

October 22, 2018

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re:Notice of Exempt Modification – Antenna SwapProperty Address:231 Kettletown Rd, Southbury, Ct 06488Applicant:AT&T Mobility, LLC

Dear Ms. Bachman:

On behalf of AT&T, please accept this application as notification pursuant to R.C.S.A. §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j-72(b) (2).

AT&T currently maintains a wireless telecommunications facility consisting of nine (9) wireless telecommunication antennas at an antenna center line height of 85-feet on an existing 195 foot – Monopole, owned by Phoenix Tower International and the property by the Town of Southbury. AT&T now intends INSTALL (3) NEW RRH'S AT GRADE · INSTALL (3) NEW RRH'S, (1) PER SECTOR · INSTALL (3) NEW PANEL ANTENNAS, (1) PER SECTOR · SWAP DUS'S WITH (1) 5216 · ADD 2ND XMU AND (1) RBS 6630 and · INSTALL PLATFORM KICKER SUPPORT KIT.

This facility was approved by the Southbury Zoning Commission on: May 3<sup>rd</sup>, 2000 for a certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of telecommunications antennas, associated equipment, and building to provide Domestic Public Cellular Radio Telecommunication service in the Connecticut- New England area.

The following is a list of subsequent decisions:

**TS-AT&T-130-000703** - AT&T Wireless Services request for an order to approve tower sharing at an existing telecommunications tower located at 231 Kettletown Rd., **Southbury**, Connecticut

<u>EM-CING-047-094-115-130-142-020828</u> - SNET Mobility, LLC notice of intent to modify existing telecommunications facilities located in East Windsor, Newington, Prospect, **Southbury**, and Tolland, Connecticut. (Kettletown Road, Southbury

**EM-CING-011-054-105-130-157-070220** - New Cingular Wireless PCS, LLC notice of intent to modify existing telecommunications facilities located at 1021 Blue Hills Avenue, Bloomfield; Dickenson Road, Glastonbury; 38 Hatchets Hill Road, Old Lyme; 231 Kettletown Road, **Southbury**; and 56 Norfield Road, Weston, Connecticut. <u>Decision Letter</u>.



**EM-CING-130-100923** – New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 231 Kettletown Road, **Southbury**, Connecticut.

**EM-AT&T-130-120618** – AT&T Mobility notice of intent to modify an existing telecommunications facility located at 231 Kettletown Road, **Southbury**, Connecticut.

<u>EM-CING-130-160223</u> – New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 231 Kettletown Road, **Southbury**, Connecticut. <u>Decision</u>. <u>Completion Letter</u>.

**EM-CING-130-160919** - New Cingular Wireless PCS, LLC (AT&T) notice of intent to modify an existing telecommunications facility located at 231 Kettletown Road, **Southbury**, Connecticut. <u>Decision Completion Letter</u>

Please accept this letter pursuant to Regulation of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-5l0j-72(b) (2). In accordance with R.C.S.A., a copy of this letter is being sent to the First Selectman, Jeff Manville and the AICP, Land Use Administrator, DeLoris Curtis at: 501 Main Street South (Room 212 and 204) Southbury, CT 06488. A copy is also being sent to PHOENIX TOWER INTERNATIONAL, tower owner at: 1001 YAMATO ROAD, SUITE 105 BOCA RATON, FL 33431.

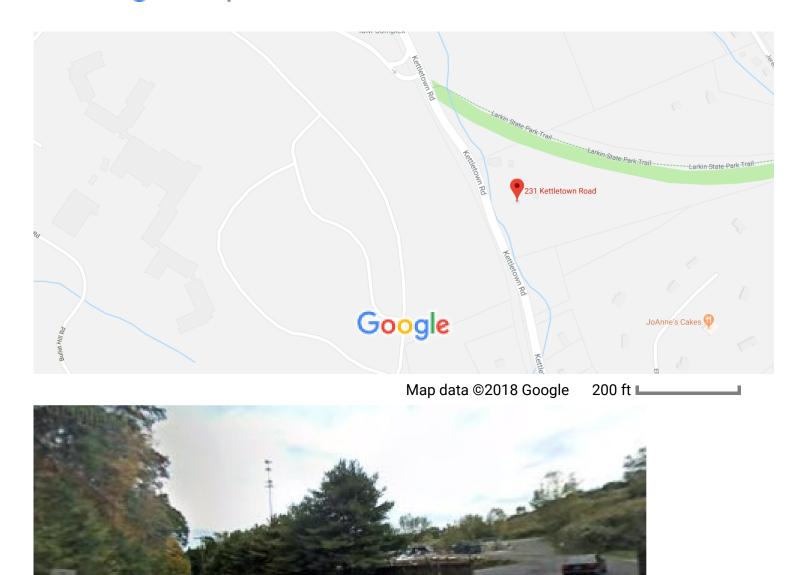
The planned modifications to AT&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72(b) (2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower. AT&T's replacement antennas will be installed at the 185-foot level of the 195 foot Monopole.
- 2. The proposed modifications will not involve any changes to ground-mounted equipment and, therefore, will not require and extension of the site boundary.
- 3. The proposed modifications will not increase the noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative worst-case RF emissions calculation for AT&T's modified facility is provided in the RF Emissions Compliance Report, included in <u>Tab 2</u>.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The tower and its foundation can support AT&T's proposed modifications. (See Structural Analysis Report included in <u>Tab 3</u>).



For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes an exempt modification under R.C.S.A. §16-50j-72(b) (2).

Sincerely,


David Barbagallo

Enclosures:

First Selectman, Jeff Manville Land Use Administrator, DeLoris Curtis Tower Owner Phoenix Tower International

85 Range way Rd Bldg. #3 Suite 102 North Billerica | MA 01862-2105

# Google Maps 231 Kettletown Rd



# 231 Kettletown Rd Southbury, CT 06488

FQCV+6W Southbury, Newtown, CT

231 Kettletown Rd - Google Maps



At this location

Southbury Dump

5.0 ★★★★ (1) City Government Office · 231 Kettletown Rd



# Southbury Town Recycling City Government Office · 231 Kettletown Rd



Southbury Transfer Station 4.8 ★★★★ (4) Garbage Dump · 231 Kettletown Rd







Ask FedEx



# Delivered Thursday 10/25/2018 at 11:58 an

## DELIVERED

Signed for by: S.RANSCOURT



# GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Smartlink LLC Dave Barbagallo 265 Lincoln St KENSINGTON, CT US 06037 860 681-7708

## TO

Town of Southbury Deloris Curtis SOUTHBURY, CT US 06488 203 262-0600

## **Shipment Facts**



**DELIVERY ATTEMPTS** 1

**TOTAL SHIPMENT WEIGHT** 1 lbs / 0.45 kgs

**SPECIAL HANDLING SECTION** Deliver Weekday

## **Travel History**

**ACTUAL DELIVERY** Thu 10/25/2018 11:58 am

### OUR COMPANY

About FedEx

Our Portfolio

Investor Relations

Careers

FedEx Blog

Corporate Responsibility

Newsroom

Contact Us

#### MORE FROM FEDEX

FedEx Compatible

Developer Resource Center

FedEx Cross Border

#### LANGUAGE

Change Country

English

**DELIVERED TO** Receptionist/Front Desk

**TERMS** Not Available

**STANDARD TRANSIT**?
10/29/2018 by 4:30 pm

**TOTAL PIECES** 

**PACKAGING** FedEx Pak

### SHIP DATE

⑦ Wed 10/24/2018

Local

Expand History 🗸

Ask FedEx

© FedEx 1995-2018

Feedback | Site Map | Terms of Use | Security & Privacy





Ask FedEx



# Delivered Friday 10/26/2018 at 9:09 am

## DELIVERED

On FedEx vehicle for delivery Signed for by: E.CORNELL



# GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Smartlink LLC Dave Barbagallo 265 Lincoln St KENSINGTON, CT US 06037 860 681-7708

то

Phoenix Tower International Samanatha Griffin BOCA RATON, FL US 33431 561 270-4835

# **Shipment Facts**



**WEIGHT** 1 lbs / 0.45 kgs

**TOTAL PIECES** 

SHIPPER REFERENCE CTL01129

STANDARD TRANSIT Travel History 10/26/2018 by 4:30 pm DELIVERY ATTEMPTS

**TOTAL SHIPMENT WEIGHT** 1 lbs / 0.45 kgs

**PACKAGING** FedEx Envelope

**SHIP DATE**?
Wed 10/24/2018

Expand History 🗸

**DELIVERED TO** Receptionist/Front Desk

**TERMS** Not Available

**SPECIAL HANDLING SEC** Deliver Weekday

ACTUAL DELIVERY Fri 10/26/2018 9:09 am

#### **OUR COMPANY**

About FedEx

Our Portfolio

Investor Relations

Careers

FedEx Blog

Corporate Responsibility

Newsroom

Contact Us

### MORE FROM FEDEX

FedEx Compatible

Developer Resource Center

FedEx Cross Border

### LANGUAGE

Change Country

English

© FedEx 1995-2018

Feedback | Site Map | Terms of Use | Security & Privacy





Ask FedEx



# Delivered Thursday 10/25/2018 at 11:56 an

# **DELIVERED** Signed for by: E.ROSA



# GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Smartlink LLC Dave Barbagallo 265 Lincoln St KENSINGTON, CT US 06037 860 681-7708

## TO

Town of Southbury First Selectman Jeff Manville SOUTHBURY, CT US 06488 203 262-0600

# **Shipment Facts**



**DELIVERY ATTEMPTS** 1

**TOTAL SHIPMENT WEIGHT** 1 lbs / 0.45 kgs

**SPECIAL HANDLING SECTION** Deliver Weekday

## **Travel History**

**ACTUAL DELIVERY** Thu 10/25/2018 11:56 am

### OUR COMPANY

About FedEx

Our Portfolio

Investor Relations

Careers

FedEx Blog

Corporate Responsibility

Newsroom

Contact Us

#### MORE FROM FEDEX

FedEx Compatible

Developer Resource Center

FedEx Cross Border

#### LANGUAGE

Change Country

English

**DELIVERED TO** Receptionist/Front Desk

**TERMS** Not Available

**STANDARD TRANSIT**?
10/29/2018 by 4:30 pm

**TOTAL PIECES** 1

**PACKAGING** FedEx Pak

### SHIP DATE

⑦ Wed 10/24/2018

Local

Expand History 🗸

Ask FedEx

© FedEx 1995-2018

Feedback | Site Map | Terms of Use | Security & Privacy

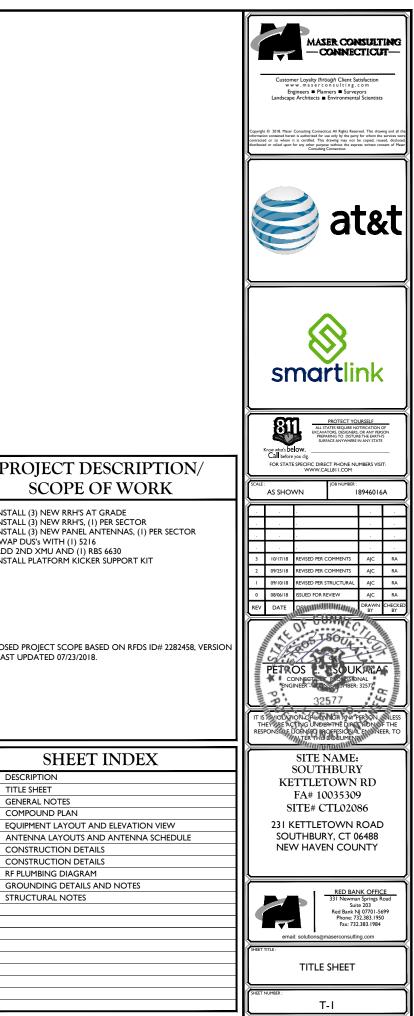
## **PROJECT NOTES**

- SITE INFORMATION OBTAINED FROM THE FOLLOWING:
- A. PLAN ENTITLED "SOUTHBURY KETTLETOWN ROAD" PREPARED BY VERTICAL RESOURCES GRP. OF AUBURN, MA LAST REVISED 02/17/2016.
- B. LIMITED FIELD OBSERVATION BY MASER CONSULTING ON 06/14/2018.
- . THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE CODES, ORDINANCES, LAWS AND REGULATIONS OF ALL MUNICIPALITIES, UTILITY COMPANIES OR OTHER PUBLIC/GOVERNING AUTHORITIES.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS THAT MAY BE REQUIRED BY ANY FEDERAL, STATE, COUNTY OR MUNICIPAL AUTHORITIES.
- THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER, IN WRITING, OF ANY CONFLICTS, ERRORS OR OMISSIONS PRIOR TO THE SUBMISSION OF BIDS OR PERFORMANCE OF WORK.
- 5. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING ALL EXISTING SITE IMPROVEMENTS PRIOR TO COMMENCING CONSTRUCTION. THE CONTRACTOR SHALL REPAIR ANY DAMAGE AS A RESULT OF CONSTRUCTION OF THIS FACILITY AT THE CONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER.
- 5. THE SCOPE OF WORK FOR THIS PROJECT SHALL INCLUDE PROVIDING ALL MATERIALS, EQUIPMENT AND LABOR REQUIRED TO COMPLETE THIS PROJECT. ALL EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS.
- 7. THE CONTRACTOR SHALL VISIT THE PROJECT SITE PRIOR TO SUBMITTING THE BID TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS AND CONSTRUCTION DRAWINGS.
- 8. THE CONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THESE DRAWINGS MUST BE VERIFIED. THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- SINCE THE CELL SITE MAY BE ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE REQUIRED TO BE WORN TO ALERT OF ANY POTENTIALLY DANGEROUS EXPOSURE LEVELS.
- THE PROPOSED FACILITY WILL CAUSE NO INCREASE IN STORM WATER RUNOFF, THEREFORE, NO DRAINAGE STRUCTURES ARE PROPOSED.
- I. NO NOISE, SMOKE, DUST OR ODOR WILL RESULT FROM THIS FACILITY AS TO CAUSE A NUISANCE.
- 12. THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION (NO HANDICAP ACCESS IS REQUIRED).
- 13. THE FACILITY DOES NOT REQUIRE POTABLE WATER OR SANITARY SERVICE.
- CONTRACTOR SHALL VERIFY ANTENNA ELEVATION AND AZIMUTHS WITH RF ENGINEERING PRIOR TO INSTALLATION.
- 15. THE TOWER, MOUNTS AND ANTENNAS SHALL BE DESIGNED TO MEET EIA/TIA-222-G AS PER IBC REQUIREMENTS.
- ALL STRUCTURAL ELEMENTS SHALL BE HOT DIPPED GALVANIZED STEEL.
- 17. CONTRACTOR MUST FIELD LOCATE ALL EXISTING UNDERGROUND UTILITIES PRIOR TO ANY EXCAVATION.
- CONSTRUCTION SHALL NOT COMMENCE UNTIL COMPLETION OF A PASSING STRUCTURAL ANALYSIS CERTIFIED BY A LICENSED PROFESSIONAL ENGINEER. THE STRUCTURAL ANALYSIS IS TO BE PERFORMED BY OTHERS.
- 9. CONTRACTOR SHALL CONTACT STATE SPECIFIC ONE CALL SYSTEM THREE WORKING DAYS PRIOR TO ANY EARTH MOVING ACTIVITIES.

#### COPYRIGHT © 2018 MASER CONSULTING CONNECTICU ALL RIGHTS RESERVED

THIS DRAWING AND ALL THE INFORMATION CONTAINED HEREIN IS AUTHORIZED FOR USE ONLY BY THE PARTY FOR WHOM THE WORK WAS CONTRACTED OR TO WHOM IT IS CERTIFIED. THIS DRAWING MAY NOT BE COPIED, REUSED, DISCLOSED, DISTRIBUTED OR RELIED UPON FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN CONSENT OF MASER CONSULTING CONNECTICUT.

# APPROVED


By David C. Rodriguez at 5:00 pm, Oct 18, 2018



# SITE NAME: SOUTHBURY KETTLETOWN RD FA NUMBER: 10035309 SITE NUMBER: CTL02086 PTI SITE NAME: KETTLETOWN PTI SITE NUMBER: US-CT-1002 4C - MRCTB031784 5C - MRCTB031854 231 KETTLETOWN ROAD SOUTHBURY, CT 06488

NEW HAVEN COUNTY

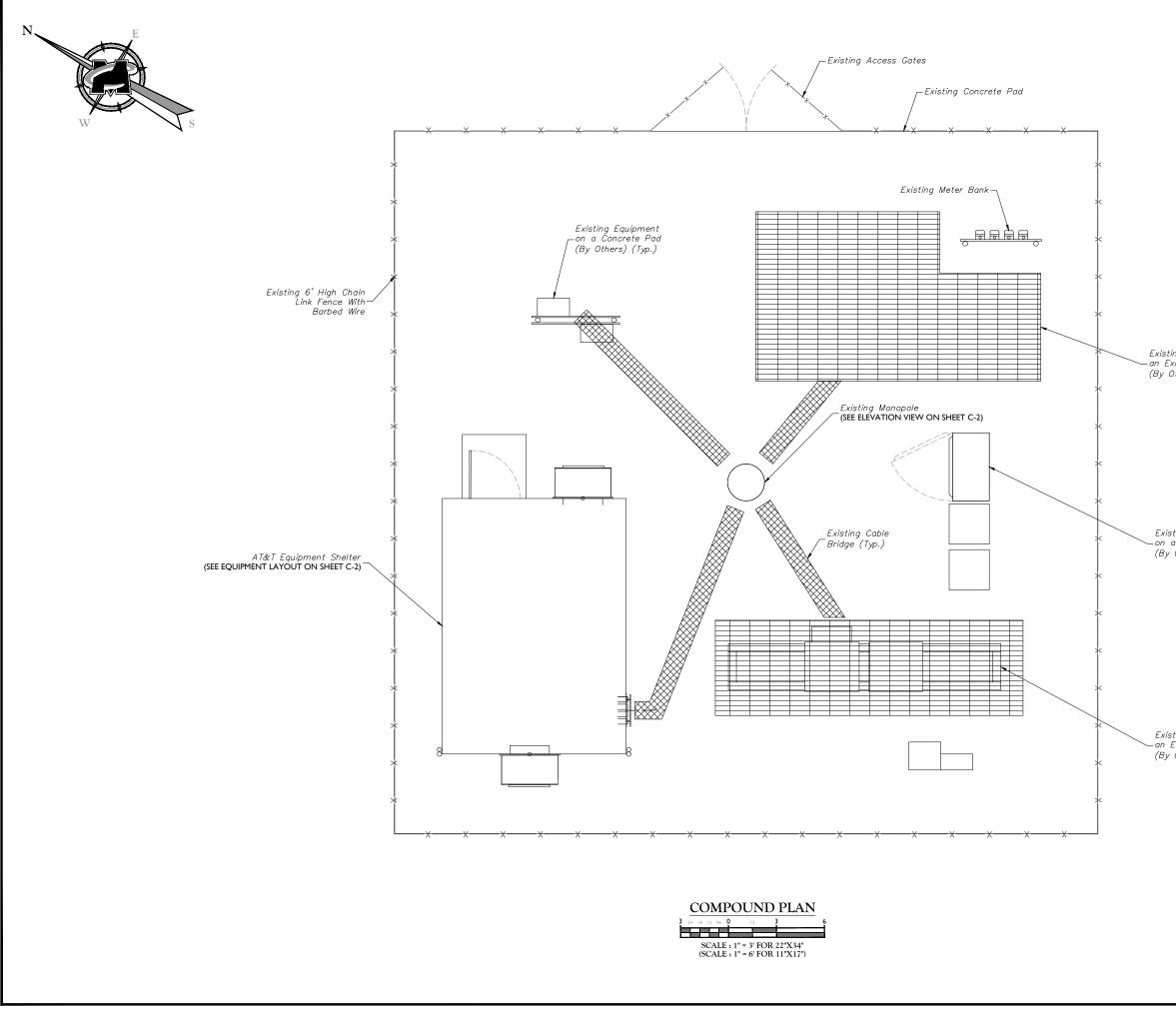
| CIES PRIOR TO<br>RUCTION.        | VICINITY MAP                                                                                                                                                                                                                                                                          | PROJECT INFORMATION                                                                                                                                 | PROJEC                                                                                                               |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| AUTIONS<br>IELS OF               |                                                                                                                                                                                                                                                                                       | SITE INFORMATION                                                                                                                                    | SCO                                                                                                                  |
| D BE<br>T COULD<br>POSURE<br>ANY |                                                                                                                                                                                                                                                                                       | LATITUDE: 41.4711861° N<br>LONGITUDE: 73.2055550° W<br>JURISDICTION: NEW HAVEN COUNTY                                                               | <ul> <li>INSTALL (3) NEW R</li> <li>INSTALL (3) NEW R</li> <li>INSTALL (3) NEW P</li> <li>SWAP DUS'S WITH</li> </ul> |
|                                  |                                                                                                                                                                                                                                                                                       | APPLICANT/LESSEE                                                                                                                                    | ADD 2ND XMU AN     INSTALL PLATFORM                                                                                  |
| N STORM<br>URES ARE              | PROJECT LOCATION                                                                                                                                                                                                                                                                      | COMPANY: NEW CINGULAR WIRELESS PCS, LLC<br>ADDRESS: 550 COCHITUATE ROAD<br>CITY, STATE, ZIP: FRAMINGHAM, MA 01701                                   |                                                                                                                      |
| M THIS                           | ark-trail                                                                                                                                                                                                                                                                             | LANDLORD                                                                                                                                            |                                                                                                                      |
| HABITATION                       | Tallangun Antin State Park Trail Larkin State Park Trail                                                                                                                                                                                                                              | LANDLORD: PHOENIX TOWER INTERNATIONAL<br>ADDRESS: 1001 YAMATO ROAD, SUITE 105<br>CITY, STATE, ZIP: BOCA RATON, FL 33431                             | PROPOSED PROJECT SC<br>2.00. LAST UPDATED 07/                                                                        |
| r sanitary                       | Boodwill Southbury<br>Donation Station                                                                                                                                                                                                                                                | CLIENT REPRESENTATIVE                                                                                                                               | 2.00, EAST OF DATED OF                                                                                               |
| ND<br>ATION.                     |                                                                                                                                                                                                                                                                                       | COMPANY: SMARTLINK, LLC<br>ADDRESS: 85 RANGEWAY ROAD, BUILDING 3, STE. 102<br>CITY, STATE, ZIP: NORTH BILLERICA, MA 01862                           |                                                                                                                      |
| IGNED TO                         |                                                                                                                                                                                                                                                                                       | CONTACT: TODD OLIVER<br>E-MAIL: TODD.OLIVER@SMARTLINKLLC.COM                                                                                        |                                                                                                                      |
| LVANIZED                         |                                                                                                                                                                                                                                                                                       | SITE ACQUISITION                                                                                                                                    | SH                                                                                                                   |
| DERGROUND                        |                                                                                                                                                                                                                                                                                       | COMPANY: SMARTLINK, LLC<br>ADDRESS: 85 RANGEWAY ROAD, BUILDING 3, STE. 102<br>CITY, STATE, ZIP: NORTH BILLERICA, MA 01862                           | SHEET DESCRIPTION<br>T-I TITLE SHEET                                                                                 |
| PLETION OF<br>ENSED              | CODE COMPLIANCE                                                                                                                                                                                                                                                                       | CONTACT: SHARON KEEFE<br>E-MAIL: SHARON.KEEFE@SMARTLINKLLC.COM                                                                                      | GN-1 GENERAL NOTE<br>C-1 COMPOUND PL                                                                                 |
| S IS TO BE                       | ALL WORK AND MATERIALS SHALL BE PERFORMED AND INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF                                                                                                                                                                                    | CONSTRUCTION MANAGER                                                                                                                                | C-2 EQUIPMENT LAY<br>C-3 ANTENNA LAY                                                                                 |
| CALL SYSTEM<br>G ACTIVITIES.     | THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE         CONSTRUED TO PERMIT WORK NOT CONFORMING TO THE LATEST EDITIONS OF THE FOLLOWING CODES.         I. 2016 CONNECTICUT STATE BUILDING CODE,         INCORPORATING THE 2012 IBC | COMPANY: SMARTLINK, LLC<br>ADDRESS: 85 RANGEWAY ROAD, BUILDING 3, STE. 102<br>CITY, STATE, ZIP: NORTH BILLERICA, MA 01862<br>CONTACT: MARK DONNELLY | A-1 CONSTRUCTION<br>A-2 CONSTRUCTION<br>A-3 RF PLUMBING D                                                            |
|                                  | 2. 2014 NATIONAL ELECTRICAL CODE - NFPA 70 9 TELCORDIA GR-1275<br>3. 2012 NFPA 101 10. ANSI T1.311                                                                                                                                                                                    | E-MAIL: MARK.DONNELLY@SMARTLINKLLC.COM                                                                                                              | G-I GROUNDING D<br>S-I STRUCTURAL N                                                                                  |
|                                  | 4. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 11. PROPOSED USE: UNMANNED TELECOM FACILITY<br>360-10                                                                                                                                                                                     | ENGINEER                                                                                                                                            |                                                                                                                      |
| FICUT                            | 5. AMERICAN CONCRETE INSTITUTE 12. HANDICAP REQUIREMENTS: FACILITY IS UNMANNED<br>AND NOT FOR HUMAN HABITATION. HANDICAPPED<br>ACCESS NOT REQUIRED.                                                                                                                                   | COMPANY: MASER CONSULTING P.A.<br>ADDRESS: 331 NEWMAN SPRINGS ROAD, SUITE 203<br>CITY, STATE, ZIP: RED BANK, NJ 07701<br>CONTACT: ROBERT ANDREWS    |                                                                                                                      |
| THE WORK<br>DRAWING<br>OR RELIED | 6. TIA-222-G     13. CONSTRUCTION TYPE: IIB       7. TIA 607 FOR GROUNDING     14. USE GROUP: U                                                                                                                                                                                       | OWNER: (856) 797-0412<br>E-MAIL: RANDREWS@MASERCONSULTING.COM                                                                                       |                                                                                                                      |
| SS WRITTEN<br>CUT.               |                                                                                                                                                                                                                                                                                       |                                                                                                                                                     |                                                                                                                      |
|                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                     |                                                                                                                      |



#### **GENERAL NOTES:**

- 1. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ). THE SITE-SPECIFIC (UL, LPI, OR NEPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- 2 ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION RADIO LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 50 HMS OR LESS.
- 4. THE SUBCONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT.
- 5 METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS
- 6. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION. SIZED IN ACCORDANCE WITH THE NEC. SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 7. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE EQUIPMENT GROUND RING WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS; 2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 8. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED. BACK TO BACK CONNECTIONS ON OPPOSITE SIDES OF THE GROUND BUS ARE PERMITTED.
- 9. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING, SHALL BE #2 AWG SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 10. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 11. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED. ALL BENDS SHALL BE MADE WITH 12" RADIUS OR LARGER.
- 12. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 13. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS EXCEPT FOR GROUND BAR CONNECTION FROM MGB TO OUTSIDE EXTERIOR GROUND SHALL ALL BE CADWELD CONNECTIONS.
- 14. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 15. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED TO THE TOWER GROUND BAR.
- 16. APPROVED ANTIOXIDANT COATINGS (I.E. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 17. ALL EXTERIOR AND INTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 18. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 19. BOND ALL METALLIC OBJECTS WITHIN 6 FT OF MAIN GROUND WIRES WITH 1-#2 AWG TIN-PLATED COPPER GROUND CONDUCTOR
- 20. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS, WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS. NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G. NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 21. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/4" IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC 250.50.
- 22. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:
  - CONTRACTOR SMARTLINK SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION) AT&T (NEW CINGULAR WIRELESS PCS, LLC) OWNER -
- 23. ALL SITE WORK SHALL BE COMPLETED AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.
- 24. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY
- 25. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK.
- 26. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 27. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS

- 28. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTUR RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 29. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR
- 30. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTIO OW/NER
- 31. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 32. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WO SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHA RELOCATED AS DIRECTED BY THE RESPONSIBLE ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. SUBCONTRACTOR SHA PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING & EXCAVATION.
- 33. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXI OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, AS DIRECTED BY THE RESPONSIBLE ENGINEER, AND TO THE APPROVAL OF THE OWNER AND/OR LOCAL UTILITIES.
- 34. THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIP DRIVEWAY SHALL BE GRADED TO A UNIFORM SLOPE AND STABILIZED TO PREVENT EROSION.
- 35. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTI MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES EROSION AND SEDIMENT CONTROL
- 36. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
- 37. THE SUBGRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SU APPLICATION.
- 38. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOW AREAS.
- 39. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THI AND DISPOSED OF LEGALLY.
- 40. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION F SIGNAGE
- 41. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION
- 42 PRIOR TO THE SUBMISSION OF BIDS. THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZ THE EXISTING CONDITIONS AND TO CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGH ATTENTION OF THE CONTRACTOR
- 43. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CA SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING, SUBCONTRACTOR SHALL UTILIZE EXISTING AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WIT CONTRACTOR
- 44. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 3
- 45. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAVE 4000 PSI S AT 28 DAYS
- 46. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED. FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS, ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy = 36 ksi) UNLESS OTHERWISE NOTED. PIPES 5 ASTM A53 TYPE E (Fy = 36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCHU SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.
- 47. CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTR OF AT&T MOBILITY SITES."
- 48. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY W DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION
- 49. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION, ANY CONSTRUCTION WORK BY SUBCONTRACTOR NOT DISRUPT THE EXISTING NORMAL OPERATION, ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINA CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALL' TRAFFIC PERIODS AFTER MIDNIGHT
- 50. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEV ELECTROMAGNETIC RADIATION, EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK TH EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN ALERT OF DANGEROUS EXPOSURE LEVELS


|                        | Customer Loyalty (Incuston)<br>Customer Loyalty (Incuston)<br>Cu |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RER'S<br>DR SHALL      | Copyright © 2011 Meter Consisting Connection All Sight Reserved. The driving and all<br>control control and the standard of the standard standard standard<br>commond or on when it is control the driving may not be could read. Allow<br>distributed or relied upon for any other purpose whole the express written consent of Ma<br>Control Control                                                                                                                                                                                                                    |
|                        | distributed or relied upon for any other purpose without the express written consent of Ms<br>Consulting Connecticut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ON OF                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| I.<br>'ORK,<br>ALL BE  | 🨂 at&t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ALL<br>ROTECTION       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| XECUTION<br>/HICH      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D SUBJECT              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PMENT OR               | $\otimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FROL<br>S FOR          | smartlink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RICE                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SURFACE                | ALL STATES REQUIRE NOTIFICATION OF<br>EXCAVATORS, DESIGNERS, OR ANY FRESON<br>PREPARING TO DISTURB THE GRAFTIN'S<br>SURFACE ANYWHERE IN ANY STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WER                    | Kow what's Delow,<br>Call before you dig.<br>FOR STATE SPECIFIC DIRECT PHONE NUMBERS VISIT:<br>WWW.CALLBII.COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IE SITE                | AS SHOWN JOB NUMBER :<br>18946016A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FOR SITE               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| IZE WITH<br>SHT TO THE | 3         10/17/18         REVISED PER COMMENTS         AJC         RA           2         09/25/18         REVISED PER COMMENTS         AJC         RA           1         09/10/18         REVISED PER STRUCTURAL         AJC         RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CABLES AS<br>G TRAYS   | 0         08/06/18         ISSUED FOR REVIEW         AJC         RA           REV         DATE         DF651111101111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| /ITH THE               | MINING OF CONVECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 301.                   | S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| STRENGTH               | PETROS L. SOUKALAS<br>CONNECTO DE DISSIONAL<br>ENGINEER : DISSIONAL<br>ENGINEER : DISSIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SHALL BE<br>UP ALL     | 3257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T.<br>RUCTION          | IT IS 7 IOLATION OF GRAVIER ANY PERSON, ULESS<br>THEY REACTING UNDER THE DIRCT ROM OF THE<br>RESPONSIBLE LICENSED IN OF RESIDUAL EN WHERE, TO<br>YEER THE BOOLEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| WORK. ALL<br>R SHALL   | SITE NAME:<br>SOUTHBURY<br>KETTLETOWN RD<br>FA# 10035309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| OR SHALL               | SITE# CTL02086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ATED WITH<br>Y IN LOW  | 231 KETTLETOWN ROAD<br>SOUTHBURY, CT 06488<br>NEW HAVEN COUNTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EVELS OF<br>IAT COULD  | Ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| F                      | RED BANK OFFICE<br>331 Newman Spring: Road<br>Suite 203<br>Red Bank NJ 07701-5699<br>Phone: 732-3381,950<br>Fax: 732-3381,954<br>email: solutions@maserconsulting.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | SHEET NUMBER :<br>GN-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

RA

RA RA RA

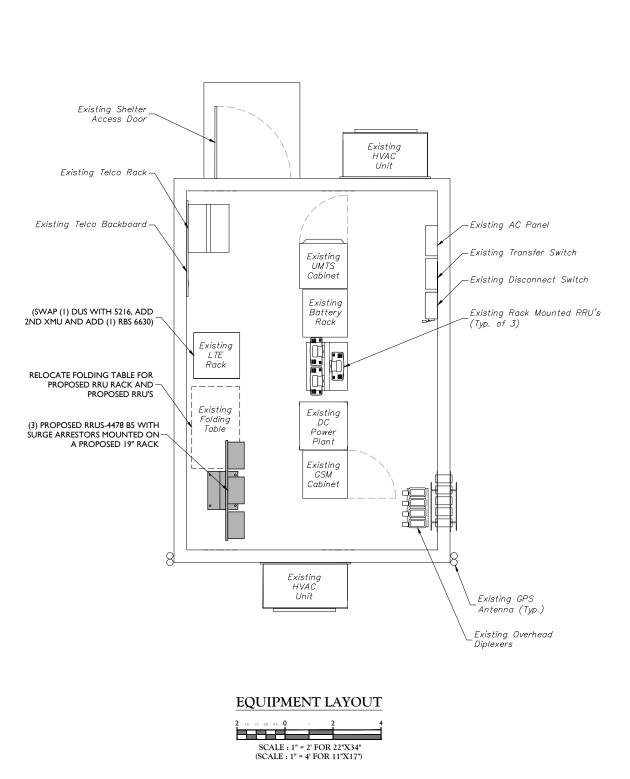
CHECKEI BY

LESS



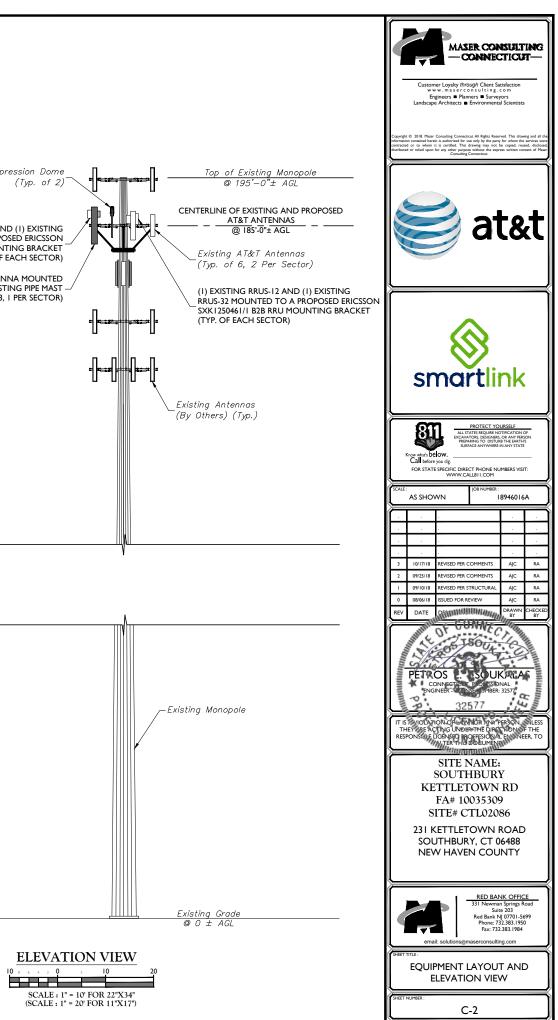
Existing Equipment Under —an Existing Canopy (By Others) (Typ.)

