

February 27, 2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for AT&T/LTE 3C Crown Site BU: 873633

AT&T Site ID: CT2082

10 Bona Street, Milford, CT 06460

Latitude: 41° 13′ 12.27″/ Longitude: -73° 4′ 38.56″

Dear Ms. Bachman:

AT&T currently maintains nine (9) antennas at the 136-foot level of the existing 133-foot monopole at 10 Bona Street in Milford, CT. The tower is owned by Crown Castle. The property is owned by 10 Bona Street LLC. AT&T now intends to replace three (3) antennas with three (3) Andrew antennas. These antennas would be installed at the 136-foot level of the tower. AT&T also intends to replace three (3) RRU11s with three (3) RRU32, and install two (2) filters.

A request for original zoning documents was sent to the City of Milford but has not been answered.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to The Honorable Benjamin G. Blake, Mayor, City of Milford, as well as the property owner, and Crown Castle is the tower owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

The Foundation for a Wireless World.

CrownCastle.com

6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Jeffrey Barbadora.

Sincerely,

Jeffrey Barbadora Real Estate Specialist 12 Gill Street, Suite 5800, Woburn, MA 01801 781-729-0053 Jeff.Barbadora@crowncastle.com

Attachments:

Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes

Tab 2: Exhibit-2: Structural Modification Report

Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)

cc: The Honorable Benjamin G. Blake, Mayor
City of Milford
70 West River Street
Milford, CT 06460

Planning & Zoning City of Milford 70 West River Street Milford, CT 06460

10 Bona Street LLC 92 Trumblebrook Drive Milford, CT 06460

10 BONA ST

Location 10 BONA ST **Mblu** 53/ 304/ 70/ /

Acct# 003888 Owner 10 BONA STREET LLC

Assessment \$175,000 **Appraisal** \$250,000

PID 12894 Building Count 1

Current Value

Appraisal				
Valuation Year	Improvements	Land	Total	
2016	\$250,000	\$0	\$250,000	
	Assessment			
Valuation Year	Improvements	Land	Total	
2016	\$175,000	\$0	\$175,000	

Owner of Record

 Owner
 10 BONA STREET LLC
 Sale Price
 \$0

 Other
 C/O CROWN CASTLE
 Certificate

 Address
 PMB 353/SITE BU 873633
 Book & Page
 03141/0288

 4017 WASHINGTON RD
 Sale Page
 01/03/2007

4017 WASHINGTON RD Sale Date 01/03/2007 MCMURRAY, PA 15317-2520

Ownership History

Ownership History				
Owner	Sale Price	Certificate	Book & Page	Sale Date
10 BONA STREET LLC	\$0		03141/0288	01/03/2007
CLEMENTE JOSEPH N	\$0		01111/0191	04/29/1981

Building Information

Building 1 : Section 1

Year Built:
Living Area: 0

Building Photo

Replacement Cost: \$0
Building Percent

Good:

Replacement Cost

Less Depreciation: \$0

Building Attributes			
Field Description			
Style	Outbuildings		

Model Grade: Stories: Occupancy Exterior Wall 1 Exterior Wall 2 Roof Structure: Roof Cover Interior Wall 2 Interior Flr 1 Interior Flr 2 Heat Fuel Heat Type: AC Type: Total Bedrooms: Total Bthrms: Total Half Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels House Generator	[
Stories: Occupancy Exterior Wall 1 Exterior Wall 2 Roof Structure: Roof Cover Interior Wall 1 Interior Flr 1 Interior Flr 2 Heat Fuel Heat Type: AC Type: Total Bedrooms: Total Bthrms: Total Alf Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Model	
Occupancy Exterior Wall 1 Exterior Wall 2 Roof Structure: Roof Cover Interior Wall 1 Interior Wall 2 Interior Flr 1 Interior Flr 2 Heat Fuel Heat Type: AC Type: Total Bedrooms: Total Bthrms: Total Half Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Grade:	
Exterior Wall 1 Exterior Wall 2 Roof Structure: Roof Cover Interior Wall 1 Interior Wall 2 Interior Fir 1 Interior Fir 2 Heat Fuel Heat Type: AC Type: Total Bedrooms: Total Bthrms: Total Half Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Stories:	
Exterior Wall 2 Roof Structure: Roof Cover Interior Wall 1 Interior Wall 2 Interior Flr 1 Interior Flr 2 Heat Fuel Heat Type: AC Type: Total Bedrooms: Total Bthrms: Total Half Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Occupancy	
Roof Structure: Roof Cover Interior Wall 1 Interior Wall 2 Interior Fir 1 Interior Fir 2 Heat Fuel Heat Type: AC Type: Total Bedrooms: Total Bthrms: Total Half Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Exterior Wall 1	
Roof Cover Interior Wall 1 Interior Wall 2 Interior Flr 1 Interior Flr 2 Heat Fuel Heat Type: AC Type: Total Bedrooms: Total Bthrms: Total Half Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Exterior Wall 2	
Interior Wall 1 Interior Wall 2 Interior Flr 1 Interior Flr 2 Heat Fuel Heat Type: AC Type: Total Bedrooms: Total Bthrms: Total Half Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Roof Structure:	
Interior Wall 2 Interior Flr 1 Interior Flr 2 Heat Fuel Heat Type: AC Type: Total Bedrooms: Total Bthrms: Total Half Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Roof Cover	
Interior Flr 1 Interior Flr 2 Heat Fuel Heat Type: AC Type: Total Bedrooms: Total Bthrms: Total Half Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Interior Wall 1	
Interior FIr 2 Heat Fuel Heat Type: AC Type: Total Bedrooms: Total Bthrms: Total Half Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Interior Wall 2	
Heat Fuel Heat Type: AC Type: Total Bedrooms: Total Bthrms: Total Half Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Interior Flr 1	
Heat Type: AC Type: Total Bedrooms: Total Bthrms: Total Half Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Interior Flr 2	
AC Type: Total Bedrooms: Total Bthrms: Total Half Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Heat Fuel	
Total Bedrooms: Total Bthrms: Total Half Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Heat Type:	
Total Bthrms: Total Half Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	AC Type:	
Total Half Baths: Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Total Bedrooms:	
Total Xtra Fixtrs: Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Total Bthrms:	
Total Rooms: Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Total Half Baths:	
Bath Description: Kitchen Descrip: Int Condition: Solar Panels	Total Xtra Fixtrs:	
Kitchen Descrip: Int Condition: Solar Panels	Total Rooms:	
Int Condition: Solar Panels	Bath Description:	
Solar Panels	Kitchen Descrip:	
	Int Condition:	
House Generator	Solar Panels	
	House Generator	

(http://images.vgsi.com/photos/MilfordCTPhotos// $\00\03$ $\98/24.JPG$)

Building Layout

D "!!"	
Building Sub-Areas (sq ft)	<u>Legend</u>
No Data for Building Sub-Areas	

Extra Features

Extra Features	<u>Legend</u>
No Data for Extra Features	

Land

Land Use		Land Line Valua	Land Line Valuation	
Use Code	434V	Size (Acres)	0.23	
Description	CELL TOWER MDL-00	Frontage	100	
Zone	CDD1	Depth	100	
Neighborhood	F	Assessed Value	\$0	
Alt Land Appr Category	No	Appraised Value	\$0	
category				

Outbuildings

Outbuildings				Legend		
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #

CEL1	CEL TWR SITE			1 UNITS	\$250,000	1	
------	--------------	--	--	---------	-----------	---	--

Valuation History

Appraisal				
Valuation Year	Improvements	Land	Total	
2013	\$250,000	\$101,250	\$351,250	
2012	\$250,000	\$101,250	\$351,250	
2011	\$250,000	\$101,250	\$351,250	

Assessment				
Valuation Year	Improvements	Land	Total	
2013	\$175,000	\$70,880	\$245,880	
2012	\$175,000	\$70,880	\$245,880	
2011	\$175,000	\$70,880	\$245,880	

⁽c) 2016 Vision Government Solutions, Inc. All rights reserved.

PROJECT TEAM

CLIENT REPRESENTATIVE

SMARTLINK, LLC 85 RANGEWAY ROAD, BUILDING 3, SUITE 102

ADDRESS: CITY, STATE, ZIP: CONTACT: NORTH BILLERICA, MA 01862-2105

TODD OLIVER

(774) 369-3618 TODD.OLIVER@SMARTLINKLLC.COM

SITE ACQUISITION

COMPANY:

ADDRESS: CITY, STATE, ZIP: CONTACT: 85 RANGEWAY ROAD, BUILDING 3, SUITE 102 NORTH BILLERICA, MA 01862-2105 TODD OLIVER

TODD.OLIVER@SMARTLINKLLC.COM

ENGINEER

COMPANY: ADDRESS: MASER CONSULTING CONNECTICUT 331 NEWMAN SPRINGS ROAD

CITY, STATE, ZIP: CONTACT: PHONE: E-MAIL: RED BANK, NJ 07701-5699 FRANK PAZDEN (732) 383-1950 FPAZDEN@MASERCONSULTING.COM

RF ENGINEER

APPLICANT/LESSEE at&t

TOWER OWNER:

CITY, STATE, ZIP: SITE ID #:

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE RD. FRAMINGHAM, MA 01701

NEW CINGULAR WIRELESS PCS, LLC COMPANY: 550 COCHITUATE RD. CITY, STATE, ZIP: FRAMINGHAM, MA 01701 CONTACT

SAJJAD SALAHUDDIN SS315Y@ATT.COM

CONSTRUCTION MANAGER

SMARTLINK, LLC. 33 BOSTON POST ROAD WEST, SUITE 210 MARLBOROUGH, MA 01752 MARK DONNELLY

CONTACT: PHONE: MARK DONNELLY@SMARTLINKLLCCOM SITE NAME: MILFORD - BONA ST. FA NUMBER: 10035338 SITE NUMBER: CTL02082 MULTI-CARRIER-MRCTB018539 RETROFIT-MRCTB018061 **10 BONA STREET** MILFORD, CT 06460 **NEW HAVEN COUNTY**

> CROWN CASTLE SITE NAME: MILFORD CROWN CASTLE SITE #: 873633

VICINITY MAP PROJECT LOCATION NOT TO SCALE IMAGE SOURCE: BING MAPS

CODE COMPLIANCE

ALL WORK AND MATERIALS SHALL BE PERFORMED AND INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THE LATEST EDITIONS OF THE FOLLOWING CODES.

- 2016 CONNECTICUT STATE BUILDING CODE INCORPORATING THE 2012 IBC NATIONAL ELECTRIC CODE 2014 NATIONAL FIRE PROTECTION
- ASSOCIATION 70 2015
- LIGHTNING PROTECTION CODE 201
- AMERICAN CONCRETE INSTITUTE 318 AMERICAN INSTITUTE OF STEEL
- TIA 607 FOR GROUNDING
- INSTITUTE FOR ELECTRICAL AND ELECTRONICS ENGINEERS 81
- 10. IEEE C2 LATEST EDITION
- 11. TELCORDIA GR-1275 12. ANSI T1.311

GENERAL CONTRACTOR NOTES

DO NOT SCALE DRAWINGS

CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON TH JOB SITE AND SHALL IMMEDIATELY NOTIFY THE ARCHITECT/ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE; NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

SHEET	DESCRIPTION
T-I	TITLE SHEET
GN-I	GENERAL NOTES
A-I	COMPOUND PLAN AND EQUIPMENT PLAN
A-2	ELEVATION VIEW AND ANTENNA SCHEDULE
A-3	ANTENNA LAYOUT
A-4	DETAILS
A-5	RF PLUMBING DIAGRAMS
G-I	GROUNDING DETAILS

PROJECT DESCRIPTION/SCOPE OF WORK

THIS PROJECT WILL BE COMPRISED OF

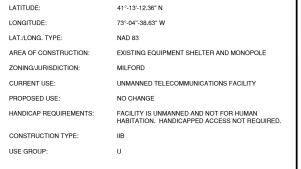
- ADD (2) WCS-IMFQ-AMT FILTERS REMOVE (3) EXISTING ANTENNAS IN POSITION 3, (I) PER SECTOR ADD (3) NEW ANTENNAS IN POSITION 4, (I) PER SECTOR
- RELOCATE (3) RRUS-11, (1) PER SECTOR
 (3) NEW RRUS-32 B2 TO REPLACE (3) EXISTING RRUS-11, (1) PER SECTOR
- ADD DUS AND IDL2 LINK

PROPOSED PROJECT SCOPE BASED ON RFDS ID #751467, VERSION 3.00, LAST UPDATED 10/19/16 AND RFDS ID #1189648, VERSION 1.00, LAST UPDATED 04/29/16

Customer Loyalty through Client Satisfaction
www.maserconsulting.com
Engineers Planners Surveyors
undscape Architects Environmental Scientists

550 COCHITUATE ROAD FRAMINGHAM MA 01701

AS SHOWN 16946013A


MILFORD - BONA ST. FA# 10035338 SITE # CTL02082

10 BONA STREET MILFORD, CT 06460 **NEW HAVEN COUNTY**

TITLE SHEET

T-I

CROWN CASTLE INTERNATIONAL 12 GILL STREET, SUITE # 5800

WOBURN, MA 01801

SITE INFORMATION

- I. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ), THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 50 HMS OR I FSS
- THE SUBCONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT.
- METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 6. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE EQUIPMENT GROUND RING WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS; 2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 8. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED, BACK TO BACK CONNECTIONS ON OPPOSITE SIDES OF THE GROUND BUS ARE PERMITTED.
- 9. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING, SHALL BE #2 AWG SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 10. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS
- 11. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED. ALL BENDS SHALL BE MADE WITH 12" RADIUS OR LARGER.
- 12. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 13. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS EXCEPT FOR GROUND BAR CONNECTION FROM MGB TO OUTSIDE EXTERIOR GROUND SHALL ALL BE CADWELD CONNECTIONS.
- 14. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 15. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED TO THE TOWER GROUND BAR.
- 16. APPROVED ANTIOXIDANT COATINGS (I.E. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 17. ALL EXTERIOR AND INTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 18. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 19. BOND ALL METALLIC OBJECTS WITHIN 6 FT OF MAIN GROUND WIRES WITH 1-#2 AWG TIN-PLATED COPPER GROUND CONDUCTOR.
- 20. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G. NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 21. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/4" IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC 250.50.

. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR - SMARTLINK

SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION)

OWNER - AT&T (NEW CINGULAR WIRELESS PCS, LLC)

- ALL SITE WORK SHALL BE COMPLETED AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.
- 3. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW
- 4. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK
- ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE
- IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR.
- THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.
- II. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY THE RESPONSIBLE ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. SUBCONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING & EXCAVATION.
- 12. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, AS DIRECTED BY THE RESPONSIBLE ENGINEER, AND SUBJECT TO THE APPROVAL OF THE OWNER AND/OR LOCAL UTILITIES.
- 13. THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY SHALL BE GRADED TO A UNIFORM SLOPE AND STABILIZED TO PREVENT EROSION.
- 14. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 15. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR FMRANKMENT
- 16. THE SUBGRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOWER AREAS.
- 18. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE.
- 20. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 21. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF THE CONTRACTOR.

- 22. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND TI CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR.
- 23. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.
- ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS.
- 25. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy = 36 ksi) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM A53 TYPE E (Fy = 36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCHUP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.
- CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T MOBILITY SITES."
- 27. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 28. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION, ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT.
- 29. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN ALERT OF DANGEROUS EXPOSURE LEVELS.

Customer Loyalty through Client Satisfaction
www.maserconsulting.com
Engineers m Planners m Surveyors
Landscap Architects m Engineers management Scientific

Copyright © 2017. Misser Consulting Connecticut All Rights Reserved. This drawing and all information contained herein is authorized for use only by the party for whom the services w contracted or to whom it is certified. This drawing may not be copied, reused, disclosed distributed or relied upon for any other purpose without the express written consent of Mi

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

Call before you dig.

FOR STATE SPECIFIC DIRECT PHONE NUMBERS V

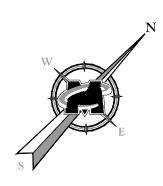
| 1 | 01/25117 | FOR CONSTRUCTION | RA | FEP | 0 | 103/11/16 | ISSUED CONTINUED | A/C | FEP | REV | DATE | DECRES | DEPART | CHECKED | DATE | DECRES | DATE | DAT

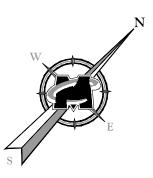
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNITHEY ARE ACTING UNDER THE DIRECTION OF TI RESPONSIBLE LICENSED PROFFESIONAL ENGINEER, ALTER THIS DOCUMENT.

