	Dead+Wind 90 deg - Service+Guy
31	Dead+Wind 120 deg - Service+Guy
32	Dead+Wind 150 deg - Service+Guy
33	Dead+Wind 180 deg - Service+Guy
34	Dead+Wind 210 deg - Service+Guy
35	Dead+Wind 240 deg - Service+Guy
36	Dead+Wind 270 deg - Service+Guy
37	Dead+Wind 300 deg - Service+Guy
38	Dead+Wind 330 deg - Service+Guy

RISATower	Job	117-23243.8	$\text { Page } 30 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: FAX:	Client	CDT	Designed by FAN

		Maximum Reactions			
Location	Condition	Gov. Load Comb.	$\begin{aligned} & \text { Vertical } \\ & \quad l b \end{aligned}$	$\begin{aligned} & \text { Horizontal, } X \\ & \quad l b \end{aligned}$	$\begin{gathered} \text { Horizontal, } \mathrm{Z} \\ l b \end{gathered}$
Mast	Max Vert	23	17980057	397 59	-68. 14
	Max, H_{x}	11	73501.20	1604.97	11.43
	Max. $\mathrm{Hz}_{\mathbf{z}}$	2	7280329	-0.04	167452
	Max M.	1	0.00	-025	18.33
	Max. Ma	1	000	-0.25	18.33
	Max Torsion	1	0,00	-0.25	1833
	Min. Vert	1	69032.34	-0.25	18.33
	Min. $\mathrm{H}_{\mathbf{x}}$	5	73501.58	-1605 58	10.87
	Min. $\mathrm{Hz}_{\mathbf{z}}$	8	74124.91	-0.60	-1561.27
	Min. $\mathrm{M}_{\mathbf{x}}$	1	0,00	-025	1833
	Min $\mathrm{M}_{\mathbf{z}}$	1	0.00	-0.25	18.33
	Min. Torsion	1	0.00	-0.25	18.33
Guy C (3)145 $\{$ Elev 0 f Azimuth 240 deg	Max. Vert	10	-7604.09	-7428.12	4296.65
	Max. H_{x}	10	-7604.09	-7428.12	4296.65
	Max. $\mathbf{H z}_{\mathbf{z}}$	17	-28799.59	-33199.88	1916571
	Min. Vert	4	-29953.67	-30527.96	17615.05
	Min. $\mathrm{H}_{\mathbf{x}}$	17	-28799.59	-33199.88	19165.71
	Min. H_{2}	10	-7604.09	. 7428.12	4296.65
Guy B @ 145 ft Elev 0 ft Azimuth 120 deg	Max. Vert	6	-7518.86	7368.91	4261.80
		25	-28785.79	33189.11	
	$\text { Max } H_{z}$	25	-28785.79	33189.11	1915929
	Min. Vert	12	-30047.08	30594.13	17654.33
	Min. $\mathrm{H}_{\mathbf{x}}$	6	-7518.86	7368.91	4261.80
	Min. $\mathrm{Hz}_{\mathbf{z}}$	6	-7518.86	7368.91	4261.80
Guy A @ 145 ft Elev 0 ft Azimuth 0 deg	Max Vert	2	-7584.43	0.53	-8564.30
	Max. $\mathbf{H}_{\mathbf{x}}$	24	-24105.21	949.22	-32359.08
	Max $\mathrm{Hz}_{\mathbf{z}}$	2	-7584.43	0.53	-8564.30
	Min. Vert	8	-30032.62	-0.91	-35308.71
	Min. H_{x}	18	-24079.40	-949.17	-32338.57
	Min. $\mathrm{H}_{\mathbf{z}}$	21	-29021.43	0.15	-38490.91

Tower Mast Reaction Summary

Load Combination	Vertical lb	Shear x_{x} lb	Shear ${ }_{F}$ lb	Overturning Moment, $M_{\text {т }}$ $l b-f t$	Overturning Moment, $M_{\text {: }}$ $1 b-f t$	Torque $l b-f t$
Dead Only	69032.24	0.25	-18,33	0.00	0.00	0.00
1.2 Dead+1.6 Wind 0 deg - No	7280329	0.04	-1674.52	0.00	0.00	0.00
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 30 deg - No	73492.11	794.38	-1416.68	0.00	0.00	0.00
Ice+1,0 Guy						
12 Dead+1.6 Wind 60 deg - No	7411254	1371.49	-812.46	0.00	0.00	0.00
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 90 deg - No	73501.58	1605.58	-10.87	0.00	0.00	0.00
Ice +1.0 Guy						

RISATOwer	Job	Page	
	117-23243.8	31 of 44	
	Project	Tolland Ave., CT	Date Phone: FAX:

Load Combination	Verical lb	Shear ${ }_{x}$ $1 b$	Shear: lb	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, $M_{=}$ $l b-f t$	Torque lb-fl
12 Dead+1.6 Wind 120 deg .	7281243	143121	808.11	0.00	000	0.00
No Ineet 10 Guy				-		
1.2 Deadt 1.6 Wind 130 dog .	7351517	811.32	136366	000	000	0.00
Nolcet 10 Guy						
1.2 Deadt 1.6 Wind 180 deg =	74124.91	0.60	1361.27	0.00	0.00	0.00
No leot 1.0 Guy						
12 Deadt 1.6 Wind 210 deg -	73498.75	. 810.17	136339	000	000	0.00
No leet 10 Guy						
1.2 Dead+1.6 Wind 240 deg -	72804.00	-1430.33	804.63	000	000	0.00
No leet 1.0 Guy						
1.2 Dead+1.6 Wind 270 deg .	73501.20	-1604.97	-11.43	0.00	0.00	0.00
No Icent 10 Guy						
1.2 Deadt 1.6 Wind 300 deg -	74130.64	.1371.13	-812.96	0.00	0.00	0.00
Nolcet 1.0 Guy						
1,2 Dead+1.6 Wind 330 deg -	73508,31	-794.22	-1416.99	0.00	000	0.00
No Ice+1.0 Guy						
1.2 Dead+1.0 Ice+1.0	178330.76	5.11	-168.72	0,00	0,00	0.00
Temp+Guy						
1.2 Dead+1.0 Wind 0 deg+1.0	179782.73	5.05	-629.75	0.00	0.00	0.00
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 30 deg+1.0	179248.16	218.48	-566.64	0.00	0.00	0.00
lce+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$	178746.64	387.26	-385.54	0.00	0,00	0.00
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 90 deg+1.0	179249.61	459.45	-148.88	0.00	0.00	0.00
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 120	179797.79	407.15	67.83	0.00	0.00	0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 150	179272.48	245.64	221.29	0.00	0.00	0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 180	178777.21	4.68	277.18	0.00	0.00	0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 210	179274.48	-236.22	221.48	0.00	0.00	0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 240	179800.57	-397.59	68.14	0.00	0.00	0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 270	179250.14	-449.68	-148.51	0.00	0.00	0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 300	17874538	-377.30	-385.19	0.00	0.00	000
deg+1.0 Ice+ 1.0 Tempt 1.0 Guy						
1.2 Dead+1.0 Wind 330	179246.65	-208.38	-566.45	0.00	0.00	0.00
deg+1.0 Ice+ 1.0 Temp+1.0 Guy						
Dead+Wind 0 deg -	69174.08	0.20	-405.09	0.00	0.00	0.00
Service+Guy						
Dead+Wind 30 deg -	69134.05	189.46	-347.44	0.00	0.00	0.00
Service+Guy						
Dead+Wind 60 deg -	69095.22	326.72	-206.69	0.00	0.00	0.00
Service+Guy						
Dead+Wind 90 deg -	69133.53	379.98	-17.46	0.00	0.00	0.00
ServicetGuy						
Dead+Wind 120 deg -	69173.44	335.23	175.22	0.00	0.00	0.00
Service+Guy						
Dead+Wind 150 deg -	69133.39	190.76	310.31	0.00	0.00	0.00
Service+Guy						
Dead+Wind 180 deg -	69094.96	0.32	358.79	0.00	000	0.00
Service+Guy						
Dead+Wind 210 deg -	69133.79	-190.13	310.24	0.00	0.00	0.00
Service+Guy						
Dead+Wind 240 deg -	69173.89	-334.64	175.10	0.00	0.00	0.00
Service+Guy						
Dead+Wind 270 deg -	69133.75	-379.46	-17.60	0.00	0.00	0.00

RISATower	Job		${ }^{\text {Page }} 32$ of 44
	117-23243.8		
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: FAX:	Client	CDT	$\begin{array}{r} \hline \text { Designed by } \\ \text { FAN } \\ \hline \end{array}$

Load Combination	Vertical lb	Shear $_{x}$ lb	Shear: lb	Overturning Moment, M_{x} $l b-f t$	Overfurning Moment. M= $l b-f f$	Torque $l b-f t$
Service +Guy						
Dead+Wind 300 dog ,	6909512	-33627	-20681	0.00	000	000
ServicetGuy						
Dead+Wind 3304 log .	69133.88	. 189.06	-347.51	0.00	0.00	0.00
Service+Guy						

Solution Summary

	Silm of Applied Forces			Sum of Reactions			\% Error
Load	$P X$	PY	$P Z$	PX	PY	$P Z$	
Comb.	$1 b$	$1 b$	$l b$	$l b$	16	$l b$	
1	0.00	-14402.80	000	0.00	1440280	0.02	0.000\%
2	-62.19	-17024.38	-22546.72	62.21	17024.35	22540.10	0.023\%
3	11082.11	-16856.29	-19261.67	-11081.94	16856.23	19252.79	0.032\%
4	19186,68	-16688.20	-11044.24	-19180.85	16688.13	11040.76	0.025\%
5	22271.95	-16856.29	62.19	-22264.06	16856.21	-58.07	0.032\%
6	19552.43	-17024.38	11327.22	-1954658	17024.33	-11324.00	0.024\%
7	11189.84	-16856.29	19323.87	-11182.03	16856.23	-19319.23	0.032\%
8	62.19	-1668820	22196.20	-62.07	16688.14	-22189.43	0.024\%
9	-11082.11	-16856.29	19261.67	11074.51	16856.23	-19257.12	0.032\%
10	-19490.24	-17024.38	11219.50	19484.46	17024.33	-1121629	0.023\%
11	-22271.95	-16856.29	-62.19	22264.20	16856.22	66.25	0.031\%
12	-19248.88	-16688.20	-11151.96	19243.11	16688.13	11148.39	0.024\%
13	-11189.84	-16856.29	-19323.87	11189.70	1685623	19314.92	0.032\%
14	0.00	-107407.72	0.00	-0.01	107406.44	0.19	0.001\%
15	15.65	-107633.17	-11296.85	-15.65	107632.10	11271.54	0.023\%
16	5652.08	-107407.72	-9758.38	-5645.73	107406.66	9739.55	0.018\%
17	9772.94	-107182.27	-5642.41	-9750.04	107180.84	5629.24	0.025\%
18	11277.04	-107407.72	-15.65	-11257.65	107406.66	19.39	0.018\%
19	9791.19	-107633.17	5634.87	-9769,36	107632.10	-5622.54	0.023\%
20	5624.96	-107407.72	9742.72	-5611.92	107406.66	-9728.19	0.018\%
21	-15.65	-107182.27	11257.71	15.60	107180.83	-11231.81	0.024\%
22	-5652,08	-107407.72	9758.38	5639.01	107406.66	-9743.85	0.018\%
23	-9806.84	-107633.17	5661.98	9785.01	107632.10	-5649.64	0.023\%
24	-11277.04	-107407.72	15.65	11257.65	107406.66	-11.90	0.018\%
25	-9757.29	-107182.27	-5615.30	9734.38	107180.84	5602.16	0.025\%
26	-5624.96	-107407.72	-9742.72	5618.63	107406.66	4723.89	U. 018%
27	-14.57	-14442.18	-5282.19	14.57	14442.18	5281.41	0.005\%
28	2596.29	-14402.80	-4512.57	-2595.93	14402.80	4511.94	0.005\%
29	4495.01	-14363.42	-2587.42	-4494.38	14363.42	2587.04	0.005\%
30	5217.81	-14402.80	14.57	-5217.09	14402.80	-14.58	0.005\%
31	4580.69	-14442.18	2653.71	-4580.02	14442.18	-2653 34	0.005\%
32	2621.53	-14402.80	4527.15	-2621.16	14402.80	-4526.53	0.005\%
33	14.57	-14363.42	5200.07	-14.57	14363.42	-5199.36	0.005\%
34	-2596.29	-14402.80	4512.57	2595.92	14402.80	-4511.95	0.005\%
35	-4566.12	-14442.18	2628.47	4565.44	14442.18	-2628.09	0.005\%
36	-5217.81	-14402.80	-14.57	5217.09	14402.80	14.56	0.005\%
37	-4509.58	-14363.42	-2612.65	4508.96	14363.42	2612.29	0.005\%
38	-2621.53	-14402.80	-4527.15	2621.17	14402.80	4526.52	0.005\%

RISATOwer	Job	Page	
	117-23243.8	Project	Tolland Ave., CT

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	13	0.00000001	0.000100001
2	Yos	13	0000000001	000007673
3	Yes	13	0000000001	0.00008830
4	Yes	13	000000001	0000006872
3	Yes	13	0.00000001	000008729
6	Yos	13	0.00000001	0.00007607
7	Yos	13	0.00000001	0,00008792
8	Yes	13	0.00000001	000006790
9	Yos	13	0,000000001	000008480
10	Yes	13	0.00000001	000007750
11	Yes	13	0,00000001	0.00008489
12	Yos	13	0,00000001	0,00006813
13	Yes	13	0,00000001	0.00008597
14	Yes	14	0,00132056	0.00119920
15	Yes	15	0.00128545	0,00102677
16	Yes	15	0.00110055	000102517
17	Yes	14	0,00147397	0,00120734
18	Yos	15	0,00109099	0,00102447
19	Yes	15	0.00126408	0.00102587
20	Yes	15	0.00107954	0.00102528
21	Yes	14	0.00145458	0.00120876
22	Yes	15	0.00107899	0.00102522
23	Yes	15	0.00126339	0.00102584
24	Yes	15	0.00109159	0,00102448
25	Yes	14	0.00147583	0.00120741
26	Yes	15	0.00110185	0.00102523
27	Yes	13	0.00000001	0.00001541
28	Yes	13	0.00000001	0.00001379
29	Yes	13	0.00000001	0.00001262
30	Yes	13	0.00000001	0.00001365
31	Yes	13	0.00000001	0.00001511
32	Yes	13	0.00000001	0.00001343
33	Yes	13	0.00000001	0.00001214
34	Yes	13	0.00000001	0.00001361
35	Yes	13	0.00000001	0.00001529
36	Yes	13	0.00000001	0.00001367
37	Yes	13	0.00000001	0.00001246
38	Yes	13	0.00000001	0.00001360

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	0
T1	fl	$180-160$	0.824	33	0.0272
T2	$160-140$	0.724	33	0.0226	Twist
T3	$140-120$	0.616	33	0.0293	0
T4	$120-100$	0.491	37	0.0193	0.0232
T5	$100-80$	0.467	27	0.0035	0.0281
T6	$80-60$	0.447	27	0.0107	0.0257
T7	$60-40$	0.390	27	0.0111	0.0429
T8	$40-20$	0.348	27	0.0191	0.0725
T9	$20-5$	0.221	27	0.0425	0.0830
T10	$5-0$	0.060	35	0.0547	0.0891
					0.0912

RISATowerPhone:	Job	117-23243.8	$\text { Page } 34 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
	Client	CDT	$\begin{array}{\|c} \hline \text { Designed by } \\ \text { FAN } \end{array}$

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Till	Twist	Radius of Curvalure
$f t$		Comb.	in	0	0	In

	Maximum Tower Deflections - Design Wind				
Section No.	Elevation	Horz.	Gov.	Tilt	Twist
		Deflection	Load		
	ft	in	Comb.	-	-
TI	180-160	3.946	12	0.1331	0.1122
72	160-140	3.443	12	0.1150	0.1205
T3	140-120	2.902	12	0.1437	0.1314
T4	120-100	2.285	12	0.0985	0.1187
T5	100-80	2.116	4	0.0271	0.1861
T6	80-60	1.973	4	0.0544	0.2602
T7	60-40	1.693	4	0.0532	0.3122
T8	40-20	1.493	10	0.0852	0.3571
T9	20-5	0.949	10	0.1823	0.3833
T10	5-0	0.258	10	0.2351	0.3921

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Till	Twist	Radius of Curvature
$f t$		Comb.	in	\circ	\circ	of
180.00	Lightning Rod	12	3.946	0.1331	0.1122	506558
177.00	Sector Frame Mount	12	3.870	0.1279	0.1129	506558
170.00	Guy	12	3.693	0.1178	0.1149	253278
116.42	Guy	12	2.223	0.0828	0.1250	7618
60.38	Guy	4	1.697	0.0533	0.3113	19299

Bolt Design Data

Section No.	Elevation fi	Component Type	Bolt Grade	Boll Size in	Number Of Bolts	Maximum Load per Bolt $1 b$	Allowable Load $l b$	Ratio Load Allowable	Allowable Ratio	Criteria
T1	180	Leg	A325N	0.7500	4	6.07	29820.60	0.000	1	Bolt Tension
		Torque Arm Top@170	A325N	0.7500	2	6693.75	17892.40	0.374	1	Bolt Shear
		Torque Arm Bottom@170	A325N	0.7500	2	3794.55	17892.40	0212	1	Bolt Shear

RISATower	Job	117-23243.8	$\text { Page } 35 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: FAX:	Client	CDT	Designed by FAN

Section No.	Elevation $f i$	Component Type	Bolt Grade	Bolt Size in	Number Of Bolls	Maximum Load per Bolt $l b$	$\begin{gathered} \text { Allowable } \\ \text { Load } \\ l b \end{gathered}$	Ratio LoadAllowable	Allowable Ratio	Criteria
T2	160	Leg	A333N	0.3300	4	210984	2982060	0071	1	Balt Tension
T3	140	1.8	A 23 N	a 7500	4	2317.69	29820.60	0078	1	Boh Tonsion
T4	120	Leg	A325N	0.7300	4	293521	29820.60	0098	1	Bult Tensian
		Torque Arm Tрр@116417	A32SN	0.7300	2	4817.44	17892.40	0260	1	Boll Shear
		Torque Arm Battom@1 16.41 7	A325N	0.7300	2	2353.34	1789240	0.132	1	Boll Shear
TS	100	Leg	A325N	0.7500	4	3752.80	29820.60	126	1	Boll Tension
T6	80	Leg	A 325 N	0.7500	4	4041.32	29820.60	0136	1	Ball Tension
T7	60	Leg	A325N	0.7500	4	4464.50	29820.60	0.150	1	Bolt Tension
T8	40	Leg	A325N	0.7500	4	4944.27	29820.60	0166	1	Bolt Tension
T9	20	Leg	A325N	0.7500	4	5140.04	29820.60		1	Bolt Tension
T10	5	Leg	A325N	0.7500	4	5371.61	29820.60	0.180	1	Bolt Tension

