

November 10, 2016

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Street New Britain, CT 06051

Regarding: Notice of Exempt Modification – Antenna & Remote

Radio Head (RRU) Swap; Replacement of Sector Frame

Mount

Property Address: 14 Booth Hill Road, Shelton CT 06484 (AKA 14 Oxford

Drive or 20 Oxford Drive)

AT&T Site: CT5542 – Shelton SW

Dear Ms. Bachman:

AT&T currently maintains a wireless telecommunications facility on an existing 200-foot self-support tower at the above-referenced address, latitude 41.280164, longitude -73.185467. Said self-support tower is owned by American Tower Corporation. The existing equipment shelter is 20' x 12' totaling 240 square feet.

AT&T desires to modify its existing telecommunications facility by swapping three (3) panel antennas and three (3) remote-radio heads ("RRHs"). The centerline height of said antennas is and will remain at 144 feet. Antennas are mounted utilizing a sector frame, which will be replaced as part of this project.

Please accept this application as notification pursuant to R.C.S.A. §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j-72 (b)(2). In accordance with R.C.S.A. §16-50j-73, a copy of this letter is being sent to Mayor Mark A. Lauretti of the City of Shelton, as well as to the tower and land owner American Tower Corporation.

The planned modifications to AT&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72 (b)(2). Specifically:

- 1. The planned modification will not result in an increase in the height of the existing structure. The antennas to be swapped will be installed at the existing height of 144 feet on the 200 foot self-support tower.
- 2. The proposed modifications will not involve any changes to ground-mounted equipment, and therefore will not require an extension of the site boundary.
- 3. The proposed modification will not increase the noise level at the facility by six decibel or more, or to levels that exceed state and local criteria.

- 4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above Federal Communications Commission (FCC) safety standard. An RF emissions calculation (attached) for AT&T's modified facility is herein provided.
- 5. The proposed modifications will not case a change or alteration in the physical or environmental characteristics of the site.
- 6. The self-support tower and its foundation can support AT&T's proposed modifications (please see attached structural analysis completed by American Tower dated October 31, 2016).

For the foregoing reasons, AT&T respectfully requests that the proposed antenna swap and remote radio head swap be allowed within the exempt modifications under R.C.S.A. §16-50j-72 (b)(2).

Sincerely,

Sarah Snell Site Acquisition Specialist

cc: Mayor Mark A. Lauretti, City of Shelton (Municipality) American Tower Corporation (Land and Tower Owner) Parcel ID 33.-13

Account

2031

Property Information

Owner	AMERICAN TOWERS INC			
Address	20 OXFORD DR			
Mailing Address	P O BOX 723597			
	ATLANTA , GA 31139			
Land Use	- RESIDENTIAL			
Land Class	4-2			

Census Tract	1104
Neighborhood	
Zoning	R-1
Acreage	0.82
Utilities	ELECTRIC
Lot Setting/ Desc	I
·	· · · · · · · · · · · · · · · · · · ·

Photo

No Photo Available

PARCEL VALUATIONS (Assessed value = 70% of Appraised Value)

	Appraised	Assessed
Buildings		
Outbuildings		
Improvements		
Extras		
Land		
Total	198500	138950
Previous		

Construction Details

Year Built	
Stories	
Building Style	
Building Use	
Building Condition	
Total Rooms	
Bedrooms	
Full Bathrooms	
Half Bathrooms	
Bath Style	
Kitchen Style	
Roof Style	
Roof Cover	

EXTERIOR WALLS:

Primary	
Secondary	
INTERIOR WAL	LS:
Primary	
Secondary	
FLOORS:	
Primary	
Secondary	
HEATING/AC:	
Heating Type	
Heating Fuel	
AC Type	

BUILDING AREA:

Effective Building Area	
Gross Building Area	
Total Living Area	

SALES HISTORY:

Sale Date	20000411
Sale Price	404094
Book/ Page	1680/107

11/10/2016 Print Map

City of Shelton

Geographic Information System (GIS)

Date Printed: 11/10/2016 120.ZU 11 10 oxford Dr 72.0 0.88215 13 .82 AC. 90(S)

MAP DISCLAIMER - NOTICE OF LIABILITY

This map is for assessment purposes only. It is not for legal description or conveyances. All information is subject to verification by any user. The City of Shelton and its mapping contractors assume no legal responsibility for the information contained herein.

http://shelton.mapxpress.net/

PROJECT INFORMATION

UNMANNED COMMUNICATIONS FACILITY MODIFICATIONS INCLUDING THE REPLACEMENT OF SCOPE OF WORK: EXISTING THREE LTE PANELS WITH NEW CCI HEXPORT ANTENNAS, TOGETHER WITH THE REPLACEMENT OF EXISTING THREE RRUS—11 WITH NEW ERICSSON RRUS—32 B2, REUSING EXISTING SURGE ARRESTOR, FIBER & DC CABLES.

SITE NUMBER:

SHELTON - BOOTH HILL SITE NAME:

SITE ADDRESS: BOOTH HILL RD (14 OXFORD DR.) SHELTON, CT 06484

TOWER OWNER: AMERICAN TOWERS, LLC 10 PRESIDENTIAL WAY

WOBURN, MA 01801

APPLICANT: AT&T MOBILITY

550 COCHITUATE RD SUITES 13 & 14

FRAMINGHAM, MA 01701

CONTACT: TEL 866-915-5600

COORDINATES LAT. N41°16'48.59"

±516.9

LONG. W73°11'07.6'

DEED REFERENCE: N/A SITE PARCEL NO .: N/A

GROUND LEVEL:

CURRENT ZONING: N/A HORIZONTAL DATUM: (NAD) 1983

SITE NUMBER: CT5542

SITE NAME: SHELTON - BOOTH HILL PROJECT: LTE BWE EXPANSION

REV DRAWING INDEX 01 TITLE SHEET 02 NOTES 1 SITE PLAN & EQUIPMENT PLAN 1 **ELEVATION VIEW & ANTENNA LAYOUT** 05 GROUNDING DETAILS

AT LEAST 2 WORKING DAYS PRIOR TO DIGGING. THE CONTRACTOR IS REQUIRED TO CONNECTICUT ONE CALL SYSTEM AT 1-800-922-4455

CONTACT & UTILITY INFORMATION

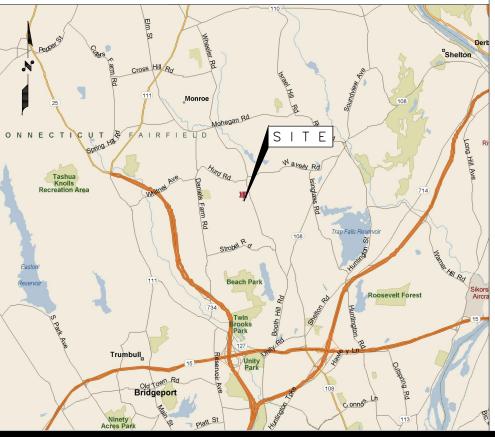
CONTACT ENGINEERING: SITE ACQUISITION: CONSTRUCTION: **UTILITIES** POWER:

CONTACT MIGUEL NOBRE DAVID COOPER BILL DANIELS

WORK REQUEST GROUP

NATIONAL GRID

COMPANY VRG **EMPIRE EMPIRE**


(800) 375-7405 (800) 941-9900

PHONE NO.

(508) 981-9590 (484) 683-5349 (484) 683-5349 **LOCATION MAP**

DIRECTIONS: FROM ROCKY HILL, TAKE I-91 SOUTH TOWARDS NEW HAVEN. TAKE EXIT 17(CT-15 SOUTH). TAKE EXIT 50. BEAR LEFT ON WHITE PLAINS RD. TURN LEFT ON UNITY RD. BEAR LEFT ON BOOTH HILL RD. TURN LEFT ON OXFORD DR. SITE IS ON THE LEFT.

SITE ACCESS: LOCKED GATE

APPLICABLE BUILDING CODES AND STANDARDS

SUBCONTRACTOR'S WORK SHALL COMPLY WITH PROJECT STANDARDS AND SPECIFICATIONS. SUBCONTRACTOR WORK SHALL COMPLY WITH ALL APPLICABLE NATIONAL, STATE, AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORITY HAVING JURISDICTION (AHJ) FOR THE LOCATION. THE EDITION OF THE AHJ ADOPTED CODES AND STANDARDS IN EFFECT ON THE DATE OF CONTRACT AWARD SHALL GOVERN THE DESIGN.

BUILDING CODE:

CONNECTICUT STATE BUILDING CODE

ELECTRICAL CODE:

NATIONAL ELECTRICAL CODE LATEST EDITION

SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE FOLLOWING

AMERICAN CONCRETE INSTITUTE (ACI) 318, BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC), MANUAL OF STEEL CONSTRUCTION, ASD, NINTH EDITION

AMERICAN NATIONAL STANDARDS INSTITUTE/TELECOMMUNICATIONS INDUSTRY ASSOCIATION (ANSI/TIA) 222-F OR G AS APPLICABLE, STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWER AND ANTENNA SUPPORTING STRUCTURES:

TIA 607, COMMERCIAL BUILDING GROUNDING AND BONDING REQUIREMENTS FOR TELECOMMUNICATIONS.

INSTITUTE FOR ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) 81, GUIDE FOR MEASURING EARTH RESISTIVITY, GROUND IMPEDANCE, AND EARTH SURFACE POTENTIALS OF A GROUND SYSTEM IEEE 1100 (1999) RECOMMENDED PRACTICE FOR POWERING AND GROUNDING OF ELECTRONIC

IEEE C62.41, RECOMMENDED PRACTICES ON SURGE VOLTAGES IN LOW VOLTAGE AC POWER CIRCUITS (FOR LOCATION CATEGORY "C3" AND "HIGH SYSTEM EXPOSURE")

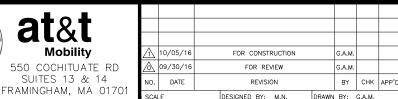
TELCORDIA GR-1503, COAXIAL CABLE CONNECTIONS

ANSI T1.311, FOR TELECOM - DC POWER SYSTEMS - TELECOM, ENVIRONMENTAL PROTECTION

FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS REGARDING MATERIAL, METHODS OF CONSTRUCTION, OR OTHER REQUIREMENTS, THE MOST RESTRICTIVE REQUIREMENT SHALL GOVERN. WHERE THERE IS CONFLICT BETWEEN A GENERAL REQUIREMENT AND A SPECIFIC REQUIREMENT, THE SPECIFIC REQUIREMENT SHALL GOVERN.

TELCO:

489 Washington Street Auburn, MA 01501 Tel. (508) 981- 9590 Fax (508) 519 - 8939


EMPIRE TELECOM USA, LLC 16 ESQUIRE ROAD

BILLERICA, MA 01821

SITE NUMBER: CT5542 SITE NAME: SHELTON

BOOTH HILL RD BOOTH HILL RD (14 OXFORD DR.) SHELTON, CT 06484 **FAIRFIELD COUNTY**

AT&T MOBILITY

TITLE SHEET

JOB NUMBER	DRAWING NUMBER	REV
50-145	01	1

GENERAL NOTES

1. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR — PRIME CONTRACTOR
SUBCONTRACTOR — GENERAL CONTRACTOR (CONSTRUCTION) AT&T WRFLESS - ORIGINAL EQUIPMENT MANUFACTURER

. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL WIST THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND 3. REINFORCING STEEL SHALL CONFORM TO ASTM A 615, GRADE 60, DEFORMED UNLESS NOTED OTHERWISE. WELDED WIRE FABRIC SHALL TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR

NLL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCE: SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK.

L WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

4. DRAWINGS PROVIDED HERE ARE NOT TO SCALE UNLESS OTHERWISE NOTED AND ARE INTENDED TO SHOW OUTLINE ONLY.

5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

HE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS

7. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE

8. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. ROUTING OF CONDUIT FOR POWER AND TELCO SHALL BE APPROVED BY OWNER OF SITE.

THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES, ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

10. SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

11. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.

SITE WORK GENERAL NOTES

1. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.

2. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. SUBCONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING & EXCAVATION.

3. ALL SITE WORK SHALL BE AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.

4. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES, TOP SOIL AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

5. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF CONTRACTOR, OWNER AND/OR LOCAL UTILITIES.

6. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION.

7. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE OWNER SPECIFICATION FOR SITE SIGNAGE.

8. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE TRANSMISSION EQUIPMENT AND TOWER AREAS.

9. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN

10. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION, SEE

11. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION.

12. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL JURISDICTION'S GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

13. ALL EARTH WORK SHALL BE PERFORMED IN ACCORDANCE WITH TECHNICAL SPECIFICATION FOR CONSTRUCTION OF RADIO ACCESS NETWORK

STRUCTURAL STEEL NOTES:

ALL STEFL WORK SHALL RE GALVANIZED IN ACCORDANCE WITH ASTM A123 (HOT-DIP) UNLESS NOTED OTHERWISE, STRUCTURAL STEEL SHALL BE 1-A-36 UNLESS OTHERWISE NOTED ON THE SITE SPECIFIC DRAWINGS. STEEL DESIGN, INSTALLATION AND BOLTING SHALL BE PERFORMED IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) "MANUAL OF STEEL CONSTRUCTION".

2. ALL WELDING SHALL BE PERFORMED USING E70XX ELECTRODES AND WELDING SHALL CONFORM TO AISC. WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLE J2.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION". PAINTED SURFACES SHALL BE TOUCHED

3. BOLTED CONNECTIONS SHALL BE ASTM A325 BEARING TYPE (3/4"ø) CONNECTIONS AND SHALL HAVE MINIMUM OF TWO BOLTS UNLESS NOTED OTHERWISE. STEEL FASTENER HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 (HOT-DIP)

4. NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE 5/8" DIA. ASTM A 307 BOLTS UNLESS NOTED OTHERWISE.

5. INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHOR, SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED PROCEDURE, THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWNGS. NO REBAR SHALL BE CUT WITHOUT PRIOR CONTRACTOR APPROVAL WHEN DRILLING HOLES IN CONCRETE. SPECIAL INSPECTIONS, REQUIRED BY GOVERNING CODES, SHALL BE PERFORMED IN ORDER TO MAINTAIN MANUFACTURER'S MAXIMUM ALLOWABLE LOADS. ALL EXPANSION/WEDGE ANCHORS SHALL BE STAINLESS STEEL OR HOT DIPPED GALVANIZED. EXPANSION BOLTS SHALL BE PROVIDED BY RAMSET/REDHEAD, HILTI OR

6. ALL STRUCTURAL STEEL SHALL BE SUPPLIED IN ACCORDANCE WITH TECHNICAL SPECIFICATION FOR CONSTRUCTION OF RADIO ACCESS NETWORK

CONCRETE AND REINFORCING STEEL NOTES:

- ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND
- 2. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 4000 PSI AT 28 DAYS, UNLESS NOTED OTHERWISE, A HIGHER STRENGTH (4000 PSI) MAY BE USED.
- CONFORM TO ASTM A 185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE. SPLICES SHALL BE CLASS "B" AND ALL HOOKS
- 4. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:

CONCRETE CAST AGAINST FARTH.......3 II CONCRETE EXPOSED TO EARTH OR WEATHER:

#6 AND LARGER #5 AND SMALLER & WWF...... 1 1/2 INCH

CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR NOT

SLAB AND WALL BEAMS AND COLUMNS......1 1/2 INCH

5. A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNO. IN ACCORDANCE WITH ACL 301 SECTION 4.2.4.

6. INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHOR, SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED PROCEDURE. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWINGS. NO REBAR SHALL BE CUT WITHOUT PRIOR CONTRACTOR APPROVAL WHEN DRILLING HOLES IN CONCRETE. SPECIAL INSPECTIONS, REQUIRED BY GOVERNING CODES, SHALL BE PERFORMED IN ORDER TO MAINTAIN MANUFACTURER'S MAXIMUM ALLOWABLE LOADS. ALL EXPANSION/WEDGE ANCHORS SHALL BE STAINLESS STEEL OR HOT DIPPED GALVANIZED. EXPANSION BOLTS SHALL BE PROVIDED BY RAMSET/REDHEAD HILTI OR APPROVED EQUAL.

