October 21, 2019

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

## RE: Notice of Exempt Modification for AT\&T: $\mathbf{8 4 2 8 6 5}$

1593 Exeter Road, Lebanon, CT 06249
Latitude: 41 $^{\circ} \mathbf{3 7}{ }^{\prime} \mathbf{4 0 . 5 3}{ }^{\prime \prime}$ / Longitude: - $\mathbf{7 2}^{\circ} \mathbf{1 8}^{\prime} \mathbf{2 0 . 3 4}{ }^{\prime \prime}$
Dear Ms. Bachman:
AT\&T currently maintains nine (9) antennas at the 119 -foot mount on the existing 150 -foot Monopole Tower, located at 1593 Exeter Road, Lebanon, CT. The tower is owned by Crown Castle and the property is owned by Mark Liebman \& Susan Murray. AT\&T now intends to replace six (6) existing antennas with six (6) new antennas. The new antennas will be installed at the $119-\mathrm{ft}$ level of the tower.

The facility was approved by The Connecticut Siting Council on October 29, 2003 in Docket No. 257. This approval was given with conditions which this proposed exempt modification complies with.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § $16-50 j-73$, a copy of this letter is being sent to Betsy Petrie, First Selectman for the Town of Lebanon, Philip Chester, Town Planner, Crown Castle as the tower owner, and the property owners.

1. The proposed modifications will not result in an increase in the height of the existing tower.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the abovereference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Anne Marie Zsamba.

Melanie A. Bachman

Page 2

Sincerely,

Anne Marie Zsamba
Real Estate Specialist
3 Corporate Park Drive, Suite 101
Clifton Park, NY 12065
(201) 236-9224

AnneMarie.Zsamba@crowncastle.com

Attachments
cc:
Betsy Petrie, First Selectman
Town of Lebanon
Town Hall - Selectman's Office
579 Exeter Road
Lebanon, CT 06249
860-642-6100
Philip Chester, Town Planner
Town of Lebanon
Town Hall - Planning Department
579 Exeter Road
Lebanon, CT 06249
860-642-2006
Mark Liebman \& Susan Murray, Property Owner
1629 Exeter Road
Lebanon, CT 06249
Crown Castle, Tower Owner


## After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.


## After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.


## After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.


## After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

## Exhibit A

## Original Facility Approval

Governor Ned Lamont


Search

CONNECTICUT SITING COUNCIL
Home About Us Pending Matters Decisions Forms Contact Us

## Filing Guides

Meetings \& Minutes
Public Participation
Audio Link to New Britain Hearing Rooms
Programs \& Services
Telecommunications
Database
Maps
Publications
Other Resources
Statutes \& Regulations
Electric Transmission
Upgrade Projects
Frequently Asked
Questions


| Regulations of CT |
| :---: |
| State Agencies |



Melanie Bachman,
Executive Director
NOTICE TO USERS
The Connecticut Siting Council posts filed documents to this site as a public service. The Council disclaims any liability for the content of submissions made by parties, intervenors, public officials, and the general public. Further while the Council seeks to be complete in its postings, the Council urges users of this site to confirm with the submitter the completeness of the postings made The posting of any document does not constitute or imply endorsement by the Connecticut Siting Council. Finally, the Connecticut Siting Council assumes no responsibility for the use of documents posted on this site.
For further information about the proper use of material posted on this site, please see the State of Connecticut disclaimer.

Decisions
Printable Version

DOCKET NO. 257 - AT\&T Wireless PCS, LLC d/b/a AT\&T
Wireless application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance and operation of a wireless telecommunications facility at 1593 Exeter Road or one of two sites on Levita Road, Lebanon, Connecticut.

## Connecticut <br> Siting

Council
October 29, 2003

## Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes $\S 16-50 \mathrm{k}$, be issued to AT\&T Wireless PCS $\mathrm{d} / \mathrm{b} / \mathrm{a}$ AT\&T Wireless for the construction, maintenance and operation of a wireless telecommunications facility at Site A, 1593 Exeter Road, Lebanon, Connecticut. The Council denies certification of Sites B and C, both located at the Botticello Property, Levita Road, Lebanon, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of AT\&T Wireless PCS, LLC and other entities, both public and private, but such tower shall not exceed a height of 120 feet above ground level.
2. The tower foundation shall be of sufficient capacity to support a monopole extension to 150 feet above ground level.
3. Panel antennas shall be installed on the monopole using a flush mount or T-arm mount design.
4. The Certificate Holder shall prepare a Development and Management (D\&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D\&M Plan shall be submitted to and approved by the Council prior to the commencement of facility construction and shall include:
a) a detailed site development plan that depicts the location of the access road, compound, tower, utility line, erosion and sedimentation control features, and landscaping;
b) specifications for the tower, tower foundation, antennas, equipment building, and security fence; and
c) construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, as amended.
5. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
6. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
7. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing. The Certificate Holder shall provide space on the tower for no compensation for any municipal antennas, provided such antennas are compatible with the structural integrity of the tower.
8. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
9. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and ceases to function.
10. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in The Hartford Courant, and the Norwich Bulletin.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant
AT\&T Wireless PCS, LLC
d/b/a AT\&T Wireless

## Its Representative

Christopher B. Fisher, Esq.
Cuddy \& Feder LLP
90 Maple Avenue
White Plains, New York 10601
(914) 761-1300

## Exhibit B

## Property Card

## 1699 EXETER RD

## Location 1699 EXETER RD Mblu 242//15//

Acct\# L0096950 Owner LIEBMAN LEON MARK \&

Assessment \$167,270 PID 2422

## Building Count 1

## Current Value

| Assessment |  |  |  |
| :---: | :---: | :---: | :---: |
| Valuation Year | Improvements | Land | Total |
| 2018 | \$57,850 | \$109,420 | \$167,270 |

## Owner of Record

| Owner | LIEBMAN LEON MARK \& | Sale Price | $\$ 0$ |
| :--- | :--- | :--- | :--- |
| Co-Owner | MURRAY SUSAN ANN | Certificate |  |
| Address | 1629 EXETER RD | Book \& Page | $297 / 682$ |
|  | LEBANON, CT 06249 | Sale Date | $03 / 21 / 2016$ |

## Ownership History

| Ownership History |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Owner | Sale Price | Certificate | Book \& Page | Instrument | Sale Date |
| LIEBMAN LEON MARK \& | \$0 |  | 297/682 | 31 | 03/21/2016 |
| LIEBMAN LEON M \& | \$0 |  | 291/1098 | 31 | 11/05/2014 |
| LIEBMAN FLORENCE | \$0 |  | 280/906 | 25 | 10/19/2012 |
| LIEBMAN HAROLD \& FLORENCE | \$0 |  | 0067/0384 | 29 | 02/14/1997 |

## Building Information

## Building 1 : Section 1

| Year Built: |  |  |  |
| :--- | :---: | :---: | :---: |
| Living Area: |  |  |  |
| Replacement Cost: <br> Building Percent <br> Good: |  |  |  |
| Replacement Cost <br> Less Depreciation:$\quad \$ 0$ |  |  |  |
| Building Attributes    |  |  | Description |


| Style | Vacant Land |
| :--- | :--- |
| Model |  |
| Grade: |  |
| Stories: |  |
| Occupancy |  |
| Exterior Wall 1 |  |
| Exterior Wall 2 |  |
| Roof Structure: |  |
| Roof Cover |  |
| Interior Wall 1 |  |
| Interior Wall 2 |  |
| Interior Flr 1 |  |
| Interior Flr 2 |  |
| Heat Fuel |  |
| Heat Type: |  |
| AC Type: |  |
| Total Bedrooms: |  |
| Total Bthrms: |  |
| Total Half Baths: |  |
| Total Xtra Fixtrs: |  |
| Total Rooms: |  |
| Bath Style: |  |
| Kitchen Style: |  |
| Kitchens |  |
| Insulated |  |
| Fireplaces |  |

Building Photo

(http://images.vgsi.com/photos/LebanonCTPhotos//\00\01\22/11

## Building Layout

(http://images.vgsi.com/photos/LebanonCTPhotos//Sketches/24^

| Building Sub-Areas (sq ft) | Legend |
| :---: | :---: |
| No Data for Building Sub-Areas |  |

## Extra Features

| Extra Features | Legend |  |
| :--- | :--- | :--- |
|  | No Data for Extra Features |  |

## Land

## Land Use

Use Code
Description
Zone
Neighborhood Alt Land Appr

Land Line Valuation

Size (Acres) 10.06
Frontage 0
Depth 0
Assessed Value \$109,420

## Category

## Outbuildings

| Outbuildings |  |  |  |  |  | Legend |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Code | Description | Sub Code | Sub Description | Size | Value | Bldg \# |
| FN3 | FENCE-6' CHAIN |  |  | 320 L.F. | \$2,020 | 1 |
| TW2 | CELL TOWER |  |  | 120 HEIGHT | \$78,120 | 1 |
| SHD1 | SHED FRAME |  |  | 240 S.F. | \$2,520 | 1 |

## Valuation History

| Assessment |  |  |  |
| :---: | :---: | :---: | :---: |
| Valuation Year | Improvements | Land | Total |
| 2018 | \$57,850 | \$109,420 | \$167,270 |
| 2017 | \$60,100 | \$108,650 | \$168,750 |
| 2016 | \$60,100 | \$108,650 | \$168,750 |

(c) 2019 Vision Government Solutions, Inc. All rights reserved.


## Exhibit C

## Construction Drawings

AT\&T
bUSINESS UNIT \#:
SITE ADDRESS:
COUNTY: TOWER HEIGHT:

842865
1593 EXETER ROAD LEBANON, CT 06249 NEW LONDON 149'-0"

PROJECT: AT\&T 4TX4RX, LTE 2C, LTE 3C, LTE 4C, LTE 5C
PACE NUMBER: MRCTB041561, MRCTB041372, MRCTB041392, MRCTB041783, MRCTB041623



ONE AT\&T WAY
BEDMINSTER, NJ 07921

AT\&T SITE NUMBER:
AT\&T SITE NAME:
AT\&T FA CODE: SITE TYPE:

## CT5747

LEBANON WEST 10071090 MONOPOLE


AT\&T SITE NUMBER CT5747
BU \#: 842865
LEBANON WEST
1593 EXETER ROAD LEBANON, CT 06249

EXISTING 149'-0"
MONOPOLE



## STRUCTURAL STEEL NOTES:








CONCRETE AND REINFORCING STEEL NOTES:



THE Folomnc MnMuM concerer cover shal. be provied for renvoranc
CONCRETE CAST AGANTT EARH.






Concrete masonky shall be laid in runnng (common) boond.


GENERAL NOTES:
For the purpose of constuction drawng, THE Followng defntions shall applr








ONLY.








1. Subcovitactor shal leave preuses in cean conotion. trash ano deris should

ELECTRICAL INSTALLATION NOTES:


 AL Cliriuts shal lec segegaito ano mantan minmu cable searation as . Cables shall not be routed through laoder-stile cable tray rungs.



 AL THE Wrads shall be cut flush wit approved cuting tool to remove






 racewar and cable tray shaml be lutto or labled for elegrrcal use

 7. SCheole 40 evc vodrground on strachris Ano scheole 80 Pvc for all












 2. nstall plastic label on the meter cenier to show "neet"
9. All conouts that are nstalled are to have a metredo mule tape pull cord

GREENIELD GROUNDING NOTES:






 EquipMEN.




 EXOTHEMC WELDS SHALL BE USED For ALL Grounong
 13. compression grouno connectons mar be repaced by

 15. ALL Extereror ground convections stall be coateo wit a
 83. Bond All Meralc orecis witin 6 F. of Man ground wres







## AT\&T

ONE AT\&T WAY
BEDMINTER, N 0 0721

## CROWN CASTLE <br> 3200 HORIZON DRIVE, SUITE 150 KING OF PRUSSIA, PA 19406 <br> 

AT\&T SITE NUMBER CT5747

## BU \#: 842865

LEBANON WEST
1593 EXETER ROAD LEBANON, CT 06249

EXISTING 149'-0" MONOPOLE

ISSUED FOR:


B\&T ENGINERRNG, INC.
PECC. 0001564
Expires $2 / 10 / 20$

T-2












[^0]



## Exhibit D

## Structural Analysis Report

Date: September 4, 2019
Heather Simeone
Crown Castle
3530 Toringdon Way Suite 300
Charlotte, NC 28277

520 South Main Street Suite 2531
Akron, Ohio 44311
(216) 927-8663

Subject:
Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:
Site Data:

Structural Analysis Report
AT\&T Mobility Co-Locate
Carrier Site Number: 10071090
Carrier Site Name: Lebanon West
Crown Castle BU Number: 842865
Crown Castle Site Name:
Crown Castle JDE Job Number: 574646
Crown Castle Work Order Number: 1783795
Crown Castle Order Number: 492779 Rev. 0
GPD Project Number:
2019777.842865.01

1593 Exeter Road, Lebanon, New London County, CT 06249
Latitude $41^{\circ} 37^{\prime} 40.53^{\prime \prime}$, Longitude - $72^{\circ} 18^{\prime} 20.34$ "
149.0 Foot - Modified EEI Monopole Tower

Dear Heather Simeone,
We are pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration
Sufficient Capacity - 61.4\%
This analysis utilizes an ultimate 3 -second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Majd Alkacace
Respectfully submitted by:

Christopher J. Scheks P.E. Connecticut \#: 0030026


## TABLE OF CONTENTS

## 1) INTRODUCTION

## 2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

## 3) ANALYSIS PROCEDURE

Table 3 -Documents Provided
3.1) Analysis Method
3.2) Assumptions

## 4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC5
4.1) Recommendations

## 5) DISCLAIMER OF WARRANTIES

## 6) APPENDIX A

tnxTower Output

## 7) APPENDIX B

Base Level Drawing
8) APPENDIX C

Additional Calculations

## 1) INTRODUCTION

This tower is a 149 ft monopole tower designed by Engineered Endeavors, Inc. in November of 2003. The tower was originally designed for a wind speed of 85 mph per TIA-222-F, and was mapped by FDH Velocitel in March of 2016.

The existing monopole has four major sections connected by slip joints at 49.0' and 84.5' and a flange at 120'. It has 18 sides and is evenly tapered from 51.0 " (flat-flat) at the base to 19.5 " (flat-flat) at the top. The structure is galvanized and has no tower lighting.

Modifications designed by GPD (Project \#: 2010276.14, dated 12/28/2010) consist of installing a 30 ' tower extension from 119' to 149'. These modifications have been considered in this analysis.

## 2) ANALYSIS CRITERIA

| TIA-222 Revision: | TIA-222-H |
| :--- | :--- |
| Risk Category: | II |
| Wind Speed: | 130 mph |
| Exposure Category: | C |
| Topographic Factor: | 1 |
| Ice Thickness: | 1.5 in |
| Wind Speed with Ice: | 50 mph |
| Service Wind Speed: | 60 mph |

Table 1 - Proposed Equipment Configuration

| Mounting Level (ft) | Center Line Elevation (ft) | $\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Antennas } \end{aligned}$ | Antenna Manufacturer | Antenna Model | Number of Feed Lines | Feed Line Size (in) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 119.0 | 120.0 | 3 | CCI Antennas | DMP65R-BU8D | $\begin{gathered} 12 \\ 2 \\ 4 \end{gathered}$ | $\begin{gathered} 1-1 / 4 \\ 3 / 8 \\ 7 / 8 \end{gathered}$ |
|  |  | 3 | CCI Antennas | HPA65R-BU8A |  |  |
|  |  | 3 | Powerwave Technologies | 7770.00 |  |  |
|  |  | 3 | Ericsson | RRUS 4449 B5/B12 |  |  |
|  |  | 3 | Ericsson | RRUS 8843 B2/B66A |  |  |
|  |  | 6 | Powerwave Technologies | LGP21401 |  |  |
|  |  | 1 | Raycap | DC6-48-60-0-8C-EV |  |  |
|  |  | 1 | Raycap | DC6-48-60-18-8F |  |  |
|  | 119.0 | 1 | - | T-Arm Mount [TA 601-3] |  |  |

Table 2-Other Considered Equipment

| Mounting Level (ft) | Center Line Elevation (ft) | Number <br> of <br> Antennas | Antenna Manufacturer | Antenna Model | Number of Feed Lines | Feed Line Size (in) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 150.0 | 150.0 | 3 | antel | BXA-70063/6CF | 14 | 1-5/8 |
|  |  | 6 | antel | BXA-171063/12CF |  |  |
|  |  | 3 | antel | BXA-80063/6CF |  |  |
|  |  | 3 | alcatel lucent | RRH2X40-AWS |  |  |
|  |  | 1 | rfs celwave | DB-T1-6Z-8AB-0Z |  |  |
|  |  | 1 | - | Platform Mount [LP 303-1] |  |  |

## 3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

| Document | Remarks | Reference | Source |
| :---: | :---: | :---: | :---: |
| Geotechnical Reports | VN Engineers, Inc. Project \#: 23- <br> 121G, Dated 11/5/2003 | 4713227 | CCISITES |
| Tower Manufacturer Drawings | Engineered Endeavors Inc. <br> Project \#: 12092, Dated 11/6/2003 | Dan Palkovic | GPD |
| Tower Design Calculations | Engineered Endeavors Inc. <br> Project \#: 12092, Dated <br> 11/12/2003 | Dan Palkovic | GPD |
| Tower Foundation <br> Drawings/Design/Specs | Engineered Endeavors Inc. <br> Project \#: 12092, Dated <br> 11/12/2003 | 4858940 | CCISITES |
| Tower Mapping | FDHV project \#: 16BBIN1500, <br> Dated 3/3/2016 | 6126908 | CCISITES |
| Tower Mod Drawing | GPD project \#: 2010276.14, <br> Dated 12/28/10 | 5588342 | CCISITES |

## 3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

## 3.2) Assumptions

1) The tower and structures were built and have been maintained in accordance with the manufacturer's specifications.
2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. GPD should be notified to determine the effect on the structural integrity of the tower.

## 4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

| Section <br> No. | Elevation (ft) | Component <br> Type | Size | Critical <br> Element | P(K) | SF*P_allow <br> (K) | \% <br> Capacity | Pass / Fail |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | $149-119$ | Pole | TP26.12x19.5x0.1875 | 1 | -3.70 | 947.98 | 38.0 | Pass |
| L2 | $119-82.11$ | Pole | TP34.268x26.12x0.25 | 2 | -9.84 | 1606.60 | 58.7 | Pass |
| L3 | $82.11-46.15$ | Pole | TP41.5831x32.7122x0.3125 | 3 | -16.81 | 2438.83 | 61.1 | Pass |
| L4 | $46.15-0$ | Pole | TP51x39.717x0.375 | 4 | -31.09 | 3701.25 | 61.4 | Pass |
|  |  |  |  |  |  |  | Summary |  |
|  |  |  |  |  | Pole (L4) | 61.4 | Pass |  |
|  |  |  |  |  | Rating $=$ | 61.4 | Pass |  |

Table 5 - Tower Component Stresses vs. Capacity - LC5

| Notes | Component | Elevation (ft) | \% Capacity | Pass / Fail |
| :---: | :---: | :---: | :---: | :---: |
| 1,2 | Flange Plate | 119 | 38.2 | Pass |
| 1,2 | Flange Bolts | 119 | 49.5 | Pass |
| 1,2 | Anchor Rods | 0 | 56.4 | Pass |
| 1,2 | Base Plate | 0 | 64.8 | Pass |
| 1,2 | Base Foundation <br> Structural | 0 | 46.2 | Pass |
| 1,2 | Base Foundation <br> Soil Interaction | 0 | 42.8 | Pass |

Structure Rating (max from all components) =
64.8\%

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.
2) $\quad$ Rating per TIA-222-H section 15.5.

