

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

VIA ELECTRONIC MAIL

March 7, 2019

Ryan Burgdorfer Real Estate Specialist Smartlink, LLC 85 Rangeway Road, Building No. 3, Suite 102 North Billerica, MA 01862

RE: **EM-AT&T-089-181127 –** AT&T notice of intent to modify an existing telecommunications facility located at 723 Farmington Avenue, New Britain, Connecticut.

Dear Mr. Burgdorfer:

The Connecticut Siting Council (Council) is in receipt of your correspondence of February 15, 2019 submitted in response to the Council's January 14, 2019 notification of an incomplete request for exempt modification with regard to the above-referenced matter.

The submission renders the request for exempt modification complete and the Council will process the request in accordance with the Federal Communications Commission 60-day timeframe.

Thank you for your attention and cooperation.

Sincerely,

Melanie A. Bachman Executive Director

MAB/IN/emr

Robidoux, Evan

From: Ryan Burgdorfer <ryan.burgdorfer@smartlinkllc.com>

Sent: Friday, February 15, 2019 1:44 PM

To: CSC-DL Siting Council

Subject: EM-AT&T-089-181127 - Requested AT&T supplemental documents attached

Attachments: 10065751_DE125_190206_CTL01028.pdf; 10065751_AE201_190215_CTL01028_REV3.pdf

Hello,

As requested most recently in your letter dated January 14, 2019 to Mr. Rodney Joujoute, please find attached the updated Mount Analysis and Construction Drawings for the proposed AT&T modification to the existing telecommunications facility located at **723 Farmington Avenue**, **New Britain**, **CT.**, showing the existing platform mount being replaced with T-arms.

I have taken this project over from Rodney, who is no longer with Smartlink. Could you please direct all future correspondence to me at this email address, and the physical address below?

Thank you!

Ryan Burgdorfer | Real Estate Specialist Smartlink

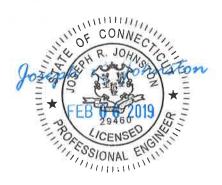
85 Rangeway Road Building 3 Suite 102 North Billerica, MA 01862 (m) 508.665.8005 ryan.burgdorfer@smartlinkllc.com

smartlinkllc.com

Like Us on Facebook Follow Us on Twitter Connect with Us on Linkedin

Proud Sponsor of the Chesapeake Bayhawks, 5-Time Major League Lacrosse Champions! www.thebayhawks.com

This electronic mail (including any attachments) may contain information that is privileged, confidential, and/or otherwise protected from disclosure to anyone other than its intended recipient(s). Any dissemination or use of this electronic email or its contents (including any attachments) by persons other than the intended recipient(s) is strictly prohibited. If you have received this message in error, please notify us immediately by reply email that we may correct our internal records. Please then delete the original message (including any attachments) in its entirety. Thank you.


1033 WATERVLIET SHAKER RD, ALBANY, NY 12205

Mount Analysis Report

February 6, 2019

Site Name	New Britain Farmington Ave.		
Site Number	CTL01028		
FA Number	10065751		
PTN Number	2051A0GJ8B/2051A0GH4P/2051A0GH67/2051A0GH9Y		
Pace Number	MRCTB031093/MRCTB032077/MRCTB031563/MRCTB032052		
Client	Smartlink		
Carrier	AT&T		
Infinigy Job Number	499-006		
Site Location	723 Farmington Avenue New Britain, CT 06053 41° 41' 53.97" N NAD83 72° 47' 10.30" W NAD83		
Mount Centerline EL.	98.0 ft		
Mount Classification T-Arm			
Mount Usage	53.0%		
Overall Result Pass			

Upon reviewing the results of this analysis, it is our opinion that the proposed mount meets the specified TIA code requirements. The proposed mounts and connections for the proposed carrier are therefore deemed adequate to support the final loading configuration as listed in this report.

Kevin Berger Jr.

Mount Analysis Report

February 6, 2019

Contents

Introduction	3
Supporting Documentation	3
Analysis Code Requirements	3
Conclusion	3
Final Configuration Loading	4
Structure Usages	4
Mount Connection Reactions	4
Assumptions and Limitations	5
Calculations	Appended

February 6, 2019

Introduction

Infinigy Engineering has been requested to perform a mount analysis on the proposed AT&T mounts. All supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The mount was analyzed using RISA-3D Version 17.0.2 analysis software.

Supporting Documentation

RFDS AT&T RFDS ID #2282467, dated June 13, 2018	
Construction Drawings	Infinigy Engineering Job #499-006, dated August 23, 2018
Previous Analysis	Infinigy Engineering Job #499-006, dated July 17, 2018

Analysis Code Requirements

Wind Speed	97 mph (3-Second Gust, V _{ASD}) / 125 mph (3-Second Gust, V _{ULT})
Wind Speed w/ ice	50 mph (3-Second Gust, V _{ASD}) w/ 1.7" ice
TIA Revision	ANSI/TIA-222-H
Adopted IBC	2015 IBC / 2018 Connecticut State Building Code
Structure Class	II
Exposure Category	В
Topographic Category	1
Calculated Crest Height	0

Conclusion

Upon reviewing the results of this analysis, it is our opinion that the proposed mount meets the specified TIA code requirements. The proposed mounts and connections for the proposed carrier are therefore deemed adequate to support the final loading configuration as listed in this report.

If you have any questions, require additional information, or actual conditions differ from those as detailed in this report please contact me via the information below:

Kevin Berger Jr. | **INFINIGY** 1033 Watervliet Shaker Road, Albany, NY 12205 (518) 690-0790 Structural@infinigy.com | www.infinigy.com

February 6, 2019

Final Configuration Loading

Mount CL (ft)	Rad. HT (ft)	Vert. O/S (ft)	Horiz. O/S (ft) ⁽¹⁾	Qty	Appurtenance ^{(2),(3)}	Carrier
			0.5	3	CCI OPA-65R-LCUU-H6	
			8.3	3	Quintel QS66512-2	
			12.0	3	Powerwave 7770	
			0.5	3	Ericsson RRUS-11	
98.0	98.0	0.0	0.5	3	Ericsson RRUS-32	AT&T
			8.3	3	Ericsson RRUS-8843 B25/B66A	
			12.0	6	Powerwave LGP 21401	
			8.3	6	Kaelus DBCT108F1V92-1	
				2	Raycap DC6-48-60-18-8F	

- (1) Horizontal Offset is defined as the distance from the left most edge of the platform when viewed facing the tower.
- (2) Radios are mounted behind antennas at respective locations see appended documents for vertical locations
- (3) Raycaps are attached to the monopole collar.

Structure Usages

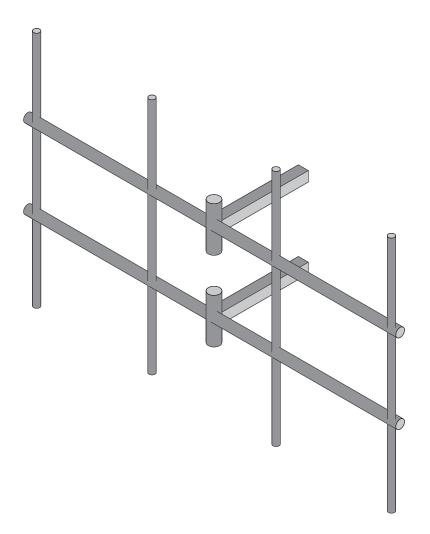
Standoff	37.2%	Pass
Mount Pipe	53.0%	Pass
Horizontal	41.2%	Pass
Results	53.0%	Pass

Mount Connection Reactions

Reaction Data	Design Reactions	Analysis Reactions	Results
Max Tension (lb)	12340.0	1083.3	8.8%
Max Shear (lb)	7770.0	1406.4	18.1%
Unity Check			26.9%

^{*}Assumed (2) 1/2" A307 Anchors. Contractor to field verify anchor diameters prior to proper installation.

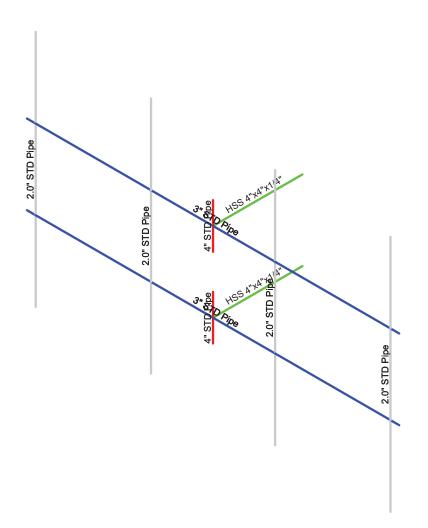
February 6, 2019


Assumptions and Limitations

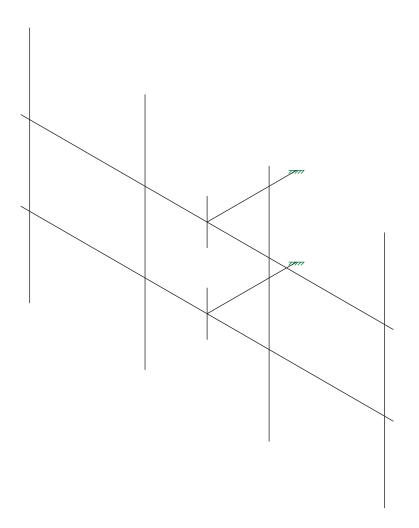
Our structural calculations are completed assuming all information provided to Infinigy Engineering is accurate and applicable to this site. For the purposes of calculations, we assume an overall structure condition of "like new" and all members and connections to be free of corrosion and/or structural defects. The structure owner and/or contractor shall verify the structure's condition prior to installation of any proposed equipment. If actual conditions differ from those described in this report Infinigy Engineering should be notified immediately to complete a revised evaluation.

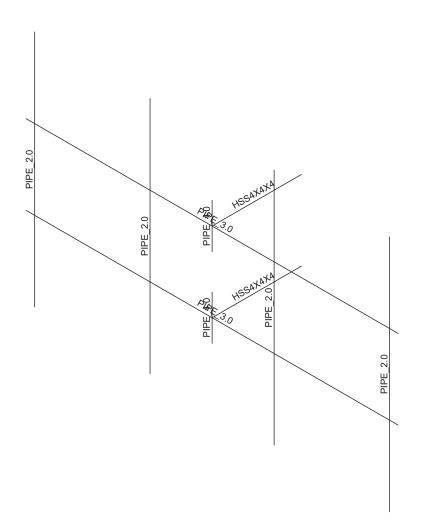
Our evaluation is completed using standard TIA, AISC, ACI, and ASCE methods and procedures. Our structural results are proprietary and should not be used by others as their own. Infinigy Engineering is not responsible for decisions made by others that are or are not based on our supplied assumptions and conclusions.

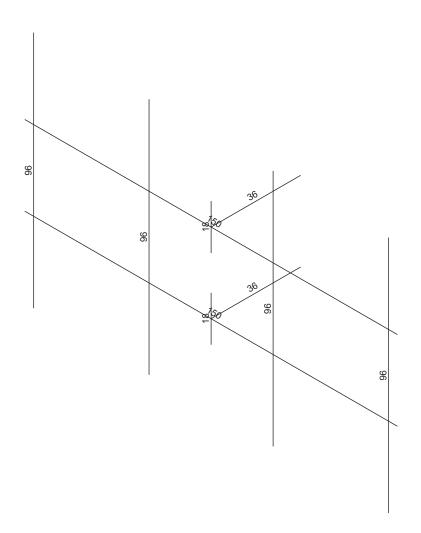
This report is an evaluation of the proposed carriers mount structure only and does not reflect adequacy of the existing tower, other mounts, or coax mounting attachments. These elements are assumed to be adequate for the purposes of this analysis and are assumed to have been installed per their manufacturer requirements.



