

February 22, 2019

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for AT&T / Crown Site BU: 846176

AT&T Site ID: Madison Durham Road 1749 Durham Road, Madison, CT 06443

Latitude: 41° 23′ 22.3″/ Longitude: -72° 38′ 56″

Dear Ms. Bachman:

AT&T currently maintains nine (9) antennas at the 118-foot level of the existing 119-foot monopole at 1749 Durham Road, Madison, CT 06443. The tower is owned by Crown Castle. The property is owned by the South Central Connecticut Regional Water Authority. AT&T intends to replace six (6) antennas with six (6) new antennas and add six (6) RRUs. AT&T also intends to add two (2) DC cables and one (1) fiber cable.

This facility was approved by the Council on August 26, 2004, Docket No. 290, subject to the following conditions:

- 1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of AT&T Wireless and other entities, both public and private, but such tower shall not exceed a height of 120 feet above ground level. The height at the top of the antennas shall not exceed 123 feet above ground level. The tower and tower foundation shall be of sufficient capacity to support a tower extension to 150 feet above ground level.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Madison, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a. a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment building, relocated access road, utility line, and landscaping; and

- b. construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, as amended.
- 3. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council in the event other carriers locate at this facility or if circumstances in equipment operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- 4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. The Certificate Holder shall provide reasonable space on the tower for no compensation for any municipal antennas, provided such antennas are compatible with the structural integrity of the tower.
- 7. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 8. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.
- 9. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved. Any request for extension of this period shall be filed with the Council not later than sixty days prior to expiration date of this Certificate and shall be served on all parties and interveners and the Town of Madison, as listed in the service list. Any proposed modifications to this Decision and Order shall likewise be so served.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent The Honorable Tom Banisch, First Selectman of the Town of Madison, the Town Planner David Anderson, and to the land owner the South Central Connecticut Regional Water Authority. Crown Castle is the tower owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: William Stone.

Sincerely,

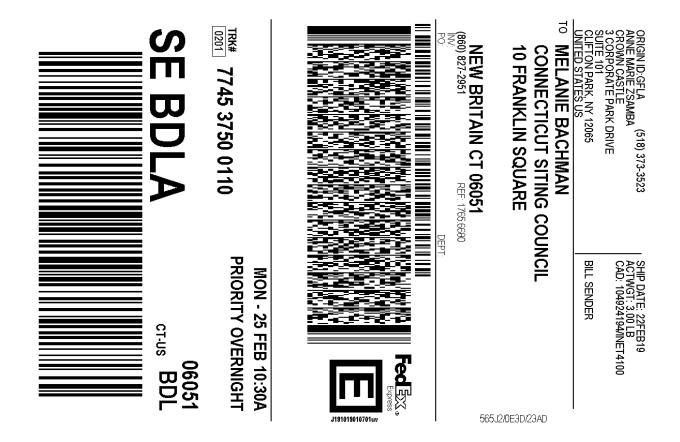
Anne Marie Zsamba Real Estate Specialist 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 (201) 236-9224 AnneMarie.Zsamba@crowncastle.com

Attachments:

Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes

Tab 2: Exhibit-2: Structural Modification Report

Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)

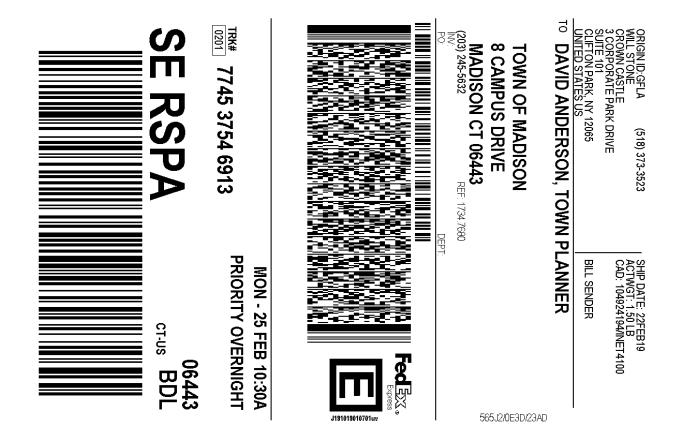

cc:

Page 4

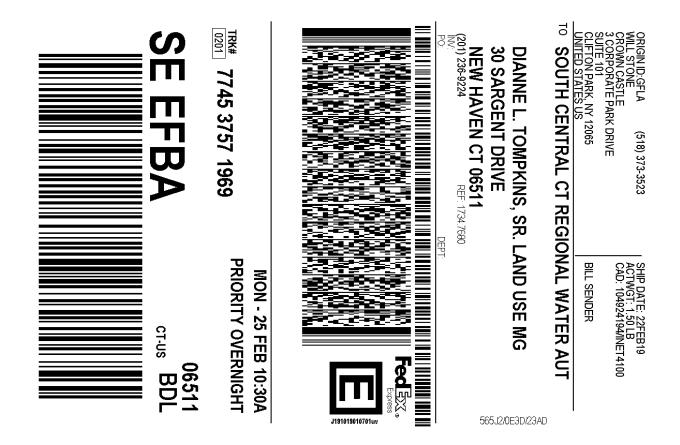
Tom Banisch, First Selectman Town of Madison 8 Campus Drive Madison, CT 06443 (203) 245-5602

David Anderson, Town Planner Town of Madison 8 Campus Drive Madison, CT 06443 (203) 245-5632

South Central Connecticut Regional Water Authority Attn: Dianne L. Tompkins, Senior Land Use Manager 30 Sargent Drive New Haven, CT 06511-5966


- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.


- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

1749 DURHAM RD

Location 1749 DURHAM RD **Mblu** 154/ 3/ / /

Acct# 00722900 Owner SOUTH CENTRAL

CONNECTICUT REGIONAL

WATER

Assessment \$136,200 **Appraisal** \$840,500

PID 7618 Building Count 1

Current Value

Appraisal					
Valuation Year	Improvements	Land	Total		
2015	\$0	\$840,500	\$840,500		
	Assessment				
Valuation Year	Improvements	Land	Total		
2015	\$0	\$136,200	\$136,200		

Owner of Record

Owner SOUTH CENTRAL CONNECTICUT REGIONAL WATER Sale Price \$0

Co-Owner AUTHORITY Certificate

Book & Page 1761/176 **Sale Date** 01/06/2012

Instrument 28

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
SOUTH CENTRAL CONNECTICUT REGIONAL WATER	\$0		1761/ 176	28	01/06/2012
RUGE ANITA	\$0		1761/ 172	01	01/06/2012
RUGE FRIEDA L/U & ANITA S REMAINDER	\$0		1755/ 158	01	12/02/2011
RUGE FRIEDA L/U& FRED& ANITA S REMAINDER	\$0		1504/ 164	25	04/12/2007
RUGE FRIEDA L/U &FRED& ANITA S REMAINDER	\$0		466/ 239	00	06/20/1991

Building Information

Building 1 : Section 1

Year Built:

Living Area: 0

Building Attributes				
Field Description				
Style	Outbuildings			
Model				
Stories:				
Heat Fuel				
Heat Type:				
AC Type:				
Total Bedrooms:				
Total Bthrms:				
Total Half Baths:				
Total Xtra Fixtrs:				
Total Rooms:				
Fireplace(s)				
Xtra FPL Open				

Building Photo

(http://images.vgsi.com/photos/MadisonCTPhotos//\01\01\41/63

Building Layout

Building Layout

Building Sub-Areas (sq ft) <u>Legend</u>

No Data for Building Sub-Areas

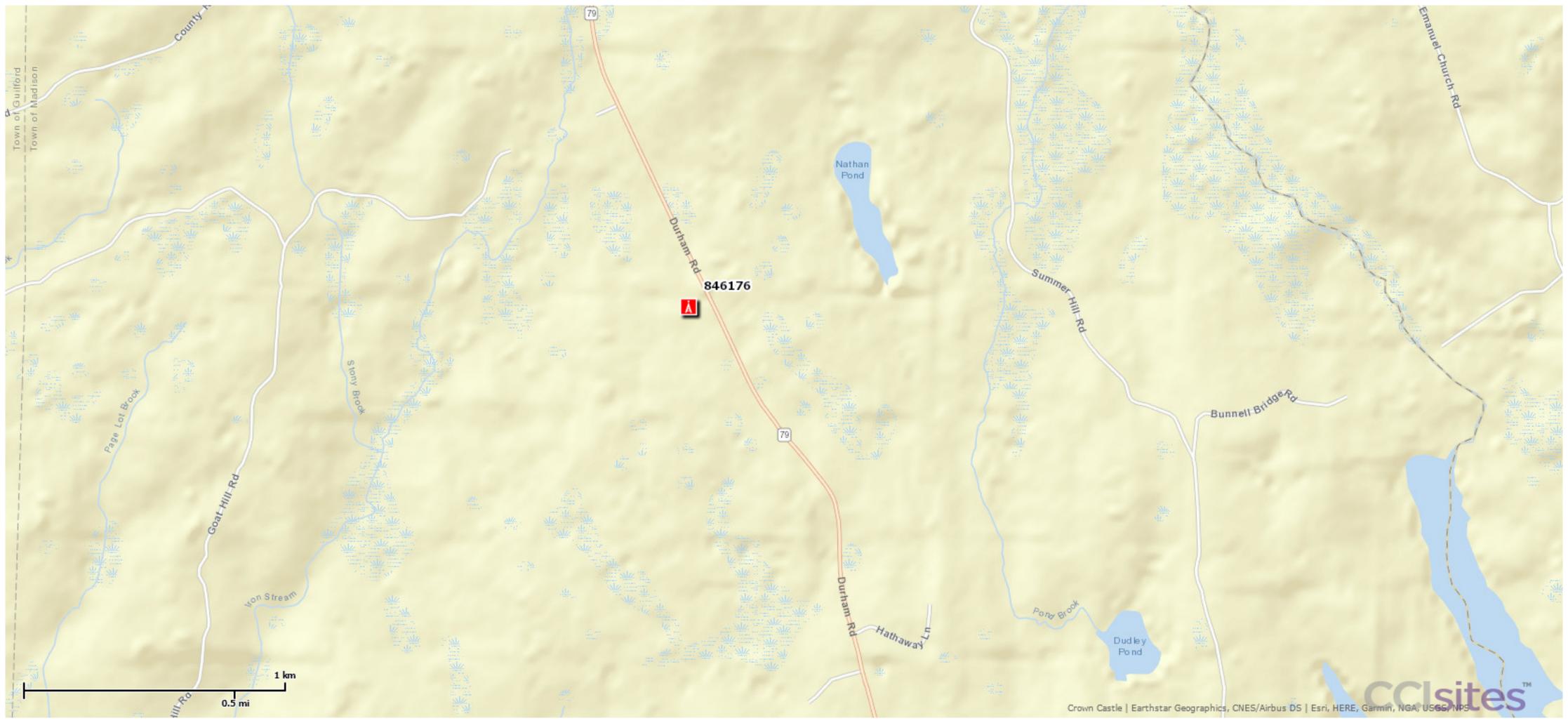
Extra Features

Extra Features	Legend
No Data for Extra Features	

Land

Land Use		Land Line Valuation	
Use Code	9300	Size (Acres)	34.61
Description	Pilot - Forest	Depth	0
Zone	RU-1		

Outbuildings


Outbuildings	<u>Legend</u>
No Data for Outbuildings	

Valuation History

Appraisal			
Valuation Year	Improvements	Land	Total
2016	\$0	\$840,500	\$840,500

Assessment			
Valuation Year Improvements Land Total			
2016	\$0	\$136,200	\$136,200

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

Connecticut Siting Council

Decisions

DOCKET NO. 290 – AT&T Wireless PCS, LLC d/b/a AT&T Wireless application for a Certificate of	}	Connecticut
Environmental Compatibility and Public Need for the construction, maintenance and operation of a wireless	}	Siting
telecommunications facility at one of two locations on Durham Road (Route 79), Madison, Connecticut.	}	Council
		August 26, 2004

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to AT&T Wireless PCS, LLC d/b/a AT&T Wireless at Site A, located at 1749 Durham Road, Madison, Connecticut. The Council denies certification of Site B, located on the Elka Perez Trust property, Durham Road, Madison, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of AT&T Wirleless and other entities, both public and private, but such tower shall not exceed a height of 120 feet above ground level. The height at the top of the antennas shall not exceed 123 feet above ground level. The tower and tower foundation shall be of sufficient capacity to support a tower extension to 150 feet above ground level.
 - 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Madison, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a. a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment building, relocated access road, utility line, and landscaping; and
 - b. construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and Sediment</u> Control, as amended.
- 3. The Certificate Holder shall, prior to the commencement of operation, provide the Council

worst-case

modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council in the event other carriers locate at this facility or if circumstances in equipment operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.

- 4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. The Certificate Holder shall provide reasonable space on the tower for no compensation for any municipal antennas, provided such antennas are compatible with the structural integrity of the tower.
- 7. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 8. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.
- 9. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved. Any request for extension of this period shall be filed with the Council not later than sixty days prior to expiration date of this Certificate and shall be served on all parties and intervenors and the Town of Madison, as listed in the service list. Any proposed modifications to this Decision and Order shall likewise be so served.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the
The Shoreline Times">The Shoreline Times and
The Source.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant AT&T Wireless PCS, LLC d/b/a AT&T Wireless Christopher B. Fisher, Esq.

	90 Maple Avenue White Plains, New York 10601
Intervenor	Its Representative
Sprint Spectrum L. P. d/b/a Sprint PCS	Thomas J. Regan, Esq. Brown Rudnick Berlack Israels LLP CityPlace I, 38 th Floor 185 Asylum Street Hartford, CT 06103-3402

Content Last Modified on 8/27/2004 4:39:20 PM

Connecticut Siting Council

Decisions

DOCKET NO. 290 – AT&T Wireless PCS, LLC d/b/a AT&T Wireless application for a Certificate of	}	Connecticut
Environmental Compatibility and Public Need for the construction, maintenance and operation of a wireless	}	Siting
telecommunications facility at one of two locations on Durham Road (Route 79), Madison, Connecticut.	}	Council
		August 26, 2004

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to AT&T Wireless PCS, LLC d/b/a AT&T Wireless at Site A, located at 1749 Durham Road, Madison, Connecticut. The Council denies certification of Site B, located on the Elka Perez Trust property, Durham Road, Madison, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of AT&T Wirleless and other entities, both public and private, but such tower shall not exceed a height of 120 feet above ground level. The height at the top of the antennas shall not exceed 123 feet above ground level. The tower and tower foundation shall be of sufficient capacity to support a tower extension to 150 feet above ground level.
 - 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Madison, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a. a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment building, relocated access road, utility line, and landscaping; and
 - b. construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and Sediment</u> Control, as amended.
- 3. The Certificate Holder shall, prior to the commencement of operation, provide the Council

worst-case

modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council in the event other carriers locate at this facility or if circumstances in equipment operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.

- 4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. The Certificate Holder shall provide reasonable space on the tower for no compensation for any municipal antennas, provided such antennas are compatible with the structural integrity of the tower.
- 7. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 8. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.
- 9. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved. Any request for extension of this period shall be filed with the Council not later than sixty days prior to expiration date of this Certificate and shall be served on all parties and intervenors and the Town of Madison, as listed in the service list. Any proposed modifications to this Decision and Order shall likewise be so served.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the
The Shoreline Times">The Shoreline Times and
The Source.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant AT&T Wireless PCS, LLC d/b/a AT&T Wireless Christopher B. Fisher, Esq.

	90 Maple Avenue White Plains, New York 10601
Intervenor	Its Representative
Sprint Spectrum L. P. d/b/a Sprint PCS	Thomas J. Regan, Esq. Brown Rudnick Berlack Israels LLP CityPlace I, 38 th Floor 185 Asylum Street Hartford, CT 06103-3402

Content Last Modified on 8/27/2004 4:39:20 PM

Connecticut Siting Council

Decisions

DOCKET NO. 290 – AT&T Wireless PCS, LLC d/b/a AT&T Wireless application for a Certificate of	}	Connecticut
Environmental Compatibility and Public Need for the construction, maintenance and operation of a wireless	}	Siting
telecommunications facility at one of two locations on Durham Road (Route 79), Madison, Connecticut.	}	Council
		August 26, 2004

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to AT&T Wireless PCS, LLC d/b/a AT&T Wireless at Site A, located at 1749 Durham Road, Madison, Connecticut. The Council denies certification of Site B, located on the Elka Perez Trust property, Durham Road, Madison, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of AT&T Wirleless and other entities, both public and private, but such tower shall not exceed a height of 120 feet above ground level. The height at the top of the antennas shall not exceed 123 feet above ground level. The tower and tower foundation shall be of sufficient capacity to support a tower extension to 150 feet above ground level.
 - 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Madison, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a. a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment building, relocated access road, utility line, and landscaping; and
 - b. construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and Sediment</u> Control, as amended.
- 3. The Certificate Holder shall, prior to the commencement of operation, provide the Council

worst-case

modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council in the event other carriers locate at this facility or if circumstances in equipment operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.

- 4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. The Certificate Holder shall provide reasonable space on the tower for no compensation for any municipal antennas, provided such antennas are compatible with the structural integrity of the tower.
- 7. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 8. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.
- 9. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved. Any request for extension of this period shall be filed with the Council not later than sixty days prior to expiration date of this Certificate and shall be served on all parties and intervenors and the Town of Madison, as listed in the service list. Any proposed modifications to this Decision and Order shall likewise be so served.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the
The Shoreline Times">The Shoreline Times and
The Source.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant AT&T Wireless PCS, LLC d/b/a AT&T Wireless Christopher B. Fisher, Esq.

	90 Maple Avenue White Plains, New York 10601
Intervenor	Its Representative
Sprint Spectrum L. P. d/b/a Sprint PCS	Thomas J. Regan, Esq. Brown Rudnick Berlack Israels LLP CityPlace I, 38 th Floor 185 Asylum Street Hartford, CT 06103-3402

Content Last Modified on 8/27/2004 4:39:20 PM

PROJECT INFORMATION

ITEMS TO BE MOUNTED ON THE EXISTING TOWER

- REMOVE (3) EXISTING RRH's
- INSTALL AT&T ANTENNA (OPA65R-BU6A) (TYP. OF 1 PER SECTOR, TOTAL OF 3).
- INSTALL AT&T ANTENNA (800-10965) (TYP. OF 1 PER SECTOR, TOTAL OF 3).
- INSTALL AT&T 4449 B5/12 (850/700) (TYP. OF 1 PER SECTOR, TOTAL OF 3).
- INSTALL AT&T 8843 B2/B66A (AWS/PCS) (TYP, OF 1 PER SECTOR, TOTAL OF 3).
- INSTALL SURGE ARRESTOR (DC6-48-60-18-8F) (TOTAL OF 1)
- INSTALL (2) DC TRUNK CABLES & (1) FIBER TRUNK CABLE.
- INSTALL NEW SITE PRO 1 HANDRAIL KIT (PART# HRK12) (TYP. OF 1 PER SECTOR,

ITEMS TO BE MOUNTED INSIDE EXISTING SHELTER:

- ADD (1) NEW 6601
- ADD (1) NEW XMU03 ADD (1) NEW 6630

(3) ANTENNAS, (6) TMAS, (2) DC TRUNK CABLES, (1) FIBER TRUNK CABLES (12) COAX & (1) SURGE SUPPRESSOR.

SITE ADDRESS:

TYPE OF SITE:

1749 DURHAM ROAD MADISON, CT 06443

LATITUDE (NAD 83): N 41° 23' 22.33"

LONGITUDE (NAD 83): W 72° 38' 55.97'

LANDLORD: CROWN CASTLE INTERNATIONAL

500 W. CUMMINGS PARK, STE 3600 WOBURN, MA 01801

MONOPOLE/INDOOR

TOWER HEIGHT

RAD CENTER:

CURRENT USE: TELECOMMUNICATIONS FACILITY PROPOSED USE: TELECOMMUNICATIONS FACILITY

ALL CONSTRUCTION ACTIVITIES ARE TO BE COMPLETED DIRECTLY THROUGH CROWN. CONTRACTOR MUST HAVE CONSTRUCTION PO AND NTP FROM CROWN DIRECT IN ORDER TO BEGIN, PRE-APPROVAL TO ENTER THE PROPERTY MUST BE OBTAINED. FOR ACCESS AUTHORIZATION, PLEASE CONTACT CROWN.

CHECKED BY

SUBMITTALS 02/01/19 ISSUED FOR CONSTRUCTI

12/28/18 ISSUED FOR PERMITTING

DAP

ROPERTY AND COPYRIGHTED WORK OF AT&T RELESS, ANY DUPLICATION OR USE WITHOUT ROHIBITED, DUPLICATION AND USE BY VERNMENT AGENCIES FOR THE PURPOSES OF EGULATORY AND ADMINISTRATIVE FUNCTIONS I

FA# 10091767 SITE# CTL02100 MADISON DURHAM ROAD

> 1749 DURHAM ROAD MADISON, CT 06443

TITLE SHEET

SITE NUMBER: CTL02100

FA LOCATION CODE: 10091767

SITE NAME: MADISON DURHAM ROAD

CROWN SITE NAME: MADISON-DURHAM ROAD

PROJECT: LTE 2C / LTE 3C / LTE 4C / 4TX4RX SOFTWARE RETROFIT

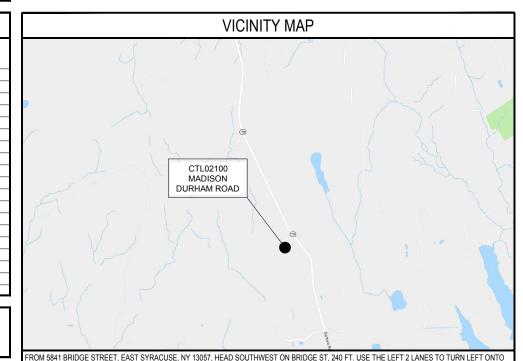
PACE ID: MRCTB033547, MRCTB033550, MRCTB033698,

MRCTB033880

BU#: 846176

DRAWING INDEX

SHEET NO:	SHEET TITLE
T-1	TITLE SHEET
GN-1	GENERAL NOTES I
GN-2	GENERAL NOTES II
C-1	SITE PLAN
C-2	EQUIPMENT LAYOUT & PROPOSED TOWER ELEVATION
C-3	EXISTING & PROPOSED ANTENNA LAYOUT
C-4	EQUIPMENT DETAILS I
C-5	HANDRAIL KIT DETAIL
RF-1	ANTENNA CHART & RF EQUIPMENT SCHEMATIC
G-1	GROUNDING DETAILS


CROWN CASTLE SITE ID #: 846176 CROWN SITE NAME: MADISON-DURHAM ROAD

ENGINEERING

2018 CONNECTICUT STATE BUILDING CODE 2018 AMENDMENT WITH 2015 INTERNATIONAL BUILDING CODE 2009 ICC/ANSI A117.1 ACCESSIBLE AND USABLE BUILDINGS AND FACILITIES 2015 INTERNATIONAL MECHANICAL CODE

2017 NATIONAL ELECTRICAL CODE (NEPA 70 2017)

ANSI/TIA-222-G

VIDEWATERS PKWY, 230 FT. MAKE A U-TURN, 177 FT. USE THE MIDDLE LANE TO TURN RIGHT AT THE 1ST CROSS STREET ONTO BRIDGE ST, 0.2 . TURN LEFT ONTO THE INTERSTATE 690 E RAMP TO INTERSTATE 481. 0.3 MI. MERGE ONTO I-690 E. 0.5 MI. USE THE LEFT LANE TO TAKE THE ITERSTATE 481 N EXIT TOWARD INTERSTATE 90/THRUWAY, 0.6 MI. MERGE ONTO I-481 N, 2.6 MI. TAKE EXIT 6 TO MERGE ONTO I-90 E (TOLL ROAD). 129 MI. KEEP RIGHT TO CONTINUE ON GOVERNOR THOMAS E. DEWEY THRUWAY/NEW YORK STATE THRUWAY. FOLLOW SIGNS FOR I-87 S/NEW YORK/BOSTON (TOLL ROAD). 1.0 ML CONTINUE ONTO I-87 S/GOVERNOR THOMAS E. DEWEY THRUWAY/NEW YORK STATE THRUWAY (TOLL ROAD) 13.6 ML TAKE EXIT 21A TOWARD I-90 F/MASS TURNPIKE/ROSTON (TOLL ROAD) 1.0 ML CONTINUE ONTO NY-912M F (TOLL ROAD) 6.4 ML CONTINUE ONTO 1-90 E (TOLL ROAD)/ENTERING MASSACHUSETTS). 63.1 ML TAKE EXIT 4 TO MERGE ONTO 1-91 S TOWARD SPRINGFIELD (PARTIAI OLL ROAD), 6.6 MI. KEEP LEFT TO STAY ON I-91 S (ENTERING CONNECTICUT), 36.8 MI. USE THE LEFT LANE TO TAKE EXIT 22S TO MERGE ONTO T-9 S TOWARD MIDDLETOWN/OLD SAYBROOK, 6.4 MI, TAKE EXIT 13 FOR STATE ROUTE 17 S TOWARD NEW HAVEN, 0.2 MI, CONTINUE ONTO CT-S, 6.7 MI. TURN LEFT ONTO CT-79 S/MADISON RD AND CONTINUE TO FOLLOW CT-79 S, 6.0 MI. SIET IS ACCESSIBLE VIA ACCESS ROAD ON THE

GENERAL NOTES

- THE FACILITY IS AN UNMANNED PRIVATE AND SECURED EQUIPMENT INSTALLATION. IT IS ONLY ACCESSED BY TRAINED TECHNICIANS FOR PERIODIC ROLITINE MAINTENANCE AND THEREFORE DOES NOT REQUIRE ANY WATER OR SANITARY SEWER SERVICE. THE FACILITY IS NOT GOVERNED BY REGULATIONS REQUIRING PUBLIC ACCESS PER ADA REQUIREMENTS.
- CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE AT&T REPRESENTATIVE IN WRITING OF DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME

UNDERGROUND SERVICE ALERT

CONNECTICUT LAW REQUIRES TWO WORKING DAYS NOTICE PRIOR TO ANY EARTH MOVING ACTIVITIES BY CALLING 800-922-4455 OR DIAL 811

2015 INTERNATIONAL ENERGY CONSERVATION CODE

PART 1 - GENERAL

- CONTRACTOR SHALL INSPECT THE EXISTING SITE CONDITIONS PRIOR TO SUBMITTING BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTORS FUNCTIONS. THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- THE CONTRACTOR SHALL OBTAIN PERMITS, LICENSES, MAKE ALL DEPOSITS, AND PAY ALL FEES REQUIRED FOR THE CONSTRUCTION PERFORMANCE FOR THE WORK UNDER THIS SECTION.
- DRAWINGS SHOW THE GENERAL ARRANGEMENT OF ALL SYSTEMS AND COMPONENTS COVERED UNDER THIS SECTION. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS. DRAWING SHALL NOT BE SCALED TO DETERMINE DIMENSIONS
- 1.2 LAWS, REGULATIONS, ORDINANCES, STATUTES AND CODES.
- ALL WORK SHALL BE INSTALLED IN ACCORDANCE WITH THE LATEST EDITION OF THE NATIONAL ELECTRICAL CODE, AND ALL APPLICABLE LOCAL LAWS, REGULATIONS, ORDINANCES, STATUTES AND CODES. CONDUIT BENDS SHALL BE THE RADIUS BEND FOR THE TRADE SIZE OF CONDUIT IN COMPLIANCE WITH THE LATEST EDITIONS OF NEC.
- 1.3
- THE PUBLICATIONS LISTED BELOW ARE PART OF THIS SPECIFICATION. EACH PUBLICATION SHALL BE THE LATEST REVISION AND ADDENDUM IN EFFECT ON THE DATE. THIS SPECIFICATION IS ISSUED FOR CONSTRUCTION UNLESS OTHERWISE NOTED. EXCEPT AS MODIFIED BY THE REQUIREMENT SPECIFIED HEREIN OR THE DETAILS OF THE DRAWINGS, WORK INCLUDED IN THIS SPECIFICATION SHALL CONFORM TO THE APPLICABLE PROVISION OF THESE
- ANSI/IEEE (AMERICAN NATIONAL STANDARDS INSTITUTE)
- ASTM (AMERICAN SOCIETY FOR TESTING AND MATERIALS) ICEA (INSULATED CARLE ENGINEERS ASSOCIATION)
- NEMA (NATIONAL ELECTRICAL MANUFACTURER'S ASSOCIATION)
 NFPA (NATIONAL FIRE PROTECTION ASSOCIATION)
- OSHA (OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION) UL (UNDERWRITERS LABORATORIES INC.)
- AT&T GROUNDING AND BONDING STANDARDS TP-76416
- 1.4 SCOPE OF WORK
- WORK UNDER THIS SECTION SHALL CONSIST OF FURNISHING ALL LABOR, MATERIAL, AND ASSOCIATED SERVICES REQUIRED TO COMPLETE REQUIRED CONSTRUCTION AND BE OPERATIONAL.
- ALL ELECTRICAL EQUIPMENT UNDER THIS CONTRACT SHALL BE PROPERLY TESTED, ADJUSTED, AND ALIGNED BY THE
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL EXCAVATING, DRAINING, TRENCHES, BACKFILLING, AND REMOVAL
- THE CONTRACTOR SHALL FURNISH TO THE OWNER WITH CERTIFICATES OF A FINAL INSPECTION AND APPROVAL FROM THE INSPECTION AUTHORITIES HAVING JURISDICTION.
- THE CONTRACTOR SHALL PREPARE A COMPLETE SET OF AS-BUILT DRAWINGS. DOCUMENT ALL WIRING EQUIPMENT CONDITIONS, AND CHANGES WHILE COMPLETING THIS CONTRACT. THE AS-BUILT DRAWINGS SHALL BE SUBMITTED AT COMPLETION OF THE PROJECT.

PART 2 - PRODUCTS

- 2.1 GENERAL
- ALL MATERIALS AND EQUIPMENT SHALL BE UL LISTED. NEW, AND FREE FROM DEFECTS.
- ALL ITEMS OF MATERIALS AND EQUIPMENT SHALL BE ACCEPTABLE TO THE AUTHORITY HAVING JURISDICTION AS
- ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 10,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110,24 NEC OR THE MOST CURRENT ADOPTED CODE PER THE GOVERNING JURISDICTION.
- 2.2 MATERIALS AND EQUIPMENT:
- CONDUIT:
- RIGID METAL CONDUIT (RMC) SHALL BE HOT-DIPPED GALVANIZED INSIDE AND OUTSIDE INCLUDING ENDS AND THREADS AND ENAMELED OR LACQUERED INSIDE IN ADDITION TO GALVANIZING.
- 2. LIQUIDTIGHT FLEXIBLE METAL CONDUIT SHALL BE UL LISTED
- 3. CONDUIT CLAMPS. STRAPS AND SUPPORTS SHALL BE STEEL OR MALLEABLE IRON, ALL FITTINGS SHALL BE COMPRESSION AND CONCRETE TIGHT TYPE. GROUNDING BUSHINGS WITH INSULATED THROATS SHALL BE INSTALLED ON ALL CONDUIT TERMINATIONS.
- 4. NONMETALLIC CONDUIT AND FITTINGS SHALL BE SCHEDULE 40 PVC. INSTALL USING SOLVENT-CEMENT-TYPE JOINTS AS RECOMMENDED BY THE MANUFACTURER.
- B. CONDUCTORS AND CABLE:
- 1. CONDUCTORS AND CABLE SHALL BE FLAME-RETARDANT, MOISTURE AND HEAT RESISTANT THERMOPI ASTIC, SINGLE CONDUCTOR, COPPER, TYPE THHN/THWN-2, 600 VOLT, SIZE AS INDICATED, #12 AWG SHALL BE THE MINIMUM SIZE
- 2. #10 AWG AND SMALLER CONDUCTOR SHALL BE SOLID OR STRANDED AND #8 AWG AND LARGER CONDUCTORS SHALL
- 3. SOLDERLESS, COMPRESSION-TYPE CONNECTORS SHALL BE USED FOR TERMINATION OF ALL STRANDED CONDUCTORS.
- 4. STRAIN-RELIEF SUPPORTS GRIPS SHALL BE HUBBELL KELLEMS OR APPROVED EQUAL. CABLES SHALL BE SUPPORTED IN ACCORDANCE WITH THE NEC AND CABLE MANUFACTURER'S RECOMMENDATIONS.
- 5. ALL CONDUCTORS SHALL BE TAGGED AT BOTH ENDS OF THE CONDUCTOR, AT ALL PULL BOXES, J-BOXES, EQUIPMENT AND CABINETS AND SHALL BE IDENTIFIED WITH APPROVED PLASTIC TAGS (ACTION CRAFT, BRADY, OR APPROVED EQUAL).
- DISCONNECT SWITCHES:
- DISCONNECT SWITCHES SHALL BE HEAVY DUTY, DEAD-FRONT, QUICK-MAKE, QUICK-BREAK, EXTERNALLY OPERABLE, HANDLE LOCKABLE AND INTERLOCK WITH COVER IN CLOSED POSITION, RATING AS INDICATED, UL LABELED FURNISHED IN NEMA 3R ENCLOSURE, SQUARE-D OR ENGINEER APPROVED EQUAL.
- CHEMICAL ELECTROLYTIC GROUNDING SYSTEM:
- INSTALL CHEMICAL GROUNDING AS REQUIRED. THE SYSTEM SHALL BE ELECTROLYTIC MAINTENANCE FREE ELECTRODE CONSISTING OF RODS WITH A MINIMUM #2 AWG CU EXOTHERMICALLY WELDED PIGTAIL, PROTECTIVE BOXES, AND BACKFILL MATERIAL. MANUFACTURER SHALL BE LYNCOLE XIT GROUNDING ROD TYPES K2-(*)CS OR K2L-(*)CS (*) LENGTH
- 2 GROUND ACCESS BOX SHALL BE A POLYPLASTIC BOX FOR NON-TRAFFIC APPLICATIONS. INCLUDING BOLT DOWN FLUSH COVER WITH "BREATHER" HOLES, XIT MODEL #XB-22. ALL DISCONNECT SWITCHES AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED LAMICOID NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS ID

- NUMBERING, AND THE ELECTRICAL POWER SOURCE.
- 3. BACKFILL MATERIAL SHALL BE LYNCONITE AND LYNCOLE GROUNDING GRAVEL.
- ALL GROUNDING COMPONENTS SHALL BE TINNED AND GROUNDING CONDUCTOR SHALL BE #2 AWG BARE, SOLID, TINNED, COPPER. ABOVE GRADE GROUNDING CONDUCTORS SHALL BE INSULATED WHERE NOTED.
- GROUNDING BUSES SHALL BE BARE, TINNED, ANNEALED COPPER BARS OF RECTANGULAR CROSS SECTION. STANDARD BUS BARS MGB, SHALL BE FURNISHED AND INSTALLED BY THE CONTRACTOR. THEY SHALL NOT BE FABRICATED OR MODIFIED IN THE FIELD. ALL GROUNDING BUSES SHALL BE IDENTIFIED WITH MINIMUM 3/4" LETTERS BY WAY OF STENCILING OR DESIGNATION PLATE.
- 3. CONNECTORS SHALL BE HIGH-CONDUCTIVITY, HEAVY DUTY, LISTED AND LABELED AS GROUNDING CONNECTORS FOR THE MATERIALS USED, USE TWO-HOLE COMPRESSION LUGS WITH HEAT SHRINK FOR MECHANICAL CONNECTIONS INTERIOR CONNECTIONS USE TWO-HOLE COMPRESSION LUGS WITH INSPECTION WINDOW AND CLEAR HEAT SHRINK.
- EXOTHERMIC WELDED CONNECTIONS SHALL BE PROVIDED IN KIT FORM AND SELECTED FOR THE SPECIFIC TYPES, SIZES, AND COMBINATIONS OF CONDUCTORS AND OTHER ITEMS TO BE CONNECTED.
- 5. GROUND RODS SHALL BE COPPER-CLAD STEEL WITH HIGH-STRENGTH STEEL CORE AND ELECTROLYTIC-GRADE COPPER OUTER SHEATH, MOLTEN WELDED TO CORE. 5/8"x10'-0". ALL GROUNDING RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES
- 6. INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS IN COMPLIANCE WITH THE AT&T SPECIFICATIONS AND NEC. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULLBOXES, DISCONNECT SWITCHES, STARTERS, AND EQUIPMENT CABINETS.
- F. OTHER MATERIALS
- THE CONTRACTOR SHALL PROVIDE OTHER MATERIALS, THOUGH NOT SPECIFICALLY DESCRIBED, WHICH ARE REQUIRED FOR A COMPLETELY OPERATIONAL SYSTEM AND PROPER INSTALLATION OF THE WORK.
- 7. PROVIDE PULL BOXES AND JUNCTION BOXES WHERE SHOWN OR REQUIRED BY NEC
- G. PANELS AND LOAD CENTERS
- 1. ALL PANEL DIRECTORIES SHALL BE TYPEWRITTEN

PART 3 - EXECUTION

- ALL MATERIAL AND EQUIPMENT SHALL BE INSTALLED IN STRICT ACCORDANCE WITH THE MANUFACTURER'S
- EQUIPMENT SHALL BE TIGHTLY COVERED AND PROTECTED AGAINST DIRT OR WATER, AND AGAINST CHEMICAL OR MECHANICAL INJURY DURING INSTALLATION AND CONSTRUCTION PERIODS.
- ALL LABOR FOR THE INSTALLATION OF MATERIALS AND EQUIPMENT FURNISHED FOR THE ELECTRICAL SYSTEM SHALL BE INSTALLED BY EXPERIENCED WIREMEN, IN A NEAT AND WORKMAN-LIKE MANNER.
- ALL ELECTRICAL EQUIPMENT SHALL BE ADJUSTED, ALIGNED AND TESTED BY THE CONTRACTOR AS REQUIRED TO PRODUCE THE INTENDED PERFORMANCE.
- UPON COMPLETION OF WORK, THE CONTRACTOR SHALL THOROUGHLY CLEAN ALL EXPOSED EQUIPMENT, REMOVE ALL LABELS AND ANY DEBRIS, CRATING OR CARTONS AND LEAVE THE INSTALLATION FINISHED AND READY FOR OPERATION.