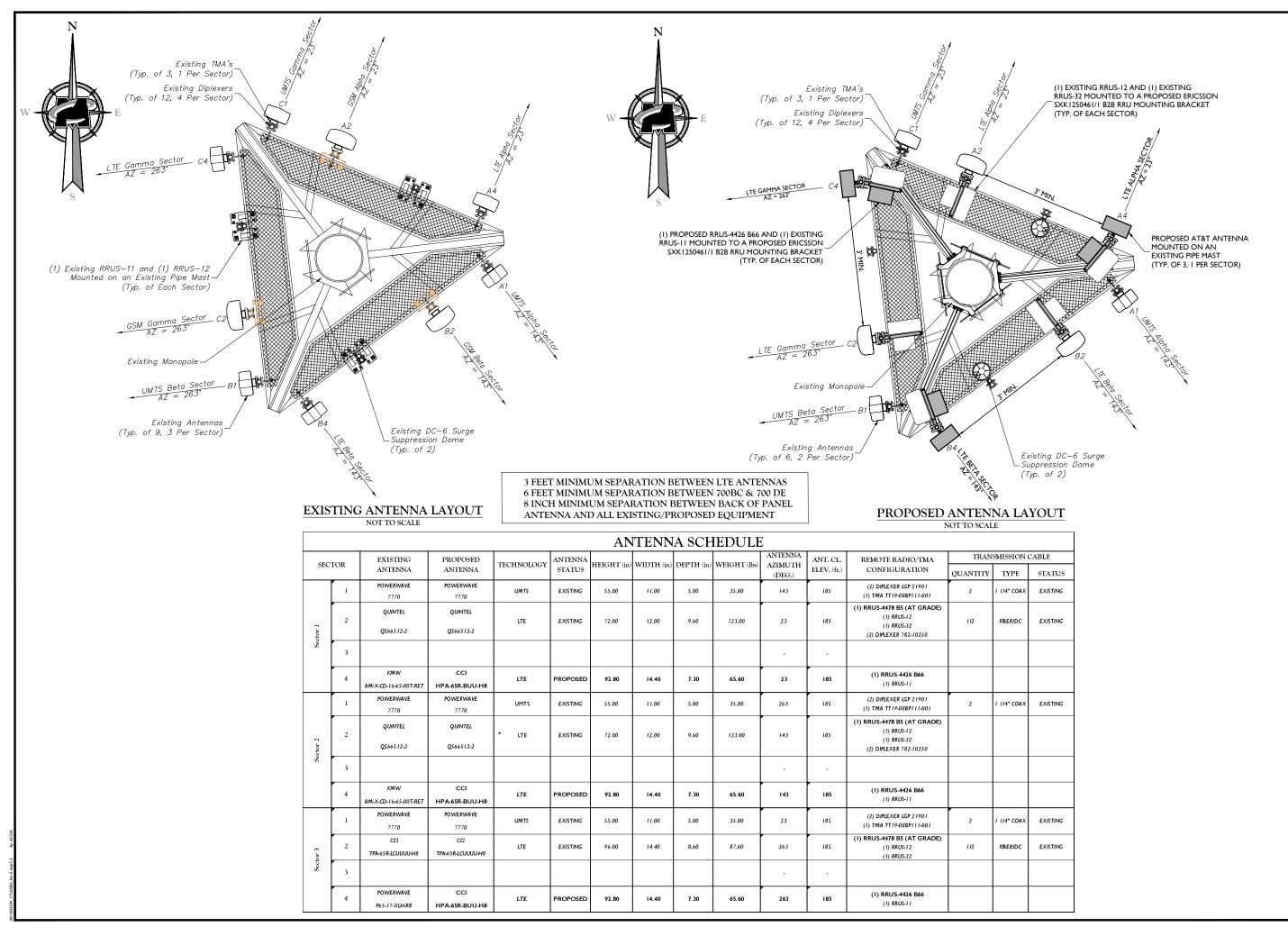
Existing Equipment —on a Concrete Pad (By Others) (Typ.)


Existing Equipment Under —an Existing Canopy (By Others) (Typ.)

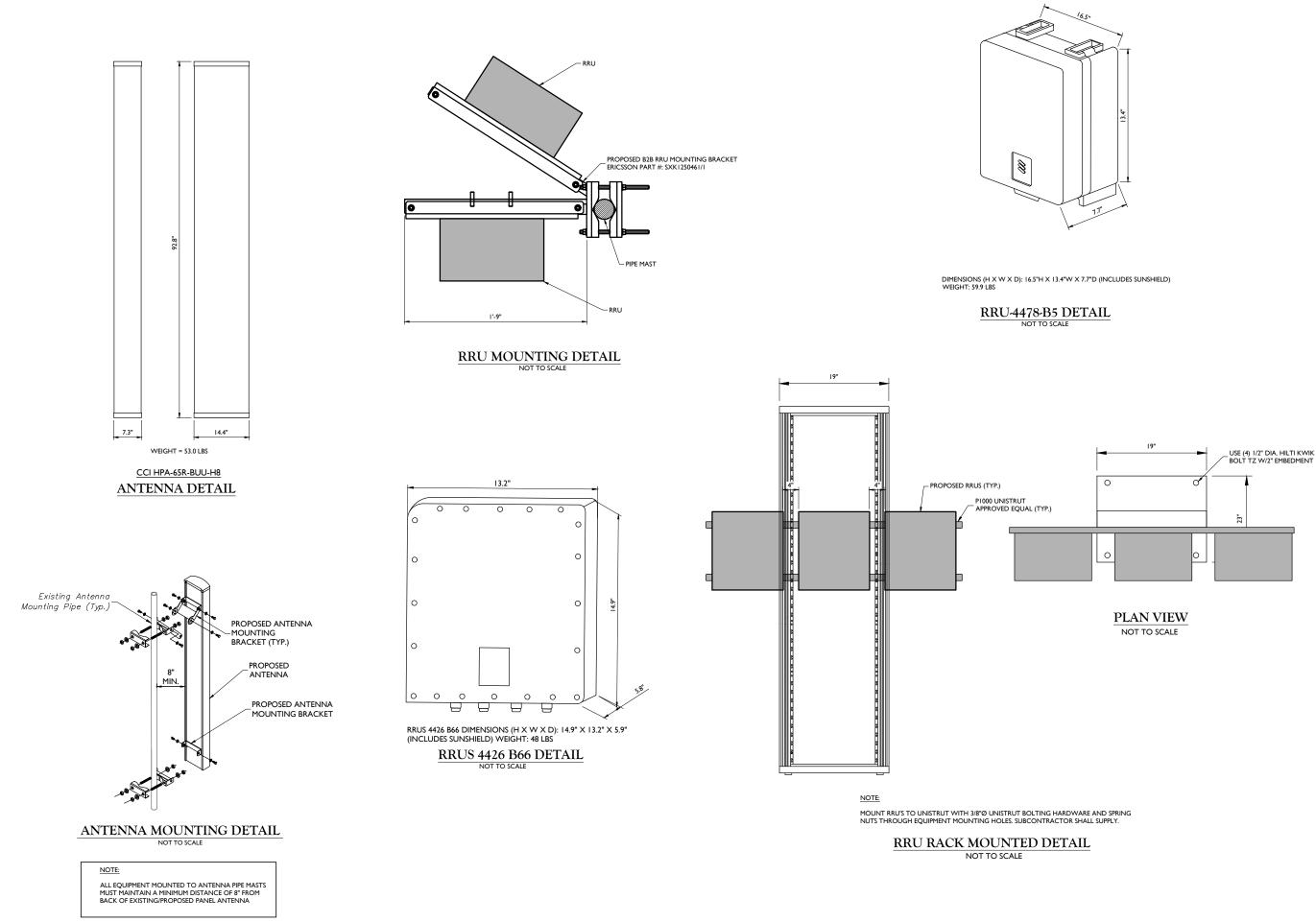


Existing DC–6 Surge Suppression Dome (Typ. of 2)


(I) PROPOSED RRUS-4426 B66 AND (I) EXISTING RRUS-11 MOUNTED TO A PROPOSED ERICSSON SXK1250461/1 B2B RRU MOUNTING BRACKET (TYP. OF EACH SECTOR)


> PROPOSED AT&T ANTENNA MOUNTED ON AN EXISTING PIPE MAST – (TYP. OF 3, I PER SECTOR)



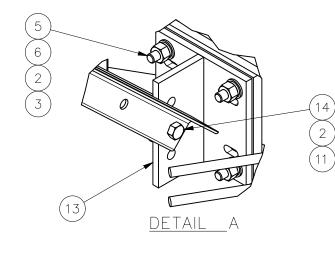

#### STRUCTURAL NOTES:

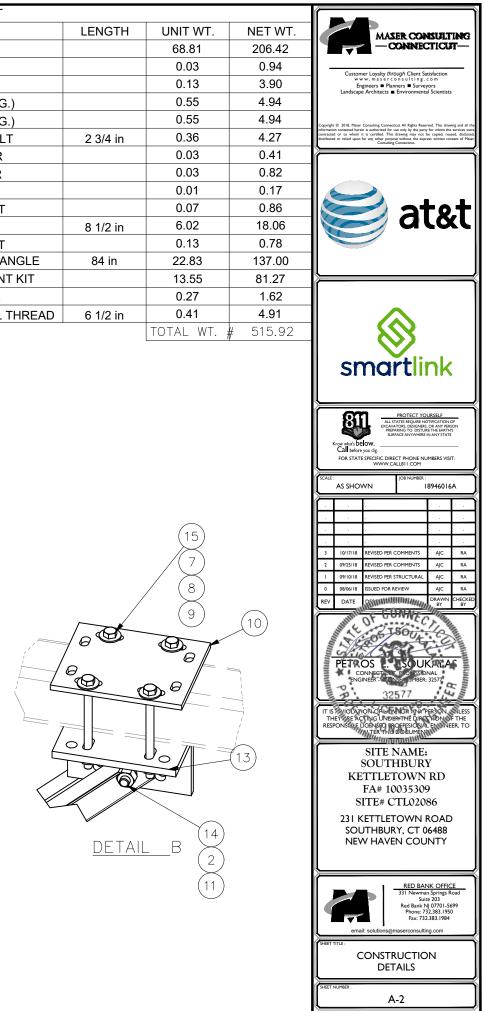
- MASER CONSULTING P.A. HAS NOT BEEN CONTRACTED TO PERFORM A STRUCTURAL ANALYSIS ON THIS TOWER AND THEREFORE ASSUMES NO RESPONSIBILITY FOR THE STRUCTURAL CAPACITY AS REQUIRED UNDER THE MOST CURRENT LOCAL, STATE AND FEDERAL CODES. A STRUCTURAL ANALYSIS OF THE TOWER AND TOWER FOUNDATION MUST BE PREPARED BY AN APPROPRIATE LICENSED STRUCTURAL ENGINEER CERTIFYING THAT THE EXISTING TOWER AND ANY REQUIRED IMPROVEMENTS AND REINFORCEMENTS HAVE SUFFICIENT CAPACITY TO SUPPORT ALL EXISTING AND PROPOSED ANTENNAS, SUPPORTS, CABLES AND APPURTENANCES COMPLIES WITH THE MOST CURRENT LOCAL, STATE AND FEDERAL CODES.
- 2. THE CONTRACTOR IS RESPONSIBLE TO CONFIRM THAT ANY IMPROVEMENTS AND REINFORCEMENTS REQUIRED BY THE STRUCTURAL ANALYSIS CERTIFICATION ARE PROPERLY INSTALLED PRIOR TO THE ADDITION OF ANTENNAS, CABLES, SUPPORTS AND APPURTENANCES PROPOSED ON THESE DRAWINGS OR OTHERWISE NOTED IN THE STRUCTURAL ANALYSIS.



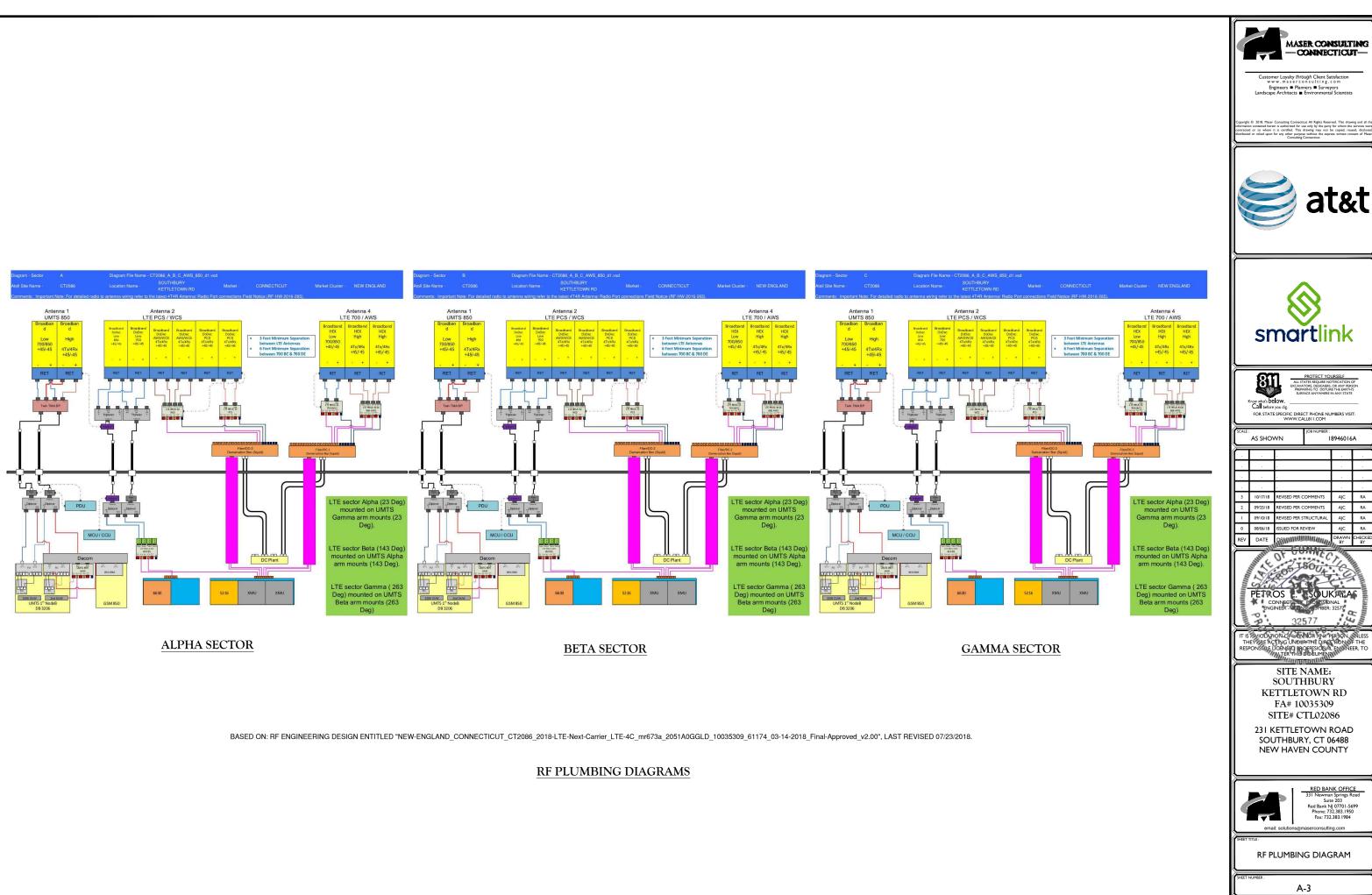







|      |     |          |                                            | _ |
|------|-----|----------|--------------------------------------------|---|
|      |     |          | PARTS LIST                                 |   |
| ITEM | QTY | PART NO. | PART DESCRIPTION                           |   |
| 1    | 3   | X-LWRM   | RING MOUNT WELDMENT                        |   |
| 2    | 36  | G58LW    | 5/8" HDG LOCKWASHER                        |   |
| 3    | 30  | A58NUT   | 5/8" HDG A325 HEX NUT                      |   |
| 4    | 9   | G58R-24  | 5/8" x 24" THREADED ROD (HDG.)             |   |
| 4    | 9   | G58R-48  | 5/8" x 48" THREADED ROD (HDG.)             |   |
| 5    | 12  | A58234   | 5/8" x 2-3/4" HDG A325 HEX BOLT            |   |
| 6    | 12  | A58FW    | 5/8" HDG A325 FLATWASHER                   |   |
| 7    | 24  | G12FW    | 1/2" HDG USS FLATWASHER                    |   |
| 8    | 12  | G12LW    | 1/2" HDG LOCKWASHER                        |   |
| 9    | 12  | G12NUT   | 1/2" HDG HEAVY 2H HEX NUT                  |   |
| 10   | 3   | SCX4     | CROSSOVER PLATE                            |   |
| 11   | 6   | G58NUT   | 5/8" HDG HEAVY 2H HEX NUT                  |   |
| 12   | 6   | X-254923 | PLATFORM REINFORCEMENT KIT ANGLE           |   |
| 13   | 6   | X-253992 | T-BRACKET FOR REINFORCEMENT KIT            |   |
| 14   | 6   | G5802    | 5/8" x 2" HDG HEX BOLT GR5                 |   |
| 15   | 12  | G12065   | 1/2" x 6-1/2" HDG HEX BOLT GR5 FULL THREAD |   |
|      |     |          |                                            |   |

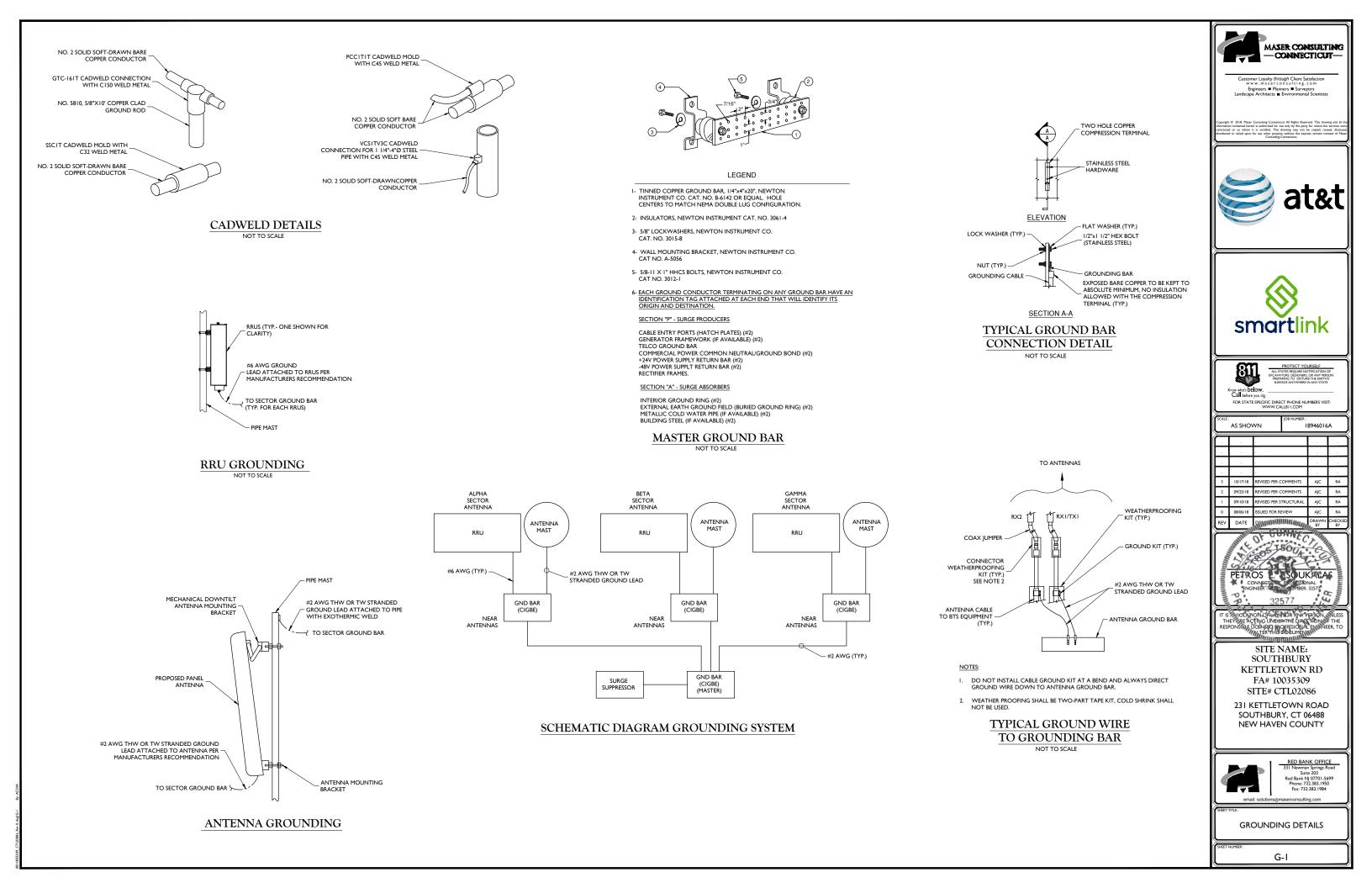

(12

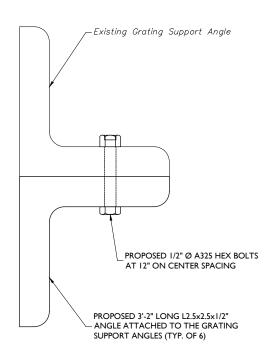
 $\begin{pmatrix} 2\\ 3 \end{pmatrix}$ 

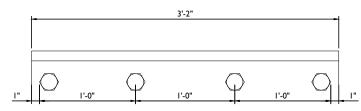


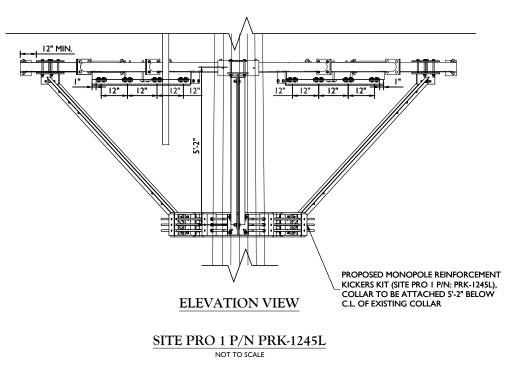


SITE PROT P/N:PRK-1245L NOT TO SCALE





RA


RA


RA

RA













Phoenix Tower International 999 Yamato Road, Suite 100 Boca Raton, FL. 33431 (610) 357-8763



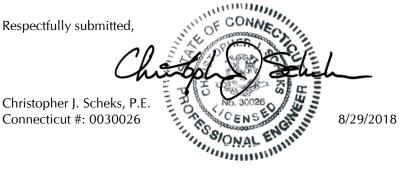
Todd Rasey 520 South Main Street, Suite 2531 Akron, OH 44311 (330) 572-2198 trasey@gpdgroup.com

GPD# 2018791.CT1002.05

August 29, 2018

#### **RIGOROUS STRUCTURAL ANALYSIS REPORT**

| SITE DESIGNATION:  | PTI Site #:<br>PTI Site Name:   | US-CT-1002<br>Kettleton                                                                                                                                                       |
|--------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | AT&T Site #:<br>AT&T Site Name: | CT2086<br>Southbury Kettletown Rd                                                                                                                                             |
| ANALYSIS CRITERIA: | Codes:                          | TIA-222-G, 2012 IBC & 2016 CSBC<br>120-mph Ultimate (3-second gust) with 0" ice<br>93-mph Nominal (3-second gust) with 0" ice<br>50-mph Nominal (3-second gust) with 3/4" ice |
| SITE DATA:         |                                 | 231 Kettleton Road, Southbury, CT 6488, New Haven County<br>Latitude 41° 28' 16.580" N, Longitude 73° 12′ 18.352″ W<br>196′ Modified PiROD Monopole                           |


Mr. David Rodriguez,

GPD is pleased to submit this Rigorous Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

#### Analysis Results

| Tower Stress Level with Proposed Equipment: | 83.9% | Pass |
|---------------------------------------------|-------|------|
| Foundation Ratio with Proposed Equipment:   | 65.8% | Pass |

We at GPD appreciate the opportunity of providing our continuing professional services to you and Phoenix Tower International. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.



#### SUMMARY & RESULTS

The purpose of this analysis was to verify whether the existing structure is capable of carrying the proposed loading configuration as specified by AT&T to Phoenix Tower International. This report was commissioned by Mr. David Rodriguez of Phoenix Tower International.

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 120 mph converted to a nominal 3-second gust wind speed of 93 mph per Section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception #5 of Section 1609.1.1. Exposure Category B with a maximum topographic factor, Kzt, of 1.0 and Risk Category II were used in this analysis.

Note: In order for the analysis results to be valid for the proposed, existing, and reserved loading in Appendix A, the modifications referenced in the design drawings by GPD (Project #: 2010293.91, dated 9/14/10 and Project #: 2013792.15 Rev. A, dated 3/11/14) must be installed. Modifications consisted of reinforcing the pole from 0'-139', adding stiffener plates across the flanges from 20'-120', adding additional anchor rods, and installing a foundation collar with piles to the existing foundation.

| Member             | Capacity | Results |
|--------------------|----------|---------|
| Monopole           | 71.9%    | Pass    |
| Flange Connections | 83.9%    | Pass    |
| Base Plate         | 68.5%    | Pass    |
| Anchor Rods        | 65.7%    | Pass    |
|                    |          |         |
| Foundation         | 65.8%    | Pass    |

#### TOWER SUMMARY AND RESULTS

#### ANALYSIS METHOD

tnxTower (Version 8.0.4.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various dead, live, wind, and ice load cases. Selected output from the analysis is included in Appendices B & F. The following table details the information provided to complete this structural analysis. This analysis is based solely on this information and is being completed without the benefit of a detailed site visit.

#### **DOCUMENTS PROVIDED**

| Document                     | Remarks                                           | Source |
|------------------------------|---------------------------------------------------|--------|
| Collocation Application      | PTI Collocation Application, revised 8/14/2018    | PTI    |
| Tower Design                 | PiROD, File #: A-115080, dated 3/26/1999          | GPD    |
| Foundation Design            | PiROD, File #: A-115080, dated 3/26/1999          | GPD    |
| Geotechnical Report          | Dr. Clarence Welti, dated 10/7/1998               | GPD    |
| Previous Structural Analysis | GPD Project #: 2018791.CT1002.04, dated 5/18/2018 | GPD    |
| Modification Drawings        | GPD Project #: 2010293.91, dated 9/14/2010        | GPD    |
| Modification Drawings        | GPD Project #: 2013792.15 Rev. A, dated 3/11/2014 | GPD    |

#### ASSUMPTIONS

This rigorous structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

- 1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
- 2. The antenna configuration is as supplied and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
- 3. Some assumptions are made regarding antennas and mount sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type and industry practice.
- 4. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
- 5. The soil parameters are as per data supplied or as assumed and stated in the calculations.
- 6. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
- 7. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
- 8. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
- 9. All prior structural modifications are assumed to be as per data supplied/available and to have been properly installed.
- 10. Loading interpreted from photos is accurate to  $\pm 5'$  AGL, antenna size accurate to  $\pm 3.3$  sf, and coax equal to the number of existing antennas without reserve.
- 11. All existing loading was obtained from the provided collocation application, the previous structural analysis by GPD (Project #: 2018791.CT1002.04, dated 5/18/2018) and site photos and is assumed to be accurate.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD should be allowed to review any new information to determine its effect on the structural integrity of the tower.

#### DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Rigorous Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

## APPENDIX A

Tower Analysis Summary Form

#### **Tower Analysis Summary Form**

#### General Info

| Site Name                   | Kettleton       |
|-----------------------------|-----------------|
| Site Number                 | US-CT-1002      |
| Proposed Carrier            | Sprint          |
| Date of Analysis            | August 29, 2018 |
| Company Performing Analysis | GPD             |

| Tower Info                      | Description                      | Date      |
|---------------------------------|----------------------------------|-----------|
| Tower Type (G, SST, MP)         | MP                               |           |
| Tower Height (top of steel AGL) | 196'                             |           |
| Tower Manufacturer              | PiROD                            |           |
| Tower Model                     | n/a                              |           |
| Tower Design                    | PiROD, File #: A-115080          | 3/26/1999 |
| Foundation Design               | PiROD, File #: A-115080          | 3/26/1999 |
| Geotech Report                  | Dr. Clarence Welti               | 10/7/1998 |
| Previous Structural Analysis    | GPD Project #: 2018791.CT1002.04 | 5/18/2018 |
| Modification Drawings           | GPD Project #: 2010293.91        | 9/14/2010 |
| Modification Drawings           | GPD Project #: 2013792.15 Rev. A | 3/11/2014 |
| Foundation Mapping              | n/a                              |           |

| Design Code Used                  | TIA-222-G               |
|-----------------------------------|-------------------------|
| Design Code Osed                  | 2012 IBC & 2016 CSBC    |
| Location of Tower (County, State) | New Haven, CT           |
| Nominal Wind Speed (mph)          | 93 Nominal (3-sec gust) |
| Ice Thickness (in)                | 0.75                    |
| Risk Category (I, II, III)        | Ш                       |
| Exposure Category (B, C, D)       | В                       |
|                                   |                         |

Topographic Category (1 to 5)

#### The information contained in this summary report is not to be used independently from the PE stamped tower analysis.

| Existing/Reserved + Future + Proposed Condition |       |  |
|-------------------------------------------------|-------|--|
| Tower (%) 83.9%                                 |       |  |
| Tower Base (%)                                  | 68.5% |  |
| Foundation (%)                                  | 65.8% |  |
| Foundation Adequate?                            | Yes   |  |

| T-Mobile Future Loading Information                     |        |  |
|---------------------------------------------------------|--------|--|
| Existing/Proposed Area (in <sup>2</sup> )               | 11,692 |  |
| Future Area (in <sup>2</sup> )                          | 10,308 |  |
| Total Wind Area (in <sup>2</sup> )                      | 22,000 |  |
| Does T-Mobile's Loading Exceed 22,000 in <sup>2</sup> ? | No     |  |
| If yes, by how much? (in <sup>2</sup> )                 | n/a    |  |

## Steel Yield Strength (ksi) Monopole Shaft

Existing / Recorved Loading

| Monopole Shaft | 65 |
|----------------|----|
| Base Plate     | 50 |
| Anchor Rods    | 75 |

|                  |                      |                    |          | Antenna  | l .            |                               |             |          |              | Mount              |          | Transmis      | sion Line |                        |
|------------------|----------------------|--------------------|----------|----------|----------------|-------------------------------|-------------|----------|--------------|--------------------|----------|---------------|-----------|------------------------|
| Antenna Owner    | Mount Height<br>(ft) | Antenna CL<br>(ft) | Quantity | Туре     | Manufacturer   | Model                         | Azimuth     | Quantity | Manufacturer | Туре               | Quantity | Model         | Size      | Attachmen<br>Int./Ext. |
| -Mobile          | 195                  | 195                | 3        | Panel    | Andrew         | RR90-17-02DP                  | 110/230/350 | 1        | Unknown      | LP Platform        | 12       | Unknown       | 1-5/8"    | Internal               |
| -Mobile          | 195                  | 195                | 3        | Panel    | Commscope      | LNX-6515DS-VTM                | 110/230/350 |          |              | on the same mount  | 1        | Hybrid Cables | 1-5/8"    | Internal               |
| ſ-Mobile         | 195                  | 195                | 3        | Panel    | Ericsson       | AIR 33                        | 110/230/350 |          |              | on the same mount  |          |               |           |                        |
| F-Mobile         | 195                  | 195                | 3        | TMA      | Ericsson       | KRY 112 71                    |             |          |              | on the same mount  |          |               |           |                        |
| F-Mobile         | 195                  | 195                | 1        | Surge    | Raycap         | DC4-48-60-8-20F               |             |          |              | on the same mount  |          |               |           |                        |
| AT&T Mobility    | 185                  | 185                | 3        | Panel    | Powerwave      | 7770                          | 23/143/263  | 1        | Unknown      | LP Platform        | 12       | Unknown       | 1-1/4"    | Internal               |
| AT&T Mobility    | 185                  | 185                | 2        | Panel    | KMW            | AM-X-CD-16-65-00T RET         | 23/143      |          |              | on the same mount  | 4        | DC Power      | 3/4"      | Internal               |
| AT&T Mobility    | 185                  | 185                | 2        | Panel    | Quintel        | QS66512-2                     | 23/143      |          |              | on the same mount  | 2        | Fiber Cable   | 1.496"    | Internal               |
| AT&T Mobility    | 185                  | 185                | 1        | Panel    | Powerwave      | P65-17-XLH-RR                 | 263         |          |              | on the same mount  |          |               |           |                        |
| AT&T Mobility    | 185                  | 185                | 1        | Panel    | CCI            | TPA-65R-LCUUUU-H8             | 263         |          |              | on the same mount  |          |               |           |                        |
| AT&T Mobility    | 185                  | 185                | 3        | TMA      | Powerwave      | TT19-08B9111-001              |             |          |              | on the same mount  |          |               |           |                        |
| AT&T Mobility    | 185                  | 185                | 6        | Diplexer | Powerwave      | LGP 21901                     |             |          |              | on the same mount  |          |               |           |                        |
| AT&T Mobility    | 185                  | 185                | 6        | Diplexer | Kathrein       | 782-10250                     |             |          |              | on the same mount  |          |               |           |                        |
| AT&T Mobility    | 185                  | 185                | 6        | RET      | Powerwave      | 7020                          |             |          |              | on the same mount  |          |               |           |                        |
| AT&T Mobility    | 185                  | 185                | 3        | RRU      | Ericsson       | RRUS 11                       |             |          |              | on the same mount  |          |               |           |                        |
| AT&T Mobility    | 185                  | 185                | 3        | RRU      | Ericsson       | RRUS 12                       |             |          |              | on the same mount  |          |               |           |                        |
| AT&T Mobility    | 185                  | 185                | 3        | RRU      | Ericsson       | RRUS 32                       |             | ***      |              | on the same mount  |          |               |           |                        |
| AT&T Mobility    | 185                  | 185                | 2        | Surge    | Raycap         | DC6-48-60-18-8F               |             |          |              | on the same mount  |          |               |           |                        |
| Pocket           | 175                  | 175                | 3        | Panel    | RFS            | APXV18-206517S-C              | 110/230/350 |          |              | Flush mounted      | 6        | Unknown       | 1-5/8"    | External               |
| Sprint           | 165                  | 165                | 3        | Panel    | RFS            | APXVTM14-ALU-I20              | 340/70/260  | 1        | Unknown      | LP Platform        | 4        | Hybriflex     | 1-1/4"    | External               |
| Sprint           | 165                  | 165                | 3        | Panel    | Commscope      | NNVV-65B-R4                   | 340/70/260  |          |              | on the same mount  |          |               |           |                        |
| Sprint           | 165                  | 165                | 3        | BBH      | Alcatel Lucent | RRH 1900 4x45 65 MHz          |             |          |              | on the same mount  |          |               |           |                        |
| Sprint           | 165                  | 165                | 3        | RBH      | Alcatel Lucent | 800 MHz BBH                   |             |          |              | on the same mount  |          |               |           |                        |
| Sprint           | 165                  | 165                | 3        | BBH      | Alcatel Lucent | TD-RRH8x20-25 w/ Solar Shield |             |          |              | on the same mount  |          |               |           |                        |
| Sprint           | 165                  | 165                | 3        | RRH      | Alcatel Lucent | RRH2x50-08 (800 MHz)          |             |          |              | on the same mount  |          |               |           |                        |
| Verizon Wireless | 155                  | 155                | 3        | Panel    | Amphenol       | BXA-70063/4CF                 | 60/180/300  | 1        | Unknown      | LP Platform        | 6        | Unknown       | 1-5/8"    | External               |
| Verizon Wireless | 155                  | 155                | 6        | Panel    | Commscope      | JAHH-65B-R3B                  | 60/180/300  | 3        | Commscope    | BSAMNT SBS-2-2     | 2        | Hybriflex     | 1-5/8"    | External               |
| Verizon Wireless | 155                  | 155                | 1        | OVP      | RFS            | DB-C1-12C-24-AB-0Z            |             |          |              | on the same mounts |          |               |           |                        |
| /erizon Wireless | 155                  | 155                | 3        | RRU      | Alcatel Lucent | B66A RRH 4x45                 |             |          |              | on the same mounts |          |               |           |                        |
| /erizon Wireless | 155                  | 155                | 3        | RRU      | Alcatel Lucent | B25 RRH4x30                   |             |          |              | on the same mounts |          |               |           |                        |
| /erizon Wireless | 155                  | 155                | 3        | RRU      | Alcatel Lucent | B13 RRH 4x30                  |             |          |              | on the same mounts |          |               | ******    |                        |
|                  |                      |                    |          |          |                |                               |             |          |              |                    |          |               |           |                        |
| F-Mobile         | 91                   | 91                 | 1        | Dish     | Unknown        | 2' MW Dish                    | 240         |          |              | Collar mount       | 1        | Unknown       | 1-5/8"    | Internal               |
| -Mobile          | 75                   | 75                 | 1        | Panel    | Pctel          | TMG-HR-26N GPS                | 240         |          |              | Pipe mounted       | 1        | Unknown       | 7/8"      | External               |

Note: (2) AM-X-CD-16-65-00T RET antennas and (1) P65-17-XLH-RR antenna at 185' are to be removed prior to installation of the proposed loading and were not considered in the analysis. All other loading shall remain as shown.

