

May 17, 2017

Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Street
New Britain, CT 06051

Regarding: Notice of Exempt Modification – Swap of 3 Antennas, Removing (3)
TMA, Addition of (6) TMAs and addition of associated lines
Property Address: 102 Cathy Drive, Southington, CT (the “Property”)

Applicant: AT&T Mobility (“AT&T” Site: CT1109)

Dear Ms. Bachman:

AT&T currently maintains a wireless telecommunications facility on an existing 81 foot utility tower (“tower”) at the above-referenced address, latitude 41.59886111, longitude -72.8524444. AT&T’s facility consists of three (6) wireless telecommunications antennas at 91 feet. The tower is controlled and owned by Eversource Energy. Assessor’s information is attached hereto.

AT&T desires to modify its existing telecommunications facility by swapping three (3) antennas, removing (3) TMAs, adding (6) TMAs, and adding associated lines. The centerline height of said antennas is and will remain at 91 feet.

Please accept this application as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72 (b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the Town Manager of the Town of Southington, the Chief Building Official of the Town of Southington, and the Zoning Enforcement Officer of the Town of Southington. A copy of this letter is also being sent to Eversource Energy, the owner of the structure that AT&T is located.

The planned modifications to AT&T’s facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

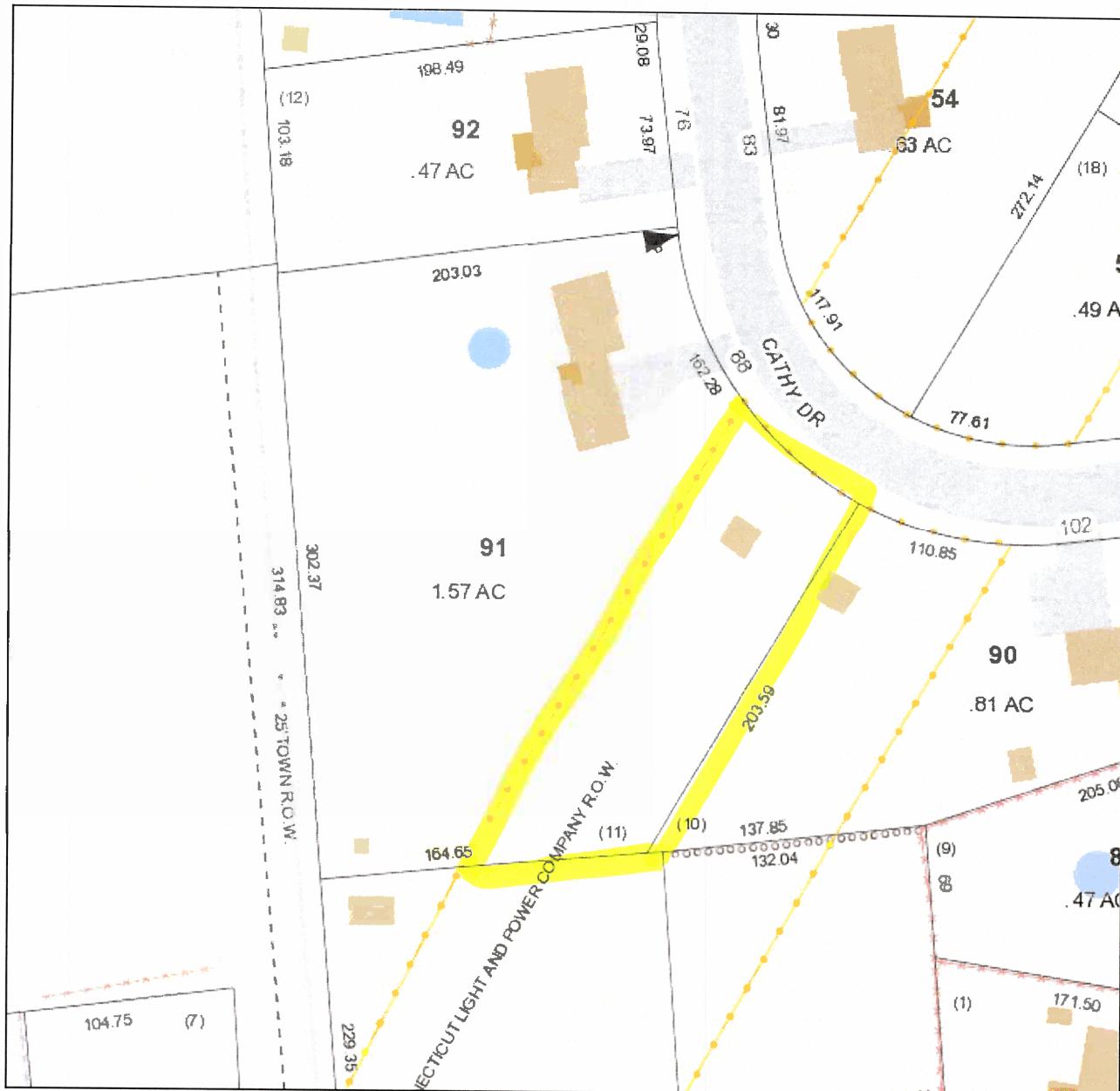
1. The planned modifications will not result in an increase in the height of the existing structure. AT&T’s antennas and associated lines will be installed at 91 foot level of the 81 foot utility tower.
2. The proposed modifications will not involve any changes to ground-mounted equipment and, therefore will not require an extension of the site boundary.
3. The proposed modification will not increase the noise level at the facility by six decibel or more, or to levels that exceed state and local criteria.

4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. An RF emissions calculation is attached.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The tower and its foundation can support AT&T's proposed modifications. (Please see attached Structural analysis completed by Centek Engineering Dated April 13, 2017).

For the foregoing reasons AT&T respectfully requests that the proposed swap of 3 antennas, removal of (3) TMAs, the addition of (6) TMAs, and addition of associated lines be allowed within the exempt modifications under R.C.S.A. § 16-50j-72(b)(2).

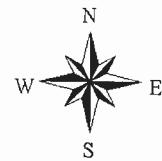
Sincerely,

Nicole Caplan
Site Acquisition Specialist
Empire Telecom


CC: Garry Brumback, Town Manager, Town of Southington
John Smigel, Chief Building Official, Town of Southington
Matthew A. Reimondo, Zoning Enforcement Officer, Town of Southington
Eversource Energy, c/o Joel Szarkowicz

Town of Southington

Geographic Information System (GIS)


Date Printed: 5/2/2017

MAP DISCLAIMER - NOTICE OF LIABILITY

This map is for assessment purposes only. It is not for legal description or conveyances. All information is subject to verification by any user. The Town of Southington and its mapping contractors assume no legal responsibility for the information contained herein.

Approximate Scale: 1 inch = 80 feet

WIRELESS COMMUNICATIONS FACILITY

CT1109 - LTE 2C

SOUTHBURY-CATHYDRIVE NU

EVERSOURCE UTILITY STRUCT. NO.: 4119

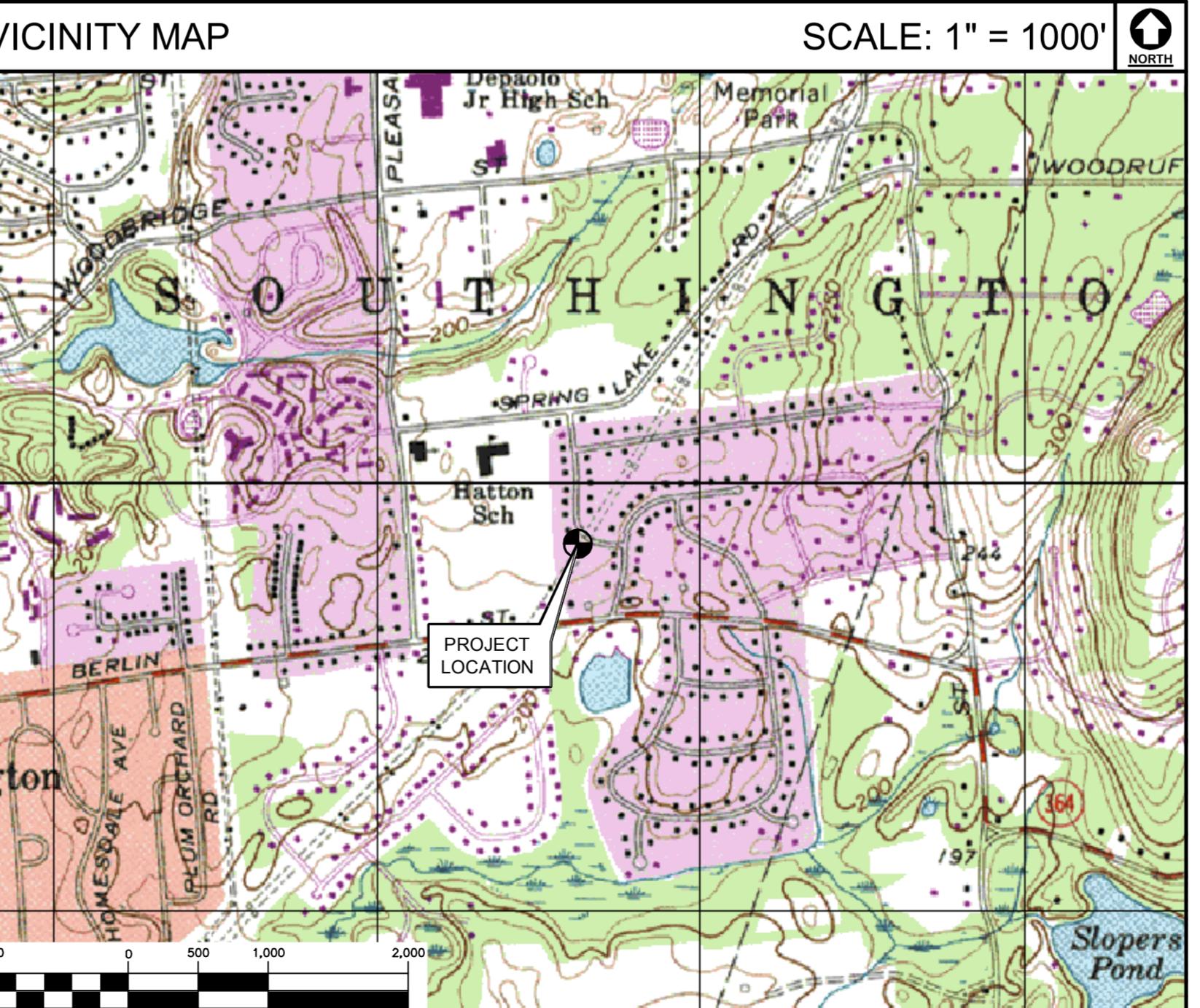
CATHY DRIVE

SOUTHBURY, CT 06489

GENERAL NOTES

- ALL WORK SHALL BE IN ACCORDANCE WITH THE 2012 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2016 CONNECTICUT STATE BUILDING CODE, INCLUDING THE TIA-222 REVISION "C" STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES, 2016 CONNECTICUT FIRE SAFETY CODE AND, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- THE COMPOUND, TOWER, PRIMARY GROUND RING, ELECTRICAL SERVICE TO THE METER BANK AND TELEPHONE SERVICE TO THE DEMARCTION POINT ARE PROVIDED BY SITE OWNER. AS BUILT FIELD CONDITIONS REGARDING THESE ITEMS SHALL BE CONFIRMED BY THE CONTRACTOR. SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY Affected WORK.
- CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN "AS-BUILT" SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. MAINTAIN EXISTING BUILDING'S/PROPERTY'S OPERATIONS, COORDINATE WORK WITH BUILDING/PROPERTY OWNER.

- DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- ANY AND ALL ERRORS, DISCREPANCIES, AND "MISS" ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE AT&T CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO "EXTRA" WILL BE ALLOWED FOR MISSED ITEMS.
- CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED PRIOR TO ANY EXCAVATION WORK. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- CONTRACTOR SHALL COMPLY WITH OWNERS ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.


SITE DIRECTIONS

FROM: 500 ENTERPRISE DRIVE, ROCKY HILL, CONNECTICUT

TO: CATHY DRIVE, SOUTHBURY, CONNECTICUT

1. DEPART ENTERPRISE DR TOWARD CAPITOL BLVD 0.4 MI
 2. TURN LEFT ONTO CAPITOL BLVD 0.2 MI
 3. TURN LEFT ONTO WEST ST 0.3 MI
 4. TAKE RAMP LEFT FOR I-91 SOUTH 1.7 MI
 5. AT EXIT 22N, TAKE RAMP RIGHT FOR CT-9 NORTH TOWARD NEW BRITAIN 3.1 MI
 6. TURN RIGHT ONTO FRONTAGE RD 0.2 MI
 7. TURN RIGHT ONTO CT-372 / WORTHINGTON RIDGE 0.1 MI
 8. KEEP STRAIGHT ONTO WORTHINGTON RIDGE 0.1 MI
 9. TURN RIGHT ONTO HUDSON ST 0.5 MI
 10. ROAD NAME CHANGES TO NORTON RD 0.4 MI
 11. TURN LEFT ONTO CT-71 / CHAMBERLAIN HWY 2.1 MI
 12. TURN RIGHT ONTO CT-364 / SOUTHBURY RD 0.6 MI
 13. TURN RIGHT TO STAY ON CT-364 / EAST ST 2.6 MI
 14. KEEP LEFT TO STAY ON CT-364 / BERLIN ST 0.2 MI
 15. TURN RIGHT ONTO ARLINGTON DR 0.5 MI
 16. TURN RIGHT ONTO CATHY DR 0.1 MI
 17. ARRIVE AT NEAR TRANSMISSION LINE CROSSING ON CATHY DR, SOUTHBURY, CT 06489 0.1 MI

VICINITY MAP

PROJECT SUMMARY

- THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING:
 - REMOVE AND REPLACE EXISTING POSITION 4 ANTENNA FOR PROPOSED TWELVE-PORT ANTENNA, (1) PER SECTOR.
 - REMOVE AND REPLACE (3) EXISTING TMA'S BEHIND POSITION 4 ANTENNA AND INSTALL (6) NEW TMA'S, (2) PER SECTOR.
 - INSTALL (6) NEW RRUS-12'S WITHIN EXISTING COMPOUND
 - REMOVE (6) EXISTING DIPLEXERS WITHIN EXISTING COMPOUND
 - INSTALL (12) NEW PENTAPLEXERS WITHIN EXISTING COMPOUND
 - REMOVE AND REPLACE EXISTING DC6 SURGE ARRESTOR BOX WITHIN EXISTING COMPOUND FOR (1) DC12 BOX
 - EXISTING TOWER FOUNDATION, TYP. OF (4) TO BE REINFORCED

PROJECT INFORMATION

AT&T SITE NUMBER: CT1109
 AT&T SITE NAME: SOUTHBURY-CATHYDRIVE NU
 SITE ADDRESS: EVERSOURCE UTILITY STRUCT. NO.: 4119
 CATHY DRIVE, SOUTHBURY, CT 06489
 LESSEE/APPLICANT: AT&T MOBILITY
 500 ENTERPRISE DRIVE, SUITE 3A
 ROCKY HILL, CT 06067
 ENGINEER: CENTEK ENGINEERING, INC.
 63-2 NORTH BRANFORD RD.
 BRANFORD, CT 06405
 PROJECT COORDINATES: LATITUDE: 41°35'55.9"N
 LONGITUDE: 72°51'8.8"W
 GROUND ELEVATION: ±215' AMSL
 SITE COORDINATES AND GROUND ELEVATION REFERENCED FROM GOOGLE EARTH.

SHEET INDEX

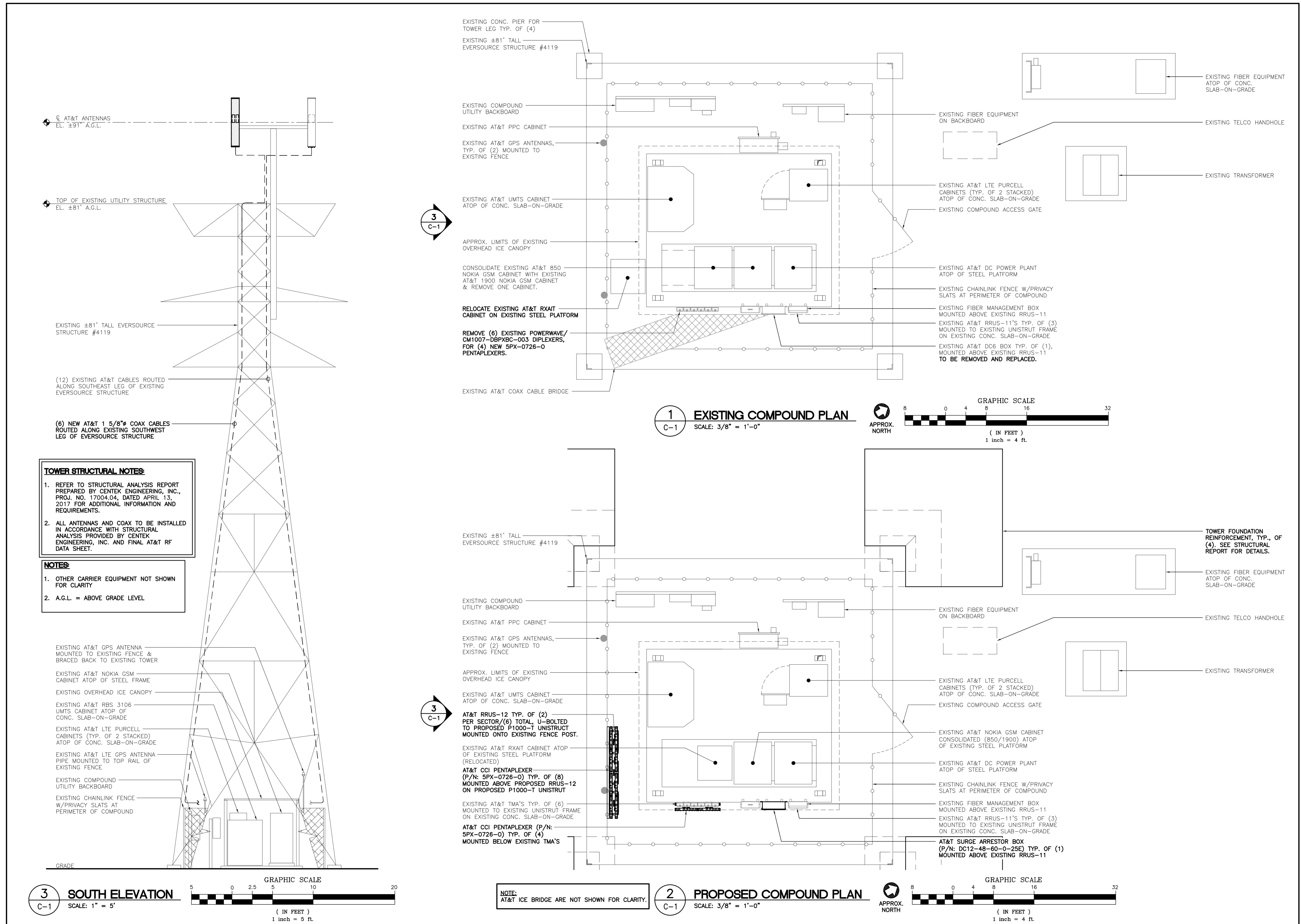
SHT. NO.	DESCRIPTION	REV.
T-1	TITLE SHEET	0
N-1	NOTES AND SPECIFICATIONS	0
C-1	PLANS AND ELEVATION	0
C-2	LTE 2C ANTENNA DETAILS	0
C-3	LTE 2C EQUIPMENT DETAILS	0
E-1	LTE SCHEMATIC DIAGRAM AND NOTES	0
E-2	LTE WIRING DIAGRAM	0
E-3	TYPICAL ELECTRICAL DETAILS	0

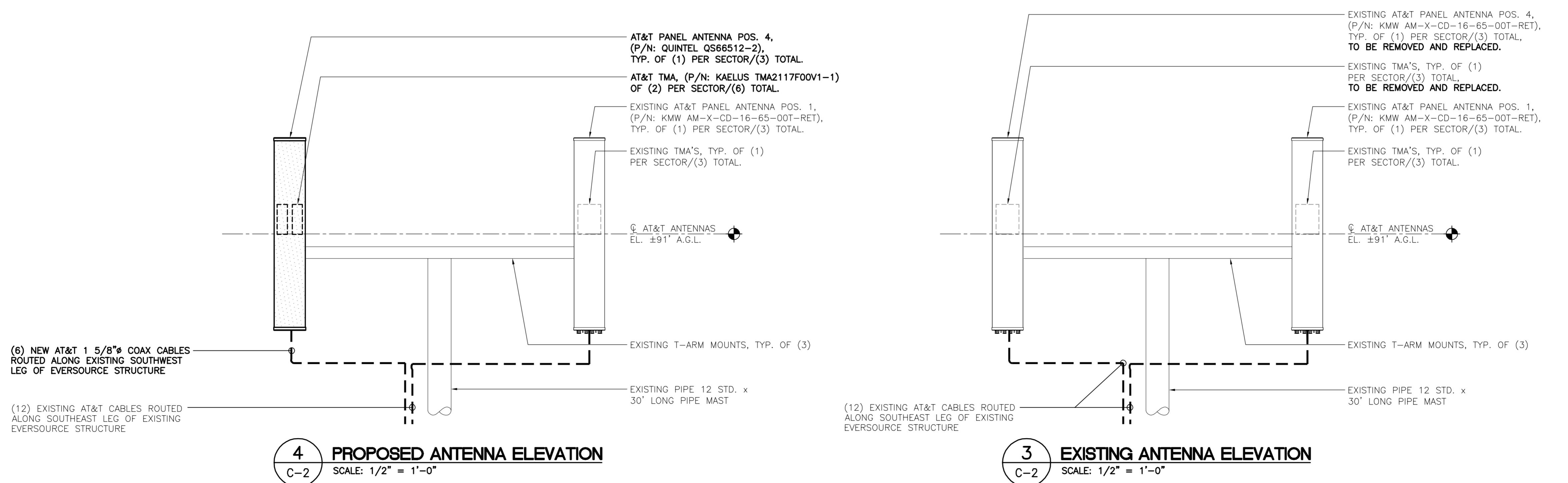
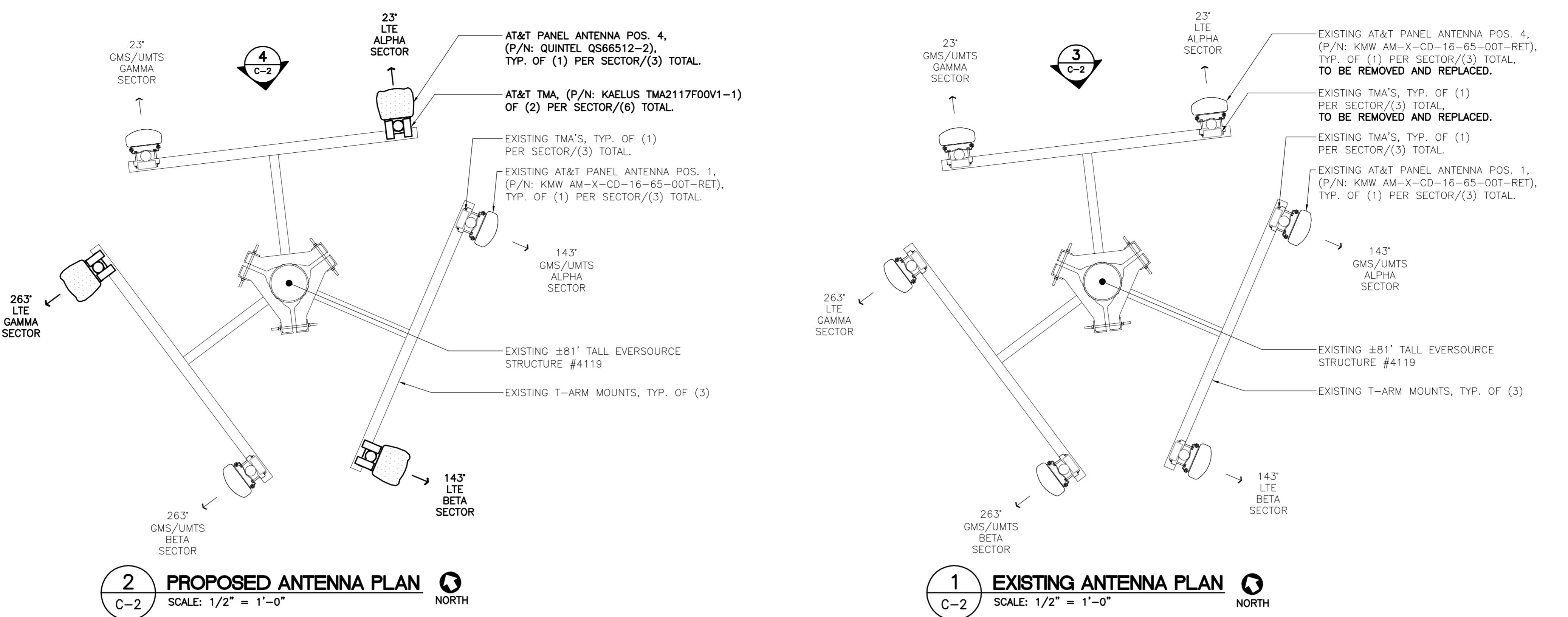
T-1

Sheet No. 1 of 8

EMPIRE
telecom

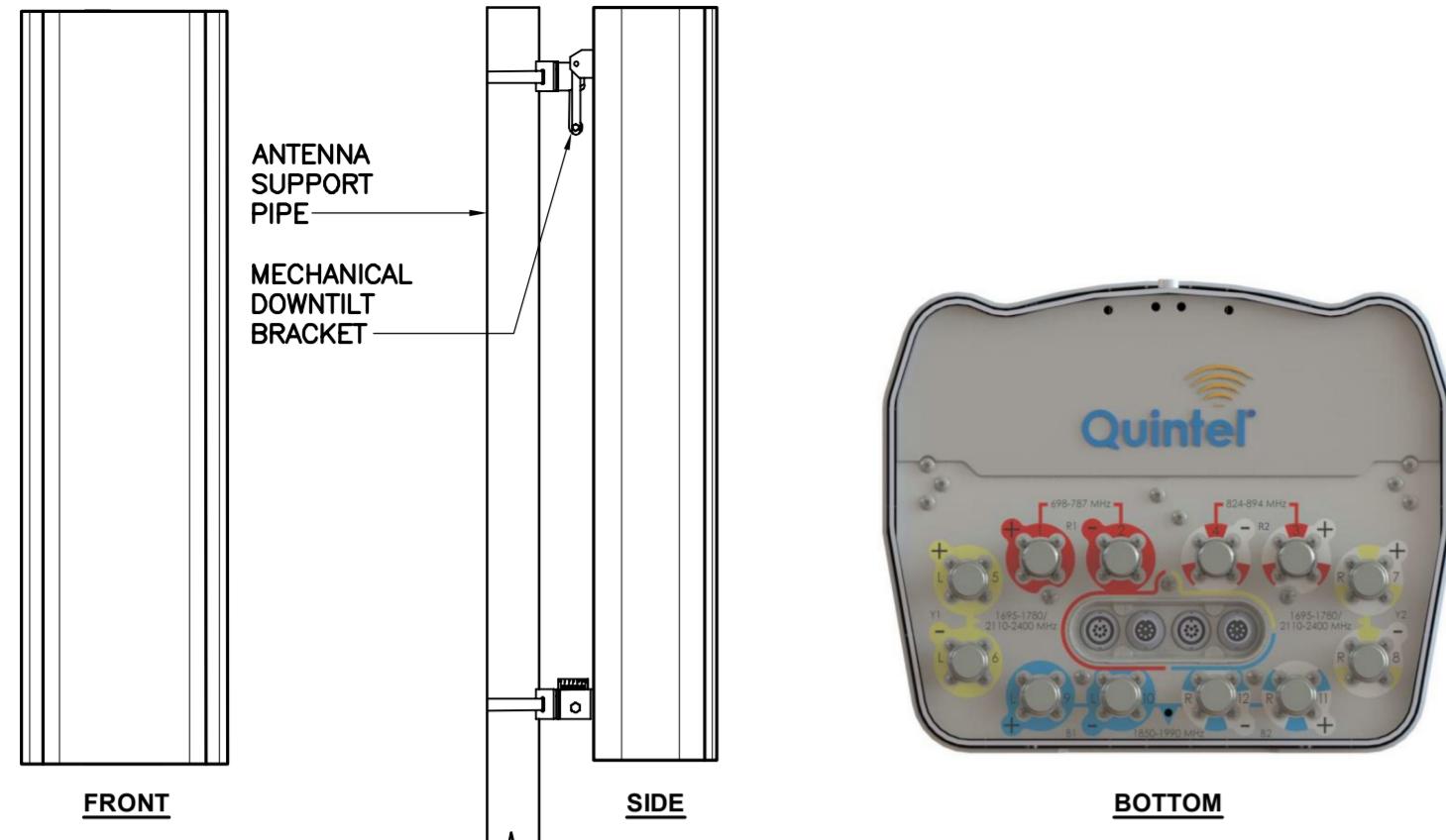
CENTEK
engineering
Centek Solutions™
(203) 484-5580 Fox
(203) 484-5581 Branford Road
Branford, CT 06405
www.CentekEng.com


SOUTHBURY-CATHYDRIVE NU
WIRELESS COMMUNICATIONS FACILITY
CT1109 - LTE 2C
CATHY DRIVE
SOUTHBURY, CT 06489



DATE: 01/16/17
 SCALE: AS NOTED
 JOB NO. 17004.04

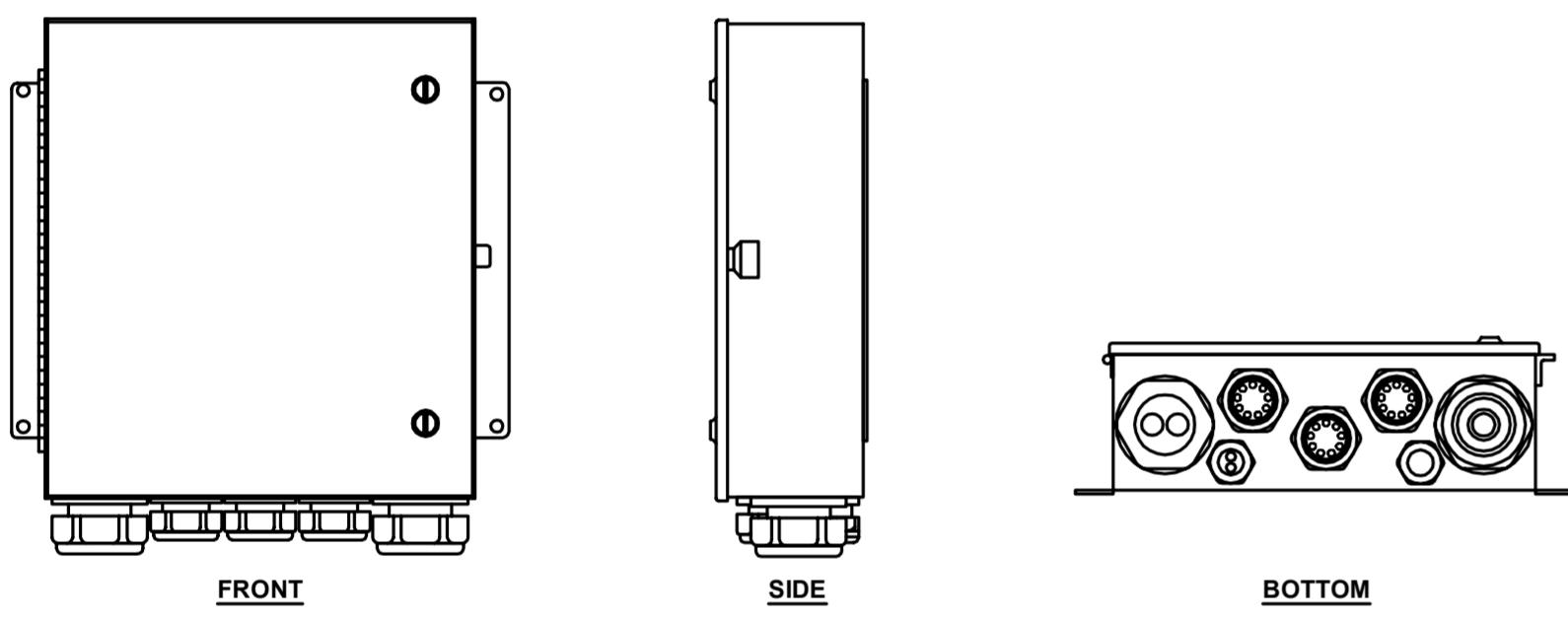
TITLE SHEET

PROFESSIONAL ENGINEER SEAL				
0	05/08/17	KAWIR	CAG	CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION
REV.	DATE	DRAWN BY	CHK'D BY	DESCRIPTION


DATE:	01/16/17
SCALE:	AS NOTED
JOB NO.:	17004.04
LTE 2C ANTENNA DETAILS	
C-2	
Sheet No. 4	of 8

CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION

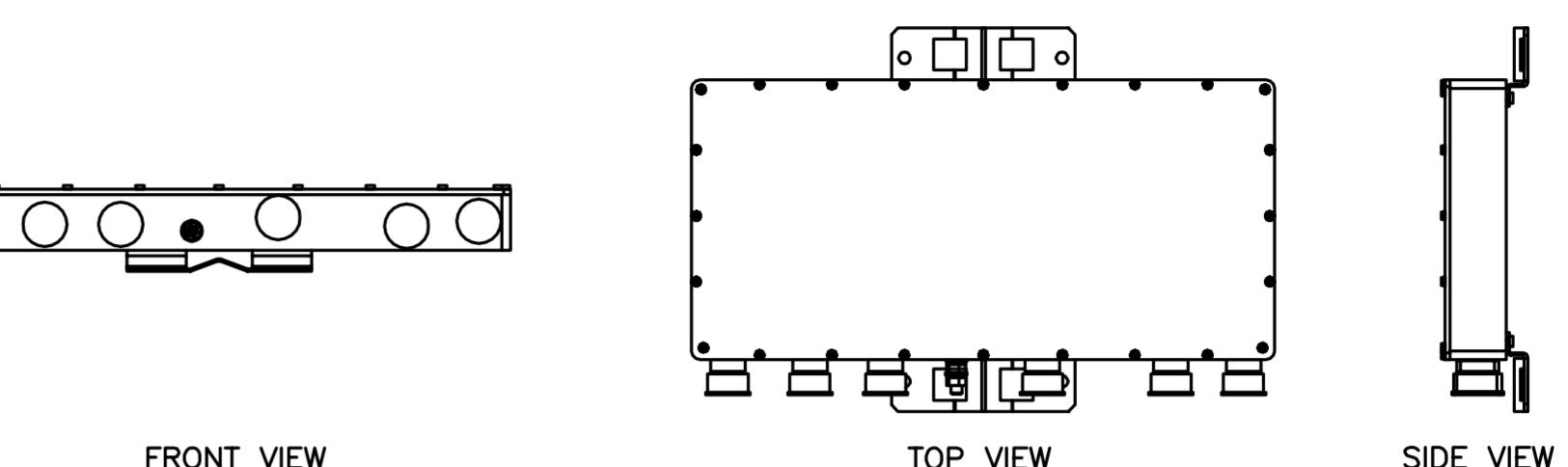
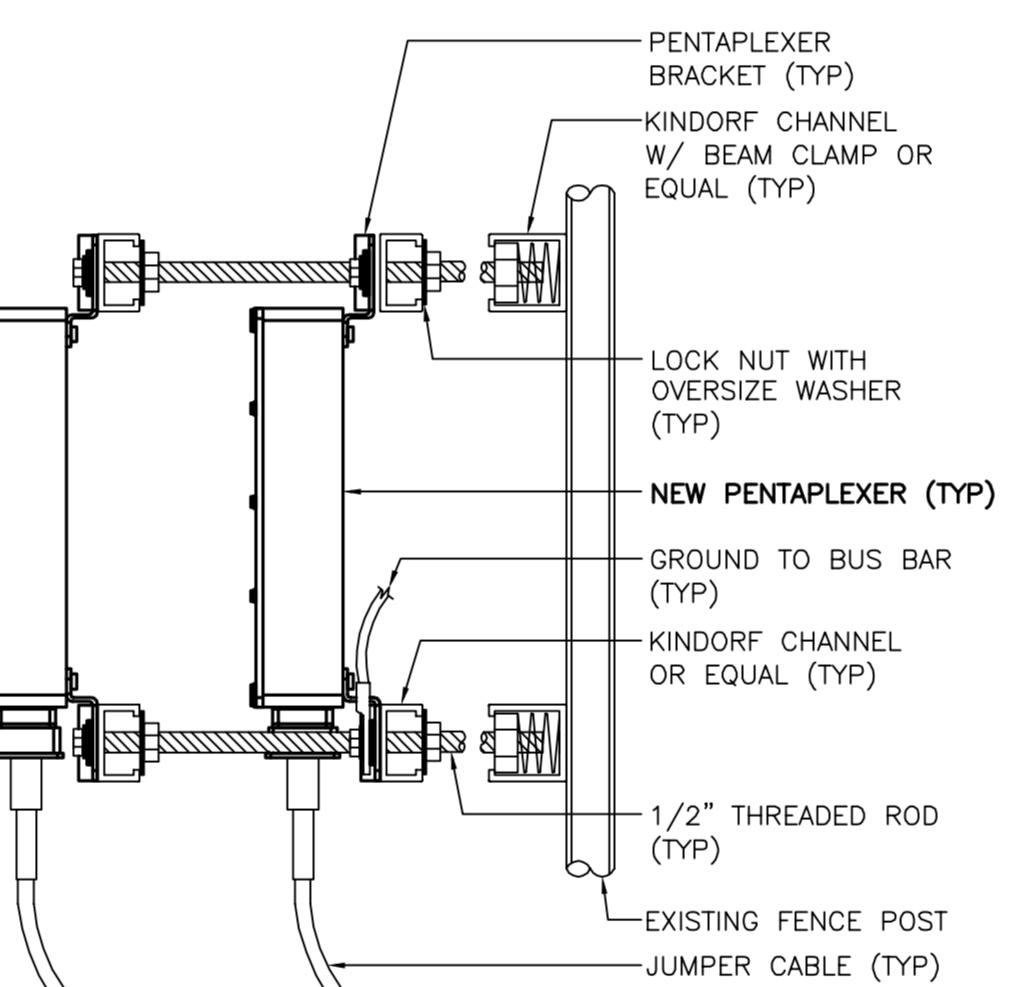
PROFESSIONAL ENGINEER SEAL


at&t
EMPIRE
telecom

CENTEK engineering
Centek on Solutions™
(239) 484-5580
(239) 484-5581 Fox
632 North Bernford Road
Branford, CT 06405
www.CentekEng.com

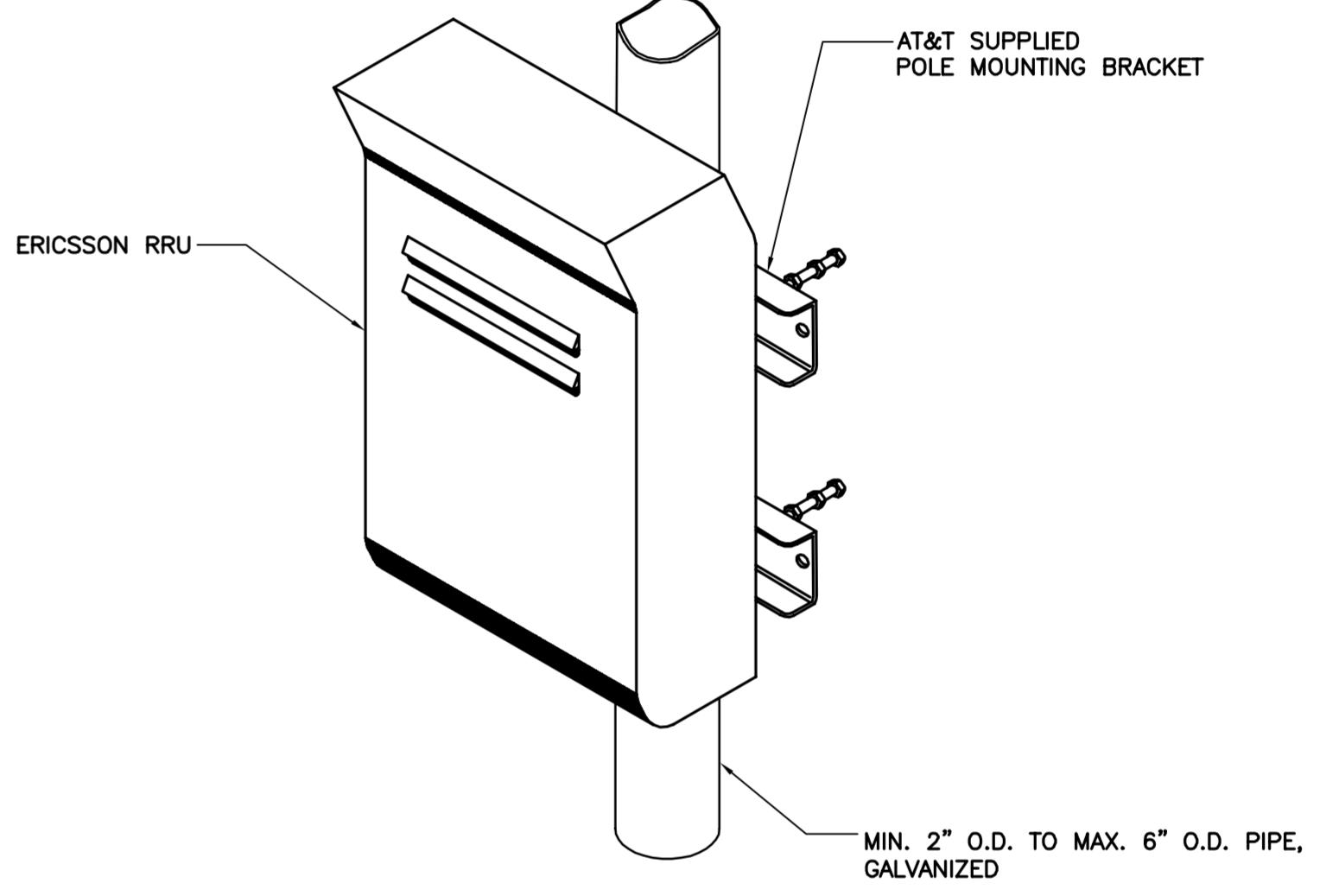
ALPHA/BETA/GAMMA ANTENNA		
EQUIPMENT	DIMENSIONS	WEIGHT
MAKE: QUINTEL MODEL: QS66512-2	72.0"H x 12.0"W x 9.6"D	111.0-LBS

1 PROPOSED ANTENNA DETAIL
C-3 SCALE: 1/2" = 1'-0"

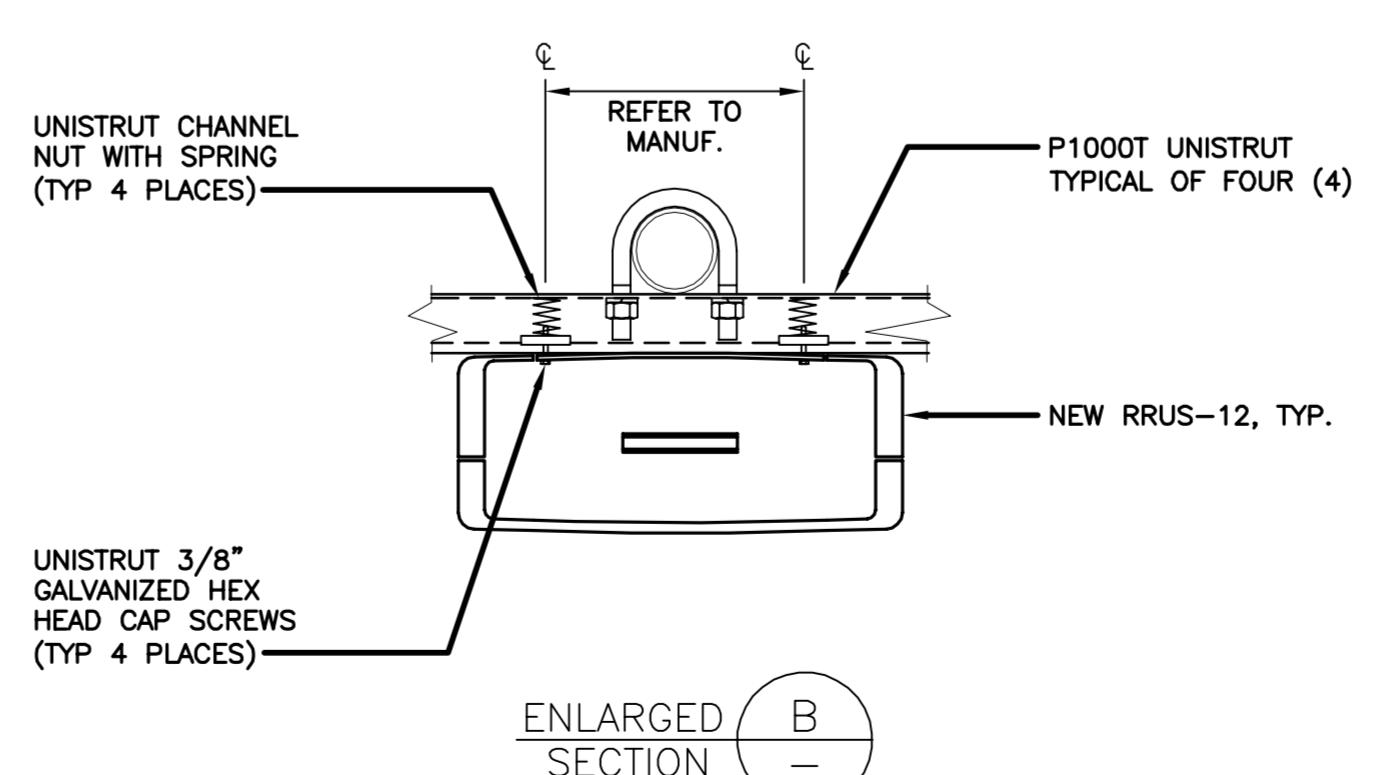
SURGE ARRESTOR			
ARRESTOR MAKE/MODEL	QTY REQUIRED	ARRESTOR LOCATION	WEIGHT
MAKE: RAYCAP MODEL: DC12-48-60-0-25E	ONE (1)	WITHIN EXISTING COMPOUND	56.3 LBS.
NOTES:			
1. CONTRACTOR TO COORDINATE FINAL SURGE ARRESTOR MODEL SELECTION(S) WITH AT&T CONSTRUCTION MANAGER PRIOR TO ORDERING. 2. CONTRACTOR TO INSTALL ARRESTOR IN CONFORMANCE WITH MANUFACTURERS RECOMMENDATIONS.			

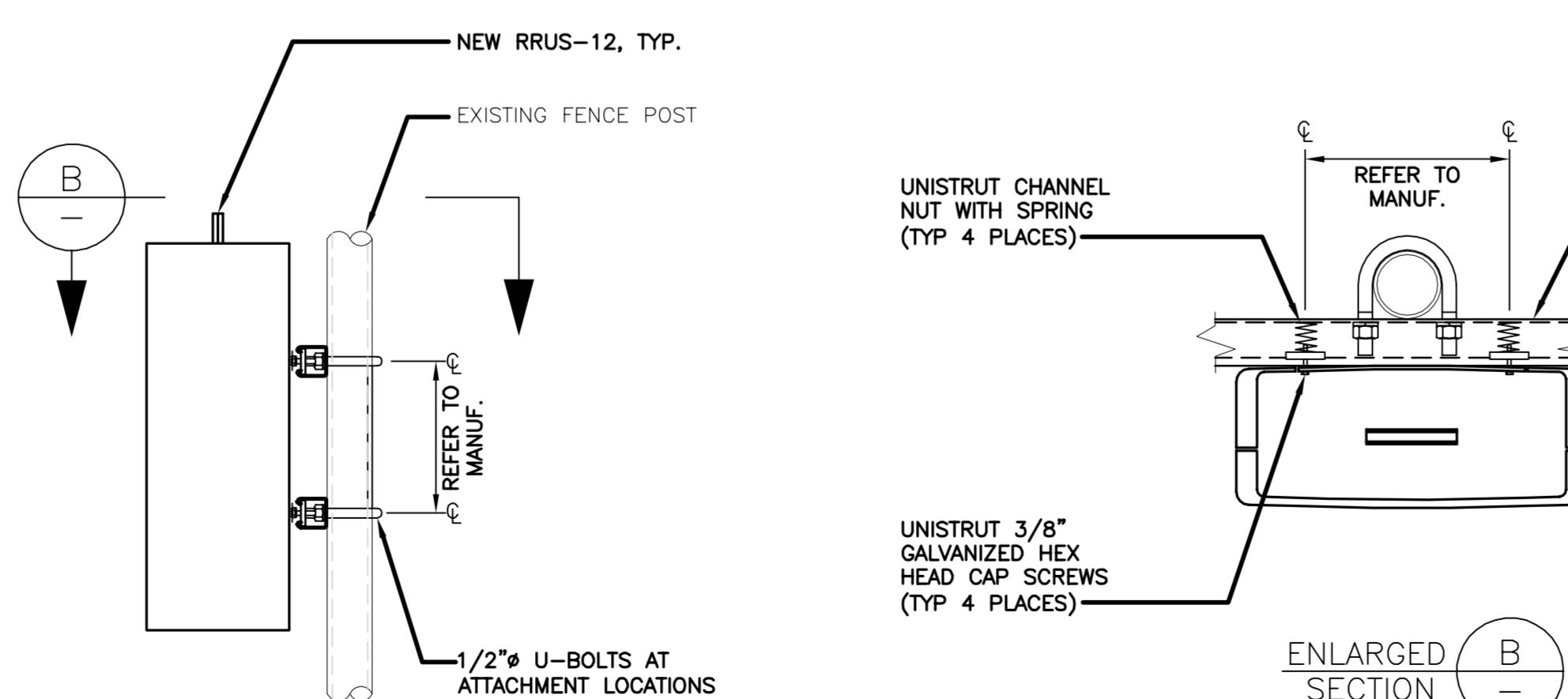
4 SURGE ARRESTOR DETAIL
C-3 NOT TO SCALE


RRU (REMOTE RADIO UNIT)			
EQUIPMENT	DIMENSIONS	WEIGHT	CLEARANCES
MAKE: ERICSSON MODEL: RRUS 12	20.4" L x 18.5" W x 7.5" D	50 LBS.	ABOVE: 16" MIN. BELOW: 12" MIN. FRONT: 36" MIN.
NOTES:			
1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH AT&T CONSTRUCTION MANAGER PRIOR TO ORDERING.			

2 ERICSSON RRUS 12 DETAIL
C-3 SCALE: 1" = 1'-0"

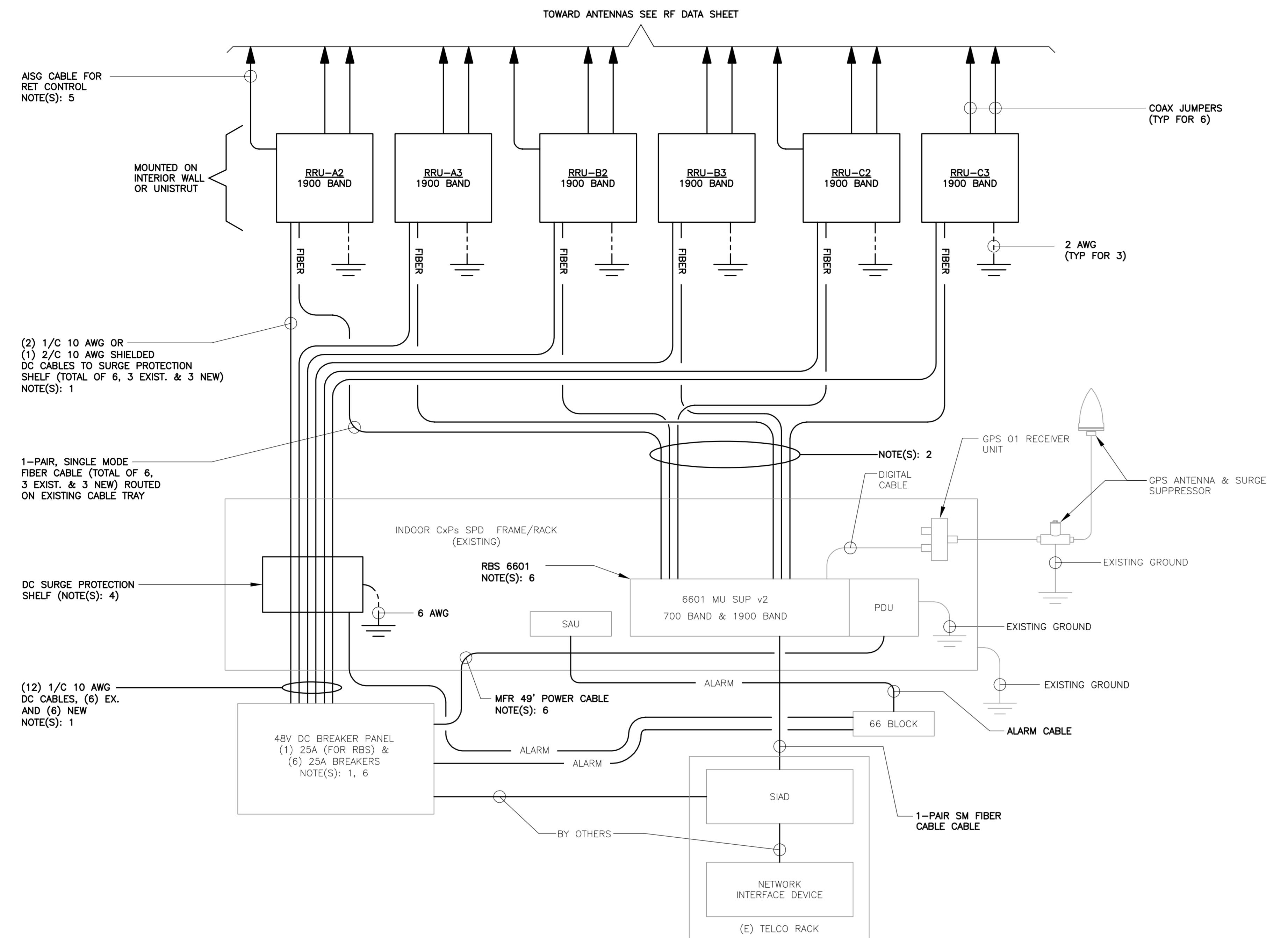
PENTAPLEXER		
EQUIPMENT	DIMENSIONS	WEIGHT
MAKE: CCI MODEL: 5PX-0726-0	11.44"H x 17.44"W x 1.95"D	15.6 LBS.
NOTES:		
1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH AT&T CONSTRUCTION MANAGER PRIOR TO ORDERING.		


3 PENTAPLEXER DETAIL
C-3 SCALE: NONE


NOTES:

1. AT&T SHALL SUPPLY RRU, AND RRU POLE-MOUNTING BRACKET. CONTRACTOR SHALL SUPPLY POLE/PIPE AND INSTALL ALL MOUNTING HARDWARE INCLUDING ERICSSON RRU POLE-MOUNTING BRACKET. CONTRACTOR SHALL INSTALLS RRU AND MAKES CABLE TERMINATIONS.
2. NO PAINTING OF THE RRU OR SOLAR SHIELD IS ALLOWED.

5 TYPICAL PENTAPLEXER MOUNTING DETAILS
C-3 SCALE: NTS



6 TYPICAL RRUS MOUNTING DETAILS
C-3 SCALE: NTS

7 TYPICAL RRU MOUNTING DETAILS
C-3 SCALE: NTS

AT&T MOBILITY		WIRELESS COMMUNICATIONS FACILITY	SOUTHINGTON-CATHYDRIVE NU
CT109 - LTE 2C		CATHY DRIVE	Southington, CT 06489
DATE:	01/16/17	SCALE:	AS NOTED
JOB NO.:	17004.04	LTE 2C	EQUIPMENT DETAILS
C-3			
Sheet No. 5 of 8			

1
F-1 **LTE SCHEMATIC DIAGRAM**
NOT TO SCALE

LTE SCHEMATIC DIAGRAM NOTES:

1. BREAKERS TO BE TAGGED AND LOCKED OUT. A 20A (MIN.) OR 30A (MAX.) BREAKER FOR RRUs MAY BE SUBSTITUTED FOR THE RECOMMENDED 25A BREAKER. SIZE 12 CONDUCTORS MAY BE USED ONLY WITH 20A BREAKERS.
2. COIL EXTRA LENGTH OF FIBER CABLE(S) ON SUSPENDED CABLE LADDER, TYPICAL.
3. SINGLE-CONDUCTOR DC POWER CABLES SHALL BE TELCOFLEX® OR KS24194™, COPPER, UL LISTED RHH NON-HALOGEN, LOW SMOKE WITH BRAIDED COVER, TYPE TC (1/0 AND LARGER). UNLESS OTHERWISE NOTED, STRANDING SHALL BE CLASS B (TYPE III) FOR CABLES SIZES 14, 12 & 10 AWG AND CLASS I (TYPE IV) FOR SIZES 8 AWG AND LARGER. CABLES SHALL BE COLOR CODED RED FOR +24V, BLUE FOR -48V AND GRAY FOR 24V AND 48V RETURN CONDUCTORS. MULTI-CONDUCTOR DC POWER CABLES SHALL BE COPPER, CLASS B STRANDING WITH FLAME RETARDANT PVC JACKET, TYPE TC, UL LISTED FOR 90°C DRY/ 75°C WET INSTALLATION.
4. INSTALL DC SURGE PROTECTION SHELF AS REQUIRED. DC SURGE SHELF SHALL BE RAYCAP DCx-48-60-RM.
5. RET CONTROL FROM THE RRU IS AN OPTIONAL METHOD OF CONNECTION. REFER TO RF DATA SHEET FOR APPLICABILITY.
6. RBS 6601 VARIANT 2 REQUIRES A 25A BREAKER AND 10 AWG (MIN.) CONDUCTORS. REPLACE EXISTING 15A OR 20A BREAKERS AND 12 AWG CONDUCTORS WHEN UPGRADING AN EXISTING RBS 6601 VARIANT 1.

ELECTRICAL NOTES

1. PRIOR TO START OF CONSTRUCTION CONTRACTOR SHALL COORDINATE WITH OWNER FOR ALL CONSTRUCTION STANDARDS AND SPECIFICATIONS, AND ALL MANUFACTURER DOCUMENTATION FOR ALL EQUIPMENT TO BE INSTALLED.
2. INSTALL ALL EQUIPMENT IN ACCORDANCE WITH LOCAL BUILDING CODE, NATIONAL ELECTRIC CODE, OWNER AND MANUFACTURER'S SPECIFICATIONS.
3. CONNECT ALL NEW EQUIPMENT TO EXISTING TELCO AS REQUIRED BY MANUFACTURER.
4. MAINTAIN ALL CLEARANCES REQUIRED BY NEC AND EQUIPMENT MANUFACTURER.
5. PRIOR TO INSTALLATION CONTRACTOR SHALL MEASURE EXISTING ELECTRICAL LOAD AND VERIFY EXISTING AVAILABLE CAPACITY FOR PROPOSED INSTALLATION. IF INADEQUATE CAPACITY IS AVAILABLE, CONTRACTOR SHALL COORDINATE WITH LOCAL ELECTRIC UTILITY COMPANY TO UPGRADE EXISTING ELECTRIC SERVICE.
6. CONTRACTOR SHALL INSPECT EXISTING GROUNDING AND LIGHTNING PROTECTION SYSTEM AND ENSURE THAT IT IS IN COMPLIANCE WITH NEC, AND SITE OWNER'S SPECIFICATIONS. THE RESULTS OF THIS INSPECTION SHALL BE PRESENTED TO OWNERS REPRESENTATIVE, AND ANY DEFICIENCIES SHALL BE CORRECTED.
7. ALL TRANSMISSION TOWER SITES CONTAIN AN EXTENSIVE BURIED GROUNDING SYSTEM. ALL GROUNDING WORK MUST BE COORDINATED WITH, AND APPROVED BY, THE TOWER OWNER'S SITE REPRESENTATIVE. ALL OF THE TOWER OWNER'S SPECIFICATIONS MUST BE STRICTLY FOLLOWED.
8. PROVIDE AND INSTALL GROUND KITS FOR ALL NEW COAXIAL CABLES AND BOND TO EXISTING OWNERS GROUNDING SYSTEM PER OWNERS SPECIFICATIONS AND NEC.
9. ALL CONDUCTORS SHALL BE TYPE THWN (INT. APPLICATION) AND XHHW (EXT. APPLICATION), 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER. #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT-BOLT TYPE CONNECTORS, #12 AWG SHALL BE THE MINIMUM SIZE CONDUCTOR FOR LINE VOLTAGE BRANCH CIRCUITS. REFER TO PANEL SCHEDULE FOR BRANCH CIRCUIT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION:
10. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR.
11. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
12. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNER'S REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
13. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES AS MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR SCHEDULING OF ALL INSPECTIONS AS MAY BE REQUIRED BY THE LOCAL AUTHORITY.
14. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE SITE AND/OR BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
15. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
16. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT. CONTRACTOR SHALL WITHOUT EXTRA CHARGE, MAKE MODIFICATIONS TO THE LAYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK. CHECK ALL DRAWINGS AND VISIT JOB SITE TO VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBMITTAL OF BID.
17. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT GROUNDING SOURCES.
18. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.
19. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122. (MIN. #12 AWG).
20. CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 5 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3 POINT GROUNDING TEST. (REFER TO SECTION 16060)

TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM

- A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:
 - TEST 1: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM.

THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT:

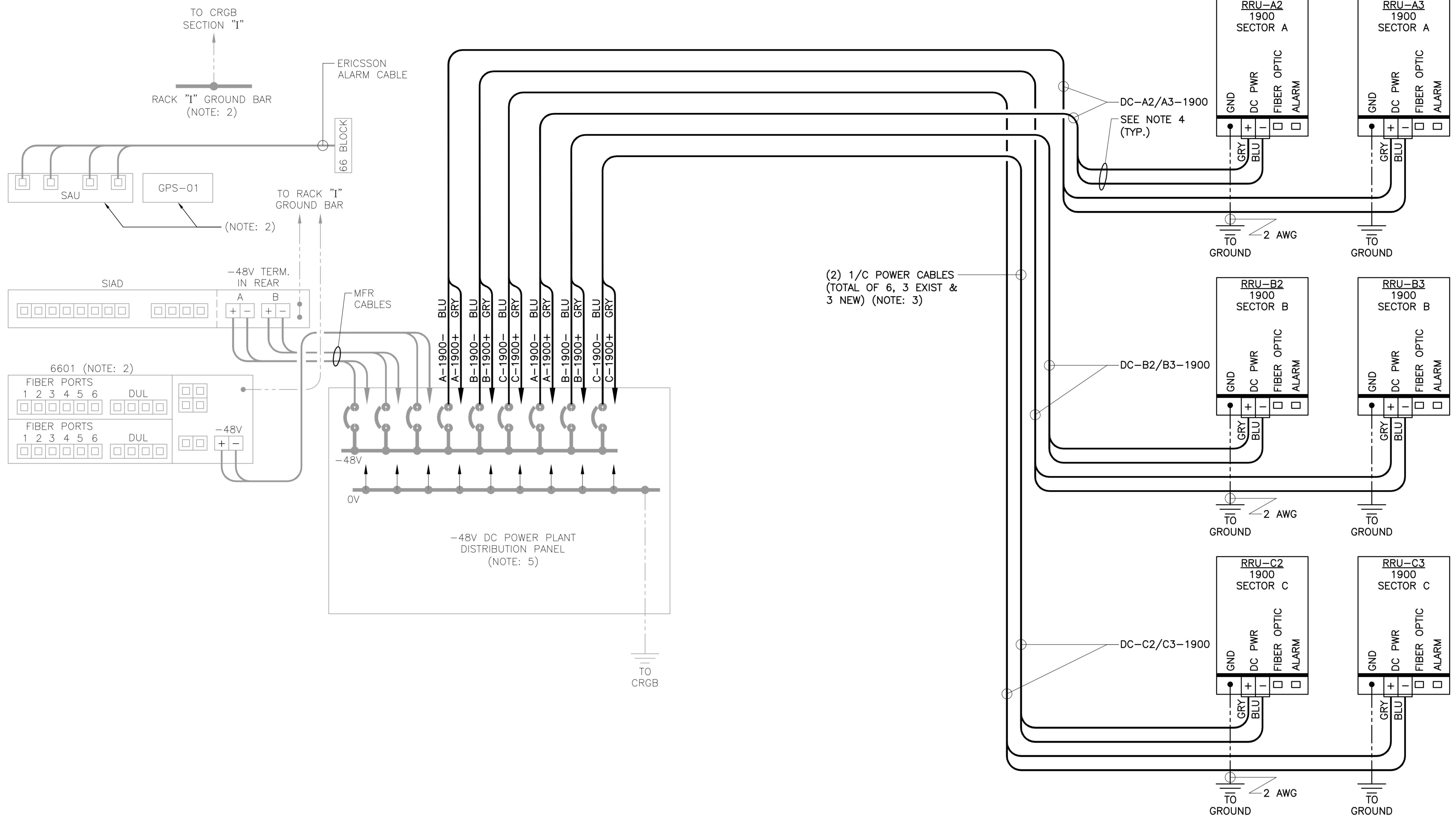
 - 1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT.
 - 2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER.
 - 3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED.
- B. TESTING SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNERS CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION AND INCLUDED WITH THE WRITTEN REPORT/ANALYSIS.
- C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER.
- D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS REQUIRING WITNESSING.

CENTEK
Centered on Solutions™

(203) 488-0580
(203) 488-8587 Fax
63-2 North Branford Road
Branford, CT 06405

AT&T MOBILITY

WIRELESS COMMUNICATIONS FACILITY

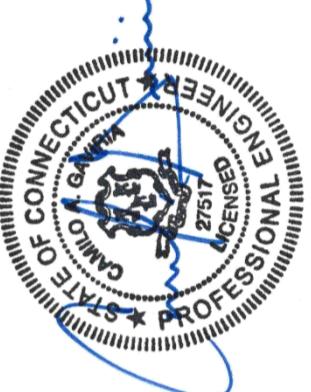

SOUTHINGTON-CATHYDRIVE NU

CT1109 - LTE 2C
CATHY DRIVE

DATE:	01/16/17
SCALE:	AS NOTED
JOB NO.	17004.04

LTE SCHEMATIC DIAGRAM AND NOTES

E-1



1
E-2
LTE WIRING DIAGRAM
NOT TO SCALE

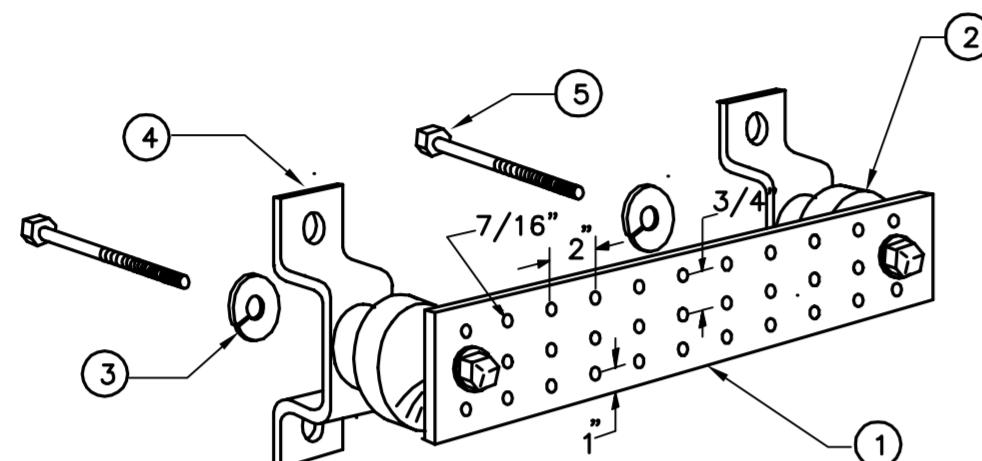
LTE WIRING DIAGRAM NOTES

1. LABEL THE DC POWER CABLES AT BOTH ENDS OF EVERY WIRE AND IN ANY PULL BOX IF USED. LABEL SHALL BE DURABLE, SELF ADHESIVE, WRAPPED LONGITUDINALLY ALONG THE CABLE AND STATE THE SECTOR, FREQUENCY BAND AND POLARITY; I.E. "A-1900+". CABLE AND WIRE LABELS SHOWN ARE REPRESENTATIVE AND MAY BE MODIFIED AS DIRECTED BY AT&T.
2. INSTALL ON BASEBAND EQUIPMENT RACK.
3. MAXIMUM CABLE LENGTH IS 49 FEET WITHOUT SURGE PROTECTION AT RRU. INCREASE CONDUCTOR SIZE TO 10 OR 8 AWG WHERE BREAKER RATING IS GREATER THAN 20A.
4. CABLE GROUND WIRE AND SHIELD DRAIN WIRE TO BE LEFT UN-TERMINATED AT RRU AND DC POWER PLANT.
5. SEE LTE SCHEMATIC DIAGRAM DETAIL 1/E-1 FOR BREAKER RATING.

AT&T MOBILITY	CENTEK engineering Centered on Solutions™	WIRELESS COMMUNICATIONS FACILITY	SOUTHINGTON-CATHYDRIVE NU
CT109 - LTE 2C	(203) 484-5580 (203) 484-5580 Fax 632 North Branford Road Branford, CT 06405		CT109 - LTE 2C
SOUTHINGTON, CT 06468			SOUTHINGTON, CT 06468
DATE: 01/16/17		SCALE: AS NOTED	
JOB NO. 17004.04		LTE WIRING DIAGRAM	
Sheet No. 7 of 8			

DATE	05/08/17	KAWIR	CAG	CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION
SCALE	AS NOTED			
JOB NO.	17004.04			
PROFESSIONAL ENGINEER SEAL				
REV. 0				
DRAWN BY CHKD BY				
DATE				

CENTEK engineering
 Centered on Solutions™
 (203) 484-5580
 (203) 484-5580 Fox
 63-2 North Branford Road
 Branford, CT 06405
www.CentekEng.com

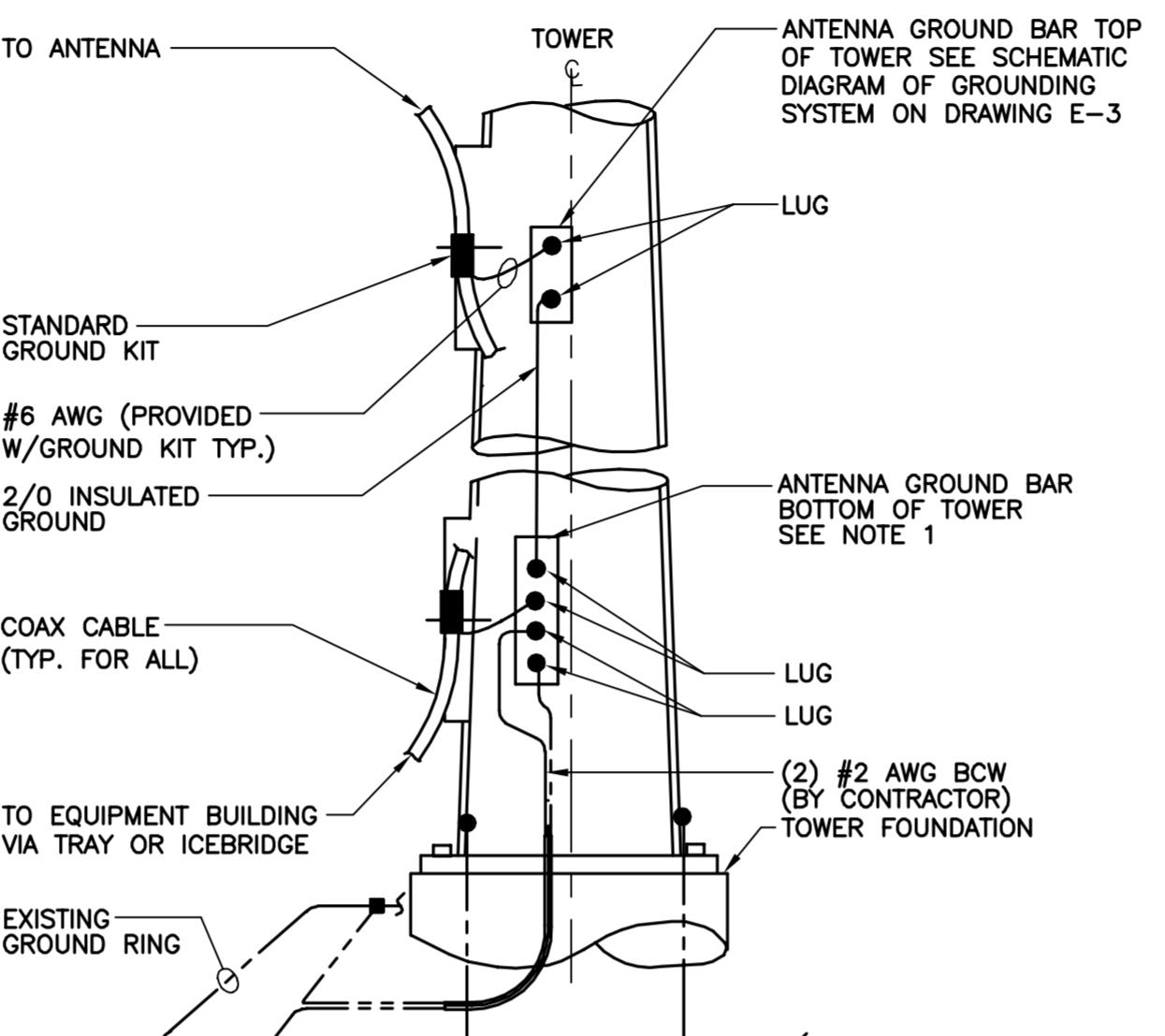

SOUTHINGTON-CATHYDRIVE NU
CT109 - LTE 2C
CATHY DRIVE, CT 06468

DATE: 01/16/17
 SCALE: AS NOTED
 JOB NO. 17004.04

TYPICAL
 ELECTRICAL
 DETAILS

E-3

Sheet No. 8 of 8

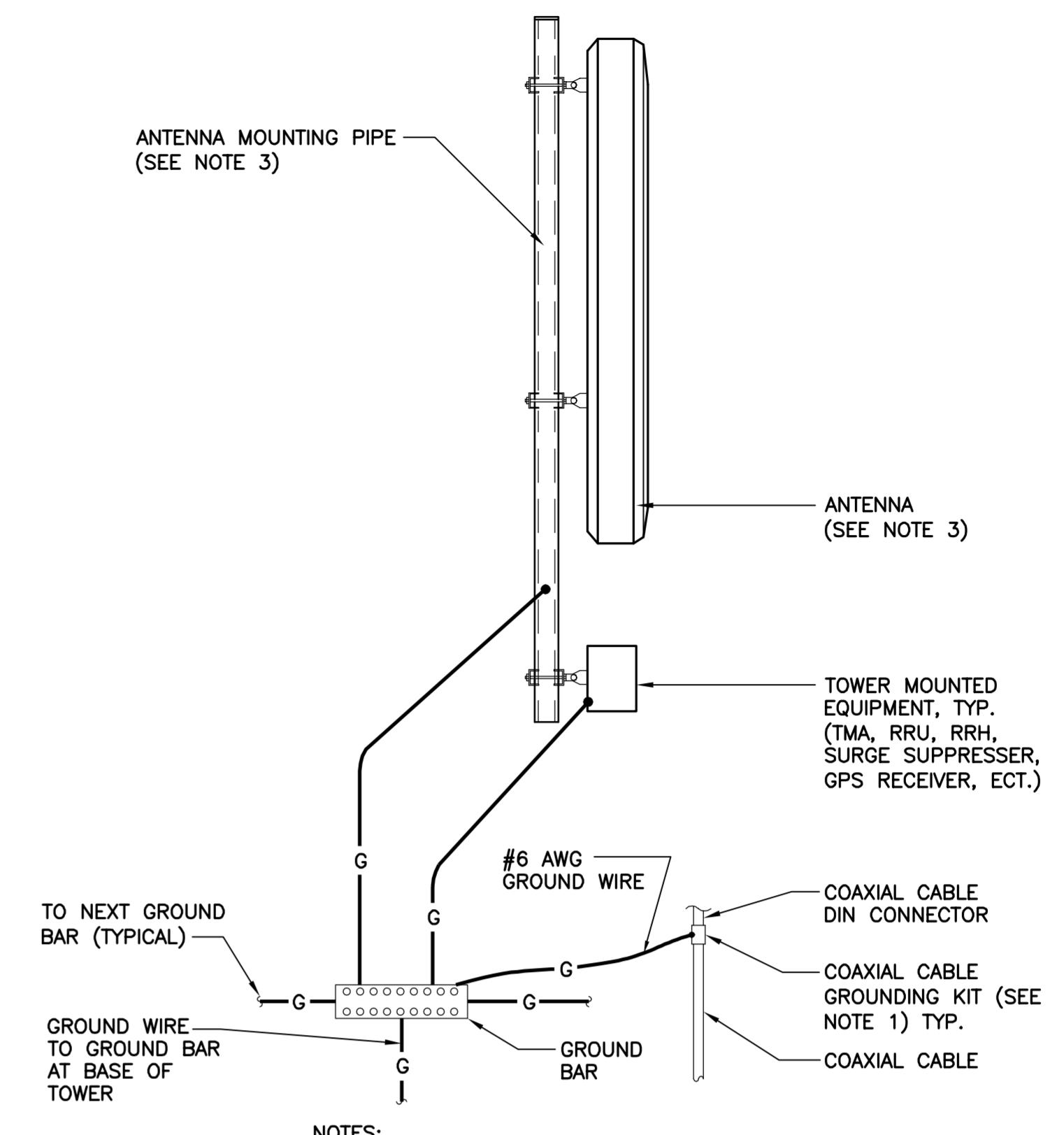


LEGEND

1. TINNED COPPER GROUND BAR, 1/4" x 4" x 20", NEWTON INSTRUMENT CO. HOLE CENTERS TO MATCH NEMA DOUBLE LUG .
2. INSULATORS, NEWTON INSTRUMENT CAT. NO. 2. 3061-4.
3. 3. 5/8" LOCK WASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8.
4. WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. 4. CAT NO. A-6056.
5. STAINLESS STEEL SECURITY SCREWS.

3 GROUND BAR DETAIL

E-3 NOT TO SCALE

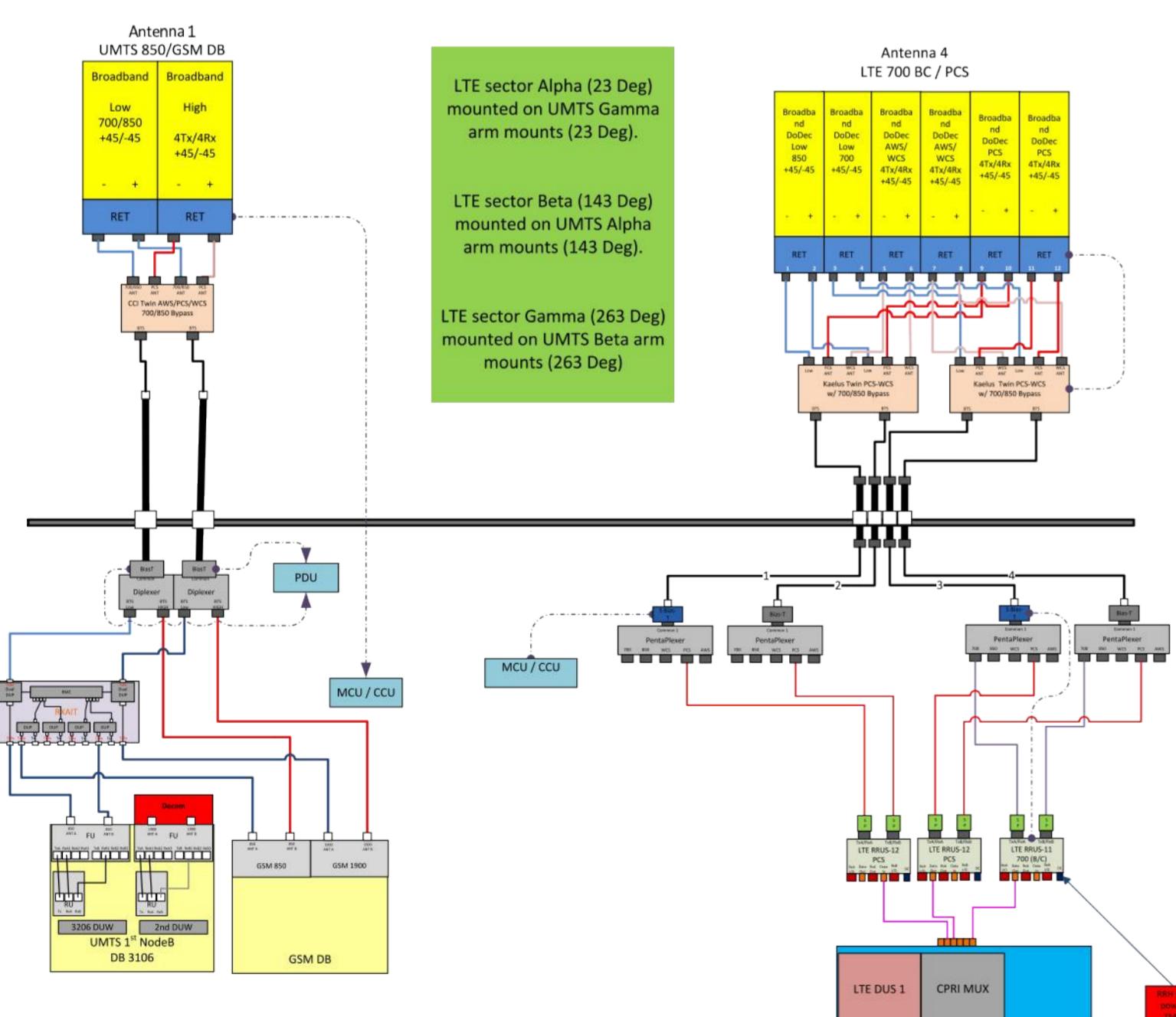


NOTES:

1. NUMBER OF GROUND BARS MAY VARY DEPENDING ON THE TYPE OF TOWER, LOCATION AND CONNECTION ORIENTATION. PROVIDE AS REQUIRED.
2. A SEPARATE GROUND BAR TO BE USED FOR GPS ANTENNA IF REQUIRED.

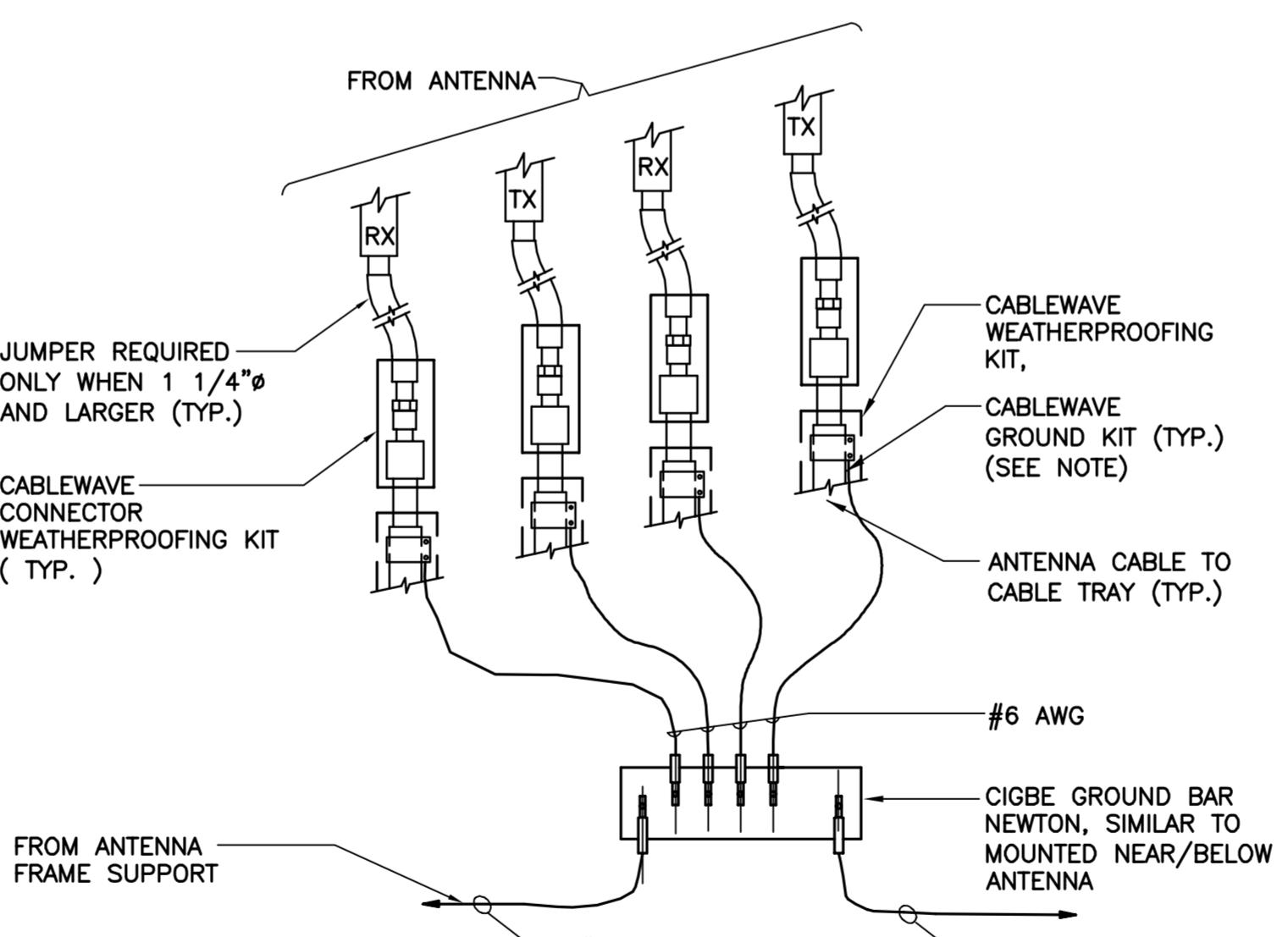
2 ANTENNA CABLE GROUNDING - TOWER

E-3 NOT TO SCALE



NOTES:

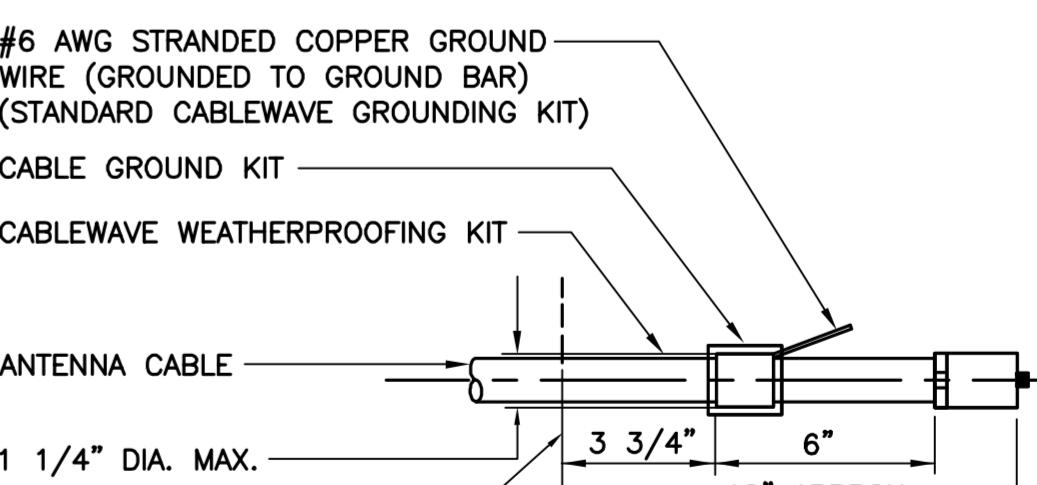
1. BOND COAXIAL CABLE GROUND KITS TO EACH OWNER'S GROUND BAR ALONG ENTIRE COAX RUN FROM ANTENNA TO SHELTER.
2. BOND ALL EQUIPMENT TO GROUND PER NEC AND MANUFACTURERS SPECIFICATIONS.
3. DETAIL IS TYPICAL FOR ALL ANTENNA SECTORS, INCLUDING GPS ANTENNA.


1 TYPICAL ANTENNA GROUNDING DETAIL

E-3 NOT TO SCALE

6 RFDS PLUMBING DIAGRAM

E-3 NOT TO SCALE



NOTE:

1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUNDBAR

5 CONNECTION OF GROUND WIRES TO GROUND BAR

E-3 NOT TO SCALE

NOTE:

1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUNDBAR.

4 ANTENNA CABLE GROUNDING DETAIL

E-3 NOT TO SCALE

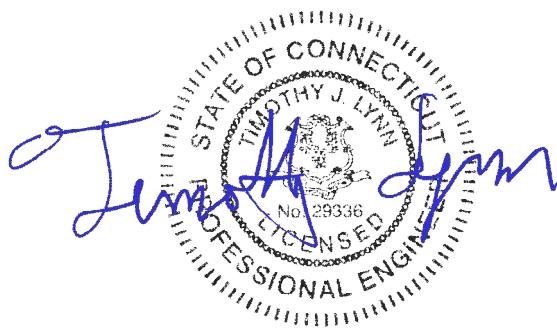
TYPICAL
 ELECTRICAL
 DETAILS

E-3

Sheet No. 8 of 8

Structural Analysis of
Antenna Mast and Tower

AT&T Site Ref: CT1109


Eversource Structure No. 4119
81' Electric Transmission Lattice Tower

Cathy Drive
Southington, CT

CENTEK Project No. 17004.04

Date: January 27, 2017

Rev 1: April 13, 2017

Prepared for:
AT&T Mobility
500 Enterprise Drive, Suite 3A
Rocky Hill, CT 06067

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- DESIGN BASIS
- RESULTS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAMS
 - RISA 3-D
 - PLS TOWER

SECTION 3 - DESIGN CRITERIA

- CRITERIA FOR DESIGN OF PCS FACILITIES ON OR EXTENDING ABOVE METAL ELECTRIC TRANSMISSION TOWERS
- NU DESIGN CRITERIA TABLE
- PCS SHAPE FACTOR CRITERIA
- WIRE LOADS SHEET

SECTION 4 - DRAWINGS

- TOWER DRAWINGS

SECTION 5 - TIA-222-G LOAD CALCULATIONS FOR ANTENNA MAST ANALYSIS

- ANTENNA MAST WIND & ICE LOAD

SECTION 6 - ANTENNA MAST ANALYSIS PER TIA-222G

- LOAD CASES AND COMBINATIONS (TIA/EIA LOADING)
- RISA 3-D ANALYSIS REPORT
- ANTENNA MAST CONNECTION TO TOWER

SECTION 7 - NECS/NU LOAD CALCULATIONS FOR UTILITY STRUCTURE ANALYSIS

- EQUIPMENT WIND LOAD CALCULATION

SECTION 8 - ANTENNA MAST ANALYSIS PER NESC/NU FOR OBTAINING PCS STRUCTURE REACTIONS APPLIED TO UTILITY TOWER

- LOAD CASES AND COMBINATIONS (NESC/NU LOADING)
- RISA 3-D ANALYSIS REPORT

SECTION 9 - PLS TOWER RESULTS FROM MAST REACTIONS CALCULATED IN RISA WITH NESC/NU CRITERIA

- COAX CABLE LOAD ON CL&P TOWER CALCULATION
- PLS REPORT
- LOCAL MEMBER STRESS ANALYSIS
- FOUNDATION ANALYSIS

SECTION 10 - REFERENCE MATERIAL

- RFDS DATA SHEET
- EQUIPMENT CUT SHEETS

Introduction

The purpose of this report is to analyze the existing antenna mast and 81' utility tower located on Cathy Drive in Southington, CT for the proposed antenna and equipment upgrade by AT&T.

The existing and proposed loads consist of the following:

- **AT&T (Existing to Remain):**

Antennas: Three (3) KMW AM-X-CD-16-65-00T panel antennas and three (3) CCI DTMABP7819VG12A TMAs mounted on a T-Arm array with a RAD center elevation of 91-ft above tower base.

Coax Cables: Twelve (12) 1-5/8" \varnothing coax cables running on a leg of the existing tower.

- **AT&T (Existing to Remove):**

Antennas: Three (3) KMW AM-X-CD-16-65-00T panel antennas and three (3) CCI DTMABP7819VG12A TMAs mounted on a T-Arm array with a RAD center elevation of 91-ft above tower base.

- **AT&T (Proposed):**

Antennas: Three (3) Quintel QS66512-2 panel antennas and six (6) Kaelus TMA2117F00V1-1 TMAs mounted on a T-Arm array with a RAD center elevation of 91-ft above tower base.

Coax Cables: Six (6) 1-5/8" \varnothing coax cables running on a leg of the existing tower.

Primary assumptions used in the analysis

- ASCE Manual No. 10-97, "Design of Latticed Steel Transmission Structures", defines steel stresses for evaluation of the utility tower.
- All utility tower members are adequately protected to prevent corrosion of steel members.
- All proposed antenna mounts are modeled as listed above.
- All coaxial cable will be installed within the antenna mast unless specified otherwise.
- Antenna mast will be properly installed and maintained.
- No residual stresses exist due to incorrect tower erection.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds conform to the requirements of AWS D1.1.
- Antenna mast and utility tower will be in plumb condition.
- Utility tower was properly installed and maintained and all members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- Any deviation from the analyzed loading will require a new analysis for verification of structural adequacy.

Analyses

Structural analysis of the existing antenna mast was independently completed using the current version of RISA-3D computer program licensed to CENTEK Engineering, Inc. The RISA-3D program contains a library of all AISC shapes and corresponding section properties are computed and applied directly within the program. The program's Steel Code Check option was also utilized.

The existing antenna mast consisting of a 12" Sch.40 x 30'-0" long pipe conforming to ASTM A53 Grade B (Fy = 35ksi) connected at two points to the existing tower was analyzed for its ability to resist loads prescribed by the TIA-222-G standard. Section 5 of this report details these gravity and lateral wind loads. Load cases and combinations used in RISA-3D for TIA/EIA loading are listed in report Section 6.

Structural analysis of the existing utility tower structure was completed using the current version of PLS-Tower computer program licensed to CENTEK Engineering, Inc. The NESI program contains a library of all AISC angle shapes and corresponding section properties are computed and applied directly within the program. The program's Steel Code Check option was also utilized.

The existing 81-ft tall lattice tower was analyzed for its ability to resist loads prescribed by the NESI standard. Maximum usage for the tower was calculated considering the additional forces from the antenna mast and associated appurtenances. Section 7 of this report details these gravity and lateral wind loads.

Design Basis

Our analysis was performed in accordance with TIA-222-G, ASCE Manual No. 10-97, "Design of Latticed Steel Transmission Structures", NESI C2-2007 and Northeast Utilities Design Criteria.

▪ UTILITY TOWER ANALYSIS

The purpose of this analysis is to determine the adequacy of the existing utility structure to support the proposed antenna loads. The loading and design requirements were analyzed in accordance with the NU Design Criteria Table, NESI C2-2007 ~ Construction Grade B, and ASCE Manual No. 10-97, "Design of Latticed Steel Transmission Structures".

Load cases considered:

Load Case 1: NESI Heavy

Wind Pressure.....	4.0 psf
Radial Ice Thickness.....	0.5"
Vertical Overload Capacity Factor.....	1.50
Wind Overload Capacity Factor.....	2.50
Wire Tension Overload Capacity.....	1.65

Load Case 2: NESI Extreme

Wind Speed.....	110 mph ⁽¹⁾
Radial Ice Thickness.....	0"

Note 1: NESI C2-2007, Section 25, Rule 250C: Extreme Wind Loading, 1.25 x Gust Response Factor (wind speed: 3-second gust)

- **MAST ASSEMBLY ANALYSIS**

Mast, appurtenances and connections to the utility tower were analyzed and designed in accordance with the NU Design Criteria Table, TIA/EIA-222-G and AISC standards.

Load cases considered:

Load Case 1:

Wind Speed.....	97 mph	(2016 CSBC Appendix-N)
Radial Ice Thickness.....	0"	

Load Case 2:

Wind Pressure.....	50 mph wind pressure
Radial Ice Thickness.....	1.00"

Results

- **ANTENNA MAST**

The existing antenna mast was determined to be structurally **adequate**.

Component	Design Limit	Stress Ratio (percentage of capacity)	Result
12" Sch 40 Pipe	Bending	46.9%	PASS
Connection to Tower	Shear	15.7%	PASS

- **UTILITY TOWER**

This analysis finds that the subject utility structure is adequate to support the proposed antenna mast and related appurtenances. The tower stresses meet the requirements set forth by the ASCE Manual No. 10-97, "Design of Latticed Steel Transmission Structures", for the applied NESC Heavy and Hi-Wind load cases. The detailed analysis results are provided in Section 8 of this report. The analysis results are summarized as follows:

A maximum usage of **81.86%** occurs in the utility structure under the **NESC Extreme** loading condition.

TOWER SECTION:

The utility structure was found to be within allowable limits.

Tower Member	Stress Ratio (% of capacity)	Result
Angle g17X	81.86%	PASS

- **FOUNDATION AND ANCHORS**

The existing foundation consists of four (4) 1-ft 8-in square tapering to 2-ft 4-in square x 5.25-ft long reinforced concrete piers and four (4) 5-ft square x 2-ft thick reinforced concrete pads. The base of the tower is connected to the foundation by one (1) anchor stub angle per leg. Foundation information was obtained from Northeast Utilities drawing 01064-60003.

BASE REACTIONS:

From PLS-Tower analysis of CL&P tower based on NESC/EVERSOURCE prescribed loads.

Load Case	Shear	Uplift	Compression
NESC Heavy Wind	8.61 kips	15.43 kips	33.69 kips
NESC Extreme Wind	14.61 kips	48.40 kips	56.82 kips

Note 1 – 10% increase to be applied to the above tower base reactions for foundation verification per OTRM 051

FOUNDATION:

The existing foundations were found to be structurally **inadequate**. Reinforcement of the existing foundation with 9-ft square by 5-ft thick reinforced concrete mats at each tower leg is required.

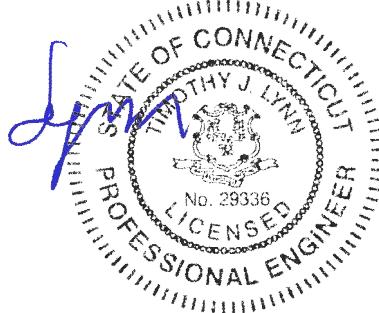
Foundation	Design Limit	Allowable Limit	Proposed Loading ⁽²⁾	Result
Conc. Pad & Pier	Uplift	1.0 FS ⁽¹⁾	1.25 FS ⁽¹⁾	PASS

Note 1: FS denotes Factor of Safety

Note 2: 10% increase to PLS base reactions used in foundation analysis per OTRM 051.

Conclusion

This analysis shows that the subject utility tower with the reinforcements detailed in section 4 of the report is adequate to support the proposed AT&T equipment upgrade.


The analysis is based, in part on the information provided to this office by Eversource and AT&T. If the existing conditions are different than the information in this report, CENTEK engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Timothy J. Lynn, PE
Structural Engineer

**STANDARD CONDITIONS FOR FURNISHING OF
PROFESSIONAL ENGINEERING SERVICES ON
EXISTING STRUCTURES**

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the antenna and feed line loading on the structure and its components, or other relevant information.
- Information from the field and/or drawings in the possession of CENTEK engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to CENTEK engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an un-corroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the “as new” condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 & ANSI/EIA-222.
- All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. CENTEK engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM~RISA-3D

RISA-3D Structural Analysis Program is an integrated structural analysis and design software package for buildings, bridges, tower structures, etc.

Modeling Features:

- Comprehensive CAD-like graphic drawing/editing capabilities that let you draw, modify and load elements as well as snap, move, rotate, copy, mirror, scale, split, merge, mesh, delete, apply, etc.
- Versatile drawing grids (orthogonal, radial, skewed)
- Universal snaps and object snaps allow drawing without grids
- Versatile general truss generator
- Powerful graphic select/unselect tools including box, line, polygon, invert, criteria, spreadsheet selection, with locking
- Saved selections to quickly recall desired selections
- Modification tools that modify single items or entire selections
- Real spreadsheets with cut, paste, fill, math, sort, find, etc.
- Dynamic synchronization between spreadsheets and views so you can edit or view any data in the plotted views or in the spreadsheets
- Simultaneous view of multiple spreadsheets
- Constant in-stream error checking and data validation
- Unlimited undo/redo capability
- Generation templates for grids, disks, cylinders, cones, arcs, trusses, tanks, hydrostatic loads, etc.
- Support for all units systems & conversions at any time
- Automatic interaction with RISASEction libraries
- Import DXF, RISA-2D, STAAD and ProSteel 3D files
- Export DXF, SDNF and ProSteel 3D files

Analysis Features:

- Static analysis and P-Delta effects
- Multiple simultaneous dynamic and response spectra analysis using Gupta, CQC or SRSS mode combinations
- Automatic inclusion of mass offset (5% or user defined) for dynamic analysis
- Physical member modeling that does not require members to be broken up at intermediate joints
- State of the art 3 or 4 node plate/shell elements
- High-end automatic mesh generation — draw a polygon with any number of sides to create a mesh of well-formed quadrilateral (NOT triangular) elements.
- Accurate analysis of tapered wide flanges - web, top and bottom flanges may all taper independently
- Automatic rigid diaphragm modeling
- Area loads with one-way or two-way distributions
- Multiple simultaneous moving loads with standard AASHTO loads and custom moving loads for bridges, cranes, etc.
- Torsional warping calculations for stiffness, stress and design
- Automatic Top of Member offset modeling
- Member end releases & rigid end offsets
- Joint master-slave assignments
- Joints detachable from diaphragms
- Enforced joint displacements
- 1-Way members, for tension only bracing, slipping, etc.

- 1-Way springs, for modeling soils and other effects
- Euler members that take compression up to their buckling load, then turn off.
- Stress calculations on any arbitrary shape
- Inactive members, plates, and diaphragms allows you to quickly remove parts of structures from consideration
- Story drift calculations provide relative drift and ratio to height
- Automatic self-weight calculations for members and plates
- Automatic subgrade soil spring generator

Graphics Features:

- Unlimited simultaneous model view windows
- Extraordinary “true to scale” rendering, even when drawing
- High-speed redraw algorithm for instant refreshing
- Dynamic scrolling stops right where you want
- Plot & print virtually everything with color coding & labeling
- Rotate, zoom, pan, scroll and snap views
- Saved views to quickly restore frequent or desired views
- Full render or wire-frame animations of deflected model and dynamic mode shapes with frame and speed control
- Animation of moving loads with speed control
- High quality customizable graphics printing

Design Features:

- Designs concrete, hot rolled steel, cold formed steel and wood
- ACI 1999/2002, BS 8110-97, CSA A23.3-94, IS456:2000, EC 2-1992 with consistent bar sizes through adjacent spans
- Exact integration of concrete stress distributions using parabolic or rectangular stress blocks
- Concrete beam detailing (Rectangular, T and L)
- Concrete column interaction diagrams
- Steel Design Codes: AISC ASD 9th, LRFD 2nd & 3rd, HSS Specification, CAN/CSA-S16.1-1994 & 2004, BS 5950-1-2000, IS 800-1984, Euro 3-1993 including local shape databases
- AISI 1999 cold formed steel design
- NDS 1991/1997/2001 wood design, including Structural Composite Lumber, multi-ply, full sawn
- Automatic spectra generation for UBC 1997, IBC 2000/2003
- Generation of load combinations: ASCE, UBC, IBC, BOCA, SBC, ACI
- Unbraced lengths for physical members that recognize connecting elements and full lengths of members
- Automatic approximation of K factors
- Tapered wide flange design with either ASD or LRFD codes
- Optimization of member sizes for all materials and all design codes, controlled by standard or user-defined lists of available sizes and criteria such as maximum depths
- Automatic calculation of custom shape properties
- Steel Shapes: AISC, HSS, CAN, ARBED, British, Euro, Indian, Chilean
- Light Gage Shapes: AISI, SSMA, Dale / Incor, Dietrich, Marino\WARE
- Wood Shapes: Complete NDS species/grade database
- Full seamless integration with RISAFoot (Ver 2 or better) for advanced footing design and detailing
- Plate force summation tool

Results Features:

- Graphic presentation of color-coded results and plotted designs
- Color contours of plate stresses and forces with quadratic smoothing, the contours may also be animated
- Spreadsheet results with sorting and filtering of: reactions, member & joint deflections, beam & plate forces/stresses, optimized sizes, code designs, concrete reinforcing, material takeoffs, frequencies and mode shapes
- Standard and user-defined reports
- Graphic member detail reports with force/stress/deflection diagrams and detailed design calculations and expanded diagrams that display magnitudes at any dialed location
- Saved solutions quickly restore analysis and design results.

GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM ~ PLS-TOWER

PLS-TOWER is a Microsoft Windows program for the analysis and design of steel latticed towers used in electric power lines or communication facilities. Both self-supporting and guyed towers can be modeled. The program performs design checks of structures under user specified loads. For electric power structures it can also calculate maximum allowable wind and weight spans and interaction diagrams between different ratios of allowable wind and weight spans.

Modeling Features:

- Powerful graphics module (stress usages shown in different colors)
- Graphical selection of joints and members allows graphical editing and checking
- Towers can be shown as lines, wire frames or can be rendered as 3-d polygon surfaces
- Can extract geometry and connectivity information from a DXF CAD drawing
- CAD design drawings, title blocks, drawing borders or photos can be tied to structure model
- XML based post processor interface
- Steel Detailing Neutral File (SDNF) export to link with detailing packages
- Can link directly to line design program PLS-CADD
- Automatic generation of structure files for PLS-CADD
- Databases of steel angles, rounds, bolts, guys, etc.
- Automatic generation of joints and members by symmetries and interpolations
- Automated mast generation (quickly builds model for towers that have regular repeating sections) via graphical copy/paste
- Steel angles and rounds modeled either as truss, beam or tension-only elements
- Guys are easily handled (can be modeled as exact cable elements)

Analysis Features:

- Automatic handling of tension-only members
- Automatic distribution of loads in 2-part suspension insulators (v-strings, horizontal vees, etc.)
- Automatic calculation of tower dead, ice, and wind loads as well as drag coefficients according to:
 - ASCE 74-1991
 - NESC 2002
 - NESC 2007
 - IEC 60826:2003
 - EN50341-1:2001 (CENELEC)
 - EN50341-3-9:2001 (UK NNA)
 - EN50341-3-17:2001 (Portugal NNA)
 - ESAA C(b)1-2003 (Australia)
 - TPNZ (New Zealand)
 - REE (Spain)
 - EIA/TIA 222-F
 - ANSI/TIA 222-G
 - CSA S37-01
- Automated microwave antenna loading as per EIA/TIA 222-F and ANSI/TIA 222-G
- Minimization of problems caused by unstable joints and mechanisms
- Automatic bandwidth minimization and ability to solve large problems
- Design checks according to (other standards can be added easily):
 - ASCE Standard 10-90

- AS 3995 (Australian Standard 3995)
- BS 8100 (British Standard 8100)
- EN50341-1 (CENELEC, both empirical and analytical methods are available)
- ECCS 1985
- NGT-ECCS
- PN-90/B-03200
- EIA/TIA 222-F
- ANSI/TIA 222-G
- CSA S37-01
- EDF/RTE Resal
- IS 802 (India Standard 802)

Results Features:

- Design summaries printed for each group of members
- Easy to interpret text, spreadsheet and graphics design summaries
- Automatic determination of allowable wind and weight spans
- Automatic determination of interaction diagrams between allowable wind and weight spans
- Capability to batch run multiple tower configurations and consolidate the results
- Automated optimum angle member size selection and bolt quantity determination

Tool for interactive angle member sizing and bolt quantity determination.

**Criteria for Design of PCS Facilities On or
Extending Above Metal Electric Transmission
Towers & Analysis of Transmission Towers
Supporting PCS Masts⁽¹⁾**

Introduction

This criteria is the result from an evaluation of the methods and loadings specified by the separate standards, which are used in designing telecommunications towers and electric transmission towers. That evaluation is detailed elsewhere, but in summary; the methods and loadings are significantly different. This criteria specifies the manner in which the appropriate standard is used to design PCS facilities including masts and brackets (hereafter referred to as “masts”), and to evaluate the electric transmission towers to support PCS masts. The intent is to achieve an equivalent level of safety and security under the extreme design conditions expected in Connecticut and Massachusetts.

ANSI Standard TIA-222 covering the design of telecommunications structures specifies a working strength/allowable stress design approach. This approach applies the loads from extreme weather loading conditions, and designs the structure so that it does not exceed some defined percentage of failure strength (allowable stress).

ANSI Standard C2-2007 (National Electrical Safety Code) covering the design of electric transmission metal structures is based upon an ultimate strength/yield stress design approach. This approach applies a multiplier (overload capacity factor) to the loads possible from extreme weather loading conditions, and designs the structure so that it does not exceed its ultimate strength (yield stress).

Each standard defines the details of how loads are to be calculated differently. Most of the NU effort in “unifying” both codes was to establish what level of strength each approach would provide, and then increasing the appropriate elements of each to achieve a similar level of security under extreme weather loadings.

Two extreme weather conditions are considered. The first is an extreme wind condition (hurricane) based upon a 50-year recurrence (2% annual probability). The second is a winter condition combining wind and ice loadings.

The following sections describe the design criteria for any PCS mast extending above the top of an electric transmission tower, and the analysis criteria for evaluating the loads on the transmission tower from such a mast from the lower portions of such a mast, and loads on the pre-existing electric lower portions of such a mast, and loads on the pre-existing electric transmission tower and the conductors it supports.

| *Note 1: Prepared from documentation provide from Northeast Utilities.*

PCS Mast

The PCS facility (mast, external cable/trays, including the initial and any planned future support platforms, antennas, etc. extending the full height above the top level of the electric transmission structure) shall be designed in accordance with the provisions of TIA 222-G:

ELECTRIC TRANSMISSION TOWER

The electric transmission tower shall be analyzed using yield stress theory in accordance with the attached table titled “NU Design Criteria”. This specifies uniform loadings (different from the TIA loadings) on the each of the following components of the installed facility:

- PCS mast for its total height above ground level, including the initial and planned future support platforms, antennas, etc. above the top of an electric transmission structure.
- Conductors are related devices and hardware.
- Electric transmission structure. The loads from the PCS facility and from the electric conductors shall be applied to the structure at conductor and PCS mast attachment points, where those load transfer to the tower.

The uniform loadings and factors specified for the above components in the table are based upon the National Electrical Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to TIA and its loads and factors with the exceptions noted above. (Note that the NESC does not require the projected wind surfaces of structures and equipment to be increased by the ice covering.)

In the event that the electric transmission tower is not sufficient to support the additional loadings of the PCS mast, reinforcement will be necessary to upgrade the strength of the overstressed members.

Attachment A

NU Design Criteria

Ice Condition	TIA/EIA	Antenna Mount	Basic Wind Speed	Pressure	Height Factor	Gust Factor	Load or Stress Factor	Force Coef - Shape Factor
			V (MPH)	Q (PSF)	Kz	Gh		
Ice Condition	TIA/EIA	Antenna Mount	TIA	TIA (.75Wi)	TIA	TIA	TIA, Section 3.1.1.1 disallowed for connection design	TIA
		Tower/Pole Analysis with antennas extending above top of Tower/Pole (Yield Stress)	-----	4	1.00	1.00	2.50	1.6 Flat Surfaces 1.3 Round Surfaces
		Tower/Pole Analysis with Antennas below top of Tower/Pole (on two faces)	-----	4	1.00	1.00	2.50	1.6 Flat Surfaces 1.3 Round Surfaces
High Wind Condition	TIA/EIA	Conductors:	Conductor loads provided by NU					
		Antenna Mount	85	TIA	TIA	TIA	TIA, Section 3.1.1.1 disallowed for connection design	TIA
		Tower/Pole Analysis with antennas extending above top of Tower/Pole	Use NES C2-2007, Section 25, Rule 250C: Extreme Wind Loading 1.25 x Gust Response Factor Height above ground level based on top of Mast/Antenna					1.6 Flat Surfaces 1.3 Round Surfaces
NES C Extreme Wind Condition*	TIA/EIA	Tower/Pole Analysis with Antennas below top of Tower/Pole	Use NES C2-2007, Section 25, Rule 250C: Extreme Wind Loading Height above ground level based on top of Tower/Pole					1.6 Flat Surfaces 1.3 Round Surfaces
		Conductors:	Conductor loads provided by NU					
		Tower/Pole Analysis with antennas extending above top of Tower/Pole	Use NES C2-2007, Section 25, Rule 250D: Extreme Ice with Wind Loading 4PSF Wind Load 1.25 x Gust Response Factor Height above ground level based on top of Mast/Antenna					1.6 Flat Surfaces 1.3 Round Surfaces
NES C Extreme Ice with Wind Condition*	TIA/EIA	Tower/Pole Analysis with Antennas below top of Tower/Pole	Use NES C2-2007, Section 25, Rule 250D: Extreme Ice with Wind Loading 4PSF Wind Load Height above ground level based on top of Tower/Pole					1.6 Flat Surfaces 1.3 Round Surfaces
		Conductors:	Conductor loads provided by NU					

* Only for Structures Installed after 2007

Communication Antennas on Transmission Structures (CL&P & WMECo Only)

Northeast Utilities Approved by: KMS (NU)	Design NU Confidential Information	OTRM 059	Rev.1
		Page 7 of 9	03/17/2011

Shape Factor Criteria shall be per TIA Shape Factors.

2) STEP 2 - The electric transmission structure analysis and evaluation shall be performed in accordance with NESC requirements and shall include the mast and antenna loads determined from NESC applied loading conditions (not TIA/EIA Loads) on the structure and mount as specified below, and shall include the wireless communication mast and antenna loads per NESC criteria)

The structure shall be analyzed using yield stress theory in accordance with Attachment A, "NU Design Criteria." This specifies uniform loadings (different from the TIA loadings) on each of the following components of the installed facility:

- a) Wireless communication mast for its total height above ground level, including the initial and any planned future equipment (Support Platforms, Antennas, TMA's etc.) above the top of an electric transmission structure.
- b) Conductors and related devices and hardware (wire loads will be provided by NU).
- c) Electric Transmission Structure
 - i) The loads from the wireless communication equipment components based on NESC and NU Criteria in Attachment A, and from the electric conductors shall be applied to the structure at conductor and wireless communication mast attachment points, where those loads transfer to the tower.
 - ii) Shape Factor Multiplier:

NESC Structure Shape	Cd
Polyround (for polygonal steel poles)	1.3
Flat	1.6
Open Lattice	3.2

- iii) When Coaxial Cables are mounted along side the pole structure, the shape multiplier shall be:

Mount Type	Cable Cd	Pole Cd
Coaxial Cables on outside periphery (One layer)	1.45	1.45
Coaxial Cables mounted on stand offs	1.6	1.3

- d) The uniform loadings and factors specified for the above components in Attachment A, "NU Design Criteria" are based upon the National Electric Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to the TIA and its loads and factors with the exceptions noted above.

Note: The NESC does not require ice load be included in the supporting structure. (Ice on conductors and shield wire only, and NU will provide these loads).

- e) Mast reaction loads shall be evaluated for local effects on the transmission structure members at the attachment points.

Communication Antennas on Transmission Structures (CL&P & WMECo Only)

Northeast Utilities Approved by: KMS (NU)	Design NU Confidential Information	OTRM 059	Rev.1 03/17/2011
		Page 3 of 9	

Job :

Description:

Spec. Number

Computed by

Checked by

Page of
Sheet of
Date 2/28/11
Date

INPUT DATA

TOWER ID: 4199

Structure Height (ft) : 81

Wind Zone : Central CT (green)

Wind Speed : 110 mph

Tower Type : Suspension
 Strain

Extreme Wind Model : PCS Addition

Shield Wire Properties:

	BACK	AHEAD
NAME =	OPGW-120	OPGW-120
DESCRIPTION =	6-Groove	6-Groove
STRANDING =	10/9 FOCAS	10/9 FOCAS
DIAMETER =	0.738 in	0.738 in
WEIGHT =	0.518 lb/ft	0.518 lb/ft

Conductor Properties:

		BACK	AHEAD	
NAME =		DOVE	DOVE	
Number of Conductors per phase	1	556	556	
DIAMETER =		26/7 ACSR	26/7 ACSR	
WEIGHT =		0.927 in	0.927 in	
		0.765 lb/ft	0.765 lb/ft	

Insulator Weight = 0 lbs

Broken Wire Side = AHEAD SPAN

Horizontal Line Tensions:

	BACK		AHEAD	
	Shield	Conductor	Shield	Conductor
NESC HEAVY =	6,000	6,000	6,000	6,000
EXTREME WIND =	5,969	6,438	5,969	6,438
LONG. WIND =	na	na	na	na
250D COMBINED =	na	na	na	na
NESC W/O OLF =	na	na	na	na
60 DEG F NO WIND =	2,065	2,241	2,065	2,241

Line Geometry:

LINE ANGLE (deg) =	SUM			
	BACK:	0	AHEAD:	0
WIND SPAN (ft) =	BACK:	348	AHEAD:	348
WEIGHT SPAN (ft) =	BACK:	345	AHEAD:	345

Job :
Description:

Spec. Number
Computed by
Checked by

Page of
Sheet of
Date 2/28/11
Date

WIRE LOADING AT ATTACHMENTS

TOWER ID: 4199

Wind Span =	696 ft
Weight Span =	690 ft
Total Angle =	0 degrees

Broken Wire Span =	AHEAD SPAN
Type of Insulator Attachment =	STRAIN

1. NESCA RULE 250B Heavy Loading:

	INTACT CONDITION			BROKEN WIRE CONDITION		
	Horizontal	Longitudinal	Vertical	Horizontal	Longitudinal	Vertical
Shield Wire =	1,008 lb	0 lb	1,333 lb	504 lb	9,900 lb	666 lb
Conductor =	1,118 lb	0 lb	1,710 lb	559 lb	9,900 lb	855 lb

2. NESCA RULE 250C Transverse Extreme Wind Loading:

	Horizontal	Longitudinal	Vertical
Shield Wire =	1,214 lb	0 lb	357 lb
Conductor =	1,524 lb	0 lb	528 lb

3. NESCA RULE 250C Longitudinal Extreme Wind Loading:

	Horizontal	Longitudinal	Vertical
Shield Wire =	#VALUE!	#VALUE!	357 lb
Conductor =	#VALUE!	#VALUE!	528 lb

4. NESCA RULE 250D Extreme Ice & Wind Loading:

	Horizontal	Longitudinal	Vertical
Shield Wire =	#VALUE!	#VALUE!	1,849 lb
Conductor =	#VALUE!	#VALUE!	2,181 lb

5. NESCA RULE 250B w/o OLF's

	Horizontal	Longitudinal	Vertical
Shield Wire =	#VALUE!	#VALUE!	889 lb
Conductor =	#VALUE!	#VALUE!	1,140 lb

6. 60 Deg. F. No Wind

	Horizontal	Longitudinal	Vertical
Shield Wire =	0 lb	0 lb	357 lb
Conductor =	0 lb	0 lb	528 lb

7. Construction

	Horizontal	Longitudinal	Vertical
Shield Wire =	0 lb	0 lb	357 lb
Conductor =	0 lb	0 lb	528 lb

Job :

Description:

Spec. Number

Computed by

Checked by

Page of
Sheet of
Date 2/28/11
Date

INPUT DATA

TOWER ID: 4199

Structure Height (ft) : 81

Wind Zone : Central CT (green)

Wind Speed : 110 mph

Tower Type : Suspension
 Strain

Extreme Wind Model : PCS Addition

Shield Wire Properties:

	BACK	AHEAD
NAME =	11/32 CW ✓	11/32 CW ✓
DESCRIPTION =	11/32	11/32
STRANDING =	7 #9 Cu Weld	7 #9 Cu Weld
DIAMETER =	0.343 in	0.343 in
WEIGHT =	0.257 lb/ft	0.257 lb/ft

Conductor Properties:

		BACK	AHEAD	Number of Conductors per phase
NAME =	DOVE ✓	DOVE ✓		
Number of Conductors per phase	1	556	556	1
DIAMETER =	26/7 ACSR	26/7 ACSR		
WEIGHT =	0.927 in	0.927 in		
	0.765 lb/ft	0.765 lb/ft		

Insulator Weight = 0 lbs

Broken Wire Side = AHEAD SPAN

Horizontal Line Tensions:

	BACK		AHEAD	
	Shield	Conductor	Shield	Conductor
NESC HEAVY =	3,600	6,000 ✓	3,600	6,000 ✓
EXTREME WIND =	2,804	6,438 ✓	2,804	6,438 ✓
LONG. WIND =	na	na	na	na
250D COMBINED =	na	na	na	na
NESC W/O OLF =	na	na	na	na
60 DEG F NO WIND =	1,071	2,241 ✓	1,071	2,241 ✓

Line Geometry:

					SUM
	BACK:	0	AHEAD:	0	0
LINE ANGLE (deg) =	BACK:	0	AHEAD:	0	0
WIND SPAN (ft) =	BACK:	348	AHEAD:	348	696
WEIGHT SPAN (ft) =	BACK:	345	AHEAD:	345	690

Job :

Description:

Spec. Number

Computed by

Checked by

Page of
Sheet of
Date 2/28/11
Date

WIRE LOADING AT ATTACHMENTS

TOWER ID: 4199

Wind Span =	696 ft
Weight Span =	690 ft
Total Angle =	0 degrees

Broken Wire Span =	AHEAD SPAN
Type of Insulator Attachment =	STRAIN

1. NESCA RULE 250B Heavy Loading:

	INTACT CONDITION			BROKEN WIRE CONDITION		
	Horizontal	Longitudinal	Vertical	Horizontal	Longitudinal	Vertical
Shield Wire =	779 lb	0 lb	808 lb	389 lb	5,940 lb	404 lb
Conductor =	1,118 lb	0 lb	1,710 lb	559 lb	9,900 lb	855 lb

2. NESCA RULE 250C Transverse Extreme Wind Loading:

	Horizontal	Longitudinal	Vertical
Shield Wire =	564 lb	0 lb	177 lb
Conductor =	1,524 lb	0 lb	528 lb

3. NESCA RULE 250C Longitudinal Extreme Wind Loading:

	Horizontal	Longitudinal	Vertical
Shield Wire =	#VALUE!	#VALUE!	177 lb
Conductor =	#VALUE!	#VALUE!	528 lb

4. NESCA RULE 250D Extreme Ice & Wind Loading:

	Horizontal	Longitudinal	Vertical
Shield Wire =	#VALUE!	#VALUE!	1,330 lb
Conductor =	#VALUE!	#VALUE!	2,181 lb

5. NESCA RULE 250B w/o OLF's

	Horizontal	Longitudinal	Vertical
Shield Wire =	#VALUE!	#VALUE!	539 lb
Conductor =	#VALUE!	#VALUE!	1,140 lb

6. 60 Deg. F. No Wind

	Horizontal	Longitudinal	Vertical
Shield Wire =	0 lb	0 lb	177 lb
Conductor =	0 lb	0 lb	528 lb

7. Construction

	Horizontal	Longitudinal	Vertical
Shield Wire =	0 lb	0 lb	177 lb
Conductor =	0 lb	0 lb	528 lb

at&t
EVERSOURCE
FOUNDATION REINFORCEMENT DESIGN
STRUCT. NO. 4119
CATHY DRIVE
SOUTHBURG, CT 06489

VICINITY MAP

PROJECT SUMMARY

SITE ADDRESS:	CATHY DRIVE SOUTHBURG, CT 06489
PROJECT COORDINATES:	LAT: 41°-35'-55.90N LON: 72°-51'-08.70W ELEV: ±219' AMSL
STRUCT NO:	4119
EVERSOURCE CONTACT:	ROBERT GRAY 860.665.3175
AT&T SITE REF.:	CT1109
AT&T CONTACT:	MELISSA CHAMBERS 978.408.7066
ANTENNA CL HEIGHT:	91'-0"
ENGINEER OF RECORD:	CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD ROAD BRANFORD, CT 06405
CENTEK CONTACT:	CARLO F. CENTORE, PE 203.488.0580 ext. 122

SHEET INDEX

SHT. NO.	DESCRIPTION	REV.
T-1	TITLE SHEET	0
N-1	DESIGN BASIS & GENERAL NOTES	0
N-2	EARTHWORK & FOUNDATION NOTES	0
N-3	CONCRETE CONSTRUCTION NOTES	0
MI-1	MODIFICATION INSPECTION REQUIREMENTS	0
S-1	TOWER ELEVATION & FEEDLINE PLAN	0
S-2	FOUNDATION REINFORCEMENT DETAILS	0

1	4/13/17	TJL	CFC	ISSUED FOR CONSTRUCTION
1	4/13/17	TJL	CFC	ISSUED FOR REVIEW
0	1/27/17	TJL	CFC	ISSUED FOR REVIEW
REV. DATE	DRAWN BY CTKD BY [REDACTED]			

PROFESSIONAL ENGINEER SEAL

CENTEK
 Centek in Solutions™
 (203) 488-0580
 (203) 488-5817 fax
 63-2 North Branford Road
 Branford, CT 06405
www.CentekEng.com

AT&T MOBILITY
 REINFORCEMENT DESIGN
CT1109
 EVERSOURCE STRUCTURE 4119
 CATHY DRIVE
 SOUTHBURG, CT 06489
 DATE: 1/27/17
 SCALE: AS SHOWN
 JOB NO. 17004.04

TITLE SHEET
 SHEET NO.
T-1
 Sheet No. 1 of 7

DESIGN BASIS

1. GOVERNING CODE: 2012 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2016 CT STATE SUPPLEMENT.
2. TIA-222-G, ASCE-48-05 – "DESIGN OF STEEL TRANSMISSION POLE STRUCTURES", NESC C2-2007 AND NORTHEAST UTILITIES DESIGN CRITERIA.
3. DESIGN CRITERIA

WIND LOAD: (ANTENNA MAST)

NOMINAL DESIGN WIND SPEED (V) = 97 MPH (2016 CSBC; APPENDIX 'N')

WIND LOAD: (UTILITY POLE & FOUNDATION)

BASIC WIND SPEED (V) = 110 MPH (3-SECOND GUST)
BASED ON NESC C2-2007, SECTION 25 RULE 250C.

