EMPIRE telecom

December 13, 2017

Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Street
New Britain, CT 06051

Regarding:	Notice of Exempt Modification - Swap of 3 Panel Antennas, Addition of 6 Remote Radios, Addition of 6 Combiners, and Addition of 1 Squid Surge Arrestor.
Property Address:	213 High Street (aka 97 High Street) Portland, CT 06480 (the "Property")
Applicant:	AT\&T Mobility ("AT\&T", Site \# CT1066)

Dear Ms. Bachman:
AT\&T currently maintains a wireless telecommunications facility on an existing 80 foot self-support tower ("tower") at the above-referenced address, latitude 41.5807139, longitude -72.6238600. AT\&T's facility consists of nine (9) wireless telecommunications antennas at 77 feet. The land and tower is owned by AT\&T. Assessor's information is attached hereto.

AT\&T desires to modify its existing telecommunications facility by swapping (3) antennas, adding (6) remote radios, and adding (1) squid. The centerline height of said antennas is and will remain at 77 feet.

Please accept this application as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § $16-50 \mathrm{j}-72$ (b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the First Selectwoman of the Town of Portland, the Town's Building Official, and the Town's Zoning Administrator. A copy of this letter is also being sent to the tower and property owner New Cingular Wireless PCS LLC (AT\&T).

The planned modifications to AT\&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The planned modifications will not result in an increase in the height of the existing structure. AT\&T's antennas and associated lines will be installed at the 77 foot level of the 80 Foot Monopole tower.
2. The proposed modifications will not involve any changes to ground-mounted equipment and, therefore will not require an extension of the site boundary.
3. The proposed modification will not increase the noise level at the facility by six decibel or more, or to levels that exceed state and local criteria.

EMPIRE telecoms

4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. An RF emissions calculation is attached.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The tower and its foundation can support AT\&T's proposed modifications. (Please see attached Structural Analysis completed by GPD Engineering and Architecture Professional Corporation dated December 12, 2017).

For the foregoing reasons AT\&T respectfully requests that the proposed swap of antennas, addition of radios and addition of squids be allowed within the exempt modifications under R.C.S.A. § 16-50j72(b)(2).

Kristen White
Site Acquisition Specialist
Empire Telecom
kwhite@empiretelecomm.com
978-284-3801

[^0]
Portland, CT : Assessor Database

Property Search:

Parcel ID: Alternate ID: Owner 1 Name: | Street Number: | Street Name: | |
| :--- | :--- | :--- |
| | 97 | HIGH ST |

Search Reset

Property Detail:

Valuation:	
Appraised Land:	$\$ 81,600.00$
Appraised Bldg:	$\$ 88,100.00$
Appraised Total:	$\$ 169,700.00$
Total Assessment:	$\$ 118,790.00$

Out-Buildings:

| Code: | Description: | Units: | Year Built: | Size1: | Size2: | Area: | Grade: |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FN1 | FENCE CHAIN | 3 | 1961 | 6 | 180 | 0 | 1 |
| TT4 | TOWER CELLULAR | 4 | 1990 | 1 | 80 | 0 | 8 |

Building Interior/Exterior Information:

Floor From:	Floor To:	Area:	Use Type:	Exterior Walls:	Contruction Type:	Heating:	A/C:	Plumbing:	Functional Utility:
01	01	384	MULTI USE Storage	CONCRETE BLOCK	WOOD FRAME/JOIST/BEAM	NONE	NONE	NONE	4

[^1]and convenience for citizens of Portland, CT
The providers of this database: Tyler CLT, Big Room Studios, and Portland, CT assume no liability for any error or omission in the information provided here.
Comments regarding this service should be directed to: assessor@portlandct.org

Thu. October 26, 2017 : 04:25 PM : 0.07s : 10mb

Google Maps 97 High St

97 High St

Portland, CT 06480

telecom
Empire Telecommunications 1150 1st Avenue, Suite 600
King of Prussia, PA 19406
(484) 804-4500

CPD Engineering and Architecture
GPD Engineering and Architecture Professional Corporation
Kevin Fraleigh
520 South Main Street, Suite 2531
Akron, OH 44311
(330) 572-2191
kfraleigh@gpdgroup.com
GPD\# 2018701.10
December 12, 2017

RIGOROUS STRUCTURAL ANALYSIS REPORT

AT\&T DESIGNATION:

ANALYSIS CRITERIA:

SITE DATA:

Site USID:	59359
Site FA:	10035005
Site Name:	PORTLAND
Client Site \#:	CT1066

Codes:

TIA-222-G, 2012 IBC \& 2016 CSBC 130-mph Ultimate 3 second gust with 0 " ice 101-mph Nominal 3 second gust with 0 " ice 50-mph Nominal 3 second gust with $3 / 4^{\prime \prime}$ ice

213 High Street, Portland, CT 06480, Middlesex County Latitude $41^{\circ} 34 ' 50.5704 " N, L^{\prime}$ Longitude $72^{\circ} 37^{\prime} 25.8954 " \mathrm{~W}$ Market: NEW ENGLAND $\mathbf{8 0}^{\prime}$ Self Support Tower

Ms. Kristen White,
GPD is pleased to submit this Rigorous Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

Tower Stress Level with Proposed Equipment:	91.3%	Pass
Foundation Ratio with Proposed Equipment:	49.2%	Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and Empire Telecommunications. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

Respectfully submitted,

Christopher J. Scheks, P.E.
Connecticut \#: 0030026

SUMMARY \& RESULTS

The purpose of this analysis was to verify whether the existing structure is capable of carrying the proposed loading configuration as specified by AT\&T Mobility to Empire Telecommunications. This report was commissioned by Ms. Kristen White of Empire Telecommunications.

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 130 mph converted to a nominal 3-second gust wind speed of 101 mph per Section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception \#5 of Section 1609.1.1. Exposure Category C with a maximum topographic factor, Kzt, of 1.0 and Risk Category II were used in this analysis.