Guy Design Data

Section No.	Elevation fl	Size	Initial Tension $l b$	Breaking Load lb	$\begin{gathered} \text { Actual } \\ T_{u} \\ l b \end{gathered}$	$\begin{gathered} \text { Allowable } \\ \phi T_{n} \\ l b \end{gathered}$	Required S.F.	$\begin{aligned} & \text { Actual } \\ & \text { S.F. } \end{aligned}$
T1	$\begin{gathered} 170.00(\mathrm{~A}) \\ (559) \end{gathered}$	5/8 EHS	6360,00	42399.99	12129.30	25440.00	1.000	2.097
	$\begin{gathered} 170.00(\mathrm{~A}) \\ (560) \end{gathered}$	5/8 EHS	6360.00	42399.99	12127.80	25440.00	1.000	2.098
	$\begin{gathered} 170.00(\mathrm{~B}) \\ (553) \end{gathered}$	5/8 EHS	6360.00	42399.99	11963.50	25440.00	1.000	2.126
	$\begin{gathered} 170.00(\mathrm{~B}) \\ (554) \end{gathered}$	5/8 EHS	6360.00	42399.99	11959.30	25440.00	1.000	2.127
	$\begin{gathered} 170,00(\mathrm{C}) \\ (547) \end{gathered}$	5/8 EHS	6360.00	42399.99	11966.80	25440.00	1.000	2.126
	$\begin{gathered} 170.00(\mathrm{C}) \\ (548) \end{gathered}$	5/8 EHS	6360.00	42399.99	11972.00	25440.00	1.000	2.125
T4	$\begin{gathered} 116.42(\mathrm{~A}) \\ (577) \end{gathered}$	9/16 EHS	5250.00	35000.04	9926.60	21000,00	1.000	2.116
	$\begin{gathered} 116,42(\mathrm{~A}) \\ (578) \end{gathered}$	9/16 EHS	5250.00	35000.04	9927.46	21000.00	1.000	2.115
	$\begin{gathered} 116.42(\mathrm{~B}) \\ (571) \end{gathered}$	9/16 EHS	5250.00	35000.04	9940.64	21000.00	1.000	2.113
	$\begin{gathered} 116.42 \text { (B) } \\ (572) \end{gathered}$	9/16 EHS	5250.00	35000.04	9910.20	21000.00	1.000	2.119
	$\begin{gathered} 116.42 \text { (C) } \\ (565) \end{gathered}$	9/16 EHS	5250.00	35000.04	9912.08	21000.00	1.000	2.119
	$\begin{gathered} 116,42(\mathrm{C}) \\ (566) \end{gathered}$	9/16 EHS	5250.00	35000.04	9940.95	2100000	1.000	2.112
T6	$\begin{gathered} 60.38(\mathrm{~A}) \\ (585) \end{gathered}$	9/16 EHS	5250.00	35000.04	9811.14	2100000	1.000	2.140
	60.38 (B) (584)	9/16 EHS	5250.00	35000.04	986654	2100000	1.000	2.128
	60.38 (C) (583)	9/16 EHS	5250.00	35000.04	9866.93	21000.00	1.000	2.128

RISATowerPhone:	Job	117-23243.8	Page 36 of 44
	Project		Date
		Tolland Ave., CT	01:32:09 12/29/17
	Client		Designed by
		CDT	FAN

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L 	L_{n}	K / r	A	Mast Stability	P_{4}	${ }_{4 \prime}$	$\begin{aligned} & \text { Ralio } \\ & P_{u} \end{aligned}$
	ft		$f 1$	f			Index	1 b	$1 b$	ϕP_{n}
TI	$180 \cdot 160$	P2.5x 203	20.00	3.21	$\begin{gathered} 40.6 \\ K=1,00 \end{gathered}$	1.7040	1.00	-28526.60	72691.90	${ }^{0.392}$
T2	$160=140$	P2.5x. 203	20.00	3.21	$\begin{gathered} 40,6 \\ K=1,00 \end{gathered}$	1.7040	1.00	-31097.80	72691.90	$0^{0.428^{1}}$
T3	$140=120$	P2.5x. 203	20.00	3.21	$\begin{gathered} 40.6 \\ K=1,00 \end{gathered}$	1.7040	1.00	-37486.80	72691.90	0.516^{1}
T4	120-100	P2.5x 203	20,00	321	$\stackrel{40,6}{K=1,00}$	1.7040	1.00	-49461.00	72691.90	0.680^{\prime}
T5	100-80	P2.5x. 203	20.00	3.21	$\begin{gathered} 40.6 \\ K=1.00 \end{gathered}$	1.7040	1.00	-50186.60	72691.90	0.690^{\prime}
T6	80-60	P2.5x. 203	20.00	3.21	$\begin{gathered} 40.6 \\ K=1.00 \end{gathered}$	1.7040	1.00	-53554.90	72691.90	0.737^{\prime}
T7	60-40	P2.5x 203	20.00	321	$\stackrel{40.6}{K=1.00}$	1.7040	0.98	-60085.90	7150280	0.840^{\prime}
T8	40-20	P2.5x. 203	20.00	3.21	$\begin{gathered} 40.6 \\ K=1.00 \end{gathered}$	1.7040	0.98	-62656.90	71509.50	$0^{0.876^{1}}$
T9	20-5	P2.5x 203	15.00	3.56	$\begin{gathered} 45.1 \\ K=1.00 \end{gathered}$	1.7040	1.00	-62009.10	70516.80	0.879^{1}
T10	5-0	P2.5x 203	5.39	1.80	$\begin{gathered} 22.8 \\ K=1.00 \end{gathered}$	1.7040	0.90	-65726.80	7160070	$\begin{gathered} 0.918^{1} \\ \gamma \end{gathered}$

${ }^{1} P_{n} / \phi P_{n}$ controls

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	$K / / r$	A	$P_{\text {u }}$	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
	$f i$		f	$f t$		$i \mathrm{I}^{2}$	$1 b$	$l b$	ϕP_{n}
T10	5-0	5/8	2.44	1.46	$\begin{gathered} 105.4 \\ \mathrm{~K}=0.94 \end{gathered}$	0.3068	-3915.31	553829	0.707^{1}

[^2]| RISATower | Job | 117-232438 | ${ }^{\text {Page }} 37$ of 44 |
| :---: | :---: | :---: | :---: |
| | Project | | Date |
| | | Tolland Ave., CT | 01:32:09 12/29/17 |
| Phone:FAX: | Client | | Designed by |
| | CDT | | FAN |

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	P_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f i$		$f t$	$f t$		$i n^{2}$	$l b$	$1 b$	${ }_{*} P_{n}$
$T 1$	$180=160$	L1 1/2x11/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ K^{\prime}=0.65 \end{gathered}$	0.5273	-6306.64	11503.00	0.548^{1}
T	160.140	L.1/2x1 1/2x3/16	330	3.36	$\begin{gathered} 86.7 \\ K=0.63 \end{gathered}$	0 3373	-4878.13	11303.00	0.424^{1}
T3	$140 \cdot 120$	41 1/2011/2x3/16	3.30	3.26	$\begin{gathered} 867 \\ K=0.65 \end{gathered}$	03373	-4863.00	1150300	0.423^{1}
T4	$120=100$	L1 1/2x1 1/2×3/16	350	326	$\begin{gathered} 867 \\ \mathrm{~K}=0.65 \end{gathered}$	05273	-4161.94	11303,00	0362^{\prime}
T5	$100 \cdot 80$	L1 1/2x11/203/16	350	326	$\begin{gathered} 86.7 \\ K=0.65 \end{gathered}$	0.5273	-4206 74	11303.00	0.366^{1}
T6	$80 \cdot 60$	L.1 1/2×1 1/2×316	350	326	$\begin{gathered} 86.7 \\ \mathrm{~K}=0.65 \end{gathered}$	0.5273	-4391.54	11503,00	0.382^{1}
T7	60.40	L1 1/2x1 1/2×3/16	350	326	$\begin{gathered} 867 \\ K=0.65 \end{gathered}$	0.5273	-404538	11503.00	0352^{1}
T8	40-20	L1 1/2×1 1/2×3/16	3.50	3.26	$\begin{gathered} 86.7 \\ K=0.65 \end{gathered}$	0.5273	-4168.43	11503.00	0.362^{1}
T9	$20 \cdot 5$	L1 1/2×11/2×3/16	3.50	326	$\begin{gathered} 86.7 \\ K=0.65 \end{gathered}$	0.5273	-3603.52	11503.00	0.313^{1}
T10	5-0	L1 1/2x11/2x3/16	2.33	2.09	$\begin{gathered} 55.7 \\ \mathrm{~K}=0.65 \end{gathered}$	0.5273	-1203 55	14513.70	$0.083^{\prime \prime}$

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Girt Design Data (Compression)

Section No,	Elevation	Size	L	L_{u}	Kl / r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	f		f	ft		m^{2}	16	16	ϕP_{11}
TI	180-160	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ K=0.65 \end{gathered}$	0.5273	-3019.11	11503.00	0.262^{1}
T2	160-140	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ K=0.65 \end{gathered}$	0.5273	-2568.24	11503.00	$\overbrace{}^{0.223^{1}}$
T3	140-120	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ K=0.65 \end{gathered}$	0.5273	-2653.61	11503.00	0.231^{1}
T5	100-80	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ \mathrm{~K}=0.65 \end{gathered}$	0.5273	-2317.11	11503.00	$\overbrace{}^{0.201}$
T6	80-60	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ \mathrm{~K}=0.65 \end{gathered}$	0.5273	-2255.16	11503.00	$.^{0.196^{1}}$
T7	60-40	L1 1/2x1 1/2×3/16	3.50	3.26	$\begin{gathered} 86.7 \\ \mathrm{~K}=0.65 \end{gathered}$	0.5273	-2070.69	11503.00	0.180^{\prime}
T8	40-20	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ K=0.65 \end{gathered}$	0.5273	-2052.54	11503.00	0.178^{1}
T9	20-5	L] I/2x1 1/2x $3 / 16$	3.50	3.26	$\begin{gathered} 86,7 \\ \mathrm{~K}=0,65 \end{gathered}$	0.5273	-1957.72	11503.00	$.^{0.170^{1}}$

${ }^{1} P_{u} / \phi P_{n}$ controls

RISATower	Job	Page	
	Project	117-23243.8	38 of 44
	Tolland Ave., CT	Date 01:32:09 12/29/17	
	Client	CDT	Designed by FAN

Bottom Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	$\overline{P_{u}}$	P_{n}	$\begin{gathered} \text { Ratio } \\ P_{4} \end{gathered}$
	n		$f t$	$f 1$		in ${ }^{2}$	16	16	\& P_{n}
TI	$180 \cdot 160$	$1.1 / 2 \times 1$ 1/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ k=0.63 \end{gathered}$	0.5273	-266994	11503.00	0.232^{1}
T2	$160=140$	L1 1/2x1 $1 / 2 \times 3 / 16$	350	3.26	$\begin{gathered} 86.7 \\ K=0.65 \end{gathered}$	03273	-253407	11303,00	
T3	$140=120$	111/2×11/2*3/16	3.50	326	$\begin{gathered} 86.7 \\ K=0.65 \end{gathered}$	0.3273	-326264	11503.00	0284^{1}
T4	$120 \cdot 100$	L1 1/2x1 1/2x3/16	350	3.26	$\begin{gathered} 867 \\ K=0.65 \end{gathered}$	05273	-233322	11503.00	02031
T5	$100 \cdot 80$	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ k=0.65 \end{gathered}$	0.5273	-2151.86	11503.00	0.187^{1}
T7	60.40	L1 1/2x1 1/2×3/16	350	3.26	$\begin{gathered} 86.7 \\ K=0.65 \end{gathered}$	05273	-2286.95	11503.00	0.199^{1}
T8	40-20	$1.11 / 2 \times 11 / 2 \times 3 / 16$	350	3.26	$\begin{gathered} 86.7 \\ \mathrm{~K}=0.65 \end{gathered}$	0.5273	-2081.49	11503,00	0.181^{1}
T9	20-5	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ \mathrm{~K}=0.65 \end{gathered}$	0.5273	-2216	1150300	n^{0}

${ }^{1} P_{n} / \phi P_{n}$ controls

Top Guy Pull-Off Design Data (Compression)

Section No.	Elevation	Size	L f	L_{u}	Kl / r	A	P_{u}	ϕP_{n} lb	Ratio P_{u}
	$f t$		f	$f t$		m^{2}	$l b$	$l b$	ϕP_{n}
T1	180-160	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ K=0.65 \end{gathered}$	0.5273	-7224.84	11503.00	0.628^{1}
T4	120-100	L1 1/2x1 1/2x3/16	3.50	326	$\begin{gathered} 86.7 \\ \mathrm{~K}=0.65 \end{gathered}$	0.5273	-3363.92	11503.00	0.292^{1}
T6	80-60	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ \mathrm{~K}=0.65 \end{gathered}$	0.5273	-708.63	11503.00	0.062^{1}

${ }^{1} P_{n} / \phi P_{n}$ controls

Bottom Guy Pull-Off Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		in^{2}	$1 b$	$1 b$	ϕP_{n}
T1	180-160	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ K=0.65 \end{gathered}$	0.5273	-5468. 50	11503.00	0.475^{1}
T4	120-100	L1 1/2x1 $1 / 2 \times 3 / 16$	3.50	3.26	$\begin{gathered} 86.7 \\ K=0.65 \end{gathered}$	0.5273	-6022,88	11503.00	0.524^{1}

RISATower	Job	117-23243.8	$\text { Page } 39 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: FAX:	Client	CDT	Designed by FAN

${ }^{1} P_{u} / \$ P_{n}$ contrals

Torque-Arm Bottom Design Data

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	$\$ P_{n}$	$\begin{gathered} \text { Ratio } \\ P_{n} \end{gathered}$
	$f t$		$f t$	$f 1$		m^{2}	$l b$	$1 b$	ϕP_{n}
T1	$180 \cdot 160$ (331)	$1.3 \times 3 \times 1 / 4$	330	3.38	$\begin{gathered} 68.5 \\ K=1.00 \end{gathered}$	1.4400	.7351.54	36439.50	0202
T1	$180 \cdot 160$ (532)	L3x3x1/4	330	338	$\begin{gathered} 68.5 \\ K=1,00 \end{gathered}$	1.4400	.7589.10	36439, 30	0208^{\prime} \downarrow
T1	180-160 (557)	L3x3x1/4	3.50	3.38	$\begin{gathered} 68,5 \\ \mathrm{~K}^{\prime}=1,00 \end{gathered}$	1.4400	.7435 71	36439,50	0.204^{\prime}
TI	180.160 (558)	$13 \times 3 \times 1 / 4$	3.50	3.38	$\begin{gathered} 68,5 \\ K=1,00 \end{gathered}$	1.4400	-7436.73	36439.50	0204^{\prime}
TI	180-160 (563)	L3x3x1/4	3.50	3.38	$\begin{gathered} 68.5 \\ K=1.00 \end{gathered}$	1.4400	.7344.47	36439,50	0202^{1}
TI	180-160 (564)	L $3 \times 3 \times 1 / 4$	3.50	3.38	$\begin{gathered} 68.5 \\ K=1,00 \end{gathered}$	1.4400	.758362	36439.50	0.208
T4	120-100 (569)	L3×3×1/4	3.50	3.38	$\begin{gathered} 68.5 \\ K=1.00 \end{gathered}$	1.4400	-4476.81	36439.50	0.123^{1}
T4	120-100 (570)	L3x3x1/4	350	3.38	$\begin{gathered} 68.5 \\ K=1.00 \end{gathered}$	1.4400	-4490 54	36439,50	0.123^{1}
T4	120-100(575)	L $3 \times 3 \times 1 / 4$	3.50	3.38	$\begin{gathered} 68.5 \\ \mathrm{~K}=1.00 \end{gathered}$	1.4400	-4706 68	36439.50	0.129^{1}
T4	120-100(576)	L3 $\times 3 \times 1 / 4$	3.50	3.38	$\begin{gathered} 68.5 \\ K=1.00 \end{gathered}$	1.4400	-4705.53	36439.50	0.129^{1}
T4	120-100 (581)	L3x3x1/4	3.50	3.38	$\begin{gathered} 68.5 \\ \mathrm{~K}=1.00 \end{gathered}$	1.4400	-448228	36439.50	0.123^{\prime}
T4	120-100 (582)	L3x3x1/4	3.50	338	$\begin{gathered} 68.5 \\ K=1.00 \end{gathered}$	1.4400	-4494.87	36439.50	0.123^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Tension Checks

Leg Design Data (Tension)

Section No.	Elevation	Size	L	$L_{4 \prime}$	Kl/r	A$i n^{2}$	$\begin{gathered} P_{u} \\ l b \end{gathered}$	ϕP_{n} lb	Ratio P_{t}
	f		f	$f t$					ϕP_{n}
T1	180-160	P2.5x 203	20.00	3.21	406	1.7040	0.01	82816.80	0.000^{1}

${ }^{1} P_{k} / \phi P_{n}$ controls

RISATower	Job		${ }^{\text {Page }} 40$ of 44
	117-23243.8		
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone:	Client	CDT	Designed by FAN

Diagonal Design Data (Tension)

No.	Elevation	Size	L	L_{u}	$K I / r$	A	$P_{\text {w }}$	lb	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
	f		f	n		$i n^{2}$	$1 b$		P_{n}
TI	$180 \cdot 160$	\$/8	4.73	4.42	3397	03068	363003	994020	0.5651
T2	$160 \cdot 140$	\$/8	4.75	4.42	339.7	03068	3914.38	9940.20	0394^{1}
T3	$140 \cdot 120$	5/8	475	4.42	33997	0.3068	4829,93	9940.20	0.486^{1}
T4	120.100	\$/8	4.75	4.42	33997	03068	4241. 28	9940.20	0427^{\prime}
T5	100.80	5/8	4.75	4.42	3.39 .7	0.3068	3866.63	9940,20	0.389^{1}
T6	$80-60$	5/8	4.75	4.42	339.7	0.3068	4050.12	9940.20	0.407^{1}
T7	60.40	5/8	4.75	4.42	339.7	0,3068	410629	9940.20	0.413^{1}
T8	40-20	5/8	4.75	4.42	339.7	0.3068	3280.90	9940,20	$0,330^{1}$
T9	20-5	5/8	4.99	4.65	357.3	0.3068	3292.98	9940.20	0.331^{1}
									\checkmark