## 4.1) Recommendations

The tower has sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

## 5) DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

## APPENDIX A

TNXTOWER OUTPUT


Feed Line Distribution Chart 0' - 149'
$\qquad$ Round $\qquad$ Flat $\qquad$ App In Face ace

Face A


GPD
${ }^{\text {ob: } B U ~ \#: ~ 842865, ~ L E B A N O N ~ W E S T ~}$
520 South Main Street Suite 2531
Akron, Ohio 44311
Phone: (555) 555-1234
FAX: (555) 555-1235

| tnXTOWer | Job | PU \#: 842865, LEBANON WEST | Page |
| :---: | :--- | :--- | :--- |
|  | Project | Client | 2019777.842865.01 |

## Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower is located in New London County, Connecticut.
Tower base elevation above sea level: 487.00 ft .
Basic wind speed of 130 mph .
Risk Category II.
Exposure Category C.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height: 0.00 ft .
Nominal ice thickness of 1.5000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.05 .
Tower analysis based on target reliabilities in accordance with Annex S.
Load Modification Factors used: $\mathrm{K}_{\mathrm{es}}\left(\mathrm{F}_{\mathrm{w}}\right)=0.95, \mathrm{~K}_{\mathrm{es}}\left(\mathrm{t}_{\mathrm{i}}\right)=0.85$.
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

## Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform
Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
$\sqrt{ }$ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption Poles
$\sqrt{ }$ Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No Appurtenances
Outside and Inside Corner Radii Are
Known

| tnxTower <br> GPD <br> 520 South Main Street Suite 2531 <br> Akron, Ohio 44311 <br> Phone: (555) 555-1234 <br> FAX: (555) 555-1235 | Job BU \#: 842865, LEBANON WEST |  | $\begin{array}{ll} \hline \text { Page } & \\ & 2 \text { of } 11 \end{array}$ |
| :---: | :---: | :---: | :---: |
|  | Project | 2019777.842865 .01 | $\begin{aligned} & \text { Date } \\ & \text { 15:37:04 09/04/19 } \end{aligned}$ |
|  | Client | Crown Castle USA, Inc. | Designed by MAlkacace |

## Tapered Pole Section Geometry

| Section | Elevation <br> ft | Section <br> Length ft | Splice Length ft | Number of Sides | Top Diameter in | Bottom Diameter in | Wall <br> Thickness <br> in | Bend <br> Radius <br> in | Pole Grade |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | 149.00-119.00 | 30.00 | 0.00 | 18 | 19.5000 | 26.1200 | 0.1875 | 0.7500 | $\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$ |
| L2 | 119.00-82.11 | 36.89 | 4.78 | 18 | 26.1200 | 34.2680 | 0.2500 | 1.0000 | $\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$ |
| L3 | 82.11-46.15 | 40.74 | 5.70 | 18 | 32.7122 | 41.5831 | 0.3125 | 1.2500 | $\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$ |
| L4 | 46.15-0.00 | 51.85 |  | 18 | 39.7170 | 51.0000 | 0.3750 | 1.5000 | $\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$ |

## Tapered Pole Properties

| Section | Tip Dia. | Area <br> in | $I$ <br> $i n^{2}$ | $r$ <br> in | $C$ <br> in | $I / C$ <br> $i n^{3}$ | $J$ <br> $i n^{4}$ | $I t / Q$ <br> $i n^{2}$ | $w$ <br> in |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | 19.7719 | 11.4934 | 541.5782 | 6.8559 | 9.9060 | 54.6717 | 1083.8689 | 5.7478 | 3.1020 | 16.544 |
|  | 26.4940 | 15.4331 | 1311.2298 | 9.2060 | 13.2690 | 98.8193 | 2624.1849 | 7.7180 | 4.2671 |  |
| L2 | 26.4844 | 20.5278 | 1735.6960 | 9.1838 | 13.2690 | 130.8087 | 3473.6759 | 10.2659 | 4.1571 | 16.758 |
|  | 34.7581 | 26.9933 | 3946.4873 | 12.0764 | 17.4081 | 226.7035 | 7898.1675 | 13.4992 | 5.5912 | 22.365 |
| L3 | 34.2255 | 32.1365 | 4262.0494 | 11.5019 | 16.6178 | 256.4748 | 8529.7068 | 16.0713 | 5.2074 | 16.664 |
|  | 42.1764 | 40.9353 | 8808.7999 | 14.6511 | 21.1242 | 417.0001 | 17629.1906 | 20.4715 | 6.7686 | 21.66 |
| L4 | 41.5313 | 46.8268 | 9156.7989 | 13.9664 | 20.1762 | 453.8412 | 18325.6465 | 23.4178 | 6.3302 | 16.88 |
|  | 51.7289 | 60.2564 | 19510.6056 | 17.9719 | 25.9080 | 753.0726 | 39046.8837 | 30.1339 | 8.3160 | 22.176 |


| Tower Elevation <br> ft | Gusset <br> Area (per face) <br> $f t^{2}$ | Gusset Thickness in | Gusset Grade | Adjust. Factor $A_{f}$ | Adjust. <br> Factor <br> $A_{r}$ | Weight Mult. | Double Angle Stitch Bolt Spacing Diagonals in | Double Angle Stitch Bolt Spacing Horizontals in | Double Angle Stitch Bolt Spacing Redundants in |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L1 |  |  |  | 1 | 1 | 1 |  |  |  |
| 149.00-119.00 |  |  |  |  |  |  |  |  |  |
| L2 |  |  |  | 1 | 1 | 1 |  |  |  |
| 119.00-82.11 |  |  |  |  |  |  |  |  |  |
| L3 82.11-46.15 |  |  |  | 1 | 1 | 1 |  |  |  |
| L4 46.15-0.00 |  |  |  | 1 | 1 | 1 |  |  |  |

## Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description | Sector | Exclude <br> From <br> Torque | Component <br> Type |  | Placement | Total <br> Number | Number <br> Per Row | Start/End <br> Position | Width or <br> Diameter <br> in | in |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| tnxTower | BU \#: 842865, LEBANON WEST |  | $\begin{aligned} & \hline \text { Page } 3 \text { of } 11 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| GPD <br> 520 South Main Street Suite 2531 | Project | 2019777.842865.01 | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:37:04 09/04/19 } \end{array}$ |
| Akron, Ohio 44311 Phone: (555) 555-1234 FAX: (555) 555-1235 | Client | Crown Castle USA, Inc. | Designed by MAlkacace |

Feed Line/Linear Appurtenances - Entered As Area

| Description | Face or Leg | Allow Shield | Exclude <br> From <br> Torque Calculation | Component Type | Placement <br> ft | Total Number |  | $\begin{aligned} & C_{A} A_{A} \\ & f t^{2} / f t \end{aligned}$ | Weight <br> plf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Safety Line (3/8") | C | No | No | CaAa (Out Of Face) | 149.00-8.00 | 1 | No Ice | 0.04 | 0.22 |
|  |  |  |  |  |  |  | 1/2" Ice | 0.14 | 0.75 |
|  |  |  |  |  |  |  | $1{ }^{\prime \prime}$ Ice | 0.24 | 1.28 |
|  |  |  |  |  |  |  | 2" Ice | 0.44 | 2.34 |
| LDF7-50A(1-5/8) | C | No | No | Inside Pole | 149.00-8.00 | 14 | No Ice | 0.00 | 0.82 |
|  |  |  |  |  |  |  | 1/2" Ice | 0.00 | 0.82 |
|  |  |  |  |  |  |  | 1 " Ice | 0.00 | 0.82 |
|  |  |  |  |  |  |  | 2" Ice | 0.00 | 0.82 |
| LDF6-50A(1-1/4) | C | No | No | Inside Pole | 119.00-4.00 | 12 | No Ice | 0.00 | 0.60 |
|  |  |  |  |  |  |  | 1/2" Ice | 0.00 | 0.60 |
|  |  |  |  |  |  |  | 1 " Ice | 0.00 | 0.60 |
|  |  |  |  |  |  |  | 2" Ice | 0.00 | 0.60 |

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation ft \& Face \& $A_{R}$
$f t^{2}$ \& $A_{F}$

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2}
\end{gathered}
$$ \& Weight

K <br>
\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{149.00-119.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00 <br>
\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00 <br>
\hline \& \& C \& 0.000 \& 0.000 \& 0.450 \& 1.125 \& 0.36 <br>
\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{119.00-82.11} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00 <br>
\hline \& \& B \& 0.000 \& 0.000 \& 7.061 \& 0.000 \& 0.14 <br>
\hline \& \& C \& 0.000 \& 0.000 \& 0.553 \& 1.383 \& 0.71 <br>
\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{82.11-46.15} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00 <br>
\hline \& \& B \& 0.000 \& 0.000 \& 6.883 \& 0.000 \& 0.14 <br>
\hline \& \& C \& 0.000 \& 0.000 \& 0.539 \& 1.349 \& 0.69 <br>
\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{46.15-0.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00 <br>
\hline \& \& B \& 0.000 \& 0.000 \& 8.068 \& 0.000 \& 0.16 <br>
\hline \& \& C \& 0.000 \& 0.000 \& 0.572 \& 1.431 \& 0.76 <br>
\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation ft \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Ice \\
Thickness in
\end{tabular} \& \(A_{R}\)
\(f t^{2}\) \& \(A_{F}\)

$f t^{2}$ \& | $C_{A} A_{A}$ In Face |
| :--- |
| $f t^{2}$ | \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
f t^{2}
\end{gathered}
$$
\] \& Weight

K <br>
\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{149.00-119.00} \& A \& \multirow[t]{3}{*}{1.466} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00 <br>
\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00 <br>
\hline \& \& C \& \& 0.000 \& 0.000 \& 9.246 \& 9.921 \& 0.49 <br>
\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{119.00-82.11} \& A \& \multirow[t]{3}{*}{1.424} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00 <br>
\hline \& \& B \& \& 0.000 \& 0.000 \& 35.098 \& 0.000 \& 0.47 <br>
\hline \& \& C \& \& 0.000 \& 0.000 \& 11.062 \& 11.892 \& 0.87 <br>
\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{82.11-46.15} \& A \& \multirow[t]{3}{*}{1.362} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00 <br>
\hline \& \& B \& \& 0.000 \& 0.000 \& 34.213 \& 0.000 \& 0.46 <br>
\hline \& \& C \& \& 0.000 \& 0.000 \& 10.783 \& 11.592 \& 0.84 <br>
\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{46.15-0.00} \& A \& \multirow[t]{3}{*}{1.231} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00 <br>
\hline \& \& B \& \& 0.000 \& 0.000 \& 38.785 \& 0.000 \& 0.51 <br>
\hline \& \& C \& \& 0.000 \& 0.000 \& 10.963 \& 11.821 \& 0.91 <br>
\hline
\end{tabular}

| tnxTower | BU \#: 842865, LEBANON WEST |  | $\begin{array}{ll} \hline \text { Page } & \\ & 4 \text { of } 11 \end{array}$ |
| :---: | :---: | :---: | :---: |
| GPD <br> 520 South Main Street Suite 2531 | Project | 2019777.842865 .01 | Date 15:37:04 09/04/19 |
| Akron, Ohio 44311 <br> Phone: (555) 555-1234 <br> FAX: (555) 555-1235 | Client | Crown Castle USA, Inc. | Designed by MAlkacace |

## Feed Line Center of Pressure

| Section | Elevation | $C P_{X}$ | $C P_{Z}$ | $C P_{X}$ | $C P_{Z}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Ine | Ice <br> in |  |
| Lt | in | in | in | 1.6713 |  |
| L2 | $149.00-119.00$ | -0.2537 | 0.2645 | -1.0065 | 0.8907 |
| L3 | $119.00-82.11$ | 1.2123 | 0.0444 | 1.8428 | 0.9840 |
| L4 | $82.11-46.15$ | 1.2233 | 0.0478 | 2.0099 | 0.8312 |

## Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
\(\circ\)
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ Front |
| :--- |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side \& Weight <br>
\hline \multirow[t]{4}{*}{BXA-70063/6CF w/ Mount Pipe} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From
Centroid-Le
g} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.00} \& No Ice \& 8.07 \& 5.66 \& 0.05 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.74 \& 6.92 \& 0.11 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 9.37 \& 8.04 \& 0.18 <br>
\hline \& \& \& \& \& \& 2" Ice \& 10.55 \& 9.94 \& 0.34 <br>
\hline \multirow[t]{4}{*}{BXA-70063/6CF w/ Mount Pipe} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Centroid-Le g} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.00} \& No Ice \& 8.07 \& 5.66 \& 0.05 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.74 \& 6.92 \& 0.11 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.37 \& 8.04 \& 0.18 <br>
\hline \& \& \& \& \& \& 2" Ice \& 10.55 \& 9.94 \& 0.34 <br>
\hline \multirow[t]{4}{*}{BXA-70063/6CF w/ Mount Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Centroid-Le g} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.00} \& No Ice \& 8.07 \& 5.66 \& 0.05 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.74 \& 6.92 \& 0.11 <br>
\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 9.37 \& 8.04 \& 0.18 <br>
\hline \& \& \& \& \& \& 2 " Ice \& 10.55 \& 9.94 \& 0.34 <br>
\hline \multirow[t]{4}{*}{(2) BXA-171063/12CF w/ Mount Pipe} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Centroid-Le g} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.00} \& No Ice \& 4.79 \& 5.34 \& 0.05 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.24 \& 6.15 \& 0.10 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 5.70 \& 6.96 \& 0.15 <br>
\hline \& \& \& \& \& \& 2" Ice \& 6.64 \& 8.65 \& 0.28 <br>

\hline \multirow[t]{4}{*}{(2) BXA-171063/12CF w/ Mount Pipe} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.00} \& No Ice \& 4.79 \& 5.34 \& 0.05 <br>

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.24 \& 6.15 \& 0.10 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 5.70 \& 6.96 \& 0.15 <br>
\hline \& \& \& \& \& \& 2" Ice \& 6.64 \& 8.65 \& 0.28 <br>
\hline \multirow[t]{4}{*}{(2) BXA-171063/12CF w/ Mount Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Centroid-Le g} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.00} \& No Ice \& 4.79 \& 5.34 \& 0.05 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.24 \& 6.15 \& 0.10 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 5.70 \& 6.96 \& 0.15 <br>
\hline \& \& \& \& \& \& 2" Ice \& 6.64 \& 8.65 \& 0.28 <br>

\hline \multirow[t]{4}{*}{BXA-80063/6CF w/ Mount Pipe} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Centroid-Le g} \& $$
4.00
$$ \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.00} \& No Ice \& 7.60 \& 5.19 \& 0.04 <br>

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.05 \& 6.12 \& 0.09 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.51 \& 6.93 \& 0.16 <br>
\hline \& \& \& \& \& \& 2 " Ice \& 9.45 \& 8.60 \& 0.31 <br>
\hline \multirow[t]{4}{*}{BXA-80063/6CF w/ Mount Pipe} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Centroid-Le g} \& \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.00} \& No Ice \& 7.60 \& 5.19 \& 0.04 <br>

\hline \& \& \& $$
0.00
$$ \& \& \& \[

1 / 2^{\prime \prime} Ice
\] \& 8.05 \& 6.12 \& 0.09 <br>

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 8.51 \& 6.93 \& 0.16 <br>
\hline \& \& \& \& \& \& 2" Ice \& 9.45 \& 8.60 \& 0.31 <br>
\hline \multirow[t]{4}{*}{BXA-80063/6CF w/ Mount Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Centroid-Le g} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.00} \& No Ice \& 7.60 \& 5.19 \& 0.04 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.05 \& 6.12 \& 0.09 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.51 \& 6.93 \& 0.16 <br>
\hline \& \& \& \& \& \& 2" Ice \& 9.45 \& 8.60 \& 0.31 <br>
\hline \multirow[t]{4}{*}{RRH2X40-AWS} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Centroid-Le g} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.00} \& No Ice \& 2.16 \& 1.42 \& 0.04 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.36 \& 1.59 \& 0.06 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.57 \& 1.77 \& 0.08 <br>
\hline \& \& \& \& \& \& 2" Ice \& 3.00 \& 2.14 \& 0.13 <br>
\hline
\end{tabular}

| $\begin{array}{c}\text { tnXTOWPR } \\ \text { GPD }\end{array}$ | Job | PU \#: 842865, LEBANON WEST |
| :---: | :--- | :--- | :--- |$)$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
-
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight <br>

\hline \multirow[t]{4}{*}{RRH2X40-AWS} \& \multirow[t]{4}{*}{B} \& From \& 4.00 \& 0.0000 \& 150.00 \& No Ice \& 2.16 \& 1.42 \& 0.04 <br>
\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 2.36 \& 1.59 \& 0.06 <br>
\hline \& \& g \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.57 \& 1.77 \& 0.08 <br>
\hline \& \& \& \& \& \& 2" Ice \& 3.00 \& 2.14 \& 0.13 <br>
\hline \multirow[t]{4}{*}{RRH2X40-AWS} \& \multirow[t]{4}{*}{C} \& From \& 4.00 \& 0.0000 \& 150.00 \& No Ice \& 2.16 \& 1.42 \& 0.04 <br>
\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 2.36 \& 1.59 \& 0.06 <br>
\hline \& \& g \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.57 \& 1.77 \& 0.08 <br>
\hline \& \& \& \& \& \& 2" Ice \& 3.00 \& 2.14 \& 0.13 <br>
\hline \multirow[t]{4}{*}{DB-T1-6Z-8AB-0Z} \& \multirow[t]{4}{*}{C} \& From \& 4.00 \& 0.0000 \& 150.00 \& No Ice \& 4.80 \& 2.00 \& 0.04 <br>
\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 5.07 \& 2.19 \& 0.08 <br>
\hline \& \& g \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 5.35 \& 2.39 \& 0.12 <br>
\hline \& \& \& \& \& \& 2" Ice \& 5.93 \& 2.81 \& 0.21 <br>
\hline \multirow[t]{4}{*}{Platform Mount [LP 303-1]} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{None} \& \& 0.0000 \& 150.00 \& No Ice \& 14.69 \& 14.69 \& 1.25 <br>
\hline \& \& \& \& \& \& 1/2" Ice \& 18.01 \& 18.01 \& 1.57 <br>
\hline \& \& \& \& \& \& 1" Ice \& 21.34 \& 21.34 \& 1.94 <br>
\hline \& \& \& \& \& \& 2" Ice \& 28.08 \& 28.08 \& 2.85 <br>
\hline \multirow[t]{4}{*}{DMP65R-BU8D w/ Mount Pipe} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 119.00 \& No Ice \& 18.11 \& 10.26 \& 0.13 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 18.84 \& 11.78 \& 0.25 <br>
\hline \& \& \& 1.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 19.59 \& 13.33 \& 0.38 <br>
\hline \& \& \& \& \& \& 2" Ice \& 21.01 \& 15.67 \& 0.68 <br>
\hline \multirow[t]{4}{*}{DMP65R-BU8D w/ Mount Pipe} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 119.00 \& No Ice \& 18.11 \& 10.26 \& 0.13 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 18.84 \& 11.78 \& 0.25 <br>
\hline \& \& \& 1.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 19.59 \& 13.33 \& 0.38 <br>
\hline \& \& \& \& \& \& 2" Ice \& 21.01 \& 15.67 \& 0.68 <br>
\hline \multirow[t]{4}{*}{DMP65R-BU8D w/ Mount Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 119.00 \& No Ice \& 18.11 \& 10.26 \& 0.13 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 18.84 \& 11.78 \& 0.25 <br>
\hline \& \& \& 1.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 19.59 \& 13.33 \& 0.38 <br>
\hline \& \& \& \& \& \& 2" Ice \& 21.01 \& 15.67 \& 0.68 <br>
\hline \multirow[t]{4}{*}{HPA65R-BU8A w/ Mount Pipe} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 119.00 \& No Ice \& 11.23 \& 9.94 \& 0.08 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 11.85 \& 11.37 \& 0.17 <br>
\hline \& \& \& 1.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 12.47 \& 12.64 \& 0.27 <br>
\hline \& \& \& \& \& \& 2" Ice \& 13.72 \& 14.86 \& 0.50 <br>
\hline \multirow[t]{4}{*}{HPA65R-BU8A w/ Mount Pipe} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 119.00 \& No Ice \& 11.23 \& 9.94 \& 0.08 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 11.85 \& 11.37 \& 0.17 <br>
\hline \& \& \& 1.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 12.47 \& 12.64 \& 0.27 <br>
\hline \& \& \& \& \& \& 2" Ice \& 13.72 \& 14.86 \& 0.50 <br>