3.3 COORDINATION

THE CONTRACTOR SHALL COORDINATE THE INSTALLATION OF ELECTRICAL ITEMS WITH THE OWNER-FURNISHED EQUIPMENT DELIVERY SCHEDULE TO PREVENT UNNECESSARY DELAYS IN THE TOTAL WORK.

3.4 INSTALLATION

- 1. ALL ELECTRICAL WIRING SHALL BE INSTALLED IN CONDUIT AS SPECIFIED. NO CONDUIT OR TUBING OF LESS THAN 3/4
- PROVIDE RIGID PVC SCHEDULE 80 CONDUITS FOR ALL RISERS, RMC OTHERWISE NOTED. EMT MAY BE INSTALLED FOR EXTERIOR CONDUITS WHERE NOT SUBJECT TO PHYSICAL DAMAGE.
- 3. INSTALL SCHEDULE 40 PVC CONDUIT WITH A MINIMUM COVER OF 24" UNDER ROADWAYS, PARKING LOTS, STREETS, AND ALLEYS. CONDUIT SHALL HAVE A MINIMUM COVER OF 18" IN ALL OTHER NON-TRAFFIC APPLICATIONS (REFER TO 2017 NEC. TABLE 300.5).
- 4. USE GALVANIZED FLEXIBLE STEEL CONDUIT WHERE DIRECT CONNECTION TO EQUIPMENT WITH MOVEMENT, VIBRATION, OR FOR EASE OF MAINTENANCE. USE LIQUID TIGHT, FLEXIBLE METAL CONDUIT FOR OUTDOOR APPLICATIONS. INSTALL GALVANIZED FLEXIBLE STEEL CONDUIT AT ALL POINTS OF CONNECTION TO EQUIPMENT MOUNTED ON SUPPORT TO
- 5. A RUN OF CONDUIT BETWEEN BOXES OR EQUIPMENT SHALL NOT CONTAIN MORE THAN THE EQUIVALENT OF THREE QUARTER-BENDS. CONDUIT BEND SHALL BE MADE WITH THE UL LISTED BENDER OR FACTORY 90 DEGREE ELBOWS MAY
- 6. FIELD FABRICATED CONDUITS SHALL BE CUT SQUARE WITH A CONDUIT CUTTING TOOL AND REAMED TO PROVIDE A SMOOTH INSIDE SURFACE.
- 7. PROVIDE INSULATED GROUNDING BUSHING FOR ALL CONDUITS.
- 8. CONTRACTOR IS RESPONSIBLE FOR PROTECTING ALL CONDUITS DURING CONSTRUCTION. TEMPORARY OPENINGS IN THE CONDUIT SYSTEM SHALL BE PLUGGED OR CAPPED TO PREVENT ENTRANCE OF MOISTURE OR FOREIGN MATTER. CONTRACTOR SHALL REPLACE ANY CONDUITS CONTAINING FOREIGN MATERIALS THAT CANNOT BE REMOVED.
- 9. ALL CONDUITS SHALL BE SWABBED CLEAN BY PULLING AN APPROPRIATE SIZE MANDREL THROUGH THE CONDUIT BEFORE INSTALLATION OF CONDUCTORS OR CABLES, CONDUIT SHALL BE FREE OF DIRT AND DEBRIS.
- 10. INSTALL PULL STRINGS IN ALL CLEAN EMPTY CONDUITS. IDENTIFY PULL STRINGS AT EACH END.
- 11. INSTALL 2" HIGHLY VISIBLE AND DETECTABLE TAPE 12" ABOVE ALL UNDERGROUND CONDUITS AND CONDUCTORS
- 12. CONDUITS SHALL BE INSTALLED IN SUCH A MANNER AS TO INSURE AGAINST COLLECTION OF TRAPPED CONDENSATION.
- 13. PROVIDE CORE DRILLING AS NECESSARY FOR PENETRATIONS TO ALLOW FOR RACEWAYS AND CABLES TO BE ROUTED THROUGH THE BUILDING. DO NOT PENETRATE STRUCTURAL MEMBERS. SLEEVES AND/OR PENETRATIONS IN FIRE RATED CONSTRUCTION SHALL BE EFFECTIVELY SEALED WITH FIRE RATED MATERIAL WHICH SHALL MAINTAIN THE FIRE RATING OF THE WALL OR STRUCTURE, FIRE STOPS AT FLOOR PENETRATIONS SHALL PREVENT PASSAGE OF WATER, SMOKE, FIRE, AND FUMES. ALL MATERIAL SHALL BE UL APPROVED FOR THIS PURPOSE.
- B. CONDUCTORS AND CABLE:
- 1. ALL POWER WIRING SHALL BE COLOR CODED AS FOLLOWS:

208/240/120 VOLT SYSTEMS BLACK RED BLUE

PHASE C GROUNDING

SPLICES SHALL BE MADE ONLY AT OUTLETS, JUNCTION BOXES, OR ACCESSIBLE RACEWAY CONDUITS APPROVED FOR THIS PURPOSE.

- 3. PULLING LUBRICANTS SHALL BE UL APPROVED. CONTRACTOR SHALL USE NYLON OR HEMP ROPE FOR PULLING CONDUCTOR OR CABLES INTO THE CONDUIT.
- 4. CABLES SHALL BE NEATLY TRAINED, WITHOUT INTERLACING, AND BE OF SUFFICIENT LENGTH IN ALL BOXES & EQUIPMENT TO PERMIT MAKING A NEAT ARRANGEMENT. CABLES SHALL BE SECURED IN A MANNER TO AVOID TENSION ON CONDUCTORS OR TERMINALS. CONDUCTORS SHALL BE PROTECTED FROM MECHANICAL INJURY AND MOISTURE. SHARP BENDS OVER CONDUIT BUSHINGS IS PROHIBITED. DAMAGED CABLES SHALL BE REMOVED AND REPLACED AT
- DISCONNECT SWITCHES
- INSTALL DISCONNECT SWITCHES LEVEL AND PLUMB. CONNECT TO WIRING SYSTEM AND GROUNDING SYSTEM AS
- D. GROUNDING:
- ALL METALLIC PARTS OF ELECTRICAL EQUIPMENT WHICH DO NOT CARRY CURRENT SHALL BE GROUNDED IN ACCORDANCE WITH THE REQUIREMENTS OF THE BUILDING MANUFACTURER, AT&T GROUNDING AND BONDING STANDARDS TP-76416, ND-00135, AND THE NATIONAL ELECTRICAL CODE.
- 2. PROVIDE ELECTRICAL GROUNDING AND BONDING SYSTEM INDICATED WITH ASSEMBLY OF MATERIALS, INCLUDING GROUNDING ELECTRODES. BONDING JUMPERS AND ADDITIONAL ACCESSORIES AS REQUIRED FOR A COMPLETE
- 3. ALL GROUNDING CONDUCTORS SHALL PROVIDE A STRAIGHT DOWNWARD PATH TO GROUND WITH GRADUAL BEND AS REQUIRED. GROUNDING CONDUCTORS SHALL NOT BE LOOPED OR SHARPLY BENT. ROUTE GROUNDING CONNECTIONS AND CONDUCTORS TO GROUND IN THE SHORTEST AND STRAIGHTEST PATHS POSSIBLE TO MINIMIZE TRANSIENT
- 4 BUILDINGS AND/OR NEW TOWERS GREATER THAN 75 FEET IN HEIGHT AND WHERE THE MAIN GROUNDING CONDUCTORS BOILDINGS AND/OR NEW TOWERS GREATER THAIN 75 FEET IN REIGHT AND WHERE THE MAIN GROUNDING CONDUCTORS FROM ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 AWG COPPER, ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). SEE STANDARD 6.3.2.2.
- 5 TIGHTEN GROUNDING AND BONDING CONNECTORS, INCLUDING SCREWS AND BOLTS, IN ACCORDANCE WITH TIGHTEN GROWING AND BOILING CONDING CONNECTIONS, INCLUDING SCREWS AND BOLTS, IN ACCORDANCE WITH MANUFACTURER'S PUBLISHED TORQUE TIGHTENING VALUES FOR CONNECTIONS NO BOLTS, WHERE MANUFACTURER'S TORQUING REQUIREMENTS ARE NOT AVAILABLE, TIGHTEN CONNECTIONS TO COMPLY WITH TIGHTENING TORQUE VALUES SPECIFIED IN UL TO ASSURE PERMANENT AND EFFECTIVE GROUNDING.
- 6. CONTRACTOR SHALL VERIFY THE LOCATIONS OF GROUNDING TIE-IN-POINTS TO THE EXISTING GROUNDING SYSTEM ALL UNDERGROUND GROUNDING CONNECTIONS SHALL BE MADE BY THE EXOTHERMIC WELD PROCESS AND INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS.
- ALL GROUNDING CONNECTIONS SHALL BE INSPECTED FOR TIGHTNESS. EXOTHERMIC WELDED CONNECTIONS SHALL BE APPROVED BY THE INSPECTOR HAVING JURISDICTION BEFORE BEING PERMANENTLY CONCEALED.
- 8. APPLY CORROSION-RESISTANT FINISH TO FIELD CONNECTIONS AND PLACES WHERE FACTORY APPLIED PROTECTIVE COATINGS HAVE BEEN DESTROYED. USE KOPR-SHIELD ANTI-OXIDATION COMPOUND ON ALL COMPRESSION.
- 9. A SEPARATE, CONTINUOUS, INSULATED EQUIPMENT GROUNDING CONDUCTOR SHALL BE INSTALLED IN ALL FEEDER
- 10. BOND ALL INSULATED GROUNDING BUSHINGS WITH A BARE #6 AWG GROUNDING CONDUCTOR TO A GROUND BUS
- 11. DIRECT BURIED GROUNDING CONDUCTORS SHALL BE INSTALLED AT A NOMINAL DEPTH OF 36" MINIMUM BELOW GRADE, OR 6" BELOW THE FROST LINE, USE THE GREATER OF THE TWO DISTANCES.
- 12. ALL GROUNDING CONDUCTORS EMBEDDED IN OR PENETRATING CONCRETE SHALL BE INSTALLED IN SCHEDULE 40 PVC
- 13. THE INSTALLATION OF CHEMICAL ELECTROLYTIC GROUNDING SYSTEM IN STRICT ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS. REMOVE SEALING TAPE FROM LEACHING AND BREATHER HOLES. INSTALL
- 14. DRIVE GROUND RODS UNTIL TOPS ARE A MINIMUM DISTANCE OF 36" DEPTH OR 6" BELOW FROST LINE, USING THE GREATER OF THE TWO DISTANCES.
- 15. IF COAX ON THE ICE BRIDGE IS MORE THAN 6 FT. FROM THE GROUNDING BAR AT THE BASE OF THE TOWER, A SECOND GROUNDING BAR WILL BE NEEDED AT THE END OF THE ICE BRIDGE, TO GROUND THE COAX CABLE GROUNDING KITS AND IN-LINE AR
- 16. CONTRACTOR SHALL REPAIR, AND/OR REPLACE, EXISTING GROUNDING SYSTEM COMPONENTS DAMAGED DURING CONSTRUCTION AT THE CONTRACTORS EXPENSE.
- ACCEPTANCE TESTING
- CERTIFIED PERSONNEL USING CERTIFIED EQUIPMENT SHALL PERFORM REQUIRED TESTS AND SUBMIT WRITTEN TEST REPORTS UPON COMPLETION.
- WHEN MATERIAL AND/OR WORKMANSHIP IS FOUND NOT TO COMPLY WITH THE SPECIFIED REQUIREMENTS, THE NON-COMPLYING ITEMS SHALL BE REMOVED FROM THE PROJECT SITE AND REPLACED WITH ITEMS COMPLYING WITH THE SPECIFIED REQUIREMENTS PROMPTLY AFTER RECEIPT OF NOTICE FOR NON-COMPLIANCE.
- ALL FEEDERS SHALL HAVE INSULATION TESTED AFTER INSTALLATION, BEFORE CONNECTION TO DEVICES. THE CONDUCTORS SHALL TEST FREE FROM SHORT CIRCUITS AND GROUNDS. TESTING SHALL BE FOR ONE MINUTE USING 1000V DC. PROVIDE WRITTEN DOCUMENTATION FOR ALL TEST RESULTS.
- 2. PRIOR TO ENERGIZING CIRCUITRY, TEST WIRING DEVICES FOR ELECTRICAL CONTINUITY AND PROPER POLARITY
- 3. MEASURE AND RECORD VOLTAGES BETWEEN PHASES AND BETWEEN PHASE CONDUCTORS AND NEUTRALS. SUBMIT A REPORT OF MAXIMUM AND MINIMUM VOLTAGES.
- 4. PERFORM GROUNDING TEST TO MEASURE GROUNDING RESISTANCE OF GROUNDING SYSTEM USING THE IEEE STANDARD 3-POINT "FALL-OF-POTENTIAL" METHOD. PROVIDE PLOTTED TEST VALUES AND LOCATION SKETCH. NOTIFY THE ENGINEER IMMEDIATELY IF MEASURED VALUE IS OVER 5 OHMS.

5841 BRIDGE STREET EAST SYRACUSE, NY 13057

3 CORPORATE PARK DRIVE

120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116

PROJECT NO ERCC0004

CAT

DAP

CHECKED BY

SUBMITTALS

02/01/19 ISSUED FOR CONSTRUCTI 12/28/18 ISSUED FOR PERMITTING

THIS DOCUMENT IS THE CREATION, DESIG PROPERTY AND COPYRIGHTED WORK OF AT&T WIRELESS. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED, DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF REGULATORY AND ADMINISTRATIVE FUNCTIONS I SPECIFICALLY ALLOWED

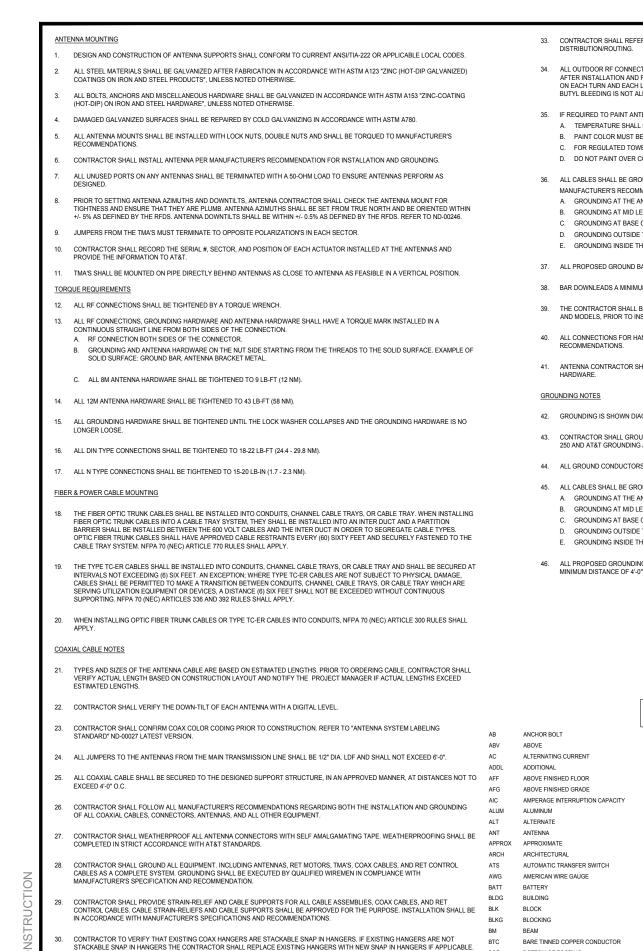
> FA# 10091767 SITE# CTL02100 MADISON DURHAM ROAD

> > 1749 DURHAM ROAD MADISON, CT 06443

GENERAL NOTES I

GN-1

ANTENNA MOUNTING TORQUE REQUIREMENTS LONGER LOOSE. FIBER & POWER CABLE MOUNTING COAXIAL CABLE NOTES


GENERAL CABLE AND EQUIPMENT NOTES

PRIOR TO INSTALLATION.

RECOMMENDATIONS.

CONTRACTOR SHALL BE RESPONSIBLE TO VERIFY ANTENNA, TMAS, DIPLEXERS, AND COAX CONFIGURATION, MAKE AND MODELS

32. ALL CONNECTIONS FOR HANGERS, SUPPORTS, BRACING, ETC. SHALL BE INSTALLED PER TOWER MANUFACTURER'S

CALIFORNIA ELECTRIC CODE

CEILING

CLEAR

FABRICATION

FINISH FLOOR

FINISH GRADE

FACILITY INTERFACE FRAME

FG

FIF

CEC

CLG

CLR

													_
CONTRACTOR SHALL REFE DISTRIBUTION/ROUTING.	RENCE THE	TOWER STRUCTURAL ANA	LYSIS/DESIGN DRAWINGS	FOR DIRECTIONS ON CABLE		EXOT	HERMIC CONNECTION		•	CA	ALLOUT REFEREN	CE X	
DISTRIBUTION/ROUTING.						MECH	HANICAL CONNECTION					^	
				E RET CONNECTORS, USING BUT		CHEM	MICAL ELECTROLYTIC GROUNDING	G SYSTEM	A	RE	EVISION REFEREN	ICE 1	
	LAYER SHAL			SHALL BE SMOOTH WITHOUT BU		TEST	CHEMICAL ELECTROLYTIC GROU	INDING SYSTI	EM 🙌 T				
BOTTL BLEEDING IS NOT AL	LOWED.								_			Ф	
IF REQUIRED TO PAINT ANT						EXOI	HERMIC WITH INSPECTION SLEEN	VE		w	ORKPOINT	W.P.	
 A. TEMPERATURE SHALL B. PAINT COLOR MUST BE 		i0° F.) BY BUILDING OWNER/LAN	DI ORD			GROL	JNDING BAR						
		C APPROVED PAINT IS RE				SHEL	TER GROUNDING BAR		8	TB	OTION DEFEDEN	XX XX	_
D. DO NOT PAINT OVER C	OLOR CODI	NG OR ON EQUIPMENT MOI	DEL NUMBERS.			GROL	JND ROD		1 ●	51	ECTION REFEREN	X-X	
ALL CABLES SHALL BE GRO	UNDED WIT	H COAXIAL CABLE GROUNI	KITS. FOLLOW THE			TEST	GROUND ROD WITH INSPECTION	SLEEVE	ı İ				
MANUFACTURER'S RECOMI							LE POLE SWITCH		. II ⊕	DI	TAIL REFERENCE	: XX	
GROUNDING AT THE A GROUNDING AT MID I F		/EL. RS WHICH ARE OVER 200'-0	" ADDITIONAL CARLE GRO	DUNDING REQUIRED		SINGL	LE FOLE SWITCH		\$	Di	TAIL INLI LINCI	X-X	
		PRIOR TO TURNING HORIZO		SONDING NEGOTIES.		DUPL	EX RECEPTACLE		\forall				
		MENT SHELTER AT ENTRY F							\mathbb{U}	-	EVATION REFERE	X	į.
E. GROUNDING INSIDE TH	HE EQUIPME	NT SHELTER AT THE ENTR	Y PORT.			DUPL	EX GFCI RECEPTACLE		GFC	EL	EVATION REFERE	INCE X	
ALL PROPOSED GROUND B	AR DOWNLE	ADS ARE TO BE TERMINAT	ED TO THE EXISTING ADJA	ACENT GROUND					W				
							RESCENT LIGHTING FIXTURE		Ĺ				
BAR DOWNLEADS A MINIMU	JM DISTANCE	E OF 4'-0" BELOW GROUND	BAR. TERMINATIONS MAY	BE EXOTHERMIC OR COMPRESS	SION.	(2)	TWO LAMPS 48-T8		l F	ļ			
			ANTENNA AND THE COAX	CONFIGURATION IS THE CORRI	ECT MAKE	FXIST	FING SMOKE DETECTION (DC)		SD				
AND MODELS, PRIOR TO IN:	STALLATION					LXIOI	THO OMORE BETEOTION (BO)						
	NGERS, SUF	PPORTS, BRACING, ETC. SH	IALL BE INSTALLED PER TO	OWER MANUFACTURER'S SPECIF	FICATION &	EXIST	TING EMERGENCY LIGHTING (DC)			Þ			
RECOMMENDATIONS.						SECII	JRITY LIGHT W/PHOTOCELL LITHO	WY IA AIM					
	HALL FURNIS	H AND INSTALL A 12'-0" T-E	OOM SECTOR ANTENNA M	MOUNT, IF APPLICABLE, INCLUDIN	NG ALL		I-25A400/51K-SR4-120-PE-DDBTXD						
HARDWARE.						EXIST	TING UTILITY POLE			,			
UNDING NOTES													
GROUNDING IS SHOWN DIA	GRAMMATIC	ALLY ONLY.				EXIST	TING CHAIN LINK FENCE		x	x -	x	x	
						EXIST	TING WOOD/WROUGHT IRON FENC	CE					
CONTRACTOR SHALL GROU 250 AND AT&T GROUNDING				LL BE IN COMPLIANCE WITH NEC JRER'S SPECIFICATIONS.	SECTION	EXIST	TING WALL STRUCTURE						
		,	,				E AREA		(///////	//////	<u> </u>	///////////////////////////////////////	
ALL GROUND CONDUCTOR:	S SHALL BE	COPPER; NO ALUMINUM CO	ONDUCTORS SHALL BE US	ED.			PERTY LINE (PL)						
ALL CABLES SHALL BE GRO	UNDED WIT	H COAXIAL CABLE GROUNI	DING KITS. FOLLOW THE M	ANUFACTURER'S RECOMMENDA	TIONS.								
A. GROUNDING AT THE A						SETB							
		RS WHICH ARE OVER 200', A PRIOR TO TURNING HORIZO		NDING REQUIRED.			POSED/EXISTING ICE BRIDGE						
		MENT SHELTER AT ENTRY F				PROP	POSED/EXISTING CABLE TRAY						
E. GROUNDING INSIDE TH	HE EQUIPME	NT SHELTER AT THE ENTR	Y PORT.			EXIST	TING WATER LINE			KXX	XXXX	KXXXXX	
ALL PROPOSED GROUNDIN	G BAR DOW	NLEADS ARE TO BE TERMII	NATED TO THE EXISTING A	ADJACENT GROUNDING BAR DOV	VNLEADS A	PROP	POSED UNDERGROUND POWER		— w —	– w –––	— w ——	w —— w —	
MINIMUM DISTANCE OF 4'-0'	" BELOW GR	OUNDING BAR. TERMINATION	ONS MAY BE EXOTHERMIC	OR COMPRESSION.		PROP	POSED UNDERGROUND TELCO		UGP	UGP-	UGP —	UGP	
						PROP	POSED OVERHEAD POWER		UGT	UGT -	ugt —	UGT	
						PROP	POSED OVERHEAD TELCO		—— ОНР—	OHP-	OHP	OHP	
						PROP	POSED OVERHEAD UTILITIES		— онт —	— онт —	– онт — он	т — онт —	
						PROP	POSED ABOVE GROUND POWER						
						PROP	POSED ABOVE GROUND TELCO		—— ОНТ —	— онт —	– онт — он	т — ОНТ ——	
							002878072 01100118 12200		——— AGP —	— AGP —	- AGP AG	P —— AGP ——	
									—— AGT —	— AGT —	- AGT AG	T AGT	
	THESE D						NCE WITH THE FOLLOW CODE		IDARDS AS				
		APPLICABLE	2018 CONNECTICUT	STATE BUILDING CODE. 2	2017 NATION	NAL EL	ECTRIC CODE OR LATEST ED	ITION.					
LT	COL	COLUMN	FIN	FINISH(ED)	MAS		MASONRY	QTY	QUANTITY		TOF	TOP OF FOUNDATION	
IG CURRENT	COMM	COMMON CONCRETE	FLR FDN	FLOOR FOUNDATION	MAX MB		MAXIMUM MACHINE BOLT	RAD RECT	RADIUS RECTIFIER		TOP TOS	TOP OF PLATE (PARAPET) TOP OF STEEL	
		CONSTRUCTION	FOC	FACE OF CONCRETE	MEC		MECHANICAL	REF	REFERENCE		TOW	TOP OF WALL	
SUED ELOOP	DDI	DOLINE E	EOM	EACE OF MASONDY	MED		MANUEACTURED	DEINE	DEINICODOEMENT		TVCC	TRANSIENT VOLTAGE SLIDDE	-

RAPET) DOUBLE FACE OF MASONRY MANUFACTURER REINF REINFORCEMENT TVSS TRANSIENT VOLTAGE SUPPRESSION DIRECT CURRENT FOS FACE OF STUD MGB MASTER GROUND BAR REQ'D REQUIRED SYSTEM DEP1 DEPARTMENT MINIMUM REMOTE ELECTRIC TILT TYPICAL FOW FACE OF WALL RET DF MISC DOUGLAS FIR FS FINISH SURFACE MISCELLANEOUS RMC RIGID METALLIC CONDUIT UG UNDERGROUND DIA DIAMETER FT FOOT MTL METAL REMOTE RADIO HEAD UL UNDERWRITERS LABORATORY DIAGONAL FTG FOOTING MTS MANUAL TRANSFER SWITCH RRU REMOTE RADIO UNIT UNO UNLESS NOTED OTHERWISE DIM DIMENSION GA GAUGE MW MICROWAVE RWY RACEWAY UMTS LINIVERSAL MORILE DRAWING GEN GENERATOR NFW SCH SCHEDULE TELECOMMUNICATIONS SYSTEM DOWEL NEC NATIONAL ELECTRIC CODE UNINTERRUPTIBLE POWER SYSTEM DWL GFCI GROUND FAULT CIRCUIT INTERRUPTER SHT EXISTING NUMBER (DC POWER PLANT) GLV NTS NOT TO SCALE VERIFIED IN FIELD GALVANIZED SIMILAR EC ELECTRICAL CONDUCTOR GPS GLOBAL POSITIONING SYSTEM OC ON CENTER SPEC SPECIFICATION WIDE GND OPNG OPENING SQ WITH EL ELEVATION GROUND SQUARE ELEC ELECTRICAL GSM GLOBAL SYSTEM FOR MOBILE (P) PROPOSED SS STAINLESS STEEL WD WOOD FLECTRICAL METALLIC TUBING HDR HEADER PRECAST CONCRETE STD STANDARD W.P. WORK POINT ENG ENGINEER HGR HANGER PCS PERSONAL COMMUNICATION SERVICES STL STEEL WP WEATHERPROOF ROF BOTTOM OF FOOTING FΩ FOLIAL HVAC HEAT/VENTILATION/AIR CONDITIONING PCII PRIMARY CONTROL LINIT STRUCT STRUCTURAL WT WEIGHT CAB CABINET EXP EXPANSION PRC PRIMARY RADIO CABINET TEMP TEMPORARY CANT CANTII EVERED EXTERIOR IGR INTERIOR GROUND RING POLARIZING PRESERVING THICKNESS

PWR

INTERIOR

POUND(S)

LINEAR FEET

LB(S)

LF

POUNDS PER SQUARE FOOT

POUNDS PER SQUARE INCH

PRESSURE TREATED

POWER CABINET

TOWER MOUNTED AMPLIFIER

TOE NAIL

TOP OF ANTENNA

TOP OF CURB

TOA

TOC

120 ST. JAMES AVENUE, 5TH FLOOR

BOSTON, MA 02116

PROJECT NO ERCC0004

DAP

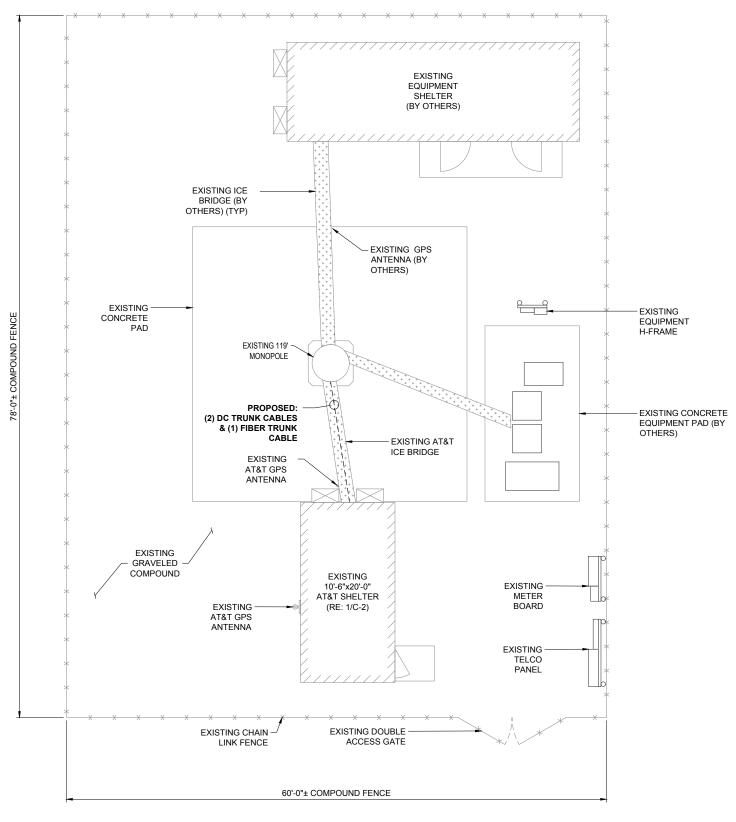
CAT

DRAWN BY

CHECKED BY

SUBMITTALS 02/01/19 ISSUED FOR CONSTRUCTION 12/28/18 ISSUED FOR PERMITTING

PROPERTY AND COPYRIGHTED WORK OF AT&T WIRELESS. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED, DUPLICATION AND USE BY OVERNMENT AGENCIES FOR THE PURPOSES OF REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED


> FA# 10091767 SITE# CTL02100 MADISON DURHAM ROAD

> > 1749 DURHAM ROAD MADISON, CT 06443

GENERAL NOTES II

GN-2

5841 BRIDGE STREET EAST SYRACUSE, NY 13057

CROWN CASTLE

3 CORPORATE PARK DRIVE SUITE 101 CLIFTON PARK, NY 12065

JACOBS

120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116

ERCC0004 PROJECT NO:

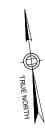
DAP

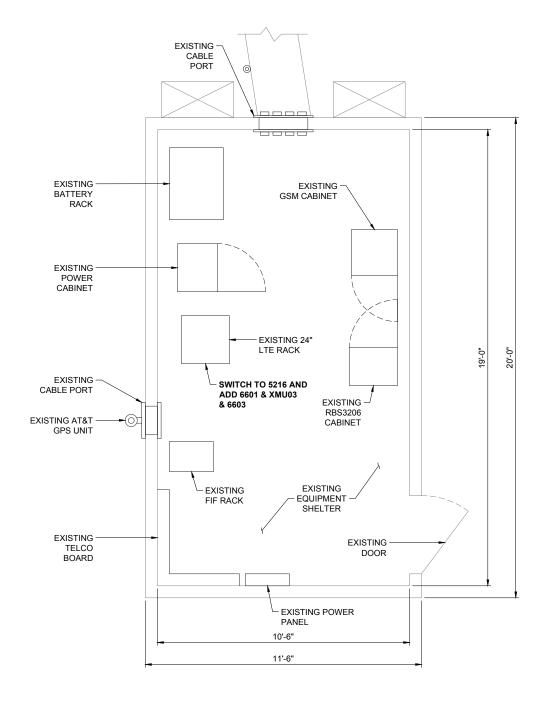
CAT

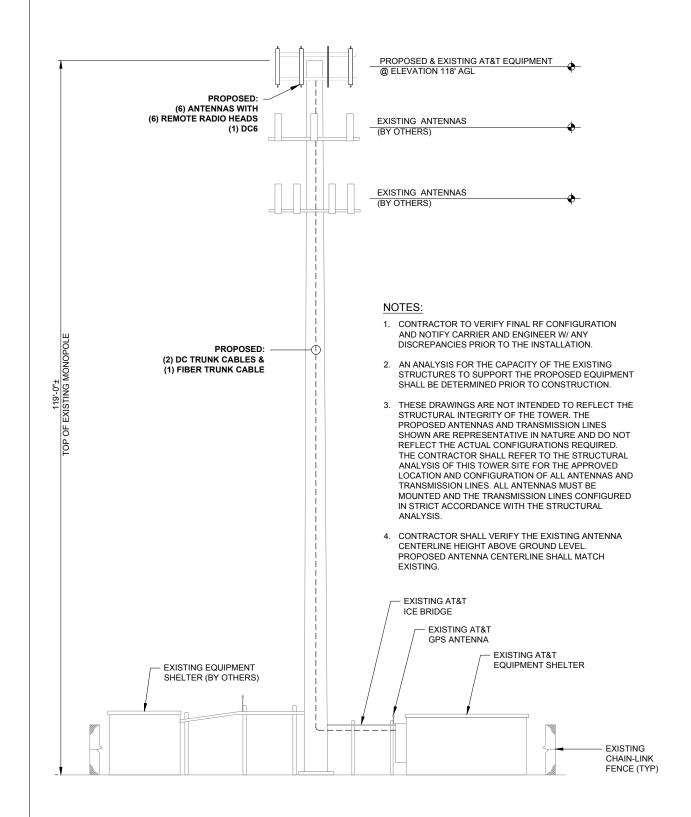
CHECKED BY:

SUBMITTALS 02/01/19 ISSUED FOR CONSTRUCTION 0 12/28/18 ISSUED FOR PERMITTING

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF ATAT WRELESS. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE UPPROSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.