GENERAL NOTES

SITE NOTES

1. THE CONTRACTOR SHALL CALL UTILITIES PRIOR TO THE START OF CONSTRUCTION.
2. ACTIVE EXISTING UTILITIES, WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY, PRIOR TO PROCEEDING, SHOULD ANY UNCOVERED EXISTING UTILITY PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
3. ALL RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED OFF SITE AND BE LEGALLY DISPOSED, AT NO ADDITIONAL COST.
4. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE EQUIPMENT AND TOWER AREAS.
5. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
6. THE SUBGRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
7. THE AREAS OF THE COMPOUND DISTURBED BY THE WORK SHALL BE RETURNED TO THEIR ORIGINAL CONDITION.
8. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

PROFESSIONAL ENGINEER SEAL

CENTEK engineering
Centek on Solutions™

(020) 46810500
(020) 46818877 Fax
632 North Bradford Road
Bramford C1 0AE5

www.CentekEng.com

AT&T MOBILITY	
REINFORCEMENT DESIGN	EVERSOURCE STRUCTURE 4119
CT1109	
CAT# DRIVE SOUTHERN, CT 06466	
DATE:	1/27/17
SCALE:	AS SHOWN
JOB NO.	17004.04

DESIGN BASIS AND GENERAL NOTES

SHEET NO. **N-1**
Sheet No. 2 of 7

EARTHWORK NOTES

1. COMPACTED GRAVEL FILL SHALL BE FURNISHED AND PLACED AS A FOUNDATION FOR STRUCTURES, WHERE SHOWN ON THE CONTRACT DRAWINGS OR DIRECTED BY THE ENGINEER.
2. CRUSHED STONE FILL SHALL BE PLACED IN 12" MAX. LIFTS AND CONSOLIDATED USING A HAND OPERATED VIBRATORY PLATE COMPACTOR WITH A MINIMUM OF 2 PASSES OF COMPACTOR PER LIFT.
3. COMPACTED GRAVEL FILL TO BE WELL GRADED BANK RUN GRAVEL MEETING THE FOLLOWING GRADATION REQUIREMENTS:

<u>SIEVE DESIGNATION</u>	<u>% PASSING</u>
1 $\frac{1}{2}$ "	100
No. 4	40-70
No. 100	5-20
No. 200	4-8

4. CRUSHED STONE TO BE UNIFORMLY GRADED, CLEAN, HARD PROCESS AGGREGATE MEETING THE FOLLOWING GRADATION REQUIREMENTS:

<u>SIEVE DESIGNATION</u>	<u>% PASSING</u>
1"	100
$\frac{3}{4}$ "	90-100
$\frac{1}{2}$ "	0-15
$\frac{3}{8}$ "	0-5

5. SELECT BACKFILL FOR FOUNDATION WALLS SHALL BE FREE OF ORGANIC MATERIAL, TOPSOIL, DEBRIS AND BOULDERS LARGER THAN 6".
6. GRAVEL AND GRANULAR FILL SHALL BE INSTALLED IN 10" MAX. LIFTS. COMPACTED TO 95% MIN. AT MAX. DRY DENSITY.
7. NON WOVEN GEOTEXTILE FOR SEPARATION PURPOSES SHALL BE MIRAFI 140N, OR ENGINEER APPROVED EQUAL.

FOUNDATION CONSTRUCTION NOTES

1. ALL FOOTINGS SHALL BE PLACED ON SUITABLE, COMPACTED SOIL HAVING ADEQUATE BEARING CAPACITY AND FREE OF ORGANIC CONTENT, CLAY, OR OTHER UNSUITABLE MATERIAL. ADDITIONAL EXCAVATION MAY BE REQUIRED BELOW FOOTING ELEVATIONS INDICATED IF UNSUITABLE MATERIAL IS ENCOUNTERED.
2. SUBGRADE PREPARATION: IF UNSUITABLE SOIL IS ENCOUNTERED, REMOVE ALL UNSUITABLE MATERIALS FROM BELOW PROPOSED STRUCTURE FOUNDATIONS AND COMPACT EXPOSED SOIL SURFACES. PLACE AND COMPACT APPROVED GRAVEL FILL. PLACEMENT OF ALL COMPACTED FILL MUST BE UNDER SUPERVISION OF AN APPROVED TESTING LABORATORY. FILL SHALL BE COMPACTED IN LAYERS NOT TO EXCEED 10" BEFORE COMPACTION. DETERMINE MAXIMUM DRY DENSITY IN ACCORDANCE WITH ASTM D1557-70 AND MAKE ONE (1) FIELD DENSITY TEST IN ACCORDANCE WITH ASTM D2167-66 FOR EACH 50 CUBIC YARDS OF COMPACTED FILL. BUT NOT LESS THAN ONE (1) PER LAYER, TO INSURE COMPACTION TO 95% OF MAX. DRY DENSITY.
3. ALL SOIL SURROUNDING AND UNDER ALL FOOTINGS SHALL BE KEPT REASONABLY DRY AND PROTECTED FROM FREEZING AND FROST ACTION DURING THE COURSE OF CONSTRUCTION.
4. WHERE GROUNDWATER IS ENCOUNTERED, DEWATERING SHALL BE ACCOMPLISHED CONTINUOUSLY AND COMPLETELY DURING FOUNDATION CONSTRUCTION. PROVIDE CRUSHED STONE AS REQUIRED TO STABILIZE FOOTING SUBGRADE.
5. ALL FOOTINGS ARE TO REST ON FIRM SOIL, REGARDLESS OF ELEVATIONS SHOWN ON THE DRAWINGS, BUT IN NO CASE MAY FOOTING ELEVATIONS BE HIGHER THAN INDICATED ON THE FOUNDATION PLAN, UNLESS SPECIFICALLY DIRECTED BY THE ENGINEER.
6. FOUNDATION WATERPROOFING AND DAMPROOFING SHALL COMPLY WITH BUILDING CODE REQUIREMENTS UNLESS A MORE SUBSTANTIAL SYSTEM IS INDICATED OR SPECIFIED.

PROFESSIONAL ENGINEER SEAL				

CENTEK engineering	
Centek in Solutions™	
(203) 488-0500	
(203) 488-5897 fax	
452 North Bedford Road	
Branford, CT 06405	
www.CentekEng.com	

AT&T MOBILITY	REINFORCEMENT DESIGN
CT1109	EVERSOURCE STRUCTURE 4119
CATHY DINE	SOUTHINGTON, CT 06488
DATE: 1/27/17	
SCALE: AS SHOWN	
JOB NO. 17004.04	

EARTHWORK AND FOUNDATION CONSTRUCTION NOTES

N-2
Sheet No. 3 of 7

CONCRETE CONSTRUCTION

1. CONCRETE CONSTRUCTION SHALL CONFORM TO THE FOLLOWING STANDARDS:
 - ACI 211 – STANDARD PRACTICE FOR SELECTING PROPORTIONS FOR NORMAL AND HEAVYWEIGHT CONCRETE.
 - ACI 301 – SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS.
 - ACI 302 – GUIDE FOR CONCRETE FLOOR AND SLAB CONSTRUCTION
 - ACI 304 – RECOMMENDED PRACTICE FOR MEASURING, MIXING, TRANSPORTING, AND PLACING CONCRETE.
 - ACI 306.1 – STANDARD SPECIFICATION FOR COLD WEATHER CONCRETING
 - ACI 318 – BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE.
2. CONCRETE SHALL BE AIR ENTRAINED AND SHALL DEVELOP COMPRESSIVE STRENGTH IN 28 DAYS AS FOLLOWS:

ALL CONCRETE	4,000 PSI
--------------	-----------
3. REINFORCING STEEL SHALL BE 60,000 PSI YIELD STRENGTH.
4. ALL DETAILING, FABRICATION, AND ERECTION OF REINFORCING BARS, UNLESS OTHERWISE NOTED, MUST FOLLOW THE LATEST ACI CODE AND LATEST ACI "MANUAL OF STANDARD PRACTICE FOR DETAILING REINFORCED CONCRETE STRUCTURES".
5. CONCRETE COVER OVER REINFORCING SHALL BE 3 INCHES.
6. NO STEEL WIRE, METAL FORM TIES, OR ANY OTHER METAL SHALL REMAIN WITHIN THE REQUIRED COVER OF ANY CONCRETE SURFACE.
7. ALL REINFORCEMENT SHALL BE CONTINUOUS. SPLICES WILL NOT BE ALLOWED.
8. NO TACK WELDING OF REINFORCING WILL BE PERMITTED.
9. NO CALCIUM CHLORIDE OR ADMIXTURES CONTAINING MORE THAN 1 % CHLORIDE BY WEIGHT OF ADMIXTURE SHALL BE USED IN THE CONCRETE.
10. TOP OF FOOTING SURFACES SHALL RECEIVE A UNIFORM FLOAT FINISH. CURE FOOTING SURFACE WITH SONNEBORN KURE-N-SEAL WB OR APPROVED EQUAL, APPLIED AS RECOMMENDED BY MANUFACTURER.

11. PREPARATION OF SURFACES WHERE NEW CONCRETE WILL INTERFACE WITH EXISTING CAISSON:
THE PERIMETER OF THE EXISTING CAISSON SHALL BE THOROUGHLY CLEANED OF ALL DIRT AND DELETERIOUS MATERIALS PRIOR TO APPLICATION OF BONDING AGENT. CONTRACTOR SHALL NOTIFY NORTHEAST UTILITIES 24 HOURS IN ADVANCE OF CLEANING.

SIKADUR 32, HI-MOD OR ENGINEER APPROVED EQUAL SHALL BE APPLIED, IN STRICT ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS, TO ALL INTERFACING SURFACES BEFORE CONCRETE IS PLACED.

CAULK JOINT BETWEEN EXISTING CONCRETE PIER AND NEW CONCRETE WITH SIKAFLEX 1-A BY SIKA CORP. OR ENGINEER APPROVED EQUAL.

SUBMIT MANUFACTURER'S PRODUCT SPECIFICATION DATA AND INSTALLATION INSTRUCTIONS FOR REVIEW AND APPROVAL BY OWNER.
12. NEW CONCRETE FOOTING SHALL BE ALLOWED TO CURE AT LEAST 14 DAYS BEFORE WIRELESS ANTENNA MOUNT, ANTENNAS, AND CABLES ARE INSTALLED.
13. INSPECTION AND TESTING OF CONCRETE WORK SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY, APPROVED AND PAID BY THE OWNER. THE INSPECTOR SHALL OBSERVE THE CONDITION OF SOILS AND FORMWORK BEFORE FOOTINGS ARE PLACED, SIZE, SPACING AND LOCATION OF REINFORCEMENT, AND PLACEMENT OF CONCRETE.
14. THE TESTING COMPANY SHALL ALSO OBTAIN A MINIMUM OF THREE (3) COMPRESSIVE STRENGTH TEST SPECIMENS FOR EACH CONCRETE MIX DESIGN. ONE SPECIMEN TESTED AT 7 DAYS, ONE AT 28 DAYS, AND ONE HELD IN RESERVE FOR FUTURE TESTING, IF NEEDED.
15. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE OWNER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

1997 BUDGET OF THE GOVERNMENT OF CANADA

CENTEK engineering
Centered on Solutions™

[203] 484-0580 [203] 484-8887 Fax
63 North Front Road
Burlington, CT 06405

www.CentekEng.com

AT&T MOBILITY
REINFORCEMENT DESIGN
CT1109
EVERSOURCE STRUCTURE 4119
CATHERINE DRIVE
BOSTON, MA 02480

CONCRETE CONSTRUCTION NOTES

HEET NO.
N-3
Sheet No. 4 of 7

MODIFICATION INSPECTION REPORT REQUIREMENTS

PRE-CONSTRUCTION		DURING CONSTRUCTION		POST-CONSTRUCTION	
SCHEDULED ITEM	REPORT ITEM	SCHEDULED ITEM	REPORT ITEM	SCHEDULED ITEM	REPORT ITEM
X	EOR MODIFICATION INSPECTION DRAWING	X	FOUNDATIONS	X	MODIFICATION INSPECTOR RECORD REDLINE DRAWING
—	EOR APPROVED SHOP DRAWINGS	X	EARTHWORK: BACKFILL MATERIAL & COMPACTION	—	POST-INSTALLED ANCHOR ROD PULL-OUT TEST
—	EOR APPROVED POST-INSTALLED ANCHOR MPII	X	REBAR & FORMWORK GEOMETRY VERIFICATION	X	PHOTOGRAPHS
—	FABRICATION INSPECTION	X	CONCRETE TESTING		
—	FABRICATOR CERTIFIED WELDER INSPECTION	—	STEEL INSPECTION		
X	MATERIAL CERTIFICATIONS	—	POST INSTALLED ANCHOR ROD VERIFICATION		
		—	BASE PLATE GROUT VERIFICATION		
		—	CONTRACTOR'S CERTIFIED WELD INSPECTION		
		—	ON-SITE COLD GALVANIZING VERIFICATION		
		X	CONTRACTOR AS-BUILT REDLINE DRAWINGS		

NOTES:

1. REFER TO MODIFICATION INSPECTION NOTES FOR ADDITIONAL REQUIREMENTS
2. "X" DENOTES DOCUMENT REQUIRED FOR INCLUSION IN MODIFICATION INSPECTION FINAL REPORT.
3. "—" DENOTES DOCUMENT NOT REQUIRED FOR INCLUSION IN MODIFICATION INSPECTION FINAL REPORT.
4. EOR – ENGINEER OF RECORD
4. MPII – "MANUFACTURER'S PRINTED INSTALLATION GUIDELINES"

GENERAL

1. THE MODIFICATION INSPECTION IS A VISUAL INSPECTION OF STRUCTURAL MODIFICATIONS, TO INCLUDE A REVIEW AND COMPILEMENT OF SPECIFIED SUBMITTALS AND CONSTRUCTION INSPECTIONS, AS AN ASSURANCE OF COMPLIANCE WITH THE CONSTRUCTION DOCUMENTS PREPARED UNDER THE DIRECTION OF THE ENGINEER OF RECORD (EOR).
2. THE MODIFICATION INSPECTION IS TO CONFIRM INSTALLATION CONFIGURATION AND GENERAL WORKMANSHIP AND IS NOT A REVIEW OF THE MODIFICATION DESIGN. OWNERSHIP OF THE MODIFICATION DESIGN EFFECTIVENESS AND INTENT RESIDES WITH THE ENGINEER OF RECORD.
3. TO ENSURE COMPLIANCE WITH THE MODIFICATION INSPECTION REQUIREMENTS THE GENERAL CONTRACTOR (GC) AND THE MODIFICATION INSPECTOR (MI) COMMENCE COMMUNICATION UPON AUTHORIZATION TO PROCEED BY THE CLIENT. EACH PARTY SHALL BE PROACTIVE IN CONTACTING THE OTHER. THE EOR SHALL BE CONTACTED IF SPECIFIC GC/MI CONTACT INFORMATION IS NOT MADE AVAILABLE.
4. THE GC SHALL PROVIDE THE MI WITH A MINIMUM OF 5 BUSINESS DAYS NOTICE OF IMPENDING INSPECTIONS.
5. WHEN POSSIBLE, THE GC AND MI SHALL BE ON SITE DURING THE MODIFICATION INSPECTION TO HAVE ANY NOTED DEFICIENCIES ADDRESSED DURING THE INITIAL MODIFICATION INSPECTION.

MODIFICATION INSPECTOR (MI)

1. THE MI SHALL CONTACT THE GC UPON AUTHORIZATION BY THE CLIENT TO:
 - REVIEW THE MODIFICATION INSPECTION REPORT REQUIREMENTS.
 - WORK WITH THE GC IN DEVELOPMENT OF A SCHEDULE FOR ON-SITE INSPECTIONS.
 - DISCUSS CRITICAL INSPECTIONS AND PROJECT CONCERNs.
2. THE MI IS RESPONSIBLE FOR COLLECTION OF ALL INSPECTION AND TEST REPORTS, REVIEWING REPORTS FOR ADHERENCE TO THE CONTRACT DOCUMENTS, CONDUCTING ON-SITE INSPECTIONS AND COMPILEMENT & SUBMISSION OF THE MODIFICATION INSPECTION REPORT TO THE CLIENT AND THE EOR.

GENERAL CONTRACTOR (GC)

1. THE GC IS REQUIRED TO CONTACT THE GC UPON AUTHORIZATION TO PROCEED WITH CONSTRUCTION BY THE CLIENT TO:
 - REVIEW THE MODIFICATION INSPECTION REPORT REQUIREMENTS.
 - WORK WITH THE MI IN DEVELOPMENT OF A SCHEDULE FOR ON-SITE INSPECTIONS.
 - DISCUSS CRITICAL INSPECTIONS AND PROJECT CONCERNs.
2. THE GC IS RESPONSIBLE FOR COORDINATING AND SCHEDULING IN ADVANCE ALL REQUIRED INSPECTIONS AND TESTS WITH THE MI.

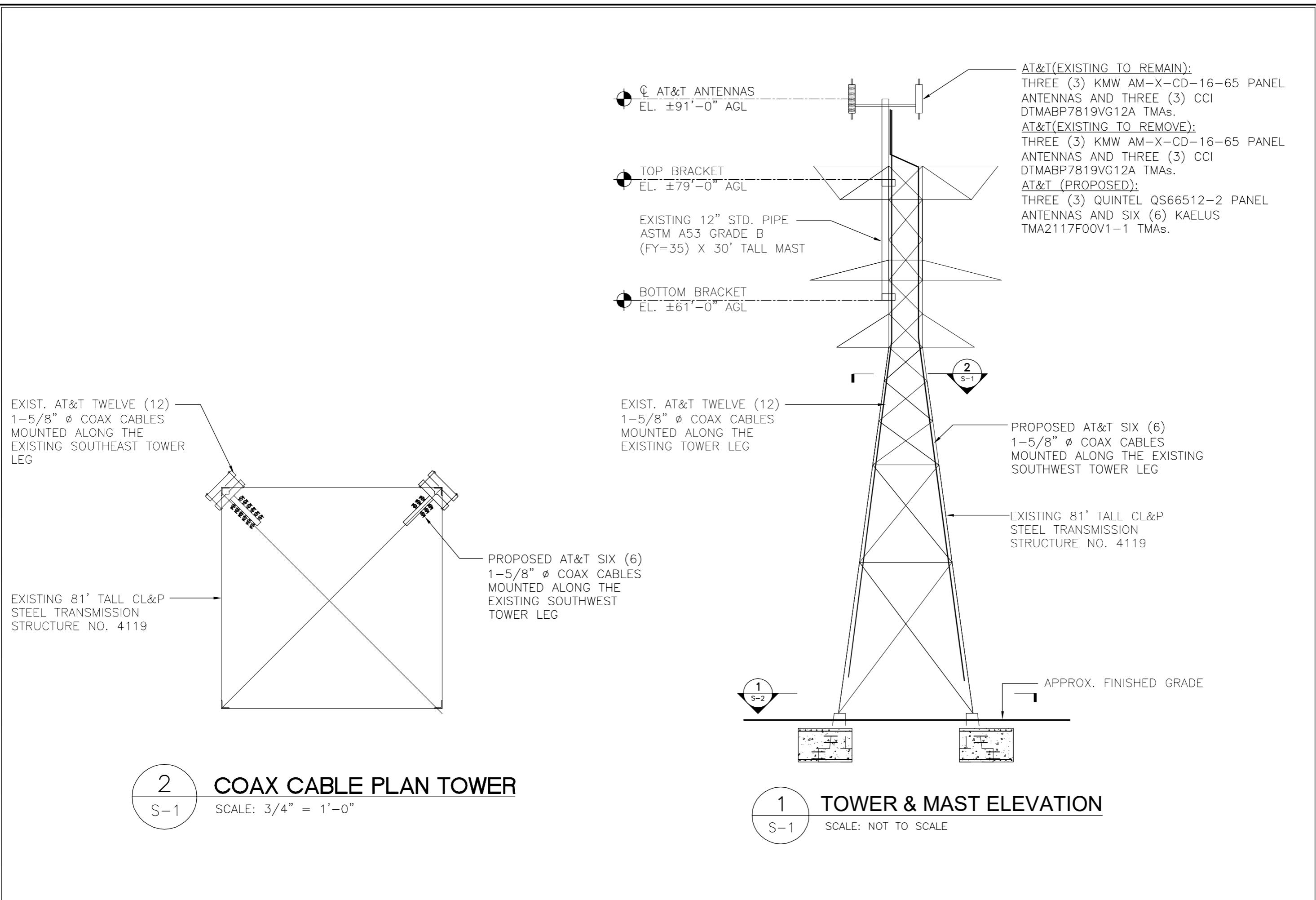
CORRECTION OF FAILING MODIFICATION INSPECTION

1. SHOULD THE STRUCTURAL MODIFICATION NOT COMPLY WITH THE REQUIREMENTS OF THE CONSTRUCTION DOCUMENTS, THE GC SHALL WORK WITH THE MODIFICATION INSPECTOR IN A VIABLE REMEDIATION PLAN AS FOLLOWS:
 - CORRECT ALL DEFICIENCIES TO COMPLY WITH THE CONTRACT DOCUMENTS AND COORDINATE WITH THE MI FOR A FOLLOW UP INSPECTION.
 - WITH CLIENT AUTHORIZATION, THE GC MAY WORK WITH THE EOR TO REANALYZE THE MODIFICATION USING THE AS-BUILT CONDITION.

REQUIRED PHOTOGRAPHS

1. THE GC AND MI SHALL AT MINIMUM PHOTO DOCUMENT THE FOLLOWING FOR INCLUSION IN THE MODIFICATION INSPECTION REPORT:
 - PRE-CONSTRUCTION: GENERAL CONDITION OF THE SITE.
 - DURING CONSTRUCTION: RAW MATERIALS, CRITICAL DETAILS, WELD PREPARATION, BOLT INSTALLATION & TORQUE, FINAL INSTALLED CONDITION & SURFACE COATING REPAIRS.
 - POST-CONSTRUCTION: FINAL CONDITION OF THE SITE

PROFESSIONAL ENGINEER SEAL	
REV. DATE	1/27/17
CFC ISSUED FOR CONSTRUCTION	1/27/17
CFC ISSUED FOR REVIEW	1/27/17
DRAWN BY CHKD BY	CentekEng.com


PROFESSIONAL ENGINEER SEAL	
----------------------------	--

CENTEK engineering	Centek in Solutions™
(203) 468-0500	(203) 468-5807 fax
652 North Broad Road	652 North Broad Road
Brantford, CT 06405	Brantford, CT 06405
www.CentekEng.com	www.CentekEng.com

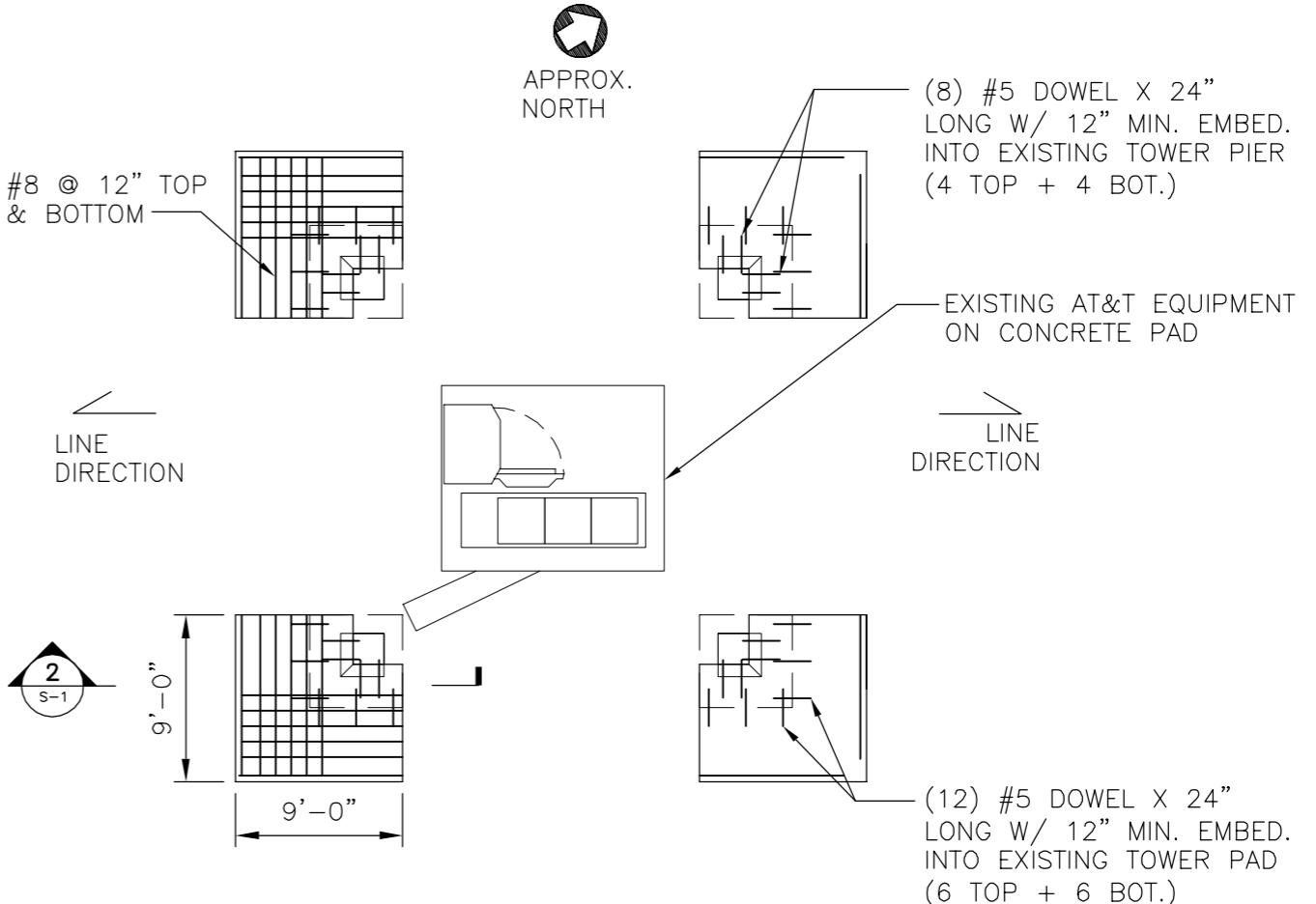
AT&T MOBILITY	REINFORCEMENT DESIGN
CT1109	EVERSOURCE STRUCTURE 4119
CATHY DINE	SOUTH BRANTFORD, CT 06405
DATE: 1/27/17	
SCALE: AS SHOWN	
JOB NO. 17004.04	

MODIFICATION INSPECTION REQUIREMENTS

SHEET NO. MI-1
Sheet No. 5 of 7

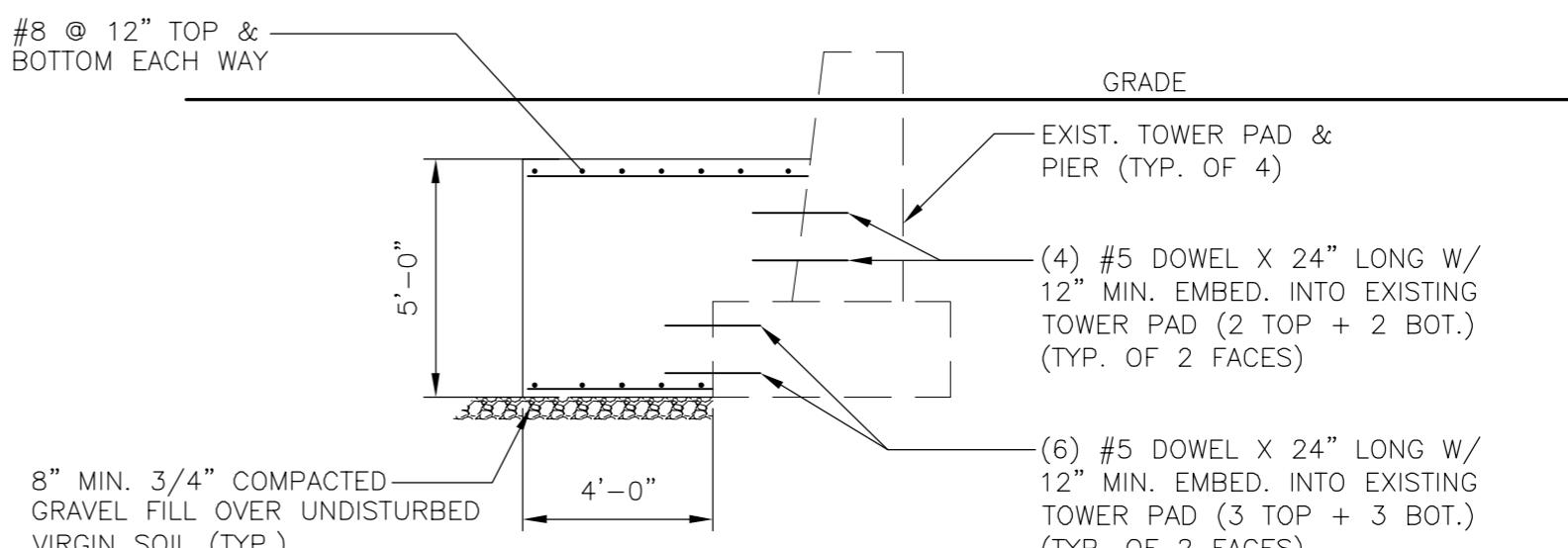
111

Centene Solutions™
(203) 488-0580
(203) 488-0587 Fax
63 N. Brantford Road
Brantford, CT 06405
www.CenteneKing.com


REINFORCEMENT DESIGN	1/27/17
CT1109	AS SHOWN
EVERSOURCE STRUCTURE 4119	17004.04
CATHY DINE	SOUTHBROOK, CT 06803

TOWER ELEVATION AND EEDLINE PLAN

NO.
S-1


FOUNDATION PLAN NOTES:

1. THE CONTRACTOR SHALL LIMIT THE FOUNDATION REINFORCEMENT WORK TO ONE TOWER LEG AT A TIME. CONSTRUCTION SHALL BE CONDUCTED IN WIND SPEEDS LESS THAN 15 MPH AND IN LOW ICE ACCUMULATION PERIODS. IF HIGHER WIND SPEED OR ICE EVENT IS EXPECTED, THE EXCAVATION AREA SHALL BE FILLED WITH COMPACT FILL MATERIAL.
2. CONTRACTOR SHALL USE EXTREME CAUTION DURING EXCAVATION OF EXISTING FOUNDATION STRUCTURE. IMPLEMENT HAND DIGGING WHERE PRACTICABLE.
3. PROTECT EXISTING TOWER GROUND WIRE(S) FROM DAMAGE DUE TO NEW CONSTRUCTION. CONTRACTOR SHALL NOTIFY NU IF GROUNDING SYSTEM BECOMES DAMAGED OR DISCONNECTED.
4. NOTIFY NU REPRESENTATIVE TO BE PRESENT UPON COMPLETION OF REBAR PLACEMENT.

1
S-1 FOUNDATION PLAN
SCALE: 1/10" = 1'-0"

SCALE: 1/10" = 1'-0"

2 **FOUNDATION SECTION**
S-1 SCALE: 1/4" = 1'-0"

SCALE: 1/4" = 1'-0"

1	4/13/17	TUL	GFC	ISSUED FOR CONSTRUCTION		
0	4/27/17	TUL	GFC	ISSUED FOR REVIEW		
					REV	DATE
					DRAWN BY	CHKD BY
					DESCRIPTION	

Centered on Solutions™
(203) 488-0580
(203) 488-4879 Fax
45-2 North Branford Road
Branford, CT 06405
www.CenterEng.com

FOUNDATION REINFORCEMENT DETAILS

IT NO.

Development of Design Heights, Exposure Coefficients,
and Velocity Pressures Per TIA-222-G
Wind Speeds

 Basic Wind Speed $V := 97$ mph (User Input - 2016 CSBC Appendix N)

 Basic Wind Speed with Ice $V_i := 50$ mph (User Input per Annex B of TIA-222-G)

Input

Structure Type = Structure_Type := Lattice (User Input)

Structure Category = SC := III (User Input)

Exposure Category = Exp := C (User Input)

 Structure Height = $h := 81$ ft (User Input)

 Height to Center of Antennas = $z_{AT\&T} := 91$ ft (User Input)

 Radial Ice Thickness = $t_i := 1.00$ in (User Input per Annex B of TIA-222-G)

 Radial Ice Density = $l_d := 56.00$ pcf (User Input)

 Topographic Factor = $K_{zt} := 1.0$ (User Input)

 $K_a := 1.0$ (User Input)

 Gust Response Factor = $G_H := 1.35$ (User Input)

Output

 Wind Direction Probability Factor = $K_d := \begin{cases} 0.95 & \text{if Structure_Type = Pole} \\ 0.85 & \text{if Structure_Type = Lattice} \end{cases} = 0.85$ (Per Table 2-2 of TIA-222-G)

 Importance Factors = $I_{Wind} := \begin{cases} 0.87 & \text{if SC = 1} \\ 1.00 & \text{if SC = 2} \\ 1.15 & \text{if SC = 3} \end{cases} = 1.15$ (Per Table 2-3 of TIA-222-G)

 $I_{Wind_w_Ice} := \begin{cases} 0 & \text{if SC = 1} \\ 1.00 & \text{if SC = 2} \\ 1.00 & \text{if SC = 3} \end{cases} = 1$
 $I_{ice} := \begin{cases} 0 & \text{if SC = 1} \\ 1.00 & \text{if SC = 2} \\ 1.25 & \text{if SC = 3} \end{cases} = 1.25$
 $K_{iz} := \left(\frac{z_{AT\&T}}{33} \right)^{0.1} = 1.107$
 $t_{iz} := 2.0 \cdot t_i \cdot I_{ice} \cdot K_{iz} \cdot K_{zt}^{0.35} = 2.767$
 $K_{zAT\&T} := 2.01 \left(\left(\frac{z_{AT\&T}}{zg} \right) \right)^{\frac{2}{\alpha}} = 1.241$
 $qz_{AT\&T} := 0.00256 \cdot K_d \cdot K_{zAT\&T} \cdot K_{zt} \cdot V^2 \cdot I_{Wind} = 29.213$
 $qz_{ice,AT\&T} := 0.00256 \cdot K_d \cdot K_{zAT\&T} \cdot K_{zt} \cdot V_i^2 \cdot I_{Wind_w_Ice} = 6.75$

Subject:

Loads on AT&T Equipment Structure #4119

Location:

Southington, CT

Rev. 0: 1/26/17

 Prepared by: T.J.L. Checked by: C.F.C.
 Job No. 17004.04

Development of Wind & Ice Load on Mast

Mast Data: (Pipe 12" SCH. 40) (User Input)

Mast Shape = Round (User Input)

 Mast Diameter = $D_{\text{mast}} := 12.75$ in (User Input)

 Mast Length = $L_{\text{mast}} := 30$ ft (User Input)

 Mast Thickness = $t_{\text{mast}} := 0.375$ in (User Input)

Mast Aspect Ratio = $Ar_{\text{mast}} := \frac{12L_{\text{mast}}}{D_{\text{mast}}} = 28.2$

 Mast Force Coefficient = $Ca_{\text{mast}} = 1.2$
Wind Load (without ice)

Mast Projected Surface Area = $A_{\text{mast}} := \frac{D_{\text{mast}}}{12} = 1.063$ sf/ft

Total Mast Wind Force = $qz_{\text{AT\&T}} \cdot G_H \cdot Ca_{\text{mast}} \cdot A_{\text{mast}} = 50$ plf BLC 5

Wind Load (with ice)

Mast Projected Surface Area w/ Ice = $A_{\text{ICE mast}} := \frac{(D_{\text{mast}} + 2 \cdot t_{iz})}{12} = 1.524$ sf/ft

Total Mast Wind Force w/ Ice = $qz_{\text{ice,AT\&T}} \cdot G_H \cdot Ca_{\text{mast}} \cdot A_{\text{ICE mast}} = 17$ plf BLC 4

Gravity Loads (without ice)

Weight of the mast = Self Weight (Computed internally by Risa-3D) plf BLC 1

Gravity Loads (ice only)

Ice Area per Linear Foot = $A_{\text{ice}} := \frac{\pi}{4} \left[(D_{\text{mast}} + t_{iz} \cdot 2)^2 - D_{\text{mast}}^2 \right] = 134.9$ sq in

Weight of Ice on Mast = $W_{\text{ICE mast}} := Id \cdot \frac{A_{\text{ice}}}{144} = 52$ plf BLC 3

Development of Wind & Ice Load on Antennas
Antenna Data:

Antenna Model = KMW AM-X-CD-16-65-00T

Antenna Shape = Flat (User Input)Antenna Height = $L_{ant} := 72$ in (User Input)Antenna Width = $W_{ant} := 11.8$ in (User Input)Antenna Thickness = $T_{ant} := 5.9$ in (User Input)Antenna Weight = $WT_{ant} := 48.5$ lbs (User Input)Number of Antennas = $N_{ant} := 3$ (User Input)Antenna Aspect Ratio = $Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 6.1$ Antenna Force Coefficient = $Ca_{ant} = 1.36$
Wind Load (without ice)
Surface Area for One Antenna = $SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 5.9$ sfAntenna Projected Surface Area = $A_{ant} := SA_{ant} \cdot N_{ant} = 17.7$ sfTotal Antenna Wind Force = $F_{ant} := qz_{AT\&T} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot A_{ant} = 949$ lbs **BLC 5**
Wind Load (with ice)
Surface Area for One Antenna w/ Ice = $SA_{ICEant} := \frac{(L_{ant} + 2 \cdot t_{iz}) \cdot (W_{ant} + 2 \cdot t_{iz})}{144} = 9.3$ sfAntenna Projected Surface Area w/ Ice = $A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 28$ sfTotal Antenna Wind Force w/ Ice = $F_{i_ant} := qz_{ice,AT\&T} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot A_{ICEant} = 347$ lbs **BLC 4**
Gravity Load (without ice)
Weight of All Antennas = $WT_{ant} \cdot N_{ant} = 146$ lbs **BLC 2**
Gravity Loads (ice only)
Volume of Each Antenna = $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 5013$ cu inVolume of Ice on Each Antenna = $V_{ice} := (L_{ant} + 2 \cdot t_{iz}) \cdot (W_{ant} + 2 \cdot t_{iz}) \cdot (T_{ant} + 2 \cdot t_{iz}) - V_{ant} = 1 \times 10^4$ cu inWeight of Ice on Each Antenna = $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 336$ lbsWeight of Ice on All Antennas = $W_{ICEant} \cdot N_{ant} = 1007$ lbs **BLC 3**

Development of Wind & Ice Load on Antennas

Antenna Data:

Antenna Model = Quintel QS66512-2

Antenna Shape = Flat (User Input)

Antenna Height = $L_{ant} := 72$ in (User Input)

Antenna Width = $W_{ant} := 12$ in (User Input)

Antenna Thickness = $T_{ant} := 9.6$ in (User Input)

Antenna Weight = $WT_{ant} := 111$ lbs (User Input)

Number of Antennas = $N_{ant} := 3$ (User Input)

Antenna Aspect Ratio = $Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 6.0$

Antenna Force Coefficient = $Ca_{ant} = 1.36$

Wind Load (without ice)

Surface Area for One Antenna = $SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 6$ sf

Antenna Projected Surface Area = $A_{ant} := SA_{ant} \cdot N_{ant} = 18$ sf

Total Antenna Wind Force = $F_{ant} := qz_{AT\&T} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot A_{ant} = 962$ lbs BLC 5

Wind Load (with ice)

Surface Area for One Antenna w/ Ice = $SA_{ICEant} := \frac{(L_{ant} + 2 \cdot t_{iz}) \cdot (W_{ant} + 2 \cdot t_{iz})}{144} = 9.4$ sf

Antenna Projected Surface Area w/ Ice = $A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 28.3$ sf

Total Antenna Wind Force w/ Ice = $F_{i_ant} := qz_{ice,AT\&T} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot A_{ICEant} = 350$ lbs BLC 4

Gravity Load (without ice)

Weight of All Antennas = $WT_{ant} \cdot N_{ant} = 333$ lbs BLC 2

Gravity Loads (ice only)

Volume of Each Antenna = $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 8294$ cu in

Volume of Ice on Each Antenna = $V_{ice} := (L_{ant} + 2 \cdot t_{iz}) \cdot (W_{ant} + 2 \cdot t_{iz}) \cdot (T_{ant} + 2 \cdot t_{iz}) - V_{ant} = 1 \times 10^4$ cu in

Weight of Ice on Each Antenna = $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 398$ lbs

Weight of Ice on All Antennas = $W_{ICEant} \cdot N_{ant} = 1194$ lbs BLC 3

Development of Wind & Ice Load on TMAs
TMA Data:

TMA Model = CCI DTMABP7819VG12A

TMA Shape = Flat (User Input)

 TMA Height = $L_{TMA} := 14.25$ in (User Input)

 TMA Width = $W_{TMA} := 11.46$ in (User Input)

 TMA Thickness = $T_{TMA} := 4.17$ in (User Input)

 TMA Weight = $WT_{TMA} := 19.2$ lbs (User Input)

 Number of TMAs = $N_{TMA} := 3$ (User Input)

 TMA Aspect Ratio = $Ar_{TMA} := \frac{L_{TMA}}{W_{TMA}} = 1.2$

 TMA Force Coefficient = $Ca_{TMA} = 1.2$
Wind Load (without ice)

 Surface Area for One TMA = $SA_{TMA} := \frac{L_{TMA} \cdot W_{TMA}}{144} = 1.1$ sf

 TMA Projected Surface Area = $A_{TMA} := SA_{TMA} \cdot N_{TMA} = 3.4$ sf

 Total TMA Wind Force = $F_{TMA} := qz_{AT\&T} \cdot G_H \cdot Ca_{TMA} \cdot K_a \cdot A_{TMA} = 161$ lbs **BLC 5**
Wind Load (with ice)

 Surface Area for One TMA w/ Ice = $SA_{ICETMA} := \frac{(L_{TMA} + 2 \cdot t_{iz}) \cdot (W_{TMA} + 2 \cdot t_{iz})}{144} = 2.3$ sf

 TMA Projected Surface Area w/ Ice = $A_{ICETMA} := SA_{ICETMA} \cdot N_{TMA} = 7$ sf

 Total TMA Wind Force w/ Ice = $F_{i,TMA} := qz_{Ice,AT\&T} \cdot G_H \cdot Ca_{TMA} \cdot K_a \cdot A_{ICETMA} = 77$ lbs **BLC 4**
Gravity Load (without ice)

 Weight of All TMAs = $WT_{TMA} \cdot N_{TMA} = 58$ lbs **BLC 2**
Gravity Loads (ice only)

 Volume of Each TMA = $V_{TMA} := L_{TMA} \cdot W_{TMA} \cdot T_{TMA} = 681$ cu in

 Volume of Ice on Each TMA = $V_{ice} := (L_{TMA} + 2 \cdot t_{iz}) \cdot (W_{TMA} + 2 \cdot t_{iz}) \cdot (T_{TMA} + 2 \cdot t_{iz}) - V_{TMA} = 2581$ cu in

 Weight of Ice on Each TMA = $W_{ICETMA} := \frac{V_{ice}}{1728} \cdot Id = 84$ lbs

 Weight of Ice on All TMAs = $W_{ICETMA} \cdot N_{TMA} = 251$ lbs **BLC 3**

Development of Wind & Ice Load on TMAs

TMA Data:

TMA Model = Kaelus TMA2117F00V1-1

TMA Shape = Flat (User Input)

TMA Height = $L_{TMA} := 8.46$ in (User Input)

TMA Width = $W_{TMA} := 11.81$ in (User Input)

TMA Thickness = $T_{TMA} := 4.21$ in (User Input)

TMA Weight = $WT_{TMA} := 17.6$ lbs (User Input)

Number of TMAs = $N_{TMA} := 6$ (User Input)

TMA Aspect Ratio = $Ar_{TMA} := \frac{L_{TMA}}{W_{TMA}} = 0.7$

TMA Force Coefficient = $Ca_{TMA} = 1.2$

Wind Load (without ice)

Surface Area for One TMA = $SA_{TMA} := \frac{L_{TMA} \cdot W_{TMA}}{144} = 0.7$ sf

TMA Projected Surface Area = $A_{TMA} := SA_{TMA} \cdot N_{TMA} = 4.2$ sf

Total TMA Wind Force = $F_{TMA} := qz_{AT\&T} \cdot G_H \cdot Ca_{TMA} \cdot K_a \cdot A_{TMA} = 197$ lbs BLC 5

Wind Load (with ice)

Surface Area for One TMA w/ Ice = $SA_{ICETMA} := \frac{(L_{TMA} + 2 \cdot t_{iz}) \cdot (W_{TMA} + 2 \cdot t_{iz})}{144} = 1.7$ sf

TMA Projected Surface Area w/ Ice = $A_{ICETMA} := SA_{ICETMA} \cdot N_{TMA} = 10.1$ sf

Total TMA Wind Force w/ Ice = $F_{i,TMA} := qz_{ice,AT\&T} \cdot G_H \cdot Ca_{TMA} \cdot K_a \cdot A_{ICETMA} = 111$ lbs BLC 4

Gravity Load (without ice)

Weight of All TMAs = $WT_{TMA} \cdot N_{TMA} = 106$ lbs BLC 2

Gravity Loads (ice only)

Volume of Each TMA = $V_{TMA} := L_{TMA} \cdot W_{TMA} \cdot T_{TMA} = 421$ cu in

Volume of Ice on Each TMA = $V_{ice} := (L_{TMA} + 2 \cdot t_{iz}) \cdot (W_{TMA} + 2 \cdot t_{iz}) \cdot (T_{TMA} + 2 \cdot t_{iz}) - V_{TMA} = 1944$ cu in

Weight of Ice on Each TMA = $W_{ICETMA} := \frac{V_{ice}}{1728} \cdot Id = 63$ lbs

Weight of Ice on All TMAs = $W_{ICETMA} \cdot N_{TMA} = 378$ lbs BLC 3

Subject:

Loads on AT&T Equipment Structure #4119

Location:

Southington, CT

Rev. 0: 1/26/17

Prepared by: T.J.L. Checked by: C.F.C.
 Job No. 17004.04

Development of Wind & Ice Load on Antenna Mounts

Mount Data:

Mount Type: T-Arm Array

Mount Shape = Flat

Mount Projected Surface Area = $CaAa := 15$ sf (User Input)

Mount Projected Surface Area w/ Ice = $CaAa_{ice} := 20$ sf (User Input)

Mount Weight = $WT_{mnt} := 750$ lbs (User Input)

Mount Weight w/ Ice = $WT_{mnt.ice} := 1000$ lbs (User Input)

Wind Load (without ice)

Total Platform Wind Force = $F_{plt} := qz_{AT\&T} \cdot G_H \cdot CaAa = 592$ lbs **BLC 5,7**

Wind Load (with ice)

Total Platform Wind Force w/ Ice = $F_{plt} := qz_{ice,AT\&T} \cdot G_H \cdot CaAa_{ice} = 182$ lbs **BLC 4,6**

Gravity Load (without ice)

Weight of Platform = $WT_{mnt} = 750$ lbs **BLC 2**

Gravity Loads (ice only)

Weight of Ice on Platform = $WT_{mnt.ice} - WT_{mnt} = 250$ lbs **BLC 3**

Development of Wind & Ice Load on Coax Cables
Coax Cable Data:

Coax Type =	HELIAX 1-5/8"		
Shape =	Round	(User Input)	
Coax Outside Diameter =	$D_{coax} := 1.98$	in	(User Input)
Coax Cable Length =	$L_{coax} := 10$	ft	(User Input)
Weight of Coax per foot =	$Wt_{coax} := 1.04$	plf	(User Input)
Total Number of Coax =	$N_{coax} := 18$	(User Input)	
No. of Coax Projecting Outside Face of PCS Mast =	$NP_{coax} := 6$	(User Input)	

$$\text{Coax aspect ratio, } Ar_{coax} := \frac{(L_{coax} \cdot 12)}{D_{coax}} = 60.6$$

$$\text{Coax Cable Force Factor Coefficient } = Ca_{coax} = 1.2$$

Wind Load (without ice)

$$\text{Coax projected surface area} = A_{coax} := \frac{(NP_{coax} D_{coax})}{12} = 1 \text{ sf/ft}$$

$$\text{Total Coax Wind Force} = F_{coax} := Ca_{coax} q_{z,AT\&T} G_H A_{coax} = 47 \text{ plf BLC 5}$$

Wind Load (with ice)

$$\text{Coax projected surface area w/ ice} = A_{ICE_{coax}} := \frac{(NP_{coax} D_{coax} + 2 \cdot t_{iz})}{12} = 1.5 \text{ sf/ft}$$

$$\text{Total Coax Wind Force w/ ice} = F_{coax} := Ca_{coax} q_{z,ice,AT\&T} G_H A_{ICE_{coax}} = 16 \text{ plf BLC 4}$$

Gravity Loads (without ice)

$$\text{Weight of all cables w/o ice} = WT_{coax} := Wt_{coax} N_{coax} = 19 \text{ plf BLC 2}$$

Gravity Loads (ice only)

$$\text{Ice Area per Linear Foot} = A_{i_{coax}} := \frac{\pi}{4} \left[(D_{coax} + 2 \cdot t_{iz})^2 - D_{coax}^2 \right] = 41.3 \text{ sq in}$$

$$\text{Ice Weight All Coax per foot} = WT_{i_{coax}} := N_{coax} \cdot Id \cdot \frac{A_{i_{coax}}}{144} = 289 \text{ plf BLC 3}$$

CENTEK engineering, INC. Consulting Engineers 63-2 North Branford Road Branford, CT 06405 Ph. 203-488-0580 / Fax. 203-488-8587	Subject: Analysis of TIA/EIA Wind and Ice Loads for Analysis of Mast Only Tabulated Load Cases Location: Southington, CT Date: 1/26/17 Prepared by: T.J.L. Checked by: C.F.C. Job No. 17004.04
Load Case	Description
1	Self Weight (Mast)
2	Weight of Appurtenances
3	Weight of Ice Only
4	TIA Wind with Ice
5	TIA Wind
Footnotes:	

CENTEK engineering, INC.
Consulting Engineers
63-2 North Branford Road
Branford, CT 06405
Ph. 203-488-0580 / Fax. 203-488-8587

Subject: **Analysis of TIA/EIA Wind and Ice Loads for Analysis of Mast Only
Load Combinations Table**

Location: **Southington, CT**

Date: 1/26/17 Prepared by: T.J.L.

Checked by: C.F.C.

Job No. 17004.04

Load Combination	Description	Envelope Soulution	Wind			Wind			Wind		
			Factor	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC
1	1.2D + 1.6W		1	Y	1	1.2	2	1.2	5	1.6	
2	0.9D + 1.6W		1	Y	1	0.9	2	0.9	5	1.6	
3	1.2D + 1.0Di + 1.0Wi		1	Y	1	1.2	2	1.2	3	1.0	4
											1.0

Footnotes:

BLC = Basic Load Case
D = Dead Load
Di = Dead Load of Ice
W = Wind Load
Wi = Wind Load w/ Ice

Company : CENTEK Engineering, INC.
Designer : tjl, cfc
Job Number : 17004.04/AT&T CT1109
Model Name : Structure #4119 Mast

Apr 13, 2017
2:20 PM
Checked By: _____

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	No
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI 1999: ASD
Wood Code	AF&PA NDS-91/97: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-02
Masonry Code	ACI 530-05: ASD
Aluminum Code	AA ADM1-05: ASD - Building

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	PCA Load Contour
Parmer Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

Company : CENTEK Engineering, INC.
Designer : tjl, cfc
Job Number : 17004.04/AT&T CT1109
Model Name : Structure #4119 Mast

Apr 13, 2017
2:20 PM
Checked By: _____

(Global) Model Settings, Continued

Seismic Code	UBC 1997
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	No
Ct X	.035
Ct Z	.035
T X (sec)	Not Entered
T Z (sec)	Not Entered
R X	8.5
R Z	8.5
Ca	.36
Cv	.54
Nv	1
Occupancy Category	4
Seismic Zone	3
Om Z	1
Om X	1
Rho Z	1
Rho X	1
Footing Overturning Safety Factor	1.5
Optimize for OTM/Sliding	No
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	0
Footing Concrete f'c (ksi)	3
Footing Concrete Ec (ksi)	4000
Lambda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	#3
Footing Top Bar Cover (in)	3.5
Footing Bottom Bar	#3
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	#3
Pedestal Bar Cover (in)	1.5
Pedestal Ties	#3

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E.. Density[k/ft...)	Yield[ksi]	Ry	Fu[ksi]	Rt	
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	58	1.2
3	A992	29000	11154	.3	.65	.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1
6	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	58	1.2

Company : CENTEK Engineering, INC.
 Designer : tjl, cfc
 Job Number : 17004.04/AT&T CT1109
 Model Name : Structure #4119 Mast

Apr 13, 2017
 2:20 PM
 Checked By: _____

Hot Rolled Steel Section Sets

Label	Shape	Type	Design List	Material	Design Rules	A [in2]	Iyy [in4]	Izz [in4]	J [in4]	
1	Mast	PIPE_12.0	Beam	Pipe	A53 Gr. B	Typical	13.7	262	262	523

Hot Rolled Steel Design Parameters

Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torqu...	Kyy	Kzz	Cb	Function
1	M1	Mast	30				Lbyy				Lateral

Member Primary Data

Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules	
1	M1	BOTCON...	TOPMAST			Mast	Beam	Pipe	A53 Gr. B	Typical

Joint Coordinates and Temperatures

Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap...
1	BOTCONNECTION	0	0	0	
2	TOPCONNECTION	0	18	0	
3	TOPMAST	0	30	0	

Joint Boundary Conditions

Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	BOTCONNECTION	Reaction	Reaction	Reaction		Fixed
2	TOPCONNECTION	Reaction		Reaction		

Member Point Loads (BLC 2 : Weight of Appurtenances)

Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	Y	-1.46	30
2	Y	-333	30
3	Y	-0.058	30
4	Y	-0.106	30
5	Y	-0.75	30

Member Point Loads (BLC 3 : Weight of Ice Only)

Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	Y	-1.007	30
2	Y	-1.194	30
3	Y	-0.251	30
4	Y	-0.378	30
5	Y	-0.25	30

Member Point Loads (BLC 4 : TIA Wind with Ice)

Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	X	.347	30
2	X	.35	30
3	X	.077	30
4	X	.111	30

Company : CENTEK Engineering, INC.
 Designer : tjl, cfc
 Job Number : 17004.04/AT&T CT1109
 Model Name : Structure #4119 Mast

Apr 13, 2017
 2:20 PM
 Checked By: _____

Member Point Loads (BLC 4 : TIA Wind with Ice) (Continued)

Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
5 M1	X	.182	30

Member Point Loads (BLC 5 : TIA Wind)

Member Label	Direction	Magnitude	Location[ft,%]
1 M1	X	.949	30
2 M1	X	.962	30
3 M1	X	.161	30
4 M1	X	.197	30
5 M1	X	.592	30

Member Distributed Loads (BLC 2 : Weight of Appurtenances)

Member Label	Direction	Start Magnitude[k/ft,...	End Magnitude[k/ft,F...	Start Location[ft,%]	End Location[ft,%]
1 M1	Y	-.019	-.019	20	30

Member Distributed Loads (BLC 3 : Weight of Ice Only)

Member Label	Direction	Start Magnitude[k/ft,...	End Magnitude[k/ft,F...	Start Location[ft,%]	End Location[ft,%]
1 M1	Y	-.052	-.052	0	0
2 M1	Y	-.289	-.289	20	30

Member Distributed Loads (BLC 4 : TIA Wind with Ice)

Member Label	Direction	Start Magnitude[k/ft,...	End Magnitude[k/ft,F...	Start Location[ft,%]	End Location[ft,%]
1 M1	X	.017	.017	0	0
2 M1	X	.016	.016	20	30

Member Distributed Loads (BLC 5 : TIA Wind)

Member Label	Direction	Start Magnitude[k/ft,...	End Magnitude[k/ft,F...	Start Location[ft,%]	End Location[ft,%]
1 M1	X	.05	.05	0	0
2 M1	X	.047	.047	20	30

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed Area(Me...	Surface(P...
1	Self Weight	None		-1					
2	Weight of Appurtenan...	None					5	1	
3	Weight of Ice Only	None					5	2	
4	TIA Wind with Ice	None					5	2	
5	TIA Wind	None					5	2	

Load Combinations

	Description	Sol...	PD...	SR...	BLC Fact...										
1	1.2D + 1.6...	Yes	Y		1	1.2	2	1.2	5	1.6					
2	0.9D + 1.6...	Yes	Y		1	.9	2	.9	5	1.6					
3	1.2D + 1.0...	Yes	Y		1	1.2	2	1.2	3	1	4	1			

Company : CENTEK Engineering, INC.
Designer : tjl, cfc
Job Number : 17004.04/AT&T CT1109
Model Name : Structure #4119 Mast

Apr 13, 2017
2:20 PM
Checked By: _____

Envelope Joint Reactions

Joint	X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1 BOTCONNECT...	max 2.966	1	11.108	3	0	1	0	1	NC	NC	0	1
2	min .705	3	2.683	2	0	1	0	1	NC	NC	0	1
3 TOPCONNECT...	max -2.442	3	0	1	0	1	0	1	0	1	0	1
4	min -10.695	1	0	1	0	1	0	1	0	1	0	1
5 Totals:	max -1.737	3	11.108	3	0	1						
6	min -7.73	2	2.683	2	0	1						

Envelope Joint Displacements

Joint	X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [... LC	Y Rotation [... LC	Z Rotation [... LC		
1 BOTCONNECT...	max 0	3	0	2	0	1	0	1	0	1	4.209e-03 1
2	min 0	1	0	3	0	1	0	1	0	1	9.891e-04 3
3 TOPCONNECT...	max 0	1	-.002	2	0	1	0	1	0	1	-2.108e-03 3
4	min 0	3	-.007	3	0	1	0	1	0	1	-9.015e-03 1
5 TOPMAST	max 2.177	1	-.002	2	0	1	0	1	0	1	-4.194e-03 3
6	min .509	3	-.01	3	0	1	0	1	0	1	-1.793e-02 1

Envelope AISC 14th(360-10): LRFD Steel Code Checks

Member	Shape	Code Check	Loc[ft]	LC Shear..Loc[ft]	DirLC	phi*Pnc..phi*Pnt...	phi*Mn ..phi*Mn ..Cb	Eqn
1 M1	PIPE_12.0	.469	18.1...	1 .049	18.1...	1 305.067	431.55 140.963	140.963 1..H1-1b

Company : CENTEK Engineering, INC.
Designer : tjl, cfc
Job Number : 17004.04/AT&T CT1109
Model Name : Structure #4119 Mast

Apr 13, 2017
2:29 PM
Checked By: _____

Joint Reactions

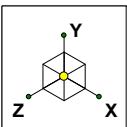
LC		Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	1	BOTCONNECTION	2.966	3.578	0	0	NC	0
2	1	TOPCONNECTION	-10.695	0	0	0	0	0
3	1	Totals:	-7.73	3.578	0			
4	1	COG (ft):	X: 0	Y: 22.645	Z: 0			

Company : CENTEK Engineering, INC.
Designer : tjl, cfc
Job Number : 17004.04/AT&T CT1109
Model Name : Structure #4119 Mast

Apr 13, 2017
2:29 PM
Checked By: _____

Joint Reactions

LC		Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	2	BOTCONNECTION	2.96	2.683	0	0	NC	0
2	2	TOPCONNECTION	-10.69	0	0	0	0	0
3	2	Totals:	-7.73	2.683	0			
4	2	COG (ft):	X: 0	Y: 22.645	Z: 0			



Company : CENTEK Engineering, INC.
Designer : tjl, cfc
Job Number : 17004.04/AT&T CT1109
Model Name : Structure #4119 Mast

Apr 13, 2017
2:30 PM
Checked By: _____

Joint Reactions

LC		Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	3	BOTCONNECTION	.705	11.108	0	0	NC	0
2	3	TOPCONNECTION	-2.442	0	0	0	0	0
3	3	Totals:	-1.737	11.108	0			
4	3	COG (ft):	X: 0	Y: 24.224	Z: 0			

Code Check (Env)	
No Calc	
> 1.0	
.90-1.0	
.75-90	
50-75	
0.-50	

TOPMAST

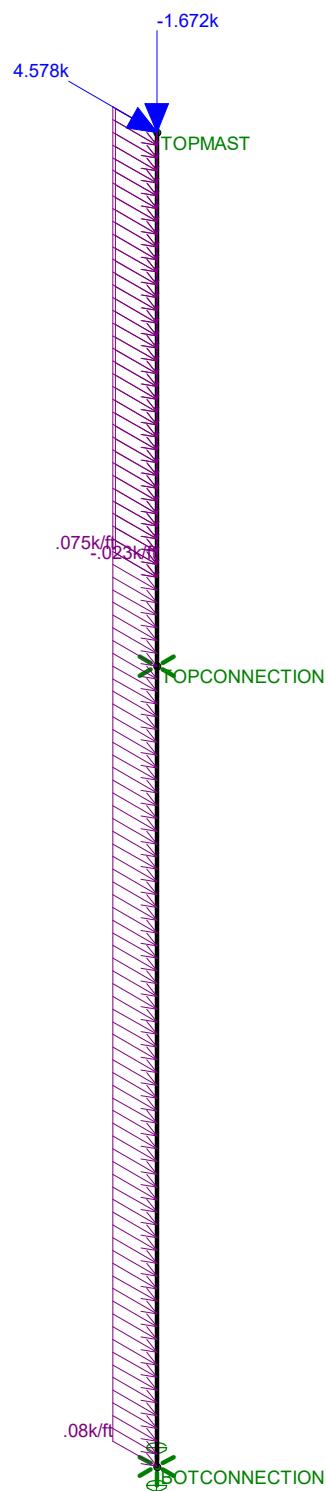
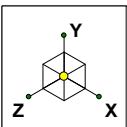
TOPCONNECTION

BOTCONNECTION

Envelope Only Solution

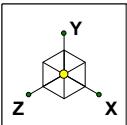
CENTEK Engineering, INC.

tjl, cfc



17004.04/AT&T CT1109

Structure #4119 Mast

Unity Check


Apr 13, 2017 at 2:20 PM

TIA.r3d

Loads: LC 1, 1.2D + 1.6W (X-direction)