\hline \multirow[t]{4}{*}{HPA65R-BU8A w/ Mount Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& $$
4.00
$$ \& 0.0000 \& 119.00 \& No Ice \& 11.23 \& 9.94 \& 0.08 <br>

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 11.85 \& 11.37 \& 0.17 <br>
\hline \& \& \& 1.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 12.47 \& 12.64 \& 0.27 <br>
\hline \& \& \& \& \& \& 2" Ice \& 13.72 \& 14.86 \& 0.50 <br>
\hline \multirow[t]{4}{*}{7770.00 w/ Mount Pipe} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 119.00 \& No Ice \& 5.84 \& 4.35 \& 0.06 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.32 \& 5.20 \& 0.11 <br>
\hline \& \& \& 1.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.77 \& 5.92 \& 0.16 <br>
\hline \& \& \& \& \& \& 2" Ice \& 7.71 \& 7.41 \& 0.29 <br>
\hline \multirow[t]{4}{*}{7770.00 w/ Mount Pipe} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 119.00 \& No Ice \& 5.84 \& 4.35 \& 0.06 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.32 \& 5.20 \& 0.11 <br>
\hline \& \& \& 1.00 \& \& \& $1^{\prime \prime}$ Ice \& 6.77 \& 5.92 \& 0.16 <br>
\hline \& \& \& \& \& \& 2" Ice \& 7.71 \& 7.41 \& 0.29 <br>
\hline \multirow[t]{4}{*}{7770.00 w/ Mount Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 119.00 \& No Ice \& 5.84 \& 4.35 \& 0.06 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.32 \& 5.20 \& 0.11 <br>
\hline \& \& \& 1.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.77 \& 5.92 \& 0.16 <br>
\hline \& \& \& \& \& \& 2" Ice \& 7.71 \& 7.41 \& 0.29 <br>
\hline \multirow[t]{4}{*}{RRUS 4449 B5/B12} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 119.00 \& No Ice \& 1.97 \& 1.41 \& 0.07 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.14 \& 1.56 \& 0.09 <br>
\hline \& \& \& 1.00 \& \& \& 1" Ice \& 2.33 \& 1.73 \& 0.11 <br>
\hline \& \& \& \& \& \& 2" Ice \& 2.72 \& 2.07 \& 0.16 <br>
\hline RRUS 4449 B5/B12 \& B \& From Leg \& 4.00 \& 0.0000 \& 119.00 \& No Ice \& 1.97 \& 1.41 \& 0.07 <br>
\hline
\end{tabular}

| tnxTower <br> GPD <br> 520 South Main Street Suite 2531 <br> Akron, Ohio 44311 <br> Phone: (555) 555-1234 <br> FAX: (555) 555-1235 | BU \#: 842865, LEBANON WEST |  | Page 6 of 11 |
| :---: | :---: | :---: | :---: |
|  | Project | 2019777.842865.01 | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:37:04 09/04/19 } \end{array}$ |
|  | Client | Crown Castle USA, Inc. | Designed by MAlkacace |


| Description | Face or Leg | Offset <br> Type | Offsets: Horz Lateral Vert $f t$ $f t$ $f t$ | Azimuth Adjustment <br> 0 | Placement <br> $f t$ |  | $C_{A} A_{A}$ <br> Front <br> $f t^{2}$ | $C_{A} A_{A}$ Side <br> $f t^{2}$ | Weight <br> K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RRUS 4449 B5/B12 | C | From Leg | 0.00 |  |  | 1/2" Ice | 2.14 | 1.56 | 0.09 |
|  |  |  | 1.00 |  |  | $1{ }^{\prime \prime}$ Ice | 2.33 | 1.73 | 0.11 |
|  |  |  |  |  |  | 2" Ice | 2.72 | 2.07 | 0.16 |
|  |  |  | 4.00 | 0.0000 | 119.00 | No Ice | 1.97 | 1.41 | 0.07 |
|  |  |  | 0.00 |  |  | 1/2" Ice | 2.14 | 1.56 | 0.09 |
|  |  |  | 1.00 |  |  | $1{ }^{\prime \prime}$ Ice | 2.33 | 1.73 | 0.11 |
| RRUS 8843 B2/B66A | A | From Leg |  |  |  | 2" Ice | 2.72 | 2.07 | 0.16 |
|  |  |  | 4.00 | 0.0000 | 119.00 | No Ice | 1.64 | 1.35 | 0.07 |
|  |  |  | 0.00 |  |  | 1/2" Ice | 1.80 | 1.50 | 0.09 |
|  |  |  | 1.00 |  |  | $1{ }^{\prime \prime}$ Ice | 1.97 | 1.65 | 0.11 |
| RRUS 8843 B2/B66A | B | From Leg |  |  |  | 2" Ice | 2.32 | 1.99 | 0.16 |
|  |  |  | 4.00 | 0.0000 | 119.00 | No Ice | 1.64 | 1.35 | 0.07 |
|  |  |  | 0.00 |  |  | 1/2" Ice | 1.80 | 1.50 | 0.09 |
|  |  |  | 1.00 |  |  | 1" Ice | 1.97 | 1.65 | 0.11 |
| RRUS 8843 B2/B66A | C | From Leg |  |  |  | 2" Ice | 2.32 | 1.99 | 0.16 |
|  |  |  | 4.00 | 0.0000 | 119.00 | No Ice | 1.64 | 1.35 | 0.07 |
|  |  |  | 0.00 |  |  | 1/2" Ice | 1.80 | 1.50 | 0.09 |
|  |  |  | 1.00 |  |  | $1{ }^{\prime \prime}$ Ice | 1.97 | 1.65 | 0.11 |
| (2) LGP21401 | A | From Leg |  |  |  | 2" Ice | 2.32 | 1.99 | 0.16 |
|  |  |  | 4.00 | 0.0000 | 119.00 | No Ice | 1.10 | 0.35 | 0.01 |
|  |  |  | 0.00 |  |  | 1/2" Ice | 1.24 | 0.44 | 0.02 |
|  |  |  | 1.00 |  |  | 1" Ice | 1.38 | 0.54 | 0.03 |
| (2) LGP21401 | B | From Leg |  |  |  | 2" Ice | 1.69 | 0.77 | 0.05 |
|  |  |  | 4.00 | 0.0000 | 119.00 | No Ice | 1.10 | 0.35 | 0.01 |
|  |  |  | 0.00 |  |  | 1/2" Ice | 1.24 | 0.44 | 0.02 |
|  |  |  | 1.00 |  |  | $1{ }^{\prime \prime}$ Ice | 1.38 | 0.54 | 0.03 |
| (2) LGP21401 | C | From Leg |  |  |  | $2{ }^{\prime \prime}$ Ice | 1.69 | 0.77 | 0.05 |
|  |  |  | $4.00$ | 0.0000 | 119.00 | No Ice | 1.10 | 0.35 | 0.01 |
|  |  |  | 0.00 |  |  | 1/2" Ice | 1.24 | 0.44 | 0.02 |
|  |  |  | 1.00 |  |  | $1{ }^{\prime \prime}$ Ice | 1.38 | 0.54 | 0.03 |
| DC6-48-60-0-8C-EV | B | From Leg |  |  |  | 2" Ice | 1.69 | 0.77 | 0.05 |
|  |  |  |  | 0.0000 | 119.00 | No Ice | 2.74 | 4.79 | 0.03 |
|  |  |  | 0.00 |  |  | 1/2" Ice | 2.96 | 5.07 | 0.06 |
|  |  |  | 1.00 |  |  | $1{ }^{\prime \prime}$ Ice | 3.20 | 5.35 | 0.10 |
|  | C | From Leg |  |  |  | 2" Ice | 3.68 | 5.95 | 0.20 |
| DC6-48-60-18-8F Surge Suppression Unit |  |  | 4.00 | 0.0000 | 119.00 | No Ice | 0.92 | 0.92 | 0.02 |
|  |  |  | 0.00 |  |  | 1/2" Ice | 1.46 | 1.46 | 0.04 |
|  |  |  | 1.00 |  |  | $1{ }^{\prime \prime}$ Ice | 1.64 | 1.64 | 0.06 |
|  | A | From Leg |  |  |  | 2 " Ice | 2.04 | 2.04 | 0.11 |
| 5' x 2" Mount Pipe |  |  | 3.00 | 0.0000 | 119.00 | No Ice | 1.19 | 1.19 | 0.02 |
|  |  |  | 0.00 |  |  | 1/2" Ice | 1.50 | 1.50 | 0.03 |
|  |  |  | 0.00 |  |  | $1^{\prime \prime}$ Ice | 1.81 | 1.81 | 0.04 |
| 5' x 2" Mount Pipe | B | From Leg |  |  |  | 2" Ice | 2.46 | 2.46 | 0.08 |
|  |  |  | 3.00 | 0.0000 | 119.00 | No Ice | 1.19 | 1.19 | 0.02 |
|  |  |  | 0.00 |  |  | 1/2" Ice | 1.50 | 1.50 | 0.03 |
|  |  |  | 0.00 |  |  | $1{ }^{\prime \prime}$ Ice | 1.81 | 1.81 | 0.04 |
| 5' x 2" Mount Pipe | C | From Leg |  |  |  | 2" Ice | 2.46 | 2.46 | 0.08 |
|  |  |  | 3.00 | 0.0000 | 119.00 | No Ice | 1.19 | 1.19 | 0.02 |
|  |  |  | 0.00 |  |  | 1/2" Ice | 1.50 | 1.50 | 0.03 |
|  |  |  | 0.00 |  |  | $1{ }^{\prime \prime}$ Ice | 1.81 | 1.81 | 0.04 |
| T-Arm Mount [TA 601-3] | C | None |  |  |  | 2" Ice | 2.46 | 2.46 | 0.08 |
|  |  |  |  | 0.0000 | 119.00 | No Ice | 12.56 | 12.56 | 0.73 |
|  |  |  |  |  |  | 1/2" Ice | 15.36 | 15.36 | 0.94 |
|  |  |  |  |  |  | 1" Ice | 18.04 | 18.04 | 1.21 |
|  |  |  |  |  |  | 2" Ice | 23.69 | 23.69 | 1.92 |


| tnxTower | BU \#: 842865, LEBANON WEST |  | $\begin{array}{ll} \hline \text { Page } \\ & \\ & \\ \text { of } 11 \end{array}$ |
| :---: | :---: | :---: | :---: |
| GPD <br> 520 South Main Street Suite 2531 <br> Akron, Ohio 44311 <br> Phone: (555) 555-1234 <br> FAX: (555) 555-1235 | Project | 2019777.842865.01 | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:37:04 09/04/19 } \end{array}$ |
|  | Client | Crown Castle USA, Inc. | Designed by <br> MAlkacace |

## Load Combinations

| Comb. No. | Description |
| :---: | :---: |
| 1 | Dead Only |
| 2 | 1.2 Dead+1.0 Wind 0 deg - No Ice |
| 3 | 0.9 Dead+1.0 Wind 0 deg - No Ice |
| 4 | 1.2 Dead+1.0 Wind 30 deg - No Ice |
| 5 | 0.9 Dead+1.0 Wind 30 deg - No Ice |
| 6 | 1.2 Dead+1.0 Wind 60 deg - No Ice |
| 7 | 0.9 Dead+1.0 Wind 60 deg - No Ice |
| 8 | 1.2 Dead+1.0 Wind 90 deg - No Ice |
| 9 | 0.9 Dead+1.0 Wind 90 deg - No Ice |
| 10 | 1.2 Dead+1.0 Wind 120 deg - No Ice |
| 11 | 0.9 Dead+1.0 Wind 120 deg - No Ice |
| 12 | 1.2 Dead+1.0 Wind 150 deg - No Ice |
| 13 | 0.9 Dead+1.0 Wind 150 deg - No Ice |
| 14 | 1.2 Dead+1.0 Wind 180 deg - No Ice |
| 15 | 0.9 Dead+1.0 Wind 180 deg - No Ice |
| 16 | 1.2 Dead+1.0 Wind 210 deg - No Ice |
| 17 | 0.9 Dead+1.0 Wind 210 deg - No Ice |
| 18 | 1.2 Dead+1.0 Wind 240 deg - No Ice |
| 19 | 0.9 Dead+1.0 Wind 240 deg - No Ice |
| 20 | 1.2 Dead+1.0 Wind 270 deg - No Ice |
| 21 | 0.9 Dead+1.0 Wind 270 deg - No Ice |
| 22 | 1.2 Dead+1.0 Wind 300 deg - No Ice |
| 23 | 0.9 Dead+1.0 Wind 300 deg - No Ice |
| 24 | 1.2 Dead+1.0 Wind 330 deg - No Ice |
| 25 | 0.9 Dead+1.0 Wind 330 deg - No Ice |
| 26 | 1.2 Dead+1.0 Ice+1.0 Temp |
| 27 | 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp |
| 28 | 1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0$ Ice+1.0 Temp |
| 29 | 1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$ Ice+1.0 Temp |
| 30 | 1.2 Dead+1.0 Wind $90 \mathrm{deg}+1.0$ Ice+1.0 Temp |
| 31 | 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp |
| 32 | 1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp |
| 33 | 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp |
| 34 | 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp |
| 35 | 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp |
| 36 | 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp |
| 37 | 1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0$ Ice+1.0 Temp |
| 38 | 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp |
| 39 | Dead+Wind 0 deg - Service |
| 40 | Dead+Wind 30 deg - Service |
| 41 | Dead+Wind 60 deg - Service |
| 42 | Dead+Wind 90 deg - Service |
| 43 | Dead+Wind 120 deg - Service |
| 44 | Dead+Wind 150 deg - Service |
| 45 | Dead+Wind 180 deg - Service |
| 46 | Dead+Wind 210 deg - Service |
| 47 | Dead+Wind 240 deg - Service |
| 48 | Dead+Wind 270 deg - Service |
| 49 | Dead+Wind 300 deg - Service |
| 50 | Dead+Wind 330 deg - Service |


| tnxTower | BU \#: 842865, LEBANON WEST |  | $\begin{aligned} & \text { Page } 8 \text { of } 11 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| GPD <br> 520 South Main Street Suite 2531 | Project | 2019777.842865.01 | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:37:04 09/04/19 } \end{array}$ |
| Akron, Ohio 44311 <br> Phone: (555) 555-1234 <br> FAX: (555) 555-1235 | Client | Crown Castle USA, Inc. | Designed by MAlkacace |

## Maximum Tower Deflections - Service Wind

| Section <br> No. | Elevation | Horz. <br> Deflection <br> in | Gov. <br> Load <br> Comb. | Tilt | $\circ$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

## Critical Deflections and Radius of Curvature - Service Wind

| Elevation | Appurtenance | Gov. | Deflection | Tilt | Twist | Radius of <br> Curvature |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f t$ |  | Load |  |  |  |  |
| 150.00 |  | Comb. | in | $\circ$ | $\circ$ |  |
| 119.00 | BXA-70063/6CF w/ Mount Pipe | 41 | 19.970 | 1.2383 | 0.0024 | 33609 |

Maximum Tower Deflections - Design Wind

| Section <br> No. | Elevation | Horz. <br> Deflection <br> in | Gov. <br> Load <br> Comb. | Tilt | o |
| :---: | :---: | :---: | :---: | :---: | :---: |


| Critical Deflections and Radius of Curvature - Design Wind |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Elevation | Appurtenance | Gov. | Deflection | Tilt | Twist | Radius of |
| $f t$ |  | Load Comb. | in | - | 。 | Curvature <br> ft |
| 150.00 | BXA-70063/6CF w/ Mount Pipe | 6 | 99.777 | 6.1904 | 0.0123 | 6908 |
| 119.00 | DMP65R-BU8D w/ Mount Pipe | 6 | 63.198 | 5.2834 | 0.0076 | 1183 |


| tnxTower <br> GPD <br> 520 South Main Street Suite 2531 <br> Akron, Ohio 44311 <br> Phone: (555) 555-1234 <br> FAX: (555) 555-1235 | Job BU \#: 842865, LEBANON WEST |  | $\begin{aligned} & \text { Page } \\ & \\ & 9 \text { of } 11 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | 2019777.842865 .01 | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:37:04 09/04/19 } \end{array}$ |
|  | Client | Crown Castle USA, Inc. | Designed by MAlkacace |

## Compression Checks

## Pole Design Data

| Section No. | Elevation | Size | $L$ | $L_{u}$ | Kl/r | $A$ | $P_{u}$ | $\phi P_{n}$ | $\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $f t$ |  | $f t$ | $f t$ |  | in ${ }^{2}$ | K | K | $\phi P_{n}$ |
| L1 | 149-119(1) | TP26.12x19.5x0.1875 | 30.00 | 0.00 | 0.0 | 15.4331 | -3.70 | 902.84 | 0.004 |
| L2 | 119-82.11 (2) | TP34.268x26.12x0.25 | 36.89 | 0.00 | 0.0 | 26.1555 | -9.84 | 1530.10 | 0.006 |
| L3 | $82.11-46.15$ <br> (3) | TP41.5831x32.7122x0.3125 | 40.74 | 0.00 | 0.0 | 39.7042 | -16.81 | 2322.70 | 0.007 |
| L4 | 46.15-0 (4) | TP51x39.717x0.375 | 51.85 | 0.00 | 0.0 | 60.2564 | -31.09 | 3525.00 | 0.009 |

## Pole Bending Design Data

| Section No. | Elevation | Size | $M_{u x}$ | $\phi M_{n x}$ | $\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$ | $M_{u y}$ | $\phi M_{n y}$ | $\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f t$ |  |  | kip-ft | kip-ft | $\phi M_{n x}$ | kip-ft | kip-ft | $\phi M_{n y}$ |
| L1 | 149-119(1) | TP26.12x19.5x0.1875 | 214.86 | 545.47 | 0.394 | 0.00 | 545.47 | 0.000 |
| L2 | 119-82.11 (2) | TP34.268x26.12x0.25 | 728.13 | 1195.97 | 0.609 | 0.00 | 1195.97 | 0.000 |
| L3 | $82.11-46.15$ <br> (3) | TP41.5831x32.7122x0.3125 | 1410.99 | 2227.10 | 0.634 | 0.00 | 2227.10 | 0.000 |
| L4 | 46.15-0 (4) | TP51x 39.717 x 0.375 | 2664.78 | 4195.52 | 0.635 | 0.00 | 4195.52 | 0.000 |