CONCRETE CYLINDER TEST IS NOT REQUIRED FOR SLAB ON GRADE WHEN CONCRETE IS LESS THAN 50 CUBIC YARDS (IBC 1905.6.2.3) IN THAT EVENT THE FOLLOWING RECORDS SHALL BE PROVIDED BY THE CONCRETE SUPPLIER; (A) RESULTS OF CONCRETE CYLINDER TESTS PERFORMED AT THE SUPPLIER'S PLANT,

(B) CERTIFICATION OF MINIMUM COMPRESSIVE STRENGTH FOR THE CONCRETE GRADE SUPPLIED.

FOR GREATER THAN 50 CUBIC YARDS THE GC SHALL PERFORM THE CONCRETE CYLINDER TEST

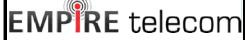
- 8. AS AN ALTERNATIVE TO ITEM 7, TEST CYLINDERS SHALL BE TAKEN INITIALLY AND THEREAFTER FOR EVERY 50 YARDS OF CONCRETE FROM EACH DIFFERENT BATCH PLANT.
- 9. EQUIPMENT SHALL NOT BE PLACED ON NEW PADS FOR SEVEN DAYS AFTER PAD IS POURED, UNLESS IT IS VERIFIED BY TESTS THAT COMPRESSIVE STRENGTH HAS BEEN ATTAINED.
- 10. ALL CONCRETE SHALL BE SUPPLIED IN ACCORDANCE WITH TECHNICAL SPECIFICATION FOR CONSTRUCTION OF RADIO ACCESS NETWORK

SOIL COMPACTION NOTES FOR SLAB ON GRADE:

- EXCAVATE AS REQUIRED TO REMOVE VEGETATION AND TOPSOIL, EXPOSE UNDISTURBED NATURAL SUBGRADE AND PLACE CRUSHED STONE AS REQUIRED.
- 2. COMPACTION CERTIFICATION: AN INSPECTION AND WRITTEN CERTIFICATION BY A QUALIFIED GEOTECHNICAL TECHNICIAN OR
- 3. AS AN ALTERNATIVE TO INSPECTION AND WRITTEN CERTIFICATION. THE "UNDISTURBED SOIL" BASE SHALL BE COMPACTED WITH COMPACTION EQUIPMENT", LISTED BELOW, TO AT LEAST 90% MODIFIED PROCTOR MAXIMUM DENSITY PER ASTM D 1557 METHOD"
- 4. COMPACTED SUBBASE SHALL BE UNIFORM AND LEVELED. PROVIDE 6" MINIMUM CRUSHED STONE OR GRAVEL COMPACTED IN 3" LIFTS ABOVE COMPACTED SOIL, GRAVEL SHALL BE NATURAL OR CRUSHED WITH 100% PASSING 1" SIEVE.
- 5. AS AN ALTERNATIVE TO ITEMS 2 AND 3 PROOF ROLL THE SUBGRADE SOILS WITH 5 PASSES OF A MEDILIM SIZED VIRRATORY PLATE COMPACTOR (SUCH AS BOMAG BPR 30/38) OR HAND-OPERATED SINGLE DRUM VIBRATORY ROLLER (SUCH AS BOMAG BW 55E). ANY SOFT AREAS THAT ARE ENCOUNTERED SHOULD BE REMOVED AND REPLACED WITH A WELL-GRADED GRANULAR
- 6. COMPACTION CRITERIA FOR OTHER FILL AREAS ON SITE SHALL MEET THE SAME REQUIREMENTS AS NOTED ABOVE.
- 7. SOIL COMPACTION SHALL BE PERFORMED IN ACCORDANCE WITH TECHNICAL SPECIFICATION FOR CONSTRUCTION OF RADIO

COMPACTION EQUIPMENT:

HAND OPERATED DOUBLE DRUM, VIBRATORY ROLLER, VIBRATORY PLATE COMPACTOR OR JUMPING JACK COMPACTOR.


ELECTRICAL INSTALLATION NOTES

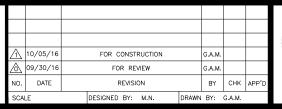
- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE LOCAL CODES
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. SUBCONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC AND TELCORDIA.
- 5. CABLES SHALL NOT BE ROUTED THROUGH LADDER-STYLE CABLE
- 6. EACH END OF EVERY POWER, POWER PHASE CONDUCTOR (I.E., HOTS), GROUNDING, AND T1 CONDUCTOR AND CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2 INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION. OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC
- 7. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH PERMANENT LABELS. ALL EQUIPMENT SHALL BE LABELED WITH THEIR VOLTAGE RATING. PHASE CONFIGURATION, WIRE CONFIGURATION. POWER OR AMPACITY RATING, AND BRANCH CIRCUIT ID NUMBERS (I.E., PANELBOARD AND CIRCUIT ID'S). NO HAND WRITTEN LABELS
- 8. PANELBOARDS (ID NUMBERS) AND INTERNAL CIRCUIT BREAKERS (CIRCUIT ID NUMBERS) SHALL BE CLEARLY LABELED. NO HAND WRITTEN LABELS ALLOWED.
- 9. ALL TIE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP EDGES.
- 10. POWER, CONTROL, AND FQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE CONDUCTOR (SIZE 14 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90 °C (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM USED, UNLESS OTHERWISE SPECIFIED.
- 11. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE CONDUCTOR (SIZE 6 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2 GREEN INSULATION, CLASS B STRANDED COPPER CABLE RATED FOR 90 °C (WET AND DRY OPFRATION: LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM USED, UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING, NOT IN TUBING OR CONDUIT. SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (SIZE 14 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90 °C (WET AND DRY) OPERATION; WITH OUTER JACKET; LISTED OR LABELED FOR THE LOCATION USED. UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND POWER GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRENUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRENUTS SHALL BE RATED FOR OPERATION AT NO LESS THAN 75°C (90°C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE, AND

ELECTRICAL INSTALLATION NOTES (cont.)

- 15. ELECTRICAL METALLIC TUBING (EMT) OR RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40, OR RIGID PVC SCHEDULE 80 FOR LOCATIONS SUBJECT TO PHYSICAL DAMAGE) SHALL BE USED FOR EXPOSED INDOOR
- 16. ELECTRICAL METALLIC TUBING (EMT). ELECTRICAL NONMETALLIC TUBING (ENT), OR RIGID NONMETALLIC CONDUIT (RIGID PVC, SCHEDULE 40) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. GALVANIZED STEEL INTERMEDIATE METALLIC CONDUIT (IMC) SHALL BE USED FOR OUTDOOR LOCATIONS ABOVE GRADE
- 18. RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40 OR RIGID PVC SCHEDULE 80) SHALL BE USED UNDERGROUND: DIRECT BURIED. IN AREAS OF OCCASIONAL LIGHT VEHICLE TRAFFIC OR ENCASED IN REINFORCED CONCRETE IN AREAS OF HEAVY VEHICLE TRAFFIC.
- 19. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 20. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SETSCREW FITTINGS ARE NOT ACCEPTABLE.
- 21. CABINETS, BOXES, AND WIREWAYS SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE, AND NEC.
- 22. WIREWAYS SHALL BE EPOXY-COATED (GRAY) AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD; SHALL BE PANDUIT TYPE E (OR EQUAL); AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) OUTDOORS.
- 23. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES, AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL, SHALL MEET OR EXCEED UL 50, AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) OUTDOORS
- 24 MFTAL RECEPTACLE. SWITCH, AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED, OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.
- 25. NONMETALLIC RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.
- 26. THE SUBCONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CONTRACTOR BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 27. THE SUBCONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD AGAINST LIFE AND PROPERTY.

489 Washington Street Auburn, MA 01501 Tel. (508) 981- 9590 Fax (508) 519 - 8939 mnobre@verticalresourcesgrp.com

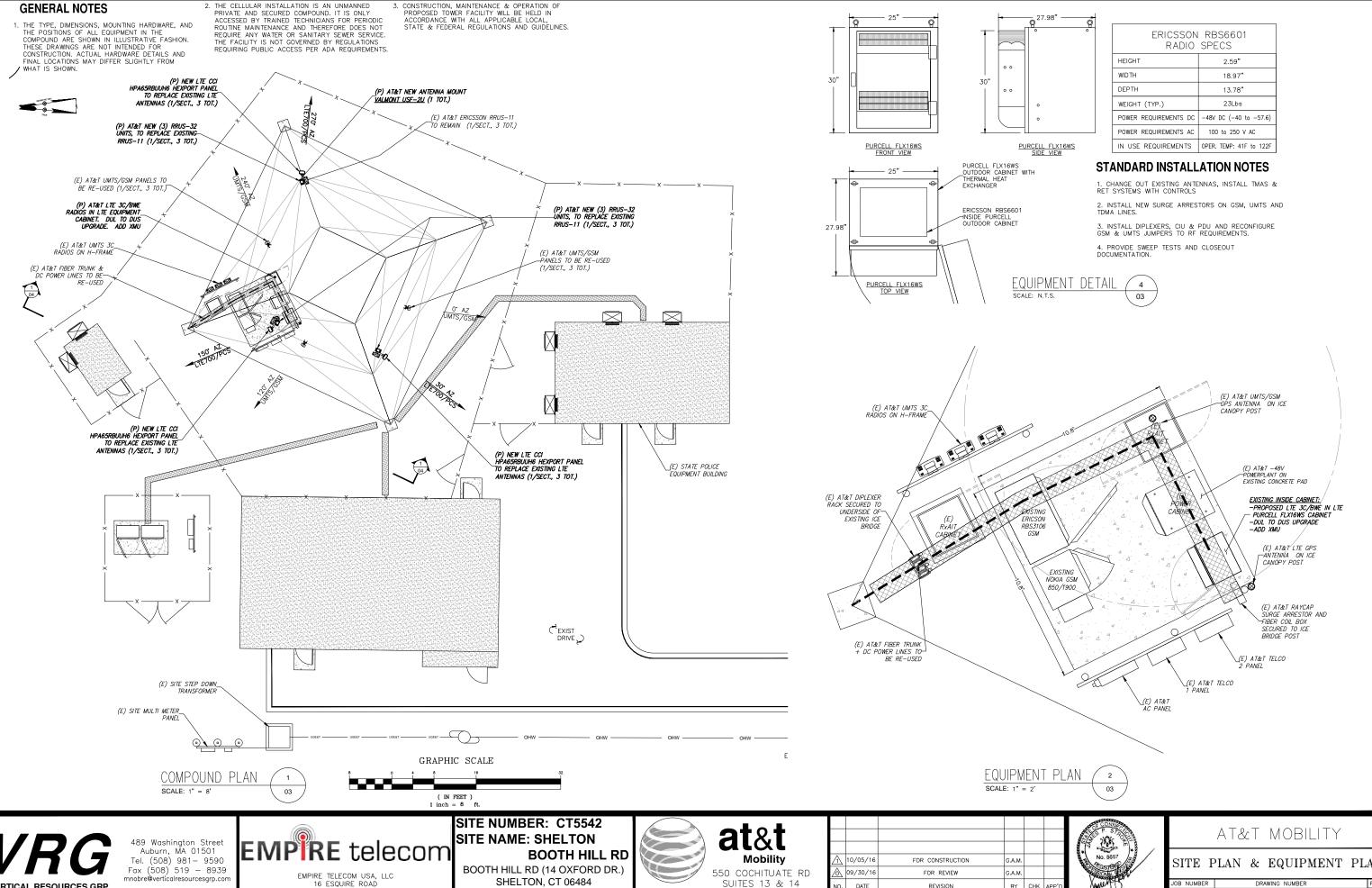
FMPIRE TELECOM USA, LLC


16 ESQUIRE ROAD

BILLERICA, MA 01821

ISITE NUMBER: CT5542 SITE NAME: SHELTON BOOTH HILL RD

BOOTH HILL RD (14 OXFORD DR.) SHELTON, CT 06484 **FAIRFIELD COUNTY**



AT&T MOBILITY

NOTES

DB NUMBER DRAWING NUMBER 50 - 14502

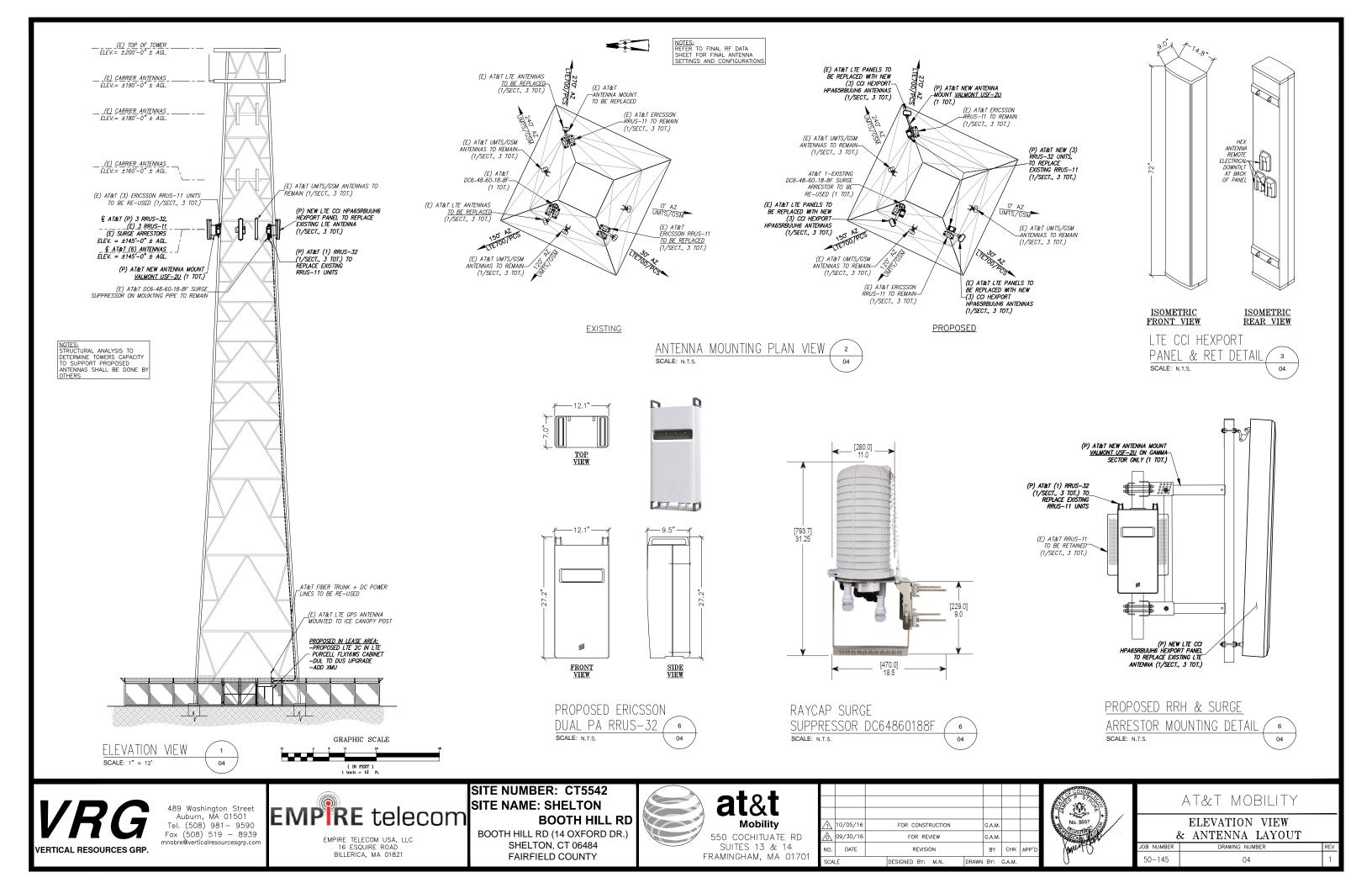
VERTICAL RESOURCES GRP.