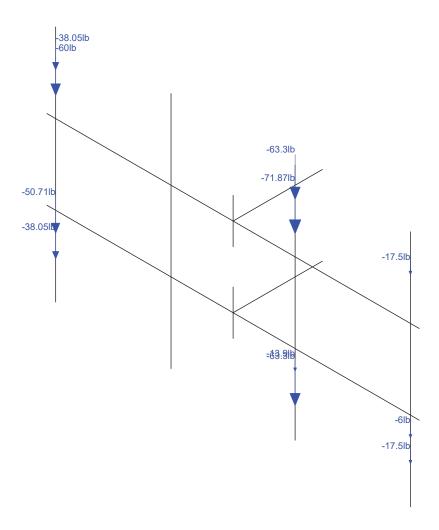
Infinigy Engineering, PLLC.		Final Configuration
KLB	CTL01028	Feb 6, 2019 at 2:07 PM
499-006		CTL01028.r3d




Infinigy Engineering, PLLC.		Section Sets
KLB	CTL01028	Feb 6, 2019 at 2:07 PM
499-006		CTL01028.r3d

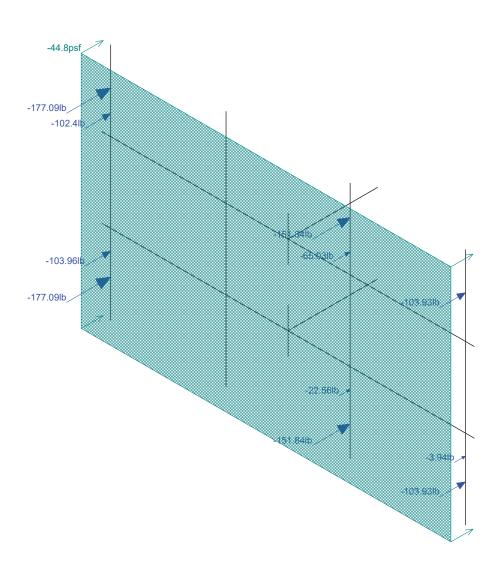

Infinigy Engineering, PLLC		Wire Frame
KLB	CTL01028	Feb 6, 2019 at 2:07 PM
499-006		CTL01028.r3d

Infinigy Engineering, PLLC.		Member Shape	
KLB	CTL01028	Feb 6, 2019 at 2:07 PM	
499-006		CTL01028.r3d	



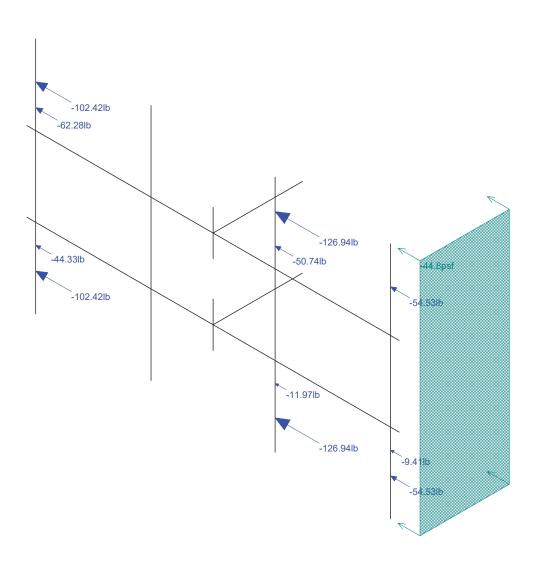
Member Length (in) Displayed Envelope Only Solution

Infinigy Engineering, PLLC.		Member Length
KLB	CTL01028	Feb 6, 2019 at 2:08 PM
499-006		CTL01028.r3d



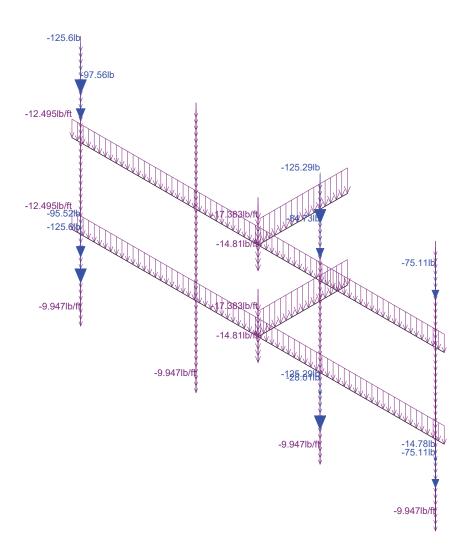
Loads: BLC 1, Self Weight Envelope Only Solution

Infinigy Engineering, PLLC.		Self-Weight
KLB	CTL01028	Feb 6, 2019 at 2:08 PM
499-006		CTL01028.r3d



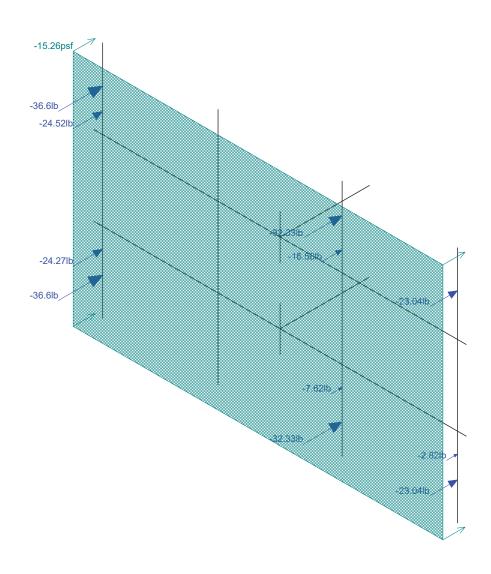
Loads: BLC 2, Wind Load AZI 000

Infinigy Engineering, PLLC.		Wind Load 000
KLB	CTL01028	Feb 6, 2019 at 2:10 PM
499-006		CTL01028.r3d



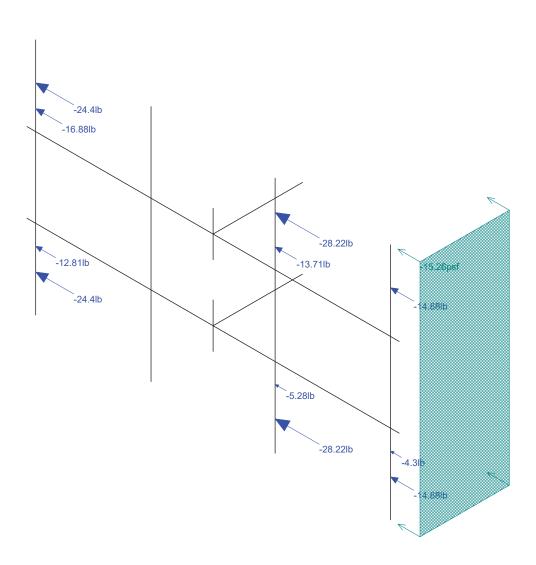
Loads: BLC 3, Wind Load AZI 090

Infinigy Engineering, PLLC.		Wind Load 090
KLB	CTL01028	Feb 6, 2019 at 2:10 PM
499-006		CTL01028.r3d



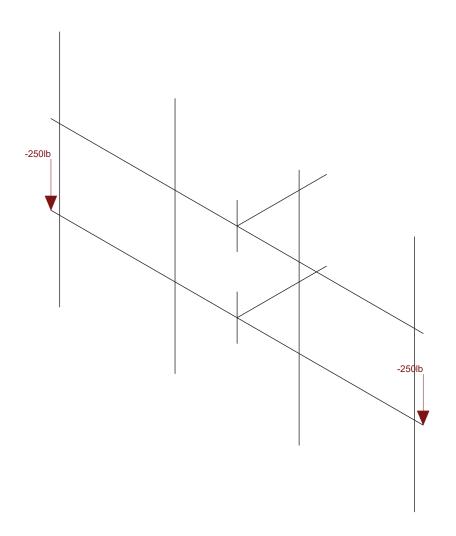
Loads: BLC 4, Ice Weight Envelope Only Solution

Infinigy Engineering, PLLC.		Ice Weight				
KLB	CTL01028	Feb 6, 2019 at 2:08 PM				
499-006		CTL01028.r3d				

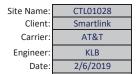


Loads: BLC 5, Wind + Ice Load AZI 000

Infinigy Engineering, PLLC.		Wind+Ice 000	
KLB	CTL01028	Feb 6, 2019 at 2:10 PM	
499-006		CTL01028.r3d	



Loads: BLC 6, Wind + Ice Load AZI 090


Infinigy Engineering, PLLC.		Wind+Ice 090
KLB	CTL01028	Feb 6, 2019 at 2:10 PM
499-006		CTL01028.r3d

Loads: BLC 7, Service Live 1

Infinigy Engineering, PLLC.		Service Load				
KLB	CTL01028	Feb 6, 2019 at 2:09 PM				
499-006		CTL01028.r3d				

INFINIGY WIND LOAD CALCULATOR 3.0.2

Site Information Inputs:

Adopted Building Code:

Structure Load Standard:

Antenna Load Standard:

Structure Risk Category:

Structure Type:

Number of Sectors:

Structure Shape 1:

Round

Rooftop Inputs:

Rooftop Wind Speed-Up?: No

Wind Loading Inputs:

Design Wind Velocity:	125	mph (ultimate 3-second gust)
Wind Centerline 1 (z_1):	98.0	ft
Side Face Angle (θ):	60	degrees
Exposure Category:	В	
Topographic Category:	1	

Wi	nd with No	Ice
q _z (psf)	Gh	F _{ST} (psf)
37.34	1.00	44.80

Wind with Ice							
q _z (psf)	F _{ST} (psf)						
5.97	1.00	15.26					

Ice Loading Inputs:

Is Ice Loading Needed?:	Yes	
Ice Wind Velocity:	50	mph (ultima
Base Ice Thickness:	1.70	in

mph (ultimate 3-second gust)

Input Appurtenance Information and Load Placements:

inpacripparcenance informat											
Appurtenance Name	Elevation (ft)	Total Quantity	Ka	Front Shape	Side Shape	q _z (psf)	EPA (ft²)	Fz (lbs)	Fx (lbs)	Fz(60) (lbs)	Fx(30) (lbs)
CCI OPA-65R-LCUU-H6	98.0	3	1.00	Flat	Flat	37.34	9.49	354.18	204.83	242.17	316.84
Quintel QS66512-2	98.0	3	1.00	Flat	Flat	37.34	8.13	303.67	253.89	266.33	291.23
Powerwave 7770	98.0	3	1.00	Flat	Flat	37.34	5.57	207.86	109.05	133.75	183.16
Ericsson RRUS-11	98.0	3	1.00	Flat	Flat	37.34	2.78	103.96	44.33	59.24	89.05
Ericsson RRUS-32	98.0	3	1.00	Flat	Flat	37.34	2.74	102.40	62.28	72.31	92.37
Ericsson RRUS-8843 B25/B66A	98.0	3	1.00	Flat	Flat	37.34	1.74	65.03	50.74	54.31	61.45
Powerwave LGP 21401	98.0	6	1.00	Flat	Flat	37.34	0.11	3.94	9.41	8.04	5.30
Kaelus DBCT108F1V92-1	98.0	6	1.00	Flat	Flat	37.34	0.60	22.56	11.97	14.61	19.91
Raycap DC6-48-60-18-8F	98.0	2	1.00	Round	Round	37.34	1.21	45.24	45.24	45.24	45.24