Proposed Loading

|               |                      |                    |          | Antenna | a            |                |            |          | Moun         | t          |          | Transmission | n Line |                         |
|---------------|----------------------|--------------------|----------|---------|--------------|----------------|------------|----------|--------------|------------|----------|--------------|--------|-------------------------|
| Antenna Owner | Mount Height<br>(ft) | Antenna CL<br>(ft) | Quantity | Туре    | Manufacturer | Model          | Azimuth    | Quantity | Manufacturer | Туре       | Quantity | Model        | Size   | Attachment<br>Int./Ext. |
| AT&T Mobility | 185                  | 185                | 3        | Panel   | CCI          | HPA-65R-BUU-H8 | 23/143/263 |          | on the exis  | ting mount |          |              |        |                         |
| AT&T Mobility | 185                  | 185                | 3        | RRH     | Ericsson     | RRUS 4426 B66  |            |          | on the exis  | ting mount |          |              |        |                         |

Note: The proposed equipment shall be installed in addition to the remaining existing/reserved loading at the same elevation.

#### Reserved Loading

|                                      |                      |                                            |                 | Antenna                                           |          |                           |  | Mount                  | Transmission Line |      |                         |  |
|--------------------------------------|----------------------|--------------------------------------------|-----------------|---------------------------------------------------|----------|---------------------------|--|------------------------|-------------------|------|-------------------------|--|
| Antenna Owner                        | Mount Height<br>(ft) | Mount Height (ft) Antenna CL Quantity Type |                 | Azimuth                                           | Quantity | uantity Manufacturer Type |  | Quantity               | Model             | Size | Attachment<br>Int./Ext. |  |
| T-Mobile                             | 195                  | 195                                        | 1               | 10,308 in <sup>2</sup> Remaining Reserved Loading |          |                           |  | on the existing mounts |                   |      |                         |  |
| Noto: T-Mobilo's final loading confi | auration uses        | 11 602                                     | in2 of their MI | A resourced leading                               |          |                           |  |                        |                   |      |                         |  |

Note: T-Mobile's final loading configuration uses 11,692 in<sup>2</sup> of their MLA reserved loading.

## APPENDIX B

tnxTower Output

| <b>T</b>                                                          | Job                       | Page                      |
|-------------------------------------------------------------------|---------------------------|---------------------------|
| tnxTower                                                          | US-CT-1002 Kettleton      | 1 of 9                    |
| <b>GPD</b><br>520 South Main Street Suite 2531                    | Project 2017791.CT1002.05 | Date<br>08:34:23 08/28/18 |
| Akron, Ohio 44311<br>Phone: (555) 555-1234<br>FAX: (555) 555-1235 | Client<br>PTI             | Designed by<br>mrisley    |

| <b>Tower Input Data</b> | Tower | Input | Data |
|-------------------------|-------|-------|------|
|-------------------------|-------|-------|------|

The tower is a monopole.

This tower is designed using the TIA-222-G standard. The following design criteria apply: Tower is located in New Haven County, Connecticut. Basic wind speed of 93 mph. Structure Class II. Exposure Category B. Topographic Category 1. Crest Height 0.00 ft. Nominal ice thickness of 0.7500 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

## Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description           | Sector | <i>Component</i>     | Placement     | Total  | Number  | Start/End        |          | Perimeter | Weight |
|-----------------------|--------|----------------------|---------------|--------|---------|------------------|----------|-----------|--------|
|                       |        | Туре                 | C.            | Number | Per Row | Position         | Diameter |           | 110    |
|                       |        |                      | ft            |        |         |                  | in       | in        | klf    |
| PiROD Climbing Rungs  | С      | Surface Ar<br>(CaAa) | 196.00 - 8.00 | 1      | 1       | $0.000 \\ 0.000$ | 0.6250   |           | 0.00   |
| LDF7-50A (1-5/8 FOAM) | А      | Surface Ar<br>(CaAa) | 175.00 - 8.00 | 1      | 1       | $0.000 \\ 0.000$ | 1.9800   |           | 0.00   |
| LDF7-50A (1-5/8 FOAM) | А      | Surface Ar<br>(CaAa) | 175.00 - 8.00 | 5      | 5       | 0.000            | 0.0000   |           | 0.00   |
| Hybriflex             | А      | Surface Ar<br>(CaAa) | 165.00 - 8.00 | 4      | 4       | 0.000            | 1.2500   |           | 0.00   |
| LDF7-50A (1-5/8 FOAM) | В      | Surface Ar<br>(CaAa) | 155.00 - 8.00 | 6      | 6       | 0.000            | 1.9800   |           | 0.00   |
| 1-5/8" Hybrid Cable   | В      | Surface Ar<br>(CaAa) | 155.00 - 8.00 | 2      | 2       | 0.000            | 1.9800   |           | 0.00   |
| LDF5-50A (7/8 FOAM)   | С      | Surface Ar<br>(CaAa) | 75.00 - 8.00  | 1      | 1       | 0.000            | 1.0900   |           | 0.00   |
| 4" x 1-1/4" Mod Plate | А      | Surface Af<br>(CaAa) | 22.00 - 18.00 | 2      | 2       | 0.000            | 1.2500   | 10.5000   | 0.02   |
| 4" x 1-1/4" Mod Plate | В      | Surface Af<br>(CaAa) | 22.00 - 18.00 | 2      | 2       | 0.000            | 1.2500   | 10.5000   | 0.02   |
| 4" x 1-1/4" Mod Plate | С      | Surface Af<br>(CaAa) | 22.00 - 18.00 | 2      | 2       | 0.000 0.000      | 1.2500   | 10.5000   | 0.02   |
| 4" x 1-1/4" Mod Plate | А      | Surface Af<br>(CaAa) | 42.00 - 38.00 | 2      | 2       | 0.000            | 1.2500   | 10.5000   | 0.02   |
| 4" x 1-1/4" Mod Plate | В      | Surface Af<br>(CaAa) | 42.00 - 38.00 | 2      | 2       | 0.000            | 1.2500   | 10.5000   | 0.02   |
| 4" x 1-1/4" Mod Plate | С      | Surface Af           | 42.00 - 38.00 | 2      | 2       | 0.000            | 1.2500   | 10.5000   | 0.02   |

| · •                                                               | Job     |                      | Page                   |
|-------------------------------------------------------------------|---------|----------------------|------------------------|
| tnxTower                                                          |         | US-CT-1002 Kettleton | 2 of 9                 |
| GPD                                                               | Project |                      | Date                   |
| GFD<br>520 South Main Street Suite 2531                           |         | 2017791.CT1002.05    | 08:34:23 08/28/18      |
| Akron, Ohio 44311<br>Phone: (555) 555-1234<br>FAX: (555) 555-1235 | Client  | PTI                  | Designed by<br>mrisley |

| Description           | Sector | Component<br>T | Placement     | Total  | Number  | Start/End |          | Perimeter | Weigh |
|-----------------------|--------|----------------|---------------|--------|---------|-----------|----------|-----------|-------|
|                       |        | Туре           |               | Number | Per Row | Position  | Diameter |           |       |
|                       |        |                | ft            |        |         |           | in       | in        | klf   |
|                       |        | (CaAa)         |               |        |         | 0.000     |          |           |       |
| 6" x 1-1/2" Mod Plate | А      | Surface Af     | 24.00 - 16.00 | 2      | 2       | 0.000     | 0.0000   | 0.0000    | 0.03  |
|                       |        | (CaAa)         |               |        |         | 0.000     |          |           |       |
| 6" x 1-1/2" Mod Plate | В      | Surface Af     | 24.00 - 16.00 | 2      | 1       | 0.000     | 0.0000   | 0.0000    | 0.03  |
|                       |        | (CaAa)         |               |        |         | 0.000     |          |           |       |
| 6" x 1-1/2" Mod Plate | С      | Surface Af     | 24.00 - 16.00 | 2      | 1       | 0.000     | 0.0000   | 0.0000    | 0.03  |
|                       |        | (CaAa)         |               |        |         | 0.000     |          |           |       |
| 6" x 1-1/2" Mod Plate | А      | Surface Af     | 44.00 - 36.00 | 2      | 1       | 0.000     | 0.0000   | 0.0000    | 0.03  |
|                       |        | (CaAa)         |               |        |         | 0.000     |          |           |       |
| 6" x 1-1/2" Mod Plate | В      | Surface Af     | 44.00 - 36.00 | 2      | 1       | 0.000     | 0.0000   | 0.0000    | 0.03  |
|                       |        | (CaAa)         |               |        |         | 0.000     |          |           |       |
| 6" x 1-1/2" Mod Plate | С      | Surface Af     | 44.00 - 36.00 | 2      | 1       | 0.000     | 0.0000   | 0.0000    | 0.03  |
|                       | -      | (CaAa)         |               | _      | -       | 0.000     |          |           |       |
| 6" x 1-1/2" Mod Plate | А      | Surface Af     | 64.00 - 56.00 | 2      | 1       | 0.000     | 0.0000   | 0.0000    | 0.03  |
| 0 11 1/2 1100 1100    |        | (CaAa)         | 0.100 00100   | -      | -       | 0.000     | 0.0000   | 0.0000    | 0.02  |
| 6" x 1-1/2" Mod Plate | В      | Surface Af     | 64.00 - 56.00 | 2      | 1       | 0.000     | 0.0000   | 0.0000    | 0.03  |
| 6 XI IIZ Mod I late   | Б      | (CaAa)         | 01.00 50.00   | 2      | 1       | 0.000     | 0.0000   | 0.0000    | 0.05  |
| 6" x 1-1/2" Mod Plate | С      | Surface Af     | 64.00 - 56.00 | 2      | 1       | 0.000     | 0.0000   | 0.0000    | 0.03  |
| 0 x 1-1/2 Mod Flate   | C      | (CaAa)         | 04.00 - 30.00 | 2      | 1       | 0.000     | 0.0000   | 0.0000    | 0.05  |
|                       |        | (Carra)        |               |        |         | 0.000     |          |           |       |

# Feed Line/Linear Appurtenances - Entered As Area

| Description         | Face<br>or | Allow<br>Shield | Component<br>Type | Placement     | Total<br>Number |          | $C_A A_A$ | Weight |
|---------------------|------------|-----------------|-------------------|---------------|-----------------|----------|-----------|--------|
|                     | Leg        |                 | ~1                | ft            |                 |          | ft²/ft    | klf    |
| Safety Line 3/8     | С          | No              | CaAa (Out Of      | 196.00 - 8.00 | 1               | No Ice   | 0.04      | 0.00   |
| -                   |            |                 | Face)             |               |                 | 1/2" Ice | 0.14      | 0.00   |
|                     |            |                 |                   |               |                 | 1" Ice   | 0.24      | 0.00   |
| LDF7-50A (1-5/8     | С          | No              | Inside Pole       | 195.00 - 8.00 | 12              | No Ice   | 0.00      | 0.00   |
| FOAM)               |            |                 |                   |               |                 | 1/2" Ice | 0.00      | 0.00   |
|                     |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.00   |
| 1-5/8" Hybrid Cable | С          | No              | Inside Pole       | 195.00 - 8.00 | 1               | No Ice   | 0.00      | 0.00   |
| -                   |            |                 |                   |               |                 | 1/2" Ice | 0.00      | 0.00   |
|                     |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.00   |
| LDF6-50A (1-1/4     | А          | No              | Inside Pole       | 185.00 - 8.00 | 12              | No Ice   | 0.00      | 0.00   |
| FOAM)               |            |                 |                   |               |                 | 1/2" Ice | 0.00      | 0.00   |
|                     |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.00   |
| 1.496" Fiber Cable  | Α          | No              | Inside Pole       | 185.00 - 8.00 | 2               | No Ice   | 0.00      | 0.00   |
|                     |            |                 |                   |               |                 | 1/2" Ice | 0.00      | 0.00   |
|                     |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.00   |
| 3/4" DC Power Line  | Α          | No              | Inside Pole       | 185.00 - 8.00 | 4               | No Ice   | 0.00      | 0.00   |
|                     |            |                 |                   |               |                 | 1/2" Ice | 0.00      | 0.00   |
|                     |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.00   |
| LDF7-50A (1-5/8     | С          | No              | Inside Pole       | 91.00 - 8.00  | 1               | No Ice   | 0.00      | 0.00   |
| FOAM)               |            |                 |                   |               |                 | 1/2" Ice | 0.00      | 0.00   |
| )                   |            |                 |                   |               |                 | 1" Ice   | 0.00      | 0.00   |

*tnxTower* 

**GPD** 

520 South Main Street Suite 2531

Akron, Ohio 44311

Phone: (555) 555-1234

FAX: (555) 555-1235

US-CT-1002 Kettleton

Page

Date

2017791.CT1002.05

PTI

1/2" Ice

1" Ice

No Ice

1/2" Ice

1" Ice

No Ice

1/2" Ice

1" Ice

195.00

185.00

50.18

52.51

47.72

50.18

52.51

15.70

20.10

24.50

26.92

29.44

24.42

26.92

29.44

15.70

20.10

24.50

0.62

0.83

0.44

0.62

0.83

1.30

1.76

2.23

Designed by mrisley

K

08:34:23 08/28/18

3 of 9

**Discrete Tower Loads** Description Face Offset Offsets: Azimuth Placement  $C_A A_A$  $C_A A_A$ Weight Horz Adjustment Front Side Type or Leg Lateral Vert  $ft^2$  $ft^2$ ft ft ft ft Pirod 16.5' LP Platform С 0.0000 195.00 No Ice 20.80 20.80 1.80 None 1/2" Ice 28.10 28.10 2.071" Ice 35 40 35.40 2.33 AIR 33 w/ Mount Pipe -10.0000 195.00 No Ice 6.31 0.14 Α From 4.006.63 Centroid-Le 0.00 1/2" Ice 0.20 7.35 7.48 0.00 1" Ice 8.01 8.50 0.27 g From AIR 33 w/ Mount Pipe В 4.00-10.0000 195.00 No Ice 6.63 6.31 0.14 Centroid-Le 0.00 1/2" Ice 7.35 7.48 0.20 0.00 1" Ice 8.01 8.50 0.27 g AIR 33 w/ Mount Pipe С From 4.00 -10.0000 195.00 No Ice 6.63 6.31 0.14 1/2" Ice 7.48 0.20 Centroid-Le 0.00 7.35 0.00 1" Ice 8.01 8.50 0.27 g RR90-17-02DP w/ Mount From 4.00 -10.0000 195.00 4.59 3.34 0.00 Α No Ice Centroid-Le 0.00 1/2" Ice 5.09 4.11 0.00 Pipe 0.00 1" Ice 5.58 4.81 0.00 g RR90-17-02DP w/ Mount В From 4.00 -10.0000 195.00 No Ice 4.59 3.34 0.00 Centroid-Le 0.00 1/2" Ice 5.09 4.11 0.00 Pipe 0.001" Ice 5.58 4.81 0.00 g RR90-17-02DP w/ Mount From 0.00 С 4.00 -10.0000 195.00 No Ice 4.59 3.34 Pipe Centroid-Le 0.00 1/2" Ice 5.09 4.11 0.00 0.00 1" Ice 5.58 4.81 0.00 g 9.35 LNX-6515DS-VTM w/ А From 4.00-10.0000 195.00 No Ice 11.43 0.08 1/2" Ice Centroid-Le 0.00 12.05 10.67 0.16 mount pipe 11.70 0.25 g 0.00 1" Ice 12.67 LNX-6515DS-VTM w/ В From -10.0000 195.00 9.35 0.08 4.00 No Ice 11.43 1/2" Ice 0.00 12.05 10.67 0.16 mount pipe Centroid-Le 0.00 1" Ice 12.67 11.70 0.25 g From -10.0000 195.00 LNX-6515DS-VTM w/ С 4.00 No Ice 11.43 9.35 0.08 mount pipe Centroid-Le 0.00 1/2" Ice 12.05 10.67 0.16 1" Ice 0.00 12.67 11.70 0.25 g KRY 112 71 А From 4.00 -10.0000 195.00 No Ice 0.58 0.40 0.01 0.02 Centroid-Le 0.00 1/2" Ice 0.49 0.69 0.59 0.03 0.00 1" Ice 0.80 g From 0.01 KRY 112 71 В -10.0000 195.00 No Ice 0.40 4.000.58 Centroid-Le 1/2" Ice 0.49 0.02 0.00 0.69 0.00 0.80 0.59 0.03 1" Ice g KRY 112 71 С From 4.00 -10.0000 195.00 No Ice 0.58 0.40 0.01 Centroid-Le 0.00 1/2" Ice 0.69 0.49 0.02 0.00 1" Ice 0.80 0.59 0.03 g DC4-48-60-8-20F Α From 4.00-10.0000 195.00 No Ice 1.43 0.59 0.01 Centroid-Le 0.00 1/2" Ice 1.58 0.70 0.02 1" Ice 0.03 0.00 1.74 0.81 g T-Mobile Reserved Loading Α From 4.00 -10.0000 195.00 No Ice 47.72 24.42 0.44 Centroid-Le 1/2" Ice 26.92 0.00 50.18 0.62 0.00 1" Ice 52.51 29.44 0.83 g T-Mobile Reserved Loading В From 4.00-10.0000195.00 No Ice 47.72 24.42 0.44

Job

Project

Client

PiROD 13' Low Profile Platform (Monopole)

T-Mobile Reserved Loading

Centroid-Le

g

From

Centroid-Le

g

None

С

С

0.00

0.00

4.00

0.00

0.00

-10.0000

0.0000

|                                                                   | Job         |             | Page                   |  |
|-------------------------------------------------------------------|-------------|-------------|------------------------|--|
| tnxTower                                                          | US-CT-100   | 2 Kettleton | 4 of 9                 |  |
| GPD                                                               | Project     |             | Date                   |  |
| 520 South Main Street Suite 2531                                  | 2017791.    | CT1002.05   | 08:34:23 08/28/18      |  |
| Akron, Ohio 44311<br>Phone: (555) 555-1234<br>FAX: (555) 555-1235 | Client<br>F | ті          | Designed by<br>mrisley |  |

| Description               | Face<br>or | Offset<br>Type | Offsets:<br>Horz  | Azimuth<br>Adjustment | Placement |                    | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weigh        |
|---------------------------|------------|----------------|-------------------|-----------------------|-----------|--------------------|--------------------|-------------------|--------------|
|                           | Leg        |                | Lateral           |                       |           |                    |                    |                   |              |
|                           |            |                | Vert<br>ft        | 0                     | ft        |                    | $ft^2$             | $ft^2$            | K            |
|                           |            |                | ft                |                       | ji        |                    | Ji                 | Ji                | п            |
| 7770.00 w/Mount Pipe      | A          | From           | $\frac{ft}{4.00}$ | 23.0000               | 185.00    | No Ice             | 5.51               | 4.10              | 0.06         |
| 7770.00 w/wiount Tipe     | А          | Centroid-Le    | 0.00              | 23.0000               | 105.00    | 1/2" Ice           | 5.87               | 4.73              | 0.00         |
|                           |            | g              | 0.00              |                       |           | 1" Ice             | 6.23               | 5.37              | 0.16         |
| 7770.00 w/Mount Pipe      | В          | From           | 4.00              | 23.0000               | 185.00    | No Ice             | 5.51               | 4.10              | 0.06         |
| ,,,oioo announe ripe      | 2          | Centroid-Le    | 0.00              | 20100000              | 100100    | 1/2" Ice           | 5.87               | 4.73              | 0.11         |
|                           |            | g              | 0.00              |                       |           | 1" Ice             | 6.23               | 5.37              | 0.16         |
| 7770.00 w/Mount Pipe      | С          | From           | 4.00              | 23.0000               | 185.00    | No Ice             | 5.51               | 4.10              | 0.06         |
| Ĩ                         |            | Centroid-Le    | 0.00              |                       |           | 1/2" Ice           | 5.87               | 4.73              | 0.11         |
|                           |            | g              | 0.00              |                       |           | 1" Ice             | 6.23               | 5.37              | 0.16         |
| QS66512-2 w/ Mount Pipe   | А          | From           | 4.00              | 23.0000               | 185.00    | No Ice             | 8.13               | 8.17              | 0.13         |
| -                         |            | Centroid-Le    | 0.00              |                       |           | 1/2" Ice           | 8.59               | 9.13              | 0.20         |
|                           |            | g              | 0.00              |                       |           | 1" Ice             | 9.05               | 9.96              | 0.28         |
| QS66512-2 w/ Mount Pipe   | В          | From           | 4.00              | 23.0000               | 185.00    | No Ice             | 8.13               | 8.17              | 0.13         |
|                           |            | Centroid-Le    | 0.00              |                       |           | 1/2" Ice           | 8.59               | 9.13              | 0.20         |
|                           |            | g              | 0.00              |                       |           | 1" Ice             | 9.05               | 9.96              | 0.28         |
| TPA-65R-LCUUUU-H8 w/      | С          | From           | 4.00              | 23.0000               | 185.00    | No Ice             | 13.54              | 10.96             | 0.11         |
| Mount Pipe                |            | Centroid-Le    | 0.00              |                       |           | 1/2" Ice           | 14.24              | 12.49             | 0.22         |
|                           |            | g              | 0.00              |                       |           | 1" Ice             | 14.95              | 14.04             | 0.33         |
| HPA-65R-BUU-H8 w/         | А          | From           | 4.00              | 23.0000               | 185.00    | No Ice             | 13.05              | 9.42              | 0.09         |
| Mount Pipe                |            | Centroid-Le    | 0.00              |                       |           | 1/2" Ice           | 13.66              | 10.82             | 0.19         |
|                           | -          | g              | 0.00              |                       |           | 1" Ice             | 14.27              | 12.07             | 0.29         |
| HPA-65R-BUU-H8 w/         | В          | From           | 4.00              | 23.0000               | 185.00    | No Ice             | 13.05              | 9.42              | 0.09         |
| Mount Pipe                |            | Centroid-Le    | 0.00              |                       |           | 1/2" Ice           | 13.66              | 10.82             | 0.19         |
|                           | ~          | g              | 0.00              |                       | 105.00    | 1" Ice             | 14.27              | 12.07             | 0.29         |
| HPA-65R-BUU-H8 w/         | С          | From           | 4.00              | 23.0000               | 185.00    | No Ice             | 13.05              | 9.42              | 0.09         |
| Mount Pipe                |            | Centroid-Le    | 0.00              |                       |           | 1/2" Ice           | 13.66              | 10.82             | 0.19         |
| TT10 00DD111 001          |            | g              | 0.00              | 22.0000               | 195.00    | 1" Ice             | 14.27              | 12.07             | 0.29         |
| TT19-08BP111-001          | А          | From           | 4.00              | 23.0000               | 185.00    | No Ice             | 0.55               | 0.45              | 0.02         |
|                           |            | Centroid-Le    | $0.00 \\ 0.00$    |                       |           | 1/2" Ice<br>1" Ice | 0.65<br>0.75       | 0.53<br>0.63      | 0.02<br>0.03 |
| TT19-08BP111-001          | В          | g<br>From      | 4.00              | 23.0000               | 185.00    | No Ice             | 0.75               | 0.03              | 0.03         |
| 1119-08BF111-001          | Б          | Centroid-Le    | 0.00              | 23.0000               | 165.00    | 1/2" Ice           | 0.55               | 0.43              | 0.02         |
|                           |            |                | 0.00              |                       |           | 172 ICe<br>1" Ice  | 0.05               | 0.53              | 0.02         |
| TT19-08BP111-001          | С          | g<br>From      | 4.00              | 23.0000               | 185.00    | No Ice             | 0.75               | 0.05              | 0.03         |
| 1119-08 <b>DI</b> 111-001 | C          | Centroid-Le    | 0.00              | 25.0000               | 105.00    | 1/2" Ice           | 0.65               | 0.53              | 0.02         |
|                           |            | g              | 0.00              |                       |           | 1" Ice             | 0.05               | 0.63              | 0.02         |
| (2) LGP21901              | А          | From           | 4.00              | 23.0000               | 185.00    | No Ice             | 0.23               | 0.16              | 0.01         |
| (2) 201 21 / 01           |            | Centroid-Le    | 0.00              | 20100000              | 100100    | 1/2" Ice           | 0.29               | 0.21              | 0.01         |
|                           |            | g              | 0.00              |                       |           | 1" Ice             | 0.36               | 0.21              | 0.01         |
| (2) LGP21901              | В          | From           | 4.00              | 23.0000               | 185.00    | No Ice             | 0.23               | 0.16              | 0.01         |
|                           |            | Centroid-Le    | 0.00              |                       |           | 1/2" Ice           | 0.29               | 0.21              | 0.01         |
|                           |            | g              | 0.00              |                       |           | 1" Ice             | 0.36               | 0.28              | 0.01         |
| (2) LGP21901              | С          | From           | 4.00              | 23.0000               | 185.00    | No Ice             | 0.23               | 0.16              | 0.01         |
|                           |            | Centroid-Le    | 0.00              |                       |           | 1/2" Ice           | 0.29               | 0.21              | 0.01         |
|                           |            | g              | 0.00              |                       |           | 1" Ice             | 0.36               | 0.28              | 0.01         |
| (2) 782 10250             | А          | From           | 4.00              | 23.0000               | 185.00    | No Ice             | 0.45               | 0.25              | 0.01         |
|                           |            | Centroid-Le    | 0.00              |                       |           | 1/2" Ice           | 0.54               | 0.32              | 0.01         |
|                           |            | g              | 0.00              |                       |           | 1" Ice             | 0.64               | 0.40              | 0.02         |
| (2) 782 10250             | В          | From           | 4.00              | 23.0000               | 185.00    | No Ice             | 0.45               | 0.25              | 0.01         |
|                           |            | Centroid-Le    | 0.00              |                       |           | 1/2" Ice           | 0.54               | 0.32              | 0.01         |
|                           |            | g              | 0.00              |                       |           | 1" Ice             | 0.64               | 0.40              | 0.02         |
| (2) 782 10250             | С          | From           | 4.00              | 23.0000               | 185.00    | No Ice             | 0.45               | 0.25              | 0.01         |
|                           |            | Centroid-Le    | 0.00              |                       |           | 1/2" Ice           | 0.54               | 0.32              | 0.01         |
|                           |            | g              | 0.00              |                       |           | 1" Ice             | 0.64               | 0.40              | 0.02         |
| (2) 7020.00               | А          | From           | 4.00              | 23.0000               | 185.00    | No Ice             | 0.10               | 0.17              | 0.00         |
|                           |            | Centroid-Le    | 0.00              |                       |           | 1/2" Ice           | 0.15               | 0.24              | 0.01         |
|                           |            | g              | 0.00              |                       |           | 1" Ice             | 0.20               | 0.31              | 0.01         |

| T T                                                               | Job     |                      | Page                   |  |  |
|-------------------------------------------------------------------|---------|----------------------|------------------------|--|--|
| tnxTower                                                          |         | US-CT-1002 Kettleton | 5 of 9                 |  |  |
| GPD                                                               | Project |                      | Date                   |  |  |
| 520 South Main Street Suite 2531                                  |         | 2017791.CT1002.05    | 08:34:23 08/28/18      |  |  |
| Akron, Ohio 44311<br>Phone: (555) 555-1234<br>FAX: (555) 555-1235 | Client  | PTI                  | Designed by<br>mrisley |  |  |