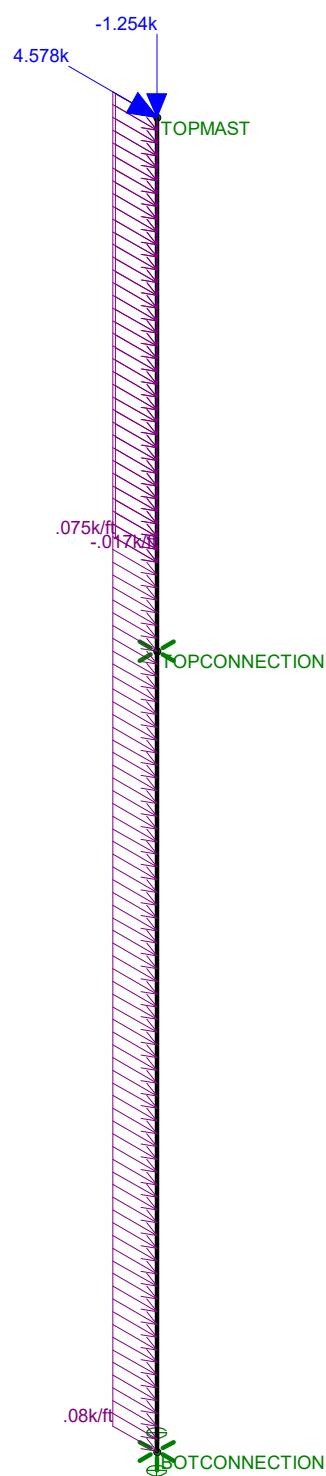
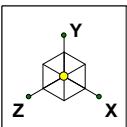
CENTEK Engineering, INC.	Structure #4119 Mast LC #1 Loads	Apr 13, 2017 at 2:21 PM
tjl, cfc		
17004.04/AT&T CT1109		TIA.r3d

Code Check (LC 1)	
No Calc	
> 1.0	
.90-1.0	
.75-90	
.50-75	
0.-.50	

Results for LC 1, 1.2D + 1.6W (X-direction)
Reaction and Moment Units are k and k-ft

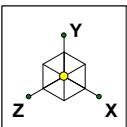
CENTEK Engineering, INC.

tjl, cfc



17004.04/AT&T CT1109

Structure #4119 Mast

LC #1 Reactions and Deflected Shape


Apr 13, 2017 at 2:22 PM

TIA.r3d

Loads: LC 2, 0.9D + 1.6W (X-direction)

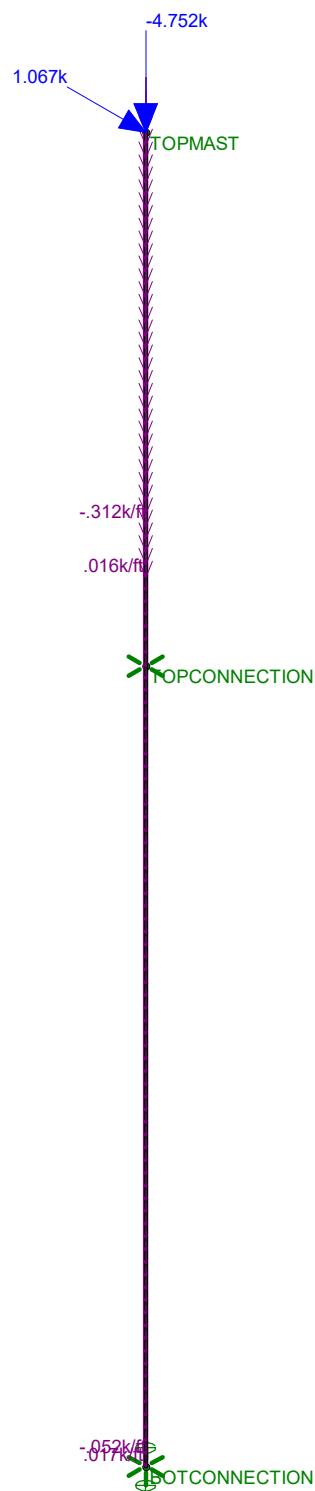
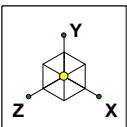
CENTEK Engineering, INC.	Structure #4119 Mast LC #2 Loads	Apr 13, 2017 at 2:21 PM
tjl, cfc		
17004.04/AT&T CT1109		TIA.r3d

Code Check (LC 2)	
No Calc	
> 1.0	
.90-1.0	
.75-90	
.50-75	
0.-.50	

Results for LC 2, 0.9D + 1.6W (X-direction)
Reaction and Moment Units are k and k-ft

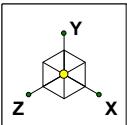
CENTEK Engineering, INC.

tjl, cfc

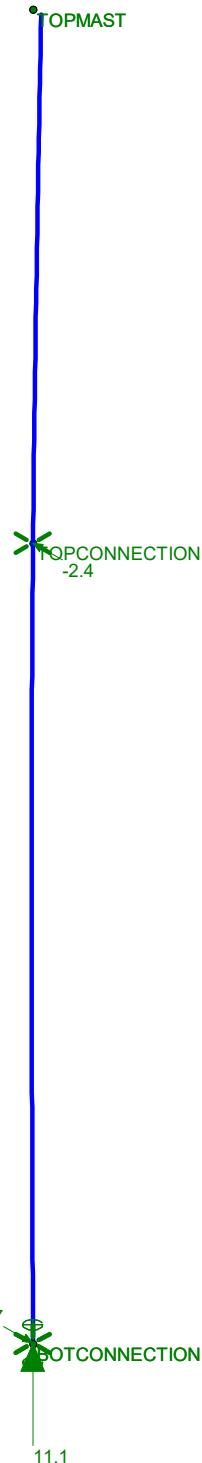


17004.04/AT&T CT1109

Structure #4119 Mast

LC #2 Reactions and Deflected Shape


Apr 13, 2017 at 2:29 PM

TIA.r3d



Loads: LC 3, 1.2D + 1.0Di + 1.0Wi (X-direction)

CENTEK Engineering, INC.	Structure #4119 Mast LC #3 Loads	Apr 13, 2017 at 2:21 PM
tjl, cfc		
17004.04/AT&T CT1109		TIA.r3d

Code Check (LC 3)	
No Calc	
> 1.0	
.90-1.0	
.75-90	
.50-75	
0.-.50	

Results for LC 3, 1.2D + 1.0Di + 1.0Wi (X-direction)
Reaction and Moment Units are k and k-ft

CENTEK Engineering, INC.

tjl, cfc

17004.04/AT&T CT1109

Structure #4119 Mast

LC #3 Reactions and Deflected Shape

Apr 13, 2017 at 2:29 PM

TIA.r3d

Mast Top Connection:**Maximum Design Reactions at Brace:**

Vertical = Vert := 0-kips (User Input)
Horizontal = Horz := 10.7-kips (User Input)
Moment = Moment := 0 (User Input)

Bolt Data:

Bolt Grade = A325 (User Input)
Number of Bolts = $n_b := 6$ (User Input)
Bolt Diameter = $d_b := 0.75\text{in}$ (User Input)
Nominal Tensile Strength = $F_{nt} := 90\cdot\text{ksi}$ (User Input)
Nominal Shear Strength = $F_{nv} := 54\cdot\text{ksi}$ (User Input)
Resistance Factor = $\phi := 0.75$ (User Input)
Bolt Eccentricity from C.L. Mast = $e := 10.75\cdot\text{in}$ (User Input)
Vertical Spacing Between Top and Bottom Bolts = $S_{vert} := 9\cdot\text{in}$ (User Input)
Horizontal Spacing Between Bolts = $S_{horz} := 13.5\cdot\text{in}$ (User Input)
Bolt Area = $a_b := \frac{1}{4} \cdot \pi \cdot d_b^2 = 0.442 \cdot \text{in}^2$

Check Bolt Stresses:
Wind Acting Parallel to Stiffener Plate:

Shear Stress per Bolt =

$$f_v := \frac{Vert}{n_b \cdot a_b} = 0 \text{-ksi}$$

 Condition1 := if($f_v < \phi \cdot F_{nv}$, "OK", "Overstressed")

Condition1 = "OK"

$$\frac{f_v}{(\phi \cdot F_{nv})} = 0 \text{-\%}$$

Tensile Stress Adjusted for Shear =

$$F'_{nt} := \begin{cases} \left(1.3 \cdot F_{nt} - \frac{F_{nt}}{\phi \cdot F_{nv}} \cdot f_v \right) & \text{if } 1.3 \cdot F_{nt} - \frac{F_{nt}}{\phi \cdot F_{nv}} \cdot f_v \leq F_{nt} = 90 \text{-ksi} \\ F_{nt} & \text{otherwise} \end{cases}$$

Tension Force Each Bolt =

$$F_{tension.bolt} := \frac{Horz}{n_b} + \frac{Vert \cdot e}{S_{vert}^2} = 1.783 \text{-kips}$$

Tension Stress Each Bolt =

$$f_t := \frac{F_{tension.bolt}}{a_b} = 4 \text{-ksi}$$

 Condition2 := if($f_t < \phi \cdot F'_{nt}$, "OK", "Overstressed")

Condition2 = "OK"

$$\frac{f_t}{(\phi \cdot F'_{nt})} = 6 \text{-\%}$$

Wind Acting Perpendicular to Stiffener Plate:

Shear Stress per Bolt =

$$f_v := \frac{\sqrt{Vert^2 + Horz^2}}{n_b \cdot a_b} = 4.037 \text{-ksi}$$

 Condition3 := if($f_v < \phi \cdot F_{nv}$, "OK", "Overstressed")

Condition3 = "OK"

$$\frac{f_v}{(\phi \cdot F_{nv})} = 10 \text{-\%}$$

Tensile Stress Adjusted for Shear =

$$F'_{nt} := \begin{cases} \left(1.3 \cdot F_{nt} - \frac{F_{nt}}{\phi \cdot F_{nv}} \cdot f_v \right) & \text{if } 1.3 \cdot F_{nt} - \frac{F_{nt}}{\phi \cdot F_{nv}} \cdot f_v \leq F_{nt} = 90 \text{-ksi} \\ F_{nt} & \text{otherwise} \end{cases}$$

Tension Force per Bolt =

$$F_{tension.conn} := \frac{Horz \cdot e}{n_b} + \frac{Vert \cdot e}{S_{horz} \cdot \frac{2}{2}} = 2.84 \text{-kips}$$

Tension Stress Each Bolt =

$$f_t := \frac{F_{tension.conn}}{a_b} = 6.429 \text{-ksi}$$

 Condition4 := if($f_t < \phi \cdot F'_{nt}$, "OK", "Overstressed")

Condition4 = "OK"

$$\frac{f_t}{(\phi \cdot F'_{nt})} = 9.5 \text{-\%}$$

Mast Bottom Connection:**Maximum Design Reactions at Brace:**

Vertical = $Vert := 11.2\text{-kips}$ (User Input)

Horizontal = $Horz := 0.7\text{-kips}$ (User Input)

Moment = $Moment := 0\text{-ft-kips}$ (User Input)

Bolt Data:

Bolt Grade = A325 (User Input)

Number of Bolts = $n_b := 12$ (User Input)

Bolt Diameter = $d_b := 0.75\text{in}$ (User Input)

Nominal Tensile Strength = $F_{nt} := 90\text{-ksi}$ (User Input)

Nominal Shear Strength = $F_{nv} := 54\text{-ksi}$ (User Input)

Resistance Factor = $\phi := 0.75$ (User Input)

Bolt Eccentricity from C.L. Mast = $e := 17.875\text{-in}$ (User Input)

Horizontal Spacing Between Bolts = $S_{horz} := 13.5\text{-in}$ (User Input)

Vertical Spacing From Plate CL to Bolt 1 = $S_{vert1} := 2\text{-in}$ (User Input)

Vertical Spacing From Plate CL to Bolt 2 = $S_{vert2} := 4.75\text{-in}$ (User Input)

Vertical Spacing From Plate CL to Bolt 3 = $S_{vert3} := 7.5\text{-in}$ (User Input)

Bolt Polar Moment of Inertia = $I_p := 4 \cdot S_{vert1}^2 + 4 \cdot S_{vert2}^2 + 4 \cdot S_{vert3}^2 = 331.25\text{-in}^2$

Bolt Area = $a_b := \frac{1}{4} \cdot \pi \cdot d_b^2 = 0.442\text{-in}^2$

Check Bolt Stresses:
Wind Acting Parallel to Stiffener Plate:

Shear Stress per Bolt =

$$f_v := \frac{Vert}{n_b \cdot a_b} = 2.113 \text{-ksi}$$

 Condition1 := if($f_v < \phi \cdot F_{nv}$, "OK", "Overstressed")

Condition1 = "OK"

$$\frac{f_v}{(\phi \cdot F_{nv})} = 5.2\%$$

Tensile Stress Adjusted for Shear =

$$F'_{nt} := \begin{cases} \left(1.3 \cdot F_{nt} - \frac{F_{nt}}{\phi \cdot F_{nv}} \cdot f_v \right) & \text{if } 1.3 \cdot F_{nt} - \frac{F_{nt}}{\phi \cdot F_{nv}} \cdot f_v \leq F_{nt} \\ F_{nt} & \text{otherwise} \end{cases} = 90 \text{-ksi}$$

Tension Force Each Bolt =

$$F_{tension.bolt} := \frac{Horz}{n_b} + \frac{(Vert \cdot e + Moment) \cdot S_{vert3}}{I_p} = 4.591 \text{-kips}$$

Tension Stress Each Bolt =

$$f_t := \frac{F_{tension.bolt}}{a_b} = 10.4 \text{-ksi}$$

 Condition2 := if($f_t < \phi \cdot F'_{nt}$, "OK", "Overstressed")

Condition2 = "OK"

$$\frac{f_t}{(\phi \cdot F'_{nt})} = 15.4\%$$

Wind Acting Perpendicular to Stiffener Plate:

Shear Stress per Bolt =

$$f_v := \sqrt{\left(\frac{Vert}{n_b} + \frac{Moment \cdot 2}{S_{horz} \cdot n_b} \right)^2 + \left(\frac{Horz}{n_b} \right)^2} = 2.117 \text{-ksi}$$

 Condition3 := if($f_v < \phi \cdot F_{nv}$, "OK", "Overstressed")

Condition3 = "OK"

$$\frac{f_v}{(\phi \cdot F_{nv})} = 5.2\%$$

Tensile Stress Adjusted for Shear =

$$F'_{nt} := \begin{cases} \left(1.3 \cdot F_{nt} - \frac{F_{nt}}{\phi \cdot F_{nv}} \cdot f_v \right) & \text{if } 1.3 \cdot F_{nt} - \frac{F_{nt}}{\phi \cdot F_{nv}} \cdot f_v \leq F_{nt} \\ F_{nt} & \text{otherwise} \end{cases} = 90 \text{-ksi}$$

Tension Force per Bolt =

$$F_{tension.conn} := \frac{Horz \cdot e}{n_b} + \frac{(Vert \cdot e) \cdot S_{vert3}}{I_p} = 4.687 \text{-kips}$$

Tension Stress Each Bolt =

$$f_t := \frac{F_{tension.conn}}{a_b} = 10.61 \text{-ksi}$$

 Condition4 := if($f_t < \phi \cdot F'_{nt}$, "OK", "Overstressed")

Condition4 = "OK"

$$\frac{f_t}{(\phi \cdot F'_{nt})} = 15.7\%$$

Basic Components

Heavy Wind Pressure =	$p := 4.00$	psf	(User Input NESC 2007 Figure 250-1 & Table 250-1)
Basic Windspeed =	$V := 110$	mph	(User Input NESC 2007 Figure 250-2(e))
Radial Ice Thickness =	$Ir := 0.50$	in	(User Input)
Radial Ice Density =	$Id := 56.0$	pcf	(User Input)

Factors for Extreme Wind Calculation

Elevation of Top of Mast Above Grade =	$TME := 91$	ft	(User Input)
Multiplier Gust Response Factor =	$m := 1.25$		(User Input - Only for NESC Extreme wind case)
NESC Factor =	$kv := 1.43$		(User Input from NESC 2007 Table 250-3 equation)
Importance Factor =	$I := 1.0$		(User Input from NESC 2007 Section 250.C.2)

$$\text{Velocity Pressure Coefficient} = Kz := 2.01 \cdot \left(\frac{TME}{900} \right)^{\frac{2}{9.5}} = 1.241 \quad (\text{NESC 2007 Table 250-2})$$

$$\text{Exposure Factor} = Es := 0.346 \left[\frac{33}{(0.67 \cdot TME)} \right]^{\frac{1}{7}} = 0.317 \quad (\text{NESC 2007 Table 250-3})$$

$$\text{Response Term} = Bs := \frac{1}{\left(1 + 0.375 \cdot \frac{TME}{220} \right)} = 0.866 \quad (\text{NESC 2007 Table 250-3})$$

$$\text{Gust Response Factor} = Grf := \frac{\left[1 + \left(\frac{1}{2.7 \cdot Es \cdot Bs} \right)^{\frac{1}{2}} \right]}{kv^2} = 0.878 \quad (\text{NESC 2007 Table 250-3})$$

$$\text{Wind Pressure} = qz := 0.00256 \cdot Kz \cdot V^2 \cdot Grf \cdot I = 33.8 \quad \text{psf} \quad (\text{NESC 2007 Section 250.C.2})$$

Shape Factors

Shape Factor for Round Members =	$Cd_R := 1.3$	(User Input)
Shape Factor for Flat Members =	$Cd_F := 1.6$	(User Input)
Shape Factor for Coax Cables Attached to Outside of Pole =	$Cd_{coax} := 1.45$	(User Input)

Overload Factors

NU Design Criteria Table

Overload Factors for Wind Loads:

NESC Heavy Loading =	2.5	(User Input)	Apply in Risa-3D Analysis
NESC Extreme Loading =	1.0	(User Input)	Apply in Risa-3D Analysis

Overload Factors for Vertical Loads:

NESC Heavy Loading =	1.5	(User Input)	Apply in Risa-3D Analysis
NESC Extreme Loading =	1.0	(User Input)	Apply in Risa-3D Analysis

Subject:

Load Analysis of AT&T Equipment on
 Structure #4119

Location:

Southington, CT

Rev. 0: 1/26/17

Prepared by: T.J.L Checked by: C.F.C.
 Job No. 17004.04

Development of Wind & Ice Load on Mast

Mast Data: (Pipe 12.0" SCH. 40)

Mast Shape = Round (User Input)

Mast Diameter = $D_{\text{mast}} := 12.75$ in (User Input)

Mast Length = $L_{\text{mast}} := 30$ ft (User Input)

Mast Thickness = $t_{\text{mast}} := 0.375$ in (User Input)

Wind Load (NESC Extreme)

Mast Projected Surface Area = $A_{\text{mast}} := \frac{D_{\text{mast}}}{12} = 1.063$

Total Mast Wind Force (Above NU Structure) = $q_z \cdot C_d \cdot A_{\text{mast}} \cdot m = 58$ plf BLC 5

Total Mast Wind Force (Below NU Structure) = $q_z \cdot C_d \cdot A_{\text{mast}} = 47$ plf BLC 5

Wind Load (NESE Heavy)

Mast Projected Surface Area w/ Ice = $A_{\text{ICE}}_{\text{mast}} := \frac{(D_{\text{mast}} + 2 \cdot l_r)}{12} = 1.146$

Total Mast Wind Force w/ Ice = $p \cdot C_d \cdot A_{\text{ICE}}_{\text{mast}} = 6$ plf BLC 4

Gravity Loads (without ice)

Weight of the mast = Self Weight (Computed internally by Risa-3D) plf BLC 1

Gravity Loads (ice only)

Ice Area per Linear Foot = $A_{\text{ice}}_{\text{mast}} := \frac{\pi}{4} \left[(D_{\text{mast}} + l_r \cdot 2)^2 - D_{\text{mast}}^2 \right] = 20.8$ sq in

Weight of Ice on Mast = $W_{\text{ICE}}_{\text{mast}} := l_d \cdot \frac{A_{\text{ice}}_{\text{mast}}}{144} = 8$ plf BLC 3

Development of Wind & Ice Load on Antennas
Antenna Data:

Antenna Model =	KMW AM-X-CD-16-65-00T		
Antenna Shape =	Flat	(User Input)	
Antenna Height =	$L_{ant} := 72$	in	(User Input)
Antenna Width =	$W_{ant} := 11.8$	in	(User Input)
Antenna Thickness =	$T_{ant} := 5.9$	in	(User Input)
Antenna Weight =	$WT_{ant} := 48.5$	lbs	(User Input)
Number of Antennas =	$N_{ant} := 3$		(User Input)

Wind Load (NESC Extreme)
*Assumes Maximum Possible Wind Pressure
 Applied to all Antennas Simultaneously*

$$SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 5.9 \quad sf$$

$$A_{ant} := SA_{ant} \cdot N_{ant} = 17.7 \quad sf$$

$$F_{ant} := qz \cdot Cd_F \cdot A_{ant} \cdot m = 1195 \quad lbs \quad \text{BLC 5}$$

Wind Load (NESC Heavy)
*Assumes Maximum Possible Wind Pressure
 Applied to all Antennas Simultaneously*

$$SA_{ICEant} := \frac{(L_{ant} + 1) \cdot (W_{ant} + 1)}{144} = 6.5 \quad sf$$

$$A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 19.5 \quad sf$$

$$F_{ice} := p \cdot Cd_F \cdot A_{ICEant} = 125 \quad lbs \quad \text{BLC 4}$$

Gravity Load (without ice)

$$WT_{ant} \cdot N_{ant} = 146 \quad lbs \quad \text{BLC 2}$$

Gravity Load (ice only)

$$V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 5013 \quad cu \text{ in}$$

$$V_{ice} := (L_{ant} + 1) \cdot (W_{ant} + 1) \cdot (T_{ant} + 1) - V_{ant} = 1435 \quad cu \text{ in}$$

$$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 46 \quad lbs$$

$$W_{ICEant} \cdot N_{ant} = 139 \quad lbs \quad \text{BLC 3}$$

Development of Wind & Ice Load on Antennas
Antenna Data:

Antenna Model =	Quintel QS66512-2		
Antenna Shape =	Flat	(User Input)	
Antenna Height =	$L_{ant} := 72$	in	(User Input)
Antenna Width =	$W_{ant} := 12$	in	(User Input)
Antenna Thickness =	$T_{ant} := 9.6$	in	(User Input)
Antenna Weight =	$WT_{ant} := 111$	lbs	(User Input)
Number of Antennas =	$N_{ant} := 3$		(User Input)

Wind Load (NESC Extreme)
***Assumes Maximum Possible Wind Pressure
Applied to all Antennas Simultaneously***

$$SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 6 \quad sf$$

$$A_{ant} := SA_{ant} \cdot N_{ant} = 18 \quad sf$$

$$F_{ant} := qz \cdot Cd_F \cdot A_{ant} \cdot m = 1215 \quad lbs \quad \text{BLC 5}$$

Wind Load (NESC Heavy)
***Assumes Maximum Possible Wind Pressure
Applied to all Antennas Simultaneously***

$$SA_{ICEant} := \frac{(L_{ant} + 1) \cdot (W_{ant} + 1)}{144} = 6.6 \quad sf$$

$$A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 19.8 \quad sf$$

$$F_{ice} := p \cdot Cd_F \cdot A_{ICEant} = 127 \quad lbs \quad \text{BLC 4}$$

Gravity Load (without ice)

$$WT_{ant} \cdot N_{ant} = 333 \quad lbs \quad \text{BLC 2}$$

Gravity Load (ice only)

$$V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 8294 \quad cu \text{ in}$$

$$V_{ice} := (L_{ant} + 1) \cdot (W_{ant} + 1) \cdot (T_{ant} + 1) - V_{ant} = 1765 \quad cu \text{ in}$$

$$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 57 \quad lbs$$

$$W_{ICEant} \cdot N_{ant} = 172 \quad lbs \quad \text{BLC 3}$$

Development of Wind & Ice Load on TMAs
TMA Data:

TMA Model =	CCI DTMABP7819VG12A		
TMA Shape =	Flat	(User Input)	
TMA Height =	$L_{TMA} := 14.25$	in	(User Input)
TMA Width =	$W_{TMA} := 11.46$	in	(User Input)
TMA Thickness =	$T_{TMA} := 4.17$	in	(User Input)
TMA Weight =	$W_{TMA} := 19.2$	lbs	(User Input)
Number of TMAs =	$N_{TMA} := 3$		(User Input)

Wind Load (NESC Extreme)

**Assumes Maximum Possible Wind Pressure
Applied to all TMAs Simultaneously**

Surface Area for One TMA =

$$SA_{TMA} := \frac{L_{TMA} \cdot W_{TMA}}{144} = 1.1 \quad sf$$

TMA Projected Surface Area =

$$A_{TMA} := SA_{TMA} \cdot N_{TMA} = 3.4 \quad sf$$

Total TMA Wind Force =

$$F_{TMA} := qz \cdot Cd_F \cdot A_{TMA} \cdot m = 230 \quad lbs \quad BLC 5$$

Wind Load (NESC Heavy)

**Assumes Maximum Possible Wind Pressure
Applied to all TMAs Simultaneously**

Surface Area for One TMA w/ Ice =

$$SA_{ICETMA} := \frac{(L_{TMA} + 1) \cdot (W_{TMA} + 1)}{144} = 1.3 \quad sf$$

TMA Projected Surface Area w/ Ice =

$$A_{ICETMA} := SA_{ICETMA} \cdot N_{TMA} = 4 \quad sf$$

Total TMA Wind Force w/ Ice =

$$F_{TMA} := p \cdot Cd_F \cdot A_{ICETMA} = 25 \quad lbs \quad BLC 4$$

Gravity Load (without ice)

Weight of All TMAs =

$$W_{TMA} \cdot N_{TMA} = 58 \quad lbs \quad BLC 2$$

Gravity Load (ice only)

Volume of Each TMA =

$$V_{TMA} := L_{TMA} \cdot W_{TMA} \cdot T_{TMA} = 681 \quad cu \text{ in}$$

Volume of Ice on Each TMA =

$$V_{ice} := (L_{TMA} + 1) \cdot (W_{TMA} + 1) \cdot (T_{TMA} + 1) - V_{TMA} = 301 \quad cu \text{ in}$$

Weight of Ice on Each TMA =

$$W_{ICETMA} := \frac{V_{ice}}{1728} \cdot Id = 10 \quad lbs$$

Weight of Ice on All TMAs =

$$W_{ICETMA} \cdot N_{TMA} = 29 \quad lbs \quad BLC 3$$

Development of Wind & Ice Load on TMAs
TMA Data:

TMA Model =	Kaelus		
TMA Shape =	Flat	(User Input)	
TMA Height =	$L_{TMA} := 8.46$	in	(User Input)
TMA Width =	$W_{TMA} := 11.81$	in	(User Input)
TMA Thickness =	$T_{TMA} := 4.21$	in	(User Input)
TMA Weight =	$WT_{TMA} := 17.6$	lbs	(User Input)
Number of TMAs =	$N_{TMA} := 3$	(User Input)	

Wind Load (NESC Extreme)
*Assumes Maximum Possible Wind Pressure
Applied to all TMAs Simultaneously*

Surface Area for One TMA =

$$SA_{TMA} := \frac{L_{TMA} \cdot W_{TMA}}{144} = 0.7 \quad sf$$

TMA Projected Surface Area =

$$A_{TMA} := SA_{TMA} \cdot N_{TMA} = 2.1 \quad sf$$

Total TMA Wind Force =

$$F_{TMA} := qz \cdot Cd_F \cdot A_{TMA} \cdot m = 141 \quad lbs \quad BLC 5$$

Wind Load (NESC Heavy)
*Assumes Maximum Possible Wind Pressure
Applied to all TMAs Simultaneously*

Surface Area for One TMA w/ Ice =

$$SA_{ICETMA} := \frac{(L_{TMA} + 1) \cdot (W_{TMA} + 1)}{144} = 0.8 \quad sf$$

TMA Projected Surface Area w/ Ice =

$$A_{ICETMA} := SA_{ICETMA} \cdot N_{TMA} = 2.5 \quad sf$$

Total TMA Wind Force w/ Ice =

$$F_{TMA} := p \cdot Cd_F \cdot A_{ICETMA} = 16 \quad lbs \quad BLC 4$$

Gravity Load (without ice)
Weight of All TMAs =

$$WT_{TMA} \cdot N_{TMA} = 53 \quad lbs \quad BLC 2$$

Gravity Load (ice only)

Volume of Each TMA =

$$V_{TMA} := L_{TMA} \cdot W_{TMA} \cdot T_{TMA} = 421 \quad cu\ in$$

Volume of Ice on Each TMA =

$$V_{ice} := (L_{TMA} + 1) \cdot (W_{TMA} + 1) \cdot (T_{TMA} + 1) - V_{TMA} = 211 \quad cu\ in$$

Weight of Ice on Each TMA =

$$W_{ICETMA} := \frac{V_{ice}}{1728} \cdot Id = 7 \quad lbs$$

Weight of Ice on All TMAs =

$$W_{ICETMA} \cdot N_{TMA} = 20 \quad lbs \quad BLC 3$$

Development of Wind & Ice Load on Antenna Mounts
Mount Data:

Mount Type: T-Arm Array

Mount Shape = Flat

 Mount Projected Surface Area = $CdAa := 15$ sf (User Input)

 Mount Projected Surface Area w/ Ice = $CdAa_{ice} := 20$ sf (User Input)

 Mount Weight = $WT_{mnt} := 750$ lbs (User Input)

 Mount Weight w/ Ice = $WT_{mnt.ice} := 1000$ lbs (User Input)

Gravity Loads (without ice)

 Weight of All Mounts = $WT_{mnt2} := WT_{mnt} = 750$ lbs **BLC 2**
Gravity Load (ice only)

 Weight of Ice on All Mounts = $WT_{ice.mnt2} := WT_{mnt.ice} - WT_{mnt} = 250$ lbs **BLC 3**
Wind Load (NESC Heavy)

 Total Mount Wind Force w/ Ice = $F_{mnt2} := p \cdot CdAa_{ice} = 80$ lbs **BLC 4**
Wind Load (NESC Extreme)

 Total Mount Wind Force = $F_{mnt2} := qz \cdot CdAa \cdot m = 633$ lbs **BLC 5**

Subject:

 Load Analysis of AT&T Equipment on
 Structure #4119

Location:

Southington, CT

Rev. 0: 1/26/17

 Prepared by: T.J.L Checked by: C.F.C.
 Job No. 17004.04

Development of Wind & Ice Load on Coax Cables
Coax Cable Data:

Coax Type =	HELIAX 1-5/8"		
Shape =	Round	(User Input)	
Coax Outside Diameter =	$D_{coax} := 1.98$	in	(User Input)
Coax Cable Length =	$L_{coax} := 10$	ft	(User Input)
Weight of Coax per foot =	$Wt_{coax} := 1.04$	plf	(User Input)
Total Number of Coax =	$N_{coax} := 18$	(User Input)	
No. of Coax Projecting Outside Face of Mast =	$NP_{coax} := 6$	(User Input)	

Wind Load (NESC Extreme)

$$Coax \text{ projected surface area} = A_{coax} := \frac{(NP_{coax} D_{coax})}{12} = 1 \text{ ft}$$

$$Total \text{ Coax Wind Force (Above NU Structure)} = F_{coax} := qz \cdot Cd_{coax} \cdot A_{coax} \cdot m = 61 \text{ plf BLC 5}$$

Wind Load (NESC Heavy)

$$Coax \text{ projected surface area w/ Ice} = AICE_{coax} := \frac{(NP_{coax} \cdot D_{coax} + 2 \cdot lr)}{12} = 1.1 \text{ ft}$$

$$Total \text{ Coax Wind Force w/ Ice} = F_{coax} := p \cdot Cd_{coax} \cdot AICE_{coax} = 6 \text{ plf BLC 4}$$

Gravity Loads (without ice)

$$Weight \text{ of all cables w/o ice} = WT_{coax} := Wt_{coax} \cdot N_{coax} = 19 \text{ plf BLC 2}$$

Gravity Load (ice only)

$$Ice \text{ Area per Linear Foot} = Ai_{coax} := \frac{\pi}{4} \left[(D_{coax} + 2 \cdot lr)^2 - D_{coax}^2 \right] = 3.9 \text{ sq in}$$

$$Ice \text{ Weight All Coax per foot} = WT_{coax} := N_{coax} \cdot ld \cdot \frac{Ai_{coax}}{144} = 27 \text{ plf BLC 3}$$

CENTEK engineering, INC.

Consulting Engineers

63-2 North Branford Road

Branford, CT 06405

Ph. 203-488-0580 / Fax. 203-488-8587

Subject: **Analysis of NESC Heavy Wind and NESC Extreme Wind
for Obtaining Reactions Applied to Utility Pole
Tabulated Load Cases**

Location: **Southington, CT**

Date: 1/26/17

Prepared by: T.J.L.

Checked by: C.F.C.

Job No. 17004.04

Load Case

Description

1

Self Weight (Mast)

2

Weight of Appurtenances

3

Weight of Ice Only

4

NESC Heavy Wind

5

NESC Extreme Wind

Footnotes:

CENTEK engineering, INC.
Consulting Engineers
63-2 North Branford Road
Branford, CT 06405
Ph. 203-488-0580 / Fax. 203-488-8587

Subject: **Analysis of NESC Heavy Wind and NESC Extreme Wind
for Obtaining Reactions Applied to Utility Pole
Load Combinations Table**

Location: **Southington, CT**

Date: 1/26/17 Prepared by: T.J.L. Checked by: C.F.C.

Job No. 17004.04

Load Combination	Description	Envelope Wind									
		Soultion	Factor	P-Delta	BLC Factor						
1	NESC Heavy Wind		1		1	1.5	2	1.5	3	1.5	4
2	NESC Extreme Wind		1		1	1	2	1	5	1	2.5

Footnotes:

(1) BLC = Basic Load Case

Global

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Increase Nailing Capacity for Wind?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	No
Maximum Iteration Number for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 9th: ASD
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI 1999: ASD
Wood Code	AF&PA NDS-97: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-02
Masonry Code	ACI 530-05: ASD
Aluminum Code	AA ADM1-05: ASD - Building

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	PCA Load Contour
Parmer Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

Global, Continued

Seismic Code	UBC 1997
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	No
Ct Z	.035
Ct X	.035
T Z (sec)	Not Entered
T X (sec)	Not Entered
R Z	8.5
R X	8.5
Ca	.36
Cv	.54
Nv	1
Occupancy Category	4
Seismic Zone	3
Seismic Detailing Code	ASCE 7-05
Om Z	1
Om X	1
Rho Z	1
Rho X	1

Footing Overturning Safety Factor	1.5
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	0
Footing Concrete f'c (ksi)	3
Footing Concrete Ec (ksi)	4000
Lamda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	#3
Footing Top Bar Cover (in)	3.5
Footing Bottom Bar	#3
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	#3
Pedestal Bar Cover (in)	1.5
Pedestal Ties	#3

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1...	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	58	1.2
3	A992	29000	11154	.3	.65	.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1
6	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	58	1.2

Hot Rolled Steel Design Parameters

Label	Shape	Length	Lbyy[ft]	Lbzz[ft]	Lcomp...	Lcomp...	Kyy	Kzz	Cm...Cm...	Cb	y s...	z s...	Function
1	M1	Mast	30										Lateral

Hot Rolled Steel Section Sets

Label	Shape	Type	Design List	Material	Design ...	A [in2]	Iyy [in4]	Izz [in4]	J [in4]	
1	Mast	PIPE_12.0	Beam	Pipe	A53 Gr. B	Typical	13.7	262	262	523

Member Primary Data

Label	I Joint	J Joint	K Joint	Rotate(d...)	Section/Shape	Type	Design List	Material	Design R...
1	M1	BOTCO...	TOPMA...		Mast	Beam	Pipe	A53 Gr. B	Typical

Joint Coordinates and Temperatures

Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From ...
1	BOTCONNECTION	0	0	0	0
2	TOPCONNECTION	0	18	0	0
3	TOPMAST	0	30	0	0

Joint Boundary Conditions

Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]	Footing
1	BOTCONNECTION	Reaction	Reaction	Reaction		Fixed	
2	TOPCONNECTION	Reaction		Reaction			

Member Point Loads (BLC 2 : Weight of Appurtenances)

Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	Y	-146	30
2	Y	-333	30
3	Y	-058	30
4	Y	-053	30
5	Y	.75	30

Member Point Loads (BLC 3 : Weight of Ice Only)

Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	Y	-139	30
2	Y	-172	30
3	Y	-029	30
4	Y	.02	30
5	Y	.25	30

Member Point Loads (BLC 4 : NESC Heavy Wind)

Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	X	.125	30
2	X	.127	30
3	X	.025	30
4	X	.016	30

Member Point Loads (BLC 4 : NESC Heavy Wind) (Continued)

Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
5 M1	X	.08	30

Member Point Loads (BLC 5 : NESC Extreme Wind)

Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1 M1	X	1.195	30
2 M1	X	1.215	30
3 M1	X	.23	30
4 M1	X	.141	30
5 M1	X	.633	30

Joint Loads and Enforced Displacements

Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/ft, k*s^2*ft)]
No Data to Print ...			

Member Distributed Loads (BLC 2 : Weight of Appurtenances)

Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,%]	End Location[ft,%]
1 M1	Y	-.019	-.019	20	30

Member Distributed Loads (BLC 3 : Weight of Ice Only)

Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,%]	End Location[ft,%]
1 M1	Y	-.008	-.008	0	0
2 M1	Y	-.027	-.027	20	30

Member Distributed Loads (BLC 4 : NESC Heavy Wind)

Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,%]	End Location[ft,%]
1 M1	X	.006	.006	0	0
2 M1	X	.006	.006	20	30

Member Distributed Loads (BLC 5 : NESC Extreme Wind)

Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,%]	End Location[ft,%]
1 M1	X	.047	.047	0	20
2 M1	X	.058	.058	20	30
3 M1	X	.061	.061	20	30

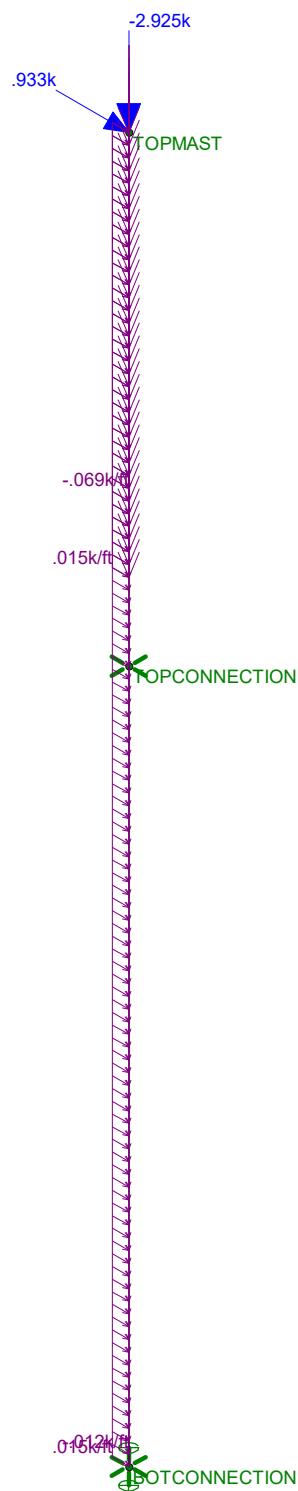
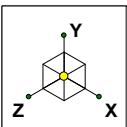
Basic Load Cases

	BLC Description	Category	X Gra...	Y Gravity	Z Gra...	Joint	Point	Distrib...	Area(...	Surfa...
1	Self Weight	None		-1						
2	Weight of Appurtenances	None						5	1	
3	Weight of Ice Only	None						5	2	
4	NESC Heavy Wind	None						5	2	
5	NESC Extreme Wind	None						5	3	

Load Combinations

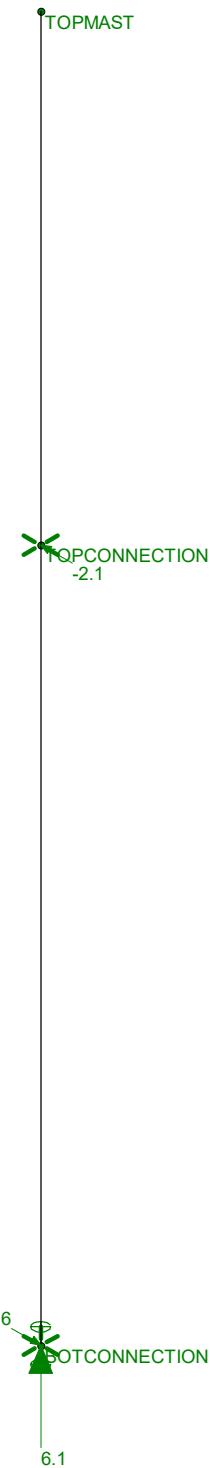
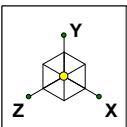
Description		Sol...	PDelta	SR..BLC	Fact..BLC								
1	NESC Heavy Wind	Yes		1	1.5	2	1.5	3	1.5	4	2.5		
2	NESC Extreme Wind	Yes		1	1	2	1	5	1				

Envelope Joint Reactions

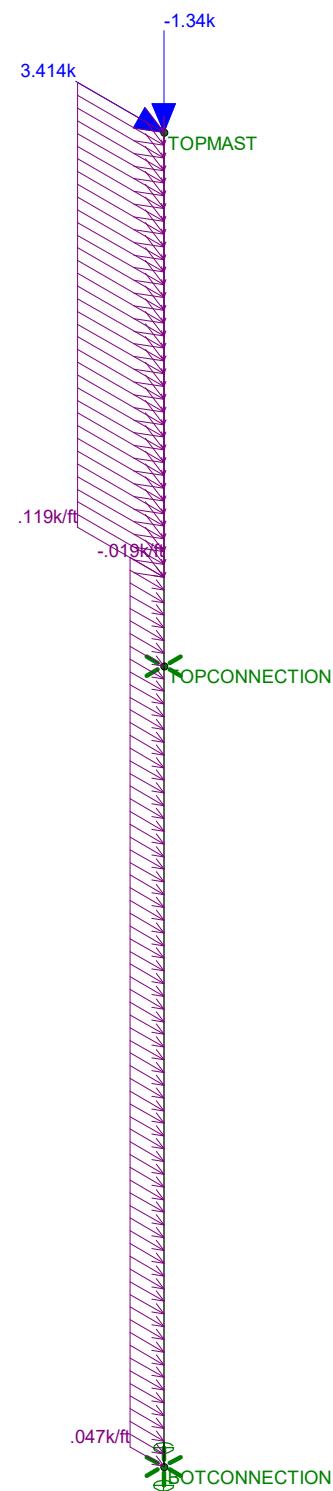
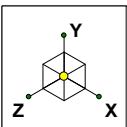


Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	BOTCONNE...	max	2.321	2	6.073	1	0	1	0	1	NC	NC	0
2		min	.605	1	2.929	2	0	1	0	1	NC	NC	0
3	TOPCONNE...	max	-2.137	1	0	1	0	1	0	1	0	1	0
4		min	-7.865	2	0	1	0	1	0	1	0	1	0
5	Totals:	max	-1.532	1	6.073	1	0	1					
6		min	-5.544	2	2.929	2	0	1					

Joint Reactions

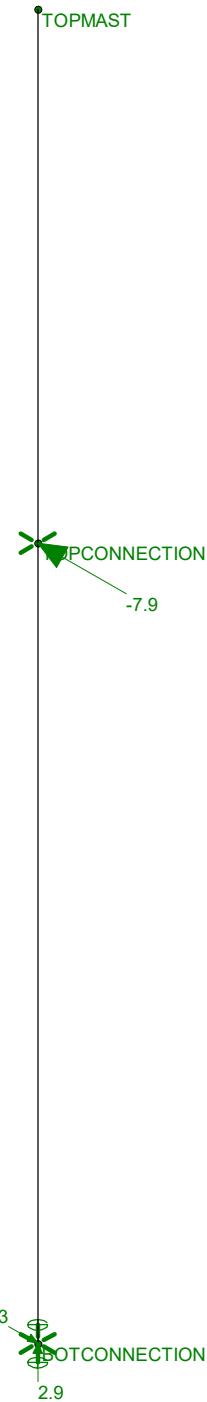
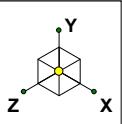
LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	1	BOTCONNECTION	.605	6.073	0	0	NC
2	1	TOPCONNECTION	-2.137	0	0	0	0
3	1	Totals:	-1.532	6.073	0		
4	1	COG (ft):	X: 0	Y: 23.361	Z: 0		



Joint Reactions

LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	2	BOTCONNECTION	2.321	2.929	0	0	NC
2	2	TOPCONNECTION	-7.865	0	0	0	0
3	2	Totals:	-5.544	2.929	0		
4	2	COG (ft):	X: 0	Y: 22.512	Z: 0		



Loads: LC 1, NESC Heavy Wind

CENTEK Engineering, Inc.	Structure #4119 Mast LC #1 Loads	Jan 26, 2017 at 12:56 PM
tjl, cfc		
17004.04/AT&T CT1109		NESC.r3d



Results for LC 1, NESC Heavy Wind
Z-direction Reaction Units are k and k-ft

CENTEK Engineering, Inc.	Structure #4119 Mast LC #1 Reactions	Jan 26, 2017 at 12:57 PM
tjl, cfc		
17004.04/AT&T CT1109		NESC.r3d

Loads: LC 2, NESC Extreme Wind

CENTEK Engineering, Inc.	Structure #4119 Mast LC #2 Loads	Jan 26, 2017 at 12:56 PM
tjl, cfc		
17004.04/AT&T CT1109		NESC.r3d

Results for LC 2, NESC Extreme Wind
Z-direction Reaction Units are k and k-ft

CENTEK Engineering, Inc.	Structure #4119 Mast LC #2 Reactions	Jan 26, 2017 at 1:00 PM
tjl, cfc		
17004.04/AT&T CT1109		NESC.r3d

Coax Cable on CL&P Tower

SouthEast Leg

Distance Between Coax Cable Attach Points =

Coaxial Cable Span =

$$\text{CoaxSpan} := \begin{pmatrix} 2.5 \\ 5.5 \\ 6 \\ 5.5 \\ 5 \\ 5 \\ 5.5 \\ 6.25 \\ 10.5 \\ 29.75 \end{pmatrix} \cdot \text{ft} \quad (\text{User Input})$$

Diameter of Coax Cable =

$$D_{\text{coax}} := 1.98 \cdot \text{in} \quad (\text{User Input})$$

Weight of Coax Cable =

$$W_{\text{coax}} := 1.04 \cdot \text{plf} \quad (\text{User Input})$$

Number of Coax Cables =

$$N_{\text{coax}} := 12 \quad (\text{User Input})$$

Number of Projected Coax Cables =

$$NP_{\text{coax}} := 6 \quad (\text{User Input})$$

Extreme Wind Pressure =

$$qz := 33.8 \cdot \text{psf} \quad (\text{User Input})$$

Heavy Wind Pressure =

$$p := 4 \cdot \text{psf} \quad (\text{User Input})$$

Radial Ice Thickness =

$$lr := 0.5 \cdot \text{in} \quad (\text{User Input})$$

Radial Ice Density =

$$ld := 56 \cdot \text{pcf} \quad (\text{User Input})$$

Shape Factor =

$$Cd_{\text{coax}} := 1.6 \quad (\text{User Input})$$

Overload Factor for NESC Heavy Wind Load =

$$OF_{\text{HW}} := 2.5 \quad (\text{User Input})$$

Overload Factor for NESC Extreme Wind Load =

$$OF_{\text{EW}} := 1.0 \quad (\text{User Input})$$

Overload Factor for NESC Heavy Vertical Load =

$$OF_{\text{HV}} := 1.5 \quad (\text{User Input})$$

Overload Factor for NESC Extreme Vertical Load =

$$OF_{\text{EV}} := 1.0 \quad (\text{User Input})$$

Wind Area with Ice =

$$A_{\text{ice}} := (NP_{\text{coax}} \cdot D_{\text{coax}} + 2 \cdot lr) = 12.88 \cdot \text{in}^2$$

Wind Area without Ice =

$$A := (NP_{\text{coax}} \cdot D_{\text{coax}}) = 11.88 \cdot \text{in}^2$$

Ice Area per Liner Ft =

$$Ai_{\text{coax}} := \frac{\pi}{4} \left[(D_{\text{coax}} + 2 \cdot lr)^2 - D_{\text{coax}}^2 \right] = 0.027 \text{ ft}^2$$

Weight of Ice on All Coax Cables =

$$W_{\text{ice}} := Ai_{\text{coax}} \cdot ld \cdot N_{\text{coax}} = 18.179 \cdot \text{plf}$$

Heavy Vertical Load =

$$\text{Heavy}_{\text{Vert}} := \overrightarrow{[(N_{\text{coax}} \cdot W_{\text{coax}} + W_{\text{ice}}) \cdot \text{Coax}_{\text{Span}} \cdot OF_{\text{HV}}]}$$

Heavy Transverse Load =

$$\text{Heavy}_{\text{Trans}} := \overrightarrow{(p \cdot A_{\text{ice}} \cdot Cd_{\text{coax}} \cdot \text{Coax}_{\text{Span}} \cdot OF_{\text{HW}})}$$

	0		0	
0	115	lb	0	43
1	253	lb	1	94
2	276	lb	2	103
3	253	lb	3	94
4	230	lb	4	86
5	230	lb	5	86
6	253	lb	6	94
7	287	lb	7	107
8	483	lb	8	180
9	1368	lb	9	511

Extreme Vertical Load =

$$\text{Extreme}_{\text{Vert}} := \overrightarrow{[(N_{\text{coax}} \cdot W_{\text{coax}}) \cdot \text{Coax}_{\text{Span}} \cdot OF_{\text{EV}}]}$$

Extreme Transverse Load =

$$\text{Extreme}_{\text{Trans}} := \overrightarrow{[(qz \cdot A \cdot Cd_{\text{coax}}) \cdot \text{Coax}_{\text{Span}} \cdot OF_{\text{EW}}]}$$

	0		0	
0	31	lb	0	134
1	69	lb	1	294
2	75	lb	2	321
3	69	lb	3	294
4	62	lb	4	268
5	62	lb	5	268
6	69	lb	6	294
7	78	lb	7	335
8	131	lb	8	562
9	371	lb	9	1593

Coax Cable on CL&P Tower

SouthWest Leg

Distance Between Coax Cable Attach Points =

Coaxial Cable Span =

$$\text{CoaxSpan} := \begin{pmatrix} 2.5 \\ 5.5 \\ 6 \\ 5.5 \\ 5 \\ 5 \\ 5.5 \\ 6.25 \\ 10.5 \\ 29.75 \end{pmatrix} \text{ ft} \quad (\text{User Input})$$

Diameter of Coax Cable =

$$D_{\text{coax}} := 1.98 \text{ in} \quad (\text{User Input})$$

Weight of Coax Cable =

$$W_{\text{coax}} := 1.04 \text{ plf} \quad (\text{User Input})$$

Number of Coax Cables =

$$N_{\text{coax}} := 6 \quad (\text{User Input})$$

Number of Projected Coax Cables =

$$NP_{\text{coax}} := 3 \quad (\text{User Input})$$

Extreme Wind Pressure =

$$qz := 33.8 \text{ psf} \quad (\text{User Input})$$

Heavy Wind Pressure =

$$p := 4 \text{ psf} \quad (\text{User Input})$$

Radial Ice Thickness =

$$lr := 0.5 \text{ in} \quad (\text{User Input})$$

Radial Ice Density =

$$ld := 56 \text{pcf} \quad (\text{User Input})$$

Shape Factor =

$$Cd_{\text{coax}} := 1.6 \quad (\text{User Input})$$

Overload Factor for NESC Heavy Wind Load =

$$OF_{\text{HW}} := 2.5 \quad (\text{User Input})$$

Overload Factor for NESC Extreme Wind Load =

$$OF_{\text{EW}} := 1.0 \quad (\text{User Input})$$

Overload Factor for NESC Heavy Vertical Load =

$$OF_{\text{HV}} := 1.5 \quad (\text{User Input})$$

Overload Factor for NESC Extreme Vertical Load =

$$OF_{\text{EV}} := 1.0 \quad (\text{User Input})$$

Wind Area with Ice =

$$A_{\text{ice}} := (NP_{\text{coax}} D_{\text{coax}} + 2 \cdot lr) = 6.94 \text{ in}$$

Wind Area without Ice =

$$A := (NP_{\text{coax}} D_{\text{coax}}) = 5.94 \text{ in}$$

Ice Area per Liner Ft =

$$Ai_{\text{coax}} := \frac{\pi}{4} \cdot \left[(D_{\text{coax}} + 2 \cdot lr)^2 - D_{\text{coax}}^2 \right] = 0.027 \text{ ft}^2$$

Weight of Ice on All Coax Cables =

$$W_{\text{ice}} := Ai_{\text{coax}} \cdot ld \cdot N_{\text{coax}} = 9.09 \text{ plf}$$

Heavy Vertical Load =

$$\text{HeavyVert} := \overrightarrow{[(N_{\text{coax}} \cdot W_{\text{coax}} + W_{\text{ice}}) \cdot \text{CoaxSpan} \cdot OF_{\text{HV}}]}$$

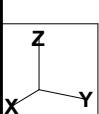
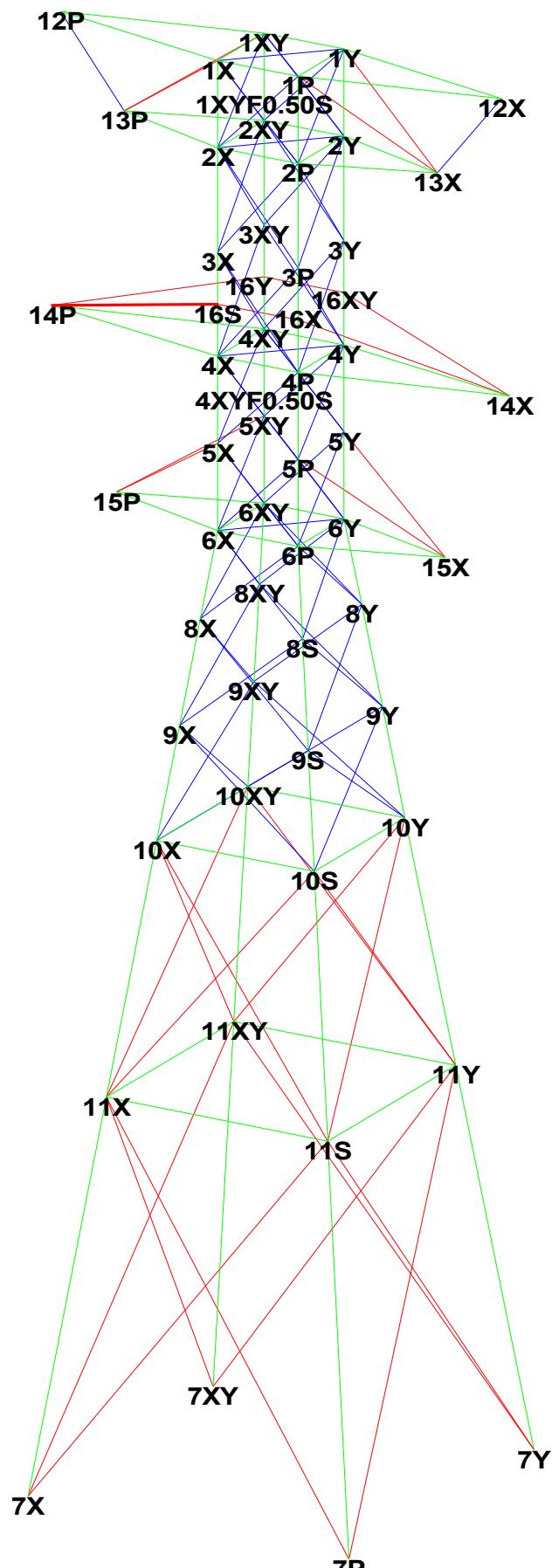
Heavy Transverse Load =

$$\text{HeavyTrans} := \overrightarrow{(p \cdot A_{\text{ice}} \cdot Cd_{\text{coax}} \cdot \text{CoaxSpan} \cdot OF_{\text{HW}})}$$

	0
0	57
1	126
2	138
3	126
4	115
5	115
6	126
7	144
8	241
9	684

	0
0	23
1	51
2	56
3	51
4	46
5	46
6	51
7	58
8	97
9	275

Extreme Vertical Load =



$$\text{ExtremeVert} := \overrightarrow{[(N_{\text{coax}} \cdot W_{\text{coax}}) \cdot \text{CoaxSpan} \cdot OF_{\text{EV}}]}$$

Extreme Transverse Load =

$$\text{ExtremeTrans} := \overrightarrow{[(qz \cdot A \cdot Cd_{\text{coax}}) \cdot \text{CoaxSpan} \cdot OF_{\text{EW}}]}$$

	0
0	16
1	34
2	37
3	34
4	31
5	31
6	34
7	39
8	66
9	186

	0
0	67
1	147
2	161
3	147
4	134
5	134
6	147
7	167
8	281
9	796

Project Name : 17004.04 - Southington, CT
Project Notes: Structure #4119 / AT&T CT1109
Project File : J:\Jobs\1700400.WI\04_Southington-Cathydrive NU CT1109\04_Structural\Backup Documentation\Calcs\PLS Tower\cl&p # 4119.tow
Date run : 3:27:25 PM Thursday, January 26, 2017
by : Tower Version 12.50
Licensed to : Centek Engineering Inc

Successfully performed nonlinear analysis

Member "g14P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g14X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g14XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g14Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g17P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g17X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g17XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g17Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g18P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g18X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g18XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g18Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g19P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g19X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g19XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g19Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g22P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g22X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g22XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g22Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g23P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g23X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g23XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g23Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g24P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge

and spacing distances will be checked. ??
 Member "g33XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
 Member "g33Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
 Member "g34P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
 Member "g34X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
 Member "g34XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
 Member "g34Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
 Member "g35P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
 Member "g35X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
 Member "g35XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
 Member "g35Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
 The model has 64 warnings. ??

Member check option: ASCE 10

Connection rupture check: ASCE 10

Crossing diagonal check: ASCE 10 [Alternate Unsupported RLOUT = 1]

Included angle check: None

Climbing load check: None

Redundant members checked with: Actual Force

Loads from file: j:\jobs\1700400.wi\04_southington-cathydrive nu ct1109\04_structural\backup documentation\calcs\pls tower\cl&p # 4119.lca

*** Analysis Results:

Maximum element usage is 81.86% for Angle "g17X" in load case "NESC Extreme"

Maximum insulator usage is 16.01% for Clamp "19" in load case "NESC Extreme"

Summary of Joint Support Reactions For All Load Cases:

Load Case	Joint Label	Long. Force (kips)	Tran. Force (kips)	Vert. Force (kips)	Shear Force (kips)	Tran. Moment (ft-k)	Long. Moment (ft-k)	Bending Moment (ft-k)	Vert. Moment (ft-k)	Found. %	Usage
NESC Heavy	7P	-6.17	-4.92	-30.80	7.89	0.02	-0.01	0.02	0.00	0.00	
NESC Heavy	7X	2.95	-2.31	15.43	3.75	0.02	-0.00	0.02	0.01	0.00	
NESC Heavy	7XY	-2.93	-2.55	14.21	3.88	0.05	-0.00	0.05	-0.00	0.00	
NESC Heavy	7Y	6.15	-6.02	-33.69	8.61	0.04	-0.01	0.04	-0.00	0.00	
NESC Extreme	7P	-7.06	-8.19	-51.76	10.81	0.04	-0.15	0.15	0.02	0.00	
NESC Extreme	7X	8.91	-6.73	44.85	11.17	0.03	0.01	0.04	0.04	0.00	
NESC Extreme	7XY	-9.01	-11.50	48.40	14.61	0.25	0.01	0.25	0.01	0.00	
NESC Extreme	7Y	7.16	-8.08	-56.82	10.80	0.23	-0.17	0.28	-0.01	0.00	

Summary of Joint Support Reactions For All Load Cases in Direction of Leg:

Load Case	Support Origin Joint	Leg Member	Force In Leg Dir.	Residual Shear To Leg	Residual Shear To Leg - Res.	Residual Shear To Leg - Long.	Residual Shear To Leg - Tran.	Total Force	Total Force	Total Force
	Joint	Joint	Perpendicular	Horizontal	Horizontal	Horizontal	Long.	Tran.	Vert.	
			(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)

NESC Heavy	7P	11S	g19X	31.731	2.018	2.049	1.933	0.678	-6.17	-4.92	-30.80
NESC Heavy	7X	11X	g19P	-15.862	0.834	0.845	-0.823	0.191	2.95	-2.31	15.43
NESC Heavy	7XY	11XY	g19Y	-14.689	1.116	1.136	0.970	0.592	-2.93	-2.55	14.21
NESC Heavy	7Y	11Y	g19XY	34.711	2.013	2.051	-1.514	1.383	6.15	-6.02	-33.69
NESC Extreme	7P	11S	g19X	52.862	1.058	1.067	-0.062	1.065	-7.06	-8.19	-51.76
NESC Extreme	7X	11X	g19P	-46.135	2.761	2.797	-2.740	0.562	8.91	-6.73	44.85
NESC Extreme	7XY	11XY	g19Y	-50.280	5.290	5.378	2.348	4.838	-9.01	-11.50	48.40
NESC Extreme	7Y	11Y	g19XY	57.827	0.710	0.712	0.661	0.265	7.16	-8.08	-56.82

Overturning Moment Summary For All Load Cases:

Load Case Transverse Longitudinal Resultant		
	Moment (ft-k)	Moment (ft-k)
NESC Heavy	941.345	-41.116
NESC Extreme	2018.192	-15.068
	942.243	2018.248

Sections Information:

Section Label	Top Z	Bottom Z	Joint Count	Member Count	Tran. Top Width	Face Tran. Bot Width	Face Tran. Gross Area	Face Long. Top Width	Face Long. Bot Width	Face Long. Gross Area
	(ft)	(ft)			(ft)	(ft)	(ft^2)	(ft)	(ft)	(ft^2)
1	81.500	37.000	50	162	5.00	9.82	264.644	27.50	9.82	431.144
2	37.000	0.000	12	28	9.82	20.00	551.606	9.82	20.00	551.606

*** Overall summary for all load cases - Usage = Maximum Stress / Allowable Stress
Printed capacities do not include the strength factor entered for each load case.
The Group Summary reports on the member and load case that resulted in maximum usage
which may not necessarily be the same as that which produces maximum force.