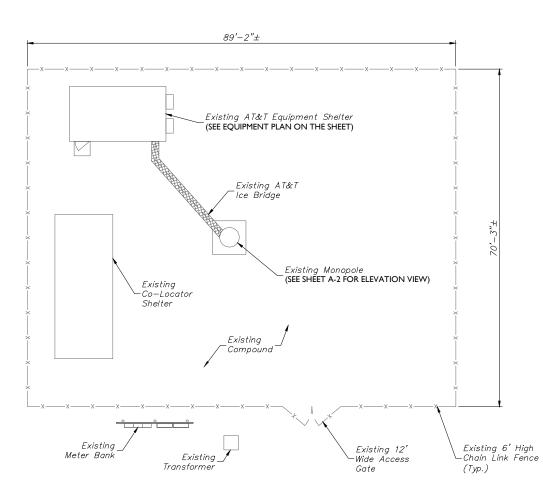
SITE NAME:

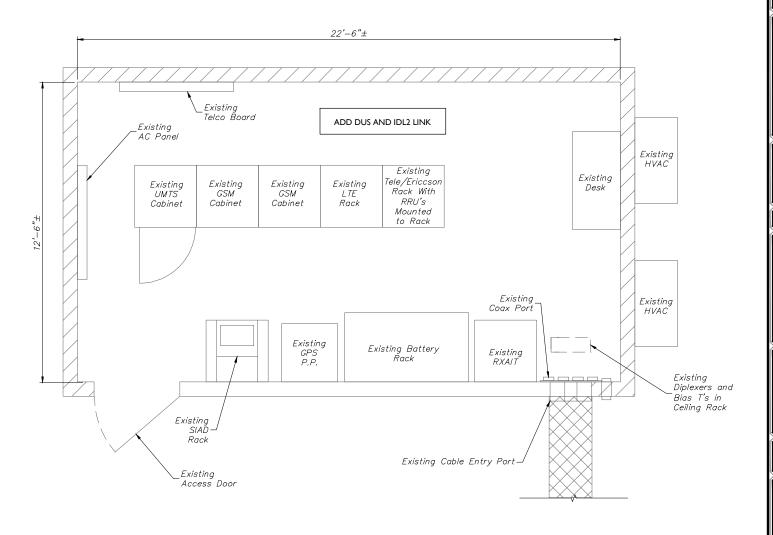
MILFORD - BONA ST. FA# 10035338 SITE # CTL02082

I0 BONA STREET MILFORD, CT 06460 NEW HAVEN COUNTY


RED BANK OFFICE
331 Newman Springs Road
Suite 203
Red Bank, NI 07701


email: soluti


GENERAL NOTES


ER:

GN-I

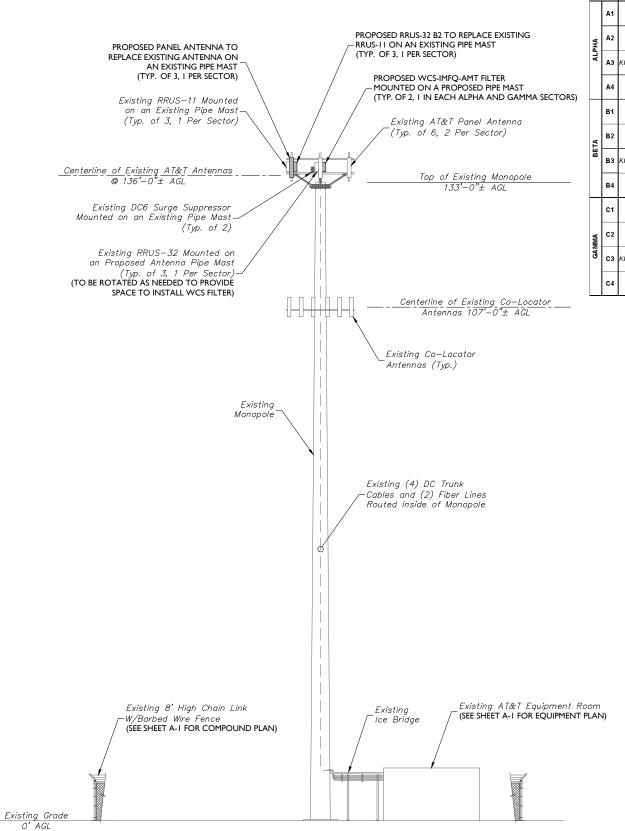
Customer Loyalty through Client Satisfaction
www.maserconsulting.com
Engineers Planners Surveyors
Landscape Architects Environmental Scientists

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

AS SHOWN 16946013A REV DATE DESCRIPTION

ESPONSIBLE LICENSED PROFFESIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SITE NAME:


MILFORD - BONA ST. FA# 10035338 SITE # CTL02082

10 BONA STREET MILFORD, CT 06460 NEW HAVEN COUNTY

COMPOUND PLAN AND EQUIPMENT PLAN

A-I

ELEVATION VIEW

(IN FEET) SCALE: 1" = 10' FOR 24"X36" DRAWINGS

(DO NOT SCALE 11"X17" DRAWINGS)

				PRO	POSED ANT	ENNA AND R	RUS CONFIG	URATION					
SE	CTOR	EXISTING ANTENNA CONFIGURATION	PROPOSED ANTENNA CONFIGURATION	TECHNOLOGY	ANTENNA STATUS	HEIGHT (in)	WIDTH (in)	DEPTH (in)	WEIGHT (lbs)	ANTENNA AZIMUTH	ANT. CL. ELEV (ft.)	RRUS CONFIGURATION	STATUS
	A1	Powerwave 7770	Powerwave 7770	UMTS	REMAIN	55.00	11.00	5.00	35.00	143°	136'	-	-
ALPHA	A2	CCI OPA-65R-LCUU-H4	CCI OPA-65R-LCUU-H4	WCS LTE/GSM	REMAIN	48.00	14.40	7.30	57.00	23°	136'	(1) RRUS-32 (1) WCS FILTER	REMAIN NEW
ALF	А3	KMW AM-X-CD-14-65-00T-RET	-		REMOVE								
	A4	-	ANDREW SBNHH-1D65A	LTE	NEW	55.00	11.90	7.10	33.50	23°	136'	(1) RRUS-11 (1) RRUS-32 B2	REMAIN NEW
	В1	Powerwave 7770	Powerwave 7770	UMTS	REMAIN	55.00	11.00	5.00	35.00	263°	136'	-	-
BETA	B2	CCI OPA-65R-LCUU-H4	CCI OPA-65R-LCUU-H4	WCS LTE/GSM	REMAIN	48.00	14.40	7.30	57.00	143°	136'	(1) RRUS-32	REMAIN
8	В3	KMW AM-X-CD-14-65-00T-RET	-		REMOVE								
	В4	-	ANDREW SBNHH-1D65A	LTE	NEW	55.00	11.90	7.10	33.50	143°	136'	(1) RRUS-11 (1) RRUS-32 B2	REMAIN NEW
	С1	Powerwave 7770	Powerwave 7770	UMTS	REMAIN	55.00	11.00	5.00	35.00	23°	136'	-	-
GAIMMA	C2	CCI OPA-65R-LCUU-H4	CCI OPA-65R-LCUU-H4	WCS LTE/GSM	REMAIN	48.00	14.40	7.30	57.00	263°	136'	(1) RRUS-32 (1) WCS FILTER	REMAIN NEW
GAI	СЗ	KMW AM-X-CD-14-65-00T-RET	-		REMOVE								
	C4	-	ANDREW SBNHH-1D65A	LTE	NEW	55.00	11.90	7.10	33.50	263°	136'	(1) RRUS-11 (1) RRUS-32 B2	REMAIN NEW

ANTENNA SCHEDULE

NOTES:

- 1. EXISTING BIRDS NEST ON TOWER: CONTRACTOR RESPONSIBLE FOR OBTAINING ALL NECESSARY PERMITS AND FOLLOWING ALL REGULATIONS FOR WORKING AROUND NEST.
- 2. THESE PLANS WERE DESIGNED WITH THE ASSUMPTION THAT THE PREVIOUS PLANS PREPARED BY MASER CONSULTING P.A. OF RED BANK, NJ DATED 02/04/16. WILL BE COMPLETED PRIOR TO THE CURRENT SCOPE OF WOK BEING INSTALLED. ANY CHANGES IN PREVIOUS DESIGN SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER IMMEDIATELY.
- ALL EQUIPMENT (ANTENNAS, LINES, ETC.) TO BE INSTALLED IN ACCORDANCE WITH PASSING STRUCTURAL ANALYSIS PROVIDED BY CROWN CASTLE

STRUCTURAL NOTES:

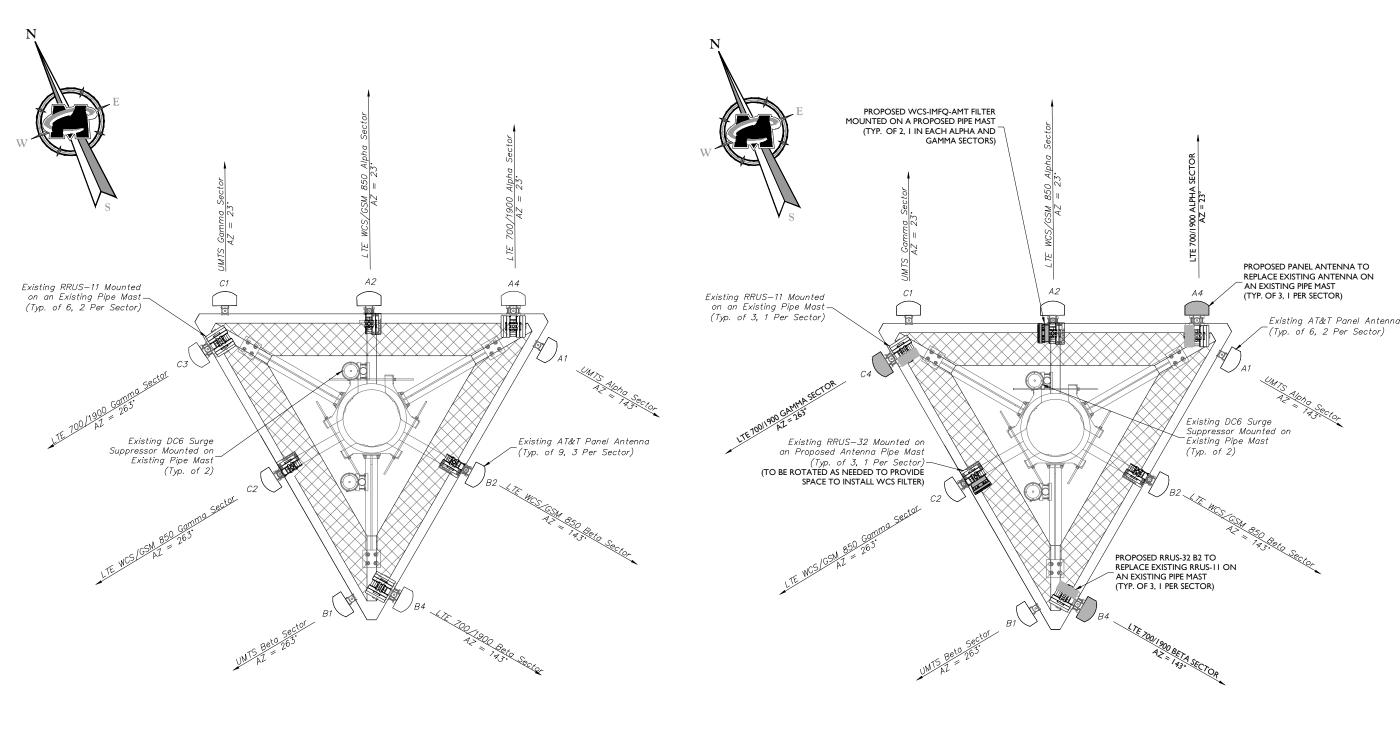
- 1. A STRUCTURAL ANALYSIS TO DETERMINE IF THE EXISTING STRUCTURE AND FOUNDATION CAN ADEQUATELY SUPPORT THE PROPOSED LOADING HAS NOT BEEN PREPARED/ANALYZED BY MASER AND IS TO BE PERFORMED BY OTHERS.
- 2. NO CONSTRUCTION OF THE PROPOSED LOADING SHOWN SHALL PROCEED UNTIL ADEQUACY OF EXISTING STRUCTURE AND FOUNDATION, INCLUDING THE PROPOSED AT&T ANTENNA MOUNTING CONFIGURATION SHOWN HEREIN, HAS BEEN CONFIRMED BY
- THE STRUCTURE ELEVATION IS SHOWN FOR INFORMATIONAL PURPOSES ONLY AND MAY NOT REFLECT AS-BUILT FIELD CONDITIONS FOR ALL EXISTING INVENTORY LOADING/ANTENNAS/APPURTANENCES ON STRUCTURE. REFER TO THE LATEST STRUCTURAL ANALYSIS FOR EXISTING STRUCTURE LOADING AND THE PROPOSED METHOD OF ATTACHMENT OF THE PROPOSED ANTENNAS/CABLES.
- THE CONTRACTOR IS RESPONSIBLE TO CONFIRM THAT ANY IMPROVEMENTS AND REINFORCEMENTS REQUIRED BY THE STRUCTURAL ANALYSIS CERTIFICATION ARE PROPERLY INSTALLED PRIOR TO THE ADDITION OF ANTENNAS, CABLES, SUPPORTS AND APPURTENANCES PROPOSED ON THESE DRAWINGS OR OTHERWISE NOTED IN THE STRUCTURAL ANALYSIS.

Customer Loyalty through Client Satisfaction
www.maserconsulting.com
Engineers Planners Surveyors
andscape Architects Environmental Scientists

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

AS SHOWN 16946013A REV DATE DESCRIPTION

ESPONSIBLE LICENSED PROFFESIONAL ENGINEER, TO ALTER THIS DOCUMENT.


SITE NAME:

MILFORD - BONA ST. FA# 10035338 SITE # CTL02082

10 BONA STREET MILFORD, CT 06460 **NEW HAVEN COUNTY**

ELEVATION VIEW AND ANTENNA SCHEDULE

 $\frac{EXISTING\ ANTENNA\ LAYOUT}{\text{NOT TO SCALE}}$

PROPOSED ANTENNA LAYOUT

NOT TO SCALE

NOTES:

- EXISTING BIRDS NEST ON TOWER: CONTRACTOR RESPONSIBLE FOR OBTAINING ALL NECESSARY PERMITS AND FOLLOWING ALL REGULATIONS FOR WORKING AROUND NEST.
- 2. THESE PLANS WERE DESIGNED WITH THE ASSUMPTION THAT THE PREVIOUS PLANS PREPARED BY MASER CONSULTING P.A. OF RED BANK, NJ DATED 02/04/16. WILL BE COMPLETED PRIOR TO THE CURRENT SCOPE OF WOK BEING INSTALLED. ANY CHANGES IN PREVIOUS DESIGN SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER IMMEDIATELY.

NOTE:

CONTRACTOR TO FIELD ALTER LOCATION OF WCS FILTER AS NEEDED

Customer Loyalty through Client Satisfaction
www.maserconsulting.com
Engineers Planners Surveyors
Landscape Architects Environmental Scientists

Copyright © 2017. Maser Consulting Connecticut All Rights Reserved. This drawing and information contained hirerin is authorized for use only by the parry for whom the service contracted or to whom it is certified. This drawing may not be copied, reused, dis distributed or relied upon for any other purpose without the express written consent of

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

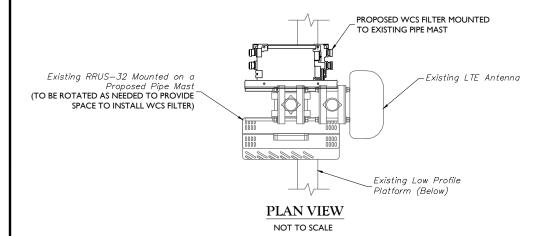
what's **below.**all before you dig.

IT IS A VIOLATOR OF CAMPOR ANY PERSON, UNLE THEY ARE ACTING UNDENTIFE DIRECTION OF THE RESPONSIBLE LICENSED PROFFESIONAL ENGINEER, T ALTER THIS DOCUMENT.

SITE NAME:

MILFORD - BONA ST. FA# 10035338 SITE # CTL02082

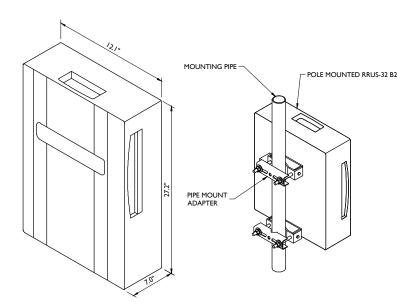
10 BONA STREET MILFORD, CT 06460 NEW HAVEN COUNTY

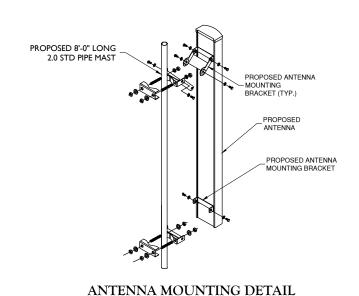


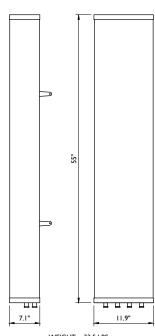
RED BANK OFFICE
331 Newman Springs Road
Suite 203

Suite 203 Red Bank, NJ 07701 Phone: 732.383.1950 Fax: 732.383.1984

ANTENNA LAYOUT


SHEET NUMBER :


WCS - IMFQ - AMT FILTER DETAILS


NOT TO SCALE

RRUS-32 B2 DIMENSIONS (H X W X D): 27.2" X 12.1" X 7.0" (INCLUDES SUNSHIELD) WEIGHT: 53 LBS

RRUS-32 B2 DETAIL

WEIGHT = 33.5 LBS

ANDREW SBNHH-ID65A

ANTENNA DETAIL

NOT TO SCALE

Customer Loyalty through Client Satisfaction
www.maserconsulting.com
Engineers = Planners = Surveyors
Landscape Architects = Environmental Scientists

Copyright © 2017. Maser Consulting Connecticut All Rights Reserved. This drawing and all information contained herein is authorized for use only by the parry for whom the services contracted or to whom it is certified. This drawing may not be copied, resuck, dischildstributed or relied upon for any other purpose without the express written consent of Notice and Consulting Consulting

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

Call before you dig.