${ }^{1} P_{"} / \phi P_{n}$ controls

Horizontal Design Data (Tension)

Section No.	Elevation	Size	L	$L_{\text {u }}$	$K l / r$	A	P_{u}	\$ P_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
	$f 1$		n	f		$i n^{2}$	$1 b$	$l b$	ϕP_{n}
T1	180-160	L1 1/2x1 1/2x3/16	3.50	3.26	857	0.5273	494.10	17085.90	0.0291
									\checkmark
T2	160-140	L1 1/2×11/2x3/16	3.50	3.26	85.7	0.5273	538.63	17085.90	0.032^{1}
									\checkmark
T3	140-120	L1 1/2x1 1/2x3/16	3.50	3.26	85.7	0.5273	64929	17085.90	0.038^{\prime}
									\checkmark
T4	120-100	L1 1/2x1 1/2x3/16	3.50	3.26	857	0.5273	856.69	17085,90	0.050^{1}
									-
T5	100-80	L1 1/2x] 1/2x ${ }^{\text {/ }} 16$	350	3.26	85.7	0.5273	869.26	17085.90	$0.051{ }^{1}$
									\checkmark
T6	80-60	L1 1/2x11/2x3/16	350	3.26	85.7	0,5273	927.60	17085.90	0.054^{\prime}
		L/ $1 / 2 \times 1$ 1/2x $/ 16$							\checkmark
T7	60-40	LI 1/2x11/2x3/16	3.50	3.26	85.7	0.5273	1040.72	17085.90	$0.061{ }^{\prime}$
									\checkmark
T8	40-20	L1 1/2x11/2x3/16	3.50	3.26	85.7	0.5273	108525	17085.90	0.064^{1}
									\checkmark
T9	20-5	L1 1/2x1 1/2x3/16	3.50	3.26	85.7	0.5273	1074.03	17085,90	$0.063{ }^{1}$
									\checkmark
T10	5-0	L1 1/2x11/2x3/16	2.33	2.09	55.0	0.5273	3507.01	17085.90	0.205^{\prime}
									\checkmark

RISATOwer	Job	117-23243.8	$\text { Page } 41 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: FAX:	Client	CDT	Designed by FAN

${ }^{1} P_{u} / \nmid P_{n}$ controls

Top Girt Design Data (Tension)

Section No.	Elevation	Size	L	L_{14}	Kl/r	A	P_{u}	P_{n}	Ratio P_{u}
	$f t$		$f 1$	$f 1$			16	$1 b$	ϕP_{n}
T9	20.5	1.1 $1 / 2 \times 1$ 1/2x3/16	3.50	3.26	85.7	0.5273	50.32	17085.90	$0.00{ }^{1}$
T10	5.0	1.1 $1 / 2 \times 11 / 2 \times 3 / 16$	350	3.26	857	0.5273	997670	17085.90	0.584^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Bottom Girt Design Data (Tension)									
Section No.	Elevation	Size	L	L_{11}	Kl/r	A	$P_{\text {w }}$	ϕP_{n}	Ratio P_{μ}
	$f t$		$f t$	$f i$		$i m^{2}$	$1 b$	$l b$	ϕP_{n}
T9	20-5	L1 1/2x11/2×3/16	3.50	3.26	85.7	0.5273	3485.64	17085.90	$0.20{ }^{1}$

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Guy Pulloff Design Data (Tension)									
Section No.	Elevation	Size	L	L_{n}	$K 1 / r$	A	$P_{\text {u }}$	中 P_{n}	Ratio P_{n}
	$f i$		f	$f t$		m^{2}	lb	$l b$	ϕP_{n}
T6	80-60	L1 1/2x1 1/2x3/16	3.50	3.26	85.7	0.5273	3336.23	17085.90	0.195^{1}

${ }^{1} P_{n} / \phi P_{n}$ controls

Torque-Arm Top Design Data

Section No.	Elevation	Size	L	L_{u}	$K l / r$	A	P_{μ}	ϕP_{n}	Ratio P_{u}
T1	$180-160(549)$								

RISATOwer	Job	117-23243.8	Page 42 of 44
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: $F A X:$	Client	CDT	Designed by FAN

Section No,	Elevation	Size	L	L_{u}	Kl/r	A	$P_{\text {" }}$	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{4} \end{gathered}$
	f		f	$f t$		$i n^{2}$	$l b$	$l b$	中 P_{n}
T1	$180=160(396)$	L2×2×5/16	475	439	91,6	1.1300	13221.80	3726000	0.355^{1}
									\checkmark
T1	$180 \cdot 160(361)$	$1.3 \times 2 \times 16$	4.73	439	91.6	1.1500	1331240	37260000	03971
									\checkmark
TI	180-160(562)	1. $2 \times 2 \times 5 / 16$	475	439	916	1,1800	13,387,30	3726000	$0359{ }^{1}$
									\checkmark
T4	120-100 (567)	L2x2x5/16	4.73	4.59	91.6	1.1500	9477.59	3726000	$0254{ }^{\prime}$
									\checkmark
T4	$120 \cdot 100$ (\$68)	L2x $2 \times 5 / 16$	4.73	4.39	91.6	1.1300	9634.88	37260,00	0.259^{\prime}
									\checkmark
T4	$120 \cdot 100(573)$	$1.2 \times 2 \times 5 / 16$	4,75	4,59	91.6	1.1500	9547.23	37260.00	0.256^{1}
									\checkmark
T4	120-100(574)	L $2 \times 2 \times 5 / 16$	4.75	4.59	91.6	1.1500	9550.55	37260.00	0.256^{1}
									\checkmark
T4	120-100 (579)	L2x2x5/16	4.75	4.59	91.6	1.1500	9480.13	37260,00	0.254^{1}
									\checkmark
T4	$120 \cdot 100(580)$	L $2 \times 2 \times 5 / 16$	4.75	4.59	91,6	1.1500	9634.64	3726000	0.259^{1}
									\checkmark

${ }^{1} P_{u} / \phi P_{n}$ controls

Torque-Arm Bottom Design Data

Section No.	Elevation	Size	L	$L_{1 \prime}$	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
No. ft			f	$f t$		$i m^{2}$	$1 b$	$l b$	ϕP_{n}
TI	180-160 (551)	L3x3x1/4	3.50	3.38	43.6	1.4400	326.48	46656.00	0.007^{1}
T1	180-160 (552)	L3x3x1/4	3.50	3.38	43.6	1.4400	373.17	46656.00	0.008^{1}
T1	180-160 (557)	L3x3x1/4	3.50	3.38	43.6	1.4400	459.66	46656.00	0.010^{1}
T1	180-160(558)	L3x3x1/4	3.50	3.38	43.6	1.4400	407.17	46656.00	0.009^{1}
T1	$180 \cdot 160(563)$	L3 $\times 3 \times 1 / 4$	3.50	3.38	43.6	1.4400	37182	4665600	0.008^{1}
	- $80-160(563)$								
T1	180-160 (564)	L3x3x1/4	3.50	3.38	43.6	1.4400	365.31	46656.00	0.008^{1}
							1512.41		
T4	120-100 (569)	L3x3x1/4	3.50	3.38	43.6	1.4400		46656.00	$0^{0.032}$
T4	120-100 (570)	L3x3x1/4	3.50	3.38	43.6	1.4400	1499.94	46656.00	0.032^{1}
T4	120-100 (575)	L3x3x1/4	3.50	3.38	43.6	1,4400	171093	46656.00	0.037^{1}
T4	120-100 (576)	L3x3x1/4	3.50	3.38	43.6	1.4400	1709.60	46656.00	0.037
T4	120-100 (581)	L3x $3 \times 1 / 4$	3.50	3.38	43.6	1.4400	1517.14	46656.00	0.033^{1}
									\checkmark

RISATower	Job	117-23243.8	$\text { Page } 43 \text { of } 44$
	Project	Tolland Ave., CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 01:32:09 12/29/17 } \end{array}$
Phone: FAX:	Client	CDT	Designed by FAN

Section No.	$f t$	Size	L	L_{n}	Kl/r	A	P_{u}	P_{n}	$\begin{gathered} \text { Ratio } \\ P_{\mathbf{u}} \end{gathered}$
			$f 1$	$f 1$		in^{2}	$1 b$	$l b$	${ }_{\sim} P_{n}$
T	120-100(582)	$13 \times 3 \times 1 / 4$	3.50	3.38	43.6	1.4400	1503.31	46656.00	

${ }^{1} P_{n} / \nmid P_{n}$ controls

Section Capacity Table

Section No.	$\begin{gathered} \text { Elevation } \\ f l \end{gathered}$	Component Type	Size	Crifical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} a P_{\text {allow }} \\ l b \end{gathered}$	$\%$ Capacity	Pass Fail
T1	180-160	Leg	P2 5x 203	2	-28526.60	72091.90	39.2	Pass
		Diagonal	$5 / 8$	46	5620.03	9940.20	56.5	Pass
		Horizontal	L1 $1 / 2 \times 11 / 2 \times 3 / 16$	54	-6306.64	11503.00	54.8	Pass
		Top Girt	L1 1/2×1 1/2x3/16	6	-3019.11	11503.00	26.2	Pass
		Bottom Girt	L1 1/2x1 1/2×3/16	7	-2669.94	11503.00	23.2	Pass
		Guy A (6170	$5 / 8$	559	1212930	25440.00	477	Pass
		Guy B@170	5/8	553	11963.50	25440.00	470	Pass
		Guy C@170	$5 / 8$	548	11972.00	25440.00	47.1	Pass
		Top Guy Pull-Of1@170	L1 1/2x1 1/2x3/16	45	-7224.84	11503.00	62.8	Pass
		Bottom Guy Pull-Off@170	L) $1 / 2 \times 11 / 2 \times 3 / 16$	36	-5468.50	11503,00	47.5	Pass
		Torque Arm	L $2 \times 2 \times 5 / 16$	562	13387.50	37260.00	35.9	Pass
		Top@170					37.4 (b)	
		Torque Anm	L3x3x1/4	552	-7589.10	36439.50	20.8	Pass
		Bottom@170					21.2 (b)	
T2	160-140	Leg	P2.5x. 203	62	-31097.80	72691.90	42.8	Pass
		Diagonal	5/8	115	3914.58	9940.20	39.4	Pass
		Horizontal	L. $1 / 2 \times 1$ 1/2x3/16	113	-4878.13	11503.00	42.4	Pass
		Top Girt	L. 1/2x1 1/2x3/16	66	-2568. 24	11503.00	22.3	Pass
		Bottom Girt	L1 1/2x1 1/2x3/16	67	-2554.07	11503.00	22.2	Pass
T3	140-120	Leg	P2.5x. 203	121	-37486.80	72691.90	51.6	Pass
		Diagonal	5/8	131	4829.95	9940.20	48.6	Pass
		Horizontal	L1 1/2x1 1/2x3/16	138	-4863.00	11503.00	42.3	Pass
		Top Girt	L1 1/2x1 1/2×3/16	125	-2653.61	11503.00	23.1	Pass
		Bottom Girt	L1 1/2x11/2x3/16	127	-3262.64	11503.00	28.4	Pass
T4	120-100	Leg	P2.5x. 203	181	-49461.00	72691.90	68.0	Pass
		Diagonal	5/8	226	4241.28	9940.20	42.7	Pass
		Horizontal	L1 1/2x11/2×3/16	198	-4161.94	11503.00	36.2	Pass
		Bottom Girt	L1 1/2x1 1/2×3/16	187	-2333.22	11503.00	20.3	Pass
		Guy A@116.417	9/16	578	9927.46	21000.00	47.3	Pass
		Guy B@116.417	9/16	571	9940.64	21000.00	47.3	Pass
		Guy C@116.417	9/16	566	9940.95	21000.00	47.3	Pass
		Top Guy Pull-Off@116.417	LI $1 / 2 \times 11 / 2 \times 3 / 16$	184	-3363.92	11503.00	29.2	Pass
		Bottom Guy Pull-OI!@1 16.417	L1 1/2x1 1/2×3/16	234	-6022.88	11503.00	52.4	Pass
		Torque Arm	L2x2x5/16	568	9634.88	37260.00	25.9	Pass
		Top@116.417					26.9 (b)	
		Torque Arm	L3x3x1/4	575	-4706.68	36439.50	12.9	Pass
		Bottom@116.417					13.2 (b)	
T5	100-80	Leg	P2.5x 203	242	-50186,60	72691.90	69.0	Pass
		Diagonal	5/8	295	3866.63	9940.20	38.9	Pass
		Horizontal	L1 $1 / 2 \times 11 / 2 \times 3 / 16$	257	-4206.74	11503.00	36.6	Pass
		Top Girt	L1 1/2x1 1/2x3/16	246	-2317.11	11503.00	20.1	Pass
		Bottom Girt	L1 1/2x1 1/2x3/16	247	-2151.86	11503.00	18.7	Pass

RISATower	Job	117232438	Page 44 of 44
		117-23243.8	
	Project	Tolland Ave., CT	Date 01:32:09 12/29/17
$\begin{aligned} & \text { Phone: } \\ & \text { FAX: } \\ & \hline \end{aligned}$	Client	CDT	Designed by FAN

Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	$\begin{gathered} \text { Component } \\ \text { Type } \end{gathered}$	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} o P_{a l l w w} \\ l b \end{gathered}$	$\begin{gathered} \% \\ \text { Capacity } \end{gathered}$	$\begin{aligned} & \text { Pass } \\ & \text { Fail } \end{aligned}$
T6	$80-60$	Leg	P2.5x 203	301	. 53554.90	72691.90	73.7	Pass
		Diaganal	\$/8/8	313	403012	9940.20	407	Pass
		Harizantal	$111 / 2 \times 1$ 1/2x ${ }^{\text {a }}$ /6	317	4391.54	1130300	38.2	Pass
		Top Girt	L1 1/2×112021/16	305	-2235.16	11503.00	196	Pass
		Guy A@60 375	9/16	385	9811.14	21000.00	467	Pass
		Guy B@60.375	9/16	384	9866.34	21000000	47.0	Pass
		Guy C@60 375	9/16	383	9866.93	21000000	47.0	Pass
		Top Guy Pull-on®60 37s	11 1/2×11/2×3/16	309	333683	17083.90	195	Pass
77	60.40	Leg	P2. $5 \times .203$	361	-60085,90	7130280	84.0	Pass
		Diagonal	5/8	415	410629	9940.20	41.3	Pass
		Horizontal	L1 1/2x11/2×3/16	377	-4045.38	1150300	35.2	Pass
		Top Girt	L1 1/2×11/2×3/16	365	-2070.69	11503,00	18.0	Pass
		Bottom Gin	L1 1/2x1 1/2×3/16	367	-2286.95	1150300	19.9	Pass
T8	40-20	Leg	P2.5x. 203	421	-62656.90	7150950	87.6	Pass
		Diagonal	5/8	476	3280.90	9940.20	33.0	Pass
		Horizontal	L1 1/2×11/2×3/16	437	-4168.43	11503.00	36.2	Pass
		Top Girt	L1 1/2x11/2×3/16	425	-2052.54	11503.00	17.8	Pass
		Bottom Gir	L1 1/2x1 1/2×3/16	427	-2081,49	1150300	18.1	Pass
T9	20-5	Leg	P2.5x. 203	481	-62009.10	70516.80	87.9	Pass
		Diagonal	5/8	492	3293.98	9940.20	331	Pass
		Horizontal	L1 1/2x11/2×3/16	497	-3603.52	11503.00	31.3	Pass
		Top Girt	Li $1 / 2 \times 11 / 2 \times 3 / 16$	485	-1957.72	11503.00	17.0	Pass
		Bottom Girt	Li 1/2x1 1/2×3/16	488	3485.64	17085.90	20.4	Pass
T10	5-0	Leg	P2.5x. 203	523	-65726.80	71600.70	91.8	Pass
		Diagonal	$5 / 8$	536	-3915.31	5538.29	70.7	Pass
		Horizontal	L1 1/2x1 1/2×3/16	538	3507.01	17085.90	20.5	Pass
		Top Girt	L1 1/2x1 1/2×3/16	526	9976.70	17085.90	58.4	Pass
							Summary	
						Leg (T10)	91.8	Pass
						Diagonal (T10)	70.7	Pass
						Horizontal (T1)	54.8	Pass
						Top Girt (T10)	58.4	Pass
						Bottom Girt (T3)	28.4	Pass
						Guy A (T1)	47.7	Pass
						Guy B (T4)	47.3	Pass
						Guy C (T4)	47.3	Pass
						Top Guy	62.8	Pass
						Pull-Off (TI)		
						Bottom Guy Pull-Off (T4)	52.4	Pass
						Torque Arm Top (T1)	37.4	Pass
						Torque Arm	21.2	Pass
						Bolt Checks	37.4	Pass
						RATING $=$	91.8	Pass

Site Name: Job Number: steffort Tolland Ave.
117-2234.8
$12 / 29 / 2018$
Date:

Dasin maploads (Eatorndinar T1A:272.