Feb 6, 2019 2:05 PM Checked By:__

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M1	N2	N1		, 0,	HSS 4"x4"x1/4"	Beam	None	A36 Gr.36	Typical
2	M2	N4	N3			3" STD Pipe	Beam	None	A36 Gr.36	Typical
3	M3	N6	N5			4" STD Pipe	Beam	None	A36 Gr.36	Typical
4	MP1	N40	N41			2.0" STD Pipe	Beam	None	A36 Gr.36	Typical
5	MP4	N46	N47			2.0" STD Pipe	Beam	None	A36 Gr.36	Typical
6	MP2	N42	N43			2.0" STD Pipe	Beam	None	A36 Gr.36	Typical
7	MP3	N44	N45			2.0" STD Pipe	Beam	None	A36 Gr.36	Typical
8	M8	N22	N21			HSS 4"x4"x1/4"	Beam	None	A36 Gr.36	Typical
9	M9	N24	N23			3" STD Pipe	Beam	None	A36 Gr.36	Typical
10	M10	N26	N25			4" STD Pipe	Beam	None	A36 Gr.36	Typical

Material Takeoff

	Material	Size	Pieces	Length[in]	Weight[LB]
1	Hot Rolled Steel				
2	A36 Gr.36	HSS4X4X4	2	72	68.8
3	A36 Gr.36	PIPE 2.0	4	384	111.1
4	A36 Gr.36	PIPE 3.0	2	300	176.1
5	A36 Gr.36	PIPE 4.0	2	36	30.2
6	Total HR Steel		10	792	386.2

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Self Weight	DĽ	_	-1			11		,	,
2	Wind Load AZI 000	WLZ					11		1	
3	Wind Load AZI 090	WLX					11		1	
4	Ice Weight	OL1					11	10		
5	Wind + Ice Load AZI	OL2					11		1	
6	Wind + Ice Load AZI	OL3					11		1	
7	Service Live 1	LL				4				
8	BLC 2 Transient Area	None						8		
9	BLC 3 Transient Area	None						8		
10	BLC 5 Transient Area	None						8		
11	BLC 6 Transient Area	None						8		

Load Combinations

	Description	SolP	DSR.	.BLC	Fact	.BLC	Fact	.BLC	Fact	.BLC	Fact	BLC	Fact	.BLC	Fact								
1	1.4D	Yes	Υ	DL	1.4																		
2	1.2D + 1W.	.Yes	Υ	DL	1.2	WLZ	1																
3	1.2D + 1W.	.Yes	Υ	DL	1.2	WLZ	.866	W	.5														
4	1.2D + 1W.	.Yes	Υ	DL	1.2	WLZ	.5	W	.866														
5	1.2D + 1W.	.Yes	Υ	DL	1.2			W	1														
6	1.2D + 1W.	.Yes	Υ	DL	1.2	WLZ	5	W	.866														
7	1.2D + 1W.	.Yes	Υ	DL	1.2	WLZ	866	W	.5														
8	1.2D + 1W.	.Yes	Υ	DL	1.2	WLZ	-1																
9	1.2D + 1W.	.Yes	Υ	DL	1.2	WLZ	866	W	5														
10	1.2D + 1W.	.Yes	Υ	DL	1.2	WLZ	5	W	866														
11	1.2D + 1W.	.Yes	Υ	DL	1.2			W	-1														
12	1.2D + 1W.	.Yes	Υ	DL	1.2	WLZ	.5	W	866														
13	1.2D + 1W.	.Yes	Υ	DL	1.2	WLZ	.866	W	5														
14	0.9D + 1W.	.Yes	Υ	DL	.9	WLZ	1																
15	0.9D + 1W.	.Yes	Υ	DL	.9	WLZ	.866	W	.5														

Feb 6, 2019 2:05 PM Checked By:__

Load Combinations (Continued)

	Description SolF	DSR	BLC	Fact	.BLC	Fact	.BLC	Fact	BLC	Fact	.BLC	Fact.										
16	0.9D + 1WYes	Υ	DL	.9	WLZ	.5	W	.866														
17	0.9D + 1WYes	Υ	DL	.9			W	1														
18	0.9D + 1WYes	Υ	DL	.9	WLZ	5	W	.866														
19	0.9D + 1WYes	Υ	DL	.9	WLZ	866	W	.5														
20	0.9D + 1WYes	Υ	DL	.9	WLZ	-1																
21	0.9D + 1WYes	Υ	DL	.9	WLZ	866	W	5														
22	0.9D + 1WYes	Υ	DL	.9	WLZ	5	W	866														
23	0.9D + 1WYes		DL	.9			W	-1														
24			DL	.9	WLZ	.5	W	866														
25	0.9D + 1WYes	Υ	DL	.9	WLZ	.866	W	5														
26	1.2D + 1.0 Yes	Υ	DL	1.2	OL1																	
27		Υ	DL				OL2														\Box	
28	1.2D + 1.0 Yes		DL		OL1			.866														
29		Υ	DL		OL1		OL2	.5	OL3	.866												
30		Υ	DL		OL1				OL3													
31		Υ	DL							.866												
32		Υ	DL	1.2	OL1	1		866	OL3	.5												
33		Υ		1.2			OL2															
34		Υ	DL	1.2				866														
35		Υ	DL				OL2	5														
=	1.2D + 1.0 Yes			1.2					OL3													
37		Υ		1.2			OL2			866												
38				1.2				.866		5												
39		Υ	DL	1.2				.058														
40		Υ	DL					.05														
41		Υ	DL				WLZ	.029		.05												
42		Υ	DL			1.5			W	.058												
43		Υ	DL					029		.05											\Box	
44		Υ	DL					05		.029												
45		Υ	DL	1.2				058													Ш	
46		Υ	DL	1.2				05														
47		Υ	DL				WLZ	029														
	1.2D + 1.5 Yes		DL		LL					058												
	1.2D + 1.5 Yes		DL		LL			.029		05												
50	1.2D + 1.5 Yes	Υ	DL	1.2	LL	1.5	WLZ	.05	W	029												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N1	max	463.949	17	1403.217	33	1037.06	2	-820.934	16	1520.286	16	-39.127	23
2		min	-690.912	11	230.699	14	-776.586	20	-3438.665	35	-2024.658	10	-244.899	30
3	N21	max	738.583	5	1406.43	27	822.029	14	-827.491	22	2095.116	4	-55.754	24
4		min	-511.864	23	231.212	20	-1083.346	8	-3444.778	29	-1611.771	22	-241.278	34
5	Totals:	max	1170.243	17	2743.641	38	1822.232	14						
6		min	-1170.243	11	743.725	14	-1822.232	8						

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rul	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	3" STD Pipe	PIPE 3.0	Beam	None	A36 Gr.36	Typical	2.07	2.85	2.85	5.69
2	HSS 4"x4"x1/4"	HSS4X4X4	Beam	None	A36 Gr.36	Typical	3.37	7.8	7.8	12.8
3	4" STD Pipe	PIPE 4.0	Beam	None	A36 Gr.36	Typical	2.96	6.82	6.82	13.6
4	2.0" STD Pipe	PIPE 2.0	Beam	None	A36 Gr.36	Typical	1.02	.627	.627	1.25

: Infinigy Engineering, PLLC.: KLB

: 499-006 : CTL01028 Feb 6, 2019 2:05 PM Checked By:_

Joint Boundary Conditions

	Joint Label	X [lb/in]	Y [lb/in]	Z [lb/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N21	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Member Advanced Data

	Label	l Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat.	Analysis	Inactive	Seismic
1	M1					Ĭ	Yes				None
2	M2						Yes				None
3	M3						Yes				None
4	MP1						Yes				None
5	MP4						Yes				None
6	MP2						Yes				None
7	MP3						Yes				None
8	M8						Yes				None
9	M9						Yes				None
10	M10						Yes				None

Hot Rolled Steel Properties

	Label	E [psi]	G [psi]	Nu	Therm (\1E5 F)	Density[lb/ft^	. Yield[psi]	Ry	Fu[psi]	Rt
1	A992	2.9e+7	1.115e+7	.3	.65	490	50000	1.1	65000	1.1
2	A36 Gr.36	2.9e+7	1.115e+7	.3	.65	490	36000	1.5	58000	1.2
3	A572 Gr.50	2.9e+7	1.115e+7	.3	.65	490	50000	1.1	65000	1.1
4	A500 Gr.B RND	2.9e+7	1.115e+7	.3	.65	527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	2.9e+7	1.115e+7	.3	.65	527	46000	1.4	58000	1.3
6	A53 Gr.B	2.9e+7	1.115e+7	.3	.65	490	35000	1.6	60000	1.2
7	A1085	2.9e+7	1.115e+7	.3	.65	490	50000	1.4	65000	1.3

Joint Loads and Enforced Displacements (BLC 7: Service Live 1)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^
1	N4	L	Υ	-250
2	N3	L	Υ	-250
3	N23	L	Υ	-250
4	N24	L	Υ	-250

Member Point Loads (BLC 1 : Self Weight)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP4	Υ	-38.05	15
2	MP2	Υ	-63.3	12
3	MP1	Υ	-17.5	15
4	MP4	Υ	-50.71	24
5	MP4	Υ	-60	72
6	MP2	Υ	-71.87	72
7	MP1	Υ	-6	24
8	MP2	Υ	-13.9	24
9	MP4	Υ	-38.05	81
10	MP2	Υ	-63.3	84
11	MP1	Υ	-17.5	81

Member Point Loads (BLC 2 : Wind Load AZI 000)

Member Label Direction Magnitude[lb,lb-ft] Location[in,%]

Model Name

: Infinigy Engineering, PLLC.: KLB

: 499-006 : CTL01028

Feb 6, 2019 2:05 PM Checked By:_

Member Point Loads (BLC 2: Wind Load AZI 000) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP4	Z	-177.09	15
2	MP2	Z	-151.84	12
3	MP1	Z	-103.93	15
4	MP4	Z	-103.96	24
5	MP4	Z	-102.4	72
6	MP2	Z	-65.03	72
7	MP1	Z	-3.94	24
8	MP2	Z	-22.56	24
9	MP4	Z	-177.09	81
10	MP2	Z	-151.84	84
11	MP1	Z	-103.93	81

Member Point Loads (BLC 3: Wind Load AZI 090)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP4	X	Magnitude[lb,lb-ft] -102.42	15
2	MP2	Χ	-126.94	12
3	MP1	Χ	-54.53	15
4	MP4	X	-44.33	24
5	MP4	X	-62.28	72
6	MP2	Χ	-50.74	72
7	MP1	X	-9.41	24
8	MP2	Χ	-11.97	24
9	MP4	Χ	-102.42	81
10	MP2	X	-126.94	84
11	MP1	X	-54.53	81

Member Point Loads (BLC 4 : Ice Weight)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP4	Υ	-125.6	15
2	MP2	Υ	-125.29	12
3	MP1	Υ	-75.11	15
4	MP4	Υ	-95.52	24
5	MP4	Υ	-97.56	72
6	MP2	Υ	-84.73	72
7	MP1	Υ	-14.78	24
8	MP2	Υ	-28.01	24
9	MP4	Υ	-125.6	81
10	MP2	Υ	-125.29	84
11	MP1	Υ	-75.11	81

Member Point Loads (BLC 5: Wind + Ice Load AZI 000)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP4	Z	-36.6	15
2	MP2	Z	-32.33	12
3	MP1	Z	-23.04	15
4	MP4	Z	-24.27	24
5	MP4	Z	-24.52	72
6	MP2	Z	-16.58	72
7	MP1	Z	-2.82	24
8	MP2	Z	-7.62	24
9	MP4	Z	-36.6	81
10	MP2	Z	-32.33	84
11	MP1	Z	-23.04	81

: Infinigy Engineering, PLLC.