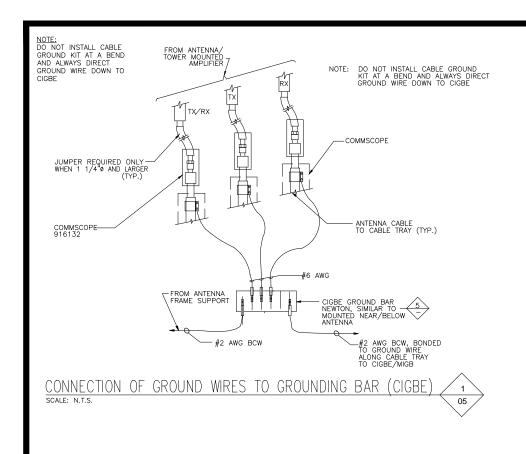
GENERAL NOTES

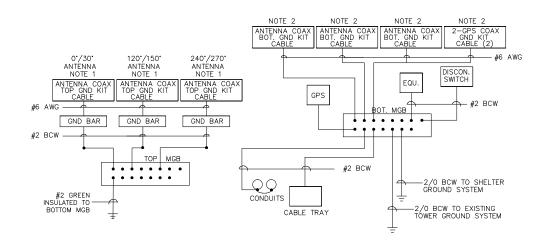
2. THE CELLULAR INSTALLATION IS AN UNMANNED

BILLERICA, MA 01821

SHELTON, CT 06484 **FAIRFIELD COUNTY**

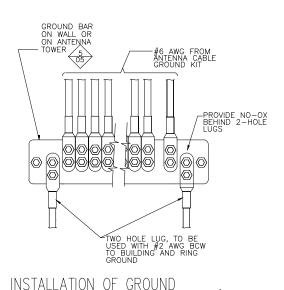


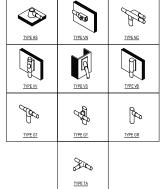

									l į
									ğ
\triangle	10/05/16	FOR C	ONST	RUCTION		G.A.M.			*
◬	09/30/16	FOF	R REV	/IEW		G.A.M.			
NO.	DATE	R	EVISIO	NC		BY	снк	APP'D	
SCA	_E	DESIGNED	BY:	M.N.	DRAV	VN BY:	G.A.M.		



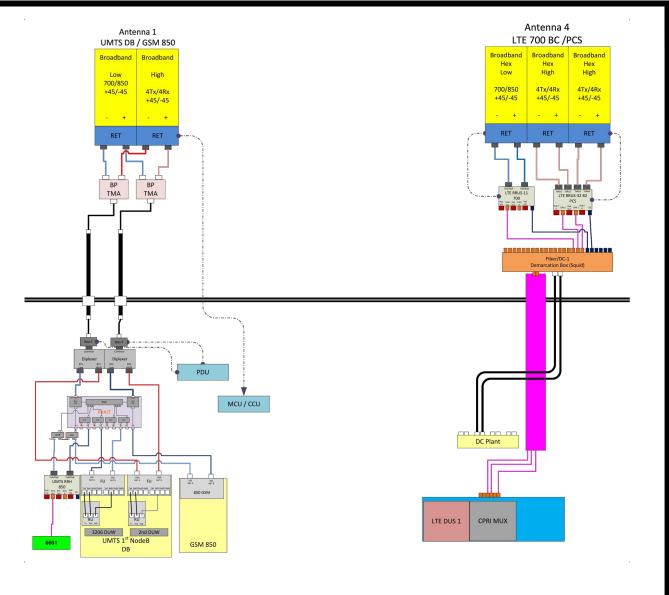
SITE PLAN & EQUIPMENT PLAN

JOB NUMBER	DRAWING NUMBER	REV
50-145	03	1





1. BOND ANTENNA GROUNDING KIT CABLE TO TOP CIGBE 2. BOND ANTENNA GROUNDING KIT CABLE TO BOTTOM CIGBE



WIRE TO GROUND BAR 05 SCALE: N.T.S.

GROUNDING CONNECTION DETAIL SCALE: N.T.S.

1. CONTRACTOR TO CONFIRM ALL PARTS
2. INSTALL ALL EQUIPMENT PER MANUFACTURERS RECOMMENDATIONS

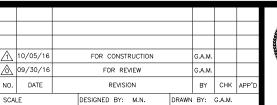
PLUMBING DIAGRAM FACE

1-2 AWG TO MAIN GROUND BAR (MGB) IN EQUIPMENT SPACE OR BURIED GROUND CONDUCTOR AS APPLICABLE EXOTHERMIC WELD (OUTDOORS ON-GRADE ONLY)

GROUND BAR DETAI

NEWTON INSTRUMENT COMPANY, INC. BUTNER, N.C. OR APPROVED EQUAL						
ITEM	REQ.	PART NO.	DESCRIPTION			
1	1	1/4"x4"x12"	PRE DRILLED GND. BAR			
2	2	A-6056	WALL MTG. BRKT.			
3	2	3061-4	INSULATORS			
4	2	3012-13	5/8"-11x4" H.H.C.S.			
(5)	4	3015-8	5/8 LOCKWASHER			
6	2	3014-8	5/8"-11 HEX NUT			

05



489 Washington Street Auburn, MA 01501 Tel. (508) 981- 9590 Fax (508) 519 - 8939

SITE NUMBER: CT5542 SITE NAME: SHELTON **BOOTH HILL RD**

BOOTH HILL RD (14 OXFORD DR.) SHELTON, CT 06484 **FAIRFIELD COUNTY**

AT&T MOBILITY

05

GROUNDING DETAILS

JOB NUMBER	DRAWING NUMBER	REV
50-145	05	1

EMPIRE telecom EMPIRE TELECOM USA, LLC 16 ESQUIRE ROAD BILLERICA, MA 01821

Structural Analysis Report

Structure : 200 ft AT&T TAG Tower

ATC Site Name : Shelton-Trumbull, CT

ATC Site Number : 88017

Engineering Number : OAA687899_C3_01

Proposed Carrier : AT&T Mobility

Carrier Site Name : Shelton SW

Carrier Site Number : CT5542

Site Location : 14 Oxford Drive/Booth Hill Rd

Shelton, CT 06484-3455

41.280164,-73.185467

County : Fairfield

Date : October 31, 2016

Max Usage : 93%

Result : Pass

Prepared By:

Charles Dalton Wally, E.I. Structural Engineer I

Clark D. Wally

COA: PEC.0001553

Table of Contents

Introduction	1
Supporting Documents	. 1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	2
Equipment to be Removed	. 2
Proposed Equipment	3
Structure Usages	3
Foundations	3
Standard Conditions	. 4
Calculations	Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 200 ft AT&T TAG tower to reflect the change in loading by AT&T Mobility.

Supporting Documents

Tower Drawings TEP Job #070851, dated May 30, 2007					
Foundation Drawing	Radio Relay Drawing #MS 10478, dated January 27, 1965				
Geotechnical Report	Radio Relay Drawing #MS 10478, dated January 27, 1965				
Modifications	ATC Project #40480232, dated July 13, 2007				

Analysis

The tower was analyzed using PLS. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	97 mph (3-Second Gust, V _{asd}) / 125 mph (3-Second Gust, V _{ult})
Basic Wind Speed w/ Ice:	No Ice Considered
Code:	ANSI/TIA-222-G / 2012 IBC / 2016 Connecticut State Building Code
Structure Class:	II
Exposure Category:	В
Topographic Category:	1

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elevation ¹ (ft)		O L.	Automa	NA sunt Tura	Lines	Comica	
Mount	RAD	Qty	Antenna	Mount Type	Lines	Carrier	
212.0		1	Decibel DB420MS-E		(2) 4 7 (2) 2		
200.0	200.0	1	15' Omni	Platform w/ Handrails	(2) 1 5/8" Coax		
	208.0	2	RFS PA6-65AC w/ Radome		(2) EW65		
	189.0	1	Sinclair SC479-HF1LDF				
185.0	187.0	1	TX RX Systems 101-83B-09-0-03	Side Arm	(4) 1 5/8" Coax	State Of CT	
	187.0	2	Kathrein AP14-850/105			State Of C1	
	184.0	1	5' Dipole				
180.0	182.0	5	TTA	Side Arm	(5) 1 5/8" Coax		
180.0	180.0	2	TX RX Systems 101-83B-09-0-03	Side Ami	(5) 0.63" LDF4-50A		
	175.0	2	Sinclair SC479-HF1LDF				
168.0	168.0	12	Decibel DB844H90E-A	Sector Frame	(12) 1 5/8" Coax	Sprint Nextel	
		4	DragonWave Horizon Compact	Side Arm			
	165.0	1	DragonWave A-ANT-11G-2-C				
	165.0	1	Andrew PX2F-52	Leg	(6) 5/16" (0.31") Coax		
162.0		2	DragonWave A-ANT-11G-3-C		(4) 1/2" Coax	Clearwire	
		1	BTS		(2) 2" conduit		
	162.0	3	NextNet BTS-2500	Side Arm			
		3	Argus LLPX310R				
		3	Alcatel-Lucent 1900MHz 4X45 RRH				
		3	Alcatel-Lucent 800MHz RRH w/ Notch		(6) 1 5/8" Coax		
155.0	155.0		Filter	Sector Frame	(3) 1 1/4" Hybriflex	Sprint Nextel	
		6	Andrew DB980H90E-M		(3) 1 1/4 Hydrillex		
		3	RFS APXVSPP18-C-A20				
		6	Powerwave LGP21401	Sector Frame	(6) 1 5/8" Coax		
144.0	144.0	3	Ericsson RRUS 11 (Band 12) (55 lb)	Flush	(2) 0.74" 8 AWG 7	AT&T Mobility	
111.0	111.0	3	Powerwave 7770.00	Sector Frame	(1) 3" conduit (1) 0.28" RG-6	AT&T IVIODIIITY	
126.0	126.0	1	RFS PA6-65AC w/ Radome	Leg	(2) EW65	State Of CT	
100.0	109.0	1	Andrew DB616E-BC	Leg	(1) 7/8" Coax	US Dept Of	
		1				Homeland Security	
84.0	90.0	1	Kathrein 750 10074	Stand-Off	(1) 1 5/8" Coax	Lightsquared LP	
55.0	55.0	1	2" x 4" GPS	Side Arm	(1) 1/2" Coax	Sprint Nextel	

Equipment to be Removed

Elevation Mount	on¹ (ft)	- Qty Antenna		Mount Type	Lines	Carrier
144.0	144.0	3	Powerwave P65-16-XLH-RR	-	(1) 3" conduit	AT&T Mobility

Proposed Equipment

Elevation ¹ (ft)		Ob.	Antonno	Mount Tune	Lines	Corrior
Mount	RAD	Qty	Antenna	Mount Type	Lines	Carrier
		1	Raycap DC6-48-60-18-8F	Leg		
144.0	144.0	144.0	3 Ericsson RRUS 32 B2	Costor Framo	-	AT&T Mobility
			3	CCI HPA-65R-BUU-H6	Sector Frame	

¹Mount elevation is defined as height above bottom of steel structure to the bottom of mount, RAD elevation is defined as center of antenna above ground level (AGL).

Structure Usages

oti detaile osages									
Structural Component	Controlling Usage	Pass/Fail							
Legs	58%	Pass							
Diagonals	89%	Pass							
Truss Diagonals	93%	Pass							
Horizontals	86%	Pass							
Truss Horizontals	46%	Pass							
Anchor Bolts	55%	Pass							

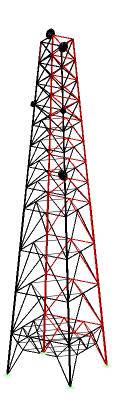
Foundations

Reaction Component	Analysis Reactions	% of Usage
Uplift (Kips)	171.9	56%
Axial (Kips)	268.8	9%

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

Standard Conditions

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessary limited, to:


- -- Information supplied by the client regarding the structure itself, antenna, mounts and feed line loading on the structure and its components, or other relevant information.
- -- Information from drawings in the possession of American Tower Corporation, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and that their capacity has not significantly changed from the "as new" condition.

Unless explicitly agreed by both the client and American Tower Corporation, all services will be performed in accordance with the current revision of ANSI/TIA -222. The design basic wind speed will be determined based on the minimum basic wind speed as prescribed in ANSI/TIA-222. Although every effort is taken to ensure that the loading considered is adequate to meet the requirements of all applicable regulatory entities, we can provide no assurance to meet any other local and state codes or requirements. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

American Tower Corp., Project: "2016.04.18 - State of CT - 66038221" Tower Version 12.50, 10:03:52 AM Monday, October 31, 2016 Undeformed geometry displayed

Project Name: 88017 - Shelton/Trumbull
Project Notes:
Project Notes:
Project File: N:\L2 - ATC\88017\2016.10.29 - ATKT Mobility - OAA687899\2016.04.18 - State of CT - 66038221.tow
Date rum : 9'336:04 AM Monday, October 31, 2016
by : Tower Version 12.50
Licensed to C : American Tower Corp.