TOWER SUMMARY AND RESULTS

Member	Capacity	Results
Legs	74.5%	Pass
Diagonals	77.1%	Pass
Secondary Horizontals	91.3%	Pass
Top Girts	20.4%	Pass
Bolt Checks	36.1%	Pass
Anchor Rods	44.5%	Pass
Foundation	49.2%	Pass

ANALYSIS METHOD

tnxTower (Version 7.0.7.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various dead, live, wind, and ice load cases. Selected output from the analysis is included in Appendix B. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information and is being completed without the benefit of a detailed site visit.

DOCUMENTS PROVIDED

Document	Remarks	Source
RF Data Sheet	AT\&T RFDS Name: CT1066, updated 8/17/2017	Empire
Construction Drawings	Centek Job \#: 17004.51, dated 10/4/2017	Empire
Tower Design	Not Provided	N/A
Foundation Design	Not Provided	N/A
Geotechnical Report	GPD Project \#: 2017702.58, dated 3/6/2017	AT\&T
Foundation Mapping	GPD Project \#: 2017702.58, dated 3/6/2017	AT\&T
Previous Structural Analysis	GPD Project \#: 2017702.58, dated 3/17/2017	AT\&T

ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
2. The appurtenance configuration is as supplied, determined from available photos, and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
3. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
4. The soil parameters are as per data supplied or as assumed and stated in the calculations.
5. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
6. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
7. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
8. All prior structural modifications, if applicable, are assumed to be as per data supplied/available and to have been properly installed.
9. Loading interpreted from photos is accurate to $\pm 5^{\prime} \mathrm{AGL}$, antenna size accurate to $\pm 3.3 \mathrm{sf}$, and coax equal to the number of existing antennas without reserve.
10. All existing loading has been modeled based on the previous structural analysis by GPD (Project \#: 2017702.58, dated 3/17/2017), the provided RF Data Sheet, the construction drawings and site photos and is assumed to be accurate.
11. There were some discrepancies between the existing loading between the previous analysis and the RF Data Sheet, the existing loading was modeled based upon the provided RF Data Sheet.
12. Leg A is at an azimuth of 15° based on satellite imagery.
13. Foundation reinforcement information was not available. Therefore, it was assumed that the foundation reinforcement in place is equal to or in excess of the code specified minimum.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD should be allowed to review any new information to determine its effect on the structural integrity of the tower.

DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Rigorous Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

Tower Analysis Summary Form
General Info

Site Name	PORTLAND
Site Number	59359 (CT1066)
FA Number	10035005
Date of Analysis	$12 / 12 / 2017$
Company Performing Analysis	GPD

The information contained in this summary report is not to be used independently from the PE stamped tower analysis
Design Parameters

Design Code Used	 $2016 ~ C S B C ~$
Location of Tower (County, State)	Middlesex, CT
Nominal Wind Speed (mph)	101 (3-second gust)
Ice Thickness (in)	0.75
Structure Classification (I, II, III)	II
Exposure Category (B, C, D)	C
Topographic Category (1 to 5)	1

Analysis Results (\% Maximum Usage)

Existing/Reserved + Future + Proposed Condition	
Tower (\%)	91.3%
Anchor Rods (\%)	44.5%
Foundation (\%)	49.2%
Foundation Adequate?	YES

Tower Info

Tower Type (G, SST, MP)	Description	Date
Tower Height (top of steel AGL)	80^{\prime}	
Tower Manufacturer	n / a	
Tower Model	n / a	
Tower Design	n / a	
Foundation Design	n / a	
Geotech Report	GPD Project \#: 2017702.58	$3 / 6 / 2017$
Foundation Mapping	GPD Project \#: 2017702.58	$3 / 6 / 2017$
Tower Mapping	n/a	
Previous Structural Analysis	GPD Project \#: 2017702.58	$3 / 17 / 2017$

Steel Yield Strength (ksi)

Legs	36
Bracing	36
Bolts	A325
Anchor Rods	36

Note: Steel strengths have been assumed based on previous experience with similar towers.
Existing / Reserved Loading

Antenna								Mount			Transmission Line			
Antenna Owner	Mount Height (ft)	Antenna $\mathrm{CL}(\mathrm{ft})$	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Leg/Face
AT\&T Mobility	77	77	3	Panel	Kathrein	800-10121	30/150/270	3	Unknown	Ring w/ Sector Frames	15	Unknown	7/8"	Face C
AT\&T Mobility	77	77	3	Panel	CCI	HPA-65R-BUU-H6	30/150/270			on the same mounts	3	Unknown	1-5/8"	Face C
AT\&T Mobility	77	77	3	Panel	KMW	AM-X-CD-16-65-00T-RET	30/150/270			on the same mounts	2	DC Power	3/4"	Face C
AT\&T Mobility	77	77	6	RET	Kathrein	860-10025				on the same mounts	1	Fiber Cable	1/2"	Face C
AT\&T Mobility	77	77	6	TMA	CCI	DTMABP7819VG12A				on the same mounts				
AT\&T Mobility	77	77	3	RRU	Ericsson	RRUS 11				on the same mounts				
AT\&T Mobility	77	77	3	RRU	Ericsson	RRUS 32 B2				on the same mounts				
AT\&T Mobility	77	77	1	Surge	Raycap	DC6-48-60-18-F				on the same mounts				

Note: (3) KMW panels and (3) CCI TMAs at 77 ' shall be removed prior to the installation of the proposed loading. All other existing/reserved equipment shall be reused

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{array}{\|c\|} \hline \text { Mount } \\ \text { Height (ft) } \\ \hline \end{array}$	Antenna CL (ft)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Leg/Face
AT\&T Mobility	77	77	3	Panel	Quintel	QS66510-6	30/150/270			on the existing mount	2	DC Power	3/4"	Face C
AT\&T Mobility	77	77	6	Kaelus	Combiner	DBC0061F1V51-2				on the existing mount	1	Fiber Cable	1/2"	Face C
AT\&T Mobility	77	77	3	Ericsson	RRU	RRUS-32				on the existing mount				
AT\&T Mobility	77	77	3	Ericsson	RRU	RRUS-32 B66				on the existing mount				
AT\&T Mobility	77	77	1	Raycap	DC Unit	DC6-48-60-18-F				on the existing mount				

Note: The proposed equipment shall be installed in addition to the remaining existing/reserved loading at the same elevation.