## Pole Shear Design Data

| Section No. | Elevation | Size | Actual $V_{u}$ | $\phi V_{n}$ | Ratio $V_{u}$ | Actual <br> $T_{u}$ | $\phi T_{n}$ | $\begin{aligned} & \text { Ratio } \\ & T_{u} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $f t$ |  | K | K | $\phi V_{n}$ | kip-ft | kip-ft | $\phi T_{n}$ |
| L1 | 149-119(1) | TP26.12x19.5x0.1875 | 8.33 | 270.85 | 0.031 | 0.10 | 615.11 | 0.000 |
| L2 | 119-82.11 (2) | TP34.268x26.12x0.25 | 17.52 | 459.03 | 0.038 | 0.84 | 1325.07 | 0.001 |
| L3 | $82.11-46.15$ <br> (3) | TP41.5831x32.7122x0.3125 | 21.43 | 696.81 | 0.031 | 0.84 | 2442.72 | 0.000 |
| L4 | 46.15-0 (4) | TP51x39.717x0.375 | 26.69 | 1057.50 | 0.025 | 0.83 | 4688.41 | 0.000 |

## Pole Interaction Design Data

| Section No. | Elevation | $\begin{aligned} & \text { Ratio } \\ & P_{u} \end{aligned}$ | $\begin{gathered} \text { Ratio } \\ M_{u x} \end{gathered}$ | $\begin{gathered} \text { Ratio } \\ M_{u y} \end{gathered}$ | $\begin{aligned} & \text { Ratio } \\ & V_{u} \end{aligned}$ | $\begin{aligned} & \text { Ratio } \\ & T_{u} \end{aligned}$ | Comb. Stress | Allow. Stress | Criteria |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f t$ |  | $\phi P_{n}$ | $\phi M_{n x}$ | $\phi M_{n y}$ | $\phi V_{n}$ | $\phi T_{n}$ | Ratio | Ratio |  |
| L1 | 149-119(1) | 0.004 | 0.394 | 0.000 | 0.031 | 0.000 | 0.399 | 1.050 | 4.8.2 |
| L2 | 119-82.11 (2) | 0.006 | 0.609 | 0.000 | 0.038 | 0.001 | 0.617 | 1.050 | 4.8.2 |
| L3 | $82.11-46.15$ <br> (3) | 0.007 | 0.634 | 0.000 | 0.031 | 0.000 | 0.642 | 1.050 | 4.8.2 |
| L4 | 46.15-0 (4) | 0.009 | 0.635 | 0.000 | 0.025 | 0.000 | 0.645 | 1.050 | 4.8.2 |


| tnxTower <br> GPD <br> 520 South Main Street Suite 2531 <br> Akron, Ohio 44311 <br> Phone: (555) 555-1234 <br> FAX: (555) 555-1235 | BU \#: 842865, LEBANON WEST |  | Page  <br>  10 of 11 |
| :---: | :---: | :---: | :---: |
|  | Project | 2019777.842865.01 | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:37:04 09/04/19 } \end{array}$ |
|  | Client | Crown Castle USA, Inc. | Designed by MAlkacace |

## Section Capacity Table

| Section No. | Elevation ft | Component Type | Size | Critical Element | $\begin{aligned} & P \\ & K \end{aligned}$ | $\begin{gathered} ø P_{\text {allow }} \\ K \end{gathered}$ | \% <br> Capacity | Pass <br> Fail |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | 149-119 | Pole | TP26.12x19.5x0.1875 | 1 | -3.70 | 947.98 | 38.0 | Pass |
| L2 | 119-82.11 | Pole | TP34.268x26.12x0.25 | 2 | -9.84 | 1606.60 | 58.7 | Pass |
| L3 | 82.11-46.15 | Pole | TP41.5831x32.7122x0.3125 | 3 | -16.81 | 2438.83 | 61.1 | Pass |
| L4 | 46.15-0 | Pole | TP51x39.717x0.375 | 4 | -31.09 | 3701.25 | 61.4 | Pass |
|  |  |  |  |  |  | Summary | ELC: | Load Case 5 |
|  |  |  |  |  |  | Pole (L4) | 61.4 | Pass |
|  |  |  |  |  |  | Rating $=$ | 61.4 | Pass |

## APPENDIX B

## BASE LEVEL DRAWING


$\frac{1}{6}$

## APPENDIX C

## ADDITIONAL CALCULATIONS

Monopole Flange Plate Connection

| BU \# | 842865 |
| ---: | :---: |
| Site Name | LEBANON WEST |
| Order \# | 492779 Rev.0 |


| TIA-222 Revision | H |
| ---: | ---: |

## Top Plate - External



Elevation = 119 ft .

| Applied Loads |  |
| ---: | :---: |
| Moment (kip-ft) | 214.86 |
| Axial Force (kips) | 3.70 |
| Shear Force (kips) | 8.33 |

*TIA-222-H Section 15.5 Applied

Bottom Plate - External


Connection Properties
Bolt Data
(12) 1" $\varnothing$ bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 30" BC

| Top Plate Data |  |  |  | Bottom Plate Data |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 33 " OD x 1.25" Plate (A572-60 | ksi, Fu= | ksi) |  | 33" OD x 1" Plate (A572-60; Fy=60 ksi, Fu=75 ksi) |  |  |
| Top Stiffener Data |  |  |  | Bottom Stiffener Data |  |  |
| N/A |  |  |  | N/A |  |  |
| Top Pole Data |  |  |  | Bottom Pole Data |  |  |
| 26.12" x 0.1875" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi) |  |  |  | 26.12" x 0.25" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi) |  |  |
| Analysis Results |  |  |  |  |  |  |
| Bolt Capacity |  |  |  |  |  |  |
|  |  | Max Load (kips) | 28.33 |  |  |  |
|  |  | Allowable (kips) | 54.53 |  |  |  |
|  |  | Stress Rating: | 49.5\% | Pass |  |  |
| Top Plate Capacity |  |  |  | Bottom Plate Capacity |  |  |
| Max Stress (ksi): | 13.87 | (Flexural) |  | Max Stress (ksi): | 21.67 | (Flexural) |
| Allowable Stress (ksi): | 54.00 |  |  | Allowable Stress (ksi): | 54.00 |  |
| Stress Rating: | 24.5\% | Pass |  | Stress Rating: | 38.2\% | Pass |
| Tension Side Stress Rating: | 11.7\% | Pass |  | Tension Side Stress Rating: | 18.2\% | Pass |

Monopole Base Plate Connection

| Site Info |  |
| ---: | :---: |
| BU \# |  |
| Site Name | LEBANON WEST |
| Order \# | 492779 Rev.0 |


| Analysis Considerations |  |
| ---: | :---: |
| TIA-222 Revision | H |
| Grout Considered: | No |
| $\mathrm{I}_{\mathrm{ar}}(\mathrm{in})$ | 3.25 |


$|$| Applied Loads |  |
| ---: | :---: |
| Moment (kip-ft) | 2664.77 |
| Axial Force (kips) | 31.09 |
| Shear Force (kips) | 26.69 |

*TIA-222-H Section 15.5 Applied


Connection Properties
Analysis Results

Anchor Rod Data
(16) 2-1/4" $\varnothing$ bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 60" BC

Base Plate Data
66" OD x 2" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

Stiffener Data
N/A

Pole Data
51" x 0.375" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

| Anchor Rod Summary |  | (units of kips, kip-in) |
| :--- | :--- | :---: |
| Pu_c $=135.11$ | $\phi P n \_c=243.75$ | Stress Rating |
| $\mathrm{Vu=1.67}$ | $\phi \mathrm{Vn}=73.13$ | $56.4 \%$ |
| $\mathrm{Mu}=3.52$ | $\phi \mathrm{Mn}=94.7$ | Pass |
|  |  |  |
| Base Plate Summary |  | (Flexural) |
| Max Stress (ksi): | 36.76 |  |
| Allowable Stress (ksi): | 54 | Pass |
| Stress Rating: | $\mathbf{6 4 . 8 \%}$ |  |

## Pier and Pad Foundation

$$
\begin{aligned}
\text { BU \# : } & 842865 \\
\text { Site Name: } & \text { LEBANON WEST } \\
\text { App. Number: } & 492779 \text { Rev. } 0
\end{aligned}
$$

TIA-222 Revision:
Tower Type: $\square$

| Top \& Bot. Pad Rein. Different?: | $\Gamma$ |
| ---: | :---: |
| Block Foundation?: | $\Gamma$ |


| Superstructure Analysis Reactions |  |  |
| ---: | :---: | :---: |
| Compression, $\mathbf{P}_{\text {comp: }}:$ | 31.09 | kips |
| Base Shear, Vu_comp: | 26.69 | kips |
|  |  |  |
| Moment, $\mathbf{M}_{\mathbf{u}}:$ | 2664.77 |  |
| Tower Height, H: $:$ | 149 | ft |
|  |  |  |
| BP Dist. Above Fdn, $\mathbf{b p}_{\text {dist }}:$ | 5.5 | in |


| Pier Properties |  |  |  |
| ---: | :---: | :---: | :---: |
| Pier Shape: | Square |  |  |
| Pier Diameter, dpier: | 7 | ft |  |
| Ext. Above Grade, E: | 1 | ft |  |
| Pier Rebar Size, Sc: | 8 |  |  |
| Pier Rebar Quantity, mc: | 45 |  |  |
| Pier Tie/Spiral Size, St: | 4 |  |  |
| Pier Tie/Spiral Quantity, mt: | 5 |  |  |
| Pier Reinforcement Type: | Tie |  |  |
| Pier Clear Cover, cc pier: | 3 | in |  |
|  |  |  |  |


| Foundation Analysis Checks |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: |
|  | Capacity | Demand | Rating | Check |
|  |  |  |  |  |
| Lateral (Sliding) (kips) | 334.73 | 26.69 | $\mathbf{7 . 6} \%$ | Pass |
| Bearing Pressure (ksf) | 8.34 | 1.95 | $\mathbf{2 2 . 2 \%}$ | Pass |
| Overturning (kip*tt) | 6716.16 | 2877.18 | $\mathbf{4 2 . 8 \%}$ | Pass |
| Pier Flexure (Comp.) (kip*t) | 5734.94 | 2784.88 | $\mathbf{4 6 . 2 \%}$ | Pass |
|  |  |  |  |  |
| Pier Compression (kip) | 31187.52 | 70.78 | $\mathbf{0 . 2 \%}$ | Pass |
| Pad Flexure (kip*ft) | 4347.14 | 922.76 | $\mathbf{2 0 . 2 \%}$ | Pass |
| Pad Shear - 1-way (kips) | 896.51 | 142.49 | $\mathbf{1 5 . 1 \%}$ | Pass |
| Pad Shear - 2-way (Comp) (ksi) | 0.190 | 0.028 | $\mathbf{1 3 . 9 \%}$ | Pass |
| Flexural 2-way (Comp) (kip*ft) | 5555.13 | 1670.93 | $\mathbf{2 8 . 6 \%}$ | Pass |

*Rating per TIA-222-H Section
15.5

| Soil Rating | 42.8\% |
| :--- | :--- |
|  | $46.2 \%$ |


| Pad Properties |  |  |
| ---: | :---: | :---: |
| Depth, D: | 6.5 | ft |
| Pad Width, W: | 25 | ft |
| Pad Thickness, T: | 3 | ft |
| Pad Rebar Size (Bottom), Sp: | 8 |  |
| Pad Rebar Quantity (Bottom), mp: | 40 |  |
| Pad Clear Cover, cc $\mathbf{c a d}:$ | 3 | in |

Material Properties
Rebar Grade, Fy:

| Rebar Grade, Fy: | 60 | ksi |
| ---: | :---: | :--- |
| Concrete Compressive Strength, F'c: | 4 | ksi |
| Dry Concrete Density, $\delta \mathbf{c}:$ | 150 | pcf |


| Soil Properties |  |  |
| ---: | :---: | :--- |
| Total Soil Unit Weight, $\gamma:$ | 135 | pcf |
| Ultimate Gross Bearing, Qult: | 11.123 | ksf |
| Cohesion, $\mathbf{C u}:$ |  | ksf |
| Friction Angle, $\varphi:$ | 36 | degrees |
| SPT Blow Count, $\mathbf{~}$ blows: |  |  |
| Base Friction, $\mu:$ |  |  |
| Neglected Depth, N: | 3.00 | ft |
| Foundation Bearing on Rock? | No |  |
| Groundwater Depth, gw: | 19 | ft |

## Address:

No Address at This Location

## ASCE 7 Hazards Report

Standard: ASCE/SEI7-10
Risk Category: II
Soil Class: D - Stiff Soil

Elevation: 486.64 ft (NAVD 88)
Latitude: 41.627925
Longitude: -72.30565


## Seismic

Site Soil Class: D-Stiff Soil

Results:

| $\mathrm{S}_{\mathrm{S}}:$ | 0.174 |
| :--- | :--- |
| $\mathrm{~S}_{1}:$ | 0.062 |
| $\mathrm{~F}_{\mathrm{a}}:$ | 1.6 |
| $\mathrm{~F}_{\mathrm{V}}:$ | 2.4 |
| $\mathrm{~S}_{\mathrm{Ms}}:$ | 0.279 |
| $\mathrm{~S}_{\mathrm{M} 1}:$ | 0.148 |


| $\mathrm{S}_{\mathrm{DS}}:$ | 0.186 |
| :--- | :--- |
| $\mathrm{~S}_{\mathrm{D} 1}:$ | 0.099 |
| $\mathrm{~T}_{\mathrm{L}}:$ | 6 |
| $\mathrm{PGA}:$ | 0.088 |
| $\mathrm{PGA}_{\mathrm{M}}:$ | 0.14 |
| $\mathrm{~F}_{\mathrm{PGA}}:$ | 1.6 |
| $\mathrm{I}_{\mathrm{e}}:$ | 1 |

## Seismic Design Category <br> B




Data Accessed:
Date Source:

Thu Aug 292019
USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating
Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIVIL ENGINEERS
Ice

Results:

Ice Thickness:
Concurrent Temperature:
Gust Speed:
Data Source:
Date Accessed:
0.75 in.

15 F
50 mph
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Thu Aug 292019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 50 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

## Exhibit E

## Mount Analysis

August 28, 2019
Kevin Morrow
Crown Castle
3530 Toringdon Way, Suite 300
Charlotte, NC 28277
(704) 405-6619

1

Subject:
Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:
Site Data:
Mount Analysis

| AT\&T Mobility Reconfiguration |  |
| :--- | :--- |
| Client Site Number: | 10071090 |
| Client Site Name: | Lebanon West |
| Crown Castle BU Number: | 842865 |
| Crown Castle Site Name: | Lebanon West |
| Crown Castle JDE Job Number: | 574646 |
| Crown Castle Order Number: | 492779 Rev. 0 |
| TEP Project Number: | 155516.293551 |

1593 Exeter Road, Lebanon, New London County, CT 06249
Latitude $41^{\circ} 37^{\prime} 40.53^{\prime \prime}$, Longitude - $72^{\circ} 18^{\prime} 20.34^{\prime \prime}$

## Structure Information:

Tower Height \& Type: Mount Elevation:
Mount Width \& Type:
$150.0 \pm \mathrm{ft}$ Monopole
119.0 ft
7.7 ft T-Arm Mount

Tower Engineering Professionals
326 Tryon Road
Raleigh, NC 27603
(919) 661-6351

Structures@tepgroup.net
Crown Castle Designation:

Dear Kevin Morrow,
Tower Engineering Professionals is pleased to submit this "Mount Analysis" to determine the structural integrity of AT\&T Mobility's antenna mounting system with proposed appurtenance and equipment addition on the above mentioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tieoff point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis, we have determined the mount stress level to be:

## T-Arm Mount

## Sufficient Capacity

This analysis utilizes an ultimate 3 -second gust wind speed of 130 mph from the 2018 International Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Traveon S. Harris / GHM
Respectfully submitted by:

Aaron T. Rucker, P.E.
Structural Division Manager


## TABLE OF CONTENTS

## 1) INTRODUCTION

## 2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

## 3) ANALYSIS PROCEDURE

Table 2 - Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity
Table 4 - Tieback Connection Data Table
4.1) Recommendations
5) APPENDIX A

Wire Frame and Rendered Models
6) APPENDIX B

Software Input Calculations
7) APPENDIX C

Software Analysis Output
8) APPENDIX D

Additional Calculations

## 1) INTRODUCTION

The mount is an existing 7.7-ft T-Arm mount, mapped by Tower Engineering Professionals.

## 2) ANALYSIS CRITERIA

| Building Code: | 2018 IBC |
| :--- | :--- |
| TIA-222 Revision: | TIA-222-H |
| Risk Category: | II |
| Ultimate Wind Speed: | 130 mph |
| Exposure Category: | C |
| Topographic Category at Base: | 1.0 |
| Topographic Category at Mount: | 1.0 |
| Ice Thickness: | 1.00 in |
| Wind Speed with Ice: | 50 mph |
| Seismic Design Category: | B |
| Seismic Ss: | 0.201 |
| Seismic S: | 0.055 |
| Live Loading Wind Speed: | 30 mph |
| Live Loading at Mid/End-Points: | 250 lb |
| Man Live Loading at Mount Pipes: | 500 lb |

Table 1 - Proposed Equipment Configuration

| Mount Centerline <br> (ft) | Antenna Centerline (ft) | Number <br> of <br> Antennas | Antenna Manufacturer | Antenna Model | Mount / Modification Details |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 119.0 | 120.0 | 3 | CCI Antennas | DMP65R-BU8D | T-Arm Mount |
|  |  | 3 | CCI Antennas | HPA65R-BU8A |  |
|  |  | 3 | Powerwave Technologies | 7770.00 |  |
|  |  | 3 | Ericsson | RRUS 4449 B5/B12 |  |
|  |  | 3 | Ericsson | RRUS 8843 B2/B66A |  |
|  |  | 6 | Powerwave Technologies | LGP21401 |  |
|  |  | 1 | Raycap | DC6-48-60-0-8C-EV |  |
|  |  | 1 | Raycap | DC6-48-60-18-8F |  |

## 3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

| Document | Remarks | Reference | Source |
| :---: | :---: | :---: | :---: |
| Mount Mapping | Tower Engineering Professionals | 8500516 | CCIsites |
| Loading Application | AT\&T Mobility | Order 492779 Rev. 0 | CCIsites |

## 3.1) Analysis Method

RISA-3D (Version 17.0.1), a commercially available analysis software package, was used to create a three-dimensional model of the mount and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A and Appendix C.

TEP Mount Analysis Tool, a tool internally developed by TEP using Microsoft Excel, was used to calculate member loading for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 Tower Mount Analysis (Revision C).

In addition, this analysis is in accordance with AT\&T's Mount Technical Directive - R14.1.

## 3.2) Assumptions

1) The mount was built in accordance with the manufacturer's specifications.
2) The mount has been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, mounts and other appurtenances are as specified in Table 1. All mount components have been assumed to be in sufficient condition to carry their full design capacity for this analysis. Refer to the issued mapping for any structural and/or maintenance issues found during our site visit if applicable.
4) All mount components are in sufficient condition to carry their full design capacity.
5) TEP did not analyze the collar mount connection to the pole and assumes it to have sufficient structural capacity to transfer the applied forces from the mount to the tower.
6) All material grades used for this analysis, unless verified by mount manufacturer design, were assumed per AISC Table 2-4, $15^{\text {th }}$ Edition. See RISA-3D output for confirmation on grades used in this analysis.

This analysis may be affected if any assumptions are not valid or have been made in error. Tower Engineering Professionals should be notified to determine the effect on the structural integrity of the antenna mounting system.