Moment (M_{H}):	0.0 k -ft
Shear/Leg (V) ${ }_{\text {H }}$)	1.7k
Compression/Leg (P_{u}):	179.8k
Uplift/Leg (T_{u}):	0.0 k
Tower Type (GT / SST);	$6 T$
Diameter of Prismatic Portion of Pier (d):	1.0 ft
Depth to Base of Foundation:	5.0 ft
Pier Height Above Ground (h):	0.25 t
Length / Width of Pad (w):	5.5 ft
Thickness of Pad (t):	5.5 ft
Depth Below Ground Surface to Water Table (w):	10.0 ft
Unit Weight of Concrete:	150.0 pef
Unit Weight of Water:	62.4 pcf
Unit Weight of Soil Above Water Table:	110.0 pcf
Unit Weight of Soil Below Water Table:	55.0 pcf
Friction Angle of Uplift from Top of Pad:	30 Degrees
Friction Angle of Uplift from Base of Pad:	30 Degrees
Uplift Angle Started at Top or Base of Pad (T/B):	T
Ultimate Skin Friction:	0 psf
Ultimate Compressive Bearing Pressure:	12000 psf
Capacity Increase (Due to Transient Loads):	1.00
Bearing Strength Reduction Factor $\left(\phi_{s}\right)$:	0.60
Uplift Strength Reduction Factor (ϕ_{s}):	0.75

Conerete Compressive Strength (fry)	3000 psi
Vertical Steel Rebar Size \#:	5
Vertical Steel Rebar Area:	$0.31 \mathrm{in}^{2}$
* of Vertical Steel Rebars:	5
Vertical Steel Rebar Yield Strength (Fy):	60 ksi
Tie / Stiprup Size \#	4
Tie / Stirrup Area:	$0.20 \mathrm{in}^{2}$
Tie / Stirrup Spacing:	10.0 in
Tie / Stirrup Steel Yield Strength (F_{V}):	40 ksi
Rebar Cage Diameter:	4.0 in
Bending/Tension Reduction Factor (ϕ_{B}):	0.90
Shear Reduction Factor (χ_{v}):	0.75
Compression Reduction Factor (ϕ_{V}):	0.65
Steel Elastic Modulus:	29000 ksi
Pad Steel Rebar Size \#:	5
Pad Steel Rebar Area:	$0.31 \mathrm{in}^{2}$
Pad Steel Rebar Yield Strength (F_{γ}):	60 ksi
\# of Rebar in Top of Pad:	0
\# of Rebar in Base of Pad:	5
Pad Clear Cover:	3 in

Axial Capacities and Design Moment

Weight of Concrete (Bouyancy Considered):
Weight of Soil (Bouyancy Considered):
Ultimate Skin Friction Resistance:
Controlling Failure Mode (Top / Base):
Nominal Uplift Capacity per Leg $\left(\phi_{s} T_{n}\right)$:
Nominal Compressive Capacity per Leg $\left(\phi_{s} P_{n}\right)$:
P_{u} :
$T_{u} / \phi_{s} T_{n}:$
$P_{u} / \phi_{s} \mathbf{P}_{n}$:
24.9 k
0.0 k
0.0 k

Top
17.6 k
217.8 k
187.8 k
0.00 Result: OK
0.86 Result: OK

Depth (ft)		Ultimate Lateral Bearing Pressure (psf)	Increment (psf/ft)	$\gamma_{\text {soil }}$ (pcf)	Cohesion (psf)	ϕ (degree)
$\mathbf{B o p}$	Bottom	0.0	110.0	110	0	0
2	2.0	660.0	330.0	110	0	30

Inflection Point (Below Ground Surface):
Factored Design Moment At Inflection Point $\left(\mathbf{M}_{u}\right)$:
0.0 ft
0.0 k-ft

PdStrenth camaliv

月:
Lowep Pad Flexural Reiniorcement Ratio: Upper Pad Floxural Reinforcement Ratio: Lower Pad Flexural Reinforcement Spaeins: Upper Pad Flexural Reinforcement Spacing: One Way Desien Shear $\left(V_{4}\right)$:
One Way Shear Capacity (ϕV_{e}):
$V_{u} / \phi V_{0}$:
Punching Design Shear $\left(V_{u}\right)$:
Nominal Punching Shear Capacity $\left(\phi_{1} V_{n}\right)$:
$V_{u} / \phi V_{s}$:
Flexural Loading Due to Soll Pressure $\left(M_{u}\right)$:
Lower Steel Pad Moment Capacity (ϕM_{n}):
$M_{u} / \phi M_{n}$:
Flexural Loading Due to Uplift $\left(M_{\mu}\right)$:
Upper Steel Pad Moment Capacity ($\phi \mathrm{M}_{n}$): $M_{u} / \phi M_{n}$:
0.85 AC1318-05 - 10.2.7.3

0,0004 OK = Minimum Reinforcement Ratio Met = 4
0.0000 OK = Minimum Reinforcement Ratio Met $=4$

15 in - Pad Reinforeing Spacing OK = AC17.12,2.2 10.5.4
0 in - Pad Reinforeing Spacing OK = AC17.12.2.2 \& 10.5.4 0.0 k
$341.5 k$ - ACI 318 -05 - 11.3.1.1
0.00 Result: OK
0.0 k
2416.9 k - ACl 318 -05 $=11.12 .2 .1$
0.00 Result: OK
85.8 k-ft
435.3 k-ft - ACI $318-05=10.3$
0.20 Result: OK
$0.0 \mathrm{k}-\mathrm{ft}$
$0.0 \mathrm{k}-\mathrm{ft}$ - ACl318-05-10.3
0.00 Result: OK

Site Name:	Stafford Tolland Ave.
Site Number:	$117-23243.8$
Date:	$1 / 3 / 2018$

Design Standard per TIA.222.G

Anchor Radius:	145.0 t
Uplift (Factored - Pu):	29.0
Shear (Factored = VU):	38.5
Anchor Base Depth (d):	8.5 t
Width of Anchop (W):	5.5 h
Lensth of Anchor (L):	11.5 ft
Thickness of Anchor (t):	2.0 ft
Depth Below Ground Surface to Water Table (w):	10.0 ft
Soll Uplift at Base / Top of Anchor (8/T):	T
Unit Weight of Conerete:	150.0 pef
Unit Weight of Soil Above Water Table:	110.0 pff
Unit Weight of Water:	62.4 pcf
Submerged Soil Unit Weight:	50.0 pcf
Internal Angle of Friction:	30 Degrees
Cohesion:	0 psf
Ultimate Skin Friction of Pad Sides to Soil:	0 psf
Ultimate Coefficient of Shear Friction:	0.30
Maximum Top Conical Failure Angle:	30 Degrees
Maximum Base Conical Fallure Angle:	30 Degrees
Uplift Strength Reduction Factor ($\phi_{\text {u }}$):	0.75
Shear Strength Reduction Factor (ϕ_{v}):	0.75
Concrete Uplift Strength Reduction Factor (ϕ_{u}):	0.90

Uplift

Weight of Concrete (Buoyancy Effect Considered):
Weight of Soil (Buoyancy Effect Considered):
Ultimate Uplift Resistance from Skin Friction:
19.0 k
101.4 k
0.0 k

Nominal Factored Uplift Resistance ($\phi_{u} P_{n}$):
$P_{u} / \phi_{u} P_{n}$:
93.1 k
0.31 Result: OK

Shear

Ultimate Shear Friction Resistance Due to Normal Force - Uplift:
Passive Pressure:
Ultimate Passure Pressure Resistance:
Nominal Shear Resistance $\left(\phi_{\mathrm{v}} \mathrm{V}_{\mathrm{n}}\right)$:
$V_{u} / \phi_{\mathrm{v}} \mathrm{V}_{\mathrm{n}}$:
12.7 k

2475 psf
56.9 k
52.2 k
0.74 Result: OK

Anchor Rod Capacity

\# of Anchor Rods:
Anchor Rod Gross Area:
Anchor Rod Net Area:
Resultant Tensile Load (T_{u}):
Anchor Rod Tensile Resistance $\left(\phi \mathrm{T}_{\mathrm{n}}\right)$::
$\mathrm{T}_{\mathrm{u}} / \phi \mathrm{T}_{\mathrm{n}}$:

1	Rod $F_{y}:$	49 ksi
$1.77 \mathrm{in}^{2}$	Rod $\mathrm{F}_{\mathrm{u}}:$	62 ksi
$1.77 \mathrm{in}^{2}$	$\phi_{y}:$	0.80
48.2 k	$\phi_{t}:$	0.65
69.3 k		
0.70 Result: OK		

Strength Analysis of Reinforced Concrete

Concrete Compreaive Srength (re):	3000 psi
Longitudinal Rebar Yield Strength:	60000 pai
- Longitudinal Rebar (Top):	9
- Longlitudinal Robar (1 Side):	3
Rebap Size:	4
Strength Reduction Factor for Shear (\$):	0.75
Strength Reduction Factor for Floxure (t):	0.9
Compression Zone Factor (β_{1});	0.85
Ares of Single Rebar:	$0.20 \mathrm{ln}^{3}$
One Way Shear due to Shear Load (V_{4}):	10.6 k
Nominal One Way Shear Capacity for Shear Load ($\phi_{0} V_{n}$):	122.3 k
$V_{0} / h_{V} V_{n}$:	0,09 Result: OK
One Way Shear due to Uplift (V_{4}):	12,4 k
Nominal One Way Shear Capacity for Uplift ($\phi_{\mathrm{e}} \mathrm{V}_{n}$):	108.4 k
$V_{U} / \phi_{1} V_{n}$:	0.11 Result: OK
Pad Flexure due to Shear Load (M_{u}):	55.3 k-ft
Nominal Flexural Capacity for Shear Load ($\phi_{\text {b }} \mathrm{M}_{n}$):	167.4 k-ft
Pad Flexure due to Uplift (M_{4}):	41.7 k-ft
Nominal Flexural Capacity for Uplift ($\phi_{\text {b }} \mathrm{M}_{n}$):	161.9 k-ft
$M_{N} / \phi_{\text {b }} M_{\text {n }}$ (Max.)	0.33 Result: OK

January 26, 2018 at\&t

Centerline Communications, LLC
97 Ryan Drive Suite 1
Raynham, MA 02767
RE: Site Number:
CT1185 (LTE 2C/3C)
FA Number:
PACE Number:
PT Number:
10092207
MRCTB024537
2051 AOBJPR
STAFFORD SPRINGS TOLLAND AVENUE
64 Tolland Avenue
Stafford, CT 06076
To Whom It May Concern:
Hudson Design Group LLC (HDG) has been authorized by Centerline Communications to perform a mount analysis on the existing AT\&T antenna mount to determine its capability of supporting the following equipment loading:

- (3) 7770 Antennas (55.0"x1 1.0"x5.0" - Wt. $=35$ (bs/each)
- (1) SBNH-1D6565C Antenna (96.4"x11.9"x7.1" - Wt. = $66 \mathrm{lbs} / e a c h)$
- (1) P65-17-XLH-RR Antenna (96.0"x12.0"x6.0" - Wt. $=70 \mathrm{lbs} /$ each)
- (1) AM-X-CD-14-65-OOT-RET Antenna (48.0"x11.8"x5.9" - Wt. $=37 \mathrm{lbs} /$ each $)$
- (3) RRUS-1 RRH's (19.7" 1 " $17.0^{\prime \prime} \times 7.2^{\prime \prime}-W t .=51 \mathrm{lbs} /$ each)
- (6) LGP 21401 TMA's (14.0" $\times 7.0$ " $\times 2.7$ " $-\mathrm{Wt} .=19 \mathrm{lbs} /$ each)
- (1) DC6-48-60-18-8F Surge Arrestor (24.0"x9.7"ø - Wt. $=33 \mathrm{lbs} /$ each) (Tower Mounted)
- (2) TPA-65R-LCUUUU-H8 Antennas (96.0"x14.4"x8.6" - Wt. $=75 \mathrm{lbs} /$ each)
- (1) QS46512-1 Antenna (52.0"x12.0"x10.8" - Wt. = $75 \mathrm{lbs} /$ each)
- (3) RRUS-32 RRH's (27.2"x12.1"x7.0" - Wt. = $60 \mathrm{lbs} /$ each)
- (3) RRUS-32 B2 RRH's (27.2"x12.1"x7.0" - Wt. = $60 \mathrm{lbs} / e a c h$)
- (6) DBC0061FIV51-2 Diplexers (8.0 " $\times 6.2^{\prime \prime} \times 6.5^{\prime \prime}-$ Wt. $=26 \mathrm{lbs} /$ each $)$
- (1) DC6-48-60-18-8F Surge Arrestor ($24.0 " \times 9.7 " \varnothing-$ Wt. $=33 \mathrm{lbs}$) (Tower Mounted)
*Proposed Loading Shown in Bold.
No original structural design documents or fabrication drawings were available for the existing mount. HDG's subconsultant, Provertic LLC, conducted a survey climb and mapping of the existing AT\&T antenna mount on July 27, 2017.

Based on our analysis, we have determined that the existing antenna mounts ARE CAPABLE of supporting the proposed antenna installation.

	Member	Controlling Load Case	Stress Ratio	Pass/Fail
Existing LTE 2C/3C Mount Rating	31	LC9	87%	PASS

This analysis was conducted in accordance with EIA/TIA-222-G, Structural Standards for Steel Antenna Towers and Antenna Supporting Structures and the International Building Code 2012 with 2005 Connecticut Supplement with 2016 Amendments. (See the attached analysis).

This determination was based on the following limitations and assumptions:

1. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
2. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
3. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
4. The existing mount has been adequately secured to the tower structure per the mount manufacturer's specifications.
5. All components pertaining to AT\&T's mounts must be tightened and re-plumbed prior to the installation of new appurtenances.
6. HDG performed a localized analysis on the mount itself and not on the supporting tower structure.

Please feel free to contact our office should you have any questions.
Respectfully Submitted, Hudson Design Group LLC

Michael Cabral
Structural Dept. Head

Daniel P. Hamm, PE Principal

FIELD PHOTOS:

HUDSON
Design Group LLC

Wind \& Ice
Calculations

Date: 1/26/2018
Project Name: STAFFORD SPRINGS TOLLAND AVENUE
Project Number: CII 185
Designed By: BD Checked By: MSC

2.6.5.2 Velocity Pressure Coeff:

$\mathrm{K}_{\mathrm{z}}=2.01\left(\mathrm{z} / \mathrm{z}_{\mathrm{g}}\right)^{2 / \alpha}$	$\mathrm{z}=$	$177(\mathrm{ft})$
	$\mathrm{z}_{\mathrm{g}}=$	$1200(\mathrm{ft})$
$\mathrm{K}_{\mathrm{z}}=$	1.163	$\alpha=$

$K z m i n \leq K z \leq 2.01$

Table 2-4

Exposure	$\mathbf{Z}_{\mathbf{g}}$		$\mathbf{K}_{\mathbf{z m i n}}$	$\mathbf{K}_{\mathbf{e}}$
B	1200 ft	7.0	0.70	0.9
C	900 ft	9.5	0.85	1.0
D	700 ft	11.5	1.03	1.1

2.6.6.4 Topographic Factor:

Table 2-5

Topo. Category	$\mathbf{K}_{\mathbf{t}}$	\mathbf{f}
2	0.43	1.25
3	0.53	2.0
4	0.72	1.5

$K_{z t}=\left[1+\left(K_{e} K_{t} / K_{h}\right)\right]^{2}$

$\mathbf{K}_{\mathbf{z t}}=\quad$ \#DIV/0!
(IfCategory 1 then $K_{t t}=1.0$)
Category $=$

$K_{h}=e^{\left(f^{*} z / H\right)}$

$\mathrm{K}_{\mathrm{h}}=$	\#DIV/0!
$\mathrm{K}_{\mathrm{e}}=$	0 (from Table 2-4)
$\mathrm{K}_{\mathrm{t}}=$	0 (from Table 2-5)
$\mathrm{f}=$	0 (from Table 2-5)
$\mathrm{z}=$	177
$\mathrm{H}=$	0 (Ht. of the crest above surrounding terrain)
$\mathrm{K}_{\mathrm{zt}}=$	1.00

Date: 1/26/2018
Project Name: STAFFORD SPRINGS TOLLAND AVENUE
HUDSON
Design Group LLC
Project Number: CT1185
Designed By: BD Checked By: MSC

2.6.7 Gust Effect Factor

2.6.7.1 Self Supporting Lattice Structures

$\mathrm{Gh}=1.0$ Latticed Structures $>600 \mathrm{ft}$
$\mathrm{Gh}=0.85$ Latticed Structures 450 ft or less

Gh $=0.85+0.15[h / 150-3.0] \quad h=h t$. of structure

h $=$	180	$\mathrm{Gh}=$
2.6.7.2 Guyed Masts	$\mathrm{Gh}=$	0.85
2.6.7.3 Pole Structures	$\mathrm{Gh}=$	$\mathbf{0 . 8 5}$
2.6.9 Appurtenances	$\mathrm{Gh}=$	1.1

2.6.7.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht. : width ratio >5)
Gh=
1.35
Gh=
1.00

2.6.9.2 Design Wind Force on Appurtenances

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular, square or rectangular cross sections	0.85
Tubular pole structures, latticed structures with other cross sections, appurtenances	0.95

Project Name: STAFFORD SPRINGS TOLLAND AVENUE
Project Number: CT1185
HUDSON
Design Group Lic
Designed By: BD Checked By: MSC

Determine Ca:

Table 2-8

Force Coefficients (Ca) for Appurtenances				
Member Type		Aspect Ratio $\mathbf{2} 2.5$	Aspect Ratio = 7	Aspect Ratio ≥ 25
		Ca	Ca	Ca
Flat		1.2	1.4	2.0
Round	$C<32$ (Subcritical)	0.7	0.8	1.2
	$32 \leq C \leq 64$ (Transitional)	$3.76 /\left(C^{0.485}\right)$	$3.37 /\left(C^{0.415}\right)$	38.4/($\mathrm{C}^{1.0}$)
	$C>64$ (Supercritical)	0.5	0.6	0.6
Aspect Ratio is the cverall length/width ratio in the plane normal to the wind direction. (Aspect ratio is independent of the spacing between support points of a linear appurtenance. and the section length considered to have uniform wind load). Note: Linear interpolation may be used for aspect ratios other than those shown.				