| Description           | Face<br>or | Offset<br>Type | Offsets:<br>Horz                            | Azimuth<br>Adjustment | Placement |                    | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weigh        |
|-----------------------|------------|----------------|---------------------------------------------|-----------------------|-----------|--------------------|--------------------|-------------------|--------------|
|                       | Leg        |                | Lateral                                     |                       |           |                    |                    |                   |              |
|                       |            |                | Vert                                        | 0                     | G         |                    | ft <sup>2</sup>    | $ft^2$            | K            |
|                       |            |                | ft<br>ft                                    |                       | ft        |                    | Ji                 | Ji                | Λ            |
|                       |            |                | ft                                          |                       |           |                    |                    |                   |              |
| (2) 7020.00           | В          | From           | 4.00                                        | 23.0000               | 185.00    | No Ice             | 0.10               | 0.17              | 0.00         |
|                       |            | Centroid-Le    | 0.00                                        |                       |           | 1/2" Ice           | 0.15               | 0.24              | 0.01         |
| (2) 7020 00           | С          | g<br>From      | 0.00<br>4.00                                | 23.0000               | 185.00    | 1" Ice<br>No Ice   | 0.20<br>0.10       | 0.31<br>0.17      | 0.01<br>0.00 |
| (2) 7020.00           | C          | Centroid-Le    | 4.00<br>0.00                                | 25.0000               | 185.00    | 1/2" Ice           | 0.10               | 0.17              | 0.00         |
|                       |            |                | 0.00                                        |                       |           | 1" Ice             | 0.15               | 0.24              | 0.01         |
| RRUS 11               | А          | g<br>From      | 4.00                                        | 23.0000               | 185.00    | No Ice             | 2.78               | 1.19              | 0.01         |
| inteo II              | 11         | Centroid-Le    | 0.00                                        | 25.0000               | 105.00    | 1/2" Ice           | 2.99               | 1.33              | 0.07         |
|                       |            | g              | 0.00                                        |                       |           | 1" Ice             | 3.21               | 1.49              | 0.10         |
| RRUS 11               | В          | From           | 4.00                                        | 23.0000               | 185.00    | No Ice             | 2.78               | 1.19              | 0.05         |
|                       | _          | Centroid-Le    | 0.00                                        |                       |           | 1/2" Ice           | 2.99               | 1.33              | 0.07         |
|                       |            | g              | 0.00                                        |                       |           | 1" Ice             | 3.21               | 1.49              | 0.10         |
| RRUS 11               | С          | From           | 4.00                                        | 23.0000               | 185.00    | No Ice             | 2.78               | 1.19              | 0.05         |
|                       |            | Centroid-Le    | 0.00                                        |                       |           | 1/2" Ice           | 2.99               | 1.33              | 0.07         |
|                       |            | g              | 0.00                                        |                       |           | 1" Ice             | 3.21               | 1.49              | 0.10         |
| RRUS 12               | Α          | From           | 4.00                                        | 23.0000               | 185.00    | No Ice             | 3.15               | 1.29              | 0.06         |
|                       |            | Centroid-Le    | 0.00                                        |                       |           | 1/2" Ice           | 3.36               | 1.44              | 0.08         |
|                       |            | g              | 0.00                                        |                       |           | 1" Ice             | 3.59               | 1.60              | 0.11         |
| RRUS 12               | В          | From           | 4.00                                        | 23.0000               | 185.00    | No Ice             | 3.15               | 1.29              | 0.06         |
|                       |            | Centroid-Le    | 0.00                                        |                       |           | 1/2" Ice           | 3.36               | 1.44              | 0.08         |
|                       |            | g              | 0.00                                        |                       |           | 1" Ice             | 3.59               | 1.60              | 0.11         |
| RRUS 12               | С          | From           | 4.00                                        | 23.0000               | 185.00    | No Ice             | 3.15               | 1.29              | 0.06         |
|                       |            | Centroid-Le    | 0.00                                        |                       |           | 1/2" Ice           | 3.36               | 1.44              | 0.08         |
|                       |            | g              | 0.00                                        |                       |           | 1" Ice             | 3.59               | 1.60              | 0.11         |
| RRUS 32               | А          | From           | 4.00                                        | 23.0000               | 185.00    | No Ice             | 3.31               | 2.42              | 0.08         |
|                       |            | Centroid-Le    | 0.00                                        |                       |           | 1/2" Ice           | 3.56               | 2.64              | 0.10         |
| DDLIG 22              | D          | g              | 0.00                                        | 22 0000               | 105.00    | 1" Ice             | 3.81               | 2.86              | 0.14         |
| RRUS 32               | В          | From           | 4.00                                        | 23.0000               | 185.00    | No Ice             | 3.31               | 2.42              | 0.08         |
|                       |            | Centroid-Le    | 0.00                                        |                       |           | 1/2" Ice<br>1" Ice | 3.56<br>3.81       | 2.64              | 0.10         |
| RRUS 32               | С          | g<br>From      | $0.00 \\ 4.00$                              | 23.0000               | 185.00    | No Ice             | 3.31               | 2.86<br>2.42      | 0.14<br>0.08 |
| KKUS 32               | C          | Centroid-Le    | 0.00                                        | 23.0000               | 165.00    | 1/2" Ice           | 3.56               | 2.42              | 0.08         |
|                       |            |                | 0.00                                        |                       |           | 172 ICe<br>1" Ice  | 3.81               | 2.86              | 0.10         |
| RRUS 4426 B66         | А          | g<br>From      | 4.00                                        | 23.0000               | 185.00    | No Ice             | 1.64               | 0.73              | 0.05         |
| 14(05 4420 800        | 11         | Centroid-Le    | 0.00                                        | 23.0000               | 105.00    | 1/2" Ice           | 1.80               | 0.84              | 0.06         |
|                       |            | g              | 0.00                                        |                       |           | 1" Ice             | 1.97               | 0.97              | 0.08         |
| RRUS 4426 B66         | В          | From           | 4.00                                        | 23.0000               | 185.00    | No Ice             | 1.64               | 0.73              | 0.05         |
|                       |            | Centroid-Le    | 0.00                                        |                       |           | 1/2" Ice           | 1.80               | 0.84              | 0.06         |
|                       |            | g              | 0.00                                        |                       |           | 1" Ice             | 1.97               | 0.97              | 0.08         |
| RRUS 4426 B66         | С          | From           | 4.00                                        | 23.0000               | 185.00    | No Ice             | 1.64               | 0.73              | 0.05         |
|                       |            | Centroid-Le    | 0.00                                        |                       |           | 1/2" Ice           | 1.80               | 0.84              | 0.06         |
|                       |            | g              | 0.00                                        |                       |           | 1" Ice             | 1.97               | 0.97              | 0.08         |
| DC6-48-60-18-8F Surge | В          | From           | 4.00                                        | 23.0000               | 185.00    | No Ice             | 0.92               | 0.92              | 0.02         |
| Suppression Unit      |            | Centroid-Le    | 0.00                                        |                       |           | 1/2" Ice           | 1.46               | 1.46              | 0.04         |
|                       |            | g              | 0.00                                        |                       |           | 1" Ice             | 1.64               | 1.64              | 0.06         |
| DC6-48-60-18-8F Surge | С          | From           | 4.00                                        | 23.0000               | 185.00    | No Ice             | 0.92               | 0.92              | 0.02         |
| Suppression Unit      |            | Centroid-Le    | 0.00                                        |                       |           | 1/2" Ice           | 1.46               | 1.46              | 0.04         |
| 17.1 .T.1.5           | ~          | g              | 0.00                                        | 0.0000                | 175.00    | 1" Ice             | 1.64               | 1.64              | 0.06         |
| Valmont Light Duty    | С          | None           |                                             | 0.0000                | 175.00    | No Ice             | 1.76               | 1.76              | 0.05         |
| Tri-Bracket (1)       |            |                |                                             |                       |           | 1/2" Ice           | 2.08               | 2.08              | 0.07         |
| ADVU10 20(5170 C 1    |            | Eners I        | 0.50                                        | 10,0000               | 175.00    | 1" Ice             | 2.40               | 2.40              | 0.09         |
| APXV18-206517S-C w/   | А          | From Leg       | 0.50                                        | -10.0000              | 175.00    | No Ice             | 5.17               | 4.46              | 0.05         |
| Mount Pipe            |            |                | $\begin{array}{c} 0.00 \\ 0.00 \end{array}$ |                       |           | 1/2" Ice<br>1" Ice | 5.62<br>6.08       | 5.39<br>6.20      | 0.09<br>0.14 |
| APXV18-206517S-C w/   | В          | From Log       | 0.00                                        | -10.0000              | 175.00    | No Ice             | 6.08<br>5.17       | 6.20<br>4.46      | 0.14         |
| Mount Pipe            | D          | From Leg       | 0.50                                        | -10.0000              | 175.00    | 1/2" Ice           | 5.62               | 4.46<br>5.39      | 0.05         |
| MOULL FIDE            |            |                | 0.00                                        |                       |           | 172 Ice<br>1" Ice  | 5.02<br>6.08       | 6.20              | 0.09         |

| · •                                                               | Job     |                      | Page                   |  |  |
|-------------------------------------------------------------------|---------|----------------------|------------------------|--|--|
| tnxTower                                                          |         | US-CT-1002 Kettleton | 6 of 9                 |  |  |
| GPD                                                               | Project |                      | Date                   |  |  |
| 520 South Main Street Suite 2531                                  |         | 2017791.CT1002.05    | 08:34:23 08/28/18      |  |  |
| Akron, Ohio 44311<br>Phone: (555) 555-1234<br>FAX: (555) 555-1235 | Client  | PTI                  | Designed by<br>mrisley |  |  |

| Description                       | Face<br>or<br>Leg | Offset<br>Type      | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                    | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weigh        |
|-----------------------------------|-------------------|---------------------|-----------------------------|-----------------------|-----------|--------------------|--------------------|-------------------|--------------|
|                                   |                   |                     | Vert<br>ft<br>ft<br>ft      | o                     | ft        |                    | ft <sup>2</sup>    | ft <sup>2</sup>   | K            |
| APXV18-206517S-C w/<br>Mount Pipe | С                 | From Leg            | 0.50                        | -10.0000              | 175.00    | No Ice<br>1/2" Ice | 5.17<br>5.62       | 4.46<br>5.39      | 0.05         |
| I I                               |                   |                     | 0.00                        |                       |           | 1" Ice             | 6.08               | 6.20              | 0.14         |
| MTS 12.5' LP Platform             | С                 | None                |                             | 0.0000                | 165.00    | No Ice             | 14.66              | 14.66             | 1.25         |
|                                   |                   |                     |                             |                       |           | 1/2" Ice           | 18.87              | 18.87             | 1.48         |
|                                   |                   |                     |                             |                       |           | 1" Ice             | 23.08              | 23.08             | 1.71         |
| APXVTM14-ALU-I20 w/               | Α                 | From                | 4.00                        | 40.0000               | 165.00    | No Ice             | 6.58               | 4.96              | 0.08         |
| Mount Pipe                        |                   | Centroid-Fa         | 0.00                        |                       |           | 1/2" Ice           | 7.03               | 5.75              | 0.13         |
|                                   |                   | ce                  | 0.00                        |                       |           | 1" Ice             | 7.47               | 6.47              | 0.19         |
| APXVTM14-ALU-I20 w/               | В                 | From                | 4.00                        | 10.0000               | 165.00    | No Ice             | 6.58               | 4.96              | 0.08         |
| Mount Pipe                        |                   | Centroid-Fa         | 0.00                        |                       |           | 1/2" Ice           | 7.03               | 5.75              | 0.13         |
|                                   | ~                 | ce                  | 0.00                        |                       |           | 1" Ice             | 7.47               | 6.47              | 0.19         |
| APXVTM14-ALU-I20 w/               | С                 | From                | 4.00                        | 80.0000               | 165.00    | No Ice             | 6.58               | 4.96              | 0.08         |
| Mount Pipe                        |                   | Centroid-Fa         | 0.00                        |                       |           | 1/2" Ice           | 7.03               | 5.75              | 0.13         |
|                                   |                   | ce                  | 0.00                        | 10.0000               | 1 65 00   | 1" Ice             | 7.47               | 6.47              | 0.19         |
| NNVV-65B-R4 w/ Mount              | А                 | From                | 4.00                        | 40.0000               | 165.00    | No Ice             | 12.27              | 7.17              | 0.10         |
| Pipe                              |                   | Centroid-Fa         | 0.00                        |                       |           | 1/2" Ice           | 12.77              | 8.13              | 0.19         |
|                                   | D                 | ce                  | 0.00                        | 10.0000               | 165.00    | 1" Ice             | 13.27              | 8.97              | 0.28         |
| NNVV-65B-R4 w/ Mount              | В                 | From                | 4.00                        | 10.0000               | 165.00    | No Ice             | 12.27              | 7.17              | 0.10         |
| Pipe                              |                   | Centroid-Fa         | 0.00                        |                       |           | 1/2" Ice           | 12.77              | 8.13              | 0.19         |
| NNUV 65D D4 w/ Mount              | C                 | ce                  | 0.00                        | 80.0000               | 165.00    | 1" Ice             | 13.27              | 8.97              | 0.28         |
| NNVV-65B-R4 w/ Mount              | С                 | From<br>Centroid-Fa | 4.00<br>0.00                | 80.0000               | 165.00    | No Ice<br>1/2" Ice | 12.27<br>12.77     | 7.17<br>8.13      | 0.10<br>0.19 |
| Pipe                              |                   | сепиона-га          | 0.00                        |                       |           | 172 Ice<br>1" Ice  | 12.77              | 8.13<br>8.97      | 0.19         |
| RRH 1900 4x45 65 MHz              | А                 | From                | 4.00                        | 40.0000               | 165.00    | No Ice             | 2.29               | 2.29              | 0.28         |
| KKH 1900 4x43 03 MHZ              | А                 | Centroid-Fa         | 0.00                        | 40.0000               | 105.00    | 1/2" Ice           | 2.29               | 2.29              | 0.00         |
|                                   |                   | centrolu-ra         | 0.00                        |                       |           | 172 ICe<br>1" Ice  | 2.30               | 2.30              | 0.08         |
| RRH 1900 4x45 65 MHz              | В                 | From                | 4.00                        | 10.0000               | 165.00    | No Ice             | 2.71               | 2.29              | 0.06         |
| KKII 1900 4x43 03 WIIIZ           | Б                 | Centroid-Fa         | 0.00                        | 10.0000               | 105.00    | 1/2" Ice           | 2.29               | 2.29              | 0.00         |
|                                   |                   | centrola-ra         | 0.00                        |                       |           | 1" Ice             | 2.30               | 2.50              | 0.00         |
| RRH 1900 4x45 65 MHz              | С                 | From                | 4.00                        | 80.0000               | 165.00    | No Ice             | 2.29               | 2.29              | 0.06         |
|                                   | C                 | Centroid-Fa         | 0.00                        | 00.0000               | 105.00    | 1/2" Ice           | 2.50               | 2.50              | 0.08         |
|                                   |                   | ce                  | 0.00                        |                       |           | 1" Ice             | 2.71               | 2.71              | 0.11         |
| 800 MHz RRH                       | А                 | From                | 4.00                        | 40.0000               | 165.00    | No Ice             | 1.70               | 1.28              | 0.05         |
|                                   |                   | Centroid-Fa         | 0.00                        | 10.0000               | 105.00    | 1/2" Ice           | 1.86               | 1.43              | 0.07         |
|                                   |                   | ce                  | 0.00                        |                       |           | 1" Ice             | 2.03               | 1.58              | 0.09         |
| 800 MHz RRH                       | В                 | From                | 4.00                        | 10.0000               | 165.00    | No Ice             | 1.70               | 1.28              | 0.05         |
|                                   |                   | Centroid-Fa         | 0.00                        |                       |           | 1/2" Ice           | 1.86               | 1.43              | 0.07         |
|                                   |                   | ce                  | 0.00                        |                       |           | 1" Ice             | 2.03               | 1.58              | 0.09         |
| 800 MHz RRH                       | С                 | From                | 4.00                        | 80.0000               | 165.00    | No Ice             | 1.70               | 1.28              | 0.05         |
|                                   |                   | Centroid-Fa         | 0.00                        |                       |           | 1/2" Ice           | 1.86               | 1.43              | 0.07         |
|                                   |                   | ce                  | 0.00                        |                       |           | 1" Ice             | 2.03               | 1.58              | 0.09         |
| TD-RRH8x20-25 w/ Solar            | А                 | From                | 4.00                        | 40.0000               | 165.00    | No Ice             | 3.70               | 1.29              | 0.07         |
| Shield                            |                   | Centroid-Fa         | 0.00                        |                       |           | 1/2" Ice           | 3.95               | 1.46              | 0.09         |
|                                   |                   | ce                  | 0.00                        |                       |           | 1" Ice             | 4.20               | 1.64              | 0.12         |
| TD-RRH8x20-25 w/ Solar            | В                 | From                | 4.00                        | 10.0000               | 165.00    | No Ice             | 3.70               | 1.29              | 0.07         |
| Shield                            |                   | Centroid-Fa         | 0.00                        |                       |           | 1/2" Ice           | 3.95               | 1.46              | 0.09         |
|                                   |                   | ce                  | 0.00                        |                       |           | 1" Ice             | 4.20               | 1.64              | 0.12         |
| TD-RRH8x20-25 w/ Solar            | С                 | From                | 4.00                        | 80.0000               | 165.00    | No Ice             | 3.70               | 1.29              | 0.07         |
| Shield                            |                   | Centroid-Fa         | 0.00                        |                       |           | 1/2" Ice           | 3.95               | 1.46              | 0.09         |
|                                   |                   | ce                  | 0.00                        |                       |           | 1" Ice             | 4.20               | 1.64              | 0.12         |
| RRH2X50-08 (800 MHz)              | А                 | From                | 4.00                        | 40.0000               | 165.00    | No Ice             | 1.70               | 1.28              | 0.05         |
|                                   |                   | Centroid-Fa         | 0.00                        |                       |           | 1/2" Ice           | 1.86               | 1.43              | 0.07         |
|                                   |                   | ce                  | 0.00                        |                       |           | 1" Ice             | 2.03               | 1.58              | 0.09         |
| RRH2X50-08 (800 MHz)              | В                 | From                | 4.00                        | 10.0000               | 165.00    | No Ice             | 1.70               | 1.28              | 0.05         |
|                                   |                   | Centroid-Fa         | 0.00                        |                       |           | 1/2" Ice           | 1.86               | 1.43              | 0.07         |
|                                   |                   | ce                  | 0.00                        |                       |           | 1" Ice             | 2.03               | 1.58              | 0.09         |

|                                                                   | Job                 | Page                   |
|-------------------------------------------------------------------|---------------------|------------------------|
| tnxTower                                                          | US-CT-1002 Kettleto | on 7 of 9              |
| GPD                                                               | Project             | Date                   |
| 520 South Main Street Suite 2531                                  | 2017791.CT1002.0    | 5 08:34:23 08/28/18    |
| Akron, Ohio 44311<br>Phone: (555) 555-1234<br>FAX: (555) 555-1235 | Client              | Designed by<br>mrisley |

| Description                  | Face<br>or | Offset<br>Type | Offsets:<br>Horz                          | Azimuth<br>Adjustment | Placement |                    | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weight       |
|------------------------------|------------|----------------|-------------------------------------------|-----------------------|-----------|--------------------|--------------------|-------------------|--------------|
|                              | Leg        |                | Lateral                                   |                       |           |                    |                    |                   |              |
|                              |            |                | Vert<br>ft                                | 0                     | ft        |                    | $ft^2$             | ft <sup>2</sup>   | K            |
|                              |            |                | ft                                        |                       | Ji        |                    | Ji                 | Ji                | K            |
| RRH2X50-08 (800 MHz)         | С          | From           | <u>ft</u><br>4.00                         | 80.0000               | 165.00    | No Ice             | 1.70               | 1.28              | 0.05         |
| KK112X50-00 (000 W112)       | C          | Centroid-Fa    | 0.00                                      | 00.0000               | 105.00    | 1/2" Ice           | 1.86               | 1.43              | 0.05         |
|                              |            | ce             | 0.00                                      |                       |           | 1" Ice             | 2.03               | 1.58              | 0.09         |
| PiROD 15' Low Profile        | С          | None           |                                           | 0.0000                | 155.00    | No Ice             | 17.30              | 17.30             | 1.50         |
| Platform (Monopole)          |            |                |                                           |                       |           | 1/2" Ice           | 22.10              | 22.10             | 2.03         |
|                              |            |                |                                           |                       |           | 1" Ice             | 26.90              | 26.90             | 2.56         |
| (2) JAHH-65B-R3B w/          | А          | From           | 4.00                                      | 0.0000                | 155.00    | No Ice             | 9.35               | 7.65              | 0.09         |
| Mount Pipe                   |            | Centroid-Fa    | 0.00                                      |                       |           | 1/2" Ice           | 9.92               | 8.83              | 0.16         |
| _                            |            | ce             | 0.00                                      |                       |           | 1" Ice             | 10.46              | 9.73              | 0.25         |
| (2) JAHH-65B-R3B w/          | В          | From           | 4.00                                      | 0.0000                | 155.00    | No Ice             | 9.35               | 7.65              | 0.09         |
| Mount Pipe                   |            | Centroid-Fa    | 0.00                                      |                       |           | 1/2" Ice           | 9.92               | 8.83              | 0.16         |
|                              |            | ce             | 0.00                                      |                       |           | 1" Ice             | 10.46              | 9.73              | 0.25         |
| (2) JAHH-65B-R3B w/          | С          | From           | 4.00                                      | 0.0000                | 155.00    | No Ice             | 9.35               | 7.65              | 0.09         |
| Mount Pipe                   |            | Centroid-Fa    | 0.00                                      |                       |           | 1/2" Ice           | 9.92               | 8.83              | 0.16         |
|                              |            | ce             | 0.00                                      |                       |           | 1" Ice             | 10.46              | 9.73              | 0.25         |
| 3XA-70063-4CF-EDIN-6 w/      | Α          | From           | 4.00                                      | 0.0000                | 155.00    | No Ice             | 4.95               | 3.69              | 0.03         |
| Mount Pipe                   |            | Centroid-Fa    | 0.00                                      |                       |           | 1/2" Ice           | 5.32               | 4.29              | 0.07         |
|                              |            | ce             | 0.00                                      |                       |           | 1" Ice             | 5.71               | 4.91              | 0.12         |
| 3XA-70063-4CF-EDIN-6 w/      | В          | From           | 4.00                                      | 0.0000                | 155.00    | No Ice             | 4.95               | 3.69              | 0.03         |
| Mount Pipe                   |            | Centroid-Fa    | 0.00                                      |                       |           | 1/2" Ice           | 5.32               | 4.29              | 0.07         |
|                              | ~          | ce             | 0.00                                      |                       |           | 1" Ice             | 5.71               | 4.91              | 0.12         |
| 3XA-70063-4CF-EDIN-6 w/      | С          | From           | 4.00                                      | 0.0000                | 155.00    | No Ice             | 4.95               | 3.69              | 0.03         |
| Mount Pipe                   |            | Centroid-Fa    | 0.00                                      |                       |           | 1/2" Ice           | 5.32               | 4.29              | 0.07         |
|                              |            | ce             | 0.00                                      | 0.0000                | 155.00    | 1" Ice             | 5.71               | 4.91              | 0.12         |
| DB-C1-12C-24AB-0Z            | А          | From           | 4.00                                      | 0.0000                | 155.00    | No Ice             | 4.06               | 3.10              | 0.03         |
|                              |            | Centroid-Fa    | 0.00                                      |                       |           | 1/2" Ice           | 4.32               | 3.34              | 0.07         |
| DCCA DDUANAS                 |            | ce             | 0.00                                      | 0.0000                | 155.00    | 1" Ice             | 4.58               | 3.58              | 0.11         |
| B66A RRH4X45                 | А          | From           | 4.00                                      | 0.0000                | 155.00    | No Ice             | 2.54               | 1.61              | 0.06         |
|                              |            | Centroid-Fa    | 0.00                                      |                       |           | 1/2" Ice           | 2.75               | 1.79              | 0.08         |
| DCCA DDUAY45                 | р          | ce             | 0.00                                      | 0.0000                | 155.00    | 1" Ice             | 2.97               | 1.98              | 0.10         |
| B66A RRH4X45                 | В          | From           | 4.00                                      | 0.0000                | 155.00    | No Ice             | 2.54<br>2.75       | 1.61<br>1.79      | 0.06         |
|                              |            | Centroid-Fa    | $\begin{array}{c} 0.00\\ 0.00\end{array}$ |                       |           | 1/2" Ice<br>1" Ice | 2.75               | 1.79              | 0.08         |
| B66A RRH4X45                 | С          | ce<br>From     | 4.00                                      | 0.0000                | 155.00    | No Ice             | 2.97               | 1.98              | 0.10<br>0.06 |
| D00A KKH4A43                 | C          | Centroid-Fa    | 4.00<br>0.00                              | 0.0000                | 155.00    | 1/2" Ice           | 2.34               | 1.01              | 0.08         |
|                              |            | centrolu-ra    | 0.00                                      |                       |           | 172 ICC<br>1" Icc  | 2.97               | 1.98              | 0.08         |
| B25 RRH4X30                  | А          | From           | 4.00                                      | 0.0000                | 155.00    | No Ice             | 2.97               | 1.98              | 0.10         |
| D25 KK14X50                  | А          | Centroid-Fa    | 0.00                                      | 0.0000                | 155.00    | 1/2" Ice           | 2.20               | 1.92              | 0.08         |
|                              |            | centrola-ra    | 0.00                                      |                       |           | 1" Ice             | 2.59               | 2.11              | 0.10         |
| B25 RRH4X30                  | В          | From           | 4.00                                      | 0.0000                | 155.00    | No Ice             | 2.20               | 1.74              | 0.06         |
| <b>B</b> 23 <b>R</b> (11473) | Ъ          | Centroid-Fa    | 0.00                                      | 0.0000                | 155.00    | 1/2" Ice           | 2.39               | 1.92              | 0.08         |
|                              |            | ce             | 0.00                                      |                       |           | 1" Ice             | 2.59               | 2.11              | 0.10         |
| B25 RRH4X30                  | С          | From           | 4.00                                      | 0.0000                | 155.00    | No Ice             | 2.20               | 1.74              | 0.06         |
| <i>D20</i> 10011120          | e          | Centroid-Fa    | 0.00                                      | 0.0000                | 100100    | 1/2" Ice           | 2.39               | 1.92              | 0.08         |
|                              |            | ce             | 0.00                                      |                       |           | 1" Ice             | 2.59               | 2.11              | 0.10         |
| B13 RRH 4X30                 | А          | From           | 4.00                                      | 0.0000                | 155.00    | No Ice             | 2.06               | 1.32              | 0.06         |
|                              |            | Centroid-Fa    | 0.00                                      |                       |           | 1/2" Ice           | 2.24               | 1.48              | 0.07         |
|                              |            | ce             | 0.00                                      |                       |           | 1" Ice             | 2.43               | 1.64              | 0.09         |
| B13 RRH 4X30                 | В          | From           | 4.00                                      | 0.0000                | 155.00    | No Ice             | 2.06               | 1.32              | 0.06         |
|                              | -          | Centroid-Fa    | 0.00                                      |                       |           | 1/2" Ice           | 2.24               | 1.48              | 0.07         |
|                              |            | ce             | 0.00                                      |                       |           | 1" Ice             | 2.43               | 1.64              | 0.09         |
| B13 RRH 4X30                 | С          | From           | 4.00                                      | 0.0000                | 155.00    | No Ice             | 2.06               | 1.32              | 0.06         |
|                              | -          | Centroid-Fa    | 0.00                                      |                       |           | 1/2" Ice           | 2.24               | 1.48              | 0.07         |
|                              |            | ce             | 0.00                                      |                       |           | 1" Ice             | 2.43               | 1.64              | 0.09         |
| BSAMNT SBS-2-2               | А          | From           | 4.00                                      | 0.0000                | 155.00    | No Ice             | 0.00               | 1.43              | 0.03         |
|                              |            | Centroid-Fa    | 0.00                                      |                       |           | 1/2" Ice           | 0.00               | 1.92              | 0.04         |
|                              |            | ce             | 0.00                                      |                       |           | 1" Ice             | 0.00               | 2.29              | 0.05         |

| · <b>T</b>                                                        | Job     |                      | Page                   |  |
|-------------------------------------------------------------------|---------|----------------------|------------------------|--|
| tnxTower                                                          |         | US-CT-1002 Kettleton | 8 of 9                 |  |
| GPD                                                               | Project |                      | Date                   |  |
| 520 South Main Street Suite 2531                                  |         | 2017791.CT1002.05    | 08:34:23 08/28/18      |  |
| Akron, Ohio 44311<br>Phone: (555) 555-1234<br>FAX: (555) 555-1235 | Client  | PTI                  | Designed by<br>mrisley |  |

| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                   | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weight |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|-------------------|--------------------|-------------------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 0               |                | Vert                        |                       |           |                   |                    |                   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                | ft                          | 0                     | ft        |                   | $ft^2$             | $ft^2$            | K      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                | ft<br>ft                    |                       |           |                   |                    |                   |        |
| BSAMNT SBS-2-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | В                 | From           | 4.00                        | 0.0000                | 155.00    | No Ice            | 0.00               | 1.43              | 0.03   |
| B5/10/10/10/10/10/10/10/10/10/10/10/10/10/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Б                 | Centroid-Fa    | 0.00                        | 0.0000                | 155.00    | 1/2" Ice          | 0.00               | 1.92              | 0.03   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | ce             | 0.00                        |                       |           | 1" Ice            | 0.00               | 2.29              | 0.05   |
| BSAMNT SBS-2-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С                 | From           | 4.00                        | 0.0000                | 155.00    | No Ice            | 0.00               | 1.43              | 0.03   |
| B5/10/10/10/10/10/10/10/10/10/10/10/10/10/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C                 | Centroid-Fa    | 0.00                        | 0.0000                | 155.00    | 1/2" Ice          | 0.00               | 1.92              | 0.03   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | ce             | 0.00                        |                       |           | 1" Ice            | 0.00               | 2.29              | 0.05   |
| Pipe Mount 3'x4.5"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | С                 | From Leg       | 0.50                        | 0.0000                | 91.00     | No Ice            | 0.90               | 0.90              | 0.03   |
| Tipe Mount 5 x 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C                 | Troin Leg      | 0.00                        | 0.0000                | 91.00     | 1/2" Ice          | 1.12               | 1.12              | 0.03   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                | 0.00                        |                       |           | 1" Ice            | 1.33               | 1.33              | 0.04   |
| Pipe Mount 3'x4.5"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | С                 | From Leg       | 0.50                        | 0.0000                | 75.00     | No Ice            | 0.91               | 0.91              | 0.03   |
| Tipe Mount 5 X4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C                 | 110III Leg     | 0.00                        | 0.0000                | 75.00     | 1/2" Ice          | 1.12               | 1.12              | 0.03   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                | 0.00                        |                       |           | 1" Ice            | 1.33               | 1.33              | 0.04   |
| GPS-TMG-HR-26N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С                 | From Leg       | 0.50                        | 0.0000                | 75.00     | No Ice            | 0.13               | 0.13              | 0.00   |
| 015-1100-110-2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C                 | TIOILLeg       | 0.00                        | 0.0000                | 75.00     | 1/2" Ice          | 0.13               | 0.13              | 0.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                | 0.00                        |                       |           | 1" Ice            | 0.13               | 0.10              | 0.00   |
| Bridge Stiffener (3.25 sq ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | А                 | From Leg       | 0.50                        | 0.0000                | 120.00    | No Ice            | 3.25               | 0.24              | 0.00   |
| Bridge Sufferier (5.25 sq ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | А                 | From Leg       | 0.00                        | 0.0000                | 120.00    | 1/2" Ice          | 3.60               | 1.25              | 0.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                | 0.00                        |                       |           | 172 ICe<br>1" Ice | 3.94               | 1.23              | 0.00   |
| Bridge Stiffener (3.25 sq ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | В                 | From Leg       | 0.50                        | 0.0000                | 120.00    | No Ice            | 3.25               | 0.74              | 0.00   |
| Bridge Suffelier (5.25 sq ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Б                 | From Leg       | 0.00                        | 0.0000                | 120.00    | 1/2" Ice          | 3.60               | 1.25              | 0.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                | 0.00                        |                       |           | 172 ICe<br>1" Ice | 3.00               | 1.23              | 0.00   |
| Bridge Stiffener (3.25 sq ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | С                 | From Leg       | 0.00                        | 0.0000                | 120.00    | No Ice            | 3.94               | 0.74              | 0.00   |
| Bridge Suffelier (5.25 sq ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C                 | From Leg       | 0.00                        | 0.0000                | 120.00    | 1/2" Ice          | 3.60               | 1.25              | 0.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                | 0.00                        |                       |           | 172 Ice<br>1" Ice | 3.94               | 1.23              | 0.00   |
| Dridge Stiffener (2.25 ag ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                 | Erom Log       | 0.00                        | 0.0000                | 100.00    | No Ice            | 3.94               | 0.74              | 0.00   |
| Bridge Stiffener (3.25 sq ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Α                 | From Leg       | 0.00                        | 0.0000                | 100.00    | 1/2" Ice          | 3.60               | 1.25              | 0.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                |                             |                       |           |                   |                    | 1.23              | 0.00   |
| $\mathbf{D} = \mathbf{A} + \mathbf{C} + $ | р                 | Energy Law     | 0.00                        | 0.0000                | 100.00    | 1" Ice            | 3.94               |                   |        |
| Bridge Stiffener (3.25 sq ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | В                 | From Leg       | 0.50                        | 0.0000                | 100.00    | No Ice            | 3.25<br>3.60       | 0.74<br>1.25      | 0.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                | 0.00                        |                       |           | 1/2" Ice          | 3.60               |                   | 0.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C                 | <b>г</b> т     | 0.00                        | 0.0000                | 100.00    | 1" Ice            | 3.94               | 1.73              | 0.00   |
| Bridge Stiffener (3.25 sq ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | С                 | From Leg       | 0.50                        | 0.0000                | 100.00    | No Ice            | 3.25               | 0.74              | 0.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                | 0.00                        |                       |           | 1/2" Ice          | 3.60               | 1.25              | 0.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | ь I            | 0.00                        | 0.0000                | 00.00     | 1" Ice            | 3.94               | 1.73              | 0.00   |
| Bridge Stiffener (3.25 sq ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | А                 | From Leg       | 0.50                        | 0.0000                | 80.00     | No Ice            | 3.25               | 0.74              | 0.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                | 0.00                        |                       |           | 1/2" Ice          | 3.60               | 1.25              | 0.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | р                 | <b>F I</b>     | 0.00                        | 0.0000                | 00.00     | 1" Ice            | 3.94               | 1.73              | 0.00   |
| Bridge Stiffener (3.25 sq ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | В                 | From Leg       | 0.50                        | 0.0000                | 80.00     | No Ice            | 3.25               | 0.74              | 0.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                | 0.00                        |                       |           | 1/2" Ice          | 3.60               | 1.25              | 0.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~                 |                | 0.00                        | 0.0000                | 00.00     | 1" Ice            | 3.94               | 1.73              | 0.00   |
| Bridge Stiffener (3.25 sq ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | С                 | From Leg       | 0.50                        | 0.0000                | 80.00     | No Ice            | 3.25               | 0.74              | 0.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                | 0.00                        |                       |           | 1/2" Ice          | 3.60               | 1.25              | 0.00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                | 0.00                        |                       |           | 1" Ice            | 3.94               | 1.73              | 0.00   |

| Dishes      |                   |              |                |                                     |                       |                       |           |                     |          |                  |        |
|-------------|-------------------|--------------|----------------|-------------------------------------|-----------------------|-----------------------|-----------|---------------------|----------|------------------|--------|
| Description | Face<br>or<br>Leg | Dish<br>Type | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustment | 3 dB<br>Beam<br>Width | Elevation | Outside<br>Diameter |          | Aperture<br>Area | Weight |
|             |                   |              |                | ft                                  | 0                     | 0                     | ft        | ft                  |          | $ft^2$           | K      |
| 2' MW       | С                 | Paraboloid   | From           | 1.00                                | 0.0000                |                       | 91.00     | 2.00                | No Ice   | 3.14             | 0.04   |
|             |                   | w/Radome     | Leg            | 0.00                                |                       |                       |           |                     | 1/2" Ice | 3.41             | 0.07   |
|             |                   |              |                | 0.00                                |                       |                       |           |                     | 1" Ice   | 3.68             | 0.10   |

|                                            | Job     |                      | Page              |
|--------------------------------------------|---------|----------------------|-------------------|
| tnxTower                                   |         | US-CT-1002 Kettleton | 9 of 9            |
| GPD                                        | Project |                      | Date              |
| 520 South Main Street Suite 2531           |         | 2017791.CT1002.05    | 08:34:23 08/28/18 |
| Akron, Ohio 44311<br>Phone: (555) 555-1234 | Client  | PTI                  | Designed by       |
| FAX: (555) 555-1235                        |         |                      | mrisley           |

# Critical Deflections and Radius of Curvature - Service Wind

| Elevation | Appurtenance                       | Gov.  | Deflection | Tilt   | Twist  | Radius of |
|-----------|------------------------------------|-------|------------|--------|--------|-----------|
|           |                                    | Load  |            |        |        | Curvature |
| ft        |                                    | Comb. | in         | 0      | 0      | ft        |
| 195.00    | Pirod 16.5' LP Platform            | 48    | 18.671     | 0.9149 | 0.0018 | 50175     |
| 185.00    | PiROD 13' Low Profile Platform     | 48    | 16.765     | 0.9004 | 0.0019 | 18562     |
|           | (Monopole)                         |       |            |        |        |           |
| 175.00    | Valmont Light Duty Tri-Bracket (1) | 48    | 14.918     | 0.8635 | 0.0017 | 14618     |
| 165.00    | MTS 12.5' LP Platform              | 48    | 13.160     | 0.8113 | 0.0016 | 8680      |
| 155.00    | PiROD 15' Low Profile Platform     | 48    | 11.531     | 0.7484 | 0.0012 | 10006     |
|           | (Monopole)                         |       |            |        |        |           |
| 120.00    | Bridge Stiffener (3.25 sq ft)      | 48    | 6.887      | 0.5378 | 0.0006 | 12519     |
| 100.00    | Bridge Stiffener (3.25 sq ft)      | 48    | 4.813      | 0.4473 | 0.0004 | 12527     |
| 91.00     | 2' MW                              | 48    | 4.005      | 0.4096 | 0.0004 | 12924     |
| 80.00     | Bridge Stiffener (3.25 sq ft)      | 48    | 3.120      | 0.3574 | 0.0003 | 12965     |
| 75.00     | Pipe Mount 3'x4.5"                 | 48    | 2.756      | 0.3379 | 0.0003 | 14304     |