FOR STATE SPECIFIC DIRECT PHONE NUMBERS VI:

IT IS A VIOLATION OF TAW FOR ANY BERSON, UNLES THEY ARE ACTING UNDERTHE DIRECTION OF THE RESPONSIBLE LICENSED PROFFESIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SITE NAME:

MILFORD - BONA ST. FA# 10035338 SITE # CTL02082

10 BONA STREET MILFORD, CT 06460 NEW HAVEN COUNTY

RED BANK OFFICE

331 Newman Springs Road
Suite 203

Suite 203 Red Bank, NJ 07701 Phone: 732.383.1950 Fax: 732.383.1984

oman. ociationog

DETAILS

:

1

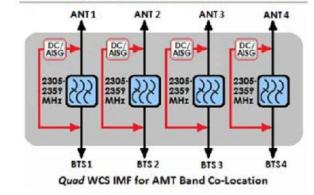
NOTES:

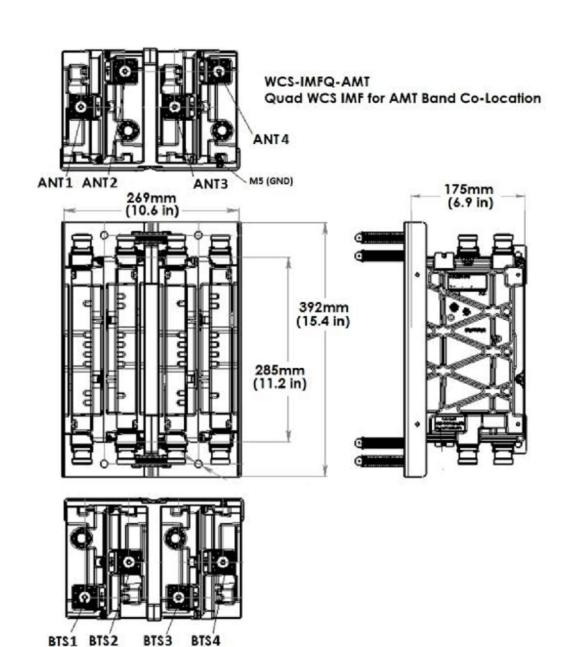
- 1. ALL UNISTRUT CHANNELS SHALL BE P1000 UNLESS OTHERWISE NOTED.
- 2. ALL FIELD CUT ENDS SHALL BE FIELD GALVANIZED ACCORDING TO ATSM-A780.
- 3. ALL FASTENERS BETWEEN UNISTRUT CONNECTIONS ARE 1/2" Ø. ALL DRILLED HOLES SHALL BE 9/16" Ø.
- 4. MOUNT WCS FILTER TO UNISTRUT WITH 3/8" Ø UNISTRUT BOLTING HARDWARE AND SPRING NUTS. TYPICAL FOUR (4) PER DEVICE, THROUGH MANUFACTURER'S MOUNTING HOLES, SUBCONTRACTOR SHALL SUPPLY. REFER TO THE MANUFACTURER'S WRITTEN SPECIFICATIONS FOR STEP-BY-STEP INSTRUCTIONS FOR SECURING FILTER TO UNISTRUT FRAMES.
- 5. PART NUMBERS SHOWN ARE UNISTRUT MANUFACTURER OR APPROVED EQUAL.

Electrical

WCS PATH (BTSO - ANTO & BTS1 - ANT1)

Passband frequency range, MHz	2305 - 2359.14
Insertion Loss for 2305.0 - 2315.0 MHz, dB	0.3 max, 0.2 typ.
Insertion Loss for 2350.0 - 2357.0 MHz, dB	0.9 max, 0.5 typ.
Insertion Loss for 2357.0 - 2358.6 MHz, dB	1.6 max, 1.0 typ.
Insertion Loss for 2358.6 - 2358.96 MHz, dB	2.2 max, 1.5 typ.
Insertion Loss for 2358.96 - 2359.14 MHz, dB	2.0 typical
Group Delay for 2305.0 - 2315.0 MHz	10 ns max
Group Delay for 2350.0 - 2358.6 MHz	250 ns max
Group Delay for 2358.6 - 2359.0 MHz	400 ns max
Return loss, dB	18 min, 20dB typ
Rejection 2360-2395 MHz	30dB min, 35 tvp
IMD (two +43 dBm carriers)	and the second s
Input power rating per port - RMS	
Input power rating per port- PEP	


DC/AISG TRANSPARENCY


AISG Frequency	2.176 MHz
Insertion Loss (@2.176 MHz)	0.2dB max
DC Bypass Path 1 (twin & quad)	BTS1 to ANT1
DC Bypass Path 2 (twin & quad)	BTS2 to ANT2
DC Bypass Path 3 (quad)	BTS3 to ANT3
DC Bypass Path 4 (quad)	BTS4 to ANT4
DC Voltage Bypass	7-30 V
DC Current Single Path	3 A max

Mechanical (Quad Version)

Dimensions, mm	285x269x175 m
Dimensions, in	11.2x 10.6 x 6.9
Weight, (without mounting brackets) Kg (lb)	13.4kg (29.5 lbs
Weight, (with mounting brackets) Kg (lb)	15.7kg (34.5 lbs
Finish	Gray paint
Connectors, RF	7-16 DIN female
Ground terminal diameter, mm (in)	5 (0.20)

Block Diagram (Quad Version)

Customer Loyalty through Client Satisfaction
www.maserconsulting.com
Engineers Planners Surveyors
Landscape Architects Environmental Scientists

opyright © 2017. Maser Consulting Connecticut All Rights Reserved. This drawing and all lormation contained herein is authorized for use only by the party for whom the services we intracted or to whom it is certified. This drawing may not be copied, reused, destributed or relied upon for any other purpose without the express written consent of Ma

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

Call before you dig.

FOR STATE SPECIFIC DIRECT PHONE NUMBER:

SCALE :	AS SHO\	ΝN	16946013A				
					·		
-1	01/25/17	FOR CONSTRU	JCTION	RA	FEP		
0	10/31/16	ISSUED FOR A	********	AJC	FEP		
REV	DATE	DESERIO O	MNES	DRAWN BY	CHECKED BY		

IT IS A VIOLATOR OF TAW FOR ANY PERSON, UNLI THEY ARE ACTING UNDEN THE DIRECTION OF TH RESPONSIBLE LICENSED PROFFESIONAL ENGINEER, " ALTER THIS DOCUMENT.

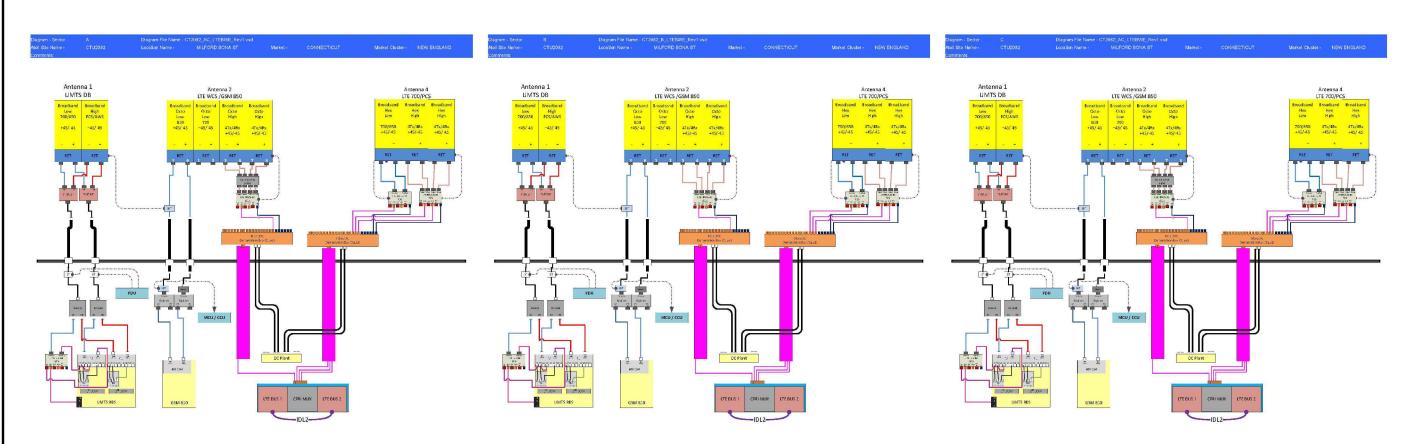
SITE NAME:

MILFORD - BONA ST. FA# 10035338 SITE # CTL02082

10 BONA STREET MILFORD, CT 06460 NEW HAVEN COUNTY

RED BANK OFFICE

331 Newman Springs Roa
Suite 203


Phone: 732.383.1 Fax: 732.383.1

oman. oolutoi

DETAILS

A-5

WCS - IMFQ - AMT FILTER DETAILS

ALPHA SECTOR BETA SECTOR GAMMA SECTOR

 $BASED\ ON\ RF\ ENGINEERING\ DESIGN\ ENTITLED\ "NEW-ENGLAND_CONNECTICUT_CTU2082_2017-LTE-Multi-Carrier_lxBBU-RRH-Add_om636a_2051A02]YA_10035338_61172_04-28-2016_Final-Approved_v1.00"$

RF PLUMBING DIAGRAMS

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

Know what's **Delow.**Call before you dig.

FOR STATE SPECIFIC DIRECT PHONE NUMBERS VI

WWW.CALLBIT.COM

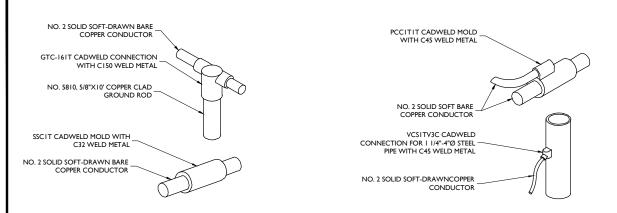
ı	Ļ	AS SHO	WN	I	6946013	A
ı	$\overline{\Box}$		ļ.			
1						
1						
1						
1						
1						
1	-1	01/25/17	FOR CONSTRU	JCTION	RA	FEP
1	0	10/31/16	ISSUED FOR A	********	AJC	FEP
ı	REV	DATE	DESCRICTO	MNES	DRAWN BY	CHECKED BY
	=	S 41	C	*****	7.72	

IT IS A VIOLATION OF LAW POR ANY PERSON, UNLES THEY ARE ACTING UNDER THE DIRECTION OF THE RESPONSIBLE LICENSED PROFFESIONAL ENGINEER, TO ALTER THIS DOCUMENT.

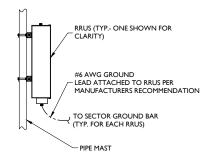
SITE NAME:

MILFORD - BONA ST. FA# 10035338 SITE # CTL02082

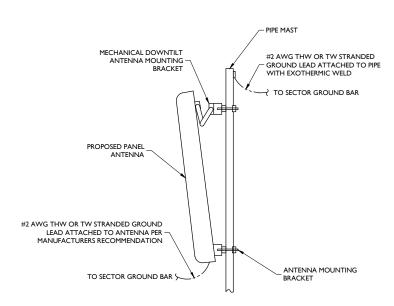
10 BONA STREET MILFORD, CT 06460 NEW HAVEN COUNTY

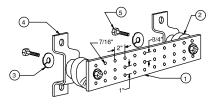

RED BANK OFFICE
331 Newman Springs Road
Suite 203

Red Bank, NJ 07701 Phone: 732.383.1950 Fax: 732.383.1984



RF PLUMBING DIAGRAMS


NUMBER :

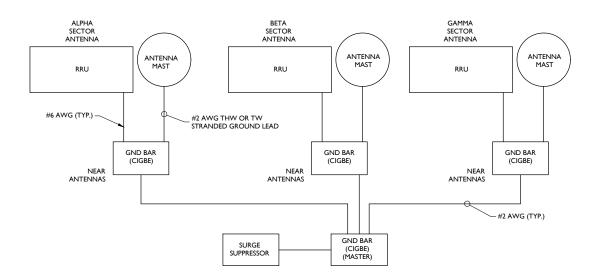

CADWELD DETAILS

RRU GROUNDING

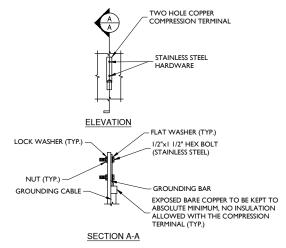
ANTENNA GROUNDING

LEGEND

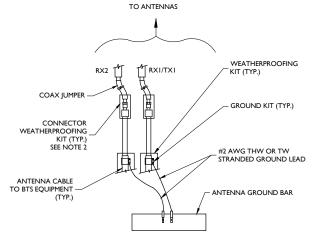
- I- TINNED COPPER GROUND BAR, I/4"x4"x20", NEWTON INSTRUMENT CO. CAT. NO. B-6142 OR EQUAL. HOLE CENTERS TO MATCH NEMA DOUBLE LUG CONFIGURATION.
- 2- INSULATORS, NEWTON INSTRUMENT CAT, NO. 3061-4
- 3- 5/8" LOCKWASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8
- 4- WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. CAT NO. A-5056
- 5- 5/8-11 X I" HHCS BOLTS, NEWTON INSTRUMENT CO. CAT NO. 3012-1
- 6- EACH GROUND CONDUCTOR TERMINATING ON ANY GROUND BAR HAVE AN IDENTIFICATION TAG ATTACHED AT EACH END THAT WILL IDENTIFY ITS ORIGIN AND DESTINATION.


SECTION "P" - SURGE PRODUCERS

CABLE ENTRY PORTS (HATCH PLATES) (#2)
GENERATOR FRAMEWORK (IF AVAILABLE) (#2)
TELCO GROUND BAR
COMMERCIAL POWER COMMON NEUTRAL/GROUND BOND (#2)
+244 POWER SUPPLY RETURN BAR (#2)
-48V POWER SUPPLT RETURN BAR (#2)
RECTIFIER FRAMES.


SECTION "A" - SURGE ABSORBERS

INTERIOR GROUND RING (#2) EXTERNAL EARTH GROUND FIELD (BURIED GROUND RING) (#2) METALLIC COLD WATER PIPE (IF AVAILABLE) (#2) BUILDING STEEL (IF AVAILABLE) (#2)


MASTER GROUND BAR

SCHEMATIC DIAGRAM GROUNDING SYSTEM

TYPICAL GROUND BAR CONNECTION DETAIL NOT TO SCALE

NOTE

- DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO ANTENNA GROUND BAR.
- WEATHER PROOFING SHALL BE TWO-PART TAPE KIT, COLD SHRINK SHALL NOT BE USED.

TYPICAL GROUND WIRE
TO GROUNDING BAR
NOT TO SCALE

NORTH BILLERICA, MA 01862

TEL: (774) 369-3613

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

SCALE: 100 NUMBER: 16946013A

AS SHOWN 16946013A

1 01/25/17 FOR CONSTRUCTION RA FEP
0 10/21/16 ISSUE FOR FEP
REV DATE DESERVINO AC FEP
85 APANN CHECKE

S A VIOLATORN OF LAW FOR AN VERSON, UNLE HEY ARE ACTING UNBENTIME DIRECTION OF THE PONSIBLE LICENSED PROFESSIONAL ENGINEER, T ALTER THIS DOCUMENT.

SITE NAME:

MILFORD - BONA ST. FA# 10035338 SITE # CTL02082

10 BONA STREET MILFORD, CT 06460 NEW HAVEN COUNTY

331 Newman Springs Road Suite 203 Red Bank, NJ 07701 Phone: 732.383.1950 Fax: 732.383.1984

oman ociationog

GROUNDING DETAILS

_

G-I

Date: February 09, 2017

Charles Trask Crown Castle

3530 Toringdon Way Suite 300

Charlotte, NC 28277

CROWN CASTLE

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 724-416-2000

Subject:

Structural Analysis Report

Carrier Designation:

AT&T Mobility Co-Locate

Carrier Site Number:

Carrier Site Name:

CTL02082

Milford Bona Street

Crown Castle Designation:

Crown Castle BU Number:

Crown Castle Site Name: Crown Castle JDE Job Number: **Crown Castle Work Order Number:**

Crown Castle Application Number:

873633 Milford

415756 1358100

374373 Rev. 0

Engineering Firm Designation:

Crown Castle Project Number:

1358100

Site Data:

10 Bona Street, MILFORD, New Haven County, CT Latitude 41° 13' 12.27", Longitude -73° 4' 38.56"

133 Foot - Monopole Tower

Dear Charles Trask.

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 1358100, in accordance with application 374373, revision 0.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

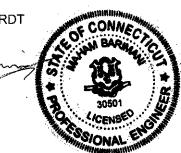
LC5: Existing + Proposed Equipment

Note: See Table I and Table II for the proposed and existing loading, respectively.

Sufficient Capacity

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 125 mph converted to a nominal 3-second gust wind speed of 97 mph per Section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception #5 of Section 1609.1.1. Exposure Category C and Risk Category II was/were used in this analysis.

All modifications and equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.


We at Crown Castle appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Structural analysis prepared by: Matthew Schmitt, E.I.T. / RDT

Respectfully submitted by:

Maham Barimani, P.E. Senior Project Engineer

tnxTower Report - version 7.0.5.1

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information

Table 2 - Existing Antenna and Cable Information

Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Table 6 - Tower Components vs. Capacity - LC5

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 133 ft Monopole tower designed by SUMMIT in December of 2001. The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-F.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA-222-G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a 3-second gust wind speed of 97 mph with no ice, 50 mph with 0.75 inch ice thickness and 60 mph under service loads, exposure category C.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Elevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		3	andrew	SBNHH-1D65A w/ Mount Pipe		3/4 3/8	
		3	cci antennas	OPA-65R-LCUU-H4 w/ Mount Pipe	2		
133.0	136.0	2	commscope	WCS-IMFQ-AMT			-
		3	ericsson	RRUS 32			
	3		ericsson	RRUS 32 B30			
		1	raycap	DC6-48-60-18-8F			

Table 2 - Existing Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		3	ericsson	RRUS-11			
		1	raycap	DC6-48-60-18-8F	12 2 1	1-5/8 7/8 17/64	
		3	powerwave technologies	7770.00 w/ Mount Pipe			1
	136.0	12	powerwave technologies	LGP21401			
133.0		3	powerwave technologies	7770.00 w/ Mount Pipe			
		3	kmw communications	AM-X-CD-14-65-00T-RET w/ Mount Pipe	-	-	2
		3	ericsson	RRUS-11			
	133.0	1 tower mounts Platform Mount [1]		Platform Mount [LP 1201-	-	-	1
	115.0	1	rfs celwave	DB-T1-6Z-8AB-0Z			
115.0		1	tower mounts	Side Arm Mount [SO 201-	-	-	1

		3	alcatel lucent	9442 RRH2X40-AWS TMA			
		3	antel BXA-171063-8BF-2 w/ Mount Pipe			1-5/8	
113.0	113.0	3	antel	antel BXA-171063-8BF-EDIN-4 w/ Mount Pipe			1
		6 antel LPA-80090/4CF w/ Mount Pipe	'	1-1/4			
	3 swedcom	swedcom	SWCP 2x5514 w/ Mount Pipe				
		1	tower mounts	Platform Mount [LP 303-1]			

Notes:

Existing Equipment

1) 2) Equipment To Be Removed; Not Considered in Analysis

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)		
		1		5/8" Lightning Rod				
133	133	12	decibel	DB896H Panel Antenna	-	-		
		1	summit	14' L.P. Platform				
123	123	100	123	12	dapa	48000 PCS Panel Antenna		
123		1	summit	14' Clamp-On L.P. Platform	_	_		
113	113	112	12	dapa	48000 PCS Panel Antenna			
113		1		summit	14' Clamp-On L.P. Platform	_	_	
103	103	12	dapa	48000 PCS Panel Antenna				
103	103	1	summit	14' Clamp-On L.P. Platform	_	_		
93	93	12	dapa	48000 PCS Panel Antenna				
93	93	1	summit	14' Clamp-On L.P. Platform	_	_		
83	83	12	dapa	48000 PCS Panel Antenna				
03	03	1	summit	14' Clamp-On L.P. Platform	_	_		