## 4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (T-Arm Mount)

| Notes | Component | Critical <br> Member | Mount <br> Centerline (ft) | \% Capacity | Pass / Fail |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Face Horizontals | FTTH | 119.0 | 55.5 | Pass |
| 1 | Support Arms | SA-1 | 119.0 | 17.2 | Pass |
| 1 | Mount Pipes | MP-2 | 119.0 | 99.2 | Pass |
| 2 | Connection Bolts | - | 119.0 | 12.5 | Pass |
| 2 | Connection Plate | - | 119.0 | 25.3 | Pass |


| Structure Rating (max from all components) $=$ | $99.2 \%$ |
| :---: | :---: |

## Notes:

1) See additional documentation in "Appendix C - Analysis Output" for calculations supporting the \% capacity listed.
2) See additional documentation in "Appendix D - Additional Calculations" for calculations supporting the \% capacity listed.
3) All sectors are typical.

Table 4 - Tieback Connection Data Table

| Tower <br> Connection <br> Node No. | Existing/ <br> Proposed | Resultant End <br> Reaction (lb) | Connected Member <br> Type | Connected <br> Member Size | Member <br> Compressive <br> Capacity (Ib) | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - |

## Notes:

1) Tieback connection point is within $25 \%$ of either end of the connected tower member.
2) Tower connection point is NOT within $25 \%$ of either end of the connected tower member.
3) Reduced member compressive capacity according to CED-STD-10294 Standard for Installation of Mounts and Appurtenances.

## 4.1) Recommendations

1) If the load differs from that described in Table 1 of this report or the provisions of this analysis are found to be invalid, another structural analysis should be performed.
2) The mount and its connection have sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

## APPENDIX A

WIRE FRAME AND RENDERED MODELS


| Tower Engineering Profes... |  | SK -1 |
| :--- | :---: | :--- |
| Traveon S. Harris | CCI BU No. 842865 | Aug 28, 2019 at 11:36 AM |
| TEP No. 155516.293551 |  | CCI BU No. 842865.r3d |



Loads: BLC 1, Dead Envelope Only Solution

| Tower Engineering Profes... |  | SK - 2 |
| :--- | :---: | :--- |
| Traveon S. Harris | CCI BU No. 842865 | Aug 28, 2019 at 11:36 AM |
| TEP No. 155516.293551 |  | CCI BU No. 842865.r3d |



Member Code Checks Displayed (Enveloped)
Envelope Only Solution

| Tower Engineering Profes... |  | SK -3 |
| :--- | :---: | :--- |
| Traveon S. Harris | CCI BU No. 842865 | Aug 28, 2019 at 11:37 AM |
| TEP No. 155516.293551 |  | CCI BU No. 842865.r3d |



| Tower Engineering Profes... |  | SK -4 |
| :--- | :---: | :--- |
| Traveon S. Harris | CCI BU No. 842865 | Aug 28, 2019 at 11:37 AM |
| TEP No. 155516.293551 |  | CCI BU No. 842865.r3d |



| Tower Engineering Profes... |  | SK -5 |
| :--- | :---: | :--- |
| Traveon S. Harris | CCI BU No. 842865 | Aug 28, 2019 at 11:37 AM |
| TEP No. 155516.293551 |  | CCI BU No. 842865.r3d |

## APPENDIX B

SOFTWARE INPUT CALCULATIONS

CCI BU No. 842779
TEP No. 155516.293551
Analysis By: TSH 8/28/2019
Checked By: GHM 8/28/2019

| Code Revisions: | TIA-222-H | IBC 2018 |
| ---: | :---: | :---: |
| Tower Type: | Monopole |  |
|  |  |  |

Wind Inputs:

| Ult. Wind Velocity: | 130.0 | mph |
| ---: | :---: | :--- | :--- |
| Live Load Velocity: | 30.0 | mph |
| Ice Wind Velocity: | 50.0 | mph |
| Base Ice Thickness: | 1.00 | inches |
| Mount Centerline: | 119.0 | ft |
| Antenna Centerline: | 120.0 | ft |
| Exposure Category: | C |  |
| Topo Category: | 1 |  |
| Risk Category: | II |  |
| Ground Elevation: | 486.64 | ft |

Wind Calculations:

|  |  |  |
| :---: | :---: | :---: |
| $\mathrm{K}_{\mathrm{zt}}$ : | 1.000 | Section 2.6.6 |
| $K_{d}$ : | 0.950 |  |
| $\mathrm{K}_{\text {z-Mount }}$ : | 1.313 | Section 2.6.5.2 |
| $\mathrm{K}_{\text {z-Antenna }}$ : | 1.315 | Section 2.6.5.2 |
| $\mathrm{K}_{\mathrm{iz}}$ : | 1.137 | Section 2.6.10 |
| Ice Thickness: | 0.967 | inches - Section 2.6.10 |
| $K_{\text {es-wind }}$ : | 0.95 | Annex S (Table S-1) |
| $\mathrm{K}_{\text {es-ice }}$ : | 0.85 | Annex S (Table S-1) |


| Without Ice - (psf) |  | With Ice - (psf) |  |
| :---: | :---: | :---: | :---: |
| $\left(\mathbf{q}_{\mathbf{z}} \mathbf{G}_{\mathrm{h}}\right)_{\text {Mount }}:$ | 50.37 | $\left(\mathbf{q}_{\mathbf{z}} \mathbf{G}_{\mathrm{h}}\right)_{\text {Mount }}:$ | 7.84 |
| $\left(\mathbf{q}_{\mathbf{z}} \mathbf{G}_{\mathrm{h}}\right)_{\text {Antenna }}:$ | 50.45 | $\left(\mathbf{q}_{\mathbf{z}} \mathbf{G}_{\mathrm{h}}\right)_{\text {Antenna: }}:$ | 7.86 |

TEP No.
CCI BU No. 842779
TEP No. 155516.293551
Checked By:
TSH
GHM

## Antenna Loads are Calculated in Accordance with TIA-222-H

Azimuth is the absolute angle measured clockwise from RISA-3D global $X$-axis.

## Distance from start node of the member

| MFR | Model | Height (in) | Width (in) | Depth (in) | Wt. (lbs) | Azimuth ${ }^{\circ}$ | Qty | Shape | Member Label | Location \#1 (ft,\%) | Location \#2 (ft,\%) | Location \#3 (ft,\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CCI Antennas | HPA65R-BU8A | 96.00 | 11.70 | 7.60 | 54.00 | 0.00 | 1 | Flat | MP-1 | 0.50 | 8.00 |  |
| Ericsson | RRUS 4449 B5/B12 | 17.90 | 13.19 | 9.44 | 71.00 | 0.00 | 1 | Flat | MP-1 | 2.00 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| CCI Antennas | DMP65R-BU8D | 96.00 | 20.70 | 7.70 | 95.70 | 0.00 | 1 | Flat | MP-2 | 0.50 | 8.00 |  |
| Powerwave Technologies | LGP21401 | 14.40 | 9.20 | 2.60 | 14.10 | 0.00 | 2 | Flat | MP-2 | 2.00 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Powerwave Technologies | 7770.00 | 55.00 | 11.00 | 5.00 | 35.00 | 0.00 | 1 | Flat | MP-3 | 0.50 | 5.00 |  |
| Ericsson | RRUS 8843 B2/B66A | 14.90 | 13.20 | 10.90 | 72.00 | 0.00 | 1 | Flat | MP-3 | 2.00 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Raycap | DC6-48-60-0-8C-EV | 31.40 | 10.24 | 18.28 | 26.20 | 0.00 | 1 | Flat | MP-4 | 1.00 |  |  |

TEP No. 155516.293551
Analysis By: TSH 8/28/2019
Checked By: GHM 8/28/2019
Member Forces are Calculated in Accordance with TIA-222-H

| Member Name | Wind Proj. (in) | Length (in) | Shape | $\boldsymbol{\theta}\left({ }^{\circ}\right)$ | Perimeter (in) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FFTH | 3.500 | 92.00 | Round | 90.00 | 11.00 |
| MP-1 | 2.375 | 102.00 | Round |  | 7.46 |
| MP-2 | 2.375 | 102.00 | Round |  | 7.46 |
| MP-3 | 2.375 | 114.00 | Round |  | 7.46 |
| SA-1 | 4.000 | 11.00 | Flat | 0.00 | 16.00 |
| MP-4 | 2.375 | 36.00 | Round |  | 7.46 |

## APPENDIX C


Company : Tower Engineering Professionals, Inc Traveon S. Harris 293551

## (Global) Model Settings

| Display Sections for Member Calcs | 5 |
| :---: | :---: |
| Max Internal Sections for Member Calcs | 97 |
| Include Shear Deformation? | Yes |
| Increase Nailing Capacity for Wind? | Yes |
| Include Warping? | Yes |
| Trans Load Btwn Intersecting Wood Wall? | Yes |
| Area Load Mesh (in^2) | 144 |
| Merge Tolerance (in) | . 12 |
| P-Delta Analysis Tolerance | 0.50\% |
| Include P-Delta for Walls? | Yes |
| Automatically Iterate Stiffness for Walls? | Yes |
| Max Iterations for Wall Stiffness | 3 |
| Gravity Acceleration (ft/sec^2) | 32.2 |
| Wall Mesh Size (in) | 24 |
| Eigensolution Convergence Tol. (1.E-) | 4 |
| Vertical Axis | Y |
| Global Member Orientation Plane | XZ |
| Static Solver | Sparse Accelerated |
| Dynamic Solver | Accelerated Solver |
| Hot Rolled Steel Code | AISC 15th(360-16): LRFD |
| Adjust Stiffness? | No |
| RISAConnection Code | None |
| Cold Formed Steel Code | None |
| Wood Code | None |
| Wood Temperature | < 100F |
| Concrete Code | None |
| Masonry Code | None |
| Aluminum Code | None - Building |
| Stainless Steel Code | None |
| Number of Shear Regions | 4 |
| Region Spacing Increment (in) | 4 |
| Biaxial Column Method | Exact Integration |
| Parme Beta Factor (PCA) | . 65 |
| Concrete Stress Block | Rectangular |
| Use Cracked Sections? | Yes |
| Use Cracked Sections Slab? | Yes |
| Bad Framing Warnings? | No |
| Unused Force Warnings? | Yes |
| Min 1 Bar Diam. Spacing? | No |
| Concrete Rebar Set | REBAR_SET_ASTMA615 |
| Min \% Steel for Column | 1 - |
| Max \% Steel for Column | 8 |

## Hot Rolled Steel Properties

| Label |  | E [ksi] | $\frac{\mathrm{G}[\mathrm{ksi}]}{11154}$ | Nu | Therm (11E...Densityjk/tt. |  | $\begin{gathered} \text { Yield[ksi] } \\ \hline 50 \\ \hline \end{gathered}$ |  | Fulksi] | Rt |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | A992 | 29000 |  | . 3 |  |  | 1.1 |  |  |
| 2 | A36 Gr. 36 | 29000 | 11154 | . 3 | 65 | 49 |  | 36 | 1.5 | 58 | 1.2 |
| 3 | A572 Gr. 50 | 29000 | 11154 | . 3 | 65 | 49 | 50 | 1.1 | 65 | 1.1 |
| 4 | A500 Gr.B RND | 29000 | 11154 | . 3 | . 65 | 49 | 42 | 1.4 | 58 | 1.3 |
| 5 | A500 Gr.B Rect | 29000 | 11154 | . 3 | 65 | 49 | 46 | 1.4 | 58 | 1.3 |
| 6 | A53 Gr.B | 29000 | 11154 | 3 | 65 | 49 | 35 | 1.6 | 60 | 1.2 |

## Hot Rolled Steel Section Sets

| Label |  | Shape | Type | Design List |  | Design Ru. | $\left.\frac{A}{} \text { [in } 2\right]$ |  | [in4] | $\frac{J[\text { in4] }}{5.69}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Face Horizontal | PIPE 3.0 |  | None |  |  |  | $2.85$ | 2.85 |  |
| 2 | Support Arm | HSS4X4X5 | Beam | None | A500 Gr.B. | Typical | 4.1 | 9.14 | 9.14 | 15.3 |
| 3 | Mount Pipes | PIPE 2.0 | Column | None | A53 Gr.B | Typical | 1.02 | . 627 | . 627 | 1.25 |

## Cold Formed Steel Section Sets



## Material Takeoff



[^1]

## Joint Boundary Conditions



## Member Primary Data

| Label |  | I Joint | int | K Joint | Rotate(de.. | Section/Shape | Type | Design List | Material Design Rules |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | FF1 | FF2 |  |  | Face Horizontal | Beam | None | A53 Gr.B | Typical |
| 2 | MP-1 | MP-1A | MP-1B |  |  | Mount Pipes | Column | None | A53 Gr.B | Typical |
| 3 | MP-2 | MP-2A | MP-2B |  |  | Mount Pipes | Column | None | A53 Gr.B | Typical |
| 4 | MP-3 | MP-3A | MP-3B |  |  | Mount Pipes | Column | None | A53 Gr.B | Typical |
| 5 | SA-1 | SA1 | SF1-3 |  |  | Support Arm | Beam | None | A500 Gr.... | Typical |
| 6 | MP-4 | SF1-V1A | SF1-V1B |  |  | Mount Pipes | Column | None | A53 Gr.B | Typical |

## Member Advanced Data

|  | Label | 1 Release | $J$ Release | 1 Offset[in] | J Offset[in] | T/C Only | Physica | fl Rat | Analysis | Inactive | Seismic... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , | FFTH |  |  |  |  |  | Yes |  |  |  | None |
| 2 | MP-1 |  |  |  |  |  | Yes | ${ }^{* *} N A * *$ |  |  | None |
| 3 | MP-2 |  |  |  |  |  | Yes | **NA** |  |  | None |
| 4 | MP-3 |  |  |  |  |  | Yes | ${ }^{* *} N A^{* *}$ |  |  | None |
| 5 | SA-1 |  |  |  |  |  | Yes |  |  |  | None |
| 6 | MP-4 |  |  |  |  |  | Yes | ${ }^{* *} N A *$ |  |  | None |

## Hot Rolled Steel Design Parameters

|  | Label | Shape | Length $[$ [t] | Lbyy ft ] | Lbzz[ft] | Lcomp top [ft] | Lcomp bot $($ ft | L-torau.. | Kyy | Kzz | Cb | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | Face Horizo.. | 7.667 | 3.833 | 3.833 |  |  |  | 2.1 | 2.1 |  | Lateral |
| 2 | MP-1 | Mount Pipes | 8.5 | Segment | Segment |  |  |  | 2.1 | 2.1 |  | Lateral |
| 3 | MP-2 | Mount Pipes | 8.5 | Segment | Segment |  |  |  | 2.1 | 2.1 |  | Lateral |
| 4 | MP-3 | Mount Pipes | 9.5 | Segment | Segment |  |  |  | 2.1 | 2.1 |  | Lateral |
| 5 | SA-1 | Support Arm | . 917 |  |  |  |  |  | 2.1 | 2.1 |  | Lateral |
| 6 | MP-4 | Mount Pipes |  | am | Segment |  |  |  |  |  |  | Lateral |

## Cold Formed Steel Design Parameters

| $\quad$ Label | Shape |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Basic Load Cases

|  | BLC Description | Category | X Gravity | Y Gravity | Z Gravity | Joint | Point | Distributed | Area(Me.. | Surface(P. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Dead | None |  | -1 |  |  | 10 |  |  |  |
| 2 | 0 Wind - No Ice | None |  |  |  |  | 10 | 6 |  |  |
| 3 | 30 Wind - No Ice | None |  |  |  |  | 20 | 12 |  |  |
| 4 | 45 Wind - No lce | None |  |  |  |  | 20 | 12 |  |  |
| 5 | 60 Wind - No Ice | None |  |  |  |  | 20 | 12 |  |  |
| 6 | 90 Wind - No lce | None |  |  |  |  | 10 | 6 |  |  |
| 7 | 120 Wind - No Ice | None |  |  |  |  | 20 | 12 |  |  |
| 8 | 135 Wind - No Ice | None |  |  |  |  | 20 | 12 |  |  |
| 9 | 150 Wind - No Ice | None |  |  |  |  | 20 | 12 |  |  |
| 10 | 180 Wind - No Ice | None |  |  |  |  | 10 | 6 |  |  |
| 11 | 210 Wind - No Ice | None |  |  |  |  | 20 | 12 |  |  |
| 12 | 225 Wind - No lce | None |  |  |  |  | 20 | 12 |  |  |
| 13 | 240 Wind - No Ice | None |  |  |  |  | 20 | 12 |  |  |


|  |  | Tower Engineering Professionals, Inc. Traveon S. Harris TEP No. 155516.293551 CCI BU No. 842865 |  |  |  |  |  |  | Aug 28, 2019 11:38 AM Checked By: GHM |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Basic Load Cases (Continued) |  |  |  |  |  |  |  |  |  |  |
|  | BLC Description | Category | X Gravity | Y Gravity | Z Gravity | Joint | Point | Distributed | Area(Me... | Surface(P. |
| 14 | 270 Wind - No Ice | None |  |  |  |  | 10 | 6 |  |  |
| 15 | 300 Wind - No Ice | None |  |  |  |  | 20 | 12 |  |  |
| 16 | 315 Wind - No Ice | None |  |  |  |  | 20 | 12 |  |  |
| 17 | 330 Wind - No Ice | None |  |  |  |  | 20 | 12 |  |  |
| 18 | Ice Weight | None |  |  |  |  | 10 | 6 |  |  |
| 19 | 0 Wind - Ice | None |  |  |  |  | 10 | 6 |  |  |
| 20 | 30 Wind - Ice | None |  |  |  |  | 20 | 12 |  |  |
| 21 | 45 Wind - Ice | None |  |  |  |  | 20 | 12 |  |  |
| 22 | 60 Wind - Ice | None |  |  |  |  | 20 | 12 |  |  |
| 23 | 90 Wind - Ice | None |  |  |  |  | 10 | 6 |  |  |
| 24 | 120 Wind - Ice | None |  |  |  |  | 20 | 12 |  |  |
| 25 | 135 Wind - Ice | None |  |  |  |  | 20 | 12 |  |  |
| 26 | 150 Wind - Ice | None |  |  |  |  | 20 | 12 |  |  |
| 27 | 180 Wind - Ice | None |  |  |  |  | 10 | 6 |  |  |
| 28 | 210 Wind - Ice | None |  |  |  |  | 20 | 12 |  |  |
| 29 | 225 Wind - Ice | None |  |  |  |  | 20 | 12 |  |  |
| 30 | 240 Wind - Ice | None |  |  |  |  | 20 | 12 |  |  |
| 31 | 270 Wind - Ice | None |  |  |  |  | 10 | 6 |  |  |
| 32 | 300 Wind - Ice | None |  |  |  |  | 20 | 12 |  |  |
| 33 | 315 Wind - Ice | None |  |  |  |  | 20 | 12 |  |  |
| 34 | 330 Wind - Ice | None |  |  |  |  | 20 | 12 |  |  |
| 35 | Lm | None |  |  |  | 1 |  |  |  |  |
| 36 | Lv | None |  |  |  | 1 |  |  |  |  |
| 37 | Seismic Load X | ELX | -1 |  |  |  |  |  |  |  |
| 38 | Seismic Load Z | ELZ |  |  | -1 |  |  |  |  |  |

## Load Combinations

1 Description So....... S... BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac.

 \begin{tabular}{|c|c|}
\hline 3 \& $0.9 \mathrm{D}+1.030$-Wind Yes $Y$ <br>
\hline 4 \& $0.9 \mathrm{D}+1.045-\mathrm{Wind}$ Yes Y <br>
\hline