Ice Thickness =
1.00 in

Appurtenances	Height	Width	Depth	Flat Area	Aspect Ratio	Ca	Force (lbs)	$\frac{\text { Force (lbs) }}{\text { [1" Ice) }}$
7770 Antenna	55.0	11.0	5.0	4.20	5.00	1.31	154	43
SBNH-1D6565C Antenna	96.4	11.9	7.1	7.97	8.10	1.44	319	86
P65-17-XLH-RR Antenna	96.0	12.0	6.0	8.00	8.00	1.43	320	86
AM-X-CD-14-65-OOT-RET Antenna	48.0	11.8	5.9	3.93	4.07	1.27	139	39
TPA-65R-LCUUUU-H8 Antenna	96.0	14.4	8.6	9.60	6.67	1.39	371	98
QS46512-1 Antenna	52.0	12.0	10.8	4.33	4.33	1.28	155	43
RRU-11 RRH	19.7	17.0	7.2	2.33	1.16	1.20	78	22
RRU-32 B2 RRH	27.2	12.1	7.0	2.29	2.25	1.20	77	22
RRU-32 RRH	27.2	12.1	7.0	2.29	2.25	1.20	77	22
LGP 21401 TMA	14.0	7.0	2.7	0.68	2.00	1.20	23	8
DBC0061F1V51-2 Diplexer	8.0	6.2	6.5	0.34	1.29	1.20	12	4
DC6-48-60-18-8F Surge Arrestor	24.0	9.7	9.7	1.62	2.47	1.20	54	16

Angle $=$	30	(deg)

WIND LOADS WITH NO ICE:

Appurtenances	Height	Width	Depth	Flat Area (normal)	Flat Area (side)	Ratio (normal)	Ratio (side)	Ca (normal)	Ca (side)	Force (lbs) (normal)	$\frac{\text { Force (lbs) }}{\text { (side) }}$	$\frac{\text { Force (lbs) }}{\text { (angle) }}$
7770 Antenna	55.0	11.0	5.0	4.20	1.91	5.00	11.00	1.31	1.53	154	82	136
SBNH-1D6565C Antenna	96.4	11.9	7.1	7.97	4.75	8.10	13.58	1.44	1.62	319	215	293
P65-17-XLH-RR Antenna	96.0	12.0	6.0	8.00	4.00	8.00	16.00	1.43	1.70	320	190	287
AM-X-CD-14-65-OOT-RET Antenna	48.0	11.8	5.9	3.93	1.97	4.07	8.14	1.27	1.44	139	79	124
TPA-65R-LCUUUU-H8 Antenna	96.0	14.4	8.6	9.60	5.73	6.67	11.16	1.39	1.54	371	246	340
QS46512-1 Antenna	52.0	12.0	10.8	4.33	3.90	4.33	4.81	1.28	1.30	155	142	152
RRU-11 RRH	19.7	17.0	7.2	2.33	0.99	1.16	2.74	1.20	1.21	78	33	67
RRU-32 B2 RRH	27.2	12.1	7.0	2.29	1.32	2.25	3.89	1.20	1.26	77	47	69
RRU-32 RRH	27.2	12.1	7.0	2.29	1.32	2.25	3.89	1.20	1.26	77	47	69
LGP 21401 TMA	14.0	7.0	2.7	0.68	0.26	2.00	5.19	1.20	1.32	23	10	20
DBC0061F1V51-2 Diplexer	8.0	6.2	6.5	0.34	0.36	1.29	1.23	1.20	1.20	12	12	12
DC6-48-60-18-8F Surge Arrestor	24.0	9.7	9.7	1.62	1.62	2.47	2.47	1.20	1.20	54	54	54

Angle $=$	60	(deg)

WIND LOADS WITH NO ICE:

Appurtenances	Height	Width	Depth	Flat Area (normal)	$\frac{\text { Flat Area }}{\text { (side) }}$	Ratio (normal)	$\frac{\text { Ratio }}{\text { (side) }}$	Ca (normal)	Ca (side)	Force (lbs) Force (lbs) Force (lbs)		
										(normal)	(side)	(angle)
7770 Antenna	55.0	11.0	5.0	4.20	1.91	5.00	11.00	1.31	1.53	154	82	100
SBNH-1D6565C Antenna	96.4	11.9	7.1	7.97	4.75	8.10	13.58	1.44	1.62	319	215	241
P65-17-XLH-RR Antenna	96.0	12.0	6.0	8.00	4.00	8.00	16.00	1.43	1.70	320	190	222
AM-X-CD-14-65-OOT-RET Antenna	48.0	11.8	5.9	3.93	1.97	4.07	8.14	1.27	1.44	139	79	94
TPA-65R-LCUUUU-H8 Antenna	96.0	14.4	8.6	9.60	5.73	6.67	11.16	1.39	1.54	371	246	277
QS46512-1 Antenna	52.0	12.0	10.8	4.33	3.90	4.33	4.81	1.28	1.30	155	142	145
RRU-11 RRH	19.7	17.0	7.2	2.33	0.99	1.16	2.74	1.20	1.21	78	33	44
RRU-32 B2 RRH	27.2	12.1	7.0	2.29	1.32	2.25	3.89	1.20	1.26	77	47	54
RRU-32 RRH	27.2	12.1	7.0	2.29	1.32	2.25	3.89	1.20	1.26	77	47	54
LGP 21401 TMA	14.0	7.0	2.7	0.68	0.26	2.00	5.19	1.20	1.32	23	10	13
D8C0061F1V51-2 Diplexer	8.0	6.2	6.5	0.34	0.36	1.29	1.23	1.20	1.20	12	12	12
DC6-48-60-18-8F Surge Arrestor	24.0	9.7	9.7	1.62	1.62	2.47	2.47	1.20	1.20	54	54	54

Angle $=$	90	(deg)

WIND LOADS WITH NO ICE:

Appurtenances	Height	Width	Depth	$\begin{aligned} & \text { Flat Area } \\ & \text { (normal) } \end{aligned}$	$\frac{\text { Flat Area }}{\text { (side) }}$	Ratio (normal)	$\frac{\text { Ratio }}{\text { (side) }}$	$\underset{\text { (normal) }}{\underline{\text { Ca }}}$	$\frac{\mathrm{Ca}}{\text { (side) }}$	$\frac{\text { Force }}{\text { (Ibs) }}$	$\frac{\text { Force }}{\text { (Ibs) }}$	$\frac{\text { Force }}{\text { (Ibs) }}$
7770 Antenna	55.0	11.0	5.0	4.20	1.91	5.00	11.00	1.31	1.53	154	82	82
SBNH-1D6565C Antenna	96.4	11.9	7.1	7.97	4.75	8.10	13.58	1.44	1.62	319	215	215
P65-17-XLH-RR Antenna	96.0	12.0	6.0	8.00	4.00	8.00	16.00	1.43	1.70	320	190	190
AM-X-CD-14-65-OOT-RET Antenna	48.0	11.8	5.9	3.93	1.97	4.07	8.14	1.27	1.44	139	79	79
TPA-65R-LCUUUU-H8 Antenna	96.0	14.4	8.6	9.60	5.73	6.67	11.16	1.39	1.54	371	246	246
QS46512-1 Antenna	52.0	12.0	10.8	4.33	3.90	4.33	4.81	1.28	1.30	155	142	142
RRU-11 RRH	19.7	17.0	7.2	2.33	0.99	1.16	2.74	1.20	1.21	78	33	33
RRU-32 B2 RRH	27.2	12.1	7.0	2.29	1.32	2.25	3.89	1.20	1.26	77	47	47
RRU-32 RRH	27.2	12.1	7.0	2.29	1.32	2.25	3.89	1.20	1.26	77	47	47
LGP 21401 TMA	14.0	7.0	2.7	0.68	0.26	2.00	5.19	1.20	1.32	23	10	10
DBC0061F1V51-2 Diplexer	8.0	6.2	6.5	0.34	0.36	1.29	1.23	1.20	1.20	12	12	12
DC6-48-60-18-8F Surge Arrestor	24.0	9.7	9.7	1.62	1.62	2.47	2.47	1.20	1.20	54	54	54

Date: $\frac{1 / 26 / 2018}{\text { ST1185 }}$
Site No.: $\frac{\text { Same: STAFFORD SPRINGS TOLLAND AVENUE }}{\text { Sitered by: MSC }}$
Done by: BD

\Rightarrow 플 HUDSON
 Design Group LLC

ICE WEIGHT CALCULATIONS

Thickness of ice (in): $\quad 1.00$

* Density of ice used $=56 \mathrm{PCF}$

7770 Antenna		
Weight of ice based on total radial SF area:		
Depth (in):	5.0	
height (in):	55.0	
Width (in):	11.0	
Total weight of ice on object: 61 lbs Weight of object: 35 lbs Combined weight of ice and object: 96 lbs		

Weight of ice based on total radial SF area:		
Depth (in):	7.1	
height (in):	96.4	
Width (in):	11.9	
Total weight of ice on object:		124 lbs
Weight of object:	66 lbs	
Combined weight of ice and object:		190 lbs

| P65-17-XLH-RR Antenna | |
| :--- | :---: | ---: |
| Weight of ice based on total radial SF area; | |
| Depth (in): 6.0
 height (in): 96.0
 Width (in): 12.0
 Total weight of ice on object: 117 lbs
 Weight of object: 70 lbs
 Combined weight of ice and object: 187 lbs | |

TPA-65R-LCUUUU-H8 Antenna		
Weight of ice based on total radial SF area;		
Depth (in);	8.6	
height (in):	96.0	
Width (in):	14.4	
Total weight of ice on object:		151 lbs
Weight of object:	75 lbs	
Combined weight of ice and object:		22.6 lbs

RRU-11 RRH		
Weight of ice based on total radial SF area:		
Depth (in):	7.2	
height (in):	19.7	
Width (in):	17.0	
Total weight of ice on object:		39 lbs
Weight of object:	51 lbs	
Combined weight of ice and object:		90 lbs

| RRU-32 B2 RRH | |
| :--- | :---: | :---: |
| Weight of ice based on total radial SF area: | |
| Depth (in): 7.0
 height (in): 27.2
 Width (in): 12.1
 Total weight of ice on object: 39 lbs
 Weight of object: 60 lbs
 Combined weight of ice and object: 99 lbs | |

DBC0061F1V51-2 Dlplexers		
Weight of ice based on total radial SF area:		
Depth (in):	6.5	
height (in):	8.0	
Width (in):	6.2	
Total weight of ice on object:		9 lbs
Weight of object:	26 lbs	
Combined weight of ice		35 lbs

HSS 3×3
Weight of ice based on total radial SF area:
Depth (in):
height (in):
Width (in):
Per foot weight of ice on object:

L2-1/2×2-1/2x3/16		
Weight of ice based on total radial SF area:		
Depth (in):	2.5	
height (in):	12	
Width (in):	2.5	
Per foot weight of ice on object:	$4 \mathrm{lbs} / \mathrm{ft}$	

LU $3 \times 2 \times 1 / 4$

Weight of ice based on total radial SF area
Depth (in): 2
height (in): 12
Width (in):
Per foot weight of ice on object:

AM-X-CD-14-65-OOT-RET Antenna		
Weight of ice based on total radial SF area:		
Depth (in):	5.9	
height (in):	48.0	
Width (in):	11.8	
Total weight of ice on object:		60 lbs
Weight of object:	37 lbs	
Combined weight of ice and		97 lbs

QS46512-1 Antenna		
Weight of ice based on total radial SF area:		
Depth (in):	10.8	
height (in):	52.0	
Width (in):	12.0	
Total weight of ice on object:		85 lbs
Weight of object:	75 lbs	
Combined weight of ice and object:	160 lbs	

RRU-32 RRH		
Weight of ice based on total radial SF area:		
Depth (in):	7.0	
height (in):	27.2	
Width (in):	12.1	
Total weight of ice on object:		39 lbs
Weight of object:	60 lbs	
Combined weight of ice and object:		99.165

LGP 21401 TMA

Weight of ice based on total radial SF area:

Depth (in):	2.7	
height (in):	14.0	
Width (in):	7.0	
Total weight of ice on object:		10 lbs
Weight of object:	19 lbs	
Combined weight of ice and object:	29 lbs	

2-1/2" pipe

Per foot weight of ice:
diameter (in): $\quad 2.875$
Per foot weight of ice on object: $\quad 4 \mathrm{lbs} / \mathrm{ft}$

L $2 \times 2 \times 3 / 16$		
Weight of ice based on total radial SF area:		
Depth (in):	2.5	
height (in):	12	
Width (in):	2.5	
Per foot weight of ice on object:		$4 \mathrm{ibs} / \mathrm{ft}$

HUDSON

Design Group LLC

Mount Calculations

(Existing Conditions)

Current Date: 1/29/2018 9:36 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTUANALYSIS SOFTWAREIRAM ElementsIRAM ProjectsLAT\&TICTICT1185ICT1185.etz

Current Date: 1/29/2018 9:36 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTIANALYSIS SOFTWAREIRAM ElementsIRAM ProjectsIAT\&TICTICT1185ICT1185.etz)

Current Date: 1/29/2018 9:37 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM ElementsIRAM Projects\AT\&TICTICT1185\CT1185.etz
Load condition: $\mathrm{D}=$ Dead Load

$\quad Y$
$\times \quad 4$
\times

Current Date: 1/29/2018 9:37 AM

Units system: English
File name: W:ISTRUCTURAL DEPARTMENTANALYSIS SOFTWAREIRAM ElementsIRAM Projects\AT\&TICTICT1185ICT1185.etZ
Load condition: Wo=Wind Load (NO ICE)

Y
$\times \quad i Z$
$\times \quad$

Current Date: 1/29/2018 9:37 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTVANALYSIS SOFTWAREIRAM ElementsIRAM Projects\AT\&TICTICT1185ICT1185.etz
Load condition: W30=Wind Load 30deg
Loads
Concentrated user loads - Members

Y
$\times \quad Z$

Current Date: 1/29/2018 9:37 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTXANALYSIS SOFTWAREIRAM ElementsIRAM Projects\AT\&TICTICT1185ICT1185.etZ
Load condition: W90=Wind Load 90deg
Loads
Concentrated user loads - Members

Hewlett-Packard Company
Current Date: 1/29/2018 9:37 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTLANALYSIS SOFTWAREIRAM Elements\RAM Projects\AT\&TICTICT1185ICT1185.etZ
Load condition: Wi=Wind Load (WITH ICE)

Current Date: 1/29/2018 9:37 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTVANALYSIS SOFTWAREIRAM ElementsIRAM ProjectsIAT\&TICTICT1185ICT1185.etz
Load condition: $\mathrm{Di}=$ Ice Load
Loads
Distributed user loads - Members Concentrated user loads - Members

Current Date: 1/29/2018 9:37 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTVANALYSIS SOFTWAREIRAM ElementsIRAM Projects\AT\&TICTICT1185ICT1185.etz)

Current Date: 1/29/2018 9:37 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTXANALYSIS SOFTWAREIRAM ElementsIRAM ProjectsIAT\&TICTICT1185ICT1185.etz
Design status
Not designed Error on design Design O.K. With warnings

Rebecca Campbell

From:	Rebecca Campbell
Sent:	Sunday, January 28, 2018 10:40 AM
To:	Rebecca Campbell
Subject:	finish ME drop box for ProV

From: Rebecca Campbell
Sent: Sunday, January 28, 2018 10:13 AM
To: Rebecca Campbell rcampbell@hudsondesigngroupllc.com
Subject: timesheet from weekend

Timesheet
Prov - Sprint/Smartlink site drop box data 1.5 hr

SAI/AT+T - scheduling mapping meeting makers 1.5
Becky Campbell
Field Tech Manager

Hudson Design Group LLC

45 Beechwood Drive
North Andover, MA 01845

He hudson
 Design Greup lic

office: $978.557 .5553 \times 247$
mobile: 978.729.5191
www.hudsondesigngroupllc.com

Current Date: 1/29/2018 9:37 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENT\ANALYSIS SOFTWAREIRAM ElementsIRAM Projects\AT\&TICTICT1185ICT1185.etz

Steel Code Check

Report: Summary - For all selected load conditions

Load conditions to be included in design :

LC1 $=1.2 \mathrm{D}+1.6 \mathrm{Wo}$

LC2 $=1.2 \mathrm{D}+1.6 \mathrm{~W} 30$
LC3=1.2D+1.6W60
LC4=1.2D+1.6W90
LC5=0.9D+1.6Wo
LC6=0.9D+1.6W30
LC7=0.9D+1.6W60
LC8=0.9D+1.6W90
LC9=1.2D+Wi+Di
LC10=1.2D
LC11 $=0.9 \mathrm{D}$

Description	Section	Member	Ctrl Eq.	Ratio	Status	Reference
	HSS_SQR 3X3X1_4	28	LC1 at 100.00\%	0.19	OK	
			LC10 at 0.00\%	0.12	OK	
			LC11 at 0.00\%	0.09	OK	
			LC2 at 100.00\%	0.23	OK	Eq. H1-1b
			LC3 at 0.00\%	0.42	OK	Eq. H1-1b
			LC4 at 0.00\%	0.38	OK	
			LC5 at 100.00\%	0.18	OK	
			LC6 at 100.00\%	0.21	OK	
			LC7 at 0.00\%	0.39	OK	
			LC8 at 0.00\%	0.35	OK	
			LC9 at 0.00\%	0.22	OK	
		29	LC1 at 0.00\%	0.14	OK	
			LC10 at 0.00\%	0.12	OK	
			LC11 at 0.00\%	0.09	OK	
			LC2 at 0.00\%	0.15	OK	
			LC3 at 0.00\%	0.33	OK	Eq. H1-1b
			LC4 at 0.00\%	0.30	OK	
			LC5 at 0.00\%	0.11	OK	
			LC6 at 0.00\%	0.12	OK	
			LC7 at 0.00\%	0.31	OK	
			LC8 at 0.00\%	0.28	OK	
			LC9 at 0.00\%	0.24	OK	
	L 2-1_2X2-1_2X3_16	4	LC1 at 36.25%		N.G.	
			LC10 at 100.00\%	0.37	With warnings	
			LC11 at 100.00\%	0.28	With warnings	
			LC2 at 36.25\%	1.38	N.G.	Eq. H2-1
			LC3 at 62.50\%	0.81	With warnings	
			LC4 at 62.50\%	0.70	With warnings	
			LC5 at 36.25\%	1.26	N.G.	
			LC6 at 36.25\%	1.33	N.G.	
			LC7 at 62.50\%	0.80	With warnings	
			LC8 at 62.50%	0.69	With warnings	
			LC9 at 33.75\%	0.76	With warnings	
1		11	LC1 at 36.25\%	1.12	N.G.	
			LC10 at 100.00\%	0.30	With warnings	
			Page1			