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source				
4-GEOTECHNICAL REPORTS	Criscuolo Shepard & Associates	1340372	CCISITES				
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Summit	1340388	CCISITES				
4-TOWER MANUFACTURER DRAWINGS	Summit	1339622	CCISITES				

3.1) Analysis Method

tnxTower (version 7.0.5.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) It is unknown whether the foundation is a drilled shaft or pier and pad. Both designs were analyzed and determined to be sufficient.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

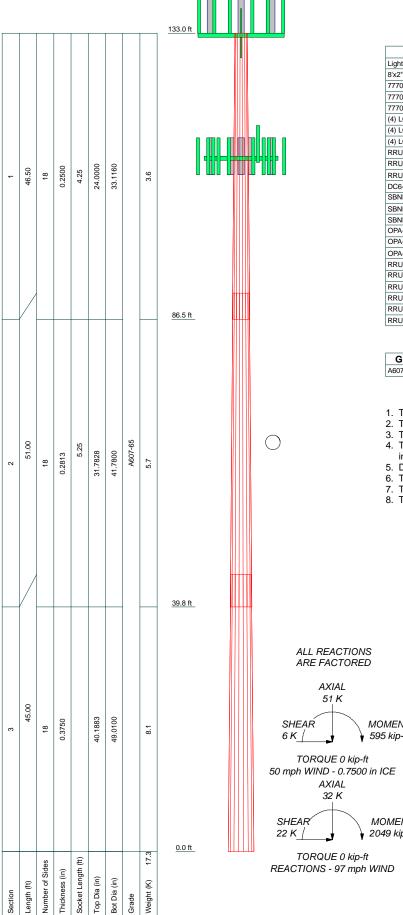
4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	133 - 86.5	Pole	TP33.116x24x0.25	1	-10.81	1755.51	38.0	Pass
L2	86.5 - 39.75	Pole	TP41.78x31.7828x0.2813	2	-19.27	2389.63	59.0	Pass
L3	39.75 - 0	Pole	TP49.01x40.1883x0.375	3	-31.90	3981.21	52.3	Pass
							Summary	
						Pole (L2)	59.0	Pass
						RATING =	59.0	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	41.2	Pass
1	Base Plate	0	44.9	Pass
1	Base Foundation	0	38.0	Pass
1	Base Foundation Soil Interaction	0	37.5	Pass


	Structure Rating (max from all components) =	59.0%
Notes:		

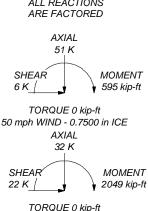
See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the % capacity.

The tower and its foundation have sufficient capacity to carry the existing and proposed loads. No modifications are required at this time.

^{4.1)} Recommendations

APPENDIX A TNXTOWER OUTPUT

DESIGNED APPURTENANCE LOADING


TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod 3/4"x4'	133	(2) WCS-IMFQ-AMT	133
8'x2" Antenna Mount Pipe	133	DC6-48-60-18-8F	133
7770.00 w/ Mount Pipe	133	Platform Mount [LP 1201-1]	133
7770.00 w/ Mount Pipe	133	DB-T1-6Z-8AB-0Z	115
7770.00 w/ Mount Pipe	133	Side Arm Mount [SO 201-1]	115
(4) LGP21401	133	Platform Mount [LP 303-1]	113
(4) LGP21401	133	(2) LPA-80090/4CF w/ Mount Pipe	113
(4) LGP21401	133	(2) LPA-80090/4CF w/ Mount Pipe	113
RRUS-11	133	(2) LPA-80090/4CF w/ Mount Pipe	113
RRUS-11	133	SWCP 2x5514 w/ Mount Pipe	113
RRUS-11	133	SWCP 2x5514 w/ Mount Pipe	113
DC6-48-60-18-8F	133	SWCP 2x5514 w/ Mount Pipe	113
SBNHH-1D65A w/ Mount Pipe	133	BXA-171063-8BF-2 w/ Mount Pipe	113
SBNHH-1D65A w/ Mount Pipe	133	BXA-171063-8BF-2 w/ Mount Pipe	113
SBNHH-1D65A w/ Mount Pipe	133	BXA-171063-8BF-2 w/ Mount Pipe	113
OPA-65R-LCUU-H4 w/ Mount Pipe	133	BXA-171063-8BF-EDIN-4 w/ Mount	113
OPA-65R-LCUU-H4 w/ Mount Pipe	133	Pipe	
OPA-65R-LCUU-H4 w/ Mount Pipe	133	BXA-171063-8BF-EDIN-4 w/ Mount Pipe	113
RRUS 32	133	· .	
RRUS 32	133	BXA-171063-8BF-EDIN-4 w/ Mount Pipe	113
RRUS 32	133	9442 RRH2X40-AWS TMA	113
RRUS 32 B30	133	9442 RRH2X40-AWS TMA	113
RRUS 32 B30	133	9442 RRH2X40-AWS TMA	113
RRUS 32 B30	133	5442 IXIX 12A40-AWS TWA	113

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A607-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- 1. Tower is located in New Haven County, Connecticut.
- 2. Tower designed for Exposure C to the TIA-222-G Standard.
- 3. Tower designed for a 97 mph basic wind in accordance with the TIA-222-G Standard.
- 4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- 6. Tower Structure Class II.
- 7. Topographic Category 1 with Crest Height of 0.00 ft 8. TOWER RATING: 59%

Tower Input Data

There is a pole section.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

- 1) Tower is located in New Haven County, Connecticut.
- 2) Basic wind speed of 97 mph.
- 3) Structure Class II.
- 4) Exposure Category C.
- 5) Topographic Category 1.
- 6) Crest Height 0.00 ft.
- 7) Nominal ice thickness of 0.7500 in.
- 8) Ice thickness is considered to increase with height.
- 9) Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- 11) Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- 14) Pressures are calculated at each section.
- 15) Stress ratio used in pole design is 1.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
 √ Project Wind Area of Appurt.
- Troject Willia / Il da di / Appart

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque
Include Angle Block Shear Check
Use TIA-222-G Bracing Resist.
Exemption
Use TIA-222-G Tension Splice

Use TIA-222-G Tension Splice Exemption

Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	133.00-86.50	46.50	4.25	18	24.0000	33.1160	0.2500	1.0000	A607-65 (65 ksi)
L2	86.50-39.75	51.00	5.25	18	31.7828	41.7800	0.2813	1.1252	À607-65 (65 ksi)
L3	39.75-0.00	45.00		18	40.1883	49.0100	0.3750	1.5000	A607-65 (65 ksi)

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
L1	24.3702	18.8456	1342.9976	8.4313	12.1920	110.1540	2687.7623	9.4246	3.7840	15.136
	33.6269	26.0792	3558.9750	11.6674	16.8229	211.5550	7122.6329	13.0421	5.3884	21.554
L2	33.1191	28.1260	3526.2127	11.1830	16.1457	218.3999	7057.0654	14.0657	5.0987	18.125
	42.4245	37.0520	8061.5320	14.7320	21.2242	379.8267	16133.671 5	18.5295	6.8582	24.38
L3	41.8533	47.3878	9489.8522	14.1337	20.4156	464.8323	18992.191 4	23.6984	6.4131	17.102
	49.7661	57.8878	17299.055	17.2654	24.8971	694.8227	34620.874	28.9494	7.9658	21.242
			9				3			

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor At	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in				Diagoriais in	in	in
L1 133.00-			1	1	1			
86.50								
L2 86.50-			1	1	1			
39.75								
L3 39.75-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Component	Placement	Total		$C_A A_A$	Weight
	or	Shield	Type	£,	Number		£0 /£1	1.15
	Leg			ft			ft ^e /ft	klf
LCF158-50A(1-5/8)	С	No	Inside Pole	133.00 - 0.00	12	No Ice	0.00	0.00
						1/2" Ice	0.00	0.00
						1" Ice	0.00	0.00
6-8AWG 3 PAIR(7/8)	С	No	Inside Pole	133.00 - 0.00	2	No Ice	0.00	0.00
						1/2" Ice	0.00	0.00
						1" Ice	0.00	0.00
A-DQZNB2Yn1750	С	No	Inside Pole	133.00 - 0.00	1	No Ice	0.00	0.00
N(17/64)						1/2" Ice	0.00	0.00
, ,						1" Ice	0.00	0.00
FB-L98B-034-	С	No	Inside Pole	133.00 - 0.00	1	No Ice	0.00	0.00
XXXXXX(3/8)						1/2" Ice	0.00	0.00
` '						1" Ice	0.00	0.00
WR-VG86ST-BRD(3/4)	С	No	Inside Pole	133.00 - 0.00	2	No Ice	0.00	0.00
` ,						1/2" Ice	0.00	0.00
						1" Ice	0.00	0.00
561(1-5/8)	С	No	Inside Pole	113.00 - 0.00	12	No Ice	0.00	0.00
,						1/2" Ice	0.00	0.00
						1" Ice	0.00	0.00
LDF6-50A(1-1/4)	С	No	Inside Pole	113.00 - 0.00	1	No Ice	0.00	0.00
,						1/2" Ice	0.00	0.00
						1" Ice	0.00	0.00
* 3" Conduit	С	No	Inside Pole	113.00 - 0.00	1	No Ice	0.00	0.00
3 Sondan	9	140	illoide i die	110.00 - 0.00	•	1/2" Ice	0.00	0.00
						1" Ice	0.00	0.00

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	C_AA_A	C_AA_A	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft²	ft ²	ft ²	ft ²	K
L1	133.00-86.50	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	1.09

Tower Sectio	Tower Elevation	Face	A _R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		f t²	ft ²	ft ²	ft ²	K
L2	86.50-39.75	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	1.49
L3	39.75-0.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	1.26

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	lce Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft ²	ft ²	f t²	ft ²	K
L1	133.00-86.50	Α	1.690	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	1.09
L2	86.50-39.75	Α	1.599	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	1.49
L3	39.75-0.00	Α	1.427	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	1.26

Feed Line Center of Pressure

Section	Elevation	CPx	CPz	CPx	CPz
				lce	Ice
	ft	in	in	in	in
L1	133.00-86.50	0.0000	0.0000	0.0000	0.0000
L2	86.50-39.75	0.0000	0.0000	0.0000	0.0000
L3	39.75-0.00	0.0000	0.0000	0.0000	0.0000

Shielding Factor Ka

	eed Line Description	Feed Line Segment Elev.	K₄ No Ice	K₄ Ice
--	----------------------	-------------------------------	--------------	-----------

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft ²	ft²	K
Lightning Rod 3/4"x4'	С	None		0.0000	133.00	No Ice 1/2" Ice 1" Ice	0.30 0.71 1.00	0.30 0.71 1.00	0.02 0.02 0.03
8'x2" Antenna Mount Pipe	Α	None		0.0000	133.00	No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.03 0.04 0.06

- . . - .

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft²	ft²	К
7770.00 w/ Mount Pipe	Α	From Leg	4.00 0.00 3.00	0.0000	133.00	No Ice 1/2" Ice	5.75 6.18 6.61	4.25 5.01 5.71	0.06 0.10 0.16
7770.00 w/ Mount Pipe	В	From Leg	4.00 0.00 3.00	0.0000	133.00	1" Ice No Ice 1/2" Ice	5.75 6.18 6.61	4.25 5.01 5.71	0.06 0.10 0.16
7770.00 w/ Mount Pipe	С	From Leg	4.00 0.00 3.00	0.0000	133.00	1" Ice No Ice 1/2" Ice	5.75 6.18 6.61	4.25 5.01 5.71	0.06 0.10 0.16
(4) LGP21401	Α	From Leg	4.00 0.00 3.00	0.0000	133.00	1" Ice No Ice 1/2" Ice	1.10 1.24 1.38	0.21 0.27 0.35	0.01 0.02 0.03
(4) LGP21401	В	From Leg	4.00 0.00 3.00	0.0000	133.00	1" Ice No Ice 1/2" Ice	1.10 1.24 1.38	0.21 0.27 0.35	0.01 0.02 0.03
(4) LGP21401	С	From Leg	4.00 0.00 3.00	0.0000	133.00	1" Ice No Ice 1/2" Ice	1.10 1.24 1.38	0.21 0.27 0.35	0.01 0.02 0.03
RRUS-11	С	From Leg	4.00 0.00 3.00	0.0000	133.00	1" Ice No Ice 1/2" Ice	2.78 2.99 3.21	1.19 1.33 1.49	0.05 0.07 0.09
RRUS-11	Α	From Leg	4.00 0.00 3.00	0.0000	133.00	1" Ice No Ice 1/2" Ice 1" Ice	2.78 2.99 3.21	1.19 1.33 1.49	0.05 0.07 0.09
RRUS-11	В	From Leg	4.00 0.00 3.00	0.0000	133.00	No Ice 1/2" Ice 1" Ice	2.78 2.99 3.21	1.19 1.33 1.49	0.05 0.07 0.09
DC6-48-60-18-8F	Α	From Leg	4.00 0.00 3.00	0.0000	133.00	No Ice 1/2" Ice 1" Ice	0.79 1.27 1.45	0.79 1.27 1.45	0.02 0.04 0.05
SBNHH-1D65A w/ Mount Pipe	Α	From Leg	4.00 0.00 3.00	0.0000	133.00	No Ice 1/2" Ice 1" Ice	5.95 6.39 6.82	5.19 5.96 6.66	0.06 0.11 0.17
SBNHH-1D65A w/ Mount Pipe	В	From Leg	4.00 0.00 3.00	0.0000	133.00	No Ice 1/2" Ice 1" Ice	5.95 6.39 6.82	5.19 5.96 6.66	0.06 0.11 0.17
SBNHH-1D65A w/ Mount Pipe	С	From Leg	4.00 0.00 3.00	0.0000	133.00	No Ice 1/2" Ice	5.95 6.39 6.82	5.19 5.96 6.66	0.06 0.11 0.17
OPA-65R-LCUU-H4 w/ Mount Pipe	Α	From Leg	4.00 0.00 3.00	0.0000	133.00	1" Ice No Ice 1/2" Ice	6.18 6.57 6.98	4.55 5.16 5.78	0.08 0.13 0.19
OPA-65R-LCUU-H4 w/ Mount Pipe	В	From Leg	4.00 0.00 3.00	0.0000	133.00	1" Ice No Ice 1/2" Ice 1" Ice	6.18 6.57 6.98	4.55 5.16 5.78	0.08 0.13 0.19
OPA-65R-LCUU-H4 w/ Mount Pipe	С	From Leg	4.00 0.00 3.00	0.0000	133.00	No Ice 1/2" Ice	6.18 6.57 6.98	4.55 5.16 5.78	0.08 0.13 0.19
RRUS 32	Α	From Leg	4.00	0.0000	133.00	1" Ice No Ice	2.86	1.78	0.06

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft²	ft ²	K
			0.00 3.00			1/2" Ice 1" Ice	3.08 3.32	1.97 2.17	0.08 0.10
RRUS 32	В	From Leg	4.00 0.00 3.00	0.0000	133.00	No Ice 1/2" Ice 1" Ice	2.86 3.08 3.32	1.78 1.97 2.17	0.06 0.08 0.10
RRUS 32	С	From Leg	4.00 0.00 3.00	0.0000	133.00	No Ice 1/2" Ice 1" Ice	2.86 3.08 3.32	1.78 1.97 2.17	0.06 0.08 0.10
RRUS 32 B30	Α	From Leg	4.00 0.00 3.00	0.0000	133.00	No Ice 1/2" Ice 1" Ice	2.69 2.91 3.14	1.57 1.76 1.95	0.06 0.08 0.10
RRUS 32 B30	В	From Leg	4.00 0.00 3.00	0.0000	133.00	No Ice 1/2" Ice 1" Ice	2.69 2.91 3.14	1.57 1.76 1.95	0.06 0.08 0.10
RRUS 32 B30	С	From Leg	4.00 0.00 3.00	0.0000	133.00	No Ice 1/2" Ice 1" Ice	2.69 2.91 3.14	1.57 1.76 1.95	0.06 0.08 0.10
(2) WCS-IMFQ-AMT	С	From Leg	4.00 0.00 3.00	0.0000	133.00	No Ice 1/2" Ice 1" Ice	0.99 1.11 1.25	0.64 0.75 0.86	0.03 0.04 0.05
DC6-48-60-18-8F	С	From Leg	4.00 0.00 3.00	0.0000	133.00	No Ice 1/2" Ice 1" Ice	0.79 1.27 1.45	0.79 1.27 1.45	0.02 0.04 0.05
Platform Mount [LP 1201- 1]	Α	None		0.0000	133.00	No Ice 1/2" Ice 1" Ice	23.10 26.80 30.50	23.10 26.80 30.50	2.10 2.50 2.90
DB-T1-6Z-8AB-0Z	В	From Leg	2.00 0.00 0.00	0.0000	115.00	No Ice 1/2" Ice 1" Ice	4.80 5.07 5.35	2.00 2.19 2.39	0.04 0.08 0.12
Side Arm Mount [SO 201- 1]	В	None		0.0000	115.00	No Ice 1/2" Ice 1" Ice	2.96 4.10 5.24	2.11 2.93 3.75	0.10 0.12 0.14
Platform Mount [LP 303-1]	Α	None		0.0000	113.00	No Ice 1/2" Ice 1" Ice	14.66 18.87 23.08	14.66 18.87 23.08	1.25 1.48 1.71
(2) LPA-80090/4CF w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	113.00	No Ice 1/2" Ice 1" Ice	2.86 3.22 3.59	5.21 5.82 6.44	0.03 0.07 0.11
(2) LPA-80090/4CF w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	113.00	No Ice 1/2" Ice 1" Ice	2.86 3.22 3.59	5.21 5.82 6.44	0.03 0.07 0.11
(2) LPA-80090/4CF w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	113.00	No Ice 1/2" Ice 1" Ice	2.86 3.22 3.59	5.21 5.82 6.44	0.03 0.07 0.11
SWCP 2x5514 w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	113.00	No Ice 1/2" Ice 1" Ice	6.52 6.95 7.37	6.53 7.24 7.92	0.04 0.10 0.17