FA# 10091767 SITE# CTL02100 MADISON DURHAM ROAD


> 1749 DURHAM ROAD MADISON, CT 06443


SITE PLAN

NOTES:

PLAN BASED ON AS-BUILT DRAWINGS ISSUED BY DEWBERRY ENGINEERS, INC. ON 01/07/13. CONTRACTOR TO FIELD VERIFY ALL DIMENSIONS AND LOCATION/ORIENTATION OF EXISTING EQUIPMENT.

EAST SYRACUSE, NY 13057

CROWN CASTLE
3 CORPORATE PARK DRIVE

SUITE 101 CLIFTON PARK, NY 12065

JACOBS^{*}

120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116

PROJECT NO: ERCC0004

DRAWN BY: DAP

CAT

CHECKED BY:

SUBMITTALS

1 02/01/19 ISSUED FOR CONSTRUCTION

12/28/18 ISSUED FOR PERMITTING

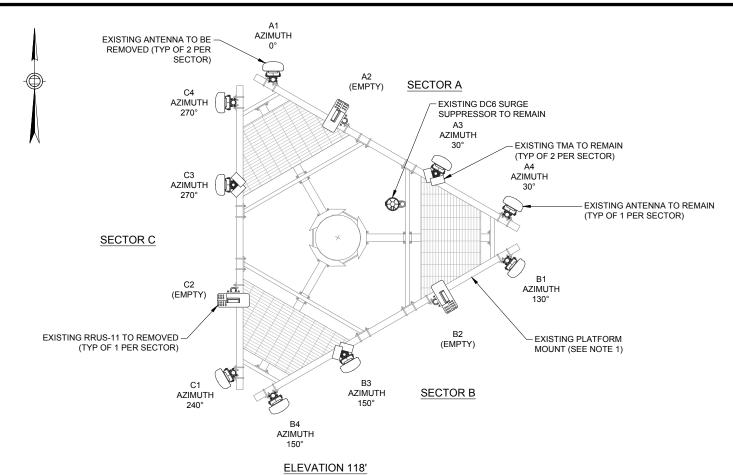
THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF AT&T WRELESS, ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED, DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

FA# 10091767 SITE# CTL02100 MADISON DURHAM ROAD

> 1749 DURHAM ROAD MADISON, CT 06443

EQUIPMENT LAYOUT & PROPOSED TOWER ELEVATION

C-2


NOT FOR CONSTRUCTION

SCALE: 1/2" = 1'-0"

0" 2

TOWER ELEVATION

SCALE: 1/8" = 1'-0"

NOTES:

- 1. CONTRACTOR SHALL REFER TO THE MOUNT MODIFICATION REPORT; SITE NUMBER: CTL02100; SITE NAME: MADISON DURHAM ROAD; FA LOCATION: 10091767; CROWN BU NUMBER: 846176; CROWN SITE NAME: MADISON-DURHAM ROAD; CROWN ORDER NUMBER: 471842; ISSUED BY INFINIGY. DATED ON 01/29/19. THE MOUNT MODIFICATIONS MUST BE PERFORMED PRIOR TO THE INSTALLATION OF THE EQUIPMENT SHOWN ON THE DRAWINGS. THE CONTRACTOR SHALL VERIFY ALL EXISTING MEMBERS AND HARDWARE ARE ISNTALLED PROPERLY AS DESCRIBED IN THIS REPORT.
- 2. CONTRACTOR TO VERIFY FINAL RF CONFIGURATION AND NOTIFY CARRIER AND ENGINEER W/ ANY DISCREPANCIES PRIOR TO THE INSTALLATION.
- 3. CONTRACTOR SHALL NOT EXCEED MOUNTING MORE THAN (2) RRHS PER ANTENNA MOUNTING PIPE RELOCATE TO AN ADJACENT ANTENNA MOUNTING PIPE AS NEEDED.
- CONTRACTOR TO VERIFY FINAL RF CONFIGURATION AND NOTIFY CARRIER AND ENGINEER W/ ANY DISCREPANCIES PRIOR TO THE INSTALLATION.

at&t

5841 BRIDGE STREET EAST SYRACUSE, NY 13057

3 CORPORATE PARK DRIVE SUITE 101 CLIFTON PARK, NY 12065

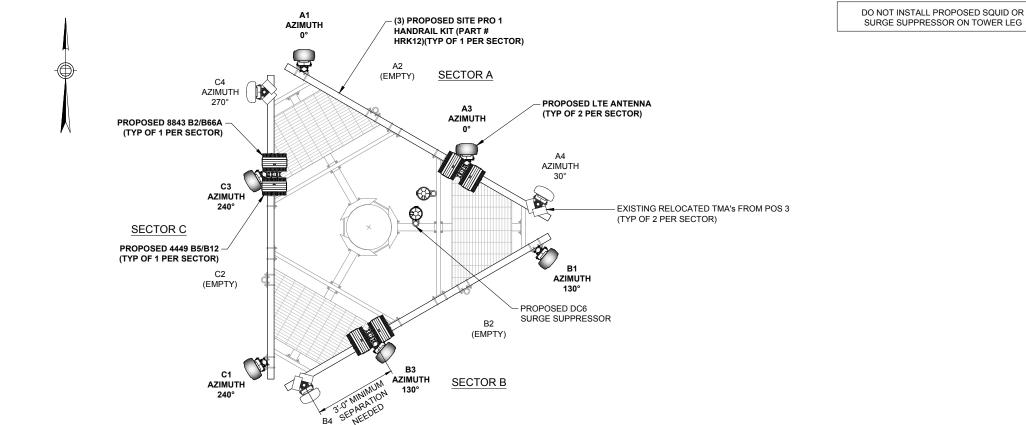
120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116

PROJECT NO: ERCC0004

DAP

CHECKED BY: CAT

٠.			
		SU	BMITTALS
	1	02/01/19	ISSUED FOR CONSTRUCTION
	_	40/00/40	IOOUED FOR REDMITTING


THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF AT&T WIRELESS, ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED, DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

FA# 10091767 SITE# CTL02100 MADISON DURHAM ROAD

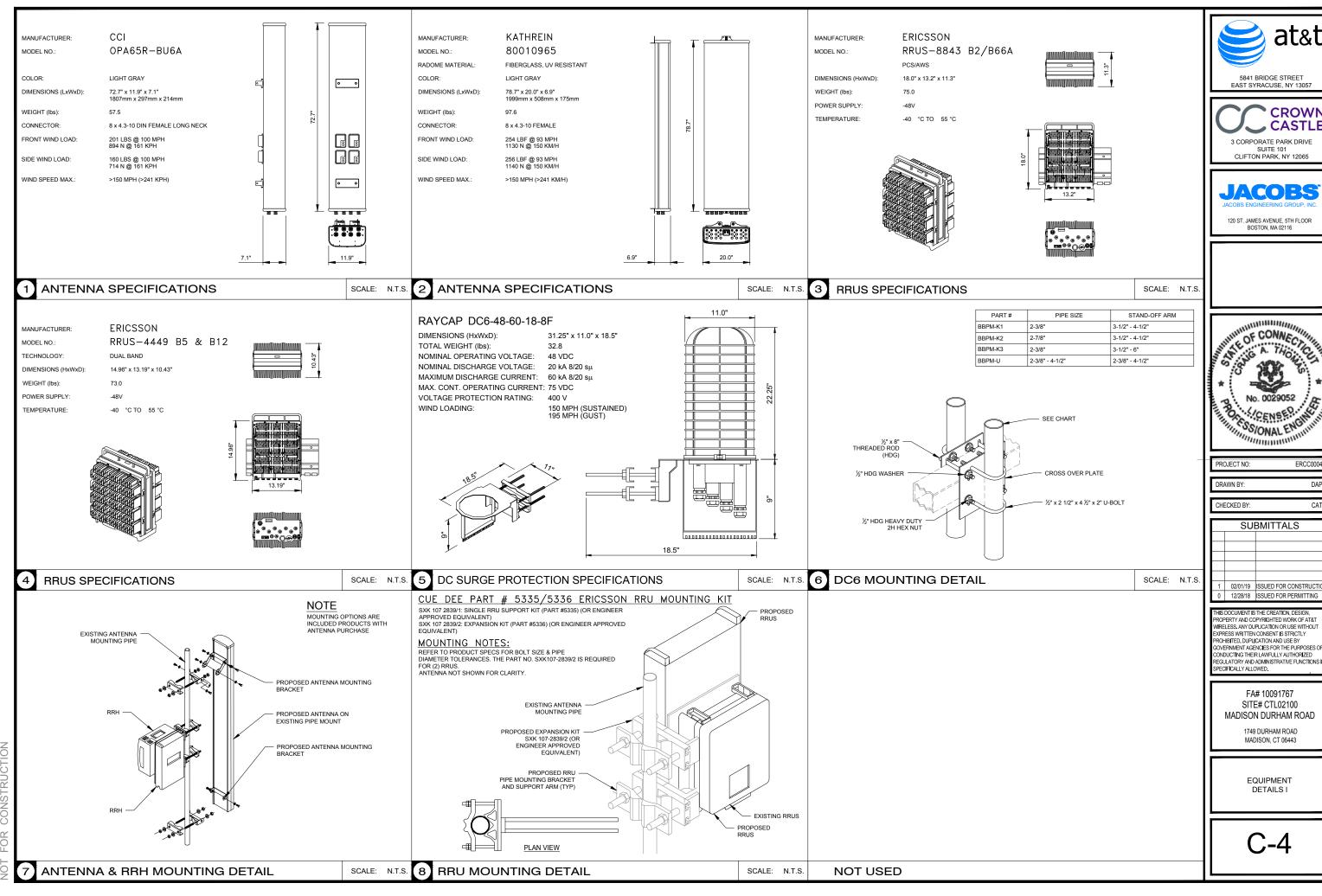
> 1749 DURHAM ROAD MADISON, CT 06443

EXISTING & PROPOSED ANTENNA LAYOUT

C-3

AZIMUTH

ELEVATION 118'


FOR CONSTRUCTION

PROPOSED ANTENNA LAYOUT

EXISTING ANTENNA LAYOUT

SCALE: N.T.S.

SCALE: N.T.S.

5841 BRIDGE STREET

3 CORPORATE PARK DRIVE SUITE 101 CLIFTON PARK, NY 12065

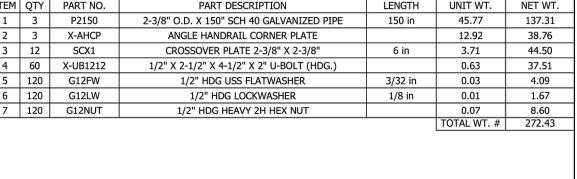
120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116

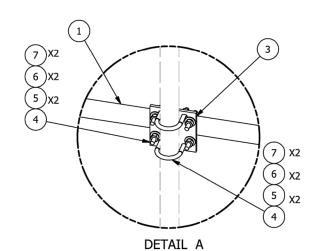
OF CONNECT

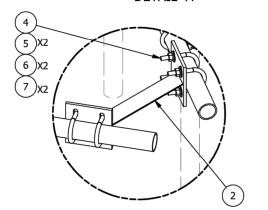
ERCC0004

DAP

CAT


SUBMITTALS


THIS DOCUMENT IS THE CREATION, DESIGN PROPERTY AND COPYRIGHTED WORK OF AT&T WIRELESS. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS


FA# 10091767 SITE# CTL02100 MADISON DURHAM ROAD

> 1749 DURHAM ROAD MADISON, CT 06443

EQUIPMENT DETAILS I

4 5 X2 6 X2 7 X2
(2)
<u> </u>

TOLERANCE NOTES

NS, UNLESS OTHERWISE NOTED ARE: S CUT EDGES (± 0.030") CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE ALL OTHER MACHINING (± 0.030")

ALL OTHER ASSEMBLY (± 0.060")

	L
PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRICTLY PROHIBITED.	(
	_

DESCRIPTION HANDRAIL KIT FOR 12'-6" FACE A valmont T COMPANY

Engineering Support Team: 1-888-753-7446

DETAIL B

Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX

HANDRAIL KIT DETAIL

5841 BRIDGE STREET EAST SYRACUSE, NY 13057

3 CORPORATE PARK DRIVE

SUITE 101 CLIFTON PARK, NY 12065

JACOBS

120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116

CROWN

CASTLE

ERCC0004

DAP

PROJECT NO:

CHECKED BY:

SUBMITTALS

02/01/19 ISSUED FOR CONSTRUCTION 12/28/18 ISSUED FOR PERMITTING

PROPERTY AND COPYRIGHTED WORK OF AT&T WIRELESS. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY

GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

FA# 10091767

SITE# CTL02100

MADISON DURHAM ROAD

1749 DURHAM ROAD

MADISON, CT 06443

TOLERANCES ON DIMENSI	0
SAWED, SHEARED AND GA	S
DRILLED AND GAS CUT HO	

| CEK | 7/10/2014 | CPD | BY | DATE

EXISTING ANTENNA PIPES

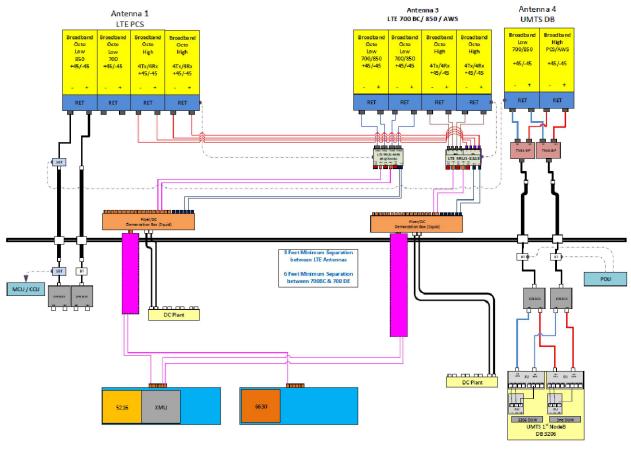
AND PLATFORM (2-3/8" O.D.)

ENG. APPROVAL DRAWN BY KC8 5/30/2012 DRAWING USAGE CHECKED BY 81 01 CUSTOMER BMC 7/13/2014

HRK12 HRK12

HANDRAIL KIT DETAIL

A REPLACED HCP WITH X-AHCP
REV DESCRIPTION


DESCRIPTION OF REVISIONS

REVISION HISTORY

SCALE: N.T.S

ANTENNA NUMBER	ANTENNA MODEL	ANTENNA BAND	AZIMUTH	ANTENNA CENTERLINE FROM GROUND	TMA's	RRH's	FEEDER	RAYCAP
A 1	OPA65R-BU6A (72.7"x11.9"x7.1")	LTE	0°	118'	-	-	(1) FIBER (E) (1) FIBER (P) (2) 1-5/8" EXISTING (LENGTH @ 135')	(1) RAYCAP DC6-48-60-18-8F
A2	-	-	-	-	-	-	-	(1) R. DC6-48
А3	800-10965 (78.7"x20"x6.9")	LTE	0°	118'	-	(1) B5/B12 4449 (850/700) (1) B2/B66A 8843 (AWS/PCS)	-	YCAP 0-18-8C
A4	7770 (55"x11"x5")	UMTS	30°	118'	(2) LGP 21401	-	(2) DC (E) (2) DC (P) (2) 1-5/8" EXISTING (LENGTH @ 135')	(1) RAYCAP DC6-48-60-18-8C
B1	OPA65R-BU6A (72.7"x11.9"x7.1")	LTE	130°	118'	-	-	(2) 1-5/8" EXISTING (LENGTH @ 135')	
B2	-	-	-	-	-	-	-	
В3	800-10965 (78.7"x20"x6.9")	LTE	130°	118'	-	(1) B5/B12 4449 (850/700) (1) B2/B66A 8843 (AWS/PCS)	-	
B4	7770 (55"x11"x5")	UMTS	150°	118'	(2) LGP 21401	-	(2) 1-5/8" EXISTING (LENGTH @ 135')	
G1	OPA65R-BU6A (72.7"x11.9"x7.1")	LTE	240°	118'	-	-	(2) 1-5/8" EXISTING (LENGTH @ 135')	
G2	-	-	-	-	-	-	-	
G3	800-10965 (78.7"x20"x6.9")	LTE	240°	118'	-	(1) B5/B12 4449 (850/700) (1) B2/B66A 8843 (AWS/PCS)	-	
G4	7770 (55"x11"x5")	UMTS	270°	118'	(2) LGP 21401	-	(2) 1-5/8" EXISTING (LENGTH @ 135')	

*EQUIPMENT LISTED IN **BOLD**, DELINEATES THAT THE EQUIPMENT IS PROPOSED

120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116

PROJECT NO: ERCC0004

DAP

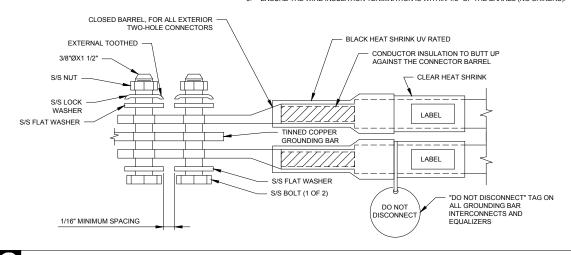
SUBMITTALS

CHECKED BY:

1	02/01/19	ISSUED FOR CONSTRUCTIO
0	12/28/18	ISSUED FOR PERMITTING

PROPERTY AND COPYRIGHTED WORK OF AT&T
WIRELESS, ANY DUPLICATION OR USE WITHOUT
EXPRESS WRITTEN CONSENT IS STRICTLY
PROHIBITED. DUPLICATION AND USE BY PROFIBITED DUPILICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

> FA# 10091767 SITE# CTL02100 MADISON DURHAM ROAD


> > 1749 DURHAM ROAD MADISON, CT 06443

ANTENNA CHART & RF EQUIPMENT SCHEMATIC

RF-1

NOTES:

- 1. EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GROUNDING BAR. ROUTE
- ALL GROUNDING BARS SHALL BE STAMPED IN TO THE METAL "IF STOLEN DO NOT RECYCLE." THE CONTRACTOR SHALL
 USE PERMANENT MARKER TO DRAW THE LINES BETWEEN EACH SECTION AND LABEL EACH SECTION ("P", "A", "N", "I") WITH
 I" HIGH LETTERS.
- ALL HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR LARGER. ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUND BEFORE MATING.
- FOR GROUND BOND TO STEEL ONLY: INSERT A CADMIUM FLAT WASHER BETWEEN LUG AND STEEL, COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUND BEFORE MATING.
- 5. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUNDING CONDUCTOR DOWN TO
- 6. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUNDING BAR AND BOLTED ON THE BACK SIDE. INSTALL BLACK HEAT-SHRINKING TUBE, 600 VOLT INSULATION, ON ALL GROUNDING TERMINATIONS. THE INTENT IS TO WEATHERPROOF THE COMPRESSION CONNECTION.
- 7. SUPPLIED AND INSTALLED BY CONTRACTOR.
- 8. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUNDING BAR AS REQUIRED, PROVIDING 50% SPARE CONNECTION POINTS.
- 9. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHINERS)

GENERAL NOTES:

- 1. CONTRACTOR SHALL HAVE A COMPLETE UNDERSTANDING OF THE CONTENTS OF AT&T STANDARD TP-76416
- 2. ALL INSTALLATIONS SHALL BE FIELD VERIFIED.
- ALL GROUND CONNECTIONS FOR ALL RELOCATED EQUIPMENT SHALL BE RE-ESTABLISHED BY THE CONTRACTOR. CONTRACTOR SHALL FURNISH ALL MATERIALS AS REQUIRED.

GROUNDING NOTES:

- 1. TOWER GROUNDING BAR: EXTEND (2) #2 AWG TINNED CU WIRE FROM BURIED GROUND RING UP TO THE TOWER GROUND BAR AND MAKE A MECHANICAL CONNECTION. SECURE GROUND BAR DIRECTLY TO TOWER WITH STAINLESS STEEL MOUNTING MATERIAL.
- 2. ANTENNA GROUNDING BAR: ANDREW CORPORATION PART #UGBKIT-0424-T MOUNT GROUND BAR DIRECTLY TO TOWER. SECURE TO TOWER WITH STAINLESS STEEL MOUNTING
- 3. GROUNDING BAR: LOCATED CLOSE TO GRADE LOCK BOX TESSCO PART #351546: INSTALL PER MANUFACTURER GUIDELINES.
- 4. EXOTHERMIC OR COMPRESSION CONNECTION FOR PIPE MOUNT TO ANTENNA ROUTE CONDUCTOR TO NEAREST GROUNDING BAR SO THE GROUNDING CONDUCTORS PROVIDE A STRAIGHT DOWNWARD PATH TO GROUND. USE #2 AWG SOLID TINNED COPPER CONDUCTOR. GROUNDING CONNECTION SHALL BE LOCATED AT THE TOP 2" OF PIPE.
- 5. ALL GROUNDING CONDUCTORS SHALL BE #2 AWG COPPER TINNED UNLESS NOTED OTHERWISE.
- 6. ALL GROUNDING CONDUCTORS SHALL PROVIDE A STRAIGHT DOWNWARD PATH TO GROUND WITH GRADUAL BEND AS REQUIRED. GROUND WIRES SHALL NOT BE LOOPED OR SHARPLY BENT
- 7. KOPR-SHIELD ANTI-OXIDATION COMPOUND SHALL BE USED ON ALL COMPRESSION GROUNDING CONNECTIONS.
- 8. ALL EXOTHERMIC CONNECTIONS SHALL BE INSTALLED UTILIZING THE PROPER CONNECTION/MOLD AND MATERIALS FOR THE PARTICULAR APPLICATION.
- 9. ALL BOLTED GROUNDING CONNECTIONS SHALL BE INSTALLED WITH AN EXTERNAL TOOTHED LOCK WASHER. GROUNDING BUS BARS MAY HAVE PRE-PUNCHED HOLES OR TAPPED HOLES. ALL HARDWARE SHALL BE SECURITY TORQUE HARDWARE 3/8" STAINLESS STEEL.
- 10. EXTERNAL GROUNDING CONDUCTOR SHALL NOT BE INSTALLED OR ROUTED THROUGH HOLES IN ANY METAL OBJECTS, CONDUITS, OR SUPPORTS TO PRECLUDE ESTABLISHING A MAGNETIC CHOKE POINT.
- 11. PLASTIC CLIPS SHALL BE USED TO FASTEN AND SUPPORT GROUNDING CONDUCTORS. FERROUS METAL CLIPS WHICH COMPLETELY SURROUND THE GROUNDING CONDUCTOR SHALL NOT BE USED.
- 12. IF COAX ON ICE BRIDGE IS MORE THAT 6' FROM THE GROUND BAR AT THE BASE OF THE TOWER, A SECOND GROUND BAR WILL BE NEEDED AT THE END OF THE ICE BRIDGE RUN TO GROUND THE COAX GROUND KIT AND THE IN-LINE SURGE ARRESTORS (SURGE ARRESTORS INSTALLED BY LUCENT ONLY HAVE 6' GROUND TAILS).
- 13. CONTRACTOR SHALL REPAIR/PLACE EXISTING GROUNDING SYSTEM COMPONENTS DAMAGED DURING CONSTRUCTION AT THE CONTRACTORS EXPENSE
- 14. DO NOT ALLOW THE COPPER CONDUCTOR TO TOUCH THE GALVANIZED GUY WIRE AT THE CONNECTION POINT OR AT ANY OTHER POINT. NO EXOTHERMICALLY WELDED CONNECTION SHALL BE MADE TO THE GUY WIRE.
- 15. CONTRACTOR SHALL VERIFY EXISTING SECTOR GROUNDING CONDITION AND GROUND THE PROPOSED EQUIPMENT IN THE SAME MANNER. A PROPOSED SECTOR GROUND BAR SHALL BE INSTALLED IF REQUIRED.

EXTERIOR TWO HOLE LUG DETAIL

SCALE: NONE

SCALE: NONE

ERCC0004

DAP

CAT

5841 BRIDGE STREET

3 CORPORATE PARK DRIVE

SUITE 101 CLIFTON PARK, NY 12065

120 ST. JAMES AVENUE, 5TH FLOOR

BOSTON, MA 02116

OF CONNECT

No. 0029052

SOS/ONAL ENG

CROWN

CASTLE

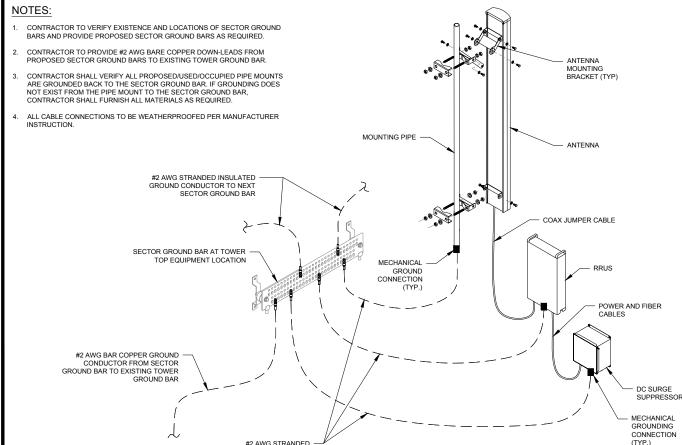
CHECKED BY:

PROJECT NO

SUBMITTALS

1 02/01/19 ISSUED FOR CONSTRUCTION

12/28/18 ISSUED FOR PERMITTING


THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF AT&T WIRELESS, ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

FA# 10091767 SITE# CTL02100 MADISON DURHAM ROAD

> 1749 DURHAM ROAD MADISON, CT 06443

GROUNDING DETAILS

G-1

2 GROUNDING BAR DETAIL

INSULATED GROUND

CONDUCTOR

Date: February 05, 2019

Heather Simeone Crown Castle 3530 Toringdon Way Suite 300 Charlotte, NC 28277

Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 (919) 782-2710

Subject: Structural Analysis Report

Carrier Designation: AT&T Mobility Co-Locate

Carrier Site Number: 10091767

Carrier Site Name: MADISON - DURHAM ROAD

Crown Castle BU Number: 846176

Crown Castle Site Name: MADISON DURHAM ROAD

Crown Castle JDE Job Number: 548697 Crown Castle Work Order Number: 1689986 Crown Castle Order Number: 471842 Rev. 0

Engineering Firm Designation: Engineered Tower Solutions, PLLC Project Number: 190688.14

Site Data: 1749 DURHAM ROAD, MADISON, New Haven County, CT

Latitude 41° 23' 22.33", Longitude -72° 38' 55.97"

119 Foot - Monopole Tower

Dear Heather Simeone,

Engineered Tower Solutions, PLLC is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by:

Tomas Martin Sosa Structural Engineer I

Respectfully submitted by:

Frederic Bost, PE President/Owner

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 119 ft. Monopole tower designed by Sabre Communications in December of 2005. The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-F.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 130 mph

Exposure Category:

Topographic Factor:

Ice Thickness:

Wind Speed with Ice:

Service Wind Speed:

B

1.5 in

50 mph

60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)							
119.0	119.0	1	SitePro	HRK12									
		3	CCI Antennas	OPA65R-BU6A									
	118.0	3	Ericsson	RRUS 4449 B5/B12									
									3	Ericsson	RRUS 8843 B2/B66A		
		3	Kathrein	80010965	2	3/8							
116.0		118.0	118.0	118.0	118.0	3	Powerwave Technologies	7770.00	4 12 1	3/4 1-5/8 2"			
		6	Powerwave Technologies	LGP21401		Conduit							
		1	Raycap	DC6-48-60-18-8F									
	116.0	1	Crown Mounts	Platform Mount [LP 601-1]									
	115.0	1	Raycap	DC6-48-60-18-8F									

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
	108.0	3	Alcatel lucent	1900MHz RRH		-	
108.0		3	Alcatel lucent	800MHZ 2X50W RRH W/FILTER	-		
		1	Crown Mounts	Side Arm Mount [SO 102-3]			
	440.0	3	Alcatel lucent	TD-RRH8x20-25		1-1/4	
106.0	110.0	3	RFS Celwave	APXVTM14-ALU-I20			
106.0	108.0	3	RFS Celwave	APXVSPP18-C-A20	4		
	106.0	1	Crown Mounts	Platform Mount [LP 601-1]			
	96.0	1	Antel	BXA-171063-12BF			
		2	Antel	BXA-171063-8BF-EDIN-0			
			3	Antel	BXA-70063-6CF-EDIN-0		
		2	Decibel	DB846F65E-SX	13	1-5/8	
94.0		3	Kathrein	742 213			
94.0		4	RFS Celwave	APL868013	13	1-5/6	
		6	RFS Celwave	FD9R6004/2C-3L			
	94.0	3	Alcatel lucent	RRH2X40-AWS			
		1	RFS Celwave	TMA-DB-T1-6Z-8AB-0Z			
		1	Crown Mounts	Platform Mount [LP 601-1]			
55.0	55.0	1	PCTEL	GPS-TMG-HR-26NCM	1	1/2	
00.0		1	Crown Mounts	Side Arm Mount [SO 701-1]	<u> </u>		
50.0	50.0	1	Crown Mounts	Side Arm Mount [SO 102-3]	-	-	

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source	
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	SABRE COMMUNICATIONS	4552185	CCI Sites	
4-TOWER MANUFACTURER DRAWINGS	SABRE COMMUNICATIONS	4516773	CCI Sites	
4-GEOTECHNICAL REPORTS	TEP, INC	4301706	CCI Sites	

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- Tower and structures were built and maintained in accordance with the manufacturer's specifications.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Engineered Tower Solutions, PLLC should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

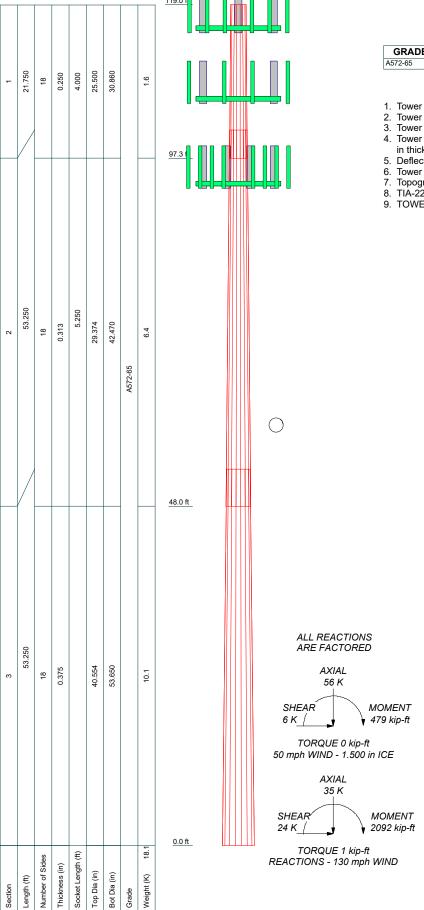
Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	119 - 97.25	Pole	TP30.86x25.5x0.25	1	-7.746	1443.907	12.4	Pass
L2	97.25 - 48	Pole	TP42.47x29.374x0.313	2	-19.142	2489.823	39.4	Pass
L3	48 - 0	Pole	TP53.65x40.554x0.375	3	-34.972	3894.996	44.7	Pass
							Summary	
						Pole (L3)	44.7	Pass
						RATING =	44.7	Pass

Table 5 - Tower Component Stresses vs. Capacity – LC7

Table 6 Terror Compension Chicococ for Capacity 201						
Notes	Notes Component		% Capacity	Pass / Fail		
1	Anchor Rods	0	41.7	Pass		
1	Base Plate	0	42.0	Pass		
1	Base Foundation Soil Interaction	0	51.8	Pass		
1 Base Foundation Structural		0	42.4	Pass		

Structure Rating (max from all components) =	51.8%
--	-------


Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
	65 ksi	80 ksi			

TOWER DESIGN NOTES

- Tower is located in New Haven County, Connecticut.
 Tower designed for Exposure B to the TIA-222-H Standard.
- Tower designed for a 130 mph basic wind in accordance with the TIA-222-H Standard.
- 4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase 1. The color and case of the color and the color

- 8. TIA-222-H Annex S
- 9. TOWER RATING: 44.7%

Engineered Tower Solutions, PLLC

bb: BU	^{b:} BU# 846176								
roject: E	roject: ETS Proj. No. 190688.14								
lient: C	rown Castle	Drawn by: Tomas Martin Sosa	App'd:						
ode: T	IA-222-H	Date: 02/05/19	Scale: NTS						
ath:	rs\Tomas Sosa\Deskton\Towers\	(2019)0558/SA\Analysis\Traver\MADISON DURHAM ROAD, 471842 Rev 0	Dwg No. E-						

Engineered Tower Solutions, PLLC

3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:

Job		Page
	BU# 846176	1 of 17
Project	ETS Proj. No. 190688.14	Date 13:29:04 02/05/19
Client	Crown Castle	Designed by Tomas Martin Sosa

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in New Haven County, Connecticut.

Tower base elevation above sea level: 343.000 ft.

Basic wind speed of 130 mph.

Risk Category II.

Exposure Category B.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1. Crest Height: 0.000 ft.

Nominal ice thickness of 1.500 in.

Ice thickness is considered to increase with height.

Ice density of 56.000 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50.000 °F.

Deflections calculated using a wind speed of 60 mph.

TIA-222-H Annex S.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.05.

Tower analysis based on target reliabilities in accordance with Annex S.

Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

√ Use Code Safety Factors - Guys Escalate Ice

Escalate Ice
Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
- Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque
Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption
Poles

✓ Include Shear-Torsion Interaction
 Always Use Sub-Critical Flow
 Use Top Mounted Sockets
 Pole Without Linear Attachments
 Pole With Shroud Or No Appurtenances
 Outside and Inside Corner Radii Are
 Known

Engineered Tower Solutions, PLLC

3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:

Job		Page
	BU# 846176	2 of 17
Project	ETS Proj. No. 190688.14	Date 13:29:04 02/05/19
Client	Crown Castle	Designed by Tomas Martin Sosa

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Top	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	119.000-97.250	21.750	4.000	18	25.500	30.860	0.250	1.000	A572-65
									(65 ksi)
L2	97.250-48.000	53.250	5.250	18	29.374	42.470	0.313	1.250	A572-65
									(65 ksi)
L3	48.000-0.000	53.250		18	40.554	53.650	0.375	1.500	A572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	I	r	С	I/C	J	It/Q	w	w/t
	in	in^2	in^4	in	in	in^3	in^4	in^2	in	
L1	25.855	20.036	1613.870	8.964	12.954	124.585	3229.863	10.020	4.048	16.192
	31.297	24.289	2875.242	10.867	15.677	183.407	5754.267	12.147	4.991	19.965
L2	30.778	28.826	3075.812	10.317	14.922	206.124	6155.672	14.416	4.620	14.784
	43.077	41.815	9388.991	14.966	21.575	435.184	18790.337	20.911	6.925	22.159
L3	42.433	47.823	9753.687	14.263	20.601	473.449	19520.207	23.916	6.477	17.273
	54.420	63.411	22737.673	18.913	27.254	834.281	45505.265	31.711	8.782	23.42

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	$Adjust. \ Factor \ A_r$	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in					in	in	in
L1				1	1	1			
119.000-97.25									
0									
L2				1	1	1			
97.250-48.000									
L3				1	1	1			
48.000-0.000									

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Component	Placement	Total	Number	Start/End	Width or	Perimeter	Weight
		From	Type		Number	Per Row	Position	Diameter		
		Torque		ft				in	in	klf
		Calculation								

Safety Line 3/8	C	No	Surface Af	119.000 -	1	1	0.350	0.000	0.750	0.000
•			(CaAa)	0.000			0.350			

Feed Line/Linear Appurtenances - Entered As Area

Engineered Tower Solutions, PLLC

3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:

Job		Page
	BU# 846176	3 of 17
Project	ETS Proj. No. 190688.14	Date 13:29:04 02/05/19
Client	Crown Castle	Designed by Tomas Martin Sosa

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		C_AA_A	Weight
	Leg	Smeia	Torque Calculation	Туре	ft	rumber		ft²/ft	klf
LDF7-50A(1-5/8)	C	No	No	Inside Pole	116.000 - 0.000	12	No Ice	0.000	0.001
` ,							1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001
							2" Ice	0.000	0.001
FB-L98B-002-75000	C	No	No	Inside Pole	116.000 - 0.000	2	No Ice	0.000	0.000
(3/8)							1/2" Ice	0.000	0.000
` /							1" Ice	0.000	0.000
							2" Ice	0.000	0.000
WR-VG86ST-BRD(C	No	No	Inside Pole	116.000 - 0.000	4	No Ice	0.000	0.001
3/4)							1/2" Ice	0.000	0.001
,							1" Ice	0.000	0.001
							2" Ice	0.000	0.001
2" Rigid Conduit	C	No	No	Inside Pole	116.000 - 0.000	1	No Ice	0.000	0.003
8							1/2" Ice	0.000	0.003
							1" Ice	0.000	0.003
							2" Ice	0.000	0.003

LDF6-50A(1-1/4)	В	No	No	Inside Pole	106.000 - 0.000	3	No Ice	0.000	0.001
	_					-	1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001
							2" Ice	0.000	0.001
HB114-21U3M12-X	В	No	No	Inside Pole	106.000 - 0.000	1	No Ice	0.000	0.001
XXF(1-1/4)							1/2" Ice	0.000	0.001
(, -,							1" Ice	0.000	0.001
							2" Ice	0.000	0.001
***							2 100	0.000	0.001
561(1-5/8)	Α	No	No	Inside Pole	94.000 - 0.000	13	No Ice	0.000	0.001
201(12,0)		1.0	1.0				1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001
							2" Ice	0.000	0.001
***							2 100	0.000	0.001
LDF4-50A(1/2)	В	No	No	Inside Pole	55.000 - 0.000	1	No Ice	0.000	0.000
(-, -)	_					-	1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
							2" Ice	0.000	0.000
****							_ 100	0.000	0.000

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft ²	ft ²	ft ²	ft ²	K
L1	119.000-97.250	A	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.026
		C	0.000	0.000	0.000	0.000	0.288
L2	97.250-48.000	A	0.000	0.000	0.000	0.000	0.807
		В	0.000	0.000	0.000	0.000	0.150
		C	0.000	0.000	0.000	0.000	0.754
L3	48.000-0.000	A	0.000	0.000	0.000	0.000	0.842
		В	0.000	0.000	0.000	0.000	0.152
		C	0.000	0.000	0.000	0.000	0.734

Engineered Tower Solutions, PLLC

3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:

Job		Page
	BU# 846176	4 of 17
Project [ETS Proj. No. 190688.14	Date 13:29:04 02/05/19
Client	Crown Castle	Designed by Tomas Martin Sosa

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	119.000-97.250	A	1.435	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.026
		C		0.000	0.000	6.243	0.000	0.363
L2	97.250-48.000	A	1.378	0.000	0.000	0.000	0.000	0.807
		В		0.000	0.000	0.000	0.000	0.150
		C		0.000	0.000	14.137	0.000	0.923
L3	48.000-0.000	A	1.231	0.000	0.000	0.000	0.000	0.842
		В		0.000	0.000	0.000	0.000	0.152
		C		0.000	0.000	13.231	0.000	0.888

Feed Line Center of Pressure

Section	Elevation	Elevation CP_X CP_Z		CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	119.000-97.250	0.000	0.000	-1.412	0.335
L2	97.250-48.000	0.000	0.000	-1.465	0.346
L3	48.000-0.000	0.000	0.000	-1.457	0.342

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
L1	14	Safety Line 3/8	97.25 - 119.00	1.0000	1.0000
L2	14	Safety Line 3/8	48.00 - 97.25	1.0000	1.0000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft ²	ft²	K
7770.00 w/ Mount Pipe	A	From Leg	4.000 0.000 2.000	0.000	116.000	No Ice 1/2" Ice 1" Ice	5.746 6.179 6.607	4.254 5.014 5.711	0.055 0.103 0.157

Engineered Tower Solutions, PLLC

Job		Page
	BU# 846176	5 of 17
Project	ETS Proj. No. 190688.14	Date 13:29:04 02/05/19
Client	Crown Castle	Designed by Tomas Martin Sosa

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	Leg		Lateral Vert						
			t ft	٥	ft		ft^2	ft ²	K
			ft ft		J.		J-	J	
			Ji			2" Ice	7.488	7.155	0.287
7770.00 w/ Mount Pipe	В	From Leg	4.000	0.000	116.000	No Ice	5.746	4.254	0.055
			0.000			1/2" Ice	6.179	5.014	0.103
			2.000			1" Ice	6.607	5.711	0.157
						2" Ice	7.488	7.155	0.287
7770.00 w/ Mount Pipe	C	From Leg	4.000	0.000	116.000	No Ice	5.746	4.254	0.055
			0.000			1/2" Ice	6.179	5.014	0.103
			2.000			1" Ice	6.607	5.711	0.157
ODACED DUCA/M		F I	4.000	0.000	116,000	2" Ice	7.488	7.155	0.287
OPA65R-BU6A w/ Mount	A	From Leg	4.000 0.000	0.000	116.000	No Ice 1/2" Ice	8.088 8.642	7.654 8.826	0.083 0.154
Pipe			2.000			1" Ice	9.160	9.710	0.134
			2.000			2" Ice	10.221	11.508	0.232
OPA65R-BU6A w/ Mount	В	From Leg	4.000	0.000	116.000	No Ice	8.088	7.654	0.083
Pipe		110111 200	0.000	0.000	110.000	1/2" Ice	8.642	8.826	0.154
Tipe			2.000			1" Ice	9.160	9.710	0.232
						2" Ice	10.221	11.508	0.417
OPA65R-BU6A w/ Mount Pipe	C	From Leg	4.000	0.000	116.000	No Ice	8.088	7.654	0.083
			0.000			1/2" Ice	8.642	8.826	0.154
			2.000			1" Ice	9.160	9.710	0.232
						2" Ice	10.221	11.508	0.417
80010965 w/ Mount Pipe	A	From Leg	4.000	0.000	116.000	No Ice	14.051	7.628	0.125
			0.000			1/2" Ice	14.688	8.903	0.222
			2.000			1" Ice	15.303	9.963	0.327
00010065 (35 . 12)	ъ	г .	4.000	0.000	116,000	2" Ice	16.530	11.925	0.569
80010965 w/ Mount Pipe	В	From Leg	4.000 0.000	0.000	116.000	No Ice 1/2" Ice	14.051 14.688	7.628 8.903	0.125 0.222
			2.000			1" Ice	15.303	8.903 9.963	0.222
			2.000			2" Ice	16.530	11.925	0.569
80010965 w/ Mount Pipe	C	From Leg	4.000	0.000	116.000	No Ice	14.051	7.628	0.125
occiosos un module i ipe		110111 200	0.000	0.000	110.000	1/2" Ice	14.688	8.903	0.222
			2.000			1" Ice	15.303	9.963	0.327
						2" Ice	16.530	11.925	0.569
(2) LGP21401	A	From Leg	4.000	0.000	116.000	No Ice	1.104	0.347	0.014
			0.000			1/2" Ice	1.239	0.442	0.021
			2.000			1" Ice	1.381	0.544	0.030
						2" Ice	1.688	0.770	0.055
(2) LGP21401	В	From Leg	4.000	0.000	116.000	No Ice	1.104	0.347	0.014
			0.000			1/2" Ice	1.239	0.442	0.021
			2.000			1" Ice 2" Ice	1.381	0.544	0.030
(2) LGP21401	С	From Leg	4.000	0.000	116.000	No Ice	1.688 1.104	0.770 0.347	0.055 0.014
(2) LOI 21401	C	110III Leg	0.000	0.000	110.000	1/2" Ice	1.239	0.347	0.014
			2.000			1" Ice	1.381	0.544	0.021
			2.000			2" Ice	1.688	0.770	0.055
DC6-48-60-18-8F	Α	From Leg	4.000	0.000	116.000	No Ice	1.212	1.212	0.033
		Č	0.000			1/2" Ice	1.892	1.892	0.055
			-1.000			1" Ice	2.105	2.105	0.080
						2" Ice	2.570	2.570	0.138
RRUS 4449 B5/B12	A	From Leg	4.000	0.000	116.000	No Ice	1.968	1.408	0.071
			0.000			1/2" Ice	2.144	1.564	0.090
			2.000			1" Ice	2.328	1.727	0.111
		_				2" Ice	2.718	2.075	0.163
RRUS 4449 B5/B12	В	From Leg	4.000	0.000	116.000	No Ice	1.968	1.408	0.071
			0.000			1/2" Ice	2.144	1.564	0.090
			2.000			1" Ice 2" Ice	2.328 2.718	1.727	0.111 0.163
								2.075	

Engineered Tower Solutions, PLLC

Job		Page
	BU# 846176	6 of 17
Project	ETS Proj. No. 190688.14	Date 13:29:04 02/05/19
Client	Crown Castle	Designed by Tomas Martin Sosa

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	Leg		Lateral Vert						
			ft	0	ft		ft^2	ft^2	K
			ft ft		v		v		
RRUS 4449 B5/B12	С	From Leg	4.000	0.000	116.000	No Ice	1.968	1.408	0.071
			0.000			1/2" Ice	2.144	1.564	0.090
			2.000			1" Ice	2.328	1.727	0.111
DD110 0040 D0/D444		Б. т	4.000	0.000	116,000	2" Ice	2.718	2.075	0.163
RRUS 8843 B2/B66A	A	From Leg	4.000	0.000	116.000	No Ice 1/2" Ice	1.639	1.353	0.072
			0.000 2.000			1/2 Ice 1" Ice	1.799 1.966	1.500 1.655	0.090 0.110
			2.000			2" Ice	2.323	1.033	0.110
RRUS 8843 B2/B66A	В	From Leg	4.000	0.000	116.000	No Ice	1.639	1.353	0.137
RROS 0043 B2/B00/1	ь	Trom Leg	0.000	0.000	110.000	1/2" Ice	1.799	1.500	0.090
			2.000			1" Ice	1.966	1.655	0.110
			2.000			2" Ice	2.323	1.986	0.159
RRUS 8843 B2/B66A	C	From Leg	4.000	0.000	116.000	No Ice	1.639	1.353	0.072
		Č	0.000			1/2" Ice	1.799	1.500	0.090
			2.000			1" Ice	1.966	1.655	0.110
						2" Ice	2.323	1.986	0.159
DC6-48-60-18-8F	C	From Leg	2.000	0.000	116.000	No Ice	1.212	1.212	0.033
			0.000			1/2" Ice	1.892	1.892	0.055
			2.000			1" Ice	2.105	2.105	0.080
						2" Ice	2.570	2.570	0.138
6' x 2" Mount Pipe	A	From Leg	4.000	0.000	116.000	No Ice	1.425	1.425	0.022
			0.000			1/2" Ice	1.925	1.925	0.033
			2.000			1" Ice	2.294	2.294	0.048
el allar all	-		4.000	0.000	445000	2" Ice	3.060	3.060	0.090
6' x 2" Mount Pipe	В	From Leg	4.000	0.000	116.000	No Ice	1.425	1.425	0.022
			0.000			1/2" Ice	1.925	1.925	0.033
			2.000			1" Ice 2" Ice	2.294 3.060	2.294 3.060	0.048 0.090
6' x 2" Mount Pipe	C	From Leg	4.000	0.000	116.000	No Ice	1.425	1.425	0.090
o x 2 Would Tipe	C	110III Leg	0.000	0.000	110.000	1/2" Ice	1.925	1.925	0.022
			2.000			1" Ice	2.294	2.294	0.033
			2.000			2" Ice	3.060	3.060	0.090
Platform Mount [LP 601-1]	C	None		0.000	116.000	No Ice	28.470	28.470	1.122
	_					1/2" Ice	33.590	33.590	1.514
						1" Ice	38.710	38.710	1.905
						2" Ice	48.950	48.950	2.689
Miscellaneous [NA 507-1]	C	None		0.000	119.000	No Ice	4.800	4.800	0.245
						1/2" Ice	6.700	6.700	0.294
						1" Ice	8.600	8.600	0.343
						2" Ice	12.400	12.400	0.441

1900MHz RRH	Α	From Leg	1.000	0.000	108.000	No Ice	2.492	3.258	0.044
			0.000			1/2" Ice	2.695	3.484	0.075
			0.000			1" Ice	2.906	3.718	0.110
1000MHz DDH	В	Enom I aa	1 000	0.000	100 000	2" Ice No Ice	3.351	4.206	0.192
1900MHz RRH	ь	From Leg	1.000 0.000	0.000	108.000	1/2" Ice	2.492 2.695	3.258 3.484	0.044 0.075
			0.000			1" Ice	2.906	3.464	0.073
			0.000			2" Ice	3.351	4.206	0.110
1900MHz RRH	C	From Leg	1.000	0.000	108.000	No Ice	2.492	3.258	0.172
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C	205	0.000	0.000	100.000	1/2" Ice	2.695	3.484	0.075
			0.000			1" Ice	2.906	3.718	0.110
						2" Ice	3.351	4.206	0.192
800MHZ 2X50W RRH	Α	From Leg	1.000	0.000	108.000	No Ice	2.058	1.932	0.064
W/FILTER		3	0.000			1/2" Ice	2.240	2.109	0.086
			0.000			1" Ice	2.429	2.293	0.111
						2" Ice	2.829	2.684	0.172

Engineered Tower Solutions, PLLC

Job		Page
	BU# 846176	7 of 17
Project	ETS Proj. No. 190688.14	Date 13:29:04 02/05/19
Client	Crown Castle	Designed by Tomas Martin Sosa

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C _A A _A Front	C_AA_A Side	Weight
	Leg	-	Lateral Vert						
			ft	0	ft		ft^2	ft^2	K
			ft ft						
800MHZ 2X50W RRH	В	From Leg	1.000	0.000	108.000	No Ice	2.058	1.932	0.064
W/FILTER			0.000			1/2" Ice	2.240	2.109	0.086
			0.000			1" Ice	2.429	2.293	0.111
						2" Ice	2.829	2.684	0.172
(2) 6' x 2" Mount Pipe	Α	From Leg	1.000	0.000	108.000	No Ice	1.425	1.425	0.022
			0.000			1/2" Ice	1.925 2.294	1.925	0.033
			0.000			1" Ice 2" Ice	3.060	2.294 3.060	0.048 0.090
(2) 6' x 2" Mount Pipe	В	From Leg	1.000	0.000	108.000	No Ice	1.425	1.425	0.030
(2) 6 X 2 Would 1 Ipc	Ь	1 Tom Leg	0.000	0.000	100.000	1/2" Ice	1.925	1.925	0.033
			0.000			1" Ice	2.294	2.294	0.048
						2" Ice	3.060	3.060	0.090
(2) 6' x 2" Mount Pipe	C	From Leg	1.000	0.000	108.000	No Ice	1.425	1.425	0.022
•		_	0.000			1/2" Ice	1.925	1.925	0.033
			0.000			1" Ice	2.294	2.294	0.048
						2" Ice	3.060	3.060	0.090
800MHZ 2X50W RRH	C	From Leg	1.000	0.000	108.000	No Ice	2.058	1.932	0.064
W/FILTER			0.000			1/2" Ice	2.240	2.109	0.086
			0.000			1" Ice	2.429	2.293	0.111
1.1 v W v tel 0 100 31		NT		0.000	100.000	2" Ice	2.829	2.684	0.172
Side Arm Mount [SO 102-3]	C	None		0.000	108.000	No Ice	3.000	3.000	0.081
						1/2" Ice 1" Ice	3.480 3.960	3.480 3.960	0.111 0.141
						2" Ice	4.920	4.920	0.141
***						2 100	4.720	7.720	0.201
APXVSPP18-C-A20	Α	From Leg	4.000	0.000	106.000	No Ice	8.262	6.946	0.083
w/Mount Pipe		Č	0.000			1/2" Ice	8.822	8.127	0.151
-			2.000			1" Ice	9.346	9.021	0.227
						2" Ice	10.418	10.844	0.406
APXVSPP18-C-A20	В	From Leg	4.000	0.000	106.000	No Ice	8.262	6.946	0.083
w/Mount Pipe			0.000			1/2" Ice	8.822	8.127	0.151
			2.000			1" Ice	9.346	9.021	0.227
A DV/A/CDD10 C A 20		г т	4.000	0.000	106,000	2" Ice	10.418	10.844	0.406
APXVSPP18-C-A20	C	From Leg	4.000 0.000	0.000	106.000	No Ice 1/2" Ice	8.262 8.822	6.946 8.127	0.083 0.151
w/Mount Pipe			2.000			1" Ice	9.346	9.021	0.131
			2.000			2" Ice	10.418	10.844	0.406
APXVTM14-ALU-I20 w/	Α	From Leg	4.000	0.000	106.000	No Ice	6.580	4.959	0.077
Mount Pipe			0.000			1/2" Ice	7.031	5.754	0.132
1			4.000			1" Ice	7.473	6.472	0.193
						2" Ice	8.385	7.941	0.339
APXVTM14-ALU-I20 w/	В	From Leg	4.000	0.000	106.000	No Ice	6.580	4.959	0.077
Mount Pipe			0.000			1/2" Ice	7.031	5.754	0.132
			4.000			1" Ice	7.473	6.472	0.193
	_					2" Ice	8.385	7.941	0.339
APXVTM14-ALU-I20 w/	C	From Leg	4.000	0.000	106.000	No Ice	6.580	4.959	0.077
Mount Pipe			0.000			1/2" Ice	7.031	5.754	0.132
			4.000			1" Ice 2" Ice	7.473	6.472	0.193
TD-RRH8x20-25	Α	From Leg	4.000	0.000	106.000	No Ice	8.385 3.704	7.941 1.294	0.339 0.066
1 D-KK11032U-23	Α	1 Tom Leg	0.000	0.000	100.000	1/2" Ice	3.704	1.465	0.000
			4.000			1" Ice	4.196	1.642	0.030
						2" Ice	4.717	2.019	0.117
TD-RRH8x20-25	В	From Leg	4.000	0.000	106.000	No Ice	3.704	1.294	0.066
	-		0.000			1/2" Ice	3.946	1.465	0.090
			4.000			1" Ice	4.196	1.642	0.117

Engineered Tower Solutions, PLLC

Job		Page
	BU# 846176	8 of 17
Project	ETS Proj. No. 190688.14	Date 13:29:04 02/05/19
Client	Crown Castle	Designed by Tomas Martin Sosa

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	Leg		Lateral Vert	·					
			ft	0	ft		ft^2	ft ²	K
			ft ft						
TD-RRH8x20-25	С	From Leg	4.000	0.000	106.000	No Ice	3.704	1.294	0.066
			0.000			1/2" Ice	3.946	1.465	0.090
			4.000			1" Ice	4.196	1.642	0.117
(2) (I = 2!! M = Din =		F I	4.000	0.000	106,000	2" Ice	4.717	2.019	0.183
(2) 6' x 2" Mount Pipe	Α	From Leg	4.000 0.000	0.000	106.000	No Ice 1/2" Ice	1.425 1.925	1.425 1.925	0.022 0.033
			2.000			1" Ice	2.294	2.294	0.033
			2.000			2" Ice	3.060	3.060	0.090
(2) 6' x 2" Mount Pipe	В	From Leg	4.000	0.000	106.000	No Ice	1.425	1.425	0.022
(-) • ·· - ·· - ·· - · - · - · · ·	_		0.000			1/2" Ice	1.925	1.925	0.033
			2.000			1" Ice	2.294	2.294	0.048
						2" Ice	3.060	3.060	0.090
(2) 6' x 2" Mount Pipe	C	From Leg	4.000	0.000	106.000	No Ice	1.425	1.425	0.022
•			0.000			1/2" Ice	1.925	1.925	0.033
			2.000			1" Ice	2.294	2.294	0.048
						2" Ice	3.060	3.060	0.090
Platform Mount [LP 601-1]	C	None		0.000	106.000	No Ice	28.470	28.470	1.122
						1/2" Ice	33.590	33.590	1.514
						1" Ice	38.710	38.710	1.905
***						2" Ice	48.950	48.950	2.689
(2) APL868013 w/ Mount	Α	From Leg	4.000	0.000	94.000	No Ice	3.104	4.802	0.025
Pipe		_	0.000			1/2" Ice	3.476	5.416	0.063
			2.000			1" Ice	3.848	6.040	0.108
						2" Ice	4.604	7.337	0.216
(2) APL868013 w/ Mount	В	From Leg	4.000	0.000	94.000	No Ice	3.104	4.802	0.025
Pipe			0.000			1/2" Ice	3.476	5.416	0.063
			2.000			1" Ice	3.848	6.040	0.108
BXA-171063-8BF-EDIN-0	A	From Leg	4.000	0.000	94.000	2" Ice No Ice	4.604 3.179	7.337 3.353	0.216 0.029
w/ Mount Pipe	Α	From Leg	0.000	0.000	94.000	1/2" Ice	3.555	3.333	0.029
w/ Mount 1 ipe			2.000			1" Ice	3.930	4.595	0.001
			2.000			2" Ice	4.692	5.893	0.193
BXA-171063-8BF-EDIN-0	В	From Leg	4.000	0.000	94.000	No Ice	3.179	3.353	0.029
w/ Mount Pipe			0.000			1/2" Ice	3.555	3.971	0.061
I.			2.000			1" Ice	3.930	4.595	0.099
						2" Ice	4.692	5.893	0.193
BXA-70063-6CF-EDIN-0 w/	A	From Leg	4.000	0.000	94.000	No Ice	7.806	5.801	0.042
Mount Pipe			0.000			1/2" Ice	8.357	6.953	0.103
			2.000			1" Ice	8.872	7.819	0.171
	_					2" Ice	9.927	9.601	0.335
BXA-70063-6CF-EDIN-0 w/	В	From Leg	4.000	0.000	94.000	No Ice	7.806	5.801	0.042
Mount Pipe			0.000			1/2" Ice	8.357	6.953	0.103
			2.000			1" Ice	8.872	7.819	0.171
BXA-70063-6CF-EDIN-0 w/	С	From Leg	4.000	0.000	94.000	2" Ice No Ice	9.927 7.806	9.601 5.801	0.335 0.042
Mount Pipe	C	From Leg	0.000	0.000	94.000	1/2" Ice	8.357	6.953	0.042
Would Tipe			2.000			1" Ice	8.872	7.819	0.103
			2.000			2" Ice	9.927	9.601	0.171
(2) DB846F65E-SX w/	C	From Leg	4.000	0.000	94.000	No Ice	12.999	8.113	0.040
Mount Pipe	J		0.000	0.000	×	1/2" Ice	13.602	9.304	0.136
 			2.000			1" Ice	14.171	10.209	0.241
						2" Ice	15.330	12.014	0.482
BXA-171063-12BF w/	C	From Leg	4.000	0.000	94.000	No Ice	4.971	5.228	0.040
Mount Pipe		J	0.000			1/2" Ice	5.521	6.389	0.086
-			2.000			1" Ice	6.036	7.261	0.139
							7.091		

Engineered Tower Solutions, PLLC

Job		Page
	BU# 846176	9 of 17
Project	ETS Proj. No. 190688.14	Date 13:29:04 02/05/19
Client	Crown Castle	Designed by Tomas Martin Sosa

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft	٥	ft		ft ²	ft ²	K
(2) FD9R6004/2C-3L	A	From Leg	ft 4.000	0.000	94.000	No Ice	0.314	0.076	0.003
(2) 12511000 1120 02	••	110111 200	0.000	0.000	7	1/2" Ice	0.386	0.119	0.005
			2.000			1" Ice	0.466	0.169	0.009
						2" Ice	0.647	0.294	0.020
(2) FD9R6004/2C-3L	В	From Leg	4.000	0.000	94.000	No Ice	0.314	0.076	0.003
			0.000			1/2" Ice	0.386	0.119	0.005
			2.000			1" Ice	0.466	0.169	0.009
(2) FD0D (004/2C 21	C	E I	4.000	0.000	04.000	2" Ice	0.647	0.294	0.020
(2) FD9R6004/2C-3L	C	From Leg	4.000 0.000	0.000	94.000	No Ice 1/2" Ice	0.314 0.386	0.076 0.119	0.003 0.005
			2.000			1" Ice	0.366	0.119	0.003
			2.000			2" Ice	0.400	0.109	0.009
742 213 w/ Mount Pipe	Α	From Leg	4.000	0.000	94.000	No Ice	5.373	4.620	0.049
,			0.000			1/2" Ice	5.950	6.000	0.094
			2.000			1" Ice	6.501	6.982	0.146
						2" Ice	7.611	8.852	0.277
742 213 w/ Mount Pipe	В	From Leg	4.000	0.000	94.000	No Ice	5.373	4.620	0.049
			0.000			1/2" Ice	5.950	6.000	0.094
			2.000			1" Ice	6.501	6.982	0.146
740.012 /M /P'		г .	4.000	0.000	04.000	2" Ice	7.611	8.852	0.277
742 213 w/ Mount Pipe	C	From Leg	4.000	0.000	94.000	No Ice 1/2" Ice	5.373	4.620	0.049
			0.000 2.000			1/2 Ice 1" Ice	5.950 6.501	6.000 6.982	0.094 0.146
			2.000			2" Ice	7.611	8.852	0.140
RRH2X40-AWS	Α	From Leg	4.000	0.000	94.000	No Ice	2.161	1.420	0.044
			0.000			1/2" Ice	2.360	1.590	0.061
			0.000			1" Ice	2.565	1.768	0.082
						2" Ice	2.999	2.143	0.132
RRH2X40-AWS	В	From Leg	4.000	0.000	94.000	No Ice	2.161	1.420	0.044
			0.000			1/2" Ice	2.360	1.590	0.061
			0.000			1" Ice	2.565	1.768	0.082
DDIION 40 ANIG		Б. Т	4.000	0.000	0.4.000	2" Ice	2.999	2.143	0.132
RRH2X40-AWS	C	From Leg	4.000	0.000	94.000	No Ice	2.161	1.420	0.044
			0.000 0.000			1/2" Ice 1" Ice	2.360 2.565	1.590 1.768	0.061 0.082
			0.000			2" Ice	2.999	2.143	0.082
TMA-DB-T1-6Z-8AB-0Z	A	From Leg	4.000	0.000	94.000	No Ice	4.800	2.000	0.044
11111 22 11 02 012 02	11	Trom Leg	0.000	0.000	71.000	1/2" Ice	5.070	2.193	0.080
			0.000			1" Ice	5.348	2.393	0.120
						2" Ice	5.926	2.815	0.213
Platform Mount [LP 601-1]	C	None		0.000	94.000	No Ice	28.470	28.470	1.122
						1/2" Ice	33.590	33.590	1.514
						1" Ice	38.710	38.710	1.905
						2" Ice	48.950	48.950	2.689
***		г .	2.000	0.000	55,000	NT T	0.122	0.122	0.001
GPS-TMG-HR-26NCM	Α	From Leg	3.000	0.000	55.000	No Ice	0.133	0.133	0.001
			0.000			1/2" Ice 1" Ice	0.183 0.239	0.183 0.239	0.002 0.005
			0.000			2" Ice	0.239	0.239	0.003
Side Arm Mount [SO 701-1]	Α	From Leg	1.500	0.000	55.000	No Ice	0.850	1.670	0.014
			0.000	0.000	22.000	1/2" Ice	1.140	2.340	0.079
			0.000			1" Ice	1.430	3.010	0.093
						2" Ice	2.010	4.350	0.121

Side Arm Mount [SO 102-3]	C	None		0.000	50.000	No Ice	3.000	3.000	0.081
						1/2" Ice	3.480	3.480	0.111
						1" Ice	3.960	3.960	0.141

Engineered Tower Solutions, PLLC

3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:

Job		Page
	BU# 846176	10 of 17
Project	ETS Proj. No. 190688.14	Date 13:29:04 02/05/19
Client	Crown Castle	Designed by Tomas Martin Sosa

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft²	ft^2	K
***						2" Ice	4.920	4.920	0.201

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30 31	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 130 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
•	

Engineered Tower Solutions, PLLC

3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:

Job		Page
	BU# 846176	11 of 17
Project	ETS Proj. No. 190688.14	Date 13:29:04 02/05/19
Client	Crown Castle	Designed by Tomas Martin Sosa

Comb.	Description
No.	
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axi
No.	ft	Туре		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
L1	119 - 97.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-17.108	0.381	0.320
			Max. Mx	20	-7.742	124.375	0.100
			Max. My	2	-7.745	0.090	124.380
			Max. Vy	20	-10.800	124.375	0.100
			Max. Vx	2	-10.798	0.090	124.380
			Max. Torque	18			-0.212
L2	97.25 - 48	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-36.024	2.658	0.176
			Max. Mx	20	-19.147	926.893	-7.734
			Max. My	2	-19.154	-7.912	921.338
			Max. Vy	20	-19.371	926.893	-7.734
			Max. Vx	2	-19.214	-7.912	921.338
			Max. Torque	3			1.424
L3	48 - 0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-55.944	2.910	-0.187
			Max. Mx	20	-34.972	2079.371	-17.905
			Max. My	2	-34.972	-18.033	2065.483
			Max. Vy	20	-23.802	2079.371	-17.905
			Max. Vx	2	-23.649	-18.033	2065.483
			Max. Torque	3			1.422

Maximum Reactions

Location	Condition	Gov.	Vertical K	Horizontal, X	Horizontal, 2
		Load	Λ	K	K
		Comb.			
Pole	Max. Vert	35	55.944	4.767	-2.755
	Max. H _x	20	34.986	23.782	-0.188
	Max. H _z	2	34.986	-0.188	23.628
	$Max. M_x$	2	2065.483	-0.188	23.628
	Max. M _z	8	2078.609	-23.782	0.188
	Max. Torsion	3	1.422	-0.188	23.628
	Min. Vert	13	26.240	-11.728	-20.369
	Min. H _x	8	34.986	-23.782	0.188
	Min. H _z	14	34.986	0.188	-23.628
	Min. M _x	14	-2064.471	0.188	-23.628
	Min. Mz	20	-2079.371	23.782	-0.188
	Min. Torsion	15	-1.410	0.188	-23.628

Engineered Tower Solutions, PLLC

3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:

Job	<u> </u>	Page
	BU# 846176	12 of 17
Project	ETS Proj. No. 190688.14	Date 13:29:04 02/05/19
Client	Crown Castle	Designed by Tomas Martin Sosa

Tower Mast Reaction Summary

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	29.155	0.000	0.000	-0.409	0.307	0.000
1.2 Dead+1.0 Wind 0 deg - No	34.986	0.188	-23.628	-2065.483	-18.034	-1.421
Ice 0.9 Dead+1.0 Wind 0 deg - No	26.240	0.188	-23.628	-2054.158	-18.032	-1.422
Ice						
1.2 Dead+1.0 Wind 30 deg - No Ice	34.986	12.054	-20.557	-1798.023	-1055.059	-1.222
0.9 Dead+1.0 Wind 30 deg - No Ice	26.240	12.054	-20.557	-1788.148	-1049.437	-1.223
1.2 Dead+1.0 Wind 60 deg - No Ice	34.986	20.690	-11.977	-1048.931	-1809.277	-0.691
0.9 Dead+1.0 Wind 60 deg - No Ice	26.240	20.690	-11.977	-1043.118	-1799.566	-0.692
1.2 Dead+1.0 Wind 90 deg - No Ice	34.986	23.782	-0.188	-18.919	-2078.609	0.024
0.9 Dead+1.0 Wind 90 deg - No Ice	26.240	23.782	-0.188	-18.690	-2067.439	0.024
1.2 Dead+1.0 Wind 120 deg - No Ice	34.986	20.502	11.652	1016.038	-1790.884	0.730
0.9 Dead+1.0 Wind 120 deg - No Ice	26.240	20.502	11.652	1010.655	-1781.272	0.730
1.2 Dead+1.0 Wind 150 deg - No Ice	34.986	11.728	20.369	1778.617	-1023.180	1.235
0.9 Dead+1.0 Wind 150 deg - No Ice	26.240	11.728	20.369	1769.100	-1017.728	1.235
1.2 Dead+1.0 Wind 180 deg - No Ice	34.986	-0.188	23.628	2064.471	18.791	1.410
0.9 Dead+1.0 Wind 180 deg - No Ice	26.240	-0.188	23.628	2053.405	18.595	1.410
1.2 Dead+1.0 Wind 210 deg - No Ice	34.986	-12.054	20.557	1797.013	1055.818	1.211
0.9 Dead+1.0 Wind 210 deg - No Ice	26.240	-12.054	20.557	1787.397	1050.001	1.211
1.2 Dead+1.0 Wind 240 deg - No Ice	34.986	-20.690	11.977	1047.920	1810.038	0.692
0.9 Dead+1.0 Wind 240 deg - No Ice	26.240	-20.690	11.977	1042.366	1800.132	0.692
1.2 Dead+1.0 Wind 270 deg - No Ice	34.986	-23.782	0.188	17.905	2079.371	-0.013
0.9 Dead+1.0 Wind 270 deg - No Ice	26.240	-23.782	0.188	17.936	2068.005	-0.013
1.2 Dead+1.0 Wind 300 deg - No Ice	34.986	-20.502	-11.652	-1017.053	1791.644	-0.718
0.9 Dead+1.0 Wind 300 deg - No Ice	26.240	-20.502	-11.652	-1011.410	1781.837	-0.718
1.2 Dead+1.0 Wind 330 deg - No Ice	34.986	-11.728	-20.369	-1779.632	1023.938	-1.235
0.9 Dead+1.0 Wind 330 deg - No Ice	26.240	-11.728	-20.369	-1769.855	1018.291	-1.236
1.2 Dead+1.0 Ice+1.0 Temp	55.944	-0.000	0.000	0.187	2.910	0.000
1.2 Dead+1.0 Wind 0 deg+1.0	55.944	0.025	-5.466	-472.593	0.566	-0.293
Ice+1.0 Temp 1.2 Dead+1.0 Wind 30 deg+1.0	55.944	2.766	-4.746	-410.481	-236.465	-0.268
Ice+1.0 Temp 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	55.944	4.767	-2.755	-238.331	-409.325	-0.172
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	55.944	5.490	-0.025	-2.270	-471.697	-0.029