Future Loading

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{array}{\|c\|} \hline \text { Mount } \\ \text { Height (ft) } \\ \hline \end{array}$	Antenna $\mathrm{CL}(\mathrm{ft})$	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Leg/Face

APPENDIX B

tnxTower Output File

tnxTower	Job 59359 (CT1066) PORTLAND		$\begin{aligned} & \text { Page } \\ & \\ & \end{aligned}$
GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (555) 555-1234 FAX: (555) 555-1235	Project	2018701.10	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 08:28:50 12/12/17 } \end{array}$
	Client	Empire Telecom	Designed by dbays

Tower Input Data

The main tower is a 4 x free standing tower with an overall height of 80.00 ft above the ground line.
The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 5.38 ft at the top and 13.17 ft at the base.
This tower is designed using the TIA-222-G standard.
The following design criteria apply:
Tower is located in Middlesex County, Connecticut.
Basic wind speed of 101 mph .
Structure Class II.
Exposure Category C.
Topographic Category 1.
Crest Height 0.00 ft .
Nominal ice thickness of 0.7500 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf.
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in tower member design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	\#	$\begin{gathered} \# \\ \text { Per } \\ \text { Row } \\ \hline \end{gathered}$	Clear Spacing in	Width or Diameter in	Weight klf
Safety Line (3/8")	C	No	Ar (CaAa)	80.00-8.00	0.0000	0.25	1	1	0.3750	0.3750	0.000
Feedline Ladder (Af)	C	No	Af (CaAa)	77.00-8.00	0.0000	0	1	1	3.0000	3.0000	0.008
LDF5-50A (7/8 FOAM)	C	No	Ar (CaAa)	77.00-8.00	0.0000	0	15	5	0.7500	1.0900	0.000
LDF7-50A (1-5/8 FOAM)	C	No	Ar (CaAa)	77.00-8.00	0.0000	0.06	3	3	0.7500	1.9800	0.001
3/4" DC Power Line	C	No	Ar (CaAa)	77.00-8.00	0.0000	-0.04	4	4	0.7500	0.7500	0.000
1/2" Fiber Cable	C	No	Ar (CaAa)	77.00-8.00	0.0000	-0.06	2	2	0.5000	0.6300	0.000

Discrete Tower Loads

Description	Face or Leg	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert $f t$ $f t$ ft	Azimuth Adjustment 0	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
8' Lightning Rod	C	From Leg	0.00	0.000	80.00	No Ice	0.60	0.60	12.000
			0.000			1/2" Ice	1.41	1.41	18.187
			4.000			$1{ }^{\prime \prime}$ Ice	2.25	2.25	29.489
10' Diameter Tower Ring Mount	C	None		0.000	77.00	No Ice	7.00	7.00	298.000
						1/2" Ice	8.80	8.80	325.500
						$1^{\prime \prime}$ Ice	10.60	10.60	353.000
10' Diameter Tower Ring Mount	C	None		0.000	75.00	No Ice	7.00	7.00	298.000
						1/2' Ice	8.80	8.80	325.500

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (555) 555-1234 FAX: (555) 555-1235	Job 59359 (CT1066) PORTLAND		$\text { Page } 2 \text { of } 5$
	Project	2018701.10	$\begin{aligned} & \text { Date } \\ & \text { 08:28:50 12/12/17 } \end{aligned}$
	Client	Empire Telecom	Designed by dbays

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

ft \& \& \begin{tabular}{l}
$C_{A} A_{A}$

Front

$f t^{2}$

 \&

$C_{A} A_{A}$

Side

$f t^{2}$
\end{tabular} \& Weight

$l b$

\hline \multirow{4}{*}{10' Diameter Tower Ring Mount} \& \multirow{3}{*}{C} \& \multirow{3}{*}{None} \& \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{68.00} \& 1" Ice \& 10.60 \& 10.60 \& 353.000

\hline \& \& \& \& \& \& No Ice \& 7.00 \& 7.00 \& 298.000

\hline \& \& \& \& \& \& 1/2" Ice \& 8.80 \& 8.80 \& 325.500

\hline \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{77.00} \& $1{ }^{\prime \prime}$ Ice \& 10.60 \& 10.60 \& 353.000

\hline \multirow[t]{3}{*}{MTS 10' Boom Gate} \& \& \& 2.00 \& \& \& No Ice \& 15.43 \& 10.89 \& 434.000

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 20.15 \& 15.23 \& 614.248

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 24.87 \& 19.57 \& 794.496

\hline \multirow[t]{3}{*}{MTS 10' Boom Gate} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 2.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 15.43 \& 10.89 \& 434.000

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 20.15 \& 15.23 \& 614.248

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 24.87 \& 19.57 \& 794.496

\hline \multirow[t]{3}{*}{MTS 10' Boom Gate} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 2.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 15.43 \& 10.89 \& 434.000

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 20.15 \& 15.23 \& 614.248

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 24.87 \& 19.57 \& 794.496

\hline \multirow[t]{3}{*}{80010121 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{15.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 5.26 \& 4.47 \& 64.550

\hline \& \& \& 0.000 \& \& \& 1/2' Ice \& 5.64 \& 5.13 \& 110.681

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 6.03 \& 5.79 \& 163.059

\hline \multirow[t]{3}{*}{80010121 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 5.26 \& 4.47 \& 64.550

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 5.64 \& 5.13 \& 110.681

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.03 \& 5.79 \& 163.059

\hline \multirow[t]{3}{*}{80010121 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{30.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 5.26 \& 4.47 \& 64.550

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 5.64 \& 5.13 \& 110.681

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.03 \& 5.79 \& 163.059

\hline \multirow[t]{3}{*}{HPA-65R-BUU-H6 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{15.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 9.90 \& 8.11 \& $$
76.550
$$

\hline \& \& \& $$
0.000
$$ \& \& \& \[

1 / 2^{\prime \prime} Ice

\] \& 10.47 \& 9.30 \& \[

158.030
\]