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	К
SWCP 2x5514 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	113.00	No Ice 1/2" Ice 1" Ice	6.52 6.95 7.37	6.53 7.24 7.92	0.04 0.10 0.17
SWCP 2x5514 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	113.00	No Ice 1/2" Ice 1" Ice	6.52 6.95 7.37	6.53 7.24 7.92	0.04 0.10 0.17
BXA-171063-8BF-2 w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	113.00	No Ice 1/2" Ice 1" Ice	3.18 3.56 3.93	3.35 3.97 4.60	0.03 0.06 0.10
BXA-171063-8BF-2 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	113.00	No Ice 1/2" Ice 1" Ice	3.18 3.56 3.93	3.35 3.97 4.60	0.03 0.06 0.10
BXA-171063-8BF-2 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	113.00	No Ice 1/2" Ice 1" Ice	3.18 3.56 3.93	3.35 3.97 4.60	0.03 0.06 0.10
BXA-171063-8BF-EDIN-4 w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	113.00	No Ice 1/2" Ice 1" Ice	3.41 3.88 4.35	3.58 4.38 5.06	0.03 0.07 0.11
BXA-171063-8BF-EDIN-4 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	113.00	No Ice 1/2" Ice 1" Ice	3.41 3.88 4.35	3.58 4.38 5.06	0.03 0.07 0.11
BXA-171063-8BF-EDIN-4 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	113.00	No Ice 1/2" Ice 1" Ice	3.41 3.88 4.35	3.58 4.38 5.06	0.03 0.07 0.11
9442 RRH2X40-AWS TMA	Α	From Leg	4.00 0.00 0.00	0.0000	113.00	No Ice 1/2" Ice 1" Ice	2.51 2.75 2.99	1.59 1.80 2.01	0.04 0.06 0.08
9442 RRH2X40-AWS TMA	В	From Leg	4.00 0.00 0.00	0.0000	113.00	No Ice 1/2" Ice	2.51 2.75 2.99	1.59 1.80 2.01	0.04 0.06 0.08
9442 RRH2X40-AWS TMA	С	From Leg	4.00 0.00 0.00	0.0000	113.00	1" Ice No Ice 1/2" Ice 1" Ice	2.51 2.75 2.99	1.59 1.80 2.01	0.04 0.06 0.08

Load Combinations

Comb. No.		Description
110.		
1	Dead Only	
2	1.2 Dead+1.6 Wind 0 deg - No Ice	
3	0.9 Dead+1.6 Wind 0 deg - No Ice	
4	1.2 Dead+1.6 Wind 30 deg - No Ice	
5	0.9 Dead+1.6 Wind 30 deg - No Ice	
6	1.2 Dead+1.6 Wind 60 deg - No Ice	
7	0.9 Dead+1.6 Wind 60 deg - No Ice	
8	1.2 Dead+1.6 Wind 90 deg - No Ice	
9	0.9 Dead+1.6 Wind 90 deg - No Ice	
10	1.2 Dead+1.6 Wind 120 deg - No Ice	
11	0.9 Dead+1.6 Wind 120 deg - No Ice	
12	1.2 Dead+1.6 Wind 150 deg - No Ice	
13	0.9 Dead+1.6 Wind 150 deg - No Ice	

Comb.	Description
No.	
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44 45	Dead+Wind 150 deg - Service
	Dead+Wind 180 deg - Service
46 47	Dead+Wind 210 deg - Service
4 <i>7</i> 48	Dead+Wind 240 deg - Service
46 49	Dead+Wind 270 deg - Service Dead+Wind 300 deg - Service
49 50	Dead+Wind 330 deg - Service Dead+Wind 330 deg - Service
50	Deau-villiu 330 deg - Selvice

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
L1	133 - 86.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-22.79	0.54	-0.49
			Max. Mx	20	-10.81	432.33	0.66
			Max. My	14	-10.82	-0.57	-429.49
			Max. Vy	20	-13.75	432.33	0.66
			Max. Vx	14	13.66	-0.57	-429.49
			Max. Torque	14			-0.52
L2	86.5 - 39.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-34.71	0.54	-0.49
			Max. Mx	20	-19.27	1156.55	2.90
			Max. My	14	-19.28	-2.80	-1149.32
			Max. Vy	20	-17.88	1156.55	2.90
			Max. Vx	14	17.79	-2.80	-1149.32
			Max. Torque	22			0.33
L3	39.75 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-50.98	0.54	-0.49
			Max. Mx	20	-31.90	2047.05	5.06
			Max. My	14	-31.90	-4.97	-2035.58
			Max. Vy	20	-21.53	2047.05	5.06
			Max. Vx	14	21.44	-4.97	-2035.58
			Max. Torque	22			0.33

Mavimum	Reactions
IVIAXIIIIUIII	Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	36	50.98	6.36	0.01
	Max. H _x	20	31.91	21.51	0.05
	Max. H _z	2	31.91	0.05	21.42
	Max. M _x	2	2035.17	0.05	21.42
	$Max. M_z$	8	2046.44	-21.51	-0.05
	Max. Torsion	22	0.33	18.65	10.75
	Min. Vert	5	23.93	-10.71	18.53
	Min. H _x	8	31.91	-21.51	-0.05
	Min. H _z	14	31.91	-0.05	-21.42
	Min. M _x	14	-2035.58	-0.05	-21.42
	Min. M _z	20	-2047.05	21.51	0.05
	Min. Torsion	12	-0.32	-10.80	-18.57

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-fť	kip-ft
Dead Only	26.59	0.00	0.00	0.16	0.24	0.00
1.2 Dead+1.6 Wind 0 deg -	31.91	-0.05	-21.42	-2035.17	5.57	-0.22
No Ice	22.02	0.05	24.42	2040.25	F 4F	0.04
0.9 Dead+1.6 Wind 0 deg - No Ice	23.93	-0.05	-21.42	-2018.35	5.45	-0.21
1.2 Dead+1.6 Wind 30 deg -	31.91	10.71	-18.53	-1759.85	-1018.52	-0.07
No Ice	0					0.0.
0.9 Dead+1.6 Wind 30 deg -	23.93	10.71	-18.53	-1745.31	-1010.15	-0.07
No Ice	24.24			101001	4=00.04	
1.2 Dead+1.6 Wind 60 deg - No Ice	31.91	18.61	-10.67	-1012.91	-1769.61	0.09
0.9 Dead+1.6 Wind 60 deg -	23.93	18.61	-10.67	-1004.57	-1755.01	0.09
No Ice	20.00	10.01	10.07	1004.01	1700.01	0.00
1.2 Dead+1.6 Wind 90 deg -	31.91	21.51	0.05	5.48	-2046.44	0.24
No Ice						
0.9 Dead+1.6 Wind 90 deg -	23.93	21.51	0.05	5.38	-2029.55	0.23
No Ice 1.2 Dead+1.6 Wind 120 deg	31.91	18.65	10.75	1022.45	-1774.87	0.32
- No Ice	01.01	10.00	10.73	1022.40	-1114.01	0.02
0.9 Dead+1.6 Wind 120 deg	23.93	18.65	10.75	1013.92	-1760.23	0.32
- No Ice						
1.2 Dead+1.6 Wind 150 deg	31.91	10.80	18.57	1765.52	-1027.64	0.32
- No Ice 0.9 Dead+1.6 Wind 150 deg	23.93	10.80	18.57	1750.84	-1019.20	0.31
- No Ice	20.00	10.00	10.57	1730.04	-1015.20	0.01
1.2 Dead+1.6 Wind 180 deg	31.91	0.05	21.42	2035.58	-4.97	0.23
- No Ice						
0.9 Dead+1.6 Wind 180 deg	23.93	0.05	21.42	2018.66	-5.00	0.23
- No Ice 1.2 Dead+1.6 Wind 210 deg	31.91	-10.71	18.53	1760.26	1019.12	0.08
- No Ice	01.01	10.71	10.00	1700.20	1010.12	0.00
0.9 Dead+1.6 Wind 210 deg	23.93	-10.71	18.53	1745.62	1010.60	0.07
- No Ice						
1.2 Dead+1.6 Wind 240 deg	31.91	-18.61	10.67	1013.33	1770.21	-0.10
No Ice0.9 Dead+1.6 Wind 240 deg	23.93	-18.61	10.67	1004.88	1755.46	-0.10
- No Ice	25.95	-10.01	10.07	1004.00	1755.40	-0.10
1.2 Dead+1.6 Wind 270 deg	31.91	-21.51	-0.05	-5.06	2047.05	-0.25
- No Ice						
0.9 Dead+1.6 Wind 270 deg	23.93	-21.51	-0.05	-5.07	2030.00	-0.25
- No Ice 1.2 Dead+1.6 Wind 300 deg	31.91	-18.65	-10.75	-1022.03	1775.47	-0.33
- No Ice	31.81	-10.03	-10.75	-1022.03	1773.47	-0.33
0.9 Dead+1.6 Wind 300 deg	23.93	-18.65	-10.75	-1013.62	1760.67	-0.32
3						

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
- No Ice				•		•
1.2 Dead+1.6 Wind 330 deg - No Ice	31.91	-10.80	-18.57	-1765.11	1028.24	-0.31
0.9 Dead+1.6 Wind 330 deg	23.93	-10.80	-18.57	-1750.53	1019.64	-0.31
- No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	50.98	0.00	0.00	0.49	0.54	0.00
1.2 Dead+1.0 Wind 0	50.98	-0.01	-6.34	-591.87	1.55	-0.10
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30	50.98	3.17	-5.49	-512.03	-295.88	-0.06
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60	50.98	5.50	-3.16	-294.85	-513.86	-0.01
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90	50.98	6.36	0.01	1.49	-594.00	0.05
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	50.98	5.51	3.18	297.57	-514.80	0.09
deg+1.0 Ice+1.0 Temp	50.00	0.40	5.50	544.00	007.54	0.44
1.2 Dead+1.0 Wind 150	50.98	3.19	5.50	514.06	-297.51	0.11
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180	50.98	0.01	6.34	592.96	-0.33	0.10
deg+1.0 lce+1.0 Temp	30.96	0.01	0.34	392.90	-0.33	0.10
1.2 Dead+1.0 Wind 210	50.98	-3.17	5.49	513.12	297.10	0.06
deg+1.0 Ice+1.0 Temp	30.50	-0.17	3.43	313.12	237.10	0.00
1.2 Dead+1.0 Wind 240	50.98	-5.50	3.16	295.93	515.08	0.01
deg+1.0 Ice+1.0 Temp	00.00	0.00	0.10	200.00	010.00	0.01
1.2 Dead+1.0 Wind 270	50.98	-6.36	-0.01	-0.40	595.22	-0.05
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	50.98	-5.51	-3.18	-296.48	516.03	-0.09
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	50.98	-3.19	-5.50	-512.97	298.73	-0.11
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	26.59	-0.01	-4.58	-433.24	1.37	-0.05
Dead+Wind 30 deg - Service	26.59	2.29	-3.96	-374.61	-216.70	-0.02
Dead+Wind 60 deg - Service	26.59	3.98	-2.28	-215.56	-376.63	0.02
Dead+Wind 90 deg - Service	26.59	4.60	0.01	1.29	-435.58	0.05
Dead+Wind 120 deg -	26.59	3.99	2.30	217.85	-377.75	0.07
Service	00.50	0.04	0.07	070.00	040.04	0.07
Dead+Wind 150 deg -	26.59	2.31	3.97	376.08	-218.64	0.07
Service	26.59	0.01	4.58	433.58	-0.87	0.05
Dead+Wind 180 deg - Service	20.59	0.01	4.30	433.30	-0.07	0.05
Dead+Wind 210 deg -	26.59	-2.29	3.96	374.96	217.20	0.02
Service	20.59	-2.23	3.90	374.30	217.20	0.02
Dead+Wind 240 deg -	26.59	-3.98	2.28	215.90	377.13	-0.02
Service 240 deg	20.00	3.30	2.20	210.00	3, 1, 10	0.02
Dead+Wind 270 deg -	26.59	-4.60	-0.01	-0.95	436.09	-0.05
Service				2.30		2.00
Dead+Wind 300 deg -	26.59	-3.99	-2.30	-217.51	378.26	-0.07
Service						
Dead+Wind 330 deg -	26.59	-2.31	-3.97	-375.73	219.14	-0.07
Service						

Solution Summary

	Sur	n of Applied Force	es		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-26.59	0.00	0.00	26.59	0.00	0.000%
2	-0.05	-31.91	-21.42	0.05	31.91	21.42	0.000%
3	-0.05	-23.93	-21.42	0.05	23.93	21.42	0.000%
4	10.71	-31.91	-18.53	-10.71	31.91	18.53	0.000%
5	10.71	-23.93	-18.53	-10.71	23.93	18.53	0.000%
6	18.61	-31.91	-10.67	-18.61	31.91	10.67	0.000%
7	18.61	-23.93	-10.67	-18.61	23.93	10.67	0.000%
8	21.51	-31.91	0.05	-21.51	31.91	-0.05	0.000%
9	21.51	-23.93	0.05	-21.51	23.93	-0.05	0.000%
10	18.65	-31.91	10.75	-18.65	31.91	-10.75	0.000%

	Sur	n of Applied Force	es		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
11	18.65	-23.93	10.75	-18.65	23.93	-10.75	0.000%
12	10.80	-31.91	18.57	-10.80	31.91	-18.57	0.000%
13	10.80	-23.93	18.57	-10.80	23.93	-18.57	0.000%
14	0.05	-31.91	21.42	-0.05	31.91	-21.42	0.000%
15	0.05	-23.93	21.42	-0.05	23.93	-21.42	0.000%
16	-10.71	-31.91	18.53	10.71	31.91	-18.53	0.000%
17	-10.71	-23.93	18.53	10.71	23.93	-18.53	0.000%
18	-18.61	-31.91	10.67	18.61	31.91	-10.67	0.000%
19	-18.61	-23.93	10.67	18.61	23.93	-10.67	0.000%
20	-21.51	-31.91	-0.05	21.51	31.91	0.05	0.000%
21	-21.51	-23.93	-0.05	21.51	23.93	0.05	0.000%
22	-18.65	-31.91	-10.75	18.65	31.91	10.75	0.000%
23	-18.65	-23.93	-10.75	18.65	23.93	10.75	0.000%
24	-10.80	-31.91	-18.57	10.80	31.91	18.57	0.000%
25	-10.80	-23.93	-18.57	10.80	23.93	18.57	0.000%
26	0.00	-50.98	0.00	0.00	50.98	0.00	0.000%
27	-0.01	-50.98	-6.34	0.01	50.98	6.34	0.000%
28	3.17	-50.98	-5.49	-3.17	50.98	5.49	0.000%
29	5.50	-50.98	-3.16	-5.50	50.98	3.16	0.000%
30	6.36	-50.98	0.01	-6.36	50.98	-0.01	0.000%
31	5.51	-50.98	3.18	-5.51	50.98	-3.18	0.000%
32	3.19	-50.98	5.50	-3.19	50.98	-5.50	0.000%
33	0.01	-50.98	6.34	-0.01	50.98	-6.34	0.000%
34	-3.17	-50.98	5.49	3.17	50.98	-5.49	0.000%
35	-5.50	-50.98	3.16	5.50	50.98	-3.16	0.000%
36	-6.36	-50.98	-0.01	6.36	50.98	0.01	0.000%
37	-5.51	-50.98	-3.18	5.51	50.98	3.18	0.000%
38	-3.19	-50.98	-5.50	3.19	50.98	5.50	0.000%
39	-0.01	-26.59	-4.58	0.01	26.59	4.58	0.000%
40	2.29	-26.59	-3.96	-2.29	26.59	3.96	0.000%
41	3.98	-26.59	-2.28	-3.98	26.59	2.28	0.000%
42	4.60	-26.59	0.01	-4.60	26.59	-0.01	0.000%
43	3.99	-26.59	2.30	-3.99	26.59	-2.30	0.000%
44	2.31	-26.59	3.97	-2.31	26.59	-3.97	0.000%
45	0.01	-26.59	4.58	-0.01	26.59	-4.58	0.000%
46	-2.29	-26.59	3.96	2.29	26.59	-3.96	0.000%
47	-3.98	-26.59	2.28	3.98	26.59	-2.28	0.000%
48	-4.60	-26.59	-0.01	4.60	26.59	0.01	0.000%
49	-3.99	-26.59	-2.30	3.99	26.59	2.30	0.000%
50	-2.31	-26.59	-3.97	2.31	26.59	3.97	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.0000001
2	Yes	4	0.0000001	0.00016723
3	Yes	4	0.0000001	0.00009064
4	Yes	5	0.0000001	0.00023040
5	Yes	5	0.0000001	0.00010414
6	Yes	5	0.0000001	0.00023090
7	Yes	5	0.0000001	0.00010430
8	Yes	4	0.0000001	0.00016129
9	Yes	4	0.0000001	0.00008692
10	Yes	5	0.0000001	0.00023721
11	Yes	5	0.0000001	0.00010707
12	Yes	5	0.0000001	0.00023142
13	Yes	5	0.0000001	0.00010437
14	Yes	4	0.0000001	0.00012051
15	Yes	4	0.0000001	0.00005409
16	Yes	5	0.0000001	0.00023256
17	Yes	5	0.0000001	0.00010507
18	Yes	5	0.0000001	0.00023282
19	Yes	5	0.0000001	0.00010515
20	Yes	4	0.0000001	0.00011503

21	Yes	4	0.0000001	0.00004945
22	Yes	5	0.0000001	0.00023192
23	Yes	5	0.0000001	0.00010453
24	Yes	5	0.0000001	0.00023694
25	Yes	5	0.0000001	0.00010699
26	Yes	4	0.0000001	0.0000001
27	Yes	5	0.0000001	0.00011660
28	Yes	5	0.0000001	0.00014041
29	Yes	5	0.0000001	0.00014083
30	Yes	5	0.0000001	0.00011699
31	Yes	5	0.0000001	0.00014226
32	Yes	5	0.0000001	0.00014146
33	Yes	5	0.0000001	0.00011706
34	Yes	5	0.0000001	0.00014209
35	Yes	5	0.0000001	0.00014207
36	Yes	5	0.0000001	0.00011756
37	Yes	5	0.0000001	0.00014185
38	Yes	5	0.0000001	0.00014225
39	Yes	4	0.0000001	0.00001233
40	Yes	4	0.0000001	0.00007166
41	Yes	4	0.0000001	0.00007196
42	Yes	4	0.0000001	0.00001222
43	Yes	4	0.0000001	0.00007727
44	Yes	4	0.0000001	0.00007109
45	Yes	4	0.0000001	0.00001204
46	Yes	4	0.0000001	0.00007413
47	Yes	4	0.0000001	0.00007420
48	Yes	4	0.0000001	0.00001195
49	Yes	4	0.0000001	0.00007140
50	Yes	4	0.0000001	0.00007722