		LC11 at 100.00\%	0.22	With warnings	Eq. H2-1
		LC2 at 36.25\%	1.20	N.G.	
		LC3 at 62.50\%	0.64	With warnings	
		LC4 at 62.50\%	0.55	With warnings	
		LC5 at 36.25\%	1.12	N.G.	
		LC6 at 36.25\%	1.20	N.G.	
		LC7 at 62.50%	0.63	With warnings	
		LC8 at 62.50\%	0.54	With warnings	
		LC9 at 67.50\%	0.63	With warnings	Eq. H2-1
L 2X2X3_16	30	LC1 at 100.00\%	0.38	OK	
		LC10 at 0.00\%	0.42	OK	
		LC11 at 0.00\%	0.31	OK	
		LC2 at 100.00\%	0.40	OK	
		LC3 at 0.00\%	0.45	OK	
		LC4 at 0.00\%	0.45	OK	
		LC5 at 100.00\%	0.30	OK	
		LC6 at 100.00\%	0.32	OK	
		LC7 at 0.00\%	0.35	OK	
		LC8 at 0.00\%	0.34	OK	
		LC9 at 0.00\%	0.80	OK	Sec. F1
	31	LC1 at 100.00\%	0.55	OK	
		LC10 at 100.00\%	0.56	OK	
		LC11 at 100.00\%	0.42	OK	
		LC2 at 100.00\%	0.51	OK	
		LC3 at 100.00\%	0.55	OK	
		LC4 at 100.00\%	0.55	OK	
		LC5 at 100.00\%	0.41	OK	
		LC6 at 100.00\%	0.37	OK	
		LC7 at 100.00\%	0.41	OK	
		LC8 at 100.00\%	0.41	OK	
		LC9 at 100.00\%	1.08	N.G.	Sec. F1
LU 3X2X1_4	1	LC1 at 46.88\%	0.63	OK	
		LC10 at 46.88\%	0.21	OK	
		LC11 at 46.88\%	0.16	OK	
		LC2 at 46.88\%	0.80	OK	Eq. H2-1
		LC3 at 46.88\%	0.28	OK	
		LC4 at 46.88\%	0.27	OK	
		LC5 at 46.88\%	0.59	OK	
		LC6 at 46.88\%	0.76	OK	
		LC7 at 46.88\%	0.23	OK	
		LC8 at 46.88\%	0.22	OK	
		LC9 at 46.88\%	0.42	OK	
	2	LC1 at 100.00\%	0.78	OK	
		LC10 at 0.00\%	0.20	OK	
		LC11 at 0.00\%	0.15	OK	
		LC2 at 100.00\%	0.86	OK	Eq. H2-1
		LC3 at 0.00\%	0.31	OK	
		LC4 at 0.00\%	0.29	OK	
		LC5 at 100.00\%	0.76	OK	
		LC6 at 100.00\%	0.85	OK	
		LC7 at 0.00\%	0.27	OK	
		LC8 at 0.00\%	0.25	OK	
		LC9 at 0.00\%	0.38	OK	
	3	LC1 at 100.00\%	0.61	OK	
		LC10 at 0.00\%	0.31	OK	
		LC11 at 0.00\%	0.23	OK	
		LC2 at 100.00\%	0.74	OK	Eq. H2-1
		LC3 at 100.00\%	0.43	OK	
		LC4 at 100.00\%	0.37	OK	

		LC5 at 100.00\% LC6 at 100.00\% LC7 at 100.00\% LC8 at 100.00\% LC9 at 0.00\%	$\begin{aligned} & 0.60 \\ & 0.74 \\ & 0.43 \\ & 0.37 \\ & 0.61 \end{aligned}$	OK OK OK OK OK	Eq. H2-1
	8	LC1 at 46.88\%	0.55	OK	
		LC10 at 46.88\%	0.29	OK	
		LC11 at 46.88\%	0.22	OK	
		LC2 at 46.88\%	0.53	OK	
		LC3 at 100.00\%	0.43	OK	Eq. H2-1
		LC4 at 100.00\%	0.39	OK	
		LC5 at 46.88\%	0.57	OK	Eq. H2-1
		LC6 at 46.88\%	0.55	OK	
		LC7 at 100.00\%	0.39	OK	
		LC8 at 100.00\%	0.35	OK	
		LC9 at 50.00\%	0.50	OK	Eq. H2-1
	9	LC1 at 100.00\%	0.59	OK	
		LC10 at 0.00\%	0.42	OK	
		LC11 at 0.00\%	0.31	OK	
		LC2 at 100.00\%	0.61	OK	
		LC3 at 0.00\%	0.46	OK	
		LC4 at 0.00\%	0.46	OK	
		LC5 at 100.00\%	0.59	OK	
		LC6 at 100.00\%	0.62	OK	Eq. H 2 -1
		LC7 at 0.00\%	0.36	OK	
		LC8 at 0.00\%	0.35	OK	
		LC9 at 0.00\%	0.81	OK	Eq. H2-1
	10	LC1 at 100.00\%	0.62	OK	
		LC10 at 0.00\%	0.15	OK	
		LC11 at 0.00\%	0.11	OK	
		LC2 at 100.00\%	0.65	OK	
		LC3 at 100.00\%	0.49	OK	
		LC4 at 100.00\%	0.43	OK	
		LC5 at 100.00\%	0.64	OK	
		LC6 at 100.00\%	0.67	OK	Eq. H2-1
		LC7 at 100.00\%	0.47	OK	
		LC8 at 100.00\%	0.41	OK	
		LC9 at 0.00\%	0.33	OK	
PIPE 2-1_2x0.203	21	LC1 at 100.00\%	0.36	OK	
		LC10 at 100.00\%	0.14	OK	
		LC11 at 100.00\%	0.10	OK	
		LC2 at 100.00\%	0.45	OK	Eq. H3-6
		LC3 at 0.00\%	0.19	OK	
		LC4 at 0.00\%	0.18	OK	
		LC5 at 100.00\%	0.32	OK	
		LC6 at 100.00\%	0.40	OK	
		LC7 at 87.50%	0.17	OK	
		LC8 at 0.00\%	0.15	OK	
		LC9 at 100.00\%	0.27	OK	
PIPE 2x0.154	15	LC1 at 31.25\%	0.52	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
		LC10 at 68.75\%	0.04	OK	
		LC11 at 68.75\%	0.03	OK	
		LC2 at 31.25\%	0.46	OK	
		LC3 at 31.25\%	0.36	OK	
		LC4 at 31.25\%	0.31	OK	
		LC5 at 31.25\%	0.51	OK	
		LC6 at 31.25\%	0.46	OK	
		LC7 at 31.25\%	0.36	OK	
		LC8 at 31.25\%	0.31	OK	

LC9 at 33.33\%	0.11	OK	
LC1 at 75.00\%	0.06	OK	
LC10 at 27.08\%	0.03	OK	
LC11 at 27.08\%	0.02	OK	
LC2 at 75.00%	0.05	OK	
LC3 at 27.08\%	0.06	OK	
LC4 at 27.08\%	0.05	OK	
LC5 at 75.00\%	0.05	OK	
LC6 at 75.00\%	0.04	OK	
LC7 at 27.08\%	0.05	OK	
LC8 at 27.08%	0.04	OK	
LC9 at 75.00\%	0.07	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
LC1 at 25.00\%	0.08	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
LC10 at 75.00\%	0.04	OK	
LC11 at 75.00\%	0.03	OK	
LC2 at 27.08\%	0.08	OK	Eq. H 1 -1b
LC3 at 27.08%	0.06	OK	
LC4 at 27.08\%	0.05	OK	
LC5 at 25.00\%	0.08	OK	
LC6 at 25.00\%	0.07	OK	
LC7 at 27.08\%	0.05	OK	
LC8 at 27.08\%	0.05	OK	
LC9 at 75.00\%	0.07	OK	Eq. H1-1b
LC1 at 0.00\%	0.17	OK	
LC10 at 0.00\%	0.11	OK	
LC11 at 0.00\%	0.08	OK	
LC2 at 0.00\%	0.15	OK	
LC3 at 100.00\%	0.14	OK	
LC4 at 100.00\%	0.13	OK	
LC5 at 0.00\%	0.15	OK	
LC6 at 0.00\%	0.12	OK	
LC7 at 100.00\%	0.11	OK	
LC8 at 100.00\%	0.11	OK	
LC9 at 0.00\%	0.22	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
LC1 at 53.13\%	0.28	OK	Eq. H1-1b
LC10 at 100.00\%	0.10	OK	
LC11 at 100.00\%	0.07	OK	
LC2 at 53.13\%	0.25	OK	
LC3 at 0.00\%	0.25	OK	Eq. H1-1b
LC4 at 0.00\%	0.23	OK	
LC5 at 53.13\%	0.27	OK	
LC6 at 53.13\%	0.25	OK	
LC7 at 0.00\%	0.23	OK	
LC8 at 0.00\%	0.21	OK	
LC9 at 0.00\%	0.20	OK	Eq. H1-1b
LC1 at 100.00\%	0.10	OK	
LC10 at 100.00\%	0.09	OK	
LC11 at 100.00\%	0.07	OK	
LC2 at 100.00\%	0.09	OK	
LC3 at 0.00\%	0.09	OK	
LC4 at 0.00\%	0.09	OK	
LC5 at 100.00\%	0.07	OK	
LC6 at 100.00\%	0.07	OK	
LC7 at 0.00\%	0.07	OK	
LC8 at 0.00\%	0.07	OK	
LC9 at 100.00\%	0.17	OK	Eq. H1-1b
LC1 at 0.00\%	0.26	OK	
LC10 at 0.00\%	0.14	OK	

$\left.\begin{array}{llll} & \text { LC11 at } 0.00 \% & 0.11 & \text { OK } \\ \\ \text { LC2 at } 0.00 \% & 0.32 & \text { OK } & \text { Eq. H1-1b } \\ \text { LC3 at } 0.00 \% & 0.29 & \text { OK } & \text { Eq. H1-1b } \\ \text { LC4 at } 0.00 \% & 0.27 & \text { OK } & \\ \text { LC5 at } 100.00 \% & 0.23 & \text { OK } & \\ \text { LC6 at } 0.00 \% & 0.29 & \text { OK } & \\ \text { LC7 at } 0.00 \% & 0.25 & \text { OK } & \\ & \text { LC8 at } 0.00 \% & 0.24 & \text { OK } \\ & \text { LC9 at } 0.00 \% & 0.29 & \text { OK }\end{array}\right]$

Current Date: 1/29/2018 9:37 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTXANALYSIS SOFTWARE\RAM ElementsIRAM Projects\AT\&TICTICT1185\CT1185.etz

Geometry data

GLOSSARY

Cb22, Cb33	: Moment gradient coefficients
Cm22, Cm33	: Coefficients applied to bending term in interaction formula
d0	: Tapered member section depth at J end of member
DJX	: Rigid end offset distance measured from J node in axis X
DJY	: Rigid end offset distance measured from J node in axis Y
DJZ	: Rigid end offset distance measured from J node in axis \mathbf{Z}
DKX	: Rigid end offset distance measured from K node in axis X
DKY	: Rigid end offset distance measured from K node in axis Y
DKZ	: Rigid end offset distance measured from K node in axis Z
dL	: Tapered member section depth at K end of member
Ig factor	: Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members
K22	: Effective length factor about axis 2
K33	: Effective length factor about axis 3
L22	: Member length for calculation of axial capacity
L33	: Member length for calculation of axial capacity
LB pos	: Lateral unbraced length of the compression flange in the positive side of local axis 2
LB neg	: Lateral unbraced length of the compression flange in the negative side of local axis 2
RX	: Rotation about X
RY	: Rotation about Y
RZ	: Rotation about Z
TO	: 1 = Tension only member $0=$ Normal member
TX	: Translation in X
TY	: Translation in Y
TZ	: Translation in Z

Nodes

Node	\mathbf{X} $[\mathrm{ft}]$	\mathbf{Y} $[\mathrm{ft}]$	\mathbf{Z} $[\mathrm{ft}]$	Rigid Floor
1	-0.875	0.00	0.00	0
2	11.125	0.00	0.00	0
4	5.125	0.00	1.00	0
5	6.625	0.00	0.00	0
6	3.625	0.00	0.00	0
7	5.9167	0.00	1.00	0
8	4.3333	0.00	1.00	0
9	7.125	0.00	0.00	0
10	3.125	0.00	0.00	0
11	7.125	0.00	-0.20	0
12	-0.875	0.00	-0.20	0
13	11.125	0.00	-0.20	0
14	-0.875	2.96	0.00	0
15	11.125	2.96	0.00	0
17	5.125	2.96	1.00	0
18	6.625	2.96	0.00	0
19	3.625	2.96	0.00	0
20	5.9167	2.96	1.00	0
21	4.3333	2.96	1.00	0
22	7.125	2.96	0.00	0
23	3.125	2.96	0.00	0
24	7.125	2.96	-0.20	0

25	-0.875	2.96	-0.20	0
26	11.125	2.96	-0.20	0
40	7.125	4.375	-0.20	0
41	-0.875	4.375	-0.20	0
42	11.125	5.375	-0.20	0
43	7.125	-1.625	-0.20	0
44	-0.875	-1.625	-0.20	0
45	11.125	-2.625	-0.20	0
47	5.125	0.00	1.20	0
49	5.125	2.96	1.20	0
50	5.125	3.46	1.20	0
51	5.125	-0.50	1.20	0
54	5.125	-0.50	3.28	0
55	5.125	3.46	3.28	0
65	11.125	1.375	0.00	0
66	9.00	1.375	5.00	0
67	3.125	5.375	-0.20	0
68	3.125	-2.625	-0.20	0
69	3.125	0.00	-0.20	0
70	3.125	2.96	-0.20	0

Restraints

Node	TX	TY	TZ	RX	RY	RZ
54	1	1	1	1	1	1
55	1	1	1	1	1	1
66	1	1	1	1	1	1

Members

Member	NJ	NK	Description	Section	Material	d0 [in]	dL [in]	Ig factor

38	66	65	PIPE 2×0.154	A53 GrB	0.00	0.00	0.00
41	68	67	PIPE 2×0.154	A53 GrB	0.00	0.00	0.00
17	44	41	PIPE 2×0.154	A53 GrB	0.00	0.00	0.00

Orientation of local axes

Member	Rotation [Deg]	Axes23	NX	NY	NZ
	270.00	0	0.00	0.00	0.00
	270.00	0	0.00	0.00	0.00
3	270.00	0	0.00	0.00	0.00
4	180.00	0	0.00	0.00	0.00
8	90.00	0	0.00	0.00	0.00
9	180.00	0	0.00	0.00	0.00
10	180.00	0	0.00	0.00	0.00
11	180.00	0	0.00	0.00	0.00
30	270.00	0	0.00	0.00	0.00

Mount Calculations
 (Proposed Conditions)

Current Date: 1/29/2018 9:33 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTVANALYSIS SOFTWAREIRAM ElementsIRAM ProjectsLAT\&TICTICT1185ICT1185 (MOD.).etz

> | $\begin{array}{l}\text { Install new } \\ \text { steel pipe brace secured to the } \\ \text { existing mount and tower (typ. of } \\ \text { exing } \\ 1 \text { per sector, total of } 3 \text {). }\end{array}$ |
| :--- |

Current Date: 1/29/2018 9:35 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTVANALYSIS SOFTWARE\RAM ElementsIRAM Projects\AT\&TICTICT1185ICT1185 (MOD.).etz

5 Bentley' Hewlett-Packard Company
 Current Date: 1/29/2018 9:35 AM

Units system: English
File name: W:ISTRUCTURAL DEPARTMENT\ANALYSIS SOFTWAREIRAM Elements\RAM Projects\AT\&T\CTICT1185\CT1185 (MOD.).etz

Units system: English
File name: W:ISTRUCTURAL DEPARTMENTIANALYSIS SOFTWAREIRAM ElementsIRAM Projects\AT\&TICTICT1185ICT1185 (MOD.).etz)

$4_{-N^{2}}^{x}$

Current Date: 1/29/2018 9:35 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTXANALYSIS SOFTWARE\RAM ElementsIRAM ProjectsAAT\&TICTICT1185ICT1185 (MOD.).etz

Steel Code Check

Report: Summary - For all selected load conditions
Load conditions to be included in design :

```
LC1=1.2D+1.6Wo
LC2=1.2D+1.6W30
LC3=1.2D+1.6W60
LC4=1.2D+1.6W90
LC5=0.9D+1.6Wo
LC6=0.9D+1.6W30
LC7=0.9D+1.6W60
LC8=0.9D+1.6W90
    LC9=1.2D+Wi+Di
    LC10=1.2D
    LC11=0.9D
```

Description	Section	Member	Ctrl Eq.	Ratio	Status	Reference
	HSS_SQR 3X3X1_4	28	LC1 at 0.00\%	0.13	OK	
			LC10 at 0.00\%	0.12	OK	
			LC11 at 0.00\%	0.09	OK	
			LC2 at 0.00\%	0.14	OK	
			LC3 at 0.00\%	0.40	OK	Eq. H1-1b
			LC4 at 0.00\%	0.36	OK	
			LC5 at 0.00\%	0.10	OK	
			LC6 at 100.00\%	0.12	OK	
			LC7 at 0.00\%	0.37	OK	
			LC8 at 0.00%	0.33	OK	
			LC9 at 0.00\%	0.22	OK	
		29	LC1 at 0.00\%	0.13	OK	
			LC10 at 0,00\%	0.12	OK	
			LC11 at 0.00\%	0.09	OK	
			LC2 at 0.00\%	0.14	OK	
			LC3 at 0.00\%	0.32	OK	Eq. H1-1b
			LC4 at 0.00\%	0.29	OK	
			LC5 at 0.00\%	0.10	OK	
			LC6 at 0.00\%	0.11	OK	
			LC7 at 0.00\%	0.30	OK	
			LC8 at 0.00\%	0.27	OK	
			LC9 at 0.00\%	0.22	OK	
	L 2-1_2X2-1_2X3_16	4	LC1 at 62.50\%	0.37	With warnings	
			LC10 at 100.00\%	0.38	With warnings	
			LC11 at 100.00\%	0.28	With warnings	
			LC2 at 62.50\%	0.50	With warnings	
			LC3 at 36.25\%	0.88	With warnings	Eq. H2-1
			LC4 at 36.25\%	0.78	With warnings	
			LC5 at 62.50\%	0.33	With warnings	
			LC6 at 62.50\%	0.46	With warnings	
			LC7 at 36.25\%	0.84	With warnings	
			LC8 at 36.25\%	0.74	With warnings	
			LC9 at 100.00\%	0.72	With warnings	Eq. H2-1
		11	LC1 at 67.50\%	0.40	With warnings	
			LC10 at 100.00\%	0.30	With warnings	
			Page1			

LU 3X2X1_4

LC11 at 100.00%	0.22	With warnings	
LC2 at 67.50%	0.41	With warnings	
LC3 at 32.50%	0.57	With warnings	Sec. F1
LC4 at 32.50%	0.52	With warnings	
LC5 at 67.50%	0.33	With warnings	
LC6 at 67.50%	0.34	With warnings	
LC7 at 32.50%	0.51	With warnings	
LC8 at 32.50%	0.47	With warnings	
LC9 at 100.00%	$\mathbf{0 . 6 1}$	With warnings	Eq. H2-1