Group Summary (Compression Portion):

Group KL/R Length	Group Curve	Angle Angle No.	Angle Desc.	Steel Type	Max Usage	Max Cont-	Comp. Use	Comp. Control	Comp. Force	Comp. Capacity	Comp. Connect.	Comp. Connect.	RLX	RLY	RLZ	L/R	
Length	Curve	Angle No.	Desc.	Type	Size	Strength	Usage	Cont-	Use	Control	Force	Capacity	Connect.	Connect.			
Comp. No.	Of				rol	In	Member		Load		Shear	Bearing					
Member	Bolts						Comp.		Case		Capacity	Capacity					
Comp.					(ksi)	%	%	(kips)	(kips)	(kips)	(kips)	(kips)					
(ft)																	
LEG1 75.47	L4X4X1/4 5.000	1	SAE 12 A potentially damaging moment exists in the following members (make sure your system is well triangulated to minimize moments): g4P g5P g6Y g12P g13P ??	4X4X0.25	33.0	71.03	Comp	71.03	g14XY	-38.006NESC Ext	53.509	109.200	168.750	1.000	1.000	1.000	75.47
LEG2 100.46	L4X4X5/16 6.622	1	SAE 10	4X4X0.3125	33.0	81.86	Comp	81.86	g17X	-45.974NESC Ext	56.161	91.000	175.781	1.000	1.000	1.000	100.46
LEG3 58.29	L4X4X3/8 22.922	1	SAE 10	4X4X0.375	33.0	69.00	Comp	69.00	g19XY	-58.744NESC Ext	85.135	91.000	210.937	0.167	0.167	0.167	58.29
XBR1 122.85	L1.75X1.75X3/16 7.071	5	SAE 2	1.75X1.75X0.1875	33.0	27.91	Comp	27.91	g20Y	-3.227NESC Ext	11.559	18.200	21.094	0.750	0.500	0.500	123.69
XBR2 120.47	L3X2X3/16 7.810	5	SAU 3	3X2X0.1875	33.0	44.84	Comp	44.84	g24Y	-7.746NESC Ext	17.275	27.300	31.641	0.500	0.750	0.500	120.57
XBR3 120.47	L2X2X3/16 7.810	5	SAE 3	2X2X0.1875	33.0	35.79	Cross	35.79	g31Y	-3.866NESC Ext	10.802	18.200	21.094	1.000	0.559	0.559	147.90

137.16	7.604	6	2	XBR4	L2.5X2X3/16	SAU	2.5X2X0.1875	33.0	31.21	Cross	31.21	g35Y	-2.174NESC Ext	6.967	18.200	21.094	0.550	1.000	0.550	221.50
182.42	11.075	6	2	XBR5	L1.75X1.75X1/4	SAE	1.75X1.75X0.25	33.0	65.98	Comp	65.98	g36Y	-4.186NESC Ext	6.345	18.200	28.125	0.500	0.250	0.250	213.33
191.16	18.808	5	2	HORZ1	L2.5X2X3/16	SAU	2.5X2X0.1875	33.0	49.53	Comp	49.53	g41X	-4.507NESC Ext	10.506	9.100	10.547	1.000	0.500	0.500	148.55
148.55	9.817	4	1	HORZ2	L3X2.5X1/4	SAU	3X2.5X0.25	33.0	70.36	Comp	70.36	g43X	-6.403NESC Ext	15.230	9.100	14.062	0.500	0.500	0.500	156.90
156.90	13.807	4	1	ARM1	L3X2.5X1/4	SAU	3X2.5X0.25	33.0	15.06	Comp	15.06	g46Y	-3.745NESC Hea	24.877	27.300	42.187	0.500	1.000	0.500	122.21
121.36	7.669	6	3	A potentially damaging moment exists in the following members (make sure your system is well triangulated to minimize moments): g45Y g47Y ??																
ARM2	L3.5X2.5X1/4	SAU	3.5X2.5X0.25	33.0	28.83	Comp	28.83	g48Y	-4.270NESC Hea	14.810	27.300	42.187	0.500	1.000	0.500	196.13				
166.82	12.013	6	3	M1	L1.75X1.75X3/16	SAE	1.75X1.75X0.1875	33.0	43.18	Comp	43.18	g55P	-2.504NESC Ext	5.799	9.100	10.547	1.000	1.000	1.000	174.93
174.93	5.000	4	1	M2	L1.75X1.75X3/16	SAE	1.75X1.75X0.1875	33.0	11.97	Comp	11.97	g57X	-1.089NESC Ext	11.437	9.100	10.547	0.750	0.500	0.500	123.69
123.69	7.071	4	1	M3	L2.5X2.5X3/16	SAE	2.5X2.5X0.1875	33.0	20.12	Comp	20.12	g60P	-1.831NESC Hea	10.714	9.100	10.547	1.000	1.000	1.000	155.23
155.23	6.403	4	1	M4	BAR 1.75X1/4	Bar	1-3/4x1/4	33.0	47.96	Tens	2.46	g63XY	-0.015NESC Ext	0.595	9.100	14.062	1.000	1.000	1.000	458.68
458.68	9.556	4	1	XBR6	L1.75X1.75X3/16	SAE	1.75X1.75X0.1875	33.0	81.50	Comp	81.50	g39Y	-4.043NESC Hea	4.961	18.200	21.094	0.333	0.167	0.167	210.68
189.14	28.312	5	2																	

Group Summary (Tension Portion):

Group No. Label Of Diameter	Group Hole Desc.	Angle Type	Angle	Steel	Max Usage	Max Tension	Tension	Tension	Net Tension	Tension	Tension	Tension	Length	No.			
			Size	Strength	Usage	Cont-	Use	Control	Force	Control	Section	Connect.	Connect.	Connect.	Tens.		
Holes					rol	In	Member		Load	Capacity	Shear	Bearing	Rupture	Member	Bolts		
(in)						Tens.		Case		Capacity	Capacity	Capacity		Tens.			
					(ksi)	%	%	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(ft)			
LEG1	L4X4X1/4	SAE	4X4X0.25	33.0	71.03	Comp	65.14	g14P	34.316NESC Ext	52.676	109.200	168.750	220.588	5.000	12		
2.000	0.6875	A potentially damaging moment exists in the following members (make sure your system is well triangulated to minimize moments): g4P g5P g6Y g12P g13P ??															
LEG2	L4X4X5/16	SAE	4X4X0.3125	33.0	81.86	Comp	73.99	g16P	42.913NESC Ext	58.001	0.000	0.000	0.000	6.113	0		
2.990	0.6875	LEG3	L4X4X3/8	SAE	4X4X0.375	33.0	69.00	Comp	53.32	g19P	41.252NESC Ext	77.364	91.000	210.937	193.014	22.922	10
2.000	0.6875	XBR1	L1.75X1.75X3/16	SAE	1.75X1.75X0.1875	33.0	27.91	Comp	14.16	g20XY	2.065NESC Ext	14.585	18.200	21.094	16.189	7.071	2
1.000	0.6875	XBR2	L3X2X3/16	SAU	3X2X0.1875	33.0	44.84	Comp	40.40	g26XY	9.252NESC Ext	22.901	27.300	31.641	28.125	7.071	3
1.000	0.6875	XBR3	L2X2X3/16	SAE	2X2X0.1875	33.0	35.79	Cross	22.90	g31XY	3.007NESC Ext	17.258	18.200	21.094	13.131	7.604	2
1.000	0.6875	XBR4	L2.5X2X3/16	SAU	2.5X2X0.1875	33.0	31.21	Cross	15.53	g33P	2.827NESC Ext	20.228	18.200	21.094	18.750	9.410	2
1.000	0.6875	XBR5	L1.75X1.75X1/4	SAE	1.75X1.75X0.25	33.0	65.98	Comp	35.10	g37XY	5.800NESC Ext	18.952	18.200	28.125	16.523	18.808	2
1.000	0.6875	HORZ1	L2.5X2X3/16	SAU	2.5X2X0.1875	33.0	49.53	Comp	36.49	g41P	2.816NESC Hea	17.444	9.100	10.547	7.717	9.817	1
1.000	0.6875	HORZ2	L3X2.5X1/4	SAU	3X2.5X0.25	33.0	70.36	Comp	46.17	g43P	4.202NESC Hea	30.090	9.100	14.062	12.500	13.807	1

1.000	0.6875	ARM1	L3X2.5X1/4	SAU	3X2.5X0.25	33.0	15.06	Comp	5.93	g45P	2.563	NESC	Hea	43.230	0.000	0.000	0.000	5.000	0	
1.000	0	A potentially	damaging	moment	exists	in	the	following	members	(make	sure	your	system	is	well	triangulated	to	minimize	moments):	g45Y
g47Y	??	ARM2	L3.5X2.5X1/4	SAU	3.5X2.5X0.25	33.0	28.83	Comp	0.00	g49Y	0.000			47.520	0.000	0.000	0.000	5.000	0	
1.000	0	M1	L1.75X1.75X3/16	SAE	1.75X1.75X0.1875	33.0	43.18	Comp	36.83	g55X	2.842	NESC	Ext	14.585	9.100	10.547	7.717	5.000	1	
1.000	0.6875	M2	L1.75X1.75X3/16	SAE	1.75X1.75X0.1875	33.0	11.97	Comp	9.12	g57P	0.704	NESC	Ext	14.585	9.100	10.547	7.717	7.071	1	
1.000	0.6875	M3	L2.5X2.5X3/16	SAE	2.5X2.5X0.1875	33.0	20.12	Comp	0.00	g60X	0.000			22.961	9.100	10.547	9.375	6.403	1	
1.000	0.6875	M4	BAR 1.75X1/4	Bar	1-3/4x1/4	33.0	47.96	Tens	47.96	g62Y	3.784	NESC	Hea	7.889	9.100	14.062	12.500	12.382	1	
1.000	0.6875	XBR6	L1.75X1.75X3/16	SAE	1.75X1.75X0.1875	33.0	81.50	Comp	67.31	g38XY	8.886	NESC	Ext	14.585	18.200	21.094	13.201	28.312	2	
1.000	0.6875																			

*** Maximum Stress Summary for Each Load Case

Summary of Maximum Usages by Load Case:

Load Case	Maximum Element Usage %	Element Label	Element Type
NESC Heavy	81.50	g39Y	Angle
NESC Extreme	81.86	g17X	Angle

Summary of Insulator Usages:

Insulator Label	Insulator Type	Maximum Usage %	Load Case	Weight (lbs)
1	Clamp	3.53	NESC Heavy	0.0
2	Clamp	2.38	NESC Heavy	0.0
3	Clamp	4.32	NESC Heavy	0.0
4	Clamp	4.24	NESC Heavy	0.0
5	Clamp	4.34	NESC Heavy	0.0
6	Clamp	4.30	NESC Heavy	0.0
7	Clamp	4.28	NESC Heavy	0.0
8	Clamp	4.23	NESC Heavy	0.0
9	Clamp	0.59	NESC Extreme	0.0
10	Clamp	0.92	NESC Extreme	0.0
11	Clamp	0.98	NESC Extreme	0.0
12	Clamp	0.94	NESC Heavy	0.0
13	Clamp	0.87	NESC Extreme	0.0
14	Clamp	0.91	NESC Heavy	0.0
15	Clamp	0.92	NESC Extreme	0.0
16	Clamp	1.02	NESC Heavy	0.0
17	Clamp	2.34	NESC Extreme	0.0
18	Clamp	4.29	NESC Heavy	0.0
19	Clamp	16.01	NESC Extreme	0.0
20	Clamp	12.25	NESC Heavy	0.0
21	Clamp	0.46	NESC Extreme	0.0
22	Clamp	0.62	NESC Extreme	0.0

23	Clamp	0.65	NESC	Extreme	0.0
24	Clamp	0.64	NESC	Heavy	0.0
25	Clamp	0.59	NESC	Extreme	0.0
26	Clamp	0.60	NESC	Heavy	0.0
27	Clamp	0.62	NESC	Extreme	0.0
28	Clamp	0.66	NESC	Extreme	0.0
29	Clamp	1.78	NESC	Extreme	0.0
30	Clamp	2.61	NESC	Heavy	0.0

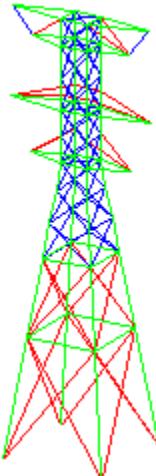
*** Weight of structure (lbs):

Weight of Angles*Section DLF: 7165.3

Total: 7165.3

*** End of Report

```
*****
* TOWER - Analysis and Design - Copyright Power Line Systems, Inc. 1986-2011 *
*****
*****
```


Project Name : 17004.04 - Southington, CT
Project Notes: Structure #4119 / AT&T CT1109
Project File : J:\Jobs\1700400.WI\04_Southington-Cathydrive NU CT1109\04_Structural\Backup Documentation\Calcs\PLS Tower\cl&p # 4119.tow
Date run : 3:27:24 PM Thursday, January 26, 2017
by : Tower Version 12.50
Licensed to : Centek Engineering Inc

Successfully performed nonlinear analysis

Member "g14P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g14X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g14XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g14Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g17P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g17X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g17XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g17Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g18P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g18X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g18XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g18Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g19P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g19X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g19XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g19Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g22P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g22X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g22XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g22Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g23P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g23X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge

and spacing distances will be checked. ??
Member "g32Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g33P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g33X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g33XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g33Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g34P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g34X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g34XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g34Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g35P" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g35X" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g35XY" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
Member "g35Y" will not be checked for block shear since more than one gage line exists (long edge distance (g) greater than zero); however, end, edge and spacing distances will be checked. ??
The model has 64 warnings. ??

Nonlinear convergence parameters: Use Standard Parameters
Tension only member maximum compression load as a percent of compression capacity: 100%
Member check option: ASCE 10
Connection rupture check: ASCE 10
Crossing diagonal check: ASCE 10 [Alternate Unsupported RLOUT = 1]
Included angle check: None
Climbing load check: None

Redundant members checked with: Actual Force

Joints Geometry:

Joint Label	Symmetry	X Coord. Code	Y Coord. (ft)	Z Coord. (ft)	X Disp. Rest.	Y Disp. Rest.	Z Disp. Rest.	X Rot. Rest.	Y Rot. Rest.	Z Rot. Rest.
1P	XY-Symmetry	2.5	2.5	81.5	Free	Free	Free	Free	Free	Free
2P	XY-Symmetry	2.5	2.5	76.5	Free	Free	Free	Free	Free	Free
3P	XY-Symmetry	2.5	2.5	70.5	Free	Free	Free	Free	Free	Free
4P	XY-Symmetry	2.5	2.5	64.5	Free	Free	Free	Free	Free	Free
5P	XY-Symmetry	2.5	2.5	59.5	Free	Free	Free	Free	Free	Free
6P	XY-Symmetry	2.5	2.5	54.5	Free	Free	Free	Free	Free	Free
7P	XY-Symmetry	10	10	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed
12P	X-Symmetry	0	-13.75	81.5	Free	Free	Free	Free	Free	Free
13P	X-Symmetry	0	-9.75	76.5	Free	Free	Free	Free	Free	Free
14P	X-Symmetry	0	-14.25	64.5	Free	Free	Free	Free	Free	Free
15P	X-Symmetry	0	-10.25	54.5	Free	Free	Free	Free	Free	Free
1X	X-GenXY	2.5	-2.5	81.5	Free	Free	Free	Free	Free	Free
1XY	XY-GenXY	-2.5	-2.5	81.5	Free	Free	Free	Free	Free	Free
1Y	Y-GenXY	-2.5	2.5	81.5	Free	Free	Free	Free	Free	Free
2X	X-GenXY	2.5	-2.5	76.5	Free	Free	Free	Free	Free	Free
2XY	XY-GenXY	-2.5	-2.5	76.5	Free	Free	Free	Free	Free	Free
2Y	Y-GenXY	-2.5	2.5	76.5	Free	Free	Free	Free	Free	Free
3X	X-GenXY	2.5	-2.5	70.5	Free	Free	Free	Free	Free	Free
3XY	XY-GenXY	-2.5	-2.5	70.5	Free	Free	Free	Free	Free	Free
3Y	Y-GenXY	-2.5	2.5	70.5	Free	Free	Free	Free	Free	Free
4X	X-GenXY	2.5	-2.5	64.5	Free	Free	Free	Free	Free	Free
4XY	XY-GenXY	-2.5	-2.5	64.5	Free	Free	Free	Free	Free	Free
4Y	Y-GenXY	-2.5	2.5	64.5	Free	Free	Free	Free	Free	Free
5X	X-GenXY	2.5	-2.5	59.5	Free	Free	Free	Free	Free	Free
5XY	XY-GenXY	-2.5	-2.5	59.5	Free	Free	Free	Free	Free	Free
5Y	Y-GenXY	-2.5	2.5	59.5	Free	Free	Free	Free	Free	Free
6X	X-GenXY	2.5	-2.5	54.5	Free	Free	Free	Free	Free	Free
6XY	XY-GenXY	-2.5	-2.5	54.5	Free	Free	Free	Free	Free	Free
6Y	Y-GenXY	-2.5	2.5	54.5	Free	Free	Free	Free	Free	Free
7X	X-GenXY	10	-10	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed
7XY	XY-GenXY	-10	-10	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed
7Y	Y-GenXY	-10	10	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed
12X	X-Gen	0	13.75	81.5	Free	Free	Free	Free	Free	Free
13X	X-Gen	0	9.75	76.5	Free	Free	Free	Free	Free	Free
14X	X-Gen	0	14.25	64.5	Free	Free	Free	Free	Free	Free
15X	X-Gen	0	10.25	54.5	Free	Free	Free	Free	Free	Free

Secondary Joints:

Joint Label	Symmetry	Origin Code	End Joint	Fraction	Elevation	X Disp. Rest.	Y Disp. Rest.	Z Disp. Rest.	X Rot. Rest.	Y Rot. Rest.	Z Rot. Rest.
					(ft)						
8S	XY-Symmetry	6P	7P	0	49.5	Free	Free	Free	Free	Free	Free
9S	XY-Symmetry	6P	7P	0	43.5	Free	Free	Free	Free	Free	Free
10S	XY-Symmetry	6P	7P	0	37	Free	Free	Free	Free	Free	Free
11S	XY-Symmetry	6P	7P	0	22.5	Free	Free	Free	Free	Free	Free
16S	XY-Symmetry	3X	4X	0.5	0	Free	Free	Free	Free	Free	Free
1XYF0.50S	None	1XY	2XY	0.5	0	Free	Free	Free	Free	Free	Free
4XYF0.50S	None	4XY	5XY	0.5	0	Free	Free	Free	Free	Free	Free
8X	X-GenXY	6P	7P	0	49.5	Free	Free	Free	Free	Free	Free

8XY	XY-GenXY	6P	7P	0	49.5	Free						
8Y	Y-GenXY	6P	7P	0	49.5	Free						
9X	X-GenXY	6P	7P	0	43.5	Free						
9XY	XY-GenXY	6P	7P	0	43.5	Free						
9Y	Y-GenXY	6P	7P	0	43.5	Free						
10X	X-GenXY	6P	7P	0	37	Free						
10XY	XY-GenXY	6P	7P	0	37	Free						
10Y	Y-GenXY	6P	7P	0	37	Free						
11X	X-GenXY	6P	7P	0	22.5	Free						
11XY	XY-GenXY	6P	7P	0	22.5	Free						
11Y	Y-GenXY	6P	7P	0	22.5	Free						
16X	X-GenXY	3X	4X	0.5	0	Free						
16XY	XY-GenXY	3X	4X	0.5	0	Free						
16Y	Y-GenXY	3X	4X	0.5	0	Free						

The model contains 36 primary and 22 secondary joints for a total of 58 joints.

Steel Material Properties:

Material Label	Steel	Modulus of Stress	Yield Stress	Ultimate Stress	Member All. Stress	Member All. Stress	Member Rupture	Member Rupture	Member Bearing	Member Bearing
	Elasticity	Fy	Fu	Hyp. 1	Hyp. 1	Hyp. 2	Hyp. 1	Hyp. 2	Hyp. 1	Hyp. 2
	(ksi)	(ksi)	(ksi)	(ksi)	(ksi)	(ksi)	(ksi)	(ksi)	(ksi)	(ksi)
A7	2.9e+004	33	60	0	0	0	0	0	0	0

Bolt Properties:

Label	Bolt Diameter	Bolt Diameter	Hole Diameter	Ultimate Shear Capacity	Default Shear Capacity	Default End Bolt Capacity	Shear Capacity	Shear Capacity
	Capacity	Distance	End Spacing	(in)	(in)	(kips)	Hyp. 1	Hyp. 2
	(in)	(in)	(kips)	(in)	(in)	(kips)	(kips)	(kips)
5/8 A394	0.625	0.6875	9.1	1.125	1.5	0	0	0

Number Bolts Used By Type:

Bolt Number	Type	Bolts
5/8 A394		440

Angle Properties:

Angle Type	Angle Size	Long Leg	Short Leg	Thick.	Unit Weight	Gross Area	w/t Ratio	Radius of Gyration Rx	Radius of Gyration Ry	Radius of Gyration Rz	Number of Angles	Wind Dist.	Short Edge Dist.	Long Edge Dist.	Optimize Factor	Section Modulus (in^3)
	(in)	(in)	(in)	(in)	(lbs/ft)	(in)	(in^2)	(in)	(in)	(in)		(in)	(in)	(in)		
SAE	4X4X0.375	4	4	0.375	9.8	2.86	8.67	1.23	1.23	0.788	1	4	2	0	1.0000	0
SAE	4X4X0.3125	4	4	0.3125	8.2	2.4	10.6	1.24	1.24	0.791	1	4	2	0	1.0000	0
SAE	4X4X0.25	4	4	0.25	6.6	1.94	13.5	1.25	1.25	0.795	1	4	2	0	1.0000	0
SAE	2.5X2.5X0.1875	2.5	2.5	0.1875	3.07	0.902	10.67	0.778	0.778	0.495	1	2.5	1.25	0	1.0000	0
SAE	2X2X0.1875	2	2	0.1875	2.44	0.71	8	0.617	0.617	0.394	1	2	1	0	1.0000	0
SAE	1.75X1.75X0.25	1.75	1.75	0.25	2.77	0.81	4.25	0.529	0.529	0.341	1	1.75	0.875	0	1.0000	0
SAE	1.75X1.75X0.1875	1.75	1.75	0.1875	2.12	0.62	6	0.537	0.537	0.343	1	1.75	0.875	0	1.0000	0
SAU	3.5X2.5X0.25	3.5	2.5	0.25	4.9	1.44	11.25	1.12	0.735	0.544	1	3.5	1.25	0	1.0000	0
SAU	3X2.5X0.25	3	2.5	0.25	4.5	1.31	9.5	0.945	0.753	0.528	1	3	1.25	0	1.0000	0
SAU	3X2X0.1875	3	2	0.1875	3.07	0.9	13.33	0.966	0.583	0.439	1	3	1	0	1.0000	0

SAU	2.5X2X0.1875	2.5	2	0.1875	2.75	0.81	10.67	0.793	0.6	0.427	1	2.5	1	0	1.0000	0
Bar	1-3/4x1/4	1.75	0	0.25	2	0.4375	7	0.875	0.875	0.25	1	2	0	0	0.0000	0

Angle Groups:

Group Label	Group Description	Angle Type	Angle Material Size	Material Type	Element Type	Group Type	Optimize Group	Allow. Angle	Add. Width For Optimize (in)
LEG1	L4X4X1/4	SAE	4X4X0.25	A7	Beam	Leg	None	0.000	
LEG2	L4X4X5/16	SAE	4X4X0.3125	A7	Beam	Leg	None	0.000	
LEG3	L4X4X3/8	SAE	4X4X0.375	A7	Beam	Leg	None	0.000	
XBR1	L1.75X1.75X3/16	SAE	1.75X1.75X0.1875	A7	Truss Crossing	Diagonal	None	0.000	
XBR2	L3X2X3/16	SAU	3X2X0.1875	A7	Truss Crossing	Diagonal	None	0.000	
XBR3	L2X2X3/16	SAE	2X2X0.1875	A7	Truss Crossing	Diagonal	None	0.000	
XBR4	L2.5X2X3/16	SAU	2.5X2X0.1875	A7	Truss Crossing	Diagonal	None	0.000	
XBR5	L1.75X1.75X1/4	SAE	1.75X1.75X0.25	A7	T-Only	Other	None	0.000	
HORZ1	L2.5X2X3/16	SAU	2.5X2X0.1875	A7	Beam	Other	None	0.000	
HORZ2	L3X2.5X1/4	SAU	3X2.5X0.25	A7	Beam	Other	None	0.000	
ARM1	L3X2.5X1/4	SAU	3X2.5X0.25	A7	Beam	Other	None	0.000	
ARM2	L3.5X2.5X1/4	SAU	3.5X2.5X0.25	A7	Beam	Other	None	0.000	
M1	L1.75X1.75X3/16	SAE	1.75X1.75X0.1875	A7	Beam	Other	None	0.000	
M2	L1.75X1.75X3/16	SAE	1.75X1.75X0.1875	A7	Truss Crossing	Diagonal	None	0.000	
M3	L2.5X2.5X3/16	SAE	2.5X2.5X0.1875	A7	Truss	Other	None	0.000	
M4	BAR 1.75X1/4	Bar	1-3/4x1/4	A7	T-Only	Other	None	0.000	
XBR6	L1.75X1.75X3/16	SAE	1.75X1.75X0.1875	A7	T-Only	Other	None	0.000	

Aggregate Angle Information:

Note: Estimate of surface area reported for painting purposes, not wind loading.

Angle Type	Angle Material Size	Total Type	Total Length	Total Surface Area	Total Weight
			(ft)	(ft^2)	(lbs)
SAE	4X4X0.25	A7	108.00	144.00	712.80
SAE	4X4X0.3125	A7	71.31	95.08	584.77
SAE	4X4X0.375	A7	150.78	201.04	1477.61
SAE	1.75X1.75X0.1875	A7	379.63	221.45	804.82
SAU	3X2X0.1875	A7	238.10	198.42	730.97
SAE	2X2X0.1875	A7	60.84	40.56	148.44
SAU	2.5X2X0.1875	A7	203.14	152.36	558.65
SAE	1.75X1.75X0.25	A7	150.47	87.77	416.79
SAU	3X2.5X0.25	A7	194.58	178.36	875.59
SAU	3.5X2.5X0.25	A7	58.05	58.05	284.46
SAE	2.5X2.5X0.1875	A7	12.81	10.67	39.32
Bar	1-3/4x1/4	A7	134.37	39.19	268.74

Sections:

The adjustment factors below only apply to dead load and wind areas that are calculated for members in the model. They do not apply to equipment or to manually input dead load and drag areas.

Section Label	Joint Defining	Dead Load	Transverse Drag	Longitudinal Drag	Transverse Area x Factor	Longitudinal Area Factor	Af Factor	Flat Factor	Ar Factor	Round Factor	Transverse Drag	Longitudinal Drag	SAPS Drag	Angle Drag	SAPS Drag	Round Force
	Section	Adjust.	Factor	Factor	Area Factor	Area Factor	Factor	Factor	Factor	Factor	Drag x Area	Drag x Area	Drag x Area	Drag x Area	Drag x Area	Solid Face
	Bottom	Factor	For Face	For Face	Code)	Code)	(CD From	(CD From	For Face	For Face	Factor	Factor	Factor	Factor	Factor	Factor Face

1	10X	1.000	3.200	3.200	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	None
2	7X	1.100	3.200	3.200	1.100	1.100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	None

Angle Member Connectivity:

Member Bolt Label Spacing	Group Shear Label Path	Section Tension Label Path	Symmetry Rest. Code	Origin Joint	End Joint	Ecc. Code	Rest. Code	Ratio RLX	Ratio RLY	Ratio RLZ	Bolt Type	# Bolts	# Holes	# Planes	Connect Leg	Short Edge	Long Edge	End Dist.
																Dist. (in)	Dist. (in)	Dist. (in)
Length (in)	Length (in)	Length (in)																
g1P 0	LEG1 0			None	1X	2X	1	4	1	1	1 5/8 A394	0	4	0		0	0	0
g2P 0	LEG1 0			None	1P	2P	1	4	1	1	1 5/8 A394	0	4	0		0	0	0
g3P 0	LEG1 0			None	1Y	2Y	1	4	1	1	1 5/8 A394	0	4	0		0	0	0
g4P 0	LEG1 0			None	1XY	1XYF0.50S	1	4	2	2	2 5/8 A394	0	4	0		0	0	0
g5P 0	LEG1 0			None	1XYF0.50S	2XY	1	4	2	2	2 5/8 A394	0	4	0		0	0	0
g6P 0	LEG1 0		XY-Symmetry	None	1XYF0.50S	2X	3X	1	4	1	1 5/8 A394	0	2	0		0	0	0
g6X 0	LEG1 0		X-GenXY		2P	3P	1	4	1	1	1 5/8 A394	0	2	0		0	0	0
g6XY 0	LEG1 0		XY-GenXY		2Y	3Y	1	4	1	1	1 5/8 A394	0	2	0		0	0	0
g6Y 0	LEG1 0		Y-GenXY		2XY	3XY	1	4	1	1	1 5/8 A394	0	2	0		0	0	0
g7P 0	LEG1 0		XY-Symmetry		3X	16S	1	4	1	1	1 5/8 A394	0	2	0		0	0	0
g7X 0	LEG1 0		X-GenXY		3P	16X	1	4	1	1	1 5/8 A394	0	2	0		0	0	0
g7XY 0	LEG1 0		XY-GenXY		3Y	16XY	1	4	1	1	1 5/8 A394	0	2	0		0	0	0
g7Y 0	LEG1 0		Y-GenXY		3XY	16Y	1	4	1	1	1 5/8 A394	0	2	0		0	0	0
g8P 0	LEG1 0		XY-Symmetry		16S	4X	1	4	1	1	1 5/8 A394	0	4	0		0	0	0
g8X 0	LEG1 0		X-GenXY		16X	4P	1	4	1	1	1 5/8 A394	0	4	0		0	0	0
g8XY 0	LEG1 0		XY-GenXY		16XY	4Y	1	4	1	1	1 5/8 A394	0	4	0		0	0	0
g8Y 0	LEG1 0		Y-GenXY		16Y	4XY	1	4	1	1	1 5/8 A394	0	4	0		0	0	0
g9P 0	LEG1 0		None		4X	5X	1	4	1	1	1 5/8 A394	0	2	0		0	0	0
g10P 0	LEG1 0		None		4P	5P	1	4	1	1	1 5/8 A394	0	2	0		0	0	0
g11P 0	LEG1 0		None		4Y	5Y	1	4	1	1	1 5/8 A394	0	2	0		0	0	0
g12P 0	LEG1 0		None		4XY	4XYF0.50S	1	4	2	2	2 5/8 A394	0	2	0		0	0	0
g13P 0	LEG1 0		None		4XYF0.50S	5XY	1	4	2	2	2 5/8 A394	0	2	0		0	0	0

g14P	LEG1	0	0	XY-Symmetry	5X	6X	1	4	1	1	1	5/8	A394	12	2	1	Both	1.25	2.375	1.5
2.75	0	0	0	X-GenXY	5P	6P	1	4	1	1	1	5/8	A394	12	2	1	Both	1.25	2.375	1.5
g14X	LEG1	0	0	XY-GenXY	5Y	6Y	1	4	1	1	1	5/8	A394	12	2	1	Both	1.25	2.375	1.5
2.75	0	0	0	Y-GenXY	5XY	6XY	1	4	1	1	1	5/8	A394	12	2	1	Both	1.25	2.375	1.5
g14Y	LEG1	0	0	XY-Symmetry	6X	8X	1	4	1	1	1	5/8	A394	0	2.99	0		0	0	0
2.75	0	0	0	X-GenXY	6P	8S	1	4	1	1	1	5/8	A394	0	2.99	0		0	0	0
g15X	LEG2	0	0	XY-GenXY	6Y	8Y	1	4	1	1	1	5/8	A394	0	2.99	0		0	0	0
0	0	0	0	Y-GenXY	6XY	8XY	1	4	1	1	1	5/8	A394	0	2.99	0		0	0	0
g15P	LEG2	0	0	XY-Symmetry	8X	9X	1	4	1	1	1	5/8	A394	0	2.99	0		0	0	0
0	0	0	0	X-GenXY	8S	9S	1	4	1	1	1	5/8	A394	0	2.99	0		0	0	0
g15X	LEG2	0	0	XY-GenXY	8Y	9Y	1	4	1	1	1	5/8	A394	0	2.99	0		0	0	0
0	0	0	0	Y-GenXY	8XY	9XY	1	4	1	1	1	5/8	A394	0	2.99	0		0	0	0
g15Y	LEG2	0	0	XY-Symmetry	9X	10X	1	4	1	1	1	5/8	A394	10	2.02	1	Both	0.875	2	1.5
3.5	0	0	0	X-GenXY	9S	10S	1	4	1	1	1	5/8	A394	10	2.02	1	Both	0.875	2	1.5
g17X	LEG2	0	0	XY-GenXY	9Y	10Y	1	4	1	1	1	5/8	A394	10	2.02	1	Both	0.875	2	1.5
3.5	0	0	0	Y-GenXY	9XY	10XY	1	4	1	1	1	5/8	A394	10	2.02	1	Both	0.875	2	1.5
g17P	LEG2	0	0	XY-Symmetry	10X	11X	1	4	0.25	0.25	0.25	5/8	A394	10	2	1	Both	1.3125	2.375	1.5
3.5	0	0	0	X-GenXY	10S	11S	1	4	0.25	0.25	0.25	5/8	A394	10	2	1	Both	1.3125	2.375	1.5
g17X	LEG2	0	0	XY-GenXY	10Y	11Y	1	4	0.25	0.25	0.25	5/8	A394	10	2	1	Both	1.3125	2.375	1.5
3.5	0	0	0	Y-GenXY	10XY	11XY	1	4	0.25	0.25	0.25	5/8	A394	10	2	1	Both	1.3125	2.375	1.5
g18P	LEG3	0	0	XY-Symmetry	11X	7X	1	4	0.167	0.167	0.167	5/8	A394	10	2	1	Both	0.875	1.9375	1.5
3.5	0	0	0	X-GenXY	11S	7P	1	4	0.167	0.167	0.167	5/8	A394	10	2	1	Both	0.875	1.9375	1.5
g18X	LEG3	0	0	XY-GenXY	11Y	7Y	1	4	0.167	0.167	0.167	5/8	A394	10	2	1	Both	0.875	1.9375	1.5
3.5	0	0	0	Y-GenXY	11XY	7XY	1	4	0.167	0.167	0.167	5/8	A394	10	2	1	Both	0.875	1.9375	1.5
g18Y	LEG3	0	0	XY-Symmetry	11X	7X	1	4	0.167	0.167	0.167	5/8	A394	10	2	1	Both	0.875	1.9375	1.5
3.5	0	0	0	X-GenXY	11S	7P	1	4	0.167	0.167	0.167	5/8	A394	10	2	1	Both	0.875	1.9375	1.5
g19X	LEG3	0	0	XY-GenXY	11Y	7Y	1	4	0.167	0.167	0.167	5/8	A394	10	2	1	Both	0.875	1.9375	1.5
3.75	0	0	0	Y-GenXY	11XY	7XY	1	4	0.167	0.167	0.167	5/8	A394	10	2	1	Both	0.875	1.9375	1.5
g19P	LEG3	0	0	XY-Symmetry	11X	2P	2	5	0.75	0.5	0.5	5/8	A394	2	1	1	Short only	0.8125	0	1
3.75	0	0	0	X-GenXY	11S	2X	2	5	0.75	0.5	0.5	5/8	A394	2	1	1	Short only	0.8125	0	1
g19X	LEG3	0	0	XY-GenXY	11Y	2XY	2	5	0.75	0.5	0.5	5/8	A394	2	1	1	Short only	0.8125	0	1
3.75	0	0	0	Y-GenXY	11XY	2Y	2	5	0.75	0.5	0.5	5/8	A394	2	1	1	Short only	0.8125	0	1
g20P	XBR1	0	0	XY-Symmetry	1X	2P	2	5	0.75	0.5	0.5	5/8	A394	2	1	1	Short only	0.8125	0	1
2	0	0	0	X-GenXY	1P	2X	2	5	0.75	0.5	0.5	5/8	A394	2	1	1	Short only	0.8125	0	1
g20X	XBR1	0	0	XY-GenXY	1Y	2XY	2	5	0.75	0.5	0.5	5/8	A394	2	1	1	Short only	0.8125	0	1
2	0	0	0	Y-GenXY	1XY	2Y	2	5	0.75	0.5	0.5	5/8	A394	2	1	1	Short only	0.8125	0	1
g21P	XBR1	0	0	XY-Symmetry	1P	2Y	2	5	0.75	0.5	0.5	5/8	A394	2	1	1	Short only	0.8125	0	1
2	0	0	0	X-GenXY	1X	2XY	2	5	0.75	0.5	0.5	5/8	A394	2	1	1	Short only	0.8125	0	1
g21X	XBR1	0	0	XY-GenXY	1Y	2P	2	5	0.75	0.5	0.5	5/8	A394	2	1	1	Short only	0.8125	0	1
2	0	0	0	Y-GenXY	1XY	2X	2	5	0.75	0.5	0.5	5/8	A394	2	1	1	Short only	0.8125	0	1

2	g21XY	XBR1	0	0	XY-GenXY	1XY	2X	2	5	0.75	0.5	0.5	5/8	A394	2	1	1	Short	only	0.8125	0	1
2	g21Y	XBR1	0	0	Y-GenXY	1Y	2P	2	5	0.75	0.5	0.5	5/8	A394	2	1	1	Short	only	0.8125	0	1
2	g22P	XBR2	0	0	XY-Symmetry	2X	3P	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3.625	g22X	XBR2	0	0	X-GenXY	2P	3X	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3.625	g22XY	XBR2	0	0	XY-GenXY	2Y	3XY	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3.625	g22Y	XBR2	0	0	Y-GenXY	2XY	3Y	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3.625	g23P	XBR2	0	0	XY-Symmetry	2P	3Y	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3.625	g23X	XBR2	0	0	X-GenXY	2X	3XY	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3.625	g23XY	XBR2	0	0	XY-GenXY	2XY	3X	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3.625	g23Y	XBR2	0	0	Y-GenXY	2Y	3P	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3.625	g24P	XBR2	0	0	XY-Symmetry	3X	4P	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g24X	XBR2	0	0	X-GenXY	3P	4X	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g24XY	XBR2	0	0	XY-GenXY	3Y	4XY	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g24Y	XBR2	0	0	Y-GenXY	3XY	4Y	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g25P	XBR2	0	0	XY-Symmetry	3P	4Y	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g25X	XBR2	0	0	X-GenXY	3X	4XY	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g25XY	XBR2	0	0	XY-GenXY	3XY	4X	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g25Y	XBR2	0	0	Y-GenXY	3Y	4P	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g26P	XBR2	0	0	XY-Symmetry	4X	5P	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g26X	XBR2	0	0	X-GenXY	4P	5X	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g26XY	XBR2	0	0	XY-GenXY	4Y	5XY	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g26Y	XBR2	0	0	Y-GenXY	4XY	5Y	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g27P	XBR2	0	0	XY-Symmetry	4P	5Y	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g27X	XBR2	0	0	X-GenXY	4X	5XY	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g27XY	XBR2	0	0	XY-GenXY	4XY	5X	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g27Y	XBR2	0	0	Y-GenXY	4Y	5P	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g28P	XBR2	0	0	XY-Symmetry	5X	6P	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g28X	XBR2	0	0	X-GenXY	5P	6X	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g28XY	XBR2	0	0	XY-GenXY	5Y	6XY	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1
3	g28Y	XBR2	0	0	Y-GenXY	5XY	6Y	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long	only	0.875	2	1

3	g29P	XBR2	0	0	XY-Symmetry	5P	6Y	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long only	0.875	2	1
3	g29X	XBR2	0	0	X-GenXY	5X	6XY	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long only	0.875	2	1
3	g29XY	XBR2	0	0	XY-GenXY	5XY	6X	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long only	0.875	2	1
3	g29Y	XBR2	0	0	Y-GenXY	5Y	6P	2	5	0.5	0.75	0.5	5/8	A394	3	1	1	Long only	0.875	2	1
3	g30P	XBR3	0	0	XY-Symmetry	6X	8S	2	5	0.779	0.559	0.559	5/8	A394	2	1	1	Short only	1	0	1
1.375	g30X	XBR3	0	0	X-GenXY	6P	8X	2	5	0.779	0.559	0.559	5/8	A394	2	1	1	Short only	1	0	1
1.375	g30XY	XBR3	0	0	XY-GenXY	6Y	8XY	2	5	0.779	0.559	0.559	5/8	A394	2	1	1	Short only	1	0	1
1.375	g30Y	XBR3	0	0	Y-GenXY	6XY	8Y	2	5	0.779	0.559	0.559	5/8	A394	2	1	1	Short only	1	0	1
1.375	g31P	XBR3	0	0	XY-Symmetry	6P	8Y	2	5	0.779	0.559	0.559	5/8	A394	2	1	1	Short only	1	0	1
1.375	g31X	XBR3	0	0	X-GenXY	6X	8XY	2	5	0.779	0.559	0.559	5/8	A394	2	1	1	Short only	1	0	1
1.375	g31XY	XBR3	0	0	XY-GenXY	6XY	8X	2	5	0.779	0.559	0.559	5/8	A394	2	1	1	Short only	1	0	1
1.375	g31Y	XBR3	0	0	Y-GenXY	6Y	8S	2	5	0.779	0.559	0.559	5/8	A394	2	1	1	Short only	1	0	1
1.8125	g32P	XBR4	0	0	XY-Symmetry	8X	9S	2	5	0.563	0.781	0.563	5/8	A394	2	1	1	Long only	0.875	1.5625	1
1.8125	g32X	XBR4	0	0	X-GenXY	8S	9X	2	5	0.563	0.781	0.563	5/8	A394	2	1	1	Long only	0.875	1.5625	1
1.8125	g32XY	XBR4	0	0	XY-GenXY	8Y	9XY	2	5	0.563	0.781	0.563	5/8	A394	2	1	1	Long only	0.875	1.5625	1
1.8125	g32Y	XBR4	0	0	Y-GenXY	8XY	9Y	2	5	0.563	0.781	0.563	5/8	A394	2	1	1	Long only	0.875	1.5625	1
1.8125	g33P	XBR4	0	0	XY-Symmetry	8S	9Y	2	5	0.563	0.781	0.563	5/8	A394	2	1	1	Long only	0.875	1.5625	1
1.8125	g33X	XBR4	0	0	X-GenXY	8X	9XY	2	5	0.563	0.781	0.563	5/8	A394	2	1	1	Long only	0.875	1.5625	1
1.8125	g33XY	XBR4	0	0	XY-GenXY	8XY	9X	2	5	0.563	0.781	0.563	5/8	A394	2	1	1	Long only	0.875	1.5625	1
1.8125	g33Y	XBR4	0	0	Y-GenXY	8Y	9S	2	5	0.563	0.781	0.563	5/8	A394	2	1	1	Long only	0.875	1.5625	1
1.625	g34P	XBR4	0	0	XY-Symmetry	9X	10S	2	5	0.55	0.775	0.55	5/8	A394	2	1	1	Long only	0.875	1.5625	1
1.625	g34X	XBR4	0	0	X-GenXY	9S	10X	2	5	0.55	0.775	0.55	5/8	A394	2	1	1	Long only	0.875	1.5625	1
1.625	g34XY	XBR4	0	0	XY-GenXY	9Y	10XY	2	5	0.55	0.775	0.55	5/8	A394	2	1	1	Long only	0.875	1.5625	1
1.625	g34Y	XBR4	0	0	Y-GenXY	9XY	10Y	2	5	0.55	0.775	0.55	5/8	A394	2	1	1	Long only	0.875	1.5625	1
1.625	g35P	XBR4	0	0	XY-Symmetry	9S	10Y	2	5	0.55	0.775	0.55	5/8	A394	2	1	1	Long only	0.875	1.5625	1
1.625	g35X	XBR4	0	0	X-GenXY	9X	10XY	2	5	0.55	0.775	0.55	5/8	A394	2	1	1	Long only	0.875	1.5625	1
1.625	g35XY	XBR4	0	0	XY-GenXY	9XY	10X	2	5	0.55	0.775	0.55	5/8	A394	2	1	1	Long only	0.875	1.5625	1
1.625	g35Y	XBR4	0	0	Y-GenXY	9Y	10S	2	5	0.55	0.775	0.55	5/8	A394	2	1	1	Long only	0.875	1.5625	1
1.4375	g36P	XBR5	0	0	XY-Symmetry	10X	11S	2	5	0.5	0.25	0.25	5/8	A394	2	1	1	Short only	0.8125	0	1
1.4375	g36X	XBR5	0	0	X-GenXY	10S	11X	2	5	0.5	0.25	0.25	5/8	A394	2	1	1	Short only	0.8125	0	1
1.4375			0	0																	

g36XY	XBR5	0	0	XY-GenXY	10Y	11XY	2	5	0.5	0.25	0.25	5/8	A394	2	1	1	Short only	0.8125	0	1
1.4375	0	0	0	Y-GenXY	10XY	11Y	2	5	0.5	0.25	0.25	5/8	A394	2	1	1	Short only	0.8125	0	1
g36Y	XBR5	0	0	XY-Symmetry	10S	11Y	2	5	0.5	0.25	0.25	5/8	A394	2	1	1	Short only	0.8125	0	1
1.4375	0	0	0	X-GenXY	10X	11XY	2	5	0.5	0.25	0.25	5/8	A394	2	1	1	Short only	0.8125	0	1
g37P	XBR5	0	0	XY-GenXY	10XY	11X	2	5	0.5	0.25	0.25	5/8	A394	2	1	1	Short only	0.8125	0	1
1.4375	0	0	0	Y-GenXY	10Y	11S	2	5	0.5	0.25	0.25	5/8	A394	2	1	1	Short only	0.8125	0	1
g37X	XBR5	0	0	XY-Symmetry	11X	7P	2	5	0.333	0.167	0.167	5/8	A394	2	1	1	Long only	0.875	0	1
1.4375	0	0	0	X-GenXY	11S	7X	2	5	0.333	0.167	0.167	5/8	A394	2	1	1	Long only	0.875	0	1
g38P	XBR6	0	0	XY-GenXY	11Y	7XY	2	5	0.333	0.167	0.167	5/8	A394	2	1	1	Long only	0.875	0	1
1.5	0	0	0	Y-GenXY	11XY	7Y	2	5	0.333	0.167	0.167	5/8	A394	2	1	1	Long only	0.875	0	1
g38X	XBR6	0	0	XY-Symmetry	11S	7Y	2	5	0.333	0.167	0.167	5/8	A394	2	1	1	Long only	0.875	0	1
1.5	0	0	0	X-GenXY	11X	7XY	2	5	0.333	0.167	0.167	5/8	A394	2	1	1	Long only	0.875	0	1
g38XY	XBR6	0	0	XY-GenXY	11XY	7X	2	5	0.333	0.167	0.167	5/8	A394	2	1	1	Long only	0.875	0	1
1.5	0	0	0	Y-GenXY	11XY	7XY	2	5	0.333	0.167	0.167	5/8	A394	2	1	1	Long only	0.875	0	1
g38Y	XBR6	0	0	XY-Symmetry	11S	7Y	2	5	0.333	0.167	0.167	5/8	A394	2	1	1	Long only	0.875	0	1
1.5	0	0	0	X-GenXY	11X	7XY	2	5	0.333	0.167	0.167	5/8	A394	2	1	1	Long only	0.875	0	1
g39P	XBR6	0	0	XY-GenXY	11XY	7X	2	5	0.333	0.167	0.167	5/8	A394	2	1	1	Long only	0.875	0	1
1.5	0	0	0	Y-GenXY	11Y	7P	2	5	0.333	0.167	0.167	5/8	A394	2	1	1	Long only	0.875	0	1
g39X	XBR6	0	0	XY-Symmetry	10X	10S	3	4	1	0.5	0.5	5/8	A394	1	1	1	Short only	0.875	0	1
1.5	0	0	0	X-GenXY	11X	7XY	2	5	0.333	0.167	0.167	5/8	A394	2	1	1	Long only	0.875	0	1
g39XY	XBR6	0	0	XY-GenXY	11XY	7X	2	5	0.333	0.167	0.167	5/8	A394	2	1	1	Long only	0.875	0	1
1.5	0	0	0	Y-GenXY	11Y	7P	2	5	0.333	0.167	0.167	5/8	A394	2	1	1	Long only	0.875	0	1
g40P	HORZ1	0	0	XY-Symmetry	10Y	10XY	2	5	0.333	0.167	0.167	5/8	A394	1	1	1	Short only	0.875	0	1
0	0	0	0	Y-Gen	10XY	10Y	3	4	1	0.5	0.5	5/8	A394	1	1	1	Short only	0.875	0	1
g41P	HORZ1	0	0	X-Symmetry	10S	10Y	3	4	1	0.5	0.5	5/8	A394	1	1	1	Short only	0.875	0	1
0	0	0	0	X-Gen	10X	10XY	3	4	1	0.5	0.5	5/8	A394	1	1	1	Short only	0.875	0	1
g42P	HORZ2	0	0	Y-Symmetry	11X	11S	3	4	0.5	0.5	0.5	5/8	A394	1	1	1	Short only	1.25	0	1
0	0	0	0	Y-Gen	11XY	11Y	3	4	0.5	0.5	0.5	5/8	A394	1	1	1	Short only	1.25	0	1
g42Y	HORZ2	0	0	XY-Symmetry	11S	11Y	3	4	0.5	0.5	0.5	5/8	A394	1	1	1	Short only	1.25	0	1
0	0	0	0	X-Gen	11X	11XY	3	4	0.5	0.5	0.5	5/8	A394	1	1	1	Short only	1.25	0	1
g43P	HORZ2	0	0	XY-Symmetry	11XY	11X	3	4	0.5	0.5	0.5	5/8	A394	1	1	1	Short only	1.25	0	1
0	0	0	0	X-Gen	11X	11XY	3	4	0.5	0.5	0.5	5/8	A394	1	1	1	Short only	1.25	0	1
g44P	ARM1	0	0	XY-Symmetry	12P	1X	3	6	0.5	1	0.5	5/8	A394	2	1	1	Long only	1.25	0	1.5
4	0	0	0	X-GenXY	12X	1P	3	6	0.5	1	0.5	5/8	A394	2	1	1	Long only	1.25	0	1.5
g44X	ARM1	0	0	XY-GenXY	12X	1Y	3	6	0.5	1	0.5	5/8	A394	2	1	1	Long only	1.25	0	1.5
4	0	0	0	Y-GenXY	12P	1XY	3	6	0.5	1	0.5	5/8	A394	2	1	1	Long only	1.25	0	1.5
g44Y	ARM1	0	0	Y-Symmetry	1X	1P	3	4	1	1	1			0	1	0		0	0	0
4	0	0	0	Y-Gen	1XY	1Y	3	4	1	1	1			0	1	0		0	0	0
g45P	ARM1	0	0	XY-Symmetry	1XY	1X	3	4	1	1	1			0	1	0		0	0	0
0	0	0	0	Y-Gen	1XY	1Y	3	4	1	1	1			0	1	0		0	0	0
g45Y	ARM1	0	0	XY-Symmetry	13P	2X	3	6	0.5	1	0.5	5/8	A394	3	1	1	Long only	1.25	0	1.5
2.75	0	0	0	X-GenXY	13X	2P	3	6	0.5	1	0.5	5/8	A394	3	1	1	Long only	1.25	0	1.5
g46P	ARM1	0	0	XY-Symmetry	13XY	2X	3	6	0.5	1	0.5	5/8	A394	3	1	1	Long only	1.25	0	1.5
2.75	0	0	0	X-GenXY	13X	2P	3	6	0.5	1	0.5	5/8	A394	3	1	1	Long only	1.25	0	1.5

g46XY	ARM1	0	0	XY-GenXY	13X	2Y	3	6	0.5	1	0.5	5/8	A394	3	1	1	Long only	1.25	0	1.5
2.75		0	0	Y-GenXY	13P	2XY	3	6	0.5	1	0.5	5/8	A394	3	1	1	Long only	1.25	0	1.5
2.75		0	0	Y-Symmetry	2X	2P	3	4	1	1	1			0	1	0		0	0	0
0	0	0	0	Y-Gen	2XY	2Y	3	4	1	1	1			0	1	0		0	0	0
0	0	0	0	XY-Symmetry	14P	4X	3	6	0.5	1	0.5	5/8	A394	3	1	1	Long only	1.75	0	1.5
2	0	0	0	X-GenXY	14X	4P	3	6	0.5	1	0.5	5/8	A394	3	1	1	Long only	1.75	0	1.5
2	0	0	0	XY-GenXY	14X	4Y	3	6	0.5	1	0.5	5/8	A394	3	1	1	Long only	1.75	0	1.5
2	0	0	0	Y-GenXY	14P	4XY	3	6	0.5	1	0.5	5/8	A394	3	1	1	Long only	1.75	0	1.5
2	0	0	0	Y-Symmetry	4X	4P	3	4	1	1	1			0	1	0		0	0	0
0	0	0	0	Y-Gen	4XY	4Y	3	4	1	1	1			0	1	0		0	0	0
0	0	0	0	XY-Symmetry	15P	6X	3	6	0.5	1	0.5	5/8	A394	2	1	1	Long only	1.5	0	1.5
4	0	0	0	X-GenXY	15X	6P	3	6	0.5	1	0.5	5/8	A394	2	1	1	Long only	1.5	0	1.5
4	0	0	0	XY-GenXY	15X	6Y	3	6	0.5	1	0.5	5/8	A394	2	1	1	Long only	1.5	0	1.5
4	0	0	0	Y-GenXY	15P	6XY	3	6	0.5	1	0.5	5/8	A394	2	1	1	Long only	1.5	0	1.5
4	0	0	0	Y-Symmetry	6X	6P	3	4	1	1	1			0	1	0		0	0	0
0	0	0	0	Y-Gen	6XY	6Y	3	4	1	1	1			0	1	0		0	0	0
0	0	0	0	X-Symmetry	1P	1Y	3	4	1	1	1	5/8	A394	1	1	1	Short only	0.875	0	1
0	0	0	0	X-Gen	1X	1XY	3	4	1	1	1	5/8	A394	1	1	1	Short only	0.875	0	1
0	0	0	0	X-Symmetry	2P	2Y	3	4	1	1	1	5/8	A394	1	1	1	Short only	0.875	0	1
0	0	0	0	X-Gen	2X	2XY	3	4	1	1	1	5/8	A394	1	1	1	Short only	0.875	0	1
0	0	0	0	X-Symmetry	4P	4Y	3	4	1	1	1	5/8	A394	1	1	1	Short only	0.875	0	1
0	0	0	0	X-Gen	4X	4XY	3	4	1	1	1	5/8	A394	1	1	1	Short only	0.875	0	1
0	0	0	0	X-Symmetry	6P	6Y	3	4	1	1	1	5/8	A394	1	1	1	Short only	0.875	0	1
0	0	0	0	X-Gen	6X	6XY	3	4	1	1	1	5/8	A394	1	1	1	Short only	0.875	0	1
0	0	0	0	X-Symmetry	1X	1Y	3	4	0.75	0.5	0.5	5/8	A394	1	1	1	Short only	0.875	0	1
0	0	0	0	X-Gen	1P	1XY	3	4	0.75	0.5	0.5	5/8	A394	1	1	1	Short only	0.875	0	1
0	0	0	0	X-Symmetry	2X	2Y	3	4	0.75	0.5	0.5	5/8	A394	1	1	1	Short only	0.875	0	1
0	0	0	0	X-Gen	2P	2XY	3	4	0.75	0.5	0.5	5/8	A394	1	1	1	Short only	0.875	0	1
0	0	0	0	X-Symmetry	4X	4Y	3	4	0.75	0.5	0.5	5/8	A394	1	1	1	Short only	0.875	0	1
0	0	0	0	X-Gen	4P	4XY	3	4	0.75	0.5	0.5	5/8	A394	1	1	1	Short only	0.875	0	1

0	g59P 0	M2 0	0	X-Symmetry	6X	6Y	3	4	0.75	0.5	0.5	5/8	A394	1	1	1	Short only	0.875	0	1
0	g59X 0	M2 0	0	X-Gen	6P	6XY	3	4	0.75	0.5	0.5	5/8	A394	1	1	1	Short only	0.875	0	1
0	g60P 0	M3 0	0	X-Symmetry	12P	13P	2	4	1	1	1	5/8	A394	1	1	1	Short only	1.25	0	1
0	g60X 0	M3 0	0	X-Gen	12X	13X	2	4	1	1	1	5/8	A394	1	1	1	Short only	1.25	0	1
0	g61P 0	M4 0	0	XY-Symmetry	1X	13P	2	4	1	1	1	5/8	A394	1	1	1	Long only	1.25	0	1
0	g61X 0	M4 0	0	X-GenXY	1P	13X	2	4	1	1	1	5/8	A394	1	1	1	Long only	1.25	0	1
0	g61XY 0	M4 0	0	XY-GenXY	1Y	13X	2	4	1	1	1	5/8	A394	1	1	1	Long only	1.25	0	1
0	g61Y 0	M4 0	0	Y-GenXY	1XY	13P	2	4	1	1	1	5/8	A394	1	1	1	Long only	1.25	0	1
0	g62P 0	M4 0	0	XY-Symmetry	14P	16S	2	4	1	1	1	5/8	A394	1	1	1	Long only	1.25	0	1
0	g62X 0	M4 0	0	X-GenXY	14X	16X	2	4	1	1	1	5/8	A394	1	1	1	Long only	1.25	0	1
0	g62XY 0	M4 0	0	XY-GenXY	14X	16XY	2	4	1	1	1	5/8	A394	1	1	1	Long only	1.25	0	1
0	g62Y 0	M4 0	0	Y-GenXY	14P	16Y	2	4	1	1	1	5/8	A394	1	1	1	Long only	1.25	0	1
0	g63P 0	M4 0	0	XY-Symmetry	15P	5X	2	4	1	1	1	5/8	A394	1	1	1	Long only	1.25	0	1
0	g63X 0	M4 0	0	X-GenXY	15X	5P	2	4	1	1	1	5/8	A394	1	1	1	Long only	1.25	0	1
0	g63XY 0	M4 0	0	XY-GenXY	15X	5Y	2	4	1	1	1	5/8	A394	1	1	1	Long only	1.25	0	1
0	g63Y 0	M4 0	0	Y-GenXY	15P	5XY	2	4	1	1	1	5/8	A394	1	1	1	Long only	1.25	0	1
0	g64P 0	M4 0	0	Y-Symmetry	16S	16X	2	4	1	1	1	5/8	A394	1	1	1	Long only	1.25	0	1
0	g64Y 0	M4 0	0	Y-Gen	16Y	16XY	2	4	1	1	1	5/8	A394	1	1	1	Long only	1.25	0	1

Member Capacities and Overrides:

Member Group Override	Design Override	Comp. Override	Design Override	Tension Override	L/r Length	L/r Connection		Connection	Net	Rupture	RTE End	RTE Edge	Override	Override
--------------------------	--------------------	-------------------	--------------------	---------------------	---------------	----------------	--	------------	-----	---------	---------	----------	----------	----------

Warnings

Label Comp. Tension	Label Comp. Tension	Comp. Control Tension	Control Tension	Control Face	Comp.	Shear	Bearing	Section	Tension	Dist.	Dist.	Comp.	Comp.
------------------------	------------------------	--------------------------	--------------------	-----------------	-------	-------	---------	---------	---------	-------	-------	-------	-------

or Errors

Capacity Control Capacity	Criterion Control Member	Capacity Criterion Capacity	Capacity Criterion Capacity	Capacity	Capacity	Capacity	Tension Capacity	Tension Capacity	Tension Capacity	Tension Capacity	Capacity	Capacity	Capacity
------------------------------	-----------------------------	--------------------------------	--------------------------------	----------	----------	----------	------------------	------------------	------------------	------------------	----------	----------	----------

Capacity (kips)	Criterion (kips)	ship (kips)	(ft)	(kips)	Unsup.								
--------------------	---------------------	----------------	------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------

Criterion (kips)	Criterion (kips)	ship (kips)	(ft)	(kips)								
---------------------	---------------------	----------------	------	--------	--------	--------	--------	--------	--------	--------	--------	--------

-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------

g1P 0.000	LEG1	53.509	L/r	41.332	Net Sect	75	5.00	53.509	0.000	0.000	41.332	0.000	0.000	0.000	0.000
--------------	------	--------	-----	--------	----------	----	------	--------	-------	-------	--------	-------	-------	-------	-------

g2P 0.000	LEG1	53.509	L/r	41.332	Net Sect	75	5.00	53.509	0.000	0.000	41.332	0.000	0.000	0.000	0.000
--------------	------	--------	-----	--------	----------	----	------	--------	-------	-------	--------	-------	-------	-------	-------

g3P 0.000	LEG1	53.509	L/r	41.332	Net Sect	75	5.00	53.509	0.000	0.000	41.332	0.000	0.000	0.000	0.000
--------------	------	--------	-----	--------	----------	----	------	--------	-------	-------	--------	-------	-------	-------	-------

0.000	g37Y	XBR5	Automatic	6.345	L/r	16.523	Rupture	213	18.81	6.345	18.200	28.125	18.952	16.523	0.000	0.000	0.000	0.000
0.000	g38P	XBR6	Automatic	4.961	L/r	13.201	Rupture	211	28.31	4.961	18.200	21.094	14.585	13.201	0.000	0.000	0.000	0.000
0.000	g38X	XBR6	Automatic	4.961	L/r	13.201	Rupture	211	28.31	4.961	18.200	21.094	14.585	13.201	0.000	0.000	0.000	0.000
0.000	g38XY	XBR6	Automatic	4.961	L/r	13.201	Rupture	211	28.31	4.961	18.200	21.094	14.585	13.201	0.000	0.000	0.000	0.000
0.000	g38Y	XBR6	Automatic	4.961	L/r	13.201	Rupture	211	28.31	4.961	18.200	21.094	14.585	13.201	0.000	0.000	0.000	0.000
0.000	g39P	XBR6	Automatic	4.961	L/r	13.201	Rupture	211	28.31	4.961	18.200	21.094	14.585	13.201	0.000	0.000	0.000	0.000
0.000	g39X	XBR6	Automatic	4.961	L/r	13.201	Rupture	211	28.31	4.961	18.200	21.094	14.585	13.201	0.000	0.000	0.000	0.000
0.000	g39XY	XBR6	Automatic	4.961	L/r	13.201	Rupture	211	28.31	4.961	18.200	21.094	14.585	13.201	0.000	0.000	0.000	0.000
0.000	g39Y	XBR6	Automatic	4.961	L/r	13.201	Rupture	211	28.31	4.961	18.200	21.094	14.585	13.201	0.000	0.000	0.000	0.000
0.000	g40P	HORZ1	Automatic	9.100	Shear	7.717	Rupture	149	9.82	10.506	9.100	10.547	17.444	7.717	0.000	0.000	0.000	0.000
0.000	g40Y	HORZ1	Automatic	9.100	Shear	7.717	Rupture	149	9.82	10.506	9.100	10.547	17.444	7.717	0.000	0.000	0.000	0.000
0.000	g41P	HORZ1	Automatic	9.100	Shear	7.717	Rupture	149	9.82	10.506	9.100	10.547	17.444	7.717	0.000	0.000	0.000	0.000
0.000	g41X	HORZ1	Automatic	9.100	Shear	7.717	Rupture	149	9.82	10.506	9.100	10.547	17.444	7.717	0.000	0.000	0.000	0.000
0.000	g42P	HORZ2	Automatic	9.100	Shear	9.100	Shear	157	13.81	15.230	9.100	14.062	30.090	12.500	0.000	0.000	0.000	0.000
0.000	g42Y	HORZ2	Automatic	9.100	Shear	9.100	Shear	157	13.81	15.230	9.100	14.062	30.090	12.500	0.000	0.000	0.000	0.000
0.000	g43P	HORZ2	Automatic	9.100	Shear	9.100	Shear	157	13.81	15.230	9.100	14.062	30.090	12.500	0.000	0.000	0.000	0.000
0.000	g43X	HORZ2	Automatic	9.100	Shear	9.100	Shear	157	13.81	15.230	9.100	14.062	30.090	12.500	0.000	0.000	0.000	0.000
0.000	g44P	ARM1	Automatic	14.803	L/r	18.200	Shear	184	11.52	14.803	18.200	28.125	33.802	36.765	0.000	0.000	0.000	0.000
0.000	g44X	ARM1	Automatic	14.803	L/r	18.200	Shear	184	11.52	14.803	18.200	28.125	33.802	36.765	0.000	0.000	0.000	0.000
0.000	g44XY	ARM1	Automatic	14.803	L/r	18.200	Shear	184	11.52	14.803	18.200	28.125	33.802	36.765	0.000	0.000	0.000	0.000
0.000	g44Y	ARM1	Automatic	14.803	L/r	18.200	Shear	184	11.52	14.803	18.200	28.125	33.802	36.765	0.000	0.000	0.000	0.000
0.000	g45P	ARM1	Automatic	26.226	L/r	43.230	Net Sect	114	5.00	26.226	0.000	0.000	43.230	0.000	0.000	0.000	0.000	0.000
0.000	g45Y	ARM1	Automatic	26.226	L/r	43.230	Net Sect	114	5.00	26.226	0.000	0.000	43.230	0.000	0.000	0.000	0.000	0.000
0.000	g46P	ARM1	Automatic	24.877	L/r	27.300	Shear	122	7.67	24.877	27.300	42.187	33.802	55.008	0.000	0.000	0.000	0.000
0.000	g46X	ARM1	Automatic	24.877	L/r	27.300	Shear	122	7.67	24.877	27.300	42.187	33.802	55.008	0.000	0.000	0.000	0.000
0.000	g46XY	ARM1	Automatic	24.877	L/r	27.300	Shear	122	7.67	24.877	27.300	42.187	33.802	55.008	0.000	0.000	0.000	0.000
0.000	g46Y	ARM1	Automatic	24.877	L/r	27.300	Shear	122	7.67	24.877	27.300	42.187	33.802	55.008	0.000	0.000	0.000	0.000
0.000	g47P	ARM1	Automatic	26.226	L/r	43.230	Net Sect	114	5.00	26.226	0.000	0.000	43.230	0.000	0.000	0.000	0.000	0.000
0.000	g47Y	ARM1	Automatic	26.226	L/r	43.230	Net Sect	114	5.00	26.226	0.000	0.000	43.230	0.000	0.000	0.000	0.000	0.000
0.000	g48P	ARM2	Automatic	14.810	L/r	27.300	Shear	196	12.01	14.810	27.300	42.187	37.663	45.633	0.000	0.000	0.000	0.000

0.000		Automatic																
0.000	g61X	M4	0.648	L/r	7.889	Net Sect	439	9.15	0.648	9.100	14.062	7.889	12.500	0.000	0.000	0.000	0.000	0.000
0.000	g61XY	M4	0.648	L/r	7.889	Net Sect	439	9.15	0.648	9.100	14.062	7.889	12.500	0.000	0.000	0.000	0.000	0.000
0.000	g61Y	M4	0.648	L/r	7.889	Net Sect	439	9.15	0.648	9.100	14.062	7.889	12.500	0.000	0.000	0.000	0.000	0.000
0.000	g62P	M4	0.354	L/r	7.889	Net Sect	594	12.38	0.354	9.100	14.062	7.889	12.500	0.000	0.000	0.000	0.000	0.000
0.000	g62X	M4	0.354	L/r	7.889	Net Sect	594	12.38	0.354	9.100	14.062	7.889	12.500	0.000	0.000	0.000	0.000	0.000
0.000	g62XY	M4	0.354	L/r	7.889	Net Sect	594	12.38	0.354	9.100	14.062	7.889	12.500	0.000	0.000	0.000	0.000	0.000
0.000	g62Y	M4	0.354	L/r	7.889	Net Sect	594	12.38	0.354	9.100	14.062	7.889	12.500	0.000	0.000	0.000	0.000	0.000
0.000	g63P	M4	0.595	L/r	7.889	Net Sect	459	9.56	0.595	9.100	14.062	7.889	12.500	0.000	0.000	0.000	0.000	0.000
0.000	g63X	M4	0.595	L/r	7.889	Net Sect	459	9.56	0.595	9.100	14.062	7.889	12.500	0.000	0.000	0.000	0.000	0.000
0.000	g63XY	M4	0.595	L/r	7.889	Net Sect	459	9.56	0.595	9.100	14.062	7.889	12.500	0.000	0.000	0.000	0.000	0.000
0.000	g63Y	M4	0.595	L/r	7.889	Net Sect	459	9.56	0.595	9.100	14.062	7.889	12.500	0.000	0.000	0.000	0.000	0.000
0.000	g64P	M4	2.174	L/r	7.889	Net Sect	240	5.00	2.174	9.100	14.062	7.889	12.500	0.000	0.000	0.000	0.000	0.000
0.000	g64Y	M4	2.174	L/r	7.889	Net Sect	240	5.00	2.174	9.100	14.062	7.889	12.500	0.000	0.000	0.000	0.000	0.000
0.000			Automatic															

The model contains 190 angle members.