Engineered Tower Solutions, PLLC

3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:

Job	BU# 846176	Page 13 of 17
	DO# 040170	
Project	ETS Proj. No. 190688.14	Date 13:29:04 02/05/19
Client	Crown Castle	Designed by Tomas Martin Sosa

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 120	55.944	4.742	2.712	234.450	-406.867	0.121
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	55.944	2.724	4.722	408.400	-232.207	0.239
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	55.944	-0.025	5.466	472.970	5.483	0.293
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	55.944	-2.766	4.746	410.858	242.515	0.268
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	55.944	-4.767	2.755	238.708	415.375	0.172
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	55.944	-5.490	0.025	2.647	477.746	0.030
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	55.944	-4.742	-2.712	-234.073	412.917	-0.121
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	55.944	-2.724	-4.722	-408.023	238.257	-0.239
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	29.155	0.038	-4.740	-413.347	-3.366	-0.285
Dead+Wind 30 deg - Service	29.155	2.418	-4.124	-359.866	-210.738	-0.245
Dead+Wind 60 deg - Service	29.155	4.151	-2.403	-210.072	-361.558	-0.139
Dead+Wind 90 deg - Service	29.155	4.771	-0.038	-4.102	-415.415	0.004
Dead+Wind 120 deg - Service	29.155	4.113	2.338	202.855	-357.877	0.146
Dead+Wind 150 deg - Service	29.155	2.353	4.087	355.344	-204.361	0.248
Dead+Wind 180 deg - Service	29.155	-0.038	4.740	412.507	3.998	0.285
Dead+Wind 210 deg - Service	29.155	-2.418	4.124	359.026	211.370	0.244
Dead+Wind 240 deg - Service	29.155	-4.151	2.403	209.232	362.191	0.139
Dead+Wind 270 deg - Service	29.155	-4.771	0.038	3.262	416.047	-0.004
Dead+Wind 300 deg - Service	29.155	-4.113	-2.338	-203.695	358.509	-0.145
Dead+Wind 330 deg - Service	29.155	-2.353	-4.087	-356.184	204.993	-0.248

Solution Summary

	Sur	n of Applied Force:	s		Sum of Reactions			
Load	PX	PY	PZ	PX	PY	PZ	% Error	
Comb.	K	K	K	K	K	K		
1	0.000	-29.155	0.000	0.000	29.155	0.000	0.000%	
2	0.188	-34.986	-23.628	-0.188	34.986	23.628	0.000%	
3	0.188	-26.240	-23.628	-0.188	26.240	23.628	0.000%	
4	12.054	-34.986	-20.557	-12.054	34.986	20.557	0.000%	
5	12.054	-26.240	-20.557	-12.054	26.240	20.557	0.000%	
6	20.690	-34.986	-11.977	-20.690	34.986	11.977	0.000%	
7	20.690	-26.240	-11.977	-20.690	26.240	11.977	0.000%	
8	23.782	-34.986	-0.188	-23.782	34.986	0.188	0.000%	
9	23.782	-26.240	-0.188	-23.782	26.240	0.188	0.000%	
10	20.502	-34.986	11.652	-20.502	34.986	-11.652	0.000%	
11	20.502	-26.240	11.652	-20.502	26.240	-11.652	0.000%	
12	11.728	-34.986	20.369	-11.728	34.986	-20.369	0.000%	
13	11.728	-26.240	20.369	-11.728	26.240	-20.369	0.000%	
14	-0.188	-34.986	23.628	0.188	34.986	-23.628	0.000%	
15	-0.188	-26.240	23.628	0.188	26.240	-23.628	0.000%	
16	-12.054	-34.986	20.557	12.054	34.986	-20.557	0.000%	
17	-12.054	-26.240	20.557	12.054	26.240	-20.557	0.000%	
18	-20.690	-34.986	11.977	20.690	34.986	-11.977	0.000%	
19	-20.690	-26.240	11.977	20.690	26.240	-11.977	0.000%	
20	-23.782	-34.986	0.188	23.782	34.986	-0.188	0.000%	
21	-23.782	-26.240	0.188	23.782	26.240	-0.188	0.000%	
22	-20.502	-34.986	-11.652	20.502	34.986	11.652	0.000%	
23	-20.502	-26.240	-11.652	20.502	26.240	11.652	0.000%	
24	-11.728	-34.986	-20.369	11.728	34.986	20.369	0.000%	

Engineered Tower Solutions, PLLC

3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:

Job		Page
	BU# 846176	14 of 17
Project	ETS Proj. No. 190688.14	Date 13:29:04 02/05/19
Client	Crown Castle	Designed by Tomas Martin Sosa

	Sur	n of Applied Force:	S		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Erroi
Comb.	K	K	K	K	K	K	
25	-11.728	-26.240	-20.369	11.728	26.240	20.369	0.000%
26	0.000	-55.944	0.000	0.000	55.944	0.000	0.000%
27	0.025	-55.944	-5.466	-0.025	55.944	5.466	0.000%
28	2.766	-55.944	-4.746	-2.766	55.944	4.746	0.000%
29	4.767	-55.944	-2.755	-4.767	55.944	2.755	0.000%
30	5.490	-55.944	-0.025	-5.490	55.944	0.025	0.000%
31	4.742	-55.944	2.712	-4.742	55.944	-2.712	0.000%
32	2.724	-55.944	4.722	-2.724	55.944	-4.722	0.000%
33	-0.025	-55.944	5.466	0.025	55.944	-5.466	0.000%
34	-2.766	-55.944	4.746	2.766	55.944	-4.746	0.000%
35	-4.767	-55.944	2.755	4.767	55.944	-2.755	0.000%
36	-5.490	-55.944	0.025	5.490	55.944	-0.025	0.000%
37	-4.742	-55.944	-2.712	4.742	55.944	2.712	0.000%
38	-2.724	-55.944	-4.722	2.724	55.944	4.722	0.000%
39	0.038	-29.155	-4.740	-0.038	29.155	4.740	0.000%
40	2.418	-29.155	-4.124	-2.418	29.155	4.124	0.000%
41	4.151	-29.155	-2.403	-4.151	29.155	2.403	0.000%
42	4.771	-29.155	-0.038	-4.771	29.155	0.038	0.000%
43	4.113	-29.155	2.338	-4.113	29.155	-2.338	0.000%
44	2.353	-29.155	4.087	-2.353	29.155	-4.087	0.000%
45	-0.038	-29.155	4.740	0.038	29.155	-4.740	0.000%
46	-2.418	-29.155	4.124	2.418	29.155	-4.124	0.000%
47	-4.151	-29.155	2.403	4.151	29.155	-2.403	0.000%
48	-4.771	-29.155	0.038	4.771	29.155	-0.038	0.000%
49	-4.113	-29.155	-2.338	4.113	29.155	2.338	0.000%
50	-2.353	-29.155	-4.087	2.353	29.155	4.087	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00028252
3	Yes	4	0.00000001	0.00018199
4	Yes	5	0.00000001	0.00007013
5	Yes	5	0.00000001	0.00003217
6	Yes	5	0.00000001	0.00007584
7	Yes	5	0.00000001	0.00003491
8	Yes	4	0.00000001	0.00005077
9	Yes	4	0.00000001	0.00002975
10	Yes	5	0.00000001	0.00007330
11	Yes	5	0.00000001	0.00003391
12	Yes	5	0.00000001	0.00006680
13	Yes	5	0.00000001	0.00003077
14	Yes	4	0.00000001	0.00039609
15	Yes	4	0.00000001	0.00025433
16	Yes	5	0.00000001	0.00007767
17	Yes	5	0.00000001	0.00003583
18	Yes	5	0.00000001	0.00007167
19	Yes	5	0.00000001	0.00003289
20	Yes	4	0.00000001	0.00007956
21	Yes	4	0.00000001	0.00004985
22	Yes	5	0.00000001	0.00006842
23	Yes	5	0.00000001	0.00003149
24	Yes	5	0.00000001	0.00007524
25	Yes	5	0.00000001	0.00003484

tnxTower Engineered Tower Solutions, PLLC 3227 Wellington Court		Job BU# 846176			Page 15 of 17
		Project	ETS Proj.	No. 190688.14	Date 13:29:04 02/05/19
Ralei	Raleigh, NC 27615 Phone: (919) 782-2710 FAX:		Cro	wn Castle	Designed by Tomas Martin Sosa
26	Yes	4	0.00000001	0.00001119	
27 28	Yes Yes	4 4	0.00000001 0.00000001	0.00079088 0.00086721	
20	Vac	4	0.0000001	0.00086004	

26	Yes	4	0.00000001	0.00001119
27	Yes	4	0.0000001	0.00079088
28	Yes	4	0.00000001	0.00086721
29	Yes	4	0.0000001	0.00086994
30	Yes	4	0.00000001	0.00078284
31	Yes	4	0.0000001	0.00085987
32	Yes	4	0.00000001	0.00085752
33	Yes	4	0.0000001	0.00079138
34	Yes	4	0.00000001	0.00088876
35	Yes	4	0.00000001	0.00088718
36	Yes	4	0.0000001	0.00080172
37	Yes	4	0.00000001	0.00087737
38	Yes	4	0.00000001	0.00087856
39	Yes	4	0.0000001	0.00001582
40	Yes	4	0.00000001	0.00002791
41	Yes	4	0.00000001	0.00003452
42	Yes	4	0.0000001	0.00000001
43	Yes	4	0.00000001	0.00003380
44	Yes	4	0.0000001	0.00002635
45	Yes	4	0.0000001	0.00001674
46	Yes	4	0.00000001	0.00003815
47	Yes	4	0.0000001	0.00002856
48	Yes	4	0.00000001	0.00000001
49	Yes	4	0.00000001	0.00002710
50	Yes	4	0.00000001	0.00003763

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	119 - 97.25	7.633	47	0.526	0.001
L2	101.25 - 48	5.703	47	0.505	0.001
L3	53.25 - 0	1.598	47	0.276	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
119.000	Miscellaneous [NA 507-1]	47	7.633	0.526	0.001	84223
116.000	7770.00 w/ Mount Pipe	47	7.303	0.524	0.001	84223
108.000	1900MHz RRH	47	6.427	0.516	0.001	38283
106.000	APXVSPP18-C-A20 w/Mount Pipe	47	6.210	0.513	0.001	32394
94.000	(2) APL868013 w/ Mount Pipe	47	4.950	0.484	0.001	18240
55.000	GPS-TMG-HR-26NCM	47	1.700	0.286	0.000	8124
50.000	Side Arm Mount [SO 102-3]	47	1.420	0.258	0.000	8386

Maximum Tower Deflections - Design Wind

Engineered Tower Solutions, PLLC

3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:

Job	BU# 846176	Page 16 of 17
	DO# 040170	
Project	ETS Proj. No. 190688.14	Date 13:29:04 02/05/19
Client	Crown Castle	Designed by Tomas Martin Sosa

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	119 - 97.25	38.175	18	2.629	0.006
L2	101.25 - 48	28.523	18	2.525	0.006
L3	53.25 - 0	7.991	18	1.383	0.002

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	۰	ft
119.000	Miscellaneous [NA 507-1]	18	38.175	2.629	0.006	17008
116.000	7770.00 w/ Mount Pipe	18	36.522	2.619	0.006	17008
108.000	1900MHz RRH	18	32.144	2.582	0.006	7730
106.000	APXVSPP18-C-A20 w/Mount Pipe	18	31.062	2.568	0.006	6541
94.000	(2) APL868013 w/ Mount Pipe	18	24.761	2.423	0.005	3666
55.000	GPS-TMG-HR-26NCM	18	8.503	1.434	0.002	1626
50.000	Side Arm Mount [SO 102-3]	18	7.103	1.292	0.002	1678

Compression Checks

Pole Design Data

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.						_			P_u
	ft		ft	ft		in^2	K	K	ϕP_n
L1	119 - 97.25 (1)	TP30.86x25.5x0.25	21.750	0.000	0.0	23.507	-7.746	1375.150	0.006
L2	97.25 - 48 (2)	TP42.47x29.374x0.313	53.250	0.000	0.0	40.534	-19.142	2371.260	0.008
L3	48 - 0 (3)	TP53.65x40.554x0.375	53.250	0.000	0.0	63.411	-34.972	3709.520	0.009

Pole Bending Design Data

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.					M_{ux}			M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{n_V}
L1	119 - 97.25 (1)	TP30.86x25.5x0.25	124.400	1000.792	0.124	0.000	1000.792	0.000
L2	97.25 - 48 (2)	TP42.47x29.374x0.313	932.300	2304.575	0.405	0.000	2304.575	0.000
L3	48 - 0 (3)	TP53.65x40.554x0.375	2091.500	4556.425	0.459	0.000	4556.425	0.000

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		K	K	ΦV_n	kip-ft	kip-ft	ϕT_n

Engineered Tower Solutions, PLLC

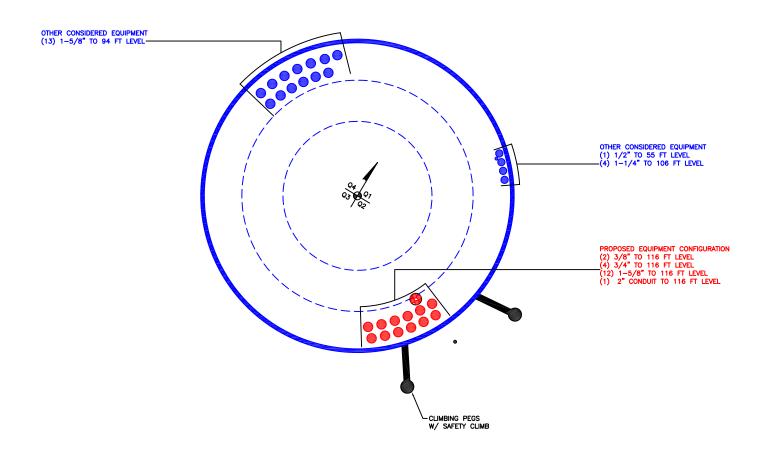
3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:

Job		Page
	BU# 846176	17 of 17
Project	ETS Proj. No. 190688.14	Date 13:29:04 02/05/19
Client	Crown Castle	Designed by Tomas Martin Sosa

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	119 - 97.25 (1)	TP30.86x25.5x0.25	10.797	412.545	0.026	0.082	1070.283	0.000
L2	97.25 - 48 (2)	TP42.47x29.374x0.313	19.498	711.378	0.027	0.692	2545.925	0.000
L3	48 - 0 (3)	TP53.65x40.554x0.375	23.927	1112.860	0.022	0.692	5192.092	0.000

Pole Interaction Design Data

Section	Elevation	Ratio P	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.		P_u	M_{ux}	M_{uy}	V_u	1 u	Stress	Stress	
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	119 - 97.25 (1)	0.006	0.124	0.000	0.026	0.000	0.131	1.050	4.8.2
L2	97.25 - 48 (2)	0.008	0.405	0.000	0.027	0.000	0.413	1.050	4.8.2
L3	48 - 0 (3)	0.009	0.459	0.000	0.022	0.000	0.469	1.050	4.8.2


Section Capacity Table

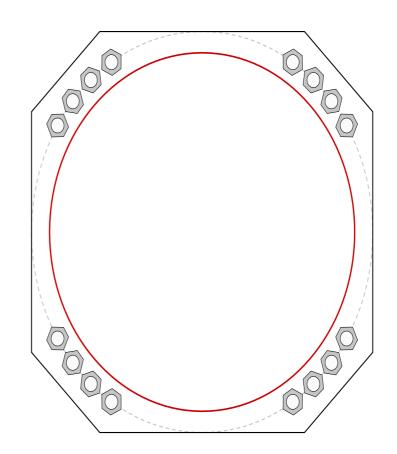
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$\phi P_{allow} \ K$	% Capacity	Pass Fail
L1	119 - 97.25	Pole	TP30.86x25.5x0.25	1	-7.746	1443.907	12.4	Pass
L2	97.25 - 48	Pole	TP42.47x29.374x0.313	2	-19.142	2489.823	39.4	Pass
L3	48 - 0	Pole	TP53.65x40.554x0.375	3	-34.972	3894.996	44.7	Pass
							Summary	
						Pole (L3)	44.7	Pass
						RATING =	44.7	Pass

 $Program\ Version\ 8.0.5.0-11/28/2018\ File: C:/Users/Tomas. Sosa/Desktop/Towers/2019/0688/SA/Analysis/Tower/MADISON\ DURHAM\ ROAD_471842\ Rev. 0. eri$

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Monopole Base Plate Connection



Site Info	
BU#	846176
Site Name	ADISON DURHAM RO
Order#	471842 Rev.0

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
I _{ar} (in)	2.25

Applied Loads					
Moment (kip-ft)	2091.50				
Axial Force (kips)	34.97				
Shear Force (kips)	23.93				

^{*}TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data

(16) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 60" BC

Base Plate Data

60" OD x 2.5" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

Stiffener Data

N/A

Pole Data

53.65" x 0.375" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary	(un	its of kips, kip-in)
Pu_c = 106.7	φPn_c = 243.75	Stress Rating
Vu = 1.5	φVn = 73.13	41.7%
Mu = n/a	φMn = n/a	Pass

Base Plate Summary

Max Stress (ksi):	23.81	(Flexural)
Allowable Stress (ksi):	54	
Stress Rating:	42.0%	Pass

CCIplate - version 3.5.0 Analysis Date: 2/5/2019

Pier and Pad Foundation

BU # : 846176 Site Name: MADISON DURHA

App. Number: 471842 Rev.0

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	<

Superstructure Analysis Reactions				
Compression, P _{comp} :	35	kips		
Base Shear, Vu_comp:	24	kips		
Moment, M _u :	2092	ft-kips		
Tower Height, H:	119	ft		
BP Dist. Above Fdn, bp _{dist} :	4.5	in		
Bolt Circle / Bearing Plate Width, BC:	60	in		

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	62.42	24.00	36.6%	Pass
Bearing Pressure (ksf)	15.34	0.74	4.9%	Pass
Overturning (kip*ft)	4148.37	2149.00	51.8%	Pass
Pad Flexure (kip*ft)	2148.99	955.80	42.4%	Pass
Pad Shear - 1-way (kips)	677.08	114.83	16.2%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.190	0.005	2.7%	Pass
Flexural 2-way (Comp) (kip*ft)	835.39	0.00	0.0%	Pass

*Rating per TIA-222-H Section 15.5

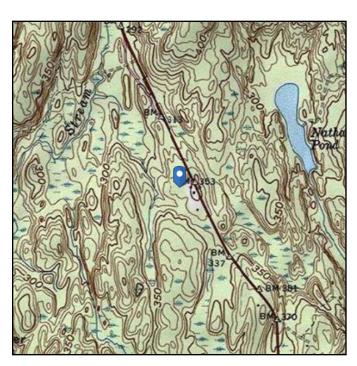
Soil Rating*:	51.8%
Structural Rating*:	42.4%

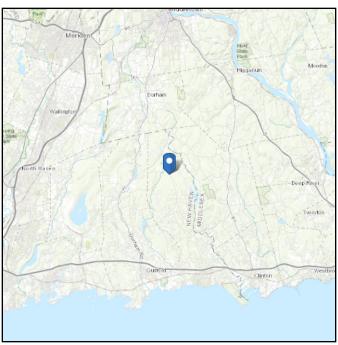
Pad Properties				
Depth, D:	1	ft		
Pad Width, W :	30.5	ft		
Pad Thickness, T:	2	ft		
Pad Rebar Size (Bottom), Sp:	8			
Pad Rebar Quantity (Bottom), mp:	32			
Pad Clear Cover, cc _{pad} :	3	in		

Material Properties					
Rebar Grade, Fy: 60000 psi					
Concrete Compressive Strength, F'c:	4000	psi			
Dry Concrete Density, δ c :	150	pcf			

Soil Properties				
Total Soil Unit Weight, γ :	120	pcf		
Ultimate Net Bearing, Qnet:	20.333	ksf		
Cohesion, Cu :	0.000	ksf		
Friction Angle, $oldsymbol{arphi}$:	39	degrees		
SPT Blow Count, N _{blows} :				
Base Friction, μ :	0.3			
Neglected Depth, N:	1.00	ft		
Foundation Bearing on Rock?	No			
Groundwater Depth, gw :	n/a	ft		

<--Toggle between Gross and Net


Address:


No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 343.31 ft (NAVD 88)

Risk Category: || Latitude: 41.389536 Soil Class: D - Stiff Soil Longitude: -72.648881

Wind

Results: 78 Vmph

Wind Speed: 128 Vmph
10-year MRI 78 Vmph
25-year MRI 88 Vmph
50-year MRI 95 Vmph
100-year MRI 104 Vmph

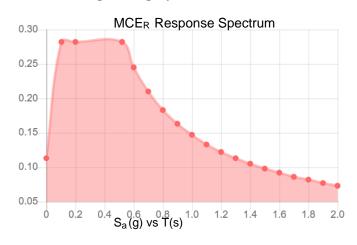
Data Source: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of

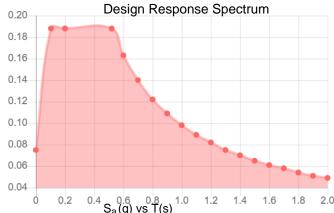
March 12, 2014

Date Accessed: Thu Dec 13 2018

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.



Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.176	S _{DS} :	0.188	
S_1 :	0.061	S _{D1} :	0.098	
F _a :	1.600	T_L :	6.000	
F_{v} :	2.400	PGA:	0.090	
S _{MS} :	0.282	PGA _M :	0.144	
S _{M1} :	0.147	F _{PGA} :	1.600	
		la ·	1	

Seismic Design Category B

Data Accessed: Thu Dec 13 2018

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Thu Dec 13 2018

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

BU: 846176 WO: 1669503 Order: 471842 Structure: A

Rev: 0

Location	า		
Decimal Degrees	Deg	Min	Sec
Lat: 41.389536 +	41	23	22.33
Long: -72.648881 -	72	38	55.97
Code and Site Pa	ramotors		
Code and Site Pa	rameters		
Seismic Design Code: Site Soil: Risk Category:	TIA-222-H* D II	Dense Soil/Soft Rock	(
	0.1760 0.0610 6	g g s	
Seismic Design Category	y Determination		
Importance Factor, I _e :	1		
Acceleration-based site coefficient, F _a :	1.6000		
Velocity-based site coefficient, F _v :	2.4000		
Design spectral response acceleration short period, S _{DS} :	0.1877	g	
Design spectral response acceleration 1 s period, S _{D1} :	0.0976	g	
Seismic Design Category Based on S _{DS} :	В		
Seismic Design Category Based on S _{D1} :	В		
Seismic Design Category Based on S_1 :	N/A		
Controlling Seismic Design Category:	В		

*Using ASCE 7-10 Seismic Parameters

Date: January 29, 2019

Charles McGuirt Crown Castle 3 Corporate Dr., St 101 Clifton Park, NY 12065 **INFINIGY**8

the solutions are endless Infinigy Engineering, PLLC 1033 Watervliet Shaker Road Albany, NY 12205 518-690-0790 structural@infinigy.com

Subject:

Mount Modification Report

Carrier Designation:

AT&T Mount Modification

Carrier Site Number: Carrier Site Name:

10091767

Madison-Durham Road

Crown Castle Designation:

Crown Castle BU Number:

846176 Madison-Durham Road **Crown Castle Site Name:**

Crown Castle JDE Job Number:

548697

Crown Castle Order Number:

471842, Rev. 0

Engineering Firm Designation:

Infinigy Report Designation:

1039-A0002-B

Site Data:

1749 Durham Road, Madison, New Haven County, CT, 06443

Latitude 41°23'22.33" Longitude -72°38'55.97"

Structure Information:

Tower Height & Type:

119.0 ft Monopole

Mount Elevation:

116.0 ft

Mount Type:

12.5 ft Platform

Dear Charles McGuirt,

Infinity is pleased to submit this "Mount Analysis Modification Report" to determine the structural integrity of AT&T's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform (typical)

Sufficient

The analysis has been performed in accordance with the TIA-222-H Standard. This analysis utilizes an ultimate 3-second gust wind speed of 130 mph from the 2015 International Building Code and 2018 Connecticut State Building Code. Exposure Category B with a maximum topographic factor, Kzt, of 1.0 and Risk Category II was/were used in this analysis.

We at Infinigy Engineering, PLLC appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Mount analysis prepared by: Christopher Kudlacik Respectfully Submitted by:

Joe Johnston, P.E. VP Structural Engineering / Principal

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

Table 4 - Tieback End Reactions

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Mount Modification Design Drawings (MDD)

1) INTRODUCTION

This mount is an existing 12.5 ft Platform designed by Sabre, Dwg #C10116003. This mount is installed at the 116.0 ft elevation on 3 sector(s) of the 119.0 ft Monopole.

2) ANALYSIS CRITERIA

Building Code: 2015 IBC **TIA-222 Revision:** TIA-222-H

Risk Category:

Ultimate Wind Speed: 130 mph

Exposure Category: B
Topographic Factor at Base: 1.0
Topographic Factor at Mount: 1.0
Ice Thickness: 1.28 in
Wind Speed with Ice: 50 mph
Live Loading Wind Speed: 30 mph
Man Live Load at Mid/End-Points: 250 lb
Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details	
		3	CCI	OPA65R-BU6A		
	3 Powerway	Kathrein	80010965			
			3	Powerwave	7770.00	
116.0		6	Powerwave	LGP21401	Platform	
116.0		3 3	Ericsson	RRUS 4449 B5/B12	Pialioiiii	
			Ericsson	RRUS 8843 B2/B66A		
		1	Raycap	DC6-48-60-18-8F		
	115.0	1	Raycap	DC6-48-60-18-8F		

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Table 2 - Documents i Tovided			
Document	Remarks	Reference	Source
Crown Application	AT&T Application	471842, Rev. 0	CCI Sites
Design Drawings	Sbre Mount	DWG# C10116003	Sabre
Photos		846176	CCI Sites

3.1) Analysis Method

RISA-3D (Version 17.0.2), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate ASTM A36 (GR 36) HSS (Rectangular) ASTM A53 (GR 35) Pipe ASTM A53 (GR 35)

Connection Bolts ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Infinigy should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform, Typical)

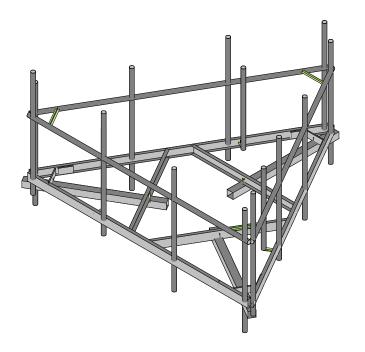
Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Standoff	M5	116.0	43.0	Pass
1.0	Horizontal	M57		78.8	Pass
1,2	Mount Pipe	M43		49.6	Pass
	Bolt Check			36.0	Pass

Structure Rating (max from all components) =	78.8%
--	-------

Notes:

4.1) Recommendations

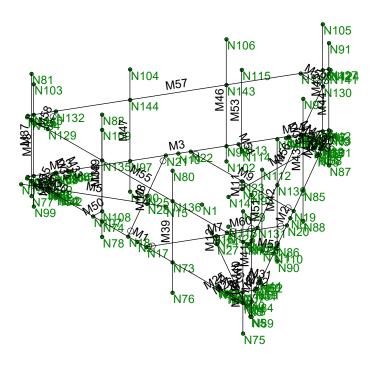
The Sector Frame Mount has sufficient capacity to support the proposed loading after the following is installed:


Install (1) Sitepro1 HRK12 three feet above the existing platform

¹⁾ See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

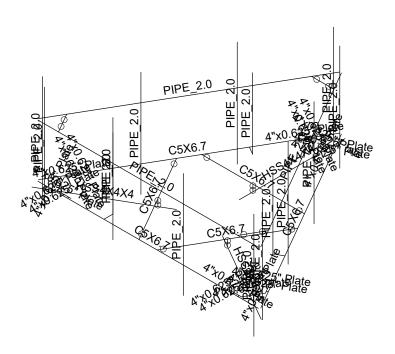
²⁾ All sectors are typical

APPENDIX A WIRE FRAME AND RENDERED MODELS



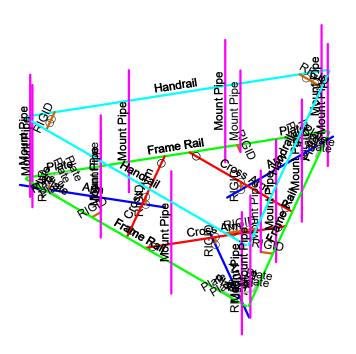
Envelope Only Solution

Infinigy Engineering, PLLC		Final Configuration	
CLK	Madison Durham Road	Jan 23, 2019 at 10:44 AM	
1039-A0002-B		846176-Mod.R3D	



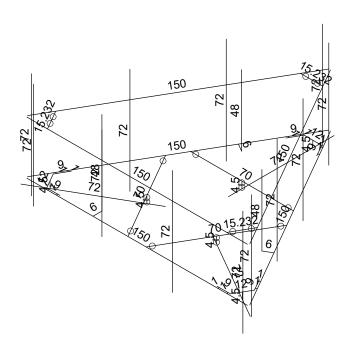
Envelope Only Solution

Infinigy Engineering, PLLC		Wireframe
CLK	Madison Durham Road	Jan 23, 2019 at 10:44 AM
1039-A0002-B		846176-Mod.R3D



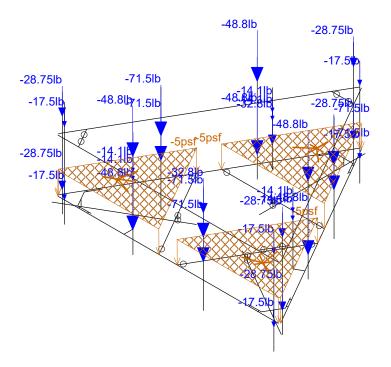
Envelope Only Solution

Infinigy Engineering, PLLC		Member Shapes
CLK	Madison Durham Road	Jan 23, 2019 at 10:45 AM
1039-A0002-B		846176-Mod.R3D



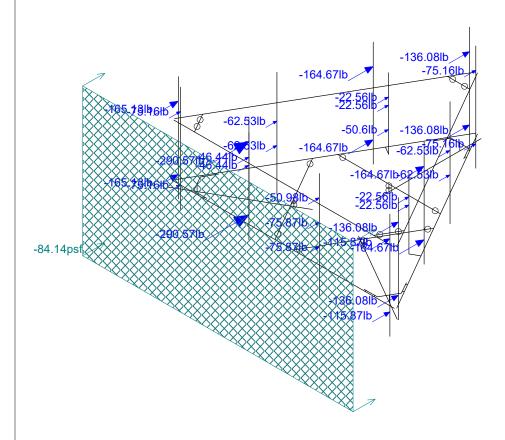
Envelope Only Solution

Infinigy Engineering, PLLC		Section Sets
CLK	Madison Durham Road	Jan 23, 2019 at 10:46 AM
1039-A0002-B		846176-Mod.R3D



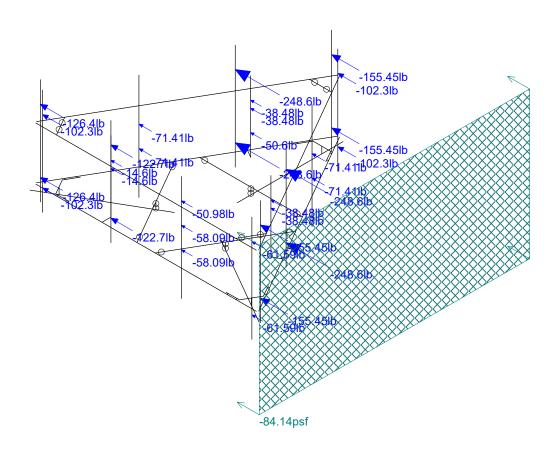
Member Length (in) Displayed Envelope Only Solution

Infinigy Engineering, PLLC		Member Lengths	ı
CLK	Madison Durham Road	Jan 23, 2019 at 10:45 AM	
1039-A0002-B		846176-Mod.R3D	ı



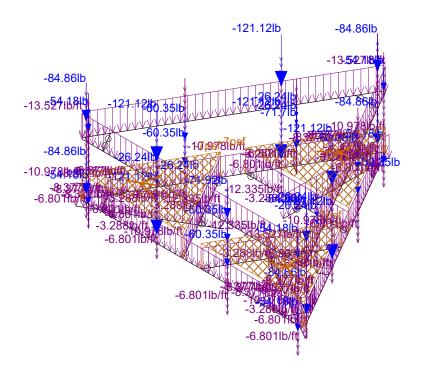
Loads: BLC 1, Self Weight Envelope Only Solution

Infinigy Engineering, PLLC		Dead Load
CLK	Madison Durham Road	Jan 23, 2019 at 10:48 AM
1039-A0002-B		846176-Mod.R3D



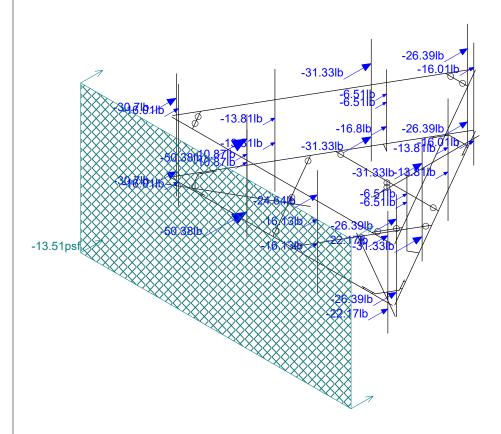
Loads: BLC 2, Wind Load AZI 000 Envelope Only Solution

Infinigy Engineering, PLLC		Wind Load 000
CLK	Madison Durham Road	Jan 23, 2019 at 10:49 AM
1039-A0002-B		846176-Mod.R3D



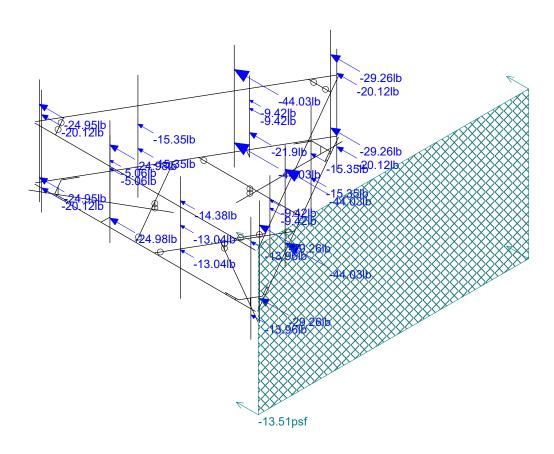
Loads: BLC 3, Wind Load AZI 090 Envelope Only Solution

Infinigy Engineering, PLLC		Wind Load 090
CLK	Madison Durham Road	Jan 23, 2019 at 10:49 AM
1039-A0002-B		846176-Mod.R3D



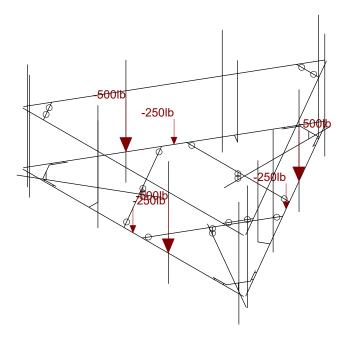
Loads: BLC 4, Ice Weight Envelope Only Solution