LC1 at 46.88\%	0.36	OK	
LC10 at 46.88\%	0.22	OK	
LC11 at 46.88\%	0.16	OK	
LC2 at 46.88\%	0.49	OK	Eq. H2-1
LC3 at 46.88\%	0.32	OK	
LC4 at 46.88\%	0.30	OK	
LC5 at 46.88\%	0.31	OK	
LC6 at 46.88\%	0.45	OK	
LC7 at 46.88\%	0.26	OK	
LC8 at 46.88\%	0.25	OK	
LC9 at 46.88\%	0.42	OK	
LC1 at 0.00\%	0.27	OK	
LC10 at 0.00\%	0.22	OK	
LC11 at 0.00\%	0.16	OK	
LC2 at 0.00\%	0.31	OK	
LC3 at 0.00\%	0.36	OK	
LC4 at 0.00\%	0.34	OK	
LC5 at 0.00\%	0.22	OK	
LC6 at 0.00\%	0.26	OK	
LC7 at 100.00\%	0.32	OK	
LC8 at 0.00\%	0.29	OK	
LC9 at 0.00\%	0.42	OK	Eq. H2-1
LC1 at 0.00\%	0.28	OK	
LC10 at 0.00\%	0.27	OK	
LC11 at 0.00\%	0.20	OK	
LC2 at 0.00\%	0.29	OK	
LC3 at 0.00\%	0.24	OK	
LC4 at 0.00\%	0.25	OK	
LC5 at 0.00\%	0.22	OK	
LC6 at 100.00\%	0.25	OK	
LC7 at 100.00\%	0.24	OK	Eq. H2-1
LC8 at 100.00\%	0.20	OK	
LC9 at 0.00\%	0.52	OK	Eq. H2-1
LC1 at 50.00\%	0.25	OK	
LC10 at 46.88\%	0.33	OK	
LC11 at 46.88\%	0.25	OK	
LC2 at 50.00\%	0.24	OK	
LC3 at 50.00\%	0.39	OK	
LC4 at 50.00\%	0.37	OK	
LC5 at 50.00\%	0.18	OK	
LC6 at 50.00\%	0.18	OK	
LC7 at 50.00\%	0.31	OK	
LC8 at 50.00\%	0.30	OK	
LC9 at 46.88\%	0.61	OK	Eq. $\mathrm{H} 2-1$
LC1 at 0.00\%	0.39	OK	
LC10 at 0.00\%	0.36	OK	
LC11 at 0.00\%	0.27	OK	
LC2 at 0.00\%	0.38	OK	
LC3 at 0.00\%	0.45	OK	
LC4 at 0.00\%	0.43	OK	

		LC5 at 0.00\%	0.31	OK	
		LC6 at 0.00\%	0.29	OK	
		LC7 at 0.00\%	0.36	OK	
		LC8 at 0.00\%	0.35	OK	
		LC9 at 0.00\%	0.71	OK	Eq. H2-1
	10	LC1 at 0.00\%	0.25	OK	
		LC10 at 0.00\%	0.16	OK	
		LC11 at 0.00\%	0.12	OK	
		LC2 at 0.00\%	0.25	OK	
		LC3 at 0.00\%	0.29	OK	
		LC4 at 0.00\%	0.27	OK	
		LC5 at 0.00\%	0.21	OK	
		LC6 at 0.00\%	0.22	OK	
		LC7 at 100.00\%	0.27	OK	
		LC8 at 100.00\%	0.24	OK	
		LC9 at 0.00\%	0.33	OK	Eq. H2-1
PIPE 2-1_2x0.203	21	LC1 at 100.00\%	0.20	OK	
		LC10 at 100.00\%	0.14	OK	
		LC11 at 100.00\%	0.10	OK	
		LC2 at 100.00\%	0.22	OK	
		LC3 at 0.00\%	0.18	OK	
		LC4 at 0.00\%	0.17	OK	
		LC5 at 100.00\%	0.16	OK	
		LC6 at 100.00\%	0.18	OK	
		LC7 at 87.50\%	0.15	OK	
.		LC8 at 0.00\%	0.14	OK	
		LC9 at 100.00\%	0.27	OK	Eq. H 1 -1b
PIPE 2x0.154	15	LC1 at 31.25\%	0.52	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
		LC10 at 68.75%	0.04	OK	
		LC11 at 68.75\%	0.03	OK	
		LC2 at 31.25\%	0.46	OK	
		LC3 at 31.25\%	0.36	OK	
		LC4 at 31.25\%	0.31	OK	
		LC5 at 31.25\%	0.51	OK	
		LC6 at 31.25\%	0.46	OK	
		LC7 at 31.25\%	0.36	OK	
		LC8 at 31.25\%	0.31	OK	
		LC9 at 33.33\%	0.11	OK	
	16	LC1 at 75.00\%	0.04	OK	
		LC10 at 75.00\%	0.03	OK	
		LC11 at 75.00\%	0.02	OK	
		LC2 at 75.00\%	0.03	OK	
		LC3 at 27.08\%	0.05	OK	
		LC4 at 27.08\%	0.05	OK	
		LC5 at 75.00\%	0.03	OK	
		LC6 at 75.00\%	0.02	OK	
		LC7 at 27.08\%	0.04	OK	
		LC8 at 27.08\%	0.04	OK	
		LC9 at 75.00\%	0.06	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	17	LC1 at 27.08\%	0.10	OK	
-		LC10 at 75.00\%	0.03	OK	
		LC11 at 75.00\%	0.02	OK	
		LC2 at 27.08\%	0.11	OK	Eq. H 1-1b
		LC3 at 25.00\%	0.05	OK	
		LC4 at 27.08\%	0.04	OK	
		LC5 at 27.08\%	0.09	OK	
		LC6 at 27.08\%	0.10	OK	
		LC7 at 25.00\%	0.05	OK	
		LC8 at 25.00\%	0.04	OK	

LC9 at 27.08\%	0.06	OK	
LC1 at 0.00\%	0.13	OK	
LC10 at 0.00\%	0.11	OK	
LC11 at 0.00\%	0.08	OK	
LC2 at 0.00\%	0.11	OK	
LC3 at 0.00\%	0.12	OK	
LC4 at 100.00\%	0.12	OK	
LC5 at 0.00\%	0.11	OK	
LC6 at 0.00\%	0.08	OK	
LC7 at 100.00\%	0.10	OK	
LC8 at 100.00\%	0.10	OK	
LC9 at 0.00\%	0.22	OK	Eq. H1-1b
LC1 at 53.13\%	0.37	OK	Eq. H1-1b
LC10 at 100.00\%	0.10	OK	
LC11 at 100.00\%	0.07	OK	
LC2 at 53.13\%	0.35	OK	
LC3 at 0.00\%	0.24	OK	Eq. H1-1b
LC4 at 0.00\%	0.22	OK	
LC5 at 53.13\%	0.37	OK	
LC6 at 53.13\%	0.35	OK	
LC7 at 0.00\%	0.22	OK	
LC8 at 0.00\%	0.20	OK	
LC9 at 0.00\%	0.20	OK	
LC1 at 53.13\%	0.26	OK	Eq. H1-1b
LC10 at 100.00\%	0.08	OK	
LC11 at 100.00\%	0.06	OK	
LC2 at 56.25%	0.27	OK	
LC3 at 0.00\%	0.11	OK	
LC4 at 0.00\%	0.10	OK	
LC5 at 53.13\%	0.26	OK	
LC6 at 56.25\%	0.27	OK	Eq. H 1 -1b
LC7 at 56.25\%	0.11	OK	
LC8 at 56.25\%	0.09	OK	
LC9 at 0.00\%	0.17	OK	
LC1 at 0.00\%	0.27	OK	
LC10 at 0.00\%	0.13	OK	
LC11 at 0.00\%	0.10	OK	
LC2 at 0.00\%	0.34	OK	Eq. H 1 -1b
LC3 at 0.00\%	0.27	OK	
LC4 at 0.00\%	0.25	OK	
LC5 at 0.00\%	0.24	OK	
LC6 at 0.00\%	0.31	OK	
LC7 at 0.00\%	0.23	OK	
LC8 at 0.00\%	0.22	OK	
LC9 at 0.00\%	0.27	OK	
LC1 at 0.00\%	0.20	OK	
LC10 at 0.00\%	0.13	OK	
LC11 at 0.00\%	0.10	OK	
LC2 at 0.00\%	0.24	OK	
LC3 at 0.00\%	0.26	OK	Eq. H 1 -1b
LC4 at 0.00\%	0.25	OK	
LC5 at 0.00\%	0.16	OK	
LC6 at 0.00\%	0.21	OK	
LC7 at 0.00\%	0.23	OK	
LC8 at 0.00\%	0.21	OK	
LC9 at 0.00\%	0.27	OK	Eq. H1-1b
LC1 at 31.25\%	0.60	OK	
LC10 at 33.33\%	0.07	OK	

		LC11 at 33.33\%	0.05	OK	
		LC2 at 31.25\%	0.68	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
		LC3 at 31.25\%	0.55	OK	
		LC4 at 31.25\%	0.49	OK	
		LC5 at 31.25\%	0.60	OK	
		LC6 at 31.25\%	0.68	OK	
		LC7 at 31.25\%	0.55	OK	
		LC8 at 31.25\%	0.49	OK	
		LC9 at 33.33\%	0.16	OK	
	44	LC1 at 0.00\%	0.16	OK	
		LC10 at 0.00\%	0.12	OK	
		LC11 at 0.00\%	0.09	OK	
		LC2 at 0.00\%	0.18	OK	
		LC3 at 0.00\%	0.27	OK	Eq. H1-1b
		LC4 at 0.00\%	0.25	OK	
		LC5 at 0.00\%	0.13	OK	
		LC6 at 0.00\%	0.15	OK	
		LC7 at 0.00\%	0.24	OK	
		LC8 at 0.00\%	0.22	OK	
		LC9 at 0.00\%	0.23	OK	
T2L 2X2X3_16	30	LC1 at 100.00\%	0.21	OK	
		LC10 at 100.00\%	0.21	OK	
		LC11 at 100.00\%	0.16	OK	
		LC2 at 100.00\%	0.22	OK	
		LC3 at 0.00\%	0.22	OK	
		LC4 at 0.00\%	0.21	OK	
		LC5 at 100.00\%	0.16	OK	
		LC6 at 100.00\%	0.17	OK	
		LC7 at 0.00\%	0.17	OK	
		LC8 at 0.00\%	0.16	OK	
		LC9 at 100.00\%	0.40	OK	Eq. H2-1
	31	LC1 at 100.00\%	0.39	OK	
		LC10 at 100.00\%	0.39	OK	
		LC11 at 100.00\%	0.29	OK	
		LC2 at 100.00\%	0.39	OK	
		LC3 at 100.00\%	0.36	OK	
		LC4 at 100.00\%	0.37	OK	
		LC5 at 100.00\%	0.29	OK	
		LC6 at 100.00\%	0.29	OK	
		LC7 at 100.00\%	0.26	OK	
		LC8 at 100.00\%	0.27	OK	
		LC9 at 100.00\%	0.76	OK	Eq. H 2 -1

Page5

Current Date: 1/29/2018 9:35 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTXANALYSIS SOFTWAREIRAM ElementsIRAM Projects\AT\&TICTICT1185ICT1185 (MOD.).etz

Geometry data

GLOSSARY	
Cb22, Cb33	: Moment gradient coefficients
Cm22, Cm33	: Coefficients applied to bending term in interaction formula
d0	: Tapered member section depth at J end of member
DJX	: Rigid end offset distance measured from J node in axis X
DJY	: Rigid end offset distance measured from J node in axis Y
DJZ	: Rigid end offset distance measured from J node in axis Z
DKX	: Rigid end offset distance measured from K node in axis X
DKY	: Rigid end offset distance measured from K node in axis Y
DKZ	: Rigid end offset distance measured from K node in axis Z
dL	: Tapered member section depth at K end of member
Ig factor	: Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members
K22	: Effective length factor about axis 2
K33	: Effective length factor about axis 3
L22	: Member length for calculation of axial capacity
L33	: Member length for calculation of axial capacity
LB pos	: Lateral unbraced length of the compression flange in the positive side of local axis 2
LB neg	: Lateral unbraced length of the compression flange in the negative side of local axis 2
RX	: Rotation about X
RY	: Rotation about Y
RZ	: Rotation about Z
TO	: 1 = Tension only member $0=$ Normal member
TX	: Translation in X
TY	: Translation in Y
TZ	: Translation in \mathbf{Z}

Nodes

Node	\mathbf{X} $[f t]$	\mathbf{Y} $[f t]$	\mathbf{Z} $[f t]$	Rigid Floor
1	-0.875	0.00	0.00	0
2	11.125	0.00	0.00	0
4	5.125	0.00	1.00	0
5	6.625	0.00	0.00	0
6	3.625	0.00	0.00	0
7	5.9167	0.00	1.00	0
8	4.3333	0.00	1.00	0
9	7.125	0.00	0.00	0
10	3.125	0.00	0.00	0
11	7.125	0.00	-0.20	0
12	-0.875	0.00	-0.20	0
13	11.125	0.00	-0.20	0
14	-0.875	2.96	0.00	0
15	11.125	2.96	0.00	0
17	5.125	2.96	1.00	0
18	6.625	2.96	0.00	0
19	3.625	2.96	0.00	0
20	5.9167	2.96	1.00	0
21	4.3333	2.96	1.00	0
22	7.125	2.96	0.00	0
23	3.125	2.96	0.00	0
24	7.125	2.96	-0.20	0

25	-0.875	2.96	-0.20	0
26	11.125	2.96	-0.20	0
40	7.125	4.375	-0.20	0
41	-0.875	4.375	-0.20	0
42	11.125	5.375	-0.20	0
43	7.125	-1.625	-0.20	0
44	-0.875	-1.625	-0.20	0
45	11.125	-2.625	-0.20	0
47	5.125	0.00	1.20	0
49	5.125	2.96	1.20	0
50	5.125	3.46	1.20	0
51	5.125	-0.50	1.20	0
54	5.125	-0.50	3.28	0
55	5.125	3.46	3.28	0
65	11.125	1.375	0.00	0
66	9.00	1.375	5.00	0
67	3.125	5.375	-0.20	0
68	3.125	-2.625	-0.20	0
69	3.125	0.00	-0.20	0
70	3.125	2.96	-0.20	0
71	-0.875	1.35	0.00	0
72	3.00	1.35	5.00	0

Restraints

Node	TX	TY	TZ	$\mathbf{R X}$	$\mathbf{R Y}$	$\mathbf{R Z}$
54	1	1	1	1	1	1
5	1	1	1	1	1	1
72	1	1	1	1	1	1
	1	1	1	1	1	1

Members

Member	NJ	NK	Description	Section	Material	$\begin{gathered} \text { do } \\ \text { [in] } \end{gathered}$	$\begin{gathered} \mathbf{d L} \\ \text { [in] } \end{gathered}$	Ig factor
1	8	7		LU 3X2X1_4	A36	0.00	0.00	0.00
2	8	6		LU 3X2X1_4	A36	0.00	0.00	0.00
3	7	5		LU 3X2X1_4	A36	0.00	0.00	0.00
4	1	2		L 2-1_2X2-1_2X3_16	A36	0.00	0.00	0.00
8	21	20		LU 3X2X1_4	A36	0.00	0.00	0.00
9	21	19		LU 3X2X1_4	A36	0.00	0.00	0.00
10	20	18		LU 3X2X1_4	A36	0.00	0.00	0.00
11	14	15		L 2-1_2X2-1_2X3_16	A36	0.00	0.00	0.00
15	45	42		PIPE 2×0.154	A53 GrB	0.00	0.00	0.00
16	43	40		PIPE 2×0.154	A53 GrB	0.00	0.00	0.00
17	44	41		PIPE 2×0.154	A53 GrB	0.00	0.00	0.00
18	22	9		PIPE 2×0.154	A53 GrB	0.00	0.00	0.00
19	15	2		PIPE 2×0.154	A53 GrB	0.00	0.00	0.00
20	14	1		PIPE 2×0.154	A53 GrB	0.00	0.00	0.00
21	50	51		PIPE 2-1_2x0. 203	A53 GrB	0.00	0.00	0.00
28	54	51		HSS_SQR $3 \times 3 \times 1$ _4	A500 GrB rectangular	0.00	0.00	0.00

29	55	50	HSS_SQR 3X3X1_4	A500 GrB rectangular	0.00	0.00	0.00
30	20	7	T2L 2X2X3_16	A36	0.00	0.00	0.00
31	21	8	T2L 2X2X3_16	A36	0.00	0.00	0.00
32	10	23	PIPE 2x0. 154	A53 GrB	0.00	0.00	0.00
38	66	65	PIPE 2×0.154	A53 GrB	0.00	0.00	0.00
41	68	67	PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
44	72	71	PIPE 2×0.154	A53 GrB	0.00	0.00	0.00

Orientation of local axes

Member	Rotation [Deg]	Axes 23	NX	NY	NZ
1	270.00	0	0.00	0.00	0.00
3	270.00	0	0.00	0.00	0.00
4	270.00	0	0.00	0.00	0.00
8	180.00	0	0.00	0.00	0.00
9	90.00	0	0.00	0.00	0.00
10	180.00	0	0.00	0.00	0.00
11	180.00	0	0.00	0.00	0.00
31	180.00	0	0.00	0.00	0.00

Radio Frequency Emissions Analysis Report

AT\&T Existing Facility

Site ID: CT1185
FA\#: 10092207
Stafford Springs Tolland Avenue
64 Tolland Avenue
Stafford, CT 06076

February 26, 2018
Centerline Communications Project Number: 950012-024

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 . 8 8} \%$

February 26, 2018
AT\&T Mobility - New England
Attn: John Benedetto, RF Manager
550 Cochituate Road
Suite 550-13\&14
Framingham, MA 06040

Emissions Analysis for Site: CT1185 - Stafford Springs Tolland Avenue

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT\&T facility located at 64 Tolland Avenue, Stafford, CT, for the purpose of determining whether the emissions from the Proposed AT\&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(\mathrm{~b})(1)-(\mathrm{b})(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 700 and 850 MHz Bands are approximately $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$ respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT\&T Wireless antenna facility located at 64 Tolland Avenue, Stafford, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT\&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in Table 1:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
UMTS	850 MHz	2	30
UMTS	$1900 \mathrm{MHz}($ PCS $)$	2	30
LTE	700 MHz	2	30
LTE	$1900 \mathrm{MHz}($ PCS $)$	4	60
LTE	$2300 \mathrm{MHz}($ WCS $)$	4	30

Table 1: Channel Data Table

The following antennas listed in Table 2 were used in the modeling for transmission in the $700 \mathrm{MHz}, 850$ $\mathrm{MHz}, 1900 \mathrm{MHz}$ (PCS) and 2300 MHz (WCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
A	1	Powerwave 7770	177
A	2	Commscope SBNH-1D6565C	177
A	3	CCI TPA-65R-LCUUUU-H8	177
B	1	Powerwave 7770	177
B	2	Powerwave P65-17-XLH-RR	177
B	3	CCI TPA-65R-LCUUUU-H8	177
C	1	Powerwave 7770	177
C	2	KMW AM-X-CD-14-65-00T-RET	177
C	3	Quintel QS46512-2	177