Sum of Unfactored Dead Load and Drag Areas From Equipment, Input and Calculated:

Joint Label	Dead Load (kips)	X-Drag Area (ft ²)	Y-Drag Area (ft ²)
<hr/>			
1P	0.0906	4.843	3.221
2P	0.117	6.336	5.481
3P	0.0777	4.953	4.953
4P	0.127	7.376	5.662
5P	0.086	5.453	5.150
6P	0.12	6.193	5.277
7P	0.172	7.493	7.493
12P	0.0617	3.479	1.146
13P	0.0626	3.947	2.078
14P	0.0836	5.448	1.380
15P	0.0558	3.475	1.557
1X	0.0906	4.843	3.221
1XY	0.0824	4.427	2.804
1Y	0.0906	4.843	3.221
2X	0.117	6.336	5.481
2XY	0.108	5.919	5.065
2Y	0.117	6.336	5.481
3X	0.0777	4.953	4.953
3XY	0.0777	4.953	4.953
3Y	0.0777	4.953	4.953
4X	0.127	7.376	5.662
4XY	0.118	6.959	5.246
4Y	0.127	7.376	5.662

5X	0.086	5.453	5.150
5XY	0.0777	5.036	4.734
5Y	0.086	5.453	5.150
6X	0.12	6.193	5.277
6XY	0.12	6.193	5.277
6Y	0.12	6.193	5.277
7X	0.172	7.493	7.493
7XY	0.172	7.493	7.493
7Y	0.172	7.493	7.493
12X	0.0617	3.479	1.146
13X	0.0626	3.947	2.078
14X	0.0836	5.448	1.380
15X	0.0558	3.475	1.557
8S	0.0904	4.510	4.510
9S	0.109	5.544	5.544
10S	0.209	8.820	8.820
11S	0.359	14.090	14.090
16S	0.0372	2.427	1.325
1XYF0.50S	0.0165	0.833	0.833
4XYF0.50S	0.0165	0.833	0.833
8X	0.0904	4.510	4.510
8XY	0.0904	4.510	4.510
8Y	0.0904	4.510	4.510
9X	0.109	5.544	5.544
9XY	0.109	5.544	5.544
9Y	0.109	5.544	5.544
10X	0.209	8.820	8.820
10XY	0.209	8.820	8.820
10Y	0.209	8.820	8.820
11X	0.359	14.090	14.090
11XY	0.359	14.090	14.090
11Y	0.359	14.090	14.090
16X	0.0372	2.427	1.325
16XY	0.0372	2.427	1.325
16Y	0.0372	2.427	1.325
Total	6.9	344.848	298.425

Unadjusted Dead Load and Drag Areas by Section:

Section Label	Unfactored		X-Drag		Y-Drag	
	Dead Load	Area	All Area	All Area	Face Area	Face Area
	(kips)	(ft ²)	(ft ²)	(ft ²)	(ft ²)	
1	4.280	239.034	192.610	98.536	71.074	
2	2.623	105.815	105.815	42.014	42.014	
Total	6.903	344.848	298.425	140.550	113.087	

Angle Member Weights and Surface Areas by Section:

Section Label	Unfactored		Factored	
	Weight	Weight	Surface Area	Surface Area
	(kips)	(kips)	(ft ²)	(ft ²)
1	4.280	4.280	955.397	955.397
2	2.623	2.885	471.558	518.713
Total	6.903	7.165	1426.955	1474.111

Section Joint Information:

Section Label	Joint Label	Joint Elevation (ft)
1	1X	81.500
1	2X	76.500
1	1P	81.500
1	2P	76.500
1	1Y	81.500
1	2Y	76.500
1	1XY	81.500
1	1XYF0.50S	79.000
1	2XY	76.500
1	3X	70.500
1	3P	70.500
1	3Y	70.500
1	3XY	70.500
1	16S	67.500
1	16X	67.500
1	16XY	67.500
1	16Y	67.500
1	4X	64.500
1	4P	64.500
1	4Y	64.500
1	4XY	64.500
1	5X	59.500
1	5P	59.500
1	5Y	59.500
1	4XYF0.50S	62.000
1	5XY	59.500
1	6X	54.500
1	6P	54.500
1	6Y	54.500
1	6XY	54.500
1	8X	49.500
1	8S	49.500
1	8Y	49.500
1	8XY	49.500
1	9X	43.500
1	9S	43.500
1	9Y	43.500
1	9XY	43.500
1	10X	37.000
1	10S	37.000
1	10Y	37.000
1	10XY	37.000
1	12P	81.500
1	12X	81.500
1	13P	76.500
1	13X	76.500
1	14P	64.500
1	14X	64.500
1	15P	54.500
1	15X	54.500
2	10X	37.000
2	11X	22.500
2	10S	37.000
2	11S	22.500
2	10Y	37.000

2	11Y	22.500
2	10XY	37.000
2	11XY	22.500
2	7X	0.000
2	7P	0.000
2	7Y	0.000
2	7XY	0.000

Sections Information:

Section Label	Top Z (ft)	Bottom Z (ft)	Joint Count	Member Count	Face Tran. (ft)	Face Tran. (ft)	Face Long. (ft)				
1	81.500	37.000	50	162	5.00	9.82	264.644	27.50	9.82	431.144	
2	37.000	0.000	12	28	9.82	20.00	551.606	9.82	20.00	551.606	

*** Insulator Data

Clamp Properties:

Label	Stock Number	Holding Capacity (lbs)
C-EX1		5e+004

Clamp Insulator Connectivity:

Label	And Tip Attach	Set Vertical Load (uplift) (lbs)	Property	Min. Required
1	12P	C-EX1	No Limit	
2	12X	C-EX1	No Limit	
3	13P	C-EX1	No Limit	
4	13X	C-EX1	No Limit	
5	14P	C-EX1	No Limit	
6	14X	C-EX1	No Limit	
7	15P	C-EX1	No Limit	
8	15X	C-EX1	No Limit	
9	1XY	C-EX1	No Limit	
10	2XY	C-EX1	No Limit	
11	3XY	C-EX1	No Limit	
12	4XY	C-EX1	No Limit	
13	5XY	C-EX1	No Limit	
14	6XY	C-EX1	No Limit	
15	8XY	C-EX1	No Limit	
16	9XY	C-EX1	No Limit	
17	10XY	C-EX1	No Limit	
18	11XY	C-EX1	No Limit	
19	1XYF0.50S	C-EX1	No Limit	
20	4XYF0.50S	C-EX1	No Limit	
21	1Y	C-EX1	No Limit	
22	2Y	C-EX1	No Limit	
23	3Y	C-EX1	No Limit	
24	4Y	C-EX1	No Limit	
25	5Y	C-EX1	No Limit	

26	6Y	C-EX1	No Limit
27	8Y	C-EX1	No Limit
28	9Y	C-EX1	No Limit
29	10Y	C-EX1	No Limit
30	11Y	C-EX1	No Limit

*** Loads Data

Loads from file: j:\jobs\1700400.wi\04_southington-cathydrive nu ct1109\04_structural\backup documentation\calcs\pls tower\cl&p # 4119.lca

Insulator dead and wind loads are already included in the point loads printed below.

Loading Method Parameters:

Structure Height Summary (used for calculating wind/ice adjust with height):

Z of ground for wind height adjust 0.00 (ft) and structure Z coordinate that will be put on the centerline ground profile in PLS-CADD.
Ground elevation shift 0.00 (ft)
Z of ground with shift 0.00 (ft)
Z of structure top (highest joint) 81.50 (ft)
Structure height 81.50 (ft)
Structure height above ground 81.50 (ft)
Tower Shape Rectangular

Load distributed evenly among joints in section for section based load cases

Vector Load Cases:

Load Case Description	Dead Factor	Wind Factor	SF for Steel Tubular Arms	SF for Poles and Towers	SF for Guys	SF for Insuls.	SF For Found.	Point Loads	Wind/Ice Model	Trans. Wind Pressure	Longit. Wind Pressure	Ice Wind Thick.	Ice Density	Temperature	Joint Displ.
			Factor	Factor	Factor	Factor	Factor			(psf)	(psf)	(in)	(lbs/ft ³)	(deg F)	
NESC Heavy	1.5000	2.5000	1.00000	1.0000	1.0000	1.0000	30	loads	Wind on Face	4	0	0.000	0.000	0.0	
NESC Extreme	1.0000	1.0000	1.00000	1.0000	1.0000	1.0000	30	loads	NESC 2012	31	0	0.000	0.000	0.0	

Point Loads for Load Case "NESC Heavy":

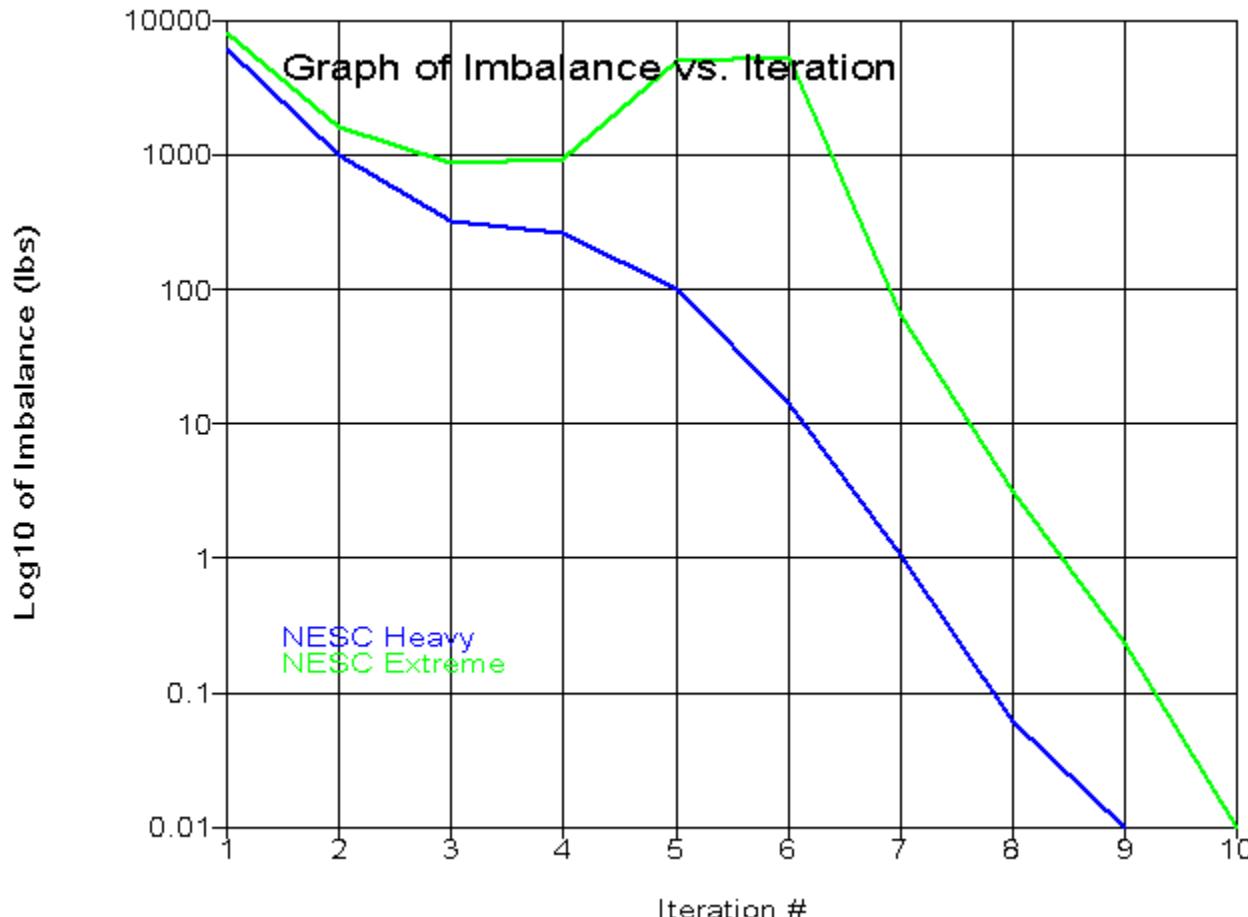
Joint Label	Vertical Load (lbs)	Transverse Load (lbs)	Longitudinal Load (lbs)	Load Comment
12P	1333	1008	0	Shield Wire
12X	808	779	0	Shield Wire
13P	1710	1118	0	Conductor
13X	1710	1118	0	Conductor
14P	1710	1118	0	Conductor
14X	1710	1118	0	Conductor
15P	1710	1118	0	Conductor
15X	1710	1118	0	Conductor
1XYF0.50S	0	2137	0	Top Mast Connection
4XYF0.50S	6073	-605	0	Bottom Mast Connection
1XY	115	43	0	Coax Cable - Southeast Leg
2XY	253	94	0	Coax Cable - Southeast Leg
3XY	276	103	0	Coax Cable - Southeast Leg
4XY	253	94	0	Coax Cable - Southeast Leg
5XY	230	86	0	Coax Cable - Southeast Leg
6XY	230	86	0	Coax Cable - Southeast Leg
8XY	253	94	0	Coax Cable - Southeast Leg
9XY	287	107	0	Coax Cable - Southeast Leg
10XY	483	180	0	Coax Cable - Southeast Leg
11XY	1368	511	0	Coax Cable - Southeast Leg

1Y	57	23	0	Coax	Cable	-	Southwest	Leg
2Y	126	51	0	Coax	Cable	-	Southwest	Leg
3Y	138	56	0	Coax	Cable	-	Southwest	Leg
4Y	126	51	0	Coax	Cable	-	Southwest	Leg
5Y	115	46	0	Coax	Cable	-	Southwest	Leg
6Y	115	46	0	Coax	Cable	-	Southwest	Leg
8Y	126	51	0	Coax	Cable	-	Southwest	Leg
9Y	144	58	0	Coax	Cable	-	Southwest	Leg
10Y	241	97	0	Coax	Cable	-	Southwest	Leg
11Y	684	275	0	Coax	Cable	-	Southwest	Leg

Section Load Case Information (Standard) for "NESC Heavy":

Section Label	Z of Top	Z of Bottom	Ave. Elev.	Res. Adj.	Tran. Adj.	Tran. Drag	Tran. Wind	Long Adj.	Long Drag	Long Wind	Ice Weight	Total Weight
	(ft)	(ft)	(ft)	(psf)	(psf)	(lbs)	(psf)	(lbs)	(lbs)	(lbs)		
1	81.50	37.00	59.25	10.00	10.00	3,200	2274.3	0.00	3,200	0.0	0	6420
2	37.00	0.00	18.50	10.00	10.00	3,200	1344.4	0.00	3,200	0.0	0	4328

Point Loads for Load Case "NESC Extreme":


Label	Joint Vertical Transverse Longitudinal			Comment
	Load (lbs)	Load (lbs)	Load (lbs)	
12P	357	1214	0	Shield Wire
12X	177	564	0	Shield Wire
13P	528	1524	0	Conductor
13X	528	1524	0	Conductor
14P	528	1524	0	Conductor
14X	528	1524	0	Conductor
15P	528	1524	0	Conductor
15X	528	1524	0	Conductor
1XYF0.50S	0	7865	0	Top Mast Connection
4XYF0.50S	2929	-2321	0	Bottom Mast Connection
1XY	31	134	0	Coax Cable - Southeast Leg
2XY	69	294	0	Coax Cable - Southeast Leg
3XY	75	321	0	Coax Cable - Southeast Leg
4XY	69	294	0	Coax Cable - Southeast Leg
5XY	62	268	0	Coax Cable - Southeast Leg
6XY	62	268	0	Coax Cable - Southeast Leg
8XY	69	294	0	Coax Cable - Southeast Leg
9XY	78	335	0	Coax Cable - Southeast Leg
10XY	131	562	0	Coax Cable - Southeast Leg
11XY	371	1593	0	Coax Cable - Southeast Leg
1Y	16	67	0	Coax Cable - Southwest Leg
2Y	34	147	0	Coax Cable - Southwest Leg
3Y	37	161	0	Coax Cable - Southwest Leg
4Y	34	147	0	Coax Cable - Southwest Leg
5Y	31	134	0	Coax Cable - Southwest Leg
6Y	31	134	0	Coax Cable - Southwest Leg
8Y	34	147	0	Coax Cable - Southwest Leg
9Y	39	167	0	Coax Cable - Southwest Leg
10Y	66	281	0	Coax Cable - Southwest Leg
11Y	186	796	0	Coax Cable - Southwest Leg

Section Load Case Information (Code) for "NESC Extreme":

Section Label	Z of Top Ground	Z of Bottom	Ave. Elev.	Res. Adj.	Tran Adj.	Tran Angle	Tran Gross	Tran Soli-	Tran Angle	Tran Wind	Long Adj.	Long Angle	Long Gross	Long Soli-	Long Angle	Long Wind	Ice Weight	Total Weight
	(ft)	(ft)	(ft)	(psf)	(ft^2)	(ft^2)				(lbs)	(psf)	(ft^2)	(lbs)			(lbs)	(lbs)	
1	81.50	37.00	59.25	30.62	30.62	71.07	264.64	0.269	3.200	6964.9	0.00	98.54	431.14	0.229	3.200	0.0	0	4280
2	37.00	0.00	18.50	30.62	30.62	46.22	551.61	0.084	3.200	4528.9	0.00	46.22	551.61	0.084	3.200	0.0	0	2885

*** Analysis Results:

Maximum element usage is 81.86% for Angle "g17X" in load case "NESC Extreme"
Maximum insulator usage is 16.01% for Clamp "19" in load case "NESC Extreme"

Angle Forces For All Load Cases:

Positive for tension - negative for compression

Group Label	Angle Label	Max. Usage For All LC	Max. Tens. For All LC	Max. Comp. For All LC	LC 1 (kips)	LC 2 (kips)
		%	(kips)	(kips)	(kips)	(kips)
LEG1	g1P	2.37	0.981	-1.079	-1.079	0.981
LEG1	g2P	3.64	0.000	-1.945	-1.661	-1.945
LEG1	g3P	2.67	0.000	-1.429	-1.429	-0.874
LEG1	g4P	2.36	0.689	-1.264	-1.264	0.689

LEG1	g5P	2.39	0.685	-1.280	-1.280	0.685
LEG1	g6P	14.69	7.737	0.000	1.356	7.737
LEG1	g6X	18.35	0.000	-8.969	-4.727	-8.969
LEG1	g6XY	18.80	0.000	-9.192	-5.234	-9.192
LEG1	g6Y	14.03	7.390	0.000	1.207	7.390
LEG1	g7P	29.49	15.536	0.000	4.803	15.536
LEG1	g7X	27.49	0.000	-16.562	-7.736	-16.562
LEG1	g7XY	29.34	0.000	-17.670	-9.133	-17.670
LEG1	g7Y	29.39	15.482	0.000	5.078	15.482
LEG1	g8P	36.81	15.214	0.000	3.852	15.214
LEG1	g8X	28.20	0.000	-16.987	-8.712	-16.987
LEG1	g8XY	29.88	0.000	-17.999	-10.085	-17.999
LEG1	g8Y	36.40	15.047	0.000	4.099	15.047
LEG1	g9P	49.70	26.178	0.000	7.397	26.178
LEG1	g10P	54.08	0.000	-28.936	-14.810	-28.936
LEG1	g11P	56.81	0.000	-30.398	-17.370	-30.398
LEG1	g12P	50.28	26.483	0.000	8.475	26.483
LEG1	g13P	44.52	23.450	0.000	2.375	23.450
LEG1	g14P	65.14	34.316	0.000	10.124	34.316
LEG1	g14X	70.29	0.000	-37.613	-18.985	-37.613
LEG1	g14XY	71.03	0.000	-38.006	-22.452	-38.006
LEG1	g14Y	58.37	30.749	0.000	6.303	30.749
LEG2	g15P	69.77	40.469	0.000	13.433	40.469
LEG2	g15X	66.06	0.000	-43.313	-21.829	-43.313
LEG2	g15XY	65.45	0.000	-42.914	-25.499	-42.914
LEG2	g15Y	62.78	36.413	0.000	9.920	36.413
LEG2	g16P	73.99	42.913	0.000	14.589	42.913
LEG2	g16X	79.12	0.000	-47.133	-25.096	-47.133
LEG2	g16XY	78.47	0.000	-46.744	-27.962	-46.744
LEG2	g16Y	67.87	39.363	0.000	11.171	39.363
LEG2	g17P	64.66	41.952	0.000	14.785	41.952
LEG2	g17X	81.86	0.000	-45.974	-25.577	-45.974
LEG2	g17XY	81.60	0.000	-45.828	-27.774	-45.828
LEG2	g17Y	60.36	39.163	0.000	11.716	39.163
LEG3	g18P	51.23	39.637	0.000	14.457	39.637
LEG3	g18X	56.83	0.000	-48.744	-24.545	-48.744
LEG3	g18XY	57.30	0.000	-49.145	-26.318	-49.145
LEG3	g18Y	49.82	38.543	0.000	11.944	38.543
LEG3	g19P	53.32	41.252	0.000	14.779	41.252
LEG3	g19X	60.16	0.000	-51.214	-26.605	-51.214
LEG3	g19XY	69.00	0.000	-58.744	-29.070	-58.744
LEG3	g19Y	49.82	38.540	0.000	12.631	38.540
XBR1	g20P	15.09	0.000	-1.744	-0.741	-1.744
XBR1	g20X	11.06	1.614	0.000	0.309	1.614
XBR1	g20XY	14.16	2.065	0.000	0.435	2.065
XBR1	g20Y	27.91	0.000	-3.227	-1.126	-3.227
XBR1	g21P	1.41	0.177	-0.122	-0.122	0.177
XBR1	g21X	2.48	0.000	-0.287	-0.134	-0.287
XBR1	g21XY	5.15	0.752	0.000	0.127	0.752
XBR1	g21Y	6.51	0.000	-0.753	-0.360	-0.753
XBR2	g22P	23.60	0.000	-4.077	-2.016	-4.077
XBR2	g22X	18.26	4.181	0.000	2.198	4.181
XBR2	g22XY	35.65	8.164	0.000	3.464	8.164
XBR2	g22Y	44.61	0.000	-7.707	-3.159	-7.707
XBR2	g23P	10.98	2.514	0.000	0.533	2.514
XBR2	g23X	15.03	0.000	-2.596	-0.970	-2.596
XBR2	g23XY	3.07	0.703	-0.258	-0.258	0.703
XBR2	g23Y	4.42	0.000	-0.763	-0.185	-0.763
XBR2	g24P	27.06	0.000	-4.674	-2.365	-4.674
XBR2	g24X	20.11	4.605	0.000	2.148	4.605

XBR2	g24XY	37.38	8.562	0.000	3.401	8.562
XBR2	g24Y	44.84	0.000	-7.746	-3.427	-7.746
XBR2	g25P	4.77	0.327	-0.583	-0.583	0.327
XBR2	g25X	4.08	0.000	-0.705	-0.334	-0.705
XBR2	g25XY	11.24	2.573	0.000	0.371	2.573
XBR2	g25Y	23.52	0.000	-2.878	-1.282	-2.878
XBR2	g26P	27.17	0.000	-5.159	-1.866	-5.159
XBR2	g26X	25.65	5.874	0.000	3.660	5.874
XBR2	g26XY	40.40	9.252	0.000	5.051	9.252
XBR2	g26Y	41.72	0.000	-7.921	-3.085	-7.921
XBR2	g27P	11.20	2.565	0.000	0.682	2.565
XBR2	g27X	18.18	0.000	-2.542	-0.646	-2.542
XBR2	g27XY	2.21	0.307	-0.309	-0.309	0.307
XBR2	g27Y	1.54	0.352	-0.223	0.352	-0.223
XBR2	g28P	30.37	0.000	-5.767	-1.986	-5.767
XBR2	g28X	28.09	6.433	0.000	3.860	6.433
XBR2	g28XY	35.50	8.131	0.000	4.606	8.131
XBR2	g28Y	38.16	0.000	-7.245	-3.232	-7.245
XBR2	g29P	7.67	0.000	-1.072	-1.072	-0.491
XBR2	g29X	0.43	0.098	-0.017	-0.017	0.098
XBR2	g29XY	12.02	2.753	0.000	0.372	2.753
XBR2	g29Y	20.66	0.000	-2.890	-1.252	-2.890
XBR3	g30P	7.80	0.617	-0.975	-0.975	0.617
XBR3	g30X	6.81	0.236	-0.850	0.236	-0.850
XBR3	g30XY	11.86	1.557	0.000	0.617	1.557
XBR3	g30Y	15.66	0.000	-1.957	-1.684	-1.957
XBR3	g31P	10.78	0.000	-1.164	-0.294	-1.164
XBR3	g31X	6.89	0.904	0.000	0.604	0.904
XBR3	g31XY	22.90	3.007	0.000	0.792	3.007
XBR3	g31Y	35.79	0.000	-3.866	-1.798	-3.866
XBR4	g32P	3.32	0.469	-0.381	-0.381	0.469
XBR4	g32X	4.15	0.645	-0.476	0.645	-0.476
XBR4	g32XY	9.36	1.703	0.000	1.221	1.703
XBR4	g32Y	15.06	0.000	-1.730	-0.830	-1.730
XBR4	g33P	15.53	2.827	0.000	1.285	2.827
XBR4	g33X	23.72	0.000	-2.097	-0.544	-2.097
XBR4	g33XY	5.31	0.000	-0.469	-0.439	-0.469
XBR4	g33Y	4.07	0.741	0.000	0.086	0.741
XBR4	g34P	7.30	0.141	-0.666	-0.666	0.141
XBR4	g34X	2.70	0.273	-0.246	0.273	-0.246
XBR4	g34XY	8.86	1.612	0.000	0.662	1.612
XBR4	g34Y	20.77	0.000	-1.895	-1.265	-1.895
XBR4	g35P	7.43	0.000	-0.517	-0.060	-0.517
XBR4	g35X	1.54	0.280	0.000	0.280	0.267
XBR4	g35XY	8.25	1.501	0.000	0.317	1.501
XBR4	g35Y	31.21	0.000	-2.174	-0.997	-2.174
XBR5	g36P	20.86	0.000	-1.323	-1.323	-1.141
XBR5	g36X	2.15	0.000	-0.136	-0.098	-0.136
XBR5	g36XY	11.35	1.876	0.000	0.282	1.876
XBR5	g36Y	65.98	0.000	-4.186	-2.337	-4.186
XBR5	g37P	45.98	1.684	-2.917	-2.917	1.684
XBR5	g37X	27.94	4.616	0.000	1.758	4.616
XBR5	g37XY	35.10	5.800	0.000	1.707	5.800
XBR5	g37Y	61.37	0.000	-3.894	-3.894	0.000
XBR6	g38P	31.31	0.000	-1.553	-1.492	-1.553
XBR6	g38X	1.83	0.242	-0.083	-0.083	0.242
XBR6	g38XY	67.31	8.886	0.000	0.733	8.886
XBR6	g38Y	59.31	0.000	-2.942	-2.942	0.000
XBR6	g39P	64.16	1.375	-3.183	-3.183	1.375
XBR6	g39X	35.90	4.740	0.000	1.908	4.740

XBR6	g39XY	42.02	5.547	0.000	1.609	5.547
XBR6	g39Y	81.50	0.000	-4.043	-4.043	0.000
HORZ1	g40P	6.37	0.492	0.000	0.492	0.408
HORZ1	g40Y	9.18	0.709	0.000	0.709	0.699
HORZ1	g41P	36.49	2.816	0.000	2.816	0.305
HORZ1	g41X	49.53	0.000	-4.507	-1.561	-4.507
HORZ2	g42P	7.67	0.698	0.000	0.650	0.698
HORZ2	g42Y	33.17	0.783	-3.019	0.783	-3.019
HORZ2	g43P	46.17	4.202	-0.983	4.202	-0.983
HORZ2	g43X	70.36	0.000	-6.403	-2.321	-6.403
ARM1	g44P	3.29	0.050	-0.487	0.050	-0.487
ARM1	g44X	4.23	0.769	0.000	0.769	0.476
ARM1	g44XY	4.20	0.765	0.000	0.765	0.461
ARM1	g44Y	3.45	0.045	-0.511	0.045	-0.511
ARM1	g45P	5.93	2.563	0.000	2.563	0.787
ARM1	g45Y	4.98	2.154	-0.726	2.154	-0.726
ARM1	g46P	14.55	0.000	-3.619	-3.619	-1.628
ARM1	g46X	7.67	0.000	-1.908	-1.908	-0.119
ARM1	g46XY	7.10	0.362	-1.767	-1.767	0.362
ARM1	g46Y	15.06	0.000	-3.745	-3.745	-2.060
ARM1	g47P	9.69	0.000	-2.540	-2.540	-0.687
ARM1	g47Y	12.09	0.000	-3.171	-3.171	-2.984
ARM2	g48P	28.05	0.000	-4.154	-4.154	-1.791
ARM2	g48X	20.76	0.000	-3.075	-3.075	-0.492
ARM2	g48XY	20.14	0.000	-2.983	-2.983	-0.137
ARM2	g48Y	28.83	0.000	-4.270	-4.270	-2.268
ARM2	g49P	12.68	0.000	-3.723	-3.723	-1.220
ARM2	g49Y	12.45	0.000	-3.656	-3.656	-1.065
ARM1	g50P	11.68	0.000	-2.126	-2.126	-1.116
ARM1	g50X	5.73	0.000	-1.042	-1.042	-0.062
ARM1	g50XY	4.83	0.879	-0.660	-0.660	0.879
ARM1	g50Y	11.09	0.000	-2.019	-2.019	-1.642
ARM1	g51P	8.28	0.000	-2.172	-2.172	-0.855
ARM1	g51Y	8.45	0.000	-2.217	-2.217	-1.101
M1	g52P	13.56	0.000	-0.786	-0.786	-0.084
M1	g52X	15.65	0.000	-0.908	-0.908	-0.229
M1	g53P	10.50	0.810	-0.166	0.810	-0.166
M1	g53X	21.81	1.683	0.000	1.683	1.133
M1	g54P	9.60	0.741	0.000	0.741	0.177
M1	g54X	11.76	0.907	0.000	0.907	0.314
M1	g55P	43.18	0.000	-2.504	-0.928	-2.504
M1	g55X	36.83	2.842	0.000	1.558	2.842
M2	g56P	6.72	0.518	0.000	0.290	0.518
M2	g56X	7.26	0.000	-0.661	-0.020	-0.661
M2	g57P	9.12	0.704	0.000	0.118	0.704
M2	g57X	11.97	0.000	-1.089	-0.223	-1.089
M2	g58P	7.59	0.000	-0.539	-0.539	-0.200
M2	g58X	3.17	0.000	-0.225	-0.225	-0.047
M2	g59P	0.99	0.076	-0.057	-0.057	0.076
M2	g59X	9.37	0.000	-0.666	-0.666	-0.370
M3	g60P	20.12	0.000	-1.831	-1.831	-0.612
M3	g60X	12.59	0.000	-1.145	-1.145	-0.335
M4	g61P	36.11	2.849	0.000	2.849	0.657
M4	g61X	32.20	2.541	0.000	2.541	1.078
M4	g61XY	29.99	2.366	0.000	2.366	0.473
M4	g61Y	37.99	2.997	0.000	2.997	1.157
M4	g62P	46.52	3.670	0.000	3.670	0.980
M4	g62X	47.75	3.767	0.000	3.767	1.401
M4	g62XY	46.48	3.667	0.000	3.667	1.006
M4	g62Y	47.96	3.784	0.000	3.784	1.445

M4	g63P	22.48	1.774	0.000	1.774	0.290
M4	g63X	24.32	1.918	0.000	1.918	1.111
M4	g63XY	18.57	1.465	-0.015	1.465	-0.015
M4	g63Y	20.85	1.645	0.000	1.645	0.890
M4	g64P	42.71	3.369	0.000	3.369	1.086
M4	g64Y	41.47	3.271	0.000	3.271	0.727

*** Analysis Results for Load Case No. 1 "NESC Heavy" - Number of iterations in SAPS 9

Equilibrium Joint Positions and Rotations for Load Case "NESC Heavy":

Joint Label	X-Displ (ft)	Y-Displ (ft)	Z-Displ (ft)	X-Rot (deg)	Y-Rot (deg)	Z-Rot (deg)	X-Pos (ft)	Y-Pos (ft)	Z-Pos (ft)
1P	-0.00985	0.1572	-0.01559	-0.2347	-0.0151	-0.0349	2.49	2.657	81.48
2P	-0.007939	0.1368	-0.0154	-0.2327	-0.0394	-0.0317	2.492	2.637	76.48
3P	-0.005527	0.1132	-0.01485	-0.2138	0.0447	-0.0276	2.494	2.613	70.49
4P	-0.004228	0.08949	-0.01392	-0.2247	-0.0824	-0.0226	2.496	2.589	64.49
5P	-0.001418	0.07285	-0.01257	-0.1881	0.0038	-0.0179	2.499	2.573	59.49
6P	-0.001923	0.05627	-0.01086	-0.1652	-0.0136	-0.0130	2.498	2.556	54.49
7P	0	0	0	0.0000	0.0000	0.0000	10	10	0
12P	-0.02013	0.1585	0.04114	-0.2138	-0.0720	-0.0374	-0.02013	-13.59	81.54
13P	-0.01557	0.1397	0.0267	-0.1417	0.0219	-0.0369	-0.01557	-9.61	76.53
14P	-0.01149	0.0923	0.02252	-0.0465	-0.0131	-0.0239	-0.01149	-14.16	64.52
15P	-0.005828	0.05797	0.02107	-0.1415	-0.0124	-0.0191	-0.005828	-10.19	54.52
1X	-0.01299	0.1569	0.004147	-0.2190	-0.0248	-0.0360	2.487	-2.343	81.5
1XY	-0.01273	0.1601	0.002359	-0.0817	-0.0264	-0.0351	-2.513	-2.34	81.5
1Y	-0.00963	0.1604	-0.01734	-0.2568	-0.0260	-0.0355	-2.51	2.66	81.48
2X	-0.01079	0.1372	0.004282	-0.2281	-0.0296	-0.0352	2.489	-2.363	76.5
2XY	-0.01126	0.1403	0.002522	-0.3294	-0.0056	-0.0329	-2.511	-2.36	76.5
2Y	-0.008163	0.1399	-0.01717	-0.2215	0.0016	-0.0353	-2.508	2.64	76.48
3X	-0.009456	0.1124	0.004189	-0.2349	0.0313	-0.0313	2.491	-2.388	70.5
3XY	-0.008086	0.1148	0.002448	-0.2234	-0.0792	-0.0277	-2.508	-2.385	70.5
3Y	-0.006738	0.1158	-0.01657	-0.2237	-0.0795	-0.0306	-2.507	2.616	70.48
4X	-0.006386	0.08997	0.003773	-0.1999	-0.0679	-0.0267	2.494	-2.41	64.5
4XY	-0.006637	0.09206	0.002005	-0.2184	0.0288	-0.0231	-2.507	-2.408	64.5
4Y	-0.004433	0.09159	-0.01549	-0.2223	0.0476	-0.0268	-2.504	2.592	64.48
5X	-0.005654	0.07109	0.003151	-0.2000	-0.0070	-0.0257	2.494	-2.429	59.5
5XY	-0.003897	0.07266	0.001562	-0.1774	-0.0318	-0.0174	-2.504	-2.427	59.5
5Y	-0.004467	0.0749	-0.01392	-0.1925	-0.0344	-0.0244	-2.504	2.575	59.49
6X	-0.003069	0.05658	0.002273	-0.1476	-0.0193	-0.0243	2.497	-2.443	54.5
6XY	-0.003502	0.05824	0.001023	-0.1525	-0.0098	-0.0122	-2.504	-2.442	54.5
6Y	-0.001664	0.05793	-0.01189	-0.1649	-0.0052	-0.0223	-2.502	2.558	54.49
7X	0	0	0	0.0000	0.0000	0.0000	10	-10	0
7XY	0	0	0	0.0000	0.0000	0.0000	-10	-10	0
7Y	0	0	0	0.0000	0.0000	0.0000	-10	10	0
12X	-0.00259	0.1589	-0.06722	-0.2655	-0.0282	-0.0368	-0.00259	13.91	81.43
13X	-0.003616	0.1378	-0.04993	-0.2794	-0.0152	-0.0357	-0.003616	9.888	76.45
14X	0.0006713	0.08942	-0.08486	-0.3913	-0.0167	-0.0241	0.0006713	14.34	64.42
15X	0.0009133	0.0569	-0.04113	-0.2450	-0.0107	-0.0210	0.0009133	10.31	54.46
8S	0.0002479	0.04439	-0.01055	-0.1159	-0.0203	-0.0100	3.188	3.232	49.49
9S	0.000491	0.03241	-0.009911	-0.0991	0.0013	-0.0082	4.014	4.046	43.49
10S	0.000629	0.0225	-0.00877	-0.0704	-0.0051	-0.0089	4.909	4.931	36.99
11S	0.001332	0.008242	-0.006175	-0.0376	-0.0018	-0.0073	6.905	6.912	22.49
16S	-0.01062	0.1006	0.003956	-0.2128	-0.0349	-0.0290	2.489	-2.399	67.5
1XYF0.50S	-0.01176	0.1554	0.00242	-0.2368	-0.0176	-0.0340	-2.512	-2.345	79
4XYF0.50S	-0.005929	0.08129	0.001652	-0.2338	-0.0460	-0.0201	-2.506	-2.419	62
8X	-0.003102	0.04383	0.003037	-0.1273	-0.0015	-0.0237	3.185	-3.144	49.5
8XY	-0.001592	0.04564	0.001771	-0.1289	-0.0216	-0.0090	-3.19	-3.142	49.5
8Y	-0.002434	0.04656	-0.01144	-0.1149	0.0123	-0.0203	-3.191	3.235	49.49
9X	-0.00193	0.03211	0.003518	-0.0931	-0.0133	-0.0171	4.012	-3.982	43.5
9XY	-0.001079	0.03437	0.002261	-0.0933	-0.0038	-0.0107	-4.015	-3.979	43.5
9Y	-0.001407	0.03483	-0.01068	-0.1006	-0.0083	-0.0172	-4.015	4.049	43.49
10X	-0.001177	0.0223	0.003546	-0.0718	-0.0042	-0.0151	4.907	-4.886	37

10XY	-0.000524	0.02487	0.002365	-0.0730	-0.0083	-0.0067	-4.909	-4.883	37
10Y	-0.0005472	0.02515	-0.009432	-0.0708	0.0006	-0.0115	-4.909	4.933	36.99
11X	-0.0004291	0.008008	0.002999	-0.0378	-0.0023	-0.0098	6.903	-6.896	22.5
11XY	0.0004147	0.01056	0.002044	-0.0424	-0.0029	-0.0030	-6.903	-6.893	22.5
11Y	-0.000195	0.01084	-0.006668	-0.0418	0.0023	-0.0043	-6.904	6.915	22.49
16X	-0.008026	0.1019	-0.01441	-0.2303	-0.0095	-0.0251	2.492	2.602	67.49
16XY	-0.00247	0.1041	-0.01605	-0.2358	-0.0252	-0.0286	-2.502	2.604	67.48
16Y	-0.004507	0.1028	0.002204	-0.2154	-0.0086	-0.0255	-2.505	-2.397	67.5

Joint Support Reactions for Load Case "NESC Heavy":

Joint Label	X Force (kips)	X Usage %	Y Force (kips)	Y Usage %	Z Force (kips)	Z Usage %	H-Shear Force (kips)	H-Shear Usage %	Z Comp. Force (kips)	Z Comp. Usage %	Uplift Force (kips)	Uplift Usage %	Result. Force (kips)	Result. Usage %	X Force (kips)	X-M. Usage %	Y Force (kips)	Y-M. Usage %	Z Force (kips)	Z-M. Usage %	H-Bend-M Moment (ft-k)	Z Moment (ft-k)	Max. Usage %
7P	-6.17	0.0	-4.92	0.0	0.0	-30.80	0.0	0.0	31.79	0.0	0.02	0.0	-0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7X	2.95	0.0	-2.31	0.0	0.0	15.43	0.0	0.0	15.88	0.0	0.02	0.0	-0.0	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7XY	-2.93	0.0	-2.55	0.0	0.0	14.21	0.0	0.0	14.73	0.0	0.05	0.0	-0.0	0.0	0.0	-0.00	0.0	0.0	-0.00	0.0	0.0	0.0	0.0
7Y	6.15	0.0	-6.02	0.0	0.0	-33.69	0.0	0.0	34.77	0.0	0.04	0.0	-0.0	0.0	0.0	-0.00	0.0	0.0	-0.00	0.0	0.0	0.0	0.0

Joint Displacements, Loads and Member Forces on Joints for Load Case "NESC Heavy":

Joint Label	X External Load (kips)	Y External Load (kips)	Z External Load (kips)	X Member Force (kips)	Y Member Force (kips)	Z Member Force (kips)	X Disp. (ft)	Y Disp. (ft)	Z Disp. (ft)
1P	0.0000	0.0000	-0.1359	-0.0000	0.0000	0.1359	-0.0098	0.1572	-0.0156
2P	0.0000	0.0000	-0.1749	-0.0000	0.0000	0.1749	-0.0079	0.1368	-0.0154
3P	0.0000	0.0000	-0.1165	0.0000	0.0000	0.1165	-0.0055	0.1132	-0.0148
4P	0.0000	0.0000	-0.1898	-0.0000	0.0000	0.1898	-0.0042	0.0895	-0.0139
5P	0.0000	0.0000	-0.1290	-0.0000	0.0000	0.1290	-0.0014	0.0729	-0.0126
6P	0.0000	0.0000	-0.1800	-0.0000	0.0000	0.1800	-0.0019	0.0563	-0.0109
7P	0.0000	0.0000	-0.2844	6.1720	4.9166	-30.5157	0.0000	0.0000	0.0000
12P	0.0000	1.0447	-1.4255	-0.0000	-1.0447	1.4255	-0.0201	0.1585	0.0411
13P	0.0000	1.1845	-1.8040	-0.0000	-1.1845	1.8040	-0.0156	0.1397	0.0267
14P	0.0000	1.1622	-1.8354	-0.0000	-1.1622	1.8354	-0.0115	0.0923	0.0225
15P	0.0000	1.1678	-1.7936	-0.0000	-1.1678	1.7936	-0.0058	0.0580	0.0211
1X	0.0000	0.0681	-0.1359	-0.0000	-0.0681	0.1359	-0.0130	0.1569	0.0041
1XY	0.0000	0.0977	-0.2386	-0.0000	-0.0977	0.2386	-0.0127	0.1601	0.0024
1Y	0.0000	0.0230	-0.1929	-0.0000	-0.0230	0.1929	-0.0096	0.1604	-0.0173
2X	0.0000	0.1164	-0.1749	-0.0000	-0.1164	0.1749	-0.0108	0.1372	0.0043
2XY	0.0000	0.1971	-0.4155	-0.0000	-0.1971	0.4155	-0.0113	0.1403	0.0025
2Y	0.0000	0.0510	-0.3009	-0.0000	-0.0510	0.3009	-0.0082	0.1399	-0.0172
3X	0.0000	0.1105	-0.1165	0.0000	-0.1105	0.1165	-0.0095	0.1124	0.0042
3XY	0.0000	0.2135	-0.3925	-0.0000	-0.2135	0.3925	-0.0081	0.1148	0.0024
3Y	0.0000	0.0560	-0.2545	-0.0000	-0.0560	0.2545	-0.0067	0.1158	-0.0166
4X	0.0000	0.1139	-0.1898	-0.0000	-0.1139	0.1898	-0.0064	0.0900	0.0038
4XY	0.0000	0.1945	-0.4305	-0.0000	-0.1945	0.4305	-0.0066	0.0921	0.0020
4Y	0.0000	0.0510	-0.3158	-0.0000	-0.0510	0.3158	-0.0044	0.0916	-0.0155
5X	0.0000	0.1248	-0.1290	-0.0000	-0.1248	0.1290	-0.0057	0.0711	0.0032
5XY	0.0000	0.1975	-0.3466	-0.0000	-0.1975	0.3466	-0.0039	0.0727	0.0016
5Y	0.0000	0.0460	-0.2440	-0.0000	-0.0460	0.2440	-0.0045	0.0749	-0.0139
6X	0.0000	0.1121	-0.1800	-0.0000	-0.1121	0.1800	-0.0031	0.0566	0.0023
6XY	0.0000	0.1981	-0.4100	-0.0000	-0.1981	0.4100	-0.0035	0.0582	0.0010
6Y	0.0000	0.0460	-0.2950	-0.0000	-0.0460	0.2950	-0.0017	0.0579	-0.0119
7X	0.0000	0.1868	-0.2844	-2.9474	2.1281	15.7193	0.0000	0.0000	0.0000
7XY	0.0000	0.1868	-0.2844	2.9255	2.3605	14.4957	0.0000	0.0000	0.0000
7Y	0.0000	0.0000	-0.2844	-6.1501	6.0189	-33.4038	0.0000	0.0000	0.0000

12X	0.0000	0.7790	-0.9005	-0.0000	-0.7790	0.9005	-0.0026	0.1589	-0.0672
13X	0.0000	1.1180	-1.8040	-0.0000	-1.1180	1.8040	-0.0036	0.1378	-0.0499
14X	0.0000	1.1180	-1.8354	-0.0000	-1.1180	1.8354	0.0007	0.0894	-0.0849
15X	0.0000	1.1180	-1.7936	-0.0000	-1.1180	1.7936	0.0009	0.0569	-0.0411
8S	0.0000	0.0000	-0.1356	-0.0000	0.0000	0.1356	0.0002	0.0444	-0.0106
9S	0.0000	0.0000	-0.1628	-0.0000	0.0000	0.1628	0.0005	0.0324	-0.0099
10S	0.0000	0.0000	-0.3323	0.0000	0.0000	0.3323	0.0006	0.0225	-0.0088
11S	0.0000	0.0000	-0.5923	0.0000	0.0000	0.5923	0.0013	0.0082	-0.0062
16S	0.0000	0.0424	-0.0558	-0.0000	-0.0424	0.0558	-0.0106	0.1006	0.0040
1XYF0.50S	0.0000	2.1637	-0.0248	0.0000	-2.1637	0.0248	-0.0118	0.1554	0.0024
4XYF0.50S	0.0000	-0.5783	-6.0978	-0.0000	0.5783	6.0977	-0.0059	0.0813	0.0017
8X	0.0000	0.1107	-0.1356	-0.0000	-0.1107	0.1356	-0.0031	0.0438	0.0030
8XY	0.0000	0.2047	-0.3886	0.0000	-0.2047	0.3886	-0.0016	0.0456	0.0018
8Y	0.0000	0.0510	-0.2616	0.0000	-0.0510	0.2616	-0.0024	0.0466	-0.0114
9X	0.0000	0.1353	-0.1628	-0.0000	-0.1353	0.1628	-0.0019	0.0321	0.0035
9XY	0.0000	0.2423	-0.4498	-0.0000	-0.2423	0.4498	-0.0011	0.0344	0.0023
9Y	0.0000	0.0580	-0.3068	-0.0000	-0.0580	0.3068	-0.0014	0.0348	-0.0107
10X	0.0000	0.2262	-0.3323	-0.0000	-0.2262	0.3323	-0.0012	0.0223	0.0035
10XY	0.0000	0.4062	-0.8153	-0.0000	-0.4062	0.8153	-0.0005	0.0249	0.0024
10Y	0.0000	0.0970	-0.5733	-0.0000	-0.0970	0.5733	-0.0005	0.0252	-0.0094
11X	0.0000	0.3637	-0.5923	-0.0000	-0.3637	0.5923	-0.0004	0.0080	0.0030
11XY	0.0000	0.8747	-1.9603	-0.0000	-0.8747	1.9603	0.0004	0.0106	0.0020
11Y	0.0000	0.2750	-1.2763	-0.0000	-0.2750	1.2763	-0.0002	0.0108	-0.0067
16X	0.0000	0.0000	-0.0558	-0.0000	0.0000	0.0558	-0.0080	0.1019	-0.0144
16XY	0.0000	0.0000	-0.0558	0.0000	0.0000	0.0558	-0.0025	0.1041	-0.0161
16Y	0.0000	0.0424	-0.0558	0.0000	-0.0424	0.0558	-0.0045	0.1028	0.0022

Crossing Diagonal Check for Load Case "NESC Heavy" (RLOUT controls):

Comp. Member Label	Tens. Member Label	Connect Member Label	Force Comp. Member	Force Tens. Member	Original						Alternate					
					Supported						Unsupported					
					L/R	RLX	RLY	RLZ	L/R	KL/R	Curve	No.	Cap. (kips)	L/R	RLOUT	L/R
g21P	g21Y	Short only	-0.12	-0.36	11.56	0.750	0.500	0.500	123.69	122.85	5	8.63	1.000	158.01	143.38	6
g21Y	g21P	Short only	-0.36	-0.12	11.56	0.750	0.500	0.500	123.69	122.85	5	8.63	1.000	158.01	143.38	6
g23X	g23XY	Long only	-0.97	-0.26	17.27	0.500	0.750	0.500	120.57	120.47	5	12.24	1.000	160.76	145.07	6
g23XY	g23X	Long only	-0.26	-0.97	17.27	0.500	0.750	0.500	120.57	120.47	5	12.24	1.000	160.76	145.07	6
g25P	g25Y	Long only	-0.58	-1.28	17.27	0.500	0.750	0.500	120.57	120.47	5	12.24	1.000	160.76	145.07	6
g25Y	g25P	Long only	-1.28	-0.58	17.27	0.500	0.750	0.500	120.57	120.47	5	12.24	1.000	160.76	145.07	6
g27X	g27XY	Long only	-0.65	-0.31	18.99	0.500	0.750	0.500	109.16	111.87	2	13.99	1.000	145.55	135.71	6
g27XY	g27X	Long only	-0.31	-0.65	18.99	0.500	0.750	0.500	109.16	111.87	2	13.99	1.000	145.55	135.71	6
g29P	g29Y	Long only	-1.07	-1.25	18.99	0.500	0.750	0.500	109.16	111.87	2	13.99	1.000	145.55	135.71	6
g29Y	g29P	Long only	-1.25	-1.07	18.99	0.500	0.750	0.500	109.16	111.87	2	13.99	1.000	145.55	135.71	6
g31P	g31Y	Short only	-0.29	-1.80	12.49	0.779	0.559	0.559	129.47	127.26	5	10.80	1.000	147.90	137.16	6
g31Y	g31P	Short only	-1.80	-0.29	12.49	0.779	0.559	0.559	129.47	127.26	5	10.80	1.000	147.90	137.16	6
g33X	g33XY	Long only	-0.54	-0.44	11.49	0.563	0.781	0.563	148.89	142.05	5	8.84	1.000	188.20	161.94	6
g33XY	g33X	Long only	-0.44	-0.54	11.49	0.563	0.781	0.563	148.89	142.05	5	8.84	1.000	188.20	161.94	6
g35P	g35Y	Long only	-0.06	-1.00	9.12	0.550	0.775	0.550	171.66	159.41	5	6.97	1.000	221.50	182.42	6
g35Y	g35P	Long only	-1.00	-0.06	9.12	0.550	0.775	0.550	171.66	159.41	5	6.97	1.000	221.50	182.42	6
g58P	g58X	Short only	-0.54	-0.23	11.44	0.750	0.500	0.500	123.69	123.69	4	7.11	1.000	158.01	158.01	4
g58X	g58P	Short only	-0.23	-0.54	11.44	0.750	0.500	0.500	123.69	123.69	4	7.11	1.000	158.01	158.01	4
g59P	g59X	Short only	-0.06	-0.67	11.44	0.750	0.500	0.500	123.69	123.69	4	7.11	1.000	158.01	158.01	4
g59X	g59P	Short only	-0.67	-0.06	11.44	0.750	0.500	0.500	123.69	123.69	4	7.11	1.000	158.01	158.01	4

Summary of Clamp Capacities and Usages for Load Case "NESC Heavy":

Clamp Force Label	Input Holding Capacity (kips)	Factored Holding Capacity (kips)	Usage %
1 1.767	50.00	50.00	3.53
2 1.191	50.00	50.00	2.38
3 2.158	50.00	50.00	4.32
4 2.122	50.00	50.00	4.24
5 2.172	50.00	50.00	4.34
6 2.149	50.00	50.00	4.30
7 2.140	50.00	50.00	4.28
8 2.114	50.00	50.00	4.23
9 0.258	50.00	50.00	0.52
10 0.460	50.00	50.00	0.92
11 0.447	50.00	50.00	0.89
12 0.472	50.00	50.00	0.94
13 0.399	50.00	50.00	0.80
14 0.455	50.00	50.00	0.91
15 0.439	50.00	50.00	0.88
16 0.511	50.00	50.00	1.02
17 0.911	50.00	50.00	1.82
18 2.147	50.00	50.00	4.29
19 2.164	50.00	50.00	4.33
20 6.125	50.00	50.00	12.25
21 0.194	50.00	50.00	0.39
22 0.305	50.00	50.00	0.61
23 0.261	50.00	50.00	0.52
24 0.320	50.00	50.00	0.64
25 0.248	50.00	50.00	0.50
26 0.299	50.00	50.00	0.60
27 0.266	50.00	50.00	0.53
28 0.312	50.00	50.00	0.62
29 0.581	50.00	50.00	1.16
30 1.306	50.00	50.00	2.61

*** Analysis Results for Load Case No. 2 "NESC Extreme" - Number of iterations in SAPS 10

Equilibrium Joint Positions and Rotations for Load Case "NESC Extreme":

Joint Label	X-Displ (ft)	Y-Displ (ft)	Z-Displ (ft)	X-Rot (deg)	Y-Rot (deg)	Z-Rot (deg)	X-Pos (ft)	Y-Pos (ft)	Z-Pos (ft)
1P	-0.003061	0.3531	-0.02701	-0.5358	-0.0266	-0.2213	2.497	2.853	81.47
2P	-0.0005027	0.3064	-0.02662	-0.5358	-0.0477	-0.2139	2.499	2.806	76.47
3P	0.003788	0.251	-0.02541	-0.4970	0.0027	-0.1983	2.504	2.751	70.47
4P	0.004835	0.1981	-0.02338	-0.4953	-0.0678	-0.1815	2.505	2.698	64.48
5P	0.01003	0.1584	-0.02065	-0.4316	-0.0142	-0.1690	2.51	2.658	59.48
6P	0.008792	0.1234	-0.01718	-0.3453	-0.0219	-0.1563	2.509	2.623	54.48
7P	0	0	0	0.0000	0.0000	0.0000	10	10	0
12P	-0.06729	0.3639	0.1202	-0.6517	-0.2246	-0.2280	-0.06729	-13.39	81.62
13P	-0.0477	0.3172	0.08341	-0.4221	0.1185	-0.2299	-0.0477	-9.433	76.58
14P	-0.04856	0.2074	0.1133	-0.4542	-0.0090	-0.1828	-0.04856	-14.04	64.61
15P	-0.02662	0.1313	0.06408	-0.4156	-0.0184	-0.1626	-0.02662	-10.12	54.56
1X	-0.02255	0.3533	0.01884	-0.5211	-0.0555	-0.2222	2.477	-2.147	81.52
1XY	-0.02245	0.3731	0.01567	-0.0146	-0.0576	-0.2222	-2.522	-2.127	81.52
1Y	-0.002998	0.3728	-0.02998	-0.6165	-0.0437	-0.2208	-2.503	2.873	81.47
2X	-0.01917	0.3067	0.01898	-0.5391	-0.0244	-0.2162	2.481	-2.193	76.52
2XY	-0.01944	0.3262	0.01597	-0.9102	-0.0264	-0.2166	-2.519	-2.174	76.52
2Y	-0.0004188	0.3255	-0.02967	-0.4944	-0.0115	-0.2154	-2.5	2.826	76.47
3X	-0.01675	0.2509	0.01841	-0.5027	-0.0368	-0.1995	2.483	-2.249	70.52
3XY	-0.01358	0.2681	0.01546	-0.4626	-0.0635	-0.1991	-2.514	-2.232	70.52
3Y	0.0006316	0.2687	-0.02843	-0.5330	-0.0519	-0.1985	-2.499	2.769	70.47
4X	-0.01102	0.1984	0.017	-0.4885	-0.0354	-0.1829	2.489	-2.302	64.52
4XY	-0.01108	0.2142	0.01408	-0.5559	-0.0339	-0.1827	-2.511	-2.286	64.51
4Y	0.004811	0.2139	-0.02627	-0.4930	0.0077	-0.1826	-2.495	2.714	64.47
5X	-0.01052	0.1579	0.01484	-0.4350	-0.0421	-0.1719	2.489	-2.342	59.51
5XY	-0.005016	0.1724	0.01205	-0.3504	-0.0379	-0.1705	-2.505	-2.328	59.51
5Y	0.003935	0.1734	-0.0234	-0.4460	-0.0373	-0.1708	-2.496	2.673	59.48
6X	-0.004333	0.1237	0.01191	-0.3391	-0.0355	-0.1607	2.496	-2.376	54.51
6XY	-0.005104	0.1377	0.009434	-0.3666	-0.0306	-0.1591	-2.505	-2.362	54.51
6Y	0.009509	0.1374	-0.01989	-0.3537	-0.0298	-0.1590	-2.49	2.637	54.48
7X	0	0	0	0.0000	0.0000	0.0000	10	-10	0
7XY	0	0	0	0.0000	0.0000	0.0000	-10	-10	0
7Y	0	0	0	0.0000	0.0000	0.0000	-10	10	0
12X	0.04129	0.3625	-0.1354	-0.5311	-0.0628	-0.2272	0.04129	14.11	81.36
13X	0.02752	0.3156	-0.09742	-0.5581	-0.0146	-0.2240	0.02752	10.07	76.4
14X	0.04231	0.2053	-0.1387	-0.5801	-0.0295	-0.1826	0.04231	14.46	64.36
15X	0.03115	0.1304	-0.07586	-0.4598	-0.0314	-0.1645	0.03115	10.38	54.42
8S	0.0152	0.09624	-0.01674	-0.2492	-0.0587	-0.1452	3.203	3.284	49.48
9S	0.01985	0.06994	-0.01544	-0.1998	-0.0191	-0.1300	4.034	4.084	43.48
10S	0.02288	0.0482	-0.01353	-0.1438	-0.0052	-0.1170	4.931	4.956	36.99
11S	0.01928	0.01676	-0.009472	-0.0747	0.0342	-0.0756	6.923	6.92	22.49
16S	-0.01424	0.225	0.01769	-0.5036	-0.0671	-0.1909	2.486	-2.275	67.52
1XYF0.50S	-0.02054	0.3684	0.01564	-0.5746	-0.0345	-0.2193	-2.521	-2.132	79.02
4XYF0.50S	-0.008111	0.1887	0.01303	-0.4915	-0.0885	-0.1762	-2.508	-2.311	62.01
8X	-0.006085	0.09612	0.01252	-0.2531	-0.0015	-0.1500	3.182	-3.092	49.51
8XY	-0.00152	0.112	0.009824	-0.2711	-0.0600	-0.1498	-3.19	-3.076	49.51
8Y	0.01073	0.1124	-0.02025	-0.2700	0.0120	-0.1475	-3.177	3.3	49.48
9X	-0.004427	0.06997	0.01256	-0.1978	-0.0359	-0.1329	4.009	-3.944	43.51
9XY	-0.001679	0.08809	0.00966	-0.2187	-0.0144	-0.1418	-4.015	-3.926	43.51
9Y	0.01552	0.08805	-0.02002	-0.2193	-0.0444	-0.1410	-3.998	4.102	43.48
10X	-0.00343	0.04809	0.01168	-0.1452	-0.0152	-0.1236	4.905	-4.86	37.01