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 11.01 \& 10.21 \& 247.793

\hline \multirow[t]{3}{*}{HPA-65R-BUU-H6 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 9.90 \& 8.11 \& 76.550

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 10.47 \& 9.30 \& 158.030

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 11.01 \& 10.21 \& 247.793

\hline \multirow[t]{3}{*}{HPA-65R-BUU-H6 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{30.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 9.90 \& 8.11 \& 76.550

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 10.47 \& 9.30 \& 158.030

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 11.01 \& 10.21 \& 247.793

\hline \multirow[t]{3}{*}{QS66510-6 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{15.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 8.13 \& 8.22 \& 119.900

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 8.59 \& 9.19 \& 192.986

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.05 \& 10.02 \& 274.011

\hline \multirow[t]{3}{*}{QS66510-6 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 8.13 \& 8.22 \& 119.900

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 8.59 \& 9.19 \& 192.986

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 9.05 \& 10.02 \& 274.011

\hline \multirow[t]{3}{*}{QS66510-6 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{30.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 8.13 \& 8.22 \& 119.900

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 8.59 \& 9.19 \& 192.986

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 9.05 \& 10.02 \& 274.011

\hline \multirow[t]{3}{*}{Pipe Mount $8^{\prime} \times 2.375^{\prime \prime}$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{15.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 1.90 \& 1.90 \& 33.700

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.73 \& 2.73 \& 48.040

\hline \& \& \& 0.000 \& \& \& 1 " Ice \& 3.40 \& 3.40 \& 67.661

\hline \multirow[t]{3}{*}{Pipe Mount $\mathbf{8 ' x}^{\prime \prime} 2.375^{\prime \prime}$} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 1.90 \& 1.90 \& 33.700

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.73 \& 2.73 \& 48.040

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.40 \& 3.40 \& 67.661

\hline \multirow[t]{3}{*}{Pipe Mount $8^{\prime} \times 2.375{ }^{\prime \prime}$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{30.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 1.90 \& 1.90 \& 33.700

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.73 \& 2.73 \& 48.040

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.40 \& 3.40 \& 67.661

\hline \multirow[t]{3}{*}{(2) 86010025} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 0.14 \& 0.12 \& 1.160

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.19 \& 0.17 \& 2.650

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.25 \& 0.23 \& 5.060

\hline \multirow[t]{3}{*}{(2) 86010025} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 0.14 \& 0.12 \& 1.160

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.19 \& 0.17 \& 2.650

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 0.25 \& 0.23 \& 5.060

\hline \multirow[t]{2}{*}{(2) 86010025} \& \multirow[t]{2}{*}{C} \& \multirow[t]{2}{*}{From Face} \& 4.00 \& \multirow[t]{2}{*}{0.000} \& \multirow[t]{2}{*}{77.00} \& No Ice \& 0.14 \& 0.12 \& 1.160

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.19 \& 0.17 \& 2.650

\hline
\end{tabular}

tnxTower	59359 (CT1066) PORTLAND		$\begin{aligned} & \text { Page } \\ & \\ & \hline \text { of } 5 \end{aligned}$
GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (555) 555-1234 FAX: (555) 555-1235	Project	2018701.10	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 08:28:50 12/12/17 } \end{array}$
	Client	Empire Telecom	Designed by dbays

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face \\
or Leg
\end{tabular} \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
ft \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

$l b$

\hline \multirow{4}{*}{DTMABP7819VG12A} \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& 0.000 \& \multirow{4}{*}{0.000} \& \multirow{3}{*}{77.00} \& 1" Ice \& 0.25 \& 0.23 \& 5.060

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.98 \& 0.34 \& 19.180

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.10 \& 0.42 \& 26.485

\hline \& \& \& 0.000 \& \& \multirow{4}{*}{77.00} \& 1" Ice \& 1.23 \& 0.51 \& 35.633

\hline \multirow[t]{3}{*}{DTMABP7819VG12A} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \& No Ice \& 0.98 \& 0.34 \& 19.180

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.10 \& 0.42 \& 26.485

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 1.23 \& 0.51 \& 35.633

\hline \multirow[t]{3}{*}{DTMABP7819VG12A} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 0.98 \& 0.34 \& 19.180

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.10 \& 0.42 \& 26.485

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.23 \& 0.51 \& 35.633

\hline \multirow[t]{3}{*}{(2) DBC0061F1V51-2} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{15.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 0.43 \& 0.41 \& 25.500

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.51 \& 0.50 \& 30.777

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 0.61 \& 0.59 \& 37.587

\hline \multirow[t]{3}{*}{(2) DBC0061F1V51-2} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 0.43 \& 0.41 \& 25.500

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.51 \& 0.50 \& 30.777

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 0.61 \& 0.59 \& 37.587

\hline \multirow[t]{3}{*}{(2) DBC0061F1V51-2} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{30.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 0.43 \& 0.41 \& 25.500

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.51 \& 0.50 \& 30.777

\hline \& \& \& 0.000 \& \& \& 1 " Ice \& 0.61 \& 0.59 \& 37.587

\hline \multirow[t]{3}{*}{RRUS 11} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 2.78 \& 1.19 \& 50.700

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.99 \& 1.33 \& 71.500

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 3.21 \& 1.49 \& 95.335

\hline \multirow[t]{3}{*}{RRUS 11} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 2.78 \& 1.19 \& 50.700

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.99 \& 1.33 \& 71.500

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 3.21 \& 1.49 \& 95.335

\hline \multirow[t]{3}{*}{RRUS 11} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 2.78 \& 1.19 \& 50.700

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.99 \& 1.33 \& 71.500

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 3.21 \& 1.49 \& 95.335

\hline \multirow[t]{3}{*}{RRUS 32 B2} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 2.73 \& 1.67 \& 52.900

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.95 \& 1.86 \& 73.957

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 3.18 \& 2.05 \& 98.206

\hline \multirow[t]{3}{*}{RRUS 32 B 2} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 2.73 \& 1.67 \& 52.900

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.95 \& 1.86 \& 73.957

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 3.18 \& 2.05 \& 98.206

\hline \multirow[t]{3}{*}{RRUS 32 B 2} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 2.73 \& 1.67 \& 52.900