: KLB : 499-006 : CTL01028 Feb 6, 2019 2:05 PM Checked By:_

Member Point Loads (BLC 6: Wind + Ice Load AZI 090)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP4	X	-24.4	15
2	MP2	X	-28.22	12
3	MP1	X	-14.88	15
4	MP4	Χ	-12.81	24
5	MP4	Χ	-16.88	72
6	MP2	Χ	-13.71	72
7	MP1	X	-4.3	24
8	MP2	Χ	-5.28	24
9	MP4	Χ	-24.4	81
10	MP2	Χ	-28.22	84
11	MP1	X	-14.88	81

Member Distributed Loads (BLC 4 : Ice Weight)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,	Start Location[in,%]	End Location[in,%]
1	M1	Υ	-17.383	-17.383	0	%100
2	M2	Υ	-12.495	-12.495	0	%100
3	M3	Υ	-14.81	-14.81	0	%100
4	MP1	Υ	-9.947	-9.947	0	%100
5	MP4	Υ	-9.947	-9.947	0	%100
6	MP2	Υ	-9.947	-9.947	0	%100
7	MP3	Υ	-9.947	-9.947	0	%100
8	M8	Υ	-17.383	-17.383	0	%100
9	M9	Υ	-12.495	-12.495	0	%100
10	M10	Υ	-14.81	-14.81	0	%100

Member Distributed Loads (BLC 8 : BLC 2 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,	Start Location[in,%]	End Location[in,%]
1	M2	Z	-13.067	-13.067	.5	149.5
2	M3	Z	-16.8	-16.8	0	18
3	MP1	Ζ	-8.867	-8.867	0	96
4	MP4	Ζ	-8.867	-8.867	0	96
5	MP2	Ζ	-8.867	-8.867	0	96
6	MP3	Ζ	-8.867	-8.867	0	96
7	M9	Ζ	-13.067	-13.067	.5	149.5
8	M10	Z	-16.8	-16.8	0	18

Member Distributed Loads (BLC 9: BLC 3 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,	Start Location[in,%]	End Location[in,%]
1	M1	X	-14.933	-14.933	0	36
2	M3	X	-16.8	-16.8	0	18
3	MP1	X	-8.867	-8.867	0	96
4	MP4	X	-8.867	-8.867	0	96
5	MP2	X	-8.867	-8.867	0	96
6	MP3	X	-8.867	-8.867	0	96
7	M8	X	-14.933	-14.933	0	36
8	M10	Χ	-16.8	-16.8	0	18

Member Distributed Loads (BLC 10 : BLC 5 Transient Area Loads)

Member Label Direction S		Start Magnitude[lb/ft,End Magnitude[lb/ft,		Start Location[in,%]	End Location[in,%]	
1	M2	Ζ	-4.451	-4.451	.5	149.5
2	M3	Z	-5.723	-5.723	0	18
3	MP1	Z	-3.02	-3.02	0	96
4	MP4	Z	-3.02	-3.02	0	96
5	MP2	Z	-3.02	-3.02	0	96

Company Designer Job Number Model Name : Infinigy Engineering, PLLC. : KLB

: KLB : 499-006 : CTL01028 Feb 6, 2019 2:05 PM Checked By:__

Member Distributed Loads (BLC 10 : BLC 5 Transient Area Loads) (Continued)

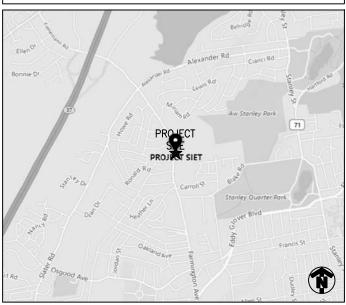
	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,	Start Location[in,%]	End Location[in,%]
6	MP3	Ζ	-3.02	-3.02	0	96
7	M9	Z	-4.451	-4.451	.5	149.5
8	M10	Z	-5.723	-5.723	0	18

Member Distributed Loads (BLC 11 : BLC 6 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,	Start Location[in,%]	End Location[in,%]
1	M1	X	-5.087	-5.087	0	36
2	M3	Χ	-5.723	-5.723	0	18
3	MP1	X	-3.02	-3.02	0	96
4	MP4	Χ	-3.02	-3.02	0	96
5	MP2	X	-3.02	-3.02	0	96
6	MP3	X	-3.02	-3.02	0	96
7	M8	X	-5.087	-5.087	0	36
8	M10	X	-5.723	-5.723	0	18

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	Shear	Loc[in]	Dir L	C phi*Pnc	.phi*Pnt [.	phi*Mn	phi*Mn	Cb Eqn
1	MP4	PIPE 2.0	.530	64	42	.091	64	4	0 15009.5	33048	1925.1	1925.1	4H1-1b
2	MP1	PIPE 2.0	.461	64	48	.080	64	4	9 15009.5	33048	1925.1	1925.1	4H1-1b
3	MP3	PIPE 2.0	.457	32	39	.089	32	5	0 15009.5	33048	1925.1	1925.1	4H1-1b
4	MP2	PIPE 2.0	.434	64	46	.088	64	4	6 15009.5	33048	1925.1	1925.1	4H1-1b
5	M9	PIPE 3.0	.412	75	8	.103	75	_	7 54088.7	67068	5913	5913	1 H1-1b
6	M2	PIPE 3.0	.411	75	2	.104	75	3	3 54088.7	67068	5913	5913	1 H1-1b
7	M8	HSS4X4X4	.372	36	30	.069	36	y 2	7 107836	109188	12663	12663	1H1-1b
8	M1	HSS4X4X4	.371	36	36	.069	36	y 3	3 107836	109188	12663	12663	1H1-1b
9	M10	PIPE 4.0	.000	9	8	.000	9	8	95196.6	95904	10935	10935	1H1-1b
10	M3	PIPE 4.0	.000	9	8	.000	9	8	95196.6	95904	10935	10935	1H1-1b


SHEET INDEX NO. DESCRIPTION T1 TITLE SHEET C1 GENERAL NOTES OVERALL & ENLARGED SITE PLAN C3 ELEVATION VIEW C4 ANTENNA ORIENTATION PLAN EQUIPMENT DETAILS C5 PLUMBING DIAGRAM GROUNDING DETAILS

DRIVING DIRECTIONS

FROM 550 COCHITUATE RD.:

GET ON I-90 WEST/MASSACHUSETTS TURNPIKE, HEAD SOUTHWEST, TURN LEFT TOWARD MCCALL CONN. TURN LEFT ONTO MCCALL CONN. CONTINUE ONTO BURR STREET. TURN LEFT ONTO COCHITUATE ROAD. USE THE RIGHT LANE TO TAKE THE RAMP TO I-90 EAST/MASSPIKE WEST/SPRINGFIELD/BOSTON. KEEP LEFT AT THE FORK, FOLLOW SIGNS FOR I-90 WEST/MASSACHUSETTS TURNPIKE/WORCESTER/SPRINGFIELD AND MERGE ONTO 1-90
WEST/MASSACHUSETTS TURNPIKE. FOLLOW 1-90 WEST/MASSACHUSETTS TURNPIKE AND 1-84 TO FIENEMANN ROAD IN FARMINGTON. TAKE EXIT 37 FROM 1-84. MERGE ONTO 1-90 WEST/MASSACHUSETTS TURNPIKE. USE THE RIGHT 2 LANES TO TAKE EXIT 9 FOR I-84 TOWARD US-20/HARTFORD/NEW YORK CITY. CONTINUE I-84. KEEP RIGHT TO STAY ON I-84. TAKE EXIT TÓ STAY ON I-84. TAKE EXIT 37 FOR FIENEMANN ROAD, KEEP RIGHT AT THE FORK, FOLLOW SIGNS FOR CENTRAL CONN STATE UNIVERSITY AND MERGE ONTO FIENEMANN ROAD. CONTINUE ON FIENEMANN ROAD TO YOUR DESTINATION IN NEW BRITAIN. MERGE ONTO FIENEMANN ROAD. CONTINUE ONTO FARMINGTON AVE. TURN LEFT.

LOCATION MAP

PROJECT

LTE 3C/4C/5C/RETROFIT

NEW BRITAIN FARMINGTON AVE.

CELL SITE ID

CTL01028

FA SITE NUMBER

10065751

PACE ID

MRCTB031093/MRCTB032077/ MRCTB031563/MRCTB032052

SITE ADDRESS

723 FARMINGTON AVENUE NEW BRITAIN, CT 06503

STRUCTURE TYPE

MONOPOLE

PROJECT TEAM

PROJECT MANAGER

INFINIGY[®]

ENGINEER

SCOPE OF WORK (PER LTE RFDS, DATED: 6/13/2018, V2.00)

- HANDICAP ACCESS REQUIREMENTS ARE NOT REQUIRED
- FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION
- FACILITY HAS NO PLUMBING OR REFRIGERANTS.
- THIS FACILITY SHALL MEET OR EXCEED ALL FAA AND FCC REGULATORY
- ALL NEW MATERIAL SHALL BE FURNISHED AND INSTALLED BY CONTRACTOR UNLESS NOTED OTHERWISE. EQUIPMENT, ANTENNAS/RRU AND CABLES FURNISHED BY OWNER AND INSTALLED BY CONTRACTOR.

TOWER SCOPE

- REMOVE (3) PANEL ANTENNAS
- INSTALL (3) PANEL ANTENNAS
- REMOVE (3) RRUS-12 W/A2
- INSTALL (3) B25/B66A 8843
- INSTALL (3) RRUS-32
- INSTALL (1) DC6 SQUID W/(1) FIBER CABLE AND (2) DC CABLES
- REPLACE EXISTING ANTENNA PLATFORM WITH T-ARM MOUNTS

GROUND SCOPE

- SWAP DUS W/ 5216 ADD 2ND XMU
- ADD RRS 6630
- INSTALL (3) 4478 B5
- INSTALL (1) DC12-48-60-RM

PROJECT SUMMARY

SITE NAME: NEW BRITAIN FARMINGTON AVE.

CELL SITE ID: CTL01028

FA SITE #: 10065751

723 FARMINGTON AVENUE SITE ADDRESS: NEW BRITAIN, CT 06503

COUNTY: HARTFORD

SITE COORDINATES: LATITUDE:

CONTACT:

41.6983250° N (NAD 83) 72.7861931° W (NAD 83) LONGITUDE: ELEVATION: ±315' (AMSL)

(AGL) RAD CENTER

LANDLORD: SBA COMMUNICATIONS CORP. 8051 CONGRESS AVE.

BOCA RATON, FL 33487 SITE ID#: CT08558-S

AT&T MOBILITY APPLICANT:

550 COCHITUATE RD. FRAMINGHAM, MA 01701

CLIENT REPRESENTATIVE: SMARTLINK, LLC

85 RANGEWAY RD. SUITE 102 NORTH BILLERICA, MA 01862

CONTACT: ED WEISSMAN (917) 528-1857

ENGINEER: INFINIGY

1033 WATERVLIET SHAKER ROAD ALBANY, NY 12205

ALEX WELLER

(518) 690-0790

BUILDING CODE:

CT BUILDING CODE UNIFORM BUILDING CODE

BUILDING OFFICIALS & CODE ADMINISTRATORS

UNIFORM MECHANICAL CODE UNIFORM PLUMBING CODE LOCAL BUILDING CODE

CITY/COUNTY ORDINANCES

NATIONAL ELECTRICAL CODE (LATEST EDITION) ELECTRICAL CODE:

TOLL FREE: 1-800-922-4455 OR CONNECTICUT STATUTE

工

NEW BRITAIN FARMINGTON AVE.