Successfully performed nonlinear analysis

Member check option: ANSI/TIA 222-G-1
Connection rupture check: Not Checked
Crossing diagonal check: Fixed
Included angle check: None
Climbing load check: None
Climbing load check: None
Redundant members checked with: Actual Force
Loads from file: n:\12 - atc\8017\2016.10.29 - at£t mobility - oaa687899\2016.10.29 - at£t mobility - oaa687899.eia

*** Analysis Results:

Maximum element usage is 92.89% for Angle "LD 4Y" in load case "W 180"

Summary of Joint Support Reactions For All Load Cases:

Load Case	Joint Label	Long.	Tran. Force	Vert.	Shear	Tran. Moment		Bending	Vert. Moment	Found. Usage
		(kips)	(kips)	(kips)	(kips)	(ft-k)	(ft-k)	(ft-k)	(ft-k)	*
w 0	0p			-200.55	30.38	-1.31	-5.19	5.35	-1.62	0.00
w o		-24.63		-186.55	28.71	-0.41		4.78	1.55	0.00
w o		-26.51	-8.27	103.53			-6.13			0.00
w o		-28.56			29.75		-6.68			0.00
W 180	0P			104.90	29.89		6.85	6.85		0.00
W 180	0X 0XY	26.63		98.98 -183.22	27.76	0.38		6.32		0.00
W 180 W 180	0.00			-183.22	28.59		5.34			0.00
W 160 W 45				-272.55			-3.83			0.00
W 45		-12.01		-39.33		5.29			2.38	0.00
W 45					38.21	4.34				0.00
W 45	04	-11.33	-12.00	-39.42	16.50	3.32			-2.38	0.00
W -45		-13.18		-49.13	17.60	-5.69		6.73	-2.38	0.00
W -45		-26.82		-260.30	38.68		-3.55			0.00
W -45					15.67	-3.25				0.00
W -45				174.92	38.63		-4.67			0.00
W 90				-201.41		5.19 6.68	1.33			0.00
W 90 W 90	0X 0XY			109.22	29.89		-0.38			0.00
W 90	OXI					4.76				0.00
W -90	0P	8.12		105.47		-6.83				0.00
W -90		-14.62		-196.74	30.16	-5.33				0.00
W -90	0xy	14.59	24.65	-183.84	28.65	-4.91	0.42	4.93	1.56	0.00
W -90		-7.85		99.45	27.78		-0.37			0.00
W 0 Ice				-100.96	13.92					0.00
W 0 Ice		-10.39		-93.46	13.37	1.02				0.00
W 0 Ice				-27.25	2.63		-2.18			0.00
W 0 Ice W 180 Ice				-30.49 -36.16	2.65	-1.24 -1.24	-2.31 2.52	2.62		0.00
W 180 Ice W 180 Ice		0.88			3.19	1.13	2.52	2.81		0.00
W 180 Ice		10.32		-88.79			-0.04			0.00
W 180 Ice		10.92	-8.01			-1.27				0.00
W 45 Ice	OΒ			-117.16		-0.42	0.42			0.00
W 45 Ice	0x	-7.43		-61.90	7.94	2.02		2.09	0.49	0.00
W 45 Ice				-11.27	1.48			2.62		0.00
W 45 Ice		2.80		-61.82		-0.51		2.08		0.00
W -45 Ice		-8.20		-68.81	8.63	-2.28	0.47	2.33		0.00
W -45 Ice		-10.92 2.77		-109.81	15.75 7.94	0.19				0.00
W -45 Ice W -45 Ice		-0.78	1.44	-58.27 -15.26		-1.97				0.00
W -45 Ice W 90 Ice				-15.26	13.93	-0.13	1.31	1.32		0.00
W 90 Ice		-2.52	-0.80	-30.34	2.64	2.31	1.24			0.00
W 90 Ice		2.53		-27.15	2.63		-1.13			0.00
W 90 Ice				-93.55	13.39	-0.22		1.04		0.00
W -90 Ice				-36.05	3.17	-2.52	1.24			0.00
W -90 Ice		-8.01	10.92	-95.23	13.55	-0.05	1.27			0.00
W -90 Ice		8.10		-88.90	13.12	0.04				0.00
W -90 Ice	04	3.00	0.87	-31.97	3.13	-2.39	-1.12	2.64	0.36	0.00

Summary of Joint Support Reactions For All Load Cases in Direction of Leg:

Load Case					Residual Shear Perpendicular	Horizontal	Residual Shear Horizontal To Leg - Long.	Horizontal	Long.	Total Tran. Force	Total Vert. Force
				(kips)	(kips)	(kips)	(kips)			(kips)	
w 0	0P	1 P		202.460	12.314	12.348	12.320				-200.55
W U	OP OX	1P		188.394	12.314	12.348	12.320		-24.63		-200.55
w o	0XY	1XY		-105.453	19.193	19.245	19.220		-26.51		103.53
w o	011	17		-109.969	20.913	20.968	20.955	-0.737			107.91
W 180	0P	1P		-106.965	21.351	21.407	-21.397	-0.661	28.78		104.90
W 180	0x	1x	L 1X	-100.905	19.629	19.682	-19.663	0.859	26.63	-7.83	98.98
W 180	0 XY	1XY	L 1XY	185.063	11.792	11.829	-11.715	-1.639	24.62	14.54	-183.22
W 180	04	14		198.221	12.536	12.571	-12.547	0.786			-196.32
W 45	0P	1P		275.165	12.711	12.774	9.021				-272.55
W 45	0X	1x	L 1X		16.898	16.902	9.236				-39.33
W 45	0 XY	1XY		-178.564	20.615	20.717	14.664				175.64
W 45	0.4	14	L 1Y	39.271	16.850	16.854	14.108				-39.42
W -45	OP OX	1P	L 1P	48.993 262.848	17.971 12.711	17.975 12.774	9.719 8.491	-15.121 -9.543			-49.13 -260.30
W -45 W -45	0XY	1X 1XY		41.079	12.711	12.774	13.009		-26.82		-41.15
W -45 W -45	0.00	17		-177.884	21.115	21.219	15.640	-9.070 -14.340			174.92
W 90	0P	1 P		203.322	12.321	12.355	0.787				-201.41
W 90	0x	1 x		-111.284	20.938	20.994	-0.764	20.980			109.22
W 90	0XY	1XY		-106.060	19.220	19.272	0.987	19.247			104.13
W 90	0 Y	1Y		189.448	11.580	11.616	-1.640	11.500			-187.60
W -90	0P	1P	L 1P	-107.541	21.310	21.366	-0.696	-21.355	8.12	28.78	105.47
W -90	0x	1x		198.646	12.514	12.548	0.769	-12.525			-196.74
W -90	0 XY	1XY		185.682	11.783	11.820	-1.648	-11.704			-183.84
W -90	04	14		-101.374	19.609	19.662	0.848	-19.644	-7.85	26.65	99.45
W 0 Ice	0P	1P		101.826	4.162	4.178	3.963				-100.96
W 0 Ice	0X	1X	L 1X		4.208	4.226	3.809	-1.831			-93.46
W 0 Ice	0 X Y		L 1XY	27.246	2.691	2.695	2.624	-0.613	-0.71		-27.25
W 0 Ice	0.7	1Y	L 1Y	30.458	2.943	2.948	2.923	0.386	-0.78		-30.49
W 180 Ice W 180 Ice	0P	1P	L 1P L 1X	36.130 32.127	3.463 3.216	3.469 3.220	-3.431 -3.132	0.514	0.88	3.05	-36.16 -32.14
W 180 Ice	0XY	1XY		89.646	4.443	4.462	-4.068	-1.832	10.32		-88.79
W 180 Ice	071	17	T. 1Y		4.405	4.422	-4.223	1.314	10.32		-95.07
W 45 Ice	0P	1P		118.204	4.644	4.667	3.297				-117.16
W 45 Ice	0X	1x	L 1x		3.449	3.451	3.074	1.568	-7.43		-61.90
W 45 Ice	0xy	1XY	L 1XY	11.065	2.587	2,600	1.838	1.838	-1.04	-1.04	-11.27
W 45 Ice	04	14	L 1Y	62.237	3.441	3.443	1.554	3.072	2.80	-7.43	-61.82
W -45 Ice	0P	1P	L 1P	69.235	4.000	4.001	3.357	-2.177	-8.20	-2.67	-68.81
W -45 Ice	0x	1x	L 1X		4.793	4.816	3.183		-10.92		-109.81
W -45 Ice	0XY	1XY		58.697	3.594	3.597	1.337	-3.339	2.77		-58.27
W -45 Ice	04	14	L 1Y		2.793	2.806	1.857	-2.104	-0.78		-15.26
W 90 Ice	0P	1P	L 1P		4.162	4.179	1.313	3.967			-101.11
W 90 Ice	0X	1x	L 1X		2.951	2.956	0.379	2.932	-2.52		-30.34
W 90 Ice	0 XY		L 1XY	27.139	2.700	2.704	-0.614	2.633	2.53		-27.15
W 90 Ice W -90 Ice	0Y 0P	1Y 1P	L 1Y L 1P	94.411 36.026	4.214 3.450	4.233 3.456	-1.837 0.504	3.813 -3.419	-3.04		-93.55 -36.05
W -90 Ice W -90 Ice	0P	1P	L 1X		4.398	4.415	1.307	-3.419 -4.217	-8.01	10.92	-36.05
W -90 Ice	0.00		L 1XY	89.751	4.440	4.415	-1.836	-4.064	8.10	10.32	
W -90 Ice	071	111			3.209	3.213	-0.752	-3.124	3.00		-31.97
	0.1				3.203	3.223	0.752	3.121	00		

Overturning Moment Summary For All Load Cases:

Load Case	Transverse	Longitudinal	Resultant
	Moment	Moment	Moment
	(ft-k)	(ft-k)	(ft-k)
W 0 W 180 W 45 W -45 W 90 W -90 W 180 Ice W 180 Ice W 45 Ice W -45 Ice W 90 Ice W 90 Ice	199.276 148.805 9301.798 -8865.183 12498.802 -12149.089 222.695 213.553 2195.811 -1743.316 -1846.518 -2409.261	9196.206 180.826	12106.749 13152.178 12773.476 12500.110 12149.927 2844.737

EIA Sections Information:

Section Label	Top Z (ft)	Bottom Z (ft)		Width	Width	Area	Adjust	Face Ar Adjust Factor	Load
187.5-200.0 1 175.0-187.5 1 162.5-175.0 1	187.500	175.000	16	15.09	16.85	199.64	1.1800	1.1270 1.1800 1.2080	1.416

```
150.0-162.5 162.500 150.000 12 24 18.61 20.37 243.65 1.2150 1.2150 1.45 137.5-150.0 150.000 137.500 16 24 20.37 22.13 265.66 1.2160 1.2180 1.46 1212.5-125.0 137.500 125.000 16 24 22.37 22.13 265.66 1.2180 1.2180 1.46 1212.5-125.0 125.000 112.500 16 24 22.39 28.67 1.2290 1.2390 1.48 1010.0-112.5 112.500 100.000 16 24 23.89 25.65 309.68 1.2390 1.2390 1.48 105.0-125.0 15.000 05.000 05.000 16 24 27.42 30.94 27.331.68 1.2550 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.2450 1.245
```

Printed capacities do not include the strength factor entered for each load case. The Group Summary reports on the member and load case that resulted in maximum usage which may not necessarily be the same as that which produces maximum force.

Group Summary (Compression Portion):