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.95 \& 1.86 \& 73.957

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 3.18 \& 2.05 \& 98.206

\hline \multirow[t]{3}{*}{RRUS 32} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{15.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 3.31 \& 2.42 \& $$
77.000
$$

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.56 \& 2.64 \& 104.928

\hline \& \& \& 0.000 \& \& \& 1 " Ice \& 3.81 \& 2.86 \& 136.466

\hline \multirow[t]{3}{*}{RRUS 32} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 3.31 \& 2.42 \& 77.000

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.56 \& 2.64 \& 104.928

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 3.81 \& 2.86 \& 136.466

\hline \multirow[t]{3}{*}{RRUS 32} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{30.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 3.31 \& 2.42 \& 77.000

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.56 \& 2.64 \& 104.928

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 3.81 \& 2.86 \& 136.466

\hline \multirow[t]{3}{*}{RRUS 32 B66} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{15.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 2.74 \& 1.67 \& 53.000

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.96 \& 1.86 \& 74.114

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.19 \& 2.05 \& 98.424

\hline \multirow[t]{3}{*}{RRUS 32 B66} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 2.74 \& 1.67 \& 53.000

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.96 \& 1.86 \& 74.114

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 3.19 \& 2.05 \& 98.424

\hline \multirow[t]{3}{*}{RRUS 32 B66} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{30.000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 2.74 \& 1.67 \& 53.000

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.96 \& 1.86 \& 74.114

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 3.19 \& 2.05 \& 98.424

\hline \multirow[t]{2}{*}{DC6-48-60-18-8F Surge Suppression Unit} \& \multirow[t]{2}{*}{A} \& \multirow[t]{2}{*}{From Leg} \& 2.00 \& \multirow[t]{2}{*}{0.000} \& \multirow[t]{2}{*}{77.00} \& No Ice \& 0.92 \& 0.92 \& 18.900

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.46 \& 1.46 \& 36.615

\hline
\end{tabular}

tnxTower	59359 (CT1066) PORTLAND		$\begin{aligned} & \text { Page } \\ & \\ & 4 \text { of } 5 \end{aligned}$
GPD 520 South Main Street Suite 2531	Project	2018701.10	Date 08:28:50 12/12/17
Akron, Ohio 44311 Phone: (555) 555-1234 FAX: (555) 555-1235	Client	Empire Telecom	Designed by dbays

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Front \\
\(f t^{2}\)
\end{tabular} \& \(C_{A} A_{A}\)
Side

$f t^{2}$ \& Weight

$l b$

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 1.64 \& 1.64 \& 56.825

\hline \multirow[t]{3}{*}{DC6-48-60-18-8F Surge Suppression Unit} \& B \& From Leg \& 2.00 \& 0.000 \& 77.00 \& No Ice \& 0.92 \& 0.92 \& 18.900

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.46 \& 1.46 \& 36.615

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.64 \& 1.64 \& 56.825

\hline \multirow[t]{3}{*}{Catwalk} \& B \& From Leg \& 0.00 \& 0.000 \& 51.00 \& No Ice \& 27.50 \& 27.50 \& 1587.000

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 39.50 \& 39.50 \& 2182.000

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 51.50 \& 51.50 \& 2777.000

\hline
\end{tabular}

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature ft
80.00	8' Lightning Rod	40	0.4660	0.046	0.016	234893
77.00	10' Diameter Tower Ring Mount	40	0.4359	0.045	0.015	234893
75.00	10' Diameter Tower Ring Mount	40	0.4159	0.045	0.014	234893
68.00	10' Diameter Tower Ring Mount	40	0.3479	0.043	0.012	99818
51.00	Catwalk	40	0.2066	0.032	0.007	106573

Bolt Design Data

| Section
 No. | Elevation | Component |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $f t$ | Type |

tnxTower	59359 (CT1066) PORTLAND		Page 5 of 5
GPD 520 South Main Street Suite 2531	Project	2018701.10	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 08:28:50 12/12/17 } \end{array}$
Akron, Ohio 44311 Phone: (555) 555-1234 FAX: (555) 555-1235	Client	Empire Telecom	Designed by dbays

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt lb	Allowable Load $l b$	Ratio Load Allowable	Allowable Ratio	Criteria
		Secondary Horizontal	A325N	0.6250	1	831.428	3194.530	0.260	1	Member Block Shear

Section Capacity Table

Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} \phi P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
T1	80-66	Leg	L4x4x3/8	3	-7872.390	79761.797	9.9	Pass
T2	66-54	Leg	L4x $4 \times 3 / 8$	60	-19503.500	59484.199	32.8	Pass
T3	54-24	Leg	L5x5x7/16	80	-42272.102	87162.000	48.5	Pass
T4	24-14.75	Leg	L5x5x7/16	120	-50098.602	69246.000	72.3	Pass
T5	14.75-0	Leg	L5x5x7/16	136	-62258.199	83563.797	74.5	Pass
T1	80-66	Diagonal	L2 $1 / 2 \times 2 \times 3 / 16$	17	-4380.000	13446.900	32.6	Pass
T2	66-54	Diagonal	L2 1/2x $2 \times 3 / 16$	74	-3205.170	13232.400	24.2	Pass
T3	54-24	Diagonal	L2 1/2x $2 \times 3 / 16$	90	-3707.320	7348.230	50.5	Pass
T4	24-14.75	Diagonal	L3x3x3/16	129	-4333.360	13225.700	32.8	Pass
T5	14.75-0	Diagonal	L3x3x3/16	142	-6006.740	7787.350	77.1	Pass
T1	80-66	Horizontal	L3 1/2x3 1/2x1/4	43	-1752.300	39066.500	4.5	Pass
T1	80-66	Secondary Horizontal	$2 \mathrm{~L} 4 \times 4 \times 1 / 4 \times 3 / 8$	35	995.745	114351.000	0.9	Pass
T5	14.75-0	Secondary Horizontal	L1 1/2x1 1/2x1/8	147	-831.428	910.763	91.3	Pass
T1	80-66	Top Girt	L2x2x3/16	7	254.201	18733.900	1.4	Pass
T2	66-54	Top Girt	L3x3x3/16	23	261.984	30968.301	0.8	Pass
T3	54-24	Top Girt	L2 1/2x2 1/2x3/16	81	-253.370	10922.700	2.3	Pass
T4	24-14.75	Top Girt	L2 $1 / 2 \times 2 \times 3 / 16$	123	-837.711	4114.760	20.4	Pass
						Summary	ELC:	Existing + Proposed
						Leg (T5)	74.5	Pass
						Diagonal (T5)	77.1	Pass
						Horizontal (T1)	4.5	Pass
						Secondary Horizontal (T5)	91.3	Pass
						Top Girt (T4)	20.4	Pass
						Bolt Checks	36.1	Pass
						Rating =	91.3	Pass