CTL01028

FA# 10065751

Drawing Scale: AS NOTED

02/15/19

TITLE PAGE

T1

GENERAL NOTES

PART 1 - GENERAL REQUIREMENTS

- THE WORK SHALL COMPLY WITH APPLICABLE NATIONAL CODES AND STANDARDS, LATEST EDITION, AND PORTIONS THEREOF, INCLUDED BUT NOT LIMITED TO THE FOLLOWING:
 - GR-63-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTION GR-78-CORE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN
 - NATIONAL FIRE PROTECTION ASSOCIATION CODES AND STANDARDS (NFPA) INCLUDING NFPA 70 (NATIONAL ELECTRICAL CODE - "NEC").
 - AND NFPA 101 (LIFE SAFETY CODE).
 - AMERICAN SOCIETY FOR TESTING OF MATERIALS (ASTM).
 - INSTITUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE).

AND MANUFACTURE OF TELECOMMUNICATIONS EQUIPMENT.

1.2 DEFINITIONS:

A: WORK: THE SUM OF TASKS AND RESPONSIBILITIES IDENTIFIED IN THE CONTRACT DOCUMENTS

B: COMPANY: AT&T CORPORATION

- C. ENGINEER: SYNONYMOUS WITH ARCHITECT & ENGINEER AND "A&E". THE DESIGN PROFESSIONAL HAVING PROFESSIONAL RESPONSIBILITY FOR DESIGN OF THE PROJECT.
- D: CONTRACTOR: CONSTRUCTION CONTRACTOR; CONSTRUCTION VENDOR; INDIVIDUAL OR ENTITY WHO AFTER EXECUTION OF A CONTRACT IS BOUND TO ACCOMPLISH THE WORK
- E: THIRD PARTY VENDOR OR AGENCY: A VENDOR OR AGENCY ENGAGED SEPARATELY BY THE COMPANY, A&E, OR CONTRACTOR TO PROVIDE MATERIALS OR TO ACCOMPLISH SPECIFIC TASKS RELATED TO BUT NOT
- POINT OF CONTACT: COMMUNICATION BETWEEN THE COMPANY AND THE CONTRACTOR SHALL FLOW THROUGH THE SINGLE COMPANY SITE DEVELOPMENT SPECIALIST OR OTHER PROJECT COORDINATOR APPOINTED TO MANAGE THE PROJECT FOR THE COMPANY
- 1.4 ON-SITE SUPERVISION: THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL EMPLOY A COMPETENT SUPERINTENDENT WHO SHALL BE IN ATTENDANCE AT THE SITE AT ALL TIMES DURING PERFORMANCE OF THE WORK.
- 1.5 DRAWINGS, SPECIFICATIONS AND DETAILS REQUIRED AT JOBSITE: THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A FULL SET OF THE CONSTRUCTION DRAWINGS, STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES, AND THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AT THE JOBSITE FROM MOBILIZATION THROUGH CONSTRUCTION COMPLETION.
 - A. THE JOBSITE DRAWINGS, SPECIFICATIONS AND DETAILS SHALL BE CLEARLY MARKED DAILY IN PENCIL WITH ANY CHANGES IN CONSTRUCTION OVER WHAT IS DEPICTED IN THE DOCUMENTS. AT CONSTRUCTION COMPLETION, THIS JOBSITE MARKUP SET SHALL BE DELIVERED TO THE COMPANY OR COMPANY'S DESIGNATED REPRESENTATIVE TO BE FORWARDED TO THE COMPANY'S A&E VENDOR FOR PRODUCTION OF "AS-BUILT" DRAWINGS.
- USE OF JOB SITE: THE CONTRACTOR SHALL CONFINE ALL CONSTRUCTION 1.6 AND RELATED OPERATIONS INCLUDING STAGING AND STORAGE OF MATERIALS AND EQUIPMENT, PARKING, TEMPORARY FACILITIES, AND WASTE STORAGE TO THE LEASE PARCEL UNLESS OTHERWISE PERMITTED BY THE CONTRACT DOCUMENTS.
- 1.7 NOTICE TO PROCEED:

A. NO WORK SHALL COMMENCE PRIOR TO COMPANY'S WRITTEN NOTICE TO PROCEED

B. UPON RECEIVING NOTICE TO PROCEED. CONTRACTOR SHALL FULLY PERFORM ALL WORK NECESSARY TO PROVIDE AT&T WITH AN OPERATIONAL WIRELESS FACILITY.

PART 2 - EXECUTION

- TEMPORARY UTILITIES AND FACILITIES: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY UTILITIES AND FACILITIES NECESSARY EXCEPT AS OTHERWISE INDICATED IN THE CONSTRUCTION DOCUMENTS. TEMPORARY UTILITIES AND FACILITIES INCLUDE, POTABLE WATER, HEAT, HVAC, ELECTRICITY, SANITARY FACILITIES, WASTE DISPOSAL FACILITIES, AND TELEPHONE/COMMUNICATION SERVICES. PROVIDE TEMPORARY UTILITIES AND FACILITIES IN ACCORDANCE WITH OSHA AND THE AUTHORITY HAVING JURISDICTION. CONTRACTOR MAY UTILIZE THE COMPANY ELECTRICAL SERVICE IN THE COMPLETION OF THE WORK WHEN IT BECOMES AVAILABLE USE OF THE LESSORS OR SITE OWNER'S UTILITIES OR FACILITIES IS EXPRESSLY FORBIDDEN EXCEPT AS OTHERWISE ALLOWED IN THE CONTRACT
- ACCESS TO WORK: THE CONTRACTOR SHALL PROVIDE ACCESS TO THE JOB 2.2 SITE FOR AUTHORIZED COMPANY PERSONNEL AND AUTHORIZED REPRESENTATIVES OF THE ARCHITECT/ENGINEER DURING ALL PHASES OF
- 2.3 TESTING: REQUIREMENTS FOR TESTING BY THIS CONTRACTOR SHALL BE AS INDICATED HEREWITH, ON THE CONSTRUCTION DRAWINGS, AND IN THE INDIVIDUAL SECTIONS OF THESE SPECIFICATIONS. SHOULD COMPANY CHOOSE TO ENGAGE ANY THIRD-PARTY TO CONDUCT ADDITIONAL TESTING, THE CONTRACTOR SHALL COOPERATE WITH AND PROVIDE A WORK AREA FOR COMPANY'S TEST AGENCY.

- 2.4 COMPANY FURNISHED MATERIAL AND EQUIPMENT: ALL HANDLING, STORAGE AND INSTALLATION OF COMPANY FURNISHED MATERIAL AND EQUIPMENT SHALL BE IN ACCORDANCE WITH THE REQUIREMENTS OF THE CONTRACT DOCUMENTS AND WITH THE MANUFACTURER'S INSTRUCTIONS AND RECOMMENDATIONS.
 - A. CONTRACTOR SHALL PROCURE ALL OTHER REQUIRED WORK RELATED MATERIALS NOT PROVIDED BY AT&T TO SUCCESSFULLY CONSTRUCT A WIRELESS FACILITY.
- DIMENSIONS: VERIFY DIMENSIONS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE FABRICATION OR ORDERING OF MATERIALS. DO NOT SCALE DRAWINGS
- 2.6 EXISTING CONDITIONS: NOTIFY THE COMPANY REPRESENTATIVE OF EXISTING CONDITIONS DIFFERING FROM THOSE INDICATED ON THE DRAWINGS DO NOT REMOVE OR ALTER STRUCTURAL COMPONENTS WITHOUT PRIOR WRITTEN APPROVAL FROM THE ARCHITECT AND ENGINEER.

PART 3 - RECEIPT OF MATERIAL & EQUIPMENT

- RECEIPT OF MATERIAL AND EQUIPMENT: CONTRACTOR IS RESPONSIBLE FOR AT&T PROVIDED MATERIAL AND EQUIPMENT AND UPON RECEIPT SHALL: ACCEPT DELIVERIES AS SHIPPED AND TAKE RECEIPT.
- VERIFY COMPLETENESS AND CONDITION OF ALL DELIVERIES. TAKE RESPONSIBILITY FOR FOLIPMENT AND PROVIDE INSURANCE
- PROTECTION AS REQUIRED IN AGREEMENT. D. RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY-FOUR HOURS
- AFTER RECEIPT, REPORT TO AT&T OR ITS DESIGNATED PROJECT REPRÉSENTATIVE OF SUCH.
- PROVIDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING. COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND EQUIPMENT, DELIVERING AND OFF-LOADING FROM CONTRACTOR'S WARFHOUSE TO SITE

PART 4 - GENERAL REQUIREMENTS FOR CONSTRUCTION

- CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH. AT THE COMPLETION OF THE WORK, CONTRACTOR SHALL REMOVE FROM THE SITE ALL REMAINING RUBBISH, IMPLEMENTS, TEMPORARY FACILITIES, AND SURPLUS MATERIALS.
- 4.2 EQUIPMENT ROOMS SHALL AT ALL TIMES BE MAINTAINED "BROOM CLEAN" AND CLEAR OF DEBRIS.
- CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO DISCOVER AND LOCATE ANY HAZARDOUS CONDITION.
- A. IN THE EVENT CONTRACTOR ENCOUNTERS ANY HAZARDOUS CONDITION WHICH HAS NOT BEEN ABATED OR OTHERWISE MITIGATED, CONTRACTOR AND ALL OTHER PERSONS SHALL IMMEDIATELY STOP WORK IN THE AFFECTED AREA AND NOTIFY COMPANY IN WRITING. THE WORK IN THE AFFECTED AREA SHALL NOT BE RESUMED EXCEPT BY WRITTEN NOTIFICATION
- B. CONTRACTOR AGREES TO USE CARE WHILE ON THE SITE AND SHALL NOT TAKE ANY ACTION THAT WILL OR MAY RESULT IN OR CAUSE THE HAZARDOUS CONDITION TO BE FURTHER RELEASED IN THE ENVIRONMENT, OR TO FURTHER EXPOSE INDIVIDUALS TO THE HAZARD.
- CONTRACTOR'S ACTIVITIES SHALL BE RESTRICTED TO THE PROJECT LIMITS. SHOULD AREAS OUTSIDE THE PROJECT LIMITS BE AFFECTED BY CONTRACTOR'S ACTIVITIES, CONTRACTOR SHALL IMMEDIATELY RETURN THEM
- 4.5 CONDUCT TESTING AS REQUIRED HEREIN.