10XY	-0.001525	0.06803	0.008633	-0.1599	-0.0284	-0.1244	-4.91	-4.84	37.01
10Y	0.02277	0.06825	-0.01927	-0.1587	-0.0206	-0.1233	-4.885	4.977	36.98
11X	-0.002503	0.01653	0.00899	-0.0737	-0.0126	-0.0866	6.901	-6.887	22.51
11XY	-0.0001563	0.03954	0.005399	-0.1137	-0.0164	-0.0808	-6.904	-6.864	22.51
11Y	0.01966	0.03841	-0.014	-0.1136	0.0496	-0.0687	-6.884	6.942	22.49
16X	0.002817	0.2253	-0.02441	-0.5097	-0.0024	-0.1902	2.503	2.725	67.48
16XY	0.003914	0.2415	-0.02736	-0.5288	-0.0521	-0.1903	-2.496	2.741	67.47
16Y	-0.01141	0.2414	0.01476	-0.5168	-0.0154	-0.1912	-2.511	-2.259	67.51

Joint Support Reactions for Load Case "NESC Extreme":

Joint Label	X Force (kips)	X Usage %	Y Force (kips)	Y Usage %	Z Force (kips)	Z Usage %	H-Shear Force (kips)	H-Shear Usage %	Comp. Force (kips)	Comp. Usage %	Uplift Force (kips)	Uplift Usage %	Result. Force (kips)	Result. Usage %	X Force (kips)	X-M. Usage %	X Force (kips)	X-M. Usage %	Y Force (kips)	Y-M. Usage %	Y Force (kips)	Y-M. Usage %	H-Bend-M Moment (ft-k)	H-Bend-M Usage %	Z Force (kips)	Z-M. Usage %	Z Force (kips)	Z-M. Usage %	Max. Usage %
7P	-7.06	0.0	-8.19	0.0	0.0	-51.76	0.0	0.0	52.87	0.0	0.04	0.0	-0.1	0.0	0.0	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
7X	8.91	0.0	-6.73	0.0	0.0	44.85	0.0	0.0	46.22	0.0	0.03	0.0	0.0	0.0	0.0	0.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
7XY	-9.01	0.0	-11.50	0.0	0.0	48.40	0.0	0.0	50.56	0.0	0.25	0.0	0.0	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
7Y	7.16	0.0	-8.08	0.0	0.0	-56.82	0.0	0.0	57.83	0.0	0.23	0.0	-0.2	0.0	0.0	-0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Joint Displacements, Loads and Member Forces on Joints for Load Case "NESC Extreme":

Joint Label	X External Load (kips)	Y External Load (kips)	Z External Load (kips)	X Member Force (kips)	Y Member Force (kips)	Z Member Force (kips)	X Disp. (ft)	Y Disp. (ft)	Z Disp. (ft)
1P	0.0000	0.1393	-0.0856	-0.0000	-0.1393	0.0856	-0.0031	0.3531	-0.0270
2P	0.0000	0.1393	-0.0856	-0.0000	-0.1393	0.0856	-0.0005	0.3064	-0.0266
3P	0.0000	0.1393	-0.0856	0.0000	-0.1393	0.0856	0.0038	0.2510	-0.0254
4P	0.0000	0.1393	-0.0856	-0.0000	-0.1393	0.0856	0.0048	0.1981	-0.0234
5P	0.0000	0.1393	-0.0856	0.0000	-0.1393	0.0856	0.0100	0.1584	-0.0207
6P	0.0000	0.1393	-0.0856	-0.0000	-0.1393	0.0856	0.0088	0.1234	-0.0172
7P	0.0000	0.3774	-0.2405	7.0603	7.8098	-51.5148	0.0000	0.0000	0.0000
12P	0.0000	1.3533	-0.4426	-0.0000	-1.3533	0.4426	-0.0673	0.3639	0.1202
13P	0.0000	1.6633	-0.6136	-0.0000	-1.6633	0.6136	-0.0477	0.3172	0.0834
14P	0.0000	1.6633	-0.6136	-0.0000	-1.6633	0.6136	-0.0486	0.2074	0.1133
15P	0.0000	1.6633	-0.6136	-0.0000	-1.6633	0.6136	-0.0266	0.1313	0.0641
1X	0.0000	0.1393	-0.0856	-0.0000	-0.1393	0.0856	-0.0226	0.3533	0.0188
1XY	0.0000	0.2733	-0.1166	-0.0000	-0.2733	0.1166	-0.0224	0.3731	0.0157
1Y	0.0000	0.2063	-0.1016	-0.0000	-0.2063	0.1016	-0.0030	0.3728	-0.0300
2X	0.0000	0.1393	-0.0856	-0.0000	-0.1393	0.0856	-0.0192	0.3067	0.0190
2XY	0.0000	0.4333	-0.1546	0.0000	-0.4333	0.1546	-0.0194	0.3262	0.0160
2Y	0.0000	0.2863	-0.1196	-0.0000	-0.2863	0.1196	-0.0004	0.3255	-0.0297
3X	0.0000	0.1393	-0.0856	0.0000	-0.1393	0.0856	-0.0167	0.2509	0.0184
3XY	0.0000	0.4603	-0.1606	0.0000	-0.4603	0.1606	-0.0136	0.2681	0.0155
3Y	0.0000	0.3003	-0.1226	0.0000	-0.3003	0.1226	0.0006	0.2687	-0.0284
4X	0.0000	0.1393	-0.0856	-0.0000	-0.1393	0.0856	-0.0110	0.1984	0.0170
4XY	0.0000	0.4333	-0.1546	-0.0000	-0.4333	0.1546	-0.0111	0.2142	0.0141
4Y	0.0000	0.2863	-0.1196	-0.0000	-0.2863	0.1196	0.0048	0.2139	-0.0263
5X	0.0000	0.1393	-0.0856	0.0000	-0.1393	0.0856	-0.0105	0.1579	0.0148
5XY	0.0000	0.4073	-0.1476	0.0000	-0.4073	0.1476	-0.0050	0.1724	0.0120
5Y	0.0000	0.2733	-0.1166	0.0000	-0.2733	0.1166	0.0039	0.1734	-0.0234
6X	0.0000	0.1393	-0.0856	-0.0000	-0.1393	0.0856	-0.0043	0.1237	0.0119
6XY	0.0000	0.4073	-0.1476	-0.0000	-0.4073	0.1476	-0.0051	0.1377	0.0094
6Y	0.0000	0.2733	-0.1166	-0.0000	-0.2733	0.1166	0.0095	0.1374	-0.0199
7X	0.0000	0.3774	-0.2405	-8.9120	6.3563	45.0884	0.0000	0.0000	0.0000
7XY	0.0000	0.3774	-0.2405	9.0091	11.1216	48.6414	0.0000	0.0000	0.0000
7Y	0.0000	0.3774	-0.2405	-7.1574	7.7064	-56.5746	0.0000	0.0000	0.0000

12X	0.0000	0.7033	-0.2626	-0.0000	-0.7033	0.2626	0.0413	0.3625	-0.1354
13X	0.0000	1.6633	-0.6136	-0.0000	-1.6633	0.6136	0.0275	0.3156	-0.0974
14X	0.0000	1.6633	-0.6136	0.0000	-1.6633	0.6136	0.0423	0.2053	-0.1387
15X	0.0000	1.6633	-0.6136	0.0000	-1.6633	0.6136	0.0312	0.1304	-0.0759
8S	0.0000	0.1393	-0.0856	0.0000	-0.1393	0.0856	0.0152	0.0962	-0.0167
9S	0.0000	0.1393	-0.0856	0.0000	-0.1393	0.0856	0.0198	0.0699	-0.0154
10S	0.0000	0.5167	-0.3260	-0.0000	-0.5167	0.3260	0.0229	0.0482	-0.0135
11S	0.0000	0.3774	-0.2405	0.0000	-0.3774	0.2405	0.0193	0.0168	-0.0095
16S	0.0000	0.1393	-0.0856	0.0000	-0.1393	0.0856	-0.0142	0.2250	0.0177
1XYF0.50S	0.0000	8.0043	-0.0856	-0.0000	-8.0043	0.0856	-0.0205	0.3684	0.0156
4XYF0.50S	0.0000	-2.1817	-3.0146	0.0000	2.1817	3.0146	-0.0081	0.1887	0.0130
8X	0.0000	0.1393	-0.0856	0.0000	-0.1393	0.0856	-0.0061	0.0961	0.0125
8XY	0.0000	0.4333	-0.1546	0.0000	-0.4333	0.1546	-0.0015	0.1120	0.0098
8Y	0.0000	0.2863	-0.1196	0.0000	-0.2863	0.1196	0.0107	0.1124	-0.0202
9X	0.0000	0.1393	-0.0856	0.0000	-0.1393	0.0856	-0.0044	0.0700	0.0126
9XY	0.0000	0.4743	-0.1636	0.0000	-0.4743	0.1636	-0.0017	0.0881	0.0097
9Y	0.0000	0.3063	-0.1246	0.0000	-0.3063	0.1246	0.0155	0.0881	-0.0200
10X	0.0000	0.5167	-0.3260	-0.0000	-0.5167	0.3260	-0.0034	0.0481	0.0117
10XY	0.0000	1.0787	-0.4570	-0.0000	-1.0787	0.4570	-0.0015	0.0680	0.0086
10Y	0.0000	0.7977	-0.3920	-0.0000	-0.7977	0.3920	0.0228	0.0683	-0.0193
11X	0.0000	0.3774	-0.2405	-0.0000	-0.3774	0.2405	-0.0025	0.0165	0.0090
11XY	0.0000	1.9704	-0.6115	-0.0000	-1.9704	0.6115	-0.0002	0.0395	0.0054
11Y	0.0000	1.1734	-0.4265	0.0000	-1.1734	0.4265	0.0197	0.0384	-0.0140
16X	0.0000	0.1393	-0.0856	0.0000	-0.1393	0.0856	0.0028	0.2253	-0.0244
16XY	0.0000	0.1393	-0.0856	0.0000	-0.1393	0.0856	0.0039	0.2415	-0.0274
16Y	0.0000	0.1393	-0.0856	0.0000	-0.1393	0.0856	-0.0114	0.2414	0.0148

Crossing Diagonal Check for Load Case "NESC Extreme" (RROUT controls):

Comp. Member Label	Tens. Member Label	Connect Member Label	Force Comp. Member Label	Force Tens. Member Label	Original						Alternate						
					Supported						Unsupported						
					L/R	RLX	RLY	RLZ	L/R	KL/R	Curve	L/R	RROUT	L/R	KL/R	Curve	No.
					Member Cap.	Member Cap.	Member Cap.	Member Cap.	No.	Cap.	No.						(kips)
					(kips)	(kips)	(kips)	(kips)									(kips)
g25Y	g25P	Long	only	-2.88	0.33	17.27	0.500	0.750	0.500	120.57	120.47	5	12.24	1.000	160.76	145.07	6
g27X	g27XY	Long	only	-2.54	0.31	18.99	0.500	0.750	0.500	109.16	111.87	2	13.99	1.000	145.55	135.71	6
g29P	g29Y	Long	only	-0.49	-2.89	18.99	0.500	0.750	0.500	109.16	111.87	2	13.99	1.000	145.55	135.71	6
g29Y	g29P	Long	only	-2.89	-0.49	18.99	0.500	0.750	0.500	109.16	111.87	2	13.99	1.000	145.55	135.71	6
g31Y	g31Y	Short	only	-1.16	-3.87	12.49	0.779	0.559	0.559	129.47	127.26	5	10.80	1.000	147.90	137.16	6
g31Y	g31P	Short	only	-3.87	-1.16	12.49	0.779	0.559	0.559	129.47	127.26	5	10.80	1.000	147.90	137.16	6
g33X	g33XY	Long	only	-2.10	-0.47	11.49	0.563	0.781	0.563	148.89	142.05	5	8.84	1.000	188.20	161.94	6
g33XY	g33X	Long	only	-0.47	-2.10	11.49	0.563	0.781	0.563	148.89	142.05	5	8.84	1.000	188.20	161.94	6
g35P	g35Y	Long	only	-0.52	-2.17	9.12	0.550	0.775	0.550	171.66	159.41	5	6.97	1.000	221.50	182.42	6
g35Y	g35P	Long	only	-2.17	-0.52	9.12	0.550	0.775	0.550	171.66	159.41	5	6.97	1.000	221.50	182.42	6
g58P	g58X	Short	only	-0.20	-0.05	11.44	0.750	0.500	0.500	123.69	123.69	4	7.11	1.000	158.01	158.01	4
g58X	g58P	Short	only	-0.05	-0.20	11.44	0.750	0.500	0.500	123.69	123.69	4	7.11	1.000	158.01	158.01	4

Summary of Clamp Capacities and Usages for Load Case "NESC Extreme":

Clamp Label	Force Capacity (kips)	Input Capacity (kips)	Factored Capacity (kips)	Usage		
				Holding Capacity (%)		
				Clamp	Force	Usage
						%
1	1.424	50.00	50.00	2.85		
2	0.751	50.00	50.00	1.50		

3	1.773	50.00	50.00	3.55
4	1.773	50.00	50.00	3.55
5	1.773	50.00	50.00	3.55
6	1.773	50.00	50.00	3.55
7	1.773	50.00	50.00	3.55
8	1.773	50.00	50.00	3.55
9	0.297	50.00	50.00	0.59
10	0.460	50.00	50.00	0.92
11	0.488	50.00	50.00	0.98
12	0.460	50.00	50.00	0.92
13	0.433	50.00	50.00	0.87
14	0.433	50.00	50.00	0.87
15	0.460	50.00	50.00	0.92
16	0.502	50.00	50.00	1.00
17	1.172	50.00	50.00	2.34
18	2.063	50.00	50.00	4.13
19	8.005	50.00	50.00	16.01
20	3.721	50.00	50.00	7.44
21	0.230	50.00	50.00	0.46
22	0.310	50.00	50.00	0.62
23	0.324	50.00	50.00	0.65
24	0.310	50.00	50.00	0.62
25	0.297	50.00	50.00	0.59
26	0.297	50.00	50.00	0.59
27	0.310	50.00	50.00	0.62
28	0.331	50.00	50.00	0.66
29	0.889	50.00	50.00	1.78
30	1.248	50.00	50.00	2.50

*** Overall summary for all load cases - Usage = Maximum Stress / Allowable Stress
Printed capacities do not include the strength factor entered for each load case.
The Group Summary reports on the member and load case that resulted in maximum usage
which may not necessarily be the same as that which produces maximum force.

Group Summary (Compression Portion):

Group KL/R Length	Group Curve No.	Angle Label Desc.	Angle Type Comp.	Steel Comp.	Max Strength Size	Usage Cont-	Max Usage rol	Comp. In Member	Comp. Force Control	Comp. Capacity	L/R Load	Comp. Connect.	Comp. Connect.	RLX	RLY	RLZ	L/R
Member	Bolts																
Comp. (ft)								Comp.			Case			Capacity	Capacity		
LEG1 75.47	5.000	L4X4X1/4 1	SAE 12	4X4X0.25 A potentially damaging moment exists in the following members (make sure your system is well triangulated to minimize moments): g4P g5P g6Y g12P g13P ??	33.0	71.03	Comp 71.03	g14XY -38.006NESC Ext	53.509	109.200	168.750	1.000	1.000	1.000	75.47		
LEG2 100.46	6.622	L4X4X5/16 1	SAE 10	4X4X0.3125	33.0	81.86	Comp 81.86	g17X -45.974NESC Ext	56.161	91.000	175.781	1.000	1.000	1.000	100.46		
LEG3 58.29	22.922	L4X4X3/8 1	SAE 10	4X4X0.375	33.0	69.00	Comp 69.00	g19XY -58.744NESC Ext	85.135	91.000	210.937	0.167	0.167	0.167	58.29		
XBR1 122.85	7.071	L1.75X1.75X3/16 5	SAE 2	1.75X1.75X0.1875	33.0	27.91	Comp 27.91	g20Y -3.227NESC Ext	11.559	18.200	21.094	0.750	0.500	0.500	123.69		
XBR2 120.47	7.810	L3X2X3/16 5	SAU 3	3X2X0.1875	33.0	44.84	Comp 44.84	g24Y -7.746NESC Ext	17.275	27.300	31.641	0.500	0.750	0.500	120.57		
XBR3 137.16	7.604	L2X2X3/16 6	SAE 2	2X2X0.1875	33.0	35.79	Cross 35.79	g31Y -3.866NESC Ext	10.802	18.200	21.094	1.000	0.559	0.559	147.90		
XBR4 182.42	11.075	L2.5X2X3/16 6	SAU 2	2.5X2X0.1875	33.0	31.21	Cross 31.21	g35Y -2.174NESC Ext	6.967	18.200	21.094	0.550	1.000	0.550	221.50		
XBR5 191.16	18.808	L1.75X1.75X1/4 5	SAE 2	1.75X1.75X0.25	33.0	65.98	Comp 65.98	g36Y -4.186NESC Ext	6.345	18.200	28.125	0.500	0.250	0.250	213.33		
HORZ1 148.55	9.817	L2.5X2X3/16 4	SAU 1	2.5X2X0.1875	33.0	49.53	Comp 49.53	g41X -4.507NESC Ext	10.506	9.100	10.547	1.000	0.500	0.500	148.55		
HORZ2 156.90	13.807	L3X2.5X1/4 4	SAU 1	3X2.5X0.25	33.0	70.36	Comp 70.36	g43X -6.403NESC Ext	15.230	9.100	14.062	0.500	0.500	0.500	156.90		
ARM1 121.36	7.669	L3X2.5X1/4 6	SAU 3	3X2.5X0.25 3 A potentially damaging moment exists in the following members (make sure your system is well triangulated to minimize moments): g45Y g47Y ??	33.0	15.06	Comp 15.06	g46Y -3.745NESC Hea	24.877	27.300	42.187	0.500	1.000	0.500	122.21		
ARM2 166.82	12.013	L3.5X2.5X1/4 6	SAU 3	3.5X2.5X0.25	33.0	28.83	Comp 28.83	g48Y -4.270NESC Hea	14.810	27.300	42.187	0.500	1.000	0.500	196.13		
M1 174.93	L1.75X1.75X3/16 5.000	SAE 4	1.75X1.75X0.1875 1	33.0	43.18	Comp 43.18	g55P -2.504NESC Ext	5.799	9.100	10.547	1.000	1.000	1.000	174.93			
M2 123.69	L1.75X1.75X3/16 7.071	SAE 4	1.75X1.75X0.1875 1	33.0	11.97	Comp 11.97	g57X -1.089NESC Ext	11.437	9.100	10.547	0.750	0.500	0.500	123.69			
M3 155.23	L2.5X2.5X3/16 6.403	SAE 4	2.5X2.5X0.1875 1	33.0	20.12	Comp 20.12	g60P -1.831NESC Hea	10.714	9.100	10.547	1.000	1.000	1.000	155.23			
M4 458.68	BAR 1.75X1/4 9.556	Bar 1	1-3/4x1/4	33.0	47.96	Tens 2.46	g63XY -0.015NESC Ext	0.595	9.100	14.062	1.000	1.000	1.000	458.68			
XBR6 189.14	L1.75X1.75X3/16 28.312	SAE 5	1.75X1.75X0.1875 2	33.0	81.50	Comp 81.50	g39Y -4.043NESC Hea	4.961	18.200	21.094	0.333	0.167	0.167	210.68			

Group Summary (Tension Portion):

Group No. Label Of Diameter	Group Hole Desc.	Angle Type	Angle	Steel	Max Usage	Max Tension	Tension	Tension	Net Tension	Tension	Tension	Length	No.			
			Size	Strength	Usage	Cont-	Use	Control	Force	Control	Section	Connect.	Tens.			
						rol	In	Member		Load Capacity	Shear	Bearing	Rupture Member Bolts			
Holes (in)						Tens. (ksi)	%	%	(kips)	Case (kips)	Capacity (kips)	Capacity (kips)	Capacity (kips)	Tens. (ft)		
LEG1 2.000	L4X4X1/4 0.6875	SAE A potentially damaging moment exists in the following members (make sure your system is well triangulated to minimize moments): g6Y g12P g13P ??	4X4X0.25	33.0	71.03	Comp	65.14	g14P	34.316NES	Ext	52.676	109.200	168.750	220.588	5.000	12
LEG2 2.990	L4X4X5/16 0.6875	SAE	4X4X0.3125	33.0	81.86	Comp	73.99	g16P	42.913NES	Ext	58.001	0.000	0.000	0.000	6.113	0
LEG3 2.000	L4X4X3/8 0.6875	SAE	4X4X0.375	33.0	69.00	Comp	53.32	g19P	41.252NES	Ext	77.364	91.000	210.937	193.014	22.922	10
XBR1 1.000	L1.75X1.75X3/16 0.6875	SAE	1.75X1.75X0.1875	33.0	27.91	Comp	14.16	g20XY	2.065NES	Ext	14.585	18.200	21.094	16.189	7.071	2
XBR2 1.000	L3X2X3/16 0.6875	SAU	3X2X0.1875	33.0	44.84	Comp	40.40	g26XY	9.252NES	Ext	22.901	27.300	31.641	28.125	7.071	3
XBR3 1.000	L2X2X3/16 0.6875	SAE	2X2X0.1875	33.0	35.79	Cross	22.90	g31XY	3.007NES	Ext	17.258	18.200	21.094	13.131	7.604	2
XBR4 1.000	L2.5X2X3/16 0.6875	SAU	2.5X2X0.1875	33.0	31.21	Cross	15.53	g33P	2.827NES	Ext	20.228	18.200	21.094	18.750	9.410	2
XBR5 1.000	L1.75X1.75X1/4 0.6875	SAE	1.75X1.75X0.25	33.0	65.98	Comp	35.10	g37XY	5.800NES	Ext	18.952	18.200	28.125	16.523	18.808	2
HORZ1 1.000	L2.5X2X3/16 0.6875	SAU	2.5X2X0.1875	33.0	49.53	Comp	36.49	g41P	2.816NES	Hea	17.444	9.100	10.547	7.717	9.817	1
HORZ2 1.000	L3X2.5X1/4 0.6875	SAU	3X2.5X0.25	33.0	70.36	Comp	46.17	g43P	4.202NES	Hea	30.090	9.100	14.062	12.500	13.807	1
ARM1 1.000	L3X2.5X1/4 0. A potentially damaging moment exists in the following members (make sure your system is well triangulated to minimize moments): g47Y ??	SAU	3X2.5X0.25	33.0	15.06	Comp	5.93	g45P	2.563NES	Hea	43.230	0.000	0.000	0.000	5.000	0
ARM2 1.000	L3.5X2.5X1/4 0	SAU	3.5X2.5X0.25	33.0	28.83	Comp	0.00	g49Y	0.000		47.520	0.000	0.000	0.000	5.000	0
M1 1.000	L1.75X1.75X3/16 0.6875	SAE	1.75X1.75X0.1875	33.0	43.18	Comp	36.83	g55X	2.842NES	Ext	14.585	9.100	10.547	7.717	5.000	1
M2 1.000	L1.75X1.75X3/16 0.6875	SAE	1.75X1.75X0.1875	33.0	11.97	Comp	9.12	g57P	0.704NES	Ext	14.585	9.100	10.547	7.717	7.071	1
M3 1.000	L2.5X2.5X3/16 0.6875	SAE	2.5X2.5X0.1875	33.0	20.12	Comp	0.00	g60X	0.000		22.961	9.100	10.547	9.375	6.403	1
M4 1.000	BAR 1.75X1/4 0.6875	Bar	1-3/4x1/4	33.0	47.96	Tens	47.96	g62Y	3.784NES	Hea	7.889	9.100	14.062	12.500	12.382	1
XBR6 1.000	L1.75X1.75X3/16 0.6875	SAE	1.75X1.75X0.1875	33.0	81.50	Comp	67.31	g38XY	8.886NES	Ext	14.585	18.200	21.094	13.201	28.312	2

*** Maximum Stress Summary for Each Load Case

Summary of Maximum Usages by Load Case:

Load Case Maximum Element Element

	Usage %	Label	Type
NESC Heavy	81.50	g39Y	Angle
NESC Extreme	81.86	g17X	Angle

Summary of Insulator Usages:

Insulator Label	Insulator Type	Maximum Usage %	Load Case	Weight (lbs)
1	Clamp	3.53	NESC Heavy	0.0
2	Clamp	2.38	NESC Heavy	0.0
3	Clamp	4.32	NESC Heavy	0.0
4	Clamp	4.24	NESC Heavy	0.0
5	Clamp	4.34	NESC Heavy	0.0
6	Clamp	4.30	NESC Heavy	0.0
7	Clamp	4.28	NESC Heavy	0.0
8	Clamp	4.23	NESC Heavy	0.0
9	Clamp	0.59	NESC Extreme	0.0
10	Clamp	0.92	NESC Extreme	0.0
11	Clamp	0.98	NESC Extreme	0.0
12	Clamp	0.94	NESC Heavy	0.0
13	Clamp	0.87	NESC Extreme	0.0
14	Clamp	0.91	NESC Heavy	0.0
15	Clamp	0.92	NESC Extreme	0.0
16	Clamp	1.02	NESC Heavy	0.0
17	Clamp	2.34	NESC Extreme	0.0
18	Clamp	4.29	NESC Heavy	0.0
19	Clamp	16.01	NESC Extreme	0.0
20	Clamp	12.25	NESC Heavy	0.0
21	Clamp	0.46	NESC Extreme	0.0
22	Clamp	0.62	NESC Extreme	0.0
23	Clamp	0.65	NESC Extreme	0.0
24	Clamp	0.64	NESC Heavy	0.0
25	Clamp	0.59	NESC Extreme	0.0
26	Clamp	0.60	NESC Heavy	0.0
27	Clamp	0.62	NESC Extreme	0.0
28	Clamp	0.66	NESC Extreme	0.0
29	Clamp	1.78	NESC Extreme	0.0
30	Clamp	2.61	NESC Heavy	0.0

Loads At Insulator Attachments For All Load Cases:

Load Case	Insulator Label	Insulator Type	Structure Attach Label	Structure Attach Load X (kips)	Structure Attach Load Y (kips)	Structure Attach Load Z (kips)	Structure Attach Load Res. (kips)
NESC Heavy	1	Clamp	12P	0.000	1.045	1.426	1.767
NESC Heavy	2	Clamp	12X	0.000	0.779	0.901	1.191
NESC Heavy	3	Clamp	13P	0.000	1.184	1.804	2.158
NESC Heavy	4	Clamp	13X	0.000	1.118	1.804	2.122
NESC Heavy	5	Clamp	14P	0.000	1.162	1.835	2.172
NESC Heavy	6	Clamp	14X	0.000	1.118	1.835	2.149
NESC Heavy	7	Clamp	15P	0.000	1.168	1.794	2.140
NESC Heavy	8	Clamp	15X	0.000	1.118	1.794	2.114
NESC Heavy	9	Clamp	1XY	0.000	0.098	0.239	0.258

NESC Heavy	10	Clamp	2XY	0.000	0.197	0.415	0.460
NESC Heavy	11	Clamp	3XY	0.000	0.213	0.392	0.447
NESC Heavy	12	Clamp	4XY	0.000	0.195	0.430	0.472
NESC Heavy	13	Clamp	5XY	0.000	0.197	0.347	0.399
NESC Heavy	14	Clamp	6XY	0.000	0.198	0.410	0.455
NESC Heavy	15	Clamp	8XY	0.000	0.205	0.389	0.439
NESC Heavy	16	Clamp	9XY	0.000	0.242	0.450	0.511
NESC Heavy	17	Clamp	10XY	0.000	0.406	0.815	0.911
NESC Heavy	18	Clamp	11XY	0.000	0.875	1.960	2.147
NESC Heavy	19	Clamp	1XYF0.50S	0.000	2.164	0.025	2.164
NESC Heavy	20	Clamp	4XYF0.50S	0.000	-0.578	6.098	6.125
NESC Heavy	21	Clamp	1Y	0.000	0.023	0.193	0.194
NESC Heavy	22	Clamp	2Y	0.000	0.051	0.301	0.305
NESC Heavy	23	Clamp	3Y	0.000	0.056	0.254	0.261
NESC Heavy	24	Clamp	4Y	0.000	0.051	0.316	0.320
NESC Heavy	25	Clamp	5Y	0.000	0.046	0.244	0.248
NESC Heavy	26	Clamp	6Y	0.000	0.046	0.295	0.299
NESC Heavy	27	Clamp	8Y	0.000	0.051	0.262	0.266
NESC Heavy	28	Clamp	9Y	0.000	0.058	0.307	0.312
NESC Heavy	29	Clamp	10Y	0.000	0.097	0.573	0.581
NESC Heavy	30	Clamp	11Y	0.000	0.275	1.276	1.306
NESC Extreme	1	Clamp	12P	0.000	1.353	0.443	1.424
NESC Extreme	2	Clamp	12X	0.000	0.703	0.263	0.751
NESC Extreme	3	Clamp	13P	0.000	1.663	0.614	1.773
NESC Extreme	4	Clamp	13X	0.000	1.663	0.614	1.773
NESC Extreme	5	Clamp	14P	0.000	1.663	0.614	1.773
NESC Extreme	6	Clamp	14X	0.000	1.663	0.614	1.773
NESC Extreme	7	Clamp	15P	0.000	1.663	0.614	1.773
NESC Extreme	8	Clamp	15X	0.000	1.663	0.614	1.773
NESC Extreme	9	Clamp	1XY	0.000	0.273	0.117	0.297
NESC Extreme	10	Clamp	2XY	0.000	0.433	0.155	0.460
NESC Extreme	11	Clamp	3XY	0.000	0.460	0.161	0.488
NESC Extreme	12	Clamp	4XY	0.000	0.433	0.155	0.460
NESC Extreme	13	Clamp	5XY	0.000	0.407	0.148	0.433
NESC Extreme	14	Clamp	6XY	0.000	0.407	0.148	0.433
NESC Extreme	15	Clamp	8XY	0.000	0.433	0.155	0.460
NESC Extreme	16	Clamp	9XY	0.000	0.474	0.164	0.502
NESC Extreme	17	Clamp	10XY	0.000	1.079	0.457	1.172
NESC Extreme	18	Clamp	11XY	0.000	1.970	0.611	2.063
NESC Extreme	19	Clamp	1XYF0.50S	0.000	8.004	0.086	8.005
NESC Extreme	20	Clamp	4XYF0.50S	0.000	-2.182	3.015	3.721
NESC Extreme	21	Clamp	1Y	0.000	0.206	0.102	0.230
NESC Extreme	22	Clamp	2Y	0.000	0.286	0.120	0.310
NESC Extreme	23	Clamp	3Y	0.000	0.300	0.123	0.324
NESC Extreme	24	Clamp	4Y	0.000	0.286	0.120	0.310
NESC Extreme	25	Clamp	5Y	0.000	0.273	0.117	0.297
NESC Extreme	26	Clamp	6Y	0.000	0.273	0.117	0.297
NESC Extreme	27	Clamp	8Y	0.000	0.286	0.120	0.310
NESC Extreme	28	Clamp	9Y	0.000	0.306	0.125	0.331
NESC Extreme	29	Clamp	10Y	0.000	0.798	0.392	0.889
NESC Extreme	30	Clamp	11Y	0.000	1.173	0.426	1.248

Overturning Moments For User Input Concentrated Loads:

Moments are static equivalents based on central axis of 0,0 (i.e. a single pole).

Load Case	Total Tran. Load	Total Long. Load	Total Vert. Load	Transverse Moment	Longitudinal Moment	Torsional Moment
-----------	------------------	------------------	------------------	-------------------	---------------------	------------------

	(kips)	(kips)	(kips)	(ft-k)	(ft-k)	(ft-k)
NESC Heavy	12.179	0.000	24.094	777.472	-40.926	-13.688
NESC Extreme	23.010	0.000	8.156	1493.081	-14.310	-43.834

*** Weight of structure (lbs):
Weight of Angles*Section DLF: 7165.3
Total: 7165.3

*** End of Report

Mast Top Connection:
Maximum Design Reactions at Brace:

Compression Force =	Compression := 1.9-kips	(User Input from {PLS-Tower})
Tension Force =	Tension := 1.0-kips	(User Input from {PLS-Tower})
Vertical =	Vert := 0-kips	(User Input from Risa-3D)
Horizontal =	Horz := 7.9-kips	(User Input from Risa-3D)
Moment =	Moment := 0-ft-kips	(User Input from Risa-3D)

Member Properties:

Member Type =	L4x4x1/4 w/ (2) L6x6x5/8	
Member Width =	w := 6-in	(User Input)
Member Thickness =	t := 1.5-in	(User Input)
Member Area =	A := 14.1375-in ²	(User Input)
Moment of Inertia =	I := 29.57-in ⁴	(User Input)
Unbraced Length =	L := 5-ft	(User Input)
Effective Length Coefficient =	K := 1	(User Input)
Radius of Gyration =	r := 1.35-in	(User Input)
Yield Stress =	F _y := 33-ksi	(User Input)
Modulus of Elasticity =	E := 29000-ksi	(User Input)

Calculate Design Compression Stress:

$$w_t := \frac{w}{t} = 4$$

$$F_y = \begin{cases} F_y & \text{if } w_t < \frac{80}{\sqrt{f_y}} \\ 1.677 - 0.677 \cdot \left(\frac{w_t}{\frac{80}{\sqrt{f_y}}} \right) \cdot F_y & \text{if } \frac{80}{\sqrt{f_y}} \leq w_t \leq \frac{144}{\sqrt{f_y}} \\ \frac{0.0332 \cdot \pi^2 \cdot E}{(w_t)^2} & \text{if } w_t > \frac{144}{\sqrt{f_y}} \end{cases} = 33\text{-ksi} \quad (3.7-1)$$

$$F_y = \begin{cases} F_y & \text{if } w_t < \frac{80}{\sqrt{f_y}} \\ 1.677 - 0.677 \cdot \left(\frac{w_t}{\frac{80}{\sqrt{f_y}}} \right) \cdot F_y & \text{if } \frac{80}{\sqrt{f_y}} \leq w_t \leq \frac{144}{\sqrt{f_y}} \\ \frac{0.0332 \cdot \pi^2 \cdot E}{(w_t)^2} & \text{if } w_t > \frac{144}{\sqrt{f_y}} \end{cases} = 33\text{-ksi} \quad (3.7-2)$$

$$C_c := \pi \cdot \sqrt{\frac{2E}{F_y}} = 131.706 \quad (3.6-3)$$

$$F_a := \begin{cases} \left[1 - 0.5 \left(\frac{K \cdot L}{C_c} \right)^2 \right] \cdot F_y & \text{if } \frac{K \cdot L}{r} \leq C_c \\ \frac{\pi^2 \cdot E}{\left(\frac{K \cdot L}{r} \right)^2} & \text{if } \frac{K \cdot L}{r} > C_c \end{cases} = 31.1\text{-ksi} \quad (3.6-1)$$

$$F_a := \begin{cases} \left[1 - 0.5 \left(\frac{K \cdot L}{C_c} \right)^2 \right] \cdot F_y & \text{if } \frac{K \cdot L}{r} \leq C_c \\ \frac{\pi^2 \cdot E}{\left(\frac{K \cdot L}{r} \right)^2} & \text{if } \frac{K \cdot L}{r} > C_c \end{cases} = 31.1\text{-ksi} \quad (3.6-2)$$

Calculate Allowable Bending Moment:

(Per AISC 10-97 Section 3.14.8)

$$b := w - \frac{t}{2} = 5.25 \text{ in}$$

$$\text{Elastic Critical Moment} = M_e := \frac{(0.66 \cdot E \cdot b^4 \cdot t)}{(K \cdot L)^2} \cdot \left[\sqrt{1 + \frac{0.81 \cdot (K \cdot L)^2 \cdot t^2}{b^4}} + 1 \right] = 24865.8 \text{ kips-in} \quad (3.14-7)$$

$$\text{Section Modulus z-axis} = S_z := \frac{b^2 \cdot t}{3 \cdot \sqrt{2}} = 9.745 \text{ in}^3$$

$$\text{Moment Causing Compressive Yield} = M_{yc} := F_y \cdot S_z = 321.579 \text{ kips-in} \quad (3.14-9)$$

$$\text{Lateral Buckling Moment} = M_b := \left[\begin{array}{l} M_e \text{ if } M_e \leq 0.5 \cdot M_{yc} \\ M_{yc} \cdot \left(1 - \frac{M_{yc}}{4 \cdot M_e} \right) \text{ if } M_e > 0.5 \cdot M_{yc} \end{array} \right] = 320.5 \text{ kips-in} \quad (3.14-5)$$

$$\text{Allowable Moment} = M_a := \left(\begin{array}{l} M_{yc} \text{ if } M_{yc} \leq M_b \\ M_b \end{array} \right) = 320.5 \text{ kips-in} \quad (3.14-6)$$

Check Combined Axial Compression and Bending:

(Per AISC 10-97 Section 3.12)

$$\text{Bending Coefficient} = C_m := 0.85 \quad (\text{for restrained ends})$$

$$\text{Applied Axial Compression} = P := \text{Compression} + \text{Vert} = 1.9 \text{ kips}$$

$$\text{Design Axial Compression} = P_a := F_a \cdot A = 440 \text{ kips}$$

$$\text{Axial Compression at Yield} = P_y := F_y \cdot A = 466.538 \text{ kips}$$

$$\text{Euler Buckling Load} = P_e := \frac{\pi^2 \cdot E \cdot I}{(K \cdot L)^2} = 2351 \text{ kips}$$

$$\text{Applied Moment} = M := \text{Moment} + \frac{\text{Horz} \cdot L}{4} = 118.5 \text{ kips-in}$$

$$\text{Condition1} := \text{if } \left[\frac{P}{P_a} + \frac{C_m \cdot M}{M_b} \cdot \left[\frac{1}{\left(1 - \frac{P}{P_e} \right)} \right] \leq 1.00, \text{"OK"}, \text{"Overstressed"} \right] \quad (3.12-1)$$

Condition1 = "OK"

$$\text{Condition2} := \text{if } \left(\frac{P}{P_y} + \frac{M}{M_b} \leq 1.00, \text{"OK"}, \text{"Overstressed"} \right) \quad (3.12-2)$$

Condition2 = "OK"

Mast Bottom Connection:
Maximum Design Reactions at Brace:

Compression Force =	Compression := 30.4-kips	(User Input from {PLS-Tower})
Tension Force =	Tension := 26.5-kips	(User Input from {PLS-Tower})
Vertical =	Vert := 3.0-kips	(User Input from Risa-3D)
Horizontal =	Horz := 2.3-kips	(User Input from Risa-3D)
Moment =	Moment := 0-ft-kips	(User Input from Risa-3D)

Member Properties:

Member Type =	L4x4x1/4 w/ (2) L6x6x5/8
Member Width =	w := 6-in
Member Thickness =	t := 1.5-in
Member Area =	A := 14.1375-in ²
Moment of Inertia =	I := 29.57-in ⁴
Unbraced Length =	L := 5-ft
Effective Length Coefficient =	K := 1
Radius of Gyration =	r := 1.35-in
Yield Stress =	F _y := 33-ksi
Modulus of Elasticity =	E := 29000-ksi

Calculate Design Compression Stress:

$$w_t := \frac{w}{t} = 4$$

$$F_y = \begin{cases} F_y & \text{if } w_t < \frac{80}{\sqrt{f_y}} \\ 1.677 - 0.677 \cdot \left(\frac{w_t}{\frac{80}{\sqrt{f_y}}} \right) \cdot F_y & \text{if } \frac{80}{\sqrt{f_y}} \leq w_t \leq \frac{144}{\sqrt{f_y}} \\ \frac{0.0332 \cdot \pi^2 \cdot E}{(w_t)^2} & \text{if } w_t > \frac{144}{\sqrt{f_y}} \end{cases} = 33\text{-ksi} \quad (3.7-1)$$

$$F_y = \begin{cases} F_y & \text{if } w_t < \frac{80}{\sqrt{f_y}} \\ 1.677 - 0.677 \cdot \left(\frac{w_t}{\frac{80}{\sqrt{f_y}}} \right) \cdot F_y & \text{if } \frac{80}{\sqrt{f_y}} \leq w_t \leq \frac{144}{\sqrt{f_y}} \\ \frac{0.0332 \cdot \pi^2 \cdot E}{(w_t)^2} & \text{if } w_t > \frac{144}{\sqrt{f_y}} \end{cases} = 33\text{-ksi} \quad (3.7-2)$$

$$C_c := \pi \cdot \sqrt{\frac{2E}{F_y}} = 131.706 \quad (3.6-3)$$

$$F_a := \begin{cases} \left[1 - 0.5 \left(\frac{K \cdot L}{C_c} \right)^2 \right] \cdot F_y & \text{if } \frac{K \cdot L}{r} \leq C_c \\ \frac{\pi^2 \cdot E}{\left(\frac{K \cdot L}{r} \right)^2} & \text{if } \frac{K \cdot L}{r} > C_c \end{cases} = 31.1\text{-ksi} \quad (3.6-1)$$

$$F_a := \begin{cases} \left[1 - 0.5 \left(\frac{K \cdot L}{C_c} \right)^2 \right] \cdot F_y & \text{if } \frac{K \cdot L}{r} \leq C_c \\ \frac{\pi^2 \cdot E}{\left(\frac{K \cdot L}{r} \right)^2} & \text{if } \frac{K \cdot L}{r} > C_c \end{cases} = 31.1\text{-ksi} \quad (3.6-2)$$

Calculate Allowable Bending Moment:

(Per AISC 10-97 Section 3.14.8)

$$b := w - \frac{t}{2} = 5.25 \text{ in}$$

$$\text{Elastic Critical Moment} = M_e := \frac{(0.66 \cdot E \cdot b^4 \cdot t)}{(K \cdot L)^2} \cdot \left[\sqrt{1 + \frac{0.81 \cdot (K \cdot L)^2 \cdot t^2}{b^4}} + 1 \right] = 24865.8 \text{ kips-in} \quad (3.14-7)$$

$$\text{Section Modulus z-axis} = S_z := \frac{b^2 \cdot t}{3 \cdot \sqrt{2}} = 9.745 \text{ in}^3$$

$$\text{Moment Causing Compressive Yield} = M_{yc} := F_y \cdot S_z = 321.579 \text{ kips-in} \quad (3.14-9)$$

$$\text{Lateral Buckling Moment} = M_b := \left[\begin{array}{l} M_e \text{ if } M_e \leq 0.5 \cdot M_{yc} \\ M_{yc} \cdot \left(1 - \frac{M_{yc}}{4 \cdot M_e} \right) \text{ if } M_e > 0.5 \cdot M_{yc} \end{array} \right] = 320.5 \text{ kips-in} \quad (3.14-5)$$

$$\text{Allowable Moment} = M_a := \left(\begin{array}{l} M_{yc} \text{ if } M_{yc} \leq M_b \\ M_b \end{array} \right) = 320.5 \text{ kips-in} \quad (3.14-6)$$

Check Combined Axial Compression and Bending:

(Per AISC 10-97 Section 3.12)

$$\text{Bending Coefficient} = C_m := 0.85 \quad (\text{for restrained ends})$$

$$\text{Applied Axial Compression} = P := \text{Compression} + \text{Vert} = 33.4 \text{ kips}$$

$$\text{Design Axial Compression} = P_a := F_a \cdot A = 440 \text{ kips}$$

$$\text{Axial Compression at Yield} = P_y := F_y \cdot A = 466.538 \text{ kips}$$

$$\text{Euler Buckling Load} = P_e := \frac{\pi^2 \cdot E \cdot I}{(K \cdot L)^2} = 2351 \text{ kips}$$

$$\text{Applied Moment} = M := \text{Moment} + \frac{\text{Horz} \cdot L}{4} = 34.5 \text{ kips-in}$$

$$\text{Condition1} := \text{if } \left[\frac{P}{P_a} + \frac{C_m \cdot M}{M_b} \cdot \left[\frac{1}{\left(1 - \frac{P}{P_e} \right)} \right] \leq 1.00, \text{"OK"}, \text{"Overstressed"} \right] \quad (3.12-1)$$

Condition1 = "OK"

$$\text{Condition2} := \text{if } \left(\frac{P}{P_y} + \frac{M}{M_b} \leq 1.00, \text{"OK"}, \text{"Overstressed"} \right) \quad (3.12-2)$$

Condition2 = "OK"

Foundation Analysis**Input Data:**Max. Reactions at Tower Leg:

Shear =	Shear := 14.6·1.1·kips = 16.1·kips	(User Input)
Compression =	Comp := 56.8·1.1·kips = 62.5·kips	(User Input)
Uplift =	Uplift := 48.4·1.1·kips = 53.2·kips	(User Input)

Tower Properties:

Tower Height =	H _t := 81·ft	(User Input)
----------------	-------------------------	--------------

Foundation Properties:

Pier Height =	P _H := 2.25·ft	(User Input)
Pier Width Top =	P _{w1} := 1.67·ft	(User Input)
Pier Width Bottom =	P _{w2} := 1.95·ft	(User Input)
Pier Projection Above Grade =	P _P := 0.5·ft	(User Input)
Pad Width =	P _d _w := 9·ft	(User Input)
Pad Thickness =	P _d _t := 5·ft	(User Input)
Mat Width =	Mat _w := 0·ft	(User Input)
Mat Thickness =	Mat _t := 0·ft	(User Input)

Subgrade Properties:

Concrete Unit Weight =	γ_c := 150·pcf	(User Input)
Water Unit Weight =	γ_w := 62.4·pcf	(User Input)
Soil Unit Weight =	γ_s := 100·pcf	(User Input)
Uplift Angle =	ψ := 30.0·deg	(User Input)
Soil Bearing Capacity =	BC _{soil} := 9000·psf	(User Input)

Calculated Data:

Volume of the Concrete Pad =

$$V_{\text{pad}} := P_{d_w}^2 \cdot P_{d_t} = 405 \cdot \text{ft}^3$$

Volume of the Concrete Pier =

$$V_{\text{pier}} := \frac{(P_H)}{3} \cdot \left(P_{w1}^2 + P_{w2}^2 + \sqrt{P_{w1}^2 \cdot P_{w2}^2} \right) = 7.39 \cdot \text{ft}^3$$

Volume of Soil =

$$V_{\text{soil}} := \left[P_{d_w}^2 \cdot (P_H - P_P) \right] - V_{\text{pier}} = 134.36 \cdot \text{ft}^3$$

Total Volume of Concrete =

$$V_{\text{Conc}} := V_{\text{pad}} + V_{\text{pier}} = 412 \cdot \text{ft}^3$$

Mass of Concrete =

$$\text{Mass}_{\text{Conc}} := V_{\text{Conc}} \cdot \gamma_c = 61.9 \cdot \text{kips}$$

Mass of Soil =

$$\text{Mass}_{\text{Soil}} := \frac{V_{\text{soil}}}{3} \cdot \gamma_s = 4 \cdot \text{kips}$$

Total Mass =

$$\text{Mass}_{\text{tot}} := \text{Mass}_{\text{Conc}} + \text{Mass}_{\text{Soil}} = 66 \cdot \text{kips}$$

Check Uplift:

Required Factor of Safety =

$$F_S := 1.0$$

$$\text{ActualFS} := \frac{\text{Mass}_{\text{tot}}}{\text{Uplift}} = 1.25$$

$$\text{Uplift_Check} := \text{if} \left(\frac{\text{Mass}_{\text{tot}}}{\text{Uplift}} \geq F_S, \text{"OK"}, \text{"Overstressed"} \right)$$

Uplift_Check = "OK"

Cross Sectional Area of Pad =

$$A_{\text{pad}} := P_{d_w}^2 = 81 \cdot \text{ft}^2$$

Section Modulus of Pad =

$$S_{\text{pad}} := \frac{(P_{d_w})^3}{6} = 122 \cdot \text{ft}^3$$

Check Bearing:

$$\text{Bearing} := \frac{\text{Comp} + \text{Mass}_{\text{Conc}}}{A_{\text{pad}}} + \frac{\text{Shear} \cdot (P_H + P_{d_t})}{S_{\text{pad}}} = 2.49 \cdot \text{ksf}$$

$$\text{Bearing_Check} := \text{if} \left(\text{Bearing} \leq BC_{\text{soil}}, \text{"OK"}, \text{"No Good"} \right)$$

Bearing_Check = "OK"

Section 1 - RFDS GENERAL INFORMATION

RFDS NAME:	CTV1109	DATE:	09/16/2016	RF DESIGN ENG:	Md Mateen	RF PERF ENG:		RFDS PROGRAM TYPE:	2017 LTE Next Carrier					
ISSUE:	BRONZE STANDARD	Approved? (Y/N):	Yes	RF DESIGN PHONE:	8602566382	RF PERF PHONE:		RFDS TECHNOLOGY:	LTE 2C					
REVISION:	Preliminary	RF MANAGER:	John Benedetto	RF DESIGN EMAIL:	MM093Q@ATT.COM	RF PERF EMAIL:		STATE/STATUS:	Final/Approved					
INITIATIVE /PROJECT:	LTE 2C 1900 A3-A4 & E-DUS 41 + XMU with Bronze Standard configuration..								RFDS VERSION:	1.00	RFDS ID:	1397197		
									GSM FREQUENCY:	850	Created By:	mm093q	Updated By:	mm093q
									UMTS FREQUENCY:	850, 1900	Date Created:	9/16/2016 6:50:21 PM	Date Updated:	9/20/2016 10:00:32 AM
									LTE FREQUENCY:	700, 1900				
									I-PLAN JOB # 1:	NER-RCTB-12-04166	IPLAN PRD GRP SUB GRP #1:	LTE Next Carrier LTE 2C		
									I-PLAN JOB # 2:	NER-RCTB-16-03448	IPLAN PRD GRP SUB GRP #2:	LTE Multi Carrier Software Carrier		
									I-PLAN JOB # 3:		IPLAN PRD GRP SUB GRP #3:			
									I-PLAN JOB # 4:		IPLAN PRD GRP SUB GRP #4:			
									I-PLAN JOB # 5:		IPLAN PRD GRP SUB GRP #5:			
									I-PLAN JOB # 6:		IPLAN PRD GRP SUB GRP #6:			
									I-PLAN JOB # 7:		IPLAN PRD GRP SUB GRP #7:			
									I-PLAN JOB # 8:		IPLAN PRD GRP SUB GRP #8:			

Section 2 - LOCATION INFORMATION

USID:	59427	FA LOCATION CODE:	10049124	LOCATION NAME:	SOUTHBURG-CATHYDRIVE NU	ORACLE PTN # 1:	2051A07A0F	PACE JOB # 1:	MRCTB019775
REGION:	NORTHEAST	MARKET CLUSTER:	NEW ENGLAND	MARKET:	CONNECTICUT	ORACLE PTN # 2:		PACE JOB # 2:	MRCTB020075
ADDRESS:	CATHY DRIVE	CITY:	SOUTHBURG	STATE:	CT	ORACLE PTN # 3:		PACE JOB # 3:	
ZIP CODE:	06489	COUNTY:	HARTFORD	LONG (DEC. DEG.):	-72.8524381	ORACLE PTN # 4:		PACE JOB # 4:	
LATITUDE (D-M-S):	41d 35m55.89204s	LONGITUDE (D-M-S):	-72d -51m-8.77716s	LAT (DEC. DEG.):	41.5988589	ORACLE PTN # 5:		PACE JOB # 5:	
DIRECTIONS, ACCESS AND EQUIPMENT LOCATION:	FROM ROCKY HILL - TAKE 91 SOUTH TO ROUTE 691 WEST TAKE EXIT 4 TURN RIGHT ONTO (RT322) TAKE RIGHT ONTO RT 120 TAKE RIGHT ONTO 364 TAKE LEFT ONTO ARLINGTON TAKE LEFT ONTO CATHY DR SITE IS UNDER POWERLINE OUTDOOR CABINET. ON 691 EAST TAKE EXIT 4 ROUTE 322. AT END OF EXIT TAKE A LEFT OVER HIGHWAY AND GO TO SECOND TRAFFIC LIGHT. FOR 691 WEST TAKE EXIT 4 AT END OF EXIT AT TRAFFIC LIGHT TAKE RIGHT AND GO TO NEXT TRAFFIC LIGHT. DIRECTIONS ARE NOW THE SAME FROM 2ND TRAFFIC LIGHT. AT 2 ND TRAFFIC LIGHT TAKE RIGHT ONTO ROUTE 120 NORTH AND GO FOR 3.2 MILES TO BELLVIEW ST. (INTERSECTION AT LEWIS FARMS). AT BELLVIEW TAKE A RIGHT AND GO FOR .7 MILE TO INTERSECTION OF BERIN ST. TAKE A RIGHT ON BERIN ST AND GO FOR .9 MILE TO ARLINGTON DR. TAKE A LEFT ON TO ARLINGTON AND THEN THE NEXT LEFT ONTO CATHY DRIVE. THIS OUTSIDE CELL IS LOCATED A SHORT DISTANCE DOWN THE ROAD AT THE POWER LINE TOWER ON YOUR LEFT.T-1 INFO GSM 1 HCGS 717576 2 HCGS 717577 3 HCGS 717699					ORACLE PTN # 6:		PACE JOB # 6:	
						ORACLE PTN # 7:		PACE JOB # 7:	
						ORACLE PTN # 8:		PACE JOB # 8:	
						BORDER CELL WITH CONTOUR COORD:		SEARCH RING NAME:	
						AM STUDY REQ'D (Y/N):	No	SEARCH_RING_ID:	
						FREQ COORD:		BTA:	MSA / RSA:
						OPS DISTRICT:	CT-North	LAC(GSM):	05014
						OPS ZONE:	NE_CT_N_HRFR_SE_CS	LAC(UMTS):	05998
						RF DISTRICT:	NPO Triage	BSC(GSM):	BRPTCTBSC05
						RF ZONE:	Hotseat	RNC(UMTS):	BRPTCT04RNC002
						PARENT NAME(GSM):	BRIDGEPORT BSC 05	MME POOL ID(LTE):	FF01
						PARENT NAME(UMTS):	BRIDGEPORT CT RNC002		

Section 3 - LICENSE COVERAGE/FILING INFORMATION

CGSA - NO FILING TRIGGERED (Yes/No):	No	CGSA LOSS:		PCS REDUCED - UPS ZIP:		CGSA CALL SIGNS:			
CGSA - MINOR FILING NEEDED (Yes/No):	No	CGSA EXT AGMT NEEDED:		PCS POPS REDUCED:					
CGSA - MAJOR FILING NEEDED (Yes/No):	Yes	CGSA SCORECARD UPDATED:							

Section 4 - TOWER/REGULATORY INFORMATION

STRUCTURE AT&T OWNED?:	Yes	GROUND ELEVATION (ft):		STRUCTURE TYPE:	UTILITY	MARKET LOCATION 700 MHz Band:			
ADDITIONAL REGULATORY?:	Yes	HEIGHT OVERALL (ft):	82.00	FCC ASR NUMBER:		MARKET LOCATION 850 MHz Band:			
SUB-LEASE RIGHTS?:	Yes	STRUCTURE HEIGHT (ft):	82.00			MARKET LOCATION 1900 MHz Band:			
LIGHTING TYPE:	NOT REQUIRED					MARKET LOCATION AWS Band:			
						MARKET LOCATION WCS Band:			
						MARKET LOCATION Future Band:			

Section 5 - E-911 INFORMATION - existing

Section 5 - E-911 INFORMATION - final

Section 6 - RBS GENERAL INFORMATION - existing

	GSM 1ST RBS	GSM 2ND RBS	UMTS 1ST RBS	UMTS 2ND RBS	LTE 1ST RBS							
RBS ID:	96622	96623	210587	336059	366953							
CTS COMMON ID:	032D1109	184D1109	CTV1109	CTU1109	CTL01109							
CELL ID / BCF:	032D1109	032D1109	CTV1109	CTV1109	CTL01109							
BTA/TID:	184G	184P	184U	184W	184L							
4-9 DIGIT SITE ID:	1109	1109	1109	1109	1109							
COW OR TOY?	No	No	No	No	No							
CELL SITE TYPE:	SECTORIZED	SECTORIZED	SECTORIZED	SECTORIZED	SECTORIZED							
SITE TYPE:	BTS-CONVENTIONAL	BTS-CONVENTIONAL	MACRO-CONVENTIONAL	MACRO-CONVENTIONAL	MACRO-CONVENTIONAL							
BTS LOCATION ID:	GROUND	GROUND	GROUND	GROUND	INTERNAL							
BASE STATION TYPE:	BASE	BASE	BASE	OVERLAY	BASE							
EQUIPMENT NAME:	SOUTHBINGTON-CATHYDRIVE NU	SOUTHBINGTON-CATHYDRIVE NU	SOUTHBINGTON-CATHYDRIVE NU	SOUTHBINGTON-CATHYDRIVE NU	SOUTHBINGTON-CATHYDRIVE NU							
DISASTER PRIORITY:	0	0	0	3	3							

Section 6 - RBS GENERAL INFORMATION - final

	GSM 1ST RBS	GSM 2ND RBS	UMTS 1ST RBS	UMTS 2ND RBS	LTE 1ST RBS							
RBS ID:	96622	96623	210587	336059	366953							
CTS COMMON ID:	032D1109	184D1109	CTV1109	CTU1109	CTL01109							
CELL ID / BCF:	032D1109	032D1109	CTV1109	CTV1109	CTL01109							
BTA/TID:	184G	184P	184U	184W	184L							
4-9 DIGIT SITE ID:	1109	1109	1109	1109	1109							
COW OR TOY?	No	No	No	No	No							
CELL SITE TYPE:	SECTORIZED	SECTORIZED	SECTORIZED	SECTORIZED	SECTORIZED							
SITE TYPE:	BTS-CONVENTIONAL	BTS-CONVENTIONAL	MACRO-CONVENTIONAL	MACRO-CONVENTIONAL	MACRO-CONVENTIONAL							
BTS LOCATION ID:	GROUND	GROUND	GROUND	GROUND	INTERNAL							
BASE STATION TYPE:	BASE	BASE	BASE	OVERLAY	BASE							
EQUIPMENT NAME:	SOUTHBINGTON-CATHYDRIVE NU	SOUTHBINGTON-CATHYDRIVE NU	SOUTHBINGTON-CATHYDRIVE NU	SOUTHBINGTON-CATHYDRIVE NU	SOUTHBINGTON-CATHYDRIVE NU							
DISASTER PRIORITY:	0	0	0	3	3							

Section 7 - RBS SPECIFIC INFORMATION - existing

	GSM 1ST RBS	GSM 2ND RBS	UMTS 1ST RBS	UMTS 2ND RBS	LTE 1ST RBS							
RAC:												
EQUIPMENT VENDOR:	NOKIA	NOKIA	ERICSSON	ERICSSON	ERICSSON							
EQUIPMENT TYPE:	ULTRASITE	ULTRASITE	3106 OUTDOOR	3106 OUTDOOR	6601 INDOOR MU							
BASEBAND CONFIGURATION:												
LOCATION:												
CABINET LOCATION:												
MARKET STATE CODE:					CT							
AGPS:	Yes	Yes	Yes	Yes	Yes							
NODE B NUMBER:	0	0	0	0	1109							

Section 7 - RBS SPECIFIC INFORMATION - final

	GSM 1ST RBS	GSM 2ND RBS	UMTS 1ST RBS	UMTS 2ND RBS	LTE 1ST RBS							
RAC:												
EQUIPMENT VENDOR:	NOKIA	NOKIA	ERICSSON	ERICSSON	ERICSSON							
EQUIPMENT TYPE:	ULTRASITE	ULTRASITE	3106 OUTDOOR	3106 OUTDOOR	6601 INDOOR MU							
BASEBAND CONFIGURATION:					1x6601 / 1xDUS41 / 1xXMU03							
LOCATION:												
CABINET LOCATION:												
MARKET STATE CODE:					CT							
AGPS:	Yes	Yes	Yes	Yes	Yes							
NODE B NUMBER:	0	0	0	0	1109							

Section 8 - RBS/SECTOR ASSOCIATION - existing

Section 8 - RBS/SECTOR ASSOCIATION - final

Section 9 - SOFT SECTOR ID - existing

Section 9 - SOFT SECTOR ID - final

Section 9 - Cell Number - existing

Section 9 - Cell Number - final

Section 10 - CID/SAC - existing

Section 10 - CID/SAC - final

Section 15A - CURRENT SECTOR/CELL INFORMATION - SECTOR A (OR OMNI)