APPENDIX C

Tower Elevation Drawing

Feed Line Distribution Chart 0^{\prime} - 80'
\qquad Uound Flat \qquad App In Face \qquad App Out Face \qquad Truss Leg

		Dob: 59359 (CT1066) PORTLAND		
		Client: Empire Telecom	Drawn by: dbays	App'd:
		Code: TIA-222-G	Date: 12/12/17	NTS
				Dwg No. E-7

\qquad Flat \qquad App In Face

APPENDIX D

Anchor Rod Analysis

Self-Support Anchor Rod Analysis 59359 (CT1066) PORTLAND

2018701.10

General Info	
Code	TIA-222-G
Modified Anchor Rods	No
Clear Distance $>d_{\mathrm{b}}$	No
Leg Eccentricity	No
Max Capacity	1.05

Tower Reactions		
Detail Type $=$	d	
Eta Factor, $\eta=$	0.50	
Down Load, $\mathrm{P}_{\mathrm{u}}=$	61.70	kips
Down Load Shear, $\mathrm{V}_{\mathrm{u}}=$	9.20	kips
Uplift, $\mathrm{P}_{\mathrm{u}}=$	54.40	kips
Uplift Shear, $\mathrm{V}_{\mathrm{u}}=$	8.50	kips

Anchor Rods		
Number of Anchor Rods, $\mathrm{N}=$	4	
Anchor Rod Grade $=$	A36	
Anchor Rod Diameter, $\mathrm{d}_{\mathrm{d}}=$	1.25	in
Bolt Circle, $\mathrm{BC}=$		in
Yield, $\mathrm{F}_{\mathrm{y}}=$	36	ksi
Tensile, $\mathrm{F}_{\mathrm{ub}}=$	58	ksi

Anchor Rod Results		
$\left(\mathrm{P}_{\mathrm{u}}+\mathrm{V}_{\mathrm{u}} / \mathrm{n}\right)$	20.0	kips
$\phi^{*} \mathrm{R}_{\mathrm{nt}}=\phi^{*} \mathrm{~F}_{\mathrm{ub}}{ }^{*} \mathrm{~A}_{\mathrm{n}}=$	45.0	kips
Anchor Rod Stress Ratio $=$	44.5%	$\mathbf{O K}$

Figure 4-4 of TIA-222-G

APPENDIX E

Foundation Analysis

SST Unit Base Foundation

Site \#: 59359 (CT1066)
Site Name: Portland
App. Number: 2018701.10

TIA-222 Revision:	G	
Superstructure Analysis Reactions		
Global Moment, M:	1114.5	ft-kips
Global Axial, P:	17.56	kips
Global Shear, V:	22	kips
Leg Compression, $\mathbf{P}_{\text {comp }}$:	61.7	kips
Leg Comp. Shear, $\mathbf{V}_{\mathbf{u} \text { _comp }}$:	9.2	kips
Leg Uplift, $\mathbf{P}_{\text {uplift }}$:	54.4	kips
Leg Uplift. Shear, $\mathbf{V}_{\text {u_uplift }}$:	8.5	kips
Tower Height, \mathbf{H} :	80	ft
Base Face Width, BW:	13.167	ft
BP Dist. Above Fdn, $\mathrm{bp}_{\text {dist }}$:	3	in

Tower Centroid Offset?:	Γ
Block Foundation?:	Γ

Foundation Analysis Checks				
	Capacity	Demand	Rating	Check
Lateral (Sliding) (kips)	172.49	22.00	$\mathbf{1 2 . 8} \%$	Pass
Bearing Pressure (ksf)	23.04	2.68	$\mathbf{1 1 . 6} \%$	Pass
Overturning (kip*ft)	2589.68	1274.00	$\mathbf{4 9 . 2 \%}$	Pass
Pier Flexure (Comp.) (kip*ft)	216.30	46.00	$\mathbf{2 1 . 3} \%$	Pass
Pier Flexure (Tension) (kip*ft)	163.73	42.50	$\mathbf{2 6 . 0} \%$	Pass
Pier Compression (kip)	1334.73	65.30	$\mathbf{4 . 9 \%}$	Pass
Pad Flexure (kip*ft)	522.74	217.63	$\mathbf{4 1 . 6 \%}$	Pass
Pad Shear - 1-way (kips)	349.38	64.27	$\mathbf{1 8 . 4} \%$	Pass
Pad Shear - 2-way (ksi)	0.16	0.03	$\mathbf{1 6 . 7} \%$	Pass

Pler Properties		
Pier Shape:	Square	
Pier Diameter, dpier:	2.0	ft
Ext. Above Grade, E:	0.50	ft
Pier Rebar Size, Sc:	6	
Pier Rebar Quantity, mc:	12	
Pier Tie/Spiral Size, St:	4	
Pier Tie/Spiral Quantity, mt:	8	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc $\mathbf{p i e r}:$	3	in

Soil Rating:	$\mathbf{4 9 . 2 \%}$
Structural Rating:	$\mathbf{4 1 . 6 \%}$

Pad Properties		
Depth, D:	6.50	ft
Pad Width, W:	18.00	ft
Pad Thickness, T:	2.00	ft
Pad Rebar Size (Bottom), Sp:	7	
Pad Rebar Quantity (Bottom), mp:	10	
Pad Clear Cover, $\mathbf{c c}_{\text {pad }}:$	3	in