## Site BU: US-CT-1002 Kettleton Work Order: 2018791.CT1002.05



# **Pole Geometry**

Copyright © 2018 Crown Castle

|    | Pole Height Above |                     | Lap Splice Length |                 |                   | Bottom Diameter |                     |                  |               |
|----|-------------------|---------------------|-------------------|-----------------|-------------------|-----------------|---------------------|------------------|---------------|
|    | Base (ft)         | Section Length (ft) | (ft)              | Number of Sides | Top Diameter (in) | (in)            | Wall Thickness (in) | Bend Radius (in) | Pole Material |
| 1  | 196               | 1                   |                   | 0               | 18                | 18              | 0.375               |                  | A53-B-42      |
| 2  | 195               | 15                  |                   | 0               | 24.00             | 24              | 0.375               |                  | A53-B-42      |
| 3  | 180               | 20                  |                   | 0               | 30.00             | 30              | 0.375               |                  | A53-B-42      |
| 4  | 160               | 20                  |                   | 0               | 36.00             | 36              | 0.375               |                  | A53-B-42      |
| 5  | 140               | 20                  |                   | 0               | 42.00             | 42              | 0.375               |                  | A53-B-42      |
| 6  | 120               | 20                  |                   | 0               | 48.00             | 48              | 0.375               |                  | A53-B-42      |
| 7  | 100               | 20                  |                   | 0               | 54.00             | 54              | 0.375               |                  | A53-B-42      |
| 8  | 80                | 20                  |                   | 0               | 60.00             | 60              | 0.375               |                  | A53-B-42      |
| 9  | 60                | 20                  |                   | 0               | 60.00             | 60              | 0.5                 |                  | A53-B-42      |
| 10 | 40                | 40                  |                   | 0               | 60.00             | 60              | 0.625               |                  | A53-B-42      |

# **Reinforcement Configuration**

|    | Bottom Effective<br>Elevation (ft) | Top Effective<br>Elevation (ft) | Туре  | Model            | Pole Flat<br>Width (in) | 1 | 2 | 3 | 4 | 5 | 6 | 7   | 8 | 9 | 10 | 11 | 12 | 13  | 14 | 15 | 16 | 17 | 18 |
|----|------------------------------------|---------------------------------|-------|------------------|-------------------------|---|---|---|---|---|---|-----|---|---|----|----|----|-----|----|----|----|----|----|
| 1  | 0                                  | 20                              | plate | 6-1/2"x1-1/2" FP | -                       | 0 |   |   |   |   |   | 120 |   |   |    |    |    | 240 |    |    |    |    |    |
| 2  | 20                                 | 40                              | plate | 6-1/2"x1-1/2" FP | -                       | 0 |   |   |   |   |   | 120 |   |   |    |    |    | 240 |    |    |    |    |    |
| 3  | 40                                 | 60                              | plate | 6-1/2"x1-1/2" FP | -                       | 0 |   |   |   |   |   | 120 |   |   |    |    |    | 240 |    |    |    |    |    |
| 4  | 60                                 | 80                              | plate | 6-1/2"x1-1/2" FP | -                       | 0 |   |   |   |   |   | 120 |   |   |    |    |    | 240 |    |    |    |    |    |
| 5  | 80                                 | 100                             | plate | 6-1/2"x1-1/2" FP | -                       | 0 |   |   |   |   |   | 120 |   |   |    |    |    | 240 |    |    |    |    |    |
| 6  | 100                                | 120                             | plate | 6-1/2"x1-1/2" FP | -                       | 0 |   |   |   |   |   | 120 |   |   |    |    |    | 240 |    |    |    |    |    |
| 7  | 120                                | 136                             | plate | 6-1/2"x1-1/2" FP | -                       | 0 |   |   |   |   |   | 120 |   |   |    |    |    | 240 |    |    |    |    |    |
| 8  |                                    |                                 |       |                  |                         |   |   |   |   |   |   |     |   |   |    |    |    |     |    |    |    |    |    |
| 9  |                                    |                                 |       |                  |                         |   |   |   |   |   |   |     |   |   |    |    |    |     |    |    |    |    |    |
| 10 |                                    |                                 |       |                  |                         |   |   |   |   |   |   |     |   |   |    |    |    |     |    |    |    |    |    |

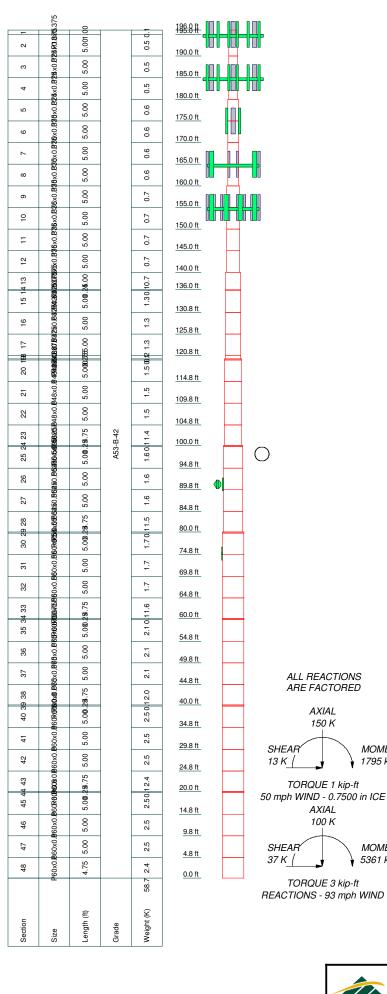
## **Reinforcement Details**

|   |        |        |                               |               | Bottom      | Тор         |                     |                             |                     |               |
|---|--------|--------|-------------------------------|---------------|-------------|-------------|---------------------|-----------------------------|---------------------|---------------|
|   |        |        |                               | Pole Face to  | Termination | Termination |                     |                             |                     | Reinforcement |
|   | B (in) | H (in) | Gross Area (in <sup>2</sup> ) | Centroid (in) | Length (in) | Length (in) | L <sub>u</sub> (in) | Net Area (in <sup>2</sup> ) | Bolt Hole Size (in) | Material      |
| 1 | 6.5    | 1.5    | 9.75                          | 0.75          | 33.000      | 33.000      | 18.000              | 7.875                       | 1.1875              | A572-65       |
| 2 | 6.5    | 1.5    | 9.75                          | 0.75          | 33.000      | 33.000      | 18.000              | 7.875                       | 1.1875              | A572-65       |
| 3 | 6.5    | 1.5    | 9.75                          | 0.75          | 33.000      | 33.000      | 18.000              | 7.875                       | 1.1875              | A572-65       |
| 4 | 6.5    | 1.5    | 9.75                          | 0.75          | 33.000      | 33.000      | 18.000              | 7.875                       | 1.1875              | A572-65       |
| 5 | 6.5    | 1.5    | 9.75                          | 0.75          | 33.000      | 33.000      | 18.000              | 7.875                       | 1.1875              | A572-65       |
| 6 | 6.5    | 1.5    | 9.75                          | 0.75          | 33.000      | 33.000      | 18.000              | 7.875                       | 1.1875              | A572-65       |
| 7 | 6.5    | 1.5    | 9.75                          | 0.75          | 33.000      | 33.000      | 18.000              | 7.875                       | 1.1875              | A572-65       |

# **Analysis Results**

| Elevation (ft)  | Component<br>Type | Size           | Critical Element    | % Capacity | Pass / Fai |
|-----------------|-------------------|----------------|---------------------|------------|------------|
| 196 - 195       | Pole              | TP18x18x0.375  | Pole                | 0.0%       | Pass       |
| 195 - 190       | Pole              | TP24x24x0.375  | Pole                | 7.3%       | Pass       |
| 190 - 185       | Pole              | TP24x24x0.375  | Pole                | 14.5%      | Pass       |
| 185 - 180       | Pole              | TP24x24x0.375  | Pole                | 26.0%      | Pass       |
| 180 - 175       | Pole              | TP30x30x0.375  | Pole                | 24.8%      | Pass       |
| 175 - 170       | Pole              | TP30x30x0.375  | Pole                | 32.9%      | Pass       |
| 170 - 165       | Pole              | TP30x30x0.375  | Pole                | 41.2%      | Pass       |
| 165 - 160       | Pole              | TP30x30x0.375  | Pole                | 51.7%      | Pass       |
| 160 - 155       | Pole              | TP36x36x0.375  | Pole                | 44.2%      | Pass       |
| 155 - 150       | Pole              | TP36x36x0.375  | Pole                | 53.5%      | Pass       |
| 150 - 145       | Pole              | TP36x36x0.375  | Pole                | 62.6%      | Pass       |
| 145 - 140       | Pole              | TP36x36x0.375  | Pole                | 71.9%      | Pass       |
| 140 - 136       | Pole              | TP42x42x0.375  | Pole                | 59.4%      | Pass       |
| 136 - 135.75    | Pole + Reinf.     | TP42x42x0.6375 | Pole                | 35.9%      | Pass       |
| 135.75 - 130.75 | Pole + Reinf.     | TP42x42x0.6375 | Pole                | 40.2%      | Pass       |
| 130.75 - 125.75 | Pole + Reinf.     | TP42x42x0.6375 | Pole                | 44.6%      | Pass       |
| 125.75 - 120.75 | Pole + Reinf.     | TP42x42x0.6375 | Pole                | 49.1%      | Pass       |
| 120.75 - 120    | Pole + Reinf.     | TP42x42x0.6375 | Pole                | 49.8%      | Pass       |
| 120.75 - 120    | Pole + Reinf.     | TP48x48x0.6    | Pole                | 49.8%      | Pass       |
|                 | Pole + Reinf.     |                |                     |            |            |
| 119.75 - 114.75 |                   | TP48x48x0.6    | Pole                | 44.8%      | Pass       |
| 114.75 - 109.75 | Pole + Reinf.     | TP48x48x0.6    | Pole                | 48.7%      | Pass       |
| 109.75 - 104.75 | Pole + Reinf.     | TP48x48x0.6    | Pole                | 52.6%      | Pass       |
| 104.75 - 100    | Pole + Reinf.     | TP48x48x0.6    | Pole                | 56.4%      | Pass       |
| 100 - 99.75     | Pole + Reinf.     | TP54x54x0.5625 | Pole                | 47.3%      | Pass       |
| 99.75 - 94.75   | Pole + Reinf.     | TP54x54x0.5625 | Pole                | 50.7%      | Pass       |
| 94.75 - 89.75   | Pole + Reinf.     | TP54x54x0.5625 | Pole                | 54.2%      | Pass       |
| 89.75 - 84.75   | Pole + Reinf.     | TP54x54x0.5625 | Pole                | 57.7%      | Pass       |
| 84.75 - 80      | Pole + Reinf.     | TP54x54x0.5625 | Pole                | 61.1%      | Pass       |
| 80 - 79.75      | Pole + Reinf.     | TP60x60x0.55   | Pole                | 52.0%      | Pass       |
| 79.75 - 74.75   | Pole + Reinf.     | TP60x60x0.55   | Pole                | 55.1%      | Pass       |
| 74.75 - 69.75   | Pole + Reinf.     | TP60x60x0.55   | Pole                | 58.2%      | Pass       |
| 69.75 - 64.75   | Pole + Reinf.     | TP60x60x0.55   | Pole                | 61.4%      | Pass       |
| 64.75 - 60      | Pole + Reinf.     | TP60x60x0.55   | Pole                | 64.5%      | Pass       |
| 60 - 59.75      | Pole + Reinf.     | TP60x60x0.675  | Pole                | 51.4%      | Pass       |
| 59.75 - 54.75   | Pole + Reinf.     | TP60x60x0.675  | Pole                | 54.1%      | Pass       |
| 54.75 - 49.75   | Pole + Reinf.     | TP60x60x0.675  | Pole                | 56.7%      | Pass       |
| 49.75 - 44.75   | Pole + Reinf.     | TP60x60x0.675  | Pole                | 59.4%      | Pass       |
| 44.75 - 40      | Pole + Reinf.     | TP60x60x0.675  | Pole                | 62.0%      | Pass       |
| 40 - 39.75      | Pole + Reinf.     | TP60x60x0.8    | Reinf. 2 Bolt Shear | 51.4%      | Pass       |
| 39.75 - 34.75   | Pole + Reinf.     | TP60x60x0.8    | Pole                | 53.5%      | Pass       |
| 34.75 - 29.75   | Pole + Reinf.     | TP60x60x0.8    | Pole                | 55.8%      | Pass       |
| 29.75 - 24.75   | Pole + Reinf.     | TP60x60x0.8    | Pole                | 58.1%      | Pass       |
| 24.75 - 20      | Pole + Reinf.     | TP60x60x0.8    | Reinf. 2 Bolt Shear | 60.6%      | Pass       |
| 20 - 19.75      | Pole + Reinf.     | TP60x60x0.8    | Reinf. 1 Bolt Shear | 60.7%      | Pass       |
| 19.75 - 14.75   | Pole + Reinf.     | TP60x60x0.8    | Pole                | 62.9%      | Pass       |
| 14.75 - 9.75    | Pole + Reinf.     | TP60x60x0.8    | Pole                | 65.2%      | Pass       |
| 9.75 - 4.75     | Pole + Reinf.     | TP60x60x0.8    | Pole                | 67.6%      | Pass       |
| 4.75 - 0        | Pole + Reinf.     | TP60x60x0.8    | Reinf. 1 Bolt Shear | 70.1%      | Pass       |
| 4.70 - 0        |                   |                |                     | Summary    | rd33       |
|                 | +                 |                | Pole                | 71.9%      | Pass       |
|                 |                   |                | Reinforcement       | 70.1%      | Pass       |
|                 |                   |                | Overall             | 71.9%      | Pass       |

# **Additional Calculations**


| Section                 | Mom   | ent of Inerti | a (in <sup>4</sup> ) |        | Area (in <sup>2</sup> ) |        |        |         |       | % Capac | ity   |       |       |       |
|-------------------------|-------|---------------|----------------------|--------|-------------------------|--------|--------|---------|-------|---------|-------|-------|-------|-------|
| Elevation (ft)          | Pole  | Reinf.        | Total                | Pole   | Reinf.                  | Total  | Pole   | R1      | R2    | R3      | R4    | R5    | R6    | R7    |
| 196 - 195               | 807   | n/a           | 807                  | 20.76  | n/a                     | 20.76  | 0.0%   |         |       |         |       |       |       |       |
| 195 - 190               | 1942  | n/a           | 1942                 | 27.83  | n/a                     | 27.83  | 7.3%   |         |       |         |       |       |       |       |
| 190 - 185               | 1942  | n/a           | 1942                 | 27.83  | n/a                     | 27.83  | 14.5%  |         |       |         |       |       |       |       |
| 185 - 180               | 1942  | n/a           | 1942                 | 27.83  | n/a                     | 27.83  | 26.0%  |         |       |         |       |       |       |       |
| 180 - 175               | 3829  | n/a           | 3829                 | 34.90  | n/a                     | 34.90  | 24.8%  |         |       |         |       |       |       |       |
| 175 - 170               | 3829  | n/a           | 3829                 | 34.90  | n/a                     | 34.90  | 32.9%  |         |       |         |       |       |       |       |
| 170 - 165               | 3829  | n/a           | 3829                 | 34.90  | n/a                     | 34.90  | 41.2%  |         |       |         |       |       |       |       |
| 165 - 160               | 3829  | n/a           | 3829                 | 34.90  | n/a                     | 34.90  | 51.7%  |         |       |         |       |       |       |       |
| 160 - 155               | 6659  | n/a           | 6659                 | 41.97  | n/a                     | 41.97  | 44.2%  |         |       |         |       |       |       |       |
| 155 - 150               | 6659  | n/a           | 6659                 | 41.97  | n/a                     | 41.97  | 53.5%  |         |       |         |       |       |       |       |
| 150 - 145               | 6659  | n/a           | 6659                 | 41.97  | n/a                     | 41.97  | 62.6%  |         |       |         |       |       |       |       |
| 145 - 140               | 6659  | n/a           | 6659                 | 41.97  | n/a                     | 41.97  | 71.9%  |         |       |         |       |       |       |       |
| 140 - 136               | 10622 | n/a           | 10622                | 49.04  | n/a                     | 49.04  | 59.4%  |         |       |         |       |       |       |       |
| 136 - 135.75            | 10622 | 6973          | 17594                | 49.04  | 29.25                   | 78.29  | 35.9%  |         |       |         |       |       |       | 35.8% |
| 135.75 - 130.75         | 10622 | 6973          | 17594                | 49.04  | 29.25                   | 78.29  | 40.2%  |         |       |         |       |       |       | 36.7% |
| 130.75 - 125.75         | 10622 | 6973          | 17594                | 49.04  | 29.25                   | 78.29  | 44.6%  |         |       |         |       |       |       | 40.7% |
| 125.75 - 120.75         | 10622 | 6973          | 17594                | 49.04  | 29.25                   | 78.29  | 49.1%  |         |       |         |       |       |       | 44.8% |
| 120.75 - 120            | 10622 | 6973          | 17594                | 49.04  | 29.25                   | 78.29  | 49.8%  |         |       |         |       |       |       | 49.6% |
| 120 - 119.75            | 15908 | 9013          | 24921                | 56.11  | 29.25                   | 85.36  | 41.1%  |         |       |         |       |       | 40.1% |       |
| 119.75 - 114.75         | 15908 | 9013          | 24921                | 56.11  | 29.25                   | 85.36  | 44.8%  |         |       |         |       |       | 40.2% |       |
| 114.75 - 109.75         | 15908 | 9013          | 24921                | 56.11  | 29.25                   | 85.36  | 48.7%  |         |       |         |       |       | 43.6% |       |
| 109.75 - 104.75         | 15908 | 9013          | 24921                | 56.11  | 29.25                   | 85.36  | 52.6%  |         |       |         |       |       | 47.2% |       |
| 104.75 - 100            | 15908 | 9013          | 24921                | 56.11  | 29.25                   | 85.36  | 56.4%  |         |       |         |       |       | 55.1% |       |
| 100 - 99.75             | 22710 | 11316         | 34026                | 63.18  | 29.25                   | 92.43  | 47.3%  |         |       |         |       | 45.6% |       |       |
| 99.75 - 94.75           | 22710 | 11316         | 34026                | 63.18  | 29.25                   | 92.43  | 50.7%  |         |       |         |       | 44.8% |       |       |
| 94.75 - 89.75           | 22710 | 11316         | 34026                | 63.18  | 29.25                   | 92.43  | 54.2%  |         |       |         |       | 47.9% |       |       |
| 89.75 - 84.75           | 22710 | 11316         | 34026                | 63.18  | 29.25                   | 92.43  | 57.7%  |         |       |         |       | 51.0% |       |       |
| 84.75 - 80              | 22710 | 11316         | 34026                | 63.18  | 29.25                   | 92.43  | 61.1%  |         |       |         |       | 58.9% |       |       |
| 80 - 79.75              | 31217 | 13883         | 45100                | 70.24  | 29.25                   | 99.49  | 52.0%  |         |       |         | 49.5% |       |       |       |
| 79.75 - 74.75           | 31217 | 13883         | 45100                | 70.24  | 29.25                   | 99.49  | 55.1%  |         |       |         | 48.1% |       |       |       |
| 74.75 - 69.75           | 31217 | 13883         | 45100                | 70.24  | 29.25                   | 99.49  | 58.2%  |         |       |         | 50.9% |       |       |       |
| 69.75 - 64.75           | 31217 | 13883         | 45100                | 70.24  | 29.25                   | 99.49  | 61.4%  |         |       |         | 53.7% |       |       |       |
| 64.75 - 60              | 31217 | 13883         | 45100                | 70.24  | 29.25                   | 99.49  | 64.5%  |         |       |         | 61.5% |       |       |       |
| 60 - 59.75              | 41363 | 13883         | 55246                | 93.46  | 29.25                   | 122.71 | 51.4%  |         |       | 50.3%   |       |       |       |       |
| 59.75 - 54.75           | 41363 | 13883         | 55246                | 93.46  | 29.25                   | 122.71 | 54.1%  |         |       | 48.5%   |       |       |       |       |
| 54.75 - 49.75           | 41363 | 13883         | 55246                | 93.46  | 29.25                   | 122.71 | 56.7%  |         |       | 50.9%   |       |       |       |       |
| 49.75 - 44.75           | 41363 | 13883         | 55246                | 93.46  | 29.25                   | 122.71 | 59.4%  |         |       | 53.3%   |       |       |       |       |
| 44.75 - 40              | 41363 | 13883         | 55246                | 93.46  | 29.25                   | 122.71 | 62.0%  |         |       | 60.7%   |       |       |       |       |
| 40 - 39.75              | 51381 | 13883         | 65264                | 116.58 | 29.25                   | 145.83 | 51.2%  |         | 51.4% |         |       |       |       |       |
| 39.75 - 34.75           | 51381 | 13883         | 65264                | 116.58 | 29.25                   | 145.83 | 53.5%  |         | 49.3% |         |       |       |       |       |
| 34.75 - 29.75           | 51381 | 13883         | 65264                | 116.58 | 29.25                   | 145.83 | 55.8%  |         | 51.4% |         |       |       |       |       |
| 29.75 - 24.75           | 51381 | 13883         | 65264                | 116.58 | 29.25                   | 145.83 | 58.1%  |         | 53.5% |         |       |       |       |       |
| 24.75 - 20              | 51381 | 13883         | 65264                | 116.58 | 29.25                   | 145.83 | 60.4%  |         | 60.6% |         |       |       |       |       |
| 20 - 19.75              | 51381 | 13883         | 65264                | 116.58 | 29.25                   | 145.83 | 60.5%  | 60.7%   |       |         |       |       |       |       |
| 19.75 - 14.75           | 51381 | 13883         | 65264                | 116.58 | 29.25                   | 145.83 | 62.9%  | 57.9%   |       |         |       |       |       |       |
| 14.75 - 9.75            | 51381 | 13883         | 65264                | 116.58 | 29.25                   | 145.83 | 65.2%  | 60.1%   |       |         |       |       |       |       |
| 9.75 - 4.75             | 51381 | 13883         | 65264                | 116.58 | 29.25                   | 145.83 | 67.6%  | 62.2%   |       |         |       |       |       |       |
| 4.75 - 0                | 51381 | 13883         | 65264                | 116.58 | 29.25                   | 145.83 | 69.9%  | 70.1%   |       |         |       |       |       |       |
| Noto: Contian conceitur |       |               |                      | 110.00 |                         | 1-0.00 | 00.070 | 2 0.170 |       |         |       |       |       |       |

Note: Section capacity checked in 5 degree increments.

CCIpole - version 4.1.1

## **APPENDIX C**

Tower Elevation Drawing & Feedline Plan



| MATERIAL STRENGTH |        |        |       |    |    |  |  |  |  |  |
|-------------------|--------|--------|-------|----|----|--|--|--|--|--|
| GRADE             | Fy     | Fu     | GRADE | Fy | Fu |  |  |  |  |  |
| A53-B-42          | 42 ksi | 63 ksi |       |    |    |  |  |  |  |  |
|                   |        |        | •     |    |    |  |  |  |  |  |

#### **TOWER DESIGN NOTES**

- Tower is located in New Haven County, Connecticut. Tower designed for Exposure B to the TIA-222-G Standard. 1.
- 2.
- 3. Tower designed for a 93 mph basic wind in accordance with the TIA-222-G Standard. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to 4.
- increase in thickness with height.

5. Deflections are based upon a 60 mph wind.

ALL REACTIONS

ARE FACTORED

AXIAL

150 K

TORQUE 1 kip-ft

AXIAL

100 K

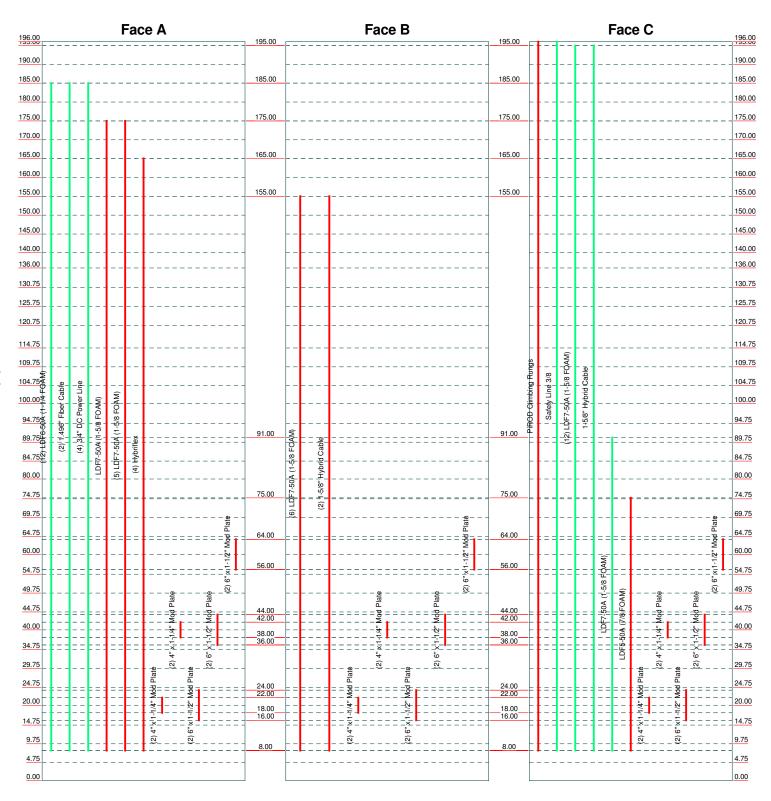
TORQUE 3 kip-ft

MOMENT

1795 kip-ft

MOMENT

5361 kip-ft


- Tower Structure Class II. Topographic Category 1 with Crest Height of 0.00 ft TOWER RATING: 71.9% 6. 7. 8.

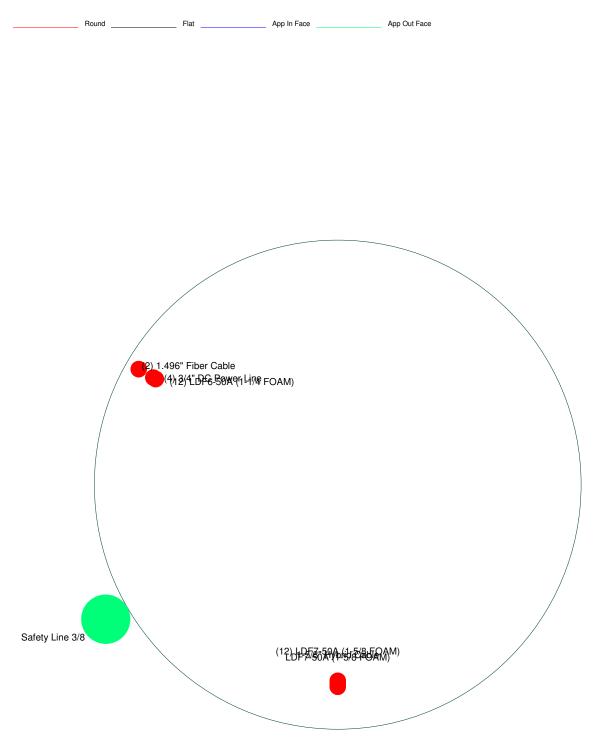
|                                  | <sup>Job:</sup> US-CT-1002 Ke                      |                                                     |             |
|----------------------------------|----------------------------------------------------|-----------------------------------------------------|-------------|
| 520 South Main Street Suite 2531 | Project: 2017791.CT100.                            |                                                     |             |
| Akron, Ohio 44311                | Client: PTI                                        | Drawn by: mrisley                                   | App'd:      |
| Phone: (555) 555-1234            | <sup>Code:</sup> TIA-222-G                         | Date: 08/28/18                                      | Scale: NTS  |
| FAX: (555) 555-1235              | Path:<br>T:PTIUS-CT-1002 (CT11126F)(05 2018791 CT1 | 002 05 PTI ATT SA\SA Rev0\TNX\US-CT-1002 Modified.e | Dwg No. E-1 |

#### Feed Line Distribution Chart 0' - 196'

App In Face \_\_\_\_\_ App Out Face

Truss Leg




GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (555) 555-1234 FAX: (555) 555-1235

| <sup>Job:</sup> US-CT-1002 | Kettleton         |             |
|----------------------------|-------------------|-------------|
| Project: 2017791.CT1       | 002.05            |             |
| <sup>Client:</sup> PTI     | Drawn by: mrisley | App'd:      |
| Code: TIA-222-G            | Date: 08/28/18    | Scale: NTS  |
| Path:                      |                   | Dwg No. E-7 |

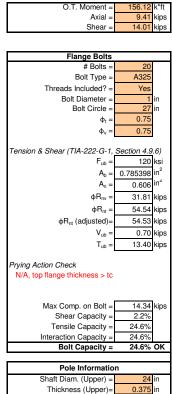
Round

Flat

#### Feed Line Plan






### APPENDIX D

Flange Bolt & Flange Plate Analysis

180'



Existing Flange Connection @ US-CT-1002, Kettleton 2018791.CT1002.05



| l ensile Capacity =      | 24.6% |     |
|--------------------------|-------|-----|
| Interaction Capacity =   | 24.6% |     |
| Bolt Capacity =          | 24.6% | ОК  |
|                          |       |     |
| Pole Informatio          | n     |     |
| Shaft Diam. (Upper) =    | 24    | in  |
| Thickness (Upper)=       | 0.375 | in  |
| # of Sides (Upper) =     | Round |     |
| F <sub>y</sub> (Upper) = | 42    | ksi |
|                          |       |     |
| Shaft Diam. (Lower) =    | 30    | in  |
| Thickness (Lower)=       | 0.375 | in  |
| # of Sides (Lower) =     | Round |     |
| F <sub>y</sub> (Lower) = | 42    | ksi |

Acceptable Stress Ratio 105.0%

| Upper Flange                       | Plate    |                 |
|------------------------------------|----------|-----------------|
| Location =                         | External |                 |
| Plate Strength (F <sub>y</sub> ) = | 36       | ksi             |
| Plate Tensile (F <sub>u</sub> ) =  | 58       | ksi             |
| Plate Thickness =                  | 1.25     | in              |
| Outer Diameter =                   | 30.375   | in              |
| $\phi_f =$                         | 0.9      |                 |
| wcalc =                            | 12.37    | in              |
| wmax =                             | 20.84    | in              |
| W =                                | 12.37    | in              |
| Z =                                | 4.83     | in <sup>3</sup> |
| M <sub>u</sub> =                   | 44.44    | k-in            |
| φM <sub>n</sub> =                  | 156.5492 | k-in            |
| UP Capacity =                      | 28.4%    | ок              |
|                                    |          |                 |

Lower Flange Plate

e =

w = Z =

M., =

36 ksi 1.25

24.25 in 29.25 in

1.13 in

4.59 in

1.79 in<sup>3</sup> 16.13 k-in

27.7% OK

φM<sub>n</sub> = 58.15014 k-in

in

Location = Plate Strength (F<sub>y</sub>) =

Pole Inner Diameter

Plate Thickness

Hole Diameter =

LP Capacity =

\*\*Stiffeners ineffective - check plate unstiffened\*\*

UpperStiffeners

Thickness

Width

Notch :

Height =

Fillet Size =

Weld Strength =

Every Othe

0.625 in

> 0.5 in

Yes 0.3125 in

Fillet

0.3125 in

70 ksi

in

in

36 ksi

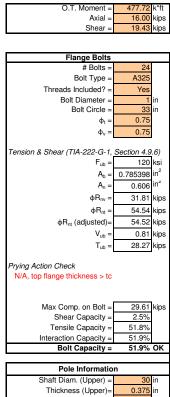
Configuration =

Stiffener Strength (Fy) =

Weld Info. Known? =

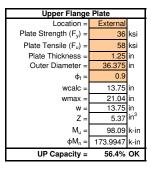
Vertical Weld Size =

Horiz. Weld Type =


| Lower Stiffene            | rs          |     |
|---------------------------|-------------|-----|
| Configuration =           | Every Other |     |
| Thickness =               | 0.625       | in  |
| Width =                   | 2           | in  |
| Notch =                   | 0.5         | in  |
| Height =                  | 3.5         | in  |
| Stiffener Strength (Fy) = | 36          | ksi |
|                           |             |     |
| Weld Info. Known? =       | Yes         |     |
| Vertical Weld Size =      | 0.3125      | in  |
| Horiz. Weld Type =        | Fillet      |     |
|                           |             |     |
|                           |             |     |
| Fillet Size =             | 0.3125      | in  |
| Weld Strength =           | 70          | ksi |

\*\*Stiffeners ineffective - check plate unstiffened\*\*

160'




Existing Flange Connection @ US-CT-1002, Kettleton 2018791.CT1002.05



| Max Comp. on Bolt =      | 29.61 | kips |
|--------------------------|-------|------|
| Shear Capacity =         | 2.5%  |      |
| Tensile Capacity =       | 51.8% |      |
| Interaction Capacity =   | 51.9% |      |
| Bolt Capacity =          | 51.9% | ОК   |
|                          |       |      |
| Pole Informatio          | n     |      |
| Shaft Diam. (Upper) =    | 30    | in   |
| Thickness (Upper)=       | 0.375 | in   |
| # of Sides (Upper) =     | Round |      |
| F <sub>y</sub> (Upper) = | 42    | ksi  |
|                          |       |      |
| Shaft Diam. (Lower) =    | 36    | in   |
| Thickness (Lower)=       | 0.375 | in   |
| # of Sides (Lower) =     | Round |      |
| F <sub>y</sub> (Lower) = | 42    | ksi  |

Acceptable Stress Ratio 105.0%



\*\*Stiffeners ineffective - check plate unstiffened\*\*

UpperStiffeners

Thickness

Width

Notch :

Height =

Every Othe

0.625 in

in

in

in

36 ksi

Yes 0.3125 in

Fillet

0.3125 in

70 ksi

Configuration =

Stiffener Strength  $(F_y) =$ 

Weld Info. Known? =

Vertical Weld Size =

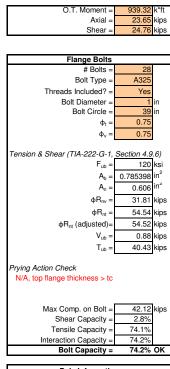
Horiz. Weld Type =

Fillet Size =

Weld Strength =

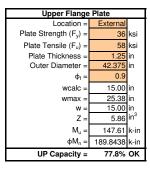
| Lower Stiffeners                       |             |  |  |  |
|----------------------------------------|-------------|--|--|--|
| Configuration =                        | Every Other |  |  |  |
| Thickness =                            | 0.625 in    |  |  |  |
| Width =                                | 2 in        |  |  |  |
| Notch =                                | 0.5 in      |  |  |  |
| Height =                               | 3.5 in      |  |  |  |
| Stiffener Strength (F <sub>y</sub> ) = | 36 ksi      |  |  |  |
|                                        |             |  |  |  |
| Weld Info. Known? =                    | Yes         |  |  |  |
| Vertical Weld Size =                   | 0.3125 in   |  |  |  |
| Horiz. Weld Type =                     | Fillet      |  |  |  |
|                                        | •           |  |  |  |
|                                        |             |  |  |  |
| Fillet Size =                          | 0.3125 in   |  |  |  |
| Weld Strength =                        | 70 ksi      |  |  |  |

| Location =                         | Internal |                 |
|------------------------------------|----------|-----------------|
| Plate Strength (F <sub>y</sub> ) = | 36       | ksi             |
| Plate Thickness =                  | 1.25     | in              |
| Hole Diameter =                    | 27.375   | in              |
| Pole Inner Diameter =              | 35.25    | in              |
| e =                                | 1.13     | in              |
| W =                                | 4.61     | in              |
| Z =                                | 1.80     | in <sup>3</sup> |
| M <sub>u</sub> =                   | 33.31    | k-in            |
| φM <sub>n</sub> =                  | 58.39865 | k-in            |
| LP Capacity =                      | 57.0%    | ок              |
|                                    |          |                 |