Infinigy Engineering, PLLC		Ice Load
CLK	Madison Durham Road	Jan 23, 2019 at 10:49 AM
1039-A0002-B		846176-Mod.R3D



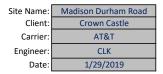
Loads: BLC 5, Wind + Ice Load AZI 000 Envelope Only Solution

Infinigy Engineering, PLLC		Wind + Ice Load 000
CLK	Madison Durham Road	Jan 23, 2019 at 10:49 AM
1039-A0002-B		846176-Mod.R3D



Loads: BLC 6, Wind + Ice Load AZI 090 Envelope Only Solution

Infinigy Engineering, PLLC		Wind + Ice Load 090
CLK	Madison Durham Road	Jan 23, 2019 at 10:49 AM
1039-A0002-B		846176-Mod.R3D



Loads: BLC 7, Service Live 1 Envelope Only Solution

Infinigy Engineering, PLLC		Service Load
CLK	Madison Durham Road	Jan 23, 2019 at 10:50 AM
1039-A0002-B		846176-Mod.R3D

APPENDIX B SOFTWARE INPUT CALCULATIONS

INFINIGY WIND LOAD CALCULATOR 3.0.2

Site Information Inputs:

Adopted Building Code:

Structure Load Standard:

Antenna Load Standard:

Structure Risk Category:

Structure Type:

Number of Sectors:

Structure Shape 1:

Political Structure Standard:

TIA-222-H

Mount - Platform

Flat

Rooftop Inputs:

Rooftop Wind Speed-Up?: No

Wind Loading Inputs:

Design Wind Velocity:	130	mph (ultimate 3-second gust
Wind Centerline 1 (z_1):	118.0	ft
Side Face Angle (θ):	120	degrees
Exposure Category:	В	
Tonographic Category	1	

Wind with No Ice		
q _z (psf) Gh F _{ST} (psf)		
42.07	1.00	84.14

Wind with Ice			
q _z (psf) Gh F _{ST} (psf)			
6.22	1.00	13.51	

Ice Loading Inputs:

Is Ice Loading Needed?:	Yes	
Ice Wind Velocity:	50	mph (ultimate 3-second gust)
Base Ice Thickness:	1.28	in

Input Appurtenance Information and Load Placements:

Appurtenance Name	Elevation (ft)	Total Quantity	Ka	Front Shape	Side Shape	q _z (psf)	EPA (ft²)	Fz (lbs)	Fx (lbs)	Fz(120) (lbs)	Fx(-30) (lbs)
CCI OPA65R-BU6A	118.0	3	1.00	Flat	Flat	42.07	7.85	330.27	252.79	272.16	310.90
Kathrein 80010965	118.0	3	1.00	Flat	Flat	42.07	13.81	581.14	245.40	329.33	497.20
Powerwave 7770.00	118.0	3	1.00	Flat	Flat	42.07	5.51	231.74	123.19	150.33	204.60
Powerwave LGP21401	118.0	6	1.00	Flat	Flat	42.07	1.10	46.44	14.60	22.56	38.48
Ericsson RRUS 4449 B5/B12	118.0	3	1.00	Flat	Flat	42.07	1.97	82.77	59.24	65.12	76.89
Ericsson RRUS 8843 B2/B66A	118.0	3	1.00	Flat	Flat	42.07	1.64	68.95	56.94	59.94	65.95
Raycap DC6-48-60-18-8F	118.0	1	1.00	Round	Round	42.07	1.21	50.97	50.97	50.97	50.97
Raycap DC6-48-60-18-8F	115.0	1	1.00	Round	Round	41.76	1.21	50.60	50.60	50.60	50.60

APPENDIX C SOFTWARE ANALYSIS OUTPUT

: Infinigy Engineering, PLLC: CLK: 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:_

Member Primary Data

Wiciii	Dei Fillia	ry Butu								
	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N3	N4		, ,	Frame Rail	Beam	Channel	A36 Gr.36	Typical
2	M2	N7	N8			Frame Rail	Beam	Channel	A36 Gr.36	Typical
3	M3	N11	N12			Frame Rail	Beam	Channel	A36 Gr.36	Typical
4	M4	N14	N9			Arm	Beam	Tube	A500 Gr.B	Typical
5	M5	N15	N13			Arm	Beam	Tube	A500 Gr.B	Typical
6	M6	N16	N5			Arm	Beam	Tube	A500 Gr.B	Typical
7	M7	N20	N17			Cross Arm	Beam	Channel	A36 Gr.36	Typical
8	M8	N18	N21			Cross Arm	Beam	Channel	A36 Gr.36	Typical
9	M9	N22	N19			Cross Arm	Beam	Channel	A36 Gr.36	Typical
10	M10	N25	N28			RIGID	None	None	RIGID	Typical
11	M11	N26	N23			RIGID	None	None	RIGID	Typical
12	M12	N27	N24			RIGID	None	None	RIGID	Typical
13	M13	N33	N32			Plate	Beam	BAR	A36 Gr.36	Typical
14	M14	N31	N30			Plate	Beam	BAR	A36 Gr.36	Typical
15	M15	N29	N34			Plate	Beam	BAR	A36 Gr.36	Typical
16	M16	N38	N35			RIGID	None	None	RIGID	Typical
17	M17	N39	N36			RIGID	None	None	RIGID	Typical
18	M18	N40	N37			RIGID	None	None	RIGID	Typical
19	M19	N41	N30			Plate	Beam	BAR	A36 Gr.36	Typical
20	M20	N42	N29			Plate	Beam	BAR	A36 Gr.36	Typical
21	<u>M21</u>	N43	N32			Plate	Beam	BAR	A36 Gr.36	Typical
22	M22	N44	N31			Plate	Beam	BAR	A36 Gr.36	Typical
23	M23	N45	N34			Plate	Beam	BAR	A36 Gr.36	Typical
24	M24	N46	N33			Plate	Beam	BAR	A36 Gr.36 A36 Gr.36	Typical
25	M25	N48	N50			<u>Plate</u>	Beam	BAR	A36 Gr.36	Typical
26	<u>M26</u> M27	N47 N52	N49 N54			Plate	Beam	BAR	A36 Gr.36	Typical
27 28	M28	N52 N51	N53			Plate Plate	Beam Beam	BAR BAR	A36 Gr.36	Typical Typical
29	M29	N56	N58			Plate	Beam	BAR	A36 Gr.36	Typical
30	M30	N55	N57			Plate	Beam	BAR	A36 Gr.36	Typical
31	M31	N60	N62			Plate	Beam	BAR	A36 Gr.36	Typical
32	M32	N59	N61			Plate	Beam	BAR	A36 Gr.36	Typical
33	M33	N64	N66			Plate	Beam	BAR	A36 Gr.36	Typical
34	M34	N63	N65			Plate	Beam	BAR	A36 Gr.36	Typical
35	M35	N68	N70			Plate	Beam	BAR	A36 Gr.36	Typical
36	M36	N67	N69			Plate	Beam	BAR	A36 Gr.36	Typical
37	M37	N77	N81			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
38	M38	N78	N82			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
39	M39	N76	N80			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
40	M40	N75	N79			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
41	M41	N89	N93			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
42	M42	N90	N94			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
43	M43	N88	N92			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
44	M44	N87	N91			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
45	M45	N101	N105			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
46	M46	N102	N106			Mount Pipe	Column	<u>Pipe</u>	A53 Gr.B	Typical
47	<u>M47</u>	N100	N104			Mount Pipe	Column	<u>Pipe</u>	A53 Gr.B	Typical
48	M48	N99	N103			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
49	M49	N108	N109			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
50	M50	N107	N108			RIGID	None	None	RIGID	Typical
51	M51	N111	N112			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
52	M52	N110	N111 N115			RIGID Mount Pine	None	None Pine	RIGID	Typical
53 54	M53 M54	N114 N113	N115			Mount Pipe RIGID	Column None	Pipe None	A53 Gr.B RIGID	Typical Typical
55	M55	N122	N123			Handrail	HBrace	Pipe	A53 Gr.B	Typical
56	M56	N124	N125			Handrail	HBrace	Pipe	A53 Gr.B	Typical
50	IVIJU	11124	INIZU			Hanulali	ווטומטפ	i ipe	AUU GI.D	Typical

Company Designer Job Number

Model Name

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:_

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
57	M57	N126	N127			Handrail	HBrace	Pipe	A53 Gr.B	Typical
58	M58	N129	N132		90	RIGID	None	None	RIGID	Typical
59	M59	N133	N130		90	RIGID	None	None	RIGID	Typical
60	M60	N131	N128		90	RIGID	None	None	RIGID	Typical

Material Takeoff

	Material	Size	Pieces	Length[in]	Weight[K]
1	General			•	• • •
2	RIGID		12	90.7	0
3	Total General		12	90.7	0
4					
5	Hot Rolled Steel				
6	A36 Gr.36	4"x0.625" Plate	21	102	0
7	A36 Gr.36	C5X6.7	6	660	.4
8	A500 Gr.B Rect	HSS4X4X4	3	216	.2
9	A53 Gr.B	PIPE 2.0	18	1458	.4
10	Total HR Steel		48	2436	1.1

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Self Weight	DĽ		-1			40		3	,
2	Wind Load AZI 000	WLZ					40		1	
3	Wind Load AZI 090	WLX					40		1	
4	Ice Weight	OL1					40	57	3	
5	Wind + Ice Load AZI	OL2					40		1	
6	Wind + Ice Load AZI	OL3					40		1	
7	Service Live 1	LL				6				
8		None						57		
9	BLC 1 Transient Area	None						102		
10	BLC 2 Transient Area	None						51		
11	BLC 3 Transient Area	None						51		
12	BLC 4 Transient Area	None						102		
13	BLC 5 Transient Area	None						51		
14	BLC 6 Transient Area	None						51		

Load Combinations

	Description	S PDS	BLC Factor	BLC	Factor	BLC	Factor	BLC	F B	Fa	 F	F	F	<u>F</u> .
1	1.4D	Yes Y	DL 1.4											
2	1.2D + 1W AZI 000	Yes Y	DL 1.2	WLZ	1									
3	1.2D + 1W AZI 030	Yes Y	DL 1.2	WLZ	.866	WLX	.5							
4	1.2D + 1W AZI 060	Yes Y	DL 1.2	WLZ	.5	WLX	.866							
5	1.2D + 1W AZI 090	Yes Y	DL 1.2			WLX	1							
6	1.2D + 1W AZI 120	Yes Y	DL 1.2	WLZ	5	WLX	.866							
7	1.2D + 1W AZI 150	Yes Y	DL 1.2	WLZ	866	WLX	.5							
8	1.2D + 1W AZI 180	Yes Y	DL 1.2	WLZ	-1									
9	1.2D + 1W AZI 210	Yes Y	DL 1.2	WLZ	866	WLX	5							
10	1.2D + 1W AZI 240	Yes Y	DL 1.2	WLZ	5	WLX	866							
11	1.2D + 1W AZI 270	Yes Y	DL 1.2			WLX	-1							
12	1.2D + 1W AZI 300	Yes Y	DL 1.2	WLZ	.5	WLX	866							
13	1.2D + 1W AZI 330	Yes Y	DL 1.2	WLZ	.866	WLX	5							
14	0.9D + 1W AZI 000	Yes Y	DL .9	WLZ	1									
15	0.9D + 1W AZI 030	Yes Y	DL .9	WLZ	.866	WLX	.5							

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:___

Load Combinations (Continued)

	Description	S PD.	S	BLC	Factor	BLC	Factor	BLC	Factor	BLC	F B	Fa		F	F	F		F
16	0.9D + 1W AZI 060	Yes Y		DL	.9	WLZ	.5	WLX	.866									
17	0.9D + 1W AZI 090	Yes Y		DL	.9			WLX	1									
18	0.9D + 1W AZI 120	Yes Y		DL		WLZ			.866									
19	0.9D + 1W AZI 150	Yes Y		DL	.9	WLZ	866	WLX	.5									
20	0.9D + 1W AZI 180	Yes Y		DL	.9	WLZ	-1											
21	0.9D + 1W AZI 210	Yes Y		DL	.9	WLZ	866	WLX	5									
22	0.9D + 1W AZI 240	Yes Y		DL	.9	WLZ	5	WLX	866									
23	0.9D + 1W AZI 270	Yes Y		DL	.9			WLX	-1									
24	0.9D + 1W AZI 300	Yes Y		DL	9.	WLZ	.5	WLX	866									
25	0.9D + 1W AZI 330	Yes Y		DL	.9	WLZ	.866	WLX	5									
26	1.2D + 1.0Di	Yes Y		DL	1.2	OL1	1											
27	1.2D + 1.0Di + 1.0Wi AZI 000	Yes Y		DL	1.2	OL1	1	OL2	1									
28	1.2D + 1.0Di + 1.0Wi AZI 030	Yes Y		DL	1.2	OL1	1	OL2	.866	OL3	.5							
29	1.2D + 1.0Di + 1.0Wi AZI 060	Yes Y		DL	1.2	OL1	1	OL2		OL3								П
30	1.2D + 1.0Di + 1.0Wi AZI 090	Yes Y		DL	1.2	OL1	1			OL3	1							
31	1.2D + 1.0Di + 1.0Wi AZI 120	Yes Y		DL	1.2	OL1	1	OL2	5	OL3	.8							
32	1.2D + 1.0Di + 1.0Wi AZI 150	Yes Y		DL	1.2	OL1	1	OL2	866	OL3	.5							
33	1.2D + 1.0Di + 1.0Wi AZI 180	Yes Y		DL	1.2	OL1	1	OL2	-1									П
34	1.2D + 1.0Di + 1.0Wi AZI 210	Yes Y		DL	1.2	OL1	1	OL2	866	OL3	5							
35	1.2D + 1.0Di + 1.0Wi AZI 240	Yes Y		DL	1.2	OL1	1	OL2	5	OL3								
36	1.2D + 1.0Di + 1.0Wi AZI 270	Yes Y		DL	1.2	OL1	1			OL3	-1							
37	1.2D + 1.0Di + 1.0Wi AZI 300	Yes Y		DL	1.2	OL1	1	OL2	.5	OL3							П	П
38	1.2D + 1.0Di + 1.0Wi AZI 330	Yes Y		DL	1.2	OL1	1	OL2	.866	OL3	5							
39	1.2D + 1.5L + 1.0WL (30 mph) AZI 000	Yes Y		DL	1.2	LL	1.5	WLZ	.054									
40	1.2D + 1.5L + 1.0WL (30 mph) AZI 030	Yes Y		DL	1.2	LL	1.5	WLZ	.046	W	.0							
41	1.2D + 1.5L + 1.0WL (30 mph) AZI 060	Yes Y		DL	1.2	LL	1.5	WLZ	.027	W	.0							П
42	1.2D + 1.5L + 1.0WL (30 mph) AZI 090	Yes Y		DL	1.2	LL	1.5			W	.0							
43	1.2D + 1.5L + 1.0WL (30 mph) AZI 120	Yes Y		DL	1.2	LL	1.5	WLZ	027	W	.0						П	П
44	1.2D + 1.5L + 1.0WL (30 mph) AZI 150	Yes Y		DL	1.2	LL	1.5	WLZ	046									
45	1.2D + 1.5L + 1.0WL (30 mph) AZI 180	Yes Y		DL	1.2	LL	1.5	WLZ	054				Ш					
46	1.2D + 1.5L + 1.0WL (30 mph) AZI 210	Yes Y		DL	1.2	LL	1.5		046	W								
47	1.2D + 1.5L + 1.0WL (30 mph) AZI 240	Yes Y		DL	1.2	LL	1.5		027				Ш					П
	1.2D + 1.5L + 1.0WL (30 mph) AZI 270			DL	1.2	LL	1.5			W								
	1.2D + 1.5L + 1.0WL (30 mph) AZI 300	Yes Y		DL	1.2	LL	1.5	WLZ	.027									
50	1.2D + 1.5L + 1.0WL (30 mph) AZI 330	Yes Y		DL	1.2	LL	1.5	WLZ	.046									

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N14	max	764.755	17	3134.184	2	3311.131	14	5.977	2	2.567	11	.168	22
2		min	-763.286	23	-1412.634	20	-4186.367	8	-3.541	20	-2.578	17	201	4
3	N15	max	2712.174	18	3125.11	6	2225.925	13	1.863	24	1.717	2	2.989	24
4		min	-3460.001	12	-1403.171	24	-1774.247	18	-3.071	6	-1.697	20	-5.039	6
5	N16	max	3509.631	4	3125.323	10	2116.887	4	1.671	16	1.407	20	5.214	10
6		min	-2757.02	22	-1400.003	16	-1677.418	22	-2.9	10	-1.472	2	-3.103	16
7	Totals:	max	6322.075	17	7467.574	34	6465.526	14						
8		min	-6322.075	23	2209.631	15	-6465.526	20						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Ch	Loc[in]	LC	Shear Check	Loc	LC	phi*Pnc [lb]	phi*Pn	phi*M	phi*M	Eqn_
1	M1	C5X6.7	.661	68.75	9	.921	100 y	2	4719.057	63828	1.604	8.776	1H1-1a
2	M2	C5X6.7	.664	129.687	22	.769	100 y	6	4719.057	63828	1.604	9.012	1 <mark>.H1-1a</mark>
3	M3	C5X6.7	.664	129.687	14	1.005	100 y	10	4719.057	63828	1.604	9.084	1 <mark>.H1-1a</mark>
4	M4	HSS4X4X4	.421	0	3	.091	0 y	2	120004.784	139518	16.181	16.181	2 <mark>.H1-1</mark> b
5	M5	HSS4X4X4	.430	0	7	.092	0 y	6	120004.784	139518	16.181	16.181	2 <mark>.H1-1</mark> b

Company Designer Job Number

Model Name

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:_

Envelope AISC 14th(360-10): LRFD Steel Code Checks (Continued)

	Member	Shape (Code Ch	Loc[in]	LC	Shear Check	Loc		LC	phi*Pnc [lb] phi*Pnphi*M phi*M Eqn
6	M6	HSS4X4X4	.415	0	10	.089		у	10	120004.784 139518 16.181 16.181 2 H1-1b
7	M7	C5X6.7	.572	35	10	.112	35	y	12	21669.137 63828 1.604 9.585 1 H1-1b
8	M8	C5X6.7	.548	35	6	.115	35	У	8	21669.137 63828 1.604 9.585 1H1-1b
9	M9	C5X6.7	.594	35	2	.112	35	y	4	21669.137 63828 1.604 9.585 1H1-1b
10	M13	4"x0.625"	.861	6	9	.267	12	у	13	64171.965 81000 1.055 6.75 1H1-1b
11	M14	4"x0.625"	.878	6	5	.263	12	y	9	64171.965 81000 1.055 6.75 1H1-1b
12	M15	4"x0.625"	.854	6	13	.262	12	У	5	64171.965 81000 1.055 6.75 1H1-1b
13	M19	4"x0.625"	.313	7.5	3	.254	7.5	У	7	71054.886 81000 1.055 6.75 1H1-1b
14	M20	4"x0.625"	.333	7.5	13	.369	9	у	2	71054.886 81000 1.055 6.75 1H1-1b
15	M21	4"x0.625"	.324	7.5	7	.248	7.5	y	11	71054.886 81000 1.055 6.75 1H1-1b
16	M22	4"x0.625"	.374	7.5	5	.346	9	У	6	71054.886 81000 1.055 6.75 1H1-1b
17	M23	4"x0.625"	.349	7.5	11	.258	7.5	y	3	71054.886 81000 1.055 6.75 1H1-1b
18	M24	4"x0.625"	.354	7.5	9	.361	9	У	10	71054.886 81000 1.055 6.75 1H1-1b
19	M25	4"x0.625"	.234	1	4	.121	0	z	3	80869.109 81000 1.055 6.75 1H1-1b
20	M26	4"x0.625"	.166	1	13	.189	1	У	7	80869.109 81000 1.055 6.75 1H1-1b
21	M27	4"x0.625"	.233	1	12	.159	0	z	13	80869.109 81000 1.055 6.75 1H1-1b
22	M28	4"x0.625"	.183	0	13	.231	0	У	3	80869.109 81000 1.055 6.75 1H1-1b
23	M29	4"x0.625"	.243	1	8	.117	0	z	7	80869.109 81000 1.055 6.75 1H1-1b
24	M30	4"x0.625"	.168	0	7	.194	1	y	11	80869.109 81000 1.055 6.75 1H1-1b
25	M31	4"x0.625"	.254	1	4	.159	0	z	5	80869.109 81000 1.055 6.75 1H1-1b
26	M32	4"x0.625"	.210	0	5	.214	0	у	7	80869.109 81000 1.055 6.75 1H1-1b
27	M33	4"x0.625"	.255	1	12	.123	0	z	11	80869.109 81000 1.055 6.75 1H1-1b
28	M34	4"x0.625"	.184	0	11	.188	1	y	3	80869.109 81000 1.055 6.75 1H1-1b
29	M35	4"x0.625"	.249	1	8	.160	0	Z	9	80869.109 81000 1.055 6.75 1H1-1b
30	M36	4"x0.625"	.195	0	9	.240	0	у	11	80869.109 81000 1.055 6.75 1H1-1b
31	M37	PIPE_2.0	.378	45	3	.132	9		8	20866.733 32130 1.872 1.872 2H1-1b
32	M38	PIPE_2.0	.417	9	11	.220	9		12	20866.733 32130 1.872 1.872 2 H1-1b
33	M39	PIPE_2.0	.457	54	6	.258	18		4	20866.733 32130 1.872 1.872 1H1-1b
34	M40	PIPE_2.0	.423	54	12	.138	18		8	20866.733 32130 1.872 1.872 1H1-1b
35	M41	PIPE_2.0	.407	45	7	.108	9		12	20866.733 32130 1.872 1.872 2H1-1b
36	M42	PIPE_2.0	.445	9	3	.230	9		4	20866.733 32130 1.872 1.872 2H1-1b
37	M43	PIPE_2.0	.496	18	10	.231	18		8	20866.733 32130 1.872 1.872 1H1-1b
38	M44	PIPE_2.0	.421	54	4	.118	18		11_	20866.733 32130 1.872 1.872 1H1-1b
39	M45	PIPE_2.0	.377	45	11	.113	9		4	20866.733 32130 1.872 1.872 1H1-1b
40	M46	PIPE_2.0	.440	9	7	.212	9		8	20866.733 32130 1.872 1.872 2 H1-1b
41	M47	PIPE_2.0	.479	18	13	.268	18		12	20866.733 32130 1.872 1.872 1H1-1b
42	M48	PIPE_2.0	.463	54	8	.115	18		4	20866.733 32130 1.872 1.872 1 H1-1b
43	M49	PIPE_2.0	.205	0	2	.017	0		2	26521.424 32130 1.872 1.872 1 H1-1b
44	M51	PIPE_2.0	.182	0	5	.015	0		5	26521.424 32130 1.872 1.872 2H1-1b
45	M53	PIPE_2.0	.218	0	11	.020	0		11_	26521.424 32130 1.872 1.872 2 H1-1b
46	M55	PIPE_2.0	.776	14.063	7	.534	12.5		6	6295.422 32130 1.872 1.872 3H3-6
47	M56	PIPE_2.0	.782	14.062	11	.543	146		7	6295.422 32130 1.872 1.872 3H3-6
48	M57	PIPE_2.0	.788	14.062	3	.586	12.5		2	6295.422 32130 1.872 1.872 3H3-6

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design R	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Arm	HSS4X4X4	Beam	Tube	A500 Gr.B Rect	Typical	3.37	7.8	7.8	12.8
2	Frame Rail	C5X6.7	Beam	Channel	A36 Gr.36	Typical	1.97	.47	7.48	.055
3	Cross Arm	C5X6.7	Beam	Channel	A36 Gr.36	Typical	1.97	.47	7.48	.055
4	Plate	4"x0.625"	Beam	BAR	A36 Gr.36	Typical	2.5	.081	3.333	.293
5	Mount Pipe	PIPE_2.0	Column	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	Handrail	PIPE_2.0	HBrace	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25

: Infinigy Engineering, PLLC: CLK: 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:_

Joint Boundary Conditions

JUIII	Boundary Cor	iuiuons					
	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N1	7. [1.0.1.]	. [.,,]		7		
2	N2						
2	N3						
3							
4	N4						
5	N5						
6	N6						
7	N7						
8	N8						
9	N9						
10	N10						
11	N11						
12	N12						
13	N13						
14	N14	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
15	N15	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
16	N16	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
10		Neaction	Neaction	Neaction	Neaction	Neaction	Neaction
17	N17						
18	N18						
19	N19						
20	N20						
21	N21						
22	N22						
23	N29						
23							
24	N30						
25	N31						
26	N32						
27	N33						
28	N34						
29	N41						
30	N42						
31	N43						
32	N44						
33	N45						
34	N46						
35	N47						
36	N48						
37	N49						
37	N49						
38	N50						
39	N51						
40	N52						
41	N53						
42	N54						
43	N55						
44	N56						
45	N57						
46	N58						
47	N59			<u> </u>			
48	N60						
49	N61						
50	N62						
51	N63						
52	N64						
53	N65			<u> </u>			
54	N66						
55	N67						
56	N68						
50	INUO						

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:

Joint Boundary Conditions (Continued)

JUIII	Boundary Cor	iditions (Con	tirrueu)				
	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
57	N69						
58	N70						
59	N71						
60	N72						
61	N73						
60							
62	N74						
63	N75						
64	N76						
65	N77						
66	N78						
67	N79						
68	N80						
69	N81						
70	N82						
71	N83						
72	N84						
73	N85						
7.4							
74	N86						
75	N87						
76	N88						
77	N89						
78	N90						
79	N91						
80	N92						
81	N93						
82	N94						
83	N95						
84	N96						
85	N97						
86	N98						
87	N99						
88	N100						
89	N101						
90	N102						
91	N103						
92	N104						
93	N105						
94	N106						
95	N107						
96	N108						
97	N109						
98	N110						
	N111						
99	N112						
100	NIIZ						
101	N113						
102	N114						
103	N115						
104	N116						
105	N117						
106	N118						
107	N119						
108	N120						
109	N121						
110	N122						
111	N123						
111							
112	N124						
113	N125						

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:__

Joint Boundary Conditions (Continued)

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
114	N126						
115	N127						
116	N128						
117	N129						
118	N130						
119	N131						
120	N132						
121	N133						

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	.Analysis	Inactive	Seismic
1	M1			•			Ýes		,		None
2	M2						Yes				None
3	M3						Yes				None
4	M4						Yes				None
5	M5						Yes				None
6	M6						Yes				None
7	M7	BenPIN	BenPIN				Yes				None
8	M8	BenPIN	BenPIN				Yes				None
9	M9	BenPIN	BenPIN				Yes				None
10	M10	BenPIN	BenPIN				Yes	** NA **			None
11	M11	BenPIN	BenPIN				Yes	** NA **			None
12	M12	BenPIN	BenPIN				Yes	** NA **			None
13	M13						Yes				None
14	M14						Yes				None
15	M15						Yes				None
16	M16						Yes	** NA **			None
17	M17						Yes	** NA **			None
18	M18						Yes	** NA **			None
19	M19						Yes				None
20	M20						Yes				None
21	M21						Yes				None
22	M22						Yes				None
23	M23						Yes				None
24	M24						Yes				None
25	M25						Yes				None
26	M26						Yes				None
27	M27						Yes				None
28	M28						Yes				None
29	M29						Yes				None
30	M30						Yes				None
31	M31						Yes				None
32	M32						Yes				None
33	M33						Yes				None
34	M34						Yes				None
35	M35						Yes				None
36	M36						Yes				None
37	<u>M37</u>						Yes	** NA **			None
38	M38						Yes	** NA **			None
39	M39						Yes	** NA **			None
40	M40						Yes	** NA **			None
41	M41						Yes	** NA **			None
42	M42						Yes	** NA **			None
43	M43						Yes	** NA **			None
44	M44						Yes	** NA **			None

Company Designer Job Number

Model Name

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:_

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical Defl RatAnalysis	. Inactive	Seismic
45	M45						Yes ** NA **		None
46	M46						Yes ** NA **		None
47	M47						Yes ** NA **		None
48	M48						Yes ** NA **		None
49	M49						Yes ** NA **		None
50	M50						Yes ** NA **		None
51	M51						Yes ** NA **		None
52	M52						Yes ** NA **		None
53	M53						Yes ** NA **		None
54	M54						Yes ** NA **		None
55	M55						Yes ** NA **		None
56	M56						Yes ** NA **		None
57	M57						Yes ** NA **		None
58	M58	BenPIN	BenPIN				Yes ** NA **		None
59	M59	BenPIN	BenPIN				Yes ** NA **		None
60	M60	BenPIN	BenPIN				Yes ** NA **		None

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in] L-toro	ди Куу	Kzz	Cb	Function
1	M1	Frame Rail	150			Lbyy					Lateral
2	M2	Frame Rail	150			Lbyy					Lateral
3	M3	Frame Rail	150			Lbyy					Lateral
4	M4	Arm	72			Lbyy					Lateral
5	M5	Arm	72			Lbyy					Lateral
6	M6	Arm	72			Lbyy					Lateral
7	M7	Cross Arm	70			Lbyy					Lateral
8	M8	Cross Arm	70			Lbyy					Lateral
9	M9	Cross Arm	70			Lbyy					Lateral
10	M13	Plate	12			Lbyy					Lateral
11	M14	Plate	12			Lbyy					Lateral
12	M15	Plate	12			Lbyy					Lateral
13	M19	Plate	9								Lateral
14	M20	Plate	9								Lateral
15	M21	Plate	9								Lateral
16	M22	Plate	6								Lateral
17	M23	Plate	9								Lateral
18	M24	Plate	9								Lateral
19	M25	Plate	1								Lateral
20	M26	Plate	1								Lateral
21	M27	Plate	1								Lateral
22	M28	Plate	1								Lateral
23	M29	Plate	1								Lateral
24	M30	Plate	1								Lateral
25	M31	Plate	1								Lateral
26	M32	Plate	1								Lateral
27	M33	Plate	1								Lateral
28	M34	Plate	1								Lateral
29	M35	Plate	1								Lateral
30	M36	Plate	1								Lateral
31	M37	Mount Pipe	72								Lateral
32	M38	Mount Pipe	72								Lateral
33	M39	Mount Pipe	72								Lateral
34	M40	Mount Pipe	72								Lateral
35	M41	Mount Pipe	72								Lateral
36	M42	Mount Pipe	72								Lateral

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:__

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torqu	. Kyy	Kzz	Cb	Function
37	M43	Mount Pipe	72						•			Lateral
38	M44	Mount Pipe	72									Lateral
39	M45	Mount Pipe	72									Lateral
40	M46	Mount Pipe	72									Lateral
41	M47	Mount Pipe	72									Lateral
42	M48	Mount Pipe	72									Lateral
43	M49	Mount Pipe	48									Lateral
44	M51	Mount Pipe	48									Lateral
45	M53	Mount Pipe	48									Lateral
46	M55	Handrail	150			Lbyy						Lateral
47	M56	Handrail	150			Lbyy						Lateral
48	M57	Handrail	150			Lbyy						Lateral

Joint Loads and Enforced Displacements (BLC 7 : Service Live 1)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/
1	N73	L	Υ	-500
2	N97	L	Υ	-500
3	N85	L	Υ	-500
4	N2	L	Υ	-250
5	N10	L	Υ	-250
6	N6	L	Υ	-250

Member Point Loads (BLC 1: Self Weight)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M37	Υ	-28.75	%20
2	M38	Υ	-48.8	%20
3	M40	Υ	-17.5	%20
4	M49	Υ	-14.1	%60
5	M39	Υ	-35.5	%40
6	M39	Υ	-36	%40
7	M39	Υ	-16.4	%80
8	M37	Υ	-28.75	%80
9	M38	Υ	-48.8	%80
10	M40	Υ	-17.5	%80
11	M49	Υ	-14.1	%70
12	M39	Υ	-35.5	%60
13	M39	Υ	-36	%60
14	M39	Υ	-16.4	%80
15	M45	Υ	-28.75	%20
16	M46	Υ	-48.8	%20
17	M48	Υ	-17.5	%20
18	M53	Υ	-14.1	%60
19	M47	Υ	-35.5	%40
20	M47	Υ	-36	%40
21	M53	Υ	-16.4	%30
22	M45	Υ	-28.75	%80
23	M46	Υ	-48.8	%80
24	M48	Υ	-17.5	%80
25	M53	Υ	-14.1	%70
26	M47	Υ	-35.5	%60
27	M47	Υ	-36	%60
28	M53	Υ	-16.4	%30
29	M41	Υ	-28.75	%20
30	M42	Υ	-48.8	%20

: Infinigy Engineering, PLLC

: CLK

: 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:____

Member Point Loads (BLC 1: Self Weight) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
31	M44	Υ	-17.5	%20 -
32	M51	Υ	-14.1	%60
33	M43	Υ	-35.5	%40
34	M43	Υ	-36	%40
35	M41	Υ	-28.75	%80
36	M42	Υ	-48.8	%80
37	M44	Υ	-17.5	%80
38	M51	Υ	-14.1	%70
39	M43	Υ	-35.5	%60
40	M43	Υ	-36	%60

Member Point Loads (BLC 2: Wind Load AZI 000)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M37	Z	-165.13	%20
2	M38	Z	-290.57	%20
3	M40	Z	-115.87	%20
4	M49	Z	-46.44	%60
5	M39	Z	-41.39	%40
6	M39	Z	-34.48	%40
7	M39	Ζ	-25.49	%80
8	M37	Z	-165.13	%80
9	M38	Ζ	-290.57	%80
10	M40	Z	-115.87	%80
11	M49	Ζ	-46.44	%70
12	M39	Z	-41.39	%60
13	M39	Z	-34.48	%60
14	M39	Z	-25.49	%80
15	M45	Z	-136.08	%20
16	M46	Z	-164.67	%20
17	M48	Z	-75.16	%20
18	M53	Z	-22.56	%60
19	M47	Ζ	-32.56	%40
20	M47	Z	-29.97	%40
21	M53	Ζ	-25.3	%30
22	M45	Z	-136.08	%80
23	M46	Z	-164.67	%80
24	M48	Z	-75.16	%80
25	M53	Ζ	-22.56	%70
26	M47	Z	-32.56	%60
27	M47	Ζ	-29.97	%60
28	M53	Z	-25.3	%30
29	M41	Z	-136.08	%20
30	M42	Z	-164.67	%20
31	M44	Ζ	-75.16	%20
32	M51	Z	-22.56	%60
33	M43	Z	-32.56	%40
34	M43	Z	-29.97	%40
35	M41	Ζ	-136.08	%80
36	M42	Z	-164.67	%80
37	M44	Z	-75.16	%80
38	M51	Ζ	-22.56	%70
39	M43	Z	-32.56	%60
40	M43	Z	-29.97	%60

Member Point Loads (BLC 3: Wind Load AZI 090)

Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
--------------	-----------	--------------------	----------------