Material Properties		
Rebar Grade, Fy:	60000	psi
Concrete Compressive Strength, F'c:	3000	psi
Dry Concrete Density, $\delta \mathbf{c}:$	150	pcf

Soil Properties		
Total Soil Unit Weight, $\gamma:$	110	pcf
Ultimate Net Bearing, Qnet:	30.000	ksf
Cohesion, Cu:		ksf
Friction Angle, $\varphi:$	30	degrees
SPT Blow Count, N blow: $:$		
Base Friction, $\mu:$	0.6	
Neglected Depth, $\mathbf{N}:$	2.5	ft
Foundation Bearing on Rock?	Yes	
Groundwater Depth, gw:	None	ft

Radio Frequency Emissions Analysis Report

AT\&T Existing Facility
Site ID: CT1066
Portland
213 High Street
Portland, CT 6480
October 26, 2017
Centerline Communications Project Number: 950006-078

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 2 . 5 9} \%$

October 26, 2017
AT\&T Mobility - New England
Attn: John Benedetto, RF Manager
550 Cochituate Road
Suite $550-13 \& 14$
Framingham, MA 06040

Emissions Analysis for Site: CT1066 - Portland

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT\&T facility located at 213 High Street, Portland, CT, for the purpose of determining whether the emissions from the Proposed AT\&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)$ - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 700 and 850 MHz Bands are approximately $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$ respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT\&T Wireless antenna facility located at $\mathbf{2 1 3}$ High Street, Portland, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT\&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in Table 1:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
UMTS	850 MHz	2	30
UMTS	$1900 \mathrm{MHz}($ PCS $)$	2	30
LTE	700 MHz	2	60
LTE	$1900 \mathrm{MHz}($ PCS $)$	2	60
LTE	$2100 \mathrm{MHz}($ AWS $)$	2	60
LTE	$2300 \mathrm{MHz}(\mathrm{WCS})$	2	60

Table 1: Channel Data Table

The following antennas listed in Table 2 were used in the modeling for transmission in the $700 \mathrm{MHz}, 850$ $\mathrm{MHz}, 1900 \mathrm{MHz}$ (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
A	1	Kathrein 800-10121	77
A	2	CCI HPA-65R-BUU-H6	77
A	3	Quintel QS66510-6	77
B	1	Kathrein 800-10121	77
B	2	CCI HPA-65R-BUU-H6	77
B	3	Quintel QS66510-6	77
C	1	Kathrein 800-10121	77
C	2	CCI HPA-65R-BUU-H6	77
C	3	Quintel QS66510-6	77

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT\&T configurations Table 3 shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

$\begin{aligned} & \text { Antenna } \\ & \text { ID } \end{aligned}$	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	Total TX Power (W)	ERP (W)	MPE \%
Antenna A1	$\begin{gathered} \hline \text { Kathrein } \\ 800-10121 \end{gathered}$	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz}(\mathrm{PCS}) \end{gathered}$	$\begin{aligned} & \hline 11.45 / \\ & 14.35 \end{aligned}$	4	120	2,471.44	2.22
Antenna A2	$\begin{gathered} \text { CCI } \\ \text { HPA-65R-BUU-H6 } \end{gathered}$	$\begin{gathered} 700 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \\ \hline \end{gathered}$	$\begin{gathered} 11.95 / \\ 14.75 \\ \hline \end{gathered}$	4	240	5,462.56	5.43
Antenna A3	Quintel QS66510-6	$\begin{gathered} 2100 \mathrm{MHz} \text { (AWS) / } \\ 2300 \mathrm{MHz} \text { (WCS) } \\ \hline \end{gathered}$	$\begin{gathered} \hline 14.35 / \\ 14.85 \\ \hline \end{gathered}$	4	240	6,933.15	4.94
Sector A Composite MPE\%							12.59
Antenna B1	$\begin{gathered} \text { Kathrein } \\ 800-10121 \\ \hline \end{gathered}$	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \\ \hline \end{gathered}$	$\begin{aligned} & 11.45 / \\ & 14.35 \\ & \hline \end{aligned}$	4	120	2,471.44	2.22
Antenna B2	$\begin{gathered} \text { CCI } \\ \text { HPA-65R-BUU-H6 } \end{gathered}$	$\begin{gathered} 700 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	$\begin{gathered} 11.95 / \\ 14.75 \\ \hline \end{gathered}$	4	240	5,462.56	5.43
$\begin{gathered} \text { Antenna } \\ \text { B3 } \\ \hline \end{gathered}$	Quintel QS66510-6	$\begin{aligned} & 2100 \mathrm{MHz} \text { (AWS) / } \\ & 2300 \mathrm{MHz} \text { (WCS) } \end{aligned}$	$\begin{gathered} 14.35 / \\ 14.85 \\ \hline \end{gathered}$	4	240	6,933.15	4.94
Sector B Composite MPE\%							12.59
$\begin{gathered} \text { Antenna } \\ \text { C1 } \\ \hline \end{gathered}$	Kathrein 800-10121	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	$\begin{gathered} \hline 11.45 / \\ 14.35 \\ \hline \end{gathered}$	4	120	2,471.44	2.22
Antenna C2	$\begin{gathered} \text { CCI } \\ \text { HPA-65R-BUU-H6 } \end{gathered}$	$\begin{gathered} 700 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	$\begin{gathered} 11.95 / \\ 14.75 \end{gathered}$	4	240	5,462.56	5.43
Antenna \qquad	Quintel QS66510-6	$\begin{aligned} & 2100 \mathrm{MHz}(\mathrm{AWS}) / \\ & 2300 \mathrm{MHz} \text { (WCS) } \\ & \hline \end{aligned}$	$\begin{gathered} 14.35 / \\ 14.85 \\ \hline \end{gathered}$	4	240	6,933.15	4.94
Sector C Composite MPE\%							12.59

Table 3: AT\&T Emissions Levels

The Following table (table 4) shows all additional carriers on site and their MPE\% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT\&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. Table 5 below shows a summary for each AT\&T Sector as well as the composite MPE value for the site.