 $\begin{array}{ll}4 & 0.9 \mathrm{D}+1.045-\text {-Wind Yes } \\ 5 & 0.9 \mathrm{D}+1.060 \text {-Wind Yes }\end{array}$ 

\hline 6 \& $0.9 \mathrm{D}+1.0$ <br>
\hline 7 \& $0.90-$ Wind Yes <br>
\hline

 

7 \& $0.9 \mathrm{D}+1.0120-$ Wind <br>
8 \& $0.9 \mathrm{D}+1.0125$ <br>
\hline

 

\hline 8 \& $0.9 \mathrm{D}+1.0135-$ Wind $Y$ Yes $Y$ <br>
\hline 9 \& $0.9 \mathrm{D}+1.0150-$ Wind \& Yes <br>
\hline
\end{tabular} 10 0.9D+1.0 180-Wind Yes $1010.9 \mathrm{C}+1.0210$-Wind Yes

 \begin{tabular}{ll|l|}
13 \& $0.9 D+1.0$ \& 240 -Wind <br>
\hline 14 \& $0.9 D+1.0270-$ Yind $Y$ <br>
\hline

 

\hline 14 \& $0.9 D+1.0270-$ Wind $Y$ Yes $Y$ <br>
\hline 15 \& $0.00+1.030-$ Wind <br>
\hline 16 \& <br>
\hline

 

15 \& $0.9 D+1.0200-$ Wind \& Yes $Y$ <br>
16 \& $0.9 D+1.0315-W i n d ~$ \& $Y$ <br>
\hline 17 \& 0.25 <br>
\hline

 $\begin{array}{lll}17 & 0.9 D+1.0330-\text { Wind } & \text { Yes } Y \\ 18 & 1.2 \mathrm{D}+1.00 \text {-Wind } & \text { Yes } \\ \text { Y }\end{array}$ 19 1.2D+1.0 30-Wind Yes 20 1.2D+1.0 45-Wind Yes 

21 \& $1.2 \mathrm{D}+1.060-$-Wind Yes <br>
22 \& $1.2 \mathrm{D}+1.090-$-Wind <br>
\hline

 

22 \& $1.2 \mathrm{D}+1.090$-Wind $Y$ Yes <br>
23 \& $1.2 \mathrm{D}+1.0120$-Wind $Y$ Yes <br>
\hline

 

24 \& $1.2 D+1.0$ \& 135 -Wind \& Yes $Y$ <br>
\hline 25 \& $1.2 D+1.0$ \& $150-$ Wind \& Yes $Y$ <br>
\hline

 

\hline 25 \& $1.2 \mathrm{~L}+1.0150$-Wind \& Yes $Y$ <br>
\hline 26 \& 1.2D +1.0180 -Wind \& Yes $Y$ <br>
\hline 27 \& $1.2 \mathrm{D}+1.0210$-Wind \& Yes $Y$ <br>
\hline
\end{tabular}

[^2]| RISA | Company Designer Job Number Model Name | Tower Engineering Professionals, Inc. <br> Traveon S. Harris <br> TEP No. 155516.293551 <br> CCI BU No. 842865 | Aug 28, 2019 11:38 AM Checked By: GHM |
| :---: | :---: | :---: | :---: |

$\begin{array}{lll}\text { Designer } & \text { Tower Engineering } \\ \text { Oraveon S. Harris } \\ \text { Job Number } & \text { Tre } \\ \text { Model Name } & \text { TEP No. } 5551616.293551\end{array}$
Checked By: GHM

## Load Combinations (Continued)



RISA-3D Version 17.0.1 [...1...।...।.......IRISA-3DICCI BU No. 842865.r3d]


## Joint Loads and Enforced Displacements (BLC 35 : Lm)



## Joint Loads and Enforced Displacements (BLC 36 : Lv)

|  | Joint Label | L.D,M | Direction | Magnitude[(k,k-fti), (in,rad), (k*s^2/tt.. |
| :---: | :---: | :---: | :---: | :---: |
| 1 | FF1 | L | Y | -. 25 |

## Member Point Loads (BLC 1 : Dead)

|  | Member Label | Direction | Magnitudelk,k-ft] | Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | MP-1 | Y | -. 027 | . 5 |
| 2 | MP-1 | Y | -. 071 | 2 |
| 3 | MP-2 | Y | -. 048 | . 5 |
| 4 | MP-2 | Y | -. 028 | 2 |
| 5 | MP-3 | Y | -. 018 | . 5 |
| 6 | MP-3 | Y | -. 072 | 2 |
| 7 | MP-4 | Y | -. 026 | 1 |
| 8 | MP-1 | Y | -. 027 | 8 |
| 9 | MP-2 | Y | -. 048 | 8 |
| 10 | MP-3 | Y | -. 018 | 5 |

Member Point Loads (BLC 2:0 Wind - No Ice)


Member Point Loads (BLC 3:30 Wind - No Ice)



Company : Tower Engineering Professionals, Inc $\begin{array}{lll}\text { Designer } & \vdots \text { Traveon S. Harris } \\ \text { Jo Number } & \text { TEP No. } 155516.293551 \\ \text { Model Name } & \text { CCI BU No. } 842865\end{array}$ | 162965551 |
| :--- |

Aug 28, 2019
$11: 38$ AM

Member Point Loads (BLC 3 : 30 Wind -No Ice) (Continued)

|  | Member Label | Direction | Magnitude[ [k, k-tt] | Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
| 2 | MP-1 | X | -. 072 | 2 |
| 3 | MP-2 | X | -. 303 | . 5 |
| 4 | MP-2 | X | -. 072 | 2 |
| 5 | MP-3 | X | -. 096 | . 5 |
| 6 | MP-3 | X | -. 062 | 2 |
| 7 | MP-4 | X | -. 128 | 1 |
| 8 | MP-1 | X | -. 205 | 8 |
| 9 | MP-2 | X | -. 303 | 8 |
| 10 | MP-3 | X | -. 096 | 5 |
| 11 | MP-1 | Z | -. 118 | . 5 |
| 12 | MP-1 | Z | -. 041 | 2 |
| 13 | MP-2 | Z | -. 175 | . 5 |
| 14 | MP-2 | Z | -. 042 | 2 |
| 15 | MP-3 | Z | -. 055 | . 5 |
| 16 | MP-3 | Z | -. 036 | 2 |
| 17 | MP-4 | Z | -. 074 | 1 |
| 18 | MP-1 | Z | -. 118 | 8 |
| 19 | MP-2 | Z | -. 175 | 8 |
| 20 | MP-3 | Z | -. 055 | 5 |

## Member Point Loads (BLC 4:45 Wind - No Ice)



Member Point Loads (BLC 5:60 Wind - No Ice)


RISA-3D Version 17.0.1 [...................IRISA-3DICCI BU No. 842865.r3d]
Page 7


## Member Point Loads (BLC 6:90 Wind - No Ice)

| Member Label |  | Direction | Magnitude[[k,k-t]] | Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Z | -. 183 | . 5 |
| 2 | MP-1 | Z | -. 064 | , |
| 3 | MP-2 | Z | -. 184 | . 5 |
| 4 | MP-2 | Z | -. 032 | 2 |
| 5 | MP-3 | Z | -. 066 | . 5 |
| 6 | MP-3 | Z | -. 061 | 2 |
| 7 | MP-4 | Z | -. 217 | 1 |
| 8 | MP-1 | Z | -. 183 | 8 |
| 9 | MP-2 | Z | -. 184 | 8 |
| 10 | MP-3 | Z | -. 066 | 5 |

## Member Point Loads (BLC 7: 120 Wind - No Ice



## Member Point Loads (BLC 8:135 Wind - No Ice)

| Member Lab |  | Direction | Magnitude[k,k-ft] | Location[ft.\%] |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X | . 155 | . 5 |
| 2 | MP-1 | X | . 054 | 2 |
| 3 | MP-2 | X | . 209 | . 5 |
| 4 | MP-2 | X | . 047 | 2 |
| 5 | MP-3 | X | . 068 | . 5 |
| 6 | MP-3 | X | . 048 | 2 |
| 7 | MP-4 | X | . 121 | 1 |

RISA-3D Version 17.0.1 [..................\RISA-3DICCI BU No. 842865.r3d]
Page 8


Company
Designer
Tower Engineering Professionals, Inc. Traveon S. Harris Srris 293551

Aug 28, 2019
$11: 38$ AM 11:38 AM
Checked By: GHM

Member Point Loads (BLC 8:135 Wind - No Ice)(Continued)


## Member Point Loads (BLC 9:150 Wind - No Ice)



Member Point Loads (BLC 10:180 Wind - No Ice)


Member Point Loads (BLC 11:210 Wind - No Ice)


RISA-3D Version 17.0.1 [...................IRISA-3DICCI BU No. 842865.r3d]
Page 9
Member Point Loads (BLC 11:210 Wind - No Ice)(Continued)

|  | Member Label | Direction | Magnitude[k,k-ti] | Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
| 4 | MP-2 | X | . 072 | 2 |
| 5 | MP-3 | X | . 096 | . 5 |
| 6 | MP-3 | X | . 062 | 2 |
| 7 | MP-4 | X | . 128 | 1 |
| 8 | MP-1 | X | . 205 | 8 |
| 9 | MP-2 | X | . 303 | 8 |
| 10 | MP-3 | X | . 096 | 5 |
| 11 | MP-1 | Z | . 118 | . 5 |
| 12 | MP-1 | Z | . 041 | 2 |
| 13 | MP-2 | Z | . 175 | . 5 |
| 14 | MP-2 | Z | . 042 | 2 |
| 15 | MP-3 | Z | . 055 | . 5 |
| 16 | MP-3 | Z | . 036 | 2 |
| 17 | MP-4 | Z | . 074 | 1 |
| 18 | MP-1 | Z | . 118 | 8 |
| 19 | MP-2 | Z | . 175 | 8 |
| 20 | MP-3 | Z | . 055 | 5 |

Member Point Loads (BLC 12:225 Wind - No Ice)


Member Point Loads (BLC 13:240 Wind - No Ice)



Company
Designer
Tower Engineering Professionals, Inc. Traveon S. Harris
TEP No. 155516.293551

Aug 28,2019
$11: 38$ AM 11:38 AM
Checked By: GHM

Member Point Loads (BLC 13:240 Wind - No Ice)(Continued)


## Member Point Loads (BLC 14:270 Wind - No Ice)



Member Point Loads (BLC 15:300 Wind - No Ice)

|   <br> 1 Member Labe <br> MP-1  |  | Direction | Magnitude[k,k-ft] | Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X | -. 1 | . 5 |
| 2 | MP-1 | X | -. 035 | 2 |
| 3 | MP-2 | X | -. 12 | . 5 |
| 4 | MP-2 | X | -. 024 | 2 |
| 5 | MP-3 | X | -. 041 | 5 |
| 6 | MP-3 | X | -. 032 | 2 |
| 7 | MP-4 | X | -. 097 | 1 |
| 8 | MP-1 | X | -. 1 | 8 |
| 9 | MP-2 | X | -. 12 | 8 |
| 10 | MP-3 | X | -. 041 | 5 |
| 11 | MP-1 | Z | . 174 | . 5 |
| 12 | MP-1 | Z | . 061 | 2 |
| 13 | MP-2 | Z | 208 | . 5 |
| 14 | MP-2 | Z | . 042 | 2 |
| 15 | MP-3 | Z | . 07 | . 5 |
| 16 | MP-3 | Z | . 056 | 2 |
| 17 | MP-4 | Z | 168 | 1 |
| 18 | MP-1 | Z | . 174 | 8 |
| 19 | MP-2 | Z | 208 | 8 |
| 20 | MP-3 | Z | . 07 | 5 |

## Member Point Loads (BLC 16:315 Wind - No Ice)

| Member Label |  | Direction | Magnitudelk $k$ k-ft] | Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | MP-1 | X | -.155 | .5 |
| 2 | MP-1 | X | -.55 | 2 |
| 3 | MP-2 | X | -.209 | .5 |
| 4 | MP-2 | X | -.047 | .5 |
| 5 | MP-3 | X | -.068 | .5 |
| 6 | MP-3 | X | -.048 | 2 |
| 7 | MP-4 | X | -.21 | 1 |
| 8 | MP-1 | X | -.155 | 8 |
| 9 | MP-2 | X | -.209 | 8 |

RISA-3D Version 17.0.1 [..................IRISA-3DICCI BU No. 842865.r3d]
Page 11


Member Point Loads (BLC 16:315 Wind - No Ice)(Continued)

|  | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
| 10 | MP-3 | X | -. 068 | 5 |
| 11 | MP-1 | Z | . 155 | . 5 |
| 12 | MP-1 | Z | . 054 | 2 |
| 13 | MP-2 | Z | 209 | . 5 |
| 14 | MP-2 | Z | . 047 | 2 |
| 15 | MP-3 | Z | 068 | . 5 |
| 16 | MP-3 | Z | . 048 | 2 |
| 17 | MP-4 | Z | 121 | 1 |
| 18 | MP-1 | Z | 155 | 8 |
| 19 | MP-2 | Z | 209 | 8 |
| 20 | MP-3 | Z | . 068 | 5 |

Member Point Loads (BLC 17:330 Wind - No Ice)


## Member Point Loads (BLC 18 : Ice Weight)



Member Point Loads (BLC 19:0 Wind - Ice)


RISA-3D Version 17.0.1 [..................\RISA-3DICCI BU No. 842865.r3d]
Page 12


Company
Designer
Tower Engineering Professionals, Inc. Traveon S. Harris

Aug 28, 2019
11:38 AM $\begin{array}{lll}\text { Job Number } & \vdots \text { TEP No. } 155516.293551 \\ \text { Model Name }\end{array}$

Member Point Loads (BLC 19:0 Wind - Ice) (Continued)


Member Point Loads (BLC 20:30 Wind - Ice)


## Member Point Loads (BLC 21:45 Wind - Ice)



Member Point Loads (BLC 22:60 Wind - Ice)

| Member Label |  | Direction | Magnitude $[k, k-f t]$ | Location $[f t, \%]$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | MP-1 | X | -019 | .5 |

Member Point Loads (BLC 22:60 Wind-Ice)(Continued)

|  | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
| 2 | MP-1 | X | -. 007 | 2 |
| 3 | MP-2 | X | -. 022 | . 5 |
| 4 | MP-2 | X | -. 006 | 2 |
| 5 | MP-3 | X | -. 008 | . 5 |
| 6 | MP-3 | X | -. 007 | 2 |
| 7 | MP-4 | X | -. 018 | 1 |
| 8 | MP-1 | X | -. 019 | 8 |
| 9 | MP-2 | X | -. 022 | 8 |
| 10 | MP-3 | X | -. 008 | 5 |
| 11 | MP-1 | Z | -. 032 | . 5 |
| 12 | MP-1 | Z | -. 012 | 2 |
| 13 | MP-2 | Z | -. 038 | . 5 |
| 14 | MP-2 | Z | -. 011 | 2 |
| 15 | MP-3 | Z | -. 014 | . 5 |
| 16 | MP-3 | Z | -. 012 | 2 |
| 17 | MP-4 | Z | -. 031 |  |
| 18 | MP-1 | Z | -. 032 | 8 |
| 19 | MP-2 | Z | -. 038 | 8 |
| 20 | MP-3 | Z | -. 014 | 5 |

## Member Point Loads (BLC 23 : 90 Wind - Ice)



Member Point Loads (BLC 24 : 120 Wind - Ice)


[^3]

Member Point Loads (BLC 25: 135 Wind -Ice)

|  | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | MP-1 | X | . 029 | . 5 |
| 2 | MP-1 | X | . 011 | 2 |
| 3 | MP-2 | X | . 037 | . 5 |
| 4 | MP-2 | X | . 011 | 2 |
| 5 | MP-3 | X | . 013 | . 5 |
| 6 | MP-3 | X | . 01 | 2 |
| 7 | MP-4 | X | . 023 | 1 |
| 8 | MP-1 | X | . 029 | 8 |
| 9 | MP-2 | X | . 037 | 8 |
| 10 | MP-3 | X | . 013 | 5 |
| 11 | MP-1 | Z | -. 029 | . 5 |
| 12 | MP-1 | Z | -. 011 | 2 |
| 13 | MP-2 | Z | -. 037 | . 5 |
| 14 | MP-2 | Z | -. 011 | 2 |
| 15 | MP-3 | Z | -. 013 | . 5 |
| 16 | MP-3 | Z | -. 01 | 2 |
| 17 | MP-4 | Z | -. 023 | 1 |
| 18 | MP-1 | Z | -. 029 | 8 |
| 19 | MP-2 | Z | -. 037 | 8 |
| 20 | MP-3 | Z | -. 013 | 5 |

## Member Point Loads (BLC 26: 150 Wind - Ice)

|  | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | MP-1 | X | . 037 | . 5 |
| 2 | MP-1 | X | . 014 | 2 |
| 3 | MP-2 | X | . 053 | . 5 |
| 4 | MP-2 | X | . 016 | 2 |
| 5 | MP-3 | X | . 018 | . 5 |
| 6 | MP-3 | X | . 013 | 2 |
| 7 | MP-4 | X | . 024 | 1 |
| 8 | MP-1 | X | . 037 | 8 |
| 9 | MP-2 | X | . 053 | 8 |
| 10 | MP-3 | X | . 018 | 5 |
| 11 | MP-1 | Z | -. 022 | . 5 |
| 12 | MP-1 | Z | -. 008 | 2 |
| 13 | MP-2 | Z | -. 031 | . 5 |
| 14 | MP-2 | Z | -. 009 | 2 |
| 15 | MP-3 | Z | -. 01 | . 5 |
| 16 | MP-3 | Z | -. 007 | 2 |
| 17 | MP-4 | Z | -. 014 | 1 |
| 18 | MP-1 | Z | -. 022 |  |
| 19 | MP-2 | Z | -. 031 | 8 |
| 20 | MP-3 | Z | -. 01 | 5 |

## Member Point Loads (BLC 27:180 Wind - Ice)


|lirisA Company $\quad$ : Tower Engineering Professionals, Inc. $\begin{array}{lll}\begin{array}{ll}\text { Designer } \\ \text { Job Number } \\ \text { Model Name }\end{array} & \vdots \text { TEP No. } 155516.293351 \\ \text { TCCI BU No. } 842865\end{array}$

Member Point Loads (BLC 28 : 210 Wind - Ice)


Member Point Loads (BLC 29:225 Wind - Ice)


Member Point Loads (BLC 30 : 240 Wind - Ice)



Member Point Loads (BLC 30:240 Wind - Ice) (Continued)


Member Point Loads (BLC 31:270 Wind - Ice)

|   <br> 1 Member Label |  | Direction | Magnitude[k,k-tt] | Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Z | . 035 | . 5 |
| 2 | MP-1 | Z | . 013 | 2 |
| 3 | MP-2 | Z | . 035 | . 5 |
| 4 | MP-2 | Z | . 009 | 2 |
| 5 | MP-3 | Z | . 014 | . 5 |
| 6 | MP-3 | Z | . 013 | 2 |
| 7 | MP-4 | Z | . 04 | 1 |
| 8 | MP-1 | Z | . 035 | 8 |
| 9 | MP-2 | Z | . 035 | 8 |
| 10 | MP-3 | Z | . 014 | 5 |

## Member Point Loads (BLC 32:300 Wind - Ice)



## Member Point Loads (BLC 33:315 Wind - Ice)



RISA-3D Version 17.0.1 [..................IRISA-3DICCI BU No. 842865.r3d]
Page 17