Lower Flange Plate

\*\*Stiffeners ineffective - check plate unstiffened\*\*

140'




Existing Flange Connection @ US-CT-1002, Kettleton 2018791.CT1002.05



| interaction oupdaty =    | 14.270 |     |
|--------------------------|--------|-----|
| Bolt Capacity =          | 74.2%  | ОК  |
|                          |        |     |
| Pole Informatio          | n      |     |
| Shaft Diam. (Upper) =    | 36     | in  |
| Thickness (Upper)=       | 0.375  | in  |
| # of Sides (Upper) =     | Round  |     |
| F <sub>y</sub> (Upper) = | 42     | ksi |
|                          |        |     |
| Shaft Diam. (Lower) =    | 42     | in  |
| Thickness (Lower)=       | 0.375  | in  |
| # of Sides (Lower) =     | Round  |     |
| F <sub>y</sub> (Lower) = | 42     | ksi |

Acceptable Stress Ratio = 105.0%



\*\*Stiffeners ineffective - check plate unstiffened\*\*

UpperStiffeners

Every Othe

0.5

0.5 in

Yes 0.3125 in

Fillet

0.3125 in

70 ksi

3 in

in

in

36 ksi

Configuration =

Stiffener Strength  $(F_y) =$ 

Weld Info. Known? =

Vertical Weld Size =

Horiz. Weld Type =

Fillet Size =

Weld Strength =

Thickness

Width

Notch :

Height =

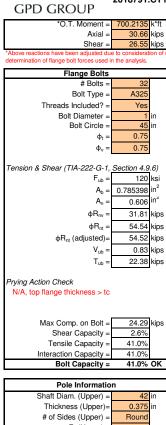
| Lower Stiffeners                       |             |     |  |  |
|----------------------------------------|-------------|-----|--|--|
| Configuration =                        | Every Other |     |  |  |
| Thickness =                            | 0.5         | in  |  |  |
| Width =                                | 2           | in  |  |  |
| Notch =                                | 0.5         | in  |  |  |
| Height =                               | 3.5         | in  |  |  |
| Stiffener Strength (F <sub>y</sub> ) = | 36          | ksi |  |  |
|                                        |             |     |  |  |
| Weld Info. Known? =                    | Yes         |     |  |  |
| Vertical Weld Size =                   | 0.3125      | in  |  |  |
| Horiz. Weld Type =                     | Fillet      |     |  |  |
|                                        |             |     |  |  |
|                                        |             | i   |  |  |
| Fillet Size =                          | 0.3125      | in  |  |  |
| Weld Strength =                        | 70          | ksi |  |  |
|                                        |             |     |  |  |

| Plate Strength (F <sub>y</sub> ) = | 36       | ksi             |
|------------------------------------|----------|-----------------|
| Plate Thickness =                  | 1.25     | in              |
| Hole Diameter =                    | 33.375   | in              |
| Pole Inner Diameter =              | 41.25    | in              |
| e =                                | 1.13     | in              |
| W =                                | 4.63     | in              |
| Z =                                | 1.81     | in <sup>3</sup> |
| M <sub>u</sub> =                   | 47.38    | k-in            |
| $\phi M_n =$                       | 58.57615 | k-in            |
| LP Capacity =                      | 80.9%    | οк              |
|                                    |          |                 |

Lower Flange Plate

Internal

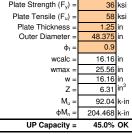
Location =


\*\*Stiffeners ineffective - check plate unstiffened\*\*



**GPD GROUP** Engineers • Architects • Planners Project #: 2018791.CT1002.05

| BOLT AND BRIDGE STIFFENER CALCU                                                                                                                                                                               | JLATIONS                                                                             | @ 120'                                                                                                                                                                                                                                     |                                                                                                        |                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Moment from TNX (M) =<br>Axial from TNX (P) =                                                                                                                                                                 | 1452.45 kip-ft<br>30.66 kip                                                          | ASIF = 1.00                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                    |
| Inner Bolt Diameter =<br>Inner Bolt Area $(A_{inner})$ =<br>Inner Bolt MOI $(I_{o.inner})$ =<br>Number Inner Bolts $(N_{inner})$ =                                                                            | 1 in<br>0.79 in <sup>2</sup><br>0.05 in <sup>4</sup><br>32                           | Inner Bolt Circle (BC45 inTotal Area ( $A_{tot.in}$ ) =25.13 in <sup>2</sup> Percent Total Area ( $\eta_{in}$ ) =48.2%                                                                                                                     | Axial, Inner Bolts (P*ŋ <sub>in</sub> ) =                                                              | 14.78 kips                                                                                                                         |
| Bridge Stiffener Width =<br>Bridge Stiffener Thickness =<br>Bridge Stiffener Unbraced Length =<br>Bridge Stiffener Area $(A_{pl})$ =<br>Bridge Stiffener MOI $(I_o)$ =<br>Number Bridge Stiffeners $(N_{pl})$ | 6.00 in<br>1.50 in<br>12.00 in<br>9.00 in <sup>2</sup><br>27.00 in <sup>4</sup><br>3 | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                       | Axial, Bridge Stiffener (P*n <sub>pl</sub> ) =                                                         | 15.88 kips                                                                                                                         |
| $I_{inner} = 6363.30$<br>$I_{pl} = 8859.38$<br>$I_{tot} = 15222.67$                                                                                                                                           | in. <sup>4</sup> $(N_{pl}*A_{pl})$                                                   | $\frac{A_{inner} * BC_{inner}^{2} / 8 + N_{inner} * I_{o.inner}}{8 BC_{pl}^{2} / 8 + N_{pl} * I_{o.pl}}$<br>$\frac{BC_{pl}^{2} / 8 + N_{pl} * I_{o.pl}}{I_{outer} + I_{pl}}$                                                               | Bridge<br>f <sub>y</sub> =<br>f <sub>u</sub> =<br>E =<br>K =<br>K1/r =                                 | e Stiffener Check<br>50 ksi<br>65 ksi<br>29000 ksi<br>0.85<br>23.556                                                               |
| $P_{u.t.inner} = 19.8$ $P_{u.t.pl} = 257.5$ $P_{u.c.pl} = 268.1$ $\emptyset P_{nt.bolt} = 61.85$ Bolt Rating = 32.0%                                                                                          | kips (M*(BC <sub>p</sub><br>kips (M*(BC <sub>p</sub>                                 | $\begin{array}{l} & \underset{  /2 ^*A_{inner} }{  I_{total} - P^*\eta_{in}/N_{inner} } \\ & \underset{  /2 ^*A_{pl} }{  I_{total} - P^*\eta_{pl}/N_{pl} } \\ & \underset{  /2 ^*A_{pl} }{  I_{total} + P^*\eta_{pl}/N_{pl} } \end{array}$ | $F_{e} = F_{cr} = \emptyset P_{nc} = \emptyset P_{nc} = \emptyset P_{nt} = $ Bridge Stiffener Rating = | 53.536         515.82       ksi         48.01       ksi         388.90       kips         438.75       kips         68.9%       OK |


Existing Flange Connection @ US-CT-1002, Kettleton 2018791.CT1002.05



| Pole Informatio          | n     |     |
|--------------------------|-------|-----|
| Shaft Diam. (Upper) =    | 42    | in  |
| Thickness (Upper)=       | 0.375 | in  |
| # of Sides (Upper) =     | Round |     |
| F <sub>y</sub> (Upper) = | 42    | ksi |
|                          |       |     |
| Shaft Diam. (Lower) =    | 48    | in  |
| Thickness (Lower)=       | 0.375 | in  |
| # of Sides (Lower) =     | Round |     |
| $F_{v}$ (Lower) =        | 42    | ksi |

Acceptable Stress Ratio 105.0% Upper Flange Plate Location = Exte Plate Strength (F<sub>y</sub>) = 36 ksi

120'



Lower Flange Plate

e w

Ζ: M., =

36 ksi 1.25

47.25 in 1.13 in

4.64 in 1.81 in<sup>3</sup>

27.33 k-in  $\phi M_n = 58.70928$  k-in

46.6% OK

39.375 in

in

Location :

Plate Strength (Fy) =

Pole Inner Diameter

Plate Thickness

Hole Diameter =

LP Capacity =

UpperStiffeners Configuration = Every Othe 0.625 Thickness in Width in Notch in Height = in Stiffener Strength (F<sub>y</sub>) = 36 ksi Weld Info. Known? = Yes Vertical Weld Size = 0.3125 in Horiz. Weld Type = Fillet 0.3125 in Fillet Size = Weld Strength = 70 ksi

#### \*\*Stiffeners ineffective - check plate unstiffened\*\*

| Lower Stiffene                         | rs          |     |
|----------------------------------------|-------------|-----|
| Configuration =                        | Every Other |     |
| Thickness =                            | 0.625       | in  |
| Width =                                | 2           | in  |
| Notch =                                | 0.5         |     |
| Height =                               | 3.5         | in  |
| Stiffener Strength (F <sub>y</sub> ) = | 36          | ksi |
|                                        |             |     |
| Weld Info. Known? =                    | Yes         |     |
| Vertical Weld Size =                   | 0.3125      | in  |
| Horiz. Weld Type =                     | Fillet      |     |
|                                        |             |     |
|                                        |             |     |
| Fillet Size =                          | 0.3125      | in  |
| Weld Strength =                        | 70          | ksi |
|                                        |             |     |

| **Stiffeners ineffective - | check plate unstiffened** |
|----------------------------|---------------------------|



**GPD GROUP** Engineers • Architects • Planners Project #: 2018791.CT1002.05

| BOLT AND BRIDGE STIFFENER CALC                                                                                                                                                                                | <u>ULATIONS</u>                                                                      | @ 100'                                                                                                                                                                                                                                                 |                                                          |                                                                                              |                                                    |                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------|
| Moment from TNX (M) = $Axial from TNX (P) =$                                                                                                                                                                  | 2007.34 kip-ft<br>38.72 kip                                                          | ASIF = 1.00                                                                                                                                                                                                                                            |                                                          |                                                                                              |                                                    |                                  |
| Inner Bolt Diameter =<br>Inner Bolt Area (A <sub>inner</sub> ) =<br>Inner Bolt MOI (I <sub>o.inner</sub> ) =<br>Number Inner Bolts (N <sub>inner</sub> ) =                                                    | 1 in<br>0.79 in <sup>2</sup><br>0.05 in <sup>4</sup><br>33                           | Inner Bolt Circle (BC <sub>inner</sub> ) =<br>Total Area (A <sub>tot.in</sub> ) =<br>Percent Total Area ( $\eta_{in}$ ) =                                                                                                                              | 51 in<br>25.92 in <sup>2</sup><br>49.0%                  | Axial, Inner Bolts (P*ŋ <sub>in</sub> ) =                                                    | 18.96                                              | kips                             |
| Bridge Stiffener Width =<br>Bridge Stiffener Thickness =<br>Bridge Stiffener Unbraced Length =<br>Bridge Stiffener Area $(A_{pl})$ =<br>Bridge Stiffener MOI $(I_0)$ =<br>Number Bridge Stiffeners $(N_{pl})$ | 6.00 in<br>1.50 in<br>12.00 in<br>9.00 in <sup>2</sup><br>27.00 in <sup>4</sup><br>3 | Connection Bolt Hole Size =<br>Net Bridge Stiffener Area $(A_{e,pl})$<br>Bridge Stiffener Circle $(BC_{pl}) =$<br>Total Area $(A_{tot,pl}) =$<br>Percent Total Area $(\eta_{pl}) =$                                                                    | 0 in<br>9 in2<br>57 in<br>27.00 in <sup>2</sup><br>51.0% | Axial, Bridge Stiffener (P*ŋ <sub>pl</sub> ) =                                               | 19.76                                              | kips                             |
| $I_{inner} = 8428.2$<br>$I_{pl} = 11046.3$<br>$I_{tot} = 19474.6$                                                                                                                                             | 8 in. <sup>4</sup> (N <sub>pl</sub> *A <sub>pl</sub>                                 |                                                                                                                                                                                                                                                        |                                                          | Bridg<br>f <sub>y</sub> =<br>f <sub>u</sub> =<br>E =<br>K =<br>KL/r =                        | e Stiffener<br>50<br>65<br>29000<br>0.85<br>23.556 | Check<br>ksi<br>ksi<br>ksi       |
| $P_{u.t.pl} = 310.$<br>$P_{u.c.pl} = 323.$                                                                                                                                                                    | 7 kips (M*(BC                                                                        | $\begin{split} & \mathcal{L}_{inner}/2)^* A_{inner} / I_{total} - P^* \eta_{in} / N_{inner} \\ & \mathcal{L}_{pl}/2)^* A_{pl} / I_{total} - P^* \eta_{pl} / N_{pl} \\ & \mathcal{L}_{pl}/2)^* A_{pl} / I_{total} + P^* \eta_{pl} / N_{pl} \end{split}$ |                                                          | $F_{e} = F_{cr} = \\ \emptyset P_{nc} = \\ \emptyset P_{nt} = \\ Bridge Stiffener Rating = $ | 515.82<br>48.01<br>388.90<br>438.75                | ksi<br>ksi<br>kips<br>kips<br>OK |

Existing Flange Connection @ US-CT-1002, Kettleton 2018791.CT1002.05

GPD GROUP \*O.T. Moment = 983.1509 k\*ft kips Axial = 38.72 Shear = 28.67 kips \*Above reactions have been adjusted due to consideral determination of flange bolt forces used in the analysis. Flange Bolts # Bolts = 36 Bolt Type A325 Threads Included? Yes Bolt Diameter Bolt Circle : 5 in 0.75 φt φ<sub>v</sub> = 0.75 Tension & Shear (TIA-222-G-1, Section 4.9.6)  $F_{ub} =$ 120 ksi 0.785398 in<sup>2</sup> A<sub>b</sub> = A<sub>n</sub> = 0.606 in² φR<sub>nv</sub> 31.81 kips φR<sub>nt</sub> 54.54 kips φR<sub>nt</sub> (adjusted)= 54.52 kips V<sub>ub</sub> : 0.80 kips T<sub>ub</sub> = 24.62 kips Prying Action Check N/A, top flange thickness > tc Max Comp. on Bolt = 26.77 kips Shear Capacity = 2.5% Tensile Capacity = 45.1% Interaction Capacity = 45.2% Bolt Capacity = 45.2% OK Pole Information Shaft Diam. (Upper) = 48

0.375 in Round Thickness (Upper)= # of Sides (Upper) =  $F_y$  (Upper) = 42 ksi Shaft Diam. (Lower) = Thickness (Lower)= 54 in 0.375 in # of Sides (Lower) Round F<sub>y</sub> (Lower) = 42

| Lower Flange Plate                 |          |                 |  |  |
|------------------------------------|----------|-----------------|--|--|
| Location =                         | Internal |                 |  |  |
| Plate Strength (F <sub>y</sub> ) = | 36       | ksi             |  |  |
| Plate Thickness =                  | 1.25     | in              |  |  |
| Hole Diameter =                    | 45.375   | in              |  |  |
| Pole Inner Diameter =              | 53.25    | in              |  |  |
| e =                                | 1.13     | in              |  |  |
| W =                                | 4.65     | in              |  |  |
| Z =                                | 1.82     | in <sup>3</sup> |  |  |
| M <sub>u</sub> =                   | 30.12    | k-in            |  |  |
| φM <sub>n</sub> =                  | 58.81282 | k-in            |  |  |
| LP Capacity =                      | 51.2%    | OK              |  |  |
|                                    |          |                 |  |  |

100'

105.0%

36 ksi

58 ksi

1.25 in

0.9

17.23 in 25.70 in 17.23 in

6.73 in<sup>3</sup>

107.54 k-in

49.3% OK

218.1139 k-in

54.375 in

Exte

Acceptable Stress Ratio

Plate Strength  $(F_y)$  =

Plate Tensile (F<sub>u</sub>)

Plate Thickness

Outer Diameter =

Upper Flange Plate

φf

w

Z =

M<sub>u</sub> =

 $\phi M_n =$ 

UP Capacity =

wcalc =

wmax

Location =

\*\*Stiffeners ineffective - check plate unstiffened\*\*

| UpperStiffeners           |             |     |  |  |  |  |  |
|---------------------------|-------------|-----|--|--|--|--|--|
| Configuration =           | Every Other |     |  |  |  |  |  |
| Thickness =               | 0.625       | in  |  |  |  |  |  |
| Width =                   | 3           | in  |  |  |  |  |  |
| Notch =                   | 0.5         | in  |  |  |  |  |  |
| Height =                  | 5           | in  |  |  |  |  |  |
| Stiffener Strength (Fy) = | 36          | ksi |  |  |  |  |  |
|                           |             |     |  |  |  |  |  |
| Weld Info. Known? =       | Yes         |     |  |  |  |  |  |
| Vertical Weld Size =      | 0.3125      | in  |  |  |  |  |  |
| Horiz. Weld Type =        | Fillet      |     |  |  |  |  |  |
|                           |             |     |  |  |  |  |  |
|                           |             |     |  |  |  |  |  |
| Fillet Size =             | 0.3125      | in  |  |  |  |  |  |
| Weld Strength =           | 70          | ksi |  |  |  |  |  |
|                           |             |     |  |  |  |  |  |

| **Stiffeners inef | fective - check | plate u | unstiffened** |
|-------------------|-----------------|---------|---------------|
|-------------------|-----------------|---------|---------------|

| Lower Stiffeners                       |             |     |  |  |  |  |
|----------------------------------------|-------------|-----|--|--|--|--|
| Configuration =                        | Every Other |     |  |  |  |  |
| Thickness =                            | 0.625       | in  |  |  |  |  |
| Width =                                | 2           | in  |  |  |  |  |
| Notch =                                | 0.5         | in  |  |  |  |  |
| Height =                               | 3.5         | in  |  |  |  |  |
| Stiffener Strength (F <sub>y</sub> ) = | 36          | ksi |  |  |  |  |
|                                        |             | u – |  |  |  |  |
| Weld Info. Known? =                    | Yes         |     |  |  |  |  |
| Vertical Weld Size =                   | 0.3125      | in  |  |  |  |  |
| Horiz. Weld Type =                     | Fillet      |     |  |  |  |  |
|                                        |             |     |  |  |  |  |
| Fillet Size =                          | 0.3125      | in  |  |  |  |  |
| Weld Strength =                        | 70          | ksi |  |  |  |  |
|                                        |             |     |  |  |  |  |



**GPD GROUP** Engineers • Architects • Planners Project #: 2018791.CT1002.05

| <b>BOLT AND BRIDGE STIFFENER CALCULATIONS</b>                                                                                                                                                                                           |                                                                                      | @ 80'                                                                                                                                                                                                                                                      |                                                                                                  |                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Moment from TNX ( $M$ ) =<br>Axial from TNX ( $P$ ) =                                                                                                                                                                                   | 2606.00 kip-ft<br>47.47 kip                                                          | ASIF = 1.00                                                                                                                                                                                                                                                |                                                                                                  |                                                                                                                                       |
| Inner Bolt Diameter =<br>Inner Bolt Area (A <sub>inner</sub> ) =<br>Inner Bolt MOI (I <sub>o.inner</sub> ) =<br>Number Inner Bolts (N <sub>inner</sub> ) =                                                                              | 1 in<br>0.79 in <sup>2</sup><br>0.05 in <sup>4</sup><br>48                           |                                                                                                                                                                                                                                                            | 57 in<br>70 in <sup>2</sup><br>9% Axial, Inner Bolts (P*ŋ <sub>in</sub> ) =                      | 27.66 kips                                                                                                                            |
| Bridge Stiffener Width =<br>Bridge Stiffener Thickness =<br>Bridge Stiffener Unbraced Length =<br>Bridge Stiffener Area (A <sub>pl</sub> ) =<br>Bridge Stiffener MOI (I <sub>o</sub> ) =<br>Number Bridge Stiffeners (N <sub>pl</sub> ) | 6.00 in<br>1.50 in<br>12.00 in<br>9.00 in <sup>2</sup><br>27.00 in <sup>4</sup><br>3 | Net Bridge Stiffener Area (A <sub>e.pl</sub> )<br>Bridge Stiffener Circle (BC <sub>pl</sub> ) = 6                                                                                                                                                          | 0 in<br>9 in<br>63 in<br>00 in <sup>2</sup><br>7% Axial, Bridge Stiffener (P*ŋ <sub>pl</sub> ) = | 19.81 kips                                                                                                                            |
| $I_{inner} = 15312.9$<br>$I_{pl} = 13476.3$<br>$I_{tot} = 28789.2$                                                                                                                                                                      | $8 \text{ in.}^4 \text{ (N}_{\text{pl}} * A_{\text{pl}}$                             | $\frac{A_{inner}^{*}BC_{inner}^{2}/8 + N_{inner}^{*}I_{o.inner}}{*BC_{pl}^{2}/8 + N_{pl}^{*}I_{o.pl}}$ $I_{outer} + I_{pl}$                                                                                                                                | Bridge<br>f <sub>y</sub> =<br>f <sub>u</sub> =<br>E =<br>K =<br>K1/r =                           | e Stiffener Check<br>50 ksi<br>65 ksi<br>29000 ksi<br>0.85<br>23.556                                                                  |
| $P_{u.t.pl} = 301.$<br>$P_{u.c.pl} = 314.$                                                                                                                                                                                              | 3 kips (M*(BC                                                                        | $\begin{array}{l} & \underset{nner}{} /2)^* A_{inner} / I_{total} - P^* \eta_{in} / N_{inner} \\ & \underset{n/2}{} /2)^* A_{pl} / I_{total} - P^* \eta_{pl} / N_{pl} \\ & \underset{n/2}{} /2)^* A_{pl} / I_{total} + P^* \eta_{pl} / N_{pl} \end{array}$ | $F_{e} = F_{cr} = $                                                                              | 515.82         ksi           48.01         ksi           388.90         kips           438.75         kips           80.9%         OK |

|                                                       | Existing Fla             | nge Connection @ 80'                                  |                       |                   |
|-------------------------------------------------------|--------------------------|-------------------------------------------------------|-----------------------|-------------------|
|                                                       | US-CT-1002               | inge een een ee                                       |                       |                   |
|                                                       |                          | ·                                                     |                       |                   |
| GPD GROUP                                             | 2018791.CT10             | 02.05                                                 |                       |                   |
| 0.0 0.000                                             |                          |                                                       |                       |                   |
| *O.T. Moment =                                        | 1518.473 k*ft            |                                                       |                       |                   |
| Axial =                                               | 47.47 kips               | Acceptable Stress Ratio                               |                       |                   |
| Shear =                                               | 30.90 kips               | odifications. See attached hand calculations for      |                       |                   |
| determination of flange bolt forces used in           |                          |                                                       |                       |                   |
| Flange Bolts                                          |                          | Upper Flange Plate UpperStiffeners                    |                       |                   |
| # Bolts =                                             | 48                       | Location = External Configuration =                   | Every Bolt            | _                 |
| Bolt Type =                                           | A325                     | Plate Strength ( $F_v$ ) = 36 ksi Thickness =         | 0.625 in              |                   |
| Threads Included? =                                   | Yes                      | Plate Tensile (F <sub>ii</sub> ) = 58 ksi Width =     | 3 in                  |                   |
| Bolt Diameter =                                       | 1 in                     | Plate Thickness = 1.25 in Notch =                     | 0.5 in                |                   |
| Bolt Circle =                                         | 57 in                    | Outer Diameter = 60.375 in Height =                   | 5 in                  |                   |
| $\Phi_t =$                                            | 0.75                     | $\phi_f = 0.9$ Stiffener Strength (F <sub>y</sub> ) = | 36 ks                 |                   |
| $\phi_v =$                                            | 0.75                     |                                                       |                       |                   |
| +•                                                    |                          | b = 3.11 in Weld Info. Known? =                       | Yes                   |                   |
| Tension & Shear (TIA-222-G-1, S                       | Section 4.9.6)           | Le = 3.00 in Vertical Weld Size =                     | 0.3125 in             |                   |
| F <sub>ub</sub> =                                     | 120 ksi                  | Z = 2.34 in <sup>3</sup> Horiz. Weld Type =           | Fillet                |                   |
| A <sub>b</sub> =                                      | 0.785398 in <sup>2</sup> | M <sub>u</sub> = 35.14 k-in                           |                       |                   |
| A <sub>n</sub> =                                      | 0.606 in <sup>2</sup>    | $\phi M_n = 75.9375$ k-in                             |                       |                   |
| φR <sub>nv</sub> =                                    | 31.81 kips               |                                                       | 0.3125 in             |                   |
|                                                       |                          |                                                       |                       |                   |
| φR <sub>nt</sub> =                                    | 54.54 kips               | Weld Strength =                                       | 70 ks                 |                   |
| φR <sub>nt</sub> (adjusted)=                          | 54.53 kips               | Stiffener Vertical Force =                            | 15.77 kip             |                   |
| V <sub>ub</sub> =                                     | 0.64 kips                | Vert. Weld Capacity =                                 | 34.7% kip             |                   |
| T <sub>ub</sub> =                                     | 25.65 kips               | Horiz. Weld Capacity =                                | 49.4% kip             | s                 |
|                                                       |                          | Stiffener Capacity =                                  | 54.9% kip             | _                 |
| Prying Action Check<br>N/A, top flange thickness > tc |                          | Controlling Capacity =                                | 54.9% O               | <                 |
| N/A, top hange thickness > to                         |                          |                                                       |                       |                   |
|                                                       |                          |                                                       |                       |                   |
| Max Comp. on Bolt =                                   | 27.62 kips               | Lower Flange Plate Lower Stiffeners                   | 3                     | ٦                 |
| Shear Capacity =                                      | 2.0%                     | Location = Internal Configuration =                   | Every Bolt            | -                 |
| Tensile Capacity =                                    | 47.0%                    | Plate Strength (F <sub>v</sub> ) = 36 ksi Thickness = | 0.625 in              |                   |
| Interaction Capacity =                                | 47.0%                    | Plate Thickness = 1.25 in Width =                     | 2 in                  |                   |
| Bolt Capacity =                                       | 47.0% OK                 | Hole Diameter = 51.375 in Notch =                     | 0.5 in                |                   |
|                                                       |                          | Height =                                              | 3.5 in                |                   |
| Pole Information                                      | ו                        | b = 3.11 in Stiffener Strength (F <sub>y</sub> ) =    | 36 ks                 | i i               |
| Shaft Diam. (Upper) =                                 | 54 in                    | Le = 2.00 in                                          |                       | ļ                 |
| Thickness (Upper)=                                    | 0.375 in                 | Z = 2.34 in <sup>3</sup> Weld Info. Known? =          | Yes                   |                   |
| # of Sides (Upper) =                                  | Round                    | M <sub>u</sub> = 41.18 k-in Vertical Weld Size =      | 0.3125 in             |                   |
| F <sub>y</sub> (Upper) =                              | 42 ksi                   | φM <sub>n</sub> = 75.9375 k-in Horiz. Weld Type =     | Fillet                |                   |
|                                                       |                          | LP Capacity = 54.2% OK                                |                       |                   |
| Shaft Diam. (Lower) =                                 | 60 in                    |                                                       |                       |                   |
| Thickness (Lower)=                                    | 0.375 in                 | Fillet Size =                                         | 0.3125 in             |                   |
| # of Sides (Lower) =                                  | Round                    | Weld Strength =                                       | 70 ks                 |                   |
| F <sub>y</sub> (Lower) =                              | 42 ksi                   | Stiffener Vertical Force =                            | 10.21 kip             |                   |
|                                                       |                          | Vert. Weld Capacity =                                 | 33.2% kip             |                   |
|                                                       |                          | Horiz. Weld Capacity =                                | 53.4% kip             |                   |
|                                                       |                          | Stiffener Capacity =<br>Controlling Capacity =        | 50.3% kip<br>53.4% OI |                   |
|                                                       |                          | Controlling Capacity =                                | JJ.4% U               | $\mathbf{\Sigma}$ |
|                                                       |                          |                                                       |                       |                   |



**GPD GROUP** Engineers • Architects • Planners Project #: 2018791.CT1002.05

| BOLT AND BRIDGE STIFFENER CALCU                                                                                                                                                                               | LATIONS                                                                                 | @ 60'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                                                                     |                                                               |                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------|
| Moment from TNX (M) = $Axial$ from TNX (P) =                                                                                                                                                                  | 3248.18 kip-ft<br>57.67 kip                                                             | ASIF = 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                     |                                                               |                                  |
| Inner Bolt Diameter =<br>Inner Bolt Area (A <sub>inner</sub> ) =<br>Inner Bolt MOI (I <sub>o.inner</sub> ) =<br>Number Inner Bolts (N <sub>inner</sub> ) =                                                    | 1.25 in<br>1.23 in <sup>2</sup><br>0.12 in <sup>4</sup><br>32                           | Inner Bolt Circle (BC <sub>inner</sub> ) =<br>Total Area (A <sub>tot.in</sub> ) =<br>Percent Total Area ( $\eta_{in}$ ) =                                                                                                                                                                                                                                                                                                                                                                                                              | 47 in<br>39.27 in <sup>2</sup><br>29.6% | Axial, Inner Bolts                                                                  | $(P^*\eta_{in}) =$                                            | <mark>17.09</mark> kips          |
| Outer Bolt Diameter =<br>Outer Bolt Area (A <sub>outer</sub> ) =<br>Outer Bolt MOI (I <sub>o.outer</sub> ) =<br>Number Outer Bolts (N <sub>outer</sub> ) =                                                    | 1.25 in<br>1.23 in <sup>2</sup><br>0.12 in <sup>4</sup><br>32                           | Outer Bolt Circle ( $BC_{outer}$ ) =<br>Total Area ( $A_{tot.out}$ ) =<br>Percent Total Area ( $\eta_{out}$ ) =                                                                                                                                                                                                                                                                                                                                                                                                                        | 53 in<br>39.27 in <sup>2</sup><br>29.6% | Axial, Outer Bolts                                                                  | $(P^*\eta_{out}) =$                                           | 17.09 kips                       |
| Bridge Stiffener Width =<br>Bridge Stiffener Thickness =<br>Bridge Stiffener Unbraced Length =<br>Bridge Stiffener Area $(A_{pl}) =$<br>Bridge Stiffener MOI $(I_o) =$<br>Number Bridge Stiffeners $(N_{pl})$ | 6.00 in<br>1.50 in<br>30.00 in<br>9.00 in <sup>2</sup><br>27.00 in <sup>4</sup><br>6    | Connection Bolt Hole Size =<br>Net Bridge Stiffener Area $(A_{e,pl}$<br>Bridge Stiffener Circle $(BC_{pl})$ =<br>Total Area $(A_{tot,pl})$ =<br>Percent Total Area $(\eta_{pl})$ =                                                                                                                                                                                                                                                                                                                                                     |                                         | Axial, Bridge Stiffe                                                                | ener (P*n <sub>pl</sub> ) =                                   | 23.50 kips                       |
| $l_{inner} = 10847.24 \\ l_{outer} = 13792.48 \\ l_{pl} = 26952.75 \\ l_{tot} = 51592.47$                                                                                                                     | in. <sup>4</sup> $(N_{outer} * A_{pl})^{*}$<br>in. <sup>4</sup> $(N_{pl} * A_{pl})^{*}$ | $\begin{aligned} &A_{inner}^{*}BC_{inner}^{2}/8 + N_{inner}^{*}I_{o.inner} \\ &A_{outer}^{*}BC_{outer}^{2}/8 + N_{outer}^{*}I_{o.outer} \\ &*BC_{pl}^{2}/8 + N_{pl}^{*}I_{o.pl} \\ &I_{outer}^{} + I_{pl} \end{aligned}$                                                                                                                                                                                                                                                                                                               |                                         | $\begin{array}{l} f_y = \\ f_u = \\ E = \end{array}$                                | ge Stiffener Ch<br>50<br>65<br>29000                          | eck<br>ksi<br>ksi<br>ksi         |
| $ \begin{array}{rcl} P_{u.t.inner} = & 21.3 \\ P_{u.t.outer} = & 24.0 \\ P_{u.t.pl} = & 210.3 \\ P_{u.c.pl} = & 218.1 \\ \emptyset P_{nt.bolt} = & 96.64 \\ Bolt Rating = & 24.9\% \\ \end{array} $           | kips (M*(BC,<br>kips (M*(BC,<br>kips (M*(BC,                                            | $\begin{array}{l} & \underset{\text{nner}}{\text{nner}}/2)^* A_{\text{inner}} / I_{\text{total}} - P^* \eta_{\text{in}} / N_{\text{inner}} ) \\ & \underset{\text{puter}}{\text{puter}}/2)^* A_{\text{outer}} / I_{\text{total}} - P^* \eta_{\text{out}} / N_{\text{outer}} ) \\ & \underset{\text{pl}}{\text{pl}}/2)^* A_{\text{pl}} ) / I_{\text{total}} - P^* \eta_{\text{pl}} / N_{\text{pl}} ) \\ & \underset{\text{pl}}{\text{pl}}/2)^* A_{\text{pl}} ) / I_{\text{total}} + P^* \eta_{\text{pl}} / N_{\text{pl}} ) \end{array}$ | Bridge S                                | $K = $ $KL/r = $ $F_{e} = $ $F_{cr} = $ $ØP_{nc} = $ $ØP_{nt} = $ tiffener Rating = | 0.85<br>58.890<br>82.53<br>38.80<br>314.29<br>349.63<br>69.4% | ksi<br>ksi<br>kips<br>kips<br>OK |

| GPD GROUP Existing Fla<br>US-CT-1002<br>2018791.CT1                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                         | Acceptable Stress Ratio<br>= 105.0%                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                           |
| determination of flange bolt forces used in the analysis.<br>Flange Bolts<br># Bolts = 32<br>Bolt Type = A325<br>Threads Included? = Yes<br>Bolt Diameter = 1.75 in<br>Bolt Circle = 44 in<br>$\phi_t = 0.75$                                                                                           | Upper Flange PlateLocation =InternalPlate Strength ( $F_y$ ) =36KsiFlate Tensile ( $F_u$ ) =58Plate Thickness =1.25Hole Diameter =43 $\phi_t$ =0.9                                                                                | $\begin{tabular}{ c c c c } \hline UpperStiffeners \\ \hline Configuration = & Every Bolt \\ \hline Thickness = & 0.625 in \\ \hline Width = & 7 in \\ \hline Width = & 7 in \\ \hline Notch = & 0.5 in \\ \hline Height = & 10 in \\ \hline Stiffener Strength (F_y) = & 36 ksi \\ \hline \end{tabular}$ |
| $\phi_{v} = \underbrace{0.75}_{\text{Tension & Shear}} (TIA-222-G-1, Section 4.9.6)$ $F_{ub} = \underbrace{105}_{ksi} kisi$ $A_{b} = \underbrace{2.405282}_{hm} in^{2}$ $A_{n} = \underbrace{1.9}_{m} in^{4}$ $\phi R_{rw} = \underbrace{85.24}_{hm} kips$ $\phi R_{rw} = \underbrace{149.63}_{m} kips$ | $b = \boxed{3.69} \text{ in} \\ Le = \boxed{7.00} \text{ in} \\ Z = \boxed{2.34} \text{ in}^3 \\ M_u = \boxed{20.26} \text{ k-in} \\ \phi M_n = \boxed{75.9375} \text{ k-in} \\ \textbf{UP Capacity} = \boxed{26.7\% \text{ OK}}$ | Weld Info. Known? = No                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                   | Stiffener Vertical Force       17.37       kips         Vert. Weld Capacity       Not Verified       kips         Horiz. Weld Capacity       Not Verified       kips         Stiffener Capacity       31.7%       kips         Controlling Capacity       31.7%       OK                                  |
| Max Comp. on Bolt =     34.59     kips       Shear Capacity =     1.2%       Tensile Capacity =     20.7%       Interaction Capacity =     20.7%       Bolt Capacity =     20.7%                                                                                                                        | Lower Flange PlateLocation =InternalPlate Strength ( $F_y$ ) =36Plate Thickness =1.25Hole Diameter =43                                                                                                                            | Lower Stiffeners           Configuration =         Every Bolt           Thickness =         0.625 in           Width =         7 in           Notch =         0.5 in           Height =         10 in                                                                                                     |
| Pole Information       Shaft Diam. (Upper) =     60 in       Thickness (Upper)=     0.375 in       # of Sides (Upper) =     Round       F <sub>y</sub> (Upper) =     42 ksi                                                                                                                             |                                                                                                                                                                                                                                   | Stiffener Strength (F <sub>y</sub> ) = <u>36</u> ksi<br>Weld Info. Known? = <u>No</u>                                                                                                                                                                                                                     |
| Shaft Diam. (Lower) = 60 in<br>Thickness (Lower)= 0.5 in<br># of Sides (Lower) = Round<br>F <sub>y</sub> (Lower) = 42 ksi                                                                                                                                                                               |                                                                                                                                                                                                                                   | Stiffener Vertical Force =       15.32       kips         Vert. Weld Capacity =       Not Verified       kips         Horiz. Weld Capacity =       Not Verified       kips         Stiffener Capacity =       28.0%       kips         Controlling Capacity =       28.0%       OK                        |