PART 5 - TESTS AND INSPECTIONS

- 5.1 TESTS AND INSPECTIONS:
 - THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS, INSPECTIONS AND PROJECT DOCUMENTATION
 - CONTRACTOR SHALL COORDINATE TEST AND INSPECTION SCHEDULES WITH COMPANY'S REPRESENTATIVE WHO MUST BE ON SITE TO WITNESS SUCH TESTS AND INSPECTIONS.
 - WHEN THE USE OF A THIRD PARTY INDEPENDENT TESTING AGENCY IS REQUIRED, THE AGENCY THAT IS SELECTED MUST PERFORM SUCH WORK ON A REGULAR BASIS IN THE STATE WHERE THE PROJECT IS LOCATED AND HAVE A THOROUGH UNDERSTANDING OF LOCAL AVAILABLE MATERIALS, INCLUDING THE SOIL, ROCK, AND GROUNDWATER
 - THE THIRD PARTY TESTING AGENCY IS TO BE FAMILIAR WITH THE APPLICABLE REQUIREMENTS FOR THE TESTS TO BE DONE, EQUIPMENT TO BE USED. AND ASSOCIATED HEALTH AND SAFETY ISSUES.
 - E. SITE RESISTANCE TO EARTH TESTING PER EXHIBIT: CELL SITE GROUNDING SYSTEM DESIGN.

- F. ANTENNA AND COAX SWEEP TESTS PER EXHIBIT: ANTENNA TRANSMISSION LINE ACCEPTANCE STANDARDS
- G. ALL OTHER TESTS REQUIRED BY COMPANY OR JURISDICTION.

PART 6 - TRENCHING AND BACKFILLING

- TRENCHING AND BACKFILLING: THE CONTRACTOR SHALL PERFORM ALL EXCAVATION OF EVERY DESCRIPTION AND OF WHATEVER SUBSTANCES ENCOUNTERED, TO THE DEPTHS INDICATED ON THE CONSTRUCTION DRAWINGS OR AS OTHERWISE SPECIFIED
- PROTECTION OF EXISTING UTILITIES: THE CONTRACTOR SHALL CHECK WITH THE LOCAL UTILITIES AND THE RESPECTIVE UTILITY LOCATOR COMPANIES PRIOR TO STARTING EXCAVATION OPERATIONS IN EACH RESPECTIVE AREA TO ASCERTAIN THE LOCATIONS OF KNOWN UTILITY LINES. THE LOCATIONS, NUMBER AND TYPES OF EXISTING UTILITY LINES DETAILED ON THE CONSTRUCTION DRAWINGS ARE APPROXIMATE AND DO NOT CONSTRUCTION DRAWINGS ARE APPROXIMATE AND DO NOT REPRESENT EXACT INFORMATION. THE CONTRACTOR SHALL BE RESPONSIBLE FOR REPAIRING ALL LINES DAMAGED DURING EXCAVATION AND ALL ASSOCIATED OPERATIONS. ALL UTILITY LINES UNCOVERED DURING THE EXCAVATION OPERATIONS, SHALL BE PROTECTED FROM DAMAGE DURING EXCAVATION AND ASSOCIATED OPERATIONS. ALL REPAIRS SHALL BE APPROVED BY THE UTILITY COMPANY.
- HAND DIGGING: UNLESS APPROVED IN WRITING OTHERWISE, ALL DIGGING WITHIN AN EXISTING CELL SITE COMPOUND IS TO BE DONE BY HAND.
- DURING EXCAVATION, MATERIAL SUITABLE FOR BACKFILLING SHALL BE STOCKPILED IN AN ORDERLY MANNER A SUFFICIENT DISTANCE FROM THE BANKS OF THE TRENCH TO AVOID OVERLOADING AND TO PREVENT SLIDES OR CAVE-INS. ALL EXCAVATED MATERIALS NOT REQUIRED OR SUITABLE FOR BACKFILL SHALL BE REMOVED AND DISPOSED OF AT THE CONTRACTOR'S EXPENSE.
- GRADING SHALL BE DONE AS MAY BE NECESSARY TO PREVENT SURFACE WATER FROM FLOWING INTO TRENCHES OR OTHER EXCAVATIONS, AND ANY WATER ACCUMULATING THEREIN SHALL BE REMOVED BY PUMPING OR BY OTHER APPROVED METHOD
- SHEETING AND SHORING SHALL BE DONE AS NECESSARY FOR THE PROTECTION OF THE WORK AND FOR THE SAFETY OF PERSONNEL. UNLESS OTHERWISE INDICATED, EXCAVATION SHALL BE BY OPEN CUT. EXCEPT THAT SHORT SECTIONS OF A TRENCH MAY BE TUNNELED IF, THE CONDUIT CAN BE SAFELY AND PROPERLY INSTALLED AND BACKFILL CAN BE PROPERLY TAMPED IN SUCH TUNNEL SECTIONS. EARTH EXCAVATION SHALL COMPRISE ALL MATERIALS AND SHALL INCLUDE CLAY, SILT, SAND, MUCK, GRAVEL, HARDPAN, LOOSE SHALE, AND LOOSE
- TRENCHES SHALL BE OF NECESSARY WIDTH FOR THE PROPER LAYING OF THE CONDUIT OR CABLE, AND THE BANKS SHALL BE AS NEARLY VERTICAL AS PRACTICABLE. THE BOTTOM OF THE TRENCHES SHALL BE ACCURATELY GRADED TO PROVIDE UNIFORM BEARING AND SUPPORT FOR EACH SECTION OF THE CONDUIT OR CABLE ON UNDISTURBED SOIL AT EVERY POINT ALONG ITS ENTIRE LENGTH. EXCEPT WHERE ROCK IS ENCOUNTERED, CARE SHALL BE TAKEN NOT TO EXCAVATE BELOW THE DEPTHS INDICATED. WHERE ROCK EXCAVATIONS ARE NECESSARY, THE ROCK SHALL BE EXCAVATED TO A MINIMUM OVER DEPTH OF 6 INCHES BELOW THE TRENCH DEPTHS INDICATED ON THE CONSTRUCTION DRAWINGS OR SPECIFIED. OVER DEPTHS IN THE ROCK EXCAVATION AND UNAUTHORIZED OVER DEPTHS SHALL BE THOROUGHLY BACK FILLED AND TAMPED TO THE APPROPRIATE GRADE. WHENEVER WET OR OTHERWISE UNSTABLE SOIL THAT IS INCAPABLE OF PROPERLY SUPPORTING THE CONDUIT OR CABLE IS ENCOUNTERED IN THE BOTTOM OF THE TRENCH, SUCH SOLID SHALL BE REMOVED TO A MINIMUM OVER DEPTH OF 6 INCHES AND THE TRENCH BACKFILLED TO THE PROPER GRADE WITH EARTH OF OTHER SUITABLE MATERIAL, AS HEREINAFTER SPECIFIED
- BACKFILLING OF TRENCHES. TRENCHES SHALL NOT BE BACKFILLED UNTIL ALL SPECIFIED TESTS HAVE BEEN PERFORMED AND ACCEPTED. WHERE COMPACTED BACKFILL IS NOT INDICATED THE TRENCHES SHALL BE CAREFULLY BACKFILLED WITH SELECT MATERIAL SUCH AS EXCAVATED SOILS THAT ARE FREE OF ROOTS, SOD, RUBBISH OR STONES, DEPOSITED IN 6 INCH LAYERS AND THOROUGHLY AND CAREFULLY RAMMED UNTIL THE CONDUIT OR CABLE HAS A COVER OF NOT LESS THAN 1 FOOT. THE REMAINDER OF THE BACKFILL MATERIAL SHALL BE GRANULAR IN NATURE AND SHALL NOT CONTAIN ROOTS, SOD, RUBBING, OR STONES OF 2-1/2 INCH MAXIMUM DIMENSION. BACKFILL SHALL BE CAREFULLY PLACED IN THE TRENCH AND IN 1 FOOT LAYERS AND EACH LAYER TAMPED. SETTLING THE BACKFILL WITH WATER WILL BE PERMITTED. THE SURFACE SHALL BE GRADED TO A REASONABLE UNIFORMITY AND THE MOUNDING OVER THE TRENCHES LEFT IN A UNIFORM AND NEAT CONDITION

SYMBOL DESCRIPTION \bigcap CIRCUIT BREAKER 마 NON-FUSIBLE DISCONNECT SWITCH E FUSIBLE DISCONNECT SWITCH SURFACE MOUNTED PANEL BOARD Т **TRANSFORMER** M KILOWATT HOUR METER JB JUNCTION BOX РВ PULL BOX TO NEC/TELCO STANDARDS UNDERGROUND UTILITIES EXOTHERMIC WELD CONNECTION MECHANICAL CONNECTION GROUND ROD □ OR
 □ GROUND ROD WITH INSPECTION SLEEVE ı⊩⊕ OR⊠ GROUND BAR 120AC DUPLEX RECEPTACLE \Rightarrow – G —— GROUND CONDUCTOR DC POWER AND FIBER OPTIC TRUNK CABLES DC POWER CABLES REPRESENTS DETAIL NUMBER REF. DRAWING NUMBER

ABBREVIATIONS

COAX ISOLATED GROUND BAR EXTERNAL CIGBE MIGB MASTER ISOLATED GROUND BAR SST SELF SUPPORTING TOWER **GPS** GLOBAL POSITIONING SYSTEM TYP. **TYPICAL** DWG **DRAWING** BCW BARE COPPER WIRE BFG BELOW FINISH GRADE PVC POLYVINYL CHLORIDE CAB CABINET С **CONDUIT** SS STAINLESS STEEL GROUND AWG AMERICAN WIRE GAUGE **RGS** RIGID GALVANIZED STEEL AHJ AUTHORITY HAVING JURISDICTION TTI NA TOWER TOP LOW NOISE AMPLIFIER UNO UNLESS NOTED OTHERWISE **EMT** ELECTRICAL METALLIC TUBING **AGL** ABOVE GROUND LEVEL