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	133 - 86.5	13.760	48	0.8908	0.0009
L2	90.75 - 39.75	6.511	49	0.6964	0.0003
L3	45 - 0	1.539	49	0.3131	0.0001

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
133.00	Lightning Rod 3/4"x4'	48	13.760	0.8908	0.0009	62919
115.00	DB-T1-6Z-8AB-0Z	49	10.504	0.8235	0.0006	17477
113.00	Platform Mount [LP 303-1]	49	10.152	0.8152	0.0006	15729

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	133 - 86.5	64.607	22	4.1805	0.0042
L2	90.75 - 39.75	30.588	22	3.2735	0.0014
L3	45 - 0	7.231	22	1.4712	0.0004

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
133.00	Lightning Rod 3/4"x4'	22	64.607	4.1805	0.0043	13534
115.00	DB-T1-6Z-8AB-0Z	22	49.332	3.8683	0.0029	3758
113.00	Platform Mount [LP 303-1]	22	47.680	3.8293	0.0027	3381

Compression Checks

|--|

Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	φPn	Ratio Pu
	ft		ft	ft		in²	K	K	ϕP_n
L1	133 - 86.5 (1)	TP33.116x24x0.25	46.50	0.00	0.0	25.418 0	-10.81	1755.51	0.006
L2	86.5 - 39.75 (2)	TP41.78x31.7828x0.2813	51.00	0.00	0.0	36.133 1	-19.27	2389.63	0.008
L3	39.75 - 0 (3)	TP49.01x40.1883x0.375	45.00	0.00	0.0	57.887 8	-31.90	3981.21	0.008

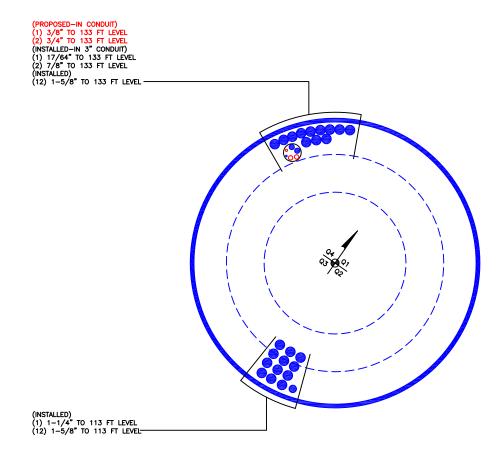
Pole Bending Design Data

Section No.	Elevation	Size	Mux	φM _{nx}	Ratio M _{ux}	Muy	φM _{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	φM _{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	133 - 86.5 (1)	TP33.116x24x0.25	432.33	1156.42	0.374	0.00	1156.42	0.000
L2	86.5 - 39.75 [°] (2)	TP41.78x31.7828x0.2813	1157.31	1990.42	0.581	0.00	1990.42	0.000
L3	39.75 - 0 (3)	TP49.01x40.1883x0.375	2048.63	3982.18	0.514	0.00	3982.18	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V _u	φVn	Ratio Vu	Actual T _u	<i>♦T_n</i>	Ratio T _u
	ft		K	K	φ <i>V</i> _n	kip-ft	kip-ft	ϕT_n
L1	133 - 86.5 (1)	TP33.116x24x0.25	13.75	877.76	0.016	0.25	2315.67	0.000
L2	86.5 - 39.75 (2)	TP41.78x31.7828x0.2813	17.90	1194.82	0.015	0.33	3985.70	0.000
L3	39.75 - 0 (3)	TP49.01x40.1883x0.375	21.55	1990.61	0.011	0.33	7974.10	0.000

Pole Interaction Design Data


Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio Tu	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φM _{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	133 - 86.5 (1)	0.006	0.374	0.000	0.016	0.000	0.380	1.000	482 🗸

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio Tu	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L2	86.5 - 39.75 (2)	0.008	0.581	0.000	0.015	0.000	0.590	1.000	4.8.2
L3	39.75 - 0 (3)	0.008	0.514	0.000	0.011	0.000	0.523	1.000	4.8.2

	Section Capacity Table										
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail			
L1	133 - 86.5	Pole	TP33.116x24x0.25	1	-10.81	1755.51	38.0	Pass			
L2	86.5 - 39.75	Pole	TP41.78x31.7828x0.2813	2	-19.27	2389.63	59.0	Pass			
L3	39.75 - 0	Pole	TP49.01x40.1883x0.375	3	-31.90	3981.21	52.3	Pass			
							Summary				
						Pole (L2)	59.0 ´	Pass			
						RATING =	59.0	Pass			

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Square, Stiffened / Unstiffened Base Plate, Any Rod Material - Rev. F /G

Assumptions:

- 1) Rod groups at corners. Total # rods divisible by 4. Maximum total # of rods = 48 (12 per Corner).
- 2) Rod Spacing = Straight Center-to-Center distance between any (2) adjacent rods (same corner)
- 3) Clear space between bottom of leveling nut and top of concrete **not** exceeding (1)*(Rod Diameter)

Site Data

BU#: 873633 Site Name: *Milford* App #: 374373 Rev 0

Anchor Rod Data			
Eta Factor, η	0.5	TIA G (Fig. 4-4)	
Qty:	16		
Diam:	2.25	in	
Rod Material:	A615-J		
Yield, Fy:	75	ksi	
Strength, Fu:	100	ksi	
Bolt Circle:	60	in	
Anchor Spacing:	6	in	

Plate Data			
W=Side:	58	in	
Thick:	3.25	in	
Grade:	55	ksi	
Clip Distance:	6	in	

Stiffener Data (Welding at both sides)			
Configuration:	Unstiffened		
Weld Type:		**	
Groove Depth:		< Disregard	
Groove Angle:		< Disregard	
Fillet H. Weld:		in	
Fillet V. Weld:		in	
Width:		in	
Height:		in	
Thick:		in	
Notch:		in	
Grade:		ksi	
Weld str.:		ksi	

Pole Data				
Diam:	49.01	in		
Thick:	0.375	in		
Grade:	65	ksi		
# of Sides:	18	"0" IF Round		

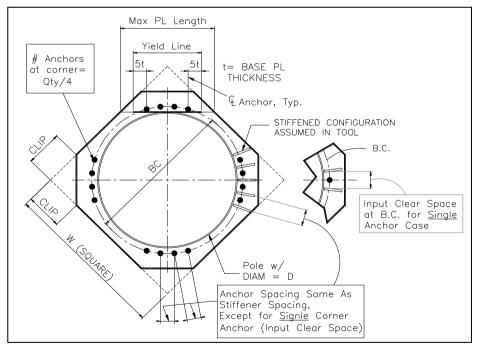
Base Reactions			
TIA Revision:	G		
Factored Moment, Mu:		ft-kips	
Factored Axial, Pu:	32	kips	
Factored Shear, Vu:	22	kips	

Anchor Rod Results

TIA G --> Max Rod (Cu+ Vu/ η): 107.1 Kips Axial Design Strength, Φ *Fu*Anet: 260.0 Kips Anchor Rod Stress Ratio: 41.2% Pass

Base Plate ResultsFlexural CheckBase Plate Stress:22.2 ksiPL Design Bending Strength, Φ*Fy:49.5 ksiBase Plate Stress Ratio:44.9% Pass

PL Ref. Data
Yield Line (in):
33.01
Max PL Length:
33.01


N/A - Unstiffened

Stiffener Results

Horizontal Weld: N/A
Vertical Weld: N/A
Plate Flex+Shear, fb/Fb+(fv/Fv)^2: N/A
Plate Tension+Shear, ft/Ft+(fv/Fv)^2: N/A
Plate Comp. (AISC Bracket): N/A

Pole Results

Pole Punching Shear Check: N/A

^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

CCIplate v2.0 Analysis Date: <u>2/9/2017</u>

Monopole Pier and Pad Foundation

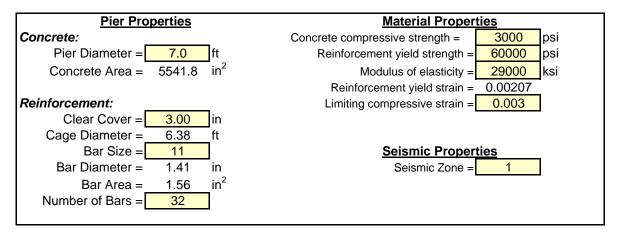
BU #: 873633 Site Name: Milford App. Number: 374373 Rev 0
TIA-222 Revision: G

TIM-ZZZ NEVISION.)	
Design Reactions		
Shear, S:	22	kips
Moment, M:	2049	ft-kips
Tower Height, H:	133	ft
Tower Weight, Wt:	32	kips
Base Diameter, BD:	4.08	ft

Foundation Dimensions		
Depth, D :	7	ft
Pad Width, W :	23.5	ft
Neglected Depth, N:	3.33	ft
Thickness, T:	3.00	ft
Pier Diameter, Pd:	7.00	ft
Ext. Above Grade, E:	0.50	ft
BP Dist. Above Pier:	3	in.
Clear Cover, Cc:	3.0	in

Soil Properties			
Soil Unit Weight, γ:	0.120	kcf	
Ult. Bearing Capacity, Bc:	10.0	ksf	
Angle of Friction, Φ:	30	deg	
Cohesion, Co:	0.000	ksf	
Passive Pressure, Pp :	0.000	ksf	
Base Friction, μ:	0.45		

Material Properties		
Rebar Yield Strength, Fy:	60000	psi
Concrete Strength, F'c:	3000	psi
Concrete Unit Weight, δc:	0.150	kcf
Seismic Zone, z :	1	


Rebar Properties		
Pier Rebar Size, Sp :	11	
Pier Rebar Quanity, mp:	32	18
Pad Rebar Size, Spad:	11	
Pad Rebar Quanity, mpad:	24	6
Pier Tie Size, St :	4	4
Tie Quanity, mt :	12	5

Design Checks				
	Capacity/	Demand/		
	Availability	Limits	Check	
Req'd Pier Diam.(ft)	7	5.584166667	ок	
Overturning (ft-kips)	5458.04	2049.00	37.5%	
Shear Capacity (kips)	205.41	22.00	10.7%	
Bearing (ksf)	7.50	1.87	24.9%	
Pad Shear - 1-way (kips)	748.23	246.05	32.9%	
Pad Shear - 2-way (kips)	1938.78	75.30	3.9%	
Pad Moment Capacity (k-ft)	5177.90	673.35	13.0%	
Pier Moment Capacity (k-ft)	7622.59	2148.00	28.2%	

Maximum Allowable Moment of a Circular Pier

Axial Load (Negative for Compression) = -32.00 kips

Minimum Area of Steel

Required area of steel = $27.71 ext{ in}^2$ Provided area of steel = $49.92 ext{ in}^2$

Axial Loading

Load factor = 1

Reduction factor = 0.9

Factored axial load = -35.5556 kips

Neutral Axis

Distance from extreme edge to neutral axis = 16.33 in
Equivalent compression zone factor = 0.85

Distance from extreme edge to
equivalent compression zone factor = 13.88 in
Distance from centroid to neutral axis = 25.67 in

Compression Zone

 in^2 Area of steel in compression zone = 10.92 Angle from centroid of pier to intersection of equivalent compression zone and edge of pier = 47.98 dea in² Area of concrete in compression = 599.80 Force in concrete = 0.85 * f`c * Acc = 1529.50 kips Total reinforcement forces = -1493.94 kips Factored axial load = -35.56 kips Force in concrete = -1529.50 kips

Sum of the forces in concrete = 0.00 kips **OK**

Maximum Moment

First moment of the concrete

area in compression about the centoid = 20247.63 in³

Distance between centroid of concrete
in compression and centroid of pier = 33.76 in

Moment of concrete in compression = 51631.47 in-kips

Total reinforcement moment = 50003.08 in-kips

Nominal moment strength of column = 101634.54 in-kips

Factored moment strength of column = 91471.09 in-kips

Maximum Allowable Moment = 7622.59 ft-kips

Individual Bars

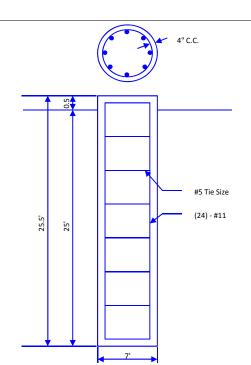
				Distance				
				to		Area of		
	Angle		Distance	equivalent		steel in		
	from first	Distance	to neutral	comp.		compressi		
Bar	bar	to centroid	axis	zone	Strain	on	Stress	Axial force
#	(deg)	(in)	(in)	(in)		(in^2)	(ksi)	(kips)
1	0.00	0.00	-25.67	-28.12	-0.0047144	0.00	-60.00	-93.60
2	11.25	7.47	-18.20	-20.65	-0.0033421	0.00	-60.00	-93.60
3	22.50	14.65	-11.01	-13.46	-0.0020226	0.00	-58.66	-91.50
4	33.75	21.28	-4.39	-6.84	-0.0008066	0.00	-23.39	-36.49
5	45.00	27.08	1.41	-1.04	0.0002593	0.00	7.52	11.73
6	56.25	31.84	6.17	3.72	0.0011341	1.56	32.89	47.33
7	67.50	35.38	9.71	7.26	0.0017841	1.56	51.74	76.73
8	78.75	37.56	11.89	9.44	0.0021843	1.56	60.00	89.62
9	90.00	38.30	12.63	10.18	0.0023195	1.56	60.00	89.62
10	101.25	37.56	11.89	9.44	0.0021843	1.56	60.00	89.62
11	112.50	35.38	9.71	7.26	0.0017841	1.56	51.74	76.73
12	123.75	31.84	6.17	3.72	0.0011341	1.56	32.89	47.33
13	135.00	27.08	1.41	-1.04	0.0002593	0.00	7.52	11.73
14	146.25	21.28	-4.39	-6.84	-0.0008066	0.00	-23.39	-36.49
15	157.50	14.65	-11.01	-13.46	-0.0020226	0.00	-58.66	-91.50
16	168.75	7.47	-18.20	-20.65	-0.0033421	0.00	-60.00	-93.60
17	180.00	0.00	-25.67	-28.12	-0.0047144	0.00	-60.00	-93.60
18	191.25	-7.47	-33.14	-35.59	-0.0060866	0.00	-60.00	-93.60
19	202.50	-14.65	-40.32	-42.77	-0.0074061	0.00	-60.00	-93.60
20	213.75	-21.28	-46.94	-49.39	-0.0086222	0.00	-60.00	-93.60
21	225.00	-27.08	-52.75	-55.20	-0.0096881	0.00	-60.00	-93.60
22	236.25	-31.84	-57.51	-59.96	-0.0105628	0.00	-60.00	-93.60
23	247.50	-35.38	-61.05	-63.50	-0.0112128	0.00	-60.00	-93.60
24	258.75	-37.56	-63.23	-65.68	-0.0116131	0.00	-60.00	-93.60
25	270.00	-38.30	-63.96	-66.41	-0.0117483	0.00	-60.00	-93.60
26	281.25	-37.56	-63.23	-65.68	-0.0116131	0.00	-60.00	-93.60
27	292.50	-35.38	-61.05	-63.50	-0.0112128	0.00	-60.00	-93.60
28	303.75	-31.84	-57.51	-59.96	-0.0105628	0.00	-60.00	-93.60
29	315.00	-27.08	-52.75	-55.20	-0.0096881	0.00	-60.00	-93.60
30	326.25	-21.28	-46.94	-49.39	-0.0086222	0.00	-60.00	-93.60
31	337.50	-14.65	-40.32	-42.77	-0.0074061	0.00	-60.00	-93.60
32	348.75	-7.47	-33.14	-35.59	-0.0060866	0.00	-60.00	-93.60

CCIFTS 1.2.108.14286 - Phase 1-2Date: 2/9/2017

BU:	873633	
Site Name:	Milford	
App Number:	374373 Rev 0	
Work Order	1358100	

Monopole Drilled Pier

<u>Input</u>


G
2005
В

Forces	
Compression	32 kips
Shear	22 kips
Moment	2049 k-ft
Swelling Force	0 kips

Foundation Dimensions Pier Diameter: 7 ft Ext. above grade: 0.5 ft Depth below grade: 25 ft

Material Properties	
Number of Rebar:	24
Rebar Size:	11
Tie Size	5
Rebar tensile strengt	h: 60 ksi
Concrete Strength:	3000 psi
Ultimate Concrete St	rain 0.003 in/ir
Clear Cover to Ties:	4 in

Layer	Thickness (ft)	From (ft)	To (ft)	Unit Weight (pcf)	Cohesion (psf)	Friction Angle (deg)	Ultimate Uplift Skin Friction (ksf)	Ultimate Comp. Skin Friction (ksf)	Ultimate Bearing Capacity (ksf)	SPT 'N' Counts
1	3.5	0	3.5	120	0	0	0	0	0	
2	21.5	3.5	25	120		30			10	

Analysis Results

So	il Lateral Capa	city		
	Depth to Zero	6.14	ft	
	Max Moment	2191.54	k-ft	
	Soil Safety Fa	4.36		
	Safety Factor	1.33		
		RATING:	30.5%	

Soil Axial Capacity	
Skin Friction (k):	245.06 kips
End Bearing (k):	288.63 kips
Comp. Capacity (k), φCn:	533.70 kips
Comp. (k), Cu:	32.00 kips
RATING:	6.0%

Со	ncrete/Steel (Check		
	Mu (from soi	analysis)	2191.54	k-ft
	φMn		5766.33	k-ft
		RATING:	38.0%	
	rho provided		0.68	
	rho required		0.33	OK
	Rebar Spacing	g	8.19	
	Spacing requi	red	22.56	OK
	Dev. Length r	equired	18.53	
	Dev. Length p	rovided	61.78	OK

Overall Foundation Rating: 38.0%

CCISeismic - Design Category Per 2012/2015 IBC

Site BU: 873633 Work Order: 1358100 Application: 374373 Rev. 0

Analysis Date: 2/4/2017

				_	
	Degrees	Minutes	Seconds		
Site Latitude =	41	13	12.27	41.2201	degrees
Site Longitude =	-73	4	38.56	-73.0774	degrees
Ground Supported Structure =		Yes			
Structure Class =		II		(Table 2-1)	
Site Class =	Ι) - Stiff So	il	(Table 2-11)	
				•	
Spectral response acceleration short periods, S_S =		0.194		LICCC Coismis T	o o l
Spectral response acceleration 1 s period, S_1 =	Spectral response acceleration 1 s period, $S_1 = \frac{0.063}{}$			USGS Seismic T	001
				_	<u></u>
Importance Factor, I =		1.0		(Table 2-3)	
Acceleration-based site coefficient, F_a =		1.6		(Table 2-12)	
Velocity-based site coefficient, F_v =	Velocity-based site coefficient, F _v = 2.4			(Table 2-13)	
Design spectral response acceleration short period, S_{DS} =		0.207		(2.7.6)	
Design spectral response acceleration 1 s period, S_{D1} =		0.101 (2.7.6)		(2.7.6)	
				_	
Seismic Design Category - Short Period Response =		В		ASCE 7-05 Table 11.6-1	
Seismic Design Category - 1s Period Response =		B ASCE 7-05 Table 11.6-2		6-2	
				•	
Worst Case Seismic Design Category =		В		ASCE 7-05 Tables 11	.6-1 and 6-2

Smartlink LLC on behalf of AT&T Mobility, LLC
Site FA – 10035338
Site ID – CTU2082 (Retrofit)
USID – 61172
Site Name – Milford Bona St
Site Compliance Report

Bona Street Milford, CT 06460

Latitude: N41-13-12.27 Longitude: W73-4-38.57 Structure Type: Monopole

Report generated date: February 21, 2017

Report by: Leo Romero

Customer Contact: Kristen Smith

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

Sitesafe logo is a registered trademark of Site Safe, Inc. All rights reserved.