**GPD GROUP** Engineers • Architects • Planners Project #: 2018791.CT1002.05

| BOLT AND BRIDGE STIFFENER CALC               | <u>ULATIONS</u>             | @ 40'                                                                                 |                       |                         |                           |            |
|----------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------|-----------------------|-------------------------|---------------------------|------------|
| Moment from TNX (M) = $Axial from TNX (P) =$ | 3926.11 kip-ft<br>70.90 kip | ASIF = 1.00                                                                           |                       |                         |                           |            |
| Inner Bolt Diameter =                        | 1.25 in                     |                                                                                       |                       |                         |                           |            |
| Inner Bolt Area $(A_{inner}) =$              | 1.23 in <sup>2</sup>        | Inner Bolt Circle (BC <sub>inner</sub> ) =                                            | 47 in                 |                         |                           |            |
| Inner Bolt MOI (I <sub>o.inner</sub> ) =     | 0.12 in <sup>4</sup>        | Total Area $(A_{tot.in}) =$                                                           | 39.27 in <sup>2</sup> |                         |                           |            |
| Number Inner Bolts ( $N_{inner}$ ) =         | 32                          | Percent Total Area ( $\eta_{in}$ ) =                                                  | 29.6%                 | Axial, Inner Bolts      | $(P^*\eta_{in}) =$        | 21.01 kips |
| Outer Bolt Diameter =                        | 1.25 in                     |                                                                                       |                       |                         |                           |            |
| Outer Bolt Area $(A_{outer}) =$              | 1.23 in <sup>2</sup>        | Outer Bolt Circle (BC <sub>outer</sub> ) =                                            | 53 in                 |                         |                           |            |
| Outer Bolt MOI $(I_{o.outer}) =$             | 0.12 in <sup>4</sup>        | Total Area ( $A_{tot.out}$ ) =                                                        | 39.27 in <sup>2</sup> |                         |                           |            |
| Number Outer Bolts ( $N_{outer}$ ) =         | 32                          | Percent Total Area ( $\eta_{out}$ ) =                                                 | 29.6%                 | Axial, Outer Bolts      | $(P*\eta_{out}) =$        | 21.01 kips |
| Bridge Stiffener Width =                     | 6.00 in                     |                                                                                       |                       |                         |                           |            |
| Bridge Stiffener Thickness =                 | 1.50 in                     | Connection Bolt Hole Size =                                                           | 1.18 in               |                         |                           |            |
| Bridge Stiffener Unbraced Length =           | 30.00 in                    | Net Bridge Stiffener Area $(A_{e,p})$                                                 |                       |                         |                           |            |
| Bridge Stiffener Area $(A_{pl}) =$           | 9.00 in <sup>2</sup>        | Bridge Stiffener Circle $(BC_{pl}) =$                                                 |                       |                         |                           |            |
| Bridge Stiffener MOI $(I_0) =$               | 27.00 in <sup>4</sup>       | Total Area $(A_{tot,pl}) =$                                                           | 54.00 in <sup>2</sup> |                         |                           |            |
| Number Bridge Stiffeners (N <sub>pl</sub> )  | 6                           | Percent Total Area $(n_{pl}) =$                                                       | 40.7%                 | Axial, Bridge Stiffe    | ener ( $P^*\eta_{pl}$ ) = | 28.89 kips |
| l <sub>inner</sub> = 10847.2                 | 4 · 4 (NI *                 | $A * DC ^{2}(0, N) * (1)$                                                             |                       | D.: J                   | Chifferran Ch             | !-         |
|                                              |                             | $A_{\text{inner}} * BC_{\text{inner}}^{2}/8 + N_{\text{inner}} * I_{0.\text{inner}})$ |                       |                         | ge Stiffener Ch<br>50     |            |
|                                              |                             | $A_{outer} * BC_{outer}^{2}/8 + N_{outer} * I_{o.outer})$                             |                       | $f_y = f_y$             | 50<br>65                  | ksi<br>ksi |
|                                              | p. p                        | $ ^{*}BC_{pl}^{2}/8 + N_{pl}^{*}I_{o.pl})$                                            |                       | f <sub>u</sub> =<br>E = | 29000                     | ksi        |
| $I_{tot} = 51592.4$                          | / In. (I <sub>inner</sub> + | I <sub>outer</sub> + I <sub>pl</sub> )                                                |                       | E =<br>K =              | 29000                     | K51        |
| P <sub>u.t.inner</sub> = 25.                 | 7 kips (M*(BC               | ,<br>////////////////////////////////////                                             |                       | K =<br>KL/r =           | 58.890                    |            |
|                                              |                             | $I_{\rm outer}/2)*A_{\rm outer}/I_{\rm total} - P*\eta_{\rm out}/N_{\rm outer}$       |                       | $F_e =$                 | 82.53                     | ksi        |
|                                              |                             | $r_{pl}/2$ $(A_{pl})/I_{total} - P^*\eta_{pl}/N_{pl}$                                 |                       | $F_{cr} =$              | 38.80                     | ksi        |
|                                              |                             | $r_{pl}/2$ $A_{pl}/I_{total}$ + P* $\eta_{pl}/N_{pl}$                                 |                       | $\phi P_{nc} =$         | 314.29                    | kips       |
|                                              | 4 kips                      | E. E. (989)                                                                           |                       | $\hat{Q}P_{nt} =$       | 352.46                    | kips       |
| Bolt Rating = 30.1%                          | OK                          |                                                                                       | Bridge S              | Stiffener Rating =      | 83.9%                     | OK         |
| 5                                            |                             |                                                                                       | 8                     | 0                       |                           |            |

|                                                                                                                         | ange Connection @ 40'<br>2, Kettleton<br><sup>002.05</sup> |                                                                     |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------|
| *O.T. Moment = 1163.258 k*ft<br>Axial = 70.9<br>Shear = 34.69 kips                                                      | Acceptable Stress Ratio                                    |                                                                     |
| *Above reactions have been adjusted due to consideration of a determination of flange bolt forces used in the analysis. | nodifications. See attached hand calculations for          |                                                                     |
| Flange Bolts                                                                                                            | Upper Flange Plate                                         | UpperStiffeners                                                     |
| # Bolts = <u>32</u><br>Bolt Type = <u>A325</u>                                                                          | Location = Internal<br>Plate Strength ( $F_y$ ) = 36 ksi   | Configuration = Every Bolt<br>Thickness = 0.625 in                  |
| Threads Included? = Yes                                                                                                 | Plate Tensile (F <sub>u</sub> ) = 58 ksi                   | Width = 7 in                                                        |
| Bolt Diameter = <u>1.75</u> in<br>Bolt Circle = <u>50</u> in                                                            | Plate Thickness = 1.25 in<br>Hole Diameter = 43 in         | Notch = 0.5 in                                                      |
| $\Phi_t = 0.75$                                                                                                         | Hole Diameter = $43$ in<br>$\phi_f = 0.9$                  | Height = $10$ in<br>Stiffener Strength (F <sub>y</sub> ) = $36$ ksi |
| $\phi_{\rm v} = \frac{0.75}{0.75}$                                                                                      | b = 4.28 in                                                | Weld Info. Known? = No                                              |
| Tension & Shear (TIA-222-G-1, Section 4.9.6)<br>F <sub>ub</sub> = 105 ksi                                               | Le = $\frac{7.00}{2.34}$ in <sup>3</sup>                   |                                                                     |
| $A_{b} = 2.405282 \text{ in}^{2}$                                                                                       | $M_u = 23.39$ k-in                                         |                                                                     |
| $A_n = \frac{1.9 \text{ in}^2}{1.9 \text{ in}^2}$                                                                       | $\phi M_n = 75.9375$ k-in                                  |                                                                     |
| φR <sub>nv</sub> = 85.24 kips                                                                                           | UP Capacity = 30.8% OK                                     |                                                                     |
| $\phi R_{nt} = 149.63$ kips                                                                                             |                                                            |                                                                     |
| φR <sub>nt</sub> (adjusted)= 149.61 kips                                                                                |                                                            | Stiffener Vertical Force = 18.53 kips                               |
| V <sub>ub</sub> = 1.08 kips                                                                                             |                                                            | Vert. Weld Capacity = Not Verified kips                             |
| T <sub>ub</sub> = 32.66 kips                                                                                            |                                                            | Horiz. Weld Capacity = Not Verified kips                            |
|                                                                                                                         |                                                            | Stiffener Capacity = 33.8% kips                                     |
| Prying Action Check<br>N/A for stiffened flange                                                                         |                                                            | Controlling Capacity = 33.8% OK                                     |
|                                                                                                                         |                                                            |                                                                     |
| Max Comp. on Bolt = 37.09 kips<br>Shear Capacity = 1.3%                                                                 | Lower Flange Plate                                         | Lower Stiffeners<br>Configuration = Every Bolt                      |
| Tensile Capacity = $21.8\%$                                                                                             | Plate Strength $(F_v) = \frac{36}{36}$ ksi                 | Thickness = 0.625 in                                                |
| Interaction Capacity = 21.8%                                                                                            | Plate Thickness = 1.25 in                                  | Width = 7 in                                                        |
| Bolt Capacity = 21.8% OK                                                                                                | Hole Diameter = 43 in                                      | Notch = 0.5 in                                                      |
| -                                                                                                                       |                                                            | Height = <u>10</u> in                                               |
| Pole Information<br>Shaft Diam. (Upper) = 60 in                                                                         | b = 4.28 in<br>Le = 7.00 in                                | Stiffener Strength (F <sub>y</sub> ) = <u>36</u> ksi                |
| Thickness (Upper) = 0.5 in                                                                                              | $Z = 2.34 \text{ in}^3$                                    | Weld Info. Known? = No                                              |
| # of Sides (Upper) = Round                                                                                              | M <sub>u</sub> = 23.39 k-in                                |                                                                     |
| F <sub>y</sub> (Upper) = 42 ksi                                                                                         | φM <sub>n</sub> = 75.9375 k-in<br>LP Capacity = 30.8% ΟΚ   |                                                                     |
| Shaft Diam. (Lower) = 60 in                                                                                             |                                                            |                                                                     |
| Thickness (Lower)= 0.625 in                                                                                             |                                                            |                                                                     |
| # of Sides (Lower) = Round<br>$F_v$ (Lower) = 42 ksi                                                                    |                                                            | Stiffener Vertical Force = 16.58 kips                               |
| F <sub>y</sub> (Lower) = 42 ksi                                                                                         | l                                                          | Vert. Weld Capacity = Not Verified kips                             |
|                                                                                                                         |                                                            | Horiz. Weld Capacity = Not Verified kips                            |
|                                                                                                                         |                                                            | Stiffener Capacity = 30.3% kips                                     |
|                                                                                                                         |                                                            | Controlling Capacity = 30.3% OK                                     |

#### 520 South Main Street • Suite 2531 • Akron, Ohio 44311 • PHONE 330-572-2100 • FAX 330-572-2101



Pu ØP<sub>nt.bolt</sub>=

Bolt Rating =

96.64 kips

OK

28.8%

**GPD GROUP** 

Project #: 2018791.CT1002.05

| E | ngineers | • | Architects | • | Planners |
|---|----------|---|------------|---|----------|
|   |          |   |            |   |          |

**BOLT AND BRIDGE STIFFENER CALCULATIONS** @ 20' Moment from TNX (M) =4632.98 kip-ft ASIF = 1.00 Axial from TNX (P) =86.28 kip Inner Bolt Diameter = 1.25 in Inner Bolt Area (Ainner) = 1.23 jn<sup>2</sup> Inner Bolt Circle  $(BC_{inner}) =$ 47 in Inner Bolt MOI  $(I_{0,inner}) =$  $0.12 \text{ in}^4$ Total Area  $(A_{tot.in}) =$ 39.27 in<sup>2</sup> Number Inner Bolts  $(N_{inner}) =$ 32 Percent Total Area  $(\eta_{in}) =$ 24.2% Axial, Inner Bolts ( $P^*\eta_{in}$ ) = 20.85 kips Outer Bolt Diameter = 1.25 in Outer Bolt Area (A<sub>outer</sub>) = Outer Bolt Circle  $(BC_{outer}) =$ 53 in 1.23 in<sup>2</sup> Outer Bolt MOI  $(I_{o.outer}) =$ 39.27 in<sup>2</sup>  $0.12 \text{ in}^4$ Total Area  $(A_{tot.out}) =$ Number Outer Bolts ( $N_{outer}$ ) = 32 Percent Total Area  $(\eta_{out}) =$ 24.2% Axial, Outer Bolts  $(P^*\eta_{out}) =$ 20.85 kips Bridge Stiffener Width = 6.00 in Bridge Stiffener Thickness = Connection Bolt Hole Size = 1.21875 in 1.50 in Bridge Stiffener Unbraced Length = Net Bridge Stiffener Area  $(A_{e nl}) = 7.17188$  in 30.00 in Bridge Stiffener Area  $(A_{pl}) =$ 9.00 in<sup>2</sup> Bridge Stiffener Circle  $(BC_{pl}) =$ 60.75 in Bridge Stiffener MOI  $(I_0) =$ 27.00 in<sup>4</sup> Total Area  $(A_{tot,pl}) =$ 54.00 in<sup>2</sup> Number Bridge Stiffeners (N<sub>nl</sub>) Percent Total Area  $(\eta_{pl}) =$ 33.2% Axial, Bridge Stiffener  $(P^*\eta_{pl}) =$ 6 28.66 kips Bridge Stiffener Width = 4.00 in Bridge Stiffener Thickness = Connection Bolt Hole Size = 1.21875 in 1.25 in Bridge Stiffener Unbraced Length = Net Bridge Stiffener Area  $(A_{e,pl}) =$ 12.00 in 3.47656 in Bridge Stiffener Circle  $(BC_{nl}) =$ Bridge Stiffener Area  $(A_{nl}) =$ 5.00 in<sup>2</sup> 60.625 in Bridge Stiffener MOI  $(I_0) =$ 6.67 in<sup>4</sup> Total Area  $(A_{tot,pl}) =$ 30.00 in<sup>2</sup> Number Bridge Stiffeners (N<sub>nl</sub>) Percent Total Area  $(\eta_{pl}) =$ Axial, Bridge Stiffener  $(P^*\eta_{pl}) =$ 6 18.5% 15.92 kips 10847.24 in.4  $(N_{inner} * A_{inner} * BC_{inner}^2/8 + N_{inner} * I_{o,inner})$ Bridge Stiffener Check l<sub>inner</sub> 13792 48 in <sup>4</sup> (N \*A \*BC <sup>2</sup>/8+N \*I f. = 50 ksi I<sub>o</sub>

| outer =           | 13/92.40 | in.              | $(N_{outer}, N_{outer}, D_{outer}, 0 + N_{outer}, 1_{o.outer})$       | I <sub>y</sub> =          | 50     | KSI  |
|-------------------|----------|------------------|-----------------------------------------------------------------------|---------------------------|--------|------|
| $I_{pl} =$        | 25073.30 | in. <sup>4</sup> | $(N_{pl}*A_{pl}*BC_{pl}^{2}/8 + N_{pl}*I_{o.pl})$                     | $f_u =$                   | 65     | ksi  |
| $I_{pl} =$        | 13822.71 | in. <sup>4</sup> | $(N_{pl}*A_{pl}*BC_{pl}^{2}/8 + N_{pl}*I_{o,pl})$                     | Ε =                       | 29000  | ksi  |
| $I_{tot} =$       | 63535.73 | in. <sup>4</sup> | $(I_{inner} + I_{outer} + I_{pl})$                                    | K =                       | 0.85   |      |
|                   |          |                  |                                                                       | KL/r =                    | 58.890 |      |
| $P_{u.t.inner} =$ | 24.6     | kips             | $(M^*(BC_{inner}/2)^*A_{inner})/I_{total} - P^*\eta_{in}/N_{inner})$  | $F_{e} =$                 | 82.53  | ksi  |
| $P_{u.t.outer} =$ | 27.8     | kips             | $(M^*(BC_{outer}/2)^*A_{outer})/I_{total} - P^*\eta_{out}/N_{outer})$ | F <sub>cr</sub> =         | 38.80  | ksi  |
| $P_{u.t.pl} =$    | 234.4    | kips             | $(M^*(BC_{pl}/2)^*A_{pl})/I_{total} - P^*\eta_{pl}/N_{pl})$           |                           | 314.29 | kips |
| $P_{u.c.pl} =$    | 244.0    | kips             | $(M^*(BC_{pl}/2)^*A_{pl})/I_{total} + P^*\eta_{pl}/N_{pl})$           |                           | 349.63 | kips |
| $P_{u.t.pl} =$    | 130.0    | kips             | $(M^*(BC_{pl}/2)^*A_{pl})/I_{total} - P^*\eta_{pl}/N_{pl})$           | Bridge Stiffener Rating = | 77.6%  | OK   |
| $P_{u.c.pl} =$    | 135.3    | kips             | $(M^*(BC_{pl}/2)^*A_{pl})/I_{total} + P^*\eta_{pl}/N_{pl})$           |                           |        |      |
|                   |          |                  |                                                                       |                           |        |      |

|                                                                                                                            | ange Connection @ 20'<br>2, Kettleton<br>002.05               |                                                                  |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|
| *O.T. Moment = 1119.336 k*ft<br>Axial = 86.28 kips<br>Shear = 35.95 kips                                                   | Acceptable Stress Ratio                                       |                                                                  |
| *Above reactions have been adjusted due to consideration of r<br>determination of flange bolt forces used in the analysis. | nodifications. See attached hand calculations for             |                                                                  |
| Flange Bolts                                                                                                               | Upper Flange Plate                                            | UpperStiffeners                                                  |
| # Bolts = <u>32</u>                                                                                                        | Location = Internal                                           | Configuration = Every Bolt                                       |
| Bolt Type = A325                                                                                                           | Plate Strength ( $F_y$ ) = 36 ksi                             | Thickness = 0.625 in                                             |
| Threads Included? = Yes<br>Bolt Diameter = 1.75 in                                                                         | Plate Tensile ( $F_u$ ) = 58 ksi<br>Plate Thickness = 1.25 in | Width = 7 in<br>Notch = 0.5 in                                   |
| Bolt Circle = 50 in                                                                                                        | Hole Diameter = 43 in                                         | Height = $10$ in                                                 |
|                                                                                                                            | φ <sub>t</sub> = 0.9                                          | Stiffener Strength (F <sub>y</sub> ) = <u>36</u> ksi             |
| Tension & Shear (TIA-222-G-1, Section 4.9.6)                                                                               | b = <u>4.28</u> in<br>Le = <u>7.00</u> in                     | Weld Info. Known? = No                                           |
| $F_{ub} = 105 \text{ ksi}$                                                                                                 | $Z = 2.34 \text{ in}^3$                                       |                                                                  |
| $A_{\rm b} = 2.405282  {\rm in}^2$                                                                                         | $M_u = 22.87 \text{ k-in}$                                    |                                                                  |
| $A_n = 1.9 \text{ in}^2$                                                                                                   | $\phi M_n = 75.9375$ k-in                                     |                                                                  |
| $\phi R_{nv} = 85.24 \text{ kips}$                                                                                         | UP Capacity = 30.1% OK                                        |                                                                  |
| $\phi R_{nt} = 149.63 \text{ kips}$<br>$\phi R_{nt} \text{ (adjusted)} = 149.61 \text{ kips}$                              |                                                               | Stiffener Vertical Force = 16.25 kips                            |
| $\phi R_{nt} (adjusted) = 149.61 kips$<br>$V_{ub} = 1.12 kips$                                                             |                                                               | Vert. Weld Capacity = Not Verified kips                          |
| $T_{ub} = 30.86 \text{ kips}$                                                                                              |                                                               | Horiz. Weld Capacity = Not Verified kips                         |
|                                                                                                                            |                                                               | Stiffener Capacity = 29.7% kips                                  |
| Prying Action Check                                                                                                        |                                                               | Controlling Capacity = 29.7% OK                                  |
| N/A for stiffened flange                                                                                                   |                                                               |                                                                  |
| Max Comp. on Bolt = 36.26 kips                                                                                             | Lower Flange Plate                                            | Lower Stiffeners                                                 |
| Shear Capacity = 1.3%<br>Tensile Capacity = 20.6%                                                                          | Location = Internal<br>Plate Strength ( $F_v$ ) = 36 ksi      | Configuration = <u>Every Bolt</u><br>Thickness = <u>0.625</u> in |
| Interaction Capacity = 20.6%                                                                                               | Plate Thickness = 1.25 in                                     | $Width = \frac{7}{1000}$ in                                      |
| Bolt Capacity = 20.6% OK                                                                                                   | Hole Diameter = 43 in                                         | Notch = 0.5 in                                                   |
| -                                                                                                                          |                                                               | Height = <u>10</u> in                                            |
| Pole Information                                                                                                           | b = 4.28 in                                                   | Stiffener Strength (F <sub>y</sub> ) = 36 ksi                    |
| Shaft Diam. (Upper) = <u>60</u> in<br>Thickness (Upper)= <u>0.625</u> in                                                   | Le = $\frac{7.00}{2.34}$ in $Z = \frac{2.34}{2.34}$ in $^{3}$ | Weld Info. Known? = No                                           |
| Thickness (Upper)= 0.625 in<br># of Sides (Upper) = Round                                                                  | Z = 2.34 in<br>M <sub>u</sub> = 22.87 k-in                    |                                                                  |
| $F_{y}$ (Upper) = 42 ksi                                                                                                   | $\phi M_n = \frac{22.87}{75.9375}$ k-in                       |                                                                  |
| y(-pp-)                                                                                                                    | LP Capacity = 30.1% OK                                        |                                                                  |
| Shaft Diam. (Lower) = 60 in                                                                                                |                                                               |                                                                  |
| Thickness (Lower)= 0.625 in                                                                                                |                                                               |                                                                  |
| # of Sides (Lower) = Round<br>F <sub>v</sub> (Lower) = 42 ksi                                                              |                                                               | Stiffener Vertical Force = 16.25 kips                            |
| 1 y (2000) - 42 KSI                                                                                                        |                                                               | Vert. Weld Capacity = Not Verified kips                          |
|                                                                                                                            |                                                               | Horiz. Weld Capacity = Not Verified kips                         |
|                                                                                                                            |                                                               | Stiffener Capacity = 29.7% kips                                  |
|                                                                                                                            |                                                               | Controlling Capacity = 29.7% OK                                  |
|                                                                                                                            |                                                               |                                                                  |

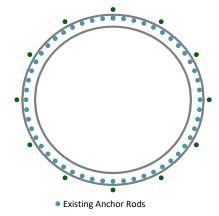
#### APPENDIX E

Anchor Rod & Base Plate Analysis



#### Anchor Rod Interaction, TIA-222-G US-CT-1002, Kettleton 2018791.CT1002.05

| tnx Reactions        |                                                              |  |  |  |  |  |
|----------------------|--------------------------------------------------------------|--|--|--|--|--|
| 5361.46              | k*ft                                                         |  |  |  |  |  |
| 100.20               | k                                                            |  |  |  |  |  |
| 36.87                | k                                                            |  |  |  |  |  |
|                      |                                                              |  |  |  |  |  |
| Existing Anchor Rods |                                                              |  |  |  |  |  |
| 52                   |                                                              |  |  |  |  |  |
| 67                   | in                                                           |  |  |  |  |  |
| 1.25                 | in                                                           |  |  |  |  |  |
|                      | in                                                           |  |  |  |  |  |
| Round                |                                                              |  |  |  |  |  |
| 69.75                | in                                                           |  |  |  |  |  |
|                      | 5361.46<br>100.20<br>36.87<br>achor Rods<br>52<br>67<br>1.25 |  |  |  |  |  |


| Pole              |       |    |  |  |  |  |
|-------------------|-------|----|--|--|--|--|
| Pole Diameter =   | 60    | in |  |  |  |  |
| Number of Sides = | Round |    |  |  |  |  |
| Thickness =       | 0.625 | in |  |  |  |  |

| First Added Anchor Rods |              |    |  |  |  |  |
|-------------------------|--------------|----|--|--|--|--|
| Number of Rods =        | 12           |    |  |  |  |  |
| Rod Circle =            | 74.00        | in |  |  |  |  |
| Rod Diameter =          | 1.25         | in |  |  |  |  |
| Anchor Rod Grade =      | F1554 GR 105 |    |  |  |  |  |

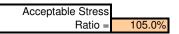
| Rod Number | Initial Angle |
|------------|---------------|
| 1          | 0             |
| 2          | 30            |
| 3          | 60            |
| 4          | 90            |
| 5          | 120           |
| 6          | 150           |
| 7          | 180           |
| 8          | 210           |
| 9          | 240           |
| 10         | 270           |
| 11         | 300           |
| 12         | 330           |

| First Added Anchor Rods |        |    |  |  |  |  |
|-------------------------|--------|----|--|--|--|--|
| Max Rod Compression =   | 63.65  | k  |  |  |  |  |
| φRnt =                  | 96.90  | k  |  |  |  |  |
| Anchor Rod Capacity =   | 65.69% | ОК |  |  |  |  |

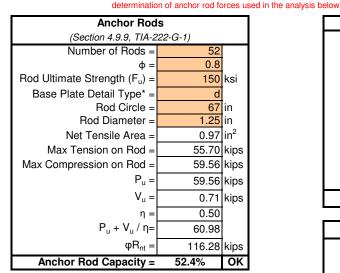
| Reactions in Existing Rods |         |      |  |  |  |  |
|----------------------------|---------|------|--|--|--|--|
| Overturning Moment=        | 4183.74 | k*ft |  |  |  |  |
| Axial Force =              | 100.20  | k    |  |  |  |  |
| Shear Force =              | 36.87   | k    |  |  |  |  |
| Centroid Offset =          | 0.00    | in   |  |  |  |  |



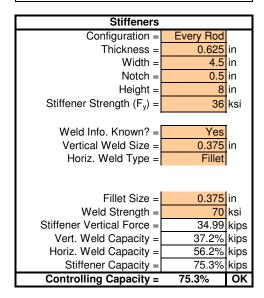
• First Added Anchor Rods

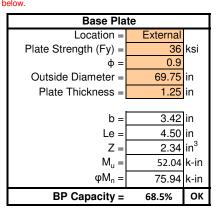

Second Added Anchor Rods

| Second Added Anchor Rods |  |    |  |  |  |
|--------------------------|--|----|--|--|--|
| Number of Rods =         |  |    |  |  |  |
| Rod Circle =             |  | in |  |  |  |
| Rod Diameter =           |  | in |  |  |  |
| Anchor Rod Grade =       |  | ſ  |  |  |  |




#### Anchor Rod and Base Plate Stresses, TIA-222-G-1 US-CT-1002, Kettleton 2018791.CT1002.05


| *Overturning Moment =                                                    | 4183.74 | k*ft |  |  |  |
|--------------------------------------------------------------------------|---------|------|--|--|--|
| Axial Force =                                                            | 100.20  | k    |  |  |  |
|                                                                          |         | l.   |  |  |  |
| Shear Force =                                                            | 36.87   | к    |  |  |  |
| Centroid Offset =                                                        | 0.00    | in   |  |  |  |
| *Above reactions have been edivated due to consideration of modification |         |      |  |  |  |




Above reactions have been adjusted due to consideration of modifications. See attached hand calculations for



\*This analysis assumes the clear distance from the top of the concrete to the bottom of the leveling nut is less than the diameter of the anchor rod. Notify GPD Group immediately if existing field conditions do not meet this assumption.





| Pole                  |       |     |  |  |  |
|-----------------------|-------|-----|--|--|--|
| Pole Diameter =       | 60    | in  |  |  |  |
| Number of Sides =     | Round |     |  |  |  |
| Thickness =           | 0.625 | in  |  |  |  |
| Pole Yield Strength = | 42    | ksi |  |  |  |

GPD Round Base Plate Stress (Rev G) - V1.09

### APPENDIX F

Foundation Analysis

# Pile Analysis

**US-CT-1002, Kettleton** 2018791.CT1002.05

| М          | 5361.46  | k-ft             |                | Pile Ultima          | te Capacit      | ies       |        |        |
|------------|----------|------------------|----------------|----------------------|-----------------|-----------|--------|--------|
| Р          | 100.20   |                  |                | Existing             |                 |           |        |        |
| V          | 36.87    |                  |                | Compressic           | n               | 150 k     |        |        |
| M tot      | 5564.245 |                  |                | Tension              |                 | 100 k     |        |        |
| M tot 45   | 3934.515 |                  |                |                      |                 |           |        |        |
| d          | 5.5      |                  |                | Modificatio          | n               |           |        |        |
| h          |          | ft               |                | Compressic           |                 | 100 k     |        |        |
| Vconc      | 11638    |                  |                | Tension              |                 | 100 k     |        |        |
| wconc      | 1745.7   |                  |                | rension              |                 |           |        |        |
| weone      | 1745.7   | ĸ                |                |                      |                 |           |        |        |
| Wequip     | 75       | <mark>,</mark> k | (weight of the | e equipment above th | ne pad)         |           |        |        |
|            |          |                  |                |                      |                 |           |        |        |
| n existing | 24       |                  |                |                      |                 |           |        |        |
| n mod      | 48       |                  |                |                      |                 |           |        |        |
|            |          |                  |                | Total force          | <u>on piles</u> |           |        |        |
|            |          |                  |                | Х                    |                 |           | 45     |        |
|            | n        | x (ft)           | y (ft)         | Pc (k)               | Pt (k)          | Mu (k-ft) | Pc (k) | Pt (k) |
| Existing   | 4        | 0                | 0              | 25.64                | 25.64           | 0.00      | 25.64  | 25.64  |
|            | 10       | 6                | 6              | 27.73                | 23.55           | 831.88    | 28.60  | 22.68  |
|            | 10       | 12               | 12             | 29.82                | 21.45           | 1789.25   | 31.55  | 19.72  |
|            | 24       |                  |                |                      |                 |           |        |        |
| Mod        | 2        | 0                | 0              | 25.64                | 25.64           | 0.00      | 25.64  | 25.64  |
|            | 4        | 3.5              | 3.5            | 26.86                | 24.42           | 188.00    | 27.36  | 23.91  |
|            | 4        | 7                | 7              | 28.08                | 23.20           | 393.09    | 29.09  | 22.19  |
|            | 4        | 10.5             | 10.5           | 29.30                | 21.98           | 615.26    | 30.81  | 20.46  |
|            | 4        | 14               | 14             | 30.52                | 20.76           | 854.51    | 32.54  | 18.74  |
|            | 4        | 17.5             | 17.5           | 31.74                | 19.54           | 1110.84   | 34.27  | 17.01  |
|            | 26       | 21               | 21             | 32.96                | 18.32           | 8997.65   | 35.99  | 15.28  |
|            | 48       |                  |                |                      |                 |           |        |        |
|            |          |                  |                |                      |                 |           |        |        |

| Pile Capacities     | Reinforcement Capacity |          |               |
|---------------------|------------------------|----------|---------------|
| <u>Existing</u>     |                        | Mu       | 14780.47 k-ft |
| Compression         | 39.8%                  | а        | 4.262575 in   |
| Tension             | 51.3%                  | d        | 60.885 in     |
|                     |                        | Phi Mn   | 22473.3 k-ft  |
| <b>Modification</b> |                        |          |               |
| Compression         | 65.9%                  | Capacity | 65.8%         |
| Tension             | 51.3%                  |          |               |

SITE SAFE



Smartlink on behalf of AT&T Mobility, LLC Site FA – 10035309 Site ID – CT2086 (MRCTB031784-MRCTB031854) USID – 61174 Site Name – SOUTHBURY KETTLETOWN RD

# 231 KETTLETOWN ROAD SOUTHBURY, CT 06488

Latitude: N41-28-16.27 Longitude: W73-12-20.00 Structure Type: Monopole

R

Report generated date: October 22, 2018 Report by: Scott Broyles Customer Contact: David Barbagallo

# AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

Sitesafe logo is a registered trademark of Site Safe, LLC. All rights reserved.