\mathbb{C} 3 × in 18 × i

esigned: ASW Date: 07/10/18 necked: AJD Date: 07/10/18 499-006

REVISED FOR PERMIT BMM 08/23/1

ISSUED FOR PERMIT BMM 07/2

wn: BMM Date: 07/10/18

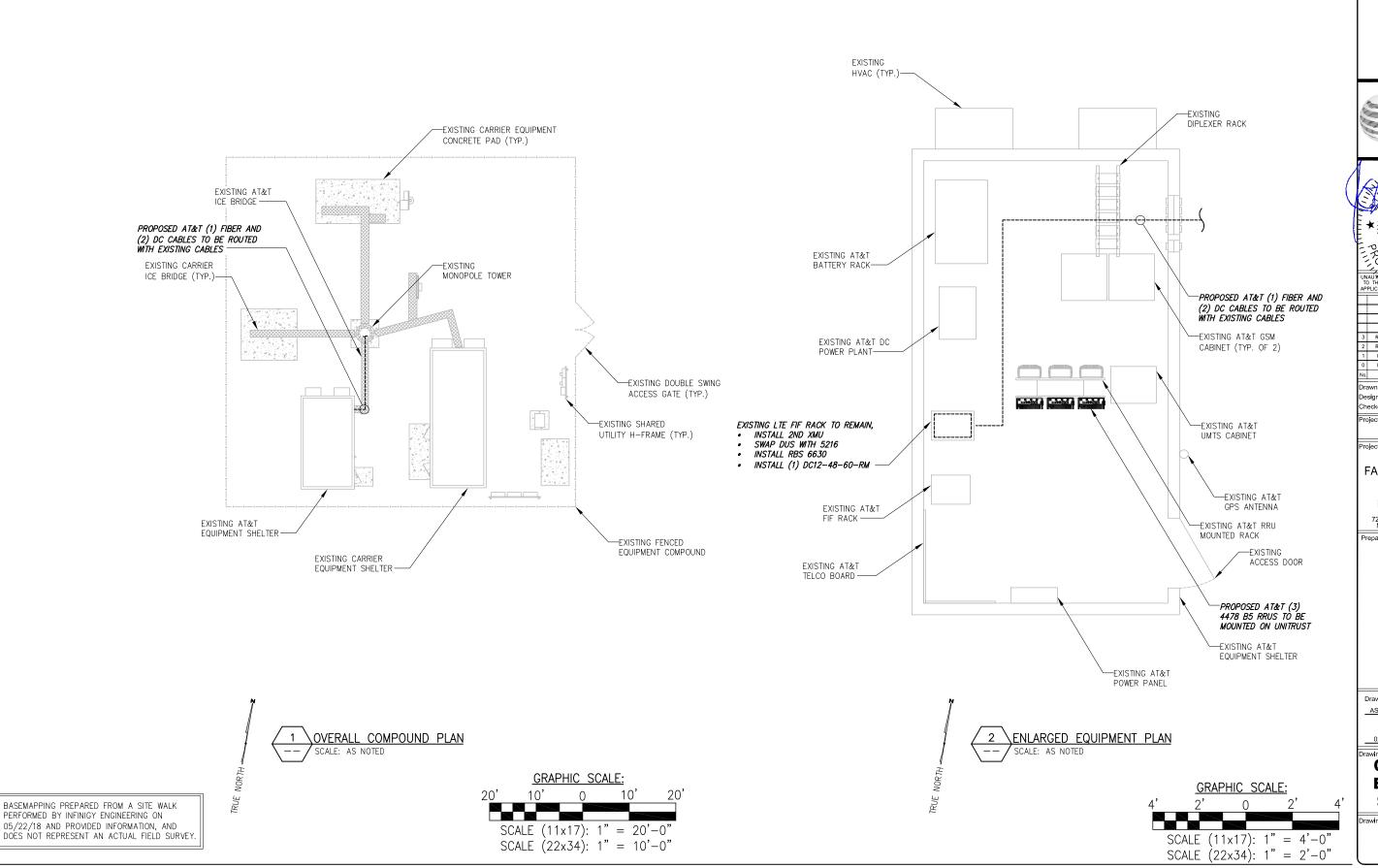
ISSUED FOR REVIEW BMM

ject Title NEW BRITAIN FARMINGTON AVE.

CTL01028 FA# 10065751

723 FARMINGTON AVENUE NEW BRITAIN, CT 06503

smartlin


Drawing Scale: AS NOTED

Date:

02/15/19

GENERAL NOTES

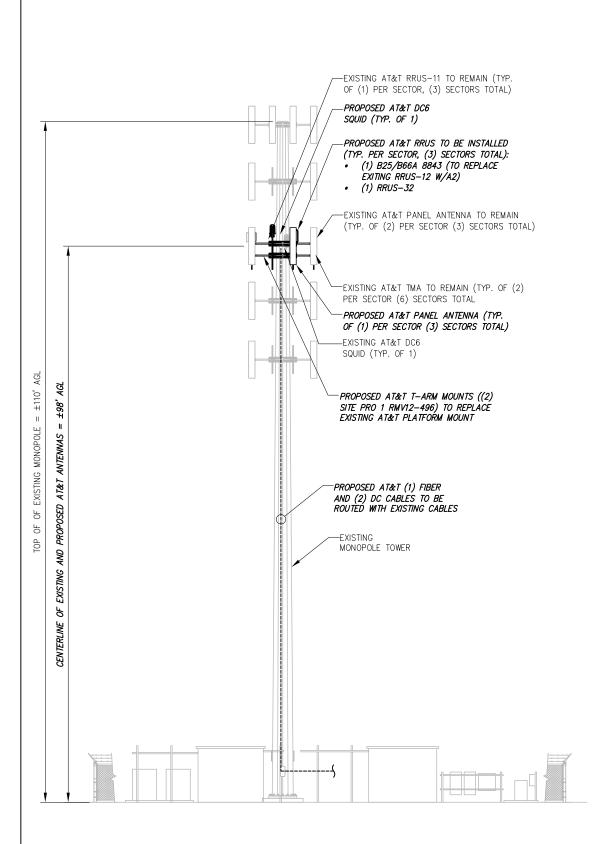
wing Number

esigned: __ASW__ Date: __07/10/18

NEW BRITAIN FARMINGTON AVE. CTL01028

FA# 10065751

723 FARMINGTON AVENUE NEW BRITAIN, CT 06503


smartlink

Drawing Scale: AS NOTED

02/15/19

OVERALL & ENLARGED

SITE PLAN

FINAL ANTENNA CONFIGURATION & CABLE SCHEDULE BASED ON LTE RFDS DATED 6/13/18, V 2.00 ANTENNA STATUS & CABLE FEEDER ANTENNA ANTENNA RAYCAP SECTOR RRUS AZIMUTH HFIGH1 DIPLEXER UNIT ECHNOLOG' TYPE LENGTH POWERWAVE UMÍS (2) (E) LGP21401 30° ±98' (2) (E) 1-5/8" COAX CABLES ±120' 7770 850/1900 (2) (E) 1-5/8" COAX CABLES (1) (P) 4478 B5 (GROUND) QUINTEL LTE 850/1900 (1) (P) FIBER CABLE 30° A-2±98' ±120' QS66512-2 DBCT108F1V92-1 (1) (P) B25/B66A 8843 /AWS/5G (2) (P) DC CABLES ALPHA A-3(1) (E) RRUS-11 (1) (E) FIBER CABLE 30° ±98' DPA-65R-LCUU-H (1) (P) RRUS-32 (2) (E) DC CABLES 700/WCS (E) UMTS POWERWAVE (2) (E) LGP21401 (2) (E) 1-5/8" COAX CABLES 160° ±120' B-1 ±98' 7770 850 /1900 (2) (E) 1-5/8" COAX CABLES (1) (P) 4478 B5 (GROUND) QUINTEL LTE 850/1900 160° B-2 ±98' SEE A-2 FOR FIBER/DC ±120' QS66512-2 DBCŤ1Ó8F1V92-1 (1) (P) B25/B66A 8843 /AWS/5G INFORMATION BETA 900 B-3 $\widehat{=}\widehat{\mathscr{E}}$ $\exists \mathcal{E}$ (1) (E) RRUS-11 SEE A-2 FOR FIBER/DC B-4 160° ±98' DPA-65R-LCUU-H6 (1) (P) RRUS-32 INFORMATION 700/WCS POWERWAVE UMÍS (2) (E) LGP21401 270° (2) (E) 1-5/8" COAX CABLES ±120' G-1 ±98' 7770 850/1900 (2) (E) 1-5/8" COAX CABLES (2) (P) DBCT108F1V92–1 (1) (P) 4478 B5 (GROUND) QUINTFI LTE 850/1900 SEE A-2 FOR FIBER/DC 270° ±98' ±120' QS66512-2 (1) (P) B25/B66A 8843 /AWS/5G INFORMATION GAMMA G-3(1) (E) RRUS-11 SEE A-2 FOR FIBER/DC G-4270° ±98' DPA-65R-LCUU-H6 (1) (P) RRUS-32 INFORMATION 700/WCS

AT&T ANTENNA SCHEDULE NOT TO SCALE

- INFINIGY ENGINEERING HAS NOT EVALUATED THE TOWER LOADING FOR THIS SITE, AND ASSUMES NO RESPONSIBILITY FOR ITS STRUCTURAL INTEGRITY REGARDING ITS EXISTING OR PROPOSED LOADING. FINAL INSTALLATION TO COMPLY WITH RESULTS OF PASSING STRUCTURAL ANALYSIS.
- FOR ADDITIONAL INFORMATION PERTAINING TO THE ANTENNA MOUNT, SEE MOUNT ANALYSIS, COMPLETED BY INFINIGY, DATED 02/06/19. EXISTING AT&T PLATFORM MOUNT TO BE REPLACED WITH (2) RMV12-496 T-ARM MOUNTS.

SEPARATION NOTE:

• 3 FEET MINIMUM SEPARATION BETWEEN LTE ANTENNA • 6 FEET MINIMUM SEPARATION BETWEEN 700BC & 700 DE

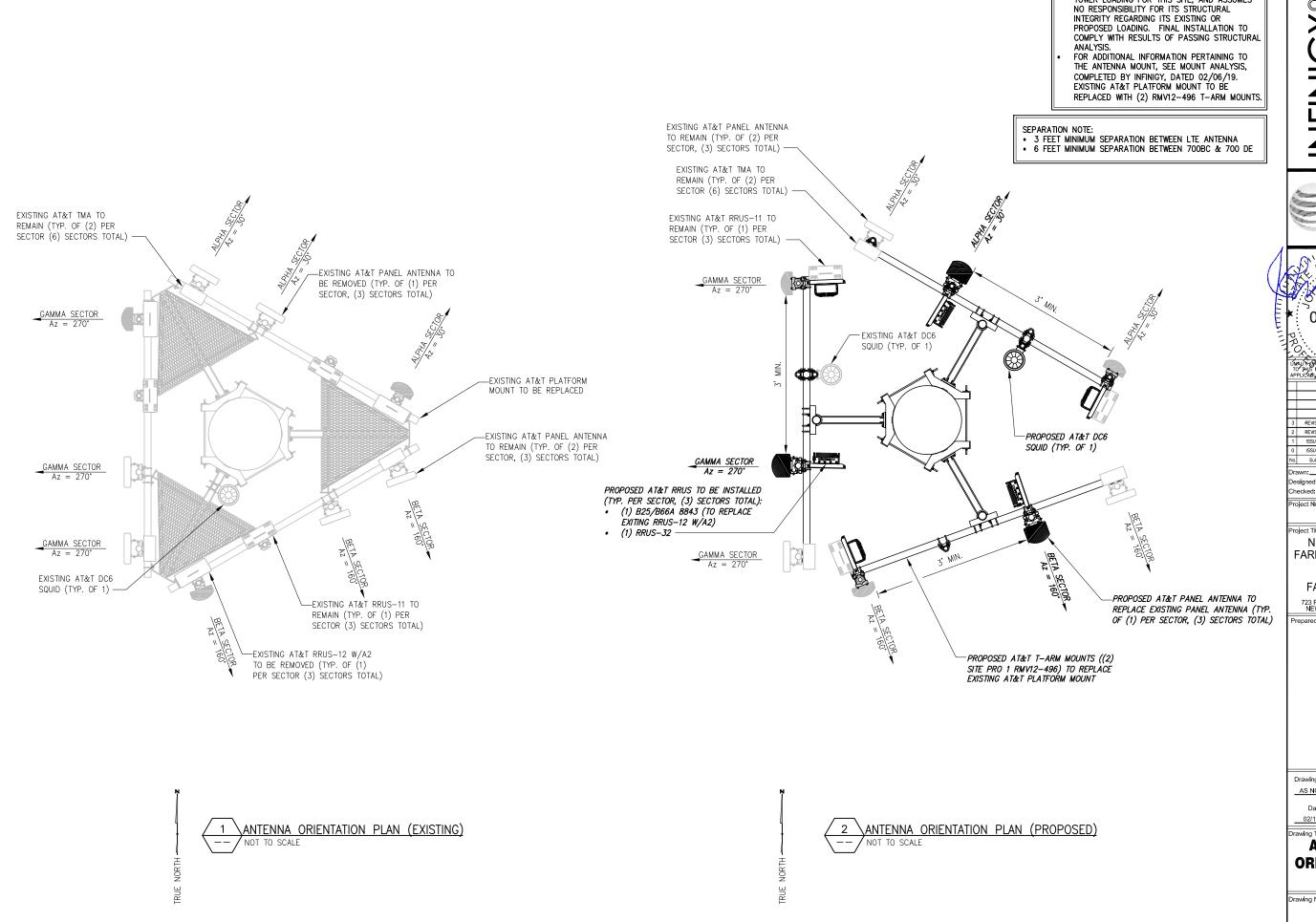
723 FARMINGTON AVENUE NEW BRITAIN, CT 06503 smartlin

NEW BRITAIN

FARMINGTON AVE.