Table of Contents

1 G	GENERAL SITE SUMMARY	2
1.1	Report Summary	2
2 S	CALE MAPS OF SITE	3
3 A	ANTENNA INVENTORY	5
	MISSION PREDICTIONS	
	ITE COMPLIANCE	
5.1 5.2	Site Compliance Statement	
6 R	EVIEWER CERTIFICATION	12
APPE	NDIX A – STATEMENT OF LIMITING CONDITIONS	13
APPE	NDIX B - REGULATORY BACKGROUND INFORMATION	14
	C Rules and Regulations	
APPE	NDIX C - SAFETY PLAN AND PROCEDURES	16
APPE	NDIX D – RF EMISSIONS	17
APPE	NDIX E – ASSUMPTIONS AND DEFINITIONS	18
Use	neral Model Assumptions	18
APPE	NDIX F – REFERENCES	21

1 General Site Summary

1.1 Report Summary

AT&T Mobility, LLC	Summary
Access to Antennas Locked?	Yes
RF Sign(s) @ access point(s)	No
RF Sign(s) @ antennas	No
Barrier(s) @ sectors	No
Max cumulative simulated RFE	<1% General Public Limit at AT&T Mobility, LLC
level on the Ground Level	Alpha, Beta and Gamma Sectors
FCC & AT&T Compliant?	Will Be Compliant

The following documents were provided by the client and were utilized to create this report:

RFDS: NEW-ENGLAND_CONNECTICUT_CTU2082_2017-LTE-Multi-Carrier_1xBBU-RRH-Add_om636a_2051A02JYA_10035338_61172_04-28-2016_As-Built-In-Progress_v1.00

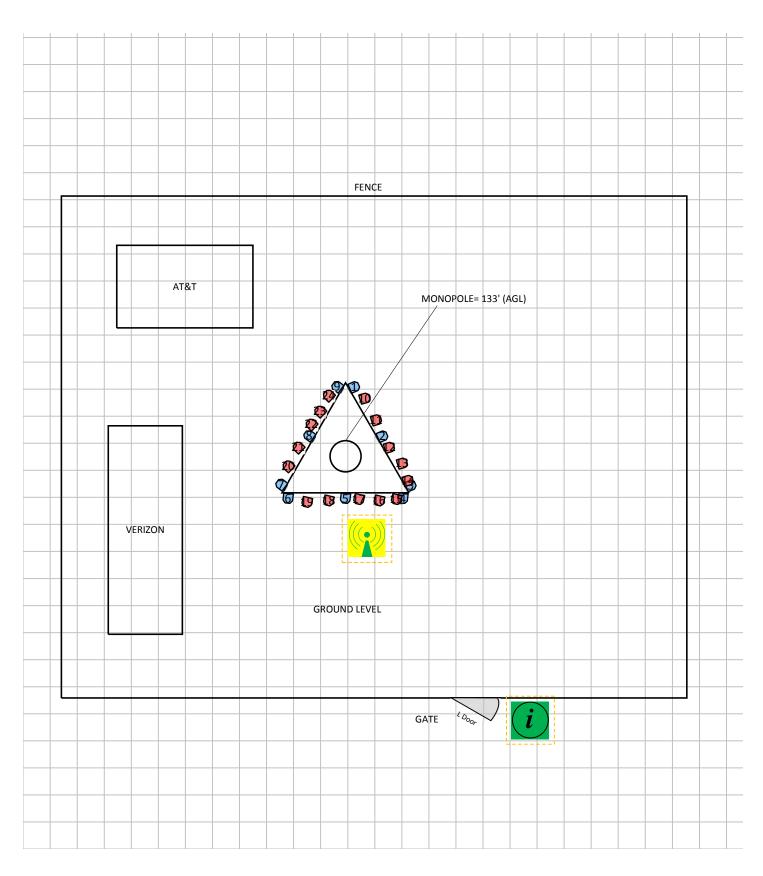
And

NEW-ENGLAND_CONNECTICUT_CTU2082_2016-LTE-Next-Carrier_LTE-3C_mm093q_2051A02JYA_10035338_61172_06-29-2015_Final-Approved_v3.00 RETROFIT

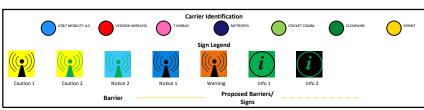
CD's: 10035338_AE201_170125_CTL02082_Rev1_MC-Retrofit CD

RF Powers Used: RFDS ERP Values

2 Scale Maps of Site


The following diagrams are included:

Site Scale MapRF Exposure DiagramAT&T Mobility, LLC ContributionElevation View


		Scale	Map Key		
CAUTION ST LOCAL TOOL OF THE PARTY OF THE P	Existing Sign		Proposed Barrier	•	GPS Reading
CAUTION TO THE PROPOSED PROPOSED	Proposed Sign		Existing Barrier	$\stackrel{\circ}{\longleftrightarrow}$	Anchor Point

Site Scale Map For: Milford Bona St

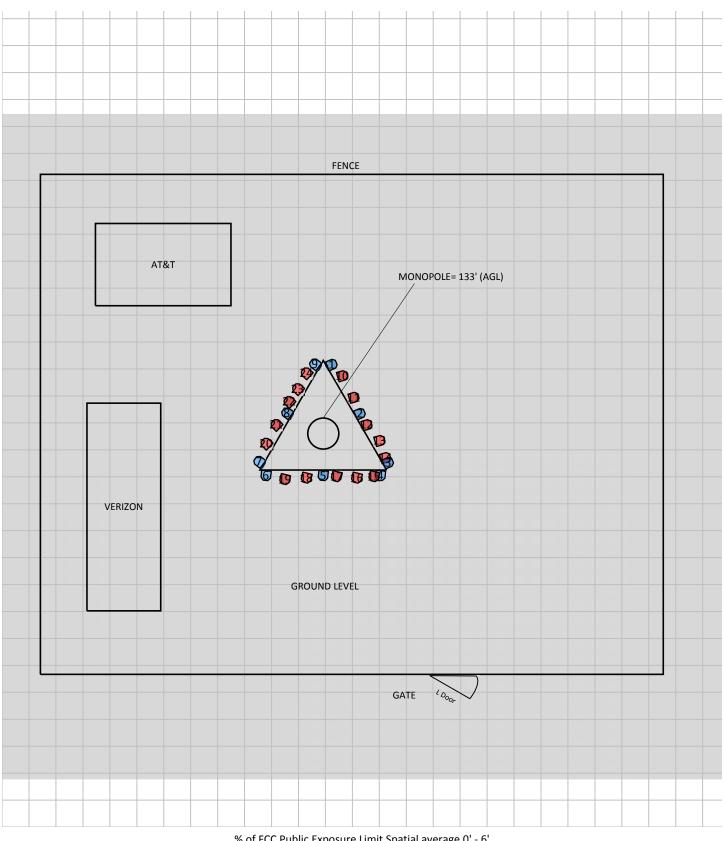
3 Antenna Inventory

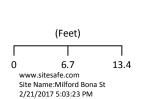
The following antenna inventory on this and the following page, were obtained by the customer and were utilized to create the site model diagrams:

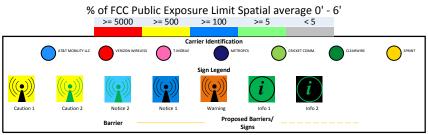
Ant ID	Operator	Antenna Make & Model	Туре	TX Freq (MHz)	Az (Deg)	Hor BW (Deg)	Ant Len (ft)	Ant Gain (dBd)	2G GSM Radio(s)	3G UMTS Radio(s)	4G Radio(s)	Total ERP (Watts)	X	Y	Z (AGL)
1	AT&T MOBILITY LLC	Powerwave 7770	Panel	850	23	82	4.6	11.51	0	2	0	586.2	79.5'	111.5'	133.7'
1	AT&T MOBILITY LLC	Powerwave 7770	Panel	1900	23	86	4.6	13.41	0	1	0	320.6	79.5'	111.5'	133.7'
2	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	850	23	60	4	11.36	1	0	0	293.1	83.4'	104.7'	134'
2	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	2300	23	61.1	4	14.26	0	0	1	1044.7	83.4'	104.7'	134'
3	AT&T MOBILITY LLC (Proposed)	Andrew SBNHH-1D65A	Panel	737	23	66	4.6	11.29	0	0	1	792.5	87.3'	97.9'	133.7'
3	AT&T MOBILITY LLC (Proposed)	Andrew SBNHH-1D65A	Panel	1900	23	65	4.6	14.65	0	0	1	2421	87.3'	97.9'	133.7'
4	AT&T MOBILITY LLC	Powerwave 7770	Panel	850	143	82	4.6	11.51	0	2	0	586.2	86.2'	96.1'	133.7'
4	AT&T MOBILITY LLC	Powerwave 7770	Panel	1900	143	86	4.6	13.41	0	1	0	320.6	86.2'	96.1'	133.7'
5	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	850	143	60	4	11.36	1	0	0	293.1	78.3'	96.1'	134'
5	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	2300	143	61.1	4	14.26	0	0	1	1044.7	78.3'	96.1'	134'
6	AT&T MOBILITY LLC (Proposed)	Andrew SBNHH-1D65A	Panel	737	143	66	4.6	11.29	0	0	1	792.5	70.3'	96.1'	133.7'
6	AT&T MOBILITY LLC (Proposed)	Andrew SBNHH-1D65A	Panel	1900	143	65	4.6	14.65	0	0	1	2421	70.3'	96.1'	133.7'
7	AT&T MOBILITY LLC	Powerwave 7770	Panel	850	263	82	4.6	11.51	0	2	0	586.2	69.4'	98'	133.7'
7	AT&T MOBILITY LLC	Powerwave 7770	Panel	1900	263	86	4.6	13.41	0	1	0	320.6	69.4'	98'	133.7'
8	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	850	263	60	4	11.36	1	0	0	293.1	73.3'	104.8'	134'
8	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	2300	263	61.1	4	14.26	0	0	1	1044.7	73.3'	104.8'	134'
9	AT&T MOBILITY LLC (Proposed)	Andrew SBNHH-1D65A	Panel	737	263	66	4.6	11.29	0	0	1	792.5	77.1'	111.6'	133.7'
9	AT&T MOBILITY LLC (Proposed)	Andrew \$BNHH-1D65A	Panel	1900	263	65	4.6	14.65	0	0	1	2421	77.1'	111.6'	133.7'
10	VERIZON WIRELESS	Antel LPA-80090-4CF	Panel	850	30	90	4	11.51	-	-	-	566.3	81'	110'	105'
11	VERIZON WIRELESS	Swedcom SWCP 2x5514	Panel	751	30	55	4.3	14.01	-	-	-	1510.6	82.6'	107'	104.8'
12	VERIZON WIRELESS	Antel BXA-171063-8CF	Panel	2100	30	60	4	15.31	-	-	-	2037.8	84.4'	103.2'	105'
13	VERIZON WIRELESS	Antel BXA-171063-8CF	Panel	1900	30	65	4	14.91	-	-	-	1858.5	86.2'	101'	105'
14	VERIZON WIRELESS	Antel LPA-80090-4CF	Panel	850	30	90	4	11.51	-	-	-	566.3	87'	98.6'	105'
15	VERIZON WIRELESS	Antel LPA-80090-4CF	Panel	850	150	90	4	11.51	-	-	-	566.3	85.4'	96'	105'
16	VERIZON WIRELESS	Swedcom SWCP 2x5514	Panel	751	150	55	4.3	14.01	-	-	-	1510.6	83'	95.8'	104.8'
17	VERIZON WIRELESS	Antel BXA-171063-8CF	Panel	2100	150	60	4	15.31	-	-	-	2037.8	80.2'	96'	105'
18	VERIZON WIRELESS	Antel BXA-171063-8CF	Panel	1900	150	65	4	14.91			-	1858.5	76'	95.8'	105'

				TX Freq	۸-	Hor BW	Antlan	Ant Gain	20.004	3G UMTS	4G	Total ERP			
Ant ID	Operator	Antenna Make & Model	Туре	(MHz)	Az (Deg)	(Deg)	(ft)	(dBd)	Radio(s)	Radio(s)	Radio(s)	(Watts)	х	Υ	Z (AGL)
19	VERIZON WIRELESS	Antel LPA-80090-4CF	Panel	850	150	90	4	11.51	-	-	-	566.3	73'	95.6'	105'
20	VERIZON WIRELESS	Antel LPA-80090-4CF	Panel	850	270	90	4	11.51	-	-	-	566.3	70.4'	100.6'	105'
21	VERIZON WIRELESS	Swedcom SWCP 2x5514	Panel	751	270	55	4.3	14.01	-	-	-	1510.6	71.8'	103.2'	104.8'
22	VERIZON WIRELESS	Antel BXA-171063-8CF	Panel	2100	270	60	4	15.31	-	-	-	2037.8	73.6'	106.4'	105'
23	VERIZON WIRELESS	Antel BXA-171063-8CF	Panel	1900	270	65	4	14.91	-	-	-	1858.5	74.8'	108.2'	105'
24	VERIZON WIRELESS	Antel LPA-80090-4CF	Panel	850	270	90	4	11.51	-	-	-	566.3	76'	110.4'	105'

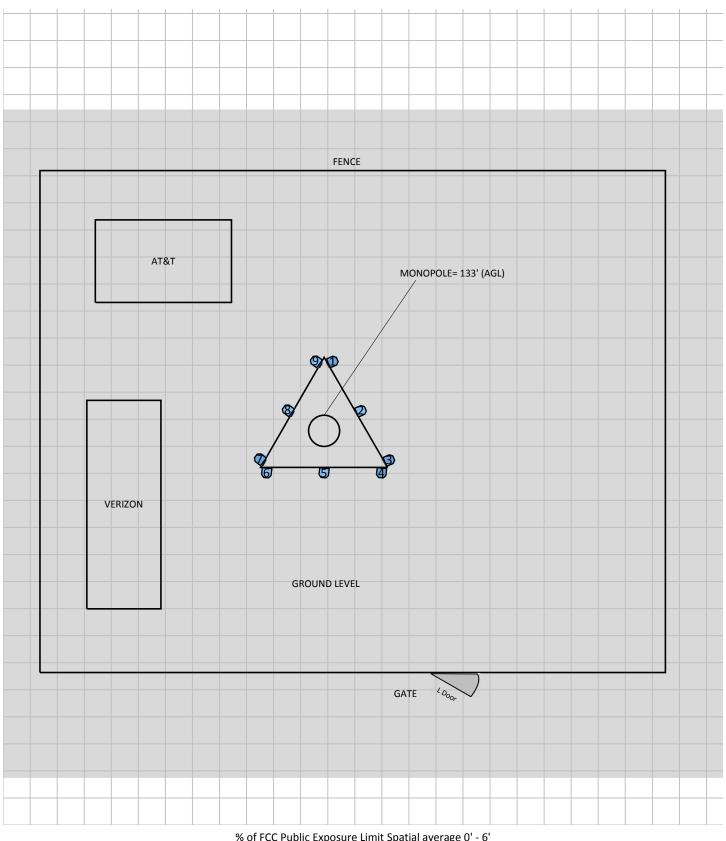
NOTE: X, Y and Z indicate relative position of the bottom of the antenna to the origin location on the site, displayed in the model results diagram. Specifically, the Z reference indicates the bottom of the antenna height **above ground level (AGL)**. The distance to the bottom of the antenna is calculated by subtracting half of the length of the antenna from the antenna centerline. Effective Radiated Power (ERP) is provided by the operator or based on Sitesafe experience. The values used in the modeling may be greater than are currently deployed. For other operators at this site the use of "Generic" as an antenna model or "Unknown" for a wireless operator means the information with regard to operator, their FCC license and/or antenna information was not available nor could it be secured while on site. Other operator's equipment, antenna models and powers used for modeling are based on obtained information or Sitesafe experience.