Group Label			Angle Type	Angle Size	Steel Strength		Usage Cont- rol	Max Use In Comp.	Control	Comp. Force	Comp. Control Load Case	L/R Capacity	Connect. Shear	Comp. Connect. Bearing Capacity	RLX	RLY	RLZ	L/R	KL/R Leng Con Memi	ip. No		
					(ksi)	*		*		(kips)		(kips)	(kips)	(kips)					(:	t)		
Leg S1	L 8" x 8" x 1.125	5"	SAE	8x8x1.13	33.0	58.45		58.45	L 1P	-237.722	W 45	406.720	0.000		0.333	0.333	0.333	64.41	64.41 25.3	24	1 0	
Leg S2	L 8" x 8" x 1		SAE	8x8x1		55.88		55.88		-203.775	W 45	364.663	0.000		0.333	0.333	0.333	64.41	64.41 25.		1 0	
Leg S3	L 8" x 8" x 0.875	5 "	SAE	8x8x0.88		50.98		50.98		-164.380	W 45	322.451	0.000		0.333	0.333	0.333	64.00	64.00 25.		1 0	
Leg S4	L 8" x 8" x 0.75	5"	SAE	8x8x0.75	33.0	45.54	Comp	45.54		-127.293	W 45	279.520	0.000	0.000	0.333	0.333	0.333	63.60	63.60 25.3		1 0	
Leg S5	L 6" x 6" x 0.875		SAE	6x6x0.88		46.03		46.03	L 5P	-108.870	W 45	236.535	0.000		0.500	0.500	0.500	64.42	64.42 12.		1 0	
Leg S6	L 6" x 6" x 0.875		SAE	6x6x0.88		37.74		37.74	L 6P		W 45	236.535	0.000		0.500	0.500	0.500	64.42	64.42 12.		1 0	
Leg S7	L 6" x 6" x 0.75	5"	SAE	6x6x0.75	33.0	35.18	Comp	35.18	L 7P	-72.176	W 45	205.175	0.000		0.500	0.500	0.500	64.42	64.42 12.		1 0	
Leg S8	L 6" x 6" x 0.75		SAE	6x6x0.75		26.73		26.73	L 8P		W 45	205.175	0.000		0.500	0.500	0.500	64.42	64.42 12.		1 0	
Leg S9	L 6" x 6" x 0.75		SAE	6x6x0.75	33.0	21.89		21.89	L 9P	-44.911	W 45	205.175	0.000	0.000	0.500	0.500	0.500	64.42	64.42 12.	62	1 0	
Leg S10	L 6" x 6" x 0.75	5"	SAE	6x6x0.75		14.65		14.65	L 10P	-30.058	W 45	205.175	0.000		0.500	0.500	0.500	64.42	64.42 12.		1 0	
Leg S11	L 6" x 6" x 0.5	5"	SAE	6X6X0.5	33.0	11.28	Comp	11.28	L 11P	-15.818	W 45	140.255	0.000	0.000	0.500	0.500	0.500	63.87	63.87 12.	62	1 0	
Leg S12	L 6" x 6" x 0.5		SAE	6x6x0.5		4.17		4.17	L 12P	-5.854	W 45	140.255	0.000		0.500	0.500	0.500	63.87	63.87 12.		1 0	
Diag S1	B/B L3"x3"x0.25	5"	DAE	3x3x0.25	33.0	71.26		71.26	D 1Y		W 180	39.250	0.000		0.310	0.790	0.310	131.47	127.05 19.3		6 0	
Diag S2	B/B L2.5"x3"x0.3125	5"	DAS	3X2.5X0.31	33.0	82.39	Comp	82.39	D 4Y	-28.785	W 180	34.937	0.000	0.000	0.310	0.620	0.310	160.23	144.74 31.	144	6 0	
Diag S3	B/B L2.5"x3"x0.25	5 "	DAS	3X2.5X0.25	33.0	89.40	Comp	89.40	D 6Y	-28.369	W 180	29.395	0.000	0.000	0.310	0.620	0.310	156.05	142.17 30.	113	6 0	
Diag S4	B/B L2.5"x3"x0.25	5 "	DAS	3X2.5X0.25	33.0	81.54	Comp	81.54	D 8Y	-26.901	W 180	30.690	0.000	0.000	0.310	0.620	0.310	151.11	139.14 29.		6 0	
Diag S5	B/B L2.5"x2.5"x0.25	5"	DAE :	2.5X2.5X0.25	33.0	84.12	Comp	84.12	D 10Y	-17.366	W 180	20.646	0.000	0.000	0.500	1.000	0.500	187.28	161.38 18.	72	6 0	
Diag S6	B/B L2.5"x2.5"x0.25	5 "	DAE :	2.5X2.5X0.25	33.0	73.52		73.52	D 12Y	-15.954	W 180	21.700	0.000	0.000	0.500	1.000	0.500	180.83	157.41 17.5		6 0	
Diag S7	B/B L2.5"x2.5"x0.25	5 "	DAE :	2.5x2.5x0.25	33.0	67.01	Comp	67.01	D 13X	-15.276	W -90	22.798	0.000	0.000	0.500	1.000	0.500	174.59	153.57 17.	313	6 0	
Diag S8	B/B L2.5"x2.5"x0.25	5 "	DAE :	2.5x2.5x0.25	33.0	63.30	Comp	63.30	D 15X	-15.152	W -90	23.935	0.000	0.000	0.500	1.000	0.500	168.59	149.88 16.	718	6 0	
Diag S9	L 3" x 4" x 0.25	5 "	SAU	4x3x0.25	33.0	82.85	Comp	82.85	D 18X	-9.466	W -90	11.425	0.000	0.000	0.520	0.500	0.520	222.12	182.80 23.	73	6 0	
Diag S10	L 3" x 4" x 0.25	5 "	SAU	4x3x0.25	33.0	62.42	Comp	62.42	D 20X	-7.854	W -90	12.582	0.000	0.000	0.520	0.500	0.520	208.12	174.19 21.	713	6 0	
Diag S11	L 3.5" x 3.5" x 0.25	5 "	SAE	3.5x3.5x0.25	33.0	36.46	Comp	36.46	D 22X	-5.545	W -90	15.206	0.000	0.000	0.520	0.500	0.520	182.53	158.45 20.3		6 0	
Diag S12	L 3.5" x 3.5" x 0.25	5 "	SAE	3.5X3.5X0.25	33.0	20.14	Comp	20.14	D 24X	-3.374	W -90	16.752	0.000	0.000	0.520	0.500	0.520	170.35	150.97 18.5	46	6 0	
Horiz 1	B/B L3"x3"x0.3125	5 "	DAE	3x3x0.31	33.0	85.81	Comp	85.81	H 2P	-36.976	W 180	39.514	0.000	0.000	0.950	0.950	0.950	156.53	142.47 12.	60	6 0	
Horiz 2	B/B L3.5"x2.5"x0.3125	5 "	DAL	3.5x2.5x0.31	33.0	50.27	Comp	50.27	H 4P	-15.401	W 180	30.639	0.000	0.000	1.000	1.000	1.000	187.95	161.79 17.3	229	6 0	
Horiz 3	B/B L3"x2.5"x0.25	5 "	DAL	3X2.5X0.25	33.0	65.95	Comp	65.95	н 6Р	-14.051	W 180	21.304	0.000	0.000	1.000	1.000	1.000	196.42	167.00 15.	168	6 0	
Horiz 4	B/B L3"x2.5"x0.25	5 "	DAL	3X2.5X0.25	33.0	49.26	Comp	49.26	H 8P	-12.463	W 180	25.299	0.000	0.000	1.000	1.000	1.000	174.06	153.25 13.	708	6 0	
Horiz 5	B/B L2.5"x2.5"x0.25	5 "	DAE :	2.5x2.5x0.25	33.0	61.80	Comp	61.80	H 10P	-11.593	W 180	18.758	0.000	0.000	1.000	1.000	1.000	200.16	169.30 12.3	327	6 0	
Horiz 6	B/B L2.5"x2.5"x0.25	5 "	DAE :	2.5x2.5x0.25	33.0	50.23	Comp	50.23	H 12P	-10.438	W 180	20.781	0.000	0.000	1.000	1.000	1.000	186.43	160.85 11.	47	6 0	
Horiz 7	B/B L3"x2.5"x0.25	5 "	DAL	3x2.5x0.25	33.0	27.83	Comp	27.83	H 13P	-9.302	W -90	33.425	0.000	0.000	1.000	1.000	1.000	140.53	132.62 11.	167	6 0	
Horiz 8	B/B L3"x2.5"x0.25	5 "	DAL	3x2.5x0.25	33.0	24.12	Comp	24.12	H 15P	-8.783	W -90	36.417	0.000	0.000	1.000	1.000	1.000	129.35	125.75 10.3	86	6 0	
Horiz 9	B/B L3"x2.5"x0.25	5 "	DAL	3x2.5x0.25	33.0	2.51	Comp	2.51	H 18P	-0.530	W -90	21.113	0.000	0.000	0.500	1.000	0.500	197.65	167.75 18.	12	6 0	
Horiz 10	B/B L3"x2.5"x0.25	5 "	DAL	3X2.5X0.25		1.51		0.76	н 19ү	-0.341	W -45	44.957	0.000	0.000	0.500	0.500	0.500	106.99	106.99 16.	851	1 0	
Horiz 11	L 4" x 3" x 0.3125		SAU	4x3x0.31	33.0			0.51	H 22P	-0.135	W 180	26.685	0.000		0.500	0.600	0.500	139.94	132.27 15.		6 0	
Horiz 12	L 4" x 3" x 0.3125		SAU	4x3x0.31		3.43			H 23P	-0.413	W -90	12.013	0.000		1.000	0.500	1.000	247.23	198.25 13.		6 0	
LD 1	B/B L2.5"x2"x0.25		DAL	2.5x2x0.25		47.63		1.33	LD 1P	-0.281	W 90	21.135	0.000		0.970	0.970	0.970	170.23	150.89 11.		6 0	
LD 2	B/B L2.5"x2.5"x0.25			2.5x2.5x0.25		92.89		92.89	LD 4Y		W 180	28.983	0.000		0.970	0.970	0.970	145.89	135.92 9.		6 0	
LD 3	B/B L3"x3"x0.25		DAE	3x3x0.25		65.97		65.97	LD 6P		W 180	39.334	0.000		0.970	0.970	0.970	131.18	126.88 10.		6 0	
LH 1	B/B L2.5"x2.5"x0.25			2.5x2.5x0.25		45.98		0.00	LH 2Y	0.000		0.001	0.000						22460.19 11.		4 0	
DUM 1	Dummy Bracing Membe		DUM	0.1x0.1x1		0.00		0.00	BR 5XY	-1.084	W 45	0.324	0.000		1.000	1.000	1.000	2.63	2.63 21.		1 0	

Group Summary (Tension Portion):

Group Label	Group Desc.		Angle Size	Steel Strength		Usage Cont- rol	Use	Tension Control Member	Tension Force	Control		Tension Connect. Shear		Connect.	Tens.	Of		Hole Diameter
				(ksi)	*		Tens.		(kips)	Case	(kips)	(kips)	Capacity (kips)	(kips)	(ft)	Tens.		(in)
Leg S1	L 8" x 8" x 1.125"	SAE	8x8x1.13	33.0	58.45	Comp	24.63	T. 1XY	122.404	W 45	496.880	0.000	0.000		25.124	0	0.000	0
Leg S2	L 8" x 8" x 1"	SAE	8x8x1		55.88		28.64		127.576	W 45	445.499	0.000	0.000		25.124		0.000	0
Leg S3	L 8" x 8" x 0.875"	SAE	8x8x0.88		50.98		25.80		101.386	W 45	392.930	0.000	0.000		25.124		0.000	0
Leg S4	L 8" x 8" x 0.75"	SAE	8x8x0.75		45.54		21.93		74.510	W 45	339.767	0.000	0.000		25.124		0.000	0
Leg S5	L 6" x 6" x 0.875"	SAE	6x6x0.88		46.03		21.40		61.834	W 45	288.981	0.000	0.000		12.562		0.000	0
Leg S6 Leg S7	L 6" x 6" x 0.875" L 6" x 6" x 0.75"	SAE	6X6X0.88 6X6X0.75		37.74		14.56	L 7XY	49.187 36.488	W -45 W 45	288.981	0.000	0.000		12.562		0.000	0
Leg S7	L 6" x 6" x 0.75"	SAE	6X6XU.75		26.73		9.76	L 8XY		W 45	250.668	0.000	0.000		12.562		0.000	0
Leg S9	L 6" x 6" x 0.75"	SAE	6X6X0.75		21.89		7.70	L 9XY		W 45	250.668	0.000	0.000		12.562		0.000	0
Leg S10	L 6" x 6" x 0.75"	SAE	6X6X0.75		14.65			L 10XY	9.908	W 45	250.668	0.000	0.000		12.562		0.000	0
Leg S11	L 6" x 6" x 0.5"	SAE	6x6x0.5		11.28		2.17		3.708		170.775	0.000	0.000		12.562		0.000	ŏ
Leg S12	L 6" x 6" x 0.5"	SAE	6x6x0.5	33.0	4.17	Comp	0.00	L 12Y	0.000		170.775	0.000	0.000		12.562	0	0.000	0
Diag S1	B/B L3"x3"x0.25"	DAE	3X3X0.25	33.0	71.26	Comp	54.36	D 1P	46.496	W 180	85.536	0.000	0.000	0.000	19.276	0	0.000	0
Diag S2	B/B L2.5"x3"x0.3125"	DAS	3X2.5X0.31		82.39		27.03	D 4P	26.015	W 180	96.228	0.000	0.000		31.444		0.000	0
Diag S3	B/B L2.5"x3"x0.25"	DAS	3X2.5X0.25		89.40		33.05	D 6P	25.818	W 180	78.111	0.000	0.000		30.413		0.000	0
Diag S4	B/B L2.5"x3"x0.25"	DAS	3X2.5X0.25		81.54			D 8P	25.160	W 180	78.111	0.000	0.000		29.451		0.000	0
Diag S5	B/B L2.5"x2.5"x0.25"		2.5X2.5X0.25		84.12		22.48	D 10P		W 180	70.686	0.000	0.000		18.572		0.000	0
Diag S6	B/B L2.5"x2.5"x0.25"		2.5X2.5X0.25		73.52		20.68	D 12P		W 180	70.686	0.000	0.000		17.932		0.000	0
Diag S7 Diag S8	B/B L2.5"x2.5"x0.25" B/B L2.5"x2.5"x0.25"		2.5x2.5x0.25 2.5x2.5x0.25		67.01		19.89	D 13P D 15P		W -90 W -90	70.686	0.000	0.000		17.313		0.000	0
Diag S9	L 3" x 4" x 0.25"	SAU	4X3X0.25		82.85		16.94	D 18P	8.502	W -90	50.193	0.000	0.000		23.173		0.000	0
Diag S10	L 3" x 4" x 0.25"	SAU	4X3X0.25		62.42		13.94	D 20P	6.995	W -90	50.193	0.000	0.000		21.713		0.000	ő
	L 3.5" x 3.5" x 0.25"		3.5x3.5x0.25		36.46		8.76	D 22X	4.395	W 90	50.193	0.000	0.000		20.300		0.000	0
Diag S12	L 3.5" x 3.5" x 0.25"		3.5x3.5x0.25		20.14			D 24X	2.595	W 90	50.193	0.000	0.000		18.946		0.000	ō
Horiz 1	B/B L3"x3"x0.3125"	DAE	3X3X0.31	33.0	85.81	Comp	15.68	H 2Y		W 180	105.435	0.000	0.000	0.000	12.660	0	0.000	0
	B/B L3.5"x2.5"x0.3125"		3.5X2.5X0.31		50.27		14.82	H 4Y		W 180	105.435	0.000	0.000		17.229		0.000	0
Horiz 3	B/B L3"x2.5"x0.25"	DAL	3X2.5X0.25		65.95		18.17	н 64		W 180	78.111	0.000	0.000		15.468		0.000	0
Horiz 4	B/B L3"x2.5"x0.25"	DAL	3X2.5X0.25		49.26		16.73	н 7р		W 90	78.111	0.000	0.000		13.708		0.000	0
Horiz 5	B/B L2.5"x2.5"x0.25"		2.5X2.5X0.25		61.80		16.73	H 9P	11.822	W 90	70.686	0.000	0.000		12.827		0.000	0
Horiz 6 Horiz 7	B/B L2.5"x2.5"x0.25" B/B L3"x2.5"x0.25"	DAL	2.5x2.5x0.25 3x2.5x0.25		50.23		15.26 12.72	H 12P H 13X	10.790 9.937	W 0 W -90	70.686 78.111	0.000	0.000	0.000	11.947		0.000	0
Horiz 8	B/B L3"x2.5"x0.25"	DAL	3X2.5X0.25		24.12		11.89	H 15X	9.937	W -90	78.111	0.000	0.000		10.186		0.000	0
Horiz 9	B/B L3"x2.5"x0.25"	DAL	3X2.5X0.25	33.0			2.22	H 18P	1.736	W 90	78.111	0.000	0.000		18.612		0.000	0
Horiz 10	B/B L3"x2.5"x0.25"	DAL	3x2.5x0.25		1.51		1.51	H 20P	1.177	W 90	78.111	0.000	0.000		16.851		0.000	0
Horiz 11	L 4" x 3" x 0.3125"	SAU	4X3X0.31	33.0			1.70	H 21P	1.055	W 45	62.073	0.000	0.000		15.091		0.000	ŏ
Horiz 12	L 4" x 3" x 0.3125"	SAU	4x3x0.31	33.0	3.43	Comp	0.48	H 23P	0.301	W 45	62.073	0.000	0.000		13.330	0	0.000	0
LD 1	B/B L2.5"x2"x0.25"	DAL	2.5X2X0.25		47.63		47.63	LD 2P	30.133	W 180	63.261	0.000	0.000		11.465		0.000	0
LD 2	B/B L2.5"x2.5"x0.25"		2.5X2.5X0.25		92.89		30.89	LD 4P	21.836	W 180	70.686	0.000	0.000		9.638		0.000	0
LD 3	B/B L3"x3"x0.25"	DAE	3X3X0.25		65.97		31.39	LD 6Y		W 180	85.536	0.000	0.000		10.481		0.000	0
LH 1	B/B L2.5"x2.5"x0.25"		2.5X2.5X0.25		45.98	Tens	45.98	LH 2P	32.499	W 180	70.686	0.000	0.000		11.137		0.000	0
DUM 1	Dummy Bracing Member	DUM	0.1x0.1x1	36.0	0.00		0.00	BR 5X	0.820	W -45	0.324	0.000	0.000	0.000	21.875	0	0.000	0