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:_

Member Point Loads (BLC 3: Wind Load AZI 090) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M37	X	-126.4	%20
2	M38	X	-122.7	%20
3	M40	X	-61.59	%20
4	M49	X	-14.6	%60
5	M39	X	-29.62	%40
6	M39	X	-28.47	%40
7	M39	X	-25.49	%80
8	M37	X	-126.4	%80
9	M38	X	-122.7	%80
10	M40	X	-61.59	%80
11	M49	X	-14.6	%70
12	M39	X	-29.62	%60
13	M39	X	-28.47	%60
14	M39	X	-25.49	%80
15	M45	X	-155.45	%20
16	M46	X	-248.6	%20
17	M48	X	-102.3	%20
18	M53	X	-38.48	%60
19	M47	X	-38.44	%40
20	M47	X	-32.97	%40
21	M53	X	-25.3	%30
22	M45	X	-155.45	%80
23	M46	X	-248.6	%80
24	M48	X	-102.3	%80
25	M53	X	-38.48	%70
26	M47	X	-38.44	%60
27	M47	X	-32.97	%60
28	M53	X	-25.3	%30
29	M41	X	-155.45	%20
30	M42	X	-248.6	%20
31	M44	X	-102.3	%20
32	M51	X	-38.48	%60
33	M43	X	-38.44	%40
34	M43	X	-32.97	%40
35	M41	X	-155.45	%80
36	M42	X	-248.6	%80
37	M44	X	-102.3	%80
38	M51	X	-38.48	%70
39	M43	X	-38.44	%60
40	M43	X	-32.97	%60

Member Point Loads (BLC 4 : Ice Weight)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M37	Υ	-84.86	%20
2	M38	Υ	-121.12	%20
3	M40	Υ	-54.18	%20
4	M49	Υ	-26.24	%60
5	M39	Υ	-30.91	%40
6	M39	Υ	-29.44	%40
7	M39	Υ	-35.96	%80
8	M37	Υ	-84.86	%80
9	M38	Υ	-121.12	%80
10	M40	Υ	-54.18	%80
11	M49	Υ	-26.24	%70
12	M39	Υ	-30.91	%60
13	M39	Υ	-29.44	%60

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:_

Member Point Loads (BLC 4: Ice Weight) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
14	M39	Υ	-35.96	%80
15	M45	Υ	-84.86	%20
16	M46	Υ	-121.12	%20
17	M48	Υ	-54.18	%20
18	M53	Υ	-26.24	%60
19	M47	Υ	-30.91	%40
20	M47	Υ	-29.44	%40
21	M53	Υ	-35.85	%30
22	M45	Υ	-84.86	%80
23	M46	Υ	-121.12	%80
24	M48	Υ	-54.18	%80
25	M53	Υ	-26.24	%70
26	M47	Υ	-30.91	%60
27	M47	Υ	-29.44	%60
28	M53	Υ	-35.85	%30
29	M41	Υ	-84.86	%20
30	M42	Υ	-121.12	%20
31	M44	Υ	-54.18	%20
32	M51	Υ	-26.24	%60
33	M43	Υ	-30.91	%40
34	M43	Υ	-29.44	%40
35	M41	Υ	-84.86	%80
36	M42	Υ	-121.12	%80
37	M44	Υ	-54.18	%80
38	M51	Υ	-26.24	%70
39	M43	Υ	-30.91	%60
40	M43	Υ	-29.44	%60

Member Point Loads (BLC 5: Wind + Ice Load AZI 000)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M37	Z	-30.7	%20
2	M38	Z	-50.38	%20
3	M40	Ζ	-22.17	%20
4	M49	Z	-10.87	%60
5	M39	Z	-8.69	%40
6	M39	Z	-7.44	%40
7	M39	Z	-12.32	%80
8	M37	Z	-30.7	%80
9	M38	Ζ	-50.38	%80
10	M40	Z	-22.17	%80
11	M49	Z	-10.87	%70
12	M39	Z	-8.69	%60
13	M39	Z	-7.44	%60
14	M39	Z	-12.32	%80
15	M45	Z	-26.39	%20
16	M46	Z	-31.33	%20
17	M48	Z	-16.01	%20
18	M53	Z	-6.51	%60
19	M47	Z	-7.17	%40
20	M47	Z	-6.64	%40
21	M53	Z	-8.4	%30
22	M45	Z	-26.39	%80
23	M46	Z	-31.33	%80
24	M48	Z	-16.01	%80
25	M53	Z	-6.51	%70
26	M47	Z	-7.17	%60

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:_

Member Point Loads (BLC 5: Wind + Ice Load AZI 000) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
27	M47	Z	-6.64	%60 ·
28	M53	Z	-8.4	%30
29	M41	Z	-26.39	%20
30	M42	Z	-31.33	%20
31	M44	Z	-16.01	%20
32	M51	Z	-6.51	%60
33	M43	Z	-7.17	%40
34	M43	Z	-6.64	%40
35	M41	Z	-26.39	%80
36	M42	Z	-31.33	%80
37	M44	Z	-16.01	%80
38	M51	Z	-6.51	%70
39	M43	Z	-7.17	%60
40	M43	Z	-6.64	%60

Member Point Loads (BLC 6: Wind + Ice Load AZI 090)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M37	X	-24.95	%20
2	M38	Χ	-24.98	%20
3	M40	Χ	-13.96	%20
4	M49	X	-5.06	%60
5	M39	X	-6.66	%40
6	M39	X	-6.38	%40
7	M39	X	-7.19	%80
8	M37	Χ	-24.95	%80
9	M38	Χ	-24.98	%80
10	M40	Χ	-13.96	%80
11	M49	X	-5.06	%70
12	M39	Χ	-6.66	%60
13	M39	X	-6.38	%60
14	M39	Χ	-7.19	%80
15	M45	Χ	-29.26	%20
16	M46	Χ	-44.03	%20
17	M48	X	-20.12	%20
18	M53	X	-9.42	%60
19	M47	Χ	-8.18	%40
20	M47	X	-7.17	%40
21	M53	Χ	-10.95	%30
22	M45	Χ	-29.26	%80
23	M46	X	-44.03	%80
24	M48	X	-20.12	%80
25	M53	X	-9.42	%70
26	M47	Χ	-8.18	%60
27	M47	Χ	-7.17	%60
28	M53	Χ	-10.95	%30
29	M41	X	-29.26	%20
30	M42	X	-44.03	%20
31	M44	X	-20.12	%20
32	M51	X	-9.42	%60
33	M43	Χ	-8.18	%40
34	M43	Χ	-7.17	%40
35	M41	X	-29.26	%80
36	M42	X	-44.03	%80
37	M44	X	-20.12	%80
38	M51	X	-9.42	%70
39	M43	X	-8.18	%60

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:___

Member Point Loads (BLC 6: Wind + Ice Load AZI 090) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
40	M43	Χ	-7.17	%60

Member Distributed Loads (BLC 4 : Ice Weight)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/ft,F,psf]	Start Location[in.	.End Location[in,
1	M1	Υ	-10.978	-10.978	0	%100
2	M2	Υ	-10.978	-10.978	0	%100
3	M3	Υ	-10.978	-10.978	0	%100
4	M4	Υ	-12.335	-12.335	0	%100
5	M5	Υ	-12.335	-12.335	0	%100
6	M6	Υ	-12.335	-12.335	0	%100
7	M7	Υ	-10.978	-10.978	0	%100
8	M8	Υ	-10.978	-10.978	0	%100
9	M9	Υ	-10.978	-10.978	0	%100
10	M10	Υ	-3.288	-3.288	0	%100
11	M11	Υ	-3.288	-3.288	0	%100
12	M12	Υ	-3.288	-3.288	0	%100
13	M13	Υ	-8.377	-8.377	0	%100
14	M14	Υ	-8.377	-8.377	0	%100
15	M15	Υ	-8.377	-8.377	0	%100
16	M16	Υ	-3.288	-3.288	0	%100
17	M17	Υ	-3.288	-3.288	0	%100
18	M18	Υ	-3.288	-3.288	0	%100
19	M19	Υ	-8.377	-8.377	0	%100
20	M20	Υ	-8.377	-8.377	0	%100
21	M21	Υ	-8.377	-8.377	0	%100
22	M22	Υ	-8.377	-8.377	0	%100
23	M23	Υ	-8.377	-8.377	0	%100
24	M24	Υ	-8.377	-8.377	0	%100
25	M25	Υ	-8.377	-8.377	0	%100
26	M26	Υ	-8.377	-8.377	0	%100
27	M27	Υ	-8.377	-8.377	0	%100
28	M28	Υ	-8.377	-8.377	0	%100
29	M29	Υ	-8.377	-8.377	0	%100
30	M30	Υ	-8.377	-8.377	0	%100
31	M31	Υ	-8.377	-8.377	0	%100
32	M32	Υ	-8.377	-8.377	0	%100
33	M33	Υ	-8.377	-8.377	0	%100
34	M34	Υ	-8.377	-8.377	0	%100
35	M35	Υ	-8.377	-8.377	0	%100
36	M36	Υ	-8.377	-8.377	0	%100
37	M37	Υ	-6.801	-6.801	0	%100
38	M38	Υ	-6.801	-6.801	0	%100
39	M39	Υ	-6.801	-6.801	0	%100
40	M40	Υ	-6.801	-6.801	0	%100
41	M41	Y	-6.801	-6.801	0	%100
42	M42	Υ	-6.801	-6.801	0	%100
43	M43	Υ	-6.801	-6.801	0	%100
44	M44	Υ	-6.801	-6.801	0	%100
45	M45	Υ	-6.801	-6.801	0	%100
46	M46	Υ	-6.801	-6.801	0	%100
47	M47	Υ	-6.801	-6.801	0	%100
48	M48	Υ	-6.801	-6.801	0	%100
49	M49	Υ	-6.801	-6.801	0	%100
50	M50	Υ	-3.288	-3.288	0	%100
51	M51	Υ	-6.801	-6.801	0	%100

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:_

Member Distributed Loads (BLC 4 : Ice Weight) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/ft,F,psf]	Start Location[in	End Location[in,
52	M52	Υ	-3.288	-3.288	0	%100
53	M53	Υ	-6.801	-6.801	0	%100
54	M54	Υ	-3.288	-3.288	0	%100
55	M55	Υ	-13.527	-13.527	0	%100
56	M56	Υ	-13.527	-13.527	0	%100
57	M57	Υ	-13.527	-13.527	0	%100

Member Distributed Loads (BLC 8:)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/ft,F,psf]	Start Location[in.	.End Location[in,
1	M1	Y	-13.527	-13.527	0	%100
2	M2	Υ	-13.527	-13.527	0	%100
3	M3	Υ	-13.527	-13.527	0	%100
4	M4	Υ	-15.118	-15.118	0	%100
5	M5	Υ	-15.118	-15.118	0	%100
6	M6	Υ	-15.118	-15.118	0	%100
7	M7	Υ	-13.527	-13.527	0	%100
8	M8	Υ	-13.527	-13.527	0	%100
9	M9	Υ	-13.527	-13.527	0	%100
10	M10	Υ	-4.516	-4.516	0	%100
11	M11	Υ	-4.516	-4.516	0	%100
12	M12	Υ	-4.516	-4.516	0	%100
13	M13	Υ	-10.479	-10.479	0	%100
14	M14	Υ	-10.479	-10.479	0	%100
15	M15	Υ	-10.479	-10.479	0	%100
16	M16	Υ	-4.516	-4.516	0	%100
17	M17	Υ	-4.516	-4.516	0	%100
18	M18	Υ	-4.516	-4.516	0	%100
19	M19	Υ	-10.479	-10.479	0	%100
20	M20	Υ	-10.479	-10.479	0	%100
21	M21	Υ	-10.479	-10.479	0	%100
22	M22	Υ	-10.479	-10.479	0	%100
23	M23	Υ	-10.479	-10.479	0	%100
24	M24	Υ	-10.479	-10.479	0	%100
25	M25	Υ	-10.479	-10.479	0	%100
26	M26	Υ	-10.479	-10.479	0	%100
27	M27	Υ	-10.479	-10.479	0	%100
28	M28	Υ	-10.479	-10.479	0	%100
29	M29	Υ	-10.479	-10.479	0	%100
30	M30	Υ	-10.479	-10.479	0	%100
31	M31	Υ	-10.479	-10.479	0	%100
32	M32	Υ	-10.479	-10.479	0	%100
33	M33	Υ	-10.479	-10.479	0	%100
34	M34	Υ	-10.479	-10.479	0	%100
35	M35	Υ	-10.479	-10.479	0	%100
36	M36	Υ	-10.479	-10.479	0	%100
37	M37	Υ	-8.491	-8.491	0	%100
38	M38	Υ	-8.491	-8.491	0	%100
39	M39	Υ	-8.491	-8.491	0	%100
40	M40	Υ	-8.491	-8.491	0	%100
41	M41	Υ	-8.491	-8.491	0	%100
42	M42	Υ	-8.491	-8.491	0	%100
43	M43	Y	-8.491	-8.491	0	%100
44	M44	Υ	-8.491	-8.491	0	%100
45	M45	Υ	-8.491	-8.491	0	%100
46	M46	Υ	-8.491	-8.491	0	%100
47	M47	Υ	-8.491	-8.491	0	%100

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: 1039-A0002-B : Madison Durham Road Jan 23, 2019 10:51 AM Checked By:__

Member Distributed Loads (BLC 8:) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/ft,F,psf]	Start Location[in	End Location[in,
48	M48	Υ	-8.491	-8.491	0	%100
49	M49	Υ	-8.491	-8.491	0	%100
50	M50	Υ	-4.516	-4.516	0	%100
51	M51	Υ	-8.491	-8.491	0	%100
52	M52	Υ	-4.516	-4.516	0	%100
53	M53	Υ	-8.491	-8.491	0	%100
54	M54	Υ	-4.516	-4.516	0	%100
55	M55	Υ	-13.527	-13.527	0	%100
56	M56	Υ	-13.527	-13.527	0	%100
57	M57	Υ	-13.527	-13.527	0	%100

Member Distributed Loads (BLC 9: BLC 1 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/ft,F,psf]	Start Location[in	End Location[in,
1	<u>M2</u>	Υ	253	-1.671	0	15
2	M2	Υ	-1.671	-4.697	15	30
3	M2	Υ	-4.697	-5.325	30	45
4	M2	Υ	-5.325	-1.854	45	60
5	M2	Υ	-1.854	071	60	75
6	M3	Υ	691	-1.622	75	90
7	M3	Υ	-1.622	-3.06	90	105
8	M3	Υ	-3.06	-3.308	105	120
9	M3	Υ	-3.308	-1.772	120	135
10	M3	Υ	-1.772	152	135	150
11	M9	Υ	256	-3.237	0	14
12	M9	Υ	-3.237	-5.542	14	28
13	M9	Υ	-5.542	-5.993	28	42
14	M9	Υ	-5.993	-4.556	42	56
15	M9	Υ	-4.556	-1.26	56	70
16	M13	Υ	772	-2.748	0	2.4
17	M13	Υ	-2.748	-4.323	2.4	4.8
18	M13	Υ	-4.323	-4.8	4.8	7.2
19	M13	Υ	-4.8	-3.282	7.2	9.6
20	M13	Υ	-3.282	466	9.6	12
21	M21	Υ	-23.598	-9.683	0	1.8
22	M21	Υ	-9.683	-2.636	1.8	3.6
23	M21	Υ	-2.636	-1.816	3.6	5.4
24	M21	Υ	-1.816	829	5.4	7.2
25	M21	Υ	829	314	7.2	9
26	M24	Υ	-20.592	-10.037	0	1.8
27	M24	Υ	-10.037	-3.892	1.8	3.6
28	M24	Υ	-3.892	-2.533	3.6	5.4
29	M24	Υ	-2.533	-1.173	5.4	7.2
30	M24	Υ	-1.173	.452	7.2	9
31	M35	Υ	981	981	0	1
32	M36	Υ	207	207	0	1
33	M54	Υ	3.808	-14.005	0	3
34	M54	Υ	-14.005	-47.05	3	6
35	M1	Υ	219	-1.66	0	15
36	M1	Υ	-1.66	-4.698	15	30
37	M1	Υ	-4.698	-5.326	30	45
38	M1	Υ	-5.326	-1.855	45	60
39	M1	Υ	-1.855	072	60	75
40	M2	Υ	691	-1.622	75	90
41	M2	Υ	-1.622	-3.06	90	105
42	M2	Υ	-3.06	-3.308	105	120
43	M2	Υ	-3.308	-1.769	120	135

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:

Member Distributed Loads (BLC 9: BLC 1 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/ft,F,psf]		
44	M2	Υ	-1.769	141	135	150
45	M7	Υ	256	-3.237	0	14
46	M7	Υ	-3.237	-5.542	14	28
47	M7	Υ	-5.542	-5.993	28	42
48	M7	Υ	-5.993	-4.556	42	56
49	M7	Y	-4 .556	-1.26	56	70
50	M14	Υ	629	-2.671	0	2.4
51	M14	Y	-2.671	-4.572	2.4	4.8
52	M14	Y	-4.572	-4.895	4.8	7.2
53	M14	Y	-4.895	-3.136	7.2	9.6
54	M14	Υ	-3.136	733	9.6	12
55	M19	Y	-23.598	-9.682	0	1.8
56	M19	Υ	- 9.682	-2.635	1.8	3.6
57	M19	Υ	-2.635	-1.816	3.6	5.4
58	M19	Υ	-1.816	836	5.4	7.2
59	M19	Υ	836	337	7.2	9
60	M22	Υ	-20.592	-10.037	0	1.8
61	M22	Υ	-10.037	-3.892	1.8	3.6
62	M22	Υ	-3.892	-2.533	3.6	5.4
63	M22	Υ	-2.533	-1.171	5.4	7.2
64	M22	Υ	-1.171	.452	7.2	9
65	M31	Υ	981	981	0	1
66	M32	Υ	207	207	0	1
67	M52	Y	3.808	-14.005	0	3
68	M52	Υ	-14.005	-47.05	3	6
69	M1	Y	691	-1.622	75	90
70	M1	Y	-1.622	-3.06	90	105
71	M1	Y	-3.06	-3.308	105	120
72	M1	Ý	-3.308	-1.772	120	135
73	M1	Y	-1.772	152	135	150
74	M3	Y	253	-1.671	0	15
75	M3	Ý	-1.671	-4.697	15	30
76	M3	Ý	-4.697	-5.325	30	45
77	M3	Ý	-5.325	-1.854	45	60
78	M3	Y	-1.854	071	60	75
79	M8	Ý	256	-3.237	0	14
80	M8	Ý	-3.237	-5.542	14	28
81	M8	Ý	-5.542	-5.993	28	42
82	M8	Ý	-5.993	-4.556	42	56
83	M8	Ý	-4.556	-1.26	56	70
84	M15	Y	772	-2.748	0	2.4
85	M15	Y	-2.748	-4.323	2.4	4.8
86	M15	Y	-4.323	-4.8	4.8	7.2
87	M15	Ý	-4.8	-3.282	7.2	9.6
88	M15	Y	-3.282	466	9.6	12
89	M20	Ý	-20.592	-10.037	0	1.8
90	M20	Y	-10.037	-3.892	1.8	3.6
91	M20	Ý	-3.892	-2.533	3.6	5.4
92	M20	Ý	-2.533	-1.173	5.4	7.2
93	M20	Y	-1.173	.452	7.2	9
94	M23	Y	-23.598	-9.683	0	1.8
95	M23	Y	<u>-23.398</u> -9.683	-2.636	1.8	3.6
96	M23	Y	-2.636	-1.816	3.6	5.4
97	M23	Y	<u>-2.030</u> -1.816	829	5.4	7.2
98	M23	Y	829	314	7.2	9
99	M27	Y	<u>029</u> 981	981	0	1
100	M28	Y			0	1
100	IVIZO	Í	207	207	U	

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:_

Member Distributed Loads (BLC 9: BLC 1 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/ft,F,psf]	Start Location[in	.End Location[in,
101	M50	Υ	3.808	-14.005	0	3
102	M50	Υ	-14 005	-47 05	3	6

Member Distributed Loads (BLC 10 : BLC 2 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/ft,F,psf]	Start Location[in.	End Location[in,
1	M1	Z	-35.058	-35.058	0	150
2	M2	Z	-17.529	-17.529	0	150
3	M3	Z	-17.529	-17.529	0	150
4	M5	Z	-24.289	-24.289	0	72
5	M6	Z	-24.289	-24.289	0	72
6	M7	Z	-17.529	-17.529	0	70
7	M8	Z	-17.529	-17.529	0	70
8	M9	Z	-35.058	-35.058	0	70
9	M10	Z	0	0	0	4.5
10	M11	Z	0	0	0	4.5
11	M12	Z	0	0	0	4.5
12	M13	Z	-28.047	-28.047	0	12
13	M14	Z	-14.023	-14.023	0	12
14	M15	Z	-14.023	-14.023	0	12
15	M16	Z	0	0	0	4.5
16	M17	Z	0	0	0	4.5
17	M18	Z	0	0	0	4.5
18	M19	Z	-28.047	-28.047	0	9
19	M20	Z	-28.047	-28.047	0	9
20	M21	Z	-14.023	-14.023	0	9
21	M22	Z	-14.023	-14.023	0	9
22	M23	Z	-14.023	-14.023	0	9
23	M24	Z	-14.023	-14.023	0	9
24	M29	Z	-24.289	-24.289	0	1
25	M30	Z	-24.289	-24.289	0	1
26	M31	Z	-24.289	-24.289	0	1
27	M32	Z	-24.289	-24.289	0	1
28	M33	Z	-24.289	-24.289	0	1
29	M34	Z	-24.289	-24.289	0	1
30	M35	Z	-24.289	-24.289	0	1
31	M36	Z	-24.289 -24.289	-24.289	0	1
32	M37	Z	-24.269 -16.653	-16.653	0	72
33	M38	Z	-16.653	-16.653	0	72
34	M39	Z	-16.653	-16.653	0	72
35	M40			-16.653	0	72
36	M41	Z	<u>-16.653</u>		0	72
37	M42	Z	<u>-16.653</u>	-16.653	0	72
38	M43	Z	<u>-16.653</u>	-16.653		72
39	M44	Z	<u>-16.653</u>	-16.653	0	
40			<u>-16.653</u>	-16.653 -16.653	0	72 72
41	M45	<u>Z</u>	<u>-16.653</u>			
41	M46 M47	Z	-16.653	-16.653	0	72 72
43		Z	<u>-16.653</u>	-16.653		72
	M48	Z	<u>-16.653</u>	-16.653	0	
44	M49		<u>-16.653</u>	-16.653	0	48
45	M51	Z	<u>-16.653</u>	-16.653	0	48
46	M52		0	16.652	0	6
47	M53	Z	-16.653	-16.653	0	48
48	M54		0	0	0	6
49	M58	Z	0	0	0	15.232
50	M59	Z	0	0	0	15.232
51	M60	Z	0	0	0	15.232

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:_

Member Distributed Loads (BLC 11 : BLC 3 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/ft,F,psf]	Start Location[in.	.End Location[in,
1	M2	X	-30.361	-30.361	0	150
2	M3	X	-30.361	-30.361	0	150
3	M4	X	-28.047	-28.047	0	72
4	M5	X	-14.023	-14.023	0	72
5	M6	X	-14.023	-14.023	0	72
6	M7	X	-30.361	-30.361	0	70
7	M8	X	-30.361	-30.361	0	70
8	M10	X	0	0	0	4.5
9	M11	X	0	0	0	4.5
10	M12	X	0	0	0	4.5
11	M14	X	-24.289	-24.289	0	12
12	M15	X	-24.289	-24.289	0	12
13	M16	X	<u>-24.269</u> 0	0	0	4.5
14	M17	X	0	0	0	4.5
				•		
15	M18	X	0	0	0	4.5
16	M21		-24.289	-24.289	0	9
17	M22	X	-24.289	-24.289	0	9
18	M23	X	-24.289	-24.289	0	9
19	M24	X	-24.289	-24.289	0	9
20	M25	X	-28.047	-28.047	0	1
21	M26	Х	-28.047	-28.047	0	1
22	M27	X	-28.047	-28.047	0	1
23	M28	X	-28.047	-28.047	0	1
24	M29	X	-14.023	-14.023	0	1
25	M30	X	-14.023	-14.023	0	1
26	M31	Х	-14.023	-14.023	0	1
27	M32	X	-14.023	-14.023	0	1
28	M33	X	-14.023	-14.023	0	1
29	M34	X	-14.023	-14.023	0	1
30	M35	X	-14.023	-14.023	0	1
31	M36	X	-14.023	-14.023	0	1
32	M37	X	-16.653	-16.653	0	72
33	M38	X	-16.653	-16.653	0	72
34	M39	X	-16.653	-16.653	0	72
35	M40	X	-16.653	-16.653	0	72
36	M41	X	-16.653	-16.653	0	72
37	M42	X	-16.653	-16.653	0	72
38	M43	X	-16.653	-16.653	0	72
39	M44	X	-16.653	-16.653	0	72
40	M45	X	-16.653	-16.653	0	72
41	M46	X	-16.653	-16.653	0	72
42	M47	X	-16.653	-16.653	0	72
43	M48	X	-16.653	-16.653	0	72
44	M49	X	-16.653	-16.653	0	48
45	M50	X	<u>-10.055</u> 0	-10.055	0	6
		X	-16.653	-16.653	0	48
46	M51					
47	M52	X	0	0	0	6
48	M53	X	-16.653	-16.653	0	48
49	M54	X	0	0	0	6
50	M58	X	0	0	0	15.232
51	M60	Х	0	0	0	15.232

Member Distributed Loads (BLC 12 : BLC 4 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/ft,F,psf]	Start Location[in	End Location[in,
1	M2	Υ	354	-2.339	0	15
2	M2	Υ	-2.339	-6.576	15	30

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:

Member Distributed Loads (BLC 12: BLC 4 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/ft,F,psf]		
3	<u>M2</u>	Υ	-6.576	-7.455	30	45
4	M2	Υ	-7.455	-2.595	45	60
5	<u>M2</u>	Υ	-2.595	099	60	75
6	<u>M3</u>	Υ	967	-2.271	75	90
7	M3	Υ	-2.271	-4.284	90	105
8	M3	Υ	-4.284	-4.631	105	120
9	M3	Υ	-4.631	-2.481	120	135
10	M3	Υ	-2.481	213	135	150
11	M9	Υ	359	-4.531	0	14
12	M9	Υ	-4.531	-7.758	14	28
13	M9	Υ	-7.758	-8.39	28	42
14	M9	Υ	-8.39	-6.378	42	56
15	M9	Υ	-6.378	-1.763	56	70
16	M13	Υ	-1.081	-3.847	0	2.4
17	M13	Υ	-3.847	-6.052	2.4	4.8
18	M13	Υ	-6.052	-6.72	4.8	7.2
19	M13	Υ	-6.72	-4.595	7.2	9.6
20	M13	Υ	-4.595	653	9.6	12
21	M21	Υ	-33.038	-13.556	0	1.8
22	M21	Υ	-13.556	-3.69	1.8	3.6
23	M21	Υ	-3.69	-2.543	3.6	5.4
24	M21	Υ	-2.543	-1.16	5.4	7.2
25	M21	Υ	-1.16	44	7.2	9
26	M24	Υ	-28.829	-14.052	0	1.8
27	M24	Υ	-14.052	-5.449	1.8	3.6
28	M24	Υ	-5.449	-3.547	3.6	5.4
29	M24	Υ	-3.547	-1.642	5.4	7.2
30	M24	Υ	-1.642	.633	7.2	9
31	M35	Υ	-1.373	-1.373	0	1
32	M36	Υ	29	29	0	1
33	M54	Υ	5.332	-19.606	0	3
34	M54	Υ	-19.606	-65.87	3	6
35	M1	Υ	307	-2.324	0	15
36	M1	Υ	-2.324	-6.577	15	30
37	M1	Υ	-6.577	-7.457	30	45
38	M1	Υ	-7.457	-2.597	45	60
39	M1	Υ	-2.597	101	60	75
40	M2	Υ	967	-2.271	75	90
41	M2	Υ	-2.271	-4.285	90	105
42	<u>M2</u>	Υ	-4.285	-4.631	105	120
43	<u>M2</u>	Y	-4.631	-2.476	120	135
44	<u>M2</u>	Υ	-2.476	197	135	150
45	<u>M7</u>	Υ	359	-4.531	0	14
46	<u>M7</u>	Υ	-4.531	-7.758	14	28
47	<u>M7</u>	Υ	-7.758	-8.39	28	42
48	<u>M7</u>	Υ	-8.39	-6.378	42	56
49	<u>M7</u>	Υ	-6.378	-1.763	56	70
50	M14	Υ	881	-3.739	0	2.4
51	M14	Υ	-3.739	-6.401	2.4	4.8
52	M14	Υ	-6.401	-6.853	4.8	7.2
53	M14	Υ	-6.853	-4.39	7.2	9.6
54	M14	Υ	-4.39	-1.027	9.6	12
55	M19	Υ	-33.037	-13.555	0	1.8
56	M19	Υ	-13.555	-3.689	1.8	3.6
57	M19	Υ	-3.689	-2.542	3.6	5.4
58	M19	Υ	-2.542	-1.17	5.4	7.2
59	M19	Υ	-1.17	471	7.2	9

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:_

Member Distributed Loads (BLC 12: BLC 4 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/ft,F,psf]	Start Location[in	.End Location[in,
60	M22	Υ	-28.829	-14.052	0	1.8
61	M22	Υ	-14.052	-5.448	1.8	3.6
62	M22	Υ	-5.448	-3.546	3.6	5.4
63	M22	Υ	-3.546	-1.64	5.4	7.2
64	M22	Υ	-1.64	.633	7.2	9
65	M31	Υ	-1.373	-1.373	0	1
66	M32	Υ	29	29	0	1
67	M52	Υ	5.332	-19.606	0	3
68	M52	Υ	-19.606	-65.87	3	6
69	M1	Υ	967	-2.271	75	90
70	M1	Υ	-2.271	-4.284	90	105
71	M1	Υ	-4.284	-4.631	105	120
72	M1	Υ	-4.631	-2.481	120	135
73	M1	Υ	-2.481	213	135	150
74	M3	Υ	354	-2.339	0	15
75	M3	Υ	-2.339	-6.576	15	30
76	M3	Υ	-6.576	-7.455	30	45
77	M3	Υ	-7.455	-2.595	45	60
78	M3	Υ	-2.595	099	60	75
79	M8	Υ	359	-4.531	0	14
80	M8	Υ	-4.531	-7.758	14	28
81	M8	Υ	-7.758	-8.39	28	42
82	M8	Υ	-8.39	-6.378	42	56
83	M8	Υ	-6.378	-1.763	56	70
84	M15	Υ	-1.081	-3.847	0	2.4
85	M15	Υ	-3.847	-6.052	2.4	4.8
86	M15	Υ	-6.052	-6.72	4.8	7.2
87	M15	Υ	-6.72	-4.595	7.2	9.6
88	M15	Υ	-4.595	653	9.6	12
89	M20	Υ	-28.829	-14.052	0	1.8
90	M20	Υ	-14.052	-5.449	1.8	3.6
91	M20	Υ	-5.449	-3.547	3.6	5.4
92	M20	Υ	-3.547	-1.642	5.4	7.2
93	M20	Υ	-1.642	.633	7.2	9
94	M23	Υ	-33.038	-13.556	0	1.8
95	M23	Υ	-13.556	-3.69	1.8	3.6
96	M23	Υ	-3.69	-2.543	3.6	5.4
97	M23	Υ	-2.543	-1.16	5.4	7.2
98	M23	Υ	-1.16	44	7.2	9
99	M27	Υ	-1.373	-1.373	0	1
100	M28	Υ	29	29	0	1
101	M50	Υ	5.332	-19.606	0	3
102	M50	Υ	-19.606	-65.87	3	6

Member Distributed Loads (BLC 13: BLC 5 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/ft,F,psf]	Start Location[in	End Location[in,
1	M1	Z	-5.629	-5.629	0	150
2	M2	Z	-2.815	-2.815	0	150
3	M3	Z	-2.815	-2.815	0	150
4	M5	Z	-3.9	-3.9	0	72
5	M6	Ζ	-3.9	-3.9	0	72
6	M7	Ζ	-2.815	-2.815	0	70
7	M8	Ζ	-2.815	-2.815	0	70
8	M9	Z	-5.629	-5.629	0	70
9	M10	Z	0	0	0	4.5
10	M11	Z	0	0	0	4.5

: Infinigy Engineering, PLLC

: CLK

: 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:___

Member Distributed Loads (BLC 13: BLC 5 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/ft,F,psf]	Start Location[in	End Location[in,
11	M12	Z	0	0	0	4.5
12	M13	Z	-4.503	-4.503	0	12
13	M14	Z	-2.252	-2.252	0	12
14	M15	Z	-2.252	-2.252	0	12
15	M16	Z	0	0	0	4.5
16	M17	Z	0	0	0	4.5
17	M18	Ζ	0	0	0	4.5
18	M19	Z	-4.503	-4.503	0	9
19	M20	Z	-4.503	-4.503	0	9
20	M21	Z	-2.252	-2.252	0	9
21	M22	Ζ	-2.252	-2.252	0	9
22	M23	Z	-2.252	-2.252	0	9
23	M24	Ζ	-2.252	-2.252	0	9
24	M29	Z	-3.9	-3.9	0	1
25	M30	Ζ	-3.9	-3.9	0	1
26	M31	Z	-3.9	-3.9	0	1
27	M32	Z	-3.9	-3.9	0	1
28	M33	Z	-3.9	-3.9	0	1
29	M34	Z	-3.9	-3.9	0	1
30	M35	Z	-3.9	-3.9	0	1
31	M36	Z	-3.9	-3.9	0	1
32	M37	Z	-2.674	-2.674	0	72
33	M38	Z	-2.674	-2.674	0	72
34	M39	Z	-2.674	-2.674	0	72
35	M40	Z	-2.674	-2.674	0	72
36	M41	Z	-2.674	-2.674	0	72
37	M42	Z	-2.674	-2.674	0	72
38	M43	Z	-2.674	-2.674	0	72
39	M44	Z	-2.674	-2.674	0	72
40	M45	Z	-2.674	-2.674	0	72
41	M46	Z	-2.674	-2.674	0	72
42	M47	Ζ	-2.674	-2.674	0	72
43	M48	Z	-2.674	-2.674	0	72
44	M49	Z	-2.674	-2.674	0	48
45	M51	Z	-2.674	-2.674	0	48
46	M52	Z	0	0	0	6
47	M53	Z	-2.674	-2.674	0	48
48	M54	Z	0	0	0	6
49	M58	Z	0	0	0	15.232
50	M59	Z	0	0	0	15.232
51	M60	Z	0	0	0	15.232

Member Distributed Loads (BLC 14: BLC 6 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/ft,F,psf]	Start Location[in	End Location[in,
1	M2	X	-4.875	-4.875	0	150
2	M3	X	-4.875 -4.875 0		150	
3	M4	X	-4.503	-4.503	0	72
4	M5	X	-2.252	-2.252	0	72
5	M6	X	-2.252	-2.252	0	72
6	M7	X	-4.875	-4.875	0	70
7	M8	X	-4.875	-4.875	0	70
8	M10	X	0	0	0	4.5
9	M11	X	0	0	0	4.5
10	M12	X	0	0	0	4.5
11	M14	X	-3.9	-3.9	0	12
12	M15	X	-3.9	-3.9	0	12