CTL01028

FA# 10065751


Drawing Scale:

AS NOTED 02/15/19

ELEVATION VIEW

rawing Number

 \mathbb{C} 豆

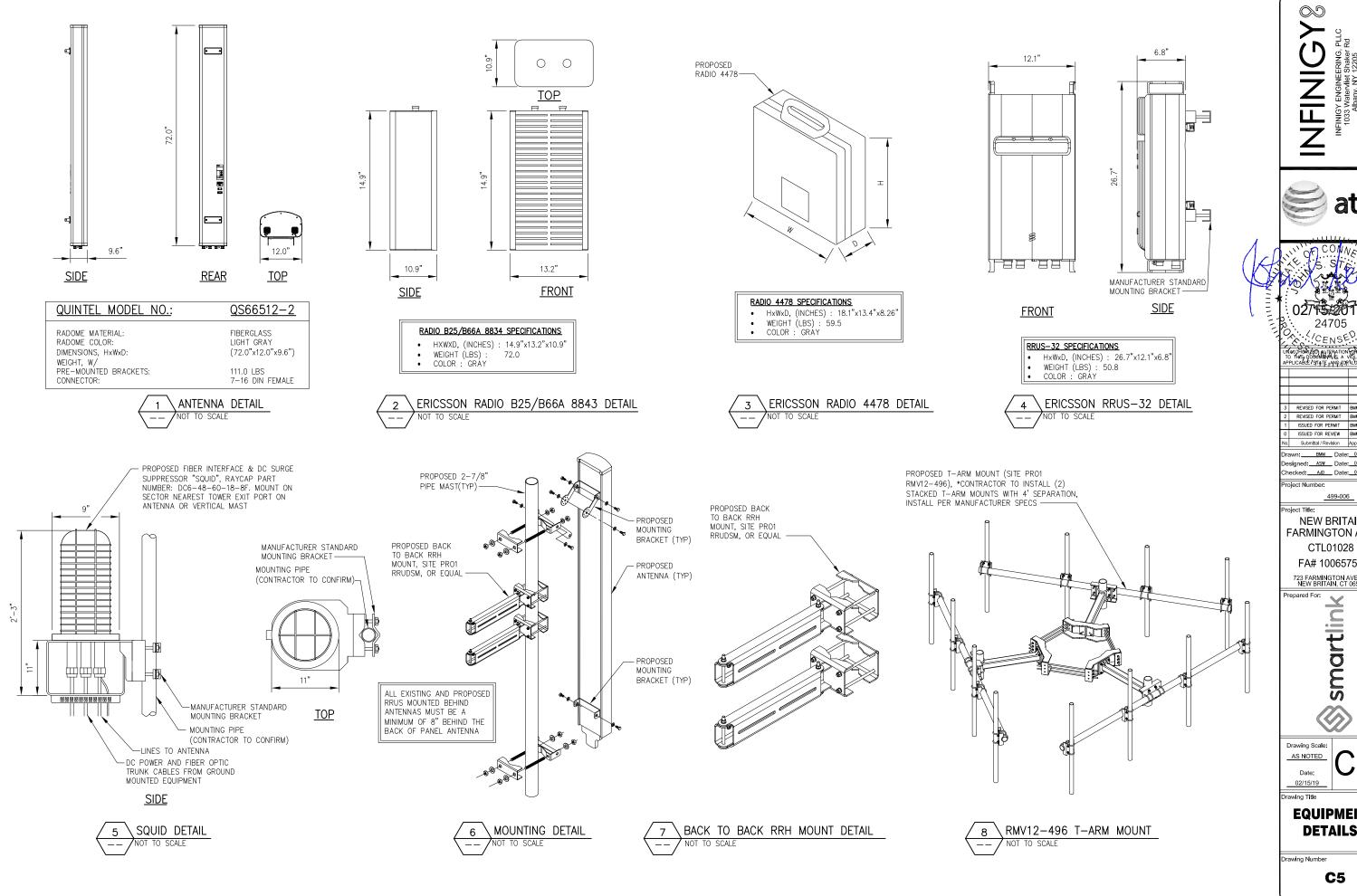
NOTE:

NO

NEW BRITAIN FARMINGTON AVE. CTL01028

FA# 10065751

723 FARMINGTON AVENUE NEW BRITAIN, CT 06503



Drawing Scale: AS NOTED

02/15/19

ANTENNA ORIENTATION PLAN

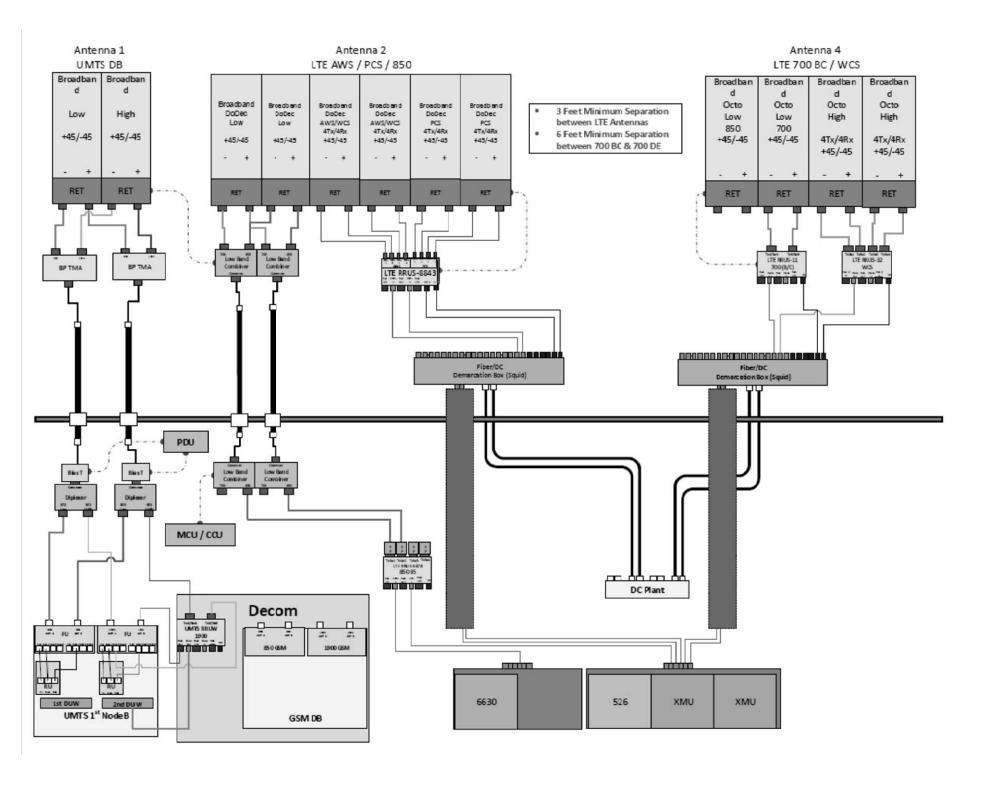
rawing Number

esigned: ASW Date: 07/10/18 ecked: AJD Date: 07/10/18

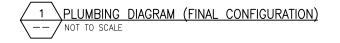
NEW BRITAIN FARMINGTON AVE.

FA# 10065751

723 FARMINGTON AVENUE NEW BRITAIN, CT 06503

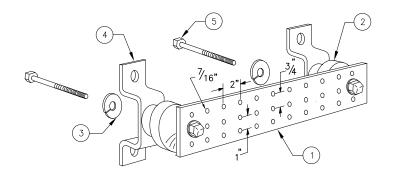

Drawing Scale: AS NOTED

Date:

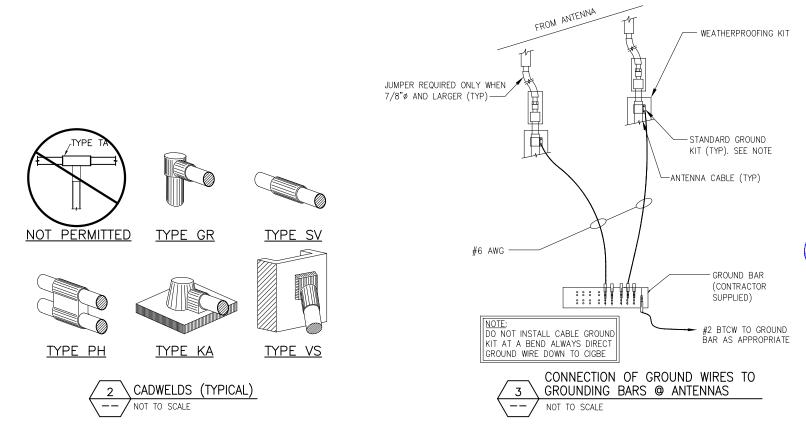

02/15/19 awing Title

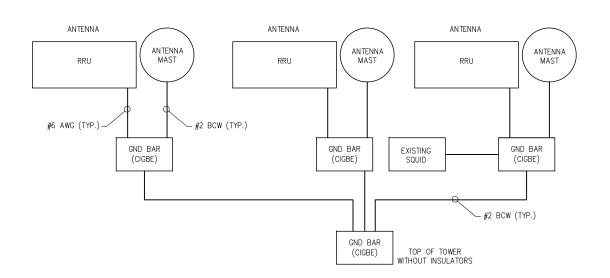
EQUIPMENT DETAILS

rawing Number



ALPHA/BETA/GAMMA





LEGEND

- 1 SOLID TINNED COPPER GROUND BAR, 1/4"x 4"x 20" MIN., NEWTON INSTRUMENT CO. HOLE CENTERS TO MATCH NEMA DOUBLE LUG CONFIGURATION
- 2 INSULATORS, NEWTON INSTRUMENT CAT. NO. 3061-4
- 3 5/8" LOCKWASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8
- 4 WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. CAT NO. A-6056
- 5 5/8-11 X 1" H.H.C.S. BOLTS, NEWTON INSTRUMENT CO. CAT NO. 3012-1
- 6 GROUND BAR SHALL BE SIZED TO ACCOMODATE ALL GROUNDING CONNECTIONS REQUIRED PLUS PROVIDE 50% SPARE CAPACITY
- 7 GROUND BARS SHALL NEITHER BE FIELD FABRICATED NOR NEW HOLES DRILLED
- 8 GROUND LUGS SHALL MATCH THE HOLE SPACING ON THE BAR
- 9 HARDWARE DIAMETER SHALL BE MINIMUM 3/8"

3 REVISED FOR PERMIT BMM 02/15/
2 REVISED FOR PERMIT BMM 08/23/
1 I ISSUED FOR PERMIT BMM 07/25/
0 ISSUED FOR REVIEW BMM 07/10/
No. Submittal / Revision App d Date

 Drawn:
 BMM
 Date:
 07/10/18

 Designed:
 ASW
 Date:
 07/10/18

 Checked:
 AJD
 Date:
 07/10/18

400 006

roject Title:

NEW BRITAIN

FARMINGTON AVE. CTL01028

FA# 10065751 723 FARMINGTON AVENUE NEW BRITAIN, CT 06503

smartlink

Drawing Scale:
AS NOTED

Date: 02/15/19

Drawing Title

GROUNDING DETAILS

Drawing Number