^{***} Maximum Stress Summary for Each Load Case

Summary of Maximum Usages by Load Case

oad Case		Element Label	
W 0 W 180 W 45 W -45 W 90 W -90 W 0 Ice 180 Ice	91.17 92.89 67.06 70.85 91.26 92.72 28.70 30.69 25.44	LD 4P LD 4Y LD 3P LD 3X LD 3P LD 3X LD 4P LD 4Y LD 4Y L 1P	Angle Angle Angle Angle Angle Angle Angle
-45 Ice ₹ 90 Ice -90 Ice	26.15 28.74 30.65	LD 3X LD 3P LD 3X	Angle Angle Angle

^{***} Weight of structure (lbs):
Weight of Angles*Section DLF: 91885.3
Weight of Equipment: 1163.0
Total: 93048.3

*** End of Report

Site #: 88017 Engineer CDW Windspeed: No Ice: 97 mph Ice: 50 mph -0.14085 Taper Change 200 ft Taper: Name: Shelton/Trumbull, CT 10/31/16 Carrier AT&T Mobility 41.5 f 13.33 ft Date: FW @ Base: FW @ Top Drop Joint Symmetry X Coord. Y Coord. Z Coord. X Disp. Y Disp. Z Disp. X Rot. Y Rot. Z Rot. Sub-Brace Spreadsheet Version Last Updated: 11/12/2014 (Y or Blank) # Vert Drop (ft) Height (ft) FW (ft) Rest. Label Code (ft) Rest. Rest. Rest. Rest. Rest. Type Count Z-Elev. (ft) # Sub-Brace 8.3333 25 0 XY-Symmetry 20.75 20.75 0 Fixed Fixed Fixed Fixed Fixed Fixed 2 0 XY-Symmetry 18.989375 18.989375 25 Free Free Free Free Free Free 25 Α 25 37.97875 17.22875 17.22875 25 50 34.4575 2 Types: 2 XY-Symmetry 50 Free Free Free Free Free Free Α 3 25 75 XY-Symmetry 15.468125 15.468125 75 Free Free Free Free Free Free Α 4 30.93625 13.7075 13.7075 100 Free Free Free Free Free 12.5 Α 100 27.415 XY-Symmetry Free 5 XY-Symmetry 12.8271875 12.8271875 112.5 Free Free Free Free Free Free 12.5 Α 6 112.5 25.654375 11.946875 XY-Symmetry 11.946875 125 Free Free Free Free Free Free 12.5 Α 7 125 23.89375 XY-Symmetry 11.0665625 11.0665625 137.5 Free Free Free Free Free Free 12.5 Α 137.5 22.133125 Х XY-Symmetry 10.18625 10.18625 150 Free Free Free Free Free Free 1 12.5 9 150 20.3725 9 9.3059375 9.3059375 162.5 Free 12.5 Χ 10 162.5 18.611875 XY-Symmetry Free Free Free Free Free 1 10 XY-Symmetry 8.425625 8.425625 175 Free Free Free Free Free Free 1 12.5 Х 11 175 16.85125 11 XY-Symmetry 7.5453125 7.5453125 187.5 Free Free Free Free Free Free 12.5 Χ 12 187.5 15.090625 1 6.665 6.665 13 12 XY-Symmetry 200 Free Free 200 Free Free Free Free 13.33 A1 XY-Symmetry 18.989375 6.329791667 25 Free Free Free Free Free Free A2 6.329791667 18.989375 XY-Symmetry 25 Free Free Free Free Free Free A3 17.22875 50 Free Free Y-Symmetry 0 Free Free Free Free 17.22875 A4 50 Free Free Free Free X-Symmetry 0 Free Free A5 15.468125 75 Free Free Free Y-Symmetry Free Free Free 15.468125 A6 X-Symmetry 0 75 Free Free Free Free Free Free Α7 13.7075 100 Free Y-Symmetry 0 Free Free Free Free Free A8 0 13.7075 100 Free Free Free Free Free X-Symmetry Free Α9 12.8271875 112.5 Free Y-Symmetry Free Free Free Free Free A10 X-Symmetry 0 12.8271875 112.5 Free Free Free Free Free Free A11 Y-Symmetry 11.946875 0 125 Free Free Free Free Free Free 11.946875 125 Free A12 X-Symmetry 0 Free Free Free Free Free A13 Y-Symmetry 11.0665625 137.5 Free Free Free Free Free Free A14 X-Symmetry 0 11.0665625 137.5 Free Free Free Free Free Free A15 Y-Symmetry 10.18625 Ω 150 Free Free Free Free Free Free A16 0 10.18625 150 Free X-Symmetry Free Free Free Free Free

Н1

H2

НЗ

XY-Symmetry

XY-Symmetry

Y-Symmetry

X-Symmetry

19.57624765

11.13650855

19.57624765

11.13650855

19.57624765

19.57624765

0

16.6667 Free

16.6667 Free

16.6667 Free

16.6667 Free

NOTES

Sections:

Built up Horizs. w/ A

Built up Horizs. w/ M

Typical A brace

Typical X brace

Drop: Use only for types 1 & 2

12

Legs

Site No.:	88017
Engineer:	CDW
Date:	10/31/2016
Carrier:	AT&T Mobility

When inputting thickness values, include all decimal places.

Tower Section Type of Shape Thickness Th		6	T	Diameter	Th:	-
# (ft) Shape [1] Length (in) (in) (ksi) 1	Tower	Section	Туре	Diameter	Thickness [2]	F _Y
(ft) (in) (in) (ksi) 1 0.000-25.00 L 8 1.125 33 2 25.00-50.00 L 8 1 33 3 50.00-75.00 L 8 0.875 33 4 75.00-100.0 L 8 0.75 33 5 100.0-112.5 L 6 0.875 33 6 112.5-125.0 L 6 0.875 33 7 125.0-137.5 L 6 0.75 33 8 137.5-150.0 L 6 0.75 33 9 150.0-162.5 L 6 0.75 33 10 162.5-175.0 L 6 0.75 33 11 175.0-187.5 L 6 0.5 33		Elevations	of [1]			
1 0.000-25.00 L 8 1.125 33 2 25.00-50.00 L 8 1 33 3 50.00-75.00 L 8 0.875 33 4 75.00-100.0 L 8 0.75 33 5 100.0-112.5 L 6 0.875 33 6 112.5-125.0 L 6 0.875 33 7 125.0-137.5 L 6 0.75 33 8 137.5-150.0 L 6 0.75 33 9 150.0-162.5 L 6 0.75 33 10 162.5-175.0 L 6 0.75 33 11 175.0-187.5 L 6 0.5 33	#		Shape 123			
2 25.00-50.00 L 8 1 33 3 50.00-75.00 L 8 0.875 33 4 75.00-100.0 L 8 0.75 33 5 100.0-112.5 L 6 0.875 33 6 112.5-125.0 L 6 0.875 33 7 125.0-137.5 L 6 0.75 33 8 137.5-150.0 L 6 0.75 33 9 150.0-162.5 L 6 0.75 33 10 162.5-175.0 L 6 0.75 33 11 175.0-187.5 L 6 0.5 33		(ft)		(in)	(in)	(ksi)
2 25.00-50.00 L 8 1 33 3 50.00-75.00 L 8 0.875 33 4 75.00-100.0 L 8 0.75 33 5 100.0-112.5 L 6 0.875 33 6 112.5-125.0 L 6 0.875 33 7 125.0-137.5 L 6 0.75 33 8 137.5-150.0 L 6 0.75 33 9 150.0-162.5 L 6 0.75 33 10 162.5-175.0 L 6 0.75 33 11 175.0-187.5 L 6 0.5 33	1	0.000-25.00	L	8	1.125	33
4 75.00-100.0 L 8 0.75 33 5 100.0-112.5 L 6 0.875 33 6 112.5-125.0 L 6 0.875 33 7 125.0-137.5 L 6 0.75 33 8 137.5-150.0 L 6 0.75 33 9 150.0-162.5 L 6 0.75 33 10 162.5-175.0 L 6 0.75 33 11 175.0-187.5 L 6 0.5 33	2	25.00-50.00	L	8	1	33
5 100.0-112.5 L 6 0.875 33 6 112.5-125.0 L 6 0.875 33 7 125.0-137.5 L 6 0.75 33 8 137.5-150.0 L 6 0.75 33 9 150.0-162.5 L 6 0.75 33 10 162.5-175.0 L 6 0.75 33 11 175.0-187.5 L 6 0.5 33	3	50.00-75.00	L	8	0.875	33
6 112.5-125.0 L 6 0.875 33 7 125.0-137.5 L 6 0.75 33 8 137.5-150.0 L 6 0.75 33 9 150.0-162.5 L 6 0.75 33 10 162.5-175.0 L 6 0.75 33 11 175.0-187.5 L 6 0.5 33			L	8	0.75	33
7 125.0-137.5 L 6 0.75 33 8 137.5-150.0 L 6 0.75 33 9 150.0-162.5 L 6 0.75 33 10 162.5-175.0 L 6 0.75 33 11 175.0-187.5 L 6 0.5 33		100.0-112.5	L	6		33
8 137.5-150.0 L 6 0.75 33 9 150.0-162.5 L 6 0.75 33 10 162.5-175.0 L 6 0.75 33 11 175.0-187.5 L 6 0.5 33			L	6	0.875	33
9 150.0-162.5 L 6 0.75 33 10 162.5-175.0 L 6 0.75 33 11 175.0-187.5 L 6 0.5 33	7		L	6		33
10 162.5-175.0 L 6 0.75 33 11 175.0-187.5 L 6 0.5 33	8	137.5-150.0	L	6	0.75	33
11 175.0-187.5 L 6 0.5 33						
12 187.5-200.0 L 6 0.5 33						
	12	187.5-200.0	L	6	0.5	33

^[1] Type of Leg Shape: \mathbf{R} = Round or \mathbf{P} = Bent Plate or \mathbf{S} = Schifflerized Angle. \mathbf{L} = Even Leg [2] For Solid Round Leg Shapes Thickness Equals Zero.

^[3] Adjust for Bent Plate Leg Shapes.

Diagonals

Site No.: 88017
Engineer: CDW
Date: 10/31/2016
Carrier: AT&T Mobility

When inputting thickness values, include all decimal places.

Tower Section #	Section Elevations	Type of Shape ^[1]	Diameter ^[2]	Web Length ^[3]	Flange Length ^[3]	Thickness	F _y	Is Diag. Tension Only?
	(ft)		(in)	(in)	(in)	(in)	(ksi)	(Y/N)
1	0.000-25.00	2L		3	3	0.25	33	
2	25.00-50.00	2L		2.5	3	0.3125	33	
3	50.00-75.00	2L		2.5	3	0.25	33	
4 5	75.00-100.0 100.0-112.5	2L 2L		2.5 2.5	3 2.5	0.25 0.25	33 33	
6	112.5-125.0	2L 2L		2.5 2.5	2.5	0.25	33	
7	125.0-137.5	2L		2.5	2.5	0.25	33	
8	137.5-150.0	2L		2.5	2.5	0.25	33	
9	150.0-162.5	L		3	4	0.25	33	
10	162.5-175.0	L		3	4	0.25	33	
11	175.0-187.5	L		3.5	3.5	0.25	33	
12	187.5-200.0	L		3.5	3.5	0.25	33	

 $^{^{[1]}}$ Type of Diagonal Shape: $\bf R$ = Round, $\bf L$ = Single-Angle or $\bf 2L$ = Double-Angle.

 $^{^{[2]}} Applies \ to \ Pipes \ and \ Solid \ Round \ Shapes \ only. \ \ For \ Solid \ Round \ Shapes \ Thickness \ Equals \ Zero.$

 $^{^{\}mbox{\scriptsize [3]}}$ Applies to Single-Angle and Double-Angle Shapes only.

^[4] Applies to Double-Angle Shapes only.

 $^{^{\}mbox{\scriptsize [5]}}$ Applies to Single-Angle Shapes only.

Horizontals

Site No.: 88017
Engineer: CDW
Date: 10/31/2016
Carrier: AT&T Mobility

When inputting thickness values, include all decimal places.

_		_	5 [7]				-	
Tower	Section	Туре	Diameter [2]	Web	Flange	Thickness	F _y	
Section	Elevations	of [1]		Length [3]	Length [3]			
#		Shape [1]	<i>a.</i> .		6.1	<i>a</i>	<i>a.</i>	
	(ft)		(in)	(in)	(in)	(in)	(ksi)	
1	0.000-25.00	2L		3	3	0.3125	33	
2	25.00-50.00	2L		3.5	2.5	0.3125	33	
3	50.00-75.00	2L		3	2.5	0.25	33	
4	75.00-100.0	2L		3	2.5	0.25	33	
5	100.0-112.5	2L		2.5	2.5	0.25	33	
6	112.5-125.0	2L		2.5	2.5	0.25	33	
7	125.0-137.5	2L		3	2.5	0.25	33	
8	137.5-150.0	2L		3	2.5	0.25	33	
9	150.0-162.5	2L		3	2.5	0.25	33	
10	162.5-175.0	2L		3	2.5	0.25	33	
11	175.0-187.5	L		4	3	0.3125	33	
12	187.5-200.0	L		4	3	0.3125	33	
							1	

Type of Horizontal Shape: \mathbf{R} = Round, \mathbf{L} = Single-Angle, $\mathbf{2L}$ = Double-Angle, \mathbf{C} = Channel, \mathbf{W} = W Shape

 $^{^{[2]} \}text{Applies to Pipes and Solid Round Shapes only. } \textbf{For Solid Round Shapes Thickness Equals Zero.}$

^[3] Applies to Single-Angle and Double-Angle Shapes only.

^[4] Applies to Double-Angle Shapes only.

 $^{^{[5]}\}mbox{\sc Applies}$ to Single-Angle Shapes only.

Built-up Diagonals

Site No.: 88017
Engineer: CDW
Date: 10/31/2016
Carrier: AT&T Mobility

When inputting thickness values, include all decimal places. Input diags. from left to center & from base section upward.

Tower Built-up Diag. #	Section Elevations	Type of Shape ^[1]	Diameter ^[2]	Web Length ^[3]	Flange Length ^[3]	Thickness	F _y
	(ft)		(in)	(in)	(in)	(in)	(ksi)
1 2 3	0.000-25.00 0.000-25.00 0.000-25.00	2L 2L 2L		2.5 2.5 3	2 2.5 3	0.25 0.25 0.25	33 33 33

 $^{^{[1]}}$ Type of Diagonal Shape: **R** = Round, **L** = Single-Angle or **2L** = Double-Angle.