Site Composite MPE\%	
Carrier	MPE\%
AT\&T - Max Sector Value	$\mathbf{1 2 . 5 9} \%$
No Additional Carriers on Site per CSC Active MPE Database	NA
Site Total MPE \%:	$\mathbf{1 2 . 5 9 \%}$

Table 4: All Carrier MPE Contributions

AT\&T Sector A Total:	12.59%
AT\&T Sector B Total:	12.59%
AT\&T Sector C Total:	12.59%
Site Total:	

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT\&T sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

AT\&T _Frequency Band / Technology (All Sectors)	\# Channels	Watts ERP (Per Channel)	Height (feet)	\qquad	Frequency (MHz)	Allowable MPE $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$	Calculated \% MPE
AT\&T 850 MHz UMTS	2	418.91	77	5.98	850 MHz	567	1.05\%
AT\&T 1900 MHz (PCS) UMTS	2	816.81	77	11.65	1900 MHz (PCS)	1000	1.17\%
AT\&T 700 MHz LTE	2	940.05	77	13.41	700 MHz	467	2.87\%
AT\&T 1900 MHz (PCS) LTE	2	1,791.23	77	25.55	1900 MHz (PCS)	1000	2.55\%
AT\&T 2100 MHz (AWS) LTE	2	1,633.62	77	23.30	2100 MHz (AWS)	1000	2.33\%
AT\&T 2300 MHz (WCS) LTE	2	1,832.95	77	26.14	2300 MHz (WCS)	1000	2.61\%
Total: $\quad \mathbf{1 2 . 5 9 \%}$							

Table 6: AT\&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT\&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT\&T Sector	Power Density Value (\%)
Sector A:	12.59%
Sector B:	12.59%
Sector C:	12.59%
AT\&T Maximum Total	
(per sector):	12.59%
Site Total:	12.59%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 2 . 5 9} \boldsymbol{\%}$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director
Centerline Communications, LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767

(1 (TYPICAL RRUS MOUNTNG DETAILS

ELEVATION
notis:

(2) RAYCAP DC6 MOUNTING DETAIL

OTES AND SPECIACATION

DESIGN BASIS:

desion criterae
WNO LOAN: PER TA 222 c (ANTENNA MOUNTS: 100-120 MPH (3 SECOND GUST

GENERAL NOTES

AL Constructon shall 日e in complance wit the governng builong

 NO COST OF THE WORK.

3. No ORLING WELOMG OR TAPNG ON EEERSOURCE OMWED EOUPMEN.

STRUCTURAL STEEL

all structrat stee is desineo er allowaele stress desion (aso)

放

n. ComNecton ancles shall have a minum thicness of $1 / 4$ INCHES.

13. LOCK WASHER ARE NOT PERMTIED FOR A325 STEEL ASSEMULES.
14. Shop connectons shall ae weloed or hich strench bolte.

16. fabricate beans wit mll camer ur.

PANT NOTES

PanNING SCheoule:

2. Coxal Call cs:

exammaton ano preparaton:

3. TEST SHiLP APPLED PRMER FOR COWPATBuIT WTH SUSSEOUENT COVER

Corzer ofect an clean suface wich Afec work of tis secion

CEENMG:

Do Not apply finshes to suffaces tut ace not
APELY EACH COAT TO UNFRRM FNSH

5. Sano metal lughir betwen coats to achieve regured fnsh.

7. ALLOW Appled coat to dory begore next coat is apules.
swose

EMPikE telecom

TOWE STTVCTURAL NOTES: 1. Towe spucrual Ahavis sine

NOTES:

2. At.b. = ABove tower base

($\mathrm{E}-1$ LTE SCHEMATC DIAGRAM
LIE SC.

5in

ELECTRICAL NOTES

.

䢒

15. Rumucino而

TESING RPocedure meluong the maxe and mooll of test

Ecct ren caine shall be crounoeo in me

$\left(\begin{array}{cc}5-3 & \text { RRU POLE MOUNT GROUNDING } \\ \text { NOT TO SCAE }\end{array}\right.$

Enclosurs

SENDER: COMPLETE THIS SECTION

- Complete items 1, 2, and 3.
- Print your name and address on the reverse so that we can return the card to you.
- Attach this card to the back of the mailpiece, or on the front if space permits.

1. Article Addressed to:

Susan. Bransfield
PO BaX 71
Portland, CT 064807

9590940218646104964915
2. Article Number (Transfer from service label)

COMPLETE THIS SECTION ON DELIVERY
A. Signature

if YES, enter delivery address below: \square No

SENDER: COMPLETE THIS SECTION

- Complete items 1,2 , and 3.
- Print your name and address on the reverse so that we can return the card to you.
- Attach this card to the back of the mailpiece, or on the front if space permits.

1. Article Addressed to:

Ashley majorowiski
33 East main Sf. FL
Portland, Ct 06480

9590940218646104964892
2. Article Number (Transfer from service label)

PS Form 3811, July 2015 PSN 7530-02-000-9053
COMPLETE THIS SECTION ON DELIVERY

If YES, enter delivery address below:

Domestic Return Receipt

SENDER: COMPLETE THIS SECTION

- Complete items 1, 2, and 3.
- Print your name and address on the reverse so that we can return the card to you.
- Attach this card to the back of the mailpiece, or on the front if space permits.

1. Article Addressed to:
\qquad Lincoln White. 33 Eg st main St.
portland, ct 06480 |||||||||||||||||||||||||||||||||||||||

9590940218646104964908

COMPLETE THIS SECTION ON DELIVERY

3. Service Type
\square Priority Mail Express (B) Registered Mail TM Registered Mail Restricted Delivery Return Receipt for Merchandise

[^0]: cc: Susan Bransfield, First Selectman of the Town of Portland (municipality)
 Ashley Majorowski (Land Use Administrator)
 Lincoln White, Building Official (Building Department Administrator)
 New Cingular Wireless PCS LLC (AT\&T) (land owner \& tower owner)

[^1]: The information delivered through this on-line database is provided in the spirit of open access to government information and is intended as an enhanced service