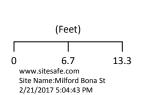

4 Emission Predictions

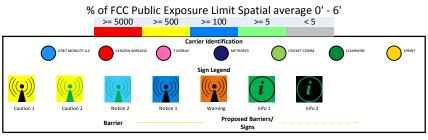

In the RF Exposure Simulations below all heights are reflected with respect to main site level. In most rooftop cases this is the height of the main rooftop and in other cases this can be ground level. Each different height area, rooftop, or platform level is labeled with its height relative to the main site level. Emissions are calculated appropriately based on the relative height and location of that area to all antennas.


The Antenna Inventory heights are referenced to the same level.

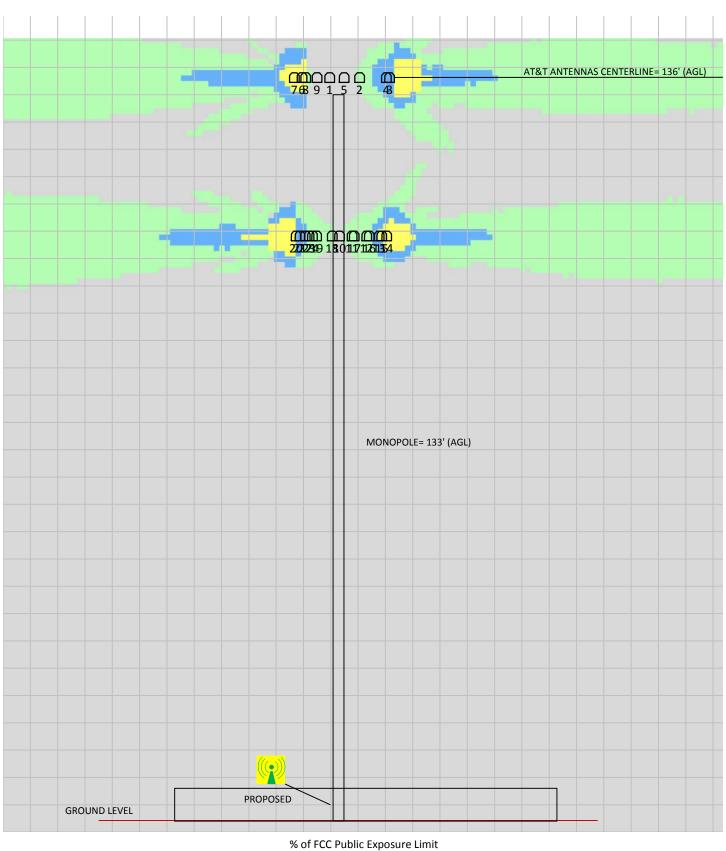
RF Exposure Simulation For: Milford Bona St

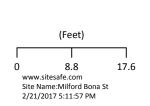





SitesafeTC Version:1.0.0.0 - 0.0.0.256 Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

RF Exposure Simulation For: Milford Bona St AT&T Mobility, LLC Contribution





SitesafeTC Version:1.0.0.0 - 0.0.0.256 Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

RF Exposure Simulation For: Milford Bona St Elevation View

SitesafeTC Version:1.0.0.0 - 0.0.0.256 Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Single Level (0)

5 Site Compliance

5.1 Site Compliance Statement

Upon evaluation of the cumulative RF emission levels from all operators at this site, RF hazard signage and antenna locations, Sitesafe has determined that:

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

The compliance determination is based on General Public RFE levels derived from theoretical modeling, RF signage placement, proposed antenna inventory and the level of restricted access to the antennas at the site. Any deviation from the AT&T Mobility, LLC's proposed deployment plan could result in the site being rendered non-compliant.

Modeling is used for determining compliance and the percentage of MPE contribution.

5.2 Actions for Site Compliance

Based on FCC regulations, common industry practice, and our understanding of AT&T Mobility, LLC RF Safety Policy requirements, this section provides a statement of recommendations for site compliance. Recommendations have been proposed based on our understanding of existing access restrictions, signage, and an analysis of predicted RFE levels.

AT&T Mobility, LLC will be made compliant if the following changes are implemented:

Base of Tower

Caution 2 sign required.

Compound Gate

Information 1 sign required.

6 Reviewer Certification

The Reviewer whose signature appears below hereby certifies and affirms:

That I am an employee of Sitesafe, Inc., in Arlington, Virginia, at which place the staff and I provide RF compliance services to clients in the wireless communications industry; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission (FCC) as well as the regulations of the Occupational Safety and Health Administration (OSHA), both in general and specifically as they apply to the FCC Guidelines for Human Exposure to Radio-frequency Radiation; and

That I have thoroughly reviewed this Site Compliance Report and believe it to be true and accurate to the best of my knowledge as assembled by and attested to by Leo Romero.

February 21, 2017

Appendix A – Statement of Limiting Conditions

Sitesafe has provided computer generated model (s) in this Site Compliance Report to show approximate dimensions of the site, and the model is included to assist the reader of the compliance report to visualize the site area, and to provide supporting documentation for Sitesafe's recommendations.

Sitesafe may note in the Site Compliance Report any adverse physical conditions, such as needed repairs, that Sitesafe became aware of during the normal research involved in creating this report. Sitesafe will not be responsible for any such conditions that do exist or for any engineering or testing that might be required to discover whether such conditions exist. Because Sitesafe is not an expert in the field of mechanical engineering or building maintenance, the Site Compliance Report must not be considered a structural or physical engineering report.

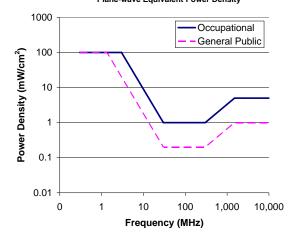
Sitesafe obtained information used in this Site Compliance Report from sources that Sitesafe considers reliable and believes them to be true and correct. Sitesafe does not assume any responsibility for the accuracy of such items that were furnished by other parties. When conflicts in information occur between data collected by Sitesafe provided by a second party and data collected by Sitesafe, the data will be used.

Appendix B – Regulatory Background Information

FCC Rules and Regulations

In 1996, the Federal Communication Commission (FCC) adopted regulations for the evaluating of the effects of RF emissions in 47 CFR § 1.1307 and 1.1310. The guideline from the FCC Office of Engineering and Technology is Bulletin 65 ("OET Bulletin 65"), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, Edition 97-01, published August 1997. Since 1996 the FCC periodically reviews these rules and regulations as per their congressional mandate.

FCC regulations define two separate tiers of exposure limits: Occupational or "Controlled environment" and General Public or "Uncontrolled environment". The General Public limits are generally five times more conservative or restrictive than the Occupational limit. These limits apply to accessible areas where workers or the general public may be exposed to Radio Frequency (RF) electromagnetic fields.


Occupational or Controlled limits apply in situations in which persons are exposed as a consequence of their employment and where those persons exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

An area is considered a Controlled environment when access is limited to these aware personnel. Typical criteria are restricted access (i.e. locked or alarmed doors, barriers, etc.) to the areas where antennas are located coupled with proper RF warning signage. A site with Controlled environments is evaluated with Occupational limits.

All other areas are considered Uncontrolled environments. If a site has no access controls or no RF warning signage it is evaluated with General Public limits.

The theoretical modeling of the RF electromagnetic fields has been performed in accordance with OET Bulletin 65. The Maximum Permissible Exposure (MPE) limits utilized in this analysis are outlined in the following diagram:

Limits for Occupational/Controlled Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f ²)*	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-			5	6
100,000				

Limits for General Population/Uncontrolled Exposure (MPE)

Frequency	Electric	Magnetic	Power	Averaging Time E 2,
Range	Field	Field	Density (S)	H ² or S (minutes)
(MHz)	Strength (E)	Strength	(mW/cm ²)	
	(V/m)	(H) (A/m)		
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f ²)*	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-			1.0	30
100,000				

f = frequency in MHz

OSHA Statement

The General Duty clause of the OSHA Act (Section 5) outlines the occupational safety and health responsibilities of the employer and employee. The General Duty clause in Section 5 states:

- (a) Each employer -
 - (1) shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees;
 - (2) shall comply with occupational safety and health standards promulgated under this Act.
- (b) Each employee shall comply with occupational safety and health standards and all rules, regulations, and orders issued pursuant to this Act which are applicable to his own actions and conduct.

OSHA has defined Radiofrequency and Microwave Radiation safety standards for workers who may enter hazardous RF areas. Regulation Standards 29 CFR § 1910.147 identify a generic Lock Out Tag Out procedure aimed to control the unexpected energization or start up of machines when maintenance or service is being performed.

^{*}Plane-wave equivalent power density

Appendix C – Safety Plan and Procedures

The following items are general safety recommendations that should be administered on a site by site basis as needed by the carrier.

<u>General Maintenance Work</u>: Any maintenance personnel required to work immediately in front of antennas and / or in areas indicated as above 100% of the Occupational MPE limits should coordinate with the wireless operators to disable transmitters during their work activities.

<u>Training and Qualification Verification:</u> All personnel accessing areas indicated as exceeding the General Population MPE limits should have a basic understanding of EME awareness and RF Safety procedures when working around transmitting antennas. Awareness training increases a workers understanding to potential RF exposure scenarios. Awareness can be achieved in a number of ways (e.g. videos, formal classroom lecture or internet based courses).

Physical Access Control: Access restrictions to transmitting antennas locations is the primary element in a site safety plan. Examples of access restrictions are as follows:

- Locked door or gate
-) Alarmed door
- Locked ladder access
- Restrictive Barrier at antenna (e.g. Chain link with posted RF Sign)

RF Signage: Everyone should obey all posted signs at all times. RF signs play an important role in properly warning a worker prior to entering into a potential RF Exposure area.

Assume all antennas are active: Due to the nature of telecommunications transmissions, an antenna transmits intermittently. Always assume an antenna is transmitting. Never stop in front of an antenna. If you have to pass by an antenna, move through as quickly and safely as possible thereby reducing any exposure to a minimum.

<u>Maintain a 3 foot clearance from all antennas:</u> There is a direct correlation between the strength of an EME field and the distance from the transmitting antenna. The further away from an antenna, the lower the corresponding EME field is.

Site RF Emissions Diagram: Section 4 of this report contains an RF Diagram that outlines various theoretical Maximum Permissible Exposure (MPE) areas at the site. The modeling is a worst case scenario assuming a duty cycle of 100% for each transmitting antenna at full power. This analysis is based on one of two access control criteria: General Public criteria means the access to the site is uncontrolled and anyone can gain access. Occupational criteria means the access is restricted and only properly trained individuals can gain access to the antenna locations.

Appendix D - RF Emissions

The RF Emissions Simulation(s) in this report display theoretical spatially averaged percentage of the Maximum Permissible Exposure for all systems at the site unless otherwise noted. These diagrams use modeling as prescribed in OET Bulletin 65 and assumptions detailed in Appendix E.

The key at the bottom of each RF Emissions Simulation indicates percentages displayed referenced to FCC General Public Maximum Permissible Exposure (MPE) limits. Color coding on the diagram is as follows:

- Areas indicated as Gray are predicted to be below 5% of the MPE limits. Gray represents areas more than 20 times below the most conservative exposure limit.
- Green represents areas are predicted to be between 5% and 100% of the MPE limits. Green areas are accessible to anyone.
- Blue represents areas predicted to exceed the General Public MPE limits but are less than Occupational limits. Blue areas should be accessible only to RF trained workers.
- Yellow represents areas predicted to exceed Occupational MPE limits. Yellow areas should be accessible only to RF trained workers able to assess current exposure levels.
- Red represents areas predicted to have exposure more than 10 times the Occupational MPE limits. Red indicates that the RF levels must be reduced prior to access. An RF Safety Plan is required which outlines how to reduce the RF energy in these areas prior to access.

Appendix E – Assumptions and Definitions

General Model Assumptions

In this site compliance report, it is assumed that all antennas are operating at **full power at all times**. Software modeling was performed for all transmitting antennas located on the site. Sitesafe has further assumed a 100% duty cycle and maximum radiated power.

The modeling is based on recommendations from the FCC's OET-65 bulletin with the following variances per AT&T guidance. Reflection has not been considered in the modeling, i.e. the reflection factor is 1.0. The near / far field boundary has been set to 1.5 times the aperture height of the antenna and modeling beyond that point is the lesser of the near field cylindrical model and the far field model taking into account the gain of the antenna.

The site has been modeled with these assumptions to show the maximum RF energy density. Areas modeled with exposure greater than 100% of the General Public MPE level may not actually occur, but are shown as a prediction that could be realized. Sitesafe believes these areas to be safe for entry by occupationally trained personnel utilizing appropriate personal protective equipment (in most cases, a personal monitor).

Use of Generic Antennas

For the purposes of this report, the use of "Generic" as an antenna model, or "Unknown" for an operator means the information about a carrier, their FCC license and/or antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of equipment, antenna models, and transmit power to model the site. If more specific information can be obtained for the unknown measurement criteria, Sitesafe recommends remodeling of the site utilizing the more complete and accurate data. Information about similar facilities is used when the service is identified and associated with a particular antenna. If no information is available regarding the transmitting service associated with an unidentified antenna, using the antenna manufacturer's published data regarding the antenna's physical characteristics makes more conservative assumptions.

Where the frequency is unknown, Sitesafe uses the closest frequency in the antenna's range that corresponds to the highest Maximum Permissible Exposure (MPE), resulting in a conservative analysis.

Definitions

5% Rule – The rules adopted by the FCC specify that, in general, at multiple transmitter sites actions necessary to bring the area into compliance with the guidelines are the shared responsibility of all licensees whose transmitters produce field strengths or power density levels at the area in question in excess of 5% of the exposure limits. In other words, any wireless operator that contributes 5% or greater of the MPE limit in an area that is identified to be greater than 100% of the MPE limit is responsible taking corrective actions to bring the site into compliance.

Compliance – The determination of whether a site is safe or not with regards to Human Exposure to Radio Frequency Radiation from transmitting antennas.

Decibel (dB) – A unit for measuring power or strength of a signal.

Duty Cycle – The percent of pulse duration to the pulse period of a periodic pulse train. Also, may be a measure of the temporal transmission characteristic of an intermittently transmitting RF source such as a paging antenna by dividing average transmission duration by the average period for transmission. A duty cycle of 100% corresponds to continuous operation.

Effective (or Equivalent) Isotropic Radiated Power (EIRP) – The product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna.

Effective Radiated Power (ERP) – In a given direction, the relative gain of a transmitting antenna with respect to the maximum directivity of a half wave dipole multiplied by the net power accepted by the antenna from the connecting transmitter.

Gain (of an antenna) – The ratio of the maximum intensity in a given direction to the maximum radiation in the same direction from an isotropic radiator. Gain is a measure of the relative efficiency of a directional antennas as compared to an omni directional antenna.

General Population/Uncontrolled Environment – Defined by the FCC, as an area where exposure to RF energy may occur to persons who are **unaware** of the potential for exposure and who have no control of their exposure. General Population is also referenced as General Public.

Generic Antenna – For the purposes of this report, the use of "Generic" as an antenna model means the antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of antenna models to select a worst case scenario antenna to model the site.

Isotropic Antenna – An antenna that is completely non-directional. In other words, an antenna that radiates energy equally in all directions.

Maximum Measurement – This measurement represents the single largest measurement recorded when performing a spatial average measurement.

Maximum Permissible Exposure (MPE) – The maximum levels of RF exposure a person may be exposed to without harmful effect and with acceptable safety factor.

Occupational/Controlled Environment – Defined by the FCC, as an area where Radio Frequency Radiation (RFR) exposure may occur to persons who are **aware** of the

potential for exposure as a condition of employment or specific activity and can exercise control over their exposure.

OET Bulletin 65 – Technical guideline developed by the FCC's Office of Engineering and Technology to determine the impact of Radio Frequency radiation on Humans. The guideline was published in August 1997.

OSHA (Occupational Safety and Health Administration) – Under the Occupational Safety and Health Act of 1970, employers are responsible for providing a safe and healthy workplace for their employees. OSHA's role is to promote the safety and health of America's working men and women by setting and enforcing standards; providing training, outreach and education; establishing partnerships; and encouraging continual process improvement in workplace safety and health. For more information, visit www.osha.gov.

Radio Frequency (RF) – The frequencies of electromagnetic waves which are used for radio communications. Approximately 3 kHz to 300 GHz.

Radio Frequency Exposure (RFE) – The amount of RF power density that a person is or might be exposed to.

Spatial Average Measurement – A technique used to average a minimum of ten (10) measurements taken in a ten (10) second interval from zero (0) to six (6) feet. This measurement is intended to model the average power density an average sized human will be exposed to at a location.

Transmitter Power Output (TPO) – The radio frequency output power of a transmitter's final radio frequency stage as measured at the output terminal while connected to a load.

Appendix F - References

The following references can be followed for further information about RF Health and Safety.

Sitesafe, Inc.

http://www.sitesafe.com

FCC Radio Frequency Safety

http://www.fcc.gov/encyclopedia/radio-frequency-safety

National Council on Radiation Protection and Measurements (NCRP)

http://www.ncrponline.org

Institute of Electrical and Electronics Engineers, Inc., (IEEE)

http://www.ieee.org

American National Standards Institute (ANSI)

http://www.ansi.org

Environmental Protection Agency (EPA)

http://www.epa.gov/radtown/wireless-tech.html

National Institutes of Health (NIH)

http://www.niehs.nih.gov/health/topics/agents/emf/

Occupational Safety and Health Agency (OSHA)

http://www.osha.gov/SLTC/radiofrequencyradiation/

International Commission on Non-Ionizing Radiation Protection (ICNIRP)

http://www.icnirp.org

World Health Organization (WHO)

http://www.who.int/peh-emf/en/

National Cancer Institute

http://www.cancer.gov/cancertopics/factsheet/Risk/cellphones

American Cancer Society (ACS)

http://www.cancer.org/docroot/PED/content/PED 1 3X Cellular Phone Towers.asp?sitearea=PED

European Commission Scientific Committee on Emerging and Newly Identified Health Risks

http://ec.europa.eu/health/ph risk/committees/04 scenihr/docs/scenihr o 022.pdf

Fairfax County, Virginia Public School Survey

http://www.fcps.edu/fts/safety-security/RFEESurvey/

UK Health Protection Agency Advisory Group on Non-ionising Radiation

http://www.hpa.org.uk/webw/HPAweb&HPAwebStandard/HPAweb_C/1317133826368

Norwegian Institute of Public Health

http://www.fhi.no/dokumenter/545eea7147.pdf