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT\&T configurations Table 3 shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna ID	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	Total TX Power (W)	ERP (W)	MPE \%
Antenna A1	Powerwave 7770	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \\ \hline \end{gathered}$	$\begin{gathered} 11.4 / \\ 13.4 \\ \hline \end{gathered}$	4	120	2,140.89	0.34
$\begin{gathered} \hline \text { Antenna } \\ \text { A2 } \\ \hline \end{gathered}$	Commscope SBNH-1D6565C	700 MHz	13.65	2	60	1,390.44	0.37
$\begin{gathered} \text { Antenna } \\ \text { A3 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CCI } \\ \text { TPA-65R-LCUUUU-H8 } \end{gathered}$	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS) / } \\ & 2300 \mathrm{MHz} \text { (WCS) } \end{aligned}$	$\begin{gathered} \hline 13.75 / \\ 14.45 \\ \hline \end{gathered}$	8	360	9,034.64	1.11
Sector A Composite MPE\%							1.82
$\begin{gathered} \text { Antenna } \\ \text { B1 } \end{gathered}$	Powerwave 7770	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	$\begin{gathered} 11.4 / \\ 13.4 \\ \hline \end{gathered}$	4	120	2,140.89	0.34
Antenna B2	$\begin{gathered} \text { Powerwave } \\ \text { P65-17-XLH-RR } \end{gathered}$	700 MHz	14.3	2	60	1,614.92	0.43
Antenna B3 B3	$\begin{gathered} \text { CCI } \\ \text { TPA-65R-LCUUUU-H8 } \\ \hline \end{gathered}$	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS) / } \\ & 2300 \mathrm{MHz} \text { (WCS) } \\ & \hline \end{aligned}$	$\begin{gathered} 13.75 / \\ 14.45 \\ \hline \end{gathered}$	8	360	9,034.64	1.11
Sector B Composite MPE\%							1.88
$\begin{gathered} \text { Antenna } \\ \mathrm{C} 1 \\ \hline \end{gathered}$	Powerwave 7770	$850 \mathrm{MHz} /$ $1900 \mathrm{MHz}(\mathrm{PCS})$	$\begin{gathered} \hline 11.4 / \\ 13.4 \\ \hline \end{gathered}$	4	120	2,140.89	0.34
Antenna C2	$\begin{gathered} \text { KMW } \\ \text { AM-X-CD-14-65-00T-RET } \\ \hline \end{gathered}$	700 MHz	11.85	2	60	918.65	0.24
Antenna	$\begin{gathered} \text { Quintel } \\ \text { QS46512-2 } \end{gathered}$	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS) / } \\ & 2300 \mathrm{MHz} \text { (WCS) } \end{aligned}$	$\begin{aligned} & \hline 13.15 / \\ & 14.05 \end{aligned}$	8	360	8,006.08	0.98
Sector C Composite MPE\%							1.57

Table 3: AT\&T Emissions Levels

The Following table (table 4) shows all additional carriers on site and their MPE\% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT\&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, the sector with the largest calculated MPE\% is Sector B. Table 5 below shows a summary for each AT\&T Sector as well as the composite MPE value for the site.

Site Composite MPE \%	
Carrier	MPE \%
AT\&T - Max Sector Value	$\mathbf{1 . 8 8} \%$
No Additional Carriers Listed per CSC Active	
MPE Database	N/A
Site Total MPE \%:	$\mathbf{1 . 8 8} \%$

Table 4: All Carrier MPE Contributions

AT\&T Sector A Total:	1.82%
AT\&T Sector B Total:	1.88%
AT\&T Sector C Total:	1.57%
Site Total:	

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT\&T sector(s). For this site, the sector with the largest calculated MPE\% is Sector B.

AT\&T _ Frequency Band / Technology Max Power Values (Sector B)	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
AT\&T 850 MHz UMTS	2	414.12	177	1.02	850 MHz	567	0.18\%
AT\&T 1900 MHz (PCS) UMTS	2	656.33	177	1.61	1900 MHz (PCS)	1000	0.16\%
AT\&T 700 MHz LTE	2	807.46	177	1.99	700 MHz	467	0.43\%
AT\&T 1900 MHz (PCS) LTE	4	1,422.82	177	7.00	1900 MHz (PCS)	1000	0.70\%
AT\&T 2300 MHz (WCS) LTE	4	835.84	177	4.11	2300 MHz (WCS)	1000	0.41\%
						Total:	1.88\%

Table 6: AT\&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT\&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT\&T Sector	Power Density Value (\%)
Sector A:	1.82%
Sector B:	1.88%
Sector C:	1.57%
AT\&T Maximum Total (per sector):	1.88%
Site Total:	1.88%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 . 8 8} \%$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director
Centerline Communications, LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767

Location	50 TOLLAND AVE	Mblu	67/ / 11/ /	
Acct\#	00445300	Owner	TERRA ALTA INC	
Assessment	\$191,410	Appraisal	\$581,300	
PID	5047	Building Count	1	
ent Value				
Appraisal				
Valuation Year		Improvements	Land	Total
		\$3,000	\$578,300	\$581,300
Assessment				
Valuation Year		Improvements	Land	Total
		\$2,100	\$189,310	\$191,410

Owner of Record

Owner	TERRA ALTA INC	Sale Price	$\$ 0$
Co-Owner	C/O JENNIFER J DAVIS	Certificate	1
Address	114 STAFFORD ST	Book \& Page	$272 / 673$
	STAFFORD SPRINGS, CT 06076	Sale Date	$01 / 30 / 1990$
		Instrument	

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book \& Page	Instrument	Sale Date
TERRA ALTA INC	\$0	1	272/673		01/30/1990
JULIAN MICHAEL, LEO J, ETAL	\$0	2	232/620		11/24/1986

Building Information

Building 1 : Section 1

Year Built:

Living Area: 0
Replacement Cost: $\$ 0$
Building Percent
Good:
Replacement Cost
Less Depreciation:
\$0

Field	Description
Style	Vacant Ind
Model	
Grade:	
Occupancy	
Exterior Wall 1	
Exterior Wall 2	
Roof Structure	
Roof Cover	
Interior Wall 1	
Interior Wall 2	
Interior Flr 1	
Interior FIr 2	
Heat Fuel	
Heat Type:	
AC Type:	
Total Bedrooms:	
Full Bthrms:	
Half Baths:	
Extra Fixtures	
Total Rooms:	
Bath Style:	
Kitchen Style:	
Num Kitchens	
Fireplaces	
Extra Openings	
Prefab Fpl(s)	
Attic Type	
Bsmt Type	
Bsmt Garage(s)	
Fin Bsmnt	
Fn. Bmt. Qual.	
Unfin Area	

Building Photo

(http://images.vgsi.com/photos2/StaffordCTPhotos//\00\01\26/2

Building Layout

(http://images.vgsi.com/photos2/StaffordCTPhotos//Sketches/50

Building Sub-Areas (sq ft)	Legend
No Data for Building Sub-Areas	

Extra Features

| Extra Features | Legend |
| :--- | :--- | :--- |
| No Data for Extra Features | |

Land Use

Use Code	300	Size (Acres) Frontage	143.02
Description	Ind Land	Depth	
Zone		Assessed Value	$\$ 189,310$
Neighborhood	504	Appraised Value	$\$ 578,300$

Category

Outbuildings

Outbuildings						Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bldg \#
FN3	FENCE-6' CHAIN			320 L.F.	\$1,400	1
SHD1	Shed	MS	Masonry	200 S.F.	\$1,600	1

Valuation History

Appraisal					
	Valuation Year	Improvements			
2017		$\$ 3,000$	Land	Total	
2016		$\$ 3,000$	$\$ 578,300$		
2014		$\$ 0$	$\$ 578,300$	$\$ 581,300$	

Assessment					
	Valuation Year	Improvements			
2017		$\$ 2,100$	Land	Total	
2016		$\$ 2,100$	$\$ 189,310$	$\$ 191,410$	
2014	$\$ 0$	$\$ 189,310$	$\$ 191,410$		

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

GROUNDING NOTES

THE SUBCONTRACTOR SHALL REYIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT
COMPLANCE WITH THE NEC (AS ADOPTED BY THE AHO), THE STEESPECFIC (LU, LPI, OR
 GROUNING STANDAROS. THE SUBCONTRACTOR S
FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNNN

3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO EARTH
TESTING (PER IEEE 1100 AND 81) FOR NEW GROUND ELECTRODE SYSTEMS. THE TESTING (PER IEEE 1100 AND 81) FOR NEW GROUND ELECTRODE SYSTEMS. THE
SUBCONTRACTOR SHALL FURNSH ANO INSALL
SUPPLEMENTAL GROUND ELECTRODES AS SUBCONTRACTOR SHALL FURNSH AND INSTALL SUPPLEMENTAL
NEEDED TO ACHEVE A TEST RESLT OF 5 OHMS OR LESS.
4. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUPMENT GROUND
CONDUCTOR. STRANDED COPPER CONDUCTORS WTH GREEN INSULATON, SIZED IN ACCORDNCE SITT NTEE NEC SHARL BE FURNSHED AND INSTALLED WITH THE POWER
CRCUTS TO BTS EQUPMENT.
5. EACH BTS CABNET FRAME SHALL BE DRECTLY CONNECTED TO THE MASTER GROUND BAR
WITH GREEN INSULATED SUPLLEMENTALEQUPMENT GROUND WIRES, 6 AWG STRANDED WITH GREE INSULATED SUPPLEMENTAL EQUPMENT GROUND WIRES, 6 AWG STRANDED
COPPER OR LARGER FOR INDOOR BTS 2 AWG STRANDED COPPER FOR OUTOOOR BTS.
6. Exothermic weld shall be used for all grounding connections below grade.
7. APPROVED ANTIOXIDANT COATNGS (IEE., CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL
COMPRESSION AND BOLTED GROUND CONNECTIONS.
8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED To
GROUND BAR.
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR
GROUNOING CONNECTIONS.
10. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS
SHALL BE BONDED TO THE GROUND RNN, IN ACCORDANCE WTH THE NEC.

1. METAL CONDUT SHALL BE MADE ELECTRICALYY CONTINUOUS WTH LISTED BONDING FITINGS
OR BY BONING ACROSS TE TISCONTNITY WITH 6 AWS COPPER WIRE \cup UL APPROVED GROUNDING TTPE CONDUIT CLAMPS.
2. ALL New STructures with a foundation and/or footing having 20 TT. or more of
$1 / 2$ IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORING STEL MUST HAVE IT BONDED

GENERAL NOTES

OR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINTIONS SHALL APPLY CONTRACTRR - CENTERLINE
SUBCOTTACTTOR - GENERAL CONTRACTOR (CONSTRUCTION)
OWNER - AT\&T MOBLITT OWNER - ATET MOBLLTY
2. PRIIR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISTIT THE CELL BE ACCOMPLSHED AS SHOWN EXISTHG CONDITIONS AND TT CONFIRM THAT THE WORK CAN
SHALL BE BROUGTT TO THE ATTENTION OF CRNTTOCDORAWINGS. ANY DISCREPANCY FOUND
3. ALL MATERIALS FURNIIHED AND INSTALLED SHALL BE IN STRCT ACCORDANCE WTH ALL
 AWFUL ORDERS OF ANY PUELC AUHHORIV REGARDING THE PERRORMANEE OF THE WORK.
ALL WORK CARRIED OUT SHAL COMPLY WTH ALL APPLCABLE MUNIIPAL AND UTILTT

4. drawings provided here are not to be scaled and are intended to show outline
5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERALLS, EQUIPMENT,
APURTENANESS AND LABOR NECESSARY TO COMPLEEE ALL INSTALATIONS AS INICATED ON
THE DRAWINGS.
6. "KITTTNG LIST" SUPPLLED WITH THE BID PACKAGE IDENTIEES ITEMS THAT WLLL BE SUPPLIED BY
COTRCOTOR ITEMS NOT NCCUDD IN
SUPLLED BY THE SUBCONTRACTOR.

THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH
MANUFACTURER'S RECOMMENDATONS UNLESS SPECIFICALLY STATED OTHERWISE.
8. If THE SPECIIED EQUPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE
SUBCONTACTOR SHALL PROPOSE AN ALTERNATVE INSTALIATION SPACE FOR APPROVAL BY THE CONTRACTOR
9. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUTT, POWER AND T1 CABLES, SUBCONTRACTOR SHALL LUTLIIZE EXILTTNG TRAYS AND/OR SHALL ADD NEW TRAYS AS
NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WTH THE CONTRACTOR.
10. THE SUBCONTRACTOR SHALL PROTECT EXISTNG IMPROVEMENTS, PAVEMENTS, CURBS,
LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHAL BE
REPARED AT LANDSCAPING AND STRUCTVRES. ANY DAMAGED PART SHALL BE
SUBCOTRACTOR'S EXPENE TO THE SATISACTION OF OWNER.

2. Subcontractor shall leave premises in clean condition.
13. ALL CONCRETE REPAR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE
INSITUTE (ACI) 301.
4. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRANED AND SHALL AAVE 4000 PSI STRENGTH AT 28 DAYS AL CON
ACCORDANCE WITH ACI 318 CODE REQUIREMENTS.
15. ALL STRUCTURAL STEEL WORK SHALL BE DETALLED, FABRICATED AND ERECTED IN ACCORDANCE
WITH AISC SPECIFICATONS. ALL STRUCTURAL STEEL SHALL BE ASTM AB6 (Fy $=36 \mathrm{ksi}$) WiTH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy $=36 \mathrm{ksi})$

16. CONSTRUCTION SHALL COMPLY WTH , SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES
17. SUBCONTRACTOR SHALL VERIY ALL EXISTING DIMENIINNS AND CONDITINS PRIOR TO
COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY
DISCREPANCIES PRIOR TO ORERRING MATERAL OR PROCEEDING WTH CONSTRUCTION.
18. THE EXIITTING CELL STE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY
SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATON. ANY WORK ON EXISTNG EQUPMENT MUST BE COORDINATE WITH CONTRACTOR ALSO, WORK SHOULD BE
SCHEDLED FOR AN APPROPRIATE MAITENANCE WINDOW USUALIY IN LOW TRAFFIC PERIODS SCHEDULED FRR
AFTER MDNIGT.
19. SINCE THE CELL SITE IS ACTVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING PRIOR TO PERFORMNG ANW WORK TAAT COUD EXPOSE TOE WORKERS TO DANGER
PERSONAL RF EXPOSURE MONTORS ARE ADVISED TO BE WORN TO ALERT OF ANY DANGERO PERSONAL RF EXPOS
EXPOSURE LEVELS.
20. APPLICABLE BUILDING CODES:
SUBCONTRACTOR'S WORK SHA

SUBCONTRACTOR'S WORK SHALL COMPLY WTH THE LATEST EDITION OF THE FOLLOWING
STANDARDS:
AMERICAN CONCRETE INSTIUTE (ACI) 318; BUILING CODE
REQUIRMENTS FOR STRUCTURAL CONCRETE;
american institute of steel construction (aisc) manual of steel construction, asd, fourteenth edtion: TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TTA) 222-G
STRUCTURAL STANDARDS FOR STELL
EQUIPMENT AND ANTENNA SUPPORTING STRUCTURES: REFER
TO ELECTRICAL DRAWNGS FOR SPECIIC ELECTRICAL STANARDS.
FOR ANY CONFLCTS BETWEEN SECTIONS OF LISTED CODES AND STANDRDS REGARDDG
MATERAL, METHODS OF CENSTRUCTON, OR OTHER REOUREMENTS THE MOST RESTRGT

ABBREVATIONS					
AGL	above grade level	EQ	Equal	REQ	Required
awg	american wire gauge	GC	GENERAL COntractor	RF	RADIO FREQUENCY
bвu	battery backup unit	GRC	galvanizd rigid conduit	TBD	to be determined
BTCW	bare tinned solid COPPER WIRE	MGB	MASTER GROUND bar	TBR	TO BE REMOVED
BGR	buried ground ring	min	MINMUM	TBRR	$\begin{aligned} & \text { TO BE REMOVED AND } \\ & \text { REPLACED } \end{aligned}$
BTS	base transceiver station	P	PROPOSED	TYP	TYPICAL
E	Existing	NTS	Not to scale	ug	UNDER GROUND MIIII!
EGB	EQUPMENT GROUND BAR	RAD	radiation center line (ANTENNA)	VIF	VERIFY INEFİEL
EGR	EQUIPMENT GROUND RING	REF	Reference		S/x -

SITE NUMBER: CT1185

HUDSON Design Group LLC	CENTERLINE 95 RYAN DRIVE RAYNHAM, MA 02767	SITE NUMBER: CT1185 SITE NAME: STAFFORD SPRINGS TOLLAND AVENUE 64 TOLLAND AVENUE STAFFORD, CT 06076 TOLLAND COUNTY

STATE OF CONNECTICUT
CONNECTICUT SITING COUNCIL
Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

September 7, 2012
Jennifer Young Gaudet
HPC Wireless Services
46 Mill Plain Road, Floor 2
Danbury, CT 06811
RE: EM-CING-134-120820A - New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 64 Tolland Avenue, Stafford Springs, Connecticut.

Dear Ms. Gaudet:

The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the following conditions:

- Any deviation from the proposed modification as specified in this notice and supporting materials with Council shall render this acknowledgement invalid;
- Any material changes to this modification as proposed shall require the filing of a new notice with the Council;
- Not less than 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- The validity of this action shall expire one year from the date of this letter; and
- The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration;

The proposed modifications including the placement of all necessary equipment and shelters within the tower compound are to be implemented as specified here and in your notice dated August 17, 2012. The modifications are in compliance with the exception criteria in Section 16$50 \mathrm{j}-72$ (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding
the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Thank you for your attention and cooperation.

Very truly yours,

Linda Roberts
Executive Director
LR/CDM/cm
c: The Honorable Richard L. Shuck, First Selectman, Town of Stafford Richard L. Shuck, Zoning Enforcement Officer, Town of Stafford Cordless Data Transfer

[^0]: Mary Caulfield, Site Acquisition Consultant c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 750 West Center Street, Suite 301
 West Bridgewater, MA 02379
 Mobile: (978) 994-0252
 MCaulfield@centerlinecommunications.com

[^1]: ${ }^{1}$ Usage above 100% indicates the applied design load exceeds the foundation strength capacity and requires strengthening

[^2]: ${ }^{1} P_{u} / \phi P_{u}$ controls