 $^{^{[2]} {\}rm Applies\ to\ Pipes\ and\ Solid\ Round\ Shapes\ only}. \ \ {\rm For\ Solid\ Round\ Shapes\ Thickness\ Equals\ Zero}.$

 $^{^{\}mbox{\scriptsize [3]}}$ Applies to Single-Angle and Double-Angle Shapes only.

 $^{^{[4]}\}mbox{\sc Applies}$ to Double-Angle Shapes only.

^[5] Applies to Single-Angle Shapes only.

Built-up Horizontals

Site No.: 88017
Engineer: CDW
Date: 10/31/2016
Carrier: AT&T Mobility

When inputting thickness values, include all decimal places.

Tower Section #	Section Elevations (ft)	Type of Shape ^[1]	Diameter ^[2]	Web Length ^[3]	Flange Length ^[3] (in)	Thickness	F _y (ksi)	Is Horiz. Tension Only? (Y/N)
1	0.000-25.00	2L		2.5	2.5	0.25	33	Y

Type of Horizontal Shape: \mathbf{R} = Round, \mathbf{L} = Single-Angle or $\mathbf{2L}$ = Double-Angle.

 $[\]begin{tabular}{ll} $[2]$ Applies to Pipes and Solid Round Shapes only. For Solid Round Shapes Thickness Equals Zero. \end{tabular}$

^[3] Applies to Single-Angle and Double-Angle Shapes only.

^[4] Applies to Double-Angle Shapes only.

 $^{^{[5]}\}mbox{{\sc Applies}}$ to Single-Angle Shapes only.

Coax and Dishes	(p. :	1 of 2
-----------------	-------	--------

Orig by MED, Improved by ABL. Last update 6/25/13 MED

,		,
	Joi	nt Orientation
Dish Types		0°
S Standard	XY	Y
R Standard w/ Radome		
H High Performance	90°	
G Grid		
	х	P

Site No.:	88017
Engineer:	CDW
Date:	10/31/16
Carrier:	AT&T Mobility

Dish Elevation	Dish Dia.	Dish Angle	Dish Type	Joint
(ft)	(ft)	(deg)		Orientation
208	6	68	R	XY
208	6	240	R	P
165	2.18	343.6664	н	XY
165	2	126.6024	S	XY
165	2.92	212.6351	Н	Р
165	2.92	212.6351	н	Х
126	6	182	R	Р
	•	•		

Equipment	Attach	Equipment	EIA Antenna		
Label	Label	Property Set	Orientation Angle		
6' RAD " @ 208	0XY	6 ft RAD Dish	68		
6' RAD " @ 208	OP	6 ft RAD Dish	240		
2.18' HP " @ 16	0XY	2.18 ft HP Dish	343.6664		
2' STD " @ 165	OXY	2 ft STD Dish	126.6024		
2.92' HP " @ 16	OP	2.92 ft HP Dish	212.6351		
2.92' HP " @ 16	0X	2.92 ft HP Dish	212.6351		
6' RAD " @ 126	OP	6 ft RAD Dish	182		

Description	From	То	Quantity	Shape	Width or	Perimeter	Unit	Part of Face	Include in
					Diameter		Weight	Solidity Ratio	Wind Load
	(ft)	(ft)			(in)	(in)	(lb/ft)	(Yes/No)	(Yes/No)
State of CT 1	0	200	2	Round	2.01	6.3	0.52	Yes	Yes
State of CT 2	0	200	2	Round	1.98	6.2	0.82	Yes	Yes
State of CT 3	0	185	1	Flat	3.72	19.8	2.08	Yes	Yes
State of CT 5	0	180	1	Flat	4.8375	25.8	4.1	Yes	Yes
State of CT 6	0	180	1	Flat	2.30625	12.3	0.75	Yes	Yes
Sprint 1	0	168	1	Flat	12.66	43.7	9.84	Yes	Yes
Clearwire 1	0	162	1	Round	0.63	6.3	0.6	No	No
Clearwire 2	0	162	1	Round	0.31	4.3	0.3	No	No
Clearwire 3	0	162	1	Round	2.38	14.3	7.3	Yes	Yes
Sprint 2	0	155	3	Round	1.54	4.8	1	Yes	Yes
Sprint 3	0	155	6	Round	1.98	6.2	0.82	Yes	Yes
AT&T 1	0	144	1	Round	0.28	0.9	0.03	No	No
AT&T 2	0	144	6	Round	1.98	6.2	0.82	Yes	Yes
AT&T 3	0	144	2	Round	0.74	2.3	0.49	No	No
AT&T 4	0	144	1	Round	3.5	11.0	7.58	Yes	Yes
State of CT 7	0	124	2	Round	2.01	6.3	0.57	Yes	Yes
US DHS	0	100	1	Round	1.09	4.4	0.33	Yes	Yes
WG 1	1	155.5	1	Flat	1.5	6.0	6	Yes	Yes
WG 2	8	165.5	1	Flat	1.5	6.0	6	Yes	Yes
WG 3	8	143	1	Flat	1.5	6.0	6	Yes	Yes
WG 4	25	176	1	Flat	1.5	6.0	6	Yes	Yes
Ladder	0	200	1	Round	1.5	4.7	6	Yes	Yes
Lightsquared	0	84	1	Round	1.98	7.9	0.82	Yes	Yes
Sprint 4	0	55	1	Round	0.63	2.0	0.15	Yes	Yes

Considered Coax Shape Block Width Description Face # Block Depth Perimeter Unit In Face Zone Include in From То Quantity Coax Width % Exposed Spacing (Block / Flat / (Round/Flat) Ind) Weight Wind Load (1-4, A-D) (lb/ft) (Yes/No) (Yes/No) State of CT 1 2 В 0 200 2.01 100 Ind Round 2 1 6.3 Yes Yes 6 State of CT 2 0 200 2 В 1.98 Ind 100 Round 2 1 6.2 0.82 Yes Yes State of CT 3 0 185 4 В 1.98 Block 50 1 Flat 2 2 19.8 3.28 Yes Yes 50 25.8 4.1 State of CT 5 0 180 В 1.98 Block Flat 3 2 Yes Yes State of CT 6 50 Flat 3 2 12.3 #N/A Yes Yes 12 168 1.98 Block 50 1 Flat 6 2 43.7 9.84 Yes Yes 4 Clearwire 1 0 162 4 0.63 Ind 100 Round 1 2.0 #N/A Yes Yes Clearwire 2 0 162 6 2 0.31 Ind 100 Round 6 1 1.0 #N/A Yes Yes Clearwire 3 0 162 2.38 Ind 100 Round 2 1 7.5 Yes Yes 6 3 Sprint 2 0 155 1.54 Ind 100 Round 1 4.8 0.33 Yes Yes Sprint 3 0 155 6 1.98 Ind 100 Round 6 1 6.2 0.82 Yes Yes 0.28 AT&T 1 0 144 С Ind 100 1 0.9 #N/A Yes Round 1 Yes AT&T 2 0 144 6 С 1.98 Ind 100 Round 6 1 6.2 0.82 Yes Yes AT&T 3 0 144 2 С 0.74 Ind 100 Round 2 1 2.3 #N/A Yes Yes AT&T 4 144 100 11.0 0 1 С 3.50 Ind Round 1 1 6 Yes Yes State of CT 7 124 2 В 2.01 100 2 1 6.3 6 Yes Yes US DHS 0 100 1 09 100 Round 1 1 3.4 0.33 Yes Yes WG 1 1 155.5 1 2 1.50 Flat 100 Flat 1 1 6.0 0.33 Yes Yes WG 2 8 165.5 2 1.50 Flat 100 Flat 1 6.0 0.33 Yes Yes WG3 8 143 1 D 1.50 Flat 100 Flat 1 1 6.0 0.33 Yes Yes Flat WG 4 25 176 Α 1.50 Flat 100 1 1 6.0 0.33 Yes Yes Ladder 200 1.50 100 Round 1 1 4.7 0.33 Yes Yes 2 Lightsquared 0 84 1 1.98 100 Round 1 1 6.2 Yes Yes Ind 0.82 0 55 1 Ind 1 #N/A 3 0.63 100 Round 1 2.0 Yes Yes Sprint 4 100 No Yes 100 No Yes 100 Yes No No Yes 100 100 No Yes 100 No Yes

Site No.:	88017
Engineer:	CDW
Date:	10/31/2016
Carrier:	AT&T Mobility

No.	Carrier	Elevation	Quantity	# 0		Model	Height	Width	Depth	Weight	Flat/Round	Reduction	C _A A _C	Weight	Ка
1		(ft) 200	1	Azimu 1			(in) 0.001	(in) 0.001	(in) 0.001	(Ibs/ea) 0.001	(F/R)	1.000	(ft²)	(k)	1
	-	200	1	4		Platform w/ Handrails						1.000	75.00	7.00	1
2	-	200 200	1 4	1		- Mounting Frames	0.001	0.001	0.001	0.001	F	1.000 1.000	20.00	0.20	1
3		187.5	1	1		woulding Frames	0.001	0.001	0.001	0.001	F	1.000	20.00	0.20	1
	-	187.5	1	4		Platform w/ Handrails						1.000	45.00	5.00	1
4		175 175	1	4		Platform w/ Handrails	0.001	0.001	0.001	0.001	F	1.000 1.000	55.00	5.00	1
5	-	112.5	1	1		-	0.001	0.001	0.001	0.001	F	1.000			1
6		112.5 75	1	3		Platform w/ Handrails	0.001	0.001	0.001	0.001	F	1.000 1.000	65.00	6.00	1
		75	1	3		Platform w/ Handrails						1.000	65.00	6.00	1
7		50 50	1	1		- Rest Platform	0.001	0.001	0.001	0.001	F	1.000 1.000	15.00	3.00	1
8			-	_											1
9	STATE OF CT	212	1	1	Decibel	DB420MS-E	188	3	3	30	R	1.000			1
9	STATE OF CT	200	1	1		DB42UWI3-E	100	,		30	n.	1.000			1
10	STATE OF CT	208	1	1	Generic	15' Omni	180	3	3	40	R	1.000			1
11	STATE OF CT STATE OF CT	200 189	1	1	Sinclair	SC479-HF1LDF	172.5	3.5	3.5	34	R	1.000 1.000			1
	STATE OF CT	185	1	1		Side Arms						1.000	5.20	0.05	1
12	STATE OF CT STATE OF CT	187 185	1	1	TX RX Systems	101-83B-09-0-03	120	3.6	3.6	45	R	1.000 1.000			1
13	STATE OF CT	187	2	1	Kathrein Scala	AP14-850/105	101.5	10	4	26.8	F	1.000			1
14	STATE OF CT STATE OF CT	185 184	1	1	Generic	- 5' Dipole	60	3	3	15	R	1.000 1.000			1
14	STATE OF CT	180	1	1	Generic	5 Dipole	60	,	-	15	n.	1.000			1
15	STATE OF CT	181	5	1	Generic	TTA	12	12	6	10	F	1.000			0.75
16	STATE OF CT STATE OF CT	180 180	1	1	TX RX Systems	- 101-83B-09-0-03	120	3.6	3.6	45	R	1.000 1.000			1
	STATE OF CT	180	1	1			_					1.000			1
17	STATE OF CT STATE OF CT	175 180	1	1	TX RX Systems	101-83B-09-0-03	120	3.6	3.6	45	R	1.000 1.000			1
18	STATE OF CT	175	1	1	Sinclair	SC479-HF1LDF	172.5	3.5	3.5	34	R	1.000			1
10	STATE OF CT STATE OF CT	180	1	1	C11-1-	- SC479-HF1LDF	172.5	3.5	3.5	34	R	1.000			1
19	STATE OF CT	175 180	1	1	Sinclair	5C479-HF1LDF	1/2.5	3.5	3.5	34	к	1.000 1.000			1
20	SPRINT NEXTEL	168	12	3	Decibel	DB844H90E-A	48	6	8.5	10	F	0.861			0.8
21	SPRINT NEXTEL CLEARWIRE CORPORATION	168 165	3 4	3	DragonWave	Sector Frame Horizon Compact	4.7	9.3	9.3	10.6	F	1.000 0.929	17.90	0.40	0.75 0.8
	CLEARWIRE CORPORATION	162	3	3		Side Arms						0.670	6.50	0.15	1
22	CLEARWIRE CORPORATION CLEARWIRE CORPORATION	162	1	3	Generic	BTS	18	12	6	20	F	0.792 1.000			0.8
23	CLEARWIRE CORPORATION	162 162	3	3	NextNet	BTS-2500	19.3	11.3	5.1	35	F	0.763			0.8
	CLEARWIRE CORPORATION	162	1	3	A	-	40					1.000			1
24	CLEARWIRE CORPORATION CLEARWIRE CORPORATION	162 162	3 1	3	Argus	LLPX310R -	42	11.8	4.5	28.6	F	0.726 1.000			0.8
25	SPRINT NEXTEL	155	3	3	Alcatel-Lucent	1900 MHz 4X45 RRH	25.1	11.1	10.7	60	F	0.945			1
26	SPRINT NEXTEL SPRINT NEXTEL	155 155	1 3	3		- 800 MHz RRH w/ Notch Filter	19.7	13	15.2	61.8	F	1.000 0.867			1
	SPRINT NEXTEL	155	1	3	Audici Ediciii	-	15.7	13	13.2	01.0		1.000			1
27	SPRINT NEXTEL SPRINT NEXTEL	155 155	6 1	3	Andrew	DB980H90E-M	60	6.3	3	8.5	F	0.794 1.000			1
28	SPRINT NEXTEL SPRINT NEXTEL	155	3	3	RFS	APXVSPP18-C-A20	72	11.8	7	57	F	0.829			1
	SPRINT NEXTEL	155	1	3			_					1.000			1
29	AT&T MOBILITY AT&T MOBILITY	144 144	6 3	3	Powerwave Allgon	LGP21401 Sector Frame	14.4	9.2	2.6	14.1	F	0.665 1.000	15.00	0.30	0.8 0.75
30	AT&T MOBILITY	144	1	3	Raycap	DC6-48-60-18-8F ("Squid")	24	11	11	31.8	F	0.929			0.8
31	AT&T MOBILITY AT&T MOBILITY	144 144	1 3	3	Ericsson	- RRUS 11 (Band 12) (55 lb)	17.8	17	7.2	55	F	1.000 0.747			1 0.8
	AT&T MOBILITY	144	1	3		-				33	·	1.000			1
32	AT&T MOBILITY AT&T MOBILITY	144 144	3 1	3	Ericsson	RRUS 32 B2	27.2	12.1	7	53	F	0.837 1.000			0.8
33	AT&T MOBILITY	144	3	3	Powerwave Allgon	7770.00	55	11	5	35	F	0.766			0.8
24	AT&T MOBILITY	144	1	3	cci	-	72	110			_	1.000			1
34	AT&T MOBILITY AT&T MOBILITY	144 144	3 1	3	CCI	HPA-65R-BUU-H6 -	72	14.8	9	51	F	0.834 1.000			0.8 1
35	US DEPT OF HOMELAND SECURITY		1	1	Andrew	DB616E-BC	231	3.5	3.5	51	R	1.000			1
36	US DEPT OF HOMELAND SECURITY LIGHTSQUARED LP	100 90	1	1 1	Kathrein Scala	750 10074	104.3	2	2	17.6	R	1.000 1.000			1
	LIGHTSQUARED LP	84	1	1		Side Arm						1.000	5.20	0.15	1
37	SPRINT NEXTEL SPRINT NEXTEL	55 55	1	1		2" x 4" GPS	2	4	2	5	R	1.000 1.000			1
38			-	-											1
39															1
															1
40															1
41															1
															1
42															1
43															1
44															1
44															1
45															1
46															1
															1
47															1
48															1
40															1
49															1
50															1
															1
												. ,		_	