## Member Point Loads (BLC 34:330 Wind - Ice)



## Member Distributed Loads (BLC 2:0 Wind - No Ice)

|  | Member Label | Direction | Start Magnitude[k/ft.... | End Magnitude[kftr, ... | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | X | -. 012 | -. 012 | - | \%100 |
| 2 | MP-1 | X | -. 011 | -. 011 | 0 | \%100 |
| 3 | MP-2 | X | -. 011 | -. 011 | 0 | \%100 |
| 4 | MP-3 | X | -. 011 | -. 011 | 0 | \%100 |
| 5 | SA-1 | X | 0 | 0 | 0 | \%100 |

Member Distributed Loads (BLC 3:30 Wind - No Ice)

|  | Member Label | Direction | Start Magnitudefkft,... | End Magnitudelkft, F.. | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | X | -. 009 | -. 009 | 0 | \%100 |
| 2 | MP-1 | X | -. 009 | -. 009 | 0 | \%100 |
| 3 | MP-2 | X | -. 009 | -. 009 | 0 | \%100 |
| 4 | MP-3 | X | -. 009 | -. 009 | 0 | \%100 |
| 5 | SA-1 | X | -. 008 | -. 008 | 0 | \%100 |

[^4]

## Member Distributed Loads (BLC 4: 45 Wind - No Ice)



## Member Distributed Loads (BLC 5 : 60 Wind - No Ice)



## Member Distributed Loads (BLC 6:90 Wind - No Ice)



## Member Distributed Loads (BLC 7 : 120 Wind - No Ice)



|  |  | Tower Engineering Professionals, Inc. <br> Traveon S. Harris <br> TEP No. 155516.293551 <br> CCI BU No. 842865 |  |  |  | Aug 28, 2019 11:38 AM Checked By: GHM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Distributed Loads (BLC 7 : 120 Wind - No Ice) (Continued) |  |  |  |  |  |  |
|  | Member Labe | Direction | Start Magnitudelk/t.... | End Magnitudelk/tt,F, | Start Location[ft,\%] | End Location[ft,\%] |
| 7 | FFTH | Z | -. 005 | -. 005 | 0 | \%100 |
| 8 | MP-1 | Z | -. 009 | -. 009 | 0 | \%100 |
| 9 | MP-2 | Z | -. 009 | -. 009 | 0 | \%100 |
| 10 | MP-3 | Z | -. 009 | -. 009 | 0 | \%100 |
| 11 | SA-1 | Z | -. 014 | -. 014 | 0 | \%100 |
| 12 | MP-4 | Z | -. 008 | -. 008 | 0 | \%100 |

## Member Distributed Loads (BLC 8:135 Wind - No Ice)



## Member Distributed Loads (BLC 9:150 Wind - No Ice)



## Member Distributed Loads (BLC 10:180 Wind - No Ice)



## Member Distributed Loads (BLC 11:210 Wind -No Ice)



RISA-3D Version 17.0.1 [...................IIISA-3DICCI BU No. 842865.r3d]
Page 20


## Member Distributed Loads (BLC 12:225 Wind - No Ice)

|  | Member Label | Direction | Start Magnitude[k/t, | End Magnitudelk/ft,F, | Start Location[ft,\%] | End Location[ft, \%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | X | . 006 | . 006 | 0 | \%100 |
| 2 | MP-1 | X | . 008 | . 008 | 0 | \%100 |
| 3 | MP-2 | X | . 008 | . 008 | 0 | \%100 |
| 4 | MP-3 | X | . 008 | . 008 | 0 | \%100 |
| 5 | SA-1 | X | . 009 | . 009 | 0 | \%100 |
| 6 | MP-4 | X | . 006 | . 006 | 0 | \%100 |
| 7 | FFTH | Z | . 006 | . 006 | 0 | \%100 |
| 8 | MP-1 | Z | . 008 | . 008 | 0 | \%100 |
| 9 | MP-2 | Z | . 008 | . 008 | 0 | \%100 |
| 10 | MP-3 | Z | . 008 | . 008 | 0 | \%100 |
| 11 | SA-1 | Z | . 009 | . 009 | 0 | \%100 |
| 12 | MP-4 | Z | . 006 | . 006 | 0 | \%100 |

## Member Distributed Loads (BLC 13:240 Wind - No Ice)

|  | Member Label | Direction | Start Magnitude[l/ft, | End Magnitude[k/ktt.F. | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | X | . 003 | . 003 | 0 | \%100 |
| 2 | MP-1 | X | . 005 | . 005 | 0 | \%100 |
| 3 | MP-2 | X | . 005 | . 005 | 0 | \%100 |
| 4 | MP-3 | X | . 005 | . 005 | 0 | \%100 |
| 5 | SA-1 | X | . 008 | . 008 | 0 | \%100 |
| 6 | MP-4 | X | . 004 | . 004 | 0 | \%100 |
| 7 | FFTH | Z | . 005 | . 005 | 0 | \%100 |
| 8 | MP-1 | Z | . 009 | . 009 | 0 | \%100 |
| 9 | MP-2 | Z | . 009 | . 009 | 0 | \%100 |
| 10 | MP-3 | Z | . 009 | . 009 | 0 | \%100 |
| 11 | SA-1 | Z | . 014 | . 014 | 0 | \%100 |

## Member Distributed Loads (BLC 14:270 Wind - No Ice)



## Member Distributed Loads (BLC 15:300 Wind - No Ice)



RISA-3D Version 17.0.1 [...................IRISA-3DICCI BU No. 842865.r3d]
Page 21


## Member Distributed Loads (BLC 15:300 Wind - No Ice) (Continued)



## Member Distributed Loads (BLC 16:315 Wind - No Ice)

|  | Member Label | Direction | Start Magnitude[k/t., | End Magnitude [k/tt.F. | Start Location[ft.\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | X | -. 006 | -. 006 | 0 | \%100 |
| 2 | MP-1 | X | -. 008 | -. 008 | 0 | \%100 |
| 3 | MP-2 | X | -. 008 | -. 008 | 0 | \%100 |
| 4 | MP-3 | X | -. 008 | -. 008 | 0 | \%100 |
| 5 | SA-1 | X | -. 009 | -. 009 | 0 | \%100 |
| 6 | MP-4 | X | -. 006 | -. 006 | 0 | \%100 |
| 7 | FFTH | Z | . 006 | . 006 | 0 | \%100 |
| 8 | MP-1 | Z | . 008 | . 008 | 0 | \%100 |
| 9 | MP-2 | Z | . 008 | . 008 | 0 | \%100 |
| 10 | MP-3 | Z | . 008 | . 008 | 0 | \%100 |
| 11 | SA-1 | Z | . 009 | . 009 | 0 | \%100 |
| 12 | MP-4 | Z | . 006 | . 006 | 0 | \%100 |

Member Distributed Loads (BLC 17:330 Wind - No Ice)

|  | Member Label | Direction | Start Magnitude[k/ft.... | End Magnitude[kft, F.... | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | X | -. 009 | -. 009 | 0 | \%100 |
| 2 | MP-1 | X | -. 009 | -. 009 | 0 | \%100 |
| 3 | MP-2 | X | -. 009 | -. 009 | 0 | \%100 |
| 4 | MP-3 | X | -. 009 | -. 009 | 0 | \%100 |
| 5 | SA-1 | X | -. 008 | -. 008 | 0 | \%100 |
| 6 | MP-4 | X | -. 008 | -. 008 | 0 | \%100 |
| 7 | FFTH | Z | 005 | . 005 | 0 | \%100 |
| 8 | MP-1 | Z | . 005 | . 005 | 0 | \%100 |
| 9 | MP-2 | Z | . 005 | . 005 | 0 | \%100 |
| 10 | MP-3 | Z | . 005 | . 005 | 0 | \%100 |
| 11 | SA-1 | Z | . 005 | . 005 | 0 | \%100 |
| 12 | MP-4 | Z | . 004 | . 004 | 0 | \%100 |

## Member Distributed Loads (BLC 18 : Ice Weight)

|  | Member Label | Direction | Start Magnitudelkift.. | End MagnitudeIk/t, F.. | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | Y | -. 005 | -. 005 | 0 | \%100 |
| 2 | MP-1 | Y | -. 004 | -. 004 | 0 | \%100 |
| 3 | MP-2 | Y | -. 004 | -. 004 | 0 | \%100 |
| 4 | MP-3 | Y | -. 004 | -. 004 | 0 | \%100 |
| 5 | SA-1 | Y | -. 007 | -. 007 | 0 | \%100 |
| 6 | MP-4 | Y | -. 004 | -. 004 | 0 | \%100 |

Member Distributed Loads (BLC 19:0 Wind - Ice)

|  | Member Label | Direction | Start Magnitude[k/t., | End Magnitude[k/tt, F.. | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | X | -. 003 | -. 003 | 0 | \%100 |
| 2 | MP-1 | X | -. 003 | -. 003 | 0 | \%100 |
| 3 | MP-2 | X | -. 003 | -. 003 | 0 | \%100 |
| 4 | MP-3 | X | -. 003 | -. 003 | 0 | \%100 |
| 5 | SA-1 | X | -. 005 | -. 005 | 0 | \%100 |
| 6 | MP-4 | X | -. 002 | -. 002 | 0 | \%100 |

Member Distributed Loads (BLC 20:30 Wind - Ice)

[^5]|  |  | Tower Engineering Professionals, Inc. <br> Traveon S. Harris <br> TEP No. 155516.293551 <br> CCI BU No. 842865 |  |  |  | Aug 28, 2019 <br> 11:38 AM <br> Checked By: GHM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Distributed Loads (BLC 20:30 Wind - Ice) (Continued) |  |  |  |  |  |  |
| Member Labe |  | Direction | Start Magnitude[kft, .. | End Magnitudelkf/t,F, | Start Location[ft,\%] | End Location[ft,\%] |
| 1 | FFTH | X | -. 003 | -. 003 | 0 | \%100 |
| 2 | MP-1 | X | -. 002 | -. 002 | 0 | \%100 |
| 3 | MP-2 | X | -. 002 | -. 002 | 0 | \%100 |
| 4 | MP-3 | X | -. 002 | -. 002 | 0 | \%100 |
| 5 | SA-1 | X | -. 002 | -. 002 | 0 | \%100 |
| 6 | MP-4 | X | -. 002 | -. 002 | 0 | \%100 |
| 7 | FFTH | Z | -. 001 | -. 001 | 0 | \%100 |
| 8 | MP-1 | Z | -. 002 | -. 002 | 0 | \%100 |
| 9 | MP-2 | Z | -. 002 | -. 002 | 0 | \%100 |
| 10 | MP-3 | Z | -. 002 | -. 002 | 0 | \%100 |
| 11 | SA-1 | Z | -. 001 | -. 001 | 0 | \%100 |
| 12 | MP-4 | Z | -. 001 | -. 001 | 0 | \%100 |

## Member Distributed Loads (BLC 21: 45 Wind - Ice)

|  | Member Label | Direction | Start Magnitude[k/ft.... | End Magnitudelk/ft, F... | Start Location[tt.\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | X | -. 002 | -. 002 | 0 | \%100 |
| 2 | MP-1 | X | -. 002 | -. 002 | 0 | \%100 |
| 3 | MP-2 | X | -. 002 | -. 002 | 0 | \%100 |
| 4 | MP-3 | X | -. 002 | -. 002 | 0 | \%100 |
| 5 | SA-1 | X | -. 002 | -. 002 | 0 | \%100 |
| 6 | MP-4 | X | -. 001 | -. 001 | 0 | \%100 |
| 7 | FFTH | Z | -. 002 | -. 002 | 0 | \%100 |
| 8 | MP-1 | Z | -. 002 | -. 002 | 0 | \%100 |
| 9 | MP-2 | Z | -. 002 | -. 002 | 0 | \%100 |
| 10 | MP-3 | Z | -. 002 | -. 002 | 0 | \%100 |
| 11 | SA-1 | Z | -. 002 | -. 002 | 0 | \%100 |
| 12 | MP-4 | Z | -. 002 | -. 002 | 0 | \%100 |

## Member Distributed Loads (BLC 22:60 Wind -Ice)

|  | Member Label | Direction | Start Magnitudelkift. | End Magnitudefk/t.F.F. | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | X | -. 000839 | -. 000839 | 0 | \%100 |
| 2 | MP-1 | X | -. 001 | -. 001 | 0 | \%100 |
| 3 | MP-2 | X | -. 001 | -. 001 | 0 | \%100 |
| 4 | MP-3 | X | -. 001 | -. 001 | 0 | \%100 |
| 5 | SA-1 | X | -. 002 | -. 002 | 0 | \%100 |
| 6 | MP-4 | X | -. 001 | -. 001 | 0 | \%100 |
| 7 | FFTH | Z | -. 001 | -. 001 | 0 | \%100 |
| 8 | MP-1 | Z | -. 003 | -. 003 | 0 | \%100 |
| 9 | MP-2 | Z | -. 003 | -. 003 | 0 | \%100 |
| 10 | MP-3 | Z | -. 003 | -. 003 | 0 | \%100 |
| 11 | SA-1 | Z | -. 004 | -. 004 | 0 | \%100 |
| 12 | MP-4 | Z | -. 002 | -. 002 | 0 | \%100 |

## Member Distributed Loads (BLC 23:90 Wind - Ice)

|  | Member Label | Direction | Start Magnitude[k/ft | End Magnitudelk/ft,F, | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | Z | 0 | 0 | 0 | \%100 |
| 2 | MP-1 | Z | -. 003 | -. 003 | 0 | \%100 |
| 3 | MP-2 | Z | -. 003 | -. 003 | 0 | \%100 |
| 4 | MP-3 | Z | -. 003 | -. 003 | 0 | \%100 |
| 5 | SA-1 | Z | -. 005 | -. 005 | 0 | \%100 |
| 6 | MP-4 | Z | -. 002 | -. 002 | 0 | \%100 |

## Member Distributed Loads (BLC 24:120 Wind - Ice)

|  | mber | D | (1). |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | X | . 000839 | . 000839 | 0 | \%100 |

lilisisA Company $\quad$ : Tower Engineering Professionals, Inc. $\begin{array}{lll}\text { Designer } & \text { Traveon S. Harits } \\ \text { Joo Number } & \text { Tav } \\ \text { Model Name } & \text { TEP No. 155516.293551 } \\ \text { CCI BU No. } 842865\end{array}$

Member Distributed Loads (BLC 24:120 Wind - Ice) (Continued)

| Member Label |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Member Distributed Loads (BLC 25:135 Wind - Ice)


Member Distributed Loads (BLC 26:150 Wind - Ice)


Member Distributed Loads (BLC 27:180 Wind - Ice)


Member Distributed Loads (BLC 28:210 Wind - Ice)



## Member Distributed Loads (BLC 29:225 Wind - Ice)

|  | Member Label | Direction | Start Magnitude[k/t... | End Magnitude[kfter... | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | X | . 002 | . 002 | 0 | \%100 |
| 2 | MP-1 | X | . 002 | . 002 | 0 | \%100 |
| 3 | MP-2 | X | . 002 | 002 | 0 | \%100 |
| 4 | MP-3 | X | . 002 | . 002 | 0 | \%100 |
| 5 | SA-1 | X | . 002 | . 002 | 0 | \%100 |
| 6 | MP-4 | X | . 001 | . 001 | 0 | \%100 |
| 7 | FFTH | Z | . 002 | . 002 | 0 | \%100 |
| 8 | MP-1 | Z | . 002 | . 002 | 0 | \%100 |
| 9 | MP-2 | Z | . 002 | . 002 | 0 | \%100 |
| 10 | MP-3 | Z | . 002 | . 002 | 0 | \%100 |
| 11 | SA-1 | Z | . 002 | . 002 | 0 | \%100 |
| 12 | MP-4 | Z | . 002 | . 002 | 0 | \%100 |

## Member Distributed Loads (BLC 30:240 Wind - Ice)

|  | Member Label | Direction | Start Magnitude[k/ft.... | End Magnitude[k/t, F... | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | X | . 000839 | . 000839 | 0 | \%100 |
| 2 | MP-1 | X | . 001 | . 001 | 0 | \%100 |
| 3 | MP-2 | X | . 001 | . 001 | 0 | \%100 |
| 4 | MP-3 | X | . 001 | . 001 | 0 | \%100 |
| 5 | SA-1 | X | . 002 | . 002 | 0 | \%100 |
| 6 | MP-4 | X | . 001 | . 001 | 0 | \%100 |
| 7 | FFTH | Z | . 001 | . 001 | 0 | \%100 |
| 8 | MP-1 | Z | . 003 | . 003 | 0 | \%100 |
| 9 | MP-2 | Z | . 003 | . 003 | 0 | \%100 |
| 10 | MP-3 | Z | . 003 | . 003 | 0 | \%100 |
| 11 | SA-1 | Z | . 004 | . 004 | 0 | \%100 |
| 12 | MP-4 | Z | . 002 | . 002 | 0 | \%100 |

## Member Distributed Loads (BLC 31:270 Wind - Ice)

|  | Member Label | Direction | Start Magnitude[k/t... | End Magnitude[k/t, F... | Start Location[ft.\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | Z | 0 | 0 | 0 | \%100 |
| 2 | MP-1 | Z | . 003 | 003 | 0 | \%100 |
| 3 | MP-2 | Z | . 003 | . 003 | 0 | \%100 |
| 4 | MP-3 | Z | . 003 | . 003 | 0 | \%100 |
| 5 | SA-1 | Z | . 005 | . 005 | 0 | \%100 |
| 6 | MP-4 | Z | . 002 | . 002 | 0 | \%100 |

## Member Distributed Loads (BLC 32:300 Wind - Ice)




## Member Distributed Loads (BLC 33:315 Wind - Ice)

|  | Member Label | Direction | Start Magnitude[k/ft.... | End Magnitude[k/ft, F.... | Start Location[ft,\%] | End Location[ft.\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | X | -. 002 | -. 002 | 0 | \%100 |
| 2 | MP-1 | X | -. 002 | -. 002 | 0 | \%100 |
| 3 | MP-2 | X | -. 002 | -. 002 | 0 | \%100 |
| 4 | MP-3 | X | -. 002 | -. 002 | 0 | \%100 |
| 5 | SA-1 | X | -. 002 | -. 002 | 0 | \%100 |
| 6 | MP-4 | X | -. 001 | -. 001 | 0 | \%100 |
| 7 | FFTH | Z | . 002 | . 002 | 0 | \%100 |
| 8 | MP-1 | Z | . 002 | . 002 | 0 | \%100 |
| 9 | MP-2 | Z | . 002 | . 002 | 0 | \%100 |
| 10 | MP-3 | Z | . 002 | . 002 | 0 | \%100 |
| 11 | SA-1 | Z | . 002 | . 002 | 0 | \%100 |
| 12 | MP-4 | Z | . 002 | . 002 | 0 | \%100 |

## Member Distributed Loads (BLC 34:330 Wind - Ice)

|  | Member Label | Direction | Start Magnitudefk/t.... | End Magnitudefk/t,F.F. | Start Location [ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FFTH | X | -. 003 | -. 003 | 0 | \%100 |
| 2 | MP-1 | X | -. 002 | -. 002 | 0 | \%100 |
| 3 | MP-2 | X | -. 002 | -. 002 | 0 | \%100 |
| 4 | MP-3 | X | -. 002 | -. 002 | 0 | \%100 |
| 5 | SA-1 | X | -. 002 | -. 002 | 0 | \%100 |
| 6 | MP-4 | X | -. 002 | -. 002 | 0 | \%100 |
| 7 | FFTH | Z | . 001 | . 001 | 0 | \%100 |
| 8 | MP-1 | Z | . 002 | . 002 | 0 | \%100 |
| 9 | MP-2 | Z | . 002 | 002 | 0 | \%100 |
| 10 | MP-3 | Z | . 002 | . 002 | 0 | \%100 |
| 11 | SA-1 | Z | . 001 | . 001 | 0 | \%100 |
| 12 | MP-4 | Z | . 001 | . 001 | 0 | \%100 |

## Member Area Loads

| Joint A | Joint B | Joint C | Joint D | Direction | Distribution |
| :---: | :---: | :---: | :---: | :---: | :--- |
|  | No Data to Print ... | Magnitude[ksf] |  |  |  |

## Envelope Joint Reactions


 $\begin{array}{lll}\text { Designer } & \vdots \text { Traveon S. Harris } \\ \text { Job Number } & \text { TEP No. } 155516.293551\end{array}$ $\begin{array}{lll}\text { Job Number } & \vdots \text { TEP No. } 155516.293551 \\ \text { Model Name } & \text { OCI BU No. } 842865\end{array}$

## Envelope AISC 15th(360-16): LRFD Steel Code Checks







## Envelope None Cold Formed Steel Code Checks

$\qquad$
Member Shape Code Check Loc|ft|LL..She...Loc...... L... Pn[k] Tn[k] Mnyy[...Mnzz[... Cb CmyyCmzz Eqn
No Data to Print $\ldots$...