: Infinigy Engineering, PLLC

: CLK

: 1039-A0002-B : Madison Durham Road Jan 23, 2019 10:51 AM Checked By:___

Member Distributed Loads (BLC 14: BLC 6 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/ft,F,psf]	Start Location[in.	.End Location[in,
13	M16	X	0	0	0	4.5
14	M17	X	0	0	0	4.5
15	M18	X	0	0	0	4.5
16	M21	X	-3.9	-3.9	0	9
17	M22	X	-3.9	-3.9	0	9
18	M23	X	-3.9	-3.9	0	9
19	M24	X	-3.9	-3.9	0	9
20	M25	X	-4.503	-4.503	0	1
21	M26	X	-4.503	-4.503	0	1
22	M27	X	-4.503	-4.503	0	1
23	M28	X	-4.503	-4.503	0	1
24	M29	X	-2.252	-2.252	0	1
25	M30	X	-2.252	-2.252	0	1
26	M31	X	-2.252	-2.252	0	1
27	M32	X	-2.252	-2.252	0	1
28	M33	X	-2.252	-2.252	0	1
29	M34	Х	-2.252	-2.252	0	1
30	M35	X	-2.252	-2.252	0	1
31	M36	X	-2.252	-2.252	0	1
32	M37	X	-2.674	-2.674	0	72
33	M38	X	-2.674	-2.674	0	72
34	M39	X	-2.674	-2.674	0	72
35	M40	X	-2.674	-2.674	0	72
36	M41	X	-2.674	-2.674	0	72
37	M42	X	-2.674	-2.674	0	72
38	M43	X	-2.674	-2.674	0	72
39	M44	X	-2.674	-2.674	0	72
40	M45	X	-2.674	-2.674	0	72
41	M46	X	-2.674	-2.674	0	72
42	M47	X	-2.674	-2.674	0	72
43	M48	X	-2.674	-2.674	0	72
44	M49	X	-2.674	-2.674	0	48
45	M50	X	0	0	0	6
46	M51	X	-2.674	-2.674	0	48
47	M52	X	0	0	0	6
48	M53	X	-2.674	-2.674	0	48
49	M54	X	0	0	0	6
50	M58	X	0	0	0	15.232
51	M60	X	0	0	0	15.232

Member Area Loads (BLC 1 : Self Weight)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	N22	N12	N7	N19	Υ	Two Way	-5
2	N20	N8	N3	N17	Υ	Two Way	-5
3	N21	N18	N4	N11	Υ	Two Way	-5

Member Area Loads (BLC 2: Wind Load AZI 000)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	N117	N116	N118	N119	Z	Open Structure	-84.14

Member Area Loads (BLC 3: Wind Load AZI 090)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]	
1	N119	N118	N120	N121	X	Open Structure	-84.14	

: Infinigy Engineering, PLLC

: CLK : 1039-A0002-B

: Madison Durham Road

Jan 23, 2019 10:51 AM Checked By:_

Member Area Loads (BLC 4 : Ice Weight)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	N22	N12	N7	N19	Υ	Two Way	-7
2	N20	N8	N3	N17	Υ	Two Way	-7
3	N21	N18	N4	N11	Υ	Two Way	-7

Member Area Loads (BLC 5 : Wind + Ice Load AZI 000)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]	
1	N117	N116	N118	N119	Z	Open Structure	-13.51	

Member Area Loads (BLC 6: Wind + Ice Load AZI 090)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	N119	N118	N120	N121	X	Open Structure	-13.51

APPENDIX D ADDITIONAL CALCUATIONS

Date: 1/29/2019
Client Crown Castle
Carrier AT&T
Engineer: CLK
Site: 846176
Job #: 1039-A0002-B

 Code:
 LRFD

 Axial:
 3134.00 lbs

 Shear:
 4186.00 lbs

Bolt Capacity (1/2" A307 Bolt)							
Ult Load / Bolt Factored Load (φ=0.75) # of Bolts Factor Joint Capa							
Axial (lb)	8226.7	6170.0	2	12340			
Shear(lb)	5133.3	3850.0	2	7700			

Interaction Check						
Τ /φΤ _n	25.4%					
V /φVn	54.4%					
≤1.0	36.0%					
	ОК					

APPENDIX E

MOUNT MODIFICATION DESIGN DRAWINGS (MDD) / SUPPLEMENTAL DRAWINGS

GENERAL NOTES:

- THESE DOCUMENTS WERE DESIGNED IN ACCORDANCE WITH THE LATEST VERSION OF APPLICABLE LOCAL/STATE/COUNTY/CITY BUILDING CODES, AS WELL AS ANSI/TIA-222 STANDARD, AWWA-D100 STANDARD, NDS, NEC, MSJC, AND/OR THE LATEST VERSION OF THE INTERNATIONAL BUILDING CODE, UNLESS NOTED OTHERWISE IN THE CORRESPONDING STRUCTURAL REPORT
- 2. ALL CONSTRUCTION METHODS SHOULD FOLLOW STANDARDS OF GOOD CONSTRUCTION PRACTICE.
- ALL WORK INDICATED ON THESE DRAWINGS SHALL BE PERFORMED BY QUALIFIED CONTRACTORS EXPERIENCED IN SIMILAR CONSTRUCTION.
- ALL NEW WORK SHALL ACCOMMODATE EXISTING CONDITIONS. IF OBSTRUCTIONS ARE FOUND, CONTRACTOR SHALL NOTIFY ENGINEER OF RECORD PRIOR TO CONTINUING WORK.
- ANY CHANGES OR ADDITIONS MUST CONFORM TO THE REQUIREMENTS OF THESE NOTES AND SPECIFICATIONS, AND SHOULD BE SIMILAR TO THOSE SHOWN. ALL CHANGES OR ADDITIONS SHALL BE SUBMITTED TO THE ENGINEER OF RECORD FOR REVIEW AND APPROVAL PRIOR TO FABRICATION
- 6. THE CONTRACTOR IS RESPONSIBLE FOR THE DESIGN AND EXECUTION OF ALL MISCELLANEOUS SHORING, BRACING, TEMPORARY SUPPORTS, ETC. NECESSARY TO PROVIDE A COMPLETE AND STABLE STRUCTURE DURING CONSTRUCTION. TIA-1019-A-2011 IS AN APPROPRIATE REFERENCE FOR THOSE DESIGNS MEETING TIA STANDARDS. THE ENGINEER OF RECORD MAY PROVIDE FORMAL RIGGING PLANS AT THE REQUEST AND EXPENSE OF THE CONTRACTOR.
- 7. INSTALLATION SHALL NOT INTERFERE NOR DENY ADEQUATE ACCESS TO OR FROM ANY EXISTING OR PROPOSED OPERATIONAL AND SAFETY FOUIPMENT.
- 8. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS PRIOR TO ANY FABRICATION, CONTACT INFINIGY ENGINEERING IF ANY DISCREPANCIES EXIST.

STEEL CONSTRUCTION NOTES:

- STRUCTURAL STEEL SHALL CONFORM TO THE AISC MANUAL OF STEEL CONSTRUCTION 14TH EDITION, FOR THE DESIGN AND FABRICATION OF STEEL COMPONENTS.
- 2. ALL FIELD CUT SURFACES, FIELD DRILLED HOLES, AND GROUND SURFACES WHERE EXISTING PAINT OR GALVANIZATION REMOVAL WAS REQUIRED SHALL BE REPAIRED WITH (2) BRUSHED COATS OF ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS' RECOMMENDATIONS.
- 3. ALL FIELD DRILLED HOLES TO BE USED FOR FIELD BOLTING INSTALLATION SHALL BE STANDARD HOLES, AS DEFINED BY AISC, UNLESS NOTED OTHERWISE.
- ALL EXTERIOR STEEL WORK SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A123.
- 5. ALL STEEL MEMBERS AND CONNECTIONS SHALL MEET THE FOLLOWING GRADES:
 - ANGLES, CHANNELS, PLATES AND BARS TO BE A36. Fy=36 KSI, U.N.O.
 - W SHAPES TO BE A992. Fv=50 KSI, U.N.O. RECTANGULAR HSS TO BE A500, GRADE B. FY=46 KSI, U.N.O.
 - ROUND HSS TO BE A500, GRADE B. FY=42 KSI, U.N.O.
 - STEEL PIPE TO BE A53, GRADE B. Fy=35 KSI, U.N.O.
 - BOLTS TO BE A325-X. Fu=120 KSI, U.N.O.
 - U-BOLTS AND LAG SCREWS TO BE A307 GR A. Fu=60 KSI, U.N.O.
- ALL WELDING SHALL BE DONE USING E70XX ELECTRODES, U.N.O.
- ALL WELDING SHALL CONFORM TO AISC AND AWS D1.1 LATEST EDITION.
- 8. ALL HILTI ANCHORS TO BE CARBON STEEL, U.N.O.
 - MECHANICAL ANCHORS: KWIK BOLT-TZ, U.N.O.
 - CMU BLOCK ANCHORS: ADHESIVE HY120, U.N.O. CONCRETE ANCHORS: ADHESIVE - HY150, U.N.O.
 - CONCRETE REBAR: ADHESIVE RE500, U.N.O.
- 9. ALL STUDS TO BE NELSON CAPACITOR DISCHARGE 1/4"-20 LOW CARBON STEEL COPPER-FLASH AT 55 KSI ULT/50 KSI YIELD, U.N.O.
- 10. BOLTS SHALL BE TIGHTENED TO A "SNUG TIGHT" CONDITION AS DEFINED BY AISC.
- 11. MINIMUM EDGE DISTANCES SHALL CONFORM TO AISC TABLE J3.4.

CONCRETE CONSTRUCTION NOTES:

- CONCRETE TO BE 4000 PSI @ 28 DAYS. REINFORCING BAR TO CONFORM TO ASTM A615 GRADE 60 SPECIFICATIONS, CONCRETE INSTALLATION TO CONFORM TO ACI-318 BUILDING REQUIREMENTS FOR REINFORCED CONCRETE. ALL CONCRETE TO BE PLACED AGAINST UNDISTURBED EARTH FREE OF WATER AND ALL FOREIGN OBJECTS AND MATERIALS. A MINIMUM OF THREE INCHES OF CONCRETE SHALL COVER ALL REINFORCEMENT. WELDING OF REBAR IS NOT PERMITTED.
- 2. EXISTING CONCRETE SURFACES THAT ARE TO BE IN CONTACT WITH NEW PROPOSED CONCRETE SHOULD BE WIRE BRUSHED CLEAN AND TREATED WITH APPROPRIATE MECHANICAL SCRATCH COAT AND REPAIR MATERIALS OR APPROPRIATE CHEMICAL METHODS SUCH AS THE APPLICATION OF A BONDING AGENT, EX. SAKRETE OR EQUIVALENT, TO ENSURE A QUALITY BOND BETWEEN EXISTING AND

FIBER REINFORCED POLYMER (FRP) NOTES:

- FRP PLATES, SHAPES, BOLTS AND NUTS (STUD/NUT ASSEMBLIES) SHALL CONFORM TO ASTM D638. 695, 790. PLATES AND SHAPES TO BE FY = 5.35 KSI LW (SAFETY FACTOR OF 8), .945 KSI CW (SAFETY FACTOR OF 8) MIN.
- 2. IF FIELD FABRICATION IS REQUIRED, ALL CUT EDGES AND DRILLED HOLES TO BE SEALED USING VINYL ESTER SEALING KIT SUPPLIED BY THE MANUFACTURER.
- 3. ALL FASTENERS TO BE 1/2" DIA FRP THREADED ROD WITH FIBER REINFORCED THERMOPLASTIC NUT, SPACED AT 12 INCHES ON CENTER MAXIMUM, U.N.O., FOR PANELS AND AS DESIGNED FOR
- 4. THE COLOR AND SURFACE PATTERN OF EXPOSED FRP PANELS SHALL MATCH THE EXTERIOR OF THE EXISTING BUILDING, U.N.O.
- 5. STUD/NUT ASSEMBLIES SHOULD BE LUBRICATED FOR INSTALLATION
- 6. ENSURE BEARING SURFACES OF THE NUTS ARE PARALLEL TO THE SURFACES BEING FASTENED.
- 7. TORQUE BOLTS ACCORDING TO THE FOLLOWING TABLE;

INST	FALLATION TORQUE	TABLE
SIZE	ULTIMATE TORQUE STRENGTH	RECOMMENDED MAXIMUM INSTALLATION TORQUE
3/8-16 UNC	8 FT-LBS	4 FT-LBS
1/2-13 UNC	18 FT-LBS	8 FT-LBS
5/8-11 UNC	35 FT-LBS	16 FT-LBS
3/4-10 UNC	50 FT-LBS	24 FT-LBS
1-8 UNC	110 FT-LBS	50 FT-LBS

- 8. WHEN TIGHTENING FRP STUD/NUT ASSEMBLIES, WRENCHES MUST MAKE FULL CONTACT WITH ALL NUT EDGES. A STANDARD SIX POINT SOCKET IS RECOMMENDED.
- 9. STUD/NUT ASSEMBLIES SHOULD BE BONDED BY APPLYING BONDING AGENT TO ENTIRE NUT AND
- 10. ALL FRP MATERIALS TO BE PROVIDED BY FIBERGRATE COMPOSITE STRUCTURES, DALLAS TX, OR APPROVED EQUAL.
- 11. ALL FRP SHAPES TO BE DYNAFORM PULTRUDED STRUCTURAL SHAPES.
- 12. ALL FRP PLATES TO BE FIBERPLATE MOLDED FRP PLATE.
- 13. ALL FRP PANELS TO BE FIBERPLATE CLADDING PANEL.
- 14. EACH FRP PANEL TO BE IDENTIFIED WITH LARR#25536 AND FIBERGRATE COMPOSITE STRUCTURAL
- 15. FRP MATERIAL TO BE CLASSIFIED AS CC1 OR BETTER, AND HAVE MAXIMUM FLAME
- 16. ALL DESIGN AND CONSTRUCTION TO BE COMPLETED IN ACCORDANCE WITH LOS ANGELES RESEARCH REPORT RR25536, DATED FEBRUARY 1, 2016,
- 17. SPECIAL INSPECTIONS MUST BE PROVIDED FOR ALL FRP INSTALLMENTS. SEE SPECIAL INSPECTION

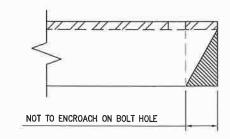
RATIO OF EDGE DISTANCE TO FRP FASTENER DIAMETER							
	RANGE	RECOMMENDED					
EDGE DISTANCE - CL* BOLT TO END	2.0-4.0	3.0					
EDGE DISTANCE - CL* BOLT TO SIDE	1.5-3.5	2.5					
BOLT PITCH - CL* TO CL*	4.0-5.0	5.0					

WOOD CONSTRUCTION NOTES:

- ALL EXISTING WOOD SHAPES ARE ASSUMED TO BE DOUGLAS FIR-LARCH WITH A REFERENCE DESIGN BENDING VALUE OF 1000 PSI MIN.
- ALL PROPOSED WOOD SHAPES ARE TO BE DOUGLAS FIR-LARCH WITH A REFERENCE DESIGN BENDING VALUE OF 1000 PSI MIN. U.N.O.
- ALL EXISTING AND PROPOSED GLUED LAMINATED TIMBERS ARE TO BE 24F-1.8C DOUGLAS FIR BALANCED WITH A REFERENCE DESIGN BENDING VALUE OF 2400 PSI MIN. U.N.O.

MASONRY CONSTRUCTION NOTES:

- ALL BRICK TO BE 1500 PSI MIN. REINFORCING BAR (IF APPLICABLE) TO CONFORM TO ASTM A615 GRADE 60 SPECIFICATIONS, ALL MORTAR TO BE 2000 PSI MIN.
 - FOR INTERIOR/ABOVE GRADE APPLICATIONS TYPE N MORTAR HAVING MINIMUM MODULUS OF RUPTURE OF 100 PSI SHALL BE USED. FOR EXTERIOR/BELOW GRADE APPLICATIONS TYPE M OR S MORTAR HAVING A MINIMUM MODULUS OF RUPTURE OF 133 PSI.
 - · BRICK AND MORTAR INSTALLATION TO CONFORM TO MSJC BUILDING CODE REQUIREMENTS FOR MASONRY STRUCTURES.
- ALL CMU TO BE 1500 PSI MIN. REINFORCING BAR (IF APPLICABLE) TO CONFORM TO ASTM A615 GRADE 60 SPECIFICATIONS. ALL MORTAR TO BE 2000 PSI MIN.
- FOR INTERIOR/ABOVE GRADE APPLICATIONS, TYPE N MORTAR HAVING MINIMUM MODULUS OF RUPTURE OF 64 PSI SHALL BE USED FOR UNGROUTED BLOCKS, AND 158 PSI FOR FULLY GROUTED BLOCKS.
- FOR EXTERIOR/BELOW GRADE APPLICATIONS TYPE M OR S MORTAR HAVING A MINIMUM MODULUS OF RUPTURE OF 84 PSI SHALL BE USED FOR UNGROUTED BLOCKS, AND 163 PSI FOR FULLY GROUTED BLOCKS
- BRICK AND MORTAR INSTALLATION TO CONFORM TO MSJC BUILDING CODE REQUIREMENTS FOR MASONRY STRUCTURES.


TOWER PLUMB & TENSION NOTES:

- 1. PLUMB AND TENSION TOWER UPON COMPLETION OF STRUCTURAL MODIFICATIONS DETAILED IN THESE
- 2. RETENSIONING OF EXISTING GUY WIRES SHALL BE PERFORMED AT A TIME WHEN THE WIND VELOCITY IS LESS THAN 10 MPH AT GROUND LEVEL AND WITH NO ICE ON THE STRUCTURE AND GUY WIRES.
- 3. PLUMB THE TOWER WHILE RETENSIONING THE EXISTING GUY WIRES. THE HORIZONTAL DISTANCE BETWEEN THE VERTICAL CENTERLINES AT ANY TWO ELEVATIONS SHALL NOT EXCEED 0.25% OF THE VERTICAL DISTANCE BETWEEN TWO ELEVATIONS FOR LATTICED STRUCTURES.
- 4. THE TWIST BETWEEN ANY TWO ELEVATIONS THROUGHOUT THE HEIGHT OF A LATTICE STRUCTURE SHALL NOT EXCEED 0.5 DEGREES IN 10 FEET. THE MAXIMUM TWIST OVER THE LATTICE STRUCTURE HEIGHT SHALL NOT EXCEED 5 DEGREES.

SPECIAL INSPECTIONS NOTES:

- A QUALIFIED INDEPENDENT TESTING LABORATORY, EMPLOYED BY THE OWNER AND APPROVED BY THE JURISDICTION, SHALL PERFORM INSPECTION AND TESTING IN ACCORDANCE WITH THE THE GOVERNING BUILDING CODE, APPLICABLE SECTION(S) AS REQUIRED BY PROJECT SPECIFICATIONS FOR THE FOLLOWING CONSTRUCTION WORK:
 - a. STRUCTURAL WELDING (CONTINUOUS INSPECTION OF FIELD WELDS ONLY).
 - b. HIGH STRENGTH BOLTS (PERIODIC INSPECTION OF A325 AND/OR A490 BOLTS) TO BE TIGHTENED PER "TURN-OF-THE-NUT" METHOD.
 - c. MECHANICAL AND EPOXIED ANCHORAGES.
 - d. FIBER REINFORCED POLYMER.
 - THE SPECIAL INSPECTOR MUST VERIFY THAT THE FRP MATERIAL SPECIFIED ON THE APPROVED DESIGN DOCUMENTS IS BEING INSTALLED.
 - THE SPECIAL INSPECTOR MUST VERIFY THAT ALL CUT EDGES AND DRILLED HOLES ARE PROPERLY SEALED USING A VINYL ESTER SEALING KIT SUPPLIED BY THE MANUFACTURER.
 - THE SPECIAL INSPECTOR MUST VERIFY THAT THE STRUCTURE IS BUILT IN ACCORDANCE WITH THE APPROVED DESIGN DOCUMENTS
- 2. THE INSPECTION AGENCY SHALL SUBMIT INSPECTION AND TEST REPORTS TO THE BUILDING DEPARTMENT, THE ENGINEER OF RECORD, AND THE OWNER UNLESS THE FABRICATOR IS APPROVED BY THE BUILDING OFFICIAL TO PERFORM WORK WITHOUT THE SPECIAL INSPECTIONS.

MAXIMUM ALLOWABLE ANGLE CLIP

SHOWAT TO TEXT

JA__ Dale: 01/24/16 signed: ATE Date: 01/24/16 hecked: NRO Date: 01/24/16

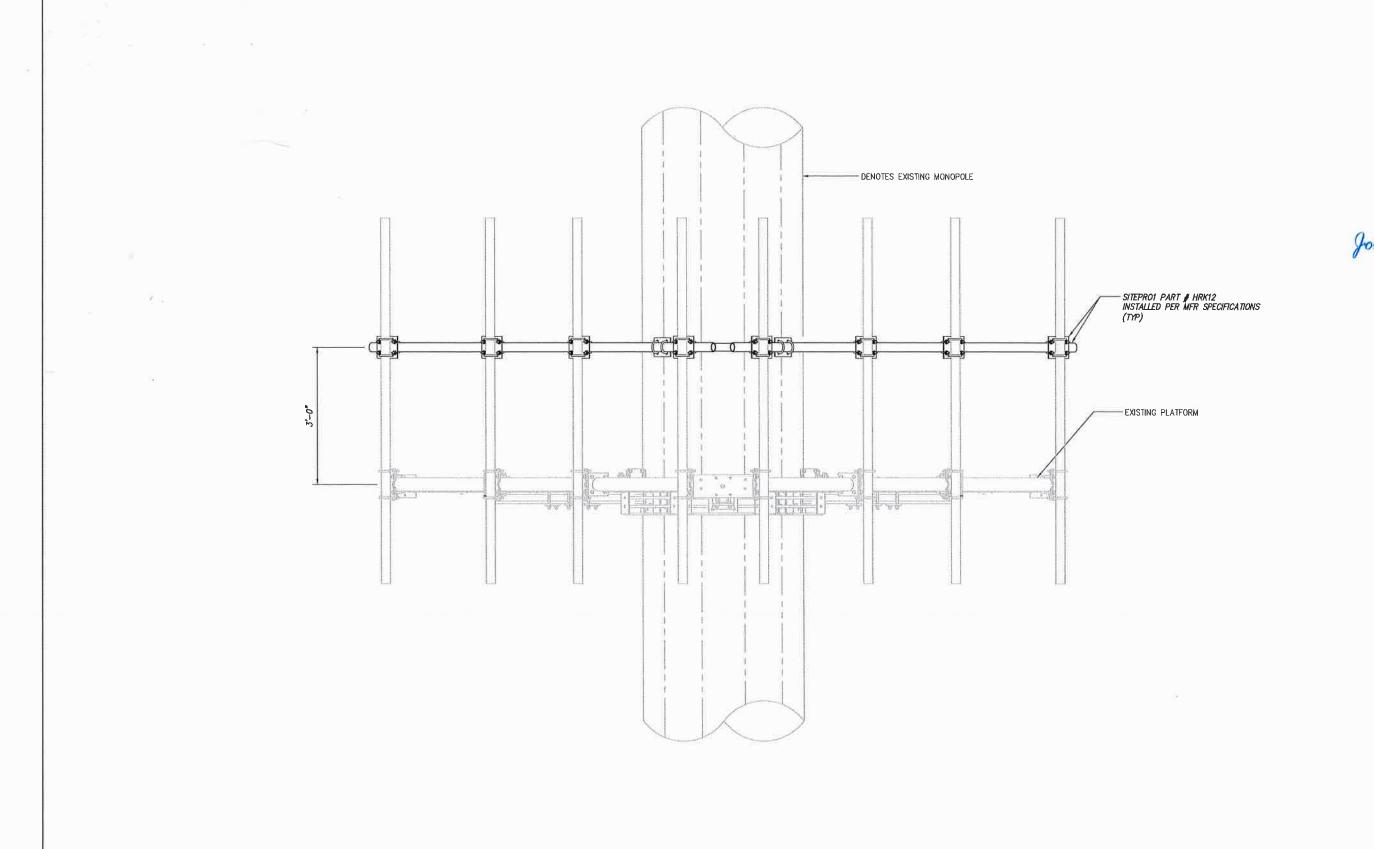
600-003

BU# 846176 FA# 10091767

MADISON-DURHAM ROAD

1749 DURHAM ROAD MADISON, CT 06443

CASTLI


AS NOTED

09/05/18

GENERAL

NOTES

S1

1033 Waterviet Shaker Rd Abany, NY 12206 Office # (516) 680-0730 Fax # (516) 680-0730

THIS OF THE PROPERTY OF THE PR

O ISSUED FOR REVEW AND SOLV SO Submitted / Revision Apple O

rawn: 2A Date: 01/24/16 esigned: ATE Date: 01/24/18 hecked: NSO Date: 01/24/18

Project Number

600-003

roject Title:

BU# 846176 FA# 10091767

MADISON-DURHAM ROAD

1749 DURHAM ROAD MADISON, CT 06443

Prepared Fo

CROWN

3 Corporate Park, Suite 10 Cifton Park, NY 12065 US DOCCIMENT IS THE DESIGN PRO OPYROGHT OF PRINGY ENGINED.

Drawing Scale:
AS NOTED

Date: 09/05/18

Drawing Tille

MOD DESIGN

Drawing Num

S2

RF EMISSIONS COMPLIANCE REPORT

Crown Castle on behalf of AT&T Mobility, LLC

Crown Castle Site Name: MADISON DURHAM ROAD
Crown Castle Site BU: 846176
AT&T Mobility, LLC FA #: 10091767
1749 DURHAM ROAD
MADISON, CT
2/1/2019

Report Status:

AT&T Mobility, LLC Is Compliant

H2DC PLLC CT CoA#: 0001714

Prepared By:

Sitesafe, LLC

Engineering Statement in Re: Electromagnetic Energy Analysis Crown Castle MADISON, CT

My signature on the cover of this document indicates:

That I, Michael A McGuire, am currently and actively licensed to provide (in this state/jurisdiction as indicated within the professional electrical engineering seal on the cover of this document) professional electrical engineering services, as an employee of Hurricane Hill Development Company, PLLC, a duly authorized/registered engineering firm (in this state, as applicable) on behalf of SiteSafe, LLC; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission ("the FCC" and "the FCC Rules") both in general and specifically as they apply to the FCC's Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; and

That the technical information serving as the basis for this report was supplied by Crown Castle (See attached Site Summary and Carrier documents), and that AT&T Mobility, LLC's installations involve communications equipment, antennas and associated technical equipment at a location referred to as the "MADISON DURHAM ROAD" ("the site"); and

That AT&T Mobility, LLC proposes to operate at the site with transmit antennas listed in the carrier summary and with a maximum effective radiated power as specified by AT&T Mobility, LLC and shown on the worksheet, and that worst-case 100% duty cycle have been assumed; and

That this analysis has been performed with the assumption that the ground immediately surrounding the tower is primarily flat or falling; and

That at this time, the FCC requires that certain licensees address specific levels of radio-frequency energy to which workers or members of the public might possibly be exposed (at §1.1307(b) of the FCC Rules); and

That such consideration of possible exposure of humans to radio-frequency radiation must utilize the standards set by the FCC, which is the Federal Agency having jurisdiction over communications facilities; and

That the FCC rules define two tiers of permissible exposure guidelines: 1) "uncontrolled environments," defined as situations in which persons may not be aware of (the "general public"), or may not be able to control their exposure to a transmission facility; and (2) "controlled environments," which defines situations in which persons are aware of their potential for exposure (industry personnel); and

That this statement specifically addresses the uncontrolled environment (which is more conservative than the controlled environment) and the limit set forth in the FCC rules for licensees of AT&T Mobility, LLC's operating frequency as shown on the attached antenna worksheet; and

That when applying the uncontrolled environment standards, the predicted Maximum Power Density at two meters above ground level from the proposed AT&T Mobility, LLC operation is no more than 3.528% of the maximum in any accessible area on the ground and

That it is understood per FCC Guidelines and OET65 Appendix A, that regardless of the existent radio-frequency environment, only those licenses whose contributions exceed five percent of the exposure limit pertinent to their operation(s) bear any responsibility for bringing any non-compliant area(s) into compliance; and

That when applying the uncontrolled environment standards, the cumulative predicted energy density from the proposed operation is no more than 7.242% of the maximum in any accessible area up to two meters above the ground per OET-65; and

That the calculations provided in this report are based on data provided by the client and antenna pattern data supplied by the antenna manufacturer, in accordance with FCC guidelines listed in OET-65. Horizontal and vertical antenna patterns are combined for modeling purposes to accurately reflect the energy two meters above ground level where on-axis energy refers to maximum energy two meters above the ground along the azimuth of the antenna and where area energy refers to the maximum energy anywhere two meters above the ground regardless of the antenna azimuth, accounting for cumulative energy from multiple antennas for the carrier and frequency range indicated; and

That the Occupational Safety and Health Administration has policies in place which address worker safety in and around communications sites, thus individual companies will be responsible for their employees' training regarding Radio Frequency Safety.

In summary, it is stated here that the proposed operation at the site would not result in exposure of the Public to excessive levels of radio-frequency energy as defined in the FCC Rules and Regulations, specifically 47 CFR 1.1307 and that AT&T Mobility, LLC's proposed operation is completely compliant.

Finally, it is stated that access to the tower should be restricted to communication industry professionals, and approved contractor personnel trained in radio-frequency safety; and that the instant analysis addresses exposure levels at two meters above ground level and does not address exposure levels on the tower, or in the immediate proximity of the antennas.

Crown Castle MADISON DURHAM ROAD Site Summary

Carrier	Area Maximum Percentage MPE	
AT&T Mobility, LLC	0.246 %	
AT&T Mobility, LLC (Proposed)	0.591 %	
AT&T Mobility, LLC (Proposed)	0.536 %	
AT&T Mobility, LLC (Proposed)	0.493 %	
AT&T Mobility, LLC (Proposed)	0.799 %	
AT&T Mobility, LLC (Proposed)	0.392 %	
AT&T Mobility, LLC (Proposed)	0.471 %	
Sprint	0.466 %	
Sprint	0.328 %	
Sprint	0.328 %	
Sprint	0.251 %	
Verizon Wireless	0.616 %	
Verizon Wireless	0.568 %	
Verizon Wireless	1.158 %	
Composite Site MPE:	7.242 %	

				-	On A	Axis	Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE	
Powerwave	7770	118	30	1094	0.776248	0.136985	1.195329	0.21094	
Powerwave	7770	118	150	1094	0.777237	0.13716	1.195329	0.21094	
Powerwave	7770	118	270	1094	0.776248	0.136985	1.195329	0.21094	

				-	On A	Axis	Ar	ea
Antenna Make		Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
Kathrein-Scala	800-10965	118	0	7114	2.276238	0.227624	5.391757	0.539176
Kathrein-Scala	800-10965	118	130	7114	2.22122	0.222122	5.391757	0.539176
Kathrein-Scala	800-10965	118	240	7114	2.221221	0.222122	5.391757	0.539176

				-	On A	Axis	Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
Kathrein-Scala	800-10965	118	0	6168	1.961378	0.196138	4.182494	0.418249
Kathrein-Scala	800-10965	118	130	6168	1.971904	0.19719	4.182494	0.418249
Kathrein-Scala	800-10965	118	240	6168	1.961378	0.196138	4.182494	0.418249

 $\begin{tabular}{lllll} Frequency: & 763 & MHz \\ Maximum Permissible Exposure (MPE): & 508.67 & μW/cm^2$ \\ Maximum power density at ground level: & 2.50604 & μW/cm^2$ \\ Highest percentage of Maximum Permissible Exposure: & 0.49267 & % \\ \end{tabular}$

					On Axis		Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE	
Kathrein-Scala	800-10965	118	0	2959	1.71458	0.337073	2.178472	0.428271	
Kathrein-Scala	800-10965	118	130	2959	1.723342	0.338796	2.178472	0.428271	
Kathrein-Scala	800-10965	118	240	2959	1.71458	0.337073	2.178472	0.428271	

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
CCI Antennas	OPA65R-BU6A	118	0	2924	7.96174	0.796174	7.961741	0.796174
CCI Antennas	OPA65R-BU6A	118	130	2924	7.96174	0.796174	7.961741	0.796174
CCI Antennas	OPA65R-BU6A	118	240	2924	7.96174	0.796174	7.96174	0.796174

					On /	Axis	Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
CCI Antennas	OPA65R-BU6A	118	0	2631	1.350748	0.238367	2.008997	0.354529
CCI Antennas	OPA65R-BU6A	118	130	2631	1.353505	0.238854	2.008997	0.354529
CCI Antennas	OPA65R-BU6A	118	240	2631	1.350748	0.238367	2.008997	0.354529

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
CCI Antennas	OPA65R-BU6A	118	0	2692	1.524543	0.310287	2.074858	0.422291
CCI Antennas	OPA65R-BU6A	118	130	2692	1.519112	0.309182	2.074858	0.422291
CCI Antennas	OPA65R-BU6A	118	240	2692	1.524543	0.310287	2.074858	0.422291

				-	On Axis		Arc	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
RFS	APXVTM14-C-I20	110	340	6168	1.903186	0.190319	3.610564	0.361056
RFS	APXVTM14-C-I20	110	100	6168	1.902093	0.190209	3.610564	0.361056
RFS	APXVTM14-C-I20	110	220	6168	1.902093	0.190209	3.610564	0.361056

					On A	Axis	Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
RFS	APXVSPP18-C-A20	108	340	3804	1.349064	0.134906	3.029847	0.302985
RFS	APXVSPP18-C-A20	108	100	3804	1.349064	0.134906	3.029847	0.302985
RFS	APXVSPP18-C-A20	108	220	3804	1.349064	0.134906	3.029847	0.302985

					On A	Axis	Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
RFS	APXVSPP18-C-A20	108	340	3804	1.349064	0.134906	3.029847	0.302985
RFS	APXVSPP18-C-A20	108	100	3804	1.349064	0.134906	3.029847	0.302985
RFS	APXVSPP18-C-A20	108	220	3804	1.349064	0.134906	3.029847	0.302985

					On Axis		Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
RFS	APXVSPP18-C-A20	108	340	2168	1.368093	0.241428	1.390762	0.245429
RFS	APXVSPP18-C-A20	108	100	2168	1.368093	0.241428	1.390762	0.245429
RFS	APXVSPP18-C-A20	108	220	2168	1.372017	0.242121	1.390762	0.245429

Verizon Wireless MADISON DURHAM ROAD Carrier Summary

					On A	Axis	Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true))ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
Antel	BXA-70063-6CF	96	60	2010	1.893414	0.378179	2.262435	0.451885
Antel	BXA-70063-6CF	96	160	2010	1.893414	0.378179	2.262436	0.451885
Antel	BXA-70063-6CF	96	340	2010	1.893414	0.378179	2.262436	0.451885

Verizon Wireless MADISON DURHAM ROAD Carrier Summary

					On Axis		Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
Antel	BXA-171063-8CF	96	60	3708	2.375038	0.237504	3.388595	0.33886
Antel	BXA-171063-8CF	96	160	3708	2.375038	0.237504	3.388595	0.33886
Antel	BXA-171063-8CF	96	340	3708	2.375038	0.237504	3.388595	0.33886

Verizon Wireless MADISON DURHAM ROAD Carrier Summary

					On A	xis	Are	Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE 0.425075 0.425075 0.425075 0.425075 0.425075 0.390663	
RFS	APL868013	96	60	1560	1.929983	0.340585	2.408758	0.425075	
RFS	APL868013	96	60	1560	1.929983	0.340585	2.408758	0.425075	
RFS	APL868013	96	160	1560	1.929983	0.340585	2.408758	0.425075	
RFS	APL868013	96	160	1560	1.929983	0.340585	2.408758	0.425075	
ANDREW	DB846F65E-SX	96	340	2255	1.962191	0.346269	2.213759	0.390663	
ANDREW	DB846F65E-SX	96	340	2255	1.962191	0.346269	2.213759	0.390663	