ANTENNA POSITION is LEFT to RIGHT from BACK of ANTENNA	ANTENNA POSITION 1		ANTENNA POSITION 2		ANTENNA POSITION 3		ANTENNA POSITION 4		ANTENNA POSITION 5		ANTENNA POSITION 6		ANTENNA POSITION 7	
ANTENNA MAKE + MODEL	AM-X-CD-16-65-00T-RET						AM-X-CD-16-65-00T-RET							
ANTENNA VENDOR	KMW						KMW							
ANTENNA SIZE (H x W x D)	72X11.8X5.9						72X11.8X5.9							
ANTENNA WEIGHT	48.5						48.5							
AZIMUTH	143						23							
MAGNETIC DECLINATION														
RADIATION CENTER (feet)	93						93							
ANTENNA TIP HEIGHT	96						96							
MECHANICAL DOWNTILT	0						0							
FEEDER AMOUNT	2						2							
VERTICAL SEPARATION from ANTENNA ABOVE (TIP to TIP)														
VERTICAL SEPARATION from ANTENNA BELOW (TIP to TIP)														
HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTERLINE to CENTERLINE)														
HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CENTERLINE to CENTERLINE)														
HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenna # / # of inches)														
Antenna RET Motor (QTY/MODEL)	2	Kathrein 860-10025					2		Kathrein 860-10025					
SURGE ARRESTOR (QTY/MODEL)														
DIPLEXER (QTY/MODEL)	2	Powerwave / CM1007-DBPXB-003					2		Powerwave / CM1007-DBPXB-003					
DUPLEXER (QTY/MODEL)														
Antenna RET CONTROL UNIT (QTY/MODEL)	1	Kathrein / 860-10006												
DC BLOCK (QTY/MODEL)														
TMA/LNA (QTY/MODEL)	1	DTMABP7819VG12A					1		DTMABP7819VG12A					
CURRENT INJECTORS FOR TMA (QTY/MODEL)	2	Andrew / APTDC-BDFDM-DB					1		Andrew / APTDC-BDFDM-DB					
PDU FOR TMAS (QTY/MODEL)	1	LGP 12104												
FILTER (QTY/MODEL)														
SQUID (QTY/MODEL)														
FIBER TRUNK (QTY/MODEL)														
DC TRUNK (QTY/MODEL)														
RRH - 700 band (QTY/MODEL)							1		RRUS-11					
RRH - 850 band (QTY/MODEL)														
RRH - 1900 band (QTY/MODEL)														
RRH - AWS band (QTY/MODEL)														
RRH - WCS band (QTY/MODEL)														
Additional RRH #1 - any band (QTY/MODEL)														
Additional RRH #2 - any band (QTY/MODEL)														
Additional Component 1 (QTY/MODEL)							1		Kathrein / 782 11055					
Additional Component 2 (QTY/MODEL)														
Additional Component 3 (QTY/MODEL)														
Local Market Note 1														
Local Market Note 2														
Local Market Note 3														

PORT SPECIFIC FIELDS	PORT NUMBER	USEID (CSSng)	USEID (Atoll)	ATOLL TXID	ATOLL CELL ID	TX/RX ?	TECHNOLOGY/FREQ UENCY	ANTENNA ATOLL	ANTENNA GAIN	ELECTRICAL AZIMUTH	ELECTRICAL TILT	RRH LOCATION (Top/Bottom/ Integrated/None)	FEEDERS TYPE	FEEDER LENGTH (feet)	RXAIT KIT MODULE?	TRIPLEXER or LLC (QTY)	TRIPLEXER or LLC (MODEL)	SCPA/MCPA MODULE?	HATCHPLATE POWER (Watts)	ERP (Watts)	Antenna RET Name	CABLE NUMBER	CABLE ID (CSSNG)
ANTENNA POSITION 1	PORT 1	59427.A.850.3G.1	59427.A.850.3G.1	CTV11091	CTV11091		UMTS 850	P65-15-XLH-RR_840MHz_04DT	14.69		4	None	Andrew 1-5/8 (850)	120.030726	RxAIT 850			NO					
	PORT 2	59427.A.850.25G.1	59427.A.850.25G.1	184G11091			GSM 850	P65-15-XLH-RR_840MHz_04DT	14.69		4	None	Andrew 1-5/8 (850)	120.030726	RxAIT 850			NO	11.22	201.83			
	PORT 4	59427.A.1900.25G.1	59427.A.1900.25G.1	184P11091			GSM 1900	P65-15-XLH-RR_1950MHz_00DT	17		0	None	Andrew 1-5/8 (1900)	120.030726	NO			NO	28.18	729.45			
ANTENNA POSITION 4	PORT 1	59427.A.700.4G.1	59427.A.700.4G.1	CTL01109_7A_1	CTL01109_7A_1		LTE 700	AM-X-CD-16-65-00T-RET_725MHz_05DT	15.6		5	BOTTOM	1 5/8" ANDREW AVA7-50_700 MHz	120.030726	NO								

Section 15B - CURRENT SECTOR/CELL INFORMATION - SECTOR B

ANTENNA POSITION is LEFT to RIGHT from BACK of ANTENNA	ANTENNA POSITION 1		ANTENNA POSITION 2		ANTENNA POSITION 3		ANTENNA POSITION 4		ANTENNA POSITION 5		ANTENNA POSITION 6		ANTENNA POSITION 7	
ANTENNA MAKE + MODEL	AM-X-CD-16-65-00T-RET						AM-X-CD-16-65-00T-RET							
ANTENNA VENDOR	KMW						KMW							
ANTENNA SIZE (H x W x D)	72X11.8X5.9						72X11.8X5.9							
ANTENNA WEIGHT	48.5						48.5							
AZIMUTH	263						143							
MAGNETIC DECLINATION														
RADIATION CENTER (feet)	93						93							
ANTENNA TIP HEIGHT	96						96							
MECHANICAL DOWNTILT	0						0							
FEEDER AMOUNT	2						2							
VERTICAL SEPARATION from ANTENNA ABOVE (TIP to TIP)														
VERTICAL SEPARATION from ANTENNA BELOW (TIP to TIP)														
HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTERLINE to CENTERLINE)														
HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CENTERLINE to CENTERLINE)														
HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenna # / # of inches)														
Antenna RET Motor (QTY/MODEL)	2		Kathrein 860-10025						2		Kathrein 860-10025			
SURGE ARRESTOR (QTY/MODEL)														
DIPLEXER (QTY/MODEL)	2		Powerwave / CM1007-DBPXB-003						2		Powerwave / CM1007-DBPXB-003			
DUPLEXER (QTY/MODEL)														
Antenna RET CONTROL UNIT (QTY/MODEL)														
DC BLOCK (QTY/MODEL)														
TMA/LNA (QTY/MODEL)	1		DTMABP7819VG12A						1		DTMABP7819VG12A			
CURRENT INJECTORS FOR TMA (QTY/MODEL)	2		Andrew / APTDC-BDFDM-DB						1		Andrew / APTDC-BDFDM-DB			
PDU FOR TMAS (QTY/MODEL)														
FILTER (QTY/MODEL)														
SQUID (QTY/MODEL)														
FIBER TRUNK (QTY/MODEL)														
DC TRUNK (QTY/MODEL)														
RRH - 700 band (QTY/MODEL)									1		RRUS-11			
RRH - 850 band (QTY/MODEL)														
RRH - 1900 band (QTY/MODEL)														
RRH - AWS band (QTY/MODEL)														
RRH - WCS band (QTY/MODEL)														
Additional RRH #1 - any band (QTY/MODEL)														
Additional RRH #2 - any band (QTY/MODEL)														
Additional Component 1 (QTY/MODEL)									1		Kathrein / 782 11055			
Additional Component 2 (QTY/MODEL)														
Additional Component 3 (QTY/MODEL)														
Local Market Note 1														
Local Market Note 2														
Local Market Note 3														

PORT SPECIFIC FIELDS	PORT NUMBER	USEID (CSSng)	USEID (Atoll)	ATOLL TXID	ATOLL CELL ID	TX/RX ?	TECHNOLOGY/FREQ UENCY	ANTENNA ATOLL	ANTENNA GAIN	ELECTRICAL AZIMUTH	ELECTRICAL TILT	RRH LOCATION (Top/Bottom/ Integrated/None)	FEEDERS TYPE	FEEDER LENGTH (feet)	RXAIT KIT MODULE?	TRIPLEXER or LLC (QTY)	TRIPLEXER or LLC (MODEL)	SCPA/MCPA MODULE?	HATCHPLATE POWER (Watts)	ERP (Watts)	Antenna RET Name	CABLE NUMBER	CABLE ID (CSSNG)
ANTENNA POSITION 1	PORT 1	59427.B.850.3G.1	59427.B.850.3G.1	CTV11092	CTV11092		UMTS 850	P65-15-XLH-RR_840MHz_04DT	14.69		4	None	Andrew 1-5/8 (850)	120.030726	RxAIT 850			NO					
	PORT 2	59427.B.850.25G.1	59427.B.850.25G.1	184G11092			GSM 850	P65-15-XLH-RR_840MHz_04DT	14.69		4	None	Andrew 1-5/8 (850)	120.030726	RxAIT 850			NO	12.58	226.46			
	PORT 4	59427.B.1900.25G.1	59427.B.1900.25G.1	184P11092			GSM 1900	P65-15-XLH-RR_1950MHz_00DT	17		0	None	Andrew 1-5/8 (1900)	120.030726	NO			NO	28.18	729.45			
ANTENNA POSITION 4	PORT 1	59427.B.700.4G.1	59427.B.700.4G.1	CTL01109_7B_1	CTL01109_7B_1		LTE 700	AM-X-CD-16-65-00T-RET_725MHz_05DT	15.6		5	BOTTOM	1 5/8" ANDREW AVA7-50_700 MHz	120.030726	NO								

Section 15C - CURRENT SECTOR/CELL INFORMATION - SECTOR C

ANTENNA POSITION is LEFT to RIGHT from BACK of ANTENNA	ANTENNA POSITION 1	ANTENNA POSITION 2	ANTENNA POSITION 3	ANTENNA POSITION 4	ANTENNA POSITION 5	ANTENNA POSITION 6	ANTENNA POSITION 7
ANTENNA MAKE - MODEL	AM-X-CD-16-65-00T-RET			AM-X-CD-16-65-00T-RET			
ANTENNA VENDOR	KMW			KMW			
ANTENNA SIZE (H x W x D)	72X11.8X5.9			72X11.8X5.9			
ANTENNA WEIGHT	48.5			48.5			
AZIMUTH	23			263			
MAGNETIC DECLINATION							
RADIATION CENTER (feet)	93			93			
ANTENNA TIP HEIGHT	96			96			
MECHANICAL DOWNTILT	0			0			
FEEDER AMOUNT	2			2			
VERTICAL SEPARATION from ANTENNA ABOVE (TIP to TIP)							
VERTICAL SEPARATION from ANTENNA BELOW (TIP to TIP)							
HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTERLINE to CENTERLINE)							
HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CENTERLINE to CENTERLINE)							
HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenna # / # of inches)							
Antenna RET Motor (QTY/MODEL)	2	Kathrein 860-10025			2	Kathrein 860-10025	
SURGE ARRESTOR (QTY/MODEL)							
DIPLEXER (QTY/MODEL)	2	Powerwave / CM1007-DBPXB-003			2	Powerwave / CM1007-DBPXB-003	
DUPLEXER (QTY/MODEL)							
Antenna RET CONTROL UNIT (QTY/MODEL)							
DC BLOCK (QTY/MODEL)							
TMA/LNA (QTY/MODEL)	1	DTMABP7819VG12A			1	DTMABP7819VG12A	
CURRENT INJECTORS for TMA (QTY/MODEL)	2	Andrew / APTDC-BDFDM-DB			1	Andrew / APTDC-BDFDM-DB	
PDU for TMAs (QTY/MODEL)							
FILTER (QTY/MODEL)							
SQUID (QTY/MODEL)							
FIBER TRUNK (QTY/MODEL)							
DC TRUNK (QTY/MODEL)							
RRH - 700 band (QTY/MODEL)					1	RRUS-11	
RRH - 850 band (QTY/MODEL)							
RRH - 1900 band (QTY/MODEL)							
RRH - AWS band (QTY/MODEL)							
RRH - WCS band (QTY/MODEL)							
Additional RRH #1 - any band (QTY/MODEL)							
Additional RRH #2 - any band (QTY/MODEL)							
Additional Component 1 (QTY/MODEL)					1	Kathrein / 782 11055	
Additional Component 2 (QTY/MODEL)							
Additional Component 3 (QTY/MODEL)							
Local Market Note 1							
Local Market Note 2							
Local Market Note 3							

Section 16A - NEW/PROPOSED SECTOR/CELL INFORMATION - SECTOR A (OR OMNI)

Section 16B - NEW/PROPOSED SECTOR/CELL INFORMATION - SECTOR B

Section 16C - NEW/PROPOSED SECTOR/CELL INFORMATION - SECTOR C

Section 17A - FINAL SECTOR/CELL INFORMATION - SECTOR A (OR OMNI)

ANTENNA POSITION is LEFT to RIGHT from BACK of ANTENNA	ANTENNA POSITION 1		ANTENNA POSITION 2		ANTENNA POSITION 3		ANTENNA POSITION 4		ANTENNA POSITION 5		ANTENNA POSITION 6		ANTENNA POSITION 7																
ANTENNA MAKE + MODEL	AM-X-CD-16-65-00T-RET						QS66512-2																						
ANTENNA VENDOR	KMV						Quintel																						
ANTENNA SIZE (H x W x D)	72X11.8X5.9						72X12X9.6																						
ANTENNA WEIGHT	48.5						111																						
AZIMUTH	143						23																						
MAGNETIC DECLINATION																													
RADIATION CENTER (feet)	93						93																						
ANTENNA TIP HEIGHT	96						96																						
MECHANICAL DOWNTILT	0						0																						
FEEDER AMOUNT	2						4																						
VERTICAL SEPARATION from ANTENNA ABOVE (TIP to TIP)																													
VERTICAL SEPARATION from ANTENNA BELOW (TIP to TIP)																													
HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTERLINE to CENTERLINE)																													
HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CENTERLINE to CENTERLINE)																													
HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenna # / # of inches)																													
Antenna RET Motor (QTY/MODEL)	2	Kathrein 860-10025								Built in																			
SURGE ARRESTOR (QTY/MODEL)								6		Andrew / APTDC-BDFDM-DB																			
DIPLEXER (QTY/MODEL)	2	Powerwave / CM1007-DBPXB-003						4		CCI Pentaplexer 5PX-0726-O																			
DUPLEXER (QTY/MODEL)																													
Antenna RET CONTROL UNIT (QTY/MODEL)	1	Kathrein / 860-10006																											
DC BLOCK (QTY/MODEL)																													
TMA/LNA (QTY/MODEL)	1	DTMABP7819VG12A						2		Kaelus TMA2117F00V1-1 (Twin PCS-WCS w/700/850 BP)																			
CURRENT INJECTORS FOR TMA (QTY/MODEL)	2	Andrew / APTDC-BDFDM-DB						2		860 10030																			
PDU FOR TMAS (QTY/MODEL)	1	LGP 12104																											
FILTER (QTY/MODEL)																													
SQUID (QTY/MODEL)																													
FIBER TRUNK (QTY/MODEL)																													
DC TRUNK (QTY/MODEL)																													
RRH - 700 band (QTY/MODEL)								1		RRUS-11																			
RRH - 850 band (QTY/MODEL)																													
RRH - 1900 band (QTY/MODEL)								2		RRUS-12																			
RRH - AWS band (QTY/MODEL)																													
RRH - WCS band (QTY/MODEL)																													
Additional RRH #1 - any band (QTY/MODEL)																													
Additional RRH #2 - any band (QTY/MODEL)																													
Additional Component 1 (QTY/MODEL)								2		Kathrein / 782 11055																			
Additional Component 2 (QTY/MODEL)																													
Additional Component 3 (QTY/MODEL)																													
Local Market Note 1	LTE 2C 1900 A3-A4 & E - with Bronze Standard configuration, Replace the existing LTE Antenna with 12port 6' Quintel antenna, Add 2 Additional coax, Replace the existing TMA with 6ports Kaelus twin TMA , Replace the diplexers with pentaplexers, Add 2"Radio RRUS-12 at the bottom for LTE 1900, DUL to DUS upgrade add XMU.																												
Local Market Note 2	Antenna positions are based on As-built CD's, LTE alpha is with UMTS Gamma Face // LTE Beta is with UMTS Alpha Face // LTE Gamma is with UMTS Beta Face.																												
Local Market Note 3																													

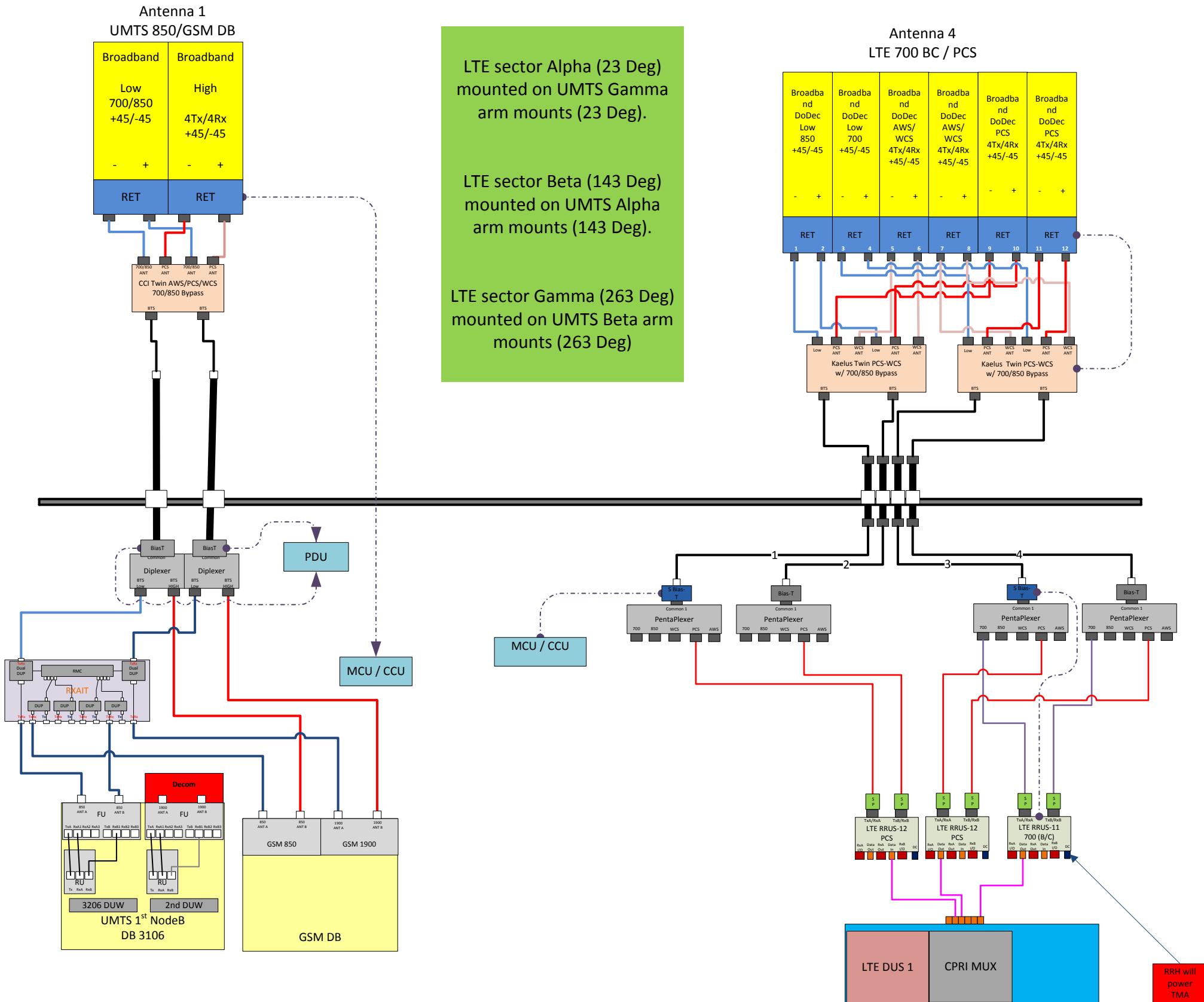
PORT SPECIFIC FIELDS	PORT NUMBER	USEID (CSSng)	USEID (Atoll)	ATOLL TXID	ATOLL CELL ID	TX/RX ?	TECHNOLOGY/FREQ UENCY	ANTENNA ATOLL	ANTENNA GAIN	ELECTRICAL AZIMUTH	ELECTRICAL TILT	RRH LOCATION (Top/Bottom/ Integrated/None)	FEEDERS TYPE	FEEDER LENGTH (feet)	RXAIT KIT MODULE?	TRIPLEXER or LLC (QTY)	TRIPLEXER or LLC (MODEL)	SCPA/MCPA MODULE?	HATCHPLATE POWER (Watts)	ERP (Watts)	Antenna RET Name	CABLE NUMBER	CABLE ID (CSSNG)	
ANTENNA POSITION 1	PORT 1	59427.A.850.3G.1	59427.A.850.3G.1	CTV11091	CTV11091		UMTS 850	P65-15-XLH-RR_840MHz_04DT	14.69		4	None	Andrew 1-5/8 (850)	120.030726	RxAIT 850			NO		557.19		1		
	PORT 2	59427.A.850.25G.1	59427.A.850.25G.1	184G11091			GSM 850	P65-15-XLH-RR_840MHz_04DT	14.69		4	None	Andrew 1-5/8 (850)	120.030726	RxAIT 850			NO	11.22	201.83		1		
	PORT 4	59427.A.1900.25G.1	59427.A.1900.25G.1	184P11091			GSM 1900	P65-15-XLH-RR_1950MHz_00DT	17		0	None	Andrew 1-5/8 (1900)	120.030726	NO			NO	28.18	729.45		2		
ANTENNA POSITION 4	PORT 1	59427.A.700.4G.1	59427.A.700.4G.1	CTL01109_7A_1	CTL01109_7A_1		LTE 700	QS66512-	14.22		3	BOTTOM	1 5/8" ANDREW	120.030726	NO						1475.7065		7	

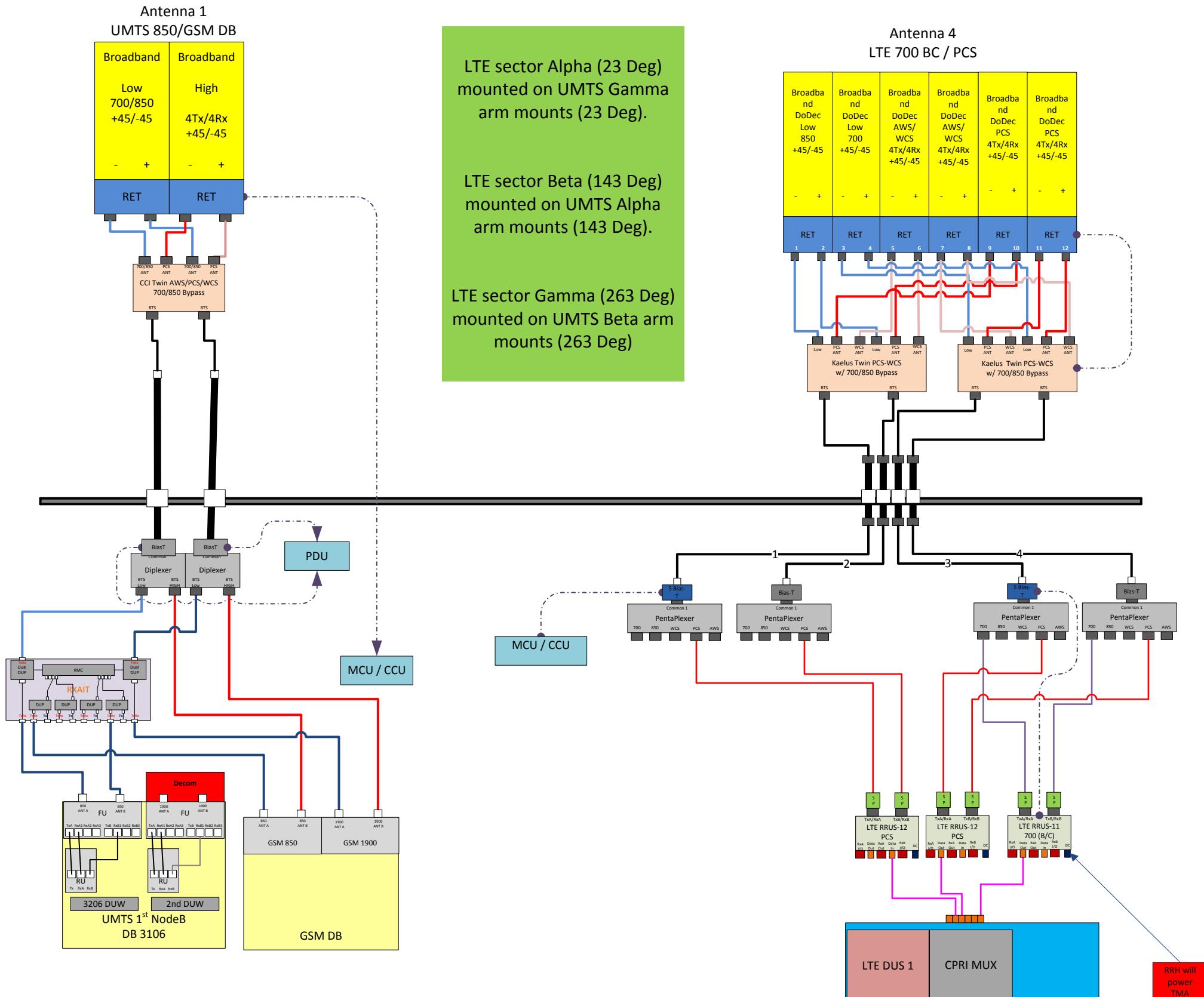
PORT 3	59427.A.1900.4G.tmp1	59427.A.1900.4G.1	CTL01109_9A_1	CTL01109_9A_1	LTE 1900	QS66512-2_1930MHz_06DT	17.18	6	BOTTOM	1 5/8" ANDREW AVA7-50_700 MHz	120.030726	NO						2421.029	7	
PORT 4	59427.A.1900.4G.tmp1,59427.A.1900.4G.tmp2	59427.A.1900.4G.1	CTL01109_9A_2	CTL01109_9A_2	LTE 1900	QS66512-2_1930MHz_06DT	17.18	6	BOTTOM	1 5/8" ANDREW AVA7-50_700 MHz	120.030726	NO						2421.029	7	

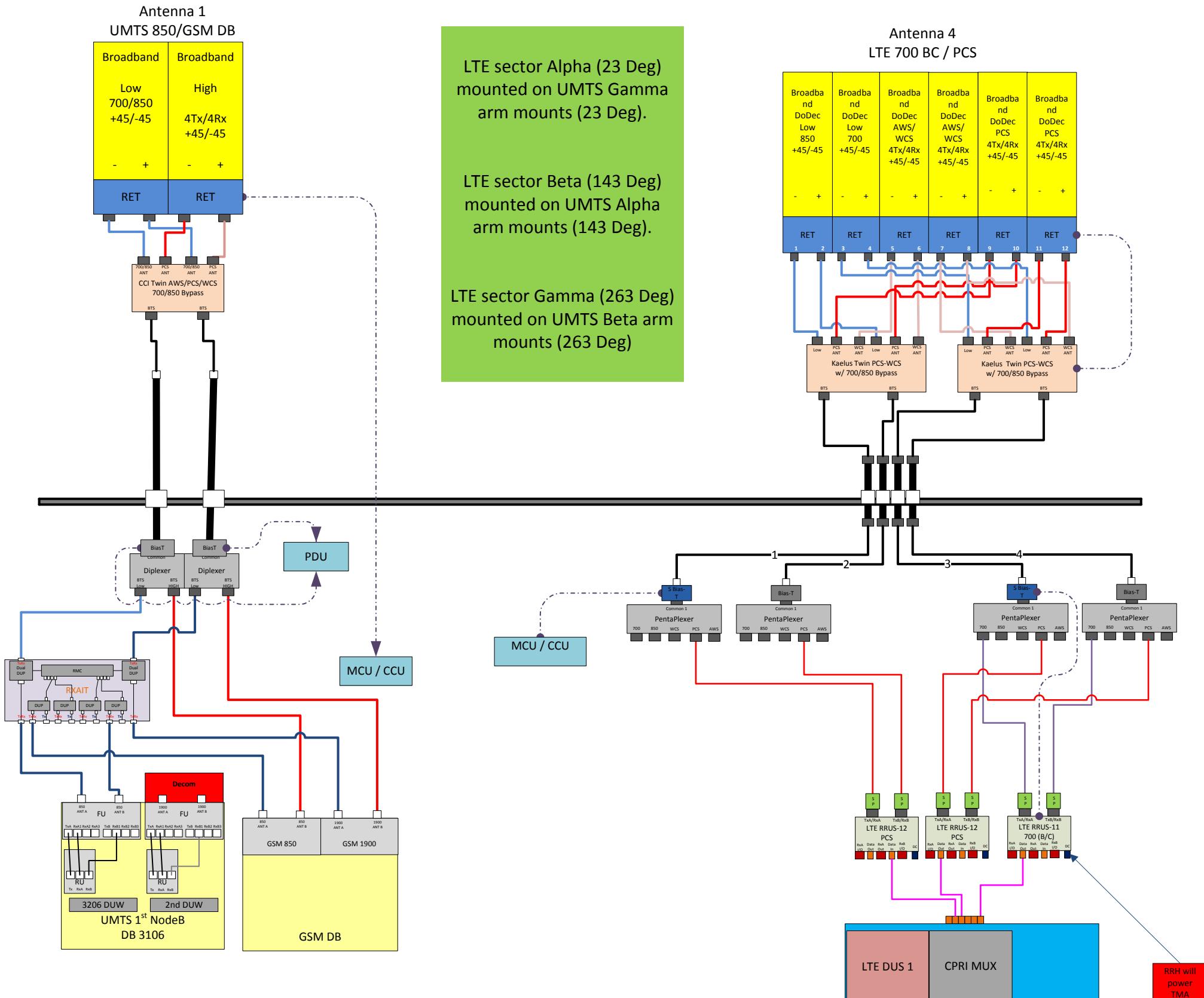
Section 17B - FINAL SECTOR/CELL INFORMATION - SECTOR B

ANTENNA POSITION is LEFT to RIGHT from BACK of ANTENNA	ANTENNA POSITION 1		ANTENNA POSITION 2		ANTENNA POSITION 3		ANTENNA POSITION 4		ANTENNA POSITION 5		ANTENNA POSITION 6		ANTENNA POSITION 7													
ANTENNA MAKE + MODEL	AM-X-CD-16-65-00T-RET						QS66512-2																			
ANTENNA VENDOR	KMV						Quintel																			
ANTENNA SIZE (H x W x D)	72X11.8X5.9						72X12X9.6																			
ANTENNA WEIGHT	48.5						111																			
AZIMUTH	263						143																			
MAGNETIC DECLINATION																										
RADIATION CENTER (feet)	93						93																			
ANTENNA TIP HEIGHT	96						96																			
MECHANICAL DOWNTILT	0						0																			
FEEDER AMOUNT	2						4																			
VERTICAL SEPARATION from ANTENNA ABOVE (TIP to TIP)																										
VERTICAL SEPARATION from ANTENNA BELOW (TIP to TIP)																										
HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTERLINE to CENTERLINE)																										
HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CENTERLINE to CENTERLINE)																										
HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenna # / # of inches)																										
Antenna RET Motor (QTY/MODEL)	2	Kathrein 860-10025								Built in																
SURGE ARRESTOR (QTY/MODEL)							6		Andrew / APTDC-BDFDM-DB																	
DIPLEXER (QTY/MODEL)	2	Powerwave / CM1007-DBPXB-003						4		CCI Pentaplexer 5PX-0726-O																
DUPLEXER (QTY/MODEL)																										
Antenna RET CONTROL UNIT (QTY/MODEL)																										
DC BLOCK (QTY/MODEL)																										
TMA/LNA (QTY/MODEL)	1	DTMABP7819VG12A						2		Kaelus TMA2117F00V1-1 (Twin PCS-WCS w/700/850 BP)																
CURRENT INJECTORS FOR TMA (QTY/MODEL)	2	Andrew / APTDC-BDFDM-DB						2		860 10030																
PDU FOR TMAS (QTY/MODEL)																										
FILTER (QTY/MODEL)																										
SQUID (QTY/MODEL)																										
FIBER TRUNK (QTY/MODEL)																										
DC TRUNK (QTY/MODEL)									1		RRUS-11															
RRH - 700 band (QTY/MODEL)																										
RRH - 850 band (QTY/MODEL)																										
RRH - 1900 band (QTY/MODEL)							2		RRUS-12																	
RRH - AWS band (QTY/MODEL)																										
RRH - WCS band (QTY/MODEL)																										
Additional RRH #1 - any band (QTY/MODEL)																										
Additional RRH #2 - any band (QTY/MODEL)																										
Additional Component 1 (QTY/MODEL)							2		Kathrein / 782 11055																	
Additional Component 2 (QTY/MODEL)																										
Additional Component 3 (QTY/MODEL)																										
Local Market Note 1		LTE 2C 1900 A3-A4 & E - with Bronze Standard configuration, Replace the existing LTE Antenna with 12port 6' Quintel antenna, Add 2 Additional coax, Replace the existing TMA with 6ports Kaelus twin TMA , Replace the diplexers with pentaplexers, Add 2"Radio RRUS-12 at the bottom for LTE 1900, DUL to DUS upgrade add XMU.																								
Local Market Note 2		Antenna positions are based on As-built CD's, LTE alpha is with UMTS Gamma Face // LTE Beta is with UMTS Alpha Face // LTE Gamma is with UMTS Beta Face.																								
Local Market Note 3																										

PORT SPECIFIC FIELDS	PORT NUMBER	USEID (CSSng)	USEID (Atoll)	ATOLL TXID	ATOLL CELL ID	TX/RX ?	TECHNOLOGY/FREQ UENCY	ANTENNA ATOLL	ANTENNA GAIN	ELECTRICAL AZIMUTH	ELECTRICAL TILT	RRH LOCATION (Top/Bottom/ Integrated/None)	FEEDERS TYPE	FEEDER LENGTH (feet)	RXAIT KIT MODULE?	TRIPLEXER or LLC (QTY)	TRIPLEXER or LLC (MODEL)	SCPA/MCPA MODULE?	HATCHPLATE POWER (Watts)	ERP (Watts)	Antenna RET Name	CABLE NUMBER	CABLE ID (CSSNG)	
ANTENNA POSITION 1	PORT 1	59427.B.850.3G.1	59427.B.850.3G.1	CTV11092	CTV11092		UMTS 850	P65-15-XLH-RR_840MHz_04DT	14.69		4	None	Andrew 1-5/8 (850)	120.030726	RxAIT 850			NO		557.19		9		
	PORT 2	59427.B.850.25G.1	59427.B.850.25G.1	184G11092			GSM 850	P65-15-XLH-RR_840MHz_04DT	14.69		4	None	Andrew 1-5/8 (850)	120.030726	RxAIT 850			NO	12.58	226.46		9		
	PORT 4	59427.B.1900.25G.1	59427.B.1900.25G.1	184P11092			GSM 1900	P65-15-XLH-RR_1950MHz_00DT	17		0	None	Andrew 1-5/8 (1900)	120.030726	NO			NO	28.18	729.45		10		
ANTENNA POSITION 4	PORT 1	59427.B.700.4G.1	59427.B.700.4G.1	CTL01109_7B_1	CTL01109_7B_1		LTE 700	QS66512-	14.22		3	BOTTOM	1 5/8" ANDREW	120.030726	NO						1475.7065		15	


PORT 3	59427.B.1900.4G.tmp1	59427.B.1900.4G.1	CTL01109_9B_1	CTL01109_9B_1	LTE 1900	QS66512-2_1930MHz_02DT	16.85		2	BOTTOM	1 5/8" ANDREW	AVA7-50_700 MHz	120.030726	NO					2421.029		15
PORT 4	59427.B.1900.4G.tmp1,59427.B.1900.4G.tmp2	59427.B.1900.4G.1	CTL01109_9B_2	CTL01109_9B_2	LTE 1900	QS66512-2_1930MHz_02DT	16.85		2	BOTTOM	1 5/8" ANDREW	AVA7-50_700 MHz	120.030726	NO					2421.029		15


Section 17C - FINAL SECTOR/CELL INFORMATION - SECTOR C


ANTENNA POSITION is LEFT to RIGHT from BACK of ANTENNA	ANTENNA POSITION 1		ANTENNA POSITION 2		ANTENNA POSITION 3		ANTENNA POSITION 4		ANTENNA POSITION 5		ANTENNA POSITION 6		ANTENNA POSITION 7													
ANTENNA MAKE + MODEL	AM-X-CD-16-65-00T-RET						QS66512-2																			
ANTENNA VENDOR	KMV						Quintel																			
ANTENNA SIZE (H x W x D)	72X11.8X5.9						72X12X9.6																			
ANTENNA WEIGHT	48.5						111																			
AZIMUTH	23						263																			
MAGNETIC DECLINATION																										
RADIATION CENTER (feet)	93						93																			
ANTENNA TIP HEIGHT	96						96																			
MECHANICAL DOWNTILT	0						0																			
FEEDER AMOUNT	2						4																			
VERTICAL SEPARATION from ANTENNA ABOVE (TIP to TIP)																										
VERTICAL SEPARATION from ANTENNA BELOW (TIP to TIP)																										
HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTERLINE to CENTERLINE)																										
HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CENTERLINE to CENTERLINE)																										
HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenna # / # of inches)																										
Antenna RET Motor (QTY/MODEL)	2	Kathrein 860-10025								Built in																
SURGE ARRESTOR (QTY/MODEL)							6		Andrew / APTDC-BDFDM-DB																	
DIPLEXER (QTY/MODEL)	2	Powerwave / CM1007-DBPXB-003						4		CCI Pentaplexer 5PX-0726-O																
DUPLEXER (QTY/MODEL)																										
Antenna RET CONTROL UNIT (QTY/MODEL)																										
DC BLOCK (QTY/MODEL)																										
TMA/LNA (QTY/MODEL)	1	DTMABP7819VG12A						2		Kaelus TMA2117F00V1-1 (Twin PCS-WCS w/700/850 BP)																
CURRENT INJECTORS FOR TMA (QTY/MODEL)	2	Andrew / APTDC-BDFDM-DB						2		860 10030																
PDU FOR TMAS (QTY/MODEL)																										
FILTER (QTY/MODEL)																										
SQUID (QTY/MODEL)																										
FIBER TRUNK (QTY/MODEL)																										
DC TRUNK (QTY/MODEL)																										
RRH - 700 band (QTY/MODEL)							1		RRUS-11																	
RRH - 850 band (QTY/MODEL)																										
RRH - 1900 band (QTY/MODEL)							2		RRUS-12																	
RRH - AWS band (QTY/MODEL)																										
RRH - WCS band (QTY/MODEL)																										
Additional RRH #1 - any band (QTY/MODEL)																										
Additional RRH #2 - any band (QTY/MODEL)																										
Additional Component 1 (QTY/MODEL)							2		Kathrein / 782 11055																	
Additional Component 2 (QTY/MODEL)																										
Additional Component 3 (QTY/MODEL)																										
Local Market Note 1	LTE 2C 1900 A3-A4 & E - with Bronze Standard configuration, Replace the existing LTE Antenna with 12port 6' Quintel antenna, Add 2 Additional coax, Replace the existing TMA with 6ports Kaelus twin TMA , Replace the diplexers with pentaplexers, Add 2"Radio RRUS-12 at the bottom for LTE 1900, DUL to DUS upgrade add XMU.																									
Local Market Note 2	Antenna positions are based on As-built CD's, LTE alpha is with UMTS Gamma Face // LTE Beta is with UMTS Alpha Face // LTE Gamma is with UMTS Beta Face.																									
Local Market Note 3																										

PORT SPECIFIC FIELDS	PORT NUMBER	USEID (CSSng)	USEID (Atoll)	ATOLL TXID	ATOLL CELL ID	TX/RX ?	TECHNOLOGY/FREQ UENCY	ANTENNA ATOLL	ANTENNA GAIN	ELECTRICAL AZIMUTH	ELECTRICAL TILT	RRH LOCATION (Top/Bottom/ Integrated/None)	FEEDERS TYPE	FEEDER LENGTH (feet)	RXAIT KIT MODULE?	TRIPLEXER or LLC (QTY)	TRIPLEXER or LLC (MODEL)	SCPA/MCPA MODULE?	HATCHPLATE POWER (Watts)	ERP (Watts)	Antenna RET Name	CABLE NUMBER	CABLE ID (CSSNG)	
ANTENNA POSITION 1	PORT 1	59427.C.850.3G.1	59427.C.850.3G.1	CTV11093	CTV11093		UMTS 850	P65-15-XLH-RR_840MHz_04DT	14.69		4	None	Andrew 1-5/8 (850)	120.030726	RxAIT 850			NO		557.19		17		
	PORT 2	59427.C.850.25G.1	59427.C.850.25G.1	184G11093			GSM 850	P65-15-XLH-RR_840MHz_04DT	14.69		4	None	Andrew 1-5/8 (850)	120.030726	RxAIT 850			NO	11.22	201.83		17		
	PORT 4	59427.C.1900.25G.1	59427.C.1900.25G.1	184P11093			GSM 1900	P65-15-XLH-RR_1950MHz_00DT	17		0	None	Andrew 1-5/8 (1900)	120.030726	NO			NO	28.18	729.45		18		
ANTENNA POSITION 4	PORT 1	59427.C.700.4G.1	59427.C.700.4G.1	CTL01109_7C_1	CTL01109_7C_1		LTE 700	QS66512-	14.22		3	BOTTOM	1 5/8" ANDREW	120.030726	NO						1475.7065		23	

PORT 3	59427.C.1900.4G.tmp1	59427.C.1900.4G.1	CTL01109_9C_1	CTL01109_9C_1	LTE 1900	QS66512-2_1930MHz_04DT	17.14	4	BOTTOM	1 5/8" ANDREW AVA7-50_700 MHz	120.030726	NO						2421.029		23
PORT 4	59427.C.1900.4G.tmp1,59427.C.1900.4G.tmp2	59427.C.1900.4G.1	CTL01109_9C_2	CTL01109_9C_2	LTE 1900	QS66512-2_1930MHz_04DT	17.14	4	BOTTOM	1 5/8" ANDREW AVA7-50_700 MHz	120.030726	NO						2421.029		23

WORKFLOW SUMMARY

Date	FROM State / Status	FROM ATTUID	TO State / Status	TO ATTUID	Operation	Comments	PACE Status
09/20/2016	Preliminary In Progress	mm093q	Preliminary Submitted for Approval	RC475S	Promote	LTE Preliminary RFDS	
09/22/2016	Preliminary Submitted for Approval	RC475S	Preliminary Approved	BG144B	Promote		
12/20/2016	Preliminary Approved	BG144B	Final RF Approval	OM636A	Promote	Needs Final	
12/20/2016	Final RF Approval	OM636A	Final Approved	BG144B	Promote	LTE Final RFDS	NER-RCTB-12-04166 MRCTB019775 SUCCESS 12/20/2016 11:21:09 AM NER-RCTB-16-03448 FAILURE 12/20/2016 11:21:09 AM


- Provides 12 antenna Ports in a slim-line form factor
- Optimized Azimuth patterns for Min Inter-Sector Interference
- Industry leading Minimal Wind-Load design

- 700, 850, PCS, AWS & WCS bands in one antenna
- AISG & 3GPP compliant internal remote electrical tilt (RET)
- AWS & PCS Cross band PIM >159dBc

The Quintel MultiServ™ Multiband 12 Port Antenna with patented QTilt™ technology uniquely delivers four independent services in a single slim-line antenna. This enables existing antenna network sites to be upgraded constraint free to add new services such as LTE for 700, 850, PCS, AWS and WCS bands with the replacement of one antenna. The QS66512-2 also provides 4x1695-1780+2110-2400MHz & 4x1850-1990MHz ports as two side-by-side (CLA-2X) arrays, each set of 4 ports having independent tilt for connection to 2T4R/4T4R services.

Electrical Characteristics	2x Ports 1&2	2x Ports 3&4	4x Ports 5-8			4 Ports 9-12
Operating Frequency (MHz)	698-806*	824-894	1695-1780 and 2110-2400			1850-1990
	698-806	824-894	1695-1780	2110-2180	2300-2400	1850-1990
Azimuth beamwidth ¹	67°	64°	68°	63°	58°	69°
Elevation beamwidth ¹	12°	10°	6.5°	5.5°	4.5°	5.5°
Gain ¹ (dBi)	13.2	13.5	16.2	16.5	17.0	16.0
Polarization	±45°	±45°		±45°	±45°	±45°
Electrical down-tilt range	2°-10°	2°-10°		2° - 7°		2° - 7°
Upper SLL (20° > mainbeam) ¹	-17dB	-19dB	-18dB	-18dB	-18dB	-16dB
Front to Back Ratio(180°±10°) ¹	≥27dB	≥29dB	≥28dB	≥28dB	≥28dB	≥27dB
Port to Port isolation ¹	≥28dB	≥30dB	≥30dB	≥30dB	≥30dB	≥30dB
Return loss (VSWR)	14dB(1.5)	14dB(1.5)	14dB(1.5)	14dB(1.5)	14dB (1.5)	14dB(1.5)
X Polar Discrimination (at 0°)	>18dB	>16dB	>20dB	>20dB	>18dB	>20dB
Max Power handling (per any port)	500 watts	500 watts		250 watts		250 watts
Total Composite Power (all ports)			1750 watts			
PIM (3 rd Order) (2x43dBm)	>153dBc	>153dBc		>153dBc		>153dBc
XBand PIM (3 rd Order) (2x43dBm)					>159dBc	

¹ Typical Performance across frequency and Downtilt. *Products Ordered after Jan 2016 will be 698-806MHz

Mechanical Characteristics

Dimensions	L 72"(1828mm) x W 12"(304mm) x D 9.6"(245mm)
Weight (excl mounting brackets)	111lbs (50.3kg)
No. of Connectors	12x 4.3-10.0 DIN Female Long Neck
Max Wind Speed	150mph (67m/s)
Equivalent Flat Plate Area	2.96ft ² (0.275m ²)
Wind Load @ 160km/h (45m/s)	Front: 587N (132 lbs), Side: 382N (86 lbs)
Operating Temperature	-40°C to +65°C

Fully Integrated RET Characteristics

AISG Standards	V1.1, V 2.0 and 3GPP
Factory Default	AISG 2.0
Surge immunity	IEC 61000-4-5:2005 4KV(AISG PIN)
Device Type	SRET Type 1
AISG Data rate	9.6 kbps
No of connectors	1in/1out.
Connector type	IEC 60130-9 (Ed 3.0)
MTBF	36,000 Operational moves

All specifications are subject to change without notice. Please contact your Quintel representative for complete information.

AM-X-CD-16-65-00T-RET(6' 65° Dual Broadband Antenna)

Dual Band Electrical DownTilt Antenna

698 ~ 894MHz, X-pol., H65° / V12°

1710 ~ 2170MHz, X-pol., H65° / V6.0°

Electrical Specification

Frequency Range	698~894MHz	1710~2170MHz
Impedance	50Ω	
Polarization	Dual, Slant ±45°	
Gain	15.5dBi / 13.35dBd @ 698-806MHz 16.0dBi / 13.85dBd @ 824-894MHz	17.3dBi / 15.15dBd @ 1710-1755MHz 17.4dBi / 15.25dBd @ 1850-1900MHz 17.1dBi / 14.95dBd @ 2110-2155MHz
Beamwidth	Horizontal 65° @ 698-806MHz 63° @ 824-894MHz	65° @ 1710-1755MHz 67° @ 1850-1900MHz 69° @ 2110-2155MHz
	Vertical 12.3° @ 698-806MHz 11.5° @ 824-894MHz	6.5° @ 1710-1755MHz 6.0° @ 1850-1900MHz 5.7° @ 2110-2155MHz
VSWR	≤1.5:1	
Front-to-Back Ratio	≥27 dB	
Electrical Downtilt Range	2° ~ 16°	0° ~ 10°
Isolation Between Ports	≥30 dB	
Isolation Between Ports of Different Frequency Elements	≥35 dB	
Cross Pole Discrimination	10.0 dB @ ±60° 15.0 dBi @ 0°	
First Upper Side Lobe Suppression	16dB	
Side Lobe Suppression	> 16 dB @ 0-6° Tilt (> 18 dB @ 7-12° Tilt (Up to 10° from Boresight))	> 16 dB @ 0-6° Tilt (> 18 dB @ 7-10° Tilt (Up to 10° from Boresight))
Passive Intermodulation	≤ -150 dBc @ 2x20w	
Input Maximum CW Power	500 W	300 W
Environmental Compliance	IP65 for Radome IP67 for Connectors	
RET Motor Configuration	Field Replaceable RET Electronic Control Module / RET Motor is internal to antenna & not field replaceable	
Compliant with AISG 1.1 and 2.0	AISG 1.1 and 2.0	

Mechanical Specification

Dimension (W×D×H)	11.8×5.9×72 inches (300×150×1829mm)
Weight (Without clamp)	48.5 lbs (22.0 kg)
Connector	4 x 7/16 DIN(F), Long Neck
Max Wind Speed	150 mph
Wind Load (@150 mph)	1891 N

Twin Triple Band “Active PCS with 700 and 850 Band Pass-thru” Dual Duplexed TMA

Tel: 201-342-3338

Fax: 201-342-3339

www.cciproducts.com

CCI's Twin Triple Band (700 Band, Cellular and PCS) TMA contains two triple band TMA's in a single housing. The PCS TMA is full band and fully duplexed, while the 700 Band and Cellular RF is bypassed and combined (Dplexed) with the PCS RF signal. High linearity improves the uplink sensitivity and the receive performance of base stations. The TMA is fully compliant with the latest AISG 2.0 specification. The TMA supports EDGE/GSM, UMTS and LTE BTS equipment. It provides a convenient package for sites upgraded to triple or quad antenna configurations. The twin TMA package reduces tower loading, leasing, and installation costs. Unit count on the tower is cut in half. An excellent match for two branch receive diversity applications using triple polarization antennas. The input and output connectors are located inline for ease of installation in space constrained areas such as uni-pole structures and stealth antennas.

Model
DTMABP7819VG12A

Contents:

General Info and Technical Description	1
Electrical & Mechanical Specs (AISG TMA)	2
Block Diagram & Outline Drawing (AISG TMA)	3

Features:

- Small, lightweight, twin unit
- Triple Band Dual Duplexed (PCS with 700 Band & Cellular Bypass)
- Optional AISG 2.0 compatible unit
- AISG TMA detects BTS port that DC voltage and AISG sampling is applied to, and automatically switches to utilize that port
- AISG TMA operates at constant power
- AISG TMA may be powered by a standard PDU
- High linearity
- Lightning protected
- Fail-safe bypass mode
- High reliability

Technical Description

The TMA system consists of a twin outdoor triple band tower mount unit which combine separate PCS, 700 Band & Cellular antennas onto a single BTS port. The PCS path of the tower mount unit is dual duplexed to separate the low-power uplink signals from the high-power downlink signals at the antenna port, amplifies the low-level uplink signals using an ultra-low noise amplifier (LNA), and recombines the two paths at the BTS port. The 700 Band & Cellular path is ultra low loss and passive. Both paths are dplexed at the BTS port. The tower mount units consist of eight band-pass filters, two redundant low-noise amplifiers, bypass failure circuitry, and bias tee's which are all housed in an IP65 moisture proof enclosure, with IP68 Immersion proof connectors suited to long-life masthead mounting. The unit provides protection against lightning strikes via a multi-stage surge protection circuit. DC power and control is provided via the feeder cable from the BTS or a Power Distribution Unit (PDU). Optional AISG 2.0 DC power and control is provided via the feeder cable from the BTS using the AISG 2.0 and 3GPP standard. The optional AISG TMA detects which BTS port has DC Voltage/AISG Sampling applied and automatically switches to utilize that port. Additionally the AISG TMA operates at constant power when powered by an AISG 2.0 Compatible Site Control Unit, but may be powered by a "Standard Power distribution Unit. A separate AISG connector is also provided to allow direct AISG connection or "Daisy Chaining" to multiple AISG products at the top of the tower.

An optional indoor site control unit (SCU) is available to power up to up to 32 AISG modules per sector and to provide the all the monitoring and alarm functions for the system. The SCU is housed in a single (1U) 1.75" x 19" rack and contains triple redundant power supplies capable of being "hot swapped" that provide a regulated DC supply voltage on the RF coax for the tower mount amplifiers.

Twin Triple Band "Active AWS with 700 and 850 Band Pass-thru" TMA Typical Specifications

Description		Typical Specifications
Electrical Specifications		
700 Band & Cellular Frequency Range		698 to 894 MHz
PCS Receive Frequency Range		1850 – 1910 MHz
PCS Transmit Frequency Range		1930 - 1990 MHz
PCS Amplifier Gain		6 to 12 dB Adjustable in 0.25 dB steps via AISG
PCS Gain Variation		±1.0 dB
PCS System Noise Figure		1.4 dB (@ +25°C), 1.6 dB (@ +65°C), At 1910 MHz: 1.7 dB (@ +25°C), 1.9 dB (@ +65°C)
PCS Input Third Order Intercept Point		+12 dBm Min @ Max. Gain
Input/Output Return Loss		18 dB Min. all ports, 15 dB Min. Bypass Mode
Insertion Loss		
700 Band & Cellular Passband		< 0.2 dB, 0.1 dB typical
PCS Transmit Passband		0.4 dB Typical
PCS Transmit Passband Ripple		±0.2 dB
PCS Bypass Mode, Rx Passband		1.6 dB (@ +25°C), 1.8 dB (@ +65°C), At 1910 MHz: 2.3 dB (@ +25°C), 2.5 dB (@ +65°C)
PCS Bypass Mode, Rx Passband Ripple		±1 dB
Filter Characteristics		
700 Band & Cellular Path Rejection		70 dB @ 1850 - 1990 MHz
PCS Path Rejection		80 dB @ 698 - 894 MHz
Continuous Average Power		200 Watts max
Peak Envelope Power		2 kW max
Intermodulation Performance		
IMD at ANT port in Rx Band		-112 dBm Min. (2 x +43 dBm tones)
Operating Voltage		+10V to +30V DC provided via coax or AISG
Power Consumption		≤ 2.1 Watts
Mechanical Specifications		
Connectors		DIN 7-16 Female (Long Neck) x 6, AISG x 1
Dimensions (Body Only)		10.63" (H) x 11.02" (W) x 3.78" (D); (270 (H) x 280 (W) x 96 (D) mm)
Dimensions (with Bracket)		14.25" (H) x 11.46" (W) x 4.17" (D); (362 (H) x 291 (W) x 106 (D) mm)
Weight (w/o Bracket)		19.18 Lbs. (8.7 Kg)
Mounting		Pole/Wall Mounting Bracket
Environmental Specifications		
Operating Temperature		-40° C to +65° C
Lightning Protection		8/20us, ±2KA max, 10 strikes each, IEC61000-4-5
Enclosure		IP65 (Unit Body), IP68 (Connector)
MTBF		>500,000 hours

All specifications are subject to change. The latest specifications are available at www.cciproducts.com

Communication Components Inc.

Tel: 201-342-3338

CCI Confidential

Fax: 201-342-3339

TMA2117F00V1-1

PCS / WCS Dual Band Twin TMA, with 700/850 bypass, AISG2.0

Designed to be deployed in co-located PCS & WCS systems with wideband antennas, the Kaelus TMA provides internal diplexing and gain in both bands while allowing 700/850 services to pass through to a separate antenna, thereby saving hardware costs.

PRODUCT FEATURES

- Improved base station sensitivity through gain in PCS and WCS bands
- Hardware and software configuration using AISG "Personality" upload
- High Linearity and low noise performance; Bypass provided for 700/850MHz services
- Fail safe bypass mode with lightning protection

TECHNICAL SPECIFICATIONS

Downlink Path, Band 1	PCS
Passband	1930 - 1990
Insertion Loss	0.5dB typ
Return Loss	18dB min
Max Average input power (W)	160
Max PEP Input Power (W)	2000
Intermodulation, 2 x 43dBm TX carriers (dBc)	-153dBc max
Uplink Path, Band 1	
Passband	1850 - 1910
Gain (dB)	3dB to 13dB in 1dB steps
Gain window	+/- 1dB max
Return Loss (Operating)	18dB min
Return Loss (Bypass)	12dB min
Noise Figure	1.4dB typ
Bypass Loss	2.5dB typ

Output IP3	+30dBm typ
Maximum input power with no damage	+12dBm max
Downlink Path, Band 2	WCS
Passband	2350 - 2360
Insertion Loss	0.5dB typ
Return Loss	18dB min
Max Average input power (W)	120
Max PEP Input Power (W)	1200
Intermodulation, 2 x 43dBm TX carriers (dBc)	-153dBc max
Uplink Path, Band 2	
Passband	2305 - 2315
Gain (dB)	2dB to 12dB in 1dB steps
Gain window	+/- 1dB max
Return Loss (dB Min, Operating)	18
Return Loss (dB Min Bypass)	12
Noise Figure	1.7dB typ
Rejection @ Freq x (dBc Min)	2324.54 - 2341.285MHz (27.5dB min)
Bypass (Insertion) Loss	3.3dB typ
Output IP3	+30dBm typ
Maximum input power with no damage	+12dBm max
Bypass Passband	698 - 896MHz
Insertion Loss	0.35dB typ
Return loss, all ports	18dB min
Continuous average power	200
Peak envelope power	2000
Intermodulation @ antenna port	-153dBc max

CURRENT ALARM MODE (DEFAULT MODE SELECTED ON THE ABSENCE OF AISG PACKETS)

DC Supply Voltage (VDC min)	8.5
DC Supply Voltage (VDC max)	30
Supply Current, Normal operation	250 +/- 20mA per port (programmable)

Supply Current, alarm mode

320 +/- 30mA per port (programmable)

AISG MODE OF OPERATION (AUTO SELECTED ON VALID AISG 2.0 FRAMES)

AISG Version	2
AISG Supply Current	400mA @ 8.5V, 120mA @ 30V typical
AISG Connector	IEC60130-9, 8-pin female
AISG Connector Current rating	< 4A peak, 2A continuous, pin 6
Field firmware upgradable	Yes

ENVIRONMENTAL

Temperature range	-40°C to +65°C -40° to +149°F
Environmental sealing	IP67
Lightning protection	RF port: +/- 5kA max (8/20us), AISG port: +/- 2kA max (8/20us) IEC61312-1
MTBF	>1,000,000 hours
Compliance	EMC:EN301 489, Ingress ETSI EN 300 019 class 4.1, RoHS

MECHANICAL

Connectors	DIN 4.3-10 (F) x 8 long shank, AISG (F) x 1
Dimensions, H x D x W	216 x 300 x 107mm 8.46 x 11.81 x 4.21in
Finish	Powder coated, light grey (RAL7035)
Weight	8 kg 17.6lbs est
Mounting	Pole / wall bracket supplied with two metal clamps for 45-178 mm diameter poles

ELECTRICAL BLOCK DIAGRAM

Radio Frequency Emissions Analysis Report

AT&T Existing Facility

Site ID: CT1109

Southington - Cathy Drive NU
Cathy Drive
Southington, CT 6489

May 12, 2017

Centerline Communications Project Number: 950006-053

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	6.56 %

May 12, 2017

AT&T Mobility – New England
Attn: John Benedetto, RF Manager
550 Cochituate Road
Suite 550 – 13&14
Framingham, MA 06040

Emissions Analysis for Site: **CT1109 – Southington - Cathy Drive NU**

Centerline Communications, LLC (“Centerline”) was directed to analyze the proposed AT&T facility located at **Cathy Drive, Southington, CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu\text{W}/\text{cm}^2$). The number of $\mu\text{W}/\text{cm}^2$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) – (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications facility that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu\text{W}/\text{cm}^2$). The general population exposure limits for the 700 and 850 MHz Bands are approximately $467 \mu\text{W}/\text{cm}^2$ and $567 \mu\text{W}/\text{cm}^2$ respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is $1000 \mu\text{W}/\text{cm}^2$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT&T Wireless antenna facility located at **Cathy Drive, Southington, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB, was focused at the base of the utility transmission tower. For this report the sample point is the top of a 6-foot person standing at the base of the utility transmission tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves.

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
UMTS	850 MHz	2	30
GSM	850 MHz	2	30
GSM	1900 MHz (PCS)	2	30
LTE	700 MHz	2	60
LTE	1900 MHz (PCS)	2	60

Table 1: Channel Data Table

The following antennas listed in *Table 2* were used in the modeling for transmission in the 700 MHz, 850 MHz and 1900 MHz (PCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
A	1	KMW AM-X-CD-16-65-00T-RET	91
A	2	Quintel QS66512-2	91
B	1	KMW AM-X-CD-16-65-00T-RET	91
B	2	Quintel QS66512-2	91
C	1	KMW AM-X-CD-16-65-00T-RET	91
C	2	Quintel QS66512-2	91

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT&T configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna ID	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	Total TX Power (W)	ERP (W)	MPE %
Antenna A1	KMW AM-X-CD-16-65-00T-RET	850 MHz / 1900 MHz (PCS)	13.85 / 15.25	6	180	4,921.72	3.56
Antenna A2	Quintel QS66512-2	700 MHz / 1900 MHz (PCS)	10.85 / 13.85	4	240	4,371.36	3.00
Sector A Composite MPE%							6.56
Antenna B1	KMW AM-X-CD-16-65-00T-RET	850 MHz / 1900 MHz (PCS)	13.85 / 15.25	6	180	4,921.72	3.56
Antenna B2	Quintel QS66512-2	700 MHz / 1900 MHz (PCS)	10.85 / 13.85	4	240	4,371.36	3.00
Sector B Composite MPE%							6.56
Antenna C1	KMW AM-X-CD-16-65-00T-RET	850 MHz / 1900 MHz (PCS)	13.85 / 15.25	6	180	4,921.72	3.56
Antenna C2	Quintel QS66512-2	700 MHz / 1900 MHz (PCS)	10.85 / 13.85	4	240	4,371.36	3.00
Sector C Composite MPE%							6.56

Table 3: AT&T Emissions Levels

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each AT&T Sector as well as the composite MPE value for the site.

Site Composite MPE%	
Carrier	MPE%
AT&T – Max Sector Value	6.56 %
No Additional Carriers Present at This Facility	NA
Site Total MPE %:	6.56 %

Table 4: All Carrier MPE Contributions

AT&T Sector A Total:	6.56 %
AT&T Sector B Total:	6.56 %
AT&T Sector C Total:	6.56 %
Site Total:	6.56 %

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT&T sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

AT&T _ Frequency Band / Technology (All Sectors)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu\text{W}/\text{cm}^2$)	Frequency (MHz)	Allowable MPE ($\mu\text{W}/\text{cm}^2$)	Calculated % MPE
AT&T 850 MHz UMTS	2	727.98	91	7.24	850 MHz	567	1.28%
AT&T 850 MHz GSM	2	727.98	91	7.24	850 MHz	567	1.28%
AT&T 1900 MHz (PCS) GSM	2	1,004.90	91	10.00	1900 MHz (PCS)	1000	1.00%
AT&T 700 MHz LTE	2	729.71	91	7.26	700 MHz	467	1.56%
AT&T 1900 MHz (PCS) LTE	2	1,455.97	91	14.49	1900 MHz (PCS)	1000	1.45%
							Total: 6.56%

Table 6: AT&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)
Sector A:	6.56 %
Sector B:	6.56 %
Sector C:	6.56 %
AT&T Maximum Total (per sector):	6.56 %
Site Total:	6.56 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **6.56 %** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

A handwritten signature in black ink, appearing to read "Scott Heffernan".

Scott Heffernan
RF Engineering Director
Centerline Communications, LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767