## Table of Contents

| 1 GENERAL SITE SUMMARY                          | 2  |
|-------------------------------------------------|----|
| 1.1 Report Summary                              |    |
| 1.2 Signage Summart                             |    |
| 2 SCALE MAPS OF SITE                            | 3  |
| 3 ANTENNA INVENTORY                             | 5  |
| 4 EMISSION PREDICTIONS                          | 6  |
| 5 SITE COMPLIANCE                               | 9  |
| 5.1 SITE COMPLIANCE STATEMENT                   |    |
| 5.2 ACTIONS FOR SITE COMPLIANCE                 | .9 |
| 6 REVIEWER CERTIFICATION 1                      | 0  |
| APPENDIX A – STATEMENT OF LIMITING CONDITIONS 1 | 1  |
| APPENDIX B – REGULATORY BACKGROUND INFORMATION  | 2  |
| FCC Rules and Regulations                       |    |
| OSHA STATEMENT                                  | 3  |
| APPENDIX C – SAFETY PLAN AND PROCEDURES1        | 4  |
| APPENDIX D – RF EMISSIONS 1                     | 15 |
| APPENDIX E – ASSUMPTIONS AND DEFINITIONS 1      | 6  |
| General Model Assumptions                       | 6  |
| APPENDIX F – REFERENCES                         |    |



#### 1 General Site Summary

#### 1.1 Report Summary

| AT&T Mobility, LLC              | Summary                  |
|---------------------------------|--------------------------|
| Access to Antennas Locked?      | No                       |
| Max Cumulative Simulated RFE    | <1% General Public Limit |
| Level on the Ground             |                          |
| FCC & AT&T Compliant?           | Will Be Compliant        |
| Optional AT&T Mitigation Items? | No                       |

The following documents were provided by the client and were utilized to create this report:

RFDS: RFDS - CT2086 - 10035309

CD's: 10035309\_AE201\_180925\_CTL02086\_Rev 2\_4C-5C

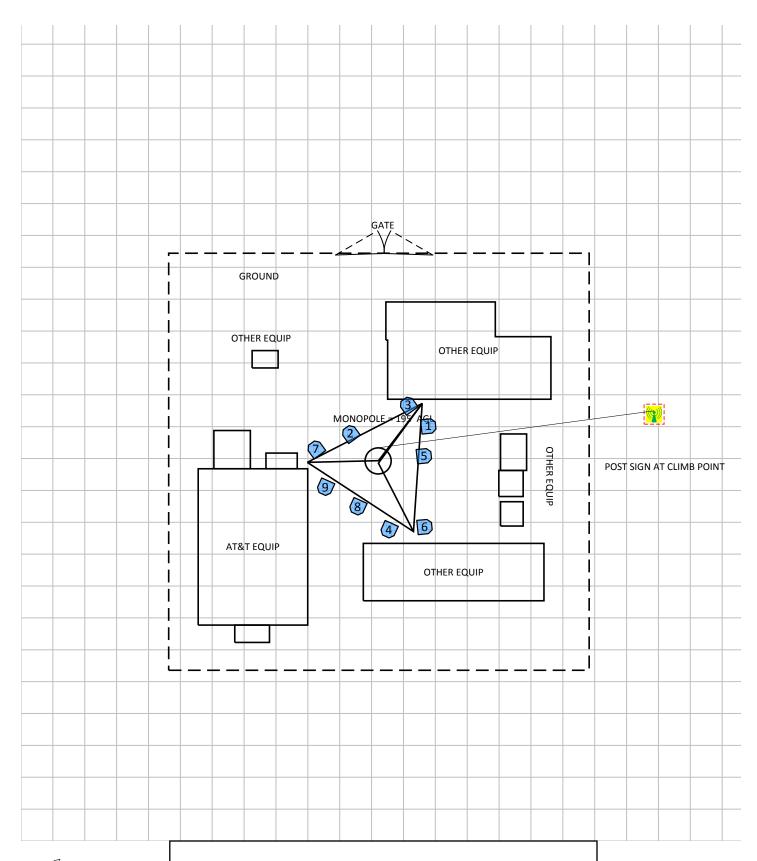
#### RF Powers Used: RFDS

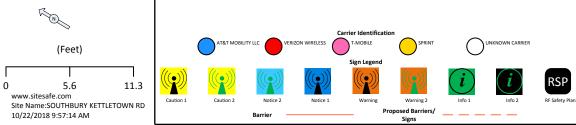
#### 1.2 Signage Summary

| AT&T Signage<br>Locations |               | INFORMATION   | Notice | Notice   | CAUTION | CAUTION   | VAINING | VARINING  | ¥ Y      |
|---------------------------|---------------|---------------|--------|----------|---------|-----------|---------|-----------|----------|
|                           | Information 1 | Information 2 | Notice | Notice 2 | Caution | Caution 2 | Warning | Warning 2 | Barriers |
| Access Point(s)           |               |               |        |          |         |           |         |           |          |
| Alpha                     |               |               |        |          |         |           |         |           |          |
| Beta                      |               |               |        |          |         |           |         |           |          |
| Gamma                     |               |               |        |          |         |           |         |           |          |
| Delta                     |               |               |        |          |         |           |         |           |          |
| Epsilon                   |               |               |        |          |         |           |         |           |          |

#### **1.3 Fall Arrest Anchor Point Summary**

| Fall Arrest<br>Anchor &<br>Parapet Info | Parapet Available<br>(Y/N) | Parapet Height<br>(inches) | Fall Arrest Anchor<br>Available (Y/N) |
|-----------------------------------------|----------------------------|----------------------------|---------------------------------------|
| Roof Safety Info                        | Ν                          | N/A                        | Ν                                     |





#### 2 Scale Maps of Site

The following diagrams are included:

- Site Scale Map •
- RF Exposure Diagram •
- RF Exposure Diagram Elevation View •

#### Site Scale Map For: SOUTHBURY KETTLETOWN RD







#### 3 Antenna Inventory

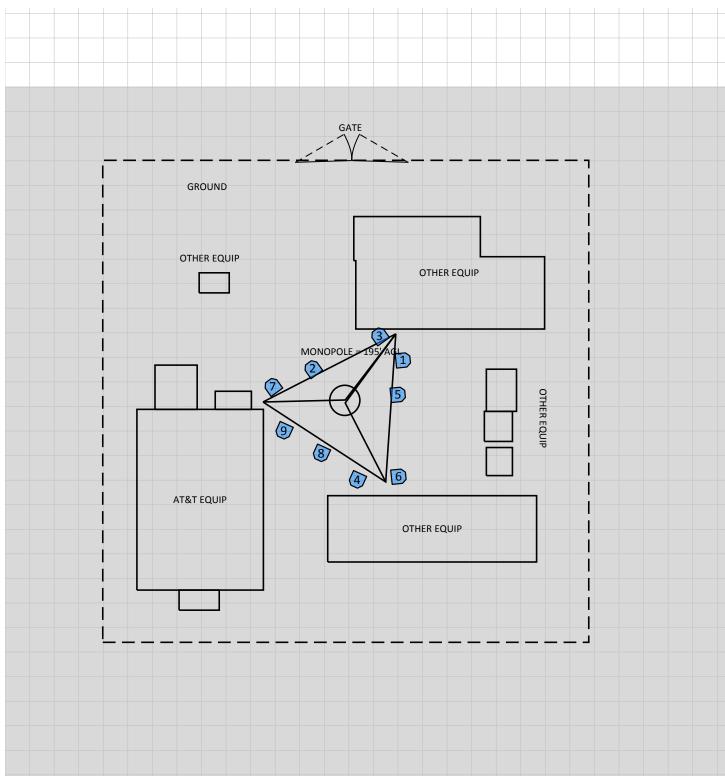
The following antenna inventory was obtained by the customer and was utilized to create the site model diagrams:

| Ant<br>ID | Operator                        | Antenna Make &<br>Model      | Туре  | TX Freq<br>(MHz) | Technology | Az<br>(Deg) | Hor BW<br>(Deg) | Ant<br>Len<br>(ft) | Power    | Power<br>Type | Power<br>Unit | Radio<br>Count | Total ERP<br>(Watts) | Ant Gain<br>(dBd) | Z<br>AGL | MDT | EDT |
|-----------|---------------------------------|------------------------------|-------|------------------|------------|-------------|-----------------|--------------------|----------|---------------|---------------|----------------|----------------------|-------------------|----------|-----|-----|
| 1         | AT&T MOBILITY LLC               | Powerwave 7770               | Panel | 850              | UMTS       | 143         | 82              | 4.6                | 232.27   | ERP           | Watt          | 1              | 232.3                | 11.51             | 182.7'   | 0'  | 6'  |
| 2         | AT&T MOBILITY LLC               | Quintel QS66512-2            | Panel | 850              | LTE        | 23          | 63              | 6                  | 500      | ERP           | Watt          | 1              | 500                  | 10.96             | 182'     | 0'  | 2'  |
| 2         | AT&T MOBILITY LLC<br>(Proposed) | Quintel Q\$66512-2           | Panel | 5G 850           | LTE        | 23          | 63              | 6                  | 500      | ERP           | Watt          | 1              | 500                  | 10.96             | 182'     | 0'  | 2'  |
| 2         | AT&T MOBILITY LLC               | Quintel Q\$66512-2           | Panel | 1900             | LTE        | 23          | 68              | 6                  | 3664.376 | ERP           | Watt          | 1              | 3664.4               | 14.16             | 182'     | 0'  | 5'  |
| 2         | AT&T MOBILITY LLC               | Quintel QS66512-2            | Panel | 2300             | LTE        | 23          | 64              | 6                  | 1285.287 | ERP           | Watt          | 1              | 1285.3               | 14.56             | 182'     | 0'  | 2'  |
| 3         | AT&T MOBILITY LLC<br>(Proposed) | CCI Antennas HPA65R-<br>BU8A | Panel | 737              | LTE        | 23          | 65.7            | 8                  | 1475.707 | ERP           | Watt          | 1              | 1475.7               | 13.16             | 181'     | 0'  | 2'  |
| 3         | AT&T MOBILITY LLC<br>(Proposed) | CCI Antennas HPA65R-<br>BU8A | Panel | 2100             | LTE        | 23          | 61.2            | 8                  | 3837.072 | ERP           | Watt          | 1              | 3837.1               | 15.26             | 181'     | 0'  | 2'  |
| 4         | AT&T MOBILITY LLC               | Powerwave 7770               | Panel | 850              | UMTS       | 263         | 82              | 4.6                | 232.27   | ERP           | Watt          | 1              | 232.3                | 11.51             | 182.7'   | 0'  | 0'  |
| 5         | AT&T MOBILITY LLC<br>(Proposed) | Quintel Q\$66512-2           | Panel | 5G 850           | LTE        | 143         | 63              | 6                  | 500      | ERP           | Watt          | 1              | 500                  | 10.96             | 182'     | 0'  | 2'  |
| 5         | AT&T MOBILITY LLC               | Quintel Q\$66512-2           | Panel | 850              | LTE        | 143         | 63              | 6                  | 500      | ERP           | Watt          | 1              | 500                  | 10.96             | 182'     | 0'  | 2'  |
| 5         | AT&T MOBILITY LLC               | Quintel Q\$66512-2           | Panel | 1900             | LTE        | 143         | 68              | 6                  | 3664.376 | ERP           | Watt          | 1              | 3664.4               | 14.16             | 182'     | 0'  | 2'  |
| 5         | AT&T MOBILITY LLC               | Quintel QS66512-2            | Panel | 2300             | LTE        | 143         | 64              | 6                  | 1285.287 | ERP           | Watt          | 1              | 1285.3               | 14.56             | 182'     | 0'  | 2'  |
| 6         | AT&T MOBILITY LLC<br>(Proposed) | CCI Antennas HPA65R-<br>BU8A | Panel | 737              | LTE        | 143         | 65.7            | 8                  | 1475.707 | ERP           | Watt          | 1              | 1475.7               | 13.16             | 181'     | 0'  | 2'  |
| 6         | AT&T MOBILITY LLC<br>(Proposed) | CCI Antennas HPA65R-<br>BU8A | Panel | 2100             | LTE        | 143         | 61.2            | 8                  | 3837.072 | ERP           | Watt          | 1              | 3837.1               | 15.26             | 181'     | 0'  | 2'  |
| 7         | AT&T MOBILITY LLC               | Powerwave 7770               | Panel | 850              | UMTS       | 23          | 82              | 4.6                | 232.27   | ERP           | Watt          | 1              | 232.3                | 11.51             | 182.7'   | 0'  | 8'  |
| 8         | AT&T MOBILITY LLC<br>(Proposed) | Quintel Q\$66512-2           | Panel | 5G 850           | LTE        | 263         | 63              | 6                  | 500      | ERP           | Watt          | 1              | 500                  | 10.96             | 182'     | 0'  | 2'  |
| 8         | AT&T MOBILITY LLC               | Quintel Q\$66512-2           | Panel | 850              | LTE        | 263         | 63              | 6                  | 500      | ERP           | Watt          | 1              | 500                  | 10.96             | 182'     | 0'  | 2'  |
| 8         | AT&T MOBILITY LLC               | Quintel Q\$66512-2           | Panel | 1900             | LTE        | 263         | 68              | 6                  | 3664.376 | ERP           | Watt          | 1              | 3664.4               | 14.16             | 182'     | 0'  | 2'  |
| 8         | AT&T MOBILITY LLC               | Quintel QS66512-2            | Panel | 2300             | LTE        | 263         | 64              | 6                  | 1285.287 | ERP           | Watt          | 1              | 1285.3               | 14.56             | 182'     | 0'  | 1'  |
| 9         | AT&T MOBILITY LLC<br>(Proposed) | CCI Antennas HPA65R-<br>BU8A | Panel | 737              | LTE        | 263         | 65.7            | 8                  | 1475.707 | ERP           | Watt          | 1              | 1475.7               | 13.16             | 181'     | 0'  | 2'  |
| 9         | AT&T MOBILITY LLC<br>(Proposed) | CCI Antennas HPA65R-<br>BU8A | Panel | 2100             | LTE        | 263         | 61.2            | 8                  | 3837.072 | ERP           | Watt          | 1              | 3837.1               | 15.26             | 181'     | 0'  | 5'  |

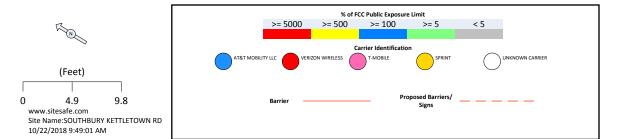
NOTE: X, Y and Z indicate relative position of the bottom of the antenna to the origin location on the site, displayed in the model results diagram. Specifically, the Z reference indicates the bottom of the antenna height above the main site level unless otherwise indicated. The distance to the bottom of the antenna is calculated by subtracting half of the length of the antenna from the antenna centerline. Effective Radiated Power (ERP) is provided by the operator or based on Sitesafe experience. The values used in the modeling may be greater than are currently deployed. Note: The 850 5G MHz LTE technology is being added to an existing antenna.

AT&T Proprietary (Internal use only). Not for use or disclosure outside the AT&T companies, except under written agreement. ©2016 AT&T Intellectual property. All rights reserved



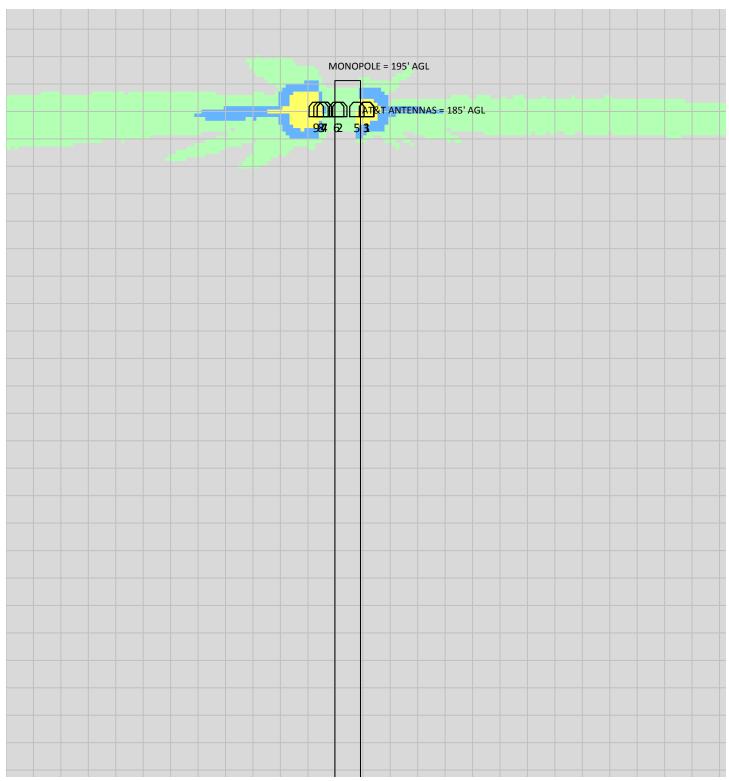

#### 4 **Emission Predictions**

In the RF Exposure Simulations below all heights are reflected with respect to main site level. In most rooftop cases this is the height of the main rooftop and in other cases this can be ground level. Each different height area, rooftop, or platform level is labeled with its height relative to the main site level. Emissions are calculated appropriately based on the relative height and location of that area to all antennas. The total analyzed elevations in the below RF Exposure Simulations are listed below.

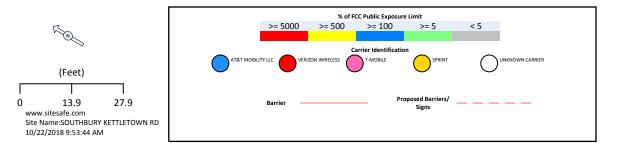

• Ground

The Antenna Inventory heights are referenced to the same level.

## RF Exposure Simulation For: SOUTHBURY KETTLETOWN RD Composite View




% of FCC Public Exposure Limit Spatial average 0' - 6'




Sitesafe OET-65 Model Near Field Boundary: 1.5 \* Aperture Reflection Factor: 1 Spatially Averaged

# RF Exposure Simulation For: SOUTHBURY KETTLETOWN RD Elevation View



% of FCC Public Exposure Limit Spatial average 0' - 6'



Sitesafe OET-65 Model Near Field Boundary: 1.5 \* Aperture Reflection Factor: 1 Single Level (0)



#### 5 Site Compliance

#### 5.1 Site Compliance Statement

Upon evaluation of the cumulative RF emission levels from all operators at this site, RF hazard signage and antenna locations, Sitesafe has determined that:

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

The compliance determination is based on General Public RFE levels derived from theoretical modeling, RF signage placement, proposed antenna inventory and the level of restricted access to the antennas at the site. Any deviation from the AT&T Mobility, LLC's proposed deployment plan could result in the site being rendered non-compliant.

Modeling is used for determining compliance and the percentage of MPE contribution.

#### 5.2 Actions for Site Compliance

Based on FCC regulations, common industry practice, and our understanding of AT&T Mobility, LLC RF Safety Policy requirements, this section provides a statement of recommendations for site compliance. Recommendations have been proposed based on our understanding of existing access restrictions, signage, and an analysis of predicted RFE levels.

AT&T Mobility, LLC will be made compliant if the following changes are implemented:

#### Monopole Access Location

(1) Yellow Caution 2B sign(s) required at climb point.

#### Notes:

• Signage may already be in place. Sitesafe does not have record of any existing signage because there were no previous visits or data supplied regarding them. All remediation is based on a worst-case scenario.



#### 6 Reviewer Certification

The reviewer whose signature appears below hereby certifies and affirms:

That I am an employee of Sitesafe, LLC., in Vienna, Virginia, at which place the staff and I provide RF compliance services to clients in the wireless communications industry; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission (FCC) as well as the regulations of the Occupational Safety and Health Administration (OSHA), both in general and specifically as they apply to the FCC Guidelines for Human Exposure to Radio-frequency Radiation; and

That I have thoroughly reviewed this Site Compliance Report and believe it to be true and accurate to the best of my knowledge as assembled by and attested to by Scott Broyles.

#### October 22, 2018



#### Appendix A - Statement of Limiting Conditions

Sitesafe has provided computer generated model(s) in this Site Compliance Report to show approximate dimensions of the site, and the model is included to assist the reader of the compliance report to visualize the site area, and to provide supporting documentation for Sitesafe's recommendations.

Sitesafe may note in the Site Compliance Report any adverse physical conditions, such as needed repairs, that Sitesafe became aware of during the normal research involved in creating this report. Sitesafe will not be responsible for any such conditions that do exist or for any engineering or testing that might be required to discover whether such conditions exist. Because Sitesafe is not an expert in the field of mechanical engineering or building maintenance, the Site Compliance Report must not be considered a structural or physical engineering report.

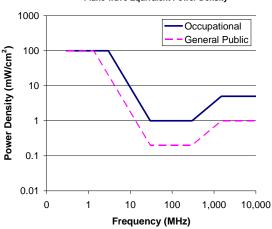
Sitesafe obtained information used in this Site Compliance Report from sources that Sitesafe considers reliable and believes them to be true and correct. Sitesafe does not assume any responsibility for the accuracy of such items that were furnished by other parties. When conflicts in information occur between data collected by Sitesafe provided by a second party and data collected by Sitesafe, the data will be used.



#### Appendix B - Regulatory Background Information

#### **FCC Rules and Regulations**

In 1996, the Federal Communications Commission (FCC) adopted regulations for the evaluating of the effects of RF emissions in 47 CFR § 1.1307 and 1.1310. The guideline from the FCC Office of Engineering and Technology is Bulletin 65 ("OET Bulletin 65"), *Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields*, Edition 97-01, published August 1997. Since 1996 the FCC periodically reviews these rules and regulations as per their congressional mandate.


FCC regulations define two separate tiers of exposure limits: Occupational or "Controlled environment" and General Public or "Uncontrolled environment". The General Public limits are generally five times more conservative or restrictive than the Occupational limit. These limits apply to *accessible* areas where workers or the general public may be exposed to Radio Frequency (RF) electromagnetic fields.

Occupational or Controlled limits apply in situations in which persons are exposed as a consequence of their employment and where those persons exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

An area is considered a Controlled environment when access is limited to these aware personnel. Typical criteria are restricted access (i.e. locked or alarmed doors, barriers, etc.) to the areas where antennas are located coupled with proper RF warning signage. A site with Controlled environments is evaluated with Occupational limits.

All other areas are considered Uncontrolled environments. If a site has no access controls or no RF warning signage it is evaluated with General Public limits.

The theoretical modeling of the RF electromagnetic fields has been performed in accordance with OET Bulletin 65. The Maximum Permissible Exposure (MPE) limits utilized in this analysis are outlined in the following diagram:



#### FCC Limits for Maximum Permissible Exposure (MPE) Plane-wave Equivalent Power Density



#### Limits for Occupational/Controlled Exposure (MPE)

| Frequency<br>Range<br>(MHz) | Electric<br>Field<br>Strength (E) | Magnetic<br>Field<br>Strength | Power<br>Density (S)<br>(mW/cm²) | Averaging Time  E  <sup>2</sup> ,<br> H  <sup>2</sup> or S (minutes) |
|-----------------------------|-----------------------------------|-------------------------------|----------------------------------|----------------------------------------------------------------------|
|                             | (V/m)                             | (H) (A/m)                     |                                  |                                                                      |
| 0.3-3.0                     | 614                               | 1.63                          | (100)*                           | 6                                                                    |
| 3.0-30                      | 1842/f                            | 4.89/f                        | (900/f <sup>2</sup> )*           | 6                                                                    |
| 30-300                      | 61.4                              | 0.163                         | 1.0                              | 6                                                                    |
| 300-1500                    |                                   |                               | f/300                            | 6                                                                    |
| 1500-                       |                                   |                               | 5                                | 6                                                                    |
| 100,000                     |                                   |                               |                                  |                                                                      |

#### Limits for General Population/Uncontrolled Exposure (MPE)

| (··· _/   |              |                                |               |                                   |  |  |  |  |  |
|-----------|--------------|--------------------------------|---------------|-----------------------------------|--|--|--|--|--|
| Frequency | Electric     | Magnetic                       | Power         | Averaging Time  E  <sup>2</sup> , |  |  |  |  |  |
| Range     | Field        | Field                          | Density (S)   | H  <sup>2</sup> or S (minutes)    |  |  |  |  |  |
| (MHz)     | Strength (E) | Strength (mW/cm <sup>2</sup> ) |               |                                   |  |  |  |  |  |
|           | (V/m)        | (H) (A/m)                      |               |                                   |  |  |  |  |  |
| 0.3-1.34  | 614          | 1.63                           | (100)*        | 30                                |  |  |  |  |  |
| 1.34-30   | 824/f        | 2.19/f                         | (180/f²)*     | 30                                |  |  |  |  |  |
| 30-300    | 27.5         | 0.073                          | 0.2           | 30                                |  |  |  |  |  |
| 300-1500  |              |                                | f/1500        | 30                                |  |  |  |  |  |
| 1500-     |              |                                | 1.0           | 30                                |  |  |  |  |  |
| 100,000   |              |                                |               |                                   |  |  |  |  |  |
| f = frequ | uency in MHz | *Plane-                        | wave equivale | ent power density                 |  |  |  |  |  |

#### **OSHA Statement**

The General Duty clause of the OSHA Act (Section 5) outlines the occupational safety and health responsibilities of the employer and employee. The General Duty clause in Section 5 states:

(a) Each employer –

- shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees;
- (2) shall comply with occupational safety and health standards promulgated under this Act.
- (b) Each employee shall comply with occupational safety and health standards and all rules, regulations, and orders issued pursuant to this Act which are applicable to his own actions and conduct.

OSHA has defined Radiofrequency and Microwave Radiation safety standards for workers who may enter hazardous RF areas. Regulation Standards 29 CFR § 1910.147 identify a generic Lock Out Tag Out procedure aimed to control the unexpected energization or start up of machines when maintenance or service is being performed.



#### Appendix C - Safety Plan and Procedures

The following items are general safety recommendations that should be administered on a site by site basis as needed by the carrier.

<u>General Maintenance Work</u>: Any maintenance personnel required to work immediately in front of antennas and / or in areas indicated as above 100% of the Occupational MPE limits should coordinate with the wireless operators to disable transmitters during their work activities.

<u>Training and Qualification Verification</u>: All personnel accessing areas indicated as exceeding the General Population MPE limits should have a basic understanding of EME awareness and RF Safety procedures when working around transmitting antennas. Awareness training increases a workers understanding to potential RF exposure scenarios. Awareness can be achieved in a number of ways (e.g. videos, formal classroom lecture or internet based courses).

**Physical Access Control:** Access restrictions to transmitting antennas locations is the primary element in a site safety plan. Examples of access restrictions are as follows:

- Locked door or gate
- Alarmed door
- Locked ladder access
- Restrictive Barrier at antenna (e.g. Chain link with posted RF Sign)

<u>**RF Signage:**</u> Everyone should obey all posted signs at all times. RF signs play an important role in properly warning a worker prior to entering into a potential RF Exposure area.

Assume all antennas are active: Due to the nature of telecommunications transmissions, an antenna transmits intermittently. Always assume an antenna is transmitting. Never stop in front of an antenna. If you have to pass by an antenna, move through as quickly and safely as possible thereby reducing any exposure to a minimum.

<u>Maintain a 3 foot clearance from all antennas</u>: There is a direct correlation between the strength of an EME field and the distance from the transmitting antenna. The further away from an antenna, the lower the corresponding EME field is.

<u>Site RF Emissions Diagram</u>: Section 4 of this report contains an RF Diagram that outlines various theoretical Maximum Permissible Exposure (MPE) areas at the site. The modeling is a worst case scenario assuming a duty cycle of 100% for each transmitting antenna at full power. This analysis is based on one of two access control criteria: General Public criteria means the access to the site is uncontrolled and anyone can gain access. Occupational criteria means the access is restricted and only properly trained individuals can gain access to the antenna locations.



## Appendix D – RF Emissions

The RF Emissions Simulation(s) in this report display theoretical spatially averaged percentage of the Maximum Permissible Exposure for all systems at the site unless otherwise noted. These diagrams use modeling as prescribed in OET Bulletin 65 and assumptions detailed in Appendix E.

The key at the bottom of each RF Emissions Simulation indicates percentages displayed referenced to FCC General Public Maximum Permissible Exposure (MPE) limits. Color coding on the diagram is as follows:

- Areas indicated as Gray are predicted to be below 5% of the MPE limits. Gray represents areas more than 20 times below the most conservative exposure limit.
- Green represents areas are predicted to be between 5% and 100% of the MPE limits. Green areas are accessible to anyone.
- Blue represents areas predicted to exceed the General Public MPE limits but are less than Occupational limits. Blue areas should be accessible only to RF trained workers.
- Yellow represents areas predicted to exceed Occupational MPE limits. Yellow areas should be accessible only to RF trained workers able to assess current exposure levels.
- Red represents areas predicted to have exposure more than 10 times the Occupational MPE limits. Red indicates that the RF levels must be reduced prior to access. An RF Safety Plan is required which outlines how to reduce the RF energy in these areas prior to access.



#### Appendix E - Assumptions and Definitions

#### **General Model Assumptions**

In this site compliance report, it is assumed that all antennas are operating at **full power at all times**. Software modeling was performed for all transmitting antennas located on the site. Sitesafe has further assumed a 100% duty cycle and maximum radiated power.

The modeling is based on recommendations from the FCC's OET-65 bulletin with the following variances per AT&T guidance. Reflection has not been considered in the modeling, i.e. the reflection factor is 1.0. The near / far field boundary has been set to 1.5 times the aperture height of the antenna and modeling beyond that point is the lesser of the near field cylindrical model and the far field model taking into account the gain of the antenna.

The site has been modeled with these assumptions to show the maximum RF energy density. Areas modeled with exposure greater than 100% of the General Public MPE level may not actually occur, but are shown as a prediction that could be realized. Sitesafe believes these areas to be safe for entry by occupationally trained personnel utilizing appropriate personal protective equipment (in most cases, a personal monitor).

#### Use of Generic Antennas

For the purposes of this report, the use of "Generic" as an antenna model, or "Unknown" for an operator means the information about a carrier, their FCC license and/or antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of equipment, antenna models, and transmit power to model the site. If more specific information can be obtained for the unknown measurement criteria, Sitesafe recommends remodeling of the site utilizing the more complete and accurate data. Information about similar facilities is used when the service is identified and associated with a particular antenna. If no information is available regarding the transmitting service associated with an unidentified antenna, using the antenna manufacturer's published data regarding the antenna's physical characteristics makes more conservative assumptions.

Where the frequency is unknown, Sitesafe uses the closest frequency in the antenna's range that corresponds to the highest Maximum Permissible Exposure (MPE), resulting in a conservative analysis.



#### Definitions

5% Rule – The rules adopted by the FCC specify that, in general, at multiple transmitter sites actions necessary to bring the area into compliance with the guidelines are the shared responsibility of all licensees whose transmitters produce field strengths or power density levels at the area in question in excess of 5% of the exposure limits. In other words, any wireless operator that contributes 5% or greater of the MPE limit in an area that is identified to be greater than 100% of the MPE limit is responsible taking corrective actions to bring the site into compliance.

*Compliance* – The determination of whether a site is safe or not with regards to Human Exposure to Radio Frequency Radiation from transmitting antennas.

Decibel (dB) – A unit for measuring power or strength of a signal.

*Duty Cycle* – The percent of pulse duration to the pulse period of a periodic pulse train. Also, may be a measure of the temporal transmission characteristic of an intermittently transmitting RF source such as a paging antenna by dividing average transmission duration by the average period for transmission. A duty cycle of 100% corresponds to continuous operation.

*Effective (or Equivalent) Isotropic Radiated Power (EIRP)* – The product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna.

*Effective Radiated Power (ERP)* – In a given direction, the relative gain of a transmitting antenna with respect to the maximum directivity of a half wave dipole multiplied by the net power accepted by the antenna from the connecting transmitter.

*Gain (of an antenna)* – The ratio of the maximum intensity in a given direction to the maximum radiation in the same direction from an isotropic radiator. Gain is a measure of the relative efficiency of a directional antennas as compared to an omni directional antenna.

*General Population/Uncontrolled Environment* – Defined by the FCC, as an area where exposure to RF energy may occur to persons who are **unaware** of the potential for exposure and who have no control of their exposure. General Population is also referenced as General Public.

*Generic Antenna* – For the purposes of this report, the use of "Generic" as an antenna model means the antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of antenna models to select a worst case scenario antenna to model the site.

*Isotropic Antenna* – An antenna that is completely non-directional. In other words, an antenna that radiates energy equally in all directions.

*Maximum Measurement* – This measurement represents the single largest measurement recorded when performing a spatial average measurement.

*Maximum Permissible Exposure (MPE)* – The maximum levels of RF exposure a person may be exposed to without harmful effect and with acceptable safety factor.

*Occupational/Controlled Environment* – Defined by the FCC, as an area where Radio Frequency Radiation (RFR) exposure may occur to persons who are **aware** of the



potential for exposure as a condition of employment or specific activity and can exercise control over their exposure.

*OET Bulletin 65* – Technical guideline developed by the FCC's Office of Engineering and Technology to determine the impact of Radio Frequency radiation on Humans. The guideline was published in August 1997.

**OSHA (Occupational Safety and Health Administration)** – Under the Occupational Safety and Health Act of 1970, employers are responsible for providing a safe and healthy workplace for their employees. OSHA's role is to promote the safety and health of America's working men and women by setting and enforcing standards; providing training, outreach and education; establishing partnerships; and encouraging continual process improvement in workplace safety and health. For more information, visit www.osha.gov.

*Radio Frequency (RF)* – The frequencies of electromagnetic waves which are used for radio communications. Approximately 3 kHz to 300 GHz.

*Radio Frequency Exposure (RFE)* – The amount of RF power density that a person is or might be exposed to.

Spatial Average Measurement – A technique used to average a minimum of ten (10) measurements taken in a ten (10) second interval from zero (0) to six (6) feet. This measurement is intended to model the average power density an average sized human will be exposed to at a location.

*Transmitter Power Output (TPO)* – The radio frequency output power of a transmitter's final radio frequency stage as measured at the output terminal while connected to a load.



#### Appendix F – References

The following references can be followed for further information about RF Health and Safety.

Sitesafe, LLC. http://www.sitesafe.com FCC Radio Frequency Safety http://www.fcc.gov/encyclopedia/radio-frequency-safety National Council on Radiation Protection and Measurements (NCRP) http://www.ncrponline.org Institute of Electrical and Electronics Engineers, Inc., (IEEE) http://www.ieee.org American National Standards Institute (ANSI) http://www.ansi.org Environmental Protection Agency (EPA) http://www.epa.gov/radtown/wireless-tech.html National Institutes of Health (NIH) http://www.niehs.nih.gov/health/topics/agents/emf/ Occupational Safety and Health Agency (OSHA) http://www.osha.gov/SLTC/radiofrequencyradiation/ International Commission on Non-Ionizing Radiation Protection (ICNIRP) http://www.icnirp.org World Health Organization (WHO) http://www.who.int/peh-emf/en/ National Cancer Institute http://www.cancer.gov/cancertopics/factsheet/Risk/cellphones American Cancer Society (ACS) http://www.cancer.org/docroot/PED/content/PED 1 3X Cellular Phone Towers.asp?sit earea=PED European Commission Scientific Committee on Emerging and Newly Identified Health Risks http://ec.europa.eu/health/ph risk/committees/04 scenihr/docs/scenihr o 022.pdf Fairfax County, Virginia Public School Survey http://www.fcps.edu/fts/safety-security/RFEESurvey/ UK Health Protection Agency Advisory Group on Non-ionising Radiation http://www.hpa.org.uk/webw/HPAweb&HPAwebStandard/HPAweb C/1317133826368 Norwegian Institute of Public Health http://www.fhi.no/dokumenter/545eea7147.pdf