## APPENDIX D

## ADDITIONAL CALCULATIONS

Moment Bolt Group - Support Arm


| Bolt Size: | 0.625 | in |
| :---: | :---: | :---: |
| \# Bolts: | 4 |  |
| Plate Width: | 11.5 | in |
| Plate Height: | 11.5 | in |
| Bolt H Gap: | 9.25 | in |
| Bolt V Gap: | 9.25 | in |
| Plate T: | 0.625 | in |
| Slip Member $\varnothing$ : | N/A | in |
| Bolt Grade: | A325N |  |
| $F u_{\text {bolt }}$ : | 120 | ksi |
| $r$ : | 6.5407 | in |
| J: | 171.13 | $\mathrm{in}^{4} / \mathrm{in}^{2}$ |
| Bolt ${ }_{\text {Area }}$ : | 0.307 | $i n^{2}$ |
| Bolt ${ }_{\text {Area, Net Tensile }}$ : | 0.226 | $\mathrm{in}^{2}$ |
| Pretension: | 19 | kips |
| Slotted Holes: | No |  |

## Plate Bending

Horizontal Member height:
Horizontal Member width: 4 in
Plate Fy: 36 ksi

$$
\begin{array}{lll}
\mathrm{My}= & 8.1624 & \mathrm{k}-\mathrm{in} \\
\mathrm{Mz}= & 9.1877 & \mathrm{k}-\mathrm{in}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{y}}=1.123 \mathrm{in}^{3} \\
& \mathrm{Z}_{\mathrm{z}}=1.123 \mathrm{in}^{3}
\end{aligned}
$$

$S_{y}=0.749 \mathrm{in}^{3}$

| $\varnothing M p_{y}(Z):$ | 36.387 | $k-$ in |
| :--- | :--- | :--- |
| $\varnothing M p_{y}(S):$ | 38.813 | $k-$ in |
| $\varnothing M p_{z}(Z):$ | 36.387 | $k-$ in |
| $\varnothing M p_{z}(S):$ | 38.813 | $k-$ in |

## Exhibit F

## Power Density/RF Emissions Report

## RF EMISSIONS COMPLIANCE REPORT

## Crown Castle on behalf of AT\&T Mobility, LLC

Crown Castle Site Name: LEBANON WEST<br>Crown Castle Site BU: 842865<br>AT\&T Mobility, LLC Site FA \#: 10071090<br>1593 Exeter Road<br>Lebanon, CT<br>10/4/2019

## Report Status:

## AT\&T Mobility, LLC Is Compliant



Michael Fischer, P.E.
Registered Professional Engineer (Electrical)
Connecticut License Number 33928
Expires January 31, 2020

Signed 04 October 2019
Prepared By:
Site Safe, LLC

## Engineering Statement in Re:

Electromagnetic Energy Analysis
Crown Castle
LEBANON, CT
My signature on the cover of this document indicates:
That I am registered as a Professional Engineer in the jurisdiction indicated; and
That I have extensive professional experience in the wireless communications engineering industry; and

That I am an employee of Site Safe, LLC in Vienna, Virginia; and
That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission ("the FCC" and "the FCC Rules") both in general and specifically as they apply to the FCC's Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields; and

That the technical information serving as the basis for this report was supplied by Crown Castle (see attached Site Summary and Carrier documents) and that AT\&T Mobility, LLC's installation involves communications equipment, antennas and associated technical equipment at a location referred to as "LEBANON WEST" ("the site"); and

That AT\&T Mobility, LLC proposes to operate at the site with transmit antennas listed in the carrier summary and with a maximum effective radiated power as specified by AT\&T Mobility, LLC and shown on the worksheet and that worst-case $100 \%$ duty cycle has been assumed; and

That this analysis has been performed with the assumption that the ground immediately surrounding the tower is primarily flat or falling; and

That at this time, the FCC requires that certain licensees address specific levels of radio frequency energy to which workers or members of the public might possibly be exposed (at §1.1307(b) of the FCC Rules); and

That such consideration of possible exposure of humans to radio frequency energy must utilize the standards set by the FCC, which is the federal agency having jurisdiction over communications facilities; and

That the FCC rules define two tiers of permissible exposure guidelines: 1) "uncontrolled environments," which defines situations in which persons may not be aware of (the "general public"), or may not be able to control their exposure to a transmission facility; and 2) "controlled environments," which defines situations in which persons are aware of their potential for exposure (industry personnel); and

That this statement specifically addresses the uncontrolled environment (which is more conservative than the controlled environment) and the limit set forth in the FCC rules for licensees of AT\&T Mobility, LLC's operating frequencies as shown on the attached antenna worksheet; and

That when applying the uncontrolled environment standards, the predicted Maximum Power Density at two meters above ground level from the proposed AT\&T Mobility, LLC operation is
no more than $3.783 \%$ of the maximum permissible exposure limits in any accessible area on the ground; and

That it is understood per FCC Guidelines and OET 65 Appendix A, that regardless of the existent radio frequency environment, only those licensees whose contributions exceed $5 \%$ of the exposure limit pertinent to their operation(s) bear any responsibility for bringing any noncompliant area(s) into compliance; and

That when applying the uncontrolled environment standards, the cumulative predicted energy density from the proposed operation is no more than $5.212 \%$ of the maximum in any accessible area up to two meters above the ground per OET 65; and

That the calculations provided in this report are based on data provided by the client and antenna pattern data supplied by the antenna manufacturer, in accordance with FCC guidelines listed in OET 65. Horizontal and vertical antenna patterns are combined for modeling purposes to accurately reflect the energy two meters above ground level where on-axis energy refers to maximum energy two meters above the ground along the azimuth of the antenna and where area energy refers to the maximum energy anywhere two meters above the ground regardless of the antenna azimuth, accounting for cumulative energy from multiple antennas for the carrier(s) and frequency range(s) indicated; and

That the Occupational Safety and Health Administration has policies in place which address worker safety in and around communications sites, thus individual companies will be responsible for their employees' training regarding radio frequency safety; and

In summary, it is stated here that the proposed operation at the site will not result in exposure of the public to excessive levels of radio frequency energy as defined in the FCC Rules and Regulations, specifically 47 CFR 1.1307 (b), and that AT\&T Mobility, LLC's proposed operation is completely compliant.

Finally, it is stated that access to the tower should be restricted to communication industry professionals and approved contractor personnel trained in radio frequency safety and that this instant analysis addresses exposure levels at two meters above ground level and does not address exposure levels on the tower or in the immediate proximity of the antennas.

## Crown Castle

LEBANON WEST
Site Summary

Carrier AT\&T Mobility, LLC
AT\&T Mobility, LLC (Proposed)
Area Maximum Percentage MPE

AT\&T Mobility, LLC (Proposed)
0.174 \%
0.839 \%

AT\&T Mobility, LLC (Proposed)
0.385 \%

AT\&T Mobility, LLC (Proposed)
0.478 \%

AT\&T Mobility, LLC (Proposed)
0.598 \%

AT\&T Mobility, LLC (Proposed)
1.048 \%

Verizon Wireless
$0.261 \%$

Verizon Wireless
0.289 \%

Verizon Wireless
0.417 \%

Verizon Wireless
0.389 \%
0.334 \%

## Composite Site MPE:

5.212 \%

## AT\&T Mobility, LLC

LEBANON WEST

## Carrier Summary

| Frequency: |  |  |  | 850 | MHz |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum Permis | Exposu | MPE): |  | 566.67 | $\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$ |  |  |  |
| Maximum power | ity at gr | level: |  | 0.9849 | $\mu \mathrm{W} / \mathrm{cm}^{\wedge} 2$ |  |  |  |
| Highest percenta | Maxim | rmissi | Exposure: | 0.17381 | \% |  |  |  |
|  |  |  |  |  | On |  |  |  |
| Antenna Make | Model | Height (feet) | Orientation (degrees true) | ERP (Watts) | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2) | Percent of MPE | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}{ }^{2}$ ) | Percent of MPE |
| Powerwave | 7770 | 120 | 100 | 547 | 0.369131 | 0.065141 | 0.577619 | 0.101933 |
| Powerwave | 7770 | 120 | 200 | 547 | 0.369131 | 0.065141 | 0.577619 | 0.101933 |
| Powerwave | 7770 | 120 | 300 | 547 | 0.369131 | 0.065141 | 0.577619 | 0.101933 |

## AT\&T Mobility, LLC (Proposed) LEBANON WEST <br> Carrier Summary

| Frequency: | 2100 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 1000 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Maximum power density at ground level: | 8.39048 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Highest percentage of Maximum Permissible Exposure: | 0.83905 | $\%$ |


| Antenna Make | Model | Height (feet) | Orientation (degrees true) | $\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$ | On Axis |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}{ }^{2}$ ) | Percent of MPE | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2) | Percent of MPE |
| CCI Antennas | DMP65R-BU8D | 120 | 90 | 5250 | 7.395602 | 0.73956 | 8.350558 | 0.835056 |
| CCI Antennas | DMP65R-BU8D | 120 | 220 | 5250 | 7.395602 | 0.73956 | 8.350558 | 0.835056 |
| CCI Antennas | DMP65R-BU8D | 120 | 340 | 5250 | 7.395602 | 0.73956 | 8.350558 | 0.835056 |

## AT\&T Mobility, LLC (Proposed) LEBANON WEST <br> Carrier Summary

| Frequency: | 850 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 566.67 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Maximum power density at ground level: | 2.18369 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Highest percentage of Maximum Permissible Exposure: | 0.38536 | $\%$ |


| Antenna Make | Model | Height (feet) | Orientation (degrees true) | $\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$ | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2) | $\begin{aligned} & \text { Percent of } \\ & \text { MPE } \end{aligned}$ | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2) | Percent of MPE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CCI Antennas | DMP65R-BU8D | 120 | 90 | 2885 | 1.138481 | 0.200908 | 2.141738 | 0.377954 |
| CCI Antennas | DMP65R-BU8D | 120 | 220 | 2885 | 1.138481 | 0.200908 | 2.141738 | 0.377954 |
| CCI Antennas | DMP65R-BU8D | 120 | 340 | 2885 | 1.138481 | 0.200908 | 2.141738 | 0.377954 |

## AT\&T Mobility, LLC (Proposed) LEBANON WEST <br> Carrier Summary

| Frequency: | 763 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 508.67 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Maximum power density at ground level: | 2.43279 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Highest percentage of Maximum Permissible Exposure: | 0.47827 | $\%$ |


| Antenna Make | Model | Height (feet) | Orientation (degrees true) | On Axis |  |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$ | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2) | Percent of MPE | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}{ }^{\text {2 }}$ ) | Percent of MPE |
| CCI Antennas | DMP65R-BU8D | 120 | 90 | 2692 | 1.095932 | 0.215452 | 2.046654 | 0.402357 |
| CCI Antennas | DMP65R-BU8D | 120 | 220 | 2692 | 1.095932 | 0.215452 | 2.046654 | 0.402357 |
| CCI Antennas | DMP65R-BU8D | 120 | 340 | 2692 | 1.095932 | 0.215452 | 2.046654 | 0.402357 |

## AT\&T Mobility, LLC (Proposed) LEBANON WEST <br> Carrier Summary

Frequency:
Maximum Permissible Exposure (MPE):
Maximum power density at ground level:
Highest percentage of Maximum Permissible Exposure

| 2300 | MHz |
| :--- | :--- |
| 1000 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| 5.97819 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| 0.59782 | $\%$ |


| Antenna Make | Model | Height (feet) | Orientation (degrees true) | ERP (Watts) | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}{ }^{2}$ ) | Percent of MPE | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2) | Percent of MPE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CCI Antennas | HPA65R-BU8A | 120 | 90 | 2667 | 5.957152 | 0.595715 | 5.957152 | 0.595715 |
| CCI Antennas | HPA65R-BU8A | 120 | 220 | 2667 | 5.957152 | 0.595715 | 5.957152 | 0.595715 |
| CCI Antennas | HPA65R-BU8A | 120 | 340 | 2667 | 5.957152 | 0.595715 | 5.957152 | 0.595715 |

## AT\&T Mobility, LLC (Proposed) LEBANON WEST <br> Carrier Summary

| Frequency: | 1900 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 1000 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Maximum power density at ground level: | 10.4838 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Highest percentage of Maximum Permissible Exposure: | 1.04838 | $\%$ |


| Antenna Make | Model | Height (feet) | Orientation (degrees true) |  | On Axis |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$ | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}{ }^{2}$ ) | Percent of MPE | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2) | Percent of MPE |
| CCI Antennas | HPA65R-BU8A | 120 | 90 | 4679 | 9.548061 | 0.954806 | 10.419684 | 1.041968 |
| CCI Antennas | HPA65R-BU8A | 120 | 220 | 4679 | 9.548061 | 0.954806 | 10.419684 | 1.041968 |
| CCI Antennas | HPA65R-BU8A | 120 | 340 | 4679 | 9.548061 | 0.954806 | 10.419684 | 1.041968 |

## AT\&T Mobility, LLC (Proposed) <br> LEBANON WEST <br> Carrier Summary

| Frequency: | 737 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 491.33 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Maximum power density at ground level: | 1.28093 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Highest percentage of Maximum Permissible Exposure: | 0.2607 | $\%$ |


| Antenna Make | Model | Height (feet) | Orientation (degrees true) |  | On Axis |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { ERP } \\ \text { (Watts) } \end{gathered}$ | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2) | Percent of MPE | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}{ }^{2}$ ) | Percent of MPE |
| CCI Antennas | HPA65R-BU8A | 120 | 90 | 1242 | 0.509555 | 0.103709 | 1.009873 | 0.205537 |
| CCI Antennas | HPA65R-BU8A | 120 | 220 | 1242 | 0.509555 | 0.103709 | 1.009873 | 0.205537 |
| CCI Antennas | HPA65R-BU8A | 120 | 340 | 1242 | 0.509555 | 0.103709 | 1.009873 | 0.205537 |

## Verizon Wireless <br> LEBANON WEST

## Carrier Summary

| Frequency: | 850 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 566.67 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Maximum power density at ground level: | 1.63972 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Highest percentage of Maximum Permissible Exposure: | 0.28936 | $\%$ |


| Antenna Make | Model | Height (feet) | Orientation (degrees true) |  | On Axis |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | ERP (Watts) | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge} \mathbf{2}$ ) | Percent of MPE | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}{ }^{2}$ ) | Percent of MPE |
| Antel | BXA-80063-6CF | 150 | 10 | 4509 | 1.604007 | 0.28306 | 1.630169 | 0.287677 |
| Antel | BXA-80063-6CF | 150 | 120 | 4509 | 1.604007 | 0.28306 | 1.630169 | 0.287677 |
| Antel | BXA-80063-6CF | 150 | 270 | 4509 | 1.604007 | 0.28306 | 1.630169 | 0.287677 |

## Verizon Wireless <br> LEBANON WEST

## Carrier Summary

| Frequency: | 751 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 500.67 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Maximum power density at ground level: | 2.08528 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Highest percentage of Maximum Permissible Exposure: | 0.4165 | $\%$ |


| Antenna Make | Model | Height (feet) | Orientation (degrees true) | $\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$ | On Axis |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}{ }^{\text {2 }}$ ) | Percent of MPE | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2) | Percent of MPE |
| Antel | BXA-70063-6CF | 150 | 10 | 4019 | 1.494784 | 0.298559 | 1.76463 | 0.352456 |
| Antel | BXA-70063-6CF | 150 | 120 | 4019 | 1.494784 | 0.298559 | 1.76463 | 0.352456 |
| Antel | BXA-70063-6CF | 150 | 270 | 4019 | 1.494784 | 0.298559 | 1.76463 | 0.352456 |

## Verizon Wireless <br> LEBANON WEST

## Carrier Summary

| Frequency: | 2100 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 1000 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Maximum power density at ground level: | 3.89111 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Highest percentage of Maximum Permissible Exposure: | 0.38911 | $\%$ |


| Antenna Make | Model | Height (feet) | Orientation (degrees true) | On Axis |  |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { ERP } \\ \text { (Watts) } \end{gathered}$ | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2) | Percent of MPE | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2) | Percent of MPE |
| Antel | BXA-171063-12CF | 150 | 10 | 7837 | 1.747596 | 0.17476 | 3.59284 | 0.359284 |
| Antel | BXA-171063-12CF | 150 | 120 | 7837 | 1.747596 | 0.17476 | 3.59284 | 0.359284 |
| Antel | BXA-171063-12CF | 150 | 270 | 7837 | 1.747596 | 0.17476 | 3.59284 | 0.359284 |

## Verizon Wireless <br> LEBANON WEST

## Carrier Summary

| Frequency: | 1900 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 1000 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Maximum power density at ground level: | 3.34411 | $\mu \mathrm{~W} / \mathrm{cm}^{\wedge} 2$ |
| Highest percentage of Maximum Permissible Exposure: | 0.33441 | $\%$ |


| Antenna Make | Model |  |  |  | On Axis |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Height (feet) | Orientation (degrees true) | $\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$ | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge}$ 2) | $\begin{aligned} & \text { Percent of } \\ & \text { MPE } \end{aligned}$ | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{\wedge} \mathbf{2}$ ) | Percent of MPE |
| Antel | BXA-171063-12CF | 150 | 10 | 7147 | 1.199065 | 0.119906 | 2.870013 | 0.287001 |
| Antel | BXA-171063-12CF | 150 | 120 | 7147 | 1.199065 | 0.119906 | 2.870013 | 0.287001 |
| Antel | BXA-171063-12CF | 150 | 270 | 7147 | 1.199065 | 0.119906 | 2.870013 | 0.287001 |


[^0]:    (1) GAMMA PLUMBING DIAGRAM

[^1]:    RISA-3D Version 17.0.1 [...................IRISA-3DICCI BU No. 842865.r3d]

[^2]:    RISA-3D Version 17.0.1 [..................IRISA-3DICCI BU No. 842865.r3d]

[^3]:    
    Page 14

[^4]:    RISA-3D Version 17.0.1 [...................IRISA-3DICCI BU No. 842865.r3d]
    Page 18

[^5]:    RISA-3D Version 17.0.1 [..................IRISA-3DICCI BU No. 842865.r3d]
    Page 22