No.	Elevation	C _A A _c	C _A A _C (Ice)	Force	Force (Ice)	Weight	Weight (Ice)	60 Azi	Force	F (Ice)	Height	Sum of Forces (No I
	(ft)	(ft ²)	(ft²)	(lb)	(Ib)	(Ib)	(Ib)	Mult.	mean	mean	Flag	60 Azi. 180 Azi.
1	200	0.00	0.01	0.000	0.054	0	0	1.00	0.00	0.03		
	200	75.00	101.25	2515.763	564.001	8400	10920	1.00	1383.67	310.20	0.0000010	2515.762621
2	200	0.00	0.01	0.000	0.054	0	0	1.00	0.00	0.03	0.0000020	
	200	80.00	108.00	2683.480	601.601	960	1248	1.00	1475.91	330.88	1.5050000	5199.24275
3	187.5	0.00	0.01	0.000	0.053	0	0	1.00	0.00	0.03	1.5050010	4404 000004
4	187.5 175	45.00 0.00	60.75 0.01	1481.879 0.000	332.218 0.052	6000	7800 0	1.00 1.00	815.03 0.00	182.72 0.03	1.5053333 1.5053343	1481.878864
-	175	55.00	74.25	1775.832	398.118	6000	7800	1.00	976.71	218.97	1.5057143	1775.832331
5	112.5	0.00	0.01	0.000	0.046	0	0	1.00	0.00	0.03	1.5057153	1773.032331
-	112.5	65.00	87.75	1849.815	414.704	7200	9360	1.00	1017.40	228.09	1.5088889	1849.814543
6	75	0.00	0.01	0.000	0.041	0	0	1.00	0.00	0.02	1.5088899	
	75	65.00	87.75	1647.466	369.340	7200	9360	1.00	906.11	203.14	1.5133333	1647.465775
7	50	0.00	0.01	0.000	0.037	0	0	1.00	0.00	0.02	1.5133343	
	50	15.00	20.25	338.597	75.909	3600	4680	1.00	186.23	41.75	1.5200000	338.5965398
8					#VALUE!			1.00	#VALUE!	#VALUE!	1.5200010	
								1.00	0.00	0.00	#DIV/0!	#VALUE!
9	212 200	4.70	6.30 0.00	160.301 0.003	35.683 0.001	36 0	194 0	1.00 1.00	88.17 0.00	19.63 0.00	#DIV/0!	160.3044541
10	208	0.00 4.50	6.03	152.647	33.987	48	202	1.00	83.96	18.69	#DIV/0! #DIV/0!	100.3044541
10	208	0.00	0.00	0.003	0.001	48	0	1.00	0.00	0.00	1.5050000	312.9545643
11	189	5.03	6.51	166.060	35.661	41	203	1.00	91.33	19.61	1.5050000	J12.3J4J04J
	185	5.20	7.02	170.584	38.243	60	78	1.00	93.82	21.03	1.5050010	336.6437797
12	187	3.60	4.64	118.460	25.346	54	174	1.00	65.15	13.94	1.5050020	
	185	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5050020	455.1069591
13	187	21.22	23.13	698.134	126.413	64	254	1.00	383.97	69.53	1.5050030	
	185	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5054054	1153.244422
14	184	1.36	1.67	44.582	9.063	18	69	1.00	24.52	4.98	1.5054064	
	180	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5055556	44.58485385
15	181 180	4.50	6.16	146.702	33.357	60	97 0	1.00	80.69 0.00	18.35	1.5055566	
4.0		0.00	0.00	0.003	0.001	0	174	1.00	64.45	0.00 13.79	1.5055556	191.2896884
16	180 180	3.60 0.00	4.64 0.00	117.176 0.003	25.071 0.001	54 0	0	1.00	0.00	0.00	1.5055566 1.5055556	308.4685817
17	175	3.60	4.64	116.236	24.870	54	173	1.00	63.93	13.68	1.5055566	308.4083617
	180	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5055556	424.7081346
18	175	5.03	6.51	162.448	34.886	41	202	1.00	89.35	19.19	1.5055566	
	180	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5055556	587.1596879
19	175	5.03	6.51	162.448	34.886	41	202	1.00	89.35	19.19	1.5055566	
	180	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5055556	749.6112412
20	168	32.80	37.42	1046.762	198.328	144	253	1.00	575.72	109.08	1.5055566	
	168	53.70	72.50	1713.753	288.151	1440	1872	1.00	942.56	158.48	1.5059524	2760.514384
21	165	1.26	1.70	40.091	8.942	51	71	1.00	22.05	4.92	1.5059534	
22	162 162	13.07 1.14	17.64 1.52	412.639 36.005	92.508 7.977	540 24	702 66	1.00 1.00	226.95 19.80	50.88 4.39	1.5061728 1.5061738	452.7306443
22	162	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5061738	488.7390758
23	162	3.33	4.45	105.150	23.324	126	189	1.00	57.83	12.83	1.5061728	400.7330730
2.5	162	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5061738	593.8918445
24	162	7.48	9.32	236.180	48.899	103	207	1.00	129.90	26.89	1.5061738	
	162	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5061728	830.0752069
25	155	7.40	8.70	230.765	45.062	216	319	1.00	126.92	24.78	1.5061738	
	155	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5064516	230.7677443
26	155	7.57	8.48	236.029	43.895	222	326	1.00	129.82	24.14	1.5064526	
	155	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5064516	466.8003255
27	155	18.56	21.29	578.918	110.284	61	143	1.00	318.40	60.66	1.5064526	1045 721070
	155	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5064516	1045.721078
28	155 155	19.96	22.60	622.554 0.003	117.041 0.001	205	399	1.00	342.40 0.00	64.37 0.00	1.5064526 1.5064516	1668.278316
29	144	3.52	4.87	107.593	24.716	102	144	1.00	59.18	13.59	1.5064516	1008.278310
23	144	45.00	60.75	1374.228	231.063	1080	1404	1.00	755.83	127.08	1.5069444	1481.8208
30	144	1.91	2.17	58.227	10.988	38	103	1.00	32.02	6.04	1.5069454	1401.0200
	144	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5069444	1540.0504
31	144	4.52	5.90	138.070	29.915	198	287	1.00	75.94	16.45	1.5069454	
	144	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5069444	1678.12366
32	144	5.51	7.22	168.344	36.609	191	287	1.00	92.59	20.13	1.5069454	
	144	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5069444	1846.470651
33	144	10.12	12.01	309.173	60.895	126	254	1.00	170.05	33.49	1.5069454	
	144	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5069444	2155.64671
34	144	19.33	22.44	590.287	113.817	184	409	1.00	324.66	62.60	1.5069454	
	144	0.00	0.00	0.003	0.001	0	0	1.00	0.00	0.00	1.5069444	2745.936641
35	109 100	6.74 0.00	8.70 0.00	190.017 0.003	40.746 0.001	61 0	267 0	1.00 1.00	104.51 0.00	22.41 0.00	1.5069454	190.0195035
ı	100	0.00	0.00	0.003	0.001	U	U	1.00	0.00	0.00	1.5100000	190.0195035

Foundation

Design Loads (Factored)

Compression/Leg:	268.84
Uplift/Leg:	171.91 l
Shear/Leg	39.26 l

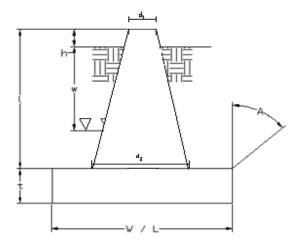
Face Width @ Top of Pier (d_1) :	3.50	ft
Face Width @ Bottom of Pier (d_2) :	7.00	ft
Total Length of Pier (I):	7.00	ft
Height of Pedestal Above Ground (h):	0.50	ft
Width of Pad (W):	16.00	ft
Length of Pad (L):	16.00	ft
Thickness of Pad (t):	2.50	ft
Water Table Depth (w):	99.00	ft
Unit Weight of Concrete:	150.0	pcf
Unit Weight of Soil (Above Water Table):	120.0	pcf
Unit Weight of Soil (Below Water Table):	55.0	pcf
Friction Angle of Uplift (A):	30	۰
Ultimate Compressive Bearing Pressure:	16000	psf

ī		
Volume Pier (Total):	200.08	ft³
Volume Pad (Total):	640.00	ft³
Volume Soil (Total):	2346.93	ft³
Volume Pier (Buoyant):	0.00	ft³
Volume Pad (Buoyant):	0.00	ft³
Volume Soil (Buoyant):	0.00	ft³
Weight Pier:	30.01	k
Weight Pad:	96.00	k
Weight Soil:	281.63	k

Uplift Check

	φs Uplift Resistance (k)	Ratio	Result
ſ	305.73	0.56	OK

Axial Check


	φs Axial Resistance (k)	Ratio	Result
Г	3072.00	0.09	OK

Anchor Bolt Check

Bolt Diameter (in)	2.25
# of Bolts	4
Steel Grade	A36
Steel Fy	36
Steel Fu	58
Detail Type	С

Usage Ratio	Result
0.40	OK

Site No.:	88017
Engineer:	CDW
Date:	10/31/16
Carrier:	AT&T Mobility

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

AT&T Existing Facility

Site ID: CT5542

Shelton - Booth Hill Booth Hill Rd (14 Oxford Dr.) Shelton, CT 06484

October 29, 2016

EBI Project Number: 6216004899

Site Compliance Summary			
Compliance Status:	COMPLIANT		
Site total MPE% of			
FCC general public allowable limit:	4.83 %		

October 29, 2016

AT&T Mobility – New England Attn: Cameron Syme, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT5542 – Shelton - Booth Hill

EBI Consulting was directed to analyze the proposed AT&T facility located at **Booth Hill Rd (14 Oxford Dr.)**, **Shelton**, **CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467 μ W/cm² and 567 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed AT&T Wireless antenna facility located at **Booth Hill Rd** (14 **Oxford Dr.)**, **Shelton**, **CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 UMTS channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 2 UMTS channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 GSM channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 2 LTE channels (700 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 5) 2 LTE channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.

- 6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 7) For the following calculations the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antennas used in this modeling are the **Powerwave 7770 and the CCI HPA-65R-BUU-H6** for transmission in the 700 MHz, 850 MHz and 1900 MHz (PCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antenna mounting height centerlines of the proposed antennas are **145 feet** above ground level (AGL) for **Sector A**, **145 feet** above ground level (AGL) for **Sector B** and **145 feet** above ground level (AGL) for Sector C.
- 10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

AT&T Site Inventory and Power Data by Antenna

Sector:	A	Sector:	В	Sector:	C
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	Powerwave 7770	Make / Model:	Powerwave 7770	Make / Model:	Powerwave 7770
Gain:	11.4 / 13.4 / 11.4 dBd	Gain:	11.4 / 13.4 / 11.4 dBd	Gain:	11.4 / 13.4 / 11.4 dBd
Height (AGL):	145 feet	Height (AGL):	145 feet	Height (AGL):	145 feet
Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)
Channel Count	6	Channel Count	6	Channel Count	6
Total TX Power(W):	180 Watts	Total TX Power(W):	180 Watts	Total TX Power(W):	180 Watts
ERP (W):	2,969.12	ERP (W):	2,969.12	ERP (W):	2,969.12
Antenna A1 MPE%	0.79 %	Antenna B1 MPE%	0.79 %	Antenna C1 MPE%	0.79 %
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	CCI HPA-65R- BUU-H6	Make / Model:	CCI HPA-65R- BUU-H6	Make / Model:	CCI HPA-65R- BUU-H6
Gain:	11.95 / 14.75 dBd	Gain:	11.95 / 14.75 dBd	Gain:	11.95 / 14.75 dBd
Height (AGL):	145 feet	Height (AGL):	145 feet	Height (AGL):	145 feet
Frequency Bands	700 MHz / 1900 MHz (PCS)	Frequency Bands	700 MHz / 1900 MHz (PCS)	Frequency Bands	700 MHz / 1900 MHz (PCS)
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power(W):	240 Watts	Total TX Power(W):	240 Watts	Total TX Power(W):	240 Watts
ERP (W):	5,462.56	ERP (W):	5,462.56	ERP (W):	5,462.56
Antenna A2 MPE%	1.42 %	Antenna B2 MPE%	1.42 %	Antenna C2 MPE%	1.42 %

Site Composite MPE%				
Carrier	MPE%			
AT&T – Max per sector	2.20 %			
Clearwire	0.05 %			
Clearwire MW	0.06 %			
Dept Public Safety	0.14 %			
PageNet	0.13 %			
Sprint	0.71 %			
Nextel	0.56 %			
Dept Homeland Security	0.73 %			
Light Squared, Inc	0.25 %			
Site Total MPE %:	4.83 %			

AT&T Sector A Total:	2.20 %
AT&T Sector B Total:	2.20 %
AT&T Sector C Total:	2.20 %
Site Total:	4.83 %

AT&T _ Frequency Band / Technology	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (μW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
AT&T 850 MHz UMTS	2	414.12	145	1.54	850 MHz	567	0.27%
AT&T 1900 MHz (PCS) UMTS	2	656.33	145	2.44	1900 MHz (PCS)	1000	0.24%
AT&T 850 MHz GSM	2	414.12	145	1.54	850 MHz	567	0.27%
AT&T 700 MHz LTE	2	940.05	145	3.50	700 MHz	467	0.75%
AT&T 1900 MHz (PCS) LTE	2	1,791.23	145	6.67	1900 MHz (PCS)	1000	0.67%
						Total*:	2.20%

^{*}NOTE: Totals may vary by 0.01% due to summing of remainders

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)	
Sector A:	2.20 %	
Sector B:	2.20 %	
Sector C:	2.20 %	
AT&T Maximum Total	2.20 %	
(per sector):	2.20 76	
Site Total:	4.83 %	
Site Compliance Status:	COMPLIANT	

The anticipated composite MPE value for this site assuming all carriers present is **4.83** % of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.